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[image: ]Abb. 1. Der pythagoreische Hammer, anonyme Illustration aus dem 11. Jahrhundert. Aus: Barbara Münxelaus, Pythagoras Musicus, Bonn 1976, Abb. 11



»OCTAVE«, s.f. – La première des consonances dans l’ordre de leur génération. L’octave est la plus parfaite des consonances; elle est, après l’unisson, celui de tous les accords dont le rapport est le plus simple: l’unisson est en raison d’égalité, c’est-à-dire comme 1 est à 1: l’octave est en raison double, c’est-à-dire comme 1 est à 2; les harmoniques des deux sons dans l’un et dans l’autre s’accordent tous sans exception, ce qui n’a lieu dans aucun autre intervalle. Enfin ces deux accords ont tant de conformité, qu’ils se confondent souvent dans la mélodie, et que dans l’harmonie même, on les prend presque indifféremment l’un pour l’autre.
Cet intervalle s’appelle octave, parce que, pour marcher diatoniquement d’un de ces termes à l’autre, il faut passer par sept degrés, et faire entendre huit sons différents.
Jean-Jacques Rousseau, Dictionnaire de musique (1768)
 
OKTAVE, subst. f. – Die erste der Konsonanzen in der Reihenfolge ihrer Erzeugung. Die Oktave ist die vollkommenste der Konsonanzen; nach dem Gleichklang ist sie von allen Akkorden derjenige, dessen Verhältnis das einfachste ist: Der Gleichklang steht im Verhältnis der Gleichheit, das heißt wie die 1 zur 1; die Oktave steht im Verhältnis der Verdopplung, das heißt wie die 1 zur 2. Die Harmonien der beiden Töne stimmen ausnahmslos zusammen, was bei keinem anderen Intervall der Fall ist. Schließlich haben die beiden Akkorde so viel Übereinstimmung, dass sie sich in der Melodie oft vermischen und dass man in der Harmonie oft sogar unterschiedslos einen für den anderen nimmt.
Dieses Intervall heißt Oktave, weil man, um diatonisch von einem Ende zum anderen zu schreiten, über sieben Stufen gehen und acht verschiedene Töne erklingen lassen muss.


Vorwort
Einer langen Tradition zufolge war Pythagoras der Erfinder der Harmonie, verstanden in einem doppelten Sinne: als Beschreibung einer begrenzten Menge musikalischer Klänge und, in erweiterter Bedeutung, als Lehre von der fundamentalen Intelligibilität der natürlichen Welt. Dieses Buch untersucht beide Aspekte der Pythagoras zugeschriebenen Erfindung. Es versucht zu zeigen, wie von der Antike über das Mittelalter bis zur Neuzeit die Analyse von Klängen in quantitativen Begriffen ein Modell für die kosmologische Forschung liefert. Diese Forschung, die vielleicht das erste Beispiel für eine Wissenschaft war, wie wir sie kennen, beruht auf einem einfachen Verfahren: der Transkription der Welt in Einheiten der Mathematik. So verstanden, ist das pythagoreische Projekt eines von Lektüre und Notation, das darauf abzielt, die Zeichen, die das große und oftmals wirre Buch der Natur enthält, zu entziffern und zu transkribieren. Man könnte sagen, dass die Vorstellung, auf der eine solche Praxis der Repräsentation beruht, der »Buchstabe« ist, wenn man diesen Begriff in seinem alten Sinne nimmt, als kleinstes Element der Intelligibilität, und wenn man hinzufügt, dass solche kleinsten Elemente ihrer Natur nach quantitativ sind. Die Welt ist entzifferbar, wenn sie sich in solche elementaren Buchstaben auflösen lässt; das wäre eine Art, eine lange währende pythagoreische Wette auszudrücken.
Seit vorsokratischer Zeit, während des ganzen Mittelalters und in der Epoche der modernen Wissenschaft stößt die pythagoreische Notation jedoch auf eine Grenze. Etwas widersteht der Aufzeichnung in irgendwelchen quantitativen Einheiten, seien es Noten, Zahlen, Linien oder Figuren. Für die Hartnäckigkeit dieser Grenze gibt es zumindest zwei fundamentale Gründe. Zunächst einmal können Buchstaben der ganzen Welt, die sie aufzuzeichnen trachten, unangemessen sein. Es ist aber auch vorstellbar, dass die ganze Welt letzten Endes nicht als Ganzes erfassbar ist. Diese beiden Möglichkeiten lassen sich unabhängig voneinander oder zusammen betrachten; darüber hinaus können je nach Autor und Epoche die Bedeutungen von »Buchstabe« und »Welt« variieren. Disharmonie tritt in vielerlei Arten auf. Doch in zwei grundlegend verschiedenen epistemologischen und metaphysischen Paradigmata – vor und nach dem Bruch, den man traditionell mit der galileischen Wissenschaft verbindet – stießen die Denker, welche die natürliche Welt vermittels quantitativer Elemente zu ordnen versuchten, auf etwas, das sich zwar hören, aber nicht aufzeichnen ließ.
Aus Gründen, die der Leser rasch ersehen wird, bezeichnet »der fünfte Hammer« in diesem Buch jenen beunruhigenden Teil, der die pythagoreische Musiktheorie und Kosmologie stört. Seine hartnäckige Wiederkehr in unterschiedlicher Gestalt bildet das Thema der folgenden Kapitel.

Erstes Kapitel In der Schmiede
Pythagoras verstand es, seinen Ohren zu misstrauen. Als Weiser und Wissenschaftler wusste er, dass die Wahrnehmungsorgane manche Wahrheiten offenbaren können, doch wusste er auch, dass sie ihn stets in die Irre zu führen vermochten. In seinen De institutione musica libri quinque berichtet Boethius, dass Pythagoras »nicht den menschlichen Ohren traute«, da sie wie alle anderen Teile des Körpers ständiger Veränderung unterliegen.[1] Manchmal wandeln sie sich aufgrund äußerer und zufälliger Umstände; manchmal beginnen sie sich mit Notwendigkeit zu verändern, etwa mit zunehmendem Alter. Kaum mehr erwartete Pythagoras von menschengemachten akustischen Hilfsmitteln. Musikalische Instrumente waren für ihn die Quelle »grosse[r] Veränderung und Unbeständigkeit«.[2] Mehr als einmal hatte er die Natur der Saiten untersucht. Ihre Töne können sich aus Gründen verändern, die zu zahlreich sind, um sich vollständig aufzählen zu lassen. Je nach ihrer Beschaffenheit, abhängig von ihrer Länge und Dicke, von der Feuchtigkeit der umgebenden Luft und der Kraft, mit der sie angeschlagen werden, werden Sehnen unvermeidlich unterschiedliche Töne geben. Pythagoras hatte beobachtet, dass andere Instrumente ihnen darin gleichen. Sicher war nur, dass ihre »vorher bestehende Beschaffenheit« und infolgedessen auch ihre Töne sich früher oder später veränderten. Da ihm die Implikationen dieser Tatsache bewusst waren, hatte Pythagoras beschlossen, sich und seine Forschungen, so gut es ging, von den verwirrenden Konsequenzen der Sinnesgegenstände zu befreien. Er wollte die Gesetze des Klangs studieren, ohne ihnen in ihrer körperlichen Gestalt begegnen zu müssen, und wollte Erkenntnis von den Eigenschaften der hörbaren Dinge einzig mit Hilfe der Vernunft erlangen.
Der Plan war kühn entworfen, sollte jedoch nie vollendet werden. Eben als Pythagoras darüber nachsann, welchen Lauf seine weiteren Forschungen nehmen sollten, wurde er plötzlich abgelenkt. »Durch göttliche Eingebung geleitet«, fand sich der Denker vom Ort seiner gewöhnlichen Kalkulationen hinausgeführt in die Welt. Wie verzaubert wanderte er zu einer Schmiedewerkstatt. Aus der Schmiede kam das Geräusch zahlreicher Hämmer, und er hörte, »wie aus den verschiedenen Tönen nur eine Harmonie hervortönte«. Staunend begann Pythagoras zu verstehen, was er entdeckt hatte. »So also zu dem, was er lange suchte, durch Zufall hingeführt, schritt er zum Werk […].«[3]
Das Staunen wich bald vernunftgeleiteter Überlegung. Diese Töne entstanden nicht von selbst; sie entsprangen der Tätigkeit von Menschen und wurden mit Werkzeugen in einer bestimmten Umgebung ausgeführt. Pythagoras versuchte den Grund für die Kongruenz der Töne in Erfahrung zu bringen. Doch das war keine leichte Aufgabe. Wie waren die Schmiede von der Schmiedewerkstatt, die Hämmernden von den Hämmern zu unterscheiden? Als Erstes prüfte er eine Hypothese. Er »ließ […] die Schmiede die Hämmer unter einander vertauschen«, und sie begannen erneut mit ihrer Arbeit. Die verblüffende Konsonanz blieb. Wenigstens eine unbezweifelbare Folgerung ließ sich nun ziehen: »Die Eigenschaft der Töne hing […] nicht von den Armen der Männer ab, sondern begleitete die vertauschten Hämmer.« Die Konkordanz, recht definiert, hatte sich also nicht verschoben. Ihr Ort lag fest: unbestreitbar nicht bei den Arbeitern, sondern in den Werkzeugen. Genauer gesagt, die Konsonanz lag in einer der zahlreichen sinnlichen Eigenschaften der Hämmer. Es war eine Eigenschaft, die für deren Zweckdienlichkeit vielleicht durchaus nebensächlich war: nämlich dass sie eine Masse besaßen, die präzise messbar war. Pythagoras begriff diesen Punkt rasch: Die einfache Konsonanz ergab sich aus den Relationen zwischen den Gewichten der Hämmer, die eine Reihe von wohllautenden Tönen verursachten. Für Boethius, einen Denker der Spätantike, ließen sich die Gewichtsrelationen der verschiedenen Hämmer natürlich am besten in der Terminologie der griechisch-lateinischen Arithmetik ausdrücken. Er schreibt:
Da es nun 5 Hämmer waren, so fand er zwei, die in doppeltem Gewicht zu einander standen; diese ertönten in der Consonanz der Octave (diapason). Von diesen beiden stand der, welcher das doppelte Gewicht hatte, zu einem andern im Sesquiterz und ertönte mit diesem in der Konsonanz der Quarte (diatesseron). Zu einem anderen stand der doppelte im Verhältnisse des Sesquialter und ertönte also mit diesem in der Quinte (diapente). Diese beiden aber, zu denen der erste im doppelten Sesquiterz und Sesquialter stand, bewahren zu einander wechselseitig eine Sesquioctave.[4]

Diese Zusammenfassung, räumt Boethius ein, ließe sich auch einfacher formulieren. »Um das Gesagte deutlicher zu machen, so nehmen wir an, die vier Gewichte seien in Zahlen ausgedrückt diese: 12, 9, 8, 6.«[5]
Pythagoras erkannte sofort die Bedeutung seiner Entdeckung. Rasch kehrte er nach Hause zurück und wiederholte das Experiment mit neuen Mitteln. Zuerst, berichtet Boethius, »übertrug [er] die Gewichte auf die Saiten und beurtheilte die Consonanzen derselben mit dem Ohre. Jetzt stellte er auch in Bezug auf die Länge der Pfeifen das Doppelte und die Mitte her und richtete die übrigen Proportionen ein.« Als Nächstes »stellte er für das Maass der Spannungen die Cyathen der gleichen Gewichte mit den Acetabulen zur Vergleichung zusammen. Auch freute er sich gefunden zu haben, dass es in nichts verschieden sei, ob er mit einem ehernen oder eisernen Stabe die durch verschiedene Gewichte gebildeten Acetabulen schlage.«[6] Schließlich »gelangte er auch dahin, die Länge und Dicke der Saiten gegen einander abzuwägen«.
Er kam zu einer Reihe von Befunden, die sich am einfachsten an einem simplen Instrument demonstrieren lassen: dem Monochord. Dieses besteht aus einer einzelnen Saite, die über einen Resonanzkasten gespannt und an beiden Enden befestigt wird; ihre Länge wird von einem beliebig verschiebbaren Steg geteilt. Wird die Sehne gezupft oder angeschlagen, gibt sie einen einzelnen Ton von sich. Wird die Länge der Sehne allmählich verkürzt, wird der Ton immer höher. Doch in Wahrheit hatte Pythagoras, den Klang der Schmiedewerkstatt im Ohr, noch weit mehr begriffen. Zwischen den Längen- und den Tonveränderungen ließen sich Gesetzmäßigkeiten beobachten; es waren also Korrelationen zwischen geometrischen und klanglichen Phänomenen festzustellen. Besonders drei Äquivalenzen fielen sofort auf. Eine offene Saite erzeugt einen Ton. Wird sie halbiert, so erzeugt sie einen anderen, exakt eine Oktave höheren. Die Sehne wird dann das den Alten als diapason bekannte Intervall von sich geben. Wird die Saite dagegen in drei Abschnitte unterteilt, von denen zwei angeschlagen werden, so wird ein neues Intervall zu hören sein: die Quinte, welche die Griechen und Römer als diapente kannten. Wird die Saite schließlich in vier Abschnitte unterteilt, von denen drei angeschlagen werden, so wird sie einen Ton geben, der um eine Quarte höher ist als die offene Saite; somit wird das Instrument das diatesseron erklingen lassen.
Plötzlich gewann die scheinbar endlose Verschiedenheit der Töne eine neue Einfachheit. Akustische Intervalle waren nun als arithmetische Relationen ausdrückbar. Der Beweis lag in der Reduktion des Klangs der Oktave auf die Relation zwei zu eins (2:1); des Klangs der Quinte auf die Relation drei zu zwei (3:2); des Klangs der Quarte auf die Relation vier zu drei (4:3). Kurz, die natürliche Welt ließ sich transkribieren – zwar nicht mit den Buchstaben von Alphabeten, die sich gemäß der Verschiedenheit menschlicher Idiome voneinander unterscheiden, sondern mit Hilfe von »Zahlen«, die die Alten als Anzahlen der Eins auffassten. Die Folgen dieser Tatsache für das Verständnis der physikalischen Welt waren gewaltig. In sinnlichen Dingen konnte man das Intelligible entdecken, im Veränderlichen das Unwandelbare. Durch die Analyse des Tons hatte Pythagoras die Grundlage seiner Metaphysik erreicht. Es war dies eine Lehre, die Aristoteles mit wenigen lapidaren Sätze referierte: »Die Dinge selbst seien Zahlen« (ἀριθμοὺϚ εἶναι αὐτα τὰ πράγματα);[7] »die Dinge existierten kraft der Nachahmung der Zahlen« (μιμήσει τὰ ὄντα φασὶν εἶναι τῶν ἀριθμῶν);[8] die Zahl sei »ein Prinzip [auch] im Sinne der Materie für die Dinge« (τὰ τῶν ἀριθμῶν στοιχεῖα τῶν ὄντων στοιχεῖα πάντων ὑπέλαβον εἶναι).[9] Solche Sätze deuten unterschiedliche, möglicherweise konfligierende Positionen an.[10] Doch trotz ihrer Unterschiedlichkeit schreiben sie Pythagoras und seinen Nachfolgern ein ganz bestimmtes Programm zu: in der Idee der Zahl einen Schlüssel zum Verständnis der natürlichen Welt zu finden.
Dieses Verständnis konnte weit voranschreiten, doch letztlich musste es stocken. Man kann die Entdeckungen in der Schmiede als Illustration des Projekts und seiner Grenzen betrachten. Pythagoras entwickelte eine arithmetische Lehre, die auf einer Serie von vier Termen beruhte, die den vier jeweiligen Gewichten der konsonanten Hämmer entsprachen: zwölf; neun; acht und sechs. Allein mit diesen ganzen Zahlen konnte Pythagoras die numerischen Relationen ausdrücken, die auf einem Monochord die Oktave (12:6), die Quinte (9:6 oder 12:8) und die Quarte (8:6 oder 12:9) ergeben. Doch diese Relationen spiegelten noch einfachere Proportionen. »Zwölf zu sechs« lässt sich als »zwei zu eins« schreiben; »neun zu sechs« oder »zwölf zu acht« als »drei zu zwei«; »acht zu sechs« oder »zwölf zu neun« als »vier zu drei«. Kurz, alle drei grundlegenden akustischen Intervalle ließen sich durch die Relationen der ersten vier natürlichen Zahlen ausdrücken; diese Terme genügten, um die Konkordanz in der Schmiede zu analysieren. Später vollzogen Pythagoras’ Anhänger einen weiteren Schritt. Die ersten vier Zahlen wurden für sie zu den Einheiten einer kosmologischen »Vierergruppe« (τετρακτύϚ).[11] Ihre arithmetische Summe ergab die Einheit zehn, also die Grundlage für alles weitere Zählen. Sie wurde in der »Rechenstein-Figur« geometrisch als vollkommenes Dreieck dargestellt[12] – das heißt als ein gleichseitiges Dreieck, das entsteht, wenn man über vier Steinen, die in einer Reihe liegen, eine Reihe mit drei, dann mit zwei und dann mit einem Stein anordnet. Denker in dieser Tradition schrieben jedem dieser arithmetischen Elemente verschiedene und weitreichende Bedeutungen zu. Speusipp zum Beispiel lehrte, dass der Punkt eins sei, die Linie zwei, das Dreieck drei und die Pyramide vier.[13] Eine Quelle gibt an, dass das Prinzip bei den Pythagoreern Gegenstand eines heiligen Schwurs war: »Nein, ich schwöre bei dem, der unserer Seele die Vierheit gab / In welcher die Quelle und Wurzel der ewigen Natur liegt.«[14]
Doch in Wahrheit wies diese Vierheit von Anfang an einen Mangel auf. Die Transkription in der Schmiede war entschieden unvollständig. Ein Element wurde nicht mitgezählt. Bei der Beschreibung der Werkzeuge, die die Konsonanz der Töne ergaben, bemerkt Boethius: »Da es nun 5 Hämmer waren …« Die relativen Gewichte von allen außer einem konnten mit Hilfe der ersten vier Zahlen perfekt notiert werden. Doch es gab noch einen fünften Hammer. Boethius widmet dem Schicksal dieses höchst unmusikalischen Instruments nicht mehr als einen Satz: »Der 5te«, schreibt er im Vorübergehen, »wurde verworfen, welcher allen inconsonirend war« (Quintus vero est reiectus, qui cunctis erat inconsonans).[15] Diese abrupte, entschlossene und offenbar unwiderrufliche »Verwerfung« wäre einiger Überlegung wert. Was war mit diesem fünften Hammer, wenn Pythagoras ihn so entschieden verwarf? Boethius gibt nur die blasse Andeutung einer Antwort, und sie ist nicht leicht zu verstehen. Er schreibt, der fünfte Hammer sei »allen inconsonirend« gewesen. Doch dieser Satz beinhaltet eine Frage: Was bedeutet dieses »alle«, wenn etwas – und wäre es nur ein einziges – in krasser Dissonanz dazu tönt?
Die Präsenz des fünften Hammers scheint die Totalität der Vierheit Lügen zu strafen. Das war jedoch auf mindestens zwei Arten möglich, die unterschiedliche und in der Tat widersprüchliche Deutungen des letzten Schlaginstruments nahelegen. Boethius’ Publikum wird gefolgert haben, dass die Präsenz des fünften Hammers einen Fehler verriet, der nicht Pythagoras, sondern unserer niederen Welt zuzuschreiben ist. Eine solche Erklärung war mit den Kanons des antiken Wissens durchaus vereinbar. Es sei daran erinnert, dass die klassischen Denker in der Regel Naturprinzipien zu erfassen versuchten, die definitionsgemäß ewig, unwandelbar und notwendig gelten sollten, und dass sie lehrten, Einzeldinge seien ihrem Wesen nach vergänglich, veränderlich und daher ungewiss. Die frühen Leser von Boethius’ Werk werden den fünften Hammer in diesem Sinne verstanden haben: Für sie mochte der Missklang auf die Beschränktheit der sublunaren Sphäre hindeuten, in der die Naturwissenschaft, selbst in ihren entwickeltsten Formen, kein physikalisches Ereignis mit Gewissheit vorhersagen kann. Erst jenseits des Mondes, in den nobleren Regionen, die diese vergängliche Welt umschließen, können mathematische Prinzipien und Deduktionen ihre exakte Anwendung finden. Heute jedoch gibt es natürlich eine näherliegende Lösung für das Problem des lärmenden Elements. Man kann mit dem Finger auf den primitiven, wenngleich geistreichen Theoretiker deuten und einfach den Schluss ziehen, dass im Kalkül des Pythagoras etwas verkehrt war. Es konnte ein Irrtum gewesen sein – sei’s in der Beobachtung oder in der Prognose, in der Messung oder in der Methode –, der Pythagoras daran hinderte, in seinem System der Proportionen einen Platz für das Werkzeug zu finden. Wäre seine Analyse korrekt gewesen – so könnte man argumentieren –, hätte sie keinen Rest übriggelassen, denn eine wissenschaftliche Untersuchung duldet gewiss keine Ausnahmen. Solche Lösungen sind sicherlich vorstellbar, verhüllen aber in Wahrheit eine Dunkelheit. Wie war die Welt des antiken Wissens beschaffen, wenn sie einen Ton zuließ – und vielleicht forderte –, der mit »allen anderen« dissonant war? Und was ist das Universum der modernen Wissenschaft, wenn es im Kontrast dazu den Lärm eines einzelnen dissonanten Teils nicht dulden kann?
Über die Gründe für die Dissonanz des fünften Instruments kann man nur spekulieren. Doch so viel ist kaum zu bestreiten: Obwohl Pythagoras den letzten Hammer in seine Äquivalenzen zwischen Lärm und Zahl nicht aufnehmen wollte, nahm er ihn gleichwohl wahr. Wie gebannt vor der Schmiede stehend, »in langer Betrachtung versunken«, hörte der Weise, »wie aus den verschiedenen Tönen nur eine Harmonie hervortönte«. Also aus dem Schlagen des fünften nicht minder als den übrigen vier. Vielleicht fühlte sich Pythagoras in seiner momentanen Zerstreuung gerade zu diesem Instrument hingezogen: dem Hammer ohne Zahl und ohne Meister, irgendwie – doch unmöglich – in »nur eine[r] Harmonie« und zugleich in Dissonanz mit »allen«. Man fragt sich, ob nicht die »göttliche Eingebung«, die den Denker veranlasst hatte, den Raum seiner abgeschirmten Kontemplation zu verlassen, ebenfalls einen Part in diesem mysteriösen Quintett gespielt haben musste. Der Geist, der Pythagoras von seiner theoretischen Forschung abhielt, mag auch derjenige gewesen sein, der ihn auf die Sinnesorgane zurückverwies, denen er niemals trauen wollte. Zweifellos war diese Entmächtigung nur eine vorübergehende, doch ihre Folgen hielten an. Pythagoras mochte wohl zu seiner Forschungsarbeit zurückkehren; er mochte wohl alle Instrumente verwerfen. Vage oder deutlich, sei’s auch nur für einen Augenblick, hatte er ein Sein ohne Maß wahrgenommen. Schwer vorstellbar, dass ihm das gleichgültig gewesen wäre. Fest steht immerhin, dass seine Nachfolger, nicht zuletzt Boethius, später Mühe darauf verwandten, dieses Sein ohne Maß zu vermessen. Transkribiert als ein Klangereignis, dem sich keine bestimmte Quantität zuschreiben ließ, sollte diese Resonanz andere in die von Pythagoras entdeckte Schmiede locken. Dort sollten sie lernen, ihrem Lehrer treu und ungetreu, die Harmonien einer Musik wahrzunehmen, die nicht mehr in Zahlen zu transkribieren war.

Zweites Kapitel Von gemessener Vielheit
Dass Boethius die Entdeckung der Zahlenverhältnisse der Konsonanzen Pythagoras zuschrieb, mag heute merkwürdig erscheinen. Zu seiner Zeit jedoch stand die Wahl des spätantiken Philosophen völlig in Einklang mit der Tradition. Die Pythagoreer waren in der klassischen Welt berühmt für ihre musikalischen und mathematischen Forschungen, und vielen klassischen Quellen zufolge waren die Pythagoreer der Meinung, dass die Eigenschaften des Klangs die Prinzipien der Zahl veranschaulichen. Mehr als tausend Jahre vor Boethius hatte Sokrates in der Politeia auf die Pythagoeer hingewiesen, die nach den arithmetischen Ursachen der hörbaren Konsonanzen gesucht hätten.[16] In dem Abschnitt der Metaphysik, der den Lehren der »sogenannten Pythagoreer« gewidmet ist, schreibt Aristoteles diesen frühen Denkern eine ähnliche Lehre zu. Sie beschäftigten sich, so berichtet der Philosoph,
als erste mit der Mathematik und brachten sie voran. Und da sie in ihr aufwuchsen, meinten sie, ihre Prinzipien seien die Prinzipien aller Dinge. Da unter den mathematischen Gegenständen die Zahlen ihrer Natur nach die ersten sind […] und da sie ferner sahen, dass die Eigenschaften und die Verhältnisse der Harmonien in den Zahlen beschlossen sind, […] nahmen sie an, die Elemente der Zahlen seien die Elemente aller Dinge, und der ganze Himmel sei Harmonie und Zahl.[17]

Ein Fragment, das aus einer verlorenen Abhandlung Über die Pythagoreer von Aristoteles stammen soll, wird deutlicher:
Da sie sich der Mathematik verschrieben hatten und die Genauigkeit ihrer Argumente bewunderten, weil unter den menschlichen Tätigkeiten nur sie allein Beweise zulässt, erkannten sie die Tatsachen der Harmonie und sahen, dass sie auf Zahlen beruhen; […] und sie erachteten die Tatsachen der Mathematik und deren Prinzipien für den allgemeinen Grund aller existierenden Dinge; jeder, der die Natur der existierenden Dinge zu verstehen sucht, sollte daher seine Aufmerksamkeit diesen zuwenden, das heißt den Zahlen und Proportionen, weil sie es sind, durch die alles klar wird.[18]

Klassische Quellen legen nahe, dass Pythagoras im sechsten vorchristlichen Jahrhundert lebte. Es heißt, er sei aus Samos gebürtig und habe Ionien verlassen, um sich etwa um 530 v. Chr. in einer Kolonie Großgriechenlands niederzulassen.[19] Keines seiner Werke, so es sie gab, hat überdauert. Obwohl es Belege für die Präsenz pythagoreischer Lehren in ganz Süditalien vom fünften Jahrhundert an gibt, sind die Texte seiner frühesten Schüler sämtlich verloren. Es gibt jedoch Hinweise darauf, dass die Zusammenfassungen der pythagoreischen Lehren, wie sie in der Politeia und in der Metaphysik enthalten sind, weitgehend zutreffen. Die existierende Literatur zu Hippasos von Metapont, dem ersten der in der Tradition genannten Schüler, legt es nahe, dass dieser sowohl Mathematiker als auch eine wichtige Figur auf dem Gebiet der frühen Harmonielehre war.[20] Die ältesten erhaltenen pythagoreischen Texte, die Philolaos von Kroton zugeschrieben werden, zeigen, dass er verschiedene Forschungen ähnlicher Art unternahm, zu denen die Untersuchung der Zahlen und die Theorie der musikalischen Proportionen gehörten. Eines seiner Fragmente behauptet, dass »alle wissbaren Dinge Zahlen enthalten, ohne die nichts gedacht oder gewusst werden könnte«.[21] Philolaos wird den Beweis für dieses Prinzip in den Gesetzmäßigkeiten der Konsonanzen gefunden haben, denn ein Großteil seiner Texte besteht aus arithmetischen Analysen von Intervallen. »Harmonie« (ἁρμονία) war für Philolaos, ebenso wie für Empedokles und Heraklit, der Name eines Prinzips der kosmischen Einheit, das in natürlichen Beziehungen ausgedrückt werden kann.[22] Doch der frühe Pythagoreer scheint diese Beziehungen für numerische gehalten zu haben. Darüber hinaus, so C.H. Kahn, »bestand das eigentümliche Merkmal von Philolaos’ Zahlen darin, dass sie nach Proportionen angeordnet sind, die den drei grundlegenden musikalischen Konsonanzen entsprechen«, also der Oktave, der Quinte und der Quarte.[23] Harmonische Überlegungen scheinen die Ausgangsthese seines sogenannten »Fragments 1« motiviert zu haben: »Die Natur des Kosmos folgt aus der Harmonie zwischen dem Unbegrenzten und dem Begrenzten.«[24]
Philosophen nach Philolaos, die in der Tradition des Pythagoras schrieben, legten der mathematischen Untersuchung der Gesetze der Konsonanz ähnliche Bedeutung bei. Archytas von Tarent, ein Zeitgenosse und angeblicher Freund Platons, erhob die Affinitäten zwischen den Bereichen von Arithmetik und Musik zu einem expliziten Lehrsatz: Die beiden Forschungsbereiche waren für ihn »verschwisterte Disziplinen« (μαθήματα ἀδελφά).[25] Spätere Denker, die sich auf Pythagoras beriefen, sollten an dieses Prinzip erinnern. In den ersten Jahrhunderten der christlichen Zeitrechnung, als immer mehr Werke den Anspruch erhoben, die Lehren des Altmeisters von Samos darzulegen, wurde die pythagoreische Behauptung, die Erforschung von Zahl und Klang bilde eine Einheit, zum Gemeinplatz. Als Nikomachos von Gerasa im zweiten Jahrhundert nach Christus seine einflussreichen Handbücher der Arithmetik und Harmonielehre verfasste, scheint an seiner Entscheidung, sie beide als pythagoreisch zu präsentieren, nichts Ungewöhnliches gewesen zu sein. Als dann ein Jahrhundert später Iamblichos von Chalkis sich bemühte, Leben und Lehren des frühgriechischen Denkers aufzuzeichnen, war die Lehre kanonisch geworden. Das dritte Buch seiner Summa pythagorica stellt »Musik« (μουσική) als eine Disziplin dar, die nicht minder mathematisch ist als Arithmetik und Geometrie. Alle drei sind »Glieder einer Kette, die ein einziges Band bildet, wie der verehrungswürdigste Platon sagt«.[26]
Es wäre irrig, aus solchen Tatsachen zu schließen, die antiken Autoren hätten Pythagoras als »Musiker« in irgendeinem heutigen Sinne des Wortes verstanden. Musik scheint den Weisen nicht als instrumentelle Praxis einer Kunst, sondern als Zweig des mathematischen Wissens im Sinne einer zugleich gewissen und notwendigen Erkenntnis interessiert zu haben. Boethius’ De institutione arithmetica ist in dieser Hinsicht besonders aufschlussreich. Die einleitenden Seiten bieten eine Darstellung der Untersuchungsbereiche, die den Pythagoreern vertraut waren. Wir erfahren, dass »alle Männer von alter Autorität« darin einig seien, die mathematische Erkenntnis als die eigentliche »Weisheit« zu verstehen, nach der die Philosophen streben. Ihrem Wesen nach definiert, ist »Weisheit« nämlich »das Erfassen der Wahrheit der Sachverhalte (res)«, die »ihre eigene, unveränderliche Substanz« besitzen; nämlich dessen, »was weder durch Ausdehnung wächst noch durch Verminderung verringert noch durch Wandel verändert wird, sondern sich selbst immer in dem eigenen Vermögen, gestützt auf die Mittel seiner Natur, bewahrt«.[27] Boethius stellt eine längere Liste solcher Entitäten auf: »Das aber sind Qualitäten, Quantitäten, […] Relationen, Akte, Dispositionen, Orte, Zeiten.« Sie alle sind »unkörperlich« und besitzen eine »unveränderliche Substanz«. Aber sie können »durch Teilhabe am Körper« verändert werden; dann gehen sie, als besondere Seiende, »durch die Berührung mit der wandelbaren Sache in wechselhafte Unbeständigkeit« über. Doch eine Quantität, eine Qualität, eine Relation, ein Akt oder eine Disposition lassen sich auch für sich, als reine Denkobjekte, betrachten. Solche Idealitäten, so erfahren wir, sind am treffendsten als »Seiendes« (essentiae) zu bezeichnen.
Boethius erklärt nun im Folgenden, dass Seiendes von zweierlei Art sei. Das der einen Art »ist kontinuierlich und mit seinen Teilen verbunden und nicht durch irgendwelche Grenzen eingeteilt, wie Baum, Stein und alle Körper dieser Welt«. Solche Kontinuitäten, erklärt er, könnten »im eigentlichen Sinne Größen (magnitudines) genannt werden«.[28] Das Seiende der anderen Art »ist diskret von sich her und abgegrenzt aufgrund seiner Teile und gleichsam wie ein Haufen zu einer Schar versammelt, wie Herde, Volk, Chor, Haufen und alles, dessen Teile von den eigenen Enden begrenzt werden und die von der Grenze eines anderen [sc. Teiles] unterschieden sind. Diese haben die spezifische Bezeichnung Vielheit (multitudo).«[29] Kontinuierliches Seiendes ist unbegrenzt teilbar. »Größe beginnt bei einer begrenzten Quantität«, erläutert Boethius, »und erhält bei der Teilung kein Maß (modus), denn sie nimmt völlig unendliche Teilungen ihres Körpers auf.«[30] Linie, Kreis oder Pyramide zum Beispiel können in ihrer Größe unbegrenzt reduziert werden; trotz beliebiger Verringerung ihrer Ausdehnung werden sie ihre Identität behalten. Diskontinuierliches Seiendes wiederum kann unbegrenzt vergrößert werden, so »dass das ganze Vermögen der Vielheit von einer Grenze fortschreitet und zu einer unendlichen Vergrößerung des Fortschreitens hin wächst«. Die Schafherde, das Volk, der Chor zum Beispiel mögen sich alle an Zahl vermehren; als Anzahl diskreter Elemente jedoch kann diese Addition von Einheiten an ihrem Sein nichts ändern.
Diesem Gegensatz zwischen dem Kontinuierlichen und dem Diskontinuierlichen, zwischen Größe und Vielheit, fügt Boethius eine weitere Unterscheidung hinzu, die die Art der gedanklichen Erfassung jedes Seienden betrifft. Jede Idealität lässt sich gemäß einer von zwei Formen begreifen: entweder »für sich« (per se) oder »durch ein anderes« (per aliud). Dieser Unterschied ist leicht zu erläutern. Ein stetiges Sein, etwa eine Linie, eine Figur oder ein Körper, lässt sich als Größe »für sich« definieren, denn sie enthält keine Beziehung zu anderem. Doch es gibt auch die kreisenden Himmelssphären, die ohne Bezug zu anderem nicht vorstellbar wären, da sie »immer in beweglicher Rotation um[laufen] und […] zu keinem Zeitpunkt zur Ruhe [kommen]«. Ähnlich kann man von bestimmten Vielheiten sagen, dass sie rein »für sich« existieren. Beispiele dafür sind »3 oder 4 oder […] jede beliebige Zahl, die – um zu sein – nichts bedarf«.[31] Solche Quantitäten können jedoch auch in Bezug zueinander aufgefasst werden. Den Beweis dafür liefern die arithmetischen Proportionen. Die Identität des »Doppelten« liegt in der Beziehung von zwei zu eins; die des »Sesquialter« in der Beziehung von drei zu zwei; die der »Sesquiterz« in der Beziehung von vier zu drei.
Diese Darstellung der Natur des Seienden bei Boethius ist keineswegs einmalig. Ähnliche Klassifikationen idealer Gegenstände der Philosophie sind in Abhandlungen mehrerer antiker Neuplatoniker zu finden, etwa bei Nikomachos, Iamblichos und Proklos. Die Theorie der Größen und Vielheiten, wie sie in De institutione arithmetica entwickelt wird, ist vor allem wegen der disziplinären Taxonomie, die sie einführt, bemerkenswert. Bei seiner Entwicklung der alten Idee eines umfassenden Zyklus allgemeiner Bildung (ἐγκύκλιος παιδεία) entnimmt Boethius der Lehre von den beiden Arten des Seienden die Elemente, die es ihm erlauben, eine systematische Typologie mathematischer Erkenntnis zu liefern.[32] Nach Boethius gibt es vier Typen, und sie bilden einen einzigen »vierfachen Weg« (quadrivium); damit prägt er einen Begriff, dem eine lange Geschichte beschieden war.[33] Jeder Typus steht in Beziehung zu einem Gegenstand, der seine »eigene, unveränderliche Substanz« besitzt; jeder ist daher »philosophisch« oder, einfacher gesagt, mathematisch. Größen für sich, so erfahren wir, sind die eigentlichen Gegenstände der Geometrie. Größen in Relation zu anderem gehören hingegen zur Astronomie, welche die kontinuierlichen sphärischen Entitäten betrachtet, die die Himmel durchlaufen. Vielheiten, für sich betrachtet, sind der ideale Gegenstand der Arithmetik. Vielheiten schließlich, die in Relation zueinander betrachtet werden, gehören zum Gebiet der »Musik« (musica).
Nach Boethius ist Musik also ein Bereich der Mathematik, der nicht weniger ideales, notwendiges und unveränderliches Seiendes betrachtet als Arithmetik, Geometrie und Astronomie. Genauer gesagt, ist Musik die Erkenntnis von Vielheiten in strenger Korrelation zur Arithmetik. Die Implikationen dieser Tatsache sind weitreichend und weniger offensichtlich, als es zunächst scheinen mag, und sei es nur wegen jenes trügerisch vertrauten Wortes »Arithmetik«. Für die Modernen bezeichnet dieser Ausdruck die Rechenkunst, eine Technik, bei der man Ziffern verwendet, um ein exaktes Maß zu berechnen. Die Alten hatten ein wesentlich anderes Verständnis dieses Wortes. Seit den Sokratikern unterschied das griechische mathematische Denken zwischen zwei Erkenntnisformen, mit denen Zahlen (ἀριθμοί) aufgefasst werden können: »Arithmetik« (ἀριθμητική) einerseits, »Logistik« (λογιστική) andererseits. Vielfach umgeschrieben, sollte diese Unterscheidung während der gesamten Antike grundlegend bleiben. »Logistik« war der Name für die Kunst, Quantitäten sinnlicher Dinge mit Hilfe von Zahlen zu messen und zu berechnen. »Arithmetik« war eine Erkenntnis anderer Ordnung. Sie betraf nicht die richtige Verwendung von Zahlen, sondern die wahre Erkenntnis ihrer Natur.
Bereits einige Platonische Dialoge stellen einen Gegensatz zwischen diesen beiden Bereichen her. In einem Abschnitt des Gorgias, der sich zum Teil im Charmides wiederholt, bezeichnet Sokrates die »Zahlenkunst« (Arithmetik) als die Wissenschaft, die ihr »Geschäft« »am Geraden und Ungeraden, wie groß jedes sei«, vollbringt. Die »Rechenkunst« (Logistik) hingegen untersucht, »wie Gerades und Ungerades unter sich und gegen einander sich verhält der Größe nach«.[34] Dieser Satz ist schwer zu deuten und hat zu mehr als einer Lesart geführt. Er legt jedenfalls nahe, dass Arithmetik und Logistik, Zahlen- und Rechenkunst, zwei unterschiedliche Aspekte der Zahl untersuchen: auf der einen Seite ihre Eigenschaften als reine Quantität (»am Geraden und Ungeraden, wie groß jedes sei«), auf der anderen ihre Eigenschaften in der Zusammensetzung von Vielheiten (»wie Gerades und Ungerades unter sich und gegen einander sich verhält der Größe nach«).
Die Unterscheidung zwischen Logistik und Arithmetik sollte sich bei den Neuplatonikern, deren Werke Boethius gut kannte, alsbald vereinfachen und verschärfen. Diese Denker stellten die Zahlen als Gegenstände des reinen Denkens (νοητά) den Zahlen als Gegenständen der Sinne (αἰσθητά) gegenüber. Arithmetik, lehrten sie, untersucht die Ersteren; Logistik hantiert mit Letzteren. So unterschied Proklos in einem Euklid-Kommentar zwischen Geschicklichkeit in Logistik und Geschicklichkeit in Arithmetik; »ebensowenig betrachtet der Rechenkundige die Eigenschaften der Anzahlen, wie sie in sich selbst sind [was der Anzahlenkundige tut], sondern [er betrachtet sie] an den sinnlich wahrnehmbaren Dingen«.[35] Eine anonyme neuplatonische Scholie zum Charmides enthält eine ähnliche Lehre: »Die Logistik ist eine Wissenschaft, die sich mit den gezählten Dingen, nicht aber mit den Anzahlen befasst, indem sie nicht die Anzahl, die in ihrem Sein selbst Anzahl ist, ergreift, sondern indem sie das, was jeweils eins ist [nämlich ein bestimmtes Ding], als die Eins selbst zugrunde legt […].«[36] Und Olympiodor erläutert in einer einflussreichen Scholie zum Gorgias: »Man muss wissen, dass folgender Unterschied besteht: die Arithmetik beschäftigt sich mit den Arten der Anzahlen, die Logistik dagegen mit ihrem Stoff.«[37]
Wenn Boethius also die Musik mit der Arithmetik verbindet, rückt er die Untersuchung des Klangs nicht in die Nähe des Rechnens, sondern der Erkenntnis der Eigenschaften von Zahlen. Nur Fragen, welche die Bestimmung des Wesens von Vielheiten betreffen, etwa die Eigenschaften von Gerade oder Ungerade, fallen in das Gebiet einer solchen »Arithmetik«; sämtliche Überlegungen, welche die Verwendungen und Anwendungen von Zahlen beinhalten, liegen außerhalb davon. Doch damit nicht genug; um den mathematischen Charakter der Musik im Sinne der Pythagoreer zu begreifen, muss noch eine weitere grundlegende Uneindeutigkeit aufgelöst werden. Es ist die des Ausdrucks »Zahl« selbst. Es gibt zwei gute Gründe für die These, dass die antiken griechischen und lateinischen Denker mit den Wörtern arithmoi und numeri etwas ganz anderes als unsere modernen »Zahlen« meinten.
Der erste Grund lässt sich aus der Definition der antiken numeri als »Vielheiten« erschließen. Nach diesem Postulat ist jede »Zahl« »diskret von sich her und abgegrenzt aufgrund [ihrer] Teile und gleichsam wie ein Haufen zu einer Schar versammelt, wie Herde, Volk, Chor, Haufen und alles, dessen Teile von den eigenen Enden begrenzt werden und die von der Grenze eines anderen [sc. Teiles] unterschieden sind«. Mit anderen Worten, jeder numerus muss diskret und diskontinuierlich sein – kurz, er muss ein Ganzes sein. Quantitäten, die sich nicht als »natürliche Zahlen« ausdrücken lassen, können daher keine arithmoi sein.
Auch der zweite Grund folgt aus der traditionellen Begrifflichkeit des Boethius. Diskontinuierlich als ein Ganzes und in jedem seiner Elemente, bildet ein arithmos eine aus vielen Einheiten zusammengesetzte Anzahl von Einheiten. Aus dieser schlichten Tatsache ergibt sich eine aufregende Konsequenz, deren Bedeutung kaum überschätzt werden kann: nämlich dass die klassische »Zahl«, arithmos oder numerus, immer größer sein muss als eins. Jahrhunderte vor Boethius hatte Aristoteles bereits diesen Punkt hervorgehoben: »Die kleinste Zahl«, erklärte er, »ist die Zwei«, noch kleiner ist nur die unteilbare Einheit.[38] Euklid selbst hatte zu Beginn des VII. Buches, das die arithmoi behandelt, ebenso gesagt: »Eine Zahl ist die aus Einheiten zusammengesetzte Menge.«[39] Im antiken und mittelalterlichen Denken sind numeri daher stets Mengen von zwei oder mehr Elementen von »eins«.
Man könnte einwenden, eine solche »Arithmetik« sei ideal und abstrakt, denn wo in der physikalischen Welt könnte man je eine Anzahl finden, die »diskret von sich her und abgegrenzt aufgrund [ihrer] Teile und gleichsam wie ein Haufen« ist, jede ebenso diskret und diskontinuierlich, mit Bezug auf andere, aufgereiht wie die Zahlen auf einer Linie? Wir haben gelernt, dass Kontinuität ein Gesetz der Natur ist, die keine Sprünge macht. Zugegeben: Dass die klassischen numeri ideal sind, ist kaum zu bestreiten; ihrer Definition nach unveränderlich, hängen sie in keiner Hinsicht von physikalischen Körpern, Eigenschaften und Ereignissen ab, auch wenn sie, um von uns wahrgenommen zu werden, mit Materie verbunden sein müssen. Doch die klassischen Denker würden kaum sagen, dass die Ewigkeit solcher Entitäten sie irreal machte. Ganz im Gegenteil: In der Regel erfasst »Erkenntnis« im Sinne des antiken Begriffs epistēmē nur das, was notwendig und unwandelbar ist. Darüber hinaus kann man bezweifeln, dass die Zahlen der klassischen Arithmetik, wenngleich ideal, als »abstrakt« betrachtet werden können; denn im Unterschied zu den Zeichen, die der modernen Mathematik vertraut sind, sind die antiken numeri definitionsgemäß Entitäten. Es sind, um Jacob Klein zu paraphrasieren, »bestimmte Anzahlen bestimmter Dinge«, sämtlich als Vielheiten zurückführbar auf das unteilbare Seiende, von dem man mehr als von allem anderen sagen kann, dass es die »Einheit« oder »Monade« (μόνας) ist, welche die Form von »eins« ist.[40]
Für die Pythagoreer musste jedoch die Realität der Mathematik nicht unbedingt einzig durch Argumente demonstriert werden. Sie konnte auch durch die Erfahrung veranschaulicht werden. Im Bereich der kontinuierlichen Quantitäten lieferte die Astronomie einen Beweis: An den Himmeln war die Bewegung der Sterne im Einklang mit den Gesetzen der Größe sichtbar. Man konnte sich auf physikalische Phänomene als Illustration geometrischer Gesetzmäßigkeiten berufen, wenn sie nur hoch genug über dieser wandelbaren Welt und jenseits unseres sublunaren Bereichs waren.[41] Doch der entscheidende Beweis für die Realität jener Entitäten lag nicht in Größen, sondern in Vielheiten. Rein kontinuierliche Quantitäten waren zwar am Himmel sichtbar, doch diskontinuierliche Quantitäten konnten, wie Pythagoras zeigte, auf der Erde wahrgenommen werden. Den Beweis dafür lieferte natürlich der musikalische Klang.[42] In den Tatsachen der Musik, in den Beziehungen der Intervalle ließ sich das Wesen der Zahlen entdecken, konnten ihre Eigenschaften und Gesetze festgestellt werden. Diese Wahrheit hatte sich Pythagoras in der Schmiede offenbart: Das Buch der Natur, so fand er, war in der Sprache der Arithmetik geschrieben.
Mehr als zweitausend Jahre lang studierten die Gelehrten die Seiten dieses Buches, verfeinerten ihre Fertigkeiten der Lektüre und verbesserten ihre Kenntnis seiner Buchstaben. Seit der Zeit des Philolaos und Archytas bis zum ausgehenden Mittelalter blieb die Harmonielehre derjenige Zweig der Philosophie, in dem wirkungsvoll gezeigt werden konnte, dass die sinnliche Natur mit mathematischen Mitteln zu erkennen ist. Am Scheitelpunkt dieser langen Geschichte reflektierte Boethius die Ziele dieser Tradition. Seine Einführung in die Musiktheorie war sowohl die umfassendste Wiedergabe der alten Lehren als auch die mit Abstand wichtigste Quelle für die mittelalterliche Erforschung der Kunst des harmonischen Klangs. Vor allem dieser Abhandlung wegen konnten die pythagoreischen Lehren das Altertum lange überleben.
Drei grundlegende Konsequenzen für die Untersuchung der Klangphänomene sollten sich daraus ergeben. Jede von ihnen leitet sich von der fundamentalen Korrelation zwischen Musik und Arithmetik her. Erstens werden musikalische Töne in ihrer Diskontinuität begriffen. Akustische Phänomene werden wesentlich als quantitativ diskrete untersucht, ob unter dem Gesichtspunkt der Tonhöhe oder der Tondauer. Daher werden sie auch transkribiert, sobald ein Notationssystem entwickelt worden ist. Tonhöhe und -dauer gelten als zusammengesetzt aus vielen abzählbaren Einheiten, ähnlich denen »einer Herde, eines Volkes, eines Chores und aller Dinge, deren Teile von den eigenen Enden begrenzt werden und von der Grenze eines anderen Teiles unterschieden sind«. Kontinuierliche Phänomene liegen hingegen außerhalb des Gebiets der musica, die Vielheiten, nicht Größen betrachtet und numeri aufeinander bezieht.
Die zweite und die dritte Konsequenz sind subtiler, doch nicht minder wichtig. So wie in der Arithmetik Zahlen als Anzahlen diskreter Einheiten definiert werden, werden Intervalle als Aggregate behandelt, die aus vielen »Einsen« bestehen. Eine Einheit der Harmonielehre war leicht identifizierbar. Es war der einzelne oder »ganze« Ton. Für seine strukturelle Autonomie ließen sich ästhetische und akustische Beweise anführen. Nikomachos zufolge hatte Pythagoras bei seiner Rückkehr von der Schmiede bereits beobachtet, dass die Oktave, die Quarte und die Quinte von Natur aus angenehm sind. Weiterhin sah er, dass jede einzelne ihrer Kombinationen für sich wohlgefällig ist – mit einer einzigen, entscheidenden Ausnahme: »dass der Zwischenraum […] zwischen der Quarte und der Quinte im Hinblick auf sich selbst nicht konsonant war«.[43] Diese Spanne ist die eines Ganztons. In einem von Theon von Smyrna überlieferten Fragment erläuterte Thrasyllos diese Merkwürdigkeit: »Noten sind dissonant […], wenn der Intervall zwischen ihnen der eines Tons ist«, schrieb er, »denn der Ton ist die Quelle der Konsonanz, doch nicht konsonant.«[44] Wie die »Monade« in der Arithmetik war somit auch in der Musik der einzelne Ton von der Quarte, der Quinte und der Oktave zu unterscheiden, wenn die Quelle der Konsonanz von der Konsonanz selbst trennbar war. Das Eine und das Viele, die Einheit und die Anzahl waren hörbar verschieden; wiederum lieferten Töne die Illustration für ein Prinzip in der Lehre der Vielheiten.
In dieser Unterscheidung liegt implizit die dritte und letzte Konsequenz der Definition der Musik als ein mathematisches, eng mit der Arithmetik verbundenes Wissen. Um Pythagoras die Treue zu halten, wagten sich die antiken und mittelalterlichen Theoretiker der Harmonie nicht über die Grenze hinaus, welche die alte Zahlenmetaphysik festlegte. Denn für die Theoretiker der musica und arithmetica blieb es ein Axiom, dass Anzahlen Aggregate von etwas sind – genauer gesagt, Aggregate von »Einsen«. Ob sie absolute Vielheiten oder auf andere bezogene Vielheiten untersuchten, ob sie Zahlen für sich oder tonal wahrnehmbare Zahlen betrachteten, immer zählten die Pythagoreer eines-nach-dem-anderen, folgten dem Ideal der Einheit, die das »kleinste Element der Quantität« ist, wie Iamblichos lehrte, »der erste und gemeinsame Teil der Quantität oder die Quelle der Quantität«.[45] In Demut gegenüber dieser »Quelle« weigerten sich die antiken und mittelalterlichen Denker, zuzugeben, dass es auf dem Gebiet der Musik oder der Arithmetik Dinge geben könnte, die auf die Einheit nicht zurückgeführt werden können, Entitäten ungleich der Eins. Sie wollten prinzipiell nicht zugestehen, dass die Tonkunst musikalische Entitäten zulässt, die auf die Gesetze der Zahl irreduzibel sind.
Die pythagoreischen Forschungen werfen jedoch einen Schatten auf diesen Glauben. Mehr als einmal und fast wider Willen begegneten die Schüler des Pythagoras Klangphänomenen, die sich dem Zugriff eines disjunktiv Seienden entzogen und die keine arithmetische Relation – wie komplex sie auch sei – vollständig definieren konnte. Die Erschütterung eines Konflikts in der geordneten Welt ließ sich von da an kaum noch vermeiden: Die alten arithmoi rannten gegen etwas an, das real war, aber von ihnen nicht gezählt werden konnte. Wo immer es möglich war, beschlossen die Pythagoreer, diese unmessbare Realität nicht zu benennen. Sie verfeinerten das Instrumentarium ihrer Kunst, entwickelten Mittel, um diese Realität abzumildern, so gut es ging, und reduzierten Asymmetrien auf die geordneten Ungleichheiten gemessener Vielheiten. Doch trotz größter Anstrengungen sollte das Projekt der Pythagoreer nicht gelingen. Zahlenverhältnisse ließen sich jenseits allen Hörens und aller Imagination suchen und finden. Doch es blieb etwas Zahlenloses, das hartnäckig nachklang.

Drittes Kapitel Reste
Für die alten Griechen war der kleinste der musikalischen Akkorde die Quarte. Sie war die kleinste Konsonanz, die – wie es heißt – Pythagoras gehört hatte, und sie war die Grundlage der klassischen Tonleitern, die aus ihren geordneten Tonfolgen erwuchsen. Es wurde bemerkt, dass den altgriechischen Musiktheoretikern zufolge »alle Tonleitern aus ›Tetrachorden‹ aufgebaut sind, das heißt aus Systemen von vier Noten, die sich über das Intervall einer Quarte erstrecken«.[46] Innerhalb der Quarte waren die beiden äußeren Positionen fixiert, während die beiden Innentöne variierten. »Stimmungen« (ἁρμονίαι) sollten sich aus den Positionen innerhalb des Tetrachords ergeben. Zum Beispiel wurde die sogenannte »diatonische« Folge durch einen Ganztonschritt, einen weiteren Ganztonschritt und ein drittes, kleineres Intervall definiert. Eine andere Stimmung bestand aus zwei noch kleineren Intervallen, denen ein größeres Intervall als das eines Ganztons folgte; die Alten nannten dies das »enharmonische« Tongeschlecht. Wenn schließlich die Töne so angeordnet waren, dass sie eine Ordnung bildeten, die ein größeres Intervall als das eines Ganztons enthielt, dem zwei Töne folgten, die durch weniger als einen ganzen Tonschritt getrennt waren, entstand eine »chromatische« Stimmung. Dies waren die drei bekanntesten Tonanordnungen innerhalb der musikalischen Spanne des Tetrachords. Doch waren dies keineswegs die einzigen Tonanordnungen, die die Griechen kannten. Die Intervalle innerhalb der Quarte konnten strukturell weiter variieren. Eine Viererreihe konnte, durch Hinzufügung eines Tons, an eine zweite Viererreihe angehängt werden, die sich ihrer Gattung nach von der ersten unterschied; ebenso konnte eine ganze Oktave mit ihrer Abfolge von Tonhöhen mit einer zweiten Oktave verbunden werden, die nach anderen harmonischen Formen gestimmt waren. In jedem Falle aber nahmen die Betrachtungen zur harmonischen Ordnung von dem elementaren »System« (σύστημα) des Tetrachords ihren Ausgang. Die Musiktheoretiker erfanden dafür einen Namen, um anzuzeigen, dass es die Einheit des musikalischen Klangs bildete. Lange vor dem Aufstieg der Kunst der Grammatik bezeichneten Philolaos und seine Nachfolger die Quarte als »das, was zusammengenommen wird« oder einfacher als »Silbe« (συλλαβή).[47]
Die Einfachheit dieser Konsonanz erwies sich jedoch als trügerisch. Aus der Differenz der Quarte zur Quinte hatten die Alten die Einheit der harmonischen Konstruktion, den Ganzton, abgeleitet. Man könnte somit erwarten, dass irgendeine Zahl dieses Basisintervalls die Quarte bilden würde. Doch wie? Zwei Töne waren eindeutig zu wenig, um zusammen die erwünschte Konsonanz zu ergeben; drei jedoch waren ebenso offenkundig zu viel, um eine einzelne »Silbe« zu bilden. Musiker, die mit der Instrumentalpraxis vertraut waren, zogen daraus den einfachen Schluss: Nicht mehr und nicht weniger als zweieinhalb Töne bilden das Intervall. Sie konnten dazu anführen, dass der Raum zwischen einem C und einem F mit dem von C nach D (ein Ton), D nach E (ein Ton) und schließlich E nach F (ein Halbton) übereinstimme. Eine solche Reihe wäre »diatonisch«; das Gesamtintervall wäre das der Quarte. Aristoxenos brachte diese These explizit in seinen Elementen der Harmonie vor: »Ein Ganzton«, schrieb er, »ist der Überschuss der Quinte im Verhältnis zur Quarte«; die Quarte besteht aus zweieinhalb Tönen.[48] Heute mag diese Feststellung evident scheinen; die heutige Durtonleiter beginnt mit genau einer solchen diatonischen Progression, und man braucht nur eine moderne Klaviatur zu betrachten, um zu vermuten, dass jeder Ton sich in zwei teilen lässt. Doch Aristoxenos’ Argument zur Quarte schloss eine wichtige Behauptung ein, die sich für die Alten keineswegs von selbst verstand. Seine These enthielt eindeutig die Annahme, man müsse sich, um die der Quarte eigentümliche Spanne zu definieren, Teile eines einzelnen Tons vorstellen und schlicht zugestehen, dass das Grundintervall halbiert werden kann.
Eine solche Behauptung konnten die Pythagoreer nicht zulassen. Rufen wir uns in Erinnerung, dass der Meister in der Schmiede drei Konsonanzen und eine Dissonanz wahrgenommen hatte, aus denen sich vier Intervalle ableiten ließen. Das kleinste von ihnen allen war ein einzelner Ton. Einen »Halbton« hatte er nicht bemerkt. Das war kein Zufall. Um einen Ton zu unterteilen, muss man ihn notwendigerweise als eine Größe denken, die einer solchen Teilung fähig ist. Die antiken Denker waren natürlich wohlvertraut mit Dingen, deren Quantitäten sich nach Belieben kontinuierlich verringern ließen. Sie nannten sie »Größen«. Geometrische Entitäten wie die Linie, der Kreis und der Würfel waren für sie von dieser Art. Sie besitzen die Seinsqualität, der zufolge sie unbeschadet ihrer Größe immer noch kleiner gedacht werden können. Keine Linie, keine Figur und kein Körper ändert schließlich seine Natur, wenn er in seiner Größe vermindert wird. Man kann zeigen, dass einige klassische Denker auch Töne zu dieser Art zählten. Die in mehreren Quellen erwähnten »Harmoniker« (ἁρμονικοί) mochten zu ihnen gehören.[49] Mit seinem Vorschlag, den Ton zu halbieren, mag auch Aristoxenos diese Auffassung geteilt haben.[50]
Doch die Anhänger des Pythagoras konnten dem keinesfalls zustimmen, und zwar aus einem einfachen Grund: Sie hielten musikalische Phänomene nicht für Größen, sondern für Vielheiten. Wie alle arithmetischen Dinge konnten harmonische Intervalle den Pythagoreern zufolge stets quantitativ vergrößert werden: Die Multiplikation enthielt den Beweis. Doch man konnte keineswegs annehmen, dass Intervalle ad infinitum vermindert werden können. Pythagoras hatte gelehrt, dass die Gründe für die Konsonanzen in den Zahlenverhältnissen der arithmoi zu suchen seien. Aus diesem Prinzip folgte, dass man bei der Kürzung solcher Relationen durch Division schließlich auf eine Untergrenze stoßen würde, bei der eine Zahl zu einer anderen in der elementarsten der möglichen Formen in Relation stünde. Von »zwölf zu sechs« (12:6) kann man in sukzessiven Verdopplungen mühelos zu »vierundzwanzig zu zwölf« (24:12) und zu »achtundvierzig zu vierundzwanzig« (48:24) usw. übergehen; alle diese Relationen stellen das Grundintervall der Oktave dar. Durch Division kann man auch auf »zwei zu eins« (2:1) hinuntergehen, eine Relation, die dieselbe grundlegende Ungleichheit ausdrückt. Hat man diese Grundform jedoch erreicht, könnte man nicht weitergehen, ohne die Form des Zahlenverhältnisses als solche aufzugeben.
Wie Aristoxenos lange nach ihm, vertrat Pythagoras bekanntlich die Lehre, dass der Ton das ist, »um das die Quinte größer ist als die Quarte«. Doch für den Denker aus frühgriechischer Zeit schloss dieser Satz eine präzise mathematische Aussage ein: Der Ton, so zeigte er, besteht in der exakten Vielheit, die übrig bleibt, wenn man eine Quarte von einer Quinte wegnimmt. Ein technischer Punkt ist dabei der Erinnerung wert: Da die klassischen musikalischen Quantitäten als Intervalle dargestellt wurden, musste man zwecks »Subtraktion« dividieren; um sie zu »addieren«, musste man sie multiplizieren.[51] Setzt man diese Rudimente einer »Logistik« voraus, lässt sich leicht zeigen, dass nach der »Wegnahme« einer Quarte (4:3) von einer Quinte (3:2) ein Ton übrig bleibt, der als einzelne Relation definiert wird: die »Sesquioktave« oder das arithmetische Zahlenverhältnis von neun zu acht (9:8). Für die klassischen Denker gehört diese Größenrelation zu einer besonderen Klasse arithmetischer »Ungleichheiten« oder Zahlenverhältnisse, die als »epimor« oder »überteilig« galten. Solche Relationen sind dadurch definiert, dass – wie Boethius später erläutern sollte – »die grössere Zahl die kleinere ganz in sich enthält und noch einen Teil derselben«.[52] Formal ausgedrückt, haben diese Relationen die mathematische Gestalt (n + 1) : n. Jedes der drei Intervalle, die Pythagoras in der mythischen Schmiede identifiziert hatte, besitzt diese arithmetische Form: die Oktave (2:1), die Quinte (3:2), die Quarte (4:3) und der Ton (9:8) lassen sich sämtlich als »überteilige« [superparticulare] Relationen darstellen.[53]
Dass die Pythagoreer dieser Klasse arithmetischer Ungleichheiten besondere Aufmerksamkeit schenkten, ist kaum überraschend. Im fünften Jahrhundert entwickelte Archytas von Tarent ein mathematisches Theorem, das sich genau auf solche Relationen bezog. Boethius referierte es in De institutione musica; es erscheint jedoch auch, knapper gefasst, als Grundthese in der euklidischen Abhandlung, die in der Tradition als Sectio Canonis (Die Teilung des Kanons) bekannt war. Die pythagoreische Beweisführung führte zu einer einzigen, unzweideutigen Schlussfolgerung: Zahlen in »überteiliger« Relation sind durch kein geometrisches Mittel teilbar. Mit anderen Worten, für Verhältnisse zwischen zwei ganzen Zahlen, bei denen die größere Zahl die kleinere um eines der Teile der kleineren Zahl übersteigt, gibt es keine dritte ganze Zahl, die in gleicher Relation zu beiden steht.[54] Dagegen lässt sich etwa für die Zahlen eins und neun eine solche dritte ganze Zahl finden: nämlich die Zahl drei, die sogenannte »mittlere Proportionale«. Archytas bewies, dass keines der harmonischen Grundintervalle eine solche mittlere Zahl zulässt. In euklidischer Formulierung lautet dieses Theorem: »Weder eine Zahl noch mehrere Zahlen können in kontinuierlicher Proportion in ein epimores Intervall eingefügt werden.«[55] Diese Regel gilt für das Tonintervall aufgrund seiner arithmetischen Struktur. In De institutione musica erläuterte Boethius das Gesetz in ähnlichen Termini wie Euklid: Grundsätzlich lässt das Verhältnis von neun zu acht (9:8) als »überteiliges« die Interpolation weder eines noch mehrerer mittlerer proportionaler Terme zu,[56] denn eine überteilige Relation ist nicht durch eine mittlere Proportionale in gleiche Teile teilbar.[57] Damit bewies Archytas, dass der »ganze« Ton nicht halbiert werden kann.
Kein Zweifel, dass die Pythagoreer auf den Widerstand einer vielfältigen Empirie stoßen mussten. Man kann sich vorstellen, dass ein Theoretiker behauptete, innerhalb der Spanne eines einzelnen Tons zwei gleiche Intervalle zu erfassen; ein Musiker mochte einen Ton in zwei oder gar vier teilen. Nach Aristoxenos’ Darstellung verlangten die griechischen Tetrachorde oder »Quarten« genau dies. Doch es ist schwer vorstellbar, dass solche Gegenbeweise die Philosophen und Mathematiker überzeugen konnten, die Archytas in der Beweisführung seines Theorems gefolgt waren. Der Ton ließ sich arithmetisch durch die Proportion neun zu acht (9:8) darstellen; diese Relation gehört zur Gattung der überteiligen Ungleichheiten; und schließlich konnte gezeigt werden, dass diese Ungleichheit durch keine mittlere Proportionale teilbar ist. Insofern war die Lehre von der Unteilbarkeit des Tons keine Sache der Meinung; sie war die zwingende Folgerung aus einem Beweis. Nur ein Problem blieb ungelöst. Das Intervall der Quarte war eindeutig größer als das von zwei Tönen; es war aber ebenso unbestreitbar kleiner als drei. Doch auf wie viel sollte es sich dann belaufen? Aristoxenos bot eine klare Antwort auf die Frage; er behauptete, das Tetrachord bestehe aus »zweieinhalb Tönen«. Die Pythagoreer erklärten diese Lösung für unwahr und arithmetisch inkohärent. Doch damit verpflichteten sie sich, eine andere Antwort zu finden.
Getreu dem Prinzip der Zahl lösten die Pythagoreer das Dilemma, indem sie sich ihrer logistischen Fertigkeiten bedienten. Um die exakten Größen der Töne zu finden, die die Quarte ausmachen, brauchten sie von der Quarte nur zwei Töne »abzuziehen«. Ursprünglich mag die Durchführung dieser Operation schwierig gewesen sein, doch seit dem fünften Jahrhundert, wenn nicht schon früher, wurde sie vollzogen.[58] Es konnte dann gezeigt werden, dass nach der »Subtraktion« zweier ganzer Töne von dem Tetrachord ein Intervall blieb, das kleiner als ein halber Ton war. Diese Ungleichheit ließ sich durch ein komplexes arithmetisches Zahlenverhältnis definieren: zweihundertsechsundfünfzig zu zweihundertdreiundvierzig (256:243). Diese anscheinend arkane Relation war nicht nur in Werken zur Harmonik zu finden. Platons berühmte kosmologische Untersuchung, der Timaios, enthielt sie ebenso. Bei der Erklärung der Geheimnisse der Weltseele berichtet Timaios, der Demiurg habe bei seinem Schöpfungsakt beschlossen, das Intervall der Quarte (4:3) mit Intervallen des Ganztons (9:8) zu »füllen«. Ein »Zwischenraum«, erklärt er, blieb »übrig«, der, »in Zahlen ausgedrückt, dem Verhältnisse der Glieder 243 zu 256 entsprach«.[59] Mit Rücksicht auf diese Passage bezeichneten Denker nach Platon dieses subtile Verhältnis als leimma oder »Rest« (τὸ λεῖμμα).[60]
In der Analyse der harmonischen Struktur der Quarte sollte diese Vielheit jedoch nicht der einzige »Rest« sein. Die Pythagoreer gingen bei ihrer arithmetischen Teilung des musikalischen Tons noch weiter. Die diskrete Größe des leimma ließ sich mit der des Tons vergleichen; die Differenz zwischen beiden war folgerichtig in einem Zahlenverhältnis messbar. Diese Ungleichheit nannten sie apotomē, wörtlich »das Abgeschnittene«. Dieses Intervall an den Grenzen vorstellbarer Relationen ließ sich durch das Verhältnis von exakt zweihundertdreiundsiebzig und drei Achteln zu zweihundertsechsundfünfzig (273⅜:256 oder 2187:2048) ausdrücken. Aber die Pythagoreer wagten sich noch weiter in logistische Subtilitäten vor und berechneten die Differenz zwischem leimma und apotomē. Diesen letzten Rest nannten sie »das Komma« (τὸ κόμμα), »das Ausgestrichene«, und definierten sein Zahlenverhältnis als 531441:524288.[61]
Mehr als einmal wurde darauf hingewiesen, dass solche Zahlenverhältnisse schwierig zu fassen sind, und manche moderne Kommentatoren haben nicht gezögert, sie für absurd zu erklären. Bei der Angabe der arithmetischen Relation, die das Komma definiert, konnte sich Walter Burkert – ein unvergleichlicher Kenner der Pythagoreer – nicht der Bemerkung enthalten: »reine Spielerei«.[62] In solchen Urteilen hallt nur die Einschätzung einiger antiker Autoren wider. Aristoxenes weigerte sich, irgendein Intervall zu messen, das kleiner als der »Viertelton« (δίεσις) wäre, weil »die Stimme es nicht hervorbringen und das Gehör es nicht heraushören kann«.[63] Zweifellos waren die pythagoreischen Teilungen des Tetrachords nicht zur Verwendung in der Instrumentalpraxis oder in der Beobachtung gedacht. Ein Saitenspieler mochte zum Beispiel die Länge einer Saite halbieren, die Beziehung zwei zu eins erklingen lassen und also das Intervall einer einzelnen Oktave hervorbringen. Jeder konnte das hören. Doch es ist schwer vorstellbar, dass ein Musiker die arithmetischen Zahlenverhältnisse ausführte, die eines der drei winzigen Intervalle in der Quarte definieren, sei es leimma, apotomē oder comma. Zudem ist es unvorstellbar, dass sie als solche von irgendeinem menschlichen Ohr wahrgenommen werden könnten. Nicht dass es den antiken pythagoreischen Ungleichheiten, gemessen an modernen akustischen Normen, an Exaktheit gefehlt hätte; im Gegenteil, sie sind durchaus präzise. Doch die pythagoreische Präzision ist nicht für uns. In ihrem Überschuss über die menschliche Sinneswahrnehmung verweist sie auf Wahrheiten, die nur ein Größenkalkül offenbaren kann.
Diese Tatsache lässt die Zahlenverhältnisse gemessener Vielheiten weniger »spielerisch« erscheinen, als man denken könnte. In ihren arithmetischen Übertreibungen zeigen die Relationen an, wie weit die Umschrift der Natur durch klassische Zahlen reichen konnte. Pythagoras mag mit der deutlichen Wahrnehmung arithmetischer Verhältnisse tönender Körper begonnen haben. Nachdem seine Schüler sich einmal dem mathematischen Studium der Natur verschrieben hatten, fanden sie jedoch, dass sich an einem bestimmten Punkt die Wege der bewussten Wahrnehmung und der arithmetischen Betrachtung voneinander trennen müssen. Da beschlossen die Schüler des Pythagoras zum Erstaunen ihrer Zeitgenossen und späterer Kommentatoren, einem unerwarteten Pfad zu folgen: Sie verzichteten auf die Evidenz ihrer Sinne zugunsten der Gewissheit ihrer Arithmetik.
Die Präzision der antiken Zahlen konnte jedoch nicht grenzenlos sein. Arithmoi und numeri bezeichneten Gleichheiten und Ungleichheiten unterschiedlicher Komplexität, vom Einfachen zum Subtilen. Doch als Zeichen von Vielheiten in Beziehungen verwiesen solche Zahlen stets auf Entitäten, die ihrem Wesen nach diskret und ganz waren. »Neun zu acht«, »vier zu drei« und »drei zu zwei« waren für die Alten nicht abgekürzte Ausdrücke für arithmetische Größen, die auf einer Zahlenlinie zwischen ganzen Zahlen liegen, wie unsere modernen rationalen Zahlen. Zum Beispiel war »drei zu zwei« für sie nicht etwa gleich der Zahl »1,5«, weil die Griechen und Römer keine solche »Zahl« kannten. Die klassischen Ungleichheiten bedeuteten vielmehr ideale und ewige Arrangements, in denen zwei Mengen diskreter Einheiten in Bezug zueinander stehen. Aus diesem Grund wäre es ein Irrtum, zu glauben, Verhältnisse wie »drei zu zwei« und »vier zu drei« bedeuteten »Brüche« im modernen Sinne des Wortes. Wie ihr Name schon sagt, stellen solche Entitäten das »Zerbrechen« des Prinzips der Einheit in eine Vielheit von Teilen dar, etwas, das die klassische Arithmetik prinzipiell nicht zulassen wollte.
Gegen Ende des ersten nachchristlichen Jahrhunderts erläuterte Theon von Smyrna diesen Punkt: In einer Theorie, die Zahlen als Vielheiten definiert, können sich Divisionen auf gezählte Dinge beziehen, doch nicht auf die Einheit des Zählens selbst. In seiner Abhandlung über Mathematisches Wissen, das für die Platon-Lektüre nützlich ist, erklärt Theon, nichts sei einfacher, als sich die Teilung von Dingen in Teile vorzustellen. Doch die Teilung von arithmoi ist etwas anderes. Während man jede Zahl in eine Anzahl separater »Einsen« aufteilen kann, ist die Monade selbst unteilbar; ein »Teil von eins« wäre ein Widerspruch in sich. Um seine These zu veranschaulichen, schlug Theon vor, die Aufteilung eines wahrnehmbaren Dings zu betrachten. Wird es in mehrere Stücke geteilt, geht dieses Ding von einem einfachen in ein vielfaches Sein über, entsprechend seinem Stoff, der es bis ins Unendliche teilbar macht. Doch die arithmetische Einheit selbst – die »Eins« – bleibt ihrem Wesen nach ungeteilt. Nicht nur wird ihre Einheit nicht geteilt; wie Theon bemerkte, wird sie vervielfacht, denn dort, wo zuvor eine einzelne identifizierbare Einheit war, ist nun, nach der Teilung, eine Anzahl von »Einsen«, die eine Anzahl separater Teile bilden. »Die Eins aber«, folgerte Theon, kann daher zwar »als Körper verkleinert« werden; »anzahlenmäßig dagegen wird sie vergrößert«.[64]
In solchen Begriffen werden die alten harmonischen Ungleichheiten am ehesten verständlich. Als Beispiel kann man den pythagoreischen »Rest« nehmen, definiert als das Verhältnis von zweihundertsechsundfünfzig zu zweihundertdreiundvierzig (256:243). Hätte man den arithmetischen Wert dieses Intervalls mit modernen Mitteln zu bestimmen, so könnte man die beiden Größen dividieren; aus dieser Operation erhielte man eine exakte, wenngleich sperrige rationale Zahl etwas größer als eins (1,053497942386831). Hätte man den Wert dieses Intervalls in den Begriffen des heute zumeist verwendeten akustischen Systems musikalischer Stimmungen zu definieren, so würde man das alte Zahlenverhältnis in die Tonintervalleinheiten umrechnen, die von Alexander John Ellis im neunzehnten Jahrhundert erfunden wurden; mit Hilfe einer logarithmischen Berechnung würde man zu dem Ergebnis kommen, dass das leimma die akustische Größe von 90 Cent[65] hat, während die gesamte Oktave 1200 solcher Einheiten umfasst.[66]
Heute sind solche Übersetzungen antiker Notationen gebräuchlich, da sie die alten musikalischen Intervalle auf einen Blick mit den modernen vergleichbar machen. Doch wenn man die klassischen Zahlenverhältnisse einzig in dieser Art darstellt, übersieht man die Gründe für ihre Konzeption und die Bedeutung ihrer Definition. Für die Alten verwies die Notation »256:243« weder auf irgendeine Quantität »größer als eins und kleiner als zwei«, noch bedeutete sie irgendeine Entität wie die in der Geometrie gemessenen, das heißt solche, die kontinuierlich vergrößert und verkleinert werden können. Die alte Notation stellte die Beziehung zweier idealer Vielheiten dar, die aus Einsen bestanden und die, wenn man sie in der Proportion von Körpern (etwa Saiten) realisiert fand, eine hörbare Konsonanz ergaben. Wenn die Umschrift von Intervallen in arithmetische Ungleichheiten in der Antike und im Mittelalter jahrhundertelang fortlebte, so deshalb, weil dieses System eine Analyse von Harmonien ermöglichte, die einzig mit ganzen Zahlen und ihren Relationen rechnete.
Die Schreibung von Zahlenverhältnissen war daher nicht nur ein Detail in den pythagoreischen Künsten. Relationen traten in Arithmetik und Musik genau dort ein, wo »Zahlen« nicht möglich waren. Indem sie eine diskontinuierliche Anzahl von Einheiten gegen eine andere setzten, erlaubten sie es den antiken Denkern, Größen zu bezeichnen, die sonst als solche unbegreiflich geblieben wären und die einzig als Relationen von Vielheiten ausgedrückt werden konnten. Doch die antiken Denker konnten sich solcher Hilfsmittel nur bis zu einem bestimmten Punkt bedienen. Quantitative Beziehungen ließen sich für bestimmte Intervallteilungen vorschlagen, etwa für die Zerlegung des diatonischen Tetrachords in zwei Ganztöne und ein leimma. Andere Intervalle widerstanden einer solchen Teilung. In diesem Sinne war die umstrittene Halbierung des Tons weniger außergewöhnlich als beispielhaft. Da alle antiken Konsonanzen ihrer arithmetischen Struktur nach »überteilige« oder »vielfache« waren, folgte aus Archytas’ Theorem, dass weder eine noch mehrere Zahlen in kontinuierlicher Proportion in einen der drei pythagoreischen Akkorde interpoliert werden konnten. Das bedeutete, dass kein Grundintervall durch ein gleichstufiges Zahlenverhältnis dargestellt werden konnte; mit anderen Worten, die Oktave, die Quinte und die Quarte konnten durch keine Zahl der antiken Zahlen »halbiert« werden, selbst wenn sie in Relation zueinander gesetzt wurden. Sollten die exakten Mittelpunkte solcher Akkorde in irgendeiner Weise existieren, so lägen sie daher jenseits von Musik und Arithmetik zugleich. Da sie weder Konsonanzen noch Töne, weder Intervalle noch deren Elemente sein könnten, wären sie nicht nur unwahrnehmbar, wie leimma, apotomē und comma; sie wären nicht zählbar und daher strikt undefinierbar.
Den Pythagoreern war jedoch das Unzählbare nicht fremd. Obwohl sie zahllose Relationen aus dem Gebiet ihrer Arithmetik aussperrten, benannten sie sie mit durchaus nicht unklaren Begriffen. Sie nannten sie »unaussprechlich« (ἄρρητοι), »irrational« (ἄλογοι) und »inkommensurabel« (ἀσύμμετροι). Aus solchen Benennungen könnte man auf nähere Bekanntschaft schließen. Doch die Vertrautheit, die die klassischen Zahlentheoretiker mit solchen Relationen besaßen, konnte nach den klassischen Standards der Wissenschaft keine Erkenntnis sein. Inkommensurable Größen, die sich der Regel der Einheit prinzipiell entzogen, konnten nicht als etwas gelten, das irgendein Seiendes, irgendein einzelnes Ding zu zählen vermag, und deshalb konnten sie kaum als etwas betrachtet werden, das überhaupt etwas zu zählen vermag. Aus solchen unaussprechlichen Relationen ließ sich nur herleiten, dass sie, so wenig wie die unmögliche Wurzel eines bestimmten Tons, keine Anzahlen von Einsen sein konnten. Sie waren ganz einfach unmessbar, und solange jede Definition in Arithmetik und Musik numerisch und jede Zahl diskret sein musste, waren sie als solche unvorstellbar und undarstellbar. Sie mögen den Pythagoreern irgendwie vor Augen gestanden haben, doch als Unzählbares konnten sie keine »Reste« sein. Ihr einziger Platz war an den Grenzen ihrer Kunst der Quantität. Um sie von diesen äußeren Rändern loszureißen, um es ihnen zu ermöglichen, für sich betrachtet zu werden, wäre es erforderlich gewesen, die Definitionen von Musik und Arithmetik mit ihren Zielen und Methoden in ihren Grundbegriffen umzuformen. Dinge, die einmal »unaussprechlich« waren, hätten ausgesprochen werden müssen. Das waren Notwendigkeiten, die die frühen Pythagoreer kaum zugegeben hätten. Im Laufe der Zeit machten sich solche Forderungen jedoch mit immer größerer Macht bemerkbar, bis neue Größenelemente gefunden wurden und die Denker mit ihrer Hilfe dazu kamen, Stimmungen zu notieren, die in der antiken und in der frühmittelalterlichen Welt ungehört blieben.

Viertes Kapitel Disproportionen
Mehreren Überlieferungen zufolge waren es die Pythagoreer, die entdeckt hatten, dass es in der Welt der Natur sowohl Proportionen wie Disproportionen gibt und dass zwischen den kommensurablen und den inkommensurablen Relationen ein absoluter Unterschied besteht. Doch zahlreiche Berichte deuten auch an, dass die Pythagoreer niemals die Absicht hatten, ihr Wissen von solchen Dingen denen zu enthüllen, die nicht in ihre Lehren eingeweiht waren. Es heißt, ein Pythagoreer habe der antiken Welt die Existenz mathematischer »Irrationalitäten« enthüllt, doch es heißt auch, dass er dafür bestraft worden sei. In seiner Einführung in das pythagoreische Leben berichtet Iamblichos, die Anhänger des Pythagoras hätten den Mann, der »als erster die Natur des Kommensurablen und des Inkommensurablen solchen eröffnete, die nicht würdig waren, an den Lehren teilzuhaben, […] so tief verabscheut […], dass sie ihn nicht nur aus der Lehr- und Lebensgemeinschaft ausschlossen, sondern ihm auch ein Grabmal errichteten, mit der Begründung, ihr einstiger Gefährte sei aus dem Leben unter Menschen ausgeschieden«.[67] Anderen Berichten zufolge erlitt der Pythagoreer wegen seiner ruchlosen Taten ein weit gewaltsameres Schicksal: Die Götter hätten ihn im Meer ertränkt, so wie jenen frevlerischen Schüler, der der Öffentlichkeit verriet, wie ein Dodekaeder zu konstruieren sei.[68] Gegen Ende des dritten Jahrhunderts nach Christus interpretierte Pappos von Alexandria diese Berichte in seinem Kommentar zum zehnten Buch der Elemente des Euklid, der heute nur in Arabisch überliefert ist. Die Wissenschaft vom Inkommensurablen, erklärt Pappos,
nahm ihren Anfang in der pythagoräischen Schule (Sekte) und wurde sehr befördert durch Theätetus den Athener […]. [S]chon die Pythagoräer beschäftigten sich um ihrer selbst willen viel mit diesen Dingen, so dass ein Ausspruch unter ihnen sehr verbreitet war, nämlich der, dass der erste, welcher die Wissenschaft (Kenntnis) des Irrationalen (Stummen) oder Nichtrationalen erfand und sie öffentlich bekannt machte unter dem Volke, ertrunken sei; es ist wohl passender, dass sie nach Art der geheimnisvollen Rätselsprache damit sagen wollten, dass jedes Stumme oder Nichtaussprechbare oder Nichtvorstellbare im All am besten durch einen Schleier (Vorhang) verhüllt bliebe, und dass jede Seele, wenn sie im Leben zur Offenbarung und Enthüllung dieser Dinge gelangt ist, dann umherirrt (umherirren muss?) im Meer der Unähnlichkeit, versunken in den Fluten des Geschaffenen, die keine Ordnung haben.[69]

Man kann sich vorstellen, warum die alten Pythagoreer der Ansicht waren, es sei am besten, »das Wissen vom Inkommensurablen« zu verbergen. Diese Lehre enthielt die Grenzen der Theorie der Einheiten. War erst einmal aufgedeckt, dass bestimmte Größen miteinander inkommensurabel sind, so hätte man gesehen, dass es mathematische Verhältnisse gibt, die mit ganzen Zahlen strikt undefinierbar sind – und ebenso wenig mit all ihren »Ungleichheiten«. Man hätte erkannt, dass Zahlen die Maße dieser Welt nicht transkribieren können. Das mag jene Wahrheit gewesen sein, welche die Denker der arithmoi geheim halten wollten. Weniger evident bleibt jedoch, wie und wann die alten Pythagoreer zu ihrem Geheimwissen gelangten.
Eine Reihe von Hypothesen wurde dazu vorgetragen.[70] Viele Gelehrte haben argumentiert, das Inkommensurable sei in der Geometrie entdeckt worden. Das Verfahren der Anthyphairesis, auch bekannt als »reziproke Subtraktion« oder »Euklidischer Teilungsalgorithmus«, mag eine Rolle bei der Aufdeckung des arithmetischen Missverhältnisses gespielt haben. In seinem Kommentar zu den euklidischen Lehrsätzen hat W.R. Knorr das klassische geometrische Verfahren folgendermaßen zusammengefasst:
Gegeben seien zwei homogene Größen a und b. Die kleinere (sagen wir: b) wird von der größeren subtrahiert und lässt den Rest c. Wenn c kleiner als b ist, wird es von b subtrahiert und erzeugt einen zweiten Rest. Wenn c größer ist als b, wird b von c subtrahiert. In jedem Fall erhält man einen neuen Rest d, der in gleicher Weise auf den vorhergehenden Subtrahenden angewendet wird und einen neuen Rest ergibt.[71]

Wird diese Operation auf Längen angewandt, die mit ganzen Zahlen gemessen werden, muss sie in einer endlichen Anzahl von Schritten enden. Der letzte geometrische »Rest«, der mit einer ganzen Zahl gemessen werden kann, wird der größte gemeinsame Teiler von a und b sein. So wird auch das Verfahren, wenn es auf kommensurable Größen angewandt wird, mit einem Rest enden, der das größte gemeinsame Maß von a und b ist. Es gibt jedoch auch Fälle, in denen das Verfahren der reziproken Subtraktion sich endlos fortsetzen lässt. Unendlich in ihren Operationen, wird die Methode dann algorithmisch. Durch sukzessive Verminderung werden die Reste immer weiter abnehmen, obwohl kein Abschnitt die gemessene Strecke ausschöpfen wird. Dies ist der Fall zweier Größen, die im »mittleren und äußeren Verhältnis« oder, um einen gebräuchlicheren Ausdruck zu verwenden, im Teilungsverhältnis des »Goldenen Schnitts« stehen; dabei steht die kleinere zur größeren im Verhältnis der größeren zu der Summe der kleineren und größeren.[72] Zwischen der kleineren und der größeren zweier solcher Größen lässt sich niemals ein größter gemeinsamer Teiler finden. Sie sind »inkommensurabel« in dem präzisen Sinne, wie er von Euklid im zehnten Buch seiner Elemente – das sich mit solchen Größen befasst – definiert wird: »Misst, wenn man unter zwei ungleichen Größen abwechselnd immer die kleinere von der größeren wegnimmt, der Rest niemals genau die vorhergehende Größe, so müssen die Größen inkommensurabel sein.«[73]
Andere Historiker der griechischen Mathematik haben die Entdeckung irrationaler Größen auf die Untersuchung einer einzelnen und viel einfacheren geometrischen Figur zurückgeführt. Es genügt, die Eigenschaften von Quadraten zu betrachten, um eine streng inkommensurable Beziehung zwischen zwei unterschiedenen stetigen Größen zu bemerken. Erinnern wir uns an das Theorem, das heute als »Satz des Pythagoras« gilt, der den frühen Griechen bekannt war, ohne dass er offenbar jemals Pythagoras selbst zugeschrieben worden wäre.[74] Diese Regel legt fest, dass bei jedem rechtwinkligen Dreieck das Quadrat über der Hypotenuse gleich der Summe der Quadrate über den beiden Katheten ist (mit anderen Worten, in einem rechtwinkligen Dreieck, dessen Seiten mit a, b und c bezeichnet werden, wobei c die Hypotenuse bezeichnet, gilt: c2 = a2 + b2). Ein Quadrat teilt sich in zwei solcher rechtwinkligen Dreiecke; das Verhältnis zwischen den Katheten des Dreiecks zu seiner Hypotenuse ist gleich dem Verhältnis zwischen der Seite des Quadrats zu seiner Diagonale. Aus diesem elementaren Prinzip folgt: Wenn die Grundseite 1 beträgt, wird die Diagonale jener Größe entsprechen, deren Quadrat 2 ist. Doch eine solche Größe konnte für die Alten keine »Zahl« sein. Unendlich irreduzibel auf die Einheit, ist sie nicht als Verhältnis zweier ganzer Zahlen ausdrückbar. Die Asymmetrie zwischen Seite und Diagonale ist ebenso offensichtlich wie absolut, und Platon und Aristoteles nannten sie häufig, wenn sie die Inkommensurabilität erörterten. Im Theaitetos wie im Menon findet man, wie Sokrates auf unterschiedliche Weise die Implikationen der Beziehung zwischen Seite und Diagonale des Quadrats erforscht.[75] Und Aristoteles präsentiert in der Ersten Analytik ein Theorem für die Inkommensurabilität, das in wenigen einfachen Schritten elegant beweist, dass sich arithmetische Absurditäten ergeben, wenn man die Diagonale als kommensurabel mit der Seite annimmt. Mit nicht mehr mathematischem Wissen als dem »Satz des Pythagoras« lässt sich zeigen, dass die Diagonale dann zugleich gerade und ungerade sein müsste, womit ihre arithmetische Inkommensurabilität mit der Seite bewiesen ist.[76]
Das aristotelische ist das älteste der antiken Theoreme der Inkommensurabilität. Obwohl es seine klarste Form in einem apokryphen Zusatz zu Buch X von Euklids Elementen findet, geht es möglicherweise bis ins fünfte Jahrhundert vor Christus zurück, da es auch dem frühen pythagoreischen Mathematiker Hippokrates von Chios zugeschrieben wird.[77] Es ist bemerkenswert, dass der Beweis, obwohl er sich auf ein Verhältnis in einer geometrischen Figur bezieht, Inkommensurabilität in den beiden großen arithmetischen Begriffen definiert: des »Geraden« und des »Ungeraden«.[78] Diese Tatsache zeigt an, dass die Entdeckung des Irrationalen vielleicht mehr mit der Arithmetik zu tun hat, als der euklidische Algorithmus nahelegt. Es kann jedenfalls kein Zweifel daran bestehen, dass die klassischen Denker den Bereich der Vielheiten kaum zu verlassen brauchten, um auf Größen zu kommen, die in Zahlen unausdrückbar waren. Die Alten konnten solchen Irrationalitäten auch bei ihren Untersuchungen der verschiedenen Mittelwerte begegnet sein, die zwischen Zahlen interpoliert werden können. Wie Simone Weil einmal bemerkte, hätten die griechischen Denker nur irgendwann einmal bemerken müssen, dass es zwischen einem arithmos und seiner Verdopplung keine »mittlere Proportionale« geben kann: damit wären sie auf das »Irrationale« gestoßen.[79] Der Punkt verdient ernsthafte Erwägung, doch man kann darauf aufbauend noch einen weiteren Schritt unternehmen. Die klassischen Denker untersuchten die Zahlen in ihrem Verhältnis zueinander auf dem Wissensgebiet der »Musik«. Dort trug das Verhältnis einer Zahl zu ihrem Doppel einen technischen Namen. In seiner einfachsten Form als Beziehung von zwei zu eins (2:1) dargestellt, wurde dieses Intervall diapason genannt: jenes Verhältnis, das – bezogen auf die Länge einer Saite – die Oktave ergibt. Es ist wohl möglich, dass die Alten in der Geometrie auf die irrationalen Größen gestoßen sind, und sie können ebenso gut solchen Größen zuerst in ihrer Arithmetik begegnet sein. Doch wie Paul Tannery schon vor langer Zeit bemerkt hat, ist es auch möglich, dass die frühen griechischen Denker die Inkommensurabilität beim Studium der Harmonie entdeckt haben;[80] denn sobald sie versuchten, durch die Einfügung einer mittleren Proportionalen in die Spanne der diapason die Oktave zu »teilen«, hätten sie genau die gleiche Irrationalität entdecken müssen, die die Diagonale des Quadrats aufweist. Sie wären dann auf die unausdrückbare Wurzel der Zahl zwei gestoßen.
Unter welchen Bedingungen sie auch ans Licht gekommen sein mögen – bald sollten die inkommensurablen Größen einen festen Platz in der antiken Mathematik einnehmen. Die Geometrie sollte das Feld sein, in dem sie untersucht werden konnten – natürlich nicht als solche, denn das »Irrationale« konnte per definitionem nicht rational behandelt werden, sondern in Proportionen oder »Analogien«, denen nicht unbedingt Zahlen entsprechen mussten. Nach Theodoros und Theaitetos entwickelte Platons Schüler Eudoxos von Knidos die Begriffe und Lehrsätze, die diesem Untersuchungsgebiet zugrunde lagen. Mit seiner »Proportionenlehre« zeigte Eudoxos, dass inkommensurable Quantitäten von einer nichtarithmetischen mathematischen Disziplin behandelt werden konnten, die alle stetigen Größen betraf, seien es Linien, Figuren oder Körper. Zwischen einer inkommensurablen Größe und einer anderen blieb ein bestimmtes Verhältnis arithmetisch undefinierbar, doch nun wurde es dennoch möglich, eine solche inkommensurable Größe als mathematisch äquivalent mit einer anderen zu definieren. Um nur ein Beispiel zu nennen, kann in einem Kreis das exakte Verhältnis des Umfangs zum Durchmesser nur mit Hilfe einer irrationalen Größe bestimmt werden, nämlich mit der Größe π, die kein antiker Denker als »Zahl« betrachtet hätte. Trotzdem kann man geometrisch beweisen, dass eine solche Beziehung für alle Kreise gilt. Zwischen zwei solchen Größen kann man deshalb ein »Verhältnis von Verhältnissen« oder eine »Analogie« herstellen.[81] Hatte man dieses Prinzip einmal akzeptiert, war die Bedrohung durch das Irrationale zum Teil eingedämmt: Das Inkommensurable konnte als Gegenstand der Geometrie definiert werden, und die Arithmetik konnte ihre Betrachtung der Vielheiten unbehelligt fortsetzen, insofern diese aufgrund ihrer Definition als verschiedene Anzahlen vieler Einsen sämtlich kommensurabel waren. Das Quadrivium des Boethius, unterteilt in Künste der Diskontinuität und der Kontinuität, beruhte auf dieser Einteilung.
Als sich nach Boethius die Kunst der Musik im Mittelalter in neuer Weise entwickelte, blieb sie noch in ihren Innovationen oftmals dieser Einteilung treu. Die eindrucksvollste Illustration dieser Tatsache liefert vielleicht die Geschichte der Notation. Die Periode von der ersten Hälfte des neunten Jahrhunderts bis zur ersten Hälfte des elften Jahrhunderts bezeugt das Auftauchen und die Entwicklung eines neuen Schriftsystems, das mit immer größerer Subtilität die Aufzeichnung des liturgischen Gesangs gestattete. Dieses neue Darstellungsmittel erlaubte es, ein mündliches Repertoire aufzubewahren. Zugleich war es ein wesentliches Element bei der Entstehung einer anderen Kunst. Dank der neuen Fertigkeiten der schriftlichen Aufzeichnung war es bald möglich, die Positionen mehrerer Stimmen festzuhalten, die gleichzeitig koordiniert und doch zum Teil autonom sein konnten. Damit sollte schon früh die abendländische »Polyphonie« auftauchen. Wie Marie-Elisabeth Duchez gezeigt hat, war die damit einhergehende Notation kein bloßer Spiegel ihrer Realität. Die Transkriptionen illustrierten die Prinzipien nicht des Tons, sondern seiner Konzeptualisierung. Von Pseudo-Alkuin und Remigius von Auxerre bis zu Hucbald, dem Verfasser der Musica enchiriadis, und Guido von Arezzo wurde die empirische Realität des Gesangs allmählich »objektiviert« und »begrifflich abstrahiert« durch eine graphische Praxis, die auf fünf Grundvorstellungen beruhte: »dem perzeptiven und später quantitativen Begriff des Intervalls (des Tons)«; »der konsequenten Vorstellung des diskreten Tons«; der Idee der »Tonhöhe«, die es erlaubte, die klassische Unterscheidung zwischen hohen und tiefen Tönen (acuitas und gravitas) auf der vertikalen Achse der Seite räumlich darzustellen; »dem Begriff der Note, die sich aus den […] vorausgehenden Begriffsbildungen ergibt«; und schließlich »der Vorstellung der Tonleiter«, die aus den Strömungen, die zu den vier genannten Begriffen führten, sowie aus zwei Traditionen der diagrammatischen Darstellung hervorging: derjenigen der antiken griechischen Musik, wie sie von Boethius überliefert wurde, und derjenigen der neuplatonischen und pythagoreischen Lehren von der Harmonie der Himmelssphären.[82] Diese fünf Begriffe beruhen sämtlich auf dem Prinzip, dass Töne nur dann musikalisch intelligibel sind, wenn sie ihrer Quantität nach wesentlich diskret sind, wie die alten Vielheiten der Arithmetik. »Das von den Griechen ererbte Wissen«, schließt Duchez, »legte den mittelalterlichen Musikern gewissermaßen nahe, was sie in ihrem Gesang hören sollten, so dass sie es niederschreiben konnten. Doch dem mittelalterlichen Denken gelang, woran die Griechen scheiterten, nämlich in der Musik eine rationale und audiovisuelle Verbindung zwischen mathematischer Theorie und einer sinnträchtigen graphischen Semiotik herzustellen.«[83]
Diese »Verbindung« sollte mehr als die melodischen Aspekte der mittelalterlichen Musik verknüpfen. Sie erstreckte sich auch auf die rhythmische Struktur. Im Zuge der Ausdifferenzierung ihrer »graphischen Semiotik« betrachteten die mittelalterlichen Musiker die Tondauer, ebenso wie die Intervalle, als Vielheiten. Diese Sichtweise sollte eine entscheidende Rolle in der Entwicklung der abendländischen Polyphonie spielen. »Im gregorianischen Gesang«, schreibt Willi Apel, »zumindest in einer vergleichsweise so späten Zeit wie dem dreizehnten Jahrhundert, wurden die Melodien zu mehr oder weniger gleichen Notenwerten ohne irgendeine Bemühung um rhythmische Differenzierung gesungen.«[84] Doch in der polyphonischen Komposition hatte sich um 1200 ein System strenger rhythmischer Ordnungen herausgebildet, das bald zum Grundelement der musikalischen Praxis werden sollte. Die jeweilige Tondauer wurde als homogene numerische Quantität dargestellt, so dass die Musiker »lange« Töne »kurzen« gegenüberstellen konnten, beispielsweise drei oder zwei Einheiten gegenüber einer. Verbindungen von longae und breves ließen wiederum eine Reihe von rhythmischen Mustern entstehen. Bis zum neunten Jahrhundert, wenn nicht früher, hatten fränkische Kantoren aus dem Repertoire des gregorianischen Gesangs ein System melodischer Sequenzen abstrahiert. So schufen sie acht harmonische Tonarten.[85] Nachdem einmal eine stabile Notation für die Tondauer aufgetaucht war, wurde es auch möglich, rhythmische Modi zu schaffen, die aus einer feststehenden Abfolge von »Längen« und »Kürzen« bestanden. Diese Sequenzen konnten dann in musikalischen Werken in unterschiedlichen Formen dargestellt werden. In der von Johannes de Garlandia entwickelten Theorie der rhythmischen Notation wurden Wiederholungen modaler Sequenzen nach einer Reihe von »Ordnungen« klassifiziert, deren jede als Vielfaches der ersten definiert wurde.[86]
Die mittelalterlichen Autoren wagten sich bei solchen numerischen Darstellungen der Zeit weit vor. Neben der Messung der Dauer von Melodien in homogenen, teilbaren Elementen entwickelten sie auch die Kunst, den Wert einer Note oder einer Notenfolge in einem bestimmten Verhältnis, wie es in der klassischen Arithmetik definiert worden war, zu verkleinern oder zu vergrößern. In einer Motette zum Beispiel kann ein einzelnes rhythmisches Muster mehrere Male in variierender Dauer auftauchen, wobei die Variationen die in der antiken Mathematik untersuchten Verhältnisse widerspiegeln. Im frühen dreizehnten Jahrhundert zeigte Perotinus, wie die als Tenor verwendete liturgische Melodie zweimal auftreten kann, und zwar beim zweiten Mal in halbierten oder verdoppelten Werten.[87] In der zweiten Hälfte des vierzehnten Jahrhunderts tauchten Zeichensysteme auf, die es den Komponisten erlaubten, metrische Werte mit weit größerer Feinheit zu modifizieren. Besondere Symbole konnten dazu benutzt werden, proportionale Wertveränderungen zu kennzeichnen, ohne irgendeine Note verändern zu müssen.[88] Im fünfzehnten Jahrhundert entwickelten Theoretiker und Komponisten solche Zeichen weiter und schlugen ein graphisches System vor, das geeignet war, eine proportionale metrische Augmentation oder Diminution anzuzeigen. In ihrer neuen Notation konnten sie die Stellen markieren, an denen eine Sequenz in Verhältnissen unterschiedlicher Komplexität vermehrt oder vermindert werden sollte, von 2:1 zu 5:4 und 21:5. »In dieser Zeit«, kommentiert Apel, »entwickelte sich die Proportionenlehre weit über das Gebiet der praktischen Anwendung hinaus zu einem rein theoretischen und spekulativen System. [Franchinus] Gaffurius zum Beispiel trägt keine Bedenken, Proportionen zu erklären, welche auf eine Veränderung im Verhältnis 9:23 hinauslaufen.«[89]
Solche proportionalen »Extravaganzen« waren natürlich das Merkmal der überkommenen arithmetischen Harmonien der Pythagoreer, doch ihre Anwendung auf das Gebiet des Rhythmus war eine spezifisch mittelalterliche Erfindung. Boethius’ De institutione musica lieferte die theoretische Grundlage für diese Verfahren. Ebenso wie Boethius fünf Klassen von Proportionen definierte, die fünf Arten von Vielheiten entsprachen, ließen im fünfzehnten Jahrhundert Guilelmus Monachus, Gaffurius und Johannes Tinctoris in ihrer Lehre fünf Arten der rhythmischen »Proportionen« zu.[90] Und ebenso wie für die antiken Denker Vielheiten Anzahlen von Einsen waren, so waren für die mittelalterlichen Komponisten solche Verhältnisse und Rhythmen von Natur aus kommensurabel. Wie Apel schreibt, »beruht das System der Mensuralnotation auf dem Prinzip einer fixierten und unveränderlichen Zeiteinheit, nämlich des tactus, der einem Taktschlag in mäßig langsamem Tempo entspricht und der die ganze Musik der Epoche wie ein gleichbleibender Puls durchzieht«.[91]
In derselben Epoche bahnte sich jedoch ein wichtiger Perspektivwechsel an. Harmonien sollten nun nicht mehr in Zahlen, sondern in Figuren wahrgenommen und nicht mehr als Vielheiten, sondern als Größen gemessen werden. Langsam, wiewohl unwiderruflich begannen die arithmetischen Fundamente der Theorie des proportionalen Tons einzubrechen. Besonders weit in die Zukunft blickend ist in dieser Hinsicht das Werk des Nicole Oresme, eines Denkers aus dem vierzehnten Jahrhundert. In seinem Tractatus de configurationibus qualitatum et motuum, der – wie man annimmt – um die Jahrhundertmitte verfasst wurde, schlägt Oresme eine Methode zur mathematischen Untersuchung sinnlicher Phänomene vor.[92] Genauer gesagt, er versucht zu zeigen, wie es möglich ist, kontinuierlich Seiendes wie Qualitäten, Geschwindigkeiten und Bewegungen mit streng geometrischen Mitteln zu quantifizieren. Oresme beginnt seine Überlegungen in ganz traditioneller Begrifflichkeit. »Mit der Ausnahme von Zahlen«, schreibt er, »wird jedes messbare Ding in der Weise einer kontinuierlichen Quantität vorgestellt. Daher ist es für die Messung eines solchen Dings notwendig, sich Punkte, Linien und Flächen oder ihre Eigenschaften vorzustellen.«[93] Diese These ist anscheinend klassisch, beruht sie doch auf der alten Unterscheidung zwischen zwei verschiedenen Arten der Größe: der diskontinuierlichen und der kontinuierlichen, die sich jeweils dem Gebiet der Arithmetik beziehungsweise der Geometrie zuordnen lassen. Diese Bemerkung dient jedoch dazu, eine neue Entwicklung anzustoßen. Oresmes gesamte Abhandlung zielt auf den Beweis ab, dass es möglich sei, vermittels einer geometrischen Notation, die zuerst im Mittelalter erfunden wurde, sich kontinuierlich Seiendes »vorzustellen«.
Für diesen scholastischen Denker besitzen Größen – wie etwa Qualitäten oder Bewegungen – Grade; zu jedem bestimmten Zeit- oder Raumpunkt enthalten sie eine bestimmte »Intensität«. Darüber hinaus sind Intensitäten, da von Natur aus kontinuierlich, zu unbegrenzter Vermehrung und Verminderung befähigt, in der Zeit wie im Raum. Nehmen wir als Beispiel die Eigenschaft der Kälte. Ein Körper kann in bestimmten seiner vorhandenen Teile kälter werden als in anderen, und ein einzelner Teil kann in aufeinanderfolgenden Momenten abkühlen. Unter Verwendung eines Begriffsvokabulars, das er mit mehreren Denkern des vierzehnten Jahrhunderts teilt, führt Oresme an, dass solche Intensitätsveränderungen in zweierlei Weise vor sich gehen. Sie können uniformiter eintreten; dann wird für jede ablaufende Zeitspanne oder für jeden betrachteten Raumabschnitt die Verminderung der Temperatur konstant bleiben. Umgekehrt können sie difformiter eintreten; in solchen Fällen wird der Grad der Veränderung in jedem untersuchten Teil oder Moment variieren. Darüber hinaus legt Oresme fest, dass eine grundsätzlich »uniforme« Intensitätsveränderung in zweiter Linie als entweder regelmäßig oder unregelmäßig charakterisiert werden kann, so wie eine grundsätzlich »difforme« Änderung in einem zusätzlichen Sinne als konstant oder inkonstant qualifiziert werden kann. Für alle solchen Fälle schlägt Oresme ein System der geometrischen Illustration vor, das teilweise einem Muster folgt, das bereits vor ihm der Philosoph Roger Bacon vorgeschlagen hatte.[94] Die Methode lässt sich einfach resümieren. Für jede Variation einer Eigenschaft werden zwei Achsen gezeichnet. Die erste verläuft horizontal. Sie illustriert die Ausdehnung des Raumes oder der Zeit, in der die Veränderung eintritt. Dieser Größe, die in Einheiten eingeteilt ist, die als »Grade« bezeichnet werden, gibt Oresme den Namen »Länge« (longitudo). Senkrecht über jedem Punkt auf dieser Strecke kann man anschließend einen Intensitätswert eintragen, der nicht als Länge, sondern als Höhe, aber ebenfalls in Graden, auf einer vertikalen Achse gemessen wird. Fehlt die betrachtete Eigenschaft, so wird dies durch einen Wert auf der Höhe der horizontalen Linie dargestellt, und jeder sukzessive Zuwachs wird durch einen entsprechend höher gelegenen Punkt markiert. Verbindet man die verschiedenen Punkte der über Zeit oder Raum fluktuierenden Intensität, wird man auf diese Weise eine zweite Linie erhalten. Dieser zweiten Größe gibt Oresme den Namen »Breite« (latitudo).[95]
Diese Methode lässt sich nun sehr einfach auf die Messung von Veränderungen der Eigenschaften von Flächen im Zeitverlauf anwenden. Die Linie der »Longitude« stellt dann die Gesamtdauer dar, in der sich eine Intensitätsveränderung vollzieht, während die Linie der »Latitude« die fortschreitende Verstärkung oder Verminderung der Eigenschaft aufzeichnet. Ähnlich kann man, wenn man Variationen über den Raum anstelle von Variationen über die Zeit hinweg bestimmen will, wiederum zwei Linien zeichnen. In diesem Fall wird die »Longitude« die gesamte Ausdehnung der Fläche darstellen, während die »Latitude« Aufstieg und Fall der Intensität einer Eigenschaft über die verschiedenen Flächenabschnitte hinweg misst. Oresme räumt ein, dass die Darstellung ein spezifisches Problem aufwirft, wenn der Gegenstand, der einer Veränderung unterliegt, ein dreidimensionales Seiendes, etwa ein Körper, ist: Es lässt sich keine »vierte Dimension« finden, in der die Intensitätsschwankung illustriert werden könne. Für solche Fälle schlägt Oresme daher einen Behelf vor. Er zerschneidet den Körper in unendlich viele Flächen, deren jede in gleicher Weise wie bisher als Linie quantifiziert werden kann.[96]
Qualitäten und Bewegungen lassen sich dann als geometrische »Konfigurationen« darstellen. Stetige Veränderungen des Intensitätsgrads werden als Strecken dargestellt, und die Beziehungen zwischen solchen Veränderungen werden daher als Verhältnisse von Linien ablesbar. »Denn welches Verhältnis auch immer zwischen Intensität und Intensität, bei Intensitäten der gleichen Art, gefunden wird«, erklärt Oresme, »wird sich ein ähnliches Verhältnis zwischen Linie und Linie finden, und umgekehrt. Denn genauso wie eine Linie mit einer anderen kommensurabel und mit einer dritten inkommensurabel ist, gilt ähnlich auch für Intensitäten, dass manche miteinander kommensurabel und andere inkommensurabel sind wegen ihrer [Eigenschaft der] Kontinuität.«[97] Will man die Intensitätsvariationen zweier Flächen oder Zeiträume quantitativ miteinander vergleichen, genügt es, die Flächen ihrer »Konfigurationen« zu messen. Gleichbleibende Intensität (uniformitas) wird durch eine »Latitude« veranschaulicht, die in fester Relation zur »Longitude« fortläuft. In der geometrischen Darstellung werden dann zwei parallele Strecken gezeichnet, die, wenn man sie an ihrem Anfang und an ihrem Ende verbindet, ein Rechteck bilden. Ungleichmäßige Intensität (difformitas) hingegen wird durch asymmetrische Verlängerungen dargestellt. Für Eigenschaften, deren Intensität im Steigen oder im Fallen begriffen ist, lassen sich steigende oder fallende Latituden zeichnen, so wie es für Eigenschaften in stetiger Progression steigende bzw. fallende Kurven geben wird. Verbindet man ihre Endpunkte mit ihren jeweiligen Longituden, werden diese Latituden geometrische Formen aller Art bilden. Sowohl in Diagrammen wie mit Worten demonstriert Oresme, dass die Verhältnisse solcher Größen jede ebene Figur bilden können, sei es Rechteck, Dreieck oder Polygon.
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[image: ]Abb. 2. Oresmes geometrische Konfigurationen. Aus: Nicole Oresme and the Medieval Geometry of Qualities and Motions, herausgegeben von Marshall Claggett, Madison 1968, Abb. 9 und 17


Schon vor Oresme hatten mittelalterliche Denker sich dieses System der geometrischen Illustration auf verschiedenen Forschungsgebieten, von der Medizin bis zur Theologie, zunutze gemacht. Galen, al-Kindi, Avicenna, Averroës und zahlreiche Ärzte nach ihnen hatten versucht, die Grade elementarer Eigenschaften zu berechnen, die für den Zustand der Gesundheit erforderlich sind, und davon die Disproportionen unterschieden, die Krankheiten verursachen.[98] Doch Oresme zeigte in seinem Tractatus de configurationibus qualitatum et motuum, dass solche Untersuchungen auch auf wahrnehmbare Qualitäten, etwa den Ton, angewandt werden können. Das zweite Buch seines Werkes nahm eine verblüffende These zum Ausgangspunkt: dass Klangeigenschaften in Wahrheit zur Ordnung der Größe, nicht der Vielheit zählen.[99] Dieses Prinzip stellte eine tausendjährige Tradition in Frage, die im Gegenteil behauptete, dass Klänge, um intelligibel zu sein, ihrer Natur nach arithmetisch sein müssen. Musikalische Entitäten als Größen, nicht als Vielheiten zu definieren hieß, die Kunst der Musik auf neue Grundlagen zu stellen. Oresme wusste das wohl. Zu Beginn seiner Erörterung der akustischen Phänomene argumentierte er, der Ton besitze zwei Arten von Intensität: »eine der Höhe nach, die andere der Stärke nach« (una in acutie, aliam in fortitudine).[100] In der ersten dieser beiden alternativen Möglichkeiten kann man den differentiellen Charakter des Klangs wiedererkennen, dem Boethius den größten Teil seiner Lehre gewidmet hatte: den von acuitas und gravitas, später verstanden im Sinne der »Höhe« eines Tons. Boethius hatte angenommen, dass ein solcher Charakter wesentlich diskontinuierliche Klangeinheiten, nämlich Töne, aufweist, die aus Intervallen bestehen. Indem er Höhe und Tiefe musikalischer Töne als Intensitätsgrade darstellt, legt Oresme hingegen nahe, dass Töne ihrem Wesen nach stetig sein können.
Indem er noch eine andere Art der akustischen Intensität benannte, entfernt sich Oresme weiter von der arithmetischen Tradition. Er selbst macht den Leser darauf aufmerksam: »Boethius versucht die Ursache für die erste Art der Vermehrung und Verminderung anzugeben«, schreibt Oresme in seiner Erörterung der beiden Eigenschaften des Klangs, »doch er spricht nicht von der zweiten.«[101] Die »Stärke« oder das »Volumen« (fortitudo) von Tönen ist jedoch nur als eine Eigenschaft zu erklären, die stetiger Verminderung oder Vergrößerung fähig ist. Diesen beiden Dimensionen der Tonintensität fügt Oresme noch eine dritte hinzu, die bei Boetius und seinen Kommentatoren unerwähnt blieb – und ihnen vielleicht unvorstellbar war. Es ist dies die qualitative Dimension des Tons, die heute »Klangfarbe« genannt wird. Oresme meint, dass Töne, die diskret zu sein scheinen, aus vielen kleinen akustischen Größen zusammengesetzt sein können, die für menschliche Ohren nicht wahrnehmbar sind. Je nachdem, in welchen Verhältnissen diese kleineren Elemente sich miteinander vermischen, lassen sich unterschiedliche Toneigenschaften erzeugen.[102] Oresme hatte beobachtet, dass Sehnen, die aus den Därmen unterschiedlicher Tiere hergestellt worden sind, sich je nach ihrer Beschaffenheit hörbar unterscheiden, auch wenn die ertönenden Noten selbst im Prinzip identisch sind. Solche Phänomene lassen sich auf Intensitätsschwankungen in den Verhältnissen ihrer Konstituentien zurückführen. Daher kann keine rein arithmetische Notation sie wiedergeben. Wie die Latituden der »Höhe« und »Stärke« lässt sich die Klangfarbe am besten durch eine geometrische Konfiguration transkribieren.
Oresme beschränkte seine Lehre der stetigen Intensitäten nicht auf die irdische Welt. Er dehnte die geometrische Quantifizierung von Qualitäten auf die Himmel aus und erwog den Gedanken, dass qualitative Klänge das Himmelsgewölbe über der Erde erfüllen könnten. In seinem Tractatus de commensurabilitate vel incommensurabilitate motuum celi schlägt Oresme vor, Eigenschaften und Bewegungen von Sternen ebenso wie alle anderen als Größen aufzufassen, die der Konfiguration und exakten Messung zugänglich seien.[103] Die Beziehung der Bewegungsgröße (velocitas) eines Himmelskörpers zu der eines anderen, erklärt er, lasse sich als äquivalent mit dem geometrischen Verhältnis einer Größe zu einer anderen betrachten. Da Bewegungen bekanntlich Töne hervorrufen, können solche Bewegungen auch klanglicher Art sein; die Beziehungen zwischen ihnen können darüber hinaus eine Harmonie bilden, auch wenn diese für uns unhörbar sein mag. Zwar macht sich Oresme nicht anheischig, astrale Qualitäten arithmetisch zu bestimmen, sowenig er Größe durch Vielheit messen will, etwa indem er die Proportionen von Linien auf Zahlenverhältnisse zurückführt. Er versucht nichts weiter als die geometrischen Beziehungen zwischen Sternbewegungen zu definieren. Genauer gesagt, befasst er sich mit einer einzigen Frage, die unvermeidlich aufkommt, sobald astrale velocitates als stetige Größen verstanden werden. Wenn Himmelsbewegungen als zwei in Proportion stehende Linien identifiziert werden, können ihre Geschwindigkeiten, genauso wie Strecken, ebenso inkommensurabel wie kommensurabel sein. Mit anderen Worten, die himmlischen Qualitäten können irgendein gemeinsames Maß teilen, doch die entgegengesetzte Hypothese ist ebenfalls zulässig: Irrationalitäten können die Bewegung der Sterne beherrschen.
Frühere Autoren hatten bemerkt, dass die Konjunktionen der Sterne keineswegs absolut regelmäßig seien; ihre Bewegungen konnten nicht vollkommen vorausgesagt werden. Im zweiten Jahrhundert vor Christus hatte Theodosius von Bithynia das Problem bereits in einem Buch aufgeworfen, Tage und Nächte, in dem er zu verstehen versuchte, aus welchen Gründen die Bewegungen der Sonne und des Mondes nicht in Einklang zu stehen scheinen.[104] Oresmes älterer Zeitgenosse, der Mathematiker, Astronom und Musiker Johannes de Muris, untersuchte das Problem ebenfalls in seinem Quadripartitum numerum.[105] Doch ab der zweiten Hälfte des vierzehnten Jahrhunderts konnte diese Frage mit Hilfe der innovativen mathematischen Regeln der scholastischen Physik behandelt werden. Die naturphilosophischen Werke des Aristoteles enthielten bekanntlich eine Formel zur Berechnung der Geschwindigkeit: Danach ließ sich die Bewegungsgröße arithmetisch aus dem Verhältnis von Kraft zu Widerstand herleiten.[106] Doch dieses Prinzip führte zu Widersprüchen und sogar Widersinn, worauf Aristoteles selbst mehr als einmal hingewiesen hatte. Zum Beispiel kann man den Fall betrachten, in dem Kraft und Widerstand äquivalent sind. Nimmt man die alte Formel als Regel, so wird man behaupten müssen, dass aus einem solchen Identitätsverhältnis eine bestimmte Geschwindigkeit abzuleiten ist; doch in einem solchen Falle wird sich natürlich nichts bewegen.[107]
Im zwölften Jahrhundert revidierte Averroës daher die Formel derart, dass er Geschwindigkeit nicht mehr wie bisher auf die Kraft als solche, sondern auf den Überschuss der Kraft im Verhältnis zum Widerstand bezog.[108] Etwa drei Jahrzehnte vor Oresme hatte Thomas Bradwardine eine weit subtilere Lösung vorgeschlagen, die den Wissenschaftshistorikern heute als Bradwardines »Regel« oder »Funktion« bekannt ist.[109] Auf der Grundlage dieses Prinzips leiteten spätere Denker die Geschwindigkeit aus dem exponentiellen Verhältnis von Kraft zu Widerstand her, wobei der Exponent selbst ein Verhältnis ist.[110] Dies war Oresmes Ausgangspunkt: Eine Bewegungsgröße leitet sich, wie er schrieb, von einem »Verhältnis von Verhältnissen« (proportio proportionum) ab. In Zuge einer sorgfältigen Untersuchung der Frage in mehreren verwandten Werken formulierte Oresme ein eigenständiges Theorem zur mathematischen Struktur solcher exponentieller Relationen: Aus jeder gegebenen Folge geometrischer Beziehungen lassen sich mehr irrationale als rationale »Proportionen von Proportionen« erzeugen. Mit anderen Worten: Exponentielle »Proportionen von Proportionen« sind in der Mehrzahl der Fälle arithmetische Disproportionen – oder mathematische Irrationalitäten –, die nicht in ganzen Zahlen ausgedrückt werden können. Mehr noch: Je größer die Menge der möglichen Proportionen, desto größer ist Oresme zufolge die Wahrscheinlichkeit, dass beliebige zwei von ihnen, in ein exponentielles Verhältnis gesetzt, inkommensurabel sein werden.[111]
Aus dieser Regel konnte man den Schluss ziehen, dass die Himmelsbewegungen, welches immer ihre exakten Werte sein mögen, sehr wahrscheinlich miteinander inkommensurabel sind. Oresme selbst legt dies in seinem Buch De proportionibus proportionum nahe.[112] Doch in seinem Tractatus de commensurabilitate vel incommensurabilitate motuum celi scheut er sich, eine unzweideutige Antwort zu geben. In den ersten beiden Teilen seines Werkes führt er zahlreiche Argumente aus den Gebieten der Mathematik, Astronomie, Physik und Mechanik an. Doch im dritten und letzten Teil seines Buches überlässt er die Diskussion der Welt der Fabel und des Mythos. Die philosophische Argumentation weicht allegorischen Lettern, und das Werk endet mit der Erzählung eines Traumes. In einer Vision sieht Oresme Apollon in Begleitung der Musen und allegorischer Figuren, die jeweils ein klassisches Wissensgebiet verkörpern. Der antike Gott befiehlt den Vertreterinnen der mathematischen Disziplinen, dem mittelalterlichen Denker über die Sache, die ihn so sehr interessiert, Aufklärung zu verschaffen. Doch der Leser erfährt, dass die antiken Disziplinen der Quantität in dieser Frage unversöhnlich miteinander im Streit liegen.
In einer ausgedehnten Debatte nehmen Frau Arithmetik und Frau Geometrie gegensätzliche Positionen ein, »als wären sie gegnerische Parteien in einem Rechtsstreit«.[113] Frau Arithmetik redet zuerst. Sie nimmt für sich das Privileg in Anspruch, »Erstgeborene« aller Zweige der Mathematik zu sein, und für ihre Gegenstände – die Zahlen – die vornehmsten aller Idealitäten zu sein. Boethius habe gelehrt, dass »alles, was aus dem ersten Ursprung der Dinge hervorging, mit Bezug auf Zahlen geformt worden« sei;[114] und Macrobius habe, was die Priorität gegenüber Frau Geometrie angeht, erklärt, dass »Zahlen den Flächen und Linien vorausgehen«.[115] Wäre es vorstellbar, dass die Himmel mit solchen vollkommenen Einheiten nicht messbar wären? »Würde ich derart aus den himmlischen Regionen verstoßen«, fragt sie, »in welchem Teil der Welt sollte ich Zuflucht nehmen – oder soll ich über die Grenzen der Welt hinaus verbannt werden?«[116] Inkommensurable Größen, die ebenso irregulär wie irrational sind, gehören in die sublunare Welt, wie Aristoteles schrieb, »weil Dinge in diesen unteren Regionen infolge ihrer Ferne von einer wahren Gottheit verdrehte [und verworrene] Bewegungen haben«.[117] Sicherlich »würde Gott solche Unordnung in seiner Nähe in den Himmeln nicht gestatten«.[118] Wären die Himmelsbewegungen inkommensurabel, bemerkt Frau Arithmetik, »so wäre zudem unsere gehorsame Tochter, die lieblich tönende Musica, ihrer himmlischen Ehre beraubt, obgleich sie an der Herrschaft über die Himmel teilhat, wie viele physikalische Ereignisse bezeugen«.[119] Wären die Sphärenbewegungen Größen und nicht Vielheiten, so wären die Himmel angefüllt mit Proportionen, die, »dissonant und fremd in [ihrer] Harmonie«, »jeder Konsonanz fern und eher den unbändigen Wehklagen der Hölle als den Himmelsbewegungen angemessen wären, die mit wunderbarer Macht unsere musikalischen Melodien mit dem All vereinen«.[120]
Frau Geometrie bleibt jedoch unbeirrt. Auch sie erhebt Anspruch auf die mathematische Primogenitur. Nach ihrer Erklärung schließt ihr Gegenstand, die Größe, sämtliche Quantitäten ein; die Zahl ist nur eine Spielart der Kontinuität.[121] Auf die Behauptung, die Sphären müssten, um konsonant zu sein, sich in miteinander kommensurablen Geschwindigkeiten bewegen, antwortet Frau Geometrie, dass harmonische Klänge sich aus den Relationen nicht der Geschwindigkeiten, sondern der Massen der tönenden Körper ergeben. »Dies erklärt«, bemerkt sie, »warum Pythagoras nicht die Bewegung des Hämmerns oder die Kraft der Schläge maß, sondern [vielmehr] nach der Proportion der Hämmer suchte, eine Größe, die er durch ihre Gewichte kannte.«[122] Die Massen der Himmelskörper könnten durchaus in solchen Proportionen in Bezug gesetzt werden, denn »wie es heißt«, räumt Frau Geometrie ein, »erhält man für die Beziehung zwischen Sonne und Venus eine diesis, ein Verhältnis aus den Zahlen 256 und 243.«[123] Allerdings, bemerkt sie, kann man kaum wissen, ob solche Harmonien ebenso hörbar wie intelligibel sind. Und selbst wenn den Bewegungen der Sterne Musik entströmte, könnten sie niemals kommensurabel sein, weil sie dann unveränderlich wären. Schöner wären ewige Asymmetrien:
Welches Lied würde Gefallen finden, das häufig und oft gespielt wird? Würde nicht solche Eintönigkeit Abscheu erwecken? Gewiss würde sie das, denn Neues ist angenehmer. Ein Sänger, der musikalische Klänge nicht abzuwandeln verstünde, Klänge, die doch unendlich variiert werden können, wird nicht länger für den besten gehalten werden; eher wird er als Kuckuck gelten. Wären nun alle Himmelsbewegungen kommensurabel und wäre die Welt ewig, dann würden dieselben oder ähnliche Bewegungen und Wirkungen notwendig wiederholt.[124]

Frau Geometrie zögert nicht, diese radikale Schlussfolgerung zu ziehen: »Aus diesem Grunde«, erklärt sie, »scheint es angenehmer und vollkommener – und auch der Gottheit gemäßer –, dass dasselbe Ereignis nicht so oft wiederholt werden sollte, sondern dass [im Gegenteil] neue und unterschiedliche Konstellationen aus vorhergehenden auftauchen und immer wieder andere Wirkungen erzeugen sollten.«[125]
Sein Erwachen hindert den Träumer daran, das Ende der Diskussion mitzubekommen. »Ach, die Vision schwindet, der Schluss bleibt ungewiss, und ich weiß nicht, wie Apollon, der Richter, in dieser Sache entschieden hat.«[126] Doch wie mehrere Gelehrte bemerkt haben, lässt eine Bemerkung, die Oresme in seiner mittelfranzösisch verfassten Schrift Le livre du ciel et du monde im Vorübergehen machte, wenig Zweifel an seiner eigenen Position in dieser Frage: »In einer Abhandlung unter dem Titel Über Kommensurabilität oder Inkommensurabilität der Himmelskörper«, lesen wir, »habe ich mit verschiedenen Beweisen einmal gezeigt, dass es eher wahrscheinlich als unwahrscheinlich ist, dass einige der Bewegungen der Himmel inkommensurabel sind« (ce est plus vraysemblable que n’est l’opposite, si comme je monstray jadys par plusseurs persuasions en un traitier intitulé De commensurabilitate vel incommensurabilitate motuum celi).[127] In jener Abhandlung selbst hatte Oresme, ein Mann des Mittelalters, jedoch gezögert, sich derart eindeutig zu äußern. Obwohl er die Wahrscheinlichkeit astronomischer Irrationalitäten bewiesen hatte, beschloss er, sie nicht zu verkünden. Vielleicht stand ihm das Schicksal des pietätlosen Pythagoreers vor Augen, der von den Göttern bestraft wurde, weil er das Geheimnis des Inkommensurablen aufgedeckt hatte; vielleicht geschah es aus ironischer Rücksicht auf jene alte Enthüllung, dass Oresme Apollon zum Schiedsrichter über seine neue Sichtweise erkoren hatte. Vor dem Erwachen gibt der Gott zu verstehen, dass sich irgendeine Versöhnung zwischen den beiden Disziplinen finden lasse: »Glaube nicht ernsthaft«, mahnt Apollon den gelehrten Träumer, »dass ein echter Zwist zwischen diesen erhabenen Müttern der unbestreitbaren Wahrheit bestünde.«[128] Doch natürlich war dieser Streit unüberwindlich. Irrationalitäten waren in die vollkommenen Bewegungen der Sphären eingedrungen. Oresme hatte einen Sprung im Firmament der antiken und mittelalterlichen Welt entdeckt; mit den Instrumenten der mathematischen Beweisführung hatte er darüber hinaus gezeigt, dass dessen Existenz nicht nur möglich, sondern auch wahrscheinlich war. Dieser Riss war nicht mehr zu kitten. Mit der Zeit sollte er sich immer weiter vergrößern, bis der Kosmos der Alten endgültig einstürzte. Frau Geometrie bekam ihren Wunsch erfüllt: Ihre Schwester Arithmetik, einst die Erstgeborene der Disziplinen, wurde »über die Grenzen der Welt hinaus verbannt«. Ihre Zahlen sollten sich in Formen und Körper auflösen; ihre alten Vielheiten sollten in kontinuierlichen Größen verschwinden. Die Modernen fürchteten keine Disproportionen mehr. In dem Universum, das sich nun abzeichnete, sollten »neue und unterschiedliche Konstellationen auftauchen«, difforme wie uniforme, mit »immer wieder anderen Wirkungen«.

Fünftes Kapitel Ziffern
Die moderne Harmonielehre begann als Nachahmung der alten. Gioseffo Zarlino, Kapellmeister am Markusdom in Venedig, galt lange als ihr Begründer. Seine Istituzioni harmoniche von 1558 leiteten ein neues Zeitalter des quantitativen Denkens in der Musik ein. »Man darf sicherlich sagen«, so wurde bemerkt, »dass wahrscheinlich seit Boethius kein Theoretiker solchen Einfluss auf die Entwicklung der Musiktheorie hatte.«[129] Doch wie innovativ sie in der Sache auch gewesen sein mag, der Form nach folgte Zarlinos Theorie derjenigen von Boethius. Im ersten Teil seiner monumentalen Abhandlung erklärte Zarlino, die Musik sei »eine Wissenschaft […], die Zahlen und Proportionen untersucht«.[130] Er hielt an der These fest, dass der Bereich der Zahlen und ihrer Relationen in Wahrheit mit dem Ganzen der geschaffenen Welt zusammenfällt und dass »alle Dinge, die Gott geschaffen hat, von ihm nach der Zahl geordnet wurden. Die Zahl war sogar das wesentliche Muster im Geist des Schöpfers. Daher müssen alle Dinge, die für sich sind oder miteinander verbunden sind, in der Zahl enthalten und ihr unterworfen sein.«[131] »Daher«, bemerkte Zarlino, »ist es nicht verwunderlich, dass die Pythagoreer glaubten, an den Zahlen sei irgend etwas Himmlisches.«[132] Es verstand sich fast von selbst, dass solche »Zahlen« definitionsgemäß diskret und teilbar sind, dass jede eine Anzahl von Einheiten ist. Um kein Missverständnis aufkommen zu lassen, erläuterte Zarlino, dass »jede Zahl mehrere Male die Einheit [enthält]«.[133] Ob gerade, ungerade, prim, quadratisch oder kubisch – Vielheiten waren für den Verfasser der Istituzioni harmoniche ebenso wie für Boethius die wahren Gegenstände der musica. Genauer gesagt, solche arithmetische Entitäten betrafen die Kunst der Harmonie in dem Maße, wie sich ihre numerischen Verhältnisse in den Klängen von Konsonanzen ausdrücken ließen. Nach Philolaos, Archytas, Platon und Boethius erinnerte Zarlino naturgemäß an die alten pythagoreischen Entdeckungen: Die Intervalle der Oktave, Quinte und Quarte lassen sich arithmetischen Proportionen gemäß auf die Längen von gespannten Saiten zurückführen. Trotzdem war diese wohletablierte Lehre für Zarlino unzureichend.
Als jemand, der in der Mitte des sechzehnten Jahrhunderts schrieb, konnte Zarlino sich nicht mit der Theorie der Alten begnügen, auch wenn er noch deren Termini und Konzepte benutzte. Bereits im vierzehnten Jahrhundert begannen die Musiker mit vier Intervallen zu rechnen, die den Theoretikern der klassischen Antike unbekannt waren: der großen und der kleinen Sexte sowie mit der großen und der kleinen Terz. In der Epoche Zarlinos wurden diese Intervalle zunehmend nicht mehr als dissonant, sondern als konsonant aufgefasst; weit davon entfernt, sie zu meiden, machten die Renaissance-Komponisten systematisch Gebrauch von Terzen und Sexten. Doch die antiken Lehren boten keine Möglichkeit, diese modernen Klänge zu definieren. Pythagoras hatte gezeigt, dass allein mit Hilfe der ersten vier natürlichen Zahlen alle klassischen Konsonanzen in arithmetischer Form ausgedrückt werden konnten: Die Oktave lässt sich auf die Beziehung zwei zu eins zurückführen (2:1), die Quinte auf die Relation drei zu zwei (3:2) und die Quarte auf die Relation vier zu drei (4:3). Die ersten vier ganzen Zahlen bildeten ein begrenztes Alphabet, das für die Transkription der Konsonanzen, die der griechischen und römischen Musiktheorie bekannt waren, genügte. Doch keine Relation dieser ganzen Zahlen konnte die Längen von Sehnen darstellen, die erforderlich waren, um große und kleine Terzen und Sexten hervorzubringen. Hätte Zarlino ein anderes Naturell gehabt, so hätte er durchaus beschließen können, aus diesem Grunde die alten Regeln der musica gänzlich abzulehnen, da sie in ihrer klassischen Gestalt für die Harmonie der Modernen offenbar ungeeignet waren. Doch in seinen Istituzioni harmoniche traf Zarlino bekanntlich eine andere Wahl. Er zeigte, dass man die Klänge der frühmodernen Epoche in klassischer Form aufzeichnen kann, wenn man eine Abänderung vornimmt: Das Alphabet der arithmetischen Transkription muss erweitert werden; man muss lernen, von vier bis sechs zu zählen. Dann, so zeigte der Theoretiker, lässt sich die große Terz auf die Relation fünf zu vier (5:4) und die kleine Terz auf die Relation sechs zu fünf (6:5) zurückführen. Ähnlich lässt sich die große Sexte auf die Relation fünf zu drei (5:3) und die kleine Sexte auf die von zweimal vier zu fünf ([2×]4:5) reduzieren.
Oberflächlich erinnern diese Transkriptionen an die Entdeckungen des Pythagoras. Die Istituzioni harmoniche bieten viel Material auf, um diesen Eindruck zu erhärten. Unter Rückgriff auf zahlreiche antike Quellen bekräftigte Zarlino ausführlich die klassischen Grundlagen seiner Lehre des musikalischen »Senarius« oder senario, wie er ihn taufte.[134] Er bemerkte, die Zahl Sechs habe von jeher eine Ausnahmestellung eingenommen. Die Astronomie kennt sechs Planeten (Mond, Merkur, Venus, Mars, Jupiter und Saturn), und sechs Kreise markieren den Himmel (nördlicher und südlicher Polarkreis, Wendekreis des Krebses und des Steinbocks, Himmelsäquator und Ekliptik). Die antike Philosophie rechnet mit sechs »natürlichen Qualitäten« (Größe, Farbe, Gestalt, Abstand, Zustand und Bewegung), und sie zählt sechs Altersstufen im menschlichen Leben. Die Mathematiker lehren, dass sechs Linien die dreiseitige Pyramide umschließen, und sie wissen, dass sechs Seiten einen Würfel ausmachen.[135] Solche Belege gibt es in Hülle und Fülle. Doch Zarlino hob auch die besondere Stellung der Sechs, für sich genommen, hervor. Die Sechs, daran erinnerte er seinen Leser, ist die erste in der Reihe der vollkommenen Zahlen. Mit anderen Worten, sie ist die erste Zahl, die die Summe aller Faktoren bildet, in die sie zerlegt werden kann (1 × 2 × 3 = 1 + 2 + 3). Von daher rühre ihre essentielle Harmonie.
Solche unterschiedlichen Arten von Beweisen sind nicht unbedingt zwingend. Zweifellos sind andere Zahlen gleichermaßen symbolisch. Wie H.F. Cohen bemerkt hat, »ist es beileibe nicht schwer, eine ähnliche Übung etwa mit der Zahl Sieben durchzuführen«.[136] Überdies waren Zarlinos Zahlen – zumindest in einem entscheidenden Fall – den Klängen, deren Werte sie definieren sollten, nicht ganz angemessen. Dieser eine Fall ist die kleine Sexte. Die Istituzioni harmoniche präsentieren diese Konsonanz als die Relation »zweimal vier zu fünf«. Doch in Wahrheit ist ein solches Verhältnis die umständlichere Schreibung für ein anderes: acht zu fünf (8:5).[137] Auf sein senario fixiert, konnte Zarlino dieses Intervall nicht in seiner Einfachheit transkribieren. Doch er konnte sich in seiner Zählung auch nicht bis zur Acht vorwagen, weil er dazu die Sieben hätte überschreiten müssen, und dann hätte er sich mit einer Menge von Verhältnissen auseinandersetzen müssen, die, obgleich arithmetisch kohärent, keinen musikalischen Konsonanzen entsprechen. In diesem Fall hätte er Intervalle, die in der Renaissance-Harmonie unannehmbar waren – wie die übermäßige Quarte oder die verminderte Septime – kaum übergehen können.[138] In seinem Wunsch, die musikalische Welt der Modernen in ein Idiom zu transkribieren, das dem der Alten ähnelte, beschloss Zarlino, bis zur Sechs zu gehen, aber nicht weiter. Er löste die Frage der kleinen Sexte mit dem Argument, sie sei in dem senario nicht aktuell, sondern potentiell enthalten, da acht eine potentielle Form von vier und zwei ist. Man ahnt, dass die metaphysische Lösung, obschon geistreich, eine Schwierigkeit verbarg – den Preis, den die Istituzioni harmoniche für ihren Kompromiss zwischen Altem und Neuem zahlen mussten. Moderne Konsonanzen mögen sich mit Zahlen in einer Form schreiben lassen, die derjenigen der Alten ähnelt, doch nur unter der Bedingung, dass solche Vielheiten sich in Quantität und Substanz verändern und sozusagen zu Chiffren ihres alten Selbst werden.
[image: ]Abb. 3. Zarlinos Senarius. Aus: Gioseffo Zarlino, Le istituzioni harmoniche, New York 1965, S. 25.


Bald jedoch brachen die Fundamente all solcher Überlegungen ein. Von Boethius bis Zarlino hatte eine lange Tradition von Denkern musikalische Klänge für ihrem Wesen nach arithmetisch gehalten. Pythagoreische Harmonietheoretiker hatten behauptet, für jede Konsonanz lasse sich ein singuläres arithmetisches Verhältnis finden; sie hatten in der Tat gelehrt, dass die Schönheit von Intervallen die von zusammenklingenden »harmonischen Zahlen« sei. So konnte man annehmen, dass die körperliche Welt trotz ihrer Unvollkommenheit an der idealen teilhabe, da in der Musik physikalische Ereignisse auf die Relationen von Essenzen zurückgeführt werden konnten. Die Theoria musicae des Franchinus Gaffurius, 1492 veröffentlicht, hatte die Geschichte von der Entdeckung dieser Lehre ein weiteres Mal erzählt: Einst war Pythagoras zufällig in eine Schmiede geraten, wo er fünf Männer antraf, die mit fünf Hämmern arbeiteten, von denen vier, in einfacher Proportion ihrer Gewichte, notwendig eine Folge wohltönender Laute hervorbrachten.[139] Welchen Arbeiter, welches Werkzeug aus welcher Materie man auch betrachtete – bestimmte arithmetische Gesetzmäßigkeiten mussten von Natur aus bestimmte Konsonanzen erzeugen. Doch in der Mitte des sechzehnten Jahrhunderts trat ein italienischer Autor auf und verkündete, es verhalte sich nicht so. Es war Vincenzo Galilei, ein ehemaliger Schüler von Zarlino und ein Spezialist für die Laute. In seinem Discorso intorno all’opere di messer Gioseffo Zarlino, der 1589 in Florenz erschien, verkündete Galilei kühn, er werde nun, die Lehre des Pythagoras betreffend, der Welt »zwei falsche Meinungen« offenbaren, »von denen die Menschen durch verschiedene Schriften überzeugt wurden und die ich selbst geteilt habe, bis ich mit Hilfe des Experiments, des Lehrers aller Dinge, die Wahrheit entdeckt habe«.[140]
Die »zwei falschen Meinungen« betrafen beide das Verhältnis von Zahl und Klang. Boethius und seine Nachfolger hatten gelehrt, Pythagoras habe die Gesetzmäßigkeiten der Konsonanz und die Zahlenverhältnisse durch die Wahrnehmung tönender Massen entdeckt. Der Weise, so heißt es, habe die Harmonien in den Hammerschlägen vernommen. Später, nach Hause zurückgekehrt, habe er seine Arbeit mit Saiten fortgesetzt. Und ebenso wie die Gewichte der vier Hämmer, die er in der Schmiede gehört hatte, in der Relation von sechs zu acht zu neun zu zwölf, so verhielten sich die Längen der Saiten, mit denen Pythagoras experimentierte, entsprechend sechs zu acht zu neun zu zwölf. Holzschnitte, die in Gaffurius’ Theoria musica abgedruckt waren, illustrierten diese Äquivalenzen. Mehrere Abbildungen zeigten, wie Pythagoras mit jeweils einer Serie von Hämmern, Gefäßen und Gewichten hantierte, die deutlich mit derselben Serie ganzer Zahlen versehen waren. Solche Bilder belegten die erste »falsche Meinung«, die Vincenzo Galilei korrigierte. Zwei Saiten, deren Längen im Verhältnis von zwei zu eins stehen, werden eine Oktave erzeugen, doch Gegenstände, deren Gewichte in diesem Verhältnis zueinander stehen, werden es nicht. Denn damit Massen eine Oktave hervorrufen, müssen sie in der Relation nicht von zwei zu eins (2:1), sondern vier zu eins (4:1) stehen; damit Gewichte eine Quinte erzeugen, müssen sie im Verhältnis nicht von drei zu zwei (3:2), sondern neun zu vier (9:4) stehen. Kurz: Die harmonischen Proportionen, die von Saiten abgeleitet wurden, müssen quadriert werden, damit sie für Massen gelten.[141]
[image: ]Abb. 4. Jubal, Pythagoras und Philolaos. Aus: Franchinus Gaffurius, Theoria musicae, 1492.


Die zweite falsche Meinung, die Galilei auflösen wollte, ergab sich aus der ersten.[142] Die Pythagoreer waren der Auffassung, dass nur diejenigen arithmetischen Relationen, die, auf die Länge von Saiten angewandt, Konsonanzen hervorrufen, als harmonisch betrachtet werden können. Für die antiken Musiktheoretiker gab es nur zwei Gattungen solcher Beziehungen. Sie konnten entweder »überteilig« sein. Bei solchen Ungleichheiten übersteigt ein größerer Term einen kleineren um einen Teil des kleineren; zu dieser Art gehören die Quinte (3:2) und die Quarte (4:3). Oder sie konnten nach klassischer Doktrin der harmonischen Relationen »Vielfache« sein; in diesem Fall macht der kleinere Term einen Faktor des größeren aus. Beispiele solcher Ungleichheiten sind die einfache, doppelte oder dreifache Oktave (2:1, 4:1 oder 8:1). Wenngleich er die Existenz neuer Konsonanzen zugestand, versuchte Zarlino immer noch an dieser alten Theorie festzuhalten, auch wenn sie ihm beträchtliche Schwierigkeiten bereitete.[143] Doch mit Bezug auf die quadratischen Proportionen von Gewichten bewies Galilei, dass auch Ungleichheiten von radikal nichtklassischer Form Konsonanzen hervorrufen konnten. Es genügte, die relativen Massen zu betrachten, die für das Erzeugen einer Quinte (9:4) oder einer Quarte (16:9) erforderlich waren. Obwohl weder »überteilig« noch ein »Vielfaches«, lassen diese Ungleichheiten, wenn sie als Gewichte zum Klingen gebracht werden, jedes Mal unzweifelhaft harmonische Intervalle entstehen.
Heute mag es scheinen, als hätten Galileis Entdeckungen vergleichsweise wenig Folgen gehabt. Gewiss entkräfteten sie nicht die alte Idee einer Verbindung zwischen Zahl und Klang. Sie bewiesen nur, dass die Ungleichheiten, die für die Erzeugung von Intervallen bei Saiten erforderlich waren, nicht mit denen identisch sind, die für Intervalle bei Massen benötigt wurden. Doch die Implikationen dieses scheinbar einfachen Befunds waren in Wahrheit immens. Galilei hatte das Band gelockert, das musikalische Klänge mit unwandelbaren arithmetischen Proportionen verknüpfte. Er hatte mit anderen Worten ein Grundaxiom der pythagoreischen Harmonielehre widerlegt: dass die Intervalle der Musik Ausdrücke unveränderlicher Relationen von Seiendem (essentiae) sind. Die antiken und mittelalterlichen Denker, die den Lehren des Meisters von Samos folgten, glaubten in der Musik »tönende Zahlen« (numeri sonori) wahrzunehmen.[144] Galilei zeigte, dass es dergleichen nicht geben konnte, denn die Ungleichheiten, die in einem Material eine Konsonanz hervorbringen, können von denen abweichen, die sie in einem anderen Material erzeugen. Konsonanz konnte demnach nicht mehr als Klang stabiler Vielheiten gelten. Die mathematischen Harmonieverhältnisse erschienen jetzt nur noch als Zeichen unterschiedlicher Arten von Entitäten, Zeichen, deren Bedeutung also vom Material abhing. »Zwei zu eins«, »drei zu zwei« und »vier zu drei« benannten keine idealen Relationen mehr, die in der Welt trotz ihres beständigen Flusses von Werden und Vergehen sinnlich wahrnehmbar waren. Künftig sollten solche Ausdrücke Zeichen von Messungen sein, deren Sinn von den verschiedenen Arten von Körpern abhing, auf die sie sich bezogen.
Die Folgen dieser Entdeckung sind kaum zu überschätzen. Gewiss, Vincenzo Galilei hat sie nicht alle selbst entfaltet, und zumindest ein Teil seiner neuen Thesen über die harmonischen Eigenschaften von Gegenständen war anfechtbar.[145] Doch rückblickend ist klar, dass seine Zertrümmerung der Idee der »tönenden Zahl« einen grundlegenden Wandel in der Definition von Harmonie als Forschungsgebiet ankündigte. Pythagoreische Denker des Altertums und des Mittelalters hatten Konsonanzen mit Zahlen definiert, weil sie glaubten, solche Klänge seien ihrem Wesen nach mathematisch. Doch sie behaupteten das niemals für alle physikalischen Dinge. Die antiken und mittelalterlichen Kosmologien waren zumindest in ihren aristotelischen Formen ihrer Struktur nach hierarchisch, und sie unterschieden zwischen Entitäten vielerlei Art. An der Spitze der Stufenleiter des Seins lagen die ewigen Sphären, deren vollkommene Kreisbewegungen präzise definiert werden konnten, eben weil sie mathematisch waren. Auf der untersten Ebene befanden sich die vergänglichen Körper, in sich unstet und daher ungewiss. Doch zwischen diesen beiden Seinsordnungen stellte die Musik eine Verbindung her: Dank der Harmonielehre waren ewige Zahlenverhältnisse in Klängen wahrnehmbar. In dem mit Galilei beginnenden Zeitalter sollten jedoch die Gründe für diese Verbindung entfallen. Als der stratifizierte Kosmos der klassischen epistēmē durch das homogene Universum der modernen Wissenschaft ersetzt wurde, sollte keine Entität als solche mehr mit einer Zahl oder einem Zahlenverhältnis gleichgesetzt werden können.
Dieses Prinzip findet ein genaues Korrelat in der frühmodernen Philosophie der Mathematik. Es lässt sich leicht formulieren: Keine Zahl, kein Zahlenverhältnis sollte als solches mit einer Entität identifiziert werden können. Eine solche These stand quer zu dem traditionellen Verständnis der Arithmetik als Erforschung der Beziehungen von Seiendem. Für die klassischen Denker war die Theorie der arithmoi als solcher eine Lehre von arithmetischen Entitäten, wobei »Zahlen« bestimmte Anzahlen bestimmter Dinge waren. So heißt es bei Alexander von Aphrodisias: »Jede Anzahl [arithmos] ist Anzahl [arithmos] von Etwas« (πᾶς γὰρ ἀριθμός τινός ἐστι), wobei das betreffende »Etwas« definit und diskret ist.[146] Mit dem Aufstieg einer neuen Theorie der Mathematik im sechzehnten und siebzehnten Jahrhundert wurden diese Ideen jedoch obsolet. Wie Jacob Klein im Einzelnen gezeigt hat, legten François Vieta, Simon Stevin, John Wallis und Descartes die philosophischen Fundamente für die moderne Algebra, indem sie eine grundlegend neue Metaphysik der mathematischen Gegenstände formulierten. Die modernen Denker definierten »Zahl« als das Symbol einer Idee irgendeiner gegebenen Größe. So bleibt, wie Klein schreibt, bei Vieta der Charakter des ἀριθμός als einer »Anzahl von …« erhalten, jedoch in eigentümlich abgewandelter Form:
Während jeder ἀριθμός unmittelbar die Dinge bzw. die Einheiten selbst meint, deren »Anzahl« er gerade darstellt, meint zunächst einmal das Buchstaben-Zeichen bei Vieta eben diesen Begriff der Anzahl als einer auf Dinge bzw. Einheiten unablöslich bezogenen Bestimmung, meint also unmittelbar den allgemeinen Anzahl-Charakter jeder möglichen Anzahl, das heißt die »Anzahl überhaupt«, und nur mittelbar die Dinge bzw. die Einheiten, die in der jeweiligen Anzahl vorliegen mögen.[147]

Diese neue Konzeption lässt sich in den Begriffen der alten scholastischen Unterscheidung zwischen zwei Arten der intentio ausdrücken: der intentio prima, die ein Ding bedeutet, und der intentio secunda, die nicht ein Seiendes, sondern unmittelbar einen Begriff, zum Beispiel eine abstrakte Idee, meint. Für Vieta bedeutet eine Zahl primär den Gegenstand einer intentio secunda, den Begriff einer »allgemeine[n] Anzahl«, eine »species« oder ein rein symbolisches Gebilde.[148] Ebenso verstanden Stevin, Wallis und Descartes Zahlen nicht als ideale Seiende, sondern als symbolische Begriffe, die etwa in der Algebra zum Rechnen verwendet werden können.[149]
In einer aufschlussreichen Passage erklärt Stevin, dass die alten Griechen an einer korrekten Definition der Zahl scheiterten, weil ihnen eine symbolische Notation fehlte: Es mangelte ihnen an der notwendigen Ausrüstung, namentlich einer »Zeichenschrift« (faute d’appareil nécessaire, nommément des chiffres).[150] Der Hinweis auf die »Chiffre«, die »Ziffer«, ist ernst zu nehmen. Den Autoren des sechzehnten Jahrhunderts war sehr bewusst, dass die Alten die Zwei für die kleinste Zahl gehalten hatten, weil die Eins das erste Prinzip der Einheit oder die Monade war, von der alle Zahlen Anzahlen waren. In einer solchen Welt konnte auch die Null keinen Platz in der Lehre der Arithmetik finden. Dies änderte sich in der Neuzeit, als die Europäer von den mittelalterlichen arabischen Mathematikern die Idee der Null (sifr) übernahmen, der »Chiffre« für nichts, dargestellt durch einen typographischen Punkt oder einen kleinen Kreis.[151] In der Neuzeit sollte die Null nicht nur eine »Zahl« werden; für viele Denker wurde sie, mehr noch als die »Eins«, zum eigentlichen Prinzip der Zahlen. So schreibt Stevin, der arithmetische »Zahlenpunkt« (poinct de nombre) entspreche genau dem geometrischen »Größenpunkt«, denn ebenso wie die Linie unendlich auf einen Punkt reduziert werden kann, so lasse sich jede Zahl bis auf null vermindern.[152] Eine solche Konzeption musste unweigerlich eine Veränderung in der Definition der Arithmetik bewirken. Die antiken Mathematiker hatten die Geometrie als das Wissen vom Kontinuierlichen der Arithmetik als dem Wissen vom Diskontinuierlichen gegenübergestellt. Diese Unterscheidung wurde nun hinfällig. Stevin hebt ausdrücklich hervor, die Zahl sei keineswegs eine diskrete Größe.[153]
So wie einem stetigen Wasser eine stetige Feuchtigkeit entspricht, so entspricht eine stetige Größe einer stetigen Zahl. Und ebenso wie die stetige Feuchtigkeit des gesamten Wassers der gleichen Teilung und Trennung unterliegt wie ihr Wasser, so unterliegt die stetige Zahl der gleichen Teilung und Trennung wie ihre Größe. So dass die beiden Quantitäten sich nicht nach stetig und diskret unterscheiden lassen.[154]

Im siebzehnten Jahrhundert ging Wallis einen Schritt weiter. Da die Modernen die Stetigkeit von Einheiten zugeben, so argumentierte er, können sie Zahlen auch als gebrochene (numeri fracti), irrationale (surdi) oder algebraische (algebraici) betrachten. Natürlich wären solche Bestimmungen undenkbar, wenn die fraglichen Zahlen klassische Vielheiten wären; arithmoi müssen diskret und definit sein. Doch wie Wallis erklärt, sind Zahlen nicht die Namen von Einsen; es sind Zeichen von Verhältnissen. »Ja«, schreibt er,
auch die gesamte Arithmetik als solche scheint, wenn man genauer hinsieht, nichts anderes als eine Verhältnis-Lehre [Rationum doctrina] zu sein. Und die Zahlen selbst nichts anderes als die »Angeber« [indicia] ebensovieler Verhältnisse, deren zweites Glied Eins ist. Wenn nämlich die Eins als das [identische] Bezugsquantum genommen wird, so sind alle übrigen Zahlen – sowohl die ganzen, wie die gebrochenen, wie auch die irrationalen – die »Angeber« oder »Anzeiger« [indices sive exponentes] ebensovieler gegenüber dem Bezugsquantum möglicher [unter sich] verschiedener Verhältnisse.[155]

»Eine ›Zahl‹«, bemerkt Klein, »bedeutet also hier nicht mehr ›eine Anzahl von …‹. Eine ›Zahl‹ zeigt vielmehr ein bestimmtes Verhältnis, einen λόγος im Sinne von Euklid […] an.«[156] Die Unterscheidung zwischen Vielheit und Größe, Arithmetik und Geometrie löst sich auf. Zahlen erscheinen als die Symbole jeder möglichen Proportion. Kein schlagenderes Beispiel lässt sich dafür finden als die Chiffre der Ziffern, die Null selbst. Für Wallis bildet sie das Zeichen eines Verhältnisses, wie alle anderen: In einem formalen Notationssystem, in dem ein gegebenes Quantum beispielsweise 1 ist, wird 0 einfach das Zeichen der Wegnahme dieses Quantums sein. Wenn nun aber ein solches Zeichen eine Zahl repräsentiert, können per definitionem Zahlen nicht immer Entitäten bedeuten, da man von nichts Seiendem und mit sich dauerhaft Identischem sagen kann, es sei gleich null. Die Verbindung zwischen den Elementen der Arithmetik und der Metaphysik trägt nicht mehr.
Das Zeitalter, das mit einer Nachahmung der pythagoreischen Dechiffrierung des Tons begann, führt somit binnen eines Jahrhunderts zu einer vollständigen Transformation seiner Buchstaben. Von vier harmonischen Zahlen ging Gioseffo Zarlino zu sechs über, bevor Vincenzo Galilei zeigte, dass kein Zahlenverhältnis einen bestimmten Klang bedeuten kann, so wenig wie eine Zahl für die modernen Philosophen ein ideales Seiendes, für sich genommen, bilden kann. Hundert Jahre nach Zarlinos Istituzioni harmoniche wurden die zwei Jahrtausende lang gültigen, von Musik und Arithmetik geteilten Axiome obsolet. Die Grundelemente von Harmonie und Mathematik sollten sich nunmehr trennen: Entitäten sollten nicht mehr auf ganze Zahlen zurückführbar, ganze Zahlen keine Entitäten mehr sein. Zwischen der physikalischen Realität der Töne und den symbolischen Notationen der Mathematik hatte sich ein Abgrund aufgetan, den die Berufung auf klassische Autoritäten nicht mehr verbergen konnte.
Doch die Trennung von Metaphysik und Logik eröffnete eine neue Möglichkeit. Gerade weil das moderne physikalische Universum, anders als der antike Kosmos, nicht an sich mathematisch war, wurde es in einem beispiellosen Maße messbar. In der antiken und mittelalterlichen Welt waren nur einige seiende Dinge in intelligiblen Quantitäten gemessen worden; alle anderen galten als zu ungewiss, als dass sie durch exakte Berechnung hätten verstanden werden können. Während etwa die Kreise der Himmelssphären als exakt kreisförmig gedacht wurden, galten Bewegungen im sublunaren Bereich als zu veränderlich, als dass sie mit mathematischer Genauigkeit hätten bestimmt werden können; während Konsonanzen als arithmetisch galten, nahm man an, Dissonanzen seien ihrer Natur nach ungeeignet, als solche erfasst zu werden. In den neuen physikalischen Naturwissenschaften waren solche Unterscheidungen jedoch nicht mehr gültig. Jeder Gegenstand, sofern empirisch, konnte zum Objekt experimenteller Erforschung werden. Zustände von Ruhe und Bewegung, Qualitäten und Quantitäten, Werden und Sein – alles konnte gleichermaßen den neuen Methoden der auftauchenden Naturphilosophie unterworfen werden. Kurz, was nicht an sich mathematisch war, ließ sich »mathematisieren«.[157] Das Gebiet des Tons war keine Ausnahme. Von Galileis Sohn bis zu Isaac Beeckman, Marin Mersenne, Christiaan Huygens und Gottfried Wilhelm Leibniz sollte die nächste Generation zeigen, dass akustische Phänomene in den Quantitäten der modernen Wissenschaft präzise messbar waren. Nach der Epoche der antiken epistēmē sollte die moderne Wissenschaft eine neue Verbindung herstellen. Töne ohne Idealität wurden mit Ziffern ohne Substanz verbunden, und durch diese Verknüpfung sollte die Ordnung einer neuen Natur transkribiert werden.

Sechstes Kapitel Temperaturen
1585 veröffentlichte der hervorragende venezianische Mathematiker und Naturwissenschaftler Giovanni Battista Benedetti sein Buch über verschiedene mathematische und physikalische Spekulationen, Diversarum speculationum mathematicarum et physicarum liber.[158] Dieses Werk enthält unter anderem zwei undatierte Briefe an den Komponisten Cipriano de Rore, der sich offenbar an Benedetti gewandt hatte, um klärende Auskünfte über Natur und Eigenschaften von Klanginstrumenten zu erhalten. Benedetti, selbst auch Musiker und Komponist, war besonders qualifiziert, die verschiedenen Fragen zu beantworten. Heute ist klar, dass seine Briefe weit mehr darstellen als eine Popularisierung von Befunden, die den Wissenschaftlern seiner Zeit vertraut waren. Besonders in der zweiten seiner beiden Episteln lieferte Benedetti eine Darstellung der harmonischen Konsonanzen, die man im Nachhinein als Proklamation der »Akustik« als der entstehenden mathematischen Untersuchung des Tons bezeichnen kann. Stillschweigend verwarf Benedetti die antike und mittelalterliche Praxis, musikalische Konsonanzen mit Hilfe der gemessenen Längen tönender Saiten zu bestimmen. Stattdessen schlug er ein Verfahren vor, das es ermöglichte, Töne mit Hilfe von Zahlen nach moderner Definition zu quantifizieren. Vielleicht zum ersten Mal in der Geschichte der Suche nach den Gesetzen tönender Körper korrelierte Benedetti Töne nicht mit den Längen von Saiten, sondern mit deren Schwingungen. Damit begann ein neues Zeitalter in der numerischen Transkription der Natur.
In seinem zweiten Brief stellte Benedetti drei eng miteinander verbundene physikalische Prinzipien auf. Das erste gründete in einer Tatsache, die »jedem«, wie er bemerkte, wohlbekannt ist: »Je länger die Saite, desto langsamer wird sie bewegt.«[159] Daher die Regel, die Benedetti nun explizit aufstellte: Die Größen der Saitenlängen und die der Vibrationen verhalten sich umgekehrt proportional oder, wie Claude V. Palisca in moderneren Ausdrücken formulierte: »Das Verhältnis der Frequenzen zweier Saiten variiert bei konstanter Spannung umgekehrt mit ihren Längen.«[160] Zweitens stellte Benedetti fest, dass die Konsonanzen harmonischer Intervalle sich aus dem gleichzeitigen Ende von Schwingungszyklen ergeben. Mit anderen Worten, wenn zwei Saiten im selben Moment sich zu bewegen aufhören, werden ihre Töne konkordant sein; umgekehrt, wenn die beiden Töne zweier Körper harmonisch sind, so deshalb, weil ihre Vibration gleichzeitig endet. Wenn zwei Saiten zum Beispiel im Intervall einer Oktave klingen, so deshalb, weil die Bewegungen der beiden Saiten in ein und demselben Moment zum Stillstand kommen. Jedes Mal wenn die längere Saite zu vibrieren aufhört, wird die kürzere bewegungslos sein; umgekehrt wird jedes andere Mal, wenn die kürzere Saite sich zu bewegen aufhört, auch die längere unbewegt sein. Benedetti hatte intuitiv erkannt, dass alle Harmonien aus einem periodischen Ereignis in der Zeit tönender Körper hervorgehen: der gleichzeitigen Beendigung ihrer Bewegung.
Schließlich behauptete Benedetti, dass man auf der Grundlage solcher Befunde Abstufungen der Konsonanz definieren kann, die sich vom Gleichklang bis zu allen anderen Intervallen erstrecken. Auf diese Weise kann man einen Index harmonischer Klänge gewinnen. Dazu sind zwei einfache Schritte erforderlich. Man muss die Zahl der Vibrationsbewegungen untersuchen, die zwei Saiten in einem gegebenen Moment vollziehen, und diese beiden Zahlen miteinander multiplizieren. Zwei Saiten werden einstimmig klingen, wenn sie ebenso viele Male schwingen und mit ihren Bewegungen gleichzeitig enden. Man kann daher der Einstimmigkeit den Wert von einmal eins gleich eins (1 × 1 = 1) beilegen. Zwei Saiten werden im Verhältnis einer Oktave klingen, wenn zu jeder Vibration der ersten Saite die zweite Saite zweimal schwingt. Man kann daher dieser Konsonanz den Wert zwei geben (1 × 2 = 2). In seinem zweiten Brief an Cipriano de Rore zeigt Benedetti, dass jede der traditionellen Konsonanzen der Musiktheorie auf diese Weise repräsentiert werden kann. Die alten Verhältnisse von Saitenlängen lassen sich also in Verhältnisse von Saitenschwingungen umschreiben. Ebenso wie der Klang einer Oktave aus der Relation von zwei Schwingungszyklen zu einem abgeleitet werden kann, so kann die Quinte mit der Relation von drei Schwingungszyklen zu zwei verbunden werden. Und ebenso wie man dem Gleichklang die Zahl »eins« zuweisen kann, lässt sich dem Intervall der Quinte diejenige Zahl zuordnen, die sich aus dem Produkt von zwei und drei ergibt, also sechs; ähnlich kann man die Quarte als viermal drei oder zwölf darstellen. So entsteht allmählich eine arithmetische Stufenleiter musikalischer Konkordanz gemäß den Schwingungen. Einfache Konkordanzen lassen sich mit bestimmten Zahlen korrelieren, und die Zahlen wiederum werden, wie Benedetti bemerkt, »einander in wunderbaren Proportionen entsprechen«.[161]
Benedetti legte besonderes Gewicht auf den Index der Konkordanzen, den er aufgestellt hatte.[162] Dagegen hielt er sich bei seinem ersten und zweiten Prinzip nicht lange auf, und obwohl er als der erste Denker betrachtet werden kann, der Konsonanz durch Vibration definiert hat, lieferte er keinen Beweis für die Relation zwischen harmonischen Klängen und Bewegungszyklen. Eine Generation später behauptete Galileo Galilei, der Benedettis Werke zu Mechanik und Akustik kannte, ebenfalls, dass musikalische Verhältnisse auf Vibrationsverhältnisse zurückgeführt werden können. In einer Passage seiner 1638 veröffentlichten Discorsi behauptete Galilei nicht nur, dass Konsonanzen aus der Koinzidenz von Vibrationen hergeleitet werden können, sondern er versuchte, diese Tatsache auch zu beweisen.[163] Die meisten Wissenschaftshistoriker schreiben jedoch den ersten strengen Beweis für die Korrelation zwischen Klangquantitäten und Schwingungsquantitäten dem holländischen Wissenschaftler Isaac Beeckman (1588–1637) zu. Ein auf 1615 datierter Tagebucheintrag enthält einen einfachen, jedoch entscheidenden geometrischen Beweis dafür, dass die Frequenz, mit der eine Saite vibriert, in direkter Proportion zu der Tonhöhe steht.[164] Als Atomist nahm Beeckman an, dass Töne wie alle anderen Phänomene dadurch entstehen, dass kleine, unteilbare Einheiten, die »in verschiedener Entfernung zueinander stehen, während der Raum zwischen ihnen leer ist«,[165] durch Vibration in Bewegung geraten und mit unterschiedlicher Kraft von dem Ort ihrer anfänglichen Bewegung zum menschlichen Gehör versetzt werden.[166] Seine Zeitgenossen mochten wohl eine solche atomistische Physik ablehnen; sie vertraten etwa Theorien, denen zufolge Töne als das Resultat von Bewegungen nicht diskreter »Korpuskeln«, sondern von Wellen galten. Doch das Prinzip, das Beeckman demonstrierte, blieb erhalten, und allmählich wurde die Idee anerkannt, dass Töne durch jene Verhältnisse von Vibrationen (oder Schlägen oder Pulsen) zur Zeiteinheit definiert werden können, die heute noch »Frequenzen« genannt werden.
Es lohnt sich, einen Moment lang innezuhalten, um zu betrachten, in welcher Beziehung diese akustischen Relationen zu den älteren musikalischen Ungleichheiten der traditionellen pythagoreischen Harmonielehre stehen. Wie Benedetti in seinem Brief andeutet, ist die Idee, dass die Tonhöhe einer Saite in umgekehrtem Verhältnis zu ihrer Länge steht, nicht gänzlich neu. Auch antiken und mittelalterlichen Autoren lag die Vermutung nicht fern, dass Töne die hörbaren Resultate von Schwingungen sein könnten. Es ist nicht völlig unvorstellbar, dass ein klassischer Gelehrter bei der Betrachtung sinnlicher Dinge erkannt haben könnte, dass, wenn zwei Saiten Töne im Intervall einer Oktave hervorbringen, die erste doppelt so schnell schwingen muss wie die zweite. Man kann sich aber auch vorstellen, dass für die klassischen und mittelalterlichen Denker die Tatsache der Konsonanz zwischen Saiten wohl eher durch die Gesetzmäßigkeiten des Monochords und, genauer, durch die gemessenen Längen zu erklären war. Sofern er überhaupt diskutiert worden wäre, hätte man den Ton der Vibration mit Blick auf das Prinzip betrachtet, dass musikalische Intervalle mit den Zahlen korreliert werden können, die die Längen von Saiten messen. 1589 hatte Vincenzo Galilei gezeigt, dass solche Korrespondenzen von der Natur des gemessenen Materials abhängen, so dass die Relationen, die bei der Länge der Saiten zuverlässig galten, auf die Betrachtung beispielsweise von Glocken nicht mehr anwendbar waren. Die Befunde, die Benedetti in denselben Jahren mitteilte, stellten nun aber eine Beziehung zwischen Zahl und Ton von der Art, wie sie Vincenzo Galilei in Frage gestellt hatte, wieder her. Mit der Entdeckung der Entsprechungen zwischen Schwingungen und Tönen ließ sich erneut ein unzweideutiger Zusammenhang zwischen Zahlen und Natur herstellen. Abermals konnten Zahlenverhältnisse die vielen Eigenschaften tönender Körper angeben.
Trotzdem bestehen zwischen dem neuen und dem alten Denken über die Harmonie der Welt, zwischen der Inschrift der arithmoi im Kosmos und der Mathematisierung des Universums, grundlegende Unterschiede. Sie betreffen sowohl das, was gezählt wird, als auch das, was die Zählung vornimmt – sowohl die Welt als auch die Messungen. Mehrere Punkte sind dabei bemerkenswert. Die antiken und mittelalterlichen harmonischen arithmoi bezeichnen Quantitäten von Saiten; die modernen Zahlen hingegen quantifizieren Vibrationen von Körpern im Verhältnis zur Zeit. Darüber hinaus dienen arithmoi dazu, Konsonanzen im Unterschied zu allen anderen Tönen zu definieren. Für die antiken und mittelalterlichen Denker besitzen die musikalischen Zahlenverhältnisse positive Merkmale, die sie von allen anderen Ungleichheiten unterscheiden und so den Bereich der Harmonie eingrenzen.[167] Benedettis Stufenleiter der Konkordanz respektierte jedoch eine solche Aufteilung prinzipiell nicht. Zwar konzentrierte er sich in seinem Brief auf die von den Musikern seiner Zeit akzeptierten Konsonanzen, doch sein Verfahren, Intervalle innerhalb eines einzigen Harmonie-Index zu quantifizieren, ließ sich leicht über die geschlossene Reihe von Prime, Oktave, Quinte, Quarte, Terzen und Sexten hinaus erweitern. Untersucht man die Übereinstimmung der gleichzeitigen Beendigung von Vibrationen, »so verschwindet diese Übereinstimmung der Wellen nicht plötzlich, wenn die Grenzen der mystischen Zahl Sechs überschritten werden«, wie Palisca angemerkt hat. »Ebenso wenig ist irgendwo in der unbegrenzten Reihe musikalischer Intervalle eine klare Grenze erkennbar.«[168] Benedettis Analyse bot kein eindeutiges Mittel, musikalische von nichtmusikalischen Klängen zu unterscheiden. Komponisten mochten sich auf die alte Unterscheidung berufen, doch die moderne Wissenschaft konnte sie nicht ohne weiteres rechtfertigen. Und schließlich sind die arithmoi der Antike »Vielheiten«, Anzahlen von Eins; ihre Wahrnehmbarkeit in Klängen verweist auf das Vorliegen intelligibler Formen in der Natur. Die Zahlen, die die Modernen in ihrer Erkenntnis verwenden, sind anderer Art. Als Ziffern sind sie Symbole beliebiger Quantitäten, seien diese diskret oder stetig.
Innerhalb von hundert Jahren sollte sich diese Tatsache als entscheidend erweisen. Nachdem Töne sich durch ihre Frequenz definieren ließen und nachdem die Frequenz wiederum in den neuen Zahlen der modernen Wissenschaft messbar war, fiel eine klassische Begrenzung der Untersuchung des Tons. Es galt nicht mehr das Axiom, dass musikalische Töne durch rationale Quantitäten identifiziert werden müssen. Als Zweig der mathematischen Physik, der sich mit der Natur tönender Körper befasst, konnte die Akustik inkommensurable wie kommensurable Verhältnisse betrachten. Auf dem Gebiet der Musik gab es, wie seit langem bekannt war, viele solcher irrationalen Quantitäten. Die antiken griechischen und lateinischen Tonleitern waren nach dem sogenannten »pythagoreischen« Stimmungssystem gestimmt worden, in dem das bestimmende Intervall die reine Quinte ist.[169] Ein solches System stößt auf eine grundlegende physikalische Schranke: In einem perfekten Quintenzirkel wird das Intervall der Oktave notwendigerweise akustisch unrein sein, da die Relationen der Quinte und der Oktave untereinander inkommensurabel sind.[170] Diese Tatsache wird in moderner musikalischer Redeweise häufig mit der Formulierung beschrieben, dass »der Quintenzirkel nicht geschlossen werden kann«, was einfach heißt: Wenn man von einem diskreten Ton aus Quinten aufeinanderschichtet und so unbegrenzt fortfährt, wird man niemals irgendwelche zwei Töne durchlaufen, die zueinander als Oktave oder Anzahl von Oktaven klingen.[171] Reine Quinten sind mit der Konsonanz der Oktave nicht vereinbar. Doch auch andere reine musikalische Relationen sind untereinander inkommensurabel. In vielen Fällen sind die Konsonanzen der sogenannten »triadischen Musik« – Oktaven, Quinten und Terzen – in ihren reinen Formen inkompatibel. Drei große Terzen werden zum Beispiel von Natur aus nicht ausreichen, eine Oktave zu bilden, so wie vier kleine Terzen sie stets überschreiten werden. Solche Divergenzen sind unvermeidlich. Ein physikalisches und mathematisches Gesetz gibt diese Regel vor: Nicht alle musikalischen Töne sind strikt miteinander vereinbar.[172]
Der Terminus »strikt« verweist jedoch auf eine weitere Tatsache von erstrangiger Bedeutung: Obwohl viele Intervalle in ihren reinen Formen inkommensurabel sind, können sie auch unrein gespielt werden. Die Diskrepanzen zwischen ihnen werden dann dem Ohr weniger vernehmlich, und die Unverträglichkeiten zwischen den Intervallen sind nicht mehr deutlich zu hören. »Temperatur« ist traditionell der Name für jene Tätigkeit, mit der ein Musiker die Exaktheit der musikalischen Konsonanz verringert und damit im selben Zuge die Reinheit der Konsonanz wie auch die Wahrnehmbarkeit einer realen Dissonanz vermindert. So kann man sich etwa dafür entscheiden, angesichts der Inkommensurabilität vollkommener Quinten und akustisch reiner Terzen die Quinten ein wenig zu »verkleinern«, sie also unrein zu spielen, damit aber die Terzen dem menschlichen Ohr merklich angenehmer zu machen.
Solche Techniken gibt es zweifellos seit dem Altertum. Sie datieren wahrscheinlich bis in die Zeit von Aristoxenos zurück, der die pythagoreischen Zahlenverhältnisse zugunsten gleicher Töne und angenommener Halbtöne ablehnte, wohl um den Konflikt zwischen reinen Oktaven und vollkommenen Quinten abzuschwächen.[173] Im Spätmittelalter nahm jedoch das Problem der inkommensurablen Beziehungen neue Dringlichkeit an, da die musikalische Komposition nun nicht nur Oktaven, Quinten und Quarten, sondern auch die großen und kleinen Terzen und Sexten zuließ. Wollten die Musiker diese vier neuen Intervalle erzeugen, ohne deren Dissonanzen hörbar werden zu lassen, hatten sie keine große Wahl: Sie mussten lernen, ihre harmonischen Relationen zu »temperieren«. Doch im Mittelalter konnte die Praxis des Temperierens per se nicht zum Gegenstand theoretischer Untersuchungen werden. Dafür gibt es einen guten Grund, der sich von der klassischen Definition der Musik als Untersuchung von Vielheiten in ihren Relationen zueinander herleitet. Die antiken und mittelalterlichen »Zahlen«, die diskrete und multiple Seiende erfassen, sind ausschließlich auf rationale Ungleichheiten anwendbar. Solche arithmetischen Entitäten konnten deshalb in einer Kunst der Temperatur keine Anwendung finden. Nur symbolische Gebilde, mit denen sowohl Größen als auch Vielheiten, sowohl irrationale als auch rationale Relationen darstellbar sind, konnten die unauflöslichen Konflikte der Intervalle messen. Nur die neuen Zahlen, die Ziffern der modernen Wissenschaft, konnten verwandt werden, um zu berechnen, wie sich die akustischen Dissonanzen musikalischer Relationen am besten vermindern und verbergen ließen.
Vom späten fünfzehnten zum sechzehnten, siebzehnten und achtzehnten Jahrhundert tauchten nach und nach verschiedene Temperatursysteme auf. Jedes reagierte in seiner Weise auf die Schwierigkeiten, denen die Musiker bei ihren Versuchen begegneten, harmonische Intervalle miteinander zu versöhnen. Dennoch lassen sich vier allgemeine Typen harmonischer Stimmung unterscheiden, wie J.M. Barbour in seiner grundlegenden Studie Tuning and Temperament zeigt. Die erste Lösung ist leicht zu resümieren. Sie besteht darin, das pythagoreische Stimmungssystem beizubehalten, dabei aber sein Grundintervall systematisch zu modifizieren. Die Instrumente können nach wie vor in klassischer und mittelalterlicher Manier durch die Erstellung eines Quintenzyklus gestimmt werden, doch wird jede Quinte verändert, immer in der gleichen Weise, so dass schließlich hörbar inkommensurable Intervalle scheinbar kommensurabel werden. Dies ist das System, das heute als »mitteltönige Stimmung« bekannt ist. Als musikalische Praxis scheint sie bis in die letzten Jahre des fünfzehnten Jahrhunderts zurückzureichen. So bemerkt Gaffurius in seiner Practica musicae von 1496, dass Organisten ihre Quinten »durch einen kleinen, unbestimmten Betrag, der Temperament [participata] genannt wird, vermindern«.[174] Doch die Einzelheiten dieses Verfahrens wurden erst 1523 dargestellt, als der Florentiner Theoretiker Pietro Aron zum ersten Mal ein solches System in einem Kapitel seines Toscanello in musica erläuterte, »Temperatur und die Art, ein Instrument zu stimmen«.[175]
Ein zweites Mittel, die Inkommensurabilität musikalischer Intervalle zu »heilen«, besteht darin, nur einige Beziehungen zu verändern, anderen dagegen die Bewahrung ihrer akustischen Reinheit zu gestatten. Im harmonischen Spektrum eines einzelnen Instruments werden Töne dann in unterschiedlichen Graden harmonischer Reinheit zueinander stehen. Solche unregelmäßig »temperierte Stimmungen« wurden von zahlreichen Musikern und Theoretikern des siebzehnten und achtzehnten Jahrhunderts befürwortet. Vielleicht der berühmteste unter ihnen war Andreas Werckmeister, dessen Musicalische Temperatur von 1691 sechs unterschiedliche Systeme der harmonischen Stimmung beschrieb.[176] Musiker, die derart temperierte Instrumente spielen, werden über Intervalle unterschiedlicher Arten verfügen. Einige werden relativ rein sein, andere werden eher unrein klingen. Jenseits der Spannweite einiger ziemlich reiner Quinten wird der Instrumentalist etwa jenem außergewöhnlichen, jedoch unvermeidlichen Ton begegnen, den die Barocktheoretiker den »Wolf« nannten; diese eine Note muss den Preis für die relative Reinheit aller anderen zahlen.
Eine dritte Technik besteht in der Teilung der ganzen Oktave in zwölf Halbtöne gleicher akustischer Größe. Dies ist die Methode der »gleichstufigen Temperatur«. Bereits in der ersten Hälfte des sechzehnten Jahrhunderts erdacht, wurde dieses System schließlich im siebzehnten Jahrhundert präzise definiert, als die Wissenschaftler die genaue irrationale Größe fanden, die für jeden Halbton in einer solchen Temperatur angewandt werden muss: nämlich die zwölfte Wurzel aus zwei.[177]
Die mathematischen Künste der Frühmoderne ließen noch eine vierte Art der Temperatur entstehen, die auf noch weit subtileren arithmetischen Berechnungen fußte. Es ist die Stimmung durch »multiple Teilung«. Ein solches System dividiert die einzelne Oktave in mehr als zwölf gleiche Toneinheiten. Bereits 1577 befürwortete Francisco Salinas eine solche Temperatur und schlug vor, die Oktave in neunzehn Töne zu teilen.[178] In seiner Abhandlung Le cycle harmonique von 1691 bewies Christiaan Huygens mit größerer Exaktheit, dass der akustische Bereich einer Oktave in einunddreißig gleiche Elemente zerlegt werden konnte.[179] Anfang des achtzehnten Jahrhunderts ging Joseph Sauveur, Mathematiker und Physiker unter Ludwig XIV., noch weiter. Mit ingeniösem Einsatz von Logarithmen und seiner Kenntnis der Existenz der Obertöne zeigte er, wie man die Oktave in dreiundvierzig oder gar in dreihundertundein Teile zerlegen kann, von denen jedes Intervall eine bestimmte Zahl ausmachen würde.[180]
Alle vier Temperatursysteme versuchten, musikalische Phänomene zu definieren. Mit ihren neuen mathematischen Modellen, die die antiken Praktiken der Stimmung ergänzten, erlaubten sie es, die Inkommensurabilität von Intervallen zu vermindern oder zu verbergen. Doch die Bedeutung solcher Systeme reichte bei weitem über das Gebiet der Tonkunst hinaus. Das Auftauchen der Theorie der Temperatur kennzeichnete eine umfassendere Entwicklung. Was sich der harmonischen Entzifferung der Welt bisher entzogen hatte, konnte nun mit Hilfe neuartiger mathematischer Mittel dargestellt und handhabbar gemacht werden. Im Prinzip war die neue arithmetische Behandlung der Welt daher unbegrenzt, und vielleicht war dies die größte Innovation des temperierten Universums. Die klassischen und mittelalterlichen Denker nahmen an, die Welt enthalte Bereiche, die ihrem Wesen nach mit wissenschaftlichen Mitteln nicht erkannt werden können: Gebiete intrinsischer Dunkelheit. Nun schien es, dass solche Wolkenregionen bald aufgelöst werden könnten, da jedes Intervall, ob kommensurabel oder inkommensurabel, mit allen anderen präzise in Relation gesetzt werden konnte. Zwar mochte es sein, dass das Buch der Natur für uns partiell unlesbar bleiben würde. Doch das Auftauchen der Theorie der Temperatur legte den Gedanken nahe, dass auch jenseits der Schwelle unserer begrenzten Wahrnehmung akustische Phänomene berechenbar sind. Zumindest auf einem Gebiet – nämlich dem des Tons, repräsentiert durch tonale Differenzen – konnte das Universum durchaus intelligibel sein. Das war das Versprechen der modernen Harmonie.
Die Doktrin dieser Harmonie entwarf Leibniz, der Mathematiker und Metaphysiker, der früh die Infinitesimalrechnung erfunden hatte und sich gelegentlich auch mit der musikalischen Temperatur beschäftigte. In einem Brief vom 17. April 1712 schrieb Leibniz an Christian Goldbach:
Musik ist eine verborgene arithmetische Übung der Seele, der nicht bewusst ist, dass sie zählt. Denn in verworrenen oder unwahrnehmbaren Wahrnehmungen tut die Seele vieles, was sie mit klarer Apperzeption nicht unterscheiden kann. Tatsächlich irren sich jene, die glauben, dass nichts in der Seele geschieht, ohne dass die Seele dessen gewahr wäre. Selbst wenn die Seele nicht die Empfindung hat, dass sie zählt, empfindet sie dennoch die Wirkungen dieses unbewussten Zählens, nämlich die Lust, die sich aus den Konsonanzen, und die Unlust, die sich aus den Dissonanzen ergibt. Aus vielen unbewussten Koinzidenzen wird die Lust geboren.

Doch auch den unwahrnehmbaren »Nichtkoinzidenzen« schrieb Leibniz eine Rolle zu, denn inkommensurable Beziehungen waren für die zugleich physikalische, arithmetische und psychische Harmonie, die er beschwor, durchaus von Bedeutung. »Ich glaube nicht, dass irrationale Verhältnisse als solche der Seele angenehm sind«, fuhr er fort, »außer wenn sie den rationalen, die angenehm sind, sehr nahe sind. Manchmal jedoch sind diese Dissonanzen zufällig angenehm; sie unterbrechen die Freuden wie Schatten die Ordnung und das Licht, so dass wir die Ordnung um so mehr schätzen.«[181]
Ein Jahrhundert zuvor war die Vorstellung, musikalische Intervalle könnten sich auf eine Schwingungszahl pro Zeiteinheit zurückführen lassen, Descartes als ingeniös, doch unwahrscheinlich erschienen. Als Marin Mersenne die Tafel der musikalischen Konsonanzen, die er auf der Grundlage von Beeckmans Theorie der Gesetzmäßigkeit korpuskularer Schläge entwickelt hatte, seinem Freund zusandte, brachte der Vater der modernen Philosophie ernste Zweifel am Wert solcher Überlegungen für die Untersuchung des menschlichen Hörvermögens zum Ausdruck. »Ihre Art, die Eigenschaft der Konsonanzen zu untersuchen«, schrieb Descartes, »ist zu subtil, wenigstens soweit ich es zu beurteilen wage, um vom Ohr unterschieden zu werden, ohne welches es unmöglich ist, über die Qualität irgendeiner Konsonanz zu urteilen; und wenn wir sie nach der Vernunft beurteilen, muss diese Vernunft doch immer das Vermögen des Ohres voraussetzen.«[182] Es gab einen einfachen Grund dafür, weshalb die cartesianische Theorie nicht zugeben konnte, dass die Wahrnehmung musikalischer Konsonanzen in irgendeiner Weise auf die Empfindung einer Vielzahl winziger Schläge oder Schwingungen zurückgehen könnte: Von solchen Bewegungen kann man nicht sagen, dass sie Gegenstand bewusster Vorstellungen seien, und dies waren die einzigen, die Descartes zulassen wollte. Mit seiner Definition der Musik als einer »verborgenen arithmetischen Übung der Seele, der nicht bewusst ist, dass sie zählt«, versöhnte Leibniz dagegen Musik und Psychologie und schlug eine Wahrnehmungslehre vor, die mit Benedettis und Beeckmans Regel im Einklang stand.
Leibniz entnahm der modernen Akustik die Elemente einer neuen Theorie der Seele. Mit einem gewissen Verständnis für die grundlegende Inkommensurabilität der musikalischen Intervalle erkannte er an, dass eine absolut reine Stimmung aller musikalischen Intervalle unmöglich ist. In einem Brief an Conrad Henfling erklärte er einmal: »Da die Inkommensurabilitäten es nicht erlauben, vollständige Exaktheit zu erhalten, braucht man bequeme Äquivalenzen, und es gibt eine Gabe dafür, sie zu finden [il y a du génie de les trouver]. Unsere Seele sucht sogar das einfachste Kommensurable und findet es in der Musik, ohne dass jene, die es nicht wissen, sich dessen bewusst wären.«[183] Für Leibniz war Temperatur deshalb eine Notwendigkeit. »Ebenso wie Sie«, erklärte Leibniz seinem Korrespondenten, dem Erfinder eines heute wenig bekannten Systems harmonischer Stimmung, »glaube ich, dass diese Wissenschaft noch nicht genügend anerkannt und gepflegt worden ist.«[184] Mit etwas Geschick und Glück im »Finden« kann man mit Erfolg die einfachsten kommensurablen harmonischen Relationen bestimmen. Solche Relationen wären dann definitionsgemäß als solche nicht kommensurabel. Es wären jedoch, in Anbetracht der akustischen Inkommensurabilitäten, die kommensurabelsten. Mit anderen Worten, es wären die besten aller möglichen harmonischen Relationen, wenn man voraussetzt, dass physikalisch und mathematisch nicht alle solche Relationen kommensurabel sein können.
Solche »bequemen Äquivalenzen« ließen sich einzig durch Berechnung finden, und in seinen Briefen an Henfling überlegte Leibniz, wie dies am besten erreichbar wäre. Er gestand von vornherein zu, dass niemand solche Äquivalenzen bewusst wahrnehmen könne. Sie werden von der Seele einzig als »kleine Perzeptionen« (petites perceptions) erfasst: kleine Affektionen, die die Seele sich vorstellt, ohne ein deutliches Bewusstsein davon zu haben, dass sie es tut. Zu den vielen winzigen und raschen Operationen, die von der Seele ohne »klare Apperzeption« ausgeführt werden, würde demnach auch ein unbewusstes Rechnen gehören. Wir würden eine »verborgene Arithmetik« praktizieren, indem wir die Schwingungszahlen bestimmen und ohne jegliches Bewusstsein die Beziehungen zwischen Koinzidenzen von Schlägen beurteilen. Aus der unbewussten Empfindung der Kommensurabilität würde das bewusste Gewahrsein von Lust beim Hören entstehen. Doch Leibniz’ Bemerkungen legten noch eine weitere und weniger offenkundige Tatsache nahe: nämlich dass auch aus der Empfindung inkommensurabler Relationen Freude entspringen kann. Obwohl solche irrationalen Verhältnisse »als solche der Seele nicht angenehm sind«, können sie manchmal dennoch beträchtliches und bewusstes Vergnügen wecken. Wenn Dissonanzen zwischen die Konsonanzen treten, so »wie Schatten die Ordnung und das Licht« unterbrechen, sind sie gelegentlich angenehm; wenn sie »den rationalen […] sehr nahe sind«, sind sie sogar regelmäßig als solche angenehm. Inkommensurabilität, obwohl unaufgelöst, scheint uns einen eigenartigen Wink zu geben. Es ist, als ob wir in solchen Momenten sanfter Dissonanz fühlten, dass die Irrationalität bestimmter akustischer Verhältnisse nicht vollständig vermieden werden kann; als ob wir spürten, dass in den besten Temperaturen Irrationalität aufgrund einer sekundären Notwendigkeit ihr Gutes haben muss. »Wir schätzen die Ordnung dann um so mehr.«
In einer solchen Theorie der Harmonie der Töne spielt also unsere Lust eine entscheidende Rolle. Sie bezeugt eine Korrelation zwischen unserer Wahrnehmung und der Beschaffenheit der Welt. Wenn wir, ohne uns dessen gewahr zu sein, die komplexen Beziehungen zwischen Schwingungen berechnen, wenn wir dunkel die »einfachste Kommensurable« spüren, die wir glücklich in der »Musik« finden, nehmen wir eine Ordnung wahr, die vielleicht auch in den Zahlen der Arithmetik vollständig darstellbar ist. Wir erkennen demnach nicht, was wir hören, doch wir können erschließen, dass es als solches gewusst werden kann. Für Leibniz ist das Vergnügen beim Hören in diesem Sinne exemplarisch für ein großes Prinzip: Es gibt keine Lust der Sinne, die nicht auf eine Lust der Vernunft zurückführbar wäre, die nicht ihrerseits auf den vollkommen intelligiblen Aufbau des Universums verwiese. So heißt es in den »In der Vernunft begründete[n] Prinzipien der Natur und der Gnade«:
Die Musik gefällt uns, obwohl ihre Schönheit nur in Übereinstimmungen von Zahlen und im Abzählen von Takten oder Schwingungen der tönenden Körper besteht, die sich in gewissen Intervallen folgen; welches Zählen uns nicht bewusst wird, ohne dass die Seele es doch unterlassen kann. Das Vergnügen, das das Auge in den Proportionen findet, ist von der gleichen Art; und die Vergnügen, die die anderen Sinne verursachen, gehen auf Ähnliches zurück, obschon wir es nicht so deutlich erklären können.[185]

Ein unendlicher Geist würde zweifellos jeden Takt zu zählen wissen und in einer bewussten arithmetischen Operation jede Schwingung in Relation zu jeder anderen messen. Unsere endlichen hörenden Seelen begnügen sich mit einer partiellen und verborgenen Zählung. Ohne dass wir die Gründe für unser Vergnügen wüssten, gelangen wir zu seiner Empfindung in einem Vorstellungsakt, den Leibniz als klar und verworren zugleich betrachtete.[186] »Wenn ich eine Sache unter anderen wiedererkennen kann, ohne sagen zu können, worin ihre Unterschiede oder Eigenschaften bestehen«, schrieb er in seiner »Metaphysische[n] Abhandlung« von 1686, »so ist die Erkenntnis verworren. So erkennen wir manchmal auf klare Weise, ohne auf irgendeine Art im Zweifel zu sein, ob ein Gedicht oder ein Bild gut oder schlecht gemacht ist, weil es ein ›ich weiß nicht was‹ gibt, das uns befriedigt oder abstößt.«[187]
Wenige Jahrzehnte nach Leibniz’ Tod gab Alexander Gottlieb Baumgarten jenen Gedanken, die zugleich die Merkmale des Klaren und des Verworrenen teilen, einen Namen. Zuerst in seinen Meditationes philosophicae de nonnullis ad poema pertinentibus von 1735 und dann in seiner großen Abhandlung von 1750 schlug er vor, solche Perzeptionen als »ästhetische« zu bezeichnen. Diese Vorstellungen, so erläuterte er, sind klar, insofern sie distinkt von anderen unterschieden sind; doch sie sind auch verworren, da wir sie nicht auf ihre elementaren Züge zurückführen können.[188] Die Verwendung des Attributs »ästhetisch« für solche Gedanken bedeutete schon als solche eine Neuheit. Vor Baumgarten war der Begriff weitgehend für Empfindungen überhaupt benutzt worden. Von nun an sollte er die Wahrnehmung des Schönen und Erhabenen evozieren. Doch der Begriff verwies auf eine spezifische Vorstellungsart, die Leibniz definiert hatte. Hätte der Erfinder der Monadologie im Idiom seiner Nachfolger gesprochen, so hätte er auch argumentieren können, dass das ästhetische Vergnügen seiner Art nach rational ist und eine Ordnung bezeugt, die vollständig gemessen werden kann, doch nicht von uns. Aus der zugleich klaren und dunklen Empfindung einer für unsere Sinne undurchschaubaren Lust ließ sich nach Leibniz ein Schluss ziehen: Es muss eine verborgene Harmonie walten.
Wenn wir die Anblicke und Klänge dieser Welt als ästhetisch empfinden, so dürfen wir daraus ableiten, dass sich hinter dem Ganzen der Natur eine in sich intelligible Ordnung verbirgt. Als Schöpfung eines unendlichen Geistes muss diese Welt die beste aller geordneten Totalitäten sein, die in ihren Teilen und in ihrer Struktur so angeordnet ist, dass sie mit einem vernünftigen Plan übereinstimmt. Sie muss die beste aller konsonanten Ganzheiten sein, mit einem Höchstmaß an angenehmer Kommensurabilität und einem Mindestmaß an Inkommensurabilität, das an sich ebenfalls schätzbar ist. Man kann sich schwer vorstellen, dass der Verfasser der Theodizee gezögert hätte, solche Argumente vorzubringen. Doch kann man sicher sein, dass der Schluss von Lust auf Ordnung fundiert ist? Kann man dem Sehen und Hören entnehmen, dass die Harmonie der Natur wahrhaft wirklich ist? Nach Benedetti, Beeckman, Leibniz und Baumgarten sollte Kant diese Frage abermals stellen und damit das alte Problem der harmonischen Transkription der Welt vergegenwärtigen und umschreiben. Indem er die Idee einer schönen und dunkel intelligiblen Natur einer erneuten Kritik unterzog, musste er unweigerlich an die eine beunruhigende Möglichkeit erinnern, die die Modernen, wie die Alten und das Mittelalter lange vor ihnen, nie gänzlich beiseiteschieben konnten: die Möglichkeit, dass trotz der besten rationalen Temperaturen die Natur keine Ziffern liefern kann; dass sie weder kommensurabel noch inkommensurabel, sondern für uns ganz einfach unerkennbar ist.

Siebtes Kapitel Von unermesslicher Größe
Nach Kant begann die eigentliche Geschichte der Philosophie mit Pythagoras. Diese Behauptung war in ihrer Form zweifellos ungewöhnlich, aber nicht absolut neu. Man könnte sie sogar für klassisch halten, denn eine alte Tradition, beginnend mit Heraclides Ponticus, behauptet, Pythagoras sei der erste Denker gewesen, der den Namen eines »Philosophen« für sich beansprucht habe.[189] Kant legte dieser Tatsache freilich eine neue Bedeutung bei. In seinem »Abriß einer Geschichte der Philosophie«, der in seinen Vorlesungen zur Logik enthalten ist, erklärte er, es mache zwar »einige Schwierigkeit, die Grenzen zu bestimmen, wo der gemeine Verstandesgebrauch aufhört und der spekulative anfängt; oder, wo gemeine Vernunfterkenntnis Philosophie wird«. Prinzipiell könne man jedoch zwischen »Erkenntnis des Allgemeinen in abstracto« von »Erkenntnis des Allgemeinen in concreto« unterscheiden. Die erste Art der Erkenntnis lasse sich als »spekulative«, die zweite als »gemeine« titulieren. Demnach hätten »unter allen Völkern […] also die Griechen erst angefangen zu philosophieren. Denn sie haben zuerst versucht, nicht an dem Leitfaden der Bilder die Vernunfterkenntnisse zu kultivieren, sondern in abstracto; statt daß die andern Völker sich die Begriffe immer nur durch Bilder in concreto verständlich zu machen suchten.«[190] Gleichwohl, fügte Kant hinzu, hätten die frühesten Denker den spekulativen Gebrauch der Erkenntnis nur unvollkommen gepflegt. Die Ionier und die Eleatiker mögen sich in jenem ersten Moment der spekulativen Erkenntnis hervorgetan haben, doch sie kleideten alles in »Bilder«.[191] Mit ihren ersten Lehrsätzen war die Philosophie entstanden. Sie hatte aber noch nicht die Reinheit, die sie verkündete.
Dieser Schritt war bald getan. »Um die Zeit der ionischen Schule stand in Groß-Griechenland ein Mann von seltsamen Genie auf, welcher nicht nur auch eine Schule errichtete, sondern zugleich ein Projekt entwarf und zu Stande brachte, das seines Gleichen noch nie gehabt hatte. Dieser Mann war Pythagoras, zu Samos geboren.«[192] In einem seiner letzten Aufsätze, »Von einem neuerdings erhobenen vornehmen Ton in der Philosophie«, erinnerte Kant noch einmal an die einzigartige Bedeutung dieses frühgriechischen Meisters. Hier bezeichnete er Pythagoras als denjenigen, der in der Geschichte des »Namen[s] der Philosophie« als »einer wissenschaftlichen Lebensweisheit« am ersten Anfang stehe.[193] Kant erinnerte daran, dass die Philosophie nicht mit Sokrates oder Platon begonnen habe, und mahnte: »Wir müssen aber auch nicht den Pythagoras vergessen, von dem uns nun freilich zu wenig bekannt ist, um über das metaphysische Prinzip seiner Philosophie etwas Sicheres auszumachen.«[194] Man dürfe jedoch annehmen, dass Pythagoras nach den abstrakten Prinzipien von Erkenntnis überhaupt gesucht habe. Man dürfe weiter vermuten, dass er sie in den Zahlen gefunden habe. Schließlich habe Pythagoras allen Darstellungen zufolge solche Quantitäten in Tönen gefunden. Harmonische Intervalle konnten als etwas betrachtet werden, in dem sich arithmetische Verhältnisse ausdrücken, die wiederum über der Erde und in der Seele zu finden waren. »Die Geschichte sagt«, so Kant,
daß ihn die Entdeckung des Zahlverhältnisses unter den Tönen, und des Gesetzes, nach welchem sie allein eine Musik ausmachen, auf den Gedanken gebracht habe: daß, weil in diesem Spiel der Empfindungen die Mathematik (als Zahlenwissenschaft) eben sowohl das Prinzip der Form desselben (und zwar, wie es scheint, a priori, seiner Notwendigkeit wegen) enthält, uns eine, wenn gleich nur dunkle, Anschauung einer Natur, die durch einen über sie herrschenden Verstand nach Zahlgleichungen geordnet worden, beiwohne; welche Idee dann, auf die Himmelskörper angewandt, auch die Lehre von der Harmonie der Sphären hervorbrachte. Nun ist nichts die Sinne belebender als die Musik; das belebende Prinzip im Menschen aber ist die Seele; und da Musik, nach Pythagoras, bloß auf wahrgenommenen Zahlverhältnissen beruht, und (welches wohl zu merken) jenes belebende Prinzip im Menschen, die Seele, zugleich ein freies sich selbst bestimmendes Wesen ist: so läßt sich seine Definition derselben: anima est numerus se ipsum movens,[195] vielleicht verständlich machen und einigermaßen rechtfertigen; wenn man annimmt, daß er durch dieses Vermögen, sich selbst zu bewegen, ihren Unterschied von der Materie, als die an sich leblos und nur durch etwas Äußeres bewegbar ist, mithin die Freiheit, habe anzeigen wollen.[196]

Indem er sich den Tönen und dem Gesetz, »nach welchem sie allein eine Musik ausmachen«, widmete, habe Pythagoras eine echte spekulative Erkenntnis erreicht. Er habe alle »Bilder« beiseitegelegt und sie durch Zahlen ersetzt. Und mit seiner »dunkle[n] Anschauung einer Natur, die durch einen über sie herrschenden Verstand nach Zahlgleichungen geordnet worden« sei, habe eine Erste Philosophie begonnen, die dieses Namens würdig sei. 1796, im Jahr seines Aufsatzes »Von einem neuerdings erhobenen vornehmen Ton in der Philosophie«, wusste Kant auch, wie die Zahlen zu einer solchen Rolle kommen konnten. Mathematische Quantitäten boten Pythagoras ein Mittel, eine Reihe so unterschiedlicher Dinge wie Empfindungen, Naturerscheinungen, Himmelskörper und die Seele zu erkennen, weil solche arithmetischen Größen, wie er erklärt, »eine Art von Zweckmäßigkeit« aufweisen. Mit anderen Worten, Zahlen zeigten eine »Tauglichkeit zur Auflösung einer Mannigfaltigkeit von Problemen, oder Mannigfaltigkeit der Auflösung eines und desselben Problems […] aus einem Prinzip«.[197] So wie Platon später dazu überging, seine »Urbilder« oder »Ideen« aus einer Reihe zweckmäßiger geometrischer Figuren herzuleiten, so erreichte Pythagoras seine allgemeine Naturerkenntnis, indem er der »Tauglichkeit« arithmetischer Größen vertraute.
Doch auf diese Weise habe sich der frühgriechische Denker schließlich in die Irre führen lassen. Wie viele nach ihm hielt er fälschlich eine rein mathematische Ordnung für die absolute. Pythagoras, der erste wirkliche Philosoph, wurde so zum ersten verblendeten Visionär, der der Gefahr zum Opfer fiel, die nach Kant alle »spekulative Erkenntnis« bedroht. Da er glaubte, bei der Entdeckung des Gesetzes der Zahlen »auf ein Geheimnis zu stoßen, und eben darum etwas Überschwenglich-Großes zu sehen, wo er nichts [sah]«, glitt Pythagoras vom Denken ins Fühlen und schwang sich von der Gewissheit der Erkenntnis in die verworrenen Höhen der »Schwärmerei« auf.[198] Obschon er bezweifelte, dass man die Metaphysik des Pythagoras einigermaßen präzise rekonstruieren könnte, war Kant seinerseits von der Realität dieses Irrtums überzeugt. Ohne eine Spur des Zögerns berichtet der moderne Denker, wie sein berühmter Vorgänger in seinen Untersuchungen der Harmonie der Natur voranschritt:
[S]o erweckten bei Pythagoras die Wunder der Zahlen (der Arithmetik), d.i. der Anschein einer gewissen Zweckmäßigkeit und eine in die Beschaffenheit derselben gleichsam absichtlich gelegte Tauglichkeit zur Auflösung mancher Vernunftaufgaben der Mathematik, wo Anschauung a priori (Raum und Zeit) und nicht bloß ein diskursives Denken vorausgesetzt werden muß, die Aufmerksamkeit, als auf eine Art der Magie, lediglich um sich die Möglichkeit, nicht bloß der Erweiterung unserer Größenbegriffe überhaupt, sondern auch der besonderen und gleichsam geheimnisreichen Eigenschaften derselben begreiflich zu machen.[199]

Kants eigenes Denken ließe sich vielleicht als ein Versuch beschreiben, an der Tätigkeit der Philosophie festzuhalten, ohne einer solchen »Schwärmerei« nachzugeben: die Verstandesbegriffe zu nutzen, ohne ihren legitimen Anwendungsbereich zu überdehnen und in »eine Art der Magie« zu verfallen. Insofern bestand die Aufgabe, die Kant sich selbst gestellt hatte, darin, Pythagoras zu folgen, doch nur bis zu einem gewissen Punkt. Er wollte allgemeine und abstrakte Erkenntnis gewinnen, ohne jenseits dieses Punktes umherzuirren.
Kant unternahm sein gewaltiges Vorhaben einer »Kritik der reinen Vernunft«, um die Möglichkeiten und die Grenzen des menschlichen Erkenntnisvermögens zu bestimmen. »Kritik« sollte die Bedingungen und Grenzen des legitimen Gebrauchs der »reinen Vernunft« feststellen, Letztere definiert als die Fähigkeit, nach Prinzipien zu urteilen, die notwendig, universell gültig und erfahrungsunabhängig, kurz: »a priori« sind. Es war ein Axiom von Kants kritischem System, dass die Urteilskraft zwei Arten von Begriffen verwenden muss, die unterschiedliche Arten von Objekten bestimmen. Es sind einerseits die Naturbegriffe und andererseits der Freiheitsbegriff. Nach Kant folgt aus dieser Unterscheidung der Begriffe der reinen Vernunft zwingend eine Einteilung des »Gebiets« (ditio) der Philosophie in ein »theoretisches« und ein »praktisches«.[200] Kants dritte und letzte Abhandlung über die reine Vernunft, die Kritik der Urteilskraft von 1790, enthält die wichtigste Formulierung für die Doktrin dieser Einteilung.
Da nun die ersteren [sc. die Naturbegriffe] ein theoretisches Erkenntnis nach Prinzipien a priori möglich machen, der zweite [sc. der Freiheitsbegriff] aber in Ansehung derselben nur ein negatives Prinzip (der bloßen Entgegensetzung) schon in seinem Begriffe bei sich führt, dagegen für die Willensbestimmung erweiternde Grundsätze, welche darum praktisch heißen, errichtet: so wird die Philosophie in zwei, den Prinzipien nach ganz verschiedene, Teile, in die theoretische als Naturphilosophie, und die praktische als Moralphilosophie (denn so wird die praktische Gesetzgebung der Vernunft nach dem Freiheitsbegriffe genannt) mit Recht eingeteilt.[201]

Die Unterscheidung zwischen den beiden Arten von Begriffen ist leicht zu erklären. Jede Art hat ihren korrekten Gebrauch oder, wie Kant schreibt, ihre eigene »Gesetzgebung«. Die Naturbegriffe können insofern auf einen Gegenstand bezogen werden, als dieser durch die zwillingshaften transzendentalen Formen der Anschauung, nämlich Raum und Zeit, definiert ist. Aus diesem Grund erstreckt sich das natürliche oder theoretische Gebiet auf die Erscheinungen und nur auf diese. Der Freiheitsbegriff hingegen bezieht sich auf einen Gegenstand, der nicht gemäß den Anschauungsformen erfasst werden kann. Er ist ein Ding an sich: die unbedingte Freiheit des Willens, die die einzige Grundlage des moralischen Handelns nach dem Sittengesetz bildet. Kant bezieht also die beiden Begriffsarten auf zwei Vermögen der einen Kraft der reinen Vernunft. »Die Gesetzgebung durch Naturbegriffe«, erläutert Kant, »geschieht durch den Verstand und ist theoretisch. Die Gesetzgebung durch den Freiheitsbegriff geschieht von der Vernunft und ist bloß praktisch.«[202] Den beiden Arten von Begriffen, denen der Natur und dem der Freiheit, entsprechen also zwei Arten von Gegenständen, die bedingten und die unbedingten; zwei Bereiche der Philosophie, der theoretische und der praktische; und zwei unterschiedliche Kräfte des Gemüts, Verstand und Vernunft. Diese Einteilungen sind klar und zumindest auf der Oberfläche unüberbrückbar: »[D]er Naturbegriff [kann] zwar seine Gegenstände in der Anschauung, aber nicht als Dinge an sich selbst, sondern als bloße Erscheinungen, der Freiheitsbegriff dagegen in seinem Objekte zwar ein Ding an sich selbst, aber nicht in der Anschauung vorstellig machen […].«[203] Der Bereich der Natur ist daher in der Erkenntnis so zu erfassen, wie er erscheint, doch niemals, wie er an sich ist; und in vollkommener Symmetrie dazu ist der Bereich der Freiheit vom Denken so zu erfassen, wie er an sich ist, nicht jedoch, wie er erscheint. Die beiden Arten von Begriffen besitzen also ein fundamentales gemeinsames Merkmal: Weder die Naturbegriffe noch der Freiheitsbegriff können »ein theoretisches Erkenntnis von [ihrem] Objekte […] als Dinge an sich verschaffen«.[204]
Gleichwohl behauptet Kant, dass das Bedingte und das Unbedingte, Erscheinungen und Ding an sich, Natur und Freiheit, so vorgestellt werden müssen, dass jedes von ihnen ein Substrat beinhaltet, dem er einen einzigen Namen gibt: das »Übersinnliche«. Dass der Begriff der Freiheit ein intelligibles Sein voraussetzt, liegt gewiss auf der Hand: Der unbedingte Wille wäre nichts, wenn er nicht dem Bereich der Erscheinungen entzogen wäre, und insofern er »unbedingt« ist, ist er definitionsgemäß seiner Natur nach übersinnlich. Doch auch die Erscheinungen, erklärt Kant, beinhalten eine nichtsinnliche Schicht, insofern sie eben Erscheinungen von – uns unerkennbaren – Dingen an sich sind. Wir benötigen also die Idee des Übersinnlichen, um sie der Möglichkeit aller Erfahrungsgegenstände zugrunde zu legen, wenngleich man diese Idee »niemals zu einem Erkenntnisse erheben und erweitern kann«.[205] Betrachtet man den Status einer solchen »Idee«, so wird man zu dem Schluss kommen, dass sie kein Gebiet, sondern ein »Feld« ausmacht, das einen gemeinsamen Boden für die sonst disparaten Begriffe der Natur und der Freiheit bildet. Es gibt keine Erkenntnis, die sich auf diesem gemeinsamen »Feld des Übersinnlichen« gewinnen ließe. Doch für die Erfordernisse des Denkens kann es legitim besetzt werden:
Es gibt also ein unbegrenztes, aber auch unzugängliches Feld für unser gesamtes Erkenntnisvermögen, nämlich das Feld des Übersinnlichen, worin wir keinen Boden für uns finden, also auf demselben weder für die Verstandes- noch Vernunftbegriffe ein Gebiet zum theoretischen Erkenntnis haben können; ein Feld, welches wir zwar zum Behuf des theoretischen sowohl als praktischen Gebrauchs der Vernunft mit Ideen besetzen müssen, denen wir aber, in Beziehung auf die Gesetze aus dem Freiheitsbegriffe, keine andere als praktische Realität verschaffen können, wodurch demnach unser theoretisches Erkenntnis nicht im mindesten zu dem Übersinnlichen erweitert wird.[206]

Während also dieses unbegrenzte Feld »für unser gesamtes Erkenntnisvermögen« grundsätzlich unzugänglich ist, spielt seine Idee eine entscheidende Rolle in Kants System der reinen Vernunft. Sie löst ein Hauptproblem in der kritischen Doktrin der Willensfreiheit. Kant evoziert das Problem und seine Lösung in einem einzigen merkwürdigen modalen Syllogismus. Wir gehen dabei von einem »ist« zu einem »soll« über, bevor wir die Gewissheit eines »muss« erreichen. In einem ersten Schritt betont Kant den Abgrund, der das Sinnliche vom Intelligiblen trennt: Es besteht »eine unübersehbare Kluft zwischen dem Gebiete des Naturbegriffs, als dem Sinnlichen, und dem Gebiete des Freiheitsbegriffs, als dem Übersinnlichen, […] so daß von dem ersteren zum anderen […] kein Übergang möglich ist […].« In einem zweiten Schritt erinnert Kant daran, dass der freie Wille, wenn er sich in der Natur nicht geltend machen könnte, nichtig wäre; woraufhin er einen praktischen Imperativ formuliert: »so soll doch diese [Welt des Übersinnlichen] auf jene [sinnliche Welt] einen Einfluß haben, nämlich der Freiheitsbegriff soll den durch seine Gesetze aufgegebenen Zweck in der Sinnenwelt wirklich machen.« Nun kommt Kant zu seiner Konklusion. Die unüberbrückbare »Kluft« muss überbrückt werden:[207] »[D]ie Natur muß folglich auch so gedacht werden können, daß die Gesetzmäßigkeit ihrer Form wenigstens zur Möglichkeit der in ihr zu bewirkenden Zwecke nach Freiheitsgesetzen zusammenstimme. – Also muß es doch einen Grund der Einheit des Übersinnlichen, welches der Natur zum Grunde liegt, mit dem, was der Freiheitsbegriff praktisch enthält, geben […].«[208]
Der »Grund«, den Kant in diesen Zeilen erreicht und der die behauptete »unübersehbare Kluft« überspannt, muss zwischen den Gebieten der Natur und der Freiheit liegen. Unterhalb des Übersinnlichen, »welches der Natur zum Grunde liegt«, und des Übersinnlichen, »was der Freiheitsbegriff praktisch enthält«, bildet dieser Grund die Grundlage am Ort eines strukturellen Abgrunds, als ein Grund, der eine Abgründigkeit ausfüllen muss. Kant macht kein Geheimnis daraus, warum die kritische Philosophie eine solche paradoxe Erweiterung des exakt begrenzten Territoriums und der Gebiete ihrer Jurisdiktion annehmen muss: Allein dieser »Grund«, so behauptet er, mache es möglich, die Natur so zu denken, »daß die Gesetzmäßigkeit ihrer Form wenigstens zur Möglichkeit der in ihr zu bewirkenden Zwecke nach Freiheitsgesetzen zusammenstimme«. Kurz gesagt, ohne die Annahme eines solchen »übersinnlichen Feldes« würden die Gebiete von Natur und Freiheit in unauflöslicher Zwietracht stehen: Es wäre unvorstellbar, wie sich das Intelligible je in der Erscheinungswelt sollte verwirklichen können, und der theoretische und der praktische Zweig der Philosophie wären völlig disparat. Nur durch die Annahme eines solchen Grundes können die Gebiete von Natur und Freiheit zu einer »Übereinstimmung« gebracht werden, und nur dann kann die kritische Philosophie, die Kant ausarbeiten will, als kohärentes Ganzes dargestellt werden.
In seiner Kritik der Urteilskraft geht es Kant jedoch um mehr als die Forderung, die sinnliche Natur müsse mit dem intelligiblen Prinzip des Willens zusammenstimmen. Er identifiziert ein spezifisches Erkenntnisvermögen, das die Wirklichkeit dieser Zusammenstimmung belegt; es ist dies das Prinzip einer »reflektierenden Urteilskraft«. In der Vorrede zu diesem Werk erklärt Kant, warum er es nach der Vollendung einer Kritik der reinen Vernunft und einer Kritik der praktischen Vernunft für notwendig hielt, eine dritte Kritik vorzulegen:
Es war also eigentlich der Verstand, der sein eigenes Gebiet und zwar im Erkenntnisvermögen hat, sofern er konstitutive Erkenntnisprinzipien a priori enthält, welcher durch die im allgemeinen so benannte Kritik der reinen Vernunft gegen alle übrigen Kompetenten in sicheren aber einigen Besitz gesetzt werden sollte. Eben so ist der Vernunft, welche nirgend als lediglich in Ansehung des Begehrungsvermögens konstitutive Prinzipien a priori enthält, in der Kritik der praktischen Vernunft ihr Besitz angewiesen worden.[209]

Kant hat das Gebiet der Natur, das dem Verstand und den konstitutiven Begriffen der reinen Vernunft entspricht, limitiert; er hat die Grenzen des Gebiets der Freiheit, das dem Begehrungsvermögen und den regulativen Prinzipien der praktischen Vernunft entspricht, gezogen. Doch eine Kritik »unseres Vermögens, nach Prinzipien a priori zu urteilen, würde unvollständig sein, wenn die der Urteilskraft, welche für sich als Erkenntnisvermögen darauf auch Anspruch macht, nicht als ein besonderer Teil derselben abgehandelt würde; obgleich ihre Prinzipien in einem System der reinen Philosophie keinen besonderen Teil zwischen der theoretischen und praktischen ausmachen dürfen, sondern im Notfalle jedem von beiden gelegentlich angeschlossen werden können.«[210]
Diese Feststellung dürfte die Leser von Kants früheren Werken aufgeschreckt haben. Nicht nur behauptet der Philosoph nun, dass die Kritik der reinen Vernunft als einen »besondere[n] Teil« eine Behandlung der Urteilskraft zulassen müsse, deren Prinzipien von Natur aus »keinen besonderen Teil zwischen der theoretischen und der praktischen [Philosophie] ausmachen«. Es geht um mehr als diesen heimatlosen »Teil«, der »im Notfalle jedem von beiden gelegentlich angeschlossen werden« kann. Nicht weniger unerwartet ist der ausdrückliche Hinweis, dass eine eigenständige Behandlung der Urteilskraft der ersten und der zweiten Kritik angehängt werden müsse. Wenigstens dem Anschein nach waren diese beiden Abhandlungen ja selbst nichts als Darstellungen des Urteilsvermögens. Die Kritik der reinen Vernunft hatte die Bedingungen der Möglichkeit synthetischer Urteile a priori erforscht; die Kritik der praktischen Vernunft hatte die legitime Anwendung der Kategorien des Sittengesetzes auf Einzelfälle bestimmt. Doch mit der Veröffentlichung der Kritik der Urteilskraft deckte Kant auf, dass sich seine früheren Werke nur mit einer von zwei unterschiedlichen Formen der Urteilskraft befasst hatten. Die früheren Abhandlungen hatten beide implizit angenommen, dass alle Urteilskraft »bestimmend« sei, insofern sie darin besteht, ein Besonderes einem vorgegebenen allgemeinen Prinzip, etwa einer Regel oder einem Begriff, zu subsumieren. Die Urteilskraft kann aber auch eine strukturell »reflektierende« sein: In solchen Fällen ist »nur das Besondere gegeben, wozu sie das Allgemeine finden soll«.[211] Beide Arten der Urteilskraft, erfahren wir, wirken nach apriorischen Prinzipien. Bei der bestimmenden Urteilskraft liefert das Vermögen des Verstandes die Regeln, nach denen wir Besonderes unter die allgemeinen transzendentalen Naturbegriffe subsumieren. Kant räumt nun ein, dass es Fälle gibt, in denen ein solches Vorgehen unangemessen wäre: Da »jene Gesetze, welche der reine Verstand a priori gibt, […] nur auf die Möglichkeit einer Natur (als Gegenstandes der Sinne) überhaupt gehen«, werden »so mannigfaltige Formen der Natur, gleichsam so viele Modifikationen der allgemeinen transzendentalen Naturbegriffe, unbestimmt gelassen«, Formen, für die »doch auch Gesetze sein müssen«.[212]
Angesichts der Mannigfaltigkeit der Natur nimmt der Geist seine Zuflucht zur »Reflexion« und verweilt bei dem gegebenen Besonderen, während er nach der allgemeinen Regel sucht, die auf es anwendbar ist. »Die reflektierende Urteilskraft«, argumentiert Kant, »die von dem Besondern in der Natur zum Allgemeinen aufzusteigen die Obliegenheit hat, bedarf also eines Prinzips, welches sie nicht von der Erfahrung entlehnen kann, weil es eben die Einheit aller empirischen Prinzipien unter gleichfalls empirischen aber höheren Prinzipien, und also die Möglichkeit der systematischen Unterordnung derselben unter einander, begründen soll.«[213] Das transzendentale Prinzip dieser Form der Urteilskraft ist leicht zu benennen: Es ist dasjenige, nach dem man Dinge hinsichtlich des beabsichtigten Grundes ihrer Wirklichkeit betrachten kann – mit einem Wort: ihr »Zweck«. Denn »der Begriff von einem Objekt, sofern er zugleich den Grund der Wirklichkeit dieses Objekts enthält, [heißt] der Zweck, und die Übereinstimmung eines Dinges mit derjenigen Beschaffenheit der Dinge, die nur nach Zwecken möglich ist, [heißt] die Zweckmäßigkeit der Form derselben […].«[214] Diese Definition einer »subjektiven« oder »rein formalen« Zweckmäßigkeit stellt eine der wichtigsten Neuerungen der Kritik der Urteilskraft dar, in der sie eine systematische Rolle spielt.[215] Zusätzlich zu den Vermögen des Verstandes und der Vernunft lässt der Philosoph nun eine Kraft des »reflektierenden Urteils« zu, deren Aufgabe es ist, zwischen beiden zu vermitteln. Zusätzlich zu dem Prinzip der Gesetzmäßigkeit, das dem Verstand vertraut ist, und dem Prinzip des Endzwecks, das die Vernunft kennt, führt er nun das Prinzip einer rein formalen »Zweckmäßigkeit« ein. Und zusätzlich zu den Gebieten der Natur und der Freiheit, auf die sich die Verstandes- und die Vernunftbegriffe beziehen, setzt Kant nun einen dritten Bereich ein, in dem die reflektierende Urteilskraft Anwendung findet: den des Schönen und des Erhabenen.
Doch das ist nicht alles. Nachdem er das Prinzip der reflektierenden Urteilskraft erkannt hat, entdeckt Kant ein ganz neues »Vermögen des Gemüts«. Er hatte die Fähigkeit des Verstandes an das Erkenntnisvermögen und die Fähigkeit der Vernunft an das Begehrungsvermögen gebunden. Nun bezieht er die Fähigkeit der Urteilskraft auf ein Vermögen scheinbar ganz anderer Art: das »Gefühl« und genauer das »Gefühl der Lust und Unlust«.[216] Dies ist ein verblüffendes Gefühl. Weder kann es als das Resultat einer sinnlichen Modifikation des urteilenden Subjekts verstanden werden, etwa als empirische Anziehung zu einem Objekt hin oder als Abstoßung von einem solchen, denn dann wäre es seiner Art nach empirisch und nicht transzendental. Noch lässt es sich als das Resultat einer rationalen Neigung verstehen, etwa als moralisches Interesse, denn dann wäre es auf das Vernunftvermögen und nicht vielmehr auf das Urteilsvermögen bezogen. Kant argumentiert, das Gefühl von Lust und Unlust sei das unmittelbare und notwendige Korrelat der Wahrnehmung der rein formalen Zweckmäßigkeit in der Natur. »So ist […] die entdeckte Vereinbarkeit zweier oder mehrerer empirischen heterogenen Naturgesetze unter einem sie beide befassenden Prinzip der Grund einer sehr merklichen Lust, oft sogar einer Bewunderung, selbst einer solchen, die nicht aufhört, ob man schon mit dem Gegenstande derselben genug bekannt ist.«[217] Die Wahrnehmung der »Einstimmung« der Naturphänomene in unser Erkenntnisvermögen ist an sich lustvoll. Dagegen, fährt Kant fort,
würde uns eine Vorstellung der Natur durchaus mißfallen, durch welche man uns voraus sagte, daß, bei der mindesten Nachforschung über die gemeinste Erfahrung hinaus, wir auf eine Heterogenität ihrer Gesetze stoßen würden, welche die Vereinigung ihrer besonderen Gesetze unter allgemeinen empirischen für unseren Verstand unmöglich machte; weil dies dem Prinzip der subjektiv-zweckmäßigen Spezifikation der Natur in ihren Gattungen, und unserer reflektierenden Urteilskraft in der Absicht der letzteren, widerstreitet.[218]

Anders als Leibniz nimmt Kant nicht an, dass sich aus der lustvollen Wahrnehmung der harmonischen Anordnung natürlicher Arten irgendeine Erkenntnis ziehen ließe. Im Gegenteil, es ist eine seiner wichtigsten und berühmtesten Thesen, dass reflektierende Urteile keine bestimmten Erkenntnisansprüche beinhalten. Kant schreibt von »subjektiver Zweckmäßigkeit«, gerade um dieses Prinzip a priori von dem Prinzip der »objektiven Zweckmäßigkeit« zu unterscheiden, welches stets einen bestimmten Begriff eines Zwecks voraussetzt, sei es äußerer Art (»Nützlichkeit«) oder innerer Art (»Vollkommenheit«).[219] Subjektive Zweckmäßigkeit wirkt unabhängig von solchen bestimmten Begriffen; sie ist, nach Kants berühmter Formel, »Zweckmäßigkeit ohne Zweck«.[220] Ein Urteil über die subjektive Zweckmäßigkeit »[gibt] keine Beschaffenheit des Gegenstandes, sondern nur die zweckmäßige Form in der Bestimmung der Vorstellungskräfte, die sich mit jenem beschäftigen, zu bemerken«.[221] Insofern man sich auf das reflektierende Urteil der Zweckmäßigkeit als auf das bezieht, was bloß subjektiv in der Vorstellung eines Objekts ist, mag es seinem Charakter nach als »ästhetisch« bezeichnet werden.[222] Kant räumt ein, dass vieles von diesem Charakter zum Teil in die Erkenntnis eingehen mag. Gleichwohl argumentiert er, dass die Zweckmäßigkeit einer Vorstellung im urteilenden Subjekt sofort ein Gefühl hervorruft, das sich von einer Erkenntnis unterscheidet. Denn durch diese Lust oder Unlust »erkenne ich nichts an dem Gegenstande der Vorstellung«.[223] Dennoch wäre es irrig, daraus zu schließen, das mit der Zweckmäßigkeit verbundene Gefühl sei, weil subjektiv, auch empirisch. Dieses Gefühl von Lust und Unlust beansprucht vielmehr Allgemeinheit, weil es von einem Prinzip zeugt, das als apriorisches allen gemeinsam ist:
Wessen Gegenstandes Form (nicht das Materielle seiner Vorstellung, als Empfindung) in der bloßen Reflexion über dieselbe […] als der Grund einer Lust an der Vorstellung eines solchen Objekts beurteilt wird: mit dessen Vorstellung wird diese Lust auch als notwendig verbunden geurteilt, folglich als nicht bloß für das Subjekt, welches diese Form auffaßt, sondern für jeden Urteilenden überhaupt. Der Gegenstand heißt alsdann schön; und das Vermögen, durch eine solche Lust (folglich auch allgemeingültig) zu urteilen, der Geschmack.[224]

Diese Theorie der Urteilskraft ist nun auf mehreren wichtigen Ebenen eine Lehre der Harmonie. Kant beschreibt die zweckmäßige Angemessenheit der Natur an unsere Vermögen als »Übereinstimmung«, »Einstimmung« und »Harmonie«, als wären die Wörter im Wesentlichen miteinander gleichbedeutend.[225] Er zögert nicht, das Merkmal subjektiver Zweckmäßigkeit mit der Eigenschaft »harmonisch« gleichzusetzen.[226] Einen Gegenstand für ästhetisch wohlgefällig zu erachten heißt in der Terminologie der Kritik der Urteilskraft, ihn als »übereinstimmend« mit dem Vermögen der reinen Vernunft zu betrachten, und die Natur als schön zu beurteilen heißt, sie sozusagen mit den Fähigkeiten des Menschen im Einklang stehend zu sehen. Nur darin – in der Wahrnehmung einer Sinneswelt, die irgendwie mit den menschlichen Erkenntniskräften abgestimmt ist – mag man eine Andeutung jenes »Übersinnlichen« finden, das in der dritten Kritik konzipiert und gleich zu Beginn gefordert wird.
Doch es lässt sich noch eine zweite Dimension von Harmonie in diesem Werk entdecken. Das subjektive Korrelat der »Übereinstimmung« der Natur mit unserem Vermögen ist seinerseits eine »Stimmung« der Vermögen untereinander: Wenn ich einen Gegenstand als schön beurteile, kann ich das nur, weil seine Form die Elemente meines Erkenntnisvermögens dazu veranlasst hat, in ein angenehmes harmonisches Spiel untereinander einzutreten. Die in einem ästhetischen Urteil enthaltene »subjektive allgemeine Mitteilbarkeit«, schreibt Kant, »kann nichts anderes als der Gemütszustand in dem freien Spiele der Einbildungskraft und des Verstandes (sofern sie unter einander, wie es zu einem Erkenntnisse überhaupt, erforderlich ist, zusammen stimmen) sein«.[227] Die begrifflichen Vermögen – Verstand und Vernunft – sollen mit dem Vermögen der Darstellung, das heißt der Einbildungskraft, in Einklang stehen; Schönheit wahrzunehmen heißt also, sich »einer wechselseitigen subjektiven Übereinstimmung der Erkenntniskräfte unter einander […] bewußt zu werden«.[228] Schließlich könnte man eine dritte Harmonie in der Theorie des Geschmacks »als einer Art von sensus communis« entdecken, dem Kant einen entscheidenden Abschnitt seiner dritten Kritik widmet.[229] Ästhetische Urteile, erfahren wir, sind ihrer Natur nach allgemein »mitteilbar« in dem Sinne, dass die Stimmung eines Vermögens unmittelbar den Einklang aller anderen fordert.[230]
Man könnte daher erwarten, dass Kants Abhandlung zum ästhetischen Urteil eine längere Analyse der Harmonie im traditionellen Sinne einer musikalischen Ordnung enthielte. Doch die Musik spielt in der Kritik der Urteilskraft eine relativ geringe Rolle. Auch hier ist der Gegensatz zu Leibniz verblüffend. Man darf annehmen, dass Kant die Leibniz’sche Lehre der Musik als »unbewusster Arithmetik« sehr wohl kannte. Kant selbst nahm auch besonderes Interesse an der modernen Wissenschaft schwingender Körper, wie mehrere Bemerkungen in seiner Abhandlung anzeigen. In einem Kapitel, das der Erläuterung der Theorie des Geschmacks »durch Beispiele« gewidmet ist, wirft er das Problem des »Tons« auf. Unter Rekurs auf neuere Entwicklungen in der Physik des Lichts und des Schalls möchte Kant eine Frage klären, die seine transzendentale Analyse der Urteilskraft beunruhigte: die Frage nämlich, ob Farbtöne, ebenso wie musikalische Töne, als an sich schön betrachtet werden können. Unter Bezug auf Leonhard Euler, den großen Mathematiker, Physiker und Theoretiker der Temperatur, schreibt Kant:
Nimmt man, mit Eulern, an, daß die Farben gleichzeitig auf einander folgende Schläge (pulsus) des Äthers, so wie Töne der im Schalle erschütterten Luft sind, und, was das Vornehmste ist, das Gemüt nicht bloß, durch den Sinn, die Wirkung davon auf die Belebung des Organs, sondern auch, durch die Reflexion, das regelmäßige Spiel der Eindrücke (mithin die Form in der Verbindung verschiedener Vorstellungen) wahrnehme (woran ich doch gar nicht zweifle): so würden Farbe und Ton nicht bloße Empfindungen, sondern schon formale Bestimmung der Einheit eines Mannigfaltigen derselben sein, und alsdann auch für sich zu Schönheiten gezählt werden können.[231]

Diese Aussage macht den Eindruck von Klarheit und Gewissheit. Wenn man zugibt, dass Farben wie Töne sich aus einer Serie periodischer Vibrationen pro Zeiteinheit ergeben, dann werden diese Sinnesqualitäten selbst in ihren einfachsten Formen mehr sein als Material; dann werden sie, wie Kant schreibt, »formale Bestimmung der Einheit eines Mannigfaltigen« sein und als solche als subjektiv zweckmäßiges »Schönes« an sich beurteilt werden, ungeachtet ihrer zahlreichen möglichen Formen ihrer Anordnung. Doch die Textgeschichte dieser Passage verrät die Zeichen eines gewissen Zögerns. In der ersten Auflage der Kritik der Urteilskraft hatte Kant zu Eulers Befunden nicht – wie in der zweiten – bemerkt: »woran ich gar nicht zweifle«, sondern »woran ich doch gar sehr zweifle«.[232] Wie mehrere Kommentatoren bemerkt haben, ist die Frage keineswegs trivial.[233] Wenn Euler recht hat, können visuelle und akustische Töne an sich »schön« sein. Hat er unrecht, können solche Qualitäten nur in ihrer Anordnung schön sein, an sich jedoch nur »angenehm« wie alle anderen Vorstellungen, die auf bloß sinnliches Material zurückgehen.[234] Obwohl Kant es nicht offen sagt, scheint es, dass die Frage nach dem genauen Status des Tons – schön oder angenehm, formal oder material – für die kritische Philosophie von den Naturwissenschaften entschieden werden muss.
Gleichzeitig beharrt Kant jedoch ausdrücklich darauf, dass die physikalische und mathematische Struktur harmonischer Klänge bei deren Beurteilung keine Rolle spielen darf. In dem ersten Abschnitt der dritten Kritik, der sich teilweise der Kunst der Musik widmet, erklärt Kant, ohne zu zögern:
Aber an dem Reize und der Gemütsbewegung, welche die Musik hervorbringt, hat die Mathematik sicherlich nicht den mindesten Anteil; sondern sie ist nur die unumgängliche Bedingung (conditio sine qua non) derjenigen Proportion der Eindrücke, in ihrer Verbindung sowohl als ihrem Wechsel, wodurch es möglich wird, sie zusammen zu fassen, und zu verhindern, daß diese einander nicht zerstören, sondern zu einer kontinuierlichen Bewegung und Belebung des Gemüts durch damit konsonierende Affekten und hiemit zu einem behaglichen Selbstgenusse zusammenstimmen.[235]

Fast jeder wichtige Begriff in dieser Erklärung erlaubt eine doppelte Lesart. Denn genau in dem Moment, in dem Kant die mathematischen Gesetzmäßigkeiten beiseitesetzt, weil sie »sicherlich nicht den mindesten Anteil« »an dem Reiz und der Gemütsbewegung [hätten], welche die Musik hervorbringt«, macht er sich für seine Theorie eine Reihe von Ausdrücken zunutze, die der alten Kunst der harmonischen Klänge entnommen sind. »Proportion«, »zusammenstimmen« und »konsonieren« werden verwendet, um den Diskurs zu verdrängen, von dem sie sich herleiten. Man könnte sich daher fragen, ob Kant das alte Paradigma einer durch mathematische Mittel intelligiblen Harmonie hier wirklich verwirft, wie er angibt. Man könnte ebenso sagen, dass er es nur auf eine neue Allgemeinheitsebene erhebt, auf der seine Begriffe nun ästhetische Lust als solche definieren.
»Mathematik« spielt jedenfalls sehr wohl eine Rolle in Kants Lehre der Urteilskraft. Quantitäten, definiert in kommensurablen und inkommensurablen Relationen, werden in der Kritik der Urteilskraft an einem entscheidenden Punkt zu zentralen Problemen. An dieser Stelle versucht Kant, die ästhetischen Vorstellungen des Gemüts nicht in ihren Proportionen, sondern in ihren Disproportionen zu betrachten und nicht die Zweckmäßigkeit der Natur, sondern vielmehr ihre »Zweckwidrigkeit« zu definieren. Dieser Punkt ist die Analytik des Erhabenen. Kant stellt diesen kurzen Abschnitt seines Buches als »einen bloßen Anhang« zur Analytik des Schönen dar.[236] Im »Übergang von dem Beurteilsvermögen des Schönen zu dem des Erhabenen« weist er darauf hin, dass unter mehreren Gesichtspunkten die zweite Erörterung ein Pendant zu der ersten ist. Das Urteil über das Erhabene ist, ebenso wie das über das Schöne, seiner Struktur nach reflexiv. Es muss sich daher auf einen einzelnen Gegenstand beziehen, der, bezogen auf das Erkenntnisvermögen als ganzes, ein Gefühl hervorruft, das weder am sinnlichen Material, wie das Angenehme, noch an einem bestimmten Begriff, wie das Gute, hängt.[237] Mithin, argumentiert Kant, ist das Wohlgefallen an die bloße Darstellung oder das Vermögen derselben geknüpft, »wodurch das Vermögen der Darstellung, oder die Einbildungskraft, bei einer gegebenen Anschauung mit dem Vermögen der Begriffe des Verstandes oder der Vernunft, als Beförderung der letztern, in Einstimmung betrachtet wird«.[238] Aus diesem Grund beanspruchen Urteile über das Erhabene dieselbe Allgemeinheit wie Urteile über das Schöne; beide sind »allgemeingültig in Ansehung jedes Subjekts«, »ob sie zwar bloß auf das Gefühl der Lust und auf kein Erkenntnis des Gegenstandes Anspruch machen«.[239]
Im weiteren unterscheidet Kant jedoch das Erhabene vom Schönen in mehrfacher Hinsicht. Das Urteil über das Schöne betrifft die Form des beurteilten Objekts, das in Einklang mit den Kräften des Gemüts stehend verstanden wird; »das Erhabene ist dagegen auch an einem formlosen Gegenstande zu finden, sofern Unbegrenztheit an ihm, oder durch dessen Veranlassung, vorgestellt und doch Totalität derselben hinzugedacht wird«.[240] Daher, argumentiert der Philosoph, bringe das Erhabene einen Einklang der Einbildungskraft nicht mit dem Verstand, wie beim Schönen, sondern mit der Vernunft ins Spiel, wobei Totalität ein Begriff ist, dessen Anwendung nur praktisch sein könne.[241] Darüber hinaus ist unser Wohlgefallen beim Schönen »mit der Vorstellung der Qualität, hier aber der Quantität verbunden«.[242] Ein weiteres Merkmal stellt zwei Arten des »Wohlgefallens« einander gegenüber. Das Gefallen am Schönen folgt aus der Wahrnehmung der Zweckmäßigkeit; weshalb das Schöne unmittelbar »ein Gefühl der Beförderung des Lebens bei sich führt«. Das Gefallen am Erhabenen ist hingegen eine mittelbare Lust, die »durch das Gefühl einer augenblicklichen Hemmung der Lebenskräfte und darauf sogleich folgenden desto stärkern Ergießung derselben erzeugt wird«.[243] Man mag diesen Affekt deshalb so beschreiben, dass er »negative Lust« weckt.
»Der wichtigste und innere Unterschied aber des Erhabenen vom Schönen«, schreibt Kant, »ist wohl dieser«: Das Urteil über das Schöne betrifft das, was mit unseren Vermögen als kommensurabel (angemessen) erscheint, das Erhabene hingegen das mit uns Inkommensurable (Unangemessene): »[D]as, was in uns, ohne zu vernünfteln, bloß in der Auffassung, das Gefühl des Erhabenen erregt«, erscheint »der Form nach […] zweckwidrig für unsere Urteilskraft, unangemessen unserm Darstellungsvermögen, und gleichsam gewalttätig für die Einbildungskraft«, wird aber trotzdem »nur um desto erhabener zu sein« beurteilt.[244] Anders als das Schöne verspricht deshalb das Erhabene auch nicht, »unsere Erkenntnis der Naturobjekte« zu erweitern. »[I]n dem, was wir an ihr [sc. der Natur] erhaben zu nennen pflegen, ist sogar nichts, was auf besondere objektive Prinzipien und diesen gemäße Formen der Natur führte, daß diese vielmehr in ihrem Chaos oder in ihrer wildesten regellosesten Unordnung und Verwüstung, wenn sich nur Größe und Macht blicken läßt, die Ideen des Erhabenen am meisten erregt.«[245] Der ästhetische Wert einer solchen Natur liegt nur in dem Gebrauch, den wir von ihr machen. Wie Kant zu zeigen sucht, vermag das Gemüt eine Zweckmäßigkeit jenseits der – und in der Tat gegen die – »Zweckwidrigkeit« zu entdecken, die in der sinnlichen Welt wahrgenommen wird. Dann mag das Gemüt Harmonie selbst »in ihrer wildesten regellosesten« Disharmonie finden.
Vielleicht nirgendwo in seiner Lehre von der Urteilskraft begegnet Kant einer radikaleren Disproportion als in seiner Betrachtung des »Mathematisch-Erhabenen«. Etwas, was diese Bezeichnung verdient, schreibt er, ist »schlechthin groß«.[246] Eine solche Quantität sollte nicht mit der Bestimmung einer bestimmten Größe verwechselt werden, denn »schlechtweg (simpliciter) sagen, daß etwas groß sei, ist auch ganz was anderes als zu sagen, daß es schlechthin groß (absolute non comparative magnum) sei. Das letztere ist das, was über alle Vergleichung groß ist.«[247] Kant unterscheidet in diesem Sinne zwischen »eine Größe sein« und »eine bestimmte Größe haben«. »Daß etwas eine Größe (quantum) sei, läßt sich aus dem Dinge selbst, ohne alle Vergleichung mit andern, erkennen«; um jedoch zu wissen, daß etwas eine bestimmte Größe (magnitudo) besitzt, müssen wir ein »Maß« anwenden.[248] Man definiert die magnitudo durch ein Maß, dessen Einheit willkürlich festgesetzt werden kann. Von Natur aus werden solche Quantitätsbestimmungen stets relative Größen ergeben; zu jeder gegebenen bestimmten Masse kann man sich eine größere oder kleinere vorstellen. Die Messung physikalischer Gegenstände, schreibt Kant, veranschaulicht diese Tatsache: Teleskope und Mikroskope haben hinreichend gezeigt, »daß nichts in der Natur gegeben werden könne, so groß als es auch von uns beurteilt werde, was nicht in einem andern Verhältnisse betrachtet bis zum Unendlichkleinen abgewürdigt werden könnte; und umgekehrt, nichts so klein, was sich nicht in Vergleichung mit noch kleinern Maßstäben für unsere Einbildungskraft bis zu einer Weltgröße erweitern ließe«.[249] Das absolute, schlechthin Große übersteigt hingegen notwendigerweise alle Vergleichsmaßstäbe. Inkommensurabel mit jedem gegebenen quantum, ist seine Größe maßlos.
Man könnte meinen, dass eine solche Größe keinen Platz in einer Abhandlung über die ästhetische Urteilskraft finden könne, definiert als die Auffassung von Vorstellungen in der Anschauung. Kant stellt in der Tat ausdrücklich fest, dass das Erhabene »nicht in den Dingen der Natur, sondern allein in unsern Ideen zu suchen sei«.[250] Doch in der Analytik des Erhabenen versucht er diese unwahrscheinliche Tatsache zu beweisen: Der Gedanke des unvergleichlich Großen kann durch die Wahrnehmung sinnlicher Körper, die dessen entbehren, angeregt werden. Kant erwähnt mehrere mögliche Fälle. Das urteilende Gemüt mag sich einem technischen Artefakt gegenübersehen, etwa den ägyptischen Pyramiden oder dem Petersdom in Rom.[251] Doch schon die Betrachtung bloßer Landschaften mag genügen. »Beispiele vom Mathematisch-Erhabenen der Natur in der bloßen Anschauung liefern uns alle die Fälle, wo uns nicht sowohl ein größerer Zahlbegriff, als vielmehr große Einheit als Maß […] für die Einbildungskraft gegeben wird.«[252] Betrachtet man zum Beispiel als Maß einen »Baum, den wir nach Mannshöhe schätzen«, und versucht man damit die Ausmaße eines Berges vorzustellen, wird die Einbildungskraft finden, dass sie den Gegenstand, dem sie gegenübersteht, sich nicht in seiner Gänze anschaulich zu machen vermag. Innehaltend wird sie auf die Grenzen, die ihre eigene Tätigkeit bestimmen, zurückverwiesen.
Wann immer die Einbildungskraft die relative Größe eines gewissen Quantums zu bestimmen sucht, muss sie nach Kant zwei Handlungen vollziehen: »Auffassung (apprehensio) und Zusammenfassung (comprehensio aesthetica)«. Die Auffassung, die Stück für Stück vorangeht, kann ad infinitum fortschreiten; es gibt keinen Grund dafür, warum sie eine Grenze erreichen sollte. Anders verhält es sich mit dem Vermögen, Teile in einer Einheit vorzustellen:
[D]ie Zusammenfassung wird immer schwerer, je weiter die Auffassung fortrückt, und gelangt bald zu ihrem Maximum, nämlich dem ästhetisch-größten Grundmaße der Größenschätzung. Denn, wie die Auffassung so weit gelanget ist, daß die zuerst aufgefaßten Teilvorstellungen der Sinnenanschauung in der Einbildungskraft schon zu erlöschen anheben, indes daß diese zu Auffassung mehrerer fortrückt: so verliert sie auf einer Seite eben so viel, als sie auf der andern gewinnt, und in der Zusammenfassung ist ein Größtes, über welches sie nicht hinauskommen kann.[253]

An dieser obersten Grenze erreicht die Einbildungskraft ihr Maximum, und »bei der Bestrebung, es zu erweitern, [sinkt sie] in sich selbst zurück«.[254] Die ästhetische Schätzung, schreibt Kant, findet sich nun bis zu dem Punkt getrieben, an dem das Vermögen unserer Einbildungskraft sich als unangemessen erweist, den Begriff der Größe darzustellen.[255]
In diesem sublimen Spiel jedoch ruft ein stockendes Vermögen ein anderes herbei. Die moralische Kraft des Wunsches greift ein. Selbst wenn die Einbildungskraft daran scheitert, die Abfolge der vielen Teile in einem einzigen Ganzen wiederzugeben, verlangt die Vernunft die »Zusammenfassung in eine Anschauung«, fordert »für alle jene Glieder einer fortschreitend-wachsenden Zahlenreihe Darstellung« und nimmt »selbst das Unendliche (Raum und verflossene Zeit) von dieser Forderung nicht aus[…]«. Vielmehr macht die Vernunft es »unvermeidlich […], sich dasselbe (in dem Urteile der gemeinen Vernunft) als ganz (seiner Totalität nach) gegeben zu denken«.[256] In dem Moment, in dem die Einbildungskraft sich der relativen Ungeheuerlichkeit eines bestimmten physikalischen Quantums versperrt, befiehlt die Vernunft dem urteilenden Gemüt, eine mathematische Größe anderer Art zu erwägen, der kein Maßstab, sei er sinnlich oder mathematisch, angemessen sein kann: »das Unendliche«. Für Kant ist dies eine rationale Größe, die strikt maßlos ist. Dass sie die »Sinnenwelt« notwendig überschreitet, folgt aus ihrer Definition als »schlechthin […] groß«. Nun fügt er hinzu, dass sie auch das Erkenntnisvermögen überschreitet: Sie kann selbst in der »mathematischen [Größenschätzung] durch Zahlenbegriffe nie ganz gedacht werden«, »als ein Ganzes«, das heißt in ihrer Totalität.[257] Nur das moralische Vermögen kann der Forderung genügen, »das Unendliche […] denken zu können« und eine Vernunftidee für das zu liefern, was weder wahrgenommen noch erkannt werden kann.
Da es nun durch die »Stimme der Vernunft« Zugang zu einer positiven Unendlichkeit hat, gelangt das Gemüt zu der moralischen Einsicht, dass es in sich »ein Vermögen, das selbst übersinnlich ist«, hat. »Denn nur durch dieses und dessen Idee eines Noumenons, welches selbst keine Anschauung verstattet, aber doch der Weltanschauung, als bloßer Erscheinung, zum Substrat untergelegt wird«, kann das Unendliche widerspruchsfrei gedacht werden.[258] Angesichts der Disharmonie von »Auffassung« und »Zusammenfassung« wird die Urteilskraft einer viel grundlegenderen Inkommensurabilität gewahr, die alle Erscheinung vom Ding an sich, Natur von Freiheit unterscheidet. Das Gemüt denkt nun das »übersinnliche Substrat«, das, um der Verwirklichung des Willens in der Natur, Phänomenon und Noumenon gleichermaßen voraussetzen:
[S]o muß diejenige Größe eines Naturobjekts, an welcher die Einbildungskraft ihr ganzes Vermögen der Zusammenfassung fruchtlos verwendet, den Begriff der Natur auf ein übersinnliches Substrat (welches ihr und zugleich unserm Vermögen zu denken zum Grunde liegt) führen, welches über allen Maßstab der Sinne groß ist, und daher nicht sowohl den Gegenstand, als vielmehr die Gemütsstimmung in Schätzung desselben, als erhaben beurteilen läßt.[259]

In diesem Übergang vom Versagen der Einbildungskraft zum Auftauchen der Stimme der Vernunft weicht ein anfängliches Gefühl der Unangemessenheit somit einem Gefühl der »Achtung«: der moralischen Bewunderung für die »Überlegenheit der Vernunftbestimmung unserer Erkenntnisvermögen über das größte Vermögen der Sinnlichkeit«.[260] Nun stimmt das Gemüt der spezifischen Eigenschaft des »Gefallens« zu, das mit der Beurteilung des Erhabenen verbunden ist, und erfährt, dass eine »Lust […] nur vermittelst einer Unlust möglich ist«.[261] Der Weg ist »indirekt«, wie Kant selbst behauptet, doch sein Ende ist unzweideutig. Durch eine tiefe geistige »Bewegung«, die »mit einer Erschütterung verglichen werden [kann], d.i. mit einem schnellwechselnden Abstoßen und Anziehen eben desselben Objekts«, erreicht das Erkenntnisvermögen einen Endpunkt von beträchtlicher Spannungshöhe.[262] Durchaus mittels »Gewalt« verweist das Mathematisch-Erhabene die Urteilskraft zurück auf die Lust des reflektierenden Urteils: die transzendentale Empfindung einer Harmonie der Gebiete des Willens und der Natur.
Man könnte auch argumentieren, dass es das Gemüt auf das alte »Gefühl« des Pythagoras zurücklenkt. Hatte nicht dieser Mann »von seltsamen Genie«, nach Kants eigener Darstellung, in den natürlichen Dingen eine gewisse »Zweckmäßigkeit« gesehen, die im »Spiel der Empfindungen« wahrzunehmen ist und von den formalen Prinzipien der Mathematik intelligibel gemacht werden kann? Trotz ihrer Neuheiten weist Kants mathematische Analytik von Größen ohne Maß eine unwahrscheinliche Ähnlichkeit mit der antiken Theorie gemessener Vielheiten auf. Manche Leser wollten so weit gehen, das eine als gespenstische Wiederholung des anderen zu bezeichnen. Kants kritisches Projekt treibt jedoch das alte Harmonieparadigma an seine Grenze. Auch ohne irgendwelche Töne, Proportionen und Kommensurabilitäten lässt sich eine Ordnung des Wohlgefallens finden. Auch dort, wo es keine Vielheiten, sondern Größen gibt und wo insbesondere eine der Größen von Natur aus ohne Maß ist, kann man eine »mathematische« Stimmung erreichen. Am Ende zeichnet sich eine »Zweckmäßigkeit« ab, nicht nur in Abwesenheit eines Zwecks, sondern im Angesicht seiner genauen Negation. Kurz, in der Unordnung der »Zweckwidrigkeit« behauptet sich eine gewisse Ordnung, auch wenn sie keine Erkenntnis gewähren kann.
Weiter konnte die Philosophie Kant zufolge gewiss nicht gehen. Sie konnte sich nicht über diese Schwelle hinauswagen noch zurückweichen, ohne aufzuhören, sie selbst zu sein. Beide Möglichkeiten sind allzu leicht vorstellbar. Ginge sie über die Wahrnehmung einer bloß »subjektiven Zweckmäßigkeit« in der Natur hinaus, würde sie der »dunkle[n] Anschauung« einer Übereinstimmung des Willens mit der Natur ebenjene Gewissheit verleihen, die die Kritik der reinen Vernunft zerstreut hatte. Das hieße, von Erkenntnis zu visionärem »Enthusiasmus« und zu »Schwärmerei« überzugehen. Doch der Schritt zurück von der Kant’schen Position, der Verzicht auf das Versprechen einer »subjektiven Zweckmäßigkeit«, würde bedeuten, die Harmonie der Natur und das seit Pythagoras praktizierte Projekt der Philosophie aufzugeben. Dies könnte bedeuten, das menschliche Erkenntnisvermögen zu untersuchen, ohne es an die Konzeption einer letzten Einheit der Natur zu binden; es könnte auch heißen, die physikalische Welt in ihrer Gesamtorganisation zu erforschen, ohne sich danach zu fragen, ob nicht diese Organisation für die moralische Bestimmung des Willens eine Bekräftigung liefern könnte. Kant gelangte zu einer subtilen, jedoch festen Position, die es ihm ermöglichte, sowohl an dem antiken pythagoreischen Harmonieparadigma als auch an der neuen kritischen Regel festzuhalten, der zufolge aus den Lüsten einer dunklen Anschauung keine Erkenntnis herzuleiten sei. Dazu musste Kant jedoch ein bestimmtes Axiom annehmen. Die Frage nach der formalen Einheit der Natur musste in rein disjunktiven Termini gestellt werden: als geordnete oder ungeordnete, kommensurable oder inkommensurable. Kurz: als schöne oder erhabene. Dann ließen sich, egal ob die Natur als zweckhaft oder »zweckwidrig«, lustvoll oder unlustvoll erschien, Äquivalenzen herstellen. Vielversprechende Proportionen ließen sich definieren, sogar in der ästhetischen Disproportion.
Es gab jedoch noch eine andere Möglichkeit, und Kant wusste es sehr wohl. Was, wenn die Natur weder harmonisch noch disharmonisch, sondern unerkennbar für uns wäre? Was, wenn sie keine bestimmte Form besäße, die unsere Vermögen erfassen und beurteilen könnten? In seinen Einleitungen in die Kritik der Urteilskraft bemerkte Kant, dass seine transzendentale Lehre erfordere, »Erfahrung überhaupt […] als System und nicht als bloßes Aggregat anzusehen«.[263] Dies war keine gegebene, sondern geforderte Auffassung um der Kohärenz der kritischen Philosophie willen. »Daraus folgt aber nicht«, schrieb Kant,
daß die Natur, auch nach empirischen Gesetzen, ein für das menschliche Erkenntnisvermögen faßliches System sei, und der durchgängige systematische Zusammenhang ihrer Erscheinungen in einer Erfahrung, mithin diese selber als System, den Menschen möglich sei. Denn es könnte die Mannigfaltigkeit und Ungleichartigkeit der empirischen Gesetze so groß sein, daß es uns zwar teilweise möglich wäre, Wahrnehmungen nach gelegentlich entdeckten besondern Gesetzen zu einer Erfahrung zu verknüpfen, niemals aber, diese empirische Gesetze selbst zur Einheit der Verwandtschaft unter einem gemeinschaftlichen Prinzip zu bringen, wenn nämlich, wie es doch an sich möglich ist (wenigstens so viel der Verstand a priori ausmachen kann), die Mannigfaltigkeit und Ungleichartigkeit dieser Gesetze, imgleichen der ihnen gemäßen Naturformen, unendlich groß, uns an diesen ein rohes chaotisches Aggregat und nicht die mindeste Spur eines Systems darlegte, ob wir gleich ein solches nach transzendentalen Gesetzen voraussetzen müssen.[264]

Wäre die Natur tatsächlich so mannigfaltig und ungleichartig, wäre sie nur »ein rohes chaotisches Aggregat [ohne] die mindeste Spur eines Systems«, so wäre auch die kantische Lösung unbegründet. Ohne den letzten Schatten einer Proportion, den die Disproportion darstellt, wäre die Natur weder »zweckmäßig« noch »zweckwidrig«, in ihrer Form weder Lust noch Unlust erweckend. Sie besäße überhaupt nicht eine Form. Als »rohes chaotisches Aggregat« wäre sie unfasslich, und ohne »die mindeste Spur eines Systems« würde sie in ihrer schieren Heterogenität kein Gefühl in uns wecken. Es lohnt sich zu überlegen, welche Konsequenzen sich aus dieser Situation, die »doch an sich möglich ist«, ergäben, wenn sie denn vorläge. »Erkenntnis in abstracto« käme dann zu einem Ende. »Erkenntnis in concreto«, »Denken in Bildern« und den »gemeinen Verstandesgebrauch« könnte es weiterhin geben. Doch in jener Welt, die der Philosoph hier sowohl heraufbeschwört als auch aus dem Denken verbannt, würde die unendliche Mannigfaltigkeit der Gesetze jede »dunkle Anschauung« einer Ordnung aller Natur zutiefst suspekt machen. Irgendeine Struktur im Kosmos wäre gewiss auch dann noch vorstellbar. Doch in einem solchen Universum, das sich der kritische Pythagoreer nur flüchtig und mit Grausen vorstellte, konnte Harmonie keine Wirklichkeit mehr sein.

Achtes Kapitel Fern von dieser Welt
Johannes Kepler war der Meinung, dass die wahren Lehren des Pythagoras erst lange nach dem Tod des sagenumwobenen griechischen Philosophen ans Licht gekommen seien. Man könnte annehmen, diese Behauptung beruhe auf einer schlichten Tatsache: Die existierenden Berichte über Pythagoras und seine Lehren wurden sämtlich von Schülern und Kommentatoren verfasst, die in verschiedenen Epochen, jedenfalls lange nach dem Meister von Samos lebten. Doch so schlicht war Keplers Argument nicht. In gewissem Sinne, meinte er, gelangte das von Pythagoras begonnene Projekt nicht nur erst lange nach der griechischen Frühzeit, nicht nur erst nach der gesamten Antike zur Vollendung, sondern erst nachdem die vielen Jahrhunderte des Mittelalters zu einem Abschluss gekommen waren. Wie Kepler einmal in einem Brief an seinen verehrten Lehrer Michael Mästlin bemerkte, gibt es Gründe für die These, dass das Projekt des Pythagoras erst in der Epoche der modernen Wissenschaft verwirklicht wurde. Gut vorstellbar wäre, dass ungefähr zweitausend Jahre nach dem angeblichen Tod des Philosophen in einer unbekannten griechischen Kolonie Süditaliens die Seele des Pythagoras in den Körper eines Mannes gewandert sei, der im Deutschland des späten sechzehnten Jahrhunderts geboren wurde: genauer gesagt, in den Körper des Astronomen, Mathematikers, Metaphysikers und Theologen, der am 27. Dezember 1571 in einer bescheidenen württembergischen Stadt geboren und auf den Namen Friedrich Johannes Kepler getauft wurde.[265] In seinem Brief trug der siebenundzwanzigjährige Kepler beiläufig diese Idee vor, und gewiss war sie wenigstens zum Teil scherzhaft gemeint. Trotzdem ist sie bedenkenswert, und nicht nur, weil viele Quellen angeben, Pythagoras habe eine Theorie der Seelenwanderung vertreten.[266] Vom ersten bis zum letzten seiner Werke bezog sich Kepler beständig auf Pythagoras. Man mag das im Hinblick auf die Tatsache interpretieren, dass die Tradition – mit der natürlich auch Kopernikus bestens vertraut war – den Pythagoreern die erste Darstellung des Kosmos zuschreibt, nach der sämtliche Himmelskörper, einschließlich der Erde, um die Sonne kreisen.[267] Doch in Wahrheit brachten Keplers Anspielungen auf Pythagoras mehr zum Ausdruck als seine Parteinahme für den Heliozentrismus. Sie deuteten auf das Ziel seines eigenen philosophischen und wissenschaftlichen Projekts hin, das zwar unverkennbar an die Vergangenheit gebunden war, jedoch zu den modernsten Entdeckungen führen sollte. Ebenso wie die Pythagoreer es sich vor langer Zeit vorgestellt hatten, wollte er die Verhältnisse der natürlichen Welt mit mathematischen Mitteln erfassen. Er versuchte, in der Sprache der Quantität die grundlegenden Elemente zu finden, die es ihm erlauben sollten, die Ordnung des Universums zu transkribieren.
Bereits auf den Eröffnungsseiten seines ersten großen Werkes, das 1596 in Tübingen erschien, bezeichnete Kepler Pythagoras als seinen »Führer, Gewährsmann und Wegweiser«. Es handelt sich um einen schmalen Band, dem der junge Astronom den Titel Mysterium cosmographicum oder Das Weltgeheimnis gab.[268] »Lieber Leser!«, schrieb Kepler in seinem Vorwort, »Ich habe mir vorgenommen in diesem Büchlein zu beweisen, dass Gott der Allgütige und Allmächtige bei der Erschaffung unserer beweglichen Welt und bei der Anordnung der Himmelsbahnen jene fünf regelmäßigen Körper, die seit Pythagoras und Plato bis auf unsere Tage so hohen Ruhm gefunden haben, zu Grunde gelegt und ihrer Natur Zahl und Proportionen der Himmelsbahnen, sowie das Verhältnis der Bewegungen angepasst hat.«[269] Um die Entfernungen zwischen den Planeten zu erfassen, argumentierte Kepler, genüge es, die Beziehungen darzustellen, die sich aus der Einbettung der fünf regelmäßigen konvexen Polyeder ineinander ergeben; dann zeige sich eine einfache Reihe von Proportionen. Kepler demonstrierte seine These, indem er einen Würfel zwischen Saturn und Jupiter einfügte, ein Tetraeder zwischen Jupiter und Mars, ein Dodekaeder zwischen Mars und Erde, ein Oktaeder zwischen Erde und Venus und schließlich ein Ikosaeder zwischen Venus und Merkur. Mit einem Schlag, so Kepler, komme der mathematische Plan des Universums ans Licht.[270] Man könne sehen, dass quantitative Beziehungen in die Ordnung des Kosmos eingeschrieben sind, und zwar mit Notwendigkeit:
[image: ]Abb. 5. Verschachtelung von Polyedern. Aus: Johannes Kepler, Mysterium cosmographicum, 2. Auflage, Frankfurt am Main 1621. (Foto: Dietmar Katz, bpk, Berlin/Art Resource, N.Y.)


Denn es ist nicht und war nie möglich (wie Cicero nach dem Timäus des Plato in seinem Buch Ueber das All sagt), dass der, welcher der Beste ist, irgend etwas anderes als das Schönste mache. Da nun der Schöpfer die Idee der Welt im Geiste fasste […] und die Idee bereits etwas Vorhandenes und, wie ich eben sagte, etwas Vollkommenes zum Inhalt hat, auf dass die Form des zu schaffenden Werkes ebenfalls vollkommen werde, erhellt, dass nach diesen Gesetzen, die sich Gott selber in seiner Güte vorschreibt, Gott die Idee zur Grundlegung der Welt keinem anderen Ding entnehmen konnte als seinem eigenen Wesen.[271]

Obwohl Kepler seine in Mysterium cosmographicum dargelegte Lehre von den Polyedern später revidieren sollte, schwankte er nie in seiner Überzeugung, dass mathematische Proportionen, wenn sie angemessen definiert sind, das Geheimnis der Welt offenbaren. Für den frühmodernen Denker blieb es ein Axiom, dass das göttliche Wesen die Welt im Einklang mit der Natur der Quantitäten entworfen habe, die er in den regelmäßigsten, symmetrischsten und vollkommensten Beziehungen angeordnet habe. Dieses Prinzip fand Kepler klar ausgesprochen in den Euklid-Kommentaren des spätantiken pythagoreischen und platonischen Mathematikers und Philosophen Proklos, die Kepler mit großer Zustimmung zitierte: »Für die Betrachtung der Natur leistet die Mathematik den größten Beitrag, indem sie das wohlgeordnete Gefüge der Gedanken enthüllt, nach denen das All gebildet ist […], und die einfachen Urelemente in ihrem ganzen harmonischen und gleichmäßigen Aufbau darlegt, mit denen auch der ganze Himmel begründet wurde, indem er in seinen einzelnen Teilen die ihm zukommenden Formen annahm.«[272]
Für den Glauben an die vollkommenen Proportionen des Kosmos konnte Kepler jedoch auch bei Kopernikus eine Begründung finden. In der Widmung seiner großen Abhandlung De revolutionibus versicherte Kopernikus Papst Paul III., seine Befunde ergäben sich aus frommer Verehrung des besten aller Artefakte. »Lange Zeit«, schrieb Kopernikus in seinem Widmungsbrief, »habe ich über die Verwirrung in der astronomischen Tradition hinsichtlich der Ableitung der Bewegungen der Himmelsbahnen nachgedacht. Es begann mich zu verdrießen, dass die Bewegungen der Weltmaschine, von dem besten und systematischsten aller Handwerker zu unserem Besten geschaffen, nicht mit größerer Gewissheit von den Philosophen verstanden wurden, die sonst die unbedeutendsten Kleinigkeiten dieser Welt so präzise erforschen.«[273] Das Vorgehen der alten Naturphilosophen, bemerkte Kopernikus nicht ohne Streitlust, ähnele dem von jemandem, der »Hände, Füße, einen Kopf und andere Glieder von irgendwoher aufsammelt, alle für sich genommen gut, doch nicht einem einzigen Körper angemessen, und nicht eines seinerseits dem anderen entsprechend, so dass eher ein Ungeheuer als ein Mensch aus ihnen entstünde«.[274] Ein solches Verfahren, schloss er, müsse den »Hauptpunkt« einer wahren Astronomie verzerren: »die Gestalt der Welt und die feste Symmetrie ihrer Teile«.[275]
Für Kepler, den selbsternannten Nachfolger des Kopernikus und vorgeblichen Wiedergänger des Pythagoras, konnte diese kosmische »Gestalt« nur eine mathematische und die »Symmetrie« ihrer Teile daher nur eine formal quantitative sein. Doch Kepler beharrte auf einem Grundsatz, den die Schüler des Meisters von Samos kaum zugegeben hätten: Dem frühmodernen Metaphysiker zufolge sind die Grundelemente der Welt ihrer Natur nach geometrische, nicht arithmetische. Wie sein italienischer Zeitgenosse Galileo Galilei, wenn auch aus anderen Gründen, hielt Kepler das Universum für ein Buch, das in »mathematischer Sprache« geschrieben ist und dessen »Buchstaben« sich von denen unseres Alphabets unterscheiden, weil sie aus »Dreiecken, Quadraten, Kreisen, Kugeln, Kegeln und anderen mathematischen Figuren bestehen«.[276]
Kepler brachte dieses Argument in theologischen wie in naturwissenschaftlichen Begriffen vor. Zu Beginn des Mysterium cosmographicum erklärte er, der in der Bibel erzählte Schöpfungsakt sei seinem Wesen nach ein Offenbarungsakt: Indem er die Welt gestaltete, habe Gott allen geschaffenen Dingen ein Bild seiner selbst eingeprägt. Dieses Bild, behauptete Kepler, sei seiner Natur nach quantitativ. Er erinnerte daran, dass nicht nur Aristoteles, sondern auch Kopernikus zufolge die Welt die Form einer Kugel besitze. Ist nicht die Kugel die vollkommenste der Figuren? Unter Berufung auf die Unterscheidung des Nikolaus von Kues zwischen dem »Krummen« und dem »Geraden« wies Kepler darauf hin, dass die Kugel in ihrer Struktur diese beiden grundlegenden Eigenschaften vereinige. Darüber hinaus lasse sich die Kugel als Illustration der Lehre von der Dreieinigkeit auffassen, »nämlich [als] die Abbildung des dreieinigen Gottes durch die Kugelfläche, des Vaters durch den Mittelpunkt, des Sohnes durch die Oberfläche, des hl. Geistes durch die Gleichheit der Lagebeziehung zwischen Punkt und Oberfläche.«[277] Die Betrachtung von Zahlen könne dagegen nicht darauf hoffen, die göttliche Natur einer solchen Figur zu erfassen.
In einem längeren Brief an Mästlin aus dem Jahr 1595 erklärte Kepler die Sache ausführlich. »Denn vor der Welt gab es keine Zahl außer der Dreiheit, die Gott selber ist. Wenn daher die Welt nach einem Zahlenmaß geschaffen ist, so nach dem Maß von Größen. Bei der Linie und der Fläche aber gibt es keine Zahl, hier herrscht das Unbegrenzte.«[278] »Die Zahl«, schloss er, »ist ein Akzidens [oder eine Eigenschaft] der [geometrischen] Größe.« Vielheiten haben keine Bedeutung, wenn nicht als Messungen realer, stetiger und erschaffener Körper. Wenn die Arithmetik bei der Erschaffung der Welt eine Rolle spielen kann, so weil sich an bestimmten Punkten und in bestimmten Relationen körperliche Dinge zu einer numerischen Darstellung eignen. Doch die zugrundeliegende Wirklichkeit der Welt bleibt geometrisch und ist daher nur teilweise mit den diskreten Einheiten der Arithmetik definierbar.
Kepler war sich dessen bewusst, dass seine Theorie der Quantität kaum mit der Tradition zu vereinbaren war. Die klassische Lehre der mathematischen Entitäten beruhte auf dem strengen Gegensatz zwischen zwei grundlegend verschiedenen Arten von Quantitäten: den stetigen und den diskontinuierlichen, der Größe und der Vielheit, kurz: den Figuren und den Zahlen. Diese Auffassung war es, die die frühmodernen Denker und Mathematiker zurückwiesen. Wie Simon Stevin und John Wallis, wenngleich in einer eigenen Form, behauptete Kepler, es dürfe in der Tat nur ein einziges quantum geben: das Kontinuum, den alten Gegenstand der Geometrie. Die Arithmetik blieb natürlich eine Disziplin von großer Nützlichkeit, für Kepler nicht minder als für seine Zeitgenossen, und er selbst brachte die Kunst des Rechnens mit Zahlen zu neuen Höhen, vor allem in der Nova stereometria doloriorum vinariorum, wo er wie niemals zuvor Infinitesimalzahlen verwendete, um die Maße von Weinfässern zu berechnen.[279] Doch seine Theorie der Mathematik schloss ausdrücklich die Möglichkeit aus, dass die Arithmetik ein eigenes ideales Objekt besitzen könnte, das seiner Natur nach von dem der Geometrie verschieden wäre. Die Zahlenkunst war für Kepler nicht mehr ein Instrument zur Notation stetiger quanta. Im Vergleich mit den Größen der Geometrie sind »Zahlen«, wie er bissig schreibt, »etwas, was bei der geistigen Betätigung an zweiter oder gar dritter und vierter Stelle kommt, sowie etwas, von dem man keine Grenze angeben kann. Auch haben die Zahlen nichts in sich, was sie nicht von den Quantitäten oder von anderen wirklichen oder realen Wesen oder auch von verschiedenen Setzungen des Geistes empfangen hätten.«[280] »Arithmetik«, hielt er fest, ist »nichts […] als der aussprechbare Teil der Geometrie.«[281]
Als gelehrter Leser der Werke der pythagoreischen Tradition wusste Kepler genau, dass ein Bereich der Natur lange Zeit als Beweis für die Präsenz von Zahlen in der erschaffenen Welt gehalten wurde. Dieser Bereich war natürlich die musica oder die Harmonie. Autoren von Boethius bis Zarlino hatten die Auffassung vertreten, dass Konsonanzen angenehm klingen, weil sie ihrem Wesen nach arithmetisch sind, weil in ihnen – und vielleicht nur in ihnen – ideale Vielheiten in einer sinnlichen und irdischen Form wahrnehmbar werden. Dem widersprach Kepler von seinen frühesten bis zu seinen letzten Werken – und nirgendwo entschiedener und systematischer als in seinem spätesten, wissenschaftlich und philosophisch bahnbrechenden Werk Harmonices mundi libri quinque, das 1619 in Linz erschien. Darin erinnerte Kepler an den klassischen Bericht von der Entstehung der Theorie der musikalischen Konsonanz:
Man sagt, Pythagoras habe, als er an einer Schmiede vorbeiging und die harmonisch abgestimmten Töne der Hämmer vernahm, zuerst die Entdeckung gemacht, dass der Unterschied der Töne von der Größe der Hämmer herrührt und dass die großen tiefe, die kleinen hohe Töne geben. Da sich aber das, was man Proportion nennt, auf Größen bezieht, maß er die Hämmer aus und fand dabei leicht die Proportionen, die harmonische oder dissonante, melodische oder unmelodische Tonintervalle bilden. Alsbald ging er von den Hämmern zu den Längen der Saiten über, wobei das Gehör genauer angibt, welche Teile der Saite mit der ganzen Konsonanzen, welche Dissonanzen ergeben.[282]

Kepler gestand Pythagoras zu, das Prinzip der Harmonie entdeckt zu haben, als er erkannte, dass ein akustisches Phänomen von einer mathematischen Proportion abgeleitet werden kann, kurz, dass »Unterschiede der Töne« von Größen abhängen. Doch Kepler wollte nicht zustimmen, dass die fraglichen Größen ihrer Form nach numerisch seien. Er meinte, eine übertriebene Abhängigkeit von der Arithmetik habe die Schüler in die Irre geführt. »Die Pythagoreer waren dieser Art und Weise, in Zahlen zu philosophieren, so sehr ergeben, dass sie sich nicht einmal mehr an das Urteil des Gehörs hielten, obgleich dessen Aussagen den Ausgangspunkt für diese Philosophie gebildet hatten. Sie taten vielmehr dem natürlichen Instinkt des Gehörs Gewalt an und bestimmten rein nur aus den Zahlen, was melodisch, was unmelodisch und was konsonant, was dissonant sei.«[283] Irrtümlich hielten sie den platonischen »Rest« (256:243) für harmonisch, den »kleineren Ganzton« (10:9) für unmelodisch und kamen so dazu, die Prinzipien zu verraten, die ihnen ihr verehrter Meister vermacht hatte. Ptolemaios, so erfahren wir, war der Erste, der das Urteil des Gehörs wieder in sein Recht eingesetzt und das pythagoreische System gemäß den Realitäten des Hörens berichtigt hatte.[284] Doch auch er erlag, wenngleich in anderer Weise, der »Betrachtung abstrakter Zahlen« und tat in seiner Harmonik der wahren Natur der Intervalle Gewalt an. Wegen seines Glaubens an arithmetisch gemessene Vielheiten habe Ptolemaios geleugnet, dass die großen und die kleinen Terzen und Sexten (die von den Proportionen 5:4, 6:5, 5:3 und 8:5 abgedeckt werden) Konsonanzen sind, während dies »alle modernen Musiker mit gutem Gehör bejahen«.[285]
Wären die Nachfolger des Pythagoras ihrem alten Meister treu geblieben, hätten sie vielmehr dem ursprünglichen »Urteil des Gehörs« vertraut. Sie hätten dann bemerkt, dass dieses Urteil, ebenso wie alle anderen physikalischen Einschätzungen, sich auf Körper und insofern auf Quantitäten bezieht, die den Regeln der Geometrie unterliegen. Nach Kepler liefert das Studium geometrischer Figuren die einzige Basis für die Lösung des Problems, das die Harmonietheorie seit dem Altertum nicht losgelassen hatte: nämlich die Unterscheidung zwischen Konsonanz und Dissonanz. Seit Euklid, wenn nicht schon früher, hatte die antike Theorie der Harmonie behauptet, dass bestimmte Zahlenprinzipien den Unterschied zwischen angenehmen und unangenehmen Klängen erklärten.[286] In seinen Istituzioni harmoniche von 1558 hatte Zarlino trotz seiner Neuerungen an der alten Position festgehalten. Obgleich er dafür plädierte, dass es nicht vier grundlegende »harmonische Zahlen« gebe, wie die Alten gemeint hatten, sondern sechs, vertrat der italienische Theoretiker – wie Boethius vor ihm – immer noch die Auffassung, dass musikalische Intervalle die Eigenschaften einer begrenzten Reihe gemessener Vielheiten ausdrückten. In diesem Punkt fand Kepler Zarlinos Lehre von der musica kaum überzeugender als die antike. Nach Kepler hatten beide nicht verstanden, dass Zahlen als »der aussprechbare Teil der Geometrie« nicht die Natur der erschaffenen Welt zu erklären vermögen. Hatten nicht die Alten selbst bei ihren Messungen sich kontinuierlich ausgedehnter Körper bedient? Das Monochord, daran erinnert Kepler, definiert Intervallbeziehungen mit Bezug auf die Länge von Saiten. Zahlen kommen später, wenn die Theoretiker tönende Strecken in Begriffen gemessener Vielheiten ausdrücken. »Denn da die Bestimmungsstücke konsonanter Intervalle kontinuierliche Größen sind, müssen auch die Ursachen, die diese von den dissonanten unterscheiden, in der Familie der kontinuierlichen Größen gesucht werden, nicht bei den abstrakten Zahlen, das heißt bei diskreten Größen.«[287] Einzig die Geometrie kann Gründe für die Tatsachen der Musik anbieten.
Im dritten Buch seiner Harmonices mundi geht deshalb nun Kepler daran, das zu leisten, was den glücklosen Pythagoreern jahrhundertelang versagt geblieben war: eine vollständige Theorie der Musik vorzulegen, die nicht auf Arithmetik, sondern auf Geometrie beruht. Bereits 1596 hatte er eine solche Erklärung zu geben versucht, als er im Mysterium cosmographicum behauptete, die Gesetze der Konsonanz und Dissonanz ließen sich aus den Beziehungen zwischen den fünf regelmäßigen platonischen Körpern herleiten.[288] 1619 räumte Kepler ein, dass seine Erklärung gescheitert war, doch er fügte hinzu, dass seine Grundanschauung über die Korrelation zwischen Musik und Geometrie richtig gewesen sei. »Wenn ich aber auch früh schon bemerkt hatte, dass man die Ursachen in den ebenen Figuren suchen muss – den Samen dieser Erkenntnis findet man bereits in dem angeführten XII. Kapitel des Mysterium ausgestreut –, so haben sie mir lange doch schwer zu schaffen gemacht, ehe allen meinen Bedenken Genüge geschehen war.«[289] Dies geschah, sobald Kepler erkannt hatte, dass die geometrischen Gegenstände, welche die Prinzipien der Harmonie aufzudecken vermögen, nicht dreidimensionale, sondern zweidimensionale Figuren sind. Flächen, nicht Körper, können die alte Frage nach den »Gründen für die Harmonie« lösen.
Die Grundlehre, wie sie in den Harmonices mundi dargestellt wird, lässt sich leicht angeben. Krümmt man eine Saite so, dass Anfang und Ende sich berühren, erhält man einen Kreis. Diesem kann man dann ein regelmäßiges Polygon einbeschreiben. Eine solche Figur wird den Kreisumfang notwendigerweise in eine gewisse Anzahl gleicher Kreisbögen teilen: Ein einbeschriebenes Dreieck zum Beispiel wird drei Bögen erzeugen; ein Pentagon fünf, ein Hexagon sechs. Kepler schlägt nun vor, zwischen zwei Arten solcher Bögen zu unterscheiden, nämlich »Teile« und »Reststücke«. Wann immer eine oder mehrere der Seiten des Polygons einem oder mehreren Bögen gegenüberliegen, so dass die Summe der Kreisbögen den Halbkreis nicht überschreitet, spricht Kepler von einem »Teil« oder »Teilen«. Der verbleibende Abschnitt des Kreises wird dann »Reststück« genannt. Zwischen Teil und Ganzem, zwischen Reststück und Ganzem und zwischen Teil und Reststück lassen sich dann neue Relationen herstellen.
Im Zuge seiner musikalisch-geometrischen Exposition trägt Kepler nun eine Hauptthese vor: Die Relationen zwischen dem Ganzen, Teilen und Reststücken solcher in Kreise einbeschriebenen Polygone definieren alle musikalischen Konsonanzen, die von »allen modernen Musikern mit gutem Gehör« anerkannt werden.[290] Darüber hinaus definieren solche Relationen ausschließlich Konsonanzen, im Unterschied zu Dissonanzen. Kurz, den in Kreise einbeschriebenen Polygonen gelingt Kepler zufolge, was den Zahlen versagt blieb. Figuren erweisen sich als die wahre und einzig wahre mathematische Basis musikalischer Klänge. Doch Keplers geometrische Darstellungsmethode erfordert einige Regeln. Wie H.F. Cohen gezeigt hat, lassen sie sich auf drei Axiome zurückführen.[291] Erstens sind nur solche Polygone zulässig, die sich direkt mit Zirkel und Lineal konstruieren lassen.[292] Zweitens werden »Repliken beseitigt, die aufgrund der scheinbaren Identität zweier Noten entstehen, die um eine Oktave oder weiter auseinanderliegen«.[293] Drittens »erzeugt der Schnitt eines Kreises durch ein regelmäßiges Polygon eine konsonante Proportion dann und nur dann, wenn keine der Proportionen Teil zu Ganzes, Reststück zu Ganzes oder Teil zu Reststück zuvor durch ein nichtkonstruierbares Polygon, wie etwa das Siebeneck, erreicht wurde«.[294]
Dieses letzte Axiom ist in gewissem Sinne das am wenigsten evidente, jedoch das wichtigste. Es verweist auf eine mathematische Tatsache, der Kepler große Bedeutung beilegte: Werden bestimmte Polygone, wie etwa das Siebeneck, in den Kreis einbeschrieben, so weisen sie Seitenlängen auf, die mit dem Durchmesser strikt inkommensurabel bleiben. Solche Figuren sind, um Keplers Ausdruck zu benutzen, »nicht darstellbar«, das heißt nicht konstruierbar, denn sie können nicht im geometrischen Sinne des Wortes definiert werden. Die einleitenden Definitionen der Harmonices mundi, die vieles Euklid verdanken, sind in diesem Punkt unzweideutig. Mathematisches Wissen ist von Natur aus beschränkt: »Wissen heißt bei geometrischen Dingen messen durch ein bekanntes Maß. Dieses bekannte Maß ist hier bei der Aufgabe, Figuren einem Kreis einzubeschreiben, der Kreisdurchmesser.«[295] Wenn sich eine Seite des Polygons nicht mit Lineal und Zirkel anhand des Durchmessers bestimmen lässt, ist sie nicht »wissbar«. Kepler bemerkt dazu, es wäre ungenau, eine solche Größe »irrational« oder »unaussprechbar« zu nennen, »denn es gibt viele Strecken, die, obgleich unaussprechbar, doch durch die besten Gründe (rationes) in ihrem Bestand gesichert werden«, so wie Größen, die oft als »irrational« betrachtet werden, »quadratisch aussprechbar« sind. Doch eine einbeschriebene Linie, die nicht durch irgendeine Zahl aliquoter Teile des Durchmessers erschöpft werden kann, bleibt absolut »unwissbar«. Indem sie der geometrischen Konstruktion eine Grenze setzt, liefert sie das einzige mathematische Kriterium für die Unterscheidung zwischen Konsonanz und Dissonanz: Alle Proportionen, die in Kreisbögen auftreten, die von solchen Polygonen geschnitten werden, können und müssen in der Tat aus dem Bereich der Harmonie ausgeschieden werden.
Es wäre nach Kepler jedoch ein Irrtum zu glauben, dieser Bereich sei auf den Menschen beschränkt. Mehr als einmal legte Kepler dar, dass geometrische Notwendigkeiten auch für Gott gültig sind. Von theologischem Standpunkt aus betrachtet, sind sie, wie er wiederholt sagte, »gleich ewig«; »Geometrie ist ewig wie Gott«, heißt es in den Harmonices mundi.[296] Wie Jean-Luc Marion hierzu bemerkt, »bedeutet gleich ewig mehr als bloß ewig«.[297] Dieses Wort legt einen substantiellen Vergleich nahe. Mathematische Gesetze und Theoreme sind für Kepler nicht nur zeitlich älter als alle erschaffenen Dinge; wegen der »Ewigkeit«, die sie mit ihm teilen, sind sie auch Gott gleich.[298] Mit der Enthüllung der Prinzipien der Harmonie zeigte Kepler, welche ursprünglichen Ideen für die Schöpfung leitend waren: die »Urbilder«, nach denen das All erschaffen wurde. Ihre Regeln und ihre Beschränkungen sind dem menschlichen und dem göttlichen Geist gemeinsam: Was für den Menschen »undemonstrierbar« ist, bleibt demnach »unwissbar« auch für Gott.
Aber das ist noch nicht alles. Um die Wahrheiten der Mathematik zu verstehen, genügt es nicht, die ursprünglichen Konzepte des göttlichen Werkmeisters zu erfassen. Es gilt sie so zu erfassen, wie er selbst es tut, und zudem gemäß seinem Willen. Denn »Gott wollte, dass der Mensch, der Sein Ebenbild ist, den Verstand mit Ihm teile« (intellectum … secum communem).[299] Eindeutig, wenn auch unausgesprochen weicht die alte Theorie einer Analogie zwischen menschlichem und göttlichem Geist einer neuen Lehre der Univozität: In der Erfassung der geometrischen Wahrheiten der Harmonie gelangen der geschaffene und der ungeschaffene Verstand dazu, dieselben Gegenstände im selben Sinne zu »wissen«. Wie Gérard Simon schreibt, erweist sich die Mathematik damit als »Vermittler zwischen Mensch und Gott. […] Sie ist die einzige Sprache, die sie beide besitzen. Die Wahrheit von Demonstrationen gilt sogar für den Verstand des Schöpfers, und die Schönheit der Proportionen, die der Welt ihre Harmonie verleiht, ist für den Astronomen, der sie berechnet, ebenso bezaubernd wie für das Höchste Wesen, das sie schaut.«[300]
Nur wenn man diese Auffassung der Mathematik versteht, kann man die Bedeutung ermessen, welche die Gesetze der Harmonie in Keplers geometrischer Kosmologie gewinnen. Der frühmoderne Denker hätte gewiss nicht bestritten, dass der menschliche Geist bestimmte Intervalle aufgrund von akzidentellen Eigenschaften sinnlicher Dinge als angenehm empfindet. »[D]as Formale der sinnlichen Harmonie, insofern sie Harmonie ist«, gestand er zu, »[ist] für die Sinnendinge etwas Akzidentelles […], so wie das Gesehenwerden, Gehörtwerden usw. etwas Akzidentelles ist.«[301] Doch er glaubte, dass sinnliche Harmonien keine Wirkung auf uns ausüben könnten, wären sie nicht »etwas von den sinnlichen Dingen in gewisser Weise Abstrahiertes«, das »durch die Sinne in das Innere gelangen und, vor das Tribunal der Seele geführt, [zum Bezugsglied] einer sinnlichen harmonischen Proportion« wird.[302] Doch die vernehmbaren Konsonanzen füllen nur einen Teil der Weltharmonik aus. Sie spiegeln nur einen Bruchteil der mathematischen Notwendigkeiten, die der Schöpfung einbeschrieben sind. Jenseits des Bereichs des Tons, jenseits des Gebiets der Empfindung und sogar jenseits dieser Erde lassen sich, wie der Physiker lehrte, »reine und geheime« Proportionen ausmachen. Dies folgt aus dem Grundsatz, es sei nicht möglich, »dass der, welcher der Beste ist, irgend etwas anderes als das Schönste mache«, in Verbindung mit der vollkommensten der gleich ewigen Ideen: Alle Natur zeigt nach Kepler ideale und intelligible Proportionen. »Denn der Schöpfer«, erklärte er, »der eigentliche Urquell der Geometrie, der, wie Platon sagt, ewige Geometrie treibt, weicht von dem Urbild nicht ab.«[303]
Auf den ersten Blick könnte man einen solchen Gedanken für den Überrest eines antiken Glaubens halten, wie es ja Kepler selbst mit seinem Plutarch-Zitat eines Platon-Zitats nahelegt.[304] Doch es war gerade diese Behauptung der Universalität der Geometrie, die Keplers Beitrag zum Auftauchen der frühmodernen Kosmologie den Weg öffnete, zumindest in den beiden grundlegenden Hinsichten, die Alexandre Koyré ihr vor langer Zeit zuschrieb. Indem er die Welt als das Artefakt eines göttlichen Geometers bestimmte, deren Harmonien überall gleich ideal, regelmäßig und mathematisch sind, vollzog Kepler zwei Grundschritte der wissenschaftlichen und philosophischen Revolution: die »Zerstörung des Kosmos«, das heißt das Verschwinden der »Vorstellung von der Welt als eines endlichen und wohlgeordneten Ganzen« aus den philosophisch und wissenschaftlich gültigen Begriffen, und seine Ersetzung durch die Idee eines physikalischen Universums, das »nicht länger durch natürliche Unterordnung vereint, sondern nur durch die Identität seiner letzten und grundlegenden Bestandteile und Gesetze zusammengehalten wird«.[305] Tatsächlich hatte Kepler bereits im Mysterium cosmographicum jenen alten Gedanken – den Kopernikus noch verfochten hatte – als »töricht und ungeheuerlich« abgetan, dass sich jenseits des Mondes reale, »stahlharte« Sphären »mit einer Art Stoff« durch den Himmel bewegen und die Sterne mitführen.[306] Gewiss, Kepler zweifelte niemals daran, dass an dem weitesten von der Erde entfernten Punkt »Fixsterne« liegen, die das kugelförmige Universum umschließen. Doch anders als seine Vorgänger bestritt Kepler, dass innerhalb des geschaffenen Alls Unterschiede der physikalischen Lage irgendwelche grundlegenden natürlichen Unterschiede beinhalten. »Es war Kepler«, schrieb Koyré, »der offen und bewusst eine moderne Konzeption der wesentlichen Identität der Elemente eröffnete, aus denen die Welt sich zusammensetzt«; er war es, der die »irdische Physik« und die »Himmelsphysik« mit der Erfindung einer einheitlichen Naturwissenschaft vereint und nur noch »einen vollkommen homogenen Raum« anerkennt, »der vollständig geometrisiert ist und in dem die ›Orte‹ einander streng äquivalent sind«.[307] Diese »Öffnung« folgte aus dem Postulat eines Gottes, der von den Himmelskörpern bis hinab zu einer einzelnen Schneeflocke »von dem Urbild nicht ab[weicht]«. Kurz, für Kepler war »ein vollkommen homogener Raum« das Korrelat eines Schöpfers, mit dem die Mathematik absolut »gleich ewig« war.
Es ist daher kaum überraschend, dass das fünfte und krönende Buch der Harmonices mundi sämtliche hörbaren und sinnlichen Phänomene hinter sich lässt und sich stattdessen auf mathematische Proportionen konzentriert, die allein den Planeten ablesbar sind: »Die vollkommenste Harmonie in den himmlischen Bewegungen«, wie der Titel lautet, »und die daher rührende Entstehung der Exzentrizitäten, Bahnhalbmesser und Umlaufszeiten«.[308] Hier liefert Kepler die vielleicht vollständigste Darstellung der Regelmäßigkeiten der Himmelskörper und definiert die Gesetze der Planetenbewegung, die bis heute seinen Namen tragen. Es sind, wie man allgemein annimmt, drei an der Zahl. Kepler präsentiert das erste Gesetz, den »Ellipsensatz«, in zwei Sätzen, die auf die Erkenntnisse verweisen, die er in seinen Kommentaren zum Mars gewonnen hatte: »Des weiteren habe ich bewiesen, dass die Bahn eines Planeten elliptisch ist und dass die Sonne, die Quelle der Bewegung, in dem einen Brennpunkt dieser Ellipse steht.«[309] Das zweite Gesetz, der »Entfernungs-« oder »Flächensatz«, stellt fest, dass ein Planet auf seiner Bahn in gleichen Zeiten gleich große Flächen überstreicht. Wegen der elliptischen Form der Planetenbahn folgt aus diesem Prinzip, dass der Planet, je näher er der Sonne ist, sich umso schneller bewegen wird. In Keplers Worten: »[D]ie verschiedenen Wegzeiten für gleiche Teile des Exzenters [sind] proportional […] in ihren Abständen von der Sonne, der Quelle der Bewegung.«[310] Schließlich legt das dritte Gesetz fest, dass für je zwei Planeten das Verhältnis der mittleren Umlaufzeiten genau der anderthalbfachen Potenz des Verhältnisses der mittleren Bahndurchmesser entspricht.[311] Kepler scheint diesen Satz während seiner Arbeit an den zwischen 1616 und 1619 veröffentlichten Harmonices mundi erst spät gefunden zu haben.[312] Bei der Einführung dieser Proportion bemerkt er:
Am 8. März dieses Jahres 1618 […] ist sie in meinem Kopf aufgetaucht. Ich hatte aber keine glückliche Hand, als ich sie der Rechnung unterzog, und verwarf sie als falsch. Schließlich kam sie am 15. Mai wieder und besiegte in einem neuen Anlauf die Finsternis meines Geistes, wobei sich zwischen meiner siebzehnjährigen Arbeit an den Tychonischen Beobachtungen und meiner gegenwärtigen Überlegung eine so treffliche Übereinstimmung ergab, dass ich zuerst glaubte, ich hätte geträumt und das Gesuchte in den Beweisunterlagen vorausgesetzt. Allein es ist ganz sicher und stimmt vollkommen, dass die Proportion, die zwischen den Umlaufszeiten irgend zweier Planeten besteht, genau das Anderthalbe der Proportion der mittleren Abstände, d.h. der Bahnen selber, ist.[313]

Ebendieser astronomische Satz wird allgemein »das Harmoniegesetz« genannt, und zwar aus einem einfachen Grund. Die Relation zwischen Zeit und Entfernung, die er für je zwei Planeten aufstellt, ist die einer fundamentalen arithmetischen Ungleichheit, die aus dem Studium der Musik wohlbekannt ist: das Verhältnis nämlich von drei zu zwei (3:2). Mit anderen Worten, für zwei Planeten, die sich elliptisch um die Sonne bewegen, zeigen die Zeiten und Entfernungen eine grundlegende mathematische Konsonanz: das Intervall einer vollkommenen Quinte.
Die Wichtigkeit des Harmoniegesetzes für Keplers Kosmologie ist nun kaum zu überschätzen, obgleich es, wie J.V. Field bemerkt, in den astronomischen Berechnungen des V. Buches der Harmonices mundi keine »große Rolle« spielt.[314] Die ersten beiden Gesetze besagen, dass streng geometrische Regelmäßigkeiten die Wege und Geschwindigkeiten festlegen, denen jeder einzelne Planet auf seiner Bahn um die Sonne folgt. Doch das dritte Gesetz enthält viel mehr. Es gelingt ihm, einen Planeten mit einem anderen in der Weise in Beziehung zu setzen, dass zwischen zwei beliebigen Himmelskörpern eine exakte Harmonie zu beobachten ist. Mit der Entdeckung dieses Gesetzes glaubte Kepler selbst ein physikalisches und mathematisches Prinzip enthüllt zu haben, das die Form des Universums als Ganzes beherrscht. »Das Forschungsziel«, erklärt er nun, das
mich veranlasst hat, den besten Teil meines Lebens astronomischen Studien zu widmen, Tycho Brahe aufzusuchen und Prag als Wohnsitz zu wählen, das habe ich mit Gottes Hilfe, der meine Begeisterung entzündet und ein unbändiges Verlangen in mir geweckt hatte, der mein Leben und meines Geisteskraft frisch erhielt und mir auch die übrigen Mittel durch die Freigebigkeit zweier Kaiser und der Stände meines Landes Österreich ob der Enns verschaffte – das habe ich also nach Erledigung meiner astronomischen Aufgabe, bis es genug war, endlich ans Licht gebracht. In einem höheren Maße als ich je hoffen konnte, habe ich als durchaus wahr und richtig erkannt, dass sich die ganze Welt der Harmonik, so groß sie ist, […] bei den himmlischen Bewegungen findet […].[315]

Keplers Begeisterung erreicht ihren Höhepunkt in der Gewissheit, dass ihm etwas gelungen war, worauf Gott seit sechstausend Jahren gewartet hatte. »Jetzt«, schließt er,
hält mich nichts zurück. Jawohl, ich überlasse mich heiliger Raserei. Ich trotze höhnend den Sterblichen mit dem offenen Bekenntnis: Ich habe die goldenen Gefäße der Ägypter geraubt, um meinem Gott daraus eine heilige Hütte einzurichten weitab von den Grenzen Ägyptens. Verzeiht ihr mir, so freue ich mich. Zürnt ihr mir, so ertrage ich es. Wohlan ich werfe die Würfel und schreibe ein Buch für die Gegenwart oder die Nachwelt. Mir ist es gleich. Es mag hundert Jahre seines Lesers harren, hat doch auch Gott sechstausend Jahre auf den Beschauer gewartet.[316]

Kepler entwickelte seine musikalische Darstellung des Universums jedoch noch weiter. Nachdem er mit dem dritten Gesetz die physikalische Basis für eine Konsonanz zwischen Himmelskörpern gelegt hatte, zeigte er im Weiteren, dass auch das erste und das zweite Gesetz, recht verstanden, das Bestehen einer Harmonie zwischen den Planeten beinhalten. Es genügt, an die Regeln der elliptischen Bahn und die variablen Planetengeschwindigkeiten zu erinnern. Sie legen fest, dass die Geschwindigkeit jedes Himmelskörpers sich zwischen zwei Extremen bewegt: derjenigen, die er am Punkt seiner größten Nähe zur Sonne (dem Perihel) erreicht, wo die Planetengeschwindigkeit am größten ist, und derjenigen, die er am Aphel erreicht, wo sie am geringsten ist. Setzt man diese beiden Werte in Beziehung, werden sie natürlich eine Ungleichheit bilden. Genauer gesagt, werden sie ein Verhältnis bilden, wie die beiden Abschnitte der Saite eines Monochords. Kepler argumentierte nun mit weitschweifiger astronomischer Beweisführung so: Betrachtet man die Extreme der Bahngeschwindigkeiten der sechs Planeten, die der frühmodernen Astronomie bekannt waren, so ist eine Tatsache kaum zu leugnen: Zwischen der größten und der kleinsten Sonnenferne weisen die Planeten Geschwindigkeitsdifferenzen auf, die, gibt man sie mathematisch wieder, ihrer Form nach musikalische Intervalle sind. Merkur, der sich zwischen den extremen Geschwindigkeiten von zwölf und fünf bewegt (12:5), durchläuft die Relation, die, bezogen auf Saitenlängen, eine Oktave plus eine kleine Terz ergibt. Venus, in der Bewegung zwischen den Werten von fünfundzwanzig und vierundzwanzig (25:24), zeigt die Ungleichheit, die den chromatischen Halbton definiert. Die Erde, zwischen Geschwindigkeiten von sechzehn und fünfzehn (16:15), gibt einen diatonischen Halbton. Mars, dessen veränderliche Bewegungen zwischen drei und zwei (3:2) variieren, bringt eine vollkommene Quinte hervor. Die Geschwindigkeiten des Jupiter, die von sechs bis fünf (6:5) reichen, liefert eine kleine Terz. Saturn schließlich bewegt sich beim Übergang vom Perihel zum Aphel von dem Wert fünf zu dem Wert vier (5:4), erzeugt also eine große Terz.
Keplers astrale Harmonien reichen jedoch weiter, als dieses Resümee wiederzugeben vermag. Man kann mit der Beobachtung beginnen, dass die Veränderung der Geschwindigkeit, die ein Planet auf seiner Bahn zeigt, präzise mit einem aus der Musiktheorie bekannten Intervall korreliert werden kann. Doch zwischen dem Aphel und dem Perihel eines Planeten und denen eines anderen lassen sich weitere Beziehungen herstellen. Harmonien lassen sich also nicht nur im Lauf jedes Himmelskörpers erkennen, sondern auch in ihren verschiedenen Kombinationen. »Es besteht nun aber«, lesen wir,
ein großer Unterschied zwischen den angeführten Harmonien bei den einzelnen Planeten und denen bei Planetenpaaren. Die ersteren können nicht in einem bestimmten Zeitpunkt bestehen; bei den letzteren ist dies durchaus möglich. Denn wenn ein Planet gerade im Aphel ist, kann er nicht gleichzeitig auch im gegenüberliegenden Perihel sein. Von zwei Planeten aber kann der eine in seinem Aphel und zu gleicher Zeit der andere in seinem Perihel sein.[317]

Als kundiger Leser der modernen wie der antiken Harmonietheorie zog Kepler rasch den Schluss, den eine solche musikalische Struktur implizierte. Während jeder Himmelskörper eine einstimmige Melodie von der Art singt, wie sie den Alten bekannt war, bringen die sechs Planeten zusammengenommen eine »Melodie« anderer Art hervor: einen »mehrstimmigen, sogenannten figurierten Gesang […], der eine Erfindung der letzten Jahrhunderte ist«, das heißt, schlichter gesagt, Polyphonie.[318] Stellt man mit Hilfe der musikalischen Notation die verschiedenen Planetenintervalle in einem einzigen Tonraum dar, weist man eine Note der langsamsten der Planetenbewegungen zu und setzt die schnelleren dazu in Beziehung, so erhält man eine musikalische Transkription all der lautlosen Himmelsbewegungen.[319] Im fünften Buch der Harmonices mundi erhält Kepler sechs »Tonleitern«, die, in kontrapunktischer Verbindung, »mit der figurierten modernen Musik übereinstimmen«.[320] Kopernikus hatte die Bewegungen der Gestirne noch mit einem komplizierten »Reigen-Tanz« verglichen.[321] Kepler schlägt ein anderes Modell vor, das auf Beobachtung und exakter Berechnung beruht. Nachdem der Himmel einmal als das Blatt einer gut besetzten polyphonischen Partitur entworfen war, konnten die Planeten als Ausführende einer kosmologischen Komposition in sechs Stimmen verstanden werden. »Es sind also die Himmelsbewegungen nichts anderes als eine fortwährende mehrstimmige Musik (durch den Verstand, nicht das Ohr fassbar), eine Musik, die durch dissonierende Spannungen, gleichsam durch Synkopen und Kadenzen hindurch (wie sie die Menschen in Nachahmung jener natürlichen Dissonanzen anwenden) auf bestimmte, vorgezeichnete, je sechsgliedrige (gleichsam sechsstimmige) Klauseln lossteuert und dadurch in dem unermesslichen Ablauf der Zeit unterscheidende Merkmale setzt.«[322]
Doch Keplers streng geometrische Darstellung des Alls zieht auch Konsequenzen nach sich, die weniger leicht mit dem Harmonieideal zu versöhnen sind. Zunächst einmal ist bemerkenswert, dass der Astronom in Keplers Darstellung die Verhältnisse der Welt nur begreift, wenn er sich von seiner eigenen Position abstrahiert, sich also vorstellt, er könne aus einer Perspektive blicken – oder hören –, die er nicht einnehmen kann. Es ist gewiss, dass die harmonische Anordnung der Planeten von der Erde aus nicht wahrgenommen werden kann, weil sie einzig vom Beobachtungspunkt der Sonne aus erkennbar ist. Insofern erinnert Keplers Darstellung der Ordnung des Universums an die des Kopernikus, dem zufolge – wie Fernand Hallyn bemerkt – »Gott ein ›symmetrisches‹ Universum geschaffen hat, doch diese ›Symmetrie‹ erscheint dem Menschen nur, wenn er erkennt, dass er die Dinge nicht vom Mittelpunkt aus betrachtet«.[323] Kepler war sich dieser Tatsache nur zu bewusst: Um die musikalischen Proportionen wahrzunehmen, die zwischen den Planeten gelten, muss man ein merkwürdiges Experiment vornehmen. Zunächst muss man, wie er fast im Vorübergehen anmerkt, »einen Beobachter auf der Sonne« annehmen.[324] Zweitens muss man, um die Harmonien in ihrer Abfolge und Gleichzeitigkeit zu hören, darauf verzichten, »auf das Himmelskonzert unseren Zeitmaßstab anzuwenden«, denn die Musik der Himmel entfaltet sich ununterbrochen vom Schöpfungsakt bis zum Jüngsten Gericht.[325]
Doch selbst aus einer solaren Perspektive und sub specie aeternitatis bleiben noch akustische Merkwürdigkeiten in der Weltordnung. Die verblüffendste unter ihnen geht auf die Tatsache zurück, dass die Minimal- und die Maximalgeschwindigkeit eines jeden Planeten sich zwar wie die beiden Grenzstufen eines musikalischen Intervalls verhalten, dass ein Planet aber auf seiner Bahn ein unendlich teilbares Kontinuum von Geschwindigkeiten durchläuft, wie Kepler selbst bemerkt.[326] »Jeder Planet hat seine eigene Tonleiter, begrenzt von seinen extremen Geschwindigkeiten«, schreibt D.P. Walker, doch der Übergang »von der tiefsten bis zur höchsten Note und wieder zurück ist nicht wirklich in Ton- und Halbtonstufen gegliedert, wie bei einer musikalischen Tonleiter, sondern stellt eine kontinuierliche Beschleunigung und Verlangsamung der Geschwindigkeit des Planeten dar. Gäben sie wirklich Töne von sich (was nicht der Fall ist), würden ihre ›Tonleitern‹ daher wie eine Sirene beim Luftalarm klingen.«[327] »Musikalisch heißt das aber«, bemerkt Michael Dickreiter, »dass das Intervall, durch die beiden extremen Geschwindigkeiten definiert, durch ein Glissando ausgefüllt wird.«[328] Dank ihrer traditionellen Form bleibt Keplers musikalische Notation insofern arithmetischer als die quantitative Wirklichkeit, die sie erfasst. In Wahrheit liegen zwischen Aphel und Perihel stetige Größen (magnitudines), nicht diskrete Vielheiten (multitudines): kontinuierliche Modulationen, denen, akustisch gesprochen, einzig unaufhörlich veränderte Tonfrequenzen entsprächen.
Doch noch eine größere Disharmonie bedroht Keplers polyphonisches Universum. Seine Kosmologie kommt kaum um eine fundamentale, aber verwirrende Frage herum, die sich darauf richtet, wo eigentlich all die Figuren, Körper, Geraden und Kurven eingezeichnet werden. Eine solche Frage betrifft weniger die Urbilder selbst als den Ort ihrer Inskription, dasjenige, »worin« der Platon’sche Gott Geometrie treibt. Es kann kein Zweifel bestehen, dass Keplers Harmonielehre fordert, dass sich die Sonne im Mittelpunkt des Universums befindet. Doch kann man sicher sein, dass dieses Universum einen Mittelpunkt hat? Was, wenn es ausgedehnt wäre wie eine endlose Gerade oder ein Bereich ohne Grenzen? Eine solche Möglichkeit, wie verwirrend sie auch scheinen mochte, lag ab dem siebzehnten Jahrhundert nur allzu nahe.
Schon im Altertum hatten die Philosophen darüber debattiert, ob es so etwas wie einen unbegrenzten Ort oder Körper geben und ob er mit dieser Welt gleichgesetzt werden könnte. Aristoteles hatte die Sache im ersten Buch seiner Abhandlung De caelo et mundo ausführlich behandelt. Da er den Raum für nichts weiter als die Umgebung von Körpern hielt, reduzierte er die Frage nach einem unendlichen Raum auf die nach einem unendlichen Körper.[329] Diese wiederum glaubte er definitiv in einem verneinenden Sinne beantworten zu können. Er begann mit der Feststellung, dass alle Körper entweder einfache oder zusammengesetzte sind. Körper, die aus einer begrenzten Zahl einfacher Teile bestehen, müssen begrenzt sein. »Denn was aus (Teilen) zusammengesetzt ist, die sowohl der Zahl als auch der Größe nach begrenzt sind, ist seinerseits der Zahl und der Größe nach begrenzt. Seine Größe entspricht nämlich derjenigen (der Teile), aus denen es zusammengesetzt ist.«[330] Implizit schloss Aristoteles die Möglichkeit aus, dass irgendein Körper aus einfachen Elementen bestehen kann, die als solche unbegrenzt sind. Doch es blieb noch für ihn zu entscheiden, ob nicht das Universum selbst ein solcher einfacher und unbegrenzter Körper sein kann. Da er annahm, dass die Natur des Universums aus den Himmelssphären erschlossen werden kann, und da er es für selbstevident hielt, dass die Himmelssphären sich im Kreis um die Erde drehen, stellte er die Frage nach einer unendlichen Welt in folgender Form: Kann sich ein unbegrenzter Körper kreisförmig bewegen? Aristoteles brachte dann sechs physikalische und astronomische Argumente vor, die eine solche Möglichkeit ausschließen. Wenn sich etwa ein unbegrenzter Körper drehen sollte, könnte er es nur in einem Kreis, der seinerseits unbegrenzt wäre, doch »man [kann] […] das Unbegrenzte nicht durchqueren«, und darum kann ein unbegrenzter Körper sich auch nicht im Kreis bewegen.[331] Nacheinander führten die aristotelischen Argumente zu ein und derselben Schlussfolgerung: Ein kreisender Körper muss »als Ganzes begrenzt sein« (πεπεράνθαι πᾶν).[332] »Somit ist es klar«, folgerte Aristoteles, »dass das, was sich im Kreis bewegt, weder endlos (ἀτελεύτητον) noch unbegrenzt (ἄπειρον) ist, sondern ein gewisses Ende hat.«[333] Diese These stimmte auch mit der aristotelischen Konzeption überein, wonach die Welt aus einer Reihe konzentrischer Kreise besteht, die ein Ende erreichen muss.
Der Beweis des Aristoteles blieb jahrhundertelang verbindlich. Seine Gültigkeit wurde jedoch ungewiss, als Zweifel an der ptolemäischen Kosmologie aufkamen. »Von dem Moment an, in dem Kopernikus endgültig den geozentrischen und geostatischen Schein aufgab«, bemerkt Jean Seidengart, »brachen diese ganzen Beurteilungskriterien in sich zusammen.«[334] Von da an war es unumgänglich, die Möglichkeit ins Auge zu fassen, das Universum könne unbegrenzt und sogar unendlich ausgedehnt sein, wie der Raum der euklidischen Geometrie. Zunehmend erinnerte man daran, dass schon bald nach Aristoteles einige Denker die Welt der Größe nach für unbegrenzt gehalten hatten. Einige bestritten den Zusammenhang, den Aristoteles zwischen Ort und Körpern hergestellt hatte, und argumentierten, das Universum könne durchaus einen grenzenlosen leeren Raum beinhalten, das heißt ein Vakuum. Andere verwarfen stattdessen Aristoteles’ Widerlegung der Idee eines unbegrenzten Himmels. Die berühmtesten Befürworter der Idee eines grenzenlosen Universums waren zweifellos die antiken Atomisten, doch Leukipp, Demokrit, Epikur und Lukrez waren nicht die einzigen Philosophen, die die Möglichkeit in Betracht zogen, dass unser besonderer Kosmos womöglich von einem »Ganzen« oder »Universum« (τὸ πᾶν) überragt werde, das unbegrenzt sei.[335] »Xenophon«, so wurde bemerkt, »sieht die Erde ›in den unendlichen Raum gebettet‹, Seleukos behauptet, dass die Welt keine Grenzen kenne, und sowohl Diogenes als auch Archelaos betrachten das Universum als unendlich.«[336] Und in seinem Buch über das Gesicht des Mondes zögerte Plutarch nicht zu erklären: »Das Universum ist unendlich; und was unendlich ist, hat weder Anfang noch Grenze, so dass es keine Mitte besitzt; denn Unendlichkeit ist das Fehlen von Grenzen.«[337]
Ähnliche Behauptungen lassen sich bei den spätscholastischen Denkern finden, die ihre Thesen entschieden und kühn vertraten. Nicolas Oresme ließ in seinen Quaestiones zu Aristoteles’ De caelo et mundo die Möglichkeit eines physikalischen leeren Raumes jenseits der Sphären gelten: »Außerhalb der Himmel kann es ein Vakuum geben«, bemerkte er, »da Gott dort einen Ort oder einen Körper erschaffen kann.«[338] In seinem mittelfranzösischen Kommentar zu De caelo et mundo ging er noch weiter und schrieb einem solchen unermesslichem Raum Göttlichkeit zu:
Außerhalb der Himmel ist dann ein leerer körperloser Raum [une espasce wide incorporelle], der von anderer Art ist als irgendein voller oder körperlicher Raum, ebenso wie die Ewigkeit genannte Dauer von anderer Art ist als die zeitliche Dauer, selbst wenn diese immer währte [seroit perpetuelle]. […] Ebenso ist dieser genannte Raum unendlich und unteilbar [infinie et indivisible], und er ist die Unermesslichkeit Gottes und Gott selbst, so wie die Ewigkeit genannte Dauer Gottes unendlich, unteilbar und Gott selbst ist.[339]

Möglicherweise unter dem Einfluss von Oresme entwickelte der katalanisch-jüdische Philosoph Hasdai Crescas im vierzehnten Jahrhundert eine Physik, die noch schroffer mit Aristoteles brach. In Crescas’ Hauptwerk Or Adonai (Licht Gottes) heißt es: »Das Universum ist nicht jenes endliche System konzentrischer Sphären nach Aristotelischem Verständnis, sondern vielmehr der unendliche leere Raum, in dem das endliche Universum des Aristoteles wie in einem Behälter enthalten ist.«[340]
Aus Gründen, die sich aus seiner Astronomie ergaben, war auch Kopernikus auf diese Möglichkeit gestoßen. Seit der Antike wusste man, dass die heliozentrische Astronomie eine notwendige Folge nach sich zieht: Wird die Erde nicht mehr als im Mittelpunkt des Universums liegend gedacht, schwillt das Universum in seinen Ausmaßen erheblich an. Wegen der extremen Schwierigkeit, in einem heliozentrischen Kosmos eine Sternparallaxe zu beobachten, nimmt das Universum für das Auge buchstäblich unermessliche Dimensionen an. Archimedes zeigte jedoch mit Berufung auf Aristarch von Samos, dass so viel gewiss ist: Wenn sich die Planeten um die Sonne bewegen, dann ist die Entfernung der Sonne zu den Fixsternen in unvorstellbarem Maße größer als die Entfernung der Erde zur Sonne.[341] Kopernikus wusste das wohl. Gleichwohl zog er es vor, sich zu der Frage der exakten Ausmaße des Universums nicht zu äußern. Zu der Unmöglichkeit, in einem heliozentrischen Universum Parallaxen zu beobachten, schrieb er vorsichtig: »Aus diesem grundt erscheinet genugsam[,] dos der Himmel gegen der Erdt unermesslig [immensum], unndt gleichsam einer unendlichen größ [infinitae magnitudinis]«; wie weit aber diese Unermesslichkeit sich erstreckt, sei überhaupt nicht klar.[342] Auf weitergehende kosmologische Folgerungen verzichtete der Astronom: »Es sey nun die welt Endtlich oder nicht[,] so bleibt solches den Phisiologis [Philosophen] zu disputirn: unndt halten wir genzlich darfür, dos die Erdt zwischen wirbeln uerfasset, in ihrem umbschweiff und rundt sich Endet.«[343]
Es waren die jüngeren Vertreter des Kopernikanismus, die es wagten, die Frage nach der Größe des Universums zugunsten der Unermesslichkeit und Unendlichkeit zu beantworten: Francesco Patrizi, Giovanni Battista Benedetti, Reimarus Ursus, John Dee, Thomas Digges, William Gilbert und Giordano Bruno.[344] Niemand unter ihnen war eloquenter als Bruno, der in seinen Werken – unter Berufung auf Demokrit und Epikur gegen Aristoteles – die Vorstellung einer endlichen Welt für längst überholt erklärte. »Auch die meisten der Peripatetiker«, schrieb Bruno, »konnten sich mit der Lehre des Aristoteles gegen das Vakuum nicht zufriedengeben.«[345] Recht verstanden, sei der Raum eine kontinuierliche physikalische Quantität, die allen Körpern vorausgeht und ohne Unterschied alle Dinge aufnimmt, unvermischbar und undurchdringlich, nicht formbar, nicht auf einen Ort festzulegen, unbeweglich, weder eingrenzbar noch umfassbar, weder Substanz noch Akzidens.[346] Raum ist das, was sich durch ein Universum erstreckt, das unendlich in seiner Größe und unzählig in der Vielheit seiner Welten ist. »Wir behaupten«, schrieb Bruno, »dass es unendlich viele Erden, unzählige Sonnen und einen unendlichen Äther gibt, oder, um mit Demokrit und Epikur zu reden, es gibt ein unbegrenztes Volles und Leeres, eines in dem andern.«[347]
Kepler wusste sehr gut, dass manche Anhänger des Kopernikus behauptet hatten, das Universum sei unendlich. Er selbst war ein interessierter, wenn auch kritischer Leser William Gilberts und Giordano Brunos. Außerdem waren unter seinen persönlichen Bekannten und Korrespondenten offene Befürworter der Idee eines unendlichen Kosmos, wie Johann Matthäus Wackher von Wackhenfels und Edmund Bruce, der in einem Brief an Kepler aus dem Jahr 1603 erklärte: »Denn ich vermute, dass es unendlich viele Welten gibt [mundos esse infinitos]. Eine jede indes ist endlich, wie die Welt der Planeten, in deren Mitte die Sonne sich befindet.«[348] Nach 1604 entschloss sich Kepler, die Frage öffentlich zu thematisieren. Es war das Jahr einer bedeutenden Supernova, eines »neuen Sterns«, der plötzlich die Aufmerksamkeit der Sterngucker in ganz Europa auf sich zog. Kepler bemerkte, dass einige aus diesem Ereignis sehr weitreichende Schlüsse gezogen hätten. In einem zwei Jahre später erschienenen Werk zu dieser Frage schrieb er:
Es gibt eine Sekte von Philosophen, die […] bei ihren Folgerungen nicht von der Sinneswahrnehmung ausgehen oder die Ursachen der Dinge nicht mit der Erfahrung in Übereinstimmung bringen. Sondern die unmittelbar und wie von einer Art Enthusiasmus inspiriert in ihren Köpfen sich eine bestimmte Meinung über die Beschaffenheit der Welt bilden und entwickeln; sobald sie diese sich zu eigen gemacht haben, halten sie an ihr fest; und sie ziehen an den Haaren [Dinge] herbei, die täglich geschehen und erfahren werden, um sie ihren Axiomen anzugleichen. Diese Leute wünschen, der neue Stern und alle anderen seiner Art sollten nach und nach aus den Weiten der Natur herabsteigen, die, wie sie behaupten, zu unendlicher Höhe sich erstrecken, bis er, gemäß den Gesetzen der Optik, sehr groß wird und die Augen der Menschen auf sich lenkt; dann zieht er sich zurück in unendlich weite Höhe und [wird] täglich um so kleiner, je höher er steigt.[349]

Kepler erwog die Idee eines unendlichen Universums erneut in seinem letzten Hauptwerk, der Epitome astronomiae copernicanae, deren Bände zwischen 1615 und 1621 erschienen. Jedes Mal war seine Position klar: Er hielt die Hypothese für unzulässig. Kepler gestand zu, dass nach Kopernikus die klassische materialistische Konzeption eines grenzenlosen Kosmos, der Widerlegung durch Aristoteles zum Trotz, wieder behauptet werden konnte. Unter Verweis auf die Argumentation des antiken Philosophen, dass die Vorstellung eines unendlichen, um die Erde rotierenden Körpers unmöglich sei, bemerkte Kepler: »Da Kopernikus jene Bewegung aufgehoben hat, kann man die Idee vertreten, dass die Sphäre der Fixsterne unendlich ist«, wie es eine »besondere Schule der alten heidnischen Philosophen« tat.[350] Doch eine solche Theorie könne, wie er behauptete, abermals widerlegt werden.
Kepler berief sich auf mehrere Argumente gegen die Idee eines unendlichen Universums. Zunächst führte er eine Reihe von Einwänden aus der philosophischen Lehre der Unendlichkeit an, die von Aristoteles und seinen scholastischen Kommentatoren entwickelt worden war. Aristoteles hatte gelehrt, dass alles, von dem man ein »Sein« behaupten kann, entweder der Wirklichkeit nach (in actu) oder der Möglichkeit nach (in potentia) ist.[351] Unbegrenztes kann nur von der zweiten Art sein. Man kann zum Beispiel von unendlicher Division oder unendlicher Addition sprechen, doch nur mit Bezug auf Prozeduren, die noch nicht abgeschlossen sind; denn tatsächlich ist jede Größe endlich. In einem frühen philosophischen Buch, das er für den Mathematikunterricht verfasst hatte, De quantitatibus, machte sich Kepler diese traditionelle Darstellung ausdrücklich zu eigen: »Was das Aktual-Unendliche angeht«, schrieb er, »leugnen wir mit Aristoteles Phys. III, 5, dass es irgendeine aktual-unendliche Größe gibt, sei sie sinnlich oder intelligibel.«[352] Natürlich gestand Kepler zu, dass es »immer möglich ist, etwas zu denken, das nicht nur größer ist als irgendeine Zahl, sondern größer als irgendeine Größe, bis zur Unendlichkeit.« Doch die Idee einer solchen Unendlichkeit kann nur durch das Denken einer sukzessiven Addition oder Subtraktion, nicht in einem einzelnen Begriff verwirklicht werden, und in jedem Falle kann eine solche Idee nicht mit existierenden Größen verbunden werden, denn »nichts in der Natur ist aktual unendlich«.[353] Keplers spätere Aussagen über die Dimensionen des Kosmos entsprachen dieser Argumentation vollkommen. »Wer immer die Sphäre der Fixsterne für unendlich erklärt, begeht eine contradictio in adjecto«, schrieb er in De stella nova. »In Wahrheit ist ein unendlicher Körper dem Denken unfasslich, da die Begriffe des Geistes hinsichtlich der Unendlichkeit sich entweder auf die Bedeutung des Wortes ›Unendlichkeit‹ oder auf etwas beziehen, das alles vorstellbare numerische, visuelle oder taktile Maß übersteigt: das heißt etwas, das nicht in actu existiert. Denn ein unendliches Maß kann nicht vorgestellt werden.«[354]
Kepler erhob noch eine zweite Reihe von Einwänden gegen die Idee eines grenzenlosen Universums. Sie betrafen die Methoden und Erkenntnisse der astronomischen Wissenschaft. Er verwies darauf, dass die Untersuchung der Himmelssphären durch Beobachtung voranschreitet. Durch genaue Himmelsbeobachtung gelangen die Astronomen dazu, die einheitlichen Prinzipien zu erkennen, die der scheinbaren Vielfalt zugrunde liegen, so dass die »Phänomene«, wie die alte Formel lautet, »gerettet« werden, indem sie intelligibel werden. Doch wie könnte man eine Unendlichkeit des Kosmos beobachten, und wie wäre mit ihr irgendetwas erklärbar? Der Glaube an ein grenzenloses Universum könnte nur zu epistemologischen Absurditäten führen. Wenn man, so Kepler, das Universum für grenzenlos hält, muss man notwendig behaupten, dass die Fixsterne zwar den Raum zur Erde hin begrenzen, nach außen hin aber unbegrenzt sind. »Ist es denn tatsächlich glaubhaft«, fragte er, »dass sie, begrenzt nach dieser Seite, sich nach der anderen ins Unendliche erstrecken sollten? Wie könnten wir im Universum einen Mittelpunkt finden, der dort überall ist? Denn jeder angenommene Punkt im Unendlichen ist durch die gleiche, das heißt unendliche Entfernung von den Extremen getrennt, die unendlich weit voneinander entfernt sind. Daraus ergäbe sich, dass derselbe [Ort] Zentrum und nicht [Zentrum] ist; auch viele andere Widersprüche, die nur von demjenigen völlig vermieden werden, der, weil er den Fixsternhimmel von innen begrenzt fand, ihm auch nach außen Grenzen setzt.«[355]
Schließlich argumentierte Kepler, dass die Erscheinung der Himmel die Hypothese eines grenzenlosen Universums manifest widerlegt. In seiner Epitome astronomiae Copernicanae, wenn nicht gar in den Harmonices mundi, berief er sich implizit auf eine Grundregel der modernen Physik, die später als »kosmologisches Prinzip« bezeichnet werden sollte: Das Universum muss, unbeschadet der Position und Perspektive des Beobachters, überall genauso erscheinen. Der Kosmos muss, mit einem Wort, isotrop sein.[356] Das Prinzip der Einförmigkeit der Natur vorausgesetzt, kann man nach Kepler darauf wetten, dass – wären die Himmel tatsächlich unbegrenzt – in ihnen die Sterne offenkundig homogen verteilt wären. Sterne von gleicher Anzahl, gruppiert in gleichen Gruppen, würden einander bis ins Unendliche folgen. Unsere Sonne wäre ein Fixstern wie jeder andere und müsste sich in eine unendliche Reihe von Fixsternen einreihen. »Unter den unzähligen Orten in dieser unendlichen Ansammlung der Fixsterne wäre unsere Welt mit ihrer Sonne ein [Ort], der sich in keiner Weise von den Orten um die [anderen] Fixsterne unterschiede, wie die beigefügte Figur M zeigt« – und hier verweist Kepler auf eine merkwürdige Illustration.[357] Doch dies ist natürlich nicht der Fall. Jeder weiß, dass die Sterne den Himmel in höchst unterschiedlichen Konstellationen anfüllen.
[image: ]Abb. 6. Keplers unendliches Universum (Epitome astronomiae Copernicanae, 1618–1621, in: Gesammelte Werke, Bd. 7, München: C.H. Beck 1953, S. 42).


Für den Autor des Mysterium cosmographicum und der Harmonices mundi gab es jedoch noch einen weiteren Grund, die Idee eines grenzenlosen Universums abzulehnen. Vielleicht ist es dieser Grund allein, der die übrigen erklärt. Er lässt sich in einen Satz fassen: Wäre der Kosmos unbestimmt und sogar unendlich in seinen Ausmaßen, wäre die Möglichkeit einer geometrischen Kosmologie ausgeschlossen. Denn eine Harmonie der Formen und Körper kann das Unbegrenzte nicht zulassen. »Die geraden Linien und Flächen aber wollen wir, da sie unendlich an Zahl und daher für eine Ordnung völlig untauglich sind, aus der endlichen, bestgeordneten und vollkommen schönen Welt draußen lassen.«[358] Dies war ein Axiom, das Kepler gleich auf der ersten Seite seiner Harmonices mundi aussprach:
Für die Größen charakteristisch sind Figuration und Proportion, und zwar Figuration für die Größen im einzelnen betrachtet, Proportion in Hinsicht auf ihre gegenseitigen Beziehungen. Die Figuration wird durch Grenzen vollzogen. So wird eine gerade Linie durch Punkte, eine ebene Fläche durch Linien, ein Körper durch Flächen begrenzt, umschlossen und figuriert. Was nun begrenzt, umschlossen und figuriert ist, das kann auch durch den Verstand erfasst werden. Das Unbegrenzte und Unendliche dagegen lässt sich, eben weil es dieser Art ist, in keiner Weise durch die Schranken einer durch Definitionen zu gewinnenden Erkenntnis oder einer geometrischen Konstruktion einschließen.[359]

Kurz gesagt, ein grenzenloses All wäre »undemonstrierbar«, wie jene Polygone, die weder der göttliche noch der menschliche Intellekt konstruieren kann. Als unbegrenztes wäre es weder geozentrisch noch heliozentrisch; es wäre azentrisch. In einem solchen Universum könnten natürlich immer noch die Kepler’schen astronomischen Gesetze gelten. Irgendwelche Planeten würden sich elliptisch um irgendeinen Stern bewegen, würden gleiche Flächen in gleicher Zeit überstreichen, und die Umlaufzeiten stünden in stabilem Verhältnis zu den Halbmessern. Doch welchen Sinn hätten noch ihr Aphel und ihr Perihel, ihre Beschleunigungen und Verlangsamungen in einem Kosmos unzähliger Sterne und Planetensysteme? Welche Musik würden sie machen? Angesichts der Vorstellung eines grenzenlosen Kosmos bemerkte Kepler in De stella nova, schon dieser Gedanke trage »ich weiß nicht welchen geheimen verborgenen Schrecken in sich; tatsächlich irrt man in dieser Unermesslichkeit umher, der Grenzen und Mittelpunkt und deshalb jeder feste Ort abgesprochen werden« (Quae sola cogitatio, nescio quid horroris occulti prae se fert; dum errare sese quis deprehendit in hoc immenso; cujus termini, cujus medium, ideoque et certa loca, negantur).[360]
Man könnte sagen, Kepler sei vor der Realität zurückgewichen, von der er einen flüchtigen Blick erhascht hatte. Nachdem er die physikalische Struktur des neuzeitlichen Universums vielleicht kühner als jeder andere frühmoderne Denker ins Auge gefasst habe, müsse es ihn vor der Möglichkeit geschaudert haben, dass im Unterschied zum Kosmos der alten Welt die neue weder Grenzen noch Mittelpunkt besitze. Vielleicht erklärt es sich aus seiner Treue zu Kopernikus, dass er sich weigerte, die Sonne als fundamentalen astronomischen Orientierungspunkt aufzugeben. Hatte der Autor des neuen Weltsystems nicht mehr als einmal die Himmel mit einem »sichtbaren Gott« verglichen?[361] »[I]n der mitten aber zwischen allen«, hatte Kopernikus bekanntlich geschrieben, »helt sich die Sonn, dann wer will inn solchen schonen gebew oder Tempel dos Liecht unndt lampe an einen bessern Ort stellen, dann uon dannen es alles zugleich möge erleuchten?« Mit Recht, bemerkte er, werde die Sonne als »leuchte«, »gemüth« und »regerirer« (Herrscher) des Alls bezeichnet. »Ja fürwor sizet die Sonn gleichsam auf einem königlichen stul, unndt leitet unndt regiert das herumbstehende uolk der stern.«[362] Die moderne Wissenschaft, wurde oft gesagt, blieb in ihren Anfängen zum Teil noch Theologie. Keplers Scheitern wäre dann eines, das von den historischen Umständen erzwungen wurde. Man könnte hinzufügen, dass anderen nach ihm gelang, was ihm versagt blieb: eine Astronomie zu entwickeln, die einen Kosmos zulassen konnte und zuließ, der wohlgefälliger Proportionen entbehrte.
Doch Keplers »geheimer, verborgener Schrecken« vor dem Unendlichen verbarg auch eine Einsicht. Kepler erkannte eine Wahrheit, die anderen verhüllt blieb, obgleich er seinen verstohlenen Blick rasch davon abgewandt hatte. Er sah, dass das grenzenlose Universum unserer Welt fremd ist, fern von dieser Welt ist. Deshalb bleibt es für uns unvorstellbar, solange man jedenfalls das Erkennbare an unsere Erfahrung binden will. Man könnte auch beschließen, solche Fragen auf Vermögen zu beziehen, die uns nicht gegeben sind. Schon zu Keplers Lebzeiten hatte die Astronomie begonnen, sich von den Beschränkungen des menschlichen Körpers zu befreien, als Galileis Fernrohr Dinge entdeckte, die weit über das hinausgingen, was das bloße Auge sehen konnte. Von diesem Moment an, könnte man argumentieren, sollte die Erforschung der himmlischen Sphären einen der menschlichen Wahrnehmung unzugänglichen Himmel beobachten. Immer exaktere Messinstrumente sollten neue Gesetzmäßigkeiten entdecken und die Formen bisher ungeahnter quantitativer Beziehungen enthüllen. Man kann darauf wetten, dass Keplers Sichtweise von solchen Entdeckungen unberührt geblieben wäre. Vielleicht war seine Intuition vernünftig. In einem Universum ohne Grenzen, dessen Mittelpunkt überall und nirgends ist und dessen Sterne, von keiner Sphäre umfangen, in endloser Einförmigkeit verstreut sind, könnte man zwar durchaus weiterhin Naturphänomene mit mathematischen Mitteln erfassen. Doch eine Weltharmonie würde nicht mehr erklingen. Man könnte weitere sechstausend Jahre warten, doch kein Denker, Weiser oder Wissenschaftler würde noch einmal in die Schmiede treten, und kein Pythagoras würde wiedergeboren.
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