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Vorwort

Vorwort zur 2. erweiterten und verbesserten Auflage

Wir haben den Text um die Kapitel Mengenlehre und Aussagenlogik erweitert. Das
Buch um diese Grundlagen zuerweitern erschien uns aufgrund der Erfahrungen aus
der Lehre sinnvoll. Ferner haben wir versucht den Text an einigen Stellen besser zu
formulieren, klarer zu gliedern und Fehler zu bereinigen, die leider immer auftreten.
Wir hoffen keine neuen erzeugt zu haben.

Bielefeld, Januar 2012 Wolfgang Kohn und Riza Oztiirk

Vorwort zur 1. Auflage

In diesem Buch haben wir mathematische Grundlagen fiir Okonomen zusammenge-
fasst. Formale Definitionen, Beweise und mathematische Séitze befinden sich kaum
im Text, wohingegen eine Herleitung von Formeln oft erfolgt, die hoffentlich zu ih-
rem besseren Verstdndnis fithren. In der Anwendung stehen betriebswirtschaftliche
Aspekte im Zentrum.

ZeitgemdBl werden aufwindigere Rechnungen mit einem Computerprogramm
durchgefiihrt. Das hier verwendete open source Programm Scilab besitzt hervor-
ragende numerische Eigenschaften und ermdglicht die einfache Umsetzung der For-
meln, insbesondere in der linearen Algebra. In diesem Programm koénnen auch Vek-
toren oder Matrizen Variablen sein. Dies ist ein groler Vorteil, wenn man die Rech-
nungen nachvollziehen mochte. An geeigneten Stellen im Text werden die Pro-
grammbefehle fiir einzelne Berechnungen beschrieben. Natiirlich eignen sich auch
andere Programme wie zum Beispiel Excel, Maple oder Mathematica fiir die Be-
rechnungen. Scilab (siche www . scilab.org) steht fiir verschiedene Betriebssy-
steme zur Verfiigung.

Teil I enthilt einige Grundlagen der Mathematik, Teil II fihrt in die lineare Alge-
bra und deren 6konomischen Anwendungen ein. In Teil III wird die Analysis mit Fi-
nanzmathematik, Differentialrechnung und Integralrechnung behandelt. Im Anhang



VIII Vorwort

(Teil IV) wird kurz das Programm Scilab beschrieben. Ferner finden sich dort die
Losungen zu den Ubungen aus den vorangegangenen Kapiteln.

Die Kapitel 4 bis 10 und 11 (mit Einschrankung) bilden das Programm fiir einen
vier Semesterwochenstunden (SWS) umfassenden Kurs in einem betriebswirtschaft-
lich orientierten Bachelorstudiengang mit einem Arbeitsdquivalent von 5 europdi-
schen Arbeitspunkten (ECTS). Die Kapitel 3, 10 und 11 sind in Kombination mit
weiterfithrenden Themen fiir einen Masterstudiengang geeignet.

Besonderer Dank gebiihrt Diplom-Volkswirtin Coco Rindt, Prof. Dr. Rainer Lenz
und Dr. Wolfgang Rohde, die mit vielen Korrekturen und guten Verbesserungen zum
Gelingen des Buches beitrugen.

Bielefeld, Mai 2009 Wolfgang Kohn und Riza Oztiirk
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Grundlagen



1

Mengenlehre und Aussagenlogik

Inhalt
1.1 Vorbemerkung ... ...t 3
1.2 MENEEN . . .ttt 4
1.2.1 Mengenoperationen .. ...........euiuiiiiii e 6
1.2.2 MENEENEESELZE . . ..ottt ettt 9
1.2.3 Zahlenmengen . . .......oit ittt 12
1.3 Aussagenlogik . ... 13
1.3.1 Logikoperatoren ......... ... 13
1.3.2 Regeln ... 15
133 Gesetzeder Logik . ... 16
1.4 Fazit. ..o 18

1.1 Vorbemerkung

In diesem Kapitel werden die Grundziige der Mengenlehre, der Zahlenmengen und
der Aussagenlogik erklirt. Mengen und Aussagenlogik kann man als die Basis der
Mathematik bezeichnen.

Folgende Symbole werden verwendet:

a,b Element, Koeffizient oder Variable

A,B hier: Mengen oder Aussagen

i hier: Bezeichnung fiir eine imaginére Zahl
k,m,n haufig: Variablen fiir ganze Zahlen

X,y Variable, Element

N Symbol fiir die Menge der natiirlichen Zahlen
{} Klammern, die eine Menge bezeichnen

xeM Symbol fiir x ist Element der Menge M
x¢€M Symbol fiir x ist nicht Element der Menge M
ACB A ist Teilmenge der Menge B

W. Kohn, R. Oztiirk, Mathematik fiir Okonomen, Springer-Lehrbuch,
DOI 10.1007/978-3-642-28575-2 1, © Springer-Verlag Berlin Heidelberg 2012



4 1 Mengenlehre und Aussagenlogik

ACB A ist Teilmenge der Menge B oder gleich der Menge B

Q Universalmenge
0 leere Menge
n(4) hier: Méchtigkeit der Menge A

AUB Vereinigung von Menge 4 und B

ANB Durchschnitt von Menge 4 und B

A\B Subtraktion von Menge B von 4

A€ Komplementmenge von 4 zur Universalmenge €2
-4 Negation einer Aussage 4

AV B logisches ODER, Disjunktion

ANB logisches UND, Konjunktion

A—B Implikation

A<+ B Aquivalenz

# Ungleichheit
oo Symbol fiir unendlich
1.2 Mengen

Eine wohldefinierte Gesamtheit eindeutig unterscheidbarer Elemente heilit eine Men-
ge.

Allgemein werden Mengen mit gro3en lateinischen Buchstaben 4, B, C, ... be-
zeichnet. Fiir die Elemente wihlt man dann i. d. R. kleine lateinische Buchstaben a,
b,c, ...

Um Mengen von anderen Gréflen wie z. B. Vektoren unterscheiden zu kdnnen,
schlieBt man die Elemente stets in geschweifte Klammern ein: 4 = {a, b, c}. Ein Ele-
ment kann in einer Menge durch Mehrfachnennung 6fter auftreten. Es zéhlt jedoch
nur als ein Element.

Gehort das Element a zur Menge 4, so wird dies durch a € 4 abgekiirzt. Will
man ausdriicken, dass a nicht zur Menge 4 gehort, so schreibt man: a & A.

Die Definition einer Menge erfolgt durch die Beschreibung der Elemente, ent-
weder durch Aufzéhlung oder eine implizite Beschreibung. Bei der impliziten Be-
schreibung wird die Menge wie folgt beschrieben:

A = {a | umfassende eindeutige Beschreibung von a}
Beispiel 1.1.

A = {a| aist eine natiirliche Zahl kleiner 10}
M={(x,y) |0 <x<4undy=2x+3und y = ganzzahlig}

ot

Zur Illustration von Mengenoperationen werden héufig Venn-Diagramme ver-
wendet (siche Abb. 1.1).
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Abb. 1.1: Venn-Diagramm

Die Anzahl der unterscheidbaren Elemente einer Menge 4 wird als deren Méch-
tigkeit einer Menge bezeichnet und meistens mit n(4) abgekiirzt. Die Méchtigkeit
einer Menge kann endlich oder unendlich sein. Man spricht dann auch von endlichen
und unendlichen Mengen.

Beispiel 1.2.
X ={x1,x2,...,x¢} nX)=k
N=1{1,2,3,...} n(N) = oo
A=A{a,b,a,c,a,d} n(d) =4
ged

Die Universalmenge €2 ist beziiglich der zu untersuchenden Elemente die um-
fassende Menge, die alle Elemente enthilt. Die leere Menge 0 enthélt kein Element.
Zwei Mengen A4 und B heiflen gleich, wenn sie die gleichen Elemente enthalten.
Man schreibt:
A=B

Beispiel 1.3.
A={-1} B={x|x+1=0} A=B
es

Die Menge A heifit Teilmenge (oder Untermenge) der Menge B, wenn alle Ele-
mente der Menge A4 auch in der Menge B enthalten sind (aber nicht alle Elemente
von B sind Elemente von 4) . Man schreibt:

ACB
Ist auch die Gleichheit der Mengen erlaubt, dann schreibt man:

ACB
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Beispiel 1.4.
{L,E,0O} C{L,0,E,W,E}
It
Die Menge aller Teilmengen einer Menge A heifit Potenzmenge. Man schreibt:
o4) ={X | X C 4}

Zu den Teilmengen von 4 gehort sowohl die leere Menge 0 als auch die Menge 4
selbst. Bei n Elementen in der Menge A4 enthélt die Potenzmenge 2" Teilmengen.

Begriindung fiir die Basis 2: Jedes Element in einer Menge kann ausgewihlt wer-
den (1) oder nicht (0). Somit liegt eine Permutation (siche Kapitel 3) von 2 Werten
vor, die auf n Elemente angewendet wird.

Beispiel 1.5.
A = {a| aist ein Buchstabe des Namens LEO}
={L,E,0}
#(4) ={0{L} {E}. {0} {L,E} {L,0} {E, O} {L,E,O}}

Wird die Bitfolge der Auswahl (0 = Element nicht ausgewéhlt, 1 = Element aus-
gewihlt) betrachtet, so ergibt sich fiir die Menge {L,E,O}:

Tabelle 1.1: Bitfolge der Elementauswahl
LEO Auswahl

0 0 0 leere Menge
001 {L}

010 {E}

100 {0}

011 {LE}

101 {L,0}

110 {EO}

111 {LEO}

Die Potenzmenge besitzt also 2° = 8 Teilmengen. ges

1.2.1 Mengenoperationen

Vereinigung AUB  lies: 4 vereinigt mit B
Die Vereinigung zweier Mengen 4 und B enthilt alle Elemente, die entweder in 4
oder in B oder in beiden Mengen enthalten sind (siche Abb. 1.2). Man schreibt:

AUB={x|x € A4oderx € B}
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Abb. 1.2: Vereinigung

Beispiel 1.6. A sei eine Menge von Studenten die BWL studieren. B sei eine Menge
von Studenten die Mathematik studieren. Die Vereinigung der beiden Mengen ist die
Menge, die sowohl die Elemente von A4 als auch von B enthilt, die Studierenden, die
BWL oder Mathematik oder beide Facher studieren. £SS

Zwei Mengen 4 und B, die keine gemeinsamen Elemente enthalten, heilen dis-
junkt.

Beispiel 1.7. Die Menge der geraden Zahlen und die Menge der ungeraden Zahlen
sind disjunkt. Entweder ist eine Zahl gerade oder ungerade. £es

Durchschnitt 4N B lies: 4 geschnitten B
Der Durchschnitt zweier Mengen 4 und B enthilt alle Elemente, die sowohl in 4 als
auch in B enthalten sind (siche Abb. 1.3). Man schreibt:

ANB={x|x€ Aundx € B}
Der Durchschnitt von disjunkten Mengen ist die leere Menge.

Beispiel 1.8. A sei eine Menge von Studenten die BWL studieren. B sei eine Men-
ge von Studenten die Mathematik studieren. Der Durchschnit der beiden Mengen
besteht aus den Elementen (Studenten), die beide Studienféacher studieren. o3

Differenz A\ B lies: A minus B
Die Differenz zweier Mengen 4 und B enthélt alle Elemente von A4, die nicht in B
enthalten sind (siche Abb. 1.4). Man schreibt:

A\B={x|x€Aundx ¢ B}
Beispiel 1.9. 4 sei eine Menge von Studenten die BWL studieren. B sei eine Menge

von Studenten die Mathematik studieren. Die Differenzmenge 4 \ B ist die Menge
der BWL Studierenden, die ausschlieSlich BWL studieren. o3
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Abb. 1.3: Durchschnitt

Abb. 1.4: Differenz

Komplement 4 lies: Komplement von 4
Das Komplement der Menge A4 beziiglich der Universalmenge €2 enthilt alle Ele-
mente der Menge €2, die nicht in der Menge A enthalten sind (siche Abb. 1.5). Man
schreibt:
A°={x|x€Qundx A4}

Beispiel 1.10. A sei eine Menge von Studenten die BWL studieren. Die Komple-

mentmenge von A4 sind alle Studierenden, die nicht BWL studieren. £SS

Produkt 4 x B lies: A kreuz B
Das Produkt zweier Mengen A und B besteht aus allen Paaren je eines Elements aus
der Menge 4 und aus der Menge B. Man schreibt:

AxB={(x,y)|x€Aundy € B}
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Abb. 1.5: Komplement

Beispiel 1.11.

X={x]0<x<1}
Y={ylo<y<t}
XxY={(xy)[0<x<1lund0<y<1}

1.2.2 Mengengesetze

Idempotenzgesetze Die Vereinigung und der Durchschnitt mit der selben Mengen
verdndert die Menge nicht.

AUA=A4
ANA=4

Identititsgesetze Die leere Menge enthélt kein Element. Folglich verandert
die Vereinigung einer Menge mit der leeren Menge die Menge nicht. Der Durch-
schnitt einer Menge mit der leeren Menge fiihrt folglich zur leeren Menge. Die Uni-
versalmenge enthilt alle Elemente einer Mengenalgebra. Daher ist die Vereinigung
einer Menge mit der Universalmenge die Universalmenge. Der Durchschnitt mit ihr
ist die Menge selbst.

AUD=4
AN0=0
AUQ =Q
AN =4

Komplementgesetze Eine Menge und deren Komplement sind die Universal-
menge. Der Durchschnitt einer Menge mit ihrem Komplement ist die leere Menge.
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AUA=Q
ANA“ =0

Kommutativgesetze Die Vertauschung zweier Mengen bei der Vereinigung
bzw. beim Durchschnitt éndert nicht das Ergebnis.

AUB=BUA
ANB=BNA

Assoziativgesetze  Die Reihenfolge der Vereinigung bzw. des Durchschnitts
von Mengen dndert nicht das Ergebnis.

(AUB)UC = AU (BUC)
(ANB)NC=A4N(BNC)

Distributivgesetze Die Vereinigung von B, C geschnitten mit A4 ist gleich den
Vereinigung der Durchschnitte von 4, B und 4, C. Der Durchschnitt von B, C ver-
einigt mit A4 ist identisch mit dem Durchschnitt der Vereinigungen von 4, B und 4,
C.

AN(BUC) = (ANB)U(ANC)
AU(BNC)=(4UB)N(4UC)
Beispiel 1.12. Es sind die Mengen 4 = {1,2,5}, B ={1,2,3} und C = {1,3,4} ge-
geben.

Fiir das 1. Distributivgesetz ergibt sich

AN(BUC) ={1,2,5}n ({1,2,3}U{1,3,4}) = {1,2}
(ANB)UANC) = ({1,2}) U ({1}) ={1,2}

Fiir das 2. Distributivgesetz ergibt sich
AU(BNC)={1,2,5}U({1,2,3}n{1,3,4}) = {1,2,3,5}
(AUB)N(4AUC)={1,2,3,5}n{1,2,3,4,5} = {1,2,3,5}
$od

De Morgans-Gesetze Das Komplement des Durchschnitts von 4 und B ist
gleich der Vereinigung der beiden Komplementmengen. Das Komplement der Ver-
einigung von 4 und B ist gleich dem Durchschnitt der beiden Komplementmengen.

(ANB)° = A°UB°
(AUB)" = A°NB°
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Beispiel 1.13. Es sind folgende Mengen Q2 = {1,2,3,4,5}, 4 = {1,2,5} und B =
{1,2,3} gegeben.

Fiir das 1. De Morganssche Gesetz ergibt sich

(ANB)° = ({1,2,5}n{1,2,3}) = ({1,2}) = {3,4,5}
A°UB = {3,4}U{4,5} = {3,4,5}

Fiir das 2. De Morgansche Gesetz ergibt sich

(AUB)° = ({1,2,5}U{1,2,3}) = ({1,2,3,5}) = {4}
A°NB = {3,4}n{4,5} = {4}

Ubung 1.1. Betrachten Sie in der Grundmenge

Q={1,...,8}
die Teilmengen

A={1,...,5}
und

B=1{2,3,5,7,8}

Bestimmen Sie:

A°NB AUB A°NB°

Ubung 1.2. Auf einem Messestand erwerben vom 110 Besuchern 50 den Artikel
A, 80 den Artikel B und 70 den Artikel C. 20 Besucher kaufen die Artikel A, B und
C. AuBlerdem erwerben jeweils 20 Besucher nur die Artikel B und C und 4 und C.
30 Besucher kaufen nur den Artikel B.

Wie viel Besucher kaufen nur den Artikel 4 und nur den Artikel C?

Ubung 1.3. Gegeben seien die Intervalle 4 = [1,2), B = (—2,1) und C = [0,2].
Eine eckige Klammer | bedeutet, dass die Zahl im Intervall enthalten ist, eine runde
Klammer ( bedeutet, dass die Zahl nicht eingeschlossen ist. Fiihren Sie folgende
Mengenoperationen aus:

AUB AUC 4ANC
BNC C\4 C\B
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1.2.3 Zahlenmengen

Die Grundlage vieler mathematischer Uberlegungen sind Zahlen. Sie kénnen in un-
terschiedliche Bereiche eingeteilt werden. Beispielsweise gibt es Zahlen, die nur fiir
die einfache Zéhlung geeignet sind. Andere entstehen aus Briichen oder durch die
Auflosung einer Gleichung.

Wenn wir etwas zdhlen, verwenden wir die Menge der natiirlichen Zahlen. Sie
wird mit dem Symbol N bezeichnet:

N={1,2,3,4,...}
Haufig wird die Menge der natiirlichen Zahlen um die Null erweitert.
No=1{0,1,2,3,4,...}

Wird die Menge der natiirlichen Zahlen mit den negativen Zahlen erweitert, er-
hélt man die Menge der ganzen Zahlen Z.

Z={.,64,-3,-2,-1,0,1273,4,.}

Das Verhiltnis zweier ganzer Zahlen fiihrt zur Menge der rationalen Zahlen. Es
sind die Briiche | , auer der Division mit 0. Zum Beispiel :g =0.4 oder g = 1.666.
Sie werden mit dem Symbol Q bezeichnet.

Q:{Zz mitnEZundmez\{O}}

Die bisher genannten Zahlen sind abzéhlbar, obwohl alle drei Zahlenmengen N,
Z und Q unendlich sind.

Die Losung der Gleichung x> = 2 ist nicht in den bisher beschriebenen Zahlen-
mengen enthalten. Die positive Wurzel von 2 besitzt unendlich viele Nachkomma-
stellen. Es handelt sich um eine algebraische Zahl, da sie aus einem Polynom mit
rationalen Koeffizienten entsteht (siche Kapitel 8.3). Es existieren aber auch irratio-
nale Zahlen, die sich nicht als Losungen von Gleichungen darstellen lassen. Dies sind
zum Beispiel die Kreiszahl 7 oder die Eulersche Zahl e. Sie heiflen transzendente
Zahlen. Beide Zahlenarten (algebraische und transzendente) werden zur Menge der
irrationalen Zahlen zusammengefasst. Die Menge der irrationalen Zahlen ist nicht
mehr abzéhlbar. Die Erweiterung der rationalen Zahlen um die irrationalen Zahlen
fithrt zu der Obermenge der reellen Zahlen mit dem Symbol R.

R={x mit—co<x< +oo}

Auf dem Zahlenstrahl sind alle Punkte besetzt.

Es existieren aber noch Zahlen jenseits der reellen Zahlen. Die Losung der Glei-
chung x> = —2 fiihrt zur Wurzel (siche Kapitel 2.6) einer negativen Zahl: x = /—2.
Sie ist nicht Teilmenge der reellen Zahlen. Das Quadrat jeder reellen Zahl ist positiv.
Daher konnen negative reelle Zahlen keine reellen Wurzeln haben. Mit der Einfiih-

rung der Definition > = —1 wird die Menge der reellen Zahlen zu der Menge der
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komplexen Zahlen mit dem Symbol C erweitert. Die Elemente dieser Menge haben
die Form
c=a+bi,

wobei @ und b Elemente der reellen Zahlen sind. Die Zahl ¢ ist zusammengesetzt aus
einem Realteil @ und einem Imaginérteil bi.

C={c=a+bi mita,beR}

Mit der obigen Herleitung haben wir die Menge der Zahlen beschrieben und
beobachten folgende Bezichung unter den beschriebenen Mengen:

NcZcQcRcC

1.3 Aussagenlogik

Lehre vom folgerichtigen Denken, d. h. vom richtigen Schlie3en aufgrund gegebener
Aussagen.

Beispiel 1.14. Wenn es nicht regnet oder schneit, spielt Leo Fuf3ball.

Aussage A: Es regnet nicht
Aussage B: Es schneit nicht
Aussage C: Leo spielt FuB3ball

Der Wahrheitsgehalt der zusammengesetzten Aussage ist wahr, wenn es nicht
regnet oder nicht schneit und Leo Fufiball spielt, bzw. falsch, wenn es nicht regnet
und nicht schneit, und Leo nicht spielt.

Weniger offensichtlich ist indes, dass die Aussage stets wahr ist, wenn Leo sonn-
tags FuBlball spielt, gleichgiiltig wie das Wetter ist. Der scheinbare Widerspruch klért
sich, wenn zwischen der Aussage und dem Wahrheitswert unterschieden wird. ¢

Eine Aussage A ist ein Satz, der entweder wahr oder falsch ist. Ein dritter Wert
existiert nicht, ein Teilwert ebenfalls nicht.
1.3.1 Logikoperatoren

Negation -4  lies: nicht A
Umkehrung des Wahrheitswertes. Die Negation der Aussage A.

Beispiel 1.15. ,,Es regnet nicht“ ist —4: ,,Es regnet*. o3

Tabelle 1.2: Wahrheitstafel fiir Negation
A -4

w f
f w
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Konjunktion A AB lies: Aund B

Verbindung von zwei Aussagen mit einem logischen UND. Sie ist nur wahr, wenn
sowohl A als auch B wahr ist.

Tabelle 1.3: Wahrheitstafel fiir Konjunktion

A BAANB
WW W
wif f
fw f
ff f

Beispiel 1.16. ,,Es schneit nicht” und ,,es regnet nicht”. Wenn beides wahr ist, dann
ist die Konjunktion der beiden Aussagen wahr. Trifft eine der beiden Aussagen nicht
zu, dann ist die Konjunktion falsch. ges

Disjunktion 4V B lies: A oder B

Verbindung von zwei Aussagen mit einem logischen ODER. Sie ist wahr, wenn we-
nigstens eine der beiden Aussagen wahr ist (heifit nicht entweder oder!).

Tabelle 1.4: Wahrheitstafel fiir Disjunktion

A B AVB
WW W
wif w
fw w
ff f

Beispiel 1.17. ,,Es schneit® oder ,,es regnet”. Wenn eine der beiden Aussagen zutrifft,
dann ist die Gesamtaussage wahr. £SS

Implikation 4 — B lies: aus A folgt B
Schlussfolgerung (Konklusion) aus einer Aussage A, die Voraussetzung (Pramisse)
genannt wird. Eine Implikation ist wahr, wenn A und B wahr sind. Sie ist aber auch
wahr, wenn aus ,,A falsch* ,,B falsch* oder aus ,,A falsch* ,,B wahr gefolgert wird.
Sie ist nur dann falsch, wenn aus ,,A wahr* ,,B falsch* gefolgert wird. Ist 4 — B =

wabhr, so schreibt man 4 = B. Gilt 4 = B, so heifit A hinreichende Bedingung fiir B
und B notwendige Bedingung fiir A.
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Tabelle 1.5: Wahrheitstafel fiir Implikation

ABA—B
WW W
wif f
fw w
ff w

Beispiel 1.18. Leo spielt Fulball. Der Tag ist regenfrei. A = C: Wenn der Tag trocken
ist, dann spielt Leo Fuf3ball.

Die Aussage ,,der Tag ist ohne Regen® ist hinreichend dafiir, dass die Aussage
,,Leo spielt Fuflball“ wahr ist. Notwendigerweise spielt Leo Fu3ball, wenn der Tag
ohne Regen ist. Die Umkehrung gilt jedoch nicht: ,,wenn Leo FuBlball spielt, ist der
Tag ohne Regen®. Leo spielt auch in der Halle FuB3ball. £SS

Aquivalenz 4 <+ B lies: A genau dann, wenn B Aquivalenz
Die Implikation gilt in beiden Richtungen, d.h. 4 — B und B — 4. Die Aquivalenz
ist dann wahr, wenn A und B denselben Wahrheitswert haben. Sie ist falsch, wenn
der Wahrheitswert von den beiden verschieden ist. Ist A <+ B = wabhr, so schreibt
man 4 < B.

Tabelle 1.6: Wahrheitstafel fiir Aquivalenz

ABA+ B
WWwW W
wif f
fw f
ff w

Beispiel 1.19. Aussage A: x ist durch 2 teilbar. Aussage B: y ist eine gerade Zahl. Es
giltx < y, weil jede gerade Zahl durch 2 teilbar ist und alle durch 2 teilbaren Zahlen
geraden Zahlen sind. Die Aussage ist wahr. £SS

In der Informatik werden weitere Operatoren verwendet. Es sind die negierten
Operatoren der Kon- und Disjunktion NAND und NOR sowie der Aquivalenz XOR.

1.3.2 Regeln

e Klammerausdriicke werden von innen nach aullen interpretiert
e Operationen werden in der Reihenfolge

1. Negation

2. Konjunktion

3. Disjunktion

4. Implikation
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5. Aquivalenz

interpretiert.

1.3.3 Gesetze der Logik

Idempotenzgesetze Konjunktion oder Disjunktion einer Aussage 4 mit sich selbst
liefert die Aussage A.

ANA=A4
AVA=A4

Beispiel 1.20. Die Aussage ,,es schneit nicht” dndert sich nicht durch eine Konjunk-
tion oder durch eine Disjunktion mit sich selbst. £

neutrale Wahrheitswerte Die Konjunktion einer Aussage 4 mit WAHR lie-
fert stets A; mit FALSCH liefert stets FALSCH. Die Disjunktion einer Aussage 4 mit
WAHR liefert stets WAHR und mit FALSCH stets 4.

ANWAHR = 4

AV WAHR = WAHR
ANFALSCH = FALSCH
AVFALSCH =4

Beispiel 1.21. Die Aussage ,,es schneit nicht™ konjunktiv mit WAHR verkniipft lie-
fert die Aussage. Die Aussage ,,es schneit™ disjunktiv mit WAHR verkniipft liefert
stets WAHR. Die Konjunktion mit FALSCH ist stets FALSCH; die Disjunktion mit
FALSCH ist stets 4. te3

Kommutativgesetze Die Aussagen 4 und B konnen bei der Konjunktion und
bei der Disjunktion vertauscht werden ohne das sich der Wahrheitswert dndert.

ANB=BAA
AVB=BVA
Assoziativgesetze Die Reihenfolge einer konjunktiven oder disjunktiven Ope-
ration dndert den Wahrheitswert nicht.
(ANB)ANC=AN(BAC)
(AVB)VC=A4V (BVC)
Distributivgesetze  Die Konjunktion von 4 mit einer disjunktiven Operation
B, C ist gleich der Disjunktion der Konjunktionen von 4, B und 4, C. Fiir dieses

Gesetzt existiert die Analogie in der Arithmetik: 4 X (B+C) =4 x B+ A4 x C. Die
Disjunktion von 4 mit einer konjunktiven Operation B, C ist gleich der Konjunktion
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der Disjunktionen von 4, B und 4, C. Fiir dieses Distributivgesetz existiert in der
Arithmetik keine Analogie.

AN(BVC) = (AAB)V (AAC)
AV (BAC) = (AVB)A(AVC)

Beispiel 1.22. Betrachten wir die Wahrheitstabelle fiir die Aussagen 4, B, C.

Tabelle 1.7: Wahrheitstafel fiir Distributivgesetze

A B C AAN(BVC) (AAB)V(ANC) AV (BAC) (AVB)A(4VC)
W W W w w w w
w w f w w w w
w f w w w w w
w f f f f w w
f w w f f w w
f f w f f f f
f w f f f f f
f £ f f f f f
Die Aussagewerte der Terme sind gleich. £SS

Absorptionsgesetze Die Absorptionsgesetze sind mit den Regeln Mengenleh-
re leicht nachvollziehbar.

AN(AVB) =4
AV(ANB) =4

Beispiel 1.23. Die Aussage A4 sei ,,Leo spielt Fulball“. Die Aussage B sei ,,es regnet
nicht”. Angenommen 4 sei wahr und fiir B sei wahr oder falsch. Dann ist (A \% B)
stets wahr und somit auch 4 A (4 V B), weil der Aussagewert von 4 und (4 V B) wahr
sind.

Betrachten wir das 2. Absorptionsgesetz. Die Konjunktion (A /\B) liefert fiir die
obige Annahme den Aussagewert wahr oder falsch. Aufgrund der Disjunktion mit 4
ist aber nur der Aussagewert von A4 fiir die Gesamtaussage bestimmend. £es

De Morgans Gesetze Die Negation einer Konjunktion ist gleich der Disjunk-
tion der negierten Aussagen. Die Negation einer Disjunktion ist gleich der Konjunk-
tion der negierten Aussagen.

—~(AAB) =-A4V-B
~(4VB) =-4A-B

Beispiel 1.24. Aussage A : ,.kein Regen®, Aussage B : ,,kein Schnee®. Die Verneinung
von ,.kein Regen® UND , kein Schnee* ist ,,Regen” ODER ,,Schnee®. Die Verneinung
von ,.kein Regen* ODER ,kein Schnee“ist ,,Regen UND ,,Schnee*. 1t
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Kontraposition Aus A4 folgt B ist gleich aus nicht B folgt nicht 4.
(A—B)=(-B——4)

Beispiel 1.25. Es sind die Aussage 4: ,kein Regen* und die Aussage B: ,,Leo spielt
FuBball* gegeben. Die Implikation ,,kein Regen“ = ,,Leo spielt Fu3ball* ist iden-
tisch mit ,,Leo spielt nicht FuBiball“ = , Regen®. Natiirlich gilt die Kontraposition
auch fiir die anderen 3 Implikation 4 : wahr — B : falsch, 4 : falsch — B : wahr und
A : falsch — falsch. e

Umwandlungsregeln

AVB=—-4—B

ANB=—(4— —B)

A<+ B=(-AVB)A(AV —B)

A+ B=(ANB)V(—~4AAN—B)

A+ B=-4+ —B
~(4<>B)=A+<-B=-4+8B

Konsensusregeln In den folgenden Aussageverbindungen besitzt die Kon-
junktion bzw. Disjunktion von B, C immer den Aussagewert falsch, wenn auch die
Konjunktion bzw. Disjunktion von 4, B oder von A4, C falsch sind. Daher beeinflusst
BACbzw. BV C den Gesamtaussagewert nicht.

(AAB)V (~ANC)V (BAC) = (AAB)V (=4 AC)
(AVB)A(~AVC)A(BVC) = (AVB)A(-4VC)

1.4 Fazit

Mengen und Zahlenmengen sind Grundlagen der Mathematik. Die reellen Zahlen
sind die am hiufigsten verwendeten Zahlen. Die Aussagenlogik wird in der Mathe-
matik zur Beweisfithrung verwendet. Ferner wird sie in der Informatik eingesetzt.
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2.1 Vorbemerkung

Summen- und Produktzeichen kiirzen die fortgesetzte Summation und Addition ab.
Insbesondere das Summenzeichen wird hiufig verwendet. Der Logarithmus und die
Exponentialfunktion bereiten vielen Studierenden immer wieder Schwierigkeiten.
Daher werden sie hier kurz mit anderen grundlegenden mathematischen Funktionen
beschrieben. Ferner werden zwei spezielle Funktionen eingefiihrt, die in spéteren
Kapiteln verwendet werden. Es sind die Betragsfunktion und die GauB3-Klammer
(Auf- und Abrundungsfunktion). In Kapitel 8 werden die Funktionen mit einer Va-
riablen ausfiihrlicher erklart.
Ubersicht iiber die hier eingesetzten mathematischen Symbole:

>

Summenzeichen

[ Produktzeichen

i

Subskript, Index

e Eulersche Zahl
| | Betragsfunktion
f(x) Funktion von x

W. Kohn, R. Oztiirk, Mathematik fiir Okonomen, Springer-Lehrbuch,
DOI 10.1007/978-3-642-28575-2_2, © Springer-Verlag Berlin Heidelberg 2012
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log,x Logarithmusfunktion zur Basis a

Inx Logarithmusfunktion zur Basis e, natiirlicher Logarithmus
[1,]] Ganzzahlfunktion

/X Wurzelfunktion

2.2 Summenzeichen

Das Summenzeichen ) steht als Wiederholungszeichen fiir die fortgesetzte Addi-
tion.

n
Zai:a1+a2+---+an 2.1)
i=1
In der Gleichung (2.1) bezeichnet man i als Summationsindex, der hier mit eins
beginnt und jeweils um eins hochgezéhlt wird bis die Obergrenze n erreicht ist. Der
Index i kann mit jeder ganzen Zahl beginnen und enden.

Beispiel 2.1.
1

Z Xi =X_p+X_1+Xx0+X]
i=—2
Mit negativen Indizes werden in der Okonomie oft Werte aus der Vergangenheit, mit

positiven Indizes zukiinftige Werte und mit dem Index Null der Wert der Gegenwart
bezeichnet. L

Das Summenzeichen ist niitzlich, um grofere Summen iibersichtlich darzustel-
len, deren Wert zu berechnen ist. Es gelten die folgenden Rechenregeln, die sich aus
den Rechengesetzen ergeben:

Gleiche Summationsgrenzen:

Za, Zb —Z (ai+by)
i=1

Beispiel 2.2.
3 3 3
Zl+3+5 22—|—4+6: +2+3+4—|—5+6)
i=1 -1 - Y by a by a3 b3
gos
Additive Konstante:
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Beispiel 2.3.
10 10
Z(al+1) = (a1+1)++(6110+1):za[+10
=1 i=1
Xt
Multiplikative Konstante:
n n
Z cai=c Z a;
i=1 i=1
Beispiel 2.4.
4 4
D 32=3) 2=3(1+27+37+4%) =90
i=1 i=1
ged
Summenzerlegung:
n m n
Zai = Zai—i- Z a; firm<n
i=1 i=1 i=m+1
Beispiel 2.5.

5 3 5
=i+ i=1+243+4+5=15
i=1 i=1 i=4

$od
Das Summenzeichen kann auch doppelt oder mehrfach hintereinander auftreten.
Zwei Summenzeichen treten zum Beispiel hintereinander auf, wenn in einer Tabelle
alle Werte addiert werden sollen. Die Zeilen einer Tabelle werden in der Regel mit

i indiziert und die Spalten einer Tabelle mit j. Die Werte in den Tabellenfeldern
werden dann mit a;; bezeichnet (siche Tabelle 2.1).

Tabelle 2.1: Zweidimensionale Tabelle mit Randsummen

m

ajy @y di YL ai
m

aj aijj o dim 271 aij
m

L N Y B > i1 anj

doirait e D aij e Yo dim 2?:127:1%‘

Wie in der oben stehenden Tabelle ersichtlich, konnen mit der Doppelsumme alle

Werte der Tabelle addiert werden. Dabei ist es egal, ob erst die Zeilen und dann die
Spalten addiert werden oder umgekehrt.
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Zalj-i-zaz/-i- +Zan, —ZZa,]

11]1

Zall+za12+ +Zazm—zzazj

j=1i=1
§ § a,,:§ § aij
i=1 j=1 j=1i=1

Lediglich die Reihenfolge der Summation ist unterschiedlich. Nach dem ersten Kom-
mutativgesetz fiihrt dies zu keiner Ergebnisdnderung.

Beispiel 2.6.

2 3

SN by ik )= (b +1) + (b +2) + (bi3+3)

i—1 j—1
+(b21 +2)+ (bnn+4)+ (b3 +6)

2 3
= 18—|—ZZ!)1]

i=1 j=1
Lt
Ubung 2.1. Berechnen Sie folgende Ausdriicke fiir x = 5,2,1,2 und y = 1,2,3, 4

4 4 4
in inyi Z (xi+3)
i=1 i=1

i=1

Ubung 2.2. Berechnen Sie die folgenden Summen:

5 5
Z(n—l)z(n—FZ) Z(llc_kj—l>

n=2 k=1
Ubung 2.3. Ist die Doppelsumme
2 2
DD i
i=1 j=1

gleich der Summe

2 2
E Xi E x]'?
=1 j=1
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2.3 Produktzeichen

Das Produktzeichen [] steht als Wiederholungszeichen fiir die fortgesetzte Multi-
plikation.

n
Ha,-:al Xdy X Xday
i=1

Das Produktzeichen wird wie das Summenzeichen zur iibersichtlicheren Darstel-
lung von groBeren Produkten verwendet. Es gelten die folgenden Rechenregeln, die
sich leicht aus den elementaren Rechenoperationen ableiten lassen:

Gleiche Produktgrenzen:
n n n
Hai X bi = Hai X Hb’
i=1 i=1 i=1
Multiplikative Konstante:

n n
chai:c” X Hai
i=1 i=1

Anmerkung: Im Text wird das Produktzeichen x — soweit es eindeutig ist — durch
einen kleinen Freiraum ersetzt.
axb=ab

Ubung 2.4. Berechnen Sie folgende Ausdriicke fiir x = 5,2, 1,2:
5

4 4
Hxl- Hi Hzxi
i=1 i=1

i=1
Ubung 2.5. Schreiben Sie das Doppelprodukt
2 2
J0NED
i=1 j=1

aus.

2.4 Betragsfunktion

Die Betragsfunktion liefert von einer reellen Zahl deren vorzeichenlosen Zahlen-
wert.
i X firx >0
Xl =
—X firx <0

Anschaulich kann der Betrag |x| als der Abstand auf der Zahlengeraden zwischen 0
und x interpretiert werden. Beim Rechnen mit Betrigen ist Folgendes zu beachten:

|x| >0
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eyl = x| x [y

x :|x| firy#0
vl
e y| < |x[+ [y

2.5 Ganzzahlfunktion

Die GauBi-Klammer | | wird auch als Ganzzahlfunktion bezeichnet. Urspriinglich
bezeichnet sie die Abrundung einer reellen Zahl zur ndchsten ganzen Zahl. Daher
wird sie manchmal auch Abrundungsfunktion genannt.

x| =max{k|k<x} mitkeZ

Der senkrechte Strich | bedeutet «fiir die gilt». Hier also «fiir die k, fir die £ < x
gilty.

Beispiel 2.7. Die Zahl 2.8 wird durch 2.8 auf 2 abgerundet.
12.8] =2

Die Zahl —2.8 wird durch die Abrundungsfunktion auf —3 abgerundet, weil
—3<-28< —2gilt.
|—2.8] = -3

It

Jedoch benétigt man manchmal auch die Aufrundung einer reellen Zahl auf die
nichste ganze Zahl. Man schreibt dann in Anlehnung an die Abrundungsfunktion:

[x] =min{k|k>x} mitkeZ

Beispiel 2.8. Die Zahl 2.8 wird durch die Aufrundungsfunktion [2.8] auf 3 aufge-
rundet.
2.8] =3

Die Zahl —2.8 wird dementsprechend aufgerundet auf —2.

[—2.8] = -2
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2.6 Potenzen und Wurzeln

Sowohl in der Finanzmathematik als auch in der Analysis tauchen Potenzen auf. Man
spricht von einer Potenz mit natiirlichem Exponent, wenn man eine reelle Zahl n-mal
mit sich selbst multipliziert.

d'=ax...xa mitaecRneN
- -~

~
-m:

al

Die Zahl a wird Basis genannt und die Zahl n wird als Exponent bezeichnet. Der
Gesamtausdruck hei3t Potenz ¢ hoch n.
Auch in der Potenzrechnung gilt Punktrechnung vor Strichrechnung.

Beispiel 2.9.
—(3%) = -8, aber (—3)* =81
(4 x5)>=20°=8000, aber 4x5°=4x125
ol

Fiir den Umgang mit Potenzen bei natiirlichem Exponent gelten folgende fiinf
Rechenregeln.

Regel Beispiel

l.d"xd" =a"™" mitacR;mneN 2’ x22=2

am 23
2. =d"" mitaeR;a#0;mneN =2

a" 22
3.(axb)' =d"b" mita,b€R;neN (2x3)*=22x32=36

a\n a’ . 6\> 6

4. (b) = mita,beR;b#0;neN (3) :32:4
5.(@)" =d™" mitaeR;mneN (23)2:26:64

Fiir die Addition und Subtraktion von Potenzen existieren keine Rechengesetze.
Ausdriicke wie zum Beispiel x> +? oder x> + x> konnen nicht vereinfacht werden.

Die Potenzrechnung wird nun auf ganze Zahlen ausgedehnt. Mit dieser Erweite-
rung konnen rationale Zahlen dargestellt werden.

1
a"= — mitacR\{0},neN
a
=1 mitacR\{0}

Das Zeichen \ bedeutet ohne die Menge { }. Im vorliegenden Fall ist es die Menge
der reellen Zahlen ohne die Null. SchlieB8lich ist es sinnvoll, die Potenzrechnung
nochmals zu erweitern, um zum Beispiel folgende Gleichung zu 16sen:
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=2

Potenziert man beide Seiten mit ;, so ergibt sich:

()cz)é :2% = x:2£

Der gesuchte Wert ergibt sich in Form einer Potenz mit der Basis 2 und dem Expo-
nenten ; Weil diese Gleichungen haufig auftreten, wird die Losung als Quadratwur-
zel bezeichnet und als

x=v2=12

geschrieben. Bei der Quadratwurzel entféllt hdufig der Wurzelexponent. Die Wurzel
von einer negativen Zahl x ist in den reellen Zahlen nicht definiert. Um solche Funk-
tionen zu berechnen, sind imaginédre Zahlen nétig, die zusammen mit den reellen die
komplexen Zahlen ergeben (siche Kapitel 1.2.3).

Beispiel 2.10.
v/—16 istnichtin R definiert, aber — V16 =—4
o

Daher heiBt es etwas allgemeiner: Die nicht negative Losung x von a = x> mit
a € RT heiBt Quadratwurzel.

Vx2=|x| firxeR

Sucht man die Losung fiir eine Potenz groBer als 2, so spricht man von der n-ten
Waurzel.

. 1
a=x" mitxcR"ncRn#0 = x=ar=1/a
Nun kann man auch folgende Gleichung 16sen:
d"=x" mitx€RT mncRn#0 = x=an = Vam

Das Wurzelziehen ist also die Umkehroperation zum Potenzieren. Zieht man die n-te
Waurzel und potenziert hoch n, dann gelangt man wieder zur Ausgangszahl.
Beispiel 2.11.
V83 =38
*

Mit der Wurzel lassen sich reelle Zahlen darstellen, die nicht ausgeschrieben
werden kénnen, wie zum Beispiel v/2.

Beispiel 2.12.
2
Va=2 =21 =21 —\/2=141421...

Die fiinf Potenzregeln bleiben auch fiir die Potenzen an giiltig.

Beispiel 2.13.
V256 % /256 = 2564 x 2562 = 2561 — V2563 — 43 — 64
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V84 83
Vs gl g V82
1
VAXV9 =42 %92 = (4x9)2 =362 = /36 =6

1 1
100 1002 100 2
% = < > — 42 — V4 =2
V25 252 25

o]

2.7 Exponentialfunktionen

Um das Wort «exponentiell» zu erkldren, beginnen wir mit einem Beispiel aus der
Biologie.

Beispiel 2.14. Wir betrachten eine Bakterienkultur, deren Wachstumsprozess durch
die Zellteilung zustande kommt. Wir gehen davon aus, dass

e zu Beginn 1 000 Bakterien existieren
e und sich jede Stunde die Anzahl der Bakterien verdoppelt.

An einem Zeitstrahl wiirde dies wie folgt aussehen:
Stunden 0 1 2 3 4 5
Bakterien 1000 2000 4000 8000 16000 32000

Da sich die Anzahl der Bakterien pro Stunde verdoppelt, muss die Anzahl der Bak-
terien zu Beginn mit 2 multipliziert werden, um deren Anzahl nach einer Stunde zu
berechnen. Fiir jede weitere Stunde muss nun der jeweils vorherige Wert wiederum
mit 2 multipliziert werden usw. £es

Mit der Exponentialfunktion
f(x)=da" mita,xeR

wird die obige Populationsidnderung beschrieben. a* bedeutet das x-fache Produkt
von a. Fiir x € N kann man also

ad=axax..xXa
-

~ -
x-mal
schreiben. Wird fiir a der Wert 2 eingesetzt, so erhilt man mitx = 0,...,5 die Werte

in der Tabelle.
Eine tibliche Form die Funktion aufzuschreiben, ist

fx) =ca™,
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5000 f(x)=1000%2%

Abb. 2.1: Entwicklung einer Bakterienpopulation

wobei a,b,c Koeffizienten sind. Mit den Koeffizienten verdndert sich die Kurven-
form der Exponentialfunktion. Oft wird fiir die Basis a die Eulersche Zahl e ver-
wendet.

X—>00

1 X
e = lim (1—1— ) ~2.718282
x

Beispiel 2.15. Ein weiteres Beispiel fiir ein exponentielles Wachstum ist die Zin-
seszinsrechnung. Es wird ein Kapitalbetrag von 1000<€ zu 5 Prozent iiber 5 Jahre
angelegt.

Jahr 0 1 2 3 4 5

€ 1000 1050 1102.50 1157.62 1215.50 1276.28

Der Betrag am Ende jeden Jahres wird mit dem Faktor 1.05 multipliziert. Fiir das
erste Jahr errechnet sich das angesparte Kapital wie folgt:

1050 = 1000 + 1000 x 0.05
1050 = 1000 (1 +0.05)
1050 = 1000 x 1.05

Fiir das Kapital nach dem zweiten Jahr kann die Exponentialfunktion wieder ver-
wendet werden.
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1102.50 = 1050 x 1.05
1102.50 = 1000 x 1.05 x 1.05

1102.50 = 1000 x 1.05*
Die Exponentialfunktion besitzt hier die Koeffizienten a = 1.05, 5 = 1 und ¢ = 1000
£(x) = 1000 x 1.05"
gos

Im Allgemeinen gilt, dass im Exponenten jede reelle Zahl stehen kann. Das kon-
nen negative und positive Zahlen, aber auch Briiche und die Null sein. Mit der Ex-
ponentialfunktion kdnnen daher sowohl Wachstums- als auch Abnahmeprozesse be-
rechnet werden.

Beispiel 2.16. Eine Maschine kostet 1 000€. Es wird angenommen, dass sie jedes
Jahr 20 Prozent an Wert verliert. Diese Form des Wertverlusts wird als geometrisch
degressive Abschreibung bezeichnet. Die zeitliche Entwicklung des Wertes sieht
dann wie folgt aus:

Jahr 0 1 2 3 4 5
Wert 1000 800 640 512 409.60 327.68

Der Wertverlust der Maschine kann auch mit der Exponentialfunktion beschrieben
werden.
f(x) =1000 x 0.8* = 1000 x 1.257*

Nach 5 Jahren liegt der Restwert der Maschine bei
(5) =1000 x 1.257° =327.68€

Da stets 80 Prozent des Restwerts bestehen bleiben, wird die Maschine nie einen
Restwert von Null besitzen. Lt

Wir haben bereits gesehen, dass die Exponentialfunktion durch die allgemeine
Form
f(x) =ca®™ mita,b,c,xeR

definiert ist. Der Funktionswert f(x) dndert sich, sobald sich die Variable x &ndert.
Betrachten wir nun eine Anderung der Variablen x um s, also einen neuen Wert x +s.
Wie verhilt sich der Funktionswert f(x +5)?

Slx+s)= cabOts)
Da

b (x+s)

ca =ca’*a"
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ist, entsteht daraus

flrts) = f(x)a”,

d.h., wichst die Variable x additiv um s, so dndert sich der Funktionswert multipli-

kativ um a®s.

Ubung 2.6. Berechnen Sie fiir ein Kapital von 10000€, das zu 5 Prozent iiber 10
Jahre angelegt wird, den Endwert.

Ubung 2.7. Angenommen das Kapital aus Ubung 2.6 wird nur fiir 9 Jahre angelegt.
Wie kénnen Sie aus dem Endkapital, das Sie in der Ubung 2.6 berechnet haben, den
Endwert nach 9 Jahren berechnen?

Ubung 2.8. Ein Gewinn soll sich in den nichsten 15 Jahren verdoppeln. Welche
durchschnittliche jahrliche Wachstumsrate ist dazu notwendig?

2.8 Logarithmen

Wie werden Exponentialgleichungen nach x umgestellt?

Logarithmen sind zum Ldsen von Exponentialgleichungen oder zum Beschrei-
ben von Wachstumsprozessen wichtig. Der Logarithmus (genau genommen handelt
es sich um die Logarithmusfunktion) ist die Umkehrung des Potenzierens.

y=a" & x=log,y mita,y € R unda#1 (2.2)

Waurde beim Radizieren die Basis a errechnet, so sucht man jetzt bei bekanntem
Potenzwert y und Basis @ den Exponenten x. Der Logarithmus einer beliebigen po-
sitiven Zahl y zur Basis a ist derjenige Exponent x, mit dem die Basis a potenziert
werden muss, um den Numerus y zu erhalten.

Beispiel 2.17. Hierfiir wird die Gleichung aus Beispiel 2.15 betrachtet.
1102.50 = 1000 x 1.05*

Es ist die Anlagedauer x gesucht. Durch Logarithmieren der Gleichung (siche Re-
chenregeln auf der folgenden Seite)

log1102.50 = 1log 1000 4 x log 1.05

erhdlt man die Variable x in einer lineare Beziehung, so dass durch Division die
Losung berechnet werden kann.

. log1102.50 —1og1000 _
N log1.05 N

2
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Beispiel 2.18.

8§=2° & log,8=3

Aus der Definition des Logarithmus (2.2) folgen die Beziehungen:

log,a=1 demn a'=a

log,1=0 demn =1
log,a"=n denn da"=a"
Weitere Rechenregeln sind:
log,(c xd) =log,c+log,d
log, ; =log,c—log,d
log,b" = nlog, b
n 1
log, Vb= "log,b
n
Logarithmen mit gleicher Basis bilden ein Logarithmensystem, von denen die
beiden gebrauchlichsten die dekadischen (Basis a = 10, oft mit log bezeichnet) und
die natiirlichen Logarithmen (mit der Eulerschen Zahl a = e als Basis mit der Be-

zeichnung In) sind. Auf dem Taschenrechner sind meistens die beiden oben genann-
ten Logarithmensysteme vorhanden. Wie kann der Logarithmus

x=log,8

mit einem Taschenrechner berechnet werden? Dazu folgende Uberlegungen: Ausge-
hend von der Gleichung

y=a
ergeben sich mit den beiden obigen Logarithmen die beiden folgenden Gleichungen:
1
logy =xloga = x= o8y

loga
Iny

Iny =x1 =

ny=xlna = x Ina

Daraus ergibt sich nun die Giiltigkeit der folgenden Beziehung:

logy Iny

:1 = =
* = 08a) loga Ina

Somit ist die Berechnung des Logarithmus log, 8 kein Problem.

log8 In8

=3
log2 In2

x=log,8 =
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Logarithmen werden auch fiir die grafische Darstellung von Wachstumsprozes-
sen verwendet. Angenommen, ein Wert wichst in jeder Periode um 10 Prozent
(p = 0.1), dann ist die Wachstumsrate konstant, die resultierenden Werte nehmen
aber exponentiell zu (siche obere Grafik in Abb. 2.2).

x=x_1(1+p) mitt=1,...,n

Wird der Wachstumsprozess in einer Grafik mit logarithmierten Werten auf der Or-
dinaten abgetragen, so siecht man die Konstanz der Wachstumsrate.

log,x; = log,x;—1 +tlog,(14+p) mita>0unda# 1 (2.3)

In der Gleichung (2.3) handelt es sich um eine Gerade mit Achsenabschnitt log,x,_
und Steigung log, (1 + p) (siehe untere Grafik in Abb. 2.2). Hier wurde a = e, also
der natiirliche Logarithmus In verwendet.

normale Ordinate

0 5 10 15 20 25 30
t
logarithmierte Ordinate zur Basis e

Abb. 2.2: Exponentieller Wachstumsprozess

Ubung 2.9. Lésen Sie die folgenden Gleichungen nach x auf.

y= eaerx e 4% —0.5
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Ubung 2.10. Ein Kapital Ky soll sich verdoppeln. Es ist ein Zinssatz von 5 Prozent
pro Jahr gegeben. Wie viel Jahre muss das Kapital angelegt werden?

Ubung 2.11. Berechnen Sie folgende Logarithmen:

log, 5 log; 4

Ubung 2.12. Vereinfachen Sie die folgenden Ausdriicke mit den Rechenregeln der
Logarithmusrechnung:

ofortn) w5 20 )

2.9 Anwendung in Scilab

Reelle Zahlen werden in Scilab mit einem Punkt als Dezimalzeichen eingegeben.
3.4

Eine Summe wird in Scilab mit sum () berechnet. Soll eine Summe von belie-
bigen Zahlen berechnet werden, so sind die Zahlen in eckigen Klammern und durch
Kommas getrennt einzugeben.

sum(1l:6) -> 21
sum (3% (1:4)"2) -> 90
sum([3,6,1]) -> 10

Fiir eine Doppelsumme muss zuerst ein Zahlenfeld (siche auch Kapitel 5) in
Scilab eingegeben werden. Die Zeilen werden durch Semikolon getrennt. Die Dop-
pelsumme {iber das Zahlenfeld wird durch den einfachen Summenbefehl berechnet.
Soll nur die Summe iiber die Spalten berechnet werden, so muss nach der Angabe
der Variablen ein weiteres Argument angegeben werden. In diesem Fall ist es eine 1.
Fiir die Summe tiber die Zeilen ist das Argument eine 2.

tab = [2,3,4;5,6,7]

N
w
S

sum(tab) -> 27
sum(tab,1) -> 7 9 11
sum(tab, 2)

9
18
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Das Produkt eines Zahlenfelds wird mit dem Befehl prod () berechnet.

prod(tab) -> 5040
prod(tab,1)-> 10 18 28
prod(tab, 2)

24
210

Den Betrag einer Zahl erhélt man in Scilab mit dem Befehl abs () .
abs(-2) -> 2

Die GauB3-Klammer wird durch die Abrundungsfunktion £ loor () berechnet.
floor(2.8) -> 2

Die Aufrundungsfunktion ist durch die Funktion ceil () definiert.
ceil(2.8) -> 3

Potenzen und Wurzeln kénnen in Scilab mit dem «Dach»-Operator berechnet

werden.
2%4 -> 16
270.25 -> 1.1892071
sqrt (2)

Fiir die 2-te Wurzel steht auch die gesonderte Funktion sqrt zur Verfiigung.
Die Exponentialfunktion zur Basis e wird mit dem Befehl exp () aufgerufen.

exp(l) -> 2.7182818

Die Berechnung des Logarithmus zur Basis e erfolgt mit 1og, also der In in der

Notation des Buches. Es stehen noch weitere Logarithmusfunktionen in Scilab zur
Verfligung.

log(2) -> 0.6931472
logl0(2) -> 0.30103
log2(2) -> 1

Fiir alle Funktionen steht eine Hilfe zur Verfiigung. Sie wird mit he1p aufgeru-

fen. Fiir die Summenfunktion ist es beispielsweise

help sum
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2.10 Fazit

Das Summenzeichen wird viel in der linearen Algebra und Polynomen verwendet.
Das Produktzeichen findet vor allem in der Kombinatorik seine Anwendung. Die
Logarithmus- und die Exponentialfunktion sind wichtige mathematische Funktio-
nen, die zur Beschreibung von Wachstumsprozessen und zur Auflésung von Glei-
chungen herangezogen werden. Insbesondere in der Finanzmathematik werden diese
Funktionen verwendet.
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Kombinatorik
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3.1 Vorbemerkung

Die Kombinatorik ist die Grundlage vieler statistischer und wahrscheinlichkeitstheo-
retischer Vorginge. Sie untersucht, auf wie viele Arten man n verschiedene Dinge
anordnen kann bzw. wie viele Mdglichkeiten es gibt, aus der Grundmenge von n-
Elementen m-Elemente auszuwihlen. Sie zeigt also, wie richtig «ausgezdhlt» wird,

und damit gehort die Kombinatorik auch in den Bereich der Mathematik.
Es wird folgende Notation fiir die Kombinatorik eingesetzt:

n!  Fakultit

(3)  Binomialkoeffizient

P Permutation ohne Wiederholung
P, Permutation mit Wiederholung

W. Kohn, R. Oztiirk, Mathematik fiir Okonomen, Springer-Lehrbuch,
DOI 10.1007/978-3-642-28575-2 3, © Springer-Verlag Berlin Heidelberg 2012
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Variation ohne Wiederholung
Variation mit Wiederholung
Kombination ohne Wiederholung
Kombination mit Wiederholung

NAaxTS

3.2 Fakultit und Binomialkoeffizient

3.2.1 Fakultit

Das Produkt
Hi:n!, mitn € N

wird als Fakultit bezeichnet. Es gilt 0! = 1. In Scilab wird die Fakultit mit dem
Befehl factorial (n) berechnet.

3.2.2 Binomialkoeffizient

Der Binomialkoeffizient ist fiir m,n und m < n wie folgt definiert:
n n! .
( ) = | mitm<neZ"

Man spricht: «n iiber m».

Beispiel 3.1.

Es gelten u. a. folgende Rechenregeln fiir den Binomialkoeffizienten:
ny n
m)  \n—m
n+1 n n
= +
m—+1 m m—+1

Herleitung der zweiten Gleichung:
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(Z) * (mil) - m!(nn!—m)! * (m+1)!(’:z!—m—1)!

_ n! (m—|—1) . n! (n—m)
m!(m+1)(n—m)! (m—i—l)!(n—m—l)!(n—m)
_ n!(m+1) n n!(n—m)
(m+1)!(n—m)! (m—i—l)!(n—m)!
_n!(m—i—l)—i—n!(n—m)z (n—i—l)!
(m+1)!(n—m)! (m—|—1)!(n—m)!

()
(?) - 1?!7! - (3) ="

Die Bezeichnung von (::l) als Binomialkoeffizienten hingt eng mit der Auflosung
von binomischen Ausdriicken der Form (a + b)" zusammen. Firn=0,1,2,... kann
man (a + b)" explizit angeben:

(a+b)" =d"+ <r11) a4 (Z) A"

Beispiel 3.2.

Lt

n (Z) A4 abeRneN

n
_ Z <”> 4
im0 \

Die Binomialkoeffizienten sind die Zahlen des Pascalschen Dreiecks.

Tabelle 3.1: Pascalsche Dreieck

m
n 01 2 3 456 on
0 1 20
11 1 2!
2 1 2 1 22
31 3 3 1 23
4 1 4 6 4 1 24
515 10 10 5 1 25
6 1 6 15 20 15 6 1 26
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Die Summe der n-ten Zeile ist die Anzahl aller Kombinationen.

n n
> () =7
m
m=0
Wieso? Ein Element kann ausgewéhlt oder nicht ausgewéhlt werden: A = 1 oder
A = 0. Zwei Elemente konnen auf 4 verschiedene Weise ausgewihlt werden: 4 =
I,B=1oderA=1,B=00der4d=0,B=1oder 4 =0,B=0.3 Elemente auf 8
USwW.

Beispiel 3.3.

(a+b)°=1
(a+Db) =((1))ab0+<i>

(a+Db) :((z))a%o (1)ab+(> 0 p?

(a+b) ((3))a3b° G)a b+(>ab2+<§)aob3

o3

Im Folgenden werden drei Klassen von kombinatorischen Fragestellungen be-
handelt:

1. die Bildung von unterscheidbaren Reihenfolgen (Permutationen),

2. die Auswahl verschiedener Elemente, wobei es auf die Reihenfolge der Zie-
hung ankommt (Variationen) und

3. die Ziehung verschiedener Elemente ohne Beriicksichtigung der Reihenfolge
(Kombinationen).

3.2.3 Definition des Binomialkoeffizienten in Scilab

In Scilab lasst sich der Binomialkoeffizient einfach durch eine Funktion definieren.

deff ('y=bincoef (n,m) ', 'y=factorial(n)/...
(factorial (m) xfactorial (n-m)) ')

bincoef (6,2)

> 15

3.3 Permutation

Eine Anordnung von n Elementen in einer bestimmten Reihenfolge heif3t Permuta-
tion. Die definierende Eigenschaft einer Permutation ist die Reihenfolge, in der die
Elemente angeordnet werden.
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Es ist zu beachten, ob alle n Elemente unterscheidbar sind oder ob sich unter den
n Elementen m identische befinden. Dies wird héufig durch die Differenzierung mit
und ohne Wiederholung ausgedriickt.

3.3.1 Permutation ohne Wiederholung

Bei der Permutation ohne Wiederholung sind alle n Elemente eindeutig identifizier-
bar. Fiir das erste Element kommen #» verschiedene Plazierungsmoglichkeiten in der
Reihenfolge in Betracht. Fiir das zweite Element kommen nur noch n — 1 Plazie-
rungsmoglichkeiten in Betracht, da bereits ein Platz von dem ersten Element besetzt
ist. Jede Anordnung ist mit jeder anderen kombinierbar, d. h., insgesamt entstehen

Pn)=n'=nx(n—1)x---x2x1 mitneZ"

Permutationen. Die Zahl der Permutationen von n unterscheidbaren Elementen be-
tragt damit: 7!

Beispiel 3.4. Vier Sprinter konnen in 4! = 24 verschiedenen Anordnungen in einer
Staffel laufen. £es

Beispiel 3.5. Der Vertreter, der 12 Orte zu besuchen hat und unter allen denkbaren
Rundreisen die kiirzeste sucht, steht vor der Aufgabe, unter 12! = 479001 600 ver-
schiedenen Rundreisen diejenige mit der kiirzesten Entfernung finden zu miissen.
Glicklicherweise sind in der Wirklichkeit nie alle Orte direkt miteinander verbun-
den. Ees

3.3.2 Permutation mit Wiederholung

Hier wird angenommen, dass unter » Elementen & Elemente nicht voneinander zu
unterscheiden sind. Die k Elemente sind auf ihren Pldtzen jeweils vertauschbar, ohne
dass sich dadurch eine neue Reihenfolge ergibt. Auf diese Weise sind genau

Py(nk)=k'=kx(k—1)x---x2x1

Reihenfolgen identisch. Die Zahl der Permutationen von n Elementen, unter denen &
Elemente identisch sind, betrdgt somit:
nl

=+ 1) x (k+2)x - x(n—1)xn mitk<neZ"

Py(n,k) i

Beispiel 3.6. Wie viele verschiedene zehnstellige Zahlen lassen sich aus den Ziffern
der Zahl 7841673 727 bilden? In der Zahl tritt die Ziffer 7 viermal auf, die tibrigen
Ziffern je einmal. Die Permutation der vier «7» sind nicht unterscheidbar, so dass
insgesamt

10!
Py(10,4)= " =151200

Zahlen gebildet werden konnen. ges
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Gibt es nicht nur eine Gruppe, sondern » Gruppen mit
kiy... ky

nicht unterscheidbaren Elementen, so existieren
n!

oy itk k €NUO
ek

Permutationen. Gilt ferner k; + ... + k. = n, dann wird der obige Koeffizient als
Multinomialkoeffizient bezeichnet.

Beispiel 3.7. In einem Regal sollen 3 Lehrbiicher der Okonomie sowie je 2 Lehr-
biicher der Mathematik und Statistik untergebracht werden. Ohne Beriicksichtigung
der Fachgebiete gibt es fiir die 7 Biicher insgesamt 7! = 5040 Permutationen. Wer-
den die Biicher nur nach Fachgebieten unterschieden, wobei nicht nach Fachgebieten
geordnet werden soll, so erhdlt man

71

P(7,3.2,2) = (31 x 2! x 21)

=5x6x7=210
Permutationen. Sollen die Biicher eines Fachgebiets jeweils zusammenstehen, so
gibt es fiir die Anordnung der Fachgebiete 3! = 6 Permutationen. o3

Fiir » =2 Gruppen mit k; = k bzw. k; = n — k nicht unterscheidbaren Elementen
erhilt man

n!

BAmb) = = sy

- (Z) —C(n,k) mitk<neZ*

Permutationen. Dies ist der Binomialkoeffizient.

Ubung 3.1. Sie stehen an der Kasse und miissen genau 4.50 € bezahlen. In ihrem
Geldbeutel befinden sich drei 1-Euro-Miinzen und drei 50 Cent-Miinzen. Sie neh-
men die Miinzen nacheinander heraus und legen sie auf den Tisch. Wie viele un-
terschiedliche Moglichkeiten existieren, die Miinzen der Reihe nach anzuordnen?

3.4 Variation

Eine Auswahl von m Elementen aus n Elementen unter Beriicksichtigung der Rei-
henfolge heiflt Variation.

3.4.1 Variation ohne Wiederholung

Kann das gezogene Element nicht wieder ausgewéhlt werden, dann liegt eine Va-
riation ohne Zuriicklegen vor. Bei n Elementen gibt es dann n! Anordnungen (Per-
mutationen). Da aber eine Auswahl von m aus n Elementen betrachtet wird, werden
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nur die ersten m ausgewéhlten Elemente betrachtet, wobei jedes Element nur einmal
ausgewdhlt werden darf. Die restlichen » — m Elemente werden nicht beachtet. Da-
her ist jede ihrer (n — m)! Anordnungen hier ohne Bedeutung. Sie miissen aus den 7!
Anordnungen herausgerechnet werden. Es sind also

n!

V(n,m) = =(mn-m+1)x(n—m+2)x---xn

(n—m)! (3.1
mitm<neZ"

verschiedene Variationen mdglich.

Man kann die Anzahl der Variationen auch so begriinden: Das erste Element
kann aus n Elementen ausgewéhlt werden. Da es nicht noch einmal auftreten kann,
kann das zweite Element daher nur noch aus n — 1 Elementen ausgewihlt werden.
Das m-te Element kann dann noch unter n — m + 1 Elementen ausgewihlt werden.
Da die Reihenfolge der Elemente beachtet wird, ist die Anordnung zu permutieren:

Vinom)=nn—1)---(n—m+1) mitm<necZ" (3.2)
Gleichung (3.1) und Gleichung (3.2) liefern das gleiche Ergebnis.

Beispiel 3.8. Aus einer Urne mit 3 Kugeln (rot, blau, griin) sollen zwei Kugeln ge-
zogen werden. Ist zum Beispiel die erste gezogene Kugel rot, so verbleiben fiir die
zweite Position noch die zwei Kugeln blau und griin.

Tabelle 3.2: Variation ohne Wiederholung
1. Kugel  rot blau  griin

2. Kugel blau griin rot griin rot blau

Insgesamt konnen
3!

3-2)

verschiedene Paare gezogen werden. £SS

V(3,2) = =6

Beispiel 3.9. Der bereits bekannte Handelsvertreter kann am ersten Tag nur 3 der 13
Orte besuchen. Wie viele Moglichkeiten verschiedener Routenwahlen fiir den ersten
Tag kann er auswihlen? Bei einer Auswahl von 3 Orten aus den insgesamt 13 Orten
unter Berticksichtigung der Reihenfolge ergeben sich

131
V(13,3) = (133 = 1716

Reisemdglichkeiten. Lt
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3.4.2 Variation mit Wiederholung

Wenn das gezogene Element wiederholt ausgewihlt werden kann, nach der Ziehung
also zuriickgelegt wird, spricht man von einer Variation mit Wiederholung. Ein Ele-
ment darf wiederholt bis maximal m-mal auftreten. Beim ersten Element besteht die
Auswahl aus n Elementen. Da das erste Element auch als zweites zugelassen ist,
besteht fiir dieses wieder die Auswahl aus n Elementen. Fiir jedes der m Elemen-
te kommen n Elemente infrage, also sind » Elemente m-mal zu permutieren. Die
Zahl der Variationen von m Elementen aus n Elementen mit Wiederholung betragt
folglich:
V(n,m)=n" mitn,meN

Beispiel 3.10. Im Dezimalsystem werden zur Zahlendarstellung zehn Ziffern be-
nutzt. Wie viele vierstellige Zahlen sind damit darstellbar? Es konnen 4 Ziffern zur
Zahlendarstellung variiert werden, wobei Wiederholungen (zum Beispiel 7788) ge-
stattet sind. Es sind somit 10* = 10000 Zahlen darstellbar. Dies sind die Zahlen von
0000 bis 9999. tes

Ubung 3.2. Sie wollen 3 Wochen Urlaub machen und zwar jede Woche in einem
anderen Land. Sie haben sich entschieden, ihren Urlaub im Reisebiiro X zu bu-
chen und erhalten dort die Auskunft, Sie konnten jederzeit in 25 Landern Urlaub
machen, miissten sich dann aber festlegen. Wie viele Moglichkeiten gibt es, Thren
Urlaub in drei Landern zu buchen? Eine der Moglichkeiten wire etwa: zuerst nach
Spanien, dann nach Frankreich und zuletzt nach Italien.

3.5 Kombination

Eine Auswahl von m Elementen aus n Elementen ohne Beriicksichtigung der Rei-
henfolge heifit Kombination.

3.5.1 Kombination ohne Wiederholung

Bei Kombinationen kommt es nur auf die Auswahl der Elemente an, nicht auf de-
ren Anordnung. Daher ist die Anzahl der moglichen Kombinationen geringer als bei
der Variation, da die Permutation der m ausgewéhlten Elemente nicht unterscheidbar
ist; m! Kombinationen sind identisch. Daher entfallen diese und miissen herausge-
rechnet werden. Dies geschieht, indem man die Zahl der Variationen von m aus n
Elementen (dies sind (nf;n)! Variationen) durch die Zahl der Permutationen von m
Elementen (dies sind m! Permutationen) dividiert. Die Zahl der Kombinationen von
m Elementen aus n Elementen ohne Wiederholung betrégt also

n! n .
C(n,m) = ! (11— m)! = (m) mitm<neZ"

und ist gleich dem Binomialkoeffizienten.
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Der Binomialkoeffizient entspricht einer Permutation mit Wiederholung bei zwei
Gruppen. Bei der Kombination steht die Uberlegung der Auswahl von m aus n Ele-
menten im Zentrum. Bei der Permutation ist es die Uberlegung der Anordnung von
n Elementen, wobei m und n — m Elemente identisch sind, sich also wiederholen.

Beispiel 3.11. Es sind 6 aus 49 Zahlen (Lotto) in beliebiger Reihenfolge zu ziehen.
Wie viele Kombinationen von 6 Elementen existieren?
49) 49!

C(49,6) = <6 = 6140 g) — 13983816

3.5.2 Kombination mit Wiederholung

Die Anzahl der moglichen Ergebnisse ist gro3er als bei der Kombination ohne Wie-
derholung. Ein Element kann nun bis zu m-mal ausgewéhlt werden. Statt ein Element
zurlickzulegen, kann man sich die » Elemente auch um die Zahl der Wiederholun-
gen erginzt denken. Die n Elemente werden also um m — 1 Elemente, von denen
jedes fiir eine Wiederholung steht, ergéinzt. Dabei werden nur m — 1 Elemente er-
géinzt, weil eine Position durch die erste Auswahl festgelegt ist; aulerdem kdnnen
nur m — 1 Wiederholungen erfolgen. Damit ist die Anzahl von Kombinationen mit
m aus n Elementen mit Wiederholung gleich der Anzahl der Kombinationen von m
Elementen aus n + m — 1 Elementen ohne Wiederholung.

Die Zahl der Kombinationen von m Elementen aus # Elementen mit Wiederho-
lung betragt:

Co(n,m) = (

Beispiel 3.12. Stellt man sich eine Lottoziehung vor, bei der die gezogenen Kugeln
wieder zuriickgelegt werden und somit erneut gezogen werden konnen, dann liegt
der Fall der Kombination mit Wiederholung vor.

4946-1 54 541
C,v(49,6) = ( ) ) = (6> = 61049 1)1 = 25827165

Es gibt hier fast doppelt so viele Kombinationen wie beim normalen Lottospiel. %t

mitm<neZ"

ntm—1\ (n+m—1)!
m

 oml(n—1)!

Tabelle 3.3: Kombinatorik

Wiederholung

mit ohne
m n!

(n—m)!

ohne Reihenfolge ("+$71) ()

m

mit Reihenfolge n

Die Ubersicht in Tabelle 3.3 zeigt die verschiedenen Méglichkeiten auf, aus »
Elementen m zu ziehen.



46 3 Kombinatorik

Beispiel 3.13. Ein Experiment mit 2 Wiirfeln liefert Ergebnisse der Form (i, /), wo-
bei i die Augenzahl des ersten und j die Augenzahl des zweiten Wiirfels ist. Folgende
Ergebnisse sind mdglich:

(1
(2
(3
(4
(5
(6

1. Variation mit Wiederholung: Soll die Reihenfolge beriicksichtigt werden, so
muss das Wurfergebnis (3,5) und (5,3) unterschieden werden und eine Wie-
derholung méglich sein. Im Beispiel (2,2) gibt es

Vu(6,2) = 6% =36

Ergebnisse.
2. Variation ohne Wiederholung: Wird die Reihenfolge beriicksichtigt, eine Wie-
derholung aber ausgeschlossen, so entfallen die 6 Ergebnisse: (1,1),...,(6,6).

Es existieren 6!

V(6,2) =36—6=30= (6-2)!

verschiedene Ergebnisse.

3. Kombination ohne Wiederholung: Soll die Reihenfolge nicht beriicksichtigt
werden und eine Wiederholung ausgeschlossen sein, so entfallen gegeniiber 2.
die Hilfte der Ergebnisse. Es sind alle Paare (i, j) mit i < j und es verbleiben

noch 30 6
Cc6,2)="_ =15=
6= =15=(3)
Ergebnisse.

4. Kombination mit Wiederholung: Soll die Reihenfolge nicht beriicksichtigt
werden, aber eine Wiederholung zuldssig sein, so kommen gegentiber 3. wie-
der 6 Ergebnisse (1,1),...,(6,6) hinzu. Es existieren

6+2—1
cw(é,z):15+6:21:(+ )

2
Ergebnisse.
gos

Die Bestimmung der Anzahl der Mdglichkeiten ist nicht immer unmittelbar mit
den angegebenen Formeln moglich. Mitunter miissen die Formeln miteinander kom-
biniert werden. Werden die Fille durch ein logisches UND miteinander verkniipft,
so ist die Anzahl der Moglichkeiten miteinander zu multiplizieren.
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Beispiel 3.14. Aus 10 verschiedenen Spielkarten sollen 2 Spieler je 4 Karten erhal-
ten. Fiir den ersten Spieler gibt es dann

C(10,4) = <140) =210

Moglichkeiten. Fiir den zweiten Spieler verbleiben dann noch 6 Karten und es gibt

C(6,4) = (Z) =15

Moglichkeiten der Kartenzuteilung. Insgesamt gibt es dann 210 Mdglichkeiten fiir
den ersten Spieler UND 15 Moglichkeiten fiir den zweiten Spieler, also 210 x 15 =
3150 Moglichkeiten der Kartenausteilung insgesamt. £

Werden die Fille durch ein logisches ODER verkniipft, so ist die Anzahl der
Moglichkeiten zu addieren.

Beispiel 3.15. In einer Bibliothek sollen Biicher mit einer ODER mit zwei aus 5
Farben signiert werden. Wenn die Reihenfolge und eine Wiederholung der Farben
zuléssig ist, dann existieren

Vi(5,1)+Vu(5,2) =5' +52 =25
Maoglichkeiten, die Biicher zu signieren. £SS

Ubung 3.3. Drei Kartenspieler sitzen in einer festen Reihenfolge; der erste Spieler
verteilt die Karten. Wie viele verschiedene Anfangssituationen sind beim Skatspiel
moglich (32 verschiedene Karten, 3 Spieler erhalten je 10 Karten, 2 Karten liegen
im Skat)?

Ubung 3.4. Ein Student muss in einer Priifung 8 von 12 Fragen beantworten, davon
mindestens 3 aus den ersten 5 Fragen. Wie viele verschiedene zuldssige Antwort-
moglichkeiten besitzt der Student?

Ubung 3.5. Wie viele verschiedene Zichungen gibt es beim Zahlenlotto 6 aus 49
mit 5, 4 und 3 Richtigen?

Ubung 3.6. An einer Feier nehmen 20 Personen teil. Pltzlich geht das Bier aus.
Um hinreichenden Nachschub zu besorgen, werden 3 Leute ausgewahlt, weil 3
Personen notwendig sind, um das neue Fass zu transportieren. Wie viele unter-
schiedliche Méglichkeiten gibt es, 3 Leute zum Bierholen zu schicken?

Ubung 3.7. Sie gehen mit 3 Kommilitonen in die Mensa. Dort stehen 5 verschie-
dene Meniis zur Auswahl. Wéhrend sich die Kommilitonen bereits auf die Plitze
setzen, erhalten Sie den Auftrag, fiir sich und fiir die 3 Kommilitonen jeweils ir-
gendein Essen zu besorgen. Wie viele unterschiedliche Moglichkeiten gibt es ins-
gesamt, die Meniis auszuwéhlen.
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Ubung 3.8. Ein Passwort besteht aus zwei Buchstaben und vier Ziffern, wobei die
Ziffern, aber nicht die Buchstaben mehrfach auftreten diirfen. Klein- und Grof3-
schreibung ist als signifikant anzusehen. Wie viele Passworter konnen Sie bilden?

3.6 Fazit

In der Kombinatorik wird das Abzéhlen von verschiedenen Anordnungen berechnet.
Die Permutation ist eine zentrale Definition, die die Anordnung in einer bestimm-
ten Reihenfolge berechnet. Sind alle Elemente identifizierbar, liegt eine Permutation
ohne Wiederholung vor. Sind hingegen einige Elemente nicht voneinander unter-
scheidbar, dann liegt eine Permutation mit Wiederholung vor.

Eine Variation liegt vor, wenn bei der Auswahl der Elemente die Reihenfolge
der Ziige unterscheidbar ist. Eine Kombination liegt hingegen vor, wenn die Rei-
henfolge der Ziige ohne Bedeutung ist. Die Kombinatorik wird zur Berechnung von
Wahrscheinlichkeiten eingesetzt.
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4.1 Vorbemerkung

Vektoren, wie auch Matrizen, sind Konstrukte, die Zahlen zusammenfassen, damit
bestimmte Rechnungen einfacher werden. In einem Vektor bleibt jede Einzelgrofie
erhalten. Der Vektor ist eine kompakte Schreibweise fiir ein Zahlenfeld. Aus dieser
Notation haben sich eigenstindige Rechenanweisungen entwickelt.

In den folgenden Abschnitten werden grundlegende Operationen mit Vektoren
gezeigt. Unmittelbar darauf auftbauend folgen die Kapitel 5 Matrizen, Kapitel 6 li-
neare Gleichungssysteme und Kapitel 7 lineare Optimierung. Sie stellen zusam-
men einen Teil der linearen Algebra dar.

Die lineare Algebra wird heute in der Wirtschaftspraxis sehr hdufig angewendet.
So wird sie beispielsweise mit der Matrizenrechnung in der Kostenrechnung oder im
Controlling eingesetzt. Lineare Gleichungssysteme werden zur Beschreibung von
Input-Output-Beziehungen verwendet und die lineare Optimierung dient zur Losung
unterschiedlicher Entscheidungsprobleme. Bei all den genannten Problemen werden
nur Variablen in der ersten Potenz verwendet, woraus sich das Adjektiv linear ab-
leitet. Jedoch werden hier nicht nur eine Gleichung und eine Variable betrachtet,

W. Kohn, R. Oztiirk, Mathematik fiir Okonomen, Springer-Lehrbuch,
DOI 10.1007/978-3-642-28575-2_4, © Springer-Verlag Berlin Heidelberg 2012
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sondern ein System von Gleichungen mit vielen Variablen. So kdnnen unterschied-
liche wirtschaftliche Probleme — zumindest ndherungsweise — beschrieben werden.
Denn kleine Wertdnderungen konnen héufig durch eine lineare Beziehung approxi-
miert werden.

Der Begriff «lineare Algebray ist eine lateinisch-arabische Wortbildung. Das Ad-
jektiv «linear» kommt aus dem lateinischen und bedeutet geradlinig, linienformig,
eindimensional. Dies bezieht sich auf die Variablen, die nur in der ersten Potenz auf-
treten. Bei der folgenden Gleichung handelt es sich um eine einfache lineare Glei-
chung.

y=ax+b

Das Wort «Algebra» stammt aus dem Arabischen (al-dschabr) und bedeutet «die
Einrenkung gebrochener Teile». Dies bezieht sich natiirlich nicht auf Briiche im me-
dizinischen Sinne, sondern auf mathematische Briiche. Mit Einrenkung ist hier die
Auflosung einer Gleichung gemeint.

3
4y:x = 3y=4x

Einige geldufige Bezeichnungen in der Vektoralgebra:

a,b,... Vektor
a;,bi,. .. Vektorkomponente
! Transpositionssymbol
[] Klammern fiir Vektorkomponente
A Koeffizient (sprich: lambda)
IE] Norm oder absoluter Betrag eines Vektors

4.2 Eigenschaften von Vektoren

Die Zahlen ay,as,...,a, werden in einem Vektor durch folgende Notation darge-
stellt:
a
a
a=| .
an

Die EinzelgroBe a; wird als i-te Komponente des Vektors a bezeichnet. Der Vek-
tor selbst wird durch Fettdruck eines kleinen lateinischen Buchstabens gekennzeich-
net. Die Anzahl der Komponenten bestimmt die Dimension des Vektors. Die Zusam-
menfassung der Komponenten in einem Vektor impliziert eine Ordnung, die durch
die Indizierung der Komponenten eindeutig ist. Die Komponenten eines Vektors sind
EinzelgroBen, die auch als Skalar bezeichnet werden.

Wird die Anordnung der Komponenten in einem Vektor spaltenweise (also unter-
einander) vorgenommen, so bezeichnet man einen solchen Vektor als Spaltenvektor.
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Im Gegensatz dazu werden bei einem Zeilenvektor die Komponenten in einer Zeile
angeordnet.
b= [al ay ... an]

Aus jedem Spaltenvektor kann durch Transposition ein Zeilenvektor erzeugt
werden. Die Transposition wird durch ein ’ dargestellt. Achtung: In der Differen-
tialrechnung hat dieses Symbol eine andere Bedeutung! Daher wird manchmal die
Transposition auch durch 7 beschrieben, wenn die Gefahr einer Verwechselung be-
steht.

Ein transponierter Vektor unterscheidet sich lediglich durch die Anordnung der
Komponenten von dem nicht transponierten Vektor.

a’=b b'=a

Beispiel 4.1.

0 0
a= |1l =a'=[012]=(a) = |1
2 2

o3

Vektoren lassen sich vergleichen und verkniipfen. Es diirfen aber nur Vektoren
gleichen Inhalts und gleicher Dimension miteinander in Beziehung gesetzt werden.
Die Ordnungsrelationen diirfen bei Vektoren nicht auf einzelne Komponenten be-
schriankt werden, sondern sie miissen fiir alle Komponenten gleichzeitig giiltig sein.
Daher sind zwei n-dimensionale Vektoren a und b nur gleich, wenn sie komponen-
tenweise gleich sind.

a=bsag =5 firallei=1,2,...,n

Analog zur Gleichheit sind auch die Ordnungsrelationen <, >, <, > anzuwen-
den.

Beispiel 4.2.
1 2 -1 -1
a= |0 b=|1 c= 1 d=[—1 e= |1
4 3 1 1

Es gelten unter anderem folgende Beziehungen:

a>d ¢c<b e=b e>c
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4.3 Operationen mit Vektoren

Beim Rechnen mit Vektoren unterscheidet man solche Rechenoperationen, bei denen
die Dimension des Vektors erhalten bleibt, und solche, bei denen er seine Dimensi-
on verdandert. Die Addition (Subtraktion) von Vektoren sind dimensionserhaltende
Operationen. Ebenso erhilt die Multiplikation eines Vektors mit einem Skalar die
Dimension. Hingegen fiihrt das skalare Produkt (auch inneres Produkt) zweier Vek-
toren zu einer Dimensionsverdanderung.

4.3.1 Addition (Subtraktion) von Vektoren

Bei der Addition (Subtraktion) von zwei Vektoren wird jede Komponente des ersten
Vektors mit der entsprechenden Komponente des zweiten Vektors addiert (subtra-
hiert). Es ist leicht einzusehen, dass nur Vektoren gleicher Dimension addiert (sub-
rathiert) werden kdnnen.

c=a=xh
al_ bl al:l:bl
ar b2 a2:|:b2
=|.|£|.|= .

a | b, a,+b,

Beispiel 4.3.

(g}
I
—
+
W — N
I
(V. ST S

4.3.2 Skalares Vielfaches eines Vektors

Die Multiplikation eines Vektors mit einem Skalar erfolgt, indem man alle Kompo-
nenten des Vektors mit dem Skalar multipliziert.

b=Axa mitA R

a; A Xa
ay 7L><a2
a, A Xay,

Ist A = 0, so entsteht ein Nullvektor, ein Vektor mit Nullen. Mit dem Faktor }L
werden die Komponenten durch den Faktor A geteilt.
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Beispiel 4.4. Fir A = 0.5 und a aus Beispiel 4.1 erhilt man:

0 0
b=05|1| =105
2 1

4.4 Geometrische Darstellung von Vektoren

Die Menge aller n-dimensionalen Vektoren bilden einen linearen Vektorraum R”.
Eine geometrische Darstellung ist nur bis zur Dimension drei mdglich.

Beispiel 4.5. Es sind die beiden Vektoren
1 2
a;= (3 und a;= |0
3 1

gegeben. Jede Komponente der Vektoren beschreibt dabei eine Koordinate im Raum.
Abbildung 4.1 zeigt die grafische Darstellung dieser beiden Vektoren. £es

4.5 Linearkombinationen und lineare Abhiingigkeit von Vektoren

Als Linearkombination wird ganz allgemein die Addition von Grofen mit skalaren
Gewichtungsfaktoren verstanden. Bei Vektoren bedeutet dies, dass man einen Vektor
aus einer Summe von Vektoren erzeugt, die jeweils mit einem Skalar A; € R gewich-
tet sind.

n
b=2iaj+hay+...+a,=» Aa, mitAcR (4.1)
i=1
Mit a; wird der i-te Vektor bezeichnet.

Beispiel 4.6. Mit den beiden Vektoren aus Beispiel 4.5 wird eine Linearkombination
gebildet. Die beiden Gewichtungsfaktoren sollen

3 1
2.1 = 4 und 2.2 = P
sein. Dann entsteht folgender neuer Vektor,
3 1.75
b:421—|—222: 2.25(,

2.75
der linear abhéngig von a; und a, ist. Der Vektor b ist als gestrichelte Linie in Abb.
4.1 dargestellt. ges

Eine Linearkombination von n Vektoren erzeugt einen von n Vektoren linear ab-
hingigen Vektor. Die lineare Abhéngigkeit von Vektoren bestimmt die Losbarkeit
linearer Gleichungssysteme.
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Abb. 4.1: Dreidimensionaler Vektorraum mit zwei Vektoren

4.6 Linear unabhingige Vektoren und Basisvektoren

Lineare Unabhéngigkeit kann man einfach als Umkehrung der linearen Abhiangigkeit
definieren. Dies bedeutet, dass keine Linearfaktoren A; £ 0 existieren, also miissen
alle ;; =0 (i =1,...,n) sein. Somit ist dann in der Gleichung (4.1) der Vektor b ein
Nullvektor. Auf linear unabhéingige Vektoren kann man also nur schlieBen, wenn
die Gleichung

Mar+Aa+...+4,2,=0 mita; Z0firi=1,...,n

fur die Linearfaktoren

M=Ah=...=4,=0

erfiillt ist. Wére nur ein A; # 0, so wire die Gleichung nicht mehr erfiillt und b wére
dann eine Linearkombination von a;.

Beispiel 4.7. Der Nachweis, dass die drei Vektoren aus den Beispielen 4.5 und 4.6
linear abhéngig sind, ist dann wie folgt. Aus der Definitionsgleichung

1 2 1.75 0
A3 +22 (0] +A3 (225 = |0
3 1 2.75 0
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erhalten wir das Gleichungssystem:

M+24+1.753=0
301 +2.254=0
3M+A+27543=0

Durch Auflésen und Einsetzen wird dann die folgende Losung erzeugt:

A =—0.752;
Ay =—0.52;

Es ist nicht moglich A4; eindeutig zu bestimmen. Es ist aber deutlich, dass A4; # 0
moglich ist, um das Gleichungssystem zu 16sen. Eine Moglichkeit ist A3 = —1. Dann
erhélt man fiir A; = 0.75 und A, = 0.5, wie in Beispiel 4.6. Die drei Vektoren sind
also linear abhéngig. ges

Beispiel 4.8. Nun werden die zwei Vektoren a; und a; auf lineare Unabhéngigkeit
gepriift.

1 2
M3 +A4 10| =0
3 1

Das Auflosen des Gleichungssystems fiihrt zu den Gleichungen:

M+24=0
34, =0
3M+4=0

Es ist sofort zu erkennen, dass A; = 0 ist. Daraus ergibt sich unmittelbar, dass auch
A2 = 0 sein muss, damit das Gleichungssystem erfiillt ist. Es existiert also nur die
Losung A; = A, = 0. Die beiden Vektoren a; und a, sind linear unabhingig. Ees

Linear unabhingige Vektoren, die den Vektorraum erzeugen, bezeichnet man als
Basisvektoren. Ein Basisvektor der Form

0

e; = | 1| < i-te Position

wird Einheitsvektor genannt und haufig mit dem Buchstaben e bezeichnet.



58 4 Vektoren

Den absoluten Betrag oder Norm eines Vektors a € R” berechnet man mit einer
Verallgemeinerung des Satzes des Pythagoras. Er ist ein Skalar.

lal = /@l + a3+ ...+ a3

Die Norm wird als Linge des Vektors interpretiert. Im R? und R? ist dies anschau-
lich. Wird ein Vektor mit dem Kehrwert seines Betrags multipliziert,

aj
Jal
Lo |
a] Sl
dan
[al

so normiert man den Vektor. Er besitzt dann den Betrag bzw. die Norm Eins und
wird als normiert bezeichnet.

Die Norm des Einheitsvektors ist stets Eins. Definitionsgemal stehen die Ein-
heitsvektoren senkrecht aufeinander. Man sagt, die Einheitsvektoren sind orthogo-
nal und normiert oder in Kurzform orthonormiert. Die Einheitsvektoren bilden
somit ein orthonormiertes Vektorsystem.

Ubung 4.1. Es sind die drei Vektoren

a) = -1 az =
1

a| =

—_—O

gegeben, die linear unabhingig sind. Uberpriifen Sie dies. Der Vektor

b=| 4
-2

soll als Linearkombination der obigen Basisvektoren dargestellt werden. Berech-
nen Sie eine Linearkombination.

4.7 Skalarprodukt (inneres Produkt)

Die Addition zweier Vektoren und die Multiplikation eines Vektors mit einem Ska-
lar erhalten die Dimension des Vektors. Hingegen wird mit dem Skalarprodukt eine
Operation definiert, die als Ergebnis einen Skalar hat.

Beispiel 4.9. Ein Unternehmen setzt zur Herstellung eines Produkts verschiedene
Produktionsfaktoren ein. Die Angaben in Tabelle 4.1 beziehen sich auf eine Men-
geneinheit des Produkts.
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Tabelle 4.1: Faktoren, Mengen und Faktorpreise
Faktor Menge Dimension Faktorpreis

Faktor 1 100.5 kg 15.50 €/kg
Faktor2 204 /¢ 0.25 €/¢
Faktor3 5.2 h 152.00 €/h
Arbeit 7.8 Mh 65.20 €/Mh

Die nahe liegende Frage, wie viel die Herstellung einer Mengeneinheit des Pro-
dukts kostet, ist einfach zu beantworten, denn die Gesamtkosten sind gleich der Pro-
duktsumme der Mengen mal den Preisen.

k=100.5x15.50+20.4x0.25+5.2x152.004+7.8 x 65.20=2861.81€

Die Angaben lassen sich in einem Mengenvektor m und einen Preisvektor p zu-
sammenfassen, wobei sich die jeweils i-te Mengenkomponente auf den i-ten Faktor
beziehen muss.

100.5 15.50
| 204 | 02s
| s2 | P7T 15200

7.8 65.20

Die gesuchten Gesamtkosten ergeben sich dann durch komponentenweise Multipli-
kation und Summenbildung.

4
k=Y mipi=2861.81€ (4.2)
i=1

o3

Die Operation in (4.2) wird als Skalarprodukt oder als skalare Multiplikation
zweier Vektoren bezeichnet. Das Ergebnis des Skalarprodukts ist immer eine reelle
Zahl. Man verwendet fiir eine kompakte Schreibweise hier gerne die Transpositi-
on, um die Produktsumme darzustellen. In der Matrixrechnung erweist sich diese
Schreibweise als niitzlich. .

Z a; bi = a’ b
i=1

Ubrigens kann mit dem Skalarprodukt auch eine lineare Gleichung beschrieben wer-
den.

a1x1t+axxy+...+apx, =b
!/

ai X1
az X2

| =b
Qn Xn



60 4 Vektoren

Aus der Definition des skalaren Produkts gehen folgende Rechenregeln hervor:
a’b=b'a=(a’b)’ Kommutativgesetz
aber a’b#ba’
(atb)c=(a’+b')c
=a'ctbc Distributivgesetz
a'(btc)=a'bLa’c

Beispiel 4.10. Das innere Produkt der beiden Vektoren

-1 3
2 -2
a= 0 b= 4
4 7
betragt:
s
a'b=[-1204] 221
4
L 7_
e
b’a:[3—247] 2 =21
0
L 4_
Wird der Vektor
0
|1
““ 1o
1

mit dem inneren Produkt a’b multipliziert, so ergibt sich wieder ein Vektor.

(a'b)c =21

Lt

Ist das Skalarprodukt zweier Vektoren Null, so stehen die Vektoren ortho-
gonal (senkrecht) zueinander. Die Vektoren sind dann linear unabhéngig. Damit
ist eine leichte Uberpriifung auf lineare Unabhingigkeit von Vektoren moglich. Ei-
ne Erklarung fiir diese Eigenschaft erfordert eine geometrische Darstellung, auf die
hier verzichtet wird. Aber nicht alle linear unabhéngigen Vektoren sind orthogonal
zueinander!



4.8 Vektoren in Scilab 61

Beispiel 4.11.

-2
24] [_1] —4-4—0
Die beiden Vektoren sind orthogonal zueinander und daher auch linear unabhéngig.
Hingegen sind die beiden Vektoren aus Beispiel 4.8 linear unabhingig, aber nicht
orthogonal zueinander, denn deren Skalarprodukt ist nicht Null. £es

Ist das Skalarprodukt gleich Null, so gilt nicht wie bei der Multiplikation, dass
dann mindestens einer der beiden Faktoren gleich Null ist.

Ubung 4.2. Ein Unternehmen produziert den Output x von n Giitern. Dazu ver-
wendet es den Input v. Das Nettoergebnis b ergibt sich als Differenz von Output
und Input. Die Preise fiir die n Giiter sind im Vektor p erfasst.

Geben Sie in Vektorgleichungen die

1. Einnahmen
2. Kosten und
3. Gewinn

an.

Ubung 4.3. Fiir welche Werte von x ist das innere Produkt von

X X
a= [x—1 b=|x
3 3x

Null? Welche Eigenschaft weisen dann die Vektoren auf?

4.8 Vektoren in Scilab
Ein (Zeilen-) Vektor wird in Scilab durch eckige Klammern definiert. Der Vektor

a=[234]

Die Transposition erfolgt durch ein angefiigtes Apostroph an den Variablenna-
men.

a’

w
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Soll ein Vektor direkt als Spaltenvektor eingegeben werden, so sind die einzelnen
Zahlen durch ein Semikolon zu trennen.

a = [2;3;4]
2

3
4

Die Vektoroperationen konnen mit den gewohnten Befehlen +,—, x durchge-
fithrt werden.

b = [5,6,7]
a + b’

o]

b x a -> 56

4.9 Fazit

Vektoren sind eindimensionale Zahlenfelder. Sie eignen sich zur Beschreibung von
linearen Zusammenhéngen. Die Grundrechenarten konnen — bis auf die Division —
auf Vektoren tibertragen werden. Dariiber hinaus muss fiir die Multiplikation von
Vektoren das innere Produkt oder das so genannte Skalarprodukt definiert werden,
das als Ergebnis einen Skalar besitzt. Eine wichtige Definition bei Vektoren ist die
Unabhingigkeit von Vektoren, die spéter Aussagen zulassen, ob gegebene lineare
Gleichungssysteme eine Losung besitzen oder nicht.
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5.1 Vorbemerkung

In diesem Kapitel wird das Konstrukt des Vektors erweitert und die Matrix einge-
fiihrt. In der Darstellung wird sich auf die fiir Okonomen wichtigen Eigenschaften
und Operationen der Matrizenalgebra beschrankt. Mit der Matrizenrechnung kann
dann eine Materialverflechtung eines mehrstufigen Produktionsprozesses einfach be-
rechnet werden.

Einige geldufige Bezeichnungen in der Matrizenalgebra:

AB,...

al-j,bij,. ..

I

Matrix
Matrixelement
Einheitsmatrix

5.2 Einfache Matrizen

Fasst man mehrere gleichdimensionale, sachlogisch verwandte Vektoren zusammen,
so entsteht ein zweidimensionales, rechteckiges Zahlenfeld, das als Matrix bezeich-

net wird.

W. Kohn, R.

Oztiirk, Mathematik fiir Okonomen, Springer-Lehrbuch,

DOI 10.1007/978-3-642-28575-2_5, © Springer-Verlag Berlin Heidelberg 2012
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Anl Ap2 --- Apm

Die Matrix wird auch als ein n x m Tupel bezeichnet. Sie besitzt n Zeilen und m Spal-
ten. Thre Dimension ist daher n x m. Eine Matrix wird im Folgenden durch Fettdruck
eines groflen lateinischen Buchstabens gekennzeichnet.

Die Matrix ist eine Erweiterung eines Vektors. Hieraus ergibt sich, dass alle Re-
chenoperationen zwischen Vektoren auch fiir Matrizen gelten.

Zwei Matrizen sind nur gleich, wenn alle Elemente der einen Matrix gleich der
der anderen Matrix sind.

A=B & a;j=>b; firallei=1,...,n;j=1,....m

Analog zur Gleichheit sind auch die Ordnungsrelationen <, >, <, > definiert.

Die Transposition einer Matrix erfolgt durch Vertauschen von Zeilen und Spal-
ten bzw. durch Spiegelung der Elemente an der Hauptdiagonalen. Das Ergebnis der
Transposition wird transponierte Matrix genannt und mit A’ bezeichnet.

app a2 ... Aim ayy azy --. dpl

azy ax ... dyy , ap ax ... ap
R ] I\

Anl Ap2 - dpm Alm A2m - -+ Anm

5.3 Spezielle Matrizen

Besitzt eine Matrix A die gleiche Anzahl von Zeilen und Spalten, so wird die Ma-
trix als quadratisch bezeichnet. In der Matrix werden die Koeffizienten, die auf der
Linie von links oben (a11) nach rechts unten (a,,) liegen als Hauptdiagnale bezeich-
net. Die Nebendiagonale verlduft von rechts oben nach links unten. Verschiebt man
die Hauptdiagonale nach rechts oder unten, so erhélt man Linien, die man ebenfalls
Nebendiagonalen nennt. Eine nach rechts verschobene Nebendiagonale nennt man
obere Nebendiagonale, eine nach unten verschobene nennt man untere Nebendiago-
nale.

aiy aip ... Ay
azy dzp ... Ayy

Aanl Ap2 --. Apn

Sind in einer quadratischen Matrix nur die Elemente auf der Diagonalen ungleich
Null, so wird diese Matrix als Diagonalmatrix bezeichnet.
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d;p 0 ... 0
b 0 dxn

0

0 ... 0 duy
Beispiel 5.1.

2 0 0

D=1|0 1 O

0 0-4

o3

Der Operator diag bewirkt die Erzeugung einer Diagonalmatrix aus einem Vek-
tor.

2 . 2 0
32[3] = d1aga:[0 3}:A

Wird der Operator diag hingegen auf eine Matrix angewendet liefert er die Haupt-
diagonalelemente der quadratischen Matrix

diagA = [ﬂ =a

Eine Diagonalmatrix, bei der alle Diagonalkoeffizienten d;; = 1 sind, heiflt Ein-
heitsmatrix. Sie setzt sich aus Einheitsvektoren zusammen. Sie wird hdufig mit I
bezeichnet.

1 0 0
I:Ol

0

0 0 1

Eine Matrix wird symmetrisch genannt, wenn sie gleich ihrer Transponierten
ist.

A=A
Beispiel 5.2.
2 -1 3 2 -1 3
A= |-1 7 2| A=|-1 7 =2
3 -2 4 3 -2 4

Eine spezielle Form einer symmetrischen Matrix ist die Diagonalmatrix.
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5.4 Operationen mit Matrizen

Operationen von Matrizen — wie auch schon bei Vektoren — kdnnen nur unter be-
stimmten geeigneten Voraussetzungen vorgenommen werden.

5.4.1 Addition (Subtraktion) von Matrizen

Zur Addition (Subtraktion) zweier Matrizen ist es notwendig, dass die Matrizen die
gleiche Anzahl von Zeilen und Spalten besitzen. Die Addition (Subtraktion) zweier
Matrizen A und B erfolgt, indem ihre entsprechenden Matrixelemente addiert (sub-
trahiert) werden.

A+tB=C < ai]'ﬂ:b,'j:C,'j ﬁirallei,j

Beispiel 5.3.

o3

Aus der Definition der Addition (Subtraktion) von Matrizen ergeben sich unmit-
telbar die folgenden Rechenregeln.

A+B=B+A .
Kommutativgesetz
A-B=-B+A
(A+B)£tC=A+(B=£C) .
Assoziativgesetz
(A—B)+C=A—(B—C)
(A+B) =A'"+B Transposition

5.4.2 Multiplikation einer Matrix mit einem skalaren Faktor

Eine Matrix wird mit einem skalaren Faktor multipliziert, indem jedes einzelne Ele-
ment der Matrix mit dem Faktor multipliziert wird.

ai ... Aip la“ lalm
C:A’A:A : ’.. E = .

ayl - Qpm Aay ... dagy
Rechenregeln:

AA=AA Kommutativgesetz
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A (ALA) =M A42)A Assoziativgesetz
(ML) A=L AL LA

Distributivgesetz
A(A+B)=AA+AB g

5.4.3 Multiplikation von Matrizen

Die Multiplikation von Matrizen ist analog zu dem Skalarprodukt der Vektoren
definiert. Es sind die Zeilen der ersten Matrix mit den Spalten der zweiten Matrix
durch eine Produktsumme zu einem Ergebniselement zu berechnen. Dazu muss die
linke Matrix A der Dimension n X k (n Zeilen, k Spalten) und die rechte Matrix B der
Dimension k x m (k Zeilen, m Spalten) sein. Das Produkt der beiden Matrizen ergibt
die Matrix C der Dimension n x m.

k k
ay ... ayx| (b1 ... bim D oh=1@1hbpt - D 1 @i b
C=|: || ]= AR
a a b b K K
nl «-- dnk k1 -+ Okm Eh:]anhbhl Zh:]anhbhm

Beispiel 5.4. Die beiden Matrizen

(1 4
A= |2 5 B:[é ﬂ
13 6
werden wie folgt miteinander multipliziert.
1 4 ) 3 [1x24+4x0 1x3+4x4 2 19
cC=1|2 5 {0 4] 2x245x0 2x34+5x4|=(4 26
3 6 [3x2+6x0 3x3+6x4 6 33

o3

Es gelten die Rechenregeln fiir das Skalarprodukt von Vektoren. Insbesondere ist
darauf zu achten, dass das Kommutativgesetz in der Regel fiir die Multiplikation von
Matrizen nicht gilt.

AB#BA

Ubung 5.1. Vereinfachen Sie folgenden Ausdruck:

B xA'xF+ (G'x AxB) + (F x AxB) + (AxB) xG

5.5 Okonomische Anwendung

Beispiel 5.5. Es wird angenommen, dass drei Meniis von der Mensa aus nur vier
Zutaten zubereitet werden konnen. Die Rezepte fiir die jeweiligen Meniis stehen in
der folgenden Tabelle.



68 5 Matrizen

Tabelle 5.1: Rezepte fiir Mensameniis

Zutat 1 [inkg] Zutat2 [inkg] Zutat3[ing] Zutat4 [in{]

Menii 1 0.6 0.8 1.0 0.5
Menii 2 0.2 0.7 1.2 1.0
Menii 3 0.4 1.0 1.5 0.2

Der Inhalt der Tabelle kann in einer Matrix M erfasst werden.

06 08 1.0 05
M=1]02 07 12 1.0
04 10 1.5 02

Die Preise der Zutaten schwanken je nach Saison. Wir unterstellen, dass in der
ersten Jahreshélfte einige Zutaten billiger sind als in der zweiten. Daher werden die
Preise fiir die beiden Jahreszeiten getrennt ausgegeben.

Tabelle 5.2: Preise fir die Meniizutaten

Preis fiir Winter Sommer
Zutat 1 [€/kg] 9.20 9.50
Zutat2 [€/kg] 1.10 1.90
Zutat 3 [€/ g] 1.70 1.70
Zutat 4 [€/ /] 1.30 1.50

Auch diese Angaben konnen in eine Preismatrix tiberfiithrt werden.

9.20 9.50
1.10 1.90
P=1170 170
130 1.50

Die Kosten je Menii fiir die Winter- bzw. Sommerzeit werden durch die Sum-
me der Preis x Mengenkombination berechnet. Genau diese Operation ist durch das
Skalarprodukt festgelegt und kann hier durch die Matrixmultiplikation einfach be-
rechnet werden.

06 08 1.0 0.5 ?fg ?'gg 8.75 9.67
K=102 07 12 10| x| 50 (20| =[595 677
04 1.0 1.5 02 el 7.59 8.55

Lt

Beispiel 5.6. In einem mehrstufigen Produktionsprozess stellt ein Betrieb aus den
Rohteilen Ry, R, und R3 die Zwischenprodukte Z;, Z> und Z3 her. Hieraus werden
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in einer zweiten Stufe Baugruppen By, B,, B3 und B4 montiert, die schlieSlich auf
der dritten Produktionsstufe zu den Fertigprodukten F] und F, gefertigt werden. Die
folgenden Matrizen geben den Materialverbrauch auf jeder Stufe an, wobei in den
Zeilen jeweils der Input je Mengeneinheit des Outputs steht, der in der Spalte ange-
geben ist.

Tabelle 5.3: Materialverflechtung

Zi 2, 7y B, B, By B A B
Ril 4 2 z11 3 2 1 g‘ ; i
Rb2 3 1 Z1 0 2 4 32 .

3
Ry O 2 3 72 12 1 o

Es soll der Gesamtverbrauch an Einzelteilen festgestellt werden, der zur Produk-
tion jeweils einer Einheit von F] und F, notwendig ist. Wird der Inhalt der ersten
Tabelle in einer Matrix A, der Inhalt der zweiten in einer Matrix B und der Inhalt der
dritten in einer Matrix C niedergeschrieben, so gibt die folgende Matrixmultiplikati-
on das gesuchte Ergebnis an:

(1 4 2 1 3 2 1 ; g
F=1]2 3 1|[x]|1 0 2 4|x 1 2
0 2 3 21 2 1
~ ~ PR ~ ~ 31
A B S 7
C
[9 5 14 19 ; ;ZT 90 80
= 1|7 7 12 15| x 1 2l = 78 74
8§ 3 10 11 3 57 56
~ ~ ~
D N o~ ~
C

Es werden fiir eine Einheit des ersten Produkts also 90 Einzelteile der ersten Sorte,
78 Einzelteile der zweiten Sorte und 57 Einzelteile der dritten Sorte benétigt. Die
Mengenangaben fiir das zweite Produkt konnen leicht aus der obigen Matrix F ab-
gelesen werden. Die Matrix D gibt den Verbrauch an Einzelteilen an, der zu jeweils
einer Einheit der Baugruppen B bis B4 bendtigt wird.

Wird nun ein Fertigungsprogramm mit 70 Einheiten fiir /] und 120 Einheiten fiir
F, aufgelegt, so kann der Einkdufer mit dem folgenden Matrixprodukt schnell die
Bedarfsmengen an Einzelteilen berechnen:

15900
F x [17200] = | 14340
10710
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Ubung 5.2. In dem Unternehmen werden durch Einsatz menschlicher Arbeit R;
aus den beiden Rohstoffen R, und R3 die Zwischenprodukte Z; und Z,, die Halb-
fabrikate H,, H, und H3 und die Fertigprodukte F] und F; in drei Stufen hergestellt.
Die Verflechtung von Rohstoffen, Zwischenprodukten, Halbfabrikaten und Fertig-
produkten ist in Abb. 5.1 veranschaulicht.

Beschreiben Sie die im Gozintograph enthaltene Information mittels mehrerer Ma-
trizen und berechnen Sie damit den Bedarf an Rohstoffen R, R;, R3, wenn 100
Fy und 70 F, produziert werden. Das Wort «Gozinto» ist eine Verfremdung der
Schreibweise von goes into.

Z1 z2

H1 H2

121/ 1
F1 1| F2

o
w

Abb. 5.1: Gozintograph
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ﬁbung 5.3. Ein Betrieb stellt aus 3 Rohstoffen Ry, Ry, R3 in der ersten Produkti-
onsstufe 3 Zwischenprodukte Z;, Z;, Z3 her. In der zweiten Stufe werden hieraus 4
Fertigprodukte F, F>, F3, Fy gefertigt. Der Materialverbrauch beider Produktions-
stufen betragt:

Tabelle 5.4: Materialverflechtung
Zy 7y Z3 B B F
RR2 1 0 Z2 0 3 4

RR1 2 3 Z1 2 5 0
R2 1 1 Z34 2 0 3

1. Berechnen Sie die Matrix, die fiir jede Einheit eines Endprodukts den Roh-
stoff angibt.
2. Welche Rohstoffmengen werden bendtigt, wenn die Fertigprodukte in den
Mengen
[100 550 80 60}

hergestellt werden sollen?

5.6 Matrizenrechnung mit Scilab

In Scilab kénnen Diagonalmatrizen platzsparend als Vektor eingegeben werden, der
anschlieBend mit dem Befehl diag () diagonalisert wird.

a = [21 -4]1;
A = diag(a)

2 00

010

0 0 -4

Wird der diag () Befehl auf eine Matrix angewendet, so liefert dieser die Dia-
gonalelemente der Matrix als Vektor.

diag(a)

2
1
-4

Eine Einheitsmatrix kann in Scilab mit dem Befehl eye (a, a) erzeugt werden.

eye(2,2)
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10
01

Matrizenoperationen konnen in Scilab aufgrund der vordefinierten Variablenei-
genschaften sehr leicht durchgefiihrt werden, wobei jede Variable als Matrix expan-
diert werden kann. So kénnen — sofern die Matrizen die notwendigen Eigenschaften
besitzen — mit 4+, —, x die Matrizenoperationen berechnet werden.

Beispiel 5.7. Um die Materialverflechtung aus Beispiel 5.6 zu berechnen, miissen zu-
erst die Matrizen in Scilab eingegeben werden. Im Programmfenster oder im Editor
werden die folgenden Zeilen eingetippt. Jede neue Zeile wird mit einem return
erzeugt, wobei die Einriickungen reine Kosmetik sind.

A =

—

(@] (vs]

I I
PR NMR R ONR
W NERE O WNWD

N

[

N

3 1]

F AxBxC

90 80
78 74
57 56

In F steht das Ergebnis. £eS

5.7 Fazit

Matrizen sind zweidimensionale Zahlenfelder. Sie konnen auch als aneinander ge-
fiigte Vektoren betrachtet werden. Die Rechenoperationen fiir Vektoren kénnen auf
Matrizen angewendet werden. Mit der Matrizenalgebra kdnnen lineare 6konomische
Fragestellungen wie die Einzelteilberechnung in mehrstufigen Produktionsprozessen
berechnet werden.
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6.1 Vorbemerkung

Viele Probleme der Praxis lassen sich in Form linearer Gleichungssysteme model-
lieren und damit 16sen. Besonders héufig ergeben sich lineare Gleichungssysteme in
o6konomischen Bereichen, weil hier viele Beziehungen tatsachlich linear sind oder als
linear angenommen werden kdnnen. Die Kenntnisse aus den Kapiteln 4 und 5 wer-
den hier eingesetzt und erweitert. Inhomogene lineare Gleichungssysteme werden in
der Input-Output-Analyse verwendet. Die Abschnitte Determinante einer Matrix
und Homogene Gleichungssysteme sind Grundlagen fiir weiterfiihrende Themen.
Die Berechnung von Determinanten wird in den Abschnitten 11.4 und 11.5 verwen-
det. Homogene Gleichungssysteme und Eigenwertprobleme sind eng miteinander
verbundene Fragestellungen. Diese werden bei einigen statistischen Verfahren ein-
gesetzt.
Einige geldufige Bezeichnungen:

ajj Koeffizient der j-ten Variablen in der i-ten Gleichung
Al Inverse der Matrix A

detA  Determinante einer Matrix

|Ai/] Minor einer Matrix

b; rechte Seite der i-ten Gleichung

cij Adjunkte zum Minor |A;/|

diagA  Hauptdiagonalelemente einer Matrix
diaga  Erzeugung einer Diagonalmatrix aus dem Vektor a

A Koeffizient oder Eigenwert (kontextabhéngig)
m Anzahl der Variablen
n Anzahl der Gleichungen

rgA Rang einer Matrix
SpA Spur einer Matrix
v Eigenvektor

X Variable

6.2 Inhomogene lineare Gleichungssysteme

Ein inhomogenes lineares Gleichungssystem ist durch mehrere lineare Gleichungen
gekennzeichnet, die gemeinsam (simultan) gelost werden miissen.

ayxy + ...+ agx; + .o+ appxm = by
ailxy + ...+ aijx; + ... + aimxm = b; (6.1)
A X1 + oo+ apiX; o Qe Xm = by

In den obigen Gleichungen werden die a;; (i = 1,...,n;j = 1,...,m) als Koef-
fizienten, die x; als Variablen und b; (i = 1,...,n) als absolute Glieder bezeichnet.
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Solange nicht alle absoluten Glieder Null sind, handelt es sich um ein inhomogenes
lineares Gleichungssystem. Sind hingegen die absoluten Glieder alle Null, so handelt
es sich um ein homogenes Gleichungssystem, das in Kapitel 6.7 behandelt wird.

Die Matrixschreibweise erlaubt eine sehr kompakte Beschreibung des Glei-
chungssystems (6.1).

a11...a1]~...a1m X1 b]
Ax=b mit A= |ayq ... aj ... ain X=|x b= |b;
Qnl -.. Qpj -« G Xm b,

Beispiel 6.1. Das folgende lineare Gleichungssystem mit 3 Gleichungen und 3 Va-
riablen

2x1 —xp +4x3 =10
3x; —xo+ x3 = 0
x2—3x3: 6

ergibt die Matrizengleichung

2 —1 4] [n 10
3 -1 1| |wm| =10
0 1 -3| |x 6

6.2.1 Losung eines inhomogenen Gleichungssystems

Gefragt wird, ob ein lineares Gleichungssystems losbar ist und wenn ja, ob die Lo-
sung eindeutig ist. Hierzu folgende Uberlegung: Eine lineare Gleichung mit einer
Variablen

ayrxy = b

besitzt fiir die Variable x| genau eine Losung, sofern a; # 0 gilt.

b
X1 =
ai
Die Losung lisst sich als Punkt auf einer Zahlengeraden im R' darstellen. Eine li-
neare Gleichung mit zwei Variablen

aj X1 +appxy = by

liefert unendlich viele Losungen fiir die beiden Variablen, sofern aj,a; # 0 gilt. Gibt
man aber eine Variable als Parameter vor, zum Beispiel x1, so kann die andere Varia-
ble in Abhéngigkeit dieser Variablen beschrieben werden:
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by —aix;
Xy =
ap

Die obige Gleichung zeigt eine Gerade im R?. Sie stellt einen linearen Unterraum
der Dimension 1 dar. Die Gerade legt die Werte fiir x; in Abhdngigkeit von x| fest.
Durch die Gerade wird ein Freiheitsgrad gebunden. Wird x; vorgegeben, so ist x,
durch die Gerade festgelegt.

Eine zweite linear unabhéngige Gleichung liefert ebenfalls eine Losung fiir eine
Variable.

ax1 X1 +axnx; = by

Sie bindet ebenfalls einen Freiheitsgrad. Setzt man die Losung fiir x, in die obige
Gleichung ein, so erhélt man nach einigen Umformungen eine eindeutige Losung
fiir x und x,.
anby—anb;
= 2 (6.2)
arrax —apazl
ai b2 ?) b
,= 4 161 (6.3)
arrax —apazl
Die Losung befindet sich im Kreuzungspunkt der beiden Linien (siche Abb. 6.1). Es
wurde das (2 x 2) Gleichungssystem

an anz| |x1| _ |b
n ez o] =12 4

Beispiel 6.2. Die beiden linear unabhingigen Gleichungen

gelost.

2x1+3x,=6
x1—2x2:1

liefern die Losung x; = 175 und x; = ‘71 (siche Abb. 6.1). Eine Gleichung mit zwei
Variablen beschreibt also eine Gerade des R?. ges

Eine Gleichung mit drei Variablen beschreibt eine Ebene im R (siehe Abb. 6.21).
Eine Losung ldsst sich ermitteln, wenn man zwei Variablen beliebige Werte zuweist.
Der Wert der dritten Variablen ergibt sich dann zwangsléufig. Man besitzt also zwei
Freiheitsgrade, d.h. die Freiheit, fiir zwei Variablen beliebige Werte vorzugeben.
Dies ist in Abb. 6.2 durch die zweidimensionalen Ebenen dargestellt. Die Zahl der
Freiheitsgrade bestimmt die Dimension des linearen Unterraums, der durch die Glei-
chungen beschrieben wird. Wird eine zweite linear unabhédngige Gleichung mit drei
Variablen gleichzeitig erfiillt, so werden die Losungen durch die Schnittgerade der
beiden Ebenen beschrieben. Bei zwei Gleichungen mit jeweils drei Variablen ist dann
nur noch eine Variable frei wihlbar. Die anderen beiden Variablenwerte sind durch

! Es handelt sich um das Gleichungssystem in Ubung 6.1.
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] Gleichung 1 Gleichung 2

-1.0 -0.5 0/0 0.5 1.0 1.5 2.0 25 3.0 3.5 4.0

Abb. 6.1: Schnittgeraden im R?

die beiden Gleichungen bestimmt. Die Losungsmenge besitzt nur noch einen Frei-
heitsgrad. Sie stellt folglich einen eindimensionalen Unterraum dar, der in der Abbil-
dung durch die Schnittgerade dargestellt ist. Nimmt man eine dritte linear unabhén-
gige Gleichung hinzu, d. h. deren Ebene verlduft nicht parallel zur Schnittgeraden, so
sind alle Variablenwerte bestimmt. Die Losungsmenge besitzt keinen Freiheitsgrad
mehr. Das Gleichungssystem besitzt dann eine eindeutige Losung. Es ist der Punkt,
der durch die drei Schnittgeraden bestimmt wird.

Jede Gleichung eines Gleichungssystems bindet also einen Freiheitsgrad, sofern
die Gleichung linear unabhéngig ist. Ist eine oder sind mehrere Gleichungen eines
Gleichungssystems linear abhéingig, so binden diese keinen Freiheitsgrad.

6.2.2 Linear abhiingige Gleichungen im Gleichungssystem

Die lineare Abhéngigkeit einer Gleichung bedeutet, dass diese durch eine andere
lineare Gleichungen ersetzt werden kann. Dadurch ist diese Gleichung dann nicht
mehr unabhingig von den den anderen Gleichungen.

Beispiel 6.3. In dem linearen Gleichungssystem

4x;+2x, =28
8x1+4x, =16
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kann beispielsweise die zweite Gleichung durch die erste Gleichung ersetzt werden,
wenn diese mit 2 multipliziert wird.

4x1+2x =8
2(4x1—|—2x2) =2x8

o3

Eine Gleichung ist in einem Gleichungssystem linear abhingig, wenn sie sich als
Linearkombination der restlichen Gleichungen darstellen lasst. Gegeben sei

m
E a,-jxj:b,- fliri = 1,...,]’1
j=1

ein lineares Gleichungssystem mit » Gleichungen und m Variablen. Ist eine Glei-
chung als Linearkombination der restlichen Gleichungen (oder eines Teils von ihnen)
darstellbar, dann heifit das Gleichungssystem linear abhéingig.

n
k-te Gleichung = Z Ai X i-te Gleichung

=1
ik

Abb. 6.2: Schnittgeraden im R3
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Die Summierung der (i — 1) Gleichungen gilt sowohl fiir die linke als auch fiir
die rechte Seite.

m n m n
San =34 ay = b= kb
j=1 =1 =l /

i=1 i=1
ik iZk

~ ~ - ~ ~ -
linke Seite rechte Seite

Beispiel 6.4. Es ist zu lberpriifen, ob das folgende Gleichungssystem eine linear ab-
héngige Gleichung aufweist.

2x1+2x+5x3=28
X1+2x+2x3=3
—2x0+ x3=2

Aus der Definition fiir lincare Unabhéangigkeit wird ein Gleichungssystem mit
den Zeilenvektoren zur Uberpriifung der linearen Abhingigkeit aufgestellt. Es liegt
lineare Unabhéngigkeit vor, wenn flir alle A; = 0 gilt. Fiir die linke Seite des Glei-
chungssystems ergibt sich dann folgendes System, das zu tiberpriifen ist.

2 1 0
M2+ 2 +A|-2| =0
5 2 1
2+ A =0

2}{,14—23,2—213 =0
SM+24+ A3=0

Aus den Gleichungen erhélt man die Losungen

o =-=21
A= —7Ll

A1 # 0 ist frei wihlbar, um die Gleichungen zu erfiillen. Wird A; = 1 gewihlt, so gilt
A2 = =2 und A3 = —1 und die erste Gleichung kann durch folgende Kombination
beschrieben werden.

1-te Gleichung = 2 x (2-te Gleichung) + 1 x (3-te Gleichung)

Man kann die Priifung auf lineare Unabhéngigkeit auch mit der rechten Seite des
Gleichungssystems durchfiihren. Die gegebene Linearkombination muss auch hier
gelten.

8M+34+243=0

Fiir die 1-te Gleichung gilt damit:
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8+3(-2)+2(-1)=0 < 8=3x2+2x1

Das obige Gleichungssystem weist somit eine lineare Abhingigkeit auf. Die Folge
der linearen Abhéngigkeit ist, dass das obige Gleichungssystem nicht 1osbar ist, ob-
wohl die drei Variablen durch drei Gleichungen beschrieben werden. Eine der Glei-
chungen ist eine Linearkombination der beiden anderen. Es sind nur zwei der drei
Gleichungen linear unabhéngig. Daher werden auch nur zwei der drei Freiheitsgrade
gebunden. Lt

Ubung 6.1. Uberpriifen Sie das folgende Gleichungssystem auf lineare Unabhin-
gigkeit.

2x1— XQ—3X3=8
xX1+3x4+2x3=3
S5x1+ 3x3=7

6.2.3 Losen eines Gleichungssystems mit dem Gauf3-Algorithmus

In Abschnitt 6.2.1 ist bereits prinzipiell aufgezeigt worden, wie ein Gleichungssy-
stem gelost werden kann. Diese Technik wird im Folgenden strukturiert. Als erstes
ist festzuhalten, dass Gleichungen sich linear kombinieren lassen.

Beispiel 6.5. Die Gleichung

2x1 —x2+4x3 =10
und die Gleichung

x1—05x+2x3=5
sind identisch. Die zweite Gleichung wurde mit 0.5 erweitert. s

Jede Gleichung kann mit einem Faktor A € R erweitert werden. Die neue Glei-
chung ist dann eine Linearkombination der urspriinglichen Gleichung.

zm:ajxj:b S A zm:ajxj:lb
j=1 j=1

Wird die urspriingliche Gleichung durch ihre Linearkombination ersetzt, so &n-
dert sich die Losungsmenge nicht.

Als zweites ist festzuhalten, dass man eine Gleichung eines Gleichungssystems
zu (von) anderen Gleichungen des Gleichungssystems addieren (subtrahieren) kann,
ohne dass sich die Losungsmenge dndert.
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Beispiel 6.6. In dem folgenden Gleichungssystem

2x1 —x2+4x3=10 (6.5)
3x1—x2+x3=0 (6.6)
X2 — 3X3 =6 (6.7)

wird die erste Gleichung mit 0.5 erweitert, um den Faktor fiir x; auf Eins zu set-
zen. Der Vorteil dieser Normierung liegt in einer einfacheren Umrechnung des Glei-
chungssystems. Die Variable x; wird dann als Pivotvariable bezeichnet. Die Glei-
chung wird Pivotgleichung genannt.

Es wird das Dreifache der ersten Gleichung von der zweiten Gleichung subtra-
hiert, um x; aus dieser Gleichung zu eliminieren. Das so verdnderte Gleichungssy-
stem besitzt die gleiche Losungsmenge wie das urspriingliche. Die dritte Gleichung
wird nicht verdndert, weil x; in ihr nicht vorkommt.

0.5%(6.5): x1—05x+2x3= 5 (6.8)
(6.6)—3 % (6.8): 0.5x,—5x3=—15 (6.9)
Xx2—3x3= 6 (6.10)

Im néchsten Schritt zur Berechnung der Losung wird die zweite Gleichung mit 2
erweitert und von der dritten Gleichung subtrahiert. Die erste Gleichung wird nicht
weiter umgeformt.

x1—05x+2x3= 5 (6.11)

2x(6.9): Xy — 10x3 = =30 (6.12)

(6.10) — (6.12): Txz3= 36 (6.13)

Man erkennt jetzt leicht die Losung fiir x3. Es ist 376. £

Drittens, ein Zeilentausch éndert ebenfalls nicht die Losung und kann Iterations-
schritte vereinfachen. Die eben beschriebene Vorgehensweise heiflt Eliminations-
phase. Sie eliminiert Variablen aus einem Teil eines Gleichungssystems. Die Pivot-
variablen miissen aber auf jeden Fall erhalten bleiben.

Beispiel 6.7. Fortfithrung von Beispiel 6.6: Um die Losungen fiir x; und x3 zu be-
rechnen, kann nun die Losung fiir x3 in die beiden oberen Gleichungen eingesetzt
werden. Es ergibt sich fiir x, dann die Gleichung

36
Xy —10 % . = -30
und die Losung:
150
Xy =
2T g
Die Berechnung der Losung fiir x| erfolgt analog.
150 36 38
—-0.5 2 =5 =
X1 X 7 +2X 7 < X 7
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Die eben angewandte Vorgehensweise wird als Substitutionsphase bezeichnet.
Eliminations- und Substitutionsphase zusammen werden als Gau3-Algorithmus be-
zeichnet.

Um die Schreibarbeit etwas zu verringern, wird eine Matrixstruktur zur Auf-
zeichnung der Koeffizienten verwendet. Es wird dabei das Gleichungssystem in Ma-
trixform geschrieben. Die skalare Multiplikation mit dem Vektor x entféllt. Dies hat
den Vorteil, dass die Variablen nicht mehr mitgefiihrt werden miissen.

Beispiel 6.8. Das Gleichungssystem aus Beispiel 6.6 wird wie folgt notiert:

2 -1 4 10
3 -1 1 0
0 1 -3 6

In den Spalten stehen die Variablen x| bis x3. Zur leichteren Orientierung werden die
Pivotelemente durch fettgedruckte Zahlen hervorgehoben. Nun koénnen die obigen
Rechenschritte wiederholt werden.

1 —05 2 5 1 —-05 2 5
0 05 -5 —15| =1]0 1 —10 =30
o 1 -3 6 o 0o 7 36
1 05 2 5

=10 1 -—10 30
0 0 1 3

Aus der letzten Tabelle kann dann aus der zweiten Zeile das Ergebnis fiir x, wieder
berechnet werden.

36 36 150
—10 x =-30 & =-30+10 =
X2 7 X7 + 7 7

Die Werte fiir x; und x3 werden in die erste Gleichung (Zeile) eingesetzt und liefern
das Ergebnis fiir x;. Lt

Um ein Gleichungssystem zu 19sen ist die Normierung der Pivotelemente nicht
notwendig. Die restlichen Gleichung werden dann mit dem Verhéltnis des Koeffizi-
enten der betreffenden Gleichung und dem Pivotkoeffizienten erweitert.

Beispiel 6.9. Das Gleichungssystem wird aus Beispiel 6.6 wird ohne Normierung
gelost.
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) 2 —1 4 10
(ID) 31 1 0 )= (1) -3 x (D)
(III) K 1 -3 6

(2 —1 4 10]
ar)y 0 1 —-10 -30
amry |o 1 -3 6 | II")=Ir)-— % x (II")

(2 —1 4 10]

0 1 -10 -30
amy [0 o 7 36 |
Die Losung kann nun wie schon zuvor iiber Substitution berechnet werden. ges

Es ist noch anzumerken, dass die Bearbeitung der Gleichungen nicht in derselben
Reihenfolge der Gleichungen im Gleichungssystem erfolgen muss. Wichtig ist nur,
dass jede Gleichung nur einmal als Pivotgleichung ausgewéhlt wird.

Beispiel 6.10. Das Gleichungssystem aus Beispiel 6.6 wird durch eine andere Rei-
henfolge der Bearbeitung geldst. Es wird die dritte Gleichung (6.7) bzw. (6.16) als
erste Pivotgleichung gewiahlt und x; als erste Pivotvariable. Diese wird aus den ersten
beiden Gleichungen eliminiert.

(6.5)4(6.16):  2x;+x3=16 (6.14)
(6.6)+(6.16): 3x; —2x3=6 (6.15)
X2—3x3=6 (6.16)

Nun wird das Zweifache der ersten Gleichung (Pivotgleichung) zu der zweiten
addiert. x3 ist Pivotvariable. Die erste Pivotgleichung (Gleichung (6.7)) wird nicht
wieder umgeformt.

2x1+x3 =16 (6.17)
(6.15)+2 x (6.14): 7x; =38 (6.18)
X —3x3=06 (6.19)

Die zweite Gleichung liefert nun die Losung fiir x;. Durch Einsetzen dieser Losung
in die erste Gleichung erhélt man x3 und kann dann mit der dritten Gleichung x;
berechnen.

Der gleiche Rechenvorgang in Matrixform sieht wie folgt aus:

2 -1 4 107] 2 0 1 16
3 -1 1 0l=13 0 -2 6
o 1 -3 6 | 0 1 -3 6
(2 0 1 167

=17 0 0 38
0 1 -3 6
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Aus der letzten Tabelle ergibt sich unmittelbar das Ergebnis x; = 378. Der Wert fiir x3
berechnet sich durch Einsetzen des Wertes von x; in die erste Gleichung.

38 36
2><7—|—x3:16 & X3=7

Entsprechend wird die Losung fiir x, aus der dritten Zeile bestimmt.

36 150
x2—3><7:6 = Xy = 7

o3

Eine weitere Variante des Gaul3-Algorithmus besteht darin, die Substitutionspha-
se zu vermeiden, in dem die Elimination der Variablen auch in den zuvor als Pivot-
gleichungen ausgewéhlten Gleichungen des Systems erfolgt. Diese Vorgehensweise
wird als vollstindige Elimination bezeichnet und wird sich spéter als niitzlich er-
weisen. Zur Berechnung der Losung eines Gleichungssystems ist die vollstindige
Elimination rechnerisch etwas aufwéndiger als die zuvor beschriebene Kombination
aus Eliminations- und Substitutionsphase.

Beispiel 6.11. Das Gleichungssystem aus Beispiel 6.6 wird durch vollstdndige Eli-
mination gelost.

2x1—xp+4x3=10 x1—05x42x3= 5
3x;—x2+x3=0 = 0.5x —5x3=—15
x2—3x3:6 x2—3x3: 6

38

X1 =

x1—3x3=-10 7
= u—10x3=-30 = v = 130
7X3= 36 36

X3 = 7

Die verkiirzte Schreibweise in Matrixform:

2 -1 4 10
3 -1 1 0 =
0 1 -3 6

S
|
e o
_
i
[
VN
|
—
NG W»

10 -3  -10 1 0 0 38
=10 1 —-10 =30|= (0 1 0 10
0o 0 7 36 0 0 1 3

Das vollstindige Eliminationsverfahren des Gauf3-Algorithmus wird nun noch-
mal kurz formal zusammengefasst. Das Gleichungssystem
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ary ... Aip b1

anl ‘e Apm bn
wird durch folgende Schritte gelst.

Schritt 1:  Es wird das Pivotelement a,; # 0 (zum Beispiel @) gewéhlt. Dann ist
die erste (r-te) Zeile Pivotzeile und die erste (s-te) Spalte Pivotspalte.

Schritt 2: Die Pivotzeile » wird wie folgt umgerechnet.

arj und b, =

drj =
Ayg Ayg

Die neuen Elemente der r-ten Zeile sind @, ; und Er.
Schritt 3:  Alle tibrigen Zeilen werden wie folgt berechnet:

ﬁij = aij—d,jais und b,‘ = b,-—b,ais

Die neuen Elemente der tibrigen Zeilen (bis auf die Pivotzeile r aus
Schritt 1) sind dij und b;.

Schritt 1 und 3 werden fiir alle Zeilen wiederholt, bis jede Zeile einmal als Pivot-
element verwendet wurde.

Ubung 6.2. Uberpriifen Sie das Gleichungssystem in Ubung 6.1 mit Hilfe des
GauB-Algorithmus auf lineare Unabhéngigkeit.

Ubung 6.3. Von einer Kostenfunktion K (x) weil man, dass sie sich niherungs-
weise wie eine kubische Funktion (Polynom 3. Grades) beziiglich der Stiickzahl
x verhilt. Bestimmen Sie die explizite Gestalt einer solchen Funktion, wenn die
Kostenwerte in Tabelle 6.1 konkret bekannt sind.

Tabelle 6.1: Kostenwerte

x[Stick] 10 15 20 25
K(x)[€] 2700 3475 5700 10125

Setzen Sie die unbekannten Koeffizienten des kubischen Polynoms als Variablen
an, und berechnen Sie die daraus resultierenden Funktionswerte fiir die gegebenen
Stiickzahlen x. Durch Gleichsetzen mit den Sollwerten aus der Tabelle erhdlt man
daraus ein lineares Gleichungssystem zur Bestimmung der gesuchten Koeffizien-
ten.
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6.2.4 Losen eines Gleichungssystems mit Scilab

Das Losen eines linearen Geichungssystems in Scilab erfolgt mit dem Befehl
linsolve (A,b), wobei A und b, wie in den vorhergehenden Abschnitten be-
schrieben, die Koeffizienten bzw. die rechte Seite des Gleichungssystems sind. Eine
Besonderheit ist, dass der Befehl 1insolve ein Gleichungssystem der Form

Ax+b=0

voraussetzt. Der Vektor b muss also negativ angegeben werden, wenn wir von der
bisherigen Darstellung ausgehen.

Beispiel 6.12. Ausgehend vom Beispiel 6.6 wird die Befehlsfolge zur Berechnug der
Losung gezeigt.

A=[2-14; 3 -11; 0 1 -31;

b = [10; 0; 6];
x = linsolve (A, -b)
Der Vektor x enthilt die bekannte Losung. o3

6.3 Rang einer Matrix

Der Rang einer Matrix ist eine natiirliche Zahl, die die maximale Anzahl linear un-
abhingiger Vektoren einer Matrix angibt. Mittels des Rangs einer Matrix kann man
somit einfach die Losbarkeit eines linearen Gleichungssystems beschreiben. Man
schreibt fiir den Rang einer Matrix rgA.

6.3.1 Eigenschaft des Rangs

Fiir eine n x m Matrix ist der Rang nicht groBer als der kleinere Wert der Zeilenzahl
nund der Spaltenzahl m.
rgA < min(n,m)

Die Rangbestimmung einer Matrix ist am einfachsten, wenn mit dem Gauf3-Algo-
rithmus eine Dreiecksmatrix erzeugt wird. Die Zeilenzahl minus der Nullzeilen ist
die Anzahl der linear unabhéngigen Zeilen. Sie gibt den Rang der Matrix an.

Beispiel 6.13. Die Matrix

>

Il
W =
(RN NN
— o\ W
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besitzt, den Rang

1 2 3
rgA=rg|0 O 01 =2
0 —4 -8

Die Matrix A besitzt den Rang 2, weil eine Nullzeile auftritt. Ein Vektor ist linear
abhingig. o3

Der Rang der Matrix bleibt durch den Tausch der Zeilen (und Spalten) unverén-
dert.

6.3.2 Rang und lineares Gleichungssystem

Mit dem Rang einer Matrix kann leicht festgestellt werden, ob die Matrix eine li-
neare Abhédngigkeit zwischen den Zeilen oder Spalten besitzt. Daher wird der Rang
verwendet, um die Losbarkeit eines linearen Gleichungssystems

Ax=Db
zu beschreiben. Das Gleichungssystem besitzt keine Losung, wenn
rgA <rg(A|b)

gilt. Es liegt ein Widerspruch im Gleichungssystem vor. Die linke Seite des Glei-
chungssystems weist eine lineare Abhdngigkeit aus, die rechte hingegen nicht. Mit
Alb wird die um den Vektor b erweitere Koeffizientenmatrix A beschrieben. Um die
Losbarkeit des Gleichungssystems sicherzustellen, muss

rgA = rg(A | b)

gelten. Es konnte dann aber eine mehrdeutige Losung vorliegen, weil die Anzahl der
Gleichungen von der Anzahl der Variablen verschieden sein kann. Um eine eindeu-
tige Losung fiir das Gleichungssystem sicherzustellen, muss

rgA=r1g(A|b)=m

gelten, wobei mit m die Anzahl der Variablen bezeichnet wird.
Ein Gleichungssystem mit n» Gleichungen und m Variablen heif3t

bestimmt, wenn m = n gilt und alle Gleichungen linear unabhingig sind. Das be-
stimmte Gleichungssystem besitzt eine eindeutige Losung.

iiberbestimmt, wenn m < n gilt, d. h. wenn mehr linear unabhingige Gleichungen
als Variablen vorhanden sind. Das Gleichungssystem besitzt keine Losung und
enthilt einen Widerspruch.

unterbestimmt, wenn m > n gilt, d.h. wenn weniger Gleichungen als Variablen
vorliegen. Ein unterbestimmtes Gleichungssystem besitzt im Allgemeinen un-
endlich viele Losungen.
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Beispiel 6.14. Das Gleichungssystem aus Beispiel 6.4 besitzt folgende Rangglei-
chungen:

2 25 2 2 5
rgA=rg| 1 2 2|=(01 —-05|=2
10 -2 1 0 0 0
2 5 8 2 2 5 8
rg(A|lb)=rg|l 2 2 3]: 0 1 —-05 1] =2
10 -2 1 2 0 0 0 0

Das Gleichungssystem besitzt eine Losung, weil der Rang von rg A gleich dem Rang
vonrg(A | b) ist. Weil aber der Rang (Anzahl der linear unabhingigen Gleichungen)
kleiner als die Anzahl der Variablen ist, liegen unendlich viele Losungen vor. £es

6.3.3 Berechnung des Rangs mit Scilab

In Scilab wird der Rang einer Matrix A mit dem Befehl rank (A) berechnet.

6.4 Inverse einer Matrix

Eine weitere wichtige Matrixoperation ist die Matrixinversion. Sie ist niitzlich zum
Lésen von Gleichungssystemen und erginzt die bereits vorgestellten Grundoperatio-
nen.

6.4.1 Eigenschaft der Inversen

Die Losung des bestimmten Gleichungssystems

Ax=b (6.20)

wurde mit dem GauB3-Algorithmus bisher dadurch erzeugt, dass das Gleichungssy-
stem bei der vollstdndigen Elimination wie folgt umgeformt wurde:

Ix=b"

In b* stehen die Losungen fiir x.

Es wird nun eine Matrix A~! definiert, die als Inverse der reguliren quadrati-
schen Matrix A bezeichnet wird. Reguldr bedeutet hier, dass die Matrix den vollen
Rang besitzt. Sie besitzt per Definition die Eigenschaft

AA T=ATA=1
Damit lasst sich die Losung des Gleichungssystems (6.20) auch wie folgt erzeugen:

A TAx=A"Tp
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x=A"'b
wobei
A7'p=b*

ist. Die Inverse stellt keine Division mit einer Matrix dar, wie vielleicht die Schreib-
weise nahelegen konnte. Die Losung des Gleichungssystems erfolgt vielmehr durch
Multiplikation der Gleichung mit der Inversen.

6.4.2 Berechnung der Inversen

Mit der Eigenschaft der Inversen ist aber noch kein Weg zur Berechnung der Inversen
gezeigt. Die Berechnung erfolgt mit dem Gaul3-Algorithmus.

Beispiel 6.15. Es ist die Inverse der Matrix zu dem Beispiel 6.2.

2 3
S
zu berechnen. Dazu wird das folgende Gaul3-Tableau aufgestellt:
2 3 10
1 -2 0 1
Durch vollstindige Elimination der rechten Seite wird auf der linken Seite des Ta-
bleaus eine Matrix erzeugt, die die Inverse von A ist.

1 3 1 0:| |:1 0 2 3:|
2 2 = 1 ]
7 T
{0 T2 2 1 0 1 7 7
Die Inverse der Matrix A ist
2 3
w=[1 ]

7 7

Die Multiplikation A~! A muss die Einheitsmatrix ergeben.

I Rt

Die Inverse wird zur Losung des Gleichungssystems aus Beispiel 6.2 eingesetzt.
Das Gleichungssytem besitzt folgende Matrixform:

][

Mit dem Matrixprodukt A~! b kann die Losung fiir x; und x, berechnet werden.

R
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Bei der Anwendung des GauB3-Algorithmus ist es nicht immer sinnvoll oder mog-
lich, die Pivotelemente auf der Hauptdiagonalen zu wihlen. Wéhlt man andere Ele-
mente aus (natiirlich darf jede Zeile nur einmal ausgewihlt werden), so entsteht auf
der rechten Seite dann eine permutierte Matrix der Inversen. Durch Vertauschen der
Zeilen erhilt man dann die Inverse.

Beispiel 6.16. Es ist die Matrix

1
A= |0
2

—_— NN

gegeben. Die Anwendung des Gauf3-Algorithmus liefert folgendes Ergebnis:

1 21 1 0 1 0 0 I -1 0
021 0 1 0 =1(0 21 0 1 0

21 1 0 0 1 2 -1 0 0 -1 1

1 0 0 1 -1 0 1 0 0 I -1 0

= 4 0 1 1 -1 2l= |0 01 —4 3 2
-2 1 0 0 1 -1 01 0 2 -1 -1

Das Vertauschen der letzten beiden Zeilen liefert die gesuchte Inverse.

1 0 0 I -1 0
0 1 0 2 -1 -1
0 0 1 -4 3 2

6.4.3 Berechnung von Inversen mit Scilab

Die Inverse einer Matrix A wird in Scilab mit dem Befehl inv (A) berechnet.

6.5 Okonomische Anwendung: Input-Output-Analyse

Input-Output-Tabellen werden zur Beschreibung von Wirtschaftssystemen verwen-
det. Das System (Volkswirtschaft oder Unternehmen) besteht aus einzelnen Sektoren
(Betriebsstitten, Kostenstellen), die untereinander Leistungen austauschen, um ver-
schiedene Gesamtleistungen gemeinsam zu erstellen. Die Verflechtungen der einzel-
nen Sektoren lassen sich in einem «Gozinto» Graph darstellen. Die Leistungen sind
in Geldeinheiten bewertet. In der folgenden Darstellung der Input-Output-Analyse
wird die Verwendung im Rahmen der Betriebswirtschaftslehre betont und die ur-
spriinglich volkswirtschaftliche Anwendung vernachléssigt.
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6.5.1 Klassische Analyse

Beispiel 6.17. Der Sektor 1 in Abb. 6.3 benétigt zur Erstellung einer bestimmten
Gesamtleistung Vorleistungen im Wert von 30 € seiner eigenen Produktion und 50 €
von Sektor 2. Der Sektor 2 bezieht Vorleistungen im Wert von 60 € von Sektor 1
und verbraucht Leistungen im Wert von 15€ seiner eigenen Produktion. Aus der
Gesamtproduktion wird eine Endnachfrage im Wert von 10 € aus Sektor 1 und 85 €

aus Sektor 2 bedient. Lt
Sektor 1 Sektor 2 Endnachfrage
60
30 15 |—8

50

_

Abb. 6.3: Gozintograph

Das Wirtschaftssystem kann mit einer Verflechtungsmatrix T (auch als Zen-
tralmatrix bezeichnet) (complication matrix) beschrieben werden.

30 60
T_[so 15}

In der Matrix T wird in den Zeilen der Aufwand (/nput) und in den Spalten das Er-
gebnis (Output) abgetragen. Die Input-Output-Analyse mittels eines linearen Glei-
chungssystems geht auf Wassily W. Leontief zuriick.

Um das Gesamtsystem vollstindig zu beschreiben, ist die Angabe einer Endnach-
frage (Nettoproduktion) (final demand) oder einer Gesamtleistung (Bruttoproduktion
= Nettoproduktion plus Vorleistungen) (output level) notwendig. Im Beispiel ist die
Nettoproduktion mit

10
=[5

angegeben. In einer so genannten Input-Output-Tabelle wird das Gesamtsystem
abgetragen (siche Tabelle 6.2).
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Tabelle 6.2: Input-Output-Tabelle
T v b X

30 60 90 10 100
50 15 65 85 150

In der Tabelle 6.2 werden mit v die Vorleistungen je Sektor (primary input) be-
zeichnet. Sie ist die Summe der jeweiligen Zeile aus der Verflechtungsmatrix T.

1
v=Tx1 mitl=|:
1
Die Gesamtleistung des Systems ergibt sich aus der Summe der Vorleistungen v und

der Endnachfrage b.
x=Tx1+b=v+b (6.21)

Die Vorleistungen sind von der Gesamtleistung abhiangig. Um diese Abhingigkeit
in der Gleichung (6.21) aufzuzeigen, werden die Vorleistungen auf eine Einheit um-
gerechnet. Ferner werden die Annahmen getroffen, dass stets in konstanten Propor-
tionen produziert wird und sowohl Substitution als auch technischer Fortschritt aus-
geschlossen sind. Die so transformierten Vorleistungen werden als Input-Output-
Koeffizienten bezeichnet.

T:;;  Input des Sektors i an den Sektor j

d< L= —
Y x 3 Output des Sektors j

Sie konnen als NormgrofBen fiir die bei der Produktion verwandte Technologie an-
gesehen werden. Die Koeffizienten d;; geben den Vorleistungsstrom an, der benotigt
wird, um in jedem Sektor gerade eine Bruttoeinheit zu erstellen.

—1 30 60

. _ 100 O 100 150

D = T (diagx) 1:T[O 150] :lso 151
100 150

Die Matrix D wird als Matrix der technischen Koeffizienten (input coefficient
matrix) oder Direktbedarfsmatrix bezeichnet. Mit dieser Matrix 14sst sich nun fol-
gendes Gleichungssystem aufstellen und 16sen. Durch Einsetzen von

(diagx) 'x =1
in die Gleichung (6.21) erhélt man:

x=Tx1+b
=T (diagx) 'x+b (6.22)
=Dx+b
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Angewendet auf das Beispiel bekommt man dann folgende Gleichung:
100 {03 0.4] {100 n 10
1501 {05 0.1 |150 85

Die Gleichung wird umgestellt, so dass der Vektor x auf der linken Seite ausgeklam-
mert werden kann.

(I-D)x=b
0% o5 |iso) = [s8]

Die Gleichung wird mit der Inversen von I — D erweitert, um die Losung fiir den
Vektor x berechnen zu kénnen.

x= (I-D)"' b

~ ~ -
Leontief-Inverse
2)- [ 411
150 5ol L85
Die Koeffizienten der Leontief-Inverse geben an, wie viel der Sektor i (Zeile) her-
stellen muss, damit der Sektor j (Spalte) eine Einheit fiir die Endnachfrage abgeben
kann. Es werden dabei alle direkten und indirekten Effekte erfasst. Die Leontief-
Inverse wird auch als Gesamtbedarfsmatrix (composite demand matrix) bezeich-
net, weil mit ihr der Gesamtbedarf fiir eine gegebene Endnachfrage berechnet wer-
den kann.

Im vorliegenden Fall muss der Sektor 1 an eigenen Leistungen 32 Einheiten und
der Sektor 2 Leistungen in Hohe von 451(3) produzieren, damit eine Leistungseinheit fiir
die Endnachfrage entsteht.

Die Elemente auf der Hauptdiagonalen miissen immer grofer-gleich Eins sein.
Damit der Sektor 7 eine Einheit anbieten kann, muss dieser Sektor selbst auf jeden
Fall eine Einheit herstellen. Alles dariiber hinaus ist der zusitzliche Bedarf der Sek-
toren, die von Sektor i mit Vorleistungen versorgt werden, damit diese wiederum ihre
Vorleistungen an Sektor i liefern konnen.

6.5.2 Preisanalyse

Aus betriebswirtschaftlicher Sicht ist nun eine Aufteilung der Gesamtleistung in
Preis p mal Menge x,, interessant. Die innerbetriebliche Leistungsverflechtung zeigt
dann Verrechnungspreise, die zur betrieblichen Analyse wichtig sind. Hierbei wird
davon ausgegangen, dass der (Verrechnungs-) Preis einer Leistungseinheit sich aus
einem internen Verrechnungspreis und einem externen Preis zusammensetzt.

p=Dyp+Ppex (6.23)
~~

Pint
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Um diese Gleichung mit den Preisen zu bestimmen, miissen die Endpreise fiir die
Gesamtleistung bekannt sein. In dem begleitenden Beispiel werden die Preise

=[]

x = diagx, p = diagpx,

unterstellt. Aus der Aufteilung

erhilt man

o 50
x, = (diagp) ' x = {50}

Damit ldsst sich die urspriingliche Leistungsaufteilung (6.22) wie folgt beschrei-
ben:

diagx, p = T (diag p)_lp +b (6.24)
~

2 20B1-[2 911 1618
SR

In T, stehen die unbewerteten Leistungseinheiten, die zwischen den Kostenstellen
ausgetauscht werden. Um nun die Gleichung (6.23) zu erhalten, wird die Gleichung
(6.24) mit der Inversen von diagx,, erweitert.

p = (diagx,) ' T (diagp) ' p+ (diagx,) ' b
-

~ ~ ~ ~ -
Dp Pext
=Dpp+Pex
~—~
Pint

Die Matrizen D und D, sind identisch, wenn — wie im Beispiel — die Preise im
gleichen Verhiltnis zueinander stehen wie die Gesamtleistungen in x. Ansonsten sind
die beiden Matrizen unterschiedlich. In dem Beispiel ergibt sich damit dann folgende
Preisaufteilung:

- [03 04][2]_[18 [4 O7[10]_To02
Pin="1o.5 o1] [3]7[13] P~ 0 L|[85] [17

In diesem Zusammenhang wird der interne Verrechnungspreis als Stiickkosten
und der externe Preis als Deckungsbeitrag interpretiert. Der Vektor b kann statt der
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Endnachfrage auch externe Kosten beschreiben (sieche Beispiel 6.18 und Aufgabe
6.4).

Analog zu den Umformungen der Gleichung (6.22) wird auch fiir die internen
Verrechnungspreise eine Bezichung der Art

p="T,, X1+ Ppeu (6.25)
unterstellt. Die Zentralmatrix der internen Verrechnungspreise muss dann
Ty, = (diagxp)_1 T =D, diagp

sein. Die internen Verrechnungspreise fiir die beiden Sektoren (betriebswirtschaft-
lich: Kostenstellen) setzen sich dann wie folgt zusammen:

T o O07[30 607 TJ06 12
Pint — O 510 50 12 - 10 03

0.60€ kostet der Eigenverbrauch pro Leistungseinheit in Sektor 1 und 1.20€ die
Leistungseinheit, die Sektor 1 an Sektor 2 liefert. Entsprechend kann die Zeile zwei
der Matrix interpretiert werden. Es gilt:

2 106 12| |1 n 0.2
3] (1.0 03] |1 1.7
Um wieder die Gesamtleistung zu berechnen, muss die Preisgleichung (6.25) mit
der Mengenmatrix diag x,, multipliziert werden.
diagx, p = diagx, T,,, X 1+ diagX, pex
N o C N - N~ 7
X T b

In einem weiteren Beispiel soll nochmals die Vorgehensweise verdeutlicht wer-
den.

Beispiel 6.18. Ein Unternehmen besteht aus 4 Kostenstellen. Die Leistungsverflech-
tung sieht wie folgt aus (vgl. [7]).

Tabelle 6.3: Leistungsverflechtung zum Beispiel 6.18

von/an Kostenstelle
1 2 3 4 Gesamtleistung
1 - 400 200 300 1200
2 - 100 400 100 600
3 600 - 300 200 1600
4 400 - - - 2000

ext. Kosten 90000 60000 120000 200000

Es sind die Verrechnungspreise und die internen Verrechnungspreise zu berech-
nen. Dazu ist zuerst das Gleichungssystem mit den Bilanzgleichungen (Einnahmen
= Ausgaben) aufzustellen.
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1200 p; = 600 p3 + 400 p4 + 90000
600 py = 400 p; + 100p, + 60000

1600 p3 = 200 p1 + 400 ps + 300 p3 + 120000

2000 ps = 300 p1 + 100 p> + 200 p3 -+ 200000

Dieses kann wie zuvor mit folgenden Variablen beschrieben werden.

diagx,p = T, p + Key
~ ~ -

—~
k K

1200 0 0 0 D1 0 0 600 400 D1
0 600 0 0 p2| _ |400 100 O 0 )2
0 0 1600 0 p3|  [200 400 300 O p3
0 0 0 2000 )2 300 100 200 O )2

90000

60000

120000

200000

Der Vektor k., beschreibt hier die externen Kosten, die auch als Primérkosten
bezeichnet werden. Die Losung des Gleichungssystems nach p erfolgt in der bekann-
ten Weise.

(diag Xp— Tp) P =Kex

-1
P= (diagxp — Tp) Kexs
-1

1200 0 —600 —400 90000 (6.26)
| —400 500 0 0 60000
| =200 —400 1300 0 120000

—-300 —100 —200 2000 200000

Die Losung kann alternativ auch mit der Matrix der technischen Koeffizienten erfol-
gen.
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pP= (diagxp)_l T,p+ (diagxp)_l Kext
NS ~ - N ~ -
Dp pext
= (I_Dp)ilpext
0.0 0.0 0.5 033333 1\ ' [75
0.66666 0.16666 0.0 0.0 100
=" lo12s 025 01875 0.0 75 (6.27)
0.15 005 01 0.0 100
1.00 000  —050  —033333 1°'[75
| —0.66666  0.83333  0.00 0.00 100
= 10125 —025 08125  0.00 75
|—0.15  —005  —0.10 100 | |10

Die Berechnung der Inversen von (6.26) bzw. (6.27) erfolgt am besten mit einem
Computerprogramm (siche Ende des Abschnitts, Seite 98).
Es ergeben sich mit den vorliegenden Werten dann die Verrechnungspreise:

247.81992
318.25594
P= 172835874
175.92166

Die internen Verrechnungspreise, also die Verrechnungspreise ohne die Priméarko-
sten, sind:
172.81992
218.255%4
Pine =DpP =53 35874
75.921659

Die Kosten je Kostenstelle sind die Verrechnungspreise mit den Leistungen multipli-

ziert.
297383.91

190953.56
365373.98
351843.32

Nun kann man auch wieder die Aufteilung der Kosten in interne und externe
Kosten vornehmen. Die externen Kosten sind gegeben, so dass die internen Kosten zu
berechnen sind. Die internen Kosten sind die Differenzen aus Kosten je Kostenstelle
minus deren externe Kosten.

k = diagx,p =

Kint = K — Koy

Weiterhin lassen sich die internen Kosten je Kostenstelle auch aus den bewerteten
Leistungen berechnen.

207383.91
130953.56
245373.98
151843.32

Kint = diagxp Pint = Tpp =



98 6 Lineare Gleichungssysteme

Die Summe aus externen und internen Kosten ergeben die Gesamtkosten je Ko-
stenstelle. Ebenso ergibt die Summe aus externem Preis und internem Verrechnungs-
preis den Verrechnungspreis je Kostenstelle. Wie in der vorhergehenden Analyse dar-
gelegt, konnen die internen Verrechnungspreise auch auf die Kostenstellen aufgeteilt
werden. Die Zentralmatrix der internen Verrechnungspreise liefert diese Aufteilung.
Es sind die normierten Leistungen je Sektor, die mit den Verrechnungspreisen be-
wertet werden.

0.0 0.0 114.17937 58.64055
T, —D,diagp= 165.21328 53.042656 0.0 0.0
Pint L 30.97749 79.563984 42.81726 0.0
37.17299 15.91279  22.83587 0.0

Ubrigens entsprechen die Zeilensummen der Matrix T,,, den internen Verrech-

nungspreisen.

int

pint = Tpint 1
Die Aufteilung der internen Kosten auf die Kostenstelle kann mit der Bewertung
der Zentralmatrix T, mit den Verrechnungspreisen erfolgen. Eine andere Moglich-
keit besteht darin, die Mengen x,, mit der Zentralmatrix der internen Verrechnungs-
preise T, , zu bewerten. Es entsteht die Zentralmatrix der Kosten.

int

T, =T, diagp = diagx, T,,,

0.0 0.0 137015.24 70368.66
~199127.97  31825.59 0.0 0.0
49563.98 127302.38  68507.62 0.0
7434598  31825.59  45671.75 0.0

Auch fiir die Kosten gilt also die grundlegende Aufteilung der Gleichung (6.21):
k=T x 1+ Kkey

N~
Kint

6.5.3 Losen linearer Gleichungssysteme mit Scilab

Das Beispiel 6.18 kann in Scilab wie folgt gel6st werden:

// 1. Variante
xp=[1200
600
1600
2000] ;

Tp=[ © 0 600 400
400 100 0 0
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200 400 300 0
300 100 200 0];

kext=[ 90000

60000

120000
2000007 ;

p=inv (diag(xp) -Tp) xkext

// 2. Variante
Dp=inv (diag (xp) ) *Tp;
pext=inv (diag(xp) ) xkext;
p2=inv (eye (4, 4) -Dp) xpext

Ubung 6.4. Eine Unternehmung weist 4 Kostenstellen (KST) auf, die betriebliche
Leistungen an eine Hauptkostenstelle (HKST) abgeben, sich wechselseitig belie-
fern und einen Eigenverbrauch haben. Die umlagebediirftigen Gesamtkosten einer
Kostenstelle umfassen sowohl die priméren Kosten als auch die Kosten der inner-
betrieblichen Leistungen, die von den Kostenstellen erbracht werden (sekundéire
Kosten). Berechnen Sie die innerbetrieblichen Verrechnungspreise der vier Kosten-
stellen.

Tabelle 6.4: Verflechtungstablle

von/an Kostenstelle =~ HKST primére Kosten
1 2 3 4 b Kext
1 10 40 20 30 500 110
2 40 10 30 120 600 3135
3 50 60 50 40 800 7740
4 60 50 10 80 1000 12365
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Ubung 6.5. Ein GroBunternehmen unterhilt drei energieproduzierende Anlagen.
Sie liefern Warmwasser (W), Heidampf (H) und Strom (S). Die Anlagen versor-
gen sich zum Teil gegenseitig, geben aber auch Energie an andere Bedarfsstellen
ab. Die Tabelle 6.5 enthilt die Leistungsverflechtung zwischen den Bedarfsstellen.

Tabelle 6.5: Leistungsverflechtung
W H S y x

w 15 2 8 30
H 3 12 4 20
S 9 4 20 40

1. Berechnen Sie y. Es ist die Versorgung der anderen Bedarfsstellen, die End-
nachfrage.

2. Stellen Sie die Matrix D der relativen (technischen) Input-Output-Koeffi-
zienten auf.

3. Nehmen Sie an, die Anlage zur Warmwasserbereitung muss iiber langere
Zeit repariert werden. Die Betriebsleitung versucht nun, den Mangel durch
eine Produktionsplanung von

x' = 030 60]

auszugleichen. Koénnen die anderen Produktionsstétten unter diesen Bedin-
gungen versorgt werden?
4. Welche Gesamtproduktion ist zur Nachfragedeckung von

y =[1011 5]

nodtig? Losung mittels der Inversen von (I — D) erwiinscht!

6.6 Determinante einer Matrix

Jeder quadratischen Matrix A ist eindeutig eine reelle Zahl zugeordnet, die als ihre
Determinante det(A) oder |A| bezeichnet wird. Mittels der Determinanten kann die
lineare Abhingigkeit in Matrizen festgestellt werden. Besitzt die Matrix einen redu-
zierten Rang (keinen vollen Rang), ist die Determinante Null. Aulerdem eignen sich
Determinanten zur Bestimmung des «Vorzeichens» einer Matrix (auch Definitheit
der Matrix genannt). Diese wird zur Bestimmung des Vorzeichens der zweiten Ab-
leitung bei Funktionen mit mehr als einer Variablen eingesetzt (siche Hesse-Matrix,
Kapitel 11.4). Ferner lassen sich mit Determinanten Gleichungssysteme 16sen (Cra-
mersche Regel) und Inversen berechnen. Da jedoch diese beiden Verfahren einen
hohen Rechenaufwand haben, wird auf deren Beschreibung hier verzichtet.
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6.6.1 Berechnung von Determinanten

Die algebraische Losung des (2 x 2) Gleichungssystems (6.4, siehe Seite 76) weist
einen identischen Nenner in beiden Losungsgleichungen auf (siche Gleichungen
(6.2) und (6.3)). Dieser Nenner ist die Determinante der Matrix A. Er berechnet
sich im Fall der (2 x 2)-Matrix wie folgt:

apy ap
azy az

detA = =ai1axy —ajpax

Es ist das Produkt der Hauptdiagonalelemente minus dem Produkt der Nebendiago-
nalelemente. Die Berechnung von Determinanten hoherer Ordnung kann nicht mehr
mit der obigen Regel erfolgen, weil sie nicht alle Elemente beriicksichtigt.

Hierfiir liefert der Laplacesche Entwicklungssatz eine Moglichkeit, Determi-
nanten beliebiger Ordnung zu berechnen. Dazu miissen die Konzepte des Minor und
der Adjunkten eingefiihrt werden.

Als Minor der quadratischen Matrix A wird die Determinante |A;;| bezeichnet,
die durch Streichung der i-ten Zeile und j-ten Spalte entsteht.

Beispiel 6.19. Der Minor |A;;| der Matrix

ap ap a3
A = |ay axp ax
az1 asy asz

wird aus der Restmatrix berechnet, die durch Streichen der 2-ten Zeile und der 1-ten
Spalte entsteht. Die Determinante der Matrix

az a3

A =
A2 =145 ass

=daj2da33 —dasdis

ist der Minor. Bei einer (3 x 3)-Matrix lassen sich insgesamt 9 Minoren berechnen.
gos

Multipliziert man den Minor mit (—1)"*/, so erhélt man die Adjunkte c;; (auch
Kofaktor). o
= (~1)" |ay

Beispiel 6.20. Die Adjunkte ¢;; zum Minor |A;;| aus Beispiel 6.19 ist:

ca1 = (1> A = (—1)*|Ag| = —|Ax]

Der Laplacesche Entwicklungssatz lautet nun:
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Multipliziert man jedes Element a;; einer beliebigen Zeile bzw. Spalte
einer Determinanten n-ter Ordnung mit seiner zugehorigen Adjunkten
cij, so ergibt die Summe dieser Produkte den Wert der Determinanten.
Man spricht dann von der Entwicklung der Determinanten nach der i-ten

Zeile
n n
A= aijey =Y ay(—1)" Al
j=1 j=1

bzw. von der Entwicklung der Determinanten nach der j-ten Spalte:

n n
A= aije =Y ay (1) Al
i=1 i=1

Beispiel 6.21. Die Entwicklung der Determinanten der Matrix in Beispiel 6.19 nach
der 1-ten Spalte fiihrt zu folgender Gleichung:

JA| = ar (=) A +az (—1)2 T A Fas (—1)3 Ay

apz a3
azp azs

ajz ais
azp azz

arp azz
asz ass

=ay(anas —anax) —ax(anay —aynais) +az (annas —ana3)

Nun wird die 2-te Zeile zur Entwicklung der Determinanten ausgewéhlt.

IA] = az1 (—1)* ' A1 + a2 (—1)272 | Ay | 4423 (—1)>7 |Ags)|
ail a3
as) ass

ail a2
as) as

ajz ais
azp azz

= —ayi (a1pa33 —axaiz) + axn(anass — az1ai3) — ax(an azn —az ar)

Die weitere Auflosung der Gleichung zeigt, dass das gleiche Ergebnis entsteht.
Lediglich die Anordnung der Elemente ist unterschiedlich. Jede andere Zeile oder
Spalte fiihrt zur gleichen Determinante. £SS

Beispiel 6.22. Die Berechnung der Determinanten der Matrix aus Beispiel 6.16 (sie-
he Seite 90) erfolgt mit der Entwicklung nach der 2-ten Zeile, da in dieser Zeile ein
Element Null ist.

2 1 1o 23
1 2 1’“(_1)

=2(Ix1-2x1)—(Ix1-2x2)=1

— _1)\2+1

12‘

’+2(_1)2+2

Die Entwicklung der Determinanten nach der 1-ten Spalte hitte ebenso die Null
beriicksichtigt. Eine Entwicklung der Determinanten nach einer anderen Zeile oder
Spalte wire gleichwohl auch moglich, sie erzeugt aber mehr Rechenschritte. Lt

ExKkurs: Es sei an dieser Stelle erwihnt, dass es fiir 3 x 3 Matrizen ne-
ben der Laplace-Entwicklung eine alternative Vorgehensweise existiert.
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Hiermit ist die Sarrus-Regel gemeint, die nach dem franzosischen Ma-
thematiker Pierre Frédéric Sarrus benannt ist. Zur Berechnung der De-
terminanten wird die Entwicklung iiber die Haupt- und Nebendiagona-
len vorgenommen, wie wir sie schon im 2 x 2 Fall kennen gelernt haben.
Zur Berechnung der Determinanten werden die ersten beiden Spalten
der 3 x 3 Matrix rechts an die Matrix angefiigt. In diesem Zahlensche-
ma hat man nun 3 Hauptdiagonalen und 3 Nebendiagonalen.

ajy  ap a3 | anp ap
NN
|A|=|ay axn axp| a; ax
NN N

as; 432 dsz | 4zl dz2

Die Produkte der 3 Hauptdiagonalen werden addiert, wovon dann die
addierten Produkte der 3 Nebendiagonalen subtrahiert werden. Somit
haben wir fiir die Determinante einer 3 x 3 Matrix A folgende Entwick-
lung:

|A|=anaxnasz+anaxaz +aizaz azn
—a31a2a13 —a3a23a1] — A33d21 d12

Diese Vorschrift von Sarrus lésst sich nicht auf n-reihige (z > 3) Deter-
minanten {ibertragen.

Mit Hilfe des Entwicklungssatzes von Laplace ldsst sich zeigen, dass die Deter-
minante einer Dreiecksmatrix gleich dem Produkt der Koeffizienten der Hauptdia-
gonalen ist.

uyp .- Uiy n
detU=| ¢ -, ZHuii
0 0 up =l

Mittels des Gauf3-Algorithmus kann man jede Matrix in eine Dreiecksmatrix um-
formen, so dass die einfache Berechnung der Determinanten einer Dreiecksmatrix
angewendet werden kann.

Beispiel 6.23. Die Determinante der Matrix aus Beispiel 6.16 wird in eine Dreiecks-
matrix umgeformt.

L2 1) [ro2 1 |21 |
detA=10 2 1|=|0 2 1/=10 2 lj=1x2x A =1
2 1 1| |0 =3 =1| [0 0 !

o3

Liegen die Pivotelemente nach Abschluss der Eliminationsphase nicht auf der
Hauptdiagonalen, so muss durch Spaltenvertauschung die Dreiecksform erreicht
werden. Das Vertauschen einer Spalte bzw. einer Zeile fiihrt zu einem Vorzeichen-
wechsel der Determinanten.
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Beispiel 6.24. Die Determinante der Matrix
1 3
a=la 3

detA = -2

Werden in der Matrix die beiden Zeilen miteinander vertauscht,
« |2 4
w113
so besitzt die Determinante der Matrix A* den Wert:

detA" =2

ist

Das Vorzeichen der Determinanten wurde durch den Zeilentausch ebenfalls ver-
tauscht. ol

In den folgenden Formeln wird die Zahl der Vorzeichenwechsel berticksichtigt:

detA = H ajS

n(S) bezeichnet die Anzahl der vertauschten Spalten und S; den Spaltenindex des
Diagonalelements. Statt der Spalten konnen auch die Zeilen vertauscht werden. Dann

gilt die Formel:
detA = H aZ,

n(Z) bezeichnet nun die Anzahl der Vertauschten Zeilen und Z; ist der Zeilenindex
des Diagonalelements.

Beispiel 6.25. Zur Berechnung der Determinanten der Matrix in Beispiel 6.23 wer-
den nun die Pivotelemente auBlerhalb der Hauptdiagonalen gewihlt. Sie sind fett ge-
druckt.

L2 1) o3 3 o0 —
detA={0 2 1|=[0 2 I|=[0 2 1
2 1 1 201 1| 21 1

1
= (—1)3a31a22a13 = (—1)3 X2X2X (—4) =1

Um die Dreiecksmatrix zu erzeugen, sind 3 Zeilenvertauschungen (n(Z) = 3)
notwendig. Die 3-te Zeile wird durch zwei Zeilenvertauschungen in die 1-te Zei-
le gebracht. Dadurch wird die erste Zeile zur 2-ten Zeile, die durch eine weitere
Vertauschung in die 3-te Zeile gesetzt werden muss. Da jeder Zeilentausch einen
Vorzeichenwechsel der Determinanten verursacht, muss diese nun mit (—1)* Vorzei-

chenwechseln korrigiert werden. Im Ergebnis erhélt man die gleiche Determinante.
It
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Mit Scilab lisst sich ebenso einfach wie die Inverse, die Determinante einer Ma-
trix berechnen. Mit dem Befehl det (A) wird die Determinante von A ausgegeben.

6.6.2 Einige Eigenschaften von Determinanten

Determinanten weisen einige interessante Eigenschaften auf, wobei einige der Ei-
genschaften schon im vorstehenden Abschnitt angewendet worden sind.

e Vertauscht man in einer Determinanten zwei Zeilen bzw. Spalten, so dndert sich
nur das Vorzeichen der Determinanten.

e Die Determinante einer Dreiecksmatrix ist gleich dem Produkt der Elemente in
der Hauptdiagonalen.

e Die Determinante einer Matrix ist Null, wenn Zeilen oder Spalten der Matrix
linear abhéngig sind.

e Die Matrix und ihre tranponierte Matrix besitzen die gleiche Determinante.

Beispiel 6.26. Die folgende Matrix weist eine lineare Abhédngigkeit auf.
2 1
S
Die Determinante der Matrix ist Null.

detB=0

Ubung 6.6. Berechnen Sie die Determinante der folgenden Matrix:

2
3
A= 0
1

1
1
-1
1

NS NS )

1
—1
1 —
0—

6.6.3 Berechnung von Determinanten in Scilab

In Scilab werden Determinanten mit dem Befehl det () berechnet.

A = [2 4,' l 3]
det (A) -> 2
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6.7 Homogene Gleichungssysteme

Bei zahlreichen (linearen) 6konomischen Prozessen stellt sich die Frage, ob eine
Losung existiert, bei der die Produktion gleich dem Verbrauch sein kann. Im Rahmen
eines Input-Output-Systems wire dann der Vektor b = 0.

X =Ax (6.28)

Es handelt sich dann um ein geschlossenes Leontief-Modell. Ein solches System
wird auch als homogenes lineares Gleichungssystem bezeichnet.

Meistens entstehen Eigenwertprobleme aus mathematisch statistischen Frage-
stellungen, wie zum Beispiel in der Diskriminanzanalyse oder der kanonischen Kor-
relation.

6.7.1 Eigenwerte

Zur Losung eines homogenen linearen Gleichungssystems wird ein Parameter bend-
tigt, da ansonsten die Gleichung (6.28) mit Ausnahme der Losung x = 0 nicht 16sbar
ist. Dieser Parameter wird haufig mit A bezeichnet und heit Eigenwert der Matrix
A.

Ax=Ax (6.29)

Das Gleichungssystem
(A—ADx=0

ist dann nach x auflosbar, wenn die Matrix (A — A I) invertierbar ist.
x=(A-AD"'0=0

Ist die Matrix invertierbar, dann existiert nur die Losung x = 0 und A ist dann
kein Eigenwert der Matrix A. Folglich darf die Matrix (A — A T) nicht invertierbar
sein, wenn eine Losung fiir die Gleichung (6.28) existieren soll. Dies bedeutet, dass
die Matrix (A — A1) eine lineare Abhéngigkeit aufweisen muss. Dies ist der Fall,
wenn die Determinante Null ist.

det(A — A1) =0

Dann ist A ein Eigenwert der Matrix A. Die Determinante der Matrix ist ein
Polynom n-ten Grades und heifit charakteristisches Polynom der Matrix A. Die
Eigenwerte sind die Nullstellen dieses Polynoms.

Beispiel 6.27. Fiir das Input-Output-System in Abschnitt 6.5 ergibt sich bei einem
Vektor b = 0 folgendes Gleichungssystem:

L_[03 04]
05 0.1

Die Berechnung der Eigenwerte erfolgt aus der Nullsetzung der Determinan-
ten von (A — AT). Diese liefert das charakteristische Polynom, deren Nullstellen die
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Eigenwerte sind. Die Nullstellenberechnung von Polynomen ist in Kapitel 8.3 und
Kapitel 10.7 beschrieben.
S RREALE
(03-2)(0.1—24)—0.2=0
A2—042-0.17=0

A= 0.6582 Ay = —0.2582

In dem vorliegenden Fall ist keine Losung moglich, bei der der Konsum groBer
oder gleich der Produktion ist. In dem ersten Fall wird nur rund 66 Prozent des Ver-
brauchs produziert. Es handelt sich also um ein schrumpfendes Wirtschaftssystem.

Ax =0.66x

In dem zweiten Fall ist keine 6konomische Situation vorstellbar. Die Produktion
liefert minus 26 Prozent des Konsums!

Ax =—-0.26x

6.7.2 Eigenvektoren

Die Losung x # 0 der Gleichung (6.29) kann nur mit den Eigenwerten A erfol-
gen. Der Losungsvektor fiir das homogene Gleichungssystem heifit Eigenvektor und
wird mit v bezeichnet. Er stellt die Losung fiir das homogene Gleichungssystem dar
(x =v). Zu jedem Eigenwert existiert mindestens ein Eigenvektor.

(A=A v;=0 miti=1,...,n

Beispiel 6.28. Fiir das homogene Gleichungssystem aus Beispiel 6.27 werden die zu
den Eigenwerten gehdrigen Eigenvektoren berechnet. Das homogene Gleichungssy-
stem fiir den ersten Eigenwert ist:

(A—0.65821)v; =0 (6.30)
—0.3582 04 _0 o 1 —-1.116 0 — . 1.116
05 —05582 ¥~ o o |7 V=%
bzw.
0 0 1 .

{—0.895 1} =0 = vi=« [0.895} mita € R
Fiir den zweiten Eigenwert berechnet sich der Eigenvektor analog.
0.5582 0.4 —0 1 0.7165 0 = —a —0.7165

05 03582 Y2~ o o |27 V2= I

Der Eigenvektor ist nicht eindeutig zu bestimmen. Denn auch ein Vielfaches des
Eigenvektors erfiillt die Gleichung (6.30). £es
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6.7.3 Einige Eigenschaften von Eigenwerten

Die Matrizen A und A’ besitzen dieselben Eigenwerte.
Seien A und B Matrizen der Dimension (n X n). Dann besitzen die Matrizen AB
und BA dieselben Eigenwerte.

e Ist A ein Eigenwert der reguldren Matrix A, dann ist }L ein Eigenwert von A~!.
A und A~! haben dieselben Eigenvektoren.
Ist A ein Eigenwert von A, dann ist A ein Eigenwert von A,
Die Determinante einer (n x n) Matrix A ist gleich dem Produkt der Eigenwerte
A; von A.

detA = lﬁ[)tz
i=1

e Die Summe der Diagonalelemente von A wird als Spur der Matrix A bezeichnet
und ist gleich der Summe der Eigenwerte A; einer Matrix A.

SpA = i:)tl
i=1

6.7.4 Ahnliche Matrizen

Es wird von zwei quadratischen Matrizen A und B n-ter Ordnung ausgegangen. Die
beiden Matrizen werden als dhnlich bezeichnet, wenn eine reguldre quadratische
Matrix C gleicher Ordnung existiert, so dass

B=C'AC

gilt. Eine wesentliche Eigenschaft dhnlicher Matrizen ist, dass sie dieselben Eigen-
werte besitzen, woraus sich das Adjektiv «dhnlich» erklért. Aber Matrizen mit glei-
chen Eigenwerten miissen nicht notwendigerweise dhnlich sein.

Eine besonders interessante Transformation ist diejenige, die das Ergebnis einer
Diagonalmatrix erzeugt. Diese stellt sich dann ein, wenn die Matrix C aus den nor-
mierten Eigenvektoren der Matrix A besteht. Die Elemente der Matrix D sind dann
die Eigenwerte der Matrix A.

Moo 0
C'AC=D=|: .
0 ... M

Beispiel 6.29. Die normierten Eigenvektoren in dem Beispiel 6.28 sind:

~ Vi - A\
v = und Vv, =
[[vall [[v2l
. 10.7449 . |—0.5824
V1= 10.6671 Y271 0.8128
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Die Matrix C ist folglich:

c_ [07449 05824
~0.6671  0.8128

Wird nun die obige Transformation vorgenommen, ist das Ergebnis die Diago-
nalmatrix der Eigenwerte.

0.8176 0.5858| | 0.3 0.4| [0.7449 —0.5824| |0.6582 0
—0.6711 0.7493| [ 0.5 0.1] |0.6671 0.8128 | 0 —0.2582

ot

Wird fiir die Matrix A ferner eine symmetrische Matrix angenommen, dann
stellt sich folgendes Ergebnis ein: Die normierten Eigenvektoren stehen senkrecht
aufeinander. Es gilt daher:

Vivi=1 und V;v;=0 firi#j,ij=1,....n

Die Matrix C hat als orthonormierte Matrix dann u. a. die Eigenschaft, dass ihre
Transponierte gleich der Inversen ist. Es gilt also C' = C~!.

f’l /1 1 /1 2. 1 0 ...
cc= %2 [fiv..]=|%"" W — ({01 —1
Beispiel 6.30. Die symmetrische Matrix
2 2
S
soll in eine Diagonalmatrix transformiert werden. Sie besitzt die Eigenwerte A} = —2
und A, = 3 und die normierten Eigenvektoren

o[ 0442 oo [-0.8944
VI=1_0.8944] "¢ V27| _0.4472

Die normierten Eigenvektoren stehen senkrecht aufeinander, wie man durch Berech-
nen der Skalarprodukte leicht feststellen kann. Die Transformation

S o [=2 0
cacon- [

liefert die gesuchte Diagonalmatrix. Dass C’ = C~! gilt, kann man leicht mit einem
Computerprogramm iiberpriifen. £es

Ubung 6.7. Berechnen Sie fiir die Matrix

0.7 0.2
A= {o.o 1.1]

die Eigenwerte und Eigenvektoren.
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6.7.5 Berechnung von Eigenwerten und Eigenvektoren mit Scilab

In Scilab werden die Eigenwerte und Eigenvektoren mit dem Befehl [C,1] =
spec (A) berechnet. Das Ergebnis [C, 1] enthélt die Eigenwerte und die normier-
ten Eigenvektoren.

Beispiel 6.31. Die Anwendung des Befehls wird am Beispiel 6.30 gezeigt.

A= [2 2
2 -11;
[C,1] = spec(d)

1 =
-2 0
0 3

Cc =
0.447 -0.894
-0.894 -0.447

Der Vektor 1 enthilt die beiden Eigenwerte A = —2 und A, = 3. Die Matrix C
enthélt die beiden dazugehdrigen normierten Eigenvektoren.

Das Beispiel 6.30 kann nun leicht nachgerechnet werden. Der Befehl C’ xAxC
liefert ebenso wie inv (C) *A*C die Diagonalmatrix mit den Eigenwerten, da die
Matrix A symmetrisch ist. £es

6.8 Fazit

Mit linearen Gleichungssytemen kdnnen essenzielle 6konomische Probleme be-
schrieben werden. Sie werden bevorzugt in Matrizengleichungen formuliert, weil
damit spezielle Eigenschaften von Matrizen genutzt werden konnen. Eine besondere
Form von Gleichungssystemen sind die homogenen Gleichungssysteme. Sie fithren
zu den Eigenwerten und Eigenvektoren.
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7.1 Vorbemerkung

Die lineare Optimierung (Synonyme: lineare Planungsrechnung, lineare Program-
mierung) (operation research) ist in den letzten Jahrzehnten, auch aufgrund der ra-
santen Entwicklung im Computerbereich, zu einem Standardverfahren in der Be-
triebswirtschaftslehre geworden. Sie kann grundsitzlich iiberall dort eingesetzt wer-
den, wo eine optimale Verteilung knapper Ressourcen erforderlich ist, um ein ge-
wiinschtes Ziel zu erreichen. Die Ressourcen kdnnen zum Beispiel finanzielle Mittel

W. Kohn, R. Oztiirk, Mathematik fiir Okonomen, Springer-Lehrbuch,
DOI 10.1007/978-3-642-28575-2 7, © Springer-Verlag Berlin Heidelberg 2012
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oder die Kapazititen von Fertigungsanlagen sein, die ein Unternehmen fiir einen be-
stimmten Zweck zur Verfiigung hat. Auch die niedrigsten Kosten oder der hochste
Gewinn konnen vorgegebene Ziele sein. Die mathematische Aufgabe besteht also
darin, Extremwerte, d. h. ein Maximum oder Minimum einer linearen Zielfunktion,
unter beliebig vielen linearen Nebenbedingungen zu suchen.

Zu den in den vorherigen Kapiteln verwendeten Bezeichnungen kommt in der
linearen Optimierung noch die Zielfunktion hinzu.

z() Zielfunktion

7.2 Formulierung der Grundaufgabe

Voraussetzung fiir den Einsatz der linearen Optimierung ist, dass sich das Problem
mit einer linearen Zielfunktion (/inear target function) beschreiben ldsst, die zu
maximieren bzw. zu minimieren ist. Die Optimierung der Zielfunkion ist jedoch
nur dann sinnvoll, wenn lineare Nebenbedingungen (Restriktionen) (linear side
conditions) formuliert werden, die den Optimierungsprozess beschrianken. Die Ne-
benbedingungen werden in Form von linearen Ungleichungen angegeben. Eine Ge-
winnoptimierung beispielsweise, bei der keine Kapazitatsbeschrinkungen formuliert
werden, fithrt zu einer unendlichen Produktion mit einem unendlichen Gewinn.

Beispiel 7.1. Ein Produktionsproblem (vgl. [7]). Eine Unternehmung kann zwei Pro-
dukte fertigen, die unterschiedliche Deckungsbeitrage erbringen. Fiir Produkt 1 er-
gibt sich ein Deckungsbeitrag von 20 € pro Mengeneinheit, und fiir Produkt 2 betragt
er 30 € pro Mengeneinheit. Fiir die Fertigung beider Produkte stehen zwei Anlagen
bereit, die in 20 Tagen 200 h (Anlage 1) bzw. 160 h (Anlage 2) genutzt werden kon-
nen. Das Produkt 1 belegt beide Anlagen jeweils eine Stunde je Mengeneinheit; zur
Fertigung des Produktes 2 wird die Anlage 1 zwei Stunden und die Anlage 2 eine
Stunde genutzt. Vom Produkt 2 koénnen in 20 Tagen hochstens 60 Mengeneinheiten
abgesetzt werden, weshalb auch nicht mehr gefertigt werden soll. ges

Anhand des Beispiels 7.1 wird im Folgenden die Grundform der linearen Op-
timierung beschrieben. Auf der Produktionsanlage 1 konnen zwei Produkte in den
Mengen x; und x, gefertigt werden, wobei fiir Produkt 1 eine Stunde und fiir Produkt
2 zwei Stunden Herstellungszeit auf der Anlage bendtigt werden. Insgesamt kann die
Anlage 200 Stunden im Monat laufen. Daraus ergibt sich, dass maximal 200 Einhei-
ten von Produkt 1 (x; = 200) oder 100 Einheiten von Produkt 2 (x, = 100) oder jede
Kombination der beiden Produkte produziert werden kann, die 200 Stunden Bear-
beitungszeit benotigt (zum Beispiel x; = 140 und x, = 30). Die Produktionsstruktur
der Anlage 1 kann in der linearen Form der Gleichung (7.1) angegeben werden.

X1 +2x; =200 mitx;,x; >0 (7.1)

Bedingung x1,x, > 0 bedeutet, dass negative Mengen nicht erlaubt sind und wird
als Nichtnegativititsbedingung bezeichnet. Die grafische Darstellung der Neben-
bedingung ist eine Gerade, wie sie in Abb. 7.1 links gezeichnet ist. Alle Punkte auf
der Linie erfiillen die Gleichung (7.1).
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Nun kann es aber durchaus sinnvoll sein, die Anlage weniger als 200 Stunden im
Monat zu betreiben. Mathematisch wird dies durch eine Ungleichung beschrieben.

x1 +2x; <200 (7.2)

160 160
140 140
120 120
100 100 -

T2 80 T2 80

60 60
404 404

204 20

0 T T T T T T T T T 1 0 T T T T T T T T T 1
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
T

-

Abb. 7.1: Lineare Gleichung (links) und lineare Ungleichung (rechts)

Die Losungen, die die Ungleichung (7.2) erfiillen, beinhalten alle Punkte auf
und unterhalb der Geraden. Eine solche Ungleichung wird als Nebenbedingung be-
zeichnet (siche Abb. 7.1 rechts). Aufgrund der Nichtnegativititsbedingung ist der
Losungsraum auf die nichtnegativen Werte beschrankt.

In einem betrieblichen Produktionsprozess existieren in der Regel viele Neben-
bedingungen, die die Produktion einschrinken. Im Beispiel 7.1 wird auch eine zweite
Anlage zur Bearbeitung der Produkte 1 und 2 eingesetzt. Fiir sie lautet die Nebenbe-
dingung in Gleichungsform

x1+x2 <160 (7.3)

Die Nebenbedingung (7.3) schrénkt den zuldssigen Produktionsraum weiter ein.
Dies wird deutlich, wenn die Gleichung zusétzlich in die Abb. 7.1 aufgenommen
wird (siehe Abb. 7.2). Im Beispiel 7.1 wird noch eine weitere Nebenbedingung ge-
nannt, die eine Absatzbeschrinkung fiir das Produkt 2 ist und bei 60 Einheiten liegt.

X < 60 (7.4)

Mit den 3 Nebenbedingungen (Gleichungen (7.2), (7.3) und (7.4)) und der Nicht-
negativitatsbedingung x1,x, > 0 sind die Beschriankungen aus dem Beispiel 7.1 voll-
standig erfasst. Sie geben den zulédssigen Losungsraum an.

Jedoch muss entschieden werden, welche unter den moglichen (unendlich vie-
len) Losungen gewihlt werden soll. Das Entscheidungsproblem lésst sich nur dann
16sen, wenn die Alternativen bewertet werden. Eine solche Bewertung wird mittels
der linearen Zielfunktion vorgenommen. Im Beispiel 7.1 werden die Produkte mit
threm Deckungsbeitrag pro Stiick (Bruttogewinn pro Stiick) bewertet. Die Funktion

z(x1,x2) =20x; +30x;
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Abb. 7.2: Zuldssiger Losungsraum

gibt den Gewinn an, der durch die beiden Produkte erwirtschaftet wird. Es ist nun
moglich, diejenige Produktmengenkombination zu suchen, die den héchsten Gewinn
erzielt. Die Zielfunktion muss also maximiert werden. Beschreibt die Zielfunktion
beispielsweise die Kosten einer Produktion, so sind diese natiirlich zu minimieren.
Zunichst wird das Standardproblem der linearen Optimierung erldutert, bei dem
die Zielfunktion unter den linearen Nebenbedingungen maximiert wird.

Eine formale Beschreibung des linearen Optimierungsproblems sieht wie folgt
aus: Maximiere z mit

m
Z(X], ey Xm) = chxj + ¢
j=1
unter den Nebenbedingungen

m
Za,-jxj < b,‘ fiiri = 1,...,)’1
j=1
x; >0 firj=1,....m
Die Variablen x; (i = 1,...,m) sind dabei die Entscheidungsvariablen, die reellwer-
tig und kontinuierlich sein miissen. In der Zielfunktion kann zusétzlich ein absoluter

Koeffizient ¢g beriicksichtigt werden. Er kann beispielsweise einen Fixbetrag dar-
stellen. Im obigen Beispiel ist der Koeffizient ¢y Null.

Beispiel 7.2. Fiir das Beispiel 7.1 lautet die Aufgabe somit: Maximiere z mit

z(x1,x2) =20x; +30x;
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unter den Nebenbedingungen

x1+2x <200
X1 +x <160
xy <60
x1,x2 20

7.3 Grafische Maximierung

Um die Zielfunktion zu maximieren, wird sie in die Grafik 7.2 eingezeichnet. Hier-
bei ist es vorteilhaft fiir den Zielfunktionswert z einen Wert vorzugeben, der zu mog-
lichst einfachen Werten von x fithrt. Im Beispiel 7.1 ergeben sich fiir ein gesetztes
z = 1800 die Koordinatenpunkte (x; = 0,x, = 60) und (x; = 90,x, = 0). Diese Ge-
rade gibt alle Produktmengenkombinationen von x; und x; an, die zu einem Gewinn
von z = 1 800 <€ fiihren. Diese Gerade wird auch als Isogewinngerade bezeichnet.
Verschiebt man die Gerade parallel, so verdndert sich der Gewinn. Er wird in die
eingezeichnete Richtung immer groBer (siehe Abb. 7.3). Dies liegt daran, dass mit
einer weiter im «Nordosten» liegenden Zielfunktionsgeraden die Werte von x; und
x, monoton ansteigen. Dadurch erhoht sich der Zielfunktionswert z streng mono-
ton, da die Deckungsbeitrage positiv sind. Will man also den maximalen Wert von
z ermitteln, so muss man die Zielfunktionsgerade so weit in Richtung des wachsen-
den Zielwertes parallel verschieben, bis der zuldssige Bereich gerade noch tangiert
wird. Dies wird in der Abb. 7.3 dargestellt. Im Eckpunkt x; = 120 und x; = 40 wird
der maximale Zielwert zyax = 3 600 <€ erreicht. Im Normalfall handelt es sich — wie
hier — um einen Eckpunkt des Losungsraums.

Nur wenn die Zielfunktionsgerade parallel zu einer Restriktionsgeraden verlauft,
ist die optimale Losung nicht mehr eindeutig. In dem Bereich, in dem die Zielfunk-
tionsgerade identisch mit der Restriktionsgeraden verlduft, stellen alle Punkte eine
optimale Losung dar. Zu der Menge der optimalen Losungen gehdren auch die Eck-
punkte.

7.4 Matrix-Formulierung der linearen Optimierung

Das lineare Optimierungsproblem kann auch in Matrixform aufgeschrieben werden.
Die Zielfunktion ist ein Skalarprodukt der Zielfunktionskoeffizienten mit den Varia-
blen. Werden diese jeweils in Spaltenvektoren zusammengefasst, erhalten wir fol-
gende Form der Zielfunktion:
C1 X1
zZ(x) =¢'x+c¢y mite= | : | undx=

Cm Xm
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T Zielfunktidy fiir z = 3600
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Abb. 7.3: Maximierung der Zielfunktion von Beispiel 7.1

Die Nebenbedingungen konnen ebenfalls sehr leicht in Matrixform aufgeschrie-
ben werden. Es ist im Prinzip ein lineares Gleichungssystem, das hier durch Un-
gleichungen ersetzt wird. Die Koeffizienten a;; der Nebenbedingungen werden in
einer Matrix A zusammengefasst. Die rechte Seite mit den Beschrankungen ist ein
n-dimensionaler Vektor.

ary ... Aim b]
Ax<b mitA = und b =
Anl -« Apm by

Die lineare Optimierungsaufgabe lautet dann: Maximiere z mit
z(x) = ¢ x+cp
unter den Nebenbedingungen
Ax<b, x>0

Beispiel 7.3. Das Beispiel 7.1 in Matrixschreibweise ist:

20 30] E‘Cj — max

1 2 200
11 [x1]< 160
0 1] L2 60
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7.5 Simplex-Methode fiir die Maximierung

Eine grafische Losung fiir mehr als 2 Variablen scheidet in der Regel aus und ei-
ne Losung kann nur numerisch berechnet werden. Ein Rechenverfahren zur L6-
sung von linearen Optimierungsproblemen wurde von George Bernard Dantzig 1947
entwickelt'. Es heift Simplex-Methode. Die Methode verwendet im Kern den
Gaullschen-Algorithmus. Dieser ist so zu erweitern, dass zum einen die Zielfunk-
tion zur Bewertung der Losung verwendet werden kann, zum anderen, dass lineare
Ungleichungen beriicksichtigt werden kdnnen.

Am Beispiel 7.1 wird die Simplex-Methode in ihrer Grundform erklart, die die
Zielfunktion maximiert. Die Nebenbedingungen werden durch Schlupfvariablen
(slack variables) zu Gleichungen ergédnzt. Aus den Ungleichungen werden somit
Gleichungen. Die Nebenbedingungen bilden dann ein System linearer Gleichungen.
Okonomisch bedeuten die Schlupfvariablen die nicht ausgenutzten Restriktionsober-
grenzen.

Ax<b = Ax+ y =b
Schlupfvariablen

Auch die Zielfunktion wird leicht verdndert. Die Koeffizienten der Zielfunktion
werden mit (—1) multipliziert. Aus der urspriinglichen Zielfunktion entsteht dann
die Form:

¢x+co=z(x) >max = —c'x=2z(x)+co— max

Der Grund fiir diesen Vorzeichenwechsel liegt in der 6konomischen Interpre-
tation der Koeffizienten —c. Diese werden nach Aufstellen des Simplex-Tableaus
erklart.

Beispiel 7.4. Das lineare Optimierungsproblem fiir das Beispiel 7.1 sieht dann wie
folgt aus: Optimiere z mit

—20x; —30x3 =z(x1,x2) mitz — max
unter den Nebenbedingungen
x1+2x+y1 =200
X1 +x3+y2 =160
X3 +y3 =60
x1,%2 20, y1,y2,53 20
ges

Im néchsten Schritt wird das lineare Optimierungsproblem in das so genannte
Simplex-Tableau iibertragen. Die Indizierung der Schlupfvariablen bezieht sich da-
bei auf die Restriktionen und nicht auf die Variablen. Sofern keine Produktion statt-
findet, also x; = x, = 0 gilt, besitzen die Schlupfvariablen y; den Wert der rechten
Seite b;. Man nennt diese Losung die erste Basislosung.

UIn der Literatur existieren verschiedene Darstellungen dieses Rechenverfahrens.
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Die Variablen, die mit einem Einheitsvektor verbunden sind, hei3en Basisvaria-
blen. In der Tabelle 7.1 sind yy, y» und y3 Basisvariablen. Diese besitzen den Wert
der Restriktionsobergrenzen, der in der rechten Spalte b abgelesen wird. Die nicht
in der Losung befindlichen Variablen heilen Nichtbasisvariablen. Sie besitzen den
Wert Null.

Die verdnderte Zielfunktion wird in die letzte Zeile des Simplex-Tableaus ein-
getragen. Diese Zeile wird Zielfunktionszeile genannt. Der Zielfunktionswert z hat
dann den Wert Null und wird im Tableau rechts unten abgelesen.

Tabelle 7.1: Simplex-Tableau

Xy X Yoy o» b
1 2 1 0 O 200
1 1 0 1 0 160
0 1 0 0 1 60
-20 -30 0 0 O 0

Die Losung ist nicht optimal. Dies erkennt man an den negativen Zielfunktions-
werten. Die Produktion von x| konnte einen Gewinn von 20 € pro Stiick liefern. Da
keine Produktion von x; stattfindet, entsteht ein fiktiver Verlust in H6he von 20 €.
Diesen fiktiven Verlust durch die Nicht-Produktion bezeichnet man in der Okono-
mie als Opportunititskosten (opportunity costs). Diese Interpretation ist der Grund
fiir den Vorzeichenwechsel der Zielfunktionskoeffizienten. Die Opportunitétskosten
fiir das Produkt 2 sind héher. Durch die Produktion einer Einheit von x, wird ein
hoherer Gewinn erzielt als mit x;. Dies bedeutet, dass die Nichtbasisvariable x, nun
zu einer Basisvariablen werden muss. Dafiir muss dann eine bisherige Basisvariable
in eine Nichtbasisvariable umgewandelt werden. Diesen Variablentausch nennt man
Basistransformation.

Die Basistransformation ergibt nur dann eine Zielwerterhohung, wenn der zuge-
horige Zielfunktionskoeffizient (letzte Zeile im Tableau) der Variablen negativ ist. Ist
kein Zielfunktionskoeffizient negativ, ist die optimale Losung erreicht.

Die erste Basislosung wird durch folgende Rechenschritte verbessert: Man wihlt
die Nichtbasisvariable (Pivotspalte) aus, die die grofite Zielwertverdnderung je Men-
geneinheit ergibt. Das heif3t, man nimmt den minimalen Wert in der Zielfunktionszei-
le. Im Beispiel 7.1 besitzt die Nichtbasisvariable x, einen héheren Deckungsbeitrag
je ME als x| und soll daher in die Losung mit einem Wert gro3er Null eingehen, also
Basisvariable werden.

Welche Nebenbedingung beschrinken hier die Produktion von x;? Die Auswahl
der Pivotzeile erfolgt nach dem so genannten Quotientenkriterium: Man teilt die
rechte Seite durch die Koeffizienten der Pivotspalte. Die Zeile mit dem kleinsten
Quotienten wird als Pivotzeile ausgewéhlt. Koeffizienten von Null und negative Ko-
effizienten bleiben dabei unberiicksichtigt. Eine Division durch Null ist nicht defi-
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niert und die Koeffizienten diirfen wegen der Nichtnegativtitsbedingung auch nicht-
negativ werden. Okonomisch bedeutet dies, dass man die maximal mégliche Produk-
tion des Produktes mit dem hochsten Deckungsbeitrag je Mengeneinheit auswéhlt.

Beispiel 7.5. Im Beispiel wird die 3. Gleichung ausgewdhlt, da von den Quotienten
230, 1?0 und 610 der letzte Quotient am kleinsten ist. Die maximal mdgliche Produk-

tion von x; betragt 60 Mengeneinheiten. o3

Im Simplex-Tableau werden diese Schritte mittels des GauB3schen Eliminations-
verfahrens durchgefiihrt, d. h., es wird in der Pivotspalte ein Einheitsvektor erzeugt.
Dabei wird im ersten Schritt der Pivotkoeffizient (Koeffizient im Kreuz von Pivotzei-
le und Pivotspalte) auf Eins normiert. Dies geschieht, indem man die ganze Pivotzeile
durch den Wert des Pivotkoeffizienten teilt. Im zweiten Schritt werden die restlichen
Koeffizienten der Pivotspalte mit einer GauB3-Iteration auf Null umgerechnet.

Beispiel 7.6. Im Beispiel besitzt der Koeffizient bereits den Wert Eins. Im néchsten
Schritt werden ober- und unterhalb der Pivotzeilen in der Pivotspalte Nullen durch
entsprechende Addition bzw. Subtraktion ggf. eines Vielfaches der ganzen Pivotzeile
erzeugt. Die nichste Basislosung des Beispiels sieht dann im Simplex-Tableau wie
folgt aus:

Tabelle 7.2: Simplex-Tableau

Xy X2 Y1 2 V3 b
1 0 1 0 -2 80
1 0 0o 1 -1 100
0 1 0 0 1 60
-20 0 0 0 30 1800

Die erste Zeile in diesem Tableau wird durch die folgende Rechnung erzeugt:

Die Pivotzeile
0 1 0 0 1 60

wird mit 2 multipliziert, weil der Koeffizient in der ersten Zeile der Pivotspalte 2 ist.
Danach wird die Pivotzeile von der ersten Zeile subtrahiert, um an der Position eine
Null zu erzeugen.

1 2 1 0 0 200
- 0 2 00 2 120
= 10 1 0 -2 80

Fiir die zweite Zeile wird eine entsprechende Rechnung durchgefiihrt.

Aus dem Simplex-Tableau 7.2 lassen sich nun folgende Werte ablesen: x| = 0,
weil in der Spalte von x; (noch) kein Basisvektor (Einheitsvektor) steht. Der Wert
von x, betrigt 60 Mengeneinheiten. Die Schlupfvariablen y; und y, besitzen die
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Werte 80 und 100. Dies bedeutet, dass die Anlagen 1 und 2 noch Restkapazititen
von 100 bzw. 80 Stunden besitzen. Der Gewinn betrégt bei dieser Produktionsstruk-
tur 1 800 €. Da in der Zielfunktionszeile noch ein negativer Koeffizient steht, ist die
L&sung noch nicht optimal. Durch die Produktion von x; kann pro Mengeneinheit
ein Deckungsbeitrag von 20 € erzielt werden. Daher wird eine erneute Basistrans-
formation durchgefiihrt, bei der x; die Basisvariable wird. Mittels des Quotientenkri-
teriums wird berechnet, dass die Anlage 1 fiir die Produktion von x; beschriankend
ist; denn auf der Anlage 2 konnen maximal 100 Mengeneinheiten von x; gefertigt
werden, wohingegen auf der Anlage 1 nur 80 Mengeneinheiten erzeugt werden.

x| X yioy2 w3 b

1 O 1 0 =2 80
0 O -1 1 1 20
0 1 0 0 1 60
0 O 20 0 -—10 3400

Diese Losung ist immer noch nicht optimal, da in der Zielfunktionszeile noch ein
negativer Wert steht. Dieser bedeutet hier, dass durch Unterschreiten der Absatzre-
striktion ein zusédtzlicher Stiickgewinn von 10 € erzielt werden kann. Im folgenden
Simplex-Tableau wird daher in der Basistransformation der Wert der Schlupfvaria-
blen y3 erhoht und aufgrund des Quotientenkriteriums die Schulpfvariable von An-
lage 2 auf Null gesetzt.

X1 X yiooy2 oy b
1 0 —1 2 0 120
0 0 —1 1 1 20
0 1 1 -1 0 40
0 O 10 10 O 3600

Nun ist die optimale Losung erreicht. Kein Wert in der Zielfunktionszeile ist mehr
negativ. Der maximale Gewinn betrigt zn.x = 3 600€. Die gewinnoptimale Pro-
duktion betrdgt x; = 120 Mengeneinheiten und von x, = 40 Mengeneinheiten. Die
numerische Losung stimmt mit der grafischen Losung iiberein. ted

Ubung 7.1. In einem Betrieb werden die Produkte x; und x, nacheinander auf den
Maschinen A, B und C bearbeitet. Die Maschinenzeit bei A ist fiir x; doppelt so
grof3 wie fiir x;, bei B sind die Maschinenzeiten gleich und bei C ist die Maschi-
nenzeit fiir xo dreimal so grof3 wie fiir x;. Auf A koénnen in der Woche maximal 60
Stiick von x; oder 120 Stiick von x, bearbeitet werden. Auf Maschine B kénnen
in der Woche hochstens 70 Stiick von x; oder x, bearbeitet werden und auf Ma-
schine C 150 Stiick x; oder 50 Stiick x; je Woche. Fiir das Produkt x; erzielt das
Unternehmen einen Stiickgewinn von p; = 10€ und fiir x; von p; = 15 €.

Berechnen Sie die optimale Losung fiir das lineare Optimierungsproblem.
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7.6 Interpretation des Simplex-Endtableaus

In dem Simplex-Endtableau, das die optimale Losung enthélt, konnen in der letz-
ten Zeile die so genannten Schattenpreise bzw. Opportunititskosten abgelesen
werden, die angeben, um wie viel sich der Gewinn verdndert, wenn die wirksame
Restriktion um eine Einheit verdndert wird.

Beispiel 7.7. Wenn zum Beispiel im vorliegenden Fall, die Anlage 1 eine Stunde
mehr Laufleistung beséfe, so konnte ein um 10€ hdherer Gewinn pro Mengenein-
heit erwirtschaftet werden. e

Die Koeffizienten in den entsprechenden Spalten der Nichtbasisvariablen geben
an, um wie viel sich die Werte auf der rechten Seite bei Anderung der Restriktion 1
um eine Mengeneinheit dndern.

Beispiel 7.8. Wird im Beispiel 7.1 die Beschriankung der ersten Nebenbedingung um
eine Stunde erhoht (200 — 201), so steigt der Gewinn um 10€ auf 3610€. Von x;
werden dann nur noch 119 Mengeneinheiten, von x, 41 Mengeneinheiten hergestellt.
Die Absatzrestriktion weist nur noch 19 nicht genutzte Mengeneinheiten aus. ges

Ferner wird deutlich, dass der Simplex-Algorithmus mit der Bewertung der Zwi-
schenldsungen die Nebenbedingungen auswahlt, mit der die Losungswerte x berech-
net werden. Daher muss das lineare System der Nebenbedingungen nicht bestimmt
sein.

7.7 Sonderfille im Simplex-Algorithmus

7.7.1 Unbeschrinkte Losung

Treten im Rahmen des Simplex-Algorithmus in einer Spalte mit negativen Zielfunk-
tionswerten ebenfalls alle Koeffizienten negativ auf, so ist die Losung unbeschrénkt.
Bei realen Problemen darf es keine unbeschriankten Losungen geben, da Gewinn,
Deckungsbeitrag oder Umsatz nicht tiber alle Grenzen wachsen kdnnen. Das Eintre-
ten dieses Falles ist dann in der Regel ein Indiz fiir eine falsche bzw. unvollstindige
Modellierung des Problems.

Beispiel 7.9. Die folgende lineare Optimierung flihrt zu einer unbeschrinkten Lo-
sung:

X1 X2 Yy »m

-2 1 I 0
2 =2 0 1

-2 -1 0 O

X1 X2 yio 2

0 -1 I 1
I -1 0 05

S AN >
AN W oo o
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7.7.2 Degeneration

Eine Degeneration liegt vor, wenn im Simplex-Tableau eine Auswahlmdglichkeit fiir
die Pivotzeile besteht. Dann hat im néchsten Tableau mindestens eine Basisvariable
den Wert Null. Die verschiedenen Mdglichkeiten kdnnen zu verschiedenen Losun-
gen fithren. Daher sind immer alle moglichen Optimallldsungen zu berechnen. Gra-
phisch bedeutet die Degeneration, dass sich bei n Variablen mehr als n Restriktionen

in einem Punkt schneiden.

Beispiel 7.10. Die dritte Restriktion im Beispiel 7.1 wird nun durch eine im Opti-
malpunkt linear abhédngige Restriktion ersetzt. Es ist also die Zielfunktion

z=20x; +30x, — max
unter den Nebenbedingungen

x1+2x <200

X1 +x <160
xy <40
Zu maximieren.
X1 X2 yioy2 o o»m b X X yiooy2 oo»m b
1 2 1 0 0 200 1 0 1 0o -2 120
1 1 0 1 0 160 = 1 0 0 1 -1 120
0 1 0 0 1 40 0 1 0 0 1 40
—-20 =30 0 0 0 0 —20 0 0 0 30 1200
xXp X oy o»n b X X »no»oow»m b
1 0 1 0o -2 120 1 0 —1 2 0 120
0 0 -1 1 1 0 = 0 0 —1 1 1 0
0 1 0 0 1 40 0 1 1 -1 0 40
0 0 20 0 —10 3600 0 0 10 10 0 3600

Im zweiten Tableau tritt eine Auswahlmoglichkeit fiir die Pivotzeile auf. Im dritten

Tableau besitzt die Basisvariable y, den Wert Null.
Wird im zweiten Tableau die zweite Zeile als Pivotzeile gewahlt, so stellt sich in
diesem Fall das gleiche Ergebnis ein, jedoch mit einer Restkapazitét von Null fiir die

erste Nebenbedingung. Lt

7.7.3 Mehrdeutige Losung

Ein anderer Sonderfall liegt vor, wenn die Zielfunktion steigungsgleich mit einer
Nebenbedingung verlduft. Die Optimalldsung liegt dann nicht in einem Eckpunkt,
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sondern auf einer Restriktionsgeraden zwischen zwei Eckpunkten. Man spricht dann
von einer mehrdeutigen Losung. In diesem Fall besitzt eine Nichtbasisvariable eine
Null in der Zielfunktionszeile. Um die iibrigen moglichen Optimalldsungen zu be-
stimmen, bringt man die Variablen, die in der Zielfunktionszeile eine Null aufweisen,
in ein lineares Gleichungssystem.

Beispiel 7.11. Das folgende Problem besitzt eine mehrdeutige Losung. Die erste Re-
striktion ist steigungsgleich mit der Zielfunktion.

X1 X2 Y1 Y2 V3 b Xy X2 Y1 Y2 V3 b
1 2 1 0 0 200 1 0 1 0 -2 80
1 1 01 0 160 = 00 —-11 1 20
0 1 0 0 1 60 0 1 00 1 60

—20 —40 0 0 0 0 0 0 20 0 0 4000

Es ergibt sich ein lineares Gleichungssystem aus drei Gleichungen und vier Varia-
blen, das nur bei Vorgabe von Werten fiir eine Variable geldst werden kann.

x1—2y3 =280
y2+y3=20
X3 +y3 =60

Eine mogliche Losung fiir das unterbestimmte Gleichungssystem ist zum Beispiel
y3 = 0. Die anderen Werte sind dann x; = 80, x, = 60 und y, = 20. Tt

Eine andere Form der Mehrdeutigkeit tritt auf, wenn zwei Zielfunktionskoeffi-
zienten gleich sind. In diesem Fall sind die alle moglichen Lésungen zu berechnen,
denn sie konnen zu verschiendenen Optimalldsungen fiihren.

7.8 Erweiterungen des Simplex-Algorithmus

7.8.1 Beriicksichtigung von Grofier-gleich-Beschrinkungen

Eine GroBer-gleich-Nebenbedingung kann durch Vorzeichenumkehr als Kleiner-
gleich-Nebenbedingungen beriicksichtigt werden. Damit erhélt man eine «natiirli-
che» Basisvariable. Allerdings ist der Ursprung, d.h. die Losung x; = 0 nicht zu-
lassig, weil mit y; = —b; die Nichtnegativitiatsbedingung in der ersten Basislosung
verletzt wird.

m m
Doayxpzb = = aiyx; < b
j=1 j=1

Negative Koeffizienten auf der rechten Seite treten nicht nur bei der Umwandlung
von GroBer-gleich-Beziehungen auf, sondern kénnen auch wahrend des Algorith-
mus auftreten. Bei einem negativen Koeffizienten auf der rechten Seite ist die Nicht-
negativitatsbedingung verletzt. Es liegt daher nahe, fiir die Schlupfvariable zunichst
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vi = 0 zu erzwingen, um die Nichtnegativititsbedingung zu erfiillen, d. h., die Zeile
i ist als Pivotzeile zu wihlen. Sind mehrere Koeffizienten auf der rechten Seite ne-
gativ, so kann man die am stérksten verletzte Nebenbedingung als erstes erfiillen, in
dem man also min b; wihlt. Wie bei der Gleichungsaufiosung wird also zunichst die
Pivotzeile und dann erst die Pivotspalte ausgewéhlt! Mit der Wahl des Pivotelements
fallt dann die Entscheidung iiber die Pivotspalte. Damit die in die Basis gelangende
Nichtbasisvariable nicht erneut negativ wird, muss das Pivotelement selbst negativ
sein. Stehen mehrere negative Koeffizienten in der Pivotzeile zur Auswahl, so soll-
te man sich fiir den kleinsten entscheiden (minapivotzeile ;) EXistiert kein negativer
Koeffizient, so ist das Gleichungssystem widerspriichlich.

Beispiel 7.12. Es ist folgende Zielfunktion
3x; +12xp =z — max
unter den Nebendingungen

—X1+2x<6
dx142x > 12 = —4x1—2x<-12
2x1—x <8
x1+2x, <10
x>1 = —x < —1
x>0

zu maximieren. Die GroBer-gleich-Restriktionen werden durch Vorzeichenumkehr
in Kleiner-gleich-Restriktionen umgesetzt. Das Simplex-Tableau besitzt damit auf
der rechten Seite negative Koeffizienten, die anzeigen, dass die erste Basislosung
unzuldssig ist.

X1 X2 YI Y2 Y3 ya s b
-1 2 1 0 0 0 O 6
-4 -2 0 1 0 0 0 —12
2 -1 0 0 1 0 0 8
1 2 0 0 0 1 0 10
0 —1 0 0 0 0 1 -1
-3 —12 0 0 0 0 0 0

Es wird aufgrund der obigen Empfehlung das Element in der 2. Zeile und der 1.
Spalte ausgewihlt. Auch die Auswahl von —2 in der 2. Zeile (2. Spalte) wire mog-
lich gewesen, ebenso wie die Wahl der 5. Zeile mit —1. Mit der Wahl der kleinsten
Elemente wird oft der geringste Rechenaufwand erzeugt. Die GauB-Iteration ergibt
folgendes Tableau:
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X X Y Y2 Y3 Y4 s b
0 2.50 1 =025 0 0 0 9
1 0.50 0 —-025 0 0 0 3
0 —2.00 0 050 1 0 0 2
0 1.50 0 025 0 1 0 7
0 —1.00 0 000 0 0 1 -1
0 —10.50 0 —-075 0 0 0 9

Eine zulédssige Basislosung ist noch nicht erzeugt, da auf der rechten Seite die 5.
Nebenbedingung noch die Nichtnegativitit der Losung verletzt.

X1 X yiooY2 Y3 Vs b

0 0 1 —025 0 0 2.50 6.50
1 0 0 —-025 0 0 0.50 2.50
0 0 0 050 1 0 —2.00 4.00
0 0 0 025 0 1 1.50 5.50
0 1 0 000 0 0 —1.00 1.00
0 0 0 —-075 0 0 —10.50 19.50

Nun ist die erste zuldssige Basislosung gefunden und der Simplex-Algorithmus kann
beginnen. Es werden iiber die Zielfunktionszeile nun wieder die grofiten Opportuni-
tatskosten gesucht und dann iiber das Quotientenkriterium die Pivotzeile bestimmt.

X1 X i Y2 Y3 va Vs b
0 0 040 —0.10 0 0 1 2.60
1 0 —020 —020 0 0 O 1.20
0 0 080 030 1 0 0 9.20
0 0 —060 040 0 1 0 1.60
0 1 040 —0.10 0 0 0 3.60
0 0 420 —180 0 0 0 46.80
X1 X Yio Y2 ¥3o yva Vs b
0 0 025 0 0 025 1 3
1 0 —050 0 0 050 0 2
0 0 125 0 1 —-075 0 8
0 0 —150 1 0 250 0 4
0 1 025 0 0 025 0 4
0 0 150 0 0 450 0 54

Die optimale Losung ist gefunden. £
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7.8.2 Beriicksichtigung von Gleichungen

Eine Gleichung als Nebenbedingung kann mittels einer kiinstlichen Schlupfvariablen
beriicksichtigt werden, um welche die Gleichung erweitert wird. Damit allerdings
die urspriingliche (und nicht die willkiirlich erweiterte) Gleichung erfiillt ist, muss
fiir eine zuldssige Losung die kiinstliche Schlupfvariable den Wert Null haben.
m
Zaijxj +yi=b;
j=1
Im Algorithmus lésst sich dieser Weg durch eine geeignete Pivotauswahl nach-
vollzichen. Um die kiinstliche Basisvariable y; aus der Basis zu eliminieren, muss
die entsprechende Zeile als Pivotzeile gewéhlt werden. Als Pivotspalte wéhlt man
am besten den groBten Wert in der Pivotzeile aus, wenn b; positiv ist, bzw. den klein-
sten Wert, wenn b; negativ ist. Damit erfiillt dann die Basisvariable nach der Um-
rechnung die Nichtnegativititsbedingung. Nach der Pivotoperation ist die kiinstliche
Schlupfvariable die Nichtbasisvariable. In dieser Weise werden zunachst alle Glei-
chungen aufgeldst, die eine kiinstliche Schlupfvariable enthalten. Erst dann wird mit
dem eigentlichen Simplex-Verfahren die Optimalldsung bestimmt. Die Spalten mit
der kiinstlichen Schlupfvariablen werden im Simplex-Algorithmus dann aber nicht
mehr berticksichtigt.

Beispiel 7.13. In dem bekannten Beispiel 7.1 wird nun die dritte Restriktion durch
eine Gleichungsrestriktion ersetzt. Es ist also folgende Zielfunktion
20x1 4+ 30x, =z — max

unter den Nebenbedingungen
x1+2x <200
X1 +x <160
Xy = 60
zu maximieren. Es entsteht das Simplex-Tableau, in dem die kiinstliche Schlupfva-
riable enthalten ist.

X1 X2 y1 Y2 3 b Xi X2 oy y2 W3 b
1 2 1 0 O 200 1 0 1 0 -2 80
1 1 01 0 160 = 1 0 0 1 -1 100
0 1 0 0 1 60 0 1 0 0 1 60

—-20 =30 0 0 O 0 -20 0 0 0 30 1800

Xy X2 Y1 2 B3 b

1 0 0o -2 80

0 0 -1 1 1 20

0 1 0 1 60

0 0 20 0 —10 1800
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Der Simplex-Algorithmus wird abgebrochen, obwohl noch ein negativer Wert in der
Zielfunktionszeile steht. Dieser wird jedoch nicht mehr beriicksichtigt, weil er in der
Spalte der kiinstlichen Schlupfvariablen steht, die die Gleichheitsrestriktion beriick-
sichtigt und den Wert Null haben muss. S

Ubung 7.2. Maximiere die Zielfunktion
—X1 4+ 2xp =z — max
unter den Nebenbedingungen:

X1 +x>2
—3x1+4x, <4
x1 <4

xy>1

x1,x2 >0

7.9 Ein Minimierungsproblem

Bei einem Minimierungsproblem beschreibt die Zielfunktion zum Beispiel die Kos-
ten einer Produktion, die zu minimieren sind. Um eine nicht triviale Losung (x,x; #
0) zu erhalten, muss der Losungsraum auch von «unten» («Stidwesten») her einge-
schrinkt sein. Dazu werden Nebenbedingungen in Form von Grof3er-gleich-Bezieh-
ungen benotigt.

m
Zaijxj 2 bi firi = 1,...,)’1
j=1
Beispiel 7.14. Ein Mischungsproblem. Ein Produkt setzt sich aus den Grundstoffen

Ni,N, und N3 zusammen. Es werden aus den Grundstoffen zwei Produkte Fj und
F, gefertigt, die unterschiedliche Konzentrationen der Grundstoffe enthalten: Eine

Tabelle 7.3: Rezeptur
Grundstoff/ME
N M N

no3 4 1
B 3 3

Mengeneinheit des Fertigprodukts 7] kostet 25€, eine Mengeneinheit des zweiten
Fertigprodukts F, kostet 50€. Wie viele Mengeneinheiten von F} und F, sind zu
mischen, um bei moglichst geringen Kosten eine Zusammensetzung von mindestens
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9 Einheiten des Grundstoffs V;, mindestens 19 Einheiten des Grundstoffs N, und
mindestens 7 Einheiten des Grundstoffs N3 zu erreichen?

Die gesuchten Mengeneinheiten von F] und F; ergeben sich als Losung einer
linearen Optimierung. Hierzu seien x; und x, die zu mischenden Mengen von F} und
von F3. Fir die Entscheidungsvariablen nimmt man x; und x;, die ausschlieBlich
nichtnegative Werte annehmen diirfen (x,x; > 0).

Der zu deckende Bedarf an Néhrstoffen wird sichergestellt durch die Nebenbe-
dingungen, wobei auf der linken Seite die Grundstoffmengen in Abhéngigkeit von
den Fertigproduktmengen und auf der rechten Seite die geforderten Mindestmengen
stehen.

3x1+x>9

4x1+3x,>19
x1+3x>7

x1,x2 20

Die Kosten z, die aus der Mischung von x| und x, entstehen, sind:
z=25x;+50x;

Es sind die Kosten z unter den Nebenbedingungen zu minimieren. £SS

7.10 Grafische Minimierung

Bei der grafischen Minimierung wird die Zielfunktion parallel in Richtung auf den
Ursprung des Koordinatensystems verschoben. In Abb. 7.4 sind die Nebenbedingun-
gen und die Zielfunktion aus Beispiel 7.14 abgetragen. Der Losungsraum liegt bei
GroBer-gleich-Beziehungen oberhalb der Restriktionen. Die grafische Minimierung
der Zielfunktion wird vorgenommen, indem die Zielfunktionsgerade nach «Stidwe-
sten» parallel verschoben wird. Der kleinste Wert ist erreicht, wenn der niedrigste
Punkt des zuldssigen Losungsraums erreicht ist.

Beispiel 7.15. Im Beispiel 7.14 ist die minimale Kostenkombination bei

x1:4
x2=1

gefunden. Die minimalen Kosten betragen

Zmin = 150 €.
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T2

Abb. 7.4: Minimierung der Zielfunktion von Beispiel 7.14

7.11 Simplex-Methode fiir die Minimierung

Im Simplex-Algorithmus kann die Minimierung als umgekehrte Maximierung durch-
gefiihrt werden. Eine Zielfunktion mit negativem Zielwert wird maximiert; der posi-
tive Zielwert wird dann minimiert.

dx=z(x) >min & —¢x=—z(x) = max

Bei einem Minimierungsproblem ist der Losungsraum stets auch von unten ein-
geschrinkt. Dies bedeutet, dass die erste Basislosung mit x = 0 nicht zuldssig ist.
Dies duflert sich in den GroBer-gleich-Restriktionen. Diese werden durch eine Ne-
gation (wie im Abschnitt 7.8.1) in Kleiner-gleich-Restriktionen umgewandelt. Die
rechte Seite enthdlt somit im Starttableau negative Werte. Dies zeigt die Unzulas-
sigkeit der Basislosung an. Daher muss zuerst eine zuldssige Basislosung berechnet
werden. Es wird eine Restriktion mit negativem Wert auf der rechten Seite gewéhlt
und dazu ein negativer Koeffizient. Diese so genannte Vorphase wird solange durch-
gefiihrt bis kein negativer Wert mehr auf der rechten Seite steht. Dann ist die erste zu-
lassige Basislosung berechnet. Nun erst kann der eigentliche Simplex-Algorithmus
beginnen, sofern negative Zielfunktionskoeffizienten vorhanden sind.

Beispiel 7.16. Ein Betrieb besitzt 2 Rohstoffe R und R,, die er als Mischung weiter-
verarbeitet. R| und R, enthalten drei fiir die Weiterverarbeitung wichtige Bestandtei-
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le By, By und Bj3. Die Anteile sind durch folgende Nebenbedingungen gegeben:

6x1+2x, > 10 Mindestanteil von B,

3x1+4x; > 12 Mindestanteil von B,

x1+4x; >8  Mindestanteil von B3
x1,x2 >0  Nichtnegativititsbedingung

Die Rohstoffe haben Stiickkosten in Hohe von 1€ bzw. 2 € pro Einheit. In wel-
chen Quantititen sind die Rohstoffe zu beschaffen, so dass die Kosten minimal wer-
den?

X1+2xp)=z—>min = —x;—2x=—z— max

Das Optimierungsproblem wird zuerst in die Standardform transformiert. Dies
bedeutet, dass die Nebenbedingungen durch Multiplikation mit —1 in Kleiner-
gleich-Restriktionen gebracht werden. Die Zielfunktion wird ebenfalls mit —1 er-
weitert, so dass eine Maximierung vorzunehmen ist.

Das erste Simplex-Tableau wird dann wie bisher aufgebaut. Die Zielfunktion
steht wegen der abermaligen Erweiterung mit —1 mit positiven Koeffizienten in der
Zielfunktionzeile. Aufgrund der Verletzung der Nichtnegativitdt der Variablen (die
rechte Seite weist negative Werte auf), ist die so genannte Vorphase zur Berechnung
einer zuldssigen Basislosung erforderlich. Es ist der kleinste Wert auf der rechten
Seite zu suchen (—12) und der kleinste negative Koeffizient in dieser Zeile (—4). Die-
se Vorphase wird so lange durchgefiihrt bis die rechte Seite nur noch positive Werte
besitzt. Dann kann mit dem eigentlichen Simplex-Algorithmus begonnen werden.

xp x2 yiyyy b X1 x2 ¥y Y2 y3 b
-6-2 100 —10 4500 1 —0500 —4
-3 -4 010 -12 = 0751 0 -0250 3
-1-4 001 -8 2000 0 —1.001 4
1 2 000 0 —050 0 0 0500 -6
x| X2 Y o o»m b Xy X2 Yi1o» »3 b

1 0 —-0.222 0.111 0 0888 1 0 0 —0.500 0.50 2.0
01 0.166 —0.333 0 2333=0 1 0 0.125 —0.375 1.5
00 0.444 —1.222 1 2222 0 0 1 —2.750 2250 5.0
0

0 —-0.111 05550 —-5555 0 0 O 025 025 -5.0

Die minimalen Kosten liegen bei 5 €. Sie werden durch den Einsatz von 2 Einheiten
des Rohstoffs R; und 1.5 Einheiten des Rohstoffs R, erreicht. 3t



7.12 Dualitétstheorem der linearen Optimierung 131

Ubung 7.3. Minimiere z mit
z=9x1+ 8xp — min
unter den Nebenbedingungen

x1—3x <3

X1 >6
3x14+2x>42
—4x1+3x <24
x1,%2 >0

7.12 Dualitiitstheorem der linearen Optimierung

Jedem primalen Maximierungsproblem steht ein duales Minimierungsproblem in der
linearen Optimierung gegeniiber, sofern eine zuldssige Losung existiert. Werden im
primalen Problem die Variablen x maximiert, so werden im dualen Problem die Va-
riablen y (es sind die ehemaligen Schlupfvariablen) minimiert.

primales Problem duales Problem
¢/x = z(x) — max b’y = z(y) — min
Ax<b Aly>c
Ax+y=b Aly+x=c¢

Beispiel 7.17. Im Beispiel 7.1 wurden die Mengen x| und x; maximiert, damit der
Gewinn maximal wird. Die Schlupfvariablen konnten als Opportunititskosten der
Restriktionen interpretiert werden. Die Zielfunktion

20 30] {2] — max

wird unter den Nebenbedingungen
1 2 200
11 ["‘] < | 160
0 1] L% 60

maximiert. Im dualen Problem werden nun die (Opportunitéts-) Kosten minimiert,
damit die Mengen optimal (kostengiinstig) auf den Anlagen produziert werden. Die
Zielfunktion

N1
[200 160 60} V2| — min

Y3
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wird unter den Nebenbedingungen

minimiert. 1t

Ubung 7.4. Losen Sie die Ubung 7.3 iiber einen Dualititsansatz.

7.13 Lineare Optimierung mit Scilab

In der Praxis werden lineare Optimierungen mit Computerprogrammen wie zum Bei-
spiel mit Scilab gelost. In Scilab kann ein lineares Maximierungsproblem mit der
Funktion 1inpro gelost werden. Diese Funktion minimiert die Zielfunktion

¢/x = z(x) — min

unter den Nebenbedingungen

Ax<b

Aus der Erkenntnis, dass eine negative Maximierung eine Minimierung erzeugt,
wird nun eine negative Zielfunktion minimiert, um eine Maximierung der Zielfunk-
tion zu erreichen. Das lineare Maximierungsproblem aus dem Beispiel 7.1 wird in
Scilab dann folgendermafien umgesetzt:

// Matrix der Koeffizienten
A=[12;11; 011;

// RHS
b = [200 ; 160 ; 60];

// Zielfunktionskoeffizienten
c = [20 ; 30];

// Es wird die Zielfunktion -z=(-c¢)’*x -> min!
// => also z=c’xx -> max!
[x,lagr,z] = -linpro(-c,A,Db)

// Ergebnis x
// lagr: Schattenpreise
// z Zielfunktionswert

Als Losung erhdlt man:
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z=3600.

lagr=10.
10.

x=120.
40.

Die Funktion 1inpro verwendet nicht den Simplex-Algorithmus zur Berech-
nung der Losung. Ab der Version 5 von Scilab ist diese Funktion in der Toolbox
quapro enthalten, die auf der Scilab Internetseite unter toolbox center > opitmiza-
tion tools heruntergeladen werden kann.

Das Minimierungproblem aus Beispiel 7.14 wird wie folgt in Scilab gelost:

// Matrix der Koeffizienten
A= [31; 43 ; 123];

// RHS
b=1[9; 19 ; 7];

// Zielfunktionskoeffizienten
c = [25 ; 50];

// Es wird die Zielfunktion z=c’*x -> min!
// AxX <= b <-> -AxxX >= -b

[x,lagr,z] = linpro(c,-A,-b);
disp(x,'x=',lagr,’lagr=',z, " z=")

Bei der Angabe der Nebenbedingung ist darauf zu achten, dass Scilab diese als
Kleiner-gleich-Bedingungen interpretiert und daher ist sie mit —1 zu erweitern. Als
Ldsung erhdlt man:

z=150.
lagr=0.
2.7777778
13.888889
x=4.
1.

Auch der Dualitétsansatz ldsst sich in Scilab verwirklichen. Hierzu sind jedoch
in der Regel Untergrenzen fiir die Losungsvariablen x vorzugeben. Um die Losung
des Beispiels 7.1 im Dualitétsansatz in Scilab zu berechnen, muss im Vektor ci die
Nichtnegativititsbedingung angegeben werden. Eine Obergrenze liegt nicht vor und
wird durch cs=[] offen angegeben.
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ci = zeros(3,1); cs =[];
[x,lagr,z] = linpro(b,-A’,-c,ci,cs)

Leider hat die Funktion 1inpro () Probleme lineare Optimierungen zu l6sen,
bei denen die Zahl der Restriktionen kleiner als die Zahl der Variablen ist.

7.14 Fazit

Lineare Programme sind fiir viele 6konomische Fragestellungen verwendbar. Ein
lineares Programm besteht aus einer Zielfunktion, die unter Nebenbedingungen op-
timiert wird. Die Nebenbedingungen (Restriktionen) sind in der Regel als Unglei-
chungen formuliert. Sie beschreiben Maschinenkapazititen, Mischungsbedingungen
und/ oder Ressourcenverfiigbarkeiten.

Die rechnerische Losung erfolgt mit einem Matrixsystem, das mit dem Simplex-
Verfahren gelost wird. Graphisch gesehen sucht das Simplex-Verfahren die Eckpunk-
te des Losungsraumes ab. Das Dualitéitstheorem besagt, dass zu jedem Maximie-
rungsproblem auch ein duales Minimierungsproblem existiert und umgekehrt.
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8.1 Vorbemerkung

Funktionen spielen in der Okonomie eine bedeutsame Rolle. Bekannte 6konomi-
sche Funktionen sind zum Beispiel Produktionsfunktionen, Preis-Absatz-Funktio-
nen, Nachfragefunktionen, Kostenfunktionen, Ertragsfunktionen und Gewinnfunk-
tionen. Die Funktionen dienen der formalen Beschreibung realer Probleme (Modell-
bildung). Mit mathematischen Operationen konnen die Funktionen analysiert wer-

den.

Im Folgenden werden einige wichtige Grundlagen und Eigenschaften von Funk-
tionen mit einer Verdnderlichen beschrieben.
Einige geldufige Bezeichnungen in der Analysis sind

[an]

Koeffizient oder Folgenglied
Folge

W. Kohn, R. Oztiirk, Mathematik fiir Okonomen, Springer-Lehrbuch,
DOI 10.1007/978-3-642-28575-2_8, © Springer-Verlag Berlin Heidelberg 2012
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£ beliebig kleine positive Zahl

h(x),g(x) Funktionen von x

(%) Umkehrfunktion

F(x,f(x)) =0 implizite Funktion

Pn(x) rationales Polynom n-ten Grades

Sy Teilsumme

[sn] Reihe

X1 erste Nullstelle einer Funktion

X(1):X(2) Wertepaar in der Umgebung einer Nullstelle
xM) 1-te Ndherung einer gesuchten Nullstelle
= Bedingung

8.2 Funktionsbegriff

Eine Funktion dient zur Beschreibung der gegenseitigen Abhiangigkeit mehrerer Fak-
toren. Falls zwischen den Elementen x und y zweier Mengen X und Y bestimmte
Beziehungen bestehen, dann bezeichnet man diese als Relation oder Abbildung.

f:X—-Y

Die Betrachtungsweise ist im Allgemeinen so festgelegt, dass man von den Elemen-
ten einer Menge x € X ausgeht und ihre Beziehung zu den Elementen der anderen
Menge y € Y untersucht. Man bezeichnet hierbei die Menge X als Definitionsmenge
D(f) oder Urbildmenge der Abbildung /" und die Menge Y als Wertebereich W (f)
oder Bildmenge.

Beispiel 8.1. Das Hausnummernsystem stellt eine Abbildung dar. Die Menge X sei
ein Haus in der Wertherstral3e. Dies wird formal mit

X = {x| x ist ein Haus in der Wertherstrafie}

beschrieben (lies: Die Menge X fiir deren Elemente x gilt, x ist ... ). Die Menge Y sei

Y ={y|yeN}
Dann ist
f X — N({Hauser} — {Nummer})
die formale Beschreibung fiir das Hausnummernsystem. £Ss

Im Beispiel 8.1 handelt es sich um ecine eindeutige Abbildung, da jedem Ele-
ment aus dem Wertebereich mindestens ein Element aus dem Definitionsbereich zu-
geordnet ist. Eine solche Abbildung wird auch als surjektiv bezeichnet. Eine Abbil-
dung heif}t eineindeutig oder injektiv, wenn verschiedenen Elementen des Defini-
tionsbereichs unterschiedliche Elemente des Wertebereichs zugeordnet sind. Wenn
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surjektiv nicht injektiv injektiv nicht surjektiv

® @

surjektiv und injektiv = bijektiv

e

Abb. 8.1: Surjektive, injektive und bijektive Abbildung

beides vorliegt — also surjektiv und injektiv — dann wird die Abbildung bijektiv ge-
nannt.

In vielen Féllen kdnnen Funktionen zwischen den Elementen x € X und den Ele-
menten y € Y in Form einer Gleichung geschrieben werden.

y=f(x) furxeD(f) (8.1)

Bei der Funktion in Gleichung (8.1) gehort zu jedem Element x des Definitionsbe-
reichs D(f) genau ein Element y des Wertebereichs W (f). In dieser Schreibweise
tritt auch deutlich die Abhéngigkeit zwischen den verdnderlichen GréBen x und y
hervor. Die Variable x kann innerhalb des Definitionsbereichs D( f) beliebige Werte
annehmen und wird deshalb als unabhiingige Variable oder Argument bezeichnet.
Hingegen ist mittels der Zuordnung f(x) der Wert von y eindeutig festgelegt, sobald
x gewahlt wird. Aus diesem Grund heif3t y die abhéingige Variable.

Wichtig ist allein der funktionale Zusammenhang; die Bezeichnungen selbst sind
beliebig wihlbar und vom jeweiligen Kontext abhéngig. So ist es durchaus sinn-
voll, die Bezeichnung K (x) fiir eine Kostenfunktion oder p(x) fiir eine Preis-Absatz-
Funktion zu verwenden.

Die Funktion wird in der analytischen Form als Gleichung unter Angabe des
Definitionsbereichs der unabhidngigen Variablen dargestellt. Die Gleichung (8.1)
bezeichnet man dabei als explizite Funktion. Als implizite Funktion wird die
Schreibweise
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bezeichnet. Es handelt sich dabei um dieselbe Funktion. In der Praxis ist dabei nicht
immer die Auflésung einer implizit gegebenen Funktion nach y mdglich.

Beispiel 8.2. Die Funktionen
F(x,y) =y—+v/x4+x)> =0 firx>0

oder

qlo_l
F(g)=2000" " —30000=0 firg> 1

konnen nicht explizit nach x oder y bzw. g aufgeldst werden. ges

Nicht jede Funktion kann als Gleichung geschrieben werden und nicht jede Glei-
chung ist eine Funktion! So kdnnen empirische Beobachtungen nur in Form einer
Wertetabelle angegeben werden. Es handelt sich dann um eine diskrete Funktion,
die nur punktweise definiert ist. Hingegen ist die Gleichung fiir den Einheitskreis
1 = x? +y? keine Funktion, da sie bis auf die Randpunkte jedem Wert von x zwei
Werte von y zuordnet. Eine Funktion kann auch in verschiedene Intervalle ihres Defi-
nitionsbereichs durch unterschiedliche Funktionszweige beschrieben werden. Dann
hat die Funktion die Form:

f(x) firx e D(f)
y=14gx) firxeD(g)
h(x) firx e D(h)

Die Teildefinitionsbereiche miissen dabei disjunkt (nicht iiberschneidend) sein.

Beispiel 8.3.
—1 fallsx<0

y(x) = 0 fallsx=0
+1 fallsx>0

Lt

Eine eineindeutige Funktion ldsst sich umkehren. Die Auflésung der Funktion
nach der unabhéngigen Variablen x heilt Umkehrfunktion.

x=f"0)=20)
Beispiel 8.4. Die Funktion

y(x)=x* firxeR"
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besitzt die Umkehrfunktion:

xX(y) =+
Die Funktion

y(x) =x* firxeR
besitzt hingegen keine Umkehrfunktion, da die Abbildung nur eindeutig ist. Flirx =2
und fiir x = —2 erhélt man den gleichen Funktionswert. gel

Man beachte, dass der Definitionsbereich (Wertebereich) einer Umkehrfunktion
gleich dem Wertebereich (Definitionsbereich) der Ausgangsfunktion ist. Daher kann
eine Umkehrfunktion nur fiir eineindeutige Funktionen existieren.

Es werden hier nur einige spezielle reelle Funktionen behandelt. Bei diesen kann
man zwischen so genannten algebraischen und transzendenten Funktionen unter-
scheiden. In algebraischen Funktionen ist die unabhéngige Variable ausschlielich
durch die elementaren Operationen wie Addition, Subtraktion, Multiplikation, Di-
vision, Potenzierung und Radizierung verkniipft. Von den algebraischen Funktionen
interessieren hier insbesondere die rationalen und gebrochen-rationalen Polynome.

Die transzendenten Funktionen konnen nicht mit den elementaren Operationen
dargestellt werden. Die in der Okonomie wichtigsten transzendenten Funktionen sind
die Exponential- und die Logarithmusfunktionen. Sie wurden in den Abschnitten 2.7
und 2.8 vorgestellt.

y(x)=a" fira>0unda#1,xeR
y(x)=log,x fira>0unda+#1,xe R’

8.3 Rationale Funktionen

Die rationale Funktion wird auch als Polynomfunktion oder kurz als Polynom be-
zeichnet. Die Analyse der Nullstellen von rationalen und gebrochen-rationalen Funk-
tionen steht im Mittelpunkt der beiden folgenden Kapitel, da sie in der Finanzmathe-
matik eine besondere Rolle spielen. Ferner werden polynome zur Approximation
beliebiger Funktionen verwendet.

Ein Polynom n-ten Grades ist eine Funktion der Gestalt

pn(x)=ao+arx+...+a,x"
n
. 8.2
= Zaix’ fiir a;,x € Rund a, # 0 (8.2)
i=0

Die GroBlen a; werden Koeffizienten genannt und sind gegebene konstante Grof3en.
Rationale Funktionen sind fiir jeden Wert von x definiert und stetig (zur Stetigkeit
siche Kapitel 10.2).

Beispiel 8.5.

p1(x) =ap+ax Polynom 1. Grades: lineare Funktion
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2

p2(x) =ap+ajx+axyx® Polynom 2. Grades: Parabelfunktion

Fiir die Nullstelle ciner Funktion gilt:

p(x)=0

Das Zeichen = bedeutet, dass fiir die Funktion p(x) das Argument x gesucht wird,
fiir den der Funktionswert p(x) = 0 gilt.

Beispiel 8.6. Die Nullstelle des Polynoms 1. Grades wird durch folgenden Ansatz
bestimmt: ‘
pix)=ap+a;x=0

Die Losung ist durch Auflésen der Gleichung leicht zu finden.

ao
X1 = —
ai

o3

Beispiel 8.7. Nullstellenbestimmung fiir ein Polynom 2. Grades (Parabelfunktion).
Fiir die Funktion
pa(x)=—-3—2x+x* firxeR (8.3)

sollen die Nullstellen gesucht werden. Hierzu wird die quadratische Erginzung
verwendet. Die Normalform einer quadratischen Gleichung ist

Pt pxtg=0 (8.4)
Es werden folgende Umformungen vorgenommen, damit die Gleichung (8.4) nach x

aufgeldst werden kann:

2 2
e A R

0= () Pon(2)
- —g o . _
(”2 2) 1 ) 2) 1
P (p>2
—_74 _
2= \/ 2) 14

Die Nullstellen der Funktion (8.3) sind somit leicht zu bestimmen.
X1,2=1:|:\/1—|—3 = x1 =3, xp;=—1
Ro

Aber konnen auch die Nullstellen von Polynomen héheren Grades so leicht be-
rechnet werden? Wie viele Nullstellen gibt es fiir ein Polynom n-ten Grades?

Auf die letzte Frage hat GauBl mit dem Hauptsatz der Algebra eine Antwort
gegeben:
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Die Anzahl der Nullstellen eines Polynoms n-ten Grades p,(x) besitzt
genau n Nullstellen, die jedoch nicht reell zu sein brauchen und von
denen einzelne mehrfach vorkommen kdnnen.

Ein Polynom ungeraden Grades besitzt immer mindestens eine reelle Nullstelle,
was darauf zuriickzufiihren ist, dass die Funktionswerte von

Pn(x — Fo0) = +oo
streben, wihrend sie fiir

Pn(x — —o0) — —oo

streben. Da die Polynomfunktion stetig ist, muss es also mindestens einen Punkt
geben, der den Funktionswert Null hat. Dies kann man leicht an einem Polynom 1.
Grades tiberpriifen. Fiir ein Polynom geraden Grades ist eine derartige Aussage nicht
moglich, so dass man nur folgern kann: Ein Polynom n-ten Grades bei geradem n
besitzt hochstens n reelle Nullstellen.

Die Antwort auf die andere Frage (Konnen die Nullstellen eines Polynoms leicht
berechnet werden?) lautet nein. Im Allgemeinen wird fiir die Nullstellenbestimmung
von Polynomen 3. Grades oder hoher ein Ndherungsverfahren eingesetzt. Zwar wur-
de eine formelméBige Auflosung fiir Polynome 3. als auch 4. Grades gefunden, die
so genannte Cardanische Formel, aber die Berechnung der Nullstellen ist mit dieser
Formel sehr aufwéndig. Dariiber hinaus gelang Niels Abel der Nachweis, dass eine
formelméBige Losung fiir Polynome mit einem Grad von n > 4 nicht moglich ist.
Ein Naherungsverfahren ist die regula falsi (oder Sekantenverfahren), das in Kapitel
8.3.2 erklért wird. In Kapitel 10.7 wird dazu ein weiteres Verfahren, das Newton-
Verfahren, vorgestellt.

8.3.1 Partialdivision und Linearfaktorzerlegung

Ist fiir die Polynomfunktion p,(x) die Nullstelle x; bekannt, so ist p,(x) darstellbar
als

pn(x) = pa-i1(x) (x —x1)
Das Restpolynom p,_(x) besitzt dann einen um eins niedrigeren Grad und wird

durch Partialdivision bestimmt. Die Division erfolgt nach den normalen Divisions-
regeln

_ Pn(x)
Pr1l) = (x—x1)
Beispiel 8.8. Fiir das Polynom
p3(x) =2.01 — 1.66x —2.67x>+x° firx €R (8.5)

ist die Nullstelle x; = 0.67 bekannt. Das Polynom besitzt noch zwei weitere Null-
stellen. Wenn man nun das Restpolynom p,(x) bestimmt, dann kénnen die beiden
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restlichen Nullstellen mit der quadratischen Ergdnzung berechnet werden. Dies ge-
schieht per Polynomendivision.

Die folgende Division ist der Rechenweise nach eine schriftliche Division. Im
ersten Schritt wird der Divisor mit dem groBten Faktor (hier x?) multipliziert, den der
Zahler enthélt. Der Rest wird per Subtraktion gebildet. Fiir diesen Rest wird wieder
der grofte Faktor gesucht, der in ihm enthalten ist (hier —2x). Diese Rechnung wird
fortgesetzt bis ein Rest von Null oder ein nicht ganzteiliger Rest vorhanden ist. Die
Division

(x¥* —2.67x*> —1.66x +2.01) =+ (x—0.67) =x>—-2x—3

—(x3 —0.67x?)
—2x* —1.66x
—(=2x% +1.34x)
—3x +2.01
—(—=3x +2.01)
0
ergibt das Restpolynom

pa(x) = =3 —2x4x*

von dem aus Beispiel 8.7 die beiden verbleibenden Nullstellen bekannt sind. x; =
0.67 ist also tatséchlich eine Nullstelle des Polynoms (8.5), da die Division ohne
Rest erfolgt. Das Polynom (8.5) besitzt also folgende dquivalente Darstellung:

p3(x)=(x—0.67) (x—3) (x+1), (8.6)
aus der die 3 Nullstellen sofort ablesbar sind. Tt

Bezeichnet man mit xy,x,,...,x, die Nullstellen der Polynomfunktion (8.2), so
ergibt sich durch die wiederholte Polynomendivision (Partialdivision) die Linear-
faktorzerlegung von p,(x):

Pn(x) =an(x—x1) (x—x2) - (x —xp) (8.7)

Es ist also mit einigem Rechenaufwand moglich, die Nullstellen einer rationalen
Polynomfunktion zu berechnen. Diese aufwéndige Arbeit wird heute in der Regel
von Computerprogrammen iibernommen.

8.3.2 Regula falsi

Bei der regula falsi wird mittels Probieren ein Intervall fiir den Funktionswert p,(x)
gesucht, bei dem die Werte nahe Null liegen. Es ist dabei nicht notwendig, dass ein
Vorzeichenwechsel im Intervall stattfindet. Der Name ,,falsche Regel* riihrt daher,
dass ein (ndherungsweiser) linearer Verlauf zwischen den beiden Intervallwerten

ey, on(xa))l Xy Pa(x2)]
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unterstellt wird. Diese Punkte werden durch eine Gerade (Polynom 1. Grades)
pi1(x)=ap+aix = y(x)=mx+b

verbunden (siche Abb. 8.2). Wir bezeichnen der Einfachheit wegen das erste Wer-
tepaar mit (x(1), (1)), das zur ersten Gleichung (8.8) fiihrt. Der Wert y(;) berechnet
sich durch Einsetzen des Wertes x(;) in das Polynom py,(x(1): y(1) = pa(x(1)). Das
zweite Wertepaar (x(z) , y(z)) fithrt zur zweiten Gleichung (8.9). Aus den beiden Glei-
chungen konnen dann die beiden Koeffizienten m und b berechnet werden.

Y ZMX(1)+b = bzy(l)—mx(l) (8.8)
Y2) —Ya

Y(2) = mx() +b = m= @ M (8.9)
X(2) = X(1)

Der Schnittpunkt der Geraden mit der Abszisse ist die 1. Ndherung fiir die gesuchte
Nullstelle.

mx—I—béO = M=
m

Im néchsten Schritt wird von der 1. Niherung der Funktionswert p,, (x(!)) berech-
net, um dann erneut iiber lineare Interpolation eine 2. Ndherung fiir die Nullstelle des
Polynoms zu berechnen.

Beispiel 8.9. Fiir das Polynom
p3(x) =2.01 — 1.66x—2.67x*>+x° firxeR (8.10)

sollen die Nullstellen bestimmt werden. Es handelt sich um ein Polynom 3. Grades.
Daher ist mindestens eine Nullstelle von den insgesamt 3 Nullstellen reellwertig.

Es wird im Intervall x = [0, 1] eine Nullstelle gesucht, da hier der Funktionswert
p3(x) das Vorzeichen wechselt.

x(1>:O = p3(0)= 2.01
x(2>:1 = p3(1)=—1.32

Mittels der beiden Wertepaare konnen nun die beiden Koeffizienten m und b der
Geradengleichung berechnet werden.

20l=mx0+b = b= 201
—132=mx1+b = m=-3.33

Damit ist die Geradengleichung bestimmt.
p(x) =2.01 —3.33x=0

Fiir die Gleichung wird nun die Nullstelle gesucht, die die erste Naherung der Null-
stelle von (8.10) ist (siche Abb. 8.2).
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Ly _ 201

=313 =0.6036

Die erste Ndherung von x( liefert schon einen Funktionswert von
3(0.6036) = 0.2552,

der wesentlich naher an Null liegt als p3(0) = 2.01. Die Niherung der Nullstelle
erfolgt vom linken Intervallrand. Mit dem neuen Intervall x = [0.6036, 1] wird nun
das Gleichungssystem

0.2552 =m x 0.6036 + b
—132=mx1+b

aufgestellt, aus dem die Koeffizienten
m=—3.9737 b=2.6537

berechnet werden. Die Nullstelle der Geradengleichung
p(x) =2.6537 —3.9737x =0

liefert die 2. Ndherung fiir eine der Nullstellen von (8.10).
x? =0.6678

Der Wert x(2) = 0.6678 liefert einen Funktionswert von p3(0.6678) = 0.0085, der
schon relativ nahe an Null liegt. Die 3. Ndherung mit dem Gleichungssystem

0.0085 =m x 0.6678 + b
—132=m+bx1

liefert die Koeffizienten
m=—3.9993 b=2.6793
die zur ndherungsweisen Nullstelle von
) =0.6699

fithrt. Der Funktionswert p3(0.6699) = 0.00023 weist bereits einen Wert nahe Null
auf. Wird weiter iteriert, so stellt sich ein Wert von x; = 0.67 ein. ted

Die i-te Iteration der regula falsi ldsst sich in einer Formel (lineare Interpolation)
zusammenfassen. Sie entsteht, wenn die Berechnungsformeln fiir die Koeffizienten
aus (8.8) und (8.9) in die Gleichung

y(x)=mx+b
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Abb. 8.2: Nullstellenbestimmung mit der regula falsi fiir das Polynom (8.10)

eingesetzt werden. Wird diese Gleichung Null gesetzt und nach x aufgeldst, so erhélt

man die Gleichung (8.11). Mit xESl) und xggl) wird das Wertepaar der i — 1-ten
Iteration bezeichnet.

(8.11)

(i— (

; i1 -n*e) TN
xI(\Izﬂlstelle:xEl) )_y(l) : (i (
( (

Fiir einen Iterationsschritt werden

1. zwei Wertepaare in der Ndhe der gesuchten Nullstelle gewéhlt. Wurde bereits
ein Iterationsschritt berechnet, so wird ein Wertepaar aus der berechneten Na-
herung bestimmt. Das zweite Wertepaar wéhlt man besten so, dass die beiden
Wertepaare die gesuchte Nullstelle umschlieBen. Dies ist aber nicht nétig.

2. Es wird die Nullstelle der Geradengleichung mit Gleichung (8.11) berechnet.

3. Die beiden Schritte werden wiederholt bis die Naherung einer gewiinschte Ge-
nauigkeit entspricht, zum Beispiel bis die 4-te Nachkommastelle sich nicht
mehr dndert.

Beispiel 8.10. Anwendung der Formel (8.11): Das Intervall fiir die 3. Iteration zur
Bestimmung der Nullstelle in Beispiel 8.9 war x = [0.6678,1]. Die y-Werte y =
[0.0085,—1.32] weisen einen Vorzeichenwechsel auf. Also enthilt das Intervall der
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x-Werte die gesuchte Nullstelle. Mit der Formel (8.11) berechnet sich die 3. Nahe-
rung fiir die gesuchte Nullstelle dann wie folgt:

1-0.6678
() = 0.6678 — 0.0085 = 0.6699
X X 1.32-0.0085

8.3.3 Nullstellenberechnung mit Scilab

Nullstellenprobleme werden heute mit Computerprogrammen zur numerischen Ma-
thematik geldst, wie zum Beispiel mit Scilab. Mit der Anweisung poly () wird
bei diesem Programm ein Polynom eingegeben. Fiir das Beispiel 8.9 ist die Scilab-
Anweisung:

p = poly([2.01 -1.66 -2.67 1],"x","coeff")

2.01 - 1.66x - 2.67x"2 + x™3

Der Vektor enthélt die Koeffizienten des Polynoms; mit der Option coef £ wird
festgelegt, dass der Vektor die Koeffizienten enthélt. Alternativ konnen mit der Op-
tion roots auch die Nullstellen angegeben und dann das zugehorige Polynom be-
rechnet werden. Der Befehl

poly([-1 3 0.67],"x","roots")

2.01 - 1.66x - 2.67x"2 + x™3

liefert das Polynom (8.10).
Die Berechnung der Nullstellen des Polynoms erfolgt mit dem Befehl roots.
Angewendet auf das Beispiel sieht die Anweisung wie folgt aus.

r = roots(p)

0.67
-1
3

In dem Ergebnisvektor sind die Nullstellen des Polynoms gespeichert. In der
Scilab Version 5 hat der standardmiBig verwendete Algorithmus in manchen Féllen
Konvergenzprobleme. Mit der Option roots (, ‘e’ ) wird ein aufwéindigerer Al-
gorithmus eingesetzt, der bessere Konvergenzeigenschaften besitzt. Siehe hierzu die
Hilfefunktion von Scilab.

Ein Befehl fiir die Linearfaktorzerlegung des Polynoms ist auch in Scilab ent-
halten. Der Befehl factors liefert die Linearfaktoren des Polynoms (8.10) in der
Form (8.6).
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factors (p)

-0.67 + X
1 + x
-3 + X

8.4 Gebrochen-rationale Funktionen

Eine gebrochen-rationale Funktion ist der Quotient zweier Polynomfunktionen.

- Pn(X) - Z?:oaixi ..
flx)= i) S by flirx e R, gu(x) #£0

Charakteristisch fiir den Funktionsverlauf von gebrochen-rationalen Funktionen ist
das Auftreten von Polstellen. Dies sind die Werte x, fiir die das Nennerpolynom ei-
ne Nullstelle aufweist, das Zéhlerpolynom gleichzeitig aber keine Nullstelle besitzt.
In den Polstellen ist die Funktion nicht definiert und somit auch nicht stetig. Bei
der Annédherung der x-Werte an eine Polstelle wéchst oder fallt der Funktionswert
unbeschrinkt (d. h. er strebt gegen +oo oder —eo).

x ist eine Polstelle von f(x), wenn p,(x) # 0 und g, (x) = 0 gilt.

Das Verhalten der Funktion f(x) in der Umgebung der Polstelle x/ ldsst sich leicht
untersuchen. Hierzu wird eine beliebig kleine positive Zahl € definiert, die zur Un-
tersuchung der Umgebung von x dient. Fiir den Bereich kleiner (links) der Polstelle
gilt dann x™ — . Ist der Funktionswert

lim f(x' — ¢) < 0,
e—0

so strebt die Funktion fiir € — 0 nach f(x/) — —co. Ist der Funktionswert

lim f(x' — &) > 0,
e—0

so strebt die Funktion fiir € — 0 nach f(x™/) — 4. Die gleichen Uberlegungen
lassen sich fiir den Bereich groBer (rechts) der Polstelle anstellen.

éig})f(xp"%e) <0 & [P — —c

éii)r})f(xP0[+e) >0 & ) = 4o

Die Nullstellen einer gebrochen-rationalen Funktion sind die Nullstellen des
Ziahlerpolynoms, wenn nicht gleichzeitig das Nennerpolynom auch eine Nullstelle
fiir diesen Wert besitzt.

x ist eine Nullstelle von f(x), wenn p,(x) = 0 und g, (x) # 0 gilt.
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Beispiel 8.11. Die gebrochen-rationale Funktion

—3—2x+x?
f) = XIH fiirx € R (8.12)
x—
besitzt zwei Nullstellen x] = —1 und x; = 3, die aus Beispiel 8.7 bekannt sind, und
eine Polstelle bei x’/ = 1 (siche Abb. 8.3). %
20
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Abb. 8.3: Gebrochen-rationale Funktion (8.12)

Fiir sehr kleine oder sehr grofle Werte von x ndhert sich eine gebrochen-rationale
Funktion einer rationalen Funktion beliebig nahe. Man nennt diese Funktion Asym-
ptote. Es sind 3 Fille zu unterscheiden:

1. Besitzt das Nennerpolynom einen hoheren Grad als das Zéhlerpolynom (n <
m), so strebt die Funktion f(x) fiir sehr kleine bzw. sehr groBe Werte von x
offensichtlich gegen Null. Die Asymptote ist in diesem Fall die Abszisse.

2. Sind Zahler- und Nennergrad der Polynome gleich (n = m), so ergibt sich un-
ter Anwendung der Regeln fiir die Grenzwertberechnung eine Konstante als
Asymptote f49(x) = .

3. Ferner kann noch der Fall auftreten, dass der Zahlergrad grof3er als der Nenner-
grad ist (m < n). Es ergibt sich dann eine asymptotische Funktion aus dem
ganzen rationalen Anteil der gebrochen-rationalen Funktion, den man mittels
Partialdivision erhilt.
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Beispiel 8.12. Im Beispiel 8.11 liegt der 3. Fall vor. Die gebrochen-rationale Funkti-
on (8.12) wird mittels Partialdivision in eine rationale Funktion und ein gebrochen-
rationales Restglieds zerlegt.

(¢ —2x =3)+ (x—1)=x—1-_*%
~ @ - ) )

—x =3
- (x +0D
4

Fiir sehr kleine und sehr groe Werte von x verschwindet das Restglied (xfl) und als
Asymptote verbleibt die lineare Funktion f4% (x) = x — 1. L

Ubung 8.1. Ermitteln Sie mittels der Nullstellen, der Polstellen und der Asymptote
in groben Ziigen den Verlauf der Funktion

x—1)(x+2)?
Sx) = (x2 (x)z(——f6))

firxeR

Ubung 8.2. Ermitteln Sie mittels der Nullstellen, Polstellen und der Asymptote in
groben Ziigen den Verlauf der Funktion

3
x’+3x+5
= firx € R
f(x) _ Uir x
Bestimmen Sie die erste Nullstelle erst ndherungsweise. Zur Berechnung der zwei-
ten und dritten Nullstelle nehmen Sie fiir die erste Nullstelle x; = —1.154 an.
8.5 Folgen

Folgen sind spezielle Funktionen, deren Besonderheit es ist, dass die unabhingi-
ge Verdnderliche stets aus der Menge der natiirlichen Zahlen N gewahlt wird. Eine
Funktion, durch die jeder natiirlichen Zahl n € N (oder einer Teilmenge von N) eine
reelle Zahl a,, € R zugeordnet wird, heifit eine Folge, die mit [a,] bezeichnet wird.

[an] =4ap,az,...,day

Die reellen Zahlen a;,a;,...,a, € R heilen Glieder der Folge mit a, als dem all-
gemeinen Glied. In der Funktion wird das Bildungsgesetz der Folge beschrieben,
deren Werte die Glieder der Folge sind. Um die Folge zu beschreiben geniigt es, das
Bildungsgesetz und den Definitionsbereich anzugeben.

Beispiel 8.13. Mit der Funktion



152 8 Funktionen mit einer Variablen

[a,] = H (n+ (—1)%)} firallen € N

wird die Zahlenfolge 0,1,0,2,0,3,... beschrieben. o3

Die Folge [a,] ist von der Menge ihrer Glieder {a,} zu unterscheiden. Bei der
Folge ist im Gegensatz zur Menge immer eine Ordnung impliziert, und bei einer
Folge konnen sich die Glieder (Elemente) wiederholen.

Beispiel 8.14. Im Beispiel 8.13 besitzen die Glieder ay,a3,as, ... in der Zahlenfolge
[an] die gleiche Zahl. Die Menge der Glieder betriigt:

{a,,} = No
gos

Beispiel 8.15. Als taktisches Konzept in Verhandlungen wird gelegentlich das Prin-
zip «zwei Schritte vor, einen zuriick» verfolgt. In Zahlen ausgedriickt, ergibt sich die
Folge:

n+i-3er
2
=2,1,3,2,4,3,5,4,...

[an] = furallen € N

o3

Eine Folge wird als endliche Folge bezeichnet, wenn die unabhingige Variable n
aus einer endlichen Menge gewihlt wird. Andernfalls wird sie als unendliche Folge
bezeichnet. Die arithemtische und die geometrische Folge spielen vor allem in der
Finanzmathematik eine wichtige Rolle.

8.5.1 Arithmetische Folge

Bei der arithmetischen Folge ist die Differenz zweier aufeinander folgender Glieder
konstant.
ape1 —ap=d mitd = konst firallen € N

Das Bildungsgesetz fiihrt auf die Folge
[an] = ay,a1+d,a1+2d,...;a1+(n—1)d
=a;+(n—1)d firalleneN
Beispiel 8.16. Die Folge der ungeraden natiirlichen Zahlen ist eine arithmetische Fol-
ge.

[an) =142(n—1) furalleneN
~1,3,5,7,9,...
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8.5.2 Geometrische Folge

Die andere Folge, die in der Finanzmathematik eine herausragende Position ein-
nimmt, ist die geometrische Folge, bei der der Quotient zweier aufeinander folgender
Glieder konstant ist.
An+1
Qn

=g mitq=konstfirallen e N

Das Bildungsgesetz ergibt die Folge:

[a”] =day,a14q,ay q27 L, ay qn71
=a;¢"! firalleneN
Beispiel 8.17. Die Folge der Zweierpotenzen des Dualsystems ist eine geometrische
Folge.
[a,] =2""' firallene N
=1,2,4,8,16,... mita; =1undg=2

o3

Beispiel 8.18. Es wird der Endbetrag eines Kapitals von a; = 100€ nach 5 Jahren
gesucht, der mit einem Zinssatz von 5 Prozent verzinst wird. Nach dem ersten Jahr
stehen a, = 100 x 1.05 = 105 Euro zur Verfiigung. Nach dem zweiten Jahr stehen
a3 =105 x 1.05=100 x 1.05? = 110.25 Euro zur Verfiigung. Der Endbetrag betrigt
folglich ag = 100 x 1.05% = 127.63 Euro. Es handelt sich um eine geometrische
Folge mit dem Faktor ¢ = 1.05 und dem Anfangsglied a; = 100. ges

8.6 Reihen

Summiert man sukzessiv die Glieder von Folgen auf, so bildet die Folge der Teil-
summen eine Reihe. Ausgangspunkt fiir die Bildung einer Reihe ist stets eine Zah-
lenfolge [a,]. Die Summe der ersten n Glieder der Folge ergibt die n-te Teilsumme
(Partialsumme) s,

n
S,1:Zai:al+a2+...+a,, firallen € N

i=1
Beispiel 8.19. Es werden auf einem (unverzinsten) Konto mit einem Anfangssaldo
von 0 € folgende Ein- und Auszahlungen (in €) vorgenommen:

[ag] = +100,410,—50,—20,+75,—20

Die Ein- und Auszahlungen stellen eine Folge dar. Wird nach jeder Ein- bzw. Aus-
zahlung der Kontostand (Saldo) berechnet, so entsteht eine Folge von Teilsummen.

[s6] = +100,+110,460,+40,+115,+95
o
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Wird nun die Folge der n-ten Teilsummen [s,] fiir n — oo betrachtet,
s = lim[sy] = 51,82, ,5n
n—soo

und existiert der Grenzwert, dann heift s eine konvergente Reihe. Konvergiert die
Reihe nicht gegen einen festen Grenzwert, so wird diese als divergent bezeichnet.

Von speziellem Interesse sind in der Finanzmathematik zwei Reihen. Die erste
Reihe ist die, die durch regelméBige Zahlungen desselben Betrags entsteht, d. h. die
sich aus der arithmetischen Folge ableitet und entsprechend arithmetische Reihe
heilt. Die andere Reihe ist diejenige, die durch eine regelmifBige Zahlung entsteht,
die verzinst wird. Sie leitet sich aus der geometrischen Folge ab und wird entspre-
chend geometrische Reihe genannt. Fiir beide Reihen kann der Wert der n-ten Teil-
summe, sofern die Reihen endlich sind, angegeben werden.

8.6.1 Arithmetische Reihe

Eine arithmetische Reihe ist durch das Bildungsgesetz einer arithmetischen Folge
bestimmt. Die n-te Teilsumme einer arithmetischen Reihe ist durch
sp=a1+a+d+a+2d+...+a+(n—-1)d
Nar” N N S ~ ~ -
a3 as an
gegeben. Um den Endwert einer arithmetischen Reihe mit # Gliedern zu berech-

nen, wird die n-te Teilsumme zweimal in umgekehrter Summationsreihenfolge auf-
geschrieben und addiert.

Sp = aj + (a1 +4d) + ...+ (a1 +(n—1)d)
+ sp= (a+(n-1)d) + (a1+(n-2)d) +... + a
25y = Qa1+ (n—1)d) + Qa1+ (n—1)d) + ... + (2a1+ (n—1)d)

Nach der Addition der beiden Teilsummen ist jedes Glied gleich, so dass gilt:
25, =n(2a;+(n—1)d)
zn(a1 +a+(n— l)d)
~

~ P

An
Uber der geschweiften Klammer steht das n-te Glied der arithmetischen Folge a,,,
und man erhilt fiir die n-te Teilsumme der arithmetischen Reihe

a)+a,) mita,=a;+n-1)d

Sp =

2 (
Beispiel 8.20. Die einfachste arithmetische Zahlenfolge ist die Folge der natiirlichen

Zahlen.
[an) =n firallen e N

Die n-te Teilsumme entsteht durch die Addition der ersten » natiirlichen Zahlen. Thr
Endwert betrégt
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n
1
anZi: n(n;— ) fiirallen € N
i=1

Zur Veranschaulichung der Formel wird folgende Zahlenreihe betrachtet:
142434+4454+6=(14+6)+(2+5)+(3+4)=3x7=21

Die Summe des ersten und letzten Reihenglieds, des zweiten und des vorletzten Rei-
henglieds usw. liefert immer das Ergebnis 7. Statt der Addition kann also 3 mal 7

gerechnet werden.
6(6+1)

=21
2

o3

Beispiel 8.21. Es wird im Januar ein Betrag von 100 € in ein Sparschwein gegeben
und dann jeden Folgemonat bis Dezember ein um 50 € hoherer Betrag eingezahlt.
Wie viel Geld befindet sich am Ende des Jahres im Sparschwein? Es liegt folgende
arithmetische Folge vor:

[a12] = 100,100+ 1 % 50,...,100+ (12— 1)50

Der Betrag im Sparschwein im Dezember ist durch die 12-te Teilsumme gegeben.

12
12
Sy = Z“i = (2% 100+ (12—1)50) =4500€
i=1

8.6.2 Geometrische Reihe

Eine geometrische Reihe ist durch das Bildungsgesetz einer geometrischen Folge
bestimmt. Die n-te Teilsumme einer geometrischen Reihe ist durch

Sp :al—i—alq—i—...—l—alq”_l

gegeben. Der Endwert einer geometrischen Reihe mit #» Gliedern berechnet sich wie
folgt.

Snq = alq—l—...—i—alq”_l—f—alq"
— Sy = q +a1q+...+a1q”’1
Spq—Sp=—ar+ 0 +...+ 0 H+agqg"

Als Differenz der beiden Teilsummen erhilt man

n
Snq —Sp=a1q —dai,
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woraus leicht der Endwert der n-ten Teilsumme ermittelt werden kann:

q"—1
1

1 (8.13)

Sp=a
Beispiel 8.22. Es wird jdhrlich (am Ende eines Jahres) ein Betrag in Hohe von
2000 € tber 7 Jahre zu einem Zinssatz von i = 5 Prozent (jahrliche nachschiissi-
ge Verzinsung) angelegt. Welcher Betrag liegt nach dem 7-ten Jahr vor?

Es handelt sich hier um eine geometrische Reihe, deren 7-te Teilsumme gesucht
ist. Hier ist darauf zu achten, dass der Zinssatz i in den Zinsfaktor ¢ =i+ 1 (siche
Kapitel 9) tiberfiihrt werden muss, da der Kapitalbetrag im folgenden Jahr 2000 +
2000 x 0.05, also 2000 (1 + 0.05) betrégt.

[a7] = 2000,2100,2205,2315.25,2431.01,2552.56,2680.19
[s7] =2000,4100,6305,8620.25,11051.26,13603.83,16284.02

1.057 -1
=2000 =16284.02€
¥ 1.05—1
Am Ende des 7. Jahres liegt auf dem Konto ein Betrag von 16 284.02€ vor. £SS

Fiir die n-te Teilsumme einer geometrischen Reihe kann auch dann ein Endwert
bestimmt werden, wenn 7 gegen unendlich strebt (n — o), sofern |¢| < 1 vorliegt.

n
—1
lim s, = lim a; 1
n—soo n—soo q—
" 1
:allim< 7 _ )
nsee\g—1 ¢qg—1
n 1
=a; lim J —a

n—eo g —1 q—1
Fir |g| < 1 ist lim,_. |¢"| = 0, so dass gilt:

. ai
lim s, =
n—oo l1—gq

Die Reihe konvergiert fiir |¢| < 1; fiir |¢| > | divergiert sie, wie leicht einzusehen ist.

Damit sind die fiir die im Folgenden beschriebene Finanzmathematik wesentlichen

Eigenschaften von Folgen und Reihen beschrieben worden.

8.7 Fazit

Um o6konomische Zusammenhénge darstellen zu konnen, werden mathematische
Funktionen verwendet. Besondere Funktionstellen wie Extrempunkte oder Nullstel-
len werden mit 6konomischen Fragestellungen verbunden.
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Folgen sind spezielle Funktionen, deren Definitionsmenge die natiirlichen Zahlen
sind. Bekannte Folgen sind die arithmetische Folge und die geometrische Folge. Eine
Reihe entsteht, wenn man die Folgenglieder sukzessive addiert. Auch hier findet man
das Pendant zur arithmetischen und geometrischen Reihe. Die geometrische Reihe
ist die Grundlage der Finanzmathematik.
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9.1 Vorbemerkung

Der Kern der Finanzmathematik ist die Berechnung einer Summe von verzinsten
zukiinftigen Zahlungen. Sind diese Zahlungen in der Zeit konstant, dann konnen sie
mit der geometrischen Reihe berechnet werden. Dies liegt in der Rentenrechnung
und in der Annuitdtenrechnung vor. Variieren die zukiinftigen Zahlungsstrome (cash
flows) hingegen, so konnen sie nicht mehr durch die geometrische Reihenformel
(8.13) beschrieben werden. Dies ist der Fall in der Investitionsrechnung.

Zwei Prinzipien sind in der Finanzmathematik besonders wichtig. Das erste ist
die Bewertung zukiinftiger Zahlungen zum Gegenwartszeitpunkt (¢ = 0), das Bar-
wertprinzip. Das zweite ist das Aquivalenzprinzip, das die Aquivalenz von Lei-
stungen (Bank-/Kundenleistungen, Glaubiger-/Schuldnerleistungen) fordert. Mit
diesem Prinzip wird die Berechnung der Effektivverzinsung, die auch Rendite bzw.
im Kontext der Investitionsrechnung interner Zinsfuf3 heif3t, durchgefiihrt.

Die wichtigsten finanzmathematischen Bezeichnungen sind:

A Annuitét

Cy Kapitalwert

D Duration

i Zinssatz, in der Regel jahrlich p. a.!
Ky  Anfangskapital

K;  Restkapital zum Zeitpunkt ¢

K,  Endkapital nach der Zeit n

m Zahl der unterjéhrigen Perioden
n Anzahl der Zinsperioden

q Zinsfaktor. Es gilt: g = 1+

r Rente

Ry Rentenbarwert

I'p.a. = per annum. Man spricht auch vom Zinsfull, wenn der Zinssatz in Prozent, also

i x 100, angegeben wird.
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R, Rentenendwert

t Zeitpunkt

T; Tilgungszahlung zum Zeitpunkt ¢
Z;  Zinszahlung zum Zeitpunkt

9.2 Tageszihlkonventionen

In der folgenden Auflistung stehen einige gebrduchliche Tageszihlkonventionen.
Die Zinsperiode kann als reelle Zahl angegeben werden, deren Wert als Bruchteil
eines ganzen Jahres interpretiert wird. In der Bezeichnung «Zéhler/Nenner» gibt der
Zahler die Zahlweise fiir die Tage der Zinsperiode und der Nenner die Zahlweise fiir
die Anzahl der Tage innerhalb eines Jahres an.

Grundsitzlich wird ein Zeitraum durch die Differenz der Anzahl der Tage, Mo-
nate, Quartale, Jahre plus Eins berechnet. Bei der Berechnung der Zinstage ist es
jedoch iiblich, den ersten Tag nicht als Zinstag zu zéhlen. Der Zeitraum vom 02.06.
bis zum 05.06. umfasst daher nur 3 Zinstage.

Aufgrund der unterschiedlichen Anzahl von Tagen im Jahr haben sich unter-
schiedliche Tageszdhlkonventionen etabliert. Mit akt wird die aktuelle Zahl von Ta-
gen bezeichnet.

akt/365: Es wird die tatsdchliche Anzahl der Kalendertage zwischen Anfangsda-
tum und Enddatum gez&hlt und durch 365 geteilt, um den Zinszeitraum
zu erhalten.

akt/360: Wie bei akt/365 wird die tatsdchliche Anzahl der Kalendertage zwischen
Anfangsdatum und Enddatum gezahlt, das Jahr wird aber mit 360 Tagen
festgelegt. Der Euro-Geldmarkt (Interbanken, Devisenterminmarkt) rech-
net mit dieser Konvention.

akt/akt: Die tatsdchliche Anzahl der Kalendertage wird durch die tatsdchliche An-
zahl der Tage des jeweiligen Jahres geteilt. Diese Tageszéhlkonvention
wird am Anleihen- und Kapitalmarkt verwendet.

30/360: Es wird so gezihlt, als hitte jeder Monat 30 und jedes Jahr 360 Tage.
Diese Zahlkonvention wird in der Regel im Passivgeschift der Filialban-
ken mit Privatkunden eingesetzt. Auch ein Teil des Euro-Anleihe- und
Zinsswapmarktes verwendet diese Methode.

Allgemein wird die relative Zahl der Zinsperioden durch ) berechnet, wobei n
die Zahl der Zinstage und m = 365,360, akt die Jahresteilung bezeichnet.

Beispiel 9.1. Fiir den Zeitraum 17. Februar 2003 bis 22. Oktober 2003 erhélt man
mit den verschiedenen Tageszdhlkonventionen folgende Ergebnisse:

akt 247
365 = 365 0.6767
akt _ 247 — 0.6861

360 360
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akt 247
= =0.6786
akt ~ 364
30 x Monate 4 Tage 1347 x30+22 245
360 o 360 360 06806

Anmerkung: Das Jahr 2003 besitzt 365 Tage, aber nur 364 Zinstage (-perioden),
da erst nach dem ersten Tag verzinst wird. £es

9.3 Lineare Zinsrechnung

Die lineare Zinsrechnung (auch einfache Verzinsung) (simple interest) wird haufig
in der Praxis (Geldmarkt) eingesetzt, um Zinsen bei unterjdhrigen Zeitriumen zu
berechnen. Die Zinsen aus Zinsertrdgen (die so genannten Zinseszinsen) sind bei
kleinen Betrdgen und kurzen Perioden vernachléssigbar klein.

Bei der linearen Zinsrechnung werden die Zinsen multiplikativ aus der relativen
Zahl | der Zinstage und dem Zinssatz berechnet. m bezeichnet die Anzahl der Tage
im Jahr und n die Anzahl der Zinstage. Das Endkapital K, ist die Summe aus Zinsen
und Anfangskapital Ky. Ein Ertrag aus den Zinsen der Vorperiode (Zinseszinsen)
wird nicht beriicksichtigt.

Zy=Koxix '

m
m:m+a:m@+m”)
m

Beispiel 9.2. Ein Betrag von 100€ wird vom 17.02.2003 bis zum 22.10.2003 (247
Tage) zu einem Zinssatz von i = 0.06 angelegt. Wie hoch sind die einfachen Zinsen?

Zaka /365 = 100 % 0.06 % 0.6767 = 4.06 €
Zak/360 = 100 % 0.06 % 0.6861 = 4.12€
Zatt/akt = 100 % 0.06 x 0.6786 = 4.07€
Z30/360 = 100 X 0.06 x 0.6806 = 4.08 €

Die Berechnung wurde mit einer groBeren Mantisse berechnet als hier angegeben. %t

Beispiel 9.3. Zahlungsbedingung auf einer Rechnung: Zahlung innerhalb von 10 Ta-
gen mit 2 Prozent Skonto oder Zahlung innerhalb von 30 Tagen ohne Abzug. Welcher
einfachen Verzinsung (p. a.) entsprechen 2 Prozent Skonto?

Es liegt eine Schuld in Hohe von K3 vor. Diese wird nach 30 Tagen fillig. Es
besteht die Moglichkeit, die Schuld bereits nach 10 Tagen zu begleichen. Dann sind
nur 98 Prozent des Betrags fillig, also 0.98 x K3(. Dieser Betrag muss dem Barwert
der Schuld K3, entsprechen (Aquivalenzansatz und Barwertprinzip). Es gilt also

K30

| 1 360

= 098Ky = i= ( - 1) =0.3673
. 20
(1-4-1360) 0.98 20
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Zwei Prozent Skonto entsprechen einem jéhrlichen Zinssatz von 36.73 Prozent. Die
Ausnutzung der Zahlungsfrist von 30 Tagen (durch den Schuldner) entspricht also
einer Inanspruchnahme eines Kredits mit einem Zinssatz (ohne Zinseszinseffekt) in
Hohe 36.73 Prozent. Lt

Die lineare Zinsrechnung ist einfach anzuwenden, aber wenig zufriedenstellend,
da keine Zinseszinsen beriicksichtigt werden. Zinseszinsen sind die Zinsertrige aus
fritheren Zinszahlungen. Die exponentielle Verzinsung hingegen beriicksichtigt Zin-
seszinsen und bildet die Grundlage fiir finanzmathematische Anwendungen.

9.4 Exponentielle Zinsrechnung

Bei der exponentiellen Verzinsung (compound interest) werden die Zinsen aus den
Zinsen, die so genannten Zinseszinsen beriicksichtigt. Das Anfangskapital wachst
damit exponentiell. Man unterscheidet manchmal zwischen einer nachschiissigen
Verzinsung und einer vorschiissigen Verzinsung. Bei einer nachschiissigen Verzin-
sung werden die Zinsen erst am Ende der Periode dem Kapital zugeschlagen; bei
einer vorschiissigen Verzinsung werden die Zinsen am Anfang der Periode dem Ka-
pital zugeschlagen. Dies kommt selten vor.

9.4.1 Nachschiissige exponentielle Verzinsung

Bei der exponentiellen nachschiissigen Verzinsung werden die Zinsen nach Ablauf
der Periode gezahlt. Es erfolgt folgende Kapitalverzinsung:

I{}:K[7]+iK[7] furt=1,,n

=K1 (1+i)=K_1q e-b
Zum Zeitpunkt z — 1 wird das Kapital ebenfalls verzinst.
Ki1=Ki2q
Wird K;_| in der Gleichung (9.1) ersetzt, so erhdlt man:
K =K 2q*
Nach n Perioden liegt ein Endwert (future value) von
Ky =Koq" 9.2)

Vor.

Beispiel 9.4. Ein Betrag von 100 € wird zu 6 Prozent p. a. nachschiissig verzinst iiber
3 Jahre angelegt. Nach dem ersten Jahr liegt ein Betrag von

K1 =100+ 100 x 0.06 =100 x 1.06 = 106.00€
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vor. Nach dem zweiten Jahr wéchst das Kapital auf
Ky =106 x 1.06 =100 x 1.06> = 112.36 €
an. Im dritten Jahr liegt ein Kapital von

Ky = 11236 x 1.06 =100 x 1.06> = 119.10€
VOr. It

Beispiel 9.5. Durchschnittliche Verzinsung eines Bundesschatzbriefs Typ B (mit
Zinsansammlung). Der Schatzbrief weist wihrend der Laufzeit folgende jahrliche
Verzinsung auf:

1997 1998 1999 2000 2001 2002 2003
5.00% 6.50% 7.50% 8.00% 8.00% 8.25% 8.25%

Welche durchschnittliche Verzinsung kann bei einem Anlagezeitraum von 7 Jahren
mit dem Schatzbrief erzielt werden?

Wihlt man das Ende des 7. Jahres als Vergleichszeitpunkt, so ist nach dem durch-
schnittlichen Zinssatz i gefragt, der nach dem 7. Jahr auf denselben Endbetrag fiihrt
wie derjenige, der mittels der Zinstreppe erzielt wird (Aquivalenzansatz). Es wird
also die exponentielle Verzinsung des gesuchten Zinssatzes i der exponentiellen Ver-
zinsung der Zinstreppe gleichgesetzt.

Koq’ éKo xl.OS x 1.065 x 1.075 x 1.08 x 1.08 x 1.0825 x 1.082§

~
1.6430

q=V1.6430=1.0735 9:3)

Die durchschnittliche Verzinsung des Schatzbriefs Typ B betrigt 7.35 Prozent. Eine
Geldanlage mit diesem Zinssatz fiihrt zu einem gleichen Zinsertrag wie die in dem
Schatzbrief angebotene Verzinsung. Daher spricht man in diesem Zusammenhang
auch von der Rendite des Schatzbriefs. Die Rechnung in der Gleichung (9.3) wird
als geometrisches Mittel bezeichnet.

q= qu‘

i=1
3t

Die Auflésung der Gleichung (9.2) nach K liefert den Barwert (present value).
Die Rechnung selbst wird als Diskontierung bezeichnet.
Ky

Ko = N
q
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Die Auflosung der Gleichung (9.2) nach i liefert die Zinssatzberechnung:

K,
i:\"/ "1
Ko

Zur Umstellung der Gleichung (9.2) nach » muss der Logarithmus verwendet

werden.
InK,, — InKj
n=

Ing

9.4.2 Vorschiissige exponentielle Verzinsung

Bei der vorschiissigen exponentiellen Verzinsung werden die Zinsen am Anfang
der Periode dem Kapital zugesetzt; das Kapital wird zu Beginn der Periode verzinst,
was eher selten ist. Sie wird manchmal zur Diskontierung von Wechseln oder bei der
Kreditaufnahme angewendet. Es gilt also:
K=K _1+iK, firt=1,....n
K K2

Cl-i (1=
Das Ersetzen der Zahler K;_1,K;_», ... bis Ky fiihrt dann zu folgender Formel:
Ko
(IL—0)"

Beispiel 9.6. Ein Betrag 100€ wird zu 6 Prozent p.a. vorschiissig verzinst iiber 3
Jahre angelegt. Nach dem ersten Jahr liegt ein Betrag von

~ 100
T 1-0.06

K, = (9.4)

K =106.38€

vor. Nach dem zweiten Jahr wéchst das Kapital auf

106.38 100

- - =113.17€
2712006  (1-0.06)2
an. Im dritten Jahr liegt ein Kapital von
113.17 100
- - =120.40€
712006 (1-0.06)3
VOI. god

Anstatt die Berechnungsformel (9.4) bei der vorschiissigen Verzinsung mit dem
Zinssatz i zu verwenden, kann man auch die Formel (9.2) der nachschiissigen Ver-
zinsung mit dem nachschiissigen Ersatzzinssatz i* heranziehen. Zum Zeitpunkts = 1
gilt:
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1 K
K(1+i)= "0 = = " (9.5)
1—i 1—i
Liegt eine vorschiissige Verzinsung bei einem jahrlichen Zinssatz i vor, so wird der
Zinssatz i* auch als nachschiissiger Ersatzzinssatz bezeichnet.

Beispiel 9.7. Welcher nachschiissige Zinssatz i* wére notig, damit das Kapital von
100 € in drei Jahren auf 120.40 € anwéchst?

100 (1+7%)® £ 120.40

120.40
it = i/ 100 1 =0.06382

Alternativ kann der Ersatzzinssatz auch aus (9.5) berechnet werden:

. 0.06

i 1—0.06 0.0638

o3

Im Allgemeinen und so auch im folgenden Text wird von einer nachschiissigen
Verzinsung ausgegangen.

9.4.3 Gemischte Verzinsung

Fiir Zinsperioden, die sich aus unterjahrigen Abschnitten und ganzjahrigen Abschnit-
ten zusammensetzen, wird fiir die Periodenabschnitte unter einem Jahr in der Praxis
vielfach die einfache Verzinsung eingesetzt. Fiir die ganzjdhrigen Zinsperiodenab-
schnitte wird die exponentielle Verzinsung angewendet. Die einzelnen Zinsperioden
werden multiplikativ verkettet.

Beispiel 9.8. Auf welchen Betrag wichst ein Kapital von 2 000<€ an, das bei 6 Pro-
zent Zinsen vom 17.02.2000 bis 22.10.2003 angelegt wird?

Der Zeitraum wird in drei Abschnitte unterteilt. Der erste unterjéhrige Zeitraum
geht vom 17.02.2000 bis zum 31.12.2000 und besitzt 319 Tage (mit 366 Tagen in
2000). Der zweite Zeitraum vom 01.01.2001 bis zum 31.12.2002 betragt 2 Jahre (mit
jeweils 365 Tagen) und der dritte Zeitraum vom 01.01.2003 bis zum 22.10.2003 hat
295 Tage (mit 365 Tagen in 2003). Wird mit der Tageszdhlkonvention Z’,g gearbeitet,
so ergibt sich folgendes Endkapital:

365

~ ~2. Zeitraum ~ -
1. Zeitraum 3. Zeitraum

=2479.39€

319 295
K, =2000 <1+0.06>< > 1.06 <1+0.06>< >
366 ) S~~~
~

Wird eine andere Tageszéhlkonvention verwendet, so ergibt sich ein anderes Ergeb-
nis. £es
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9.4.4 Unterjihrige periodische Verzinsung

Bei der unterjihrigen Verzinsung (more frequent compounding) ist die Zinsperiode
kiirzer als ein Jahr (Halbjahre, Quartale, Monate, Tage). Die Perioden innerhalb des
Jahres werden mit

m=1{2,4,12,52,365}

bezeichnet. Im angelsédchsischen Finanzmarkt wird hdufig mit halbjéhrigen Zinszah-
lungen gearbeitet. Man unterscheidet zwei Formen der Umrechnung des jéhrlichen
auf einen unterjahrigen Zinssatz.

1. Eine exakte Umrechnung des jéhrlichen Zinssatzes bei Anwendung der expo-
nentiellen Verzinsung auf eine unterjahrige Periode wird mit dem konformen
Zinssatz vorgenommen.

2. Eine in der Praxis weit verbreitete Anndherung eines jéhrlichen auf einen un-
terjdhrigen Zinssatz ist die Berechnung eines relativen Zinssatzes.

9.4.4.1 Konformer Zinssatz

Der konforme Zinssatz fiir die Teilperiode m ergibt sich aus der konsequenten
Anwendung der exponentiellen Verzinsung. Die Methode wird auch als ISMA-
Methode? bezeichnet. Der Jahreszinssatz i muss einer exponentiellen unterjihrigen
Verzinsung entsprechen.

m
(1 + /;,,) Li+i
Die Aufldsung der Gleichung nach i’;f" liefert den konformen unterjéhrigen Zinssatz.

o=/ 1+i—1

Aus dem konformen Zinssatz fiir die Teilperiode m kann der Jahreszinssatz wie folgt
berechnet werden: m
i=(1+m)" -1

Beispiel 9.9. Der Jahreszinssatz betrdgt 6 Prozent p.a. Der konforme Quartalszins-
satz (m = 4) berechnet sich wie folgt:

o = V' 1.06 — 1 = 0.0147 = 1.47 Prozent pro Quartal

Wird dieser Zinssatz wieder auf ein Jahr hochgerechnet, so erhilt man wieder den
Zinssatz von 6 Prozent.

i=(V1.06)* —1=1.0147*~1=0.06

2 ISMA: International Securities Market Association
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Beispiel 9.10. Eine finanzmathematisch konsistente Berechnung fiir das Beispiel 9.8
besteht darin, bei einem Jahreszinssatz von 6 Prozent den Kapitalbetrag iiber den
konformen Tageszinssatz zu berechnen. Dabei werden dann die Zinstage insgesamt
als Zinsperioden angegeben. Im vorliegenden Beispiel sind es 31942 x 365+295=
1344 Zinstage.

qa6s = ¥/ 1.06 = 1.00015965
K, = 2000413 =2478.63€

Der Grund fiir die unterschiedlichen Betridge wird im folgenden Kapitel erklart. %t

9.4.4.2 Relativer Zinssatz

In der Praxis wird héufig der relative Zinssatz verwendet, der allerdings zu finanz-
mathematisch inkonsistenten Ergebnissen fiihrt. Diese Vorgehensweise wird als US-
Methode bezeichnet. Dass der relative Zinssatz dennoch héufig in der Praxis ein-
gesetzt wird, kann nur mit dem Hang zum linearen, proportionalen Denken erklart
werden.

Der relative Zinssatz berechnet sich aus folgender Uberlegung: Ein Kapital K
wird zu einem Zinssatz i (p.a.) verzinst, wobei der Zins nicht jéhrlich, sondern in-
nerhalb des Jahres schon nach m Perioden berechnet wird. Es wird dann der m-te

Teil des Zinses r’n auf die Teilperioden angewendet.

l-rel _ l
" m

Wird nun die relative Verzinsung auf jede Teilperiode angewendet, dann tritt der
Zinseszinseffekt nach jeder Teilperiode auf und es fallen Zinseszinsen an. Der Be-
trag des so angelegten Kapitals wird einer Anlage mit einer jahrlichen Verzinsung
gleichgesetzt.

(1+i:;’)mé(1+i"ﬁ”)

Die Auflésung der Gleichung nach i/ liefert den effektiven Jahreszinssatz (effec-
tive annual interest rate) mit relativer Berechnungsweise.

. m
o _ <1+ ’) O 9.6)
m

Der effektive Jahreszinssatz liegt stets iiber dem Nominalzinssatz i. Eine finanzma-
thematisch widerspruchsfreie Vorgehensweise liefert nur die Rechnung mit dem kon-
formen Zinssatz.

Beispiel 9.11. Gegeben sei ein nomineller Jahreszinssatz von 6 Prozent. Der viertel-
jahrliche relative Zinssatz betrégt:

0.06
i = , =0015
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Bei vierteljahrlichem Zinszuschlag von 1.5 Prozent ergibt sich der effektive Jahres-
zinssatz von:
i =1.015*~1=0.0614

Die viermalige Anwendung des relativen Quartalszinssatzes von 1.5 Prozent fiihrt
zu einem jéhrlichen Effektivzinssatz von 6.14 Prozent und nicht zu 6 Prozent nomi-
nal. Wird zum Beispiel ein Kapital von 100 <€ fiir ein Jahr angelegt und nach jedem
Quartal zu 1.5 Prozent verzinst, ergibt sich ein Endkapital von

Ki =100 x 1.015* = 106.14 €.

Wird hingegen der konforme Quartalszinssatz von 1.47 Prozent aus dem Beispiel
9.9 verwendet, stellt sich das gleiche Ergebnis wie bei einer jahrlichen Verzinsung
ein. Diese Rechnung ist konsistent.

K1 =100 (\4/1.06)4: 106 €

o3

Beispiel 9.12. Die Anwendung des relativen Zinssatzes mit den Angaben im Beispiel
9.10 fiihrt zu folgendem Ergebnis:

o 1+0.06 1344
Im = 365

K, =2000¢"¢ =2494.43 €

Das Ergebnis fillt aufgrund des groBeren Tageszinssatzes hoher aus als im Beispiel
9.10 errechnet. Lt

Beispiel 9.13. Fiir einen Kredit wird eine vierteljahrliche Zahlungsweise vereinbart.
Bei einem Zinssatz von 3.5 Prozent p. a. und einer relativen Umrechnung des Zinssat-
zes auf die vierteljdhrliche Zahlunsgweise betrigt der effektive Jahreszinssatz nach

Gleichung (9.6):
4
. 0.035
,-e_tf:<1+ ) ) —1-0.0355

Der effektive Jahreszinssatz betragt damit 3.55 Prozent.

Achtung: Bei manchen Angeboten wird der Zinssatz auf das Vierteljahr bezogen.
Dies geschieht meistens bei unseriosen Kreditangeboten. Der vierteljahrige Zinssatz
von 3.5 Prozent fiihrt zu einem jahrlichen Zinssatz von 14.75 Prozent.

i = (140.035)* -1 =0.1475
Ro3

Die Hochrechnung von unterjihrigen auf eine jihrliche Anderungsrate wird als
Annualisierung von Wachstumsraten bezeichnet.
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Beispiel 9.14. Bei einer Aktie wird innerhalb von 10 Tagen ein Kursgewinn von 2
Prozent verzeichnet. Wie hoch wére der jéhrliche Zuwachs (bei 360 Tagen), wenn
der Kurs weiterhin mit 2 Prozent steigen wiirde?

jann _ 1+i><akt 360_1
B 360

360
0.02x 10
=(1 —1=0.2213
(+ 360 >

Der jéhrliche Zuwachs wiirde bei 22.13 Prozent liegen. £SS

Wird nun die unterjéhrige Verzinsung auf n Jahre angewendet, so ist das Endka-
pital K, mit dem relativen Zinssatz wie folgt zu berechnen:

i\ xm
Kuxm = Ko (1+ )
m

Beispiel 9.15. Es wird ein Kapital von Ky = 10000€ auf n = 3 Jahre zu einem
Zinssatz von i = 0.06 p.a. angelegt. Wie hoch ist das Endkapital, wenn es jahrlich
(m = 1), halbjéhrlich (m = 2), vierteljahrlich (m = 4), monatlich (m = 12) und téglich
(m = 365) verzinst wird?

m=1: Kix1 =Ky 1.06° =11910.16€
3x2

m=2 K32 =Ky (1+02()6> =11940.52€
3x4

m=4 K34 =Ky (1—}-0‘?6) =11956.18€
3x12

m=12: K310 =Ky (1—}-0(;6) =11966.80€

0.06
365

Wird mit dem konformen Zinssatz gerechnet, so ergibt sich stets der gleiche Be-
tragvon 11 910.16 €. Das Ergebnis ist invariant gegeniiber der Zahl der unterjahrigen
Zinsperioden.

3x2 3x4 3x12
K3:K01.063:K0(\2/1.06) :KO(\“/L%) :Ko(%.%)

3%x365
— K, (36\5/1.06) —11910.16€

3x365
m=365: K3X365:K0<1+ > =11971.99€

o3

Aus der unterjdhrigen relativen Verzinsung entsteht dic stetige Verzinsung,
wenn m — oo, d.h. ,L — 0 strebt. Wenn nun m — o gilt, wichst dann das Endka-
pital unendlich an? Der Grenzwert von

1 m
lim (l—i- ) =e~2.718282
m

m—yoo
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ist endlich und wird als Eulersche Zahl bezeichnet. Daher ist eine relative Verzin-
sung iiber unendlich viele kleine Teilperioden mit folgendem Zinsfaktor verbunden:

l- m .
lim (1 + > =
m—yoo m

Folglich besitzt das Endkapital, auch wenn es in unendlich vielen Teilperioden — also
stetig — verzinst wird, einen endlichen Endwert.

Ky = Ko™

Beispiel 9.16. Fiir die Angaben in Beispiel 9.15 ergibt sich bei stetiger Verzinsung
ein Endkapital von
Ky oo = 10000e*09° = 11972.17€

o3

Welcher stetige Zinssatz i€ fiihrt zum gleichen Endwert wie die jihrliche Ver-
zinsung mit i Prozent?

jstetig

Kpe é](()(1—‘y-l')n

Das Aufldsen der obigen Gleichung nach i*¢/¢ liefert das gesuchte Ergebnis:

"8 = 1n(1+ 1)

Beispiel 9.17. Fiir einen Zinssatz von i = 0.06 berechnet sich ein stetiger Zinssatz
von: '
"¢ = In(1+0.06) = 0.0583

Dieser Zinssatz entspricht einer stetigen Verzinsung. Wird das Kapital von 10 000€
mit diesem stetigen Zinssatz verzinst, so erhédlt man das gleiche Ergebnis wie in
Beispiel 9.15 bei konformer Verzinsung, weil 3196 = 1,063 ist.

Ky o = 10000e%%833 = 11910.16€
gos

Ubung 9.1. Bestimmen Sie, durch welche Summe man heute eine Zahlung von
1000<€, die erst in 2 Jahren fallig wird, ablosen kann? Der Marktzinssatz betragt 7
Prozent p. a.

Ubung 9.2. Berechnen Sie fiir den Zinssatz von 7 Prozent p. a. den relativen und
den konformen Monatszinssatz.
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9.5 Rentenrechnung

Unter einer Rente versteht man eine Reihe von gleichen Zahlungen, die regelmaflig
geleistet werden. Eine einzelne Zahlung heil3t Rentenrate (annuity) oder Rate und
wird hier mit » bezeichnet.

In der Rentenrechnung betrachtet man die Situation, dass eine Zahlung in Hohe
von 7 € regelméBig eingezahlt und verzinst wird. Die Fragen, die sich aus dieser
Situation ergeben, sind folgende:

1. Wie hoch ist dann der Rentenendwert R,,?

2. Wie hoch ist der Rentenbarwert Ry?

3. Wie hoch ist die Rentenrate », wenn ein Kapital Ky bei einer gegebenen Ver-
zinsung in n Jahren aufgezehrt wird?

4. Wie viele Jahre n kann ein Kapital Ky bei gegebener Verzinsung mit einer
Rente in Hohe von r belastet werden?

5. Wie hoch ist die Verzinsung i einer Rente bei gegebenem Rentenendwert und
Zeitraum?

Bei der Beantwortung der Fragen ist zu beachten, ob die Zahlungen am Beginn
oder am Ende der Periode geleistet werden. Man spricht dann von vorschiissigen
(praecnumerando) Renten und nachschiissigen (postnumerando) Renten. Es wird zu-
erst die vorschiissige Rente betrachtet.

9.5.1 Rentenrechnung mit linearer Verzinsung

Die lineare Verzinsung wird in der Praxis eingesetzt, um einen Endwert einer Ren-
tenzahlung innerhalb der Jahresfrist zu berechnen. Der Zinseszinseffekt bleibt dabei
aber unberiicksichtigt. Eine Berechnung unterjahriger Rentenzahlungen mit Zinses-
zinseffekt erfolgt mit der exponentiellen Rentenrechnung.

Es wird nach dem Rentenendwert R bei linearer Verzinsung gefragt, der
bei Zahlung von n Raten in Hohe von ", die zu Monatsbeginn eingezahlt werden,
entsteht. Die erste Rate " wird n Perioden mal verzinst; die zweite Rate n — 1
Perioden mal usw.

(9.7)

In der letzten Zeile von (9.7) wurde der Endwert einer arithmetischen Reihe von

n

Zt:n(n;l)

t=1

eingesetzt.
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Beispiel 9.18. Es werden 15 Raten von 7" = 5€ zu einem Zinssatz von i = 0.06

angelegt. Es mit é’é‘(’) gerechnet. Wie hoch ist der Rentenendwert?

0.06 15(15+1)

R =5(15
" ( T30 2

) =75.10€

o3

Werden die Raten 77%" erst am Monatsende gezahlt, wird die erste Rate nur
n — 1-mal verzinst und die Verzinsung der letzten Rate entféllt. Der Rentenendwert
ist dann

, , [ -1
RZLKh — rnadz <n+’; n (n2 )) (9.8)
Der Barwert eines Rentenendwerts ist bei linearer Diskontierung
R
Ro=_ "
I+, n
Somit sind die beiden Rentenbarwerte
i n(n+1)) ( i n(n—l))
RYOT — pvor (l’l * m 2 Rnach __ nach nt m 2 99
0o =T 0 =r ( . )

1+ r’n n 1+ r; n

Die Gleichungen (9.7) und (9.8) kénnen auch nach r und i umgestellt werden. In
der Regel werden aufgrund des Barwertprinzips die Gleichungen (9.9) dazu verwen-
det.

i i
vor _ pvor 1+ m" nach __ Rnach 1+ m’
r=Ky . = .
nt i n(n+1) n4 ! n(n—1)

m 2 m 2

) Ry —rn ) RS“Ch —rn
L= vor n(n4-1) _ Ryorn t= prach n(n—1) _Rnach n
m 2 0 m m 2 0 m

Die Berechnung von n aus den Gleichungen (9.9) ist die Losung einer quadratischen
Gleichung. Fiir die vorschiissige Rente mit linearer Verzinsung ist die Formel

n= . .
ir ir

- ) N
_mr—|— b —IiRy" n <mr+ 4 —iR‘(;”’) . 2mRy"
ir

und fiir die nachschiissige Rente lautet die Formel
n=-—

mr_ir_l'Rnach mr_ir_l'Rnach 2 2mRnach
2 0 + 2 0 + 0

ir ir ir
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9.5.2 Rentenrechnung mit exponentieller Verzinsung
9.5.2.1 Vorschiissige Rente

Eine vorschiissige Rente mit exponentieller Verzinsung tritt zum Beispiel bei Spar-
vertragen oder Rentenzahlungen aus Kapitalanlagen auf. Sie wird am Periodenan-
fang geleistet. Die Grundstruktur der Zahlungen ist in Abb. 9.1 angegeben. Die Ren-
tenzahlung erfolgt n-mal. Die Leistung zu Beginn der ersten Periode wird n-mal
verzinst. Die Leistung zu Beginn der n-ten Periode wird einmal verzinst.

vor

! ! ! !

n n—1 n—2
q 1 q 2 q cn—1 q
1. Periode 2. Periode 3. Periode n-te Periode

vor vor

Abb. 9.1: Grundstruktur einer vorschiissigen Rente

In Abb. 9.2 sind die zwei Grundformen einer Rentenstruktur aufgezeichnet. In
der oberen Abbildung wird ein Sparplan dargestellt. Ein Glaubiger zahlt {iber n Pe-
rioden Raten der Hohe r ein. Zum Zeitpunkt » hat der Schuldner (zum Beispiel eine
Bank) das Ersparte (Rentenendwert) R)°" auszuzahlen. Die Leistungen des Gléubi-
gers miissen den verzinsten Leistungen des Schuldners entsprechen.

In der unteren Abbildung ist ein Rentenplan aufgezeigt. Zum Zeitpunkt ¢ = 0
wird ein Kapitalbetrag (Rentenbarwert) R’ an eine Bank (Schuldner) gezahlt. Diese
zahlt an den Glaubiger iiber n Perioden Raten in Héhe von r aus.

Nun kann der ersten Frage nachgegangen werden: Wie hoch ist der Rentenend-
wert einer vorschiissigen Rente (firture value)? Er ist das Aquivalent fiir n zu zah-
lende Rentenraten zum Zeitpunkt n, der sich aus dem Endwert einer geometrischen
Reihe berechnet (siche Gleichung 8.13).

Rxor — pvor qn _|_rvorqn—l NI rvoqu + rvorq
:rvorq(qnfl +qn72+_~_q+1)
vor q qn -1
q—1
N~ '~ “
Rentenendwertfaktor

(9.10)

=r

Der Rentenendwertfaktor einer vorschiissigen Rente gibt an, wie grof3 der Endwert
einer n-mal vorschiissig gezahlten Rente in Hohe von 1€ bei einem Zinssatz von i
ist.

Der Rentenbarwert einer vorschiissigen Rente (present value) ist der diskon-
tierte Rentenendwert.
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Sparplan
Vor
R}’l
Schuldner- l leistung
n n—1 n—2
q q ) q -1 q
1. Periode 2. Periode 3. Periode n-te Periode
Glaubiger- T leistung T T T
rvor rvar rvor rvor
Rentenplan
rrer pyor pvor pvor
Schuldner- l leistung l l l
¢ g 72 g
- - - cen—1 -
1. Periode 2. Periode 3. Periode n-te Periode

Gldubiger- T leistung

R\(;Or
Abb. 9.2: Struktur vorschiissiger Renten

q q"—1

q" q—1

N~ 7
Rentenbarwertfaktor

1
R = R =r" (9.11)
ql

Die Frage nach der Rentenhohe wird durch die Auflésung der Gleichung (9.10) bzw.
(9.11) nach " bei gegebenem Endwert R bzw. Barwert Ry, Perioden n und
Zinsfaktor g gelost.

rvor:Rvorl q_l :Rvorqn q_l

9.12
"gqg—1 " g g1 ©-12)

Beispiel 9.19. Ein 50-jahriger Angestellter schliet einen Sparplan ab, bei dem er
iiber 15 Jahre hinweg jahrlich vorschiissig 7" = 3 000 € einzahlt und dafiir ab sei-
nem 65. Lebensjahr 10 Jahre lang vorschiissig einen bestimmten Betrag erhalten
wird. Wie hoch ist dieser Betrag bei einer angenommenen Verzinsung von 6 Prozent
in der Sparphase und 7 Prozent in der Rentenphase?

Die Beantwortung der Frage erfolgt in zwei Schritten. Zuerst wird der Renten-
endwert einer vorschiissigen Rente berechnet, wobei hier ¢ = 1.06 und » = 15 Jahre
gilt.

15 _ 1

1.06
vor __ —
15 = 3000 x 1.06 106—1 =74017.58€



176 9 Grundlagen der Finanzmathematik

Dieser Rentenendwert stellt gleichzeitig den Barwert fiir die Auszahlungsphase dar.
Mit g = 1.07 und n = 10 Jahren errechnet sich nach Gleichung (9.12) eine Rentenrate

von:

1.07'% 1.07—-1
or —74017.58 =9849.01€/Jah
1.07 1.0710—1 ar

o3

Wie viele Jahre kann das Kapital Ky bei gegebener Verzinsung mit der Rente »
belastet werden? Die Antwort auf diese Frage findet sich leicht, wenn die Gleichung
(9.10) bzw. (9.11) nach n aufgeldst wird. Bei gegebenen ¢, R bzw. R”" und r*"
ist dann die Zahl der Zinsperioden n bestimmbar. Die Schritte der Umstellung nach
n fiir die Gleichung (9.10) sind wie folgt:

RV()}" _1 1 RV()}" _1
K S ln( " q +1)
rVOI" q 1nq rVOI" q

Die Umstellung der Gleichung (9.11) nach # erfolgt analog.

1 l rvorq
n= n
Ing org—Ry (g —1)
Beispiel 9.20. Wird ein Kapitalbetrag in Hohe von Ry = 74071.58€ zu einem

Zinssatz von 7 Prozent angelegt und jéhrlich zu Beginn des Jahres eine Rente von
yor

" =9849.01 € entnommen, so wird das Kapital innerhalb von
1 9849.01 x 1.07
" mro7 " (9849.01 x 1.07 — 74017.58 x 0.07) 0Jahren
aufgezehrt. Dies war genau die Vorgabe im Beispiel 9.19. £

Wie hoch ist die Verzinsung i der Rente bei gegebenem Rentenendwert und Zeit-
raum n? Die Beantwortung dieser letzten Frage ist schwieriger. Eine Auflésung der
Gleichung (9.11) nach ¢ ist fiir n > 2 im Allgemeinen nicht moglich. Daher wird die
Gleichung so umgestellt, dass sich ein Nullstellenproblem ergibt (implizite Funkti-
on), das mit einem entsprechenden Verfahren (regula falsi, Newton-Verfahren) gelost
werden kann. Allerdings ist eine exakte Losung des Problems nicht mdglich. Die re-
ellen Nullstellen der Gleichung (9.13) liefern die gesuchte Verzinsung. Man spricht
hier auch von der Rendite des Kapitals, weil die Verzinsung aus den restlichen Gro-
Ben bestimmt wird. Insbesondere wenn das Kapital durch Gebiihren, Steuern etc.
belastet wird, muss zwischen der Nominalverzinsung, die zum Beispiel durch eine
Bank garantiert wird, und der Rendite (oder Effektlvverzmsung) (vield) unterschie-
den werden. Die Effektivverzinsung wird mit dem Aquivalenzansatz der Barwerte

R(\;or ; pror qn q —1
q" q—1
gelost. Die Gleichung wird als implizite Funktion umgeschrieben, so dass ein Null-
stellenproblem zu 16sen ist.

RVO}" rvor |

+1 0 -
qn - Rgor _ gvor q" + RBor _ gvor q= 0 (913)
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Beispiel 9.21. Ein Kapital von Ry”" = 74017.58 € soll in n = 10 Jahren durch ei-
ne Rente von " = 9 849.01 € aufgebraucht werden. Wie hoch muss die Rendite
(Effektivverzinsung) sein?

74017.58 9849.01 .
Co(g) =¢"' — 10 =0 (9.14
@) =9~ 7401758 9849.017 T 74017.58 — 9849.017 ©.14)
C(q)
0.20
0.16
0.124
0.08
0.044
*(‘)2 ? 0‘2 0ﬁ4 0‘6 0‘8 IW ‘ ]ﬁ2
q
—0.04-

Abb. 9.3: Polynom Cy(q) (9.14) zur Renditebestimmung

Eine der reellen Nullstellen der Gleichung (9.14) liefert die gesuchte Rendite
(siche Abb. 9.3). Mit dem Programm Scilab koénnen die Nullstellen schnell berech-
net werden. Die Programmanweisungen stehen im nédchsten Abschnitt.

Mit der regula falsi erhdlt man nach dem ersten Iterationsschritt folgendes Er-
gebnis, wenn als Startwerte {g; = 1.06,¢, = 1.08} gewihlt werden:

74017.58

~ 74017.58 — 9849.01
9849.01

* 74017.58 —9849.01
= —0.0047244

Co(1.06) = 1.06"! 1.06'°

1.06



178 9 Grundlagen der Finanzmathematik

74017.58

Co(1.08) =1.08'"! — 1.081°
0(1.08) 74017.58 — 9849.01
9849.01
1.08
74017.58 — 9849.01
—=0.0071135
1.08 —1.06

1) = 1.06 — (—0.0047244
1 ( ) 0.0071135 — (—0.0047244)

=1.0679818
Nach weiteren Iterationen stellt sich dann ein genaueres Ergebnis ein, das bei 1.07
liegt. tes
9.5.2.2 Renditeberechnung mit Scilab

In Scilab kénnen die Nullstellen eines Polynoms sehr schnell berechnet werden. Die
folgenden Anweisungen zeigen, wie fiir das Beispiel 9.21 die effektive Verzinsung
bestimmt werden kann.

// Angaben

ql=1.06; // Zinsfaktor Sparphase

nl=15; // Laufzeit Sparphase

g2=1.07; // Zinsfaktor Auszahlungsphase
n2=10; // Laufzeit Auszahlungsphase

// Berechnung des Rentenendwerts der Sparphase
// hier gleich Rentenbarwert der Auszahlungsphase
B=3000xqglx (gl”nl1-1)/(gl-1);

// Berechnung der Rente in der Auszahlungsphase
r=Bxg2”°n2/g2x (g2-1) / (g2*n2-1) ;

// Polynom aufstellen
c=poly ([0 r/(B-r) zeros(l,n2-2) -B/(B-r) 1],...
llqll , llcoeffll) ,.

// Berechnung der Nullstellen
geff=roots(c) ;
real (geff (find (imag(geff)==0)))

Mit roots () werden alle Nullstellen des Polynoms berechnet. Es liegen ins-
gesamt 10 reelle und imagindre Nullstellen vor. Von diesen interessieren uns nur die
reellwertigen Nullstellen. Mit dem Befehl imag () == 0 werden alle imaginédren
Nullstellen gefunden. Der £ind () Befehl (in Kombination mit dem vorherigen Be-
fehl) findet die Indexposition der imagindren Nullstellen, so dass der real () Befehl
jetzt nur noch die reellen Nullstellen anzeigt.
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Die Gleichung (9.14) besitzt fiir {0.0,1.0,1.07} reelle Nullstellen. Von diesen ist
aber nur die Nullstelle ¢ = 1.07 6konomisch sinnvoll. ¢ = 0 ist die triviale Losung,
die bedeutet, dass das Kapital vernichtet wird; mit ¢ = 1 liegt eine Verzinsung von
Null vor. Die gesuchte Rendite liegt bei 7 Prozent, wie zu erwarten war.

9.5.2.3 Nachschiissige Rente

Eine nachschiissige Rente tritt bei Sparplidnen und bei Riickzahlungen von Kredi-
ten auf. Sie wird am Periodenende geleistet und ist durch die Struktur in Abb. 9.4
gekennzeichnet. Die Rentenzahlung (annuity) erfolgt n-mal in n Perioden. Die Ver-
zinsung der ersten Rate erfolgt aber nur (n — 1)-mal, da die Rate am Ende der ersten
Periode gezahlt wird. Die letzte Rate wird nicht mehr verzinst. Auch bei dieser Zah-
lungsweise konnen Ein- und Auszahlungspline betrachtet werden. Die Zahlungs-
strome sind in der Struktur identisch mit denen in Abb. 9.2, lediglich der Zeitpunkt
der Zahlungen r erfolgt am Periodenende.

rnach rnach rnach rnach
n—1 n—2
1 2 1 n—1 —1 4y

1. Periode 2. Periode 3. Periode n-te Periode

Abb. 9.4: Grundstruktur einer nachschiissigen Rente

Nun kann erneut der ersten Frage nachgegangen werden, und zwar diesmal fiir
eine nachschiissige Rente. Der Rentenendwert einer nachschiissigen Rente (future
value) wird wiederum aus dem Endwert einer geometrischen Reihe berechnet und
betragt

Rzach _ rnach qnfl S+ _|_rnachq_|_rnach
:rnach (qn—l+..._’_q+1)
-1 (9.15)
q—1
N~ 7
Rentenendwertfaktor

_ rnach

Gegeniiber der vorschiissigen Rente fehlt der Faktor ¢g. Das erklart sich daraus, dass
jede Zahlung eine Periode spéter erfolgt und damit einmal weniger aufgezinst wird.
Logischerweise gilt damit R < R’

Beispiel 9.22. Eine vorschiissige Jahresrente von " = 100 € soll in eine nachschiis-
sige Jahresrente #"“" umgewandelt werden. Wie hoch muss die nachschiissige Rente

"% sein? Es wird eine Verzinsung von 3 Prozent p. a. angenommen.
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P19l — por g — 100 % 1.03 = 103 €
o3

Der Rentenbarwert einer nachschiissigen Rente (present value) berechnet sich
durch Diskontierung des Rentenendwerts.

1 1 ¢"—1
Rgach = Rzach _ rnach i . (916)
1 I3,
Rentenbarwertfaktor

Beispiel 9.23. Frau Miiller hat in der Lotterie gewonnen und erhélt jetzt ein Leben
lang monatlich zu Monatsbeginn 5 000<€. Die Lotteriegesellschaft bietet ihr einen
Sofortbetrag als Alternative an.

Wie grof} ist dieser, wenn eine Restlebenserwartung von 40 Jahren und ein Kal-
kulationszinssatz von 6 Prozent angenommen wird?

Es gibt drei Mdglichkeiten eine Losung zu berechnen.

1. Die monatliche Rente wird mittels der einfachen Verzinsung mit Gleichung
(9.7) auf eine Jahresrate hochgerechnet. Diese Vorgehensweise wird manch-
mal in der Praxis eingesetzt.

19 =15000(12+0.06 X 6.5) = 61950€

Da die Jahresrate erst am Ende des Jahres zur Verfiigung steht, muss man nun
mit einer nachschiissigen Jahresrente rechnen.

1 1.06°0—1
Rk — 61950 =932118.09€
0 1.0640 1.06—1

Als Ablosesumme wird ein Betrag von 932 118.09 € angeboten.

2. Die zweite Moglichkeit besteht darin, die monatliche Rate mit einem konfor-
men Monatszinssatz in eine konforme Jahresrate umzurechnen. Die Berech-
nung mit dem konformen Zinssatz entspricht dem internationalen Standard
und wird auch als ISMA-Methode bezeichnet.

¢ = V/1.06 = 1.0048676

1.0048676'2 — 1
19" = 5000 x 1.0048676

1.0048676 — 1
=61932.64€
Von dieser Jahresrate wird nun wieder der nachschiissige Rentenbarwert be-
rechnet.
1.06% — 1
Ry = 61932.64
0 1.06% 1.06 — 1

=93185691€
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Nach dieser exakten Rechnung fillt die Ablosesumme mit 931 856.91 € etwas
niedriger aus, weil die Jahresrate aufgrund des niedrigeren konformen Monats-
zinssatzes geringer ist. Bei der einfachen Verzinsung wird mit einem relativen
Zinssatz gerechnet, der aufgrund des unberiicksichtigten Zinseszinseffekts ho-
her ausfallen muss.

Eine Variante besteht darin, die gesamte Rechnung auf Monatsbasis vorzu-
nehmen. Jetzt muss die Rechnung mit einer vorschiissigen Rente durchgefiihrt
werden. Es liegt dann ein Zeitraum von 12 x 40 = 480 Monaten vor. Diese
Rechnung muss aufgrund der konformen Umrechnung das gleiche Ergebnis
wie die vorherige Rechnung liefern.

1.0048676 1.0048676%%0 — 1
1.0048676480  1.0048676 — 1
=931856.91€

R} = 5000

3. Die dritte Moglichkeit besteht darin, mit dem relativen Zinssatz zu rechnen
(US-Methode). Der relative Zinsfaktor betrégt:

0.06
g = <1+ s > =1.005

Mit diesem relativen Monatszinssatz wird nun die Jahresrate berechnet.

1.0052—1

Yor — 5000 x 1.005
12 * 1.005— 1

=61986.20€

Mit dieser Jahresrate kann nun wieder der Rentenbarwert berechnet werden.

1 1.06°0—1
RIh — 61986.20
0 1.06% 1.06—1
=932662.78€

Wird die gesamte Rechnung auf Monatsbasis durchgefiihrt, so zeigt sich sehr
deutlich die Inkonsistenz der Rechnung mit dem relativen Zinssatz.

1.005 1.005%80 1
1.005480  1.005—1
=913281.61€

Ry = 5000

Aufgrund des hoheren relativen Monatszinssatzes wird der Barwert starker
diskontiert und fallt deshalb niedriger aus als nach der exakten Rechnung.

o3

Die dritte Frage nach der Rentenrate ist leicht zu beantworten, wenn die Glei-
chung (9.15) bzw. (9.16) nach 7" bei gegebenen R7*" bzw. Rg“"h, n und ¢ umge-
stellt wird.
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rnach _ Rnach q— 1 — Rnach nd— 1
n qn -1 0 qn —1
Die vierte Frage kann — wie bei der vorschiissigen Rente — mit der Auflosung der
Gleichung (9.15) bzw. (9.16) nach n beantwortet werden:

1 ach 4 — 1 1 prach
n= lnq In <Rn1m rnach + 1> - lnq In <rnach _Rnach( _ 1)
0o g

Beispiel 9.24. Angenommen, ein Barwert in Héhe von R’g""h =932118.09€ wird
gewonnen (vgl. Beispiel 9.23), der zu einem Zinssatz von 6 Prozent angelegt werden
kann. Es ist geplant, eine jahrliche Rente von 61950€ im Dezember (also nach-
schiissig) zu beziehen. Wie viele Jahre kann man die Rente erhalten?

(9.17)

1 ( 61950
n

n1.06 61950—932118.09><0.06> 0 Jahre

Die Rente kann zu den gegebenen Bedingungen wie erwartet {iber 40 Jahre bezogen
werden. L

Die fiinfte Frage nach der Verzinsung (yield) ergibt sich wieder als Nullstellen-
problem. Die Gleichung (9.16) wird als Aquivalenzansatz der Barwerte interpre-
tiert und als implizite Funktion umgeschrieben. Man erhilt das folgende rationale
Polynom in Abhéngigkeit von ¢, dessen reelle Nullstellen die gesuchte Verzinsung

liefern.
nach nach
n—+1 r n r 1
q - <1 +R8ach> q +R8ach =0

Beispiel 9.25. Die Fragestellung im Beispiel 9.23 wird nun verdndert. Es sind n =
40 Jahre, ““* = 61 950 € und RS“C}’ =932 118.09€ gegeben. Die gesuchte Grofe
ist die Rendite (Verzinsung) des Kapitals. Es muss dazu eine 6konomisch sinnvolle
Nullstelle des folgenden Polynoms bestimmt werden.

61950 61950
41 40 !
— |1 =0 9.18
1 ( +932118.09) 1 +932118.09 ©.18)

Das Programm Scilab liefert hier folgende reelle Nullstellen: g1 = 1.06, g, = 1.0
und g3 = —0.918 (siche Abb. 9.5). Wiederum ist nur die reelle Nullstelle ¢ = 1.06
sinnvoll. Es ist die bekannte Verzinsung von 6 Prozent. Auch der Ansatz nach der
ISMA-Methode liefert die Verzinsung von 6 Prozent.

~931856.91 50009 T 931856.91 — 50009~ °

o3

Beispiel 9.26. Es soll die Rendite aus einem Bonussparplan berechnet werden. Dafiir
wird iiber 10 Jahre monatlich eine Rate von %" zu einem Zinssatz von 3 Prozent
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C@)
0.4

0.3

0.2

0.19

—0.1-

Abb. 9.5: Polynom Cy(q) (9.18) zur Renditebestimmung

nominal p.a. angelegt. Am Ende des 10. Jahres wird ein Bonus in Hohe von 12
Prozent des eingezahlten Betrags gezahlt.

Bonus, =0.12nm pach

Man kann hier wieder exakt mit dem konformen Monatszinssatz oder niherungswei-
se mit einer nachschiissigen Jahresrate rechnen.

1. Exakte Rechnung (ISMA-Methode): Der konforme Monatszinssatz betragt
ffor = ¥/1.03— 1 =0.002466

Der Endwert der Rente plus Bonus betragt

B
RY30" = Ri20 + Bonusiag

5 1.002466120 — | ,
= prach | 002466 1 +0.12 x 12079

= " 1538479

Dies ist die Leistung der Bank. Der Barwert der Bankleistung (= Barwert des
. RBonus » . . . .
Sparplans) Ri¢h = ;1280 muss nach dem Aquivalenzprinzip einem Renten-

12
barwert ohne Bonus entsprechen.



184

9 Grundlagen der Finanzmathematik

120
Rnach _ rnach 1 912" — 1
U 120 1
qi13 412

Dies ist die Leistung des Kunden.

Leistung der Bank L Leistung des Kunden
Ri20 + Bonusiyy phach q%%o —1
q13° T g g1
1> beinhaltet die gesuchte monatliche Rendite. Bei der Aquivalenz entfallen
72" und der Diskontierungsfaktor . 11%0.

q120_1
153.8479 = 12 (9.19)
qi2—1

Die Gleichung (9.19) wird nun umgestellt, damit ein Nullstellenproblem ent-
steht. '
Co(q12) = q13° — 153.8479 41,4+ 153.8479 — 1 =0

Mit dem Programm Scilab werden die reellen Nullstellen
q12 = {1.0,1.004021}

berechnet. Nur der zweite Wert ist 6konomisch sinnvoll. Aus g, = 1.004021
wird nun der konforme Jahreszinssatz bestimmt.

g = 1.004021'% = 1.04934

Die Rendite (p.a.) liegt bei etwa 4.93 Prozent. Mit der regula falsi und den
Startwerten g1, = {1.005,1.004} (auch hier miissen Monatsverzinsungen ein-
gesetzt werden) ergibt sich bei einer Iteration folgendes Ergebnis:
Co(1.005) = 1.005'2° — 153.8479 x 1.005
+153.8479968 — 1

= 0.0501567
Co(1.004) = 1.004'2° — 153.8479 x 1.004
+153.8479 — 1
= —0.0008642

Die erste Néherung der gesuchten Nullstelle ist somit

q\) =1.004 — (—0.0008642)
y 1.005 —1.004
0.0501567 — (—0.0008642)
=1.004016
Der monatliche Zinssatz betrigt also nach einer Iteration 0.4016 Prozent (ent-

spricht i = 1.004016'2 — 1 = 0.04927 p.a.). Fiir ein genaueres Ergebnis miis-
sen weitere Iterationsschritte berechnet werden.
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2. Néherungsrechnung: Ndherungsweise kann die monatliche Rate auch mittels
der Gleichung (9.7) in eine Jahresrate umgerechnet werden. Es wird dann mit
q = 1.03 gerechnet. Der Barwert einer Rente mit Bonus betrigt nun:

1 1.0310—1
RBunus _ nach 124+5.5(1.03—1
0 C ( + v( qu 1.03—1

Rnach

(9.20)

a1
+0.12 x 120 x 7"
q

1
= 153.8581,"“"
q

Der Endwert muss nach dem Aquivalenzprinzip einem Rentenbarwert ohne
Bonus entsprechen. Der Zinssatz, der diese Aquivalenz erfiillt, ist dann die
gesuchte Rendite.

qIO_l

q—1

Aus der Aquivalenz der Gleichungen (9.20) und (9.21) ergibt sich dann fol-
gendes Nullstellenproblem:

. . 1
Ry =y (1245.5(g— 1))

410 (9.21)

nach 1 qIO_ 1

-
153.8581 = (12455(g—1)
q'° ( )qlo g—1

Co(g) =5.5¢""+(12-5.5)¢""— (153.8581+5.5)q
+(153.8581 — 1245.5) =0

Scilab errechnet folgende Nullstellen: {—1.6581,1.0,1.049321}. Nur ¢ =
1.049321 ist 6konomisch sinnvoll. Die gesuchte Rendite betrdgt i = 4.9321
Prozent p. a. S

Beispiel 9.27. Im folgenden Beispiel wird ein Sparplan mit einer Gebiihr (negativer
Bonus) betrachtet. Der Aquivalenzansatz der Barwerte ist nun wie folgt:

Leistung der Bank L Leistung des Kunden
R n—1
n L T m + Gebiihr
dn G qm—1
In g, ist der effektive Zinssatz enthalten. Durch ein Nullstellenproblem wird dieser
ermittelt. Im Vergleich zu Beispiel 9.26 hat der Kunde nun eine zusitzliche Leistung
zu erbringen. Beim Bonussparplan musste die Bank die zusdtzliche Leistung erbrin-

gen. Tt

Beispiel 9.28. In diesem Beispiel wird eine Sparrate von 100 € iiber 10 Jahre zu 10
Prozent verzinst. Jedoch wird eine jéhrliche Gebiihr von 1 Prozent auf das eingezahl-
te Kapital eingezogen. Wie hoch ist die insgesamt gezahlte Gebiihr (Barwert)? Wie
hoch wire eine dquivalente periodische Gebiihr in Euro (Rate)?
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Der Bruttobarwert der Sparrate betragt:

Rbruto — 100 ! 1'110_1—61446€
o 1.1010 1.1—1 —  ©

Die Nettoverzinsung betrégt 9 Prozent. Somit ist der Nettobarwert der Sparrate:

1 1.0919—1
R =100 =641.77€ 9.22
0 1.0910 1.09—1 ©-22)
Der Barwert der Gebiihr berechnet sich aus der Differenz der beiden Barwerte
und liegt bei 27.31 €. Die dquivalente periodische Gebiihr kann nun aus der Verren-
tung des Barwerts der Gebiihr berechnet werden.

o L1—1

Gebiihr __ 1
PO = 2731 1110 g

= 4.44 €/ Jahr

Alternativ kann man auch direkt die jihrliche Nettorate mit einem Aquivalenzansatz
berechnen:
1o1ao—1, 1 1.090—1

netto :100
U0 112 1.0910 1.09— 1

1.0910—1 1119 1.1—-1

P =100 0 g0 10 | = 10444€/ Jahr = 100 4 7O

Nach dem Aquivalenzansatz muss die Sparrate von 104.44 € (inklusive Gebiihr)
bei einem Zinssatz von 10 Prozent dquivalent mit der Sparrate von 100 <€ bei einem
Zinssatz von 9 Prozent sein.

1 110—1 1 1.0910—1

104.44 =100
1110 1.1-1 1.0910 1.09—1

o3

Ubung 9.3. Es sollen 1000<€ in 2 Jahren bei einer Bank angespart werden, die
bei vierteljéhrlicher Zurechnung der Zinsen 7 Prozent anbietet. Berechnen Sie die
Hohe der vierteljdhrlichen Raten, wenn sie jeweils am Ende des Quartals erfolgen.
Rechnen Sie einmal mit dem relativen Zinssatz und einmal mit dem konformen
Zinssatz.

Ubung 9.4. Bei 4 Prozent p. a. werden auf ein Konto folgende Betriige eingezahlt:
2000€ am 01.01.2005,4 000<€ am 01.01.2007, 6 000€ am 01.01.2008.

1. Das angesparte Kapital soll ab dem 01.01.2010 (es wird weiterhin mit 4 Pro-
zent p. a. verzinst) tiber 10 Jahre in gleichméBigen Raten zu Beginn des Mo-
nats aufgebraucht werden. Wie hoch ist die Rente nach der ISMA-Methode?

2. Aus dem angesparten Kapital sollen ab dem 01.01.2010 jeweils zu Beginn
des Jahres 1 000 € abgehoben werden. Wie lange kdnnen ganzzahlige Betra-
ge abgehoben werden?
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Ubung 9.5. Es werden 1 000€ geerbt. Man entscheidet sich, das Kapital anzulegen
und durch eine nachschiissige jéhrliche Rente in Hohe von 600<€ {iber 2 Jahre
aufzubrauchen. Wie hoch muss die Verzinsung des Kapitals sein?

9.6 Besondere Renten

9.6.1 Wachsende Rente

Fiir eine wachsende Rente (constant growing annuity) wird angenommen, dass die
Rente 7 mit dem Faktor g = 1 4 p wichst. Grund fiir eine solche Anforderung konnte
zum Beispiel ein Inflationsausgleich (Kaufkraftverlust) sein. Der Endwert der wach-
senden nachschiissigen Rente ist

R;;ach _ rnach qnfl + rnach qang_"_ ot rnach qgﬂfZ + }"nac}lgj171

n—1 n—2
:rwwg"(q +qm2+”.+q+1)

gl g g
q " 1

_ rnachgn—l (g) B _ rnach qn _gn
a1 q—g

Der Barwert dieser wachsenden Rente ist der mit dem Zinsfaktor ¢” diskontierte
Endwert. nach nach ,n n
Rguch _ Rn _ r q _gJ
q" 9" 9-8
Beispiel 9.29. Es ist die Rente gesucht, die ein Kapital von 10 000< {iber 15 Jahre
hin aufbraucht. Das Kapital ist zu einem Festzinssatz von 5 Prozent p. a. angelegt.
Es wird eine Inflationsrate von 2 Prozent pro Jahr angenommen.

1.05—1.02
ho_ 15 _
P =10000 x 1.05°° x L0515 — 1.0215 = 850.79€
Ohne Kaufkraftverlust wiirden 963.42€ pro Jahr zur Verfiigung stehen. Aufgrund
der angenommenen Inflation sind es aber nur 8§50.79 €. L

Bei einer vorschiissigen Rente wird aufgrund der vorgezogenen Zahlungsstruk-
tur die letzte Rate auch verzinst, so dass im Ergebnis der Endwert und der Barwert
zusétzlich mit dem Faktor ¢ zu multiplizieren sind.

vor 4 qn_gn

Ry =ro 4
7" q-g
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9.6.2 Ewige Rente

Bei einer ewigen Rente (perpetuity) geht die Anzahl der Perioden gegen unendlich.
Um die Grenzwerte der Barwerte einer vor- und nachschiissigen Rente zu berechnen,

ist es sinnvoll, den Ausdruck (q’;;l) in den Gleichungen (9.11) und (9.16) wie folgt

umzuformen: . .
T (1— ) (9.23)
qn qn

Fiir n — oo strebt der Ausdruck in der Gleichung (9.23) fiir ¢ > 1 gegen 1, weil

lim,, e q‘,, — 0 gilt.
) 1
I}E)Eo (1 - q") =1

Damit vereinfachen sich die beiden Formeln (9.11) und (9.16). Sie liefern die Bar-
werte einer ewigen vor- bzw. nachschiissigen Rente.

1 1

vor vor 4 nach nach
= R = =
0 =1 qg—1 O =7 qg—1 i
Beispiel 9.30. Fortsetzung von Beispiel 9.23. Wie grof3 ist der Barwert der Rente,
wenn sie als ewige Rente angeboten worden wird?
1.0048676

vor _ 5000 =1032210.70€
0,00 1.0048676 — 1

o3

Der Barwert einer ewig wachsenden Rente existiert, wenn g < ¢ ist. Der Grenz-
wert des Faktors strebt fiir die Annahme gegen 1, weil ‘Z’ <1 gilt.

n__on n
lim 7 g:l—lim<g) =1
n—yoo q” n—es \ ¢

Der Barwert der ewig wachsenden Rente ist somit

Rgor — lim #*°" q qn _gn — pvor q

oo g" g—g 9—g
rnach qn o gn rnach rnach
Cnme ¢ q-g  q-g i-p
Beispiel 9.31. r sei die heutige Dividende einer Aktie. Sie betrage 3 €. Das Unter-
nehmen hat ein jahrliches Ertragswachstum von 7 Prozent prognostiziert. Wie hoch
sollte der Wert der Aktie heute sein? Solange das Unternehmen existiert, wird die

Dividende gezahlt. Daher unterstellt man eine ewige Rente. Als Diskontierungsatz
wird ein Zinssatz von 11 Prozent’ angenommen.

3 Der Zinssatz représentiert hier die Kapitalkosten eines Unternchmens. Diese setzen sich
aus einer Eigenkapitalverzinsung und den Fremdkapitalzinsen zusammen (siche auch Ab-
schnitt 9.9 Investitionsrechnung).



9.7 Kurs- und Renditeberechnung eines Wertpapiers 189

1.11
X
1.11-1.07

vor _ 3

S =83.25€

9.7 Kurs- und Renditeberechnung eines Wertpapiers

9.7.1 Kursberechnung

Der Wert eines Wertpapiers ist der Barwert aller zukiinftigen Leistungen, also der
Riickzahlungskurs und die Zinszahlungen.

rnach rnach rnach rnach 4 1;?
Schuldner»lleistungen l l l
1 2 3 n
1 1 1 2 1 cen—1 —14 n
1. Periode 2. Periode 3. Periode n-te Periode

Glaubiger- T leistung

Co
Abb. 9.6: Struktur eines Wertpapiers

Bei einem festverzinslichen Wertpapier ist die regelméBige Zinszahlung die Ren-
te %" die am Ende der Periode gezahlt wird. 7" ist die Nominalverzinsung des
Wertpapiers. Der Rentenbarwert wird also folglich iiber die Rentenbarwertformel
(9.16) einer nachschiissigen Rente berechnet. Zusétzlich zum Rentenbarwert muss
noch der Riickzahlungskurs (Nennbetrag) Ky, der in der Regel 100€ betrégt, dis-
kontiert hinzugerechnet werden. Damit ergibt sich der (Brutto-) Kurs eines festver-
zinslichen Wertpapiers als

a1 g"—1 1
:rnmh q + K

Colg) \ 0 (9.24)
—1 n
qv 1 e ~ \g -~
Barwert Zinsen Barwert Nennwert

In den Zinsfaktor ¢ der Gleichung (9.24) geht der aktuelle Marktzins ein, da das
Wertpapier mit einer Geldanlage zu Marktbedingungen verglichen werden muss.

Beispiel 9.32. Es wird ein Wertpapier zu einem Nennbetrag von 100 € angenommen,
das zu 6 Prozent p. a. nominal verzinst wird. Es besitzt eine Laufzeit von 10 Jahren.
Wie hoch ist der Kurs des Wertpapiers, wenn ein Marktzinssatz von 5 Prozent, 6
Prozent und 7 Prozent unterstellt wird?

1 1.050-1
1.0510 1.05—1
=46.334+61.39=107.72€

Co(1.05) =6 +100

1.0510
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Co(1.06) = 44.16 +55.84 = 100.00€
Co(1.07) = 42.14+50.83 = 92.98€

Liegt der Marktzinssatz {iber dem Nominalzinssatz, so liegt der Kurs des Wertpapiers
unter dem Riickzahlungsbetrag, hier 100€. Durch den Kursabschlag erfolgt eine
Erhohung der Effektivverzinsung. Die Hohe des Kursabschlags betrigt 7.02€. Er
entspricht dem Barwert der Nominalzinsdifferenz.

1 1.070-1
T=6) o710 107-1 = 702€

Ein Wertpapier mit der obigen Ausstattung besitzt bei einem Kurs von 92.98€
eine Rendite von 7 Prozent. Man kann den Kursabschlag auch iiber Kurswert (Preis)
und Nachfrage erkldren. Zu einem Preis von 100€ fragt bei einem Marktzinssatz
von 7 Prozent niemand ein Wertpapier mit einer Verzinsung von 6 Prozent nach. Erst
bei einem entsprechenden Preisnachlass wird das Angebot wieder attraktiv.

Ein Wertpapier mit einer Nominalverzinsung von 6 Prozent bei einem Marktzins-
satz von 5 Prozent wird ohne Kursaufschlag eine Rendite iber Marktniveau besitzen.
Bei einem Kursaufschlag in Hohe von 7.72 € reduziert sich die Rendite auf 5 Pro-
zent. £SS

Wie verdndert sich der Kurs eines Wertpapiers mit abnehmender Restlaufzeit?
Der Kursauf- bzw. Kursabschlag wird abnehmen, da die Barwertdifferenz immer
geringer wird. Der Kurs nihert sich somit immer mehr dem Riickzahlungsbetrag.

Beispiel 9.33. Die Kursentwicklung des Wertpapiers aus dem Beispiel 9.32 ist hier
fiir die beiden Marktzinssétze 5 Prozent und 7 Prozent in Tabelle 9.1 und in Abb.
9.7 wieder gegeben. Die Wertpapierkurse ndhern sich mit abnehmender Restlaufzeit
(n — 0) dem Riickzahlungsbetrag von 100 €. £es

Tabelle 9.1: Kursentwicklung des Wertpapiers in Beispiel 9.32
Restlaufzeit

Kurs 10 9 8 7 6 5 4 3 2 1

bei 5% 107.72 107.11 106.46 105.79 105.08 104.33 103.55 102.72 101.86 100.95
bei 7% 92.98 93.48 94.03 94.61 9523 9590 96.61 97.38 98.19 99.07

Wie entwickelt sich aber der Kurs eines Wertpapiers innerhalb einer Zinsperiode?
Am Ende jeder Zinsperiode wird der entsprechende Zinsbetrag bzw. die Rente (auch
Kupon genannt) bezahlt. Vor diesem Zinstermin besitzt das Wertpapier noch diesen
Kupon und ist entsprechend mehr wert. Wird das Wertpapier nun vor diesem Zins-
termin verkauft, so muss der Kupon anteilig auf die Zinsperiode aufgeteilt werden.
In der Praxis bedient man sich hier der einfachen Verzinsung (siche Kapitel 9.2 und
9.3) und berechnet die so genannten Stiickzinsen (accrued interest). Seit Anfang



9.7 Kurs- und Renditeberechnung eines Wertpapiers 191

106
104

1024

98—
96—

94—

et F—r—+—F—"—7—"—"7——7—— N

Abb. 9.7: Kursentwicklung des Wertpapiers in Beispiel 9.33

1999 wird (gemal der ISMA-Regel 251) fiir die Stiickzinsberechnung die Anzahl
der Tage taggenau (Z],g) ermittelt. Dies gilt sowohl fiir die Tage im Jahr als auch fiir
die Tage zwischen dem letzten Zinstermin und dem Zinsvalutatag. Bei Geldmarkt-
papieren (U-Schétze) wird die Tageszidhlkonvention ;’é‘f) angewendet. Dies gilt auch
fiir variabel verzinsliche Anleihen mit Referenzzinssatz EURIBOR. Die Stiickzin-
sen werden vom Kurs abgezogen und ergeben dann den so genannten Nettokurs.
Weitere Informationen zur Stiickzinsenberechnung von Bundesanleihen gibt es zum

Beispiel unter:

http://www.deutsche-finanzagentur.de

Beispiel 9.34. Am 18. August 1999 wird fiir nominal 5 000 € eine 4.50 Prozent An-
leihe des Bundes mit ganzjdhrigem Zinstermin 4. Juli gekauft. Die nédchste Zins-
zahlung ist am 4. Juli 2000. Die Zahlung des Kaufpreises (Valutierungstag) erfolgt
gemdl der iiblichen 2-tigigen Valutierungsfrist am 20. August 1999, Zinsvalutatag
ist der 19. August 1999. Dem Kiufer werden in seiner Wertpapierabrechnung Stiick-
zinsen fiir 47 Tage fiir die Zeit vom Beginn des Zinslaufs am 4. Juli 1999 bis ein-
schlieBlich Zinsvalutatag 19. August 1999 berechnet. Das sind:

Stiickzinsen = 5000 x 0.045 x 34676 =28.89€
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Da die Zinsperiode vom 4. Juli 1999 bis einschlieBlich 3. Juli 2000 lduft, muss gemaf

der taggenauen Methode Z’,Z hier das Jahr mit 366 Tagen gerechnet werden, da in die
Zinsperiode der 29. Februar 2000 fillt. ges

Der Kéaufer wird bei dieser Rechnung zu stark belastet, da er den Zinskupon erst
am 4. Juli 2000 erhilt. Dies ist jedoch die Vorgehensweise in der Praxis. Nach dem
Barwertansatz sind die Stiickzinsen mit dem Marktzinssatz fiir den Zeitraum vom
Kauf bis zum Zinstermin zu diskontieren.

Beispiel 9.35. In dem obigen Beispiel sind bei einem unterstellten Marktzinssatz von
3 Prozent die Stiickzinsen wie folgt zu diskontieren:

Barwert der Stiickzinsen = 28.89 x 1.03 e — 27.80€

9.7.2 Renditeberechnung fiir ein Wertpapier

Bei der Renditeberechnung wird fiir einen gegebenen Kurs die Verzinsung der Leis-
tungen aus einem Wertpapier gesucht. Es handelt sich um ein Nullstellenproblem der
Gleichung (9.24).
rnach n_1 KO |
; 7 L —Colq) =0
" q-1 ¢

Die aus der Gleichung ermittelte Verzinsung wird Rendite (yield) genannt.

Beispiel 9.36. Es wird fiir ein Wertpapier die Rendite gesucht, das einen Nennbetrag
von 100€ und eine Laufzeit von 5 Jahren besitzt, mit einem Nominalzinssatz von
5.25 Prozent ausgestattet, und das zu einem Kurs von 100.40 € angeboten wird. Es
ist also folgende Gleichung zu 16sen:

5

5'255 =1 190 00402 0 (9.25)
¢ q-1

Es wird die regula falsi zur Berechnung der Rendite angewendet. Aufgrund der Uber-
legungen aus Beispiel 9.33 kann folgende Abschédtzung vorgenommen werden: Da
der Kurs tiber 100€ liegt, muss i < 0.0525 sein. Wird i = 0.05 gewihlt, so ergibt
sich nach Gleichung (9.24) ein Kurs von Cy(1.05) = 101.08 € bzw. nach Gleichung
(9.25) eine Abweichung vom gesuchten Kurs in Hohe von 0.68. Da 101.08 > 100.4
ist, liegt die gesuchte Verzinsung zwischen 0.05 < i < 0.0525. Es wird als zweiter
Startwert i = 0.052 gewéhlt. Damit ergibt sich ein Kurs von Cy(1.052) = 100.22€
bzw. eine Kursabweichung in Héhe von —0.18. Mit den gefundenen Startwerten
kann nun die erste lineare Interpolation vorgenommen werden.

1.052 — 1.05
1) = 1.05-0.68 —=1.05158 9.26
1 —0.18—0.68 9.26)
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Abb. 9.8: Rendite des Wertpapiers in Gleichung (9.26)

Nach der ersten Iteration hat das Wertpapier eine Rendite von ca. 5.158 Prozent. Das
Programm Scilab errechnet eine Rendite von 5.15721 Prozent.

Wird der Kupon unterjahrig gezahlt, dann wird er relativ auf die Perioden auf-
geteilt. In der Praxis wird dann hdufig mit dem relativen unterjahrigen Zinssatz der
Kurs (Barwert) des Wertpapiers berechnet. Wird aber das Wertpapier nicht zu pari
(Barwert = Riickzahlungskurs) angeboten, dann entspricht dieser Zinssatz nicht der
Rendite des Papiers.

Beispiel 9.37. Der Kupon aus Beispiel 9.36 wird nun halbjéhrlich gezahlt.

5.25
m=72 = )

0.0525

Bei einem Kurs von 100 liegt die Rendite bei i = ™75 und der Barwert betrégt

folglich 100.

525 1 1.02625'0—1 100

Cy) = =100
0 2 1.0262510 1.02625—1 Jr1.0262510

Liegt der Kurs aber wie in Beispiel 9.32 bei 100.40, dann kann weder mit dem
relativen noch mit dem konformen Zinssatz die jahrlichen Rendite von 5.15721 Pro-
zent (zum Barwert von 100.4) bestimmt werden. Die Rendite muss aus dem Aquiva-
lenzansatz
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2.625¢19—1 100
o> 10 = 100.40
9m qm—1  qy

errechnet werden und liegt bei:

i=q% —1=1.0257911> — 1 = 0.0522474

9.7.3 Berechnung einer Wertpapierrendite mit Scilab

Die Rendite des Wertpapiers in Beispiel 9.36 wird mit folgenden Anweisungen be-
rechnet.

r = 5.25

n=>5

KO = 100

CO = 100.4

c = poly([-(KO+r) KO zeros(1l,3) (CO+r) -CO],...
"gq","coeff")

g = roots(c)

g = real (gq(find(imag(q)==0)))

ot

Fiir das Wertpapier mit der halbjahrlichen Kuponzahlung wird die Rendite wie
folgt bestimmt.

m = 2;

rm = r/m;

nm = nxm;

cm = poly([-(KO+rm) KO zeros(1l,8) (CO+rm) -CO], ...

llqll,llcoeffll) ,.
gm = max(real (roots(cm)))
gqm”*2-1

9.7.4 Zinsstruktur

Als Zinsstruktur® (yield curve) bezeichnet man die Abhingigkeit des Zinssatzes
von der Bindungsdauer einer Anlage. In der Regel besitzen langfristig festverzins-
liche Wertpapiere hohere Renditen als kurzfristige. Diese Zinsstruktur wird dann
als steigend oder normal bezeichnet. Infolge eines liberproportionalen Angebots von
Anleihen mit kurzer Laufzeit kann deren Rendite tiber der von langfristigen Anleihen
liegen. Dieser Zustand wird als inverser Markt oder inverse Zinsstruktur bezeichnet.

4 Sie wird auch als Renditestruktur bezeichnet.
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In Deutschland fand dies nach der Wiedervereinigung statt, als die 6ffentliche Hand
und private Unternehmen einen hohen kurzfristigen Kapitalbedarf zur Finanzierung
der Investitionen in den neuen Bundesldndern hatten. Die Zinsstruktur wird als flach
bezeichnet, wenn der Zinssatz von der Bindungsdauer unabhingig ist. Dies ist jedoch
die Ausnahme. Die Zinsstruktur kann in der so genannten Zinskurve (siche Abb. 9.9)
veranschaulicht werden. Es ist noch anzumerken, dass jede Anlageform eine eigene
Zinsstruktur besitzt>.

i%

9 Aug. 1992

8 Jan. 1990

74

6

54

4

37 Juni 2004

2 T T T T T T T T ) n

1 2 3 4 5 6 7 8 9 10

Abb. 9.9: Historische Zinskurven

Nun setzt die Renditeberechnung eine flache Zinsstruktur voraus, da fiir den ge-
samten Anlagehorizont der gleiche Zinssatz unterstellt wird. Dies kann dann pro-
blematisch werden, wenn die Zinskurve einen deutlich steigenden oder fallenden
Verlauf aufweist. Die berechnete Rendite fallt im Fall einer ansteigenden Zinskurve
aufgrund der stirkeren Diskontierung der zukiinftigen Leistungen hoher aus; im Fall
einer inversen Zinsstruktur wird die Rendite geringer sein.

9.7.5 Barwertberechnung bei nicht-flacher Zinsstruktur

Bei den bisherigen Berechnungen wurde immer eine flache Zinsstruktur iiber die
Laufzeit und eine Wiederanlage der Ertrdge zum Zinssatz i angenommen. Als Zins-

5 In Abb. 9.9 wird der gewichtete Durchschnittskurs synthetischer Anleihen zur jeweiligen
Laufzeit gezeigt.
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struktur wird die Fristigkeitsstruktur der Kassazinssétze (spot rate) bezeichnet. Der
Kassazinssatz (auch Nullkuponrendite) ist der Zinssatz, den man heute mit Anlei-
hen iiber eine gewisse Laufzeit risikolos absichern kann. Unter dem Terminzinssatz
(forward rate) versteht man hingegen den Zinssatz, der heute fiir eine zukiinftige
Anlage oder einen Kredit vereinbart wird. Die Terminzinssétze sind implizit in der
Zinsstruktur der Kassazinssitze enthalten.

Eine flache Zinsstruktur bedeutet, dass die Kassazinssétze alle gleich sind. Dies
bedeutet, dass eine Anlage iiber n Jahre zum Kassazinssatz i, den gleichen Ertrag
liefert wie die wiederholte Anlage mit Terminzinssétzen. Daraus resultiert, dass alle
Terminzinssétze identisch sind. Ferner beinhaltet dies auch, dass die Kassazinssitze
gleich sein miissen.

1 =lih=...=I,

In der Realitét liegt aber haufig eine steigende Zinsstruktur vor, so dass linger-

fristige Anlagen einen hoheren Zinssatz besitzen als kurzfristige.

1 <ih<...<ly

Diese Struktur unterstellt fiir jeden Zeitpunkt einen anderen Kassazinssatz (ein an-
deres g). Die obigen Rechnungen sind nicht mehr durchfiihrbar.

Sind die Kassazinssétze fiir verschiedene Anlagezeitraume unterschiedlich, so
kann die geometrische Reihe nicht mehr mit einem Zinsfaktor geschrieben werden.

Co= " r2+...+ rn—i-KS
q1 q3 9n 9n

Es tritt folgendes Problem auf: Mit welchen Zinssétzen sind die zwischenzeit-
lichen Zinszahlungen » zu diskontieren? Die Renditen von Kuponanleihen kdnnen
nicht verwendet werden, weil hier eine zwischenzeitliche Zinszahlung erfolgt.

Das Problem wird in zwei Schritten geldst. Im ersten Schritt wird die Rendite
fiir Nullkuponanleihen (zero bonds) mit den Laufzeiten von 1 bis n berechnet®. Bei
Nullkuponanleihen existieren keine Zahlungen zwischen der Gegenwart und dem
Zeitpunkt n. Folglich entféllt eine jahrliche Zinszahlung. Die Rendite ergibt sich nur
aus der Differenz zwischen Ausgabekurs und Riickzahlungskurs. In der folgenden
Berechnung wird ein Riickzahlungskurs von 1 € unterstellt. Im zweiten Schritt wird
dann der Barwert der Anlage mittels dieser Nullkupon-Zinsfaktoren berechnet. Die
beschriebenen Schritte werden am folgenden Beispiel ausfiihrlich erldutert.

Beispiel 9.38. Es wird folgende Renditestruktur fiir Kuponanleihen unterstellt:

Tabelle 9.2: Renditestruktur
t 1 2 3 4 5

if 0.050 0.055 0.060 0.065 0.070
6 Auf dem Anleihenmarkt existiert nicht fiir jede Form und jede Laufzeit eine Nullkupon-

anleihe. Daher konstruiert man mit der hier vorgestellten Berechnungsweise synthetische
Nullkuponanleihen.
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Der Barwert einer Zahlung, die in einem Jahr anfillt, betragt

1 1
CNullkupon _ _ =0.9524
1 1+ 1.05

Es ist der Barwert einer Zahlung von 1€ in einem Jahr. Da keine Zinszahlungen
auftreten, muss keine Neutralisierung von zukiinftigen Zinszahlungen erfolgen. In
der folgenden Tabelle sind die Zahlungen nochmals dargestellt.

Tabelle 9.3: Barwert einer einjahrigen Nullkuponanleihe
Jahr Zahlungen  Saldo

0 —1bs  —0.9524
1 1 1

Die Rendite einer einjdhrigen Nullkuponanleihe betragt somit

1

= —1=0.05
0.9524

i
Bei der Diskontierung einer Zahlung aus dem zweiten Jahr muss eine Zinszah-

lung von ?:822 € im ersten Jahr neutralisiert werden. Die folgende Tabelle zeigt die
Zahlungen.

Tabelle 9.4: Barwert einer zweijahrigen Nullkuponanleihe

Jahr Zahlungen Saldo
0 1
10055 1
0 —y0ss 1055 105 —0-8982
L 00537 T0oss 0
1055 1033 :

0.055 1

1.055 1.05 abzuziehen.

Der Barwert der Zinsen ist vom Barwert

1
1.055

CNullkupon o 1 0.055 1

— — =0.8982
2 1.055 1.055 1.05

Die Rendite einer zweijahrigen Nullkuponanleihe betrédgt folglich:

: Ly 1 =0.05514
’2_(0.8982> — =005

Im dritten Jahr sind die Zinszahlungen aus dem ersten und zweiten Jahr zu neu-
tralisieren.
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Tabelle 9.5: Barwert einer dreijahrigen Nullkuponanleihe

Jahr Zahlungen Saldo
0 1 2
1006 1 006 1 1
0 —106 1061055 1061.055 105 —0-8386
| 006 006 o
2 1:06 - 1:06 0
3 1 1

Die Rendite einer dreijdhrigen Nullkuponanleihe betrigt somit:

1

1 3
iy = ~1=0.0604
3 <O.8386)

Die Barwerte der vier- und fiinfjahrigen Nullkuponanleihen berechnen sich dqui-
valent.

Cullkupon _ I 0065 1 0065 1 1
4 T 1.065 1.065 1.06 1.065 1.06 1.055
0.065 1 1 1
— =0.7748
1.065 1.06 1.055 1.05
Cultkupon _ 1007 1 007 1 1
5 T 1.07 1.071.065 1.07 1.065 1.055
0.07 1 1 1
1.07 1.065 1.06 1.055
0.07 1 1 1 1

~1.07 1.065 1.06 1.055 1.05 =0.7079

o3

Aus der obigen Uberlegung lisst sich eine Formel zur Berechnung der Nullku-
ponbarwerte ableiten. Der zweite Teil der Formel ist rekursiv anzuwenden.

1 - _
Nullkupon __ q1 firn =1
C, =

1 in n—11yn—1 1 .. o
P S I g, furn=23..

Diese Art der Berechnung wird als Duplizieren von Zahlungsstromen oder boot-
strapping’ bezeichnet. Die Nullkuponrenditen sind dann:

1
. 1 " .
l":<CNullkupon> —1 firn=1,2,...
n

In der folgenden Tabelle sind die Nullkuponrenditen zusammengefasst. Diese
werden im zweiten Schritt bendtigt, um die Barwerte der Anlagen, in unserem Fall
eines Wertpapiers, zu berechnen.

7 Dieses bootstrapping ist nicht mit dem gleichnamigen Verfahren aus der Statistik zu ver-
wechseln.
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Tabelle 9.6: Nullkuponrenditen (Kassazinssétze)
t 1 2 3 4 5

ir 0.050 0.0551 0.0604 0.0658 0.0715

Im zweiten Schritt wird der Zahlungsstrom einer Anlage mit den Kassazinssitzen
diskontiert.

n
r KO
Co = T .
0 ; (L+i) " (140,
Beispiel 9.39. Fiir das Wertpapier mit dem Zahlungsstrom aus Beispiel 9.36 liegt
dann folgender Barwert vor:

5.25 5.25 5.25 5.25 105.25

= =92.70€
1.05 + 1.05512 + 1.06043 + 1.0658% + 1.0715°

Go

9.7.6 Berechnung von Nullkuponrenditen mit Scilab

In Scilab kann die Berechnung der Nullkuponrenditen einfach umgesetzt werden.
Die folgenden Anweisungen berechnen die Werte der Tabelle 9.6.

// Renditestruktur
p = [.05 .055 .06 .065 .07];
n = length(p);

// Barwertfaktoren = cc
c = (1+p) " (-1);
cc = 0; cc(l) = c(1);
for j = 2:n
cc(j) = c(3)-p(3)=xc(J)...
*sum (cumprod (c ((j-1):(-1):1)));
end

// Nullkuponrenditen = i
qq = 0; gg(1l) = c(1)*(-1);
for j 2:n

qq(3) = cc(3) " (-1/3);

I~

i=g9qq - 1;

Die Berechnung des Barwerts mit den Nullkuponrenditen wird mit den folgenden
Anweisungen durchgefiihrt.
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// Zahlungsstrdéme = cf
cf = [5.25 5.25 5.25 5.25 105.25];

// Barwert = pv
pv = sum(cf.xcc’);

Ubung 9.6. Berechnen Sie fiir die Nullkuponrenditen (Kassazinssitze) fiir folgen-
de Renditestruktur von Kuponanleihen:

t 1 2 3 4 5
if 0.07 0.065 0.06 0.055 0.05

9.7.7 Duration

Die Duration wird auch durchschnittliche Kapitalbindungsdauer oder durch-
schnittliche Laufzeit genannt. Die Bezeichnung «durchschnittlich» weist auf eine
Berechnungsweise hin. Es handelt sich hier um ein gewogenes arithmetisches Mit-
tel, das die diskontierten Zahlungen Z; mit den Zahlungszeitpunkten ¢ gewichtet und
mit dem Barwert der Zahlungen mittelt. Mit D wird die Duration nach Macaulay
bezeichnet, die in Jahren gemessen wird.

_ SitZig™!
Z?:lth_t

Die Zahlungen Z; sind bei Wertpapieren die Kuponzahlungen 7"¢“" und die Riick-
zahlung des Nennbetrags K.

D 9.27)

[Z[] — rnach7 o 7r;’tach7[(0 + rnach
~ ~ -
n— 1-mal

Beispiel 9.40. Die Zahlungsfolge fiir das Wertpapier in Beispiel 9.32 ist
[Z]=6,...,6,106
~ N 7

9-mal

und damit betrégt die Duration bei einem Marktzinssatz von 5 Prozent

S0 12,1057 850.1560

= —7.8921 Jah
10 7,105 107.7217 anre

Do.os =

7.8921 Jahre betrdgt der Zeitraum, in dem sich Marktzinsdnderungen (etwa) aus-
geglichen haben. Es ist die (durchschnittliche) Bindungsdauer des Kapitals, die be-
ndtigt wird, um einen gewiinschten Kapitalbetrag Cp zum Zeitpunkt D zu erhalten,
unter Beriicksichtigung moglicher Marktzinsanderungen (siehe Abb. 9.10).

Cp=CoqP =107.7217 x 1.057321 = 158.32
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Beispiel 9.41. Fiir das Wertpapier aus Beispiel 9.32 bzw. 9.40 kann zu den Zeitpunk-
ten ¢ der jeweilige Barwert berechnet werden. Der Wert der Anleihe zum Zeitpunkt
t betrégt:

n
Cl@)=> Zig"™ M firo<r<n
k=1

Tragt man diese in einem Koordinatensystem (t,C, (q)) ab, so erhélt man den
Barwertverlauf iiber die Laufzeit. Unterstellt man eine Marktzinsdnderung, so lasst
sich der neue Barwertverlauf darstellen. In Abb. 9.10 ist dies geschehen. Man er-
kennt, dass sich die Barwertkurven in etwa im Zeitpunkt der Duration schneiden.
Da es sich um eine ndherungsweise Berechnung handelt, schneiden sich die Kurven
nicht exakt zum Zeitpunkt D.

Do.os =7.9805 Do o5 =7.8921 Dgos=7.8016

Wird das Wertpapier also bis zur Duration gehalten, so ist der Anleger gegeniiber
Zinsdnderungsrisiken immun.

C(q)
200 T
1 i
190 !
|
i
180 ;
] i
170 [
4 |
160 ____ G !
I i
150 i
4 |
140 :
1
130 i
] 04) ;
120 05
|
1 A1.06) |
110
| 1 Duration
100 T \ T T T \ T q T t
0 1 2 3 4 5 6 7 8 9 10

Abb. 9.10: Barwertverlauf und Duration

o3

Die Duration wird zur Beurteilung der Zinssensitivitdt einer Anleihe eingesetzt.
Diese Interpretation ergibt sich aufgrund der Herleitung der Duration aus der er-
sten Ableitung der Barwertfunktion. Die Zinselastizitit ist die Barwertinderung, die



202 9 Grundlagen der Finanzmathematik

durch eine Zinsdnderung verursacht wird. Ein zero bond (mit nur einer einzigen Zah-
lung zum Laufzeitende) besitzt eine groBere Zinsempfindlichkeit als eine Anleihe
gleicher Laufzeit, bei der jahrlich Kuponzahlungen geleistet werden. Dies liegt dar-
an, dass bei einer Nullkuponanleihe der gesamte Zinsertrag mit der n-ten Potenz des
Diskontierungsfaktors erfasst wird. Eine Zinssatzanderung wirkt sich daher stirker
aus, als bei einer Kuponanleihe, bei der die Zinszahlungen periodisch diskontiert
werden. Bei einer Nullkuponanleihe ist die Duration gleich der Laufzeit der Anlei-
he, weil Z; = 0 fiir # < n gilt. Fiir eine Kuponanleihe ist die Duration hingegen immer
kleiner als die Laufzeit der Anleihe: D < n.

Neben der Laufzeit einer Anleihe ist somit auch das zeitliche Anfallen der Zah-
lungen von Bedeutung. Die Duration verkniipft diese beiden Komponenten. Sie ge-
wichtet den jeweiligen Zahlungszeitpunkt mit dem relativen Beitrag zum Barwert.
Eine hohere Duration ldsst auf eine tendenziell hohere Zinssensitivitét schlieBen. Die
Duration ist umso hdher, je niedriger der Kupon ist. Fiir den Extremfall der Nullku-
ponanleihe gilt, dass die Duration mit der Restlaufzeit der Anleihe libereinstimmt.

Auch bei diesen Uberlegungen wird eine flache Zinsstruktur iiber die Laufzeit
und eine Wiederanlage der Ertrdge zum Zinssatz i angenommen. Ferner wird nur
eine einmalige Zinssatzdnderung zum Zeitpunkt # = 0 unterstellt.

Eine formale Herleitung der Duration ergibt sich aus der ersten Ableitung (Ablei-
tungen werden in Kapitel 10 erklért) der Barwertfunktion Cy(g) nach ¢. Sie erdffnet
dann auch die Anwendung der Duration zur Berechnung einer Barwertdnderung in-
folge einer Zinsédnderung.

n
Colq) =Y Zq"
t=1
dc, 1 &
Clq) = =— tZq" (9.28)

Als Duration wird nun die relative Anderung

dcp ,

__ dq ___O(q)
b= Cq" ~ CGolg)

bezeichnet. Durch Einsetzen der Definition (9.27) in (9.28) wird das gleiche Ergebnis
geliefert:

dco
Co(q)D d

Colg) =— (g) = D=—( (9.29)
q

Es handelt sich um die Zinssatzelastizitit des Barwerts (siche Kapitel 10.8.6
zum Begriff der Elastizitit). Andert sich ¢ marginal, so indert sich der Barwert um D
Prozent. Diese Aussage gilt aber nur fiir marginale Anderungen von ¢. Die Duration
kann also auch zur Berechnung einer Barwertinderung eingesetzt werden.
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D
dCo(q) = —Co(q) %

D
= —Co(q)MDdq mit MD =
q

Das Verhiltnis © wird mit MD bezeichnet und modifizierte Duration genannt. In
der Praxis ersetzt man das Differential durch die Differenz.

ACy(q) = Co(g +Aq) —Colq)

(9.30)
~ —Co(q)MD Aq

Zur Berechnung der relativen Barwertdnderung muss die Differenz in (9.30)
durch Cy(g) geteilt werden.

ACy(q)
Co(q)

Beispiel 9.42. Fir das Wertpapier aus dem Beispiel 9.32 mit der Berechnung der
Duration in Beispiel 9.40 berechnet sich folgende modifizierte Duration:

~ —AgMD

~7.8921

MD = =7.5162
1.05

Bei einer Erhohung des Marktzinssatzes um Ag = 0.01 erfolgt etwa eine Bar-
wertdnderung des Wertpapiers in Hohe von

ACy(1.054+0.01) = —0.01 x 107.72 x 7.5162 ~ —8.0967 €
bzw. eine relative Barwertdnderung in Hohe von

A A
Cola+49) 01 x 75162~ —7.5162 Prozent
Co(q)

Aus der Kursberechnung in Beispiel 9.32 berechnet sich eine genaue Barwertdn-
derung in Hohe von —7.72173 € bzw. —7.71682 Prozent . Die modifizierte Duration
ist ein MaB fiir die Abschitzung der Kursédnderung (Marktwertrisiko) festverzinsli-
cher Wertpapiere. Lt

9.7.8 Berechnung der Duration mit Scilab

In Scilab kann die Duration wie folgt berechnet werden:

g=1.05 // Marktzinssatz
K0=100 // RUckzahlung

p=0.06 // Kuponsatz

n=10 // Zeitraum in Jahren

Z=[ones (1,n-1) .%K0xp,K0* (1+p)] // Zahlungsreihe
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t=1:n

GBW=sum (Z.+t./q"t) // gewichteter Barwert

BW=sum(Z./q"t) // Barwert

D=GBW/BW // Duration

C _D=BW%g"D // Barwert zum Zeitpunkt D

MD=D/g // modifizierte Duration

dg=0.01 // Anderung des Marktzinssatzes
-dgxMD // relative Barwertdnderung mit MD
-dg*BW+MD // absolute Barwertdnderung mit MD

Ubung 9.7. Berechnen Sie fiir die angegebenen Wertpapiere (Nennwert 100 €) den
Barwert, die Duration und iiber die Modified Duration die Barwertdnderung. Gehen
Sie bei der Berechnung von einem Marktzinssatz von 7 Prozent p.a. und einer
Marktzinserh6hung von 2 Prozentpunkten aus.

Wertpapier 1 2 3
Laufzeit in Jahren 2 3 4
Kupon 7% 12% 5%

9.8 Annuititenrechnung

Die Annuitdtenrechnung unterstellt eine Kreditbeziehung. Der Schuldner nimmt zum
Zeitpunkt ¢ = 0 einen Kredit in Hohe von Ky auf und zahlt diesen an den Glaubiger
in n gleichen Raten zuriick. Die gleich hohen Raten werden Annuitit 4 genannt.
Sie werden nicht mehr als Rente bezeichnet, da sie sich aus Zinsen und Tilgung
zusammensetzen.

A A A A

Schuldner- l leistung l l l

(ritz)g | (Bz)e? 5 (Biz)e” o (LdZ)g "
1. Periode 2. Periode 3. Periode n-te Periode

Glaubiger- T leistung

Ko

Abb. 9.11: Struktur eines Annuitidtendarlehens
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9.8.1 Annuitit

Die Annuitét (rate of repayment) A ist eine regelmdBige Zahlung, die sich aus
Tilgungs- und Zinsrate zusammensetzt.

A=T,+7Z, =konstant t=1,...n

T; bezeichnet die Tilgungsrate und Z, die Zinsrate der Periode 7. Die Annuitét ist
dem Wortsinn nach eine jahrliche Rate (lat. annus = Jahr). Heute wird der Begriff
Annuitét jedoch auch auf unterjahrige regelméafige Zahlungen angewendet.

Zur Berechnung der Annuitit wird das Aquivalenzprinzip angewendet. Hierbei
werden — bei gegebenem Zinssatz — die Leistungen des Glaubigers den Leistungen
des Schuldners gegeniibergestellt. Alle Zahlungen sind dabei auf den Gegenwarts-
wert zu diskontieren (Barwertprinzip). In der nun folgenden Aquivalenz betrigt die
Leistung des Glaubigers K. Die Leistung des Schuldners entspricht dem Barwert der
gezahlten Annuititen (4 = %),

1 g"—1

KO_Aqn g1 (9.31)
Der Barwert einer nachschiissigen Rente ist gleichzusetzen der Schuld K. Kre-

ditriickzahlungen sind nachschiissige Rentenzahlungen, da die Annuititenzahlung

auf die vorherige Periode # — 1 bezogen ist. Dies wird aus dem Tilgungsplan (siche

Tabelle 9.7) deutlich. Durch Auflésen der Gleichung (9.31) nach A4 erhélt man die

gesuchte Formel.

nd—

A=Koq"
qg"—1

(9.32)

Beispiel 9.43. Ein Kredit in Héhe von Ky = 1 000 <€ soll in gleichen Raten iiber n =
10 Jahre zuriickgezahlt werden. Der Kreditzinssatz betrégt i = 6 Prozent.

o 1.06—1

A=1000 x 1.06"
x 1.0610— 1

= 135.87€/Jahr

Die Annuitit betrdgt 135.87€ pro Jahr. ges

In der Praxis wird hiufig eine monatliche Annuitét zur Riickfiihrung der Kre-
ditschuld vereinbart. Diese ldsst sich zum einen mit dem konformen Monatszinssatz
berechnen (exakte Rechnung) oder mit einer einfachen Verzinsung binnen Jahres-
frist.

Beispiel 9.44. Fiir den Kredit in Beispiel 9.43 wird nun nach den verschiedenen Be-
rechnungsverfahren eine monatliche Annuitéat ermittelt.

1. Die Berechnung der Annuitdt mit dem konformen Monatszinssatz entspricht
der ISMA-Methode und sicht wie folgt aus:

o — ¥/ 1.06— 1 = 0.0048676
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120 ¥1.06-1
Ay = 1000 x (¥/1.06) v o
(‘\2/1.06) 1
V1.06—1
=1000 x 1.06'% ¥
~ 1.0610— 1

=11.022€/Monat

Die monatliche Annuitét betrdgt etwa 11.02<€.
2. Die Berechnung der Annuitit mit dem relativen Zinssatz entspricht der US-
Methode und fiihrt zu folgendem Ergebnis:

el _ 006
12 12

Ay = 1000 x 1.005'2

=0.005

o 1.005—1

1005120 _ | =11.10€/Monat

Der effektive Jahreszinssatz betréagt:
i =1.005' —1=10.061678 = 6.1678 Prozent

Beachten Sie, dass i. d. R. ein Aquivalenzansatz zur Berechnung des effektiven
Zinssatzes notwendig ist (siche Kapitel 9.8.7). Im vorliegenden Fall ist er:

n

10001100 L 47!

q" q—1
n ist besitzt den Wert 120 (Monate). ¢ wird iiber ein Nullstellenproblem be-
rechnet und beinhaltet den effektiven Monatszinssatz (¢ = 1.005).

3. Die Praktikerformel mit der einfachen Verzinsung binnen Jahresfrist leitet sich
aus der Gleichung (9.8) ab, die nach r umgestellt wird. Der monatlichen Rate
r in der Gleichung (9.8) entspricht hier die monatliche Annuitdt 4}, und der
Rentenendwert R der jahrlichen Annuitét 4.

A 135.87

App = =
12+5.5i 12+5.5x0.06

=11.019€/Monat

Die monatliche Annuitit betrdgt etwa 11.02 €. Man erkennt aber, dass sich die
Zahlen nicht exakt gleichen. Aufgrund des fehlenden Zinseszinseftekts fallt
die gleichmédfBige Aufteilung in Monatsraten etwas niedriger aus. £SS

9.8.2 Restschuld

Aus der Gleichung (9.31) lésst sich die Restschuld (outstanding balance) berechnen.
Die Schuld K wird iiber ¢ Perioden zum Zinssatz i angelegt. Hiervon ist der Endwert
der Zahlungen in Hohe von A4, welche bis zum Zeitpunkt ¢ aufgelaufen sind, abzu-
ziehen. Die Differenz ist die Restschuld K; zum Periodenende 0 < ¢ <n. FirK,, =0
ergibt sich die Gleichung (9.31).
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(1
KI:KOq’—Az_l fiir0 <t <n (9.33)
n__ .t
k1 1 (9.34)
qn_l

Zum Zeitpunkt ¢ = n (K, = 0) entspricht der Betrag K ¢ dem Endwert der wie-
der angelegten Zahlungen in Hohe von A (Aquivalenzprinzip). Dies ist die Voraus-
setzung, damit ein Betrag K, verliechen wird. Die Gleichung (9.34) erhilt man, wenn
die Annuitét A durch die Formel (9.32) ersetzt wird.

Beispiel 9.45. Die Restschuld des Kredits in Beispiel 9.43 betrégt am Ende des 2.
Jahres (sieche Tabelle 9.7)

1.06%2—1
K =1 1.06% —135.
> = 1000 x 1.06% — 135.87 061
1.0610 — 1.062
= 1000 L0610 1 =843.71€

9.8.3 Tilgungsrate

Die Tilgungsrate (rate of redemption, principal repayment) T; zum Ende der Periode
kann aus 4 = T; + Z; errechnet werden.

Li=A4A—-7%
Fiir £ = 1 erhélt man:
T\ =A-27 Z1 =Kyi
' =A—Kyi

Fiir ¢ = 2 erhélt man:
h=A4-7 Z, =Kyi Ki=Ky—T
1> ist folglich:
Lh=A-Ki=A— (Ko—T)i=A—Kji+T1i=Tq

Die folgenden Tilgungsraten erhilt man auf gleichem Weg. Die allgemeine Glei-
chung ist
L=T_19g=T ¢ " firl <t <n (9.35)

Beispiel 9.46. Die Tilgungsrate in der 2. Periode betragt:

T =Ti x 1.06' = (135.87 — 1000 x 0.06) x 1.06 = 80.42
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9.8.4 Tilgungsplan

Ein Tilgungsplan (redemption plan) ist eine tabellarische Aufstellung der geplanten
Riickzahlungen eines Kreditbetrags.

Beispiel 9.47. Der Tilgungsplan fiir den Kredit aus Beispiel 9.43 ist in Tabelle 9.7
wiedergegeben. Die Zinsen Z; im Tilgungsplan lassen sich leicht aus der Restschuld
zum Periodenende berechnen:

Zi=K_,i firl<t<n

Die Restschuld K; ist aus der Differenz von Restschuld und Periodenende und
Tilgung zu berechnen.

K=K_1—-T, firl<t<n

Tabelle 9.7: Tilgungsplan fiir Annuitétenkredit aus Beispiel 9.43

Jahr Restschuld zum Zinsen Tilgung Annuitét
Periodenende
t K; Z T A

0 1000.00 - - -

1 924.13  60.00 75.87 135.87
2 843.71  55.45 80.42 135.87
3 758.47  50.62 85.25 135.87
4 668.11  45.51 90.36 135.87
5 572.33  40.09 95.78 135.87
6 470.80 34.34 101.53 135.87
7 363.18 2825 107.62 135.87
8 249.10  21.79 114.08 135.87
9 128.18 14.95 120.92 135.87
10 0.00 7.69 128.18 135.87

> 5977.99 358.68 1000.00 -

Haufig wird die Annuitét auf einen ganzen Eurobetrag aufgerundet, der dann
iiber n — 1 Perioden zu zahlen ist.

q—1
Al = | Koq"
[A] { 07" J
Fiir die letzte Rate ergibt sich dann ein geringerer Betrag, der als Schlussrate

bezeichnet wird. Diese kann aus der verzinsten Restschuld (siehe Gleichung (9.33))
berechnet werden.
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n—1 __ 1
Schlussrate = (Ko " —T14] 1 ! > q
q—

n

—Kog" — A4

0q" — [4] g1

Beispiel 9.48. In Beispiel 9.43 wiirde sich dann eine aufgerundete Annuitét von
[135.87] =136€

ergeben. Die Schlussrate betrdgt dann

1.06'°—1.06
Schlussrate = 1000 x 1.06'0 — 136 x 061 = 134.26€

9.8.5 Berechnung eines Tilgungsplans mit Scilab

In Scilab kann der Tilgungsplan 9.7 wie folgt berechnet und ausgegeben werden.

i=0.06 // Zinssatz
K0=1000 // Kreditbetrag
n=10 // Jahre

g=1+1 // Zinsfaktor

A=KO0xg"nx (g-1) /(g"n-1) // Annuitét

t=0:n

Kt=K0*q t-A+ (qg*t-1)/(g-1) // Restkapital
Tt=A-Kt (1:n)*i // Tilgungszahlungen
Zt=Kt (1:n) 1 // Zinszahlungen

// Tilgungsplan

TP=[t;Kt; [0,Zt];[0,Tt]; [0,0ones (1,n)*A]l]"’

// RAusgabe

[["t’;"Restschuld’;’Zins’;'Tilgung’;’'Annuitat’]’;...
string (TP) ]

// Tilgungsplan mit Schlussrate
Astar=ceil (A) // aufgrundetes Annuitdt
Aschluss=K0+g"n-Astarx (q"n-q)/(g-1) // Schlussrate

tstar=0: (n-1)

Ktstar=K0+g tstar-Astarx (g*tstar-1)/(g-1)
Ttstar=Astar-Ktstar(l: (n-1)) *1i
Ztstar=Ktstar(l: (n-1))*i
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Tschluss=Aschluss-Ktstar(n) i // Schlusstilgung
Zschluss=Ktstar (n) 1 // Schlusszins
Kschluss=Ktstar (n) -Tschluss // Schlussschuld

Ktneu=[Ktstar,clean (Kschluss)]
Ttneu=[Ttstar, Tschluss]

Ztneu= [Ztstar, Zschluss]

Aneu=[ones (1, (n-1) ) *xAstar,Aschluss]

// Tilgungsplan

TPneu= [t ;Ktneu; [0, Ztneu] ; [0, Ttneul ; [0,Aneul] ]

// Ausgabe

[["t’;'Restschuld’;’Zins’; 'Tilgung’; 'Annuitét’]l’;...
string (TPneu) ]

9.8.6 Anfinglicher Tilgungssatz

Der anfiingliche Tilgungssatz plmg””g ist das Verhiltnis von der Tilgung der ersten
Periode zum Kreditbetrag. Mit Hilfe des anfénglichen Tilgungssatzes kann die An-
nuitdt bestimmt werden.

pTilgung - hn
] =
Ko

A=Ko(i+py" ")

Man kann die weiteren Tilgungssitze p!"*""¢ natiirlich ebenso berechnen.

: T
pligung — T fiir1 <t <n

t—1

Es gilt stets _
A=K, (i+p/e"e)

Beispiel 9.49. Die Tilgungssitze im Kreditbeispiel 9.47 lassen sich durch Division
der Tilgung zur Restschuld aus dem Tilgungsplan (siche Tabelle 9.7) berechnen. Das
Ergebnis der Division steht in Tabelle 9.8. Der anfangliche Tilgungssatz betrédgt hier
7.59 Prozent. Aus dem Zinssatz und dem anfénglichen Tilgungssatz, wie sie héu-
fig in (Hypoteken-) Kreditvertragen angegeben sind, kann man leicht die Annuitét
berechnen.

A =1000(0.06+0.0759) = 135.87€/ Jahr

63

Alternativ kann man den Tilgungssatz auch aus dem folgenden Ansatz gewinnen:
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Tabelle 9.8: Tilgungssétze zum Kreditbeispiel 9.47
1 2 3 4 5 6 7 8 9 10

7.59% 8.70% 10.10% 11.91% 14.34% 17.74% 22.86% 31.41% 48.54% 100.00%

Tl ! - q—1
1([_1 (l+ptzgung) :Kt—lqn t+1

n—t+1 _
. A L
y
Auflésen der Gleichung nach p!"8""€ liefert:
pltewe _ gt 4— 1 (9.36)

=4 qn—t+l —1 o

Beispiel 9.50. Fiir t = 1 ergibt sich nach Gleichung (9.36) mit den Angaben aus dem
Kreditbeispiel 9.47 der anfangliche Tilgungssatz:
1.06 — 1

Tilgung 10
P =1.06 10610 —

L 0.06=10.07586

o3

Mit einem gegebenen anfanglichen Tilgungssatz und einem effektiven Zinssatz
kann durch Umstellen der Gleichung (9.36) die Laufzeit n des Kredits bestimmt
werden. Fiir 7 = 1 ergibt sich:

lIl (1 + TiI;zmg)
n= i (9.37)

Ing
Beispiel 9.51. Wird der anfangliche Tilgungssatz auf 10 Prozent erhoht, so reduziert
sich fiir den Kredit in Beispiel 9.47 die Laufzeit auf
0.06
_In (1+%1)
In1.06
Bei dieser Laufzeit erhoht sich die Annuitét auf
A =1000 x (0.06+0.1)

= 8.0661 Jahre

1.06 1
N 8.0661
= 1000 x 1.06%*%x = Cocer |

= 160€/ Jahr.
It

Interessant ist bei der Formel (9.37), dass bei einer Erhohung/Reduzierung des
Zinssatzes die Kreditlaufzeit ab-/zunimmt. Dieser Effekt kommt zustande, weil
die Tilgungsraten aufgrund des stirkeren/schwécheren Zinseszinseffekts in Formel
(9.35) stiarker/langsamer steigen.

Beispiel 9.52. Fillt der Zinssatz von 6 auf 5 Prozent in Beispiel 9.51, erhoht sich die
Kreditlaufzeit von 8.0661 Jahre auf 8.3103 Jahre. £es
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9.8.7 Effektiver Kreditzinssatz

Die Berechnung des effektiven Jahreszinses wird durch das BGB §492 Abs. 2 fest-
gelegt.

Effektiver Jahreszins ist die in einem Prozentsatz des Nettodarlehensbe-
trags anzugebende Gesamtbelastung pro Jahr. Die Berechnung des ef-
fektiven und des anfinglichen effektiven Jahreszinses richtet sich nach
§6 der Verordnung zur Regelung der Preisangaben.

In der praktischen Situation der Kreditvergabe kommen Gebiihren, Zuschliage
und andere Kreditzinssatz verdndernde Vereinbarungen vor. In diesen Fillen weicht
die angegebene Nominalverzinsung von dem tatsdchlichen effektiven Zinssatz ab.
Haufig wird dann vom anfinglichen effektiven Kreditzinssatz gesprochen. Dies ist
dann der Fall, wenn die Kreditlaufzeit linger als die Zinsbindung ist. Die Berech-
nung der Effektivverzinsung erfolgt stets mittels des Aquivalenzprinzips. Im einfach-
sten Fall wird der unterjdhrige Zinssatz als relativer Zinssatz berechnet. Dann fallen
der Nominalzinssatz und der effektive Zinssatz auseinander. In komplizierteren Fél-
len miissen Gebiihren usw. eingerechnet werden. Dann ist der effektive Zinssatz fiir
einen Kredit wie bei der Rentenrechnung mittels eines Nullstellenproblems zu be-
rechnen. Hierzu ein Beispiel.

Beispiel 9.53. Angenommen im Beispiel 9.43 wird der Kredit zusétzlich mit einer
einmaligen Gebiihr (auch als Disagio, Damnum, Abgeld bezeichnet) von 2 Prozent
auf den Kreditbetrag belegt. Dieser Betrag wird annuitdtisch bezahlt. Dies bedeutet,
dass er iiber den Zeitraum von 10 Jahren in gleichen Raten bezahlt wird. Wie hoch
ist der Effektivzinssatz? Er muss jetzt mehr als 6 Prozent betragen.

Um einen Kredit mit einer Auszahlungssumme in Hohe von 1 000 € zu erhalten,
muss eine Summe von

1000

1000éK6‘ —0.02K; =0.98K; =K = 0.98 — 1020.41€
aufgenommen werden. Die Annuitét des Kredits betrigt damit
1000 1.06 -1
A" = 1.06'° =138.64€/Jah 9.38
0.98 1.0610 — 1 o ©-38)

Aus der Differenz der Annuititen kann nun einfach die entsprechende jahrliche
Kreditgebiihr berechnet werden, die mit dem Disagio verbunden ist.

rnach — A4
= 138.64 — 135.87
1 1.06—1
= 1000 —1)1.06"
(0.98 ) 1.0610 — 1
1.06 — 1
=20.41 x 1.06'° =2.77€/Jahr

1.0610 —1
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Der Barwert der periodischen Gebiihr wird als «up-front fee» bezeichnet.

1
Rnach -1 1
0 000 <0.98 )

1 1.0610—1
=2.77 =2041€
1.06'0 1.06—1

Nachdem das Disagio in eine absolute periodische und einmalige Gebiihr umge-
rechnet wurde, wird nun mit Hilfe des Aquivalenzprinzips der effektive Kreditzins-
satz bestimmt, aus dem sich dann der Zinsaufschlag ergibt.

Die Annuitit in der Gleichung (9.38) muss einen Kredit mit einem Zinsfaktor
von ¢ ohne Bearbeitungsgebiihr tilgen. Die Leistung des Glaubigers muss der des
Schuldners entsprechen (Aquivalenzprinzip).

. 1 qIO —1
1000 = 138.64 |
q° q-1
~ ~
Barwert nachschiissige Rente

(9.39)

Man kann die Aquivalenz auch aus der Restschuldformel (9.33) herleiten. Das
heiB3t die Restschuld muss nach 10 Jahren null Euro betragen

10_1
0100040 — 138.64 7

i (9.40)

Als weitere Moglichkeit, die Aquivalenz zwischen den Leistungen des Gliubi-
gers und denen des Schuldners herzustellen, kann man auch folgende Ansétze wih-
len:

| 1 qIO_l
1000 x 0.98 = 135.87 |, (9.41)
g% g-—1
| 1 qlo_l
1000 = 135.87 +20 (9.42)
g% g—1

In der Gleichung (9.41) wird von einem Auszahlungsbetrag in Héhe von 980€
(1000 x 0.98) ausgegangen. Die Schuldnerleistung entspricht dem Barwert der An-
nuitdten mit dem Betrag von 1 000<€. In der Gleichung (9.42) wird die Leistung des
Glaubigers (1 000<€) den Leistungen des Schuldners (Barwert der Annuitdtenraten
plus den 2 Prozent Bearbeitungsgebiihr vom Kreditbetrag) gleichgesetzt. Die Umfor-
mung der Gleichungen (9.39), (9.40), (9.41) bzw. (9.42) fiihren alle zu dem gleichen

Nullstellenproblem.
138.64 138.64 |
11 10 !
—(1 =0
1 < ™ 1000 )q ™ 1000

Das Programm Scilab liefert einen Effektivzinssatz von 6.428 Prozent p. a. Da-
mit ist der Kredit zu 6 Prozent p.a. Nominalzinssatz plus Gebiihr von 2 Prozent
genauso teuer wie ein Kredit zu einem Zinssatz von 6.428 Prozent p. a. jedoch oh-
ne Gebiihr. Die Gebiihr in Hohe von 2 Prozent des Kreditbetrags entspricht einem
Zinsaufschlag in Hohe von 0.428 Prozent p. a. £el
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Bei einer unterjahrigen Verzinsung eines Kredits wird ein Effektivzinssatz an-
gegeben, wenn der unterjahrige Zinssatz als relativer Zinssatz berechnet wird (siche
hierzu Beispiel 9.44). In folgendem Beispiel wird der Effektivzinssatz fiir einen Kre-
dit berechnet, der mit einer monatlichen relativen Verzinsung bedient wird und mit
einer einmaligen Gebiihr belastet ist.

Beispiel 9.54. Die Kreditsumme betrdgt 1000 € und wird monatlich bedient. Es wird
von einem Nominalkreditzinssatz von 6 Prozent p.a., 5€ Gebiihr und einer Til-
gungszeit von 5 Jahren ausgegangen. Als Erstes ist die monatliche Annuitét mit dem
relativen Monatszinssatz zu berechnen.

0.06
+

12
1.005 -1
_ 60 _
A =1000 x 1.005°" x 1005601 — 19.3328€/ Monat

g9 =1 =1.005

Mit dieser Annuitit kann nun der Aquivalenzansatz aufgestellt werden.

60_1

1 +5

1000L 193328 |
g7 q—1

Das i bzw. ¢, das die Gleichung erfiillt, ist der effektive Kreditzinssatz. Die Berech-
nung von ¢ erfolgt wieder iiber ein Nullstellenproblem.

61 60 !
995¢”" —1014.3328¢7"+19.3328 =0

Die Losung mit Scilab liefert den effektiven monatlichen Kreditzinssatz von 0.51738
Prozent, der einem effektiven Jahreszinssatz von 6.38836 Prozent entspricht. o3

Beispiel 9.55. Der Kredit aus Beispiel 9.43 wird nun mit 2 tilgungsfreien Jahren an-
geboten. Wie hoch ist dann der effektive Kreditzinssatz? Die Annuitét tilgt den Kre-
dit wieder in 10 Jahren. Jedoch wird in den ersten beiden Jahren lediglich der Zins in
Hohe von 60 € gezahlt. Die Tilgung verschiebt sich um 2 Jahre, so dass insgesamt
der Kredit tiber 12 Jahre lauft. Die Leistung des Glaubigers ist weiterhin 1 000<€.
Die Leistung des Schulders ist der Barwert der Annuitét, jedoch um zwei weitere
Jahre diskontiert, da sie erst nach dem 2. Jahr einsetzt, zuziiglich dem Barwert der
Zinszahlungen iiber die 2 Jahre. Der Aquivalenzansatz ist also folgender:

1 g1 1 ¢*—1
1000213587 , 4 160 1 (9.43)
qg'c g—1 q- q—1
1000¢'% — (1000 + 60)¢'% — (135.87 — 60)¢'%+ 135.87 = 0 (9.44)
q q q

Die Verzinsung, die das obige Polynom erfiillt, betridgt 6 Prozent pro Jahr. Die Ver-
zinsung dndert sich durch die tilgungsfreien Jahre nicht. £es

Im Anhang zu §6 der Preisabgabenverordnung (PAngV) wird der Aquiva-
lenzansatz zur Berechnung des effektiven Jahreszinssatzes genannt.
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] n

K, Z
P D D (045)
=0 4 =0 1
N~ LV

Barwert der Glaubigerleistungen ~ Barwert der Schuldnerleistungen

In der allgemeineren Form der Aquivalenzgleichung wird beriicksichtigt, dass
ein Kredit in mehreren Teilbetrdgen K, ausgezahlt werden kann. Mit Z, werden die
Zahlungen des Schuldners bezeichnet. Sie bestehen aus Tilgungs- und Zinsleistun-
gen sowie aus weiteren Kosten. Bei einem Annuitétenkredit sind diese Zahlungen
konstant und werden im Text mit 4 bezeichnet. n; und n, geben die Anzahl der
(Teil-) Perioden an. Um den effektiven Jahreszinssatz zu erhalten, ist bei unterjéh-
rigen Zinsperioden der berechnete Zinsfaktor ¢ mit der Zahl der Teilperioden m zu
potenzieren und in einen Zinssatz umzurechnen®.

Beispiel 9.56. Die Berechnung des effektiven Kreditzinssatzes im Beispiel 9.55 ist
nach der offiziellen Formel (9.45) wie folgt mitn; = 0,n, = 12:
1 60 60 135.87 135.87
- -

1000= " +
q ¢ 7 g'?

(9.46)

Gleichung (9.43) und Gleichung (9.46) sind identisch. Mit der Anwendung der geo-
metrischen Reihenformel erhdlt man die gleiche Form. Die Umformulierung als
Nullstellenproblem fiihrt zur Gleichung

1000¢'2 — 604" — 604" —135.87¢° —...— 135.87 =0 (9.47)

Die Gleichung (9.47) besitzt dieselben Nullstellen wie (9.44). Der effektive Jahres-
zinssatz betrdgt 6 Prozent. ges

Beispiel 9.57. Es wird nun angenommen, dass der Kreditbetrag von 1 000 € zu zwei
gleichen Teilbetragen zu den Zeitpunkten ¢ = 0 und ¢ = 1 ausbezahlt wird. Weiterhin
werden 2 tilgungsfreie Jahre sowie eine Riickzahlung mit der Annuitdt 135.87€
unterstellt. Die Gleichung (9.45) ist dann wie folgt aufzustellen:

500 ; 60 60 135.87 135.87
+77 ="+ +

¢ 9 ¢ ¢ q'?

500

Die Erweiterung der Gleichung mit ¢'? fithrt zum Nullstellenproblem.

5004'2 +4404"" —604'° — 135.87¢° —...135.87 =0

Eine Berechnung von ¢ setzt wieder ein Rechenprogramm voraus (siche Kapitel
9.8.8). Der effektive Kreditzinssatz betrdgt nun 6.5167818 Prozent pro Jahr. ges

8 In der PAngV wird der Zeitindex ¢ direkt als Bruch 151 eingesetzt. Dies fiihrt jedoch in
der Berechnung zu Polynomen mit reellen Potenzen, was in der numerischen Berechnung
Schwierigkeiten macht. Die nachtrdgliche konforme Umrechnung ist praktischer und fiihrt
zum gleichen Ergebnis.
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Beispiel 9.58. Der Kredit in Hohe von 1 000<€ wird iiber 120 Monate mit Raten in
Hohe von 10 € zuriickgefiihrt. Wie hoch ist der effektive Jahreszinssatz? Der Aqui-
valenzansatz ist

LR 10
1000=Y" "
=1 q

100042 — 104 — ...~ 1020
Unter Verwendung des Endwerts der geometrischen Reihe erhélt man

100042 —9904'2° + 10 =0

Die Nullstellen der Gleichungen liefern den Monatszinssatz. Beide Gleichungen be-
sitzen an der Stelle 1.0031142 eine Nullstelle. Dies ist der monatliche Zinsfaktor,
der mit 12 zu potenzieren ist. Dann erhélt man den effektiven Jahreszinssatz mit
i =3.8016951 Prozent (siche Kapitel 9.8.8). tes

Zum Abschluss dieses Abschnitts wird im folgenden Beispiel ein Bausparvertrag
analysiert.

Beispiel 9.59. Ein Bausparvertrag besteht aus einer Ansparphase und einer Kredit-
phase. Fiir die Ansparphase werden folgende Konditionen unterstellt: Der Bausparer
zahlt tiber ng = 8 Jahre 4 Promille der Bausparsumme B ein. Die Raten werden vor-
schiissig mit 1.5 Prozent verzinst. Die Bausparsumme wird nach 8 Jahren ausgezahlt.
Die Differenz zwischen der Bausparsumme und dem Sparbetrag ist der Bausparkre-
dit. Dieser wird mit Raten in Hhe von 6 Promille der Bausparsumme iiber ng = 10
Jahre getilgt. Der Bausparkreditzinssatz betrdagt 3.75 Prozent.

Ist die Finanzierung mit dem Bausparvertrag giinstiger oder schlechter als eine
freie Finanzierung? Es wird unterstellt, dass bei der freien Finanzierung die Sparra-
ten zu besseren Konditionen angelegt werden. Fiir den Sparvertrag wird ein Zinssatz
von ig = 0.0325 angenommen. Durch die bessere Verzinsung der Raten ist der Rente-
nendwert héher und der Kredit Ko, der in acht Jahren aufzunehmen ist, fallt geringer
aus.

In der folgenden Betrachtung wird eine Aquivalenz zwischen dem Kredit K
und den Leistungen des Bausparers aufgestellt. Die Leistungen des Bausparers sind
zum einen die Sparraten » = 10400 B und zum anderen die Annuitdten 4 = 10600 B.
Die Sparleistungen fithren mit der Verzinsung ig zum Rentenendwert R)°". Bei einer
Bausparsumme von 50 000 € betrigt das angesparte Kapital

"R 1.03258 -1
x = 0.004 x 50000 x ¥/1.0325 =21909.08€

/1.0325—1

Der unterjéhrige Zinssatz ist konform berechnet. Der Kredit ist die Differenz aus der
Bausparsumme und dem Angesparten.

RZO}’ — qu

Ko =B—-21909.08 =28090.92€
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Der Kredit wird mit der Annuitit 4 = 0.006 x 50000 = 300 € getilgt. Die Aqui-

valenz
A ¢« —1

q"c q—1
liefert den effektiven Kreditzinssatz der Bausparkasse. Die Auflosung der Aquiva-
lenz fiihrt zu der bekannten Gleichung

Ko

Clq) =Kog" (g —1) —A(g" ~ 1) =0

}’lR_l
—B (1 —0.004¢z IR 1 ) 4" (¢—1)—0.006B(¢"% —1) =0
qRr —

nR

1
_ (1—0.004qRqR | ) 4" (g—1)—0.006 (¢" — 1) =0
qr —

Die Aquivalenz ist unabhiingig von B. Werden die obigen Angaben in die Gleichung
eingesetzt erhdlt man:

C(q) = 0.561818 4" ! — (0.561818 +0.006) ¢"% +0.006 = 0

Die Losung (mit Scilab berechnet) fiir ¢ ist 1.0042909. Der kritische Jahreszinssatz
betrdgt damit 5.27 Prozent. So viel darf der Kredit in 8 Jahren hochstens kosten,
um nicht teurer als die Bausparkasse zu werden. Wenn der Zinssatz in 8 Jahren fiir
ein Darlehen mit zehnjéhriger Zinsbindung darunter liegt, ist die freie Finanzierung
glinstiger. Liegen die Zinsen fiir den Kredit in acht Jahren iiber 5.27 Prozent, ist das
Angebot der Bausparkasse glinstiger.

Féllt (unter sonst gleichen Bedingungen) der Zinssatz fiir den freien Sparplan,
so féllt auch der kritische Kreditzinssatz. Der Bausparplan wird giinstiger. Steigen
hingegen die Sparzinssitze, so wird der Bausparplan unattraktiver.

Zu beachten ist aber, dass die Zinssitze der Bausparkasse zum Zeitpunkt des Ver-
tragsabschlusses vereinbart werden und damit keinen Anderungen mehr wihrend der
Zeit unterliegen. Der vereinbarte Bausparkreditzinssatz ist also ein Terminzinssatz.
Bei der freien Finanzierung ist der Kreditzinssatz erst kurz vor der Kreditaufnahme
im achten Jahr fest und Zinssétze konnen sich binnen kurzer Zeit stark dndern. ~ 3x

9.8.8 Berechnung des effektiven Kreditzinssatzes mit Scilab

Die Berechnung des effektiven Kreditszinssatzes in Beispiel 9.57 ist mit den folgen-
den Anweisungen erfolgt.

// Berechnung der Annuitit

an = 1.06;

n = 10;

K = 1000;

A = Kxgq™n*(g-1)/(g"n-1) ;
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c
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Aufstellen des Polynoms
poly ([ (-Axones(1,10)) -60 (K/2)-60 K/21,"g",...
"coeff");

// Nullstelle und Umrechnung auf einen Prozentsatz
gqg = roots(C) ;

i = real(gg(find(imag(gg)==0))) - 1)=*100

Der effektive Kreditzinssatz in Beispiel 9.58 wird wie folgt berechnet.

Z = 10;

m= 12;

n = 10;

nm = nxm;

K = 1000;

// 1. Gleichung

pl = poly([-Zxones(1l,nm) K],"g","coeff");

gl = roots(pl) ;

gl = real(gl(find(imag(gl)==0)));

il = (max(gl)”*m-1)%100

// 2. Gleichung

p2 = poly([Z zeros(l,nm-1) -(K+Z) K],"gq","coeff");
g2 = roots (p2) ;

g2 = real (g2 (find(imag(g2)==0))) ;

i2 = (max(g2)*m-1) %100

9.8.9 Mittlere Kreditlaufzeit

Die mittlere’ Kreditlaufzeit ist die Kreditlaufzeit, bei der die Halfte des Kredits ge-
tilgt ist. Sie fallt aufgrund der annuititischen Riickzahlungsstruktur in die zweite
Hilfte der Kreditlaufzeit (siche Abb. 9.12). Je hoher der Zinssatz ist, desto hoher
fallt die mittlere Kreditlaufzeit aus. Man erkennt in Abb. 9.12 auch deutlich, dass
nach der Hélfte der Kreditlaufzeit noch nicht die Hélfte des Kreditbetrags getilgt ist.

Aus dem Ansatz

mit

 Mit dem Adjektiv «mittlere» wird hier die Zeit bezeichnet, in der 50 Prozent des Kredits
getilgt sind. Man bezeichnet dies auch als Median der Restschuld. Haufig wird damit eine

(1
K[:Koqt—A(g_l

durchschnittliche Betrachtung angesprochen, die hier nicht gemeint ist.
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Abb. 9.12: Mittlere Restlaufzeiten

erhilt man

f0.s5) _
Ko 1 Koq'09 — 4 q 1
2 qg—1

Auflosen der Gleichung nach ¢ ergibt die gesuchte Beziehung

54
In{ ° °
17K0

Los) = Ing

Beispiel 9.60. Die mittlere Kreditlaufzeit im Beispiel 9.43 betragt

I (096—‘%36%7>
n
0.06_ 135:87
190/ — 57181 Jahre
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Ubung 9.8. Ein Versandhaus gewihrt einem Kunden nach Anzahlung von 10 Pro-
zent des Kaufpreises eines Heimkinos fiir 5000€ einen Verbraucherkredit iiber
den Restbetrag mit einer Laufzeit von 24 Monaten zu folgenden Konditionen:

e Zinssatz: 0.6 Prozent pro Monat bezogen auf den Anfangskredit
e Bearbeitungsgebiihr: 2 Prozent des Kreditbetrags
e Riickzahlung: 24 annuititische Raten

Beantworten Sie folgende Fragen:

1. Wie hoch ist die monatliche Rate?
2. Wie hoch ist der effektive Kreditzinssatz pro Jahr?

Ubung 9.9. Ein Kaufhaus bietet einen Konsumentenkredit zu folgenden Konditio-
nen an:

e 4 Prozentp.a.
e Laufzeit 36 Monate

Das Besondere an einem Konsumentenkredit ist, dass die Tilgungsraten erst am
Ende der Laufzeit verrechnet werden. Berechnen Sie den effektiven jéhrlichen Kre-
ditzinssatz.

Ubung 9.10. Beim Kauf eines Pkws im Wert von 15000 € miissen 20 Prozent an-
gezahlt werden. Der Rest soll in 48 Monatsraten getilgt werden. Auf die Rest-
kaufsumme wird ein Zinssatz von 0.3 Prozent pro Monat vereinbart.

Beantworten Sie folgende Fragen:

1. Wie hoch ist die monatliche Annuitéit?
2. Wie hoch ist der effektive Jahreszinssatz?

Ubung 9.11. Berechnen Sie die vierteljahrliche Annuitit auf Basis des konformen
vierteljahrlichen Zinses fiir folgenden Kredit:

e Kreditbetrag: 2 Mio €
e Laufzeit: 1 Jahr
e Zinssatz: 7 Prozent p. a.

Beantworten Sie auflerdem folgende Fragen:

1. Stellen Sie fiir den oben beschriebenen Kredit einen Tilgungsplan auf.

2. Berechnen Sie den effektiven Jahreszins des obigen Kredits, wenn eine ein-
malige Kreditabschlussgebiihr in Hohe von 0.1 Prozent des Kreditbetrags
fallig wird.
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Ubung 9.12. Berechnen Sie fiir folgenden Bausparvertrag den effektiven Kredit-
zinssatz. Die Bausparsumme betrdgt 50 000 €. Es werden monatlich 250 € {iber 8
Jahre gespart. Die Raten werden am Monatsanfang gezahlt. Die Raten konnen in
einem Banksparplan zu 3.25 Prozent angelegt werden. Der Kredit ist mit 300€
monatlich iiber 8 Jahre zu tilgen.

9.9 Investitionsrechnung

Bei der Investitionsrechnung geht es grundsitzlich um die Frage, ob ein Kapital K
investiert werden soll. Die Alternative ist, den Betrag zum Zinssatz i anzulegen. Um
die Investition beurteilen zu kdnnen, miissen die Ertrdge und Kosten beriicksichtigt
werden. Diese Ertridge und Kosten sind periodische Zahlungen, die aber anders als in
der Rentenrechnung in der Regel nicht konstant sind. Daher kénnen die Rentenend-
bzw. Rentenbarwertformeln hier nicht angewendet werden. Die Ansitze der Investi-
tionsrechnung werden auch in der Unternehmensbewertung eingesetzt.

Ko Z Z Zn—1 Zn
1 2 3 n
q 1 q 2 q cen—1 q
1. Periode 2. Periode 3. Periode n-te Periode

Co
Abb. 9.13: Struktur einer Investition

Man unterscheidet in der Investitionsrechnung statische und dynamische Verfah-
ren. Bei der statischen Investitionsrechnung wird ein Vergleich von Kosten, Gewin-
nen oder Rentabilitdten vorgenommen, ohne dass dem Zeitfaktor Rechnung getragen
wird. In der Rechnung wird nur das erste Jahr oder ein repriasentatives Jahr angesetzt.
Die statischen Verfahren berticksichtigen daher nicht die finanzmathematischen Ver-
fahren. Die statische Investitionsrechnung wird hier nicht behandelt.

Die dynamische Investitionsrechnung setzt die oben beschriebenen finanzma-
thematischen Verfahren ein. Im Folgenden werden die Kapitalwert-, die Annuité-
tenmethode und die Methode des internen Zinsfuf3es beschrieben. Sie alle sind dem
Ansatz nach identisch und unterscheiden sich — wie schon bei der Rentenrechnung
dargelegt — nach der Fragestellung.

9.9.1 Kapitalwertmethode

Aus der Investition in Hohe von K|y entstehen {iber n Perioden Ertrdge und Kosten,
die saldiert durch die Zahlungen Z; beschrieben werden. Bei der Kapitalwertmethode
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wird der Barwert der Investition, also die diskontierten Ertrdge und Kosten aus allen
zukiinftigen Perioden berechnet. Dabei wird unterstellt, dass die zukiinftigen Ertrage
und Kosten mit Sicherheit eintreten. Der Kapitalwert misst also den Vermdgensiiber-
schuss bzw. -minderung zum Zeitpunkt ¢ = 0. Als Alternative kommt die Anlage von
Koy zum Zinssatz i infrage. Fiir die Periode n ergibt sich der Wert der Investition

Li=20q"+21¢" " +...+ Zy_1q+ 2, firg>1,
der dem Betrag
Kn:Koqn ﬁ:qu>1

gegeniiberzustellen ist. Da man in der Finanzmathematik stets das Barwertprinzip
anwendet, sind die Betrdge zu diskontieren.

Colq)=1y—Ky firg>1

I, K Z Z “
= Mz T K=Y Zig Ko
9 q q q pore

Co(q) wird hier als Kapitalwert (net present value) bezeichnet und i ist der Kal-
kulationszinssatz!?. Eine Investition ist vorteilhaft, wenn der Kapitalwert bei ei-
nem Zinssatz i positiv ist. Sind mehrere Investitionsalternativen zu vergleichen, so
ist die Investition mit dem hochsten Kapitalwert bei gleichem Kalkulationszinssatz
am giinstigsten. Daher der Name Kapitalwertmethode.

Beispiel 9.61. Ein Kapital von 1000€ hat iiber den Planungszeitraum von n = 2
Perioden folgende Nettoertrige:

Z1 =600€ im 1. Jahr Z> = 500€ im 2. Jahr

Lohnt sich die Investition bei einem Kalkulationszinssatz von i = 0.05? Der Kapital-
wert betragt:

600 500
Co(1.05) = —1000=124.94€
0(105) =1 5+ 1 052
Da der Kapitalwert positiv ist, lohnt sich die Investition. £SS

Beispiel 9.62. Die Nettoertrige in der Zukunft sind unbekannt. Daher wird angenom-
men, dass sie mit einem konstanten Faktor wachsen (siche Abschnitt 9.6.1 wachsen-
de Rente). Der Ertrag fiir die ersten beiden Jahre ist mit 600€ und 500€ zu be-
stimmen. Fiir die folgenden 8 Jahre unterstellt man eine Schiatzung des Ertrags von
500 € mit einem Wachstum von 3 Prozent. Die Investition betrage 4 000 € und der
Kalkulationszinssatz 5 Prozent. Es liegt dann folgender Zahlungsstrom vor:

10 Der Kalkulationszinssatz kann zum Beispiel durch die gewichteten durchschnittlichen Ka-
pitalkosten (weighted average cost of capital) des Unternechmens gegeben sein.
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t 0 1 2 3 10
Z, —4000 600 500 500x1.03 --- 500x1.03%

Der Kapitalwert der Investition kann fiir die Jahre 2 bis 10 durch eine wachsende
Rente berechnet werden.

600 500 500 x 1.03 500 x 1.038
Co(1.05) = o — 4000
0(1.05)= 1051052t 105 Tt o510

_ 600 1 500 1.05° —1.03°
1,05 1.051.05° 1.05-1.03_

~

Barwert einer wachsenden
Rente zum Zeitpunkt 2

—4000=355.51€

o3

Wird eine nicht-flache Zinsstruktur unterstellt, so muss man wie in Kapitel 9.7.5
den Kapitalwert iiber Nullkuponzinssétze berechnen.

9.9.2 Methode des internen Zinssatzes

Bei der Methode des internen Zinssatzes (internal rate of return) wird die Frage-
stellung umgekehrt: Welcher Zinssatz ergibt einen Kapitalwert von Null? Liegt die
gewlinschte Kapitalverzinsung (Kalkulationszinssatz, Vergleichszinssatz) iber dem
internen Zinssatz, so ist die Investition unvorteilhaft, da ein negativer Kapitalwert
eintritt. Die Fragestellung ist dhnlich der nach der Rendite bei einem festverzinsli-
chen Wertpapier. Auch hier wird bei dem Ansatz eine flache Zinsstruktur unterstellt.
Das Aquivalenzprinzip liefert folgende Gleichung, deren Nullstellen den internen

Zinssatz liefert: 7 P
1

Co(q) = g +..4+7

Die Nullstellen des Polynoms liefern den gesuchten internen Zinssatz. Sie konnen in

der Regel nur mit einem Naherungsverfahren wie der regula falsi bestimmt werden.

~Ko=0

qn

Beispiel 9.63. Es wird das Beispiel 9.61 fortgesetzt. Bei welchem internen Zinssatz
ist der Kapitalwert Null?

600 500
Colg)=" + , —1000=0 fiirg>1
7 4 (9.48)
, 600 500
=q"— q-— =0
10007 1000

g12=03£1032+0.5
g1 = 1.068112; ¢, =—0.4681

Im vorliegenden Fall konnte der interne Zinssatz leicht mit der quadratischen Ergén-
zung gelost werden, da nur ein Zeitraum von 2 Perioden vorgegeben war. Der interne
Zinssatz betrdgt 6.8115 Prozent. Die zweite Losung ergibt keinen Sinn, zeigt aber die
Mehrdeutigkeit der Losung auf (siche Abb. 9.14). £es
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Abb. 9.14: Kapitalwerte der Gleichung (9.48)

Beispiel 9.64. Der interne Zinssatz in Beispiel 9.62 ist die Nullstelle fiir ¢ > 1 des
Polynoms

600 500 500 x 1.03 500 x ¢®
= q ¢ PE et 10
=6004° +5004° +500 x 1.03¢" + ...+ 500 x 1.03* —40004'° = 0

!
Co(q) — 4000 =0

(9.49)

Der interne Zinssatz mit Scilab berechnet (siche Kapitel 9.9.3) betrégt 6.746 Prozent
p-a. Tt

Zur Interpretation des internen Zinssatzes: Der interne Zinssatz ist der Zinssatz,
den die geplante Investition eben noch erzielen kann. Wird ein héherer Zinssatz ge-
fordert, weil zum Beispiel der Kapitalmarkt hohere Kapitalverzinsungen liefert, ist
die Investition unvorteilhaft. Ebenso ldsst sich beim Einsatz von Fremdkapital ar-
gumentieren. Liegt der Fremdkapitalzinssatz iiber dem internen Zinssatz, so ist die
Investition nicht zu finanzieren.

9.9.3 Berechnungen mit Scilab

Die Berechnung des Kapitalwerts in Beispiel 9.62 kann mit Scilab wie folgt berech-
net werden.
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cashflow = [-4000,600,500%0nes(1,9)]
gdiskont = 1.05; // Diskontierungsfaktor
ggrowth = 1.03; // Wachstumsfaktor

tdiskont = [0:10];
gd=gdiskont.”tdiskont // Diskontierungsfaktoren

tgrowth = [0,0,0:8]; // extra Null fUr t=0,1
gg = ggrowth.”tgrowth // Wachstumsfaktoren

netcash = cashflow.xgg./qgd
pv = sum(netcash)

// Berechnung mit Barwert einer wachsenden Rente
Cq = 600/gdiskont+500/gdiskont™10x. ..
(gdiskont®9-ggrowth”9) / (gdiskont-ggrowth) -4000

Die Fortfilhrung des Beispiels 9.62 fiihrt zur Berechnung des internen Zins-
satzes (siche Beispiel 9.64). Damit die Erweiterung des Polynoms (9.64) mit ¢'°
mit dem Zahlungsstrom cashflow im Programm iibereinstimmt, die Reihenfol-
ge umgekehrt werden. Dies erfolgt in Scilab mit der umgekehrten Indexierung:
cashflow(11:-1:1).

cfg = cashflow.xqg // cashflow mit Wachstum

p = poly([cfg(11:-1:1)],’q’, ' coeff’)
gi roots (p) ;

gi real (gi (find (imag(gi)==0)))
(max (gi)-1) %100

9.9.4 Probleme der Investitionsrechnung

Ein erstes Problem tritt bei Investitionen auf, deren periodische Ertrage nicht nur
positiv sind. Solche Investitionen werden auch als nicht-normale Investitionen be-
zeichnet.

Beispiel 9.65. Bei einer Investition mit der Zahlungsreihe
Ky 2y 2, Z3
100 200 600 —650

treten im Bereich von 1 < ¢ < 2 (0 < i < 1) ausschlieBlich positive Kapitalwerte
auf (siehe Grafik links oben in Abb. 9.15). Es ist kein interner Zinssatz bestimm-
bar. In Abb. 9.15 sind weitere Fille aufgezeigt. Es konnen mehrere positive interne
Zinssitze auftreten. Dann ist die Investition in den Bereichen positiver Kapitalwerte
vorteilhaft. Ees
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C(a) C(q)
1301 5001
901 4001
50 Co(q)>0 3001
101 ‘ q
g8 /10 12 14 16 18 20 200
° Colg)<0
100 olq
-70-
0 ‘ . . ‘ g
-1107 ols 1. 12 14 16 1.8 0
-150- -100
-190- -200
C(a) C(q)
1007 5001
0 - - : : . . q 4001
os 1 12 14 16 T8—20
1004 Co(q) besitzt zwei positive ¢ 3001
-200- 200 . N
Co(q) besitzt zwei positive ¢
-300- 1001
-400 0 T T T T 1 q
o8 10 2 44— 16 18 20
-500- -100’

Abb. 9.15: Nicht-normale Investitionen

Ein anderes Problem kann beim Vergleich zweier Investitionen auftreten. Die
Kapitalwertmethode und die Methode des internen Zinssatzes konnen ein scheinbar
widerspriichliches Ergebnis liefern. Dieser Widerspruch besteht darin, dass sich die
Kapitalwertfunktionen schneiden. Ein Beispiel erldutert dies am besten.

Beispiel 9.66. Es liegen zwei Investitionsvorhaben vor, die einen Planungshorizont
von n = 3 Jahren haben und einen Investitionsbetrag von Ky = 100 aufweisen. Die
Kapitalwertfunktion der ersten Investition ist

80 60 10
Colg) = =100+ "+ 5+ 5 flirg>1

und die der zweiten

10 70 90
Co(g)=—-100+ "+ 4 . firg>1
q q q
Fiir die erste Investition wird ein interner Zinssatz von 31.44 Prozent berechnet und
fiir die zweite ein interner Zinssatz von 24.41 Prozent. Hiernach scheint die erste
Investition vorteilhafter zu sein. Es werden nun die Kapitalwerte zu einem Kalkula-
tionszinssatz von 10 Prozent berechnet.

Co(1.1) =29.83€
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Co(1.1) =34.56€

Nun ist die zweite Investition vorteilhafter. Woran liegt das? Die beiden Kapitalwert-
funktionen besitzen einen Schnittpunkt, wie Abb. 9.16 zeigt. £

120+

100

31.44%
10% 24.41%

Abb. 9.16: Vergleich von zwei Investitionen

Bei der Investitionsrechnung ist der Kapitalwert fiir einen gegebenen Kalkulati-
onszinssatz die entscheidende Grof3e. Er bestimmt, welche Investition vorteilhaft ist.
Daher ist der Kalkulationszinssatz stets sehr sorgféltig zu bestimmen. Wird ein zu
hoher Kalkulationszinssatz gefordert, wird der Kapitalwert kleiner oder negativ und
die Investition wird unvorteilhaft. Wird ein zu niedriger Kalkulationszinssatz einge-
setzt, so konnten Fremdkapitalgeber das Projekt als unrentabel einstufen. Dass sich
bei unterschiedlichen Kalkulationszinssétzen die Vorteilhaftigkeit verschiedener In-
vestitionen umkehren kann, ist dabei zu beriicksichtigen.
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Ubung 9.13. Ein Investor kauft 500 Aktien zu einem Gesamtpreis von 100 000 €.
Im ersten Jahr nach dem Kauf der Aktien wird keine Dividende gezahlt. Im zweiten
Jahr wird infolge giinstiger wirtschaftlicher Entwicklungen eine Dividende von 5 €
pro Aktie ausgeschiittet. Der Investor kann das Aktienpaket nach 2 Jahren zu einem
Preis von 110000 € verkaufen.

Beantworten Sie folgende Fragen:

1. Wie hoch ist die Rendite?
2. Ist die Anlage vorteilhaft, wenn andere Anlagen im gleichen Zeitraum eine
Rendite von 6.5 Prozent p. a. erzielen?

Ubung 9.14. Es liegt folgende Investition zur Entscheidung an:

e Zinssatz: 5 Prozent p. a.
e Investitionsbetrag: 1 000 €
e Nettoertrdge: im ersten Jahr 700 €, im zweiten Jahr 800€

Berechnen Sie fiir die obige Investition den

1. Kapitalwert und
2. internen Zinssatz

Ubung 9.15. Jemand kann fiir 3 Jahre ein Strandcafé fiir 50 000€ iibernehmen.
Fiir diesen Zeitraum werden die folgenden Einnahmen und Ausgaben jeweils am
Jahresende erwartet:

1. Jahr 2. Jahr 3. Jahr
Ausgaben 155000€ 165000€ 175000€
Einnahmen 195000€ 210000€ 230000€

Fiir einen Kredit von 50 000 € werden von der Bank 9.5 Prozent Zinsen verlangt.
Ist nach der Kapitalwertmethode die Investition in das Strandcafé sinnvoll?
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Ubung 9.16. Ein Investor plant den Erwerb einer Wohnung fiir 100 000 €. Er geht
bei seinem Kauf von folgenden Annahmen aus:

e Jihrliche Ausgaben fiir Instandhaltung und Verwaltung 1 000 €.
e Jihrliche Mieteinnahmen abziiglich Nebenkosten 8 000 <.
e Erwarteter Verkaufspreis der Wohnung nach 5 Jahren 110 000 €.

Beantworten Sie folgende Fragen:

1. Wie hoch ist der Kapitalwert der Investition bei einem Kalkulationszinsfuly
von 10 Prozent?

2. Bestimmen Sie ndherungsweise den internen Zinssatz der Investition.

3. Ermitteln Sie den durchschnittlichen jihrlichen Uberschuss bei einem Kal-
kulationssatz von 10 Prozent.

4. Auf welchen Kaufpreis miisste der Investor die Eigentumswohnung herun-
terhandeln, wenn er eine Verzinsung von 10 Prozent wiinscht?

5. Wie hoch ist die jahrliche Annuitét, wenn der Kauf mit einem Kredit finan-
ziert wird, der folgende Bedingungen besitzt:
e Auszahlungskurs: 98 Prozent
e Bearbeitungsgebiihr: 2 Prozent
e Zinssatz: 6 Prozent p. a.
e Laufzeit: 5 Jahre

Ubung 9.17. Ein Unternehmer mochte 150 000€ investieren. Er erwartet fiir die
vierjihrige Nutzungsdauer folgende Uberschiisse:

1. Jahr 2. Jahr 3. Jahr 4. Jahr
35000€ 48000€ 52000€ 58000€

Beantworten Sie folgende Fragen:

1. Ist die Investition bei einem Kalkulationszinssatz von 9 Prozent rentabel?
Beurteilen Sie Ihre Entscheidung mit der Kapitalwertmethode und mit der
Methode des internen Zinssatzes.

2. Was wiirde sich dndern, wenn im 3. Jahr statt des Uberschusses von 52 000 €
mit einem Verlust von 2 000 € gerechnet werden miisste? Zur Finanzierung
dieses Verlustes wiirde ein Kredit zum Zinssatz von 10 Prozent aufgenom-
men. Berechnen Sie Ihr Ergebnis mit der Kapitalwertmethode.

9.10 Fazit

Die exponentielle Zinsrechung, die die Zinseszinsen beriicksichtigt, wird iiberwie-
gend in der Finanzmathematik verwendet. Fiir Zinszahlungen, die nur iiber eine sehr
kurze Zeitperiode geleistet werden, wird manchmal der Einfachheit halber die linea-
re Zinsrechnung verwendet. Der Zinseszinseffekt ist hier meistens so klein, dass er
vernachldssigt werden kann.
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Bei einer Reihe von regelméBigen Zahlungen spricht man von einer Rente. Je
nach Fragestellung ist der Rentenendwert, der Rentenbarwert, die Rate, die Zahl der
Perioden oder der (effektive) Zinssatz zu berechnen. In der Rentenrechnung unter-
scheidet man Zahlungen, die am Anfang einer Periode (vorschiissig) oder am Ende
(nachschiissig) geleistet werden. Bei Zahlungen die unterjéhrig verzinst werden, ist
nach den Rechengesetzen der konforme unterjihrige Zinssatz zu verwenden. In der
Praxis wird aber héufig (wegen der Neigung zum linearen Denken) der relative Zins-
satz verwendet. Dies fithrt dazu, dass zwischen dem Nominalzinssatz und dem ef-
fektiven Jahreszinssatz unterschieden werden muss. Mit dem Aquvalenzprinzip wird
die Rendite (der effektive Zinssatz) berechnet.

In der Annuititenrechnung wird die Riickzahlung eines Kredits betrachtet. Eine
Annuitét ist eine Rate, die aus einer Tilgungs- und einer Zinszahlung besteht.

In der Investitionsrechnung wird das Barwertprinzip auf unregelméfige Zahlun-
gen ubertragen. Mit ihr wird die Entscheidung fiir oder gegen eine Investition im
Rahmen der Annahmen beantwortet.
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10.1 Vorbemerkung

Werden Funktionen fiir einen festen Funktionswert untersucht, zum Beispiel hin-
sichtlich eines Extremums, so kann man dies als eine statische Analyse bezeichnen.
Eine andere Betrachtungsweise ist die dynamische Analyse. Man untersucht dann
die Eigenschaft einer Funktion an verschiedenen Stellen und vergleicht sie mitein-
ander. Es werden also Eigenschaften untersucht, die relativ zur Funktionsdnderung
definiert sind, also Anderungsraten. Dazu gehoren zum Beispiel die Steigung oder
die Kriimmung einer Funktion. Fiir die Untersuchung von Anderungsraten hat sich
die Differentialrechnung als wichtiges Instrument erwiesen. In den Wirtschaftswis-
senschaften wird die Grenzbetrachtung hdufig auch als Marginalanalyse bezeichnet.

Beispiel 10.1. Die Einkommensteuer nach der Grundtabelle fiir 2004 liegt bei ei-
nem zu versteuerenden Einkommen von 19 800 € bei 2 846 €. Der durchschnittliche
Steuersatz betrégt somit 14.4 Prozent des Einkommens (siehe Abb. 10.1). Wiirde der
zu versteuernde Jahresverdienst auf 20 700 € ansteigen, so stiege die Einkommen-
steuer auf 3 099 € an. Bezogen auf das Gesamteinkommen ldge der durchschnittliche
Steuersatz dann bei 15.0 Prozent. In der Regel interessiert jedoch weniger der durch-
schnittliche Steuersatz, sondern die durch das Mehreinkommen verursachte absolu-
te und relative Steuererhohung. Das Einkommen erhoht sich um 900 €; die Steuer
erhoht sich dadurch um 253 €, so dass fiir das Mehreinkommen durchschnittlich
28.1 Prozent Steuer einbehalten werden. Die relative Steuererhohung bezogen auf
das Mehreinkommen bezeichnet man, wenn man sich auf unendlich kleine Einkom-
mensdnderungen bezieht, als Grenzsteuersatz. Es ist die Steigung am Punkt des
betrachteten Einkommens. Der Grenzsteuersatz ist nun wieder eine Funktion des
Einkommens. ted

In der Okonomie wird die Differentialrechnung intensiv genutzt, um zum Bei-
spiel Minima und Maxima 6konomischer Funktionen (zum Beispiel von Kosten-
oder Gewinnfunktionen oder Elastizititen) zu berechnen.

Voraussetzung zur Anwendung der Differentialrechnung ist, dass zumindest eine
abschnittsweise stetige Funktion vorliegt.

In der Differentialrechnung werden héufig folgende Symbole eingesetzt:

lim Grenzwertoperator

A Symbol fiir die erste Differenz

d Differentialoperator

f' erste Ableitung der Funktion f/(x)
€ Elastizitat

10.2 Grenzwert und Stetigkeit einer Funktion

Ankniipfend an das Kapitel 8.5 wird nun eine Folge [x,] betrachtet, die gegen einen
Wert x strebt. Der Wert x wird dann als Grenzwert der Folge [x,] bezeichnet.
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Abb. 10.1: Einkommensteuer

lim x, =x
n—soo
Es wird nun angenommen, dass dann die Folge der Funktionswerte [ f (xnﬂ ge-
gen f(x) strebt. Es werden also zwei Zahlenfolgen betrachtet. Die erste Folge ist
die Folge der Argumente [x,], die dem Grenzwert x zustreben soll. Die zweite Fol-
ge ist die Folge der Funktionswerte [ /(x,)], die dem Grenzwert y = f(x) zustreben
soll. Dies bedeutet, dass der Grenziibergang von links (von unten) zu dem gleichen
Grenzwert flihrt, wie der Grenziibergang von rechts (von oben). Wenn dies gilt, so
bezeichnet man den Wert
lim f(x,) = f(x) flrx, € D(f), [xn] #x, limx, =x
Xp—X n—yoo
als Grenzwert der Funktion y = f(x) an der Stelle x. Existiert der Grenzwert einer
Funktion, so wird die Funktion als stetig im Punkt x bezeichnet. Anschaulich heif3t
eine Funktion stetig, wenn sie in einem Zug zeichenbar ist. Funktionen, die in einem
Punkt nicht stetig sind, werden dort unstetig genannt. Griinde fiir Unstetigkeiten kon-
nen Polstellen, Sprungstellen, Liicken oder extremes oszillierendes Verhalten einer
Funktion sein.
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10.3 Differentialquotient

Die im Beispiel 10.1 erwdhnte Abhingigkeit des Grenzsteuersatzes vom Einkommen
stellt den so genannten Differentialquotienten dar. Der Differentialquotient wird
auch als erste Ableitung einer Funktion bezeichnet.

Es wird eine Funktion im Intervall [x,x;] betrachtet. Die Differenz der Intervall-
grenzen wird mit

Ax=xp —x; firx; <x
und die Differenz der Funktionswerte wird mit

Ay=yr—y1=fx2) = f(x1)

bezeichnet. Es soll die durchschnittliche Anderung der Funktion f(x) im Intervall
[x1,x2] berechnet werden. Sie ergibt sich als

Ay _ 2=

=tanQ
Ax Xy —Xxp

und ist gleich der Steigung der Sekanten, d.h. gleich dem Tangens des Zwischen-
winkels (siche Abb. 10.2).

Der zunéchst als fest angenommene Punkt x, soll nun verénderlich sein und da-
mit auch die Differenz zwischen x; und x;. Um dem formal Rechnung zu tragen,
wird

X1 =X
und

X) =x+Ax

gesetzt. Der Quotient
Ay _ flx+4Ax) - f(x)
=" 10.1
Ax Ax ( )
wird als Differenzenquotient bezeichnet. Er bedeutet die Anderung des Funktions-
wertes relativ zur Anderung der unabhiingigen Verinderlichen iiber dem Intervall
Ax.

Liasst man den Punkt x, nun immer ndher an den Punkt x; riicken, so verkiirzt sich
die Sekante zwischen f(x;) und f(x;) und schmiegt sich immer enger an die Kurve
an. Mathematisch bedeutet diese Anndherung, dass der Grenziibergang Ax — 0 voll-
zogen wird. Die Sekante zwischen den Punkten wird dabei zur Tangente im Punkt
vy = f(x), und die Steigung der Sekanten ﬁi wird zur Steigung der Tangente (siche
Abb. 10.2). Aufgrund der Bedeutung des Grenzwertes des Differenzenquotienten hat
man fiir ihn ein eigenes Symbol und die Bezeichnung Differentialquotient einge-
fiithrt.
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Abb. 10.2: Differentialquotient
d . A . Ax) —
Y — lim ©Y = lim flr+4x) = f(x) (10.2)
dx  Ax—0 Ax Ax—0 Ax
Man spricht ,,dy nach dx“. Als alternative Bezeichnungsweisen haben sich
dy _df d

dx=y’=f’(x)— PG

etabliert. Existiert der Grenzwert (10.2), so heifit die Funktion im Punkt x differen-
zierbar. Ist die Ableitung eine stetige Funktion, so wird f(x) stetig differenzierbar
genannt.

Beispiel 10.2. Der Differentialquotient der Funktion

y=x firxeR

lautet
d Ax)? —x*
Y i (x+Ax)’ —x
dx Ax—0 Ax
gos
Mit der Definition des Differentialquotienten ist nicht viel gewonnen. Tatséchlich

kommt es darauf an, den Grenzwert zu berechnen. Man bezeichnet dies als Differen-
zieren.
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Beispiel 10.3. Die Berechnung des Differentialquotienten aus Beispiel 10.2 ist wie
folgt:

'~ lim (x+Ax)? —x*
Ax—0 Ax
— lim X3+ 3x2 Ax +3x(Ax)? + (Ax)® —x3
Ax—0 Ax (10.3)
= Alifo (3x2 +3xAx+ (Ax)z)
=3x°

Der Differentialquotient g, die erste Ableitung ' der Funktion y = x3, lautet
somit:

jﬁ:f(x) =y =35
Xt

Der Differentialquotient der Funktion f(x) ist im Allgemeinen selbst wieder ei-
ne Funktion der unabhéngigen Verdnderlichen x. Er wird als Steigung der Funktion
f(x) im Punkt x interpretiert. Will man diese Steigung in einem speziellen Punkt x
ermitteln, so muss man den Wert in die Funktion der ersten Ableitung einsetzen.

dy

Vo=@

x=t

Beispiel 10.4. Die Steigung der Funktion y = x> an der Stelle x = 2 ist

dy
dx

i =f(2)=33_,=12

xX=

o3

Zum Differenzieren einer Funktion muss aber nicht jedesmal der Differentialquo-
tient der Funktion berechnet werden. Man braucht lediglich die Differentialquotien-
ten einiger wichtiger Funktionen und ein paar Grundregeln {iber das Differenzieren
zu kennen, um damit die géngigen Funktionen differenzieren zu kdnnen.

10.3.1 Ableitung einer Potenzfunktion

Die Ableitung einer Potenzfunktion ist schon in der Gleichung (10.3) vorgenommen
worden. Die Verallgemeinerung dieses Ergebnisses fiihrt zu:

y=x" firxyneR = V =nx
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10.3.2 Ableitung der Exponentialfunktion
Die Ableitung der Exponentialfunktion zur Basis e ist:
x I x

y=¢ firxeR = y =€

Die Herleitung des Ergebnisses: Es wird der Differentialquotient fiir die Funktion
gebildet.

dy . flx+Ax)—f(x) . etAY_eF . eM -1
=1 =1 =e'1 10.4
dx  Axso Ax AxSo Ax © Ao Ax (10.4)
Es wird
k=e*"—1

gesetzt, umgestellt
1 +k=e™
logarithmiert
In(1+k) = Ax

und in die Gleichung (10.4) eingesetzt.

e k , 1
lim = lim = lim .
Ax—=0  Ax —oln(l4+k) k=0 In(1+k)*
1 1
_ -1

Inlimgo(1+ k)¢ Ine

Das Ergebnis kommt zustande, weil bei stetigen Funktionen der Grenzwertoperator
auf die innere Funktion vorgezogen werden darf und weil

lim(1+k)k =e
k—0

gilt. Aus der Logarithmierung der obigen Gleichung folgt unmittelbar:

In(1+k

lim n(l+ )zlnezl
k—0 k

Damit gilt:
d Ax 1
Y — ¢ lim =e*
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10.3.3 Ableitung der natiirlichen Logarithmusfunktion

Die Ableitung des natiirlichen Logarithmus ist

y=Ilx firx>0 = )y =
x

Die Herleitung dieses Ergebnisse erfolgt in Beispiel 10.12.
10.3.4 Ableitung der Sinus- und Kosinusfunktion

Die Ableitung der Sinus- und Kosinusfunktion ist:

y=sinx firxeR = ) = cosx
y=cosx firxeR = ) =—sinx

Eine Herleitung der Ableitungen ist zum Beispiel bei [4, Seite 274 f] angegeben.

10.4 Differentiation von verkniipften Funktionen

Funktionen, die durch die Verkniipfung elementarer Funktionen gebildet sind oder
die in Form zusammengesetzter Funktionen vorkommen, kann man nach den folgen-

den Regeln differenzieren.

10.4.1 Konstant-Faktor-Regel

Die Ableitung einer konstanten Funktion ist gleich Null. Ein konstanter Faktor kann

beim Differenzieren stets vor die Ableitung gezogen werden:

y=c = 1y =0
y=cflx) = V=cflx)

Herleitung der Konstant-Faktor-Regel:

o eftebAx) —ef()
dx Ax—0 Ax

g Sl AY) - 1)
Ax—0 Ax

=cf'(x)
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10.4.2 Summenregel
Sind f(x) und g(x) zwei differenzierbare Funktionen, dann gilt:
y=f)*xglx) = Y=, (x)xgE)

Herleitung der Summenregel:

dy _ [ Ax) £ glr+ Ax)] = [(x) £2(v)]
= lim
dx  Ax—0 Ax
o SEHA) = S0) gl Av) — ()
Ax—0 Ax Ax—0 Ax
=f(x) £¢(x)
Beispiel 10.5. Die Ableitung der Funktion
y=Jx)+c
ist
¥ =1

Die Ableitung einer Konstanten ist Null.

Beispiel 10.6. Die Ableitung der Funktion
y= 2x72 + cosx

ist

10.4.3 Produktregel

Die Ableitung des Produkts zweier differenzierbarer Funktionen ist

y=fxgk) = Y =r(xgl)+r(x)gx)

239

Wegen der Symmetrie der Ableitungsregel ist es gleichgiiltig, welchen Faktor man

als f(x) und welchen man als g(x) bezeichnet.
Herleitung der Produktregel:

Sl ANt AY) - ()
dx  Ax—0 Ax
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Erweiterung des Zahlers mit f(x + Ax) g(x) — f(x+ Ax) g(x):

i <(f(x+Ax) —f)g) , (gb+Ax) —g(x))f(x+Ax)>

A0 Ax Ax
R () m XAV —2()Y |

= (tim, 7RI ) e+ (fim, # 0Tt s

Beispiel 10.7. Die erste Ableitung der Funktion

y=¢"Inx firxeR"

1
V =é (lnx+ )
X

ist

It
Beispiel 10.8. Die erste Ableitung der Funktion
y=sinxcosx firxeR
ist
y' = cosxcosx + (—sinx) sinx
= cos?x —sin’x
It

Das Produkt aus mehr als zwei differenzierbaren Funktionen ldsst sich durch
wiederholte Anwendung der Produktregel differenzieren.

10.4.4 Quotientenregel

Ist eine Funktion als Quotient zweier differenzierbarer Funktionen darstellbar, dann
ist ihr Differentialquotient

b= S = f'(x)g(x) —Jz‘(X)g(X)
g(x)

Man beachte, dass die Formel nicht symmetrisch ist. Mit einigen zusétzlichen Um-
formungen ldsst sich die Quotientenregel wie die Produktregel herleiten.
Herleitung der Quotiententenregel:
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Sr+Ax) ()

dy _ o eerax) T gl
dr Al)lcr—r>10 Ax
. 1 fx+Ax) g(x+ Ax)
=1 _
Ax0 glx+Ax) g(x) (g(x) Ax /) Ax

Erweiterung des Terms in der Klammer mit /8% ~/()g().,

Ax
dy fatAx) —f) _ )80+ Ax) —glx)
dr Al;lcglo glx+Ax) g(x) <g(x) Ax /) Ax )
_8x)[(x) = f(x)g(x)
g(x)?

Beispiel 10.9. Die erste Ableitung der Funktion

Inx
y:
x
ist
o x_lnx_l—lnx
YT e T og

10.4.5 Kettenregel

Eine zusammengesetzte Funktion y = f(g(x)) kann durch Substitution z = g(x) auf
ihre Grundform y = f(z) zuriickgefiihrt werden. Die Funktion y = f(z) wird als
duBere Funktion und die Substitution z = g(x) als innere Funktion bezeichnet.

Fiir zusammengesetzte differenzierbare Funktionen ist der Differentialquotient
wie folgt zu berechnen:

y=/(gk) = V=r(E)eg = dﬁ(zz) dif)

Die Differentiale f(z) und g’(x) werden entsprechend als dufere Ableitung und in-
nere Ableitung bezeichnet. Die Kettenregel besagt dann, dass zunéchst die duflere
und die innere Ableitung einzeln zu berechnen und danach miteinander zu multipli-
zieren sind. AnschlieBend ist die Substitution z = g(x) riickgéingig zu machen. Ist
eine Funktion mehrfach zusammengesetzt (geschachtelt), ist die Kettenregel mehr-
fach anzuwenden.

Herleitung der Kettenregel:

dy S (gl Ax) = f(g(x))
dx  Ax—0 Ax
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Es wird z = g(x) gesetzt. Dann gilt:

0= im0
z+Az=g(x+Ax) = Az = g(x + Ax) — g(x)

Mit der obigen Erweiterung kann der Differentialquotient g unter der Vorausset-
zung, dass Az # 0 fiir alle kleinen Werte von Ax ist, umgeschrieben werden in:

& (ferA)—f@) Az
@_Eﬂ( Az ﬂ%AJ
=f(2)¢ (x)

Beispiel 10.10. Die Funktion

ist aus den beiden Funktionen

y=f)=2  z=glx)=x-2
V =2z 7 =1

zusammengesetzt. Die erste Ableitung ist:

V' =2(x-2)
It
Beispiel 10.11. Die Funktion
2
y =¢ 2
ist aus den beiden Funktionen
2
z=glx) =~ y=[f(z)=¢
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Die erste Ableitung der Funktion ist somit

2
, .
y =—Xx¢ 2

Ubung 10.1. Bestimmen Sie die ersten Ableitungen von

Flx) = Vx2 fx)=+/x (;x3+xl)
3

f(x) =2x% Inx® + ¢ sinx flx) = Zlnxi
i=1

re =™ S =

Ubung 10.2. Berechnen Sie die erste Ableitung der Tangens- und Kotangensfunk-
tion. Es gilt:
sinx cosx

f(x) =tanx = f(x) =cotx= ",
CoSX sinx

10.5 Erginzende Differentiationstechniken

Manchmal kénnen die behandelten Regeln nur indirekt, d. h. erst nach Umformung
der zu differenzierenden Funktion, angewendet werden.

10.5.1 Ableitung der Umkehrfunktion

Zu einer eineindeutigen Funktion y = f(x) existiert die Umkehrfunktionx = £~ ().
Thre Ableitung lésst sich leicht nach der Kettenregel bestimmen: x = g( f (x)) Dif-
ferenziert man beide Seiten nach x, so erhilt man auf der linken Seite gﬁ =1 und
rechts nach der Kettenregel

dr _ dg(y) df(x)

dr — df(x) dv
= de0) dy
dy dx
Die erste Ableitung der Umkehrfunktion x = f~!(y) der Funktion y = f(x) ist dann
dg(v) _ 1 _
vy dfx) fx)
dx

Beispiel 10.12. Zur Funktion
y=f(x)=¢" firxeR
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lautet die Umkehrfunktion

x=gy)=/"()=Iny firy>0
Die Ableitung der Umkehrfunktion ist somit:
dg(y) 1 1

dy dfx) ey

dx
ges
Beispiel 10.13. Zur Funktion
y=f(x)=x firxeR"
lautet die Umkehrfunktion
x=g)=yy firyeR"
Die Ableitung der Umkehrfunktion ist:
dg() 1 1 1
dy  dflx)  2x 2y
dx
os

10.5.2 Ableitung einer logarithmierten Funktion
Es soll die erste Ableitung des Logarithmus einer allgemeinen Funktion
y=Ing(x) furg(x)>0

berechnet werden. Nach der Substitution z = g(x) und der Anwendung der Kettenre-

gel mit y = Inz und gjz’ = ! erhilt man

dy d 1 g x)
/ = = 1 = / =
Beispiel 10.14. Der Diftferentialquotient der Funktion
y=1In (sinx) fiir0 <x
ist mit f(x) = sinx und f”(x) = cosx
/
y = S — OO cotx fir0<x

f(x)  sinx
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10.5.3 Ableitung der Exponentialfunktion zur Basis a

Die Funktion
y=da fira>0,xeR

ist zu differenzieren. Sie lédsst sich durch Logarithmieren umformen.
Iny=xlna fira>0

Die Ableitung beider Seiten nach der Verdnderlichen x ergibt

ldy dx

ydr dxlnazlna7

so dass man durch einfache Umformung
Y =ylna=a"Ina (10.5)
erhélt. Fiir @ = ¢ erhédlt man das bekannte Ergebnis
Y =e‘lne=¢".
Beispiel 10.15. Es soll die Funktion
y=2" firxeR

abgeleitet werden. Hierzu wird die logarithmierte Funktion nach x differenziert, wo-
bei zu beachten ist, dass auf der linken Seite die Kettenregel anzuwenden ist.

Iny =xIn2
2
diny dy _ dx 2
dy dx dx
1
Y 2
y dx
d
de} =2xyln2
=2x2" In2

10.5.4 Ableitung der Logarithmusfunktion zur Basis a
Gesucht ist die Ableitung der Funktion
y=log,x fira,x>0

Durch Umkehrung der Funktion erhédlt man
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x=da,

und nach Differentiation beider Seiten nach x unter Anwendung der Kettenregel fiir
die rechte Seite

dx  dx dy
dr  dy dr
(10.6)
1= @'Ina dy
N~
Ergebnis aus (10.5)

Durch Auflésen der Gleichung (10.6) nach g erhdlt man das gesuchte Ergebnis

;1 1

Y= @ Ina - xIlna

Fiir @ = e erhdlt man das bekannte Ergebnis

y=_-
x

Ubung 10.3. Bestimmen Sie die ersten Ableitungen von:

flx) =2 f(x) = glx)"st

10.6 Hohere Ableitungen und Extremwerte

Die Differentiation einer Funktion y = f(x) liefert den Differentialquotienten g bzw.
die erste Ableitung nach x, die im Allgemeinen selbst eine Funktion der unabhéngi-
gen Variable ist. Ist diese Funktion wieder differenzierbar, dann kann man formal

d /d d? d
“ (di) = 2= g @) =y (10.7)

berechnen. Die entstehende Funktion wird als zweite Ableitung nach x bezeichnet.
Ist die Funktion y = f(x) zweimal differenzierbar, so heiflt die Gleichung (10.7)
zweite Ableitung nach x. Man spricht ,,d zwei y nach x Quadrat®.

Die Bedeutung der zweiten Ableitung lisst sich wie die erste Ableitung geome-
trisch deuten. Sie gibt die Anderungsrate der Steigung bei Anderung des Arguments
an und ist damit ein MaB fiir die Kriimmung der Funktion. Eine Funktion mit zuneh-
mender Steigung, d. h. mit einer positiven Steigungsédnderung,

y//>0

heilt konvex gekriimmte Funktion. Die Sekante (Verbindungslinie zweier Punkte
auf einer Funktion) liegt stets oberhalb der Funktion. Eine Funktion mit abnehmen-
der Steigung, d. h. mit einer negativen Steigungsanderung,
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Konvexe Funktione
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Abb. 10.3: Konvexe und konkave Kriimmung von Funktionen

y//<0

ist eine konkav gekriimmte Funktion. Die Sekante liegt stets unterhalb der Funktion

(siehe Abb. 10.3).

Setzt man die Differentiation fort, so kann man — immer unter der Vorausset-
zung der Differenzierbarkeit der entsprechenden Funktion — die néchste Ableitung

berechnen:

d [\ &
de\d2) ~ dd

d (&Y dYy
dr \dx? ) dxt

Beispiel 10.16. Die Ableitungen n-ter Ordnung

1"

=y®

der Funktion y = sinx sind

y = cosx y' = —sinx
V"= —cosx YW =sinx=y
y(5) =y y(") :y("—4)
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Beispiel 10.17. Die Ableitungen n-ter Ordnung der Funktion y = a* sind

Y =da“Ina ' = (1na)2
y’"za"(lna)3 Y =g (lna)n

o3

Beispiel 10.18. Die Ableitungen n-ter Ordnung eines Polynoms n-ten Grades sind

y=palx Zaz
n—1 ‘
y = Pn— 1 Zlaz :Z l+1)ai+1x’

i=0

n n—

y":pan(x):Zi(i_l)aixi P = (l+1)(i+2)ai+2xi
=2 i

[\S]

i
=)

n

Y = pum) =D (i = 1) o (i —m+ 1)

n

m

Z(l+ D) (i+2) - (i+m)ainx

koS
Beispiel 10.19. Die Ableitung des Polynoms
1 2
y:5x5—3x3—8x+1 (10.8)
sind
y =xt—2x -8 V' =4x —4x
Y =12x>—4 y ) =24x
5!
y(5) =5 = 24 y(6) -0
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Abb. 10.4 sind die Funktion (10.8) und deren Ableitungen abgetragen. Man er-
kennt, dass an den Stellen x = £2 die erste Ableitung Nullstellen besitzt. An diesen
Stellen weist die Funktion y = f(+2) Extremwerte auf. Diese Punkte werden auch
als stationdre Punkte bezeichnet. Die notwendige Bedingung fiir ein Extremum
(necessary condition) ist, dass die erste Ableitung an der Stelle x eine Nullstelle be-

sitzt.
f(x)=0

Fiir x = 42 besitzt die Funktion ein Minimum. Die zweite Ableitung ist hier positiv.
Die hinreichende Bedingung fiir ein Minimum der Funktion an der Stelle x ist,
dass die Funktion im Bereich um x eine konkave Kriimmung aufweist.

f(x)>0

An der Stelle x = —2 besitzt die Funktion ein Maximum. Die zweite Ableitung ist an
dieser Stelle negativ. Die hinreichende Bedingung fiir ein Maximum an der Stelle
x ist, dass die Funktion im Bereich um x eine konvexe Kriimmung besitzt.

f(x) <0

An den Stellen x = +£1 besitzt die zweite Ableitung Nullstellen. Die Funktion y =
f(£1) besitzt hier Wendepunkte. Gilt also an der Stelle x

f'(x)=0 und f"(x)#0,

dann liegt dort ein Wendepunkt der Funktion vor. Hier dndert sich die Art der Kur-
venkriimmung der Funktion, d. h., die Kurve geht dort von einer konkaven in eine
konvexe Kriimmung tiber bzw. umgekehrt.

Erginzend sei noch der Sattelpunkt einer Funktion erwéhnt. Er ist ein Wende-
punkt mit waagerechter Tangente. Die hinreichende Bedingung lautet

f(x)=0 und f’(x)=0 und f"(x)#0

Die Funktion (10.8) besitzt keinen solchen Punkt.

Die Berechnung von Extrempunkten, Wendepunkten und Sattelpunkten sind mit
Nullstellenproblemen verbunden. Das im Kapitel 8.3.2 beschriebene Verfahren der
regula falsi ist eine numerische Methode, um diese Probleme zu l6sen.

10.7 Newton-Verfahren

Ein anderes Verfahren zur iterativen Nullstellenbestimmung ist das Newton-Verfah-
ren. Voraussetzung hierfiir ist, dass eine differenzierbare Funktion vorliegt und die
Lage der Nullstelle ungefahr bekannt ist.

Man wihlt einen Punkt x(;) in der Néhe der vermuteten Nullstelle x. Zeichnet

man nun eine Tangente im Punkt (x(l), f (xm)), und bestimmt deren Schnittpunkt
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30+
\ \ ] s

20

Abb. 10.4: Ableitungen des Polynoms (10.8)

x(2) mit der Abzisse (siche Abb. 10.5), so kann man sich dank des monotonen Verhal-
tens der Funktion in der Ndhe der Nullstelle leicht iiberlegen, dass der Schnittpunkt
x(2) ndher an die Nullstelle x gertickt ist. Es gilt

tano = (10.9)

Die Steigung der Tangente, d. h., tan ¢ ist gleich der ersten Ableitung der Funktion
f(x) an der Stelle x(;).
tano = f*(x(1)) (10.10)

Fasst man die Aussagen der Gleichungen (10.9) und (10.10) zusammen, so lisst sich
der gesuchte Schnittpunkt x(5) wie folgt ermitteln:

Die 1. Niherung der gesuchten Nullstelle, die mit x(!) bezeichnet wird, ist die Null-
stelle der Tangente x(3). Mit Hilfe der angendherten Nullstelle wiederholt man die
obige Rechnung, d. h., man bestimmt den Funktionswert f(x(3)). Man berechnet ei-
ne weitere Naherung der Nullstelle der Funktion mit:
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S(x@))
O T prixy) =x@
f(x(i)) (0)
X(i = X)) — =X
(i+1) (@) f/(x(i))

Die Iteration wird gestoppt, wenn die Verdnderung zur vorher berechneten Nullstel-

lenndherung nahezu Null wird. Sie wird durch {,((’; )) gemessen.

Beispiel 10.20. Fiir die Funktion
y=x*—Inx—2 (10.11)

wird eine Nullstelle gesucht. Es sei bekannt, dass die Funktion in der Ndhe von
x = 0.2 eine Nullstelle besitzt.

1
Y =2x—
x

Abb. 10.5: Newton-Verfahren, Ausschnitt der Funktion (10.11)

Mit diesem Startwert wird nun folgende Iteration begonnen:
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x /) £
0.2 —0.3506 —4.6 0.0762
0.1238 0.1045 —7.8306 —0.0133
0.1371 0.0056 —7.0179 —0.0008

0.1379 0.0000175 —6.9741 —0.0000025

Fiir x®) = 0.1379 liegt der Funktionswert bei /(0.1379) = 0.0000175. Die An-
derung zur nachsten Ndherung betrdgt —0.0000025. Sie verdndert den Wert an der
millionstel Stelle. Fiir das Beispiel ist diese Anderung ausreichend klein, so dass
0.1379 als 1. Nullstelle angenommen werden kann. Ees

Beispiel 10.21. Der effektive Kreditzinssatz im Beispiel 9.53 lasst sich schnell mit-
tels des Newton-Verfahrens berechnen. Aus der Kapitalwertgleichung

138.64 138.64
clar=a'— (1 10
(@) =4 < * 1000) 1000

und deren 1. Ableitung

138.64
C'lg)=11¢""=10(1 ?
() q ( + 1000 )q
werden die Iterationen berechnet.
C
q ey Clo &Y
1.06 —0.002192 0.4622 —0.004742

1.06474  0.0002594 0.5729  0.0004527
1.06429  0.0000025 0.5620  0.0000044
1.06428 ~0 0.5619 ~0

Der effektive Kreditzinssatz betrdgt nach 4 Iterationen 6.428 Prozent. ted

Ubung 10.4. Berechnen Sie fiir die Funktion in der Ubung 8.2 (Seite 151) die Null-
stelle, die in der Nahe von x| = —1 liegt mittels des Newton-Verfahrens.

10.8 Okonomische Anwendung

Die Analyse 6konomischer Funktionen beginnt meistens mit der Durchschnitts-
funktion (average function). Analog zur Definition des arithmetischen Mittels ergibt
sich der durchschnittliche Funktionswert der Funktion y = f(x) durch

J(x)

)7:
X
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Eine weitere wichtige Funktion zur Analyse dkonomischer Prozesse ist die
Grenzfunktion (marginal function). Sie ist die erste Ableitung von y = f(x). Mathe-
matisch ist die Grenzfunktion f”(x) der Grenzwert des Quotienten (10.1). Eine an-
schauliche (aber mathematisch ungenaue) Interpretation der Grenzfunktion ist, den
marginalen Funktionszuwachs auf Ax = 1 zu setzen. Die Grenzfunktion gibt dann
die Anderung pro zusitzlicher Einheit der unabhingigen Variable an. Einige wichti-
ge dkonomische Grenzfunktionen sind zum Beispiel Grenzkosten, Grenzgewinn und
Grenzerl0s.

10.8.1 Ertragsfunktion

Die Bedeutung der Durchschnittsfunktion wird am Beispiel einer s-formigen Er-
tragsfunktion (vield function, return function) (Produktionsfunktion) diskutiert wer-
den. Eine Ertragsfunktion beschreibt den Ertrag y eines Guts in Abhéngigkeit (hier
nur) eines Produktionsfaktors x. Bei zunehmendem Einsatz des Faktors x steigt der
Ertrag zunéchst (bis zum Wendepunkt) iiberproportional und dann unterproportional
an. Meistens wird bei einem bestimmten Faktoreinsatz ein Maximum angenommen.
In der Regel lisst sich beobachten, dass beim Uberschreiten dieses optimalen Ein-
satzes der Ertrag wieder abnimmt (siche Abb. 10.6).

Beispiel 10.22. Die in Abb. 10.6 verwendete Ertragsfunktion ist
1
y:3x2—8x3 fiir x > 0 (10.12)

o3

In Abb. 10.6 sind der Ertrag, Durchschnittsertrag und der Grenzertrag grafisch
dargestellt. Im Punkt W liegt der Wendepunkt der Ertragsfunktion, d. h., von diesem
Punkt an nehmen die Grenzertrage nicht mehr zu. Er kennzeichnet das Maximum
der Grenzertragsfunktion. Der Bereich steigender Grenzertrége, also der Bereich vor
dem Wendepunkt, wird als der Bereich zunehmender Skalenertrige (return to scale)
bezeichnet. Ab dem Wendepunkt steigen die Grenzertridge unterproportional. Die
Ertragsfunktion weist nun abnehmende Skalenertrige auf.

Im Punkt U ist das Maximum der Durchschnittsfunktion erreicht. Danach fallen
die Durchschnittsertrdge. Der Wert der Durchschnittsfunktion ist gleich dem Winkel
eines Strahls vom Ursprung an die Kurve. Wandert der Strahl entlang der Kurve, so
steigt er monoton bis zum Punkt U, erreicht dort sein Maximum und féllt dann wie-
der streng monton. Im Punkt U beriihrt der Strahl die Kurve tangential. Das Grenz-
verhalten der Durchschnittsfunktion ergibt sich aus der Differentiation der Funktion
nach der Quotientenregel.

dy _ f(x)x—f(x)
dr x2
Im Punkt U ist der Grenzdurchschnittsertrag gleich Null, d. h., es gilt

f’(x)x—f(x)éo = f(x):fch)
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An dem Punkt des Maximums der Durchschnittsfunktion schneiden sich also
die Grenzertragsfunktion und die Durchschnittsfunktion!. Dieser Punkt U ist 6kono-
misch interessant, da von hier an die Durchschnittsertriage fallen; die Grenzertrige
fallen bereits seit dem Punkt W. Im Punkt M liegt das Maximum der Ertragsfunk-
tion. Der Grenzertrag ist dort Null (notwendige Bedingung fiir ein Extremum). Die
Ertragsidnderung ab dem Punkt U wird als Gesetz vom abnehmenden Grenzertrag
bezeichnet. Der gesamte Ertragsverlauf (siche Abb. 10.6) beschreibt das klassische
Ertragsgesetz.

280
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Abb. 10.6: Ertragsfunktion (10.12)

Historische Anmerkung: Das Gesetz vom abnehmenden Ertragszuwachs ist von
dem preuBischen Nationalokonom Johann Heinrich von Thiinen in der ersten Hilfte
des 19. Jahrhunderts zunéchst fiir die Landwirtschaft entwickelt und empirisch iiber-
priift worden. Inzwischen haben empirische Untersuchungen im Bereich der indu-
striellen Produktion gezeigt, dass es im Rahmen der von den Industrieunternechmen
als normal angesehenen Kapazitit in der Regel keine Rolle spielt; denn der Punkt

I Dass es sich hier tatsichlich um ein Maximum handelt, muss mit der zweiten Ableitung

3o " _

iiberpriift werden. Es muss 37/ = /@ 2x£3f(x) /) < 0 im Punkt f/(x) = I Ef) gelten.
In diesem Punkt ist x /'(x) — f(x) = 0. Also muss f”(x) < 0 sein, damit )" < 0 gilt. Das
Maximum der Durchschnittsfunktion muss also im Bereich abnehmender Grenzertrége lie-

gen.
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U, von dem ab das Gesetz vom abnehmenden Ertragszuwachs wirksam ist, wird hier
meist erst bei Ausweitung der Produktion tiber die normale Kapazitit hinaus erreicht.
Wenn — wie in der Praxis iiblich — die Einsatzmengen mehrerer Produktionsfaktoren
innerhalb normaler Betriebskapazititen verdndert werden, zeigen sich bei industriel-
ler Produktion eher lineare Produktionsfunktionen.

Viele Okonomen glaubten, dass aufgrund des abnehmenden Ertragszuwachses
sich der Produktionszuwachs verlangsamen wiirde. Robert Thomas Malthus progno-
stizierte eine Hungerkatastrophe, weil einerseits die Bevolkerung geometrisch und
andererseits aufgrund des abnehmenden Arbeitsertragszuwachses die Nahrungsmit-
telproduktion nur arithmetisch wachse. In der industriellen Revolution nahm man an,
dass wegen des vermehrt eingesetzten Kapitals und des damit verbundenen abneh-
menden Grenzertrags des Kapitals der Produktionzuwachs bald stagnieren wiirde.
Dass dies nicht eintrat, lag daran, dass die Okonomen den technischen Fortschritt
unterschétzten. Durch diesen verschiebt sich die Kurve der Produktion in Abhéngig-
keit des Produktionsfaktors nach oben, so dass der Produktionsfaktor Arbeit bzw.
Kapital immer produktiver wurde.

10.8.2 Beziehung zwischen Grenzerlos und Preis

Die Funktion f(x) bezeichnet nun eine Preis-Absatz-Funktion (price sales functi-
on). Sie wird in diesem Abschnitt iiberwiegend mit p(x) benannt. Der Funktionswert
ist der Preis pro Stiick p, da er den Preis fiir die verkaufte Menge x liefert. Die Ver-
dnderliche x gibt hier also die abgesetzte Menge an. Die Preis-Absatz-Funktion ist
die Beziehung zwischen Preis und Menge aus Sicht des Anbieters (siche Abb. 10.7).

p=f(x)=pkx) firx>0 (10.13)

Es wird unterstellt, dass mit abnehmender Menge (Verknappung des Angebots)
der Preis zunimmt. Mathematisch formuliert bedeutet dies, dass die erste Ableitung
der Funktion negativ ist.

p(x)<0 (10.14)

Betrachtet man die Umkehrfunktion von (10.13)
x=f"(p)=x(p) firp>0,

erhilt man die Nachfragefunktion (demand function). Sie wird so bezeichnet, weil
hier der Absatz aus Sicht des Nachfragers in Abhéngigkeit des Preises dargestellt
ist. Der Preis ist fiir den Nachfrager gesetzt. Der Funktion unterstellt man ebenfalls
einen monoton fallenden Verlauf.

¥ (p) <0

Die Erlésfunktion (revenue function) ist die verkaufte Menge mal dem Preis, also
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p=f(x)
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Abb. 10.7: Preis-Absatz-Funktion

Die Preis-Absatz-Funktion kann man somit auch als Durchschnittserlosfunkti-
on (average revenue function) bezeichnen, da

Ewy="% 2 pr

gilt. Der Durchschnittserlds ist nun aber nichts anderes als der Preis des entsprechen-
den Guts. Es gilt also E(x) = p.
Differenziert man die Erlosfunktion

E'(x)=p'(x)x+ p(x) (10.15)

X

erhdlt man die so genannte Grenzerlosfunktion (marginal revenue function).
Betrachtet man nun die Differenz von Grenzerlés und Durchschnittserlos (dem
Preis)

E'(x) = px) = p'(x)x, (10.16)
so ergibt sich als Ergebnis der Anstieg der Durchschnittserlosfunktion p’(x) multipli-
ziert mit der Menge x > 0. Die Steigung der Preis-Absatz-Funktion wird als negativ
angenommen (p’(x) < 0), so dass wegen x > 0 dann

Px)x<0 (10.17)

gelten muss. Die Differenz zwischen Grenzerlds und Preis ist also negativ, so dass
der Preis durchweg grofBler als der Grenzerlds ist.
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E'x)—p(x)<0 & E'(x)<px) (10.18)

Dies ist die Marktsituation, wenn keine vollkommene Konkurrenz (monopolistic
competition) vorherrscht. Nur dann kann der Anbieter iiber die Menge den Preis
beeinflussen (siche Abb. 10.7). Die Preis-Absatz-Funktion ist negativ geneigt. Dies
bedeutet, dass eine hohere Menge nur zu einem niedrigeren Preis absatzbar ist. Somit
geht der Verkauf einer weiteren Einheit mit der gleichzeitigen Senkung des Preises
einher und zwar nicht nur fiir die Grenzeinheit, sondern fiir die gesamte verkaufte
Menge, da der Preis fiir jede Einheit gleich ist. Der zusétzlich erzielte Erlos beim
Verkauf einer weiteren Einheit (Grenzerlds) ist daher niedriger als der urspriingliche
Preis (Durchschnittserlos).

Als weiteres ergibt sich, dass die Grenzerldsfunktion (10.15) wegen (10.17) stets
unterhalb der Preis-Absatz-Funktion verlduft (sieche Abb. 10.9). Im Extremfall liegt
die Situation eines Angebotsmonopolisten vor, der den Markt konkurrenzlos be-
herrscht.

Bei vollkommener Konkurrenz (Wettbewerbssituation) (perfect competition)
wird davon ausgegangen, dass der Anbieter keine Marktmacht und damit keine Ein-
wirkung auf den Preis ausiiben kann. Der individuelle Anbieter kann durch die Men-
ge den Marktpreis im Modell der vollkommenen Konkurrenz nicht beeinflussen. Ei-
ne Preissenkung oder Preiserhdhung gegeniiber dem Marktpreis ist nicht moglich.
Eine Preiserhohung fiihrt in der Theorie nach zu einer Absatzmenge von Null. Kein
Kaufer ist bereit bei homogenen Giitern einen Preis oberhalb des Marktpreises zu
zahlen. Eine Preissenkung ist nicht moglich, weil der Marktpreis der niedrigste pro-
fitable Preis ist. Daher ist eine Preissenkung mit Verlusten verbunden, die nicht kom-
pensiert werden konnen. Die Preis-Absatz-Funktion verlduft dann horizontal und der
Preis ist unabhingig von der Menge x. Es gilt p(x) = pM@* = konstant und somit
p'(x) =0, so dass der Grenzerlds gleich dem Preis ist.

E(x) _ pMarktx = E'(x) _ pMarkt PN E/(X) _pMarkt =0

10.8.3 Kostenfunktion

Die mikrookonomische Kostentheorie konzentriert sich im Allgemeinen darauf, ana-
lytische Konzepte einer betrieblichen Kostenfunktion (cost function) zu entwickeln,
bei der die gesamten Kosten der betrieblichen Produktion in Abhéngigkeit von der
Produktionsmenge betrachtet werden. Die kurzfristige Kostentheorie hebt im Beson-
deren die Unterscheidung zwischen variablen und fixen Kosten hervor.

K(x) = Kyariavel (x) + Kﬁx

Fixe Kosten sind Kosten, die im Zusammenhang mit kurzfristig gegebenen Produk-
tionsfaktoren entstehen. Sie fallen in bestimmter Hohe an, unabhéngig von der Hohe
der kurzfristig geplanten Produktionsmenge. Typische Fixkosten bilden Mieten und
Zinsen sowie zeitabhéngige Abschreibungen.

Die Hohe der variablen Kosten hingegen verandert sich mit der Produktionsmen-
ge bzw. mit dem Einsatz des variablen Produktionsfaktors. Typische variable Kosten
sind Rohstoff- und Materialkosten sowie Arbeitskosten.
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Der Verlauf der variablen Kosten wird aus der Ertragsfunktion (Produktionsfunk-
tion) bestimmt. Die Kostenfunktion und die Ertragsfunktion stehen in einer Dualitét
zueinander. Aus der Ertragsfunktion ergibt sich die Kostenfunktion und umgekehrt.
Wird das in Kapitel 10.8.1 ausgefiihrte Ertragsgesetz angenommen, so steigt der Er-
trag im Bereich bis zum Punkt W iiberproportional. Bewertet man den Faktorein-
satz, so ergibt sich, dass die Kosten hier langsamer zunehmen als der Ertrag. Ab dem
Punkt W steigt der Ertrag unterproportional an, was bedeutet, dass die Kosten iiber-
proportional ansteigen. Die Kostenfunktion weist daher einen s-formigen Verlauf auf
(siehe Abb. 10.8).

Eine Kostenfunktion beschreibt die Ursache-Wirkungsbeziehung zwischen der
Ausbringungsmenge x (als Ursache) und den aufzuwendenden Kosten K, die sich aus
dem mit den Preisen bewerteten Produktionsfaktorverbrauch (als Wirkung) ergeben.

Der Begriff der Grenzkosten (marginal costs) ist der Schliissel zum Verstindnis
der Frage, wie viel ein Unternehmen zu produzieren und zu verkaufen bereit ist.
Als Grenzkosten werden die Kostendnderungen bezeichnet, die bei einer Erhdhung
der Produktionsmenge um eine (unendlich kleine = infinitesimale) Einheit entstehen.
Die Fixkosten beeinflussen die Grenzkosten nicht.

dK (x)
K'(x) =
="
Beispiel 10.23. Es wird die Kostenfunktion

K(x) =0.04x> —0.96x> + 10x+2 (10.19)
angenommen, die die Grenzkostenfunktion

K'(x) =0.12x% —1.92x+ 10
besitzt. o3

Die in Abb. 10.8 dargestellte Kostenfunktion aus Beispiel 10.23 zeigt den typi-
schen Verlauf der Grenzkosten einer ertragsgesetzlichen Kostenfunktion eines Ein-
Produkt-Unternehmens. Die Grenzkosten sinken zunéchst mit steigender Produkt-
menge, solange dic Gesamtkosten (variable Kosten) degressiv steigen. Nach dem
Wendepunkt der Kostenfunktion steigen die Grenzkosten, die Gesamtkosten nehmen
progressiv zu. Der Wendepunkt der Kostenfunktion liegt im Minimum der Grenzko-
sten (in Abb. 10.8 bei x = 8). Diese Stelle wird auch als Schwelle des Ertragsgeset-
zes bezeichnet.

Die Durchschnittskosten (average costs) werden auch als Stiickkosten der Pro-
duktionsmenge bezeichnet. Sie lassen sich unmittelbar aus dem Verlauf der gesamten
Kosten mit Bezug auf die jeweiligen Produktionsmengen bestimmen.

Beispiel 10.24. Die obige Kostenfunktion (10.19) besitzt die Durchschnittskosten-
funktion
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_ 2
K(x) =0.04x> —0.96x+ 10+ .
ted

Die Kurve der Durchschnittskosten zeigt bei Annahme des Ertragsgesetzes eben-
falls einen typischen u-formigen Verlauf, der sich aus den Beziehungen zwischen
Grenz- und DurchschnittsgroBen herleiten ldsst. Sind die Grenzkosten kleiner als die
Durchschnittskosten, so folgt eine Abnahme der Durchschnittskosten mit steigender
Produktionsmenge, da jede zusitzlich produzierte Einheit giinstiger erstellt werden
kann. Sind die Grenzkosten grof3er als die Durchschnittskosten, so folgt eine Zunah-
me der Durchschnittskosten. Sind die Grenzkosten gleich den Durchschnittskosten,
so ist das Minimum der Durchschnittskosten erreicht (siehe Punkt U in Abb. 10.8).

Die Ertragsfunktion und die Kostenfunktion stehen in einem Umkehrverhéltnis
zueinander. Mit der Produktionsfunktion ist auch die Kostenfunktion festgelegt und
umgekehrt. Daher ist der Punkt U in Abb. 10.8 gleich dem in Abb. 10.6 und manife-
stiert die Bedeutung dieses Punktes.

Es ist jedoch aufgrund der Funktion mathematisch nicht immer mdoglich eine
Umkehrfunktion zu bestimmen. Die vorliegende Kostenfunktion (10.19) ist daher
nur eine ndherungsweise Umkehrfunktion der Ertragsfunktion (10.12). Daher liegt
der Punkt U hier nicht genau bei dem Wert 12, sondern etwas dartiber.

Das Minimum der Durchschnittskosten entspricht in der Ertragsfunktion dem
Maximum des Durchschnittsertrags. Die 6konomische Bedeutung dieses Punkts
wird nun deutlich. Das Unternehmen wird also bestrebt sein, den Bereich fallender
Durchschnittskosten zu verlassen.

Das Minimum der Durchschnittskosten wird auch als der Punkt des Betriebs-
optimums bezeichnet (in Abb. 10.8 bei x = 12.17), weil hier ein Betrieb unter den
gegebenen Bedingungen mit den geringsten Kosten je Produkteinheit produziert. Die
Durchschnittskosten kdnnen pro produzierter Einheit nicht weiter zurlickgehen, da
jede weitere Einheit hohere zusétzliche Kosten (steigende Grenzkosten) verursacht.
Mathematisch ist das Minimum der Durchschnittskosten durch die Nullsetzung der
ersten Ableitung der Durchschnittsfunktion bestimmt (notwendige Bedingung).

dK (x) _ K'(x)x—K(x)

=0
dx x?
Die obige Bedingung ist gleichbedeutend mit
! ! ’ K(x) —
K(x)x—Kx)=0 = K({x)= =K(x)
x

Die hinreichende Bedingung fiir ein Minimum ist, dass die zweite Ableitung positiv
ist. Es gilt
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Abb. 10.8: Kostenfunktionen (10.19)

I K" (x)x> = 2x (K'(x)x —K(x)) !

K" (x) x4 >0
K'(x) 2K'(x) 2K(x
K0 2K 2K
_ K/’xx) _xzz (K'(x) _E(x))

& K'(x)x—2 (K'(x)—K(x) >0

Es gilt stets x > 0. Fiir ein Minimum muss K”(x) > 0 sein. Die notwendige Bedin-
gung lautet K'(x) = K(x). Damit entfillt der hintere Teil der Ableitung. Es muss
K" (x) > 0 sein, damit die hinreichende Bedingung erfiillt wird. Wenn K’(x) anstei-
gende verliuft, dann ist K”(x) > 0 und somit K”(x)x > 0. Dies bedeutet, dass das
Minimum der Durchschnittskostenfunktion im Bereich steigender Grenzkosten lie-
gen muss.

10.8.4 Individuelle Angebotsplanung unter vollkommener Konkurrenz

Das Giiterangebot eines Unternehmen wird durch dessen Kostenfunktion und den
Markt bestimmt. Die Absatz- und Beschaffungsmérkte des Unternehmens sollen
Mairkte mit vollkommener Konkurrenz sein. Diese Marktform wird auch als Polypol
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bezeichnet. Das sind Mirkte, auf denen der Unternehmer als einer von vielen an-
bietet oder nachfragt, so dass er durch seine Marktaktion nicht das Marktgeschehen
bestimmen kann. Damit sind der Verkaufspreis des Guts und die Faktorpreise fiir
den Unternchmer gegebene GroBlen. Der Unternehmer kann auf dem Absatzmarkt
bei gegebenen Produktpreis jede beliebige Menge absetzen. Er wird die abzusetzt-
ende Menge dann so festlegen, dass sein Gewinn maximiert wird. Man spricht vom
Mengenanpasser auf dem Absatzmarkt.

Der Gewinn des Unternehmens ist die Differenz aus Erlos (Umsatz) und Kos-
ten. Die Erlosfunktion ist dabei das Produkt aus Preis und Menge. Der Marktpreis
ist ein Datum, das durch den Markt bestimmt wird und nicht durch den Anbieter
beeinflussbar ist. Der Preis ist daher keine Funktion der Menge!

E(x) _ xpMarkt E/(X) _ pMarkt (1020)

Angenommen, der Unternehmer bietet eine bestimmte Produktmenge x auf dem
Markt an und er produziert zu der oben beschriebenen s-formigen Kostenfunktion.
Bei dieser Menge erzielt er einen Erlés in Hohe von x p”@* und hat Kosten in Hohe
von K (x). Wie kann der Unternehmer feststellen, ob x seine gewinnmaximale Menge
ist? Da das Unternehmensziel die Gewinnmaximierung ist, iberlegt er, wie sich der
Gewinn dndert, wenn die Menge x um eine (genauer um eine infinitesimal kleine)
Einheit variiert. Wird die Menge x um Ax = 1 erhdht, so erh6ht sich der Absatz we-
gen der Erlosfunktion (10.20) proportional, bei Ax = 1 also genau um p™**_ Die
Mengenerhohung ist fiir den Unternehmer auch mit einer Kostenerhdhung verbun-
den, und zwar in Hohe der Grenzkosten. Er wird eine Gewinnerhdhung genau dann
erhalten, wenn der zusétzliche Erlos (Grenzerlos) groBer ausfallt als die Zusatzkosten
(Grenzkosten) der Produktion. Der zusitzliche Erlos entspricht gerade dem Preis:
Grenzerlds = Preis. Er wird also solange eine Produktionsausweitung vornehmen,
bis die Grenzkosten den Grenzerlds erreicht haben. Daraus folgt fiir den Unterneh-
mer, dass sein gewinnmaximales Angebot bei der Menge liegt, bei der Grenzkosten =
Grenzerlds bzw. hier Grenzkosten = Preis gilt. Und jetzt die formale Herleitung: Die
notwendige Bedingung fiir das Gewinnmaximum liegt vor, wenn der Grenzgewinn
(1. Ableitung der Gewinnfunktion) gleich Null ist.

(x) _ xpMarkt —K(X)
dG(x) _ dE(x)  dK(x)

Q

dx dx a0
Daraus folgt:
dE(x) _ dK(x)
dv  dx

dE (X ) __Markt
dx - p
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gilt, folgt daraus

dK(x) Y Markt
dx =p

Beispiel 10.25. Fiir die Kostenfunktion

K(x) =0.04x> —0.96x% + 10x+2
gilt die Grenzkostenfunktion

K'(x) =0.12x* —1.92x+ 10

Aus der Bedingung Grenzkosten = Grenzerlds, wobei der Grenzerlds aufgrund der

Annahme der vollkommenen Konkurrenz dem Marktpreis pM** entspricht, der mit

pMerkt — 12 € angenommen werden soll, ergibt sich folgende Beziehung:

0.12x2 —1.92x+10= 12

2

2 !
—1 — =
X 6x 0.12 0

X —8:|:\/82+ 2
12— 0.12
x1 7~ 16.98; (x; = —0.98)

Die gewinnmaximale Menge ist x; = 16.98. Der maximale Gewinn betrdgt damit:
Gmax (16.98) = 94.92 € (siche Abb. 10.8). Fiir ein Maximum muss die 2. Ableitung
der Gewinnfunktion an der Stelle x; negativ sein.

G"(x)) = —K"(x;) = —(0.24 X 16.98 — 1.92) < 0
2

Bei einem Preis oberhalb des Minimums der Durchschnittskosten erzielt das Un-
ternehmen einen Gewinn, weil ab hier

p=E(x)>K(x)
gilt. Der Stiickgewinn betragt
p—K(x)=K'(x)—K(x)>0

Man kann den Stiickgewinn als Gewinnaufschlag auf die Durchschnittskosten ver-
stehen. B

Das Minimum der Durchschnittskosten (K’(x) = K (x)) wird daher auch als Ge-
winnschwelle (break even point) bezeichnet. Fillt der Preis unter das Minimum der
Durchschnittskosten, ist kein Gewinn mehr mdglich. Daher wird diese Grenze auch



10.8 Okonomische Anwendung 263

als langfristige Preisuntergrenze bezeichnet. Das Minimum der variablen Durch-
schnittskosten wird als kurzfristige Preisuntergrenze bezeichnet, weil unterhalb eines
solchen Preises nicht einmal mehr die variablen Kosten gedeckt sind.

Sind die Grenzkosten gleich dem Marktpreis, so erzielt das Unternehmen den
maximalen Gewinn. Einen niedrigeren Preis wird das Unternehmen wegen der Ge-
winneinbufen nicht erzielen wollen und einen hoheren Preis kann das Unternehmen
am Markt nicht durchsetzen. Die Grenzkostenkurve ab dem Minimum der Durch-
schnittskosten ist daher die individuelle Angebotskurve (Angebotsplanung) des Un-
ternehmens bei unterschiedlichen Marktpreisen.

Die Preis = Grenzkosten-Regel liefert eine eindeutige Anweisung fiir die An-
gebots- und Produktionsplanung eines Ein-Produkt-Unternehmens bei alternativ ge-
gebenen Marktpreisen. Die Moglichkeit der Lagerhaltung wird hier vernachlassigt.
Die Angebotsplanung hat sich einerseits an den Marktbedingungen (Marktpreisen)
zu orientieren, andererseits an der Hohe der Grenzkosten der Produktion des Unter-
nehmens.

Unter Ceteris-paribus-Bedingungen wird ein Unternehmen bei héheren Markt-
preisen die Produktion kurzfristig erhohen. Das Unternehmen wird sich folglich nach
den gegebenen Annahmen als Mengenanpasser verhalten und seine Angebotsmenge
entlang des Bereichs zunehmender Grenzkosten steigern. In der Praxis ist eine sol-
che Grenzkalkulation jedoch hiufig zu kompliziert, insbesondere da die Grenzkosten
oft gar nicht bekannt sind. Anbieter setzen ihre Preise deshalb héufig so, dass sie auf
die Durchschnittskosten (Stiickkosten) der Produktion, die bei normaler Kapazitéts-
auslastung anfallen, einen Gewinnaufschlag erheben.

Die (horizontale) Aggregation der einzelnen Mengenangebote der Unternehmen
(Grenzkostenkurven) wird als Marktangebot bezeichnet. Da jeder Unternehmer mit
zunehmendem Marktpreis mehr herstellen wird und es auch insgesamt mehr Unter-
nehmen gibt, die in den Markt eintreten, ist die Marktangebotsfunktion eine Funktion
mit positiver Steigung zwischen Preis und Menge. Ferner wird es bei hoherem Preis
auch mehr Marktanbieter geben, so dass sich dadurch die angebotene Menge erhoht.
Es wird unterstellt, dass die Unternehmen unabhingig voneinander handeln. Kosten-
dnderungen durch verénderte Faktorpreise verschieben die Grenzkostenkurven der
einzelnen Unternehmen. Dadurch ergeben sich bei gegebenen Produktpreisen Ver-
schiebungen der individuellen Angebotskurven und folglich auch der aggregierten
Angebotskurve des Markts. Auf die Probleme der Aggregation wird hier nicht wei-
ter eingegangen.

10.8.5 Angebotsverhalten eines Monopolisten

Nach der Preisbildung im Polypol folgt in diesem Abschnitt das Anbieterverhal-
ten im Monopol. Das Monopol bildet eine gegensitzliche Marktform zum Polypol:
Es existiert nur ein Anbieter, welcher Marktmacht besitzt und durch sein Verhalten
die Angebotsmenge und dariiber den Marktpreis nachhaltig beeinflussen kann. For-
mal zeigt sich dies darin, dass die Preis-Absatz-Funktion nicht mehr horizontal, son-
dern fallend verléduft (siche Gleichung (10.14) beschrieben. Der Marktpreis ist daher
fiir den Monopolisten nicht mehr vorgegeben. Die Marktmacht wird aber durch die
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Nachfrageseite begrenzt. Daher ist es dem Monopolisten nicht mdglich, Menge und
Preis gleichzeitig festzulegen! Der Monopolist sucht den gewinnmaximalen Preis,
indem er seine Menge entlang der Preis-Absatz-Funktion variiert.

Auch fiir den Monopolisten gilt die Bedingung, dass das Gewinnmaximum dort
liegt, wo Grenzerlds und Grenzkosten identisch sind. Doch ist der Grenzerlds fiir
den Monopolisten kein Datum mehr, sondern durch das Produkt aus Preis-Absatz-
Funktion und Menge eine Funktion in Abhangigkeit der Menge.

E(x) =xp(x)

Die erste Ableitung der Erlosfunktion ergibt sich dann aus der Produktregel.

E'(x) =xp'(x) + p(x)

Da p'(x) < 0 gilt, ist der Grenzerlés des Monopolisten geringer als der erzielte
Preis p(x). Der Monopolist muss fiir jede zusétzlich verkaufte Einheit den Preis um
p'(x) senken. Er passt seine Produktion entsprechend der Preisabsatzfunktion an.
Unter vollkommener Konkurrenz hingegen adndert sich der Erlds proportional mit
der Menge x und die Produktion wird ausschlielich durch die Grenzkostenfunktion
bestimmt.

Den grofiten Gewinn erzielt der Monopolist an der Stelle, an der der Abstand
zwischen Erlos und Kosten maximal ist. An dieser Stelle ist die Steigung der Er-
l6skurve gleich der Steigung der Kostenfunktion, d. h. der Grenzerlos ist gleich den
Grenzkosten.

G)=E'(x)—-K(x)=0 = E=K{x) (10.21)

Beispiel 10.26. Es wird fiir einen Angebotsmonopolisten (supply monopolist) eine
einfache lineare Preis-Absatz-Funkion

p(x)=10—0.5x fiir0 <x < 20 (10.22)

unterstellt, um die Beziechung zwischen Preis und Grenzerlds weiter zu untersuchen.
Der Gesamterlds ist dann gleich

E(x) = 10x—0.5x"
und als Grenzerlds ergibt sich
E'(x) =10 —x.

Die Preis-Absatz-Funktion und der Grenzerlos sind Geraden, die die Ordinate im
selben Punkt schneiden. Die Gesamterldsfunktion ist eine Parabel (siche Abb. 10.9).
Als Kostenfunktion wird

K(x) =0.04x> —0.96x% 4+ 10x+2
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angenommen. Die Grenzkostenfunktion ist somit

K'(x) =0.12x* — 1.92x+ 10

Den maximalen Gewinn erzielt das Monopol, wenn die Bedingung (10.21) erfiillt
ist. Die gewinnmaximale Menge bestimmt sich somit aus

10 —x = 0.12x% — 1.92x+10 = x.=7.67

Der Punkt x, auf der Preis-Absatz-Funktion wird als Cournotscher Punkt (in Abb.
10.9 mit C) bezeichnet. Aus ihm wird der gewinnmaximale Preis iiber die Preis-
Absatz-Funktion bestimmt (Monopolpreis).

pMonorol — p(x.) =10—0.5x7.67=6.17€
Der maximale Gewinn betrdgt — sofern die hinreichende Bedingung erfiillt ist — also

Gmax (%) =10 x 7.67—0.5 x 7.67°

—(0.04 x 7.67° — 0.96 x 7.67*+10 x 7.67 +2)
=7.01€

Die zweite Ableitung der Gewinnfunktion ergibt folgendes

G"(xc) :EII(XC) —K"(xc)
=—-1-0.24x%x7.674+1.92
=—-0.9208 <0

Es handelt sich also tatsdchlich um ein Gewinnmaximum. o3

Der Monopolist kann seinen Absatz nur steigern, wenn er mit dem Preis herun-
ter geht. Der Grenzerlds ist daher kleiner als der Preis. Fiir die hdhere Absatzmen-
ge erhilt er einen niedrigeren Preis. Die Grenzerldsfunktion verlduft deshalb in ih-
rem ganzen Bereich unterhalb der Preis-Absatz-Funktion (siche Gleichung (10.18)).
Bei einer linearen Preis-Absatz-Funktion wie in der unteren Grafik der Abb. 10.9
dargestellt, besitzt die Grenzerldsfunktion die doppelte Steigung der Preis-Absatz-
Funktion. Durch den Punkt, in dem sich Grenzerlosfunktion und Grenzkostenfunk-
tion schneiden, ist die gewinnmaximale Menge bestimmt. Uber die Preis-Absatz-
Funktion wird fiir diese Menge der Monopolpreis bestimmt. Der Punkt auf der Preis-
Absatz-Funktion wird als Cournotscher Punkt bezeichnet. Dieser Punkt liegt stets
im unelastischen Bereich der Preis-Absatz-Funktion, also im elastischen Bereich der
Nachfragefunktion (siehe nichstes Kapitel 10.8.6). Nur in diesem Bereich besitzt
der Monopolist die Mdglichkeit, mit einer Preiserh6hung auch eine Erlossteigerung
zu erzielen (siehe Beispiel 10.29). Die Gewinnfunktion (siehe obere Grafik in Abb.
10.9) besitzt an der Stelle x, = 7.67 ihr Maximum; der Abstand zwischen Erlos- und
Kostenfunktion ist maximal.

Aus der Bedingung Grenzkosten = Grenzerlds ergibt sich
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Abb. 10.9: Angebotsverhalten eines Angebotsmonopolisten

xp' (%) + p(x) = K (x)

Da xp’(x) < 0 angenommen wird (fallende Preis-Absatz-Funktion), liegt der Mono-
polreis oberhalb der Grenzkosten. Wegen der notwendigen Bedingung fiir ein Maxi-
mum gilt im Gewinnmaximum des Monopols dann p(x) > K'(x).

Gilt K (x) > K’(x), dann kann in einer Wettbewerbssituation nur mit Verlust pro-
duziert werden, weil pM@* = E’(x) LK (x) < K(x) gilt (siche Kapitel 10.8.4). Es ist
der Bereich zunehmender Grenzertrige (abnehmender Grenzkosten). Die Differenz
p —K(x) ist immer der Stiickgewinn. Im Fall der vollkommenen Konkurrenz ent-
spricht dies der Differenz K’(x) — K(x). Das Monopol kann in dem Bereich zuneh-
mender Grenzkosten produzieren, weil es den Betrag K’ (x) — K (x) < 0 (Stiickverlust
unter Konkurrenz) aufgrund der Marktstellung mit einen hoheren Preis kompensie-
ren kann.

Wiirde sich ein Monopolist wie ein Anbieter bei vollkommener Konkurrenz ver-
halten, so wiirde er der Preis = Grenzkosten-Regel folgen und die Menge x = 11.83
zum Preis p = 4.08 € anbieten (siche Abb. 10.9). Die Nachfragesituation wiirde dann
besser sein. Aus diesem Grund wird der Monopolist kritisch beurteilt: Er produziert
weniger und verlangt einen hoheren Preis als Anbieter unter Konkurrenzbedingun-
gen, sofern eine Gleichheit der aggregierten Grenzkostenfunktionen unter Konkur-
renz und der Grenzkostenkurve des Monopolisten angenommen wird. Diese Annah-
me ist jedoch realitdtsfern. Ferner ist die Situation hier dadurch gekennzeichnet, dass
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die Menge x = 11.83 vom Monopolisten nur mit Verlust hergestellt werden kann.
Der Durchschnittserlos (Preis) liegt unter den Durchschnittskosten. Dies muss nicht
so sein, ist aber in monopolistischen Méarkten haufig der Fall. Der Monopolist steht ja
nicht unter dem Wettbewerbsdruck, stets die Produktivitit zu erhdhen. Diese Uber-
legungen gehdren zu den Grundlagen der mikro6konomischen Theorie (vgl. [3]).

10.8.6 Elastizitiaten

Zur Beschreibung der Konkurrenzsituationen auf Mérkten verwendet man hiufig die
Elastizitdten. Im Fall vollkommener Konkurrenz ist der Preis vollkommen unela-
stisch gegeniiber Absatzanderungen.

Beispiel 10.27. Ein Fullballverein will seine Einnahmen erh6hen. Dazu muss er liber-
legen, wie stark die Nachfrage auf die Preiserhohung reagiert. Man kann vermuten,
dass sich die Preiserh6hung dann lohnt, wenn eine sehr interessante Begegnung an-
steht. Die Nachfrage wird dann ,,kaum® auf die Preiserh6hung reagieren.

Allgemein kann man die Elastizitit (elasticity) als die Anpassungsfahigkeit ei-
nes 6konomischen Systems an verdnderte Bedingungen interpretieren. Im mathema-
tischen Sinn wird darunter ein MaB fiir die (infinitesimale kleine absolute) relative
Anderung einer 6konomischen GroBe y im Verhiltnis zur (infinitesimalen kleinen ab-
soluten) relativen Verdnderung des sie bestimmenden Einflussfaktors x verstanden.
Fiir die Funktion y = f(x) ist die Elastizitét durch

dv  dy
yl
6x) = 4 = dr = 5 (10.23)
X X

definiert. Die Berechnung der Elastizitit setzt voraus, dass die Funktion y = f(x) im
betrachteten Intervall bekannt und differenzierbar ist. Die Elastizitit ist eine Funktion
der unabhéngigen Verdnderlichen. Sie bezieht sich daher immer auf einen Punkt der
betrachteten Kurve; daher kommt auch die Bezeichnung Punktelastizitit. Da bei der
Elastizitit relative Anderungen betrachtet werden, ist sie dimensionslos.

Mit der Logarithmusfunktion kann die Elastizitit wie folgt berechnet werden:

dlny
&0 = iny
Dies gilt aufgrund der Tatsache, dass die Ableitung des natiirlichen Logarithmus

dlnx_l
dx  «x

(10.24)

ist. Folglich ist dInx = ‘ix Ersetzt man ebenfalls die relative Anderung von y durch
dlny = dyy in der Elastizitdt (10.23), so erhdlt man die Beziehung (10.24). Dies ist

der Grund, warum in vielen Okonomielehrbiichern die Variablen in logarithmierten
GroBen angegeben werden.



268 10 Differentialrechnung fiir Funktionen mit einer Variable

Der im Beispiel 10.27 angesprochene Zusammenhang zwischen einer Preisdnde-
rung und der damit resultierenden Mengenédnderung wird als Elastizitdt bezeichnet.
Eine Elastizitidt misst generell die Stirke einer Ursache-Wirkungsbeziehung unter
Ceteris-paribus-Bedingungen. Sie gibt den relativen Einfluss der ursdchlichen Grofie
auf die WirkungsgrofBe an. Da es hier zundchst um den besonderen Kausalbezug zwi-
schen der sich dndernden Nachfragemenge Axx (als Wirkung) und einer Anderung des
Preises 47 bei diesem Gut (als Ursache) geht, wird die Elastizitdt als Preiselastizitit
der Nachfrage (elasticity of demand)

bezeichnet. Die Funktion x(p) bezeichnet die Nachfragefunktion. Die Preiselastizi-
tdt der Nachfrage gibt (ndherungsweise) an, um wie viel Prozent sich die Nachfra-
gemenge eines Guts dndert, wenn die dafiir urséchliche Preisdnderung ein Prozent
betrégt. Die Preiselastizitdt der Nachfrage ist im Regelfall negativ, weil eine Preis-
erh6hung mit einem Riickgang der nachgefragten Menge verbunden ist. Daher be-
trachtet man haufig nur den Betrag der Preiselastizitit der Nachfrage: |, (p)].

Die Elastizitdt des Preises beziiglich der Nachfrage wird auch als Nachfrageela-
stizitit des Preises bezeichnet. Sie bezieht sich auf die Preis-Absatz-Funktion.

/

p'(x)
gp(x)="_

P Pl
Da die Nachfragefunktion x = f~!(p) formal die Umkehrfunktion der Preis-Absatz-
Funktion p = f(x) = p(x) ist und die Ableitung einer Umkehrfunktion der Kehrwert
der Ableitung der Stammfunktion (siche Abschnitt 10.5.1), besteht folgender Zu-
sammenhang zwischen den beiden Elastizitdten:

1

%w:&@

Man unterscheidet Elastizititen, die betragsméaBig grofer als Eins
&y (x)[ > 1

und betragsméBig kleiner Eins
l&p(x)[ <1

sind. Im ersten Fall spricht man von einer elastischen Reaktion, weil bei einer An-
derung zum Beispiel von Axx = 1 Prozent eine mehr als einprozentige Funktionsiande-
rung verbunden ist. Im zweiten Fall spricht man von einer unelastischen Reaktion,
weil eine einprozentige Anderung eine Funktionsinderung von weniger als einem
Prozent verursacht. Als Grenzfille der Preiselastizitdt der Nachfrage ergeben sich
dann:

e vollkommen elastische Nachfrage (|&(p)| = =), d. h., eine einprozentige Preis-
anderung bewirkt eine unendliche grole Mengeninderung;
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e vollkommen unelastische Nachfrage (|e:(p)| = 0), d. h., eine Preisdnderung be-
wirkt keine Mengenénderung.

Bei |.(p)| = 1 liegt der Ubergang zwischen elastischer und unelastischer Nach-
frage. Eine einprozentige Preisdnderung bewirkt eine einprozentige Mengeninde-
rung.

Lineare Funktionen weisen immer einen elastischen und einen unelastischen Be-
reich auf. Fiir nicht lineare Funktionen gilt dies nicht immer. Es existieren zum Bei-
spiel Funktionen, die im gesamten Verlauf stets die gleiche Elastizitéit aufweisen.

Beispiel 10.28. Die Funktion
y=x* firleR"

besitzt die Elastizitit
g(x)=—-2

o3

Wenden wir uns nun wieder der bereits bekannten Nachfragefunktion zu, um die
Preiselastizitit der Nachfrage mit einem Zahlenbeispiel zu interpretieren.

Beispiel 10.29. Ausgehend von folgender Nachfragefunktion (sie ist die Umkehr-
funktion von der Preis-Absatz-Funktion (10.22) des Monopolisten im Beispiel 10.26)

x=20-2p fir0<p<I10 (10.25)

wird bei einer Preiserhdhung von 1 € auf 2 € ein Nachgefrageriickgang von 18 Men-
geneinheiten (ME) auf 16 ME festgestellt. Die Preiselastizitdt der Nachfrage betragt

dann: ) |
&(p=1)= 20-2p = )
P
Die Nachfragereaktion wird hier als unelastisch bezeichnet, weil sich der Preis relativ
starker verdndert hat als die Nachfrage. Bei einer einprozentigen Preisdnderung fiihrt
dann eine Preiselastizitdt von — é zu einer Mengenabnahme von rd. 0.11 Prozent.
Steigt der Preis aber von 8 € auf 9 €, so sinkt die nachgefragte Menge von 4 ME

auf 2 ME. Die Preiselastizitit der Nachfrage fallt auf
&(8)=—4

An der Stelle p = 8 ist die Preiselastizitit elastisch, weil sich der Preis relativ weniger
dndert als die Menge. Bei einer einprozentigen Preisdnderung ergibt sich bei einer
Preiselastizitdt von —4 eine Mengenabnahme von 4 Prozent. Welche Auswirkung
dies auf die Ausgaben hat, wird im Folgenden erlautert.

In der Tabelle 10.1 steht die Nachfragereaktion fiir den unelastischen und den
elastischen Fall und deren Wirkung auf die Ausgabe (Menge x Preis). Im unelasti-
schen Fall nimmt die Menge bei einer Preissteigerung von 1 Prozent (100 Prozent)
um rund 0.11 Prozent (11 Prozent) ab. Die Menge fallt unterproportional, so dass
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sich die Ausgabe erhoht. Die Vernachlissigung einer infinitesimalen Anderung kann
hier erfolgen, da es sich bei (10.25) um eine lineare Funktion handelt, die ja in jedem
Punkt die gleiche Steigung besitzt.

Tabelle 10.1: Preiselastizitit der Nachfragefunktion (10.25)

unelastisch elastisch
‘ex(1)|: gl) |8x(8) =4
Preis Menge Ausgabe Preis Menge Ausgabe
1 18 18 8 4 32
1.01 1798 18.16 8.08 3.84 31.03
2 16 32 9 2 18

Im elastischen Fall verursacht eine Preisteigerung von 1 Prozent (12.5 Prozent)
eine Mengenabnahme von 4 Prozent (4 x 12.5 = 50 Prozent). Die Ausgabe sinkt nun,
weil die Menge tiberproportional fillt. o3

Es zeigt sich, dass bei einer unelastischen Nachfrage eine Preiserhohung eine
Ausgabenerh6hung verursacht. Bei einer elastischen Nachfrage reagiert die Menge
relativ stirker auf die relative Preisdnderung. Daher fiihrt dies dann zu einem Aus-
gabenriickgang. Je hoher also die Preiselastizitdt der Nachfrage ist, desto begrenzter
ist der Spielraum, mit einer Preiserhdhung einen Erldszuwachs zu erzielen.

Der Monopolist aus Beispiel 10.26 produziert im elastischen Bereich der Nach-
fragefunktion (bzw. im unelastischen Bereich der Preis-Absatz-Funktion), weil dann
der Grenzerlds positiv ist. Nur dann erzielt der Monopolist mit einer zusétzlich pro-
duzierten Mengeneinheit und dem damit verbundenen Preisriickgang einen Erldszu-
wachs. Dieser Zusammenhang wird als Amoroso-Robinson-Beziehung bezeichnet.

E'(x) = p(@) + /() x = p(x) (1+&(x))

1
=p(x) (1 + ) Amoroso-Robinson-Beziechung
&(p)

Es gilt E/(x) > 0, also muss (1 + Evzp)) > 0 sein. Dies trifft nur zu, wenn & (p) < —1,

also die Nachfrage elastisch ist, dann gilt (1 + . gp)) > 0 und damit £’ (x) > 0.

X

Beispiel 10.30. Mit den Zahlen aus dem Beispiel 10.26 ergeben sich folgende Ela-
stizitdten:

E(pe=617) =161 & g(x.=7.67)=—0.62

1
E'(7.67)=6.17 (1 - 61) =233
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Neben der Preiselastizitdt der Nachfrage und der Nachfrageelastizitét des Prei-
ses werden in der Okonomie hiiufig auch eine Kreuzpreiselastizitit (siche Abschnitt
11.3.5), eine Einkommenelastizitit und eine Kostenelastizitit verwendet.

Ubung 10.5. Die Kostenfunktion

K(x) =V/50x2 43750 fiirx>0

beschreibt den Zusammenhang zwischen der Fertigungsmenge x und den Gesamt-
kosten K (x).

1. Bestimmen Sie die Kostenelastizitdt als Funktion der Menge x.
2. Wie grof} ist die Punktelastizitét an der Stelle x = 5?

Ubung 10.6. Eine Preis-Absatz-Funktion ist durch die folgende Gerade gegeben:
X ..
p(x):6—2 fir0 <x <12
Die Kosten K (x) zu der Menge x sind durch das folgende Polynom beschrieben:

3, 13
K(x)—lzx 4F +4x
1. Bestimmen Sie das Erlésmaximum.
2. Bestimmen Sie das Gewinnmaximum und den dazugehdrigen gewinnmaxi-
malen Preis (Cournotscher Punkt).
. Berechnen Sie die minimalen Stiickkosten.
. Berechnen Sie den maximalen Stiickgewinn.
5. Berechnen und interpretieren Sie die Preiselastizitit der Nachfrage an der
Stelle x = 3.

W

Ubung 10.7. Berechnen Sie fiir die Funktion

px)=ux* firu,AeRt

die Preiselastizitdt der Nachfrage.

10.9 Fazit

Die Differentialrechnung analysiert marginale Funktionsédnderungen. Mit dem Diffe-
rentialquotienten, der Ableitung einer Funktion, werden Extremstellen einer Funkti-
on bestimmt. Extremstellen sind Minimum, Maximum, Sattelpunkt und Wendepunkt
einer Funktion, die aus den Nullstellen der Ableitungen bestimmbar sind.

In der Okonomie wird die Differentialrechnung eingesetzt, um bestimmte Markt-
situationen zu analysieren und gewinnmaximale Bedingungen herzuleiten. Die Er-
kenntnisse der Marginalanalyse haben die Grundsitze der marktwirtschaftlichen
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Wirtschaftspolitik erheblich mitbestimmt. Mit Elastizitdten wird die Konkurrenzsi-
tuation auf Mérkten untersucht.
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11.1 Vorbemerkung

In vielen Féllen héngen die 6konomischen Gréfen nicht nur von einer Variablen,
sondern von mehreren Variablen ab. Die in Kapitel 10.8.1 betrachtete Ertragsfunk-
tion wird in der Realitdt von mehr als nur einem Produktionsfaktor bestimmt sein.

W. Kohn, R. Oztiirk, Mathematik fiir Okonomen, Springer-Lehrbuch,
DOI 10.1007/978-3-642-28575-2 11, © Springer-Verlag Berlin Heidelberg 2012
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Von daher ist es auch in den Wirtschaftswissenschaften notwendig, Funktionen mit
mehreren Variablen zu betrachten. Im folgenden Abschnitt werden allerdings nur
Funktionen mit zwei Variablen behandelt. Folgende neue Symbole kommen in die-
sem Kapitel vor:

X,y Variablen

X1,X2,... Variablen

z Funktionswert

d partieller Differentialoperator

N erste partielle Ableitung der Funktion f(x,...) nach x
H Hessematrix

G() =0 implizite Funktion der Nebenbedingung

L() Lagrangefunktion

A Lagrangemultiplikator

11.2 Funktionen mit zwei Variablen

Eine Funktion mit zwei Variablen wird durch

z=f(x,y) fiir (x,y) € D(f)

beschrieben. Sie ist eine eindeutige Abbildung von (aus) dem Produktraum X x Y in
(nach) Z, also bei der Einschrinkung auf reelle Zahlen eine Abbildung von R? nach
R.

Statt x, y wird bei Funktionen mit zwei Variablen héufig die erste Variable mit xj,
die zweite Variable mit x, und der Funktionswert wieder mit y bezeichnet, insbeson-
dere dann, wenn mehr als zwei Variablen vorliegen.

y=f(x1,x2) fiir (x1,x2) € D(f)

Die Funktion f(x,y) kann als explizite oder implizite Funktion geschrieben wer-
den.

Explizite Funktion z= f(x,y) fir (x,y) € D(f)

Implizite Funktion 0= G(x,y) fiir (x,y) € D(G)
In einer impliziten Funktion ist die Unterscheidung von abhingiger und unab-
hingiger Variablen zunéchst nicht moglich oder sinnvoll. Erst durch die Darstellung
in der nach einer Variablen aufgeldsten Form oder durch willkiirliche Angabe ist

diese Unterscheidung moglich. Nicht alle implizit gegebenen Funktionen lassen eine
explizite Darstellung zu (siehe zum Beispiel Renditeberechnung).

Beispiel 11.1. Die implizite Funktion G(x,y)
x3+y3+x2y+y2x+x2+y:0 x,yeR (11.1)
ist weder nach x noch nach y auflosbar. gel

Unter den Funktionen mit mehreren Variablen stellen die linearen Funktionen
die wichtigste Klasse dar, weil sehr viele dkonomische Zusammenhénge entweder
tatsdchlich linear sind oder in erster Ndherung als solche angesehen werden konnen.
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11.2.1 Isoquanten

Funktionen mit zwei Variablen sind Flichen im R* und somit in der Zeichenebe-
ne nur schwer darstellbar. Am plastischsten wirkt die Darstellung, wenn die Flache
aus mehreren parallelen Schnittkurven aufgebaut wird. Die Schnittkurven entstehen
durch gedachte Schnitte, die jeweils fiir x = konst, y = konst oder z = f(x,y) = konst
ausgefiihrt werden kdnnen. Die Schnittkurven mit gleichen Funktionswerten be-
zeichnet man als Isoquanten (siche Abb. 11.1, rechts unten). Die Funktion in Abb.
11.1 (oben) kann man als Ertragsgebirge interpretieren. Die Variablen x und y sind
dann die Produktionsfaktoren, und der Funktionswert z gibt den Ertrag an. Unter-
stellt man, dass alle Faktorkombinationen des Definitionsbereichs moglich sind, so
liegen die Kombinationen gleichen Ertrags auf der gleichen Hohe. Es handelt sich
um Ertragsisoquanten. Die abgebildete Funktion ist

3+t P4

z=f(x») 5 ¢ Witxye

250 RN

200 1

z150 +

0- 108 4
0 2 4 6 81012 14 16 18 55 2016
X y

N

280
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200
160
120
y=2
80

404 y=2:2:20
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Abb. 11.1: Schnittkurven

11.2.2 Nullstellen

Bei einer Flache kann man von einer Nullstelle im eigentlichen Sinn, d. h. von einem
Punkt, nicht mehr sprechen. Jedoch ldsst sich das Prinzip der Berechnung iibertragen.
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Man erhilt durch Nullsetzen des Funktionswerts eine Bestimmungsgleichung

fx,) =0,

wobei jedoch diese als geometrischer Ort keinen Punkt, sondern eine Kurve be-
schreibt. Es handelt sich um die Schnittkurve der Flidche mit der x,y Koordinaten-
ebene, also um eine spezielle Isoquante.

11.3 Differenzieren von Funktionen mit zwei Variablen

Die Steigung einer Flache in einer definierten Richtung ist gleich der Steigung der
Schnittkurve, die bei einem Schnitt in der betreffenden Richtung entsteht. Man kann
bei einer Funktion mit zwei Variablen somit in zwei Richtungen die Steigung ermit-
teln. Ermittelt man die Steigung in x-Richtung, so wird die in y-Richtung als quasi
konstant erachtet. Es wird daher von einem partiellen Differential gesprochen.

11.3.1 Partielles Differential

Die Steigung einer Kurve in der Schnittebene y = konst, d.h. in Richtung der x-
Achse, ist durch den Differentialquotienten

dz _ i f(x+Ax,y) = f(x,»)
0x  Ax—0 Ax

beschrieben. Dies ist das erste partielle Differential nach x. Es erfolgt unter der
Bedingung y = konst.

Um zu kennzeichnen, dass nur nach der einen Variablen differenziert wird, wéh-
rend alle iibrigen Variablen wie Konstanten zu behandeln sind, schreibt man die Dif-
ferentiale mit einem runden deutschen d: d. Analog kann man die erste partielle
Ableitung auch nach der Variablen y bilden.

dz _ o Sy +Ay) = f(xy)
dy  Ay—0 Ay

Hat eine Funktion » unabhéngige Variablen, so kann nach jeder Variablen partiell

differentiert werden. Man kiirzt die Schreibweise gi meistens durch f] oder z. bzw.

g; durch £} oder zj, ab.
Beispiel 11.2. Die Funktion
z=x’y fir(x,y) €R

ist abzuleiten. Zur partiellen Differentiation braucht die Produktregel hier nicht an-
gewendet zu werden.

l_ p—
Z, = 2xy Z,=x
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Bei der partiellen Ableitung wird y bzw. x wie eine Konstante behandelt; sie ist
jedoch keine Konstante, sondern nach wie vor eine Variable.

Beispiel 11.3. Weitere Beispiele:

n.m /o n—1_.m /o n_ m—1
z=x"y Z, = nx z, =mx"y
z=¢Y z.=ye? 2, =xe*’

X
— I _ r_
z=xlIny zZ, =Iny zZ, =

Beispiel 11.4. Welche Steigung besitzt die Funktion
1
z=2xy—3x"+  fir(x,y)eR
y

in Richtung der x-Achse bzw. der y-Achse?

/ / 1
z,=2y—6x zy:2x—y2

Um die Steigung im Punkt (2, 1) zu berechnen, setzt man die Koordinatenwerte ein

o3

Die bisher vorgestellten Regeln der Differentialrechnung gelten auch fiir partielle
Differentiation ohne Einschrénkung. Sie sind dann anzuwenden, wenn die Variable,
nach welcher differenziert wird, in beiden Faktoren eines Produkts, d. h. im Zahler
und Nenner eines Quotienten oder in der inneren Funktion, einer zusammengesetzten
Funktion auftritt.

Beispiel 11.5. Fiir die partielle Differentiation der Funktion
212 .
z=ye" " fir(x,y) €R

nach x muss die Kettenregel angewendet werden. Um die Ableitung nach y zu be-
rechnen, muss man sowohl die Kettenregel als auch die Produktregel anwenden. Die
Exponentialfunktion wird mit der Kettenregel abgeleitet. Mit der Produktregel wird
das Produkt ye© ™ differenziert.

2.2 2.2 2,.2
/o X+ /o X+ 2 X+
Zy =2xye" 7 Zy=¢" " +2y7e"
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11.3.2 Partielles Differential hoherer Ordnung

Wie bei Funktionen mit einer Variablen kann man die partielle Ableitung als Funk-
tion noch einmal partiell differenzieren.

d (dz\ d (dz\
ox <9x) T dy <9y> ~w
Jd (adz\ Jd (dz\
dx (8)/) ~ o dy <8x> ~ o

Die zweiten Ableitungen 2y, = zy, sind bei stetig partiell differenzierbaren Funktio-
nen immer identisch! Die Reihenfolge der Differentiation ist daher beliebig.

Beispiel 11.6.

z=x"—4x’y+2xy* +In(xy) fir (x,y) €R"

1 1

z, = 3x2—8xy+2y2—|—x z;:—4x2+4xy+y
1
z;/x: 6x—8y—x2 z;y: 4x—y2
zZy:—8x+4y z;’x:—8x+4y

11.3.3 Totales Differential

Die Schnittkurve in x-Richtung besitzt die Steigung gi = z... Eine Auslenkung der
Variablen x um den Betrag dx hat auf die Schnittkurve in x-Richtung die Funktions-
dnderung

dzy =z, dx
zur Folge. Es gibt auch ein entsprechendes partielles Differential nach der Variablen
V.

dz, = z; dy

Werden die Variablen x und y gleichzeitig um die Betrdge dx und dy veréndert, so
erhilt man die Gesamténderung, die sich aus der Summe der partiellen Differentialen
ergibt. Man bezeichnet diese infinitesimale Grof3e als das totale Differential.

dz = dz, +dz, zz;dx—i-z;dy
Beispiel 11.7. Das totale Differential der Funktion

z=xIny
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ist

dz=Inydx + dy
y

11.3.4 Differentiation impliziter Funktionen

Der Funktionswert einer impliziten Funktion ist stets z = G(x,y) = 0. Die Steigung
kann mittels des totalen Differentials bestimmt werden. Fiir das totale Differential
gilt wegenz =0 auchdz=dG =0:

dz:z;dx—kz;dy: 0

Die Umformung der obigen Gleichung nach g liefert den Differentialquotienten
und damit die Steigung der impliziten Funktion.

dy Z,
= 1 1 .2
dx Z;, ( )

Beispiel 11.8. Es ist die Steigung der Funktion (11.1) an der Stelle x = 1 gesucht.
Die partiellen Ableitungen sind

/ /

zZ, = 3x2 4 2xy+yP+2x z,= 3y 4 X2+ 2xy+1

dy 3x2+2xy+y*+2x
dx 32 +x2+2xy+1

Um an der Stelle x = 1 die Steigung berechnen zu kénnen, bendtigt man noch einen
Wert fiir y. Die Funktion an der Stelle x = 1 ist

V42 +2y4+2=0 firxeR

Die Nullstellen dieser Funktion liefern die Werte fiir y. Hier sind aufgrund der fol-
genden Umformung die Nullstellen direkt bestimmbar.

PO+ +200+1)=0 = (*+2)p+1)=0

Der einzige reelle Wert an der Stelle x = 1 ist y = —1. Die anderen beiden Wurzeln
sind imaginér. Die Steigung an der Stelle x = 1, y = —1 ist somit

dy _ 4

x|, 3
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11.3.5 Okonomische Anwendungen

In dem vorgestellten Ertragsgebirge war der Ertrag eine Funktion von zwei Produk-
tionsfaktoren. Um die Frage zu beantworten, welcher Ertragsanteil jedem der beiden
Faktoren in einem bestimmten Punkt zuzurechnen ist, bietet es sich an, den einen
Faktor konstant zu halten und den Einfluss des anderen durch Variation zu messen.

Die Verdnderung des Ertags bei Variation des Faktors x und Konstanz des Faktors
v ist gleich der partiellen Ableitung der Ertagsfunktion.

Jdz dz

dx dx y=konst

Die GroBen werden als partielle Grenzertrige (partial marginal return) bezeichnet.
Bei gleichzeitiger Variation beider Faktoren um infinitesimale Betrdge dx und dy
wird sich der Ertrag geméf dem totalen Differential andern, und man erhélt die totale
Ertragsidnderung.

Halt man den Ertrag konstant, also wenn gilt dz = 0, so erhdlt man die Schnittkur-
ve z= f(x,y) = konst, die als Ertragsisoquante (indifference return curve) bezeich-
net wird. Entlang dieser Kurve @ndert sich trotz Faktorvariation der Ertrag nicht. Die
Anderung der Produktionsfaktoren bei konstantem Ertrag liefert die Grenzrate der
Substitution (marginal rate of substitution). Man erhilt sie durch das implizite Dif-
ferential (11.2). Die Grenzrate der Substitution ist durch das umgekehrte Verhéltnis
der Grenzertrige gegeben.

Die Projektion der Isoquante in die x,y Ebene zeigt die Abhangigkeit des Faktors
x vom Faktor y bei festem Ertrag grafisch (siehe Abb. 11.1, unten rechts).

Beispiel 11.9. Die Funktion
x(ri,r) =apr{'ry? mit0<aj,a; <1,r1,r, >0

ist in der Literatur als Cobb-Douglas-Ertragsfunktion (Produktionsfunktion) be-
kannt.

Sie besitzt einige besondere Eigenschaften, von denen hier einige gezeigt werden
sollen. Die partielle Ertragselastizitit (elasticity of return) beschreibt die relative
Ertragsidnderung beziiglich einer relativen partiellen Faktordnderung.

ar—1 _a
ox ri  agairy'

& = = =ai
Yoodn x aorfl_lrgz
ox r
Eon = o x

Die Grenzrate der Substitution berechnet sich aus dem totalen Differential mit
dx=0. ,
dr, Xy ain

dry x!

,2 ar ry

Ferner wird bei substitutionalen Ertragsfunktionen hdufig die Substitutionsela-
stizitit (substitution elasticity) berechnet, die das Verhéltnis der relativen Anderung
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4
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Abb. 11.2: Cobb-Douglas-Ertragsfunktion mit ¢y = 1,a; = a» = 0.5

r
]

der Faktorproportionen

angibt.
o(2)
o n Xry
81"1 gy T T x. 7
d( 7 ) r
Xpy
Aus

/ —1
rl _ (11 ‘xl"l
mn o a x}z

erhilt man mittels Differenzieren

und somit

281

zur relativen Anderung der Grenzertragsproportion x,l
]



282 11 Funktionen und Differentialrechnung mit zwei Variablen
2
_ al x;‘z x:’1 7”2
8}’] I T / /
ay \x., ) x., 1
_a X, 1 1
a x’r1 r
N~ ~ -
_"
=1
Die Substitutionselastizitit betrdgt Eins. Sie gibt an, um wie viel Prozent sich die
Faktoreinsatzrelation d&ndern muss, wenn sich die Grenzertragsrelation der beiden
Faktoren um 1 Prozent gedndert hat. Einsichtiger wird die Interpretation, wenn man
die Erkenntnis der Minimalkostenkombination (siche Kapitel 11.5.3) mitverwendet.
Sie ist dadurch gekennzeichnet, dass die Grenzertriage proportional zu den Faktor-
preisen sind. Dann kann die obige Aussage abgewandelt werden in: Um wieviel
Prozent muss sich die Faktoreinsatzrelation dndern, wenn sich die Preisrelation der
beiden Faktoren um 1 Prozent édndert? S

Im Abschnitt 10.8.6 wurde die Elastizitat fiir die (Nachfrage-) Funktion mit einer
Variablen eingefiihrt. Die Nachfrage nach einem Gut hangt meistens auch von den
Preisen anderer dhnlicher Giiter ab.

x=f(p1,p2,--.)

Wird nun die (partielle) Elastizitit zu den Preisen der anderen Giiter gebildet, so
spricht man von der Kreuzpreiselastizitit (cross price elasticity).

dx

d
&(p2) = 52

P2

Ubung 11.1. Berechnen Sie die partiellen Ableitungen der folgenden Funktion:

z=f(x,y) =¥ firxeR"yeR

Ubung 11.2. Bestimmen Sie die Ableitung bzw. das implizite Differential erster
Ordnung zu der Funktion

x3+xy+y3— 10=0.

Ubung 11.3. Berechnen Sie die zweiten partiellen Ableitungen aus dem Beispiel
11.5.

Ubung 11.4. Berechnen Sie das implizite Differential der folgenden Gleichung an
der Stellex =0,y =1
Y+ e =x+2
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11.4 Extremwertbestimmung

Ein Extremum liegt — wie bei einer Funktion mit einer Variablen — vor, wenn bei einer
stetig differenzierbaren Funktion die erste partielle Ableitung Null wird. In einem
Extrempunkt der Funktion f(x,y) sind also notwendigerweise die ersten partiellen
Ableitungen Null. Um die Extremwerte bestimmen zu kdnnen, muss man die Losung
des Gleichungssystems

! !
fE0 £140

berechnen. Hat man die Extrempunkte bestimmt, so stellt sich die Frage, ob an die-
sen Stellen auch tatsdchlich Extrema vorliegen, d. h. ob die obigen Bedingungen auch
hinreichend sind. Es kann ja sein, dass eine Funktion in x-Richtung ein Maximum
besitzt, in y-Richtung aber ein Minimum. Ein solcher Punkt wird Sattelpunkt ge-
nannt.

Die hinreichende Bedingung, die iiber das Vorliegen eines Minimums bzw. Ma-
ximums entscheidet, ist auch hier das Vorzeichen der zweiten Ableitung. Nur exi-
stiert jetzt nicht «eine» zweite Ableitung, sondern vier partielle, namlich £}, )g,, Jﬁ;,

so dass das Vorzeichen dieser anders ermittelt werden muss.

Hierzu wird das Vorzeichen der zweiten Ableitung libersetzt in das «Vorzeichen»
einer Matrix. Es gilt weiterhin, dass fiir ein Maximum (Minimum) die zweite Ablei-
tung von z negativ (positiv) sein muss. Das «Vorzeichen» einer Matrix entspricht
der Definitheit einer Matrix. Um die Definitheit einer Matrix bestimmen zu konnen,
benotigt man die Determinante und Hauptminoren (Unterdeterminanten) der Matrix.

Die erste Ableitung der Funktion z = f(x,y) ist

yy’

dz:f;dx—kfy’dy (11.3)
Die zweite Ableitung von z ist das Differential von (11.3).

ddz ddz

=d(dz) = o dx + o dy

d d

EIN & if Zdﬁ&y(ﬂ“dﬁﬂdy)dy (11.4)
dz

= (foxdx+ fr dy) dx+ (f,dx+ 7 dy) dy
= fude® + fi dydx + f7, dxdy + £, dy?

Das Vorzeichen der zweiten Ableitung d’z wird iiber die Definitheit quadratischer
Formen bestimmt. Die Gleichung (11.4) wird wegen der Ubersichtlichkeit in ein-
fachere Symbole umgeschrieben und gleichzeitig erweitert, um einen binomischen
Ausdruck ausklammern zu kdnnen:
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n o, K
g=au*+2huv+bv + V- V2

Erweiterung

2 2 2
:a(u2+ huv+h2v2>+(b—h >v2
a a a
( h>2 ab—h*
=alu+ v| + V
a a ~~~

~ ~ - stets > 0
stets > 0

Das Vorzeichen von ¢ hingt daher von a und ab — h? ab:

wenn a > 0 und ab — h% > 0 ist, dann ist q > 0, also positiv definit
wenn a < 0 und ab — h* > 0 ist, dann ist q < 0, also negativ definit

Somit bestimmen die Vorzeichen der zweiten partiellen Ableitungen das Vorzeichen
der zweiten Ableitung. Ein Minimum der Funktion f(x,y) liegt an der Extremwert-
stelle (x,y) vor, wenn d’z > 0 gilt. Ein Maximum der Funktion liegt an der Extrem-
wertstelle vor, wenn d*z < 0 gilt. Nun ist ¢ auch als Matrixgleichung (quadratische

Form) darstellbar.
a hi|u
a=[]y 5] |

N o~
H

Die Matrix H wird als Hesse-Matrix bezeichnet und beinhaltet die zweiten Ablei-
tungen der Funktion f(x,y).
/! !
Hzﬁfﬂ

yx Jyy
Das Vorzeichen der zweiten Ableitung kann mittels der Determinanten der Hesse-
Matrix ermittelt werden. Die erste Unterdeterminante der Hesse-Matrix ist

Hi (x,3)] = fix
Die Determinante der Hesse-Matrix ist
()| = fi = (15)°
Die zweite Ableitung ist an der Stelle (x,y) positiv, wenn
[H;(x,y)| >0 und [Hy (x,y)| >0

gilt. Dann liegt an dieser Stelle ein Minimum der Funktion vor.
Die zweite Ableitung ist an der Stelle (x,y) negativ, wenn

|H1 (x7y)| <0 und |H2(x7y)| >0
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gilt. Dann liegt an dieser Stelle ein Maximum der Funktion vor.
Ist

[H;(x,»)|=0 und [Hy (x,»)| <0,

so liegt ein Sattelpunkt an der Stelle (x,y) vor.
Ist
[Ha(x,»)| =0,

ist keine Entscheidung ohne weitere Rechnung moglich.

900 —

700 —|

500 —|

0%

%
7022
4

300 —|

2
(507
W
0,2
gl
"l‘{'l

Q
%
'I’!’Im

0

100 —

J
Nl
DN
i
J

-100 —|

77 7 7H

e

HH
"I,’I 117

-300 —|

3

Abb. 11.3: Grafik der Funktion (11.5)

Beispiel 11.10. Es werden fiir die Funktion
z=x"—12xy+6)* firxeR
die Extrempunkte gesucht. Die ersten partiellen Ableitungen sind

Z= 3x-12y 20 = 3x2—12x=0

I y—

Z=-12x+12y =0 = 52

285

(11.5)
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Die Auflosung der beiden Gleichungen liefert
(x1 =0, =0)" (2=432=4)

Die zweiten Ableitungen sind

2l = 6x Z}/,/y = 12
Z)/C/y:—IZ z}/,/x:—IZ

An der Stelle (4,4) ist die erste Unterdeterminante

[H;(4,4)| =6x=24
positiv und die zweite Unterdeterminante

6x —12

|H2(4a4)|:‘_12 12

‘ =T72x—144=144
ebenfalls positiv. Somit liegt an der Stelle (4,4) ein Minimum vor. An der Stelle
(0,0) liegt ein Sattelpunkt.

In Abb. 11.3 kann man das Minimum und den Sattelpunkt der Funktion (11.5) erah-
nen. £

11.5 Extremwertbestimmung unter Nebenbedingung

Die meisten Optimierungsprobleme in der Praxis sind durch Restriktionen bestimmt.
Ein Unternehmer, der seine Kosten uneingeschrinkt minimiert, wird sein Unterneh-
men schlieBen, weil dann seine Kosten Null sind. Eine Kostenminimierung kann
also nur unter der Beschréankung sinnvoll sein, dass ein bestimmtes Programm unter
Ausnutzung vorgegebener Kapazititen gefertigt wird. Ebenso fiihrt die Gewinnma-
ximierung zur trivialen Losung unendlich, wenn man von Produkten mit positivem
Deckungsbeitrag unendlich viel verkauft. In diesem Fall fithren erst Nebenbedin-
gungen, die technischer, finanzieller und absatzbeschriankender Art sein kdnnen, zu
einem sinnvollen Optimierungsproblem. Allgemein stellt sich die Aufgabe, fiir die
Funktion z = f(x,y) ein Extremum zu finden, wobei dic Nebenbedingung (Restrik-
tion) G(x,y) = 0 einzuhalten ist. Die zu optimierende Funktion wird in diesem Zu-
sammenhang als Zielfunktion bezeichnet.

Beispiel 11.11. Optimale Konservendose: Ein sehr hdufiges Beispiel fiir die Extrem-
wertbestimmung unter Nebenbedingung ist die Berechnung einer zylindrischen Kon-
servendose gegebenen Inhalts (zum Beispiel 1000 cm?) mit minimaler Oberfliche,
zu deren Herstellung also moglichst wenig Weiflblech verwendet werden soll. Das
Problem lautet somit: Minimiere

frh)y=2rr+2rrh firrnh>0
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unter der Nebenbedingung
G(r,h) = 1000 — tr? h = 0.

Es handelt sich um die Bestimmung des Minimums der Zielfunktion f(r, /) mit den
beiden Variablen r (Radius) und /4 (Hohe) unter Einhaltung der Nebenbedingung
G(r,h) =0. Lt

Die Nebenbedingung schrinkt die Funktionswerte ein. Man spricht in diesem
Zusammenhang auch von einem Entscheidungsraum. Jede Nebenbedingung verrin-
gert den Freiheitsgrad des Entscheidungsraums.

Wie konnen nun fiir eine Zielfunktion unter einer Nebenbedingung die Extrem-
werte bestimmt werden? Eine Mdglichkeit ist, die Nebenbedingung in die Zielfunk-
tion einzusetzen.

Beispiel 11.12. Fiir die Funktion
flx,y)=xy fiurx,yeR (11.6)

sollen unter der Nebenbedingung

Gx,y)=6—x—1y>=0 (11.7)

die Extrempunkte gefunden werden. Das Einsetzen der Nebenbedingung in die
Funktion fithrt zu

fo)=(6-»")y

Die notwendige Bedingung liefert

fi=6-3=0,
womit die Extrempunkte bestimmt werden kénnen.
y=+Vv2 x= 4
os

Eine andere Moglichkeit die Nebenbedingung zu beriicksichtigen, ist die Funk-
tion zu erweitern.

Beispiel 11.13. Die Funktion (11.6) wird um die Nebenbedingung (11.7) erweitert.
Dies fiihrt zu der Funktion:

Lx,y,A)=xy+A (6—x—y2)

Die notwendige Bedingung ist wieder das Verschwinden der ersten Ableitung, wo-
bei hier beachtet werden muss, dass drei partielle erste Ableitungen existieren, die
gleichzeitig Null gesetzt werden miissen. Die ersten Ableitungen liefern das Glei-
chungssystem:
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4 y=4+/2 15.00
] 10.00

Abb. 11.4: Grafik der Funktion (11.6) und der Nebenbedingung (11.7)

L’zx—ZXyéO = A=) = x=2y°
Y 2y

LL=6-x—p*20 = 0=6-2"—)" = =2

y=%V2 x=4 A=+V2

Es wird derselbe Extrempunkt (4,+/2) gefunden. Die obere Grafik in Abb. 11.4 zeigt
die Funktion (11.6) und die Nebenbedingung (11.7) (als Linie erkennbar). An der
Stelle des Maximums tangiert die Linie der Nebenbedingung die Flache der Ziel-
funktion. Dieser Punkt ist in der unteren Grafik der Abbildung als Tangentialpunkt
der Nebenbedingung und der Isoquante zum Wert f(x,y) =xy = 41/2 zu sehen. &t

Der Losungsansatz im Beispiel 11.13 geht auf Joseph Louis de Lagrange zuriick.
Er entwickelte die so genannte Lagrange-Methode. Sie besagt: Die Extrema der
Funktion z = f(x,y) unter der Nebenbedingung G(x,y) = 0 liegen an den Stellen, an
denen die Funktion

L(x,y,A) = f(x,y) + A G(x,y)
ihre Extremwerte besitzt. Die Funktion L(x,y,A) wird als Lagrange-Funktion be-
zeichnet.
Voraussetzung fiir die Lagrange-Methode ist, dass die Nebenbedingung in im-
pliziter Form vorliegt. Der Ansatz von Lagrange gestattet es, die Optimierung unter
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der Einschrankung durch die Nebenbedingung auf die uneingeschrinkte Optimie-
rung einer Funktion, die allerdings die zusitzliche Variable A besitzt, zuriickzufiih-
ren. Somit stellt sich nun die Aufgabe, die Extremwerte der Funktion L(x,y, A ) mit
jetzt drei unabhéngigen Variablen zu finden. Die notwendige Bedingung (necessary
condition) fiir ein Extremum ist — wie zuvor —, dass die ersten partiellen Ableitungen
Null gesetzt werden. Dies fiihrt hier auf das Gleichungssystem

O = ) +2Gx) 20 (11.9)
JL , |

o = f1(x,9) +AG(x,y) =0 (11.9)
oL !

o =) =0 (11.10)

Jede Variable und jede Nebenbedingung fiihren zu einer Bedingung. Man beachte,
dass die dritte Bedingung die urspriingliche Nebenbedingung ist. Die Nebenbedin-
gung legt flir gegebene Werte von x den Wert von y fest (und andersherum). Damit
bindet die Nebenbedingung einen Freiheitsgrad. Eine weitere Nebenbedingung wiir-
de bei einer Funktion einen weiteren Freiheitsgrad binden. Die Werte x und y wiirden
dann durch die beiden Nebenbedingungen bestimmt. Eine Extremwertsuche fiir die
Zielfunktion wire nicht mehr méglich. Daher ist bei einer Funktion mit lediglich
zwei Variablen nur eine Nebenbedingung sinnvoll. Eine Funktion mit drei Variablen
kann durch zwei Nebenbedingungen eingeschriankt werden, usw.

Beispiel 11.14. Fortfithrung von Beispiel 11.11: Die Nebenbedingung in die Ziel-
funktion eingesetzt, ergibt die Lagrange-Funktion

L(r,h,A) =2mr* +21rh+ A (1000 — 777 h)

Die notwendige Bedingung fiir ein Extremum ist, die ersten Ableitungen Null zu
setzen.

L ynrianh—22mrht0
ar

JdL

0 =2nr—Amrt 20

JL

o —1000— 72 h =0

Die Losung des obigen Gleichungssystems fiihrt zu

| 2
r= i/ ;20 =5.4193cm h=2r=10.8385cm A= .= 0.3691

Die minimale Oberfliche der Dose betragt

f(5.4193,10.8385) = 553.5810 cm’
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11.5.1 Interpretation des Lagrange-Multiplikators

Nun tritt in der Lagrange-Funktion noch der so genannte Lagrange-Multiplika-
tor auf, der durch die Einbindung der Nebenbedingung in die Zielfunktion einge-
setzt wurde. Wie ist der Lagrange-Multiplikator zu interpretieren? In der Lagrange-
Funktion

LxyAse) = [(x.y) + 2 (¢ —g(x.p))

~ -
G(xy)=0
wird die GroBe ¢ nun als Variable aufgefasst und nach ihr abgeleitet.
dL
=1 (11.11)
de

Weil fiir die implizite Funktion G(x,y) = 0 gilt, gilt auch dG = 0. Es gilt daher
dL = df. Somit kann die Gleichung (11.11) umgeschrieben werden in

df = Ade

Der Lagrange-Multiplikator A gibt die relative Anderung der Zielfunktion f(x,y)
an, wenn die Restriktion ¢ um dc variiert wird. Die Interpretation des Lagrange-
Multiplikators erkldrt sich am besten an einem Beispiel.

Beispiel 11.15. Aus dem Beispiel 11.14 ist bekannt, dass A = 0.3691 ist. Wie grof3
sind die minimalen Oberflichen der Konservendose, wenn der Inhalt auf 999 ccm,
990 ccm und auf 1050 ccm verdndert wird? Dies kann ndherungsweise ohne Neube-
rechnung erfolgen. Es gilt:

Af~0.3691Ac

Daraus ergeben sich die folgenden Werte:

c=999 Ac=-1 Af~-03691 f=~553.2119 f=553.2119
c=990 Ac=-10 Af~-3.6910 f~549.8000 [ =549.8843
c=1050 Ac= 50 Af=~ 184550 f~572.0360 f=571.8833
Es zeigt sich, dass bei einer kleinen Verdnderung (Ac = —1) der approximierte Wert
und der genau berechnete Wert (letzte Spalte) bis auf die 4. Nachkommastelle iiber-

einstimmen. Abweichungen ergeben sich hier erst bei grof3eren Restriktionsdnderun-
gen. gos

11.5.2 Hinreichende Bedingung fiir ein Maximum bzw. Minimum

Die hinreichende Bedingung (sufficient condition) zur Uberpriifung auf das Vorlie-
gen eines Minimums oder Maximums erfolgt dhnlich wie in Kapitel 11.4, wobei hier
natiirlich die Beziehung der Nebenbedingung beriicksichtigt werden muss. Es wird
von einer allgemeinen Lagrange-Funktion

L(x,y,A) = f(x,y) + A G(x,)
ausgegangen. Wegen

dG = G, dv+ Gy dy =0
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gilt
Gy
dy=— o dx
y
Weil aber G, und G; wiederum von x und y abhéngig sind, ist auch dy von x und y

abhéangig:

dy(x) = “q s gy (11.12)

Dies muss in der zweiten Ableitung von L(x,y,A) beachtet werden, wenn dx als
unabhingig gesetzt wird. Es gilt allgemein:

d’L =d’z+d*G
Wegen dG = 0 ist auch d>G = 0. Daher gilt hier
d’L = d*z

Ausgehend von z = f(x,y) wird das totale Differential von dz nochmals differenziert.
Die Nebenbedingung wird iiber die Gleichung (11.12) beriicksichtigt.

ddz ddz

d?z = d(dz) = 5, vt 2 dy(x)
_ 0 (fldrt £ dla ))dx+ J (fidx+ fy dy(x)) dy(x)
t9x v ~ ay ~— N

ad
— (o gy o+ g 75 Yax
\/v ~—< Zr

v

u R (11.13)
ddy(x
+<X;dx+ i ily(xl—f— 5 5( )>dy(x)
S NP
ad
= fldx® + £ dedy(x) + /] 5( )dx—i- ! dxdy(x)
8dy
+fydy(x) fy’

Ein Teil aus der Gleichung (11.13) kann umgeschrleben werden in

sy (8d§£x> dr + adgy(x) dy(x)) = /&) (11.14)

Statt dy(x) wird nun nur noch dy geschrieben, da die Abhdngigkeit durch die An-
wendung der Produktregel berticksichtigt wurde.
Erklarung fiir die Gleichung (11.14): Da das totale Differential von y
dy

dy= gydx—l- Iy dy
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ist, kann man dann das totale Differential von dy als

ad

ad
day="""dax+ "V dy=d%
dx dy
abkiirzen. Es ergibt sich somit
&z = [l de +2 0 dedy + £, dy + f7d%y (11.15)

Nun muss aus der Nebenbedingung G(x,y) die zweite Ableitung d?y bestimmt wer-
den, um das totale Differential d°L zu berechnen. Aus den obigen Uberlegungen
kann d?>G schnell ermittelt werden:
2/~ _ Al 2 U U 2 /12
d°G =G, dx" +2G, dxdy + Gy, dy" + G, dy =0 (11.16)
Auflésen der Gleichung (11.16) nach d’y und Einsetzen in die Gleichung (11.15)
fithrt zu

d2 _ / f}C G// dx2
z= XX + G/ XX
N

A, weil —f) = A G, gilt

A
+z<;;+ Gy, G;’y> dxdy
y

~~
A
!
! y 1 2
+ ( wt G ny) dy
y (11.17)
A
= ([ +2AGE) & +2(f,+ 2 G},) dedy
N7 o 7 N o~ 7
L Ly,

+ (A G &7
~ ~ -
Ly,
2 2
= Ly dx® 4+ 2L, dxdy + Ly, dy
=d’L

Dies ist eine quadratische Form. Ist d>L negativ definit, unter Beriicksichtigung von
dG = 0, liegt ein Maximum vor. Ist d’L positiv definit, liegt ein Minimum vor. Die
Uberpriifung des Vorzeichens von d’L wird unter Verwendung der quadratischen
Form vorgenommen. Die letzte Zeile der Gleichung (11.17) wird umgeschrieben in
(siehe auch Seite 283)

g=au’+2huv+bv?

Nun unterliegt d>L bzw. ¢ hier der Nebenbedingung
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dG =G dx+ G;dy: 0
=oau+pv
Auflosen der Nebenbedingung

o
V=— _u

B

und Einsetzen ergibt

2
o o
g=au*—2h  u*+b

B p?
= (ap?—2hap+ba?)

11.18
- (11.18)

B2
q ist positiv definit, wenn der Ausdruck in der Klammer positiv ist, und negativ
u

definit, wenn der Ausdruck in der Klammer negativ ist, weil B2 nicht negativ sein
kann. Es lésst sich zeigen, dass die Determinante einer erweiterten Hesse-Matrix

0 a B
|I:I(X7ya7t)|= a a h :Zhaﬁ—aﬁz—baz
B h b

genau das umgekehrte Vorzeichen von dem Klammerausdruck der Gleichung (11.18)
besitzt. Die Matrix
0 G, G,
I:I(xv%)t) = G;c L;clx L;c/y
6, 1)y 1)
wird als gerinderte Hesse-Matrix bezeichnet. Die Determinante der gerdnderten
Hesse-Matrix ist an der Stelle (x,y,A) zu bewerten. Die zweite Ableitung von d’L

ist an der Stelle (x,y) negativ, wenn die Determinante von [H(x,y, A )| positiv ist.
H(x,»,1)| >0 < dL<0 < L(x,yA)=max

Dies ist die hinreichende Bedingung fiir ein Minimum der Lagrange-Funktion an
der Stelle (x,y). Die zweite Ableitung von d’L ist an der Stelle (x,y) positiv, wenn
die Determinante von |H(x,y, A )| negativ ist.

[H(x,»,A)| <0 < dL>0 < L(x,y,A)=min
Dies ist die hinreichende Bedingung fiir ein Maximum.

Beispiel 11.16. Die hinreichende Bedingung fiir das Beispiel 11.12 bzw. 11.13 wird
uberpriift. Es ist die Determinante der geranderten Hesse-Matrix an der Stelle (x =
4,y =+/2) und A = /2 zu bewerten. Dazu miissen die ersten Ableitungen der Ne-
benbedingung und die zweiten Ableitungen der Lagrange-Funktion gebildet werden.

G =-1 G, =-2y=-2V2
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"o __ n __ —
L' = 0 L, =-21=-2V2
L= 1 L= 1

Die Determinante der gerdnderten Hesse-Matrix ist somit

0 -1 =22

-2v2 1 —2V2
An der Extremstelle liegt also ein Maximum vor. £es

Beispiel 11.17. Ob es sich bei der gefundenen Losung im Beispiel 11.14 der Konser-
vendose auch tatsdchlich um ein Minimum handelt, kann nun mit der hinreichenden
Bedingung tiberpriift werden. Dazu muss die Losung » = 5.4193, & = 10.8385 und
A =0.3691 in die gerinderte Hesse-Determinante eingesetzt werden. Die ersten Ab-
leitungen der Nebenbedingung und die zweiten Ableitungen der Lagrange-Funktion
sind:

G.=—271rh=—369.0540 Gy =—mr =—92.2635
L= 4m—2Amh=—12.5664 L= 0
o= 2m—2Amr=—6.2832

Die bewertete Determinante der gerdnderten Hesse-Matrix ist damit

0 —369.054 —92.2635
|H(5.4193,10.8385,0.3691)| = | —369.054 —12.5664 —6.2832
—92.2635 —6.2832 0
= —320915.76

Die Determinante der gerdnderten Hesse-Matrix ist negativ. Damit ist das Vorzeichen
der zweiten Ableitung des totalen Differentials positiv und an der Stelle » = 5.4193,
h =10.8385 liegt ein Minimum vor. £es

11.5.3 Okonomische Anwendung: Minimalkostenkombination

Ein Beispiel zur 6konomischen Anwendung der Lagrange-Funktion ist die Minimal-
kostenkombination (least cost combination). Es wird fiir die lineare Kostenfunktion

K(ri,m2) =piri+parn fur py,pa,ry,r >0
unter einer Ertragsfunktion (Nebenbedingung)

x=f(ri,m)=rn

ein Minimum gesucht. Die Ertragsfunktion ist eine spezielle Form einer Cobb-
Douglas-Ertragsfunktion (siche Beispiel 11.9) mit a9 = 1, a; = 1 und ap = 1. p;
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und p; sind gegebene Faktorpreise, 7; und r, sind die gesuchten Faktormengen. Es
ist also fiir die Lagrange-Funktion

L(ry,m,A)=p1n —|—p2r2—|—7t(x—f(r1,r2))
:p1r1—|—p2r2—|—7t(x—r1r2) — min

ein Minimum gesucht. Die notwendige Bedingung hierfiir sind die Nullstellen der
ersten Ableitungen.

!
L,=pi—Afl,=p1—Arn=0
!
Llrzzpz—}.ﬂz:pz—ﬂ.rl =0
!
Ly =(x—f(ri,n) =(x—rr)=0

Aus den notwendigen Bedingungen gewinnt man die Bezichung

!

1 2 1
A= p/ = p/ = ' = r/l
r rn ]72 rn

Die Faktorpreise miissen proportional zu den Grenzertragen sein bzw. in dem vorlie-
genden Fall von x =7 r;:

A:m:lﬁz - . p2

= (11.19)
r r r P1

Die Beziehung in Gleichung (11.19) nennt man die Minimalkostenkombination. Die
Faktorpreise verhalten sich umgekehrt proportional zu den Faktoreinsatzmengen.
Ferner ergeben sich durch das Einsetzen der Nebenbedingung in die notwendige
Bedingung folgende Beziehungen:

PERVV RN A:\/PIPZ

ryrn X
X X

}"% = P2 = ry = \/p2
p1 p1
X X

r% _Dn = = \/Pl
p2 D2

Die Grenzkosten sind das totale Differential der Kostenfunktion.

Kk dr1+ dr,
dx_pldx Pzdx

Werden die Differentiale durch

1

dr1:1<pzx)2pz:1\/pz
dx 2 \ pi p 2\ pix
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1
drz:1<p1x> 2pl:l\/pl
dx 2 \p p2 2\ pax

ersetzt, so erhilt man

Der Lagrange-Multiplikator ist hier also als Grenzkostenfunktion interpretierbar.
Dieses Ergebnis gilt unabhéngig von der gewdhlten Ertragsfunktion, da fiir die
Lagrange-Funktion immer gilt (siehe Kapitel 11.5.1)

L:p1r1+p2r2+7t(x—f(r1,r2))
dL =dK+ A dG,

wobei dG aufgrund der impliziten Funktion stets Null ist. Daher ist

dL=dK
und somit

dL dK

dx  dx =4

Handelt es sich auch tatsdchlich um eine Minimalkostenkombination? Hierzu
muss die Determinante der gerdnderten Hesse-Matrix negativ sein.

0 -7 /A
[H(r1,r2,4)[ = | = ;1 —A r1 71 —A r1rz

! 1
I A "1J2 —A "z 2

=2 ((ﬂz) r{,rl + (ﬁ rz,rz 2]{;1 f;lz rl,rz)

Unterstellt man positive Grenzkosten A > 0) positive Grenzertrage (ﬁfl >0, ,’2 >
0), abnehmende Grenzertrige (f; ., <0, f ., <0)und einen zunehmenden Grenz-
ertrag bei gleichzeitiger Erhdhung beider Faktormengen > 0), dann ist der
Wert der Determinanten negativ.

Im Fall mit der Cobb-Douglas-Ertragsfunktion ergibt sich folgende gerdnderte

Hesse-Determinante:

’1’2

. 0 —n -
|H(F1,F2,A,)|= —r 0 —2. :—21"1}"2;{,
) -1 0
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Minimalkostenkombination

0.0 0.5 1.0 1.5 2.0 25 3.0 3.5 4.0

Abb. 11.5: Minimalkostenkombination

Da fiir 1,7, A > 0 gilt, ist die Determinante negativ und somit liegt tatsdchlich eine
Minimalkostenkombination vor.

In Abb. 11.5 sind die Faktorpreise mit p; = 3 und p, = 5 und ein Produktions-
niveau von x = 5 vorgegeben. Hieraus ergeben sich die kostenminimalen Faktorein-
satzmengen

5%5 5%3
rlz\/;: — 2.8867 rzz\/ z — 1.7320

Die minimalen Kosten betragen damit K(ry,72 )min = 17.32€ und die Grenzkosten
K -1 =05477€.

11.5.4 Okonomische Anwendung: Portfolio-Theorie nach Markowitz

Im Folgenden wird der Lagrange-Ansatz verwendet, um die Portfolio-Theorie zu
beschreiben (siche [8]). Die Portfolio-Theorie befasst sich mit der Auswahl von Fi-
nanztiteln. Jeder Finanztitel besitzt ein Risiko und eine Rendite. Ein Portfolio setzt
sich aus verschiedenen Finanztiteln zusammen. Ziel der Portfolio-Theorie ist es, bei
einem vorgegebenen Risiko eine maximale Rendite zu erzielen. Hierfiir werden auch
Elemente der linearen Algebra und der schlieBenden Statistik eingesetzt. Zur Veran-
schaulichung der Theorie werden die Ergebnisse mit einem empirischen Beispiel
nachvollzogen. Die Berechnungen werden mit Scilab durchgefiihrt.
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11.5.4.1 Risikominimales Portfolio

Ein Portfolio setzt sich aus n Finanztiteln mit den Anteilen x; zusammen. Es gilt:
n
> xi=1 (11.20)
i=1

Es wird angenommen, dass der i-te Finanztitel (Wertpapier, Aktie, Option, usw.) eine
Rendite von r; besitzt. Die Rendite eines Finanztitels wird hier als eine Zufallsvaria-
ble angesehen, deren erwarteter Wert durch

W =E(r;) (Erwartungswert)
und deren Varianz durch
62 = Var(r;) (Varianz)

gegeben ist. Das Risiko eines varianzminimalen Portfolios wird durch die Streuung
der erwarteten Rendite beschrieben. Die Rendite eines Portfolios setzt sich aus der
gewichteten Summe der Einzelertrige zusammen.

n
rp= E Xirti
i=1

Da der Erwartungswert ein linearer Operator ist, ist die Portfoliorendite der gewich-
tete Durchschnitt der erwarteten Einzelertrige.

Up = in,ui
i—1

Die Varianz der Portfoliorendite wird durch die Abhingigkeit der Einzelrenditen un-
tereinander (gemessen durch Kovarianzen) mitbestimmt, so dass gilt

o, = Var (ix,n) :izn:xixjcij (11.21)
i=1

i=1 j=1

Sie setzt sich aus der gewichteten Summe der Einzelvarianzen und der Kovarianzen
zusammen. o;; gibt die Kovarianz zwischen dem i-ten und dem j-ten Finanztitel (fiir
i # j) an. Fiir i = j ist 0j; es die Varianz des i-ten Finanztitels (0;; = 61-2).

Es wird das Portfolio gesucht, das eine minimale Portfoliovarianz (unsystemati-
sches Risiko) Gl% besitzt. Die Minimierung muss unter der Budgetrestriktion (11.20)
erfolgen. Es handelt sich also um einen Lagrange-Ansatz der Funktion (11.21) unter
der Nebendingung (11.20). Fiir den Anteil des i-ten Finanztitels ergibt sich somit die
Lagrange-Funktion.

x,,?L] ZZx,x,G,,—f—l] <I—Zx,> — min (11.22)

i=1 j=1
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Die ersten Ableitungen der Lagrange-Funktion (11.22) sind die notwendigen Bedin-
gungen fiir ein Minimum der Varianz und damit des Portfoliorisikos:

n
L, =23 xjoy— =0 firi=1,...n (11.23)
j=1
" |
Ly, =1-> x=0 (11.24)
i=1

Die Losung dieses Gleichungssystem liefert die varianzminimale Portfoliozusam-
mensetzung. Das Portfolio besteht aus » Finanztiteln, so dass es sich um n + 1
Gleichungen handelt. Mit der Matrizenrechnung ist die Losung des Gleichungssys-
tems wesentlich iibersichtlicher und einfacher. In Matrixform geschrieben sieht die
Lagrange-Funktion (11.22) wie folgt aus:

L(x, A1) :§'C§+7L](1 —1'x)

2

Gp
mit

011 --- O1p

C=1| . . Varianz-Kovarianz-Matrix
_Gnl .- Onn
_x 1 1

X=|: und 1=
X 1

Die erste Ableitung (11.23) kann dann auch in Matrixform dargestellt werden.
L =2Cx—A1=0 (11.25)

Die Schreibweise stellt ein Gleichungssystem mit n-Gleichungen dar. Fiir gegebenes
A1 ist das Gleichungssystem (11.25) nach x 16sbar, wenn C nicht singulér ist.

A
X =

) c'1 (11.26)

Die andere notwendige Bedingung kann ebenfalls in Matrixform geschrieben wer-
den. 1
Ly =1-1x=0
1

Aus dieser Gleichung entsteht durch Einsetzen der Gleichung (11.26) folgende Ma-
trixgleichung, die zur Bestimmung von A, dient.

2=11C11
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Eine Losung flir A; existiert nur, wenn die Varianz-Kovarianz-Matrix invertiertbar

1st. .
M=2(1'Cc'1)"

Einsetzen dieser Losung in die Gleichung (11.26) bestimmt die varianzminimale
Portfoliozusammensetzung.

Xmin= (1'C7'1) " C 1

Es existiert also ein Portfolio in der Zusammensetzung Xy, das ein minimales Risi-

ko in der Hohe
s = /X Cxmin =/ (1€ 1) !

mit einer Portfoliorendite von

i
Wpmin =M Xpmin  mit: m= | :
Ly
besitzt (siche Punkt (0, ,ip,..) in Abb. 11.6).

Die Uberpriifung der hinreichenden Bedingung fiir ein Minimum ergibt eine ge-
randerte Hesse-Matrix der Form

)

S oo
|H|_‘1 2C

deren Wert negativ sein muss. |H| ist im vorliegenden Fall eine partionierte Matrix,
deren Determinante sich aus den Teilmatrizen wie folgt berechnen lésst:

I#|=|2C| [o-1'(2C) "1|=-2|c| [1'Cc 1]

Aufgrund der Eigenschaften der Varianz und Kovarianz ist die Varianz-Kovarianz-
Matrix positiv semidefinit:|C| > 0. Damit ein Portfolio die varianzreduzierende Ei-
genschaft besitzt, darf keine Korrelation von Eins zwischen den Finanztiteln auftre-
ten. Aus der Bedingung der positiven Determinanten ergibt sich auch, dass die De-
terminante der quadratischen Form |1’ C~! 1| positiv ist. Somit wird der Wert der De-
terminanten der geranderten Hesse-Matrix durch das negative Vorzeichen bestimmt.
Die zweite Ableitung der Lagrange-Funktion ist mithin positiv und es liegt an der
Stelle Xpi, €in Minimum vor.

11.5.4.2 Berechnung eines risikominimalen Portfolios mit Scilab

Beispiel 11.18. Es werden Tagesrenditen von BMW und BASF (relative Anderung
Tageskurse) der Aktien verwendet. Aus den Daten wird ein Erwartungswertvektor
von

_|—0.0005014| BMW
| 0.0018978| BASF
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und eine Varianz-Kovarianz-Matrix mit den Werten

_10.0001477 0.0000797

c= 0.0000797 0.0001041

berechnet. Mit den oben hergeleiteten Beziehungen kdnnen die varianzminimalen
Portfolioanteile, das minimale Risiko und die erwartete Portfoliorendite bestimmt
werden. Am besten verwendet man fiir die Berechnungen ein geeignetes Computer-
programm wie Scilab.

o = 0.009882 11, . =0.001265

~ [0.26396
Xmin = | ) 73604

Die varianzminimale Portfoliozusammensetzung besteht also aus rund 26 Prozent
BMW-Aktien und 74 Prozent BASF-Aktien. Die hinreichende Bedingung fiir ein
Minimum ist leicht zu {iberpriifen.

0 1 1
[H/=|1 2x0.0001477 2 x0.0000797 | = —0.0001846
1 2x0.0000797 2x0.0001041

Der Punkt (0, ., Up,;,) ist in Abb. 11.6 zu sehen. Es handelt sich tatséchlich um das
Portfolio, das das kleinste Risiko besitzt. g

Die obigen Werte sind mit den folgenden Anweisung berechnet.

// BMW Schlusskurse vom 09.08. bis 16.11.2004

sbmw = [33.60 33.98 33.48 33.17 33.75 33.61 33.61
33.45 33.25 33.87 34.14 34.19 34.47 34.55
34.31 33.89 34.25 34.46 34.58 34.76 34.82
34.96 34.48 34.56 35.30 35.38 34.72 35.21
35.23 35.11 34.78 34.25 33.60 33.79 33.59
33.36 33.71 33.10 34.02 34.65 34.81 34.67
34.82 34.30 34.23 33.53 33.75 33.69 33.85
33.66 34.00 33.56 33.54 33.35 32.38 32.72
33.69 33.15 33.73 33.80 33.01 32.40 32.35
32.57 32.55 32.89 32.76 32.49];

// BASF Schlusskurse vom 09.08. bis 16.11.2004

sbasf= [43.66 43.65 43.31 42.65 43.00 43.14 43.47
43.44 43.55 44.02 43.80 44.35 44.67 45.04
44 .88 44.41 44.74 44.89 45.55 45.63 45.65
45.57 45.23 45.36 46.00 46.06 46.12 46.15
46.72 46.63 46.66 46.19 45.73 45.82 45.68
46.03 47.65 47.45 48.76 48.56 48.63 48.76
48.90 48.15 48.05 47.30 47.17 46.87 47.28
47.62 48.60 47.93 48.48 49.16 47.77 47.97
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Marks s MMarks )

Markowitz Kurve

Gunin:fmin) -~

Kapitalmarktlinie

T
0.018 0.020

-0.002 T

T T T T T T
0.000 0.002 0.010 0.012 0.014 0.016

o

T T T
0.004 0.006 0.008

Abb. 11.6: Markowitz-Kurve

48.75 48.90 49.75 49.80 49.45 49.70 50.10
49.94 50.28 50.01 49.80 49.58];

rbmw = diff (log(sbmw)) ;
rbasf diff (log(sbasf)) ;
m [mean (rbmw)

mean (rbasf) ] ;
C = mvvacov ([rbmw’ rbasf’]);
[row,col] = sgize(m);
I = ones(row,1);

// Berechnung ohne Renditevorgabe
xmin = inv (I’ *inv (C) *I)*inv(C) +I;
riskmin = sqgrt (xmin’*Cxxmin) ;

//=sqgrt (inv (I’ *inv (C) *I))
mumin = m’*xmin;

// Uberpriifen der hinreichenden Bedingung
H= [0TI

I 2xC];
det (H)
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11.5.4.3 Markowitz-Kurve

Der Ansatz zur Minimierung der Portfoliovarianz wird nun um eine weitere Ne-
benbedingung erweitert. Das Portfolio muss eine erwartete Portfoliorendite von f1,,
erfiillen.

Hp= il (11.27)
i=1

Die Minimierung der Funktion (11.21) muss nun unter den Nebendingungen (11.20)
und (11.27) erfolgen. Fiir den Anteil des i-ten Finanztitels im Portfolio ist somit
folgende Lagrange-Funktion zu minimieren.

n

L(xu?tl,lz) :szixjcij—F)Ll <1— xi>
i=1

i=1 j=1

+ A <,up — inliz) — min

i=1

(11.28)

Die ersten Ableitungen der Lagrange-Funktion (11.28) liefern die notwendigen Be-
dingungen fiir ein Minimum der Varianz:

n

L,=2> %0~ M—Jop;=0 firi=1,....n (11.29)
j=1
Ly =1-Y x=0 (11.30)
i=1
" 1
Ly =ty xipi=0 (11.31)

i=1
Die Lagrange-Funktion (11.28) in Matrixform geschrieben, sicht wie folgt aus:
L(x,A1,) =x'Cx+ A1 (1 -1'x) + A (1, —m'x)

Die ersten Ableitungen stellen ein Gleichungssystem dar, dessen Losung mittels der
Matrizenrechnung die erste Bedingung fiir ein Extremum liefert (identisch mit der
Bedingung (11.29)):

L =2Cx—A1-2m=0 (11.32)
Fiir gegebene A ist die Gleichung (11.32) nach x 18sbar, wenn C nicht singulér ist.

X=;C71(ﬁ,11+7tzm)
_! [C'1 C'm] [

" (11.33)
2

A

Die beiden weiteren notwendigen Bedingungen (11.30) und (11.31) kdnnen eben-
falls in Vektorform geschrieben werden.

L =1-1x=0
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/ re !
L A2 = IJ.p —mx=0

Aus diesen beiden Gleichungen entsteht unter Verwendung der Losung (11.33) fiir x
folgende Matrixgleichung, die zur Bestimmung von A; und A, dient.

2] [rc't wmc't] [y
2up| — |VC'm m'C'm] A

Unter der bekannten Voraussetzung, dass die Varianz-Kovarianz-Matrix invertiertbar
ist, konnen A; und A; einfach durch Losen des Gleichungssystems bestimmt werden.

Ml [rc't mc 1] 2

Ll [C'm m'C'm 24,
Das Einsetzen dieser Losung in die Gleichung (11.33) bestimmt die varianzminimale
Portfoliozusammensetzung bei vorgegebener Portfoliorendite.

1—1 1—1 -1
1'C"'1 m'C 1} [1] (11.34)

Xmin(ip) = [C™'1 C~'m] [I’C_lm m'C'm| |u,

Die grafische Darstellung der Anteile in einem (o), 1,) Koordinatensystem liefert
dann die Markowitz-Kurve (siche Abb. 11.6), die auch als Markowitz efficient fron-
tier bezeichnet wird. Sie gibt die risikominimalen Portfoliozusammensetzungen fiir
eine vorgegebene Portfoliorendite an. Durch die Diversifizierung wird das unsyste-
matische Risiko reduziert. Das unsystematische Risiko ist das Risiko, das zum Bei-
spiel in der Bonitét des Emittenten liegt. Im Gegensatz dazu wird das systematische
Risiko nicht reduziert. Es ist das Risiko, das zum Beispiel durch makrodkonomische
Anderungen verursacht wird. Ferner wird durch die Gleichung (11.34) deutlich, dass
die Portfoliozusammensetzung eine lineare Funktion der Rendite p1,, ist.

11.5.4.4 Berechnung der Markowitz-Kurve mit scilab

Beispiel 11.19. Fiir das Beispiel 11.18 wird durch Vorgabe von Portfoliorenditen
zwischen Upymy = —0.0005014 und ugysr = 0.001898 die Markowitz-Kurve ge-
zeichnet (siche Abb. 11.6). Die Portfolios, deren (o, i) Kombinationen auf der Kur-
ve liegen (siche Abb. 11.6), werden als effizient bezeichnet.

xmin = inv(I’'*inv(C)*I)*inv (C)*I;
riskmin = sgrt (xmin’+Csxmin) ;
mumin = m’*xmin;

// Berechnung mit Renditevorgabe
muvorgabe = m(1):.00001:m(2)+.0032;
i=1;

minrisk = 0;
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for mu = muvorgabe
1 = inv([I'%inv(C)*I m’'*inv(C) %I
I’%inv(C)*m m’ *inv (C) +m]) «[2
2%mu] ;
minx = .5%[inv(C)*I inv(C)+m]«*1;
minrisk (i) = sqgrt (minx’*Cxminx) ;
1=1+1;
end

plot (minrisk, muvorgabe, 'black’) ;
plot (riskmin, mumin, ‘'blacko’) ;
xstring(riskmin, mumin, ’ (sigmamin, mumin) ’) ;

11.5.4.5 Das Captial Asset Pricing Model

Das Portfolio wird nun um eine risikofreie Anlagemoglichkeit mit der erwarteten
Rendite ¢ ergidnzt. Es kann sich nun aus dem risikofreien Anteil x,r und risikobe-
hafteten Anteilen x zusammensetzen.

n
Xy + Zx,- =1
N
Xp
X +xp =1
Dies ist die Erweiterung, um aus der Markowitz-Portfolio-Theorie das Capital Asset

Pricing Model (CAPM) abzuleiten.
Die erwartete Rendite des neuen Portfolios betrdgt

n
W= Xpp Hyf +xpzxi Mi

i=1
N~ ~

uy (11.35)
= Xif My +Xp Hp
= (1 =xp) tyy +Xp lp
Die Varianz des neuen Portfolios betrégt
02 = Var (xp me)
i=1

n
:xanar < E x,-r,-)
i=1

~ ~ -

2
Op
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da eine risikofreie Anlage per se eine Varianz von Null besitzt (O'rz- = 0). Das Risiko
des so zusammengesetzten Portfolios betrégt somit '

0 =x,0, (11.36)
Wird die Gleichung (11.36) in die Gleichung (11.35) eingesetzt, so erhdlt man

1= My +2xp (Hp — Hip)
Hp = oy (11.37)

= U+

Mo 5,
Die durch die Gleichung (11.37) beschriebene Gerade ist die so genannte Kapital-
marktgerade (capital market line) mit Achsenabschnitt 1, und Steigung “" ad
(siche Abb. 11.6). Der Tagentialpunkt dieser Linie an der Markowitz-Kurve hefert
das Marktportfolio. Die Portfolios, die auf der Kapitalmarktgeraden liegen, sind die
Portfolios, die fiir ein gegebenes Risiko ¢ die hochste Rendite liefern. Im Tangenti-
alpunkt liegt das Marktportfolio, das keine risikofreie Anlage enthilt. Die Portfolios,
die rechts oberhalb des Tangentialpunktes (Marktportfolio) auf der Kapitalmarktlinie
liegen, kdnnen nur durch eine Kreditaufnahme (Verkaufsposition) der risikofreien
Anlage (short position) erreicht werden.

Die gestrichelte Kapitalmarktlinie in Abb. 11.6 ist eine ineffiziente Kapitalmarkt-
linie. Zu jedem vorgegebenen Risiko findet sich eine Portfoliozusammensetzung, die
mit einer hdheren erwarteten Rendite verbunden ist. In diesen Portfolios wird das un-
systematische Risiko durch eine bessere Diversifikation stiarker reduziert.

Im Folgenden wird die Steigung der Kapitalmarktlinie, die mit dem Tangential-
punkt verbunden ist, analytisch abgeleitet. Dazu muss die Steigung in der Funktion
(11.37) unter der Budgetrestriktion maximiert werden (vgl. [8]). Die Steigung der
Funktion (11.37) ist

Hp =ty m'X—fy
Op VX' Cx
Die zu maximierende Lagrange-Funktion, die die markteffiziente Zusammensetzung
des Portfolios liefert, ist somit

/
m Xpsarkt — ,urf
\/xMarktC XMarkt

Die erste Ableitung der Lagrange-Funktion (11.38) liefert folgendes Ergebnis:

L(XMarkta;{'l) + )Ll (1 - llxMarkt) — max (11.38)

/ m,XMarktC XMarkt — (m, XMarkt — Hrf ) CxXptarke !
LX = 3 - A,] 1 - O
/
(XMarkt C XMarkt) 2

Die obige Gleichung ist unter Beriicksichtigung der Nebenbedingung nach Xj,
aufzulGsen.

/ 3 / /
M1 (XMarktC XMarkt) 2= mXMarktC XMarkt — (IIl XMarkt — .u}jf) CXptarke
~ ~ ~ ~ - N~ o~ 7

Ry 11.39
3 2 =
GM arkt - GM arkt Hadarks ( : )

2
2’1 1 GMarkt = Ohare M — (.uMarkt - “lf) CxXptarke
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Diese Gleichung wird mit x},,,,, erweitert, um die Nebenbedingung 1'X/4% zu be-
rlicksichtigen.

! 3 — 2 /
M XMarkt 1 OMarkt = XMarke ™ Opparks — (.uMarkt — My ) XMarkt CxXMarke

3 2 2
M O tarke = MMarkt Opgarks — (.uMarkt — My ) OhMarkt
2’1 _ ‘urf
OMarkt

Das Ergebnis fiir A; wird in die Gleichung (11.39) eingesetzt.

2 2
ot Opparie 1= OMarie M — (:uMarkt — Hyf ) CXntarke

Die Gleichung wird mit C~! erweitert.

2 -1 2 -1
Mot Opgarie C 1= OMarkt C m- (.uMarkt — My ) XMarkt

Untarke — U -
Y Xty = € (m— gy 1) (11.40)
Markt

Diese Gleichung wird nun mit 1’ erweitert, um den Bruch auf der linken Seite von
(11.40) ersetzen zu kdnnen.

Mdarke — M -
ar2t 1f l/xMark[ —_ I/C 1 (m _ ,Ltrfl)
Oiarke > ~ 7

Dieses Ergebnis ersetzt den Bruch in Gleichung (11.40) und liefert endlich die Lo-
sung flr Xy

1'C" (m — 1) Xpgre = €' (m — pi, 1)
C'(m— 1)

11.41
1C1 (m - py 1) (14D

XMarkt =

Im Tangentialpunkt werden die risikobehafteten Finanztitel in den Anteilen Xz
gehalten (siehe Abb. 11.6). Es sind im Portfolio keine risikofreien Finanztitel ent-
halten. Das Ergebnis der Markowitzschen Theorie ist, dass ein Investor jeden Punkt
auf der Kapitalmarktgeraden, also maximale Rendite zu einem vorgegebenen Risiko,
durch einen Anteil am Marktportfolio und einen Anteil risikofreier Finanztitel errei-
chen kann. Die hochste Rendite (ohne Verkaufsposition) besitzt das Marktportfolio
im Tangentialpunkt. Zu dieser Rendite muss er das Marktrisiko tragen.

11.5.4.6 Berechnung des CAPM mit Scilab

Beispiel 11.20. Fiir die Rendite einer risikofreien Anlage wird die Umlaufrendite
festverzinslicher Wertpapiere mit einer Restlaufzeit von 10 Jahren verwendet. Das
Beispiel 11.19 und die Berechnungen werden erweitert, um die obigen Ergebnisse
mit empirischen Daten nachzuvollziehen. Das Ergebnis der Berechnung ist in Abb.
11.6 zu sehen.
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Entlang der Kapitalmarktlinie kdnnen zu einem gegebenen Risiko die entspre-
chenden Renditen mit einer Portfoliostruktur aus risikofreien und risikobehafteten
Finanztiteln zusammengestellt werden. Das Marktportfolio besitzt die Rendite

Untarie = 0.0036603
mit dem Risiko

Omarie = 0.0137735.
Seine Zusammensetzung besteht aus
Xyarie = | —0.7346106  1.7346106 |

Es miissen also —73.46 Prozent BMW-Aktien und +173.46 Prozent BASF-
Aktien gehalten werden. Wie ist der negative Anteil zu interpretieren? Der negati-
ve Anteil an BMW-Aktien bedeutet, dass Leerverkdufe getitigt werden. Als Leer-
verkiufe bezeichnet man Verkiufe, die aus gelichenen Aktien getitigt werden. Die
erwartete Rendite der BMW-Aktie lag im betrachteten Zeitraum bei —0.0005014.
Aufgrund der negativen Rendite werden die BMW-Aktien verkauft und zusétzlich in
Form von Leerverkdufen weitere 73.46 Prozent BASF-Aktien erworben. Das Port-
folio ist dann mit 73.46 Prozent fremdfinanziert.

sumlauf = [3.78 3.78 3.81 3.76 3.76 3.79 3.76
3.79 3.76 3.80 3.82 3.81 3.79 3.76
3.78 3.77 3.74 3.76 3.81 3.88 3.86
3.88 3.82 3.81 3.82 3.79 3.78 3.82
3.75 3.76 3.77 3.74 3.70 3.70 3.70
3.69 3.71 3.73 3.73 3.75 3.75 3.72
3.74 3.71 3.67 3.64 3.65 3.62 3.60
3.61 3.61 3.59 3.57 3.59 3.55 3.54
3.60 3.60 3.59 3.61 3.63 3.58 3.57
3.62 3.61 3.51 3.49 3.47];

murf = mean(diff (log(sumlauf))) ;
riskvorgabe = linspace (0,max (minrisk), ...
length (muvorgabe) ) ;
portnr = 115; // Punkt in der Markowitz-Kurve
mucapm = murf+ (muvorgabe (portnr) -murf) /...
minrisk (portnr) xriskvorgabe’ ;
plot (riskvorgabe, mucapm, ‘black--") ;

xmarkt = (inv(C)* (m-murf+I))/ (I’ *inv(C)* (m-murf+I)) ;
mumarktl = murf+ (m’ *xmarkt-murf) /...

(sgrt (xmarkt’ *Cxxmarkt) ) xriskvorgabe;
plot (riskvorgabe, mumarktl, ‘black’) ;
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riskmarkt = sqgrt (xmarkt’xCxxmarkt) ;

mumarkt = m’xxmarkt;

plot (riskmarkt, mumarkt, ‘'blacko’) ;

xtitle(’’,’sigma’, 'mu’) ;

xstring (sqrt (xmarkt’ *Cxxmarkt) ,m’ xxmarkt, ' ...
(sigmamarkt, mumarkt) ') ;

plot (riskmarkt,m’ *xmin, ‘blacko’) ;

xind = xmarktx.4;

muind = m’*xind+ (1-sum(xind) ) smurf;

riskind = sgrt(xind’*Cxxind) ;
xstring(riskind-.0035,muind, 'Kapitalmarktlinie’) ;
plot ([riskmarkt riskmarkt], [-.002 mumarkt], 'black’);

o3

11.5.4.7 Wertpapiergerade

Die Wertpapiergerade (security market line) ist der Erklarungsansatz, die Rendite
des i-ten Wertpapiers durch die Rendite des Marktportfolios und die des risikofreien
Wertpapiers zu erklaren. Dazu wird die Beziehung (11.37) umgeéandert in

i — Hof

i Mof = arkt = Mrf) Pi = Pi =
i — Wy (M4m “ﬁﬁ A Mdarke — Hrf

Der Parameter 3; wird als empirisches Beta bezeichnet, der im Portfoliomanage-
ment eine groBe Bedeutung besitzt. In dieser Modellgleichung ist ; eine Variable.
Die Risikopridmie des Portfolios piyz+ — U, gibt die Steigung der Geraden an. Das
Beta misst hier das relative Risiko des i-ten Wertpapiers im Marktportofolio. Da die
Varianz des Marktportofolios das systematisches Risiko reflektiert (der Theorie nach
enthélt das Marktportofolio in einem effizienten Markt kein unsystematisches Risi-
ko), ist das relative Risiko des Wertpapiers ein Mal3 fiir das systematische Risiko
des Wertpapiers. Ist Beta Eins, so entspricht die erwartete Rendite des i-ten Wertpa-
piers der des Marktportfolios. Liegt der Wert von Beta {iber Eins, so ist die erwartete
Rendite hoher als diejenige des Marktportfolios. Solche Wertpapiere besitzen aber
geméil der Portfolio-Theorie ein hoheres systematisches Risiko als das Marktport-
folio. Im Rahmen des Regressionsmodells wird Beta auch als Steigung interpretiert.
Aus dieser Doppelinterpretation ergeben sich zwei grafische Darstellungen (siche
Beispiel 11.21).

In den néchsten Schritten sind tazq-4 — Wy und W; — W,r mit den Ergebnissen des
CAPM zu ersetzen, um zu sehen, wie das Beta durch die Risiken der Wertpapiere
bestimmt wird. Dazu wird die Gleichung (11.41) nach m aufgeldst und die folgende
Gleichung eingesetzt:

HUtarie = m’ XMarkt (11.42)
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Fiir die Auflosung der Gleichung (11.41) nach m wird der Nenner (ein Skalar) der
Gleichung wihrend der Umformung mit § abgekiirzt, da er spéter entféllt (vgl. [8]).

1

1 .

Xparke = 6 C~ ' (m — p1, 1) mlts:l’C—l(m—urfl)
=6C'm-&p,C 1

5C*1m:xMa,k[+5ur_f-C’ll

1
m= s CXptarke + 1 (11.43)

Die Gleichung fiir m wird nun in die Gleichung (11.42) eingesetzt.

1 !/
Utarie = (C XMarkt S —i—,llr_f‘l) XMarkt

1, ,
= ) XMarkt CXMarke +l X\Aﬁar@ My

=1

1
Hrtarke — .ui_’f = 5 X;Markt C XMarkt (1 144)
Fiir o
0
0
U;=m'e; mit: e = |1| ¢ i-te Position
0
_O_

wird m ebenfalls durch die Beziehung (11.43) ersetzt.

1
Mi = (6 X;Warktc + .urf1/> €
1 !/ !/
= 5 XMarkt Ce;+ Hif I'e;
=1
L,
i — ,Ll,f = 5 XMarkt Cei (1 145)
Das Verhiéltnis von (11.45) zu (11.44) liefert das gesuchte Ergebnis.

ﬁ' _ Hi — My
I MUtarie — Hpf
X;Markt C €

= o
XMarke CXarki
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Der Zahler in der Gleichung entspricht der Kovarianz Cov(ryza4, i), der Nenner der
Varianz des Marktportfolios O-]%/Iarkt'

Bi— Cov(réua,kt, 7i)
OMarkt
Beta ist gleichzeitig der Parameter (Kleinst-Quadrate-Schitzer) der linearen Regres-
sionsgleichung
ri— Ty =0+ (rMarkt — r’ff) ﬁi + & (11.46)
Das Regressionsmodell (11.46) unterstellt bei Giiltigkeit des CAPM o; = 0.

11.5.4.8 Berechnung der Wertpapiergeraden mit Scilab

Beispiel 11.21. Im vorliegenden Beispiel wird nun im Rahmen des CAPM weiter ge-
rechnet. Dies bedeutet, dass der mit Xyz,,4; gewichtete Durchschnitt der Marktrendite
eingesetzt wird. Das Marktportfolio besteht nur aus BMW- und BASF-Aktien in der
berechneten Zusammensetzung. Abbildung 11.7 zeigt das Ergebnis. In den beiden
oberen Grafiken sind die Regressionen der Aktienrenditen auf die (aus dem CAPM
berechnete) Marktrendite s,,4 zu sehen.

MW BMW TBASF BASF
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0.02{ o 00° o
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0.01 o © oo o o 0.02
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Ogo 8 o o 0.001
Rk BN © 0.01]
& “o8 . © -
~0.02] o © °o° -0.02]
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Abb. 11.7: Wertpapiergerade mit —73 Prozent BMW- und +173 Prozent BASF-
Aktien als Marktportfolio
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// SML security market line
rmarkt = xmarkt’ s« [rbmw; rbasf];

betabmw = covar (rmarkt, rbmw,eye(67,67)) ...

/ (variance (rmarkt) x66/67) ;
//betabmw = (mean (rbmw)-murf)/ (mean (rmarkt) -murf) ;
betanullbmw = mean (rbmw) -mean (rmarkt) xbetabmw;

subplot (2,2,1)

plot (rmarkt, rbmw, ‘blacko’) ;

xtitle ('BMW’, 'rmarkt’, ' rbmw’) ;
smlbmw = betanullbmw+rmarktxbetabmw;
plot (rmarkt, smlbmw, 'black’) ;

betabasf = covar (rmarkt,rbasf,eye(67,67)) ...
/ (variance (rmarkt) x66/67) ;
betanullbasf = mean(rbasf) -mean (rmarkt) sbetabasf;

subplot (2,2,2)

plot (rmarkt, rbasf, 'blacko’) ;

xtitle ('BASF’, 'rmarkt’,6 'rbasf’) ;
smlbasf = betanullbasf+rmarkt+betabasft;
plot (rmarkt, smlbasf, 'black’) ;

subplot(2,1,2)

plot (betabmw, mean (rbmw) , 'blacko’) ;

xstring (betabmw, mean (rbmw) , 'BMW’ ) ;

plot (betabasf,mean (rbasf), ‘blacko’) ;

xstring (betabasf, mean (rbasf), 'BASF’) ;

plot (1, mean (rmarkt), 'blacko’) ;

xstring (1, mean (rmarkt), 'Markt’) ;

smlll = (1.15-1)/(1-betabmw) * (mean (rmarkt) ...
-mean (rbmw) ) +mean (rmarkt) ;

plot ( [betabmw 1.15], [mean (rbmw) smlll], ‘black--');

xtitle(’’, 'betas’, 'mus’) ;

plot ([1 1], [-.001 mean(rmarkt)],'black-.");

plot ([0 1], [mean (rmarkt) mean (rmarkt)],’black-.’);

xstring (.3, mean (rmarkt) , ‘'mumarkt’) ;

a=gcal() ;

a.data bounds=[0 -.001;1.2 .005];

Bavw =0.1571  Ppasr = 0.6430

Das Beta wird hier als Steigung der Regressionsgeraden interpretiert. Dies ist die ei-
ne Form der Wertpapiergeraden. In der unteren Grafik werden die Betas als Variablen
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abgetragen. Man sieht, dass die Betas in einem linearen Zusammenhang stehen. Dies
ist die andere Form der Wertpapiergeraden. Die lineare Beziehung zwischen den Be-
tas kommt aufgrund der Verwendung der CAPM Ergebnisse von oben zustande. %t

Beispiel 11.22. Nun wird fiir die Marktrendite die Rendite des DAX im betrachteten
Zeitraum eingesetzt. Das Ergebnis dieser Berechnung sieht man in Abb. 11.8. Die
oberen Grafiken zeigen wieder die Regressionen, diesmal jedoch zwischen Aktien-
renditen und DAX-Renditen. Auffallend ist, dass nun die Regression fiir die BMW-
Rendite eine deutlich hohere Korrelation aufweist; fiir die BASF-Rendite fallt sie
hingegen etwas niedriger aus als im Beispiel 11.21.
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Abb. 11.8: Wertpapiergerade mit DAX als Marktportfolio
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3882.27 3920.36 3892.90 3994.96 4033.28
4048.71 4049.66 4043.36 4015.54 4017.82
3966.48 3976.03 3940.46 3922.11 3915.17
3964 .13 3912.40 3934.06 3935.14 3854.41
3862.26 3959.59 3960.25 4012.64 4037.57
4039.04 4041.38 4063.58 4068.97 4065.33
4143.35 4134.34 4117.22];

rdax = diff (log(sdax)) ;
rmarkt = rdax;
betabmw = covar (rmarkt, rbmw,eye(67,67)) ...
/ (variance (rmarkt) x66/67) ;
//betabmw = (mean (rbmw)-murf)/ (mean (rmarkt) -murf) ;
betanullbmw = mean (rbmw) -mean (rmarkt) sbetabmw;

subplot(2,2,1)

plot (rmarkt, rbmw, 'blacko’) ;

xtitle (’BMW’, 'rmarkt’, 'rbmw’) ;
smlbmw = betanullbmw+rmarktxbetabmw;
plot (rmarkt, smlbmw, 'black’) ;

betabasf = covar (rmarkt, rbasf,eye(67,67)) ...
/ (variance (rmarkt) x66/67) ;
betanullbasf = mean(rbasf) -mean (rmarkt) xbetabasf;

subplot(2,2,2)

plot (rmarkt, rbasf, 'blacko’) ;

xtitle ('BASF', 'rmarkt’, 'rbasf’);
smlbasf = betanullbasf+rmarktxbetabasf;
plot (rmarkt, smlbasf, 'black’) ;

subplot(2,1,2)

plot (betabmw, mean (rbmw) , ‘blacko’) ;

xstring (betabmw, mean (rbmw) , 'BMW’ ) ;

plot (betabasf,mean (rbasf), 'blacko’) ;
xstring (betabasf, mean(rbasf), 'BASF’) ;

plot (1, mean (rmarkt), 'blacko’) ;

xstring (1, mean (rmarkt), 'Markt’) ;

plot (1, mean (rdax), 'blacko’) ;

x = linspace(.15,1.15,1length(rdax)) ;

y = murf + (mean(rdax)-murf) *x;

plot (x,y, "black--");

xtitle(’’, 'betas’, 'mus’) ;

plot([1 1], [-.001 mean (rmarkt)], 'black-.");
plot ([0 1], [mean (rmarkt) mean (rmarkt)],’black-.’);
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xstring (.3, mean (rmarkt) , ‘'mumarkt’) ;
a=gcal() ;
a.data bounds=[0 -.001;1.2 .005];

Die empirischen Betas sind dann
Bovw =1.1225  Bpasp = 0.8442

Diese Werte liegen, wie man in der unteren Grafik sicht, nicht auf der Wertpapier-
geraden. Das Ergebnis widerspricht der CAPM-Theorie. Interessant ist vor allem,
dass hier die Annahme verletzt wird, dass ein hoheres Beta (Risiko) auch mit einer
hoheren Rendite verbunden sein sollte. o3

Ubung 11.5. Ein Unternehmen hat zwei unabhingige Verkaufsfilialen, deren Ge-
winne G (x) und G,(y) von den eingesetzten Kapitalmengen x und y in folgender
Weise abhiangen:

Gi(x)=In(1+x) firx>1
Gz@)zliy firy >0

Bestimmen Sie den maximal méglichen Gewinn Gy (x) + G, (y) des Unternehmens
unter der Nebenbedingung, dass insgesamt eine Kapitalmenge von

x+y=10€

zur Verfiigung steht.

Ubung 11.6. Ein Unternehmen hat sich auf zwei Produkte spezialisiert, die sie in
den Mengen x; und x; herstellen. Es ist in der Lage, beide Produkte nach folgender
Kostenfunktion herzustellen:

K(x1,x2) = 30x1 +90x2 — 0.1 (x] +x1x2 +x3) + 12000
fir x;,x, >0

Die Nachfragefunktionen fiir die beiden Produkte sind wie folgt:

pl(xl) = 180—x1
p2(x1,x2) =360 — x5+ 0.5x;

1. Berechnen Sie die gewinnmaximalen Mengen und Preise fiir die beiden Pro-
dukte und den Gesamtgewinn des Unternehmens.

2. Die Marketingabteilung geht davon aus, dass der Markt von den beiden Pro-
dukten insgesamt exakt 290 [ME] aufnehmen kann. In welchen Mengen sind
die beiden Produkte herzustellen, damit das Unternechmen einen maximalen
Gesamtgewinn erzielt?
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Ubung 11.7. Es gibt einen Studenten mit unstillbarem Appetit nach Schokolade.
Es wird angenommen, dass der Nutzen, der ihm aus dem Verzehr der Schokolade
entsteht, durch eine Cobb-Douglas-Funktion beschrieben werden kann.

?‘ng'S fiir x1,x, > 0

U(xy,xp) =x
Die Variablen x| und x, geben die Zahl der Schokoladenstiicke weiller und schwar-
zer Schokolade an. Es wird unterstellt, dass die weille Schokolade 0.04 € und die
schwarze 0.02 € pro Stiick kosten. Der Student hat sich eine Obergrenze von 12 €
fiir seine Schokoladenleidenschaft pro Semester gesetzt. Berechnen Sie den maxi-
malen Nutzen. Interpretieren Sie den berechneten Lagrange-Multiplikator.

11.6 Fazit

Funktionen konnen zur Beschreibung komplizierter 6konomischer Zusammenhén-
ge verwendet werden. Sie enthalten dann mehr als nur eine Variable. Allerdings ist
auch ihre Analyse aufwindiger. Besonders interessant fiir 6konomische Fragen ist
der Lagrange-Ansatz. Mit ihm lésst sich unter bestimmten Annahmen eine Minimal-
kostenkombination und ein risikominimales Portfolio bestimmen.
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12.1 Vorbemerkung

In den vorausgegangenen Kapiteln wurde die Differentialrechnung und ihre Anwen-

dung in der Okonomie dargestellt. Der Ausdruck d-gix), der die Differentiation vor-
schreibt, wird als Differentialoperator bezeichnet. Der Differentialoperator liefert die

W. Kohn, R. Oztiirk, Mathematik fiir Okonomen, Springer-Lehrbuch,
DOI 10.1007/978-3-642-28575-2 12, © Springer-Verlag Berlin Heidelberg 2012
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erste Ableitung einer differenzierbaren Funktion. Eine naheliegende Frage ist: Gibt
es eine Umkehrfunktion, die die Wirkung des Differentialoperators wieder aufhebt,
d. h. aus der Ableitung die urspriingliche Funktion erzeugt?

Eine derartige Umkehroperation wurde gleichzeitig mit der Differentialrechnung
entwickelt. Sie wird als Integration bezeichnet. Als Operator hat man das [ ... dx
eingefiihrt, das vom stilisierten S fiir Summe abgeleitet ist. Es wird nie ohne Variable
geschrieben, nach der integriert wird. Um anzudeuten, dass analog zur Differentia-
tion d-{j&x) ein Grenziibergang auf infinitesimale Grofen dx vollzogen wird, schreibt
man die Integrationsvorschrift [ f(x) dx.

Die Integration wird in der Okonomie angewendet, wenn man vom Grenzverhal-
ten einer 6konomischen Grofe auf die Funktion selbst schlieBen mochte. Beispiels-
weise ldsst sich vom zeitabhiingigen Anderungsverhalten des Umsatzes eines Pro-
dukts durch Integration auf den Umsatz eines Zeitraums, zum Beispiel eines Jahres
schliefen, oder man kann zu einer bekannten Grenzkostenfunktion die Gesamtko-
stenfunktion mit Hilfe der Integration bestimmen. Diese Anwendungen ergeben sich
unmittelbar aus der Definition der Integration als Umkehroperation zur Differentiati-
on. Ein anderes sehr wichtiges Anwendungsgebiet liegt in der Statistik, hier speziell,
um den Zusammenhang zwischen der Dichtefunktion und der Verteilungsfunktion
einer stetigen Zufallsvariablen herzustellen.

Jdx  unbestimmtes Integral

JPdx  bestimmtes Integral
F(x) Stammfunktion
c Integrationskonstante

12.2 Das unbestimmte Integral

Die erste Ableitung der Funktion isty’ = f(x). Es wird angenommen, dass eine Funk-
tion F'(x) existiert, die differenziert f(x) ergibt. Das heifit, es soll gelten:

O ENC) (12.1)

Zunichst fillt auf, dass die gesuchte Funktion nicht eindeutig ist, denn man kann zu
F(x) jede beliebige Konstante ¢ addieren, die dann beim Differenzieren entfallt. Gilt
also die Gleichung (12.1), so gilt auch:

d .
& (F(x)+c) = f(x) fiirc=konst

Die gesuchte Funktion ist daher unbestimmt, weil die Konstante (Integrationskon-
stante) ¢ frei wihlbar ist.
Die Funktion
F(x)+c¢

heiBt das unbestimmte Integral der stetigen Funktion f(x), falls F’(x) = f(x) gilt.
Man schreibt:
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/f(x)dx —F(x)+c

Die Funktion f(x) heifit Integrand, und die Funktion F(x) wird als Stammfunktion
des Integranden bezeichnet.

Die Berechnung der Stammfunktion aus einer gegebenen Funktion ist der Vor-
gang des Integrierens. Am Beispiel elementarer Funktionen, deren Ableitungen man
kennt, kann man das Integral auf der Basis der Definition ohne Schwierigkeit be-
stimmen, indem man die folgende Frage beantwortet:

Welche Stammfunktion F(x) ergibt differenziert den vorgegebenen Integranden

Jx)?
Beispiel 12.1.
1
fx) =x= F(x) z/x3dx: 4x4—|—c:> d(;F(x) =x

Das Ergebnis der Integration ist in diesem Fall immer das unbestimmte Integral. %t

Der Differentialquotient einer Funktion kann sehr anschaulich als Steigung der
betreffenden Funktion interpretiert werden. Leider gibt es fiir das unbestimmte In-
tegral keine dhnlich anschaulich geometrische Deutung. Der Vorgang des Integrie-
rens kann «nur» als Umkehroperation zum Differenzieren interpretiert werden. Das
erschwert das Integrieren insofern, als es nicht schematisch wie zum Beispiel das
Differenzieren ablauft. Die Technik des Integrierens erfordert daher Phantasie und
gute Kenntnisse der elementaren Funktionen und ihrer Ableitungen.

12.2.1 Integrale fiir elementare Funktionen

Im Folgenden sind einige Integrale fiir elementare Funktionen angegeben. Den Be-
weis fiir die Richtigkeit der Integrale kann man leicht durch Differenzieren der
Stammfunktion fiihren.

1
/xndx: anrl Y
n+1

1
/ dx=Inlx|+c
x

/exdx:ex—f—c

/sinxdx: —cosx—+c¢
/cosxdxzsinx—i—c

In Mathematiklehrbiichern und Nachschlagewerken (zum Beispiel [1]) sind wei-
tere Integrale tabelliert, die man im Einzelfall dort nachschlagen kann.
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12.2.2 Integrationsregeln

Es werden nun verschiedene Regeln diskutiert, mit deren Hilfe man ein gegebenes
Integral auf Integrale elementarer Funktionen zuriickfithren kann. Dies ist die eigent-
liche Kunst des Integrierens. Es kommt darauf an, die Funktion moglichst geschickt
umzuformen, damit letztlich nur noch bekannte und einfache Integrale zu 16sen sind.
Freilich ist dies keineswegs immer mdglich. Es gibt zahlreiche Funktionen, deren
Integrale nicht mehr durch elementare Funktionen darstellbar sind, und es gibt Funk-
tionen, deren unbestimmte Integrale iberhaupt nicht in geschlossener Form, d. h. als
Formel, existieren. Dies tritt zum Beispiel schon bei so scheinbar einfachen Funktio-
nen wie

flx) = e firxeR
1
flx) = Inx firx>0
flx) = Y firxeR
sinx
auf, die nur ndherungsweise integrierbar sind.

12.2.2.1 Konstant-Faktor-Regel

Ein konstanter Faktor kann vor das Integral gezogen werden:

/af(x)dx:a/f(x)dx

/2dx:2/dx:2x—|—c
/4x3dx:4/x3dx:x4+c

Beispiel 12.2.

12.2.2.2 Summenregel

Das Integral einer Summe von Funktionen ist gleich der Summe der Einzelintegrale:

[ +ew)a= [roa [ewar

Bei einer Summe von Integralen werden die Integrationskonstanten meist zu einer
Konstanten zusammengefasst. Konstante Faktoren und Summen bzw. Differenzen
von Funktionen werden also wie beim Differenzieren ganz schematisch beriicksich-
tigt.
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/(2x2—1+i>dx:2/x2dx—/dx+4/idx

2
= 3x3—x—|—4ln|x|—|—c

Beispiel 12.3.

12.2.2.3 Partielle Integration

Auch fiir die Produktregel der Differentiation bzw. fiir die Kettenregel existieren
dquivalente Regeln der Integration, die jedoch eher Umformungen als Rechenvor-
schriften darstellen. Man bezeichnet sie als partielle Integration bzw. als Integration
durch Substitution. Trotz des gleichlautenden Adjektivs hat die partielle Integration
nichts mit der partiellen Differentiation zu tun.

Partielle Integration kann angewendet werden, wenn ein Produkt zweier Funktio-
nen zu integrieren ist. Die anschlieBenden Uberlegungen zeigen, warum man dabei
nicht vom Produkt f(x)g(x) ausgeht, sondern die Form f(x)g’(x) wihlt. Die Pro-
duktregel der Differentiation lautet

d 200) = Y ) 4 09 4

Durch Umstellen erhélt man

Integriert man beide Seiten der Gleichung, so erhilt man

[rmg@ac= [V e [ piga

Bei dem mittleren Integral besteht der Integrand gerade aus einem Differentialquoti-
enten. Hier hebt sich also die Integration und die Differentiation auf.

Man erhélt

/ £ () dx = f(x) glx) / () g0 dv e

Diese Vorgehensweise sieht auf den ersten Blick recht kompliziert aus und scheint
sinnlos zu sein, weil das Integral auf der linken Seite ja nur durch ein anderes, dhnlich
strukturiertes Integral rechts ersetzt wird. Das erklart auch die Bezeichnung «parti-
elly. Tatséchlich ist aber das Integral auf der rechten Seite manchmal einfacher zu
16sen als das Integral auf der linken Seite.
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Die partielle Integration setzt voraus, dass ein Produkt der Form

fx)g (x)
zu integrieren ist. Welcher Faktor aber als f(x) und welcher als g’ (x) gewihlt wird,
ist nicht festgelegt. Als Faustregel konnte man vielleicht sagen: Wahle die Funktion
als ¢’(x), die leichter zu integrieren ist. Aber es gibt Ausnahmen von dieser Regel.
Manchmal gibt es keinerlei Hinweis fiir eine bestimmte Wahl. Dann sollte man es
mit einer Variante versuchen und sich fiir die Alternative entscheiden, wenn man
nicht weiterkommt. Eine Quotientenregel der Integration gibt es nicht.
Im Folgenden wird die partielle Integration durch einige Beispiele erldutert.

Beispiel 12.4. Es soll die Funktion
fx) =4x> Inx firx>0

integriert werden. Da es sich um zwei multiplikativ verkniipfte elementare Funktio-
nen handelt, wihlt man folgenden partiellen Integrationsansatz:

1
g)=Mnx = ()=
Hix)=4x> = hx)=x*+¢ (12.3)

Die partielle Integration ergibt
1
F(x)= /4x3 Inxdx = x* Inx + ¢, —/x4 4dx

=x*Inx+¢; —/x3dx
4 (12.4)

=x* 1nx—|—c1—); +c)

4
4 X

— P lnx—
X Inx 4 +c

Die Integrationskonstante aus (12.3) wird im Allgemeinen mit der in (12.4) zu einer
Integrationskonstanten zusammengefasst und nicht extra ausgewiesen. o3

Beispiel 12.5. Es soll die Funktion
flx)=x*¢" firxeR
integriert werden. Man wihlt den Ansatz
g)=x* = ) =2x
Hx)=¢" = hx)=¢c¢+c
Das partielle Integral lautet damit

F(x):/xzexdx:xzex—2/xexdx (12.5)

Das Integral (12.5) wird wieder partiell integriert. Man wéhlt diesmal

fW=x = [)=1
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glr)=e" = gl)=e"+c

Nun erhilt man das partielle Integral

F(x) :/xzexdx:xzex—z (xex—/exdx)

=x’e"—2xe*+2e +¢
=e

ex
= x(x2—2x—|—2)+c

Beispiel 12.6. Es soll die Funktion
f(x)=Inxdx fiirx>0

integriert werden. Man wihlt den Ansatz 1 X Inx.

f(x)=Inx = ’(x):i
dW=1 = g =x+e

Es wird also eine multiplikative Verkniipfung mit der Konstanten 1 unterstellt, um
das Integral partiell integrieren zu konnen. Das partielle Integral ist somit

F(x):/lnxdx:xlnx—/lxdx
x

=xInx—x+c¢

Beispiel 12.7. Es soll die Funktion
f(x) =sinxcosx firxeR
integriert werden. Man wihlt den Ansatz

f(x) =sinx = f(x)=cosx
g(x)=cosx = g(x)=sinx+c

Das partielle Integral ist somit
F(x)= /sinx cosxdx
= (sinx)? +¢— /sinx cosxdx

2 /sinx cosxdx = (sinx)? +¢
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1
F(x)= /sinx cosxdx = 5 (sinx)? +¢

12.2.2.4 Integration durch Substitution

Zusammengesetzte Funktionen werden mit Hilfe der Kettenregel differenziert. Im
Prinzip wird dabei die innere Funktion substituiert. Man erhélt aus

y=[(glx)) mitz=g(x)

eine von der Struktur her vereinfachte Funktion mit der neuen Variablen z. Genau das
gleiche Prinzip kann man auch beim Integrieren anwenden. Durch Variablensubsti-
tution wird versucht, eine zusammengesetzte Funktion soweit zu vereinfachen, dass
sie auf bekannte Integrale zuriickzufiihren ist.

Die Integration durch Substitution ist wohl die am haufigsten verwendete Metho-
de (wie die Kettenregel). Liegt eine zusammengesetzte Funktion vor, so sollte man
mit einem Substitutionsversuch beginnen.

Es soll das Integral

Fm:/ﬂdmgmw

gelost werden, wobei die innere Funktion durch z = g(x) substituiert wird. Das Dif-
ferential dieser neuen Variablen lautet dann

dz =g'(x)dx,
so dass sich unter Umstidnden ein einfacheres Integral
Fo = [ 1)
ergibt. Haufig verwendete Substitutionen sind:

z=ax+b = dz=adx

Z:ax2—|—b = dz=2axdx
a
z=vax+b = dz=
2vax+h
z=c" = dz=c"Incdx
1
z=Inx = dZ:xdx
z =sinx = dz=cosxdx

Beispiel 12.8. Es ist das Integral

F(x) :/Zx\/x2+2dx
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zu berechnen. Mit der Substitution
z=x"42 = dz=2xdx

ergibt sich das substituierte Integral wie folgt:

F(z):/\/zdz: iz%—l-c

Das Produkt mit 2x entfdllt hier aufgrund der Substitution, was die Lésung des In-
tegrals jetzt ermoglicht. Der nichste Schritt ist die Resubstituierung der Variablen
z.

F(x):i\/(x2+2)3—|—c

It
Beispiel 12.9. Es ist das Integral
F(x)= /xe*xzdx
zu berechnen. Die Substitution
z=—x> = dz=—2xdx
fithrt zu dem Integral
F(z) ! / “dz
z)=— e
2
1 =
=—_¢+c
2
Mit der Ersetzung von z = —x? erhilt man die Losung des Integrals:
I _pe
Fx)=—_e " +c
2
o3

Beispiel 12.10. Es ist das Integral

1 3
F(x) = dx fi —

) / 2x+3 ura 7 2
zu 16sen. Die Substitution

z=2x+3 = dz=2dx

fiihrt zu dem Integral

1 1 1
F(z)72/2d2—21n|z|+c
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und zur Lésung

1
F(x)= 5 In|2x+3|+¢

Beispiel 12.11. Es ist das Integral

F(x):/tanxdx
:/Smxdx fﬁrx;éngkn,keZ

COSXx

zu losen. Erst die Transformation in die alternative Funktion ergibt eine sinnvolle
Substitution

z=cosx = dz= —sinxdx

und fiihrt zu dem Integral
1
F(z) = —/ dz=—Injz|+¢
z

und zur Losung

F(x) = —In|cosx|+c¢

Beispiel 12.12. Es ist das Integral
1
F(x)= e fire>0
x
zu l6sen. Die Substitution
1
z=lnx = dz= dx
x
fithrt zu dem Integral
1
F(z) :/zdz: 2zz—|—c

und zur Lésung

F(x) = ; (1nx)2+c
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Beispiel 12.13. Es ist das Integral
F(x) :/axdx:/exln"dx firx >0

zu losen. Erst die Transformation in die alternative Funktion ergibt eine sinnvolle
Substitution.

z=xlna = dz=Ilnadx

Das transformierte Integral

1 1
F = z = z
(2) Ina /e dz 1nae +c

fithrt zur Losung

1
F(x)= a*
() Ina te
gos
Beispiel 12.14. Es ist das Integral
Fx) = / sinx (.:ozsx d
1 +sin“x
zu losen. Die Substitution
z=1+sin®x = dz=2sinxcosxdx
fithrt zu dem Integral
1 (1 1
F(z) = 5 /Zdz: 5 Injz| +¢
und zur Losung
1 . 2
F(x)= 5 In (1 +sin’x) +c
gos

12.2.3 Okonomische Anwendung

Fiir einen 6konomischen Wachstumsprozess wird hdufig angenommen, dass die re-
lative Anderung

=y mit f(¢) >0 furallez (12.6)
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konstant ist. Mit ¢ wird hier die Zeit bezeichnet. f(¢) ist eine zeitabhidngige Be-
standsfunktion. Die Ableitung f”(¢) ist dann eine Wachstumsrate. Die Umstellung
der Funktion liefert eine Differentialgleichung.

FO)=vf)

Die Anderungsrate f'(¢) ist proportional abhiingig von der Bestandsfunktion f(t).
Die Losung der Gleichung (12.6) erfolgt durch einen Integrationsansatz mit der Sub-
stitution

dz
e=f0) G =SW
Der daraus folgende Ansatz kann leicht integriert werden.
1) /’ /1 /
dt = dt = dz= de
=] ST
Inf(t)=yt+c = f(t) =yoe” mityy= f(0)=e" (12.7)

Beispiel 12.15. Mit der Funktion (12.7) kann zum Beispiel eine stetige Verzinsung
des Kapitals berechnet werden. Dann ist yg = Ko, ¥ = i (siche stetige Verzinsung,
Seite 170).

K, =Kye™!

Ubung 12.1. Berechnen Sie die folgenden unbestimmten Integrale:
F(x) / Tode firx>2
xX) = ur x
Vx—2 -

5
F(x):/(lnxx) dx firx>0

F(x):/xe_xzdx firxe R

F(x):/\/xlnxdx fiirx >0

Ubung 12.2. Bestimmen Sie die Stammfunktion zu folgenden Funktionen:
flx)=a" firaeR,a>0
f(x) :xsin; firxeR
fx)=x*/x firx>0

x) = firx > -5
f= 7 firx>

_ s
f(x) o firx>0
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12.3 Das bestimmte Integral

Die Integration war bislang als Umkehroperation zur Differentiation verstanden wor-
den. Neben dieser Definition gibt es eine zweite, diesmal anschaulichere Erkldrung
flir das Integral. Fiir eine im Intervall

a<x<bh

stetige Funktion f(x) sei der Inhalt der Fliche zwischen der Kurve und der Abszisse
tiber dem Intervall [a,b] zu berechnen. Die Fliache soll mit F;, bezeichnet werden
(siche Abb. 12.1).

-0.149
-0.24
-0.31

-0.4-{

0.0 0.4 0.8 1.2

Abb. 12.1: Bestimmtes Integral

Die Fliache F; léasst sich ndherungsweise berechnen, indem man das Intervall
[a,b] in Teilintervalle

[a,b] = [a =x1,x%]Ux2,x3]U...Uxp_1,x, = D]

aufteilt und die Flache {iber dem i-ten Intervall durch ein Rechteck der Hohe f(x;)
approximiert, wobei x; ein willkiirlicher Wert im i-ten Intervall ist. Die Intervallbreite
wird mit Ax; = x;| — x; bezeichnet. Es gilt:

n
Fop = Zf(xi)Axi
i1
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Die Naherung wird umso genauer, je kleiner die Rechtecke, also die Teilintervalle
sind. Lésst man die Intervallbreite der Teilintervalle gegen Null und damit die Zahl
n der Rechtecke gegen unendlich streben, so wird der Grenzwert der Summe der
Rechtecke gleich der gesuchten Fldche.

n
Fap = Jim > fx) Ax; (12.8)
Axi—0 j=1

Der Grenzwert der Summe (12.8) wird bestimmtes (Riemannsches) Integral der
Funktion f(x) liber dem Intervall [a,b] genannt.

n b
lim S £ Axy = / £(x)d

Ax;—0 j=1

Die Variable x ist die Integrationsvariable und a bzw. b sind die Integrationsgren-
zen. Diese Definition des Integrals als Grenzwert einer Summe erklart die Wahl des
stilisierten Buchstabens S als Integrationszeichen.

Ahnlich wie schon beim Differentialquotienten ist also auch das bestimmte In-
tegral durch einen Grenzwert definiert, den man im konkreten Fall natiirlich nicht
jedes Mal ausrechnen mochte. Der so genannte Hauptsatz der Integralrechnung
stellt den Zusammenhang zwischen dem bestimmten und dem unbestimmten Inte-
gral mit Hilfe der Stammfunktion her und zeigt damit einen Weg auf, das bestimmte
Integral mittels der Stammfunktion zu berechnen. Dazu wird die Umkehreigenschaft
der Differentiation und der Integration genutzt.

12.3.1 Hauptsatz der Integralrechnung

Es wird eine auf dem Intervall [a, b] integrierbare Funktion f(z) betrachtet. Das In-
tegral

Ful) = [ 1)

bedeutet dann den Flacheninhalt unter der Kurve f(z) im Intervall [a,x]. Die Wahl
der neuen Integrationsvariablen z hat allein didaktische Griinde. Am Wert des be-
stimmten Integrals dndert sich dadurch nichts. Der Fldcheninhalt ist nun von der hier
als variabel anzusehenden oberen Integrationsgrenze abhéngig und daher eine Funk-
tion von x. Differenziert man die Funktion F,(x) nach x, so bedeutet das formal, ein
Integral nach seiner oberen Grenze zu differenzieren. Dazu besagt der Hauptsatz der
Integralrechnung folgendes:
Ist f(x) im Intervall [a,b] integrierbar, so gilt:

R = o [ 1@ = 1w

Folglich ist Fj(x) das bestimmte Integral und bis auf die Integrationskonstante ¢
gleich der Stammfunktion F(x) der Funktion f(x).
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X
Fuul) = / f@)dz=F(x) +c
a

Setzt man x = a, so muss die Fliche unter der Kurve im Intervall [a,a] offenbar
gleich Null sein, so dass gilt:

a
/ f(z2)dz=0=F(a)+c
a
Daraus bestimmt sich die Integrationskonstante ¢ = —F (a), und man erhélt
X
Fult) = [ 108 =F@) - F(0
a
Der Wert des bestimmten Integrals ist also gleich dem Wert der Stammfunktion des

Integranden an der oberen Grenze minus dem Wert der Stammfunktion an der unte-
ren Integrationsgrenze.

b b
| rwa=rw| =ro)-F@
a a
Beispiel 12.16.
2 2
] 7
2 _ 3 _
/1 x“dx = 3x 1— 3
1 1
/e"dx:e’C =e—1
0 0
Vs 4

=2

/ sinxdx = —cosx
0 0

12.3.2 Eigenschaften bestimmter Integrale

Nachstehend sind einige Eigenschaften bestimmter Integrale zusammengestellt. Alle
Regeln gelten unter der Voraussetzung, dass die genannten Integrale auf den bezeich-
neten Intervallen existieren, die Integranden also dort integrierbar sind.

12.3.2.1 Vertauschen von Integrationsgrenzen

Vertauscht man die Integrationsgrenzen, so dndert sich das Vorzeichen des Integrals.

L?mw=—é7wm
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12.3.2.2 Zusammenfassen von Integrationsgrenzen

Fiir jede Lage der Punkte @ < b < ¢ auf der Zahlengeraden gilt:
b ¢ ¢
| rwars [ [ reas

12.3.2.3 Konstant-Faktor-Regel

Fiir jede Kosntante ¢ gilt:
b b
[ ermar=c [ rwar

12.3.2.4 Summenregel

Die Summenregel gilt ebenfalls:
b b b
[ re+gwyar= [ roas [ ga

12.3.2.5 Partielle Integration

Die partielle Integration bleibt uneingeschrankt giiltig.

b b b
/ S0 () dx = £(x) gx)| — / /() glx) dx

Man beachte, dass in das Produkt f(x)g(x) ebenfalls die Integrationsgrenzen einge-

setzt und die Differenz gebildet wird.

12.3.2.6 Integration durch Substitution

Wird zum Zweck der Integration eine Variablensubstitution vorgenommen, so ist
unbedingt darauf zu achten, dass entweder die Integrationsgrenzen mit transformiert
werden oder die Substitution in der Stammfunktion riickgéngig gemacht wird, be-
vor die Integrationsgrenzen eingesetzt werden. Die Integrationsgrenzen sind immer
spezielle Werte der Integrationsvariablen! Andert sich die Integrationsvariable durch

Substitution, so miissen die Grenzen ebenfalls substituiert werden.
Es ist das Integral

b
Fup(o) = / £(g()) ¢ (x) dx

zu losen. Die Substitution
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transformiert die Grenzen x = ¢ und x = b auf die Grenzen z = g(a) und z = g(b):

b (b)
FMw:/f@m§w®=/if@&
a gla

Es ist meist geschickt, die Grenzen direkt bei der Substitution zu {ibertragen:

Fiir Beispiel siehe Kapitel 12.3.3.

12.3.2.7 Flichenvergleich

Verlduft eine Funktion f(x) auf dem Intervall [a, b] stets unterhalb der Funktion g(x),
so gilt fir /(x) < g(x) die Aussage

A@mwsAme

Eine unmittelbare Folgerung dieser Eigenschaft ist, dass das bestimmte Integral einer
Funktion, die auf dem gesamten Intervall negativ ist, einen negativen Wert hat. Es
ergibt sich die Flache der Kurve unter der Abzisse mit negativem Vorzeichen. Fiir
f(x) <0 auf [a,b] ist

l?ww<o

Man sollte dies besonders dann beachten, wenn der Integrand im Integrationsinter-
vall eine oder mehrere Nullstellen besitzt (siche Abb. 12.1). Die entsprechend positi-
ven Flachen (iiber der Abzisse) und negativen Flachen (unterhalb der Abzisse) heben
sich gegenseitig auf, wenn man iiber die Nullstellen hinweg integriert. Will man die
Gesamtflidche aus den einzelnen Flachenanteilen bestimmen, so hat man wie folgt
vorzugehen:

Foa(x) = Fup(x) — Fog(x)
b d
— [ rwac- [ e
a c
12.3.3 Beispiele fiir bestimmte Integrale

Beispiel 12.17. Es ist das Integral

2
|
F = dx
02(x) /0 2x+3

zu l6sen. Die Substitution
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2 7

2x+3 = dz=2dx

=z

0 3

fithrt zu dem Integral

1 /71 1
dz = 5 (In7 —In3) = 0.4236

F3,7(Z)=2 -

Beispiel 12.18. Es ist das Integral

‘1
Fl’e(x) :/ nxdx
1

X

zu l6sen. Die Substitution

Inx| =z

fithrt zu dem Integral

1

1
1
F()J(Z)Z/ ZdZ:ZZ2 =0.5
0

0

12.3.4 Okonomische Anwendung
Beispiel 12.19. Angenommen, man hat die Grenzkostenfunktion
K'(x)=2x-2

im Bereich von x = 1,...,10 ermitteln kdnnen. Wie hoch sind die Gesamtkosten?

Das Integral
10

10
/ (2x—2)dx=x*—2x| =8I
1 1
liefert das gesuchte Ergebnis. ges

Beispiel 12.20. Der Preis eines Wertpapiers wird durch den Barwert der Ertrage be-
stimmt. Ein Wertpapier mit einer kontinuierlichen Zahlung von € pro Jahr tiber n
Jahre besitzt dann den Barwert

KO r KO

= (1_e—i><n)+

Coli,r,n) = [ re ™dt+
o(i,rim) /0 L+ i (14i)"

Der Barwert eines Wertpapiers mit » = 6 €, Ky = 100€ und einer Laufzeit von n =
10 Jahren besitzt bei einem Marktzinssatz von i = 0.05 einen Preis von
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Cp(0.05,6,10) = 108.61 €
Steigt der Marktzinssatz auf i = 0.06, so fillt der Barwert auf
Cp(0.06,6,10) = 100.95€

Wird die Rechnung fiir ein Wertpapier mit einer Laufzeit von n = 5 Jahren wie-
derholt, dann zeigt sich, dass der Barwert bei ldngeren Laufzeiten stirker auf die
Zinssatzidnderung reagiert.

C0(0.05,6,5) = 104.86€  (Cp(0.06,6,5) = 100.64€

Im ersten Fall betrdgt die Barwertabnahme bei einer Laufzeit von 10 Jahren rund
7 Prozent, im zweiten Fall nur rund 4 Prozent. Ein Wertpapier mit einer ldngeren
Laufzeit reagiert sensibler (elastischer) auf eine Zinssatzdnderung. Diese Sensibili-
tit kann mit der Zinssatzelastizitit des Barwerts beschrieben werden (siehe auch
Abschnitt 9.7.7), die auch als Duration bezeichnet wird.

dc, rne i _ r (1 _e—in) _ Ko n
7

D= d _ 7 . (1+0)" (1+0)
lcfi F—eming S0,
14+i
Sie betrdgt in den beiden Féllen:
D = —7.7455 D =—4.3713
i=0.05,r=6,1=10 i=0.05,r=6,1=>5

BetragsmaBig hat die Zinssatzelastizidt abgenommen, wodurch die geringere Bar-
wertreaktion erklirt wird. Mit der Duration kann (wie in Abschnitt 9.7.7) auch die
Barwertdnderung abgeschétzt werden.

"y
ACy~ —DxCyx '
1
0.01
ACy~—7.7455 x 108.61 x ' - =—8.01
0.01
ACy~ 43713 x 104.86x " - =—4.36

12.3.5 Integralberechnung mit Scilab

Das Integral aus Beispiel 12.18 soll mit Scilab integriert werden. Dazu ist es zu-
ndchst notig, die Funktion mit dem deff Befehl zu definieren. Mit dem anschlie-
Benden integrate Befehl wird die numerische Integration der Funktion in den
Grenzen von | bis e berechnet.
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deff ('y=£f(x)’', 'y= 1og x)/x")
1ntegrate(’f( x)','x",1,exp(1l))
Die Gesamtkosten in Beispiel 12.19 sind durch folgende Befehle zu berechnen.

deff{'y=f(x)’,'y= 2*X 27)
1ntegrate(’f(x) x’,1,10)

Ubung 12.3. Berechnen Sie die folgenden bestimmten Integrale:
+1
Fiab=[ bl
—1
+2
F oo ox)= / min {x,xz} dx
-2

Fle(x) = / Inxdx

X2 firo<x<1

Foalx /f dr mit f(x):{\/x firl <x<4

1
4x+6
Fo1(x) =/
0

xX24+3x+2

1
F1(x) :/ x? Inxdx
3

12.4 Uneigentliche Integrale

Uneigentliche Integrale sind Integrale, bei denen die Integrationsgrenzen nicht end-
lich sein miissen oder bei denen der Integrand einen unendlichen Integrationsbereich
besitzt oder der Integrand im Integrationsintervall eine Unendlichkeitsstelle hat. Das
uneigentliche Integral kann man als eine Verallgemeinerung des bestimmten Inte-
grals auffassen, vorausgesetzt, der Grenzwert existiert.

lim f( )dx

a——oo
Beispiel 12.21. Es ist die Funktion
fx)=e" furxeR

von 0 bis e zu integrieren.

b b
lim e "dx= lim —e*
b—oo 0 b—yoo 0
=1 dalime?=0ist
b—roo
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12.4.1 Okonomische Anwendung

Ein Ertragsstrom r(¢) hat bei stetiger Verzinsung mit dem nominalen Zinssatz vy tiber
n Jahre den Barwert:

n
Ko = / r(t)e "dt
0
Bei konstantem, unendlichem Ertragsstrom r = konst (Rente) wird Ky mittels des
uneigentlichen Integrals
n
Ko=1lim [ re "dt
n—eo J

berechnet. Die Substitution

T=—yt = dt=—ydt

liefert das Integral

Y
. "\ /
~tm () =)
_r
Y

Beispiel 12.22. Fiir eine unendliche Rente von jahrlich » = 5000€ und einem no-
minellen Zinssatz von y = 0.05 p. a. ergibt sich bei stetiger Verzinsung ein Barwert

von:
5000

~0.05
(siehe hierzu auch Kapitel 9.6.2, Seite 188) o3

Ko =100000€

Uneigentliche Integrale kommen héufig auch im Rahmen der Statistik bei der
Berechnung von Wahrscheinlichkeiten vor.

12.4.2 Statistische Anwendung

Z ist eine Zufallsvariable, deren Zufallsverteilung (Dichtefunktion) durch die Stan-
dard-Normalverteilung gegeben ist.
1 2
z) = e 2 mitzeR
Jz(2) Jan

Die Dichtefunktion ist im reellen Zahlenbereich definiert. Die Wahrscheinlichkeit,
dass die Zufallsvariable Z einen Wert von kleiner gleich z annimmt, ist durch das
Integral



338 12 Grundlagen der Integralrechnung

Fe) = [ raea
1 Z

- NG /_meii2 ds

beschrieben, das als Verteilungsfunktion der Zufallsvariablen Z bezeichnet wird. Die
Losung des Integrals ist etwas aufwéndiger und mit den hier beschriebenen Metho-
den nicht durchfiihrbar. Daher verwendet man in der Statistik Tabellen, die fiir be-
stimmte Werte von z die Losungen enthalten oder Computerprogramme wie Scilab.
Mit der folgenden Funktion

z = 0;
cdfnor ('PQ’,z,0,1)

kann der Wert des Integrals an der Stelle z = 0 berechnet werden. Das Integral besitzt
den Wert 0.5.

12.5 Fazit

Die Intregalrechnung ist die Umkehrung der Differentialrechnung. In der Okonomie
findet sie dort Anwendung, wo vom Grenzverhalten (zum Beispiel Grenzkosten) ei-
ner 6konomischen Grdofe auf die urspriingliche Funktion (zum Beispiel Kostenfunk-
tion) geschlossen werden muss.

Das bestimmte Integral ist die Flachenberechung unter einem Graphen. Mit dem
Hauptsatz der Intergralrechnung wird der Zusammenhang zwischen dem bestimm-
ten und dem unbestimmten Integral hergestellt. Unter einem uneigentlichen Integral
ist ein Integral zu verstehen, bei dem die Integrationsgrenzen unendlich sind. Eine
bekannte Anwendung ist die Berechnung von Verteilungsfunktionen (zum Beispiel
Normalverteilung) in der Statistik.
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Eine kurze Einfiihrung in Scilab

Scilab ist ein umfangreiches, leistungsfahiges Software-Paket fiir Anwendungen in
der numerischen Mathematik, das am Institut National de Recherche en Informatique
et en Automatique (INRIA) in Frankreich seit 1990 entwickelt wird. Seit 2003 wird
die Entwicklung vom Scilab-Konsortium unter Federfithrung des INRIA vorange-
trieben. Scilab wird fiir Anwendungen in Lehre, Forschung und Industrie eingesetzt
und ist fiir rein numerische Berechnungen programmiert. Es ist ein kostenloses open
source Paket www.scilab.org.

Die Syntax der Scilab Programmiersprache ist jener von MATLAB nachemp-
funden, aber nicht kompatibel; ein integrierter Konverter von MATLAB nach Scilab
unterstiitzt eine Ubertragung von vorhandenem Programmcode.

Implementiert ist Scilab in C, erweiterbar ist es aber auch durch Module, die in
Scilab selbst oder in anderen Sprachen verfasst wurden, z. B. FORTRAN oder C, fiir
die definierte Schnittstellen existieren.

Folgender Funktionsumfang ist in Scilab vorhanden:

e 2D- und 3D-Graphik in allen gidngigen Formen inklusive Animation mit der
Moglichkeit der Integration von GNU Plot (oder/und LabPlot)

lineare Algebra

schwach besetzte Matrizen (sparse matrices)

Polynom-Berechnungen und rationale Funktionen

Interpolation und Approximation

Statistik

Regelungstechnik

Simulation

digitale Signalverarbeitung

I/O-Funktionen zum Lesen und Schreiben von Daten (ASCII-, Bindr- und auch
Sound-Dateien in verschiedenen Formaten)

Bilddatenverarbeitung

Schnittstellen fiir Fortran, Tcl/Tk, C, C++, Java und LabVIEW

W. Kohn, R. Oztiirk, Mathematik fiir Okonomen, Springer-Lehrbuch,
DOI 10.1007/978-3-642-28575-2, © Springer-Verlag Berlin Heidelberg 2012
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Nach Aufruf von Scilab erscheint am Bildschirm das Scilab-Fenster mit der Menii-
leiste oben gefolgt von dem Schriftzug Scilab und dem Prompt (- >), der Ihren Be-
fehl erwartet:

Datei  Edtieren  Voreinstellungen  Kontrole  Anwendungen 7

7B A 0 B Ag 8 8 & @

Starte susfuhrung:
Lade Startumgebung

Start Quapro toolbox
Load macros
Load gateways
Load halp
Load demos

Im Scilab-Fenster konnen sofort Berechnungen ausgefiihrt werden. Es zeichnet sich
durch folgende Eigenschaften aus:

mathematische Grundfunktionen (Taschenrechner)

Bestétigung von Befehlen mittels Return

Scilab ist sowohl ein Interpreter als auch eine Programmiersprache

einzelne Befehle oder Skriptdateien mit Befehlslisten konnen ausgefiihrt werden
(exec-Befehl, / - Kommentare).

e Blittern in alten Befehlen mittels Pfeil-Hoch- und -Runter-Tasten

Im Scilab Help Browser werden Befehle erklért. Zusitzlich existiert auf der Scilab
Internetseite eine Dokumentation mit Suchfunktion und Programmbeispielen. Fer-
ner existieren eine Vielzahl von Scilab Anwendungen und Funktionsbibliotheken
(scilabsoft.inria. fr).

Der Scilab-Editor ist ein komfortabler Editor mit Syntax-Hervorhebung und
Debugging-Schnittstelle. Kommandos kénnen mit ctr1 -1 im Scilab-Hauptfenster
zur Ausfithrung tibergeben werden. Die Kommandos konnen in einer Datei gespei-
chert werden.

Im Buch werden folgende Scilab-Befehle verwendeten. Die Seitenzahlen ver-
weisen auf Anwendungsbeispiele.



Elementare Befehle

abs
ceil
cumprod
factorial
floor
exp

log

max
prod
sgrt
sum
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Betragsfunktion
Aufrundungsfunktion
kumulatives Produkt
Fakultat
Abrundungsfunktion, GauSklammer
Expontentialfunktion *
Logarithmusfunktion In
Maximumfunktion
Produktfunktion

zweite Wurzel
Summenfunktion

Befehle fiir Vektoren

all, 2] Zeilenvektor
all;2] Spaltenvektor
a’ Transposition eines Vektors
diag Diagonalisierung eines Vektors
length Liange eines Vektors

Befehle fiir Matrizen
L * Elementweise Multiplikation
A[1,2;1,2] Matrixeingabe
det Determinante einer Matrix
diag Diagonalisierung einer Matrix
eye Einheitsmatrix
inv Inverse einer Matrix
ones Matrix mit Einsen
rank Rang einer Matrix
size Dimension einer Matrix

Befehle fiir lineare Gleichungssysteme

linpro
linsolve
spec

Optimieren eines linearen Programms
Ldsen eines linearen Gleichungssystems
Eigenwert- und Eigenvektorberechnung

Befehle fiir rationale Funktionen

deff
factors
integrate
poly
roots

Definieren einer Funktion
Linearfaktoren eines Polynoms
numerische Integration
Eingabe eines Polynoms
Nullstellen eines Polynoms

Seite
34

34

199

40

34

34
34,315
218

34
34,302,305
33,199

62
62
62
71
199, 309

199, 225
72

105

71
72,312
90, 302
302

88

302

132
86
110

40, 336
149
336
148, 178, 194, 218
148, 178, 194,218
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statistische Befehle

cdfnor
covar
mean
mvvacov
variance

Grafikbefehle

gca
plot
subplot
xstring
xtitle

sonstige Befehle

clean
diff
disp
find
for end
imag
linspace
real

Normalverteilung

Kovarianz

arithmetisches Mittel

Berechnung der Varianz-Kovarianzmatrix
Varianz

Grafikparameter der Achsen abrufen
Grafik erzeugen

Grafikfenster aufteilen

Text in einer Grafik

Einfiigen eines Grafiktitels

rundet sehr kleine Zahlen auf Null
erste Differenzen berechnen

Ausgabe von Ergebnissen auf dem Bildschrim

Finden eines Indizes im Vektor
Schleifen

imaginérer Zahlenteil

lineare Zahlenfolge

reeller Zahlenteil

338
312
302, 309
302
312,315

312
305,309, 312
312
305,309,312
309,312

210
302,309, 315
133

178

199, 305

178

309, 315
178,218
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Loésungen zu den Ubungen

Losungen zu Kapitel 1

1.1
A°NB={7,8}
AUB=1{1,2,3,4,5,6}
ANB =0
1.2
n(A\B\C)=n(4) —n(ANB) —n(ANC)+n(ANBNC)
=50-30-40+20=0
n(C\A\B) =n(C) —n(ANC)—n(BNC)+n(ANBNC)
=70—-40—-404+20=10
1.3

AUB=(-2,2) AUC=[-1,2] ANC=][0,2)
BNC=1[0,1) C\4={2} C\B=11,2]
2.1 Firx=5,2,1,2und y = 1,2,3,4 ergeben sich folgende Resultate:
4

4 4 4
Zx,-le inyi=20 Z(xi+3):12+zxi:22
i=1 i=1

i=1 i=1
2.2 Sie berechnen die Summen indem der Indexwert in die Summenformeln einge-
setzt wird.
5

> (n—1)*(n+2) =190

n=2

25: b =0.8333
k k+1)

k=1

W. Kohn, R. Oztiirk, Mathematik fiir Okonomen, Springer-Lehrbuch,
DOI 10.1007/978-3-642-28575-2, © Springer-Verlag Berlin Heidelberg 2012
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2.3 Nein, denn die Doppelsumme beschreibt folgende Summe:

2 2

ZZXU =X11+X12 +X21 +X22

i=1 j=1
Hingegen beschreibt der obige Ausdruck das Produkt zweier Summen.

2 2

inij = (x1+x2) X (x14+x2) = (%) +x2)2

2.4 Firx =15,2,1,2 ergeben sich folgende Resultate:

4 5 4 4
Hx,-:20 Hi: 120 Hx,-><2:24 Hx,:320
i=1 i=1 i=1 i=1

2.5 Das Doppelprodukt ist:

2 2
HHxij = X11X12X21 X22

i=1 j=1

Losungen zu Kapitel 2

2.6 Das Kapital besitzt nach 10 Jahren mit einem Zinssatz von 5 Prozent einen Wert

von
£(10) = 10000 x 1.05'" = 16288.946

2.7 Der Wert des Kapitals nach 9 Jahren errechnet sich aus dem Endwert nach 10
Jahren wie folgt:

F(10—1) = 16288.946 x 1.05 ' = 15513.282

2.8 Mit yy wird der Ausgangsgewinn bezeichnet; mit i die Wachstumsrate. Dann
muss fiir die Verdoppelung des Gewinns y, innerhalb von 15 Jahren folgende Glei-
chung gelten:

2y0=yo(1+0)7 =i= ¥2-1=0.047294

Zur Verdoppelung des Gewinns innerhalb von 15 Jahren wird eine durchschnittliche
Wachstumsrate von 4.7294 Prozent bendtigt.

2.9 Die Gleichungen sind zu logarithmieren. Dann kdnnen sie nach x aufgeldst wer-
den.

_Iny—a

b

In2
e =05 = x= n

y= ea+bx =

a
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2.10 Die Bestimmungsgleichung lautet bei einem Zinssatz mit i = 0.05:
2Ky =Ky (1.05)"
Diese ist mit dem Logarithmus nach » aufzuldsen.

In2

"= In1.05 Jahre

2.11 Die Berechnung der Logarithmen kann mit einer beliebigen Basis erfolgen.
Hier wird die Basis e verwendet.

In5 In4
0823 In2 3 083 In3 6

2.12 Es sind die Rechengesetze der Logarithmusrechnung anzuwenden.

3 1
In <2x\4/x2y) =1n2+ ) Inx + 4 Iny
In (2x4 uzfx) =In2+4Inx+ (2 —x)Inu
Pe
In(5x¢ , | =In5+2Inx+0.25Inp +0.5Ing —Ina—0.5Inb

(a®b)

Losungen zu Kapitel 3

3.1 Bei dieser Fragestellung ist die Reihenfolge von Bedeutung und eine Wiederho-
lung zuldssig. Es handelt sich um eine Permutation mit Wiederholung.

6!

3131~ 20

P,(6,3,3)=

3.2 Eine Wiederholung ist ausgeschlossen, aber die Reihenfolge besitzt hier eine
Bedeutung. Es handelt sich um eine Variation ohne Wiederholung.

25!
V(25,3) = (253 = 13800

3.3 Es handelt sich um eine Kombination ohne Wiederholung. Die Reihenfolge,
in der die Karten ausgegeben werden, spielt keine Rolle. Die Kombinationen jedes
Spielers ist durch ein logisches UND miteinander verkniipft.

32\ (22) (12 s
() (5)(12) =2533 %10

3.4 Es bestehen 3 verschiedene Moglichkeiten die Klausur zu beantworten:

1. aus den ersten 5 Fragen 3 UND aus den letzten 7 Fragen 5
ODER
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2. aus den ersten 5 Fragen 4 UND aus den letzten 7 Fragen 4
ODER
3. aus den ersten 5 Fragen 5 UND aus den letzten 7 Fragen 3

DO

3.5 Bei 3,4,5 Richtigen miissen n aus den 6 gezogenen Kugeln und 6 — n aus den
43 nicht gezogenen Kugeln angekreuzt sein. Es gibt

(6)< 43 ) mitn = 3,4,5
n)\6—n

verschiedene Gewinnmdglichkeiten.

3.6 Es handelt sich um eine Kombination ohne Wiederholung, weil die Reihenfolge
irrelevant ist. Somit konnen

C(20,3) = (23()) =1140

verschiedene Dreiergruppen bestimmt werden.

3.7 Es handelt sich um eine Kombination mit Wiederholung.

Cy(5,4) = <5+4_ 1) =170

4
3.8 Es existieren 2 x 26 = 52 grof3e und kleine Buchstaben. Damit kdnnen
52!
V(52,2)= = 2652
(52,2) (52-2)!

verschiedene Buchstabenpaare ohne Wiederholung aus dem Alphabet von kleinen
und groflen Buchstaben gezogen werden. Alternativ kann man auch C(52,2) = 1326
Buchstabenkombinationen ohne Beriicksichtigung der Reihenfolge ziehen. Fiir die
Buchstabenauswahl stehen
6
C(6,2) = (2> =15

verschiedene Positionen zur Verfiigung. In der alternativen Betrachtung stehen dann
V(6,2) = 30 Positionen unter Berticksichtigung der Reihenfolge zur Verfiigung. Ins-
gesamt sind

C(6,2) x V(52,2) = 39780

verschiedene Buchstabenkombinationen moglich. Die Auswahl von 4 aus 10 Ziffern
ermdglicht
V,(10,4) = 10*

verschiedene Anordnungen. Diese kdnnen mit den 39780 kombiniert werden, so dass
V(52,2) x C(6,2) x 10* = 397800000

verschiedene Passworter moglich sind.
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Losungen zu Kapitel 4
4.1 Existiert fiir die Definitionsgleichung

AMar+Ahay+A3a3=0
nur die Losung A; = A, = A3 = 0, so liegt lineare Unabhéingigkeit vor.

M—A=0 = A=A

M+ =0 = A=2
Die Teillosungen von A; und A, werden in die 3. Gleichung eingesetzt.
343=0

A3 ist Null und damit auch A; und A,. Die 3 Vektoren sind linear unabhingig.
Es ist nun die folgende Gleichung gegeben:

AMa+Aa+A3a3=b

Die Auflosung des Gleichungssystems fiihrt zur Losung.

M—A3= 2 = M=241
M+ = 4 = =4+
M+L+A3=-2 = 3L+10=-2=1 =4
A3=0,4 =2

Die obige Linearkombination und alle entsprechenden Vielfachen erzeugen den Vek-
tor b. Probe:

1 0 2
210 —4|-1] =] 4
1 1 -2

4.2 Die Einnahmen E sind durch das Skalarprodukt
E=xp
bestimmt. Die Kosten K werden durch das Skalarprodukt
K=vVp
berechnet. Der Gewinn G ist die Differenz von Einnahmen minus Kosten.
G=xp-—vp=(x—v)p
4.3 Das Skalarprodukt der beiden Vektoren liefert eine quadratische Gleichung
x(2x+8)=0,

deren beider Losungen x; = 0 und x, = —4 sind. x = 0 stellt die triviale Losung dar.
Fiir x = —4 sind die beiden Vektoren linear unabhéngig.
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Losungen zu Kapitel 5

5.1 Es ist zu beachten, dass sich bei der Transposition eines Skalarprodukts die
Reihenfolge der Multiplikation umkehrt. Die Vereinfachung ist dann

2(AB) (F+G)

5.2 Die folgenden Matrizen geben die Verflechtung zwischen den einzelnen Produk-
tionsstufen an, die im Gozintographen dargestellt sind.

Ry, 7z 4 R, Hi H, H; R; F B
Rl 4 0 R, 3 0 0 R 2 1
R, 1 1 R, 0 4 0 R, 0 2
Ry 0 3 Ry O 2 5 Ry 0 O
Z, H H, H L F B H A A
Z 1 1 0 Zr 2 0 Zl i (3)
2
Z 0 0 1 Z 0 1 50 1

Der Gesamtbedarf an Rohstoffen ist dann das Skalarprodukt der folgenden Matrizen:

100 3010
(RIZIH+R1Z2+R2H+R3)[ ]: 2130
70
1390
5.3 Es ist das Skalarprodukt der Matrizen zu bilden.
1.
2 10 2 0 3 4 5 2 11 8
F=|1 2 3|x|1 2 5 0|=]16 10 13 13
2 1 1 4 2 0 3 9 4 11 11
2.
5 2 11 8 ;gg 2960
16 10 13 13} x 20 | = 8920
9 4 11 11 60 4640

Losungen zu Kapitel 6

6.1 Das Gleichungssystem der rechten Seite muss folgende Bedingung fiir die linea-
re Unabhingigkeit erfiillen.

2 1 5
M| =1+ 3] +A; |0 =0
-3 2 3
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Auflosen der Gleichungen nach A; fithrt zu dem Ergebnis A; = A, = A3 = 0. Die
Gleichungen sind somit linear unabhingig.

6.2 Das Gleichungssystem wird mittels des Gaul3-Algorithmus umgeformt. Stellt
sich eine Nullzeile bei den Iterationen ein, so liegt eine lineare Abhédngigkeit im
Gleichungssystem vor. Im vorliegenden Gleichungssystem ist dies nicht der Fall.
Das Gleichungssystem besitzt keine lineare Abhéngigkeit.

2 -1 -3 8 2 -1 -3 8

1 3 2 3 7 0 -7 27

5 0 3 7 5 0 3 7
=

2 -1 -3 8

7 =7 27

56 0 0 130

6.3 Es ist ein Polynom 3. Grades gesucht. Die Koeffizienten ag,a;,a»,a3 sind ge-
sucht.
K(x) = a3x> +ar X’ +ayx+agp

Aus den Angaben der Tabelle kann dann folgendes lineares Gleichungssystem auf-
geschrieben werden. Es ist beziiglich der Koeffizienten zu 16sen.
K(10) = 2700 = a3 1000+ a; 100 +a; 10 + ay
K(15) = 3475 =0a33375+a225+a; 15+ ay
K(20) = 5700 = a3 8000 + a,400 + a1 20 + aq
K(25) =10125 = a3 15625 + a»625 + a1 25 + ag

Die Losung des Gleichungssystems liefert die Koeffizienten ag = 2500, a; = 80,
a)=—16undaz = 1.

K(x) = x> — 16x> +80x +2500

6.4 Die Aufgabe ist in zwei Schritten zu 16sen. Im ersten Schritt ist die Gesamtleis-
tung x,, zu berechnen.

x, =T, x1+b
104020 307 [1 500 600
~l401030 120 |1 600 | | 800
= 1506050 40 | |1] T |800 | = | 1000
605010 80 | |1| [1000| |1200

Im zweiten Schritt kdnnen dann die innerbetrieblichen Verrechnungspreise berechnet
werden. Die Bilanzgleichung ist

diag(xp) pP= Tp p+ Kexs

Die obige Bilanzgleichung enthilt folgendes Gleichungssystem:
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600p; =10p; +40p2+50p3+60ps+ 110
800 pr =40 py + 10 py + 60 p3 + 50 ps + 3135
1000 p3 = 20 py + 30 py + 50 p3 + 10 py + 7740
1200 py = 30 py + 120 py + 40 p3 + 80 ps + 12365

Die Losung des Gleichungssystems
p = (diag(x,) — Tp)_l Kext
liefert die Verrechnungspreise
p1=25 p2=>55 p3 =285 pa=12
6.5 Es handelt sich um ein Input-Output-System.

1. Die Endnachfrage berechnet sich aus der Differenz der Gesamtproduktion und
dem Vorleistungsverbrauch.

y=x—-Tx1
30 15 2 8 1 5
=|200—-1|3 12 4 1|=11
40 9 4 20| |1 7

2. Die Matrix der technischen Koeffizienten bestimmt sich aus der Normierung
mit der sektoralen Gesamtproduktion.

0.5 0.1 0.2
D={01 06 0.1
03 02 05

3. Nein, es ist nicht mdglich, weil man zur Herstellung von je einer Einheit Strom
bzw. Heildampf jeweils 2 bzw. 8 Einheiten Warmwasser benotigt.

4. Zur Berechnung der neuen Gesamtproduktion muss die Leontief-Inverse be-
rechnet werden.

x=Dx+y = x=(I-D)y

Die Berechnung der Leontief-Inversen erfolgt mit dem Gauf3-Algorithmus.

05 —0.1 —02 1 0 0 0 >3

10 PO
-01 04 —01 0 1 0 < 010 fg gg >
-03 —02 05 0 0 1 001 355 3

Die neue Gesamtproduktion berechnet sich aus der neuen Endnachfrage.

0 s s

' 3 3 3 10 60

Yo = (1) o= | 8% 3 [ 11| = |60
70 65 95 5 70

27 27 27



B Losungen zu den Ubungen 353

6.6 Die Berechnung der Determinanten nach dem Laplaceschen Entwicklungssatz

kann nach einer beliebigen Zeile oder Spalte erfolgen. Hier wird zuerst die erste
Zeile verwendet.

13 1 -1 1 1
det(A) = (=12 x1x | -2 0 —1|[+0+(=1)*x2x| 1 —1 -1
-2 1 0 -2 1

- 1 3
+(=1)P°xIx| 1 =2 0
0 -2 1

Die Entwicklung der Determinanten 3. Ordnung erfolgt in der ersten Matrix nach der

zweiten Zeile, in der zweiten Matrix nach der dritten Zeile und in der dritten Matrix
ebenfalls nach der dritten Zeile.

- <(_1)3 x (—2) x ﬁ ” +0+(—1)°x (=1) x [_é ?D
foscrmcon4 eoren[ 1)
- <0+(—1)5><(—2) X [_} (ﬂ +(=1)°x I x {_i —;,D

=18

6.7 Die Matrix A besitzt das charakteristische Polynom

07— 02 | _ 2 _
det[ 0 M_d_o = A°—-181+0.77=0

Die Nullstellen des Polynoms sind die Eigenwerte der Matrix.

A =11 A =10.7

Die Eigenvektoren berechnen sich aus

(A—ﬂ,ll)Vlzo (A—)LZI)szo
_[os N
V] = 1 V) = 0
Losungen zu Kapitel 7

7.1 Es ist die Zielfunktion

10x1 + 15xp =— max

unter den Nebenbedingungen
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2x14+x <120
x1+x <70
x1+3x, <150

Zu maximieren.

Das Anfangstableau ist:
XX yioy2 y3 b
1 1 0 0 120
1 1 0 1 0 70
1 3 0 0 1 150
—-10 —-15 0 0 O 0

Mit dem Auswahlverfahren des Simplex-Algorithmus wird im ersten Tableau das
Pivotelement 3 in der zweiten Spalte, dritten Zeile ausgewéhlt. Danach ist eine zweite
Iteration mit dem Pivotelement 2. Zeile, 1. Spalte notig, um zum Endtableau mit der
optimalen Losungen zu gelangen.

X1 X yroo» 3 b

0 0 1 =25 0.5 20
1 O 0 1.5 —-0.5 30
0 1 0 -0.5 0.5 40
0 0 0 7.5 2.5 900

7.2 Aufgrund der GroBer-gleich-Restriktionen ist die Nichtnegativitét von xy,x; > 0
verletzt. Es muss also mit der so genannten Vorphase gestartet werden.

Xy X Y1 Y2 y3 v b x1 x yioY2 y3 4 b

-1 -1 1.0 0 0 -2 1 1 -1 0 0 0 2
-3 4 0 0 4_-7 0 0 4
1 0 0 0 1 0 471 0 00 1 0 4
0o -1 0 0 0 1 -1 1.0 -1 0 0 1 1
1 =2 0 0 0 0 0 30 20 0 0 4
X1 X yiooy2 ¥y oya b xi1 xx oy y2 y3 ya b
3 1 10 1 3
o1 =3 1o o >0 1 0 2 3 0 4
1 0 -3 -2 0 0 ;10 0 0 1 0 4
0 0 2 % 1 0 214 0 0 1 5 7 0 6
1 3
00 -3 5 0 1 5 0 0 0 4 3 1 3
2 3 16 1 1
00 -2 3 0 0 0 0 0o ) 5, 0 4
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7.3 Es wird ein Simplex-Tableau aufgestellt. Die rechte Seite weist aufgrund der
GroBer-gleich-Restriktionen negative Werte auf. Die erste Basislosung ist nicht zu-
lassig. Daher muss mit der Vorphase begonnen werden.

X1 X VI Y2 Y3 Va b
1 -3 1 0 0 0 3
-1 0 01 0 0 —6
-3 -2 0 0 1 0 —42
-4 3 0 0 0 1 24
9 8 0 0 0 0 0
DI ) Yioy2 Y3 ya b
11 1
0o — 3 1 0 3 0 —11
0 ] 0 1 —3 0 8
132 0 0 —: 0 14
17 4
0 2 0 0 —3 1 80
0 2 0 0 3 0 —~126
X1 X YI Y2 Y3 Va b
3 1
0 1 -5 0 =L o0 3
0 0 21 =5 0 6
10 Q 0 -5 © 12
9
0 0 oo =) 63
0 0 6 0 30 —132

11

Die Vorphase ist beendet und die Optimallsung ist bestimmt. Der eigentliche
Simplex-Algorithmus wird hier nicht angewendet.

7.4 Der duale Ansatz zur Ubung 7.3 lautet

N
[3 —6 —42 24} Y21 = 2 max
~ ~ > |3
b’ V4
unter den Nebenbedingungen

N
-1 1 3 41 \»m < 9
30 2 =3 |y3| — |8
~ ~ “ |4 ~~

Das Simplex-Tableau sieht dann wie folgt aus:
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V1 2 3 Ya X1 X2

-1 1 3 4 1 0
30 2 =3 0 1

3 -6 —42 24 0 0

S 0O O

Der Simplex-Algorithmus fiihrt zur gleichen Lésung wie in Ubung 7.3.

Losungen zu Kapitel 8

8.1 Asymptote: y=10
Nullstellen: x; = 1,x5 3 = —2 (doppelte Nullstelle = Sattelpunkt)
Polstellen: xj » = 0 (doppelte Polstelle),x3 = 4,x4 = —4

Abb. B.1: Funktion zu Ubung 8.1

8.2 Nullstellen: x; = —1.154,x33 = 1‘1254 +/—3.6 (imaginire Nullstellen)
Polstelle: x =2

Asymptote: x> + 2x + 7 wird mit Polynomendivision berechnet



B Losungen zu den Ubungen 357

Abb. B.2: Funktion zu Ubung 8.2

Losungen zu Kapitel 9

9.1 Der Barwert betrigt 873.44 €.

9.2 Der relative Monatszinssatz betrégt i"¢ = 0.583 Prozent pro Monat. Der konfor-
me Monatszinssatz betrigt /" = 0.565 Prozent pro Monat.

9.3 Mit dem relativen Quartalszinssatz gerechnet betrdgt die Rate
r = 117.54€/Quartal
Mit dem konformen Quartalszinssatz gerechnet betrdgt die Rate
r = 117.73 €/Quartal

9.4 Der Endwert der Zahlungen betragt 13422.36 €. Dieser Endwert ist der Barwert
der vorschiissigen Rente ab dem 01.01.2010.

1. Die Rente betragt 134.99€ pro Monat.
2. Es konnen 18 Jahre lang 1 000 € zu Jahresbeginn bezogen werden.

9.5 Die Verzinsung muss 13.06 Prozent p. a. (exakter Wert) betragen.

9.6 Zuerst werden die Barwerte der Nullkuponanleihe durch Duplizierung berech-
net.
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1
= =0.934
C1 L07 0.934579

1 0065 1
— _ —0.88192
2= 1 065 1.065 1.07 = 0881927

1 0.06 1 1
C=_ - =0.840575
7106 1.06 (1.07>< 1.065 " 1.065)

1 0.055 1 1 1
ST |

1.055  1.055 \ 1.07 x 1.065 x 1.06+ 1.065 x 1.06 * 1.06
= 0.809346
Cs— I 0.05 ( 1 n 1
1.05 1.05 \ 1.07 x 1.065 x 1.06 x 1.055 = 1.065 x 1.06 x 1.055
1 1

=0. 12
+ 1.06 x 1.055+ 1.055) 0.7873

Aus den Barwerten lésst sich nun leicht die Nullkuponrendite berechnen.

1
e <0.934579> —1=007
. AN
2= (0.881927) —1=0.0648
1 3
<0.840575> - 1=00595

1
1 4
iy = ~1=0.0543
a (0.809346)

1
1 5
= ~1=0.04
i (0.787312) 0.0489

9.7 Die Duration des ersten Wertpapiers betragt

i3

1x7 ; 2x107
1.07 +

p="9" 107 —1.93Jahre
1.07 + 1.072

Die modifizierte Duration betragt MD = 11?3;*5 = 1.808. Bei einer Zinssatzerh6hung

von 2 Prozentpunkten ergibt sich eine Barwertinderung bzw. eine Kursédnderung in
Hohe von

ACy(1.09) =~ —1.808 x 0.02 x 100 = —3.62€.

Der Kurs wiirde also von 100 € auf
~ 100 —3.62=96.38€

fallen. Die relative Anderung betriigt etwa —0.02 x 1.808 = 0.036.
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Fiir das zweite Wertpapier liegt die Duration bei 2.709 Jahren. Die relative Bar-
wertdnderung betrigt etwa

ACy(1.09)
~ —2.531x0.02=—-5.06%
Co(1.07) % >
was mit einer Kursdnderung von (Cy(1.07) = 113.12)
AC)(1.09) = —113.12 x2.531 x0.02=-5.73€

verbunden ist. Der neue Kurs wiirde somit auf ~ 113.12 — 5.73 = 107.39<€ fallen.
Fiir das dritte Wertpapier ergeben sich folgende Werte:

Co(1.07) =93.22 D=3.712 MD = 3.469

ACy(1.09)
Co(1.07)
AC)(1.09) = —3.469 x 0.02 x 93.22 = —6.468

=—3.469 x 0.02 = —0.0693

9.8 Der Kreditbetrag nach der Anzahlung liegt bei
Ko =5000—0.1 x 5000=4500€

Aufgrund der Bearbeitungsgebiihr erhoht er sich auf Ky = 4590 €.

1. Die monatliche Rate betrigt 205.92 €.

2. Der effektive Jahreszinssatz ohne Gebiihr betrdgt 7.44 Prozent. Um die Ge-
biihr in den Kreditzinssatz einzurechnen, muss ein Aquivalenzansatz gewihlt
werden.

1 ¢4—1

24 41

Die Losung fiir die obige Gleichung liefert den effektiven Jahreszinssatz von

9.56 Prozent.

4500 = 205.92 .

9.9 Bei einem Konsumentenkredit wird die Rate mit

K
p=0 +iKy
n
berechnet. Wird 7 in .
n 44—
=K
r 0q ¢ —1

eingesetzt (Aquivalenzprinzip), kann das Polynom zur Berechnung von ¢ aufgestellt
werden.

q—
q"—1
Oénq"H—(n—}—in—i—l)q"—f—in—i—l

K
nO +iKy éKoqn
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Fiir n = 36 und i = V/1.04 — 1 errechnet sich mit Scilab ein effektiver Mo-
natszinssatz in Héhe von l‘;f{ = 0.007363, der einem effektiven Jahreszinssatz von
i = 9.202276 Prozent entspricht.

9.10 Der Kreditbetrag betrégt nach der Anzahlung Ky = 12000 €.

1. Die Annuitét betrigt 268.81 € pro Monat.
2. Der effektive Jahreszinssatz ist 3.66 Prozent.

9.11 Die Annuitit des Kredits liegt bei 521 503.48 €.

1. Mit der Annuitit kann der Tilgungsplan berechnet werden.

Tabelle B.1: Tilgungsplan (Angaben in €)
Quartal Restschuld Zinsen Tilgung  Annuitét

0 2000000 - - -

1 1512613.57 34117.05 487386.43 521503.48
2 1016913.05 25802.96 495700.52 521503.48
3 512756.61 17347.04 504156.44 521503.48
4 0.00 8746.87 512756.61 521503,48

2. Aus dem Aquivalenzansatz

6! 1¢g*—1
2x10°=521503.48 ,° . +2000
q* q—

erhélt man einen effektiven Quartalszinssatz in Hohe von 1.7469 Prozent, der
einem effektiven Jahreszinssatz von 7.17 Prozent entspricht.

9.12 Der Rentenendwert betrigt bei vorschiissigen Zahlungen
R, =27386.35

Der Kredit ist die Differenz zu 50 000 €.

Ko = 22613.65
Der Aquivalenzansatz lautet
96 __
22613.65 = 3(9)2 ¢ -1
q° q—1

Mit Scilab errechnet sich ein effektiver Kreditzinssatz von 6.438 Prozent.
Die Rechenanweisungen in Scilab sind

r 250;
m 12;

nr = 8x*m;
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nk = 8x%m;

ir = 0.0325;

gr = (1+ir)*(1/m);

R = r+q r+(q r’nr-1)/(q r-1)

B = 50000;

K = B-R

A = 300;

p = poly([A zeros(1l,nk-1) -(K+A) K],’'q’,’'coeff’)
g = roots(p,’e’);

ieff = (real(g(imag(qg)==0))"12-1) %100

9.13 Der Kapitalwert der Investition berechnet sich aus folgender Gleichung:

0 112500
Co= + 5 —100000=0
q q
Der Zinsfaktor der Gleichung liefert die gesuchte Rendite.
1. Die Rendite betrdgt 6.06 Prozent p. a.
2. Da die Vergleichsrendite grof3er als die erzielte Rendite ist, ist die Investition
nicht vorteilhaft.

9.14 Der Kapitalwert berechnet sich aus der Gleichung

~ 700 n 800
~ 105 1.052
Der interne Zinsfuf} ist der Zinssatz, der den Kapitalwert Null werden lésst.

1. Der Kapitalwert betrdgt Cyp = 392.29 €.
2. Der interne Zinsful} der Investition liegt bei i = 31.04 Prozent p. a.

Co ~1000=0

9.15 Der Kapitalwert der Investition liegt bei 65951.13€. Die Investition ist vor-
teilhaft.

9.16 Der Investor geht von folgender Zahlungsreihe aus:

t 0 1 2 3 4 5
Z; —100000 7000 7000 7000 7000 117000

Kapitalwert betragt Cp = —5163.15€.

Der interne Zinsfuf} liegt bei 8.868 Prozent (exakter Wert).

Es liegt ein jéhrlicher Verlust in Héhe von 1362.03 € vor.

Der Kaufpreis miisste Cy betragen.

Die Kreditsumme betragt 0‘19%0708%2 , weil nur 96 Prozent zur Auszahlung kom-
men und eine Summe von 100 000<€ finanziert werden muss. Die Annuitét

betrigt 24 728.79 € pro Jahr.
9.17 Die Losungen sind mit folgender Gleichung zu berechnen:

35000 n 48000 n 52000 n 58000
1.09 1.092  1.09%  1.09*

MRS

0=
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1. Der Kapitalwert der Investition liegt bei 3 52.93 €. Die interne Verzinsung der
Investition betrigt 10.04 Prozent p. a. (exakter Wert).

2. Der Kapitalwert wird negativ und liegt bei Cy = —37903.23 €. Anmerkung:
Der Verlust in Hohe von 2 000 € ist mit dem Kreditzinssatz zu diskontieren.

Losungen zu Kapitel 10

10.1 Die Ableitungen der Funktion aus der Ubung lauten

)=
f(x) _ ZXZ‘S o ;X—I‘S

f(x)=4x2Inx+1)+ e (2x sinx + cosx)

>

i=1

1
fl(x)= @ Vinx (0.5 — Inx)
f =1

10.2 Die Ableitungen der Tangens- und Kotangensfunktion sind mit der Quotien-
tenregel zu berechnen.

f'(x)

sinx
y=tanx = firreR = ) = 1+ (tanx)’
Cosx
cosx . 5
=cotx= . firxeR = )y =—1—(cotx
y sinx y (cotx)

10.3 Die Ableitungen der Funktion aus der Ubung lauten
f(x) =2"In2
/
g'(x)
/() =2g(x)"™) Ing(x)
g(x)
10.4 Fiir das Newton-Verfahren wird die 1. Ableitung der Funktion benétigt.

233 —6x%2—11
f/(x) = (x— 2)2

Die Nidherungsrechnungen fiir die gesuchte Nullstelle im Bereich um x; = 1 sind
dann:
-9

M=1- =04
* ~15
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-3.915

x? =0.4-— 4 gaigy = 04T

x3) = —0.4471 — :;gziz =—1.1527
X =—1.1527— fﬁié? =—1.1541
X0 =—1.1541 — 0'_0;2(1228 = —1.1541

Die Anderungen liegen nach der fiinften Iteration bei 10~7 und werden daher abge-
brochen. Die gesuchte Nullstelle liegt bei x = —1.1541.

10.5 Die Elastizitit berechnet sich aus

K'(x) x?
Ex(lx) = =

*0) = k) T 2475
Leiten Sie die Kostenfunktion nach der Kettenregel ab. Fiir eine Menge von 5 liegt
die Elastizitét bei

ex(5) =0.25

10.6 Die Erlosfunktion ist

x2

2

1. Die 1. Ableitung der Erlésfunktion bilden und die Nullstellen auf £”(x) < 0
iiberpriifen. Das Erlosmaximum betrigt 18 €.

2. Die 1. Ableitung der Gewinnfunktion bilden und die Nullstellen auf G”(x) <
0 iiberpriifen. Das Gewinnmaximum betrdgt 9.845 €. Der gewinnmaximale
Preis (gewinnmaximale Menge in der Preisabsatzfunktion) liegt bei 3.768 €.

3. Die 1. Ableitung der Durchschnittskostenfunktion

E(x)=6x—

bilden und die Nullstellen auf K" (x) > 0 iiberpriifen. Die minimalen Stiickkos-
ten sind 1.562 €.
4. Die 1. Ableitung der Durchschnittsgewinnfunktion

bilden und die Nullstellen auf G” (x) < 0 iiberpriifen. Der maximale Stiickge-
winn betrdgt 2.937€.

5. Die Preiselastizitét der Nachfrage ist &:(p) = £p1(x> . An der Stelle x = 3 besitzt
sie hier den Wert &,(p) = —3. Eine Zunahme des Preises um 1 Prozent fiithrt
zu einer Abnahme der Nachfrage um 3 Prozent.
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10.7 Aus der Preis-Absatz-Funktion kann direkt die Nachfrageelastizitit des Preises
berechnet werden.

Plx)=—pix !
-A
_ ux -
plx) = = px !
x
A1
__HATT
g(x) =— el T -2
1
Sx(p) = A
Losungen zu Kapitel 11
11.1 Die partiellen Ableitungen sind
Jz z
—px! =1
oy =" Iy ¥ Inx
11.2 Das implizite Differential ist
dy 3x2+y
dv  x+3)?

11.3 Die zweiten partiellen Ableitungen lauten
= 2yexz+y2 (1+ 2x2)
z, = 2ye’“2+y2 (257 +3)
Zy, = 2xe® P’ (2y2 +1)
11.4 Das implizite Differential ist

dy _2xy3—(y+1)ex—1

dx 3p2x2 e

dy

=3
dx

x=0,y=1
11.5 Der Lagrangeansatz zur Berechnung der Losung ist:

y

Lixy2) =In(14+)+ 7

A (x4y—10
’ (x+y—10)

Aus den Nullstellen der ersten Ableitungen erhdlt man die notwendigen Bedingun-
gen fiir ein Gewinnmaximum.
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! — 1

L —
o (I4y)?
L =—(x+y—10) 20

2=0

Aus den Bedingungen erhdlt manx =8,y =2 (y = —5)und A = é. Der maximale
Gewinn betrigt In(1 + 8) + 142rz ~ 2.86€. Um die hinreichende Bedingung fiir ein
Maximum zu {iberpriifen, miissen die zweiten Ableitungen der Lagrangefunktion
und die ersten Ableitungen der Nebenbedingung gebildet werden.

L” = — 1 = — 1 L” = — 2 - — 2
o (14+x)? lx=8 92 Y (1+4y)3 =2 33
L;c/y =0 g;c =1 g;» =1

Der Wert der Hesse-Determinanten (hinreichende Bedingung) betragt

L
|A(8,2, )] = 0.0864

Es handelt sich also um ein Maximum. Der Gesamtgewinn betragt damit 26 250 €.

11.6

1.

Die Gewinnfunktion ist
G(x1,x2) = 150x1 —0.9x3 +270x3 — 0.9x3 + 0.6x; x5 — 12000

Die Nullstellen der ersten partiellen Ableitungen liefern die notwendigen Be-
dingungen fiir ein Gewinnmaximum.

G, =150~ 1.8x; +0.6x, =0
G, =270+ 0.6x; — 1.8 = 0

Die Losungswerte aus dem linearen Gleichungssystem sind die gewinnmaxi-
malen Mengen.

X1=150 x2=200

Die gewinnmaximalen Preise erhdlt man durch Einsetzen in die Preis-Absatz-
Funktionen.

P1 =30€ P2= 235€
Die Uberpriifung der hinreichenden Bedingungen
|H1(150,200)] = —1.8 |H>(150,200)| = 2.88

bestitigt, dass es sich um ein Maximum an der Stelle x; = 150 und x; = 200
handelt.
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2. Unter Bertiicksichtigung der Nebenbedingung
X1 +x; =290
ist folgende Lagrange-Funktion zu maximieren:
L(x1,x2,A) = G(x1,x2) + A (290 — X —xg)
Die ersten partiellen Ableitungen sind dann

/ !
Lx1 =150—-1.8x;+0.6x0—A =0

L, =270+0.6x; — 1.8x — 2 =0
LI)L =290 —x1—x2

Das Auflosen des Gleichungssystems liefert die Losungswerte.
x1 =120 x; =170 A =36

Die gerénderte Hesse-Matrix besitzt einen Wert von

0 -1 —1
|F(120,170)| = |—1 —1.8 0.6/ =4.8
—1 0.6 —1.8

und zeigt damit an, dass an der Extremwertstelle ein Maximum vorliegt.

11.7 Aus dem Lagrange-Ansatz
L(x1,x2,A) = \/x1/x2+ A (12— 0.04x; — 0.02x,)

erhdlt man eine nutzenmaximale Menge von x; = 150 und x, = 300. Ob es sich
um ein Maximum handelt, wird durch eine positive Determinante der gerdnderten
Hessematrix tiberpriift:

0 —0.04 —0.02
|F(150,300)] = | —0.04 —0.002357 0.001178 | = 0.0000038
—0.02  0.001178 —0.0005892

Der Lagrange-Multiplikator nimmt einen Wert von A = 17.67 an. Wiirde der Student
1 € mehr fir seine Schokoleidenschaft verwenden, wiirde sein ,,Nutzen* um 17.67
Einheiten zunehmen.

Losungen zu Kapitel 12

12.1 Das folgende Integral wird durch partielle Integration gelost:
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Flo)= / \/xx— 2 dx

Es wird

h(x) =x H(x)=1
rn 1
g(x) - \/x_z

gewihlt. Daraus ergibt sich der unten stehende Ansatz, der gelost werden kann.

/\/xx_zdx:2x\/x—2—2/\/x—2dx
4 3
=2xVx—2— 3 (x—2)2+c¢

glx) =2vx—2

:§\/x—2(4+x)+c

/ (lnx)5 dr

wird durch die folgende Substitution gelost:

Das zweite Integral

dz
z nx dx x X

Nun ist die Losung des Integrals moglich.
5
1 1
/Zx xdz = 626+c: 6 (lnx)6—|—c
Bei dem Integral
F(x)= /xe_xzdx
wird die Exponentialfunktion substituiert.

dz 1
z=e % dx=—2xe_)‘2 dx:—zxexzdz

Man erhilt dann folgendes Integral, das nach Kiirzen geldst werden kann:
1 1 | 1
~5 /xe*"2 xexzdz: —2z—|—c: —Ze*xz +c

Fiir das letzte Integral
/ Vx Inxdx

wird wieder ein partieller Integrationsansatz gewéhlt.

h(x)=Inx  h'(x)= i
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2 3
g =vx  gl)= ¥
Das Integral kann dann durch folgende Differenz ersetzt werden:

2 2 1
/\/x Inxdy = - x> Inx— /x3 dx
3 3 X

2 mr— iy

= nx —

3x X 9x c
3

— 2 (-2 4
—XHX3C

F@:/fw

12.2 Das Integral der Funktion

wird durch Substitution geldst.

z=xIna dz =1nadx dx = ! dz
Ina

Somit wird aus dem Integral

1 1 1
F(x)= /ezdz: et o= a+c
Ina Ina Ina

Das Integral
F(x) :/xsin;dx
wird {iber ein partielles Integral gelost.
h(x)=x h(x)=1
gx) = sin; glx)=-2 cos;

Somit kann das Integral als

/xsin; :—2xcos;+2/cos;dx

geschrieben werden. Die Lsung von [ coszdz ist sinz. Somit ist die Losung des
Integrals

F(x) :/xsin; =—2xcos;+4sin;+c.

Fiir das Integral
F(x)= / X% /xdx

wird der partielle Ansatz
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h(x) = x? h(x) =2x
3
d—vx gl

gewihlt. Es folgt
1 4 2
/xzx/xdxz 2x2x% —3 /xgdx: 7\/x7+c

Das Integral

x2

)= Vx+5 a

wird durch Substitution von
z=x+5 dz=dx
geldst. Es ergibt sich dann auflerdem
= (z—-5)>

Damit ist das zu l6sende Integral

/(2—5)2\} dz:/zidz—w/z%dﬁzs/z—%dz
z

25 20
= 52g —3 o +50+/z+c
2
= 1 Vz (322 —50z+375)+c

125 Vx+5 (3x% —20x+200).

Das letzte Integral wird wieder {iber einen Substitutionsansatz geldst.

Fx) = /xllnxdx

Die Substitution wird wie folgt gewahlt:

1
z=Inx dz= dx
X
Damit ist das zu 16sende Integral
1
/ dz=Inz+c
z

Die Resubstitutierung ergibt
F(x) =In|Inx|+c
12.3 Der Wert der bestimmten Integrale berechnet sich wie folgt:

+1 1 1 1
F_1,+1(x)=/ |x|dx:2/ xdx:22x2
-1 0

=1
0

369
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+2 0 1 2 1
F oy o) = min{x,xz}dx:/ xdx+/ xzdx—i—/ xdx:—6
-2 0 1

-2
e e
—/dle
1 1

Das Integral wurde partiell mit #(x) = Inx und g’(x) = 1 gel6st.

e
Fl.e(x):/1 Inxdx = x Inx

1 4
F0,4(x):/ xzdx—i-/ Vxdx=5
0 1

1 6
4x+6 2
F = dx = dz=21
0.1(x) /0 xX24+3x+2  Z nz

6

=21n3
2

Das Integral wurde durch die Substitution z = x*> +-3x+2 und dz = (2x +3) dx geldst.
Man muss hier beachten, dass die Grenzen ebenfalls zu ersetzen sind.

X3 Inx ! 3!

Fia) /121 dx 1 1/1 2 ¥ x|l
30(x) = [ x"Inxdrx= — x“dx = —
3 3 3 3 3 3 3 93
26
:9—9ln3

Das Integral wurde mit dem partiellen Ansatz A(x) = Inx und g’(x) = x? gelost.
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