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Vorwort

Vorwort zur 2. erweiterten und verbesserten Auflage

Wir haben den Text um die Kapitel Mengenlehre und Aussagenlogik erweitert. Das
Buch um diese Grundlagen zuerweitern erschien uns aufgrund der Erfahrungen aus
der Lehre sinnvoll. Ferner haben wir versucht den Text an einigen Stellen besser zu
formulieren, klarer zu gliedern und Fehler zu bereinigen, die leider immer auftreten.
Wir hoffen keine neuen erzeugt zu haben.

Bielefeld, Januar 2012 Wolfgang Kohn und Riza Öztürk

Vorwort zur 1. Auflage

In diesem Buch haben wir mathematische Grundlagen für Ökonomen zusammenge-
fasst. Formale Definitionen, Beweise und mathematische Sätze befinden sich kaum
im Text, wohingegen eine Herleitung von Formeln oft erfolgt, die hoffentlich zu ih-
rem besseren Verständnis führen. In der Anwendung stehen betriebswirtschaftliche
Aspekte im Zentrum.

Zeitgemäß werden aufwändigere Rechnungen mit einem Computerprogramm
durchgeführt. Das hier verwendete open source Programm Scilab besitzt hervor-
ragende numerische Eigenschaften und ermöglicht die einfache Umsetzung der For-
meln, insbesondere in der linearen Algebra. In diesem Programm können auch Vek-
toren oder Matrizen Variablen sein. Dies ist ein großer Vorteil, wenn man die Rech-
nungen nachvollziehen möchte. An geeigneten Stellen im Text werden die Pro-
grammbefehle für einzelne Berechnungen beschrieben. Natürlich eignen sich auch
andere Programme wie zum Beispiel Excel, Maple oder Mathematica für die Be-
rechnungen. Scilab (siehe www.scilab.org) steht für verschiedene Betriebssy-
steme zur Verfügung.

Teil I enthält einige Grundlagen der Mathematik, Teil II führt in die lineare Alge-
bra und deren ökonomischen Anwendungen ein. In Teil III wird die Analysis mit Fi-
nanzmathematik, Differentialrechnung und Integralrechnung behandelt. Im Anhang



VIII Vorwort

(Teil IV) wird kurz das Programm Scilab beschrieben. Ferner finden sich dort die
Lösungen zu den Übungen aus den vorangegangenen Kapiteln.

Die Kapitel 4 bis 10 und 11 (mit Einschränkung) bilden das Programm für einen
vier Semesterwochenstunden (SWS) umfassenden Kurs in einem betriebswirtschaft-
lich orientierten Bachelorstudiengang mit einem Arbeitsäquivalent von 5 europäi-
schen Arbeitspunkten (ECTS). Die Kapitel 3, 10 und 11 sind in Kombination mit
weiterführenden Themen für einen Masterstudiengang geeignet.

Besonderer Dank gebührt Diplom-Volkswirtin Coco Rindt, Prof. Dr. Rainer Lenz
und Dr. Wolfgang Rohde, die mit vielen Korrekturen und guten Verbesserungen zum
Gelingen des Buches beitrugen.

Bielefeld, Mai 2009 Wolfgang Kohn und Riza Öztürk
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1.1 Vorbemerkung

In diesem Kapitel werden die Grundzüge der Mengenlehre, der Zahlenmengen und
der Aussagenlogik erklärt. Mengen und Aussagenlogik kann man als die Basis der
Mathematik bezeichnen.

Folgende Symbole werden verwendet:

a,b Element, Koeffizient oder Variable
A,B hier: Mengen oder Aussagen
i hier: Bezeichnung für eine imaginäre Zahl
k,m,n häufig: Variablen für ganze Zahlen
x,y Variable, Element
N Symbol für die Menge der natürlichen Zahlen
{} Klammern, die eine Menge bezeichnen
x ∈M Symbol für x ist Element der MengeM
x �∈M Symbol für x ist nicht Element der MengeM
A⊂ B A ist Teilmenge der Menge B

W. Kohn, R. Öztürk, Mathematik für Ökonomen, Springer-Lehrbuch, 
DOI 10.1007/978-3-642-28575-2_1, © Springer-Verlag Berlin Heidelberg 2012
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A⊆ B A ist Teilmenge der Menge B oder gleich der Menge B
Ω Universalmenge
/0 leere Menge
n(A) hier: Mächtigkeit der Menge A
A∪B Vereinigung von Menge A und B
A∩B Durchschnitt von Menge A und B
A\B Subtraktion von Menge B von A
Ac Komplementmenge von A zur Universalmenge Ω
¬A Negation einer Aussage A
A∨B logisches ODER, Disjunktion
A∧B logisches UND, Konjunktion
A→ B Implikation
A↔ B Äquivalenz
�= Ungleichheit
∞ Symbol für unendlich

1.2 Mengen

Eine wohldefinierte Gesamtheit eindeutig unterscheidbarer Elemente heißt eineMen-
ge.

Allgemein werden Mengen mit großen lateinischen Buchstaben A, B, C, . . . be-
zeichnet. Für die Elemente wählt man dann i. d. R. kleine lateinische Buchstaben a,
b, c, . . .

Um Mengen von anderen Größen wie z. B. Vektoren unterscheiden zu können,
schließt man die Elemente stets in geschweifte Klammern ein: A= {a,b,c}. Ein Ele-
ment kann in einer Menge durch Mehrfachnennung öfter auftreten. Es zählt jedoch
nur als ein Element.

Gehört das Element a zur Menge A, so wird dies durch a ∈ A abgekürzt. Will
man ausdrücken, dass a nicht zur Menge A gehört, so schreibt man: a �∈ A.

Die Definition einer Menge erfolgt durch die Beschreibung der Elemente, ent-
weder durch Aufzählung oder eine implizite Beschreibung. Bei der impliziten Be-
schreibung wird die Menge wie folgt beschrieben:

A= {a | umfassende eindeutige Beschreibung von a}

Beispiel 1.1.

A= {a | a ist eine natürliche Zahl kleiner 10}
M = {(x,y) | 0 ≤ x≤ 4 und y= 2x+ 3 und y= ganzzahlig}

☼

Zur Illustration von Mengenoperationen werden häufig Venn-Diagramme ver-
wendet (siehe Abb. 1.1).
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A B

Ω

Abb. 1.1: Venn-Diagramm

Die Anzahl der unterscheidbaren Elemente einer Menge A wird als deren Mäch-
tigkeit einer Menge bezeichnet und meistens mit n(A) abgekürzt. Die Mächtigkeit
einer Menge kann endlich oder unendlich sein. Man spricht dann auch von endlichen
und unendlichen Mengen.

Beispiel 1.2.

X = {x1,x2, . . . ,xk} n(X) = k
N= {1,2,3, . . .} n(N) = ∞
A= {a,b,a,c,a,d} n(A) = 4

☼

Die Universalmenge Ω ist bezüglich der zu untersuchenden Elemente die um-
fassende Menge, die alle Elemente enthält. Die leere Menge /0 enthält kein Element.

Zwei Mengen A und B heißen gleich, wenn sie die gleichen Elemente enthalten.
Man schreibt:

A= B

Beispiel 1.3.

A= {−1} B= {x | x+ 1 = 0} A= B

☼

Die Menge A heißt Teilmenge (oder Untermenge) der Menge B, wenn alle Ele-
mente der Menge A auch in der Menge B enthalten sind (aber nicht alle Elemente
von B sind Elemente von A) . Man schreibt:

A⊂ B
Ist auch die Gleichheit der Mengen erlaubt, dann schreibt man:

A⊆ B



6 1 Mengenlehre und Aussagenlogik

Beispiel 1.4.

{L,E,O} ⊆ {L,O,E,W,E}
☼

Die Menge aller Teilmengen einer Menge A heißt Potenzmenge. Man schreibt:

℘(A) = {X | X ⊆ A}
Zu den Teilmengen von A gehört sowohl die leere Menge /0 als auch die Menge A
selbst. Bei n Elementen in der Menge A enthält die Potenzmenge 2n Teilmengen.

Begründung für die Basis 2: Jedes Element in einer Menge kann ausgewählt wer-
den (1) oder nicht (0). Somit liegt eine Permutation (siehe Kapitel 3) von 2 Werten
vor, die auf n Elemente angewendet wird.

Beispiel 1.5.

A= {a | a ist ein Buchstabe des Namens LEO}
= {L,E,O}

℘(A) =
{

/0,{L},{E},{O},{L,E},{L,O},{E,O},{L,E,O}}
Wird die Bitfolge der Auswahl (0 = Element nicht ausgewählt, 1 = Element aus-

gewählt) betrachtet, so ergibt sich für die Menge {L,E,O}:

Tabelle 1.1: Bitfolge der Elementauswahl
L E O Auswahl

0 0 0 leere Menge
0 0 1 {L}
0 1 0 {E}
1 0 0 {O}
0 1 1 {L,E}
1 0 1 {L,O}
1 1 0 {E,O}
1 1 1 {L,E,O}

Die Potenzmenge besitzt also 23 = 8 Teilmengen. ☼

1.2.1 Mengenoperationen

Vereinigung A∪B lies: A vereinigt mit B
Die Vereinigung zweier Mengen A und B enthält alle Elemente, die entweder in A
oder in B oder in beiden Mengen enthalten sind (siehe Abb. 1.2). Man schreibt:

A∪B= {x | x ∈ A oder x ∈ B}
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A B

A∪B

Ω

Abb. 1.2: Vereinigung

Beispiel 1.6. A sei eine Menge von Studenten die BWL studieren. B sei eine Menge
von Studenten die Mathematik studieren. Die Vereinigung der beiden Mengen ist die
Menge, die sowohl die Elemente von A als auch von B enthält, die Studierenden, die
BWL oder Mathematik oder beide Fächer studieren. ☼

Zwei Mengen A und B, die keine gemeinsamen Elemente enthalten, heißen dis-
junkt.

Beispiel 1.7. Die Menge der geraden Zahlen und die Menge der ungeraden Zahlen
sind disjunkt. Entweder ist eine Zahl gerade oder ungerade. ☼

Durchschnitt A∩B lies: A geschnitten B
Der Durchschnitt zweier Mengen A und B enthält alle Elemente, die sowohl in A als
auch in B enthalten sind (siehe Abb. 1.3). Man schreibt:

A∩B= {x | x ∈ A und x ∈ B}
Der Durchschnitt von disjunkten Mengen ist die leere Menge.

Beispiel 1.8. A sei eine Menge von Studenten die BWL studieren. B sei eine Men-
ge von Studenten die Mathematik studieren. Der Durchschnit der beiden Mengen
besteht aus den Elementen (Studenten), die beide Studienfächer studieren. ☼

Differenz A\B lies: A minus B
Die Differenz zweier Mengen A und B enthält alle Elemente von A, die nicht in B
enthalten sind (siehe Abb. 1.4). Man schreibt:

A\B= {x | x ∈ A und x �∈ B}

Beispiel 1.9. A sei eine Menge von Studenten die BWL studieren. B sei eine Menge
von Studenten die Mathematik studieren. Die Differenzmenge A \B ist die Menge
der BWL Studierenden, die ausschließlich BWL studieren. ☼
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A BA∩B

Ω

Abb. 1.3: Durchschnitt
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A B

A\B

Ω

Abb. 1.4: Differenz

Komplement Ac lies: Komplement von A
Das Komplement der Menge A bezüglich der Universalmenge Ω enthält alle Ele-
mente der Menge Ω , die nicht in der Menge A enthalten sind (siehe Abb. 1.5). Man
schreibt:

Ac = {x | x ∈ Ω und x �∈ A}

Beispiel 1.10. A sei eine Menge von Studenten die BWL studieren. Die Komple-
mentmenge von A sind alle Studierenden, die nicht BWL studieren. ☼

Produkt A×B lies: A kreuz B
Das Produkt zweier Mengen A und B besteht aus allen Paaren je eines Elements aus
der Menge A und aus der Menge B. Man schreibt:

A×B= {(x,y) | x ∈ A und y ∈ B}
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Abb. 1.5: Komplement

Beispiel 1.11.

X = {x | 0 ≤ x≤ 1}
Y = {y | 0 ≤ y≤ 1}

X×Y = {(x,y) | 0 ≤ x≤ 1 und 0 ≤ y≤ 1}
☼

1.2.2 Mengengesetze

Idempotenzgesetze Die Vereinigung und der Durchschnitt mit der selben Mengen
verändert die Menge nicht.

A∪A= A
A∩A= A

Identitätsgesetze Die leere Menge enthält kein Element. Folglich verändert
die Vereinigung einer Menge mit der leeren Menge die Menge nicht. Der Durch-
schnitt einer Menge mit der leeren Menge führt folglich zur leeren Menge. Die Uni-
versalmenge enthält alle Elemente einer Mengenalgebra. Daher ist die Vereinigung
einer Menge mit der Universalmenge die Universalmenge. Der Durchschnitt mit ihr
ist die Menge selbst.

A∪ /0 = A
A∩ /0 = /0
A∪Ω = Ω
A∩Ω = A

Komplementgesetze Eine Menge und deren Komplement sind die Universal-
menge. Der Durchschnitt einer Menge mit ihrem Komplement ist die leere Menge.
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A∪Ac = Ω
A∩Ac = /0

Kommutativgesetze Die Vertauschung zweier Mengen bei der Vereinigung
bzw. beim Durchschnitt ändert nicht das Ergebnis.

A∪B= B∪A
A∩B= B∩A

Assoziativgesetze Die Reihenfolge der Vereinigung bzw. des Durchschnitts
von Mengen ändert nicht das Ergebnis.

(A∪B)∪C = A∪ (B∪C)
(A∩B)∩C = A∩ (B∩C)

Distributivgesetze Die Vereinigung von B, C geschnitten mit A ist gleich den
Vereinigung der Durchschnitte von A, B und A, C. Der Durchschnitt von B, C ver-
einigt mit A ist identisch mit dem Durchschnitt der Vereinigungen von A, B und A,
C.

A∩ (B∪C) = (A∩B)∪ (A∩C)
A∪ (B∩C) = (A∪B)∩ (A∪C)

Beispiel 1.12. Es sind die Mengen A = {1,2,5}, B = {1,2,3} und C = {1,3,4} ge-
geben.

Für das 1. Distributivgesetz ergibt sich

A∩ (B∪C) = {1,2,5}∩ ({1,2,3}∪{1,3,4})= {1,2}
(A∩B)∪ (A∩C) = ({1,2})∪ ({1})= {1,2}

Für das 2. Distributivgesetz ergibt sich

A∪ (B∩C) = {1,2,5}∪ ({1,2,3}∩{1,3,4})= {1,2,3,5}
(A∪B)∩ (A∪C) = {1,2,3,5}∩{1,2,3,4,5}= {1,2,3,5}

☼

De Morgans-Gesetze Das Komplement des Durchschnitts von A und B ist
gleich der Vereinigung der beiden Komplementmengen. Das Komplement der Ver-
einigung von A und B ist gleich dem Durchschnitt der beiden Komplementmengen.

(A∩B)c = Ac∪Bc
(A∪B)c = Ac∩Bc
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Beispiel 1.13. Es sind folgende Mengen Ω = {1,2,3,4,5}, A = {1,2,5} und B =
{1,2,3} gegeben.

Für das 1. De Morganssche Gesetz ergibt sich

(A∩B)c = ({1,2,5}∩{1,2,3})c = ({1,2})c = {3,4,5}
Ac∪Bc = {3,4}∪{4,5}= {3,4,5}

Für das 2. De Morgansche Gesetz ergibt sich

(A∪B)c = ({1,2,5}∪{1,2,3})c = ({1,2,3,5})c = {4}
Ac∩Bc = {3,4}∩{4,5}= {4}

☼

Übung 1.1. Betrachten Sie in der Grundmenge

Ω = {1, . . . ,8}

die Teilmengen
A= {1, . . . ,5}

und
B= {2,3,5,7,8}

Bestimmen Sie:

Ac∩B A∪Bc Ac∩Bc

Übung 1.2. Auf einem Messestand erwerben vom 110 Besuchern 50 den Artikel
A, 80 den Artikel B und 70 den ArtikelC. 20 Besucher kaufen die Artikel A, B und
C. Außerdem erwerben jeweils 20 Besucher nur die Artikel B und C und A und C.
30 Besucher kaufen nur den Artikel B.
Wie viel Besucher kaufen nur den Artikel A und nur den ArtikelC?

Übung 1.3. Gegeben seien die Intervalle A = [−1,2), B = (−2,1) und C = [0,2].
Eine eckige Klammer [ bedeutet, dass die Zahl im Intervall enthalten ist, eine runde
Klammer ( bedeutet, dass die Zahl nicht eingeschlossen ist. Führen Sie folgende
Mengenoperationen aus:

A∪B A∪C A∩C
B∩C C \A C \B
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1.2.3 Zahlenmengen

Die Grundlage vieler mathematischer Überlegungen sind Zahlen. Sie können in un-
terschiedliche Bereiche eingeteilt werden. Beispielsweise gibt es Zahlen, die nur für
die einfache Zählung geeignet sind. Andere entstehen aus Brüchen oder durch die
Auflösung einer Gleichung.

Wenn wir etwas zählen, verwenden wir die Menge der natürlichen Zahlen. Sie
wird mit dem Symbol N bezeichnet:

N= {1,2,3,4, . . .}

Häufig wird die Menge der natürlichen Zahlen um die Null erweitert.

N0 = {0,1,2,3,4, . . .}

Wird die Menge der natürlichen Zahlen mit den negativen Zahlen erweitert, er-
hält man die Menge der ganzen Zahlen Z.

Z= {. . . ,−4,−3,−2,−1,0,1,2,3,4, . . .}

Das Verhältnis zweier ganzer Zahlen führt zur Menge der rationalen Zahlen. Es
sind die Brüche n

m , außer der Division mit 0. Zum Beispiel −2
−5 = 0.4 oder 5

3 = 1.666.
Sie werden mit dem Symbol Q bezeichnet.

Q=
{ n
m

mit n ∈ Z und m ∈ Z\ {0}
}

Die bisher genannten Zahlen sind abzählbar, obwohl alle drei Zahlenmengen N,
Z und Q unendlich sind.

Die Lösung der Gleichung x2 = 2 ist nicht in den bisher beschriebenen Zahlen-
mengen enthalten. Die positive Wurzel von 2 besitzt unendlich viele Nachkomma-
stellen. Es handelt sich um eine algebraische Zahl, da sie aus einem Polynom mit
rationalen Koeffizienten entsteht (siehe Kapitel 8.3). Es existieren aber auch irratio-
nale Zahlen, die sich nicht als Lösungen von Gleichungen darstellen lassen. Dies sind
zum Beispiel die Kreiszahl π oder die Eulersche Zahl e. Sie heißen transzendente
Zahlen. Beide Zahlenarten (algebraische und transzendente) werden zur Menge der
irrationalen Zahlen zusammengefasst. Die Menge der irrationalen Zahlen ist nicht
mehr abzählbar. Die Erweiterung der rationalen Zahlen um die irrationalen Zahlen
führt zu der Obermenge der reellen Zahlen mit dem Symbol R.

R= {x mit −∞ < x<+∞}

Auf dem Zahlenstrahl sind alle Punkte besetzt.
Es existieren aber noch Zahlen jenseits der reellen Zahlen. Die Lösung der Glei-

chung x2 =−2 führt zur Wurzel (siehe Kapitel 2.6) einer negativen Zahl: x=
√−2.

Sie ist nicht Teilmenge der reellen Zahlen. Das Quadrat jeder reellen Zahl ist positiv.
Daher können negative reelle Zahlen keine reellen Wurzeln haben. Mit der Einfüh-
rung der Definition i2 = −1 wird die Menge der reellen Zahlen zu der Menge der
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komplexen Zahlenmit dem Symbol C erweitert. Die Elemente dieser Menge haben
die Form

c= a+ bi,

wobei a und b Elemente der reellen Zahlen sind. Die Zahl c ist zusammengesetzt aus
einem Realteil a und einem Imaginärteil bi.

C= {c= a+bi mit a,b ∈ R}
Mit der obigen Herleitung haben wir die Menge der Zahlen beschrieben und

beobachten folgende Beziehung unter den beschriebenen Mengen:

N⊂ Z⊂Q⊂ R⊂ C

1.3 Aussagenlogik

Lehre vom folgerichtigen Denken, d. h. vom richtigen Schließen aufgrund gegebener
Aussagen.

Beispiel 1.14. Wenn es nicht regnet oder schneit, spielt Leo Fußball.

Aussage A: Es regnet nicht
Aussage B: Es schneit nicht
Aussage C: Leo spielt Fußball

Der Wahrheitsgehalt der zusammengesetzten Aussage ist wahr, wenn es nicht
regnet oder nicht schneit und Leo Fußball spielt, bzw. falsch, wenn es nicht regnet
und nicht schneit, und Leo nicht spielt.

Weniger offensichtlich ist indes, dass die Aussage stets wahr ist, wenn Leo sonn-
tags Fußball spielt, gleichgültig wie das Wetter ist. Der scheinbare Widerspruch klärt
sich, wenn zwischen der Aussage und dem Wahrheitswert unterschieden wird. ☼

Eine Aussage A ist ein Satz, der entweder wahr oder falsch ist. Ein dritter Wert
existiert nicht, ein Teilwert ebenfalls nicht.

1.3.1 Logikoperatoren

Negation ¬A lies: nicht A
Umkehrung des Wahrheitswertes. Die Negation der Aussage A.

Beispiel 1.15. „Es regnet nicht“ ist ¬A: „Es regnet“. ☼

Tabelle 1.2:Wahrheitstafel für Negation
A ¬A
w f
f w
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Konjunktion A∧B lies: A und B
Verbindung von zwei Aussagen mit einem logischen UND. Sie ist nur wahr, wenn
sowohl A als auch B wahr ist.

Tabelle 1.3:Wahrheitstafel für Konjunktion
A B A∧B
w w w
w f f
f w f
f f f

Beispiel 1.16. „Es schneit nicht“ und „es regnet nicht“. Wenn beides wahr ist, dann
ist die Konjunktion der beiden Aussagen wahr. Trifft eine der beiden Aussagen nicht
zu, dann ist die Konjunktion falsch. ☼

Disjunktion A∨B lies: A oder B
Verbindung von zwei Aussagen mit einem logischen ODER. Sie ist wahr, wenn we-
nigstens eine der beiden Aussagen wahr ist (heißt nicht entweder oder!).

Tabelle 1.4:Wahrheitstafel für Disjunktion
A B A∨B
w w w
w f w
f w w
f f f

Beispiel 1.17. „Es schneit“ oder „es regnet“. Wenn eine der beiden Aussagen zutrifft,
dann ist die Gesamtaussage wahr. ☼

Implikation A→ B lies: aus A folgt B
Schlussfolgerung (Konklusion) aus einer Aussage A, die Voraussetzung (Prämisse)
genannt wird. Eine Implikation ist wahr, wenn A und B wahr sind. Sie ist aber auch
wahr, wenn aus „A falsch“ „B falsch“ oder aus „A falsch“ „B wahr“ gefolgert wird.
Sie ist nur dann falsch, wenn aus „A wahr“ „B falsch“ gefolgert wird. Ist A→ B =
wahr, so schreibt man A⇒ B. Gilt A⇒ B, so heißt A hinreichende Bedingung für B
und B notwendige Bedingung für A.
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Tabelle 1.5:Wahrheitstafel für Implikation
A B A→ B

w w w
w f f
f w w
f f w

Beispiel 1.18. Leo spielt Fußball. Der Tag ist regenfrei.A⇒C: Wenn der Tag trocken
ist, dann spielt Leo Fußball.

Die Aussage „der Tag ist ohne Regen“ ist hinreichend dafür, dass die Aussage
„Leo spielt Fußball“ wahr ist. Notwendigerweise spielt Leo Fußball, wenn der Tag
ohne Regen ist. Die Umkehrung gilt jedoch nicht: „wenn Leo Fußball spielt, ist der
Tag ohne Regen“. Leo spielt auch in der Halle Fußball. ☼

Äquivalenz A↔ B lies: A genau dann, wenn B Äquivalenz
Die Implikation gilt in beiden Richtungen, d. h. A→ B und B→ A. Die Äquivalenz
ist dann wahr, wenn A und B denselben Wahrheitswert haben. Sie ist falsch, wenn
der Wahrheitswert von den beiden verschieden ist. Ist A↔ B = wahr, so schreibt
man A⇔ B.

Tabelle 1.6:Wahrheitstafel für Äquivalenz
A B A↔ B

w w w
w f f
f w f
f f w

Beispiel 1.19. Aussage A: x ist durch 2 teilbar. Aussage B: y ist eine gerade Zahl. Es
gilt x⇔ y, weil jede gerade Zahl durch 2 teilbar ist und alle durch 2 teilbaren Zahlen
geraden Zahlen sind. Die Aussage ist wahr. ☼

In der Informatik werden weitere Operatoren verwendet. Es sind die negierten
Operatoren der Kon- und Disjunktion NAND und NOR sowie der Äquivalenz XOR.

1.3.2 Regeln

• Klammerausdrücke werden von innen nach außen interpretiert
• Operationen werden in der Reihenfolge

1. Negation
2. Konjunktion
3. Disjunktion
4. Implikation
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5. Äquivalenz

interpretiert.

1.3.3 Gesetze der Logik

Idempotenzgesetze Konjunktion oder Disjunktion einer Aussage Amit sich selbst
liefert die Aussage A.

A∧A= A
A∨A= A

Beispiel 1.20. Die Aussage „es schneit nicht“ ändert sich nicht durch eine Konjunk-
tion oder durch eine Disjunktion mit sich selbst. ☼

neutrale Wahrheitswerte Die Konjunktion einer Aussage A mit WAHR lie-
fert stets A; mit FALSCH liefert stets FALSCH. Die Disjunktion einer Aussage Amit
WAHR liefert stets WAHR und mit FALSCH stets A.

A∧WAHR = A
A∨WAHR = WAHR

A∧FALSCH = FALSCH
A∨FALSCH = A

Beispiel 1.21. Die Aussage „es schneit nicht“ konjunktiv mit WAHR verknüpft lie-
fert die Aussage. Die Aussage „es schneit“ disjunktiv mit WAHR verknüpft liefert
stets WAHR. Die Konjunktion mit FALSCH ist stets FALSCH; die Disjunktion mit
FALSCH ist stets A. ☼

Kommutativgesetze Die Aussagen A und B können bei der Konjunktion und
bei der Disjunktion vertauscht werden ohne das sich der Wahrheitswert ändert.

A∧B= B∧A
A∨B= B∨A

Assoziativgesetze Die Reihenfolge einer konjunktiven oder disjunktiven Ope-
ration ändert den Wahrheitswert nicht.(

A∧B)∧C = A∧ (B∧C)(
A∨B)∨C = A∨ (B∨C)

Distributivgesetze Die Konjunktion von A mit einer disjunktiven Operation
B, C ist gleich der Disjunktion der Konjunktionen von A, B und A, C. Für dieses
Gesetzt existiert die Analogie in der Arithmetik: A× (B+C) = A×B+A×C. Die
Disjunktion von A mit einer konjunktiven Operation B,C ist gleich der Konjunktion
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der Disjunktionen von A, B und A, C. Für dieses Distributivgesetz existiert in der
Arithmetik keine Analogie.

A∧ (B∨C)= (
A∧B)∨ (A∧C)

A∨ (B∧C)= (
A∨B)∧ (A∨C)

Tabelle 1.7:Wahrheitstafel für Distributivgesetze
A B C A∧(

B∨C) (
A∧B)∨(

A∧C)

w w w w w
w w f w w
w f w w w
w f f f f
f w w f f
f f w f f
f w f f f
f f f f f

A∨(
B∧C) (

A∨B)∧(
A∨C)

w w
w w
w w
w w
w w
f f
f f
f f

Die Aussagewerte der Terme sind gleich. ☼

Absorptionsgesetze Die Absorptionsgesetze sind mit den Regeln Mengenleh-
re leicht nachvollziehbar.

A∧ (A∨B) = A
A∨ (A∧B) = A

Beispiel 1.23. Die Aussage A sei „Leo spielt Fußball“. Die Aussage B sei „es regnet
nicht“. Angenommen A sei wahr und für B sei wahr oder falsch. Dann ist

(
A∨B)

stets wahr und somit auch A∧ (A∨B), weil der Aussagewert von A und (A∨B) wahr
sind.

Betrachten wir das 2. Absorptionsgesetz. Die Konjunktion
(
A∧B) liefert für die

obige Annahme den Aussagewert wahr oder falsch. Aufgrund der Disjunktion mit A
ist aber nur der Aussagewert von A für die Gesamtaussage bestimmend. ☼

De Morgans Gesetze Die Negation einer Konjunktion ist gleich der Disjunk-
tion der negierten Aussagen. Die Negation einer Disjunktion ist gleich der Konjunk-
tion der negierten Aussagen.

¬(A∧B)= ¬A∨¬B
¬(A∨B)= ¬A∧¬B

Beispiel 1.24. Aussage A : „kein Regen“, AussageB : „kein Schnee“. Die Verneinung
von „kein Regen“ UND „kein Schnee“ ist „Regen“ ODER „Schnee“. Die Verneinung
von „kein Regen“ ODER „kein Schnee“ist „Regen“ UND „Schnee“. ☼

Beispiel 1.22. Betrachten wir die Wahrheit tabelle für die Aussagen A,B,C.s
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Kontraposition Aus A folgt B ist gleich aus nicht B folgt nicht A.

(A→ B) = (¬B→¬A)

Beispiel 1.25. Es sind die Aussage A: „kein Regen“ und die Aussage B: „Leo spielt
Fußball“ gegeben. Die Implikation „kein Regen“ ⇒ „Leo spielt Fußball“ ist iden-
tisch mit „Leo spielt nicht Fußball“ ⇒ „Regen“. Natürlich gilt die Kontraposition
auch für die anderen 3 Implikation A : wahr → B : falsch, A : falsch → B : wahr und
A : falsch → falsch. ☼

Umwandlungsregeln

A∨B= ¬A→ B
A∧B= ¬(A→¬B)
A↔ B= (¬A∨B)∧ (A∨¬B)
A↔ B= (A∧B)∨ (¬A∧¬B)
A↔ B= ¬A↔¬B

¬(A↔ B) = A↔¬B= ¬A↔ B

Konsensusregeln In den folgenden Aussageverbindungen besitzt die Kon-
junktion bzw. Disjunktion von B, C immer den Aussagewert falsch, wenn auch die
Konjunktion bzw. Disjunktion von A, B oder von A,C falsch sind. Daher beeinflusst
B∧C bzw. B∨C den Gesamtaussagewert nicht.

(A∧B)∨ (¬A∧C)∨ (B∧C) = (A∧B)∨ (¬A∧C)
(A∨B)∧ (¬A∨C)∧ (B∨C) = (A∨B)∧ (¬A∨C)

1.4 Fazit

Mengen und Zahlenmengen sind Grundlagen der Mathematik. Die reellen Zahlen
sind die am häufigsten verwendeten Zahlen. Die Aussagenlogik wird in der Mathe-
matik zur Beweisführung verwendet. Ferner wird sie in der Informatik eingesetzt.
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2.1 Vorbemerkung

Summen- und Produktzeichen kürzen die fortgesetzte Summation und Addition ab.
Insbesondere das Summenzeichen wird häufig verwendet. Der Logarithmus und die
Exponentialfunktion bereiten vielen Studierenden immer wieder Schwierigkeiten.
Daher werden sie hier kurz mit anderen grundlegenden mathematischen Funktionen
beschrieben. Ferner werden zwei spezielle Funktionen eingeführt, die in späteren
Kapiteln verwendet werden. Es sind die Betragsfunktion und die Gauß-Klammer
(Auf- und Abrundungsfunktion). In Kapitel 8 werden die Funktionen mit einer Va-
riablen ausführlicher erklärt.

Übersicht über die hier eingesetzten mathematischen Symbole:∑
Summenzeichen∏
Produktzeichen

i, j Subskript, Index
e Eulersche Zahl

| | Betragsfunktion
f (x) Funktion von x

W. Kohn, R. Öztürk, Mathematik für Ökonomen, Springer-Lehrbuch, 
DOI 10.1007/978-3-642-28575-2_2, © Springer-Verlag Berlin Heidelberg 2012
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loga x Logarithmusfunktion zur Basis a
lnx Logarithmusfunktion zur Basis e, natürlicher Logarithmus

��,�� Ganzzahlfunktion√
x Wurzelfunktion

2.2 Summenzeichen

Das Summenzeichen
∑

steht als Wiederholungszeichen für die fortgesetzte Addi-
tion.

n∑
i=1

ai = a1 + a2 + · · ·+an (2.1)

In der Gleichung (2.1) bezeichnet man i als Summationsindex, der hier mit eins
beginnt und jeweils um eins hochgezählt wird bis die Obergrenze n erreicht ist. Der
Index i kann mit jeder ganzen Zahl beginnen und enden.

Beispiel 2.1.
1∑

i=−2

xi = x−2 + x−1 + x0 + x1

Mit negativen Indizes werden in der Ökonomie oft Werte aus der Vergangenheit, mit
positiven Indizes zukünftige Werte und mit dem Index Null der Wert der Gegenwart
bezeichnet. ☼

Das Summenzeichen ist nützlich, um größere Summen übersichtlich darzustel-
len, deren Wert zu berechnen ist. Es gelten die folgenden Rechenregeln, die sich aus
den Rechengesetzen ergeben:

Gleiche Summationsgrenzen:

n∑
i=1
ai+

n∑
i=1
bi =

n∑
i=1

(ai+bi)

Beispiel 2.2.

3∑
i=1

(
1+3+ 5

)
+

3∑
i=1

(
2+ 4+6

)
=

3∑
i=1

(
1
a1
+ 2
b1
+ 3
a2
+ 4
b2
+ 5
a3
+ 6
b3

)
☼

Additive Konstante:
n∑
i=1

(ai+ c) =
n∑
i=1
ai+nc
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Beispiel 2.3.
10∑
i=1

(
ai+1

)
= (a1 + 1)+ . . .+(a10 +1) =

10∑
i=1

ai+ 10

☼

Multiplikative Konstante:
n∑
i=1

cai = c
n∑
i=1

ai

Beispiel 2.4.
4∑
i=1

3 i2 = 3
4∑
i=1

i2 = 3
(
12 + 22 +32 +42)= 90

☼

Summenzerlegung:
n∑
i=1
ai =

m∑
i=1
ai+

n∑
i=m+1

ai für m< n

Beispiel 2.5.
5∑
i=1
i=

3∑
i=1
i+

5∑
i=4
i= 1+ 2+3+4+5= 15

☼

Das Summenzeichen kann auch doppelt oder mehrfach hintereinander auftreten.
Zwei Summenzeichen treten zum Beispiel hintereinander auf, wenn in einer Tabelle
alle Werte addiert werden sollen. Die Zeilen einer Tabelle werden in der Regel mit
i indiziert und die Spalten einer Tabelle mit j. Die Werte in den Tabellenfeldern
werden dann mit ai j bezeichnet (siehe Tabelle 2.1).

Tabelle 2.1: Zweidimensionale Tabelle mit Randsummen
a11 · · · a1 j · · · a1m

∑m
j=1 a1 j

...
. . .

. . .
...

...
ai1 · · · ai j · · · aim

∑m
j=1 ai j

...
. . .

. . .
...

...
an1 · · · an j · · · anm

∑m
j=1 an j

∑n
i=1 ai1 · · · ∑n

i=1 ai j · · ·
∑n
i=1 aim

∑n
i=1

∑m
j=1 ai j

Wie in der oben stehenden Tabelle ersichtlich, können mit der Doppelsumme alle
Werte der Tabelle addiert werden. Dabei ist es egal, ob erst die Zeilen und dann die
Spalten addiert werden oder umgekehrt.
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m∑
j=1

a1 j+

m∑
j=1

a2 j+ · · ·+
m∑
j=1

an j =
n∑
i=1

m∑
j=1

ai j

n∑
i=1
ai1 +

n∑
i=1
ai2 + · · ·+

n∑
i=1
aim =

m∑
j=1

n∑
i=1
ai j

n∑
i=1

m∑
j=1

ai j =
m∑
j=1

n∑
i=1

ai j

Lediglich die Reihenfolge der Summation ist unterschiedlich. Nach dem ersten Kom-
mutativgesetz führt dies zu keiner Ergebnisänderung.

Beispiel 2.6.

2∑
i=1

3∑
j=1

(bi j+ i× j) = (b11 +1)+ (b12+2)+ (b13+3)

+ (b21 +2)+ (b22+4)+ (b23+ 6)

= 18+
2∑
i=1

3∑
j=1
bi j

☼

Übung 2.1. Berechnen Sie folgende Ausdrücke für x= 5,2,1,2 und y= 1,2,3,4:

4∑
i=1

xi
4∑
i=1

xi yi
4∑
i=1

(
xi+ 3

)

Übung 2.2. Berechnen Sie die folgenden Summen:

5∑
n=2

(n−1)2 (n+ 2)
5∑
k=1

(
1
k
− 1
k+1

)

Übung 2.3. Ist die Doppelsumme

2∑
i=1

2∑
j=1
xi j

gleich der Summe

2∑
i=1

xi
2∑
j=1

x j ?
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2.3 Produktzeichen

Das Produktzeichen
∏

steht als Wiederholungszeichen für die fortgesetzte Multi-
plikation.

n∏
i=1

ai = a1 ×a2 ×·· ·× an

Das Produktzeichen wird wie das Summenzeichen zur übersichtlicheren Darstel-
lung von größeren Produkten verwendet. Es gelten die folgenden Rechenregeln, die
sich leicht aus den elementaren Rechenoperationen ableiten lassen:

Gleiche Produktgrenzen:
n∏
i=1

ai× bi =
n∏
i=1

ai×
n∏
i=1

bi

Multiplikative Konstante:
n∏
i=1

c× ai = cn×
n∏
i=1

ai

Anmerkung: Im Text wird das Produktzeichen× – soweit es eindeutig ist – durch
einen kleinen Freiraum ersetzt.

a× b= ab
Übung 2.4. Berechnen Sie folgende Ausdrücke für x= 5,2,1,2:

4∏
i=1

xi
5∏
i=1

i
4∏
i=1

2xi

Übung 2.5. Schreiben Sie das Doppelprodukt

2∏
i=1

2∏
j=1

xi j

aus.

2.4 Betragsfunktion

Die Betragsfunktion liefert von einer reellen Zahl deren vorzeichenlosen Zahlen-
wert.

|x|=
{

x für x≥ 0
−x für x< 0

Anschaulich kann der Betrag |x| als der Abstand auf der Zahlengeraden zwischen 0
und x interpretiert werden. Beim Rechnen mit Beträgen ist Folgendes zu beachten:

|x| ≥ 0
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|x× y|= |x|× |y|∣∣∣∣xy
∣∣∣∣= |x|

|y| für y �= 0

|x± y| ≤ |x|+ |y|

2.5 Ganzzahlfunktion

DieGauß-Klammer � � wird auch alsGanzzahlfunktion bezeichnet. Ursprünglich
bezeichnet sie die Abrundung einer reellen Zahl zur nächsten ganzen Zahl. Daher
wird sie manchmal auch Abrundungsfunktion genannt.

�x�= max
{
k | k≤ x} mit k ∈ Z

Der senkrechte Strich | bedeutet «für die gilt». Hier also «für die k, für die k ≤ x
gilt».

Beispiel 2.7. Die Zahl 2.8 wird durch �2.8� auf 2 abgerundet.

�2.8�= 2

Die Zahl −2.8 wird durch die Abrundungsfunktion auf −3 abgerundet, weil
−3 <−2.8 <−2 gilt.

�−2.8�=−3

☼

Jedoch benötigt man manchmal auch die Aufrundung einer reellen Zahl auf die
nächste ganze Zahl. Man schreibt dann in Anlehnung an die Abrundungsfunktion:

�x�= min
{
k | k≥ x} mit k ∈ Z

Beispiel 2.8. Die Zahl 2.8 wird durch die Aufrundungsfunktion �2.8� auf 3 aufge-
rundet.

�2.8�= 3

Die Zahl −2.8 wird dementsprechend aufgerundet auf −2.

�−2.8�=−2

☼
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2.6 Potenzen und Wurzeln

Sowohl in der Finanzmathematik als auch in der Analysis tauchen Potenzen auf. Man
spricht von einer Potenz mit natürlichem Exponent, wenn man eine reelle Zahl n-mal
mit sich selbst multipliziert.

an = a× . . .×a︸ ︷︷ ︸
n-mal

mit a ∈ R,n ∈ N

Die Zahl a wird Basis genannt und die Zahl n wird als Exponent bezeichnet. Der
Gesamtausdruck heißt Potenz a hoch n.

Auch in der Potenzrechnung gilt Punktrechnung vor Strichrechnung.

Beispiel 2.9.

−(34) =−81, aber (−3)4 = 81

(4×5)3 = 203 = 8000, aber 4×53 = 4× 125

☼

Für den Umgang mit Potenzen bei natürlichem Exponent gelten folgende fünf
Rechenregeln.

Regel Beispiel

1. am×an = am+n mit a ∈ R ;m,n ∈ N 23 × 22 = 25

2.
am

an
= am−n mit a ∈ R ;a �= 0 ;m,n ∈N

23

22 = 2

3.
(
a×b)n = an bn mit a,b ∈R ;n ∈ N

(
2×3

)2
= 22 ×32 = 36

4.
(a
b

)n
=
an

bn
mit a,b ∈R ;b �= 0 ;n ∈ N

(
6
3

)2
=

62

32 = 4

5. (am)n = am×n mit a ∈ R ;m,n ∈ N
(
23)2

= 26 = 64

Für die Addition und Subtraktion von Potenzen existieren keine Rechengesetze.
Ausdrücke wie zum Beispiel x2 + y2 oder x2 + x3 können nicht vereinfacht werden.

Die Potenzrechnung wird nun auf ganze Zahlen ausgedehnt. Mit dieser Erweite-
rung können rationale Zahlen dargestellt werden.

a−n =
1
an

mit a ∈R\ {0},n∈N

a0 = 1 mit a ∈R\ {0}

Das Zeichen \ bedeutet ohne die Menge { }. Im vorliegenden Fall ist es die Menge
der reellen Zahlen ohne die Null. Schließlich ist es sinnvoll, die Potenzrechnung
nochmals zu erweitern, um zum Beispiel folgende Gleichung zu lösen:
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x2 = 2

Potenziert man beide Seiten mit 1
2 , so ergibt sich:(

x2) 1
2 = 2

1
2 ⇒ x= 2

1
2

Der gesuchte Wert ergibt sich in Form einer Potenz mit der Basis 2 und dem Expo-
nenten 1

2 . Weil diese Gleichungen häufig auftreten, wird die Lösung als Quadratwur-
zel bezeichnet und als

x= 2√2 =
√

2
geschrieben. Bei der Quadratwurzel entfällt häufig der Wurzelexponent. Die Wurzel
von einer negativen Zahl x ist in den reellen Zahlen nicht definiert. Um solche Funk-
tionen zu berechnen, sind imaginäre Zahlen nötig, die zusammen mit den reellen die
komplexen Zahlen ergeben (siehe Kapitel 1.2.3).

Beispiel 2.10.
√
−16 ist nicht in R definiert, aber −

√
16 =−4

☼

Daher heißt es etwas allgemeiner: Die nicht negative Lösung x von a = x2 mit
a ∈ R+ heißt Quadratwurzel. √

x2 = |x| für x ∈ R

Sucht man die Lösung für eine Potenz größer als 2, so spricht man von der n-ten
Wurzel.

a= xn mit x ∈ R+,n ∈ R,n �= 0 ⇒ x= a
1
n = n√a

Nun kann man auch folgende Gleichung lösen:

am = xn mit x ∈ R+,m,n ∈ R,n �= 0 ⇒ x= a
m
n = n√am

Das Wurzelziehen ist also die Umkehroperation zum Potenzieren. Zieht man die n-te
Wurzel und potenziert hoch n, dann gelangt man wieder zur Ausgangszahl.

Beispiel 2.11.
3√83 = 8

☼

Mit der Wurzel lassen sich reelle Zahlen darstellen, die nicht ausgeschrieben
werden können, wie zum Beispiel

√
2.

Beispiel 2.12.
4√4 =

4√22 = 2
2
4 = 2

1
2 =

√
2 = 1.41421 . . .

☼

Die fünf Potenzregeln bleiben auch für die Potenzen a
m
n gültig.

Beispiel 2.13.
4√256×

√
256 = 256

1
4 ×256

1
2 = 256

3
4 =

4√2563 = 43 = 64
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3√84

3√85
=

8
4
3

8
5
3
= 8

4
3− 5

3 = 8−
1
3 =

1
8

1
3
=

1
3√8

=
1
2

√
4×

√
9 = 4

1
2 × 9

1
2 =

(
4× 9

) 1
2 = 36

1
2 =

√
36 = 6

√
100√
25

=
100

1
2

25
1
2

=

(
100
25

) 1
2
= 4

1
2 =

√
4 = 2√

4√256 =
(

256
1
4
) 1

2
= 256

1
4× 1

2 = 256
1
8 =

8√256 = 2

☼

2.7 Exponentialfunktionen

Um das Wort «exponentiell» zu erklären, beginnen wir mit einem Beispiel aus der
Biologie.

Beispiel 2.14. Wir betrachten eine Bakterienkultur, deren Wachstumsprozess durch
die Zellteilung zustande kommt. Wir gehen davon aus, dass

• zu Beginn 1 000 Bakterien existieren
• und sich jede Stunde die Anzahl der Bakterien verdoppelt.

An einem Zeitstrahl würde dies wie folgt aussehen:

Stunden 0 1 2 3 4 5

Bakterien 1000 2000 4000 8000 16000 32000

Da sich die Anzahl der Bakterien pro Stunde verdoppelt, muss die Anzahl der Bak-
terien zu Beginn mit 2 multipliziert werden, um deren Anzahl nach einer Stunde zu
berechnen. Für jede weitere Stunde muss nun der jeweils vorherige Wert wiederum
mit 2 multipliziert werden usw. ☼

Mit der Exponentialfunktion

f (x) = ax mit a,x ∈R

wird die obige Populationsänderung beschrieben. ax bedeutet das x-fache Produkt
von a. Für x ∈ N kann man also

ax = a× a× . . .× a︸ ︷︷ ︸
x-mal

schreiben. Wird für a der Wert 2 eingesetzt, so erhält man mit x= 0, . . . ,5 die Werte
in der Tabelle.

Eine übliche Form die Funktion aufzuschreiben, ist

f (x) = cabx,
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0
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30000
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x

f(
x)

f (x)=1000×2x

Abb. 2.1: Entwicklung einer Bakterienpopulation

wobei a,b,c Koeffizienten sind. Mit den Koeffizienten verändert sich die Kurven-
form der Exponentialfunktion. Oft wird für die Basis a die Eulersche Zahl e ver-
wendet.

e = lim
x→∞

(
1+

1
x

)x
≈ 2.718282

Beispiel 2.15. Ein weiteres Beispiel für ein exponentielles Wachstum ist die Zin-
seszinsrechnung. Es wird ein Kapitalbetrag von 1 000e zu 5 Prozent über 5 Jahre
angelegt.

Jahr 0 1 2 3 4 5

e 1000 1050 1102.50 1157.62 1215.50 1276.28

Der Betrag am Ende jeden Jahres wird mit dem Faktor 1.05 multipliziert. Für das
erste Jahr errechnet sich das angesparte Kapital wie folgt:

1050 = 1000+ 1000×0.05
1050 = 1000(1+ 0.05)
1050 = 1000× 1.05

Für das Kapital nach dem zweiten Jahr kann die Exponentialfunktion wieder ver-
wendet werden.
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1102.50= 1050×1.05
1102.50= 1000×1.05×1.05

1102.50= 1000×1.052

Die Exponentialfunktion besitzt hier die Koeffizienten a= 1.05, b= 1 und c= 1000

f (x) = 1000×1.05x

☼

Im Allgemeinen gilt, dass im Exponenten jede reelle Zahl stehen kann. Das kön-
nen negative und positive Zahlen, aber auch Brüche und die Null sein. Mit der Ex-
ponentialfunktion können daher sowohl Wachstums- als auch Abnahmeprozesse be-
rechnet werden.

Beispiel 2.16. Eine Maschine kostet 1 000e. Es wird angenommen, dass sie jedes
Jahr 20 Prozent an Wert verliert. Diese Form des Wertverlusts wird als geometrisch
degressive Abschreibung bezeichnet. Die zeitliche Entwicklung des Wertes sieht
dann wie folgt aus:

Jahr 0 1 2 3 4 5

Wert 1000 800 640 512 409.60 327.68

Der Wertverlust der Maschine kann auch mit der Exponentialfunktion beschrieben
werden.

f (x) = 1000×0.8x= 1000×1.25−x

Nach 5 Jahren liegt der Restwert der Maschine bei

f (5) = 1000×1.25−5 = 327.68e

Da stets 80 Prozent des Restwerts bestehen bleiben, wird die Maschine nie einen
Restwert von Null besitzen. ☼

Wir haben bereits gesehen, dass die Exponentialfunktion durch die allgemeine
Form

f (x) = cabx mit a,b,c,x ∈ R

definiert ist. Der Funktionswert f (x) ändert sich, sobald sich die Variable x ändert.
Betrachten wir nun eine Änderung der Variablen x um s, also einen neuen Wert x+s.
Wie verhält sich der Funktionswert f (x+ s)?

f (x+ s) = cab (x+s)

Da

cab (x+s) = cabx abs
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ist, entsteht daraus

f (x+ s) = f (x)abs,

d. h., wächst die Variable x additiv um s, so ändert sich der Funktionswert multipli-
kativ um abs.

Übung 2.6. Berechnen Sie für ein Kapital von 10000e, das zu 5 Prozent über 10
Jahre angelegt wird, den Endwert.

Übung 2.7. Angenommen das Kapital aus Übung 2.6 wird nur für 9 Jahre angelegt.
Wie können Sie aus dem Endkapital, das Sie in der Übung 2.6 berechnet haben, den
Endwert nach 9 Jahren berechnen?

Übung 2.8. Ein Gewinn soll sich in den nächsten 15 Jahren verdoppeln. Welche
durchschnittliche jährliche Wachstumsrate ist dazu notwendig?

2.8 Logarithmen

Wie werden Exponentialgleichungen nach x umgestellt?
Logarithmen sind zum Lösen von Exponentialgleichungen oder zum Beschrei-

ben von Wachstumsprozessen wichtig. Der Logarithmus (genau genommen handelt
es sich um die Logarithmusfunktion) ist die Umkehrung des Potenzierens.

y= ax ⇔ x= loga y mit a,y ∈ R+ und a �= 1 (2.2)

Wurde beim Radizieren die Basis a errechnet, so sucht man jetzt bei bekanntem
Potenzwert y und Basis a den Exponenten x. Der Logarithmus einer beliebigen po-
sitiven Zahl y zur Basis a ist derjenige Exponent x, mit dem die Basis a potenziert
werden muss, um den Numerus y zu erhalten.

Beispiel 2.17. Hierfür wird die Gleichung aus Beispiel 2.15 betrachtet.

1102.50= 1000× 1.05x

Es ist die Anlagedauer x gesucht. Durch Logarithmieren der Gleichung (siehe Re-
chenregeln auf der folgenden Seite)

log1102.50 = log1000+ x log1.05

erhält man die Variable x in einer lineare Beziehung, so dass durch Division die
Lösung berechnet werden kann.

x=
log1102.50− log1000

log1.05
= 2

☼
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Beispiel 2.18.

8 = 23 ⇔ log2 8 = 3

☼

Aus der Definition des Logarithmus (2.2) folgen die Beziehungen:

loga a= 1 denn a1 = a

loga 1 = 0 denn a0 = 1
loga a

n = n denn an = an

Weitere Rechenregeln sind:

loga(c× d) = loga c+ loga d

loga
c
d
= loga c− loga d

loga b
n = n loga b

loga
n√b= 1

n
loga b

Logarithmen mit gleicher Basis bilden ein Logarithmensystem, von denen die
beiden gebräuchlichsten die dekadischen (Basis a = 10, oft mit log bezeichnet) und
die natürlichen Logarithmen (mit der Eulerschen Zahl a = e als Basis mit der Be-
zeichnung ln) sind. Auf dem Taschenrechner sind meistens die beiden oben genann-
ten Logarithmensysteme vorhanden. Wie kann der Logarithmus

x= log2 8

mit einem Taschenrechner berechnet werden? Dazu folgende Überlegungen: Ausge-
hend von der Gleichung

y= ax

ergeben sich mit den beiden obigen Logarithmen die beiden folgenden Gleichungen:

logy= x loga ⇒ x=
logy
loga

lny= x lna ⇒ x=
lny
lna

Daraus ergibt sich nun die Gültigkeit der folgenden Beziehung:

x= loga y=
logy
loga

=
lny
lna

Somit ist die Berechnung des Logarithmus log2 8 kein Problem.

x= log2 8 =
log8
log2

=
ln8
ln2

= 3
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Logarithmen werden auch für die grafische Darstellung von Wachstumsprozes-
sen verwendet. Angenommen, ein Wert wächst in jeder Periode um 10 Prozent
(p = 0.1), dann ist die Wachstumsrate konstant, die resultierenden Werte nehmen
aber exponentiell zu (siehe obere Grafik in Abb. 2.2).

xt = xt−1(1+ p)t mit t = 1, . . . ,n

Wird der Wachstumsprozess in einer Grafik mit logarithmierten Werten auf der Or-
dinaten abgetragen, so sieht man die Konstanz der Wachstumsrate.

loga xt = loga xt−1 + t loga(1+ p) mit a> 0 und a �= 1 (2.3)

In der Gleichung (2.3) handelt es sich um eine Gerade mit Achsenabschnitt loga xt−1
und Steigung loga(1+ p) (siehe untere Grafik in Abb. 2.2). Hier wurde a = e, also
der natürliche Logarithmus ln verwendet.

p = 0.1
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Abb. 2.2: Exponentieller Wachstumsprozess

Übung 2.9. Lösen Sie die folgenden Gleichungen nach x auf.

y= ea+bx e−ax = 0.5
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Übung 2.10. Ein Kapital K0 soll sich verdoppeln. Es ist ein Zinssatz von 5 Prozent
pro Jahr gegeben. Wie viel Jahre muss das Kapital angelegt werden?

Übung 2.11. Berechnen Sie folgende Logarithmen:

log2 5 log3 4

Übung 2.12. Vereinfachen Sie die folgenden Ausdrücke mit den Rechenregeln der
Logarithmusrechnung:

ln
(

2x 4
√
x2 y

)
ln
(
2x4 u2−x) ln

(
5x2 4

√
pq2

(a2 b)2

)

2.9 Anwendung in Scilab

Reelle Zahlen werden in Scilab mit einem Punkt als Dezimalzeichen eingegeben.

3.4

Eine Summe wird in Scilab mit sum() berechnet. Soll eine Summe von belie-
bigen Zahlen berechnet werden, so sind die Zahlen in eckigen Klammern und durch
Kommas getrennt einzugeben.

sum(1:6) -> 21
sum(3*(1:4)^2) -> 90
sum([3,6,1]) -> 10

Für eine Doppelsumme muss zuerst ein Zahlenfeld (siehe auch Kapitel 5) in
Scilab eingegeben werden. Die Zeilen werden durch Semikolon getrennt. Die Dop-
pelsumme über das Zahlenfeld wird durch den einfachen Summenbefehl berechnet.
Soll nur die Summe über die Spalten berechnet werden, so muss nach der Angabe
der Variablen ein weiteres Argument angegeben werden. In diesem Fall ist es eine 1.
Für die Summe über die Zeilen ist das Argument eine 2.

tab = [2,3,4;5,6,7]

2 3 4
5 6 7

sum(tab) -> 27
sum(tab,1) -> 7 9 11
sum(tab,2)

9
18
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Das Produkt eines Zahlenfelds wird mit dem Befehl prod() berechnet.

prod(tab) -> 5040
prod(tab,1)-> 10 18 28
prod(tab,2)

24
210

Den Betrag einer Zahl erhält man in Scilab mit dem Befehl abs().

abs(-2) -> 2

Die Gauß-Klammer wird durch die Abrundungsfunktion floor() berechnet.

floor(2.8) -> 2

Die Aufrundungsfunktion ist durch die Funktion ceil() definiert.

ceil(2.8) -> 3

Potenzen und Wurzeln können in Scilab mit dem «Dach»-Operator berechnet
werden.

2^4 -> 16
2^0.25 -> 1.1892071
sqrt(2)

Für die 2-te Wurzel steht auch die gesonderte Funktion sqrt zur Verfügung.
Die Exponentialfunktion zur Basis e wird mit dem Befehl exp() aufgerufen.

exp(1) -> 2.7182818

Die Berechnung des Logarithmus zur Basis e erfolgt mit log, also der ln in der
Notation des Buches. Es stehen noch weitere Logarithmusfunktionen in Scilab zur
Verfügung.

log(2) -> 0.6931472
log10(2) -> 0.30103
log2(2) -> 1

Für alle Funktionen steht eine Hilfe zur Verfügung. Sie wird mit help aufgeru-
fen. Für die Summenfunktion ist es beispielsweise

help sum



2.10 Fazit 35

2.10 Fazit

Das Summenzeichen wird viel in der linearen Algebra und Polynomen verwendet.
Das Produktzeichen findet vor allem in der Kombinatorik seine Anwendung. Die
Logarithmus- und die Exponentialfunktion sind wichtige mathematische Funktio-
nen, die zur Beschreibung von Wachstumsprozessen und zur Auflösung von Glei-
chungen herangezogen werden. Insbesondere in der Finanzmathematik werden diese
Funktionen verwendet.
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Kombinatorik
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3.1 Vorbemerkung

Die Kombinatorik ist die Grundlage vieler statistischer und wahrscheinlichkeitstheo-
retischer Vorgänge. Sie untersucht, auf wie viele Arten man n verschiedene Dinge
anordnen kann bzw. wie viele Möglichkeiten es gibt, aus der Grundmenge von n-
Elementen m-Elemente auszuwählen. Sie zeigt also, wie richtig «ausgezählt» wird,
und damit gehört die Kombinatorik auch in den Bereich der Mathematik.

Es wird folgende Notation für die Kombinatorik eingesetzt:

n! Fakultät(a
b
)

Binomialkoeffizient
P Permutation ohne Wiederholung
Pw Permutation mit Wiederholung

W. Kohn, R. Öztürk, Mathematik für Ökonomen, Springer-Lehrbuch, 
DOI 10.1007/978-3-642-28575-2_3, © Springer-Verlag Berlin Heidelberg 2012
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V Variation ohne Wiederholung
Vw Variation mit Wiederholung
C Kombination ohne Wiederholung
Cw Kombination mit Wiederholung

3.2 Fakultät und Binomialkoeffizient

3.2.1 Fakultät

Das Produkt
n∏
i=1

i= n!, mit n ∈ N

wird als Fakultät bezeichnet. Es gilt 0! = 1. In Scilab wird die Fakultät mit dem
Befehl factorial(n) berechnet.

3.2.2 Binomialkoeffizient

Der Binomialkoeffizient ist für m,n und m≤ n wie folgt definiert:(
n
m

)
=

n!
m!(n−m)! mit m≤ n ∈ Z+

Man spricht: «n über m».

Beispiel 3.1. (
5
3

)
=

5!
3!2!

= 10(
6
2

)
=

6!
2!4!

= 15

☼

Es gelten u. a. folgende Rechenregeln für den Binomialkoeffizienten:(
n
m

)
=

(
n

n−m
)

(
n+ 1
m+1

)
=

(
n
m

)
+

(
n

m+1

)

Herleitung der zweiten Gleichung:
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n
m

)
+

(
n

m+ 1

)
=

n!
m!
(
n−m)! + n!(

m+ 1
)
!
(
n−m−1

)
!

=
n!
(
m+1

)
m!
(
m+ 1

)(
n−m)! + n!

(
n−m)(

m+1
)
!
(
n−m−1

)
!
(
n−m)

=
n!
(
m+ 1

)(
m+ 1

)
!
(
n−m)! + n!

(
n−m)(

m+1
)
!
(
n−m)!

=
n!
(
m+1

)
+ n!

(
n−m)(

m+ 1
)
!
(
n−m)! =

(
n+1

)
!(

m+ 1
)
!
(
n−m)!

=

(
n+1
m+ 1

)

Beispiel 3.2. (
8
1

)
=

8!
1!7!

=

(
8
7

)
= 8

☼

Die Bezeichnung von
(n
m
)

als Binomialkoeffizienten hängt eng mit der Auflösung
von binomischen Ausdrücken der Form (a+b)n zusammen. Für n= 0,1,2, . . . kann
man (a+b)n explizit angeben:

(a+b)n = an+
(
n
1

)
an−1b1 +

(
n
2

)
an−2b2 + . . .

+

(
n
n

)
a1 bn−1 + bn a,b ∈ R,n ∈ N

=

n∑
i=0

(
n
i

)
an−i bi

Die Binomialkoeffizienten sind die Zahlen des Pascalschen Dreiecks.

Tabelle 3.1: Pascalsche Dreieck

m
n 0 1 2 3 4 5 6 . . . 2n

0 1 20

1 1 1 21

2 1 2 1 22

3 1 3 3 1 23

4 1 4 6 4 1 24

5 1 5 10 10 5 1 25

6 1 6 15 20 15 6 1 26

...
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Die Summe der n-ten Zeile ist die Anzahl aller Kombinationen.

n∑
m=0

(
n
m

)
= 2n

Wieso? Ein Element kann ausgewählt oder nicht ausgewählt werden: A= 1 oder
A = 0. Zwei Elemente können auf 4 verschiedene Weise ausgewählt werden: A =
1,B = 1 oder A = 1,B = 0 oder A = 0,B = 1 oder A = 0,B = 0. 3 Elemente auf 8
usw.

Beispiel 3.3.

(a+b)0 = 1

(a+b)1 =

(
1
0

)
ab0 +

(
1
1

)
a0b

(a+b)2 =

(
2
0

)
a2 b0 +

(
2
1

)
ab+

(
2
2

)
a0 b2

(a+b)3 =

(
3
0

)
a3 b0 +

(
3
1

)
a2b+

(
3
2

)
ab2 +

(
3
3

)
a0b3

☼

Im Folgenden werden drei Klassen von kombinatorischen Fragestellungen be-
handelt:

1. die Bildung von unterscheidbaren Reihenfolgen (Permutationen),
2. die Auswahl verschiedener Elemente, wobei es auf die Reihenfolge der Zie-

hung ankommt (Variationen) und
3. die Ziehung verschiedener Elemente ohne Berücksichtigung der Reihenfolge

(Kombinationen).

3.2.3 Definition des Binomialkoeffizienten in Scilab

In Scilab lässt sich der Binomialkoeffizient einfach durch eine Funktion definieren.

deff(’y=bincoef(n,m)’,’y=factorial(n)/...
(factorial(m)*factorial(n-m))’)

bincoef(6,2)
> 15

3.3 Permutation

Eine Anordnung von n Elementen in einer bestimmten Reihenfolge heißt Permuta-
tion. Die definierende Eigenschaft einer Permutation ist die Reihenfolge, in der die
Elemente angeordnet werden.
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Es ist zu beachten, ob alle n Elemente unterscheidbar sind oder ob sich unter den
n Elementen m identische befinden. Dies wird häufig durch die Differenzierung mit
und ohne Wiederholung ausgedrückt.

3.3.1 Permutation ohne Wiederholung

Bei der Permutation ohne Wiederholung sind alle n Elemente eindeutig identifizier-
bar. Für das erste Element kommen n verschiedene Plazierungsmöglichkeiten in der
Reihenfolge in Betracht. Für das zweite Element kommen nur noch n− 1 Plazie-
rungsmöglichkeiten in Betracht, da bereits ein Platz von dem ersten Element besetzt
ist. Jede Anordnung ist mit jeder anderen kombinierbar, d. h., insgesamt entstehen

P(n) = n! = n× (n− 1)×·· ·× 2×1 mit n ∈ Z+

Permutationen. Die Zahl der Permutationen von n unterscheidbaren Elementen be-
trägt damit: n!

Beispiel 3.4. Vier Sprinter können in 4! = 24 verschiedenen Anordnungen in einer
Staffel laufen. ☼

Beispiel 3.5. Der Vertreter, der 12 Orte zu besuchen hat und unter allen denkbaren
Rundreisen die kürzeste sucht, steht vor der Aufgabe, unter 12! = 479001600 ver-
schiedenen Rundreisen diejenige mit der kürzesten Entfernung finden zu müssen.
Glücklicherweise sind in der Wirklichkeit nie alle Orte direkt miteinander verbun-
den. ☼

3.3.2 Permutation mit Wiederholung

Hier wird angenommen, dass unter n Elementen k Elemente nicht voneinander zu
unterscheiden sind. Die k Elemente sind auf ihren Plätzen jeweils vertauschbar, ohne
dass sich dadurch eine neue Reihenfolge ergibt. Auf diese Weise sind genau

Pw(n,k) = k! = k× (k−1)×·· ·× 2×1

Reihenfolgen identisch. Die Zahl der Permutationen von n Elementen, unter denen k
Elemente identisch sind, beträgt somit:

Pw(n,k) =
n!
k!

= (k+ 1)× (k+ 2)×·· ·× (n−1)×n mit k≤ n ∈ Z+

Beispiel 3.6. Wie viele verschiedene zehnstellige Zahlen lassen sich aus den Ziffern
der Zahl 7 841 673 727 bilden? In der Zahl tritt die Ziffer 7 viermal auf, die übrigen
Ziffern je einmal. Die Permutation der vier «7» sind nicht unterscheidbar, so dass
insgesamt

Pw(10,4) =
10!
4!

= 151200

Zahlen gebildet werden können. ☼
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Gibt es nicht nur eine Gruppe, sondern r Gruppen mit

k1, . . . ,kr

nicht unterscheidbaren Elementen, so existieren

n!
k1! · · ·kr! mit k1, . . . ,kr ∈N∪0

Permutationen. Gilt ferner k1 + . . .+ kr = n, dann wird der obige Koeffizient als
Multinomialkoeffizient bezeichnet.

Beispiel 3.7. In einem Regal sollen 3 Lehrbücher der Ökonomie sowie je 2 Lehr-
bücher der Mathematik und Statistik untergebracht werden. Ohne Berücksichtigung
der Fachgebiete gibt es für die 7 Bücher insgesamt 7! = 5040 Permutationen. Wer-
den die Bücher nur nach Fachgebieten unterschieden, wobei nicht nach Fachgebieten
geordnet werden soll, so erhält man

Pw(7,3,2,2) =
7!

(3!× 2!×2!)
= 5× 6× 7= 210

Permutationen. Sollen die Bücher eines Fachgebiets jeweils zusammenstehen, so
gibt es für die Anordnung der Fachgebiete 3! = 6 Permutationen. ☼

Für r = 2 Gruppen mit k1 = k bzw. k2 = n− k nicht unterscheidbaren Elementen
erhält man

Pw(n,k) =
n!

k!(n− k)! =
(
n
k

)
=C(n,k) mit k≤ n ∈ Z+

Permutationen. Dies ist der Binomialkoeffizient.

Übung 3.1. Sie stehen an der Kasse und müssen genau 4.50e bezahlen. In ihrem
Geldbeutel befinden sich drei 1-Euro-Münzen und drei 50 Cent-Münzen. Sie neh-
men die Münzen nacheinander heraus und legen sie auf den Tisch. Wie viele un-
terschiedliche Möglichkeiten existieren, die Münzen der Reihe nach anzuordnen?

3.4 Variation

Eine Auswahl von m Elementen aus n Elementen unter Berücksichtigung der Rei-
henfolge heißt Variation.

3.4.1 Variation ohne Wiederholung

Kann das gezogene Element nicht wieder ausgewählt werden, dann liegt eine Va-
riation ohne Zurücklegen vor. Bei n Elementen gibt es dann n! Anordnungen (Per-
mutationen). Da aber eine Auswahl von m aus n Elementen betrachtet wird, werden
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nur die ersten m ausgewählten Elemente betrachtet, wobei jedes Element nur einmal
ausgewählt werden darf. Die restlichen n−m Elemente werden nicht beachtet. Da-
her ist jede ihrer (n−m)! Anordnungen hier ohne Bedeutung. Sie müssen aus den n!
Anordnungen herausgerechnet werden. Es sind also

V (n,m) =
n!

(n−m)! = (n−m+ 1)× (n−m+2)×·· ·× n

mit m≤ n ∈ Z+
(3.1)

verschiedene Variationen möglich.
Man kann die Anzahl der Variationen auch so begründen: Das erste Element

kann aus n Elementen ausgewählt werden. Da es nicht noch einmal auftreten kann,
kann das zweite Element daher nur noch aus n− 1 Elementen ausgewählt werden.
Das m-te Element kann dann noch unter n−m+ 1 Elementen ausgewählt werden.
Da die Reihenfolge der Elemente beachtet wird, ist die Anordnung zu permutieren:

V (n,m) = n(n− 1) · · ·(n−m+ 1) mit m≤ n ∈ Z+ (3.2)

Gleichung (3.1) und Gleichung (3.2) liefern das gleiche Ergebnis.

Beispiel 3.8. Aus einer Urne mit 3 Kugeln (rot, blau, grün) sollen zwei Kugeln ge-
zogen werden. Ist zum Beispiel die erste gezogene Kugel rot, so verbleiben für die
zweite Position noch die zwei Kugeln blau und grün.

Tabelle 3.2: Variation ohne Wiederholung
1. Kugel rot blau grün

2. Kugel blau grün rot grün rot blau

Insgesamt können

V (3,2) =
3!

(3− 2)!
= 6

verschiedene Paare gezogen werden. ☼

Beispiel 3.9. Der bereits bekannte Handelsvertreter kann am ersten Tag nur 3 der 13
Orte besuchen. Wie viele Möglichkeiten verschiedener Routenwahlen für den ersten
Tag kann er auswählen? Bei einer Auswahl von 3 Orten aus den insgesamt 13 Orten
unter Berücksichtigung der Reihenfolge ergeben sich

V (13,3) =
13!

(13−3)!
= 1716

Reisemöglichkeiten. ☼
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3.4.2 Variation mit Wiederholung

Wenn das gezogene Element wiederholt ausgewählt werden kann, nach der Ziehung
also zurückgelegt wird, spricht man von einer Variation mit Wiederholung. Ein Ele-
ment darf wiederholt bis maximal m-mal auftreten. Beim ersten Element besteht die
Auswahl aus n Elementen. Da das erste Element auch als zweites zugelassen ist,
besteht für dieses wieder die Auswahl aus n Elementen. Für jedes der m Elemen-
te kommen n Elemente infrage, also sind n Elemente m-mal zu permutieren. Die
Zahl der Variationen von m Elementen aus n Elementen mit Wiederholung beträgt
folglich:

Vw(n,m) = nm mit n,m ∈ N

Beispiel 3.10. Im Dezimalsystem werden zur Zahlendarstellung zehn Ziffern be-
nutzt. Wie viele vierstellige Zahlen sind damit darstellbar? Es können 4 Ziffern zur
Zahlendarstellung variiert werden, wobei Wiederholungen (zum Beispiel 7788) ge-
stattet sind. Es sind somit 104 = 10000 Zahlen darstellbar. Dies sind die Zahlen von
0000 bis 9999. ☼

Übung 3.2. Sie wollen 3 Wochen Urlaub machen und zwar jede Woche in einem
anderen Land. Sie haben sich entschieden, ihren Urlaub im Reisebüro X zu bu-
chen und erhalten dort die Auskunft, Sie könnten jederzeit in 25 Ländern Urlaub
machen, müssten sich dann aber festlegen. Wie viele Möglichkeiten gibt es, Ihren
Urlaub in drei Ländern zu buchen? Eine der Möglichkeiten wäre etwa: zuerst nach
Spanien, dann nach Frankreich und zuletzt nach Italien.

3.5 Kombination

Eine Auswahl von m Elementen aus n Elementen ohne Berücksichtigung der Rei-
henfolge heißt Kombination.

3.5.1 Kombination ohne Wiederholung

Bei Kombinationen kommt es nur auf die Auswahl der Elemente an, nicht auf de-
ren Anordnung. Daher ist die Anzahl der möglichen Kombinationen geringer als bei
der Variation, da die Permutation der m ausgewählten Elemente nicht unterscheidbar
ist; m! Kombinationen sind identisch. Daher entfallen diese und müssen herausge-
rechnet werden. Dies geschieht, indem man die Zahl der Variationen von m aus n
Elementen (dies sind n!

(n−m)! Variationen) durch die Zahl der Permutationen von m
Elementen (dies sind m! Permutationen) dividiert. Die Zahl der Kombinationen von
m Elementen aus n Elementen ohne Wiederholung beträgt also

C(n,m) =
n!

m!(n−m)! =
(
n
m

)
mit m≤ n ∈ Z+

und ist gleich dem Binomialkoeffizienten.
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Der Binomialkoeffizient entspricht einer Permutation mit Wiederholung bei zwei
Gruppen. Bei der Kombination steht die Überlegung der Auswahl von m aus n Ele-
menten im Zentrum. Bei der Permutation ist es die Überlegung der Anordnung von
n Elementen, wobei m und n−m Elemente identisch sind, sich also wiederholen.

Beispiel 3.11. Es sind 6 aus 49 Zahlen (Lotto) in beliebiger Reihenfolge zu ziehen.
Wie viele Kombinationen von 6 Elementen existieren?

C(49,6) =
(

49
6

)
=

49!
6!(49− 6)!

= 13983816

☼

3.5.2 Kombination mit Wiederholung

Die Anzahl der möglichen Ergebnisse ist größer als bei der Kombination ohne Wie-
derholung. Ein Element kann nun bis zum-mal ausgewählt werden. Statt ein Element
zurückzulegen, kann man sich die n Elemente auch um die Zahl der Wiederholun-
gen ergänzt denken. Die n Elemente werden also um m− 1 Elemente, von denen
jedes für eine Wiederholung steht, ergänzt. Dabei werden nur m− 1 Elemente er-
gänzt, weil eine Position durch die erste Auswahl festgelegt ist; außerdem können
nur m− 1 Wiederholungen erfolgen. Damit ist die Anzahl von Kombinationen mit
m aus n Elementen mit Wiederholung gleich der Anzahl der Kombinationen von m
Elementen aus n+m−1 Elementen ohne Wiederholung.

Die Zahl der Kombinationen von m Elementen aus n Elementen mit Wiederho-
lung beträgt:

Cw(n,m) =
(
n+m−1

m

)
=

(n+m− 1)!
m!(n− 1)!

mit m≤ n ∈ Z+

Beispiel 3.12. Stellt man sich eine Lottoziehung vor, bei der die gezogenen Kugeln
wieder zurückgelegt werden und somit erneut gezogen werden können, dann liegt
der Fall der Kombination mit Wiederholung vor.

Cw(49,6) =
(

49+ 6−1
6

)
=

(
54
6

)
=

54!
6!(49−1)!

= 25827165

Es gibt hier fast doppelt so viele Kombinationen wie beim normalen Lottospiel. ☼

Tabelle 3.3: Kombinatorik
Wiederholung

mit ohne

mit Reihenfolge nm n!
(n−m)!

ohne Reihenfolge
(n+m−1

m
) (n

m
)

Die Übersicht in Tabelle 3.3 zeigt die verschiedenen Möglichkeiten auf, aus n
Elementen m zu ziehen.
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Beispiel 3.13. Ein Experiment mit 2 Würfeln liefert Ergebnisse der Form (i, j), wo-
bei i die Augenzahl des ersten und j die Augenzahl des zweiten Würfels ist. Folgende
Ergebnisse sind möglich:

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

1. Variation mit Wiederholung: Soll die Reihenfolge berücksichtigt werden, so
muss das Wurfergebnis (3,5) und (5,3) unterschieden werden und eine Wie-
derholung möglich sein. Im Beispiel (2,2) gibt es

Vw(6,2) = 62 = 36

Ergebnisse.
2. Variation ohne Wiederholung: Wird die Reihenfolge berücksichtigt, eine Wie-

derholung aber ausgeschlossen, so entfallen die 6 Ergebnisse: (1,1), . . . ,(6,6).
Es existieren

V (6,2) = 36−6 = 30 =
6!

(6−2)!
verschiedene Ergebnisse.

3. Kombination ohne Wiederholung: Soll die Reihenfolge nicht berücksichtigt
werden und eine Wiederholung ausgeschlossen sein, so entfallen gegenüber 2.
die Hälfte der Ergebnisse. Es sind alle Paare (i, j) mit i< j und es verbleiben
noch

C(6,2) =
30
2

= 15 =

(
6
2

)
Ergebnisse.

4. Kombination mit Wiederholung: Soll die Reihenfolge nicht berücksichtigt
werden, aber eine Wiederholung zulässig sein, so kommen gegenüber 3. wie-
der 6 Ergebnisse (1,1), . . . ,(6,6) hinzu. Es existieren

Cw(6,2) = 15+ 6 = 21 =

(
6+ 2−1

2

)

Ergebnisse.

☼

Die Bestimmung der Anzahl der Möglichkeiten ist nicht immer unmittelbar mit
den angegebenen Formeln möglich. Mitunter müssen die Formeln miteinander kom-
biniert werden. Werden die Fälle durch ein logisches UND miteinander verknüpft,
so ist die Anzahl der Möglichkeiten miteinander zu multiplizieren.
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Beispiel 3.14. Aus 10 verschiedenen Spielkarten sollen 2 Spieler je 4 Karten erhal-
ten. Für den ersten Spieler gibt es dann

C(10,4) =
(

10
4

)
= 210

Möglichkeiten. Für den zweiten Spieler verbleiben dann noch 6 Karten und es gibt

C(6,4) =
(

6
4

)
= 15

Möglichkeiten der Kartenzuteilung. Insgesamt gibt es dann 210 Möglichkeiten für
den ersten Spieler UND 15 Möglichkeiten für den zweiten Spieler, also 210×15 =
3150 Möglichkeiten der Kartenausteilung insgesamt. ☼

Werden die Fälle durch ein logisches ODER verknüpft, so ist die Anzahl der
Möglichkeiten zu addieren.

Beispiel 3.15. In einer Bibliothek sollen Bücher mit einer ODER mit zwei aus 5
Farben signiert werden. Wenn die Reihenfolge und eine Wiederholung der Farben
zulässig ist, dann existieren

Vw(5,1)+Vw(5,2) = 51 +52 = 25

Möglichkeiten, die Bücher zu signieren. ☼

Übung 3.3. Drei Kartenspieler sitzen in einer festen Reihenfolge; der erste Spieler
verteilt die Karten. Wie viele verschiedene Anfangssituationen sind beim Skatspiel
möglich (32 verschiedene Karten, 3 Spieler erhalten je 10 Karten, 2 Karten liegen
im Skat)?

Übung 3.4. Ein Student muss in einer Prüfung 8 von 12 Fragen beantworten, davon
mindestens 3 aus den ersten 5 Fragen. Wie viele verschiedene zulässige Antwort-
möglichkeiten besitzt der Student?

Übung 3.5. Wie viele verschiedene Ziehungen gibt es beim Zahlenlotto 6 aus 49
mit 5, 4 und 3 Richtigen?

Übung 3.6. An einer Feier nehmen 20 Personen teil. Plötzlich geht das Bier aus.
Um hinreichenden Nachschub zu besorgen, werden 3 Leute ausgewählt, weil 3
Personen notwendig sind, um das neue Fass zu transportieren. Wie viele unter-
schiedliche Möglichkeiten gibt es, 3 Leute zum Bierholen zu schicken?

Übung 3.7. Sie gehen mit 3 Kommilitonen in die Mensa. Dort stehen 5 verschie-
dene Menüs zur Auswahl. Während sich die Kommilitonen bereits auf die Plätze
setzen, erhalten Sie den Auftrag, für sich und für die 3 Kommilitonen jeweils ir-
gendein Essen zu besorgen. Wie viele unterschiedliche Möglichkeiten gibt es ins-
gesamt, die Menüs auszuwählen.
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Übung 3.8. Ein Passwort besteht aus zwei Buchstaben und vier Ziffern, wobei die
Ziffern, aber nicht die Buchstaben mehrfach auftreten dürfen. Klein- und Groß-
schreibung ist als signifikant anzusehen. Wie viele Passwörter können Sie bilden?

3.6 Fazit

In der Kombinatorik wird das Abzählen von verschiedenen Anordnungen berechnet.
Die Permutation ist eine zentrale Definition, die die Anordnung in einer bestimm-
ten Reihenfolge berechnet. Sind alle Elemente identifizierbar, liegt eine Permutation
ohne Wiederholung vor. Sind hingegen einige Elemente nicht voneinander unter-
scheidbar, dann liegt eine Permutation mit Wiederholung vor.

Eine Variation liegt vor, wenn bei der Auswahl der Elemente die Reihenfolge
der Züge unterscheidbar ist. Eine Kombination liegt hingegen vor, wenn die Rei-
henfolge der Züge ohne Bedeutung ist. Die Kombinatorik wird zur Berechnung von
Wahrscheinlichkeiten eingesetzt.
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4.1 Vorbemerkung

Vektoren, wie auch Matrizen, sind Konstrukte, die Zahlen zusammenfassen, damit
bestimmte Rechnungen einfacher werden. In einem Vektor bleibt jede Einzelgröße
erhalten. Der Vektor ist eine kompakte Schreibweise für ein Zahlenfeld. Aus dieser
Notation haben sich eigenständige Rechenanweisungen entwickelt.

In den folgenden Abschnitten werden grundlegende Operationen mit Vektoren
gezeigt. Unmittelbar darauf aufbauend folgen die Kapitel 5 Matrizen, Kapitel 6 li-
neare Gleichungssysteme und Kapitel 7 lineare Optimierung. Sie stellen zusam-
men einen Teil der linearen Algebra dar.

Die lineare Algebra wird heute in der Wirtschaftspraxis sehr häufig angewendet.
So wird sie beispielsweise mit der Matrizenrechnung in der Kostenrechnung oder im
Controlling eingesetzt. Lineare Gleichungssysteme werden zur Beschreibung von
Input-Output-Beziehungen verwendet und die lineare Optimierung dient zur Lösung
unterschiedlicher Entscheidungsprobleme. Bei all den genannten Problemen werden
nur Variablen in der ersten Potenz verwendet, woraus sich das Adjektiv linear ab-
leitet. Jedoch werden hier nicht nur eine Gleichung und eine Variable betrachtet,

W. Kohn, R. Öztürk, Mathematik für Ökonomen, Springer-Lehrbuch, 
DOI 10.1007/978-3-642-28575-2_4, © Springer-Verlag Berlin Heidelberg 2012
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sondern ein System von Gleichungen mit vielen Variablen. So können unterschied-
liche wirtschaftliche Probleme – zumindest näherungsweise – beschrieben werden.
Denn kleine Wertänderungen können häufig durch eine lineare Beziehung approxi-
miert werden.

Der Begriff «lineare Algebra» ist eine lateinisch-arabische Wortbildung. Das Ad-
jektiv «linear» kommt aus dem lateinischen und bedeutet geradlinig, linienförmig,
eindimensional. Dies bezieht sich auf die Variablen, die nur in der ersten Potenz auf-
treten. Bei der folgenden Gleichung handelt es sich um eine einfache lineare Glei-
chung.

y= ax+b

Das Wort «Algebra» stammt aus dem Arabischen (al-dschabr) und bedeutet «die
Einrenkung gebrochener Teile». Dies bezieht sich natürlich nicht auf Brüche im me-
dizinischen Sinne, sondern auf mathematische Brüche. Mit Einrenkung ist hier die
Auflösung einer Gleichung gemeint.

3
4
y= x ⇒ 3y= 4x

Einige geläufige Bezeichnungen in der Vektoralgebra:

a,b,. . . Vektor
ai,bi,. . . Vektorkomponente
′ Transpositionssymbol

[ ] Klammern für Vektorkomponente
λ Koeffizient (sprich: lambda)
‖a‖ Norm oder absoluter Betrag eines Vektors

4.2 Eigenschaften von Vektoren

Die Zahlen a1,a2, . . . ,an werden in einem Vektor durch folgende Notation darge-
stellt:

a=

⎡
⎢⎢⎢⎣
a1
a2
...
an

⎤
⎥⎥⎥⎦

Die Einzelgröße ai wird als i-te Komponente des Vektors a bezeichnet. Der Vek-
tor selbst wird durch Fettdruck eines kleinen lateinischen Buchstabens gekennzeich-
net. Die Anzahl der Komponenten bestimmt dieDimension des Vektors. Die Zusam-
menfassung der Komponenten in einem Vektor impliziert eine Ordnung, die durch
die Indizierung der Komponenten eindeutig ist. Die Komponenten eines Vektors sind
Einzelgrößen, die auch als Skalar bezeichnet werden.

Wird die Anordnung der Komponenten in einem Vektor spaltenweise (also unter-
einander) vorgenommen, so bezeichnet man einen solchen Vektor als Spaltenvektor.
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Im Gegensatz dazu werden bei einem Zeilenvektor die Komponenten in einer Zeile
angeordnet.

b=
[
a1 a2 . . . an

]
Aus jedem Spaltenvektor kann durch Transposition ein Zeilenvektor erzeugt

werden. Die Transposition wird durch ein ′ dargestellt. Achtung: In der Differen-
tialrechnung hat dieses Symbol eine andere Bedeutung! Daher wird manchmal die
Transposition auch durch T beschrieben, wenn die Gefahr einer Verwechselung be-
steht.

Ein transponierter Vektor unterscheidet sich lediglich durch die Anordnung der
Komponenten von dem nicht transponierten Vektor.

a′ = b b′ = a

Beispiel 4.1.

a=

⎡
⎣0

1
2

⎤
⎦⇒ a′ =

[
0 1 2

]⇒ (
a′
)′
=

⎡
⎣0

1
2

⎤
⎦

☼

Vektoren lassen sich vergleichen und verknüpfen. Es dürfen aber nur Vektoren
gleichen Inhalts und gleicher Dimension miteinander in Beziehung gesetzt werden.
Die Ordnungsrelationen dürfen bei Vektoren nicht auf einzelne Komponenten be-
schränkt werden, sondern sie müssen für alle Komponenten gleichzeitig gültig sein.
Daher sind zwei n-dimensionale Vektoren a und b nur gleich, wenn sie komponen-
tenweise gleich sind.

a= b⇔ ai = bi für alle i= 1,2, . . . ,n

Analog zur Gleichheit sind auch die Ordnungsrelationen <,>,≤,≥ anzuwen-
den.

Beispiel 4.2.

a=

⎡
⎣1

0
4

⎤
⎦ b=

⎡
⎣2

1
3

⎤
⎦ c=

⎡
⎣−1

1
1

⎤
⎦ d=

⎡
⎣−1
−1

1

⎤
⎦ e=

⎡
⎣2

1
3

⎤
⎦

.
Es gelten unter anderem folgende Beziehungen:

a> d c≤ b e= b e≥ c

☼
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4.3 Operationen mit Vektoren

Beim Rechnen mit Vektoren unterscheidet man solche Rechenoperationen, bei denen
die Dimension des Vektors erhalten bleibt, und solche, bei denen er seine Dimensi-
on verändert. Die Addition (Subtraktion) von Vektoren sind dimensionserhaltende
Operationen. Ebenso erhält die Multiplikation eines Vektors mit einem Skalar die
Dimension. Hingegen führt das skalare Produkt (auch inneres Produkt) zweier Vek-
toren zu einer Dimensionsveränderung.

4.3.1 Addition (Subtraktion) von Vektoren

Bei der Addition (Subtraktion) von zwei Vektoren wird jede Komponente des ersten
Vektors mit der entsprechenden Komponente des zweiten Vektors addiert (subtra-
hiert). Es ist leicht einzusehen, dass nur Vektoren gleicher Dimension addiert (sub-
rathiert) werden können.

c= a±b

=

⎡
⎢⎢⎢⎣
a1
a2
...
an

⎤
⎥⎥⎥⎦±

⎡
⎢⎢⎢⎣
b1
b2
...
bn

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣
a1 ±b1
a2 ±b2

...
an±bn

⎤
⎥⎥⎥⎦

Beispiel 4.3.

c=

⎡
⎣0

1
2

⎤
⎦+

⎡
⎣2

1
3

⎤
⎦=

⎡
⎣2

2
5

⎤
⎦

☼

4.3.2 Skalares Vielfaches eines Vektors

Die Multiplikation eines Vektors mit einem Skalar erfolgt, indem man alle Kompo-
nenten des Vektors mit dem Skalar multipliziert.

b= λ × a mit λ ∈ R

= λ ×

⎡
⎢⎢⎢⎣
a1
a2
...
an

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

λ ×a1
λ ×a2

...
λ ×an

⎤
⎥⎥⎥⎦

Ist λ = 0, so entsteht ein Nullvektor, ein Vektor mit Nullen. Mit dem Faktor 1
λ

werden die Komponenten durch den Faktor λ geteilt.
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Beispiel 4.4. Für λ = 0.5 und a aus Beispiel 4.1 erhält man:

b= 0.5

⎡
⎣0

1
2

⎤
⎦=

⎡
⎣ 0

0.5
1

⎤
⎦

☼

4.4 Geometrische Darstellung von Vektoren

Die Menge aller n-dimensionalen Vektoren bilden einen linearen Vektorraum Rn.
Eine geometrische Darstellung ist nur bis zur Dimension drei möglich.

Beispiel 4.5. Es sind die beiden Vektoren

a1 =

⎡
⎣1

3
3

⎤
⎦ und a2 =

⎡
⎣2

0
1

⎤
⎦

gegeben. Jede Komponente der Vektoren beschreibt dabei eine Koordinate im Raum.
Abbildung 4.1 zeigt die grafische Darstellung dieser beiden Vektoren. ☼

4.5 Linearkombinationen und lineare Abhängigkeit von Vektoren

Als Linearkombination wird ganz allgemein die Addition von Größen mit skalaren
Gewichtungsfaktoren verstanden. Bei Vektoren bedeutet dies, dass man einen Vektor
aus einer Summe von Vektoren erzeugt, die jeweils mit einem Skalar λi ∈R gewich-
tet sind.

b= λ1a1 +λ2a2 + . . .+λnan =
n∑
i=1

λi an mit λ ∈R (4.1)

Mit ai wird der i-te Vektor bezeichnet.

Beispiel 4.6. Mit den beiden Vektoren aus Beispiel 4.5 wird eine Linearkombination
gebildet. Die beiden Gewichtungsfaktoren sollen

λ1 =
3
4

und λ2 =
1
2

sein. Dann entsteht folgender neuer Vektor,

b=
3
4
a1 +

1
2
a2 =

⎡
⎣1.75

2.25
2.75

⎤
⎦ ,

der linear abhängig von a1 und a2 ist. Der Vektor b ist als gestrichelte Linie in Abb.
4.1 dargestellt. ☼

Eine Linearkombination von n Vektoren erzeugt einen von n Vektoren linear ab-
hängigen Vektor. Die lineare Abhängigkeit von Vektoren bestimmt die Lösbarkeit
linearer Gleichungssysteme.
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Abb. 4.1: Dreidimensionaler Vektorraum mit zwei Vektoren

4.6 Linear unabhängige Vektoren und Basisvektoren

Lineare Unabhängigkeit kann man einfach als Umkehrung der linearen Abhängigkeit
definieren. Dies bedeutet, dass keine Linearfaktoren λi �= 0 existieren, also müssen
alle λi = 0 (i= 1, . . . ,n) sein. Somit ist dann in der Gleichung (4.1) der Vektor b ein
Nullvektor. Auf linear unabhängige Vektoren kann man also nur schließen, wenn
die Gleichung

λ1a1 +λ2a2 + . . .+λnan = 0 mit ai �= 0 für i= 1, . . . ,n

für die Linearfaktoren
λ1 = λ2 = . . .= λn = 0

erfüllt ist. Wäre nur ein λi �= 0, so wäre die Gleichung nicht mehr erfüllt und b wäre
dann eine Linearkombination von ai.

Beispiel 4.7. Der Nachweis, dass die drei Vektoren aus den Beispielen 4.5 und 4.6
linear abhängig sind, ist dann wie folgt. Aus der Definitionsgleichung

λ1

⎡
⎣1

3
3

⎤
⎦+λ2

⎡
⎣2

0
1

⎤
⎦+λ3

⎡
⎣1.75

2.25
2.75

⎤
⎦=

⎡
⎣0

0
0

⎤
⎦
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erhalten wir das Gleichungssystem:

λ1 + 2λ2 + 1.75λ3 = 0
3λ1 + 2.25λ3 = 0

3λ1 +λ2 + 2.75λ3 = 0

Durch Auflösen und Einsetzen wird dann die folgende Lösung erzeugt:

λ1 =−0.75λ3

λ2 =−0.5λ3

Es ist nicht möglich λi eindeutig zu bestimmen. Es ist aber deutlich, dass λi �= 0
möglich ist, um das Gleichungssystem zu lösen. Eine Möglichkeit ist λ3 =−1. Dann
erhält man für λ1 = 0.75 und λ2 = 0.5, wie in Beispiel 4.6. Die drei Vektoren sind
also linear abhängig. ☼

Beispiel 4.8. Nun werden die zwei Vektoren a1 und a2 auf lineare Unabhängigkeit
geprüft.

λ1

⎡
⎣1

3
3

⎤
⎦+λ2

⎡
⎣2

0
1

⎤
⎦= 0

Das Auflösen des Gleichungssystems führt zu den Gleichungen:

λ1 + 2λ2 = 0
3λ1 = 0

3λ1 +λ2 = 0

Es ist sofort zu erkennen, dass λ1 = 0 ist. Daraus ergibt sich unmittelbar, dass auch
λ2 = 0 sein muss, damit das Gleichungssystem erfüllt ist. Es existiert also nur die
Lösung λ1 = λ2 = 0. Die beiden Vektoren a1 und a2 sind linear unabhängig. ☼

Linear unabhängige Vektoren, die den Vektorraum erzeugen, bezeichnet man als
Basisvektoren. Ein Basisvektor der Form

ei =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
1
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
← i-te Position

wird Einheitsvektor genannt und häufig mit dem Buchstaben e bezeichnet.
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Den absoluten Betrag oderNorm eines Vektors a∈Rn berechnet man mit einer
Verallgemeinerung des Satzes des Pythagoras. Er ist ein Skalar.

‖a‖=
√
a2

1 +a
2
2 + . . .+a2

n

Die Norm wird als Länge des Vektors interpretiert. Im R2 und R3 ist dies anschau-
lich. Wird ein Vektor mit dem Kehrwert seines Betrags multipliziert,

1
‖a‖ a=

⎡
⎢⎢⎢⎢⎣
a1
‖a‖
a2
‖a‖
...
an
‖a‖

⎤
⎥⎥⎥⎥⎦ ,

so normiert man den Vektor. Er besitzt dann den Betrag bzw. die Norm Eins und
wird als normiert bezeichnet.

Die Norm des Einheitsvektors ist stets Eins. Definitionsgemäß stehen die Ein-
heitsvektoren senkrecht aufeinander. Man sagt, die Einheitsvektoren sind orthogo-
nal und normiert oder in Kurzform orthonormiert. Die Einheitsvektoren bilden
somit ein orthonormiertes Vektorsystem.

Übung 4.1. Es sind die drei Vektoren

a1 =

⎡
⎣1

0
1

⎤
⎦ a2 =

⎡
⎣ 0
−1

1

⎤
⎦ a3 =

⎡
⎣−1

1
1

⎤
⎦

gegeben, die linear unabhängig sind. Überprüfen Sie dies. Der Vektor

b=

⎡
⎣ 2

4
−2

⎤
⎦

soll als Linearkombination der obigen Basisvektoren dargestellt werden. Berech-
nen Sie eine Linearkombination.

4.7 Skalarprodukt (inneres Produkt)

Die Addition zweier Vektoren und die Multiplikation eines Vektors mit einem Ska-
lar erhalten die Dimension des Vektors. Hingegen wird mit dem Skalarprodukt eine
Operation definiert, die als Ergebnis einen Skalar hat.

Beispiel 4.9. Ein Unternehmen setzt zur Herstellung eines Produkts verschiedene
Produktionsfaktoren ein. Die Angaben in Tabelle 4.1 beziehen sich auf eine Men-
geneinheit des Produkts.
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Tabelle 4.1: Faktoren, Mengen und Faktorpreise
Faktor Menge Dimension Faktorpreis

Faktor 1 100.5 kg 15.50 e/kg
Faktor 2 20.4 � 0.25 e/�
Faktor 3 5.2 h 152.00 e/h
Arbeit 7.8 Mh 65.20 e/Mh

Die nahe liegende Frage, wie viel die Herstellung einer Mengeneinheit des Pro-
dukts kostet, ist einfach zu beantworten, denn die Gesamtkosten sind gleich der Pro-
duktsumme der Mengen mal den Preisen.

k = 100.5×15.50+20.4×0.25+5.2×152.00+7.8×65.20= 2 861.81e

Die Angaben lassen sich in einem Mengenvektorm und einen Preisvektor p zu-
sammenfassen, wobei sich die jeweils i-te Mengenkomponente auf den i-ten Faktor
beziehen muss.

m=

⎡
⎢⎢⎣

100.5
20.4
5.2
7.8

⎤
⎥⎥⎦ p=

⎡
⎢⎢⎣

15.50
0.25

152.00
65.20

⎤
⎥⎥⎦

Die gesuchten Gesamtkosten ergeben sich dann durch komponentenweise Multipli-
kation und Summenbildung.

k =
4∑
i=1

mi pi = 2 861.81e (4.2)

☼

Die Operation in (4.2) wird als Skalarprodukt oder als skalare Multiplikation
zweier Vektoren bezeichnet. Das Ergebnis des Skalarprodukts ist immer eine reelle
Zahl. Man verwendet für eine kompakte Schreibweise hier gerne die Transpositi-
on, um die Produktsumme darzustellen. In der Matrixrechnung erweist sich diese
Schreibweise als nützlich.

n∑
i=1

ai bi = a′b

Übrigens kann mit dem Skalarprodukt auch eine lineare Gleichung beschrieben wer-
den.

a1 x1 + a2 x2 + . . .+an xn = b⎡
⎢⎢⎢⎣
a1
a2
...
an

⎤
⎥⎥⎥⎦
′⎡⎢⎢⎢⎣
x1
x2
...
xn

⎤
⎥⎥⎥⎦= b

a′ x= b
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Aus der Definition des skalaren Produkts gehen folgende Rechenregeln hervor:

a′b= b′ a=
(
a′b

)′ Kommutativgesetz
aber a′b �= ba′
(a±b)′ c= (a′ ±b′)c

= a′ c±b′c
a′(b± c) = a′b± a′ c

Distributivgesetz

Beispiel 4.10. Das innere Produkt der beiden Vektoren

a=

⎡
⎢⎢⎣
−1

2
0
4

⎤
⎥⎥⎦ b=

⎡
⎢⎢⎣

3
−2

4
7

⎤
⎥⎥⎦

beträgt:

a′b=
[−1 2 0 4

]
⎡
⎢⎢⎣

3
−2

4
7

⎤
⎥⎥⎦= 21

b′a=
[
3 −2 4 7

]
⎡
⎢⎢⎣
−1

2
0
4

⎤
⎥⎥⎦= 21

Wird der Vektor

c=

⎡
⎢⎢⎣

0
1
0
1

⎤
⎥⎥⎦

mit dem inneren Produkt a′b multipliziert, so ergibt sich wieder ein Vektor.

(a′b)c= 21

⎡
⎢⎢⎣

0
1
0
1

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

0
21
0

21

⎤
⎥⎥⎦

☼

Ist das Skalarprodukt zweier Vektoren Null, so stehen die Vektoren ortho-
gonal (senkrecht) zueinander. Die Vektoren sind dann linear unabhängig. Damit
ist eine leichte Überprüfung auf lineare Unabhängigkeit von Vektoren möglich. Ei-
ne Erklärung für diese Eigenschaft erfordert eine geometrische Darstellung, auf die
hier verzichtet wird. Aber nicht alle linear unabhängigen Vektoren sind orthogonal
zueinander!
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Beispiel 4.11. [−2 4
][−2

−1

]
= 4−4 = 0

Die beiden Vektoren sind orthogonal zueinander und daher auch linear unabhängig.
Hingegen sind die beiden Vektoren aus Beispiel 4.8 linear unabhängig, aber nicht
orthogonal zueinander, denn deren Skalarprodukt ist nicht Null. ☼

Ist das Skalarprodukt gleich Null, so gilt nicht wie bei der Multiplikation, dass
dann mindestens einer der beiden Faktoren gleich Null ist.

Übung 4.2. Ein Unternehmen produziert den Output x von n Gütern. Dazu ver-
wendet es den Input v. Das Nettoergebnis b ergibt sich als Differenz von Output
und Input. Die Preise für die n Güter sind im Vektor p erfasst.
Geben Sie in Vektorgleichungen die

1. Einnahmen
2. Kosten und
3. Gewinn

an.

Übung 4.3. Für welche Werte von x ist das innere Produkt von

a=

⎡
⎣ x
x− 1

3

⎤
⎦ b=

⎡
⎣ xx

3x

⎤
⎦

Null? Welche Eigenschaft weisen dann die Vektoren auf?

4.8 Vektoren in Scilab

Ein (Zeilen-) Vektor wird in Scilab durch eckige Klammern definiert. Der Vektor

a=
[
2 3 4

]
a = [2,3,4]

2 3 4

Die Transposition erfolgt durch ein angefügtes Apostroph an den Variablenna-
men.

a’

2
3
4
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Soll ein Vektor direkt als Spaltenvektor eingegeben werden, so sind die einzelnen
Zahlen durch ein Semikolon zu trennen.

a = [2;3;4]

2
3
4

Die Vektoroperationen können mit den gewohnten Befehlen +,−,× durchge-
führt werden.

b = [5,6,7]
a + b’

7
9
11

b * a -> 56

4.9 Fazit

Vektoren sind eindimensionale Zahlenfelder. Sie eignen sich zur Beschreibung von
linearen Zusammenhängen. Die Grundrechenarten können – bis auf die Division –
auf Vektoren übertragen werden. Darüber hinaus muss für die Multiplikation von
Vektoren das innere Produkt oder das so genannte Skalarprodukt definiert werden,
das als Ergebnis einen Skalar besitzt. Eine wichtige Definition bei Vektoren ist die
Unabhängigkeit von Vektoren, die später Aussagen zulassen, ob gegebene lineare
Gleichungssysteme eine Lösung besitzen oder nicht.
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5.1 Vorbemerkung

In diesem Kapitel wird das Konstrukt des Vektors erweitert und die Matrix einge-
führt. In der Darstellung wird sich auf die für Ökonomen wichtigen Eigenschaften
und Operationen der Matrizenalgebra beschränkt. Mit der Matrizenrechnung kann
dann eine Materialverflechtung eines mehrstufigen Produktionsprozesses einfach be-
rechnet werden.

Einige geläufige Bezeichnungen in der Matrizenalgebra:

A,B,. . . Matrix
ai j,bi j,. . . Matrixelement
I Einheitsmatrix

5.2 Einfache Matrizen

Fasst man mehrere gleichdimensionale, sachlogisch verwandte Vektoren zusammen,
so entsteht ein zweidimensionales, rechteckiges Zahlenfeld, das alsMatrix bezeich-
net wird.

W. Kohn, R. Öztürk, Mathematik für Ökonomen, Springer-Lehrbuch, 
DOI 10.1007/978-3-642-28575-2_5, © Springer-Verlag Berlin Heidelberg 2012



64 5 Matrizen

A=

⎡
⎢⎢⎢⎣
a11 a12 . . . a1m
a21 a22 . . . a2m

...
... ai j

...
an1 an2 . . . anm

⎤
⎥⎥⎥⎦

Die Matrix wird auch als ein n×m Tupel bezeichnet. Sie besitzt n Zeilen undm Spal-
ten. Ihre Dimension ist daher n×m. Eine Matrix wird im Folgenden durch Fettdruck
eines großen lateinischen Buchstabens gekennzeichnet.

Die Matrix ist eine Erweiterung eines Vektors. Hieraus ergibt sich, dass alle Re-
chenoperationen zwischen Vektoren auch für Matrizen gelten.

Zwei Matrizen sind nur gleich, wenn alle Elemente der einen Matrix gleich der
der anderen Matrix sind.

A= B⇔ ai j = bi j für alle i= 1, . . . ,n; j = 1, . . . ,m

Analog zur Gleichheit sind auch die Ordnungsrelationen <,>,≤,≥ definiert.
Die Transposition einerMatrix erfolgt durch Vertauschen von Zeilen und Spal-

ten bzw. durch Spiegelung der Elemente an der Hauptdiagonalen. Das Ergebnis der
Transposition wird transponierte Matrix genannt und mit A′ bezeichnet.

A=

⎡
⎢⎢⎢⎣
a11 a12 . . . a1m
a21 a22 . . . a2m

...
...

. . .
...

an1 an2 . . . anm

⎤
⎥⎥⎥⎦ ⇒ A′ =

⎡
⎢⎢⎢⎣
a11 a21 . . . an1
a12 a22 . . . an2

...
...

. . .
...

a1m a2m . . . anm

⎤
⎥⎥⎥⎦

5.3 Spezielle Matrizen

Besitzt eine Matrix A die gleiche Anzahl von Zeilen und Spalten, so wird die Ma-
trix als quadratisch bezeichnet. In der Matrix werden die Koeffizienten, die auf der
Linie von links oben (a11) nach rechts unten (ann) liegen alsHauptdiagnale bezeich-
net. Die Nebendiagonale verläuft von rechts oben nach links unten. Verschiebt man
die Hauptdiagonale nach rechts oder unten, so erhält man Linien, die man ebenfalls
Nebendiagonalen nennt. Eine nach rechts verschobene Nebendiagonale nennt man
obere Nebendiagonale, eine nach unten verschobene nennt man untere Nebendiago-
nale.

A=

⎡
⎢⎢⎢⎣
a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

⎤
⎥⎥⎥⎦

Sind in einer quadratischen Matrix nur die Elemente auf der Diagonalen ungleich
Null, so wird diese Matrix als Diagonalmatrix bezeichnet.
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D=

⎡
⎢⎢⎢⎢⎣
d11 0 . . . 0

0 d22
...

...
. . . 0

0 . . . 0 dnn

⎤
⎥⎥⎥⎥⎦

Beispiel 5.1.

D=

⎡
⎣2 0 0

0 1 0
0 0 −4

⎤
⎦

☼

Der Operator diag bewirkt die Erzeugung einer Diagonalmatrix aus einem Vek-
tor.

a=
[

2
3

]
⇒ diaga=

[
2 0
0 3

]
= A

Wird der Operator diag hingegen auf eine Matrix angewendet liefert er die Haupt-
diagonalelemente der quadratischen Matrix

diagA=

[
2
3

]
= a

Eine Diagonalmatrix, bei der alle Diagonalkoeffizienten dii = 1 sind, heißt Ein-
heitsmatrix. Sie setzt sich aus Einheitsvektoren zusammen. Sie wird häufig mit I
bezeichnet.

I=

⎡
⎢⎢⎢⎢⎣

1 0 . . . 0

0 1
...

...
. . . 0

0 . . . 0 1

⎤
⎥⎥⎥⎥⎦

Eine Matrix wird symmetrisch genannt, wenn sie gleich ihrer Transponierten
ist.

A= A′

Beispiel 5.2.

A=

⎡
⎣ 2 −1 3
−1 7 −2

3 −2 4

⎤
⎦ ⇔ A′ =

⎡
⎣ 2 −1 3
−1 7 −2

3 −2 4

⎤
⎦

☼

Eine spezielle Form einer symmetrischen Matrix ist die Diagonalmatrix.
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5.4 Operationen mit Matrizen

Operationen von Matrizen – wie auch schon bei Vektoren – können nur unter be-
stimmten geeigneten Voraussetzungen vorgenommen werden.

5.4.1 Addition (Subtraktion) von Matrizen

Zur Addition (Subtraktion) zweier Matrizen ist es notwendig, dass die Matrizen die
gleiche Anzahl von Zeilen und Spalten besitzen. Die Addition (Subtraktion) zweier
Matrizen A und B erfolgt, indem ihre entsprechenden Matrixelemente addiert (sub-
trahiert) werden.

A±B= C ⇔ ai j± bi j = ci j für alle i, j

Beispiel 5.3. [
1 3
2 4

]
+

[
2 3
0 4

]
=

[
3 6
2 8

]
[

1 3
2 4

]
−
[

2 3
0 4

]
=

[−1 0
2 0

]
☼

Aus der Definition der Addition (Subtraktion) von Matrizen ergeben sich unmit-
telbar die folgenden Rechenregeln.

A+B= B+A
A−B=−B+A Kommutativgesetz

(A+B)±C= A+(B±C)
(A−B)+C= A− (B−C) Assoziativgesetz

(A±B)′ = A′ ±B′ Transposition

5.4.2 Multiplikation einer Matrix mit einem skalaren Faktor

Eine Matrix wird mit einem skalaren Faktor multipliziert, indem jedes einzelne Ele-
ment der Matrix mit dem Faktor multipliziert wird.

C= λ A= λ

⎡
⎢⎣a11 . . . a1m

...
. . .

...
an1 . . . anm

⎤
⎥⎦=

⎡
⎢⎣λ a11 . . . λ a1m

...
. . .

...
λ an1 . . . λ anm

⎤
⎥⎦

Rechenregeln:

λ A= Aλ Kommutativgesetz
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λ1 (λ2A) = (λ1 λ2)A Assoziativgesetz
(λ1 ±λ2)A= λ1A±λ2A

λ (A±B) = λ A±λ B
Distributivgesetz

5.4.3 Multiplikation von Matrizen

Die Multiplikation von Matrizen ist analog zu dem Skalarprodukt der Vektoren
definiert. Es sind die Zeilen der ersten Matrix mit den Spalten der zweiten Matrix
durch eine Produktsumme zu einem Ergebniselement zu berechnen. Dazu muss die
linke Matrix A der Dimension n×k (n Zeilen, k Spalten) und die rechte Matrix B der
Dimension k×m (k Zeilen, m Spalten) sein. Das Produkt der beiden Matrizen ergibt
die Matrix C der Dimension n×m.

C=

⎡
⎢⎣a11 . . . a1k

...
. . .

...
an1 . . . ank

⎤
⎥⎦
⎡
⎢⎣b11 . . . b1m

...
. . .

...
bk1 . . . bkm

⎤
⎥⎦=

⎡
⎢⎣
∑k
h=1 a1h bh1 . . .

∑k
h=1a1h bhm

...
. . .

...∑k
h=1 anh bh1 . . .

∑k
h=1anh bhm

⎤
⎥⎦

Beispiel 5.4. Die beiden Matrizen

A=

⎡
⎣ 1 4

2 5
3 6

⎤
⎦ B=

[
2 3
0 4

]

werden wie folgt miteinander multipliziert.

C=

⎡
⎣ 1 4

2 5
3 6

⎤
⎦ [ 2 3

0 4

]⎡⎣ 1×2+ 4× 0 1×3+4×4
2× 2+5× 0 2×3+5× 4
3×2+ 6×0 3×3+6× 4

⎤
⎦=

⎡
⎣2 19

4 26
6 33

⎤
⎦

☼

Es gelten die Rechenregeln für das Skalarprodukt von Vektoren. Insbesondere ist
darauf zu achten, dass das Kommutativgesetz in der Regel für die Multiplikation von
Matrizen nicht gilt.

AB �= BA

Übung 5.1. Vereinfachen Sie folgenden Ausdruck:

B′ ×A′ ×F+ (G′ ×A×B)′+ (F′ ×A×B)′+(A×B)′ ×G

5.5 Ökonomische Anwendung

Beispiel 5.5. Es wird angenommen, dass drei Menüs von der Mensa aus nur vier
Zutaten zubereitet werden können. Die Rezepte für die jeweiligen Menüs stehen in
der folgenden Tabelle.
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Tabelle 5.1: Rezepte für Mensamenüs
Zutat 1 [in kg] Zutat 2 [in kg] Zutat 3 [in g] Zutat 4 [in �]

Menü 1 0.6 0.8 1.0 0.5
Menü 2 0.2 0.7 1.2 1.0
Menü 3 0.4 1.0 1.5 0.2

Der Inhalt der Tabelle kann in einer MatrixM erfasst werden.

M=

⎡
⎣ 0.6 0.8 1.0 0.5

0.2 0.7 1.2 1.0
0.4 1.0 1.5 0.2

⎤
⎦

Die Preise der Zutaten schwanken je nach Saison. Wir unterstellen, dass in der
ersten Jahreshälfte einige Zutaten billiger sind als in der zweiten. Daher werden die
Preise für die beiden Jahreszeiten getrennt ausgegeben.

Tabelle 5.2: Preise für die Menüzutaten
Preis für Winter Sommer

Zutat 1 [e/kg] 9.20 9.50
Zutat 2 [e/kg] 1.10 1.90
Zutat 3 [e/ g] 1.70 1.70
Zutat 4 [e/ �] 1.30 1.50

Auch diese Angaben können in eine Preismatrix überführt werden.

P=

⎡
⎢⎢⎣

9.20 9.50
1.10 1.90
1.70 1.70
1.30 1.50

⎤
⎥⎥⎦

Die Kosten je Menü für die Winter- bzw. Sommerzeit werden durch die Sum-
me der Preis × Mengenkombination berechnet. Genau diese Operation ist durch das
Skalarprodukt festgelegt und kann hier durch die Matrixmultiplikation einfach be-
rechnet werden.

K=

⎡
⎣ 0.6 0.8 1.0 0.5

0.2 0.7 1.2 1.0
0.4 1.0 1.5 0.2

⎤
⎦×

⎡
⎢⎢⎣

9.20 9.50
1.10 1.90
1.70 1.70
1.30 1.50

⎤
⎥⎥⎦=

⎡
⎣8.75 9.67

5.95 6.77
7.59 8.55

⎤
⎦

☼

Beispiel 5.6. In einem mehrstufigen Produktionsprozess stellt ein Betrieb aus den
Rohteilen R1, R2 und R3 die Zwischenprodukte Z1, Z2 und Z3 her. Hieraus werden
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in einer zweiten Stufe Baugruppen B1, B2, B3 und B4 montiert, die schließlich auf
der dritten Produktionsstufe zu den Fertigprodukten F1 und F2 gefertigt werden. Die
folgenden Matrizen geben den Materialverbrauch auf jeder Stufe an, wobei in den
Zeilen jeweils der Input je Mengeneinheit des Outputs steht, der in der Spalte ange-
geben ist.

Tabelle 5.3:Materialverflechtung
Z1 Z2 Z3

R1 1 4 2
R2 2 3 1
R3 0 2 3

B1 B2 B3 B4

Z1 1 3 2 1
Z2 1 0 2 4
Z3 2 1 2 1

F1 F2

B1 1 2
B2 2 3
B3 1 2
B4 3 1

Es soll der Gesamtverbrauch an Einzelteilen festgestellt werden, der zur Produk-
tion jeweils einer Einheit von F1 und F2 notwendig ist. Wird der Inhalt der ersten
Tabelle in einer Matrix A, der Inhalt der zweiten in einer Matrix B und der Inhalt der
dritten in einer Matrix C niedergeschrieben, so gibt die folgende Matrixmultiplikati-
on das gesuchte Ergebnis an:

F=

⎡
⎣ 1 4 2

2 3 1
0 2 3

⎤
⎦

︸ ︷︷ ︸
A

×
⎡
⎣1 3 2 1

1 0 2 4
2 1 2 1

⎤
⎦

︸ ︷︷ ︸
B

×

⎡
⎢⎢⎣

1 2
2 3
1 2
3 1

⎤
⎥⎥⎦

︸ ︷︷ ︸
C

=

⎡
⎣ 9 5 14 19

7 7 12 15
8 3 10 11

⎤
⎦

︸ ︷︷ ︸
D

×

⎡
⎢⎢⎣

1 2
2 3
1 2
3 1

⎤
⎥⎥⎦

︸ ︷︷ ︸
C

=

⎡
⎣ 90 80

78 74
57 56

⎤
⎦

Es werden für eine Einheit des ersten Produkts also 90 Einzelteile der ersten Sorte,
78 Einzelteile der zweiten Sorte und 57 Einzelteile der dritten Sorte benötigt. Die
Mengenangaben für das zweite Produkt können leicht aus der obigen Matrix F ab-
gelesen werden. Die Matrix D gibt den Verbrauch an Einzelteilen an, der zu jeweils
einer Einheit der Baugruppen B1 bis B4 benötigt wird.

Wird nun ein Fertigungsprogramm mit 70 Einheiten für F1 und 120 Einheiten für
F2 aufgelegt, so kann der Einkäufer mit dem folgenden Matrixprodukt schnell die
Bedarfsmengen an Einzelteilen berechnen:

F×
[

70
120

]
=

⎡
⎣15900

14340
10710

⎤
⎦

☼
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Übung 5.2. In dem Unternehmen werden durch Einsatz menschlicher Arbeit R1
aus den beiden Rohstoffen R2 und R3 die Zwischenprodukte Z1 und Z2, die Halb-
fabrikateH1,H2 undH3 und die FertigprodukteF1 und F2 in drei Stufen hergestellt.
Die Verflechtung von Rohstoffen, Zwischenprodukten, Halbfabrikaten und Fertig-
produkten ist in Abb. 5.1 veranschaulicht.
Beschreiben Sie die im Gozintograph enthaltene Information mittels mehrerer Ma-
trizen und berechnen Sie damit den Bedarf an Rohstoffen R1, R2, R3, wenn 100
F1 und 70 F2 produziert werden. Das Wort «Gozinto» ist eine Verfremdung der
Schreibweise von goes into.

R1

3

4

R2

4

11

2

R3

5

3

2

1

2

Z1

2

1 1

Z2

1

1

H1

1

H2

1 3

H3

1

F1 F2

Abb. 5.1: Gozintograph
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Übung 5.3. Ein Betrieb stellt aus 3 Rohstoffen R1, R2, R3 in der ersten Produkti-
onsstufe 3 Zwischenprodukte Z1, Z2, Z3 her. In der zweiten Stufe werden hieraus 4
Fertigprodukte F1, F2, F3, F4 gefertigt. Der Materialverbrauch beider Produktions-
stufen beträgt:

Tabelle 5.4:Materialverflechtung
Z1 Z2 Z3 F1 F2 F3 F4

R1 2 1 0 Z1 2 0 3 4
R2 1 2 3 Z2 1 2 5 0
R3 2 1 1 Z3 4 2 0 3

1. Berechnen Sie die Matrix, die für jede Einheit eines Endprodukts den Roh-
stoff angibt.

2. Welche Rohstoffmengen werden benötigt, wenn die Fertigprodukte in den
Mengen [

100 550 80 60
]

hergestellt werden sollen?

5.6 Matrizenrechnung mit Scilab

In Scilab können Diagonalmatrizen platzsparend als Vektor eingegeben werden, der
anschließend mit dem Befehl diag() diagonalisert wird.

a = [2 1 -4];
A = diag(a)

2 0 0
0 1 0
0 0 -4

Wird der diag() Befehl auf eine Matrix angewendet, so liefert dieser die Dia-
gonalelemente der Matrix als Vektor.

diag(A)

2
1
-4

Eine Einheitsmatrix kann in Scilab mit dem Befehl eye(a,a) erzeugt werden.

eye(2,2)
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1 0
0 1

Matrizenoperationen können in Scilab aufgrund der vordefinierten Variablenei-
genschaften sehr leicht durchgeführt werden, wobei jede Variable als Matrix expan-
diert werden kann. So können – sofern die Matrizen die notwendigen Eigenschaften
besitzen – mit +,−,× die Matrizenoperationen berechnet werden.

Beispiel 5.7. Um die Materialverflechtung aus Beispiel 5.6 zu berechnen, müssen zu-
erst die Matrizen in Scilab eingegeben werden. Im Programmfenster oder im Editor
werden die folgenden Zeilen eingetippt. Jede neue Zeile wird mit einem return
erzeugt, wobei die Einrückungen reine Kosmetik sind.

A = [1 4 2
2 3 1
0 2 3]

B = [1 3 2 1
1 0 2 4
2 1 2 1]

C = [1 2
2 3
1 2
3 1]

F = A*B*C

90 80
78 74
57 56

In F steht das Ergebnis. ☼

5.7 Fazit

Matrizen sind zweidimensionale Zahlenfelder. Sie können auch als aneinander ge-
fügte Vektoren betrachtet werden. Die Rechenoperationen für Vektoren können auf
Matrizen angewendet werden. Mit der Matrizenalgebra können lineare ökonomische
Fragestellungen wie die Einzelteilberechnung in mehrstufigen Produktionsprozessen
berechnet werden.
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6.1 Vorbemerkung

Viele Probleme der Praxis lassen sich in Form linearer Gleichungssysteme model-
lieren und damit lösen. Besonders häufig ergeben sich lineare Gleichungssysteme in
ökonomischen Bereichen, weil hier viele Beziehungen tatsächlich linear sind oder als
linear angenommen werden können. Die Kenntnisse aus den Kapiteln 4 und 5 wer-
den hier eingesetzt und erweitert. Inhomogene lineare Gleichungssysteme werden in
der Input-Output-Analyse verwendet. Die Abschnitte Determinante einer Matrix
und Homogene Gleichungssysteme sind Grundlagen für weiterführende Themen.
Die Berechnung von Determinanten wird in den Abschnitten 11.4 und 11.5 verwen-
det. Homogene Gleichungssysteme und Eigenwertprobleme sind eng miteinander
verbundene Fragestellungen. Diese werden bei einigen statistischen Verfahren ein-
gesetzt.

Einige geläufige Bezeichnungen:

ai j Koeffizient der j-ten Variablen in der i-ten Gleichung
A−1 Inverse der Matrix A
detA Determinante einer Matrix
|Ai j| Minor einer Matrix
bi rechte Seite der i-ten Gleichung
ci j Adjunkte zum Minor |Ai j|
diagA Hauptdiagonalelemente einer Matrix
diaga Erzeugung einer Diagonalmatrix aus dem Vektor a
λ Koeffizient oder Eigenwert (kontextabhängig)
m Anzahl der Variablen
n Anzahl der Gleichungen
rgA Rang einer Matrix
SpA Spur einer Matrix
v Eigenvektor
x j Variable

6.2 Inhomogene lineare Gleichungssysteme

Ein inhomogenes lineares Gleichungssystem ist durch mehrere lineare Gleichungen
gekennzeichnet, die gemeinsam (simultan) gelöst werden müssen.

a11 x1 + . . . + a1 j x j + . . . + a1m xm = b1
...

...
...

ai1 x1 + . . . + ai j x j + . . . + aim xm = bi
...

...
...

an1 x1 + . . . + an j x j + . . . + anm xm = bn

(6.1)

In den obigen Gleichungen werden die ai j (i = 1, . . . ,n; j = 1, . . . ,m) als Koef-
fizienten, die x j als Variablen und bi (i = 1, . . . ,n) als absolute Glieder bezeichnet.



6.2 Inhomogene lineare Gleichungssysteme 75

Solange nicht alle absoluten Glieder Null sind, handelt es sich um ein inhomogenes
lineares Gleichungssystem. Sind hingegen die absoluten Glieder alle Null, so handelt
es sich um ein homogenes Gleichungssystem, das in Kapitel 6.7 behandelt wird.

Die Matrixschreibweise erlaubt eine sehr kompakte Beschreibung des Glei-
chungssystems (6.1).

Ax = b mit A=

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 . . . a1 j . . . a1m
...

. . .
...

...
ai1 . . . ai j . . . aim
...

...
. . .

...
an1 . . . an j . . . anm

⎤
⎥⎥⎥⎥⎥⎥⎦ x=

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
...
xi
...
xm

⎤
⎥⎥⎥⎥⎥⎥⎦ b=

⎡
⎢⎢⎢⎢⎢⎢⎣

b1
...
bi
...
bn

⎤
⎥⎥⎥⎥⎥⎥⎦

Beispiel 6.1. Das folgende lineare Gleichungssystem mit 3 Gleichungen und 3 Va-
riablen

2x1 − x2 + 4x3 = 10
3x1 − x2 + x3 = 0

x2 − 3x3 = 6

ergibt die Matrizengleichung⎡
⎣ 2 −1 4

3 −1 1
0 1 −3

⎤
⎦
⎡
⎣x1
x2
x3

⎤
⎦=

⎡
⎣10

0
6

⎤
⎦

☼

6.2.1 Lösung eines inhomogenen Gleichungssystems

Gefragt wird, ob ein lineares Gleichungssystems lösbar ist und wenn ja, ob die Lö-
sung eindeutig ist. Hierzu folgende Überlegung: Eine lineare Gleichung mit einer
Variablen

a1 x1 = b

besitzt für die Variable x1 genau eine Lösung, sofern a1 �= 0 gilt.

x1 =
b
a1

Die Lösung lässt sich als Punkt auf einer Zahlengeraden im R1 darstellen. Eine li-
neare Gleichung mit zwei Variablen

a11 x1 +a12 x2 = b1

liefert unendlich viele Lösungen für die beiden Variablen, sofern a1,a2 �= 0 gilt. Gibt
man aber eine Variable als Parameter vor, zum Beispiel x1, so kann die andere Varia-
ble in Abhängigkeit dieser Variablen beschrieben werden:
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x2 =
b1 −a11 x1

a12

Die obige Gleichung zeigt eine Gerade im R2. Sie stellt einen linearen Unterraum
der Dimension 1 dar. Die Gerade legt die Werte für x2 in Abhängigkeit von x1 fest.
Durch die Gerade wird ein Freiheitsgrad gebunden. Wird x1 vorgegeben, so ist x2
durch die Gerade festgelegt.

Eine zweite linear unabhängige Gleichung liefert ebenfalls eine Lösung für eine
Variable.

a21 x1 + a22 x2 = b2

Sie bindet ebenfalls einen Freiheitsgrad. Setzt man die Lösung für x2 in die obige
Gleichung ein, so erhält man nach einigen Umformungen eine eindeutige Lösung
für x1 und x2.

x1 =
a22b1 − a12b2
a11a22 −a12a21

(6.2)

x2 =
a11b2 −a21b1
a11a22 −a12a21

(6.3)

Die Lösung befindet sich im Kreuzungspunkt der beiden Linien (siehe Abb. 6.1). Es
wurde das (2×2) Gleichungssystem[

a11 a12
a21 a22

] [
x1
x2

]
=

[
b1
b2

]
(6.4)

gelöst.

Beispiel 6.2. Die beiden linear unabhängigen Gleichungen

2x1 + 3x2 = 6
x1 − 2x2 = 1

liefern die Lösung x1 = 15
7 und x2 = 4

7 (siehe Abb. 6.1). Eine Gleichung mit zwei
Variablen beschreibt also eine Gerade des R2. ☼

Eine Gleichung mit drei Variablen beschreibt eine Ebene im R3 (siehe Abb. 6.21).
Eine Lösung lässt sich ermitteln, wenn man zwei Variablen beliebige Werte zuweist.
Der Wert der dritten Variablen ergibt sich dann zwangsläufig. Man besitzt also zwei
Freiheitsgrade, d. h. die Freiheit, für zwei Variablen beliebige Werte vorzugeben.
Dies ist in Abb. 6.2 durch die zweidimensionalen Ebenen dargestellt. Die Zahl der
Freiheitsgrade bestimmt die Dimension des linearen Unterraums, der durch die Glei-
chungen beschrieben wird. Wird eine zweite linear unabhängige Gleichung mit drei
Variablen gleichzeitig erfüllt, so werden die Lösungen durch die Schnittgerade der
beiden Ebenen beschrieben. Bei zwei Gleichungen mit jeweils drei Variablen ist dann
nur noch eine Variable frei wählbar. Die anderen beiden Variablenwerte sind durch

1 Es handelt sich um das Gleichungssystem in Übung 6.1.
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Abb. 6.1: Schnittgeraden im R2

die beiden Gleichungen bestimmt. Die Lösungsmenge besitzt nur noch einen Frei-
heitsgrad. Sie stellt folglich einen eindimensionalen Unterraum dar, der in der Abbil-
dung durch die Schnittgerade dargestellt ist. Nimmt man eine dritte linear unabhän-
gige Gleichung hinzu, d. h. deren Ebene verläuft nicht parallel zur Schnittgeraden, so
sind alle Variablenwerte bestimmt. Die Lösungsmenge besitzt keinen Freiheitsgrad
mehr. Das Gleichungssystem besitzt dann eine eindeutige Lösung. Es ist der Punkt,
der durch die drei Schnittgeraden bestimmt wird.

Jede Gleichung eines Gleichungssystems bindet also einen Freiheitsgrad, sofern
die Gleichung linear unabhängig ist. Ist eine oder sind mehrere Gleichungen eines
Gleichungssystems linear abhängig, so binden diese keinen Freiheitsgrad.

6.2.2 Linear abhängige Gleichungen im Gleichungssystem

Die lineare Abhängigkeit einer Gleichung bedeutet, dass diese durch eine andere
lineare Gleichungen ersetzt werden kann. Dadurch ist diese Gleichung dann nicht
mehr unabhängig von den den anderen Gleichungen.

Beispiel 6.3. In dem linearen Gleichungssystem

4x1 + 2x2 = 8
8x1 + 4x2 = 16
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kann beispielsweise die zweite Gleichung durch die erste Gleichung ersetzt werden,
wenn diese mit 2 multipliziert wird.

4x1 + 2x2 = 8
2
(
4x1 + 2x2

)
= 2×8

☼

Eine Gleichung ist in einem Gleichungssystem linear abhängig, wenn sie sich als
Linearkombination der restlichen Gleichungen darstellen lässt. Gegeben sei

m∑
j=1
ai j x j = bi für i= 1, . . . ,n

ein lineares Gleichungssystem mit n Gleichungen und m Variablen. Ist eine Glei-
chung als Linearkombination der restlichen Gleichungen (oder eines Teils von ihnen)
darstellbar, dann heißt das Gleichungssystem linear abhängig.

k-te Gleichung =

n∑
i=1
i�=k

λi× i-te Gleichung
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Abb. 6.2: Schnittgeraden im R3
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Die Summierung der (i− 1) Gleichungen gilt sowohl für die linke als auch für
die rechte Seite.

m∑
j=1
ak j x j =

n∑
i=1
i�=k

λi
m∑
j=1
ai j x j

︸ ︷︷ ︸
linke Seite

= bk =
n∑
i=1
i�=k

λi bi

︸ ︷︷ ︸
rechte Seite

Beispiel 6.4. Es ist zu überprüfen, ob das folgende Gleichungssystem eine linear ab-
hängige Gleichung aufweist.

2x1 +2x2 +5x3 = 8
x1 +2x2 +2x3 = 3

−2x2 + x3 = 2

Aus der Definition für lineare Unabhängigkeit wird ein Gleichungssystem mit
den Zeilenvektoren zur Überprüfung der linearen Abhängigkeit aufgestellt. Es liegt
lineare Unabhängigkeit vor, wenn für alle λi = 0 gilt. Für die linke Seite des Glei-
chungssystems ergibt sich dann folgendes System, das zu überprüfen ist.

λ1

⎡
⎣2

2
5

⎤
⎦+λ2

⎡
⎣1

2
2

⎤
⎦+λ3

⎡
⎣ 0
−2

1

⎤
⎦= 0

2λ1 + λ2 = 0
2λ1 + 2λ2 − 2λ3 = 0
5λ1 + 2λ2 + λ3 = 0

Aus den Gleichungen erhält man die Lösungen

λ2 =−2λ1

λ3 =−λ1

λ1 �= 0 ist frei wählbar, um die Gleichungen zu erfüllen. Wird λ1 = 1 gewählt, so gilt
λ2 = −2 und λ3 = −1 und die erste Gleichung kann durch folgende Kombination
beschrieben werden.

1-te Gleichung = 2× (2-te Gleichung)+1× (3-te Gleichung)

Man kann die Prüfung auf lineare Unabhängigkeit auch mit der rechten Seite des
Gleichungssystems durchführen. Die gegebene Linearkombination muss auch hier
gelten.

8λ1 + 3λ2+ 2λ3 = 0

Für die 1-te Gleichung gilt damit:
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8+3(−2)+2(−1)= 0 ⇔ 8= 3× 2+2×1

Das obige Gleichungssystem weist somit eine lineare Abhängigkeit auf. Die Folge
der linearen Abhängigkeit ist, dass das obige Gleichungssystem nicht lösbar ist, ob-
wohl die drei Variablen durch drei Gleichungen beschrieben werden. Eine der Glei-
chungen ist eine Linearkombination der beiden anderen. Es sind nur zwei der drei
Gleichungen linear unabhängig. Daher werden auch nur zwei der drei Freiheitsgrade
gebunden. ☼

Übung 6.1. Überprüfen Sie das folgende Gleichungssystem auf lineare Unabhän-
gigkeit.

2x1 − x2 −3x3 = 8
x1 + 3x2 +2x3 = 3

5x1 + 3x3 = 7

6.2.3 Lösen eines Gleichungssystems mit dem Gauß-Algorithmus

In Abschnitt 6.2.1 ist bereits prinzipiell aufgezeigt worden, wie ein Gleichungssy-
stem gelöst werden kann. Diese Technik wird im Folgenden strukturiert. Als erstes
ist festzuhalten, dass Gleichungen sich linear kombinieren lassen.

Beispiel 6.5. Die Gleichung

2x1 − x2 + 4x3 = 10

und die Gleichung

x1 −0.5x2+ 2x3 = 5

sind identisch. Die zweite Gleichung wurde mit 0.5 erweitert. ☼

Jede Gleichung kann mit einem Faktor λ ∈ R erweitert werden. Die neue Glei-
chung ist dann eine Linearkombination der ursprünglichen Gleichung.

m∑
j=1

a j x j = b ⇔ λ
m∑
j=1

a j x j = λ b

Wird die ursprüngliche Gleichung durch ihre Linearkombination ersetzt, so än-
dert sich die Lösungsmenge nicht.

Als zweites ist festzuhalten, dass man eine Gleichung eines Gleichungssystems
zu (von) anderen Gleichungen des Gleichungssystems addieren (subtrahieren) kann,
ohne dass sich die Lösungsmenge ändert.
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Beispiel 6.6. In dem folgenden Gleichungssystem

2x1 − x2 + 4x3 = 10 (6.5)
3x1 − x2 + x3 = 0 (6.6)

x2 − 3x3 = 6 (6.7)

wird die erste Gleichung mit 0.5 erweitert, um den Faktor für x1 auf Eins zu set-
zen. Der Vorteil dieser Normierung liegt in einer einfacheren Umrechnung des Glei-
chungssystems. Die Variable x1 wird dann als Pivotvariable bezeichnet. Die Glei-
chung wird Pivotgleichung genannt.

Es wird das Dreifache der ersten Gleichung von der zweiten Gleichung subtra-
hiert, um x1 aus dieser Gleichung zu eliminieren. Das so veränderte Gleichungssy-
stem besitzt die gleiche Lösungsmenge wie das ursprüngliche. Die dritte Gleichung
wird nicht verändert, weil x1 in ihr nicht vorkommt.

0.5× (6.5) : x1 − 0.5x2 +2x3 = 5 (6.8)
(6.6)−3× (6.8) : 0.5x2 −5x3 =−15 (6.9)

x2 −3x3 = 6 (6.10)

Im nächsten Schritt zur Berechnung der Lösung wird die zweite Gleichung mit 2
erweitert und von der dritten Gleichung subtrahiert. Die erste Gleichung wird nicht
weiter umgeformt.

x1 − 0.5x2 +2x3 = 5 (6.11)
2× (6.9) : x2 −10x3 =−30 (6.12)

(6.10)− (6.12) : 7x3 = 36 (6.13)

Man erkennt jetzt leicht die Lösung für x3. Es ist 36
7 . ☼

Drittens, ein Zeilentausch ändert ebenfalls nicht die Lösung und kann Iterations-
schritte vereinfachen. Die eben beschriebene Vorgehensweise heißt Eliminations-
phase. Sie eliminiert Variablen aus einem Teil eines Gleichungssystems. Die Pivot-
variablen müssen aber auf jeden Fall erhalten bleiben.

Beispiel 6.7. Fortführung von Beispiel 6.6: Um die Lösungen für x2 und x3 zu be-
rechnen, kann nun die Lösung für x3 in die beiden oberen Gleichungen eingesetzt
werden. Es ergibt sich für x2 dann die Gleichung

x2 −10× 36
7

=−30

und die Lösung:

x2 =
150

7
Die Berechnung der Lösung für x1 erfolgt analog.

x1 − 0.5× 150
7

+ 2× 36
7

= 5 ⇔ x1 =
38
7

☼
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Die eben angewandte Vorgehensweise wird als Substitutionsphase bezeichnet.
Eliminations- und Substitutionsphase zusammen werden als Gauß-Algorithmus be-
zeichnet.

Um die Schreibarbeit etwas zu verringern, wird eine Matrixstruktur zur Auf-
zeichnung der Koeffizienten verwendet. Es wird dabei das Gleichungssystem in Ma-
trixform geschrieben. Die skalare Multiplikation mit dem Vektor x entfällt. Dies hat
den Vorteil, dass die Variablen nicht mehr mitgeführt werden müssen.

Beispiel 6.8. Das Gleichungssystem aus Beispiel 6.6 wird wie folgt notiert:

2 −1 4 10
3 −1 1 0
0 1 −3 6

In den Spalten stehen die Variablen x1 bis x3. Zur leichteren Orientierung werden die
Pivotelemente durch fettgedruckte Zahlen hervorgehoben. Nun können die obigen
Rechenschritte wiederholt werden.⎡

⎣ 1 −0.5 2 5
0 0.5 −5 −15
0 1 −3 6

⎤
⎦ ⇒

⎡
⎣ 1 −0.5 2 5

0 1 −10 −30
0 0 7 36

⎤
⎦

⇒
⎡
⎣ 1 −0.5 2 5

0 1 −10 −30
0 0 1 36

7

⎤
⎦

Aus der letzten Tabelle kann dann aus der zweiten Zeile das Ergebnis für x2 wieder
berechnet werden.

x2 −10× 36
7

=−30 ⇔ x2 =−30+ 10
36
7

=
150
7

Die Werte für x2 und x3 werden in die erste Gleichung (Zeile) eingesetzt und liefern
das Ergebnis für x1. ☼

Um ein Gleichungssystem zu lösen ist die Normierung der Pivotelemente nicht
notwendig. Die restlichen Gleichung werden dann mit dem Verhältnis des Koeffizi-
enten der betreffenden Gleichung und dem Pivotkoeffizienten erweitert.

Beispiel 6.9. Das Gleichungssystem wird aus Beispiel 6.6 wird ohne Normierung
gelöst.
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(I)
(II)
(III)

⎡
⎣ 2 −1 4 10

3 1 1 0
0 1 −3 6

⎤
⎦ (II’) = (II)− 3

2 × (I)

(II’)
(III’)

⎡
⎣ 2 −1 4 10

0 1 −10 −30
0 1 −3 6

⎤
⎦

(III”) = (III’)− 1
1 × (II’)

(III”)

⎡
⎣ 2 −1 4 10

0 1 −10 −30
0 0 7 36

⎤
⎦

Die Lösung kann nun wie schon zuvor über Substitution berechnet werden. ☼

Es ist noch anzumerken, dass die Bearbeitung der Gleichungen nicht in derselben
Reihenfolge der Gleichungen im Gleichungssystem erfolgen muss. Wichtig ist nur,
dass jede Gleichung nur einmal als Pivotgleichung ausgewählt wird.

Beispiel 6.10. Das Gleichungssystem aus Beispiel 6.6 wird durch eine andere Rei-
henfolge der Bearbeitung gelöst. Es wird die dritte Gleichung (6.7) bzw. (6.16) als
erste Pivotgleichung gewählt und x2 als erste Pivotvariable. Diese wird aus den ersten
beiden Gleichungen eliminiert.

(6.5)+ (6.16) : 2x1 + x3 = 16 (6.14)
(6.6)+ (6.16) : 3x1 − 2x3 = 6 (6.15)

x2 − 3x3 = 6 (6.16)

Nun wird das Zweifache der ersten Gleichung (Pivotgleichung) zu der zweiten
addiert. x3 ist Pivotvariable. Die erste Pivotgleichung (Gleichung (6.7)) wird nicht
wieder umgeformt.

2x1 + x3 = 16 (6.17)
(6.15)+ 2× (6.14) : 7x1 = 38 (6.18)

x2 −3x3 = 6 (6.19)

Die zweite Gleichung liefert nun die Lösung für x1. Durch Einsetzen dieser Lösung
in die erste Gleichung erhält man x3 und kann dann mit der dritten Gleichung x2
berechnen.

Der gleiche Rechenvorgang in Matrixform sieht wie folgt aus:⎡
⎣ 2 −1 4 10

3 −1 1 0
0 1 −3 6

⎤
⎦ ⇒

⎡
⎣ 2 0 1 16

3 0 −2 6
0 1 −3 6

⎤
⎦

⇒
⎡
⎣ 2 0 1 16
7 0 0 38
0 1 −3 6

⎤
⎦
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Aus der letzten Tabelle ergibt sich unmittelbar das Ergebnis x1 =
38
7 . Der Wert für x3

berechnet sich durch Einsetzen des Wertes von x1 in die erste Gleichung.

2× 38
7

+ x3 = 16 ⇔ x3 =
36
7

Entsprechend wird die Lösung für x2 aus der dritten Zeile bestimmt.

x2 −3× 36
7

= 6 ⇔ x2 =
150
7

☼

Eine weitere Variante des Gauß-Algorithmus besteht darin, die Substitutionspha-
se zu vermeiden, in dem die Elimination der Variablen auch in den zuvor als Pivot-
gleichungen ausgewählten Gleichungen des Systems erfolgt. Diese Vorgehensweise
wird als vollständige Elimination bezeichnet und wird sich später als nützlich er-
weisen. Zur Berechnung der Lösung eines Gleichungssystems ist die vollständige
Elimination rechnerisch etwas aufwändiger als die zuvor beschriebene Kombination
aus Eliminations- und Substitutionsphase.

Beispiel 6.11. Das Gleichungssystem aus Beispiel 6.6 wird durch vollständige Eli-
mination gelöst.

2x1 − x2 +4x3 = 10
3x1 − x2 + x3 = 0

x2 −3x3 = 6
⇒

x1 − 0.5x2+2x3 = 5
0.5x2 −5x3 =−15
x2 −3x3 = 6

⇒
x1 −3x3 =−10
x2 −10x3 =−30

7x3 = 36
⇒

x1 =
38
7

x2 =
150
7

x3 =
36
7

Die verkürzte Schreibweise in Matrixform:⎡
⎣ 2 −1 4 10

3 −1 1 0
0 1 −3 6

⎤
⎦ ⇒

⎡
⎣1 −0.5 2 5

0 0.5 −5 −15
0 1 −3 6

⎤
⎦

⇒
⎡
⎣ 1 0 −3 −10

0 1 −10 −30
0 0 7 36

⎤
⎦ ⇒

⎡
⎣ 1 0 0 38

7
0 1 0 150

7
0 0 1 36

7

⎤
⎦

☼

Das vollständige Eliminationsverfahren des Gauß-Algorithmus wird nun noch-
mal kurz formal zusammengefasst. Das Gleichungssystem
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a11 . . . a1m b1
...

...
...

an1 . . . anm bn

wird durch folgende Schritte gelöst.

Schritt 1: Es wird das Pivotelement ars �= 0 (zum Beispiel a11) gewählt. Dann ist
die erste (r-te) Zeile Pivotzeile und die erste (s-te) Spalte Pivotspalte.

Schritt 2: Die Pivotzeile r wird wie folgt umgerechnet.

ãr j =
ar j
ars

und b̃r =
br
ars

Die neuen Elemente der r-ten Zeile sind ãr j und b̃r.
Schritt 3: Alle übrigen Zeilen werden wie folgt berechnet:

ãi j = ai j− ãr j ais und b̃i = bi− b̃r ais
Die neuen Elemente der übrigen Zeilen (bis auf die Pivotzeile r aus
Schritt 1) sind ãi j und b̃i.

Schritt 1 und 3 werden für alle Zeilen wiederholt, bis jede Zeile einmal als Pivot-
element verwendet wurde.

Übung 6.2. Überprüfen Sie das Gleichungssystem in Übung 6.1 mit Hilfe des
Gauß-Algorithmus auf lineare Unabhängigkeit.

Übung 6.3. Von einer Kostenfunktion K(x) weiß man, dass sie sich näherungs-
weise wie eine kubische Funktion (Polynom 3. Grades) bezüglich der Stückzahl
x verhält. Bestimmen Sie die explizite Gestalt einer solchen Funktion, wenn die
Kostenwerte in Tabelle 6.1 konkret bekannt sind.

Tabelle 6.1: Kostenwerte
x [Stück] 10 15 20 25
K(x) [e] 2 700 3 475 5 700 10 125

Setzen Sie die unbekannten Koeffizienten des kubischen Polynoms als Variablen
an, und berechnen Sie die daraus resultierenden Funktionswerte für die gegebenen
Stückzahlen x. Durch Gleichsetzen mit den Sollwerten aus der Tabelle erhält man
daraus ein lineares Gleichungssystem zur Bestimmung der gesuchten Koeffizien-
ten.
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6.2.4 Lösen eines Gleichungssystems mit Scilab

Das Lösen eines linearen Geichungssystems in Scilab erfolgt mit dem Befehl
linsolve(A,b), wobei A und b, wie in den vorhergehenden Abschnitten be-
schrieben, die Koeffizienten bzw. die rechte Seite des Gleichungssystems sind. Eine
Besonderheit ist, dass der Befehl linsolve ein Gleichungssystem der Form

Ax+b= 0

voraussetzt. Der Vektor b muss also negativ angegeben werden, wenn wir von der
bisherigen Darstellung ausgehen.

Beispiel 6.12. Ausgehend vom Beispiel 6.6 wird die Befehlsfolge zur Berechnug der
Lösung gezeigt.

A = [2 -1 4; 3 -1 1; 0 1 -3];
b = [10; 0; 6];
x = linsolve(A,-b)

Der Vektor x enthält die bekannte Lösung. ☼

6.3 Rang einer Matrix

Der Rang einer Matrix ist eine natürliche Zahl, die die maximale Anzahl linear un-
abhängiger Vektoren einer Matrix angibt. Mittels des Rangs einer Matrix kann man
somit einfach die Lösbarkeit eines linearen Gleichungssystems beschreiben. Man
schreibt für den Rang einer Matrix rgA.

6.3.1 Eigenschaft des Rangs

Für eine n×mMatrix ist der Rang nicht größer als der kleinere Wert der Zeilenzahl
n und der Spaltenzahl m.

rgA≤ min(n,m)

Die Rangbestimmung einer Matrix ist am einfachsten, wenn mit dem Gauß-Algo-
rithmus eine Dreiecksmatrix erzeugt wird. Die Zeilenzahl minus der Nullzeilen ist
die Anzahl der linear unabhängigen Zeilen. Sie gibt den Rang der Matrix an.

Beispiel 6.13. Die Matrix

A=

⎡
⎣ 1 2 3

2 4 6
3 2 1

⎤
⎦
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besitzt, den Rang

rgA= rg

⎡
⎣ 1 2 3

0 0 0
0 −4 −8

⎤
⎦= 2

Die Matrix A besitzt den Rang 2, weil eine Nullzeile auftritt. Ein Vektor ist linear
abhängig. ☼

Der Rang der Matrix bleibt durch den Tausch der Zeilen (und Spalten) unverän-
dert.

6.3.2 Rang und lineares Gleichungssystem

Mit dem Rang einer Matrix kann leicht festgestellt werden, ob die Matrix eine li-
neare Abhängigkeit zwischen den Zeilen oder Spalten besitzt. Daher wird der Rang
verwendet, um die Lösbarkeit eines linearen Gleichungssystems

Ax= b

zu beschreiben. Das Gleichungssystem besitzt keine Lösung, wenn

rgA< rg(A | b)
gilt. Es liegt ein Widerspruch im Gleichungssystem vor. Die linke Seite des Glei-
chungssystems weist eine lineare Abhängigkeit aus, die rechte hingegen nicht. Mit
A|b wird die um den Vektor b erweitere KoeffizientenmatrixA beschrieben. Um die
Lösbarkeit des Gleichungssystems sicherzustellen, muss

rgA= rg(A | b)
gelten. Es könnte dann aber eine mehrdeutige Lösung vorliegen, weil die Anzahl der
Gleichungen von der Anzahl der Variablen verschieden sein kann. Um eine eindeu-
tige Lösung für das Gleichungssystem sicherzustellen, muss

rgA= rg(A | b) = m
gelten, wobei mit m die Anzahl der Variablen bezeichnet wird.

Ein Gleichungssystem mit n Gleichungen und m Variablen heißt

bestimmt, wenn m = n gilt und alle Gleichungen linear unabhängig sind. Das be-
stimmte Gleichungssystem besitzt eine eindeutige Lösung.

überbestimmt, wenn m < n gilt, d. h. wenn mehr linear unabhängige Gleichungen
als Variablen vorhanden sind. Das Gleichungssystem besitzt keine Lösung und
enthält einen Widerspruch.

unterbestimmt, wenn m > n gilt, d. h. wenn weniger Gleichungen als Variablen
vorliegen. Ein unterbestimmtes Gleichungssystem besitzt im Allgemeinen un-
endlich viele Lösungen.



88 6 Lineare Gleichungssysteme

Beispiel 6.14. Das Gleichungssystem aus Beispiel 6.4 besitzt folgende Rangglei-
chungen:

rgA= rg

⎡
⎣ 2 2 5

1 2 2
0 −2 1

⎤
⎦=

⎡
⎣ 2 2 5

0 1 −0.5
0 0 0

⎤
⎦= 2

rg(A | b) = rg

⎡
⎣ 2 2 5 8

1 2 2 3
0 −2 1 2

⎤
⎦=

⎡
⎣ 2 2 5 8

0 1 −0.5 −1
0 0 0 0

⎤
⎦= 2

Das Gleichungssystem besitzt eine Lösung, weil der Rang von rgA gleich dem Rang
von rg(A | b) ist. Weil aber der Rang (Anzahl der linear unabhängigen Gleichungen)
kleiner als die Anzahl der Variablen ist, liegen unendlich viele Lösungen vor. ☼

6.3.3 Berechnung des Rangs mit Scilab

In Scilab wird der Rang einer Matrix A mit dem Befehl rank(A) berechnet.

6.4 Inverse einer Matrix

Eine weitere wichtige Matrixoperation ist die Matrixinversion. Sie ist nützlich zum
Lösen von Gleichungssystemen und ergänzt die bereits vorgestellten Grundoperatio-
nen.

6.4.1 Eigenschaft der Inversen

Die Lösung des bestimmten Gleichungssystems

Ax= b (6.20)

wurde mit dem Gauß-Algorithmus bisher dadurch erzeugt, dass das Gleichungssy-
stem bei der vollständigen Elimination wie folgt umgeformt wurde:

Ix = b∗

In b∗ stehen die Lösungen für x.
Es wird nun eine Matrix A−1 definiert, die als Inverse der regulären quadrati-

schen Matrix A bezeichnet wird. Regulär bedeutet hier, dass die Matrix den vollen
Rang besitzt. Sie besitzt per Definition die Eigenschaft

AA−1 = A−1A= I

Damit lässt sich die Lösung des Gleichungssystems (6.20) auch wie folgt erzeugen:

A−1Ax= A−1b
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x= A−1b

wobei

A−1b= b∗

ist. Die Inverse stellt keine Division mit einer Matrix dar, wie vielleicht die Schreib-
weise nahelegen könnte. Die Lösung des Gleichungssystems erfolgt vielmehr durch
Multiplikation der Gleichung mit der Inversen.

6.4.2 Berechnung der Inversen

Mit der Eigenschaft der Inversen ist aber noch kein Weg zur Berechnung der Inversen
gezeigt. Die Berechnung erfolgt mit dem Gauß-Algorithmus.

Beispiel 6.15. Es ist die Inverse der Matrix zu dem Beispiel 6.2.

A=

[
2 3
1 −2

]
zu berechnen. Dazu wird das folgende Gauß-Tableau aufgestellt:[

2 3 1 0
1 −2 0 1

]
Durch vollständige Elimination der rechten Seite wird auf der linken Seite des Ta-
bleaus eine Matrix erzeugt, die die Inverse von A ist.[

1 3
2

1
2 0

0 − 7
2 − 1

2 1

]
⇒
[

1 0 2
7

3
7

0 1 1
7 − 2

7

]
Die Inverse der Matrix A ist

A−1 =

[ 2
7

3
7

1
7 − 2

7

]
Die Multiplikation A−1A muss die Einheitsmatrix ergeben.[ 2

7
3
7

1
7 − 2

7

] [
2 3
1 −2

]
=

[
1 0
0 1

]
Die Inverse wird zur Lösung des Gleichungssystems aus Beispiel 6.2 eingesetzt.

Das Gleichungssytem besitzt folgende Matrixform:[
2 3
1 −2

] [
x1
x2

]
=

[
6
1

]
Mit dem MatrixproduktA−1b kann die Lösung für x1 und x2 berechnet werden.[

x1
x2

]
=

[ 2
7

3
7

1
7 − 2

7

] [
6
1

]
=

[ 15
7
4
7

]
☼
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Bei der Anwendung des Gauß-Algorithmus ist es nicht immer sinnvoll oder mög-
lich, die Pivotelemente auf der Hauptdiagonalen zu wählen. Wählt man andere Ele-
mente aus (natürlich darf jede Zeile nur einmal ausgewählt werden), so entsteht auf
der rechten Seite dann eine permutierte Matrix der Inversen. Durch Vertauschen der
Zeilen erhält man dann die Inverse.

Beispiel 6.16. Es ist die Matrix

A=

⎡
⎣ 1 2 1

0 2 1
2 1 1

⎤
⎦

gegeben. Die Anwendung des Gauß-Algorithmus liefert folgendes Ergebnis:⎡
⎣ 1 2 1 1 0 0

0 2 1 0 1 0
2 1 1 0 0 1

⎤
⎦ ⇒

⎡
⎣ 1 0 0 1 −1 0

0 2 1 0 1 0
2 −1 0 0 −1 1

⎤
⎦

⇒
⎡
⎣ 1 0 0 1 −1 0

4 0 1 1 −1 2
−2 1 0 0 1 −1

⎤
⎦ ⇒

⎡
⎣ 1 0 0 1 −1 0

0 0 1 −4 3 2
0 1 0 2 −1 −1

⎤
⎦

Das Vertauschen der letzten beiden Zeilen liefert die gesuchte Inverse.⎡
⎣1 0 0 1 −1 0

0 1 0 2 −1 −1
0 0 1 −4 3 2

⎤
⎦

☼

6.4.3 Berechnung von Inversen mit Scilab

Die Inverse einer Matrix A wird in Scilab mit dem Befehl inv(A) berechnet.

6.5 Ökonomische Anwendung: Input-Output-Analyse

Input-Output-Tabellen werden zur Beschreibung von Wirtschaftssystemen verwen-
det. Das System (Volkswirtschaft oder Unternehmen) besteht aus einzelnen Sektoren
(Betriebsstätten, Kostenstellen), die untereinander Leistungen austauschen, um ver-
schiedene Gesamtleistungen gemeinsam zu erstellen. Die Verflechtungen der einzel-
nen Sektoren lassen sich in einem «Gozinto» Graph darstellen. Die Leistungen sind
in Geldeinheiten bewertet. In der folgenden Darstellung der Input-Output-Analyse
wird die Verwendung im Rahmen der Betriebswirtschaftslehre betont und die ur-
sprünglich volkswirtschaftliche Anwendung vernachlässigt.
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6.5.1 Klassische Analyse

Beispiel 6.17. Der Sektor 1 in Abb. 6.3 benötigt zur Erstellung einer bestimmten
Gesamtleistung Vorleistungen im Wert von 30e seiner eigenen Produktion und 50e
von Sektor 2. Der Sektor 2 bezieht Vorleistungen im Wert von 60e von Sektor 1
und verbraucht Leistungen im Wert von 15e seiner eigenen Produktion. Aus der
Gesamtproduktion wird eine Endnachfrage im Wert von 10e aus Sektor 1 und 85e
aus Sektor 2 bedient. ☼

Sektor 1

30

60

85

10

Sektor 2

15

50

Endnachfrage

Abb. 6.3: Gozintograph

Das Wirtschaftssystem kann mit einer Verflechtungsmatrix T (auch als Zen-
tralmatrix bezeichnet) (complication matrix) beschrieben werden.

T=

[
30 60
50 15

]
In der Matrix T wird in den Zeilen der Aufwand (Input) und in den Spalten das Er-
gebnis (Output) abgetragen. Die Input-Output-Analyse mittels eines linearen Glei-
chungssystems geht auf Wassily W. Leontief zurück.

Um das Gesamtsystem vollständig zu beschreiben, ist die Angabe einer Endnach-
frage (Nettoproduktion) (final demand) oder einer Gesamtleistung (Bruttoproduktion
= Nettoproduktion plus Vorleistungen) (output level) notwendig. Im Beispiel ist die
Nettoproduktion mit

b=
[

10
85

]
angegeben. In einer so genannten Input-Output-Tabelle wird das Gesamtsystem
abgetragen (siehe Tabelle 6.2).
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Tabelle 6.2: Input-Output-Tabelle
T v b x

30 60 90 10 100
50 15 65 85 150

In der Tabelle 6.2 werden mit v die Vorleistungen je Sektor (primary input) be-
zeichnet. Sie ist die Summe der jeweiligen Zeile aus der Verflechtungsmatrix T.

v= T× 1 mit 1=

⎡
⎢⎣1

...
1

⎤
⎥⎦

Die Gesamtleistung des Systems ergibt sich aus der Summe der Vorleistungen v und
der Endnachfrage b.

x= T×1+b= v+b (6.21)

Die Vorleistungen sind von der Gesamtleistung abhängig. Um diese Abhängigkeit
in der Gleichung (6.21) aufzuzeigen, werden die Vorleistungen auf eine Einheit um-
gerechnet. Ferner werden die Annahmen getroffen, dass stets in konstanten Propor-
tionen produziert wird und sowohl Substitution als auch technischer Fortschritt aus-
geschlossen sind. Die so transformierten Vorleistungen werden als Input-Output-
Koeffizienten bezeichnet.

di j =
Ti j
x j

=
Input des Sektors i an den Sektor j

Output des Sektors j

Sie können als Normgrößen für die bei der Produktion verwandte Technologie an-
gesehen werden. Die Koeffizienten di j geben den Vorleistungsstrom an, der benötigt
wird, um in jedem Sektor gerade eine Bruttoeinheit zu erstellen.

D= T(diagx)−1 = T
[

100 0
0 150

]−1
=

[ 30
100

60
150

50
100

15
150

]

Die Matrix D wird als Matrix der technischen Koeffizienten (input coefficient
matrix) oder Direktbedarfsmatrix bezeichnet. Mit dieser Matrix lässt sich nun fol-
gendes Gleichungssystem aufstellen und lösen. Durch Einsetzen von

(diagx)−1 x= 1

in die Gleichung (6.21) erhält man:

x= T× 1+b
= T(diagx)−1x+b
= Dx+b

(6.22)
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Angewendet auf das Beispiel bekommt man dann folgende Gleichung:[
100
150

]
=

[
0.3 0.4
0.5 0.1

] [
100
150

]
+

[
10
85

]

Die Gleichung wird umgestellt, so dass der Vektor x auf der linken Seite ausgeklam-
mert werden kann.

(I−D)x= b[
0.7 −0.4

−0.5 0.9

] [
100
150

]
=

[
10
85

]

Die Gleichung wird mit der Inversen von I−D erweitert, um die Lösung für den
Vektor x berechnen zu können.

x= (I−D)−1︸ ︷︷ ︸
Leontief-Inverse

b

[
100
150

]
=

[ 90
43

40
43

50
43

70
43

] [
10
85

]
Die Koeffizienten der Leontief-Inverse geben an, wie viel der Sektor i (Zeile) her-
stellen muss, damit der Sektor j (Spalte) eine Einheit für die Endnachfrage abgeben
kann. Es werden dabei alle direkten und indirekten Effekte erfasst. Die Leontief-
Inverse wird auch als Gesamtbedarfsmatrix (composite demand matrix) bezeich-
net, weil mit ihr der Gesamtbedarf für eine gegebene Endnachfrage berechnet wer-
den kann.

Im vorliegenden Fall muss der Sektor 1 an eigenen Leistungen 90
43 Einheiten und

der Sektor 2 Leistungen in Höhe von 50
43 produzieren, damit eine Leistungseinheit für

die Endnachfrage entsteht.
Die Elemente auf der Hauptdiagonalen müssen immer größer-gleich Eins sein.

Damit der Sektor i eine Einheit anbieten kann, muss dieser Sektor selbst auf jeden
Fall eine Einheit herstellen. Alles darüber hinaus ist der zusätzliche Bedarf der Sek-
toren, die von Sektor imit Vorleistungen versorgt werden, damit diese wiederum ihre
Vorleistungen an Sektor i liefern können.

6.5.2 Preisanalyse

Aus betriebswirtschaftlicher Sicht ist nun eine Aufteilung der Gesamtleistung in
Preis p mal Menge xp interessant. Die innerbetriebliche Leistungsverflechtung zeigt
dann Verrechnungspreise, die zur betrieblichen Analyse wichtig sind. Hierbei wird
davon ausgegangen, dass der (Verrechnungs-) Preis einer Leistungseinheit sich aus
einem internen Verrechnungspreis und einem externen Preis zusammensetzt.

p= Dpp︸︷︷︸
pint

+pext (6.23)
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Um diese Gleichung mit den Preisen zu bestimmen, müssen die Endpreise für die
Gesamtleistung bekannt sein. In dem begleitenden Beispiel werden die Preise

p=
[

2
3

]
unterstellt. Aus der Aufteilung

x= diagxpp= diagpxp

erhält man

xp = (diagp)−1 x=
[

50
50

]
Damit lässt sich die ursprüngliche Leistungsaufteilung (6.22) wie folgt beschrei-

ben:

diagxpp= T(diagp)−1︸ ︷︷ ︸
Tp

p+b (6.24)

[
50 0
0 50

] [
2
3

]
=

[
30 60
50 15

] [ 1
2 0
0 1

3

] [
2
3

]
+

[
10
85

]

=

[
15 20
25 5

] [
2
3

]
+

[
10
85

]
= Tpp+b

In Tp stehen die unbewerteten Leistungseinheiten, die zwischen den Kostenstellen
ausgetauscht werden. Um nun die Gleichung (6.23) zu erhalten, wird die Gleichung
(6.24) mit der Inversen von diagxp erweitert.

p= (diagxp)−1T(diagp)−1︸ ︷︷ ︸
Dp

p+(diagxp)−1b︸ ︷︷ ︸
pext

= Dpp︸︷︷︸
pint

+pext

Die Matrizen D und Dp sind identisch, wenn – wie im Beispiel – die Preise im
gleichen Verhältnis zueinander stehen wie die Gesamtleistungen in x. Ansonsten sind
die beiden Matrizen unterschiedlich. In dem Beispiel ergibt sich damit dann folgende
Preisaufteilung:

pint =
[

0.3 0.4
0.5 0.1

] [
2
3

]
=

[
1.8
1.3

]
pext=

[ 1
50 0
0 1

50

] [
10
85

]
=

[
0.2
1.7

]

In diesem Zusammenhang wird der interne Verrechnungspreis als Stückkosten
und der externe Preis als Deckungsbeitrag interpretiert. Der Vektor b kann statt der
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Endnachfrage auch externe Kosten beschreiben (siehe Beispiel 6.18 und Aufgabe
6.4).

Analog zu den Umformungen der Gleichung (6.22) wird auch für die internen
Verrechnungspreise eine Beziehung der Art

p= Tpint × 1+pext (6.25)

unterstellt. Die Zentralmatrix der internen Verrechnungspreise muss dann

Tpint = (diagxp)−1T= Dp diagp

sein. Die internen Verrechnungspreise für die beiden Sektoren (betriebswirtschaft-
lich: Kostenstellen) setzen sich dann wie folgt zusammen:

Tpint =
[ 1

50 0
0 1

50

] [
30 60
50 1.2

]
=

[
0.6 1.2
1.0 0.3

]
0.60e kostet der Eigenverbrauch pro Leistungseinheit in Sektor 1 und 1.20e die
Leistungseinheit, die Sektor 1 an Sektor 2 liefert. Entsprechend kann die Zeile zwei
der Matrix interpretiert werden. Es gilt:[

2
3

]
=

[
0.6 1.2
1.0 0.3

] [
1
1

]
+

[
0.2
1.7

]
Um wieder die Gesamtleistung zu berechnen, muss die Preisgleichung (6.25) mit

der Mengenmatrix diagxp multipliziert werden.

diagxpp︸ ︷︷ ︸
x

= diagxpTpint︸ ︷︷ ︸
T

× 1+diagxppext︸ ︷︷ ︸
b

In einem weiteren Beispiel soll nochmals die Vorgehensweise verdeutlicht wer-
den.

Beispiel 6.18. Ein Unternehmen besteht aus 4 Kostenstellen. Die Leistungsverflech-
tung sieht wie folgt aus (vgl. [7]).

Tabelle 6.3: Leistungsverflechtung zum Beispiel 6.18
von/an Kostenstelle

1 2 3 4 Gesamtleistung

1 – 400 200 300 1200
2 – 100 400 100 600
3 600 – 300 200 1600
4 400 – – – 2000

ext. Kosten 90 000 60 000 120 000 200 000

Es sind die Verrechnungspreise und die internen Verrechnungspreise zu berech-
nen. Dazu ist zuerst das Gleichungssystem mit den Bilanzgleichungen (Einnahmen
= Ausgaben) aufzustellen.
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1200 p1 = 600 p3 + 400 p4+ 90000
600 p2 = 400 p1 + 100p2+60000

1600 p3 = 200 p1 +400 p2+ 300 p3+120000
2000 p4 = 300 p1 +100 p2+ 200 p3+200000

Dieses kann wie zuvor mit folgenden Variablen beschrieben werden.

diagxpp︸ ︷︷ ︸
k

= Tpp︸︷︷︸
kint

+kext

⎡
⎢⎢⎣

1200 0 0 0
0 600 0 0
0 0 1600 0
0 0 0 2000

⎤
⎥⎥⎦
⎡
⎢⎢⎣
p1
p2
p3
p4

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

0 0 600 400
400 100 0 0
200 400 300 0
300 100 200 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
p1
p2
p3
p4

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

90000
60000

120000
200000

⎤
⎥⎥⎦

Der Vektor kext beschreibt hier die externen Kosten, die auch als Primärkosten
bezeichnet werden. Die Lösung des Gleichungssystems nach p erfolgt in der bekann-
ten Weise. (

diagxp−Tp
)
p= kext

p=
(

diagxp−Tp
)−1

kext

=

⎡
⎢⎢⎣

1200 0 −600 −400
−400 500 0 0
−200 −400 1300 0
−300 −100 −200 2000

⎤
⎥⎥⎦
−1⎡⎢⎢⎣

90000
60000
120000
200000

⎤
⎥⎥⎦

(6.26)

Die Lösung kann alternativ auch mit der Matrix der technischen Koeffizienten erfol-
gen.
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p= (diagxp)−1Tp︸ ︷︷ ︸
Dp

p+(diagxp)−1kext︸ ︷︷ ︸
pext

=
(
I−Dp

)−1pext

=

⎛
⎜⎜⎝I−

⎡
⎢⎢⎣

0.0 0.0 0.5 0.33333
0.66666 0.16666 0.0 0.0
0.125 0.25 0.1875 0.0
0.15 0.05 0.1 0.0

⎤
⎥⎥⎦
⎞
⎟⎟⎠

−1⎡⎢⎢⎣
75

100
75

100

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

1.00 0.00 −0.50 −0.33333
−0.66666 0.83333 0.00 0.00
−0.125 −0.25 0.8125 0.00
−0.15 −0.05 −0.10 1.00

⎤
⎥⎥⎦
−1⎡⎢⎢⎣

75
100
75

100

⎤
⎥⎥⎦

(6.27)

Die Berechnung der Inversen von (6.26) bzw. (6.27) erfolgt am besten mit einem
Computerprogramm (siehe Ende des Abschnitts, Seite 98).

Es ergeben sich mit den vorliegenden Werten dann die Verrechnungspreise:

p=

⎡
⎢⎢⎣

247.81992
318.25594
228.35874
175.92166

⎤
⎥⎥⎦

Die internen Verrechnungspreise, also die Verrechnungspreise ohne die Primärko-
sten, sind:

pint = Dpp=

⎡
⎢⎢⎣

172.81992
218.25594
153.35874
75.921659

⎤
⎥⎥⎦

Die Kosten je Kostenstelle sind die Verrechnungspreise mit den Leistungen multipli-
ziert.

k= diagxpp=

⎡
⎢⎢⎣

297383.91
190953.56
365373.98
351843.32

⎤
⎥⎥⎦

Nun kann man auch wieder die Aufteilung der Kosten in interne und externe
Kosten vornehmen. Die externen Kosten sind gegeben, so dass die internen Kosten zu
berechnen sind. Die internen Kosten sind die Differenzen aus Kosten je Kostenstelle
minus deren externe Kosten.

kint = k−kext
Weiterhin lassen sich die internen Kosten je Kostenstelle auch aus den bewerteten

Leistungen berechnen.

kint = diagxppint = Tpp=

⎡
⎢⎢⎣

207383.91
130953.56
245373.98
151843.32

⎤
⎥⎥⎦
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Die Summe aus externen und internen Kosten ergeben die Gesamtkosten je Ko-
stenstelle. Ebenso ergibt die Summe aus externem Preis und internem Verrechnungs-
preis den Verrechnungspreis je Kostenstelle. Wie in der vorhergehenden Analyse dar-
gelegt, können die internen Verrechnungspreise auch auf die Kostenstellen aufgeteilt
werden. Die Zentralmatrix der internen Verrechnungspreise liefert diese Aufteilung.
Es sind die normierten Leistungen je Sektor, die mit den Verrechnungspreisen be-
wertet werden.

Tpint = Dp diagp=

⎡
⎢⎢⎣

0.0 0.0 114.17937 58.64055
165.21328 53.042656 0.0 0.0

30.97749 79.563984 42.81726 0.0
37.17299 15.91279 22.83587 0.0

⎤
⎥⎥⎦

Übrigens entsprechen die Zeilensummen der Matrix Tpint den internen Verrech-
nungspreisen.

pint = Tpint 1

Die Aufteilung der internen Kosten auf die Kostenstelle kann mit der Bewertung
der Zentralmatrix Tp mit den Verrechnungspreisen erfolgen. Eine andere Möglich-
keit besteht darin, die Mengen xp mit der Zentralmatrix der internen Verrechnungs-
preise Tpint zu bewerten. Es entsteht die Zentralmatrix der Kosten.

Tk = Tp diagp= diagxpTpint

=

⎡
⎢⎢⎣

0.0 0.0 137015.24 70368.66
99127.97 31825.59 0.0 0.0
49563.98 127302.38 68507.62 0.0
74345.98 31825.59 45671.75 0.0

⎤
⎥⎥⎦

Auch für die Kosten gilt also die grundlegende Aufteilung der Gleichung (6.21):

k= Tk× 1︸ ︷︷ ︸
kint

+kext

☼

6.5.3 Lösen linearer Gleichungssysteme mit Scilab

Das Beispiel 6.18 kann in Scilab wie folgt gelöst werden:

// 1. Variante
xp=[1200

600
1600
2000];

Tp=[ 0 0 600 400
400 100 0 0
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200 400 300 0
300 100 200 0];

kext=[ 90000
60000

120000
200000];

p=inv(diag(xp)-Tp)*kext

// 2. Variante
Dp=inv(diag(xp))*Tp;
pext=inv(diag(xp))*kext;
p2=inv(eye(4,4)-Dp)*pext

Übung 6.4. Eine Unternehmung weist 4 Kostenstellen (KST) auf, die betriebliche
Leistungen an eine Hauptkostenstelle (HKST) abgeben, sich wechselseitig belie-
fern und einen Eigenverbrauch haben. Die umlagebedürftigen Gesamtkosten einer
Kostenstelle umfassen sowohl die primären Kosten als auch die Kosten der inner-
betrieblichen Leistungen, die von den Kostenstellen erbracht werden (sekundäre
Kosten). Berechnen Sie die innerbetrieblichen Verrechnungspreise der vier Kosten-
stellen.

Tabelle 6.4: Verflechtungstablle
von/an Kostenstelle HKST primäre Kosten

1 2 3 4 b kext
1 10 40 20 30 500 110
2 40 10 30 120 600 3135
3 50 60 50 40 800 7740
4 60 50 10 80 1000 12365
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Übung 6.5. Ein Großunternehmen unterhält drei energieproduzierende Anlagen.
Sie liefern Warmwasser (W), Heißdampf (H) und Strom (S). Die Anlagen versor-
gen sich zum Teil gegenseitig, geben aber auch Energie an andere Bedarfsstellen
ab. Die Tabelle 6.5 enthält die Leistungsverflechtung zwischen den Bedarfsstellen.

Tabelle 6.5: Leistungsverflechtung
W H S y x

W 15 2 8 30
H 3 12 4 20
S 9 4 20 40

1. Berechnen Sie y. Es ist die Versorgung der anderen Bedarfsstellen, die End-
nachfrage.

2. Stellen Sie die Matrix D der relativen (technischen) Input-Output-Koeffi-
zienten auf.

3. Nehmen Sie an, die Anlage zur Warmwasserbereitung muss über längere
Zeit repariert werden. Die Betriebsleitung versucht nun, den Mangel durch
eine Produktionsplanung von

x′ =
[
0 30 60

]
auszugleichen. Können die anderen Produktionsstätten unter diesen Bedin-
gungen versorgt werden?

4. Welche Gesamtproduktion ist zur Nachfragedeckung von

y′ =
[
10 11 5

]
nötig? Lösung mittels der Inversen von (I−D) erwünscht!

6.6 Determinante einer Matrix

Jeder quadratischen Matrix A ist eindeutig eine reelle Zahl zugeordnet, die als ihre
Determinante det(A) oder |A| bezeichnet wird. Mittels der Determinanten kann die
lineare Abhängigkeit in Matrizen festgestellt werden. Besitzt die Matrix einen redu-
zierten Rang (keinen vollen Rang), ist die Determinante Null. Außerdem eignen sich
Determinanten zur Bestimmung des «Vorzeichens» einer Matrix (auch Definitheit
der Matrix genannt). Diese wird zur Bestimmung des Vorzeichens der zweiten Ab-
leitung bei Funktionen mit mehr als einer Variablen eingesetzt (siehe Hesse-Matrix,
Kapitel 11.4). Ferner lassen sich mit Determinanten Gleichungssysteme lösen (Cra-
mersche Regel) und Inversen berechnen. Da jedoch diese beiden Verfahren einen
hohen Rechenaufwand haben, wird auf deren Beschreibung hier verzichtet.
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6.6.1 Berechnung von Determinanten

Die algebraische Lösung des (2× 2) Gleichungssystems (6.4, siehe Seite 76) weist
einen identischen Nenner in beiden Lösungsgleichungen auf (siehe Gleichungen
(6.2) und (6.3)). Dieser Nenner ist die Determinante der Matrix A. Er berechnet
sich im Fall der (2× 2)-Matrix wie folgt:

detA=

∣∣∣∣a11 a12
a21 a22

∣∣∣∣= a11a22 −a12a21

Es ist das Produkt der Hauptdiagonalelemente minus dem Produkt der Nebendiago-
nalelemente. Die Berechnung von Determinanten höherer Ordnung kann nicht mehr
mit der obigen Regel erfolgen, weil sie nicht alle Elemente berücksichtigt.

Hierfür liefert der Laplacesche Entwicklungssatz eine Möglichkeit, Determi-
nanten beliebiger Ordnung zu berechnen. Dazu müssen die Konzepte des Minor und
der Adjunkten eingeführt werden.

Als Minor der quadratischen Matrix A wird die Determinante |Ai j| bezeichnet,
die durch Streichung der i-ten Zeile und j-ten Spalte entsteht.

Beispiel 6.19. Der Minor |A21| der Matrix

A=

⎡
⎣a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦

wird aus der Restmatrix berechnet, die durch Streichen der 2-ten Zeile und der 1-ten
Spalte entsteht. Die Determinante der Matrix

|A21|=
∣∣∣∣a12 a13
a32 a33

∣∣∣∣= a12a33 −a32a13

ist der Minor. Bei einer (3× 3)-Matrix lassen sich insgesamt 9 Minoren berechnen.
☼

Multipliziert man den Minor mit (−1)i+ j, so erhält man die Adjunkte ci j (auch
Kofaktor).

ci j = (−1)i+ j |Ai j|
Beispiel 6.20. Die Adjunkte c21 zum Minor |A21| aus Beispiel 6.19 ist:

c21 = (−1)2+1 |A21|= (−1)3 |A21|=−|A21|

☼

Der Laplacesche Entwicklungssatz lautet nun:
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Multipliziert man jedes Element ai j einer beliebigen Zeile bzw. Spalte
einer Determinanten n-ter Ordnung mit seiner zugehörigen Adjunkten
ci j, so ergibt die Summe dieser Produkte den Wert der Determinanten.
Man spricht dann von der Entwicklung der Determinanten nach der i-ten
Zeile

|A|=
n∑
j=1
ai j ci j =

n∑
j=1
ai j (−1)i+ j |Ai j|

bzw. von der Entwicklung der Determinanten nach der j-ten Spalte:

|A|=
n∑
i=1

ai j ci j =
n∑
i=1

ai j (−1)i+ j |Ai j|

Beispiel 6.21. Die Entwicklung der Determinanten der Matrix in Beispiel 6.19 nach
der 1-ten Spalte führt zu folgender Gleichung:

|A|= a11 (−1)1+1 |A11|+ a21 (−1)2+1 |A21|+ a31 (−1)3+1 |A31|

= a11

∣∣∣∣a22 a23
a32 a33

∣∣∣∣− a21

∣∣∣∣a12 a13
a32 a33

∣∣∣∣+ a31

∣∣∣∣a12 a13
a22 a23

∣∣∣∣
= a11

(
a22a33 − a32a23

)− a21
(
a12a33 − a32a13

)
+a31

(
a12a23 −a22a13

)
Nun wird die 2-te Zeile zur Entwicklung der Determinanten ausgewählt.

|A|= a21 (−1)2+1 |A21|+ a22 (−1)2+2 |A22|+ a23 (−1)2+3 |A23|

=−a21

∣∣∣∣a12 a13
a32 a33

∣∣∣∣+ a22

∣∣∣∣a11 a13
a31 a33

∣∣∣∣− a23

∣∣∣∣a11 a12
a31 a32

∣∣∣∣
=−a21

(
a12a33 − a32a13

)
+ a22

(
a11a33 − a31a13

)−a23
(
a11 a32 −a31a12

)
Die weitere Auflösung der Gleichung zeigt, dass das gleiche Ergebnis entsteht.

Lediglich die Anordnung der Elemente ist unterschiedlich. Jede andere Zeile oder
Spalte führt zur gleichen Determinante. ☼

Beispiel 6.22. Die Berechnung der Determinanten der Matrix aus Beispiel 6.16 (sie-
he Seite 90) erfolgt mit der Entwicklung nach der 2-ten Zeile, da in dieser Zeile ein
Element Null ist.

|A|= 0(−1)2+1
∣∣∣∣2 1
1 1

∣∣∣∣+ 2(−1)2+2
∣∣∣∣1 1
2 1

∣∣∣∣+1(−1)2+3
∣∣∣∣1 2
2 1

∣∣∣∣
= 2

(
1× 1− 2× 1

)− (1× 1− 2× 2
)
= 1

Die Entwicklung der Determinanten nach der 1-ten Spalte hätte ebenso die Null
berücksichtigt. Eine Entwicklung der Determinanten nach einer anderen Zeile oder
Spalte wäre gleichwohl auch möglich, sie erzeugt aber mehr Rechenschritte. ☼

Exkurs: Es sei an dieser Stelle erwähnt, dass es für 3×3 Matrizen ne-
ben der Laplace-Entwicklung eine alternative Vorgehensweise existiert.
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Hiermit ist die Sarrus-Regel gemeint, die nach dem französischen Ma-
thematiker Pierre Frédéric Sarrus benannt ist. Zur Berechnung der De-
terminanten wird die Entwicklung über die Haupt- und Nebendiagona-
len vorgenommen, wie wir sie schon im 2×2 Fall kennen gelernt haben.
Zur Berechnung der Determinanten werden die ersten beiden Spalten
der 3× 3 Matrix rechts an die Matrix angefügt. In diesem Zahlensche-
ma hat man nun 3 Hauptdiagonalen und 3 Nebendiagonalen.

| A |=

∣∣∣∣∣∣∣∣∣∣

a11 a12 a13
↘ ↘ ↙↘
a21 a22 a23

↙↘ ↙↘
a31 a32 a33

∣∣∣∣∣∣∣∣∣∣

a11 a12
↙ ↙
a21 a22
↙↘
a31 a32

Die Produkte der 3 Hauptdiagonalen werden addiert, wovon dann die
addierten Produkte der 3 Nebendiagonalen subtrahiert werden. Somit
haben wir für die Determinante einer 3×3 Matrix A folgende Entwick-
lung:

| A |= a11 a22a33 +a12a23a31 +a13a21 a32

− a31a22 a13 −a32a23a11 −a33a21a12

Diese Vorschrift von Sarrus lässt sich nicht auf n-reihige (n> 3) Deter-
minanten übertragen.

Mit Hilfe des Entwicklungssatzes von Laplace lässt sich zeigen, dass die Deter-
minante einer Dreiecksmatrix gleich dem Produkt der Koeffizienten der Hauptdia-
gonalen ist.

detU=

∣∣∣∣∣∣∣
u11 . . . u1n

0
. . .

...
0 0 unn

∣∣∣∣∣∣∣=
n∏
i=1
uii

Mittels des Gauß-Algorithmus kann man jede Matrix in eine Dreiecksmatrix um-
formen, so dass die einfache Berechnung der Determinanten einer Dreiecksmatrix
angewendet werden kann.

Beispiel 6.23. Die Determinante der Matrix aus Beispiel 6.16 wird in eine Dreiecks-
matrix umgeformt.

detA=

∣∣∣∣∣∣
1 2 1
0 2 1
2 1 1

∣∣∣∣∣∣=
∣∣∣∣∣∣
1 2 1
0 2 1
0 −3 −1

∣∣∣∣∣∣=
∣∣∣∣∣∣
1 2 1
0 2 1
0 0 1

2

∣∣∣∣∣∣= 1× 2× 1
2
= 1

☼

Liegen die Pivotelemente nach Abschluss der Eliminationsphase nicht auf der
Hauptdiagonalen, so muss durch Spaltenvertauschung die Dreiecksform erreicht
werden. Das Vertauschen einer Spalte bzw. einer Zeile führt zu einem Vorzeichen-
wechsel der Determinanten.
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Beispiel 6.24. Die Determinante der Matrix

A=

[
1 3
2 4

]
ist

detA=−2
Werden in der Matrix die beiden Zeilen miteinander vertauscht,

A∗ =
[

2 4
1 3

]
so besitzt die Determinante der Matrix A∗ den Wert:

detA∗ = 2

Das Vorzeichen der Determinanten wurde durch den Zeilentausch ebenfalls ver-
tauscht. ☼

In den folgenden Formeln wird die Zahl der Vorzeichenwechsel berücksichtigt:

detA=

m∏
j=1

(−1)n(S)a jS j

n(S) bezeichnet die Anzahl der vertauschten Spalten und S j den Spaltenindex des
Diagonalelements. Statt der Spalten können auch die Zeilen vertauscht werden. Dann
gilt die Formel:

detA=

n∏
i=1

(−1)n(Z)aZii

n(Z) bezeichnet nun die Anzahl der vertauschten Zeilen und Zi ist der Zeilenindex
des Diagonalelements.

Beispiel 6.25. Zur Berechnung der Determinanten der Matrix in Beispiel 6.23 wer-
den nun die Pivotelemente außerhalb der Hauptdiagonalen gewählt. Sie sind fett ge-
druckt.

detA=

∣∣∣∣∣∣
1 2 1
0 2 1
2 1 1

∣∣∣∣∣∣=
∣∣∣∣∣∣
0 3

2
1
2

0 2 1
2 1 1

∣∣∣∣∣∣=
∣∣∣∣∣∣
0 0 − 1

4
0 2 1
2 1 1

∣∣∣∣∣∣
= (−1)3a31 a22a13 = (−1)3 × 2× 2×

(
−1

4

)
= 1

Um die Dreiecksmatrix zu erzeugen, sind 3 Zeilenvertauschungen (n(Z) = 3)
notwendig. Die 3-te Zeile wird durch zwei Zeilenvertauschungen in die 1-te Zei-
le gebracht. Dadurch wird die erste Zeile zur 2-ten Zeile, die durch eine weitere
Vertauschung in die 3-te Zeile gesetzt werden muss. Da jeder Zeilentausch einen
Vorzeichenwechsel der Determinanten verursacht, muss diese nun mit (−1)3 Vorzei-
chenwechseln korrigiert werden. Im Ergebnis erhält man die gleiche Determinante.
☼
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Mit Scilab lässt sich ebenso einfach wie die Inverse, die Determinante einer Ma-
trix berechnen. Mit dem Befehl det(A) wird die Determinante von A ausgegeben.

6.6.2 Einige Eigenschaften von Determinanten

Determinanten weisen einige interessante Eigenschaften auf, wobei einige der Ei-
genschaften schon im vorstehenden Abschnitt angewendet worden sind.

• Vertauscht man in einer Determinanten zwei Zeilen bzw. Spalten, so ändert sich
nur das Vorzeichen der Determinanten.

• Die Determinante einer Dreiecksmatrix ist gleich dem Produkt der Elemente in
der Hauptdiagonalen.

• Die Determinante einer Matrix ist Null, wenn Zeilen oder Spalten der Matrix
linear abhängig sind.

• Die Matrix und ihre tranponierte Matrix besitzen die gleiche Determinante.

Beispiel 6.26. Die folgende Matrix weist eine lineare Abhängigkeit auf.

B=

[
2 1
2 1

]

Die Determinante der Matrix ist Null.

detB= 0

☼

Übung 6.6. Berechnen Sie die Determinante der folgenden Matrix:

A=

⎡
⎢⎢⎣

1 0 2 1
−1 1 3 1

1 −2 0 −1
0 −2 1 1

⎤
⎥⎥⎦

6.6.3 Berechnung von Determinanten in Scilab

In Scilab werden Determinanten mit dem Befehl det() berechnet.

A = [2 4; 1 3]
det(A) -> 2
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6.7 Homogene Gleichungssysteme

Bei zahlreichen (linearen) ökonomischen Prozessen stellt sich die Frage, ob eine
Lösung existiert, bei der die Produktion gleich dem Verbrauch sein kann. Im Rahmen
eines Input-Output-Systems wäre dann der Vektor b= 0.

x= Ax (6.28)

Es handelt sich dann um ein geschlossenes Leontief-Modell. Ein solches System
wird auch als homogenes lineares Gleichungssystem bezeichnet.

Meistens entstehen Eigenwertprobleme aus mathematisch statistischen Frage-
stellungen, wie zum Beispiel in der Diskriminanzanalyse oder der kanonischen Kor-
relation.

6.7.1 Eigenwerte

Zur Lösung eines homogenen linearen Gleichungssystems wird ein Parameter benö-
tigt, da ansonsten die Gleichung (6.28) mit Ausnahme der Lösung x= 0 nicht lösbar
ist. Dieser Parameter wird häufig mit λ bezeichnet und heißt Eigenwert der Matrix
A.

Ax= λ x (6.29)

Das Gleichungssystem
(A−λ I)x = 0

ist dann nach x auflösbar, wenn die Matrix (A−λ I) invertierbar ist.

x= (A−λ I)−1 0 = 0

Ist die Matrix invertierbar, dann existiert nur die Lösung x = 0 und λ ist dann
kein Eigenwert der Matrix A. Folglich darf die Matrix (A− λ I) nicht invertierbar
sein, wenn eine Lösung für die Gleichung (6.28) existieren soll. Dies bedeutet, dass
die Matrix (A− λ I) eine lineare Abhängigkeit aufweisen muss. Dies ist der Fall,
wenn die Determinante Null ist.

det(A−λ I) !
= 0

Dann ist λ ein Eigenwert der Matrix A. Die Determinante der Matrix ist ein
Polynom n-ten Grades und heißt charakteristisches Polynom der Matrix A. Die
Eigenwerte sind die Nullstellen dieses Polynoms.

Beispiel 6.27. Für das Input-Output-System in Abschnitt 6.5 ergibt sich bei einem
Vektor b= 0 folgendes Gleichungssystem:

x=
[

0.3 0.4
0.5 0.1

]
x

Die Berechnung der Eigenwerte erfolgt aus der Nullsetzung der Determinan-
ten von (A−λ I). Diese liefert das charakteristische Polynom, deren Nullstellen die
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Eigenwerte sind. Die Nullstellenberechnung von Polynomen ist in Kapitel 8.3 und
Kapitel 10.7 beschrieben.

det
[

0.3−λ 0.4
0.5 0.1−λ

]
!
= 0

(0.3−λ )(0.1−λ )− 0.2 !
= 0

λ 2 − 0.4λ − 0.17 !
= 0

λ1 = 0.6582 λ2 =−0.2582

In dem vorliegenden Fall ist keine Lösung möglich, bei der der Konsum größer
oder gleich der Produktion ist. In dem ersten Fall wird nur rund 66 Prozent des Ver-
brauchs produziert. Es handelt sich also um ein schrumpfendes Wirtschaftssystem.

Ax= 0.66x

In dem zweiten Fall ist keine ökonomische Situation vorstellbar. Die Produktion
liefert minus 26 Prozent des Konsums!

Ax =−0.26x

☼

6.7.2 Eigenvektoren

Die Lösung x �= 0 der Gleichung (6.29) kann nur mit den Eigenwerten λ erfol-
gen. Der Lösungsvektor für das homogene Gleichungssystem heißtEigenvektor und
wird mit v bezeichnet. Er stellt die Lösung für das homogene Gleichungssystem dar
(x= v). Zu jedem Eigenwert existiert mindestens ein Eigenvektor.

(A−λi I)vi = 0 mit i= 1, . . . ,n

Beispiel 6.28. Für das homogene Gleichungssystem aus Beispiel 6.27 werden die zu
den Eigenwerten gehörigen Eigenvektoren berechnet. Das homogene Gleichungssy-
stem für den ersten Eigenwert ist:

(A− 0.6582I)v1 = 0 (6.30)[−0.3582 0.4
0.5 −0.5582

]
v1 = 0 ⇔

[
1 −1.116
0 0

]
v1 = 0 ⇒ v1 = α

[
1.116

1

]
bzw. [

0 0
−0.895 1

]
v1 = 0 ⇒ v1 = α

[
1

0.895

]
mit α ∈R

Für den zweiten Eigenwert berechnet sich der Eigenvektor analog.[
0.5582 0.4

0.5 0.3582

]
v2 = 0 ⇔

[
1 0.7165
0 0

]
v2 = 0 ⇒ v2 = α

[−0.7165
1

]
Der Eigenvektor ist nicht eindeutig zu bestimmen. Denn auch ein Vielfaches des
Eigenvektors erfüllt die Gleichung (6.30). ☼
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6.7.3 Einige Eigenschaften von Eigenwerten

• Die Matrizen A und A′ besitzen dieselben Eigenwerte.
• Seien A und BMatrizen der Dimension (n×n). Dann besitzen die Matrizen AB

und BA dieselben Eigenwerte.
• Ist λ ein Eigenwert der regulären Matrix A, dann ist 1

λ ein Eigenwert von A−1.
A und A−1 haben dieselben Eigenvektoren.

• Ist λ ein Eigenwert von A, dann ist λ k ein Eigenwert von Ak.
• Die Determinante einer (n× n) Matrix A ist gleich dem Produkt der Eigenwerte

λi von A.

detA=

n∏
i=1

λi

• Die Summe der Diagonalelemente von A wird als Spur der Matrix A bezeichnet
und ist gleich der Summe der Eigenwerte λi einer Matrix A.

SpA=

n∑
i=1

λi

6.7.4 Ähnliche Matrizen

Es wird von zwei quadratischen Matrizen A und B n-ter Ordnung ausgegangen. Die
beiden Matrizen werden als ähnlich bezeichnet, wenn eine reguläre quadratische
Matrix C gleicher Ordnung existiert, so dass

B= C−1AC

gilt. Eine wesentliche Eigenschaft ähnlicher Matrizen ist, dass sie dieselben Eigen-
werte besitzen, woraus sich das Adjektiv «ähnlich» erklärt. Aber Matrizen mit glei-
chen Eigenwerten müssen nicht notwendigerweise ähnlich sein.

Eine besonders interessante Transformation ist diejenige, die das Ergebnis einer
Diagonalmatrix erzeugt. Diese stellt sich dann ein, wenn die Matrix C aus den nor-
mierten Eigenvektoren der Matrix A besteht. Die Elemente der Matrix D sind dann
die Eigenwerte der Matrix A.

C−1AC= D=

⎡
⎢⎣λ1 . . . 0

...
. . .

...
0 . . . λn

⎤
⎥⎦

Beispiel 6.29. Die normierten Eigenvektoren in dem Beispiel 6.28 sind:

ṽ1 =
v1

‖v1‖ und ṽ2 =
v2
‖v2‖

ṽ1 =

[
0.7449
0.6671

]
ṽ2 =

[−0.5824
0.8128

]
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Die Matrix C ist folglich:

C=

[
0.7449 −0.5824
0.6671 0.8128

]
Wird nun die obige Transformation vorgenommen, ist das Ergebnis die Diago-

nalmatrix der Eigenwerte.[
0.8176 0.5858

−0.6711 0.7493

] [
0.3 0.4
0.5 0.1

] [
0.7449 −0.5824
0.6671 0.8128

]
=

[
0.6582 0

0 −0.2582

]
☼

Wird für die Matrix A ferner eine symmetrische Matrix angenommen, dann
stellt sich folgendes Ergebnis ein: Die normierten Eigenvektoren stehen senkrecht
aufeinander. Es gilt daher:

ṽ′i ṽi = 1 und ṽ′i ṽ j = 0 für i �= j, i, j = 1, . . . ,n

Die Matrix C hat als orthonormierte Matrix dann u. a. die Eigenschaft, dass ihre
Transponierte gleich der Inversen ist. Es gilt also C′ = C−1.

C′C=

⎡
⎢⎣ṽ

′
1
ṽ′2
...

⎤
⎥⎦ [ṽ1 ṽ2 . . .

]
=

⎡
⎢⎣ṽ

′
1 ṽ1 ṽ′1 ṽ2 . . .
ṽ′2 ṽ1 ṽ′2 ṽ2 . . .

...
...

. . .

⎤
⎥⎦=

⎡
⎢⎣1 0 . . .

0 1
...

. . .

⎤
⎥⎦= I

Beispiel 6.30. Die symmetrische Matrix

A=

[
2 2
2 −1

]
soll in eine Diagonalmatrix transformiert werden. Sie besitzt die Eigenwerte λ1 =−2
und λ2 = 3 und die normierten Eigenvektoren

ṽ1 =

[
0.4472

−0.8944

]
und ṽ2 =

[−0.8944
−0.4472

]
Die normierten Eigenvektoren stehen senkrecht aufeinander, wie man durch Berech-
nen der Skalarprodukte leicht feststellen kann. Die Transformation

C′AC= D=

[−2 0
0 3

]
liefert die gesuchte Diagonalmatrix. Dass C′ = C−1 gilt, kann man leicht mit einem
Computerprogramm überprüfen. ☼

Übung 6.7. Berechnen Sie für die Matrix

A=

[
0.7 0.2
0.0 1.1

]

die Eigenwerte und Eigenvektoren.
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6.7.5 Berechnung von Eigenwerten und Eigenvektoren mit Scilab

In Scilab werden die Eigenwerte und Eigenvektoren mit dem Befehl [C,l] =
spec(A) berechnet. Das Ergebnis [C,l] enthält die Eigenwerte und die normier-
ten Eigenvektoren.

Beispiel 6.31. Die Anwendung des Befehls wird am Beispiel 6.30 gezeigt.

A = [2 2
2 -1];

[C,l] = spec(A)

l =
-2 0
0 3

C =
0.447 -0.894
-0.894 -0.447

Der Vektor l enthält die beiden Eigenwerte λ1 = −2 und λ2 = 3. Die Matrix C
enthält die beiden dazugehörigen normierten Eigenvektoren.

Das Beispiel 6.30 kann nun leicht nachgerechnet werden. Der Befehl C’*A*C
liefert ebenso wie inv(C)*A*C die Diagonalmatrix mit den Eigenwerten, da die
Matrix A symmetrisch ist. ☼

6.8 Fazit

Mit linearen Gleichungssytemen können essenzielle ökonomische Probleme be-
schrieben werden. Sie werden bevorzugt in Matrizengleichungen formuliert, weil
damit spezielle Eigenschaften von Matrizen genutzt werden können. Eine besondere
Form von Gleichungssystemen sind die homogenen Gleichungssysteme. Sie führen
zu den Eigenwerten und Eigenvektoren.
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7.1 Vorbemerkung

Die lineare Optimierung (Synonyme: lineare Planungsrechnung, lineare Program-
mierung) (operation research) ist in den letzten Jahrzehnten, auch aufgrund der ra-
santen Entwicklung im Computerbereich, zu einem Standardverfahren in der Be-
triebswirtschaftslehre geworden. Sie kann grundsätzlich überall dort eingesetzt wer-
den, wo eine optimale Verteilung knapper Ressourcen erforderlich ist, um ein ge-
wünschtes Ziel zu erreichen. Die Ressourcen können zum Beispiel finanzielle Mittel

W. Kohn, R. Öztürk, Mathematik für Ökonomen, Springer-Lehrbuch, 
DOI 10.1007/978-3-642-28575-2_7, © Springer-Verlag Berlin Heidelberg 2012
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oder die Kapazitäten von Fertigungsanlagen sein, die ein Unternehmen für einen be-
stimmten Zweck zur Verfügung hat. Auch die niedrigsten Kosten oder der höchste
Gewinn können vorgegebene Ziele sein. Die mathematische Aufgabe besteht also
darin, Extremwerte, d. h. ein Maximum oder Minimum einer linearen Zielfunktion,
unter beliebig vielen linearen Nebenbedingungen zu suchen.

Zu den in den vorherigen Kapiteln verwendeten Bezeichnungen kommt in der
linearen Optimierung noch die Zielfunktion hinzu.

z() Zielfunktion

7.2 Formulierung der Grundaufgabe

Voraussetzung für den Einsatz der linearen Optimierung ist, dass sich das Problem
mit einer linearen Zielfunktion (linear target function) beschreiben lässt, die zu
maximieren bzw. zu minimieren ist. Die Optimierung der Zielfunkion ist jedoch
nur dann sinnvoll, wenn lineare Nebenbedingungen (Restriktionen) (linear side
conditions) formuliert werden, die den Optimierungsprozess beschränken. Die Ne-
benbedingungen werden in Form von linearen Ungleichungen angegeben. Eine Ge-
winnoptimierung beispielsweise, bei der keine Kapazitätsbeschränkungen formuliert
werden, führt zu einer unendlichen Produktion mit einem unendlichen Gewinn.

Beispiel 7.1. Ein Produktionsproblem (vgl. [7]). Eine Unternehmung kann zwei Pro-
dukte fertigen, die unterschiedliche Deckungsbeiträge erbringen. Für Produkt 1 er-
gibt sich ein Deckungsbeitrag von 20e pro Mengeneinheit, und für Produkt 2 beträgt
er 30e pro Mengeneinheit. Für die Fertigung beider Produkte stehen zwei Anlagen
bereit, die in 20 Tagen 200 h (Anlage 1) bzw. 160 h (Anlage 2) genutzt werden kön-
nen. Das Produkt 1 belegt beide Anlagen jeweils eine Stunde je Mengeneinheit; zur
Fertigung des Produktes 2 wird die Anlage 1 zwei Stunden und die Anlage 2 eine
Stunde genutzt. Vom Produkt 2 können in 20 Tagen höchstens 60 Mengeneinheiten
abgesetzt werden, weshalb auch nicht mehr gefertigt werden soll. ☼

Anhand des Beispiels 7.1 wird im Folgenden die Grundform der linearen Op-
timierung beschrieben. Auf der Produktionsanlage 1 können zwei Produkte in den
Mengen x1 und x2 gefertigt werden, wobei für Produkt 1 eine Stunde und für Produkt
2 zwei Stunden Herstellungszeit auf der Anlage benötigt werden. Insgesamt kann die
Anlage 200 Stunden im Monat laufen. Daraus ergibt sich, dass maximal 200 Einhei-
ten von Produkt 1 (x1 = 200) oder 100 Einheiten von Produkt 2 (x2 = 100) oder jede
Kombination der beiden Produkte produziert werden kann, die 200 Stunden Bear-
beitungszeit benötigt (zum Beispiel x1 = 140 und x2 = 30). Die Produktionsstruktur
der Anlage 1 kann in der linearen Form der Gleichung (7.1) angegeben werden.

x1 + 2x2 = 200 mit x1,x2 ≥ 0 (7.1)

Bedingung x1,x2 ≥ 0 bedeutet, dass negative Mengen nicht erlaubt sind und wird
als Nichtnegativitätsbedingung bezeichnet. Die grafische Darstellung der Neben-
bedingung ist eine Gerade, wie sie in Abb. 7.1 links gezeichnet ist. Alle Punkte auf
der Linie erfüllen die Gleichung (7.1).
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Nun kann es aber durchaus sinnvoll sein, die Anlage weniger als 200 Stunden im
Monat zu betreiben. Mathematisch wird dies durch eine Ungleichung beschrieben.

x1 +2x2 ≤ 200 (7.2)
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Abb. 7.1: Lineare Gleichung (links) und lineare Ungleichung (rechts)

Die Lösungen, die die Ungleichung (7.2) erfüllen, beinhalten alle Punkte auf
und unterhalb der Geraden. Eine solche Ungleichung wird als Nebenbedingung be-
zeichnet (siehe Abb. 7.1 rechts). Aufgrund der Nichtnegativitätsbedingung ist der
Lösungsraum auf die nichtnegativen Werte beschränkt.

In einem betrieblichen Produktionsprozess existieren in der Regel viele Neben-
bedingungen, die die Produktion einschränken. Im Beispiel 7.1 wird auch eine zweite
Anlage zur Bearbeitung der Produkte 1 und 2 eingesetzt. Für sie lautet die Nebenbe-
dingung in Gleichungsform

x1 + x2 ≤ 160 (7.3)

Die Nebenbedingung (7.3) schränkt den zulässigen Produktionsraum weiter ein.
Dies wird deutlich, wenn die Gleichung zusätzlich in die Abb. 7.1 aufgenommen
wird (siehe Abb. 7.2). Im Beispiel 7.1 wird noch eine weitere Nebenbedingung ge-
nannt, die eine Absatzbeschränkung für das Produkt 2 ist und bei 60 Einheiten liegt.

x2 ≤ 60 (7.4)

Mit den 3 Nebenbedingungen (Gleichungen (7.2), (7.3) und (7.4)) und der Nicht-
negativitätsbedingung x1,x2 ≥ 0 sind die Beschränkungen aus dem Beispiel 7.1 voll-
ständig erfasst. Sie geben den zulässigen Lösungsraum an.

Jedoch muss entschieden werden, welche unter den möglichen (unendlich vie-
len) Lösungen gewählt werden soll. Das Entscheidungsproblem lässt sich nur dann
lösen, wenn die Alternativen bewertet werden. Eine solche Bewertung wird mittels
der linearen Zielfunktion vorgenommen. Im Beispiel 7.1 werden die Produkte mit
ihrem Deckungsbeitrag pro Stück (Bruttogewinn pro Stück) bewertet. Die Funktion

z(x1,x2) = 20x1 + 30x2
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Abb. 7.2: Zulässiger Lösungsraum

gibt den Gewinn an, der durch die beiden Produkte erwirtschaftet wird. Es ist nun
möglich, diejenige Produktmengenkombination zu suchen, die den höchsten Gewinn
erzielt. Die Zielfunktion muss also maximiert werden. Beschreibt die Zielfunktion
beispielsweise die Kosten einer Produktion, so sind diese natürlich zu minimieren.
Zunächst wird das Standardproblem der linearen Optimierung erläutert, bei dem
die Zielfunktion unter den linearen Nebenbedingungen maximiert wird.

Eine formale Beschreibung des linearen Optimierungsproblems sieht wie folgt
aus: Maximiere z mit

z(x1, . . . ,xm) =
m∑
j=1

c j x j+ c0

unter den Nebenbedingungen
m∑
j=1
ai j x j ≤ bi für i= 1, . . . ,n

x j ≥ 0 für j = 1, . . . ,m

Die Variablen x j (i = 1, . . . ,m) sind dabei die Entscheidungsvariablen, die reellwer-
tig und kontinuierlich sein müssen. In der Zielfunktion kann zusätzlich ein absoluter
Koeffizient c0 berücksichtigt werden. Er kann beispielsweise einen Fixbetrag dar-
stellen. Im obigen Beispiel ist der Koeffizient c0 Null.

Beispiel 7.2. Für das Beispiel 7.1 lautet die Aufgabe somit: Maximiere z mit

z(x1,x2) = 20x1 + 30x2
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unter den Nebenbedingungen

x1 + 2x2 ≤ 200
x1 + x2 ≤ 160

x2 ≤ 60
x1,x2 ≥ 0

☼

7.3 Grafische Maximierung

Um die Zielfunktion zu maximieren, wird sie in die Grafik 7.2 eingezeichnet. Hier-
bei ist es vorteilhaft für den Zielfunktionswert z einen Wert vorzugeben, der zu mög-
lichst einfachen Werten von x führt. Im Beispiel 7.1 ergeben sich für ein gesetztes
z = 1800 die Koordinatenpunkte (x1 = 0,x2 = 60) und (x1 = 90,x2 = 0). Diese Ge-
rade gibt alle Produktmengenkombinationen von x1 und x2 an, die zu einem Gewinn
von z = 1 800e führen. Diese Gerade wird auch als Isogewinngerade bezeichnet.
Verschiebt man die Gerade parallel, so verändert sich der Gewinn. Er wird in die
eingezeichnete Richtung immer größer (siehe Abb. 7.3). Dies liegt daran, dass mit
einer weiter im «Nordosten» liegenden Zielfunktionsgeraden die Werte von x1 und
x2 monoton ansteigen. Dadurch erhöht sich der Zielfunktionswert z streng mono-
ton, da die Deckungsbeiträge positiv sind. Will man also den maximalen Wert von
z ermitteln, so muss man die Zielfunktionsgerade so weit in Richtung des wachsen-
den Zielwertes parallel verschieben, bis der zulässige Bereich gerade noch tangiert
wird. Dies wird in der Abb. 7.3 dargestellt. Im Eckpunkt x1 = 120 und x2 = 40 wird
der maximale Zielwert zmax = 3 600e erreicht. Im Normalfall handelt es sich – wie
hier – um einen Eckpunkt des Lösungsraums.

Nur wenn die Zielfunktionsgerade parallel zu einer Restriktionsgeraden verläuft,
ist die optimale Lösung nicht mehr eindeutig. In dem Bereich, in dem die Zielfunk-
tionsgerade identisch mit der Restriktionsgeraden verläuft, stellen alle Punkte eine
optimale Lösung dar. Zu der Menge der optimalen Lösungen gehören auch die Eck-
punkte.

7.4 Matrix-Formulierung der linearen Optimierung

Das lineare Optimierungsproblem kann auch in Matrixform aufgeschrieben werden.
Die Zielfunktion ist ein Skalarprodukt der Zielfunktionskoeffizienten mit den Varia-
blen. Werden diese jeweils in Spaltenvektoren zusammengefasst, erhalten wir fol-
gende Form der Zielfunktion:

z(x) = c′ x+ c0 mit c=

⎡
⎢⎣c1

...
cm

⎤
⎥⎦ und x=

⎡
⎢⎣x1

...
xm

⎤
⎥⎦
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Abb. 7.3:Maximierung der Zielfunktion von Beispiel 7.1

Die Nebenbedingungen können ebenfalls sehr leicht in Matrixform aufgeschrie-
ben werden. Es ist im Prinzip ein lineares Gleichungssystem, das hier durch Un-
gleichungen ersetzt wird. Die Koeffizienten ai j der Nebenbedingungen werden in
einer Matrix A zusammengefasst. Die rechte Seite mit den Beschränkungen ist ein
n-dimensionaler Vektor.

Ax≤ b mit A=

⎡
⎢⎣a11 . . . a1m

...
...

an1 . . . anm

⎤
⎥⎦ und b=

⎡
⎢⎣b1

...
bn

⎤
⎥⎦

Die lineare Optimierungsaufgabe lautet dann: Maximiere z mit

z(x) = c′ x+ c0

unter den Nebenbedingungen

Ax≤ b, x≥ 0

Beispiel 7.3. Das Beispiel 7.1 in Matrixschreibweise ist:[
20 30

] [x1
x2

]
→ max⎡

⎣ 1 2
1 1
0 1

⎤
⎦ [x1
x2

]
≤
⎡
⎣200

160
60

⎤
⎦

☼
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7.5 Simplex-Methode für die Maximierung

Eine grafische Lösung für mehr als 2 Variablen scheidet in der Regel aus und ei-
ne Lösung kann nur numerisch berechnet werden. Ein Rechenverfahren zur Lö-
sung von linearen Optimierungsproblemen wurde von George Bernard Dantzig 1947
entwickelt1. Es heißt Simplex-Methode. Die Methode verwendet im Kern den
Gaußschen-Algorithmus. Dieser ist so zu erweitern, dass zum einen die Zielfunk-
tion zur Bewertung der Lösung verwendet werden kann, zum anderen, dass lineare
Ungleichungen berücksichtigt werden können.

Am Beispiel 7.1 wird die Simplex-Methode in ihrer Grundform erklärt, die die
Zielfunktion maximiert. Die Nebenbedingungen werden durch Schlupfvariablen
(slack variables) zu Gleichungen ergänzt. Aus den Ungleichungen werden somit
Gleichungen. Die Nebenbedingungen bilden dann ein System linearer Gleichungen.
Ökonomisch bedeuten die Schlupfvariablen die nicht ausgenutzten Restriktionsober-
grenzen.

Ax≤ b ⇒ Ax+ y
Schlupfvariablen

= b

Auch die Zielfunktion wird leicht verändert. Die Koeffizienten der Zielfunktion
werden mit (−1) multipliziert. Aus der ursprünglichen Zielfunktion entsteht dann
die Form:

c′ x+ c0 = z(x)→ max ⇒ −c′ x= z(x)+ c0 → max

Der Grund für diesen Vorzeichenwechsel liegt in der ökonomischen Interpre-
tation der Koeffizienten −c. Diese werden nach Aufstellen des Simplex-Tableaus
erklärt.

Beispiel 7.4. Das lineare Optimierungsproblem für das Beispiel 7.1 sieht dann wie
folgt aus: Optimiere z mit

−20x1 −30x2 = z(x1,x2) mit z→ max

unter den Nebenbedingungen

x1 + 2x2 + y1 = 200
x1 + x2 + y2 = 160

x2 + y3 = 60
x1,x2 ≥ 0, y1,y2,y3 ≥ 0

☼

Im nächsten Schritt wird das lineare Optimierungsproblem in das so genannte
Simplex-Tableau übertragen. Die Indizierung der Schlupfvariablen bezieht sich da-
bei auf die Restriktionen und nicht auf die Variablen. Sofern keine Produktion statt-
findet, also x1 = x2 = 0 gilt, besitzen die Schlupfvariablen yi den Wert der rechten
Seite bi. Man nennt diese Lösung die erste Basislösung.

1 In der Literatur existieren verschiedene Darstellungen dieses Rechenverfahrens.
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Die Variablen, die mit einem Einheitsvektor verbunden sind, heißen Basisvaria-
blen. In der Tabelle 7.1 sind y1, y2 und y3 Basisvariablen. Diese besitzen den Wert
der Restriktionsobergrenzen, der in der rechten Spalte b abgelesen wird. Die nicht
in der Lösung befindlichen Variablen heißen Nichtbasisvariablen. Sie besitzen den
Wert Null.

Die veränderte Zielfunktion wird in die letzte Zeile des Simplex-Tableaus ein-
getragen. Diese Zeile wird Zielfunktionszeile genannt. Der Zielfunktionswert z hat
dann den Wert Null und wird im Tableau rechts unten abgelesen.

Tabelle 7.1: Simplex-Tableau

x1 x2 y1 y2 y3 b

1 2 1 0 0 200
1 1 0 1 0 160
0 1 0 0 1 60

−20 −30 0 0 0 0

Die Lösung ist nicht optimal. Dies erkennt man an den negativen Zielfunktions-
werten. Die Produktion von x1 könnte einen Gewinn von 20e pro Stück liefern. Da
keine Produktion von x1 stattfindet, entsteht ein fiktiver Verlust in Höhe von 20e.
Diesen fiktiven Verlust durch die Nicht-Produktion bezeichnet man in der Ökono-
mie alsOpportunitätskosten (opportunity costs). Diese Interpretation ist der Grund
für den Vorzeichenwechsel der Zielfunktionskoeffizienten. Die Opportunitätskosten
für das Produkt 2 sind höher. Durch die Produktion einer Einheit von x2 wird ein
höherer Gewinn erzielt als mit x1. Dies bedeutet, dass die Nichtbasisvariable x2 nun
zu einer Basisvariablen werden muss. Dafür muss dann eine bisherige Basisvariable
in eine Nichtbasisvariable umgewandelt werden. Diesen Variablentausch nennt man
Basistransformation.

Die Basistransformation ergibt nur dann eine Zielwerterhöhung, wenn der zuge-
hörige Zielfunktionskoeffizient (letzte Zeile im Tableau) der Variablen negativ ist. Ist
kein Zielfunktionskoeffizient negativ, ist die optimale Lösung erreicht.

Die erste Basislösung wird durch folgende Rechenschritte verbessert: Man wählt
die Nichtbasisvariable (Pivotspalte) aus, die die größte Zielwertveränderung je Men-
geneinheit ergibt. Das heißt, man nimmt den minimalen Wert in der Zielfunktionszei-
le. Im Beispiel 7.1 besitzt die Nichtbasisvariable x2 einen höheren Deckungsbeitrag
je ME als x1 und soll daher in die Lösung mit einem Wert größer Null eingehen, also
Basisvariable werden.

Welche Nebenbedingung beschränken hier die Produktion von x2? Die Auswahl
der Pivotzeile erfolgt nach dem so genannten Quotientenkriterium: Man teilt die
rechte Seite durch die Koeffizienten der Pivotspalte. Die Zeile mit dem kleinsten
Quotienten wird als Pivotzeile ausgewählt. Koeffizienten von Null und negative Ko-
effizienten bleiben dabei unberücksichtigt. Eine Division durch Null ist nicht defi-
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niert und die Koeffizienten dürfen wegen der Nichtnegativtätsbedingung auch nicht-
negativ werden. Ökonomisch bedeutet dies, dass man die maximal mögliche Produk-
tion des Produktes mit dem höchsten Deckungsbeitrag je Mengeneinheit auswählt.

Beispiel 7.5. Im Beispiel wird die 3. Gleichung ausgewählt, da von den Quotienten
200

2 , 160
1 und 60

1 der letzte Quotient am kleinsten ist. Die maximal mögliche Produk-
tion von x2 beträgt 60 Mengeneinheiten. ☼

Im Simplex-Tableau werden diese Schritte mittels des Gaußschen Eliminations-
verfahrens durchgeführt, d. h., es wird in der Pivotspalte ein Einheitsvektor erzeugt.
Dabei wird im ersten Schritt der Pivotkoeffizient (Koeffizient im Kreuz von Pivotzei-
le und Pivotspalte) auf Eins normiert. Dies geschieht, indem man die ganze Pivotzeile
durch den Wert des Pivotkoeffizienten teilt. Im zweiten Schritt werden die restlichen
Koeffizienten der Pivotspalte mit einer Gauß-Iteration auf Null umgerechnet.

Beispiel 7.6. Im Beispiel besitzt der Koeffizient bereits den Wert Eins. Im nächsten
Schritt werden ober- und unterhalb der Pivotzeilen in der Pivotspalte Nullen durch
entsprechende Addition bzw. Subtraktion ggf. eines Vielfaches der ganzen Pivotzeile
erzeugt. Die nächste Basislösung des Beispiels sieht dann im Simplex-Tableau wie
folgt aus:

Tabelle 7.2: Simplex-Tableau

x1 x2 y1 y2 y3 b

1 0 1 0 −2 80
1 0 0 1 −1 100
0 1 0 0 1 60

−20 0 0 0 30 1800

Die erste Zeile in diesem Tableau wird durch die folgende Rechnung erzeugt:
Die Pivotzeile

0 1 0 0 1 60

wird mit 2 multipliziert, weil der Koeffizient in der ersten Zeile der Pivotspalte 2 ist.
Danach wird die Pivotzeile von der ersten Zeile subtrahiert, um an der Position eine
Null zu erzeugen.

1 2 1 0 0 200
− 0 2 0 0 2 120

= 1 0 1 0 −2 80

Für die zweite Zeile wird eine entsprechende Rechnung durchgeführt.
Aus dem Simplex-Tableau 7.2 lassen sich nun folgende Werte ablesen: x1 = 0,

weil in der Spalte von x1 (noch) kein Basisvektor (Einheitsvektor) steht. Der Wert
von x2 beträgt 60 Mengeneinheiten. Die Schlupfvariablen y1 und y2 besitzen die
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Werte 80 und 100. Dies bedeutet, dass die Anlagen 1 und 2 noch Restkapazitäten
von 100 bzw. 80 Stunden besitzen. Der Gewinn beträgt bei dieser Produktionsstruk-
tur 1 800e. Da in der Zielfunktionszeile noch ein negativer Koeffizient steht, ist die
Lösung noch nicht optimal. Durch die Produktion von x1 kann pro Mengeneinheit
ein Deckungsbeitrag von 20e erzielt werden. Daher wird eine erneute Basistrans-
formation durchgeführt, bei der x1 die Basisvariable wird. Mittels des Quotientenkri-
teriums wird berechnet, dass die Anlage 1 für die Produktion von x1 beschränkend
ist; denn auf der Anlage 2 können maximal 100 Mengeneinheiten von x1 gefertigt
werden, wohingegen auf der Anlage 1 nur 80 Mengeneinheiten erzeugt werden.

x1 x2 y1 y2 y3 b

1 0 1 0 −2 80
0 0 −1 1 1 20
0 1 0 0 1 60

0 0 20 0 −10 3400

Diese Lösung ist immer noch nicht optimal, da in der Zielfunktionszeile noch ein
negativer Wert steht. Dieser bedeutet hier, dass durch Unterschreiten der Absatzre-
striktion ein zusätzlicher Stückgewinn von 10e erzielt werden kann. Im folgenden
Simplex-Tableau wird daher in der Basistransformation der Wert der Schlupfvaria-
blen y3 erhöht und aufgrund des Quotientenkriteriums die Schulpfvariable von An-
lage 2 auf Null gesetzt.

x1 x2 y1 y2 y3 b

1 0 −1 2 0 120
0 0 −1 1 1 20
0 1 1 −1 0 40

0 0 10 10 0 3600

Nun ist die optimale Lösung erreicht. Kein Wert in der Zielfunktionszeile ist mehr
negativ. Der maximale Gewinn beträgt zmax = 3 600e. Die gewinnoptimale Pro-
duktion beträgt x1 = 120 Mengeneinheiten und von x2 = 40 Mengeneinheiten. Die
numerische Lösung stimmt mit der grafischen Lösung überein. ☼

Übung 7.1. In einem Betrieb werden die Produkte x1 und x2 nacheinander auf den
Maschinen A, B und C bearbeitet. Die Maschinenzeit bei A ist für x1 doppelt so
groß wie für x2, bei B sind die Maschinenzeiten gleich und bei C ist die Maschi-
nenzeit für x2 dreimal so groß wie für x1. Auf A können in der Woche maximal 60
Stück von x1 oder 120 Stück von x2 bearbeitet werden. Auf Maschine B können
in der Woche höchstens 70 Stück von x1 oder x2 bearbeitet werden und auf Ma-
schine C 150 Stück x1 oder 50 Stück x2 je Woche. Für das Produkt x1 erzielt das
Unternehmen einen Stückgewinn von p1 = 10e und für x2 von p2 = 15e.
Berechnen Sie die optimale Lösung für das lineare Optimierungsproblem.
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7.6 Interpretation des Simplex-Endtableaus

In dem Simplex-Endtableau, das die optimale Lösung enthält, können in der letz-
ten Zeile die so genannten Schattenpreise bzw. Opportunitätskosten abgelesen
werden, die angeben, um wie viel sich der Gewinn verändert, wenn die wirksame
Restriktion um eine Einheit verändert wird.

Beispiel 7.7. Wenn zum Beispiel im vorliegenden Fall, die Anlage 1 eine Stunde
mehr Laufleistung besäße, so könnte ein um 10e höherer Gewinn pro Mengenein-
heit erwirtschaftet werden. ☼

Die Koeffizienten in den entsprechenden Spalten der Nichtbasisvariablen geben
an, um wie viel sich die Werte auf der rechten Seite bei Änderung der Restriktion 1
um eine Mengeneinheit ändern.

Beispiel 7.8. Wird im Beispiel 7.1 die Beschränkung der ersten Nebenbedingung um
eine Stunde erhöht (200 → 201), so steigt der Gewinn um 10e auf 3 610e. Von x1
werden dann nur noch 119 Mengeneinheiten, von x2 41 Mengeneinheiten hergestellt.
Die Absatzrestriktion weist nur noch 19 nicht genutzte Mengeneinheiten aus. ☼

Ferner wird deutlich, dass der Simplex-Algorithmus mit der Bewertung der Zwi-
schenlösungen die Nebenbedingungen auswählt, mit der die Lösungswerte x berech-
net werden. Daher muss das lineare System der Nebenbedingungen nicht bestimmt
sein.

7.7 Sonderfälle im Simplex-Algorithmus

7.7.1 Unbeschränkte Lösung

Treten im Rahmen des Simplex-Algorithmus in einer Spalte mit negativen Zielfunk-
tionswerten ebenfalls alle Koeffizienten negativ auf, so ist die Lösung unbeschränkt.
Bei realen Problemen darf es keine unbeschränkten Lösungen geben, da Gewinn,
Deckungsbeitrag oder Umsatz nicht über alle Grenzen wachsen können. Das Eintre-
ten dieses Falles ist dann in der Regel ein Indiz für eine falsche bzw. unvollständige
Modellierung des Problems.

Beispiel 7.9. Die folgende lineare Optimierung führt zu einer unbeschränkten Lö-
sung:

x1 x2 y1 y2 b

−2 1 1 0 2
2 −2 0 1 6

−2 −1 0 0 0

⇒

x1 x2 y1 y2 b

0 −1 1 1 8
1 −1 0 0.5 3

0 −3 0 1 6

☼
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7.7.2 Degeneration

Eine Degeneration liegt vor, wenn im Simplex-Tableau eine Auswahlmöglichkeit für
die Pivotzeile besteht. Dann hat im nächsten Tableau mindestens eine Basisvariable
den Wert Null. Die verschiedenen Möglichkeiten können zu verschiedenen Lösun-
gen führen. Daher sind immer alle möglichen Optimalllösungen zu berechnen. Gra-
phisch bedeutet die Degeneration, dass sich bei n Variablen mehr als n Restriktionen
in einem Punkt schneiden.

Beispiel 7.10. Die dritte Restriktion im Beispiel 7.1 wird nun durch eine im Opti-
malpunkt linear abhängige Restriktion ersetzt. Es ist also die Zielfunktion

z= 20x1 +30x2 → max

unter den Nebenbedingungen

x1 +2x2 ≤ 200
x1 + x2 ≤ 160

x2 ≤ 40

zu maximieren.

x1 x2 y1 y2 y3 b

1 2 1 0 0 200
1 1 0 1 0 160
0 1 0 0 1 40

−20 −30 0 0 0 0

⇒

x1 x2 y1 y2 y3 b

1 0 1 0 −2 120
1 0 0 1 −1 120
0 1 0 0 1 40

−20 0 0 0 30 1200

x1 x2 y1 y2 y3 b

1 0 1 0 −2 120
0 0 −1 1 1 0
0 1 0 0 1 40

0 0 20 0 −10 3600

⇒

x1 x2 y1 y2 y3 b

1 0 −1 2 0 120
0 0 −1 1 1 0
0 1 1 −1 0 40

0 0 10 10 0 3600

Im zweiten Tableau tritt eine Auswahlmöglichkeit für die Pivotzeile auf. Im dritten
Tableau besitzt die Basisvariable y2 den Wert Null.

Wird im zweiten Tableau die zweite Zeile als Pivotzeile gewählt, so stellt sich in
diesem Fall das gleiche Ergebnis ein, jedoch mit einer Restkapazität von Null für die
erste Nebenbedingung. ☼

7.7.3 Mehrdeutige Lösung

Ein anderer Sonderfall liegt vor, wenn die Zielfunktion steigungsgleich mit einer
Nebenbedingung verläuft. Die Optimallösung liegt dann nicht in einem Eckpunkt,
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sondern auf einer Restriktionsgeraden zwischen zwei Eckpunkten. Man spricht dann
von einer mehrdeutigen Lösung. In diesem Fall besitzt eine Nichtbasisvariable eine
Null in der Zielfunktionszeile. Um die übrigen möglichen Optimallösungen zu be-
stimmen, bringt man die Variablen, die in der Zielfunktionszeile eine Null aufweisen,
in ein lineares Gleichungssystem.

Beispiel 7.11. Das folgende Problem besitzt eine mehrdeutige Lösung. Die erste Re-
striktion ist steigungsgleich mit der Zielfunktion.

x1 x2 y1 y2 y3 b

1 2 1 0 0 200
1 1 0 1 0 160
0 1 0 0 1 60

−20 −40 0 0 0 0

⇒

x1 x2 y1 y2 y3 b

1 0 1 0 −2 80
0 0 −1 1 1 20
0 1 0 0 1 60

0 0 20 0 0 4000

Es ergibt sich ein lineares Gleichungssystem aus drei Gleichungen und vier Varia-
blen, das nur bei Vorgabe von Werten für eine Variable gelöst werden kann.

x1 −2y3 = 80
y2 + y3 = 20
x2 + y3 = 60

Eine mögliche Lösung für das unterbestimmte Gleichungssystem ist zum Beispiel
y3 = 0. Die anderen Werte sind dann x1 = 80, x2 = 60 und y2 = 20. ☼

Eine andere Form der Mehrdeutigkeit tritt auf, wenn zwei Zielfunktionskoeffi-
zienten gleich sind. In diesem Fall sind die alle möglichen Lösungen zu berechnen,
denn sie können zu verschiendenen Optimallösungen führen.

7.8 Erweiterungen des Simplex-Algorithmus

7.8.1 Berücksichtigung von Größer-gleich-Beschränkungen

Eine Größer-gleich-Nebenbedingung kann durch Vorzeichenumkehr als Kleiner-
gleich-Nebenbedingungen berücksichtigt werden. Damit erhält man eine «natürli-
che» Basisvariable. Allerdings ist der Ursprung, d. h. die Lösung x j = 0 nicht zu-
lässig, weil mit yi = −bi die Nichtnegativitätsbedingung in der ersten Basislösung
verletzt wird.

m∑
j=1
ai j x j ≥ bi ⇒ −

m∑
j=1
ai j x j ≤−bi

Negative Koeffizienten auf der rechten Seite treten nicht nur bei der Umwandlung
von Größer-gleich-Beziehungen auf, sondern können auch während des Algorith-
mus auftreten. Bei einem negativen Koeffizienten auf der rechten Seite ist die Nicht-
negativitätsbedingung verletzt. Es liegt daher nahe, für die Schlupfvariable zunächst
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yi = 0 zu erzwingen, um die Nichtnegativitätsbedingung zu erfüllen, d. h., die Zeile
i ist als Pivotzeile zu wählen. Sind mehrere Koeffizienten auf der rechten Seite ne-
gativ, so kann man die am stärksten verletzte Nebenbedingung als erstes erfüllen, in
dem man also minbi wählt. Wie bei der Gleichungsauflösung wird also zunächst die
Pivotzeile und dann erst die Pivotspalte ausgewählt! Mit der Wahl des Pivotelements
fällt dann die Entscheidung über die Pivotspalte. Damit die in die Basis gelangende
Nichtbasisvariable nicht erneut negativ wird, muss das Pivotelement selbst negativ
sein. Stehen mehrere negative Koeffizienten in der Pivotzeile zur Auswahl, so soll-
te man sich für den kleinsten entscheiden (minaPivotzeile j). Existiert kein negativer
Koeffizient, so ist das Gleichungssystem widersprüchlich.

Beispiel 7.12. Es ist folgende Zielfunktion

3x1 + 12x2 = z→ max

unter den Nebendingungen

−x1 +2x2 ≤ 6
4x1 +2x2 ≥ 12 ⇒ −4x1 −2x2 ≤−12

2x1 − x2 ≤ 8
x1 +2x2 ≤ 10

x2 ≥ 1 ⇒ −x2 ≤−1
x1 ≥ 0

zu maximieren. Die Größer-gleich-Restriktionen werden durch Vorzeichenumkehr
in Kleiner-gleich-Restriktionen umgesetzt. Das Simplex-Tableau besitzt damit auf
der rechten Seite negative Koeffizienten, die anzeigen, dass die erste Basislösung
unzulässig ist.

x1 x2 y1 y2 y3 y4 y5 b

−1 2 1 0 0 0 0 6
−4 −2 0 1 0 0 0 −12

2 −1 0 0 1 0 0 8
1 2 0 0 0 1 0 10
0 −1 0 0 0 0 1 −1

−3 −12 0 0 0 0 0 0

Es wird aufgrund der obigen Empfehlung das Element in der 2. Zeile und der 1.
Spalte ausgewählt. Auch die Auswahl von −2 in der 2. Zeile (2. Spalte) wäre mög-
lich gewesen, ebenso wie die Wahl der 5. Zeile mit −1. Mit der Wahl der kleinsten
Elemente wird oft der geringste Rechenaufwand erzeugt. Die Gauß-Iteration ergibt
folgendes Tableau:
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x1 x2 y1 y2 y3 y4 y5 b

0 2.50 1 −0.25 0 0 0 9
1 0.50 0 −0.25 0 0 0 3
0 −2.00 0 0.50 1 0 0 2
0 1.50 0 0.25 0 1 0 7
0 −1.00 0 0.00 0 0 1 −1

0 −10.50 0 −0.75 0 0 0 9

Eine zulässige Basislösung ist noch nicht erzeugt, da auf der rechten Seite die 5.
Nebenbedingung noch die Nichtnegativität der Lösung verletzt.

x1 x2 y1 y2 y3 y4 y5 b

0 0 1 −0.25 0 0 2.50 6.50
1 0 0 −0.25 0 0 0.50 2.50
0 0 0 0.50 1 0 −2.00 4.00
0 0 0 0.25 0 1 1.50 5.50
0 1 0 0.00 0 0 −1.00 1.00

0 0 0 −0.75 0 0 −10.50 19.50

Nun ist die erste zulässige Basislösung gefunden und der Simplex-Algorithmus kann
beginnen. Es werden über die Zielfunktionszeile nun wieder die größten Opportuni-
tätskosten gesucht und dann über das Quotientenkriterium die Pivotzeile bestimmt.

x1 x2 y1 y2 y3 y4 y5 b

0 0 0.40 −0.10 0 0 1 2.60
1 0 −0.20 −0.20 0 0 0 1.20
0 0 0.80 0.30 1 0 0 9.20
0 0 −0.60 0.40 0 1 0 1.60
0 1 0.40 −0.10 0 0 0 3.60

0 0 4.20 −1.80 0 0 0 46.80

x1 x2 y1 y2 y3 y4 y5 b

0 0 0.25 0 0 0.25 1 3
1 0 −0.50 0 0 0.50 0 2
0 0 1.25 0 1 −0.75 0 8
0 0 −1.50 1 0 2.50 0 4
0 1 0.25 0 0 0.25 0 4

0 0 1.50 0 0 4.50 0 54

Die optimale Lösung ist gefunden. ☼
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7.8.2 Berücksichtigung von Gleichungen

Eine Gleichung als Nebenbedingung kann mittels einer künstlichen Schlupfvariablen
berücksichtigt werden, um welche die Gleichung erweitert wird. Damit allerdings
die ursprüngliche (und nicht die willkürlich erweiterte) Gleichung erfüllt ist, muss
für eine zulässige Lösung die künstliche Schlupfvariable den Wert Null haben.

m∑
j=1
ai j x j+ ỹi = bi

Im Algorithmus lässt sich dieser Weg durch eine geeignete Pivotauswahl nach-
vollziehen. Um die künstliche Basisvariable ỹi aus der Basis zu eliminieren, muss
die entsprechende Zeile als Pivotzeile gewählt werden. Als Pivotspalte wählt man
am besten den größten Wert in der Pivotzeile aus, wenn bi positiv ist, bzw. den klein-
sten Wert, wenn bi negativ ist. Damit erfüllt dann die Basisvariable nach der Um-
rechnung die Nichtnegativitätsbedingung. Nach der Pivotoperation ist die künstliche
Schlupfvariable die Nichtbasisvariable. In dieser Weise werden zunächst alle Glei-
chungen aufgelöst, die eine künstliche Schlupfvariable enthalten. Erst dann wird mit
dem eigentlichen Simplex-Verfahren die Optimallösung bestimmt. Die Spalten mit
der künstlichen Schlupfvariablen werden im Simplex-Algorithmus dann aber nicht
mehr berücksichtigt.
Beispiel 7.13. In dem bekannten Beispiel 7.1 wird nun die dritte Restriktion durch
eine Gleichungsrestriktion ersetzt. Es ist also folgende Zielfunktion

20x1 + 30x2 = z→ max

unter den Nebenbedingungen

x1 +2x2 ≤ 200
x1 + x2 ≤ 160

x2 = 60

zu maximieren. Es entsteht das Simplex-Tableau, in dem die künstliche Schlupfva-
riable enthalten ist.

x1 x2 y1 y2 ỹ3 b

1 2 1 0 0 200
1 1 0 1 0 160
0 1 0 0 1 60

−20 −30 0 0 0 0

⇒

x1 x2 y1 y2 ỹ3 b

1 0 1 0 −2 80
1 0 0 1 −1 100
0 1 0 0 1 60

−20 0 0 0 30 1800

x1 x2 y1 y2 ỹ3 b

1 0 1 0 −2 80
0 0 −1 1 1 20
0 1 0 0 1 60

0 0 20 0 −10 1800
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Der Simplex-Algorithmus wird abgebrochen, obwohl noch ein negativer Wert in der
Zielfunktionszeile steht. Dieser wird jedoch nicht mehr berücksichtigt, weil er in der
Spalte der künstlichen Schlupfvariablen steht, die die Gleichheitsrestriktion berück-
sichtigt und den Wert Null haben muss. ☼

Übung 7.2. Maximiere die Zielfunktion

−x1 +2x2 = z→ max

unter den Nebenbedingungen:

x1 + x2 ≥ 2
−3x1 +4x2 ≤ 4

x1 ≤ 4
x2 ≥ 1

x1,x2 ≥ 0

7.9 Ein Minimierungsproblem

Bei einem Minimierungsproblem beschreibt die Zielfunktion zum Beispiel die Kos-
ten einer Produktion, die zu minimieren sind. Um eine nicht triviale Lösung (x1,x2 �=
0) zu erhalten, muss der Lösungsraum auch von «unten» («Südwesten») her einge-
schränkt sein. Dazu werden Nebenbedingungen in Form von Größer-gleich-Bezieh-
ungen benötigt.

m∑
j=1

ai j x j ≥ bi für i= 1, . . . ,n

Beispiel 7.14. Ein Mischungsproblem. Ein Produkt setzt sich aus den Grundstoffen
N1,N2 und N3 zusammen. Es werden aus den Grundstoffen zwei Produkte F1 und
F2 gefertigt, die unterschiedliche Konzentrationen der Grundstoffe enthalten: Eine

Tabelle 7.3: Rezeptur
Grundstoff/ME

N1 N2 N3

F1 3 4 1
F2 1 3 3

Mengeneinheit des Fertigprodukts F1 kostet 25e, eine Mengeneinheit des zweiten
Fertigprodukts F2 kostet 50e. Wie viele Mengeneinheiten von F1 und F2 sind zu
mischen, um bei möglichst geringen Kosten eine Zusammensetzung von mindestens
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9 Einheiten des Grundstoffs N1, mindestens 19 Einheiten des Grundstoffs N2 und
mindestens 7 Einheiten des Grundstoffs N3 zu erreichen?

Die gesuchten Mengeneinheiten von F1 und F2 ergeben sich als Lösung einer
linearen Optimierung. Hierzu seien x1 und x2 die zu mischenden Mengen von F1 und
von F2. Für die Entscheidungsvariablen nimmt man x1 und x2, die ausschließlich
nichtnegative Werte annehmen dürfen (x1,x2 ≥ 0).

Der zu deckende Bedarf an Nährstoffen wird sichergestellt durch die Nebenbe-
dingungen, wobei auf der linken Seite die Grundstoffmengen in Abhängigkeit von
den Fertigproduktmengen und auf der rechten Seite die geforderten Mindestmengen
stehen.

3x1 + x2 ≥ 9
4x1 + 3x2 ≥ 19
x1 + 3x2 ≥ 7
x1,x2 ≥ 0

Die Kosten z, die aus der Mischung von x1 und x2 entstehen, sind:

z= 25x1 + 50x2

Es sind die Kosten z unter den Nebenbedingungen zu minimieren. ☼

7.10 Grafische Minimierung

Bei der grafischen Minimierung wird die Zielfunktion parallel in Richtung auf den
Ursprung des Koordinatensystems verschoben. In Abb. 7.4 sind die Nebenbedingun-
gen und die Zielfunktion aus Beispiel 7.14 abgetragen. Der Lösungsraum liegt bei
Größer-gleich-Beziehungen oberhalb der Restriktionen. Die grafische Minimierung
der Zielfunktion wird vorgenommen, indem die Zielfunktionsgerade nach «Südwe-
sten» parallel verschoben wird. Der kleinste Wert ist erreicht, wenn der niedrigste
Punkt des zulässigen Lösungsraums erreicht ist.

Beispiel 7.15. Im Beispiel 7.14 ist die minimale Kostenkombination bei

x1 = 4
x2 = 1

gefunden. Die minimalen Kosten betragen

zmin = 150e.

☼
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Abb. 7.4:Minimierung der Zielfunktion von Beispiel 7.14

7.11 Simplex-Methode für die Minimierung

Im Simplex-Algorithmus kann die Minimierung als umgekehrte Maximierung durch-
geführt werden. Eine Zielfunktion mit negativem Zielwert wird maximiert; der posi-
tive Zielwert wird dann minimiert.

c′ x= z(x)→ min ⇔ −c′ x=−z(x)→ max

Bei einem Minimierungsproblem ist der Lösungsraum stets auch von unten ein-
geschränkt. Dies bedeutet, dass die erste Basislösung mit x = 0 nicht zulässig ist.
Dies äußert sich in den Größer-gleich-Restriktionen. Diese werden durch eine Ne-
gation (wie im Abschnitt 7.8.1) in Kleiner-gleich-Restriktionen umgewandelt. Die
rechte Seite enthält somit im Starttableau negative Werte. Dies zeigt die Unzuläs-
sigkeit der Basislösung an. Daher muss zuerst eine zulässige Basislösung berechnet
werden. Es wird eine Restriktion mit negativem Wert auf der rechten Seite gewählt
und dazu ein negativer Koeffizient. Diese so genannte Vorphase wird solange durch-
geführt bis kein negativer Wert mehr auf der rechten Seite steht. Dann ist die erste zu-
lässige Basislösung berechnet. Nun erst kann der eigentliche Simplex-Algorithmus
beginnen, sofern negative Zielfunktionskoeffizienten vorhanden sind.

Beispiel 7.16. Ein Betrieb besitzt 2 Rohstoffe R1 und R2, die er als Mischung weiter-
verarbeitet. R1 und R2 enthalten drei für die Weiterverarbeitung wichtige Bestandtei-
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le B1, B2 und B3. Die Anteile sind durch folgende Nebenbedingungen gegeben:

6x1 + 2x2 ≥ 10 Mindestanteil von B1

3x1 + 4x2 ≥ 12 Mindestanteil von B2

x1 + 4x2 ≥ 8 Mindestanteil von B3

x1,x2 ≥ 0 Nichtnegativitätsbedingung

Die Rohstoffe haben Stückkosten in Höhe von 1e bzw. 2e pro Einheit. In wel-
chen Quantitäten sind die Rohstoffe zu beschaffen, so dass die Kosten minimal wer-
den?

x1 + 2x2 = z→ min ⇒ −x1 −2x2=−z→ max

Das Optimierungsproblem wird zuerst in die Standardform transformiert. Dies
bedeutet, dass die Nebenbedingungen durch Multiplikation mit −1 in Kleiner-
gleich-Restriktionen gebracht werden. Die Zielfunktion wird ebenfalls mit −1 er-
weitert, so dass eine Maximierung vorzunehmen ist.

Das erste Simplex-Tableau wird dann wie bisher aufgebaut. Die Zielfunktion
steht wegen der abermaligen Erweiterung mit −1 mit positiven Koeffizienten in der
Zielfunktionzeile. Aufgrund der Verletzung der Nichtnegativität der Variablen (die
rechte Seite weist negative Werte auf), ist die so genannte Vorphase zur Berechnung
einer zulässigen Basislösung erforderlich. Es ist der kleinste Wert auf der rechten
Seite zu suchen (−12) und der kleinste negative Koeffizient in dieser Zeile (−4). Die-
se Vorphase wird so lange durchgeführt bis die rechte Seite nur noch positive Werte
besitzt. Dann kann mit dem eigentlichen Simplex-Algorithmus begonnen werden.

x1 x2 y1 y2 y3 b

−6 −2 1 0 0 −10
−3 −4 0 1 0 −12
−1 −4 0 0 1 −8

1 2 0 0 0 0

⇒

x1 x2 y1 y2 y3 b

−4.50 0 1 −0.50 0 −4
0.75 1 0 −0.25 0 3
2.00 0 0 −1.00 1 4

−0.50 0 0 0.50 0 −6

x1 x2 y1 y2 y3 b

1 0 −0.222 0.111 0 0.888
0 1 0.166 −0.333 0 2.333
0 0 0.444 −1.222 1 2.222

0 0 −0.111 0.555 0 −5.555

⇒

x1 x2 y1 y2 y3 b

1 0 0 −0.500 0.50 2.0
0 1 0 0.125 −0.375 1.5
0 0 1 −2.750 2.250 5.0

0 0 0 0.25 0.25 −5.0

Die minimalen Kosten liegen bei 5e. Sie werden durch den Einsatz von 2 Einheiten
des Rohstoffs R1 und 1.5 Einheiten des Rohstoffs R2 erreicht. ☼
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Übung 7.3. Minimiere z mit

z= 9x1 +8x2 → min

unter den Nebenbedingungen

x1 − 3x2 ≤ 3
x1 ≥ 6

3x1 + 2x2 ≥ 42
−4x1 + 3x2 ≤ 24

x1,x2 ≥ 0

7.12 Dualitätstheorem der linearen Optimierung

Jedem primalen Maximierungsproblem steht ein duales Minimierungsproblem in der
linearen Optimierung gegenüber, sofern eine zulässige Lösung existiert. Werden im
primalen Problem die Variablen x maximiert, so werden im dualen Problem die Va-
riablen y (es sind die ehemaligen Schlupfvariablen) minimiert.

primales Problem duales Problem

c′ x= z(x)→ max
Ax≤ b

Ax+y= b

b′ y= z(y)→ min
A′ y≥ c

A′ y+x= c

Beispiel 7.17. Im Beispiel 7.1 wurden die Mengen x1 und x2 maximiert, damit der
Gewinn maximal wird. Die Schlupfvariablen konnten als Opportunitätskosten der
Restriktionen interpretiert werden. Die Zielfunktion

[
20 30

] [x1
x2

]
→ max

wird unter den Nebenbedingungen⎡
⎣ 1 2

1 1
0 1

⎤
⎦ [x1
x2

]
≤
⎡
⎣200

160
60

⎤
⎦

maximiert. Im dualen Problem werden nun die (Opportunitäts-) Kosten minimiert,
damit die Mengen optimal (kostengünstig) auf den Anlagen produziert werden. Die
Zielfunktion

[
200 160 60

] ⎡⎣y1
y2
y3

⎤
⎦→ min
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wird unter den Nebenbedingungen

[
1 1 0
2 1 1

] ⎡⎣y1
y2
y3

⎤
⎦≥

[
20
30

]

minimiert. ☼

Übung 7.4. Lösen Sie die Übung 7.3 über einen Dualitätsansatz.

7.13 Lineare Optimierung mit Scilab

In der Praxis werden lineare Optimierungen mit Computerprogrammen wie zum Bei-
spiel mit Scilab gelöst. In Scilab kann ein lineares Maximierungsproblem mit der
Funktion linpro gelöst werden. Diese Funktion minimiert die Zielfunktion

c′ x= z(x)→ min

unter den Nebenbedingungen

Ax≤ b

Aus der Erkenntnis, dass eine negative Maximierung eine Minimierung erzeugt,
wird nun eine negative Zielfunktion minimiert, um eine Maximierung der Zielfunk-
tion zu erreichen. Das lineare Maximierungsproblem aus dem Beispiel 7.1 wird in
Scilab dann folgendermaßen umgesetzt:

// Matrix der Koeffizienten
A = [1 2 ; 1 1 ; 0 1];

// RHS
b = [200 ; 160 ; 60];

// Zielfunktionskoeffizienten
c = [20 ; 30];

// Es wird die Zielfunktion -z=(-c)’*x -> min!
// => also z=c’*x -> max!
[x,lagr,z] = -linpro(-c,A,b)

// Ergebnis x
// lagr: Schattenpreise
// z Zielfunktionswert

Als Lösung erhält man:
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z=3600.

lagr=10.
10.
0.

x=120.
40.

Die Funktion linpro verwendet nicht den Simplex-Algorithmus zur Berech-
nung der Lösung. Ab der Version 5 von Scilab ist diese Funktion in der Toolbox
quapro enthalten, die auf der Scilab Internetseite unter toolbox center > opitmiza-
tion tools heruntergeladen werden kann.

Das Minimierungproblem aus Beispiel 7.14 wird wie folgt in Scilab gelöst:

// Matrix der Koeffizienten
A = [3 1 ; 4 3 ; 1 3];

// RHS
b = [9 ; 19 ; 7];

// Zielfunktionskoeffizienten
c = [25 ; 50];

// Es wird die Zielfunktion z=c’*x -> min!
// A*x <= b <-> -A*x >= -b
[x,lagr,z] = linpro(c,-A,-b);
disp(x,’x=’,lagr,’lagr=’,z,’z=’)

Bei der Angabe der Nebenbedingung ist darauf zu achten, dass Scilab diese als
Kleiner-gleich-Bedingungen interpretiert und daher ist sie mit −1 zu erweitern. Als
Lösung erhält man:

z=150.

lagr=0.
2.7777778
13.888889

x=4.
1.

Auch der Dualitätsansatz lässt sich in Scilab verwirklichen. Hierzu sind jedoch
in der Regel Untergrenzen für die Lösungsvariablen x vorzugeben. Um die Lösung
des Beispiels 7.1 im Dualitätsansatz in Scilab zu berechnen, muss im Vektor ci die
Nichtnegativitätsbedingung angegeben werden. Eine Obergrenze liegt nicht vor und
wird durch cs=[] offen angegeben.
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ci = zeros(3,1); cs =[];
[x,lagr,z] = linpro(b,-A’,-c,ci,cs)

Leider hat die Funktion linpro() Probleme lineare Optimierungen zu lösen,
bei denen die Zahl der Restriktionen kleiner als die Zahl der Variablen ist.

7.14 Fazit

Lineare Programme sind für viele ökonomische Fragestellungen verwendbar. Ein
lineares Programm besteht aus einer Zielfunktion, die unter Nebenbedingungen op-
timiert wird. Die Nebenbedingungen (Restriktionen) sind in der Regel als Unglei-
chungen formuliert. Sie beschreiben Maschinenkapazitäten, Mischungsbedingungen
und / oder Ressourcenverfügbarkeiten.

Die rechnerische Lösung erfolgt mit einem Matrixsystem, das mit dem Simplex-
Verfahren gelöst wird. Graphisch gesehen sucht das Simplex-Verfahren die Eckpunk-
te des Lösungsraumes ab. Das Dualitätstheorem besagt, dass zu jedem Maximie-
rungsproblem auch ein duales Minimierungsproblem existiert und umgekehrt.
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Funktionen mit einer Variablen
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8.1 Vorbemerkung

Funktionen spielen in der Ökonomie eine bedeutsame Rolle. Bekannte ökonomi-
sche Funktionen sind zum Beispiel Produktionsfunktionen, Preis-Absatz-Funktio-
nen, Nachfragefunktionen, Kostenfunktionen, Ertragsfunktionen und Gewinnfunk-
tionen. Die Funktionen dienen der formalen Beschreibung realer Probleme (Modell-
bildung). Mit mathematischen Operationen können die Funktionen analysiert wer-
den.

Im Folgenden werden einige wichtige Grundlagen und Eigenschaften von Funk-
tionen mit einer Veränderlichen beschrieben.

Einige geläufige Bezeichnungen in der Analysis sind

ai Koeffizient oder Folgenglied
[an] Folge

W. Kohn, R. Öztürk, Mathematik für Ökonomen, Springer-Lehrbuch, 
DOI 10.1007/978-3-642-28575-2_8, © Springer-Verlag Berlin Heidelberg 2012
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ε beliebig kleine positive Zahl
h(x),g(x) Funktionen von x
f−1(x) Umkehrfunktion
F
(
x, f (x)

)
= 0 implizite Funktion

pn(x) rationales Polynom n-ten Grades
sn Teilsumme
[sn] Reihe
x1 erste Nullstelle einer Funktion
x(1),x(2) Wertepaar in der Umgebung einer Nullstelle
x(1) 1-te Näherung einer gesuchten Nullstelle
!
= Bedingung

8.2 Funktionsbegriff

Eine Funktion dient zur Beschreibung der gegenseitigen Abhängigkeit mehrerer Fak-
toren. Falls zwischen den Elementen x und y zweier Mengen X und Y bestimmte
Beziehungen bestehen, dann bezeichnet man diese als Relation oder Abbildung.

f : X → Y

Die Betrachtungsweise ist im Allgemeinen so festgelegt, dass man von den Elemen-
ten einer Menge x ∈ X ausgeht und ihre Beziehung zu den Elementen der anderen
Menge y∈Y untersucht. Man bezeichnet hierbei die Menge X alsDefinitionsmenge
D( f ) oder Urbildmenge der Abbildung f und die Menge Y alsWertebereichW ( f )
oder Bildmenge.

Beispiel 8.1. Das Hausnummernsystem stellt eine Abbildung dar. Die Menge X sei
ein Haus in der Wertherstraße. Dies wird formal mit

X = {x | x ist ein Haus in der Wertherstraße}

beschrieben (lies: Die Menge X für deren Elemente x gilt, x ist . . . ). Die MengeY sei

Y = {y | y ∈ N}

Dann ist
f : X → N

({Häuser}→ {Nummer})
die formale Beschreibung für das Hausnummernsystem. ☼

Im Beispiel 8.1 handelt es sich um eine eindeutige Abbildung, da jedem Ele-
ment aus dem Wertebereich mindestens ein Element aus dem Definitionsbereich zu-
geordnet ist. Eine solche Abbildung wird auch als surjektiv bezeichnet. Eine Abbil-
dung heißt eineindeutig oder injektiv, wenn verschiedenen Elementen des Defini-
tionsbereichs unterschiedliche Elemente des Wertebereichs zugeordnet sind. Wenn
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surjektiv nicht injektiv injektiv nicht surjektiv

surjektiv und injektiv = bijektiv

Abb. 8.1: Surjektive, injektive und bijektive Abbildung

beides vorliegt – also surjektiv und injektiv – dann wird die Abbildung bijektiv ge-
nannt.

In vielen Fällen können Funktionen zwischen den Elementen x ∈ X und den Ele-
menten y ∈Y in Form einer Gleichung geschrieben werden.

y= f (x) für x ∈D( f ) (8.1)

Bei der Funktion in Gleichung (8.1) gehört zu jedem Element x des Definitionsbe-
reichs D( f ) genau ein Element y des Wertebereichs W ( f ). In dieser Schreibweise
tritt auch deutlich die Abhängigkeit zwischen den veränderlichen Größen x und y
hervor. Die Variable x kann innerhalb des Definitionsbereichs D( f ) beliebige Werte
annehmen und wird deshalb als unabhängige Variable oder Argument bezeichnet.
Hingegen ist mittels der Zuordnung f (x) der Wert von y eindeutig festgelegt, sobald
x gewählt wird. Aus diesem Grund heißt y die abhängige Variable.

Wichtig ist allein der funktionale Zusammenhang; die Bezeichnungen selbst sind
beliebig wählbar und vom jeweiligen Kontext abhängig. So ist es durchaus sinn-
voll, die Bezeichnung K(x) für eine Kostenfunktion oder p(x) für eine Preis-Absatz-
Funktion zu verwenden.

Die Funktion wird in der analytischen Form als Gleichung unter Angabe des
Definitionsbereichs der unabhängigen Variablen dargestellt. Die Gleichung (8.1)
bezeichnet man dabei als explizite Funktion. Als implizite Funktion wird die
Schreibweise

y− f (x) = 0
F(x,y) = F

(
x, f (x)

)
= 0 für D(F) = 0
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bezeichnet. Es handelt sich dabei um dieselbe Funktion. In der Praxis ist dabei nicht
immer die Auflösung einer implizit gegebenen Funktion nach y möglich.

Beispiel 8.2. Die Funktionen

F(x,y) = y−√
x+ xy2 = 0 für x≥ 0

oder
F(q) = 2000

q10 − 1
q−1

− 30000= 0 für q> 1

können nicht explizit nach x oder y bzw. q aufgelöst werden. ☼

Nicht jede Funktion kann als Gleichung geschrieben werden und nicht jede Glei-
chung ist eine Funktion! So können empirische Beobachtungen nur in Form einer
Wertetabelle angegeben werden. Es handelt sich dann um eine diskrete Funktion,
die nur punktweise definiert ist. Hingegen ist die Gleichung für den Einheitskreis
1 = x2 + y2 keine Funktion, da sie bis auf die Randpunkte jedem Wert von x zwei
Werte von y zuordnet. Eine Funktion kann auch in verschiedene Intervalle ihres Defi-
nitionsbereichs durch unterschiedliche Funktionszweige beschrieben werden. Dann
hat die Funktion die Form:

y=

⎧⎪⎨
⎪⎩
f (x) für x ∈D( f )
g(x) für x ∈D(g)
h(x) für x ∈D(h)

Die Teildefinitionsbereiche müssen dabei disjunkt (nicht überschneidend) sein.

Beispiel 8.3.

y(x) =

⎧⎪⎨
⎪⎩
−1 falls x< 0

0 falls x= 0
+1 falls x> 0

☼

Eine eineindeutige Funktion lässt sich umkehren. Die Auflösung der Funktion
nach der unabhängigen Variablen x heißt Umkehrfunktion.

x= f−1(y) = g(y)

Beispiel 8.4. Die Funktion

y(x) = x2 für x ∈ R+
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besitzt die Umkehrfunktion:

x(y) = +
√
y

Die Funktion
y(x) = x2 für x ∈ R

besitzt hingegen keine Umkehrfunktion, da die Abbildung nur eindeutig ist. Für x= 2
und für x=−2 erhält man den gleichen Funktionswert. ☼

Man beachte, dass der Definitionsbereich (Wertebereich) einer Umkehrfunktion
gleich dem Wertebereich (Definitionsbereich) der Ausgangsfunktion ist. Daher kann
eine Umkehrfunktion nur für eineindeutige Funktionen existieren.

Es werden hier nur einige spezielle reelle Funktionen behandelt. Bei diesen kann
man zwischen so genannten algebraischen und transzendenten Funktionen unter-
scheiden. In algebraischen Funktionen ist die unabhängige Variable ausschließlich
durch die elementaren Operationen wie Addition, Subtraktion, Multiplikation, Di-
vision, Potenzierung und Radizierung verknüpft. Von den algebraischen Funktionen
interessieren hier insbesondere die rationalen und gebrochen-rationalen Polynome.

Die transzendenten Funktionen können nicht mit den elementaren Operationen
dargestellt werden. Die in der Ökonomie wichtigsten transzendenten Funktionen sind
die Exponential- und die Logarithmusfunktionen. Sie wurden in den Abschnitten 2.7
und 2.8 vorgestellt.

y(x) = ax für a> 0 und a �= 1, x ∈ R

y(x) = loga x für a> 0 und a �= 1, x ∈ R+

8.3 Rationale Funktionen

Die rationale Funktion wird auch als Polynomfunktion oder kurz als Polynom be-
zeichnet. Die Analyse der Nullstellen von rationalen und gebrochen-rationalen Funk-
tionen steht im Mittelpunkt der beiden folgenden Kapitel, da sie in der Finanzmathe-
matik eine besondere Rolle spielen. Ferner werden polynome zur Approximation
beliebiger Funktionen verwendet.

Ein Polynom n-ten Grades ist eine Funktion der Gestalt

pn(x) = a0 +a1 x+ . . .+ an xn

=

n∑
i=0

ai xi für ai,x ∈ R und an �= 0
(8.2)

Die Größen ai werden Koeffizienten genannt und sind gegebene konstante Größen.
Rationale Funktionen sind für jeden Wert von x definiert und stetig (zur Stetigkeit
siehe Kapitel 10.2).

Beispiel 8.5.

p1(x) = a0 +a1 x Polynom 1. Grades: lineare Funktion
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p2(x) = a0 + a1 x+ a2 x2 Polynom 2. Grades: Parabelfunktion

☼

Für die Nullstelle einer Funktion gilt:

p(x) !
= 0

Das Zeichen !
= bedeutet, dass für die Funktion p(x) das Argument x gesucht wird,

für den der Funktionswert p(x) = 0 gilt.

Beispiel 8.6. Die Nullstelle des Polynoms 1. Grades wird durch folgenden Ansatz
bestimmt:

p1(x) = a0 + a1 x
!
= 0

Die Lösung ist durch Auflösen der Gleichung leicht zu finden.

x1 =−a0
a1

☼

Beispiel 8.7. Nullstellenbestimmung für ein Polynom 2. Grades (Parabelfunktion).
Für die Funktion

p2(x) =−3− 2x+ x2 für x ∈ R (8.3)

sollen die Nullstellen gesucht werden. Hierzu wird die quadratische Ergänzung
verwendet. Die Normalform einer quadratischen Gleichung ist

x2 + px+q !
= 0 (8.4)

Es werden folgende Umformungen vorgenommen, damit die Gleichung (8.4) nach x
aufgelöst werden kann:

x2 + px=−q ⇔ x2 + px+
( p

2

)2
=

( p
2

)2
−q

(
x+

p
2

)2
=

( p
2

)2
−q ⇔ x+

p
2
=±

√( p
2

)2
−q

x1,2 =− p
2
±
√( p

2

)2
−q

Die Nullstellen der Funktion (8.3) sind somit leicht zu bestimmen.

x1,2 = 1±√
1+ 3 ⇒ x1 = 3, x2 =−1

☼

Aber können auch die Nullstellen von Polynomen höheren Grades so leicht be-
rechnet werden? Wie viele Nullstellen gibt es für ein Polynom n-ten Grades?

Auf die letzte Frage hat Gauß mit dem Hauptsatz der Algebra eine Antwort
gegeben:
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Die Anzahl der Nullstellen eines Polynoms n-ten Grades pn(x) besitzt
genau n Nullstellen, die jedoch nicht reell zu sein brauchen und von
denen einzelne mehrfach vorkommen können.

Ein Polynom ungeraden Grades besitzt immer mindestens eine reelle Nullstelle,
was darauf zurückzuführen ist, dass die Funktionswerte von

pn(x→+∞)→+∞

streben, während sie für

pn(x→−∞)→−∞

streben. Da die Polynomfunktion stetig ist, muss es also mindestens einen Punkt
geben, der den Funktionswert Null hat. Dies kann man leicht an einem Polynom 1.
Grades überprüfen. Für ein Polynom geraden Grades ist eine derartige Aussage nicht
möglich, so dass man nur folgern kann: Ein Polynom n-ten Grades bei geradem n
besitzt höchstens n reelle Nullstellen.

Die Antwort auf die andere Frage (Können die Nullstellen eines Polynoms leicht
berechnet werden?) lautet nein. Im Allgemeinen wird für die Nullstellenbestimmung
von Polynomen 3. Grades oder höher ein Näherungsverfahren eingesetzt. Zwar wur-
de eine formelmäßige Auflösung für Polynome 3. als auch 4. Grades gefunden, die
so genannte Cardanische Formel, aber die Berechnung der Nullstellen ist mit dieser
Formel sehr aufwändig. Darüber hinaus gelang Niels Abel der Nachweis, dass eine
formelmäßige Lösung für Polynome mit einem Grad von n > 4 nicht möglich ist.
Ein Näherungsverfahren ist die regula falsi (oder Sekantenverfahren), das in Kapitel
8.3.2 erklärt wird. In Kapitel 10.7 wird dazu ein weiteres Verfahren, das Newton-
Verfahren, vorgestellt.

8.3.1 Partialdivision und Linearfaktorzerlegung

Ist für die Polynomfunktion pn(x) die Nullstelle x1 bekannt, so ist pn(x) darstellbar
als

pn(x) = pn−1(x)(x− x1)

Das Restpolynom pn−1(x) besitzt dann einen um eins niedrigeren Grad und wird
durch Partialdivision bestimmt. Die Division erfolgt nach den normalen Divisions-
regeln

pn−1(x) =
pn(x)

(x− x1)

Beispiel 8.8. Für das Polynom

p3(x) = 2.01− 1.66x− 2.67x2+ x3 für x ∈R (8.5)

ist die Nullstelle x1 = 0.67 bekannt. Das Polynom besitzt noch zwei weitere Null-
stellen. Wenn man nun das Restpolynom p2(x) bestimmt, dann können die beiden
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restlichen Nullstellen mit der quadratischen Ergänzung berechnet werden. Dies ge-
schieht per Polynomendivision.

Die folgende Division ist der Rechenweise nach eine schriftliche Division. Im
ersten Schritt wird der Divisor mit dem größten Faktor (hier x2) multipliziert, den der
Zähler enthält. Der Rest wird per Subtraktion gebildet. Für diesen Rest wird wieder
der größte Faktor gesucht, der in ihm enthalten ist (hier −2x). Diese Rechnung wird
fortgesetzt bis ein Rest von Null oder ein nicht ganzteiliger Rest vorhanden ist. Die
Division

(x3 −2.67x2 −1.66x +2.01) ÷ (x−0.67) = x2 −2x−3
−(x3 −0.67x2)

− 2x2 −1.66x
−(−2x2 +1.34x)

−3x +2.01
−(−3x +2.01)

0

ergibt das Restpolynom
p2(x) =−3− 2x+ x2

von dem aus Beispiel 8.7 die beiden verbleibenden Nullstellen bekannt sind. x1 =
0.67 ist also tatsächlich eine Nullstelle des Polynoms (8.5), da die Division ohne
Rest erfolgt. Das Polynom (8.5) besitzt also folgende äquivalente Darstellung:

p3(x) = (x− 0.67)(x−3)(x+1), (8.6)

aus der die 3 Nullstellen sofort ablesbar sind. ☼

Bezeichnet man mit x1,x2, . . . ,xn die Nullstellen der Polynomfunktion (8.2), so
ergibt sich durch die wiederholte Polynomendivision (Partialdivision) die Linear-
faktorzerlegung von pn(x):

pn(x) = an (x− x1)(x− x2) · · · (x− xn) (8.7)

Es ist also mit einigem Rechenaufwand möglich, die Nullstellen einer rationalen
Polynomfunktion zu berechnen. Diese aufwändige Arbeit wird heute in der Regel
von Computerprogrammen übernommen.

8.3.2 Regula falsi

Bei der regula falsi wird mittels Probieren ein Intervall für den Funktionswert pn(x)
gesucht, bei dem die Werte nahe Null liegen. Es ist dabei nicht notwendig, dass ein
Vorzeichenwechsel im Intervall stattfindet. Der Name „falsche Regel“ rührt daher,
dass ein (näherungsweiser) linearer Verlauf zwischen den beiden Intervallwerten

[x(1), pn(x(1))] [x(2), pn(x(2))]
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unterstellt wird. Diese Punkte werden durch eine Gerade (Polynom 1. Grades)

p1(x) = a0 + a1 x⇔ y(x) = mx+ b

verbunden (siehe Abb. 8.2). Wir bezeichnen der Einfachheit wegen das erste Wer-
tepaar mit (x(1),y(1)), das zur ersten Gleichung (8.8) führt. Der Wert berechnet
sich durch Einsetzen des Wertes x(1) in das Polynom pn(x(1): y(1) = pn(x(1)). Das
zweite Wertepaar (x(2),y(2)) führt zur zweiten Gleichung (8.9). Aus den beiden Glei-
chungen können dann die beiden Koeffizienten m und b berechnet werden.

y(1) = mx(1) +b ⇒ b= y(1)−mx(1) (8.8)

y(2) = mx(2) +b ⇒ m=
y(2)− y(1)
x(2)− x(1)

(8.9)

Der Schnittpunkt der Geraden mit der Abszisse ist die 1. Näherung für die gesuchte
Nullstelle.

mx+ b !
= 0 ⇒ x(1) =− b

m

Im nächsten Schritt wird von der 1. Näherung der Funktionswert pn(x(1)) berech-
net, um dann erneut über lineare Interpolation eine 2. Näherung für die Nullstelle des
Polynoms zu berechnen.

Beispiel 8.9. Für das Polynom

p3(x) = 2.01− 1.66x− 2.67x2+ x3 für x ∈ R (8.10)

sollen die Nullstellen bestimmt werden. Es handelt sich um ein Polynom 3. Grades.
Daher ist mindestens eine Nullstelle von den insgesamt 3 Nullstellen reellwertig.

Es wird im Intervall x= [0,1] eine Nullstelle gesucht, da hier der Funktionswert
p3(x) das Vorzeichen wechselt.

x(1) = 0 ⇒ p3(0) = 2.01
x(2) = 1 ⇒ p3(1) =−1.32

Mittels der beiden Wertepaare können nun die beiden Koeffizienten m und b der
Geradengleichung berechnet werden.

2.01 = m× 0+b ⇒ b= 2.01
−1.32 = m× 1+b ⇒ m=−3.33

Damit ist die Geradengleichung bestimmt.

y(x) = 2.01− 3.33x !
= 0

Für die Gleichung wird nun die Nullstelle gesucht, die die erste Näherung der Null-
stelle von (8.10) ist (siehe Abb. 8.2).

y(1)
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x(1) =
2.01
3.33

= 0.6036

Die erste Näherung von x(1) liefert schon einen Funktionswert von

p3(0.6036) = 0.2552,

der wesentlich näher an Null liegt als p3(0) = 2.01. Die Näherung der Nullstelle
erfolgt vom linken Intervallrand. Mit dem neuen Intervall x = [0.6036,1] wird nun
das Gleichungssystem

0.2552 = m×0.6036+ b
−1.32 = m×1+ b

aufgestellt, aus dem die Koeffizienten

m=−3.9737 b= 2.6537

berechnet werden. Die Nullstelle der Geradengleichung

y(x) = 2.6537−3.9737x !
= 0

liefert die 2. Näherung für eine der Nullstellen von (8.10).

x(2) = 0.6678

Der Wert x(2) = 0.6678 liefert einen Funktionswert von p3(0.6678) = 0.0085, der
schon relativ nahe an Null liegt. Die 3. Näherung mit dem Gleichungssystem

0.0085 = m× 0.6678+ b
−1.32 = m+ b× 1

liefert die Koeffizienten

m=−3.9993 b= 2.6793

die zur näherungsweisen Nullstelle von

x(3) = 0.6699

führt. Der Funktionswert p3(0.6699) = 0.00023 weist bereits einen Wert nahe Null
auf. Wird weiter iteriert, so stellt sich ein Wert von x1 = 0.67 ein. ☼

Die i-te Iteration der regula falsi lässt sich in einer Formel (lineare Interpolation)
zusammenfassen. Sie entsteht, wenn die Berechnungsformeln für die Koeffizienten
aus (8.8) und (8.9) in die Gleichung

y(x) = mx+ b
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Abb. 8.2: Nullstellenbestimmung mit der regula falsi für das Polynom (8.10)

eingesetzt werden. Wird diese Gleichung Null gesetzt und nach x aufgelöst, so erhält
man die Gleichung (8.11). Mit x(i−1)

(1) und x(i−1)
(2) wird das Wertepaar der i− 1-ten

Iteration bezeichnet.

x(i)Nullstelle = x
(i−1)
(1) − y(i−1)

(1)

x(i−1)
(2) − x(i−1)

(1)

y(i−1)
(2) − y(i−1)

(1)

(8.11)

Für einen Iterationsschritt werden

1. zwei Wertepaare in der Nähe der gesuchten Nullstelle gewählt. Wurde bereits
ein Iterationsschritt berechnet, so wird ein Wertepaar aus der berechneten Nä-
herung bestimmt. Das zweite Wertepaar wählt man besten so, dass die beiden
Wertepaare die gesuchte Nullstelle umschließen. Dies ist aber nicht nötig.

2. Es wird die Nullstelle der Geradengleichung mit Gleichung (8.11) berechnet.
3. Die beiden Schritte werden wiederholt bis die Näherung einer gewünschte Ge-

nauigkeit entspricht, zum Beispiel bis die 4-te Nachkommastelle sich nicht
mehr ändert.

Beispiel 8.10. Anwendung der Formel (8.11): Das Intervall für die 3. Iteration zur
Bestimmung der Nullstelle in Beispiel 8.9 war x = [0.6678,1]. Die y-Werte y =
[0.0085,−1.32] weisen einen Vorzeichenwechsel auf. Also enthält das Intervall der
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x-Werte die gesuchte Nullstelle. Mit der Formel (8.11) berechnet sich die 3. Nähe-
rung für die gesuchte Nullstelle dann wie folgt:

x(3) = 0.6678− 0.0085× 1− 0.6678
−1.32− 0.0085

= 0.6699

☼

8.3.3 Nullstellenberechnung mit Scilab

Nullstellenprobleme werden heute mit Computerprogrammen zur numerischen Ma-
thematik gelöst, wie zum Beispiel mit Scilab. Mit der Anweisung poly() wird
bei diesem Programm ein Polynom eingegeben. Für das Beispiel 8.9 ist die Scilab-
Anweisung:

p = poly([2.01 -1.66 -2.67 1],"x","coeff")

2.01 - 1.66x - 2.67x^2 + x^3

Der Vektor enthält die Koeffizienten des Polynoms; mit der Option coeff wird
festgelegt, dass der Vektor die Koeffizienten enthält. Alternativ können mit der Op-
tion roots auch die Nullstellen angegeben und dann das zugehörige Polynom be-
rechnet werden. Der Befehl

poly([-1 3 0.67],"x","roots")

2.01 - 1.66x - 2.67x^2 + x^3

liefert das Polynom (8.10).
Die Berechnung der Nullstellen des Polynoms erfolgt mit dem Befehl roots.

Angewendet auf das Beispiel sieht die Anweisung wie folgt aus.

r = roots(p)

0.67
-1
3

In dem Ergebnisvektor sind die Nullstellen des Polynoms gespeichert. In der
Scilab Version 5 hat der standardmäßig verwendete Algorithmus in manchen Fällen
Konvergenzprobleme. Mit der Option roots(,’e’) wird ein aufwändigerer Al-
gorithmus eingesetzt, der bessere Konvergenzeigenschaften besitzt. Siehe hierzu die
Hilfefunktion von Scilab.

Ein Befehl für die Linearfaktorzerlegung des Polynoms ist auch in Scilab ent-
halten. Der Befehl factors liefert die Linearfaktoren des Polynoms (8.10) in der
Form (8.6).
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factors(p)

-0.67 + x
1 + x
-3 + x

8.4 Gebrochen-rationale Funktionen

Eine gebrochen-rationale Funktion ist der Quotient zweier Polynomfunktionen.

f (x) =
pn(x)
qm(x)

=

∑n
i=0 ai xi∑m
j=0b j x j

für x ∈ R, qm(x) �= 0

Charakteristisch für den Funktionsverlauf von gebrochen-rationalen Funktionen ist
das Auftreten von Polstellen. Dies sind die Werte x, für die das Nennerpolynom ei-
ne Nullstelle aufweist, das Zählerpolynom gleichzeitig aber keine Nullstelle besitzt.
In den Polstellen ist die Funktion nicht definiert und somit auch nicht stetig. Bei
der Annäherung der x-Werte an eine Polstelle wächst oder fällt der Funktionswert
unbeschränkt (d. h. er strebt gegen +∞ oder −∞).

x ist eine Polstelle von f (x), wenn pn(x) �= 0 und qm(x) = 0 gilt.

Das Verhalten der Funktion f (x) in der Umgebung der Polstelle xPol lässt sich leicht
untersuchen. Hierzu wird eine beliebig kleine positive Zahl ε definiert, die zur Un-
tersuchung der Umgebung von x dient. Für den Bereich kleiner (links) der Polstelle
gilt dann xPol− ε . Ist der Funktionswert

lim
ε→0

f (xPol− ε)< 0,

so strebt die Funktion für ε → 0 nach f (xPol)→−∞. Ist der Funktionswert

lim
ε→0

f (xPol− ε)> 0,

so strebt die Funktion für ε → 0 nach f (xPol) → +∞. Die gleichen Überlegungen
lassen sich für den Bereich größer (rechts) der Polstelle anstellen.

lim
ε→0

f (xPol+ ε)< 0 ⇔ f (xPol)→−∞

lim
ε→0

f (xPol+ ε)> 0 ⇔ f (xPol)→+∞

Die Nullstellen einer gebrochen-rationalen Funktion sind die Nullstellen des
Zählerpolynoms, wenn nicht gleichzeitig das Nennerpolynom auch eine Nullstelle
für diesen Wert besitzt.

x ist eine Nullstelle von f (x), wenn pn(x) = 0 und qm(x) �= 0 gilt.
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Beispiel 8.11. Die gebrochen-rationale Funktion

f (x) =
−3−2x+ x2

x−1
für x ∈ R (8.12)

besitzt zwei Nullstellen x∗1 = −1 und x∗2 = 3, die aus Beispiel 8.7 bekannt sind, und
eine Polstelle bei xPol = 1 (siehe Abb. 8.3). ☼

-2 -1 0 1 2 3 4

-20

-16

-12

-8

-4

0

4

8

12

16

20

Polstelle

Asymptote

Abb. 8.3: Gebrochen-rationale Funktion (8.12)

Für sehr kleine oder sehr große Werte von x nähert sich eine gebrochen-rationale
Funktion einer rationalen Funktion beliebig nahe. Man nennt diese Funktion Asym-
ptote. Es sind 3 Fälle zu unterscheiden:

1. Besitzt das Nennerpolynom einen höheren Grad als das Zählerpolynom (n <
m), so strebt die Funktion f (x) für sehr kleine bzw. sehr große Werte von x
offensichtlich gegen Null. Die Asymptote ist in diesem Fall die Abszisse.

2. Sind Zähler- und Nennergrad der Polynome gleich (n = m), so ergibt sich un-
ter Anwendung der Regeln für die Grenzwertberechnung eine Konstante als
Asymptote f Asy(x) = an

bm .
3. Ferner kann noch der Fall auftreten, dass der Zählergrad größer als der Nenner-

grad ist (m < n). Es ergibt sich dann eine asymptotische Funktion aus dem
ganzen rationalen Anteil der gebrochen-rationalen Funktion, den man mittels
Partialdivision erhält.
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Beispiel 8.12. Im Beispiel 8.11 liegt der 3. Fall vor. Die gebrochen-rationale Funkti-
on (8.12) wird mittels Partialdivision in eine rationale Funktion und ein gebrochen-
rationales Restglieds zerlegt.

(x2 −2x −3) ÷ (x−1) = x− 1− 4
x−1

− (x2 − x)

−x −3
− (x +1)

−4

Für sehr kleine und sehr große Werte von x verschwindet das Restglied 4
(x−1) und als

Asymptote verbleibt die lineare Funktion f Asy(x) = x−1. ☼

Übung 8.1. Ermitteln Sie mittels der Nullstellen, der Polstellen und der Asymptote
in groben Zügen den Verlauf der Funktion

f (x) =
(x− 1)(x+ 2)2

x2 (x2 − 16)
für x ∈ R

Übung 8.2. Ermitteln Sie mittels der Nullstellen, Polstellen und der Asymptote in
groben Zügen den Verlauf der Funktion

f (x) =
x3 +3x+ 5
x−2

für x ∈R

Bestimmen Sie die erste Nullstelle erst näherungsweise. Zur Berechnung der zwei-
ten und dritten Nullstelle nehmen Sie für die erste Nullstelle x1 =−1.154 an.

8.5 Folgen

Folgen sind spezielle Funktionen, deren Besonderheit es ist, dass die unabhängi-
ge Veränderliche stets aus der Menge der natürlichen Zahlen N gewählt wird. Eine
Funktion, durch die jeder natürlichen Zahl n ∈ N (oder einer Teilmenge von N) eine
reelle Zahl an ∈ R zugeordnet wird, heißt eine Folge, die mit [an] bezeichnet wird.

[an] = a1,a2, . . . ,an

Die reellen Zahlen a1,a2, . . . ,an ∈ R heißen Glieder der Folge mit an als dem all-
gemeinen Glied. In der Funktion wird das Bildungsgesetz der Folge beschrieben,
deren Werte die Glieder der Folge sind. Um die Folge zu beschreiben genügt es, das
Bildungsgesetz und den Definitionsbereich anzugeben.

Beispiel 8.13. Mit der Funktion
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[an] =
[

1
4
(
n+(−1)n n

)]
für alle n ∈ N

wird die Zahlenfolge 0,1,0,2,0,3, . . . beschrieben. ☼

Die Folge [an] ist von der Menge ihrer Glieder {an} zu unterscheiden. Bei der
Folge ist im Gegensatz zur Menge immer eine Ordnung impliziert, und bei einer
Folge können sich die Glieder (Elemente) wiederholen.

Beispiel 8.14. Im Beispiel 8.13 besitzen die Glieder a1,a3,a5, . . . in der Zahlenfolge
[an] die gleiche Zahl. Die Menge der Glieder beträgt:

{an}= N0

☼

Beispiel 8.15. Als taktisches Konzept in Verhandlungen wird gelegentlich das Prin-
zip «zwei Schritte vor, einen zurück» verfolgt. In Zahlen ausgedrückt, ergibt sich die
Folge:

[an] =
n+ 3

2 − 3
2 (−1)n

2
für alle n ∈N

= 2,1,3,2,4,3,5,4, . . .

☼

Eine Folge wird als endliche Folge bezeichnet, wenn die unabhängige Variable n
aus einer endlichen Menge gewählt wird. Andernfalls wird sie als unendliche Folge
bezeichnet. Die arithemtische und die geometrische Folge spielen vor allem in der
Finanzmathematik eine wichtige Rolle.

8.5.1 Arithmetische Folge

Bei der arithmetischen Folge ist die Differenz zweier aufeinander folgender Glieder
konstant.

an+1 − an = d mit d = konst für alle n ∈ N

Das Bildungsgesetz führt auf die Folge

[an] = a1,a1 + d,a1 +2d, . . . ,a1 +(n−1)d
= a1 +(n−1)d für alle n ∈ N

Beispiel 8.16. Die Folge der ungeraden natürlichen Zahlen ist eine arithmetische Fol-
ge.

[an] = 1+ 2(n− 1) für alle n ∈ N

= 1,3,5,7,9, . . .

☼
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8.5.2 Geometrische Folge

Die andere Folge, die in der Finanzmathematik eine herausragende Position ein-
nimmt, ist die geometrische Folge, bei der der Quotient zweier aufeinander folgender
Glieder konstant ist.

an+1
an

= q mit q= konst für alle n ∈ N

Das Bildungsgesetz ergibt die Folge:

[an] = a1,a1 q,a1 q2, . . . ,a1 qn−1

= a1 qn−1 für alle n ∈N

Beispiel 8.17. Die Folge der Zweierpotenzen des Dualsystems ist eine geometrische
Folge.

[an] = 2n−1 für alle n ∈ N

= 1,2,4,8,16, . . . mit a1 = 1 und q= 2

☼

Beispiel 8.18. Es wird der Endbetrag eines Kapitals von a1 = 100e nach 5 Jahren
gesucht, der mit einem Zinssatz von 5 Prozent verzinst wird. Nach dem ersten Jahr
stehen a2 = 100× 1.05 = 105 Euro zur Verfügung. Nach dem zweiten Jahr stehen
a3 = 105×1.05= 100×1.052 = 110.25 Euro zur Verfügung. Der Endbetrag beträgt
folglich a6 = 100× 1.055 = 127.63 Euro. Es handelt sich um eine geometrische
Folge mit dem Faktor q= 1.05 und dem Anfangsglied a1 = 100. ☼

8.6 Reihen

Summiert man sukzessiv die Glieder von Folgen auf, so bildet die Folge der Teil-
summen eine Reihe. Ausgangspunkt für die Bildung einer Reihe ist stets eine Zah-
lenfolge [an]. Die Summe der ersten n Glieder der Folge ergibt die n-te Teilsumme
(Partialsumme) sn

sn =
n∑
i=1

ai = a1 + a2 + . . .+ an für alle n ∈ N

Beispiel 8.19. Es werden auf einem (unverzinsten) Konto mit einem Anfangssaldo
von 0e folgende Ein- und Auszahlungen (in e) vorgenommen:

[a6] = +100,+10,−50,−20,+75,−20

Die Ein- und Auszahlungen stellen eine Folge dar. Wird nach jeder Ein- bzw. Aus-
zahlung der Kontostand (Saldo) berechnet, so entsteht eine Folge von Teilsummen.

[s6] = +100,+110,+60,+40,+115,+95

☼
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Wird nun die Folge der n-ten Teilsummen [sn] für n→ ∞ betrachtet,

s= lim
n→∞

[sn] = s1,s2, . . . ,sn

und existiert der Grenzwert, dann heißt s eine konvergente Reihe. Konvergiert die
Reihe nicht gegen einen festen Grenzwert, so wird diese als divergent bezeichnet.

Von speziellem Interesse sind in der Finanzmathematik zwei Reihen. Die erste
Reihe ist die, die durch regelmäßige Zahlungen desselben Betrags entsteht, d. h. die
sich aus der arithmetischen Folge ableitet und entsprechend arithmetische Reihe
heißt. Die andere Reihe ist diejenige, die durch eine regelmäßige Zahlung entsteht,
die verzinst wird. Sie leitet sich aus der geometrischen Folge ab und wird entspre-
chend geometrische Reihe genannt. Für beide Reihen kann der Wert der n-ten Teil-
summe, sofern die Reihen endlich sind, angegeben werden.

8.6.1 Arithmetische Reihe

Eine arithmetische Reihe ist durch das Bildungsgesetz einer arithmetischen Folge
bestimmt. Die n-te Teilsumme einer arithmetischen Reihe ist durch

sn = a1 + a1 + d︸ ︷︷ ︸
a2

+a1 + 2d︸ ︷︷ ︸
a3

+ . . .+a1 +(n−1)d︸ ︷︷ ︸
an

gegeben. Um den Endwert einer arithmetischen Reihe mit n Gliedern zu berech-
nen, wird die n-te Teilsumme zweimal in umgekehrter Summationsreihenfolge auf-
geschrieben und addiert.

sn = a1 + (a1 + d) + . . . +
(
a1 +(n−1)d

)
+ sn =

(
a1 +(n−1)d

)
+

(
a1 +(n− 2)d

)
+ . . . + a1

2sn =
(
2a1 +(n−1)d

)
+
(
2a1 +(n− 1)d

)
+ . . . +

(
2a1 +(n−1)d

)
Nach der Addition der beiden Teilsummen ist jedes Glied gleich, so dass gilt:

2sn = n
(
2a1 +(n− 1)d

)
= n

(
a1 + a1 +(n−1)d︸ ︷︷ ︸

an

)

Über der geschweiften Klammer steht das n-te Glied der arithmetischen Folge an,
und man erhält für die n-te Teilsumme der arithmetischen Reihe

sn =
n
2
(a1 + an) mit an = a1 +(n−1)d

Beispiel 8.20. Die einfachste arithmetische Zahlenfolge ist die Folge der natürlichen
Zahlen.

[an] = n für alle n ∈ N

Die n-te Teilsumme entsteht durch die Addition der ersten n natürlichen Zahlen. Ihr
Endwert beträgt
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sn =
n∑
i=1

i=
n(n+1)

2
für alle n ∈ N

Zur Veranschaulichung der Formel wird folgende Zahlenreihe betrachtet:

1+ 2+3+ 4+5+6= (1+6)+ (2+ 5)+(3+4)= 3×7 = 21

Die Summe des ersten und letzten Reihenglieds, des zweiten und des vorletzten Rei-
henglieds usw. liefert immer das Ergebnis 7. Statt der Addition kann also 3 mal 7
gerechnet werden.

6(6+ 1)
2

= 21

☼

Beispiel 8.21. Es wird im Januar ein Betrag von 100e in ein Sparschwein gegeben
und dann jeden Folgemonat bis Dezember ein um 50e höherer Betrag eingezahlt.
Wie viel Geld befindet sich am Ende des Jahres im Sparschwein? Es liegt folgende
arithmetische Folge vor:

[a12] = 100,100+1× 50, . . .,100+(12−1)50

Der Betrag im Sparschwein im Dezember ist durch die 12-te Teilsumme gegeben.

s12 =
12∑
i=1

ai =
12
2
(
2×100+(12−1)50

)
= 4 500e

☼

8.6.2 Geometrische Reihe

Eine geometrische Reihe ist durch das Bildungsgesetz einer geometrischen Folge
bestimmt. Die n-te Teilsumme einer geometrischen Reihe ist durch

sn = a1 +a1q+ . . .+a1qn−1

gegeben. Der Endwert einer geometrischen Reihe mit n Gliedern berechnet sich wie
folgt.

sn q = a1q + . . . + a1qn−1 + a1qn
− sn = a1 + a1q + . . . + a1qn−1

sn q− sn = −a1 + 0 + . . . + 0 + a1qn

Als Differenz der beiden Teilsummen erhält man

sn q− sn = a1 qn− a1,
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woraus leicht der Endwert der n-ten Teilsumme ermittelt werden kann:

sn = a1
qn− 1
q− 1

(8.13)

Beispiel 8.22. Es wird jährlich (am Ende eines Jahres) ein Betrag in Höhe von
2 000e über 7 Jahre zu einem Zinssatz von i = 5 Prozent (jährliche nachschüssi-
ge Verzinsung) angelegt. Welcher Betrag liegt nach dem 7-ten Jahr vor?

Es handelt sich hier um eine geometrische Reihe, deren 7-te Teilsumme gesucht
ist. Hier ist darauf zu achten, dass der Zinssatz i in den Zinsfaktor q = i+ 1 (siehe
Kapitel 9) überführt werden muss, da der Kapitalbetrag im folgenden Jahr 2000+
2000×0.05, also 2000(1+ 0.05) beträgt.

[a7] = 2000,2100,2205,2315.25,2431.01,2552.56,2680.19
[s7] = 2000,4100,6305,8620.25,11051.26,13603.83,16284.02

s7 = 2000
1.057 −1
1.05−1

= 16 284.02e

Am Ende des 7. Jahres liegt auf dem Konto ein Betrag von 16 284.02e vor. ☼

Für die n-te Teilsumme einer geometrischen Reihe kann auch dann ein Endwert
bestimmt werden, wenn n gegen unendlich strebt (n→ ∞), sofern |q|< 1 vorliegt.

lim
n→∞

sn = lim
n→∞

a1
qn−1
q−1

= a1 lim
n→∞

(
qn

q−1
− 1
q−1

)

= a1 lim
n→∞

qn

q− 1
−a1

1
q−1

Für |q|< 1 ist limn→∞ |qn|= 0, so dass gilt:

lim
n→∞

sn =
a1

1− q
Die Reihe konvergiert für |q|< 1; für |q|> 1 divergiert sie, wie leicht einzusehen ist.
Damit sind die für die im Folgenden beschriebene Finanzmathematik wesentlichen
Eigenschaften von Folgen und Reihen beschrieben worden.

8.7 Fazit

Um ökonomische Zusammenhänge darstellen zu können, werden mathematische
Funktionen verwendet. Besondere Funktionstellen wie Extrempunkte oder Nullstel-
len werden mit ökonomischen Fragestellungen verbunden.
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Folgen sind spezielle Funktionen, deren Definitionsmenge die natürlichen Zahlen
sind. Bekannte Folgen sind die arithmetische Folge und die geometrische Folge. Eine
Reihe entsteht, wenn man die Folgenglieder sukzessive addiert. Auch hier findet man
das Pendant zur arithmetischen und geometrischen Reihe. Die geometrische Reihe
ist die Grundlage der Finanzmathematik.
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9.1 Vorbemerkung

Der Kern der Finanzmathematik ist die Berechnung einer Summe von verzinsten
zukünftigen Zahlungen. Sind diese Zahlungen in der Zeit konstant, dann können sie
mit der geometrischen Reihe berechnet werden. Dies liegt in der Rentenrechnung
und in der Annuitätenrechnung vor. Variieren die zukünftigen Zahlungsströme (cash
flows) hingegen, so können sie nicht mehr durch die geometrische Reihenformel
(8.13) beschrieben werden. Dies ist der Fall in der Investitionsrechnung.

Zwei Prinzipien sind in der Finanzmathematik besonders wichtig. Das erste ist
die Bewertung zukünftiger Zahlungen zum Gegenwartszeitpunkt (t = 0), das Bar-
wertprinzip. Das zweite ist das Äquivalenzprinzip, das die Äquivalenz von Lei-
stungen (Bank- / Kundenleistungen, Gläubiger- / Schuldnerleistungen) fordert. Mit
diesem Prinzip wird die Berechnung der Effektivverzinsung, die auch Rendite bzw.
im Kontext der Investitionsrechnung interner Zinsfuß heißt, durchgeführt.

Die wichtigsten finanzmathematischen Bezeichnungen sind:

A Annuität
C0 Kapitalwert
D Duration
i Zinssatz, in der Regel jährlich p. a.1
K0 Anfangskapital
Kt Restkapital zum Zeitpunkt t
Kn Endkapital nach der Zeit n
m Zahl der unterjährigen Perioden
n Anzahl der Zinsperioden
q Zinsfaktor. Es gilt: q= 1+ i
r Rente
R0 Rentenbarwert

1 p. a. = per annum. Man spricht auch vom Zinsfuß, wenn der Zinssatz in Prozent, also
i×100, angegeben wird.
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Rn Rentenendwert
t Zeitpunkt
Tt Tilgungszahlung zum Zeitpunkt t
Zt Zinszahlung zum Zeitpunkt t

9.2 Tageszählkonventionen

In der folgenden Auflistung stehen einige gebräuchliche Tageszählkonventionen.
Die Zinsperiode kann als reelle Zahl angegeben werden, deren Wert als Bruchteil
eines ganzen Jahres interpretiert wird. In der Bezeichnung «Zähler/Nenner» gibt der
Zähler die Zählweise für die Tage der Zinsperiode und der Nenner die Zählweise für
die Anzahl der Tage innerhalb eines Jahres an.

Grundsätzlich wird ein Zeitraum durch die Differenz der Anzahl der Tage, Mo-
nate, Quartale, Jahre plus Eins berechnet. Bei der Berechnung der Zinstage ist es
jedoch üblich, den ersten Tag nicht als Zinstag zu zählen. Der Zeitraum vom 02.06.
bis zum 05.06. umfasst daher nur 3 Zinstage.

Aufgrund der unterschiedlichen Anzahl von Tagen im Jahr haben sich unter-
schiedliche Tageszählkonventionen etabliert. Mit akt wird die aktuelle Zahl von Ta-
gen bezeichnet.

akt/365: Es wird die tatsächliche Anzahl der Kalendertage zwischen Anfangsda-
tum und Enddatum gezählt und durch 365 geteilt, um den Zinszeitraum
zu erhalten.

akt/360: Wie bei akt/365 wird die tatsächliche Anzahl der Kalendertage zwischen
Anfangsdatum und Enddatum gezählt, das Jahr wird aber mit 360 Tagen
festgelegt. Der Euro-Geldmarkt (Interbanken, Devisenterminmarkt) rech-
net mit dieser Konvention.

akt/akt: Die tatsächliche Anzahl der Kalendertage wird durch die tatsächliche An-
zahl der Tage des jeweiligen Jahres geteilt. Diese Tageszählkonvention
wird am Anleihen- und Kapitalmarkt verwendet.

30/360: Es wird so gezählt, als hätte jeder Monat 30 und jedes Jahr 360 Tage.
Diese Zählkonvention wird in der Regel im Passivgeschäft der Filialban-
ken mit Privatkunden eingesetzt. Auch ein Teil des Euro-Anleihe- und
Zinsswapmarktes verwendet diese Methode.

Allgemein wird die relative Zahl der Zinsperioden durch n
m berechnet, wobei n

die Zahl der Zinstage und m= 365,360,akt die Jahresteilung bezeichnet.

Beispiel 9.1. Für den Zeitraum 17. Februar 2003 bis 22. Oktober 2003 erhält man
mit den verschiedenen Tageszählkonventionen folgende Ergebnisse:

akt
365

=
247
365

= 0.6767

akt
360

=
247
360

= 0.6861
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akt
akt

=
247
364

= 0.6786

30×Monate+Tage
360

=
13+7× 30+22

360
=

245
360

= 0.6806

Anmerkung: Das Jahr 2003 besitzt 365 Tage, aber nur 364 Zinstage (-perioden),
da erst nach dem ersten Tag verzinst wird. ☼

9.3 Lineare Zinsrechnung

Die lineare Zinsrechnung (auch einfache Verzinsung) (simple interest) wird häufig
in der Praxis (Geldmarkt) eingesetzt, um Zinsen bei unterjährigen Zeiträumen zu
berechnen. Die Zinsen aus Zinserträgen (die so genannten Zinseszinsen) sind bei
kleinen Beträgen und kurzen Perioden vernachlässigbar klein.

Bei der linearen Zinsrechnung werden die Zinsen multiplikativ aus der relativen
Zahl nm der Zinstage und dem Zinssatz berechnet.m bezeichnet die Anzahl der Tage
im Jahr und n die Anzahl der Zinstage. Das Endkapital Kn ist die Summe aus Zinsen
und Anfangskapital K0. Ein Ertrag aus den Zinsen der Vorperiode (Zinseszinsen)
wird nicht berücksichtigt.

Zn = K0 × i× n
m

Kn = K0 +Zn = K0

(
1+ i× n

m

)
Beispiel 9.2. Ein Betrag von 100e wird vom 17.02.2003 bis zum 22.10.2003 (247
Tage) zu einem Zinssatz von i= 0.06 angelegt. Wie hoch sind die einfachen Zinsen?

Zakt/365 = 100×0.06×0.6767= 4.06e
Zakt/360 = 100×0.06×0.6861= 4.12e
Zakt/akt = 100× 0.06× 0.6786= 4.07e
Z30/360 = 100× 0.06× 0.6806= 4.08e

Die Berechnung wurde mit einer größeren Mantisse berechnet als hier angegeben. ☼

Beispiel 9.3. Zahlungsbedingung auf einer Rechnung: Zahlung innerhalb von 10 Ta-
gen mit 2 Prozent Skonto oder Zahlung innerhalb von 30 Tagen ohne Abzug. Welcher
einfachen Verzinsung (p. a.) entsprechen 2 Prozent Skonto?

Es liegt eine Schuld in Höhe von K30 vor. Diese wird nach 30 Tagen fällig. Es
besteht die Möglichkeit, die Schuld bereits nach 10 Tagen zu begleichen. Dann sind
nur 98 Prozent des Betrags fällig, also 0.98×K30. Dieser Betrag muss dem Barwert
der Schuld K30 entsprechen (Äquivalenzansatz und Barwertprinzip). Es gilt also

K30(
1+ i 20

360
) !
= 0.98K30 ⇒ i=

(
1

0.98
−1

)
360
20

= 0.3673
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Zwei Prozent Skonto entsprechen einem jährlichen Zinssatz von 36.73 Prozent. Die
Ausnutzung der Zahlungsfrist von 30 Tagen (durch den Schuldner) entspricht also
einer Inanspruchnahme eines Kredits mit einem Zinssatz (ohne Zinseszinseffekt) in
Höhe 36.73 Prozent. ☼

Die lineare Zinsrechnung ist einfach anzuwenden, aber wenig zufriedenstellend,
da keine Zinseszinsen berücksichtigt werden. Zinseszinsen sind die Zinserträge aus
früheren Zinszahlungen. Die exponentielle Verzinsung hingegen berücksichtigt Zin-
seszinsen und bildet die Grundlage für finanzmathematische Anwendungen.

9.4 Exponentielle Zinsrechnung

Bei der exponentiellen Verzinsung (compound interest) werden die Zinsen aus den
Zinsen, die so genannten Zinseszinsen berücksichtigt. Das Anfangskapital wächst
damit exponentiell. Man unterscheidet manchmal zwischen einer nachschüssigen
Verzinsung und einer vorschüssigen Verzinsung. Bei einer nachschüssigen Verzin-
sung werden die Zinsen erst am Ende der Periode dem Kapital zugeschlagen; bei
einer vorschüssigen Verzinsung werden die Zinsen am Anfang der Periode dem Ka-
pital zugeschlagen. Dies kommt selten vor.

9.4.1 Nachschüssige exponentielle Verzinsung

Bei der exponentiellen nachschüssigen Verzinsungwerden die Zinsen nach Ablauf
der Periode gezahlt. Es erfolgt folgende Kapitalverzinsung:

Kt = Kt−1 + iKt−1 für t = 1, . . . ,n
= Kt−1 (1+ i) = Kt−1 q

(9.1)

Zum Zeitpunkt t− 1 wird das Kapital ebenfalls verzinst.

Kt−1 = Kt−2 q

Wird Kt−1 in der Gleichung (9.1) ersetzt, so erhält man:

Kt = Kt−2 q2

Nach n Perioden liegt ein Endwert (future value) von

Kn = K0 qn (9.2)

vor.

Beispiel 9.4. Ein Betrag von 100e wird zu 6 Prozent p. a. nachschüssig verzinst über
3 Jahre angelegt. Nach dem ersten Jahr liegt ein Betrag von

K1 = 100+ 100× 0.06= 100× 1.06= 106.00e
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vor. Nach dem zweiten Jahr wächst das Kapital auf

K2 = 106×1.06= 100×1.062 = 112.36e

an. Im dritten Jahr liegt ein Kapital von

K3 = 112.36× 1.06= 100× 1.063 = 119.10e

vor. ☼

Beispiel 9.5. Durchschnittliche Verzinsung eines Bundesschatzbriefs Typ B (mit
Zinsansammlung). Der Schatzbrief weist während der Laufzeit folgende jährliche
Verzinsung auf:

1997 1998 1999 2000 2001 2002 2003

5.00% 6.50% 7.50% 8.00% 8.00% 8.25% 8.25%

Welche durchschnittliche Verzinsung kann bei einem Anlagezeitraum von 7 Jahren
mit dem Schatzbrief erzielt werden?

Wählt man das Ende des 7. Jahres als Vergleichszeitpunkt, so ist nach dem durch-
schnittlichen Zinssatz i gefragt, der nach dem 7. Jahr auf denselben Endbetrag führt
wie derjenige, der mittels der Zinstreppe erzielt wird (Äquivalenzansatz). Es wird
also die exponentielle Verzinsung des gesuchten Zinssatzes i der exponentiellen Ver-
zinsung der Zinstreppe gleichgesetzt.

K0 q7 !
= K0 × 1.05× 1.065×1.075×1.08×1.08×1.0825×1.0825︸ ︷︷ ︸

1.6430

q̄= 7√1.6430 = 1.0735 (9.3)

Die durchschnittliche Verzinsung des Schatzbriefs Typ B beträgt 7.35 Prozent. Eine
Geldanlage mit diesem Zinssatz führt zu einem gleichen Zinsertrag wie die in dem
Schatzbrief angebotene Verzinsung. Daher spricht man in diesem Zusammenhang
auch von der Rendite des Schatzbriefs. Die Rechnung in der Gleichung (9.3) wird
als geometrisches Mittel bezeichnet.

q̄= n

√√√√ n∏
i=1

qi

☼

Die Auflösung der Gleichung (9.2) nach K0 liefert den Barwert (present value).
Die Rechnung selbst wird als Diskontierung bezeichnet.

K0 =
Kn
qn
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Die Auflösung der Gleichung (9.2) nach i liefert die Zinssatzberechnung:

i= n

√
Kn
K0

−1

Zur Umstellung der Gleichung (9.2) nach n muss der Logarithmus verwendet
werden.

n=
lnKn− lnK0

lnq

9.4.2 Vorschüssige exponentielle Verzinsung

Bei der vorschüssigen exponentiellen Verzinsung werden die Zinsen am Anfang
der Periode dem Kapital zugesetzt; das Kapital wird zu Beginn der Periode verzinst,
was eher selten ist. Sie wird manchmal zur Diskontierung von Wechseln oder bei der
Kreditaufnahme angewendet. Es gilt also:

Kt = Kt−1 + iKt für t = 1, . . . ,n

=
Kt−1
1− i =

Kt−2
(1− i)2 = . . .

Das Ersetzen der Zähler Kt−1,Kt−2, . . . bis K0 führt dann zu folgender Formel:

Kn =
K0

(1− i)n (9.4)

Beispiel 9.6. Ein Betrag 100e wird zu 6 Prozent p. a. vorschüssig verzinst über 3
Jahre angelegt. Nach dem ersten Jahr liegt ein Betrag von

K1 =
100

1− 0.06
= 106.38e

vor. Nach dem zweiten Jahr wächst das Kapital auf

K2 =
106.38

1− 0.06
=

100
(1−0.06)2 = 113.17e

an. Im dritten Jahr liegt ein Kapital von

K3 =
113.17

1− 0.06
=

100
(1−0.06)3 = 120.40e

vor. ☼

Anstatt die Berechnungsformel (9.4) bei der vorschüssigen Verzinsung mit dem
Zinssatz i zu verwenden, kann man auch die Formel (9.2) der nachschüssigen Ver-
zinsung mit dem nachschüssigen Ersatzzinssatz i∗ heranziehen. Zum Zeitpunkt t = 1
gilt:
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K0 (1+ i∗)
!
=
K0

1− i ⇒ i∗ =
i

1− i (9.5)

Liegt eine vorschüssige Verzinsung bei einem jährlichen Zinssatz i vor, so wird der
Zinssatz i∗ auch als nachschüssiger Ersatzzinssatz bezeichnet.

Beispiel 9.7. Welcher nachschüssige Zinssatz i∗ wäre nötig, damit das Kapital von
100e in drei Jahren auf 120.40e anwächst?

100(1+ i∗)3 !
= 120.40

i∗ = 3

√
120.40

100
− 1 = 0.06382

Alternativ kann der Ersatzzinssatz auch aus (9.5) berechnet werden:

i∗ =
0.06

1−0.06
= 0.06382

☼

Im Allgemeinen und so auch im folgenden Text wird von einer nachschüssigen
Verzinsung ausgegangen.

9.4.3 Gemischte Verzinsung

Für Zinsperioden, die sich aus unterjährigen Abschnitten und ganzjährigen Abschnit-
ten zusammensetzen, wird für die Periodenabschnitte unter einem Jahr in der Praxis
vielfach die einfache Verzinsung eingesetzt. Für die ganzjährigen Zinsperiodenab-
schnitte wird die exponentielle Verzinsung angewendet. Die einzelnen Zinsperioden
werden multiplikativ verkettet.

Beispiel 9.8. Auf welchen Betrag wächst ein Kapital von 2 000e an, das bei 6 Pro-
zent Zinsen vom 17.02.2000 bis 22.10.2003 angelegt wird?

Der Zeitraum wird in drei Abschnitte unterteilt. Der erste unterjährige Zeitraum
geht vom 17.02.2000 bis zum 31.12.2000 und besitzt 319 Tage (mit 366 Tagen in
2000). Der zweite Zeitraum vom 01.01.2001 bis zum 31.12.2002 beträgt 2 Jahre (mit
jeweils 365 Tagen) und der dritte Zeitraum vom 01.01.2003 bis zum 22.10.2003 hat
295 Tage (mit 365 Tagen in 2003). Wird mit der Tageszählkonvention akt

akt gearbeitet,
so ergibt sich folgendes Endkapital:

Kn = 2000
(

1+ 0.06× 319
366

)
︸ ︷︷ ︸

1. Zeitraum

1.062︸ ︷︷ ︸
2. Zeitraum

(
1+ 0.06× 295

365

)
︸ ︷︷ ︸

3. Zeitraum

= 2 479.39e

Wird eine andere Tageszählkonvention verwendet, so ergibt sich ein anderes Ergeb-
nis. ☼
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9.4.4 Unterjährige periodische Verzinsung

Bei der unterjährigen Verzinsung (more frequent compounding) ist die Zinsperiode
kürzer als ein Jahr (Halbjahre, Quartale, Monate, Tage). Die Perioden innerhalb des
Jahres werden mit

m= {2,4,12,52,365}
bezeichnet. Im angelsächsischen Finanzmarkt wird häufig mit halbjährigen Zinszah-
lungen gearbeitet. Man unterscheidet zwei Formen der Umrechnung des jährlichen
auf einen unterjährigen Zinssatz.

1. Eine exakte Umrechnung des jährlichen Zinssatzes bei Anwendung der expo-
nentiellen Verzinsung auf eine unterjährige Periode wird mit dem konformen
Zinssatz vorgenommen.

2. Eine in der Praxis weit verbreitete Annäherung eines jährlichen auf einen un-
terjährigen Zinssatz ist die Berechnung eines relativen Zinssatzes.

9.4.4.1 Konformer Zinssatz

Der konforme Zinssatz für die Teilperiode m ergibt sich aus der konsequenten
Anwendung der exponentiellen Verzinsung. Die Methode wird auch als ISMA-
Methode2 bezeichnet. Der Jahreszinssatz imuss einer exponentiellen unterjährigen
Verzinsung entsprechen. (

1+ ikonm
)m !

= 1+ i

Die Auflösung der Gleichung nach ikonm liefert den konformen unterjährigen Zinssatz.

ikonm = m√1+ i− 1

Aus dem konformen Zinssatz für die Teilperiodem kann der Jahreszinssatz wie folgt
berechnet werden:

i=
(

1+ ikonm
)m

−1

Beispiel 9.9. Der Jahreszinssatz beträgt 6 Prozent p. a. Der konforme Quartalszins-
satz (m= 4) berechnet sich wie folgt:

ikon4 =
4√1.06−1 = 0.0147 ⇒ 1.47 Prozent pro Quartal

Wird dieser Zinssatz wieder auf ein Jahr hochgerechnet, so erhält man wieder den
Zinssatz von 6 Prozent.

i=
( 4√1.06

)4 − 1 = 1.01474−1 = 0.06

☼

2 ISMA: International Securities Market Association
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Beispiel 9.10. Eine finanzmathematisch konsistente Berechnung für das Beispiel 9.8
besteht darin, bei einem Jahreszinssatz von 6 Prozent den Kapitalbetrag über den
konformen Tageszinssatz zu berechnen. Dabei werden dann die Zinstage insgesamt
als Zinsperioden angegeben. Im vorliegenden Beispiel sind es 319+2×365+295=
1344 Zinstage.

q365 =
365√1.06 = 1.00015965

Kn = 2000q1344
365 = 2 478.63e

Der Grund für die unterschiedlichen Beträge wird im folgenden Kapitel erklärt. ☼

9.4.4.2 Relativer Zinssatz

In der Praxis wird häufig der relative Zinssatz verwendet, der allerdings zu finanz-
mathematisch inkonsistenten Ergebnissen führt. Diese Vorgehensweise wird als US-
Methode bezeichnet. Dass der relative Zinssatz dennoch häufig in der Praxis ein-
gesetzt wird, kann nur mit dem Hang zum linearen, proportionalen Denken erklärt
werden.

Der relative Zinssatz berechnet sich aus folgender Überlegung: Ein Kapital K0
wird zu einem Zinssatz i (p. a.) verzinst, wobei der Zins nicht jährlich, sondern in-
nerhalb des Jahres schon nach m Perioden berechnet wird. Es wird dann der m-te
Teil des Zinses i

m auf die Teilperioden angewendet.

irelm =
i
m

Wird nun die relative Verzinsung auf jede Teilperiode angewendet, dann tritt der
Zinseszinseffekt nach jeder Teilperiode auf und es fallen Zinseszinsen an. Der Be-
trag des so angelegten Kapitals wird einer Anlage mit einer jährlichen Verzinsung
gleichgesetzt. (

1+ irelm
)m !

= (1+ ieff )

Die Auflösung der Gleichung nach ieff liefert den effektiven Jahreszinssatz (effec-
tive annual interest rate) mit relativer Berechnungsweise.

ieff =
(

1+
i
m

)m
−1 (9.6)

Der effektive Jahreszinssatz liegt stets über dem Nominalzinssatz i. Eine finanzma-
thematisch widerspruchsfreie Vorgehensweise liefert nur die Rechnung mit dem kon-
formen Zinssatz.

Beispiel 9.11. Gegeben sei ein nomineller Jahreszinssatz von 6 Prozent. Der viertel-
jährliche relative Zinssatz beträgt:

irel4 =
0.06

4
= 0.015
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Bei vierteljährlichem Zinszuschlag von 1.5 Prozent ergibt sich der effektive Jahres-
zinssatz von:

ieff = 1.0154 − 1 = 0.0614

Die viermalige Anwendung des relativen Quartalszinssatzes von 1.5 Prozent führt
zu einem jährlichen Effektivzinssatz von 6.14 Prozent und nicht zu 6 Prozent nomi-
nal. Wird zum Beispiel ein Kapital von 100e für ein Jahr angelegt und nach jedem
Quartal zu 1.5 Prozent verzinst, ergibt sich ein Endkapital von

K1 = 100×1.0154 = 106.14e.

Wird hingegen der konforme Quartalszinssatz von 1.47 Prozent aus dem Beispiel
9.9 verwendet, stellt sich das gleiche Ergebnis wie bei einer jährlichen Verzinsung
ein. Diese Rechnung ist konsistent.

K1 = 100
(

4√1.06
)4

= 106e

☼

Beispiel 9.12. Die Anwendung des relativen Zinssatzes mit den Angaben im Beispiel
9.10 führt zu folgendem Ergebnis:

qrelm =

(
1+

0.06
365

)1344

Kn = 2000qrelm = 2 494.43e

Das Ergebnis fällt aufgrund des größeren Tageszinssatzes höher aus als im Beispiel
9.10 errechnet. ☼

Beispiel 9.13. Für einen Kredit wird eine vierteljährliche Zahlungsweise vereinbart.
Bei einem Zinssatz von 3.5 Prozent p. a. und einer relativen Umrechnung des Zinssat-
zes auf die vierteljährliche Zahlunsgweise beträgt der effektive Jahreszinssatz nach
Gleichung (9.6):

ieff =
(

1+
0.035

4

)4
− 1 = 0.0355

Der effektive Jahreszinssatz beträgt damit 3.55 Prozent.
Achtung: Bei manchen Angeboten wird der Zinssatz auf das Vierteljahr bezogen.

Dies geschieht meistens bei unseriösen Kreditangeboten. Der vierteljährige Zinssatz
von 3.5 Prozent führt zu einem jährlichen Zinssatz von 14.75 Prozent.

ieff = (1+ 0.035)4− 1 = 0.1475

☼

Die Hochrechnung von unterjährigen auf eine jährliche Änderungsrate wird als
Annualisierung von Wachstumsraten bezeichnet.
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Beispiel 9.14. Bei einer Aktie wird innerhalb von 10 Tagen ein Kursgewinn von 2
Prozent verzeichnet. Wie hoch wäre der jährliche Zuwachs (bei 360 Tagen), wenn
der Kurs weiterhin mit 2 Prozent steigen würde?

iann =
(

1+
i× akt

360

)360
−1

=

(
1+

0.02× 10
360

)360
−1 = 0.2213

Der jährliche Zuwachs würde bei 22.13 Prozent liegen. ☼

Wird nun die unterjährige Verzinsung auf n Jahre angewendet, so ist das Endka-
pital Kn×m mit dem relativen Zinssatz wie folgt zu berechnen:

Kn×m = K0

(
1+

i
m

)n×m
Beispiel 9.15. Es wird ein Kapital von K0 = 10 000e auf n = 3 Jahre zu einem
Zinssatz von i = 0.06 p. a. angelegt. Wie hoch ist das Endkapital, wenn es jährlich
(m= 1), halbjährlich (m= 2), vierteljährlich (m= 4), monatlich (m= 12) und täglich
(m= 365) verzinst wird?

m= 1 : K3×1 = K0 1.063 = 11 910.16e

m= 2 : K3×2 = K0

(
1+

0.06
2

)3×2
= 11 940.52e

m= 4 : K3×4 = K0

(
1+

0.06
4

)3×4
= 11 956.18e

m= 12 : K3×12 = K0

(
1+

0.06
12

)3×12
= 11 966.80e

m= 365 : K3×365 = K0

(
1+

0.06
365

)3×365
= 11 971.99e

Wird mit dem konformen Zinssatz gerechnet, so ergibt sich stets der gleiche Be-
trag von 11 910.16e. Das Ergebnis ist invariant gegenüber der Zahl der unterjährigen
Zinsperioden.

K3 = K0 1.063 = K0

(
2√1.06

)3×2
= K0

(
4√1.06

)3×4
= K0

(
12√1.06

)3×12

= K0

(
365√1.06

)3×365
= 11 910.16e

☼

Aus der unterjährigen relativen Verzinsung entsteht die stetige Verzinsung,
wenn m→ ∞, d. h. 1

m → 0 strebt. Wenn nun m→ ∞ gilt, wächst dann das Endka-
pital unendlich an? Der Grenzwert von

lim
m→∞

(
1+

1
m

)m
= e ≈ 2.718282
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ist endlich und wird als Eulersche Zahl bezeichnet. Daher ist eine relative Verzin-
sung über unendlich viele kleine Teilperioden mit folgendem Zinsfaktor verbunden:

lim
m→∞

(
1+

i
m

)m
= ei

Folglich besitzt das Endkapital, auch wenn es in unendlich vielen Teilperioden – also
stetig – verzinst wird, einen endlichen Endwert.

Kn,∞ = K0 ei×n

Beispiel 9.16. Für die Angaben in Beispiel 9.15 ergibt sich bei stetiger Verzinsung
ein Endkapital von

Kn,∞ = 10000e0.06×3 = 11 972.17e

☼

Welcher stetige Zinssatz istetig führt zum gleichen Endwert wie die jährliche Ver-
zinsung mit i Prozent?

K0 ei
stetig n !

= K0 (1+ i)n

Das Auflösen der obigen Gleichung nach istetig liefert das gesuchte Ergebnis:

istetig = ln(1+ i)

Beispiel 9.17. Für einen Zinssatz von i = 0.06 berechnet sich ein stetiger Zinssatz
von:

istetig = ln(1+ 0.06) = 0.0583

Dieser Zinssatz entspricht einer stetigen Verzinsung. Wird das Kapital von 10 000e
mit diesem stetigen Zinssatz verzinst, so erhält man das gleiche Ergebnis wie in
Beispiel 9.15 bei konformer Verzinsung, weil e3 ln1.06 = 1.063 ist.

Kn,∞ = 10000e0.0583×3 = 11 910.16e

☼

Übung 9.1. Bestimmen Sie, durch welche Summe man heute eine Zahlung von
1 000e, die erst in 2 Jahren fällig wird, ablösen kann? Der Marktzinssatz beträgt 7
Prozent p. a.

Übung 9.2. Berechnen Sie für den Zinssatz von 7 Prozent p. a. den relativen und
den konformen Monatszinssatz.



172 9 Grundlagen der Finanzmathematik

9.5 Rentenrechnung

Unter einer Rente versteht man eine Reihe von gleichen Zahlungen, die regelmäßig
geleistet werden. Eine einzelne Zahlung heißt Rentenrate (annuity) oder Rate und
wird hier mit r bezeichnet.

In der Rentenrechnung betrachtet man die Situation, dass eine Zahlung in Höhe
von r e regelmäßig eingezahlt und verzinst wird. Die Fragen, die sich aus dieser
Situation ergeben, sind folgende:

1. Wie hoch ist dann der Rentenendwert Rn?
2. Wie hoch ist der Rentenbarwert R0?
3. Wie hoch ist die Rentenrate r, wenn ein Kapital K0 bei einer gegebenen Ver-

zinsung in n Jahren aufgezehrt wird?
4. Wie viele Jahre n kann ein Kapital K0 bei gegebener Verzinsung mit einer

Rente in Höhe von r belastet werden?
5. Wie hoch ist die Verzinsung i einer Rente bei gegebenem Rentenendwert und

Zeitraum?

Bei der Beantwortung der Fragen ist zu beachten, ob die Zahlungen am Beginn
oder am Ende der Periode geleistet werden. Man spricht dann von vorschüssigen
(praenumerando) Renten und nachschüssigen (postnumerando) Renten. Es wird zu-
erst die vorschüssige Rente betrachtet.

9.5.1 Rentenrechnung mit linearer Verzinsung

Die lineare Verzinsung wird in der Praxis eingesetzt, um einen Endwert einer Ren-
tenzahlung innerhalb der Jahresfrist zu berechnen. Der Zinseszinseffekt bleibt dabei
aber unberücksichtigt. Eine Berechnung unterjähriger Rentenzahlungen mit Zinses-
zinseffekt erfolgt mit der exponentiellen Rentenrechnung.

Es wird nach dem Rentenendwert Rvor bei linearer Verzinsung gefragt, der
bei Zahlung von n Raten in Höhe von rvor, die zu Monatsbeginn eingezahlt werden,
entsteht. Die erste Rate rvor wird n Perioden mal verzinst; die zweite Rate n− 1
Perioden mal usw.

Rvorn = rvor
([

1+ i
n
m

]
+

[
1+ i

n− 1
m

]
+ . . .+

[
1+ i

1
m

])

= rvor
(
n+

i
m

n∑
t=1

t

)
= rvor

(
n+

i
m
n(n+1)

2

) (9.7)

In der letzten Zeile von (9.7) wurde der Endwert einer arithmetischen Reihe von
n∑
t=1

t =
n(n+ 1)

2

eingesetzt.
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Beispiel 9.18. Es werden 15 Raten von rvor = 5e zu einem Zinssatz von i = 0.06
angelegt. Es mit akt360 gerechnet. Wie hoch ist der Rentenendwert?

Rvorn = 5
(

15+
0.06
360

15(15+ 1)
2

)
= 75.10e

☼

Werden die Raten rnach erst am Monatsende gezahlt, wird die erste Rate nur
n−1-mal verzinst und die Verzinsung der letzten Rate entfällt. Der Rentenendwert
ist dann

Rnachn = rnach
(
n+

i
m
n(n−1)

2

)
(9.8)

Der Barwert eines Rentenendwerts ist bei linearer Diskontierung

R0 =
Rn

1+ i
m n

Somit sind die beiden Rentenbarwerte

Rvor0 = rvor

(
n+ i

m
n (n+1)

2

)
1+ i

m n
Rnach0 = rnach

(
n+ i

m
n (n−1)

2

)
1+ i

m n
(9.9)

Die Gleichungen (9.7) und (9.8) können auch nach r und i umgestellt werden. In
der Regel werden aufgrund des Barwertprinzips die Gleichungen (9.9) dazu verwen-
det.

rvor = Rvor0
1+ i

m n

n+ i
m
n (n+1)

2

rnach = Rnach0
1+ i

m n

n+ i
m
n (n−1)

2

i=
Rvor0 − rn

rvor
m

n (n+1)
2 −Rvor0

n
m

i=
Rnach0 − rn

rnach
m

n (n−1)
2 −Rnach0

n
m

Die Berechnung von n aus den Gleichungen (9.9) ist die Lösung einer quadratischen
Gleichung. Für die vorschüssige Rente mit linearer Verzinsung ist die Formel

n=−mr+
i r
2 − iRvor0
i r

+

√√√√(
mr+ i r

2 − iRvor0
i r

)2

+
2mRvor0
i r

und für die nachschüssige Rente lautet die Formel

n=−mr−
i r
2 − iRnach0
i r

+

√√√√(
mr− i r

2 − iRnach0
i r

)2

+
2mRnach0
i r
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9.5.2 Rentenrechnung mit exponentieller Verzinsung

9.5.2.1 Vorschüssige Rente

Eine vorschüssige Rente mit exponentieller Verzinsung tritt zum Beispiel bei Spar-
verträgen oder Rentenzahlungen aus Kapitalanlagen auf. Sie wird am Periodenan-
fang geleistet. Die Grundstruktur der Zahlungen ist in Abb. 9.1 angegeben. Die Ren-
tenzahlung erfolgt n-mal. Die Leistung zu Beginn der ersten Periode wird n-mal
verzinst. Die Leistung zu Beginn der n-ten Periode wird einmal verzinst.

rvor rvor rvor rvor
⏐⏐
�

⏐⏐
�

⏐⏐
�

⏐⏐
�

0 qn−−−−−→
1. Periode

1 qn−1

−−−−−→
2. Periode

2 qn−2

−−−−−→
3. Periode

· · ·n−1 q−−−−−−→
n-te Periode

n

Abb. 9.1: Grundstruktur einer vorschüssigen Rente

In Abb. 9.2 sind die zwei Grundformen einer Rentenstruktur aufgezeichnet. In
der oberen Abbildung wird ein Sparplan dargestellt. Ein Gläubiger zahlt über n Pe-
rioden Raten der Höhe r ein. Zum Zeitpunkt n hat der Schuldner (zum Beispiel eine
Bank) das Ersparte (Rentenendwert) Rvorn auszuzahlen. Die Leistungen des Gläubi-
gers müssen den verzinsten Leistungen des Schuldners entsprechen.

In der unteren Abbildung ist ein Rentenplan aufgezeigt. Zum Zeitpunkt t = 0
wird ein Kapitalbetrag (Rentenbarwert)Rvor0 an eine Bank (Schuldner) gezahlt. Diese
zahlt an den Gläubiger über n Perioden Raten in Höhe von r aus.

Nun kann der ersten Frage nachgegangen werden: Wie hoch ist der Rentenend-
wert einer vorschüssigen Rente (future value)? Er ist das Äquivalent für n zu zah-
lende Rentenraten zum Zeitpunkt n, der sich aus dem Endwert einer geometrischen
Reihe berechnet (siehe Gleichung 8.13).

Rvorn = rvor qn+ rvor qn−1 + . . .+ rvor q2 + rvor q

= rvor q
(
qn−1 + qn−2 + . . .+q+1

)
= rvor q

qn−1
q− 1︸ ︷︷ ︸

Rentenendwertfaktor

(9.10)

Der Rentenendwertfaktor einer vorschüssigen Rente gibt an, wie groß der Endwert
einer n-mal vorschüssig gezahlten Rente in Höhe von 1e bei einem Zinssatz von i
ist.

Der Rentenbarwert einer vorschüssigen Rente (present value) ist der diskon-
tierte Rentenendwert.
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Sparplan

Rvorn

Schuldner-
⏐
⏐
�leistung

0 qn−−−−−→
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1 qn−1

−−−−−→
2. Periode

2 qn−2

−−−−−→
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· · ·n−1 q−−−−−−→
n-te Periode

n

Gläubiger-
�
⏐
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�
⏐
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�
⏐
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⏐
⏐

rvor rvor rvor rvor
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⏐
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⏐
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⏐
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⏐
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0 qn−−−−−→
1. Periode

1 qn−1

−−−−−→
2. Periode

2 qn−2

−−−−−→
3. Periode

· · ·n−1 q−−−−−−→
n-te Periode

n

Gläubiger-
�
⏐⏐leistung

Rvor0

Abb. 9.2: Struktur vorschüssiger Renten

Rvor0 =
1
qn
Rvorn = rvor

q
qn
qn−1
q−1︸ ︷︷ ︸

Rentenbarwertfaktor

(9.11)

Die Frage nach der Rentenhöhe wird durch die Auflösung der Gleichung (9.10) bzw.
(9.11) nach rvor bei gegebenem Endwert Rvorn bzw. Barwert Rvor0 , Perioden n und
Zinsfaktor q gelöst.

rvor = Rvorn
1
q
q− 1
qn−1

= Rvor0
qn

q
q−1
qn− 1

(9.12)

Beispiel 9.19. Ein 50-jähriger Angestellter schließt einen Sparplan ab, bei dem er
über 15 Jahre hinweg jährlich vorschüssig rvor = 3 000e einzahlt und dafür ab sei-
nem 65. Lebensjahr 10 Jahre lang vorschüssig einen bestimmten Betrag erhalten
wird. Wie hoch ist dieser Betrag bei einer angenommenen Verzinsung von 6 Prozent
in der Sparphase und 7 Prozent in der Rentenphase?

Die Beantwortung der Frage erfolgt in zwei Schritten. Zuerst wird der Renten-
endwert einer vorschüssigen Rente berechnet, wobei hier q= 1.06 und n= 15 Jahre
gilt.

Rvor15 = 3000× 1.06
1.0615 −1
1.06− 1

= 74 017.58e
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Dieser Rentenendwert stellt gleichzeitig den Barwert für die Auszahlungsphase dar.
Mit q= 1.07 und n= 10 Jahren errechnet sich nach Gleichung (9.12) eine Rentenrate
von:

rvor = 74017.58
1.0710

1.07
1.07− 1

1.0710−1
= 9 849.01e / Jahr

☼

Wie viele Jahre kann das Kapital K0 bei gegebener Verzinsung mit der Rente r
belastet werden? Die Antwort auf diese Frage findet sich leicht, wenn die Gleichung
(9.10) bzw. (9.11) nach n aufgelöst wird. Bei gegebenen q, Rvorn bzw. Rvor0 und rvor
ist dann die Zahl der Zinsperioden n bestimmbar. Die Schritte der Umstellung nach
n für die Gleichung (9.10) sind wie folgt:

Rvorn
rvor

q− 1
q

+1 = qn ⇔ n=
1

lnq
ln
(
Rvorn
rvor

q− 1
q

+1
)

Die Umstellung der Gleichung (9.11) nach n erfolgt analog.

n=
1

lnq
ln
(

rvor q
rvor q−Rvor0 (q−1)

)
Beispiel 9.20. Wird ein Kapitalbetrag in Höhe von Rvor0 = 74 071.58e zu einem
Zinssatz von 7 Prozent angelegt und jährlich zu Beginn des Jahres eine Rente von
rvor = 9 849.01e entnommen, so wird das Kapital innerhalb von

n=
1

ln1.07
ln
(

9849.01× 1.07
9849.01× 1.07−74017.58×0.07

)
= 10 Jahren

aufgezehrt. Dies war genau die Vorgabe im Beispiel 9.19. ☼

Wie hoch ist die Verzinsung i der Rente bei gegebenem Rentenendwert und Zeit-
raum n? Die Beantwortung dieser letzten Frage ist schwieriger. Eine Auflösung der
Gleichung (9.11) nach q ist für n> 2 im Allgemeinen nicht möglich. Daher wird die
Gleichung so umgestellt, dass sich ein Nullstellenproblem ergibt (implizite Funkti-
on), das mit einem entsprechenden Verfahren (regula falsi, Newton-Verfahren) gelöst
werden kann. Allerdings ist eine exakte Lösung des Problems nicht möglich. Die re-
ellen Nullstellen der Gleichung (9.13) liefern die gesuchte Verzinsung. Man spricht
hier auch von der Rendite des Kapitals, weil die Verzinsung aus den restlichen Grö-
ßen bestimmt wird. Insbesondere wenn das Kapital durch Gebühren, Steuern etc.
belastet wird, muss zwischen der Nominalverzinsung, die zum Beispiel durch eine
Bank garantiert wird, und derRendite (oderEffektivverzinsung) (yield) unterschie-
den werden. Die Effektivverzinsung wird mit dem Äquivalenzansatz der Barwerte

Rvor0
!
= rvor

q
qn
qn−1
q− 1

gelöst. Die Gleichung wird als implizite Funktion umgeschrieben, so dass ein Null-
stellenproblem zu lösen ist.

qn+1 − Rvor0
Rvor0 − rvor q

n+
rvor

Rvor0 − rvor q
!
= 0 (9.13)
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Beispiel 9.21. Ein Kapital von Rvor0 = 74 017.58e soll in n = 10 Jahren durch ei-
ne Rente von rvor = 9 849.01e aufgebraucht werden. Wie hoch muss die Rendite
(Effektivverzinsung) sein?

C0(q) = q11 − 74017.58
74017.58− 9849.01

q10 +
9849.01

74017.58−9849.01
q !
= 0 (9.14)

−0.2 0 0.2 0.4 0.6 0.8 1.0 1.2

−0.04

0
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0.08
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0.16

0.20

q

C(q)

Abb. 9.3: PolynomC0(q) (9.14) zur Renditebestimmung

Eine der reellen Nullstellen der Gleichung (9.14) liefert die gesuchte Rendite
(siehe Abb. 9.3). Mit dem Programm Scilab können die Nullstellen schnell berech-
net werden. Die Programmanweisungen stehen im nächsten Abschnitt.

Mit der regula falsi erhält man nach dem ersten Iterationsschritt folgendes Er-
gebnis, wenn als Startwerte {q1 = 1.06,q2 = 1.08} gewählt werden:

C0(1.06) = 1.0611 − 74017.58
74017.58−9849.01

1.0610

+
9849.01

74017.58− 9849.01
1.06

=−0.0047244
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C0(1.08) = 1.0811 − 74017.58
74017.58−9849.01

1.0810

+
9849.01

74017.58− 9849.01
1.08

= 0.0071135

q(1) = 1.06− (−0.0047244)
1.08−1.06

0.0071135− (−0.0047244)
= 1.0679818

Nach weiteren Iterationen stellt sich dann ein genaueres Ergebnis ein, das bei 1.07
liegt. ☼

9.5.2.2 Renditeberechnung mit Scilab

In Scilab können die Nullstellen eines Polynoms sehr schnell berechnet werden. Die
folgenden Anweisungen zeigen, wie für das Beispiel 9.21 die effektive Verzinsung
bestimmt werden kann.

// Angaben
q1=1.06; // Zinsfaktor Sparphase
n1=15; // Laufzeit Sparphase
q2=1.07; // Zinsfaktor Auszahlungsphase
n2=10; // Laufzeit Auszahlungsphase

// Berechnung des Rentenendwerts der Sparphase
// hier gleich Rentenbarwert der Auszahlungsphase
B=3000*q1*(q1^n1-1)/(q1-1);

// Berechnung der Rente in der Auszahlungsphase
r=B*q2^n2/q2*(q2-1)/(q2^n2-1);

// Polynom aufstellen
c=poly([0 r/(B-r) zeros(1,n2-2) -B/(B-r) 1],...

"q","coeff");

// Berechnung der Nullstellen
qeff=roots(c);
real(qeff(find(imag(qeff)==0)))

Mit roots() werden alle Nullstellen des Polynoms berechnet. Es liegen ins-
gesamt 10 reelle und imaginäre Nullstellen vor. Von diesen interessieren uns nur die
reellwertigen Nullstellen. Mit dem Befehl imag() == 0 werden alle imaginären
Nullstellen gefunden. Der find() Befehl (in Kombination mit dem vorherigen Be-
fehl) findet die Indexposition der imaginären Nullstellen, so dass der real()Befehl
jetzt nur noch die reellen Nullstellen anzeigt.
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Die Gleichung (9.14) besitzt für {0.0,1.0,1.07} reelle Nullstellen. Von diesen ist
aber nur die Nullstelle q = 1.07 ökonomisch sinnvoll. q = 0 ist die triviale Lösung,
die bedeutet, dass das Kapital vernichtet wird; mit q = 1 liegt eine Verzinsung von
Null vor. Die gesuchte Rendite liegt bei 7 Prozent, wie zu erwarten war.

9.5.2.3 Nachschüssige Rente

Eine nachschüssige Rente tritt bei Sparplänen und bei Rückzahlungen von Kredi-
ten auf. Sie wird am Periodenende geleistet und ist durch die Struktur in Abb. 9.4
gekennzeichnet. Die Rentenzahlung (annuity) erfolgt n-mal in n Perioden. Die Ver-
zinsung der ersten Rate erfolgt aber nur (n−1)-mal, da die Rate am Ende der ersten
Periode gezahlt wird. Die letzte Rate wird nicht mehr verzinst. Auch bei dieser Zah-
lungsweise können Ein- und Auszahlungspläne betrachtet werden. Die Zahlungs-
ströme sind in der Struktur identisch mit denen in Abb. 9.2, lediglich der Zeitpunkt
der Zahlungen r erfolgt am Periodenende.

rnach rnach rnach rnach
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

0 −−−−−→
1. Periode

1 qn−1

−−−−−→
2. Periode

2 qn−2

−−−−−→
3. Periode

· · ·n−1 q−−−−−−→
n-te Periode

n

Abb. 9.4: Grundstruktur einer nachschüssigen Rente

Nun kann erneut der ersten Frage nachgegangen werden, und zwar diesmal für
eine nachschüssige Rente. DerRentenendwert einer nachschüssigen Rente (future
value) wird wiederum aus dem Endwert einer geometrischen Reihe berechnet und
beträgt

Rnachn = rnach qn−1 + . . .+ rnach q+ rnach

= rnach
(
qn−1 + . . .+ q+1

)
= rnach

qn−1
q− 1︸ ︷︷ ︸

Rentenendwertfaktor

(9.15)

Gegenüber der vorschüssigen Rente fehlt der Faktor q. Das erklärt sich daraus, dass
jede Zahlung eine Periode später erfolgt und damit einmal weniger aufgezinst wird.
Logischerweise gilt damit Rnachn < Rvorn .

Beispiel 9.22. Eine vorschüssige Jahresrente von rvor = 100e soll in eine nachschüs-
sige Jahresrente rnach umgewandelt werden. Wie hoch muss die nachschüssige Rente
rnach sein? Es wird eine Verzinsung von 3 Prozent p. a. angenommen.
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rnach = rvor q= 100× 1.03= 103e

☼

DerRentenbarwert einer nachschüssigen Rente (present value) berechnet sich
durch Diskontierung des Rentenendwerts.

Rnach0 =
1
qn
Rnachn = rnach

1
qn
qn−1
q−1︸ ︷︷ ︸

Rentenbarwertfaktor

(9.16)

Beispiel 9.23. Frau Müller hat in der Lotterie gewonnen und erhält jetzt ein Leben
lang monatlich zu Monatsbeginn 5 000e. Die Lotteriegesellschaft bietet ihr einen
Sofortbetrag als Alternative an.

Wie groß ist dieser, wenn eine Restlebenserwartung von 40 Jahren und ein Kal-
kulationszinssatz von 6 Prozent angenommen wird?

Es gibt drei Möglichkeiten eine Lösung zu berechnen.

1. Die monatliche Rente wird mittels der einfachen Verzinsung mit Gleichung
(9.7) auf eine Jahresrate hochgerechnet. Diese Vorgehensweise wird manch-
mal in der Praxis eingesetzt.

Rvor12 = 5000(12+ 0.06×6.5)= 61 950e

Da die Jahresrate erst am Ende des Jahres zur Verfügung steht, muss man nun
mit einer nachschüssigen Jahresrente rechnen.

Rnach0 = 61950
1

1.0640
1.0640 −1
1.06− 1

= 932 118.09e

Als Ablösesumme wird ein Betrag von 932 118.09e angeboten.
2. Die zweite Möglichkeit besteht darin, die monatliche Rate mit einem konfor-

men Monatszinssatz in eine konforme Jahresrate umzurechnen. Die Berech-
nung mit dem konformen Zinssatz entspricht dem internationalen Standard
und wird auch als ISMA-Methode bezeichnet.

qkon12 =
12√1.06 = 1.0048676

Rvor12 = 5000× 1.0048676
1.004867612−1
1.0048676−1

= 61 932.64e

Von dieser Jahresrate wird nun wieder der nachschüssige Rentenbarwert be-
rechnet.

Rnach0 = 61932.64
1

1.0640
1.0640 −1
1.06−1

= 931 856.91e
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Nach dieser exakten Rechnung fällt die Ablösesumme mit 931 856.91e etwas
niedriger aus, weil die Jahresrate aufgrund des niedrigeren konformen Monats-
zinssatzes geringer ist. Bei der einfachen Verzinsung wird mit einem relativen
Zinssatz gerechnet, der aufgrund des unberücksichtigten Zinseszinseffekts hö-
her ausfallen muss.
Eine Variante besteht darin, die gesamte Rechnung auf Monatsbasis vorzu-
nehmen. Jetzt muss die Rechnung mit einer vorschüssigen Rente durchgeführt
werden. Es liegt dann ein Zeitraum von 12× 40 = 480 Monaten vor. Diese
Rechnung muss aufgrund der konformen Umrechnung das gleiche Ergebnis
wie die vorherige Rechnung liefern.

Rvor0 = 5000
1.0048676

1.0048676480
1.0048676480−1

1.0048676−1
= 931 856.91e

3. Die dritte Möglichkeit besteht darin, mit dem relativen Zinssatz zu rechnen
(US-Methode). Der relative Zinsfaktor beträgt:

qrel12 =

(
1+

0.06
12

)
= 1.005

Mit diesem relativen Monatszinssatz wird nun die Jahresrate berechnet.

Rvor12 = 5000× 1.005
1.00512 −1
1.005−1

= 61 986.20e

Mit dieser Jahresrate kann nun wieder der Rentenbarwert berechnet werden.

Rnach0 = 61986.20
1

1.0640
1.0640 −1
1.06−1

= 932 662.78e

Wird die gesamte Rechnung auf Monatsbasis durchgeführt, so zeigt sich sehr
deutlich die Inkonsistenz der Rechnung mit dem relativen Zinssatz.

Rvor0 = 5000
1.005

1.005480
1.005480−1

1.005−1
= 913 281.61e

Aufgrund des höheren relativen Monatszinssatzes wird der Barwert stärker
diskontiert und fällt deshalb niedriger aus als nach der exakten Rechnung.

☼

Die dritte Frage nach der Rentenrate ist leicht zu beantworten, wenn die Glei-
chung (9.15) bzw. (9.16) nach rnach bei gegebenen Rnachn bzw. Rnach0 , n und q umge-
stellt wird.
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rnach = Rnachn
q−1
qn−1

= Rnach0 qn
q−1
qn−1

(9.17)

Die vierte Frage kann – wie bei der vorschüssigen Rente – mit der Auflösung der
Gleichung (9.15) bzw. (9.16) nach n beantwortet werden:

n=
1

lnq
ln
(
Rnachn

q−1
rnach

+ 1
)
=

1
lnq

ln
(

rnach

rnach−Rnach0 (q−1)

)

Beispiel 9.24. Angenommen, ein Barwert in Höhe von Rnach0 = 932 118.09e wird
gewonnen (vgl. Beispiel 9.23), der zu einem Zinssatz von 6 Prozent angelegt werden
kann. Es ist geplant, eine jährliche Rente von 61 950e im Dezember (also nach-
schüssig) zu beziehen. Wie viele Jahre kann man die Rente erhalten?

n=
1

ln1.06
ln
(

61950
61950− 932118.09×0.06

)
= 40 Jahre

Die Rente kann zu den gegebenen Bedingungen wie erwartet über 40 Jahre bezogen
werden. ☼

Die fünfte Frage nach der Verzinsung (yield) ergibt sich wieder als Nullstellen-
problem. Die Gleichung (9.16) wird als Äquivalenzansatz der Barwerte interpre-
tiert und als implizite Funktion umgeschrieben. Man erhält das folgende rationale
Polynom in Abhängigkeit von q, dessen reelle Nullstellen die gesuchte Verzinsung
liefern.

qn+1 −
(

1+
rnach

Rnach0

)
qn+

rnach

Rnach0

!
= 0

Beispiel 9.25. Die Fragestellung im Beispiel 9.23 wird nun verändert. Es sind n =
40 Jahre, rnach = 61 950e und Rnach0 = 932 118.09e gegeben. Die gesuchte Größe
ist die Rendite (Verzinsung) des Kapitals. Es muss dazu eine ökonomisch sinnvolle
Nullstelle des folgenden Polynoms bestimmt werden.

q41 −
(

1+
61950

932118.09

)
q40 +

61950
932118.09

!
= 0 (9.18)

Das Programm Scilab liefert hier folgende reelle Nullstellen: q1 = 1.06, q2 = 1.0
und q3 = −0.918 (siehe Abb. 9.5). Wiederum ist nur die reelle Nullstelle q = 1.06
sinnvoll. Es ist die bekannte Verzinsung von 6 Prozent. Auch der Ansatz nach der
ISMA-Methode liefert die Verzinsung von 6 Prozent.

q481 − 931856.91
931856.91− 5000

q480 +
5000

931856.91− 5000
q !
= 0

☼

Beispiel 9.26. Es soll die Rendite aus einem Bonussparplan berechnet werden. Dafür
wird über 10 Jahre monatlich eine Rate von rnach zu einem Zinssatz von 3 Prozent
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Abb. 9.5: PolynomC0(q) (9.18) zur Renditebestimmung

nominal p. a. angelegt. Am Ende des 10. Jahres wird ein Bonus in Höhe von 12
Prozent des eingezahlten Betrags gezahlt.

Bonusn = 0.12nmrnach

Man kann hier wieder exakt mit dem konformen Monatszinssatz oder näherungswei-
se mit einer nachschüssigen Jahresrate rechnen.

1. Exakte Rechnung (ISMA-Methode): Der konforme Monatszinssatz beträgt

ikon12 =
12√1.03− 1 = 0.002466

Der Endwert der Rente plus Bonus beträgt

RBonus120 = R120 +Bonus120

= rnach
1.002466120− 1

1.002466− 1
+0.12×120rnach

= rnach 153.8479

Dies ist die Leistung der Bank. Der Barwert der Bankleistung (= Barwert des
Sparplans) Rnach0 =

RBonus120
q120

12
muss nach dem Äquivalenzprinzip einem Renten-

barwert ohne Bonus entsprechen.



184 9 Grundlagen der Finanzmathematik

Rnach0 = rnach
1
q120

12

q120
12 − 1
q12 −1

Dies ist die Leistung des Kunden.

Leistung der Bank !
= Leistung des Kunden

R120 +Bonus120

q120
12

!
=
rnach

q120
12

q120
12 −1
q12 −1

q12 beinhaltet die gesuchte monatliche Rendite. Bei der Äquivalenz entfallen
rnach und der Diskontierungsfaktor 1

q120
12

.

153.8479=
q120

12 −1
q12 −1

(9.19)

Die Gleichung (9.19) wird nun umgestellt, damit ein Nullstellenproblem ent-
steht.

C0(q12) = q120
12 − 153.8479q12+153.8479−1 !

= 0
Mit dem Programm Scilab werden die reellen Nullstellen

q12 = {1.0,1.004021}
berechnet. Nur der zweite Wert ist ökonomisch sinnvoll. Aus q12 = 1.004021
wird nun der konforme Jahreszinssatz bestimmt.

q= 1.00402112 = 1.04934

Die Rendite (p. a.) liegt bei etwa 4.93 Prozent. Mit der regula falsi und den
Startwerten q12 = {1.005,1.004} (auch hier müssen Monatsverzinsungen ein-
gesetzt werden) ergibt sich bei einer Iteration folgendes Ergebnis:

C0(1.005) = 1.005120−153.8479×1.005
+153.8479968−1

= 0.0501567

C0(1.004) = 1.004120−153.8479×1.004
+153.8479−1

=−0.0008642

Die erste Näherung der gesuchten Nullstelle ist somit

q(1)12 = 1.004− (−0.0008642)

× 1.005−1.004
0.0501567− (−0.0008642)

= 1.004016

Der monatliche Zinssatz beträgt also nach einer Iteration 0.4016 Prozent (ent-
spricht i= 1.00401612−1 = 0.04927 p. a.). Für ein genaueres Ergebnis müs-
sen weitere Iterationsschritte berechnet werden.
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2. Näherungsrechnung: Näherungsweise kann die monatliche Rate auch mittels
der Gleichung (9.7) in eine Jahresrate umgerechnet werden. Es wird dann mit
q= 1.03 gerechnet. Der Barwert einer Rente mit Bonus beträgt nun:

RBonus0 = rnach
(
12+ 5.5(1.03−1)

)︸ ︷︷ ︸
Rnach

1
q10

1.0310− 1
1.03−1

+ 0.12×120× rnach 1
q10

= 153.8581rnach
1
q10

(9.20)

Der Endwert muss nach dem Äquivalenzprinzip einem Rentenbarwert ohne
Bonus entsprechen. Der Zinssatz, der diese Äquivalenz erfüllt, ist dann die
gesuchte Rendite.

Rnach0 = rnach
(
12+5.5(q−1)

) 1
q10

q10 −1
q− 1

(9.21)

Aus der Äquivalenz der Gleichungen (9.20) und (9.21) ergibt sich dann fol-
gendes Nullstellenproblem:

153.8581
rnach

q10 = rnach
(
12+ 5.5(q−1)

) 1
q10

q10 −1
q− 1

C0(q) = 5.5q11+(12− 5.5)q10− (153.8581+5.5)q

+(153.8581−12+5.5) !
= 0

Scilab errechnet folgende Nullstellen: {−1.6581,1.0,1.049321}. Nur q =
1.049321 ist ökonomisch sinnvoll. Die gesuchte Rendite beträgt i = 4.9321
Prozent p. a. ☼

Beispiel 9.27. Im folgenden Beispiel wird ein Sparplan mit einer Gebühr (negativer
Bonus) betrachtet. Der Äquivalenzansatz der Barwerte ist nun wie folgt:

Leistung der Bank !
= Leistung des Kunden

Rn
qnm

!
=
r
qnm
qnm−1
qm−1

+Gebühr

In qm ist der effektive Zinssatz enthalten. Durch ein Nullstellenproblem wird dieser
ermittelt. Im Vergleich zu Beispiel 9.26 hat der Kunde nun eine zusätzliche Leistung
zu erbringen. Beim Bonussparplan musste die Bank die zusätzliche Leistung erbrin-
gen. ☼

Beispiel 9.28. In diesem Beispiel wird eine Sparrate von 100e über 10 Jahre zu 10
Prozent verzinst. Jedoch wird eine jährliche Gebühr von 1 Prozent auf das eingezahl-
te Kapital eingezogen. Wie hoch ist die insgesamt gezahlte Gebühr (Barwert)? Wie
hoch wäre eine äquivalente periodische Gebühr in Euro (Rate)?



186 9 Grundlagen der Finanzmathematik

Der Bruttobarwert der Sparrate beträgt:

Rbrutto0 = 100
1

1.1010
1.110 −1
1.1− 1

= 614.46e

Die Nettoverzinsung beträgt 9 Prozent. Somit ist der Nettobarwert der Sparrate:

Rnetto0 = 100
1

1.0910
1.0910 −1
1.09−1

= 641.77e (9.22)

Der Barwert der Gebühr berechnet sich aus der Differenz der beiden Barwerte
und liegt bei 27.31e. Die äquivalente periodische Gebühr kann nun aus der Verren-
tung des Barwerts der Gebühr berechnet werden.

rGebühr = 27.31× 1.110 1.1− 1
1.110 − 1

= 4.44e / Jahr

Alternativ kann man auch direkt die jährliche Nettorate mit einem Äquivalenzansatz
berechnen:

rnetto
1

1.110
1.110 −1
1.1−1

!
= 100

1
1.0910

1.0910 − 1
1.09−1

rnetto = 100
1.0910− 1
1.09− 1

1.110

1.0910
1.1− 1

1.110 − 1
= 104.44e / Jahr = 100+ rGebühr

Nach dem Äquivalenzansatz muss die Sparrate von 104.44e (inklusive Gebühr)
bei einem Zinssatz von 10 Prozent äquivalent mit der Sparrate von 100e bei einem
Zinssatz von 9 Prozent sein.

104.44
1

1.110
1.110 − 1
1.1−1

!
= 100

1
1.0910

1.0910 −1
1.09− 1

☼

Übung 9.3. Es sollen 1 000e in 2 Jahren bei einer Bank angespart werden, die
bei vierteljährlicher Zurechnung der Zinsen 7 Prozent anbietet. Berechnen Sie die
Höhe der vierteljährlichen Raten, wenn sie jeweils am Ende des Quartals erfolgen.
Rechnen Sie einmal mit dem relativen Zinssatz und einmal mit dem konformen
Zinssatz.

Übung 9.4. Bei 4 Prozent p. a. werden auf ein Konto folgende Beträge eingezahlt:
2 000e am 01.01.2005, 4 000e am 01.01.2007, 6 000e am 01.01.2008.

1. Das angesparte Kapital soll ab dem 01.01.2010 (es wird weiterhin mit 4 Pro-
zent p. a. verzinst) über 10 Jahre in gleichmäßigen Raten zu Beginn des Mo-
nats aufgebraucht werden. Wie hoch ist die Rente nach der ISMA-Methode?

2. Aus dem angesparten Kapital sollen ab dem 01.01.2010 jeweils zu Beginn
des Jahres 1 000e abgehoben werden. Wie lange können ganzzahlige Beträ-
ge abgehoben werden?
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Übung 9.5. Es werden 1 000e geerbt. Man entscheidet sich, das Kapital anzulegen
und durch eine nachschüssige jährliche Rente in Höhe von 600e über 2 Jahre
aufzubrauchen. Wie hoch muss die Verzinsung des Kapitals sein?

9.6 Besondere Renten

9.6.1 Wachsende Rente

Für eine wachsende Rente (constant growing annuity) wird angenommen, dass die
Rente r mit dem Faktor g= 1+ pwächst. Grund für eine solche Anforderung könnte
zum Beispiel ein Inflationsausgleich (Kaufkraftverlust) sein. Der Endwert der wach-
senden nachschüssigen Rente ist

Rnachn = rnach qn−1 + rnach qn−2g+ . . .+ rnach qgn−2 + rnach gn−1

= rnach gn−1
(
qn−1

gn−1 +
qn−2

gn−2 + . . .+
q
g
+1

)

= rnach gn−1

(
q
g

)n
−1

q
g − 1

= rnach
qn−gn
q−g

Der Barwert dieser wachsenden Rente ist der mit dem Zinsfaktor qn diskontierte
Endwert.

Rnach0 =
Rnachn
qn

=
rnach

qn
qn− gn
q− g

Beispiel 9.29. Es ist die Rente gesucht, die ein Kapital von 10 000e über 15 Jahre
hin aufbraucht. Das Kapital ist zu einem Festzinssatz von 5 Prozent p. a. angelegt.
Es wird eine Inflationsrate von 2 Prozent pro Jahr angenommen.

rnach = 10000× 1.0515× 1.05− 1.02
1.0515 − 1.0215 = 850.79e

Ohne Kaufkraftverlust würden 963.42e pro Jahr zur Verfügung stehen. Aufgrund
der angenommenen Inflation sind es aber nur 850.79e. ☼

Bei einer vorschüssigen Rente wird aufgrund der vorgezogenen Zahlungsstruk-
tur die letzte Rate auch verzinst, so dass im Ergebnis der Endwert und der Barwert
zusätzlich mit dem Faktor q zu multiplizieren sind.

Rvor0 = rvor
q
qn
qn− gn
q− g
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9.6.2 Ewige Rente

Bei einer ewigen Rente (perpetuity) geht die Anzahl der Perioden gegen unendlich.
Um die Grenzwerte der Barwerte einer vor- und nachschüssigen Rente zu berechnen,
ist es sinnvoll, den Ausdruck (qn−1)

qn in den Gleichungen (9.11) und (9.16) wie folgt
umzuformen:

qn−1
qn

=

(
1− 1

qn

)
(9.23)

Für n→ ∞ strebt der Ausdruck in der Gleichung (9.23) für q > 1 gegen 1, weil
limn→∞

1
qn → 0 gilt.

lim
n→∞

(
1− 1

qn

)
= 1

Damit vereinfachen sich die beiden Formeln (9.11) und (9.16). Sie liefern die Bar-
werte einer ewigen vor- bzw. nachschüssigen Rente.

Rvor0,∞ = rvor
q
q− 1

Rnach0,∞ = rnach
1

q− 1
=

1
i

Beispiel 9.30. Fortsetzung von Beispiel 9.23. Wie groß ist der Barwert der Rente,
wenn sie als ewige Rente angeboten worden wird?

Rvor0,∞ = 5000
1.0048676

1.0048676− 1
= 1 032 210.70e

☼

Der Barwert einer ewig wachsenden Rente existiert, wenn g < q ist. Der Grenz-
wert des Faktors strebt für die Annahme gegen 1, weil gq < 1 gilt.

lim
n→∞

qn−gn
qn

= 1− lim
n→∞

(
g
q

)n
= 1

Der Barwert der ewig wachsenden Rente ist somit

Rvor0,∞ = lim
n→∞

rvor
q
qn
qn−gn
q−g = rvor

q
q−g

Rnach0,∞ = lim
n→∞

rnach

qn
qn−gn
q−g =

rnach

q−g =
rnach

i− p
Beispiel 9.31. r sei die heutige Dividende einer Aktie. Sie betrage 3e. Das Unter-
nehmen hat ein jährliches Ertragswachstum von 7 Prozent prognostiziert. Wie hoch
sollte der Wert der Aktie heute sein? Solange das Unternehmen existiert, wird die
Dividende gezahlt. Daher unterstellt man eine ewige Rente. Als Diskontierungsatz
wird ein Zinssatz von 11 Prozent3 angenommen.

3 Der Zinssatz repräsentiert hier die Kapitalkosten eines Unternehmens. Diese setzen sich
aus einer Eigenkapitalverzinsung und den Fremdkapitalzinsen zusammen (siehe auch Ab-
schnitt 9.9 Investitionsrechnung).
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Rvor0,∞ = 3× 1.11
1.11− 1.07

= 83.25e

☼

9.7 Kurs- und Renditeberechnung eines Wertpapiers

9.7.1 Kursberechnung

Der Wert eines Wertpapiers ist der Barwert aller zukünftigen Leistungen, also der
Rückzahlungskurs und die Zinszahlungen.

rnach rnach rnach rnach+ K0
qn

Schuldner-
⏐
⏐
�leistungen

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

0 q−1

−−−−−→
1. Periode

1 q−2

−−−−−→
2. Periode

2 q−3

−−−−−→
3. Periode

· · ·n−1 q−n−−−−−−→
n-te Periode

n

Gläubiger-
�
⏐
⏐leistung

C0

Abb. 9.6: Struktur eines Wertpapiers

Bei einem festverzinslichen Wertpapier ist die regelmäßige Zinszahlung die Ren-
te rnach, die am Ende der Periode gezahlt wird. rnach ist die Nominalverzinsung des
Wertpapiers. Der Rentenbarwert wird also folglich über die Rentenbarwertformel
(9.16) einer nachschüssigen Rente berechnet. Zusätzlich zum Rentenbarwert muss
noch der Rückzahlungskurs (Nennbetrag) K0, der in der Regel 100e beträgt, dis-
kontiert hinzugerechnet werden. Damit ergibt sich der (Brutto-) Kurs eines festver-
zinslichen Wertpapiers als

C0(q) = rnach
1
qn
qn− 1
q− 1︸ ︷︷ ︸

Barwert Zinsen

+ K0
1
qn︸ ︷︷ ︸

Barwert Nennwert

(9.24)

In den Zinsfaktor q der Gleichung (9.24) geht der aktuelle Marktzins ein, da das
Wertpapier mit einer Geldanlage zu Marktbedingungen verglichen werden muss.

Beispiel 9.32. Es wird ein Wertpapier zu einem Nennbetrag von 100e angenommen,
das zu 6 Prozent p. a. nominal verzinst wird. Es besitzt eine Laufzeit von 10 Jahren.
Wie hoch ist der Kurs des Wertpapiers, wenn ein Marktzinssatz von 5 Prozent, 6
Prozent und 7 Prozent unterstellt wird?

C0(1.05) = 6
1

1.0510
1.0510− 1
1.05−1

+100
1

1.0510

= 46.33+61.39= 107.72e
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C0(1.06) = 44.16+ 55.84= 100.00e
C0(1.07) = 42.14+ 50.83= 92.98e

Liegt der Marktzinssatz über dem Nominalzinssatz, so liegt der Kurs des Wertpapiers
unter dem Rückzahlungsbetrag, hier 100e. Durch den Kursabschlag erfolgt eine
Erhöhung der Effektivverzinsung. Die Höhe des Kursabschlags beträgt 7.02e. Er
entspricht dem Barwert der Nominalzinsdifferenz.

(7− 6)
1

1.0710
1.0710− 1
1.07− 1

= 7.02e

Ein Wertpapier mit der obigen Ausstattung besitzt bei einem Kurs von 92.98e
eine Rendite von 7 Prozent. Man kann den Kursabschlag auch über Kurswert (Preis)
und Nachfrage erklären. Zu einem Preis von 100e fragt bei einem Marktzinssatz
von 7 Prozent niemand ein Wertpapier mit einer Verzinsung von 6 Prozent nach. Erst
bei einem entsprechenden Preisnachlass wird das Angebot wieder attraktiv.

Ein Wertpapier mit einer Nominalverzinsung von 6 Prozent bei einem Marktzins-
satz von 5 Prozent wird ohne Kursaufschlag eine Rendite über Marktniveau besitzen.
Bei einem Kursaufschlag in Höhe von 7.72e reduziert sich die Rendite auf 5 Pro-
zent. ☼

Wie verändert sich der Kurs eines Wertpapiers mit abnehmender Restlaufzeit?
Der Kursauf- bzw. Kursabschlag wird abnehmen, da die Barwertdifferenz immer
geringer wird. Der Kurs nähert sich somit immer mehr dem Rückzahlungsbetrag.

Beispiel 9.33. Die Kursentwicklung des Wertpapiers aus dem Beispiel 9.32 ist hier
für die beiden Marktzinssätze 5 Prozent und 7 Prozent in Tabelle 9.1 und in Abb.
9.7 wieder gegeben. Die Wertpapierkurse nähern sich mit abnehmender Restlaufzeit
(n→ 0) dem Rückzahlungsbetrag von 100e. ☼

Tabelle 9.1: Kursentwicklung des Wertpapiers in Beispiel 9.32
Restlaufzeit

Kurs 10 9 8 7 6 5 4 3 2 1

bei 5% 107.72 107.11 106.46 105.79 105.08 104.33 103.55 102.72 101.86 100.95
bei 7% 92.98 93.48 94.03 94.61 95.23 95.90 96.61 97.38 98.19 99.07

Wie entwickelt sich aber der Kurs eines Wertpapiers innerhalb einer Zinsperiode?
Am Ende jeder Zinsperiode wird der entsprechende Zinsbetrag bzw. die Rente (auch
Kupon genannt) bezahlt. Vor diesem Zinstermin besitzt das Wertpapier noch diesen
Kupon und ist entsprechend mehr wert. Wird das Wertpapier nun vor diesem Zins-
termin verkauft, so muss der Kupon anteilig auf die Zinsperiode aufgeteilt werden.
In der Praxis bedient man sich hier der einfachen Verzinsung (siehe Kapitel 9.2 und
9.3) und berechnet die so genannten Stückzinsen (accrued interest). Seit Anfang
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Abb. 9.7: Kursentwicklung des Wertpapiers in Beispiel 9.33

1999 wird (gemäß der ISMA-Regel 251) für die Stückzinsberechnung die Anzahl
der Tage taggenau ( aktakt ) ermittelt. Dies gilt sowohl für die Tage im Jahr als auch für
die Tage zwischen dem letzten Zinstermin und dem Zinsvalutatag. Bei Geldmarkt-
papieren (U-Schätze) wird die Tageszählkonvention akt

360 angewendet. Dies gilt auch
für variabel verzinsliche Anleihen mit Referenzzinssatz EURIBOR. Die Stückzin-
sen werden vom Kurs abgezogen und ergeben dann den so genannten Nettokurs.
Weitere Informationen zur Stückzinsenberechnung von Bundesanleihen gibt es zum
Beispiel unter:

http://www.deutsche-finanzagentur.de

Beispiel 9.34. Am 18. August 1999 wird für nominal 5 000e eine 4.50 Prozent An-
leihe des Bundes mit ganzjährigem Zinstermin 4. Juli gekauft. Die nächste Zins-
zahlung ist am 4. Juli 2000. Die Zahlung des Kaufpreises (Valutierungstag) erfolgt
gemäß der üblichen 2-tägigen Valutierungsfrist am 20. August 1999, Zinsvalutatag
ist der 19. August 1999. Dem Käufer werden in seiner Wertpapierabrechnung Stück-
zinsen für 47 Tage für die Zeit vom Beginn des Zinslaufs am 4. Juli 1999 bis ein-
schließlich Zinsvalutatag 19. August 1999 berechnet. Das sind:

Stückzinsen= 5000×0.045× 47
366

= 28.89e



192 9 Grundlagen der Finanzmathematik

Da die Zinsperiode vom 4. Juli 1999 bis einschließlich 3. Juli 2000 läuft, muss gemäß
der taggenauen Methode akt

akt hier das Jahr mit 366 Tagen gerechnet werden, da in die
Zinsperiode der 29. Februar 2000 fällt. ☼

Der Käufer wird bei dieser Rechnung zu stark belastet, da er den Zinskupon erst
am 4. Juli 2000 erhält. Dies ist jedoch die Vorgehensweise in der Praxis. Nach dem
Barwertansatz sind die Stückzinsen mit dem Marktzinssatz für den Zeitraum vom
Kauf bis zum Zinstermin zu diskontieren.

Beispiel 9.35. In dem obigen Beispiel sind bei einem unterstellten Marktzinssatz von
3 Prozent die Stückzinsen wie folgt zu diskontieren:

Barwert der Stückzinsen= 28.89×1.03
366−47

366 = 27.80e

☼

9.7.2 Renditeberechnung für ein Wertpapier

Bei der Renditeberechnung wird für einen gegebenen Kurs die Verzinsung der Leis-
tungen aus einem Wertpapier gesucht. Es handelt sich um ein Nullstellenproblem der
Gleichung (9.24).

rnach

qn
qn− 1
q− 1

+
K0
qn

−C0(q)
!
= 0

Die aus der Gleichung ermittelte Verzinsung wird Rendite (yield) genannt.

Beispiel 9.36. Es wird für ein Wertpapier die Rendite gesucht, das einen Nennbetrag
von 100e und eine Laufzeit von 5 Jahren besitzt, mit einem Nominalzinssatz von
5.25 Prozent ausgestattet, und das zu einem Kurs von 100.40e angeboten wird. Es
ist also folgende Gleichung zu lösen:

5.25
q5

q5 − 1
q− 1

+
100
q5 −100.40 !

= 0 (9.25)

Es wird die regula falsi zur Berechnung der Rendite angewendet. Aufgrund der Über-
legungen aus Beispiel 9.33 kann folgende Abschätzung vorgenommen werden: Da
der Kurs über 100e liegt, muss i < 0.0525 sein. Wird i = 0.05 gewählt, so ergibt
sich nach Gleichung (9.24) ein Kurs von C0(1.05) = 101.08e bzw. nach Gleichung
(9.25) eine Abweichung vom gesuchten Kurs in Höhe von 0.68. Da 101.08 > 100.4
ist, liegt die gesuchte Verzinsung zwischen 0.05 < i < 0.0525. Es wird als zweiter
Startwert i = 0.052 gewählt. Damit ergibt sich ein Kurs von C0(1.052) = 100.22e
bzw. eine Kursabweichung in Höhe von −0.18. Mit den gefundenen Startwerten
kann nun die erste lineare Interpolation vorgenommen werden.

q(1) = 1.05− 0.68
1.052−1.05
−0.18− 0.68

= 1.05158 (9.26)
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Abb. 9.8: Rendite des Wertpapiers in Gleichung (9.26)

Nach der ersten Iteration hat das Wertpapier eine Rendite von ca. 5.158 Prozent. Das
Programm Scilab errechnet eine Rendite von 5.15721 Prozent.

Wird der Kupon unterjährig gezahlt, dann wird er relativ auf die Perioden auf-
geteilt. In der Praxis wird dann häufig mit dem relativen unterjährigen Zinssatz der
Kurs (Barwert) des Wertpapiers berechnet. Wird aber das Wertpapier nicht zu pari
(Barwert = Rückzahlungskurs) angeboten, dann entspricht dieser Zinssatz nicht der
Rendite des Papiers.

Beispiel 9.37. Der Kupon aus Beispiel 9.36 wird nun halbjährlich gezahlt.

m= 2 rm =
5.25

2

Bei einem Kurs von 100 liegt die Rendite bei i = 0.0525
2 und der Barwert beträgt

folglich 100.

C0 =
5.25

2
1

1.0262510
1.0262510− 1
1.02625−1

+
100

1.0262510 = 100

Liegt der Kurs aber wie in Beispiel 9.32 bei 100.40, dann kann weder mit dem
relativen noch mit dem konformen Zinssatz die jährlichen Rendite von 5.15721 Pro-
zent (zum Barwert von 100.4) bestimmt werden. Die Rendite muss aus dem Äquiva-
lenzansatz
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2.625
q10
m

q10
m − 1
qm−1

+
100
q10
m

!
= 100.40

errechnet werden und liegt bei:

i= q2
m−1 = 1.02579112− 1 = 0.0522474

☼

9.7.3 Berechnung einer Wertpapierrendite mit Scilab

Die Rendite des Wertpapiers in Beispiel 9.36 wird mit folgenden Anweisungen be-
rechnet.

r = 5.25
n = 5
K0 = 100
C0 = 100.4
c = poly([-(K0+r) K0 zeros(1,3) (C0+r) -C0],...

"q","coeff")
q = roots(c)
q = real(q(find(imag(q)==0)))

☼

Für das Wertpapier mit der halbjährlichen Kuponzahlung wird die Rendite wie
folgt bestimmt.

m = 2;
rm = r/m;
nm = n*m;
cm = poly([-(K0+rm) K0 zeros(1,8) (C0+rm) -C0],...

"q","coeff");
qm = max(real(roots(cm)))
qm^2-1

9.7.4 Zinsstruktur

Als Zinsstruktur4 (yield curve) bezeichnet man die Abhängigkeit des Zinssatzes
von der Bindungsdauer einer Anlage. In der Regel besitzen langfristig festverzins-
liche Wertpapiere höhere Renditen als kurzfristige. Diese Zinsstruktur wird dann
als steigend oder normal bezeichnet. Infolge eines überproportionalen Angebots von
Anleihen mit kurzer Laufzeit kann deren Rendite über der von langfristigen Anleihen
liegen. Dieser Zustand wird als inverser Markt oder inverse Zinsstruktur bezeichnet.

4 Sie wird auch als Renditestruktur bezeichnet.
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In Deutschland fand dies nach der Wiedervereinigung statt, als die öffentliche Hand
und private Unternehmen einen hohen kurzfristigen Kapitalbedarf zur Finanzierung
der Investitionen in den neuen Bundesländern hatten. Die Zinsstruktur wird als flach
bezeichnet, wenn der Zinssatz von der Bindungsdauer unabhängig ist. Dies ist jedoch
die Ausnahme. Die Zinsstruktur kann in der so genannten Zinskurve (siehe Abb. 9.9)
veranschaulicht werden. Es ist noch anzumerken, dass jede Anlageform eine eigene
Zinsstruktur besitzt5.
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Juni 2004

Aug. 1992

Jan. 1990

Abb. 9.9: Historische Zinskurven

Nun setzt die Renditeberechnung eine flache Zinsstruktur voraus, da für den ge-
samten Anlagehorizont der gleiche Zinssatz unterstellt wird. Dies kann dann pro-
blematisch werden, wenn die Zinskurve einen deutlich steigenden oder fallenden
Verlauf aufweist. Die berechnete Rendite fällt im Fall einer ansteigenden Zinskurve
aufgrund der stärkeren Diskontierung der zukünftigen Leistungen höher aus; im Fall
einer inversen Zinsstruktur wird die Rendite geringer sein.

9.7.5 Barwertberechnung bei nicht-flacher Zinsstruktur

Bei den bisherigen Berechnungen wurde immer eine flache Zinsstruktur über die
Laufzeit und eine Wiederanlage der Erträge zum Zinssatz i angenommen. Als Zins-

5 In Abb. 9.9 wird der gewichtete Durchschnittskurs synthetischer Anleihen zur jeweiligen
Laufzeit gezeigt.
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struktur wird die Fristigkeitsstruktur der Kassazinssätze (spot rate) bezeichnet. Der
Kassazinssatz (auch Nullkuponrendite) ist der Zinssatz, den man heute mit Anlei-
hen über eine gewisse Laufzeit risikolos absichern kann. Unter dem Terminzinssatz
(forward rate) versteht man hingegen den Zinssatz, der heute für eine zukünftige
Anlage oder einen Kredit vereinbart wird. Die Terminzinssätze sind implizit in der
Zinsstruktur der Kassazinssätze enthalten.

Eine flache Zinsstruktur bedeutet, dass die Kassazinssätze alle gleich sind. Dies
bedeutet, dass eine Anlage über n Jahre zum Kassazinssatz in den gleichen Ertrag
liefert wie die wiederholte Anlage mit Terminzinssätzen. Daraus resultiert, dass alle
Terminzinssätze identisch sind. Ferner beinhaltet dies auch, dass die Kassazinssätze
gleich sein müssen.

i1 = i2 = . . .= in
In der Realität liegt aber häufig eine steigende Zinsstruktur vor, so dass länger-

fristige Anlagen einen höheren Zinssatz besitzen als kurzfristige.

i1 < i2 < .. . < in

Diese Struktur unterstellt für jeden Zeitpunkt einen anderen Kassazinssatz (ein an-
deres q). Die obigen Rechnungen sind nicht mehr durchführbar.

Sind die Kassazinssätze für verschiedene Anlagezeiträume unterschiedlich, so
kann die geometrische Reihe nicht mehr mit einem Zinsfaktor geschrieben werden.

C0 =
r
q1

+
r
q2

2
+ . . .+

r
qnn

+
K0
qnn

Es tritt folgendes Problem auf: Mit welchen Zinssätzen sind die zwischenzeit-
lichen Zinszahlungen r zu diskontieren? Die Renditen von Kuponanleihen können
nicht verwendet werden, weil hier eine zwischenzeitliche Zinszahlung erfolgt.

Das Problem wird in zwei Schritten gelöst. Im ersten Schritt wird die Rendite
für Nullkuponanleihen (zero bonds) mit den Laufzeiten von 1 bis n berechnet6. Bei
Nullkuponanleihen existieren keine Zahlungen zwischen der Gegenwart und dem
Zeitpunkt n. Folglich entfällt eine jährliche Zinszahlung. Die Rendite ergibt sich nur
aus der Differenz zwischen Ausgabekurs und Rückzahlungskurs. In der folgenden
Berechnung wird ein Rückzahlungskurs von 1e unterstellt. Im zweiten Schritt wird
dann der Barwert der Anlage mittels dieser Nullkupon-Zinsfaktoren berechnet. Die
beschriebenen Schritte werden am folgenden Beispiel ausführlich erläutert.

Beispiel 9.38. Es wird folgende Renditestruktur für Kuponanleihen unterstellt:

Tabelle 9.2: Renditestruktur
t 1 2 3 4 5

i∗t 0.050 0.055 0.060 0.065 0.070

6 Auf dem Anleihenmarkt existiert nicht für jede Form und jede Laufzeit eine Nullkupon-
anleihe. Daher konstruiert man mit der hier vorgestellten Berechnungsweise synthetische
Nullkuponanleihen.
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Der Barwert einer Zahlung, die in einem Jahr anfällt, beträgt

CNullkupon1 =
1

1+ i∗1
=

1
1.05

= 0.9524

Es ist der Barwert einer Zahlung von 1e in einem Jahr. Da keine Zinszahlungen
auftreten, muss keine Neutralisierung von zukünftigen Zinszahlungen erfolgen. In
der folgenden Tabelle sind die Zahlungen nochmals dargestellt.

Tabelle 9.3: Barwert einer einjährigen Nullkuponanleihe
Jahr Zahlungen Saldo

0 − 1
1.05 −0.9524

1 1 1

Die Rendite einer einjährigen Nullkuponanleihe beträgt somit

i1 =
1

0.9524
− 1 = 0.05

Bei der Diskontierung einer Zahlung aus dem zweiten Jahr muss eine Zinszah-
lung von 0.055

1.055 e im ersten Jahr neutralisiert werden. Die folgende Tabelle zeigt die
Zahlungen.

Tabelle 9.4: Barwert einer zweijährigen Nullkuponanleihe
Jahr Zahlungen Saldo

0 1

0 − 1
1.055

0.055
1.055

1
1.05 −0.8982

1 0.055
1.055 − 0.055

1.055 0
2 1 1

Der Barwert der Zinsen 0.055
1.055

1
1.05 ist vom Barwert 1

1.055 abzuziehen.

CNullkupon2 =
1

1.055
− 0.055

1.055
1

1.05
= 0.8982

Die Rendite einer zweijährigen Nullkuponanleihe beträgt folglich:

i2 =
(

1
0.8982

) 1
2
−1 = 0.05514

Im dritten Jahr sind die Zinszahlungen aus dem ersten und zweiten Jahr zu neu-
tralisieren.
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Tabelle 9.5: Barwert einer dreijährigen Nullkuponanleihe
Jahr Zahlungen Saldo

0 1 2

0 − 1
1.06

0.06
1.06

1
1.055

0.06
1.06

1
1.055

1
1.05 −0.8386

1 0.06
1.06 − 0.06

1.06 0
2 0.06

1.06 − 0.06
1.06 0

3 1 1

Die Rendite einer dreijährigen Nullkuponanleihe beträgt somit:

i3 =
(

1
0.8386

) 1
3
− 1 = 0.0604

Die Barwerte der vier- und fünfjährigen Nullkuponanleihen berechnen sich äqui-
valent.

CNullkupon4 =
1

1.065
− 0.065

1.065
1

1.06
− 0.065

1.065
1

1.06
1

1.055

− 0.065
1.065

1
1.06

1
1.055

1
1.05

= 0.7748

CNullkupon5 =
1

1.07
− 0.07

1.07
1

1.065
− 0.07

1.07
1

1.065
1

1.055

− 0.07
1.07

1
1.065

1
1.06

1
1.055

− 0.07
1.07

1
1.065

1
1.06

1
1.055

1
1.05

= 0.7079

☼

Aus der obigen Überlegung lässt sich eine Formel zur Berechnung der Nullku-
ponbarwerte ableiten. Der zweite Teil der Formel ist rekursiv anzuwenden.

CNullkuponn =

{
1
q1

für n= 1
1
qn −

in
qn
∑n−1
t=1

∏n−1
t=t

1
qt für n= 2,3, . . .

Diese Art der Berechnung wird als Duplizieren von Zahlungsströmen oder boot-
strapping7 bezeichnet. Die Nullkuponrenditen sind dann:

in =
(

1
CNullkuponn

) 1
n
− 1 für n= 1,2, . . .

In der folgenden Tabelle sind die Nullkuponrenditen zusammengefasst. Diese
werden im zweiten Schritt benötigt, um die Barwerte der Anlagen, in unserem Fall
eines Wertpapiers, zu berechnen.

7 Dieses bootstrapping ist nicht mit dem gleichnamigen Verfahren aus der Statistik zu ver-
wechseln.



9.7 Kurs- und Renditeberechnung eines Wertpapiers 199

Tabelle 9.6: Nullkuponrenditen (Kassazinssätze)
t 1 2 3 4 5

it 0.050 0.0551 0.0604 0.0658 0.0715

Im zweiten Schritt wird der Zahlungsstrom einer Anlage mit den Kassazinssätzen
diskontiert.

C0 =

n∑
t=1

r
(1+ it)t

+
K0

(1+ in)n

Beispiel 9.39. Für das Wertpapier mit dem Zahlungsstrom aus Beispiel 9.36 liegt
dann folgender Barwert vor:

C0 =
5.25
1.05

+
5.25

1.05512 +
5.25

1.06043 +
5.25

1.06584 +
105.25
1.07155 = 92.70e

☼

9.7.6 Berechnung von Nullkuponrenditen mit Scilab

In Scilab kann die Berechnung der Nullkuponrenditen einfach umgesetzt werden.
Die folgenden Anweisungen berechnen die Werte der Tabelle 9.6.

// Renditestruktur
p = [.05 .055 .06 .065 .07];
n = length(p);

// Barwertfaktoren = cc
c = (1+p)^(-1);
cc = 0; cc(1) = c(1);
for j = 2:n
cc(j) = c(j)-p(j)*c(j)...

*sum(cumprod(c((j-1):(-1):1)));
end

// Nullkuponrenditen = i
qq = 0; qq(1) = c(1)^(-1);
for j = 2:n

qq(j) = cc(j)^(-1/j);
end
i = qq - 1;

Die Berechnung des Barwerts mit den Nullkuponrenditen wird mit den folgenden
Anweisungen durchgeführt.
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// Zahlungsströme = cf
cf = [5.25 5.25 5.25 5.25 105.25];

// Barwert = pv
pv = sum(cf.*cc’);

Übung 9.6. Berechnen Sie für die Nullkuponrenditen (Kassazinssätze) für folgen-
de Renditestruktur von Kuponanleihen:

t 1 2 3 4 5

i∗t 0.07 0.065 0.06 0.055 0.05

9.7.7 Duration

Die Duration wird auch durchschnittliche Kapitalbindungsdauer oder durch-
schnittliche Laufzeit genannt. Die Bezeichnung «durchschnittlich» weist auf eine
Berechnungsweise hin. Es handelt sich hier um ein gewogenes arithmetisches Mit-
tel, das die diskontierten Zahlungen Zt mit den Zahlungszeitpunkten t gewichtet und
mit dem Barwert der Zahlungen mittelt. Mit D wird die Duration nach Macaulay
bezeichnet, die in Jahren gemessen wird.

D=

∑n
t=1 t Zt q−t∑n
t=1 Zt q−t

(9.27)

Die Zahlungen Zt sind bei Wertpapieren die Kuponzahlungen rnach und die Rück-
zahlung des Nennbetrags K0.

[Zt ] = rnach, . . . ,rnach︸ ︷︷ ︸
n− 1-mal

,K0 + rnach

Beispiel 9.40. Die Zahlungsfolge für das Wertpapier in Beispiel 9.32 ist

[Zt ] = 6, . . . ,6︸ ︷︷ ︸
9-mal

,106

und damit beträgt die Duration bei einem Marktzinssatz von 5 Prozent

D0.05 =

∑10
t=1 t Zt 1.05−t∑10
t=1 Zt 1.05−t

=
850.1560
107.7217

= 7.8921 Jahre

7.8921 Jahre beträgt der Zeitraum, in dem sich Marktzinsänderungen (etwa) aus-
geglichen haben. Es ist die (durchschnittliche) Bindungsdauer des Kapitals, die be-
nötigt wird, um einen gewünschten Kapitalbetrag CD zum Zeitpunkt D zu erhalten,
unter Berücksichtigung möglicher Marktzinsänderungen (siehe Abb. 9.10).

CD =C0 qD = 107.7217× 1.057.8921 = 158.32

☼
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Beispiel 9.41. Für das Wertpapier aus Beispiel 9.32 bzw. 9.40 kann zu den Zeitpunk-
ten t der jeweilige Barwert berechnet werden. Der Wert der Anleihe zum Zeitpunkt
t beträgt:

Ct(q) =
n∑
k=1

Zk q(t−k) für 0 ≤ t ≤ n

Trägt man diese in einem Koordinatensystem
(
t,Ct(q)

)
ab, so erhält man den

Barwertverlauf über die Laufzeit. Unterstellt man eine Marktzinsänderung, so lässt
sich der neue Barwertverlauf darstellen. In Abb. 9.10 ist dies geschehen. Man er-
kennt, dass sich die Barwertkurven in etwa im Zeitpunkt der Duration schneiden.
Da es sich um eine näherungsweise Berechnung handelt, schneiden sich die Kurven
nicht exakt zum Zeitpunkt D.

D0.04 = 7.9805 D0.05 = 7.8921 D0.06 = 7.8016

Wird das Wertpapier also bis zur Duration gehalten, so ist der Anleger gegenüber
Zinsänderungsrisiken immun.
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Abb. 9.10: Barwertverlauf und Duration

☼

Die Duration wird zur Beurteilung der Zinssensitivität einer Anleihe eingesetzt.
Diese Interpretation ergibt sich aufgrund der Herleitung der Duration aus der er-
sten Ableitung der Barwertfunktion. Die Zinselastizität ist die Barwertänderung, die
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durch eine Zinsänderung verursacht wird. Ein zero bond (mit nur einer einzigen Zah-
lung zum Laufzeitende) besitzt eine größere Zinsempfindlichkeit als eine Anleihe
gleicher Laufzeit, bei der jährlich Kuponzahlungen geleistet werden. Dies liegt dar-
an, dass bei einer Nullkuponanleihe der gesamte Zinsertrag mit der n-ten Potenz des
Diskontierungsfaktors erfasst wird. Eine Zinssatzänderung wirkt sich daher stärker
aus, als bei einer Kuponanleihe, bei der die Zinszahlungen periodisch diskontiert
werden. Bei einer Nullkuponanleihe ist die Duration gleich der Laufzeit der Anlei-
he, weil Zt = 0 für t < n gilt. Für eine Kuponanleihe ist die Duration hingegen immer
kleiner als die Laufzeit der Anleihe: D< n.

Neben der Laufzeit einer Anleihe ist somit auch das zeitliche Anfallen der Zah-
lungen von Bedeutung. Die Duration verknüpft diese beiden Komponenten. Sie ge-
wichtet den jeweiligen Zahlungszeitpunkt mit dem relativen Beitrag zum Barwert.
Eine höhere Duration lässt auf eine tendenziell höhere Zinssensitivität schließen. Die
Duration ist umso höher, je niedriger der Kupon ist. Für den Extremfall der Nullku-
ponanleihe gilt, dass die Duration mit der Restlaufzeit der Anleihe übereinstimmt.

Auch bei diesen Überlegungen wird eine flache Zinsstruktur über die Laufzeit
und eine Wiederanlage der Erträge zum Zinssatz i angenommen. Ferner wird nur
eine einmalige Zinssatzänderung zum Zeitpunkt t = 0 unterstellt.

Eine formale Herleitung der Duration ergibt sich aus der ersten Ableitung (Ablei-
tungen werden in Kapitel 10 erklärt) der BarwertfunktionC0(q) nach q. Sie eröffnet
dann auch die Anwendung der Duration zur Berechnung einer Barwertänderung in-
folge einer Zinsänderung.

C0(q) =
n∑
t=1
Zt q−t

C′
0(q) =

dC0
dq

=−1
q

n∑
t=1

t Zt q−t (9.28)

Als Duration wird nun die relative Änderung

D=−
dC0
dq
C0
q

=−C
′
0(q)
C̄0(q)

bezeichnet. Durch Einsetzen der Definition (9.27) in (9.28) wird das gleiche Ergebnis
geliefert:

C′
0(q) =−C0(q)D

q
⇒ D=−

dC0
dq
C0
q

(9.29)

Es handelt sich um die Zinssatzelastizität des Barwerts (siehe Kapitel 10.8.6
zum Begriff der Elastizität). Ändert sich qmarginal, so ändert sich der Barwert umD
Prozent. Diese Aussage gilt aber nur für marginale Änderungen von q. Die Duration
kann also auch zur Berechnung einer Barwertänderung eingesetzt werden.
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dC0(q) =−C0(q)
D
q

dq

=−C0(q)MDdq mit MD=
D
q

Das Verhältnis D
q wird mit MD bezeichnet und modifizierte Duration genannt. In

der Praxis ersetzt man das Differential durch die Differenz.

ΔC0(q)≈C0(q+Δq)−C0(q)
≈−C0(q)MDΔq

(9.30)

Zur Berechnung der relativen Barwertänderung muss die Differenz in (9.30)
durchC0(q) geteilt werden.

ΔC0(q)
C0(q)

≈−ΔqMD

Beispiel 9.42. Für das Wertpapier aus dem Beispiel 9.32 mit der Berechnung der
Duration in Beispiel 9.40 berechnet sich folgende modifizierte Duration:

MD=
7.8921
1.05

= 7.5162

Bei einer Erhöhung des Marktzinssatzes um Δq = 0.01 erfolgt etwa eine Bar-
wertänderung des Wertpapiers in Höhe von

ΔC0(1.05+ 0.01)≈−0.01× 107.72×7.5162≈−8.0967e

bzw. eine relative Barwertänderung in Höhe von

ΔC0(q+Δq)
C0(q)

≈−0.01× 7.5162≈−7.5162 Prozent

Aus der Kursberechnung in Beispiel 9.32 berechnet sich eine genaue Barwertän-
derung in Höhe von −7.72173e bzw. −7.71682 Prozent . Die modifizierte Duration
ist ein Maß für die Abschätzung der Kursänderung (Marktwertrisiko) festverzinsli-
cher Wertpapiere. ☼

9.7.8 Berechnung der Duration mit Scilab

In Scilab kann die Duration wie folgt berechnet werden:

q=1.05 // Marktzinssatz
K0=100 // Rückzahlung
p=0.06 // Kuponsatz
n=10 // Zeitraum in Jahren

Z=[ones(1,n-1).*K0*p,K0*(1+p)] // Zahlungsreihe
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t=1:n

GBW=sum(Z.*t./q^t) // gewichteter Barwert
BW=sum(Z./q^t) // Barwert
D=GBW/BW // Duration

C_D=BW*q^D // Barwert zum Zeitpunkt D

MD=D/q // modifizierte Duration

dq=0.01 // Änderung des Marktzinssatzes
-dq*MD // relative Barwertänderung mit MD
-dq*BW*MD // absolute Barwertänderung mit MD

Übung 9.7. Berechnen Sie für die angegebenen Wertpapiere (Nennwert 100e) den
Barwert, die Duration und über die Modified Duration die Barwertänderung. Gehen
Sie bei der Berechnung von einem Marktzinssatz von 7 Prozent p. a. und einer
Marktzinserhöhung von 2 Prozentpunkten aus.

Wertpapier 1 2 3

Laufzeit in Jahren 2 3 4
Kupon 7% 12% 5%

9.8 Annuitätenrechnung

Die Annuitätenrechnung unterstellt eine Kreditbeziehung. Der Schuldner nimmt zum
Zeitpunkt t = 0 einen Kredit in Höhe von K0 auf und zahlt diesen an den Gläubiger
in n gleichen Raten zurück. Die gleich hohen Raten werden Annuität A genannt.
Sie werden nicht mehr als Rente bezeichnet, da sie sich aus Zinsen und Tilgung
zusammensetzen.

A A A A

Schuldner-
⏐
⏐
�leistung

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

0
(T1+Z1)q−1

−−−−−−−→
1. Periode

1
(T2+Z2)q−2

−−−−−−−→
2. Periode

2
(T3+Z3)q−3

−−−−−−−→
3. Periode

· · ·n−1
(Tn+Zn)q−n−−−−−−−→
n-te Periode

n

Gläubiger-
�
⏐⏐leistung

K0

Abb. 9.11: Struktur eines Annuitätendarlehens
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9.8.1 Annuität

Die Annuität (rate of repayment) A ist eine regelmäßige Zahlung, die sich aus
Tilgungs- und Zinsrate zusammensetzt.

A= Tt +Zt = konstant t = 1, . . .n

Tt bezeichnet die Tilgungsrate und Zt die Zinsrate der Periode t. Die Annuität ist
dem Wortsinn nach eine jährliche Rate (lat. annus = Jahr). Heute wird der Begriff
Annuität jedoch auch auf unterjährige regelmäßige Zahlungen angewendet.

Zur Berechnung der Annuität wird das Äquivalenzprinzip angewendet. Hierbei
werden – bei gegebenem Zinssatz – die Leistungen des Gläubigers den Leistungen
des Schuldners gegenübergestellt. Alle Zahlungen sind dabei auf den Gegenwarts-
wert zu diskontieren (Barwertprinzip). In der nun folgenden Äquivalenz beträgt die
Leistung des GläubigersK0. Die Leistung des Schuldners entspricht dem Barwert der
gezahlten Annuitäten (A= rnach).

K0
!
= A

1
qn
qn−1
q−1

(9.31)

Der Barwert einer nachschüssigen Rente ist gleichzusetzen der Schuld K0. Kre-
ditrückzahlungen sind nachschüssige Rentenzahlungen, da die Annuitätenzahlung
auf die vorherige Periode t− 1 bezogen ist. Dies wird aus dem Tilgungsplan (siehe
Tabelle 9.7) deutlich. Durch Auflösen der Gleichung (9.31) nach A erhält man die
gesuchte Formel.

A= K0 qn
q− 1
qn−1

(9.32)

Beispiel 9.43. Ein Kredit in Höhe von K0 = 1 000e soll in gleichen Raten über n=
10 Jahre zurückgezahlt werden. Der Kreditzinssatz beträgt i= 6 Prozent.

A= 1000×1.0610 1.06− 1
1.0610 − 1

= 135.87e / Jahr

Die Annuität beträgt 135.87e pro Jahr. ☼

In der Praxis wird häufig eine monatliche Annuität zur Rückführung der Kre-
ditschuld vereinbart. Diese lässt sich zum einen mit dem konformen Monatszinssatz
berechnen (exakte Rechnung) oder mit einer einfachen Verzinsung binnen Jahres-
frist.

Beispiel 9.44. Für den Kredit in Beispiel 9.43 wird nun nach den verschiedenen Be-
rechnungsverfahren eine monatliche Annuität ermittelt.

1. Die Berechnung der Annuität mit dem konformen Monatszinssatz entspricht
der ISMA-Methode und sieht wie folgt aus:

ikon12 =
12√1.06− 1 = 0.0048676
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A12 = 1000×
(

12√1.06
)120 12√1.06−1(

12√1.06
)120

−1

= 1000× 1.0610
12√1.06−1
1.0610 −1

= 11.022e / Monat

Die monatliche Annuität beträgt etwa 11.02e.
2. Die Berechnung der Annuität mit dem relativen Zinssatz entspricht der US-
Methode und führt zu folgendem Ergebnis:

irel12 =
0.06
12

= 0.005

A12 = 1000×1.005120 1.005− 1
1.005120−1

= 11.10e / Monat

Der effektive Jahreszinssatz beträgt:

ieff = 1.00512 − 1 = 0.061678⇒ 6.1678 Prozent

Beachten Sie, dass i. d. R. ein Äquivalenzansatz zur Berechnung des effektiven
Zinssatzes notwendig ist (siehe Kapitel 9.8.7). Im vorliegenden Fall ist er:

1000 !
= 11.10

1
qn
qn−1
q− 1

n ist besitzt den Wert 120 (Monate). q wird über ein Nullstellenproblem be-
rechnet und beinhaltet den effektiven Monatszinssatz (q= 1.005).

3. Die Praktikerformel mit der einfachen Verzinsung binnen Jahresfrist leitet sich
aus der Gleichung (9.8) ab, die nach r umgestellt wird. Der monatlichen Rate
r in der Gleichung (9.8) entspricht hier die monatliche Annuität A12 und der
Rentenendwert R der jährlichen Annuität A.

A12 =
A

12+ 5.5 i
=

135.87
12+ 5.5×0.06

= 11.019e / Monat

Die monatliche Annuität beträgt etwa 11.02e. Man erkennt aber, dass sich die
Zahlen nicht exakt gleichen. Aufgrund des fehlenden Zinseszinseffekts fällt
die gleichmäßige Aufteilung in Monatsraten etwas niedriger aus. ☼

9.8.2 Restschuld

Aus der Gleichung (9.31) lässt sich dieRestschuld (outstanding balance) berechnen.
Die SchuldK0 wird über t Perioden zum Zinssatz i angelegt. Hiervon ist der Endwert
der Zahlungen in Höhe von A, welche bis zum Zeitpunkt t aufgelaufen sind, abzu-
ziehen. Die Differenz ist die Restschuld Kt zum Periodenende 0 ≤ t ≤ n. Für Kn = 0
ergibt sich die Gleichung (9.31).
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Kt = K0 qt −A q
t − 1
q− 1

für 0 ≤ t ≤ n (9.33)

= K0
qn− qt
qn− 1

(9.34)

Zum Zeitpunkt t = n (Kn = 0) entspricht der Betrag K0 qn dem Endwert der wie-
der angelegten Zahlungen in Höhe von A (Äquivalenzprinzip). Dies ist die Voraus-
setzung, damit ein Betrag K0 verliehen wird. Die Gleichung (9.34) erhält man, wenn
die Annuität A durch die Formel (9.32) ersetzt wird.

Beispiel 9.45. Die Restschuld des Kredits in Beispiel 9.43 beträgt am Ende des 2.
Jahres (siehe Tabelle 9.7)

K2 = 1000×1.062−135.87
1.062−1
1.06−1

= 1000
1.0610 −1.062

1.0610 −1
= 843.71e

☼

9.8.3 Tilgungsrate

DieTilgungsrate (rate of redemption, principal repayment) Tt zum Ende der Periode
kann aus A= Tt +Zt errechnet werden.

Tt = A−Zt
Für t = 1 erhält man:

T1 = A−Z1 Z1 = K0 i
T1 = A−K0 i

Für t = 2 erhält man:

T2 = A−Z2 Z2 = K1 i K1 = K0 −T1

T2 ist folglich:

T2 = A−K1 i= A−
(
K0 −T1

)
i= A−K0 i+T1 i= T1 q

Die folgenden Tilgungsraten erhält man auf gleichem Weg. Die allgemeine Glei-
chung ist

Tt = Tt−1 q= T1 qt−1 für 1 ≤ t ≤ n (9.35)

Beispiel 9.46. Die Tilgungsrate in der 2. Periode beträgt:

T2 = T1 × 1.061 =
(
135.87− 1000×0.06

)×1.06 = 80.42

☼
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9.8.4 Tilgungsplan

Ein Tilgungsplan (redemption plan) ist eine tabellarische Aufstellung der geplanten
Rückzahlungen eines Kreditbetrags.

Beispiel 9.47. Der Tilgungsplan für den Kredit aus Beispiel 9.43 ist in Tabelle 9.7
wiedergegeben. Die Zinsen Zt im Tilgungsplan lassen sich leicht aus der Restschuld
zum Periodenende berechnen:

Zt = Kt−1 i für 1 ≤ t ≤ n

Die Restschuld Kt ist aus der Differenz von Restschuld und Periodenende und
Tilgung zu berechnen.

Kt = Kt−1 −Tt für 1 ≤ t ≤ n

☼

Tabelle 9.7: Tilgungsplan für Annuitätenkredit aus Beispiel 9.43
Jahr Restschuld zum Zinsen Tilgung Annuität

Periodenende
t Kt Zt Tt A

0 1000.00 – – –
1 924.13 60.00 75.87 135.87
2 843.71 55.45 80.42 135.87
3 758.47 50.62 85.25 135.87
4 668.11 45.51 90.36 135.87
5 572.33 40.09 95.78 135.87
6 470.80 34.34 101.53 135.87
7 363.18 28.25 107.62 135.87
8 249.10 21.79 114.08 135.87
9 128.18 14.95 120.92 135.87

10 0.00 7.69 128.18 135.87
∑

5977.99 358.68 1000.00 –

Häufig wird die Annuität auf einen ganzen Eurobetrag aufgerundet, der dann
über n−1 Perioden zu zahlen ist.

�A�=
⌈
K0 qn

q− 1
qn− 1

⌉

Für die letzte Rate ergibt sich dann ein geringerer Betrag, der als Schlussrate
bezeichnet wird. Diese kann aus der verzinsten Restschuld (siehe Gleichung (9.33))
berechnet werden.



9.8 Annuitätenrechnung 209

Schlussrate=
(
K0 qn−1 −�A� q

n−1 −1
q−1

)
q

= K0 qn−�A� q
n−q
q−1

Beispiel 9.48. In Beispiel 9.43 würde sich dann eine aufgerundete Annuität von

�135.87�= 136e

ergeben. Die Schlussrate beträgt dann

Schlussrate= 1000× 1.0610−136× 1.0610−1.06
1.06−1

= 134.26e

☼

9.8.5 Berechnung eines Tilgungsplans mit Scilab

In Scilab kann der Tilgungsplan 9.7 wie folgt berechnet und ausgegeben werden.

i=0.06 // Zinssatz
K0=1000 // Kreditbetrag
n=10 // Jahre

q=1+i // Zinsfaktor
A=K0*q^n*(q-1)/(q^n-1) // Annuität

t=0:n
Kt=K0*q^t-A*(q^t-1)/(q-1) // Restkapital
Tt=A-Kt(1:n)*i // Tilgungszahlungen
Zt=Kt(1:n)*i // Zinszahlungen

// Tilgungsplan
TP=[t;Kt;[0,Zt];[0,Tt];[0,ones(1,n)*A]]’
// Ausgabe
[[’t’;’Restschuld’;’Zins’;’Tilgung’;’Annuität’]’;...

string(TP)]

// Tilgungsplan mit Schlussrate
Astar=ceil(A) // aufgrundetes Annuität
Aschluss=K0*q^n-Astar*(q^n-q)/(q-1) // Schlussrate

tstar=0:(n-1)
Ktstar=K0*q^tstar-Astar*(q^tstar-1)/(q-1)
Ttstar=Astar-Ktstar(1:(n-1))*i
Ztstar=Ktstar(1:(n-1))*i
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Tschluss=Aschluss-Ktstar(n)*i // Schlusstilgung
Zschluss=Ktstar(n)*i // Schlusszins
Kschluss=Ktstar(n)-Tschluss // Schlussschuld

Ktneu=[Ktstar,clean(Kschluss)]
Ttneu=[Ttstar,Tschluss]
Ztneu=[Ztstar,Zschluss]
Aneu=[ones(1,(n-1))*Astar,Aschluss]

// Tilgungsplan
TPneu=[t;Ktneu;[0,Ztneu];[0,Ttneu];[0,Aneu]]’
// Ausgabe
[[’t’;’Restschuld’;’Zins’;’Tilgung’;’Annuität’]’;...

string(TPneu)]

9.8.6 Anfänglicher Tilgungssatz

Der anfängliche Tilgungssatz pTilgung1 ist das Verhältnis von der Tilgung der ersten
Periode zum Kreditbetrag. Mit Hilfe des anfänglichen Tilgungssatzes kann die An-
nuität bestimmt werden.

pTilgung1 =
T1

K0

A= K0 (i+ p
Tilgung
1 )

Man kann die weiteren Tilgungssätze pTilgungt natürlich ebenso berechnen.

pTilgungt =
Tt
Kt−1

für 1 ≤ t ≤ n

Es gilt stets
A= Kt−1 (i+ pTilgungt )

Beispiel 9.49. Die Tilgungssätze im Kreditbeispiel 9.47 lassen sich durch Division
der Tilgung zur Restschuld aus dem Tilgungsplan (siehe Tabelle 9.7) berechnen. Das
Ergebnis der Division steht in Tabelle 9.8. Der anfängliche Tilgungssatz beträgt hier
7.59 Prozent. Aus dem Zinssatz und dem anfänglichen Tilgungssatz, wie sie häu-
fig in (Hypoteken-) Kreditverträgen angegeben sind, kann man leicht die Annuität
berechnen.

A= 1000(0.06+0.0759)= 135.87e / Jahr

☼

Alternativ kann man den Tilgungssatz auch aus dem folgenden Ansatz gewinnen:
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Tabelle 9.8: Tilgungssätze zum Kreditbeispiel 9.47
1 2 3 4 5 6 7 8 9 10

7.59% 8.70% 10.10% 11.91% 14.34% 17.74% 22.86% 31.41% 48.54% 100.00%

Kt−1 (i+ pTilgungt )
!
= Kt−1 qn−t+1 q−1

qn−t+1 −1︸ ︷︷ ︸
A

Auflösen der Gleichung nach pTilgungt liefert:

pTilgungt = qn−t+1 q−1
qn−t+1 −1

− i (9.36)

Beispiel 9.50. Für t = 1 ergibt sich nach Gleichung (9.36) mit den Angaben aus dem
Kreditbeispiel 9.47 der anfängliche Tilgungssatz:

pTilgung1 = 1.0610 1.06−1
1.0610 − 1

−0.06 = 0.07586

☼

Mit einem gegebenen anfänglichen Tilgungssatz und einem effektiven Zinssatz
kann durch Umstellen der Gleichung (9.36) die Laufzeit n des Kredits bestimmt
werden. Für t = 1 ergibt sich:

n=
ln
(

1+ i
pTilgung1

)
lnq

(9.37)

Beispiel 9.51. Wird der anfängliche Tilgungssatz auf 10 Prozent erhöht, so reduziert
sich für den Kredit in Beispiel 9.47 die Laufzeit auf

n=
ln
(
1+ 0.06

0.1
)

ln1.06
= 8.0661 Jahre

Bei dieser Laufzeit erhöht sich die Annuität auf
A= 1000× (0.06+ 0.1)

= 1000× 1.068.0661× 1.06−1
1.068.0661−1

= 160e / Jahr.

☼

Interessant ist bei der Formel (9.37), dass bei einer Erhöhung/Reduzierung des
Zinssatzes die Kreditlaufzeit ab-/zunimmt. Dieser Effekt kommt zustande, weil
die Tilgungsraten aufgrund des stärkeren/schwächeren Zinseszinseffekts in Formel
(9.35) stärker/langsamer steigen.

Beispiel 9.52. Fällt der Zinssatz von 6 auf 5 Prozent in Beispiel 9.51, erhöht sich die
Kreditlaufzeit von 8.0661 Jahre auf 8.3103 Jahre. ☼
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9.8.7 Effektiver Kreditzinssatz

Die Berechnung des effektiven Jahreszinses wird durch das BGB §492 Abs. 2 fest-
gelegt.

Effektiver Jahreszins ist die in einem Prozentsatz des Nettodarlehensbe-
trags anzugebende Gesamtbelastung pro Jahr. Die Berechnung des ef-
fektiven und des anfänglichen effektiven Jahreszinses richtet sich nach
§6 der Verordnung zur Regelung der Preisangaben.

In der praktischen Situation der Kreditvergabe kommen Gebühren, Zuschläge
und andere Kreditzinssatz verändernde Vereinbarungen vor. In diesen Fällen weicht
die angegebene Nominalverzinsung von dem tatsächlichen effektiven Zinssatz ab.
Häufig wird dann vom anfänglichen effektiven Kreditzinssatz gesprochen. Dies ist
dann der Fall, wenn die Kreditlaufzeit länger als die Zinsbindung ist. Die Berech-
nung der Effektivverzinsung erfolgt stets mittels des Äquivalenzprinzips. Im einfach-
sten Fall wird der unterjährige Zinssatz als relativer Zinssatz berechnet. Dann fallen
der Nominalzinssatz und der effektive Zinssatz auseinander. In komplizierteren Fäl-
len müssen Gebühren usw. eingerechnet werden. Dann ist der effektive Zinssatz für
einen Kredit wie bei der Rentenrechnung mittels eines Nullstellenproblems zu be-
rechnen. Hierzu ein Beispiel.

Beispiel 9.53. Angenommen im Beispiel 9.43 wird der Kredit zusätzlich mit einer
einmaligen Gebühr (auch als Disagio, Damnum, Abgeld bezeichnet) von 2 Prozent
auf den Kreditbetrag belegt. Dieser Betrag wird annuitätisch bezahlt. Dies bedeutet,
dass er über den Zeitraum von 10 Jahren in gleichen Raten bezahlt wird. Wie hoch
ist der Effektivzinssatz? Er muss jetzt mehr als 6 Prozent betragen.

Um einen Kredit mit einer Auszahlungssumme in Höhe von 1 000e zu erhalten,
muss eine Summe von

1000 !
= K∗

0 −0.02K∗
0 = 0.98K∗

0 ⇒ K∗
0 =

1000
0.98

= 1 020.41e

aufgenommen werden. Die Annuität des Kredits beträgt damit

A∗ =
1000
0.98

1.0610 1.06− 1
1.0610 − 1

= 138.64e / Jahr (9.38)

Aus der Differenz der Annuitäten kann nun einfach die entsprechende jährliche
Kreditgebühr berechnet werden, die mit dem Disagio verbunden ist.

rnach = A∗ −A
= 138.64− 135.87

= 1000
(

1
0.98

−1
)

1.0610 1.06− 1
1.0610 −1

= 20.41×1.0610 1.06− 1
1.0610 − 1

= 2.77e / Jahr
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Der Barwert der periodischen Gebühr wird als «up-front fee» bezeichnet.

Rnach0 = 1000
(

1
0.98

− 1
)

= 2.77
1

1.0610
1.0610 − 1
1.06− 1

= 20.41e

Nachdem das Disagio in eine absolute periodische und einmalige Gebühr umge-
rechnet wurde, wird nun mit Hilfe des Äquivalenzprinzips der effektive Kreditzins-
satz bestimmt, aus dem sich dann der Zinsaufschlag ergibt.

Die Annuität in der Gleichung (9.38) muss einen Kredit mit einem Zinsfaktor
von q ohne Bearbeitungsgebühr tilgen. Die Leistung des Gläubigers muss der des
Schuldners entsprechen (Äquivalenzprinzip).

1000 !
= 138.64

1
q10

q10 −1
q−1︸ ︷︷ ︸

Barwert nachschüssige Rente

(9.39)

Man kann die Äquivalenz auch aus der Restschuldformel (9.33) herleiten. Das

0 !
= 1000q10−138.64

q10 −1
q− 1

(9.40)

Als weitere Möglichkeit, die Äquivalenz zwischen den Leistungen des Gläubi-
gers und denen des Schuldners herzustellen, kann man auch folgende Ansätze wäh-
len:

1000×0.98 !
= 135.87

1
q10

q10 −1
q−1

(9.41)

1000 !
= 135.87

1
q10

q10 −1
q−1

+20 (9.42)

In der Gleichung (9.41) wird von einem Auszahlungsbetrag in Höhe von 980e
(1000× 0.98) ausgegangen. Die Schuldnerleistung entspricht dem Barwert der An-
nuitäten mit dem Betrag von 1 000e. In der Gleichung (9.42) wird die Leistung des
Gläubigers (1 000e) den Leistungen des Schuldners (Barwert der Annuitätenraten
plus den 2 Prozent Bearbeitungsgebühr vom Kreditbetrag) gleichgesetzt. Die Umfor-
mung der Gleichungen (9.39), (9.40), (9.41) bzw. (9.42) führen alle zu dem gleichen
Nullstellenproblem.

q11 −
(

1+
138.64
1000

)
q10 +

138.64
1000

!
= 0

Das Programm Scilab liefert einen Effektivzinssatz von 6.428 Prozent p. a. Da-
mit ist der Kredit zu 6 Prozent p. a. Nominalzinssatz plus Gebühr von 2 Prozent
genauso teuer wie ein Kredit zu einem Zinssatz von 6.428 Prozent p. a. jedoch oh-
ne Gebühr. Die Gebühr in Höhe von 2 Prozent des Kreditbetrags entspricht einem
Zinsaufschlag in Höhe von 0.428 Prozent p. a. ☼

heißt die Restschuld muss nach 10 Jahren ull Euro betragenn
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Bei einer unterjährigen Verzinsung eines Kredits wird ein Effektivzinssatz an-
gegeben, wenn der unterjährige Zinssatz als relativer Zinssatz berechnet wird (siehe
hierzu Beispiel 9.44). In folgendem Beispiel wird der Effektivzinssatz für einen Kre-
dit berechnet, der mit einer monatlichen relativen Verzinsung bedient wird und mit
einer einmaligen Gebühr belastet ist.

Beispiel 9.54. Die Kreditsumme beträgt 1000e und wird monatlich bedient. Es wird
von einem Nominalkreditzinssatz von 6 Prozent p. a., 5e Gebühr und einer Til-
gungszeit von 5 Jahren ausgegangen. Als Erstes ist die monatliche Annuität mit dem
relativen Monatszinssatz zu berechnen.

qrel = 1+
0.06
12

= 1.005

A= 1000× 1.00560× 1.005−1
1.00560− 1

= 19.3328e / Monat

Mit dieser Annuität kann nun der Äquivalenzansatz aufgestellt werden.

1000 !
= 19.3328

1
q60
q60 −1
q−1

+5

Das i bzw. q, das die Gleichung erfüllt, ist der effektive Kreditzinssatz. Die Berech-
nung von q erfolgt wieder über ein Nullstellenproblem.

995q61− 1014.3328q60+ 19.3328 !
= 0

Die Lösung mit Scilab liefert den effektiven monatlichen Kreditzinssatz von 0.51738
Prozent, der einem effektiven Jahreszinssatz von 6.38836 Prozent entspricht. ☼

Beispiel 9.55. Der Kredit aus Beispiel 9.43 wird nun mit 2 tilgungsfreien Jahren an-
geboten. Wie hoch ist dann der effektive Kreditzinssatz? Die Annuität tilgt den Kre-
dit wieder in 10 Jahren. Jedoch wird in den ersten beiden Jahren lediglich der Zins in
Höhe von 60e gezahlt. Die Tilgung verschiebt sich um 2 Jahre, so dass insgesamt
der Kredit über 12 Jahre läuft. Die Leistung des Gläubigers ist weiterhin 1 000e.
Die Leistung des Schulders ist der Barwert der Annuität, jedoch um zwei weitere
Jahre diskontiert, da sie erst nach dem 2. Jahr einsetzt, zuzüglich dem Barwert der
Zinszahlungen über die 2 Jahre. Der Äquivalenzansatz ist also folgender:

1000 !
= 135.87

1
q12

q10 − 1
q− 1

+60
1
q2
q2 −1
q−1

(9.43)

1000q13− (1000+ 60)q12− (135.87−60)q10+135.87 !
= 0 (9.44)

Die Verzinsung, die das obige Polynom erfüllt, beträgt 6 Prozent pro Jahr. Die Ver-
zinsung ändert sich durch die tilgungsfreien Jahre nicht. ☼

Im Anhang zu §6 der Preisabgabenverordnung (PAngV) wird der Äquiva-
lenzansatz zur Berechnung des effektiven Jahreszinssatzes genannt.
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n1∑
t=0

Kt
qt︸ ︷︷ ︸

Barwert der Gläubigerleistungen

!
=

n2∑
t=0

Zt
qt︸ ︷︷ ︸

Barwert der Schuldnerleistungen

(9.45)

In der allgemeineren Form der Äquivalenzgleichung wird berücksichtigt, dass
ein Kredit in mehreren Teilbeträgen Kt ausgezahlt werden kann. Mit Zt werden die
Zahlungen des Schuldners bezeichnet. Sie bestehen aus Tilgungs- und Zinsleistun-
gen sowie aus weiteren Kosten. Bei einem Annuitätenkredit sind diese Zahlungen
konstant und werden im Text mit A bezeichnet. n1 und n2 geben die Anzahl der
(Teil-) Perioden an. Um den effektiven Jahreszinssatz zu erhalten, ist bei unterjäh-
rigen Zinsperioden der berechnete Zinsfaktor q mit der Zahl der Teilperioden m zu
potenzieren und in einen Zinssatz umzurechnen8.

Beispiel 9.56. Die Berechnung des effektiven Kreditzinssatzes im Beispiel 9.55 ist
nach der offiziellen Formel (9.45) wie folgt mit n1 = 0,n2 = 12:

1000 !
=

60
q

+
60
q2 +

135.87
q3 + . . .+

135.87
q12 (9.46)

Gleichung (9.43) und Gleichung (9.46) sind identisch. Mit der Anwendung der geo-
metrischen Reihenformel erhält man die gleiche Form. Die Umformulierung als
Nullstellenproblem führt zur Gleichung

1000q12− 60q11− 60q10− 135.87q9− . . .−135.87 !
= 0 (9.47)

Die Gleichung (9.47) besitzt dieselben Nullstellen wie (9.44). Der effektive Jahres-
zinssatz beträgt 6 Prozent. ☼

Beispiel 9.57. Es wird nun angenommen, dass der Kreditbetrag von 1 000e zu zwei
gleichen Teilbeträgen zu den Zeitpunkten t = 0 und t = 1 ausbezahlt wird. Weiterhin
werden 2 tilgungsfreie Jahre sowie eine Rückzahlung mit der Annuität 135.87e
unterstellt. Die Gleichung (9.45) ist dann wie folgt aufzustellen:

500+
500
q

!
=

60
q

+
60
q2 +

135.87
q3 + . . .+

135.87
q12

Die Erweiterung der Gleichung mit q12 führt zum Nullstellenproblem.

500q12+440q11− 60q10−135.87q9− . . .135.87 !
= 0

Eine Berechnung von q setzt wieder ein Rechenprogramm voraus (siehe Kapitel
9.8.8). Der effektive Kreditzinssatz beträgt nun 6.5167818 Prozent pro Jahr. ☼

8 In der PAngV wird der Zeitindex t direkt als Bruch t
m eingesetzt. Dies führt jedoch in

der Berechnung zu Polynomen mit reellen Potenzen, was in der numerischen Berechnung
Schwierigkeiten macht. Die nachträgliche konforme Umrechnung ist praktischer und führt
zum gleichen Ergebnis.
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Beispiel 9.58. Der Kredit in Höhe von 1 000e wird über 120 Monate mit Raten in
Höhe von 10e zurückgeführt. Wie hoch ist der effektive Jahreszinssatz? Der Äqui-
valenzansatz ist

1000 !
=

120∑
t=1

10
qt

1000q120− 10q119− . . .−10 !
= 0

Unter Verwendung des Endwerts der geometrischen Reihe erhält man

1000q121−990q120+10 !
= 0

Die Nullstellen der Gleichungen liefern den Monatszinssatz. Beide Gleichungen be-
sitzen an der Stelle 1.0031142 eine Nullstelle. Dies ist der monatliche Zinsfaktor,
der mit 12 zu potenzieren ist. Dann erhält man den effektiven Jahreszinssatz mit
i= 3.8016951 Prozent (siehe Kapitel 9.8.8). ☼

Zum Abschluss dieses Abschnitts wird im folgenden Beispiel ein Bausparvertrag
analysiert.

Beispiel 9.59. Ein Bausparvertrag besteht aus einer Ansparphase und einer Kredit-
phase. Für die Ansparphase werden folgende Konditionen unterstellt: Der Bausparer
zahlt über nR = 8 Jahre 4 Promille der Bausparsumme B ein. Die Raten werden vor-
schüssig mit 1.5 Prozent verzinst. Die Bausparsumme wird nach 8 Jahren ausgezahlt.
Die Differenz zwischen der Bausparsumme und dem Sparbetrag ist der Bausparkre-
dit. Dieser wird mit Raten in Höhe von 6 Promille der Bausparsumme über nK = 10
Jahre getilgt. Der Bausparkreditzinssatz beträgt 3.75 Prozent.

Ist die Finanzierung mit dem Bausparvertrag günstiger oder schlechter als eine
freie Finanzierung? Es wird unterstellt, dass bei der freien Finanzierung die Sparra-
ten zu besseren Konditionen angelegt werden. Für den Sparvertrag wird ein Zinssatz
von iR= 0.0325 angenommen. Durch die bessere Verzinsung der Raten ist der Rente-
nendwert höher und der Kredit K0, der in acht Jahren aufzunehmen ist, fällt geringer
aus.

In der folgenden Betrachtung wird eine Äquivalenz zwischen dem Kredit K0
und den Leistungen des Bausparers aufgestellt. Die Leistungen des Bausparers sind
zum einen die Sparraten r = 4

1000 B und zum anderen die Annuitäten A = 6
1000 B.

Die Sparleistungen führen mit der Verzinsung iR zum Rentenendwert Rvorn . Bei einer
Bausparsumme von 50 000e beträgt das angesparte Kapital

Rvorn = rqR
qnRR −1
qR−1

= 0.004× 50000× 12√1.0325
1.03258−1
12√1.0325−1

= 21909.08e

Der unterjährige Zinssatz ist konform berechnet. Der Kredit ist die Differenz aus der
Bausparsumme und dem Angesparten.

K0 = B−21909.08= 28090.92e
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Der Kredit wird mit der Annuität A= 0.006×50000= 300e getilgt. Die Äqui-
valenz

K0
!
=
A
qnK

qnK −1
q−1

liefert den effektiven Kreditzinssatz der Bausparkasse. Die Auflösung der Äquiva-
lenz führt zu der bekannten Gleichung

C(q) = K0 qnK (q−1)−A(qnK− 1) !
= 0

= B
(

1−0.004qR
qnRR −1
qR− 1

)
qnK (q− 1)− 0.006B(qnK−1) !

= 0

=

(
1− 0.004qR

qnRR −1
qR− 1

)
qnK (q−1)− 0.006(qnK−1) !

= 0

Die Äquivalenz ist unabhängig von B. Werden die obigen Angaben in die Gleichung
eingesetzt erhält man:

C(q) = 0.561818qnK+1 − (0.561818+ 0.006)qnK+ 0.006 !
= 0

Die Lösung (mit Scilab berechnet) für q ist 1.0042909. Der kritische Jahreszinssatz
beträgt damit 5.27 Prozent. So viel darf der Kredit in 8 Jahren höchstens kosten,
um nicht teurer als die Bausparkasse zu werden. Wenn der Zinssatz in 8 Jahren für
ein Darlehen mit zehnjähriger Zinsbindung darunter liegt, ist die freie Finanzierung
günstiger. Liegen die Zinsen für den Kredit in acht Jahren über 5.27 Prozent, ist das
Angebot der Bausparkasse günstiger.

Fällt (unter sonst gleichen Bedingungen) der Zinssatz für den freien Sparplan,
so fällt auch der kritische Kreditzinssatz. Der Bausparplan wird günstiger. Steigen
hingegen die Sparzinssätze, so wird der Bausparplan unattraktiver.

Zu beachten ist aber, dass die Zinssätze der Bausparkasse zum Zeitpunkt des Ver-
tragsabschlusses vereinbart werden und damit keinen Änderungen mehr während der
Zeit unterliegen. Der vereinbarte Bausparkreditzinssatz ist also ein Terminzinssatz.
Bei der freien Finanzierung ist der Kreditzinssatz erst kurz vor der Kreditaufnahme
im achten Jahr fest und Zinssätze können sich binnen kurzer Zeit stark ändern. ☼

9.8.8 Berechnung des effektiven Kreditzinssatzes mit Scilab

Die Berechnung des effektiven Kreditszinssatzes in Beispiel 9.57 ist mit den folgen-
den Anweisungen erfolgt.

// Berechnung der Annuität
qn = 1.06;
n = 10;
K = 1000;
A = K*q^n*(q-1)/(q^n-1);
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// Aufstellen des Polynoms
C = poly([(-A*ones(1,10)) -60 (K/2)-60 K/2],"q",...

"coeff");

// Nullstelle und Umrechnung auf einen Prozentsatz
qq = roots(C);
i = real(qq(find(imag(qq)==0))) - 1)*100

Der effektive Kreditzinssatz in Beispiel 9.58 wird wie folgt berechnet.

Z = 10;
m = 12;
n = 10;
nm = n*m;
K = 1000;

// 1. Gleichung
p1 = poly([-Z*ones(1,nm) K],"q","coeff");
q1 = roots(p1);
q1 = real(q1(find(imag(q1)==0)));
i1 = (max(q1)^m-1)*100

// 2. Gleichung
p2 = poly([Z zeros(1,nm-1) -(K+Z) K],"q","coeff");
q2 = roots(p2);
q2 = real(q2(find(imag(q2)==0)));
i2 = (max(q2)^m-1)*100

9.8.9 Mittlere Kreditlaufzeit

Die mittlere9 Kreditlaufzeit ist die Kreditlaufzeit, bei der die Hälfte des Kredits ge-
tilgt ist. Sie fällt aufgrund der annuitätischen Rückzahlungsstruktur in die zweite
Hälfte der Kreditlaufzeit (siehe Abb. 9.12). Je höher der Zinssatz ist, desto höher
fällt die mittlere Kreditlaufzeit aus. Man erkennt in Abb. 9.12 auch deutlich, dass
nach der Hälfte der Kreditlaufzeit noch nicht die Hälfte des Kreditbetrags getilgt ist.

Aus dem Ansatz

Kt
!
=
K0
2

mit

Kt = K0 qt −A q
t − 1
q− 1

9 Mit dem Adjektiv «mittlere» wird hier die Zeit bezeichnet, in der 50 Prozent des Kredits
getilgt sind. Man bezeichnet dies auch als Median der Restschuld. Häufig wird damit eine
durchschnittliche Betrachtung angesprochen, die hier nicht gemeint ist.
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Abb. 9.12:Mittlere Restlaufzeiten

erhält man

K0
2

!
= K0 qt(0.5) −A q

t(0.5) − 1
q−1

Auflösen der Gleichung nach t ergibt die gesuchte Beziehung

t(0.5) =
ln
( i

2− A
K0

i− A
K0

)
lnq

Beispiel 9.60. Die mittlere Kreditlaufzeit im Beispiel 9.43 beträgt

t(0.5) =
ln
(

0.06
2 − 135.87

1000
0.06− 135.87

1000

)
ln1.06

= 5.7181 Jahre

☼
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Übung 9.8. Ein Versandhaus gewährt einem Kunden nach Anzahlung von 10 Pro-
zent des Kaufpreises eines Heimkinos für 5 000e einen Verbraucherkredit über
den Restbetrag mit einer Laufzeit von 24 Monaten zu folgenden Konditionen:

• Zinssatz: 0.6 Prozent pro Monat bezogen auf den Anfangskredit
• Bearbeitungsgebühr: 2 Prozent des Kreditbetrags
• Rückzahlung: 24 annuitätische Raten

Beantworten Sie folgende Fragen:

1. Wie hoch ist die monatliche Rate?
2. Wie hoch ist der effektive Kreditzinssatz pro Jahr?

Übung 9.9. Ein Kaufhaus bietet einen Konsumentenkredit zu folgenden Konditio-
nen an:

• 4 Prozent p. a.
• Laufzeit 36 Monate

Das Besondere an einem Konsumentenkredit ist, dass die Tilgungsraten erst am
Ende der Laufzeit verrechnet werden. Berechnen Sie den effektiven jährlichen Kre-
ditzinssatz.

Übung 9.10. Beim Kauf eines Pkws im Wert von 15 000e müssen 20 Prozent an-
gezahlt werden. Der Rest soll in 48 Monatsraten getilgt werden. Auf die Rest-
kaufsumme wird ein Zinssatz von 0.3 Prozent pro Monat vereinbart.
Beantworten Sie folgende Fragen:

1. Wie hoch ist die monatliche Annuität?
2. Wie hoch ist der effektive Jahreszinssatz?

Übung 9.11. Berechnen Sie die vierteljährliche Annuität auf Basis des konformen
vierteljährlichen Zinses für folgenden Kredit:

• Kreditbetrag: 2 Mioe
• Laufzeit: 1 Jahr
• Zinssatz: 7 Prozent p. a.

Beantworten Sie außerdem folgende Fragen:

1. Stellen Sie für den oben beschriebenen Kredit einen Tilgungsplan auf.
2. Berechnen Sie den effektiven Jahreszins des obigen Kredits, wenn eine ein-

malige Kreditabschlussgebühr in Höhe von 0.1 Prozent des Kreditbetrags
fällig wird.
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Übung 9.12. Berechnen Sie für folgenden Bausparvertrag den effektiven Kredit-
zinssatz. Die Bausparsumme beträgt 50 000e. Es werden monatlich 250e über 8
Jahre gespart. Die Raten werden am Monatsanfang gezahlt. Die Raten können in
einem Banksparplan zu 3.25 Prozent angelegt werden. Der Kredit ist mit 300e
monatlich über 8 Jahre zu tilgen.

9.9 Investitionsrechnung

Bei der Investitionsrechnung geht es grundsätzlich um die Frage, ob ein Kapital K0
investiert werden soll. Die Alternative ist, den Betrag zum Zinssatz i anzulegen. Um
die Investition beurteilen zu können, müssen die Erträge und Kosten berücksichtigt
werden. Diese Erträge und Kosten sind periodische Zahlungen, die aber anders als in
der Rentenrechnung in der Regel nicht konstant sind. Daher können die Rentenend-
bzw. Rentenbarwertformeln hier nicht angewendet werden. Die Ansätze der Investi-
tionsrechnung werden auch in der Unternehmensbewertung eingesetzt.

K0 Z1 Z2 Zn−1 Zn
⏐
⏐�

�
⏐⏐

�
⏐⏐

�
⏐⏐

�
⏐⏐

0 q−1

−−−−−→
1. Periode

1 q−2

−−−−−→
2. Periode

2 q−3

−−−−−→
3. Periode

· · ·n−1 q−n−−−−−−→
n-te Periode

n
⏐
⏐�

C0

Abb. 9.13: Struktur einer Investition

Man unterscheidet in der Investitionsrechnung statische und dynamische Verfah-
ren. Bei der statischen Investitionsrechnung wird ein Vergleich von Kosten, Gewin-
nen oder Rentabilitäten vorgenommen, ohne dass dem Zeitfaktor Rechnung getragen
wird. In der Rechnung wird nur das erste Jahr oder ein repräsentatives Jahr angesetzt.
Die statischen Verfahren berücksichtigen daher nicht die finanzmathematischen Ver-
fahren. Die statische Investitionsrechnung wird hier nicht behandelt.

Die dynamische Investitionsrechnung setzt die oben beschriebenen finanzma-
thematischen Verfahren ein. Im Folgenden werden die Kapitalwert-, die Annuitä-
tenmethode und die Methode des internen Zinsfußes beschrieben. Sie alle sind dem
Ansatz nach identisch und unterscheiden sich – wie schon bei der Rentenrechnung
dargelegt – nach der Fragestellung.

9.9.1 Kapitalwertmethode

Aus der Investition in Höhe von K0 entstehen über n Perioden Erträge und Kosten,
die saldiert durch die Zahlungen Zt beschrieben werden. Bei der Kapitalwertmethode
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wird der Barwert der Investition, also die diskontierten Erträge und Kosten aus allen
zukünftigen Perioden berechnet. Dabei wird unterstellt, dass die zukünftigen Erträge
und Kosten mit Sicherheit eintreten. Der Kapitalwert misst also den Vermögensüber-
schuss bzw. -minderung zum Zeitpunkt t = 0. Als Alternative kommt die Anlage von
K0 zum Zinssatz i infrage. Für die Periode n ergibt sich der Wert der Investition

In = Z0 qn+Z1qn−1 + . . .+Zn−1q+Zn für q> 1,

der dem Betrag

Kn = K0 qn für q> 1

gegenüberzustellen ist. Da man in der Finanzmathematik stets das Barwertprinzip
anwendet, sind die Beträge zu diskontieren.

C0(q) = I0 −K0 für q> 1

=
In
qn

− Kn
qn

= Z0 +
Z1
q
+ . . .+

Zn
qn

−K0 =

n∑
t=0
Zt q−t −K0

C0(q) wird hier als Kapitalwert (net present value) bezeichnet und i ist der Kal-
kulationszinssatz10. Eine Investition ist vorteilhaft, wenn der Kapitalwert bei ei-
nem Zinssatz i positiv ist. Sind mehrere Investitionsalternativen zu vergleichen, so
ist die Investition mit dem höchsten Kapitalwert bei gleichem Kalkulationszinssatz
am günstigsten. Daher der Name Kapitalwertmethode.

Beispiel 9.61. Ein Kapital von 1 000e hat über den Planungszeitraum von n = 2
Perioden folgende Nettoerträge:

Z1 = 600e im 1. Jahr Z2 = 500e im 2. Jahr

Lohnt sich die Investition bei einem Kalkulationszinssatz von i= 0.05? Der Kapital-
wert beträgt:

C0(1.05) =
600
1.05

+
500

1.052 − 1000= 24.94e

Da der Kapitalwert positiv ist, lohnt sich die Investition. ☼

Beispiel 9.62. Die Nettoerträge in der Zukunft sind unbekannt. Daher wird angenom-
men, dass sie mit einem konstanten Faktor wachsen (siehe Abschnitt 9.6.1 wachsen-
de Rente). Der Ertrag für die ersten beiden Jahre ist mit 600e und 500e zu be-
stimmen. Für die folgenden 8 Jahre unterstellt man eine Schätzung des Ertrags von
500e mit einem Wachstum von 3 Prozent. Die Investition betrage 4 000e und der
Kalkulationszinssatz 5 Prozent. Es liegt dann folgender Zahlungsstrom vor:

10 Der Kalkulationszinssatz kann zum Beispiel durch die gewichteten durchschnittlichen Ka-
pitalkosten (weighted average cost of capital) des Unternehmens gegeben sein.
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t 0 1 2 3 · · · 10

Zt −4000 600 500 500×1.03 · · · 500×1.038

Der Kapitalwert der Investition kann für die Jahre 2 bis 10 durch eine wachsende
Rente berechnet werden.

C0(1.05) =
600
1.05

+
500

1.052 +
500× 1.03

1.053 + . . .+
500×1.038

1.0510 −4000

=
600
1.05

+
1

1.05
500

1.059
1.059 − 1.039

1.05−1.03︸ ︷︷ ︸
Barwert einer wachsenden

Rente zum Zeitpunkt 2

−4000 = 355.51e

☼

Wird eine nicht-flache Zinsstruktur unterstellt, so muss man wie in Kapitel 9.7.5
den Kapitalwert über Nullkuponzinssätze berechnen.

9.9.2 Methode des internen Zinssatzes

Bei der Methode des internen Zinssatzes (internal rate of return) wird die Frage-
stellung umgekehrt: Welcher Zinssatz ergibt einen Kapitalwert von Null? Liegt die
gewünschte Kapitalverzinsung (Kalkulationszinssatz, Vergleichszinssatz) über dem
internen Zinssatz, so ist die Investition unvorteilhaft, da ein negativer Kapitalwert
eintritt. Die Fragestellung ist ähnlich der nach der Rendite bei einem festverzinsli-
chen Wertpapier. Auch hier wird bei dem Ansatz eine flache Zinsstruktur unterstellt.
Das Äquivalenzprinzip liefert folgende Gleichung, deren Nullstellen den internen
Zinssatz liefert:

C0(q) =
Z1
q1 + . . .+

Zn
qn

−K0
!
= 0

Die Nullstellen des Polynoms liefern den gesuchten internen Zinssatz. Sie können in
der Regel nur mit einem Näherungsverfahren wie der regula falsi bestimmt werden.

Beispiel 9.63. Es wird das Beispiel 9.61 fortgesetzt. Bei welchem internen Zinssatz
ist der Kapitalwert Null?

C0(q) =
600
q

+
500
q2 −1000 !

= 0 für q> 1

= q2 − 600
1000

q− 500
1000

!
= 0

(9.48)

q1,2 = 0.3±
√

0.32 + 0.5
q1 = 1.068112; q2 =−0.4681

Im vorliegenden Fall konnte der interne Zinssatz leicht mit der quadratischen Ergän-
zung gelöst werden, da nur ein Zeitraum von 2 Perioden vorgegeben war. Der interne
Zinssatz beträgt 6.8115 Prozent. Die zweite Lösung ergibt keinen Sinn, zeigt aber die
Mehrdeutigkeit der Lösung auf (siehe Abb. 9.14). ☼
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Abb. 9.14: Kapitalwerte der Gleichung (9.48)

Beispiel 9.64. Der interne Zinssatz in Beispiel 9.62 ist die Nullstelle für q > 1 des
Polynoms

C0(q) =
600
q

+
500
q2 +

500× 1.03
q3 + . . .+

500× q8

q10 −4000 !
= 0

= 600q9 +500q8+ 500×1.03q7+ . . .+ 500× 1.038−4000q10 !
= 0

(9.49)

Der interne Zinssatz mit Scilab berechnet (siehe Kapitel 9.9.3) beträgt 6.746 Prozent
p. a. ☼

Zur Interpretation des internen Zinssatzes: Der interne Zinssatz ist der Zinssatz,
den die geplante Investition eben noch erzielen kann. Wird ein höherer Zinssatz ge-
fordert, weil zum Beispiel der Kapitalmarkt höhere Kapitalverzinsungen liefert, ist
die Investition unvorteilhaft. Ebenso lässt sich beim Einsatz von Fremdkapital ar-
gumentieren. Liegt der Fremdkapitalzinssatz über dem internen Zinssatz, so ist die
Investition nicht zu finanzieren.

9.9.3 Berechnungen mit Scilab

Die Berechnung des Kapitalwerts in Beispiel 9.62 kann mit Scilab wie folgt berech-
net werden.
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cashflow = [-4000,600,500*ones(1,9)]

qdiskont = 1.05; // Diskontierungsfaktor
qgrowth = 1.03; // Wachstumsfaktor

tdiskont = [0:10];
qd=qdiskont.^tdiskont // Diskontierungsfaktoren

tgrowth = [0,0,0:8]; // extra Null für t=0,1
qg = qgrowth.^tgrowth // Wachstumsfaktoren

netcash = cashflow.*qg./qd
pv = sum(netcash)

// Berechnung mit Barwert einer wachsenden Rente
Cq = 600/qdiskont+500/qdiskont^10*...

(qdiskont^9-qgrowth^9)/(qdiskont-qgrowth)-4000

Die Fortführung des Beispiels 9.62 führt zur Berechnung des internen Zins-
satzes (siehe Beispiel 9.64). Damit die Erweiterung des Polynoms (9.64) mit q10

mit dem Zahlungsstrom cashflow im Programm übereinstimmt, die Reihenfol-
ge umgekehrt werden. Dies erfolgt in Scilab mit der umgekehrten Indexierung:
cashflow(11:-1:1).

cfg = cashflow.*qg // cashflow mit Wachstum

p = poly([cfg(11:-1:1)],’q’,’coeff’)
qi = roots(p);
qi = real(qi(find(imag(qi)==0)))
(max(qi)-1)*100

9.9.4 Probleme der Investitionsrechnung

Ein erstes Problem tritt bei Investitionen auf, deren periodische Erträge nicht nur
positiv sind. Solche Investitionen werden auch als nicht-normale Investitionen be-
zeichnet.

Beispiel 9.65. Bei einer Investition mit der Zahlungsreihe

K0 Z1 Z2 Z3

100 200 600 −650

treten im Bereich von 1 < q < 2 (0 < i < 1) ausschließlich positive Kapitalwerte
auf (siehe Grafik links oben in Abb. 9.15). Es ist kein interner Zinssatz bestimm-
bar. In Abb. 9.15 sind weitere Fälle aufgezeigt. Es können mehrere positive interne
Zinssätze auftreten. Dann ist die Investition in den Bereichen positiver Kapitalwerte
vorteilhaft. ☼
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Abb. 9.15: Nicht-normale Investitionen

Ein anderes Problem kann beim Vergleich zweier Investitionen auftreten. Die
Kapitalwertmethode und die Methode des internen Zinssatzes können ein scheinbar
widersprüchliches Ergebnis liefern. Dieser Widerspruch besteht darin, dass sich die
Kapitalwertfunktionen schneiden. Ein Beispiel erläutert dies am besten.

Beispiel 9.66. Es liegen zwei Investitionsvorhaben vor, die einen Planungshorizont
von n = 3 Jahren haben und einen Investitionsbetrag von K0 = 100 aufweisen. Die
Kapitalwertfunktion der ersten Investition ist

C0(q) =−100+
80
q

+
60
q2 +

10
q3 für q> 1

und die der zweiten

C0(q) =−100+
10
q

+
70
q2 +

90
q3 für q> 1

Für die erste Investition wird ein interner Zinssatz von 31.44 Prozent berechnet und
für die zweite ein interner Zinssatz von 24.41 Prozent. Hiernach scheint die erste
Investition vorteilhafter zu sein. Es werden nun die Kapitalwerte zu einem Kalkula-
tionszinssatz von 10 Prozent berechnet.

C0(1.1) = 29.83e
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C0(1.1) = 34.56e

Nun ist die zweite Investition vorteilhafter. Woran liegt das? Die beiden Kapitalwert-
funktionen besitzen einen Schnittpunkt, wie Abb. 9.16 zeigt. ☼
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Abb. 9.16: Vergleich von zwei Investitionen

Bei der Investitionsrechnung ist der Kapitalwert für einen gegebenen Kalkulati-
onszinssatz die entscheidende Größe. Er bestimmt, welche Investition vorteilhaft ist.
Daher ist der Kalkulationszinssatz stets sehr sorgfältig zu bestimmen. Wird ein zu
hoher Kalkulationszinssatz gefordert, wird der Kapitalwert kleiner oder negativ und
die Investition wird unvorteilhaft. Wird ein zu niedriger Kalkulationszinssatz einge-
setzt, so könnten Fremdkapitalgeber das Projekt als unrentabel einstufen. Dass sich
bei unterschiedlichen Kalkulationszinssätzen die Vorteilhaftigkeit verschiedener In-
vestitionen umkehren kann, ist dabei zu berücksichtigen.
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Übung 9.13. Ein Investor kauft 500 Aktien zu einem Gesamtpreis von 100 000e.
Im ersten Jahr nach dem Kauf der Aktien wird keine Dividende gezahlt. Im zweiten
Jahr wird infolge günstiger wirtschaftlicher Entwicklungen eine Dividende von 5e
pro Aktie ausgeschüttet. Der Investor kann das Aktienpaket nach 2 Jahren zu einem
Preis von 110 000e verkaufen.
Beantworten Sie folgende Fragen:

1. Wie hoch ist die Rendite?
2. Ist die Anlage vorteilhaft, wenn andere Anlagen im gleichen Zeitraum eine

Rendite von 6.5 Prozent p. a. erzielen?

Übung 9.14. Es liegt folgende Investition zur Entscheidung an:

• Zinssatz: 5 Prozent p. a.
• Investitionsbetrag: 1 000e
• Nettoerträge: im ersten Jahr 700e, im zweiten Jahr 800e

Berechnen Sie für die obige Investition den

1. Kapitalwert und
2. internen Zinssatz

Übung 9.15. Jemand kann für 3 Jahre ein Strandcafé für 50 000e übernehmen.
Für diesen Zeitraum werden die folgenden Einnahmen und Ausgaben jeweils am
Jahresende erwartet:

1. Jahr 2. Jahr 3. Jahr

Ausgaben 155 000e 165 000e 175 000e
Einnahmen 195 000e 210 000e 230 000e

Für einen Kredit von 50 000e werden von der Bank 9.5 Prozent Zinsen verlangt.
Ist nach der Kapitalwertmethode die Investition in das Strandcafé sinnvoll?



9.10 Fazit 229

Übung 9.16. Ein Investor plant den Erwerb einer Wohnung für 100 000e. Er geht
bei seinem Kauf von folgenden Annahmen aus:

• Jährliche Ausgaben für Instandhaltung und Verwaltung 1 000e.
• Jährliche Mieteinnahmen abzüglich Nebenkosten 8 000e.
• Erwarteter Verkaufspreis der Wohnung nach 5 Jahren 110 000e.

Beantworten Sie folgende Fragen:

1. Wie hoch ist der Kapitalwert der Investition bei einem Kalkulationszinsfuß
von 10 Prozent?

2. Bestimmen Sie näherungsweise den internen Zinssatz der Investition.
3. Ermitteln Sie den durchschnittlichen jährlichen Überschuss bei einem Kal-

kulationssatz von 10 Prozent.
4. Auf welchen Kaufpreis müsste der Investor die Eigentumswohnung herun-

terhandeln, wenn er eine Verzinsung von 10 Prozent wünscht?
5. Wie hoch ist die jährliche Annuität, wenn der Kauf mit einem Kredit finan-

ziert wird, der folgende Bedingungen besitzt:
• Auszahlungskurs: 98 Prozent
• Bearbeitungsgebühr: 2 Prozent
• Zinssatz: 6 Prozent p. a.
• Laufzeit: 5 Jahre

Übung 9.17. Ein Unternehmer möchte 150 000e investieren. Er erwartet für die
vierjährige Nutzungsdauer folgende Überschüsse:

1. Jahr 2. Jahr 3. Jahr 4. Jahr

35 000e 48 000e 52 000e 58 000e

Beantworten Sie folgende Fragen:

1. Ist die Investition bei einem Kalkulationszinssatz von 9 Prozent rentabel?
Beurteilen Sie Ihre Entscheidung mit der Kapitalwertmethode und mit der
Methode des internen Zinssatzes.

2. Was würde sich ändern, wenn im 3. Jahr statt des Überschusses von 52 000e
mit einem Verlust von 2 000e gerechnet werden müsste? Zur Finanzierung
dieses Verlustes würde ein Kredit zum Zinssatz von 10 Prozent aufgenom-
men. Berechnen Sie Ihr Ergebnis mit der Kapitalwertmethode.

9.10 Fazit

Die exponentielle Zinsrechung, die die Zinseszinsen berücksichtigt, wird überwie-
gend in der Finanzmathematik verwendet. Für Zinszahlungen, die nur über eine sehr
kurze Zeitperiode geleistet werden, wird manchmal der Einfachheit halber die linea-
re Zinsrechnung verwendet. Der Zinseszinseffekt ist hier meistens so klein, dass er
vernachlässigt werden kann.
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Bei einer Reihe von regelmäßigen Zahlungen spricht man von einer Rente. Je
nach Fragestellung ist der Rentenendwert, der Rentenbarwert, die Rate, die Zahl der
Perioden oder der (effektive) Zinssatz zu berechnen. In der Rentenrechnung unter-
scheidet man Zahlungen, die am Anfang einer Periode (vorschüssig) oder am Ende
(nachschüssig) geleistet werden. Bei Zahlungen die unterjährig verzinst werden, ist
nach den Rechengesetzen der konforme unterjährige Zinssatz zu verwenden. In der
Praxis wird aber häufig (wegen der Neigung zum linearen Denken) der relative Zins-
satz verwendet. Dies führt dazu, dass zwischen dem Nominalzinssatz und dem ef-
fektiven Jahreszinssatz unterschieden werden muss. Mit dem Äquvalenzprinzip wird
die Rendite (der effektive Zinssatz) berechnet.

In der Annuitätenrechnung wird die Rückzahlung eines Kredits betrachtet. Eine
Annuität ist eine Rate, die aus einer Tilgungs- und einer Zinszahlung besteht.

In der Investitionsrechnung wird das Barwertprinzip auf unregelmäßige Zahlun-
gen übertragen. Mit ihr wird die Entscheidung für oder gegen eine Investition im
Rahmen der Annahmen beantwortet.
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10.1 Vorbemerkung

Werden Funktionen für einen festen Funktionswert untersucht, zum Beispiel hin-
sichtlich eines Extremums, so kann man dies als eine statische Analyse bezeichnen.
Eine andere Betrachtungsweise ist die dynamische Analyse. Man untersucht dann
die Eigenschaft einer Funktion an verschiedenen Stellen und vergleicht sie mitein-
ander. Es werden also Eigenschaften untersucht, die relativ zur Funktionsänderung
definiert sind, also Änderungsraten. Dazu gehören zum Beispiel die Steigung oder
die Krümmung einer Funktion. Für die Untersuchung von Änderungsraten hat sich
die Differentialrechnung als wichtiges Instrument erwiesen. In den Wirtschaftswis-
senschaften wird die Grenzbetrachtung häufig auch alsMarginalanalyse bezeichnet.

Beispiel 10.1. Die Einkommensteuer nach der Grundtabelle für 2004 liegt bei ei-
nem zu versteuerenden Einkommen von 19 800e bei 2 846e. Der durchschnittliche
Steuersatz beträgt somit 14.4 Prozent des Einkommens (siehe Abb. 10.1). Würde der
zu versteuernde Jahresverdienst auf 20 700e ansteigen, so stiege die Einkommen-
steuer auf 3 099e an. Bezogen auf das Gesamteinkommen läge der durchschnittliche
Steuersatz dann bei 15.0 Prozent. In der Regel interessiert jedoch weniger der durch-
schnittliche Steuersatz, sondern die durch das Mehreinkommen verursachte absolu-
te und relative Steuererhöhung. Das Einkommen erhöht sich um 900e; die Steuer
erhöht sich dadurch um 253e, so dass für das Mehreinkommen durchschnittlich
28.1 Prozent Steuer einbehalten werden. Die relative Steuererhöhung bezogen auf
das Mehreinkommen bezeichnet man, wenn man sich auf unendlich kleine Einkom-
mensänderungen bezieht, als Grenzsteuersatz. Es ist die Steigung am Punkt des
betrachteten Einkommens. Der Grenzsteuersatz ist nun wieder eine Funktion des
Einkommens. ☼

In der Ökonomie wird die Differentialrechnung intensiv genutzt, um zum Bei-
spiel Minima und Maxima ökonomischer Funktionen (zum Beispiel von Kosten-
oder Gewinnfunktionen oder Elastizitäten) zu berechnen.

Voraussetzung zur Anwendung der Differentialrechnung ist, dass zumindest eine
abschnittsweise stetige Funktion vorliegt.

In der Differentialrechnung werden häufig folgende Symbole eingesetzt:

lim Grenzwertoperator
Δ Symbol für die erste Differenz
d Differentialoperator
f ′ erste Ableitung der Funktion f (x)
ε Elastizität

10.2 Grenzwert und Stetigkeit einer Funktion

Anknüpfend an das Kapitel 8.5 wird nun eine Folge [xn] betrachtet, die gegen einen
Wert x strebt. Der Wert x wird dann als Grenzwert der Folge [xn] bezeichnet.
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Abb. 10.1: Einkommensteuer

lim
n→∞

xn = x

Es wird nun angenommen, dass dann die Folge der Funktionswerte
[
f (xn)

]
ge-

gen f (x) strebt. Es werden also zwei Zahlenfolgen betrachtet. Die erste Folge ist
die Folge der Argumente [xn], die dem Grenzwert x zustreben soll. Die zweite Fol-
ge ist die Folge der Funktionswerte

[
f (xn)

]
, die dem Grenzwert y= f (x) zustreben

soll. Dies bedeutet, dass der Grenzübergang von links (von unten) zu dem gleichen
Grenzwert führt, wie der Grenzübergang von rechts (von oben). Wenn dies gilt, so
bezeichnet man den Wert

lim
xn→x

f (xn) = f (x) für xn ∈ D( f ), [xn] �= x, lim
n→∞

xn = x

als Grenzwert der Funktion y= f (x) an der Stelle x. Existiert der Grenzwert einer
Funktion, so wird die Funktion als stetig im Punkt x bezeichnet. Anschaulich heißt
eine Funktion stetig, wenn sie in einem Zug zeichenbar ist. Funktionen, die in einem
Punkt nicht stetig sind, werden dort unstetig genannt. Gründe für Unstetigkeiten kön-
nen Polstellen, Sprungstellen, Lücken oder extremes oszillierendes Verhalten einer
Funktion sein.
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10.3 Differentialquotient

Die im Beispiel 10.1 erwähnte Abhängigkeit des Grenzsteuersatzes vom Einkommen
stellt den so genannten Differentialquotienten dar. Der Differentialquotient wird
auch als erste Ableitung einer Funktion bezeichnet.

Es wird eine Funktion im Intervall [x1,x2] betrachtet. Die Differenz der Intervall-
grenzen wird mit

Δx= x2 − x1 für x1 < x2

und die Differenz der Funktionswerte wird mit

Δy= y2 − y1 = f (x2)− f (x1)

bezeichnet. Es soll die durchschnittliche Änderung der Funktion f (x) im Intervall
[x1,x2] berechnet werden. Sie ergibt sich als

Δy
Δx

=
y2 − y1
x2 − x1

= tanα

und ist gleich der Steigung der Sekanten, d. h. gleich dem Tangens des Zwischen-
winkels (siehe Abb. 10.2).

Der zunächst als fest angenommene Punkt x2 soll nun veränderlich sein und da-
mit auch die Differenz zwischen x2 und x1. Um dem formal Rechnung zu tragen,
wird

x1 = x

und

x2 = x+Δx

gesetzt. Der Quotient
Δy
Δx

=
f (x+Δx)− f (x)

Δx
(10.1)

wird als Differenzenquotient bezeichnet. Er bedeutet die Änderung des Funktions-
wertes relativ zur Änderung der unabhängigen Veränderlichen über dem Intervall
Δx.

Lässt man den Punkt x2 nun immer näher an den Punkt x1 rücken, so verkürzt sich
die Sekante zwischen f (x2) und f (x1) und schmiegt sich immer enger an die Kurve
an. Mathematisch bedeutet diese Annäherung, dass der Grenzübergang Δx→ 0 voll-
zogen wird. Die Sekante zwischen den Punkten wird dabei zur Tangente im Punkt
y = f (x), und die Steigung der Sekanten Δy

Δx wird zur Steigung der Tangente (siehe
Abb. 10.2). Aufgrund der Bedeutung des Grenzwertes des Differenzenquotienten hat
man für ihn ein eigenes Symbol und die Bezeichnung Differentialquotient einge-
führt.



10.3 Differentialquotient 235

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

x

f(x)

Tangente
Sekante

α

x1 x2

y1= f (x1)

y2= f (x2)
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dy
dx

= lim
Δx→0

Δy
Δx

= lim
Δx→0

f (x+Δx)− f (x)
Δx

(10.2)

Man spricht „dy nach dx“. Als alternative Bezeichnungsweisen haben sich

dy
dx

= y′ = f ′(x) =
d f
dx

=
d
dx
f (x)

etabliert. Existiert der Grenzwert (10.2), so heißt die Funktion im Punkt x differen-
zierbar. Ist die Ableitung eine stetige Funktion, so wird f (x) stetig differenzierbar
genannt.

Beispiel 10.2. Der Differentialquotient der Funktion

y= x3 für x ∈ R

lautet

dy
dx

= lim
Δx→0

(x+Δx)3 − x3

Δx
☼

Mit der Definition des Differentialquotienten ist nicht viel gewonnen. Tatsächlich
kommt es darauf an, den Grenzwert zu berechnen. Man bezeichnet dies als Differen-
zieren.
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Beispiel 10.3. Die Berechnung des Differentialquotienten aus Beispiel 10.2 ist wie
folgt:

y′ = lim
Δx→0

(x+Δx)3 − x3

Δx

= lim
Δx→0

x3 + 3x2 Δx+ 3x(Δx)2 +(Δx)3 − x3

Δx
= lim

Δx→0

(
3x2 +3xΔx+(Δx)2)

= 3x2

(10.3)

Der Differentialquotient dy
dx , die erste Ableitung y′ der Funktion y = x3, lautet

somit:
dy
dx

= f ′(x) = y′ = 3x2

☼

Der Differentialquotient der Funktion f (x) ist im Allgemeinen selbst wieder ei-
ne Funktion der unabhängigen Veränderlichen x. Er wird als Steigung der Funktion
f (x) im Punkt x interpretiert. Will man diese Steigung in einem speziellen Punkt x
ermitteln, so muss man den Wert in die Funktion der ersten Ableitung einsetzen.

dy
dx

∣∣∣∣
x=ξ

= f ′(ξ )

Beispiel 10.4. Die Steigung der Funktion y= x3 an der Stelle x= 2 ist

dy
dx

∣∣∣∣
x=2

= f ′(2) = 3x2∣∣
x=2 = 12

☼

Zum Differenzieren einer Funktion muss aber nicht jedesmal der Differentialquo-
tient der Funktion berechnet werden. Man braucht lediglich die Differentialquotien-
ten einiger wichtiger Funktionen und ein paar Grundregeln über das Differenzieren
zu kennen, um damit die gängigen Funktionen differenzieren zu können.

10.3.1 Ableitung einer Potenzfunktion

Die Ableitung einer Potenzfunktion ist schon in der Gleichung (10.3) vorgenommen
worden. Die Verallgemeinerung dieses Ergebnisses führt zu:

y= xn für x,n ∈R ⇒ y′ = nxn−1
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10.3.2 Ableitung der Exponentialfunktion

Die Ableitung der Exponentialfunktion zur Basis e ist:

y= ex für x ∈ R ⇒ y′ = ex

Die Herleitung des Ergebnisses: Es wird der Differentialquotient für die Funktion
gebildet.

dy
dx

= lim
Δx→0

f (x+Δx)− f (x)
Δx

= lim
Δx→0

ex+Δx− ex

Δx
= ex lim

Δx→0

eΔx− 1
Δx

(10.4)

Es wird

k = eΔx− 1

gesetzt, umgestellt

1+ k= eΔx

logarithmiert

ln(1+ k) = Δx

und in die Gleichung (10.4) eingesetzt.

lim
Δx→0

eΔx− 1
Δx

= lim
k→0

k
ln(1+ k)

= lim
k→0

1

ln(1+ k)
1
k

=
1

ln limk→0(1+ k)
1
k
=

1
lne

= 1

Das Ergebnis kommt zustande, weil bei stetigen Funktionen der Grenzwertoperator
auf die innere Funktion vorgezogen werden darf und weil

lim
k→0

(1+ k)
1
k = e

gilt. Aus der Logarithmierung der obigen Gleichung folgt unmittelbar:

lim
k→0

ln(1+ k)
k

= lne = 1

Damit gilt:
dy
dx

= ex lim
Δx→0

eΔx−1
Δx

= ex
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10.3.3 Ableitung der natürlichen Logarithmusfunktion

Die Ableitung des natürlichen Logarithmus ist

y= lnx für x> 0 ⇒ y′ =
1
x

Die Herleitung dieses Ergebnisse erfolgt in Beispiel 10.12.

10.3.4 Ableitung der Sinus- und Kosinusfunktion

Die Ableitung der Sinus- und Kosinusfunktion ist:

y= sinx für x ∈ R ⇒ y′ = cosx
y= cosx für x ∈ R ⇒ y′ =−sinx

Eine Herleitung der Ableitungen ist zum Beispiel bei [4, Seite 274 f] angegeben.

10.4 Differentiation von verknüpften Funktionen

Funktionen, die durch die Verknüpfung elementarer Funktionen gebildet sind oder
die in Form zusammengesetzter Funktionen vorkommen, kann man nach den folgen-
den Regeln differenzieren.

10.4.1 Konstant-Faktor-Regel

Die Ableitung einer konstanten Funktion ist gleich Null. Ein konstanter Faktor kann
beim Differenzieren stets vor die Ableitung gezogen werden:

y= c ⇒ y′ = 0
y= c f (x) ⇒ y′ = c f ′(x)

Herleitung der Konstant-Faktor-Regel:

dy
dx

= lim
Δx→0

c f (x+Δx)− c f (x)
Δx

= c lim
Δx→0

f (x+Δx)− f (x)
Δx

= c f ′(x)
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10.4.2 Summenregel

Sind f (x) und g(x) zwei differenzierbare Funktionen, dann gilt:

y= f (x)±g(x) ⇒ y′ = f ′(x)±g′(x)

Herleitung der Summenregel:

dy
dx

= lim
Δx→0

[
f (x+Δx)±g(x+Δx)

]− [ f (x)± g(x)]
Δx

= lim
Δx→0

f (x+Δx)− f (x)
Δx

± lim
Δx→0

g(x+Δx)−g(x)
Δx

= f ′(x)± g′(x)

Beispiel 10.5. Die Ableitung der Funktion

y= f (x)+ c

ist

y′ = f ′(x)

Die Ableitung einer Konstanten ist Null. ☼

Beispiel 10.6. Die Ableitung der Funktion

y= 2x−2 + cosx

ist

y′ =−4x−3 − sinx

☼

10.4.3 Produktregel

Die Ableitung des Produkts zweier differenzierbarer Funktionen ist

y= f (x)g(x) ⇒ y′ = f ′(x)g(x)+ f (x)g′(x)

Wegen der Symmetrie der Ableitungsregel ist es gleichgültig, welchen Faktor man
als f (x) und welchen man als g(x) bezeichnet.

Herleitung der Produktregel:

dy
dx

= lim
Δx→0

f (x+Δx)g(x+Δx)− f (x)g(x)
Δx
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Erweiterung des Zählers mit f (x+Δx)g(x)− f (x+Δx)g(x):

= lim
Δx→0

((
f (x+Δx)− f (x))g(x)

Δx
+

(
g(x+Δx)−g(x)) f (x+Δx)

Δx

)

=

(
lim

Δx→0

f (x+Δx)− f (x)
Δx

)
g(x)+

(
lim

Δx→0

g(x+Δx)− g(x)
Δx

)
lim

Δx→0
f (x+Δx)

= f ′(x)g(x)+ g′(x) f (x)

Beispiel 10.7. Die erste Ableitung der Funktion

y= ex lnx für x ∈R+

ist

y′ = ex
(

lnx+
1
x

)

☼

Beispiel 10.8. Die erste Ableitung der Funktion

y= sinxcosx für x ∈R

ist

y′ = cosxcosx+(−sinx)sinx

= cos2 x− sin2 x

☼

Das Produkt aus mehr als zwei differenzierbaren Funktionen lässt sich durch
wiederholte Anwendung der Produktregel differenzieren.

10.4.4 Quotientenregel

Ist eine Funktion als Quotient zweier differenzierbarer Funktionen darstellbar, dann
ist ihr Differentialquotient

y=
f (x)
g(x)

⇒ y′ =
f ′(x)g(x)− f (x)g′(x)

g(x)2

Man beachte, dass die Formel nicht symmetrisch ist. Mit einigen zusätzlichen Um-
formungen lässt sich die Quotientenregel wie die Produktregel herleiten.

Herleitung der Quotiententenregel:



10.4 Differentiation von verknüpften Funktionen 241

dy
dx

= lim
Δx→0

f (x+Δx)
g(x+Δx) −

f (x)
g(x)

Δx

= lim
Δx→0

1
g(x+Δx)g(x)

(
g(x)

f (x+Δx)
Δx

− f (x) g(x+Δx)
Δx

)

Erweiterung des Terms in der Klammer mit f (x)g(x)− f (x)g(x)Δx :

dy
dx

= lim
Δx→0

1
g(x+Δx)g(x)

(
g(x)

f (x+Δx)− f (x)
Δx

− f (x) g(x+Δx)− g(x)
Δx

)

=
g(x) f ′(x)− f (x)g′(x)

g(x)2

Beispiel 10.9. Die erste Ableitung der Funktion

y=
lnx
x

ist

y′ =

1
x
x− lnx

x2 =
1− lnx
x2

☼

10.4.5 Kettenregel

Eine zusammengesetzte Funktion y= f
(
g(x)

)
kann durch Substitution z= g(x) auf

ihre Grundform y = f (z) zurückgeführt werden. Die Funktion y = f (z) wird als
äußere Funktion und die Substitution z= g(x) als innere Funktion bezeichnet.

Für zusammengesetzte differenzierbare Funktionen ist der Differentialquotient
wie folgt zu berechnen:

y= f
(
g(x)

) ⇒ y′ = f ′(z)g′(x) =
d f (z)

dz
dg(x)

dx

Die Differentiale f ′(z) und g′(x) werden entsprechend als äußere Ableitung und in-
nere Ableitung bezeichnet. Die Kettenregel besagt dann, dass zunächst die äußere
und die innere Ableitung einzeln zu berechnen und danach miteinander zu multipli-
zieren sind. Anschließend ist die Substitution z = g(x) rückgängig zu machen. Ist
eine Funktion mehrfach zusammengesetzt (geschachtelt), ist die Kettenregel mehr-
fach anzuwenden.

Herleitung der Kettenregel:

dy
dx

= lim
Δx→0

f
(
g(x+Δx)

)− f (g(x))
Δx
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Es wird z= g(x) gesetzt. Dann gilt:

f ′(z) = lim
Δ z→0

f (z+Δz)− f (z)
Δz

z+Δz= g(x+Δx)⇒ Δz= g(x+Δx)− g(x)

Mit der obigen Erweiterung kann der Differentialquotient dy
dx unter der Vorausset-

zung, dass Δz �= 0 für alle kleinen Werte von Δx ist, umgeschrieben werden in:

dy
dx

= lim
Δ z→0

(
f (z+Δz)− f (z)

Δz
lim

Δx→0

Δz
Δx

)

= f ′(z) lim
Δx→0

g(x+Δx)−g(x)
Δx

= f ′(z)g′(x)
= f ′

(
g(x)

)
g′(x)

Beispiel 10.10. Die Funktion
y= (x− 2)2

ist aus den beiden Funktionen

y= f (z) = z2 z= g(x) = x−2
y′ = 2z z′ = 1

zusammengesetzt. Die erste Ableitung ist:

y′ = 2(x−2)

☼

Beispiel 10.11. Die Funktion

y= e
−x2

2

ist aus den beiden Funktionen

z= g(x) =−x
2

2
y= f (z) = ez

zusammengesetzt. Die Ableitungen hiervon sind

z′ =−x y′ = ez
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Die erste Ableitung der Funktion ist somit

y′ =−xe
−x2

2

☼

Übung 10.1. Bestimmen Sie die ersten Ableitungen von

f (x) = 3√x2 f (x) =
√
x
(

1
3
x3 + x−1

)

f (x) = 2x2 lnx2 + ex
2

sinx f (x) =
3∑
i=1

lnxi

f (x) =
√

lnx
x2 f (x) = elnx

Übung 10.2. Berechnen Sie die erste Ableitung der Tangens- und Kotangensfunk-
tion. Es gilt:

f (x) = tanx=
sinx
cosx

f (x) = cotx=
cosx
sinx

10.5 Ergänzende Differentiationstechniken

Manchmal können die behandelten Regeln nur indirekt, d. h. erst nach Umformung
der zu differenzierenden Funktion, angewendet werden.

10.5.1 Ableitung der Umkehrfunktion

Zu einer eineindeutigen Funktion y= f (x) existiert die Umkehrfunktion x= f−1(y).
Ihre Ableitung lässt sich leicht nach der Kettenregel bestimmen: x = g

(
f (x)

)
. Dif-

ferenziert man beide Seiten nach x, so erhält man auf der linken Seite dx
dx = 1 und

rechts nach der Kettenregel

dx
dx

=
dg(y)
d f (x)

d f (x)
dx

1 =
dg(y)

dy
dy
dx

Die erste Ableitung der Umkehrfunktion x= f−1(y) der Funktion y= f (x) ist dann

dg(y)
dy

=
1

d f (x)
dx

=
1
f ′(x)

Beispiel 10.12. Zur Funktion

y= f (x) = ex für x ∈ R
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lautet die Umkehrfunktion

x= g(y) = f−1(y) = lny für y> 0

Die Ableitung der Umkehrfunktion ist somit:

dg(y)
dy

=
1

d f (x)
dx

=
1
ex

=
1
y

☼

Beispiel 10.13. Zur Funktion

y= f (x) = x2 für x ∈ R+

lautet die Umkehrfunktion

x= g(y) =
√
y für y ∈ R+

Die Ableitung der Umkehrfunktion ist:

dg(y)
dy

=
1

d f (x)
dx

=
1

2x
=

1
2√y

☼

10.5.2 Ableitung einer logarithmierten Funktion

Es soll die erste Ableitung des Logarithmus einer allgemeinen Funktion

y= lng(x) für g(x)> 0

berechnet werden. Nach der Substitution z= g(x) und der Anwendung der Kettenre-
gel mit y= lnz und dy

dz =
1
z erhält man

y′ =
dy
dx

=
d
dx

lng(x) =
1
z
g′(x) =

g′(x)
g(x)

Beispiel 10.14. Der Differentialquotient der Funktion

y= ln
(

sinx
)

für 0 < x

ist mit f (x) = sinx und f ′(x) = cosx

y′ =
f ′(x)
f (x)

=
cosx
sinx

= cotx für 0 < x

☼
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10.5.3 Ableitung der Exponentialfunktion zur Basis a

Die Funktion
y= ax für a> 0, x ∈R

ist zu differenzieren. Sie lässt sich durch Logarithmieren umformen.

lny= x lna für a> 0

Die Ableitung beider Seiten nach der Veränderlichen x ergibt

1
y

dy
dx

=
dx
dx

lna= lna,

so dass man durch einfache Umformung

y′ = y lna= ax lna (10.5)

erhält. Für a= e erhält man das bekannte Ergebnis

y′ = ex lne = ex.

Beispiel 10.15. Es soll die Funktion

y= 2x
2

für x ∈ R

abgeleitet werden. Hierzu wird die logarithmierte Funktion nach x differenziert, wo-
bei zu beachten ist, dass auf der linken Seite die Kettenregel anzuwenden ist.

lny= x2 ln2
d lny
dy

dy
dx

=
dx2

dx
ln2

1
y

dy
dx

= 2x ln2

dy
dx

= 2xy ln2

= 2x2x
2

ln2

☼

10.5.4 Ableitung der Logarithmusfunktion zur Basis a

Gesucht ist die Ableitung der Funktion

y= loga x für a,x> 0

Durch Umkehrung der Funktion erhält man
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x= ay,

und nach Differentiation beider Seiten nach x unter Anwendung der Kettenregel für
die rechte Seite

dx
dx

=
dx
dy

dy
dx

1 = ay lna︸ ︷︷ ︸
Ergebnis aus (10.5)

dy
dx

(10.6)

Durch Auflösen der Gleichung (10.6) nach dy
dx erhält man das gesuchte Ergebnis

y′ =
1

ay lna
=

1
x lna

Für a= e erhält man das bekannte Ergebnis

y′ =
1
x
.

Übung 10.3. Bestimmen Sie die ersten Ableitungen von:

f (x) = 2x f (x) = g(x)lng(x)

10.6 Höhere Ableitungen und Extremwerte

Die Differentiation einer Funktion y= f (x) liefert den Differentialquotienten dy
dx bzw.

die erste Ableitung nach x, die im Allgemeinen selbst eine Funktion der unabhängi-
gen Variable ist. Ist diese Funktion wieder differenzierbar, dann kann man formal

d
dx

(
dy
dx

)
=

d2y
dx2 =

d
dx
(
f ′(x)

)
= y′′ (10.7)

berechnen. Die entstehende Funktion wird als zweite Ableitung nach x bezeichnet.
Ist die Funktion y = f (x) zweimal differenzierbar, so heißt die Gleichung (10.7)
zweite Ableitung nach x. Man spricht „d zwei y nach x Quadrat“.

DieBedeutung der zweiten Ableitung lässt sich wie die erste Ableitung geome-
trisch deuten. Sie gibt die Änderungsrate der Steigung bei Änderung des Arguments
an und ist damit ein Maß für die Krümmung der Funktion. Eine Funktion mit zuneh-
mender Steigung, d. h. mit einer positiven Steigungsänderung,

y′′ > 0

heißt konvex gekrümmte Funktion. Die Sekante (Verbindungslinie zweier Punkte
auf einer Funktion) liegt stets oberhalb der Funktion. Eine Funktion mit abnehmen-
der Steigung, d. h. mit einer negativen Steigungsänderung,
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Konvexe Funktionen
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Abb. 10.3: Konvexe und konkave Krümmung von Funktionen

y′′ < 0

ist eine konkav gekrümmte Funktion. Die Sekante liegt stets unterhalb der Funktion
(siehe Abb. 10.3).

Setzt man die Differentiation fort, so kann man – immer unter der Vorausset-
zung der Differenzierbarkeit der entsprechenden Funktion – die nächste Ableitung
berechnen:

d
dx

(
d2

dx2

)
=

d3y
dx3 = y′′′

d
dx

(
d3

dx3

)
=

d4y
dx4 = y(4)

...

Beispiel 10.16. Die Ableitungen n-ter Ordnung der Funktion y= sinx sind

y′ = cosx y′′ =−sinx

y′′′ =−cosx y(4) = sinx= y

y(5) = y′ y(n) = y(n−4)

☼
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Beispiel 10.17. Die Ableitungen n-ter Ordnung der Funktion y= ax sind

y′ = ax lna y′′ = ax
(

lna
)2

y′′′ = ax
(

lna
)3 y(n) = ax

(
lna

)n
☼

Beispiel 10.18. Die Ableitungen n-ter Ordnung eines Polynoms n-ten Grades sind

y= pn(x) =
n∑
i=0
ai xi

y′ = pn−1(x) =
n∑
i=1
iai xi−1 =

n−1∑
i=0

(i+1)ai+1 xi

y′′ = pn−2(x) =
n∑
i=2

i(i−1)ai xi−2 =

n−2∑
i=0

(i+1)(i+2)ai+2xi

...

y(m) = pn−m(x) =
n∑
i=m
i(i− 1) · · · (i−m+1)ai xi−m

=

n−m∑
i=0

(i+1)(i+2) · · · (i+m)ai+mxi

...

y(n) = p0(x) = n!an

☼

Beispiel 10.19. Die Ableitung des Polynoms

y=
1
5
x5 − 2

3
x3 − 8x+ 1 (10.8)

sind

y′ = x4 − 2x2 − 8 y′′ = 4x3 −4x

y′′′ = 12x2 − 4 y(4) = 24x

y(5) =
5!
5
= 24 y(6) = 0

☼
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Abb. 10.4 sind die Funktion (10.8) und deren Ableitungen abgetragen. Man er-
kennt, dass an den Stellen x =±2 die erste Ableitung Nullstellen besitzt. An diesen
Stellen weist die Funktion y= f (±2) Extremwerte auf. Diese Punkte werden auch
als stationäre Punkte bezeichnet. Die notwendige Bedingung für ein Extremum
(necessary condition) ist, dass die erste Ableitung an der Stelle x eine Nullstelle be-
sitzt.

f ′(x) = 0

Für x=+2 besitzt die Funktion ein Minimum. Die zweite Ableitung ist hier positiv.
Die hinreichende Bedingung für ein Minimum der Funktion an der Stelle x ist,
dass die Funktion im Bereich um x eine konkave Krümmung aufweist.

f ′′(x)> 0

An der Stelle x=−2 besitzt die Funktion ein Maximum. Die zweite Ableitung ist an
dieser Stelle negativ. Die hinreichende Bedingung für ein Maximum an der Stelle
x ist, dass die Funktion im Bereich um x eine konvexe Krümmung besitzt.

f ′′(x)< 0

An den Stellen x = ±1 besitzt die zweite Ableitung Nullstellen. Die Funktion y =
f (±1) besitzt hier Wendepunkte. Gilt also an der Stelle x

f ′′(x) = 0 und f ′′′(x) �= 0,

dann liegt dort einWendepunkt der Funktion vor. Hier ändert sich die Art der Kur-
venkrümmung der Funktion, d. h., die Kurve geht dort von einer konkaven in eine
konvexe Krümmung über bzw. umgekehrt.

Ergänzend sei noch der Sattelpunkt einer Funktion erwähnt. Er ist ein Wende-
punkt mit waagerechter Tangente. Die hinreichende Bedingung lautet

f ′(x) = 0 und f ′′(x) = 0 und f ′′′(x) �= 0

Die Funktion (10.8) besitzt keinen solchen Punkt.
Die Berechnung von Extrempunkten, Wendepunkten und Sattelpunkten sind mit

Nullstellenproblemen verbunden. Das im Kapitel 8.3.2 beschriebene Verfahren der
regula falsi ist eine numerische Methode, um diese Probleme zu lösen.

10.7 Newton-Verfahren

Ein anderes Verfahren zur iterativen Nullstellenbestimmung ist dasNewton-Verfah-
ren. Voraussetzung hierfür ist, dass eine differenzierbare Funktion vorliegt und die
Lage der Nullstelle ungefähr bekannt ist.

Man wählt einen Punkt x(1) in der Nähe der vermuteten Nullstelle x. Zeichnet
man nun eine Tangente im Punkt

(
x(1), f (x(1))

)
, und bestimmt deren Schnittpunkt
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Abb. 10.4: Ableitungen des Polynoms (10.8)

x(2) mit der Abzisse (siehe Abb. 10.5), so kann man sich dank des monotonen Verhal-
tens der Funktion in der Nähe der Nullstelle leicht überlegen, dass der Schnittpunkt
x(2) näher an die Nullstelle x gerückt ist. Es gilt

tanα =
f (x(1))
x(1)− x(2)

(10.9)

Die Steigung der Tangente, d. h., tanα ist gleich der ersten Ableitung der Funktion
f (x) an der Stelle x(1).

tanα = f ′(x(1)) (10.10)

Fasst man die Aussagen der Gleichungen (10.9) und (10.10) zusammen, so lässt sich
der gesuchte Schnittpunkt x(2) wie folgt ermitteln:

x(2) = x(1)−
f (x(1))
f ′(x(1))

= x(1)

Die 1. Näherung der gesuchten Nullstelle, die mit x(1) bezeichnet wird, ist die Null-
stelle der Tangente x(2). Mit Hilfe der angenäherten Nullstelle wiederholt man die
obige Rechnung, d. h., man bestimmt den Funktionswert f (x(2)). Man berechnet ei-
ne weitere Näherung der Nullstelle der Funktion mit:
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x(3) = x(2)−
f (x(2))
f ′(x(2))

= x(2)

...

x(i+1) = x(i)−
f (x(i))
f ′(x(i))

= x(i)

Die Iteration wird gestoppt, wenn die Veränderung zur vorher berechneten Nullstel-
lennäherung nahezu Null wird. Sie wird durch f (x)

f ′(x) gemessen.

Beispiel 10.20. Für die Funktion

y= x2 − lnx− 2 (10.11)

wird eine Nullstelle gesucht. Es sei bekannt, dass die Funktion in der Nähe von
x= 0.2 eine Nullstelle besitzt.

y′ = 2x− 1
x
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Abb. 10.5: Newton-Verfahren, Ausschnitt der Funktion (10.11)

Mit diesem Startwert wird nun folgende Iteration begonnen:
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x f (x) f ′(x) f (x)
f ′(x)

0.2 −0.3506 −4.6 0.0762
0.1238 0.1045 −7.8306 −0.0133
0.1371 0.0056 −7.0179 −0.0008
0.1379 0.0000175 −6.9741 −0.0000025

Für x(3) = 0.1379 liegt der Funktionswert bei f (0.1379) = 0.0000175. Die Än-
derung zur nächsten Näherung beträgt −0.0000025. Sie verändert den Wert an der
millionstel Stelle. Für das Beispiel ist diese Änderung ausreichend klein, so dass
0.1379 als 1. Nullstelle angenommen werden kann. ☼

Beispiel 10.21. Der effektive Kreditzinssatz im Beispiel 9.53 lässt sich schnell mit-
tels des Newton-Verfahrens berechnen. Aus der Kapitalwertgleichung

C(q) = q11 −
(

1+
138.64
1000

)
q10 +

138.64
1000

und deren 1. Ableitung

C′(q) = 11q10− 10
(

1+
138.64
1000

)
q9

werden die Iterationen berechnet.

q C(q) C′(q) C(q)
C′(q)

1.06 −0.002192 0.4622 −0.004742
1.06474 0.0002594 0.5729 0.0004527
1.06429 0.0000025 0.5620 0.0000044
1.06428 ≈ 0 0.5619 ≈ 0

Der effektive Kreditzinssatz beträgt nach 4 Iterationen 6.428 Prozent. ☼

Übung 10.4. Berechnen Sie für die Funktion in der Übung 8.2 (Seite 151) die Null-
stelle, die in der Nähe von x1 =−1 liegt mittels des Newton-Verfahrens.

10.8 Ökonomische Anwendung

Die Analyse ökonomischer Funktionen beginnt meistens mit der Durchschnitts-
funktion (average function). Analog zur Definition des arithmetischen Mittels ergibt
sich der durchschnittliche Funktionswert der Funktion y= f (x) durch

ȳ=
f (x)
x
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Eine weitere wichtige Funktion zur Analyse ökonomischer Prozesse ist die
Grenzfunktion (marginal function). Sie ist die erste Ableitung von y= f (x). Mathe-
matisch ist die Grenzfunktion f ′(x) der Grenzwert des Quotienten (10.1). Eine an-
schauliche (aber mathematisch ungenaue) Interpretation der Grenzfunktion ist, den
marginalen Funktionszuwachs auf Δx = 1 zu setzen. Die Grenzfunktion gibt dann
die Änderung pro zusätzlicher Einheit der unabhängigen Variable an. Einige wichti-
ge ökonomische Grenzfunktionen sind zum Beispiel Grenzkosten, Grenzgewinn und
Grenzerlös.

10.8.1 Ertragsfunktion

Die Bedeutung der Durchschnittsfunktion wird am Beispiel einer s-förmigen Er-
tragsfunktion (yield function, return function) (Produktionsfunktion) diskutiert wer-
den. Eine Ertragsfunktion beschreibt den Ertrag y eines Guts in Abhängigkeit (hier
nur) eines Produktionsfaktors x. Bei zunehmendem Einsatz des Faktors x steigt der
Ertrag zunächst (bis zum Wendepunkt) überproportional und dann unterproportional
an. Meistens wird bei einem bestimmten Faktoreinsatz ein Maximum angenommen.
In der Regel lässt sich beobachten, dass beim Überschreiten dieses optimalen Ein-
satzes der Ertrag wieder abnimmt (siehe Abb. 10.6).

Beispiel 10.22. Die in Abb. 10.6 verwendete Ertragsfunktion ist

y= 3x2 − 1
8
x3 für x≥ 0 (10.12)

☼

In Abb. 10.6 sind der Ertrag, Durchschnittsertrag und der Grenzertrag grafisch
dargestellt. Im Punkt W liegt der Wendepunkt der Ertragsfunktion, d. h., von diesem
Punkt an nehmen die Grenzerträge nicht mehr zu. Er kennzeichnet das Maximum
der Grenzertragsfunktion. Der Bereich steigender Grenzerträge, also der Bereich vor
dem Wendepunkt, wird als der Bereich zunehmenderSkalenerträge (return to scale)
bezeichnet. Ab dem Wendepunkt steigen die Grenzerträge unterproportional. Die
Ertragsfunktion weist nun abnehmende Skalenerträge auf.

Im Punkt U ist das Maximum der Durchschnittsfunktion erreicht. Danach fallen
die Durchschnittserträge. Der Wert der Durchschnittsfunktion ist gleich dem Winkel
eines Strahls vom Ursprung an die Kurve. Wandert der Strahl entlang der Kurve, so
steigt er monoton bis zum Punkt U, erreicht dort sein Maximum und fällt dann wie-
der streng monton. Im Punkt U berührt der Strahl die Kurve tangential. Das Grenz-
verhalten der Durchschnittsfunktion ergibt sich aus der Differentiation der Funktion
nach der Quotientenregel.

dȳ
dx

=
f ′(x)x− f (x)

x2

Im Punkt U ist der Grenzdurchschnittsertrag gleich Null, d. h., es gilt

f ′(x)x− f (x) !
= 0 ⇒ f ′(x) =

f (x)
x
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An dem Punkt des Maximums der Durchschnittsfunktion schneiden sich also
die Grenzertragsfunktion und die Durchschnittsfunktion1. Dieser Punkt U ist ökono-
misch interessant, da von hier an die Durchschnittserträge fallen; die Grenzerträge
fallen bereits seit dem Punkt W. Im Punkt M liegt das Maximum der Ertragsfunk-
tion. Der Grenzertrag ist dort Null (notwendige Bedingung für ein Extremum). Die
Ertragsänderung ab dem Punkt U wird als Gesetz vom abnehmenden Grenzertrag
bezeichnet. Der gesamte Ertragsverlauf (siehe Abb. 10.6) beschreibt das klassische
Ertragsgesetz.
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Abb. 10.6: Ertragsfunktion (10.12)

Historische Anmerkung: Das Gesetz vom abnehmenden Ertragszuwachs ist von
dem preußischen Nationalökonom Johann Heinrich von Thünen in der ersten Hälfte
des 19. Jahrhunderts zunächst für die Landwirtschaft entwickelt und empirisch über-
prüft worden. Inzwischen haben empirische Untersuchungen im Bereich der indu-
striellen Produktion gezeigt, dass es im Rahmen der von den Industrieunternehmen
als normal angesehenen Kapazität in der Regel keine Rolle spielt; denn der Punkt

1 Dass es sich hier tatsächlich um ein Maximum handelt, muss mit der zweiten Ableitung

überprüft werden. Es muss ȳ′′ = x3 f ′′(x)−2x
(
x f ′(x)− f (x)

)

x4 < 0 im Punkt f ′(x) = f (x)
x gelten.

In diesem Punkt ist x f ′(x)− f (x) = 0. Also muss f ′′(x) < 0 sein, damit ȳ′′ < 0 gilt. Das
Maximum der Durchschnittsfunktion muss also im Bereich abnehmender Grenzerträge lie-
gen.
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U, von dem ab das Gesetz vom abnehmenden Ertragszuwachs wirksam ist, wird hier
meist erst bei Ausweitung der Produktion über die normale Kapazität hinaus erreicht.
Wenn – wie in der Praxis üblich – die Einsatzmengen mehrerer Produktionsfaktoren
innerhalb normaler Betriebskapazitäten verändert werden, zeigen sich bei industriel-
ler Produktion eher lineare Produktionsfunktionen.

Viele Ökonomen glaubten, dass aufgrund des abnehmenden Ertragszuwachses
sich der Produktionszuwachs verlangsamen würde. Robert Thomas Malthus progno-
stizierte eine Hungerkatastrophe, weil einerseits die Bevölkerung geometrisch und
andererseits aufgrund des abnehmenden Arbeitsertragszuwachses die Nahrungsmit-
telproduktion nur arithmetisch wachse. In der industriellen Revolution nahm man an,
dass wegen des vermehrt eingesetzten Kapitals und des damit verbundenen abneh-
menden Grenzertrags des Kapitals der Produktionzuwachs bald stagnieren würde.
Dass dies nicht eintrat, lag daran, dass die Ökonomen den technischen Fortschritt
unterschätzten. Durch diesen verschiebt sich die Kurve der Produktion in Abhängig-
keit des Produktionsfaktors nach oben, so dass der Produktionsfaktor Arbeit bzw.
Kapital immer produktiver wurde.

10.8.2 Beziehung zwischen Grenzerlös und Preis

Die Funktion f (x) bezeichnet nun eine Preis-Absatz-Funktion (price sales functi-
on). Sie wird in diesem Abschnitt überwiegend mit p(x) benannt. Der Funktionswert
ist der Preis pro Stück p, da er den Preis für die verkaufte Menge x liefert. Die Ver-
änderliche x gibt hier also die abgesetzte Menge an. Die Preis-Absatz-Funktion ist
die Beziehung zwischen Preis und Menge aus Sicht des Anbieters (siehe Abb. 10.7).

p= f (x) = p(x) für x> 0 (10.13)

Es wird unterstellt, dass mit abnehmender Menge (Verknappung des Angebots)
der Preis zunimmt. Mathematisch formuliert bedeutet dies, dass die erste Ableitung
der Funktion negativ ist.

p′(x)< 0 (10.14)

Betrachtet man die Umkehrfunktion von (10.13)

x= f−1(p) = x(p) für p> 0,

erhält man die Nachfragefunktion (demand function). Sie wird so bezeichnet, weil
hier der Absatz aus Sicht des Nachfragers in Abhängigkeit des Preises dargestellt
ist. Der Preis ist für den Nachfrager gesetzt. Der Funktion unterstellt man ebenfalls
einen monoton fallenden Verlauf.

x′(p)< 0

Die Erlösfunktion (revenue function) ist die verkaufte Menge mal dem Preis, also

E(x) = p(x)x
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Abb. 10.7: Preis-Absatz-Funktion

Die Preis-Absatz-Funktion kann man somit auch als Durchschnittserlösfunkti-
on (average revenue function) bezeichnen, da

Ē(x) =
E(x)
x

= p(x)

gilt. Der Durchschnittserlös ist nun aber nichts anderes als der Preis des entsprechen-
den Guts. Es gilt also Ē(x) = p.

Differenziert man die Erlösfunktion

E ′(x) = p′(x)x+ p(x) (10.15)

erhält man die so genannteGrenzerlösfunktion (marginal revenue function).
Betrachtet man nun die Differenz von Grenzerlös und Durchschnittserlös (dem

Preis)
E ′(x)− p(x) = p′(x)x, (10.16)

so ergibt sich als Ergebnis der Anstieg der Durchschnittserlösfunktion p′(x) multipli-
ziert mit der Menge x> 0. Die Steigung der Preis-Absatz-Funktion wird als negativ
angenommen (p′(x)< 0), so dass wegen x> 0 dann

p′(x)x< 0 (10.17)

gelten muss. Die Differenz zwischen Grenzerlös und Preis ist also negativ, so dass
der Preis durchweg größer als der Grenzerlös ist.
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E ′(x)− p(x)< 0 ⇔ E ′(x)< p(x) (10.18)

Dies ist die Marktsituation, wenn keine vollkommene Konkurrenz (monopolistic
competition) vorherrscht. Nur dann kann der Anbieter über die Menge den Preis
beeinflussen (siehe Abb. 10.7). Die Preis-Absatz-Funktion ist negativ geneigt. Dies
bedeutet, dass eine höhere Menge nur zu einem niedrigeren Preis absatzbar ist. Somit
geht der Verkauf einer weiteren Einheit mit der gleichzeitigen Senkung des Preises
einher und zwar nicht nur für die Grenzeinheit, sondern für die gesamte verkaufte
Menge, da der Preis für jede Einheit gleich ist. Der zusätzlich erzielte Erlös beim
Verkauf einer weiteren Einheit (Grenzerlös) ist daher niedriger als der ursprüngliche
Preis (Durchschnittserlös).

Als weiteres ergibt sich, dass die Grenzerlösfunktion (10.15) wegen (10.17) stets
unterhalb der Preis-Absatz-Funktion verläuft (siehe Abb. 10.9). Im Extremfall liegt
die Situation eines Angebotsmonopolisten vor, der den Markt konkurrenzlos be-
herrscht.

Bei vollkommener Konkurrenz (Wettbewerbssituation) (perfect competition)
wird davon ausgegangen, dass der Anbieter keine Marktmacht und damit keine Ein-
wirkung auf den Preis ausüben kann. Der individuelle Anbieter kann durch die Men-
ge den Marktpreis im Modell der vollkommenen Konkurrenz nicht beeinflussen. Ei-
ne Preissenkung oder Preiserhöhung gegenüber dem Marktpreis ist nicht möglich.
Eine Preiserhöhung führt in der Theorie nach zu einer Absatzmenge von Null. Kein
Käufer ist bereit bei homogenen Gütern einen Preis oberhalb des Marktpreises zu
zahlen. Eine Preissenkung ist nicht möglich, weil der Marktpreis der niedrigste pro-
fitable Preis ist. Daher ist eine Preissenkung mit Verlusten verbunden, die nicht kom-
pensiert werden können. Die Preis-Absatz-Funktion verläuft dann horizontal und der
Preis ist unabhängig von der Menge x. Es gilt p(x) = pMarkt = konstant und somit
p′(x) = 0, so dass der Grenzerlös gleich dem Preis ist.

E(x) = pMarkt x ⇒ E ′(x) = pMarkt ⇔ E ′(x)− pMarkt = 0

10.8.3 Kostenfunktion

Die mikroökonomische Kostentheorie konzentriert sich im Allgemeinen darauf, ana-
lytische Konzepte einer betrieblichenKostenfunktion (cost function) zu entwickeln,
bei der die gesamten Kosten der betrieblichen Produktion in Abhängigkeit von der
Produktionsmenge betrachtet werden. Die kurzfristige Kostentheorie hebt im Beson-
deren die Unterscheidung zwischen variablen und fixen Kosten hervor.

K(x) = Kvariabel(x)+Kfix

Fixe Kosten sind Kosten, die im Zusammenhang mit kurzfristig gegebenen Produk-
tionsfaktoren entstehen. Sie fallen in bestimmter Höhe an, unabhängig von der Höhe
der kurzfristig geplanten Produktionsmenge. Typische Fixkosten bilden Mieten und
Zinsen sowie zeitabhängige Abschreibungen.

Die Höhe der variablen Kosten hingegen verändert sich mit der Produktionsmen-
ge bzw. mit dem Einsatz des variablen Produktionsfaktors. Typische variable Kosten
sind Rohstoff- und Materialkosten sowie Arbeitskosten.
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Der Verlauf der variablen Kosten wird aus der Ertragsfunktion (Produktionsfunk-
tion) bestimmt. Die Kostenfunktion und die Ertragsfunktion stehen in einer Dualität
zueinander. Aus der Ertragsfunktion ergibt sich die Kostenfunktion und umgekehrt.
Wird das in Kapitel 10.8.1 ausgeführte Ertragsgesetz angenommen, so steigt der Er-
trag im Bereich bis zum Punkt W überproportional. Bewertet man den Faktorein-
satz, so ergibt sich, dass die Kosten hier langsamer zunehmen als der Ertrag. Ab dem
Punkt W steigt der Ertrag unterproportional an, was bedeutet, dass die Kosten über-
proportional ansteigen. Die Kostenfunktion weist daher einen s-förmigen Verlauf auf
(siehe Abb. 10.8).

Eine Kostenfunktion beschreibt die Ursache-Wirkungsbeziehung zwischen der
Ausbringungsmenge x (als Ursache) und den aufzuwendenden KostenK, die sich aus
dem mit den Preisen bewerteten Produktionsfaktorverbrauch (als Wirkung) ergeben.

Der Begriff der Grenzkosten (marginal costs) ist der Schlüssel zum Verständnis
der Frage, wie viel ein Unternehmen zu produzieren und zu verkaufen bereit ist.
Als Grenzkosten werden die Kostenänderungen bezeichnet, die bei einer Erhöhung
der Produktionsmenge um eine (unendlich kleine = infinitesimale) Einheit entstehen.
Die Fixkosten beeinflussen die Grenzkosten nicht.

K′(x) =
dK(x)

dx

Beispiel 10.23. Es wird die Kostenfunktion

K(x) = 0.04x3 − 0.96x2+10x+ 2 (10.19)

angenommen, die die Grenzkostenfunktion

K′(x) = 0.12x2 −1.92x+ 10

besitzt. ☼

Die in Abb. 10.8 dargestellte Kostenfunktion aus Beispiel 10.23 zeigt den typi-
schen Verlauf der Grenzkosten einer ertragsgesetzlichen Kostenfunktion eines Ein-
Produkt-Unternehmens. Die Grenzkosten sinken zunächst mit steigender Produkt-
menge, solange die Gesamtkosten (variable Kosten) degressiv steigen. Nach dem
Wendepunkt der Kostenfunktion steigen die Grenzkosten, die Gesamtkosten nehmen
progressiv zu. Der Wendepunkt der Kostenfunktion liegt im Minimum der Grenzko-
sten (in Abb. 10.8 bei x= 8). Diese Stelle wird auch als Schwelle des Ertragsgeset-
zes bezeichnet.

Die Durchschnittskosten (average costs) werden auch als Stückkosten der Pro-
duktionsmenge bezeichnet. Sie lassen sich unmittelbar aus dem Verlauf der gesamten
Kosten mit Bezug auf die jeweiligen Produktionsmengen bestimmen.

K̄(x) =
K(x)
x

Beispiel 10.24. Die obige Kostenfunktion (10.19) besitzt die Durchschnittskosten-
funktion
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K̄(x) = 0.04x2 −0.96x+10+
2
x

☼

Die Kurve der Durchschnittskosten zeigt bei Annahme des Ertragsgesetzes eben-
falls einen typischen u-förmigen Verlauf, der sich aus den Beziehungen zwischen
Grenz- und Durchschnittsgrößen herleiten lässt. Sind die Grenzkosten kleiner als die
Durchschnittskosten, so folgt eine Abnahme der Durchschnittskosten mit steigender
Produktionsmenge, da jede zusätzlich produzierte Einheit günstiger erstellt werden
kann. Sind die Grenzkosten größer als die Durchschnittskosten, so folgt eine Zunah-
me der Durchschnittskosten. Sind die Grenzkosten gleich den Durchschnittskosten,
so ist das Minimum der Durchschnittskosten erreicht (siehe Punkt U in Abb. 10.8).

Die Ertragsfunktion und die Kostenfunktion stehen in einem Umkehrverhältnis
zueinander. Mit der Produktionsfunktion ist auch die Kostenfunktion festgelegt und
umgekehrt. Daher ist der Punkt U in Abb. 10.8 gleich dem in Abb. 10.6 und manife-
stiert die Bedeutung dieses Punktes.

Es ist jedoch aufgrund der Funktion mathematisch nicht immer möglich eine
Umkehrfunktion zu bestimmen. Die vorliegende Kostenfunktion (10.19) ist daher
nur eine näherungsweise Umkehrfunktion der Ertragsfunktion (10.12). Daher liegt
der Punkt U hier nicht genau bei dem Wert 12, sondern etwas darüber.

Das Minimum der Durchschnittskosten entspricht in der Ertragsfunktion dem
Maximum des Durchschnittsertrags. Die ökonomische Bedeutung dieses Punkts
wird nun deutlich. Das Unternehmen wird also bestrebt sein, den Bereich fallender
Durchschnittskosten zu verlassen.

Das Minimum der Durchschnittskosten wird auch als der Punkt des Betriebs-
optimums bezeichnet (in Abb. 10.8 bei x = 12.17), weil hier ein Betrieb unter den
gegebenen Bedingungen mit den geringsten Kosten je Produkteinheit produziert. Die
Durchschnittskosten können pro produzierter Einheit nicht weiter zurückgehen, da
jede weitere Einheit höhere zusätzliche Kosten (steigende Grenzkosten) verursacht.
Mathematisch ist das Minimum der Durchschnittskosten durch die Nullsetzung der
ersten Ableitung der Durchschnittsfunktion bestimmt (notwendige Bedingung).

dK̄(x)
dx

=
K′(x)x−K(x)

x2
!
= 0

Die obige Bedingung ist gleichbedeutend mit

K′(x)x−K(x) !
= 0 ⇒ K′(x) =

K(x)
x

= K̄(x)

Die hinreichende Bedingung für ein Minimum ist, dass die zweite Ableitung positiv
ist. Es gilt
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Abb. 10.8: Kostenfunktionen (10.19)

K̄′′(x) =
K′′(x)x3 −2x

(
K′(x)x−K(x))
x4

!
> 0

=
K′′(x)
x

− 2K′(x)
x2 +

2K(x)
x3

=
K′′(x)
x

− 2
x2
(
K′(x)− K̄(x))

⇔ K′′(x)x−2
(
K′(x)− K̄(x)) !

> 0

Es gilt stets x > 0. Für ein Minimum muss K̄′′(x) > 0 sein. Die notwendige Bedin-
gung lautet K′(x) = K̄(x). Damit entfällt der hintere Teil der Ableitung. Es muss
K′′(x) > 0 sein, damit die hinreichende Bedingung erfüllt wird. Wenn K′(x) anstei-
gende verläuft, dann ist K′′(x) > 0 und somit K′′(x)x > 0. Dies bedeutet, dass das
Minimum der Durchschnittskostenfunktion im Bereich steigender Grenzkosten lie-
gen muss.

10.8.4 Individuelle Angebotsplanung unter vollkommener Konkurrenz

Das Güterangebot eines Unternehmen wird durch dessen Kostenfunktion und den
Markt bestimmt. Die Absatz- und Beschaffungsmärkte des Unternehmens sollen
Märkte mit vollkommener Konkurrenz sein. Diese Marktform wird auch als Polypol
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bezeichnet. Das sind Märkte, auf denen der Unternehmer als einer von vielen an-
bietet oder nachfragt, so dass er durch seine Marktaktion nicht das Marktgeschehen
bestimmen kann. Damit sind der Verkaufspreis des Guts und die Faktorpreise für
den Unternehmer gegebene Größen. Der Unternehmer kann auf dem Absatzmarkt
bei gegebenen Produktpreis jede beliebige Menge absetzen. Er wird die abzusetzt-
ende Menge dann so festlegen, dass sein Gewinn maximiert wird. Man spricht vom
Mengenanpasser auf dem Absatzmarkt.

Der Gewinn des Unternehmens ist die Differenz aus Erlös (Umsatz) und Kos-
ten. Die Erlösfunktion ist dabei das Produkt aus Preis und Menge. Der Marktpreis
ist ein Datum, das durch den Markt bestimmt wird und nicht durch den Anbieter
beeinflussbar ist. Der Preis ist daher keine Funktion der Menge!

E(x) = x pMarkt E ′(x) = pMarkt (10.20)

Angenommen, der Unternehmer bietet eine bestimmte Produktmenge x auf dem
Markt an und er produziert zu der oben beschriebenen s-förmigen Kostenfunktion.
Bei dieser Menge erzielt er einen Erlös in Höhe von x pMarkt und hat Kosten in Höhe
von K(x). Wie kann der Unternehmer feststellen, ob x seine gewinnmaximale Menge
ist? Da das Unternehmensziel die Gewinnmaximierung ist, überlegt er, wie sich der
Gewinn ändert, wenn die Menge x um eine (genauer um eine infinitesimal kleine)
Einheit variiert. Wird die Menge x um Δx= 1 erhöht, so erhöht sich der Absatz we-
gen der Erlösfunktion (10.20) proportional, bei Δx = 1 also genau um pMarkt. Die
Mengenerhöhung ist für den Unternehmer auch mit einer Kostenerhöhung verbun-
den, und zwar in Höhe der Grenzkosten. Er wird eine Gewinnerhöhung genau dann
erhalten, wenn der zusätzliche Erlös (Grenzerlös) größer ausfällt als die Zusatzkosten
(Grenzkosten) der Produktion. Der zusätzliche Erlös entspricht gerade dem Preis:
Grenzerlös = Preis. Er wird also solange eine Produktionsausweitung vornehmen,
bis die Grenzkosten den Grenzerlös erreicht haben. Daraus folgt für den Unterneh-
mer, dass sein gewinnmaximales Angebot bei der Menge liegt, bei der Grenzkosten =
Grenzerlös bzw. hier Grenzkosten = Preis gilt. Und jetzt die formale Herleitung: Die
notwendige Bedingung für das Gewinnmaximum liegt vor, wenn der Grenzgewinn
(1. Ableitung der Gewinnfunktion) gleich Null ist.

G(x) = x pMarkt−K(x)
dG(x)

dx
=

dE(x)
dx

− dK(x)
dx

!
= 0

Daraus folgt:

dE(x)
dx

=
dK(x)

dx

Da

dE(x)
dx

= pMarkt
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gilt, folgt daraus

dK(x)
dx

!
= pMarkt

Beispiel 10.25. Für die Kostenfunktion

K(x) = 0.04x3 − 0.96x2+10x+ 2

gilt die Grenzkostenfunktion

K′(x) = 0.12x2 − 1.92x+10

Aus der Bedingung Grenzkosten = Grenzerlös, wobei der Grenzerlös aufgrund der
Annahme der vollkommenen Konkurrenz dem Marktpreis pMarkt entspricht, der mit
pMarkt = 12e angenommen werden soll, ergibt sich folgende Beziehung:

0.12x2 −1.92x+ 10 !
= 12

x2 − 16x− 2
0.12

!
= 0

x1,2 = 8±
√

82 +
2

0.12
x1 ≈ 16.98; (x2 ≈−0.98)

Die gewinnmaximale Menge ist x1 = 16.98. Der maximale Gewinn beträgt damit:
Gmax(16.98) = 94.92e (siehe Abb. 10.8). Für ein Maximum muss die 2. Ableitung
der Gewinnfunktion an der Stelle x1 negativ sein.

G′′(x1) =−K′′(x1) =−(0.24× 16.98−1.92)< 0

☼

Bei einem Preis oberhalb des Minimums der Durchschnittskosten erzielt das Un-
ternehmen einen Gewinn, weil ab hier

p= Ē(x)> K̄(x)

gilt. Der Stückgewinn beträgt

p− K̄(x) = K′(x)− K̄(x)> 0

Man kann den Stückgewinn als Gewinnaufschlag auf die Durchschnittskosten ver-
stehen.

Das Minimum der Durchschnittskosten (K′(x) = K̄(x))wird daher auch als Ge-
winnschwelle (break even point) bezeichnet. Fällt der Preis unter das Minimum der
Durchschnittskosten, ist kein Gewinn mehr möglich. Daher wird diese Grenze auch



10.8 Ökonomische Anwendung 263

als langfristige Preisuntergrenze bezeichnet. Das Minimum der variablen Durch-
schnittskosten wird als kurzfristige Preisuntergrenze bezeichnet, weil unterhalb eines
solchen Preises nicht einmal mehr die variablen Kosten gedeckt sind.

Sind die Grenzkosten gleich dem Marktpreis, so erzielt das Unternehmen den
maximalen Gewinn. Einen niedrigeren Preis wird das Unternehmen wegen der Ge-
winneinbußen nicht erzielen wollen und einen höheren Preis kann das Unternehmen
am Markt nicht durchsetzen. Die Grenzkostenkurve ab dem Minimum der Durch-
schnittskosten ist daher die individuelle Angebotskurve (Angebotsplanung) des Un-
ternehmens bei unterschiedlichen Marktpreisen.

Die Preis = Grenzkosten-Regel liefert eine eindeutige Anweisung für die An-
gebots- und Produktionsplanung eines Ein-Produkt-Unternehmens bei alternativ ge-
gebenen Marktpreisen. Die Möglichkeit der Lagerhaltung wird hier vernachlässigt.
Die Angebotsplanung hat sich einerseits an den Marktbedingungen (Marktpreisen)
zu orientieren, andererseits an der Höhe der Grenzkosten der Produktion des Unter-
nehmens.

Unter Ceteris-paribus-Bedingungen wird ein Unternehmen bei höheren Markt-
preisen die Produktion kurzfristig erhöhen. Das Unternehmen wird sich folglich nach
den gegebenen Annahmen als Mengenanpasser verhalten und seine Angebotsmenge
entlang des Bereichs zunehmender Grenzkosten steigern. In der Praxis ist eine sol-
che Grenzkalkulation jedoch häufig zu kompliziert, insbesondere da die Grenzkosten
oft gar nicht bekannt sind. Anbieter setzen ihre Preise deshalb häufig so, dass sie auf
die Durchschnittskosten (Stückkosten) der Produktion, die bei normaler Kapazitäts-
auslastung anfallen, einen Gewinnaufschlag erheben.

Die (horizontale) Aggregation der einzelnen Mengenangebote der Unternehmen
(Grenzkostenkurven) wird als Marktangebot bezeichnet. Da jeder Unternehmer mit
zunehmendem Marktpreis mehr herstellen wird und es auch insgesamt mehr Unter-
nehmen gibt, die in den Markt eintreten, ist die Marktangebotsfunktion eine Funktion
mit positiver Steigung zwischen Preis und Menge. Ferner wird es bei höherem Preis
auch mehr Marktanbieter geben, so dass sich dadurch die angebotene Menge erhöht.
Es wird unterstellt, dass die Unternehmen unabhängig voneinander handeln. Kosten-
änderungen durch veränderte Faktorpreise verschieben die Grenzkostenkurven der
einzelnen Unternehmen. Dadurch ergeben sich bei gegebenen Produktpreisen Ver-
schiebungen der individuellen Angebotskurven und folglich auch der aggregierten
Angebotskurve des Markts. Auf die Probleme der Aggregation wird hier nicht wei-
ter eingegangen.

10.8.5 Angebotsverhalten eines Monopolisten

Nach der Preisbildung im Polypol folgt in diesem Abschnitt das Anbieterverhal-
ten im Monopol. Das Monopol bildet eine gegensätzliche Marktform zum Polypol:
Es existiert nur ein Anbieter, welcher Marktmacht besitzt und durch sein Verhalten
die Angebotsmenge und darüber den Marktpreis nachhaltig beeinflussen kann. For-
mal zeigt sich dies darin, dass die Preis-Absatz-Funktion nicht mehr horizontal, son-
dern fallend verläuft (siehe Gleichung (10.14) beschrieben. Der Marktpreis ist daher
für den Monopolisten nicht mehr vorgegeben. Die Marktmacht wird aber durch die
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Nachfrageseite begrenzt. Daher ist es dem Monopolisten nicht möglich, Menge und
Preis gleichzeitig festzulegen! Der Monopolist sucht den gewinnmaximalen Preis,
indem er seine Menge entlang der Preis-Absatz-Funktion variiert.

Auch für den Monopolisten gilt die Bedingung, dass das Gewinnmaximum dort
liegt, wo Grenzerlös und Grenzkosten identisch sind. Doch ist der Grenzerlös für
den Monopolisten kein Datum mehr, sondern durch das Produkt aus Preis-Absatz-
Funktion und Menge eine Funktion in Abhängigkeit der Menge.

E(x) = x p(x)

Die erste Ableitung der Erlösfunktion ergibt sich dann aus der Produktregel.

E ′(x) = x p′(x)+ p(x)

Da p′(x) < 0 gilt, ist der Grenzerlös des Monopolisten geringer als der erzielte
Preis p(x). Der Monopolist muss für jede zusätzlich verkaufte Einheit den Preis um
p′(x) senken. Er passt seine Produktion entsprechend der Preisabsatzfunktion an.
Unter vollkommener Konkurrenz hingegen ändert sich der Erlös proportional mit
der Menge x und die Produktion wird ausschließlich durch die Grenzkostenfunktion
bestimmt.

Den größten Gewinn erzielt der Monopolist an der Stelle, an der der Abstand
zwischen Erlös und Kosten maximal ist. An dieser Stelle ist die Steigung der Er-
löskurve gleich der Steigung der Kostenfunktion, d. h. der Grenzerlös ist gleich den
Grenzkosten.

G′(x) = E ′(x)−K′(x) !
= 0 ⇒ E ′(x) !

= K′(x) (10.21)

Beispiel 10.26. Es wird für einen Angebotsmonopolisten (supply monopolist) eine
einfache lineare Preis-Absatz-Funkion

p(x) = 10− 0.5 x für 0 < x< 20 (10.22)

unterstellt, um die Beziehung zwischen Preis und Grenzerlös weiter zu untersuchen.
Der Gesamterlös ist dann gleich

E(x) = 10x− 0.5x2

und als Grenzerlös ergibt sich

E ′(x) = 10− x.

Die Preis-Absatz-Funktion und der Grenzerlös sind Geraden, die die Ordinate im
selben Punkt schneiden. Die Gesamterlösfunktion ist eine Parabel (siehe Abb. 10.9).

Als Kostenfunktion wird

K(x) = 0.04x3 − 0.96x2+10x+2
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angenommen. Die Grenzkostenfunktion ist somit

K′(x) = 0.12x2 − 1.92x+ 10

Den maximalen Gewinn erzielt das Monopol, wenn die Bedingung (10.21) erfüllt
ist. Die gewinnmaximale Menge bestimmt sich somit aus

10− x !
= 0.12x2 − 1.92x+ 10 ⇒ xc = 7.67

Der Punkt xc auf der Preis-Absatz-Funktion wird als Cournotscher Punkt (in Abb.
10.9 mit C) bezeichnet. Aus ihm wird der gewinnmaximale Preis über die Preis-
Absatz-Funktion bestimmt (Monopolpreis).

pMonopol = p(xc) = 10− 0.5× 7.67= 6.17e

Der maximale Gewinn beträgt – sofern die hinreichende Bedingung erfüllt ist – also

Gmax(xc) = 10× 7.67− 0.5×7.672

− (0.04× 7.673− 0.96× 7.672+10×7.67+2
)

= 7.01e

Die zweite Ableitung der Gewinnfunktion ergibt folgendes

G′′(xc) = E ′′(xc)−K′′(xc)
=−1− 0.24× 7.67+1.92
=−0.9208< 0

Es handelt sich also tatsächlich um ein Gewinnmaximum. ☼

Der Monopolist kann seinen Absatz nur steigern, wenn er mit dem Preis herun-
ter geht. Der Grenzerlös ist daher kleiner als der Preis. Für die höhere Absatzmen-
ge erhält er einen niedrigeren Preis. Die Grenzerlösfunktion verläuft deshalb in ih-
rem ganzen Bereich unterhalb der Preis-Absatz-Funktion (siehe Gleichung (10.18)).
Bei einer linearen Preis-Absatz-Funktion wie in der unteren Grafik der Abb. 10.9
dargestellt, besitzt die Grenzerlösfunktion die doppelte Steigung der Preis-Absatz-
Funktion. Durch den Punkt, in dem sich Grenzerlösfunktion und Grenzkostenfunk-
tion schneiden, ist die gewinnmaximale Menge bestimmt. Über die Preis-Absatz-
Funktion wird für diese Menge der Monopolpreis bestimmt. Der Punkt auf der Preis-
Absatz-Funktion wird als Cournotscher Punkt bezeichnet. Dieser Punkt liegt stets
im unelastischen Bereich der Preis-Absatz-Funktion, also im elastischen Bereich der
Nachfragefunktion (siehe nächstes Kapitel 10.8.6). Nur in diesem Bereich besitzt
der Monopolist die Möglichkeit, mit einer Preiserhöhung auch eine Erlössteigerung
zu erzielen (siehe Beispiel 10.29). Die Gewinnfunktion (siehe obere Grafik in Abb.
10.9) besitzt an der Stelle xc = 7.67 ihr Maximum; der Abstand zwischen Erlös- und
Kostenfunktion ist maximal.

Aus der Bedingung Grenzkosten = Grenzerlös ergibt sich
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Abb. 10.9: Angebotsverhalten eines Angebotsmonopolisten

x p′(x)+ p(x) !
= K′(x)

Da x p′(x)< 0 angenommen wird (fallende Preis-Absatz-Funktion), liegt der Mono-
polreis oberhalb der Grenzkosten. Wegen der notwendigen Bedingung für ein Maxi-
mum gilt im Gewinnmaximum des Monopols dann p(x)> K′(x).

Gilt K̄(x)> K′(x), dann kann in einer Wettbewerbssituation nur mit Verlust pro-
duziert werden, weil pMarkt = E ′(x) !

=K′(x)< K̄(x) gilt (siehe Kapitel 10.8.4). Es ist
der Bereich zunehmender Grenzerträge (abnehmender Grenzkosten). Die Differenz
p− K̄(x) ist immer der Stückgewinn. Im Fall der vollkommenen Konkurrenz ent-
spricht dies der Differenz K′(x)− K̄(x). Das Monopol kann in dem Bereich zuneh-
mender Grenzkosten produzieren, weil es den Betrag K′(x)− K̄(x)< 0 (Stückverlust
unter Konkurrenz) aufgrund der Marktstellung mit einen höheren Preis kompensie-
ren kann.

Würde sich ein Monopolist wie ein Anbieter bei vollkommener Konkurrenz ver-
halten, so würde er der Preis = Grenzkosten-Regel folgen und die Menge x= 11.83
zum Preis p= 4.08e anbieten (siehe Abb. 10.9). Die Nachfragesituation würde dann
besser sein. Aus diesem Grund wird der Monopolist kritisch beurteilt: Er produziert
weniger und verlangt einen höheren Preis als Anbieter unter Konkurrenzbedingun-
gen, sofern eine Gleichheit der aggregierten Grenzkostenfunktionen unter Konkur-
renz und der Grenzkostenkurve des Monopolisten angenommen wird. Diese Annah-
me ist jedoch realitätsfern. Ferner ist die Situation hier dadurch gekennzeichnet, dass
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die Menge x = 11.83 vom Monopolisten nur mit Verlust hergestellt werden kann.
Der Durchschnittserlös (Preis) liegt unter den Durchschnittskosten. Dies muss nicht
so sein, ist aber in monopolistischen Märkten häufig der Fall. Der Monopolist steht ja
nicht unter dem Wettbewerbsdruck, stets die Produktivität zu erhöhen. Diese Über-
legungen gehören zu den Grundlagen der mikroökonomischen Theorie (vgl. [3]).

10.8.6 Elastizitäten

Zur Beschreibung der Konkurrenzsituationen auf Märkten verwendet man häufig die
Elastizitäten. Im Fall vollkommener Konkurrenz ist der Preis vollkommen unela-
stisch gegenüber Absatzänderungen.

Beispiel 10.27. Ein Fußballverein will seine Einnahmen erhöhen. Dazu muss er über-
legen, wie stark die Nachfrage auf die Preiserhöhung reagiert. Man kann vermuten,
dass sich die Preiserhöhung dann lohnt, wenn eine sehr interessante Begegnung an-
steht. Die Nachfrage wird dann „kaum“ auf die Preiserhöhung reagieren. ☼

Allgemein kann man die Elastizität (elasticity) als die Anpassungsfähigkeit ei-
nes ökonomischen Systems an veränderte Bedingungen interpretieren. Im mathema-
tischen Sinn wird darunter ein Maß für die (infinitesimale kleine absolute) relative
Änderung einer ökonomischen Größe y im Verhältnis zur (infinitesimalen kleinen ab-
soluten) relativen Veränderung des sie bestimmenden Einflussfaktors x verstanden.
Für die Funktion y= f (x) ist die Elastizität durch

εy(x) =

dy
y

dx
x

=

dy
dx
y
x

=
y′

ȳ
(10.23)

definiert. Die Berechnung der Elastizität setzt voraus, dass die Funktion y= f (x) im
betrachteten Intervall bekannt und differenzierbar ist. Die Elastizität ist eine Funktion
der unabhängigen Veränderlichen. Sie bezieht sich daher immer auf einen Punkt der
betrachteten Kurve; daher kommt auch die Bezeichnung Punktelastizität. Da bei der
Elastizität relative Änderungen betrachtet werden, ist sie dimensionslos.

Mit der Logarithmusfunktion kann die Elastizität wie folgt berechnet werden:

εy(x) =
dlny
dlnx

(10.24)

Dies gilt aufgrund der Tatsache, dass die Ableitung des natürlichen Logarithmus

d lnx
dx

=
1
x

ist. Folglich ist d lnx= dx
x . Ersetzt man ebenfalls die relative Änderung von y durch

d lny = dy
y in der Elastizität (10.23), so erhält man die Beziehung (10.24). Dies ist

der Grund, warum in vielen Ökonomielehrbüchern die Variablen in logarithmierten
Größen angegeben werden.



268 10 Differentialrechnung für Funktionen mit einer Variable

Der im Beispiel 10.27 angesprochene Zusammenhang zwischen einer Preisände-
rung und der damit resultierenden Mengenänderung wird als Elastizität bezeichnet.
Eine Elastizität misst generell die Stärke einer Ursache-Wirkungsbeziehung unter
Ceteris-paribus-Bedingungen. Sie gibt den relativen Einfluss der ursächlichen Größe
auf die Wirkungsgröße an. Da es hier zunächst um den besonderen Kausalbezug zwi-
schen der sich ändernden Nachfragemenge Δx

x (als Wirkung) und einer Änderung des
Preises Δ p

p bei diesem Gut (als Ursache) geht, wird die Elastizität als Preiselastizität
der Nachfrage (elasticity of demand)

εx(p) =
x′(p)
x̄(p)

bezeichnet. Die Funktion x(p) bezeichnet die Nachfragefunktion. Die Preiselastizi-
tät der Nachfrage gibt (näherungsweise) an, um wie viel Prozent sich die Nachfra-
gemenge eines Guts ändert, wenn die dafür ursächliche Preisänderung ein Prozent
beträgt. Die Preiselastizität der Nachfrage ist im Regelfall negativ, weil eine Preis-
erhöhung mit einem Rückgang der nachgefragten Menge verbunden ist. Daher be-
trachtet man häufig nur den Betrag der Preiselastizität der Nachfrage: |εx(p)|.

Die Elastizität des Preises bezüglich der Nachfrage wird auch als Nachfrageela-
stizität des Preises bezeichnet. Sie bezieht sich auf die Preis-Absatz-Funktion.

εp(x) =
p′(x)
p̄(x)

Da die Nachfragefunktion x= f−1(p) formal die Umkehrfunktion der Preis-Absatz-
Funktion p= f (x) = p(x) ist und die Ableitung einer Umkehrfunktion der Kehrwert
der Ableitung der Stammfunktion (siehe Abschnitt 10.5.1), besteht folgender Zu-
sammenhang zwischen den beiden Elastizitäten:

εp(x) =
1

εx(p)

Man unterscheidet Elastizitäten, die betragsmäßig größer als Eins

|εy(x)|> 1

und betragsmäßig kleiner Eins
|εy(x)|< 1

sind. Im ersten Fall spricht man von einer elastischen Reaktion, weil bei einer Än-
derung zum Beispiel von Δx

x = 1 Prozent eine mehr als einprozentige Funktionsände-
rung verbunden ist. Im zweiten Fall spricht man von einer unelastischen Reaktion,
weil eine einprozentige Änderung eine Funktionsänderung von weniger als einem
Prozent verursacht. Als Grenzfälle der Preiselastizität der Nachfrage ergeben sich
dann:

• vollkommen elastische Nachfrage (|εx(p)| = ∞), d. h., eine einprozentige Preis-
änderung bewirkt eine unendliche große Mengenänderung;
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• vollkommen unelastische Nachfrage (|εx(p)| = 0), d. h., eine Preisänderung be-
wirkt keine Mengenänderung.

Bei |εx(p)|= 1 liegt der Übergang zwischen elastischer und unelastischer Nach-
frage. Eine einprozentige Preisänderung bewirkt eine einprozentige Mengenände-
rung.

Lineare Funktionen weisen immer einen elastischen und einen unelastischen Be-
reich auf. Für nicht lineare Funktionen gilt dies nicht immer. Es existieren zum Bei-
spiel Funktionen, die im gesamten Verlauf stets die gleiche Elastizität aufweisen.

Beispiel 10.28. Die Funktion

y= x−λ für λ ∈R+

besitzt die Elastizität
εy(x) =−λ

☼

Wenden wir uns nun wieder der bereits bekannten Nachfragefunktion zu, um die
Preiselastizität der Nachfrage mit einem Zahlenbeispiel zu interpretieren.

Beispiel 10.29. Ausgehend von folgender Nachfragefunktion (sie ist die Umkehr-
funktion von der Preis-Absatz-Funktion (10.22) des Monopolisten im Beispiel 10.26)

x= 20−2 p für 0 ≤ p≤ 10 (10.25)

wird bei einer Preiserhöhung von 1e auf 2e ein Nachgefragerückgang von 18 Men-
geneinheiten (ME) auf 16 ME festgestellt. Die Preiselastizität der Nachfrage beträgt
dann:

εx(p= 1) =
−2

20−2 p
p

=−1
9

Die Nachfragereaktion wird hier als unelastisch bezeichnet, weil sich der Preis relativ
stärker verändert hat als die Nachfrage. Bei einer einprozentigen Preisänderung führt
dann eine Preiselastizität von − 1

9 zu einer Mengenabnahme von rd. 0.11 Prozent.
Steigt der Preis aber von 8e auf 9e, so sinkt die nachgefragte Menge von 4 ME

auf 2 ME. Die Preiselastizität der Nachfrage fällt auf

εx(8) =−4

An der Stelle p= 8 ist die Preiselastizität elastisch, weil sich der Preis relativ weniger
ändert als die Menge. Bei einer einprozentigen Preisänderung ergibt sich bei einer
Preiselastizität von −4 eine Mengenabnahme von 4 Prozent. Welche Auswirkung
dies auf die Ausgaben hat, wird im Folgenden erläutert.

In der Tabelle 10.1 steht die Nachfragereaktion für den unelastischen und den
elastischen Fall und deren Wirkung auf die Ausgabe (Menge × Preis). Im unelasti-
schen Fall nimmt die Menge bei einer Preissteigerung von 1 Prozent (100 Prozent)
um rund 0.11 Prozent (11 Prozent) ab. Die Menge fällt unterproportional, so dass
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sich die Ausgabe erhöht. Die Vernachlässigung einer infinitesimalen Änderung kann
hier erfolgen, da es sich bei (10.25) um eine lineare Funktion handelt, die ja in jedem
Punkt die gleiche Steigung besitzt.

Tabelle 10.1: Preiselastizität der Nachfragefunktion (10.25)
unelastisch elastisch
|εx(1)|= 1

9 |εx(8)|= 4

Preis Menge Ausgabe Preis Menge Ausgabe
1 18 18 8 4 32

1.01 17.98 18.16 8.08 3.84 31.03
2 16 32 9 2 18

Im elastischen Fall verursacht eine Preisteigerung von 1 Prozent (12.5 Prozent)
eine Mengenabnahme von 4 Prozent (4×12.5= 50 Prozent). Die Ausgabe sinkt nun,
weil die Menge überproportional fällt. ☼

Es zeigt sich, dass bei einer unelastischen Nachfrage eine Preiserhöhung eine
Ausgabenerhöhung verursacht. Bei einer elastischen Nachfrage reagiert die Menge
relativ stärker auf die relative Preisänderung. Daher führt dies dann zu einem Aus-
gabenrückgang. Je höher also die Preiselastizität der Nachfrage ist, desto begrenzter
ist der Spielraum, mit einer Preiserhöhung einen Erlöszuwachs zu erzielen.

Der Monopolist aus Beispiel 10.26 produziert im elastischen Bereich der Nach-
fragefunktion (bzw. im unelastischen Bereich der Preis-Absatz-Funktion), weil dann
der Grenzerlös positiv ist. Nur dann erzielt der Monopolist mit einer zusätzlich pro-
duzierten Mengeneinheit und dem damit verbundenen Preisrückgang einen Erlöszu-
wachs. Dieser Zusammenhang wird als Amoroso-Robinson-Beziehung bezeichnet.

E ′(x) = p(x)+ p′(x)x = p(x)
(

1+ εp(x)
)

= p(x)
(

1+
1

εx(p)

)
Amoroso-Robinson-Beziehung

Es gilt E ′(x)> 0, also muss
(

1+ 1
εx(p)

)
> 0 sein. Dies trifft nur zu, wenn εx(p)<−1,

also die Nachfrage elastisch ist, dann gilt
(

1+ 1
εx(p)

)
> 0 und damit E ′(x)> 0.

Beispiel 10.30. Mit den Zahlen aus dem Beispiel 10.26 ergeben sich folgende Ela-
stizitäten:

εx(pc = 6.17) =−1.61 ⇔ εp(xc = 7.67) =−0.62

E ′(7.67) = 6.17
(

1− 1
−1.61

)
= 2.33

☼
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Neben der Preiselastizität der Nachfrage und der Nachfrageelastizität des Prei-
ses werden in der Ökonomie häufig auch eine Kreuzpreiselastizität (siehe Abschnitt
11.3.5), eine Einkommenelastizität und eine Kostenelastizität verwendet.

Übung 10.5. Die Kostenfunktion

K(x) =
√

50x2 +3750 für x> 0

beschreibt den Zusammenhang zwischen der Fertigungsmenge x und den Gesamt-
kosten K(x).

1. Bestimmen Sie die Kostenelastizität als Funktion der Menge x.
2. Wie groß ist die Punktelastizität an der Stelle x= 5?

Übung 10.6. Eine Preis-Absatz-Funktion ist durch die folgende Gerade gegeben:

p(x) = 6− x
2

für 0 < x< 12

Die Kosten K(x) zu der Menge x sind durch das folgende Polynom beschrieben:

K(x) =
1
12
x3 − 3

4
x2 +

13
4
x

1. Bestimmen Sie das Erlösmaximum.
2. Bestimmen Sie das Gewinnmaximum und den dazugehörigen gewinnmaxi-

malen Preis (Cournotscher Punkt).
3. Berechnen Sie die minimalen Stückkosten.
4. Berechnen Sie den maximalen Stückgewinn.
5. Berechnen und interpretieren Sie die Preiselastizität der Nachfrage an der

Stelle x= 3.

Übung 10.7. Berechnen Sie für die Funktion

p(x) = μ x−λ für μ ,λ ∈ R+

die Preiselastizität der Nachfrage.

10.9 Fazit

Die Differentialrechnung analysiert marginale Funktionsänderungen. Mit dem Diffe-
rentialquotienten, der Ableitung einer Funktion, werden Extremstellen einer Funkti-
on bestimmt. Extremstellen sind Minimum, Maximum, Sattelpunkt und Wendepunkt
einer Funktion, die aus den Nullstellen der Ableitungen bestimmbar sind.

In der Ökonomie wird die Differentialrechnung eingesetzt, um bestimmte Markt-
situationen zu analysieren und gewinnmaximale Bedingungen herzuleiten. Die Er-
kenntnisse der Marginalanalyse haben die Grundsätze der marktwirtschaftlichen
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Wirtschaftspolitik erheblich mitbestimmt. Mit Elastizitäten wird die Konkurrenzsi-
tuation auf Märkten untersucht.
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11.1 Vorbemerkung

In vielen Fällen hängen die ökonomischen Größen nicht nur von einer Variablen,
sondern von mehreren Variablen ab. Die in Kapitel 10.8.1 betrachtete Ertragsfunk-
tion wird in der Realität von mehr als nur einem Produktionsfaktor bestimmt sein.
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DOI 10.1007/978-3-642-28575-2_11, © Springer-Verlag Berlin Heidelberg 2012
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Von daher ist es auch in den Wirtschaftswissenschaften notwendig, Funktionen mit
mehreren Variablen zu betrachten. Im folgenden Abschnitt werden allerdings nur
Funktionen mit zwei Variablen behandelt. Folgende neue Symbole kommen in die-
sem Kapitel vor:

x,y Variablen
x1,x2, . . . Variablen
z Funktionswert
∂ partieller Differentialoperator
f ′x erste partielle Ableitung der Funktion f (x, . . .) nach x
H Hessematrix
G() = 0 implizite Funktion der Nebenbedingung
L() Lagrangefunktion
λ Lagrangemultiplikator

11.2 Funktionen mit zwei Variablen

Eine Funktion mit zwei Variablen wird durch

z= f (x,y) für (x,y) ∈D( f )
beschrieben. Sie ist eine eindeutige Abbildung von (aus) dem Produktraum X×Y in
(nach) Z, also bei der Einschränkung auf reelle Zahlen eine Abbildung von R2 nach
R.

Statt x,y wird bei Funktionen mit zwei Variablen häufig die erste Variable mit x1,
die zweite Variable mit x2 und der Funktionswert wieder mit y bezeichnet, insbeson-
dere dann, wenn mehr als zwei Variablen vorliegen.

y= f (x1,x2) für (x1,x2) ∈D( f )
Die Funktion f (x,y) kann als explizite oder implizite Funktion geschrieben wer-

den.

Explizite Funktion z= f (x,y) für (x,y) ∈ D( f )
Implizite Funktion 0 = G(x,y) für (x,y) ∈ D(G)

In einer impliziten Funktion ist die Unterscheidung von abhängiger und unab-
hängiger Variablen zunächst nicht möglich oder sinnvoll. Erst durch die Darstellung
in der nach einer Variablen aufgelösten Form oder durch willkürliche Angabe ist
diese Unterscheidung möglich. Nicht alle implizit gegebenen Funktionen lassen eine
explizite Darstellung zu (siehe zum Beispiel Renditeberechnung).
Beispiel 11.1. Die implizite Funktion G(x,y)

x3 + y3 + x2 y+ y2 x+ x2 + y= 0 x,y ∈R (11.1)

ist weder nach x noch nach y auflösbar. ☼

Unter den Funktionen mit mehreren Variablen stellen die linearen Funktionen
die wichtigste Klasse dar, weil sehr viele ökonomische Zusammenhänge entweder
tatsächlich linear sind oder in erster Näherung als solche angesehen werden können.
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11.2.1 Isoquanten

Funktionen mit zwei Variablen sind Flächen im R3 und somit in der Zeichenebe-
ne nur schwer darstellbar. Am plastischsten wirkt die Darstellung, wenn die Fläche
aus mehreren parallelen Schnittkurven aufgebaut wird. Die Schnittkurven entstehen
durch gedachte Schnitte, die jeweils für x= konst, y= konst oder z= f (x,y) = konst
ausgeführt werden können. Die Schnittkurven mit gleichen Funktionswerten be-
zeichnet man als Isoquanten (siehe Abb. 11.1, rechts unten). Die Funktion in Abb.
11.1 (oben) kann man als Ertragsgebirge interpretieren. Die Variablen x und y sind
dann die Produktionsfaktoren, und der Funktionswert z gibt den Ertrag an. Unter-
stellt man, dass alle Faktorkombinationen des Definitionsbereichs möglich sind, so
liegen die Kombinationen gleichen Ertrags auf der gleichen Höhe. Es handelt sich
um Ertragsisoquanten. Die abgebildete Funktion ist

z= f (x,y) =
3(x2 + y2)

2
− x

3 + y3

16
mit x,y ∈ R
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Abb. 11.1: Schnittkurven

11.2.2 Nullstellen

Bei einer Fläche kann man von einer Nullstelle im eigentlichen Sinn, d. h. von einem
Punkt, nicht mehr sprechen. Jedoch lässt sich das Prinzip der Berechnung übertragen.
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Man erhält durch Nullsetzen des Funktionswerts eine Bestimmungsgleichung

f (x,y) !
= 0,

wobei jedoch diese als geometrischer Ort keinen Punkt, sondern eine Kurve be-
schreibt. Es handelt sich um die Schnittkurve der Fläche mit der x,y Koordinaten-
ebene, also um eine spezielle Isoquante.

11.3 Differenzieren von Funktionen mit zwei Variablen

Die Steigung einer Fläche in einer definierten Richtung ist gleich der Steigung der
Schnittkurve, die bei einem Schnitt in der betreffenden Richtung entsteht. Man kann
bei einer Funktion mit zwei Variablen somit in zwei Richtungen die Steigung ermit-
teln. Ermittelt man die Steigung in x-Richtung, so wird die in y-Richtung als quasi
konstant erachtet. Es wird daher von einem partiellen Differential gesprochen.

11.3.1 Partielles Differential

Die Steigung einer Kurve in der Schnittebene y = konst, d. h. in Richtung der x-
Achse, ist durch den Differentialquotienten

∂ z
∂x

= lim
Δx→0

f (x+Δx,y)− f (x,y)
Δx

beschrieben. Dies ist das erste partielle Differential nach x. Es erfolgt unter der
Bedingung y= konst.

Um zu kennzeichnen, dass nur nach der einen Variablen differenziert wird, wäh-
rend alle übrigen Variablen wie Konstanten zu behandeln sind, schreibt man die Dif-
ferentiale mit einem runden deutschen d: ∂ . Analog kann man die erste partielle
Ableitung auch nach der Variablen y bilden.

∂ z
∂y

= lim
Δy→0

f (x,y+Δy)− f (x,y)
Δy

Hat eine Funktion n unabhängige Variablen, so kann nach jeder Variablen partiell
differentiert werden. Man kürzt die Schreibweise ∂ z

∂x meistens durch f ′x oder z′x bzw.
∂ z
∂y durch f ′y oder z′y ab.

Beispiel 11.2. Die Funktion

z= x2 y für (x,y) ∈R

ist abzuleiten. Zur partiellen Differentiation braucht die Produktregel hier nicht an-
gewendet zu werden.

z′x = 2xy z′y = x
2

☼
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Bei der partiellen Ableitung wird y bzw. x wie eine Konstante behandelt; sie ist
jedoch keine Konstante, sondern nach wie vor eine Variable.

Beispiel 11.3. Weitere Beispiele:

z= xn ym z′x = nxn−1 ym z′y = mxn ym−1

z= exy z′x = yexy z′y = xexy

z= x lny z′x = lny z′y =
x
y

☼

Beispiel 11.4. Welche Steigung besitzt die Funktion

z= 2xy− 3x2 +
1
y

für (x,y) ∈ R

in Richtung der x-Achse bzw. der y-Achse?

z′x = 2y− 6x z′y = 2x− 1
y2

Um die Steigung im Punkt (2,1) zu berechnen, setzt man die Koordinatenwerte ein

z′x =−10 z′y = 3

☼

Die bisher vorgestellten Regeln der Differentialrechnung gelten auch für partielle
Differentiation ohne Einschränkung. Sie sind dann anzuwenden, wenn die Variable,
nach welcher differenziert wird, in beiden Faktoren eines Produkts, d. h. im Zähler
und Nenner eines Quotienten oder in der inneren Funktion, einer zusammengesetzten
Funktion auftritt.

Beispiel 11.5. Für die partielle Differentiation der Funktion

z= yex
2+y2 für (x,y) ∈ R

nach x muss die Kettenregel angewendet werden. Um die Ableitung nach y zu be-
rechnen, muss man sowohl die Kettenregel als auch die Produktregel anwenden. Die
Exponentialfunktion wird mit der Kettenregel abgeleitet. Mit der Produktregel wird
das Produkt yex2+y2 differenziert.

z′x = 2xyex
2+y2 z′y = ex

2+y2 +2y2 ex
2+y2

☼
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11.3.2 Partielles Differential höherer Ordnung

Wie bei Funktionen mit einer Variablen kann man die partielle Ableitung als Funk-
tion noch einmal partiell differenzieren.

∂
∂x

(
∂ z
∂x

)
= z′′xx

∂
∂y

(
∂ z
∂y

)
= z′′yy

∂
∂x

(
∂ z
∂y

)
= z′′xy

∂
∂y

(
∂ z
∂x

)
= z′′yx

Die zweiten Ableitungen z′′xy = z′′yx sind bei stetig partiell differenzierbaren Funktio-
nen immer identisch! Die Reihenfolge der Differentiation ist daher beliebig.

Beispiel 11.6.

z= x3 − 4x2 y+2xy2 + ln(xy) für (x,y) ∈ R+

z′x = 3x2 − 8xy+2y2+
1
x

z′y =−4x2 +4xy+
1
y

z′′xx = 6x−8y− 1
x2 z′′yy = 4x− 1

y2

z′′xy =−8x+ 4y z′′yx =−8x+4y

☼

11.3.3 Totales Differential

Die Schnittkurve in x-Richtung besitzt die Steigung ∂ z
∂x = z

′
x. Eine Auslenkung der

Variablen x um den Betrag dx hat auf die Schnittkurve in x-Richtung die Funktions-
änderung

dzx = z′x dx

zur Folge. Es gibt auch ein entsprechendes partielles Differential nach der Variablen
y.

dzy = z′y dy

Werden die Variablen x und y gleichzeitig um die Beträge dx und dy verändert, so
erhält man die Gesamtänderung, die sich aus der Summe der partiellen Differentialen
ergibt. Man bezeichnet diese infinitesimale Größe als das totale Differential.

dz= dzx+ dzy = z′x dx+ z′ydy

Beispiel 11.7. Das totale Differential der Funktion

z= x lny
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ist

dz= lnydx+
x
y

dy

☼

11.3.4 Differentiation impliziter Funktionen

Der Funktionswert einer impliziten Funktion ist stets z = G(x,y) = 0. Die Steigung
kann mittels des totalen Differentials bestimmt werden. Für das totale Differential
gilt wegen z= 0 auch dz= dG= 0:

dz= z′x dx+ z′ydy= 0

Die Umformung der obigen Gleichung nach dy
dx liefert den Differentialquotienten

und damit die Steigung der impliziten Funktion.

dy
dx

=− z
′
x
z′y

(11.2)

Beispiel 11.8. Es ist die Steigung der Funktion (11.1) an der Stelle x = 1 gesucht.
Die partiellen Ableitungen sind

z′x = 3x2 +2xy+ y2+2x z′y = 3y2 + x2 +2xy+1

dy
dx

=−3x2 + 2xy+ y2+2x
3y2 + x2 + 2xy+1

Um an der Stelle x= 1 die Steigung berechnen zu können, benötigt man noch einen
Wert für y. Die Funktion an der Stelle x= 1 ist

y3 + y2 + 2y+ 2 = 0 für x ∈ R

Die Nullstellen dieser Funktion liefern die Werte für y. Hier sind aufgrund der fol-
genden Umformung die Nullstellen direkt bestimmbar.

y2 (y+ 1)+2(y+ 1)= 0 ⇒ (y2 +2)(y+1) = 0

Der einzige reelle Wert an der Stelle x = 1 ist y= −1. Die anderen beiden Wurzeln
sind imaginär. Die Steigung an der Stelle x= 1, y=−1 ist somit

dy
dx

∣∣∣∣
x=1

=−4
3

☼
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11.3.5 Ökonomische Anwendungen

In dem vorgestellten Ertragsgebirge war der Ertrag eine Funktion von zwei Produk-
tionsfaktoren. Um die Frage zu beantworten, welcher Ertragsanteil jedem der beiden
Faktoren in einem bestimmten Punkt zuzurechnen ist, bietet es sich an, den einen
Faktor konstant zu halten und den Einfluss des anderen durch Variation zu messen.

Die Veränderung des Ertags bei Variation des Faktors x und Konstanz des Faktors
y ist gleich der partiellen Ableitung der Ertagsfunktion.

∂ z
∂x

=
dz
dx

∣∣∣∣
y=konst

Die Größen werden als partielle Grenzerträge (partial marginal return) bezeichnet.
Bei gleichzeitiger Variation beider Faktoren um infinitesimale Beträge dx und dy
wird sich der Ertrag gemäß dem totalen Differential ändern, und man erhält die totale
Ertragsänderung.

Hält man den Ertrag konstant, also wenn gilt dz= 0, so erhält man die Schnittkur-
ve z= f (x,y) = konst, die als Ertragsisoquante (indifference return curve) bezeich-
net wird. Entlang dieser Kurve ändert sich trotz Faktorvariation der Ertrag nicht. Die
Änderung der Produktionsfaktoren bei konstantem Ertrag liefert die Grenzrate der
Substitution (marginal rate of substitution). Man erhält sie durch das implizite Dif-
ferential (11.2). Die Grenzrate der Substitution ist durch das umgekehrte Verhältnis
der Grenzerträge gegeben.

Die Projektion der Isoquante in die x,y Ebene zeigt die Abhängigkeit des Faktors
x vom Faktor y bei festem Ertrag grafisch (siehe Abb. 11.1, unten rechts).

Beispiel 11.9. Die Funktion

x(r1,r2) = a0 ra1
1 r

a2
2 mit 0 < a1,a2 < 1, r1,r2 > 0

ist in der Literatur als Cobb-Douglas-Ertragsfunktion (Produktionsfunktion) be-
kannt.

Sie besitzt einige besondere Eigenschaften, von denen hier einige gezeigt werden
sollen. Die partielle Ertragselastizität (elasticity of return) beschreibt die relative
Ertragsänderung bezüglich einer relativen partiellen Faktoränderung.

εx,r1 =
∂x
∂ r1

r1
x
=
a0a1 ra1−1

1 ra2
2

a0 ra1−1
1 ra2

2
= a1

εx,r1 =
∂x
∂ r1

r1
x
= a2

Die Grenzrate der Substitution berechnet sich aus dem totalen Differential mit
dx= 0.

dr2
dr1

=−x
′
r1
x′r2

=−a1
a2

r2
r1

Ferner wird bei substitutionalen Ertragsfunktionen häufig die Substitutionsela-
stizität (substitution elasticity) berechnet, die das Verhältnis der relativen Änderung



11.3 Differenzieren von Funktionen mit zwei Variablen 281

0

1

2

3

4

5

6

Z

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

X

0.00.51.01.52.02.53.03.54.04.55.0

Y

Abb. 11.2: Cobb-Douglas-Ertragsfunktion mit a0 = 1,a1 = a2 = 0.5

der Faktorproportionen r1
r2 zur relativen Änderung der Grenzertragsproportion

x′r1
x′r2

angibt.

εr1,r2 =−
d
(
r1
r2

)
d
( x′r1
x′r2

)
x′r1
x′r2
r1
r2

Aus

r1
r2

=
a1
a2

(x′r1
x′r2

)−1

erhält man mittels Differenzieren

d
(
r1
r2

)
d
( x′r1
x′r2

) =−a1
a2

(x′r1
x′r2

)−2

und somit
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εr1,r2 =
a1
a2

(x′r2
x′r1

)2 x′r1
x′r2

r2
r1

=
a1
a2

x′r2
x′r1︸ ︷︷ ︸

=
r1
r2

r2
r1

= 1

Die Substitutionselastizität beträgt Eins. Sie gibt an, um wie viel Prozent sich die
Faktoreinsatzrelation ändern muss, wenn sich die Grenzertragsrelation der beiden
Faktoren um 1 Prozent geändert hat. Einsichtiger wird die Interpretation, wenn man
die Erkenntnis der Minimalkostenkombination (siehe Kapitel 11.5.3) mitverwendet.
Sie ist dadurch gekennzeichnet, dass die Grenzerträge proportional zu den Faktor-
preisen sind. Dann kann die obige Aussage abgewandelt werden in: Um wieviel
Prozent muss sich die Faktoreinsatzrelation ändern, wenn sich die Preisrelation der
beiden Faktoren um 1 Prozent ändert? ☼

Im Abschnitt 10.8.6 wurde die Elastizität für die (Nachfrage-) Funktion mit einer
Variablen eingeführt. Die Nachfrage nach einem Gut hängt meistens auch von den
Preisen anderer ähnlicher Güter ab.

x= f (p1, p2, . . .)

Wird nun die (partielle) Elastizität zu den Preisen der anderen Güter gebildet, so
spricht man von der Kreuzpreiselastizität (cross price elasticity).

εx(p2) =

∂x
∂ p2
x
p2

Übung 11.1. Berechnen Sie die partiellen Ableitungen der folgenden Funktion:

z= f (x,y) = xy für x ∈ R+,y ∈R

Übung 11.2. Bestimmen Sie die Ableitung bzw. das implizite Differential erster
Ordnung zu der Funktion

x3 + xy+ y3−10 = 0.

Übung 11.3. Berechnen Sie die zweiten partiellen Ableitungen aus dem Beispiel
11.5.

Übung 11.4. Berechnen Sie das implizite Differential der folgenden Gleichung an
der Stelle x= 0, y= 1

x2 y3 +(y+1)e−x = x+2
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11.4 Extremwertbestimmung

Ein Extremum liegt – wie bei einer Funktion mit einer Variablen – vor, wenn bei einer
stetig differenzierbaren Funktion die erste partielle Ableitung Null wird. In einem
Extrempunkt der Funktion f (x,y) sind also notwendigerweise die ersten partiellen
Ableitungen Null. Um die Extremwerte bestimmen zu können, muss man die Lösung
des Gleichungssystems

f ′x
!
= 0 f ′y

!
= 0

berechnen. Hat man die Extrempunkte bestimmt, so stellt sich die Frage, ob an die-
sen Stellen auch tatsächlich Extrema vorliegen, d. h. ob die obigen Bedingungen auch
hinreichend sind. Es kann ja sein, dass eine Funktion in x-Richtung ein Maximum
besitzt, in y-Richtung aber ein Minimum. Ein solcher Punkt wird Sattelpunkt ge-
nannt.

Die hinreichende Bedingung, die über das Vorliegen eines Minimums bzw. Ma-
ximums entscheidet, ist auch hier das Vorzeichen der zweiten Ableitung. Nur exi-
stiert jetzt nicht «eine» zweite Ableitung, sondern vier partielle, nämlich f ′′xx, f ′′xy, f ′′yx,
f ′′yy, so dass das Vorzeichen dieser anders ermittelt werden muss.

Hierzu wird das Vorzeichen der zweiten Ableitung übersetzt in das «Vorzeichen»
einer Matrix. Es gilt weiterhin, dass für ein Maximum (Minimum) die zweite Ablei-
tung von z negativ (positiv) sein muss. Das «Vorzeichen» einer Matrix entspricht
der Definitheit einer Matrix. Um die Definitheit einer Matrix bestimmen zu können,
benötigt man die Determinante und Hauptminoren (Unterdeterminanten) der Matrix.

Die erste Ableitung der Funktion z= f (x,y) ist

dz= f ′x dx+ f ′y dy (11.3)

Die zweite Ableitung von z ist das Differential von (11.3).

d2z= d(dz) =
∂dz
∂x

dx+
∂dz
∂y

dy

=
∂
∂x
(
f ′x dx+ f ′ydy

)︸ ︷︷ ︸
dz

dx+
∂
∂y
(
f ′x dx+ f ′y dy

)
dy

=
(
f ′′xx dx+ f ′′xy dy

)
dx+

(
f ′′xy dx+ f ′′yy dy

)
dy

= f ′′xxdx2 + f ′′xy dydx+ f ′′xy dxdy+ f ′′yydy2

(11.4)

Das Vorzeichen der zweiten Ableitung d2z wird über die Definitheit quadratischer
Formen bestimmt. Die Gleichung (11.4) wird wegen der Übersichtlichkeit in ein-
fachere Symbole umgeschrieben und gleichzeitig erweitert, um einen binomischen
Ausdruck ausklammern zu können:
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q= au2 + 2huv+bv2+
h2

a
v2 − h

2

a
v2︸ ︷︷ ︸

Erweiterung

= a
(
u2 +

2h
a
uv+

h2

a2 v
2
)
+

(
b− h

2

a

)
v2

= a
(
u+

h
a
v
)2

︸ ︷︷ ︸
stets > 0

+
ab− h2

a
v2︸︷︷︸

stets > 0

Das Vorzeichen von q hängt daher von a und ab− h2 ab:

wenn a> 0 und ab−h2 > 0 ist, dann ist q> 0, also positiv definit

wenn a< 0 und ab− h2 > 0 ist, dann ist q< 0, also negativ definit

Somit bestimmen die Vorzeichen der zweiten partiellen Ableitungen das Vorzeichen
der zweiten Ableitung. Ein Minimum der Funktion f (x,y) liegt an der Extremwert-
stelle (x,y) vor, wenn d2z> 0 gilt. Ein Maximum der Funktion liegt an der Extrem-
wertstelle vor, wenn d2z < 0 gilt. Nun ist q auch als Matrixgleichung (quadratische
Form) darstellbar.

q=
[
u v
][a h
h b

]
︸ ︷︷ ︸

H

[
u
v

]

Die Matrix H wird als Hesse-Matrix bezeichnet und beinhaltet die zweiten Ablei-
tungen der Funktion f (x,y).

H=

[
f ′′xx f ′′xy
f ′′yx f ′′yy

]
Das Vorzeichen der zweiten Ableitung kann mittels der Determinanten der Hesse-
Matrix ermittelt werden. Die erste Unterdeterminante der Hesse-Matrix ist

|H1(x,y)|= f ′′xx

Die Determinante der Hesse-Matrix ist

|H2(x,y)|= f ′′xx f
′′
yy−

(
f ′′xy
)2

Die zweite Ableitung ist an der Stelle (x,y) positiv, wenn

|H1(x,y)|> 0 und |H2(x,y)|> 0

gilt. Dann liegt an dieser Stelle einMinimum der Funktion vor.
Die zweite Ableitung ist an der Stelle (x,y) negativ, wenn

|H1(x,y)|< 0 und |H2(x,y)|> 0
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gilt. Dann liegt an dieser Stelle einMaximum der Funktion vor.
Ist

|H1(x,y)| = 0 und |H2(x,y)|< 0,

so liegt ein Sattelpunkt an der Stelle (x,y) vor.
Ist

|H2(x,y)|= 0,

ist keine Entscheidung ohne weitere Rechnung möglich.
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Abb. 11.3: Grafik der Funktion (11.5)

Beispiel 11.10. Es werden für die Funktion

z= x3 − 12xy+6y2 für x ∈ R (11.5)

die Extrempunkte gesucht. Die ersten partiellen Ableitungen sind

z′x = 3x2 −12y !
= 0 ⇒ 3x2 −12x= 0

z′y =−12x+12y !
= 0 ⇒

↑︷ ︸︸ ︷
x= y
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Die Auflösung der beiden Gleichungen liefert(
x1 = 0,y1 = 0

)∗ (
x2 = 4,y2 = 4

)∗
Die zweiten Ableitungen sind

z′′xx = 6x z′′yy = 12
Z′′xy =−12 z′′yx =−12

An der Stelle (4,4) ist die erste Unterdeterminante

|H1(4,4)|= 6x= 24

positiv und die zweite Unterdeterminante

|H2(4,4)|=
∣∣∣∣ 6x −12
−12 12

∣∣∣∣= 72x−144= 144

ebenfalls positiv. Somit liegt an der Stelle (4,4) ein Minimum vor. An der Stelle
(0,0) liegt ein Sattelpunkt.

|H1(0,0)|= 0 |H2(0,0)|=−144

In Abb. 11.3 kann man das Minimum und den Sattelpunkt der Funktion (11.5) erah-
nen. ☼

11.5 Extremwertbestimmung unter Nebenbedingung

Die meisten Optimierungsprobleme in der Praxis sind durch Restriktionen bestimmt.
Ein Unternehmer, der seine Kosten uneingeschränkt minimiert, wird sein Unterneh-
men schließen, weil dann seine Kosten Null sind. Eine Kostenminimierung kann
also nur unter der Beschränkung sinnvoll sein, dass ein bestimmtes Programm unter
Ausnutzung vorgegebener Kapazitäten gefertigt wird. Ebenso führt die Gewinnma-
ximierung zur trivialen Lösung unendlich, wenn man von Produkten mit positivem
Deckungsbeitrag unendlich viel verkauft. In diesem Fall führen erst Nebenbedin-
gungen, die technischer, finanzieller und absatzbeschränkender Art sein können, zu
einem sinnvollen Optimierungsproblem. Allgemein stellt sich die Aufgabe, für die
Funktion z= f (x,y) ein Extremum zu finden, wobei die Nebenbedingung (Restrik-
tion) G(x,y) = 0 einzuhalten ist. Die zu optimierende Funktion wird in diesem Zu-
sammenhang als Zielfunktion bezeichnet.

Beispiel 11.11. Optimale Konservendose: Ein sehr häufiges Beispiel für die Extrem-
wertbestimmung unter Nebenbedingung ist die Berechnung einer zylindrischen Kon-
servendose gegebenen Inhalts (zum Beispiel 1000 cm3) mit minimaler Oberfläche,
zu deren Herstellung also möglichst wenig Weißblech verwendet werden soll. Das
Problem lautet somit: Minimiere

f (r,h) = 2π r2 + 2πrh für r,h≥ 0
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unter der Nebenbedingung

G(r,h) = 1000−π r2 h= 0.

Es handelt sich um die Bestimmung des Minimums der Zielfunktion f (r,h) mit den
beiden Variablen r (Radius) und h (Höhe) unter Einhaltung der Nebenbedingung
G(r,h) = 0. ☼

Die Nebenbedingung schränkt die Funktionswerte ein. Man spricht in diesem
Zusammenhang auch von einem Entscheidungsraum. Jede Nebenbedingung verrin-
gert den Freiheitsgrad des Entscheidungsraums.

Wie können nun für eine Zielfunktion unter einer Nebenbedingung die Extrem-
werte bestimmt werden? Eine Möglichkeit ist, die Nebenbedingung in die Zielfunk-
tion einzusetzen.

Beispiel 11.12. Für die Funktion

f (x,y) = xy für x,y ∈ R (11.6)

sollen unter der Nebenbedingung

G(x,y) = 6− x− y2 = 0 (11.7)

die Extrempunkte gefunden werden. Das Einsetzen der Nebenbedingung in die
Funktion führt zu

f (y) = (6− y2)y

Die notwendige Bedingung liefert

f ′y = 6− 3y2 !
= 0,

womit die Extrempunkte bestimmt werden können.

y=±
√

2 x= 4

☼

Eine andere Möglichkeit die Nebenbedingung zu berücksichtigen, ist die Funk-
tion zu erweitern.

Beispiel 11.13. Die Funktion (11.6) wird um die Nebenbedingung (11.7) erweitert.
Dies führt zu der Funktion:

L(x,y,λ ) = xy+λ
(
6− x− y2)

Die notwendige Bedingung ist wieder das Verschwinden der ersten Ableitung, wo-
bei hier beachtet werden muss, dass drei partielle erste Ableitungen existieren, die
gleichzeitig Null gesetzt werden müssen. Die ersten Ableitungen liefern das Glei-
chungssystem:

L′x = y−λ !
= 0 ⇒ λ = y
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Abb. 11.4: Grafik der Funktion (11.6) und der Nebenbedingung (11.7)

L′y = x− 2λ y !
= 0 ⇒ λ =

x
2y

⇒ x= 2y2

L′λ = 6− x− y2 !
= 0 ⇒ 0 = 6− 2y2− y2 ⇒ y2 = 2

y=±
√

2 x= 4 λ =±
√

2

Es wird derselbe Extrempunkt (4,
√

2) gefunden. Die obere Grafik in Abb. 11.4 zeigt
die Funktion (11.6) und die Nebenbedingung (11.7) (als Linie erkennbar). An der
Stelle des Maximums tangiert die Linie der Nebenbedingung die Fläche der Ziel-
funktion. Dieser Punkt ist in der unteren Grafik der Abbildung als Tangentialpunkt
der Nebenbedingung und der Isoquante zum Wert f (x,y) = xy= 4

√
2 zu sehen. ☼

Der Lösungsansatz im Beispiel 11.13 geht auf Joseph Louis de Lagrange zurück.
Er entwickelte die so genannte Lagrange-Methode. Sie besagt: Die Extrema der
Funktion z= f (x,y) unter der NebenbedingungG(x,y) = 0 liegen an den Stellen, an
denen die Funktion

L(x,y,λ ) = f (x,y)+λ G(x,y)

ihre Extremwerte besitzt. Die Funktion L(x,y,λ ) wird als Lagrange-Funktion be-
zeichnet.

Voraussetzung für die Lagrange-Methode ist, dass die Nebenbedingung in im-
pliziter Form vorliegt. Der Ansatz von Lagrange gestattet es, die Optimierung unter
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der Einschränkung durch die Nebenbedingung auf die uneingeschränkte Optimie-
rung einer Funktion, die allerdings die zusätzliche Variable λ besitzt, zurückzufüh-
ren. Somit stellt sich nun die Aufgabe, die Extremwerte der Funktion L(x,y,λ ) mit
jetzt drei unabhängigen Variablen zu finden. Die notwendige Bedingung (necessary
condition) für ein Extremum ist – wie zuvor –, dass die ersten partiellen Ableitungen
Null gesetzt werden. Dies führt hier auf das Gleichungssystem

∂L
∂x

= f ′x(x,y)+λ G′
x(x,y)

!
= 0 (11.8)

∂L
∂y

= f ′y(x,y)+λ G′
y(x,y)

!
= 0 (11.9)

∂L
∂λ

= G(x,y) !
= 0 (11.10)

Jede Variable und jede Nebenbedingung führen zu einer Bedingung. Man beachte,
dass die dritte Bedingung die ursprüngliche Nebenbedingung ist. Die Nebenbedin-
gung legt für gegebene Werte von x den Wert von y fest (und andersherum). Damit
bindet die Nebenbedingung einen Freiheitsgrad. Eine weitere Nebenbedingung wür-
de bei einer Funktion einen weiteren Freiheitsgrad binden. Die Werte x und y würden
dann durch die beiden Nebenbedingungen bestimmt. Eine Extremwertsuche für die
Zielfunktion wäre nicht mehr möglich. Daher ist bei einer Funktion mit lediglich
zwei Variablen nur eine Nebenbedingung sinnvoll. Eine Funktion mit drei Variablen
kann durch zwei Nebenbedingungen eingeschränkt werden, usw.

Beispiel 11.14. Fortführung von Beispiel 11.11: Die Nebenbedingung in die Ziel-
funktion eingesetzt, ergibt die Lagrange-Funktion

L(r,h,λ ) = 2π r2 + 2π rh+λ
(
1000−π r2 h

)
Die notwendige Bedingung für ein Extremum ist, die ersten Ableitungen Null zu
setzen.

∂L
∂ r

= 4π r+2π h−2λ π rh !
= 0

∂L
∂h

= 2π r−λ π r2 !
= 0

∂L
∂λ

= 1000−π r2 h !
= 0

Die Lösung des obigen Gleichungssystems führt zu

r = 3

√
1000
2π

= 5.4193 cm h= 2r = 10.8385 cm λ =
2
r
= 0.3691

Die minimale Oberfläche der Dose beträgt

f (5.4193,10.8385)= 553.5810 cm2

☼
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11.5.1 Interpretation des Lagrange-Multiplikators

Nun tritt in der Lagrange-Funktion noch der so genannte Lagrange-Multiplika-
tor auf, der durch die Einbindung der Nebenbedingung in die Zielfunktion einge-
setzt wurde. Wie ist der Lagrange-Multiplikator zu interpretieren? In der Lagrange-
Funktion

L(x,y,λ ,c) = f (x,y)+λ
(
c−g(x,y)︸ ︷︷ ︸
G(x,y)=0

)
wird die Größe c nun als Variable aufgefasst und nach ihr abgeleitet.

dL
dc

= λ (11.11)

Weil für die implizite Funktion G(x,y) = 0 gilt, gilt auch dG = 0. Es gilt daher
dL= d f . Somit kann die Gleichung (11.11) umgeschrieben werden in

d f = λ dc

Der Lagrange-Multiplikator λ gibt die relative Änderung der Zielfunktion f (x,y)
an, wenn die Restriktion c um dc variiert wird. Die Interpretation des Lagrange-
Multiplikators erklärt sich am besten an einem Beispiel.

Beispiel 11.15. Aus dem Beispiel 11.14 ist bekannt, dass λ = 0.3691 ist. Wie groß
sind die minimalen Oberflächen der Konservendose, wenn der Inhalt auf 999 ccm,
990 ccm und auf 1050 ccm verändert wird? Dies kann näherungsweise ohne Neube-
rechnung erfolgen. Es gilt:

Δ f ≈ 0.3691Δc
Daraus ergeben sich die folgenden Werte:

c= 999 Δc=−1 Δ f ≈−0.3691 f ≈ 553.2119 f = 553.2119
c= 990 Δc=−10 Δ f ≈−3.6910 f ≈ 549.8900 f = 549.8843
c= 1050 Δc= 50 Δ f ≈ 18.4550 f ≈ 572.0360 f = 571.8833

Es zeigt sich, dass bei einer kleinen Veränderung (Δc=−1) der approximierte Wert
und der genau berechnete Wert (letzte Spalte) bis auf die 4. Nachkommastelle über-
einstimmen. Abweichungen ergeben sich hier erst bei größeren Restriktionsänderun-
gen. ☼

11.5.2 Hinreichende Bedingung für ein Maximum bzw. Minimum

Die hinreichende Bedingung (sufficient condition) zur Überprüfung auf das Vorlie-
gen eines Minimums oder Maximums erfolgt ähnlich wie in Kapitel 11.4, wobei hier
natürlich die Beziehung der Nebenbedingung berücksichtigt werden muss. Es wird
von einer allgemeinen Lagrange-Funktion

L(x,y,λ ) = f (x,y)+λ G(x,y)

ausgegangen. Wegen

dG= G′
x dx+G′

ydy= 0
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gilt

dy=−G
′
x
G′
y

dx

Weil aber G′
x und G′

y wiederum von x und y abhängig sind, ist auch dy von x und y
abhängig:

dy(x) =−G
′
x
G′
y

dx (11.12)

Dies muss in der zweiten Ableitung von L(x,y,λ ) beachtet werden, wenn dx als
unabhängig gesetzt wird. Es gilt allgemein:

d2L= d2z+ d2G

Wegen dG= 0 ist auch d2G= 0. Daher gilt hier

d2L= d2z

Ausgehend von z= f (x,y) wird das totale Differential von dz nochmals differenziert.
Die Nebenbedingung wird über die Gleichung (11.12) berücksichtigt.

d2z= d(dz) =
∂dz
∂x

dx+
∂dz
∂y

dy(x)

=
∂
∂x
(
f ′x dx+ f ′y︸︷︷︸

u

dy(x)︸ ︷︷ ︸
v

)
dx+

∂
∂y
(
f ′x dx+ f ′y︸︷︷︸

u

dy(x)︸ ︷︷ ︸
v

)
dy(x)

=

(
f ′′xx dx+ f ′′xy︸︷︷︸

u′

dy(x)︸ ︷︷ ︸
v

+ f ′y︸︷︷︸
u

∂dy(x)
∂x︸ ︷︷ ︸
v′

)
dx

+

(
f ′′xy dx+ f ′′yy︸︷︷︸

u′

dy(x)︸ ︷︷ ︸
v

+ f ′y︸︷︷︸
u

∂dy(x)
∂y︸ ︷︷ ︸
v′

)
dy(x)

= f ′′xx dx2 + f ′′xy dxdy(x)+ f ′y
∂dy(x)

∂x
dx+ f ′′xy dxdy(x)

+ f ′′yy dy(x)dy(x)+ f ′y
∂dy(x)

∂y
dy(x)

(11.13)

Ein Teil aus der Gleichung (11.13) kann umgeschrieben werden in

f ′y

(
∂dy(x)

∂x
dx+

∂dy(x)
∂y

dy(x)
)
= f ′y d2y(x) (11.14)

Statt dy(x) wird nun nur noch dy geschrieben, da die Abhängigkeit durch die An-
wendung der Produktregel berücksichtigt wurde.

Erklärung für die Gleichung (11.14): Da das totale Differential von y

dy=
∂y
∂x

dx+
∂y
∂y

dy
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ist, kann man dann das totale Differential von dy als

ddy=
∂dy
∂x

dx+
∂dy
∂y

dy= d2y

abkürzen. Es ergibt sich somit

d2z= f ′′xx dx2 +2 f ′′xy dxdy+ f ′′yydy2 + f ′y d2y (11.15)

Nun muss aus der NebenbedingungG(x,y) die zweite Ableitung d2y bestimmt wer-
den, um das totale Differential d2L zu berechnen. Aus den obigen Überlegungen
kann d2G schnell ermittelt werden:

d2G= G′′
xx dx2 +2G′′

xy dxdy+G′′
yydy2 +G′

yd2y= 0 (11.16)

Auflösen der Gleichung (11.16) nach d2y und Einsetzen in die Gleichung (11.15)
führt zu

d2z=
(
f ′′xx+

f ′y
G′
y︸︷︷︸

λ , weil − f ′y = λ G′
y gilt

G′′
xx

)
dx2

+2
(
f ′′xy+

f ′y
G′
y︸︷︷︸

λ

G′′
xy

)
dxdy

+

(
f ′′yy+

f ′y
G′
y︸︷︷︸

λ

G′′
yy

)
dy2

=
(
f ′′xx+λ G′′

xx︸ ︷︷ ︸
L′′xx

)
dx2 + 2

(
f ′′xy+λ G′′

xy︸ ︷︷ ︸
L′′xy

)
dxdy

+
(
f ′′yy+λ G′′

yy︸ ︷︷ ︸
L′′yy

)
dy2

= L′′xx dx2 +2L′′xy dxdy+L′′yydy2

= d2L

(11.17)

Dies ist eine quadratische Form. Ist d2L negativ definit, unter Berücksichtigung von
dG = 0, liegt ein Maximum vor. Ist d2L positiv definit, liegt ein Minimum vor. Die
Überprüfung des Vorzeichens von d2L wird unter Verwendung der quadratischen
Form vorgenommen. Die letzte Zeile der Gleichung (11.17) wird umgeschrieben in
(siehe auch Seite 283)

q= au2 +2huv+bv2

Nun unterliegt d2L bzw. q hier der Nebenbedingung
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dG= G′
x dx+G′

ydy= 0
= α u+β v

Auflösen der Nebenbedingung

v=−α
β
u

und Einsetzen ergibt

q= au2 − 2h
α
β
u2 +b

α2

β 2 u
2

=
(
α β 2 − 2hα β + bα2) u2

β 2

(11.18)

q ist positiv definit, wenn der Ausdruck in der Klammer positiv ist, und negativ
definit, wenn der Ausdruck in der Klammer negativ ist, weil u2

β 2 nicht negativ sein
kann. Es lässt sich zeigen, dass die Determinante einer erweiterten Hesse-Matrix

|H̃(x,y,λ )|=
∣∣∣∣∣∣

0 α β
α a h
β h b

∣∣∣∣∣∣= 2hα β −α β 2 − bα2

genau das umgekehrte Vorzeichen von dem Klammerausdruck der Gleichung (11.18)
besitzt. Die Matrix

H̃(x,y,λ ) =

⎡
⎣ 0 G′

x G′
y

G′
x L′′xx L′′xy
G′
y L′′xy L′′yy

⎤
⎦

wird als geränderte Hesse-Matrix bezeichnet. Die Determinante der geränderten
Hesse-Matrix ist an der Stelle (x,y,λ ) zu bewerten. Die zweite Ableitung von d2L
ist an der Stelle (x,y) negativ, wenn die Determinante von |H̃(x,y,λ )| positiv ist.

|H̃(x,y,λ )|> 0 ⇔ d2L< 0 ⇔ L(x,y,λ ) = max

Dies ist die hinreichende Bedingung für ein Minimum der Lagrange-Funktion an
der Stelle (x,y). Die zweite Ableitung von d2L ist an der Stelle (x,y) positiv, wenn
die Determinante von |H̃(x,y,λ )| negativ ist.

|H̃(x,y,λ )|< 0 ⇔ d2L> 0 ⇔ L(x,y,λ ) = min

Dies ist die hinreichende Bedingung für einMaximum.

Beispiel 11.16. Die hinreichende Bedingung für das Beispiel 11.12 bzw. 11.13 wird
überprüft. Es ist die Determinante der geränderten Hesse-Matrix an der Stelle (x =
4,y=

√
2) und λ =

√
2 zu bewerten. Dazu müssen die ersten Ableitungen der Ne-

benbedingung und die zweiten Ableitungen der Lagrange-Funktion gebildet werden.

G′
x =−1 G′

y =−2y=−2
√

2
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L′′xx = 0 L′′yy =−2λ =−2
√

2
L′′xy = 1 L′′yx = 1

Die Determinante der geränderten Hesse-Matrix ist somit

|H̃(4,
√

2,
√

2)|=
∣∣∣∣∣∣

0 −1 −2
√

2
−1 0 1

−2
√

2 1 −2
√

2

∣∣∣∣∣∣= 8.4853

An der Extremstelle liegt also ein Maximum vor. ☼

Beispiel 11.17. Ob es sich bei der gefundenen Lösung im Beispiel 11.14 der Konser-
vendose auch tatsächlich um ein Minimum handelt, kann nun mit der hinreichenden
Bedingung überprüft werden. Dazu muss die Lösung r = 5.4193, h = 10.8385 und
λ = 0.3691 in die geränderte Hesse-Determinante eingesetzt werden. Die ersten Ab-
leitungen der Nebenbedingung und die zweiten Ableitungen der Lagrange-Funktion
sind:

G′
r =−2π rh=−369.0540 G′

h =−π r2 =−92.2635
L′′rr = 4π −2λ π h=−12.5664 L′′hh = 0
L′′rh = 2π −2λ π r =−6.2832

Die bewertete Determinante der geränderten Hesse-Matrix ist damit

|H̃(5.4193,10.8385,0.3691)|=
∣∣∣∣∣∣

0 −369.054 −92.2635
−369.054 −12.5664 −6.2832
−92.2635 −6.2832 0

∣∣∣∣∣∣
=−320915.76

Die Determinante der geränderten Hesse-Matrix ist negativ. Damit ist das Vorzeichen
der zweiten Ableitung des totalen Differentials positiv und an der Stelle r = 5.4193,
h= 10.8385 liegt ein Minimum vor. ☼

11.5.3 Ökonomische Anwendung: Minimalkostenkombination

Ein Beispiel zur ökonomischen Anwendung der Lagrange-Funktion ist dieMinimal-
kostenkombination (least cost combination). Es wird für die lineare Kostenfunktion

K(r1,r2) = p1 r1 + p2 r2 für p1, p2,r1,r2 > 0

unter einer Ertragsfunktion (Nebenbedingung)

x= f (r1,r2) = r1 r2

ein Minimum gesucht. Die Ertragsfunktion ist eine spezielle Form einer Cobb-
Douglas-Ertragsfunktion (siehe Beispiel 11.9) mit a0 = 1, a1 = 1 und a2 = 1. p1
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und p2 sind gegebene Faktorpreise, r1 und r2 sind die gesuchten Faktormengen. Es
ist also für die Lagrange-Funktion

L(r1,r2,λ ) = p1 r1 + p2 r2 +λ
(
x− f (r1,r2)

)
= p1 r1 + p2 r2 +λ

(
x− r1 r2

)→ min

ein Minimum gesucht. Die notwendige Bedingung hierfür sind die Nullstellen der
ersten Ableitungen.

L′r1 = p1 −λ f ′r1 = p1 −λ r2
!
= 0

L′r2 = p2 −λ f ′r2 = p2 −λ r1
!
= 0

L′λ =
(
x− f (r1,r2)

)
=
(
x− r1 r2

) !
= 0

Aus den notwendigen Bedingungen gewinnt man die Beziehung

λ =
p1
f ′r1

=
p2
f ′r2

⇒ p1
p2

=
f ′r1
f ′r2

Die Faktorpreise müssen proportional zu den Grenzerträgen sein bzw. in dem vorlie-
genden Fall von x= r1 r2:

λ =
p1
r2

=
p2
r1

⇒ r1
r2

=
p2
p1

(11.19)

Die Beziehung in Gleichung (11.19) nennt man die Minimalkostenkombination. Die
Faktorpreise verhalten sich umgekehrt proportional zu den Faktoreinsatzmengen.
Ferner ergeben sich durch das Einsetzen der Nebenbedingung in die notwendige
Bedingung folgende Beziehungen:

λ 2 =
p1 p2

r1 r2
⇒ λ =

√
p1 p2

x

r21 =
p2 x
p1

⇒ r1 =
√
p2 x
p1

r22 =
p1 x
p2

⇒ r2 =
√
p1 x
p2

Die Grenzkosten sind das totale Differential der Kostenfunktion.

dK
dx

= p1
dr1
dx

+ p2
dr2
dx

Werden die Differentiale durch

dr1
dx

=
1
2

(
p2
p1
x
)− 1

2 p2
p1

=
1
2

√
p2
p1 x



296 11 Funktionen und Differentialrechnung mit zwei Variablen

dr2
dx

=
1
2

(
p1
p2
x
)− 1

2 p1
p2

=
1
2

√
p1
p2 x

ersetzt, so erhält man

dK
dx

=
1
2
p1

√
p2
p1 x

+
1
2
p2

√
p1
p2 x

=

√
p1 p2

x
= λ

Der Lagrange-Multiplikator ist hier also als Grenzkostenfunktion interpretierbar.
Dieses Ergebnis gilt unabhängig von der gewählten Ertragsfunktion, da für die
Lagrange-Funktion immer gilt (siehe Kapitel 11.5.1)

L= p1 r1 + p2 r2 +λ
(
x− f (r1,r2)

)
dL= dK+λ dG,

wobei dG aufgrund der impliziten Funktion stets Null ist. Daher ist

dL= dK

und somit

dL
dx

=
dK
dx

= λ

Handelt es sich auch tatsächlich um eine Minimalkostenkombination? Hierzu
muss die Determinante der geränderten Hesse-Matrix negativ sein.

|H̃(r1,r2,λ )|=
∣∣∣∣∣∣

0 − f ′r1 − f ′r2− f ′r1 −λ f ′′r1,r1 −λ f ′′r1,r2− f ′r2 −λ f ′′r1,r2 −λ f ′′r2,r2

∣∣∣∣∣∣
= λ

(
( f ′r2)

2 f ′′r1,r1 +( f ′r1)
2 f ′′r2,r2 −2 f ′r1 f

′
r2 f

′′
r1,r2

)
Unterstellt man positive Grenzkosten (λ > 0), positive Grenzerträge ( f ′r1 > 0, f ′r2 >
0), abnehmende Grenzerträge ( f ′′r1,r1 < 0, f ′′r2,r2 < 0) und einen zunehmenden Grenz-
ertrag bei gleichzeitiger Erhöhung beider Faktormengen ( f ′′r1,r2 > 0), dann ist der
Wert der Determinanten negativ.

Im Fall mit der Cobb-Douglas-Ertragsfunktion ergibt sich folgende geränderte
Hesse-Determinante:

|H̃(r1,r2,λ )|=
∣∣∣∣∣∣

0 −r1 −r2
−r1 0 −λ
−r2 −λ 0

∣∣∣∣∣∣=−2r1 r2 λ
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Minimalkostenkombination
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Abb. 11.5:Minimalkostenkombination

Da für r1,r2,λ > 0 gilt, ist die Determinante negativ und somit liegt tatsächlich eine
Minimalkostenkombination vor.

In Abb. 11.5 sind die Faktorpreise mit p1 = 3 und p2 = 5 und ein Produktions-
niveau von x= 5 vorgegeben. Hieraus ergeben sich die kostenminimalen Faktorein-
satzmengen

r1 =
√

5×5
3

= 2.8867 r2 =
√

5× 3
5

= 1.7320

Die minimalen Kosten betragen damit K(r1,r2)min = 17.32e und die Grenzkosten
dK
dx = λ = 0.5477e.

11.5.4 Ökonomische Anwendung: Portfolio-Theorie nach Markowitz

Im Folgenden wird der Lagrange-Ansatz verwendet, um die Portfolio-Theorie zu
beschreiben (siehe [8]). Die Portfolio-Theorie befasst sich mit der Auswahl von Fi-
nanztiteln. Jeder Finanztitel besitzt ein Risiko und eine Rendite. Ein Portfolio setzt
sich aus verschiedenen Finanztiteln zusammen. Ziel der Portfolio-Theorie ist es, bei
einem vorgegebenen Risiko eine maximale Rendite zu erzielen. Hierfür werden auch
Elemente der linearen Algebra und der schließenden Statistik eingesetzt. Zur Veran-
schaulichung der Theorie werden die Ergebnisse mit einem empirischen Beispiel
nachvollzogen. Die Berechnungen werden mit Scilab durchgeführt.
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11.5.4.1 Risikominimales Portfolio

Ein Portfolio setzt sich aus n Finanztiteln mit den Anteilen xi zusammen. Es gilt:
n∑
i=1
xi = 1 (11.20)

Es wird angenommen, dass der i-te Finanztitel (Wertpapier, Aktie, Option, usw.) eine
Rendite von ri besitzt. Die Rendite eines Finanztitels wird hier als eine Zufallsvaria-
ble angesehen, deren erwarteter Wert durch

μi = E(ri) (Erwartungswert)

und deren Varianz durch

σ2
i = Var(ri) (Varianz)

gegeben ist. Das Risiko eines varianzminimalen Portfolios wird durch die Streuung
der erwarteten Rendite beschrieben. Die Rendite eines Portfolios setzt sich aus der
gewichteten Summe der Einzelerträge zusammen.

rp =
n∑
i=1
xi ri

Da der Erwartungswert ein linearer Operator ist, ist die Portfoliorendite der gewich-
tete Durchschnitt der erwarteten Einzelerträge.

μp =
n∑
i=1
xi μi

Die Varianz der Portfoliorendite wird durch die Abhängigkeit der Einzelrenditen un-
tereinander (gemessen durch Kovarianzen) mitbestimmt, so dass gilt

σ2
p = Var

( n∑
i=1
xi ri

)
=

n∑
i=1

n∑
j=1
xi x jσi j (11.21)

Sie setzt sich aus der gewichteten Summe der Einzelvarianzen und der Kovarianzen
zusammen. σi j gibt die Kovarianz zwischen dem i-ten und dem j-ten Finanztitel (für
i �= j) an. Für i= j ist σi j es die Varianz des i-ten Finanztitels (σii = σ2

i ).
Es wird das Portfolio gesucht, das eine minimale Portfoliovarianz (unsystemati-

sches Risiko) σ2
p besitzt. Die Minimierung muss unter der Budgetrestriktion (11.20)

erfolgen. Es handelt sich also um einen Lagrange-Ansatz der Funktion (11.21) unter
der Nebendingung (11.20). Für den Anteil des i-ten Finanztitels ergibt sich somit die
Lagrange-Funktion.

L
(
xi,λ1

)
=

n∑
i=1

n∑
j=1

xi x jσi j+λ1

(
1−

n∑
i=1

xi

)
→ min (11.22)
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Die ersten Ableitungen der Lagrange-Funktion (11.22) sind die notwendigen Bedin-
gungen für ein Minimum der Varianz und damit des Portfoliorisikos:

L′xi = 2
n∑
j=1

x jσi j−λ1
!
= 0 für i= 1, . . . ,n (11.23)

L′λ1
= 1−

n∑
i=1
xi

!
= 0 (11.24)

Die Lösung dieses Gleichungssystem liefert die varianzminimale Portfoliozusam-
mensetzung. Das Portfolio besteht aus n Finanztiteln, so dass es sich um n+ 1
Gleichungen handelt. Mit der Matrizenrechnung ist die Lösung des Gleichungssys-
tems wesentlich übersichtlicher und einfacher. In Matrixform geschrieben sieht die
Lagrange-Funktion (11.22) wie folgt aus:

L
(
x,λ1

)
= x′Cx︸ ︷︷ ︸

σ 2p

+λ1
(
1− 1′x)

mit

C=

⎡
⎢⎣σ11 . . . σ1n

...
. . .

...
σn1 . . . σnn

⎤
⎥⎦ Varianz-Kovarianz-Matrix

x=

⎡
⎢⎣x1

...
xn

⎤
⎥⎦ und 1=

⎡
⎢⎣1

...
1

⎤
⎥⎦

Die erste Ableitung (11.23) kann dann auch in Matrixform dargestellt werden.

L′x = 2Cx−λ11
!
= 0 (11.25)

Die Schreibweise stellt ein Gleichungssystem mit n-Gleichungen dar. Für gegebenes
λ1 ist das Gleichungssystem (11.25) nach x lösbar, wenn C nicht singulär ist.

x=
λ1
2
C−1 1 (11.26)

Die andere notwendige Bedingung kann ebenfalls in Matrixform geschrieben wer-
den.

L′λ1
= 1− 1′x !

= 0

Aus dieser Gleichung entsteht durch Einsetzen der Gleichung (11.26) folgende Ma-
trixgleichung, die zur Bestimmung von λ1 dient.

2 = λ1 1′C−1 1
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Eine Lösung für λ1 existiert nur, wenn die Varianz-Kovarianz-Matrix invertiertbar
ist.

λ1 = 2
(
1′C−1 1

)−1

Einsetzen dieser Lösung in die Gleichung (11.26) bestimmt die varianzminimale
Portfoliozusammensetzung.

xmin =
(
1′C−1 1

)−1C−1 1

Es existiert also ein Portfolio in der Zusammensetzung xmin, das ein minimales Risi-
ko in der Höhe

σpmin =
√
x′minCxmin =

√(
1′C−1 1

)−1

mit einer Portfoliorendite von

μpmin =m
′ xmin mit: m=

⎡
⎢⎣μ1

...
μn

⎤
⎥⎦

besitzt (siehe Punkt (σpmin ,μpmin) in Abb. 11.6).
Die Überprüfung der hinreichenden Bedingung für ein Minimum ergibt eine ge-

ränderte Hesse-Matrix der Form

|H̃|=
∣∣∣∣0 1′
1 2C

∣∣∣∣ ,
deren Wert negativ sein muss. |H̃| ist im vorliegenden Fall eine partionierte Matrix,
deren Determinante sich aus den Teilmatrizen wie folgt berechnen lässt:

|H̃|= ∣∣2C∣∣ ∣∣0− 1′(2C)−1 1
∣∣=−2

∣∣C∣∣ ∣∣1′C−1 1
∣∣

Aufgrund der Eigenschaften der Varianz und Kovarianz ist die Varianz-Kovarianz-
Matrix positiv semidefinit:|C| ≥ 0. Damit ein Portfolio die varianzreduzierende Ei-
genschaft besitzt, darf keine Korrelation von Eins zwischen den Finanztiteln auftre-
ten. Aus der Bedingung der positiven Determinanten ergibt sich auch, dass die De-
terminante der quadratischen Form |1′C−1 1| positiv ist. Somit wird der Wert der De-
terminanten der geränderten Hesse-Matrix durch das negative Vorzeichen bestimmt.
Die zweite Ableitung der Lagrange-Funktion ist mithin positiv und es liegt an der
Stelle xmin ein Minimum vor.

11.5.4.2 Berechnung eines risikominimalen Portfolios mit Scilab

Beispiel 11.18. Es werden Tagesrenditen von BMW und BASF (relative Änderung
Tageskurse) der Aktien verwendet. Aus den Daten wird ein Erwartungswertvektor
von

m=

[−0.0005014
0.0018978

]
BMW
BASF
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und eine Varianz-Kovarianz-Matrix mit den Werten

C=

[
0.0001477 0.0000797
0.0000797 0.0001041

]
berechnet. Mit den oben hergeleiteten Beziehungen können die varianzminimalen
Portfolioanteile, das minimale Risiko und die erwartete Portfoliorendite bestimmt
werden. Am besten verwendet man für die Berechnungen ein geeignetes Computer-
programm wie Scilab.

xmin =

[
0.26396
0.73604

]
σpmin = 0.009882 μpmin = 0.001265

Die varianzminimale Portfoliozusammensetzung besteht also aus rund 26 Prozent
BMW-Aktien und 74 Prozent BASF-Aktien. Die hinreichende Bedingung für ein
Minimum ist leicht zu überprüfen.

|H̃|=
∣∣∣∣∣∣
0 1 1
1 2× 0.0001477 2× 0.0000797
1 2× 0.0000797 2× 0.0001041

∣∣∣∣∣∣=−0.0001846

Der Punkt (σpmin ,μpmin) ist in Abb. 11.6 zu sehen. Es handelt sich tatsächlich um das
Portfolio, das das kleinste Risiko besitzt. ☼

Die obigen Werte sind mit den folgenden Anweisung berechnet.

// BMW Schlusskurse vom 09.08. bis 16.11.2004
sbmw = [33.60 33.98 33.48 33.17 33.75 33.61 33.61 ...

33.45 33.25 33.87 34.14 34.19 34.47 34.55 ...
34.31 33.89 34.25 34.46 34.58 34.76 34.82 ...
34.96 34.48 34.56 35.30 35.38 34.72 35.21 ...
35.23 35.11 34.78 34.25 33.60 33.79 33.59 ...
33.36 33.71 33.10 34.02 34.65 34.81 34.67 ...
34.82 34.30 34.23 33.53 33.75 33.69 33.85 ...
33.66 34.00 33.56 33.54 33.35 32.38 32.72 ...
33.69 33.15 33.73 33.80 33.01 32.40 32.35 ...
32.57 32.55 32.89 32.76 32.49];

// BASF Schlusskurse vom 09.08. bis 16.11.2004
sbasf= [43.66 43.65 43.31 42.65 43.00 43.14 43.47 ...

43.44 43.55 44.02 43.80 44.35 44.67 45.04 ...
44.88 44.41 44.74 44.89 45.55 45.63 45.65 ...
45.57 45.23 45.36 46.00 46.06 46.12 46.15 ...
46.72 46.63 46.66 46.19 45.73 45.82 45.68 ...
46.03 47.65 47.45 48.76 48.56 48.63 48.76 ...
48.90 48.15 48.05 47.30 47.17 46.87 47.28 ...
47.62 48.60 47.93 48.48 49.16 47.77 47.97 ...
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Markowitz Kurve
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Abb. 11.6:Markowitz-Kurve

48.75 48.90 49.75 49.80 49.45 49.70 50.10 ...
49.94 50.28 50.01 49.80 49.58];

rbmw = diff(log(sbmw));
rbasf = diff(log(sbasf));
m = [mean(rbmw)

mean(rbasf)];
C = mvvacov ([rbmw’ rbasf’]);
[row,col] = size(m);
I = ones(row,1);

// Berechnung ohne Renditevorgabe
xmin = inv(I’*inv(C)*I)*inv(C)*I;
riskmin = sqrt(xmin’*C*xmin);

//=sqrt(inv(I’*inv(C)*I))
mumin = m’*xmin;

// Überprüfen der hinreichenden Bedingung
H = [0 I’

I 2*C];
det(H)
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11.5.4.3 Markowitz-Kurve

Der Ansatz zur Minimierung der Portfoliovarianz wird nun um eine weitere Ne-
benbedingung erweitert. Das Portfolio muss eine erwartete Portfoliorendite von μp
erfüllen.

μp =
n∑
i=1

xi μi (11.27)

Die Minimierung der Funktion (11.21) muss nun unter den Nebendingungen (11.20)
und (11.27) erfolgen. Für den Anteil des i-ten Finanztitels im Portfolio ist somit
folgende Lagrange-Funktion zu minimieren.

L
(
xi,λ1,λ2

)
=

n∑
i=1

n∑
j=1
xi x jσi j+λ1

(
1−

n∑
i=1
xi

)

+λ2

(
μp−

n∑
i=1
xi μi

)
→ min

(11.28)

Die ersten Ableitungen der Lagrange-Funktion (11.28) liefern die notwendigen Be-
dingungen für ein Minimum der Varianz:

L′xi = 2
n∑
j=1

x jσi j−λ1 −λ2 μi
!
= 0 für i= 1, . . . ,n (11.29)

L′λ1
= 1−

n∑
i=1
xi

!
= 0 (11.30)

L′λ2
= μp−

n∑
i=1

xi μi
!
= 0 (11.31)

Die Lagrange-Funktion (11.28) in Matrixform geschrieben, sieht wie folgt aus:

L
(
x,λ1,λ2

)
= x′Cx+λ1

(
1− 1′x)+λ2

(
μp−m′x

)
Die ersten Ableitungen stellen ein Gleichungssystem dar, dessen Lösung mittels der
Matrizenrechnung die erste Bedingung für ein Extremum liefert (identisch mit der
Bedingung (11.29)):

L′x = 2Cx−λ11−λ2m
!
= 0 (11.32)

Für gegebene λ ist die Gleichung (11.32) nach x lösbar, wenn C nicht singulär ist.

x=
1
2
C−1(λ1 1+λ2m

)
=

1
2
[
C−1 1 C−1m

][λ1
λ2

] (11.33)

Die beiden weiteren notwendigen Bedingungen (11.30) und (11.31) können eben-
falls in Vektorform geschrieben werden.

L′λ1
= 1−1′x !

= 0
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L′λ 2 = μp−m′ x !
= 0

Aus diesen beiden Gleichungen entsteht unter Verwendung der Lösung (11.33) für x
folgende Matrixgleichung, die zur Bestimmung von λ1 und λ2 dient.[

2
2μp

]
=

[
1′C−11 m′C−1 1
1′C−1m m′C−1m

][
λ1
λ2

]

Unter der bekannten Voraussetzung, dass die Varianz-Kovarianz-Matrix invertiertbar
ist, können λ1 und λ2 einfach durch Lösen des Gleichungssystems bestimmt werden.[

λ1
λ2

]
=

[
1′C−1 1 m′C−1 1
1′C−1m m′C−1m

]−1 [ 2
2μp

]

Das Einsetzen dieser Lösung in die Gleichung (11.33) bestimmt die varianzminimale
Portfoliozusammensetzung bei vorgegebener Portfoliorendite.

xmin(μp) =
[
C−11 C−1m

][ 1′C−11 m′C−11
1′C−1m m′C−1m

]−1 [ 1
μp

]
(11.34)

Die grafische Darstellung der Anteile in einem (σp,μp) Koordinatensystem liefert
dann dieMarkowitz-Kurve (siehe Abb. 11.6), die auch alsMarkowitz efficient fron-
tier bezeichnet wird. Sie gibt die risikominimalen Portfoliozusammensetzungen für
eine vorgegebene Portfoliorendite an. Durch die Diversifizierung wird das unsyste-
matische Risiko reduziert. Das unsystematische Risiko ist das Risiko, das zum Bei-
spiel in der Bonität des Emittenten liegt. Im Gegensatz dazu wird das systematische
Risiko nicht reduziert. Es ist das Risiko, das zum Beispiel durch makroökonomische
Änderungen verursacht wird. Ferner wird durch die Gleichung (11.34) deutlich, dass
die Portfoliozusammensetzung eine lineare Funktion der Rendite μp ist.

11.5.4.4 Berechnung der Markowitz-Kurve mit scilab

Beispiel 11.19. Für das Beispiel 11.18 wird durch Vorgabe von Portfoliorenditen
zwischen μBMW = −0.0005014 und μBASF = 0.001898 die Markowitz-Kurve ge-
zeichnet (siehe Abb. 11.6). Die Portfolios, deren (σ ,μ) Kombinationen auf der Kur-
ve liegen (siehe Abb. 11.6), werden als effizient bezeichnet.

xmin = inv(I’*inv(C)*I)*inv(C)*I;
riskmin = sqrt(xmin’*C*xmin);
mumin = m’*xmin;

// Berechnung mit Renditevorgabe
muvorgabe = m(1):.00001:m(2)+.0032;
i = 1;
minrisk = 0;
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for mu = muvorgabe
l = inv([I’*inv(C)*I m’*inv(C)*I

I’*inv(C)*m m’*inv(C)*m])*[2
2*mu];

minx = .5*[inv(C)*I inv(C)*m]*l;
minrisk(i) = sqrt(minx’*C*minx);
i=1+i;

end

plot(minrisk,muvorgabe,’black’);
plot(riskmin,mumin,’blacko’);
xstring(riskmin,mumin,’(sigmamin,mumin)’);

☼

11.5.4.5 Das Captial Asset Pricing Model

Das Portfolio wird nun um eine risikofreie Anlagemöglichkeit mit der erwarteten
Rendite μrf ergänzt. Es kann sich nun aus dem risikofreien Anteil xrf und risikobe-
hafteten Anteilen x zusammensetzen.

xrf +
n∑
i=1

xi︸ ︷︷ ︸
xp

= 1

xrf + xp = 1

Dies ist die Erweiterung, um aus der Markowitz-Portfolio-Theorie dasCapital Asset
Pricing Model (CAPM) abzuleiten.

Die erwartete Rendite des neuen Portfolios beträgt

μ = xrf μrf + xp
n∑
i=1
xi μi︸ ︷︷ ︸

μp

= xrf μrf + xpμp
= (1− xp)μrf + xpμp

(11.35)

Die Varianz des neuen Portfolios beträgt

σ2 = Var

(
xp

n∑
i=1

xiri

)

= x2
pVar

( n∑
i=1

xi ri

)
︸ ︷︷ ︸

σ 2
p

= x2
pσ2

p ,
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da eine risikofreie Anlage per se eine Varianz von Null besitzt (σ2
rf = 0). Das Risiko

des so zusammengesetzten Portfolios beträgt somit

σ = xpσp (11.36)

Wird die Gleichung (11.36) in die Gleichung (11.35) eingesetzt, so erhält man

μ = μrf + xp (μp− μrf )

= μrf +
μp− μrf

σp
σ

(11.37)

Die durch die Gleichung (11.37) beschriebene Gerade ist die so genannte Kapital-
marktgerade (capital market line) mit Achsenabschnitt μrf und Steigung μp−μrf

σp
(siehe Abb. 11.6). Der Tagentialpunkt dieser Linie an der Markowitz-Kurve liefert
das Marktportfolio. Die Portfolios, die auf der Kapitalmarktgeraden liegen, sind die
Portfolios, die für ein gegebenes Risiko σ die höchste Rendite liefern. Im Tangenti-
alpunkt liegt das Marktportfolio, das keine risikofreie Anlage enthält. Die Portfolios,
die rechts oberhalb des Tangentialpunktes (Marktportfolio) auf der Kapitalmarktlinie
liegen, können nur durch eine Kreditaufnahme (Verkaufsposition) der risikofreien
Anlage (short position) erreicht werden.

Die gestrichelte Kapitalmarktlinie in Abb. 11.6 ist eine ineffiziente Kapitalmarkt-
linie. Zu jedem vorgegebenen Risiko findet sich eine Portfoliozusammensetzung, die
mit einer höheren erwarteten Rendite verbunden ist. In diesen Portfolios wird das un-
systematische Risiko durch eine bessere Diversifikation stärker reduziert.

Im Folgenden wird die Steigung der Kapitalmarktlinie, die mit dem Tangential-
punkt verbunden ist, analytisch abgeleitet. Dazu muss die Steigung in der Funktion
(11.37) unter der Budgetrestriktion maximiert werden (vgl. [8]). Die Steigung der
Funktion (11.37) ist

μp− μrf
σp

=
m′x− μrf√
x′Cx

Die zu maximierende Lagrange-Funktion, die die markteffiziente Zusammensetzung
des Portfolios liefert, ist somit

L(xMarkt,λ1) =
m′ xMarkt− μrf√
x′MarktCxMarkt

+λ1 (1−1′xMarkt)→ max (11.38)

Die erste Ableitung der Lagrange-Funktion (11.38) liefert folgendes Ergebnis:

L′x =
m′xMarktCxMarkt− (m′xMarkt− μrf )CxMarkt

(x′MarktCxMarkt)
3
2

−λ11
!
= 0

Die obige Gleichung ist unter Berücksichtigung der Nebenbedingung nach xMarkt
aufzulösen.

λ1 1(x′MarktCxMarkt)
3
2︸ ︷︷ ︸

=σ 3
Markt

=mx′MarktCxMarkt︸ ︷︷ ︸
=σ 2

Markt

− (m′xMarkt︸ ︷︷ ︸
=μMarkt

− μrf )CxMarkt

λ1 1σ3
Markt = σ2

Marktm− (μMarkt− μrf )CxMarkt

(11.39)
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Diese Gleichung wird mit x′Markt erweitert, um die Nebenbedingung 1′xMarkt zu be-
rücksichtigen.

λ1 x′Markt 1σ3
Markt = x

′
Marktmσ2

Markt− (μMarkt− μrf )x′MarktCxMarkt
λ1σ3

Markt = μMarktσ2
Markt− (μMarkt− μrf )σ2

Markt

λ1 =
μrf

σMarkt

Das Ergebnis für λ1 wird in die Gleichung (11.39) eingesetzt.

μrf σ2
Markt 1= σ2

Marktm− (μMarkt− μrf )CxMarkt

Die Gleichung wird mit C−1 erweitert.

μrf σ2
MarktC

−11= σ2
MarktC

−1m− (μMarkt− μrf )xMarkt
μMarkt− μrf

σ2
Markt

xMarkt = C−1 (m− μrf 1) (11.40)

Diese Gleichung wird nun mit 1′ erweitert, um den Bruch auf der linken Seite von
(11.40) ersetzen zu können.

μMarkt− μrf
σ2
Markt

1′ xMarkt︸ ︷︷ ︸
=1

= 1′C−1 (m− μrf 1)

Dieses Ergebnis ersetzt den Bruch in Gleichung (11.40) und liefert endlich die Lö-
sung für xMarkt.

1′C−1 (m− μrf 1)xMarkt = C−1 (m− μrf 1)

xMarkt =
C−1 (m− μrf 1)
1′C−1 (m− μrf 1)

(11.41)

Im Tangentialpunkt werden die risikobehafteten Finanztitel in den Anteilen xMarkt
gehalten (siehe Abb. 11.6). Es sind im Portfolio keine risikofreien Finanztitel ent-
halten. Das Ergebnis der Markowitzschen Theorie ist, dass ein Investor jeden Punkt
auf der Kapitalmarktgeraden, also maximale Rendite zu einem vorgegebenen Risiko,
durch einen Anteil am Marktportfolio und einen Anteil risikofreier Finanztitel errei-
chen kann. Die höchste Rendite (ohne Verkaufsposition) besitzt das Marktportfolio
im Tangentialpunkt. Zu dieser Rendite muss er das Marktrisiko tragen.

11.5.4.6 Berechnung des CAPMmit Scilab

Beispiel 11.20. Für die Rendite einer risikofreien Anlage wird die Umlaufrendite
festverzinslicher Wertpapiere mit einer Restlaufzeit von 10 Jahren verwendet. Das
Beispiel 11.19 und die Berechnungen werden erweitert, um die obigen Ergebnisse
mit empirischen Daten nachzuvollziehen. Das Ergebnis der Berechnung ist in Abb.
11.6 zu sehen.
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Entlang der Kapitalmarktlinie können zu einem gegebenen Risiko die entspre-
chenden Renditen mit einer Portfoliostruktur aus risikofreien und risikobehafteten
Finanztiteln zusammengestellt werden. Das Marktportfolio besitzt die Rendite

μMarkt = 0.0036603

mit dem Risiko

σMarkt = 0.0137735.

Seine Zusammensetzung besteht aus

x′Markt =
[−0.7346106 1.7346106

]
Es müssen also −73.46 Prozent BMW-Aktien und +173.46 Prozent BASF-

Aktien gehalten werden. Wie ist der negative Anteil zu interpretieren? Der negati-
ve Anteil an BMW-Aktien bedeutet, dass Leerverkäufe getätigt werden. Als Leer-
verkäufe bezeichnet man Verkäufe, die aus geliehenen Aktien getätigt werden. Die
erwartete Rendite der BMW-Aktie lag im betrachteten Zeitraum bei −0.0005014.
Aufgrund der negativen Rendite werden die BMW-Aktien verkauft und zusätzlich in
Form von Leerverkäufen weitere 73.46 Prozent BASF-Aktien erworben. Das Port-
folio ist dann mit 73.46 Prozent fremdfinanziert.

sumlauf = [3.78 3.78 3.81 3.76 3.76 3.79 3.76 ...
3.79 3.76 3.80 3.82 3.81 3.79 3.76 ...
3.78 3.77 3.74 3.76 3.81 3.88 3.86 ...
3.88 3.82 3.81 3.82 3.79 3.78 3.82 ...
3.75 3.76 3.77 3.74 3.70 3.70 3.70 ...
3.69 3.71 3.73 3.73 3.75 3.75 3.72 ...
3.74 3.71 3.67 3.64 3.65 3.62 3.60 ...
3.61 3.61 3.59 3.57 3.59 3.55 3.54 ...
3.60 3.60 3.59 3.61 3.63 3.58 3.57 ...
3.62 3.61 3.51 3.49 3.47];

murf = mean(diff(log(sumlauf)));
riskvorgabe = linspace(0,max(minrisk),...

length(muvorgabe));
portnr = 115; // Punkt in der Markowitz-Kurve
mucapm = murf+(muvorgabe(portnr)-murf)/...

minrisk(portnr)*riskvorgabe’;
plot(riskvorgabe,mucapm,’black--’);

xmarkt = (inv(C)*(m-murf*I))/(I’*inv(C)*(m-murf*I));
mumarktl = murf+(m’*xmarkt-murf)/...

(sqrt(xmarkt’*C*xmarkt))*riskvorgabe;
plot(riskvorgabe,mumarktl,’black’);
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riskmarkt = sqrt(xmarkt’*C*xmarkt);
mumarkt = m’*xmarkt;
plot(riskmarkt,mumarkt,’blacko’);
xtitle(’’,’sigma’,’mu’);
xstring(sqrt(xmarkt’*C*xmarkt),m’*xmarkt,’...

(sigmamarkt,mumarkt)’);
plot(riskmarkt,m’*xmin,’blacko’);

xind = xmarkt*.4;
muind = m’*xind+(1-sum(xind))*murf;
riskind = sqrt(xind’*C*xind);
xstring(riskind-.0035,muind,’Kapitalmarktlinie’);
plot([riskmarkt riskmarkt],[-.002 mumarkt],’black’);

☼

11.5.4.7 Wertpapiergerade

Die Wertpapiergerade (security market line) ist der Erklärungsansatz, die Rendite
des i-ten Wertpapiers durch die Rendite des Marktportfolios und die des risikofreien
Wertpapiers zu erklären. Dazu wird die Beziehung (11.37) umgeändert in

μi− μrf =
(
μMarkt− μrf

)
βi ⇒ βi =

μi− μrf
μMarkt− μrf

Der Parameter βi wird als empirisches Beta bezeichnet, der im Portfoliomanage-
ment eine große Bedeutung besitzt. In dieser Modellgleichung ist βi eine Variable.
Die Risikoprämie des Portfolios μMarkt− μrf gibt die Steigung der Geraden an. Das
Beta misst hier das relative Risiko des i-ten Wertpapiers im Marktportofolio. Da die
Varianz des Marktportofolios das systematisches Risiko reflektiert (der Theorie nach
enthält das Marktportofolio in einem effizienten Markt kein unsystematisches Risi-
ko), ist das relative Risiko des Wertpapiers ein Maß für das systematische Risiko
des Wertpapiers. Ist Beta Eins, so entspricht die erwartete Rendite des i-ten Wertpa-
piers der des Marktportfolios. Liegt der Wert von Beta über Eins, so ist die erwartete
Rendite höher als diejenige des Marktportfolios. Solche Wertpapiere besitzen aber
gemäß der Portfolio-Theorie ein höheres systematisches Risiko als das Marktport-
folio. Im Rahmen des Regressionsmodells wird Beta auch als Steigung interpretiert.
Aus dieser Doppelinterpretation ergeben sich zwei grafische Darstellungen (siehe
Beispiel 11.21).

In den nächsten Schritten sind μMarkt−μrf und μi−μrf mit den Ergebnissen des
CAPM zu ersetzen, um zu sehen, wie das Beta durch die Risiken der Wertpapiere
bestimmt wird. Dazu wird die Gleichung (11.41) nachm aufgelöst und die folgende
Gleichung eingesetzt:

μMarkt =m′ xMarkt (11.42)
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Für die Auflösung der Gleichung (11.41) nach m wird der Nenner (ein Skalar) der
Gleichung während der Umformung mit δ abgekürzt, da er später entfällt (vgl. [8]).

xMarkt = δ C−1(m− μrf 1
)

mit δ =
1

1′C−1 (m− μrf 1)
= δ C−1m− δ μrf C−11

δ C−1m= xMarkt+ δ μrf C−11

m=
1
δ
CxMarkt+ μrf 1 (11.43)

Die Gleichung fürm wird nun in die Gleichung (11.42) eingesetzt.

μMarkt =
(
CxMarkt

1
δ
+ μrf 1

)′
xMarkt

=
1
δ
x′MarktCxMarkt+1

′xMarkt︸ ︷︷ ︸
=1

μrf

μMarkt− μrf =
1
δ
x′MarktCxMarkt (11.44)

Für

μi =m′ ei mit: ei =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
1
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
← i-te Position

wirdm ebenfalls durch die Beziehung (11.43) ersetzt.

μi =
(

1
δ
x′MarktC+ μrf 1′

)
ei

=
1
δ
x′MarktCei+ μrf 1′ei︸︷︷︸

=1

μi− μrf =
1
δ
x′MarktCei (11.45)

Das Verhältnis von (11.45) zu (11.44) liefert das gesuchte Ergebnis.

βi =
μi− μrf

μMarkt− μrf

=
x′MarktCei

x′MarktCxMarkt
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Der Zähler in der Gleichung entspricht der Kovarianz Cov(rMarkt,ri), der Nenner der
Varianz des Marktportfolios σ2

Markt.

β̂i =
Cov(rMarkt,ri)

σ2
Markt

Beta ist gleichzeitig der Parameter (Kleinst-Quadrate-Schätzer) der linearen Regres-
sionsgleichung

ri− rrf = αi+
(
rMarkt− rrf

)
βi+ ε (11.46)

Das Regressionsmodell (11.46) unterstellt bei Gültigkeit des CAPM αi = 0.

11.5.4.8 Berechnung der Wertpapiergeraden mit Scilab

Beispiel 11.21. Im vorliegenden Beispiel wird nun im Rahmen des CAPM weiter ge-
rechnet. Dies bedeutet, dass der mit xMarkt gewichtete Durchschnitt der Marktrendite
eingesetzt wird. Das Marktportfolio besteht nur aus BMW- und BASF-Aktien in der
berechneten Zusammensetzung. Abbildung 11.7 zeigt das Ergebnis. In den beiden
oberen Grafiken sind die Regressionen der Aktienrenditen auf die (aus dem CAPM
berechnete) Marktrendite μMarkt zu sehen.
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Abb. 11.7: Wertpapiergerade mit −73 Prozent BMW- und +173 Prozent BASF-
Aktien als Marktportfolio
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// SML security market line
rmarkt = xmarkt’*[rbmw; rbasf];

betabmw = covar(rmarkt,rbmw,eye(67,67))...
/(variance(rmarkt)*66/67);

//betabmw = (mean(rbmw)-murf)/(mean(rmarkt)-murf);
betanullbmw = mean(rbmw)-mean(rmarkt)*betabmw;

subplot(2,2,1)
plot(rmarkt,rbmw,’blacko’);
xtitle(’BMW’,’rmarkt’,’rbmw’);
smlbmw = betanullbmw+rmarkt*betabmw;
plot(rmarkt,smlbmw,’black’);

betabasf = covar(rmarkt,rbasf,eye(67,67))...
/(variance(rmarkt)*66/67);

betanullbasf = mean(rbasf)-mean(rmarkt)*betabasf;

subplot(2,2,2)
plot(rmarkt,rbasf,’blacko’);
xtitle(’BASF’,’rmarkt’,’rbasf’);
smlbasf = betanullbasf+rmarkt*betabasf;
plot(rmarkt,smlbasf,’black’);

subplot(2,1,2)
plot(betabmw,mean(rbmw),’blacko’);
xstring(betabmw,mean(rbmw),’BMW’);
plot(betabasf,mean(rbasf),’blacko’);
xstring(betabasf,mean(rbasf),’BASF’);
plot(1,mean(rmarkt),’blacko’);
xstring(1,mean(rmarkt),’Markt’);
sml11 = (1.15-1)/(1-betabmw)*(mean(rmarkt)...

-mean(rbmw))+mean(rmarkt);
plot([betabmw 1.15],[mean(rbmw) sml11],’black--’);
xtitle(’’,’betas’,’mus’);
plot([1 1],[-.001 mean(rmarkt)],’black-.’);
plot([0 1],[mean(rmarkt) mean(rmarkt)],’black-.’);
xstring(.3,mean(rmarkt),’mumarkt’);
a=gca();
a.data_bounds=[0 -.001;1.2 .005];

β̂BMW = 0.1571 β̂BASF = 0.6430

Das Beta wird hier als Steigung der Regressionsgeraden interpretiert. Dies ist die ei-
ne Form der Wertpapiergeraden. In der unteren Grafik werden die Betas als Variablen
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abgetragen. Man sieht, dass die Betas in einem linearen Zusammenhang stehen. Dies
ist die andere Form der Wertpapiergeraden. Die lineare Beziehung zwischen den Be-
tas kommt aufgrund der Verwendung der CAPM Ergebnisse von oben zustande. ☼

Beispiel 11.22. Nun wird für die Marktrendite die Rendite des DAX im betrachteten
Zeitraum eingesetzt. Das Ergebnis dieser Berechnung sieht man in Abb. 11.8. Die
oberen Grafiken zeigen wieder die Regressionen, diesmal jedoch zwischen Aktien-
renditen und DAX-Renditen. Auffallend ist, dass nun die Regression für die BMW-
Rendite eine deutlich höhere Korrelation aufweist; für die BASF-Rendite fällt sie
hingegen etwas niedriger aus als im Beispiel 11.21.
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Abb. 11.8:Wertpapiergerade mit DAX als Marktportfolio

// SML security market line

sdax = [3690.33 3720.64 3658.11 3646.99 3699.11 ...
3705.73 3726.50 3722.99 3712.61 3772.14 ...
3771.00 3788.88 3832.28 3851.18 3838.85 ...
3785.21 3817.62 3833.45 3866.99 3887.58 ...
3889.04 3884.16 3851.22 3886.03 3953.31 ...
3947.75 3941.75 3963.65 3988.07 3977.68 ...
3991.02 3942.35 3905.66 3910.30 3874.37 ...
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3882.27 3920.36 3892.90 3994.96 4033.28 ...
4048.71 4049.66 4043.36 4015.54 4017.82 ...
3966.48 3976.03 3940.46 3922.11 3915.17 ...
3964.13 3912.40 3934.06 3935.14 3854.41 ...
3862.26 3959.59 3960.25 4012.64 4037.57 ...
4039.04 4041.38 4063.58 4068.97 4065.33 ...
4143.35 4134.34 4117.22];

rdax = diff(log(sdax));
rmarkt = rdax;
betabmw = covar(rmarkt,rbmw,eye(67,67))...

/(variance(rmarkt)*66/67);
//betabmw = (mean(rbmw)-murf)/(mean(rmarkt)-murf);
betanullbmw = mean(rbmw)-mean(rmarkt)*betabmw;

subplot(2,2,1)
plot(rmarkt,rbmw,’blacko’);
xtitle(’BMW’,’rmarkt’,’rbmw’);
smlbmw = betanullbmw+rmarkt*betabmw;
plot(rmarkt,smlbmw,’black’);

betabasf = covar(rmarkt,rbasf,eye(67,67))...
/(variance(rmarkt)*66/67);

betanullbasf = mean(rbasf)-mean(rmarkt)*betabasf;

subplot(2,2,2)
plot(rmarkt,rbasf,’blacko’);
xtitle(’BASF’,’rmarkt’,’rbasf’);
smlbasf = betanullbasf+rmarkt*betabasf;
plot(rmarkt,smlbasf,’black’);

subplot(2,1,2)
plot(betabmw,mean(rbmw),’blacko’);
xstring(betabmw,mean(rbmw),’BMW’);
plot(betabasf,mean(rbasf),’blacko’);
xstring(betabasf,mean(rbasf),’BASF’);
plot(1,mean(rmarkt),’blacko’);
xstring(1,mean(rmarkt),’Markt’);
plot(1,mean(rdax),’blacko’);
x = linspace(.15,1.15,length(rdax));
y = murf + (mean(rdax)-murf)*x;
plot(x,y,’black--’);
xtitle(’’,’betas’,’mus’);
plot([1 1],[-.001 mean(rmarkt)],’black-.’);
plot([0 1],[mean(rmarkt) mean(rmarkt)],’black-.’);
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xstring(.3,mean(rmarkt),’mumarkt’);
a=gca();
a.data_bounds=[0 -.001;1.2 .005];

Die empirischen Betas sind dann

β̂BMW = 1.1225 β̂BASF = 0.8442

Diese Werte liegen, wie man in der unteren Grafik sieht, nicht auf der Wertpapier-
geraden. Das Ergebnis widerspricht der CAPM-Theorie. Interessant ist vor allem,
dass hier die Annahme verletzt wird, dass ein höheres Beta (Risiko) auch mit einer
höheren Rendite verbunden sein sollte. ☼

Übung 11.5. Ein Unternehmen hat zwei unabhängige Verkaufsfilialen, deren Ge-
winne G1(x) und G2(y) von den eingesetzten Kapitalmengen x und y in folgender
Weise abhängen:

G1(x) = ln(1+ x) für x> 1

G2(y) =
y

1+ y
für y> 0

Bestimmen Sie den maximal möglichen Gewinn G1(x)+G2(y) des Unternehmens
unter der Nebenbedingung, dass insgesamt eine Kapitalmenge von

x+ y= 10e

zur Verfügung steht.

Übung 11.6. Ein Unternehmen hat sich auf zwei Produkte spezialisiert, die sie in
den Mengen x1 und x2 herstellen. Es ist in der Lage, beide Produkte nach folgender
Kostenfunktion herzustellen:

K(x1,x2) = 30x1 + 90x2 −0.1
(
x2

1 + x1 x2 + x2
2
)
+12000

für x1,x2 > 0

Die Nachfragefunktionen für die beiden Produkte sind wie folgt:

p1(x1) = 180− x1

p2(x1,x2) = 360− x2+0.5x1

1. Berechnen Sie die gewinnmaximalen Mengen und Preise für die beiden Pro-
dukte und den Gesamtgewinn des Unternehmens.

2. Die Marketingabteilung geht davon aus, dass der Markt von den beiden Pro-
dukten insgesamt exakt 290 [ME] aufnehmen kann. In welchen Mengen sind
die beiden Produkte herzustellen, damit das Unternehmen einen maximalen
Gesamtgewinn erzielt?
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Übung 11.7. Es gibt einen Studenten mit unstillbarem Appetit nach Schokolade.
Es wird angenommen, dass der Nutzen, der ihm aus dem Verzehr der Schokolade
entsteht, durch eine Cobb-Douglas-Funktion beschrieben werden kann.

U(x1,x2) = x0.5
1 x0.5

2 für x1,x2 > 0

Die Variablen x1 und x2 geben die Zahl der Schokoladenstücke weißer und schwar-
zer Schokolade an. Es wird unterstellt, dass die weiße Schokolade 0.04e und die
schwarze 0.02e pro Stück kosten. Der Student hat sich eine Obergrenze von 12e
für seine Schokoladenleidenschaft pro Semester gesetzt. Berechnen Sie den maxi-
malen Nutzen. Interpretieren Sie den berechneten Lagrange-Multiplikator.

11.6 Fazit

Funktionen können zur Beschreibung komplizierter ökonomischer Zusammenhän-
ge verwendet werden. Sie enthalten dann mehr als nur eine Variable. Allerdings ist
auch ihre Analyse aufwändiger. Besonders interessant für ökonomische Fragen ist
der Lagrange-Ansatz. Mit ihm lässt sich unter bestimmten Annahmen eine Minimal-
kostenkombination und ein risikominimales Portfolio bestimmen.
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12.1 Vorbemerkung

In den vorausgegangenen Kapiteln wurde die Differentialrechnung und ihre Anwen-
dung in der Ökonomie dargestellt. Der Ausdruck d f (x)

dx , der die Differentiation vor-
schreibt, wird als Differentialoperator bezeichnet. Der Differentialoperator liefert die
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erste Ableitung einer differenzierbaren Funktion. Eine naheliegende Frage ist: Gibt
es eine Umkehrfunktion, die die Wirkung des Differentialoperators wieder aufhebt,
d. h. aus der Ableitung die ursprüngliche Funktion erzeugt?

Eine derartige Umkehroperation wurde gleichzeitig mit der Differentialrechnung
entwickelt. Sie wird als Integration bezeichnet. Als Operator hat man das

∫
. . . dx

eingeführt, das vom stilisierten S für Summe abgeleitet ist. Es wird nie ohne Variable
geschrieben, nach der integriert wird. Um anzudeuten, dass analog zur Differentia-
tion d f (x)

dx ein Grenzübergang auf infinitesimale Größen dx vollzogen wird, schreibt
man die Integrationsvorschrift

∫
f (x)dx.

Die Integration wird in der Ökonomie angewendet, wenn man vom Grenzverhal-
ten einer ökonomischen Größe auf die Funktion selbst schließen möchte. Beispiels-
weise lässt sich vom zeitabhängigen Änderungsverhalten des Umsatzes eines Pro-
dukts durch Integration auf den Umsatz eines Zeitraums, zum Beispiel eines Jahres
schließen, oder man kann zu einer bekannten Grenzkostenfunktion die Gesamtko-
stenfunktion mit Hilfe der Integration bestimmen. Diese Anwendungen ergeben sich
unmittelbar aus der Definition der Integration als Umkehroperation zur Differentiati-
on. Ein anderes sehr wichtiges Anwendungsgebiet liegt in der Statistik, hier speziell,
um den Zusammenhang zwischen der Dichtefunktion und der Verteilungsfunktion
einer stetigen Zufallsvariablen herzustellen.∫

dx unbestimmtes Integral∫ b
a dx bestimmtes Integral
F(x) Stammfunktion
c Integrationskonstante

12.2 Das unbestimmte Integral

Die erste Ableitung der Funktion ist y′ = f (x). Es wird angenommen, dass eine Funk-
tion F(x) existiert, die differenziert f (x) ergibt. Das heißt, es soll gelten:

d
dx
F(x) = f (x) (12.1)

Zunächst fällt auf, dass die gesuchte Funktion nicht eindeutig ist, denn man kann zu
F(x) jede beliebige Konstante c addieren, die dann beim Differenzieren entfällt. Gilt
also die Gleichung (12.1), so gilt auch:

d
dx
(
F(x)+ c

)
= f (x) für c= konst

Die gesuchte Funktion ist daher unbestimmt, weil die Konstante (Integrationskon-
stante) c frei wählbar ist.

Die Funktion
F(x)+ c

heißt das unbestimmte Integral der stetigen Funktion f (x), falls F ′(x) = f (x) gilt.
Man schreibt:
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f (x)dx= F(x)+ c

Die Funktion f (x) heißt Integrand, und die Funktion F(x) wird als Stammfunktion
des Integranden bezeichnet.

Die Berechnung der Stammfunktion aus einer gegebenen Funktion ist der Vor-
gang des Integrierens. Am Beispiel elementarer Funktionen, deren Ableitungen man
kennt, kann man das Integral auf der Basis der Definition ohne Schwierigkeit be-
stimmen, indem man die folgende Frage beantwortet:

Welche Stammfunktion F(x) ergibt differenziert den vorgegebenen Integranden
f (x)?

Beispiel 12.1.

f (x) = x3⇒ F(x) =
∫
x3 dx=

1
4
x4 + c⇒ d

dx
F(x) = x3

Das Ergebnis der Integration ist in diesem Fall immer das unbestimmte Integral. ☼

Der Differentialquotient einer Funktion kann sehr anschaulich als Steigung der
betreffenden Funktion interpretiert werden. Leider gibt es für das unbestimmte In-
tegral keine ähnlich anschaulich geometrische Deutung. Der Vorgang des Integrie-
rens kann «nur» als Umkehroperation zum Differenzieren interpretiert werden. Das
erschwert das Integrieren insofern, als es nicht schematisch wie zum Beispiel das
Differenzieren abläuft. Die Technik des Integrierens erfordert daher Phantasie und
gute Kenntnisse der elementaren Funktionen und ihrer Ableitungen.

12.2.1 Integrale für elementare Funktionen

Im Folgenden sind einige Integrale für elementare Funktionen angegeben. Den Be-
weis für die Richtigkeit der Integrale kann man leicht durch Differenzieren der
Stammfunktion führen. ∫

xn dx=
1
n+1

xn+1 + c∫
1
x

dx= ln |x|+ c∫
ex dx= ex+ c∫

sinxdx=−cosx+ c∫
cosxdx= sinx+ c

In Mathematiklehrbüchern und Nachschlagewerken (zum Beispiel [1]) sind wei-
tere Integrale tabelliert, die man im Einzelfall dort nachschlagen kann.
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12.2.2 Integrationsregeln

Es werden nun verschiedene Regeln diskutiert, mit deren Hilfe man ein gegebenes
Integral auf Integrale elementarer Funktionen zurückführen kann. Dies ist die eigent-
liche Kunst des Integrierens. Es kommt darauf an, die Funktion möglichst geschickt
umzuformen, damit letztlich nur noch bekannte und einfache Integrale zu lösen sind.
Freilich ist dies keineswegs immer möglich. Es gibt zahlreiche Funktionen, deren
Integrale nicht mehr durch elementare Funktionen darstellbar sind, und es gibt Funk-
tionen, deren unbestimmte Integrale überhaupt nicht in geschlossener Form, d. h. als
Formel, existieren. Dies tritt zum Beispiel schon bei so scheinbar einfachen Funktio-
nen wie

f (x) = e−x
2

für x ∈ R

f (x) =
1

lnx
für x> 0

f (x) =
x

sinx
für x ∈ R

auf, die nur näherungsweise integrierbar sind.

12.2.2.1 Konstant-Faktor-Regel

Ein konstanter Faktor kann vor das Integral gezogen werden:∫
a f (x)dx= a

∫
f (x)dx

Beispiel 12.2. ∫
2dx= 2

∫
dx= 2x+ c∫

4x3 dx= 4
∫
x3 dx= x4 + c

☼

12.2.2.2 Summenregel

Das Integral einer Summe von Funktionen ist gleich der Summe der Einzelintegrale:∫ (
f (x)+g(x)

)
dx=

∫
f (x)dx+

∫
g(x)dx

Bei einer Summe von Integralen werden die Integrationskonstanten meist zu einer
Konstanten zusammengefasst. Konstante Faktoren und Summen bzw. Differenzen
von Funktionen werden also wie beim Differenzieren ganz schematisch berücksich-
tigt.



12.2 Das unbestimmte Integral 321

Beispiel 12.3. ∫ (
2x2 −1+

4
x

)
dx= 2

∫
x2 dx−

∫
dx+4

∫
1
x

dx

=
2
3
x3 − x+ 4 ln |x|+ c

☼

12.2.2.3 Partielle Integration

Auch für die Produktregel der Differentiation bzw. für die Kettenregel existieren
äquivalente Regeln der Integration, die jedoch eher Umformungen als Rechenvor-
schriften darstellen. Man bezeichnet sie als partielle Integration bzw. als Integration
durch Substitution. Trotz des gleichlautenden Adjektivs hat die partielle Integration
nichts mit der partiellen Differentiation zu tun.

Partielle Integration kann angewendet werden, wenn ein Produkt zweier Funktio-
nen zu integrieren ist. Die anschließenden Überlegungen zeigen, warum man dabei
nicht vom Produkt f (x)g(x) ausgeht, sondern die Form f (x)g′(x) wählt. Die Pro-
duktregel der Differentiation lautet

d
dx
(
f (x)g(x)

)
=

d f (x)
dx

g(x)+ f (x)
dg(x)

dx

Durch Umstellen erhält man

f (x)g′(x) =
d
(
f (x)g(x)

)
dx

− f ′(x)g(x)

Integriert man beide Seiten der Gleichung, so erhält man∫
f (x)g′(x)dx=

∫ d
(
f (x)g(x)

)
dx

dx−
∫
f ′(x)g(x)dx

Bei dem mittleren Integral besteht der Integrand gerade aus einem Differentialquoti-
enten. Hier hebt sich also die Integration und die Differentiation auf.∫ d

(
f (x)g(x)

)
dx

dx= f (x)g(x)+ c (12.2)

Man erhält ∫
f (x)g′(x)dx= f (x)g(x)−

∫
f ′(x)g(x)dx+ c

Diese Vorgehensweise sieht auf den ersten Blick recht kompliziert aus und scheint
sinnlos zu sein, weil das Integral auf der linken Seite ja nur durch ein anderes, ähnlich
strukturiertes Integral rechts ersetzt wird. Das erklärt auch die Bezeichnung «parti-
ell». Tatsächlich ist aber das Integral auf der rechten Seite manchmal einfacher zu
lösen als das Integral auf der linken Seite.
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Die partielle Integration setzt voraus, dass ein Produkt der Form

f (x)g′(x)

zu integrieren ist. Welcher Faktor aber als f (x) und welcher als g′(x) gewählt wird,
ist nicht festgelegt. Als Faustregel könnte man vielleicht sagen: Wähle die Funktion
als g′(x), die leichter zu integrieren ist. Aber es gibt Ausnahmen von dieser Regel.
Manchmal gibt es keinerlei Hinweis für eine bestimmte Wahl. Dann sollte man es
mit einer Variante versuchen und sich für die Alternative entscheiden, wenn man
nicht weiterkommt. Eine Quotientenregel der Integration gibt es nicht.

Im Folgenden wird die partielle Integration durch einige Beispiele erläutert.

Beispiel 12.4. Es soll die Funktion

f (x) = 4x3 lnx für x> 0

integriert werden. Da es sich um zwei multiplikativ verknüpfte elementare Funktio-
nen handelt, wählt man folgenden partiellen Integrationsansatz:

g(x) = lnx ⇒ g′(x) =
1
x

h′(x) = 4x3 ⇒ h(x) = x4 + c1 (12.3)

Die partielle Integration ergibt

F(x) =
∫

4x3 lnxdx= x4 lnx+ c1 −
∫
x4 1

4
dx

= x4 lnx+ c1 −
∫
x3 dx

= x4 lnx+ c1 − x
4

4
+ c2

= x4 lnx− x
4

4
+ c

(12.4)

Die Integrationskonstante aus (12.3) wird im Allgemeinen mit der in (12.4) zu einer
Integrationskonstanten zusammengefasst und nicht extra ausgewiesen. ☼

Beispiel 12.5. Es soll die Funktion

f (x) = x2 ex für x ∈ R

integriert werden. Man wählt den Ansatz

g(x) = x2 ⇒ g′(x) = 2x
h′(x) = ex ⇒ h(x) = ex+ c

Das partielle Integral lautet damit

F(x) =
∫
x2 ex dx= x2 ex− 2

∫
xex dx (12.5)

Das Integral (12.5) wird wieder partiell integriert. Man wählt diesmal

f (x) = x ⇒ f ′(x) = 1
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g′(x) = ex ⇒ g(x) = ex+ c

Nun erhält man das partielle Integral

F(x) =
∫
x2 ex dx= x2 ex−2

(
xex−

∫
ex dx

)
= x2 ex−2xex+ 2ex+ c

= ex
(
x2 −2x+2

)
+ c

☼

Beispiel 12.6. Es soll die Funktion

f (x) = lnxdx für x> 0

integriert werden. Man wählt den Ansatz 1× lnx.

f (x) = lnx ⇒ f ′(x) =
1
x

g′(x) = 1 ⇒ g(x) = x+ c

Es wird also eine multiplikative Verknüpfung mit der Konstanten 1 unterstellt, um
das Integral partiell integrieren zu können. Das partielle Integral ist somit

F(x) =
∫

lnxdx= x lnx−
∫

1
x
xdx

= x lnx− x+ c

☼

Beispiel 12.7. Es soll die Funktion

f (x) = sinx cosx für x ∈R

integriert werden. Man wählt den Ansatz

f (x) = sinx ⇒ f ′(x) = cosx
g′(x) = cosx ⇒ g(x) = sinx+ c

Das partielle Integral ist somit

F(x) =
∫

sinx cosxdx

= (sinx)2 + c−
∫

sinx cosxdx

2
∫

sinx cosxdx= (sinx)2 + c
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F(x) =
∫

sinx cosxdx=
1
2
(sinx)2 + c

☼

12.2.2.4 Integration durch Substitution

Zusammengesetzte Funktionen werden mit Hilfe der Kettenregel differenziert. Im
Prinzip wird dabei die innere Funktion substituiert. Man erhält aus

y= f
(
g(x)

)
mit z= g(x)

eine von der Struktur her vereinfachte Funktion mit der neuen Variablen z. Genau das
gleiche Prinzip kann man auch beim Integrieren anwenden. Durch Variablensubsti-
tution wird versucht, eine zusammengesetzte Funktion soweit zu vereinfachen, dass
sie auf bekannte Integrale zurückzuführen ist.

Die Integration durch Substitution ist wohl die am häufigsten verwendete Metho-
de (wie die Kettenregel). Liegt eine zusammengesetzte Funktion vor, so sollte man
mit einem Substitutionsversuch beginnen.

Es soll das Integral

F(x) =
∫
f
(
g(x)

)
g′(x)dx

gelöst werden, wobei die innere Funktion durch z = g(x) substituiert wird. Das Dif-
ferential dieser neuen Variablen lautet dann

dz= g′(x)dx,

so dass sich unter Umständen ein einfacheres Integral

F(z) =
∫
f (z)dz

ergibt. Häufig verwendete Substitutionen sind:

z= ax+ b ⇒ dz= adx

z= ax2 +b ⇒ dz= 2axdx

z=
√
ax+b ⇒ dz=

a
2
√
ax+b

dx

z= cx ⇒ dz= cx lncdx

z= lnx ⇒ dz=
1
x

dx

z= sinx ⇒ dz= cosxdx

Beispiel 12.8. Es ist das Integral

F(x) =
∫

2x
√
x2 +2dx
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zu berechnen. Mit der Substitution

z= x2 + 2 ⇒ dz= 2xdx

ergibt sich das substituierte Integral wie folgt:

F(z) =
∫ √

zdz=
2
3
z

3
2 + c

Das Produkt mit 2x entfällt hier aufgrund der Substitution, was die Lösung des In-
tegrals jetzt ermöglicht. Der nächste Schritt ist die Resubstituierung der Variablen
z.

F(x) =
2
3

√
(x2 + 2)3 + c

☼

Beispiel 12.9. Es ist das Integral

F(x) =
∫
xe−x

2
dx

zu berechnen. Die Substitution

z=−x2 ⇒ dz=−2xdx

führt zu dem Integral

F(z) =−1
2

∫
ez dz

=−1
2

ez+ c

Mit der Ersetzung von z=−x2 erhält man die Lösung des Integrals:

F(x) =−1
2

e−x
2
+ c

☼

Beispiel 12.10. Es ist das Integral

F(x) =
∫

1
2x+ 3

dx für x �=−3
2

zu lösen. Die Substitution

z= 2x+ 3 ⇒ dz= 2dx

führt zu dem Integral

F(z) =
1
2

∫
1
z

dz=
1
2

ln |z|+ c
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und zur Lösung

F(x) =
1
2

ln |2x+ 3|+ c

☼

Beispiel 12.11. Es ist das Integral

F(x) =
∫

tanxdx

=

∫
sinx
cosx

dx für x �= π
2
+ kπ , k ∈ Z

zu lösen. Erst die Transformation in die alternative Funktion ergibt eine sinnvolle
Substitution

z= cosx ⇒ dz=−sinxdx

und führt zu dem Integral

F(z) =−
∫

1
z

dz=− ln |z|+ c

und zur Lösung

F(x) =− ln |cosx|+ c
☼

Beispiel 12.12. Es ist das Integral

F(x) =
∫

lnx
x

dx für x> 0

zu lösen. Die Substitution

z= lnx ⇒ dz=
1
x

dx

führt zu dem Integral

F(z) =
∫
zdz=

1
2
z2 + c

und zur Lösung

F(x) =
1
2
(

lnx
)2

+ c

☼
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Beispiel 12.13. Es ist das Integral

F(x) =
∫
ax dx=

∫
ex lna dx für x> 0

zu lösen. Erst die Transformation in die alternative Funktion ergibt eine sinnvolle
Substitution.

z= x lna ⇒ dz= lnadx

Das transformierte Integral

F(z) =
1

lna

∫
ez dz=

1
lna

ez+ c

führt zur Lösung

F(x) =
1

lna
ax+ c

☼

Beispiel 12.14. Es ist das Integral

F(x) =
∫

sinx cosx
1+ sin2 x

dx

zu lösen. Die Substitution

z= 1+ sin2 x ⇒ dz= 2 sinx cosxdx

führt zu dem Integral

F(z) =
1
2

∫
1
z

dz=
1
2

ln |z|+ c

und zur Lösung

F(x) =
1
2

ln
(
1+ sin2 x

)
+ c

☼

12.2.3 Ökonomische Anwendung

Für einen ökonomischen Wachstumsprozess wird häufig angenommen, dass die re-
lative Änderung

f ′(t)
f (t)

= γ mit f (t)> 0 für alle t (12.6)
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konstant ist. Mit t wird hier die Zeit bezeichnet. f (t) ist eine zeitabhängige Be-
standsfunktion. Die Ableitung f ′(t) ist dann eine Wachstumsrate. Die Umstellung
der Funktion liefert eine Differentialgleichung.

f ′(t) = γ f (t)

Die Änderungsrate f ′(t) ist proportional abhängig von der Bestandsfunktion f (t).
Die Lösung der Gleichung (12.6) erfolgt durch einen Integrationsansatz mit der Sub-
stitution

z= f (t)
dz
dt

= f ′(t)

Der daraus folgende Ansatz kann leicht integriert werden.∫
f ′(t)
f (t)

dt =
∫

γ dt ⇒
∫

1
z

dz=
∫

γ dt

ln f (t) = γ t+ c ⇒ f (t) = y0 eγ t mit y0 = f (0) = ec (12.7)

Beispiel 12.15. Mit der Funktion (12.7) kann zum Beispiel eine stetige Verzinsung
des Kapitals berechnet werden. Dann ist y0 = K0, γ = i (siehe stetige Verzinsung,
Seite 170).

Kt = K0 ei×t

☼

Übung 12.1. Berechnen Sie die folgenden unbestimmten Integrale:

F(x) =
∫

x√
x− 2

dx für x≥ 2

F(x) =
∫ (

lnx
)5

x
dx für x≥ 0

F(x) =
∫
xe−x

2
dx für x ∈ R

F(x) =
∫ √

x lnxdx für x≥ 0

Übung 12.2. Bestimmen Sie die Stammfunktion zu folgenden Funktionen:

f (x) = ax für a ∈ R,a> 0

f (x) = x sin
x
2

für x ∈R

f (x) = x2 √x für x≥ 0

f (x) =
x2

√
x+ 5

für x≥−5

f (x) =
1
x lnx

für x≥ 0
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12.3 Das bestimmte Integral

Die Integration war bislang als Umkehroperation zur Differentiation verstanden wor-
den. Neben dieser Definition gibt es eine zweite, diesmal anschaulichere Erklärung
für das Integral. Für eine im Intervall

a≤ x≤ b
stetige Funktion f (x) sei der Inhalt der Fläche zwischen der Kurve und der Abszisse
über dem Intervall [a,b] zu berechnen. Die Fläche soll mit Fab bezeichnet werden
(siehe Abb. 12.1).
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Abb. 12.1: Bestimmtes Integral

Die Fläche Fab lässt sich näherungsweise berechnen, indem man das Intervall
[a,b] in Teilintervalle

[a,b] = [a= x1,x2]∪ [x2,x3]∪ . . .∪ [xn−1,xn = b]

aufteilt und die Fläche über dem i-ten Intervall durch ein Rechteck der Höhe f (xi)
approximiert, wobei xi ein willkürlicher Wert im i-ten Intervall ist. Die Intervallbreite
wird mit Δxi = xi+1 − xi bezeichnet. Es gilt:

Fab �
n∑
i=1

f (xi)Δxi
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Die Näherung wird umso genauer, je kleiner die Rechtecke, also die Teilintervalle
sind. Lässt man die Intervallbreite der Teilintervalle gegen Null und damit die Zahl
n der Rechtecke gegen unendlich streben, so wird der Grenzwert der Summe der
Rechtecke gleich der gesuchten Fläche.

Fab = limn→∞
Δxi→0

n∑
i=1
f (xi)Δxi (12.8)

Der Grenzwert der Summe (12.8) wird bestimmtes (Riemannsches) Integral der
Funktion f (x) über dem Intervall [a,b] genannt.

lim
n→∞

Δxi→0

n∑
i=1

f (xi)Δxi =
∫ b

a
f (x)dx

Die Variable x ist die Integrationsvariable und a bzw. b sind die Integrationsgren-
zen. Diese Definition des Integrals als Grenzwert einer Summe erklärt die Wahl des
stilisierten Buchstabens S als Integrationszeichen.

Ähnlich wie schon beim Differentialquotienten ist also auch das bestimmte In-
tegral durch einen Grenzwert definiert, den man im konkreten Fall natürlich nicht
jedes Mal ausrechnen möchte. Der so genannte Hauptsatz der Integralrechnung
stellt den Zusammenhang zwischen dem bestimmten und dem unbestimmten Inte-
gral mit Hilfe der Stammfunktion her und zeigt damit einen Weg auf, das bestimmte
Integral mittels der Stammfunktion zu berechnen. Dazu wird die Umkehreigenschaft
der Differentiation und der Integration genutzt.

12.3.1 Hauptsatz der Integralrechnung

Es wird eine auf dem Intervall [a,b] integrierbare Funktion f (z) betrachtet. Das In-
tegral

Fax(x) =
∫ x

a
f (z)dz

bedeutet dann den Flächeninhalt unter der Kurve f (z) im Intervall [a,x]. Die Wahl
der neuen Integrationsvariablen z hat allein didaktische Gründe. Am Wert des be-
stimmten Integrals ändert sich dadurch nichts. Der Flächeninhalt ist nun von der hier
als variabel anzusehenden oberen Integrationsgrenze abhängig und daher eine Funk-
tion von x. Differenziert man die Funktion Fax(x) nach x, so bedeutet das formal, ein
Integral nach seiner oberen Grenze zu differenzieren. Dazu besagt der Hauptsatz der
Integralrechnung folgendes:

Ist f (x) im Intervall [a,b] integrierbar, so gilt:

F ′
ax(x) =

d
dx

∫ x

a
f (z)dz = f (x)

Folglich ist Fax(x) das bestimmte Integral und bis auf die Integrationskonstante c
gleich der Stammfunktion F(x) der Funktion f (x).
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Fax(x) =
∫ x

a
f (z)dz = F(x)+ c

Setzt man x = a, so muss die Fläche unter der Kurve im Intervall [a,a] offenbar
gleich Null sein, so dass gilt:∫ a

a
f (z)dz = 0 = F(a)+ c

Daraus bestimmt sich die Integrationskonstante c=−F(a), und man erhält

Fax(x) =
∫ x

a
f (z)dz = F(x)−F(a)

Der Wert des bestimmten Integrals ist also gleich dem Wert der Stammfunktion des
Integranden an der oberen Grenze minus dem Wert der Stammfunktion an der unte-
ren Integrationsgrenze. ∫ b

a
f (x)dx = F(x)

∣∣∣∣b
a
= F(b)−F(a)

Beispiel 12.16. ∫ 2

1
x2 dx=

1
3
x3
∣∣∣∣2
1
=

7
3∫ 1

0
ex dx= ex

∣∣∣∣1
0
= e−1∫ π

0
sinxdx=−cosx

∣∣∣∣π
0
= 2

☼

12.3.2 Eigenschaften bestimmter Integrale

Nachstehend sind einige Eigenschaften bestimmter Integrale zusammengestellt. Alle
Regeln gelten unter der Voraussetzung, dass die genannten Integrale auf den bezeich-
neten Intervallen existieren, die Integranden also dort integrierbar sind.

12.3.2.1 Vertauschen von Integrationsgrenzen

Vertauscht man die Integrationsgrenzen, so ändert sich das Vorzeichen des Integrals.∫ b

a
f (x)dx =−

∫ a

b
f (x)dx
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12.3.2.2 Zusammenfassen von Integrationsgrenzen

Für jede Lage der Punkte a< b< c auf der Zahlengeraden gilt:∫ b

a
f (x)dx+

∫ c

b
f (x)dx=

∫ c

a
f (x)dx

12.3.2.3 Konstant-Faktor-Regel

Für jede Kosntante c gilt: ∫ b

a
c f (x)dx = c

∫ b

a
f (x)dx

12.3.2.4 Summenregel

Die Summenregel gilt ebenfalls:∫ b

a

(
f (x)+g(x)

)
dx=

∫ b

a
f (x)dx+

∫ b

a
g(x)dx

12.3.2.5 Partielle Integration

Die partielle Integration bleibt uneingeschränkt gültig.∫ b

a
f (x)g′(x)dx= f (x)g(x)

∣∣∣∣b
a
−
∫ b

a
f ′(x)g(x)dx

Man beachte, dass in das Produkt f (x)g(x) ebenfalls die Integrationsgrenzen einge-
setzt und die Differenz gebildet wird.

12.3.2.6 Integration durch Substitution

Wird zum Zweck der Integration eine Variablensubstitution vorgenommen, so ist
unbedingt darauf zu achten, dass entweder die Integrationsgrenzen mit transformiert
werden oder die Substitution in der Stammfunktion rückgängig gemacht wird, be-
vor die Integrationsgrenzen eingesetzt werden. Die Integrationsgrenzen sind immer
spezielle Werte der Integrationsvariablen! Ändert sich die Integrationsvariable durch
Substitution, so müssen die Grenzen ebenfalls substituiert werden.

Es ist das Integral

Fab(x) =
∫ b

a
f
(
g(x)

)
g′(x)dx

zu lösen. Die Substitution

z= g(x) ⇒ dz= g′(x)dx
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transformiert die Grenzen x= a und x= b auf die Grenzen z= g(a) und z= g(b):

Fab(x) =
∫ b

a
f
(
g(x)

)
g′(x)dx=

∫ g(b)

g(a)
f (z)dz

Es ist meist geschickt, die Grenzen direkt bei der Substitution zu übertragen:

z
∣∣∣∣g(b)
g(a)

= g(x)
∣∣∣∣b
a

Für Beispiel siehe Kapitel 12.3.3.

12.3.2.7 Flächenvergleich

Verläuft eine Funktion f (x) auf dem Intervall [a,b] stets unterhalb der Funktion g(x),
so gilt für f (x)≤ g(x) die Aussage∫ b

a
f (x)dx ≤

∫ b

a
g(x)dx

Eine unmittelbare Folgerung dieser Eigenschaft ist, dass das bestimmte Integral einer
Funktion, die auf dem gesamten Intervall negativ ist, einen negativen Wert hat. Es
ergibt sich die Fläche der Kurve unter der Abzisse mit negativem Vorzeichen. Für
f (x) ≤ 0 auf [a,b] ist ∫ b

a
f (x)dx ≤ 0

Man sollte dies besonders dann beachten, wenn der Integrand im Integrationsinter-
vall eine oder mehrere Nullstellen besitzt (siehe Abb. 12.1). Die entsprechend positi-
ven Flächen (über der Abzisse) und negativen Flächen (unterhalb der Abzisse) heben
sich gegenseitig auf, wenn man über die Nullstellen hinweg integriert. Will man die
Gesamtfläche aus den einzelnen Flächenanteilen bestimmen, so hat man wie folgt
vorzugehen:

Fad(x) = Fab(x)−Fcd(x)

=

∫ b

a
f (x)dx−

∫ d

c
f (x)dx

12.3.3 Beispiele für bestimmte Integrale

Beispiel 12.17. Es ist das Integral

F0,2(x) =
∫ 2

0

1
2x+3

dx

zu lösen. Die Substitution
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2x+ 3
∣∣∣∣2
0
= z

∣∣∣∣7
3

⇒ dz= 2dx

führt zu dem Integral

F3,7(z) =
1
2

∫ 7

3

1
z

dz=
1
2
(ln7− ln3) = 0.4236

☼

Beispiel 12.18. Es ist das Integral

F1,e(x) =
∫ e

1

lnx
x

dx

zu lösen. Die Substitution

lnx
∣∣∣∣e
1
= z

∣∣∣∣1
0

⇒ dz=
1
x

dx

führt zu dem Integral

F0,1(z) =
∫ 1

0
zdz=

1
2
z2
∣∣∣∣1
0
= 0.5

☼

12.3.4 Ökonomische Anwendung

Beispiel 12.19. Angenommen, man hat die Grenzkostenfunktion

K′(x) = 2x− 2

im Bereich von x = 1, . . . ,10 ermitteln können. Wie hoch sind die Gesamtkosten?
Das Integral ∫ 10

1
(2x−2)dx= x2 −2x

∣∣∣∣10

1
= 81

liefert das gesuchte Ergebnis. ☼

Beispiel 12.20. Der Preis eines Wertpapiers wird durch den Barwert der Erträge be-
stimmt. Ein Wertpapier mit einer kontinuierlichen Zahlung von re pro Jahr über n
Jahre besitzt dann den Barwert

C0(i,r,n) =
∫ n

0
re−i×t dt+

K0
(1+ i)n

=
r
i
(
1− e−i×n

)
+

K0
(1+ i)n

Der Barwert eines Wertpapiers mit r = 6e, K0 = 100e und einer Laufzeit von n=
10 Jahren besitzt bei einem Marktzinssatz von i= 0.05 einen Preis von
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C0(0.05,6,10) = 108.61e

Steigt der Marktzinssatz auf i= 0.06, so fällt der Barwert auf

C0(0.06,6,10) = 100.95e

Wird die Rechnung für ein Wertpapier mit einer Laufzeit von n = 5 Jahren wie-
derholt, dann zeigt sich, dass der Barwert bei längeren Laufzeiten stärker auf die
Zinssatzänderung reagiert.

C0(0.05,6,5) = 104.86e C0(0.06,6,5) = 100.64e

Im ersten Fall beträgt die Barwertabnahme bei einer Laufzeit von 10 Jahren rund
7 Prozent, im zweiten Fall nur rund 4 Prozent. Ein Wertpapier mit einer längeren
Laufzeit reagiert sensibler (elastischer) auf eine Zinssatzänderung. Diese Sensibili-
tät kann mit der Zinssatzelastizität des Barwerts beschrieben werden (siehe auch
Abschnitt 9.7.7), die auch als Duration bezeichnet wird.

D=
dC0
di
C0
1+i

=

rne−i n
i − r

i2 (1− e−in)− K0
(1+i)n

n
(1+i)

r
i (1−e−i n)+ K0

(1+i)n
1+i

Sie beträgt in den beiden Fällen:

D
∣∣∣∣
i=0.05,r=6,n=10

=−7.7455 D
∣∣∣∣
i=0.05,r=6,n=5

=−4.3713

Betragsmäßig hat die Zinssatzelastiziät abgenommen, wodurch die geringere Bar-
wertreaktion erklärt wird. Mit der Duration kann (wie in Abschnitt 9.7.7) auch die
Barwertänderung abgeschätzt werden.

ΔC0 ≈−D×C0× Δ i
i

ΔC0 ≈−7.7455× 108.61× 0.01
1.05

=−8.01

ΔC0 ≈−4.3713× 104.86× 0.01
1.05

=−4.36

☼

12.3.5 Integralberechnung mit Scilab

Das Integral aus Beispiel 12.18 soll mit Scilab integriert werden. Dazu ist es zu-
nächst nötig, die Funktion mit dem deff Befehl zu definieren. Mit dem anschlie-
ßenden integrate Befehl wird die numerische Integration der Funktion in den
Grenzen von 1 bis e berechnet.
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deff(’y=f(x)’,’y=log(x)/x’)
integrate(’f(x)’,’x’,1,exp(1))

Die Gesamtkosten in Beispiel 12.19 sind durch folgende Befehle zu berechnen.

deff{’y=f(x)’,’y=2*x-2’)
integrate(’f(x)’,’x’,1,10)

Übung 12.3. Berechnen Sie die folgenden bestimmten Integrale:

F−1,+1(x) =
∫ +1

−1
|x|dx

F−2,+2(x) =
∫ +2

−2
min

{
x,x2}dx

F1,e(x) =
∫ e

1
lnxdx

F0,4(x) =
∫ 4

0
f (x)dx mit f (x) =

{
x2 für 0 ≤ x< 1√
x für 1 ≤ x≤ 4

F0,1(x) =
∫ 1

0

4x+ 6
x2 + 3x+ 2

dx

F3,1(x) =
∫ 1

3
x2 lnxdx

12.4 Uneigentliche Integrale

Uneigentliche Integrale sind Integrale, bei denen die Integrationsgrenzen nicht end-
lich sein müssen oder bei denen der Integrand einen unendlichen Integrationsbereich
besitzt oder der Integrand im Integrationsintervall eine Unendlichkeitsstelle hat. Das
uneigentliche Integral kann man als eine Verallgemeinerung des bestimmten Inte-
grals auffassen, vorausgesetzt, der Grenzwert existiert.

lim
a→−∞

∫ b

a
f (x)dx

Beispiel 12.21. Es ist die Funktion

f (x) = e−x für x ∈ R

von 0 bis ∞ zu integrieren.

lim
b→∞

∫ b

0
e−x dx= lim

b→∞
−e−x

∣∣∣∣b
0

= 1 da lim
b→∞

e−b = 0 ist

☼
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12.4.1 Ökonomische Anwendung

Ein Ertragsstrom r(t) hat bei stetiger Verzinsung mit dem nominalen Zinssatz γ über
n Jahre den Barwert:

K0 =

∫ n

0
r(t)e−γ t dt

Bei konstantem, unendlichem Ertragsstrom r = konst (Rente) wird K0 mittels des
uneigentlichen Integrals

K0 = lim
n→∞

∫ n

0
re−γ t dt

berechnet. Die Substitution

τ =−γ t ⇒ dτ =−γ dt

liefert das Integral

K0 = lim
n→∞

∫ −γ n

0

(
− r

γ

)
eτ dτ

= lim
n→∞

(
− r

γ

)(
e−γ n− e0)

=
r
γ

Beispiel 12.22. Für eine unendliche Rente von jährlich r = 5 000e und einem no-
minellen Zinssatz von γ = 0.05 p. a. ergibt sich bei stetiger Verzinsung ein Barwert
von:

K0 =
5000
0.05

= 100 000e

(siehe hierzu auch Kapitel 9.6.2, Seite 188) ☼

Uneigentliche Integrale kommen häufig auch im Rahmen der Statistik bei der
Berechnung von Wahrscheinlichkeiten vor.

12.4.2 Statistische Anwendung

Z ist eine Zufallsvariable, deren Zufallsverteilung (Dichtefunktion) durch die Stan-
dard-Normalverteilung gegeben ist.

fZ(z) =
1√
2π

e−
z2
2 mit z ∈ R

Die Dichtefunktion ist im reellen Zahlenbereich definiert. Die Wahrscheinlichkeit,
dass die Zufallsvariable Z einen Wert von kleiner gleich z annimmt, ist durch das
Integral
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FZ(z) =
∫ z

−∞
fZ(ξ )dξ

=
1√
2π

∫ z

−∞
e−

ξ 2
2 dξ

beschrieben, das als Verteilungsfunktion der Zufallsvariablen Z bezeichnet wird. Die
Lösung des Integrals ist etwas aufwändiger und mit den hier beschriebenen Metho-
den nicht durchführbar. Daher verwendet man in der Statistik Tabellen, die für be-
stimmte Werte von z die Lösungen enthalten oder Computerprogramme wie Scilab.
Mit der folgenden Funktion

z = 0;
cdfnor(’PQ’,z,0,1)

kann der Wert des Integrals an der Stelle z= 0 berechnet werden. Das Integral besitzt
den Wert 0.5.

12.5 Fazit

Die Intregalrechnung ist die Umkehrung der Differentialrechnung. In der Ökonomie
findet sie dort Anwendung, wo vom Grenzverhalten (zum Beispiel Grenzkosten) ei-
ner ökonomischen Größe auf die ursprüngliche Funktion (zum Beispiel Kostenfunk-
tion) geschlossen werden muss.

Das bestimmte Integral ist die Flächenberechung unter einem Graphen. Mit dem
Hauptsatz der Intergralrechnung wird der Zusammenhang zwischen dem bestimm-
ten und dem unbestimmten Integral hergestellt. Unter einem uneigentlichen Integral
ist ein Integral zu verstehen, bei dem die Integrationsgrenzen unendlich sind. Eine
bekannte Anwendung ist die Berechnung von Verteilungsfunktionen (zum Beispiel
Normalverteilung) in der Statistik.
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A

Eine kurze Einführung in Scilab

Scilab ist ein umfangreiches, leistungsfähiges Software-Paket für Anwendungen in
der numerischen Mathematik, das am Institut National de Recherche en Informatique
et en Automatique (INRIA) in Frankreich seit 1990 entwickelt wird. Seit 2003 wird
die Entwicklung vom Scilab-Konsortium unter Federführung des INRIA vorange-
trieben. Scilab wird für Anwendungen in Lehre, Forschung und Industrie eingesetzt
und ist für rein numerische Berechnungen programmiert. Es ist ein kostenloses open
source Paket www.scilab.org.

Die Syntax der Scilab Programmiersprache ist jener von MATLAB nachemp-
funden, aber nicht kompatibel; ein integrierter Konverter von MATLAB nach Scilab
unterstützt eine Übertragung von vorhandenem Programmcode.

Implementiert ist Scilab in C, erweiterbar ist es aber auch durch Module, die in
Scilab selbst oder in anderen Sprachen verfasst wurden, z. B. FORTRAN oder C, für
die definierte Schnittstellen existieren.

Folgender Funktionsumfang ist in Scilab vorhanden:

• 2D- und 3D-Graphik in allen gängigen Formen inklusive Animation mit der
Möglichkeit der Integration von GNU Plot (oder / und LabPlot)

• lineare Algebra
• schwach besetzte Matrizen (sparse matrices)
• Polynom-Berechnungen und rationale Funktionen
• Interpolation und Approximation
• Statistik
• Regelungstechnik
• Simulation
• digitale Signalverarbeitung
• I/O-Funktionen zum Lesen und Schreiben von Daten (ASCII-, Binär- und auch

Sound-Dateien in verschiedenen Formaten)
• Bilddatenverarbeitung
• Schnittstellen für Fortran, Tcl/Tk, C, C++, Java und LabVIEW

W. Kohn, R. Öztürk, Mathematik für Ökonomen, Springer-Lehrbuch, 
DOI 10.1007/978-3-642-28575-2, © Springer-Verlag Berlin Heidelberg 2012
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Nach Aufruf von Scilab erscheint am Bildschirm das Scilab-Fenster mit der Menü-
leiste oben gefolgt von dem Schriftzug Scilab und dem Prompt (->), der Ihren Be-
fehl erwartet:

Im Scilab-Fenster können sofort Berechnungen ausgeführt werden. Es zeichnet sich
durch folgende Eigenschaften aus:

• mathematische Grundfunktionen (Taschenrechner)
• Bestätigung von Befehlen mittels Return
• Scilab ist sowohl ein Interpreter als auch eine Programmiersprache
• einzelne Befehle oder Skriptdateien mit Befehlslisten können ausgeführt werden

(exec-Befehl, // - Kommentare).
• Blättern in alten Befehlen mittels Pfeil-Hoch- und -Runter-Tasten

Im Scilab Help Browser werden Befehle erklärt. Zusätzlich existiert auf der Scilab
Internetseite eine Dokumentation mit Suchfunktion und Programmbeispielen. Fer-
ner existieren eine Vielzahl von Scilab Anwendungen und Funktionsbibliotheken
(scilabsoft.inria.fr).

Der Scilab-Editor ist ein komfortabler Editor mit Syntax-Hervorhebung und
Debugging-Schnittstelle. Kommandos können mit ctrl-l im Scilab-Hauptfenster
zur Ausführung übergeben werden. Die Kommandos können in einer Datei gespei-
chert werden.

Im Buch werden folgende Scilab-Befehle verwendeten. Die Seitenzahlen ver-
weisen auf Anwendungsbeispiele.
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Elementare Befehle

Seite
abs Betragsfunktion 34
ceil Aufrundungsfunktion 34
cumprod kumulatives Produkt 199
factorial Fakultät 40
floor Abrundungsfunktion, Gaußklammer 34
exp Expontentialfunktion ex 34
log Logarithmusfunktion ln 34, 315
max Maximumfunktion 218
prod Produktfunktion 34
sqrt zweite Wurzel 34, 302, 305
sum Summenfunktion 33, 199

Befehle für Vektoren

a[1,2] Zeilenvektor 62
a[1;2] Spaltenvektor 62
a’ Transposition eines Vektors 62
diag Diagonalisierung eines Vektors 71
length Länge eines Vektors 199, 309

Befehle für Matrizen

.* Elementweise Multiplikation 199, 225
A[1,2;1,2] Matrixeingabe 72
det Determinante einer Matrix 105
diag Diagonalisierung einer Matrix 71
eye Einheitsmatrix 72, 312
inv Inverse einer Matrix 90, 302
ones Matrix mit Einsen 302
rank Rang einer Matrix 88
size Dimension einer Matrix 302

Befehle für lineare Gleichungssysteme

linpro Optimieren eines linearen Programms 132
linsolve Lösen eines linearen Gleichungssystems 86
spec Eigenwert- und Eigenvektorberechnung 110

Befehle für rationale Funktionen

deff Definieren einer Funktion 40, 336
factors Linearfaktoren eines Polynoms 149
integrate numerische Integration 336
poly Eingabe eines Polynoms 148, 178, 194, 218
roots Nullstellen eines Polynoms 148, 178, 194, 218
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statistische Befehle

cdfnor Normalverteilung 338
covar Kovarianz 312
mean arithmetisches Mittel 302, 309
mvvacov Berechnung der Varianz-Kovarianzmatrix 302
variance Varianz 312, 315

Grafikbefehle

gca Grafikparameter der Achsen abrufen 312
plot Grafik erzeugen 305, 309, 312
subplot Grafikfenster aufteilen 312
xstring Text in einer Grafik 305, 309, 312
xtitle Einfügen eines Grafiktitels 309, 312

sonstige Befehle

clean rundet sehr kleine Zahlen auf Null 210
diff erste Differenzen berechnen 302, 309, 315
disp Ausgabe von Ergebnissen auf dem Bildschrim 133
find Finden eines Indizes im Vektor 178
for end Schleifen 199, 305
imag imaginärer Zahlenteil 178
linspace lineare Zahlenfolge 309, 315
real reeller Zahlenteil 178, 218



B

Lösungen zu den Übungen

Lösungen zu Kapitel 1

1.1

Ac∩B= {7,8}
A∪Bc = {1,2,3,4,5,6}
Ac∩Bc = /0

1.2

n(A\B\C) = n(A)− n(A∩B)− n(A∩C)+n(A∩B∩C)
= 50− 30− 40+20= 0

n(C \A\B) = n(C)− n(A∩C)− n(B∩C)+n(A∩B∩C)
= 70−40− 40+20= 10

1.3

A∪B= (−2,2) A∪C = [−1,2] A∩C = [0,2)
B∩C = [0,1) C \A= {2} C \B= [1,2]

2.1 Für x= 5,2,1,2 und y= 1,2,3,4 ergeben sich folgende Resultate:
4∑
i=1

xi = 10
4∑
i=1

xi yi = 20
4∑
i=1

(
xi+3

)
= 12+

4∑
i=1

xi = 22

2.2 Sie berechnen die Summen indem der Indexwert in die Summenformeln einge-
setzt wird.

5∑
n=2

(n− 1)2 (n+ 2) = 190

5∑
k=1

(
1
k
− 1
k+1

)
= 0.8333

W. Kohn, R. Öztürk, Mathematik für Ökonomen, Springer-Lehrbuch, 
DOI 10.1007/978-3-642-28575-2, © Springer-Verlag Berlin Heidelberg 2012
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2.3 Nein, denn die Doppelsumme beschreibt folgende Summe:

2∑
i=1

2∑
j=1

xi j = x11 + x12 + x21 + x22

Hingegen beschreibt der obige Ausdruck das Produkt zweier Summen.

2∑
i=1

xi
2∑
j=1

x j =
(
x1 + x2

)× (x1 + x2
)
=
(
x1 + x2

)2

2.4 Für x= 5,2,1,2 ergeben sich folgende Resultate:

4∏
i=1

xi = 20
5∏
i=1

i= 120
4∏
i=1

xi×2 = 24
4∏
i=1

xi = 320

2.5 Das Doppelprodukt ist:

2∏
i=1

2∏
j=1
xi j = x11 x12 x21 x22

Lösungen zu Kapitel 2

2.6 Das Kapital besitzt nach 10 Jahren mit einem Zinssatz von 5 Prozent einen Wert
von

f (10) = 10000× 1.0510 = 16288.946

2.7 Der Wert des Kapitals nach 9 Jahren errechnet sich aus dem Endwert nach 10
Jahren wie folgt:

f (10−1) = 16288.946×1.05−1 = 15513.282

2.8 Mit y0 wird der Ausgangsgewinn bezeichnet; mit i die Wachstumsrate. Dann
muss für die Verdoppelung des Gewinns y0 innerhalb von 15 Jahren folgende Glei-
chung gelten:

2y0 = y0 (1+ i)15 ⇒ i= 15√2−1 = 0.047294

Zur Verdoppelung des Gewinns innerhalb von 15 Jahren wird eine durchschnittliche
Wachstumsrate von 4.7294 Prozent benötigt.

2.9 Die Gleichungen sind zu logarithmieren. Dann können sie nach x aufgelöst wer-
den.

y= ea+bx ⇒ x=
lny−a
b

e−ax = 0.5 ⇒ x=
ln2
a
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2.10 Die Bestimmungsgleichung lautet bei einem Zinssatz mit i= 0.05:

2K0 = K0 (1.05)n

Diese ist mit dem Logarithmus nach n aufzulösen.

n=
ln2

ln1.05
=≈ 14.21 Jahre

2.11 Die Berechnung der Logarithmen kann mit einer beliebigen Basis erfolgen.
Hier wird die Basis e verwendet.

log2 5 =
ln5
ln2

= 2.32 log3 4 =
ln4
ln3

= 1.26

2.12 Es sind die Rechengesetze der Logarithmusrechnung anzuwenden.

ln
(

2x 4
√
x2 y

)
= ln2+

3
2

lnx+
1
4

lny

ln
(
2x4 u2−x)= ln2+4lnx+(2− x) lnu

ln

(
5x2 4

√
pq2

(a2 b)2

)
= ln5+2lnx+ 0.25ln p+ 0.5lnq− lna− 0.5lnb

Lösungen zu Kapitel 3

3.1 Bei dieser Fragestellung ist die Reihenfolge von Bedeutung und eine Wiederho-
lung zulässig. Es handelt sich um eine Permutation mit Wiederholung.

Pw(6,3,3) =
6!

3!× 3!
= 20

3.2 Eine Wiederholung ist ausgeschlossen, aber die Reihenfolge besitzt hier eine
Bedeutung. Es handelt sich um eine Variation ohne Wiederholung.

V (25,3) =
25!

(25− 3)!
= 13800

3.3 Es handelt sich um eine Kombination ohne Wiederholung. Die Reihenfolge,
in der die Karten ausgegeben werden, spielt keine Rolle. Die Kombinationen jedes
Spielers ist durch ein logisches UND miteinander verknüpft.(

32
10

)(
22
10

)(
12
10

)
= 2.7533×1015

3.4 Es bestehen 3 verschiedene Möglichkeiten die Klausur zu beantworten:

1. aus den ersten 5 Fragen 3 UND aus den letzten 7 Fragen 5
ODER
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2. aus den ersten 5 Fragen 4 UND aus den letzten 7 Fragen 4
ODER

3. aus den ersten 5 Fragen 5 UND aus den letzten 7 Fragen 3

(
5
3

)(
7
5

)
+

(
5
4

)(
7
4

)
+

(
5
5

)(
7
3

)
= 420

3.5 Bei 3,4,5 Richtigen müssen n aus den 6 gezogenen Kugeln und 6− n aus den
43 nicht gezogenen Kugeln angekreuzt sein. Es gibt(

6
n

)(
43

6− n
)

mit n= 3,4,5

verschiedene Gewinnmöglichkeiten.

3.6 Es handelt sich um eine Kombination ohne Wiederholung, weil die Reihenfolge
irrelevant ist. Somit können

C(20,3) =
(

20
3

)
= 1140

verschiedene Dreiergruppen bestimmt werden.

3.7 Es handelt sich um eine Kombination mit Wiederholung.

Cw(5,4) =
(

5+ 4−1
4

)
= 70

3.8 Es existieren 2×26 = 52 große und kleine Buchstaben. Damit können

V (52,2) =
52!

(52−2)!
= 2652

verschiedene Buchstabenpaare ohne Wiederholung aus dem Alphabet von kleinen
und großen Buchstaben gezogen werden. Alternativ kann man auchC(52,2) = 1326
Buchstabenkombinationen ohne Berücksichtigung der Reihenfolge ziehen. Für die
Buchstabenauswahl stehen

C(6,2) =
(

6
2

)
= 15

verschiedene Positionen zur Verfügung. In der alternativen Betrachtung stehen dann
V (6,2) = 30 Positionen unter Berücksichtigung der Reihenfolge zur Verfügung. Ins-
gesamt sind

C(6,2)×V(52,2) = 39780
verschiedene Buchstabenkombinationen möglich. Die Auswahl von 4 aus 10 Ziffern
ermöglicht

Vw(10,4) = 104

verschiedene Anordnungen. Diese können mit den 39780 kombiniert werden, so dass

V (52,2)×C(6,2)×104 = 397800000

verschiedene Passwörter möglich sind.
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Lösungen zu Kapitel 4

4.1 Existiert für die Definitionsgleichung

λ1a1 +λ2a2 +λ3a3 = 0

nur die Lösung λ1 = λ2 = λ3 = 0, so liegt lineare Unabhängigkeit vor.

λ1 −λ3 = 0 ⇒ λ1 = λ3

−λ2 +λ3 = 0 ⇒ λ2 = λ3

Die Teillösungen von λ1 und λ2 werden in die 3. Gleichung eingesetzt.

3λ3 = 0

λ3 ist Null und damit auch λ1 und λ2. Die 3 Vektoren sind linear unabhängig.
Es ist nun die folgende Gleichung gegeben:

λ1 a1 +λ2a2 +λ3a3 = b

Die Auflösung des Gleichungssystems führt zur Lösung.

λ1 −λ3 = 2 ⇒ λ1 = 2+λ3

−λ2 +λ3 = 4 ⇒ λ3 = 4+λ2

λ1 +λ2 +λ3 =−2 ⇒ 3λ2 + 10 =−2 ⇒ λ2 =−4
λ3 = 0,λ1 = 2

Die obige Linearkombination und alle entsprechenden Vielfachen erzeugen den Vek-
tor b. Probe:

2

⎡
⎣1

0
1

⎤
⎦− 4

⎡
⎣ 0
−1

1

⎤
⎦=

⎡
⎣ 2

4
−2

⎤
⎦

4.2 Die Einnahmen E sind durch das Skalarprodukt

E= x′p

bestimmt. Die Kosten K werden durch das Skalarprodukt

K= v′p

berechnet. Der Gewinn G ist die Differenz von Einnahmen minus Kosten.

G= x′p− v′p= (
x−v)′ p

4.3 Das Skalarprodukt der beiden Vektoren liefert eine quadratische Gleichung

x(2x+ 8) = 0,

deren beider Lösungen x1 = 0 und x2 =−4 sind. x= 0 stellt die triviale Lösung dar.
Für x=−4 sind die beiden Vektoren linear unabhängig.
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Lösungen zu Kapitel 5

5.1 Es ist zu beachten, dass sich bei der Transposition eines Skalarprodukts die
Reihenfolge der Multiplikation umkehrt. Die Vereinfachung ist dann

2(AB)′ (F+G)

5.2 Die folgenden Matrizen geben die Verflechtung zwischen den einzelnen Produk-
tionsstufen an, die im Gozintographen dargestellt sind.

R1 Z1 Z2

R1 4 0
R2 1 1
R3 0 3

R2 H1 H2 H3

R1 3 0 0
R2 0 4 0
R3 0 2 5

R3 F1 F2

R1 2 1
R2 0 2
R3 0 0

Z1 H1 H2 H3

Z1 1 1 0
Z2 0 0 1

Z2 F1 F2

Z1 2 0
Z2 0 1

H F1 F2

H1 1 0
H2 1 3
H3 0 1

Der Gesamtbedarf an Rohstoffen ist dann das Skalarprodukt der folgenden Matrizen:

(
R1Z1H+R1Z2 +R2H+R3

) [100
70

]
=

⎡
⎣3010

2130
1390

⎤
⎦

5.3 Es ist das Skalarprodukt der Matrizen zu bilden.

1.

F=

⎡
⎣ 2 1 0

1 2 3
2 1 1

⎤
⎦×

⎡
⎣2 0 3 4

1 2 5 0
4 2 0 3

⎤
⎦=

⎡
⎣ 5 2 11 8

16 10 13 13
9 4 11 11

⎤
⎦

2. ⎡
⎣ 5 2 11 8

16 10 13 13
9 4 11 11

⎤
⎦×

⎡
⎢⎢⎣

100
550
80
60

⎤
⎥⎥⎦=

⎡
⎣2960

8920
4640

⎤
⎦

Lösungen zu Kapitel 6

6.1 Das Gleichungssystem der rechten Seite muss folgende Bedingung für die linea-
re Unabhängigkeit erfüllen.

λ1

⎡
⎣ 2
−1
−3

⎤
⎦+λ2

⎡
⎣1

3
2

⎤
⎦+λ3

⎡
⎣5

0
3

⎤
⎦= 0
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Auflösen der Gleichungen nach λi führt zu dem Ergebnis λ1 = λ2 = λ3 = 0. Die
Gleichungen sind somit linear unabhängig.

6.2 Das Gleichungssystem wird mittels des Gauß-Algorithmus umgeformt. Stellt
sich eine Nullzeile bei den Iterationen ein, so liegt eine lineare Abhängigkeit im
Gleichungssystem vor. Im vorliegenden Gleichungssystem ist dies nicht der Fall.
Das Gleichungssystem besitzt keine lineare Abhängigkeit.

2 −1 −3 8
1 3 2 3
5 0 3 7

2 −1 −3 8
7 0 −7 27
56 0 0 130

⇔

2 −1 −3 8
7 0 −7 27
5 0 3 7

6.3 Es ist ein Polynom 3. Grades gesucht. Die Koeffizienten a0,a1,a2,a3 sind ge-
sucht.

K(x) = a3 x3 +a2 x2 + a1 x+a0

Aus den Angaben der Tabelle kann dann folgendes lineares Gleichungssystem auf-
geschrieben werden. Es ist bezüglich der Koeffizienten zu lösen.

K(10) = 2700 = a3 1000+ a2 100+a1 10+a0

K(15) = 3475 = a3 3375+ a2 225+a1 15+a0

K(20) = 5700 = a3 8000+ a2 400+a1 20+a0

K(25) =10125 = a3 15625+ a2625+ a1 25+ a0

Die Lösung des Gleichungssystems liefert die Koeffizienten a0 = 2500, a1 = 80,
a2 =−16 und a3 = 1.

K(x) = x3 −16x2+ 80x+2500

6.4 Die Aufgabe ist in zwei Schritten zu lösen. Im ersten Schritt ist die Gesamtleis-
tung xp zu berechnen.

xp = T′
p× 1+b

=

⎡
⎢⎢⎣

10 40 20 30
40 10 30 120
50 60 50 40
60 50 10 80

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

500
600
800
1000

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

600
800
1000
1200

⎤
⎥⎥⎦

Im zweiten Schritt können dann die innerbetrieblichen Verrechnungspreise berechnet
werden. Die Bilanzgleichung ist

diag(xp)p= Tpp+kext

Die obige Bilanzgleichung enthält folgendes Gleichungssystem:
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600 p1 = 10 p1 +40 p2 +50 p3+60 p4 +110
800 p2 = 40 p1 +10 p2 + 60 p3+50 p4 +3135

1000 p3 = 20 p1 + 30 p2 + 50 p3+10 p4 +7740
1200 p4 = 30 p1 + 120 p2+ 40 p3 +80 p4+12365

Die Lösung des Gleichungssystems

p= (diag(xp)−Tp)−1 kext

liefert die Verrechnungspreise

p1 = 2.5 p2 = 5.5 p3 = 8.5 p4 = 12

6.5 Es handelt sich um ein Input-Output-System.

1. Die Endnachfrage berechnet sich aus der Differenz der Gesamtproduktion und
dem Vorleistungsverbrauch.

y= x−T× 1

=

⎡
⎣30

20
40

⎤
⎦−

⎡
⎣15 2 8

3 12 4
9 4 20

⎤
⎦
⎡
⎣1

1
1

⎤
⎦=

⎡
⎣5

1
7

⎤
⎦

2. Die Matrix der technischen Koeffizienten bestimmt sich aus der Normierung
mit der sektoralen Gesamtproduktion.

D=

⎡
⎣ 0.5 0.1 0.2

0.1 0.6 0.1
0.3 0.2 0.5

⎤
⎦

3. Nein, es ist nicht möglich, weil man zur Herstellung von je einer Einheit Strom
bzw. Heißdampf jeweils 2 bzw. 8 Einheiten Warmwasser benötigt.

4. Zur Berechnung der neuen Gesamtproduktion muss die Leontief-Inverse be-
rechnet werden.

x= Dx+ y ⇒ x= (I−D)−1y

Die Berechnung der Leontief-Inversen erfolgt mit dem Gauß-Algorithmus.

0.5 −0.1 −0.2 1 0 0
−0.1 0.4 −0.1 0 1 0
−0.3 −0.2 0.5 0 0 1

⇔
1 0 0 10

3
5
3

5
3

0 1 0 40
27

95
27

35
27

0 0 1 70
27

65
27

95
27

Die neue Gesamtproduktion berechnet sich aus der neuen Endnachfrage.

xneu =
(
I−D)−1yneu =

⎡
⎢⎢⎣

10
3

5
3

5
3

40
27

95
27

35
27

70
27

65
27

95
27

⎤
⎥⎥⎦×

⎡
⎣10

11
5

⎤
⎦=

⎡
⎣60

60
70

⎤
⎦
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6.6 Die Berechnung der Determinanten nach dem Laplaceschen Entwicklungssatz
kann nach einer beliebigen Zeile oder Spalte erfolgen. Hier wird zuerst die erste
Zeile verwendet.

det(A) = (−1)2 × 1×
⎡
⎣ 1 3 1
−2 0 −1
−2 1 1

⎤
⎦+ 0+(−1)4×2×

⎡
⎣−1 1 1

1 −1 −1
0 −2 1

⎤
⎦

+(−1)5 × 1×
⎡
⎣−1 1 3

1 −2 0
0 −2 1

⎤
⎦

Die Entwicklung der Determinanten 3. Ordnung erfolgt in der ersten Matrix nach der
zweiten Zeile, in der zweiten Matrix nach der dritten Zeile und in der dritten Matrix
ebenfalls nach der dritten Zeile.

=

(
(−1)3 × (−2)×

[
3 1
1 1

]
+ 0+(−1)5× (−1)×

[
1 3

−2 1

])

+2
(

0+(−1)5× (−2)×
[−1 1

1 −1

]
+(−1)6 ×1×

[−1 1
1 −2

])

−
(

0+(−1)5× (−2)×
[−1 3

1 0

]
+(−1)6 ×1×

[−1 1
1 −2

])
= 18

6.7 Die Matrix A besitzt das charakteristische Polynom

det
[

0.7−λ 0.2
0 1.1−λ

]
= 0 ⇒ λ 2 −1.8λ +0.77 = 0

Die Nullstellen des Polynoms sind die Eigenwerte der Matrix.

λ1 = 1.1 λ2 = 0.7

Die Eigenvektoren berechnen sich aus

(A−λ1 I)v1 = 0 (A−λ2 I)v2 = 0

v1 =

[
0.5
1

]
v2 =

[
1
0

]

Lösungen zu Kapitel 7

7.1 Es ist die Zielfunktion

10x1 + 15x2 =→ max

unter den Nebenbedingungen
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2x1 + x2 ≤ 120
x1 + x2 ≤ 70
x1 +3x2 ≤ 150

zu maximieren.
Das Anfangstableau ist:

x1 x2 y1 y2 y3 b

2 1 1 0 0 120
1 1 0 1 0 70
1 3 0 0 1 150

−10 −15 0 0 0 0

Mit dem Auswahlverfahren des Simplex-Algorithmus wird im ersten Tableau das
Pivotelement 3 in der zweiten Spalte, dritten Zeile ausgewählt. Danach ist eine zweite
Iteration mit dem Pivotelement 2. Zeile, 1. Spalte nötig, um zum Endtableau mit der
optimalen Lösungen zu gelangen.

x1 x2 y1 y2 y3 b

0 0 1 −2.5 0.5 20
1 0 0 1.5 −0.5 30
0 1 0 −0.5 0.5 40

0 0 0 7.5 2.5 900

7.2 Aufgrund der Größer-gleich-Restriktionen ist die Nichtnegativität von x1,x2 ≥ 0
verletzt. Es muss also mit der so genannten Vorphase gestartet werden.

x1 x2 y1 y2 y3 y4 b

−1 −1 1 0 0 0 −2
−3 4 0 1 0 0 4

1 0 0 0 1 0 4
0 −1 0 0 0 1 −1

1 −2 0 0 0 0 0

⇒

x1 x2 y1 y2 y3 y4 b

1 1 −1 0 0 0 2
−7 0 4 1 0 0 −4

1 0 0 0 1 0 4
1 0 −1 0 0 1 1

3 0 −2 0 0 0 4

x1 x2 y1 y2 y3 y4 b

0 1 − 3
7

1
7 0 0 10

7
1 0 − 4

7 − 1
7 0 0 4

7
0 0 4

7
1
7 1 0 24

7
0 0 − 3

7
1
7 0 1 3

7

0 0 − 2
7

3
7 0 0 16

7

⇒

x1 x2 y1 y2 y3 y4 b

0 1 0 1
4

3
4 0 4

1 0 0 0 1 0 4
0 0 1 1

4
7
4 0 6

0 0 0 1
4

3
4 1 3

0 0 0 1
2

1
2 0 4
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7.3 Es wird ein Simplex-Tableau aufgestellt. Die rechte Seite weist aufgrund der
Größer-gleich-Restriktionen negative Werte auf. Die erste Basislösung ist nicht zu-
lässig. Daher muss mit der Vorphase begonnen werden.

x1 x2 y1 y2 y3 y4 b

1 −3 1 0 0 0 3
−1 0 0 1 0 0 −6
−3 −2 0 0 1 0 −42
−4 3 0 0 0 1 24

9 8 0 0 0 0 0

x1 x2 y1 y2 y3 y4 b

0 − 11
3 1 0 1

3 0 −11
0 2

3 0 1 − 1
3 0 8

1 2
3 0 0 − 1

3 0 14
0 17

3 0 0 − 4
3 1 80

0 2 0 0 3 0 −126

x1 x2 y1 y2 y3 y4 b

0 1 − 3
11 0 − 1

11 0 3
0 0 2

11 1 − 3
11 0 6

1 0 2
11 0 − 3

11 0 12
0 0 17

11 0 − 9
11 1 63

0 0 6
11 0 35

11 0 −132

Die Vorphase ist beendet und die Optimallösung ist bestimmt. Der eigentliche
Simplex-Algorithmus wird hier nicht angewendet.

7.4 Der duale Ansatz zur Übung 7.3 lautet

[
3 −6 −42 24

]︸ ︷︷ ︸
b′

⎡
⎢⎢⎣
y1
y2
y3
y4

⎤
⎥⎥⎦= z→ max

unter den Nebenbedingungen

[−1 1 3 4
3 0 2 −3

]
︸ ︷︷ ︸

A′

⎡
⎢⎢⎣
y1
y2
y3
y4

⎤
⎥⎥⎦≤

[
9
8

]
︸︷︷︸
c

Das Simplex-Tableau sieht dann wie folgt aus:
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y1 y2 y3 y4 x1 x2 c

−1 1 3 4 1 0 9
3 0 2 −3 0 1 8

3 −6 −42 24 0 0 0

Der Simplex-Algorithmus führt zur gleichen Lösung wie in Übung 7.3.

Lösungen zu Kapitel 8

8.1 Asymptote: y= 0

Nullstellen: x1 = 1,x2,3 =−2 (doppelte Nullstelle = Sattelpunkt)

Polstellen: x1,2 = 0 (doppelte Polstelle),x3 = 4,x4 =−4

−5 −4 −3 −2 −1 0 1 2 3 4 5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Abb. B.1: Funktion zu Übung 8.1

8.2 Nullstellen: x1 =−1.154, x2,3 =
1.154

2 ±√−3.6 (imaginäre Nullstellen)

Polstelle: x= 2

Asymptote: x2 +2x+ 7 wird mit Polynomendivision berechnet
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−5 −4 −3 −2 −1 0 1 2 3 4 5

−50

−40
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10

20

30

40

50

Abb. B.2: Funktion zu Übung 8.2

Lösungen zu Kapitel 9

9.1 Der Barwert beträgt 873.44e.

9.2 Der relative Monatszinssatz beträgt irel = 0.583 Prozent pro Monat. Der konfor-
me Monatszinssatz beträgt ikon = 0.565 Prozent pro Monat.

9.3 Mit dem relativen Quartalszinssatz gerechnet beträgt die Rate

r = 117.54e/Quartal

Mit dem konformen Quartalszinssatz gerechnet beträgt die Rate

r = 117.73e/Quartal

9.4 Der Endwert der Zahlungen beträgt 13422.36e. Dieser Endwert ist der Barwert
der vorschüssigen Rente ab dem 01.01.2010.

1. Die Rente beträgt 134.99e pro Monat.
2. Es können 18 Jahre lang 1 000e zu Jahresbeginn bezogen werden.

9.5 Die Verzinsung muss 13.06 Prozent p. a. (exakter Wert) betragen.

9.6 Zuerst werden die Barwerte der Nullkuponanleihe durch Duplizierung berech-
net.
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C1 =
1

1.07
= 0.934579

C2 =
1

1.065
− 0.065

1.065
1

1.07
= 0.881927

C3 =
1

1.06
− 0.06

1.06

(
1

1.07× 1.065
+

1
1.065

)
= 0.840575

C4 =
1

1.055
− 0.055

1.055

(
1

1.07×1.065×1.06
+

1
1.065×1.06

+
1

1.06

)
= 0.809346

C5 =
1

1.05
− 0.05

1.05

(
1

1.07× 1.065×1.06×1.055
+

1
1.065×1.06×1.055

+
1

1.06×1.055
+

1
1.055

)
= 0.787312

Aus den Barwerten lässt sich nun leicht die Nullkuponrendite berechnen.

i1 =
(

1
0.934579

)
−1 = 0.07

i2 =
(

1
0.881927

) 1
1
−1 = 0.0648

i3 =
(

1
0.840575

) 1
3
−1 = 0.0595

i4 =
(

1
0.809346

) 1
4
−1 = 0.0543

i1 =
(

1
0.787312

) 1
5
−1 = 0.0489

9.7 Die Duration des ersten Wertpapiers beträgt

D=
1×7
1.07 +

2×107
1.072

7
1.07 +

107
1.072

= 1.93 Jahre

Die modifizierte Duration beträgtMD= 1.9345
1.07 = 1.808. Bei einer Zinssatzerhöhung

von 2 Prozentpunkten ergibt sich eine Barwertänderung bzw. eine Kursänderung in
Höhe von

ΔC0(1.09)≈−1.808× 0.02×100=−3.62e.

Der Kurs würde also von 100e auf

≈ 100− 3.62= 96.38e

fallen. Die relative Änderung beträgt etwa −0.02×1.808= 0.036.
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Für das zweite Wertpapier liegt die Duration bei 2.709 Jahren. Die relative Bar-
wertänderung beträgt etwa

ΔC0(1.09)
C0(1.07)

≈−2.531×0.02=−5.06%,

was mit einer Kursänderung von (C0(1.07) = 113.12)

ΔC0(1.09)≈−113.12× 2.531×0.02=−5.73e

verbunden ist. Der neue Kurs würde somit auf ≈ 113.12−5.73= 107.39e fallen.
Für das dritte Wertpapier ergeben sich folgende Werte:

C0(1.07) = 93.22 D= 3.712 MD= 3.469

ΔC0(1.09)
C0(1.07)

=−3.469×0.02=−0.0693

ΔC0(1.09) =−3.469× 0.02× 93.22=−6.468

9.8 Der Kreditbetrag nach der Anzahlung liegt bei

K0 = 5000−0.1× 5000= 4500e

Aufgrund der Bearbeitungsgebühr erhöht er sich auf K0 = 4590e.

1. Die monatliche Rate beträgt 205.92e.
2. Der effektive Jahreszinssatz ohne Gebühr beträgt 7.44 Prozent. Um die Ge-

bühr in den Kreditzinssatz einzurechnen, muss ein Äquivalenzansatz gewählt
werden.

4500 !
= 205.92

1
q24
q24 −1
q− 1

Die Lösung für die obige Gleichung liefert den effektiven Jahreszinssatz von
9.56 Prozent.

9.9 Bei einem Konsumentenkredit wird die Rate mit

r =
K0
n

+ iK0

berechnet. Wird r in
r = K0 qn

q− 1
qn−1

eingesetzt (Äquivalenzprinzip), kann das Polynom zur Berechnung von q aufgestellt
werden.

K0
n

+ iK0
!
= K0 qn

q−1
qn−1

0 !
= nqn+1 − (n+ in+ 1)qn+ in+1
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Für n = 36 und i12 = 12√1.04 − 1 errechnet sich mit Scilab ein effektiver Mo-
natszinssatz in Höhe von ieff12 = 0.007363, der einem effektiven Jahreszinssatz von
ieff = 9.202276 Prozent entspricht.

9.10 Der Kreditbetrag beträgt nach der Anzahlung K0 = 12000e.

1. Die Annuität beträgt 268.81e pro Monat.
2. Der effektive Jahreszinssatz ist 3.66 Prozent.

9.11 Die Annuität des Kredits liegt bei 521 503.48e.

1. Mit der Annuität kann der Tilgungsplan berechnet werden.

Tabelle B.1: Tilgungsplan (Angaben in e)
Quartal Restschuld Zinsen Tilgung Annuität

0 2 000 000 – – –
1 1 512 613.57 34 117.05 487 386.43 521 503.48
2 1 016 913.05 25 802.96 495 700.52 521 503.48
3 512 756.61 17 347.04 504 156.44 521 503.48
4 0.00 8 746.87 512 756.61 521 503,48

2. Aus dem Äquivalenzansatz

2×106 !
= 521503.48

1
q4
q4 −1
q−1

+2000

erhält man einen effektiven Quartalszinssatz in Höhe von 1.7469 Prozent, der
einem effektiven Jahreszinssatz von 7.17 Prozent entspricht.

9.12 Der Rentenendwert beträgt bei vorschüssigen Zahlungen

Rn = 27386.35

Der Kredit ist die Differenz zu 50 000e.

K0 = 22613.65

Der Äquivalenzansatz lautet

22613.65 !
=

300
q96

q96 −1
q−1

Mit Scilab errechnet sich ein effektiver Kreditzinssatz von 6.438 Prozent.
Die Rechenanweisungen in Scilab sind

r = 250;
m = 12;
nr = 8*m;
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nk = 8*m;
ir = 0.0325;
q_r = (1+ir)^(1/m);
R = r*q_r*(q_r^nr-1)/(q_r-1)
B = 50000;
K = B-R
A = 300;
p = poly([A zeros(1,nk-1) -(K+A) K],’q’,’coeff’)
q = roots(p,’e’);
ieff = (real(q(imag(q)==0))^12-1)*100

9.13 Der Kapitalwert der Investition berechnet sich aus folgender Gleichung:

C0 =
0
q
+

112500
q2 −100000 !

= 0

Der Zinsfaktor der Gleichung liefert die gesuchte Rendite.

1. Die Rendite beträgt 6.06 Prozent p. a.
2. Da die Vergleichsrendite größer als die erzielte Rendite ist, ist die Investition

nicht vorteilhaft.

9.14 Der Kapitalwert berechnet sich aus der Gleichung

C0 =
700
1.05

+
800

1.052 − 1000 !
= 0

Der interne Zinsfuß ist der Zinssatz, der den Kapitalwert Null werden lässt.

1. Der Kapitalwert beträgtC0 = 392.29e.
2. Der interne Zinsfuß der Investition liegt bei i= 31.04 Prozent p. a.

9.15 Der Kapitalwert der Investition liegt bei 65 951.13e. Die Investition ist vor-
teilhaft.

9.16 Der Investor geht von folgender Zahlungsreihe aus:

t 0 1 2 3 4 5

Zt −100000 7000 7000 7000 7000 117000

1. Kapitalwert beträgtC0 =−5163.15e.
2. Der interne Zinsfuß liegt bei 8.868 Prozent (exakter Wert).
3. Es liegt ein jährlicher Verlust in Höhe von 1 362.03e vor.
4. Der Kaufpreis müssteC0 betragen.
5. Die Kreditsumme beträgt 100000

0.98−0.02 , weil nur 96 Prozent zur Auszahlung kom-
men und eine Summe von 100 000e finanziert werden muss. Die Annuität
beträgt 24 728.79e pro Jahr.

9.17 Die Lösungen sind mit folgender Gleichung zu berechnen:

C0 =
35000
1.09

+
48000
1.092 +

52000
1.093 +

58000
1.094
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1. Der Kapitalwert der Investition liegt bei 3 52.93e. Die interne Verzinsung der
Investition beträgt 10.04 Prozent p. a. (exakter Wert).

2. Der Kapitalwert wird negativ und liegt bei C0 = −37903.23e. Anmerkung:
Der Verlust in Höhe von 2 000e ist mit dem Kreditzinssatz zu diskontieren.

Lösungen zu Kapitel 10

10.1 Die Ableitungen der Funktion aus der Übung lauten

f ′(x) =
2
3
x−

1
3

f ′(x) =
7
6
x2.5 − 1

2
x−1.5

f ′(x) = 4x(2 lnx+1)+ ex
2
(2x sinx+ cosx)

f ′(x) =
3∑
i=1

i
x

f ′(x) =
1

x2
√

lnx
(0.5− lnx)

f ′(x) = 1

10.2 Die Ableitungen der Tangens- und Kotangensfunktion sind mit der Quotien-
tenregel zu berechnen.

y= tanx=
sinx
cosx

für x ∈ R ⇒ y′ = 1+(tanx)2

y= cotx=
cosx
sinx

für x ∈ R ⇒ y′ =−1− (cotx)2

10.3 Die Ableitungen der Funktion aus der Übung lauten

f ′(x) = 2x ln2

f ′(x) = 2g(x)lng(x) lng(x)
g′(x)
g(x)

10.4 Für das Newton-Verfahren wird die 1. Ableitung der Funktion benötigt.

f ′(x) =
2x3 − 6x2 −11

(x− 2)2

Die Näherungsrechnungen für die gesuchte Nullstelle im Bereich um x1 = 1 sind
dann:

x(1) = 1− −9
−15

= 0.4
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x(2) = 0.4− −3.915
−4.62187

=−0.4471

x(3) =−0.4471−−1.4587
−2.0671

=−1.1527

x(4) =−1.1527−−0.003196
−2.2169

=−1.1541

x(5) =−1.1541− 0.0000008
−2.2181

=−1.1541

Die Änderungen liegen nach der fünften Iteration bei 10−7 und werden daher abge-
brochen. Die gesuchte Nullstelle liegt bei x=−1.1541.

10.5 Die Elastizität berechnet sich aus

εK(x) =
K′(x)
K(x)

=
x2

x2 +75

Leiten Sie die Kostenfunktion nach der Kettenregel ab. Für eine Menge von 5 liegt
die Elastizität bei

εK(5) = 0.25

10.6 Die Erlösfunktion ist

E(x) = 6x− x
2

2
1. Die 1. Ableitung der Erlösfunktion bilden und die Nullstellen auf E ′′(x) < 0

überprüfen. Das Erlösmaximum beträgt 18e.
2. Die 1. Ableitung der Gewinnfunktion bilden und die Nullstellen auf G′′(x) <

0 überprüfen. Das Gewinnmaximum beträgt 9.845e. Der gewinnmaximale
Preis (gewinnmaximale Menge in der Preisabsatzfunktion) liegt bei 3.768e.

3. Die 1. Ableitung der Durchschnittskostenfunktion

K(x) =
K(x)
x

bilden und die Nullstellen aufK′′
(x)> 0 überprüfen. Die minimalen Stückkos-

ten sind 1.562e.
4. Die 1. Ableitung der Durchschnittsgewinnfunktion

G(x) =
G(x)
x

bilden und die Nullstellen auf G′′
(x)< 0 überprüfen. Der maximale Stückge-

winn beträgt 2.937e.
5. Die Preiselastizität der Nachfrage ist εx(p) = 1

εp(x) . An der Stelle x= 3 besitzt
sie hier den Wert εx(p) = −3. Eine Zunahme des Preises um 1 Prozent führt
zu einer Abnahme der Nachfrage um 3 Prozent.
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10.7 Aus der Preis-Absatz-Funktion kann direkt die Nachfrageelastizität des Preises
berechnet werden.

p′(x) =−μ λ x−λ−1

p̄(x) =
μ x−λ

x
= μ x−λ−1

εp(x) =−μ λ x−λ−1

μ x−λ−1 =−λ

εx(p) =− 1
λ

Lösungen zu Kapitel 11

11.1 Die partiellen Ableitungen sind

∂ z
∂x

= yxy−1 ∂ z
∂y

= xy lnx

11.2 Das implizite Differential ist

dy
dx

=−3x2 + y
x+ 3y2

11.3 Die zweiten partiellen Ableitungen lauten

z′′xx = 2yex
2+y2 (1+ 2x2)

z′′yy = 2yex
2+y2(2y2 +3

)
z′′xy = 2xex

2+y2 (2y2 +1
)

11.4 Das implizite Differential ist

dy
dx

=−2xy3 − (y+1)ex−1
3y2 x2 + e−x

dy
dx

∣∣∣∣
x=0,y=1

= 3

11.5 Der Lagrangeansatz zur Berechnung der Lösung ist:

L(x,y,λ ) = ln(1+ x)+
y

1+ y
−λ

(
x+ y−10

)
Aus den Nullstellen der ersten Ableitungen erhält man die notwendigen Bedingun-
gen für ein Gewinnmaximum.

L′x =
1

1+ x
−λ !

= 0
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L′y =
1

(1+ y)2 −λ !
= 0

L′λ =−(x+ y− 10
) !
= 0

Aus den Bedingungen erhält man x = 8, y = 2 (y= −5) und λ = 1
9 . Der maximale

Gewinn beträgt ln(1+ 8)+ 2
1+2 ≈ 2.86e. Um die hinreichende Bedingung für ein

Maximum zu überprüfen, müssen die zweiten Ableitungen der Lagrangefunktion
und die ersten Ableitungen der Nebenbedingung gebildet werden.

L′′xx =− 1
(1+ x)2

∣∣∣
x=8

=− 1
92 L′′yy =− 2

(1+ y)3

∣∣∣
y=2

=− 2
33

L′′xy = 0 g′x = 1 g′y = 1

Der Wert der Hesse-Determinanten (hinreichende Bedingung) beträgt

|H̃(8,2, 1
9
)|= 0.0864

Es handelt sich also um ein Maximum. Der Gesamtgewinn beträgt damit 26 250e.

11.6

1. Die Gewinnfunktion ist

G(x1,x2) = 150x1 − 0.9x2
1 + 270x2−0.9x2

2 +0.6x1 x2 − 12000

Die Nullstellen der ersten partiellen Ableitungen liefern die notwendigen Be-
dingungen für ein Gewinnmaximum.

G′
x1 = 150− 1.8x1+ 0.6x2

!
= 0

G′
x2 = 270+ 0.6x1− 1.8x2

!
= 0

Die Lösungswerte aus dem linearen Gleichungssystem sind die gewinnmaxi-
malen Mengen.

x1 = 150 x2 = 200

Die gewinnmaximalen Preise erhält man durch Einsetzen in die Preis-Absatz-
Funktionen.

p1 = 30e p2= 235e

Die Überprüfung der hinreichenden Bedingungen

|H1(150,200)|=−1.8 |H2(150,200)|= 2.88

bestätigt, dass es sich um ein Maximum an der Stelle x1 = 150 und x2 = 200
handelt.
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2. Unter Berücksichtigung der Nebenbedingung

x1 + x2 = 290

ist folgende Lagrange-Funktion zu maximieren:

L(x1,x2,λ ) = G(x1,x2)+λ
(
290− x1− x2

)
Die ersten partiellen Ableitungen sind dann

L′x1 = 150− 1.8x1+0.6x2 −λ !
= 0

L′x2 = 270+ 0.6x1−1.8x2 −λ !
= 0

L′λ = 290− x1− x2

Das Auflösen des Gleichungssystems liefert die Lösungswerte.

x1 = 120 x2 = 170 λ = 36

Die geränderte Hesse-Matrix besitzt einen Wert von

|H̃(120,170)|=
∣∣∣∣∣∣

0 −1 −1
−1 −1.8 0.6
−1 0.6 −1.8

∣∣∣∣∣∣= 4.8

und zeigt damit an, dass an der Extremwertstelle ein Maximum vorliegt.

11.7 Aus dem Lagrange-Ansatz

L
(
x1,x2,λ

)
=
√
x1
√
x2 +λ

(
12− 0.04x1−0.02x2

)
erhält man eine nutzenmaximale Menge von x1 = 150 und x2 = 300. Ob es sich
um ein Maximum handelt, wird durch eine positive Determinante der geränderten
Hessematrix überprüft:

|H̃(150,300)|=
⎡
⎣ 0 −0.04 −0.02
−0.04 −0.002357 0.001178
−0.02 0.001178 −0.0005892

⎤
⎦= 0.0000038

Der Lagrange-Multiplikator nimmt einen Wert von λ = 17.67 an. Würde der Student
1e mehr für seine Schokoleidenschaft verwenden, würde sein „Nutzen“ um 17.67
Einheiten zunehmen.

Lösungen zu Kapitel 12

12.1 Das folgende Integral wird durch partielle Integration gelöst:
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F(x) =
∫

x√
x− 2

dx

Es wird

h(x) = x h′(x) = 1

g′(x) =
1√
x−2

g(x) = 2
√
x−2

gewählt. Daraus ergibt sich der unten stehende Ansatz, der gelöst werden kann.∫
x√
x− 2

dx= 2x
√
x− 2− 2

∫ √
x−2dx

= 2x
√
x− 2− 4

3
(x−2)

3
2 + c

=
2
3
√
x−2(4+ x)+ c

Das zweite Integral ∫ (
lnx

)5

x
dx

wird durch die folgende Substitution gelöst:

z= lnx
dz
dx

=
1
x

dx= xdz

Nun ist die Lösung des Integrals möglich.∫
z5

x
xdz=

1
6
z6 + c=

1
6
(

lnx
)6

+ c

Bei dem Integral

F(x) =
∫
xe−x

2
dx

wird die Exponentialfunktion substituiert.

z= e−x
2 dz

dx
=−2xe−x

2
dx=− 1

2x
ex

2
dz

Man erhält dann folgendes Integral, das nach Kürzen gelöst werden kann:

−1
2

∫
xe−x

2 1
x

ex
2

dz=−1
2
z+ c=−1

2
e−x

2
+ c

Für das letzte Integral ∫ √
x lnxdx

wird wieder ein partieller Integrationsansatz gewählt.

h(x) = lnx h′(x) =
1
x
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g′(x) =
√
x g(x) =

2
3
x

3
2

Das Integral kann dann durch folgende Differenz ersetzt werden:∫ √
x lnxdx=

2
3
x

3
2 lnx− 2

3

∫
x

3
2

1
x

dx

=
2
3
x

3
2 lnx− 4

9
x

3
2 + c

=
2
3
x

3
2

(
lnx− 2

3

)
+ c

12.2 Das Integral der Funktion

F(x) =
∫
ax dx

wird durch Substitution gelöst.

z= x lna dz= lnadx dx=
1

lna
dz

Somit wird aus dem Integral

F(x) =
1

lna

∫
ez dz=

1
lna

ex lna+ c=
1

lna
ax+ c

Das Integral

F(x) =
∫
x sin

x
2

dx

wird über ein partielles Integral gelöst.

h(x) = x h′(x) = 1

g′(x) = sin
x
2

g(x) =−2 cos
x
2

Somit kann das Integral als∫
x sin

x
2
=−2x cos

x
2
+ 2

∫
cos

x
2

dx

geschrieben werden. Die Lösung von
∫

coszdz ist sinz. Somit ist die Lösung des
Integrals

F(x) =
∫
x sin

x
2
=−2xcos

x
2
+4 sin

x
2
+ c.

Für das Integral

F(x) =
∫
x2√xdx

wird der partielle Ansatz
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h(x) = x2 h′(x) = 2x

g′(x) =
√
x g(x) =

2
3
x

3
2

gewählt. Es folgt ∫
x2√xdx=

1
2
x2 x

3
2 − 4

3

∫
x

5
2 dx=

2
7
√
x7 + c

Das Integral

F(x) =
x2

√
x+5

dx

wird durch Substitution von

z= x+5 dz= dx

gelöst. Es ergibt sich dann außerdem

x2 = (z− 5)2.

Damit ist das zu lösende Integral∫
(z−5)2 1√

z
dz=

∫
z

3
2 dz− 10

∫
z

1
2 dz+25

∫
z−

1
2 dz

=
2
5
z

5
2 − 20

3
z

3
2 +50

√
z+ c

=
2

15
√
z
(
3z2 −50z+375

)
+ c

=
2

15
√
x+5

(
3x2 −20x+ 200

)
.

Das letzte Integral wird wieder über einen Substitutionsansatz gelöst.

F(x) =
∫

1
x lnx

dx

Die Substitution wird wie folgt gewählt:

z= lnx dz=
1
x

dx

Damit ist das zu lösende Integral ∫
1
z

dz= lnz+ c

Die Resubstitutierung ergibt

F(x) = ln
∣∣ lnx∣∣+ c

12.3 Der Wert der bestimmten Integrale berechnet sich wie folgt:

F−1,+1(x) =
∫ +1

−1

∣∣x∣∣dx= 2
∫ 1

0
xdx= 2

1
2
x2
∣∣∣∣1
0
= 1
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F−2,+2(x) =
∫ +2

−2
min{x,x2}dx=

∫ 0

−2
xdx+

∫ 1

0
x2 dx+

∫ 2

1
xdx=−1

6

F1,e(x) =
∫ e

1
lnxdx= x lnx

∣∣∣∣e
1
−
∫ e

1
dx= 1

Das Integral wurde partiell mit h(x) = lnx und g′(x) = 1 gelöst.

F0,4(x) =
∫ 1

0
x2 dx+

∫ 4

1

√
xdx= 5

F0,1(x) =
∫ 1

0

4x+ 6
x2 + 3x+ 2

dx=
∫ 6

2

2
z

dz= 2 lnz
∣∣∣∣6
2
= 2 ln3

Das Integral wurde durch die Substitution z= x2+3x+2 und dz=(2x+3)dx gelöst.
Man muss hier beachten, dass die Grenzen ebenfalls zu ersetzen sind.

F3,1(x) =
∫ 1

3
x2 lnxdx=

x3 lnx
3

∣∣∣∣1
3
− 1

3

∫ 1

3
x2 dx=

x3 lnx
3

∣∣∣∣1
3
− x

3

9

∣∣∣∣1
3

=
26
9

− 9 ln3

Das Integral wurde mit dem partiellen Ansatz h(x) = lnx und g′(x) = x2 gelöst.
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