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Vorwort

Vorwort zur 2. erweiterten und verbesserten Auflage

Wir haben den Text um die Kapitel Mengenlehre und Aussagenlogik erweitert. Das

Buch um diese Grundlagen zuerweitern erschien uns aufgrund der Erfahrungen aus

der Lehre sinnvoll. Ferner haben wir versucht den Text an einigen Stellen besser zu

formulieren, klarer zu gliedern und Fehler zu bereinigen, die leider immer auftreten. 

Wir hoffen keine neuen erzeugt zu haben. 

Bielefeld, Januar 2012

Wolfgang Kohn und Riza Öztürk

Vorwort zur 1. Auflage

In diesem Buch haben wir mathematische Grundlagen für Ökonomen zusammenge-

fasst. Formale Definitionen, Beweise und mathematische Sätze befinden sich kaum

im Text, wohingegen eine Herleitung von Formeln oft erfolgt, die hoffentlich zu ih-

rem besseren Verständnis führen. In der Anwendung stehen betriebswirtschaftliche

Aspekte im Zentrum. 

Zeitgemäß werden aufwändigere Rechnungen mit einem Computerprogramm

durchgeführt. Das hier verwendete open source Programm Scilab besitzt hervor-

ragende numerische Eigenschaften und ermöglicht die einfache Umsetzung der For-

meln, insbesondere in der linearen Algebra. In diesem Programm können auch Vek-

toren oder Matrizen Variablen sein. Dies ist ein großer Vorteil, wenn man die Rech-

nungen nachvollziehen möchte. An geeigneten Stellen im Text werden die Pro-

grammbefehle für einzelne Berechnungen beschrieben. Natürlich eignen sich auch

andere Programme wie zum Beispiel Excel, Maple oder Mathematica für die Be-

rechnungen. Scilab (siehe www.scilab.org) steht für verschiedene Betriebssy-

steme zur Verfügung. 

Teil I enthält einige Grundlagen der Mathematik, Teil II führt in die lineare Alge-

bra und deren ökonomischen Anwendungen ein. In Teil III wird die Analysis mit Fi-

nanzmathematik, Differentialrechnung und Integralrechnung behandelt. Im Anhang

VIII

Vorwort

(Teil IV) wird kurz das Programm Scilab beschrieben. Ferner finden sich dort die

Lösungen zu den Übungen aus den vorangegangenen Kapiteln. 

Die Kapitel 4 bis 10 und 11 (mit Einschränkung) bilden das Programm für einen

vier Semesterwochenstunden (SWS) umfassenden Kurs in einem betriebswirtschaft-

lich orientierten Bachelorstudiengang mit einem Arbeitsäquivalent von 5 europäi-

schen Arbeitspunkten (ECTS). Die Kapitel 3, 10 und 11 sind in Kombination mit

weiterführenden Themen für einen Masterstudiengang geeignet. 

Besonderer Dank gebührt Diplom-Volkswirtin Coco Rindt, Prof. Dr. Rainer Lenz

und Dr. Wolfgang Rohde, die mit vielen Korrekturen und guten Verbesserungen zum

Gelingen des Buches beitrugen. 

Bielefeld, Mai 2009

Wolfgang Kohn und Riza Öztürk
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1.1 Vorbemerkung

In diesem Kapitel werden die Grundzüge der Mengenlehre, der Zahlenmengen und

der Aussagenlogik erklärt. Mengen und Aussagenlogik kann man als die Basis der

Mathematik bezeichnen. 

Folgende Symbole werden verwendet:

 a,  b

Element, Koeffizient oder Variable

 A,  B

hier: Mengen oder Aussagen

 i

hier: Bezeichnung für eine imaginäre Zahl

 k,  m,  n

häufig: Variablen für ganze Zahlen

 x,  y

Variable, Element

N

Symbol für die Menge der natürlichen Zahlen

{}

Klammern, die eine Menge bezeichnen

 x ∈  M

Symbol für  x  ist Element der Menge  M

 x ∈  M

Symbol für  x  ist nicht Element der Menge  M

 A ⊂  B

 A  ist Teilmenge der Menge  B

W. Kohn, R. Öztürk,  Mathematik für Ökonomen,  Springer-Lehrbuch,   
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 A ⊆  B

 A  ist Teilmenge der Menge  B  oder gleich der Menge  B

Ω

Universalmenge

/0

leere Menge

 n( A)

hier: Mächtigkeit der Menge  A

 A ∪  B

Vereinigung von Menge  A  und  B

 A ∩  B

Durchschnitt von Menge  A  und  B

 A \  B

Subtraktion von Menge  B  von  A

 Ac

Komplementmenge von  A  zur Universalmenge Ω

¬ A

Negation einer Aussage  A

 A ∨  B

logisches ODER, Disjunktion

 A ∧  B

logisches UND, Konjunktion

 A →  B

Implikation

 A ↔  B

Äquivalenz

=

Ungleichheit

∞

Symbol für unendlich

1.2 Mengen

Eine wohldefinierte Gesamtheit eindeutig unterscheidbarer Elemente heißt eine Men-

ge. 

Allgemein werden Mengen mit großen lateinischen Buchstaben  A,  B,  C, ... be-

zeichnet. Für die Elemente wählt man dann i. d. R. kleine lateinische Buchstaben  a, 

 b,  c, ... 

Um Mengen von anderen Größen wie z. B. Vektoren unterscheiden zu können, 

schließt man die Elemente stets in geschweifte Klammern ein:  A = { a,  b,  c}. Ein Ele-

ment kann in einer Menge durch Mehrfachnennung öfter auftreten. Es zählt jedoch

nur als ein Element. 

Gehört das Element  a  zur Menge  A, so wird dies durch  a ∈  A  abgekürzt. Will

man ausdrücken, dass  a  nicht zur Menge  A  gehört, so schreibt man:  a ∈  A. 

Die Definition einer Menge erfolgt durch die Beschreibung der Elemente, ent-

weder durch Aufzählung oder eine implizite Beschreibung. Bei der impliziten Be-

schreibung wird die Menge wie folgt beschrieben:

 A = { a | umfassende eindeutige Beschreibung von  a}

 Beispiel 1.1. 

 A = { a |  a  ist eine natürliche Zahl kleiner 10}

 M = {( x,  y) | 0 ≤  x ≤ 4 und  y = 2 x + 3 und  y = ganzzahlig}

☼

Zur Illustration von Mengenoperationen werden häufig Venn-Diagramme ver-

wendet (siehe Abb. 1.1). 
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Ω

Abb. 1.1: Venn-Diagramm

Die Anzahl der unterscheidbaren Elemente einer Menge  A  wird als deren Mäch-

tigkeit einer Menge bezeichnet und meistens mit  n( A) abgekürzt. Die Mächtigkeit

einer Menge kann endlich oder unendlich sein. Man spricht dann auch von endlichen

und unendlichen Mengen. 

 Beispiel 1.2. 

 X = { x 1,  x 2,...,  xk}

 n( X) =  k

N = {1,2,3,...}

 n(N) = ∞

 A = { a,  b,  a,  c,  a,  d}

 n( A) = 4

☼

Die Universalmenge Ω ist bezüglich der zu untersuchenden Elemente die um-

fassende Menge, die alle Elemente enthält. Die leere Menge /0 enthält kein Element. 

Zwei Mengen  A  und  B  heißen gleich, wenn sie die gleichen Elemente enthalten. 

Man schreibt:

 A =  B

 Beispiel 1.3. 

 A = {−1}

 B = { x |  x + 1 = 0}

 A =  B

☼

Die Menge  A  heißt Teilmenge (oder Untermenge) der Menge  B, wenn alle Ele-

mente der Menge  A  auch in der Menge  B  enthalten sind (aber nicht alle Elemente

von  B  sind Elemente von  A) . Man schreibt:

 A ⊂  B

Ist auch die Gleichheit der Mengen erlaubt, dann schreibt man:

 A ⊆  B
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 Beispiel 1.4. 

{ L,  E,  O} ⊆ { L,  O,  E,  W,  E}

☼

Die Menge aller Teilmengen einer Menge  A  heißt Potenzmenge. Man schreibt:

℘( A) = { X |  X ⊆  A}

Zu den Teilmengen von  A  gehört sowohl die leere Menge /0 als auch die Menge  A

selbst. Bei  n  Elementen in der Menge  A  enthält die Potenzmenge 2 n  Teilmengen. 

Begründung für die Basis 2: Jedes Element in einer Menge kann ausgewählt wer-

den (1) oder nicht (0). Somit liegt eine Permutation (siehe Kapitel 3) von 2 Werten

vor, die auf  n  Elemente angewendet wird. 

 Beispiel 1.5. 

 A = { a |  a  ist ein Buchstabe des Namens LEO}

= { L,  E,  O}





℘( A) = /0,{ L},{ E},{ O},{ L,  E},{ L,  O},{ E,  O},{ L,  E,  O}

Wird die Bitfolge der Auswahl (0 = Element nicht ausgewählt, 1 = Element aus-

gewählt) betrachtet, so ergibt sich für die Menge { L,  E,  O}:

Tabelle 1.1: Bitfolge der Elementauswahl

L E O Auswahl

0 0 0 leere Menge

0 0 1

{ L}

0 1 0

{ E}

1 0 0

{ O}

0 1 1

{ L,  E}

1 0 1

{ L,  O}

1 1 0

{ E,  O}

1 1 1 { L,  E,  O}

Die Potenzmenge besitzt also 23 = 8 Teilmengen. 

☼

1.2.1 Mengenoperationen

Vereinigung  A ∪  B

lies:  A  vereinigt mit  B

Die Vereinigung zweier Mengen  A  und  B  enthält alle Elemente, die entweder in  A

oder in  B  oder in beiden Mengen enthalten sind (siehe Abb. 1.2). Man schreibt:

 A ∪  B = { x |  x ∈  A  oder  x ∈  B}
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Abb. 1.2: Vereinigung

 Beispiel 1.6. A  sei eine Menge von Studenten die BWL studieren.  B  sei eine Menge

von Studenten die Mathematik studieren. Die Vereinigung der beiden Mengen ist die

Menge, die sowohl die Elemente von  A  als auch von  B  enthält, die Studierenden, die

BWL oder Mathematik oder beide Fächer studieren. 

☼

Zwei Mengen  A  und  B, die keine gemeinsamen Elemente enthalten, heißen dis-

junkt. 

 Beispiel 1.7.  Die Menge der geraden Zahlen und die Menge der ungeraden Zahlen

sind disjunkt. Entweder ist eine Zahl gerade oder ungerade. 

☼

Durchschnitt  A ∩  B  lies:  A  geschnitten  B

Der Durchschnitt zweier Mengen  A  und  B  enthält alle Elemente, die sowohl in  A  als

auch in  B  enthalten sind (siehe Abb. 1.3). Man schreibt:

 A ∩  B = { x |  x ∈  A  und  x ∈  B}

Der Durchschnitt von disjunkten Mengen ist die leere Menge. 

 Beispiel 1.8. A  sei eine Menge von Studenten die BWL studieren.  B  sei eine Men-

ge von Studenten die Mathematik studieren. Der Durchschnit der beiden Mengen

besteht aus den Elementen (Studenten), die beide Studienfächer studieren. 

☼

Differenz  A \  B  lies:  A  minus  B

Die Differenz zweier Mengen  A  und  B  enthält alle Elemente von  A, die nicht in  B

enthalten sind (siehe Abb. 1.4). Man schreibt:

 A \  B = { x |  x ∈  A  und  x ∈  B}

 Beispiel 1.9. A  sei eine Menge von Studenten die BWL studieren.  B  sei eine Menge

von Studenten die Mathematik studieren. Die Differenzmenge  A \  B  ist die Menge

der BWL Studierenden, die ausschließlich BWL studieren. 

☼
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Abb. 1.3: Durchschnitt
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Abb. 1.4: Differenz

Komplement  Ac

lies: Komplement von  A

Das Komplement der Menge  A  bezüglich der Universalmenge Ω enthält alle Ele-

mente der Menge Ω, die nicht in der Menge  A  enthalten sind (siehe Abb. 1.5). Man

schreibt:

 Ac = { x |  x ∈ Ω und  x ∈  A}

 Beispiel 1.10. A  sei eine Menge von Studenten die BWL studieren. Die Komple-

mentmenge von  A  sind alle Studierenden, die nicht BWL studieren. 

☼

Produkt  A ×  B  lies:  A  kreuz  B

Das Produkt zweier Mengen  A  und  B  besteht aus allen Paaren je eines Elements aus

der Menge  A  und aus der Menge  B. Man schreibt:

 A ×  B = {( x,  y) |  x ∈  A  und  y ∈  B}
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Abb. 1.5: Komplement

 Beispiel 1.11. 

 X = { x | 0 ≤  x ≤ 1}

 Y = { y | 0 ≤  y ≤ 1}

 X × Y = {( x,  y) | 0 ≤  x ≤ 1 und 0 ≤  y ≤ 1}

☼

1.2.2 Mengengesetze

Idempotenzgesetze

Die Vereinigung und der Durchschnitt mit der selben Mengen

verändert die Menge nicht. 

 A ∪  A =  A

 A ∩  A =  A

Identitätsgesetze

Die leere Menge enthält kein Element. Folglich verändert

die Vereinigung einer Menge mit der leeren Menge die Menge nicht. Der Durch-

schnitt einer Menge mit der leeren Menge führt folglich zur leeren Menge. Die Uni-

versalmenge enthält alle Elemente einer Mengenalgebra. Daher ist die Vereinigung

einer Menge mit der Universalmenge die Universalmenge. Der Durchschnitt mit ihr

ist die Menge selbst. 

 A ∪ /0 =  A

 A ∩ /0 = /0

 A ∪ Ω = Ω

 A ∩ Ω =  A

Komplementgesetze

Eine Menge und deren Komplement sind die Universal-

menge. Der Durchschnitt einer Menge mit ihrem Komplement ist die leere Menge. 

10
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 A ∪  Ac = Ω

 A ∩  Ac = /0

Kommutativgesetze

Die Vertauschung zweier Mengen bei der Vereinigung

bzw. beim Durchschnitt ändert nicht das Ergebnis. 

 A ∪  B =  B ∪  A

 A ∩  B =  B ∩  A

Assoziativgesetze

Die Reihenfolge der Vereinigung bzw. des Durchschnitts

von Mengen ändert nicht das Ergebnis. 

( A ∪  B) ∪ C =  A ∪ ( B ∪ C)

( A ∩  B) ∩ C =  A ∩ ( B ∩ C)

Distributivgesetze

Die Vereinigung von  B,  C  geschnitten mit  A  ist gleich den

Vereinigung der Durchschnitte von  A,  B  und  A,  C. Der Durchschnitt von  B,  C  ver-

einigt mit  A  ist identisch mit dem Durchschnitt der Vereinigungen von  A,  B  und  A, 

 C. 

 A ∩ ( B ∪ C) = ( A ∩  B) ∪ ( A ∩ C)

 A ∪ ( B ∩ C) = ( A ∪  B) ∩ ( A ∪ C)

 Beispiel 1.12.  Es sind die Mengen  A = {1,2,5},  B = {1,2,3} und  C = {1,3,4} ge-

geben. 

Für das 1. Distributivgesetz ergibt sich





 A ∩ ( B ∪ C) = {1,2,5} ∩ {1,2,3} ∪ {1,3,4} = {1,2}



 



( A ∩  B) ∪ ( A ∩ C) = {1,2} ∪ {1} = {1,2}

Für das 2. Distributivgesetz ergibt sich





 A ∪ ( B ∩ C) = {1,2,5} ∪ {1,2,3} ∩ {1,3,4} = {1,2,3,5}

( A ∪  B) ∩ ( A ∪ C) = {1,2,3,5} ∩ {1,2,3,4,5} = {1,2,3,5}

☼

De Morgans-Gesetze

Das Komplement des Durchschnitts von  A  und  B  ist

gleich der Vereinigung der beiden Komplementmengen. Das Komplement der Ver-

einigung von  A  und  B  ist gleich dem Durchschnitt der beiden Komplementmengen. 

( A ∩  B) c =  Ac ∪  Bc

( A ∪  B) c =  Ac ∩  Bc
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 Beispiel 1.13.  Es sind folgende Mengen Ω = {1,2,3,4,5},  A = {1,2,5} und  B =

{1,2,3} gegeben. 

Für das 1. De Morganssche Gesetz ergibt sich









( A ∩  B) c = {1,2,5} ∩ {1,2,3}  c = {1,2}  c = {3,4,5}

 Ac ∪  Bc = {3,4} ∪ {4,5} = {3,4,5}

Für das 2. De Morgansche Gesetz ergibt sich









( A ∪  B) c = {1,2,5} ∪ {1,2,3}  c = {1,2,3,5}  c = {4}

 Ac ∩  Bc = {3,4} ∩ {4,5} = {4}

☼

Übung 1.1. Betrachten Sie in der Grundmenge

Ω = {1,...,8}

die Teilmengen

 A = {1,...,5}

und

 B = {2,3,5,7,8}

Bestimmen Sie:

 Ac ∩  B

 A ∪  Bc

 Ac ∩  Bc

Übung 1.2. Auf einem Messestand erwerben vom 110 Besuchern 50 den Artikel

 A, 80 den Artikel  B  und 70 den Artikel  C. 20 Besucher kaufen die Artikel  A,  B  und

 C. Außerdem erwerben jeweils 20 Besucher nur die Artikel  B  und  C  und  A  und  C. 

30 Besucher kaufen nur den Artikel  B. 

Wie viel Besucher kaufen nur den Artikel  A  und nur den Artikel  C? 

Übung 1.3. Gegeben seien die Intervalle  A = [−1,2),  B = (−2,1) und  C = [0,2]. 

Eine eckige Klammer [ bedeutet, dass die Zahl im Intervall enthalten ist, eine runde

Klammer ( bedeutet, dass die Zahl nicht eingeschlossen ist. Führen Sie folgende

Mengenoperationen aus:

 A ∪  B A ∪ C A ∩ C

 B ∩ C C \  A C \  B
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1.2.3 Zahlenmengen

Die Grundlage vieler mathematischer Überlegungen sind Zahlen. Sie können in un-

terschiedliche Bereiche eingeteilt werden. Beispielsweise gibt es Zahlen, die nur für

die einfache Zählung geeignet sind. Andere entstehen aus Brüchen oder durch die

Auflösung einer Gleichung. 

Wenn wir etwas zählen, verwenden wir die Menge der natürlichen Zahlen. Sie

wird mit dem Symbol N bezeichnet:

N = {1,2,3,4,...}

Häufig wird die Menge der natürlichen Zahlen um die Null erweitert. 

N0 = {0,1,2,3,4,...}

Wird die Menge der natürlichen Zahlen mit den negativen Zahlen erweitert, er-

hält man die Menge der ganzen Zahlen Z. 

Z = {...,−4,−3,−2,−1,0,1,2,3,4,...}

Das Verhältnis zweier ganzer Zahlen führt zur Menge der rationalen Zahlen. Es

sind die Brüche  n , außer der Division mit 0. Zum Beispiel −2

 m

−5 = 0.4 oder 53 = 1.666. 

Sie werden mit dem Symbol Q bezeichnet. 

  n



Q =

mit  n ∈ Z und  m ∈ Z \ {0}

 m

Die bisher genannten Zahlen sind abzählbar, obwohl alle drei Zahlenmengen N, 

Z und Q unendlich sind. 

Die Lösung der Gleichung  x 2 = 2 ist nicht in den bisher beschriebenen Zahlen-

mengen enthalten. Die positive Wurzel von 2 besitzt unendlich viele Nachkomma-

stellen. Es handelt sich um eine algebraische Zahl, da sie aus einem Polynom mit

rationalen Koeffizienten entsteht (siehe Kapitel 8.3). Es existieren aber auch irratio-

nale Zahlen, die sich nicht als Lösungen von Gleichungen darstellen lassen. Dies sind

zum Beispiel die Kreiszahl π oder die Eulersche Zahl e. Sie heißen transzendente

Zahlen. Beide Zahlenarten (algebraische und transzendente) werden zur Menge der

irrationalen Zahlen zusammengefasst. Die Menge der irrationalen Zahlen ist nicht

mehr abzählbar. Die Erweiterung der rationalen Zahlen um die irrationalen Zahlen

führt zu der Obermenge der reellen Zahlen mit dem Symbol R. 

R = { x  mit −∞ <  x < +∞}

Auf dem Zahlenstrahl sind alle Punkte besetzt. 

Es existieren aber noch Zahlen jenseits der reellen Zahlen. Die Lösung der Glei-

√

chung  x 2 = −2 führt zur Wurzel (siehe Kapitel 2.6) einer negativen Zahl:  x = −2. 

Sie ist nicht Teilmenge der reellen Zahlen. Das Quadrat jeder reellen Zahl ist positiv. 

Daher können negative reelle Zahlen keine reellen Wurzeln haben. Mit der Einfüh-

rung der Definition  i 2 = −1 wird die Menge der reellen Zahlen zu der Menge der
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komplexen Zahlen mit dem Symbol C erweitert. Die Elemente dieser Menge haben

die Form

 c =  a +  bi, 

wobei  a  und  b  Elemente der reellen Zahlen sind. Die Zahl  c  ist zusammengesetzt aus

einem Realteil  a  und einem Imaginärteil  b i. 

C = { c =  a +  bi  mit  a,  b ∈ R}

Mit der obigen Herleitung haben wir die Menge der Zahlen beschrieben und

beobachten folgende Beziehung unter den beschriebenen Mengen:

N ⊂ Z ⊂ Q ⊂ R ⊂ C

1.3 Aussagenlogik

Lehre vom folgerichtigen Denken, d. h. vom richtigen Schließen aufgrund gegebener

Aussagen. 

 Beispiel 1.14.  Wenn es nicht regnet oder schneit, spielt Leo Fußball. 

Aussage A: Es regnet nicht

Aussage B: Es schneit nicht

Aussage C: Leo spielt Fußball

Der Wahrheitsgehalt der zusammengesetzten Aussage ist wahr, wenn es nicht

regnet oder nicht schneit und Leo Fußball spielt, bzw. falsch, wenn es nicht regnet

und nicht schneit, und Leo nicht spielt. 

Weniger offensichtlich ist indes, dass die Aussage stets wahr ist, wenn Leo sonn-

tags Fußball spielt, gleichgültig wie das Wetter ist. Der scheinbare Widerspruch klärt

sich, wenn zwischen der Aussage und dem Wahrheitswert unterschieden wird. 

☼

Eine Aussage A ist ein Satz, der entweder wahr oder falsch ist. Ein dritter Wert

existiert nicht, ein Teilwert ebenfalls nicht. 

1.3.1 Logikoperatoren

Negation ¬ A

lies: nicht A

Umkehrung des Wahrheitswertes. Die Negation der Aussage A. 

 Beispiel 1.15. „Es regnet nicht“ ist ¬ A: „Es regnet“. 

☼

Tabelle 1.2: Wahrheitstafel für Negation

 A ¬ A

w f

f w
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Konjunktion  A ∧  B

lies: A und B

Verbindung von zwei Aussagen mit einem logischen UND. Sie ist nur wahr, wenn

sowohl A als auch B wahr ist. 

Tabelle 1.3: Wahrheitstafel für Konjunktion

 A B A ∧  B

w w w

w f

f

f w

f

f f

f

 Beispiel 1.16. „Es schneit nicht“ und „es regnet nicht“. Wenn beides wahr ist, dann

ist die Konjunktion der beiden Aussagen wahr. Trifft eine der beiden Aussagen nicht

zu, dann ist die Konjunktion falsch. 

☼

Disjunktion  A ∨  B

lies: A oder B

Verbindung von zwei Aussagen mit einem logischen ODER. Sie ist wahr, wenn we-

nigstens eine der beiden Aussagen wahr ist (heißt nicht entweder oder!). 

Tabelle 1.4: Wahrheitstafel für Disjunktion

 A B A ∨  B

w w w

w f

w

f w w

f f

f

 Beispiel 1.17. „Es schneit“ oder „es regnet“. Wenn eine der beiden Aussagen zutrifft, 

dann ist die Gesamtaussage wahr. 

☼

Implikation  A →  B

lies: aus A folgt B

Schlussfolgerung (Konklusion) aus einer Aussage A, die Voraussetzung (Prämisse)

genannt wird. Eine Implikation ist wahr, wenn A und B wahr sind. Sie ist aber auch

wahr, wenn aus „A falsch“ „B falsch“ oder aus „A falsch“ „B wahr“ gefolgert wird. 

Sie ist nur dann falsch, wenn aus „A wahr“ „B falsch“ gefolgert wird. Ist  A →  B =

wahr, so schreibt man  A ⇒  B. Gilt  A ⇒  B, so heißt A hinreichende Bedingung für B

und B notwendige Bedingung für A. 
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Tabelle 1.5: Wahrheitstafel für Implikation

 A B A →  B

w w

w

w f

f

f w

w

f f

w

 Beispiel 1.18.  Leo spielt Fußball. Der Tag ist regenfrei.  A ⇒ C: Wenn der Tag trocken

ist, dann spielt Leo Fußball. 

Die Aussage „der Tag ist ohne Regen“ ist hinreichend dafür, dass die Aussage

„Leo spielt Fußball“ wahr ist. Notwendigerweise spielt Leo Fußball, wenn der Tag

ohne Regen ist. Die Umkehrung gilt jedoch nicht: „wenn Leo Fußball spielt, ist der

Tag ohne Regen“. Leo spielt auch in der Halle Fußball. 

☼

Äquivalenz  A ↔  B

lies: A genau dann, wenn B Äquivalenz

Die Implikation gilt in beiden Richtungen, d. h.  A →  B  und  B →  A. Die Äquivalenz

ist dann wahr, wenn A und B denselben Wahrheitswert haben. Sie ist falsch, wenn

der Wahrheitswert von den beiden verschieden ist. Ist  A ↔  B = wahr, so schreibt

man  A ⇔  B. 

Tabelle 1.6: Wahrheitstafel für Äquivalenz

 A B A ↔  B

w w

w

w f

f

f w

f

f f

w

 Beispiel 1.19.  Aussage  A:  x  ist durch 2 teilbar. Aussage  B:  y  ist eine gerade Zahl. Es

gilt  x ⇔  y, weil jede gerade Zahl durch 2 teilbar ist und alle durch 2 teilbaren Zahlen

geraden Zahlen sind. Die Aussage ist wahr. 

☼

In der Informatik werden weitere Operatoren verwendet. Es sind die negierten

Operatoren der Kon- und Disjunktion NAND und NOR sowie der Äquivalenz XOR. 

1.3.2 Regeln

• Klammerausdrücke werden von innen nach außen interpretiert

• Operationen werden in der Reihenfolge

1. Negation

2. Konjunktion

3. Disjunktion

4. Implikation
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5. Äquivalenz

interpretiert. 

1.3.3 Gesetze der Logik

Idempotenzgesetze

Konjunktion oder Disjunktion einer Aussage  A  mit sich selbst

liefert die Aussage  A. 

 A ∧  A =  A

 A ∨  A =  A

 Beispiel 1.20.  Die Aussage „es schneit nicht“ ändert sich nicht durch eine Konjunk-

tion oder durch eine Disjunktion mit sich selbst. 

☼

neutrale Wahrheitswerte

Die Konjunktion einer Aussage  A  mit WAHR lie-

fert stets  A; mit FALSCH liefert stets FALSCH. Die Disjunktion einer Aussage  A  mit

WAHR liefert stets WAHR und mit FALSCH stets  A. 

 A ∧ WAHR =  A

 A ∨ WAHR = WAHR

 A ∧ FALSCH = FALSCH

 A ∨ FALSCH =  A

 Beispiel 1.21.  Die Aussage „es schneit nicht“ konjunktiv mit WAHR verknüpft lie-

fert die Aussage. Die Aussage „es schneit“ disjunktiv mit WAHR verknüpft liefert

stets WAHR. Die Konjunktion mit FALSCH ist stets FALSCH; die Disjunktion mit

FALSCH ist stets  A. 

☼

Kommutativgesetze

Die Aussagen  A  und  B  können bei der Konjunktion und

bei der Disjunktion vertauscht werden ohne das sich der Wahrheitswert ändert. 

 A ∧  B =  B ∧  A

 A ∨  B =  B ∨  A

Assoziativgesetze

Die Reihenfolge einer konjunktiven oder disjunktiven Ope-

ration ändert den Wahrheitswert nicht. 









 A ∧  B ∧ C =  A ∧  B ∧ C









 A ∨  B ∨ C =  A ∨  B ∨ C

Distributivgesetze

Die Konjunktion von  A  mit einer disjunktiven Operation

 B,  C  ist gleich der Disjunktion der Konjunktionen von  A,  B  und  A,  C. Für dieses

Gesetzt existiert die Analogie in der Arithmetik:  A × ( B + C) =  A ×  B +  A × C. Die

Disjunktion von  A  mit einer konjunktiven Operation  B,  C  ist gleich der Konjunktion
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der Disjunktionen von  A,  B  und  A,  C. Für dieses Distributivgesetz existiert in der

Arithmetik keine Analogie. 



 

 



 A ∧  B ∨ C =  A ∧  B ∨  A ∧ C



 

 



 A ∨  B ∧ C =  A ∨  B ∧  A ∨ C

 Beispiel 1.22.  Betrachten wir die Wahrheitstabelle für die Aussagen  A,  B,  C. 

Tabelle 1.7: Wahrheitstafel für Distributivgesetze



 

 





 

 



 A B C A ∧  B ∨ C

 A ∧  B ∨  A ∧ C

 A ∨  B ∧ C

 A ∨  B ∧  A ∨ C

w w w

w

w

w

w

w w

f

w

w

w

w

w

f

w

w

w

w

w

w

f

f

f

f

w

w

f

w w

f

f

w

w

f

f

w

f

f

f

f

f

w

f

f

f

f

f

f

f

f

f

f

f

f

Die Aussagewerte der Terme sind gleich. 

☼

Absorptionsgesetze

Die Absorptionsgesetze sind mit den Regeln Mengenleh-

re leicht nachvollziehbar. 

 A ∧ ( A ∨  B) =  A

 A ∨ ( A ∧  B) =  A

 Beispiel 1.23.  Die Aussage  A  sei „Leo spielt Fußball“. Die Aussage  B  sei „es regnet





nicht“. Angenommen  A  sei wahr und für  B  sei wahr oder falsch. Dann ist  A ∨  B

stets wahr und somit auch  A ∧( A∨ B), weil der Aussagewert von  A  und ( A∨ B) wahr

sind. 





Betrachten wir das 2. Absorptionsgesetz. Die Konjunktion  A ∧  B  liefert für die

obige Annahme den Aussagewert wahr oder falsch. Aufgrund der Disjunktion mit  A

ist aber nur der Aussagewert von  A  für die Gesamtaussage bestimmend. 

☼

De Morgans Gesetze

Die Negation einer Konjunktion ist gleich der Disjunk-

tion der negierten Aussagen. Die Negation einer Disjunktion ist gleich der Konjunk-

tion der negierten Aussagen. 





¬  A ∧  B = ¬ A ∨ ¬ B





¬  A ∨  B = ¬ A ∧ ¬ B

 Beispiel 1.24.  Aussage  A : „kein Regen“, Aussage  B : „kein Schnee“. Die Verneinung

von „kein Regen“ UND „kein Schnee“ ist „Regen“ ODER „Schnee“. Die Verneinung

von „kein Regen“ ODER „kein Schnee“ist „Regen“ UND „Schnee“. 

☼
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Kontraposition

Aus  A  folgt  B  ist gleich aus nicht  B  folgt nicht  A. 

( A →  B) = (¬ B → ¬ A)

 Beispiel 1.25.  Es sind die Aussage  A: „kein Regen“ und die Aussage  B: „Leo spielt

Fußball“ gegeben. Die Implikation „kein Regen“ ⇒ „Leo spielt Fußball“ ist iden-

tisch mit „Leo spielt nicht Fußball“ ⇒ „Regen“. Natürlich gilt die Kontraposition

auch für die anderen 3 Implikation  A : wahr →  B : falsch,  A : falsch →  B : wahr und

 A : falsch → falsch. 

☼

Umwandlungsregeln

 A ∨  B = ¬ A →  B

 A ∧  B = ¬( A → ¬ B)

 A ↔  B = (¬ A ∨  B) ∧ ( A ∨ ¬ B)

 A ↔  B = ( A ∧  B) ∨ (¬ A ∧ ¬ B)

 A ↔  B = ¬ A ↔ ¬ B

¬( A ↔  B) =  A ↔ ¬ B = ¬ A ↔  B

Konsensusregeln

In den folgenden Aussageverbindungen besitzt die Kon-

junktion bzw. Disjunktion von  B,  C  immer den Aussagewert falsch, wenn auch die

Konjunktion bzw. Disjunktion von  A,  B  oder von  A,  C  falsch sind. Daher beeinflusst

 B ∧ C  bzw.  B ∨ C  den Gesamtaussagewert nicht. 

( A ∧  B) ∨ (¬ A ∧ C) ∨ ( B ∧ C) = ( A ∧  B) ∨ (¬ A ∧ C)

( A ∨  B) ∧ (¬ A ∨ C) ∧ ( B ∨ C) = ( A ∨  B) ∧ (¬ A ∨ C)

1.4 Fazit

Mengen und Zahlenmengen sind Grundlagen der Mathematik. Die reellen Zahlen

sind die am häufigsten verwendeten Zahlen. Die Aussagenlogik wird in der Mathe-

matik zur Beweisführung verwendet. Ferner wird sie in der Informatik eingesetzt. 
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2.1 Vorbemerkung

Summen- und Produktzeichen kürzen die fortgesetzte Summation und Addition ab. 

Insbesondere das Summenzeichen wird häufig verwendet. Der Logarithmus und die

Exponentialfunktion bereiten vielen Studierenden immer wieder Schwierigkeiten. 

Daher werden sie hier kurz mit anderen grundlegenden mathematischen Funktionen

beschrieben. Ferner werden zwei spezielle Funktionen eingeführt, die in späteren

Kapiteln verwendet werden. Es sind die Betragsfunktion und die Gauß-Klammer

(Auf- und Abrundungsfunktion). In Kapitel 8 werden die Funktionen mit einer Va-

riablen ausführlicher erklärt. 

Übersicht über die hier eingesetzten mathematischen Symbole:

 Summenzeichen

Produktzeichen

 i,  j  Subskript, Index

e Eulersche Zahl

| | Betragsfunktion

 f ( x) Funktion von  x

W. Kohn, R. Öztürk,  Mathematik für Ökonomen,  Springer-Lehrbuch,   

DOI 10.1007/978-3-642-28575-2_2, © Springer-Verlag Berlin Heidelberg 2012
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log a x  Logarithmusfunktion zur Basis  a

ln  x  Logarithmusfunktion zur Basis  e, natürlicher Logarithmus

, Ganzzahlfunktion

√ x  Wurzelfunktion

2.2 Summenzeichen



Das Summenzeichen

steht als Wiederholungszeichen für die fortgesetzte Addi-

tion. 

 n

 ai = a 1+ a 2+···+ an

(2.1)

 i=1

In der Gleichung (2.1) bezeichnet man  i  als Summationsindex, der hier mit eins

beginnt und jeweils um eins hochgezählt wird bis die Obergrenze  n  erreicht ist. Der

Index  i  kann mit jeder ganzen Zahl beginnen und enden. 

 Beispiel 2.1. 

1

 xi = x−2+ x−1+ x 0+ x 1

 i=−2

Mit negativen Indizes werden in der Ökonomie oft Werte aus der Vergangenheit, mit

positiven Indizes zukünftige Werte und mit dem Index Null der Wert der Gegenwart

bezeichnet. 

☼

Das Summenzeichen ist nützlich, um größere Summen übersichtlich darzustel-

len, deren Wert zu berechnen ist. Es gelten die folgenden Rechenregeln, die sich aus

den Rechengesetzen ergeben:

Gleiche Summationsgrenzen:

 n



 n



 n



 ai +

 bi =

( ai +  bi)

 i=1

 i=1

 i=1

 Beispiel 2.2. 

3





3





3





1 + 3 + 5 +

2 + 4 + 6 =

1 + 2 + 3 + 4 + 5 + 6

 a 1

 b

 a

 b

 a

 b

 i=1

 i=1

 i=1

1

2

2

3

3

☼

Additive Konstante:

 n



 n



( ai +  c) =

 ai +  nc

 i=1

 i=1
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 Beispiel 2.3. 

10





10



 ai + 1 = ( a 1 + 1) + ...+ ( a 10 + 1) =

 ai + 10

 i=1

 i=1

☼

Multiplikative Konstante:

 n



 n



 cai =  c

 ai

 i=1

 i=1

 Beispiel 2.4. 

4



4







3  i 2 = 3

 i 2 = 3 12 + 22 + 32 + 42 = 90

 i=1

 i=1

☼

Summenzerlegung:

 n



 m



 n



 ai =

 ai +

 ai  für  m <  n

 i=1

 i=1

 i= m+1

 Beispiel 2.5. 

5



3



5



 i =

 i +

 i = 1 + 2 + 3 + 4 + 5 = 15

 i=1

 i=1

 i=4

☼

Das Summenzeichen kann auch doppelt oder mehrfach hintereinander auftreten. 

Zwei Summenzeichen treten zum Beispiel hintereinander auf, wenn in einer Tabelle

alle Werte addiert werden sollen. Die Zeilen einer Tabelle werden in der Regel mit

 i  indiziert und die Spalten einer Tabelle mit  j. Die Werte in den Tabellenfeldern

werden dann mit  aij  bezeichnet (siehe Tabelle 2.1). 

Tabelle 2.1: Zweidimensionale Tabelle mit Randsummen



 a

 m

11

···

 a 1 j

···

 a 1 m

 j=1  a 1  j

.. 

. 

. 

. 

. 

. 

. . 

. . 

.. 

.. 



 a

 m

 i 1

···

 aij

···

 aim

 j=1  ai j

.. 

. 

. 

. 

. 

. 

. . 

. . 

.. 

.. 



 a

 m

 n 1

···

 anj

···

 anm

 j=1  an j

 n

 n

 n

 n  m

 i=1  ai 1 ···

 i=1  ai j ···

 i=1  aim

 i=1

 j=1  ai j

Wie in der oben stehenden Tabelle ersichtlich, können mit der Doppelsumme alle

Werte der Tabelle addiert werden. Dabei ist es egal, ob erst die Zeilen und dann die

Spalten addiert werden oder umgekehrt. 
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 m



 m



 m



 n

 m



 a 1 j +

 a 2 j + ··· +

 anj =

 aij

 j=1

 j=1

 j=1

 i=1  j=1

 n



 n



 n



 m

 n



 ai 1 +

 ai 2 + ··· +

 aim =

 aij

 i=1

 i=1

 i=1

 j=1  i=1

 n

 m



 m

 n



 aij =

 aij

 i=1  j=1

 j=1  i=1

Lediglich die Reihenfolge der Summation ist unterschiedlich. Nach dem ersten Kom-

mutativgesetz führt dies zu keiner Ergebnisänderung. 

 Beispiel 2.6. 

2

3

( bij+ i×  j)=( b 11+1)+( b 12+2)+( b 13+3)

 i=1  j=1

+ ( b 21 + 2) + ( b 22 + 4) + ( b 23 + 6)

2

3



= 18 +

 bij

 i=1  j=1

☼

Übung 2.1. Berechnen Sie folgende Ausdrücke für  x = 5,2,1,2 und  y = 1,2,3,4:

4



4



4





 xi

 xi yi

 xi + 3

 i=1

 i=1

 i=1

Übung 2.2. Berechnen Sie die folgenden Summen:

5



5





1

1

( n − 1)2 ( n + 2)

−

 k

 k + 1

 n=2

 k=1

Übung 2.3. Ist die Doppelsumme

2

2

 xij

 i=1  j=1

gleich der Summe

2



2



 xi

 xj ? 

 i=1

 j=1
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2.3 Produktzeichen



Das Produktzeichen

steht als Wiederholungszeichen für die fortgesetzte Multi-

plikation. 

 n

 ai = a 1× a 2×···× an

 i=1

Das Produktzeichen wird wie das Summenzeichen zur übersichtlicheren Darstel-

lung von größeren Produkten verwendet. Es gelten die folgenden Rechenregeln, die

sich leicht aus den elementaren Rechenoperationen ableiten lassen:

Gleiche Produktgrenzen:

 n



 n



 n



 ai ×  bi =

 ai ×

 bi

 i=1

 i=1

 i=1

Multiplikative Konstante:

 n



 n



 c ×  ai =  cn ×

 ai

 i=1

 i=1

Anmerkung: Im Text wird das Produktzeichen × – soweit es eindeutig ist – durch

einen kleinen Freiraum ersetzt. 

 a ×  b =  ab

Übung 2.4. Berechnen Sie folgende Ausdrücke für  x = 5,2,1,2:

4



5



4



 xi

 i

2  xi

 i=1

 i=1

 i=1

Übung 2.5. Schreiben Sie das Doppelprodukt

2

2

 xij

 i=1  j=1

aus. 

2.4 Betragsfunktion

Die Betragsfunktion liefert von einer reellen Zahl deren vorzeichenlosen Zahlen-

wert. 

  x  für  x ≥0

| x| = − x  für  x < 0

Anschaulich kann der Betrag | x| als der Abstand auf der Zahlengeraden zwischen 0

und  x  interpretiert werden. Beim Rechnen mit Beträgen ist Folgendes zu beachten:

| x| ≥ 0
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| x ×  y| = | x| × | y|

 

 x 

| x|

 

für  y = 0

 y  = | y|

| x ±  y| ≤ | x| + | y|

2.5 Ganzzahlfunktion

Die Gauß-Klammer   wird auch als Ganzzahlfunktion bezeichnet. Ursprünglich

bezeichnet sie die Abrundung einer reellen Zahl zur nächsten ganzen Zahl. Daher

wird sie manchmal auch Abrundungsfunktion genannt. 





 x = max  k |  k ≤  x

mit  k ∈ Z

Der senkrechte Strich | bedeutet «für die gilt». Hier also «für die  k, für die  k ≤  x

gilt». 

 Beispiel 2.7.  Die Zahl 2.8 wird durch 2.8 auf 2 abgerundet. 

2.8 = 2

Die Zahl −2.8 wird durch die Abrundungsfunktion auf −3 abgerundet, weil

−3 < −2.8 < −2 gilt. 

−2.8 = −3

☼

Jedoch benötigt man manchmal auch die Aufrundung einer reellen Zahl auf die

nächste ganze Zahl. Man schreibt dann in Anlehnung an die Abrundungsfunktion:





 x = min  k |  k ≥  x

mit  k ∈ Z

 Beispiel 2.8.  Die Zahl 2.8 wird durch die Aufrundungsfunktion 2.8 auf 3 aufge-

rundet. 

2.8 = 3

Die Zahl −2.8 wird dementsprechend aufgerundet auf −2. 

−2.8 = −2

☼
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2.6 Potenzen und Wurzeln

Sowohl in der Finanzmathematik als auch in der Analysis tauchen Potenzen auf. Man

spricht von einer Potenz mit natürlichem Exponent, wenn man eine reelle Zahl  n-mal

mit sich selbst multipliziert. 

 an =  a × ...×  a

   mit  a ∈ R,  n ∈ N

 n-mal

Die Zahl  a  wird Basis genannt und die Zahl  n  wird als Exponent bezeichnet. Der

Gesamtausdruck heißt Potenz  a  hoch  n. 

Auch in der Potenzrechnung gilt Punktrechnung vor Strichrechnung. 

 Beispiel 2.9. 

−(34) = −81, 

aber (−3)4 = 81

(4 × 5)3 = 203 = 8000, aber 4 × 53 = 4 × 125

☼

Für den Umgang mit Potenzen bei natürlichem Exponent gelten folgende fünf

Rechenregeln. 

Regel

Beispiel

1.  am ×  an =  am+ n  mit  a ∈ R ;  m,  n ∈ N

23 × 22 = 25

 am

23

2. 

=  am− n  mit  a ∈ R ;  a = 0 ;  m,  n ∈ N

= 2

 an

22









3.  a ×  b n =  an bn  mit  a,  b ∈ R ;  n ∈ N

2 × 3 2 = 22 × 32 = 36





 a  n

 an

6 2

62

4. 

=

mit  a,  b ∈ R ;  b = 0 ;  n ∈ N

=

= 4

 b

 bn

3

32

 

5. ( am) n =  am× n  mit  a ∈ R ;  m,  n ∈ N

23 2 = 26 = 64

Für die Addition und Subtraktion von Potenzen existieren keine Rechengesetze. 

Ausdrücke wie zum Beispiel  x 2 +  y 2 oder  x 2 +  x 3 können nicht vereinfacht werden. 

Die Potenzrechnung wird nun auf ganze Zahlen ausgedehnt. Mit dieser Erweite-

rung können rationale Zahlen dargestellt werden. 

1

 a− n =

mit  a ∈ R \ {0},  n ∈ N

 an

 a 0 = 1

mit  a ∈ R \ {0}

Das Zeichen \ bedeutet ohne die Menge { }. Im vorliegenden Fall ist es die Menge

der reellen Zahlen ohne die Null. Schließlich ist es sinnvoll, die Potenzrechnung

nochmals zu erweitern, um zum Beispiel folgende Gleichung zu lösen:
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 x 2 = 2

Potenziert man beide Seiten mit 1 , so ergibt sich:

2

 1

1

1

 x 2 2 = 22 ⇒  x = 2 2

Der gesuchte Wert ergibt sich in Form einer Potenz mit der Basis 2 und dem Expo-

nenten 1 . Weil diese Gleichungen häufig auftreten, wird die Lösung als Quadratwur-

2

zel bezeichnet und als

√

√

 x = 2 2 = 2

geschrieben. Bei der Quadratwurzel entfällt häufig der Wurzelexponent. Die Wurzel

von einer negativen Zahl  x  ist in den reellen Zahlen nicht definiert. Um solche Funk-

tionen zu berechnen, sind imaginäre Zahlen nötig, die zusammen mit den reellen die

komplexen Zahlen ergeben (siehe Kapitel 1.2.3). 

 Beispiel 2.10. √

√

−16 ist nicht in R definiert, aber − 16 = −4

☼

Daher heißt es etwas allgemeiner: Die nicht negative Lösung  x  von  a =  x 2 mit

 a ∈ R+ heißt Quadratwurzel. √ x 2=| x| für x∈R

Sucht man die Lösung für eine Potenz größer als 2, so spricht man von der  n-ten

Wurzel. 

1

√

 a =  xn  mit  x ∈ R+,  n ∈ R,  n = 0 ⇒  x =  a n =  n a

Nun kann man auch folgende Gleichung lösen:

 m

√

 am =  xn  mit  x ∈ R+,  m,  n ∈ R,  n = 0 ⇒  x =  a n =  n am

Das Wurzelziehen ist also die Umkehroperation zum Potenzieren. Zieht man die  n-te

Wurzel und potenziert hoch  n, dann gelangt man wieder zur Ausgangszahl. 

 Beispiel 2.11. 

√383 =8

☼

Mit der Wurzel lassen sich reelle Zahlen darstellen, die nicht ausgeschrieben

√

werden können, wie zum Beispiel 2. 

 Beispiel 2.12. 

√

√

√

4

2

1

4 = 4 22 = 24 = 22 = 2 = 1.41421... 

☼

Die fünf Potenzregeln bleiben auch für die Potenzen  a mn  gültig. 

 Beispiel 2.13. 

√

√

√

4

1

1

3

256 × 256 = 2564 × 2562 = 2564 = 4 2563 = 43 = 64
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√384 843

1

1

1

√ =

= 4

8 3 − 53 = 8−13 =

= √ =

3 85

8 5

3

3

8 13

8

2

√

√

1

1



1

1

√

4 × 9 = 42 × 92 = 4 × 9 2 = 362 = 36 = 6

√



1

100

100 1

100 2

√

√

2

=

=

= 1

4 2 = 4 = 2

25

25 12

25

√



1

√

4

1

1

1

256 = 256

2

4

= 2564×12 = 2568 = 8 256 = 2

☼

2.7 Exponentialfunktionen

Um das Wort «exponentiell» zu erklären, beginnen wir mit einem Beispiel aus der

Biologie. 

 Beispiel 2.14.  Wir betrachten eine Bakterienkultur, deren Wachstumsprozess durch

die Zellteilung zustande kommt. Wir gehen davon aus, dass

• zu Beginn 1 000 Bakterien existieren

• und sich jede Stunde die Anzahl der Bakterien verdoppelt. 

An einem Zeitstrahl würde dies wie folgt aussehen:

Stunden

0

1

2

3

4

5

Bakterien 1000 2000 4000 8000 16000 32000

Da sich die Anzahl der Bakterien pro Stunde verdoppelt, muss die Anzahl der Bak-

terien zu Beginn mit 2 multipliziert werden, um deren Anzahl nach einer Stunde zu

berechnen. Für jede weitere Stunde muss nun der jeweils vorherige Wert wiederum

mit 2 multipliziert werden usw. 

☼

Mit der Exponentialfunktion

 f ( x) =  ax  mit  a,  x ∈ R

wird die obige Populationsänderung beschrieben.  ax  bedeutet das  x-fache Produkt

von  a. Für  x ∈ N kann man also

 ax =  a ×  a × ...×  a







 x-mal

schreiben. Wird für  a  der Wert 2 eingesetzt, so erhält man mit  x = 0,...,5 die Werte

in der Tabelle. 

Eine übliche Form die Funktion aufzuschreiben, ist

 f ( x) =  cabx, 
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35000
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20000
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 f ( x)=1000×2 x
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0.5
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3.5

4.0

4.5

5.0

x

Abb. 2.1: Entwicklung einer Bakterienpopulation

wobei  a,  b,  c  Koeffizienten sind. Mit den Koeffizienten verändert sich die Kurven-

form der Exponentialfunktion. Oft wird für die Basis  a  die Eulersche Zahl e ver-

wendet. 





1  x

e = lim 1 +

≈ 2.718282

 x→∞

 x

 Beispiel 2.15.  Ein weiteres Beispiel für ein exponentielles Wachstum ist die Zin-

seszinsrechnung. Es wird ein Kapitalbetrag von 1 000 e zu 5 Prozent über 5 Jahre

angelegt. 

Jahr

0

1

2

3

4

5

e

1000 1050 1102.50 1157.62 1215.50 1276.28

Der Betrag am Ende jeden Jahres wird mit dem Faktor 1.05 multipliziert. Für das

erste Jahr errechnet sich das angesparte Kapital wie folgt:

1050 = 1000 + 1000 × 0.05

1050 = 1000(1 + 0.05)

1050 = 1000 × 1.05

Für das Kapital nach dem zweiten Jahr kann die Exponentialfunktion wieder ver-

wendet werden. 
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1102.50 = 1050 × 1.05

1102.50 = 1000 × 1.05 × 1.05

1102.50 = 1000 × 1.052

Die Exponentialfunktion besitzt hier die Koeffizienten  a = 1.05,  b = 1 und  c = 1000

 f ( x) = 1000 × 1.05 x

☼

Im Allgemeinen gilt, dass im Exponenten jede reelle Zahl stehen kann. Das kön-

nen negative und positive Zahlen, aber auch Brüche und die Null sein. Mit der Ex-

ponentialfunktion können daher sowohl Wachstums- als auch Abnahmeprozesse be-

rechnet werden. 

 Beispiel 2.16.  Eine Maschine kostet 1 000 e. Es wird angenommen, dass sie jedes

Jahr 20 Prozent an Wert verliert. Diese Form des Wertverlusts wird als geometrisch

degressive Abschreibung bezeichnet. Die zeitliche Entwicklung des Wertes sieht

dann wie folgt aus:

Jahr

0

1

2

3

4

5

Wert 1000 800 640 512 409.60 327.68

Der Wertverlust der Maschine kann auch mit der Exponentialfunktion beschrieben

werden. 

 f ( x) = 1000 × 0.8 x = 1000 × 1.25− x

Nach 5 Jahren liegt der Restwert der Maschine bei

 f (5) = 1000 × 1.25−5 = 327.68 e

Da stets 80 Prozent des Restwerts bestehen bleiben, wird die Maschine nie einen

Restwert von Null besitzen. 

☼

Wir haben bereits gesehen, dass die Exponentialfunktion durch die allgemeine

Form

 f ( x) =  cabx  mit  a,  b,  c,  x ∈ R

definiert ist. Der Funktionswert  f ( x) ändert sich, sobald sich die Variable  x ändert. 

Betrachten wir nun eine Änderung der Variablen  x  um  s, also einen neuen Wert  x + s. 

Wie verhält sich der Funktionswert  f ( x +  s)? 

 f ( x +  s) =  cab( x+ s)

Da

 cab( x+ s) =  cabx abs
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ist, entsteht daraus

 f ( x +  s) =  f ( x) abs, 

d. h., wächst die Variable  x  additiv um  s, so ändert sich der Funktionswert multipli-

kativ um  abs. 

Übung 2.6. Berechnen Sie für ein Kapital von 10000 e, das zu 5 Prozent über 10

Jahre angelegt wird, den Endwert. 

Übung 2.7. Angenommen das Kapital aus Übung 2.6 wird nur für 9 Jahre angelegt. 

Wie können Sie aus dem Endkapital, das Sie in der Übung 2.6 berechnet haben, den

Endwert nach 9 Jahren berechnen? 

Übung 2.8. Ein Gewinn soll sich in den nächsten 15 Jahren verdoppeln. Welche

durchschnittliche jährliche Wachstumsrate ist dazu notwendig? 

2.8 Logarithmen

Wie werden Exponentialgleichungen nach  x  umgestellt? 

Logarithmen sind zum Lösen von Exponentialgleichungen oder zum Beschrei-

ben von Wachstumsprozessen wichtig. Der Logarithmus (genau genommen handelt

es sich um die Logarithmusfunktion) ist die Umkehrung des Potenzierens. 

 y =  ax ⇔  x = log a y  mit  a,  y ∈ R+ und  a = 1

(2.2)

Wurde beim Radizieren die Basis  a  errechnet, so sucht man jetzt bei bekanntem

Potenzwert  y  und Basis  a  den Exponenten  x. Der Logarithmus einer beliebigen po-

sitiven Zahl  y  zur Basis  a  ist derjenige Exponent  x, mit dem die Basis  a  potenziert

werden muss, um den Numerus  y  zu erhalten. 

 Beispiel 2.17.  Hierfür wird die Gleichung aus Beispiel 2.15 betrachtet. 

1102.50 = 1000 × 1.05 x

Es ist die Anlagedauer  x  gesucht. Durch Logarithmieren der Gleichung (siehe Re-

chenregeln auf der folgenden Seite)

log1102.50 = log1000 +  x  log1.05

erhält man die Variable  x  in einer lineare Beziehung, so dass durch Division die

Lösung berechnet werden kann. 

log1102.50 − log1000

 x =

= 2

log 1.05

☼
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 Beispiel 2.18. 

8 = 23 ⇔ log2 8 = 3

☼

Aus der Definition des Logarithmus (2.2) folgen die Beziehungen:

log a a = 1 denn  a 1 =  a

log a  1 = 0 denn  a 0 = 1

log a an =  n  denn  an =  an

Weitere Rechenregeln sind:

log a( c ×  d) = log a c + log a d

 c

log a = log

 d

 a c − log a d

log a bn =  n log a b

√

1

log  n

 a

 b = log

 n

 a b

Logarithmen mit gleicher Basis bilden ein Logarithmensystem, von denen die

beiden gebräuchlichsten die dekadischen (Basis  a = 10, oft mit log bezeichnet) und

die natürlichen Logarithmen (mit der Eulerschen Zahl  a = e als Basis mit der Be-

zeichnung ln) sind. Auf dem Taschenrechner sind meistens die beiden oben genann-

ten Logarithmensysteme vorhanden. Wie kann der Logarithmus

 x = log2 8

mit einem Taschenrechner berechnet werden? Dazu folgende Überlegungen: Ausge-

hend von der Gleichung

 y =  ax

ergeben sich mit den beiden obigen Logarithmen die beiden folgenden Gleichungen:

log y

log y =  x log a ⇒  x = log a

ln  y

ln y =  x ln a

⇒  x = ln a

Daraus ergibt sich nun die Gültigkeit der folgenden Beziehung:

log y

ln  y

 x = log a y =

=

log a

ln  a

Somit ist die Berechnung des Logarithmus log2 8 kein Problem. 

log 8

ln8

 x = log2 8 =

=

= 3

log 2

ln2









32

2 Besondere mathematische Funktionen

Logarithmen werden auch für die grafische Darstellung von Wachstumsprozes-

sen verwendet. Angenommen, ein Wert wächst in jeder Periode um 10 Prozent

( p = 0.1), dann ist die Wachstumsrate konstant, die resultierenden Werte nehmen

aber exponentiell zu (siehe obere Grafik in Abb. 2.2). 

 xt =  xt−1(1 +  p) t  mit  t = 1,...,  n

Wird der Wachstumsprozess in einer Grafik mit logarithmierten Werten auf der Or-

dinaten abgetragen, so sieht man die Konstanz der Wachstumsrate. 

log a xt = log a xt−1 + t  log a(1 +  p) mit  a > 0 und  a = 1

(2.3)

In der Gleichung (2.3) handelt es sich um eine Gerade mit Achsenabschnitt log a xt−1

und Steigung log a(1 +  p) (siehe untere Grafik in Abb. 2.2). Hier wurde  a = e, also

der natürliche Logarithmus ln verwendet. 
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Abb. 2.2: Exponentieller Wachstumsprozess

Übung 2.9. Lösen Sie die folgenden Gleichungen nach  x  auf. 

 y = e a+ bx

e− ax = 0.5
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Übung 2.10. Ein Kapital  K 0 soll sich verdoppeln. Es ist ein Zinssatz von 5 Prozent

pro Jahr gegeben. Wie viel Jahre muss das Kapital angelegt werden? 

Übung 2.11. Berechnen Sie folgende Logarithmen:

log2 5

log3 4

Übung 2.12. Vereinfachen Sie die folgenden Ausdrücke mit den Rechenregeln der

Logarithmusrechnung:

















 p q 2

ln 2  x  4  x 2  y

ln 2  x 4  u 2− x

ln 5  x 2 4 ( a 2 b)2

2.9 Anwendung in Scilab

Reelle Zahlen werden in Scilab mit einem Punkt als Dezimalzeichen eingegeben. 

3.4

Eine Summe wird in Scilab mit sum() berechnet. Soll eine Summe von belie-

bigen Zahlen berechnet werden, so sind die Zahlen in eckigen Klammern und durch

Kommas getrennt einzugeben. 

sum(1:6) -> 21

sum(3*(1:4)^2) -> 90

sum([3,6,1]) -> 10

Für eine Doppelsumme muss zuerst ein Zahlenfeld (siehe auch Kapitel 5) in

Scilab eingegeben werden. Die Zeilen werden durch Semikolon getrennt. Die Dop-

pelsumme über das Zahlenfeld wird durch den einfachen Summenbefehl berechnet. 

Soll nur die Summe über die Spalten berechnet werden, so muss nach der Angabe

der Variablen ein weiteres Argument angegeben werden. In diesem Fall ist es eine 1. 

Für die Summe über die Zeilen ist das Argument eine 2. 

tab = [2,3,4;5,6,7]

2 3 4

5 6 7

sum(tab) -> 27

sum(tab,1) -> 7 9 11

sum(tab,2)

9

18
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Das Produkt eines Zahlenfelds wird mit dem Befehl prod() berechnet. 

prod(tab) -> 5040

prod(tab,1)-> 10 18 28

prod(tab,2)

24

210

Den Betrag einer Zahl erhält man in Scilab mit dem Befehl abs(). 

abs(-2) -> 2

Die Gauß-Klammer wird durch die Abrundungsfunktion floor() berechnet. 

floor(2.8) -> 2

Die Aufrundungsfunktion ist durch die Funktion ceil() definiert. 

ceil(2.8) -> 3

Potenzen und Wurzeln können in Scilab mit dem «Dach»-Operator berechnet

werden. 

2^4 -> 16

2^0.25 -> 1.1892071

sqrt(2)

Für die 2-te Wurzel steht auch die gesonderte Funktion sqrt zur Verfügung. 

Die Exponentialfunktion zur Basis  e  wird mit dem Befehl exp() aufgerufen. 

exp(1) -> 2.7182818

Die Berechnung des Logarithmus zur Basis  e  erfolgt mit log, also der ln in der

Notation des Buches. Es stehen noch weitere Logarithmusfunktionen in Scilab zur

Verfügung. 

log(2) -> 0.6931472

log10(2) -> 0.30103

log2(2) -> 1

Für alle Funktionen steht eine Hilfe zur Verfügung. Sie wird mit help aufgeru-

fen. Für die Summenfunktion ist es beispielsweise

help sum

2.10 Fazit
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2.10 Fazit

Das Summenzeichen wird viel in der linearen Algebra und Polynomen verwendet. 

Das Produktzeichen findet vor allem in der Kombinatorik seine Anwendung. Die

Logarithmus- und die Exponentialfunktion sind wichtige mathematische Funktio-

nen, die zur Beschreibung von Wachstumsprozessen und zur Auflösung von Glei-

chungen herangezogen werden. Insbesondere in der Finanzmathematik werden diese

Funktionen verwendet. 
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3.1 Vorbemerkung

Die Kombinatorik ist die Grundlage vieler statistischer und wahrscheinlichkeitstheo-

retischer Vorgänge. Sie untersucht, auf wie viele Arten man  n  verschiedene Dinge

anordnen kann bzw. wie viele Möglichkeiten es gibt, aus der Grundmenge von  n-

Elementen  m-Elemente auszuwählen. Sie zeigt also, wie richtig «ausgezählt» wird, 

und damit gehört die Kombinatorik auch in den Bereich der Mathematik. 

Es wird folgende Notation für die Kombinatorik eingesetzt:

 n! 

Fakultät

 

 a

Binomialkoeffizient

 b

 P

Permutation ohne Wiederholung

 Pw

Permutation mit Wiederholung

W. Kohn, R. Öztürk,  Mathematik für Ökonomen,  Springer-Lehrbuch,   

DOI 10.1007/978-3-642-28575-2_3, © Springer-Verlag Berlin Heidelberg 2012







38

3 Kombinatorik

 V

Variation ohne Wiederholung

 Vw

Variation mit Wiederholung

 C

Kombination ohne Wiederholung

 Cw

Kombination mit Wiederholung

3.2 Fakultät und Binomialkoeffizient

3.2.1 Fakultät

Das Produkt

 n

 i = n!, mit  n∈ N

 i=1

wird als Fakultät bezeichnet. Es gilt 0! = 1. In Scilab wird die Fakultät mit dem

Befehl factorial(n) berechnet. 

3.2.2 Binomialkoeffizient

Der Binomialkoeffizient ist für  m,  n  und  m ≤  n  wie folgt definiert:



 n

 n! 

=

mit  m ≤  n ∈ Z+

 m

 m! ( n −  m)! 

Man spricht: « n über  m». 

 Beispiel 3.1. 



5

5! 

=

= 10

3

3! 2! 



6

6! 

=

= 15

2

2! 4! 

☼

Es gelten u. a. folgende Rechenregeln für den Binomialkoeffizienten:





 n

 n

=

 m

 n −  m







 n + 1

 n

 n

=

+

 m + 1

 m

 m + 1

Herleitung der zweiten Gleichung:
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 n

 n

 n! 

 n! 

+

=



 + 

 



 m

 m + 1

 m!  n −  m ! 

 m + 1 !  n −  m − 1 ! 









 n!  m + 1

 n!  n −  m

=





 + 

 

 



 m!  m + 1  n −  m ! 

 m + 1 !  n −  m − 1 !  n −  m









 n!  m + 1

 n!  n −  m

= 

 

 + 

 



 m + 1 !  n −  m ! 

 m + 1 !  n −  m ! 













 n!  m + 1 +  n!  n −  m

 n + 1 ! 

=



 



= 

 



 m + 1 !  n −  m ! 

 m + 1 !  n −  m ! 





 n + 1

=  m+1

 Beispiel 3.2. 





8

8! 

8

=

=

= 8

1

1! 7! 

7

☼

 

Die Bezeichnung von  n  als Binomialkoeffizienten hängt eng mit der Auflösung

 m

von binomischen Ausdrücken der Form ( a +  b) n  zusammen. Für  n = 0,1,2,... kann

man ( a +  b) n  explizit angeben:





 n

 n

( a +  b) n =  an +

 an−1  b 1 +

 an−2  b 2 + ... 

1

2



 n

+

 a 1  bn−1 +  bn a,  b ∈ R,  n ∈ N

 n

 n



 n

=

 an− i bi

 i

 i=0

Die Binomialkoeffizienten sind die Zahlen des Pascalschen Dreiecks. 

Tabelle 3.1: Pascalsche Dreieck

 m

 n  0 1

2

3

4 5 6 ... 2 n

0 1

20

1 1 1

21

2 1 2

1

22

3 1 3

3

1

23

4 1 4

6

4

1

24

5 1 5 10 10

5 1

25

6 1 6 15 20 15 6 1

26

... 
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Die Summe der  n-ten Zeile ist die Anzahl aller Kombinationen. 

 n



 n = 2 n

 m

 m=0

Wieso? Ein Element kann ausgewählt oder nicht ausgewählt werden:  A = 1 oder

 A = 0. Zwei Elemente können auf 4 verschiedene Weise ausgewählt werden:  A =

1,  B = 1 oder  A = 1,  B = 0 oder  A = 0,  B = 1 oder  A = 0,  B = 0. 3 Elemente auf 8

usw. 

 Beispiel 3.3. 

( a +  b)0 = 1 



1

1

( a +  b)1 =

 a b 0 +

 a 0  b

0

1







2

2

2

( a +  b)2 =

 a 2  b 0 +

 a b +

 a 0  b 2

0

1

2









3

3

3

3

( a +  b)3 =

 a 3  b 0 +

 a 2  b +

 a b 2 +

 a 0  b 3

0

1

2

3

☼

Im Folgenden werden drei Klassen von kombinatorischen Fragestellungen be-

handelt:

1. die Bildung von unterscheidbaren Reihenfolgen (Permutationen), 

2. die Auswahl verschiedener Elemente, wobei es auf die Reihenfolge der Zie-

hung ankommt (Variationen) und

3. die Ziehung verschiedener Elemente ohne Berücksichtigung der Reihenfolge

(Kombinationen). 

3.2.3 Definition des Binomialkoeffizienten in Scilab

In Scilab lässt sich der Binomialkoeffizient einfach durch eine Funktion definieren. 

deff(’y=bincoef(n,m)’,’y=factorial(n)/... 

(factorial(m)*factorial(n-m))’)

bincoef(6,2)

> 15

3.3 Permutation

Eine Anordnung von  n  Elementen in einer bestimmten Reihenfolge heißt Permuta-

tion. Die definierende Eigenschaft einer Permutation ist die Reihenfolge, in der die

Elemente angeordnet werden. 
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Es ist zu beachten, ob alle  n  Elemente unterscheidbar sind oder ob sich unter den

 n  Elementen  m  identische befinden. Dies wird häufig durch die Differenzierung mit

und ohne Wiederholung ausgedrückt. 

3.3.1 Permutation ohne Wiederholung

Bei der Permutation ohne Wiederholung sind alle  n  Elemente eindeutig identifizier-

bar. Für das erste Element kommen  n  verschiedene Plazierungsmöglichkeiten in der

Reihenfolge in Betracht. Für das zweite Element kommen nur noch  n − 1 Plazie-

rungsmöglichkeiten in Betracht, da bereits ein Platz von dem ersten Element besetzt

ist. Jede Anordnung ist mit jeder anderen kombinierbar, d. h., insgesamt entstehen

 P( n) =  n! =  n × ( n − 1) × ···× 2 × 1 mit  n ∈ Z+

Permutationen. Die Zahl der Permutationen von  n  unterscheidbaren Elementen be-

trägt damit:  n! 

 Beispiel 3.4.  Vier Sprinter können in 4! = 24 verschiedenen Anordnungen in einer

Staffel laufen. 

☼

 Beispiel 3.5.  Der Vertreter, der 12 Orte zu besuchen hat und unter allen denkbaren

Rundreisen die kürzeste sucht, steht vor der Aufgabe, unter 12! = 479001600 ver-

schiedenen Rundreisen diejenige mit der kürzesten Entfernung finden zu müssen. 

Glücklicherweise sind in der Wirklichkeit nie alle Orte direkt miteinander verbun-

den. 

☼

3.3.2 Permutation mit Wiederholung

Hier wird angenommen, dass unter  n  Elementen  k  Elemente nicht voneinander zu

unterscheiden sind. Die  k  Elemente sind auf ihren Plätzen jeweils vertauschbar, ohne

dass sich dadurch eine neue Reihenfolge ergibt. Auf diese Weise sind genau

 Pw( n,  k) =  k! =  k × ( k − 1) × ···× 2 × 1

Reihenfolgen identisch. Die Zahl der Permutationen von  n  Elementen, unter denen  k

Elemente identisch sind, beträgt somit:

 n! 

 Pw( n,  k) =

= ( k + 1) × ( k + 2) × ···× ( n − 1) ×  n  mit  k ≤  n ∈ Z+

 k! 

 Beispiel 3.6.  Wie viele verschiedene zehnstellige Zahlen lassen sich aus den Ziffern

der Zahl 7 841 673 727 bilden? In der Zahl tritt die Ziffer 7 viermal auf, die übrigen

Ziffern je einmal. Die Permutation der vier «7» sind nicht unterscheidbar, so dass

insgesamt

10! 

 Pw(10,4) =

= 151200

4! 

Zahlen gebildet werden können. 

☼
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Gibt es nicht nur eine Gruppe, sondern  r  Gruppen mit

 k 1,...,  kr

nicht unterscheidbaren Elementen, so existieren

 n! 

mit  k

 k

1,... ,  kr ∈ N ∪ 0

1! ···  kr! 

Permutationen. Gilt ferner  k 1 + ... +  kr =  n, dann wird der obige Koeffizient als

Multinomialkoeffizient bezeichnet. 

 Beispiel 3.7.  In einem Regal sollen 3 Lehrbücher der Ökonomie sowie je 2 Lehr-

bücher der Mathematik und Statistik untergebracht werden. Ohne Berücksichtigung

der Fachgebiete gibt es für die 7 Bücher insgesamt 7! = 5040 Permutationen. Wer-

den die Bücher nur nach Fachgebieten unterschieden, wobei nicht nach Fachgebieten

geordnet werden soll, so erhält man

7! 

 Pw(7,3,2,2) =

= 5 × 6 × 7 = 210

(3! × 2! × 2!)

Permutationen. Sollen die Bücher eines Fachgebiets jeweils zusammenstehen, so

gibt es für die Anordnung der Fachgebiete 3! = 6 Permutationen. 

☼

Für  r = 2 Gruppen mit  k 1 =  k  bzw.  k 2 =  n −  k  nicht unterscheidbaren Elementen

erhält man



 n! 

 n

 Pw( n,  k) =

=

=  C( n,  k) mit  k ≤  n ∈ Z+

 k! ( n −  k)! 

 k

Permutationen. Dies ist der Binomialkoeffizient. 

Übung 3.1. Sie stehen an der Kasse und müssen genau 4.50 e bezahlen. In ihrem

Geldbeutel befinden sich drei 1-Euro-Münzen und drei 50 Cent-Münzen. Sie neh-

men die Münzen nacheinander heraus und legen sie auf den Tisch. Wie viele un-

terschiedliche Möglichkeiten existieren, die Münzen der Reihe nach anzuordnen? 

3.4 Variation

Eine Auswahl von  m  Elementen aus  n  Elementen unter Berücksichtigung der Rei-

henfolge heißt Variation. 

3.4.1 Variation ohne Wiederholung

Kann das gezogene Element nicht wieder ausgewählt werden, dann liegt eine Va-

riation ohne Zurücklegen vor. Bei  n  Elementen gibt es dann  n! Anordnungen (Per-

mutationen). Da aber eine Auswahl von  m  aus  n  Elementen betrachtet wird, werden
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nur die ersten  m  ausgewählten Elemente betrachtet, wobei jedes Element nur einmal

ausgewählt werden darf. Die restlichen  n −  m  Elemente werden nicht beachtet. Da-

her ist jede ihrer ( n −  m)! Anordnungen hier ohne Bedeutung. Sie müssen aus den  n! 

Anordnungen herausgerechnet werden. Es sind also

 n! 

 V ( n,  m) =

= ( n −  m + 1) × ( n −  m + 2) × ···×  n

( n −  m)! 

(3.1)

mit  m ≤  n ∈ Z+

verschiedene Variationen möglich. 

Man kann die Anzahl der Variationen auch so begründen: Das erste Element

kann aus  n  Elementen ausgewählt werden. Da es nicht noch einmal auftreten kann, 

kann das zweite Element daher nur noch aus  n − 1 Elementen ausgewählt werden. 

Das  m-te Element kann dann noch unter  n −  m + 1 Elementen ausgewählt werden. 

Da die Reihenfolge der Elemente beachtet wird, ist die Anordnung zu permutieren:

 V ( n,  m) =  n( n − 1)···( n −  m + 1) mit  m ≤  n ∈ Z+

(3.2)

Gleichung (3.1) und Gleichung (3.2) liefern das gleiche Ergebnis. 

 Beispiel 3.8.  Aus einer Urne mit 3 Kugeln (rot, blau, grün) sollen zwei Kugeln ge-

zogen werden. Ist zum Beispiel die erste gezogene Kugel rot, so verbleiben für die

zweite Position noch die zwei Kugeln blau und grün. 

Tabelle 3.2: Variation ohne Wiederholung

1. Kugel

rot

blau

grün

2. Kugel blau grün rot grün rot blau

Insgesamt können

3! 

 V (3,2) =

= 6

(3 − 2)! 

verschiedene Paare gezogen werden. 

☼

 Beispiel 3.9.  Der bereits bekannte Handelsvertreter kann am ersten Tag nur 3 der 13

Orte besuchen. Wie viele Möglichkeiten verschiedener Routenwahlen für den ersten

Tag kann er auswählen? Bei einer Auswahl von 3 Orten aus den insgesamt 13 Orten

unter Berücksichtigung der Reihenfolge ergeben sich

13! 

 V (13,3) =

= 1716

(13 − 3)! 

Reisemöglichkeiten. 

☼
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3.4.2 Variation mit Wiederholung

Wenn das gezogene Element wiederholt ausgewählt werden kann, nach der Ziehung

also zurückgelegt wird, spricht man von einer Variation mit Wiederholung. Ein Ele-

ment darf wiederholt bis maximal  m-mal auftreten. Beim ersten Element besteht die

Auswahl aus  n  Elementen. Da das erste Element auch als zweites zugelassen ist, 

besteht für dieses wieder die Auswahl aus  n  Elementen. Für jedes der  m  Elemen-

te kommen  n  Elemente infrage, also sind  n  Elemente  m-mal zu permutieren. Die

Zahl der Variationen von  m  Elementen aus  n  Elementen mit Wiederholung beträgt

folglich:

 Vw( n,  m) =  nm  mit  n,  m ∈ N

 Beispiel 3.10.  Im Dezimalsystem werden zur Zahlendarstellung zehn Ziffern be-

nutzt. Wie viele vierstellige Zahlen sind damit darstellbar? Es können 4 Ziffern zur

Zahlendarstellung variiert werden, wobei Wiederholungen (zum Beispiel 7788) ge-

stattet sind. Es sind somit 104 = 10000 Zahlen darstellbar. Dies sind die Zahlen von

0000 bis 9999. 

☼

Übung 3.2. Sie wollen 3 Wochen Urlaub machen und zwar jede Woche in einem

anderen Land. Sie haben sich entschieden, ihren Urlaub im Reisebüro X zu bu-

chen und erhalten dort die Auskunft, Sie könnten jederzeit in 25 Ländern Urlaub

machen, müssten sich dann aber festlegen. Wie viele Möglichkeiten gibt es, Ihren

Urlaub in drei Ländern zu buchen? Eine der Möglichkeiten wäre etwa: zuerst nach

Spanien, dann nach Frankreich und zuletzt nach Italien. 

3.5 Kombination

Eine Auswahl von  m  Elementen aus  n  Elementen ohne Berücksichtigung der Rei-

henfolge heißt Kombination. 

3.5.1 Kombination ohne Wiederholung

Bei Kombinationen kommt es nur auf die Auswahl der Elemente an, nicht auf de-

ren Anordnung. Daher ist die Anzahl der möglichen Kombinationen geringer als bei

der Variation, da die Permutation der  m  ausgewählten Elemente nicht unterscheidbar

ist;  m! Kombinationen sind identisch. Daher entfallen diese und müssen herausge-

rechnet werden. Dies geschieht, indem man die Zahl der Variationen von  m  aus  n

Elementen (dies sind

 n! 

Variationen) durch die Zahl der Permutationen von  m

( n− m)! 

Elementen (dies sind  m! Permutationen) dividiert. Die Zahl der Kombinationen von

 m  Elementen aus  n  Elementen ohne Wiederholung beträgt also



 n! 

 n

 C( n,  m) =

=

mit  m ≤  n ∈ Z+

 m! ( n −  m)! 

 m

und ist gleich dem Binomialkoeffizienten. 
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Der Binomialkoeffizient entspricht einer Permutation mit Wiederholung bei zwei

Gruppen. Bei der Kombination steht die Überlegung der Auswahl von  m  aus  n  Ele-

menten im Zentrum. Bei der Permutation ist es die Überlegung der Anordnung von

 n  Elementen, wobei  m  und  n −  m  Elemente identisch sind, sich also wiederholen. 

 Beispiel 3.11.  Es sind 6 aus 49 Zahlen (Lotto) in beliebiger Reihenfolge zu ziehen. 

Wie viele Kombinationen von 6 Elementen existieren? 



49

49! 

 C(49,6) =

=

= 13983816

6

6! (49 − 6)! 

☼

3.5.2 Kombination mit Wiederholung

Die Anzahl der möglichen Ergebnisse ist größer als bei der Kombination ohne Wie-

derholung. Ein Element kann nun bis zu  m-mal ausgewählt werden. Statt ein Element

zurückzulegen, kann man sich die  n  Elemente auch um die Zahl der Wiederholun-

gen ergänzt denken. Die  n  Elemente werden also um  m − 1 Elemente, von denen

jedes für eine Wiederholung steht, ergänzt. Dabei werden nur  m − 1 Elemente er-

gänzt, weil eine Position durch die erste Auswahl festgelegt ist; außerdem können

nur  m − 1 Wiederholungen erfolgen. Damit ist die Anzahl von Kombinationen mit

 m  aus  n  Elementen mit Wiederholung gleich der Anzahl der Kombinationen von  m

Elementen aus  n +  m − 1 Elementen ohne Wiederholung. 

Die Zahl der Kombinationen von  m  Elementen aus  n  Elementen mit Wiederho-

lung beträgt:





 n +  m − 1

( n +  m − 1)! 

 Cw( n,  m) =

=

mit  m ≤  n ∈ Z+

 m

 m! ( n − 1)! 

 Beispiel 3.12.  Stellt man sich eine Lottoziehung vor, bei der die gezogenen Kugeln

wieder zurückgelegt werden und somit erneut gezogen werden können, dann liegt

der Fall der Kombination mit Wiederholung vor. 





49 + 6 − 1

54

54! 

 Cw(49,6) =

=

=

= 25827165

6

6

6! (49 − 1)! 

Es gibt hier fast doppelt so viele Kombinationen wie beim normalen Lottospiel. ☼

Tabelle 3.3: Kombinatorik

Wiederholung

mit

ohne

mit Reihenfolge

 nm

 n! 

( n− m)! 



  

ohne Reihenfolge  n+ m−1

 n

 m

 m

Die Übersicht in Tabelle 3.3 zeigt die verschiedenen Möglichkeiten auf, aus  n

Elementen  m  zu ziehen. 
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 Beispiel 3.13.  Ein Experiment mit 2 Würfeln liefert Ergebnisse der Form ( i,  j), wo-

bei  i  die Augenzahl des ersten und  j  die Augenzahl des zweiten Würfels ist. Folgende

Ergebnisse sind möglich:

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

1. Variation mit Wiederholung: Soll die Reihenfolge berücksichtigt werden, so

muss das Wurfergebnis (3,5) und (5,3) unterschieden werden und eine Wie-

derholung möglich sein. Im Beispiel (2,2) gibt es

 Vw(6,2) = 62 = 36

Ergebnisse. 

2. Variation ohne Wiederholung: Wird die Reihenfolge berücksichtigt, eine Wie-

derholung aber ausgeschlossen, so entfallen die 6 Ergebnisse: (1,1),...,(6,6). 

Es existieren

6! 

 V (6,2) = 36 − 6 = 30 = (6−2)! 

verschiedene Ergebnisse. 

3. Kombination ohne Wiederholung: Soll die Reihenfolge nicht berücksichtigt

werden und eine Wiederholung ausgeschlossen sein, so entfallen gegenüber 2. 

die Hälfte der Ergebnisse. Es sind alle Paare ( i,  j) mit  i <  j  und es verbleiben

noch



30

6

 C(6,2) =

= 15 =

2

2

Ergebnisse. 

4. Kombination mit Wiederholung: Soll die Reihenfolge nicht berücksichtigt

werden, aber eine Wiederholung zulässig sein, so kommen gegenüber 3. wie-

der 6 Ergebnisse (1,1),...,(6,6) hinzu. Es existieren





6 + 2 − 1

 Cw(6,2) = 15 + 6 = 21 =

2

Ergebnisse. 

☼

Die Bestimmung der Anzahl der Möglichkeiten ist nicht immer unmittelbar mit

den angegebenen Formeln möglich. Mitunter müssen die Formeln miteinander kom-

biniert werden. Werden die Fälle durch ein logisches UND miteinander verknüpft, 

so ist die Anzahl der Möglichkeiten miteinander zu multiplizieren. 
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 Beispiel 3.14.  Aus 10 verschiedenen Spielkarten sollen 2 Spieler je 4 Karten erhal-

ten. Für den ersten Spieler gibt es dann  

10

 C(10,4) =

= 210

4

Möglichkeiten. Für den zweiten Spieler verbleiben dann noch 6 Karten und es gibt



6

 C(6,4) =

= 15

4

Möglichkeiten der Kartenzuteilung. Insgesamt gibt es dann 210 Möglichkeiten für

den ersten Spieler UND 15 Möglichkeiten für den zweiten Spieler, also 210 × 15 =

3 150 Möglichkeiten der Kartenausteilung insgesamt. 

☼

Werden die Fälle durch ein logisches ODER verknüpft, so ist die Anzahl der

Möglichkeiten zu addieren. 

 Beispiel 3.15.  In einer Bibliothek sollen Bücher mit einer ODER mit zwei aus 5

Farben signiert werden. Wenn die Reihenfolge und eine Wiederholung der Farben

zulässig ist, dann existieren

 Vw(5,1) + Vw(5,2) = 51 + 52 = 25

Möglichkeiten, die Bücher zu signieren. 

☼

Übung 3.3. Drei Kartenspieler sitzen in einer festen Reihenfolge; der erste Spieler

verteilt die Karten. Wie viele verschiedene Anfangssituationen sind beim Skatspiel

möglich (32 verschiedene Karten, 3 Spieler erhalten je 10 Karten, 2 Karten liegen

im Skat)? 

Übung 3.4. Ein Student muss in einer Prüfung 8 von 12 Fragen beantworten, davon

mindestens 3 aus den ersten 5 Fragen. Wie viele verschiedene zulässige Antwort-

möglichkeiten besitzt der Student? 

Übung 3.5. Wie viele verschiedene Ziehungen gibt es beim Zahlenlotto 6 aus 49

mit 5, 4 und 3 Richtigen? 

Übung 3.6. An einer Feier nehmen 20 Personen teil. Plötzlich geht das Bier aus. 

Um hinreichenden Nachschub zu besorgen, werden 3 Leute ausgewählt, weil 3

Personen notwendig sind, um das neue Fass zu transportieren. Wie viele unter-

schiedliche Möglichkeiten gibt es, 3 Leute zum Bierholen zu schicken? 

Übung 3.7. Sie gehen mit 3 Kommilitonen in die Mensa. Dort stehen 5 verschie-

dene Menüs zur Auswahl. Während sich die Kommilitonen bereits auf die Plätze

setzen, erhalten Sie den Auftrag, für sich und für die 3 Kommilitonen jeweils ir-

gendein Essen zu besorgen. Wie viele unterschiedliche Möglichkeiten gibt es ins-

gesamt, die Menüs auszuwählen. 
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Übung 3.8. Ein Passwort besteht aus zwei Buchstaben und vier Ziffern, wobei die

Ziffern, aber nicht die Buchstaben mehrfach auftreten dürfen. Klein- und Groß-

schreibung ist als signifikant anzusehen. Wie viele Passwörter können Sie bilden? 

3.6 Fazit

In der Kombinatorik wird das Abzählen von verschiedenen Anordnungen berechnet. 

Die Permutation ist eine zentrale Definition, die die Anordnung in einer bestimm-

ten Reihenfolge berechnet. Sind alle Elemente identifizierbar, liegt eine Permutation

ohne Wiederholung vor. Sind hingegen einige Elemente nicht voneinander unter-

scheidbar, dann liegt eine Permutation mit Wiederholung vor. 

Eine Variation liegt vor, wenn bei der Auswahl der Elemente die Reihenfolge

der Züge unterscheidbar ist. Eine Kombination liegt hingegen vor, wenn die Rei-

henfolge der Züge ohne Bedeutung ist. Die Kombinatorik wird zur Berechnung von

Wahrscheinlichkeiten eingesetzt. 
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4.1 Vorbemerkung

Vektoren, wie auch Matrizen, sind Konstrukte, die Zahlen zusammenfassen, damit

bestimmte Rechnungen einfacher werden. In einem Vektor bleibt jede Einzelgröße

erhalten. Der Vektor ist eine kompakte Schreibweise für ein Zahlenfeld. Aus dieser

Notation haben sich eigenständige Rechenanweisungen entwickelt. 

In den folgenden Abschnitten werden grundlegende Operationen mit Vektoren

gezeigt. Unmittelbar darauf aufbauend folgen die Kapitel 5 Matrizen, Kapitel 6 li-

neare Gleichungssysteme und Kapitel 7 lineare Optimierung. Sie stellen zusam-

men einen Teil der linearen Algebra dar. 

Die lineare Algebra wird heute in der Wirtschaftspraxis sehr häufig angewendet. 

So wird sie beispielsweise mit der Matrizenrechnung in der Kostenrechnung oder im

Controlling eingesetzt. Lineare Gleichungssysteme werden zur Beschreibung von

Input-Output-Beziehungen verwendet und die lineare Optimierung dient zur Lösung

unterschiedlicher Entscheidungsprobleme. Bei all den genannten Problemen werden

nur Variablen in der ersten Potenz verwendet, woraus sich das Adjektiv linear ab-

leitet. Jedoch werden hier nicht nur eine Gleichung und eine Variable betrachtet, 

W. Kohn, R. Öztürk,  Mathematik für Ökonomen,  Springer-Lehrbuch,   
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sondern ein System von Gleichungen mit vielen Variablen. So können unterschied-

liche wirtschaftliche Probleme – zumindest näherungsweise – beschrieben werden. 

Denn kleine Wertänderungen können häufig durch eine lineare Beziehung approxi-

miert werden. 

Der Begriff «lineare Algebra» ist eine lateinisch-arabische Wortbildung. Das Ad-

jektiv «linear» kommt aus dem lateinischen und bedeutet geradlinig, linienförmig, 

eindimensional. Dies bezieht sich auf die Variablen, die nur in der ersten Potenz auf-

treten. Bei der folgenden Gleichung handelt es sich um eine einfache lineare Glei-

chung. 

 y =  ax +  b

Das Wort «Algebra» stammt aus dem Arabischen (al-dschabr) und bedeutet «die

Einrenkung gebrochener Teile». Dies bezieht sich natürlich nicht auf Brüche im me-

dizinischen Sinne, sondern auf mathematische Brüche. Mit Einrenkung ist hier die

Auflösung einer Gleichung gemeint. 

3  y =  x ⇒ 3 y = 4 x

4

Einige geläufige Bezeichnungen in der Vektoralgebra:

a, b,. . . 

Vektor

 ai,  bi,. . . Vektorkomponente



Transpositionssymbol

[ ]

Klammern für Vektorkomponente

λ

Koeffizient (sprich: lambda)

a

Norm oder absoluter Betrag eines Vektors

4.2 Eigenschaften von Vektoren

Die Zahlen  a 1,  a 2,...,  an  werden in einem Vektor durch folgende Notation darge-

stellt:

⎡ ⎤

 a 1

⎢ a ⎥

2

a = ⎢

⎢ ⎥

⎣ .. ⎥

. ⎦

 an

Die Einzelgröße  ai  wird als  i-te Komponente des Vektors a bezeichnet. Der Vek-

tor selbst wird durch Fettdruck eines kleinen lateinischen Buchstabens gekennzeich-

net. Die Anzahl der Komponenten bestimmt die Dimension des Vektors. Die Zusam-

menfassung der Komponenten in einem Vektor impliziert eine Ordnung, die durch

die Indizierung der Komponenten eindeutig ist. Die Komponenten eines Vektors sind

Einzelgrößen, die auch als Skalar bezeichnet werden. 

Wird die Anordnung der Komponenten in einem Vektor spaltenweise (also unter-

einander) vorgenommen, so bezeichnet man einen solchen Vektor als Spaltenvektor. 

4.2 Eigenschaften von Vektoren
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Im Gegensatz dazu werden bei einem Zeilenvektor die Komponenten in einer Zeile

angeordnet. 

! 

" 

b =  a 1  a 2 ...  an

Aus jedem Spaltenvektor kann durch Transposition ein Zeilenvektor erzeugt

werden. Die Transposition wird durch ein  dargestellt. Achtung: In der Differen-

tialrechnung hat dieses Symbol eine andere Bedeutung! Daher wird manchmal die

Transposition auch durch  T  beschrieben, wenn die Gefahr einer Verwechselung be-

steht. 

Ein transponierter Vektor unterscheidet sich lediglich durch die Anordnung der

Komponenten von dem nicht transponierten Vektor. 

a = b

b = a

 Beispiel 4.1. 

⎡ ⎤

⎡ ⎤

0

! 

" 



0

a = ⎣1⎦ ⇒ a = 0 1 2 ⇒ a = ⎣1⎦

2

2

☼

Vektoren lassen sich vergleichen und verknüpfen. Es dürfen aber nur Vektoren

gleichen Inhalts und gleicher Dimension miteinander in Beziehung gesetzt werden. 

Die Ordnungsrelationen dürfen bei Vektoren nicht auf einzelne Komponenten be-

schränkt werden, sondern sie müssen für alle Komponenten gleichzeitig gültig sein. 

Daher sind zwei  n-dimensionale Vektoren a und b nur gleich, wenn sie komponen-

tenweise gleich sind. 

a = b ⇔  ai =  bi  für alle  i = 1,2,...,  n

Analog zur Gleichheit sind auch die Ordnungsrelationen <,>,≤,≥ anzuwen-

den. 

 Beispiel 4.2. 

⎡ ⎤

⎡ ⎤

⎡ ⎤

⎡ ⎤

⎡ ⎤

1

2

−1

−1

2

a = ⎣0⎦ b = ⎣1⎦ c = ⎣ 1⎦ d = ⎣−1⎦ e = ⎣1⎦

4

3

1

1

3

. 

Es gelten unter anderem folgende Beziehungen:

a > d c ≤ b e = b e ≥ c

☼
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4.3 Operationen mit Vektoren

Beim Rechnen mit Vektoren unterscheidet man solche Rechenoperationen, bei denen

die Dimension des Vektors erhalten bleibt, und solche, bei denen er seine Dimensi-

on verändert. Die Addition (Subtraktion) von Vektoren sind dimensionserhaltende

Operationen. Ebenso erhält die Multiplikation eines Vektors mit einem Skalar die

Dimension. Hingegen führt das skalare Produkt (auch inneres Produkt) zweier Vek-

toren zu einer Dimensionsveränderung. 

4.3.1 Addition (Subtraktion) von Vektoren

Bei der Addition (Subtraktion) von zwei Vektoren wird jede Komponente des ersten

Vektors mit der entsprechenden Komponente des zweiten Vektors addiert (subtra-

hiert). Es ist leicht einzusehen, dass nur Vektoren gleicher Dimension addiert (sub-

rathiert) werden können. 

c = a ± b

⎡ ⎤ ⎡ ⎤ ⎡

⎤

 a 1

 b 1

 a 1 ±  b 1

⎢ a ⎥ ⎢ ⎥ ⎢

⎥

2

 b 2

 a 2 ±  b 2

= ⎢

⎢ ⎥± ⎢ ⎥ = ⎢

⎥

⎣ .. ⎥ ⎢ . ⎥ ⎢

. 

⎥

. ⎦ ⎣ .. ⎦

⎣

.. ⎦

 an

 bn

 an ±  bn

 Beispiel 4.3. 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤

0

2

2

c = ⎣1⎦ + ⎣1⎦ = ⎣2⎦

2

3

5

☼

4.3.2 Skalares Vielfaches eines Vektors

Die Multiplikation eines Vektors mit einem Skalar erfolgt, indem man alle Kompo-

nenten des Vektors mit dem Skalar multipliziert. 

b = λ × a mit λ ∈ R

⎡ ⎤ ⎡

⎤

 a 1

λ ×  a 1

⎢ a ⎥ ⎢

⎥

2

λ ×  a 2

= λ × ⎢

⎢ ⎥ = ⎢

⎥

⎣ .. ⎥ ⎢ . ⎥

. ⎦

⎣ .. ⎦

 an

λ ×  an

Ist λ = 0, so entsteht ein Nullvektor, ein Vektor mit Nullen. Mit dem Faktor 1λ

werden die Komponenten durch den Faktor λ geteilt. 









4.5 Linearkombinationen und lineare Abhängigkeit von Vektoren

55

 Beispiel 4.4.  Für λ = 0.5 und a aus Beispiel 4.1 erhält man:

⎡ ⎤ ⎡ ⎤

0

0

b = 0.5 ⎣1⎦ = ⎣0.5⎦

2

1

☼

4.4 Geometrische Darstellung von Vektoren

Die Menge aller  n-dimensionalen Vektoren bilden einen linearen Vektorraum R n. 

Eine geometrische Darstellung ist nur bis zur Dimension drei möglich. 

 Beispiel 4.5.  Es sind die beiden Vektoren

⎡ ⎤

⎡ ⎤

1

2

a

⎣ ⎦

⎣ ⎦

1 =

3

und a2 = 0

3

1

gegeben. Jede Komponente der Vektoren beschreibt dabei eine Koordinate im Raum. 

Abbildung 4.1 zeigt die grafische Darstellung dieser beiden Vektoren. 

☼

4.5 Linearkombinationen und lineare Abhängigkeit von Vektoren

Als Linearkombination wird ganz allgemein die Addition von Größen mit skalaren

Gewichtungsfaktoren verstanden. Bei Vektoren bedeutet dies, dass man einen Vektor

aus einer Summe von Vektoren erzeugt, die jeweils mit einem Skalar λ i ∈ R gewich-

tet sind. 

 n



b = λ1 a1 + λ2 a2 + ... + λ n a n =

λ i a n  mit λ ∈ R

(4.1)

 i=1

Mit a i  wird der  i-te Vektor bezeichnet. 

 Beispiel 4.6.  Mit den beiden Vektoren aus Beispiel 4.5 wird eine Linearkombination

gebildet. Die beiden Gewichtungsfaktoren sollen

3

1

λ1 =

und λ

4

2 = 2

sein. Dann entsteht folgender neuer Vektor, 

⎡

⎤

3

1

1.75

b = a

a

⎣2.25⎦, 

4 1 + 2 2 = 2.75

der linear abhängig von a1 und a2 ist. Der Vektor b ist als gestrichelte Linie in Abb. 

4.1 dargestellt. 

☼

Eine Linearkombination von  n  Vektoren erzeugt einen von  n  Vektoren linear ab-

hängigen Vektor. Die lineare Abhängigkeit von Vektoren bestimmt die Lösbarkeit

linearer Gleichungssysteme. 
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Abb. 4.1: Dreidimensionaler Vektorraum mit zwei Vektoren

4.6 Linear unabhängige Vektoren und Basisvektoren

Lineare Unabhängigkeit kann man einfach als Umkehrung der linearen Abhängigkeit

definieren. Dies bedeutet, dass keine Linearfaktoren λ i = 0 existieren, also müssen

alle λ i = 0 ( i = 1,...,  n) sein. Somit ist dann in der Gleichung (4.1) der Vektor b ein

Nullvektor. Auf linear unabhängige Vektoren kann man also nur schließen, wenn

die Gleichung

λ1 a1 + λ2 a2 + ... + λ n a n = 0 mit a i = 0 für  i = 1,...,  n

für die Linearfaktoren

λ1 = λ2 = ... = λ n = 0

erfüllt ist. Wäre nur ein λ i = 0, so wäre die Gleichung nicht mehr erfüllt und b wäre

dann eine Linearkombination von a i. 

 Beispiel 4.7.  Der Nachweis, dass die drei Vektoren aus den Beispielen 4.5 und 4.6

linear abhängig sind, ist dann wie folgt. Aus der Definitionsgleichung

⎡ ⎤

⎡ ⎤

⎡

⎤ ⎡ ⎤

1

2

1.75

0

λ ⎣ ⎦

⎣ ⎦

⎣

⎦ ⎣ ⎦

1

3 + λ2 0 + λ3 2.25 = 0

3

1

2.75

0

4.6 Linear unabhängige Vektoren und Basisvektoren
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erhalten wir das Gleichungssystem:

λ1 + 2λ2 + 1.75λ3 = 0

3 λ1 + 2.25λ3 = 0

3 λ1 + λ2 + 2.75λ3 = 0

Durch Auflösen und Einsetzen wird dann die folgende Lösung erzeugt:

λ1 = −0.75λ3

λ2 = −0.5λ3

Es ist nicht möglich λ i  eindeutig zu bestimmen. Es ist aber deutlich, dass λ i = 0

möglich ist, um das Gleichungssystem zu lösen. Eine Möglichkeit ist λ3 = −1. Dann

erhält man für λ1 = 0.75 und λ2 = 0.5, wie in Beispiel 4.6. Die drei Vektoren sind

also linear abhängig. 

☼

 Beispiel 4.8.  Nun werden die zwei Vektoren a1 und a2 auf lineare Unabhängigkeit

geprüft. 

⎡ ⎤

⎡ ⎤

1

2

λ ⎣ ⎦

⎣ ⎦

1

3 + λ2 0 = 0

3

1

Das Auflösen des Gleichungssystems führt zu den Gleichungen:

λ1 + 2λ2 = 0

3 λ1 = 0

3 λ1 + λ2 = 0

Es ist sofort zu erkennen, dass λ1 = 0 ist. Daraus ergibt sich unmittelbar, dass auch

λ2 = 0 sein muss, damit das Gleichungssystem erfüllt ist. Es existiert also nur die

Lösung λ1 = λ2 = 0. Die beiden Vektoren a1 und a2 sind linear unabhängig. 

☼

Linear unabhängige Vektoren, die den Vektorraum erzeugen, bezeichnet man als

Basisvektoren. Ein Basisvektor der Form

⎡ ⎤

0

⎢

⎢..⎥

⎢.⎥

⎢ ⎥

⎢0⎥

⎥

e

⎢ ⎥

 i = ⎢1 ←  i-te Position

⎢ ⎥

⎢0⎥

⎢ ⎥

⎣..⎥

. ⎦

0

wird Einheitsvektor genannt und häufig mit dem Buchstaben e bezeichnet. 



















58

4 Vektoren

Den absoluten Betrag oder Norm eines Vektors a ∈ R n  berechnet man mit einer

Verallgemeinerung des Satzes des Pythagoras. Er ist ein Skalar. 



a =  a 21 +  a 22 + ...+  a 2 n

Die Norm wird als Länge des Vektors interpretiert. Im R2 und R3 ist dies anschau-

lich. Wird ein Vektor mit dem Kehrwert seines Betrags multipliziert, 

⎡  a ⎤

1

⎢a

 a ⎥

1

⎢ 2

a ⎥

a = ⎢

⎥, 

a

⎢ . 

⎣ . ⎥

. ⎦

 an

a

so normiert man den Vektor. Er besitzt dann den Betrag bzw. die Norm Eins und

wird als normiert bezeichnet. 

Die Norm des Einheitsvektors ist stets Eins. Definitionsgemäß stehen die Ein-

heitsvektoren senkrecht aufeinander. Man sagt, die Einheitsvektoren sind orthogo-

nal und normiert oder in Kurzform orthonormiert. Die Einheitsvektoren bilden

somit ein orthonormiertes Vektorsystem. 

Übung 4.1. Es sind die drei Vektoren

⎡ ⎤

⎡ ⎤

⎡ ⎤

1

0

−1

a

⎣ ⎦

⎣ ⎦

⎣ ⎦

1 =

0

a2 = −1

a3 =

1

1

1

1

gegeben, die linear unabhängig sind. Überprüfen Sie dies. Der Vektor

⎡ ⎤

2

b = ⎣ 4⎦

−2

soll als Linearkombination der obigen Basisvektoren dargestellt werden. Berech-

nen Sie eine Linearkombination. 

4.7 Skalarprodukt (inneres Produkt)

Die Addition zweier Vektoren und die Multiplikation eines Vektors mit einem Ska-

lar erhalten die Dimension des Vektors. Hingegen wird mit dem Skalarprodukt eine

Operation definiert, die als Ergebnis einen Skalar hat. 

 Beispiel 4.9.  Ein Unternehmen setzt zur Herstellung eines Produkts verschiedene

Produktionsfaktoren ein. Die Angaben in Tabelle 4.1 beziehen sich auf eine Men-

geneinheit des Produkts. 
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Tabelle 4.1: Faktoren, Mengen und Faktorpreise

Faktor Menge Dimension Faktorpreis

Faktor 1 100.5 kg

15.50 e/kg

Faktor 2 20.4 

0.25 e/

Faktor 3

5.2 h

152.00 e/h

Arbeit

7.8 Mh

65.20 e/Mh

Die nahe liegende Frage, wie viel die Herstellung einer Mengeneinheit des Pro-

dukts kostet, ist einfach zu beantworten, denn die Gesamtkosten sind gleich der Pro-

duktsumme der Mengen mal den Preisen. 

 k = 100.5 × 15.50 + 20.4 × 0.25 + 5.2 × 152.00 + 7.8 × 65.20 = 2 861.81 e

Die Angaben lassen sich in einem Mengenvektor m und einen Preisvektor p zu-

sammenfassen, wobei sich die jeweils  i-te Mengenkomponente auf den  i-ten Faktor

beziehen muss. 

⎡

⎤

⎡

⎤

100.5

15.50

⎢ 20.4 ⎥

⎢ 0.25⎥

m = ⎢

⎣

⎥

⎢

⎥

5.2 ⎦ p = ⎣ 152.00 ⎦

7.8

65.20

Die gesuchten Gesamtkosten ergeben sich dann durch komponentenweise Multipli-

kation und Summenbildung. 

4



 k =

 mi pi = 2 861.81 e

(4.2)

 i=1

☼

Die Operation in (4.2) wird als Skalarprodukt oder als skalare Multiplikation

zweier Vektoren bezeichnet. Das Ergebnis des Skalarprodukts ist immer eine reelle

Zahl. Man verwendet für eine kompakte Schreibweise hier gerne die Transpositi-

on, um die Produktsumme darzustellen. In der Matrixrechnung erweist sich diese

Schreibweise als nützlich. 

 n

 aibi =ab

 i=1

Übrigens kann mit dem Skalarprodukt auch eine lineare Gleichung beschrieben wer-

den. 

 a 1  x 1 +  a 2  x 2 + ... +  an xn =  b

⎡ ⎤

⎤

 a  ⎡

1

 x 1

⎢

⎢ a ⎥ ⎢ ⎥

2

 x 2

⎢ ⎥ ⎢ ⎥ =  b

⎣ .. ⎥ ⎢ . ⎥

. ⎦ ⎣ .. ⎦

 an

 xn

a x =  b
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Aus der Definition des skalaren Produkts gehen folgende Rechenregeln hervor:





a b = b a = a b 

Kommutativgesetz

aber a b = ba

(a ± b) c = (a ± b)c

= a c ± bc

Distributivgesetz

a(b ± c) = a b ± a c

 Beispiel 4.10.  Das innere Produkt der beiden Vektoren

⎡ ⎤

⎡ ⎤

−1

3

⎢ 2⎥

⎢−2⎥

a = ⎢

⎣ ⎥

⎢ ⎥

0⎦ b = ⎣ 4⎦

4

7

beträgt:

⎡ ⎤

3

! 

"⎢−2⎥

a b = −1 2 0 4 ⎢

⎣ ⎥

4⎦ = 21

7

⎡ ⎤

−1

! 

"⎢ 2⎥

ba = 3 −2 4 7 ⎢

⎣ ⎥

0⎦ = 21

4

Wird der Vektor

⎡ ⎤

0

⎢1⎥

c = ⎢

⎣ ⎥

0⎦

1

mit dem inneren Produkt a b multipliziert, so ergibt sich wieder ein Vektor. 

⎡ ⎤ ⎡ ⎤

0

0

⎢ ⎥ ⎢ ⎥

(

1

21

a b)c = 21 ⎢

⎣ ⎥ ⎢ ⎥

0⎦ = ⎣ 0 ⎦

1

21

☼

Ist das Skalarprodukt zweier Vektoren Null, so stehen die Vektoren ortho-

gonal (senkrecht) zueinander. Die Vektoren sind dann linear unabhängig. Damit

ist eine leichte Überprüfung auf lineare Unabhängigkeit von Vektoren möglich. Ei-

ne Erklärung für diese Eigenschaft erfordert eine geometrische Darstellung, auf die

hier verzichtet wird. Aber nicht alle linear unabhängigen Vektoren sind orthogonal

zueinander! 
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 Beispiel 4.11. 

! 

"# $

−

−2

2 4 − = 4−4 = 0

1

Die beiden Vektoren sind orthogonal zueinander und daher auch linear unabhängig. 

Hingegen sind die beiden Vektoren aus Beispiel 4.8 linear unabhängig, aber nicht

orthogonal zueinander, denn deren Skalarprodukt ist nicht Null. 

☼

Ist das Skalarprodukt gleich Null, so gilt nicht wie bei der Multiplikation, dass

dann mindestens einer der beiden Faktoren gleich Null ist. 

Übung 4.2. Ein Unternehmen produziert den Output x von  n  Gütern. Dazu ver-

wendet es den Input v. Das Nettoergebnis b ergibt sich als Differenz von Output

und Input. Die Preise für die  n  Güter sind im Vektor p erfasst. 

Geben Sie in Vektorgleichungen die

1. Einnahmen

2. Kosten und

3. Gewinn

an. 

Übung 4.3. Für welche Werte von  x  ist das innere Produkt von

⎡

⎤

⎡ ⎤

 x

 x

a = ⎣ x − 1⎦

b = ⎣  x ⎦

3

3  x

Null? Welche Eigenschaft weisen dann die Vektoren auf? 

4.8 Vektoren in Scilab

Ein (Zeilen-) Vektor wird in Scilab durch eckige Klammern definiert. Der Vektor

! 

" 

a = 2 3 4

a = [2,3,4]

2 3 4

Die Transposition erfolgt durch ein angefügtes Apostroph an den Variablenna-

men. 

a’

2

3

4
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Soll ein Vektor direkt als Spaltenvektor eingegeben werden, so sind die einzelnen

Zahlen durch ein Semikolon zu trennen. 

a = [2;3;4]

2

3

4

Die Vektoroperationen können mit den gewohnten Befehlen +,−,× durchge-

führt werden. 

b = [5,6,7]

a + b’

7

9

11

b * a -> 56

4.9 Fazit

Vektoren sind eindimensionale Zahlenfelder. Sie eignen sich zur Beschreibung von

linearen Zusammenhängen. Die Grundrechenarten können – bis auf die Division –

auf Vektoren übertragen werden. Darüber hinaus muss für die Multiplikation von

Vektoren das innere Produkt oder das so genannte Skalarprodukt definiert werden, 

das als Ergebnis einen Skalar besitzt. Eine wichtige Definition bei Vektoren ist die

Unabhängigkeit von Vektoren, die später Aussagen zulassen, ob gegebene lineare

Gleichungssysteme eine Lösung besitzen oder nicht. 
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5.1 Vorbemerkung

In diesem Kapitel wird das Konstrukt des Vektors erweitert und die Matrix einge-

führt. In der Darstellung wird sich auf die für Ökonomen wichtigen Eigenschaften

und Operationen der Matrizenalgebra beschränkt. Mit der Matrizenrechnung kann

dann eine Materialverflechtung eines mehrstufigen Produktionsprozesses einfach be-

rechnet werden. 

Einige geläufige Bezeichnungen in der Matrizenalgebra:

A, B,. . . 

Matrix

 aij,  bij,. . . Matrixelement

I

Einheitsmatrix

5.2 Einfache Matrizen

Fasst man mehrere gleichdimensionale, sachlogisch verwandte Vektoren zusammen, 

so entsteht ein zweidimensionales, rechteckiges Zahlenfeld, das als Matrix bezeich-

net wird. 
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⎡

⎤

 a 11  a 12 ...  a 1 m

⎢ a

⎥

21  a 22 ...  a 2 m

A = ⎢

⎢

⎥

⎣ .. 

. 

. ⎥

. 

..  a . ⎦

 i j

. 

 an 1  an 2 ...  anm

Die Matrix wird auch als ein  n× m  Tupel bezeichnet. Sie besitzt  n  Zeilen und  m  Spal-

ten. Ihre Dimension ist daher  n ×  m. Eine Matrix wird im Folgenden durch Fettdruck

eines großen lateinischen Buchstabens gekennzeichnet. 

Die Matrix ist eine Erweiterung eines Vektors. Hieraus ergibt sich, dass alle Re-

chenoperationen zwischen Vektoren auch für Matrizen gelten. 

Zwei Matrizen sind nur gleich, wenn alle Elemente der einen Matrix gleich der

der anderen Matrix sind. 

A = B ⇔  aij =  bij  für alle  i = 1,...,  n;  j = 1,...,  m

Analog zur Gleichheit sind auch die Ordnungsrelationen <,>,≤,≥ definiert. 

Die Transposition einer Matrix erfolgt durch Vertauschen von Zeilen und Spal-

ten bzw. durch Spiegelung der Elemente an der Hauptdiagonalen. Das Ergebnis der

Transposition wird transponierte Matrix genannt und mit A bezeichnet. 

⎡

⎤

⎡

⎤

 a 11  a 12 ...  a 1 m

 a 11  a 21 ...  an 1

⎢ a

⎥

⎢

⎥

21  a 22 ...  a 2 m

 a 12  a 22 ...  an 2

A = ⎢

⎢

⎥ ⇒ A = ⎢

⎥

⎣ .. 

. . 

. ⎥

⎢ . 

. . 

. ⎥

. 

.. .. .. ⎦

⎣ .. 

.. .. .. ⎦

 an 1  an 2 ...  anm

 a 1 m a 2 m ...  anm

5.3 Spezielle Matrizen

Besitzt eine Matrix A die gleiche Anzahl von Zeilen und Spalten, so wird die Ma-

trix als quadratisch bezeichnet. In der Matrix werden die Koeffizienten, die auf der

Linie von links oben ( a 11) nach rechts unten ( ann) liegen als Hauptdiagnale bezeich-

net. Die Nebendiagonale verläuft von rechts oben nach links unten. Verschiebt man

die Hauptdiagonale nach rechts oder unten, so erhält man Linien, die man ebenfalls

Nebendiagonalen nennt. Eine nach rechts verschobene Nebendiagonale nennt man

obere Nebendiagonale, eine nach unten verschobene nennt man untere Nebendiago-

nale. 

⎡

⎤

 a 11  a 12 ...  a 1 n

⎢ a

⎥

21  a 22 ...  a 2 n

A = ⎢

⎢

⎥

⎣ .. 

. . 

. ⎥

. 

.. .. .. ⎦

 an 1  an 2 ...  ann

Sind in einer quadratischen Matrix nur die Elemente auf der Diagonalen ungleich

Null, so wird diese Matrix als Diagonalmatrix bezeichnet. 

5.3 Spezielle Matrizen

65

⎡

⎤

 d 11 0 ... 0

⎢

⎢

. ⎥

0  d

.. ⎥

D = ⎢

22

⎢

⎥

⎣ .. 

. 

⎥

. 

. . 0 ⎦

0 ... 0  dnn

 Beispiel 5.1. 

⎡

⎤

2 0 0

D = ⎣0 1 0⎦

0 0 −4

☼

Der Operator diag bewirkt die Erzeugung einer Diagonalmatrix aus einem Vek-

tor. 

# $

#

$

2

2 0

a =

= A

3

⇒ diaga = 0 3

Wird der Operator diag hingegen auf eine Matrix angewendet liefert er die Haupt-

diagonalelemente der quadratischen Matrix

# $

2

diagA = 3 = a

Eine Diagonalmatrix, bei der alle Diagonalkoeffizienten  dii = 1 sind, heißt Ein-

heitsmatrix. Sie setzt sich aus Einheitsvektoren zusammen. Sie wird häufig mit I

bezeichnet. 

⎡

⎤

1

0

... 0

⎢

⎢

. ⎥

0

1

.. ⎥

I = ⎢

⎢

⎥

⎣ .. 

. 

⎥

. 

.. 0 ⎦

0 ... 

0

1

Eine Matrix wird symmetrisch genannt, wenn sie gleich ihrer Transponierten

ist. 

A = A

 Beispiel 5.2. 

⎡

⎤

⎡

⎤

2 −1

3

2 −1

3

A = ⎣ −1

7 −2 ⎦ ⇔ A = ⎣ −1

7 −2 ⎦

3 −2

4

3 −2

4

☼

Eine spezielle Form einer symmetrischen Matrix ist die Diagonalmatrix. 

66

5 Matrizen

5.4 Operationen mit Matrizen

Operationen von Matrizen – wie auch schon bei Vektoren – können nur unter be-

stimmten geeigneten Voraussetzungen vorgenommen werden. 

5.4.1 Addition (Subtraktion) von Matrizen

Zur Addition (Subtraktion) zweier Matrizen ist es notwendig, dass die Matrizen die

gleiche Anzahl von Zeilen und Spalten besitzen. Die Addition (Subtraktion) zweier

Matrizen A und B erfolgt, indem ihre entsprechenden Matrixelemente addiert (sub-

trahiert) werden. 

A ± B = C ⇔  aij ±  bij =  cij  für alle  i,  j

 Beispiel 5.3. 

#

$ #

$ #

$

1 3

2 3

3 6

2 4 + 0 4 = 2 8

#

$ #

$ #

$

1 3 − 2 3 = −1 0

2 4

0 4

2 0

☼

Aus der Definition der Addition (Subtraktion) von Matrizen ergeben sich unmit-

telbar die folgenden Rechenregeln. 

A + B = B + A

Kommutativgesetz

A − B = −B + A

(A + B) ± C = A + (B ± C) Assoziativgesetz

(A − B) + C = A − (B − C)

(A ± B) = A ± B

Transposition

5.4.2 Multiplikation einer Matrix mit einem skalaren Faktor

Eine Matrix wird mit einem skalaren Faktor multipliziert, indem jedes einzelne Ele-

ment der Matrix mit dem Faktor multipliziert wird. 

⎡

⎤ ⎡

⎤

 a 11 ...  a 1 m

λ  a 11 ... λ  a 1 m

C = λ A = λ ⎢

⎣ .. . 

. ⎥

⎢ . . 

. ⎥

. 

. . .. ⎦ = ⎣ .. 

. . .. ⎦

 an 1 ...  anm

λ  an 1 ... λ  anm

Rechenregeln:

λ A = Aλ

Kommutativgesetz
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λ1 (λ2 A) = (λ1 λ2)A

Assoziativgesetz

(λ1 ± λ2)A = λ1 A ± λ2 A Distributivgesetz

λ (A ± B) = λ A ± λ B

5.4.3 Multiplikation von Matrizen

Die Multiplikation von Matrizen ist analog zu dem Skalarprodukt der Vektoren

definiert. Es sind die Zeilen der ersten Matrix mit den Spalten der zweiten Matrix

durch eine Produktsumme zu einem Ergebniselement zu berechnen. Dazu muss die

linke Matrix A der Dimension  n × k ( n  Zeilen,  k  Spalten) und die rechte Matrix B der

Dimension  k ×  m ( k  Zeilen,  m  Spalten) sein. Das Produkt der beiden Matrizen ergibt

die Matrix C der Dimension  n ×  m. 

⎡

⎤⎡

⎤ ⎡



⎤

 a

 k

 k

11 ...  a 1 k

 b 11 ...  b 1 m

 h=1  a 1 h bh 1 ... 

 h=1  a 1 h bhm

C = ⎢

⎣ .. . 

. ⎥ ⎢ . . 

. ⎥

⎢

. 

. 

. 

⎥

. 

. . .. ⎦⎣ .. .. .. ⎦ = ⎣

.. 

. . 

.. 

⎦





 a

 k

 k

 n 1 ...  ank

 bk 1 ...  bkm

 h=1  anh bh 1 ... 

 h=1  anh bhm

 Beispiel 5.4.  Die beiden Matrizen

⎡

⎤

1 4

#

$

2 3

A = ⎣ 2 5 ⎦

B = 0 4

3 6

werden wie folgt miteinander multipliziert. 

⎡

⎤

⎤ ⎡

⎤

1 4 #

$⎡ 1 ×2+4×0 1 ×3+4×4

2 19

2 3

C = ⎣ 2 5 ⎦

⎣ 2 × 2 + 5 × 0 2 × 3 + 5 × 4⎦ ⎣4 26⎦

0 4

=

3 6

3 × 2 + 6 × 0 3 × 3 + 6 × 4

6 33

☼

Es gelten die Rechenregeln für das Skalarprodukt von Vektoren. Insbesondere ist

darauf zu achten, dass das Kommutativgesetz in der Regel für die Multiplikation von

Matrizen nicht gilt. 

AB = BA

Übung 5.1. Vereinfachen Sie folgenden Ausdruck:









B × A × F + G × A × B  + F × A × B  + (A × B) × G

5.5 Ökonomische Anwendung

 Beispiel 5.5.  Es wird angenommen, dass drei Menüs von der Mensa aus nur vier

Zutaten zubereitet werden können. Die Rezepte für die jeweiligen Menüs stehen in

der folgenden Tabelle. 
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Tabelle 5.1: Rezepte für Mensamenüs

Zutat 1 [in kg] Zutat 2 [in kg] Zutat 3 [in g] Zutat 4 [in ]

Menü 1

0.6

0.8

1.0

0.5

Menü 2

0.2

0.7

1.2

1.0

Menü 3

0.4

1.0

1.5

0.2

Der Inhalt der Tabelle kann in einer Matrix M erfasst werden. 

⎡

⎤

0.6 0.8 1.0 0.5

M = ⎣ 0.2 0.7 1.2 1.0 ⎦

0.4 1.0 1.5 0.2

Die Preise der Zutaten schwanken je nach Saison. Wir unterstellen, dass in der

ersten Jahreshälfte einige Zutaten billiger sind als in der zweiten. Daher werden die

Preise für die beiden Jahreszeiten getrennt ausgegeben. 

Tabelle 5.2: Preise für die Menüzutaten

Preis für

Winter Sommer

Zutat 1 [e/kg]

9.20

9.50

Zutat 2 [e/kg]

1.10

1.90

Zutat 3 [e/ g]

1.70

1.70

Zutat 4 [e/ ]

1.30

1.50

Auch diese Angaben können in eine Preismatrix überführt werden. 

⎡

⎤

9.20 9.50

⎢ 1.10 1.90⎥

P = ⎢

⎣

⎥

1.70 1.70 ⎦

1.30 1.50

Die Kosten je Menü für die Winter- bzw. Sommerzeit werden durch die Sum-

me der Preis × Mengenkombination berechnet. Genau diese Operation ist durch das

Skalarprodukt festgelegt und kann hier durch die Matrixmultiplikation einfach be-

rechnet werden. 

⎡

⎤ ⎡

⎤

9.20 9.50

⎡

⎤

0.6 0.8 1.0 0.5

⎢

8.75 9.67

1.10 1.90 ⎥

K = ⎣ 0.2 0.7 1.2 1.0 ⎦ × ⎢

⎣

⎥ ⎣ 5.95 6.77⎦

1.70 1.70 ⎦ =

0.4 1.0 1.5 0.2

7.59 8.55

1.30 1.50

☼

 Beispiel 5.6.  In einem mehrstufigen Produktionsprozess stellt ein Betrieb aus den

Rohteilen  R 1,  R 2 und  R 3 die Zwischenprodukte  Z 1,  Z 2 und  Z 3 her. Hieraus werden
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in einer zweiten Stufe Baugruppen  B 1,  B 2,  B 3 und  B 4 montiert, die schließlich auf

der dritten Produktionsstufe zu den Fertigprodukten  F 1 und  F 2 gefertigt werden. Die

folgenden Matrizen geben den Materialverbrauch auf jeder Stufe an, wobei in den

Zeilen jeweils der Input je Mengeneinheit des Outputs steht, der in der Spalte ange-

geben ist. 

Tabelle 5.3: Materialverflechtung  F

 Z

1

 F 2

1

 Z 2  Z 3

 B 1  B 2  B 3  B 4

 B

 R

1 1

2

1 1

4

2

 Z 1 1

3

2

1

 B

 R

2 2

3

2 2

3

1

 Z 2 1

0

2

4

 B

 R

3 1

2

3 0

2

3

 Z 3 2

1

2

1

 B 4 3

1

Es soll der Gesamtverbrauch an Einzelteilen festgestellt werden, der zur Produk-

tion jeweils einer Einheit von  F 1 und  F 2 notwendig ist. Wird der Inhalt der ersten

Tabelle in einer Matrix A, der Inhalt der zweiten in einer Matrix B und der Inhalt der

dritten in einer Matrix C niedergeschrieben, so gibt die folgende Matrixmultiplikati-

on das gesuchte Ergebnis an:

⎡

⎤ ⎡

⎤ ⎡

⎤

1 2

1 4 2

1 3 2 1

⎢ 2 3 ⎥

F = ⎣ 2 3 1 ⎦ × ⎣ 1 0 2 4 ⎦ × ⎢

⎣

⎥

1 2 ⎦

0 2 3

2 1 2 1





 





3 1

  

A

B

C

⎡

⎤ ⎡

⎤

1 2

⎡

⎤

9 5 14 19

⎢

90 80

2 3 ⎥

= ⎣ 7 7 12 15 ⎦ × ⎢

⎣

⎥ ⎣ 78 74⎦

1 2 ⎦ =

8 3 10 11

57 56







3 1

  

D

C

Es werden für eine Einheit des ersten Produkts also 90 Einzelteile der ersten Sorte, 

78 Einzelteile der zweiten Sorte und 57 Einzelteile der dritten Sorte benötigt. Die

Mengenangaben für das zweite Produkt können leicht aus der obigen Matrix F ab-

gelesen werden. Die Matrix D gibt den Verbrauch an Einzelteilen an, der zu jeweils

einer Einheit der Baugruppen  B 1 bis  B 4 benötigt wird. 

Wird nun ein Fertigungsprogramm mit 70 Einheiten für  F 1 und 120 Einheiten für

 F 2 aufgelegt, so kann der Einkäufer mit dem folgenden Matrixprodukt schnell die

Bedarfsmengen an Einzelteilen berechnen:

#

$ ⎡

⎤

15900

70

F ×

⎣14340⎦

120 = 10710

☼
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Übung 5.2. In dem Unternehmen werden durch Einsatz menschlicher Arbeit  R 1

aus den beiden Rohstoffen  R 2 und  R 3 die Zwischenprodukte  Z 1 und  Z 2, die Halb-

fabrikate  H 1,  H 2 und  H 3 und die Fertigprodukte  F 1 und  F 2 in drei Stufen hergestellt. 

Die Verflechtung von Rohstoffen, Zwischenprodukten, Halbfabrikaten und Fertig-

produkten ist in Abb. 5.1 veranschaulicht. 

Beschreiben Sie die im Gozintograph enthaltene Information mittels mehrerer Ma-

trizen und berechnen Sie damit den Bedarf an Rohstoffen  R 1,  R 2,  R 3, wenn 100

 F 1 und 70  F 2 produziert werden. Das Wort «Gozinto» ist eine Verfremdung der

Schreibweise von  goes into. 

R1

R2

R3

4

1

1

3

Z1

Z2

3

1

1 4

1 5

2

H1

H2

H3

2

2

1 2

1

3 1

1

F1

1

F2

Abb. 5.1: Gozintograph
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Übung 5.3. Ein Betrieb stellt aus 3 Rohstoffen  R 1,  R 2,  R 3 in der ersten Produkti-

onsstufe 3 Zwischenprodukte  Z 1,  Z 2,  Z 3 her. In der zweiten Stufe werden hieraus 4

Fertigprodukte  F 1,  F 2,  F 3,  F 4 gefertigt. Der Materialverbrauch beider Produktions-

stufen beträgt:

Tabelle 5.4: Materialverflechtung

 Z 1  Z 2  Z 3

 F 1  F 2  F 3  F 4

 R 1 2

1

0

 Z 1 2

0

3

4

 R 2 1

2

3

 Z 2 1

2

5

0

 R 3 2

1

1

 Z 3 4

2

0

3

1. Berechnen Sie die Matrix, die für jede Einheit eines Endprodukts den Roh-

stoff angibt. 

2. Welche Rohstoffmengen werden benötigt, wenn die Fertigprodukte in den

Mengen

! 

" 

100 550 80 60

hergestellt werden sollen? 

5.6 Matrizenrechnung mit Scilab

In Scilab können Diagonalmatrizen platzsparend als Vektor eingegeben werden, der

anschließend mit dem Befehl diag() diagonalisert wird. 

a = [2 1 -4]; 

A = diag(a)

2 0 0

0 1 0

0 0 -4

Wird der diag() Befehl auf eine Matrix angewendet, so liefert dieser die Dia-

gonalelemente der Matrix als Vektor. 

diag(A)

2

1

-4

Eine Einheitsmatrix kann in Scilab mit dem Befehl eye(a,a) erzeugt werden. 

eye(2,2)
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1 0

0 1

Matrizenoperationen können in Scilab aufgrund der vordefinierten Variablenei-

genschaften sehr leicht durchgeführt werden, wobei jede Variable als Matrix expan-

diert werden kann. So können – sofern die Matrizen die notwendigen Eigenschaften

besitzen – mit +,−,× die Matrizenoperationen berechnet werden. 

 Beispiel 5.7.  Um die Materialverflechtung aus Beispiel 5.6 zu berechnen, müssen zu-

erst die Matrizen in Scilab eingegeben werden. Im Programmfenster oder im Editor

werden die folgenden Zeilen eingetippt. Jede neue Zeile wird mit einem return

erzeugt, wobei die Einrückungen reine Kosmetik sind. 

A = [1 4 2

2 3 1

0 2 3]

B = [1 3 2 1

1 0 2 4

2 1 2 1]

C = [1 2

2 3

1 2

3 1]

F = A*B*C

90 80

78 74

57 56

In F steht das Ergebnis. 

☼

5.7 Fazit

Matrizen sind zweidimensionale Zahlenfelder. Sie können auch als aneinander ge-

fügte Vektoren betrachtet werden. Die Rechenoperationen für Vektoren können auf

Matrizen angewendet werden. Mit der Matrizenalgebra können lineare ökonomische

Fragestellungen wie die Einzelteilberechnung in mehrstufigen Produktionsprozessen

berechnet werden. 
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6 Lineare Gleichungssysteme

6.1 Vorbemerkung

Viele Probleme der Praxis lassen sich in Form linearer Gleichungssysteme model-

lieren und damit lösen. Besonders häufig ergeben sich lineare Gleichungssysteme in

ökonomischen Bereichen, weil hier viele Beziehungen tatsächlich linear sind oder als

linear angenommen werden können. Die Kenntnisse aus den Kapiteln 4 und 5 wer-

den hier eingesetzt und erweitert. Inhomogene lineare Gleichungssysteme werden in

der Input-Output-Analyse verwendet. Die Abschnitte Determinante einer Matrix

und Homogene Gleichungssysteme sind Grundlagen für weiterführende Themen. 

Die Berechnung von Determinanten wird in den Abschnitten 11.4 und 11.5 verwen-

det. Homogene Gleichungssysteme und Eigenwertprobleme sind eng miteinander

verbundene Fragestellungen. Diese werden bei einigen statistischen Verfahren ein-

gesetzt. 

Einige geläufige Bezeichnungen:

 aij

Koeffizient der  j-ten Variablen in der  i-ten Gleichung

A−1

Inverse der Matrix A

detA

Determinante einer Matrix

|A ij|

Minor einer Matrix

 bi

rechte Seite der  i-ten Gleichung

 cij

Adjunkte zum Minor |A ij|

diagA

Hauptdiagonalelemente einer Matrix

diaga

Erzeugung einer Diagonalmatrix aus dem Vektor a

λ

Koeffizient oder Eigenwert (kontextabhängig)

 m

Anzahl der Variablen

 n

Anzahl der Gleichungen

rgA

Rang einer Matrix

SpA

Spur einer Matrix

v

Eigenvektor

 x j

Variable

6.2 Inhomogene lineare Gleichungssysteme

Ein inhomogenes lineares Gleichungssystem ist durch mehrere lineare Gleichungen

gekennzeichnet, die gemeinsam (simultan) gelöst werden müssen. 

 a 11  x 1 + ... +  a 1 j xj + ... +  a 1 m xm =  b 1

.. 

. 

. 

. 

.. 

.. 

 ai 1  x 1 + ... +  aij xj + ... +  aim xm =  bi

(6.1)

.. 

. 

. 

. 

.. 

.. 

 an 1  x 1 + ... +  anj xj + ... +  anm xm =  bn

In den obigen Gleichungen werden die  aij ( i = 1,...,  n;  j = 1,...,  m) als Koef-

fizienten, die  xj  als Variablen und  bi ( i = 1,...,  n) als absolute Glieder bezeichnet. 
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Solange nicht alle absoluten Glieder Null sind, handelt es sich um ein inhomogenes

lineares Gleichungssystem. Sind hingegen die absoluten Glieder alle Null, so handelt

es sich um ein homogenes Gleichungssystem, das in Kapitel 6.7 behandelt wird. 

Die Matrixschreibweise erlaubt eine sehr kompakte Beschreibung des Glei-

chungssystems (6.1). 

⎡

⎤

⎡ ⎤

⎡ ⎤

 a 11 ...  a 1 j ...  a 1 m

 x 1

 b 1

⎢

⎢ .. .. .. 

.. ⎥

⎢ .. ⎥

⎢ .. ⎥

⎢ . 

. . 

. ⎥

⎥

⎢

⎢ . ⎥

⎥

⎢

⎢ . ⎥

⎥

Ax = b mit A = ⎢

⎢ a

⎥

⎢ ⎥

⎢ ⎥

 i 1 ...  ai j ...  aim

x =  xi

b =  bi

⎢

⎥

⎢ ⎥

⎢ ⎥

⎣ .. 

. . 

. ⎥

⎢ . ⎥

⎢ . ⎥

. 

.. .. .. ⎦

⎣ .. ⎦

⎣ .. ⎦

 an 1 ...  anj ...  anm

 xm

 bn

 Beispiel 6.1.  Das folgende lineare Gleichungssystem mit 3 Gleichungen und 3 Va-

riablen

2  x 1 −  x 2 + 4 x 3 = 10

3  x 1 −  x 2 +  x 3 = 0

 x 2 − 3 x 3 = 6

ergibt die Matrizengleichung

⎡

⎤ ⎡ ⎤ ⎡ ⎤

2 −1

4

 x 1

10

⎣ 3 −1

1 ⎦ ⎣ x 2⎦ = ⎣ 0 ⎦

0

1 −3

 x 3

6

☼

6.2.1 Lösung eines inhomogenen Gleichungssystems

Gefragt wird, ob ein lineares Gleichungssystems lösbar ist und wenn ja, ob die Lö-

sung eindeutig ist. Hierzu folgende Überlegung: Eine lineare Gleichung mit einer

Variablen

 a 1  x 1 =  b

besitzt für die Variable  x 1 genau eine Lösung, sofern  a 1 = 0 gilt. 

 b

 x 1 =  a 1

Die Lösung lässt sich als Punkt auf einer Zahlengeraden im R1 darstellen. Eine li-

neare Gleichung mit zwei Variablen

 a 11  x 1 +  a 12  x 2 =  b 1

liefert unendlich viele Lösungen für die beiden Variablen, sofern  a 1,  a 2 = 0 gilt. Gibt

man aber eine Variable als Parameter vor, zum Beispiel  x 1, so kann die andere Varia-

ble in Abhängigkeit dieser Variablen beschrieben werden:
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 b

 x

1 −  a 11  x 1

2 =

 a 12

Die obige Gleichung zeigt eine Gerade im R2. Sie stellt einen linearen Unterraum

der Dimension 1 dar. Die Gerade legt die Werte für  x 2 in Abhängigkeit von  x 1 fest. 

Durch die Gerade wird ein Freiheitsgrad gebunden. Wird  x 1 vorgegeben, so ist  x 2

durch die Gerade festgelegt. 

Eine zweite linear unabhängige Gleichung liefert ebenfalls eine Lösung für eine

Variable. 

 a 21  x 1 +  a 22  x 2 =  b 2

Sie bindet ebenfalls einen Freiheitsgrad. Setzt man die Lösung für  x 2 in die obige

Gleichung ein, so erhält man nach einigen Umformungen eine eindeutige Lösung

für  x 1 und  x 2. 

 a

 x

22  b 1 −  a 12  b 2

1 =

(6.2)

 a 11  a 22 −  a 12  a 21

 a

 x

11  b 2 −  a 21  b 1

2 =

(6.3)

 a 11  a 22 −  a 12  a 21

Die Lösung befindet sich im Kreuzungspunkt der beiden Linien (siehe Abb. 6.1). Es

wurde das (2 × 2) Gleichungssystem

#

$ # $ # $

 a 11  a 12

 x 1

 b 1

(6.4)

 a

=

21  a 22

 x 2

 b 2

gelöst. 

 Beispiel 6.2.  Die beiden linear unabhängigen Gleichungen

2  x 1 + 3 x 2 = 6

 x 1 − 2 x 2 = 1

liefern die Lösung  x 1 = 15 und  x

(siehe Abb. 6.1). Eine Gleichung mit zwei

7

2 = 47

Variablen beschreibt also eine Gerade des R2. 

☼

Eine Gleichung mit drei Variablen beschreibt eine Ebene im R3 (siehe Abb. 6.21). 

Eine Lösung lässt sich ermitteln, wenn man zwei Variablen beliebige Werte zuweist. 

Der Wert der dritten Variablen ergibt sich dann zwangsläufig. Man besitzt also zwei

Freiheitsgrade, d. h. die Freiheit, für zwei Variablen beliebige Werte vorzugeben. 

Dies ist in Abb. 6.2 durch die zweidimensionalen Ebenen dargestellt. Die Zahl der

Freiheitsgrade bestimmt die Dimension des linearen Unterraums, der durch die Glei-

chungen beschrieben wird. Wird eine zweite linear unabhängige Gleichung mit drei

Variablen gleichzeitig erfüllt, so werden die Lösungen durch die Schnittgerade der

beiden Ebenen beschrieben. Bei zwei Gleichungen mit jeweils drei Variablen ist dann

nur noch eine Variable frei wählbar. Die anderen beiden Variablenwerte sind durch

1 Es handelt sich um das Gleichungssystem in Übung 6.1. 
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3.0

2.5

2.0

Gleichung 1

Gleichung 2

1.5

 x  2 1.0

0.5

0.0

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 x 1

−0.5

−1.0

Abb. 6.1: Schnittgeraden im R2

die beiden Gleichungen bestimmt. Die Lösungsmenge besitzt nur noch einen Frei-

heitsgrad. Sie stellt folglich einen eindimensionalen Unterraum dar, der in der Abbil-

dung durch die Schnittgerade dargestellt ist. Nimmt man eine dritte linear unabhän-

gige Gleichung hinzu, d. h. deren Ebene verläuft nicht parallel zur Schnittgeraden, so

sind alle Variablenwerte bestimmt. Die Lösungsmenge besitzt keinen Freiheitsgrad

mehr. Das Gleichungssystem besitzt dann eine eindeutige Lösung. Es ist der Punkt, 

der durch die drei Schnittgeraden bestimmt wird. 

Jede Gleichung eines Gleichungssystems bindet also einen Freiheitsgrad, sofern

die Gleichung linear unabhängig ist. Ist eine oder sind mehrere Gleichungen eines

Gleichungssystems linear abhängig, so binden diese keinen Freiheitsgrad. 

6.2.2 Linear abhängige Gleichungen im Gleichungssystem

Die lineare Abhängigkeit einer Gleichung bedeutet, dass diese durch eine andere

lineare Gleichungen ersetzt werden kann. Dadurch ist diese Gleichung dann nicht

mehr unabhängig von den den anderen Gleichungen. 

 Beispiel 6.3.  In dem linearen Gleichungssystem

4  x 1 + 2 x 2 = 8

8  x 1 + 4 x 2 = 16
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kann beispielsweise die zweite Gleichung durch die erste Gleichung ersetzt werden, 

wenn diese mit 2 multipliziert wird. 

4  x 1 + 2 x 2 = 8





2 4  x 1 + 2 x 2 = 2 × 8

☼

Eine Gleichung ist in einem Gleichungssystem linear abhängig, wenn sie sich als

Linearkombination der restlichen Gleichungen darstellen lässt. Gegeben sei

 m

 aijxj = bi  für  i=1,...,  n

 j=1

ein lineares Gleichungssystem mit  n  Gleichungen und  m  Variablen. Ist eine Glei-

chung als Linearkombination der restlichen Gleichungen (oder eines Teils von ihnen)

darstellbar, dann heißt das Gleichungssystem linear abhängig. 

 n



 k-te Gleichung =

λ i ×  i-te Gleichung

 i=1

 i= k

15

10

5

Z

0

−5

−10

−5

−5

−4

−4

−3

−3

−2

−2

−1

−1

0

0

1

1

2

2

3

3

Y

4

4

X

5

5

Abb. 6.2: Schnittgeraden im R3
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Die Summierung der ( i − 1) Gleichungen gilt sowohl für die linke als auch für

die rechte Seite. 

 m



 n



 m



 n



 akj xj =

λ i

 aij xj

=  bk =

λ i bi

 j=1

 i=1

 j=1

 i=1

 i= k







 i= k







linke Seite

rechte Seite

 Beispiel 6.4.  Es ist zu überprüfen, ob das folgende Gleichungssystem eine linear ab-

hängige Gleichung aufweist. 

2  x 1 + 2 x 2 + 5 x 3 = 8

 x 1 + 2 x 2 + 2 x 3 = 3

−2 x 2 +  x 3 = 2

Aus der Definition für lineare Unabhängigkeit wird ein Gleichungssystem mit

den Zeilenvektoren zur Überprüfung der linearen Abhängigkeit aufgestellt. Es liegt

lineare Unabhängigkeit vor, wenn für alle λ i = 0 gilt. Für die linke Seite des Glei-

chungssystems ergibt sich dann folgendes System, das zu überprüfen ist. 

⎡ ⎤

⎡ ⎤

⎡ ⎤

2

1

0

λ ⎣ ⎦

⎣ ⎦

⎣ ⎦

1

2 + λ2 2 + λ3 −2 = 0

5

2

1

2 λ1 + λ2

= 0

2 λ1 + 2λ2 − 2λ3 = 0

5 λ1 + 2λ2 + λ3 = 0

Aus den Gleichungen erhält man die Lösungen

λ2 = −2λ1

λ3 = −λ1

λ1 = 0 ist frei wählbar, um die Gleichungen zu erfüllen. Wird λ1 = 1 gewählt, so gilt

λ2 = −2 und λ3 = −1 und die erste Gleichung kann durch folgende Kombination

beschrieben werden. 

1-te Gleichung = 2 × (2-te Gleichung) + 1 × (3-te Gleichung)

Man kann die Prüfung auf lineare Unabhängigkeit auch mit der rechten Seite des

Gleichungssystems durchführen. Die gegebene Linearkombination muss auch hier

gelten. 

8 λ1 + 3λ2 + 2λ3 = 0

Für die 1-te Gleichung gilt damit:
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8 + 3(−2) + 2(−1) = 0 ⇔ 8= 3 × 2 + 2 × 1

Das obige Gleichungssystem weist somit eine lineare Abhängigkeit auf. Die Folge

der linearen Abhängigkeit ist, dass das obige Gleichungssystem nicht lösbar ist, ob-

wohl die drei Variablen durch drei Gleichungen beschrieben werden. Eine der Glei-

chungen ist eine Linearkombination der beiden anderen. Es sind nur zwei der drei

Gleichungen linear unabhängig. Daher werden auch nur zwei der drei Freiheitsgrade

gebunden. 

☼

Übung 6.1. Überprüfen Sie das folgende Gleichungssystem auf lineare Unabhän-

gigkeit. 

2  x 1 −  x 2 − 3 x 3 = 8

 x 1 + 3 x 2 + 2 x 3 = 3

5  x 1 +

3  x 3 = 7

6.2.3 Lösen eines Gleichungssystems mit dem Gauß-Algorithmus

In Abschnitt 6.2.1 ist bereits prinzipiell aufgezeigt worden, wie ein Gleichungssy-

stem gelöst werden kann. Diese Technik wird im Folgenden strukturiert. Als erstes

ist festzuhalten, dass Gleichungen sich linear kombinieren lassen. 

 Beispiel 6.5.  Die Gleichung

2  x 1 −  x 2 + 4 x 3 = 10

und die Gleichung

 x 1 − 0.5 x 2 + 2 x 3 = 5

sind identisch. Die zweite Gleichung wurde mit 0.5 erweitert. 

☼

Jede Gleichung kann mit einem Faktor λ ∈ R erweitert werden. Die neue Glei-

chung ist dann eine Linearkombination der ursprünglichen Gleichung. 

 m



 m



 a j xj =  b ⇔ λ

 a j xj = λ  b

 j=1

 j=1

Wird die ursprüngliche Gleichung durch ihre Linearkombination ersetzt, so än-

dert sich die Lösungsmenge nicht. 

Als zweites ist festzuhalten, dass man eine Gleichung eines Gleichungssystems

zu (von) anderen Gleichungen des Gleichungssystems addieren (subtrahieren) kann, 

ohne dass sich die Lösungsmenge ändert. 
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 Beispiel 6.6.  In dem folgenden Gleichungssystem

2  x 1 −  x 2 + 4 x 3 = 10

(6.5)

3  x 1 −  x 2 +  x 3 = 0

(6.6)

 x 2 − 3 x 3 = 6

(6.7)

wird die erste Gleichung mit 0.5 erweitert, um den Faktor für  x 1 auf Eins zu set-

zen. Der Vorteil dieser Normierung liegt in einer einfacheren Umrechnung des Glei-

chungssystems. Die Variable  x 1 wird dann als Pivotvariable bezeichnet. Die Glei-

chung wird Pivotgleichung genannt. 

Es wird das Dreifache der ersten Gleichung von der zweiten Gleichung subtra-

hiert, um  x 1 aus dieser Gleichung zu eliminieren. Das so veränderte Gleichungssy-

stem besitzt die gleiche Lösungsmenge wie das ursprüngliche. Die dritte Gleichung

wird nicht verändert, weil  x 1 in ihr nicht vorkommt. 

0.5 × (6.5) :  x 1 − 0.5 x 2 + 2 x 3 = 5

(6.8)

(6.6) − 3 × (6.8) :

0.5 x 2 − 5 x 3 = −15

(6.9)

 x 2 − 3 x 3 = 6

(6.10)

Im nächsten Schritt zur Berechnung der Lösung wird die zweite Gleichung mit 2

erweitert und von der dritten Gleichung subtrahiert. Die erste Gleichung wird nicht

weiter umgeformt. 

 x 1 − 0.5 x 2 + 2 x 3 = 5

(6.11)

2 × (6.9) :

 x 2 − 10 x 3 = −30

(6.12)

(6.10) − (6.12) :

7  x 3 = 36

(6.13)

Man erkennt jetzt leicht die Lösung für  x 3. Es ist 36. 

7

☼

Drittens, ein Zeilentausch ändert ebenfalls nicht die Lösung und kann Iterations-

schritte vereinfachen. Die eben beschriebene Vorgehensweise heißt Eliminations-

phase. Sie eliminiert Variablen aus einem Teil eines Gleichungssystems. Die Pivot-

variablen müssen aber auf jeden Fall erhalten bleiben. 

 Beispiel 6.7.  Fortführung von Beispiel 6.6: Um die Lösungen für  x 2 und  x 3 zu be-

rechnen, kann nun die Lösung für  x 3 in die beiden oberen Gleichungen eingesetzt

werden. Es ergibt sich für  x 2 dann die Gleichung

36

 x 2 − 10 ×

= −30

7

und die Lösung:

150

 x 2 = 7

Die Berechnung der Lösung für  x 1 erfolgt analog. 

150

36

38

 x 1 − 0.5 ×

+ 2 ×

= 5 ⇔  x

7

7

1 = 7

☼
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Die eben angewandte Vorgehensweise wird als Substitutionsphase bezeichnet. 

Eliminations- und Substitutionsphase zusammen werden als Gauß-Algorithmus be-

zeichnet. 

Um die Schreibarbeit etwas zu verringern, wird eine Matrixstruktur zur Auf-

zeichnung der Koeffizienten verwendet. Es wird dabei das Gleichungssystem in Ma-

trixform geschrieben. Die skalare Multiplikation mit dem Vektor x entfällt. Dies hat

den Vorteil, dass die Variablen nicht mehr mitgeführt werden müssen. 

 Beispiel 6.8.  Das Gleichungssystem aus Beispiel 6.6 wird wie folgt notiert:

2 −1

4

10

3 −1

1

0

0

1 −3

6

In den Spalten stehen die Variablen  x 1 bis  x 3. Zur leichteren Orientierung werden die

Pivotelemente durch fettgedruckte Zahlen hervorgehoben. Nun können die obigen

Rechenschritte wiederholt werden. 

⎡

⎤

⎡

⎤

1 −0.5

2

5

1 −0.5

2

5

⎣ 0

0. 5 −5

−15 ⎦ ⇒ ⎣ 0

1

−10

−30 ⎦

0

1

−3

6

0

0

7

36

⎡

⎤

1 −0.5

2

5

⇒ ⎣ 0

1

−10

−30 ⎦

0

0

1

36

7

Aus der letzten Tabelle kann dann aus der zweiten Zeile das Ergebnis für  x 2 wieder

berechnet werden. 

36

36

150

 x 2 − 10 ×

= −30 ⇔  x

=

7

2 = −30 + 10 7

7

Die Werte für  x 2 und  x 3 werden in die erste Gleichung (Zeile) eingesetzt und liefern

das Ergebnis für  x 1. 

☼

Um ein Gleichungssystem zu lösen ist die Normierung der Pivotelemente nicht

notwendig. Die restlichen Gleichung werden dann mit dem Verhältnis des Koeffizi-

enten der betreffenden Gleichung und dem Pivotkoeffizienten erweitert. 

 Beispiel 6.9.  Das Gleichungssystem wird aus Beispiel 6.6 wird ohne Normierung

gelöst. 
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⎡

⎤

(I)

2 −1

4

10

(II)

⎣ 3

1

1

0 ⎦

(II’) = (II) − 32 × (I)

(III)

0

1 −3

6

⎡

⎤

2 −1

4

10

(II’)

⎣ 0

1 −10

−30 ⎦

(III’)

0

1

−3

6

(III”) = (III’)− 11 × (II’)

⎡

⎤

2 −1

4

10

⎣ 0

1 −10

−30 ⎦

(III”)

0

0

7

36

Die Lösung kann nun wie schon zuvor über Substitution berechnet werden. 

☼

Es ist noch anzumerken, dass die Bearbeitung der Gleichungen nicht in derselben

Reihenfolge der Gleichungen im Gleichungssystem erfolgen muss. Wichtig ist nur, 

dass jede Gleichung nur einmal als Pivotgleichung ausgewählt wird. 

 Beispiel 6.10.  Das Gleichungssystem aus Beispiel 6.6 wird durch eine andere Rei-

henfolge der Bearbeitung gelöst. Es wird die dritte Gleichung (6.7) bzw. (6.16) als

erste Pivotgleichung gewählt und  x 2 als erste Pivotvariable. Diese wird aus den ersten

beiden Gleichungen eliminiert. 

(6.5) + (6.16) :

2  x 1 +  x 3 = 16

(6.14)

(6.6) + (6.16) : 3 x 1 − 2 x 3 = 6

(6.15)

 x 2 − 3 x 3 = 6

(6.16)

Nun wird das Zweifache der ersten Gleichung (Pivotgleichung) zu der zweiten

addiert.  x 3 ist Pivotvariable. Die erste Pivotgleichung (Gleichung (6.7)) wird nicht

wieder umgeformt. 

2  x 1 +  x 3 = 16

(6.17)

(6.15) + 2 × (6.14) :

7  x 1 = 38

(6.18)

 x 2 − 3 x 3 = 6

(6.19)

Die zweite Gleichung liefert nun die Lösung für  x 1. Durch Einsetzen dieser Lösung

in die erste Gleichung erhält man  x 3 und kann dann mit der dritten Gleichung  x 2

berechnen. 

Der gleiche Rechenvorgang in Matrixform sieht wie folgt aus:

⎡

⎤

⎡

⎤

2 −1

4

10

2

0

1

16

⎣ 3 −1

1

0 ⎦ ⇒ ⎣ 3

0 −2

6 ⎦

0

1 −3

6

0

1 −3

6

⎡

⎤

2

0

1

16

⇒ ⎣ 7

0

0

38 ⎦

0

1 −3

6
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Aus der letzten Tabelle ergibt sich unmittelbar das Ergebnis  x 1 = 38. Der Wert für  x

7

3

berechnet sich durch Einsetzen des Wertes von  x 1 in die erste Gleichung. 

38

36

2 ×

+  x

7

3 = 16

⇔  x 3 = 7

Entsprechend wird die Lösung für  x 2 aus der dritten Zeile bestimmt. 

36

150

 x 2 − 3 ×

= 6 ⇔

 x

7

2 = 7

☼

Eine weitere Variante des Gauß-Algorithmus besteht darin, die Substitutionspha-

se zu vermeiden, in dem die Elimination der Variablen auch in den zuvor als Pivot-

gleichungen ausgewählten Gleichungen des Systems erfolgt. Diese Vorgehensweise

wird als vollständige Elimination bezeichnet und wird sich später als nützlich er-

weisen. Zur Berechnung der Lösung eines Gleichungssystems ist die vollständige

Elimination rechnerisch etwas aufwändiger als die zuvor beschriebene Kombination

aus Eliminations- und Substitutionsphase. 

 Beispiel 6.11.  Das Gleichungssystem aus Beispiel 6.6 wird durch vollständige Eli-

mination gelöst. 

2  x 1 −  x 2 + 4 x 3 = 10

 x 1 − 0.5 x 2 + 2 x 3 = 5

3  x 1 −  x 2 +  x 3 = 0

⇒

0.5 x 2 − 5 x 3 = −15

 x 2 − 3 x 3 = 6

 x 2 − 3 x 3 = 6

38

 x 1 =

 x

7

1 − 3  x 3 = −10

⇒

150

 x 2 − 10 x 3 = −30 ⇒

 x 2 = 7

7  x 3 = 36

36

 x 3 = 7

Die verkürzte Schreibweise in Matrixform:

⎡

⎤

⎡

⎤

2 −1

4

10

1 −0.5

2

5

⎣ 3 −1

1

0 ⎦ ⇒ ⎣ 0

0. 5 −5

−15 ⎦

0

1 −3

6

0

1

−3

6

⎡

⎤

⎡

⎤

1

0

−3

−10

1

0

0

38

7

⇒ ⎣ 0

1 −10

−30 ⎦ ⇒ ⎣ 0

1

0

150 ⎦

7

0

0

7

36

0

0

1

36

7

☼

Das vollständige Eliminationsverfahren des Gauß-Algorithmus wird nun noch-

mal kurz formal zusammengefasst. Das Gleichungssystem
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 a 11 ...  a 1 m

 b 1

.. 

. 

. 

. 

.. 

.. 

 an 1 ...  anm

 bn

wird durch folgende Schritte gelöst. 

Schritt 1: Es wird das Pivotelement  ars = 0 (zum Beispiel  a 11) gewählt. Dann ist

die erste ( r-te) Zeile Pivotzeile und die erste ( s-te) Spalte Pivotspalte. 

Schritt 2: Die Pivotzeile  r  wird wie folgt umgerechnet. 

 a

 b

˜ a

 r j

 r

 r j =

und ˜ b

 a

 r =

 rs

 ars

Die neuen Elemente der  r-ten Zeile sind ˜ ar j  und ˜ br. 

Schritt 3: Alle übrigen Zeilen werden wie folgt berechnet:

˜ aij =  aij − ˜ arj ais  und ˜ bi =  bi − ˜ br ais

Die neuen Elemente der übrigen Zeilen (bis auf die Pivotzeile  r  aus

Schritt 1) sind ˜ aij  und ˜ bi. 

Schritt 1 und 3 werden für alle Zeilen wiederholt, bis jede Zeile einmal als Pivot-

element verwendet wurde. 

Übung 6.2. Überprüfen Sie das Gleichungssystem in Übung 6.1 mit Hilfe des

Gauß-Algorithmus auf lineare Unabhängigkeit. 

Übung 6.3. Von einer Kostenfunktion  K( x) weiß man, dass sie sich näherungs-

weise wie eine kubische Funktion (Polynom 3. Grades) bezüglich der Stückzahl

 x  verhält. Bestimmen Sie die explizite Gestalt einer solchen Funktion, wenn die

Kostenwerte in Tabelle 6.1 konkret bekannt sind. 

Tabelle 6.1: Kostenwerte

 x [Stück]

10

15

20

25

 K( x) [e] 2 700 3 475 5 700 10 125

Setzen Sie die unbekannten Koeffizienten des kubischen Polynoms als Variablen

an, und berechnen Sie die daraus resultierenden Funktionswerte für die gegebenen

Stückzahlen  x. Durch Gleichsetzen mit den Sollwerten aus der Tabelle erhält man

daraus ein lineares Gleichungssystem zur Bestimmung der gesuchten Koeffizien-

ten. 
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6.2.4 Lösen eines Gleichungssystems mit Scilab

Das Lösen eines linearen Geichungssystems in Scilab erfolgt mit dem Befehl

linsolve(A,b), wobei A und b, wie in den vorhergehenden Abschnitten be-

schrieben, die Koeffizienten bzw. die rechte Seite des Gleichungssystems sind. Eine

Besonderheit ist, dass der Befehl linsolve ein Gleichungssystem der Form

Ax + b = 0

voraussetzt. Der Vektor b muss also negativ angegeben werden, wenn wir von der

bisherigen Darstellung ausgehen. 

 Beispiel 6.12.  Ausgehend vom Beispiel 6.6 wird die Befehlsfolge zur Berechnug der

Lösung gezeigt. 

A = [2 -1 4; 3 -1 1; 0

1 -3]; 

b = [10; 0; 6]; 

x = linsolve(A,-b)

Der Vektor x enthält die bekannte Lösung. 

☼

6.3 Rang einer Matrix

Der Rang einer Matrix ist eine natürliche Zahl, die die maximale Anzahl linear un-

abhängiger Vektoren einer Matrix angibt. Mittels des Rangs einer Matrix kann man

somit einfach die Lösbarkeit eines linearen Gleichungssystems beschreiben. Man

schreibt für den Rang einer Matrix rgA. 

6.3.1 Eigenschaft des Rangs

Für eine  n ×  m  Matrix ist der Rang nicht größer als der kleinere Wert der Zeilenzahl

 n  und der Spaltenzahl  m. 

rgA ≤ min( n,  m)

Die Rangbestimmung einer Matrix ist am einfachsten, wenn mit dem Gauß-Algo-

rithmus eine Dreiecksmatrix erzeugt wird. Die Zeilenzahl minus der Nullzeilen ist

die Anzahl der linear unabhängigen Zeilen. Sie gibt den Rang der Matrix an. 

 Beispiel 6.13.  Die Matrix

⎡

⎤

1 2 3

A = ⎣ 2 4 6 ⎦

3 2 1

6.3 Rang einer Matrix
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besitzt, den Rang

⎡

⎤

1

2

3

rgA = rg⎣ 0

0

0 ⎦ = 2

0 −4 −8

Die Matrix A besitzt den Rang 2, weil eine Nullzeile auftritt. Ein Vektor ist linear

abhängig. 

☼

Der Rang der Matrix bleibt durch den Tausch der Zeilen (und Spalten) unverän-

dert. 

6.3.2 Rang und lineares Gleichungssystem

Mit dem Rang einer Matrix kann leicht festgestellt werden, ob die Matrix eine li-

neare Abhängigkeit zwischen den Zeilen oder Spalten besitzt. Daher wird der Rang

verwendet, um die Lösbarkeit eines linearen Gleichungssystems

Ax = b

zu beschreiben. Das Gleichungssystem besitzt keine Lösung, wenn

rgA < rg(A | b)

gilt. Es liegt ein Widerspruch im Gleichungssystem vor. Die linke Seite des Glei-

chungssystems weist eine lineare Abhängigkeit aus, die rechte hingegen nicht. Mit

A|b wird die um den Vektor b erweitere Koeffizientenmatrix A beschrieben. Um die

Lösbarkeit des Gleichungssystems sicherzustellen, muss

rgA = rg(A | b)

gelten. Es könnte dann aber eine mehrdeutige Lösung vorliegen, weil die Anzahl der

Gleichungen von der Anzahl der Variablen verschieden sein kann. Um eine eindeu-

tige Lösung für das Gleichungssystem sicherzustellen, muss

rgA = rg(A | b) =  m

gelten, wobei mit  m  die Anzahl der Variablen bezeichnet wird. 

Ein Gleichungssystem mit  n  Gleichungen und  m  Variablen heißt

bestimmt, wenn  m =  n  gilt und alle Gleichungen linear unabhängig sind. Das be-

stimmte Gleichungssystem besitzt eine eindeutige Lösung. 

überbestimmt, wenn  m <  n  gilt, d. h. wenn mehr linear unabhängige Gleichungen

als Variablen vorhanden sind. Das Gleichungssystem besitzt keine Lösung und

enthält einen Widerspruch. 

unterbestimmt, wenn  m >  n  gilt, d. h. wenn weniger Gleichungen als Variablen

vorliegen. Ein unterbestimmtes Gleichungssystem besitzt im Allgemeinen un-

endlich viele Lösungen. 
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 Beispiel 6.14.  Das Gleichungssystem aus Beispiel 6.4 besitzt folgende Rangglei-

chungen:

⎡

⎤ ⎡

⎤

2

2 5

2 2

5

rgA = rg⎣ 1

2 2 ⎦ = ⎣ 0 1 −0.5 ⎦ = 2

0 −2 1

0 0

0

⎡

⎤ ⎡

⎤

2

2 5

8

2 2

5

8

rg(A | b) = rg⎣ 1

2 2

3 ⎦ = ⎣ 0 1 −0.5

−1 ⎦ = 2

0 −2 1

2

0 0

0

0

Das Gleichungssystem besitzt eine Lösung, weil der Rang von rgA gleich dem Rang

von rg(A | b) ist. Weil aber der Rang (Anzahl der linear unabhängigen Gleichungen)

kleiner als die Anzahl der Variablen ist, liegen unendlich viele Lösungen vor. 

☼

6.3.3 Berechnung des Rangs mit Scilab

In Scilab wird der Rang einer Matrix A mit dem Befehl rank(A) berechnet. 

6.4 Inverse einer Matrix

Eine weitere wichtige Matrixoperation ist die Matrixinversion. Sie ist nützlich zum

Lösen von Gleichungssystemen und ergänzt die bereits vorgestellten Grundoperatio-

nen. 

6.4.1 Eigenschaft der Inversen

Die Lösung des bestimmten Gleichungssystems

Ax = b

(6.20)

wurde mit dem Gauß-Algorithmus bisher dadurch erzeugt, dass das Gleichungssy-

stem bei der vollständigen Elimination wie folgt umgeformt wurde:

Ix = b∗

In b∗ stehen die Lösungen für x. 

Es wird nun eine Matrix A−1 definiert, die als Inverse der regulären quadrati-

schen Matrix A bezeichnet wird. Regulär bedeutet hier, dass die Matrix den vollen

Rang besitzt. Sie besitzt per Definition die Eigenschaft

AA−1 = A−1 A = I

Damit lässt sich die Lösung des Gleichungssystems (6.20) auch wie folgt erzeugen:

A−1 Ax = A−1 b
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x = A−1 b

wobei

A−1 b = b∗

ist. Die Inverse stellt keine Division mit einer Matrix dar, wie vielleicht die Schreib-

weise nahelegen könnte. Die Lösung des Gleichungssystems erfolgt vielmehr durch

Multiplikation der Gleichung mit der Inversen. 

6.4.2 Berechnung der Inversen

Mit der Eigenschaft der Inversen ist aber noch kein Weg zur Berechnung der Inversen

gezeigt. Die Berechnung erfolgt mit dem Gauß-Algorithmus. 

 Beispiel 6.15.  Es ist die Inverse der Matrix zu dem Beispiel 6.2. 

#

$

2

3

A = 1 −2

zu berechnen. Dazu wird das folgende Gauß-Tableau aufgestellt:

#

$

2

3

1 0

1 −2

0 1

Durch vollständige Elimination der rechten Seite wird auf der linken Seite des Ta-

bleaus eine Matrix erzeugt, die die Inverse von A ist. 

#

$

#

$

1

3

1

0

1 0

2

3

2

2

⇒

7

7

0 − 7

1

0 1

1

2

−12

7

−27

Die Inverse der Matrix A ist

#

$

2

3

A−1 = 7

7

17 −27

Die Multiplikation A−1 A muss die Einheitsmatrix ergeben. 

#

$ #

$ #

$

2

3

2

3

1 0

7

7

1

=

1 −2

0 1

7

−27

Die Inverse wird zur Lösung des Gleichungssystems aus Beispiel 6.2 eingesetzt. 

Das Gleichungssytem besitzt folgende Matrixform:

#

$ # $ # $

2

3

 x 1

6

1 −2

 x

=

2

1

Mit dem Matrixprodukt A−1 b kann die Lösung für  x 1 und  x 2 berechnet werden. 

# $ #

$ # $ # $

 x

2

3

15

1

6

7

7

= 7

 x

= 1

4

2

1

7

−27

7

☼
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Bei der Anwendung des Gauß-Algorithmus ist es nicht immer sinnvoll oder mög-

lich, die Pivotelemente auf der Hauptdiagonalen zu wählen. Wählt man andere Ele-

mente aus (natürlich darf jede Zeile nur einmal ausgewählt werden), so entsteht auf

der rechten Seite dann eine permutierte Matrix der Inversen. Durch Vertauschen der

Zeilen erhält man dann die Inverse. 

 Beispiel 6.16.  Es ist die Matrix

⎡

⎤

1 2 1

A = ⎣ 0 2 1 ⎦

2 1 1

gegeben. Die Anwendung des Gauß-Algorithmus liefert folgendes Ergebnis:

⎡

⎤

⎡

⎤

1 2 1

1

0

0

1

0 0

1 −1

0

⎣ 0 2 1

0

1

0 ⎦ ⇒ ⎣ 0

2 1

0

1

0 ⎦

2 1 1

0

0

1

2 −1 0

0 −1

1

⎡

⎤

⎡

⎤

1 0 0

1 −1

0

1 0 0

1 −1

0

⇒ ⎣ 4 0 1

1 −1

2 ⎦ ⇒ ⎣ 0 0 1

−4

3

2 ⎦

−2 1 0

0

1 −1

0 1 0

2 −1 −1

Das Vertauschen der letzten beiden Zeilen liefert die gesuchte Inverse. 

⎡

⎤

1

0

0

1 −1

0

⎣ 0

1

0

2 −1 −1 ⎦

0

0

1

−4

3

2

☼

6.4.3 Berechnung von Inversen mit Scilab

Die Inverse einer Matrix A wird in Scilab mit dem Befehl inv(A) berechnet. 

6.5 Ökonomische Anwendung: Input-Output-Analyse

Input-Output-Tabellen werden zur Beschreibung von Wirtschaftssystemen verwen-

det. Das System (Volkswirtschaft oder Unternehmen) besteht aus einzelnen Sektoren

(Betriebsstätten, Kostenstellen), die untereinander Leistungen austauschen, um ver-

schiedene Gesamtleistungen gemeinsam zu erstellen. Die Verflechtungen der einzel-

nen Sektoren lassen sich in einem «Gozinto» Graph darstellen. Die Leistungen sind

in Geldeinheiten bewertet. In der folgenden Darstellung der Input-Output-Analyse

wird die Verwendung im Rahmen der Betriebswirtschaftslehre betont und die ur-

sprünglich volkswirtschaftliche Anwendung vernachlässigt. 

6.5 Ökonomische Anwendung: Input-Output-Analyse
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6.5.1 Klassische Analyse

 Beispiel 6.17.  Der Sektor 1 in Abb. 6.3 benötigt zur Erstellung einer bestimmten

Gesamtleistung Vorleistungen im Wert von 30 e seiner eigenen Produktion und 50 e

von Sektor 2. Der Sektor 2 bezieht Vorleistungen im Wert von 60 e von Sektor 1

und verbraucht Leistungen im Wert von 15 e seiner eigenen Produktion. Aus der

Gesamtproduktion wird eine Endnachfrage im Wert von 10 e aus Sektor 1 und 85 e

aus Sektor 2 bedient. 

☼

Sektor 1

Sektor 2

Endnachfrage

60

85

30

15

50

10

Abb. 6.3: Gozintograph

Das Wirtschaftssystem kann mit einer Verflechtungsmatrix T (auch als Zen-

tralmatrix bezeichnet) ( complication matrix) beschrieben werden. 

#

$

30 60

T = 50 15

In der Matrix T wird in den Zeilen der Aufwand ( Input) und in den Spalten das Er-

gebnis ( Output) abgetragen. Die Input-Output-Analyse mittels eines linearen Glei-

chungssystems geht auf Wassily W. Leontief zurück. 

Um das Gesamtsystem vollständig zu beschreiben, ist die Angabe einer Endnach-

frage (Nettoproduktion) ( final demand) oder einer Gesamtleistung (Bruttoproduktion

= Nettoproduktion plus Vorleistungen) ( output level) notwendig. Im Beispiel ist die

Nettoproduktion mit

# $

10

b = 85

angegeben. In einer so genannten Input-Output-Tabelle wird das Gesamtsystem

abgetragen (siehe Tabelle 6.2). 
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Tabelle 6.2: Input-Output-Tabelle

T

v

b

x

30 60

90

10

100

50 15

65

85

150

In der Tabelle 6.2 werden mit v die Vorleistungen je Sektor ( primary input) be-

zeichnet. Sie ist die Summe der jeweiligen Zeile aus der Verflechtungsmatrix T. 

⎡ ⎤

1

v = T × 1 mit 1 = ⎢

⎣..⎥

. ⎦

1

Die Gesamtleistung des Systems ergibt sich aus der Summe der Vorleistungen v und

der Endnachfrage b. 

x = T × 1 + b = v + b

(6.21)

Die Vorleistungen sind von der Gesamtleistung abhängig. Um diese Abhängigkeit

in der Gleichung (6.21) aufzuzeigen, werden die Vorleistungen auf eine Einheit um-

gerechnet. Ferner werden die Annahmen getroffen, dass stets in konstanten Propor-

tionen produziert wird und sowohl Substitution als auch technischer Fortschritt aus-

geschlossen sind. Die so transformierten Vorleistungen werden als Input-Output-

Koeffizienten bezeichnet. 

 T

Input des Sektors  i  an den Sektor  j

 d

 i j

 i j =

=

 xj

Output des Sektors  j

Sie können als Normgrößen für die bei der Produktion verwandte Technologie an-

gesehen werden. Die Koeffizienten  dij  geben den Vorleistungsstrom an, der benötigt

wird, um in jedem Sektor gerade eine Bruttoeinheit zu erstellen. 

#

$

%

& 

100 0 −1

30

60

D = T(diagx)−1 = T

100 150

0 150

= 50 15

100 150

Die Matrix D wird als Matrix der technischen Koeffizienten ( input coefficient

 matrix) oder Direktbedarfsmatrix bezeichnet. Mit dieser Matrix lässt sich nun fol-

gendes Gleichungssystem aufstellen und lösen. Durch Einsetzen von

(diagx)−1 x = 1

in die Gleichung (6.21) erhält man:

x = T × 1 + b

= T(diagx)−1 x + b

(6.22)

= Dx + b
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Angewendet auf das Beispiel bekommt man dann folgende Gleichung:

#

$ #

$ #

$ # $

100

0.3 0.4

100 + 10

150 = 0.5 0.1

150

85

Die Gleichung wird umgestellt, so dass der Vektor x auf der linken Seite ausgeklam-

mert werden kann. 

(I − D)x = b

#

$ #

$ # $

0.7 −0.4

100

10

−

=

0.5

0.9

150

85

Die Gleichung wird mit der Inversen von I − D erweitert, um die Lösung für den

Vektor x berechnen zu können. 

x = (I − D)−1 b

  

Leontief-Inverse

#

$ #

$ # $

100

90

40

10

= 43 43

150

50

70

85

43

43

Die Koeffizienten der Leontief-Inverse geben an, wie viel der Sektor  i (Zeile) her-

stellen muss, damit der Sektor  j (Spalte) eine Einheit für die Endnachfrage abgeben

kann. Es werden dabei alle direkten und indirekten Effekte erfasst. Die Leontief-

Inverse wird auch als Gesamtbedarfsmatrix ( composite demand matrix) bezeich-

net, weil mit ihr der Gesamtbedarf für eine gegebene Endnachfrage berechnet wer-

den kann. 

Im vorliegenden Fall muss der Sektor 1 an eigenen Leistungen 90 Einheiten und

43

der Sektor 2 Leistungen in Höhe von 50 produzieren, damit eine Leistungseinheit für

43

die Endnachfrage entsteht. 

Die Elemente auf der Hauptdiagonalen müssen immer größer-gleich Eins sein. 

Damit der Sektor  i  eine Einheit anbieten kann, muss dieser Sektor selbst auf jeden

Fall eine Einheit herstellen. Alles darüber hinaus ist der zusätzliche Bedarf der Sek-

toren, die von Sektor  i  mit Vorleistungen versorgt werden, damit diese wiederum ihre

Vorleistungen an Sektor  i  liefern können. 

6.5.2 Preisanalyse

Aus betriebswirtschaftlicher Sicht ist nun eine Aufteilung der Gesamtleistung in

Preis p mal Menge x p  interessant. Die innerbetriebliche Leistungsverflechtung zeigt

dann Verrechnungspreise, die zur betrieblichen Analyse wichtig sind. Hierbei wird

davon ausgegangen, dass der (Verrechnungs-) Preis einer Leistungseinheit sich aus

einem internen Verrechnungspreis und einem externen Preis zusammensetzt. 

p = D p p + p



 ext

(6.23)

p int
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Um diese Gleichung mit den Preisen zu bestimmen, müssen die Endpreise für die

Gesamtleistung bekannt sein. In dem begleitenden Beispiel werden die Preise

# $

2

p = 3

unterstellt. Aus der Aufteilung

x = diagx p p = diagpx p

erhält man

# $

50

x p = (diagp)−1 x = 50

Damit lässt sich die ursprüngliche Leistungsaufteilung (6.22) wie folgt beschrei-

ben:

diag x p p = T(diagp)−1 p + b

(6.24)







T p

#

$ # $ #

$ #

$ # $ # $

50

0

2

30 60

1

0

2

10

=

2

0

50

3

50 15

+

0

1

3

85

3

#

$ # $ # $

15 20

2

10

=

+

25

5

3

85

= T p p + b

In T p  stehen die unbewerteten Leistungseinheiten, die zwischen den Kostenstellen

ausgetauscht werden. Um nun die Gleichung (6.23) zu erhalten, wird die Gleichung

(6.24) mit der Inversen von diag x p  erweitert. 

p = (diagx p)−1 T(diagp)−1 p + (diagx







 p)−1 b







D p

p ext

= D p p + p



 ext

p int

Die Matrizen D und D p  sind identisch, wenn – wie im Beispiel – die Preise im

gleichen Verhältnis zueinander stehen wie die Gesamtleistungen in x. Ansonsten sind

die beiden Matrizen unterschiedlich. In dem Beispiel ergibt sich damit dann folgende

Preisaufteilung:

#

$ # $ # $

#

$ # $ # $

0.3 0.4

2

1.8

1

0

10

0.2

p int =

=

p

50

0.5 0.1

3

1.3

 ext=

=

0

1

85

1.7

50

In diesem Zusammenhang wird der interne Verrechnungspreis als Stückkosten

und der externe Preis als Deckungsbeitrag interpretiert. Der Vektor b kann statt der
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Endnachfrage auch externe Kosten beschreiben (siehe Beispiel 6.18 und Aufgabe

6.4). 

Analog zu den Umformungen der Gleichung (6.22) wird auch für die internen

Verrechnungspreise eine Beziehung der Art

p = T p × 1 + p

 int

 ext

(6.25)

unterstellt. Die Zentralmatrix der internen Verrechnungspreise muss dann

T p = (diagx

 int

 p)−1 T = D p  diag p

sein. Die internen Verrechnungspreise für die beiden Sektoren (betriebswirtschaft-

lich: Kostenstellen) setzen sich dann wie folgt zusammen:

#

$ #

$ #

$

1

0

30

60

0.6 1.2

T p = 50

=

 int

0

1

50 1.2

1.0 0.3

50

0.60 e kostet der Eigenverbrauch pro Leistungseinheit in Sektor 1 und 1.20 e die

Leistungseinheit, die Sektor 1 an Sektor 2 liefert. Entsprechend kann die Zeile zwei

der Matrix interpretiert werden. Es gilt:

# $ #

$ # $ # $

2

0.6 1.2

1

0

+ .2

3 = 1.0 0.3

1

1.7

Um wieder die Gesamtleistung zu berechnen, muss die Preisgleichung (6.25) mit

der Mengenmatrix diag x p  multipliziert werden. 

diagx p p = diagx

× 1 + diagx

  

 p T pint







 p p ext

  

x

T

b

In einem weiteren Beispiel soll nochmals die Vorgehensweise verdeutlicht wer-

den. 

 Beispiel 6.18.  Ein Unternehmen besteht aus 4 Kostenstellen. Die Leistungsverflech-

tung sieht wie folgt aus (vgl. [7]). 

Tabelle 6.3: Leistungsverflechtung zum Beispiel 6.18

von/an

Kostenstelle

1

2

3

4

Gesamtleistung

1

–

400

200

300

1200

2

–

100

400

100

600

3

600

–

300

200

1600

4

400

–

–

–

2000

ext. Kosten 90 000 60 000 120 000 200 000

Es sind die Verrechnungspreise und die internen Verrechnungspreise zu berech-

nen. Dazu ist zuerst das Gleichungssystem mit den Bilanzgleichungen (Einnahmen

= Ausgaben) aufzustellen. 
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1200  p 1 = 600  p 3 + 400  p 4 + 90000

600  p 2 = 400  p 1 + 100 p 2 + 60000

1600  p 3 = 200  p 1 + 400  p 2 + 300  p 3 + 120000

2000  p 4 = 300  p 1 + 100  p 2 + 200  p 3 + 200000

Dieses kann wie zuvor mit folgenden Variablen beschrieben werden. 

diag x p p = T

+ k

  

 p p



 ext

k

k int

⎡

⎤⎡ ⎤ ⎡

⎤⎡ ⎤

1200

0

0

0

 p 1

0

0

600 400

 p 1

⎢

⎢ 0

600

0

0

⎥

⎥⎢

⎢ p ⎥ ⎢

⎥⎢ ⎥

2⎥

⎢ 400 100

0

0

⎥⎢ p 2⎥

⎣ 0

0

1600

0

⎦⎣ p 3⎦ = ⎣ 200 400 300

0

⎦⎣ p 3⎦

0

0

0

2000

 p 4

300 100 200

0

 p 4

⎡

⎤

90000

⎢ 60000 ⎥

+ ⎢

⎣

⎥

120000⎦

200000

Der Vektor k ext  beschreibt hier die externen Kosten, die auch als Primärkosten

bezeichnet werden. Die Lösung des Gleichungssystems nach p erfolgt in der bekann-

ten Weise. 





diag x p − T p p = k ext



−1

p = diagx p − T p

k ext

⎡

⎤

⎤

1200

0

−600

−400

−1 ⎡ 90000

⎢

⎥ ⎢

⎥

(6.26)

= ⎢ −400

500

0

0

60000

⎣

⎥ ⎢

⎥

−200 −400

1300

0

⎦ ⎣120000⎦

−300 −100 −200

2000

200000

Die Lösung kann alternativ auch mit der Matrix der technischen Koeffizienten erfol-

gen. 
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p = (diagx p)−1 T p p + (diagx







 p)−1 k ext







D p

p ext





= I − D −1

 p

p ext

⎛

⎡

⎤⎞

⎤

0.0

0.0

0.5

0.33333

−1 ⎡ 75

⎜

⎢ 0

⎥⎟ ⎢100⎥

= ⎜

.66666 0.16666 0.0

0.0

⎝I − ⎢

⎣

⎥⎟ ⎢

⎥

(6.27)

0.125

0.25

0.1875

0.0

⎦⎠ ⎣ 75 ⎦

0.15

0.05

0.1

0.0

100

⎡

⎤

⎤

1.00

0.00

−0.50

−0.33333

−1 ⎡ 75

⎢

⎥ ⎢

⎥

= ⎢ −0.66666

0.83333

0.00

0.00

⎥

100

⎣

⎢

⎥

−0.125

−0.25

0.8125

0.00

⎦ ⎣ 75 ⎦

−0.15

−0.05

−0.10

1.00

100

Die Berechnung der Inversen von (6.26) bzw. (6.27) erfolgt am besten mit einem

Computerprogramm (siehe Ende des Abschnitts, Seite 98). 

Es ergeben sich mit den vorliegenden Werten dann die Verrechnungspreise:

⎡

⎤

247.81992

⎢318.25594⎥

p = ⎢

⎣

⎥

228.35874⎦

175.92166

Die internen Verrechnungspreise, also die Verrechnungspreise ohne die Primärko-

sten, sind:

⎡

⎤

172.81992

⎢218.25594⎥

p

⎢

⎥

 int = D p p = ⎣153.35874⎦

75.921659

Die Kosten je Kostenstelle sind die Verrechnungspreise mit den Leistungen multipli-

ziert. 

⎡

⎤

297383.91

⎢190953.56⎥

k = diagx

⎢

⎥

 p p = ⎣365373.98⎦

351843.32

Nun kann man auch wieder die Aufteilung der Kosten in interne und externe

Kosten vornehmen. Die externen Kosten sind gegeben, so dass die internen Kosten zu

berechnen sind. Die internen Kosten sind die Differenzen aus Kosten je Kostenstelle

minus deren externe Kosten. 

k int = k − k ext

Weiterhin lassen sich die internen Kosten je Kostenstelle auch aus den bewerteten

Leistungen berechnen. 

⎡

⎤

207383.91

⎢130953.56⎥

k

⎢

⎥

 int = diag x p p int = T p p = ⎣245373.98⎦

151843.32
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Die Summe aus externen und internen Kosten ergeben die Gesamtkosten je Ko-

stenstelle. Ebenso ergibt die Summe aus externem Preis und internem Verrechnungs-

preis den Verrechnungspreis je Kostenstelle. Wie in der vorhergehenden Analyse dar-

gelegt, können die internen Verrechnungspreise auch auf die Kostenstellen aufgeteilt

werden. Die Zentralmatrix der internen Verrechnungspreise liefert diese Aufteilung. 

Es sind die normierten Leistungen je Sektor, die mit den Verrechnungspreisen be-

wertet werden. 

⎡

⎤

0.0

0.0

114.17937 58.64055

⎢ 165.21328 53.042656 0.0

0.0

⎥

T

⎢

⎥

 p

= D

 int

 p  diag p = ⎣ 30.97749 79.563984 42.81726

0.0

⎦

37.17299 15.91279

22.83587

0.0

Übrigens entsprechen die Zeilensummen der Matrix T p  den internen Verrech-

 int

nungspreisen. 

p int = T p 1

 int

Die Aufteilung der internen Kosten auf die Kostenstelle kann mit der Bewertung

der Zentralmatrix T p  mit den Verrechnungspreisen erfolgen. Eine andere Möglich-

keit besteht darin, die Mengen x p  mit der Zentralmatrix der internen Verrechnungs-

preise T p  zu bewerten. Es entsteht die Zentralmatrix der Kosten. 

 int

T k = T p  diagp = diagx p T pint

⎡

⎤

0.0

0.0

137015.24 70368.66

⎢

⎥

= ⎢ 99127.97

31825.59

0.0

0.0

⎣

⎥

49563.98 127302.38

68507.62

0.0 ⎦

74345.98

31825.59

45671.75

0.0

Auch für die Kosten gilt also die grundlegende Aufteilung der Gleichung (6.21):

k = T k × 1

   + k ext

k int

☼

6.5.3 Lösen linearer Gleichungssysteme mit Scilab

Das Beispiel 6.18 kann in Scilab wie folgt gelöst werden:

// 1. Variante

xp=[1200

600

1600

2000]; 

Tp=[

0

0 600 400

400 100

0

0
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200 400 300

0

300 100 200

0]; 

kext=[ 90000

60000

120000

200000]; 

p=inv(diag(xp)-Tp)*kext

// 2. Variante

Dp=inv(diag(xp))*Tp; 

pext=inv(diag(xp))*kext; 

p2=inv(eye(4,4)-Dp)*pext

Übung 6.4. Eine Unternehmung weist 4 Kostenstellen (KST) auf, die betriebliche

Leistungen an eine Hauptkostenstelle (HKST) abgeben, sich wechselseitig belie-

fern und einen Eigenverbrauch haben. Die umlagebedürftigen Gesamtkosten einer

Kostenstelle umfassen sowohl die primären Kosten als auch die Kosten der inner-

betrieblichen Leistungen, die von den Kostenstellen erbracht werden (sekundäre

Kosten). Berechnen Sie die innerbetrieblichen Verrechnungspreise der vier Kosten-

stellen. 

Tabelle 6.4: Verflechtungstablle

von/an

Kostenstelle

HKST primäre Kosten

1

2

3

4

b

k ext

1

10 40 20

30

500

110

2

40 10 30 120

600

3135

3

50 60 50

40

800

7740

4

60 50 10

80

1000

12365
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Übung 6.5. Ein Großunternehmen unterhält drei energieproduzierende Anlagen. 

Sie liefern Warmwasser (W), Heißdampf (H) und Strom (S). Die Anlagen versor-

gen sich zum Teil gegenseitig, geben aber auch Energie an andere Bedarfsstellen

ab. Die Tabelle 6.5 enthält die Leistungsverflechtung zwischen den Bedarfsstellen. 

Tabelle 6.5: Leistungsverflechtung

W

H

S

y

x

W 15

2

8

30

H

3

12

4

20

S

9

4

20

40

1. Berechnen Sie y. Es ist die Versorgung der anderen Bedarfsstellen, die End-

nachfrage. 

2. Stellen Sie die Matrix D der relativen (technischen) Input-Output-Koeffi-

zienten auf. 

3. Nehmen Sie an, die Anlage zur Warmwasserbereitung muss über längere

Zeit repariert werden. Die Betriebsleitung versucht nun, den Mangel durch

eine Produktionsplanung von

! 

" 

x = 0 30 60

auszugleichen. Können die anderen Produktionsstätten unter diesen Bedin-

gungen versorgt werden? 

4. Welche Gesamtproduktion ist zur Nachfragedeckung von

! 

" 

y = 10 11 5

nötig? Lösung mittels der Inversen von (I − D) erwünscht! 

6.6 Determinante einer Matrix

Jeder quadratischen Matrix A ist eindeutig eine reelle Zahl zugeordnet, die als ihre

Determinante det(A) oder |A| bezeichnet wird. Mittels der Determinanten kann die

lineare Abhängigkeit in Matrizen festgestellt werden. Besitzt die Matrix einen redu-

zierten Rang (keinen vollen Rang), ist die Determinante Null. Außerdem eignen sich

Determinanten zur Bestimmung des «Vorzeichens» einer Matrix (auch Definitheit

der Matrix genannt). Diese wird zur Bestimmung des Vorzeichens der zweiten Ab-

leitung bei Funktionen mit mehr als einer Variablen eingesetzt (siehe Hesse-Matrix, 

Kapitel 11.4). Ferner lassen sich mit Determinanten Gleichungssysteme lösen (Cra-

mersche Regel) und Inversen berechnen. Da jedoch diese beiden Verfahren einen

hohen Rechenaufwand haben, wird auf deren Beschreibung hier verzichtet. 

6.6 Determinante einer Matrix
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6.6.1 Berechnung von Determinanten

Die algebraische Lösung des (2 × 2) Gleichungssystems (6.4, siehe Seite 76) weist

einen identischen Nenner in beiden Lösungsgleichungen auf (siehe Gleichungen

(6.2) und (6.3)). Dieser Nenner ist die Determinante der Matrix A. Er berechnet

sich im Fall der (2 × 2)-Matrix wie folgt:





 a



detA =  11  a 12





 a

 =  a 11  a 22 −  a 12  a 21

21  a 22

Es ist das Produkt der Hauptdiagonalelemente minus dem Produkt der Nebendiago-

nalelemente. Die Berechnung von Determinanten höherer Ordnung kann nicht mehr

mit der obigen Regel erfolgen, weil sie nicht alle Elemente berücksichtigt. 

Hierfür liefert der Laplacesche Entwicklungssatz eine Möglichkeit, Determi-

nanten beliebiger Ordnung zu berechnen. Dazu müssen die Konzepte des Minor und

der Adjunkten eingeführt werden. 

Als Minor der quadratischen Matrix A wird die Determinante |A ij| bezeichnet, 

die durch Streichung der  i-ten Zeile und  j-ten Spalte entsteht. 

 Beispiel 6.19.  Der Minor |A21| der Matrix

⎡

⎤

 a 11  a 12  a 13

A = ⎣ a

⎦

21  a 22  a 23

 a 31  a 32  a 33

wird aus der Restmatrix berechnet, die durch Streichen der 2-ten Zeile und der 1-ten

Spalte entsteht. Die Determinante der Matrix





|

 a

A

 12  a 13

21| =  a

 =  a 12  a 33 −  a 32  a 13

32  a 33

ist der Minor. Bei einer (3 × 3)-Matrix lassen sich insgesamt 9 Minoren berechnen. 

☼

Multipliziert man den Minor mit (−1) i+ j, so erhält man die Adjunkte  cij (auch

Kofaktor). 

 cij = (−1) i+ j |A ij|

 Beispiel 6.20.  Die Adjunkte  c 21 zum Minor |A21| aus Beispiel 6.19 ist:

 c 21 = (−1)2+1 |A21| = (−1)3 |A21| = −|A21|

☼

Der Laplacesche Entwicklungssatz lautet nun:
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Multipliziert man jedes Element  aij  einer beliebigen Zeile bzw. Spalte

einer Determinanten  n-ter Ordnung mit seiner zugehörigen Adjunkten

 cij, so ergibt die Summe dieser Produkte den Wert der Determinanten. 

Man spricht dann von der Entwicklung der Determinanten nach der  i-ten

Zeile

 n



 n



|A| =

 aij cij =

 aij (−1) i+ j |A ij|

 j=1

 j=1

bzw. von der Entwicklung der Determinanten nach der  j-ten Spalte:

 n



 n



|A| =

 aij cij =

 aij (−1) i+ j |A ij|

 i=1

 i=1

 Beispiel 6.21.  Die Entwicklung der Determinanten der Matrix in Beispiel 6.19 nach

der 1-ten Spalte führt zu folgender Gleichung:

|A| =  a 11 (−1)1+1 |A11| +  a 21 (−1)2+1 |A21| +  a 31 (−1)3+1 |A31|













 a



 a



 a



=  a  22  a 23

 12  a 13

 12  a 13

11  a

 −  a 21 

 +  a 31 



32  a 33

 a 32  a 33

 a 22  a 23













=  a 11  a 22  a 33 −  a 32  a 23 −  a 21  a 12  a 33 −  a 32  a 13 +  a 31  a 12  a 23 −  a 22  a 13

Nun wird die 2-te Zeile zur Entwicklung der Determinanten ausgewählt. 

|A| =  a 21 (−1)2+1 |A21| +  a 22 (−1)2+2 |A22| +  a 23 (−1)2+3 |A23|













 a



 a



 a



= − a  12  a 13

 11  a 13

 11  a 12

21  a

 +  a 22 

 −  a 23 



32  a 33

 a 31  a 33

 a 31  a 32













= − a 21  a 12  a 33 −  a 32  a 13 +  a 22  a 11  a 33 −  a 31  a 13 −  a 23  a 11  a 32 −  a 31  a 12

Die weitere Auflösung der Gleichung zeigt, dass das gleiche Ergebnis entsteht. 

Lediglich die Anordnung der Elemente ist unterschiedlich. Jede andere Zeile oder

Spalte führt zur gleichen Determinante. 

☼

 Beispiel 6.22.  Die Berechnung der Determinanten der Matrix aus Beispiel 6.16 (sie-

he Seite 90) erfolgt mit der Entwicklung nach der 2-ten Zeile, da in dieser Zeile ein

Element Null ist. 













2 1 

 1 1 

 1 2 

|A| = 0(−1)2+1 











1 1  + 2 (−1)2+2  2 1  + 1 (−1)2+3  2 1 



 



= 2 1 × 1 − 2 × 1 − 1 × 1 − 2 × 2 = 1

Die Entwicklung der Determinanten nach der 1-ten Spalte hätte ebenso die Null

berücksichtigt. Eine Entwicklung der Determinanten nach einer anderen Zeile oder

Spalte wäre gleichwohl auch möglich, sie erzeugt aber mehr Rechenschritte. 

☼

Exkurs: Es sei an dieser Stelle erwähnt, dass es für 3 × 3 Matrizen ne-

ben der Laplace-Entwicklung eine alternative Vorgehensweise existiert. 
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Hiermit ist die Sarrus-Regel gemeint, die nach dem französischen Ma-

thematiker Pierre Frédéric Sarrus benannt ist. Zur Berechnung der De-

terminanten wird die Entwicklung über die Haupt- und Nebendiagona-

len vorgenommen, wie wir sie schon im 2×2 Fall kennen gelernt haben. 

Zur Berechnung der Determinanten werden die ersten beiden Spalten

der 3 × 3 Matrix rechts an die Matrix angefügt. In diesem Zahlensche-

ma hat man nun 3 Hauptdiagonalen und 3 Nebendiagonalen. 





  a



11

 a 12  a 13

 a 11

 a 12





 

  

| A |=   a



21

 a 22  a 23

 a 21

 a 22







  





 a



31

 a 32  a 33

 a 31

 a 32

Die Produkte der 3 Hauptdiagonalen werden addiert, wovon dann die

addierten Produkte der 3 Nebendiagonalen subtrahiert werden. Somit

haben wir für die Determinante einer 3 × 3 Matrix A folgende Entwick-

lung:

| A | =  a 11  a 22  a 33 +  a 12  a 23  a 31 +  a 13  a 21  a 32

−  a 31  a 22  a 13 −  a 32  a 23  a 11 −  a 33  a 21  a 12

Diese Vorschrift von Sarrus lässt sich nicht auf n-reihige ( n > 3) Deter-

minanten übertragen. 

Mit Hilfe des Entwicklungssatzes von Laplace lässt sich zeigen, dass die Deter-

minante einer Dreiecksmatrix gleich dem Produkt der Koeffizienten der Hauptdia-

gonalen ist. 





 u



11 ...  u 1 n

 n



detU = 

. . .. 

 u

 0

. .  =

 ii





0 0  u 

 i=1

 nn

Mittels des Gauß-Algorithmus kann man jede Matrix in eine Dreiecksmatrix um-

formen, so dass die einfache Berechnung der Determinanten einer Dreiecksmatrix

angewendet werden kann. 

 Beispiel 6.23.  Die Determinante der Matrix aus Beispiel 6.16 wird in eine Dreiecks-

matrix umgeformt. 



 

 



 1 2 1   1

2

1  1 2 1 

1

detA = 0 2 1 = 0

2

1  =  0 2 1  = 1 × 2 × = 1



 

 



2 1 1 

 0 −3 −1 0 0 1 

2

2

☼

Liegen die Pivotelemente nach Abschluss der Eliminationsphase nicht auf der

Hauptdiagonalen, so muss durch Spaltenvertauschung die Dreiecksform erreicht

werden. Das Vertauschen einer Spalte bzw. einer Zeile führt zu einem Vorzeichen-

wechsel der Determinanten. 
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 Beispiel 6.24.  Die Determinante der Matrix

#

$

1 3

A = 2 4

ist

detA = −2

Werden in der Matrix die beiden Zeilen miteinander vertauscht, 

#

$

2 4

A∗ = 1 3

so besitzt die Determinante der Matrix A∗ den Wert:

detA∗ = 2

Das Vorzeichen der Determinanten wurde durch den Zeilentausch ebenfalls ver-

tauscht. 

☼

In den folgenden Formeln wird die Zahl der Vorzeichenwechsel berücksichtigt:

 m



detA =

(−1) n( S)  ajSj

 j=1

 n( S) bezeichnet die Anzahl der vertauschten Spalten und  Sj  den Spaltenindex des

Diagonalelements. Statt der Spalten können auch die Zeilen vertauscht werden. Dann

gilt die Formel:

 n



detA =

(−1) n( Z)  aZii

 i=1

 n( Z) bezeichnet nun die Anzahl der vertauschten Zeilen und  Zi  ist der Zeilenindex

des Diagonalelements. 

 Beispiel 6.25.  Zur Berechnung der Determinanten der Matrix in Beispiel 6.23 wer-

den nun die Pivotelemente außerhalb der Hauptdiagonalen gewählt. Sie sind fett ge-

druckt. 



 

 



1

 1 2 1   0 3

  0 0



2

2 



−14 

detA = 0 2 1 = 0 2 1  = 0 2

1 



 

 



2 1 1 

 2 1 1   2 1

1 





1

= (−1)3  a 31  a 22  a 13 = (−1)3 × 2 × 2 × −

= 1

4

Um die Dreiecksmatrix zu erzeugen, sind 3 Zeilenvertauschungen ( n( Z) = 3)

notwendig. Die 3-te Zeile wird durch zwei Zeilenvertauschungen in die 1-te Zei-

le gebracht. Dadurch wird die erste Zeile zur 2-ten Zeile, die durch eine weitere

Vertauschung in die 3-te Zeile gesetzt werden muss. Da jeder Zeilentausch einen

Vorzeichenwechsel der Determinanten verursacht, muss diese nun mit (−1)3 Vorzei-

chenwechseln korrigiert werden. Im Ergebnis erhält man die gleiche Determinante. 

☼
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Mit Scilab lässt sich ebenso einfach wie die Inverse, die Determinante einer Ma-

trix berechnen. Mit dem Befehl det(A) wird die Determinante von A ausgegeben. 

6.6.2 Einige Eigenschaften von Determinanten

Determinanten weisen einige interessante Eigenschaften auf, wobei einige der Ei-

genschaften schon im vorstehenden Abschnitt angewendet worden sind. 

• Vertauscht man in einer Determinanten zwei Zeilen bzw. Spalten, so ändert sich

nur das Vorzeichen der Determinanten. 

• Die Determinante einer Dreiecksmatrix ist gleich dem Produkt der Elemente in

der Hauptdiagonalen. 

• Die Determinante einer Matrix ist Null, wenn Zeilen oder Spalten der Matrix

linear abhängig sind. 

• Die Matrix und ihre tranponierte Matrix besitzen die gleiche Determinante. 

 Beispiel 6.26.  Die folgende Matrix weist eine lineare Abhängigkeit auf. 

#

$

2 1

B = 2 1

Die Determinante der Matrix ist Null. 

detB = 0

☼

Übung 6.6. Berechnen Sie die Determinante der folgenden Matrix:

⎡

⎤

1 0 2 1

⎢−1 1 3 1⎥

A = ⎢

⎣

⎥

1 −2 0 −1⎦

0 −2 1 1

6.6.3 Berechnung von Determinanten in Scilab

In Scilab werden Determinanten mit dem Befehl det() berechnet. 

A = [2 4; 1 3]

det(A) -> 2
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6.7 Homogene Gleichungssysteme

Bei zahlreichen (linearen) ökonomischen Prozessen stellt sich die Frage, ob eine

Lösung existiert, bei der die Produktion gleich dem Verbrauch sein kann. Im Rahmen

eines Input-Output-Systems wäre dann der Vektor b = 0. 

x = Ax

(6.28)

Es handelt sich dann um ein geschlossenes Leontief-Modell. Ein solches System

wird auch als homogenes lineares Gleichungssystem bezeichnet. 

Meistens entstehen Eigenwertprobleme aus mathematisch statistischen Frage-

stellungen, wie zum Beispiel in der Diskriminanzanalyse oder der kanonischen Kor-

relation. 

6.7.1 Eigenwerte

Zur Lösung eines homogenen linearen Gleichungssystems wird ein Parameter benö-

tigt, da ansonsten die Gleichung (6.28) mit Ausnahme der Lösung x = 0 nicht lösbar

ist. Dieser Parameter wird häufig mit λ bezeichnet und heißt Eigenwert der Matrix

A. 

Ax = λ x

(6.29)

Das Gleichungssystem

(A − λ I)x = 0

ist dann nach x auflösbar, wenn die Matrix (A − λ I) invertierbar ist. 

x = (A − λ I)−1 0 = 0

Ist die Matrix invertierbar, dann existiert nur die Lösung x = 0 und λ ist dann

kein Eigenwert der Matrix A. Folglich darf die Matrix (A − λ I) nicht invertierbar

sein, wenn eine Lösung für die Gleichung (6.28) existieren soll. Dies bedeutet, dass

die Matrix (A − λ I) eine lineare Abhängigkeit aufweisen muss. Dies ist der Fall, 

wenn die Determinante Null ist. 

det(A − λ I) != 0

Dann ist λ ein Eigenwert der Matrix A. Die Determinante der Matrix ist ein

Polynom  n-ten Grades und heißt charakteristisches Polynom der Matrix A. Die

Eigenwerte sind die Nullstellen dieses Polynoms. 

 Beispiel 6.27.  Für das Input-Output-System in Abschnitt 6.5 ergibt sich bei einem

Vektor b = 0 folgendes Gleichungssystem:

#

$

0.3 0.4

x =

x

0.5 0.1

Die Berechnung der Eigenwerte erfolgt aus der Nullsetzung der Determinan-

ten von (A − λ I). Diese liefert das charakteristische Polynom, deren Nullstellen die

6.7 Homogene Gleichungssysteme
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Eigenwerte sind. Die Nullstellenberechnung von Polynomen ist in Kapitel 8.3 und

Kapitel 10.7 beschrieben. 

#

$

0.3 − λ

0.4

det

! 

0.5 0.1 − λ = 0

(0.3 − λ)(0.1 − λ) − 0.2 != 0

λ2 − 0.4λ − 0.17 != 0

λ1 = 0.6582

λ2 = −0.2582

In dem vorliegenden Fall ist keine Lösung möglich, bei der der Konsum größer

oder gleich der Produktion ist. In dem ersten Fall wird nur rund 66 Prozent des Ver-

brauchs produziert. Es handelt sich also um ein schrumpfendes Wirtschaftssystem. 

Ax = 0.66x

In dem zweiten Fall ist keine ökonomische Situation vorstellbar. Die Produktion

liefert minus 26 Prozent des Konsums! 

Ax = −0.26x

☼

6.7.2 Eigenvektoren

Die Lösung x = 0 der Gleichung (6.29) kann nur mit den Eigenwerten λ erfol-

gen. Der Lösungsvektor für das homogene Gleichungssystem heißt Eigenvektor und

wird mit v bezeichnet. Er stellt die Lösung für das homogene Gleichungssystem dar

(x = v). Zu jedem Eigenwert existiert mindestens ein Eigenvektor. 

(A − λ i I)v i = 0 mit  i = 1,...,  n

 Beispiel 6.28.  Für das homogene Gleichungssystem aus Beispiel 6.27 werden die zu

den Eigenwerten gehörigen Eigenvektoren berechnet. Das homogene Gleichungssy-

stem für den ersten Eigenwert ist:

(A − 0.6582I)v1 = 0

(6.30)

#

$

#

$

#

$

−0.3582

0.4

1 −1.116

1.116

v

v

0.5 −0.5582 1 = 0 ⇔

0

0

1 = 0

⇒ v1 = α

1

bzw. 

#

$

#

$

0

0

1

−

v

mit

0.895 1

1 = 0

⇒ v1 = α 0.895

α ∈ R

Für den zweiten Eigenwert berechnet sich der Eigenvektor analog. 

#

$

#

$

#

$

0.5582 0.4

1 0.7165

−0.7165

v

v

0.5 0.3582 2 = 0 ⇔

0

0

2 = 0

⇒ v2 = α

1

Der Eigenvektor ist nicht eindeutig zu bestimmen. Denn auch ein Vielfaches des

Eigenvektors erfüllt die Gleichung (6.30). 

☼
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6.7.3 Einige Eigenschaften von Eigenwerten

• Die Matrizen A und A besitzen dieselben Eigenwerte. 

• Seien A und B Matrizen der Dimension ( n ×  n). Dann besitzen die Matrizen AB

und BA dieselben Eigenwerte. 

• Ist λ ein Eigenwert der regulären Matrix A, dann ist 1λ ein Eigenwert von A−1. 

A und A−1 haben dieselben Eigenvektoren. 

• Ist λ ein Eigenwert von A, dann ist λ k  ein Eigenwert von A k. 

• Die Determinante einer ( n ×  n) Matrix A ist gleich dem Produkt der Eigenwerte

λ i  von A. 

 n



detA =

λ i

 i=1

• Die Summe der Diagonalelemente von A wird als Spur der Matrix A bezeichnet

und ist gleich der Summe der Eigenwerte λ i  einer Matrix A. 

 n



Sp A =

λ i

 i=1

6.7.4 Ähnliche Matrizen

Es wird von zwei quadratischen Matrizen A und B  n-ter Ordnung ausgegangen. Die

beiden Matrizen werden als ähnlich bezeichnet, wenn eine reguläre quadratische

Matrix C gleicher Ordnung existiert, so dass

B = C−1 AC

gilt. Eine wesentliche Eigenschaft ähnlicher Matrizen ist, dass sie dieselben Eigen-

werte besitzen, woraus sich das Adjektiv «ähnlich» erklärt. Aber Matrizen mit glei-

chen Eigenwerten müssen nicht notwendigerweise ähnlich sein. 

Eine besonders interessante Transformation ist diejenige, die das Ergebnis einer

Diagonalmatrix erzeugt. Diese stellt sich dann ein, wenn die Matrix C aus den nor-

mierten Eigenvektoren der Matrix A besteht. Die Elemente der Matrix D sind dann

die Eigenwerte der Matrix A. 

⎡

⎤

λ1 ... 0

C−1 AC = D = ⎢

⎣ .. 

. 

. ⎥

. 

. . 

.. ⎦

0

... λ n

 Beispiel 6.29.  Die normierten Eigenvektoren in dem Beispiel 6.28 sind:

v

v

˜v

1

2

1 =

und ˜v

v

2 =

1

v2

#

$

#

$

0.7449

−0.5824

˜v1 =

˜v

0.6671

2 =

0.8128
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Die Matrix C ist folglich:

#

$

0.7449 −0.5824

C = 0.6671 0.8128

Wird nun die obige Transformation vorgenommen, ist das Ergebnis die Diago-

nalmatrix der Eigenwerte. 

#

$ #

$ #

$ #

$

0.8176 0.5858

0.3 0.4

0.7449 −0.5824

0.6582

0

−

=

0.6711 0.7493

0.5 0.1

0.6671

0.8128

0

−0.2582

☼

Wird für die Matrix A ferner eine symmetrische Matrix angenommen, dann

stellt sich folgendes Ergebnis ein: Die normierten Eigenvektoren stehen senkrecht

aufeinander. Es gilt daher:

˜v i ˜v i = 1 und ˜v i ˜v j = 0 für  i =  j,  i,  j = 1,...,  n Die Matrix C hat als orthonormierte Matrix dann u. a. die Eigenschaft, dass ihre

Transponierte gleich der Inversen ist. Es gilt also C = C−1. 

⎡ ⎤

⎡

⎤ ⎡

⎤

˜v1

˜v

1 0 ... 

! 

" 

1 ˜

v1 ˜v1 ˜v2 ... 

C C = ⎢

⎣˜v ⎥

⎢

⎥ ⎢

⎥

2⎦ ˜v

= ⎣˜v2 ˜v1 ˜v2 ˜v2 ... ⎦ = ⎣ 0 1

⎦ = I

. 

1 ˜

v2 ... 

. 

. 

. 

. 

. 

. 

. 

.. 

.. 

. . 

.. 

. . 

 Beispiel 6.30.  Die symmetrische Matrix#

$

2

2

A = 2 −1

soll in eine Diagonalmatrix transformiert werden. Sie besitzt die Eigenwerte λ1 = −2

und λ2 = 3 und die normierten Eigenvektoren

#

$

#

$

0

˜

.4472

−0.8944

v1 = −

und ˜v

0.8944

2 = −0.4472

Die normierten Eigenvektoren stehen senkrecht aufeinander, wie man durch Berech-

nen der Skalarprodukte leicht feststellen kann. Die Transformation

#

$

−2 0

C AC = D =

0 3

liefert die gesuchte Diagonalmatrix. Dass C = C−1 gilt, kann man leicht mit einem

Computerprogramm überprüfen. 

☼

Übung 6.7. Berechnen Sie für die Matrix

#

$

0.7 0.2

A = 0.0 1.1

die Eigenwerte und Eigenvektoren. 
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6.7.5 Berechnung von Eigenwerten und Eigenvektoren mit Scilab

In Scilab werden die Eigenwerte und Eigenvektoren mit dem Befehl [C,l] =

spec(A) berechnet. Das Ergebnis [C,l] enthält die Eigenwerte und die normier-

ten Eigenvektoren. 

 Beispiel 6.31.  Die Anwendung des Befehls wird am Beispiel 6.30 gezeigt. 

A = [2

2

2 -1]; 

[C,l] = spec(A)

l =

-2 0

0 3

C =

0.447 -0.894

-0.894 -0.447

Der Vektor l enthält die beiden Eigenwerte λ1 = −2 und λ2 = 3. Die Matrix C

enthält die beiden dazugehörigen normierten Eigenvektoren. 

Das Beispiel 6.30 kann nun leicht nachgerechnet werden. Der Befehl C’*A*C

liefert ebenso wie inv(C)*A*C die Diagonalmatrix mit den Eigenwerten, da die

Matrix A symmetrisch ist. 

☼

6.8 Fazit

Mit linearen Gleichungssytemen können essenzielle ökonomische Probleme be-

schrieben werden. Sie werden bevorzugt in Matrizengleichungen formuliert, weil

damit spezielle Eigenschaften von Matrizen genutzt werden können. Eine besondere

Form von Gleichungssystemen sind die homogenen Gleichungssysteme. Sie führen

zu den Eigenwerten und Eigenvektoren. 
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7.1 Vorbemerkung

Die lineare Optimierung (Synonyme: lineare Planungsrechnung, lineare Program-

mierung) ( operation research) ist in den letzten Jahrzehnten, auch aufgrund der ra-

santen Entwicklung im Computerbereich, zu einem Standardverfahren in der Be-

triebswirtschaftslehre geworden. Sie kann grundsätzlich überall dort eingesetzt wer-

den, wo eine optimale Verteilung knapper Ressourcen erforderlich ist, um ein ge-

wünschtes Ziel zu erreichen. Die Ressourcen können zum Beispiel finanzielle Mittel

W. Kohn, R. Öztürk,  Mathematik für Ökonomen,  Springer-Lehrbuch,   

DOI 10.1007/978-3-642-28575-2_7, © Springer-Verlag Berlin Heidelberg 2012
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oder die Kapazitäten von Fertigungsanlagen sein, die ein Unternehmen für einen be-

stimmten Zweck zur Verfügung hat. Auch die niedrigsten Kosten oder der höchste

Gewinn können vorgegebene Ziele sein. Die mathematische Aufgabe besteht also

darin, Extremwerte, d. h. ein Maximum oder Minimum einer linearen Zielfunktion, 

unter beliebig vielen linearen Nebenbedingungen zu suchen. 

Zu den in den vorherigen Kapiteln verwendeten Bezeichnungen kommt in der

linearen Optimierung noch die Zielfunktion hinzu. 

 z() Zielfunktion

7.2 Formulierung der Grundaufgabe

Voraussetzung für den Einsatz der linearen Optimierung ist, dass sich das Problem

mit einer linearen Zielfunktion ( linear target function) beschreiben lässt, die zu

maximieren bzw. zu minimieren ist. Die Optimierung der Zielfunkion ist jedoch

nur dann sinnvoll, wenn lineare Nebenbedingungen (Restriktionen) ( linear side

 conditions) formuliert werden, die den Optimierungsprozess beschränken. Die Ne-

benbedingungen werden in Form von linearen Ungleichungen angegeben. Eine Ge-

winnoptimierung beispielsweise, bei der keine Kapazitätsbeschränkungen formuliert

werden, führt zu einer unendlichen Produktion mit einem unendlichen Gewinn. 

 Beispiel 7.1.  Ein Produktionsproblem (vgl. [7]). Eine Unternehmung kann zwei Pro-

dukte fertigen, die unterschiedliche Deckungsbeiträge erbringen. Für Produkt 1 er-

gibt sich ein Deckungsbeitrag von 20 e pro Mengeneinheit, und für Produkt 2 beträgt

er 30 e pro Mengeneinheit. Für die Fertigung beider Produkte stehen zwei Anlagen

bereit, die in 20 Tagen 200 h (Anlage 1) bzw. 160 h (Anlage 2) genutzt werden kön-

nen. Das Produkt 1 belegt beide Anlagen jeweils eine Stunde je Mengeneinheit; zur

Fertigung des Produktes 2 wird die Anlage 1 zwei Stunden und die Anlage 2 eine

Stunde genutzt. Vom Produkt 2 können in 20 Tagen höchstens 60 Mengeneinheiten

abgesetzt werden, weshalb auch nicht mehr gefertigt werden soll. 

☼

Anhand des Beispiels 7.1 wird im Folgenden die Grundform der linearen Op-

timierung beschrieben. Auf der Produktionsanlage 1 können zwei Produkte in den

Mengen  x 1 und  x 2 gefertigt werden, wobei für Produkt 1 eine Stunde und für Produkt

2 zwei Stunden Herstellungszeit auf der Anlage benötigt werden. Insgesamt kann die

Anlage 200 Stunden im Monat laufen. Daraus ergibt sich, dass maximal 200 Einhei-

ten von Produkt 1 ( x 1 = 200) oder 100 Einheiten von Produkt 2 ( x 2 = 100) oder jede

Kombination der beiden Produkte produziert werden kann, die 200 Stunden Bear-

beitungszeit benötigt (zum Beispiel  x 1 = 140 und  x 2 = 30). Die Produktionsstruktur

der Anlage 1 kann in der linearen Form der Gleichung (7.1) angegeben werden. 

 x 1 + 2 x 2 = 200 mit  x 1,  x 2 ≥ 0

(7.1)

Bedingung  x 1,  x 2 ≥ 0 bedeutet, dass negative Mengen nicht erlaubt sind und wird

als Nichtnegativitätsbedingung bezeichnet. Die grafische Darstellung der Neben-

bedingung ist eine Gerade, wie sie in Abb. 7.1 links gezeichnet ist. Alle Punkte auf

der Linie erfüllen die Gleichung (7.1). 

7.2 Formulierung der Grundaufgabe

113

Nun kann es aber durchaus sinnvoll sein, die Anlage weniger als 200 Stunden im

Monat zu betreiben. Mathematisch wird dies durch eine Ungleichung beschrieben. 

 x 1 + 2 x 2 ≤ 200

(7.2)
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x1
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Abb. 7.1: Lineare Gleichung (links) und lineare Ungleichung (rechts)

Die Lösungen, die die Ungleichung (7.2) erfüllen, beinhalten alle Punkte auf

und unterhalb der Geraden. Eine solche Ungleichung wird als Nebenbedingung be-

zeichnet (siehe Abb. 7.1 rechts). Aufgrund der Nichtnegativitätsbedingung ist der

Lösungsraum auf die nichtnegativen Werte beschränkt. 

In einem betrieblichen Produktionsprozess existieren in der Regel viele Neben-

bedingungen, die die Produktion einschränken. Im Beispiel 7.1 wird auch eine zweite

Anlage zur Bearbeitung der Produkte 1 und 2 eingesetzt. Für sie lautet die Nebenbe-

dingung in Gleichungsform

 x 1 +  x 2 ≤ 160

(7.3)

Die Nebenbedingung (7.3) schränkt den zulässigen Produktionsraum weiter ein. 

Dies wird deutlich, wenn die Gleichung zusätzlich in die Abb. 7.1 aufgenommen

wird (siehe Abb. 7.2). Im Beispiel 7.1 wird noch eine weitere Nebenbedingung ge-

nannt, die eine Absatzbeschränkung für das Produkt 2 ist und bei 60 Einheiten liegt. 

 x 2 ≤ 60

(7.4)

Mit den 3 Nebenbedingungen (Gleichungen (7.2), (7.3) und (7.4)) und der Nicht-

negativitätsbedingung  x 1,  x 2 ≥ 0 sind die Beschränkungen aus dem Beispiel 7.1 voll-

ständig erfasst. Sie geben den zulässigen Lösungsraum an. 

Jedoch muss entschieden werden, welche unter den möglichen (unendlich vie-

len) Lösungen gewählt werden soll. Das Entscheidungsproblem lässt sich nur dann

lösen, wenn die Alternativen bewertet werden. Eine solche Bewertung wird mittels

der linearen Zielfunktion vorgenommen. Im Beispiel 7.1 werden die Produkte mit

ihrem Deckungsbeitrag pro Stück (Bruttogewinn pro Stück) bewertet. Die Funktion

 z( x 1,  x 2) = 20 x 1 + 30 x 2
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Abb. 7.2: Zulässiger Lösungsraum

gibt den Gewinn an, der durch die beiden Produkte erwirtschaftet wird. Es ist nun

möglich, diejenige Produktmengenkombination zu suchen, die den höchsten Gewinn

erzielt. Die Zielfunktion muss also maximiert werden. Beschreibt die Zielfunktion

beispielsweise die Kosten einer Produktion, so sind diese natürlich zu minimieren. 

Zunächst wird das Standardproblem der linearen Optimierung erläutert, bei dem

die Zielfunktion unter den linearen Nebenbedingungen maximiert wird. 

Eine formale Beschreibung des linearen Optimierungsproblems sieht wie folgt

aus: Maximiere  z  mit

 m



 z( x 1,...,  xm) =

 cj xj +  c 0

 j=1

unter den Nebenbedingungen

 m

 aijxj ≤ bi  für  i=1,...,  n

 j=1

 xj ≥ 0 für  j = 1,...,  m

Die Variablen  xj ( i = 1,...,  m) sind dabei die Entscheidungsvariablen, die reellwer-

tig und kontinuierlich sein müssen. In der Zielfunktion kann zusätzlich ein absoluter

Koeffizient  c 0 berücksichtigt werden. Er kann beispielsweise einen Fixbetrag dar-

stellen. Im obigen Beispiel ist der Koeffizient  c 0 Null. 

 Beispiel 7.2.  Für das Beispiel 7.1 lautet die Aufgabe somit: Maximiere  z  mit

 z( x 1,  x 2) = 20 x 1 + 30 x 2

7.4 Matrix-Formulierung der linearen Optimierung
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unter den Nebenbedingungen

 x 1 + 2 x 2 ≤ 200

 x 1 +  x 2 ≤ 160

 x 2 ≤ 60

 x 1,  x 2 ≥ 0

☼

7.3 Grafische Maximierung

Um die Zielfunktion zu maximieren, wird sie in die Grafik 7.2 eingezeichnet. Hier-

bei ist es vorteilhaft für den Zielfunktionswert  z  einen Wert vorzugeben, der zu mög-

lichst einfachen Werten von  x  führt. Im Beispiel 7.1 ergeben sich für ein gesetztes

 z = 1800 die Koordinatenpunkte ( x 1 = 0,  x 2 = 60) und ( x 1 = 90,  x 2 = 0). Diese Ge-

rade gibt alle Produktmengenkombinationen von  x 1 und  x 2 an, die zu einem Gewinn

von  z = 1 800 e führen. Diese Gerade wird auch als Isogewinngerade bezeichnet. 

Verschiebt man die Gerade parallel, so verändert sich der Gewinn. Er wird in die

eingezeichnete Richtung immer größer (siehe Abb. 7.3). Dies liegt daran, dass mit

einer weiter im «Nordosten» liegenden Zielfunktionsgeraden die Werte von  x 1 und

 x 2 monoton ansteigen. Dadurch erhöht sich der Zielfunktionswert  z  streng mono-

ton, da die Deckungsbeiträge positiv sind. Will man also den maximalen Wert von

 z  ermitteln, so muss man die Zielfunktionsgerade so weit in Richtung des wachsen-

den Zielwertes parallel verschieben, bis der zulässige Bereich gerade noch tangiert

wird. Dies wird in der Abb. 7.3 dargestellt. Im Eckpunkt  x 1 = 120 und  x 2 = 40 wird

der maximale Zielwert  z max = 3 600 e erreicht. Im Normalfall handelt es sich – wie

hier – um einen Eckpunkt des Lösungsraums. 

Nur wenn die Zielfunktionsgerade parallel zu einer Restriktionsgeraden verläuft, 

ist die optimale Lösung nicht mehr eindeutig. In dem Bereich, in dem die Zielfunk-

tionsgerade identisch mit der Restriktionsgeraden verläuft, stellen alle Punkte eine

optimale Lösung dar. Zu der Menge der optimalen Lösungen gehören auch die Eck-

punkte. 

7.4 Matrix-Formulierung der linearen Optimierung

Das lineare Optimierungsproblem kann auch in Matrixform aufgeschrieben werden. 

Die Zielfunktion ist ein Skalarprodukt der Zielfunktionskoeffizienten mit den Varia-

blen. Werden diese jeweils in Spaltenvektoren zusammengefasst, erhalten wir fol-

gende Form der Zielfunktion:

⎡ ⎤

⎡ ⎤

 c 1

 x 1

 z(x) = c x +  c

⎢ . ⎥

⎢ . ⎥

0

mit c = ⎣ .. ⎦ und x = ⎣ .. ⎦

 cm

 xm
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Abb. 7.3: Maximierung der Zielfunktion von Beispiel 7.1

Die Nebenbedingungen können ebenfalls sehr leicht in Matrixform aufgeschrie-

ben werden. Es ist im Prinzip ein lineares Gleichungssystem, das hier durch Un-

gleichungen ersetzt wird. Die Koeffizienten  aij  der Nebenbedingungen werden in

einer Matrix A zusammengefasst. Die rechte Seite mit den Beschränkungen ist ein

 n-dimensionaler Vektor. 

⎡

⎤

⎡ ⎤

 a 11 ...  a 1 m

 b 1

Ax ≤ b mit A = ⎢

⎣ .. 

. ⎥

⎢ . ⎥

. 

.. ⎦ und b = ⎣ .. ⎦

 an 1 ...  anm

 bn

Die lineare Optimierungsaufgabe lautet dann: Maximiere  z  mit

 z(x) = c x +  c 0

unter den Nebenbedingungen

Ax ≤ b, x ≥ 0

 Beispiel 7.3.  Das Beispiel 7.1 in Matrixschreibweise ist:

! 

" # $

 x

20 30

1

 x

→ max

2

⎡

⎤

⎡

⎤

1 2 # $

200

⎣

 x

1 1 ⎦

1

⎣160⎦

 x

≤

0 1

2

60

☼
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7.5 Simplex-Methode für die Maximierung

Eine grafische Lösung für mehr als 2 Variablen scheidet in der Regel aus und ei-

ne Lösung kann nur numerisch berechnet werden. Ein Rechenverfahren zur Lö-

sung von linearen Optimierungsproblemen wurde von George Bernard Dantzig 1947

entwickelt1. Es heißt Simplex-Methode. Die Methode verwendet im Kern den

Gaußschen-Algorithmus. Dieser ist so zu erweitern, dass zum einen die Zielfunk-

tion zur Bewertung der Lösung verwendet werden kann, zum anderen, dass lineare

Ungleichungen berücksichtigt werden können. 

Am Beispiel 7.1 wird die Simplex-Methode in ihrer Grundform erklärt, die die

Zielfunktion maximiert. Die Nebenbedingungen werden durch Schlupfvariablen

( slack variables) zu Gleichungen ergänzt. Aus den Ungleichungen werden somit

Gleichungen. Die Nebenbedingungen bilden dann ein System linearer Gleichungen. 

Ökonomisch bedeuten die Schlupfvariablen die nicht ausgenutzten Restriktionsober-

grenzen. 

Ax ≤ b ⇒ Ax +

y

= b

Schlupfvariablen

Auch die Zielfunktion wird leicht verändert. Die Koeffizienten der Zielfunktion

werden mit (−1) multipliziert. Aus der ursprünglichen Zielfunktion entsteht dann

die Form:

c x +  c 0 =  z(x) → max ⇒ −c x =  z(x) +  c 0 → max

Der Grund für diesen Vorzeichenwechsel liegt in der ökonomischen Interpre-

tation der Koeffizienten −c. Diese werden nach Aufstellen des Simplex-Tableaus

erklärt. 

 Beispiel 7.4.  Das lineare Optimierungsproblem für das Beispiel 7.1 sieht dann wie

folgt aus: Optimiere  z  mit

−20 x 1 − 30 x 2 =  z( x 1,  x 2) mit  z → max

unter den Nebenbedingungen

 x 1 + 2 x 2 +  y 1 = 200

 x 1 +  x 2 +  y 2 = 160

 x 2 +  y 3 = 60

 x 1,  x 2 ≥ 0,  y 1,  y 2,  y 3 ≥ 0

☼

Im nächsten Schritt wird das lineare Optimierungsproblem in das so genannte

Simplex-Tableau übertragen. Die Indizierung der Schlupfvariablen bezieht sich da-

bei auf die Restriktionen und nicht auf die Variablen. Sofern keine Produktion statt-

findet, also  x 1 =  x 2 = 0 gilt, besitzen die Schlupfvariablen  yi  den Wert der rechten

Seite  bi. Man nennt diese Lösung die erste Basislösung. 

1 In der Literatur existieren verschiedene Darstellungen dieses Rechenverfahrens. 





























118

7 Lineare Optimierung

Die Variablen, die mit einem Einheitsvektor verbunden sind, heißen Basisvaria-

blen. In der Tabelle 7.1 sind  y 1,  y 2 und  y 3 Basisvariablen. Diese besitzen den Wert

der Restriktionsobergrenzen, der in der rechten Spalte  b  abgelesen wird. Die nicht

in der Lösung befindlichen Variablen heißen Nichtbasisvariablen. Sie besitzen den

Wert Null. 

Die veränderte Zielfunktion wird in die letzte Zeile des Simplex-Tableaus ein-

getragen. Diese Zeile wird Zielfunktionszeile genannt. Der Zielfunktionswert  z  hat

dann den Wert Null und wird im Tableau rechts unten abgelesen. 

Tabelle 7.1: Simplex-Tableau

 x 1

 x 2

 y 1  y 2  y 3

 b

1

2

1

0

0

200

1

1

0

1

0

160

0

1

0

0

1

60

−20 −30

0

0

0

0

Die Lösung ist nicht optimal. Dies erkennt man an den negativen Zielfunktions-

werten. Die Produktion von  x 1 könnte einen Gewinn von 20 e pro Stück liefern. Da

keine Produktion von  x 1 stattfindet, entsteht ein fiktiver Verlust in Höhe von 20 e. 

Diesen fiktiven Verlust durch die Nicht-Produktion bezeichnet man in der Ökono-

mie als Opportunitätskosten ( opportunity costs). Diese Interpretation ist der Grund

für den Vorzeichenwechsel der Zielfunktionskoeffizienten. Die Opportunitätskosten

für das Produkt 2 sind höher. Durch die Produktion einer Einheit von  x 2 wird ein

höherer Gewinn erzielt als mit  x 1. Dies bedeutet, dass die Nichtbasisvariable  x 2 nun

zu einer Basisvariablen werden muss. Dafür muss dann eine bisherige Basisvariable

in eine Nichtbasisvariable umgewandelt werden. Diesen Variablentausch nennt man

Basistransformation. 

Die Basistransformation ergibt nur dann eine Zielwerterhöhung, wenn der zuge-

hörige Zielfunktionskoeffizient (letzte Zeile im Tableau) der Variablen negativ ist. Ist

kein Zielfunktionskoeffizient negativ, ist die optimale Lösung erreicht. 

Die erste Basislösung wird durch folgende Rechenschritte verbessert: Man wählt

die Nichtbasisvariable (Pivotspalte) aus, die die größte Zielwertveränderung je Men-

geneinheit ergibt. Das heißt, man nimmt den minimalen Wert in der Zielfunktionszei-

le. Im Beispiel 7.1 besitzt die Nichtbasisvariable  x 2 einen höheren Deckungsbeitrag

je ME als  x 1 und soll daher in die Lösung mit einem Wert größer Null eingehen, also

Basisvariable werden. 

Welche Nebenbedingung beschränken hier die Produktion von  x 2? Die Auswahl

der Pivotzeile erfolgt nach dem so genannten Quotientenkriterium: Man teilt die

rechte Seite durch die Koeffizienten der Pivotspalte. Die Zeile mit dem kleinsten

Quotienten wird als Pivotzeile ausgewählt. Koeffizienten von Null und negative Ko-

effizienten bleiben dabei unberücksichtigt. Eine Division durch Null ist nicht defi-
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niert und die Koeffizienten dürfen wegen der Nichtnegativtätsbedingung auch nicht-

negativ werden. Ökonomisch bedeutet dies, dass man die maximal mögliche Produk-

tion des Produktes mit dem höchsten Deckungsbeitrag je Mengeneinheit auswählt. 

 Beispiel 7.5.  Im Beispiel wird die 3. Gleichung ausgewählt, da von den Quotienten

200 , 160 und 60 der letzte Quotient am kleinsten ist. Die maximal mögliche Produk-

2

1

1

tion von  x 2 beträgt 60 Mengeneinheiten. 

☼

Im Simplex-Tableau werden diese Schritte mittels des Gaußschen Eliminations-

verfahrens durchgeführt, d. h., es wird in der Pivotspalte ein Einheitsvektor erzeugt. 

Dabei wird im ersten Schritt der Pivotkoeffizient (Koeffizient im Kreuz von Pivotzei-

le und Pivotspalte) auf Eins normiert. Dies geschieht, indem man die ganze Pivotzeile

durch den Wert des Pivotkoeffizienten teilt. Im zweiten Schritt werden die restlichen

Koeffizienten der Pivotspalte mit einer Gauß-Iteration auf Null umgerechnet. 

 Beispiel 7.6.  Im Beispiel besitzt der Koeffizient bereits den Wert Eins. Im nächsten

Schritt werden ober- und unterhalb der Pivotzeilen in der Pivotspalte Nullen durch

entsprechende Addition bzw. Subtraktion ggf. eines Vielfaches der ganzen Pivotzeile

erzeugt. Die nächste Basislösung des Beispiels sieht dann im Simplex-Tableau wie

folgt aus:

Tabelle 7.2: Simplex-Tableau

 x 1

 x 2

 y 1  y 2

 y 3

 b

1

0

1

0

−2

80

1

0

0

1

−1

100

0

1

0

0

1

60

−20 0

0

0

30

1800

Die erste Zeile in diesem Tableau wird durch die folgende Rechnung erzeugt:

Die Pivotzeile

0 1

0 0 1

60

wird mit 2 multipliziert, weil der Koeffizient in der ersten Zeile der Pivotspalte 2 ist. 

Danach wird die Pivotzeile von der ersten Zeile subtrahiert, um an der Position eine

Null zu erzeugen. 

1 2

1 0

0

200

− 0 2

0 0

2

120

= 1 0

1 0 −2

80

Für die zweite Zeile wird eine entsprechende Rechnung durchgeführt. 

Aus dem Simplex-Tableau 7.2 lassen sich nun folgende Werte ablesen:  x 1 = 0, 

weil in der Spalte von  x 1 (noch) kein Basisvektor (Einheitsvektor) steht. Der Wert

von  x 2 beträgt 60 Mengeneinheiten. Die Schlupfvariablen  y 1 und  y 2 besitzen die
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Werte 80 und 100. Dies bedeutet, dass die Anlagen 1 und 2 noch Restkapazitäten

von 100 bzw. 80 Stunden besitzen. Der Gewinn beträgt bei dieser Produktionsstruk-

tur 1 800 e. Da in der Zielfunktionszeile noch ein negativer Koeffizient steht, ist die

Lösung noch nicht optimal. Durch die Produktion von  x 1 kann pro Mengeneinheit

ein Deckungsbeitrag von 20 e erzielt werden. Daher wird eine erneute Basistrans-

formation durchgeführt, bei der  x 1 die Basisvariable wird. Mittels des Quotientenkri-

teriums wird berechnet, dass die Anlage 1 für die Produktion von  x 1 beschränkend

ist; denn auf der Anlage 2 können maximal 100 Mengeneinheiten von  x 1 gefertigt

werden, wohingegen auf der Anlage 1 nur 80 Mengeneinheiten erzeugt werden. 

 x 1  x 2

 y 1

 y 2

 y 3

 b

1

0

1

0

−2

80

0

0

−1 1

1

20

0

1

0

0

1

60

0

0

20

0

−10

3400

Diese Lösung ist immer noch nicht optimal, da in der Zielfunktionszeile noch ein

negativer Wert steht. Dieser bedeutet hier, dass durch Unterschreiten der Absatzre-

striktion ein zusätzlicher Stückgewinn von 10 e erzielt werden kann. Im folgenden

Simplex-Tableau wird daher in der Basistransformation der Wert der Schlupfvaria-

blen  y 3 erhöht und aufgrund des Quotientenkriteriums die Schulpfvariable von An-

lage 2 auf Null gesetzt. 

 x 1  x 2

 y 1

 y 2

 y 3

 b

1

0

−1

2

0

120

0

0

−1

1

1

20

0

1

1 −1 0

40

0

0

10

10

0

3600

Nun ist die optimale Lösung erreicht. Kein Wert in der Zielfunktionszeile ist mehr

negativ. Der maximale Gewinn beträgt  z max = 3 600 e. Die gewinnoptimale Pro-

duktion beträgt  x 1 = 120 Mengeneinheiten und von  x 2 = 40 Mengeneinheiten. Die

numerische Lösung stimmt mit der grafischen Lösung überein. 

☼

Übung 7.1. In einem Betrieb werden die Produkte  x 1 und  x 2 nacheinander auf den

Maschinen A, B und C bearbeitet. Die Maschinenzeit bei A ist für  x 1 doppelt so

groß wie für  x 2, bei B sind die Maschinenzeiten gleich und bei C ist die Maschi-

nenzeit für  x 2 dreimal so groß wie für  x 1. Auf A können in der Woche maximal 60

Stück von  x 1 oder 120 Stück von  x 2 bearbeitet werden. Auf Maschine B können

in der Woche höchstens 70 Stück von  x 1 oder  x 2 bearbeitet werden und auf Ma-

schine C 150 Stück  x 1 oder 50 Stück  x 2 je Woche. Für das Produkt  x 1 erzielt das

Unternehmen einen Stückgewinn von  p 1 = 10 e und für  x 2 von  p 2 = 15 e. 

Berechnen Sie die optimale Lösung für das lineare Optimierungsproblem. 
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7.6 Interpretation des Simplex-Endtableaus

In dem Simplex-Endtableau, das die optimale Lösung enthält, können in der letz-

ten Zeile die so genannten Schattenpreise bzw. Opportunitätskosten abgelesen

werden, die angeben, um wie viel sich der Gewinn verändert, wenn die wirksame

Restriktion um eine Einheit verändert wird. 

 Beispiel 7.7.  Wenn zum Beispiel im vorliegenden Fall, die Anlage 1 eine Stunde

mehr Laufleistung besäße, so könnte ein um 10 e höherer Gewinn pro Mengenein-

heit erwirtschaftet werden. 

☼

Die Koeffizienten in den entsprechenden Spalten der Nichtbasisvariablen geben

an, um wie viel sich die Werte auf der rechten Seite bei Änderung der Restriktion 1

um eine Mengeneinheit ändern. 

 Beispiel 7.8.  Wird im Beispiel 7.1 die Beschränkung der ersten Nebenbedingung um

eine Stunde erhöht (200 → 201), so steigt der Gewinn um 10 e auf 3 610 e. Von  x 1

werden dann nur noch 119 Mengeneinheiten, von  x 2 41 Mengeneinheiten hergestellt. 

Die Absatzrestriktion weist nur noch 19 nicht genutzte Mengeneinheiten aus. 

☼

Ferner wird deutlich, dass der Simplex-Algorithmus mit der Bewertung der Zwi-

schenlösungen die Nebenbedingungen auswählt, mit der die Lösungswerte  x  berech-

net werden. Daher muss das lineare System der Nebenbedingungen nicht bestimmt

sein. 

7.7 Sonderfälle im Simplex-Algorithmus

7.7.1 Unbeschränkte Lösung

Treten im Rahmen des Simplex-Algorithmus in einer Spalte mit negativen Zielfunk-

tionswerten ebenfalls alle Koeffizienten negativ auf, so ist die Lösung unbeschränkt. 

Bei realen Problemen darf es keine unbeschränkten Lösungen geben, da Gewinn, 

Deckungsbeitrag oder Umsatz nicht über alle Grenzen wachsen können. Das Eintre-

ten dieses Falles ist dann in der Regel ein Indiz für eine falsche bzw. unvollständige

Modellierung des Problems. 

 Beispiel 7.9.  Die folgende lineare Optimierung führt zu einer unbeschränkten Lö-

sung:

 x 1

 x 2

 y 1  y 2

 b

 x 1

 x 2

 y 1

 y 2

 b

−2

1

1

0

2

⇒

0

−1

1

1

8

2 −2

0

1

6

1

−1

0

0.5

3

−2 −1

0

0

0

0

−3

0

1

6

☼
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7.7.2 Degeneration

Eine Degeneration liegt vor, wenn im Simplex-Tableau eine Auswahlmöglichkeit für

die Pivotzeile besteht. Dann hat im nächsten Tableau mindestens eine Basisvariable

den Wert Null. Die verschiedenen Möglichkeiten können zu verschiedenen Lösun-

gen führen. Daher sind immer alle möglichen Optimalllösungen zu berechnen. Gra-

phisch bedeutet die Degeneration, dass sich bei  n  Variablen mehr als  n  Restriktionen

in einem Punkt schneiden. 

 Beispiel 7.10.  Die dritte Restriktion im Beispiel 7.1 wird nun durch eine im Opti-

malpunkt linear abhängige Restriktion ersetzt. Es ist also die Zielfunktion

 z = 20 x 1 + 30 x 2 → max

unter den Nebenbedingungen

 x 1 + 2 x 2 ≤ 200

 x 1 +  x 2 ≤ 160

 x 2 ≤ 40

zu maximieren. 

 x 1

 x 2

 y 1

 y 2

 y 3

 b

 x 1

 x 2

 y 1

 y 2

 y 3

 b

1

2

1

0

0

200

1

0

1

0 −2

120

1

1

0

1

0

160 ⇒

1

0

0

1 −1

120

0

1

0

0

1

40

0

1

0

0

1

40

−20 −30

0

0

0

0

−20

0

0

0

30

1200

 x 1

 x 2

 y 1

 y 2

 y 3

 b

 x 1

 x 2

 y 1

 y 2

 y 3

 b

1

0

1

0 −2

120

1

0

−1

2

0

120

0

0

−1

1

1

0

⇒

0

0

−1

1

1

0

0

1

0

0

1

40

0

1

1

−1

0

40

0

0

20

0 −10

3600

0

0

10

10

0

3600

Im zweiten Tableau tritt eine Auswahlmöglichkeit für die Pivotzeile auf. Im dritten

Tableau besitzt die Basisvariable  y 2 den Wert Null. 

Wird im zweiten Tableau die zweite Zeile als Pivotzeile gewählt, so stellt sich in

diesem Fall das gleiche Ergebnis ein, jedoch mit einer Restkapazität von Null für die

erste Nebenbedingung. 

☼

7.7.3 Mehrdeutige Lösung

Ein anderer Sonderfall liegt vor, wenn die Zielfunktion steigungsgleich mit einer

Nebenbedingung verläuft. Die Optimallösung liegt dann nicht in einem Eckpunkt, 
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sondern auf einer Restriktionsgeraden zwischen zwei Eckpunkten. Man spricht dann

von einer mehrdeutigen Lösung. In diesem Fall besitzt eine Nichtbasisvariable eine

Null in der Zielfunktionszeile. Um die übrigen möglichen Optimallösungen zu be-

stimmen, bringt man die Variablen, die in der Zielfunktionszeile eine Null aufweisen, 

in ein lineares Gleichungssystem. 

 Beispiel 7.11.  Das folgende Problem besitzt eine mehrdeutige Lösung. Die erste Re-

striktion ist steigungsgleich mit der Zielfunktion. 

 x 1

 x 2

 y 1  y 2  y 3

 b

 x 1  x 2

 y 1  y 2  y 3

 b

1

2

1 0 0

200

1 0

1 0 −2

80

1

1

0 1 0

160

⇒

0 0

−1 1

1

20

0

1

0 0 1

60

0 1

0 0

1

60

−20 −40

0 0 0

0

0 0

20 0

0

4000

Es ergibt sich ein lineares Gleichungssystem aus drei Gleichungen und vier Varia-

blen, das nur bei Vorgabe von Werten für eine Variable gelöst werden kann. 

 x 1 − 2 y 3 = 80

 y 2 +  y 3 = 20

 x 2 +  y 3 = 60

Eine mögliche Lösung für das unterbestimmte Gleichungssystem ist zum Beispiel

 y 3 = 0. Die anderen Werte sind dann  x 1 = 80,  x 2 = 60 und  y 2 = 20. 

☼

Eine andere Form der Mehrdeutigkeit tritt auf, wenn zwei Zielfunktionskoeffi-

zienten gleich sind. In diesem Fall sind die alle möglichen Lösungen zu berechnen, 

denn sie können zu verschiendenen Optimallösungen führen. 

7.8 Erweiterungen des Simplex-Algorithmus

7.8.1 Berücksichtigung von Größer-gleich-Beschränkungen

Eine Größer-gleich-Nebenbedingung kann durch Vorzeichenumkehr als Kleiner-

gleich-Nebenbedingungen berücksichtigt werden. Damit erhält man eine «natürli-

che» Basisvariable. Allerdings ist der Ursprung, d. h. die Lösung  xj = 0 nicht zu-

lässig, weil mit  yi = − bi  die Nichtnegativitätsbedingung in der ersten Basislösung

verletzt wird. 

 m



 m



 aij xj ≥  bi ⇒ −

 aij xj ≤ − bi

 j=1

 j=1

Negative Koeffizienten auf der rechten Seite treten nicht nur bei der Umwandlung

von Größer-gleich-Beziehungen auf, sondern können auch während des Algorith-

mus auftreten. Bei einem negativen Koeffizienten auf der rechten Seite ist die Nicht-

negativitätsbedingung verletzt. Es liegt daher nahe, für die Schlupfvariable zunächst
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 yi = 0 zu erzwingen, um die Nichtnegativitätsbedingung zu erfüllen, d. h., die Zeile

 i  ist als Pivotzeile zu wählen. Sind mehrere Koeffizienten auf der rechten Seite ne-

gativ, so kann man die am stärksten verletzte Nebenbedingung als erstes erfüllen, in

dem man also min  bi  wählt. Wie bei der Gleichungsauflösung wird also zunächst die

Pivotzeile und dann erst die Pivotspalte ausgewählt! Mit der Wahl des Pivotelements

fällt dann die Entscheidung über die Pivotspalte. Damit die in die Basis gelangende

Nichtbasisvariable nicht erneut negativ wird, muss das Pivotelement selbst negativ

sein. Stehen mehrere negative Koeffizienten in der Pivotzeile zur Auswahl, so soll-

te man sich für den kleinsten entscheiden (min a Pivotzeile  j). Existiert kein negativer

Koeffizient, so ist das Gleichungssystem widersprüchlich. 

 Beispiel 7.12.  Es ist folgende Zielfunktion

3  x 1 + 12 x 2 =  z → max

unter den Nebendingungen

− x 1 + 2 x 2 ≤ 6

4  x 1 + 2 x 2 ≥ 12 ⇒ −4 x 1 − 2 x 2 ≤ −12

2  x 1 −  x 2 ≤ 8

 x 1 + 2 x 2 ≤ 10

 x 2 ≥ 1

⇒

− x 2 ≤ −1

 x 1 ≥ 0

zu maximieren. Die Größer-gleich-Restriktionen werden durch Vorzeichenumkehr

in Kleiner-gleich-Restriktionen umgesetzt. Das Simplex-Tableau besitzt damit auf

der rechten Seite negative Koeffizienten, die anzeigen, dass die erste Basislösung

unzulässig ist. 

 x 1

 x 2

 y 1  y 2  y 3  y 4  y 5

 b

−1

2

1

0

0

0

0

6

−4 −2

0

1

0

0

0

−12

2

−1

0

0

1

0

0

8

1

2

0

0

0

1

0

10

0

−1

0

0

0

0

1

−1

−3 −12

0

0

0

0

0

0

Es wird aufgrund der obigen Empfehlung das Element in der 2. Zeile und der 1. 

Spalte ausgewählt. Auch die Auswahl von −2 in der 2. Zeile (2. Spalte) wäre mög-

lich gewesen, ebenso wie die Wahl der 5. Zeile mit −1. Mit der Wahl der kleinsten

Elemente wird oft der geringste Rechenaufwand erzeugt. Die Gauß-Iteration ergibt

folgendes Tableau:

















































































































































7.8 Erweiterungen des Simplex-Algorithmus

125

 x 1

 x 2

 y 1

 y 2

 y 3  y 4  y 5

 b

0

2.50

1

−0.25 0

0

0

9

1

0.50

0

−0.25 0

0

0

3

0

−2.00

0

0.50 1

0

0

2

0

1.50

0

0.25 0

1

0

7

0

−1. 00

0

0.00 0

0

1

−1

0

−10.50

0

−0.75 0

0

0

9

Eine zulässige Basislösung ist noch nicht erzeugt, da auf der rechten Seite die 5. 

Nebenbedingung noch die Nichtnegativität der Lösung verletzt. 

 x 1  x 2

 y 1

 y 2

 y 3  y 4

 y 5

 b

0

0

1

−0.25 0

0

2. 50

6.50

1

0

0

−0.25 0

0

0.50

2.50

0

0

0

0.50 1

0

−2.00

4.00

0

0

0

0.25 0

1

1.50

5.50

0

1

0

0.00 0

0

−1.00

1.00

0

0

0

−0.75 0

0

−10.50

19.50

Nun ist die erste zulässige Basislösung gefunden und der Simplex-Algorithmus kann

beginnen. Es werden über die Zielfunktionszeile nun wieder die größten Opportuni-

tätskosten gesucht und dann über das Quotientenkriterium die Pivotzeile bestimmt. 

 x 1  x 2

 y 1

 y 2

 y 3  y 4  y 5

 b

0

0

0.40 −0.10 0

0

1

2.60

1

0

−0.20 −0.20 0

0

0

1.20

0

0

0.80

0.30 1

0

0

9.20

0

0

−0.60

0. 40 0

1

0

1.60

0

1

0.40 −0.10 0

0

0

3.60

0

0

4.20 −1.80 0

0

0

46.80

 x 1  x 2

 y 1

 y 2  y 3

 y 4

 y 5

 b

0

0

0.25 0

0

0.25 1

3

1

0

−0.50 0

0

0.50 0

2

0

0

1.25 0

1

−0.75 0

8

0

0

−1.50 1

0

2.50 0

4

0

1

0.25 0

0

0.25 0

4

0

0

1.50 0

0

4.50 0

54

Die optimale Lösung ist gefunden. 

☼
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7.8.2 Berücksichtigung von Gleichungen

Eine Gleichung als Nebenbedingung kann mittels einer künstlichen Schlupfvariablen

berücksichtigt werden, um welche die Gleichung erweitert wird. Damit allerdings

die ursprüngliche (und nicht die willkürlich erweiterte) Gleichung erfüllt ist, muss

für eine zulässige Lösung die künstliche Schlupfvariable den Wert Null haben. 

 m

 aijxj+ ˜ yi = bi

 j=1

Im Algorithmus lässt sich dieser Weg durch eine geeignete Pivotauswahl nach-

vollziehen. Um die künstliche Basisvariable ˜ yi  aus der Basis zu eliminieren, muss

die entsprechende Zeile als Pivotzeile gewählt werden. Als Pivotspalte wählt man

am besten den größten Wert in der Pivotzeile aus, wenn  bi  positiv ist, bzw. den klein-

sten Wert, wenn  bi  negativ ist. Damit erfüllt dann die Basisvariable nach der Um-

rechnung die Nichtnegativitätsbedingung. Nach der Pivotoperation ist die künstliche

Schlupfvariable die Nichtbasisvariable. In dieser Weise werden zunächst alle Glei-

chungen aufgelöst, die eine künstliche Schlupfvariable enthalten. Erst dann wird mit

dem eigentlichen Simplex-Verfahren die Optimallösung bestimmt. Die Spalten mit

der künstlichen Schlupfvariablen werden im Simplex-Algorithmus dann aber nicht

mehr berücksichtigt. 

 Beispiel 7.13.  In dem bekannten Beispiel 7.1 wird nun die dritte Restriktion durch

eine Gleichungsrestriktion ersetzt. Es ist also folgende Zielfunktion

20  x 1 + 30 x 2 =  z → max

unter den Nebenbedingungen

 x 1 + 2 x 2 ≤ 200

 x 1 +  x 2 ≤ 160

 x 2 = 60

zu maximieren. Es entsteht das Simplex-Tableau, in dem die künstliche Schlupfva-

riable enthalten ist. 

 x 1

 x 2

 y 1  y 2 ˜ y 3

 b

 x 1  x 2

 y 1  y 2

˜ y 3

 b

1

2

1 0 0

200

1 0

1 0 −2

80

1

1

0 1 0

160

⇒

1 0

0 1 −1

100

0

1

0 0 1

60

0 1

0 0

1

60

−20 −30

0 0 0

0

−20 0

0 0

30

1800

 x 1  x 2

 y 1  y 2

˜ y 3

 b

1 0

1 0 −2

80

0 0

−1 1

1

20

0 1

0 0

1

60

0 0

20 0 −10

1800
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Der Simplex-Algorithmus wird abgebrochen, obwohl noch ein negativer Wert in der

Zielfunktionszeile steht. Dieser wird jedoch nicht mehr berücksichtigt, weil er in der

Spalte der künstlichen Schlupfvariablen steht, die die Gleichheitsrestriktion berück-

sichtigt und den Wert Null haben muss. 

☼

Übung 7.2. Maximiere die Zielfunktion

− x 1 + 2 x 2 =  z → max

unter den Nebenbedingungen:

 x 1 +  x 2 ≥ 2

−3 x 1 + 4 x 2 ≤ 4

 x 1 ≤ 4

 x 2 ≥ 1

 x 1,  x 2 ≥ 0

7.9 Ein Minimierungsproblem

Bei einem Minimierungsproblem beschreibt die Zielfunktion zum Beispiel die Kos-

ten einer Produktion, die zu minimieren sind. Um eine nicht triviale Lösung ( x 1,  x 2 =

0) zu erhalten, muss der Lösungsraum auch von «unten» («Südwesten») her einge-

schränkt sein. Dazu werden Nebenbedingungen in Form von Größer-gleich-Bezieh-

ungen benötigt. 

 m

 aijxj ≥ bi  für  i=1,...,  n

 j=1

 Beispiel 7.14.  Ein Mischungsproblem. Ein Produkt setzt sich aus den Grundstoffen

 N 1,  N 2 und  N 3 zusammen. Es werden aus den Grundstoffen zwei Produkte  F 1 und

 F 2 gefertigt, die unterschiedliche Konzentrationen der Grundstoffe enthalten: Eine

Tabelle 7.3: Rezeptur

Grundstoff/ME

 N 1

 N 2

 N 3

 F 1

3

4

1

 F 2

1

3

3

Mengeneinheit des Fertigprodukts  F 1 kostet 25 e, eine Mengeneinheit des zweiten

Fertigprodukts  F 2 kostet 50 e. Wie viele Mengeneinheiten von  F 1 und  F 2 sind zu

mischen, um bei möglichst geringen Kosten eine Zusammensetzung von mindestens
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9 Einheiten des Grundstoffs  N 1, mindestens 19 Einheiten des Grundstoffs  N 2 und

mindestens 7 Einheiten des Grundstoffs  N 3 zu erreichen? 

Die gesuchten Mengeneinheiten von  F 1 und  F 2 ergeben sich als Lösung einer

linearen Optimierung. Hierzu seien  x 1 und  x 2 die zu mischenden Mengen von  F 1 und

von  F 2. Für die Entscheidungsvariablen nimmt man  x 1 und  x 2, die ausschließlich

nichtnegative Werte annehmen dürfen ( x 1,  x 2 ≥ 0). 

Der zu deckende Bedarf an Nährstoffen wird sichergestellt durch die Nebenbe-

dingungen, wobei auf der linken Seite die Grundstoffmengen in Abhängigkeit von

den Fertigproduktmengen und auf der rechten Seite die geforderten Mindestmengen

stehen. 

3  x 1 +  x 2 ≥ 9

4  x 1 + 3 x 2 ≥ 19

 x 1 + 3 x 2 ≥ 7

 x 1,  x 2 ≥ 0

Die Kosten  z, die aus der Mischung von  x 1 und  x 2 entstehen, sind:

 z = 25 x 1 + 50 x 2

Es sind die Kosten  z  unter den Nebenbedingungen zu minimieren. 

☼

7.10 Grafische Minimierung

Bei der grafischen Minimierung wird die Zielfunktion parallel in Richtung auf den

Ursprung des Koordinatensystems verschoben. In Abb. 7.4 sind die Nebenbedingun-

gen und die Zielfunktion aus Beispiel 7.14 abgetragen. Der Lösungsraum liegt bei

Größer-gleich-Beziehungen oberhalb der Restriktionen. Die grafische Minimierung

der Zielfunktion wird vorgenommen, indem die Zielfunktionsgerade nach «Südwe-

sten» parallel verschoben wird. Der kleinste Wert ist erreicht, wenn der niedrigste

Punkt des zulässigen Lösungsraums erreicht ist. 

 Beispiel 7.15.  Im Beispiel 7.14 ist die minimale Kostenkombination bei

 x 1 = 4

 x 2 = 1

gefunden. Die minimalen Kosten betragen

 z min = 150 e. 

☼

7.11 Simplex-Methode für die Minimierung
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x1

Abb. 7.4: Minimierung der Zielfunktion von Beispiel 7.14

7.11 Simplex-Methode für die Minimierung

Im Simplex-Algorithmus kann die Minimierung als umgekehrte Maximierung durch-

geführt werden. Eine Zielfunktion mit negativem Zielwert wird maximiert; der posi-

tive Zielwert wird dann minimiert. 

c x =  z(x) → min ⇔ −c x = − z(x) → max

Bei einem Minimierungsproblem ist der Lösungsraum stets auch von unten ein-

geschränkt. Dies bedeutet, dass die erste Basislösung mit x = 0 nicht zulässig ist. 

Dies äußert sich in den Größer-gleich-Restriktionen. Diese werden durch eine Ne-

gation (wie im Abschnitt 7.8.1) in Kleiner-gleich-Restriktionen umgewandelt. Die

rechte Seite enthält somit im Starttableau negative Werte. Dies zeigt die Unzuläs-

sigkeit der Basislösung an. Daher muss zuerst eine zulässige Basislösung berechnet

werden. Es wird eine Restriktion mit negativem Wert auf der rechten Seite gewählt

und dazu ein negativer Koeffizient. Diese so genannte Vorphase wird solange durch-

geführt bis kein negativer Wert mehr auf der rechten Seite steht. Dann ist die erste zu-

lässige Basislösung berechnet. Nun erst kann der eigentliche Simplex-Algorithmus

beginnen, sofern negative Zielfunktionskoeffizienten vorhanden sind. 

 Beispiel 7.16.  Ein Betrieb besitzt 2 Rohstoffe  R 1 und  R 2, die er als Mischung weiter-

verarbeitet.  R 1 und  R 2 enthalten drei für die Weiterverarbeitung wichtige Bestandtei-
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7 Lineare Optimierung

le  B 1,  B 2 und  B 3. Die Anteile sind durch folgende Nebenbedingungen gegeben:

6  x 1 + 2 x 2 ≥ 10 Mindestanteil von  B 1

3  x 1 + 4 x 2 ≥ 12 Mindestanteil von  B 2

 x 1 + 4 x 2 ≥ 8

Mindestanteil von  B 3

 x 1,  x 2 ≥ 0

Nichtnegativitätsbedingung

Die Rohstoffe haben Stückkosten in Höhe von 1 e bzw. 2 e pro Einheit. In wel-

chen Quantitäten sind die Rohstoffe zu beschaffen, so dass die Kosten minimal wer-

den? 

 x 1 + 2 x 2 =  z → min ⇒ − x 1 − 2 x 2= − z → max

Das Optimierungsproblem wird zuerst in die Standardform transformiert. Dies

bedeutet, dass die Nebenbedingungen durch Multiplikation mit −1 in Kleiner-

gleich-Restriktionen gebracht werden. Die Zielfunktion wird ebenfalls mit −1 er-

weitert, so dass eine Maximierung vorzunehmen ist. 

Das erste Simplex-Tableau wird dann wie bisher aufgebaut. Die Zielfunktion

steht wegen der abermaligen Erweiterung mit −1 mit positiven Koeffizienten in der

Zielfunktionzeile. Aufgrund der Verletzung der Nichtnegativität der Variablen (die

rechte Seite weist negative Werte auf), ist die so genannte Vorphase zur Berechnung

einer zulässigen Basislösung erforderlich. Es ist der kleinste Wert auf der rechten

Seite zu suchen (−12) und der kleinste negative Koeffizient in dieser Zeile (−4). Die-

se Vorphase wird so lange durchgeführt bis die rechte Seite nur noch positive Werte

besitzt. Dann kann mit dem eigentlichen Simplex-Algorithmus begonnen werden. 

 x 1  x 2  y 1  y 2  y 3

 b

 x 1

 x 2  y 1

 y 2

 y 3

 b

−6 −2 1 0 0 −10

−4.50 0 1 −0.50 0 −4

−3 −4 0 1 0 −12

⇒ 0.75 1 0 −0.25 0

3

−1 −4 0 0 1

−8

2.00 0

0 −1.00 1

4

1

2

0 0 0

0

−0.50 0 0

0.50 0 −6

 x 1  x 2

 y 1

 y 2

 y 3

 b

 x 1  x 2  y 1

 y 2

 y 3

 b

1 0

−0.222 0.111 0

0.888

1 0

0 −0.500

0.50

2.0

0 1

0.166 −0.333 0

2.333 ⇒ 0 1

0

0.125 −0.375

1.5

0 0

0.444 −1.222 1

2.222

0 0

1 −2.750 2.250

5.0

0 0

−0.111 0.555 0 −5.555

0 0

0

0.25

0.25 −5.0

Die minimalen Kosten liegen bei 5 e. Sie werden durch den Einsatz von 2 Einheiten

des Rohstoffs  R 1 und 1.5 Einheiten des Rohstoffs  R 2 erreicht. 

☼









7.12 Dualitätstheorem der linearen Optimierung

131

Übung 7.3. Minimiere  z  mit

 z = 9 x 1 + 8 x 2 → min

unter den Nebenbedingungen

 x 1 − 3 x 2 ≤ 3

 x 1 ≥ 6

3  x 1 + 2 x 2 ≥ 42

−4 x 1 + 3 x 2 ≤ 24

 x 1,  x 2 ≥ 0

7.12 Dualitätstheorem der linearen Optimierung

Jedem primalen Maximierungsproblem steht ein duales Minimierungsproblem in der

linearen Optimierung gegenüber, sofern eine zulässige Lösung existiert. Werden im

primalen Problem die Variablen x maximiert, so werden im dualen Problem die Va-

riablen y (es sind die ehemaligen Schlupfvariablen) minimiert. 

primales Problem

duales Problem

c x =  z(x) → max

b y =  z(y) → min

Ax ≤ b

A y ≥ c

Ax + y = b

A y + x = c

 Beispiel 7.17.  Im Beispiel 7.1 wurden die Mengen  x 1 und  x 2 maximiert, damit der

Gewinn maximal wird. Die Schlupfvariablen konnten als Opportunitätskosten der

Restriktionen interpretiert werden. Die Zielfunktion

! 

" # $

 x

20 30

1

 x

→ max

2

wird unter den Nebenbedingungen

⎡

⎤

⎡

⎤

1 2 # $

200

⎣

 x

1 1 ⎦

1

⎣160⎦

 x

≤

0 1

2

60

maximiert. Im dualen Problem werden nun die (Opportunitäts-) Kosten minimiert, 

damit die Mengen optimal (kostengünstig) auf den Anlagen produziert werden. Die

Zielfunktion

⎡ ⎤

! 

"  y 1

200 160 60 ⎣ y ⎦

2

→ min

 y 3
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wird unter den Nebenbedingungen

#

$ ⎡ ⎤

 y

# $

1 1 0

1

⎣

20

 y ⎦

2 1 1

2

≥ 30

 y 3

minimiert. 

☼

Übung 7.4. Lösen Sie die Übung 7.3 über einen Dualitätsansatz. 

7.13 Lineare Optimierung mit Scilab

In der Praxis werden lineare Optimierungen mit Computerprogrammen wie zum Bei-

spiel mit Scilab gelöst. In Scilab kann ein lineares Maximierungsproblem mit der

Funktion linpro gelöst werden. Diese Funktion minimiert die Zielfunktion

c x =  z(x) → min

unter den Nebenbedingungen

Ax ≤ b

Aus der Erkenntnis, dass eine negative Maximierung eine Minimierung erzeugt, 

wird nun eine negative Zielfunktion minimiert, um eine Maximierung der Zielfunk-

tion zu erreichen. Das lineare Maximierungsproblem aus dem Beispiel 7.1 wird in

Scilab dann folgendermaßen umgesetzt:

// Matrix der Koeffizienten

A = [1 2 ; 1 1 ; 0 1]; 

// RHS

b = [200 ; 160 ; 60]; 

// Zielfunktionskoeffizienten

c = [20 ; 30]; 

// Es wird die Zielfunktion -z=(-c)’*x -> min! 

// => also z=c’*x -> max! 

[x,lagr,z] = -linpro(-c,A,b)

// Ergebnis x

// lagr: Schattenpreise

// z Zielfunktionswert

Als Lösung erhält man:

7.13 Lineare Optimierung mit Scilab
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z=3600. 

lagr=10. 

10. 

0. 

x=120. 

40. 

Die Funktion linpro verwendet nicht den Simplex-Algorithmus zur Berech-

nung der Lösung. Ab der Version 5 von Scilab ist diese Funktion in der Toolbox

quapro enthalten, die auf der Scilab Internetseite unter toolbox center > opitmiza-

tion tools heruntergeladen werden kann. 

Das Minimierungproblem aus Beispiel 7.14 wird wie folgt in Scilab gelöst:

// Matrix der Koeffizienten

A = [3 1 ; 4 3 ; 1 3]; 

// RHS

b = [9 ; 19 ; 7]; 

// Zielfunktionskoeffizienten

c = [25 ; 50]; 

// Es wird die Zielfunktion z=c’*x -> min! 

// A*x <= b <-> -A*x >= -b

[x,lagr,z] = linpro(c,-A,-b); 

disp(x,’x=’,lagr,’lagr=’,z,’z=’)

Bei der Angabe der Nebenbedingung ist darauf zu achten, dass Scilab diese als

Kleiner-gleich-Bedingungen interpretiert und daher ist sie mit −1 zu erweitern. Als

Lösung erhält man:

z=150. 

lagr=0. 

2.7777778

13.888889

x=4. 

1. 

Auch der Dualitätsansatz lässt sich in Scilab verwirklichen. Hierzu sind jedoch

in der Regel Untergrenzen für die Lösungsvariablen x vorzugeben. Um die Lösung

des Beispiels 7.1 im Dualitätsansatz in Scilab zu berechnen, muss im Vektor ci die

Nichtnegativitätsbedingung angegeben werden. Eine Obergrenze liegt nicht vor und

wird durch cs=[] offen angegeben. 
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ci = zeros(3,1); cs =[]; 

[x,lagr,z] = linpro(b,-A’,-c,ci,cs)

Leider hat die Funktion linpro() Probleme lineare Optimierungen zu lösen, 

bei denen die Zahl der Restriktionen kleiner als die Zahl der Variablen ist. 

7.14 Fazit

Lineare Programme sind für viele ökonomische Fragestellungen verwendbar. Ein

lineares Programm besteht aus einer Zielfunktion, die unter Nebenbedingungen op-

timiert wird. Die Nebenbedingungen (Restriktionen) sind in der Regel als Unglei-

chungen formuliert. Sie beschreiben Maschinenkapazitäten, Mischungsbedingungen

und / oder Ressourcenverfügbarkeiten. 

Die rechnerische Lösung erfolgt mit einem Matrixsystem, das mit dem Simplex-

Verfahren gelöst wird. Graphisch gesehen sucht das Simplex-Verfahren die Eckpunk-

te des Lösungsraumes ab. Das Dualitätstheorem besagt, dass zu jedem Maximie-

rungsproblem auch ein duales Minimierungsproblem existiert und umgekehrt. 
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8.1 Vorbemerkung

Funktionen spielen in der Ökonomie eine bedeutsame Rolle. Bekannte ökonomi-

sche Funktionen sind zum Beispiel Produktionsfunktionen, Preis-Absatz-Funktio-

nen, Nachfragefunktionen, Kostenfunktionen, Ertragsfunktionen und Gewinnfunk-

tionen. Die Funktionen dienen der formalen Beschreibung realer Probleme (Modell-

bildung). Mit mathematischen Operationen können die Funktionen analysiert wer-

den. 

Im Folgenden werden einige wichtige Grundlagen und Eigenschaften von Funk-

tionen mit einer Veränderlichen beschrieben. 

Einige geläufige Bezeichnungen in der Analysis sind

 ai

Koeffizient oder Folgenglied

[ an]

Folge

W. Kohn, R. Öztürk,  Mathematik für Ökonomen,  Springer-Lehrbuch,   

DOI 10.1007/978-3-642-28575-2_8, © Springer-Verlag Berlin Heidelberg 2012
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ε

beliebig kleine positive Zahl

 h( x),  g( x)

Funktionen von  x

 f −1( x)

Umkehrfunktion





 F x,  f ( x) = 0 implizite Funktion

 pn( x)

rationales Polynom  n-ten Grades

 sn

Teilsumme

[ sn]

Reihe

 x 1

erste Nullstelle einer Funktion

 x(1),  x(2)

Wertepaar in der Umgebung einer Nullstelle

 x(1)

1-te Näherung einer gesuchten Nullstelle

! 

=

Bedingung

8.2 Funktionsbegriff

Eine Funktion dient zur Beschreibung der gegenseitigen Abhängigkeit mehrerer Fak-

toren. Falls zwischen den Elementen  x  und  y  zweier Mengen  X  und  Y  bestimmte

Beziehungen bestehen, dann bezeichnet man diese als Relation oder Abbildung. 

 f :  X →  Y

Die Betrachtungsweise ist im Allgemeinen so festgelegt, dass man von den Elemen-

ten einer Menge  x ∈  X  ausgeht und ihre Beziehung zu den Elementen der anderen

Menge  y ∈  Y  untersucht. Man bezeichnet hierbei die Menge  X  als Definitionsmenge

 D(  f ) oder Urbildmenge der Abbildung  f  und die Menge  Y  als Wertebereich  W (  f )

oder Bildmenge. 

 Beispiel 8.1.  Das Hausnummernsystem stellt eine Abbildung dar. Die Menge  X  sei

ein Haus in der Wertherstraße. Dies wird formal mit

 X = { x |  x  ist ein Haus in der Wertherstraße}

beschrieben (lies: Die Menge  X  für deren Elemente  x  gilt,  x  ist . . . ). Die Menge  Y  sei

 Y = { y |  y ∈ N}

Dann ist





 f :  X → N {Häuser} → {Nummer}

die formale Beschreibung für das Hausnummernsystem. 

☼

Im Beispiel 8.1 handelt es sich um eine eindeutige Abbildung, da jedem Ele-

ment aus dem Wertebereich mindestens ein Element aus dem Definitionsbereich zu-

geordnet ist. Eine solche Abbildung wird auch als surjektiv bezeichnet. Eine Abbil-

dung heißt eineindeutig oder injektiv, wenn verschiedenen Elementen des Defini-

tionsbereichs unterschiedliche Elemente des Wertebereichs zugeordnet sind. Wenn

8.2 Funktionsbegriff
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surjektiv nicht injektiv

injektiv nicht surjektiv

surjektiv und injektiv = bijektiv

Abb. 8.1: Surjektive, injektive und bijektive Abbildung

beides vorliegt – also surjektiv und injektiv – dann wird die Abbildung bijektiv ge-

nannt. 

In vielen Fällen können Funktionen zwischen den Elementen  x ∈  X  und den Ele-

menten  y ∈  Y  in Form einer Gleichung geschrieben werden. 

 y =  f ( x) für  x ∈  D(  f )

(8.1)

Bei der Funktion in Gleichung (8.1) gehört zu jedem Element  x  des Definitionsbe-

reichs  D(  f ) genau ein Element  y  des Wertebereichs  W (  f ). In dieser Schreibweise

tritt auch deutlich die Abhängigkeit zwischen den veränderlichen Größen  x  und  y

hervor. Die Variable  x  kann innerhalb des Definitionsbereichs  D(  f ) beliebige Werte

annehmen und wird deshalb als unabhängige Variable oder Argument bezeichnet. 

Hingegen ist mittels der Zuordnung  f ( x) der Wert von  y  eindeutig festgelegt, sobald

 x  gewählt wird. Aus diesem Grund heißt  y  die abhängige Variable. 

Wichtig ist allein der funktionale Zusammenhang; die Bezeichnungen selbst sind

beliebig wählbar und vom jeweiligen Kontext abhängig. So ist es durchaus sinn-

voll, die Bezeichnung  K( x) für eine Kostenfunktion oder  p( x) für eine Preis-Absatz-

Funktion zu verwenden. 

Die Funktion wird in der analytischen Form als Gleichung unter Angabe des

Definitionsbereichs der unabhängigen Variablen dargestellt. Die Gleichung (8.1)

bezeichnet man dabei als explizite Funktion. Als implizite Funktion wird die

Schreibweise

 y −  f ( x) = 0





 F( x,  y) =  F x,  f ( x) = 0 für  D( F) = 0
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bezeichnet. Es handelt sich dabei um dieselbe Funktion. In der Praxis ist dabei nicht

immer die Auflösung einer implizit gegebenen Funktion nach  y  möglich. 

 Beispiel 8.2.  Die Funktionen

√

 F( x,  y) =  y −  x +  xy 2 = 0 für  x ≥ 0

oder

 q 10 − 1

 F( q) = 2000

− 30000 = 0 für  q > 1

 q − 1

können nicht explizit nach  x  oder  y  bzw.  q  aufgelöst werden. 

☼

Nicht jede Funktion kann als Gleichung geschrieben werden und nicht jede Glei-

chung ist eine Funktion! So können empirische Beobachtungen nur in Form einer

Wertetabelle angegeben werden. Es handelt sich dann um eine diskrete Funktion, 

die nur punktweise definiert ist. Hingegen ist die Gleichung für den Einheitskreis

1 =  x 2 +  y 2 keine Funktion, da sie bis auf die Randpunkte jedem Wert von  x  zwei

Werte von  y  zuordnet. Eine Funktion kann auch in verschiedene Intervalle ihres Defi-

nitionsbereichs durch unterschiedliche Funktionszweige beschrieben werden. Dann

hat die Funktion die Form:

⎧

⎪

⎨  f ( x) für  x ∈  D(  f )

 y =  g

⎪ ( x) für  x ∈  D( g)

⎩ h( x) für  x ∈  D( h)

Die Teildefinitionsbereiche müssen dabei disjunkt (nicht überschneidend) sein. 

 Beispiel 8.3. 

⎧

⎪

⎨−1 falls  x < 0

 y( x) = ⎪ 0 falls  x = 0

⎩+1 falls  x > 0

☼

Eine eineindeutige Funktion lässt sich umkehren. Die Auflösung der Funktion

nach der unabhängigen Variablen  x  heißt Umkehrfunktion. 

 x =  f −1( y) =  g( y)

 Beispiel 8.4.  Die Funktion

 y( x) =  x 2 für  x ∈ R+
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besitzt die Umkehrfunktion:

√

 x( y) = +  y

Die Funktion

 y( x) =  x 2 für  x ∈ R

besitzt hingegen keine Umkehrfunktion, da die Abbildung nur eindeutig ist. Für  x = 2

und für  x = −2 erhält man den gleichen Funktionswert. 

☼

Man beachte, dass der Definitionsbereich (Wertebereich) einer Umkehrfunktion

gleich dem Wertebereich (Definitionsbereich) der Ausgangsfunktion ist. Daher kann

eine Umkehrfunktion nur für eineindeutige Funktionen existieren. 

Es werden hier nur einige spezielle reelle Funktionen behandelt. Bei diesen kann

man zwischen so genannten algebraischen und transzendenten Funktionen unter-

scheiden. In algebraischen Funktionen ist die unabhängige Variable ausschließlich

durch die elementaren Operationen wie Addition, Subtraktion, Multiplikation, Di-

vision, Potenzierung und Radizierung verknüpft. Von den algebraischen Funktionen

interessieren hier insbesondere die rationalen und gebrochen-rationalen Polynome. 

Die transzendenten Funktionen können nicht mit den elementaren Operationen

dargestellt werden. Die in der Ökonomie wichtigsten transzendenten Funktionen sind

die Exponential- und die Logarithmusfunktionen. Sie wurden in den Abschnitten 2.7

und 2.8 vorgestellt. 

 y( x) =  ax

für  a > 0 und  a = 1,  x ∈ R

 y( x) = log a x  für  a > 0 und  a = 1,  x ∈ R+

8.3 Rationale Funktionen

Die rationale Funktion wird auch als Polynomfunktion oder kurz als Polynom be-

zeichnet. Die Analyse der Nullstellen von rationalen und gebrochen-rationalen Funk-

tionen steht im Mittelpunkt der beiden folgenden Kapitel, da sie in der Finanzmathe-

matik eine besondere Rolle spielen. Ferner werden polynome zur Approximation

beliebiger Funktionen verwendet. 

Ein Polynom  n-ten Grades ist eine Funktion der Gestalt

 pn( x) =  a 0 +  a 1  x + ... +  an xn

 n



(8.2)

=

 ai xi  für  ai,  x ∈ R und  an = 0

 i=0

Die Größen  ai  werden Koeffizienten genannt und sind gegebene konstante Größen. 

Rationale Funktionen sind für jeden Wert von  x  definiert und stetig (zur Stetigkeit

siehe Kapitel 10.2). 

 Beispiel 8.5. 

 p 1( x) =  a 0 +  a 1  x

Polynom 1. Grades: lineare Funktion
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 p 2( x) =  a 0 +  a 1  x +  a 2  x 2 Polynom 2. Grades: Parabelfunktion

☼

Für die Nullstelle einer Funktion gilt:

 p( x) != 0

Das Zeichen != bedeutet, dass für die Funktion  p( x) das Argument  x  gesucht wird, 

für den der Funktionswert  p( x) = 0 gilt. 

 Beispiel 8.6.  Die Nullstelle des Polynoms 1. Grades wird durch folgenden Ansatz

bestimmt:

 p 1( x) =  a 0 +  a 1  x != 0

Die Lösung ist durch Auflösen der Gleichung leicht zu finden. 

 a

 x

0

1 = −  a 1

☼

 Beispiel 8.7.  Nullstellenbestimmung für ein Polynom 2. Grades (Parabelfunktion). 

Für die Funktion

 p 2( x) = −3 − 2 x +  x 2 für  x ∈ R

(8.3)

sollen die Nullstellen gesucht werden. Hierzu wird die quadratische Ergänzung

verwendet. Die Normalform einer quadratischen Gleichung ist

 x 2 +  px +  q != 0

(8.4)

Es werden folgende Umformungen vorgenommen, damit die Gleichung (8.4) nach  x

aufgelöst werden kann:

  p2

  p2

 x 2 +  px = − q ⇔  x 2 +  px +

=

−  q

2

2



1

 p 2

  p2

 p

  p2

 x +

=

−  q ⇔  x + = ±

−  q

2

2

2

2

1

 p

  p2

 x 1,2 = − ±

−  q

2

2

Die Nullstellen der Funktion (8.3) sind somit leicht zu bestimmen. 

√

 x 1,2 = 1 ± 1 + 3 ⇒  x 1 = 3, 

 x 2 = −1

☼

Aber können auch die Nullstellen von Polynomen höheren Grades so leicht be-

rechnet werden? Wie viele Nullstellen gibt es für ein Polynom  n-ten Grades? 

Auf die letzte Frage hat Gauß mit dem Hauptsatz der Algebra eine Antwort

gegeben:
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Die Anzahl der Nullstellen eines Polynoms  n-ten Grades  pn( x) besitzt

genau  n  Nullstellen, die jedoch nicht reell zu sein brauchen und von

denen einzelne mehrfach vorkommen können. 

Ein Polynom ungeraden Grades besitzt immer mindestens eine reelle Nullstelle, 

was darauf zurückzuführen ist, dass die Funktionswerte von

 pn( x → +∞) → +∞

streben, während sie für

 pn( x → −∞) → −∞

streben. Da die Polynomfunktion stetig ist, muss es also mindestens einen Punkt

geben, der den Funktionswert Null hat. Dies kann man leicht an einem Polynom 1. 

Grades überprüfen. Für ein Polynom geraden Grades ist eine derartige Aussage nicht

möglich, so dass man nur folgern kann: Ein Polynom  n-ten Grades bei geradem  n

besitzt höchstens  n  reelle Nullstellen. 

Die Antwort auf die andere Frage (Können die Nullstellen eines Polynoms leicht

berechnet werden?) lautet nein. Im Allgemeinen wird für die Nullstellenbestimmung

von Polynomen 3. Grades oder höher ein Näherungsverfahren eingesetzt. Zwar wur-

de eine formelmäßige Auflösung für Polynome 3. als auch 4. Grades gefunden, die

so genannte Cardanische Formel, aber die Berechnung der Nullstellen ist mit dieser

Formel sehr aufwändig. Darüber hinaus gelang Niels Abel der Nachweis, dass eine

formelmäßige Lösung für Polynome mit einem Grad von  n > 4 nicht möglich ist. 

Ein Näherungsverfahren ist die regula falsi (oder Sekantenverfahren), das in Kapitel

8.3.2 erklärt wird. In Kapitel 10.7 wird dazu ein weiteres Verfahren, das Newton-

Verfahren, vorgestellt. 

8.3.1 Partialdivision und Linearfaktorzerlegung

Ist für die Polynomfunktion  pn( x) die Nullstelle  x 1 bekannt, so ist  pn( x) darstellbar

als

 pn( x) =  pn−1( x)( x −  x 1)

Das Restpolynom  pn−1( x) besitzt dann einen um eins niedrigeren Grad und wird

durch Partialdivision bestimmt. Die Division erfolgt nach den normalen Divisions-

regeln

 p

 p

 n( x)

 n−1( x) = ( x− x 1)

 Beispiel 8.8.  Für das Polynom

 p 3( x) = 2.01 − 1.66 x − 2.67 x 2+  x 3 für x ∈ R

(8.5)

ist die Nullstelle  x 1 = 0.67 bekannt. Das Polynom besitzt noch zwei weitere Null-

stellen. Wenn man nun das Restpolynom  p 2( x) bestimmt, dann können die beiden
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restlichen Nullstellen mit der quadratischen Ergänzung berechnet werden. Dies ge-

schieht per Polynomendivision. 

Die folgende Division ist der Rechenweise nach eine schriftliche Division. Im

ersten Schritt wird der Divisor mit dem größten Faktor (hier  x 2) multipliziert, den der

Zähler enthält. Der Rest wird per Subtraktion gebildet. Für diesen Rest wird wieder

der größte Faktor gesucht, der in ihm enthalten ist (hier −2 x). Diese Rechnung wird

fortgesetzt bis ein Rest von Null oder ein nicht ganzteiliger Rest vorhanden ist. Die

Division

( x 3 −2.67 x 2 −1.66 x +2.01) ÷ ( x − 0.67) =  x 2 − 2 x − 3

−( x 3 −0.67 x 2)

− 2 x 2 −1.66 x

−(−2 x 2 +1.34 x)

− 3 x +2.01

−(−3 x +2.01)

0

ergibt das Restpolynom

 p 2( x) = −3 − 2 x +  x 2

von dem aus Beispiel 8.7 die beiden verbleibenden Nullstellen bekannt sind.  x 1 =

0.67 ist also tatsächlich eine Nullstelle des Polynoms (8.5), da die Division ohne

Rest erfolgt. Das Polynom (8.5) besitzt also folgende äquivalente Darstellung:

 p 3( x) = ( x − 0.67)( x − 3)( x + 1), 

(8.6)

aus der die 3 Nullstellen sofort ablesbar sind. 

☼

Bezeichnet man mit  x 1,  x 2,...,  xn  die Nullstellen der Polynomfunktion (8.2), so

ergibt sich durch die wiederholte Polynomendivision (Partialdivision) die Linear-

faktorzerlegung von  pn( x):

 pn( x) =  an ( x −  x 1)( x −  x 2)···( x −  xn)

(8.7)

Es ist also mit einigem Rechenaufwand möglich, die Nullstellen einer rationalen

Polynomfunktion zu berechnen. Diese aufwändige Arbeit wird heute in der Regel

von Computerprogrammen übernommen. 

8.3.2 Regula falsi

Bei der regula falsi wird mittels Probieren ein Intervall für den Funktionswert  pn( x)

gesucht, bei dem die Werte nahe Null liegen. Es ist dabei nicht notwendig, dass ein

Vorzeichenwechsel im Intervall stattfindet. Der Name „falsche Regel“ rührt daher, 

dass ein (näherungsweiser) linearer Verlauf zwischen den beiden Intervallwerten

[ x(1),  pn( x(1))]

[ x(2),  pn( x(2))]
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unterstellt wird. Diese Punkte werden durch eine Gerade (Polynom 1. Grades)

 p 1( x) =  a 0 +  a 1  x ⇔  y( x) =  mx +  b

verbunden (siehe Abb. 8.2). Wir bezeichnen der Einfachheit wegen das erste Wer-

tepaar mit ( x(1),  y(1)), das zur ersten Gleichung (8.8) führt. Der Wert  y  berechnet

(1)

sich durch Einsetzen des Wertes  x(1) in das Polynom  pn( x(1):  y(1) =  pn( x(1)). Das

zweite Wertepaar ( x(2),  y(2)) führt zur zweiten Gleichung (8.9). Aus den beiden Glei-

chungen können dann die beiden Koeffizienten  m  und  b  berechnet werden. 

 y(1) =  mx(1) +  b ⇒  b =  y(1) −  mx(1)

(8.8)

 y

 y

(2) −  y(1)

(2) =  mx(2) +  b

⇒  m =

(8.9)

 x(2) −  x(1)

Der Schnittpunkt der Geraden mit der Abszisse ist die 1. Näherung für die gesuchte

Nullstelle. 

 b

 mx +  b != 0 ⇒  x(1) = −  m

Im nächsten Schritt wird von der 1. Näherung der Funktionswert  pn( x(1)) berech-

net, um dann erneut über lineare Interpolation eine 2. Näherung für die Nullstelle des

Polynoms zu berechnen. 

 Beispiel 8.9.  Für das Polynom

 p 3( x) = 2.01 − 1.66 x − 2.67 x 2+  x 3 für  x ∈ R

(8.10)

sollen die Nullstellen bestimmt werden. Es handelt sich um ein Polynom 3. Grades. 

Daher ist mindestens eine Nullstelle von den insgesamt 3 Nullstellen reellwertig. 

Es wird im Intervall  x = [0,1] eine Nullstelle gesucht, da hier der Funktionswert

 p 3( x) das Vorzeichen wechselt. 

 x(1) = 0 ⇒  p 3(0) = 2.01

 x(2) = 1 ⇒  p 3(1) = −1.32

Mittels der beiden Wertepaare können nun die beiden Koeffizienten  m  und  b  der

Geradengleichung berechnet werden. 

2.01 =  m × 0 +  b ⇒  b = 2.01

−1.32 =  m × 1 +  b ⇒  m = −3.33

Damit ist die Geradengleichung bestimmt. 

 y( x) = 2.01 − 3.33 x != 0

Für die Gleichung wird nun die Nullstelle gesucht, die die erste Näherung der Null-

stelle von (8.10) ist (siehe Abb. 8.2). 
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2.01

 x(1) =

= 0.6036

3.33

Die erste Näherung von  x(1) liefert schon einen Funktionswert von

 p 3(0.6036) = 0.2552, 

der wesentlich näher an Null liegt als  p 3(0) = 2.01. Die Näherung der Nullstelle

erfolgt vom linken Intervallrand. Mit dem neuen Intervall  x = [0.6036,1] wird nun

das Gleichungssystem

0.2552 =  m × 0.6036 +  b

−1.32 =  m × 1 +  b

aufgestellt, aus dem die Koeffizienten

 m = −3.9737

 b = 2.6537

berechnet werden. Die Nullstelle der Geradengleichung

 y( x) = 2.6537 − 3.9737 x != 0

liefert die 2. Näherung für eine der Nullstellen von (8.10). 

 x(2) = 0.6678

Der Wert  x(2) = 0.6678 liefert einen Funktionswert von  p 3(0.6678) = 0.0085, der

schon relativ nahe an Null liegt. Die 3. Näherung mit dem Gleichungssystem

0.0085 =  m × 0.6678 +  b

−1.32 =  m +  b × 1

liefert die Koeffizienten

 m = −3.9993

 b = 2.6793

die zur näherungsweisen Nullstelle von

 x(3) = 0.6699

führt. Der Funktionswert  p 3(0.6699) = 0.00023 weist bereits einen Wert nahe Null

auf. Wird weiter iteriert, so stellt sich ein Wert von  x 1 = 0.67 ein. 

☼

Die  i-te Iteration der regula falsi lässt sich in einer Formel (lineare Interpolation)

zusammenfassen. Sie entsteht, wenn die Berechnungsformeln für die Koeffizienten

aus (8.8) und (8.9) in die Gleichung

 y( x) =  mx +  b
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y(x)

7

5

3

1

x

-2

-1

0

1

2

3

4

-1

-3

-5

Abb. 8.2: Nullstellenbestimmung mit der regula falsi für das Polynom (8.10)

eingesetzt werden. Wird diese Gleichung Null gesetzt und nach  x  aufgelöst, so erhält

man die Gleichung (8.11). Mit  x( i−1) und  x( i−1) wird das Wertepaar der  i

(

− 1-ten

1)

(2)

Iteration bezeichnet. 

 x( i−1)

 x( i)

(2)

−  x( i−1)

(1)

Nullstelle =  x( i−1)

(8.11)

(1)

−  y( i−1)

(1)

 y( i−1)

(2)

−  y( i−1)

(1)

Für einen Iterationsschritt werden

1. zwei Wertepaare in der Nähe der gesuchten Nullstelle gewählt. Wurde bereits

ein Iterationsschritt berechnet, so wird ein Wertepaar aus der berechneten Nä-

herung bestimmt. Das zweite Wertepaar wählt man besten so, dass die beiden

Wertepaare die gesuchte Nullstelle umschließen. Dies ist aber nicht nötig. 

2. Es wird die Nullstelle der Geradengleichung mit Gleichung (8.11) berechnet. 

3. Die beiden Schritte werden wiederholt bis die Näherung einer gewünschte Ge-

nauigkeit entspricht, zum Beispiel bis die 4-te Nachkommastelle sich nicht

mehr ändert. 

 Beispiel 8.10.  Anwendung der Formel (8.11): Das Intervall für die 3. Iteration zur

Bestimmung der Nullstelle in Beispiel 8.9 war  x = [0.6678,1]. Die  y-Werte  y =

[0.0085,−1.32] weisen einen Vorzeichenwechsel auf. Also enthält das Intervall der
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 x-Werte die gesuchte Nullstelle. Mit der Formel (8.11) berechnet sich die 3. Nähe-

rung für die gesuchte Nullstelle dann wie folgt:

1 − 0.6678

 x(3) = 0.6678 − 0.0085 ×

= 0.6699

−1.32 − 0.0085

☼

8.3.3 Nullstellenberechnung mit Scilab

Nullstellenprobleme werden heute mit Computerprogrammen zur numerischen Ma-

thematik gelöst, wie zum Beispiel mit Scilab. Mit der Anweisung poly() wird

bei diesem Programm ein Polynom eingegeben. Für das Beispiel 8.9 ist die Scilab-

Anweisung:

p = poly([2.01 -1.66 -2.67 1],"x","coeff")

2.01 - 1.66x - 2.67x^2 + x^3

Der Vektor enthält die Koeffizienten des Polynoms; mit der Option coeff wird

festgelegt, dass der Vektor die Koeffizienten enthält. Alternativ können mit der Op-

tion roots auch die Nullstellen angegeben und dann das zugehörige Polynom be-

rechnet werden. Der Befehl

poly([-1 3 0.67],"x","roots")

2.01 - 1.66x - 2.67x^2 + x^3

liefert das Polynom (8.10). 

Die Berechnung der Nullstellen des Polynoms erfolgt mit dem Befehl roots. 

Angewendet auf das Beispiel sieht die Anweisung wie folgt aus. 

r = roots(p)

0.67

-1

3

In dem Ergebnisvektor sind die Nullstellen des Polynoms gespeichert. In der

Scilab Version 5 hat der standardmäßig verwendete Algorithmus in manchen Fällen

Konvergenzprobleme. Mit der Option roots(,’e’) wird ein aufwändigerer Al-

gorithmus eingesetzt, der bessere Konvergenzeigenschaften besitzt. Siehe hierzu die

Hilfefunktion von Scilab. 

Ein Befehl für die Linearfaktorzerlegung des Polynoms ist auch in Scilab ent-

halten. Der Befehl factors liefert die Linearfaktoren des Polynoms (8.10) in der

Form (8.6). 
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factors(p)

-0.67 + x

1 + x

-3 + x

8.4 Gebrochen-rationale Funktionen

Eine gebrochen-rationale Funktion ist der Quotient zweier Polynomfunktionen. 



 p

 n

 f ( x) =  n( x) =

 i=0  ai xi



für  x ∈ R,  q

 q

 m

 m( x) = 0

 m( x)

 j=0  b j x j

Charakteristisch für den Funktionsverlauf von gebrochen-rationalen Funktionen ist

das Auftreten von Polstellen. Dies sind die Werte  x, für die das Nennerpolynom ei-

ne Nullstelle aufweist, das Zählerpolynom gleichzeitig aber keine Nullstelle besitzt. 

In den Polstellen ist die Funktion nicht definiert und somit auch nicht stetig. Bei

der Annäherung der  x-Werte an eine Polstelle wächst oder fällt der Funktionswert

unbeschränkt (d. h. er strebt gegen +∞ oder −∞). 

 x  ist eine Polstelle von  f ( x), wenn  pn( x) = 0 und  qm( x) = 0 gilt. 

Das Verhalten der Funktion  f ( x) in der Umgebung der Polstelle  xPol  lässt sich leicht

untersuchen. Hierzu wird eine beliebig kleine positive Zahl ε definiert, die zur Un-

tersuchung der Umgebung von  x  dient. Für den Bereich kleiner (links) der Polstelle

gilt dann  xPol − ε. Ist der Funktionswert

lim  f ( xPol − ε) < 0, 

ε→0

so strebt die Funktion für ε → 0 nach  f ( xPol) → −∞. Ist der Funktionswert

lim  f ( xPol − ε) > 0, 

ε→0

so strebt die Funktion für ε → 0 nach  f ( xPol) → +∞. Die gleichen Überlegungen

lassen sich für den Bereich größer (rechts) der Polstelle anstellen. 

lim  f ( xPol + ε) < 0 ⇔

 f ( xPol) → −∞

ε→0

lim  f ( xPol + ε) > 0 ⇔

 f ( xPol) → +∞

ε→0

Die Nullstellen einer gebrochen-rationalen Funktion sind die Nullstellen des

Zählerpolynoms, wenn nicht gleichzeitig das Nennerpolynom auch eine Nullstelle

für diesen Wert besitzt. 

 x  ist eine Nullstelle von  f ( x), wenn  pn( x) = 0 und  qm( x) = 0 gilt. 
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 Beispiel 8.11.  Die gebrochen-rationale Funktion

−3 − 2 x +  x 2

 f ( x) =

für  x ∈ R

(8.12)

 x − 1

besitzt zwei Nullstellen  x∗1 = −1 und  x∗2 = 3, die aus Beispiel 8.7 bekannt sind, und

eine Polstelle bei  xPol = 1 (siehe Abb. 8.3). 

☼

20

16

Polstelle

12

8

4

Asymptote

0

-2

-1

0

1

2

3

4

-4

-8

-12

-16

-20

Abb. 8.3: Gebrochen-rationale Funktion (8.12)

Für sehr kleine oder sehr große Werte von  x  nähert sich eine gebrochen-rationale

Funktion einer rationalen Funktion beliebig nahe. Man nennt diese Funktion Asym-

ptote. Es sind 3 Fälle zu unterscheiden:

1. Besitzt das Nennerpolynom einen höheren Grad als das Zählerpolynom ( n < 

 m), so strebt die Funktion  f ( x) für sehr kleine bzw. sehr große Werte von  x

offensichtlich gegen Null. Die Asymptote ist in diesem Fall die Abszisse. 

2. Sind Zähler- und Nennergrad der Polynome gleich ( n =  m), so ergibt sich un-

ter Anwendung der Regeln für die Grenzwertberechnung eine Konstante als

Asymptote  f Asy( x) =  an . 

 bm

3. Ferner kann noch der Fall auftreten, dass der Zählergrad größer als der Nenner-

grad ist ( m <  n). Es ergibt sich dann eine asymptotische Funktion aus dem

ganzen rationalen Anteil der gebrochen-rationalen Funktion, den man mittels

Partialdivision erhält. 
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 Beispiel 8.12.  Im Beispiel 8.11 liegt der 3. Fall vor. Die gebrochen-rationale Funkti-

on (8.12) wird mittels Partialdivision in eine rationale Funktion und ein gebrochen-

rationales Restglieds zerlegt. 

( x 2 −2 x −3) ÷ ( x − 1) =  x − 1 − 4

 x−1

− ( x 2 −  x)

− x −3

− ( x +1)

−4

Für sehr kleine und sehr große Werte von  x  verschwindet das Restglied 4

( x−1) und als

Asymptote verbleibt die lineare Funktion  f Asy( x) =  x − 1. 

☼

Übung 8.1. Ermitteln Sie mittels der Nullstellen, der Polstellen und der Asymptote

in groben Zügen den Verlauf der Funktion

( x − 1)( x + 2)2

 f ( x) =

für  x ∈ R

 x 2 ( x 2 − 16)

Übung 8.2. Ermitteln Sie mittels der Nullstellen, Polstellen und der Asymptote in

groben Zügen den Verlauf der Funktion

 x 3 + 3 x + 5

 f ( x) =

für  x ∈ R

 x − 2

Bestimmen Sie die erste Nullstelle erst näherungsweise. Zur Berechnung der zwei-

ten und dritten Nullstelle nehmen Sie für die erste Nullstelle  x 1 = −1.154 an. 

8.5 Folgen

Folgen sind spezielle Funktionen, deren Besonderheit es ist, dass die unabhängi-

ge Veränderliche stets aus der Menge der natürlichen Zahlen N gewählt wird. Eine

Funktion, durch die jeder natürlichen Zahl  n ∈ N (oder einer Teilmenge von N) eine

reelle Zahl  an ∈ R zugeordnet wird, heißt eine Folge, die mit [ an] bezeichnet wird. 

[ an] =  a 1,  a 2,...,  an

Die reellen Zahlen  a 1,  a 2,...,  an ∈ R heißen Glieder der Folge mit  an  als dem all-

gemeinen Glied. In der Funktion wird das Bildungsgesetz der Folge beschrieben, 

deren Werte die Glieder der Folge sind. Um die Folge zu beschreiben genügt es, das

Bildungsgesetz und den Definitionsbereich anzugeben. 

 Beispiel 8.13.  Mit der Funktion
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#1 

$

[ an] =

 n + (−1) n n

für alle  n ∈ N

4

wird die Zahlenfolge 0,1,0,2,0,3,... beschrieben. 

☼

Die Folge [ an] ist von der Menge ihrer Glieder { an} zu unterscheiden. Bei der

Folge ist im Gegensatz zur Menge immer eine Ordnung impliziert, und bei einer

Folge können sich die Glieder (Elemente) wiederholen. 

 Beispiel 8.14.  Im Beispiel 8.13 besitzen die Glieder  a 1,  a 3,  a 5,... in der Zahlenfolge

[ an] die gleiche Zahl. Die Menge der Glieder beträgt:

{ an} = N0

☼

 Beispiel 8.15.  Als taktisches Konzept in Verhandlungen wird gelegentlich das Prin-

zip «zwei Schritte vor, einen zurück» verfolgt. In Zahlen ausgedrückt, ergibt sich die

Folge:

 n + 3

[ a

2 − 32 (−1) n

 n] =

für alle  n ∈ N

2

= 2,1,3,2,4,3,5,4,... 

☼

Eine Folge wird als endliche Folge bezeichnet, wenn die unabhängige Variable  n

aus einer endlichen Menge gewählt wird. Andernfalls wird sie als unendliche Folge

bezeichnet. Die arithemtische und die geometrische Folge spielen vor allem in der

Finanzmathematik eine wichtige Rolle. 

8.5.1 Arithmetische Folge

Bei der arithmetischen Folge ist die Differenz zweier aufeinander folgender Glieder

konstant. 

 an+1 −  an =  d  mit  d =  konst  für alle  n ∈ N

Das Bildungsgesetz führt auf die Folge

[ an] =  a 1,  a 1 +  d,  a 1 + 2 d,...,  a 1 + ( n − 1) d

=  a 1 + ( n − 1) d  für alle  n ∈ N

 Beispiel 8.16.  Die Folge der ungeraden natürlichen Zahlen ist eine arithmetische Fol-

ge. 

[ an] = 1 + 2( n − 1) für alle  n ∈ N

= 1,3,5,7,9,... 

☼
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8.5.2 Geometrische Folge

Die andere Folge, die in der Finanzmathematik eine herausragende Position ein-

nimmt, ist die geometrische Folge, bei der der Quotient zweier aufeinander folgender

Glieder konstant ist. 

 an+1 =  q  mit  q =  konst  für alle  n ∈ N

 an

Das Bildungsgesetz ergibt die Folge:

[ an] =  a 1,  a 1  q,  a 1  q 2,...,  a 1  qn−1

=  a 1  qn−1 für alle  n ∈ N

 Beispiel 8.17.  Die Folge der Zweierpotenzen des Dualsystems ist eine geometrische

Folge. 

[ an] = 2 n−1 für alle  n ∈ N

= 1,2,4,8,16,... mit  a 1 = 1 und  q = 2

☼

 Beispiel 8.18.  Es wird der Endbetrag eines Kapitals von  a 1 = 100 e nach 5 Jahren

gesucht, der mit einem Zinssatz von 5 Prozent verzinst wird. Nach dem ersten Jahr

stehen  a 2 = 100 × 1.05 = 105 Euro zur Verfügung. Nach dem zweiten Jahr stehen

 a 3 = 105×1.05 = 100×1.052 = 110.25 Euro zur Verfügung. Der Endbetrag beträgt

folglich  a 6 = 100 × 1.055 = 127.63 Euro. Es handelt sich um eine geometrische

Folge mit dem Faktor  q = 1.05 und dem Anfangsglied  a 1 = 100. 

☼

8.6 Reihen

Summiert man sukzessiv die Glieder von Folgen auf, so bildet die Folge der Teil-

summen eine Reihe. Ausgangspunkt für die Bildung einer Reihe ist stets eine Zah-

lenfolge [ an]. Die Summe der ersten  n  Glieder der Folge ergibt die  n-te Teilsumme

(Partialsumme)  sn

 n



 sn =

 ai =  a 1 +  a 2 + ... +  an  für alle  n ∈ N

 i=1

 Beispiel 8.19.  Es werden auf einem (unverzinsten) Konto mit einem Anfangssaldo

von 0 e folgende Ein- und Auszahlungen (in e) vorgenommen:

[ a 6] = +100,+10,−50,−20,+75,−20

Die Ein- und Auszahlungen stellen eine Folge dar. Wird nach jeder Ein- bzw. Aus-

zahlung der Kontostand (Saldo) berechnet, so entsteht eine Folge von Teilsummen. 

[ s 6] = +100,+110,+60,+40,+115,+95

☼





















154

8 Funktionen mit einer Variablen

Wird nun die Folge der  n-ten Teilsummen [ sn] für  n → ∞ betrachtet, 

 s = lim [ sn] =  s 1,  s 2,...,  sn

 n→∞

und existiert der Grenzwert, dann heißt  s  eine konvergente Reihe. Konvergiert die

Reihe nicht gegen einen festen Grenzwert, so wird diese als divergent bezeichnet. 

Von speziellem Interesse sind in der Finanzmathematik zwei Reihen. Die erste

Reihe ist die, die durch regelmäßige Zahlungen desselben Betrags entsteht, d. h. die

sich aus der arithmetischen Folge ableitet und entsprechend arithmetische Reihe

heißt. Die andere Reihe ist diejenige, die durch eine regelmäßige Zahlung entsteht, 

die verzinst wird. Sie leitet sich aus der geometrischen Folge ab und wird entspre-

chend geometrische Reihe genannt. Für beide Reihen kann der Wert der  n-ten Teil-

summe, sofern die Reihen endlich sind, angegeben werden. 

8.6.1 Arithmetische Reihe

Eine arithmetische Reihe ist durch das Bildungsgesetz einer arithmetischen Folge

bestimmt. Die  n-te Teilsumme einer arithmetischen Reihe ist durch

 sn =  a 1 +  a 1 +  d

  +  a 1 + 2 d

  + ... +  a 1 + ( n − 1) d







 a 2

 a 3

 an

gegeben. Um den Endwert einer arithmetischen Reihe mit  n  Gliedern zu berech-

nen, wird die  n-te Teilsumme zweimal in umgekehrter Summationsreihenfolge auf-

geschrieben und addiert. 





 sn =

 a 1

+

( a 1 +  d)

+ ... +  a 1 + ( n − 1) d









+  sn =  a 1 + ( n − 1) d +  a 1 + ( n − 2) d + ... +

 a 1













2  sn = 2 a 1 + ( n − 1) d + 2 a 1 + ( n − 1) d + ... + 2 a 1 + ( n − 1) d

Nach der Addition der beiden Teilsummen ist jedes Glied gleich, so dass gilt:





2  sn =  n  2 a 1 + ( n − 1) d





=  n a 1 +  a 1 + ( n − 1) d







 an

Über der geschweiften Klammer steht das  n-te Glied der arithmetischen Folge  an, 

und man erhält für die  n-te Teilsumme der arithmetischen Reihe

 n

 sn = ( a

2 1 +  an) mit  an =  a 1 + ( n − 1) d

 Beispiel 8.20.  Die einfachste arithmetische Zahlenfolge ist die Folge der natürlichen

Zahlen. 

[ an] =  n  für alle  n ∈ N

Die  n-te Teilsumme entsteht durch die Addition der ersten  n  natürlichen Zahlen. Ihr

Endwert beträgt
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 n



 n ( n + 1)

 sn =

 i =

für alle  n ∈ N

2

 i=1

Zur Veranschaulichung der Formel wird folgende Zahlenreihe betrachtet:

1 + 2 + 3 + 4 + 5 + 6 = (1 + 6) + (2 + 5) + (3 + 4) = 3 × 7 = 21

Die Summe des ersten und letzten Reihenglieds, des zweiten und des vorletzten Rei-

henglieds usw. liefert immer das Ergebnis 7. Statt der Addition kann also 3 mal 7

gerechnet werden. 

6 (6 + 1) = 21

2

☼

 Beispiel 8.21.  Es wird im Januar ein Betrag von 100 e in ein Sparschwein gegeben

und dann jeden Folgemonat bis Dezember ein um 50 e höherer Betrag eingezahlt. 

Wie viel Geld befindet sich am Ende des Jahres im Sparschwein? Es liegt folgende

arithmetische Folge vor:

[ a 12] = 100,100 + 1 × 50,...,100 + (12 − 1)50

Der Betrag im Sparschwein im Dezember ist durch die 12-te Teilsumme gegeben. 

12



12 



 s 12 =

 ai =

2 × 100 + (12 − 1)50 = 4 500 e

2

 i=1

☼

8.6.2 Geometrische Reihe

Eine geometrische Reihe ist durch das Bildungsgesetz einer geometrischen Folge

bestimmt. Die  n-te Teilsumme einer geometrischen Reihe ist durch

 sn =  a 1 +  a 1  q + ...+  a 1  qn−1

gegeben. Der Endwert einer geometrischen Reihe mit  n  Gliedern berechnet sich wie

folgt. 

 sn q

=

 a 1  q + ... +  a 1  qn−1 +  a 1  qn

−  sn

=  a 1 +  a 1  q + ... +  a 1  qn−1

 sn q −  sn = − a 1 + 0 + ... +

0

+  a 1  qn

Als Differenz der beiden Teilsummen erhält man

 sn q −  sn =  a 1  qn −  a 1, 
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woraus leicht der Endwert der  n-ten Teilsumme ermittelt werden kann:

 qn − 1

 sn =  a 1

(8.13)

 q − 1

 Beispiel 8.22.  Es wird jährlich (am Ende eines Jahres) ein Betrag in Höhe von

2 000 e über 7 Jahre zu einem Zinssatz von  i = 5 Prozent (jährliche nachschüssi-

ge Verzinsung) angelegt. Welcher Betrag liegt nach dem 7-ten Jahr vor? 

Es handelt sich hier um eine geometrische Reihe, deren 7-te Teilsumme gesucht

ist. Hier ist darauf zu achten, dass der Zinssatz  i  in den Zinsfaktor  q =  i + 1 (siehe

Kapitel 9) überführt werden muss, da der Kapitalbetrag im folgenden Jahr 2000 +

2000 × 0.05, also 2000(1 + 0.05) beträgt. 

[ a 7] = 2000,2100,2205,2315.25,2431.01,2552.56,2680.19

[ s 7] = 2000,4100,6305,8620.25,11051.26,13603.83,16284.02

1.057 − 1

 s 7 = 2000

= 16 284.02 e

1.05 − 1

Am Ende des 7. Jahres liegt auf dem Konto ein Betrag von 16 284.02 e vor. 

☼

Für die  n-te Teilsumme einer geometrischen Reihe kann auch dann ein Endwert

bestimmt werden, wenn  n  gegen unendlich strebt ( n → ∞), sofern | q| < 1 vorliegt. 

 qn − 1

lim  sn = lim  a 1

 n→∞

 n→∞

 q − 1





 qn

1

=  a 1 lim

−

 n→∞

 q − 1

 q − 1

 qn

1

=  a 1 lim

−  a 1

 n→∞  q − 1

 q − 1

Für | q| < 1 ist lim n→∞ | qn| = 0, so dass gilt:

 a

lim  s

1

 n =

 n→∞

1 −  q

Die Reihe konvergiert für | q| < 1; für | q| > 1 divergiert sie, wie leicht einzusehen ist. 

Damit sind die für die im Folgenden beschriebene Finanzmathematik wesentlichen

Eigenschaften von Folgen und Reihen beschrieben worden. 

8.7 Fazit

Um ökonomische Zusammenhänge darstellen zu können, werden mathematische

Funktionen verwendet. Besondere Funktionstellen wie Extrempunkte oder Nullstel-

len werden mit ökonomischen Fragestellungen verbunden. 

8.7 Fazit

157

Folgen sind spezielle Funktionen, deren Definitionsmenge die natürlichen Zahlen

sind. Bekannte Folgen sind die arithmetische Folge und die geometrische Folge. Eine

Reihe entsteht, wenn man die Folgenglieder sukzessive addiert. Auch hier findet man

das Pendant zur arithmetischen und geometrischen Reihe. Die geometrische Reihe

ist die Grundlage der Finanzmathematik. 
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9.1 Vorbemerkung

Der Kern der Finanzmathematik ist die Berechnung einer Summe von verzinsten

zukünftigen Zahlungen. Sind diese Zahlungen in der Zeit konstant, dann können sie

mit der geometrischen Reihe berechnet werden. Dies liegt in der Rentenrechnung

und in der Annuitätenrechnung vor. Variieren die zukünftigen Zahlungsströme ( cash

 flows) hingegen, so können sie nicht mehr durch die geometrische Reihenformel

(8.13) beschrieben werden. Dies ist der Fall in der Investitionsrechnung. 

Zwei Prinzipien sind in der Finanzmathematik besonders wichtig. Das erste ist

die Bewertung zukünftiger Zahlungen zum Gegenwartszeitpunkt ( t = 0), das Bar-

wertprinzip. Das zweite ist das Äquivalenzprinzip, das die Äquivalenz von Lei-

stungen (Bank- / Kundenleistungen, Gläubiger- / Schuldnerleistungen) fordert. Mit

diesem Prinzip wird die Berechnung der Effektivverzinsung, die auch Rendite bzw. 

im Kontext der Investitionsrechnung interner Zinsfuß heißt, durchgeführt. 

Die wichtigsten finanzmathematischen Bezeichnungen sind:

 A

Annuität

 C 0

Kapitalwert

 D

Duration

 i

Zinssatz, in der Regel jährlich p. a.1

 K 0

Anfangskapital

 Kt

Restkapital zum Zeitpunkt  t

 Kn

Endkapital nach der Zeit  n

 m

Zahl der unterjährigen Perioden

 n

Anzahl der Zinsperioden

 q

Zinsfaktor. Es gilt:  q = 1 +  i

 r

Rente

 R 0

Rentenbarwert

1 p. a. = per annum. Man spricht auch vom Zinsfuß, wenn der Zinssatz in Prozent, also

 i × 100, angegeben wird. 
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 Rn

Rentenendwert

 t

Zeitpunkt

 Tt

Tilgungszahlung zum Zeitpunkt  t

 Zt

Zinszahlung zum Zeitpunkt  t

9.2 Tageszählkonventionen

In der folgenden Auflistung stehen einige gebräuchliche Tageszählkonventionen. 

Die Zinsperiode kann als reelle Zahl angegeben werden, deren Wert als Bruchteil

eines ganzen Jahres interpretiert wird. In der Bezeichnung «Zähler/Nenner» gibt der

Zähler die Zählweise für die Tage der Zinsperiode und der Nenner die Zählweise für

die Anzahl der Tage innerhalb eines Jahres an. 

Grundsätzlich wird ein Zeitraum durch die Differenz der Anzahl der Tage, Mo-

nate, Quartale, Jahre plus Eins berechnet. Bei der Berechnung der Zinstage ist es

jedoch üblich, den ersten Tag nicht als Zinstag zu zählen. Der Zeitraum vom 02.06. 

bis zum 05.06. umfasst daher nur 3 Zinstage. 

Aufgrund der unterschiedlichen Anzahl von Tagen im Jahr haben sich unter-

schiedliche Tageszählkonventionen etabliert. Mit  akt  wird die aktuelle Zahl von Ta-

gen bezeichnet. 

 akt/365: Es wird die tatsächliche Anzahl der Kalendertage zwischen Anfangsda-

tum und Enddatum gezählt und durch 365 geteilt, um den Zinszeitraum

zu erhalten. 

 akt/360: Wie bei  akt/365 wird die tatsächliche Anzahl der Kalendertage zwischen

Anfangsdatum und Enddatum gezählt, das Jahr wird aber mit 360 Tagen

festgelegt. Der Euro-Geldmarkt (Interbanken, Devisenterminmarkt) rech-

net mit dieser Konvention. 

 akt/ akt: Die tatsächliche Anzahl der Kalendertage wird durch die tatsächliche An-

zahl der Tage des jeweiligen Jahres geteilt. Diese Tageszählkonvention

wird am Anleihen- und Kapitalmarkt verwendet. 

30/360: Es wird so gezählt, als hätte jeder Monat 30 und jedes Jahr 360 Tage. 

Diese Zählkonvention wird in der Regel im Passivgeschäft der Filialban-

ken mit Privatkunden eingesetzt. Auch ein Teil des Euro-Anleihe- und

Zinsswapmarktes verwendet diese Methode. 

Allgemein wird die relative Zahl der Zinsperioden durch  n  berechnet, wobei  n

 m

die Zahl der Zinstage und  m = 365,360,  akt  die Jahresteilung bezeichnet. 

 Beispiel 9.1.  Für den Zeitraum 17. Februar 2003 bis 22. Oktober 2003 erhält man

mit den verschiedenen Tageszählkonventionen folgende Ergebnisse:

 akt

247

=

= 0.6767

365

365

 akt

247

=

= 0.6861

360

360
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 akt

247

=

= 0.6786

 akt

364

30 × Monate+ Tage

13 + 7 × 30 + 22

245

=

=

= 0.6806

360

360

360

Anmerkung: Das Jahr 2003 besitzt 365 Tage, aber nur 364 Zinstage (-perioden), 

da erst nach dem ersten Tag verzinst wird. 

☼

9.3 Lineare Zinsrechnung

Die lineare Zinsrechnung (auch einfache Verzinsung) ( simple interest) wird häufig

in der Praxis (Geldmarkt) eingesetzt, um Zinsen bei unterjährigen Zeiträumen zu

berechnen. Die Zinsen aus Zinserträgen (die so genannten Zinseszinsen) sind bei

kleinen Beträgen und kurzen Perioden vernachlässigbar klein. 

Bei der linearen Zinsrechnung werden die Zinsen multiplikativ aus der relativen

Zahl  n  der Zinstage und dem Zinssatz berechnet.  m  bezeichnet die Anzahl der Tage

 m

im Jahr und  n  die Anzahl der Zinstage. Das Endkapital  Kn  ist die Summe aus Zinsen

und Anfangskapital  K 0. Ein Ertrag aus den Zinsen der Vorperiode (Zinseszinsen)

wird nicht berücksichtigt. 

 n

 Zn =  K 0 ×  i ×  m 

 n 

 Kn =  K 0 +  Zn =  K 0 1 +  i ×  m

 Beispiel 9.2.  Ein Betrag von 100 e wird vom 17.02.2003 bis zum 22.10.2003 (247

Tage) zu einem Zinssatz von  i = 0.06 angelegt. Wie hoch sind die einfachen Zinsen? 

 Zakt/365 = 100 × 0.06 × 0.6767 = 4.06 e

 Zakt/360 = 100 × 0.06 × 0.6861 = 4.12 e

 Zakt/ akt = 100 × 0.06 × 0.6786 = 4.07 e

 Z 30/360 = 100 × 0.06 × 0.6806 = 4.08 e

Die Berechnung wurde mit einer größeren Mantisse berechnet als hier angegeben. ☼

 Beispiel 9.3.  Zahlungsbedingung auf einer Rechnung: Zahlung innerhalb von 10 Ta-

gen mit 2 Prozent Skonto oder Zahlung innerhalb von 30 Tagen ohne Abzug. Welcher

einfachen Verzinsung (p. a.) entsprechen 2 Prozent Skonto? 

Es liegt eine Schuld in Höhe von  K 30 vor. Diese wird nach 30 Tagen fällig. Es

besteht die Möglichkeit, die Schuld bereits nach 10 Tagen zu begleichen. Dann sind

nur 98 Prozent des Betrags fällig, also 0.98 ×  K 30. Dieser Betrag muss dem Barwert

der Schuld  K 30 entsprechen (Äquivalenzansatz und Barwertprinzip). Es gilt also





 K 30

1

360



 != 0.98 K

− 1

= 0.3673

1 +  i  20

30

⇒  i = 0.98

20

360
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Zwei Prozent Skonto entsprechen einem jährlichen Zinssatz von 36.73 Prozent. Die

Ausnutzung der Zahlungsfrist von 30 Tagen (durch den Schuldner) entspricht also

einer Inanspruchnahme eines Kredits mit einem Zinssatz (ohne Zinseszinseffekt) in

Höhe 36.73 Prozent. 

☼

Die lineare Zinsrechnung ist einfach anzuwenden, aber wenig zufriedenstellend, 

da keine Zinseszinsen berücksichtigt werden. Zinseszinsen sind die Zinserträge aus

früheren Zinszahlungen. Die exponentielle Verzinsung hingegen berücksichtigt Zin-

seszinsen und bildet die Grundlage für finanzmathematische Anwendungen. 

9.4 Exponentielle Zinsrechnung

Bei der exponentiellen Verzinsung ( compound interest) werden die Zinsen aus den

Zinsen, die so genannten Zinseszinsen berücksichtigt. Das Anfangskapital wächst

damit exponentiell. Man unterscheidet manchmal zwischen einer nachschüssigen

Verzinsung und einer vorschüssigen Verzinsung. Bei einer nachschüssigen Verzin-

sung werden die Zinsen erst am Ende der Periode dem Kapital zugeschlagen; bei

einer vorschüssigen Verzinsung werden die Zinsen am Anfang der Periode dem Ka-

pital zugeschlagen. Dies kommt selten vor. 

9.4.1 Nachschüssige exponentielle Verzinsung

Bei der exponentiellen nachschüssigen Verzinsung werden die Zinsen nach Ablauf

der Periode gezahlt. Es erfolgt folgende Kapitalverzinsung:

 Kt =  Kt−1 +  iKt−1 für  t = 1,...,  n

(9.1)

=  Kt−1 (1 +  i) =  Kt−1  q

Zum Zeitpunkt  t − 1 wird das Kapital ebenfalls verzinst. 

 Kt−1 =  Kt−2  q

Wird  Kt−1 in der Gleichung (9.1) ersetzt, so erhält man:

 Kt =  Kt−2  q 2

Nach  n  Perioden liegt ein Endwert ( future value) von

 Kn =  K 0  qn

(9.2)

vor. 

 Beispiel 9.4.  Ein Betrag von 100 e wird zu 6 Prozent p. a. nachschüssig verzinst über

3 Jahre angelegt. Nach dem ersten Jahr liegt ein Betrag von

 K 1 = 100 + 100 × 0.06 = 100 × 1.06 = 106.00 e
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vor. Nach dem zweiten Jahr wächst das Kapital auf

 K 2 = 106 × 1.06 = 100 × 1.062 = 112.36 e

an. Im dritten Jahr liegt ein Kapital von

 K 3 = 112.36 × 1.06 = 100 × 1.063 = 119.10 e

vor. 

☼

 Beispiel 9.5.  Durchschnittliche Verzinsung eines Bundesschatzbriefs Typ B (mit

Zinsansammlung). Der Schatzbrief weist während der Laufzeit folgende jährliche

Verzinsung auf:

1997

1998

1999

2000

2001

2002

2003

5.00% 6.50% 7.50% 8.00% 8.00% 8.25% 8.25%

Welche durchschnittliche Verzinsung kann bei einem Anlagezeitraum von 7 Jahren

mit dem Schatzbrief erzielt werden? 

Wählt man das Ende des 7. Jahres als Vergleichszeitpunkt, so ist nach dem durch-

schnittlichen Zinssatz  i  gefragt, der nach dem 7. Jahr auf denselben Endbetrag führt

wie derjenige, der mittels der Zinstreppe erzielt wird (Äquivalenzansatz). Es wird

also die exponentielle Verzinsung des gesuchten Zinssatzes  i  der exponentiellen Ver-

zinsung der Zinstreppe gleichgesetzt. 

 K 0  q 7 !=  K 0 × 1.05 × 1.065 × 1.075 × 1.08 × 1.08 × 1.0825 × 1.0825







1.6430

√

¯

 q = 7 1.6430 = 1.0735

(9.3)

Die durchschnittliche Verzinsung des Schatzbriefs Typ B beträgt 7.35 Prozent. Eine

Geldanlage mit diesem Zinssatz führt zu einem gleichen Zinsertrag wie die in dem

Schatzbrief angebotene Verzinsung. Daher spricht man in diesem Zusammenhang

auch von der Rendite des Schatzbriefs. Die Rechnung in der Gleichung (9.3) wird

als geometrisches Mittel bezeichnet. 

2

3

3  n



¯

 q =  n 4

 qi

 i=1

☼

Die Auflösung der Gleichung (9.2) nach  K 0 liefert den Barwert ( present value). 

Die Rechnung selbst wird als Diskontierung bezeichnet. 

 K

 K

 n

0 =  qn
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Die Auflösung der Gleichung (9.2) nach  i  liefert die Zinssatzberechnung:

1  K

 i =  n

 n −1

 K 0

Zur Umstellung der Gleichung (9.2) nach  n  muss der Logarithmus verwendet

werden. 

ln  K

 n =

 n − ln  K 0

ln q

9.4.2 Vorschüssige exponentielle Verzinsung

Bei der vorschüssigen exponentiellen Verzinsung werden die Zinsen am Anfang

der Periode dem Kapital zugesetzt; das Kapital wird zu Beginn der Periode verzinst, 

was eher selten ist. Sie wird manchmal zur Diskontierung von Wechseln oder bei der

Kreditaufnahme angewendet. Es gilt also:

 Kt =  Kt−1 +  iKt  für  t = 1,...,  n

 K

 K

=  t−1 =

 t−2

= ... 

1 −  i

(1 −  i)2

Das Ersetzen der Zähler  Kt−1,  Kt−2,... bis  K 0 führt dann zu folgender Formel:

 K

 K

0

 n =

(9.4)

(1 −  i) n

 Beispiel 9.6.  Ein Betrag 100 e wird zu 6 Prozent p. a. vorschüssig verzinst über 3

Jahre angelegt. Nach dem ersten Jahr liegt ein Betrag von

100

 K 1 =

= 106.38 e

1 − 0.06

vor. Nach dem zweiten Jahr wächst das Kapital auf

106.38

100

 K 2 =

=

= 113.17 e

1 − 0.06

(1 − 0.06)2

an. Im dritten Jahr liegt ein Kapital von

113.17

100

 K 3 =

=

= 120.40 e

1 − 0.06

(1 − 0.06)3

vor. 

☼

Anstatt die Berechnungsformel (9.4) bei der vorschüssigen Verzinsung mit dem

Zinssatz  i  zu verwenden, kann man auch die Formel (9.2) der nachschüssigen Ver-

zinsung mit dem nachschüssigen Ersatzzinssatz  i∗ heranziehen. Zum Zeitpunkt  t = 1

gilt:
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 K

 i

 K

0

0 (1 +  i∗) ! 

=

⇒  i∗ =

(9.5)

1 −  i

1 −  i

Liegt eine vorschüssige Verzinsung bei einem jährlichen Zinssatz  i  vor, so wird der

Zinssatz  i∗ auch als nachschüssiger Ersatzzinssatz bezeichnet. 

 Beispiel 9.7.  Welcher nachschüssige Zinssatz  i∗ wäre nötig, damit das Kapital von

100 e in drei Jahren auf 120.40 e anwächst? 

100 (1 +  i∗)3 != 120.40

1 120.40

 i∗ = 3

− 1 = 0.06382

100

Alternativ kann der Ersatzzinssatz auch aus (9.5) berechnet werden:

0.06

 i∗ =

= 0.06382

1 − 0.06

☼

Im Allgemeinen und so auch im folgenden Text wird von einer nachschüssigen

Verzinsung ausgegangen. 

9.4.3 Gemischte Verzinsung

Für Zinsperioden, die sich aus unterjährigen Abschnitten und ganzjährigen Abschnit-

ten zusammensetzen, wird für die Periodenabschnitte unter einem Jahr in der Praxis

vielfach die einfache Verzinsung eingesetzt. Für die ganzjährigen Zinsperiodenab-

schnitte wird die exponentielle Verzinsung angewendet. Die einzelnen Zinsperioden

werden multiplikativ verkettet. 

 Beispiel 9.8.  Auf welchen Betrag wächst ein Kapital von 2 000 e an, das bei 6 Pro-

zent Zinsen vom 17.02.2000 bis 22.10.2003 angelegt wird? 

Der Zeitraum wird in drei Abschnitte unterteilt. Der erste unterjährige Zeitraum

geht vom 17.02.2000 bis zum 31.12.2000 und besitzt 319 Tage (mit 366 Tagen in

2000). Der zweite Zeitraum vom 01.01.2001 bis zum 31.12.2002 beträgt 2 Jahre (mit

jeweils 365 Tagen) und der dritte Zeitraum vom 01.01.2003 bis zum 22.10.2003 hat

295 Tage (mit 365 Tagen in 2003). Wird mit der Tageszählkonvention  akt  gearbeitet, 

 akt

so ergibt sich folgendes Endkapital:









319

295

 Kn = 2000 1 + 0.06 ×

1.062

1 + 0.06 ×

366

  

365





2. Zeitraum





1. Zeitraum

3. Zeitraum

= 2 479.39 e

Wird eine andere Tageszählkonvention verwendet, so ergibt sich ein anderes Ergeb-

nis. 

☼
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9.4.4 Unterjährige periodische Verzinsung

Bei der unterjährigen Verzinsung ( more frequent compounding) ist die Zinsperiode

kürzer als ein Jahr (Halbjahre, Quartale, Monate, Tage). Die Perioden innerhalb des

Jahres werden mit

 m = {2,4,12,52,365}

bezeichnet. Im angelsächsischen Finanzmarkt wird häufig mit halbjährigen Zinszah-

lungen gearbeitet. Man unterscheidet zwei Formen der Umrechnung des jährlichen

auf einen unterjährigen Zinssatz. 

1. Eine exakte Umrechnung des jährlichen Zinssatzes bei Anwendung der expo-

nentiellen Verzinsung auf eine unterjährige Periode wird mit dem konformen

Zinssatz vorgenommen. 

2. Eine in der Praxis weit verbreitete Annäherung eines jährlichen auf einen un-

terjährigen Zinssatz ist die Berechnung eines relativen Zinssatzes. 

9.4.4.1 Konformer Zinssatz

Der konforme Zinssatz für die Teilperiode  m  ergibt sich aus der konsequenten

Anwendung der exponentiellen Verzinsung. Die Methode wird auch als ISMA-

Methode2 bezeichnet. Der Jahreszinssatz  i  muss einer exponentiellen unterjährigen

Verzinsung entsprechen. 



 m

1 +  ikon

! 

 m

= 1 +  i

Die Auflösung der Gleichung nach  ikon

 m  liefert den konformen unterjährigen Zinssatz. 

√

 ikon

 m =  m  1 +  i − 1

Aus dem konformen Zinssatz für die Teilperiode  m  kann der Jahreszinssatz wie folgt

berechnet werden:



 m

 i = 1 +  ikon

 m

− 1

 Beispiel 9.9.  Der Jahreszinssatz beträgt 6 Prozent p. a. Der konforme Quartalszins-

satz ( m = 4) berechnet sich wie folgt:

√

 ikon

4

= 4 1.06− 1 = 0.0147 ⇒ 1.47 Prozent pro Quartal

Wird dieser Zinssatz wieder auf ein Jahr hochgerechnet, so erhält man wieder den

Zinssatz von 6 Prozent. 

√



 i = 4 1.06 4 − 1 = 1.01474 − 1 = 0.06

☼

2 ISMA: International Securities Market Association
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 Beispiel 9.10.  Eine finanzmathematisch konsistente Berechnung für das Beispiel 9.8

besteht darin, bei einem Jahreszinssatz von 6 Prozent den Kapitalbetrag über den

konformen Tageszinssatz zu berechnen. Dabei werden dann die Zinstage insgesamt

als Zinsperioden angegeben. Im vorliegenden Beispiel sind es 319+2×365+295=

1344 Zinstage. 

√

 q 365 = 365 1.06 = 1.00015965

 Kn = 2000 q 1344

365 = 2 478.63 e

Der Grund für die unterschiedlichen Beträge wird im folgenden Kapitel erklärt. ☼

9.4.4.2 Relativer Zinssatz

In der Praxis wird häufig der relative Zinssatz verwendet, der allerdings zu finanz-

mathematisch inkonsistenten Ergebnissen führt. Diese Vorgehensweise wird als US-

Methode bezeichnet. Dass der relative Zinssatz dennoch häufig in der Praxis ein-

gesetzt wird, kann nur mit dem Hang zum linearen, proportionalen Denken erklärt

werden. 

Der relative Zinssatz berechnet sich aus folgender Überlegung: Ein Kapital  K 0

wird zu einem Zinssatz  i (p. a.) verzinst, wobei der Zins nicht jährlich, sondern in-

nerhalb des Jahres schon nach  m  Perioden berechnet wird. Es wird dann der  m-te

Teil des Zinses  i  auf die Teilperioden angewendet. 

 m

 i

 irel

 m =  m

Wird nun die relative Verzinsung auf jede Teilperiode angewendet, dann tritt der

Zinseszinseffekt nach jeder Teilperiode auf und es fallen Zinseszinsen an. Der Be-

trag des so angelegten Kapitals wird einer Anlage mit einer jährlichen Verzinsung

gleichgesetzt. 



 m

1 +  irel

! 

 m

= (1 +  ieff )

Die Auflösung der Gleichung nach  ieff  liefert den effektiven Jahreszinssatz ( effec-

 tive annual interest rate) mit relativer Berechnungsweise. 





 i m

 ieff = 1 +

− 1

(9.6)

 m

Der effektive Jahreszinssatz liegt stets über dem Nominalzinssatz  i. Eine finanzma-

thematisch widerspruchsfreie Vorgehensweise liefert nur die Rechnung mit dem kon-

formen Zinssatz. 

 Beispiel 9.11.  Gegeben sei ein nomineller Jahreszinssatz von 6 Prozent. Der viertel-

jährliche relative Zinssatz beträgt:

0.06

 irel

4 =

= 0.015

4
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Bei vierteljährlichem Zinszuschlag von 1.5 Prozent ergibt sich der effektive Jahres-

zinssatz von:

 ieff = 1.0154 − 1 = 0.0614

Die viermalige Anwendung des relativen Quartalszinssatzes von 1.5 Prozent führt

zu einem jährlichen Effektivzinssatz von 6.14 Prozent und nicht zu 6 Prozent nomi-

nal. Wird zum Beispiel ein Kapital von 100 e für ein Jahr angelegt und nach jedem

Quartal zu 1.5 Prozent verzinst, ergibt sich ein Endkapital von

 K 1 = 100 × 1.0154 = 106.14 e. 

Wird hingegen der konforme Quartalszinssatz von 1.47 Prozent aus dem Beispiel

9.9 verwendet, stellt sich das gleiche Ergebnis wie bei einer jährlichen Verzinsung

ein. Diese Rechnung ist konsistent. 

√

4

 K

4

1 = 100

1.06 = 106 e

☼

 Beispiel 9.12.  Die Anwendung des relativen Zinssatzes mit den Angaben im Beispiel

9.10 führt zu folgendem Ergebnis:





0.06 1344

 qrel

 m =

1 + 365

 Kn = 2000 qrel

 m = 2 494.43 e

Das Ergebnis fällt aufgrund des größeren Tageszinssatzes höher aus als im Beispiel

9.10 errechnet. 

☼

 Beispiel 9.13.  Für einen Kredit wird eine vierteljährliche Zahlungsweise vereinbart. 

Bei einem Zinssatz von 3.5 Prozent p. a. und einer relativen Umrechnung des Zinssat-

zes auf die vierteljährliche Zahlunsgweise beträgt der effektive Jahreszinssatz nach

Gleichung (9.6):





0.035 4

 ieff = 1 +

− 1 = 0.0355

4

Der effektive Jahreszinssatz beträgt damit 3.55 Prozent. 

Achtung: Bei manchen Angeboten wird der Zinssatz auf das Vierteljahr bezogen. 

Dies geschieht meistens bei unseriösen Kreditangeboten. Der vierteljährige Zinssatz

von 3.5 Prozent führt zu einem jährlichen Zinssatz von 14.75 Prozent. 

 ieff = (1 + 0.035)4 − 1 = 0.1475

☼

Die Hochrechnung von unterjährigen auf eine jährliche Änderungsrate wird als

Annualisierung von Wachstumsraten bezeichnet. 
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 Beispiel 9.14.  Bei einer Aktie wird innerhalb von 10 Tagen ein Kursgewinn von 2

Prozent verzeichnet. Wie hoch wäre der jährliche Zuwachs (bei 360 Tagen), wenn

der Kurs weiterhin mit 2 Prozent steigen würde? 





 i ×  akt  360

 iann = 1 +

− 1

360





0.02 × 10 360

= 1 +

− 1 = 0.2213

360

Der jährliche Zuwachs würde bei 22.13 Prozent liegen. 

☼

Wird nun die unterjährige Verzinsung auf  n  Jahre angewendet, so ist das Endka-

pital  Kn× m  mit dem relativen Zinssatz wie folgt zu berechnen:





 i n× m

 Kn× m =  K 0 1 +  m

 Beispiel 9.15.  Es wird ein Kapital von  K 0 = 10 000 e auf  n = 3 Jahre zu einem

Zinssatz von  i = 0.06 p. a. angelegt. Wie hoch ist das Endkapital, wenn es jährlich

( m = 1), halbjährlich ( m = 2), vierteljährlich ( m = 4), monatlich ( m = 12) und täglich

( m = 365) verzinst wird? 

 m = 1 :

 K 3×1 =  K 0 1.063

= 11 910.16 e





0.06 3×2

 m = 2 :

 K 3×2 =  K 0 1 +

= 11 940.52 e

2





0.06 3×4

 m = 4 :

 K 3×4 =  K 0 1 +

= 11 956.18 e

4





0.06 3×12

 m = 12 :

 K 3×12 =  K 0 1 +

= 11 966.80 e

12





0.06 3×365

 m = 365 :  K 3×365 =  K 0 1 +

= 11 971.99 e

365

Wird mit dem konformen Zinssatz gerechnet, so ergibt sich stets der gleiche Be-

trag von 11 910.16 e. Das Ergebnis ist invariant gegenüber der Zahl der unterjährigen

Zinsperioden. 

√

3×2

√

3×4

 √

3×12

 K

2

4

12

3 =  K 0 1.063 =  K 0

1.06

=  K 0

1.06

=  K 0

1.06

 √

3×365

=  K

365

0

1.06

= 11 910.16 e

☼

Aus der unterjährigen relativen Verzinsung entsteht die stetige Verzinsung, 

wenn  m → ∞, d. h. 1 m → 0 strebt. Wenn nun  m → ∞ gilt, wächst dann das Endka-

pital unendlich an? Der Grenzwert von





1  m

lim 1 +

= e ≈ 2.718282

 m→∞

 m
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ist endlich und wird als Eulersche Zahl bezeichnet. Daher ist eine relative Verzin-

sung über unendlich viele kleine Teilperioden mit folgendem Zinsfaktor verbunden:





 i m

lim 1 +

= e i

 m→∞

 m

Folglich besitzt das Endkapital, auch wenn es in unendlich vielen Teilperioden – also

stetig – verzinst wird, einen endlichen Endwert. 

 Kn,∞ =  K 0 e i× n

 Beispiel 9.16.  Für die Angaben in Beispiel 9.15 ergibt sich bei stetiger Verzinsung

ein Endkapital von

 Kn,∞ = 10000e0.06×3 = 11 972.17 e

☼

Welcher stetige Zinssatz  istetig  führt zum gleichen Endwert wie die jährliche Ver-

zinsung mit  i  Prozent? 

 K 0 e istetig n !=  K 0 (1 +  i) n

Das Auflösen der obigen Gleichung nach  istetig  liefert das gesuchte Ergebnis:

 istetig = ln(1 +  i)

 Beispiel 9.17.  Für einen Zinssatz von  i = 0.06 berechnet sich ein stetiger Zinssatz

von:

 istetig = ln(1 + 0.06) = 0.0583

Dieser Zinssatz entspricht einer stetigen Verzinsung. Wird das Kapital von 10 000 e

mit diesem stetigen Zinssatz verzinst, so erhält man das gleiche Ergebnis wie in

Beispiel 9.15 bei konformer Verzinsung, weil e3 ln1.06 = 1.063 ist. 

 Kn,∞ = 10000e0.0583×3 = 11 910.16 e

☼

Übung 9.1. Bestimmen Sie, durch welche Summe man heute eine Zahlung von

1 000 e, die erst in 2 Jahren fällig wird, ablösen kann? Der Marktzinssatz beträgt 7

Prozent p. a. 

Übung 9.2. Berechnen Sie für den Zinssatz von 7 Prozent p. a. den relativen und

den konformen Monatszinssatz. 















172

9 Grundlagen der Finanzmathematik

9.5 Rentenrechnung

Unter einer Rente versteht man eine Reihe von gleichen Zahlungen, die regelmäßig

geleistet werden. Eine einzelne Zahlung heißt Rentenrate ( annuity) oder Rate und

wird hier mit  r  bezeichnet. 

In der Rentenrechnung betrachtet man die Situation, dass eine Zahlung in Höhe

von  r  e regelmäßig eingezahlt und verzinst wird. Die Fragen, die sich aus dieser

Situation ergeben, sind folgende:

1. Wie hoch ist dann der Rentenendwert  Rn? 

2. Wie hoch ist der Rentenbarwert  R 0? 

3. Wie hoch ist die Rentenrate  r, wenn ein Kapital  K 0 bei einer gegebenen Ver-

zinsung in  n  Jahren aufgezehrt wird? 

4. Wie viele Jahre  n  kann ein Kapital  K 0 bei gegebener Verzinsung mit einer

Rente in Höhe von  r  belastet werden? 

5. Wie hoch ist die Verzinsung  i  einer Rente bei gegebenem Rentenendwert und

Zeitraum? 

Bei der Beantwortung der Fragen ist zu beachten, ob die Zahlungen am Beginn

oder am Ende der Periode geleistet werden. Man spricht dann von vorschüssigen

(praenumerando) Renten und nachschüssigen (postnumerando) Renten. Es wird zu-

erst die vorschüssige Rente betrachtet. 

9.5.1 Rentenrechnung mit linearer Verzinsung

Die lineare Verzinsung wird in der Praxis eingesetzt, um einen Endwert einer Ren-

tenzahlung innerhalb der Jahresfrist zu berechnen. Der Zinseszinseffekt bleibt dabei

aber unberücksichtigt. Eine Berechnung unterjähriger Rentenzahlungen mit Zinses-

zinseffekt erfolgt mit der exponentiellen Rentenrechnung. 

Es wird nach dem Rentenendwert  Rvor bei linearer Verzinsung gefragt, der

bei Zahlung von  n  Raten in Höhe von  rvor, die zu Monatsbeginn eingezahlt werden, 

entsteht. Die erste Rate  rvor  wird  n  Perioden mal verzinst; die zweite Rate  n − 1

Perioden mal usw. 

5

#

$

#

$

 n  6

 n − 1

1

 Rvor

 n

=  rvor

1 +  i

+ 1 +  i

+ ... + 1 +  i

 m

 m

 m









(9.7)

 i

 n



 i n ( n + 1)

=  rvor n +

 t =  rvor n +

 m

 m

2

 t=1

In der letzten Zeile von (9.7) wurde der Endwert einer arithmetischen Reihe von

 n



 n ( n + 1)

 t =

2

 t=1

eingesetzt. 
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 Beispiel 9.18.  Es werden 15 Raten von  rvor = 5 e zu einem Zinssatz von  i = 0.06

angelegt. Es mit  akt  gerechnet. Wie hoch ist der Rentenendwert? 

360





0.06 15(15 + 1)

 Rvor

 n

= 5 15 +

= 75.10 e

360

2

☼

Werden die Raten  rnach  erst am Monatsende gezahlt, wird die erste Rate nur

 n − 1-mal verzinst und die Verzinsung der letzten Rate entfällt. Der Rentenendwert

ist dann





 i n ( n − 1)

 Rnach

 n

=  rnach n +

(9.8)

 m

2

Der Barwert eines Rentenendwerts ist bei linearer Diskontierung

 R

 R

 n

0 = 1 +  i n

 m

Somit sind die beiden Rentenbarwerte









 n +  i n( n+1)

 n

 n ( n−1)

 m

2

+  im  2

 Rvor

0

=  rvor

 Rnach

(9.9)

1 +  i n

0

=  rnach

1

 n

 m

+  im

Die Gleichungen (9.7) und (9.8) können auch nach  r  und  i  umgestellt werden. In

der Regel werden aufgrund des Barwertprinzips die Gleichungen (9.9) dazu verwen-

det. 

1 +  i n

1 +  i n

 rvor =  Rvor

 m

 m

0

 rnach =  Rnach

0

 n +  i n( n+1)

 n

 n ( n−1)

 m

2

+  im  2

 Rvor

 Rnach

 i =

0

−  rn

 i =

0

−  rn

 rvor n ( n+1)

 n

 rnach n ( n−1)

 n

 m

2

−  Rvor

0

 m

 m

2

−  Rnach

0

 m

Die Berechnung von  n  aus den Gleichungen (9.9) ist die Lösung einer quadratischen

Gleichung. Für die vorschüssige Rente mit linearer Verzinsung ist die Formel

2

3

2

 mr +  ir

3  mr +  ir

2  mRvor

 n = −

2 −  iRvor

0

+ 4

2 −  iRvor

0

+

0

 ir

 ir

 ir

und für die nachschüssige Rente lautet die Formel

2

3

2

 mr −  ir

3  mr −  ir

2  mRnach

 n = −

2 −  iRnach

0

+ 4

2 −  iRnach

0

+

0

 ir

 ir

 ir
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9.5.2 Rentenrechnung mit exponentieller Verzinsung

9.5.2.1 Vorschüssige Rente

Eine vorschüssige Rente mit exponentieller Verzinsung tritt zum Beispiel bei Spar-

verträgen oder Rentenzahlungen aus Kapitalanlagen auf. Sie wird am Periodenan-

fang geleistet. Die Grundstruktur der Zahlungen ist in Abb. 9.1 angegeben. Die Ren-

tenzahlung erfolgt  n-mal. Die Leistung zu Beginn der ersten Periode wird  n-mal

verzinst. Die Leistung zu Beginn der  n-ten Periode wird einmal verzinst. 

 rvor

 rvor

 rvor

 rvor

⏐

⏐

⏐

⏐

⏐



⏐



⏐



⏐



 qn

 qn−1

 qn−2

 q

0 −−−−−→ 1 −−−−−→ 2 −−−−−→ ··· n − 1 −−−−−−→  n

1. Periode

2. Periode

3. Periode

 n-te Periode

Abb. 9.1: Grundstruktur einer vorschüssigen Rente

In Abb. 9.2 sind die zwei Grundformen einer Rentenstruktur aufgezeichnet. In

der oberen Abbildung wird ein Sparplan dargestellt. Ein Gläubiger zahlt über  n  Pe-

rioden Raten der Höhe  r  ein. Zum Zeitpunkt  n  hat der Schuldner (zum Beispiel eine

Bank) das Ersparte (Rentenendwert)  Rvor

 n

auszuzahlen. Die Leistungen des Gläubi-

gers müssen den verzinsten Leistungen des Schuldners entsprechen. 

In der unteren Abbildung ist ein Rentenplan aufgezeigt. Zum Zeitpunkt  t = 0

wird ein Kapitalbetrag (Rentenbarwert)  Rvor

0

an eine Bank (Schuldner) gezahlt. Diese

zahlt an den Gläubiger über  n  Perioden Raten in Höhe von  r  aus. 

Nun kann der ersten Frage nachgegangen werden: Wie hoch ist der Rentenend-

wert einer vorschüssigen Rente ( future value)? Er ist das Äquivalent für  n  zu zah-

lende Rentenraten zum Zeitpunkt  n, der sich aus dem Endwert einer geometrischen

Reihe berechnet (siehe Gleichung 8.13). 

 Rvor

 n

=  rvor qn +  rvor qn−1 + ... +  rvor q 2 +  rvor q





=  rvor q qn−1 +  qn−2 + ... +  q + 1

 qn − 1

(9.10)

=  rvor

 q q−1

  

Rentenendwertfaktor

Der Rentenendwertfaktor einer vorschüssigen Rente gibt an, wie groß der Endwert

einer  n-mal vorschüssig gezahlten Rente in Höhe von 1 e bei einem Zinssatz von  i

ist. 

Der Rentenbarwert einer vorschüssigen Rente ( present value) ist der diskon-

tierte Rentenendwert. 
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Sparplan

 Rvor

 n

⏐

⏐

Schuldner-leistung

 qn

 qn−1

 qn−2

 q

0 −−−−−→ 1 −−−−−→ 2 −−−−−→ ··· n − 1 −−−−−−→  n

1. Periode

2. Periode

3. Periode

 n-te Periode



⏐



⏐



⏐



⏐

Gläubiger-⏐leistung

⏐

⏐

⏐

 rvor

 rvor

 rvor

 rvor

Rentenplan

 rvor

 rvor

 rvor

 rvor

⏐

⏐

⏐

⏐

⏐

⏐

⏐

⏐

Schuldner-leistung







 qn

 qn−1

 qn−2

 q

0 −−−−−→ 1 −−−−−→ 2 −−−−−→ ··· n − 1 −−−−−−→  n

1. Periode

2. Periode

3. Periode

 n-te Periode



⏐

Gläubiger-⏐leistung

 Rvor

0

Abb. 9.2: Struktur vorschüssiger Renten

1

 qn − 1

 Rvor

0

=

 Rvor

(9.11)

 qn n =  rvor

 q

 qn q − 1

  

Rentenbarwertfaktor

Die Frage nach der Rentenhöhe wird durch die Auflösung der Gleichung (9.10) bzw. 

(9.11) nach  rvor  bei gegebenem Endwert  Rvor

 n

bzw. Barwert  Rvor

0 , Perioden  n  und

Zinsfaktor  q  gelöst. 

1  q − 1

 qn q − 1

 rvor =  Rvor

 n

=  Rvor

(9.12)

 q qn − 1

0

 q qn − 1

 Beispiel 9.19.  Ein 50-jähriger Angestellter schließt einen Sparplan ab, bei dem er

über 15 Jahre hinweg jährlich vorschüssig  rvor = 3 000 e einzahlt und dafür ab sei-

nem 65. Lebensjahr 10 Jahre lang vorschüssig einen bestimmten Betrag erhalten

wird. Wie hoch ist dieser Betrag bei einer angenommenen Verzinsung von 6 Prozent

in der Sparphase und 7 Prozent in der Rentenphase? 

Die Beantwortung der Frage erfolgt in zwei Schritten. Zuerst wird der Renten-

endwert einer vorschüssigen Rente berechnet, wobei hier  q = 1.06 und  n = 15 Jahre

gilt. 

1.0615 − 1

 Rvor

15 = 3000 × 1.06

= 74 017.58 e

1.06 − 1































176

9 Grundlagen der Finanzmathematik

Dieser Rentenendwert stellt gleichzeitig den Barwert für die Auszahlungsphase dar. 

Mit  q = 1.07 und  n = 10 Jahren errechnet sich nach Gleichung (9.12) eine Rentenrate

von:

1.0710 1.07 − 1

 rvor = 74017.58

= 9 849.01 e / Jahr

1.07 1.0710 − 1

☼

Wie viele Jahre kann das Kapital  K 0 bei gegebener Verzinsung mit der Rente  r

belastet werden? Die Antwort auf diese Frage findet sich leicht, wenn die Gleichung

(9.10) bzw. (9.11) nach  n  aufgelöst wird. Bei gegebenen  q,  Rvor

 n

bzw.  Rvor

0

und  rvor

ist dann die Zahl der Zinsperioden  n  bestimmbar. Die Schritte der Umstellung nach

 n  für die Gleichung (9.10) sind wie folgt:





 Rvor

 n

 q − 1

1

 Rvor q − 1

+ 1 =  qn ⇔  n =

ln

 n

+ 1

 rvor

 q

ln  q

 rvor

 q

Die Umstellung der Gleichung (9.11) nach  n  erfolgt analog. 





1

 rvor q

 n =

ln

ln  q

 rvor q −  Rvor

0 ( q − 1)

 Beispiel 9.20.  Wird ein Kapitalbetrag in Höhe von  Rvor

0

= 74 071.58 e zu einem

Zinssatz von 7 Prozent angelegt und jährlich zu Beginn des Jahres eine Rente von

 rvor = 9 849.01 e entnommen, so wird das Kapital innerhalb von





1

9849.01 × 1.07

 n =

ln

= 10 Jahren

ln 1.07

9849.01 × 1.07 − 74017.58 × 0.07

aufgezehrt. Dies war genau die Vorgabe im Beispiel 9.19. 

☼

Wie hoch ist die Verzinsung  i  der Rente bei gegebenem Rentenendwert und Zeit-

raum  n? Die Beantwortung dieser letzten Frage ist schwieriger. Eine Auflösung der

Gleichung (9.11) nach  q  ist für  n > 2 im Allgemeinen nicht möglich. Daher wird die

Gleichung so umgestellt, dass sich ein Nullstellenproblem ergibt (implizite Funkti-

on), das mit einem entsprechenden Verfahren (regula falsi, Newton-Verfahren) gelöst

werden kann. Allerdings ist eine exakte Lösung des Problems nicht möglich. Die re-

ellen Nullstellen der Gleichung (9.13) liefern die gesuchte Verzinsung. Man spricht

hier auch von der Rendite des Kapitals, weil die Verzinsung aus den restlichen Grö-

ßen bestimmt wird. Insbesondere wenn das Kapital durch Gebühren, Steuern etc. 

belastet wird, muss zwischen der Nominalverzinsung, die zum Beispiel durch eine

Bank garantiert wird, und der Rendite (oder Effektivverzinsung) ( yield) unterschie-

den werden. Die Effektivverzinsung wird mit dem Äquivalenzansatz der Barwerte

 qn − 1

 Rvor ! 

0

=  rvor q

 qn q − 1

gelöst. Die Gleichung wird als implizite Funktion umgeschrieben, so dass ein Null-

stellenproblem zu lösen ist. 

 Rvor

 rvor

 qn+1 −

0

 qn +

 q != 0

(9.13)

 Rvor

0

−  rvor

 Rvor

0 −  rvor
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 Beispiel 9.21.  Ein Kapital von  Rvor

0

= 74 017.58 e soll in  n = 10 Jahren durch ei-

ne Rente von  rvor = 9 849.01 e aufgebraucht werden. Wie hoch muss die Rendite

(Effektivverzinsung) sein? 

74017.58

9849.01

 C 0( q) =  q 11 −

 q 10 +

 q != 0

(9.14)

74017.58 − 9849.01

74017.58 − 9849.01

C(q)

0.20

0.16

0.12

0.08

0.04

0

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

q

−0.04

Abb. 9.3: Polynom  C 0( q) (9.14) zur Renditebestimmung

Eine der reellen Nullstellen der Gleichung (9.14) liefert die gesuchte Rendite

(siehe Abb. 9.3). Mit dem Programm Scilab können die Nullstellen schnell berech-

net werden. Die Programmanweisungen stehen im nächsten Abschnitt. 

Mit der regula falsi erhält man nach dem ersten Iterationsschritt folgendes Er-

gebnis, wenn als Startwerte { q 1 = 1.06,  q 2 = 1.08} gewählt werden:

74017.58

 C 0(1.06) = 1.0611 −

1.0610

74017.58 − 9849.01

9849.01

+

1.06

74017.58 − 9849.01

= −0.0047244
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74017.58

 C 0(1.08) = 1.0811 −

1.0810

74017.58 − 9849.01

9849.01

+

1.08

74017.58 − 9849.01

= 0.0071135

1.08 − 1.06

 q(1) = 1.06 − (−0.0047244) 0.0071135−(−0.0047244)

= 1.0679818

Nach weiteren Iterationen stellt sich dann ein genaueres Ergebnis ein, das bei 1.07

liegt. 

☼

9.5.2.2 Renditeberechnung mit Scilab

In Scilab können die Nullstellen eines Polynoms sehr schnell berechnet werden. Die

folgenden Anweisungen zeigen, wie für das Beispiel 9.21 die effektive Verzinsung

bestimmt werden kann. 

// Angaben

q1=1.06; // Zinsfaktor Sparphase

n1=15; 

// Laufzeit Sparphase

q2=1.07; // Zinsfaktor Auszahlungsphase

n2=10; 

// Laufzeit Auszahlungsphase

// Berechnung des Rentenendwerts der Sparphase

// hier gleich Rentenbarwert der Auszahlungsphase

B=3000*q1*(q1^n1-1)/(q1-1); 

// Berechnung der Rente in der Auszahlungsphase

r=B*q2^n2/q2*(q2-1)/(q2^n2-1); 

// Polynom aufstellen

c=poly([0 r/(B-r) zeros(1,n2-2) -B/(B-r) 1],... 

"q","coeff"); 

// Berechnung der Nullstellen

qeff=roots(c); 

real(qeff(find(imag(qeff)==0)))

Mit roots() werden alle Nullstellen des Polynoms berechnet. Es liegen ins-

gesamt 10 reelle und imaginäre Nullstellen vor. Von diesen interessieren uns nur die

reellwertigen Nullstellen. Mit dem Befehl imag() == 0 werden alle imaginären

Nullstellen gefunden. Der find() Befehl (in Kombination mit dem vorherigen Be-

fehl) findet die Indexposition der imaginären Nullstellen, so dass der real() Befehl

jetzt nur noch die reellen Nullstellen anzeigt. 
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Die Gleichung (9.14) besitzt für {0.0,1.0,1.07} reelle Nullstellen. Von diesen ist

aber nur die Nullstelle  q = 1.07 ökonomisch sinnvoll.  q = 0 ist die triviale Lösung, 

die bedeutet, dass das Kapital vernichtet wird; mit  q = 1 liegt eine Verzinsung von

Null vor. Die gesuchte Rendite liegt bei 7 Prozent, wie zu erwarten war. 

9.5.2.3 Nachschüssige Rente

Eine nachschüssige Rente tritt bei Sparplänen und bei Rückzahlungen von Kredi-

ten auf. Sie wird am Periodenende geleistet und ist durch die Struktur in Abb. 9.4

gekennzeichnet. Die Rentenzahlung ( annuity) erfolgt  n-mal in  n  Perioden. Die Ver-

zinsung der ersten Rate erfolgt aber nur ( n − 1)-mal, da die Rate am Ende der ersten

Periode gezahlt wird. Die letzte Rate wird nicht mehr verzinst. Auch bei dieser Zah-

lungsweise können Ein- und Auszahlungspläne betrachtet werden. Die Zahlungs-

ströme sind in der Struktur identisch mit denen in Abb. 9.2, lediglich der Zeitpunkt

der Zahlungen  r  erfolgt am Periodenende. 

 rnach

 rnach

 rnach

 rnach

⏐

⏐

⏐

⏐

⏐



⏐



⏐



⏐



 qn−1

 qn−2

 q

0 −−−−−→ 1 −−−−−→ 2 −−−−−→ ··· n − 1 −−−−−−→  n

1. Periode

2. Periode

3. Periode

 n-te Periode

Abb. 9.4: Grundstruktur einer nachschüssigen Rente

Nun kann erneut der ersten Frage nachgegangen werden, und zwar diesmal für

eine nachschüssige Rente. Der Rentenendwert einer nachschüssigen Rente ( future

 value) wird wiederum aus dem Endwert einer geometrischen Reihe berechnet und

beträgt

 Rnach

 n

=  rnach qn−1 + ... +  rnach q +  rnach





=  rnach qn−1 + ... +  q + 1

(9.15)

=  rnach

 qn − 1

 q − 1

  

Rentenendwertfaktor

Gegenüber der vorschüssigen Rente fehlt der Faktor  q. Das erklärt sich daraus, dass

jede Zahlung eine Periode später erfolgt und damit einmal weniger aufgezinst wird. 

Logischerweise gilt damit  Rnach

 n

<  Rvor

 n . 

 Beispiel 9.22.  Eine vorschüssige Jahresrente von  rvor = 100 e soll in eine nachschüs-

sige Jahresrente  rnach  umgewandelt werden. Wie hoch muss die nachschüssige Rente

 rnach  sein? Es wird eine Verzinsung von 3 Prozent p. a. angenommen. 
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 rnach =  rvor q = 100 × 1.03 = 103 e

☼

Der Rentenbarwert einer nachschüssigen Rente ( present value) berechnet sich

durch Diskontierung des Rentenendwerts. 

1

 qn − 1

 Rnach

0

=

 Rnach

(9.16)

 qn n

=  rnach

1

 qn q − 1

  

Rentenbarwertfaktor

 Beispiel 9.23.  Frau Müller hat in der Lotterie gewonnen und erhält jetzt ein Leben

lang monatlich zu Monatsbeginn 5 000 e. Die Lotteriegesellschaft bietet ihr einen

Sofortbetrag als Alternative an. 

Wie groß ist dieser, wenn eine Restlebenserwartung von 40 Jahren und ein Kal-

kulationszinssatz von 6 Prozent angenommen wird? 

Es gibt drei Möglichkeiten eine Lösung zu berechnen. 

1. Die monatliche Rente wird mittels der einfachen Verzinsung mit Gleichung

(9.7) auf eine Jahresrate hochgerechnet. Diese Vorgehensweise wird manch-

mal in der Praxis eingesetzt. 

 Rvor

12 = 5000 (12 + 0.06 × 6.5) = 61 950 e

Da die Jahresrate erst am Ende des Jahres zur Verfügung steht, muss man nun

mit einer nachschüssigen Jahresrente rechnen. 

1

1.0640 − 1

 Rnach

0

= 61950

= 932 118.09 e

1.0640 1.06 − 1

Als Ablösesumme wird ein Betrag von 932 118.09 e angeboten. 

2. Die zweite Möglichkeit besteht darin, die monatliche Rate mit einem konfor-

men Monatszinssatz in eine konforme Jahresrate umzurechnen. Die Berech-

nung mit dem konformen Zinssatz entspricht dem internationalen Standard

und wird auch als ISMA-Methode bezeichnet. 

√

 qkon

12 = 12 1.06 = 1.0048676

1.004867612 − 1

 Rvor

12 = 5000 × 1.0048676 1.0048676 − 1

= 61 932.64 e

Von dieser Jahresrate wird nun wieder der nachschüssige Rentenbarwert be-

rechnet. 

1

1.0640 − 1

 Rnach

0

= 61932.64 1.0640 1.06−1

= 931 856.91 e
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Nach dieser exakten Rechnung fällt die Ablösesumme mit 931 856.91 e etwas

niedriger aus, weil die Jahresrate aufgrund des niedrigeren konformen Monats-

zinssatzes geringer ist. Bei der einfachen Verzinsung wird mit einem relativen

Zinssatz gerechnet, der aufgrund des unberücksichtigten Zinseszinseffekts hö-

her ausfallen muss. 

Eine Variante besteht darin, die gesamte Rechnung auf Monatsbasis vorzu-

nehmen. Jetzt muss die Rechnung mit einer vorschüssigen Rente durchgeführt

werden. Es liegt dann ein Zeitraum von 12 × 40 = 480 Monaten vor. Diese

Rechnung muss aufgrund der konformen Umrechnung das gleiche Ergebnis

wie die vorherige Rechnung liefern. 

1.0048676 1.0048676480 − 1

 Rvor

0

= 5000 1.0048676480 1.0048676−1

= 931 856.91 e

3. Die dritte Möglichkeit besteht darin, mit dem relativen Zinssatz zu rechnen

(US-Methode). Der relative Zinsfaktor beträgt:





0.06

 qrel

12 =

1 +

= 1.005

12

Mit diesem relativen Monatszinssatz wird nun die Jahresrate berechnet. 

1.00512 − 1

 Rvor

12 = 5000 × 1.005 1.005 − 1

= 61 986.20 e

Mit dieser Jahresrate kann nun wieder der Rentenbarwert berechnet werden. 

1

1.0640 − 1

 Rnach

0

= 61986.20 1.0640 1.06−1

= 932 662.78 e

Wird die gesamte Rechnung auf Monatsbasis durchgeführt, so zeigt sich sehr

deutlich die Inkonsistenz der Rechnung mit dem relativen Zinssatz. 

1.005 1.005480 − 1

 Rvor

0

= 5000 1.005480 1.005−1

= 913 281.61 e

Aufgrund des höheren relativen Monatszinssatzes wird der Barwert stärker

diskontiert und fällt deshalb niedriger aus als nach der exakten Rechnung. 

☼

Die dritte Frage nach der Rentenrate ist leicht zu beantworten, wenn die Glei-

chung (9.15) bzw. (9.16) nach  rnach  bei gegebenen  Rnach

 n

bzw.  Rnach

0

,  n  und  q  umge-

stellt wird. 
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 q − 1

 rnach =  Rnach

 n

=  Rnach

(9.17)

 qn − 1

0

 qn q − 1

 qn − 1

Die vierte Frage kann – wie bei der vorschüssigen Rente – mit der Auflösung der

Gleichung (9.15) bzw. (9.16) nach  n  beantwortet werden:









1

 q − 1

1

 rnach

 n =

ln  Rnach

+ 1 =

ln

ln  q

 n

 rnach

ln  q

 rnach −  Rnach

0

( q − 1)

 Beispiel 9.24.  Angenommen, ein Barwert in Höhe von  Rnach

0

= 932 118.09 e wird

gewonnen (vgl. Beispiel 9.23), der zu einem Zinssatz von 6 Prozent angelegt werden

kann. Es ist geplant, eine jährliche Rente von 61 950 e im Dezember (also nach-

schüssig) zu beziehen. Wie viele Jahre kann man die Rente erhalten? 





1

61950

 n =

ln

= 40 Jahre

ln 1.06

61950 − 932118.09 × 0.06

Die Rente kann zu den gegebenen Bedingungen wie erwartet über 40 Jahre bezogen

werden. 

☼

Die fünfte Frage nach der Verzinsung ( yield) ergibt sich wieder als Nullstellen-

problem. Die Gleichung (9.16) wird als Äquivalenzansatz der Barwerte interpre-

tiert und als implizite Funktion umgeschrieben. Man erhält das folgende rationale

Polynom in Abhängigkeit von  q, dessen reelle Nullstellen die gesuchte Verzinsung

liefern. 





 rnach

 rnach

 qn+1 − 1 +

 qn +

! 

= 0

 Rnach

0

 Rnach

0

 Beispiel 9.25.  Die Fragestellung im Beispiel 9.23 wird nun verändert. Es sind  n =

40 Jahre,  rnach = 61 950 e und  Rnach

0

= 932 118.09 e gegeben. Die gesuchte Größe

ist die Rendite (Verzinsung) des Kapitals. Es muss dazu eine ökonomisch sinnvolle

Nullstelle des folgenden Polynoms bestimmt werden. 





61950

61950

 q 41 − 1 +

 q 40 +

! 

= 0

(9.18)

932118.09

932118.09

Das Programm Scilab liefert hier folgende reelle Nullstellen:  q 1 = 1.06,  q 2 = 1.0

und  q 3 = −0.918 (siehe Abb. 9.5). Wiederum ist nur die reelle Nullstelle  q = 1.06

sinnvoll. Es ist die bekannte Verzinsung von 6 Prozent. Auch der Ansatz nach der

ISMA-Methode liefert die Verzinsung von 6 Prozent. 

931856.91

5000

 q 481 −

 q 480 +

 q != 0

931856.91 − 5000

931856.91 − 5000

☼

 Beispiel 9.26.  Es soll die Rendite aus einem Bonussparplan berechnet werden. Dafür

wird über 10 Jahre monatlich eine Rate von  rnach  zu einem Zinssatz von 3 Prozent
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C(q)

0.4

0.3

0.2

0.1

0

−1.0

−0.6

−0.2

0.2

0.6

1.0

1.4

q

−0.1

Abb. 9.5: Polynom  C 0( q) (9.18) zur Renditebestimmung

nominal p. a. angelegt. Am Ende des 10. Jahres wird ein Bonus in Höhe von 12

Prozent des eingezahlten Betrags gezahlt. 

 Bonusn = 0.12 nmrnach

Man kann hier wieder exakt mit dem konformen Monatszinssatz oder näherungswei-

se mit einer nachschüssigen Jahresrate rechnen. 

1. Exakte Rechnung (ISMA-Methode): Der konforme Monatszinssatz beträgt

√

 ikon

12 = 12 1.03 − 1 = 0.002466

Der Endwert der Rente plus Bonus beträgt

 RBonus

120

=  R 120 +  Bonus 120

=  rnach  1.002466120 − 1 + 0.12 × 120 rnach

1.002466 − 1

=  rnach  153.8479

Dies ist die Leistung der Bank. Der Barwert der Bankleistung (= Barwert des

Sparplans)  Rnach

0

=  RBonus

120

muss nach dem Äquivalenzprinzip einem Renten-

 q 120

12

barwert ohne Bonus entsprechen. 
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 q 120

 Rnach

12 − 1

0

=  rnach  1

 q 120  q

12

12 − 1

Dies ist die Leistung des Kunden. 

Leistung der Bank != Leistung des Kunden

 R 120 +  Bonus 120 !  rnach q 120

=

12 − 1

 q 120

 q

12

 q 120

12

12 − 1

 q 12 beinhaltet die gesuchte monatliche Rendite. Bei der Äquivalenz entfallen

 rnach  und der Diskontierungsfaktor 1 . 

 q 120

12

 q 120

153.8479 = 12 − 1

(9.19)

 q 12 − 1

Die Gleichung (9.19) wird nun umgestellt, damit ein Nullstellenproblem ent-

steht. 

 C 0( q 12) =  q 120

12 − 153.8479  q 12 + 153.8479 − 1 ! 

= 0

Mit dem Programm Scilab werden die reellen Nullstellen

 q 12 = {1.0,1.004021}

berechnet. Nur der zweite Wert ist ökonomisch sinnvoll. Aus  q 12 = 1.004021

wird nun der konforme Jahreszinssatz bestimmt. 

 q = 1.00402112 = 1.04934

Die Rendite (p. a.) liegt bei etwa 4.93 Prozent. Mit der regula falsi und den

Startwerten  q 12 = {1.005,1.004} (auch hier müssen Monatsverzinsungen ein-

gesetzt werden) ergibt sich bei einer Iteration folgendes Ergebnis:

 C 0(1.005) = 1.005120 − 153.8479 × 1.005

+ 153.8479968 − 1

= 0.0501567

 C 0(1.004) = 1.004120 − 153.8479 × 1.004

+ 153.8479 − 1

= −0.0008642

Die erste Näherung der gesuchten Nullstelle ist somit

 q(1)

12 = 1.004 − (−0.0008642)

1.005 − 1.004

× 0.0501567−(−0.0008642)

= 1.004016

Der monatliche Zinssatz beträgt also nach einer Iteration 0.4016 Prozent (ent-

spricht  i = 1.00401612 − 1 = 0.04927 p. a.). Für ein genaueres Ergebnis müs-

sen weitere Iterationsschritte berechnet werden. 
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2. Näherungsrechnung: Näherungsweise kann die monatliche Rate auch mittels

der Gleichung (9.7) in eine Jahresrate umgerechnet werden. Es wird dann mit

 q = 1.03 gerechnet. Der Barwert einer Rente mit Bonus beträgt nun:



 1 1.0310 − 1

 RBonus

0

=  rnach  12 + 5.5(1.03 − 1)





  q 10 1.03 − 1

 Rnach

+

(9.20)

0.12 × 120 ×  rnach  1

 q 10

= 153.8581 rnach  1

 q 10

Der Endwert muss nach dem Äquivalenzprinzip einem Rentenbarwert ohne

Bonus entsprechen. Der Zinssatz, der diese Äquivalenz erfüllt, ist dann die

gesuchte Rendite. 



 1  q 10 − 1

 Rnach

0

=  rnach  12 + 5.5( q − 1)

(9.21)

 q 10  q − 1

Aus der Äquivalenz der Gleichungen (9.20) und (9.21) ergibt sich dann fol-

gendes Nullstellenproblem:

 rnach



 1  q 10 − 1

153.8581

=  rnach  12 + 5.5( q − 1)

 q 10

 q 10  q − 1

 C 0( q) = 5.5 q 11 + (12 − 5.5) q 10 − (153.8581 + 5.5) q

+ (153.8581 − 12 + 5.5) != 0

Scilab errechnet folgende Nullstellen: {−1.6581, 1.0, 1.049321}. Nur  q =

1.049321 ist ökonomisch sinnvoll. Die gesuchte Rendite beträgt  i = 4.9321

Prozent p. a. 

☼

 Beispiel 9.27.  Im folgenden Beispiel wird ein Sparplan mit einer Gebühr (negativer

Bonus) betrachtet. Der Äquivalenzansatz der Barwerte ist nun wie folgt:

Leistung der Bank != Leistung des Kunden

 Rn !  r qn

=

 m − 1 +  Gebühr

 qnm

 qnm qm − 1

In  qm  ist der effektive Zinssatz enthalten. Durch ein Nullstellenproblem wird dieser

ermittelt. Im Vergleich zu Beispiel 9.26 hat der Kunde nun eine zusätzliche Leistung

zu erbringen. Beim Bonussparplan musste die Bank die zusätzliche Leistung erbrin-

gen. 

☼

 Beispiel 9.28.  In diesem Beispiel wird eine Sparrate von 100 e über 10 Jahre zu 10

Prozent verzinst. Jedoch wird eine jährliche Gebühr von 1 Prozent auf das eingezahl-

te Kapital eingezogen. Wie hoch ist die insgesamt gezahlte Gebühr (Barwert)? Wie

hoch wäre eine äquivalente periodische Gebühr in Euro (Rate)? 
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Der Bruttobarwert der Sparrate beträgt:

1

1.110 − 1

 Rbrutto

0

= 100

= 614.46 e

1.1010 1.1 − 1

Die Nettoverzinsung beträgt 9 Prozent. Somit ist der Nettobarwert der Sparrate:

1

1.0910 − 1

 Rnetto

0

= 100

= 641.77 e

(9.22)

1.0910 1.09 − 1

Der Barwert der Gebühr berechnet sich aus der Differenz der beiden Barwerte

und liegt bei 27.31 e. Die äquivalente periodische Gebühr kann nun aus der Verren-

tung des Barwerts der Gebühr berechnet werden. 

 rGebühr = 27.31 × 1.110 1.1 − 1 = 4.44 e / Jahr

1.110 − 1

Alternativ kann man auch direkt die jährliche Nettorate mit einem Äquivalenzansatz

berechnen:

1.110 − 1

1

1.0910 − 1

 rnetto  1

! 

= 100

1.110 1.1 − 1

1.0910 1.09 − 1

1.0910 − 1 1.110 1.1 − 1

 rnetto = 100

= 104.44 e / Jahr = 100 +  rGebühr

1.09 − 1 1.0910 1.110 − 1

Nach dem Äquivalenzansatz muss die Sparrate von 104.44 e (inklusive Gebühr)

bei einem Zinssatz von 10 Prozent äquivalent mit der Sparrate von 100 e bei einem

Zinssatz von 9 Prozent sein. 

1

1.110 − 1

1

1.0910 − 1

104.44

! 

= 100

1.110 1.1 − 1

1.0910 1.09 − 1

☼

Übung 9.3. Es sollen 1 000 e in 2 Jahren bei einer Bank angespart werden, die

bei vierteljährlicher Zurechnung der Zinsen 7 Prozent anbietet. Berechnen Sie die

Höhe der vierteljährlichen Raten, wenn sie jeweils am Ende des Quartals erfolgen. 

Rechnen Sie einmal mit dem relativen Zinssatz und einmal mit dem konformen

Zinssatz. 

Übung 9.4. Bei 4 Prozent p. a. werden auf ein Konto folgende Beträge eingezahlt:

2 000 e am 01.01.2005, 4 000 e am 01.01.2007, 6 000 e am 01.01.2008. 

1. Das angesparte Kapital soll ab dem 01.01.2010 (es wird weiterhin mit 4 Pro-

zent p. a. verzinst) über 10 Jahre in gleichmäßigen Raten zu Beginn des Mo-

nats aufgebraucht werden. Wie hoch ist die Rente nach der ISMA-Methode? 

2. Aus dem angesparten Kapital sollen ab dem 01.01.2010 jeweils zu Beginn

des Jahres 1 000 e abgehoben werden. Wie lange können ganzzahlige Beträ-

ge abgehoben werden? 
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Übung 9.5. Es werden 1 000 e geerbt. Man entscheidet sich, das Kapital anzulegen

und durch eine nachschüssige jährliche Rente in Höhe von 600 e über 2 Jahre

aufzubrauchen. Wie hoch muss die Verzinsung des Kapitals sein? 

9.6 Besondere Renten

9.6.1 Wachsende Rente

Für eine wachsende Rente ( constant growing annuity) wird angenommen, dass die

Rente  r  mit dem Faktor  g = 1+  p  wächst. Grund für eine solche Anforderung könnte

zum Beispiel ein Inflationsausgleich (Kaufkraftverlust) sein. Der Endwert der wach-

senden nachschüssigen Rente ist

 Rnach

 n

=  rnach qn−1 +  rnach qn−2  g + ...+  rnach qgn−2 +  rnach gn−1





 qn−1

 qn−2

 q

=  rnach gn−1

+

+ ... + + 1

 gn−1

 gn−2

 g

 

 q n − 1

=

 g

 rnach gn−1  q

=  rnach qn −  gn

 q

 g − 1

−  g

Der Barwert dieser wachsenden Rente ist der mit dem Zinsfaktor  qn  diskontierte

Endwert. 

 Rnach

 rnach qn −  gn

 Rnach

 n

0

=

=

 qn

 qn

 q −  g

 Beispiel 9.29.  Es ist die Rente gesucht, die ein Kapital von 10 000 e über 15 Jahre

hin aufbraucht. Das Kapital ist zu einem Festzinssatz von 5 Prozent p. a. angelegt. 

Es wird eine Inflationsrate von 2 Prozent pro Jahr angenommen. 

1.05 − 1.02

 rnach = 10000 × 1.0515×

= 850.79 e

1.0515 − 1.0215

Ohne Kaufkraftverlust würden 963.42 e pro Jahr zur Verfügung stehen. Aufgrund

der angenommenen Inflation sind es aber nur 850.79 e. 

☼

Bei einer vorschüssigen Rente wird aufgrund der vorgezogenen Zahlungsstruk-

tur die letzte Rate auch verzinst, so dass im Ergebnis der Endwert und der Barwert

zusätzlich mit dem Faktor  q  zu multiplizieren sind. 

 qn −  gn

 Rvor

0

=  rvor q

 qn q −  g
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9.6.2 Ewige Rente

Bei einer ewigen Rente ( perpetuity) geht die Anzahl der Perioden gegen unendlich. 

Um die Grenzwerte der Barwerte einer vor- und nachschüssigen Rente zu berechnen, 

ist es sinnvoll, den Ausdruck ( qn−1)

 qn

in den Gleichungen (9.11) und (9.16) wie folgt

umzuformen:





 qn − 1

1

= 1 −

(9.23)

 qn

 qn

Für  n → ∞ strebt der Ausdruck in der Gleichung (9.23) für  q > 1 gegen 1, weil

lim

1

 n→∞  qn → 0 gilt. 





1

lim 1 −

= 1

 n→∞

 qn

Damit vereinfachen sich die beiden Formeln (9.11) und (9.16). Sie liefern die Bar-

werte einer ewigen vor- bzw. nachschüssigen Rente. 

1

 Rvor

0,∞ =  rvor

 q

 Rnach

=

 q − 1

0,∞ =  rnach

1

 q − 1

 i

 Beispiel 9.30.  Fortsetzung von Beispiel 9.23. Wie groß ist der Barwert der Rente, 

wenn sie als ewige Rente angeboten worden wird? 

1.0048676

 Rvor

0,∞ = 5000

= 1 032 210.70 e

1.0048676 − 1

☼

Der Barwert einer ewig wachsenden Rente existiert, wenn  g <  q  ist. Der Grenz-

wert des Faktors strebt für die Annahme gegen 1, weil  gq < 1 gilt. 



 qn −  gn

 g n

lim

= 1 − lim

= 1

 n→∞

 qn

 n→∞

 q

Der Barwert der ewig wachsenden Rente ist somit

 qn −  gn

 Rvor

0,∞ = lim  rvor q

=  rvor q

 n→∞

 qn q −  g

 q −  g

 rnach qn −  gn

 rnach

 rnach

 Rnach

0,∞ = lim

=

=

 n→∞  qn

 q −  g

 q −  g

 i −  p

 Beispiel 9.31. r  sei die heutige Dividende einer Aktie. Sie betrage 3 e. Das Unter-

nehmen hat ein jährliches Ertragswachstum von 7 Prozent prognostiziert. Wie hoch

sollte der Wert der Aktie heute sein? Solange das Unternehmen existiert, wird die

Dividende gezahlt. Daher unterstellt man eine ewige Rente. Als Diskontierungsatz

wird ein Zinssatz von 11 Prozent3 angenommen. 

3 Der Zinssatz repräsentiert hier die Kapitalkosten eines Unternehmens. Diese setzen sich

aus einer Eigenkapitalverzinsung und den Fremdkapitalzinsen zusammen (siehe auch Ab-

schnitt 9.9 Investitionsrechnung). 
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1.11

 Rvor

0,∞ = 3 ×

= 83.25 e

1.11 − 1.07

☼

9.7 Kurs- und Renditeberechnung eines Wertpapiers

9.7.1 Kursberechnung

Der Wert eines Wertpapiers ist der Barwert aller zukünftigen Leistungen, also der

Rückzahlungskurs und die Zinszahlungen. 

 rnach

 rnach

 rnach

 rnach +  K 0

 qn

⏐

⏐

⏐

⏐

⏐

⏐

⏐

⏐

Schuldner-leistungen







 q−1

 q−2

 q−3

 q− n

0 −−−−−→ 1 −−−−−→ 2 −−−−−→ ··· n − 1 −−−−−−→

 n

1. Periode

2. Periode

3. Periode

 n-te Periode



⏐

Gläubiger-⏐leistung

 C 0

Abb. 9.6: Struktur eines Wertpapiers

Bei einem festverzinslichen Wertpapier ist die regelmäßige Zinszahlung die Ren-

te  rnach, die am Ende der Periode gezahlt wird.  rnach  ist die Nominalverzinsung des

Wertpapiers. Der Rentenbarwert wird also folglich über die Rentenbarwertformel

(9.16) einer nachschüssigen Rente berechnet. Zusätzlich zum Rentenbarwert muss

noch der Rückzahlungskurs (Nennbetrag)  K 0, der in der Regel 100 e beträgt, dis-

kontiert hinzugerechnet werden. Damit ergibt sich der (Brutto-) Kurs eines festver-

zinslichen Wertpapiers als

 qn − 1

1

 C 0( q) =  rnach  1

+

 K

(9.24)

 qn q − 1

0  qn







  

Barwert Zinsen

Barwert Nennwert

In den Zinsfaktor  q  der Gleichung (9.24) geht der aktuelle Marktzins ein, da das

Wertpapier mit einer Geldanlage zu Marktbedingungen verglichen werden muss. 

 Beispiel 9.32.  Es wird ein Wertpapier zu einem Nennbetrag von 100 e angenommen, 

das zu 6 Prozent p. a. nominal verzinst wird. Es besitzt eine Laufzeit von 10 Jahren. 

Wie hoch ist der Kurs des Wertpapiers, wenn ein Marktzinssatz von 5 Prozent, 6

Prozent und 7 Prozent unterstellt wird? 

1

1.0510 − 1

1

 C 0(1.05) = 6

+ 100

1.0510 1.05 − 1

1.0510

= 46.33 + 61.39 = 107.72 e
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 C 0(1.06) = 44.16 + 55.84 = 100.00 e

 C 0(1.07) = 42.14 + 50.83 = 92.98 e

Liegt der Marktzinssatz über dem Nominalzinssatz, so liegt der Kurs des Wertpapiers

unter dem Rückzahlungsbetrag, hier 100 e. Durch den Kursabschlag erfolgt eine

Erhöhung der Effektivverzinsung. Die Höhe des Kursabschlags beträgt 7.02 e. Er

entspricht dem Barwert der Nominalzinsdifferenz. 

1

1.0710 − 1

(7 − 6)

= 7.02 e

1.0710 1.07 − 1

Ein Wertpapier mit der obigen Ausstattung besitzt bei einem Kurs von 92.98 e

eine Rendite von 7 Prozent. Man kann den Kursabschlag auch über Kurswert (Preis)

und Nachfrage erklären. Zu einem Preis von 100 e fragt bei einem Marktzinssatz

von 7 Prozent niemand ein Wertpapier mit einer Verzinsung von 6 Prozent nach. Erst

bei einem entsprechenden Preisnachlass wird das Angebot wieder attraktiv. 

Ein Wertpapier mit einer Nominalverzinsung von 6 Prozent bei einem Marktzins-

satz von 5 Prozent wird ohne Kursaufschlag eine Rendite über Marktniveau besitzen. 

Bei einem Kursaufschlag in Höhe von 7.72 e reduziert sich die Rendite auf 5 Pro-

zent. 

☼

Wie verändert sich der Kurs eines Wertpapiers mit abnehmender Restlaufzeit? 

Der Kursauf- bzw. Kursabschlag wird abnehmen, da die Barwertdifferenz immer

geringer wird. Der Kurs nähert sich somit immer mehr dem Rückzahlungsbetrag. 

 Beispiel 9.33.  Die Kursentwicklung des Wertpapiers aus dem Beispiel 9.32 ist hier

für die beiden Marktzinssätze 5 Prozent und 7 Prozent in Tabelle 9.1 und in Abb. 

9.7 wieder gegeben. Die Wertpapierkurse nähern sich mit abnehmender Restlaufzeit

( n → 0) dem Rückzahlungsbetrag von 100 e. 

☼

Tabelle 9.1: Kursentwicklung des Wertpapiers in Beispiel 9.32

Restlaufzeit

Kurs

10

9

8

7

6

5

4

3

2

1

bei 5% 107.72 107.11 106.46 105.79 105.08 104.33 103.55 102.72 101.86 100.95

bei 7% 92.98 93.48 94.03 94.61 95.23 95.90 96.61 97.38 98.19 99.07

Wie entwickelt sich aber der Kurs eines Wertpapiers innerhalb einer Zinsperiode? 

Am Ende jeder Zinsperiode wird der entsprechende Zinsbetrag bzw. die Rente (auch

Kupon genannt) bezahlt. Vor diesem Zinstermin besitzt das Wertpapier noch diesen

Kupon und ist entsprechend mehr wert. Wird das Wertpapier nun vor diesem Zins-

termin verkauft, so muss der Kupon anteilig auf die Zinsperiode aufgeteilt werden. 

In der Praxis bedient man sich hier der einfachen Verzinsung (siehe Kapitel 9.2 und

9.3) und berechnet die so genannten Stückzinsen ( accrued interest). Seit Anfang
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Abb. 9.7: Kursentwicklung des Wertpapiers in Beispiel 9.33

1999 wird (gemäß der ISMA-Regel 251) für die Stückzinsberechnung die Anzahl

der Tage taggenau (  akt ) ermittelt. Dies gilt sowohl für die Tage im Jahr als auch für

 akt

die Tage zwischen dem letzten Zinstermin und dem Zinsvalutatag. Bei Geldmarkt-

papieren (U-Schätze) wird die Tageszählkonvention  akt  angewendet. Dies gilt auch

360

für variabel verzinsliche Anleihen mit Referenzzinssatz EURIBOR. Die Stückzin-

sen werden vom Kurs abgezogen und ergeben dann den so genannten Nettokurs. 

Weitere Informationen zur Stückzinsenberechnung von Bundesanleihen gibt es zum

Beispiel unter:

http://www.deutsche-finanzagentur.de

 Beispiel 9.34.  Am 18. August 1999 wird für nominal 5 000 e eine 4.50 Prozent An-

leihe des Bundes mit ganzjährigem Zinstermin 4. Juli gekauft. Die nächste Zins-

zahlung ist am 4. Juli 2000. Die Zahlung des Kaufpreises (Valutierungstag) erfolgt

gemäß der üblichen 2-tägigen Valutierungsfrist am 20. August 1999, Zinsvalutatag

ist der 19. August 1999. Dem Käufer werden in seiner Wertpapierabrechnung Stück-

zinsen für 47 Tage für die Zeit vom Beginn des Zinslaufs am 4. Juli 1999 bis ein-

schließlich Zinsvalutatag 19. August 1999 berechnet. Das sind:

47

 Stückzinsen = 5000 × 0.045 ×

= 28.89 e

366
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Da die Zinsperiode vom 4. Juli 1999 bis einschließlich 3. Juli 2000 läuft, muss gemäß

der taggenauen Methode  akt  hier das Jahr mit 366 Tagen gerechnet werden, da in die

 akt

Zinsperiode der 29. Februar 2000 fällt. 

☼

Der Käufer wird bei dieser Rechnung zu stark belastet, da er den Zinskupon erst

am 4. Juli 2000 erhält. Dies ist jedoch die Vorgehensweise in der Praxis. Nach dem

Barwertansatz sind die Stückzinsen mit dem Marktzinssatz für den Zeitraum vom

Kauf bis zum Zinstermin zu diskontieren. 

 Beispiel 9.35.  In dem obigen Beispiel sind bei einem unterstellten Marktzinssatz von

3 Prozent die Stückzinsen wie folgt zu diskontieren:

366

 Barwert der Stückzinsen = 28.89 × 1.03 −47

366

= 27.80 e

☼

9.7.2 Renditeberechnung für ein Wertpapier

Bei der Renditeberechnung wird für einen gegebenen Kurs die Verzinsung der Leis-

tungen aus einem Wertpapier gesucht. Es handelt sich um ein Nullstellenproblem der

Gleichung (9.24). 

 rnach qn − 1

 K

+ 0 − C

 qn q − 1

 qn

0( q) ! 

= 0

Die aus der Gleichung ermittelte Verzinsung wird Rendite ( yield) genannt. 

 Beispiel 9.36.  Es wird für ein Wertpapier die Rendite gesucht, das einen Nennbetrag

von 100 e und eine Laufzeit von 5 Jahren besitzt, mit einem Nominalzinssatz von

5.25 Prozent ausgestattet, und das zu einem Kurs von 100.40 e angeboten wird. Es

ist also folgende Gleichung zu lösen:

5.25  q 5 − 1

100

+

− 100.40 != 0

(9.25)

 q 5  q − 1

 q 5

Es wird die regula falsi zur Berechnung der Rendite angewendet. Aufgrund der Über-

legungen aus Beispiel 9.33 kann folgende Abschätzung vorgenommen werden: Da

der Kurs über 100 e liegt, muss  i < 0.0525 sein. Wird  i = 0.05 gewählt, so ergibt

sich nach Gleichung (9.24) ein Kurs von  C 0(1.05) = 101.08 e bzw. nach Gleichung

(9.25) eine Abweichung vom gesuchten Kurs in Höhe von 0.68. Da 101.08 > 100.4

ist, liegt die gesuchte Verzinsung zwischen 0.05 <  i < 0.0525. Es wird als zweiter

Startwert  i = 0.052 gewählt. Damit ergibt sich ein Kurs von  C 0(1.052) = 100.22 e

bzw. eine Kursabweichung in Höhe von −0.18. Mit den gefundenen Startwerten

kann nun die erste lineare Interpolation vorgenommen werden. 

1.052 − 1.05

 q(1) = 1.05 − 0.68

= 1.05158

(9.26)

−0.18 − 0.68
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Abb. 9.8: Rendite des Wertpapiers in Gleichung (9.26)

Nach der ersten Iteration hat das Wertpapier eine Rendite von ca. 5.158 Prozent. Das

Programm Scilab errechnet eine Rendite von 5.15721 Prozent. 

Wird der Kupon unterjährig gezahlt, dann wird er relativ auf die Perioden auf-

geteilt. In der Praxis wird dann häufig mit dem relativen unterjährigen Zinssatz der

Kurs (Barwert) des Wertpapiers berechnet. Wird aber das Wertpapier nicht zu pari

(Barwert = Rückzahlungskurs) angeboten, dann entspricht dieser Zinssatz nicht der

Rendite des Papiers. 

 Beispiel 9.37.  Der Kupon aus Beispiel 9.36 wird nun halbjährlich gezahlt. 

5.25

 m = 2

 rm = 2

Bei einem Kurs von 100 liegt die Rendite bei  i = 0.0525 und der Barwert beträgt

2

folglich 100. 

5.25

1

1.0262510 − 1

100

 C 0 =

+

= 100

2 1.0262510 1.02625 − 1

1.0262510

Liegt der Kurs aber wie in Beispiel 9.32 bei 100.40, dann kann weder mit dem

relativen noch mit dem konformen Zinssatz die jährlichen Rendite von 5.15721 Pro-

zent (zum Barwert von 100.4) bestimmt werden. Die Rendite muss aus dem Äquiva-

lenzansatz
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2.625  q 10

 m − 1

100

+

! 

= 100.40

 q 10

 m

 qm − 1

 q 10

 m

errechnet werden und liegt bei:

 i =  q 2 m − 1 = 1.02579112 − 1 = 0.0522474

☼

9.7.3 Berechnung einer Wertpapierrendite mit Scilab

Die Rendite des Wertpapiers in Beispiel 9.36 wird mit folgenden Anweisungen be-

rechnet. 

r = 5.25

n = 5

K0 = 100

C0 = 100.4

c = poly([-(K0+r) K0 zeros(1,3) (C0+r) -C0],... 

"q","coeff")

q = roots(c)

q = real(q(find(imag(q)==0)))

☼

Für das Wertpapier mit der halbjährlichen Kuponzahlung wird die Rendite wie

folgt bestimmt. 

m = 2; 

rm = r/m; 

nm = n*m; 

cm = poly([-(K0+rm) K0 zeros(1,8) (C0+rm) -C0],... 

"q","coeff"); 

qm = max(real(roots(cm)))

qm^2-1

9.7.4 Zinsstruktur

Als Zinsstruktur4 ( yield curve) bezeichnet man die Abhängigkeit des Zinssatzes

von der Bindungsdauer einer Anlage. In der Regel besitzen langfristig festverzins-

liche Wertpapiere höhere Renditen als kurzfristige. Diese Zinsstruktur wird dann

als steigend oder normal bezeichnet. Infolge eines überproportionalen Angebots von

Anleihen mit kurzer Laufzeit kann deren Rendite über der von langfristigen Anleihen

liegen. Dieser Zustand wird als inverser Markt oder inverse Zinsstruktur bezeichnet. 

4 Sie wird auch als Renditestruktur bezeichnet. 
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In Deutschland fand dies nach der Wiedervereinigung statt, als die öffentliche Hand

und private Unternehmen einen hohen kurzfristigen Kapitalbedarf zur Finanzierung

der Investitionen in den neuen Bundesländern hatten. Die Zinsstruktur wird als flach

bezeichnet, wenn der Zinssatz von der Bindungsdauer unabhängig ist. Dies ist jedoch

die Ausnahme. Die Zinsstruktur kann in der so genannten Zinskurve (siehe Abb. 9.9)

veranschaulicht werden. Es ist noch anzumerken, dass jede Anlageform eine eigene

Zinsstruktur besitzt5. 

i%

9
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8

Jan. 1990

7

6
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4

3

Juni 2004

2

n

1
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5

6

7
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9

10

Abb. 9.9: Historische Zinskurven

Nun setzt die Renditeberechnung eine flache Zinsstruktur voraus, da für den ge-

samten Anlagehorizont der gleiche Zinssatz unterstellt wird. Dies kann dann pro-

blematisch werden, wenn die Zinskurve einen deutlich steigenden oder fallenden

Verlauf aufweist. Die berechnete Rendite fällt im Fall einer ansteigenden Zinskurve

aufgrund der stärkeren Diskontierung der zukünftigen Leistungen höher aus; im Fall

einer inversen Zinsstruktur wird die Rendite geringer sein. 

9.7.5 Barwertberechnung bei nicht-flacher Zinsstruktur

Bei den bisherigen Berechnungen wurde immer eine flache Zinsstruktur über die

Laufzeit und eine Wiederanlage der Erträge zum Zinssatz  i  angenommen. Als Zins-

5 In Abb. 9.9 wird der gewichtete Durchschnittskurs synthetischer Anleihen zur jeweiligen

Laufzeit gezeigt. 
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struktur wird die Fristigkeitsstruktur der Kassazinssätze ( spot rate) bezeichnet. Der

Kassazinssatz (auch Nullkuponrendite) ist der Zinssatz, den man heute mit Anlei-

hen über eine gewisse Laufzeit risikolos absichern kann. Unter dem Terminzinssatz

( forward rate) versteht man hingegen den Zinssatz, der heute für eine zukünftige

Anlage oder einen Kredit vereinbart wird. Die Terminzinssätze sind implizit in der

Zinsstruktur der Kassazinssätze enthalten. 

Eine flache Zinsstruktur bedeutet, dass die Kassazinssätze alle gleich sind. Dies

bedeutet, dass eine Anlage über  n  Jahre zum Kassazinssatz  in  den gleichen Ertrag

liefert wie die wiederholte Anlage mit Terminzinssätzen. Daraus resultiert, dass alle

Terminzinssätze identisch sind. Ferner beinhaltet dies auch, dass die Kassazinssätze

gleich sein müssen. 

 i 1 =  i 2 = ... =  in

In der Realität liegt aber häufig eine steigende Zinsstruktur vor, so dass länger-

fristige Anlagen einen höheren Zinssatz besitzen als kurzfristige. 

 i 1 <  i 2 < ... <  in

Diese Struktur unterstellt für jeden Zeitpunkt einen anderen Kassazinssatz (ein an-

deres  q). Die obigen Rechnungen sind nicht mehr durchführbar. 

Sind die Kassazinssätze für verschiedene Anlagezeiträume unterschiedlich, so

kann die geometrische Reihe nicht mehr mit einem Zinsfaktor geschrieben werden. 

 r

 r

 r

 K

 C

0

0 =

+

+ ... +

+

 q 1

 q 2

 qn

 qn

2

 n

 n

Es tritt folgendes Problem auf: Mit welchen Zinssätzen sind die zwischenzeit-

lichen Zinszahlungen  r  zu diskontieren? Die Renditen von Kuponanleihen können

nicht verwendet werden, weil hier eine zwischenzeitliche Zinszahlung erfolgt. 

Das Problem wird in zwei Schritten gelöst. Im ersten Schritt wird die Rendite

für Nullkuponanleihen ( zero bonds) mit den Laufzeiten von 1 bis  n  berechnet6. Bei

Nullkuponanleihen existieren keine Zahlungen zwischen der Gegenwart und dem

Zeitpunkt  n. Folglich entfällt eine jährliche Zinszahlung. Die Rendite ergibt sich nur

aus der Differenz zwischen Ausgabekurs und Rückzahlungskurs. In der folgenden

Berechnung wird ein Rückzahlungskurs von 1 e unterstellt. Im zweiten Schritt wird

dann der Barwert der Anlage mittels dieser Nullkupon-Zinsfaktoren berechnet. Die

beschriebenen Schritte werden am folgenden Beispiel ausführlich erläutert. 

 Beispiel 9.38.  Es wird folgende Renditestruktur für Kuponanleihen unterstellt:

Tabelle 9.2: Renditestruktur

 t

1

2

3

4

5

 i∗ t  0.050 0.055 0.060 0.065 0.070

6 Auf dem Anleihenmarkt existiert nicht für jede Form und jede Laufzeit eine Nullkupon-

anleihe. Daher konstruiert man mit der hier vorgestellten Berechnungsweise synthetische

Nullkuponanleihen. 



















































9.7 Kurs- und Renditeberechnung eines Wertpapiers

197

Der Barwert einer Zahlung, die in einem Jahr anfällt, beträgt

1

1

 CNullkupon

1

=

=

= 0.9524

1 +  i∗1

1.05

Es ist der Barwert einer Zahlung von 1 e in einem Jahr. Da keine Zinszahlungen

auftreten, muss keine Neutralisierung von zukünftigen Zinszahlungen erfolgen. In

der folgenden Tabelle sind die Zahlungen nochmals dargestellt. 

Tabelle 9.3: Barwert einer einjährigen Nullkuponanleihe

Jahr Zahlungen

Saldo

0

− 1

1.05

−0.9524

1

1

1

Die Rendite einer einjährigen Nullkuponanleihe beträgt somit

1

 i 1 =

− 1 = 0.05

0.9524

Bei der Diskontierung einer Zahlung aus dem zweiten Jahr muss eine Zinszah-

lung von 0.055

1.055 e im ersten Jahr neutralisiert werden. Die folgende Tabelle zeigt die

Zahlungen. 

Tabelle 9.4: Barwert einer zweijährigen Nullkuponanleihe

Jahr

Zahlungen

Saldo

0

1

0

− 1

0.055 1

1.055

1.055 1.05

−0.8982

1

0.055

1.055

− 0.055

1.055

0

2

1

1

Der Barwert der Zinsen 0.055 1 ist vom Barwert 1 abzuziehen. 

1.055 1.05

1.055

1

0.055 1

 CNullkupon

2

=

−

= 0.8982

1.055

1.055 1.05

Die Rendite einer zweijährigen Nullkuponanleihe beträgt folglich:



1

1

2

 i 2 =

− 1 = 0.05514

0.8982

Im dritten Jahr sind die Zinszahlungen aus dem ersten und zweiten Jahr zu neu-

tralisieren. 
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Tabelle 9.5: Barwert einer dreijährigen Nullkuponanleihe

Jahr

Zahlungen

Saldo

0

1

2

0

− 1

0.06

1

0.06

1

1

1.06

1.06 1.055

1.06 1.055 1.05

−0.8386

1

0.06

1.06

− 0.06

1.06

0

2

0.06

1.06

− 0.06

1.06

0

3

1

1

Die Rendite einer dreijährigen Nullkuponanleihe beträgt somit:



1

1

3

 i 3 =

− 1 = 0.0604

0.8386

Die Barwerte der vier- und fünfjährigen Nullkuponanleihen berechnen sich äqui-

valent. 

1

0.065 1

0.065 1

1

 CNullkupon

4

=

−

−

1.065

1.065 1.06

1.065 1.06 1.055

0.065 1

1

1

−

= 0.7748

1.065 1.06 1.055 1.05

1

0.07 1

0.07 1

1

 CNullkupon

5

=

−

−

1.07

1.07 1.065

1.07 1.065 1.055

0.07 1

1

1

− 1.07 1.065 1.06 1.055

0.07 1

1

1

1

−

= 0.7079

1.07 1.065 1.06 1.055 1.05

☼

Aus der obigen Überlegung lässt sich eine Formel zur Berechnung der Nullku-

ponbarwerte ableiten. Der zweite Teil der Formel ist rekursiv anzuwenden. 



1

für  n = 1

 CNullkupon

 q 1

 n

=





1

 n−1

 n−1 1

für  n

 q −  in

= 2,3,... 

 n

 qn

 t=1

 t= t qt

Diese Art der Berechnung wird als Duplizieren von Zahlungsströmen oder  boot-

 strapping 7 bezeichnet. Die Nullkuponrenditen sind dann:



1

1

 n

 in =

− 1 für  n = 1,2,... 

 CNullkupon

 n

In der folgenden Tabelle sind die Nullkuponrenditen zusammengefasst. Diese

werden im zweiten Schritt benötigt, um die Barwerte der Anlagen, in unserem Fall

eines Wertpapiers, zu berechnen. 

7 Dieses  bootstrapping  ist nicht mit dem gleichnamigen Verfahren aus der Statistik zu ver-

wechseln. 
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Tabelle 9.6: Nullkuponrenditen (Kassazinssätze)

 t

1

2

3

4

5

 it  0.050 0.0551 0.0604 0.0658 0.0715

Im zweiten Schritt wird der Zahlungsstrom einer Anlage mit den Kassazinssätzen

diskontiert. 

 n



 r

 K

 C

0

0 =

+

(1 +  i

(1 +  i

 t=1

 t ) t

 n) n

 Beispiel 9.39.  Für das Wertpapier mit dem Zahlungsstrom aus Beispiel 9.36 liegt

dann folgender Barwert vor:

5.25

5.25

5.25

5.25

105.25

 C 0 =

+

+

+

+

= 92.70 e

1.05

1.05512

1.06043

1.06584

1.07155

☼

9.7.6 Berechnung von Nullkuponrenditen mit Scilab

In Scilab kann die Berechnung der Nullkuponrenditen einfach umgesetzt werden. 

Die folgenden Anweisungen berechnen die Werte der Tabelle 9.6. 

// Renditestruktur

p = [.05 .055 .06 .065 .07]; 

n = length(p); 

// Barwertfaktoren = cc

c = (1+p)^(-1); 

cc = 0; cc(1) = c(1); 

for j = 2:n

cc(j) = c(j)-p(j)*c(j)... 

*sum(cumprod(c((j-1):(-1):1))); 

end

// Nullkuponrenditen = i

qq = 0; qq(1) = c(1)^(-1); 

for j = 2:n

qq(j) = cc(j)^(-1/j); 

end

i = qq - 1; 

Die Berechnung des Barwerts mit den Nullkuponrenditen wird mit den folgenden

Anweisungen durchgeführt. 
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// Zahlungsströme = cf

cf = [5.25 5.25 5.25 5.25 105.25]; 

// Barwert = pv

pv = sum(cf.*cc’); 

Übung 9.6. Berechnen Sie für die Nullkuponrenditen (Kassazinssätze) für folgen-

de Renditestruktur von Kuponanleihen:

 t

1

2

3

4

5

 i∗ t  0.07 0.065 0.06 0.055 0.05

9.7.7 Duration

Die Duration wird auch durchschnittliche Kapitalbindungsdauer oder durch-

schnittliche Laufzeit genannt. Die Bezeichnung «durchschnittlich» weist auf eine

Berechnungsweise hin. Es handelt sich hier um ein gewogenes arithmetisches Mit-

tel, das die diskontierten Zahlungen  Zt  mit den Zahlungszeitpunkten  t  gewichtet und

mit dem Barwert der Zahlungen mittelt. Mit  D  wird die Duration nach Macaulay

bezeichnet, die in Jahren gemessen wird. 

 n

 D =

 t=1  t Zt q− t

 n

(9.27)

 t=1  Zt q− t

Die Zahlungen  Zt  sind bei Wertpapieren die Kuponzahlungen  rnach  und die Rück-

zahlung des Nennbetrags  K 0. 

[ Zt] =  rnach,...,  rnach





,  K 0 +  rnach

 n − 1-mal

 Beispiel 9.40.  Die Zahlungsfolge für das Wertpapier in Beispiel 9.32 ist

[ Zt] = 6,...,6

  ,106

9-mal

und damit beträgt die Duration bei einem Marktzinssatz von 5 Prozent

10

850.1560

 D

 t=1  t Zt  1.05− t

0.05 = 

=

= 7.8921 Jahre

10

107.7217

 t=1  Zt  1.05− t

7.8921 Jahre beträgt der Zeitraum, in dem sich Marktzinsänderungen (etwa) aus-

geglichen haben. Es ist die (durchschnittliche) Bindungsdauer des Kapitals, die be-

nötigt wird, um einen gewünschten Kapitalbetrag  CD  zum Zeitpunkt  D  zu erhalten, 

unter Berücksichtigung möglicher Marktzinsänderungen (siehe Abb. 9.10). 

 CD =  C 0  qD = 107.7217 × 1.057.8921 = 158.32

☼
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 Beispiel 9.41.  Für das Wertpapier aus Beispiel 9.32 bzw. 9.40 kann zu den Zeitpunk-

ten  t  der jeweilige Barwert berechnet werden. Der Wert der Anleihe zum Zeitpunkt

 t  beträgt:

 n



 Ct( q) =

 Zk q( t− k) für 0 ≤  t ≤  n

 k=1





Trägt man diese in einem Koordinatensystem  t,  Ct( q) ab, so erhält man den

Barwertverlauf über die Laufzeit. Unterstellt man eine Marktzinsänderung, so lässt

sich der neue Barwertverlauf darstellen. In Abb. 9.10 ist dies geschehen. Man er-

kennt, dass sich die Barwertkurven in etwa im Zeitpunkt der Duration schneiden. 

Da es sich um eine näherungsweise Berechnung handelt, schneiden sich die Kurven

nicht exakt zum Zeitpunkt  D. 

 D 0.04 = 7.9805  D 0.05 = 7.8921  D 0.06 = 7.8016

Wird das Wertpapier also bis zur Duration gehalten, so ist der Anleger gegenüber

Zinsänderungsrisiken immun. 

 Ct( q)

200

190

180

170

160

 CD

150

140

130

 Ct(1.04)

120

 Ct(1.05)

 Ct(1.06)

110

Duration

100

t

0

1

2

3

4

5

6

7

8

9

10

Abb. 9.10: Barwertverlauf und Duration

☼

Die Duration wird zur Beurteilung der Zinssensitivität einer Anleihe eingesetzt. 

Diese Interpretation ergibt sich aufgrund der Herleitung der Duration aus der er-

sten Ableitung der Barwertfunktion. Die Zinselastizität ist die Barwertänderung, die
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durch eine Zinsänderung verursacht wird. Ein  zero bond (mit nur einer einzigen Zah-

lung zum Laufzeitende) besitzt eine größere Zinsempfindlichkeit als eine Anleihe

gleicher Laufzeit, bei der jährlich Kuponzahlungen geleistet werden. Dies liegt dar-

an, dass bei einer Nullkuponanleihe der gesamte Zinsertrag mit der  n-ten Potenz des

Diskontierungsfaktors erfasst wird. Eine Zinssatzänderung wirkt sich daher stärker

aus, als bei einer Kuponanleihe, bei der die Zinszahlungen periodisch diskontiert

werden. Bei einer Nullkuponanleihe ist die Duration gleich der Laufzeit der Anlei-

he, weil  Zt = 0 für  t <  n  gilt. Für eine Kuponanleihe ist die Duration hingegen immer

kleiner als die Laufzeit der Anleihe:  D <  n. 

Neben der Laufzeit einer Anleihe ist somit auch das zeitliche Anfallen der Zah-

lungen von Bedeutung. Die Duration verknüpft diese beiden Komponenten. Sie ge-

wichtet den jeweiligen Zahlungszeitpunkt mit dem relativen Beitrag zum Barwert. 

Eine höhere Duration lässt auf eine tendenziell höhere Zinssensitivität schließen. Die

Duration ist umso höher, je niedriger der Kupon ist. Für den Extremfall der Nullku-

ponanleihe gilt, dass die Duration mit der Restlaufzeit der Anleihe übereinstimmt. 

Auch bei diesen Überlegungen wird eine flache Zinsstruktur über die Laufzeit

und eine Wiederanlage der Erträge zum Zinssatz  i  angenommen. Ferner wird nur

eine einmalige Zinssatzänderung zum Zeitpunkt  t = 0 unterstellt. 

Eine formale Herleitung der Duration ergibt sich aus der ersten Ableitung (Ablei-

tungen werden in Kapitel 10 erklärt) der Barwertfunktion  C 0( q) nach  q. Sie eröffnet

dann auch die Anwendung der Duration zur Berechnung einer Barwertänderung in-

folge einer Zinsänderung. 

 n



 C 0( q) =

 Zt q− t

 t=1

d C

1  n



 C

0

0( q) =

= −

 t Z

d q

 q

 t q− t

(9.28)

 t=1

Als Duration wird nun die relative Änderung

d C 0

 C

 D = − d q = − 0( q)

 C 0

¯

 C

 q

0( q)

bezeichnet. Durch Einsetzen der Definition (9.27) in (9.28) wird das gleiche Ergebnis

geliefert:

d C

 C

0

 C

0( q)  D

d q

0( q) = −

⇒  D= −

(9.29)

 q

 C 0

 q

Es handelt sich um die Zinssatzelastizität des Barwerts (siehe Kapitel 10.8.6

zum Begriff der Elastizität). Ändert sich  q  marginal, so ändert sich der Barwert um  D

Prozent. Diese Aussage gilt aber nur für marginale Änderungen von  q. Die Duration

kann also auch zur Berechnung einer Barwertänderung eingesetzt werden. 
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 D

d C 0( q) = − C 0( q) d q

 q

 D

= − C 0( q) MD d q  mit  MD =  q

Das Verhältnis  D  wird mit  MD  bezeichnet und modifizierte Duration genannt. In

 q

der Praxis ersetzt man das Differential durch die Differenz. 

Δ C 0( q) ≈  C 0( q + Δ q) − C 0( q)

(9.30)

≈ − C 0( q) MDΔ q

Zur Berechnung der relativen Barwertänderung muss die Differenz in (9.30)

durch  C 0( q) geteilt werden. 

Δ C 0( q) ≈ −Δ qMD

 C 0( q)

 Beispiel 9.42.  Für das Wertpapier aus dem Beispiel 9.32 mit der Berechnung der

Duration in Beispiel 9.40 berechnet sich folgende modifizierte Duration:

7.8921

 MD =

= 7.5162

1.05

Bei einer Erhöhung des Marktzinssatzes um Δ q = 0.01 erfolgt etwa eine Bar-

wertänderung des Wertpapiers in Höhe von

Δ C 0(1.05 + 0.01) ≈ −0.01 × 107.72 × 7.5162 ≈ −8.0967 e

bzw. eine relative Barwertänderung in Höhe von

Δ C 0( q + Δ q) ≈ −0.01×7.5162≈ −7.5162Prozent

 C 0( q)

Aus der Kursberechnung in Beispiel 9.32 berechnet sich eine genaue Barwertän-

derung in Höhe von −7.72173 e bzw. −7.71682 Prozent . Die modifizierte Duration

ist ein Maß für die Abschätzung der Kursänderung (Marktwertrisiko) festverzinsli-

cher Wertpapiere. 

☼

9.7.8 Berechnung der Duration mit Scilab

In Scilab kann die Duration wie folgt berechnet werden:

q=1.05 // Marktzinssatz

K0=100 // Rückzahlung

p=0.06 // Kuponsatz

n=10

// Zeitraum in Jahren

Z=[ones(1,n-1).*K0*p,K0*(1+p)] // Zahlungsreihe
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t=1:n

GBW=sum(Z.*t./q^t) // gewichteter Barwert

BW=sum(Z./q^t)

// Barwert

D=GBW/BW

// Duration

C_D=BW*q^D

// Barwert zum Zeitpunkt D

MD=D/q

// modifizierte Duration

dq=0.01

// Änderung des Marktzinssatzes

-dq*MD

// relative Barwertänderung mit MD

-dq*BW*MD

// absolute Barwertänderung mit MD

Übung 9.7. Berechnen Sie für die angegebenen Wertpapiere (Nennwert 100 e) den

Barwert, die Duration und über die Modified Duration die Barwertänderung. Gehen

Sie bei der Berechnung von einem Marktzinssatz von 7 Prozent p. a. und einer

Marktzinserhöhung von 2 Prozentpunkten aus. 

Wertpapier

1

2

3

Laufzeit in Jahren 2

3

4

Kupon

7% 12% 5%

9.8 Annuitätenrechnung

Die Annuitätenrechnung unterstellt eine Kreditbeziehung. Der Schuldner nimmt zum

Zeitpunkt  t = 0 einen Kredit in Höhe von  K 0 auf und zahlt diesen an den Gläubiger

in  n  gleichen Raten zurück. Die gleich hohen Raten werden Annuität  A  genannt. 

Sie werden nicht mehr als Rente bezeichnet, da sie sich aus Zinsen und Tilgung

zusammensetzen. 

 A

 A

 A

 A

⏐

⏐

⏐

⏐

⏐

⏐

⏐

⏐

Schuldner-leistung







( T

( T

( T

( T

0

1+ Z 1)  q−1

−−−−−−−→ 1

2+ Z 2 )  q−2

−−−−−−−→ 2

3+ Z 3)  q−3

−−−−−−−→ ··· n− 1

 n+ Zn)  q− n

−−−−−−−→  n

1. Periode

2. Periode

3. Periode

 n-te Periode



⏐

Gläubiger-⏐leistung

 K 0

Abb. 9.11: Struktur eines Annuitätendarlehens
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9.8.1 Annuität

Die Annuität ( rate of repayment)  A  ist eine regelmäßige Zahlung, die sich aus

Tilgungs- und Zinsrate zusammensetzt. 

 A =  Tt +  Zt =  konstant t = 1,...  n

 Tt  bezeichnet die Tilgungsrate und  Zt  die Zinsrate der Periode  t. Die Annuität ist

dem Wortsinn nach eine jährliche Rate (lat. annus = Jahr). Heute wird der Begriff

Annuität jedoch auch auf unterjährige regelmäßige Zahlungen angewendet. 

Zur Berechnung der Annuität wird das Äquivalenzprinzip angewendet. Hierbei

werden – bei gegebenem Zinssatz – die Leistungen des Gläubigers den Leistungen

des Schuldners gegenübergestellt. Alle Zahlungen sind dabei auf den Gegenwarts-

wert zu diskontieren (Barwertprinzip). In der nun folgenden Äquivalenz beträgt die

Leistung des Gläubigers  K 0. Die Leistung des Schuldners entspricht dem Barwert der

gezahlten Annuitäten ( A =  rnach). 

1  qn − 1

 K ! 

0 =  A

(9.31)

 qn q − 1

Der Barwert einer nachschüssigen Rente ist gleichzusetzen der Schuld  K 0. Kre-

ditrückzahlungen sind nachschüssige Rentenzahlungen, da die Annuitätenzahlung

auf die vorherige Periode  t − 1 bezogen ist. Dies wird aus dem Tilgungsplan (siehe

Tabelle 9.7) deutlich. Durch Auflösen der Gleichung (9.31) nach  A  erhält man die

gesuchte Formel. 

 A =  K 0  qn q − 1

(9.32)

 qn − 1

 Beispiel 9.43.  Ein Kredit in Höhe von  K 0 = 1 000 e soll in gleichen Raten über  n =

10 Jahre zurückgezahlt werden. Der Kreditzinssatz beträgt  i = 6 Prozent. 

 A = 1000 × 1.0610 1.06 − 1 = 135.87 e / Jahr

1.0610 − 1

Die Annuität beträgt 135.87 e pro Jahr. 

☼

In der Praxis wird häufig eine monatliche Annuität zur Rückführung der Kre-

ditschuld vereinbart. Diese lässt sich zum einen mit dem konformen Monatszinssatz

berechnen (exakte Rechnung) oder mit einer einfachen Verzinsung binnen Jahres-

frist. 

 Beispiel 9.44.  Für den Kredit in Beispiel 9.43 wird nun nach den verschiedenen Be-

rechnungsverfahren eine monatliche Annuität ermittelt. 

1. Die Berechnung der Annuität mit dem konformen Monatszinssatz entspricht

der ISMA-Methode und sieht wie folgt aus:

√

 ikon

12 = 12 1.06 − 1 = 0.0048676
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 √



√

120

12 1.06− 1

 A

12

12 = 1000 ×

1.06

 √

120

12 1.06

− 1

√

12 1.06− 1

= 1000 × 1.0610 1.0610−1

= 11.022 e / Monat

Die monatliche Annuität beträgt etwa 11.02 e. 

2. Die Berechnung der Annuität mit dem relativen Zinssatz entspricht der US-

Methode und führt zu folgendem Ergebnis:

0.06

 irel

12 =

= 0.005

12

 A 12 = 1000 × 1.005120 1.005 − 1 = 11.10 e / Monat

1.005120 − 1

Der effektive Jahreszinssatz beträgt:

 ieff = 1.00512 − 1 = 0.061678 ⇒ 6.1678 Prozent

Beachten Sie, dass i. d. R. ein Äquivalenzansatz zur Berechnung des effektiven

Zinssatzes notwendig ist (siehe Kapitel 9.8.7). Im vorliegenden Fall ist er:

1  qn − 1

1000 != 11.10  qn q−1

 n  ist besitzt den Wert 120 (Monate).  q  wird über ein Nullstellenproblem be-

rechnet und beinhaltet den effektiven Monatszinssatz ( q = 1.005). 

3. Die Praktikerformel mit der einfachen Verzinsung binnen Jahresfrist leitet sich

aus der Gleichung (9.8) ab, die nach  r  umgestellt wird. Der monatlichen Rate

 r  in der Gleichung (9.8) entspricht hier die monatliche Annuität  A 12 und der

Rentenendwert  R  der jährlichen Annuität  A. 

 A

135.87

 A 12 =

=

= 11.019 e / Monat

12 + 5.5 i

12 + 5.5 × 0.06

Die monatliche Annuität beträgt etwa 11.02 e. Man erkennt aber, dass sich die

Zahlen nicht exakt gleichen. Aufgrund des fehlenden Zinseszinseffekts fällt

die gleichmäßige Aufteilung in Monatsraten etwas niedriger aus. 

☼

9.8.2 Restschuld

Aus der Gleichung (9.31) lässt sich die Restschuld ( outstanding balance) berechnen. 

Die Schuld  K 0 wird über  t  Perioden zum Zinssatz  i  angelegt. Hiervon ist der Endwert

der Zahlungen in Höhe von  A, welche bis zum Zeitpunkt  t  aufgelaufen sind, abzu-

ziehen. Die Differenz ist die Restschuld  Kt  zum Periodenende 0 ≤  t ≤  n. Für  Kn = 0

ergibt sich die Gleichung (9.31). 
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 qt − 1

 Kt =  K 0  qt −  A

für 0 ≤  t ≤  n

(9.33)

 q − 1

 qn −  qt

=  K 0

(9.34)

 qn − 1

Zum Zeitpunkt  t =  n ( Kn = 0) entspricht der Betrag  K 0  qn  dem Endwert der wie-

der angelegten Zahlungen in Höhe von  A (Äquivalenzprinzip). Dies ist die Voraus-

setzung, damit ein Betrag  K 0 verliehen wird. Die Gleichung (9.34) erhält man, wenn

die Annuität  A  durch die Formel (9.32) ersetzt wird. 

 Beispiel 9.45.  Die Restschuld des Kredits in Beispiel 9.43 beträgt am Ende des 2. 

Jahres (siehe Tabelle 9.7)

1.062 − 1

 K 2 = 1000 × 1.062 − 135.87 1.06−1

1.0610 − 1.062

= 1000

= 843.71 e

1.0610 − 1

☼

9.8.3 Tilgungsrate

Die Tilgungsrate ( rate of redemption, principal repayment)  Tt  zum Ende der Periode

kann aus  A =  Tt +  Zt  errechnet werden. 

 Tt =  A −  Zt

Für  t = 1 erhält man:

 T 1 =  A −  Z 1

 Z 1 =  K 0  i

 T 1 =  A −  K 0  i

Für  t = 2 erhält man:

 T 2 =  A −  Z 2

 Z 2 =  K 1  i

 K 1 =  K 0 −  T 1

 T 2 ist folglich:





 T 2 =  A −  K 1  i =  A −  K 0 −  T 1  i =  A −  K 0  i +  T 1  i =  T 1  q Die folgenden Tilgungsraten erhält man auf gleichem Weg. Die allgemeine Gleichung ist

 Tt =  Tt−1  q =  T 1  qt−1

für 1 ≤  t ≤  n

(9.35)

 Beispiel 9.46.  Die Tilgungsrate in der 2. Periode beträgt:





 T 2 =  T 1 × 1.061 = 135.87 − 1000 × 0.06 × 1.06 = 80.42

☼
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9.8.4 Tilgungsplan

Ein Tilgungsplan ( redemption plan) ist eine tabellarische Aufstellung der geplanten

Rückzahlungen eines Kreditbetrags. 

 Beispiel 9.47.  Der Tilgungsplan für den Kredit aus Beispiel 9.43 ist in Tabelle 9.7

wiedergegeben. Die Zinsen  Zt  im Tilgungsplan lassen sich leicht aus der Restschuld

zum Periodenende berechnen:

 Zt =  Kt−1  i  für 1 ≤  t ≤  n

Die Restschuld  Kt  ist aus der Differenz von Restschuld und Periodenende und

Tilgung zu berechnen. 

 Kt =  Kt−1 −  Tt  für 1 ≤  t ≤  n

☼

Tabelle 9.7: Tilgungsplan für Annuitätenkredit aus Beispiel 9.43

Jahr Restschuld zum Zinsen Tilgung Annuität

Periodenende

 t

 Kt

 Zt

 Tt

 A

0

1000.00

–

–

–

1

924.13

60.00

75.87

135.87

2

843.71

55.45

80.42

135.87

3

758.47

50.62

85.25

135.87

4

668.11

45.51

90.36

135.87

5

572.33

40.09

95.78

135.87

6

470.80

34.34

101.53

135.87

7

363.18

28.25

107.62

135.87

8

249.10

21.79

114.08

135.87

9

128.18

14.95

120.92

135.87

10

0.00

7.69

128.18

135.87



5977.99 358.68 1000.00

–

Häufig wird die Annuität auf einen ganzen Eurobetrag aufgerundet, der dann

über  n − 1 Perioden zu zahlen ist. 

7

8

 A =  K 0  qn q − 1

 qn − 1

Für die letzte Rate ergibt sich dann ein geringerer Betrag, der als Schlussrate

bezeichnet wird. Diese kann aus der verzinsten Restschuld (siehe Gleichung (9.33))

berechnet werden. 
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 qn−1 − 1

 Schlussrate =  K 0  qn−1 −  A

 q

 q − 1

 qn −  q

=  K 0  qn −  A  q−1

 Beispiel 9.48.  In Beispiel 9.43 würde sich dann eine aufgerundete Annuität von

135.87 = 136 e

ergeben. Die Schlussrate beträgt dann

1.0610 − 1.06

 Schlussrate = 1000 × 1.0610 − 136 ×

= 134.26 e

1.06 − 1

☼

9.8.5 Berechnung eines Tilgungsplans mit Scilab

In Scilab kann der Tilgungsplan 9.7 wie folgt berechnet und ausgegeben werden. 

i=0.06

// Zinssatz

K0=1000 // Kreditbetrag

n=10

// Jahre

q=1+i

// Zinsfaktor

A=K0*q^n*(q-1)/(q^n-1)

// Annuität

t=0:n

Kt=K0*q^t-A*(q^t-1)/(q-1) // Restkapital

Tt=A-Kt(1:n)*i

// Tilgungszahlungen

Zt=Kt(1:n)*i

// Zinszahlungen

// Tilgungsplan

TP=[t;Kt;[0,Zt];[0,Tt];[0,ones(1,n)*A]]’

// Ausgabe

[[’t’;’Restschuld’;’Zins’;’Tilgung’;’Annuität’]’;... 

string(TP)]

// Tilgungsplan mit Schlussrate

Astar=ceil(A)

// aufgrundetes Annuität

Aschluss=K0*q^n-Astar*(q^n-q)/(q-1) // Schlussrate

tstar=0:(n-1)

Ktstar=K0*q^tstar-Astar*(q^tstar-1)/(q-1)

Ttstar=Astar-Ktstar(1:(n-1))*i

Ztstar=Ktstar(1:(n-1))*i
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Tschluss=Aschluss-Ktstar(n)*i // Schlusstilgung

Zschluss=Ktstar(n)*i

// Schlusszins

Kschluss=Ktstar(n)-Tschluss

// Schlussschuld

Ktneu=[Ktstar,clean(Kschluss)]

Ttneu=[Ttstar,Tschluss]

Ztneu=[Ztstar,Zschluss]

Aneu=[ones(1,(n-1))*Astar,Aschluss]

// Tilgungsplan

TPneu=[t;Ktneu;[0,Ztneu];[0,Ttneu];[0,Aneu]]’

// Ausgabe

[[’t’;’Restschuld’;’Zins’;’Tilgung’;’Annuität’]’;... 

string(TPneu)]

9.8.6 Anfänglicher Tilgungssatz

Der anfängliche Tilgungssatz  pTilgung

1

ist das Verhältnis von der Tilgung der ersten

Periode zum Kreditbetrag. Mit Hilfe des anfänglichen Tilgungssatzes kann die An-

nuität bestimmt werden. 

 T

 pTilgung

1

1

=  K 0

 A =  K 0 ( i +  pTilgung

1

)

Man kann die weiteren Tilgungssätze  pTilgung

 t

natürlich ebenso berechnen. 

 T

 pTilgung

 t

 t

=

für 1 ≤  t ≤  n

 Kt−1

Es gilt stets

 A =  Kt−1 ( i +  pTilgung

 t

)

 Beispiel 9.49.  Die Tilgungssätze im Kreditbeispiel 9.47 lassen sich durch Division

der Tilgung zur Restschuld aus dem Tilgungsplan (siehe Tabelle 9.7) berechnen. Das

Ergebnis der Division steht in Tabelle 9.8. Der anfängliche Tilgungssatz beträgt hier

7.59 Prozent. Aus dem Zinssatz und dem anfänglichen Tilgungssatz, wie sie häu-

fig in (Hypoteken-) Kreditverträgen angegeben sind, kann man leicht die Annuität

berechnen. 

 A = 1000(0.06 + 0.0759) = 135.87 e / Jahr

☼

Alternativ kann man den Tilgungssatz auch aus dem folgenden Ansatz gewinnen:
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Tabelle 9.8: Tilgungssätze zum Kreditbeispiel 9.47

1

2

3

4

5

6

7

8

9

10

7.59% 8.70% 10.10% 11.91% 14.34% 17.74% 22.86% 31.41% 48.54% 100.00%

 Kt−1 ( i +  pTilgung

 t

) !=  Kt−1  qn− t+1  q − 1

 qn− t+1 − 1







 A

Auflösen der Gleichung nach  pTilgung

 t

liefert:

 pTilgung

 t

=  qn− t+1

 q − 1

−  i

(9.36)

 qn− t+1 − 1

 Beispiel 9.50.  Für  t = 1 ergibt sich nach Gleichung (9.36) mit den Angaben aus dem

Kreditbeispiel 9.47 der anfängliche Tilgungssatz:

 pTilgung

1

= 1.0610 1.06 − 1 − 0.06 = 0.07586

1.0610 − 1

☼

Mit einem gegebenen anfänglichen Tilgungssatz und einem effektiven Zinssatz

kann durch Umstellen der Gleichung (9.36) die Laufzeit  n  des Kredits bestimmt

werden. Für  t = 1 ergibt sich:





ln 1 +

 i

 pTilgung

 n =

1

(9.37)

ln q

 Beispiel 9.51.  Wird der anfängliche Tilgungssatz auf 10 Prozent erhöht, so reduziert

sich für den Kredit in Beispiel 9.47 die Laufzeit auf





ln 1 + 0.06

 n =

0.1

= 8.0661 Jahre

ln 1.06

Bei dieser Laufzeit erhöht sich die Annuität auf

 A = 1000 × (0.06 + 0.1)

1.06 − 1

= 1000 × 1.068.0661× 1.068.0661−1

= 160 e / Jahr. 

☼

Interessant ist bei der Formel (9.37), dass bei einer Erhöhung/Reduzierung des

Zinssatzes die Kreditlaufzeit ab-/zunimmt. Dieser Effekt kommt zustande, weil

die Tilgungsraten aufgrund des stärkeren/schwächeren Zinseszinseffekts in Formel

(9.35) stärker/langsamer steigen. 

 Beispiel 9.52.  Fällt der Zinssatz von 6 auf 5 Prozent in Beispiel 9.51, erhöht sich die

Kreditlaufzeit von 8.0661 Jahre auf 8.3103 Jahre. 

☼
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9.8.7 Effektiver Kreditzinssatz

Die Berechnung des effektiven Jahreszinses wird durch das BGB §492 Abs. 2 fest-

gelegt. 

Effektiver Jahreszins ist die in einem Prozentsatz des Nettodarlehensbe-

trags anzugebende Gesamtbelastung pro Jahr. Die Berechnung des ef-

fektiven und des anfänglichen effektiven Jahreszinses richtet sich nach

§6 der Verordnung zur Regelung der Preisangaben. 

In der praktischen Situation der Kreditvergabe kommen Gebühren, Zuschläge

und andere Kreditzinssatz verändernde Vereinbarungen vor. In diesen Fällen weicht

die angegebene Nominalverzinsung von dem tatsächlichen effektiven Zinssatz ab. 

Häufig wird dann vom anfänglichen effektiven Kreditzinssatz gesprochen. Dies ist

dann der Fall, wenn die Kreditlaufzeit länger als die Zinsbindung ist. Die Berech-

nung der Effektivverzinsung erfolgt stets mittels des Äquivalenzprinzips. Im einfach-

sten Fall wird der unterjährige Zinssatz als relativer Zinssatz berechnet. Dann fallen

der Nominalzinssatz und der effektive Zinssatz auseinander. In komplizierteren Fäl-

len müssen Gebühren usw. eingerechnet werden. Dann ist der effektive Zinssatz für

einen Kredit wie bei der Rentenrechnung mittels eines Nullstellenproblems zu be-

rechnen. Hierzu ein Beispiel. 

 Beispiel 9.53.  Angenommen im Beispiel 9.43 wird der Kredit zusätzlich mit einer

einmaligen Gebühr (auch als Disagio, Damnum, Abgeld bezeichnet) von 2 Prozent

auf den Kreditbetrag belegt. Dieser Betrag wird annuitätisch bezahlt. Dies bedeutet, 

dass er über den Zeitraum von 10 Jahren in gleichen Raten bezahlt wird. Wie hoch

ist der Effektivzinssatz? Er muss jetzt mehr als 6 Prozent betragen. 

Um einen Kredit mit einer Auszahlungssumme in Höhe von 1 000 e zu erhalten, 

muss eine Summe von

1000

1000 !=  K∗0 − 0.02 K∗0 = 0.98 K∗0 ⇒  K∗0 =

= 1 020.41 e

0.98

aufgenommen werden. Die Annuität des Kredits beträgt damit

1000

 A∗ =

1.0610 1.06 − 1 = 138.64 e / Jahr

(9.38)

0.98

1.0610 − 1

Aus der Differenz der Annuitäten kann nun einfach die entsprechende jährliche

Kreditgebühr berechnet werden, die mit dem Disagio verbunden ist. 

 rnach =  A∗ −  A

= 138.64 − 135.87





1

= 1000

− 1 1.0610 1.06 − 1

0.98

1.0610 − 1

= 20.41 × 1.0610 1.06 − 1 = 2.77 e / Jahr

1.0610 − 1
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Der Barwert der periodischen Gebühr wird als «up-front fee» bezeichnet. 





1

 Rnach

0

= 1000

− 1

0.98

1

1.0610 − 1

= 2.77

= 20.41 e

1.0610 1.06 − 1

Nachdem das Disagio in eine absolute periodische und einmalige Gebühr umge-

rechnet wurde, wird nun mit Hilfe des Äquivalenzprinzips der effektive Kreditzins-

satz bestimmt, aus dem sich dann der Zinsaufschlag ergibt. 

Die Annuität in der Gleichung (9.38) muss einen Kredit mit einem Zinsfaktor

von  q  ohne Bearbeitungsgebühr tilgen. Die Leistung des Gläubigers muss der des

Schuldners entsprechen (Äquivalenzprinzip). 

1  q 10 − 1

1000 != 138.64

(9.39)

 q 10  q − 1







Barwert nachschüssige Rente

Man kann die Äquivalenz auch aus der Restschuldformel (9.33) herleiten. Das

heißt die Restschuld muss nach 10 Jahren u

n ll Euro betragen

 q 10 − 1

0 != 1000 q 10 − 138.64

(9.40)

 q − 1

Als weitere Möglichkeit, die Äquivalenz zwischen den Leistungen des Gläubi-

gers und denen des Schuldners herzustellen, kann man auch folgende Ansätze wäh-

len:

1  q 10 − 1

1000 × 0.98 != 135.87

(9.41)

 q 10  q − 1

1  q 10 − 1

1000 != 135.87

+ 20

(9.42)

 q 10  q − 1

In der Gleichung (9.41) wird von einem Auszahlungsbetrag in Höhe von 980 e

(1000 × 0.98) ausgegangen. Die Schuldnerleistung entspricht dem Barwert der An-

nuitäten mit dem Betrag von 1 000 e. In der Gleichung (9.42) wird die Leistung des

Gläubigers (1 000 e) den Leistungen des Schuldners (Barwert der Annuitätenraten

plus den 2 Prozent Bearbeitungsgebühr vom Kreditbetrag) gleichgesetzt. Die Umfor-

mung der Gleichungen (9.39), (9.40), (9.41) bzw. (9.42) führen alle zu dem gleichen

Nullstellenproblem. 





138.64

138.64

 q 11 − 1 +

 q 10 +

! 

= 0

1000

1000

Das Programm Scilab liefert einen Effektivzinssatz von 6.428 Prozent p. a. Da-

mit ist der Kredit zu 6 Prozent p. a. Nominalzinssatz plus Gebühr von 2 Prozent

genauso teuer wie ein Kredit zu einem Zinssatz von 6.428 Prozent p. a. jedoch oh-

ne Gebühr. Die Gebühr in Höhe von 2 Prozent des Kreditbetrags entspricht einem

Zinsaufschlag in Höhe von 0.428 Prozent p. a. 

☼
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Bei einer unterjährigen Verzinsung eines Kredits wird ein Effektivzinssatz an-

gegeben, wenn der unterjährige Zinssatz als relativer Zinssatz berechnet wird (siehe

hierzu Beispiel 9.44). In folgendem Beispiel wird der Effektivzinssatz für einen Kre-

dit berechnet, der mit einer monatlichen relativen Verzinsung bedient wird und mit

einer einmaligen Gebühr belastet ist. 

 Beispiel 9.54.  Die Kreditsumme beträgt 1000 e und wird monatlich bedient. Es wird

von einem Nominalkreditzinssatz von 6 Prozent p. a., 5 e Gebühr und einer Til-

gungszeit von 5 Jahren ausgegangen. Als Erstes ist die monatliche Annuität mit dem

relativen Monatszinssatz zu berechnen. 

0.06

 qrel = 1 +

= 1.005

12

1.005 − 1

 A = 1000 × 1.00560×

= 19.3328e / Monat

1.00560 − 1

Mit dieser Annuität kann nun der Äquivalenzansatz aufgestellt werden. 

1  q 60 − 1

1000 != 19.3328

+ 5

 q 60  q − 1

Das  i  bzw.  q, das die Gleichung erfüllt, ist der effektive Kreditzinssatz. Die Berech-

nung von  q  erfolgt wieder über ein Nullstellenproblem. 

995  q 61 − 1014.3328 q 60+ 19.3328 != 0

Die Lösung mit Scilab liefert den effektiven monatlichen Kreditzinssatz von 0.51738

Prozent, der einem effektiven Jahreszinssatz von 6.38836 Prozent entspricht. 

☼

 Beispiel 9.55.  Der Kredit aus Beispiel 9.43 wird nun mit 2 tilgungsfreien Jahren an-

geboten. Wie hoch ist dann der effektive Kreditzinssatz? Die Annuität tilgt den Kre-

dit wieder in 10 Jahren. Jedoch wird in den ersten beiden Jahren lediglich der Zins in

Höhe von 60 e gezahlt. Die Tilgung verschiebt sich um 2 Jahre, so dass insgesamt

der Kredit über 12 Jahre läuft. Die Leistung des Gläubigers ist weiterhin 1 000 e. 

Die Leistung des Schulders ist der Barwert der Annuität, jedoch um zwei weitere

Jahre diskontiert, da sie erst nach dem 2. Jahr einsetzt, zuzüglich dem Barwert der

Zinszahlungen über die 2 Jahre. Der Äquivalenzansatz ist also folgender:

1  q 10 − 1

1  q 2 − 1

1000 != 135.87

+ 60

(9.43)

 q 12  q − 1

 q 2  q − 1

1000  q 13 − (1000 + 60) q 12− (135.87 − 60) q 10+ 135.87 != 0

(9.44)

Die Verzinsung, die das obige Polynom erfüllt, beträgt 6 Prozent pro Jahr. Die Ver-

zinsung ändert sich durch die tilgungsfreien Jahre nicht. 

☼

Im Anhang zu §6 der Preisabgabenverordnung (PAngV) wird der Äquiva-

lenzansatz zur Berechnung des effektiven Jahreszinssatzes genannt. 
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 n 1

 K

 n 2



 t

! 

 Z

=

 t

(9.45)

 qt

 qt

 t=0

  

 t=0

  

Barwert der Gläubigerleistungen

Barwert der Schuldnerleistungen

In der allgemeineren Form der Äquivalenzgleichung wird berücksichtigt, dass

ein Kredit in mehreren Teilbeträgen  Kt  ausgezahlt werden kann. Mit  Zt  werden die

Zahlungen des Schuldners bezeichnet. Sie bestehen aus Tilgungs- und Zinsleistun-

gen sowie aus weiteren Kosten. Bei einem Annuitätenkredit sind diese Zahlungen

konstant und werden im Text mit  A  bezeichnet.  n 1 und  n 2 geben die Anzahl der

(Teil-) Perioden an. Um den effektiven Jahreszinssatz zu erhalten, ist bei unterjäh-

rigen Zinsperioden der berechnete Zinsfaktor  q  mit der Zahl der Teilperioden  m  zu

potenzieren und in einen Zinssatz umzurechnen8. 

 Beispiel 9.56.  Die Berechnung des effektiven Kreditzinssatzes im Beispiel 9.55 ist

nach der offiziellen Formel (9.45) wie folgt mit  n 1 = 0,  n 2 = 12:

60

60

135.87

135.87

1000 !=

+

+

+ ... +

(9.46)

 q

 q 2

 q 3

 q 12

Gleichung (9.43) und Gleichung (9.46) sind identisch. Mit der Anwendung der geo-

metrischen Reihenformel erhält man die gleiche Form. Die Umformulierung als

Nullstellenproblem führt zur Gleichung

1000  q 12 − 60 q 11 − 60 q 10 − 135.87 q 9 − ... − 135.87 != 0

(9.47)

Die Gleichung (9.47) besitzt dieselben Nullstellen wie (9.44). Der effektive Jahres-

zinssatz beträgt 6 Prozent. 

☼

 Beispiel 9.57.  Es wird nun angenommen, dass der Kreditbetrag von 1 000 e zu zwei

gleichen Teilbeträgen zu den Zeitpunkten  t = 0 und  t = 1 ausbezahlt wird. Weiterhin

werden 2 tilgungsfreie Jahre sowie eine Rückzahlung mit der Annuität 135.87 e

unterstellt. Die Gleichung (9.45) ist dann wie folgt aufzustellen:

500

60

60

135.87

135.87

500 +

! 

=

+

+

+ ... +

 q

 q

 q 2

 q 3

 q 12

Die Erweiterung der Gleichung mit  q 12 führt zum Nullstellenproblem. 

500  q 12 + 440 q 11 − 60 q 10 − 135.87 q 9 − ...135.87 != 0

Eine Berechnung von  q  setzt wieder ein Rechenprogramm voraus (siehe Kapitel

9.8.8). Der effektive Kreditzinssatz beträgt nun 6.5167818 Prozent pro Jahr. 

☼

8 In der PAngV wird der Zeitindex  t  direkt als Bruch  tm  eingesetzt. Dies führt jedoch in

der Berechnung zu Polynomen mit reellen Potenzen, was in der numerischen Berechnung

Schwierigkeiten macht. Die nachträgliche konforme Umrechnung ist praktischer und führt

zum gleichen Ergebnis. 
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 Beispiel 9.58.  Der Kredit in Höhe von 1 000 e wird über 120 Monate mit Raten in

Höhe von 10 e zurückgeführt. Wie hoch ist der effektive Jahreszinssatz? Der Äqui-

valenzansatz ist

120

10

1000 !=

 qt

 t=1

1000  q 120 − 10 q 119 − ... − 10 != 0

Unter Verwendung des Endwerts der geometrischen Reihe erhält man

1000  q 121 − 990 q 120 + 10 != 0

Die Nullstellen der Gleichungen liefern den Monatszinssatz. Beide Gleichungen be-

sitzen an der Stelle 1.0031142 eine Nullstelle. Dies ist der monatliche Zinsfaktor, 

der mit 12 zu potenzieren ist. Dann erhält man den effektiven Jahreszinssatz mit

 i = 3.8016951 Prozent (siehe Kapitel 9.8.8). 

☼

Zum Abschluss dieses Abschnitts wird im folgenden Beispiel ein Bausparvertrag

analysiert. 

 Beispiel 9.59.  Ein Bausparvertrag besteht aus einer Ansparphase und einer Kredit-

phase. Für die Ansparphase werden folgende Konditionen unterstellt: Der Bausparer

zahlt über  nR = 8 Jahre 4 Promille der Bausparsumme  B  ein. Die Raten werden vor-

schüssig mit 1.5 Prozent verzinst. Die Bausparsumme wird nach 8 Jahren ausgezahlt. 

Die Differenz zwischen der Bausparsumme und dem Sparbetrag ist der Bausparkre-

dit. Dieser wird mit Raten in Höhe von 6 Promille der Bausparsumme über  nK = 10

Jahre getilgt. Der Bausparkreditzinssatz beträgt 3.75 Prozent. 

Ist die Finanzierung mit dem Bausparvertrag günstiger oder schlechter als eine

freie Finanzierung? Es wird unterstellt, dass bei der freien Finanzierung die Sparra-

ten zu besseren Konditionen angelegt werden. Für den Sparvertrag wird ein Zinssatz

von  iR = 0.0325 angenommen. Durch die bessere Verzinsung der Raten ist der Rente-

nendwert höher und der Kredit  K 0, der in acht Jahren aufzunehmen ist, fällt geringer

aus. 

In der folgenden Betrachtung wird eine Äquivalenz zwischen dem Kredit  K 0

und den Leistungen des Bausparers aufgestellt. Die Leistungen des Bausparers sind

zum einen die Sparraten  r = 4  B  und zum anderen die Annuitäten  A

 B. 

1000

= 6

1000

Die Sparleistungen führen mit der Verzinsung  iR  zum Rentenendwert  Rvor

 n . Bei einer

Bausparsumme von 50 000 e beträgt das angesparte Kapital

 qnR

√

1.03258 − 1

 Rvor

 R − 1

 n

=  rqR

= 0.004 × 50000 × 12 1.0325 √

= 21909.08e

 q

12

 R − 1

1.0325− 1

Der unterjährige Zinssatz ist konform berechnet. Der Kredit ist die Differenz aus der

Bausparsumme und dem Angesparten. 

 K 0 =  B − 21909.08 = 28090.92 e
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Der Kredit wird mit der Annuität  A = 0.006 × 50000 = 300 e getilgt. Die Äqui-

valenz

 A qnK − 1

 K ! 

0 =  qnK q −1

liefert den effektiven Kreditzinssatz der Bausparkasse. Die Auflösung der Äquiva-

lenz führt zu der bekannten Gleichung

 C( q) =  K 0  qnK ( q − 1) −  A( qnK − 1) != 0





 qnR

=  B  1 − 0.004 q R − 1

 R

 qnK ( q − 1) − 0.006 B( qnK − 1) != 0

 qR − 1





 qnR

= 1 − 0.004 q R − 1

 R

 qnK ( q − 1) − 0.006( qnK − 1) != 0

 qR − 1

Die Äquivalenz ist unabhängig von  B. Werden die obigen Angaben in die Gleichung

eingesetzt erhält man:

 C( q) = 0.561818 qnK+1 − (0.561818 + 0.006) qnK + 0.006 != 0

Die Lösung (mit Scilab berechnet) für  q  ist 1.0042909. Der kritische Jahreszinssatz

beträgt damit 5.27 Prozent. So viel darf der Kredit in 8 Jahren höchstens kosten, 

um nicht teurer als die Bausparkasse zu werden. Wenn der Zinssatz in 8 Jahren für

ein Darlehen mit zehnjähriger Zinsbindung darunter liegt, ist die freie Finanzierung

günstiger. Liegen die Zinsen für den Kredit in acht Jahren über 5.27 Prozent, ist das

Angebot der Bausparkasse günstiger. 

Fällt (unter sonst gleichen Bedingungen) der Zinssatz für den freien Sparplan, 

so fällt auch der kritische Kreditzinssatz. Der Bausparplan wird günstiger. Steigen

hingegen die Sparzinssätze, so wird der Bausparplan unattraktiver. 

Zu beachten ist aber, dass die Zinssätze der Bausparkasse zum Zeitpunkt des Ver-

tragsabschlusses vereinbart werden und damit keinen Änderungen mehr während der

Zeit unterliegen. Der vereinbarte Bausparkreditzinssatz ist also ein Terminzinssatz. 

Bei der freien Finanzierung ist der Kreditzinssatz erst kurz vor der Kreditaufnahme

im achten Jahr fest und Zinssätze können sich binnen kurzer Zeit stark ändern. 

☼

9.8.8 Berechnung des effektiven Kreditzinssatzes mit Scilab

Die Berechnung des effektiven Kreditszinssatzes in Beispiel 9.57 ist mit den folgen-

den Anweisungen erfolgt. 

// Berechnung der Annuität

qn = 1.06; 

n = 10; 

K = 1000; 

A = K*q^n*(q-1)/(q^n-1); 
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// Aufstellen des Polynoms

C = poly([(-A*ones(1,10)) -60 (K/2)-60 K/2],"q",... 

"coeff"); 

// Nullstelle und Umrechnung auf einen Prozentsatz

qq = roots(C); 

i = real(qq(find(imag(qq)==0))) - 1)*100

Der effektive Kreditzinssatz in Beispiel 9.58 wird wie folgt berechnet. 

Z = 10; 

m = 12; 

n = 10; 

nm = n*m; 

K = 1000; 

// 1. Gleichung

p1 = poly([-Z*ones(1,nm) K],"q","coeff"); 

q1 = roots(p1); 

q1 = real(q1(find(imag(q1)==0))); 

i1 = (max(q1)^m-1)*100

// 2. Gleichung

p2 = poly([Z zeros(1,nm-1) -(K+Z) K],"q","coeff"); 

q2 = roots(p2); 

q2 = real(q2(find(imag(q2)==0))); 

i2 = (max(q2)^m-1)*100

9.8.9 Mittlere Kreditlaufzeit

Die mittlere9 Kreditlaufzeit ist die Kreditlaufzeit, bei der die Hälfte des Kredits ge-

tilgt ist. Sie fällt aufgrund der annuitätischen Rückzahlungsstruktur in die zweite

Hälfte der Kreditlaufzeit (siehe Abb. 9.12). Je höher der Zinssatz ist, desto höher

fällt die mittlere Kreditlaufzeit aus. Man erkennt in Abb. 9.12 auch deutlich, dass

nach der Hälfte der Kreditlaufzeit noch nicht die Hälfte des Kreditbetrags getilgt ist. 

Aus dem Ansatz

 K

 K ! 

0

 t = 2

mit

 qt − 1

 Kt =  K 0  qt −  A q−1

9 Mit dem Adjektiv «mittlere» wird hier die Zeit bezeichnet, in der 50 Prozent des Kredits

getilgt sind. Man bezeichnet dies auch als Median der Restschuld. Häufig wird damit eine

durchschnittliche Betrachtung angesprochen, die hier nicht gemeint ist. 
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Abb. 9.12: Mittlere Restlaufzeiten

erhält man

 K 0 ! 

 qt(0.5) − 1

=  K

2

0  qt(0.5) −  A

 q − 1

Auflösen der Gleichung nach  t  ergibt die gesuchte Beziehung





 i

ln 2 −  AK 0

 i−  A

 t

 K 0

(0.5) =

ln q

 Beispiel 9.60.  Die mittlere Kreditlaufzeit im Beispiel 9.43 beträgt





0.06

ln

2 − 135.87

1000

0.06− 135.87

 t

1000

(0.5) =

= 5.7181 Jahre

ln 1.06

☼
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Übung 9.8. Ein Versandhaus gewährt einem Kunden nach Anzahlung von 10 Pro-

zent des Kaufpreises eines Heimkinos für 5 000 e einen Verbraucherkredit über

den Restbetrag mit einer Laufzeit von 24 Monaten zu folgenden Konditionen:

• Zinssatz: 0.6 Prozent pro Monat bezogen auf den Anfangskredit

• Bearbeitungsgebühr: 2 Prozent des Kreditbetrags

• Rückzahlung: 24 annuitätische Raten

Beantworten Sie folgende Fragen:

1. Wie hoch ist die monatliche Rate? 

2. Wie hoch ist der effektive Kreditzinssatz pro Jahr? 

Übung 9.9. Ein Kaufhaus bietet einen Konsumentenkredit zu folgenden Konditio-

nen an:

• 4 Prozent p. a. 

• Laufzeit 36 Monate

Das Besondere an einem Konsumentenkredit ist, dass die Tilgungsraten erst am

Ende der Laufzeit verrechnet werden. Berechnen Sie den effektiven jährlichen Kre-

ditzinssatz. 

Übung 9.10. Beim Kauf eines Pkws im Wert von 15 000 e müssen 20 Prozent an-

gezahlt werden. Der Rest soll in 48 Monatsraten getilgt werden. Auf die Rest-

kaufsumme wird ein Zinssatz von 0.3 Prozent pro Monat vereinbart. 

Beantworten Sie folgende Fragen:

1. Wie hoch ist die monatliche Annuität? 

2. Wie hoch ist der effektive Jahreszinssatz? 

Übung 9.11. Berechnen Sie die vierteljährliche Annuität auf Basis des konformen

vierteljährlichen Zinses für folgenden Kredit:

• Kreditbetrag: 2 Mio e

• Laufzeit: 1 Jahr

• Zinssatz: 7 Prozent p. a. 

Beantworten Sie außerdem folgende Fragen:

1. Stellen Sie für den oben beschriebenen Kredit einen Tilgungsplan auf. 

2. Berechnen Sie den effektiven Jahreszins des obigen Kredits, wenn eine ein-

malige Kreditabschlussgebühr in Höhe von 0.1 Prozent des Kreditbetrags

fällig wird. 
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Übung 9.12. Berechnen Sie für folgenden Bausparvertrag den effektiven Kredit-

zinssatz. Die Bausparsumme beträgt 50 000 e. Es werden monatlich 250 e über 8

Jahre gespart. Die Raten werden am Monatsanfang gezahlt. Die Raten können in

einem Banksparplan zu 3.25 Prozent angelegt werden. Der Kredit ist mit 300 e

monatlich über 8 Jahre zu tilgen. 

9.9 Investitionsrechnung

Bei der Investitionsrechnung geht es grundsätzlich um die Frage, ob ein Kapital  K 0

investiert werden soll. Die Alternative ist, den Betrag zum Zinssatz  i  anzulegen. Um

die Investition beurteilen zu können, müssen die Erträge und Kosten berücksichtigt

werden. Diese Erträge und Kosten sind periodische Zahlungen, die aber anders als in

der Rentenrechnung in der Regel nicht konstant sind. Daher können die Rentenend-

bzw. Rentenbarwertformeln hier nicht angewendet werden. Die Ansätze der Investi-

tionsrechnung werden auch in der Unternehmensbewertung eingesetzt. 

 K 0

 Z 1

 Z 2

 Zn−1

 Zn

⏐

⏐











⏐

⏐

⏐

⏐

⏐

⏐

⏐

⏐

 q−1

 q−2

 q−3

 q− n

0 −−−−−→ 1 −−−−−→ 2 −−−−−→ ··· n − 1 −−−−−−→  n

1. Periode

2. Periode

3. Periode

 n-te Periode

⏐

⏐



 C 0

Abb. 9.13: Struktur einer Investition

Man unterscheidet in der Investitionsrechnung statische und dynamische Verfah-

ren. Bei der statischen Investitionsrechnung wird ein Vergleich von Kosten, Gewin-

nen oder Rentabilitäten vorgenommen, ohne dass dem Zeitfaktor Rechnung getragen

wird. In der Rechnung wird nur das erste Jahr oder ein repräsentatives Jahr angesetzt. 

Die statischen Verfahren berücksichtigen daher nicht die finanzmathematischen Ver-

fahren. Die statische Investitionsrechnung wird hier nicht behandelt. 

Die dynamische Investitionsrechnung setzt die oben beschriebenen finanzma-

thematischen Verfahren ein. Im Folgenden werden die Kapitalwert-, die Annuitä-

tenmethode und die Methode des internen Zinsfußes beschrieben. Sie alle sind dem

Ansatz nach identisch und unterscheiden sich – wie schon bei der Rentenrechnung

dargelegt – nach der Fragestellung. 

9.9.1 Kapitalwertmethode

Aus der Investition in Höhe von  K 0 entstehen über  n  Perioden Erträge und Kosten, 

die saldiert durch die Zahlungen  Zt  beschrieben werden. Bei der Kapitalwertmethode
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wird der Barwert der Investition, also die diskontierten Erträge und Kosten aus allen

zukünftigen Perioden berechnet. Dabei wird unterstellt, dass die zukünftigen Erträge

und Kosten mit Sicherheit eintreten. Der Kapitalwert misst also den Vermögensüber-

schuss bzw. -minderung zum Zeitpunkt  t = 0. Als Alternative kommt die Anlage von

 K 0 zum Zinssatz  i  infrage. Für die Periode  n  ergibt sich der Wert der Investition

 In =  Z 0  qn +  Z 1  qn−1 + ... +  Zn−1  q +  Zn  für  q > 1, 

der dem Betrag

 Kn =  K 0  qn  für  q > 1

gegenüberzustellen ist. Da man in der Finanzmathematik stets das Barwertprinzip

anwendet, sind die Beträge zu diskontieren. 

 C 0( q) =  I 0 −  K 0 für  q > 1

 I

 K

 Z

 Z

 n



=  n −  n =  Z

1 +...+  n − K

 Z

 qn

 qn

0 +  q

 qn

0 =

 t q− t −  K 0

 t=0

 C 0( q) wird hier als Kapitalwert ( net present value) bezeichnet und  i  ist der Kal-

kulationszinssatz10. Eine Investition ist vorteilhaft, wenn der Kapitalwert bei ei-

nem Zinssatz  i  positiv ist. Sind mehrere Investitionsalternativen zu vergleichen, so

ist die Investition mit dem höchsten Kapitalwert bei gleichem Kalkulationszinssatz

am günstigsten. Daher der Name Kapitalwertmethode. 

 Beispiel 9.61.  Ein Kapital von 1 000 e hat über den Planungszeitraum von  n = 2

Perioden folgende Nettoerträge:

 Z 1 = 600 e im 1. Jahr

 Z 2 = 500 e im 2. Jahr

Lohnt sich die Investition bei einem Kalkulationszinssatz von  i = 0.05? Der Kapital-

wert beträgt:

600

500

 C 0(1.05) =

+

− 1000 = 24.94 e

1.05

1.052

Da der Kapitalwert positiv ist, lohnt sich die Investition. 

☼

 Beispiel 9.62.  Die Nettoerträge in der Zukunft sind unbekannt. Daher wird angenom-

men, dass sie mit einem konstanten Faktor wachsen (siehe Abschnitt 9.6.1 wachsen-

de Rente). Der Ertrag für die ersten beiden Jahre ist mit 600 e und 500 e zu be-

stimmen. Für die folgenden 8 Jahre unterstellt man eine Schätzung des Ertrags von

500 e mit einem Wachstum von 3 Prozent. Die Investition betrage 4 000 e und der

Kalkulationszinssatz 5 Prozent. Es liegt dann folgender Zahlungsstrom vor:

10 Der Kalkulationszinssatz kann zum Beispiel durch die gewichteten durchschnittlichen Ka-

pitalkosten ( weighted average cost of capital)  des Unternehmens gegeben sein. 
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 t

0

1

2

3

···

10

 Zt −4000 600 500 500 × 1.03 ··· 500 × 1.038

Der Kapitalwert der Investition kann für die Jahre 2 bis 10 durch eine wachsende

Rente berechnet werden. 

600

500

500 × 1.03

500 × 1.038

 C 0(1.05) =

+

+

+ ... +

− 4000

1.05

1.052

1.053

1.0510

600

1

500 1.059 − 1.039

=

+

− 4000 = 355.51 e

1.05

1.05 1.059 1.05 − 1.03







Barwert einer wachsenden

Rente zum Zeitpunkt 2

☼

Wird eine nicht-flache Zinsstruktur unterstellt, so muss man wie in Kapitel 9.7.5

den Kapitalwert über Nullkuponzinssätze berechnen. 

9.9.2 Methode des internen Zinssatzes

Bei der Methode des internen Zinssatzes ( internal rate of return) wird die Frage-

stellung umgekehrt: Welcher Zinssatz ergibt einen Kapitalwert von Null? Liegt die

gewünschte Kapitalverzinsung (Kalkulationszinssatz, Vergleichszinssatz) über dem

internen Zinssatz, so ist die Investition unvorteilhaft, da ein negativer Kapitalwert

eintritt. Die Fragestellung ist ähnlich der nach der Rendite bei einem festverzinsli-

chen Wertpapier. Auch hier wird bei dem Ansatz eine flache Zinsstruktur unterstellt. 

Das Äquivalenzprinzip liefert folgende Gleichung, deren Nullstellen den internen

Zinssatz liefert:

 Z

 Z

 C

1

 n

! 

0( q) =

+ ... +

−  K = 0

 q 1

 qn

0

Die Nullstellen des Polynoms liefern den gesuchten internen Zinssatz. Sie können in

der Regel nur mit einem Näherungsverfahren wie der regula falsi bestimmt werden. 

 Beispiel 9.63.  Es wird das Beispiel 9.61 fortgesetzt. Bei welchem internen Zinssatz

ist der Kapitalwert Null? 

600

500

 C 0( q) =

+

− 1000 != 0 für  q > 1

 q

 q 2

(9.48)

600

500

=  q 2 −

 q −

! 

= 0

1000

1000



 q 1,2 = 0.3 ± 0.32 + 0.5

 q 1 = 1.068112;  q 2 = −0.4681

Im vorliegenden Fall konnte der interne Zinssatz leicht mit der quadratischen Ergän-

zung gelöst werden, da nur ein Zeitraum von 2 Perioden vorgegeben war. Der interne

Zinssatz beträgt 6.8115 Prozent. Die zweite Lösung ergibt keinen Sinn, zeigt aber die

Mehrdeutigkeit der Lösung auf (siehe Abb. 9.14). 

☼
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Abb. 9.14: Kapitalwerte der Gleichung (9.48)

 Beispiel 9.64.  Der interne Zinssatz in Beispiel 9.62 ist die Nullstelle für  q > 1 des

Polynoms

600

500

500 × 1.03

500 ×  q 8

 C 0( q) =

+

+

+ ... +

− 4000 != 0

 q

 q 2

 q 3

 q 10

(9.49)

= 600 q 9 + 500 q 8 + 500 × 1.03 q 7+ ... + 500 × 1.038− 4000 q 10 != 0

Der interne Zinssatz mit Scilab berechnet (siehe Kapitel 9.9.3) beträgt 6.746 Prozent

p. a. 

☼

Zur Interpretation des internen Zinssatzes: Der interne Zinssatz ist der Zinssatz, 

den die geplante Investition eben noch erzielen kann. Wird ein höherer Zinssatz ge-

fordert, weil zum Beispiel der Kapitalmarkt höhere Kapitalverzinsungen liefert, ist

die Investition unvorteilhaft. Ebenso lässt sich beim Einsatz von Fremdkapital ar-

gumentieren. Liegt der Fremdkapitalzinssatz über dem internen Zinssatz, so ist die

Investition nicht zu finanzieren. 

9.9.3 Berechnungen mit Scilab

Die Berechnung des Kapitalwerts in Beispiel 9.62 kann mit Scilab wie folgt berech-

net werden. 
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cashflow = [-4000,600,500*ones(1,9)]

qdiskont = 1.05; 

// Diskontierungsfaktor

qgrowth = 1.03; 

// Wachstumsfaktor

tdiskont = [0:10]; 

qd=qdiskont.^tdiskont // Diskontierungsfaktoren

tgrowth = [0,0,0:8]; 

// extra Null für t=0,1

qg = qgrowth.^tgrowth // Wachstumsfaktoren

netcash = cashflow.*qg./qd

pv = sum(netcash)

// Berechnung mit Barwert einer wachsenden Rente

Cq = 600/qdiskont+500/qdiskont^10*... 

(qdiskont^9-qgrowth^9)/(qdiskont-qgrowth)-4000

Die Fortführung des Beispiels 9.62 führt zur Berechnung des internen Zins-

satzes (siehe Beispiel 9.64). Damit die Erweiterung des Polynoms (9.64) mit  q 10

mit dem Zahlungsstrom cashflow im Programm übereinstimmt, die Reihenfol-

ge umgekehrt werden. Dies erfolgt in Scilab mit der umgekehrten Indexierung:

cashflow(11:-1:1). 

cfg = cashflow.*qg // cashflow mit Wachstum

p = poly([cfg(11:-1:1)],’q’,’coeff’)

qi = roots(p); 

qi = real(qi(find(imag(qi)==0)))

(max(qi)-1)*100

9.9.4 Probleme der Investitionsrechnung

Ein erstes Problem tritt bei Investitionen auf, deren periodische Erträge nicht nur

positiv sind. Solche Investitionen werden auch als nicht-normale Investitionen be-

zeichnet. 

 Beispiel 9.65.  Bei einer Investition mit der Zahlungsreihe

 K 0  Z 1  Z 2

 Z 3

100 200 600 −650

treten im Bereich von 1 <  q < 2 (0 <  i < 1) ausschließlich positive Kapitalwerte

auf (siehe Grafik links oben in Abb. 9.15). Es ist kein interner Zinssatz bestimm-

bar. In Abb. 9.15 sind weitere Fälle aufgezeigt. Es können mehrere positive interne

Zinssätze auftreten. Dann ist die Investition in den Bereichen positiver Kapitalwerte

vorteilhaft. 

☼
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Abb. 9.15: Nicht-normale Investitionen

Ein anderes Problem kann beim Vergleich zweier Investitionen auftreten. Die

Kapitalwertmethode und die Methode des internen Zinssatzes können ein scheinbar

widersprüchliches Ergebnis liefern. Dieser Widerspruch besteht darin, dass sich die

Kapitalwertfunktionen schneiden. Ein Beispiel erläutert dies am besten. 

 Beispiel 9.66.  Es liegen zwei Investitionsvorhaben vor, die einen Planungshorizont

von  n = 3 Jahren haben und einen Investitionsbetrag von  K 0 = 100 aufweisen. Die

Kapitalwertfunktion der ersten Investition ist

80

60

10

 C 0( q) = −100 +

+

+

für  q > 1

 q

 q 2

 q 3

und die der zweiten

10

70

90

 C 0( q) = −100 +

+

+

für  q > 1

 q

 q 2

 q 3

Für die erste Investition wird ein interner Zinssatz von 31.44 Prozent berechnet und

für die zweite ein interner Zinssatz von 24.41 Prozent. Hiernach scheint die erste

Investition vorteilhafter zu sein. Es werden nun die Kapitalwerte zu einem Kalkula-

tionszinssatz von 10 Prozent berechnet. 

 C 0(1.1) = 29.83 e
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 C 0(1.1) = 34.56 e

Nun ist die zweite Investition vorteilhafter. Woran liegt das? Die beiden Kapitalwert-

funktionen besitzen einen Schnittpunkt, wie Abb. 9.16 zeigt. 

☼
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Abb. 9.16: Vergleich von zwei Investitionen

Bei der Investitionsrechnung ist der Kapitalwert für einen gegebenen Kalkulati-

onszinssatz die entscheidende Größe. Er bestimmt, welche Investition vorteilhaft ist. 

Daher ist der Kalkulationszinssatz stets sehr sorgfältig zu bestimmen. Wird ein zu

hoher Kalkulationszinssatz gefordert, wird der Kapitalwert kleiner oder negativ und

die Investition wird unvorteilhaft. Wird ein zu niedriger Kalkulationszinssatz einge-

setzt, so könnten Fremdkapitalgeber das Projekt als unrentabel einstufen. Dass sich

bei unterschiedlichen Kalkulationszinssätzen die Vorteilhaftigkeit verschiedener In-

vestitionen umkehren kann, ist dabei zu berücksichtigen. 
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Übung 9.13. Ein Investor kauft 500 Aktien zu einem Gesamtpreis von 100 000 e. 

Im ersten Jahr nach dem Kauf der Aktien wird keine Dividende gezahlt. Im zweiten

Jahr wird infolge günstiger wirtschaftlicher Entwicklungen eine Dividende von 5 e

pro Aktie ausgeschüttet. Der Investor kann das Aktienpaket nach 2 Jahren zu einem

Preis von 110 000 e verkaufen. 

Beantworten Sie folgende Fragen:

1. Wie hoch ist die Rendite? 

2. Ist die Anlage vorteilhaft, wenn andere Anlagen im gleichen Zeitraum eine

Rendite von 6.5 Prozent p. a. erzielen? 

Übung 9.14. Es liegt folgende Investition zur Entscheidung an:

• Zinssatz: 5 Prozent p. a. 

• Investitionsbetrag: 1 000 e

• Nettoerträge: im ersten Jahr 700 e, im zweiten Jahr 800 e

Berechnen Sie für die obige Investition den

1. Kapitalwert und

2. internen Zinssatz

Übung 9.15. Jemand kann für 3 Jahre ein Strandcafé für 50 000 e übernehmen. 

Für diesen Zeitraum werden die folgenden Einnahmen und Ausgaben jeweils am

Jahresende erwartet:

1. Jahr

2. Jahr

3. Jahr

Ausgaben

155 000 e 165 000 e 175 000 e

Einnahmen 195 000 e 210 000 e 230 000 e

Für einen Kredit von 50 000 e werden von der Bank 9.5 Prozent Zinsen verlangt. 

Ist nach der Kapitalwertmethode die Investition in das Strandcafé sinnvoll? 
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Übung 9.16. Ein Investor plant den Erwerb einer Wohnung für 100 000 e. Er geht

bei seinem Kauf von folgenden Annahmen aus:

• Jährliche Ausgaben für Instandhaltung und Verwaltung 1 000 e. 

• Jährliche Mieteinnahmen abzüglich Nebenkosten 8 000 e. 

• Erwarteter Verkaufspreis der Wohnung nach 5 Jahren 110 000 e. 

Beantworten Sie folgende Fragen:

1. Wie hoch ist der Kapitalwert der Investition bei einem Kalkulationszinsfuß

von 10 Prozent? 

2. Bestimmen Sie näherungsweise den internen Zinssatz der Investition. 

3. Ermitteln Sie den durchschnittlichen jährlichen Überschuss bei einem Kal-

kulationssatz von 10 Prozent. 

4. Auf welchen Kaufpreis müsste der Investor die Eigentumswohnung herun-

terhandeln, wenn er eine Verzinsung von 10 Prozent wünscht? 

5. Wie hoch ist die jährliche Annuität, wenn der Kauf mit einem Kredit finan-

ziert wird, der folgende Bedingungen besitzt:

• Auszahlungskurs: 98 Prozent

• Bearbeitungsgebühr: 2 Prozent

• Zinssatz: 6 Prozent p. a. 

• Laufzeit: 5 Jahre

Übung 9.17. Ein Unternehmer möchte 150 000 e investieren. Er erwartet für die

vierjährige Nutzungsdauer folgende Überschüsse:

1. Jahr

2. Jahr

3. Jahr

4. Jahr

35 000 e 48 000 e 52 000 e 58 000 e

Beantworten Sie folgende Fragen:

1. Ist die Investition bei einem Kalkulationszinssatz von 9 Prozent rentabel? 

Beurteilen Sie Ihre Entscheidung mit der Kapitalwertmethode und mit der

Methode des internen Zinssatzes. 

2. Was würde sich ändern, wenn im 3. Jahr statt des Überschusses von 52 000 e

mit einem Verlust von 2 000 e gerechnet werden müsste? Zur Finanzierung

dieses Verlustes würde ein Kredit zum Zinssatz von 10 Prozent aufgenom-

men. Berechnen Sie Ihr Ergebnis mit der Kapitalwertmethode. 

9.10 Fazit

Die exponentielle Zinsrechung, die die Zinseszinsen berücksichtigt, wird überwie-

gend in der Finanzmathematik verwendet. Für Zinszahlungen, die nur über eine sehr

kurze Zeitperiode geleistet werden, wird manchmal der Einfachheit halber die linea-

re Zinsrechnung verwendet. Der Zinseszinseffekt ist hier meistens so klein, dass er

vernachlässigt werden kann. 

230

9 Grundlagen der Finanzmathematik

Bei einer Reihe von regelmäßigen Zahlungen spricht man von einer Rente. Je

nach Fragestellung ist der Rentenendwert, der Rentenbarwert, die Rate, die Zahl der

Perioden oder der (effektive) Zinssatz zu berechnen. In der Rentenrechnung unter-

scheidet man Zahlungen, die am Anfang einer Periode (vorschüssig) oder am Ende

(nachschüssig) geleistet werden. Bei Zahlungen die unterjährig verzinst werden, ist

nach den Rechengesetzen der konforme unterjährige Zinssatz zu verwenden. In der

Praxis wird aber häufig (wegen der Neigung zum linearen Denken) der relative Zins-

satz verwendet. Dies führt dazu, dass zwischen dem Nominalzinssatz und dem ef-

fektiven Jahreszinssatz unterschieden werden muss. Mit dem Äquvalenzprinzip wird

die Rendite (der effektive Zinssatz) berechnet. 

In der Annuitätenrechnung wird die Rückzahlung eines Kredits betrachtet. Eine

Annuität ist eine Rate, die aus einer Tilgungs- und einer Zinszahlung besteht. 

In der Investitionsrechnung wird das Barwertprinzip auf unregelmäßige Zahlun-

gen übertragen. Mit ihr wird die Entscheidung für oder gegen eine Investition im

Rahmen der Annahmen beantwortet. 
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10.1 Vorbemerkung

Werden Funktionen für einen festen Funktionswert untersucht, zum Beispiel hin-

sichtlich eines Extremums, so kann man dies als eine statische Analyse bezeichnen. 

Eine andere Betrachtungsweise ist die dynamische Analyse. Man untersucht dann

die Eigenschaft einer Funktion an verschiedenen Stellen und vergleicht sie mitein-

ander. Es werden also Eigenschaften untersucht, die relativ zur Funktionsänderung

definiert sind, also Änderungsraten. Dazu gehören zum Beispiel die Steigung oder

die Krümmung einer Funktion. Für die Untersuchung von Änderungsraten hat sich

die Differentialrechnung als wichtiges Instrument erwiesen. In den Wirtschaftswis-

senschaften wird die Grenzbetrachtung häufig auch als Marginalanalyse bezeichnet. 

 Beispiel 10.1.  Die Einkommensteuer nach der Grundtabelle für 2004 liegt bei ei-

nem zu versteuerenden Einkommen von 19 800 e bei 2 846 e. Der durchschnittliche

Steuersatz beträgt somit 14.4 Prozent des Einkommens (siehe Abb. 10.1). Würde der

zu versteuernde Jahresverdienst auf 20 700 e ansteigen, so stiege die Einkommen-

steuer auf 3 099 e an. Bezogen auf das Gesamteinkommen läge der durchschnittliche

Steuersatz dann bei 15.0 Prozent. In der Regel interessiert jedoch weniger der durch-

schnittliche Steuersatz, sondern die durch das Mehreinkommen verursachte absolu-

te und relative Steuererhöhung. Das Einkommen erhöht sich um 900 e; die Steuer

erhöht sich dadurch um 253 e, so dass für das Mehreinkommen durchschnittlich

28.1 Prozent Steuer einbehalten werden. Die relative Steuererhöhung bezogen auf

das Mehreinkommen bezeichnet man, wenn man sich auf unendlich kleine Einkom-

mensänderungen bezieht, als Grenzsteuersatz. Es ist die Steigung am Punkt des

betrachteten Einkommens. Der Grenzsteuersatz ist nun wieder eine Funktion des

Einkommens. 

☼

In der Ökonomie wird die Differentialrechnung intensiv genutzt, um zum Bei-

spiel Minima und Maxima ökonomischer Funktionen (zum Beispiel von Kosten-

oder Gewinnfunktionen oder Elastizitäten) zu berechnen. 

Voraussetzung zur Anwendung der Differentialrechnung ist, dass zumindest eine

abschnittsweise stetige Funktion vorliegt. 

In der Differentialrechnung werden häufig folgende Symbole eingesetzt:

lim

Grenzwertoperator

Δ

Symbol für die erste Differenz

d

Differentialoperator

 f 

erste Ableitung der Funktion  f ( x)

ε

Elastizität

10.2 Grenzwert und Stetigkeit einer Funktion

Anknüpfend an das Kapitel 8.5 wird nun eine Folge [ xn] betrachtet, die gegen einen

Wert  x  strebt. Der Wert  x  wird dann als Grenzwert der Folge [ xn] bezeichnet. 

10.2 Grenzwert und Stetigkeit einer Funktion
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Abb. 10.1: Einkommensteuer

lim  xn =  x

 n→∞

! 

" 

Es wird nun angenommen, dass dann die Folge der Funktionswerte  f ( xn) ge-

gen  f ( x) strebt. Es werden also zwei Zahlenfolgen betrachtet. Die erste Folge ist

die Folge der Argumente [ xn], die dem Grenzwert  x  zustreben soll. Die zweite Fol-

! 

" 

ge ist die Folge der Funktionswerte  f ( xn) , die dem Grenzwert  y =  f ( x) zustreben

soll. Dies bedeutet, dass der Grenzübergang von links (von unten) zu dem gleichen

Grenzwert führt, wie der Grenzübergang von rechts (von oben). Wenn dies gilt, so

bezeichnet man den Wert

lim  f ( xn) =  f ( x) für  xn ∈  D(  f ), [ xn] =  x, lim  xn =  x

 xn→ x

 n→∞

als Grenzwert der Funktion  y =  f ( x) an der Stelle  x. Existiert der Grenzwert einer

Funktion, so wird die Funktion als stetig im Punkt  x  bezeichnet. Anschaulich heißt

eine Funktion stetig, wenn sie in einem Zug zeichenbar ist. Funktionen, die in einem

Punkt nicht stetig sind, werden dort unstetig genannt. Gründe für Unstetigkeiten kön-

nen Polstellen, Sprungstellen, Lücken oder extremes oszillierendes Verhalten einer

Funktion sein. 
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10.3 Differentialquotient

Die im Beispiel 10.1 erwähnte Abhängigkeit des Grenzsteuersatzes vom Einkommen

stellt den so genannten Differentialquotienten dar. Der Differentialquotient wird

auch als erste Ableitung einer Funktion bezeichnet. 

Es wird eine Funktion im Intervall [ x 1,  x 2] betrachtet. Die Differenz der Intervall-

grenzen wird mit

Δ x =  x 2 −  x 1 für  x 1 <  x 2

und die Differenz der Funktionswerte wird mit

Δ y =  y 2 −  y 1 =  f ( x 2) −  f ( x 1)

bezeichnet. Es soll die durchschnittliche Änderung der Funktion  f ( x) im Intervall

[ x 1,  x 2] berechnet werden. Sie ergibt sich als

Δ y

 y

= 2 −  y 1 = tanα

Δ x

 x 2 −  x 1

und ist gleich der Steigung der Sekanten, d. h. gleich dem Tangens des Zwischen-

winkels (siehe Abb. 10.2). 

Der zunächst als fest angenommene Punkt  x 2 soll nun veränderlich sein und da-

mit auch die Differenz zwischen  x 2 und  x 1. Um dem formal Rechnung zu tragen, 

wird

 x 1 =  x

und

 x 2 =  x + Δ x

gesetzt. Der Quotient

Δ y

 f ( x + Δ x) −  f ( x)

=

(10.1)

Δ x

Δ x

wird als Differenzenquotient bezeichnet. Er bedeutet die Änderung des Funktions-

wertes relativ zur Änderung der unabhängigen Veränderlichen über dem Intervall

Δ x.LässtmandenPunkt x 2nunimmernäherandenPunkt x 1rücken,soverkürztsich

die Sekante zwischen  f ( x 2) und  f ( x 1) und schmiegt sich immer enger an die Kurve

an. Mathematisch bedeutet diese Annäherung, dass der Grenzübergang Δ x → 0 voll-

zogen wird. Die Sekante zwischen den Punkten wird dabei zur Tangente im Punkt

 y =  f ( x), und die Steigung der Sekanten Δ y

Δ wird zur Steigung der Tangente (siehe

 x

Abb. 10.2). Aufgrund der Bedeutung des Grenzwertes des Differenzenquotienten hat

man für ihn ein eigenes Symbol und die Bezeichnung Differentialquotient einge-

führt. 
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Abb. 10.2: Differentialquotient

d y

Δ y

 f ( x + Δ x) −  f ( x)

= lim

= lim

(10.2)

d x

Δ x→0 Δ  x

Δ x→0

Δ x

Man spricht „d y  nach d x“. Als alternative Bezeichnungsweisen haben sich

d y

d  f

d

=  y =  f ( x) =

=

 f ( x)

d x

d x

d x

etabliert. Existiert der Grenzwert (10.2), so heißt die Funktion im Punkt  x differen-

zierbar. Ist die Ableitung eine stetige Funktion, so wird  f ( x) stetig differenzierbar

genannt. 

 Beispiel 10.2.  Der Differentialquotient der Funktion

 y =  x 3 für  x ∈ R

lautet

d y

( x + Δ x)3 −  x 3

= lim

d x

Δ x→0

Δ x

☼

Mit der Definition des Differentialquotienten ist nicht viel gewonnen. Tatsächlich

kommt es darauf an, den Grenzwert zu berechnen. Man bezeichnet dies als Differen-

zieren. 
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 Beispiel 10.3.  Die Berechnung des Differentialquotienten aus Beispiel 10.2 ist wie

folgt:

( x + Δ x)3 −  x 3

 y = lim

Δ x→0

Δ x

 x 3 + 3 x 2 Δ x + 3 x(Δ x)2 + (Δ x)3 −  x 3

= lim

Δ x→0

Δ x

(10.3)





= lim 3 x 2 + 3 xΔ x + (Δ x)2

Δ x→0

= 3 x 2

Der Differentialquotient d y , die erste Ableitung  y der Funktion  y

d x

=  x 3, lautet

somit:

d y =  f( x) =  y = 3 x 2

d x

☼

Der Differentialquotient der Funktion  f ( x) ist im Allgemeinen selbst wieder ei-

ne Funktion der unabhängigen Veränderlichen  x. Er wird als Steigung der Funktion

 f ( x) im Punkt  x  interpretiert. Will man diese Steigung in einem speziellen Punkt  x

ermitteln, so muss man den Wert in die Funktion der ersten Ableitung einsetzen. 



d y  =  f(ξ)

d x  x=ξ

 Beispiel 10.4.  Die Steigung der Funktion  y =  x 3 an der Stelle  x = 2 ist



d y



=  f (2) = 3 x 2

= 12

d x 

 x=2

 x=2

☼

Zum Differenzieren einer Funktion muss aber nicht jedesmal der Differentialquo-

tient der Funktion berechnet werden. Man braucht lediglich die Differentialquotien-

ten einiger wichtiger Funktionen und ein paar Grundregeln über das Differenzieren

zu kennen, um damit die gängigen Funktionen differenzieren zu können. 

10.3.1 Ableitung einer Potenzfunktion

Die Ableitung einer Potenzfunktion ist schon in der Gleichung (10.3) vorgenommen

worden. Die Verallgemeinerung dieses Ergebnisses führt zu:

 y =  xn  für  x,  n ∈ R ⇒

 y =  nxn−1
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10.3.2 Ableitung der Exponentialfunktion

Die Ableitung der Exponentialfunktion zur Basis  e  ist:

 y = e x  für  x ∈ R ⇒

 y = e x

Die Herleitung des Ergebnisses: Es wird der Differentialquotient für die Funktion

gebildet. 

d y

 f ( x + Δ x) −  f ( x)

e x+Δ x − e x

eΔ x − 1

= lim

= lim

= e x  lim

(10.4)

d x

Δ x→0

Δ x

Δ x→0

Δ x

Δ x→0

Δ x

Es wird

 k = eΔ x − 1

gesetzt, umgestellt

1 +  k = eΔ x

logarithmiert

ln(1 +  k) = Δ x

und in die Gleichung (10.4) eingesetzt. 

eΔ x − 1

 k

1

lim

= lim

= lim

Δ x→0

Δ x

 k→0 ln(1 +  k)

 k→0 ln(1 +  k)1 k

1

1

=

=

= 1

ln lim

ln e

 k→0(1 +  k) 1 k

Das Ergebnis kommt zustande, weil bei stetigen Funktionen der Grenzwertoperator

auf die innere Funktion vorgezogen werden darf und weil

lim(1 +  k)1 k = e

 k→0

gilt. Aus der Logarithmierung der obigen Gleichung folgt unmittelbar:

ln(1 +  k)

lim

= lne = 1

 k→0

 k

Damit gilt:

d y

eΔ x − 1

= e x  lim

= e x

d x

Δ x→0

Δ x
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10.3.3 Ableitung der natürlichen Logarithmusfunktion

Die Ableitung des natürlichen Logarithmus ist

1

 y = ln x  für  x > 0 ⇒  y =  x

Die Herleitung dieses Ergebnisse erfolgt in Beispiel 10.12. 

10.3.4 Ableitung der Sinus- und Kosinusfunktion

Die Ableitung der Sinus- und Kosinusfunktion ist:

 y = sin x  für  x ∈ R ⇒  y = cos x

 y = cos x  für  x ∈ R ⇒  y = −sin x

Eine Herleitung der Ableitungen ist zum Beispiel bei [4, Seite 274 f] angegeben. 

10.4 Differentiation von verknüpften Funktionen

Funktionen, die durch die Verknüpfung elementarer Funktionen gebildet sind oder

die in Form zusammengesetzter Funktionen vorkommen, kann man nach den folgen-

den Regeln differenzieren. 

10.4.1 Konstant-Faktor-Regel

Die Ableitung einer konstanten Funktion ist gleich Null. Ein konstanter Faktor kann

beim Differenzieren stets vor die Ableitung gezogen werden:

 y =  c

⇒  y = 0

 y =  c f ( x) ⇒  y =  c f ( x)

Herleitung der Konstant-Faktor-Regel:

d y

 c f ( x + Δ x) −  c f ( x)

= lim

d x

Δ x→0

Δ x

 f ( x + Δ x) −  f ( x)

=  c  lim

Δ x→0

Δ x

=  c f ( x)
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10.4.2 Summenregel

Sind  f ( x) und  g( x) zwei differenzierbare Funktionen, dann gilt:

 y =  f ( x) ±  g( x) ⇒  y =  f ( x) ±  g( x)

Herleitung der Summenregel:

! 

" ! 

" 

d y

 f ( x + Δ x) ±  g( x + Δ x) −  f ( x) ±  g( x)

= lim

d x

Δ x→0

Δ x

 f ( x + Δ x) −  f ( x)

 g( x + Δ x) −  g( x)

= lim

± lim

Δ x→0

Δ x

Δ x→0

Δ x

=  f ( x) ±  g( x)

 Beispiel 10.5.  Die Ableitung der Funktion

 y =  f ( x) +  c

ist

 y =  f ( x)

Die Ableitung einer Konstanten ist Null. 

☼

 Beispiel 10.6.  Die Ableitung der Funktion

 y = 2 x−2 + cos x

ist

 y = −4 x−3 − sin x

☼

10.4.3 Produktregel

Die Ableitung des Produkts zweier differenzierbarer Funktionen ist

 y =  f ( x) g( x) ⇒  y =  f ( x) g( x) +  f ( x) g( x) Wegen der Symmetrie der Ableitungsregel ist es gleichgültig, welchen Faktor man

als  f ( x) und welchen man als  g( x) bezeichnet. 

Herleitung der Produktregel:

d y

 f ( x + Δ x) g( x + Δ x) −  f ( x) g( x)

= lim

d x

Δ x→0

Δ x
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Erweiterung des Zählers mit  f ( x + Δ x) g( x) −  f ( x + Δ x) g( x):











 f ( x + Δ x) −  f ( x)  g( x)

 g( x + Δ x) −  g( x)  f ( x + Δ x)

= lim

+

Δ x→0

Δ x

Δ x









 f ( x + Δ x) −  f ( x)

 g( x + Δ x) −  g( x)

= lim

 g( x) + lim

lim  f ( x + Δ x)

Δ x→0

Δ x

Δ x→0

Δ x

Δ x→0

=  f ( x) g( x) +  g( x)  f ( x)

 Beispiel 10.7.  Die erste Ableitung der Funktion

 y = e x  ln x  für  x ∈ R+

ist





1

 y = e x  ln x +  x

☼

 Beispiel 10.8.  Die erste Ableitung der Funktion

 y = sin x cos x  für  x ∈ R

ist

 y = cos x cos x + (−sin x)sin  x

= cos2  x − sin2  x

☼

Das Produkt aus mehr als zwei differenzierbaren Funktionen lässt sich durch

wiederholte Anwendung der Produktregel differenzieren. 

10.4.4 Quotientenregel

Ist eine Funktion als Quotient zweier differenzierbarer Funktionen darstellbar, dann

ist ihr Differentialquotient

 f ( x)

 f ( x) g( x) −  f ( x) g( x)

 y =

⇒  y =

 g( x)

 g( x)2

Man beachte, dass die Formel nicht symmetrisch ist. Mit einigen zusätzlichen Um-

formungen lässt sich die Quotientenregel wie die Produktregel herleiten. 

Herleitung der Quotiententenregel:











































10.4 Differentiation von verknüpften Funktionen

241

 f ( x+Δ x)

d y = lim  g( x+Δ x) −  f( x)

 g( x)

d x

Δ x→0

Δ x





1

 f ( x + Δ x)

 g( x + Δ x)

= lim

 g( x)

−  f ( x)

Δ x→0  g( x + Δ  x) g( x)

Δ x

Δ x

Erweiterung des Terms in der Klammer mit  f( x) g( x)−  f( x) g( x)

Δ

:

 x





d y

1

 f ( x + Δ x) −  f ( x)

 g( x + Δ x) −  g( x)

= lim

 g( x)

−  f ( x)

d x

Δ x→0  g( x + Δ  x) g( x)

Δ x

Δ x

 g( x)  f ( x) −  f ( x) g( x)

=

 g( x)2

 Beispiel 10.9.  Die erste Ableitung der Funktion

ln x

 y =  x

ist

1  x−ln x  1−ln x

 y =  x

=

 x 2

 x 2

☼

10.4.5 Kettenregel





Eine zusammengesetzte Funktion  y =  f g( x) kann durch Substitution  z =  g( x) auf

ihre Grundform  y =  f ( z) zurückgeführt werden. Die Funktion  y =  f ( z) wird als

äußere Funktion und die Substitution  z =  g( x) als innere Funktion bezeichnet. 

Für zusammengesetzte differenzierbare Funktionen ist der Differentialquotient

wie folgt zu berechnen:





d  f ( z) d g( x)

 y =  f g( x)

⇒  y =  f ( z) g( x) = d z  d x

Die Differentiale  f ( z) und  g( x) werden entsprechend als äußere Ableitung und in-

nere Ableitung bezeichnet. Die Kettenregel besagt dann, dass zunächst die äußere

und die innere Ableitung einzeln zu berechnen und danach miteinander zu multipli-

zieren sind. Anschließend ist die Substitution  z =  g( x) rückgängig zu machen. Ist

eine Funktion mehrfach zusammengesetzt (geschachtelt), ist die Kettenregel mehr-

fach anzuwenden. 

Herleitung der Kettenregel:









d y

 f g( x + Δ x) −  f g( x)

= lim

d x

Δ x→0

Δ x
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Es wird  z =  g( x) gesetzt. Dann gilt:

 f ( z + Δ z) −  f ( z)

 f ( z) = lim

Δ z→0

Δ z

 z + Δ z =  g( x + Δ x) ⇒ Δ z =  g( x + Δ x) −  g( x)

Mit der obigen Erweiterung kann der Differentialquotient d y  unter der Vorausset-

d x

zung, dass Δ z = 0 für alle kleinen Werte von Δ x  ist, umgeschrieben werden in:





d y

 f ( z + Δ z) −  f ( z)

Δ z

= lim

lim

d x

Δ z→0

Δ z

Δ x→0 Δ  x

 g( x + Δ x) −  g( x)

=  f ( z) lim

Δ x→0

Δ x

=  f ( z) g( x)



=  f  g( x)  g( x)

 Beispiel 10.10.  Die Funktion

 y = ( x − 2)2

ist aus den beiden Funktionen

 y =  f ( z) =  z 2

 z =  g( x) =  x − 2

 y = 2 z

 z = 1

zusammengesetzt. Die erste Ableitung ist:

 y = 2( x − 2)

☼

 Beispiel 10.11.  Die Funktion

 y = e− x 2

2

ist aus den beiden Funktionen

 x 2

 z =  g( x) = −

 y =  f ( z) = e z

2

zusammengesetzt. Die Ableitungen hiervon sind

 z = − x

 y = e z
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Die erste Ableitung der Funktion ist somit

 y = − x e− x 2

2

☼

Übung 10.1. Bestimmen Sie die ersten Ableitungen von

√



√ 1

 f ( x) = 3  x 2

 f ( x) =  x

 x 3 +  x−1

3

3



 f ( x) = 2 x 2 ln x 2 + e x 2 sin x

 f ( x) =

ln  xi

 i=1

1ln x

 f ( x) =

 f ( x) = eln x

 x 2

Übung 10.2. Berechnen Sie die erste Ableitung der Tangens- und Kotangensfunk-

tion. Es gilt:

sin  x

cos x

 f ( x) = tan x =

 f ( x) = cot x =

cos x

sin  x

10.5 Ergänzende Differentiationstechniken

Manchmal können die behandelten Regeln nur indirekt, d. h. erst nach Umformung

der zu differenzierenden Funktion, angewendet werden. 

10.5.1 Ableitung der Umkehrfunktion

Zu einer eineindeutigen Funktion  y =  f ( x) existiert die Umkehrfunktion  x =  f −1( y). 





Ihre Ableitung lässt sich leicht nach der Kettenregel bestimmen:  x =  g f ( x) . Dif-

ferenziert man beide Seiten nach  x, so erhält man auf der linken Seite d x

d x = 1 und

rechts nach der Kettenregel

d x

d g( y) d  f ( x)

=

d x

d  f ( x) d x

d g( y) d y

1 = d y  d x

Die erste Ableitung der Umkehrfunktion  x =  f −1( y) der Funktion  y =  f ( x) ist dann

d g( y)

1

1

=

=

d y

d  f ( x)

 f ( x)

d x

 Beispiel 10.12.  Zur Funktion

 y =  f ( x) = e x  für  x ∈ R
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lautet die Umkehrfunktion

 x =  g( y) =  f −1( y) = ln y  für  y > 0

Die Ableitung der Umkehrfunktion ist somit:

d g( y)

1

1

1

=

=

=

d y

d  f ( x)

e x

 y

d x

☼

 Beispiel 10.13.  Zur Funktion

 y =  f ( x) =  x 2 für  x ∈ R+

lautet die Umkehrfunktion

√

 x =  g( y) =  y  für  y ∈ R+

Die Ableitung der Umkehrfunktion ist:

d g( y)

1

1

1

=

=

= √

d y

d  f ( x)

2  x

2  y

d x

☼

10.5.2 Ableitung einer logarithmierten Funktion

Es soll die erste Ableitung des Logarithmus einer allgemeinen Funktion

 y = ln g( x) für  g( x) > 0

berechnet werden. Nach der Substitution  z =  g( x) und der Anwendung der Kettenre-

gel mit  y = ln z  und d y

erhält man

d z = 1 z

d y

d

1

 g( x)

 y =

=

ln  g( x) =  g( x) =

d x

d x

 z

 g( x)

 Beispiel 10.14.  Der Differentialquotient der Funktion





 y = ln sin  x

für 0 <  x

ist mit  f ( x) = sin x  und  f ( x) = cos x

 f ( x)

cos x

 y =

=

= cot x  für 0 <  x

 f ( x)

sin  x

☼
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10.5.3 Ableitung der Exponentialfunktion zur Basis  a

Die Funktion

 y =  ax  für  a > 0,  x ∈ R

ist zu differenzieren. Sie lässt sich durch Logarithmieren umformen. 

ln  y =  x ln a  für  a > 0

Die Ableitung beider Seiten nach der Veränderlichen  x  ergibt

1 d y

d x

=

ln  a = ln a, 

 y  d x

d x

so dass man durch einfache Umformung

 y =  y ln a =  ax  ln a

(10.5)

erhält. Für  a = e erhält man das bekannte Ergebnis

 y = e x  lne = e x. 

 Beispiel 10.15.  Es soll die Funktion

 y = 2 x 2 für  x ∈ R

abgeleitet werden. Hierzu wird die logarithmierte Funktion nach  x  differenziert, wo-

bei zu beachten ist, dass auf der linken Seite die Kettenregel anzuwenden ist. 

ln  y =  x 2 ln2

d ln y  d y

d x 2

=

ln 2

d y  d x

d x

1 d y = 2 x ln2

 y  d x

d y = 2 xy ln2

d x

= 2 x 2 x 2 ln2

☼

10.5.4 Ableitung der Logarithmusfunktion zur Basis  a

Gesucht ist die Ableitung der Funktion

 y = log a x  für  a,  x > 0

Durch Umkehrung der Funktion erhält man
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 x =  ay, 

und nach Differentiation beider Seiten nach  x  unter Anwendung der Kettenregel für

die rechte Seite

d x

d x  d y

=

d x

d y  d x

d y

(10.6)

1 =

 ay  ln  a

  

d x

Ergebnis aus (10.5)

Durch Auflösen der Gleichung (10.6) nach d y  erhält man das gesuchte Ergebnis

d x

1

1

 y =

=

 ay  ln  a

 x ln  a

Für  a =  e  erhält man das bekannte Ergebnis

1

 y = . 

 x

Übung 10.3. Bestimmen Sie die ersten Ableitungen von:

 f ( x) = 2 x

 f ( x) =  g( x)ln g( x)

10.6 Höhere Ableitungen und Extremwerte

Die Differentiation einer Funktion  y =  f ( x) liefert den Differentialquotienten d y  bzw. 

d x

die erste Ableitung nach  x, die im Allgemeinen selbst eine Funktion der unabhängi-

gen Variable ist. Ist diese Funktion wieder differenzierbar, dann kann man formal



d

d y

d2 y

d 



=

=

 f ( x) =  y

(10.7)

d x  d x

d x 2

d x

berechnen. Die entstehende Funktion wird als zweite Ableitung nach  x  bezeichnet. 

Ist die Funktion  y =  f ( x) zweimal differenzierbar, so heißt die Gleichung (10.7)

zweite Ableitung nach  x. Man spricht „ d  zwei  y  nach  x  Quadrat“. 

Die Bedeutung der zweiten Ableitung lässt sich wie die erste Ableitung geome-

trisch deuten. Sie gibt die Änderungsrate der Steigung bei Änderung des Arguments

an und ist damit ein Maß für die Krümmung der Funktion. Eine Funktion mit zuneh-

mender Steigung, d. h. mit einer positiven Steigungsänderung, 

 y > 0

heißt konvex gekrümmte Funktion. Die Sekante (Verbindungslinie zweier Punkte

auf einer Funktion) liegt stets oberhalb der Funktion. Eine Funktion mit abnehmen-

der Steigung, d. h. mit einer negativen Steigungsänderung, 
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Konvexe Funktionen
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Konkave Funktionen
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Abb. 10.3: Konvexe und konkave Krümmung von Funktionen

 y < 0

ist eine konkav gekrümmte Funktion. Die Sekante liegt stets unterhalb der Funktion

(siehe Abb. 10.3). 

Setzt man die Differentiation fort, so kann man – immer unter der Vorausset-

zung der Differenzierbarkeit der entsprechenden Funktion – die nächste Ableitung

berechnen:





d

d2

d3 y

=

=  y

d x  d x 2

d x 3





d

d3

d4 y

=

=  y(4)

d x  d x 3

d x 4

... 

 Beispiel 10.16.  Die Ableitungen  n-ter Ordnung der Funktion  y = sin x  sind

 y = cos x

 y = −sin x

 y = −cos x

 y(4) = sin x =  y

 y(5) =  y

 y( n) =  y( n−4)

☼
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 Beispiel 10.17.  Die Ableitungen  n-ter Ordnung der Funktion  y =  ax  sind





 y =  ax  ln a

 y =  ax  ln a  2









 y =  ax  ln a  3

 y( n) =  ax  ln a n

☼

 Beispiel 10.18.  Die Ableitungen  n-ter Ordnung eines Polynoms  n-ten Grades sind

 n



 y =  pn( x) =

 ai xi

 i=0

 n



 n−1



 y =  pn−1( x) =

 iai xi−1 =

( i + 1) ai+1 xi

 i=1

 i=0

 n



 n−2



 y =  pn−2( x) =

 i( i − 1) ai xi−2 =

( i + 1)( i + 2) ai+2 xi

 i=2

 i=0

... 

 n



 y( m) =  pn− m( x) =

 i( i − 1) ··· ( i −  m + 1) aixi− m

 i= m

 n− m



=

( i + 1)( i + 2) ··· ( i +  m) ai+ m xi

 i=0

... 

 y( n) =  p 0( x) =  n!  an

☼

 Beispiel 10.19.  Die Ableitung des Polynoms

1

2

 y =  x 5 −  x 3 − 8 x + 1

(10.8)

5

3

sind

 y =  x 4 − 2 x 2 − 8

 y = 4 x 3 − 4 x

 y = 12 x 2 − 4

 y(4) = 24 x

5! 

 y(5) =

= 24

 y(6) = 0

5

☼
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Abb. 10.4 sind die Funktion (10.8) und deren Ableitungen abgetragen. Man er-

kennt, dass an den Stellen  x = ±2 die erste Ableitung Nullstellen besitzt. An diesen

Stellen weist die Funktion  y =  f (±2) Extremwerte auf. Diese Punkte werden auch

als stationäre Punkte bezeichnet. Die notwendige Bedingung für ein Extremum

( necessary condition) ist, dass die erste Ableitung an der Stelle  x  eine Nullstelle be-

sitzt. 

 f ( x) = 0

Für  x = +2 besitzt die Funktion ein Minimum. Die zweite Ableitung ist hier positiv. 

Die hinreichende Bedingung für ein Minimum der Funktion an der Stelle  x  ist, 

dass die Funktion im Bereich um  x  eine konkave Krümmung aufweist. 

 f ( x) > 0

An der Stelle  x = −2 besitzt die Funktion ein Maximum. Die zweite Ableitung ist an

dieser Stelle negativ. Die hinreichende Bedingung für ein Maximum an der Stelle

 x  ist, dass die Funktion im Bereich um  x  eine konvexe Krümmung besitzt. 

 f ( x) < 0

An den Stellen  x = ±1 besitzt die zweite Ableitung Nullstellen. Die Funktion  y =

 f (±1) besitzt hier Wendepunkte. Gilt also an der Stelle  x

 f ( x) = 0 und  f ( x) = 0, 

dann liegt dort ein Wendepunkt der Funktion vor. Hier ändert sich die Art der Kur-

venkrümmung der Funktion, d. h., die Kurve geht dort von einer konkaven in eine

konvexe Krümmung über bzw. umgekehrt. 

Ergänzend sei noch der Sattelpunkt einer Funktion erwähnt. Er ist ein Wende-

punkt mit waagerechter Tangente. Die hinreichende Bedingung lautet

 f ( x) = 0 und  f ( x) = 0 und  f ( x) = 0

Die Funktion (10.8) besitzt keinen solchen Punkt. 

Die Berechnung von Extrempunkten, Wendepunkten und Sattelpunkten sind mit

Nullstellenproblemen verbunden. Das im Kapitel 8.3.2 beschriebene Verfahren der

regula falsi ist eine numerische Methode, um diese Probleme zu lösen. 

10.7 Newton-Verfahren

Ein anderes Verfahren zur iterativen Nullstellenbestimmung ist das Newton-Verfah-

ren. Voraussetzung hierfür ist, dass eine differenzierbare Funktion vorliegt und die

Lage der Nullstelle ungefähr bekannt ist. 

Man wählt einen Punkt  x(1) in der Nähe der vermuteten Nullstelle  x. Zeichnet





man nun eine Tangente im Punkt  x(1),  f ( x(1)) , und bestimmt deren Schnittpunkt
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f(x)

30

 y(5)

20

y’

 y(4)

y’’’

y’’

10

y

0

x

-3

-2

-1

0

1

2

3

-10

Abb. 10.4: Ableitungen des Polynoms (10.8)

 x(2) mit der Abzisse (siehe Abb. 10.5), so kann man sich dank des monotonen Verhal-

tens der Funktion in der Nähe der Nullstelle leicht überlegen, dass der Schnittpunkt

 x(2) näher an die Nullstelle  x  gerückt ist. Es gilt

 f ( x

tan α =

(1))

(10.9)

 x(1) −  x(2)

Die Steigung der Tangente, d. h., tan α ist gleich der ersten Ableitung der Funktion

 f ( x) an der Stelle  x(1). 

tan α =  f ( x(1))

(10.10)

Fasst man die Aussagen der Gleichungen (10.9) und (10.10) zusammen, so lässt sich

der gesuchte Schnittpunkt  x(2) wie folgt ermitteln:

 f ( x

 x

(1))

(2) =  x(1) −

=  x(1)

 f ( x(1))

Die 1. Näherung der gesuchten Nullstelle, die mit  x(1) bezeichnet wird, ist die Null-

stelle der Tangente  x(2). Mit Hilfe der angenäherten Nullstelle wiederholt man die

obige Rechnung, d. h., man bestimmt den Funktionswert  f ( x(2)). Man berechnet ei-

ne weitere Näherung der Nullstelle der Funktion mit:
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 f ( x

 x

(2))

(3) =  x(2) −

=  x(2)

 f ( x(2))

... 

 f ( x

 x

( i))

( i+1) =  x( i) −

=  x( i)

 f ( x( i))

Die Iteration wird gestoppt, wenn die Veränderung zur vorher berechneten Nullstel-

lennäherung nahezu Null wird. Sie wird durch  f( x)

 f ( x) gemessen. 

 Beispiel 10.20.  Für die Funktion

 y =  x 2 − ln x − 2

(10.11)

wird eine Nullstelle gesucht. Es sei bekannt, dass die Funktion in der Nähe von

 x = 0.2 eine Nullstelle besitzt. 

1

 y = 2 x −  x

f(x)

0.5

0.4

0.3

0.2

y

0.1

 x(1)

0.0

x

α

0.0

0.1

0.2

0.3

0.4

0.5

 x(2)

-0.1

-0.2

-0.3

-0.4

-0.5

Abb. 10.5: Newton-Verfahren, Ausschnitt der Funktion (10.11)

Mit diesem Startwert wird nun folgende Iteration begonnen:
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 x

 f ( x)

 f ( x)

 f ( x)

 f ( x)

0.2

−0.3506

−4.6

0.0762

0.1238

0.1045

−7.8306 −0.0133

0.1371

0.0056

−7.0179 −0.0008

0.1379

0.0000175 −6.9741 −0.0000025

Für  x(3) = 0.1379 liegt der Funktionswert bei  f (0.1379) = 0.0000175. Die Än-

derung zur nächsten Näherung beträgt −0.0000025. Sie verändert den Wert an der

millionstel Stelle. Für das Beispiel ist diese Änderung ausreichend klein, so dass

0.1379 als 1. Nullstelle angenommen werden kann. 

☼

 Beispiel 10.21.  Der effektive Kreditzinssatz im Beispiel 9.53 lässt sich schnell mit-

tels des Newton-Verfahrens berechnen. Aus der Kapitalwertgleichung





138.64

138.64

 C( q) =  q 11 − 1 +

 q 10 +

1000

1000

und deren 1. Ableitung





138.64

 C( q) = 11 q 10 − 10 1 +

 q 9

1000

werden die Iterationen berechnet. 

 q

 C( q)

 C( q)

 C( q)

 C( q)

1.06

−0.002192

0.4622 −0.004742

1.06474

0.0002594 0.5729

0.0004527

1.06429

0.0000025 0.5620

0.0000044

1.06428

≈ 0

0.5619

≈ 0

Der effektive Kreditzinssatz beträgt nach 4 Iterationen 6.428 Prozent. 

☼

Übung 10.4. Berechnen Sie für die Funktion in der Übung 8.2 (Seite 151) die Null-

stelle, die in der Nähe von  x 1 = −1 liegt mittels des Newton-Verfahrens. 

10.8 Ökonomische Anwendung

Die Analyse ökonomischer Funktionen beginnt meistens mit der Durchschnitts-

funktion ( average function). Analog zur Definition des arithmetischen Mittels ergibt

sich der durchschnittliche Funktionswert der Funktion  y =  f ( x) durch

 f ( x)

¯

 y =  x









10.8 Ökonomische Anwendung

253

Eine weitere wichtige Funktion zur Analyse ökonomischer Prozesse ist die

Grenzfunktion ( marginal function). Sie ist die erste Ableitung von  y =  f ( x). Mathe-

matisch ist die Grenzfunktion  f ( x) der Grenzwert des Quotienten (10.1). Eine an-

schauliche (aber mathematisch ungenaue) Interpretation der Grenzfunktion ist, den

marginalen Funktionszuwachs auf Δ x = 1 zu setzen. Die Grenzfunktion gibt dann

die Änderung pro zusätzlicher Einheit der unabhängigen Variable an. Einige wichti-

ge ökonomische Grenzfunktionen sind zum Beispiel Grenzkosten, Grenzgewinn und

Grenzerlös. 

10.8.1 Ertragsfunktion

Die Bedeutung der Durchschnittsfunktion wird am Beispiel einer s-förmigen Er-

tragsfunktion ( yield function, return function) (Produktionsfunktion) diskutiert wer-

den. Eine Ertragsfunktion beschreibt den Ertrag  y  eines Guts in Abhängigkeit (hier

nur) eines Produktionsfaktors  x. Bei zunehmendem Einsatz des Faktors  x  steigt der

Ertrag zunächst (bis zum Wendepunkt) überproportional und dann unterproportional

an. Meistens wird bei einem bestimmten Faktoreinsatz ein Maximum angenommen. 

In der Regel lässt sich beobachten, dass beim Überschreiten dieses optimalen Ein-

satzes der Ertrag wieder abnimmt (siehe Abb. 10.6). 

 Beispiel 10.22.  Die in Abb. 10.6 verwendete Ertragsfunktion ist

1

 y = 3 x 2 −  x 3 für  x ≥ 0

(10.12)

8

☼

In Abb. 10.6 sind der Ertrag, Durchschnittsertrag und der Grenzertrag grafisch

dargestellt. Im Punkt W liegt der Wendepunkt der Ertragsfunktion, d. h., von diesem

Punkt an nehmen die Grenzerträge nicht mehr zu. Er kennzeichnet das Maximum

der Grenzertragsfunktion. Der Bereich steigender Grenzerträge, also der Bereich vor

dem Wendepunkt, wird als der Bereich zunehmender Skalenerträge ( return to scale)

bezeichnet. Ab dem Wendepunkt steigen die Grenzerträge unterproportional. Die

Ertragsfunktion weist nun abnehmende Skalenerträge auf. 

Im Punkt U ist das Maximum der Durchschnittsfunktion erreicht. Danach fallen

die Durchschnittserträge. Der Wert der Durchschnittsfunktion ist gleich dem Winkel

eines Strahls vom Ursprung an die Kurve. Wandert der Strahl entlang der Kurve, so

steigt er monoton bis zum Punkt U, erreicht dort sein Maximum und fällt dann wie-

der streng monton. Im Punkt U berührt der Strahl die Kurve tangential. Das Grenz-

verhalten der Durchschnittsfunktion ergibt sich aus der Differentiation der Funktion

nach der Quotientenregel. 

d ¯

 y

 f ( x) x −  f ( x)

=

d x

 x 2

Im Punkt U ist der Grenzdurchschnittsertrag gleich Null, d. h., es gilt

 f ( x)

 f ( x) x −  f ( x) != 0 ⇒

 f ( x) =  x
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An dem Punkt des Maximums der Durchschnittsfunktion schneiden sich also

die Grenzertragsfunktion und die Durchschnittsfunktion1. Dieser Punkt U ist ökono-

misch interessant, da von hier an die Durchschnittserträge fallen; die Grenzerträge

fallen bereits seit dem Punkt W. Im Punkt M liegt das Maximum der Ertragsfunk-

tion. Der Grenzertrag ist dort Null (notwendige Bedingung für ein Extremum). Die

Ertragsänderung ab dem Punkt U wird als Gesetz vom abnehmenden Grenzertrag

bezeichnet. Der gesamte Ertragsverlauf (siehe Abb. 10.6) beschreibt das klassische

Ertragsgesetz. 

f(x)

280

M

240

y

U

200

160

W

120

80

40

¯

 y

0

x

0

2
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10

12

14

16

18

20

y’

-40

Abb. 10.6: Ertragsfunktion (10.12)

Historische Anmerkung: Das Gesetz vom abnehmenden Ertragszuwachs ist von

dem preußischen Nationalökonom Johann Heinrich von Thünen in der ersten Hälfte

des 19. Jahrhunderts zunächst für die Landwirtschaft entwickelt und empirisch über-

prüft worden. Inzwischen haben empirische Untersuchungen im Bereich der indu-

striellen Produktion gezeigt, dass es im Rahmen der von den Industrieunternehmen

als normal angesehenen Kapazität in der Regel keine Rolle spielt; denn der Punkt

1 Dass es sich hier tatsächlich um ein Maximum handelt, muss mit der zweiten Ableitung





 x f 

überprüft werden. Es muss ¯

 y =  x 3  f( x)−2 x

( x)−  f ( x)

 x 4

< 0 im Punkt  f ( x) =  f( x)

 x

gelten. 

In diesem Punkt ist  x f ( x) −  f ( x) = 0. Also muss  f ( x) < 0 sein, damit ¯

 y < 0 gilt. Das

Maximum der Durchschnittsfunktion muss also im Bereich abnehmender Grenzerträge lie-

gen. 
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U, von dem ab das Gesetz vom abnehmenden Ertragszuwachs wirksam ist, wird hier

meist erst bei Ausweitung der Produktion über die normale Kapazität hinaus erreicht. 

Wenn – wie in der Praxis üblich – die Einsatzmengen mehrerer Produktionsfaktoren

innerhalb normaler Betriebskapazitäten verändert werden, zeigen sich bei industriel-

ler Produktion eher lineare Produktionsfunktionen. 

Viele Ökonomen glaubten, dass aufgrund des abnehmenden Ertragszuwachses

sich der Produktionszuwachs verlangsamen würde. Robert Thomas Malthus progno-

stizierte eine Hungerkatastrophe, weil einerseits die Bevölkerung geometrisch und

andererseits aufgrund des abnehmenden Arbeitsertragszuwachses die Nahrungsmit-

telproduktion nur arithmetisch wachse. In der industriellen Revolution nahm man an, 

dass wegen des vermehrt eingesetzten Kapitals und des damit verbundenen abneh-

menden Grenzertrags des Kapitals der Produktionzuwachs bald stagnieren würde. 

Dass dies nicht eintrat, lag daran, dass die Ökonomen den technischen Fortschritt

unterschätzten. Durch diesen verschiebt sich die Kurve der Produktion in Abhängig-

keit des Produktionsfaktors nach oben, so dass der Produktionsfaktor Arbeit bzw. 

Kapital immer produktiver wurde. 

10.8.2 Beziehung zwischen Grenzerlös und Preis

Die Funktion  f ( x) bezeichnet nun eine Preis-Absatz-Funktion ( price sales functi-

 on). Sie wird in diesem Abschnitt überwiegend mit  p( x) benannt. Der Funktionswert

ist der Preis pro Stück  p, da er den Preis für die verkaufte Menge  x  liefert. Die Ver-

änderliche  x  gibt hier also die abgesetzte Menge an. Die Preis-Absatz-Funktion ist

die Beziehung zwischen Preis und Menge aus Sicht des Anbieters (siehe Abb. 10.7). 

 p =  f ( x) =  p( x) für  x > 0

(10.13)

Es wird unterstellt, dass mit abnehmender Menge (Verknappung des Angebots)

der Preis zunimmt. Mathematisch formuliert bedeutet dies, dass die erste Ableitung

der Funktion negativ ist. 

 p( x) < 0

(10.14)

Betrachtet man die Umkehrfunktion von (10.13)

 x =  f −1( p) =  x( p) für  p > 0, 

erhält man die Nachfragefunktion ( demand function). Sie wird so bezeichnet, weil

hier der Absatz aus Sicht des Nachfragers in Abhängigkeit des Preises dargestellt

ist. Der Preis ist für den Nachfrager gesetzt. Der Funktion unterstellt man ebenfalls

einen monoton fallenden Verlauf. 

 x( p) < 0

Die Erlösfunktion ( revenue function) ist die verkaufte Menge mal dem Preis, also

 E( x) =  p( x) x
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Abb. 10.7: Preis-Absatz-Funktion

Die Preis-Absatz-Funktion kann man somit auch als Durchschnittserlösfunkti-

on ( average revenue function) bezeichnen, da

¯

 E( x)

 E( x) =

=  p( x)

 x

gilt. Der Durchschnittserlös ist nun aber nichts anderes als der Preis des entsprechen-

den Guts. Es gilt also ¯

 E( x) =  p. 

Differenziert man die Erlösfunktion

 E( x) =  p( x) x +  p( x)

(10.15)

erhält man die so genannte Grenzerlösfunktion ( marginal revenue function). 

Betrachtet man nun die Differenz von Grenzerlös und Durchschnittserlös (dem

Preis)

 E( x) −  p( x) =  p( x) x, 

(10.16)

so ergibt sich als Ergebnis der Anstieg der Durchschnittserlösfunktion  p( x) multipli-

ziert mit der Menge  x > 0. Die Steigung der Preis-Absatz-Funktion wird als negativ

angenommen ( p( x) < 0), so dass wegen  x > 0 dann

 p( x) x < 0

(10.17)

gelten muss. Die Differenz zwischen Grenzerlös und Preis ist also negativ, so dass

der Preis durchweg größer als der Grenzerlös ist. 
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 E( x) −  p( x) < 0 ⇔  E( x) <  p( x)

(10.18)

Dies ist die Marktsituation, wenn keine vollkommene Konkurrenz ( monopolistic

 competition) vorherrscht. Nur dann kann der Anbieter über die Menge den Preis

beeinflussen (siehe Abb. 10.7). Die Preis-Absatz-Funktion ist negativ geneigt. Dies

bedeutet, dass eine höhere Menge nur zu einem niedrigeren Preis absatzbar ist. Somit

geht der Verkauf einer weiteren Einheit mit der gleichzeitigen Senkung des Preises

einher und zwar nicht nur für die Grenzeinheit, sondern für die gesamte verkaufte

Menge, da der Preis für jede Einheit gleich ist. Der zusätzlich erzielte Erlös beim

Verkauf einer weiteren Einheit (Grenzerlös) ist daher niedriger als der ursprüngliche

Preis (Durchschnittserlös). 

Als weiteres ergibt sich, dass die Grenzerlösfunktion (10.15) wegen (10.17) stets

unterhalb der Preis-Absatz-Funktion verläuft (siehe Abb. 10.9). Im Extremfall liegt

die Situation eines Angebotsmonopolisten vor, der den Markt konkurrenzlos be-

herrscht. 

Bei vollkommener Konkurrenz (Wettbewerbssituation) ( perfect competition)

wird davon ausgegangen, dass der Anbieter keine Marktmacht und damit keine Ein-

wirkung auf den Preis ausüben kann. Der individuelle Anbieter kann durch die Men-

ge den Marktpreis im Modell der vollkommenen Konkurrenz nicht beeinflussen. Ei-

ne Preissenkung oder Preiserhöhung gegenüber dem Marktpreis ist nicht möglich. 

Eine Preiserhöhung führt in der Theorie nach zu einer Absatzmenge von Null. Kein

Käufer ist bereit bei homogenen Gütern einen Preis oberhalb des Marktpreises zu

zahlen. Eine Preissenkung ist nicht möglich, weil der Marktpreis der niedrigste pro-

fitable Preis ist. Daher ist eine Preissenkung mit Verlusten verbunden, die nicht kom-

pensiert werden können. Die Preis-Absatz-Funktion verläuft dann horizontal und der

Preis ist unabhängig von der Menge  x. Es gilt  p( x) =  pMarkt = konstant und somit

 p( x) = 0, so dass der Grenzerlös gleich dem Preis ist. 

 E( x) =  pMarkt x ⇒  E( x) =  pMarkt ⇔  E( x) −  pMarkt = 0

10.8.3 Kostenfunktion

Die mikroökonomische Kostentheorie konzentriert sich im Allgemeinen darauf, ana-

lytische Konzepte einer betrieblichen Kostenfunktion ( cost function) zu entwickeln, 

bei der die gesamten Kosten der betrieblichen Produktion in Abhängigkeit von der

Produktionsmenge betrachtet werden. Die kurzfristige Kostentheorie hebt im Beson-

deren die Unterscheidung zwischen variablen und fixen Kosten hervor. 

 K( x) =  Kvariabel( x) +  Kfix

Fixe Kosten sind Kosten, die im Zusammenhang mit kurzfristig gegebenen Produk-

tionsfaktoren entstehen. Sie fallen in bestimmter Höhe an, unabhängig von der Höhe

der kurzfristig geplanten Produktionsmenge. Typische Fixkosten bilden Mieten und

Zinsen sowie zeitabhängige Abschreibungen. 

Die Höhe der variablen Kosten hingegen verändert sich mit der Produktionsmen-

ge bzw. mit dem Einsatz des variablen Produktionsfaktors. Typische variable Kosten

sind Rohstoff- und Materialkosten sowie Arbeitskosten. 
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Der Verlauf der variablen Kosten wird aus der Ertragsfunktion (Produktionsfunk-

tion) bestimmt. Die Kostenfunktion und die Ertragsfunktion stehen in einer Dualität

zueinander. Aus der Ertragsfunktion ergibt sich die Kostenfunktion und umgekehrt. 

Wird das in Kapitel 10.8.1 ausgeführte Ertragsgesetz angenommen, so steigt der Er-

trag im Bereich bis zum Punkt W überproportional. Bewertet man den Faktorein-

satz, so ergibt sich, dass die Kosten hier langsamer zunehmen als der Ertrag. Ab dem

Punkt W steigt der Ertrag unterproportional an, was bedeutet, dass die Kosten über-

proportional ansteigen. Die Kostenfunktion weist daher einen s-förmigen Verlauf auf

(siehe Abb. 10.8). 

Eine Kostenfunktion beschreibt die Ursache-Wirkungsbeziehung zwischen der

Ausbringungsmenge  x (als Ursache) und den aufzuwendenden Kosten  K, die sich aus

dem mit den Preisen bewerteten Produktionsfaktorverbrauch (als Wirkung) ergeben. 

Der Begriff der Grenzkosten ( marginal costs) ist der Schlüssel zum Verständnis

der Frage, wie viel ein Unternehmen zu produzieren und zu verkaufen bereit ist. 

Als Grenzkosten werden die Kostenänderungen bezeichnet, die bei einer Erhöhung

der Produktionsmenge um eine (unendlich kleine = infinitesimale) Einheit entstehen. 

Die Fixkosten beeinflussen die Grenzkosten nicht. 

d K( x)

 K( x) = d x

 Beispiel 10.23.  Es wird die Kostenfunktion

 K( x) = 0.04 x 3 − 0.96 x 2 + 10 x + 2

(10.19)

angenommen, die die Grenzkostenfunktion

 K( x) = 0.12 x 2 − 1.92 x + 10

besitzt. 

☼

Die in Abb. 10.8 dargestellte Kostenfunktion aus Beispiel 10.23 zeigt den typi-

schen Verlauf der Grenzkosten einer ertragsgesetzlichen Kostenfunktion eines Ein-

Produkt-Unternehmens. Die Grenzkosten sinken zunächst mit steigender Produkt-

menge, solange die Gesamtkosten (variable Kosten) degressiv steigen. Nach dem

Wendepunkt der Kostenfunktion steigen die Grenzkosten, die Gesamtkosten nehmen

progressiv zu. Der Wendepunkt der Kostenfunktion liegt im Minimum der Grenzko-

sten (in Abb. 10.8 bei  x = 8). Diese Stelle wird auch als Schwelle des Ertragsgeset-

zes bezeichnet. 

Die Durchschnittskosten ( average costs) werden auch als Stückkosten der Pro-

duktionsmenge bezeichnet. Sie lassen sich unmittelbar aus dem Verlauf der gesamten

Kosten mit Bezug auf die jeweiligen Produktionsmengen bestimmen. 

¯

 K( x)

 K( x) =  x

 Beispiel 10.24.  Die obige Kostenfunktion (10.19) besitzt die Durchschnittskosten-

funktion
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¯

2

 K( x) = 0.04 x 2 − 0.96 x + 10 +  x

☼

Die Kurve der Durchschnittskosten zeigt bei Annahme des Ertragsgesetzes eben-

falls einen typischen u-förmigen Verlauf, der sich aus den Beziehungen zwischen

Grenz- und Durchschnittsgrößen herleiten lässt. Sind die Grenzkosten kleiner als die

Durchschnittskosten, so folgt eine Abnahme der Durchschnittskosten mit steigender

Produktionsmenge, da jede zusätzlich produzierte Einheit günstiger erstellt werden

kann. Sind die Grenzkosten größer als die Durchschnittskosten, so folgt eine Zunah-

me der Durchschnittskosten. Sind die Grenzkosten gleich den Durchschnittskosten, 

so ist das Minimum der Durchschnittskosten erreicht (siehe Punkt U in Abb. 10.8). 

Die Ertragsfunktion und die Kostenfunktion stehen in einem Umkehrverhältnis

zueinander. Mit der Produktionsfunktion ist auch die Kostenfunktion festgelegt und

umgekehrt. Daher ist der Punkt U in Abb. 10.8 gleich dem in Abb. 10.6 und manife-

stiert die Bedeutung dieses Punktes. 

Es ist jedoch aufgrund der Funktion mathematisch nicht immer möglich eine

Umkehrfunktion zu bestimmen. Die vorliegende Kostenfunktion (10.19) ist daher

nur eine näherungsweise Umkehrfunktion der Ertragsfunktion (10.12). Daher liegt

der Punkt U hier nicht genau bei dem Wert 12, sondern etwas darüber. 

Das Minimum der Durchschnittskosten entspricht in der Ertragsfunktion dem

Maximum des Durchschnittsertrags. Die ökonomische Bedeutung dieses Punkts

wird nun deutlich. Das Unternehmen wird also bestrebt sein, den Bereich fallender

Durchschnittskosten zu verlassen. 

Das Minimum der Durchschnittskosten wird auch als der Punkt des Betriebs-

optimums bezeichnet (in Abb. 10.8 bei  x = 12.17), weil hier ein Betrieb unter den

gegebenen Bedingungen mit den geringsten Kosten je Produkteinheit produziert. Die

Durchschnittskosten können pro produzierter Einheit nicht weiter zurückgehen, da

jede weitere Einheit höhere zusätzliche Kosten (steigende Grenzkosten) verursacht. 

Mathematisch ist das Minimum der Durchschnittskosten durch die Nullsetzung der

ersten Ableitung der Durchschnittsfunktion bestimmt (notwendige Bedingung). 

d ¯

 K( x)

 K( x) x −  K( x)

=

! 

= 0

d x

 x 2

Die obige Bedingung ist gleichbedeutend mit

 K( x)

 K( x) x −  K( x) != 0 ⇒  K( x) =

= ¯

 K( x)

 x

Die hinreichende Bedingung für ein Minimum ist, dass die zweite Ableitung positiv

ist. Es gilt
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Abb. 10.8: Kostenfunktionen (10.19)





¯

 K( x) x 3 − 2 x K( x) x −  K( x) ! 

 K( x) =

> 0

 x 4

 K( x)

2  K( x)

2  K( x)

=

−

+

 x

 x 2

 x 3

 K( x)

2 



=

−

 K( x) − ¯

 K( x)

 x

 x 2

 ! 

⇔  K( x) x − 2  K( x) − ¯

 K( x) > 0

Es gilt stets  x > 0. Für ein Minimum muss ¯

 K( x) > 0 sein. Die notwendige Bedin-

gung lautet  K( x) = ¯

 K( x). Damit entfällt der hintere Teil der Ableitung. Es muss

 K( x) > 0 sein, damit die hinreichende Bedingung erfüllt wird. Wenn  K( x) anstei-

gende verläuft, dann ist  K( x) > 0 und somit  K( x) x > 0. Dies bedeutet, dass das

Minimum der Durchschnittskostenfunktion im Bereich steigender Grenzkosten lie-

gen muss. 

10.8.4 Individuelle Angebotsplanung unter vollkommener Konkurrenz

Das Güterangebot eines Unternehmen wird durch dessen Kostenfunktion und den

Markt bestimmt. Die Absatz- und Beschaffungsmärkte des Unternehmens sollen

Märkte mit vollkommener Konkurrenz sein. Diese Marktform wird auch als Polypol
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bezeichnet. Das sind Märkte, auf denen der Unternehmer als einer von vielen an-

bietet oder nachfragt, so dass er durch seine Marktaktion nicht das Marktgeschehen

bestimmen kann. Damit sind der Verkaufspreis des Guts und die Faktorpreise für

den Unternehmer gegebene Größen. Der Unternehmer kann auf dem Absatzmarkt

bei gegebenen Produktpreis jede beliebige Menge absetzen. Er wird die abzusetzt-

ende Menge dann so festlegen, dass sein Gewinn maximiert wird. Man spricht vom

Mengenanpasser auf dem Absatzmarkt. 

Der Gewinn des Unternehmens ist die Differenz aus Erlös (Umsatz) und Kos-

ten. Die Erlösfunktion ist dabei das Produkt aus Preis und Menge. Der Marktpreis

ist ein Datum, das durch den Markt bestimmt wird und nicht durch den Anbieter

beeinflussbar ist. Der Preis ist daher keine Funktion der Menge! 

 E( x) =  x pMarkt

 E( x) =  pMarkt

(10.20)

Angenommen, der Unternehmer bietet eine bestimmte Produktmenge  x  auf dem

Markt an und er produziert zu der oben beschriebenen s-förmigen Kostenfunktion. 

Bei dieser Menge erzielt er einen Erlös in Höhe von  x pMarkt  und hat Kosten in Höhe

von  K( x). Wie kann der Unternehmer feststellen, ob  x  seine gewinnmaximale Menge

ist? Da das Unternehmensziel die Gewinnmaximierung ist, überlegt er, wie sich der

Gewinn ändert, wenn die Menge  x  um eine (genauer um eine infinitesimal kleine)

Einheit variiert. Wird die Menge  x  um Δ x = 1 erhöht, so erhöht sich der Absatz we-

gen der Erlösfunktion (10.20) proportional, bei Δ x = 1 also genau um  pMarkt. Die

Mengenerhöhung ist für den Unternehmer auch mit einer Kostenerhöhung verbun-

den, und zwar in Höhe der Grenzkosten. Er wird eine Gewinnerhöhung genau dann

erhalten, wenn der zusätzliche Erlös (Grenzerlös) größer ausfällt als die Zusatzkosten

(Grenzkosten) der Produktion. Der zusätzliche Erlös entspricht gerade dem Preis:

Grenzerlös = Preis. Er wird also solange eine Produktionsausweitung vornehmen, 

bis die Grenzkosten den Grenzerlös erreicht haben. Daraus folgt für den Unterneh-

mer, dass sein gewinnmaximales Angebot bei der Menge liegt, bei der Grenzkosten =

Grenzerlös bzw. hier Grenzkosten = Preis gilt. Und jetzt die formale Herleitung: Die

notwendige Bedingung für das Gewinnmaximum liegt vor, wenn der Grenzgewinn

(1. Ableitung der Gewinnfunktion) gleich Null ist. 

 G( x) =  x pMarkt −  K( x)

d G( x)

d E( x)

d K( x)

=

−

! 

= 0

d x

d x

d x

Daraus folgt:

d E( x)

d K( x)

=

d x

d x

Da

d E( x) =  pMarkt

d x
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gilt, folgt daraus

d K( x) !=  pMarkt

d x

 Beispiel 10.25.  Für die Kostenfunktion

 K( x) = 0.04 x 3 − 0.96 x 2 + 10 x + 2

gilt die Grenzkostenfunktion

 K( x) = 0.12 x 2 − 1.92 x + 10

Aus der Bedingung Grenzkosten = Grenzerlös, wobei der Grenzerlös aufgrund der

Annahme der vollkommenen Konkurrenz dem Marktpreis  pMarkt  entspricht, der mit

 pMarkt = 12 e angenommen werden soll, ergibt sich folgende Beziehung:

0.12 x 2 − 1.92 x + 10 != 12

2

 x 2 − 16 x −

! 

= 0

0.12

1

2

 x 1,2 = 8 ± 82 + 0.12

 x 1 ≈ 16.98; ( x 2 ≈ −0.98)

Die gewinnmaximale Menge ist  x 1 = 16.98. Der maximale Gewinn beträgt damit:

 G max(16.98) = 94.92 e (siehe Abb. 10.8). Für ein Maximum muss die 2. Ableitung

der Gewinnfunktion an der Stelle  x 1 negativ sein. 

 G( x 1) = − K( x 1) = −(0.24 × 16.98 − 1.92) < 0

☼

Bei einem Preis oberhalb des Minimums der Durchschnittskosten erzielt das Un-

ternehmen einen Gewinn, weil ab hier

 p = ¯

 E( x) > ¯

 K( x)

gilt. Der Stückgewinn beträgt

 p − ¯

 K( x) =  K( x) − ¯

 K( x) > 0

Man kann den Stückgewinn als Gewinnaufschlag auf die Durchschnittskosten ver-

stehen. 

Das Minimum der Durchschnittskosten ( K( x) = ¯

 K( x)) wird daher auch als Ge-

winnschwelle ( break even point) bezeichnet. Fällt der Preis unter das Minimum der

Durchschnittskosten, ist kein Gewinn mehr möglich. Daher wird diese Grenze auch
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als langfristige Preisuntergrenze bezeichnet. Das Minimum der variablen Durch-

schnittskosten wird als kurzfristige Preisuntergrenze bezeichnet, weil unterhalb eines

solchen Preises nicht einmal mehr die variablen Kosten gedeckt sind. 

Sind die Grenzkosten gleich dem Marktpreis, so erzielt das Unternehmen den

maximalen Gewinn. Einen niedrigeren Preis wird das Unternehmen wegen der Ge-

winneinbußen nicht erzielen wollen und einen höheren Preis kann das Unternehmen

am Markt nicht durchsetzen. Die Grenzkostenkurve ab dem Minimum der Durch-

schnittskosten ist daher die individuelle Angebotskurve (Angebotsplanung) des Un-

ternehmens bei unterschiedlichen Marktpreisen. 

Die Preis = Grenzkosten-Regel liefert eine eindeutige Anweisung für die An-

gebots- und Produktionsplanung eines Ein-Produkt-Unternehmens bei alternativ ge-

gebenen Marktpreisen. Die Möglichkeit der Lagerhaltung wird hier vernachlässigt. 

Die Angebotsplanung hat sich einerseits an den Marktbedingungen (Marktpreisen)

zu orientieren, andererseits an der Höhe der Grenzkosten der Produktion des Unter-

nehmens. 

Unter Ceteris-paribus-Bedingungen wird ein Unternehmen bei höheren Markt-

preisen die Produktion kurzfristig erhöhen. Das Unternehmen wird sich folglich nach

den gegebenen Annahmen als Mengenanpasser verhalten und seine Angebotsmenge

entlang des Bereichs zunehmender Grenzkosten steigern. In der Praxis ist eine sol-

che Grenzkalkulation jedoch häufig zu kompliziert, insbesondere da die Grenzkosten

oft gar nicht bekannt sind. Anbieter setzen ihre Preise deshalb häufig so, dass sie auf

die Durchschnittskosten (Stückkosten) der Produktion, die bei normaler Kapazitäts-

auslastung anfallen, einen Gewinnaufschlag erheben. 

Die (horizontale) Aggregation der einzelnen Mengenangebote der Unternehmen

(Grenzkostenkurven) wird als Marktangebot bezeichnet. Da jeder Unternehmer mit

zunehmendem Marktpreis mehr herstellen wird und es auch insgesamt mehr Unter-

nehmen gibt, die in den Markt eintreten, ist die Marktangebotsfunktion eine Funktion

mit positiver Steigung zwischen Preis und Menge. Ferner wird es bei höherem Preis

auch mehr Marktanbieter geben, so dass sich dadurch die angebotene Menge erhöht. 

Es wird unterstellt, dass die Unternehmen unabhängig voneinander handeln. Kosten-

änderungen durch veränderte Faktorpreise verschieben die Grenzkostenkurven der

einzelnen Unternehmen. Dadurch ergeben sich bei gegebenen Produktpreisen Ver-

schiebungen der individuellen Angebotskurven und folglich auch der aggregierten

Angebotskurve des Markts. Auf die Probleme der Aggregation wird hier nicht wei-

ter eingegangen. 

10.8.5 Angebotsverhalten eines Monopolisten

Nach der Preisbildung im Polypol folgt in diesem Abschnitt das Anbieterverhal-

ten im Monopol. Das Monopol bildet eine gegensätzliche Marktform zum Polypol:

Es existiert nur ein Anbieter, welcher Marktmacht besitzt und durch sein Verhalten

die Angebotsmenge und darüber den Marktpreis nachhaltig beeinflussen kann. For-

mal zeigt sich dies darin, dass die Preis-Absatz-Funktion nicht mehr horizontal, son-

dern fallend verläuft (siehe Gleichung (10.14) beschrieben. Der Marktpreis ist daher

für den Monopolisten nicht mehr vorgegeben. Die Marktmacht wird aber durch die
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Nachfrageseite begrenzt. Daher ist es dem Monopolisten nicht möglich, Menge und

Preis gleichzeitig festzulegen! Der Monopolist sucht den gewinnmaximalen Preis, 

indem er seine Menge entlang der Preis-Absatz-Funktion variiert. 

Auch für den Monopolisten gilt die Bedingung, dass das Gewinnmaximum dort

liegt, wo Grenzerlös und Grenzkosten identisch sind. Doch ist der Grenzerlös für

den Monopolisten kein Datum mehr, sondern durch das Produkt aus Preis-Absatz-

Funktion und Menge eine Funktion in Abhängigkeit der Menge. 

 E( x) =  x p( x)

Die erste Ableitung der Erlösfunktion ergibt sich dann aus der Produktregel. 

 E( x) =  x p( x) +  p( x)

Da  p( x) < 0 gilt, ist der Grenzerlös des Monopolisten geringer als der erzielte

Preis  p( x). Der Monopolist muss für jede zusätzlich verkaufte Einheit den Preis um

 p( x) senken. Er passt seine Produktion entsprechend der Preisabsatzfunktion an. 

Unter vollkommener Konkurrenz hingegen ändert sich der Erlös proportional mit

der Menge  x  und die Produktion wird ausschließlich durch die Grenzkostenfunktion

bestimmt. 

Den größten Gewinn erzielt der Monopolist an der Stelle, an der der Abstand

zwischen Erlös und Kosten maximal ist. An dieser Stelle ist die Steigung der Er-

löskurve gleich der Steigung der Kostenfunktion, d. h. der Grenzerlös ist gleich den

Grenzkosten. 

 G( x) =  E( x) −  K( x) != 0 ⇒  E( x) !=  K( x)

(10.21)

 Beispiel 10.26.  Es wird für einen Angebotsmonopolisten ( supply monopolist) eine

einfache lineare Preis-Absatz-Funkion

 p( x) = 10 − 0.5  x  für 0 <  x < 20

(10.22)

unterstellt, um die Beziehung zwischen Preis und Grenzerlös weiter zu untersuchen. 

Der Gesamterlös ist dann gleich

 E( x) = 10 x − 0.5 x 2

und als Grenzerlös ergibt sich

 E( x) = 10 −  x. 

Die Preis-Absatz-Funktion und der Grenzerlös sind Geraden, die die Ordinate im

selben Punkt schneiden. Die Gesamterlösfunktion ist eine Parabel (siehe Abb. 10.9). 

Als Kostenfunktion wird

 K( x) = 0.04 x 3 − 0.96 x 2 + 10 x + 2
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angenommen. Die Grenzkostenfunktion ist somit

 K( x) = 0.12 x 2 − 1.92 x + 10

Den maximalen Gewinn erzielt das Monopol, wenn die Bedingung (10.21) erfüllt

ist. Die gewinnmaximale Menge bestimmt sich somit aus

10 −  x != 0.12 x 2 − 1.92 x + 10 ⇒  xc = 7.67

Der Punkt  xc  auf der Preis-Absatz-Funktion wird als Cournotscher Punkt (in Abb. 

10.9 mit  C) bezeichnet. Aus ihm wird der gewinnmaximale Preis über die Preis-

Absatz-Funktion bestimmt (Monopolpreis). 

 pMonopol =  p( xc) = 10 − 0.5 × 7.67 = 6.17 e

Der maximale Gewinn beträgt – sofern die hinreichende Bedingung erfüllt ist – also

 G max( xc) = 10 × 7.67 − 0.5 × 7.672





− 0.04 × 7.673 − 0.96 × 7.672+ 10 × 7.67 + 2

= 7.01 e

Die zweite Ableitung der Gewinnfunktion ergibt folgendes

 G( xc) =  E( xc) −  K( xc)

= −1 − 0.24 × 7.67 + 1.92

= −0.9208 < 0

Es handelt sich also tatsächlich um ein Gewinnmaximum. 

☼

Der Monopolist kann seinen Absatz nur steigern, wenn er mit dem Preis herun-

ter geht. Der Grenzerlös ist daher kleiner als der Preis. Für die höhere Absatzmen-

ge erhält er einen niedrigeren Preis. Die Grenzerlösfunktion verläuft deshalb in ih-

rem ganzen Bereich unterhalb der Preis-Absatz-Funktion (siehe Gleichung (10.18)). 

Bei einer linearen Preis-Absatz-Funktion wie in der unteren Grafik der Abb. 10.9

dargestellt, besitzt die Grenzerlösfunktion die doppelte Steigung der Preis-Absatz-

Funktion. Durch den Punkt, in dem sich Grenzerlösfunktion und Grenzkostenfunk-

tion schneiden, ist die gewinnmaximale Menge bestimmt. Über die Preis-Absatz-

Funktion wird für diese Menge der Monopolpreis bestimmt. Der Punkt auf der Preis-

Absatz-Funktion wird als Cournotscher Punkt bezeichnet. Dieser Punkt liegt stets

im unelastischen Bereich der Preis-Absatz-Funktion, also im elastischen Bereich der

Nachfragefunktion (siehe nächstes Kapitel 10.8.6). Nur in diesem Bereich besitzt

der Monopolist die Möglichkeit, mit einer Preiserhöhung auch eine Erlössteigerung

zu erzielen (siehe Beispiel 10.29). Die Gewinnfunktion (siehe obere Grafik in Abb. 

10.9) besitzt an der Stelle  xc = 7.67 ihr Maximum; der Abstand zwischen Erlös- und

Kostenfunktion ist maximal. 

Aus der Bedingung Grenzkosten = Grenzerlös ergibt sich
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Abb. 10.9: Angebotsverhalten eines Angebotsmonopolisten

 x p( x) +  p( x) !=  K( x)

Da  x p( x) < 0 angenommen wird (fallende Preis-Absatz-Funktion), liegt der Mono-

polreis oberhalb der Grenzkosten. Wegen der notwendigen Bedingung für ein Maxi-

mum gilt im Gewinnmaximum des Monopols dann  p( x) >  K( x). 

Gilt ¯

 K( x) >  K( x), dann kann in einer Wettbewerbssituation nur mit Verlust pro-

duziert werden, weil  pMarkt =  E( x) !=  K( x) < ¯

 K( x) gilt (siehe Kapitel 10.8.4). Es ist

der Bereich zunehmender Grenzerträge (abnehmender Grenzkosten). Die Differenz

 p − ¯

 K( x) ist immer der Stückgewinn. Im Fall der vollkommenen Konkurrenz ent-

spricht dies der Differenz  K( x) − ¯

 K( x). Das Monopol kann in dem Bereich zuneh-

mender Grenzkosten produzieren, weil es den Betrag  K( x)− ¯

 K( x) < 0 (Stückverlust

unter Konkurrenz) aufgrund der Marktstellung mit einen höheren Preis kompensie-

ren kann. 

Würde sich ein Monopolist wie ein Anbieter bei vollkommener Konkurrenz ver-

halten, so würde er der Preis = Grenzkosten-Regel folgen und die Menge  x = 11.83

zum Preis  p = 4.08 e anbieten (siehe Abb. 10.9). Die Nachfragesituation würde dann

besser sein. Aus diesem Grund wird der Monopolist kritisch beurteilt: Er produziert

weniger und verlangt einen höheren Preis als Anbieter unter Konkurrenzbedingun-

gen, sofern eine Gleichheit der aggregierten Grenzkostenfunktionen unter Konkur-

renz und der Grenzkostenkurve des Monopolisten angenommen wird. Diese Annah-

me ist jedoch realitätsfern. Ferner ist die Situation hier dadurch gekennzeichnet, dass
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die Menge  x = 11.83 vom Monopolisten nur mit Verlust hergestellt werden kann. 

Der Durchschnittserlös (Preis) liegt unter den Durchschnittskosten. Dies muss nicht

so sein, ist aber in monopolistischen Märkten häufig der Fall. Der Monopolist steht ja

nicht unter dem Wettbewerbsdruck, stets die Produktivität zu erhöhen. Diese Über-

legungen gehören zu den Grundlagen der mikroökonomischen Theorie (vgl. [3]). 

10.8.6 Elastizitäten

Zur Beschreibung der Konkurrenzsituationen auf Märkten verwendet man häufig die

Elastizitäten. Im Fall vollkommener Konkurrenz ist der Preis vollkommen unela-

stisch gegenüber Absatzänderungen. 

 Beispiel 10.27.  Ein Fußballverein will seine Einnahmen erhöhen. Dazu muss er über-

legen, wie stark die Nachfrage auf die Preiserhöhung reagiert. Man kann vermuten, 

dass sich die Preiserhöhung dann lohnt, wenn eine sehr interessante Begegnung an-

steht. Die Nachfrage wird dann „kaum“ auf die Preiserhöhung reagieren. 

☼

Allgemein kann man die Elastizität ( elasticity) als die Anpassungsfähigkeit ei-

nes ökonomischen Systems an veränderte Bedingungen interpretieren. Im mathema-

tischen Sinn wird darunter ein Maß für die (infinitesimale kleine absolute) relative

Änderung einer ökonomischen Größe  y  im Verhältnis zur (infinitesimalen kleinen ab-

soluten) relativen Veränderung des sie bestimmenden Einflussfaktors  x  verstanden. 

Für die Funktion  y =  f ( x) ist die Elastizität durch

d y

d y

 y

ε

 y

d x

 y( x) =

(10.23)

d x =  y = ¯

 y

 x

 x

definiert. Die Berechnung der Elastizität setzt voraus, dass die Funktion  y =  f ( x) im

betrachteten Intervall bekannt und differenzierbar ist. Die Elastizität ist eine Funktion

der unabhängigen Veränderlichen. Sie bezieht sich daher immer auf einen Punkt der

betrachteten Kurve; daher kommt auch die Bezeichnung Punktelastizität. Da bei der

Elastizität relative Änderungen betrachtet werden, ist sie dimensionslos. 

Mit der Logarithmusfunktion kann die Elastizität wie folgt berechnet werden:

d ln y

ε y( x) =

(10.24)

d ln  x

Dies gilt aufgrund der Tatsache, dass die Ableitung des natürlichen Logarithmus

d ln x

1

=

d x

 x

ist. Folglich ist d ln  x = d x . Ersetzt man ebenfalls die relative Änderung von  y  durch

 x

d ln  y = d y  in der Elastizität (10.23), so erhält man die Beziehung (10.24). Dies ist

 y

der Grund, warum in vielen Ökonomielehrbüchern die Variablen in logarithmierten

Größen angegeben werden. 
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Der im Beispiel 10.27 angesprochene Zusammenhang zwischen einer Preisände-

rung und der damit resultierenden Mengenänderung wird als Elastizität bezeichnet. 

Eine Elastizität misst generell die Stärke einer Ursache-Wirkungsbeziehung unter

Ceteris-paribus-Bedingungen. Sie gibt den relativen Einfluss der ursächlichen Größe

auf die Wirkungsgröße an. Da es hier zunächst um den besonderen Kausalbezug zwi-

schen der sich ändernden Nachfragemenge Δ x (als Wirkung) und einer Änderung des

 x

Preises Δ  p  bei diesem Gut (als Ursache) geht, wird die Elastizität als Preiselastizität

 p

der Nachfrage ( elasticity of demand)

 x( p)

ε x( p) = ¯ x( p)

bezeichnet. Die Funktion  x( p) bezeichnet die Nachfragefunktion. Die Preiselastizi-

tät der Nachfrage gibt (näherungsweise) an, um wie viel Prozent sich die Nachfra-

gemenge eines Guts ändert, wenn die dafür ursächliche Preisänderung ein Prozent

beträgt. Die Preiselastizität der Nachfrage ist im Regelfall negativ, weil eine Preis-

erhöhung mit einem Rückgang der nachgefragten Menge verbunden ist. Daher be-

trachtet man häufig nur den Betrag der Preiselastizität der Nachfrage: |ε x( p)|. 

Die Elastizität des Preises bezüglich der Nachfrage wird auch als Nachfrageela-

stizität des Preises bezeichnet. Sie bezieht sich auf die Preis-Absatz-Funktion. 

 p( x)

ε p( x) = ¯ p( x)

Da die Nachfragefunktion  x =  f −1( p) formal die Umkehrfunktion der Preis-Absatz-

Funktion  p =  f ( x) =  p( x) ist und die Ableitung einer Umkehrfunktion der Kehrwert

der Ableitung der Stammfunktion (siehe Abschnitt 10.5.1), besteht folgender Zu-

sammenhang zwischen den beiden Elastizitäten:

1

ε p( x) = ε x( p)

Man unterscheidet Elastizitäten, die betragsmäßig größer als Eins

|ε y( x)| > 1

und betragsmäßig kleiner Eins

|ε y( x)| < 1

sind. Im ersten Fall spricht man von einer elastischen Reaktion, weil bei einer Än-

derung zum Beispiel von Δ x

 x = 1 Prozent eine mehr als einprozentige Funktionsände-

rung verbunden ist. Im zweiten Fall spricht man von einer unelastischen Reaktion, 

weil eine einprozentige Änderung eine Funktionsänderung von weniger als einem

Prozent verursacht. Als Grenzfälle der Preiselastizität der Nachfrage ergeben sich

dann:

• vollkommen elastische Nachfrage (|ε x( p)| = ∞), d. h., eine einprozentige Preis-

änderung bewirkt eine unendliche große Mengenänderung; 
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• vollkommen unelastische Nachfrage (|ε x( p)| = 0), d. h., eine Preisänderung be-

wirkt keine Mengenänderung. 

Bei |ε x( p)| = 1 liegt der Übergang zwischen elastischer und unelastischer Nach-

frage. Eine einprozentige Preisänderung bewirkt eine einprozentige Mengenände-

rung. 

Lineare Funktionen weisen immer einen elastischen und einen unelastischen Be-

reich auf. Für nicht lineare Funktionen gilt dies nicht immer. Es existieren zum Bei-

spiel Funktionen, die im gesamten Verlauf stets die gleiche Elastizität aufweisen. 

 Beispiel 10.28.  Die Funktion

 y =  x−λ für λ ∈ R+

besitzt die Elastizität

ε y( x) = −λ

☼

Wenden wir uns nun wieder der bereits bekannten Nachfragefunktion zu, um die

Preiselastizität der Nachfrage mit einem Zahlenbeispiel zu interpretieren. 

 Beispiel 10.29.  Ausgehend von folgender Nachfragefunktion (sie ist die Umkehr-

funktion von der Preis-Absatz-Funktion (10.22) des Monopolisten im Beispiel 10.26)

 x = 20 − 2  p  für 0 ≤  p ≤ 10

(10.25)

wird bei einer Preiserhöhung von 1 e auf 2 e ein Nachgefragerückgang von 18 Men-

geneinheiten (ME) auf 16 ME festgestellt. Die Preiselastizität der Nachfrage beträgt

dann:

−2

1

ε x( p = 1) =

= −

20−2  p

9

 p

Die Nachfragereaktion wird hier als unelastisch bezeichnet, weil sich der Preis relativ

stärker verändert hat als die Nachfrage. Bei einer einprozentigen Preisänderung führt

dann eine Preiselastizität von − 1 zu einer Mengenabnahme von rd. 0.11 Prozent. 

9

Steigt der Preis aber von 8 e auf 9 e, so sinkt die nachgefragte Menge von 4 ME

auf 2 ME. Die Preiselastizität der Nachfrage fällt auf

ε x(8) = −4

An der Stelle  p = 8 ist die Preiselastizität elastisch, weil sich der Preis relativ weniger

ändert als die Menge. Bei einer einprozentigen Preisänderung ergibt sich bei einer

Preiselastizität von −4 eine Mengenabnahme von 4 Prozent. Welche Auswirkung

dies auf die Ausgaben hat, wird im Folgenden erläutert. 

In der Tabelle 10.1 steht die Nachfragereaktion für den unelastischen und den

elastischen Fall und deren Wirkung auf die Ausgabe (Menge × Preis). Im unelasti-

schen Fall nimmt die Menge bei einer Preissteigerung von 1 Prozent (100 Prozent)

um rund 0.11 Prozent (11 Prozent) ab. Die Menge fällt unterproportional, so dass
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sich die Ausgabe erhöht. Die Vernachlässigung einer infinitesimalen Änderung kann

hier erfolgen, da es sich bei (10.25) um eine lineare Funktion handelt, die ja in jedem

Punkt die gleiche Steigung besitzt. 

Tabelle 10.1: Preiselastizität der Nachfragefunktion (10.25)

unelastisch

elastisch

|ε x(1)| = 19

|ε x(8)| = 4

Preis Menge Ausgabe Preis Menge Ausgabe

1

18

18

8

4

32

1.01

17.98

18.16

8.08

3.84

31.03

2

16

32

9

2

18

Im elastischen Fall verursacht eine Preisteigerung von 1 Prozent (12.5 Prozent)

eine Mengenabnahme von 4 Prozent (4×12.5 = 50 Prozent). Die Ausgabe sinkt nun, 

weil die Menge überproportional fällt. 

☼

Es zeigt sich, dass bei einer unelastischen Nachfrage eine Preiserhöhung eine

Ausgabenerhöhung verursacht. Bei einer elastischen Nachfrage reagiert die Menge

relativ stärker auf die relative Preisänderung. Daher führt dies dann zu einem Aus-

gabenrückgang. Je höher also die Preiselastizität der Nachfrage ist, desto begrenzter

ist der Spielraum, mit einer Preiserhöhung einen Erlöszuwachs zu erzielen. 

Der Monopolist aus Beispiel 10.26 produziert im elastischen Bereich der Nach-

fragefunktion (bzw. im unelastischen Bereich der Preis-Absatz-Funktion), weil dann

der Grenzerlös positiv ist. Nur dann erzielt der Monopolist mit einer zusätzlich pro-

duzierten Mengeneinheit und dem damit verbundenen Preisrückgang einen Erlöszu-

wachs. Dieser Zusammenhang wird als Amoroso-Robinson-Beziehung bezeichnet. 





 E( x) =  p( x) +  p( x) x =  p( x) 1 + ε p( x)





1

=  p( x) 1 +

Amoroso-Robinson-Beziehung

ε x( p)





Es gilt  E( x) > 0, also muss 1 + 1

ε

> 0 sein. Dies trifft nur zu, wenn ε x( p) < −1, 

 x( p)





also die Nachfrage elastisch ist, dann gilt 1 + 1

ε

> 0 und damit  E( x) > 0. 

 x( p)

 Beispiel 10.30.  Mit den Zahlen aus dem Beispiel 10.26 ergeben sich folgende Ela-

stizitäten:

ε x( pc = 6.17) = −1.61 ⇔ ε p( xc = 7.67) = −0.62





1

 E(7.67) = 6.17 1 −

= 2.33

−1.61

☼
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Neben der Preiselastizität der Nachfrage und der Nachfrageelastizität des Prei-

ses werden in der Ökonomie häufig auch eine Kreuzpreiselastizität (siehe Abschnitt

11.3.5), eine Einkommenelastizität und eine Kostenelastizität verwendet. 

Übung 10.5. Die Kostenfunktion



 K( x) =

50  x 2 + 3750 für  x > 0

beschreibt den Zusammenhang zwischen der Fertigungsmenge  x  und den Gesamt-

kosten  K( x). 

1. Bestimmen Sie die Kostenelastizität als Funktion der Menge  x. 

2. Wie groß ist die Punktelastizität an der Stelle  x = 5? 

Übung 10.6. Eine Preis-Absatz-Funktion ist durch die folgende Gerade gegeben:

 x

 p( x) = 6 −

für 0 <  x < 12

2

Die Kosten  K( x) zu der Menge  x  sind durch das folgende Polynom beschrieben:

1

3

13

 K( x) =

 x 3 −  x 2 +

 x

12

4

4

1. Bestimmen Sie das Erlösmaximum. 

2. Bestimmen Sie das Gewinnmaximum und den dazugehörigen gewinnmaxi-

malen Preis (Cournotscher Punkt). 

3. Berechnen Sie die minimalen Stückkosten. 

4. Berechnen Sie den maximalen Stückgewinn. 

5. Berechnen und interpretieren Sie die Preiselastizität der Nachfrage an der

Stelle  x = 3. 

Übung 10.7. Berechnen Sie für die Funktion

 p( x) = μ  x−λ für μ,λ ∈ R+

die Preiselastizität der Nachfrage. 

10.9 Fazit

Die Differentialrechnung analysiert marginale Funktionsänderungen. Mit dem Diffe-

rentialquotienten, der Ableitung einer Funktion, werden Extremstellen einer Funkti-

on bestimmt. Extremstellen sind Minimum, Maximum, Sattelpunkt und Wendepunkt

einer Funktion, die aus den Nullstellen der Ableitungen bestimmbar sind. 

In der Ökonomie wird die Differentialrechnung eingesetzt, um bestimmte Markt-

situationen zu analysieren und gewinnmaximale Bedingungen herzuleiten. Die Er-

kenntnisse der Marginalanalyse haben die Grundsätze der marktwirtschaftlichen
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Wirtschaftspolitik erheblich mitbestimmt. Mit Elastizitäten wird die Konkurrenzsi-

tuation auf Märkten untersucht. 
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11.1 Vorbemerkung

In vielen Fällen hängen die ökonomischen Größen nicht nur von einer Variablen, 

sondern von mehreren Variablen ab. Die in Kapitel 10.8.1 betrachtete Ertragsfunk-

tion wird in der Realität von mehr als nur einem Produktionsfaktor bestimmt sein. 
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Von daher ist es auch in den Wirtschaftswissenschaften notwendig, Funktionen mit

mehreren Variablen zu betrachten. Im folgenden Abschnitt werden allerdings nur

Funktionen mit zwei Variablen behandelt. Folgende neue Symbole kommen in die-

sem Kapitel vor:

 x,  y

Variablen

 x 1,  x 2,... Variablen

 z

Funktionswert

∂

partieller Differentialoperator

 f  x

erste partielle Ableitung der Funktion  f ( x,...) nach  x

H

Hessematrix

 G() = 0

implizite Funktion der Nebenbedingung

 L()

Lagrangefunktion

λ

Lagrangemultiplikator

11.2 Funktionen mit zwei Variablen

Eine Funktion mit zwei Variablen wird durch

 z =  f ( x,  y) für ( x,  y) ∈  D(  f )

beschrieben. Sie ist eine eindeutige Abbildung von (aus) dem Produktraum  X × Y  in

(nach)  Z, also bei der Einschränkung auf reelle Zahlen eine Abbildung von R2 nach

R. Statt x,  y wirdbeiFunktionenmitzweiVariablenhäufigdieersteVariablemit x 1, 

die zweite Variable mit  x 2 und der Funktionswert wieder mit  y  bezeichnet, insbeson-

dere dann, wenn mehr als zwei Variablen vorliegen. 

 y =  f ( x 1,  x 2) für ( x 1,  x 2) ∈  D(  f )

Die Funktion  f ( x,  y) kann als explizite oder implizite Funktion geschrieben wer-

den. 

Explizite Funktion  z =  f ( x,  y) für ( x,  y) ∈  D(  f )

Implizite Funktion 0 =  G( x,  y) für ( x,  y) ∈  D( G)

In einer impliziten Funktion ist die Unterscheidung von abhängiger und unab-

hängiger Variablen zunächst nicht möglich oder sinnvoll. Erst durch die Darstellung

in der nach einer Variablen aufgelösten Form oder durch willkürliche Angabe ist

diese Unterscheidung möglich. Nicht alle implizit gegebenen Funktionen lassen eine

explizite Darstellung zu (siehe zum Beispiel Renditeberechnung). 

 Beispiel 11.1.  Die implizite Funktion  G( x,  y)

 x 3 +  y 3 +  x 2  y +  y 2  x +  x 2 +  y = 0  x,  y ∈ R

(11.1)

ist weder nach  x  noch nach  y  auflösbar. 

☼

Unter den Funktionen mit mehreren Variablen stellen die linearen Funktionen

die wichtigste Klasse dar, weil sehr viele ökonomische Zusammenhänge entweder

tatsächlich linear sind oder in erster Näherung als solche angesehen werden können. 
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11.2.1 Isoquanten

Funktionen mit zwei Variablen sind Flächen im R3 und somit in der Zeichenebe-

ne nur schwer darstellbar. Am plastischsten wirkt die Darstellung, wenn die Fläche

aus mehreren parallelen Schnittkurven aufgebaut wird. Die Schnittkurven entstehen

durch gedachte Schnitte, die jeweils für  x =  konst,  y =  konst  oder  z =  f ( x,  y) =  konst ausgeführt werden können. Die Schnittkurven mit gleichen Funktionswerten bezeichnet man als Isoquanten (siehe Abb. 11.1, rechts unten). Die Funktion in Abb. 

11.1 (oben) kann man als Ertragsgebirge interpretieren. Die Variablen  x  und  y  sind

dann die Produktionsfaktoren, und der Funktionswert  z  gibt den Ertrag an. Unter-

stellt man, dass alle Faktorkombinationen des Definitionsbereichs möglich sind, so

liegen die Kombinationen gleichen Ertrags auf der gleichen Höhe. Es handelt sich

um Ertragsisoquanten. Die abgebildete Funktion ist

3 ( x 2 +  y 2)

 x 3 +  y 3

 z =  f ( x,  y) =

−

mit  x,  y ∈ R
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Abb. 11.1: Schnittkurven

11.2.2 Nullstellen

Bei einer Fläche kann man von einer Nullstelle im eigentlichen Sinn, d. h. von einem

Punkt, nicht mehr sprechen. Jedoch lässt sich das Prinzip der Berechnung übertragen. 
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Man erhält durch Nullsetzen des Funktionswerts eine Bestimmungsgleichung

 f ( x,  y) != 0, 

wobei jedoch diese als geometrischer Ort keinen Punkt, sondern eine Kurve be-

schreibt. Es handelt sich um die Schnittkurve der Fläche mit der  x,  y  Koordinaten-

ebene, also um eine spezielle Isoquante. 

11.3 Differenzieren von Funktionen mit zwei Variablen

Die Steigung einer Fläche in einer definierten Richtung ist gleich der Steigung der

Schnittkurve, die bei einem Schnitt in der betreffenden Richtung entsteht. Man kann

bei einer Funktion mit zwei Variablen somit in zwei Richtungen die Steigung ermit-

teln. Ermittelt man die Steigung in  x-Richtung, so wird die in  y-Richtung als quasi

konstant erachtet. Es wird daher von einem partiellen Differential gesprochen. 

11.3.1 Partielles Differential

Die Steigung einer Kurve in der Schnittebene  y =  konst, d. h. in Richtung der  x-

Achse, ist durch den Differentialquotienten

∂ z

 f ( x + Δ x,  y) −  f ( x,  y)

= lim

∂ x

Δ x→0

Δ x

beschrieben. Dies ist das erste partielle Differential nach  x. Es erfolgt unter der

Bedingung  y =  konst. 

Um zu kennzeichnen, dass nur nach der einen Variablen differenziert wird, wäh-

rend alle übrigen Variablen wie Konstanten zu behandeln sind, schreibt man die Dif-

ferentiale mit einem runden deutschen d: ∂. Analog kann man die erste partielle

Ableitung auch nach der Variablen  y  bilden. 

∂ z

 f ( x,  y + Δ y) −  f ( x,  y)

= lim

∂ y

Δ y→0

Δ y

Hat eine Funktion  n  unabhängige Variablen, so kann nach jeder Variablen partiell

differentiert werden. Man kürzt die Schreibweise ∂ z

∂ meistens durch  f 

 x

 x  oder  z x  bzw. 

∂ z

∂ durch  f 

 y

 y  oder  z y  ab. 

 Beispiel 11.2.  Die Funktion

 z =  x 2  y  für ( x,  y) ∈ R

ist abzuleiten. Zur partiellen Differentiation braucht die Produktregel hier nicht an-

gewendet zu werden. 

 z x = 2 xy

 z y =  x 2

☼
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Bei der partiellen Ableitung wird  y  bzw.  x  wie eine Konstante behandelt; sie ist

jedoch keine Konstante, sondern nach wie vor eine Variable. 

 Beispiel 11.3.  Weitere Beispiele:

 z =  xn ym

 z x =  nxn−1  ym

 z y =  mxn ym−1

 z = e xy

 z x =  y e xy

 z y =  x e xy

 x

 z =  x  ln y

 z x = ln y

 z y =  y

☼

 Beispiel 11.4.  Welche Steigung besitzt die Funktion

1

 z = 2 xy − 3 x 2 +

für ( x,  y) ∈ R

 y

in Richtung der  x-Achse bzw. der  y-Achse? 

1

 z x = 2 y − 6 x

 z y = 2 x −  y 2

Um die Steigung im Punkt (2,1) zu berechnen, setzt man die Koordinatenwerte ein

 z x = −10

 z y = 3

☼

Die bisher vorgestellten Regeln der Differentialrechnung gelten auch für partielle

Differentiation ohne Einschränkung. Sie sind dann anzuwenden, wenn die Variable, 

nach welcher differenziert wird, in beiden Faktoren eines Produkts, d. h. im Zähler

und Nenner eines Quotienten oder in der inneren Funktion, einer zusammengesetzten

Funktion auftritt. 

 Beispiel 11.5.  Für die partielle Differentiation der Funktion

 z =  y e x 2+ y 2 für ( x,  y) ∈ R

nach  x  muss die Kettenregel angewendet werden. Um die Ableitung nach  y  zu be-

rechnen, muss man sowohl die Kettenregel als auch die Produktregel anwenden. Die

Exponentialfunktion wird mit der Kettenregel abgeleitet. Mit der Produktregel wird

das Produkt  y e x 2+ y 2 differenziert. 

 z x = 2 xy e x 2+ y 2

 z y = e x 2+ y 2 + 2 y 2 e x 2+ y 2

☼
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11.3.2 Partielles Differential höherer Ordnung

Wie bei Funktionen mit einer Variablen kann man die partielle Ableitung als Funk-

tion noch einmal partiell differenzieren. 









∂

∂ z

∂

∂ z

=  z

=  z

∂ x ∂ x

 xx

∂ y ∂ y

 yy









∂

∂ z

∂

∂ z

=  z

=  z

∂ x ∂ y

 xy

∂ y ∂ x

 yx

Die zweiten Ableitungen  z xy =  z yx  sind bei stetig partiell differenzierbaren Funktio-

nen immer identisch! Die Reihenfolge der Differentiation ist daher beliebig. 

 Beispiel 11.6. 

 z =  x 3 − 4 x 2  y + 2 xy 2 + ln( xy) für ( x,  y) ∈ R+

1

1

 z x = 3 x 2 − 8 xy + 2 y 2 +

 z

 x

 y = −4  x 2 + 4  xy +  y

1

1

 z xx = 6 x − 8 y −

 z

 x 2

 yy =

4  x −  y 2

 z xy = −8 x + 4 y

 z yx = −8 x + 4 y

☼

11.3.3 Totales Differential

Die Schnittkurve in  x-Richtung besitzt die Steigung ∂ z

∂ =  z

 x

 x. Eine Auslenkung der

Variablen  x  um den Betrag d x  hat auf die Schnittkurve in  x-Richtung die Funktions-

änderung

d zx =  z x  d x

zur Folge. Es gibt auch ein entsprechendes partielles Differential nach der Variablen

 y. 

d zy =  z y  d y

Werden die Variablen  x  und  y  gleichzeitig um die Beträge d x  und d y  verändert, so

erhält man die Gesamtänderung, die sich aus der Summe der partiellen Differentialen

ergibt. Man bezeichnet diese infinitesimale Größe als das totale Differential. 

d z = d zx + d zy =  z x  d x +  z y  d y

 Beispiel 11.7.  Das totale Differential der Funktion

 z =  x  ln y
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ist

 x

d z = ln y d x + d y

 y

☼

11.3.4 Differentiation impliziter Funktionen

Der Funktionswert einer impliziten Funktion ist stets  z =  G( x,  y) = 0. Die Steigung

kann mittels des totalen Differentials bestimmt werden. Für das totale Differential

gilt wegen  z = 0 auch d z = d G = 0:

d z =  z x  d x +  z y  d y = 0

Die Umformung der obigen Gleichung nach d y  liefert den Differentialquotienten

d x

und damit die Steigung der impliziten Funktion. 

d y

 z

= −  x

(11.2)

d x

 z y

 Beispiel 11.8.  Es ist die Steigung der Funktion (11.1) an der Stelle  x = 1 gesucht. 

Die partiellen Ableitungen sind

 z x = 3 x 2 + 2 xy +  y 2 + 2 x

 z y = 3 y 2 +  x 2 + 2 xy + 1

d y

3  x 2 + 2 xy +  y 2 + 2 x

= −

d x

3  y 2 +  x 2 + 2 xy + 1

Um an der Stelle  x = 1 die Steigung berechnen zu können, benötigt man noch einen

Wert für  y. Die Funktion an der Stelle  x = 1 ist

 y 3 +  y 2 + 2 y + 2 = 0 für  x ∈ R

Die Nullstellen dieser Funktion liefern die Werte für  y. Hier sind aufgrund der fol-

genden Umformung die Nullstellen direkt bestimmbar. 

 y 2 ( y + 1) + 2( y + 1) = 0 ⇒ ( y 2 + 2)( y + 1) = 0

Der einzige reelle Wert an der Stelle  x = 1 ist  y = −1. Die anderen beiden Wurzeln

sind imaginär. Die Steigung an der Stelle  x = 1,  y = −1 ist somit



d y 

4

= −

d x  x=1

3

☼
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11.3.5 Ökonomische Anwendungen

In dem vorgestellten Ertragsgebirge war der Ertrag eine Funktion von zwei Produk-

tionsfaktoren. Um die Frage zu beantworten, welcher Ertragsanteil jedem der beiden

Faktoren in einem bestimmten Punkt zuzurechnen ist, bietet es sich an, den einen

Faktor konstant zu halten und den Einfluss des anderen durch Variation zu messen. 

Die Veränderung des Ertags bei Variation des Faktors  x  und Konstanz des Faktors

 y  ist gleich der partiellen Ableitung der Ertagsfunktion. 



∂ z

d z 

=



∂ x

d x y= konst

Die Größen werden als partielle Grenzerträge ( partial marginal return) bezeichnet. 

Bei gleichzeitiger Variation beider Faktoren um infinitesimale Beträge d x  und d y

wird sich der Ertrag gemäß dem totalen Differential ändern, und man erhält die totale

Ertragsänderung. 

Hält man den Ertrag konstant, also wenn gilt d z = 0, so erhält man die Schnittkur-

ve  z =  f ( x,  y) =  konst, die als Ertragsisoquante ( indifference return curve) bezeich-

net wird. Entlang dieser Kurve ändert sich trotz Faktorvariation der Ertrag nicht. Die

Änderung der Produktionsfaktoren bei konstantem Ertrag liefert die Grenzrate der

Substitution ( marginal rate of substitution). Man erhält sie durch das implizite Dif-

ferential (11.2). Die Grenzrate der Substitution ist durch das umgekehrte Verhältnis

der Grenzerträge gegeben. 

Die Projektion der Isoquante in die  x,  y  Ebene zeigt die Abhängigkeit des Faktors

 x  vom Faktor  y  bei festem Ertrag grafisch (siehe Abb. 11.1, unten rechts). 

 Beispiel 11.9.  Die Funktion

 x( r 1,  r 2) =  a 0  ra 1

1  ra 2

2

mit 0 <  a 1,  a 2 < 1,  r 1,  r 2 > 0

ist in der Literatur als Cobb-Douglas-Ertragsfunktion (Produktionsfunktion) be-

kannt. 

Sie besitzt einige besondere Eigenschaften, von denen hier einige gezeigt werden

sollen. Die partielle Ertragselastizität ( elasticity of return) beschreibt die relative

Ertragsänderung bezüglich einer relativen partiellen Faktoränderung. 

∂ x r

 a

ε

1

0  a 1  ra 1−1

1

 ra 2

2

 x,  r =

=

=  a

1

∂ r

1

1  x

 a 0  ra 1−1

1

 ra 2

2

∂ x r

ε

1

 x,  r =

=  a

1

∂ r

2

1  x

Die Grenzrate der Substitution berechnet sich aus dem totalen Differential mit

d x = 0. 

d r 2

 x

 a r

= −  r 1 = − 1 2

d r 1

 x r

 a r

2

2 1

Ferner wird bei substitutionalen Ertragsfunktionen häufig die Substitutionsela-

stizität ( substitution elasticity) berechnet, die das Verhältnis der relativen Änderung

































11.3 Differenzieren von Funktionen mit zwei Variablen

281

6

5

5.0

4

4.5

Z

3

4.0

2

3.5

3.0

1

2.5

0

2.0

5.0

1.5

4.5

4.0

1.0

X

3.5

3.0

2.5

0.5

2.0

1.5

Y

1.0

0.0

0.5

0.0

Abb. 11.2: Cobb-Douglas-Ertragsfunktion mit  a 0 = 1,  a 1 =  a 2 = 0.5

 x

der Faktorproportionen  r 1 zur relativen Änderung der Grenzertragsproportion  r 1
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 x r 2
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ε
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 a

 x

2  x  r

ε

1

 r 2

 r 1 2

 r

=

1,  r 2

 a 2  x r

 x  r

1

 r 2 1

 a x  r

= 1  r 2 2 = 1

 a 2  x r r

1

   1

=  r 1

 r 2

Die Substitutionselastizität beträgt Eins. Sie gibt an, um wie viel Prozent sich die

Faktoreinsatzrelation ändern muss, wenn sich die Grenzertragsrelation der beiden

Faktoren um 1 Prozent geändert hat. Einsichtiger wird die Interpretation, wenn man

die Erkenntnis der Minimalkostenkombination (siehe Kapitel 11.5.3) mitverwendet. 

Sie ist dadurch gekennzeichnet, dass die Grenzerträge proportional zu den Faktor-

preisen sind. Dann kann die obige Aussage abgewandelt werden in: Um wieviel

Prozent muss sich die Faktoreinsatzrelation ändern, wenn sich die Preisrelation der

beiden Faktoren um 1 Prozent ändert? 

☼

Im Abschnitt 10.8.6 wurde die Elastizität für die (Nachfrage-) Funktion mit einer

Variablen eingeführt. Die Nachfrage nach einem Gut hängt meistens auch von den

Preisen anderer ähnlicher Güter ab. 

 x =  f ( p 1,  p 2,...)

Wird nun die (partielle) Elastizität zu den Preisen der anderen Güter gebildet, so

spricht man von der Kreuzpreiselastizität ( cross price elasticity). 

∂ x

ε

∂  p 2

 x( p 2) =

 x

 p 2

Übung 11.1. Berechnen Sie die partiellen Ableitungen der folgenden Funktion:

 z =  f ( x,  y) =  xy  für  x ∈ R+,  y ∈ R

Übung 11.2. Bestimmen Sie die Ableitung bzw. das implizite Differential erster

Ordnung zu der Funktion

 x 3 +  xy +  y 3 − 10 = 0. 

Übung 11.3. Berechnen Sie die zweiten partiellen Ableitungen aus dem Beispiel

11.5. 

Übung 11.4. Berechnen Sie das implizite Differential der folgenden Gleichung an

der Stelle  x = 0,  y = 1

 x 2  y 3 + ( y + 1)e− x =  x + 2
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11.4 Extremwertbestimmung

Ein Extremum liegt – wie bei einer Funktion mit einer Variablen – vor, wenn bei einer

stetig differenzierbaren Funktion die erste partielle Ableitung Null wird. In einem

Extrempunkt der Funktion  f ( x,  y) sind also notwendigerweise die ersten partiellen

Ableitungen Null. Um die Extremwerte bestimmen zu können, muss man die Lösung

des Gleichungssystems

 f  ! 

! 

 x = 0

 f  y = 0

berechnen. Hat man die Extrempunkte bestimmt, so stellt sich die Frage, ob an die-

sen Stellen auch tatsächlich Extrema vorliegen, d. h. ob die obigen Bedingungen auch

hinreichend sind. Es kann ja sein, dass eine Funktion in  x-Richtung ein Maximum

besitzt, in  y-Richtung aber ein Minimum. Ein solcher Punkt wird Sattelpunkt ge-

nannt. 

Die hinreichende Bedingung, die über das Vorliegen eines Minimums bzw. Ma-

ximums entscheidet, ist auch hier das Vorzeichen der zweiten Ableitung. Nur exi-

stiert jetzt nicht «eine» zweite Ableitung, sondern vier partielle, nämlich  f  xx,  f  xy,  f  yx, 

 f  yy, so dass das Vorzeichen dieser anders ermittelt werden muss. 

Hierzu wird das Vorzeichen der zweiten Ableitung übersetzt in das «Vorzeichen»

einer Matrix. Es gilt weiterhin, dass für ein Maximum (Minimum) die zweite Ablei-

tung von  z  negativ (positiv) sein muss. Das «Vorzeichen» einer Matrix entspricht

der Definitheit einer Matrix. Um die Definitheit einer Matrix bestimmen zu können, 

benötigt man die Determinante und Hauptminoren (Unterdeterminanten) der Matrix. 

Die erste Ableitung der Funktion  z =  f ( x,  y) ist

d z =  f  x  d x +  f  y  d y

(11.3)

Die zweite Ableitung von  z  ist das Differential von (11.3). 

∂d z

∂d z

d2 z = d(d z) =

d x +

d y

∂ x

∂ y

∂ 



∂ 



=

 f 

d x +

 f 

d y

∂ x x  d x +  f  y  d y







∂ y x  d x +  f  y  d y

(11.4)

d z









=  f  xx  d x +  f  xy  d y  d x +  f  xy  d x +  f  yy  d y  d y

=  f  xx d x 2 +  f  xy  d y d x +  f  xy  d x d y +  f  yy  d y 2

Das Vorzeichen der zweiten Ableitung d2 z  wird über die Definitheit quadratischer

Formen bestimmt. Die Gleichung (11.4) wird wegen der Übersichtlichkeit in ein-

fachere Symbole umgeschrieben und gleichzeitig erweitert, um einen binomischen

Ausdruck ausklammern zu können:
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 h 2

 h 2

 q =  au 2 + 2 huv +  bv 2 +

 v 2 −

 v 2

 a

 a







Erweiterung







2  h

 h 2

 h 2

=  a u 2 +

 u v +

 v 2 +  b −

 v 2

 a

 a 2

 a





 h

2

 a b −  h 2

=  a u +  v

+

 v 2

 a

 a









stets > 0

stets > 0

Das Vorzeichen von  q  hängt daher von  a  und  a b −  h 2 ab:

wenn  a > 0 und  ab −  h 2 > 0 ist, dann ist  q > 0, also positiv definit

wenn  a < 0 und  ab −  h 2 > 0 ist, dann ist  q < 0, also negativ definit

Somit bestimmen die Vorzeichen der zweiten partiellen Ableitungen das Vorzeichen

der zweiten Ableitung. Ein Minimum der Funktion  f ( x,  y) liegt an der Extremwert-

stelle ( x,  y) vor, wenn d2 z > 0 gilt. Ein Maximum der Funktion liegt an der Extrem-

wertstelle vor, wenn d2 z < 0 gilt. Nun ist  q  auch als Matrixgleichung (quadratische

Form) darstellbar. 

! "#

$# $

 a h

 u

 q =  u v h b v

  

H

Die Matrix H wird als Hesse-Matrix bezeichnet und beinhaltet die zweiten Ablei-

tungen der Funktion  f ( x,  y). 

#

$

 f 

H =  xx f  xy

 f  yx f  yy

Das Vorzeichen der zweiten Ableitung kann mittels der Determinanten der Hesse-

Matrix ermittelt werden. Die erste Unterdeterminante der Hesse-Matrix ist

|H1( x,  y)| =  f  xx

Die Determinante der Hesse-Matrix ist

 

|H

2

2( x,  y)| =  f 

 xx f 

 yy −  f 

 xy

Die zweite Ableitung ist an der Stelle ( x,  y) positiv, wenn

|H1( x,  y)| > 0

und

|H2( x,  y)| > 0

gilt. Dann liegt an dieser Stelle ein Minimum der Funktion vor. 

Die zweite Ableitung ist an der Stelle ( x,  y) negativ, wenn

|H1( x,  y)| < 0

und

|H2( x,  y)| > 0
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gilt. Dann liegt an dieser Stelle ein Maximum der Funktion vor. 

Ist

|H1( x,  y)| = 0

und

|H2( x,  y)| < 0, 

so liegt ein Sattelpunkt an der Stelle ( x,  y) vor. 

Ist

|H2( x,  y)| = 0, 

ist keine Entscheidung ohne weitere Rechnung möglich. 
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Abb. 11.3: Grafik der Funktion (11.5)

 Beispiel 11.10.  Es werden für die Funktion

 z =  x 3 − 12 xy + 6 y 2 für  x ∈ R

(11.5)

die Extrempunkte gesucht. Die ersten partiellen Ableitungen sind

 z x = 3 x 2 − 12 y

! 

= 0 ⇒ 3 x 2 − 12 x= 0

↑

  

 z y = −12 x + 12 y != 0 ⇒  x =  y
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Die Auflösung der beiden Gleichungen liefert







 x

∗



∗

1 = 0,  y 1 = 0

 x 2 = 4,  y 2 = 4

Die zweiten Ableitungen sind

 z xx = 6 x

 z yy = 12

 Z xy = −12

 z yx = −12

An der Stelle (4,4) ist die erste Unterdeterminante

|H1(4,4)| = 6 x = 24

positiv und die zweite Unterdeterminante





|

6  x

−12

H





2(4, 4)| =  −12 12  = 72 x − 144 = 144

ebenfalls positiv. Somit liegt an der Stelle (4,4) ein Minimum vor. An der Stelle

(0,0) liegt ein Sattelpunkt. 

|H1(0,0)| = 0

|H2(0,0)| = −144

In Abb. 11.3 kann man das Minimum und den Sattelpunkt der Funktion (11.5) erah-

nen. 

☼

11.5 Extremwertbestimmung unter Nebenbedingung

Die meisten Optimierungsprobleme in der Praxis sind durch Restriktionen bestimmt. 

Ein Unternehmer, der seine Kosten uneingeschränkt minimiert, wird sein Unterneh-

men schließen, weil dann seine Kosten Null sind. Eine Kostenminimierung kann

also nur unter der Beschränkung sinnvoll sein, dass ein bestimmtes Programm unter

Ausnutzung vorgegebener Kapazitäten gefertigt wird. Ebenso führt die Gewinnma-

ximierung zur trivialen Lösung unendlich, wenn man von Produkten mit positivem

Deckungsbeitrag unendlich viel verkauft. In diesem Fall führen erst Nebenbedin-

gungen, die technischer, finanzieller und absatzbeschränkender Art sein können, zu

einem sinnvollen Optimierungsproblem. Allgemein stellt sich die Aufgabe, für die

Funktion  z =  f ( x,  y) ein Extremum zu finden, wobei die Nebenbedingung (Restrik-

tion)  G( x,  y) = 0 einzuhalten ist. Die zu optimierende Funktion wird in diesem Zu-

sammenhang als Zielfunktion bezeichnet. 

 Beispiel 11.11.  Optimale Konservendose: Ein sehr häufiges Beispiel für die Extrem-

wertbestimmung unter Nebenbedingung ist die Berechnung einer zylindrischen Kon-

servendose gegebenen Inhalts (zum Beispiel 1000 cm3) mit minimaler Oberfläche, 

zu deren Herstellung also möglichst wenig Weißblech verwendet werden soll. Das

Problem lautet somit: Minimiere

 f ( r,  h) = 2π  r 2 + 2π r h  für  r,  h ≥ 0
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unter der Nebenbedingung

 G( r,  h) = 1000 − π  r 2  h = 0. 

Es handelt sich um die Bestimmung des Minimums der Zielfunktion  f ( r,  h) mit den

beiden Variablen  r (Radius) und  h (Höhe) unter Einhaltung der Nebenbedingung

 G( r,  h) = 0. 

☼

Die Nebenbedingung schränkt die Funktionswerte ein. Man spricht in diesem

Zusammenhang auch von einem Entscheidungsraum. Jede Nebenbedingung verrin-

gert den Freiheitsgrad des Entscheidungsraums. 

Wie können nun für eine Zielfunktion unter einer Nebenbedingung die Extrem-

werte bestimmt werden? Eine Möglichkeit ist, die Nebenbedingung in die Zielfunk-

tion einzusetzen. 

 Beispiel 11.12.  Für die Funktion

 f ( x,  y) =  xy  für  x,  y ∈ R

(11.6)

sollen unter der Nebenbedingung

 G( x,  y) = 6 −  x −  y 2 = 0

(11.7)

die Extrempunkte gefunden werden. Das Einsetzen der Nebenbedingung in die

Funktion führt zu

 f ( y) = (6 −  y 2) y

Die notwendige Bedingung liefert

 f  y = 6 − 3 y 2 != 0, 

womit die Extrempunkte bestimmt werden können. 

√

 y = ± 2

 x = 4

☼

Eine andere Möglichkeit die Nebenbedingung zu berücksichtigen, ist die Funk-

tion zu erweitern. 

 Beispiel 11.13.  Die Funktion (11.6) wird um die Nebenbedingung (11.7) erweitert. 

Dies führt zu der Funktion:





 L( x,  y,λ ) =  xy + λ 6 −  x −  y 2

Die notwendige Bedingung ist wieder das Verschwinden der ersten Ableitung, wo-

bei hier beachtet werden muss, dass drei partielle erste Ableitungen existieren, die

gleichzeitig Null gesetzt werden müssen. Die ersten Ableitungen liefern das Glei-

chungssystem:

 L x =  y − λ != 0

⇒ λ =  y
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Abb. 11.4: Grafik der Funktion (11.6) und der Nebenbedingung (11.7)

 x

 L y =  x − 2λ  y != 0

⇒ λ =

⇒  x = 2 y 2

2  y

 Lλ = 6 −  x −  y 2 != 0 ⇒ 0 = 6 − 2 y 2 −  y 2 ⇒  y 2 = 2

√

√

 y = ± 2

 x = 4

λ = ± 2

√

Es wird derselbe Extrempunkt (4, 2) gefunden. Die obere Grafik in Abb. 11.4 zeigt

die Funktion (11.6) und die Nebenbedingung (11.7) (als Linie erkennbar). An der

Stelle des Maximums tangiert die Linie der Nebenbedingung die Fläche der Ziel-

funktion. Dieser Punkt ist in der unteren Grafik der Abbildung als Tangentialpunkt

√

der Nebenbedingung und der Isoquante zum Wert  f ( x,  y) =  xy = 4 2 zu sehen. ☼

Der Lösungsansatz im Beispiel 11.13 geht auf Joseph Louis de Lagrange zurück. 

Er entwickelte die so genannte Lagrange-Methode. Sie besagt: Die Extrema der

Funktion  z =  f ( x,  y) unter der Nebenbedingung  G( x,  y) = 0 liegen an den Stellen, an

denen die Funktion

 L( x,  y,λ ) =  f ( x,  y) + λ  G( x,  y)

ihre Extremwerte besitzt. Die Funktion  L( x,  y,λ ) wird als Lagrange-Funktion be-

zeichnet. 

Voraussetzung für die Lagrange-Methode ist, dass die Nebenbedingung in im-

pliziter Form vorliegt. Der Ansatz von Lagrange gestattet es, die Optimierung unter
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der Einschränkung durch die Nebenbedingung auf die uneingeschränkte Optimie-

rung einer Funktion, die allerdings die zusätzliche Variable λ besitzt, zurückzufüh-

ren. Somit stellt sich nun die Aufgabe, die Extremwerte der Funktion  L( x,  y,λ ) mit

jetzt drei unabhängigen Variablen zu finden. Die notwendige Bedingung ( necessary

 condition) für ein Extremum ist – wie zuvor –, dass die ersten partiellen Ableitungen

Null gesetzt werden. Dies führt hier auf das Gleichungssystem

∂ L =  f

∂ x

 x( x,  y) + λ  G x( x,  y) ! 

= 0

(11.8)

∂ L =  f

∂ y

 y( x,  y) + λ  G y( x,  y) ! 

= 0

(11.9)

∂ L =  G( x,  y) != 0

(11.10)

∂λ

Jede Variable und jede Nebenbedingung führen zu einer Bedingung. Man beachte, 

dass die dritte Bedingung die ursprüngliche Nebenbedingung ist. Die Nebenbedin-

gung legt für gegebene Werte von  x  den Wert von  y  fest (und andersherum). Damit

bindet die Nebenbedingung einen Freiheitsgrad. Eine weitere Nebenbedingung wür-

de bei einer Funktion einen weiteren Freiheitsgrad binden. Die Werte  x  und  y  würden

dann durch die beiden Nebenbedingungen bestimmt. Eine Extremwertsuche für die

Zielfunktion wäre nicht mehr möglich. Daher ist bei einer Funktion mit lediglich

zwei Variablen nur eine Nebenbedingung sinnvoll. Eine Funktion mit drei Variablen

kann durch zwei Nebenbedingungen eingeschränkt werden, usw. 

 Beispiel 11.14.  Fortführung von Beispiel 11.11: Die Nebenbedingung in die Ziel-

funktion eingesetzt, ergibt die Lagrange-Funktion





 L( r,  h,λ ) = 2π  r 2 + 2π  r h + λ 1000 − π  r 2  h

Die notwendige Bedingung für ein Extremum ist, die ersten Ableitungen Null zu

setzen. 

∂ L = 4π r+2π h−2λ π rh != 0

∂ r

∂ L = 2π r−λ π r 2 != 0

∂ h

∂ L = 1000−π r 2 h != 0

∂λ

Die Lösung des obigen Gleichungssystems führt zu

1 1000

2

 r = 3

= 5.4193 cm

 h = 2 r = 10.8385 cm

λ = = 0.3691

2 π

 r

Die minimale Oberfläche der Dose beträgt

 f (5.4193,10.8385) = 553.5810 cm2

☼
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11.5.1 Interpretation des Lagrange-Multiplikators

Nun tritt in der Lagrange-Funktion noch der so genannte Lagrange-Multiplika-

tor auf, der durch die Einbindung der Nebenbedingung in die Zielfunktion einge-

setzt wurde. Wie ist der Lagrange-Multiplikator zu interpretieren? In der Lagrange-

Funktion





 L( x,  y,λ ,  c) =  f ( x,  y) + λ  c −  g( x,  y)

  

 G( x,  y)=0

wird die Größe  c  nun als Variable aufgefasst und nach ihr abgeleitet. 

d L = λ

(11.11)

d c

Weil für die implizite Funktion  G( x,  y) = 0 gilt, gilt auch d G = 0. Es gilt daher

d L = d  f . Somit kann die Gleichung (11.11) umgeschrieben werden in

d  f = λ d c

Der Lagrange-Multiplikator λ gibt die relative Änderung der Zielfunktion  f ( x,  y)

an, wenn die Restriktion  c  um d c  variiert wird. Die Interpretation des Lagrange-

Multiplikators erklärt sich am besten an einem Beispiel. 

 Beispiel 11.15.  Aus dem Beispiel 11.14 ist bekannt, dass λ = 0.3691 ist. Wie groß

sind die minimalen Oberflächen der Konservendose, wenn der Inhalt auf 999 ccm, 

990 ccm und auf 1050 ccm verändert wird? Dies kann näherungsweise ohne Neube-

rechnung erfolgen. Es gilt:

Δ  f ≈ 0.3691Δ c

Daraus ergeben sich die folgenden Werte:

 c = 999

Δ c = −1

Δ  f ≈ −0.3691

 f ≈ 553.2119  f = 553.2119

 c = 990

Δ c = −10 Δ  f ≈ −3.6910

 f ≈ 549.8900  f = 549.8843

 c = 1050 Δ c = 50 Δ  f ≈ 18.4550  f ≈ 572.0360  f = 571.8833

Es zeigt sich, dass bei einer kleinen Veränderung (Δ c = −1) der approximierte Wert

und der genau berechnete Wert (letzte Spalte) bis auf die 4. Nachkommastelle über-

einstimmen. Abweichungen ergeben sich hier erst bei größeren Restriktionsänderun-

gen. 

☼

11.5.2 Hinreichende Bedingung für ein Maximum bzw. Minimum

Die hinreichende Bedingung ( sufficient condition) zur Überprüfung auf das Vorlie-

gen eines Minimums oder Maximums erfolgt ähnlich wie in Kapitel 11.4, wobei hier

natürlich die Beziehung der Nebenbedingung berücksichtigt werden muss. Es wird

von einer allgemeinen Lagrange-Funktion

 L( x,  y,λ ) =  f ( x,  y) + λ  G( x,  y)

ausgegangen. Wegen

d G =  G x  d x +  G y d y = 0
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gilt

 G

d y = −  x  d x

 G y

Weil aber  G x  und  G y  wiederum von  x  und  y  abhängig sind, ist auch d y  von  x  und  y abhängig:

 G

d y( x) = −  x  d x

(11.12)

 G y

Dies muss in der zweiten Ableitung von  L( x,  y,λ ) beachtet werden, wenn d x  als

unabhängig gesetzt wird. Es gilt allgemein:

d2 L = d2 z + d2 G

Wegen d G = 0 ist auch d2 G = 0. Daher gilt hier

d2 L = d2 z

Ausgehend von  z =  f ( x,  y) wird das totale Differential von d z  nochmals differenziert. 

Die Nebenbedingung wird über die Gleichung (11.12) berücksichtigt. 

∂d z

∂d z

d2 z = d(d z) =

d x +

d y( x)

∂ x

∂ y

∂ 



∂ 



=

 f 

d y( x) d x +

 f 

d y( x) d y( x)

∂ x x  d x +  f  y

  

∂ y x  d x +  f  y

  

 u

 v

 u

 v





∂d y( x)

=  f  xx  d x +  f  xy  d y( x)+  f 

d x

  

 y

 ∂ x

  

 u

 v

 u

 v





(11.13)

∂d y( x)

+  f  xy  d x +  f  yy  d y( x)+  f 

d y( x)

  

 y

 ∂ y

  

 u

 v

 u

 v

∂d y( x)

=  f  xx  d x 2 +  f  xy  d x d y( x) +  f  y

d x +  f 

∂ x

 xy  d x  d y( x)

∂d y( x)

+  f  yy  d y( x)d y( x) +  f  y

d y( x)

∂ y

Ein Teil aus der Gleichung (11.13) kann umgeschrieben werden in





∂d y( x)

∂d y( x)

 f  y

d x +

d y( x) =  f 

∂ x

∂ y

 y  d2 y( x)

(11.14)

Statt d y( x) wird nun nur noch d y  geschrieben, da die Abhängigkeit durch die An-

wendung der Produktregel berücksichtigt wurde. 

Erklärung für die Gleichung (11.14): Da das totale Differential von  y

∂ y

∂ y

d y =

d x +

d y

∂ x

∂ y
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ist, kann man dann das totale Differential von d y  als

∂d y

∂d y

dd y =

d x +

d y = d2 y

∂ x

∂ y

abkürzen. Es ergibt sich somit

d2 z =  f  xx  d x 2 + 2  f  xy  d x d y +  f  yy  d y 2 +  f  y  d2 y (11.15)

Nun muss aus der Nebenbedingung  G( x,  y) die zweite Ableitung d2 y  bestimmt wer-

den, um das totale Differential d2 L  zu berechnen. Aus den obigen Überlegungen

kann d2 G  schnell ermittelt werden:

d2 G =  G xx  d x 2 + 2 G xy  d x d y +  G yy  d y 2 +  G y  d2 y = 0

(11.16)

Auflösen der Gleichung (11.16) nach d2 y  und Einsetzen in die Gleichung (11.15)

führt zu





 f 

d2 z =  f 

 y

 xx +

 G

d x 2

 G

 xx

 y



λ , weil −  f  y = λ  G y  gilt





 f 

+ 2  f 

 y

 xy +

 G

d x d y

 G

 xy

 y



λ





 f 

+  f 

 y

 yy +

 G

d y 2

 G

 yy

 y



(11.17)

λ









=  f  xx + λ  G xx  d x 2 + 2  f 

d x d y







 xy + λ  G xy







 L xx

 L xy





+  f  yy + λ  G yy  d y 2







 L yy

=  L xx  d x 2 + 2 L xy  d x d y +  L yy  d y 2

= d2 L

Dies ist eine quadratische Form. Ist d2 L  negativ definit, unter Berücksichtigung von

d G = 0, liegt ein Maximum vor. Ist d2 L  positiv definit, liegt ein Minimum vor. Die

Überprüfung des Vorzeichens von d2 L  wird unter Verwendung der quadratischen

Form vorgenommen. Die letzte Zeile der Gleichung (11.17) wird umgeschrieben in

(siehe auch Seite 283)

 q =  au 2 + 2 huv +  bv 2

Nun unterliegt d2 L  bzw.  q  hier der Nebenbedingung
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d G =  G x  d x +  G y d y = 0

= α  u + β  v

Auflösen der Nebenbedingung

α

 v = −  u

β

und Einsetzen ergibt

α

α2

 q =  au 2 − 2 h u 2 +  b

 u 2

β

β2

(11.18)



  u 2

= α β2 − 2 hα β +  bα2 β2

 q  ist positiv definit, wenn der Ausdruck in der Klammer positiv ist, und negativ

definit, wenn der Ausdruck in der Klammer negativ ist, weil  u 2 nicht negativ sein

β 2

kann. Es lässt sich zeigen, dass die Determinante einer erweiterten Hesse-Matrix





 0 α β 

| ˜H( x,  y,λ)| = α  a h  = 2 hα β −α β2 − bα2





β  h b 

genau das umgekehrte Vorzeichen von dem Klammerausdruck der Gleichung (11.18)

besitzt. Die Matrix

⎡

⎤

0  G x G y

˜H( x,  y,λ) = ⎣ G

⎦

 x L xx L xy

 G y L xy L yy

wird als geränderte Hesse-Matrix bezeichnet. Die Determinante der geränderten

Hesse-Matrix ist an der Stelle ( x,  y,λ ) zu bewerten. Die zweite Ableitung von d2 L

ist an der Stelle ( x,  y) negativ, wenn die Determinante von | ˜H( x,  y,λ )| positiv ist. 

| ˜H( x,  y,λ)| > 0 ⇔ d2 L < 0 ⇔  L( x,  y,λ) = max

Dies ist die hinreichende Bedingung für ein Minimum der Lagrange-Funktion an

der Stelle ( x,  y). Die zweite Ableitung von d2 L  ist an der Stelle ( x,  y) positiv, wenn

die Determinante von | ˜H( x,  y,λ )| negativ ist. 

| ˜H( x,  y,λ)| < 0 ⇔ d2 L > 0 ⇔  L( x,  y,λ) = min

Dies ist die hinreichende Bedingung für ein Maximum. 

 Beispiel 11.16.  Die hinreichende Bedingung für das Beispiel 11.12 bzw. 11.13 wird

überprüft. Es ist die Determinante der geränderten Hesse-Matrix an der Stelle ( x =

√

√

4,  y = 2) und λ = 2 zu bewerten. Dazu müssen die ersten Ableitungen der Ne-

benbedingung und die zweiten Ableitungen der Lagrange-Funktion gebildet werden. 

√

 G x = −1

 G y = −2 y = −2 2
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√

 L xx = 0

 L yy = −2λ = −2 2

 L xy = 1

 L yx = 1

Die Determinante der geränderten Hesse-Matrix ist somit



√ 

√ √

 0 −1 −2 2

| ˜H(4, 2, 2)| =  −1

0

1  = 8.4853



√

√ 

−2 2

1

−2 2 

An der Extremstelle liegt also ein Maximum vor. 

☼

 Beispiel 11.17.  Ob es sich bei der gefundenen Lösung im Beispiel 11.14 der Konser-

vendose auch tatsächlich um ein Minimum handelt, kann nun mit der hinreichenden

Bedingung überprüft werden. Dazu muss die Lösung  r = 5.4193,  h = 10.8385 und

λ = 0.3691 in die geränderte Hesse-Determinante eingesetzt werden. Die ersten Ab-

leitungen der Nebenbedingung und die zweiten Ableitungen der Lagrange-Funktion

sind:

 G r = −2π  rh = −369.0540

 G h = −π  r 2 = −92.2635

 L rr = 4π − 2λ π  h = −12.5664

 L hh = 0

 L rh = 2π − 2λ π  r = −6.2832

Die bewertete Determinante der geränderten Hesse-Matrix ist damit







0

−369.054 −92.2635

| ˜H(5.4193,10.8385,0.3691)| = −369.054 −12.5664 −6.2832 





−92.2635 −6.2832

0



= −320915.76

Die Determinante der geränderten Hesse-Matrix ist negativ. Damit ist das Vorzeichen

der zweiten Ableitung des totalen Differentials positiv und an der Stelle  r = 5.4193, 

 h = 10.8385 liegt ein Minimum vor. 

☼

11.5.3 Ökonomische Anwendung: Minimalkostenkombination

Ein Beispiel zur ökonomischen Anwendung der Lagrange-Funktion ist die Minimal-

kostenkombination ( least cost combination). Es wird für die lineare Kostenfunktion

 K( r 1,  r 2) =  p 1  r 1 +  p 2  r 2 für  p 1,  p 2,  r 1,  r 2 > 0

unter einer Ertragsfunktion (Nebenbedingung)

 x =  f ( r 1,  r 2) =  r 1  r 2

ein Minimum gesucht. Die Ertragsfunktion ist eine spezielle Form einer Cobb-

Douglas-Ertragsfunktion (siehe Beispiel 11.9) mit  a 0 = 1,  a 1 = 1 und  a 2 = 1.  p 1
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und  p 2 sind gegebene Faktorpreise,  r 1 und  r 2 sind die gesuchten Faktormengen. Es

ist also für die Lagrange-Funktion





 L( r 1,  r 2,λ ) =  p 1  r 1 +  p 2  r 2 + λ  x −  f ( r 1,  r 2)





=  p 1  r 1 +  p 2  r 2 + λ  x −  r 1  r 2 → min

ein Minimum gesucht. Die notwendige Bedingung hierfür sind die Nullstellen der

ersten Ableitungen. 

 L

! 

 r =  p

=  p

= 0

1

1 − λ  f  r 1

1 − λ  r 2

 L

! 

 r =  p

=  p

= 0

2

2 − λ  f  r 2

2 − λ  r 1



 



 L

! 

λ =  x −  f ( r 1,  r 2) =  x −  r 1  r 2 = 0

Aus den notwendigen Bedingungen gewinnt man die Beziehung

 p

 p

 p

 f 

λ = 1 = 2 ⇒

1 =  r 1

 f  r

 f 

 p

 f 

1

 r 2

2

 r 2

Die Faktorpreise müssen proportional zu den Grenzerträgen sein bzw. in dem vorlie-

genden Fall von  x =  r 1  r 2:

 p

 p

 r

 p

λ = 1 = 2

⇒

1 = 2

(11.19)

 r 2

 r 1

 r 2

 p 1

Die Beziehung in Gleichung (11.19) nennt man die Minimalkostenkombination. Die

Faktorpreise verhalten sich umgekehrt proportional zu den Faktoreinsatzmengen. 

Ferner ergeben sich durch das Einsetzen der Nebenbedingung in die notwendige

Bedingung folgende Beziehungen:

1

 p

 p

λ2 = 1  p 2 ⇒ λ =

1  p 2

 r 1  r 2

 x

1

 p

 p

 r 2

2  x

2  x

1 =

⇒  r

 p

1 =

1

 p 1

1

 p

 p

 r 2

1  x

1  x

2 =

⇒  r

 p

2 =

2

 p 2

Die Grenzkosten sind das totale Differential der Kostenfunktion. 

d K

d r

d r

=  p

1 +  p

2

d x

1 d x

2 d x

Werden die Differentiale durch





1

d r

− 1

1

1

 p

2  p

1

 p

=

2  x

2 =

2

d x

2

 p 1

 p 1

2

 p 1  x







































296

11 Funktionen und Differentialrechnung mit zwei Variablen





1

d r

− 1

2

1

 p

2  p

1

 p

=

1  x

1 =

1

d x

2

 p 2

 p 2

2

 p 2  x

ersetzt, so erhält man

1

1

d K

1

 p

1

 p

=  p

2 +  p

1

d x

2 1

 p

2

1  x

2

 p 2  x

1  p

=

1  p 2

 x

= λ

Der Lagrange-Multiplikator ist hier also als Grenzkostenfunktion interpretierbar. 

Dieses Ergebnis gilt unabhängig von der gewählten Ertragsfunktion, da für die

Lagrange-Funktion immer gilt (siehe Kapitel 11.5.1)





 L =  p 1  r 1 +  p 2  r 2 + λ  x −  f ( r 1,  r 2)

d L = d K + λ d G, 

wobei d G  aufgrund der impliziten Funktion stets Null ist. Daher ist

d L = d K

und somit

d L

d K

=

= λ

d x

d x

Handelt es sich auch tatsächlich um eine Minimalkostenkombination? Hierzu

muss die Determinante der geränderten Hesse-Matrix negativ sein. 





 0

−  f 



 r

−  f 

1

 r 2



| ˜H( r





1,  r 2, λ )| =  −  f  r

−λ  f  r

−λ  f  r



1

1,  r 1

1,  r 2 

−  f 



 r

−λ  f 

−λ  f 

2

 r 1,  r 2

 r 2,  r 2





= λ (  f  r )2  f  + (  f  )2  f  − 2  f   f   f 

2

 r 1,  r 1

 r 1

 r 2,  r 2

 r 1  r 2  r 1,  r 2

Unterstellt man positive Grenzkosten (λ > 0), positive Grenzerträge (  f  r > 0,  f  > 

1

 r 2

0), abnehmende Grenzerträge (  f  r < 0,  f  < 0) und einen zunehmenden Grenz-

1,  r 1

 r 2,  r 2

ertrag bei gleichzeitiger Erhöhung beider Faktormengen (  f  r > 0), dann ist der

1,  r 2

Wert der Determinanten negativ. 

Im Fall mit der Cobb-Douglas-Ertragsfunktion ergibt sich folgende geränderte

Hesse-Determinante:





 0

− r



1

− r 2 

| ˜H( r





1,  r 2, λ )| =  − r 1

0

−λ = −2 r 1  r 2 λ





− r



2

−λ

0
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Abb. 11.5: Minimalkostenkombination

Da für  r 1,  r 2,λ > 0 gilt, ist die Determinante negativ und somit liegt tatsächlich eine

Minimalkostenkombination vor. 

In Abb. 11.5 sind die Faktorpreise mit  p 1 = 3 und  p 2 = 5 und ein Produktions-

niveau von  x = 5 vorgegeben. Hieraus ergeben sich die kostenminimalen Faktorein-

satzmengen

1

1

5 × 5

5 × 3

 r 1 =

= 2.8867

 r

= 1.7320

3

2 =

5

Die minimalen Kosten betragen damit  K( r 1,  r 2)min = 17.32 e und die Grenzkosten

d K

d x = λ = 0.5477 e. 

11.5.4 Ökonomische Anwendung: Portfolio-Theorie nach Markowitz

Im Folgenden wird der Lagrange-Ansatz verwendet, um die Portfolio-Theorie zu

beschreiben (siehe [8]). Die Portfolio-Theorie befasst sich mit der Auswahl von Fi-

nanztiteln. Jeder Finanztitel besitzt ein Risiko und eine Rendite. Ein Portfolio setzt

sich aus verschiedenen Finanztiteln zusammen. Ziel der Portfolio-Theorie ist es, bei

einem vorgegebenen Risiko eine maximale Rendite zu erzielen. Hierfür werden auch

Elemente der linearen Algebra und der schließenden Statistik eingesetzt. Zur Veran-

schaulichung der Theorie werden die Ergebnisse mit einem empirischen Beispiel

nachvollzogen. Die Berechnungen werden mit Scilab durchgeführt. 
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11.5.4.1 Risikominimales Portfolio

Ein Portfolio setzt sich aus  n  Finanztiteln mit den Anteilen  xi  zusammen. Es gilt:

 n

 xi =1

(11.20)

 i=1

Es wird angenommen, dass der  i-te Finanztitel (Wertpapier, Aktie, Option, usw.) eine

Rendite von  ri  besitzt. Die Rendite eines Finanztitels wird hier als eine Zufallsvaria-

ble angesehen, deren erwarteter Wert durch

μ i = E( ri) (Erwartungswert)

und deren Varianz durch

σ2 i = Var( ri) (Varianz)

gegeben ist. Das Risiko eines varianzminimalen Portfolios wird durch die Streuung

der erwarteten Rendite beschrieben. Die Rendite eines Portfolios setzt sich aus der

gewichteten Summe der Einzelerträge zusammen. 

 n



 rp =

 xi ri

 i=1

Da der Erwartungswert ein linearer Operator ist, ist die Portfoliorendite der gewich-

tete Durchschnitt der erwarteten Einzelerträge. 

 n



μ p =

 xi μ i

 i=1

Die Varianz der Portfoliorendite wird durch die Abhängigkeit der Einzelrenditen un-

tereinander (gemessen durch Kovarianzen) mitbestimmt, so dass gilt





 n



 n

 n



σ2 p = Var

 xi ri =

 xi xj σ ij

(11.21)

 i=1

 i=1  j=1

Sie setzt sich aus der gewichteten Summe der Einzelvarianzen und der Kovarianzen

zusammen. σ ij  gibt die Kovarianz zwischen dem  i-ten und dem  j-ten Finanztitel (für

 i =  j) an. Für  i =  j  ist σ ij  es die Varianz des  i-ten Finanztitels (σ ii = σ2 i). 

Es wird das Portfolio gesucht, das eine minimale Portfoliovarianz (unsystemati-

sches Risiko) σ2 p  besitzt. Die Minimierung muss unter der Budgetrestriktion (11.20)

erfolgen. Es handelt sich also um einen Lagrange-Ansatz der Funktion (11.21) unter

der Nebendingung (11.20). Für den Anteil des  i-ten Finanztitels ergibt sich somit die

Lagrange-Funktion. 









 n

 n



 n



 L xi,λ1 =

 xi xj σ ij + λ1 1 −

 xi → min

(11.22)

 i=1  j=1

 i=1
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Die ersten Ableitungen der Lagrange-Funktion (11.22) sind die notwendigen Bedin-

gungen für ein Minimum der Varianz und damit des Portfoliorisikos:

 n



 L

! 

 x = 2

 x

= 0 für  i = 1,...,  n

(11.23)

 i

 j σ i j − λ1

 j=1

 n



 L

! 

λ = 1 −

 xi = 0

(11.24)

1

 i=1

Die Lösung dieses Gleichungssystem liefert die varianzminimale Portfoliozusam-

mensetzung. Das Portfolio besteht aus  n  Finanztiteln, so dass es sich um  n + 1

Gleichungen handelt. Mit der Matrizenrechnung ist die Lösung des Gleichungssys-

tems wesentlich übersichtlicher und einfacher. In Matrixform geschrieben sieht die

Lagrange-Funktion (11.22) wie folgt aus:









 L x,λ1 = x Cx

   + λ1 1 − 1 x

σ2 p

mit

⎡

⎤

σ11 ... σ1 n

C = ⎢

⎣ .. . 

. ⎥

. 

. . .. ⎦ Varianz-Kovarianz-Matrix

σ n 1 ... σ nn

⎡ ⎤

⎡ ⎤

 x 1

1

x = ⎢

⎢ ⎥

⎣ .. ⎥

. 

. ⎦ und 1 = ⎣ .. ⎦

 xn

1

Die erste Ableitung (11.23) kann dann auch in Matrixform dargestellt werden. 

 Lx = 2Cx − λ1 1 != 0

(11.25)

Die Schreibweise stellt ein Gleichungssystem mit  n-Gleichungen dar. Für gegebenes

λ1 ist das Gleichungssystem (11.25) nach x lösbar, wenn C nicht singulär ist. 

λ

x = 1 C−1 1

(11.26)

2

Die andere notwendige Bedingung kann ebenfalls in Matrixform geschrieben wer-

den. 

 Lλ = 1 − 1x != 0

1

Aus dieser Gleichung entsteht durch Einsetzen der Gleichung (11.26) folgende Ma-

trixgleichung, die zur Bestimmung von λ1 dient. 

2 = λ1 1 C−1 1





300

11 Funktionen und Differentialrechnung mit zwei Variablen

Eine Lösung für λ1 existiert nur, wenn die Varianz-Kovarianz-Matrix invertiertbar

ist. 





λ

−1

1 = 2 1 C−1 1

Einsetzen dieser Lösung in die Gleichung (11.26) bestimmt die varianzminimale

Portfoliozusammensetzung. 





x

−1

min = 1 C−1 1

C−1 1

Es existiert also ein Portfolio in der Zusammensetzung xmin, das ein minimales Risi-

ko in der Höhe







σ

−1

 p

= x

1 C−1 1

min

min Cxmin =

mit einer Portfoliorendite von

⎡ ⎤

μ1

μ

⎢ . ⎥

 p

= m x

. 

min

min

mit: m = ⎣ . ⎦

μ n

besitzt (siehe Punkt (σ p , μ

) in Abb. 11.6). 

min

 p min

Die Überprüfung der hinreichenden Bedingung für ein Minimum ergibt eine ge-

ränderte Hesse-Matrix der Form





0

1 

| ˜H| = 



1 2 C  , 

deren Wert negativ sein muss. | ˜H| ist im vorliegenden Fall eine partionierte Matrix, 

deren Determinante sich aus den Teilmatrizen wie folgt berechnen lässt:







 



| ˜H| = 2C 0 − 1(2C)−1 1 = −2C 1 C−1 1

Aufgrund der Eigenschaften der Varianz und Kovarianz ist die Varianz-Kovarianz-

Matrix positiv semidefinit:|C| ≥ 0. Damit ein Portfolio die varianzreduzierende Ei-

genschaft besitzt, darf keine Korrelation von Eins zwischen den Finanztiteln auftre-

ten. Aus der Bedingung der positiven Determinanten ergibt sich auch, dass die De-

terminante der quadratischen Form |1 C−1 1| positiv ist. Somit wird der Wert der De-

terminanten der geränderten Hesse-Matrix durch das negative Vorzeichen bestimmt. 

Die zweite Ableitung der Lagrange-Funktion ist mithin positiv und es liegt an der

Stelle xmin ein Minimum vor. 

11.5.4.2 Berechnung eines risikominimalen Portfolios mit Scilab

 Beispiel 11.18.  Es werden Tagesrenditen von BMW und BASF (relative Änderung

Tageskurse) der Aktien verwendet. Aus den Daten wird ein Erwartungswertvektor

von

#

$

−0.0005014

 BMW

m =

0.0018978

 BASF
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und eine Varianz-Kovarianz-Matrix mit den Werten

#

$

0.0001477 0.0000797

C = 0.0000797 0.0001041

berechnet. Mit den oben hergeleiteten Beziehungen können die varianzminimalen

Portfolioanteile, das minimale Risiko und die erwartete Portfoliorendite bestimmt

werden. Am besten verwendet man für die Berechnungen ein geeignetes Computer-

programm wie Scilab. 

#

$

0.26396

xmin =

σ

0.73604

 p

= 0.009882

μ

= 0.001265

min

 p min

Die varianzminimale Portfoliozusammensetzung besteht also aus rund 26 Prozent

BMW-Aktien und 74 Prozent BASF-Aktien. Die hinreichende Bedingung für ein

Minimum ist leicht zu überprüfen. 





 0

1

1



| ˜H| = 1 2×0.0001477 2×0.0000797 = −0.0001846





1 2 × 0.0000797 2 × 0.0001041

Der Punkt (σ p , μ

) ist in Abb. 11.6 zu sehen. Es handelt sich tatsächlich um das

min

 p min

Portfolio, das das kleinste Risiko besitzt. 

☼

Die obigen Werte sind mit den folgenden Anweisung berechnet. 

// BMW Schlusskurse vom 09.08. bis 16.11.2004

sbmw = [33.60 33.98 33.48 33.17 33.75 33.61 33.61 ... 

33.45 33.25 33.87 34.14 34.19 34.47 34.55 ... 

34.31 33.89 34.25 34.46 34.58 34.76 34.82 ... 

34.96 34.48 34.56 35.30 35.38 34.72 35.21 ... 

35.23 35.11 34.78 34.25 33.60 33.79 33.59 ... 

33.36 33.71 33.10 34.02 34.65 34.81 34.67 ... 

34.82 34.30 34.23 33.53 33.75 33.69 33.85 ... 

33.66 34.00 33.56 33.54 33.35 32.38 32.72 ... 

33.69 33.15 33.73 33.80 33.01 32.40 32.35 ... 

32.57 32.55 32.89 32.76 32.49]; 

// BASF Schlusskurse vom 09.08. bis 16.11.2004

sbasf= [43.66 43.65 43.31 42.65 43.00 43.14 43.47 ... 

43.44 43.55 44.02 43.80 44.35 44.67 45.04 ... 

44.88 44.41 44.74 44.89 45.55 45.63 45.65 ... 

45.57 45.23 45.36 46.00 46.06 46.12 46.15 ... 

46.72 46.63 46.66 46.19 45.73 45.82 45.68 ... 

46.03 47.65 47.45 48.76 48.56 48.63 48.76 ... 

48.90 48.15 48.05 47.30 47.17 46.87 47.28 ... 

47.62 48.60 47.93 48.48 49.16 47.77 47.97 ... 

302

11 Funktionen und Differentialrechnung mit zwei Variablen

0.006

0.005

0.004

(σ Markt,μ Markt)

0.003

μ 0.002

Markowitz Kurve

(σmin,μmin)

0.001

Kapitalmarktlinie

0.000

−0.001

−0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

σ

Abb. 11.6: Markowitz-Kurve

48.75 48.90 49.75 49.80 49.45 49.70 50.10 ... 

49.94 50.28 50.01 49.80 49.58]; 

rbmw

= diff(log(sbmw)); 

rbasf = diff(log(sbasf)); 

m = [mean(rbmw)

mean(rbasf)]; 

C = mvvacov ([rbmw’ rbasf’]); 

[row,col] = size(m); 

I = ones(row,1); 

// Berechnung ohne Renditevorgabe

xmin = inv(I’*inv(C)*I)*inv(C)*I; 

riskmin = sqrt(xmin’*C*xmin); 

//=sqrt(inv(I’*inv(C)*I))

mumin = m’*xmin; 

// Überprüfen der hinreichenden Bedingung

H = [0 I’

I 2*C]; 

det(H)
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11.5.4.3 Markowitz-Kurve

Der Ansatz zur Minimierung der Portfoliovarianz wird nun um eine weitere Ne-

benbedingung erweitert. Das Portfolio muss eine erwartete Portfoliorendite von μ p

erfüllen. 

 n



μ p =

 xi μ i

(11.27)

 i=1

Die Minimierung der Funktion (11.21) muss nun unter den Nebendingungen (11.20)

und (11.27) erfolgen. Für den Anteil des  i-ten Finanztitels im Portfolio ist somit

folgende Lagrange-Funktion zu minimieren. 









 n

 n



 n



 L xi,λ1,λ2 =

 xi xj σ ij + λ1 1 −

 xi

 i=1  j=1

 i=1





(11.28)

 n



+ λ2 μ p −

 xi μ i → min

 i=1

Die ersten Ableitungen der Lagrange-Funktion (11.28) liefern die notwendigen Be-

dingungen für ein Minimum der Varianz:

 n



 L

! 

 x = 2

 x

= 0 für  i = 1,...,  n

(11.29)

 i

 j σ i j − λ1 − λ2 μ i

 j=1

 n



 L

! 

λ = 1 −

 xi = 0

(11.30)

1

 i=1

 n



 L

! 

λ = μ p −

 xi μ i = 0

(11.31)

2

 i=1

Die Lagrange-Funktion (11.28) in Matrixform geschrieben, sieht wie folgt aus:













 L x,λ1,λ2 = x Cx + λ1 1 − 1 x + λ2 μ p − m x

Die ersten Ableitungen stellen ein Gleichungssystem dar, dessen Lösung mittels der

Matrizenrechnung die erste Bedingung für ein Extremum liefert (identisch mit der

Bedingung (11.29)):

 Lx = 2Cx − λ1 1 − λ2 m != 0

(11.32)

Für gegebene λ ist die Gleichung (11.32) nach x lösbar, wenn C nicht singulär ist. 

1





x = C−1 λ

2

1 1 + λ2 m

$

1 ! 

"#

(11.33)

=

λ

C−1 1 C−1 m

1

2

λ2

Die beiden weiteren notwendigen Bedingungen (11.30) und (11.31) können eben-

falls in Vektorform geschrieben werden. 

 Lλ = 1 − 1x != 0

1
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 Lλ2 = μ p − m x != 0

Aus diesen beiden Gleichungen entsteht unter Verwendung der Lösung (11.33) für x

folgende Matrixgleichung, die zur Bestimmung von λ1 und λ2 dient. 

#

$ #

$# $

2

1 C−1 1

m C−1 1

λ1

2μ =

 p

1 C−1 m m C−1 m

λ2

Unter der bekannten Voraussetzung, dass die Varianz-Kovarianz-Matrix invertiertbar

ist, können λ1 und λ2 einfach durch Lösen des Gleichungssystems bestimmt werden. 

# $ #

$

$

λ

−1 #

1

1 C−1 1

m C−1 1

2

λ =

2

1 C−1 m m C−1 m

2μ p

Das Einsetzen dieser Lösung in die Gleichung (11.33) bestimmt die varianzminimale

Portfoliozusammensetzung bei vorgegebener Portfoliorendite. 

! 

"#

$

$

1C−11

mC−11 −1 # 1

xmin(μ p) = C−11 C−1m

(11.34)

1C−1m mC−1m

μ p

Die grafische Darstellung der Anteile in einem (σ p, μ p) Koordinatensystem liefert

dann die Markowitz-Kurve (siehe Abb. 11.6), die auch als  Markowitz efficient fron-

 tier  bezeichnet wird. Sie gibt die risikominimalen Portfoliozusammensetzungen für

eine vorgegebene Portfoliorendite an. Durch die Diversifizierung wird das unsyste-

matische Risiko reduziert. Das unsystematische Risiko ist das Risiko, das zum Bei-

spiel in der Bonität des Emittenten liegt. Im Gegensatz dazu wird das systematische

Risiko nicht reduziert. Es ist das Risiko, das zum Beispiel durch makroökonomische

Änderungen verursacht wird. Ferner wird durch die Gleichung (11.34) deutlich, dass

die Portfoliozusammensetzung eine lineare Funktion der Rendite μ p  ist. 

11.5.4.4 Berechnung der Markowitz-Kurve mit scilab

 Beispiel 11.19.  Für das Beispiel 11.18 wird durch Vorgabe von Portfoliorenditen

zwischen μ BMW = −0.0005014 und μ BASF = 0.001898 die Markowitz-Kurve ge-

zeichnet (siehe Abb. 11.6). Die Portfolios, deren (σ, μ) Kombinationen auf der Kur-

ve liegen (siehe Abb. 11.6), werden als effizient bezeichnet. 

xmin = inv(I’*inv(C)*I)*inv(C)*I; 

riskmin = sqrt(xmin’*C*xmin); 

mumin = m’*xmin; 

// Berechnung mit Renditevorgabe

muvorgabe = m(1):.00001:m(2)+.0032; 

i = 1; 

minrisk = 0; 
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for mu = muvorgabe

l = inv([I’*inv(C)*I m’*inv(C)*I

I’*inv(C)*m m’*inv(C)*m])*[2

2*mu]; 

minx = .5*[inv(C)*I inv(C)*m]*l; 

minrisk(i) = sqrt(minx’*C*minx); 

i=1+i; 

end

plot(minrisk,muvorgabe,’black’); 

plot(riskmin,mumin,’blacko’); 

xstring(riskmin,mumin,’(sigmamin,mumin)’); 

☼

11.5.4.5 Das Captial Asset Pricing Model

Das Portfolio wird nun um eine risikofreie Anlagemöglichkeit mit der erwarteten

Rendite μ rf  ergänzt. Es kann sich nun aus dem risikofreien Anteil  xrf  und risikobe-

hafteten Anteilen x zusammensetzen. 

 n



 xrf +

 xi = 1

 i=1

  

 xp

 xrf +  xp = 1

Dies ist die Erweiterung, um aus der Markowitz-Portfolio-Theorie das Capital Asset

Pricing Model (CAPM) abzuleiten. 

Die erwartete Rendite des neuen Portfolios beträgt

 n



μ =  xrf μ rf +  xp

 xi μ i

 i=1

  

μ

(11.35)

 p

=  xrf μ rf +  xp μ p

= (1 −  xp)μ rf +  xp μ p

Die Varianz des neuen Portfolios beträgt



 n



σ2 = Var  xp

 xiri

 i=1





 n



=  x 2 p  Var

 xi ri

 i=1







σ2 p

=  x 2 p σ2 p, 
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da eine risikofreie Anlage per se eine Varianz von Null besitzt (σ2 rf = 0). Das Risiko

des so zusammengesetzten Portfolios beträgt somit

σ =  xp σ p

(11.36)

Wird die Gleichung (11.36) in die Gleichung (11.35) eingesetzt, so erhält man

μ = μ rf +  xp (μ p − μ rf )

μ

(11.37)

= μ

 p − μ rf

 rf +

σ

σ p

Die durch die Gleichung (11.37) beschriebene Gerade ist die so genannte Kapital-

marktgerade ( capital market line) mit Achsenabschnitt μ rf  und Steigung μ p−μ rf

σ p

(siehe Abb. 11.6). Der Tagentialpunkt dieser Linie an der Markowitz-Kurve liefert

das Marktportfolio. Die Portfolios, die auf der Kapitalmarktgeraden liegen, sind die

Portfolios, die für ein gegebenes Risiko σ die höchste Rendite liefern. Im Tangenti-

alpunkt liegt das Marktportfolio, das keine risikofreie Anlage enthält. Die Portfolios, 

die rechts oberhalb des Tangentialpunktes (Marktportfolio) auf der Kapitalmarktlinie

liegen, können nur durch eine Kreditaufnahme (Verkaufsposition) der risikofreien

Anlage ( short position) erreicht werden. 

Die gestrichelte Kapitalmarktlinie in Abb. 11.6 ist eine ineffiziente Kapitalmarkt-

linie. Zu jedem vorgegebenen Risiko findet sich eine Portfoliozusammensetzung, die

mit einer höheren erwarteten Rendite verbunden ist. In diesen Portfolios wird das un-

systematische Risiko durch eine bessere Diversifikation stärker reduziert. 

Im Folgenden wird die Steigung der Kapitalmarktlinie, die mit dem Tangential-

punkt verbunden ist, analytisch abgeleitet. Dazu muss die Steigung in der Funktion

(11.37) unter der Budgetrestriktion maximiert werden (vgl. [8]). Die Steigung der

Funktion (11.37) ist

μ p − μ rf

mx − μ

=

 rf

√

σ p

xCx

Die zu maximierende Lagrange-Funktion, die die markteffiziente Zusammensetzung

des Portfolios liefert, ist somit

m x

 L(x

 Markt − μ rf

 Markt, λ1) = 

+ λ

x

Cx

1 (1 − 1 x Markt) → max

(11.38)

 Markt

 Markt

Die erste Ableitung der Lagrange-Funktion (11.38) liefert folgendes Ergebnis:

mx

 L

 MarktCx Markt − (m x Markt − μ rf ) Cx Markt

x =

− λ1 1 != 0

(x

Cx

 Markt

 Markt) 32

Die obige Gleichung ist unter Berücksichtigung der Nebenbedingung nach x Markt

aufzulösen. 

λ1 1(x MarktCx Markt)32 = mx

− (mx

− μ







 MarktCx Markt







 Markt

  

 rf ) Cx Markt

=σ3

=μ Markt

(11.39)

 Markt

=σ2 Markt

λ1 1σ3 Markt = σ2 Markt m − (μ Markt − μ rf )Cx Markt
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Diese Gleichung wird mit x Markt  erweitert, um die Nebenbedingung 1x Markt  zu be-

rücksichtigen. 

λ1 x Markt 1σ3 Markt = x Markt mσ2 Markt − (μ Markt − μ rf )x Markt Cx Markt λ1σ3 Markt = μ Markt σ2 Markt − (μ Markt − μ rf )σ2 Markt

μ

λ

 rf

1 = σ Markt

Das Ergebnis für λ1 wird in die Gleichung (11.39) eingesetzt. 

μ rf σ2 Markt 1 = σ2 Markt m − (μ Markt − μ rf )Cx Markt

Die Gleichung wird mit C−1 erweitert. 

μ rf σ2 Markt C−11 = σ2 Markt C−1 m − (μ Markt − μ rf )x Markt

μ Markt − μ rf x

σ2

 Markt = C−1 (m − μ rf 1)

(11.40)

 Markt

Diese Gleichung wird nun mit 1 erweitert, um den Bruch auf der linken Seite von

(11.40) ersetzen zu können. 

μ Markt − μ rf 1x

= 1 C−1 (m − μ

σ2

 Markt

  

 rf 1)

 Markt

=1

Dieses Ergebnis ersetzt den Bruch in Gleichung (11.40) und liefert endlich die Lö-

sung für x Markt. 

1 C−1 (m − μ rf 1)x Markt = C−1 (m − μ rf 1)

C−1 (m − μ

x

 rf 1)

 Markt =

(11.41)

1 C−1 (m − μ rf 1)

Im Tangentialpunkt werden die risikobehafteten Finanztitel in den Anteilen x Markt

gehalten (siehe Abb. 11.6). Es sind im Portfolio keine risikofreien Finanztitel ent-

halten. Das Ergebnis der Markowitzschen Theorie ist, dass ein Investor jeden Punkt

auf der Kapitalmarktgeraden, also maximale Rendite zu einem vorgegebenen Risiko, 

durch einen Anteil am Marktportfolio und einen Anteil risikofreier Finanztitel errei-

chen kann. Die höchste Rendite (ohne Verkaufsposition) besitzt das Marktportfolio

im Tangentialpunkt. Zu dieser Rendite muss er das Marktrisiko tragen. 

11.5.4.6 Berechnung des CAPM mit Scilab

 Beispiel 11.20.  Für die Rendite einer risikofreien Anlage wird die Umlaufrendite

festverzinslicher Wertpapiere mit einer Restlaufzeit von 10 Jahren verwendet. Das

Beispiel 11.19 und die Berechnungen werden erweitert, um die obigen Ergebnisse

mit empirischen Daten nachzuvollziehen. Das Ergebnis der Berechnung ist in Abb. 

11.6 zu sehen. 
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Entlang der Kapitalmarktlinie können zu einem gegebenen Risiko die entspre-

chenden Renditen mit einer Portfoliostruktur aus risikofreien und risikobehafteten

Finanztiteln zusammengestellt werden. Das Marktportfolio besitzt die Rendite

μ Markt = 0.0036603

mit dem Risiko

σ Markt = 0.0137735. 

Seine Zusammensetzung besteht aus

! 

" 

x Markt = −0.7346106 1.7346106

Es müssen also −73.46 Prozent BMW-Aktien und +173.46 Prozent BASF-

Aktien gehalten werden. Wie ist der negative Anteil zu interpretieren? Der negati-

ve Anteil an BMW-Aktien bedeutet, dass Leerverkäufe getätigt werden. Als Leer-

verkäufe bezeichnet man Verkäufe, die aus geliehenen Aktien getätigt werden. Die

erwartete Rendite der BMW-Aktie lag im betrachteten Zeitraum bei −0.0005014. 

Aufgrund der negativen Rendite werden die BMW-Aktien verkauft und zusätzlich in

Form von Leerverkäufen weitere 73.46 Prozent BASF-Aktien erworben. Das Port-

folio ist dann mit 73.46 Prozent fremdfinanziert. 

sumlauf = [3.78 3.78 3.81 3.76 3.76 3.79 3.76 ... 

3.79 3.76 3.80 3.82 3.81 3.79 3.76 ... 

3.78 3.77 3.74 3.76 3.81 3.88 3.86 ... 

3.88 3.82 3.81 3.82 3.79 3.78 3.82 ... 

3.75 3.76 3.77 3.74 3.70 3.70 3.70 ... 

3.69 3.71 3.73 3.73 3.75 3.75 3.72 ... 

3.74 3.71 3.67 3.64 3.65 3.62 3.60 ... 

3.61 3.61 3.59 3.57 3.59 3.55 3.54 ... 

3.60 3.60 3.59 3.61 3.63 3.58 3.57 ... 

3.62 3.61 3.51 3.49 3.47]; 

murf = mean(diff(log(sumlauf))); 

riskvorgabe = linspace(0,max(minrisk),... 

length(muvorgabe)); 

portnr = 115; // Punkt in der Markowitz-Kurve

mucapm = murf+(muvorgabe(portnr)-murf)/... 

minrisk(portnr)*riskvorgabe’; 

plot(riskvorgabe,mucapm,’black--’); 

xmarkt = (inv(C)*(m-murf*I))/(I’*inv(C)*(m-murf*I)); 

mumarktl = murf+(m’*xmarkt-murf)/... 

(sqrt(xmarkt’*C*xmarkt))*riskvorgabe; 

plot(riskvorgabe,mumarktl,’black’); 
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riskmarkt = sqrt(xmarkt’*C*xmarkt); 

mumarkt = m’*xmarkt; 

plot(riskmarkt,mumarkt,’blacko’); 

xtitle(’’,’sigma’,’mu’); 

xstring(sqrt(xmarkt’*C*xmarkt),m’*xmarkt,’... 

(sigmamarkt,mumarkt)’); 

plot(riskmarkt,m’*xmin,’blacko’); 

xind = xmarkt*.4; 

muind = m’*xind+(1-sum(xind))*murf; 

riskind = sqrt(xind’*C*xind); 

xstring(riskind-.0035,muind,’Kapitalmarktlinie’); 

plot([riskmarkt riskmarkt],[-.002 mumarkt],’black’); 

☼

11.5.4.7 Wertpapiergerade

Die Wertpapiergerade ( security market line) ist der Erklärungsansatz, die Rendite

des  i-ten Wertpapiers durch die Rendite des Marktportfolios und die des risikofreien

Wertpapiers zu erklären. Dazu wird die Beziehung (11.37) umgeändert in





μ

μ

 i − μ rf

 i − μ rf = μ Markt − μ rf β i

⇒ β i = μ Markt −μ rf

Der Parameter β i  wird als empirisches Beta bezeichnet, der im Portfoliomanage-

ment eine große Bedeutung besitzt. In dieser Modellgleichung ist β i  eine Variable. 

Die Risikoprämie des Portfolios μ Markt − μ rf  gibt die Steigung der Geraden an. Das

Beta misst hier das relative Risiko des  i-ten Wertpapiers im Marktportofolio. Da die

Varianz des Marktportofolios das systematisches Risiko reflektiert (der Theorie nach

enthält das Marktportofolio in einem effizienten Markt kein unsystematisches Risi-

ko), ist das relative Risiko des Wertpapiers ein Maß für das systematische Risiko

des Wertpapiers. Ist Beta Eins, so entspricht die erwartete Rendite des  i-ten Wertpa-

piers der des Marktportfolios. Liegt der Wert von Beta über Eins, so ist die erwartete

Rendite höher als diejenige des Marktportfolios. Solche Wertpapiere besitzen aber

gemäß der Portfolio-Theorie ein höheres systematisches Risiko als das Marktport-

folio. Im Rahmen des Regressionsmodells wird Beta auch als Steigung interpretiert. 

Aus dieser Doppelinterpretation ergeben sich zwei grafische Darstellungen (siehe

Beispiel 11.21). 

In den nächsten Schritten sind μ Markt − μ rf  und μ i − μ rf  mit den Ergebnissen des

CAPM zu ersetzen, um zu sehen, wie das Beta durch die Risiken der Wertpapiere

bestimmt wird. Dazu wird die Gleichung (11.41) nach m aufgelöst und die folgende

Gleichung eingesetzt:

μ Markt = m x Markt

(11.42)
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Für die Auflösung der Gleichung (11.41) nach m wird der Nenner (ein Skalar) der

Gleichung während der Umformung mit δ abgekürzt, da er später entfällt (vgl. [8]). 





1

x Markt = δ C−1 m − μ rf 1

mit δ = 1C−1(m−μ rf 1)

= δ C−1 m − δ μ rf C−11

δ C−1 m = x Markt + δ μ rf C−1 1

1

m = Cx

δ

 Markt + μ rf 1

(11.43)

Die Gleichung für m wird nun in die Gleichung (11.42) eingesetzt. 





1



μ Markt = Cx Markt + μ

x

δ

 rf 1

 Markt

1

= x

μ

δ  Markt Cx Markt + 1 x Markt

    rf

=1

1

μ Markt − μ rf = x

δ  Markt Cx Markt

(11.44)

Für

⎡ ⎤

0

⎢

⎢..⎥

⎢.⎥

⎢ ⎥

⎢0⎥

⎥

μ

⎢ ⎥

 i = m e i

mit: e i = ⎢1 ←  i-te Position

⎢ ⎥

⎢0⎥

⎢ ⎥

⎣..⎥

. ⎦

0

wird m ebenfalls durch die Beziehung (11.43) ersetzt. 





1

μ i =

x

e

δ  Markt C + μ rf 1

 i

1

= x

δ  Markt Ce i + μ rf 1e i



=1

1

μ i − μ rf = x

δ  Markt Ce i

(11.45)

Das Verhältnis von (11.45) zu (11.44) liefert das gesuchte Ergebnis. 

μ

β

 i − μ rf

 i = μ Markt − μ rf

x

=

 Markt Ce i

x Markt Cx Markt
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Der Zähler in der Gleichung entspricht der Kovarianz Cov( rMarkt,  ri), der Nenner der

Varianz des Marktportfolios σ2 Markt. 

ˆ

Cov( r

β

 Markt,  ri)

 i =

σ2 Markt

Beta ist gleichzeitig der Parameter (Kleinst-Quadrate-Schätzer) der linearen Regres-

sionsgleichung





 ri −  rrf = α i +  rMarkt −  rrf β i + ε

(11.46)

Das Regressionsmodell (11.46) unterstellt bei Gültigkeit des CAPM α i = 0. 

11.5.4.8 Berechnung der Wertpapiergeraden mit Scilab

 Beispiel 11.21.  Im vorliegenden Beispiel wird nun im Rahmen des CAPM weiter ge-

rechnet. Dies bedeutet, dass der mit x Markt  gewichtete Durchschnitt der Marktrendite

eingesetzt wird. Das Marktportfolio besteht nur aus BMW- und BASF-Aktien in der

berechneten Zusammensetzung. Abbildung 11.7 zeigt das Ergebnis. In den beiden

oberen Grafiken sind die Regressionen der Aktienrenditen auf die (aus dem CAPM

berechnete) Marktrendite μ Markt  zu sehen. 
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Abb. 11.7: Wertpapiergerade mit −73 Prozent BMW- und +173 Prozent BASF-

Aktien als Marktportfolio
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// SML security market line

rmarkt = xmarkt’*[rbmw; rbasf]; 

betabmw = covar(rmarkt,rbmw,eye(67,67))... 

/(variance(rmarkt)*66/67); 

//betabmw = (mean(rbmw)-murf)/(mean(rmarkt)-murf); 

betanullbmw = mean(rbmw)-mean(rmarkt)*betabmw; 

subplot(2,2,1)

plot(rmarkt,rbmw,’blacko’); 

xtitle(’BMW’,’rmarkt’,’rbmw’); 

smlbmw = betanullbmw+rmarkt*betabmw; 

plot(rmarkt,smlbmw,’black’); 

betabasf = covar(rmarkt,rbasf,eye(67,67))... 

/(variance(rmarkt)*66/67); 

betanullbasf = mean(rbasf)-mean(rmarkt)*betabasf; 

subplot(2,2,2)

plot(rmarkt,rbasf,’blacko’); 

xtitle(’BASF’,’rmarkt’,’rbasf’); 

smlbasf = betanullbasf+rmarkt*betabasf; 

plot(rmarkt,smlbasf,’black’); 

subplot(2,1,2)

plot(betabmw,mean(rbmw),’blacko’); 

xstring(betabmw,mean(rbmw),’BMW’); 

plot(betabasf,mean(rbasf),’blacko’); 

xstring(betabasf,mean(rbasf),’BASF’); 

plot(1,mean(rmarkt),’blacko’); 

xstring(1,mean(rmarkt),’Markt’); 

sml11 = (1.15-1)/(1-betabmw)*(mean(rmarkt)... 

-mean(rbmw))+mean(rmarkt); 

plot([betabmw 1.15],[mean(rbmw) sml11],’black--’); 

xtitle(’’,’betas’,’mus’); 

plot([1 1],[-.001 mean(rmarkt)],’black-.’); 

plot([0 1],[mean(rmarkt) mean(rmarkt)],’black-.’); 

xstring(.3,mean(rmarkt),’mumarkt’); 

a=gca(); 

a.data_bounds=[0 -.001;1.2 .005]; 

ˆβ BMW = 0.1571

ˆβ BASF = 0.6430

Das Beta wird hier als Steigung der Regressionsgeraden interpretiert. Dies ist die ei-

ne Form der Wertpapiergeraden. In der unteren Grafik werden die Betas als Variablen
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abgetragen. Man sieht, dass die Betas in einem linearen Zusammenhang stehen. Dies

ist die andere Form der Wertpapiergeraden. Die lineare Beziehung zwischen den Be-

tas kommt aufgrund der Verwendung der CAPM Ergebnisse von oben zustande. ☼

 Beispiel 11.22.  Nun wird für die Marktrendite die Rendite des DAX im betrachteten

Zeitraum eingesetzt. Das Ergebnis dieser Berechnung sieht man in Abb. 11.8. Die

oberen Grafiken zeigen wieder die Regressionen, diesmal jedoch zwischen Aktien-

renditen und DAX-Renditen. Auffallend ist, dass nun die Regression für die BMW-

Rendite eine deutlich höhere Korrelation aufweist; für die BASF-Rendite fällt sie

hingegen etwas niedriger aus als im Beispiel 11.21. 
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Abb. 11.8: Wertpapiergerade mit DAX als Marktportfolio

// SML security market line

sdax = [3690.33 3720.64 3658.11 3646.99 3699.11 ... 

3705.73 3726.50 3722.99 3712.61 3772.14 ... 

3771.00 3788.88 3832.28 3851.18 3838.85 ... 

3785.21 3817.62 3833.45 3866.99 3887.58 ... 

3889.04 3884.16 3851.22 3886.03 3953.31 ... 

3947.75 3941.75 3963.65 3988.07 3977.68 ... 

3991.02 3942.35 3905.66 3910.30 3874.37 ... 
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3882.27 3920.36 3892.90 3994.96 4033.28 ... 

4048.71 4049.66 4043.36 4015.54 4017.82 ... 

3966.48 3976.03 3940.46 3922.11 3915.17 ... 

3964.13 3912.40 3934.06 3935.14 3854.41 ... 

3862.26 3959.59 3960.25 4012.64 4037.57 ... 

4039.04 4041.38 4063.58 4068.97 4065.33 ... 

4143.35 4134.34 4117.22]; 

rdax = diff(log(sdax)); 

rmarkt = rdax; 

betabmw = covar(rmarkt,rbmw,eye(67,67))... 

/(variance(rmarkt)*66/67); 

//betabmw = (mean(rbmw)-murf)/(mean(rmarkt)-murf); 

betanullbmw = mean(rbmw)-mean(rmarkt)*betabmw; 

subplot(2,2,1)

plot(rmarkt,rbmw,’blacko’); 

xtitle(’BMW’,’rmarkt’,’rbmw’); 

smlbmw = betanullbmw+rmarkt*betabmw; 

plot(rmarkt,smlbmw,’black’); 

betabasf = covar(rmarkt,rbasf,eye(67,67))... 

/(variance(rmarkt)*66/67); 

betanullbasf = mean(rbasf)-mean(rmarkt)*betabasf; 

subplot(2,2,2)

plot(rmarkt,rbasf,’blacko’); 

xtitle(’BASF’,’rmarkt’,’rbasf’); 

smlbasf = betanullbasf+rmarkt*betabasf; 

plot(rmarkt,smlbasf,’black’); 

subplot(2,1,2)

plot(betabmw,mean(rbmw),’blacko’); 

xstring(betabmw,mean(rbmw),’BMW’); 

plot(betabasf,mean(rbasf),’blacko’); 

xstring(betabasf,mean(rbasf),’BASF’); 

plot(1,mean(rmarkt),’blacko’); 

xstring(1,mean(rmarkt),’Markt’); 

plot(1,mean(rdax),’blacko’); 

x = linspace(.15,1.15,length(rdax)); 

y = murf + (mean(rdax)-murf)*x; 

plot(x,y,’black--’); 

xtitle(’’,’betas’,’mus’); 

plot([1 1],[-.001 mean(rmarkt)],’black-.’); 

plot([0 1],[mean(rmarkt) mean(rmarkt)],’black-.’); 
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xstring(.3,mean(rmarkt),’mumarkt’); 

a=gca(); 

a.data_bounds=[0 -.001;1.2 .005]; 

Die empirischen Betas sind dann

ˆβ BMW = 1.1225

ˆβ BASF = 0.8442

Diese Werte liegen, wie man in der unteren Grafik sieht, nicht auf der Wertpapier-

geraden. Das Ergebnis widerspricht der CAPM-Theorie. Interessant ist vor allem, 

dass hier die Annahme verletzt wird, dass ein höheres Beta (Risiko) auch mit einer

höheren Rendite verbunden sein sollte. 

☼

Übung 11.5. Ein Unternehmen hat zwei unabhängige Verkaufsfilialen, deren Ge-

winne  G 1( x) und  G 2( y) von den eingesetzten Kapitalmengen  x  und  y  in folgender

Weise abhängen:

 G 1( x) = ln(1 +  x) für  x > 1

 y

 G 2( y) =

für  y > 0

1 +  y

Bestimmen Sie den maximal möglichen Gewinn  G 1( x)+  G 2( y) des Unternehmens

unter der Nebenbedingung, dass insgesamt eine Kapitalmenge von

 x +  y = 10 e

zur Verfügung steht. 

Übung 11.6. Ein Unternehmen hat sich auf zwei Produkte spezialisiert, die sie in

den Mengen  x 1 und  x 2 herstellen. Es ist in der Lage, beide Produkte nach folgender

Kostenfunktion herzustellen:





 K( x 1,  x 2) = 30 x 1 + 90 x 2 − 0.1  x 21 +  x 1  x 2 +  x 22 + 12000

für  x 1,  x 2 > 0

Die Nachfragefunktionen für die beiden Produkte sind wie folgt:

 p 1( x 1) = 180 −  x 1

 p 2( x 1,  x 2) = 360 −  x 2 + 0.5 x 1

1. Berechnen Sie die gewinnmaximalen Mengen und Preise für die beiden Pro-

dukte und den Gesamtgewinn des Unternehmens. 

2. Die Marketingabteilung geht davon aus, dass der Markt von den beiden Pro-

dukten insgesamt exakt 290 [ME] aufnehmen kann. In welchen Mengen sind

die beiden Produkte herzustellen, damit das Unternehmen einen maximalen

Gesamtgewinn erzielt? 
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Übung 11.7. Es gibt einen Studenten mit unstillbarem Appetit nach Schokolade. 

Es wird angenommen, dass der Nutzen, der ihm aus dem Verzehr der Schokolade

entsteht, durch eine Cobb-Douglas-Funktion beschrieben werden kann. 

 U( x 1,  x 2) =  x 0.5

1  x 0.5

2

für  x 1,  x 2 > 0

Die Variablen  x 1 und  x 2 geben die Zahl der Schokoladenstücke weißer und schwar-

zer Schokolade an. Es wird unterstellt, dass die weiße Schokolade 0.04 e und die

schwarze 0.02 e pro Stück kosten. Der Student hat sich eine Obergrenze von 12 e

für seine Schokoladenleidenschaft pro Semester gesetzt. Berechnen Sie den maxi-

malen Nutzen. Interpretieren Sie den berechneten Lagrange-Multiplikator. 

11.6 Fazit

Funktionen können zur Beschreibung komplizierter ökonomischer Zusammenhän-

ge verwendet werden. Sie enthalten dann mehr als nur eine Variable. Allerdings ist

auch ihre Analyse aufwändiger. Besonders interessant für ökonomische Fragen ist

der Lagrange-Ansatz. Mit ihm lässt sich unter bestimmten Annahmen eine Minimal-

kostenkombination und ein risikominimales Portfolio bestimmen. 
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12.1 Vorbemerkung

In den vorausgegangenen Kapiteln wurde die Differentialrechnung und ihre Anwen-

dung in der Ökonomie dargestellt. Der Ausdruck d  f( x) , der die Differentiation vor-

d x

schreibt, wird als Differentialoperator bezeichnet. Der Differentialoperator liefert die
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erste Ableitung einer differenzierbaren Funktion. Eine naheliegende Frage ist: Gibt

es eine Umkehrfunktion, die die Wirkung des Differentialoperators wieder aufhebt, 

d. h. aus der Ableitung die ursprüngliche Funktion erzeugt? 

Eine derartige Umkehroperation wurde gleichzeitig mit der Differentialrechnung

9

entwickelt. Sie wird als Integration bezeichnet. Als Operator hat man das ... d x

eingeführt, das vom stilisierten S für Summe abgeleitet ist. Es wird nie ohne Variable

geschrieben, nach der integriert wird. Um anzudeuten, dass analog zur Differentia-

tion d  f( x) ein Grenzübergang auf infinitesimale Größen d x  vollzogen wird, schreibt

d x

9

man die Integrationsvorschrift

 f ( x)d x. 

Die Integration wird in der Ökonomie angewendet, wenn man vom Grenzverhal-

ten einer ökonomischen Größe auf die Funktion selbst schließen möchte. Beispiels-

weise lässt sich vom zeitabhängigen Änderungsverhalten des Umsatzes eines Pro-

dukts durch Integration auf den Umsatz eines Zeitraums, zum Beispiel eines Jahres

schließen, oder man kann zu einer bekannten Grenzkostenfunktion die Gesamtko-

stenfunktion mit Hilfe der Integration bestimmen. Diese Anwendungen ergeben sich

unmittelbar aus der Definition der Integration als Umkehroperation zur Differentiati-

on. Ein anderes sehr wichtiges Anwendungsgebiet liegt in der Statistik, hier speziell, 

um den Zusammenhang zwischen der Dichtefunktion und der Verteilungsfunktion

einer stetigen Zufallsvariablen herzustellen. 

9 d x  unbestimmtes Integral

9  b  d x  bestimmtes Integral

 a

 F( x)

Stammfunktion

 c

Integrationskonstante

12.2 Das unbestimmte Integral

Die erste Ableitung der Funktion ist  y =  f ( x). Es wird angenommen, dass eine Funk-

tion  F( x) existiert, die differenziert  f ( x) ergibt. Das heißt, es soll gelten:

d  F( x) =  f( x)

(12.1)

d x

Zunächst fällt auf, dass die gesuchte Funktion nicht eindeutig ist, denn man kann zu

 F( x) jede beliebige Konstante  c  addieren, die dann beim Differenzieren entfällt. Gilt

also die Gleichung (12.1), so gilt auch:

d 



 F( x) +  c =  f ( x) für  c =  konst

d x

Die gesuchte Funktion ist daher unbestimmt, weil die Konstante (Integrationskon-

stante)  c  frei wählbar ist. 

Die Funktion

 F( x) +  c

heißt das unbestimmte Integral der stetigen Funktion  f ( x), falls  F( x) =  f ( x) gilt. 

Man schreibt:
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:

 f ( x)d x =  F( x) +  c

Die Funktion  f ( x) heißt Integrand, und die Funktion  F( x) wird als Stammfunktion

des Integranden bezeichnet. 

Die Berechnung der Stammfunktion aus einer gegebenen Funktion ist der Vor-

gang des Integrierens. Am Beispiel elementarer Funktionen, deren Ableitungen man

kennt, kann man das Integral auf der Basis der Definition ohne Schwierigkeit be-

stimmen, indem man die folgende Frage beantwortet:

Welche Stammfunktion  F( x) ergibt differenziert den vorgegebenen Integranden

 f ( x)? 

 Beispiel 12.1. 

:

1

d

 f ( x) =  x 3⇒  F( x) =

 x 3 d x =  x 4 +  c⇒

 F( x) =  x 3

4

d x

Das Ergebnis der Integration ist in diesem Fall immer das unbestimmte Integral. ☼

Der Differentialquotient einer Funktion kann sehr anschaulich als Steigung der

betreffenden Funktion interpretiert werden. Leider gibt es für das unbestimmte In-

tegral keine ähnlich anschaulich geometrische Deutung. Der Vorgang des Integrie-

rens kann «nur» als Umkehroperation zum Differenzieren interpretiert werden. Das

erschwert das Integrieren insofern, als es nicht schematisch wie zum Beispiel das

Differenzieren abläuft. Die Technik des Integrierens erfordert daher Phantasie und

gute Kenntnisse der elementaren Funktionen und ihrer Ableitungen. 

12.2.1 Integrale für elementare Funktionen

Im Folgenden sind einige Integrale für elementare Funktionen angegeben. Den Be-

weis für die Richtigkeit der Integrale kann man leicht durch Differenzieren der

Stammfunktion führen. 

:

1

 xn  d x =

 xn+1 +  c

 n + 1

: 1 d x=ln| x|+ c

 x

:

e x  d x = e x +  c

:

sin  x d x = −cos x +  c

:

cos x d x = sin x +  c

In Mathematiklehrbüchern und Nachschlagewerken (zum Beispiel [1]) sind wei-

tere Integrale tabelliert, die man im Einzelfall dort nachschlagen kann. 
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12.2.2 Integrationsregeln

Es werden nun verschiedene Regeln diskutiert, mit deren Hilfe man ein gegebenes

Integral auf Integrale elementarer Funktionen zurückführen kann. Dies ist die eigent-

liche Kunst des Integrierens. Es kommt darauf an, die Funktion möglichst geschickt

umzuformen, damit letztlich nur noch bekannte und einfache Integrale zu lösen sind. 

Freilich ist dies keineswegs immer möglich. Es gibt zahlreiche Funktionen, deren

Integrale nicht mehr durch elementare Funktionen darstellbar sind, und es gibt Funk-

tionen, deren unbestimmte Integrale überhaupt nicht in geschlossener Form, d. h. als

Formel, existieren. Dies tritt zum Beispiel schon bei so scheinbar einfachen Funktio-

nen wie

 f ( x) = e− x 2 für  x ∈ R

1

 f ( x) =

für  x > 0

ln x

 x

 f ( x) =

für  x ∈ R

sin  x

auf, die nur näherungsweise integrierbar sind. 

12.2.2.1 Konstant-Faktor-Regel

Ein konstanter Faktor kann vor das Integral gezogen werden:

:

:

 a f ( x)d x =  a

 f ( x)d x

 Beispiel 12.2. 

:

:

2 d x = 2

d x = 2 x +  c

:

:

4  x 3 d x = 4

 x 3 d x =  x 4 +  c

☼

12.2.2.2 Summenregel

Das Integral einer Summe von Funktionen ist gleich der Summe der Einzelintegrale:

: 



:

:

 f ( x) +  g( x) d x =

 f ( x)d x +

 g( x)d x

Bei einer Summe von Integralen werden die Integrationskonstanten meist zu einer

Konstanten zusammengefasst. Konstante Faktoren und Summen bzw. Differenzen

von Funktionen werden also wie beim Differenzieren ganz schematisch berücksich-

tigt. 
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 Beispiel 12.3. 

: 



:

:

:

4

1

2  x 2 − 1 +

d x = 2

 x 2 d x −

d x + 4

d x

 x

 x

2

=  x 3 −  x + 4 ln| x| +  c

3

☼

12.2.2.3 Partielle Integration

Auch für die Produktregel der Differentiation bzw. für die Kettenregel existieren

äquivalente Regeln der Integration, die jedoch eher Umformungen als Rechenvor-

schriften darstellen. Man bezeichnet sie als partielle Integration bzw. als Integration

durch Substitution. Trotz des gleichlautenden Adjektivs hat die partielle Integration

nichts mit der partiellen Differentiation zu tun. 

Partielle Integration kann angewendet werden, wenn ein Produkt zweier Funktio-

nen zu integrieren ist. Die anschließenden Überlegungen zeigen, warum man dabei

nicht vom Produkt  f ( x) g( x) ausgeht, sondern die Form  f ( x) g( x) wählt. Die Pro-

duktregel der Differentiation lautet

d 



d  f ( x)

d g( x)

 f ( x) g( x) =

 g( x) +  f ( x)

d x

d x

d x

Durch Umstellen erhält man





d  f ( x) g( x)

 f ( x) g( x) =

−  f ( x) g( x)

d x

Integriert man beide Seiten der Gleichung, so erhält man

:

: 



:

d  f ( x) g( x)

 f ( x) g( x)d x =

d x −

 f ( x) g( x)d x

d x

Bei dem mittleren Integral besteht der Integrand gerade aus einem Differentialquoti-

enten. Hier hebt sich also die Integration und die Differentiation auf. 

: 



d  f ( x) g( x) d x =  f( x) g( x)+ c

(12.2)

d x

Man erhält

:

:

 f ( x) g( x)d x =  f ( x) g( x) −

 f ( x) g( x)d x +  c

Diese Vorgehensweise sieht auf den ersten Blick recht kompliziert aus und scheint

sinnlos zu sein, weil das Integral auf der linken Seite ja nur durch ein anderes, ähnlich

strukturiertes Integral rechts ersetzt wird. Das erklärt auch die Bezeichnung «parti-

ell». Tatsächlich ist aber das Integral auf der rechten Seite manchmal einfacher zu

lösen als das Integral auf der linken Seite. 
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Die partielle Integration setzt voraus, dass ein Produkt der Form

 f ( x) g( x)

zu integrieren ist. Welcher Faktor aber als  f ( x) und welcher als  g( x) gewählt wird, 

ist nicht festgelegt. Als Faustregel könnte man vielleicht sagen: Wähle die Funktion

als  g( x), die leichter zu integrieren ist. Aber es gibt Ausnahmen von dieser Regel. 

Manchmal gibt es keinerlei Hinweis für eine bestimmte Wahl. Dann sollte man es

mit einer Variante versuchen und sich für die Alternative entscheiden, wenn man

nicht weiterkommt. Eine Quotientenregel der Integration gibt es nicht. 

Im Folgenden wird die partielle Integration durch einige Beispiele erläutert. 

 Beispiel 12.4.  Es soll die Funktion

 f ( x) = 4 x 3 ln x  für  x > 0

integriert werden. Da es sich um zwei multiplikativ verknüpfte elementare Funktio-

nen handelt, wählt man folgenden partiellen Integrationsansatz:

1

 g( x) = ln x

⇒  g( x) =  x

 h( x) = 4 x 3

⇒  h( x) =  x 4 +  c 1

(12.3)

Die partielle Integration ergibt

:

:

 F( x) =

4  x 3 ln  x d x =  x 4 ln x +  c 1 −

 x 4 1 d x

4

:

=  x 4 ln x +  c 1 −  x 3 d x

(12.4)

 x 4

=  x 4 ln x +  c 1 −

+  c

4

2

 x 4

=  x 4 ln x −

+  c

4

Die Integrationskonstante aus (12.3) wird im Allgemeinen mit der in (12.4) zu einer

Integrationskonstanten zusammengefasst und nicht extra ausgewiesen. 

☼

 Beispiel 12.5.  Es soll die Funktion

 f ( x) =  x 2 e x  für  x ∈ R

integriert werden. Man wählt den Ansatz

 g( x) =  x 2

⇒  g( x) = 2 x

 h( x) = e x

⇒  h( x) = e x +  c

Das partielle Integral lautet damit

:

:

 F( x) =

 x 2 e x  d x =  x 2 e x − 2

 x e x  d x

(12.5)

Das Integral (12.5) wird wieder partiell integriert. Man wählt diesmal

 f ( x) =  x

⇒  f ( x) = 1
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 g( x) = e x

⇒

 g( x) = e x +  c

Nun erhält man das partielle Integral

:



:



 F( x) =

 x 2 e x  d x =  x 2 e x − 2  x e x −

e x  d x

=  x 2 e x − 2 x e x + 2e x +  c





= e x x 2 − 2 x + 2 +  c

☼

 Beispiel 12.6.  Es soll die Funktion

 f ( x) = ln x d x  für  x > 0

integriert werden. Man wählt den Ansatz 1 × ln x. 

1

 f ( x) = ln x ⇒  f ( x) =  x

 g( x) = 1

⇒

 g( x) =  x +  c

Es wird also eine multiplikative Verknüpfung mit der Konstanten 1 unterstellt, um

das Integral partiell integrieren zu können. Das partielle Integral ist somit

:

: 1

 F( x) =

ln  x d x =  x  ln x −

 x d x

 x

=  x  ln x −  x +  c

☼

 Beispiel 12.7.  Es soll die Funktion

 f ( x) = sin x  cos x  für  x ∈ R

integriert werden. Man wählt den Ansatz

 f ( x) = sin x

⇒  f ( x) = cos x

 g( x) = cos x ⇒

 g( x) = sin x +  c

Das partielle Integral ist somit

:

 F( x) =

sin  x  cos x d x

:

= (sin x)2 +  c − sin x  cos x d x

:

2

sin  x  cos x d x = (sin x)2 +  c
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:

1

 F( x) =

sin  x  cos x d x = (sin x)2 +  c

2

☼

12.2.2.4 Integration durch Substitution

Zusammengesetzte Funktionen werden mit Hilfe der Kettenregel differenziert. Im

Prinzip wird dabei die innere Funktion substituiert. Man erhält aus





 y =  f g( x)

mit  z =  g( x)

eine von der Struktur her vereinfachte Funktion mit der neuen Variablen  z. Genau das

gleiche Prinzip kann man auch beim Integrieren anwenden. Durch Variablensubsti-

tution wird versucht, eine zusammengesetzte Funktion soweit zu vereinfachen, dass

sie auf bekannte Integrale zurückzuführen ist. 

Die Integration durch Substitution ist wohl die am häufigsten verwendete Metho-

de (wie die Kettenregel). Liegt eine zusammengesetzte Funktion vor, so sollte man

mit einem Substitutionsversuch beginnen. 

Es soll das Integral

:  

 F( x) =

 f g( x)  g( x)d x

gelöst werden, wobei die innere Funktion durch  z =  g( x) substituiert wird. Das Dif-

ferential dieser neuen Variablen lautet dann

d z =  g( x)d x, 

so dass sich unter Umständen ein einfacheres Integral

:

 F( z) =

 f ( z)d z

ergibt. Häufig verwendete Substitutionen sind:

 z =  ax +  b

⇒ d z =  a d x

 z =  ax 2 +  b

⇒ d z = 2 ax d x

√

 a

 z =  ax +  b ⇒ d z = √

d x

2  a x +  b

 z =  cx

⇒ d z =  cx  ln c d x

1

 z = ln x

⇒ d z = d x

 x

 z = sin x

⇒ d z = cos x d x

 Beispiel 12.8.  Es ist das Integral

:



 F( x) =

2  x

 x 2 + 2d x
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zu berechnen. Mit der Substitution

 z =  x 2 + 2 ⇒ d z = 2 x d x

ergibt sich das substituierte Integral wie folgt:

: √

2 3

 F( z) =

 z  d z =  z 2 +  c

3

Das Produkt mit 2  x  entfällt hier aufgrund der Substitution, was die Lösung des In-

tegrals jetzt ermöglicht. Der nächste Schritt ist die Resubstituierung der Variablen

 z. 



2

 F( x) =

( x 2 + 2)3 +  c

3

☼

 Beispiel 12.9.  Es ist das Integral

:

 F( x) =

 x e− x 2 d x

zu berechnen. Die Substitution

 z = − x 2 ⇒ d z = −2 x d x

führt zu dem Integral

:

1

 F( z) = −

e z  d z

2

1

= − e z +  c

2

Mit der Ersetzung von  z = − x 2 erhält man die Lösung des Integrals:

1

 F( x) = − e− x 2 +  c

2

☼

 Beispiel 12.10.  Es ist das Integral

:

1

3

 F( x) =

d x  für  x = −

2  x + 3

2

zu lösen. Die Substitution

 z = 2 x + 3

⇒

d z = 2d x

führt zu dem Integral

:

1

1

1

 F( z) =

d z = ln| z| +  c

2

 z

2
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und zur Lösung

1

 F( x) = ln|2 x + 3| +  c

2

☼

 Beispiel 12.11.  Es ist das Integral

:

 F( x) =

tan  x d x

: sin x

π

=

d x  für  x = +  k π,  k ∈ Z

cos x

2

zu lösen. Erst die Transformation in die alternative Funktion ergibt eine sinnvolle

Substitution

 z = cos x ⇒ d z = −sin x d x

und führt zu dem Integral

: 1

 F( z) = −

d z = −ln| z| +  c

 z

und zur Lösung

 F( x) = −ln|cos x| +  c

☼

 Beispiel 12.12.  Es ist das Integral

: ln x

 F( x) =

d x  für  x > 0

 x

zu lösen. Die Substitution

1

 z = ln x ⇒ d z = d x

 x

führt zu dem Integral

:

1

 F( z) =

 z d z =  z 2 +  c

2

und zur Lösung

1 



 F( x) =

ln  x  2 +  c

2

☼
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 Beispiel 12.13.  Es ist das Integral

:

:

 F( x) =

 ax  d x =

e x  ln a  d x  für  x > 0

zu lösen. Erst die Transformation in die alternative Funktion ergibt eine sinnvolle

Substitution. 

 z =  x  ln a ⇒ d z = ln a d x

Das transformierte Integral

:

1

1

 F( z) =

e z  d z =

e z +  c

ln a

ln  a

führt zur Lösung

1

 F( x) =

 ax +  c

ln a

☼

 Beispiel 12.14.  Es ist das Integral

: sin x  cos x

 F( x) =

d x

1 + sin2  x

zu lösen. Die Substitution

 z = 1 + sin2  x ⇒ d z = 2 sin x  cos x d x

führt zu dem Integral

:

1

1

1

 F( z) =

d z = ln| z| +  c

2

 z

2

und zur Lösung

1





 F( x) = ln 1 + sin2  x +  c

2

☼

12.2.3 Ökonomische Anwendung

Für einen ökonomischen Wachstumsprozess wird häufig angenommen, dass die re-

lative Änderung

 f ( t) = γ mit  f( t) > 0 für alle  t

(12.6)

 f ( t)
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konstant ist. Mit  t  wird hier die Zeit bezeichnet.  f ( t) ist eine zeitabhängige Be-

standsfunktion. Die Ableitung  f ( t) ist dann eine Wachstumsrate. Die Umstellung

der Funktion liefert eine Differentialgleichung. 

 f ( t) = γ  f ( t)

Die Änderungsrate  f ( t) ist proportional abhängig von der Bestandsfunktion  f ( t). 

Die Lösung der Gleichung (12.6) erfolgt durch einen Integrationsansatz mit der Sub-

stitution

d z

 z =  f ( t)

=  f ( t)

d t

Der daraus folgende Ansatz kann leicht integriert werden. 

:

:

:

:

 f ( t)

1

d t =

γ d t ⇒

d z =

γ d t

 f ( t)

 z

ln  f ( t) = γ  t +  c

⇒

 f ( t) =  y 0 eγ t  mit  y 0 =  f (0) = e c

(12.7)

 Beispiel 12.15.  Mit der Funktion (12.7) kann zum Beispiel eine stetige Verzinsung

des Kapitals berechnet werden. Dann ist  y 0 =  K 0, γ =  i (siehe stetige Verzinsung, 

Seite 170). 

 Kt =  K 0 e i× t

☼

Übung 12.1. Berechnen Sie die folgenden unbestimmten Integrale:

:

 x

 F( x) =

√

d x  für  x ≥ 2

 x − 2

: 



ln  x  5

 F( x) =

d x  für  x ≥ 0

 x

:

 F( x) =

 x e− x 2 d x  für  x ∈ R

: √

 F( x) =

 x  ln  x d x  für  x ≥ 0

Übung 12.2. Bestimmen Sie die Stammfunktion zu folgenden Funktionen:

 f ( x) =  ax  für  a ∈ R,  a > 0

 x

 f ( x) =  x  sin

für  x ∈ R

2

√

 f ( x) =  x 2  x  für  x ≥ 0

 x 2

 f ( x) = √

für  x ≥ −5

 x + 5

1

 f ( x) =

für  x ≥ 0

 x  ln  x
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12.3 Das bestimmte Integral

Die Integration war bislang als Umkehroperation zur Differentiation verstanden wor-

den. Neben dieser Definition gibt es eine zweite, diesmal anschaulichere Erklärung

für das Integral. Für eine im Intervall

 a ≤  x ≤  b

stetige Funktion  f ( x) sei der Inhalt der Fläche zwischen der Kurve und der Abszisse

über dem Intervall [ a,  b] zu berechnen. Die Fläche soll mit  Fab  bezeichnet werden

(siehe Abb. 12.1). 

f(x)

0.5

 f ( xi)

0.4

0.3

0.2

 F

0.1

 ab
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dx

b

c

d

0.0
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x

0.0

0.4

0.8
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2.0

2.4

2.8

3.2

Abb. 12.1: Bestimmtes Integral

Die Fläche  Fab  lässt sich näherungsweise berechnen, indem man das Intervall

[ a,  b] in Teilintervalle

[ a,  b] = [ a =  x 1,  x 2] ∪ [ x 2,  x 3] ∪ ... ∪ [ xn−1,  xn =  b]

aufteilt und die Fläche über dem  i-ten Intervall durch ein Rechteck der Höhe  f ( xi)

approximiert, wobei  xi  ein willkürlicher Wert im  i-ten Intervall ist. Die Intervallbreite

wird mit Δ xi =  xi+1 −  xi  bezeichnet. Es gilt:

 n



 Fab 

 f ( xi)Δ xi

 i=1
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Die Näherung wird umso genauer, je kleiner die Rechtecke, also die Teilintervalle

sind. Lässt man die Intervallbreite der Teilintervalle gegen Null und damit die Zahl

 n  der Rechtecke gegen unendlich streben, so wird der Grenzwert der Summe der

Rechtecke gleich der gesuchten Fläche. 

 n



 Fab = lim

 f ( x

 n→∞

 i) Δ  xi

(12.8)

Δ xi→0  i=1

Der Grenzwert der Summe (12.8) wird bestimmtes (Riemannsches) Integral der

Funktion  f ( x) über dem Intervall [ a,  b] genannt. 

 n



:  b

lim

 f ( x

 f ( x)d x

 n→∞

 i) Δ  xi =

Δ x

 a

 i→0  i=1

Die Variable  x  ist die Integrationsvariable und  a  bzw.  b  sind die Integrationsgren-

zen. Diese Definition des Integrals als Grenzwert einer Summe erklärt die Wahl des

stilisierten Buchstabens S als Integrationszeichen. 

Ähnlich wie schon beim Differentialquotienten ist also auch das bestimmte In-

tegral durch einen Grenzwert definiert, den man im konkreten Fall natürlich nicht

jedes Mal ausrechnen möchte. Der so genannte Hauptsatz der Integralrechnung

stellt den Zusammenhang zwischen dem bestimmten und dem unbestimmten Inte-

gral mit Hilfe der Stammfunktion her und zeigt damit einen Weg auf, das bestimmte

Integral mittels der Stammfunktion zu berechnen. Dazu wird die Umkehreigenschaft

der Differentiation und der Integration genutzt. 

12.3.1 Hauptsatz der Integralrechnung

Es wird eine auf dem Intervall [ a,  b] integrierbare Funktion  f ( z) betrachtet. Das In-

tegral

:  x

 Fax( x) =

 f ( z)d z

 a

bedeutet dann den Flächeninhalt unter der Kurve  f ( z) im Intervall [ a,  x]. Die Wahl

der neuen Integrationsvariablen  z  hat allein didaktische Gründe. Am Wert des be-

stimmten Integrals ändert sich dadurch nichts. Der Flächeninhalt ist nun von der hier

als variabel anzusehenden oberen Integrationsgrenze abhängig und daher eine Funk-

tion von  x. Differenziert man die Funktion  Fax( x) nach  x, so bedeutet das formal, ein

Integral nach seiner oberen Grenze zu differenzieren. Dazu besagt der Hauptsatz der

Integralrechnung folgendes:

Ist  f ( x) im Intervall [ a,  b] integrierbar, so gilt:

:

d

 x

 F ax( x) =

 f ( z)d z =  f ( x)

d x a

Folglich ist  Fax( x) das bestimmte Integral und bis auf die Integrationskonstante  c

gleich der Stammfunktion  F( x) der Funktion  f ( x). 
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:  x

 Fax( x) =

 f ( z)d z =  F( x) +  c

 a

Setzt man  x =  a, so muss die Fläche unter der Kurve im Intervall [ a,  a] offenbar

gleich Null sein, so dass gilt:

:  a

 f ( z)d z = 0 =  F( a) +  c

 a

Daraus bestimmt sich die Integrationskonstante  c = − F( a), und man erhält

:  x

 Fax( x) =

 f ( z)d z =  F( x) −  F( a)

 a

Der Wert des bestimmten Integrals ist also gleich dem Wert der Stammfunktion des

Integranden an der oberen Grenze minus dem Wert der Stammfunktion an der unte-

ren Integrationsgrenze. 

:



 b

 b

 f ( x)d x =  F( x) =  F( b)− F( a)

 a

 a

 Beispiel 12.16. 

:



2

1 2

7

 x 2 d x =  x 3 =

1

3

1

3

:



1

1

e x  d x = e x =  e−1

0

0

: π

π

sin  x d x = −cos x = 2

0

0

☼

12.3.2 Eigenschaften bestimmter Integrale

Nachstehend sind einige Eigenschaften bestimmter Integrale zusammengestellt. Alle

Regeln gelten unter der Voraussetzung, dass die genannten Integrale auf den bezeich-

neten Intervallen existieren, die Integranden also dort integrierbar sind. 

12.3.2.1 Vertauschen von Integrationsgrenzen

Vertauscht man die Integrationsgrenzen, so ändert sich das Vorzeichen des Integrals. 

:  b

:  a

 f ( x)d x = −

 f ( x)d x

 a

 b
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12.3.2.2 Zusammenfassen von Integrationsgrenzen

Für jede Lage der Punkte  a <  b <  c  auf der Zahlengeraden gilt:

:  b

:  c

:  c

 f ( x)d x +

 f ( x)d x =

 f ( x)d x

 a

 b

 a

12.3.2.3 Konstant-Faktor-Regel

Für jede Kosntante  c  gilt:

:  b

:  b

 c f ( x)d x =  c

 f ( x)d x

 a

 a

12.3.2.4 Summenregel

Die Summenregel gilt ebenfalls:

:  b 



:  b

:  b

 f ( x) +  g( x) d x =

 f ( x)d x +

 g( x)d x

 a

 a

 a

12.3.2.5 Partielle Integration

Die partielle Integration bleibt uneingeschränkt gültig. 

:



 b

 b :  b

 f ( x) g( x)d x =  f ( x) g( x) −

 f ( x) g( x)d x

 a

 a

 a

Man beachte, dass in das Produkt  f ( x) g( x) ebenfalls die Integrationsgrenzen einge-

setzt und die Differenz gebildet wird. 

12.3.2.6 Integration durch Substitution

Wird zum Zweck der Integration eine Variablensubstitution vorgenommen, so ist

unbedingt darauf zu achten, dass entweder die Integrationsgrenzen mit transformiert

werden oder die Substitution in der Stammfunktion rückgängig gemacht wird, be-

vor die Integrationsgrenzen eingesetzt werden. Die Integrationsgrenzen sind immer

spezielle Werte der Integrationsvariablen! Ändert sich die Integrationsvariable durch

Substitution, so müssen die Grenzen ebenfalls substituiert werden. 

Es ist das Integral

:  b  

 Fab( x) =

 f g( x)  g( x)d x

 a

zu lösen. Die Substitution

 z =  g( x) ⇒ d z =  g( x)d x
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transformiert die Grenzen  x =  a  und  x =  b  auf die Grenzen  z =  g( a) und  z =  g( b):

:  b  

:  g( b)

 Fab( x) =

 f g( x)  g( x)d x =

 f ( z)d z

 a

 g( a)

Es ist meist geschickt, die Grenzen direkt bei der Substitution zu übertragen:

 g( b)

 b

 z =  g( x)

 g( a)

 a

Für Beispiel siehe Kapitel 12.3.3. 

12.3.2.7 Flächenvergleich

Verläuft eine Funktion  f ( x) auf dem Intervall [ a,  b] stets unterhalb der Funktion  g( x), 

so gilt für  f ( x) ≤  g( x) die Aussage

:  b

:  b

 f ( x)d x ≤

 g( x)d x

 a

 a

Eine unmittelbare Folgerung dieser Eigenschaft ist, dass das bestimmte Integral einer

Funktion, die auf dem gesamten Intervall negativ ist, einen negativen Wert hat. Es

ergibt sich die Fläche der Kurve unter der Abzisse mit negativem Vorzeichen. Für

 f ( x) ≤ 0 auf [ a,  b] ist

:  b

 f ( x)d x ≤ 0

 a

Man sollte dies besonders dann beachten, wenn der Integrand im Integrationsinter-

vall eine oder mehrere Nullstellen besitzt (siehe Abb. 12.1). Die entsprechend positi-

ven Flächen (über der Abzisse) und negativen Flächen (unterhalb der Abzisse) heben

sich gegenseitig auf, wenn man über die Nullstellen hinweg integriert. Will man die

Gesamtfläche aus den einzelnen Flächenanteilen bestimmen, so hat man wie folgt

vorzugehen:

 Fad( x) =  Fab( x) −  Fcd( x)

:  b

:  d

=

 f ( x)d x −

 f ( x)d x

 a

 c

12.3.3 Beispiele für bestimmte Integrale

 Beispiel 12.17.  Es ist das Integral

: 2 1

 F 0,2( x) =

d x

0 2  x + 3

zu lösen. Die Substitution
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2 7

2  x + 3 =  z ⇒ d z = 2d x

0

3

führt zu dem Integral

:

1

7 1

1

 F 3,7( z) =

d z = (ln7 − ln3) = 0.4236

2 3  z

2

☼

 Beispiel 12.18.  Es ist das Integral

:  e  ln x

 F 1,  e( x) =

d x

1

 x

zu lösen. Die Substitution

 e 1

1

ln  x =  z ⇒ d z = d x

1

0

 x

führt zu dem Integral

:



1

1 1

 F



0,1( z) =

 z d z =  z 2 = 0.5

0

2

0

☼

12.3.4 Ökonomische Anwendung

 Beispiel 12.19.  Angenommen, man hat die Grenzkostenfunktion

 K( x) = 2 x − 2

im Bereich von  x = 1,...,10 ermitteln können. Wie hoch sind die Gesamtkosten? 

Das Integral

:



10

10

(2 x − 2)d x =  x 2 − 2 x = 81

1

1

liefert das gesuchte Ergebnis. 

☼

 Beispiel 12.20.  Der Preis eines Wertpapiers wird durch den Barwert der Erträge be-

stimmt. Ein Wertpapier mit einer kontinuierlichen Zahlung von  r  e pro Jahr über  n

Jahre besitzt dann den Barwert

:  n

 K

 r 



 K

 C

0

0

0( i,  r,  n) =

 r  e− i× t  d t +

=

1 − e− i× n +

0

(1 +  i) n

 i

(1 +  i) n

Der Barwert eines Wertpapiers mit  r = 6 e,  K 0 = 100 e und einer Laufzeit von  n =

10 Jahren besitzt bei einem Marktzinssatz von  i = 0.05 einen Preis von
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 C 0(0.05,6,10) = 108.61 e

Steigt der Marktzinssatz auf  i = 0.06, so fällt der Barwert auf

 C 0(0.06,6,10) = 100.95 e

Wird die Rechnung für ein Wertpapier mit einer Laufzeit von  n = 5 Jahren wie-

derholt, dann zeigt sich, dass der Barwert bei längeren Laufzeiten stärker auf die

Zinssatzänderung reagiert. 

 C 0(0.05,6,5) = 104.86 e

 C 0(0.06,6,5) = 100.64 e

Im ersten Fall beträgt die Barwertabnahme bei einer Laufzeit von 10 Jahren rund

7 Prozent, im zweiten Fall nur rund 4 Prozent. Ein Wertpapier mit einer längeren

Laufzeit reagiert sensibler (elastischer) auf eine Zinssatzänderung. Diese Sensibili-

tät kann mit der Zinssatzelastizität des Barwerts beschrieben werden (siehe auch

Abschnitt 9.7.7), die auch als Duration bezeichnet wird. 

d C 0

 r n  e− in

 n

 D = d i =

 i

−  ri 2 (1−e− in)−  K 0

(1+ i) n (1+ i)

 C 0

 r

1+ i

 i (1−e− i n)+  K 0

(1+ i) n

1+ i

Sie beträgt in den beiden Fällen:





 D

= −7.7455

 D

= −4.3713

 i=0.05,  r=6,  n=10

 i=0.05,  r=6,  n=5

Betragsmäßig hat die Zinssatzelastiziät abgenommen, wodurch die geringere Bar-

wertreaktion erklärt wird. Mit der Duration kann (wie in Abschnitt 9.7.7) auch die

Barwertänderung abgeschätzt werden. 

Δ i

Δ C 0 ≈ − D × C 0 ×  i

0.01

Δ C 0 ≈ −7.7455 × 108.61 ×

= −8.01

1.05

0.01

Δ C 0 ≈ −4.3713 × 104.86 ×

= −4.36

1.05

☼

12.3.5 Integralberechnung mit Scilab

Das Integral aus Beispiel 12.18 soll mit Scilab integriert werden. Dazu ist es zu-

nächst nötig, die Funktion mit dem deff Befehl zu definieren. Mit dem anschlie-

ßenden integrate Befehl wird die numerische Integration der Funktion in den

Grenzen von 1 bis  e  berechnet. 
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deff(’y=f(x)’,’y=log(x)/x’)

integrate(’f(x)’,’x’,1,exp(1))

Die Gesamtkosten in Beispiel 12.19 sind durch folgende Befehle zu berechnen. 

deff{’y=f(x)’,’y=2*x-2’)

integrate(’f(x)’,’x’,1,10)

Übung 12.3. Berechnen Sie die folgenden bestimmten Integrale:

: +1

 F−1,+1( x) =

| x|d x

−1

: +2





 F−2,+2( x) =

min  x,  x 2 d x

−2

:  e

 F 1,  e( x) =

ln  x d x

1

:



4

 x 2

für 0 ≤  x < 1

 F 0,4( x) =

 f ( x)d x  mit  f ( x) = √

0

 x

für 1 ≤  x ≤ 4

: 1 4 x+6

 F 0,1( x) =

d x

0  x 2 + 3  x + 2

: 1

 F 3,1( x) =

 x 2 ln  x d x

3

12.4 Uneigentliche Integrale

Uneigentliche Integrale sind Integrale, bei denen die Integrationsgrenzen nicht end-

lich sein müssen oder bei denen der Integrand einen unendlichen Integrationsbereich

besitzt oder der Integrand im Integrationsintervall eine Unendlichkeitsstelle hat. Das

uneigentliche Integral kann man als eine Verallgemeinerung des bestimmten Inte-

grals auffassen, vorausgesetzt, der Grenzwert existiert. 

:  b

lim

 f ( x)d x

 a→−∞  a

 Beispiel 12.21.  Es ist die Funktion

 f ( x) = e− x  für  x ∈ R

von 0 bis ∞ zu integrieren. 

:



 b

 b

lim

e− x  d x = lim −e− x

 b→∞



0

 b→∞

0

= 1 da lim e− b = 0 ist

 b→∞

☼
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12.4.1 Ökonomische Anwendung

Ein Ertragsstrom  r( t) hat bei stetiger Verzinsung mit dem nominalen Zinssatz γ über

 n  Jahre den Barwert:

:  n

 K 0 =

 r( t)e−γ  t dt

0

Bei konstantem, unendlichem Ertragsstrom  r =  konst (Rente) wird  K 0 mittels des

uneigentlichen Integrals

:  n

 K 0 = lim

 r  e−γ  t dt

 n→∞ 0

berechnet. Die Substitution

τ = −γ  t ⇒  dτ = −γ  dt

liefert das Integral

: −γ n 



 r

 K 0 = lim

−

eτ  dτ

 n→∞ 0

γ





 r 



= lim −

e−γ  n − e0

 n→∞

γ

 r

= γ

 Beispiel 12.22.  Für eine unendliche Rente von jährlich  r = 5 000 e und einem no-

minellen Zinssatz von γ = 0.05 p. a. ergibt sich bei stetiger Verzinsung ein Barwert

von:

5000

 K 0 =

= 100 000 e

0.05

(siehe hierzu auch Kapitel 9.6.2, Seite 188)

☼

Uneigentliche Integrale kommen häufig auch im Rahmen der Statistik bei der

Berechnung von Wahrscheinlichkeiten vor. 

12.4.2 Statistische Anwendung

 Z  ist eine Zufallsvariable, deren Zufallsverteilung (Dichtefunktion) durch die Stan-

dard-Normalverteilung gegeben ist. 

1

 fZ( z) = √

e−  z 22

mit  z ∈ R

2 π

Die Dichtefunktion ist im reellen Zahlenbereich definiert. Die Wahrscheinlichkeit, 

dass die Zufallsvariable  Z  einen Wert von kleiner gleich  z  annimmt, ist durch das

Integral
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:  z

 FZ( z) =

 fZ(ξ ) dξ

−∞

:

1

 z

= √

e− ξ22  dξ

2 π −∞

beschrieben, das als Verteilungsfunktion der Zufallsvariablen  Z  bezeichnet wird. Die

Lösung des Integrals ist etwas aufwändiger und mit den hier beschriebenen Metho-

den nicht durchführbar. Daher verwendet man in der Statistik Tabellen, die für be-

stimmte Werte von  z  die Lösungen enthalten oder Computerprogramme wie Scilab. 

Mit der folgenden Funktion

z = 0; 

cdfnor(’PQ’,z,0,1)

kann der Wert des Integrals an der Stelle  z = 0 berechnet werden. Das Integral besitzt

den Wert 0.5. 

12.5 Fazit

Die Intregalrechnung ist die Umkehrung der Differentialrechnung. In der Ökonomie

findet sie dort Anwendung, wo vom Grenzverhalten (zum Beispiel Grenzkosten) ei-

ner ökonomischen Größe auf die ursprüngliche Funktion (zum Beispiel Kostenfunk-

tion) geschlossen werden muss. 

Das bestimmte Integral ist die Flächenberechung unter einem Graphen. Mit dem

Hauptsatz der Intergralrechnung wird der Zusammenhang zwischen dem bestimm-

ten und dem unbestimmten Integral hergestellt. Unter einem uneigentlichen Integral

ist ein Integral zu verstehen, bei dem die Integrationsgrenzen unendlich sind. Eine

bekannte Anwendung ist die Berechnung von Verteilungsfunktionen (zum Beispiel

Normalverteilung) in der Statistik. 
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Anhang



A

Eine kurze Einführung in Scilab

Scilab ist ein umfangreiches, leistungsfähiges Software-Paket für Anwendungen in

der numerischen Mathematik, das am Institut National de Recherche en Informatique

et en Automatique (INRIA) in Frankreich seit 1990 entwickelt wird. Seit 2003 wird

die Entwicklung vom Scilab-Konsortium unter Federführung des INRIA vorange-

trieben. Scilab wird für Anwendungen in Lehre, Forschung und Industrie eingesetzt

und ist für rein numerische Berechnungen programmiert. Es ist ein kostenloses open

source Paket www.scilab.org. 

Die Syntax der Scilab Programmiersprache ist jener von MATLAB nachemp-

funden, aber nicht kompatibel; ein integrierter Konverter von MATLAB nach Scilab

unterstützt eine Übertragung von vorhandenem Programmcode. 

Implementiert ist Scilab in C, erweiterbar ist es aber auch durch Module, die in

Scilab selbst oder in anderen Sprachen verfasst wurden, z. B. FORTRAN oder C, für

die definierte Schnittstellen existieren. 

Folgender Funktionsumfang ist in Scilab vorhanden:

• 2D- und 3D-Graphik in allen gängigen Formen inklusive Animation mit der

Möglichkeit der Integration von GNU Plot (oder / und LabPlot)

• lineare Algebra

• schwach besetzte Matrizen ( sparse matrices)

• Polynom-Berechnungen und rationale Funktionen

• Interpolation und Approximation

• Statistik

• Regelungstechnik

• Simulation

• digitale Signalverarbeitung

• I/O-Funktionen zum Lesen und Schreiben von Daten (ASCII-, Binär- und auch

Sound-Dateien in verschiedenen Formaten)

• Bilddatenverarbeitung

• Schnittstellen für Fortran, Tcl/Tk, C, C++, Java und LabVIEW

W. Kohn, R. Öztürk,  Mathematik für Ökonomen,  Springer-Lehrbuch,   

DOI 10.1007/978-3-642-28575-2, © Springer-Verlag Berlin Heidelberg 2012
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Nach Aufruf von Scilab erscheint am Bildschirm das Scilab-Fenster mit der Menü-

leiste oben gefolgt von dem Schriftzug Scilab und dem Prompt (->), der Ihren Be-

fehl erwartet:

Im Scilab-Fenster können sofort Berechnungen ausgeführt werden. Es zeichnet sich

durch folgende Eigenschaften aus:

• mathematische Grundfunktionen (Taschenrechner)

• Bestätigung von Befehlen mittels Return

• Scilab ist sowohl ein Interpreter als auch eine Programmiersprache

• einzelne Befehle oder Skriptdateien mit Befehlslisten können ausgeführt werden

(exec-Befehl, // - Kommentare). 

• Blättern in alten Befehlen mittels Pfeil-Hoch- und -Runter-Tasten

Im Scilab  Help Browser  werden Befehle erklärt. Zusätzlich existiert auf der Scilab

Internetseite eine Dokumentation mit Suchfunktion und Programmbeispielen. Fer-

ner existieren eine Vielzahl von Scilab Anwendungen und Funktionsbibliotheken

(scilabsoft.inria.fr). 

Der Scilab-Editor ist ein komfortabler Editor mit Syntax-Hervorhebung und

Debugging-Schnittstelle. Kommandos können mit ctrl-l im Scilab-Hauptfenster

zur Ausführung übergeben werden. Die Kommandos können in einer Datei gespei-

chert werden. 

Im Buch werden folgende Scilab-Befehle verwendeten. Die Seitenzahlen ver-

weisen auf Anwendungsbeispiele. 
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 Elementare Befehle

Seite

abs

Betragsfunktion

34

ceil

Aufrundungsfunktion

34

cumprod

kumulatives Produkt

199

factorial

Fakultät

40

floor

Abrundungsfunktion, Gaußklammer

34

exp

Expontentialfunktion  ex

34

log

Logarithmusfunktion ln

34, 315

max

Maximumfunktion

218

prod

Produktfunktion

34

sqrt

zweite Wurzel

34, 302, 305

sum

Summenfunktion

33, 199

 Befehle für Vektoren

a[1,2]

Zeilenvektor

62

a[1;2]

Spaltenvektor

62

a’

Transposition eines Vektors

62

diag

Diagonalisierung eines Vektors

71

length

Länge eines Vektors

199, 309

 Befehle für Matrizen

.*

Elementweise Multiplikation

199, 225

A[1,2;1,2] Matrixeingabe

72

det

Determinante einer Matrix

105

diag

Diagonalisierung einer Matrix

71

eye

Einheitsmatrix

72, 312

inv

Inverse einer Matrix

90, 302

ones

Matrix mit Einsen

302

rank

Rang einer Matrix

88

size

Dimension einer Matrix

302

 Befehle für lineare Gleichungssysteme

linpro

Optimieren eines linearen Programms

132

linsolve

Lösen eines linearen Gleichungssystems

86

spec

Eigenwert- und Eigenvektorberechnung

110

 Befehle für rationale Funktionen

deff

Definieren einer Funktion

40, 336

factors

Linearfaktoren eines Polynoms

149

integrate

numerische Integration

336

poly

Eingabe eines Polynoms

148, 178, 194, 218

roots

Nullstellen eines Polynoms

148, 178, 194, 218

344
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 statistische Befehle

cdfnor

Normalverteilung

338

covar

Kovarianz

312

mean

arithmetisches Mittel

302, 309

mvvacov

Berechnung der Varianz-Kovarianzmatrix

302

variance

Varianz

312, 315

 Grafikbefehle

gca

Grafikparameter der Achsen abrufen

312

plot

Grafik erzeugen

305, 309, 312

subplot

Grafikfenster aufteilen

312

xstring

Text in einer Grafik

305, 309, 312

xtitle

Einfügen eines Grafiktitels

309, 312

 sonstige Befehle

clean

rundet sehr kleine Zahlen auf Null

210

diff

erste Differenzen berechnen

302, 309, 315

disp

Ausgabe von Ergebnissen auf dem Bildschrim

133

find

Finden eines Indizes im Vektor

178

for end

Schleifen

199, 305

imag

imaginärer Zahlenteil

178

linspace

lineare Zahlenfolge

309, 315

real

reeller Zahlenteil

178, 218
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Lösungen zu Kapitel 1

1.1

 Ac ∩  B = {7,8}

 A ∪  Bc = {1,2,3,4,5,6}

 Ac ∩  Bc = /0

1.2

 n( A \  B \ C) =  n( A) −  n( A ∩  B) −  n( A ∩ C) +  n( A ∩  B ∩ C)

= 50 − 30 − 40 + 20 = 0

 n( C \  A \  B) =  n( C) −  n( A ∩ C) −  n( B ∩ C) +  n( A ∩  B ∩ C)

= 70 − 40 − 40 + 20 = 10

1.3

 A ∪  B = (−2,2)  A ∪ C = [−1,2]  A ∩ C = [0,2)

 B ∩ C = [0,1)

 C \  A = {2}

 C \  B = [1,2]

2.1 Für  x = 5,2,1,2 und  y = 1,2,3,4 ergeben sich folgende Resultate:

4



4



4





4



 xi = 10

 xi yi = 20

 xi + 3 = 12 +

 xi = 22

 i=1

 i=1

 i=1

 i=1

2.2 Sie berechnen die Summen indem der Indexwert in die Summenformeln einge-

setzt wird. 

5

( n−1)2( n+2)=190

 n=2

5





1

1

−

= 0.8333

 k

 k + 1

 k=1

W. Kohn, R. Öztürk,  Mathematik für Ökonomen,  Springer-Lehrbuch,   

DOI 10.1007/978-3-642-28575-2, © Springer-Verlag Berlin Heidelberg 2012







346

B Lösungen zu den Übungen

2.3 Nein, denn die Doppelsumme beschreibt folgende Summe:

2

2

 xij = x 11+ x 12+ x 21+ x 22

 i=1  j=1

Hingegen beschreibt der obige Ausdruck das Produkt zweier Summen. 

2



2





 

 



 x

2

 i

 xj =  x 1 +  x 2 ×  x 1 +  x 2 =  x 1 +  x 2

 i=1

 j=1

2.4 Für  x = 5,2,1,2 ergeben sich folgende Resultate:

4



5



4



4



 xi = 20

 i = 120

 xi × 2 = 24

 xi = 320

 i=1

 i=1

 i=1

 i=1

2.5 Das Doppelprodukt ist:

2

2

 xij = x 11 x 12 x 21 x 22

 i=1  j=1

Lösungen zu Kapitel 2

2.6 Das Kapital besitzt nach 10 Jahren mit einem Zinssatz von 5 Prozent einen Wert

von

 f (10) = 10000 × 1.0510 = 16288.946

2.7 Der Wert des Kapitals nach 9 Jahren errechnet sich aus dem Endwert nach 10

Jahren wie folgt:

 f (10 − 1) = 16288.946 × 1.05−1 = 15513.282

2.8 Mit  y 0 wird der Ausgangsgewinn bezeichnet; mit  i  die Wachstumsrate. Dann

muss für die Verdoppelung des Gewinns  y 0 innerhalb von 15 Jahren folgende Glei-

chung gelten:

√

2  y 0 =  y 0 (1 +  i)15 ⇒  i = 15 2 − 1 = 0.047294

Zur Verdoppelung des Gewinns innerhalb von 15 Jahren wird eine durchschnittliche

Wachstumsrate von 4.7294 Prozent benötigt. 

2.9 Die Gleichungen sind zu logarithmieren. Dann können sie nach  x  aufgelöst wer-

den. 

ln  y −  a

 y = e a+ bx ⇒  x =

 b

ln 2

e− ax = 0.5

⇒  x =  a
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2.10 Die Bestimmungsgleichung lautet bei einem Zinssatz mit  i = 0.05:

2  K 0 =  K 0 (1.05) n

Diese ist mit dem Logarithmus nach  n  aufzulösen. 

ln 2

 n =

=≈ 14.21 Jahre

ln 1.05

2.11 Die Berechnung der Logarithmen kann mit einer beliebigen Basis erfolgen. 

Hier wird die Basis  e  verwendet. 

ln5

ln 4

log2 5 =

= 2.32

log

= 1.26

ln2

3 4 = ln3

2.12 Es sind die Rechengesetze der Logarithmusrechnung anzuwenden. 

  

3

1

ln 2  x  4  x 2  y = ln2 + ln x + ln y

2

4





ln 2  x 4  u 2− x = ln2 + 4ln x + (2 −  x)ln u







 p q 2

ln 5  x 2 4

= ln5 + 2ln x + 0.25ln  p + 0.5ln q − ln a − 0.5ln b

( a 2  b)2

Lösungen zu Kapitel 3

3.1 Bei dieser Fragestellung ist die Reihenfolge von Bedeutung und eine Wiederho-

lung zulässig. Es handelt sich um eine Permutation mit Wiederholung. 

6! 

 Pw(6,3,3) =

= 20

3! × 3! 

3.2 Eine Wiederholung ist ausgeschlossen, aber die Reihenfolge besitzt hier eine

Bedeutung. Es handelt sich um eine Variation ohne Wiederholung. 

25! 

 V (25,3) =

= 13800

(25 − 3)! 

3.3 Es handelt sich um eine Kombination ohne Wiederholung. Die Reihenfolge, 

in der die Karten ausgegeben werden, spielt keine Rolle. Die Kombinationen jedes

Spielers ist durch ein logisches UND miteinander verknüpft. 



32

22

12 = 2.7533×1015

10

10

10

3.4 Es bestehen 3 verschiedene Möglichkeiten die Klausur zu beantworten:

1. aus den ersten 5 Fragen 3 UND aus den letzten 7 Fragen 5

ODER
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2. aus den ersten 5 Fragen 4 UND aus den letzten 7 Fragen 4

ODER

3. aus den ersten 5 Fragen 5 UND aus den letzten 7 Fragen 3



5

7

5

7

5

7

+

+

= 420

3

5

4

4

5

3

3.5 Bei 3,4,5 Richtigen müssen  n  aus den 6 gezogenen Kugeln und 6 −  n  aus den

43 nicht gezogenen Kugeln angekreuzt sein. Es gibt





6

43

mit  n = 3,4,5

 n

6 −  n

verschiedene Gewinnmöglichkeiten. 

3.6 Es handelt sich um eine Kombination ohne Wiederholung, weil die Reihenfolge

irrelevant ist. Somit können



20

 C(20,3) =

= 1140

3

verschiedene Dreiergruppen bestimmt werden. 

3.7 Es handelt sich um eine Kombination mit Wiederholung. 





5 + 4 − 1

 Cw(5,4) =

= 70

4

3.8 Es existieren 2 × 26 = 52 große und kleine Buchstaben. Damit können

52! 

 V (52,2) =

= 2652

(52 − 2)! 

verschiedene Buchstabenpaare ohne Wiederholung aus dem Alphabet von kleinen

und großen Buchstaben gezogen werden. Alternativ kann man auch  C(52,2) = 1326

Buchstabenkombinationen ohne Berücksichtigung der Reihenfolge ziehen. Für die

Buchstabenauswahl stehen



6

 C(6,2) =

= 15

2

verschiedene Positionen zur Verfügung. In der alternativen Betrachtung stehen dann

 V (6,2) = 30 Positionen unter Berücksichtigung der Reihenfolge zur Verfügung. Ins-

gesamt sind

 C(6,2) × V(52,2) = 39780

verschiedene Buchstabenkombinationen möglich. Die Auswahl von 4 aus 10 Ziffern

ermöglicht

 Vw(10,4) = 104

verschiedene Anordnungen. Diese können mit den 39780 kombiniert werden, so dass

 V (52,2) × C(6,2) × 104 = 397800000

verschiedene Passwörter möglich sind. 
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Lösungen zu Kapitel 4

4.1 Existiert für die Definitionsgleichung

λ1 a1 + λ2 a2 + λ3 a3 = 0

nur die Lösung λ1 = λ2 = λ3 = 0, so liegt lineare Unabhängigkeit vor. 

λ1 − λ3 = 0 ⇒ λ1 = λ3

−λ2 + λ3 = 0 ⇒ λ2 = λ3

Die Teillösungen von λ1 und λ2 werden in die 3. Gleichung eingesetzt. 

3 λ3 = 0

λ3 ist Null und damit auch λ1 und λ2. Die 3 Vektoren sind linear unabhängig. 

Es ist nun die folgende Gleichung gegeben:

λ1 a1 + λ2 a2 + λ3 a3 = b

Die Auflösung des Gleichungssystems führt zur Lösung. 

λ1 − λ3 = 2 ⇒

λ1 = 2 + λ3

−λ2 + λ3 = 4 ⇒

λ3 = 4 + λ2

λ1 + λ2 + λ3 = −2 ⇒ 3λ2 + 10 = −2 ⇒ λ2 = −4

λ3 = 0,λ1 = 2

Die obige Linearkombination und alle entsprechenden Vielfachen erzeugen den Vek-

tor b. Probe:

⎡ ⎤

⎡ ⎤ ⎡ ⎤

1

0

2

2 ⎣0⎦ − 4⎣−1⎦ = ⎣ 4⎦

1

1

−2

4.2 Die Einnahmen E sind durch das Skalarprodukt

E = x p

bestimmt. Die Kosten K werden durch das Skalarprodukt

K = v p

berechnet. Der Gewinn G ist die Differenz von Einnahmen minus Kosten. 





G = x p − v p = x − v  p

4.3 Das Skalarprodukt der beiden Vektoren liefert eine quadratische Gleichung

 x(2 x + 8) = 0, 

deren beider Lösungen  x 1 = 0 und  x 2 = −4 sind.  x = 0 stellt die triviale Lösung dar. 

Für  x = −4 sind die beiden Vektoren linear unabhängig. 
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Lösungen zu Kapitel 5

5.1 Es ist zu beachten, dass sich bei der Transposition eines Skalarprodukts die

Reihenfolge der Multiplikation umkehrt. Die Vereinfachung ist dann

2 (AB) (F + G)

5.2 Die folgenden Matrizen geben die Verflechtung zwischen den einzelnen Produk-

tionsstufen an, die im Gozintographen dargestellt sind. 

R1  Z 1  Z 2

R2  H 1  H 2  H 3

R3  F 1  F 2

 R 1

4

0

 R 1

3

0

0

 R 1

2

1

 R 2

1

1

 R 2

0

4

0

 R 2

0

2

 R 3

0

3

 R 3

0

2

5

 R 3

0

0

H

 F

Z

1

 F 2

1

 H 1  H 2  H 3

Z2  F 1  F 2

 H

 Z

1

1

0

1

1

1

0

 Z 1

2

0

 H

 Z

2

1

3

2

0

0

1

 Z 2

0

1

 H 3

0

1

Der Gesamtbedarf an Rohstoffen ist dann das Skalarprodukt der folgenden Matrizen:

⎡

⎤



 #

$

3010

100

R

⎣

⎦

1 Z1 H + R1 Z2 + R2 H + R3

2130

70 = 1390

5.3 Es ist das Skalarprodukt der Matrizen zu bilden. 

1. 

⎡

⎤ ⎡

⎤ ⎡

⎤

2 1 0

2 0 3 4

5

2

11

8

F = ⎣ 1 2 3 ⎦ × ⎣ 1 2 5 0 ⎦ = ⎣ 16 10 13 13 ⎦

2 1 1

4 2 0 3

9

4

11 11

2. 

⎡

⎤ ⎡

⎤

100

⎡

⎤

5

2

11

8

⎢

⎥

2960

⎣

550

16 10 13 13 ⎦ × ⎢

⎣

⎥ ⎣8920⎦

80 ⎦ =

9

4

11 11

4640

60

Lösungen zu Kapitel 6

6.1 Das Gleichungssystem der rechten Seite muss folgende Bedingung für die linea-

re Unabhängigkeit erfüllen. 

⎡ ⎤

⎡ ⎤

⎡ ⎤

2

1

5

λ ⎣ ⎦

⎣ ⎦

⎣ ⎦

1

−1 + λ2 3 + λ3 0 = 0

−3

2

3
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Auflösen der Gleichungen nach λ i  führt zu dem Ergebnis λ1 = λ2 = λ3 = 0. Die

Gleichungen sind somit linear unabhängig. 

6.2 Das Gleichungssystem wird mittels des Gauß-Algorithmus umgeformt. Stellt

sich eine Nullzeile bei den Iterationen ein, so liegt eine lineare Abhängigkeit im

Gleichungssystem vor. Im vorliegenden Gleichungssystem ist dies nicht der Fall. 

Das Gleichungssystem besitzt keine lineare Abhängigkeit. 

2

−1 −3

8

2 −1 −3

8

1

3

2

3

7

0 −7

27

5

0

3

7

5

0

3

7

⇔

2

−1 −3

8

7

0 −7

27

56

0

0

130

6.3 Es ist ein Polynom 3. Grades gesucht. Die Koeffizienten  a 0,  a 1,  a 2,  a 3 sind ge-

sucht. 

 K( x) =  a 3  x 3 +  a 2  x 2 +  a 1  x +  a 0

Aus den Angaben der Tabelle kann dann folgendes lineares Gleichungssystem auf-

geschrieben werden. Es ist bezüglich der Koeffizienten zu lösen. 

 K(10) = 2700 =  a 3 1000 +  a 2100 +  a 110 +  a 0

 K(15) = 3475 =  a 3 3375 +  a 2225 +  a 115 +  a 0

 K(20) = 5700 =  a 3 8000 +  a 2400 +  a 120 +  a 0

 K(25) =10125 =  a 3 15625 +  a 2625 +  a 125 +  a 0

Die Lösung des Gleichungssystems liefert die Koeffizienten  a 0 = 2500,  a 1 = 80, 

 a 2 = −16 und  a 3 = 1. 

 K( x) =  x 3 − 16 x 2 + 80 x + 2500

6.4 Die Aufgabe ist in zwei Schritten zu lösen. Im ersten Schritt ist die Gesamtleis-

tung x p  zu berechnen. 

x p = T p × 1 + b

⎡

⎤ ⎡ ⎤ ⎡

⎤ ⎡

⎤

10 40 20 30

1

500

600

⎢

⎥ ⎢ ⎥ ⎢

⎥ ⎢

⎥

= ⎢40 10 30 120

1

600

800

⎣

⎥ ⎢ ⎥ ⎢

⎥ ⎢

⎥

50 60 50 40 ⎦ ⎣1⎦ + ⎣ 800 ⎦ = ⎣1000⎦

60 50 10 80

1

1000

1200

Im zweiten Schritt können dann die innerbetrieblichen Verrechnungspreise berechnet

werden. Die Bilanzgleichung ist

diag(x p)p = T p p + k ext

Die obige Bilanzgleichung enthält folgendes Gleichungssystem:
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600  p 1 = 10  p 1 + 40  p 2 + 50  p 3 + 60  p 4 + 110

800  p 2 = 40  p 1 + 10  p 2 + 60  p 3 + 50  p 4 + 3135

1000  p 3 = 20  p 1 + 30  p 2 + 50  p 3 + 10  p 4 + 7740

1200  p 4 = 30  p 1 + 120  p 2 + 40  p 3 + 80  p 4 + 12365

Die Lösung des Gleichungssystems

p = (diag(x p) − T p)−1 k ext

liefert die Verrechnungspreise

 p 1 = 2.5

 p 2 = 5.5

 p 3 = 8.5

 p 4 = 12

6.5 Es handelt sich um ein Input-Output-System. 

1. Die Endnachfrage berechnet sich aus der Differenz der Gesamtproduktion und

dem Vorleistungsverbrauch. 

y = x − T × 1

⎡ ⎤ ⎡

⎤ ⎡ ⎤ ⎡ ⎤

30

15

2

8

1

5

= ⎣20⎦ − ⎣ 3 12 4 ⎦ ⎣1⎦ = ⎣1⎦

40

9

4

20

1

7

2. Die Matrix der technischen Koeffizienten bestimmt sich aus der Normierung

mit der sektoralen Gesamtproduktion. 

⎡

⎤

0.5 0.1 0.2

D = ⎣ 0.1 0.6 0.1 ⎦

0.3 0.2 0.5

3. Nein, es ist nicht möglich, weil man zur Herstellung von je einer Einheit Strom

bzw. Heißdampf jeweils 2 bzw. 8 Einheiten Warmwasser benötigt. 

4. Zur Berechnung der neuen Gesamtproduktion muss die Leontief-Inverse be-

rechnet werden. 

x = Dx + y ⇒ x = (I − D)−1 y

Die Berechnung der Leontief-Inversen erfolgt mit dem Gauß-Algorithmus. 

0.5 −0.1 −0.2

1

0

0

1 0 0

10

5

5

3

3

3

−0.1

0.4 −0.1

0

1

0

⇔

0 1 0

40

95

35

27

27

27

−0.3 −0.2

0.5

0

0

1

0 0 1

70

65

95

27

27

27

Die neue Gesamtproduktion berechnet sich aus der neuen Endnachfrage. 

⎡

⎤

10

5

5

⎡ ⎤ ⎡ ⎤





⎢ 3

3

3 ⎥

10

60

x

−1

⎢ 40 95 35 ⎥

neu = I − D

yneu = ⎣

⎣11⎦ = ⎣60⎦

27

27

27 ⎦ ×

70

65

95

5

70

27

27

27
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6.6 Die Berechnung der Determinanten nach dem Laplaceschen Entwicklungssatz

kann nach einer beliebigen Zeile oder Spalte erfolgen. Hier wird zuerst die erste

Zeile verwendet. 

⎡

⎤

⎡

⎤

1 3

1

−1

1

1

det(A) = (−1)2 × 1 × ⎣−2 0 −1 ⎦ + 0 + (−1)4 × 2 × ⎣ 1 −1 −1 ⎦

−2 1

1

0 −2

1

⎡

⎤

−1

1 3

+ (−1)5 × 1 × ⎣ 1 −2 0 ⎦

0 −2 1

Die Entwicklung der Determinanten 3. Ordnung erfolgt in der ersten Matrix nach der

zweiten Zeile, in der zweiten Matrix nach der dritten Zeile und in der dritten Matrix

ebenfalls nach der dritten Zeile. 



#

$

#

$

= (−

3 1

1 3

1)3 × (−2) × 1 1 +0+(−1)5×(−1)× −2 1



#

$

#

$

+

−1 1

−1 1

2 0 + (−1)5 × (−2) ×

1 −1 + (−1)6 × 1 ×

1 −2



#

$

#

$

−

−1 3

−1 1

0 + (−1)5 × (−2) ×

1 0 + (−1)6 × 1 ×

1 −2

= 18

6.7 Die Matrix A besitzt das charakteristische Polynom

#

$

0.7 − λ

0.2

det

0

1.1 − λ = 0 ⇒ λ 2 − 1.8λ + 0.77 = 0

Die Nullstellen des Polynoms sind die Eigenwerte der Matrix. 

λ1 = 1.1

λ2 = 0.7

Die Eigenvektoren berechnen sich aus

(A − λ1 I)v1 = 0

(A − λ2 I)v2 = 0

# $

# $

0.5

1

v1 =

v

1

2 = 0

Lösungen zu Kapitel 7

7.1 Es ist die Zielfunktion

10  x 1 + 15 x 2 =→ max

unter den Nebenbedingungen
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2  x 1 +  x 2 ≤ 120

 x 1 +  x 2 ≤ 70

 x 1 + 3 x 2 ≤ 150

zu maximieren. 

Das Anfangstableau ist:

 x 1

 x 2

 y 1  y 2  y 3

 b

2

1

1

0

0

120

1

1

0

1

0

70

1

3

0

0

1

150

−10 −15

0

0

0

0

Mit dem Auswahlverfahren des Simplex-Algorithmus wird im ersten Tableau das

Pivotelement 3 in der zweiten Spalte, dritten Zeile ausgewählt. Danach ist eine zweite

Iteration mit dem Pivotelement 2. Zeile, 1. Spalte nötig, um zum Endtableau mit der

optimalen Lösungen zu gelangen. 

 x 1  x 2

 y 1

 y 2

 y 3

 b

0

0

1

−2.5

0.5

20

1

0

0

1.5 −0.5

30

0

1

0

−0.5

0.5

40

0

0

0

7.5

2.5

900

7.2 Aufgrund der Größer-gleich-Restriktionen ist die Nichtnegativität von  x 1,  x 2 ≥ 0

verletzt. Es muss also mit der so genannten Vorphase gestartet werden. 

 x 1

 x 2

 y 1  y 2  y 3  y 4

 b

 x 1

 x 2

 y 1

 y 2  y 3  y 4

 b

−1 −1

1

0

0

0

−2

1

1

−1 0

0

0

2

−3

4

0

1

0

0

4 ⇒−7 0

4

1

0

0

−4

1

0

0

0

1

0

4

1

0

0

0

1

0

4

0 −1

0

0

0

1

−1

1

0

−1 0

0

1

1

1 −2

0

0

0

0

0

3

0

−2 0

0

0

4

 x 1  x 2

 y 1

 y 2

 y 3  y 4

 b

 x 1  x 2

 y 1  y 2  y 3  y 4

 b

0

1

− 3

1

3

7

7

0

0

10

7

0

1

0

14 4 0

4

1

0

− 4

1

0

0

0

1

0

4

7

− 17 0 0

47 ⇒

0

0

4

1

0

0

1

1

7

7

7

1

0

24

7

4

4

0

6

0

0

− 3

1

0

0

0

1

3

7

7

0

1

37

4

4

1

3

0

0

− 2

3

0

0

0

1

1

7

7

0

0

16

7

2

2

0

4
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7.3 Es wird ein Simplex-Tableau aufgestellt. Die rechte Seite weist aufgrund der

Größer-gleich-Restriktionen negative Werte auf. Die erste Basislösung ist nicht zu-

lässig. Daher muss mit der Vorphase begonnen werden. 

 x 1

 x 2

 y 1  y 2  y 3  y 4

 b

1 −3

1

0

0

0

3

−1

0

0

1

0

0

−6

−3 −2

0

0

1

0

−42

−4

3

0

0

0

1

24

9

8

0

0

0

0

0

 x 1

 x 2

 y 1  y 2

 y 3

 y 4

 b

0

−11

1

0

1

0

3

3

−11

0

2

0

1

0

8

3

−13

1

2

0

0

0

14

3

−13

0

17

0

0

1

80

3

−43

0

2

0

0

3

0

−126

 x 1  x 2

 y 1

 y 2

 y 3

 y 4

 b

0

1

− 3

0

0

3

11

− 111

0

0

2

1

0

6

11

− 311

1

0

2

0

0

12

11

− 311

0

0

17

0

1

63

11

− 911

0

0

6

0

35

0

11

11

−132

Die Vorphase ist beendet und die Optimallösung ist bestimmt. Der eigentliche

Simplex-Algorithmus wird hier nicht angewendet. 

7.4 Der duale Ansatz zur Übung 7.3 lautet

⎡ ⎤

 y 1

! 

"⎢ y ⎥

3 −6 −42 24 ⎢ 2⎥





⎣ y 3⎦ =  z → max

b

 y 4

unter den Nebenbedingungen

⎡ ⎤

#

$  y 1

# $

−1 1 3

4 ⎢

⎢ y ⎥

2⎥

9

3 0 2 −3 ⎣ y ⎦ ≤ 8





 3

 y



4

A

c

Das Simplex-Tableau sieht dann wie folgt aus:
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 y 1

 y 2

 y 3

 y 4

 x 1  x 2

 c

−1

1

3

4

1

0

9

3

0

2

−3

0

1

8

3

−6 −42

24

0

0

0

Der Simplex-Algorithmus führt zur gleichen Lösung wie in Übung 7.3. 

Lösungen zu Kapitel 8

8.1 Asymptote:  y = 0

Nullstellen:  x 1 = 1,  x 2,3 = −2 (doppelte Nullstelle = Sattelpunkt)

Polstellen:  x 1,2 = 0 (doppelte Polstelle),  x 3 = 4,  x 4 = −4

2.0

1.5

1.0

0.5

0.0

−5

−4

−3

−2

−1

0

1

2

3

4

5

−0.5

−1.0

−1.5

−2.0

Abb. B.1: Funktion zu Übung 8.1

√

8.2 Nullstellen:  x 1 = −1.154,  x 2,3 = 1.154

2

± −3.6 (imaginäre Nullstellen)

Polstelle:  x = 2

Asymptote:  x 2 + 2 x + 7 wird mit Polynomendivision berechnet
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Abb. B.2: Funktion zu Übung 8.2

Lösungen zu Kapitel 9

9.1 Der Barwert beträgt 873.44 e. 

9.2 Der relative Monatszinssatz beträgt  irel = 0.583 Prozent pro Monat. Der konfor-

me Monatszinssatz beträgt  ikon = 0.565 Prozent pro Monat. 

9.3 Mit dem relativen Quartalszinssatz gerechnet beträgt die Rate

 r = 117.54 e/Quartal

Mit dem konformen Quartalszinssatz gerechnet beträgt die Rate

 r = 117.73 e/Quartal

9.4 Der Endwert der Zahlungen beträgt 13422.36 e. Dieser Endwert ist der Barwert

der vorschüssigen Rente ab dem 01.01.2010. 

1. Die Rente beträgt 134.99 e pro Monat. 

2. Es können 18 Jahre lang 1 000 e zu Jahresbeginn bezogen werden. 

9.5 Die Verzinsung muss 13.06 Prozent p. a. (exakter Wert) betragen. 

9.6 Zuerst werden die Barwerte der Nullkuponanleihe durch Duplizierung berech-

net. 
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1

 C 1 =

= 0.934579

1.07

1

0.065 1

 C 2 =

−

= 0.881927

1.065

1.065 1.07





1

0.06

1

1

 C 3 =

−

+

= 0.840575

1.06

1.06 1.07 × 1.065 1.065





1

0.055

1

1

1

 C 4 =

−

+

+

1.055

1.055 1.07 × 1.065 × 1.06 1.065 × 1.06

1.06

= 0.809346



1

0.05

1

1

 C 5 =

−

+

1.05

1.05 1.07 × 1.065 × 1.06 × 1.055 1.065 × 1.06 × 1.055



1

1

+

+

= 0.787312

1.06 × 1.055

1.055

Aus den Barwerten lässt sich nun leicht die Nullkuponrendite berechnen. 





1

 i 1 =

− 1 = 0.07

0.934579



1

1

1

 i 2 =

− 1 = 0.0648

0.881927



1

1

3

 i 3 =

− 1 = 0.0595

0.840575



1

1

4

 i 4 =

− 1 = 0.0543

0.809346



1

1

5

 i 1 =

− 1 = 0.0489

0.787312

9.7 Die Duration des ersten Wertpapiers beträgt

1×7

 D = 1.07 + 2×107

1.072 = 1.93 Jahre

7

1.07 + 107

1.072

Die modifizierte Duration beträgt  MD = 1.9345

1.07 = 1.808. Bei einer Zinssatzerhöhung

von 2 Prozentpunkten ergibt sich eine Barwertänderung bzw. eine Kursänderung in

Höhe von

Δ C 0(1.09) ≈ −1.808 × 0.02 × 100 = −3.62 e. 

Der Kurs würde also von 100 e auf

≈ 100 − 3.62 = 96.38 e

fallen. Die relative Änderung beträgt etwa −0.02 × 1.808 = 0.036. 
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Für das zweite Wertpapier liegt die Duration bei 2.709 Jahren. Die relative Bar-

wertänderung beträgt etwa

Δ C 0(1.09) ≈ −2.531×0.02= −5.06%, 

 C 0(1.07)

was mit einer Kursänderung von ( C 0(1.07) = 113.12)

Δ C 0(1.09) ≈ −113.12 × 2.531 × 0.02 = −5.73 e

verbunden ist. Der neue Kurs würde somit auf ≈ 113.12 − 5.73 = 107.39 e fallen. 

Für das dritte Wertpapier ergeben sich folgende Werte:

 C 0(1.07) = 93.22

 D = 3.712

 MD = 3.469

Δ C 0(1.09) = −3.469×0.02= −0.0693

 C 0(1.07)

Δ C 0(1.09) = −3.469 × 0.02 × 93.22 = −6.468

9.8 Der Kreditbetrag nach der Anzahlung liegt bei

 K 0 = 5000 − 0.1 × 5000 = 4500 e

Aufgrund der Bearbeitungsgebühr erhöht er sich auf  K 0 = 4590 e. 

1. Die monatliche Rate beträgt 205.92 e. 

2. Der effektive Jahreszinssatz ohne Gebühr beträgt 7.44 Prozent. Um die Ge-

bühr in den Kreditzinssatz einzurechnen, muss ein Äquivalenzansatz gewählt

werden. 

1  q 24 − 1

4500 != 205.92  q 24  q−1

Die Lösung für die obige Gleichung liefert den effektiven Jahreszinssatz von

9.56 Prozent. 

9.9 Bei einem Konsumentenkredit wird die Rate mit

 K

 r = 0 +  iK

 n

0

berechnet. Wird  r  in

 r =  K 0  qn q − 1

 qn − 1

eingesetzt (Äquivalenzprinzip), kann das Polynom zur Berechnung von  q  aufgestellt

werden. 

 K 0 + iK !=  K

 n

0

0  qn q − 1

 qn − 1

0 !=  nqn+1 − ( n +  in + 1) qn+  in + 1
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√

Für  n = 36 und  i 12 = 12 1.04 − 1 errechnet sich mit Scilab ein effektiver Mo-

natszinssatz in Höhe von  ieff

12 = 0.007363, der einem effektiven Jahreszinssatz von

 ieff = 9.202276 Prozent entspricht. 

9.10 Der Kreditbetrag beträgt nach der Anzahlung  K 0 = 12000 e. 

1. Die Annuität beträgt 268.81 e pro Monat. 

2. Der effektive Jahreszinssatz ist 3.66 Prozent. 

9.11 Die Annuität des Kredits liegt bei 521 503.48 e. 

1. Mit der Annuität kann der Tilgungsplan berechnet werden. 

Tabelle B.1: Tilgungsplan (Angaben in e)

Quartal Restschuld

Zinsen

Tilgung

Annuität

0

2 000 000

–

–

–

1 1 512 613.57 34 117.05 487 386.43 521 503.48

2 1 016 913.05 25 802.96 495 700.52 521 503.48

3

512 756.61 17 347.04 504 156.44 521 503.48

4

0.00

8 746.87 512 756.61 521 503,48

2. Aus dem Äquivalenzansatz

1  q 4 − 1

2 × 106 != 521503.48

+ 2000

 q 4  q − 1

erhält man einen effektiven Quartalszinssatz in Höhe von 1.7469 Prozent, der

einem effektiven Jahreszinssatz von 7.17 Prozent entspricht. 

9.12 Der Rentenendwert beträgt bei vorschüssigen Zahlungen

 Rn = 27386.35

Der Kredit ist die Differenz zu 50 000 e. 

 K 0 = 22613.65

Der Äquivalenzansatz lautet

300  q 96 − 1

22613.65 !=  q 96  q−1

Mit Scilab errechnet sich ein effektiver Kreditzinssatz von 6.438 Prozent. 

Die Rechenanweisungen in Scilab sind

r = 250; 

m = 12; 

nr = 8*m; 
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nk = 8*m; 

ir = 0.0325; 

q_r = (1+ir)^(1/m); 

R = r*q_r*(q_r^nr-1)/(q_r-1)

B = 50000; 

K = B-R

A = 300; 

p = poly([A zeros(1,nk-1) -(K+A) K],’q’,’coeff’)

q = roots(p,’e’); 

ieff = (real(q(imag(q)==0))^12-1)*100

9.13 Der Kapitalwert der Investition berechnet sich aus folgender Gleichung:

0

112500

 C 0 = +

− 100000 != 0

 q

 q 2

Der Zinsfaktor der Gleichung liefert die gesuchte Rendite. 

1. Die Rendite beträgt 6.06 Prozent p. a. 

2. Da die Vergleichsrendite größer als die erzielte Rendite ist, ist die Investition

nicht vorteilhaft. 

9.14 Der Kapitalwert berechnet sich aus der Gleichung

700

800

 C 0 =

+

− 1000 != 0

1.05

1.052

Der interne Zinsfuß ist der Zinssatz, der den Kapitalwert Null werden lässt. 

1. Der Kapitalwert beträgt  C 0 = 392.29 e. 

2. Der interne Zinsfuß der Investition liegt bei  i = 31.04 Prozent p. a. 

9.15 Der Kapitalwert der Investition liegt bei 65 951.13 e. Die Investition ist vor-

teilhaft. 

9.16 Der Investor geht von folgender Zahlungsreihe aus:

 t

0

1

2

3

4

5

 Zt −100000 7000 7000 7000 7000 117000

1. Kapitalwert beträgt  C 0 = −5163.15 e. 

2. Der interne Zinsfuß liegt bei 8.868 Prozent (exakter Wert). 

3. Es liegt ein jährlicher Verlust in Höhe von 1 362.03 e vor. 

4. Der Kaufpreis müsste  C 0 betragen. 

5. Die Kreditsumme beträgt 100000 , weil nur 96 Prozent zur Auszahlung kom-

0.98−0.02

men und eine Summe von 100 000 e finanziert werden muss. Die Annuität

beträgt 24 728.79 e pro Jahr. 

9.17 Die Lösungen sind mit folgender Gleichung zu berechnen:

35000

48000

52000

58000

 C 0 =

+

+

+

1.09

1.092

1.093

1.094
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1. Der Kapitalwert der Investition liegt bei 3 52.93 e. Die interne Verzinsung der

Investition beträgt 10.04 Prozent p. a. (exakter Wert). 

2. Der Kapitalwert wird negativ und liegt bei  C 0 = −37903.23 e. Anmerkung:

Der Verlust in Höhe von 2 000 e ist mit dem Kreditzinssatz zu diskontieren. 

Lösungen zu Kapitel 10

10.1 Die Ableitungen der Funktion aus der Übung lauten

2

 f ( x) =  x−13

37

1

 f ( x) =  x 2.5 −  x−1.5

6

2

 f ( x) = 4 x(2 ln x + 1) + e x 2 (2 x  sin x + cos x)

3

 i

 f ( x) =

 x

 i=1

1

 f ( x) =

√

(0.5 − ln x)

 x 2 ln  x

 f ( x) = 1

10.2 Die Ableitungen der Tangens- und Kotangensfunktion sind mit der Quotien-

tenregel zu berechnen. 

sin  x

 y = tan x =

für  x ∈ R ⇒  y = 1 + (tan x)2

cos x

cos x

 y = cot x =

für  x ∈ R ⇒  y = −1 − (cot x)2

sin  x

10.3 Die Ableitungen der Funktion aus der Übung lauten

 f ( x) = 2 x  ln2

 g( x)

 f ( x) = 2 g( x)ln g( x) ln g( x)  g( x)

10.4 Für das Newton-Verfahren wird die 1. Ableitung der Funktion benötigt. 

2  x 3 − 6 x 2 − 11

 f ( x) =

( x − 2)2

Die Näherungsrechnungen für die gesuchte Nullstelle im Bereich um  x 1 = 1 sind

dann:

−9

 x(1) = 1 −

= 0.4

−15
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−3.915

 x(2) = 0.4 −

= −0.4471

−4.62187

−1.4587

 x(3) = −0.4471 −

= −1.1527

−2.0671

−0.003196

 x(4) = −1.1527 −

= −1.1541

−2.2169

0.0000008

 x(5) = −1.1541 −

= −1.1541

−2.2181

Die Änderungen liegen nach der fünften Iteration bei 10−7 und werden daher abge-

brochen. Die gesuchte Nullstelle liegt bei  x = −1.1541. 

10.5 Die Elastizität berechnet sich aus

 K( x)

 x 2

ε K( x) =

=

 K( x)

 x 2 + 75

Leiten Sie die Kostenfunktion nach der Kettenregel ab. Für eine Menge von 5 liegt

die Elastizität bei

ε K(5) = 0.25

10.6 Die Erlösfunktion ist

 x 2

 E( x) = 6 x − 2

1. Die 1. Ableitung der Erlösfunktion bilden und die Nullstellen auf  E( x) < 0

überprüfen. Das Erlösmaximum beträgt 18 e. 

2. Die 1. Ableitung der Gewinnfunktion bilden und die Nullstellen auf  G( x) < 

0 überprüfen. Das Gewinnmaximum beträgt 9.845 e. Der gewinnmaximale

Preis (gewinnmaximale Menge in der Preisabsatzfunktion) liegt bei 3.768 e. 

3. Die 1. Ableitung der Durchschnittskostenfunktion

 K( x)

 K( x) =  x

bilden und die Nullstellen auf  K( x) > 0 überprüfen. Die minimalen Stückkos-

ten sind 1.562 e. 

4. Die 1. Ableitung der Durchschnittsgewinnfunktion

 G( x)

 G( x) =  x

bilden und die Nullstellen auf  G( x) < 0 überprüfen. Der maximale Stückge-

winn beträgt 2.937 e. 

5. Die Preiselastizität der Nachfrage ist ε x( p) = 1

ε p( x) . An der Stelle  x = 3 besitzt

sie hier den Wert ε x( p) = −3. Eine Zunahme des Preises um 1 Prozent führt

zu einer Abnahme der Nachfrage um 3 Prozent. 
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10.7 Aus der Preis-Absatz-Funktion kann direkt die Nachfrageelastizität des Preises

berechnet werden. 

 p( x) = −μ λ  x−λ−1

μ  x−λ

¯

 p( x) =

= μ  x−λ−1

 x

μ λ  x−λ−1

ε p( x) = −

= −λ

μ  x−λ−1

1

ε x( p) = −λ

Lösungen zu Kapitel 11

11.1 Die partiellen Ableitungen sind

∂ z =  yxy−1

∂ z =  xy  ln x

∂ x

∂ y

11.2 Das implizite Differential ist

d y

3  x 2 +  y

= −

d x

 x + 3 y 2

11.3 Die zweiten partiellen Ableitungen lauten



 z xx = 2 y e x 2+ y 2 1 + 2 x 2

 z yy = 2 y e x 2+ y 22 y 2 + 3

 z xy = 2 x e x 2+ y 2 2 y 2 + 1

11.4 Das implizite Differential ist

d y

2  xy 3 − ( y + 1)e x − 1

= −

d x

3  y 2  x 2 + e− x



d y

= 3

d x x=0,  y=1

11.5 Der Lagrangeansatz zur Berechnung der Lösung ist:

 y





 L( x,  y,λ ) = ln(1 +  x) +

− λ  x +  y − 10

1 +  y

Aus den Nullstellen der ersten Ableitungen erhält man die notwendigen Bedingun-

gen für ein Gewinnmaximum. 

1

 L x =

− λ != 0

1 +  x
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1

 L y =

− λ != 0

(1 +  y)2





 L

! 

λ = −  x +  y − 10 = 0

Aus den Bedingungen erhält man  x = 8,  y = 2 ( y = −5) und λ = 1. Der maximale

9

Gewinn beträgt ln(1 + 8) + 2

1+2 ≈ 2.86 e. Um die hinreichende Bedingung für ein

Maximum zu überprüfen, müssen die zweiten Ableitungen der Lagrangefunktion

und die ersten Ableitungen der Nebenbedingung gebildet werden. 

1



1

2



2

 L





 xx = −

= −

 L

= −

(





1 +  x)2

 yy = −

 x=8

92

(1 +  y)3  y=2

33

 L xy = 0

 g x = 1

 g y = 1

Der Wert der Hesse-Determinanten (hinreichende Bedingung) beträgt

1

| ˜ H(8,2, )| = 0.0864

9

Es handelt sich also um ein Maximum. Der Gesamtgewinn beträgt damit 26 250 e. 

11.6

1. Die Gewinnfunktion ist

 G( x 1,  x 2) = 150 x 1 − 0.9 x 21 + 270 x 2 − 0.9 x 22 + 0.6 x 1  x 2 − 12000

Die Nullstellen der ersten partiellen Ableitungen liefern die notwendigen Be-

dingungen für ein Gewinnmaximum. 

 G

! 

 x = 150 − 1.8  x

= 0

1

1 + 0.6  x 2

 G

! 

 x = 270 + 0.6  x

= 0

2

1 − 1.8 x 2

Die Lösungswerte aus dem linearen Gleichungssystem sind die gewinnmaxi-

malen Mengen. 

 x 1 = 150

 x 2 = 200

Die gewinnmaximalen Preise erhält man durch Einsetzen in die Preis-Absatz-

Funktionen. 

 p 1 = 30 e

 p 2= 235 e

Die Überprüfung der hinreichenden Bedingungen

| H 1(150,200)| = −1.8

| H 2(150,200)| = 2.88

bestätigt, dass es sich um ein Maximum an der Stelle  x 1 = 150 und  x 2 = 200

handelt. 
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2. Unter Berücksichtigung der Nebenbedingung

 x 1 +  x 2 = 290

ist folgende Lagrange-Funktion zu maximieren:





 L( x 1,  x 2,λ ) =  G( x 1,  x 2) + λ 290 −  x 1 −  x 2

Die ersten partiellen Ableitungen sind dann

 L x = 150 − 1.8 x

1

1 + 0.6  x 2 − λ ! 

= 0

 L x = 270 + 0.6 x

2

1 − 1.8  x 2 − λ ! 

= 0

 Lλ = 290 −  x 1 −  x 2

Das Auflösen des Gleichungssystems liefert die Lösungswerte. 

 x 1 = 120

 x 2 = 170

λ = 36

Die geränderte Hesse-Matrix besitzt einen Wert von





 0 −1 −1 

| ˜ H(120,170)| = −1 −1.8 0.6 = 4.8





−1 0.6 −1.8

und zeigt damit an, dass an der Extremwertstelle ein Maximum vorliegt. 

11.7 Aus dem Lagrange-Ansatz



 √ √





 L x 1,  x 2,λ =  x 1  x 2 + λ 12 − 0.04 x 1 − 0.02 x 2

erhält man eine nutzenmaximale Menge von  x 1 = 150 und  x 2 = 300. Ob es sich

um ein Maximum handelt, wird durch eine positive Determinante der geränderten

Hessematrix überprüft:

⎡

⎤

0

−0.04

−0.02

| ˜ H(150,300)| = ⎣−0.04 −0.002357 0.001178 ⎦ = 0.0000038

−0.02 0.001178 −0.0005892

Der Lagrange-Multiplikator nimmt einen Wert von λ = 17.67 an. Würde der Student

1 e mehr für seine Schokoleidenschaft verwenden, würde sein „Nutzen“ um 17.67

Einheiten zunehmen. 

Lösungen zu Kapitel 12

12.1 Das folgende Integral wird durch partielle Integration gelöst:
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:

 x

 F( x) =

√

d x

 x − 2

Es wird

 h( x) =  x

 h( x) = 1

1

√

 g( x) = √

 g( x) = 2  x − 2

 x − 2

gewählt. Daraus ergibt sich der unten stehende Ansatz, der gelöst werden kann. 

:

:

 x

√

√

√

d x = 2 x x − 2− 2

 x − 2d x

 x − 2

√

4

= 2 x x − 2− ( x − 2)32 +  c

3

2 √

=

 x − 2(4 +  x) +  c

3

Das zweite Integral

: 



ln  x  5 d x

 x

wird durch die folgende Substitution gelöst:

d z

1

 z = ln x

=

d x =  x d z

d x

 x

Nun ist die Lösung des Integrals möglich. 

:  z 5

1

1 



 x d z =  z 6 +  c =

ln x  6 +  c

 x

6

6

Bei dem Integral

:

 F( x) =

 x e− x 2 d x

wird die Exponentialfunktion substituiert. 

1

 z = e− x 2

d z = −2 x e− x 2

d x = −

e x 2 d z

d x

2  x

Man erhält dann folgendes Integral, das nach Kürzen gelöst werden kann:

:

1

1

1

−

 x e− x 2 1 e x 2 d z = −  z +  c = − e− x 2 +  c

2

 x

2

2

Für das letzte Integral

: √ x ln x d x

wird wieder ein partieller Integrationsansatz gewählt. 

1

 h( x) = ln x

 h( x) =  x
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√

2 3

 g( x) =  x

 g( x) =  x 2

3

Das Integral kann dann durch folgende Differenz ersetzt werden:

: √

:

2 3

2

3 1

 x  ln  x d x =  x 2 ln x −

 x  2

d x

3

3

 x

2

4

=

3

3

 x  2 ln  x −  x 2 +  c

3

9





2

2

=

3

 x  2

ln  x −

+  c

3

3

12.2 Das Integral der Funktion

:

 F( x) =

 ax  d x

wird durch Substitution gelöst. 

1

 z =  x  ln a

d z = ln a d x

d x =

d z

ln  a

Somit wird aus dem Integral

:

1

1

1

 F( x) =

e z  d z =

e x  ln a +  c =

 ax +  c

ln  a

ln  a

ln  a

Das Integral

:

 x

 F( x) =

 x  sin d x

2

wird über ein partielles Integral gelöst. 

 h( x) =  x

 h( x) = 1

 x

 x

 g( x) = sin

 g( x) = −2 cos

2

2

Somit kann das Integral als

:

:

 x

 x

 x

 x  sin = −2 x  cos + 2

cos d x

2

2

2

9

geschrieben werden. Die Lösung von

cos z d z  ist sin  z. Somit ist die Lösung des

Integrals

:

 x

 x

 x

 F( x) =

 x  sin = −2 x cos + 4 sin +  c. 

2

2

2

Für das Integral

:

 F( x) =

 x 2 √ x d x

wird der partielle Ansatz
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 h( x) =  x 2

 h( x) = 2 x

√

2 3

 g( x) =  x

 g( x) =  x 2

3

gewählt. Es folgt :

:

1

√

3

4

5

2

 x 2 √ x d x =  x 2  x 2 −

 x  2 d x =

 x 7 +  c

2

3

7

Das Integral

 x 2

 F( x) = √

d x

 x + 5

wird durch Substitution von

 z =  x + 5

d z = d x

gelöst. Es ergibt sich dann außerdem

 x 2 = ( z − 5)2. 

Damit ist das zu lösende Integral

:

:

:

:

(

3

1

 z − 5)2 1

√ d z =

 z  2 d z − 10

 z  2 d z + 25

 z− 12 d z

 z

2

20

√

=

5

3

 z  2 −

 z  2 + 50  z +  c

5

3

2 √ 



=

 z  3  z 2 − 50 z + 375 +  c

15

2 √





=

 x + 5 3 x 2 − 20 x + 200 . 

15

Das letzte Integral wird wieder über einen Substitutionsansatz gelöst. 

:

1

 F( x) =

d x

 x  ln x

Die Substitution wird wie folgt gewählt:

1

 z = ln x

d z = d x

 x

Damit ist das zu lösende Integral : 1d z=ln z+ c

 z

Die Resubstitutierung ergibt





 F( x) = lnln x +  c

12.3 Der Wert der bestimmten Integrale berechnet sich wie folgt:

: +



1  

: 1

1 1

 F

 



−1,+1( x) =

 x  d x = 2

 x d x = 2  x 2 = 1

−1

0

2

0
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: +2

: 0

: 1

: 2

1

 F−2,+2( x) =

min{ x,  x 2}d x =

 x d x +

 x 2 d x +

 x d x = −

−2

−2

0

1

6

:



 e

 e :  e

 F



1,  e( x) =

ln  x d x =  x  ln x −

d x = 1

1

1

1

Das Integral wurde partiell mit  h( x) = ln x  und  g( x) = 1 gelöst. 

: 1

: 4 √

 F 0,4( x) =

 x 2 d x +

 x  d x = 5

0

1

:



1

:

4  x + 6

6 2

6

 F



0,1( x) =

d x =

d z = 2 ln z = 2 ln3

0  x 2 + 3  x + 2

2  z

2

Das Integral wurde durch die Substitution  z =  x 2 +3 x+2 und d z = (2 x+3)d x  gelöst. 

Man muss hier beachten, dass die Grenzen ebenfalls zu ersetzen sind. 

:







1

:

 x 3 ln x 1

1

1

 x 3 ln  x 1

 x 3 1

 F







3,1( x) =

 x 2 ln  x d x =

 −

 x 2 d x =

 − 

3

3

3

3 3

3

3

9 3

26

=

− 9 ln3

9

Das Integral wurde mit dem partiellen Ansatz  h( x) = ln x  und  g( x) =  x 2 gelöst. 
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