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Vorwort

Viele Studenten kommen mit der ausfiihrlichen Darstellung der elektrotechnischen Zu-
sammenhinge in den drei Bianden der ,,Elektrotechnik fiir Ingenieure* gut zurecht. Geht
es dann in die Phase der Priifungsvorbereitung, wiinschen sie sich eine kompakte Darstel-
lung, in der die wichtigsten Zusammenhinge, Losungsablidufe und Formeln zusammenge-
fasst sind, mit denen Ubungs- und Priifungsaufgaben geldst werden kénnen. Vor der Prii-
fung erschligt sie formlich die Fiille des Stoffes in einem umfangreichen Lehrbuch, der
wihrend des Studiums nur einmal gehort und nur einmal mittels Ubungsaufgaben nachbe-
reitet werden konnte. Etwa ein Sechstel des Textes ist leichter zu iiberschauen und zur
Priifung zu wiederholen.

Diese vorliegende Formelsammlung sollte die Studenten allerdings nicht dazu verfiihren,
die Elektrotechnik mit Hilfe dieser Zusammenfassung verstehen zu wollen. Die Formel-
sammlung kann erst niitzlich sein, nachdem die Zusammenhénge im Lehrbuch bearbeitet
und verstanden worden sind. Dann erst hilft die Formelsammlung bei der Losung von
Ubungs- und Priifungsaufgaben.

Die berufspraktische Tétigkeit eines Diplomingenieurs setzt die Kenntnis von elektro-
technischen Grundlagen voraus. Dafiir ist oft ein komprimiertes Buch mit Zusammenfas-
sungen, Formeln und Arbeitsanweisungen ausreichend und sinnvoll, und es findet in je-
dem Schreibtisch einen Platz.

Sollte diese ,,Formelsammlung und mehr* fiir ein zu 16sendes Problem nicht ausreichend
sein, kann mit dem Seitenbezug zu den Lehrbiichern die jeweilige ausfiihrliche Darstel-
lung gefunden werden. Sie steht hinter den Uberschriften jeden Kapitels.

Textbild und Zeichnungen sind ganz bewusst aus den Lehrbiichern entnommen, damit das
in den Lehrbiichern vertraute Bild wieder erkannt wird.

Die 2. Auflage wurde um ein Sachwortverzeichnis und ein Verzeichnis der verwendeten
Formelzeichen ergénzt. Die 3. Auflage wurde vollstindig tiberarbeitet, und die 4. Auflage
wurde nochmals korrigiert. Diese 5. Auflage wurde noch einmal durchgesehen.

Fir die gute Zusammenarbeit mochte ich allen Mitarbeitern des Verlags und der Fa.
Fromm MediaDesign danken.

Wedemark, im Juli 2015 Wilfried Weifsgerber
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Augenblicks- oder Momentanwert zeitabhéngiger Grofen:

kleine lateinische Buchstaben

GleichgroBen, Effektivwerte: grof3e lateinische Buchstaben

Maximalwert

komplexe Zeitfunktion, dargestellt durch rotierende Zeiger

komplexe Amplitude

komplexer Effektivwert, dargestellt durch ruhende Zeiger

komplexe Groflen
konjugiert komplexe Grofien
vektorielle GroBen

Schreibweise von Zehnerpotenzen

1072 = p=Piko 107 = ¢ = Zenti
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107 = = Mikro 10" =da = Deka
10 = m= Milli 10> = h = Hekto
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(@)
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10°=M= Mega

10° =G =Giga

10'2 = T = Tera
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Konstante
Lichtgeschwindigkeit
€c=2,99792-108 m/s
spezifische Warmekapazitét
(spezifische Wérme)
Vierpolparameter
komplexer Fourierkoeffizient
Amplitudenspektrum
elektrische Kapazitét
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Verlustfaktor
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EMK

elektrische Feldstdrke
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Fouriertransfomierte der
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Fouriertransfomierte der
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Wellen-Ubertragungsmal
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Wirkleitwert (Konduktanz)
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Ubertragungsfunktion, Netz-
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Ubertragungsfunktion
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Vierpolparameter
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komplexe Amplitude des
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Stromstérke (Gleichstrom,
Effektivwert)

komplexer Effektivwert des
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imaginédre Achse
Knotenzahl
Kopplungsfaktor
Klirrfaktor

laufender Index
Konstante

Ortskurve Kreis

Lange

Anzahl

Induktivitat

komplexe Grofe
Laplacetransformierte der Zeit-
funktion f(t)

Masse

Anzahl

Gegeninduktivitit
Drehmoment

Anzahl
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Entmagnetisierungsfaktor
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nanzschérfe
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variabler Radius

Betrag einer komplexen Zahl
reelle Achse
Widerstandsverhéltnis
Radiusvektor, Ortsvektor
elektrischer Widerstand
Wirkwiderstand (Resistanz)
Radius

magnetischer Widerstand

komplexe Grofle

Weg, Linge

komplexe Variable der
Laplacetransformation
Ordinatenspriinge
Summenfunktion
Stromdichte

Scheinleistung

komplexe Leistung

komplexe Grofe

Zeit

Periodendauer (Dauer einer
Schwingung)

zeitlich verdnderliche elektri-
sche Spannung (Augenblicks-
oder Momentanwert)
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Amplitude, Maximalwert der
sinusférmigen Spannung
komplexe Zeitfunktion der
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elektrischen Spannung
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spannung, Effektivwert)
komplexer Effektivwert der
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Verstirkung
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natenachse

Imaginérteil einer komplexen
Zahl

Vierpolparameter
Ausgangs-Zeitfunktion
Scheinleitwert (Admittanz)
Laplacetransformierte der Aus-
gangs-Zeitfunktion

komplexer Leitwert bzw. kom-
plexer Leitwertoperator
Vierpolparameter

Zweigzahl
Ankerumdrehungen

laufende Ordinate
Vierpolparameter

komplexe Zahl
Scheinwiderstand (Impedanz)
komplexer Widerstand bzw.
komplexer Widerstandsoperator
Vierpolparameter
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o Winkel Ok Phasenspektrum
Temperaturkoeffizient o(®) Phasenspektrum
Zeigerausschlag D magnetischer Fluss

B Winkel 9 Temperatur
Temperaturkoeffizient K spezifischer Leitwert

Y Winkel Teil der Losung der charakteris-
Zeigerausschlag tischen Gleichung

3 Verlustwinkel A Losung der charakteristischen
Abklingkonstante Gleichung
Realteil der komplexen n Permeabilitit Permeabilitit des
Variablen s Vakuums:

o(t) Dirac-Impuls oder Dirac’sche 6 Vs
Deltafunktion Mo =1,256-107 -~

A Differen'z, Abweichung v laufender Index

Af Bandbreite ) relative Verstimmung

€ D¥elektr%z¥t?tskonstante o spezifischer Widerstand
Dielektrizititskonstante des o) Durchflutung
Vakuums, Influenzkonstante:

c Streufaktor
%:gjyg.m4%é§ o(t) Sprungfunktion
m T Zeitkonstante

Fehlwinkel Temperaturkennwert

n Wirkungsgrad ® Kreisfrequenz

(0] elektrisches Potential ke Verschiebungsfluss
Phasenverschiebung Induktionsfluss oder verketteter
Argument einer komplexen Fluss
Zahl Wi Phasenspektrum

0 Anfangsphasenwinkel des C Abszissenwert von Stiitzstellen
Stroms Scheitelfaktor

Oy Anfangsphasenwinkel der

Spannung
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XV

Einheiten des SI-Systems (Systéme International d’Unités)

Basiseinheit

der Lénge / das Meter, m

der Masse m das Kilogramm, kg
der Zeit t die Sekunde, s

der elektrischen Stromstarke I das Ampere, A

der absoluten Temperatur T das Kelvin, K

der Lichtstérke I die Candela, cd
der Stoffmenge n das Mol, mol

von den Basiseinheiten abgeleitete Einheit

der Kraft F Newton,
der Energie W Joule,
der Leistung P Watt,
der Ladung Q gleich Coulomb,
des Verschiebungsflusses ¥

der elektrischen Spannung U Volt,

des elektrischen Widerstandes R~ Ohm,
des elektrischen Leitwertes G Siemens,
der Kapazitit C Farad,
des magnetischen Flusses @ Weber,
der Induktivitat L Henry,
der magnetischen Induktion B Tesla,

der Frequenz f Hertz,

IN=1kg - m-s?=1V-A-s-m’!
1J=1kg-m?2-s2=1V-A-s
IW=1lkg-m?-s3=1V-A
IC=1A"s

IV=1kg -m?-s3-A1=1W- A"l
1Q=1kg-m?-s3-A2=1V- A"l
1S=1kg! -m?2-$3-A2=1V1-A
IF=1kg! - m?Z-s*- A2=1C- V!
IWb=1kg -m?-s2-A1=1Vs
IH=1kg -m?-s2-A2=1Wb-A"!
1IT=1kg-s2-A'=1Wb-m32
1Hz=s"!



1 Physikalische Grundbegriffe der Elektrotechnik

Das Coulombsche Gesetz und das elektrische Feld (Band 1, S. 4)

elektrische Kraft zwischen geladenen Korpern

F=K Q- Q) =E-Q, = KQ—21~Q2 mit E= KQ—; elektrische Feldstarke
r

2
T T

Das elektrische Potential und die elektrische Spannung (Band 1, S.5-7)

W W,
¢ = Oy =— Ladungsverschiebungen >
Q % g g QZ@}‘; v,
AW =W, - W =(p2-91) - Q2 -OzeTLP1 —02-{'_‘}_491
AW t r
U= Q, e
mit 1 V= 1 N-m vor der Trennung nach der Trennung nach weiterer Trennung
C
Der elektrische Strom (Band 1, S.10-12)
Arten des elektrischen Stroms:
der Verschiebungsstrom im Nichtleiter und der Konvektionsstrom im Leiter
Konvektionsstrom Stromdichte
. I . A
I= Q Gleichstrom S=— S=— mit [S]=1——+
t A mm?>
. dq . .. .
1= m zeitlich verdnderlicher Ladungsstrom
18
mit 1A= 19 _ 6,24-10°° Elektronen
S Sekunde
Stromarten I 1 . 1
Gleichstrom I
f—

(Band 1, Kapitel 2), 7
Wechselstrom \/

(Band 2, Kapitel 4).

© Springer Fachmedien Wiesbaden 2015
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2 1 Physikalische Grundbegriffe der Elektrotechnik

Der elektrische Widerstand (Band 1, S.12-21)

elektrischer Widerstand ' It :
+
U v l Y
R, =— R,]=1—=102 4
a I [ a] A T U Rﬂ
R: U
U=R, I oder =Y ' T :
R, °
elektrischer Leitwert
1
Ga:R_a [G]=1S=1Q!
Bemessungsgleichung
R, =Pl L
A «-A
mit [: Lange des Leiters, A: Querschnittflache des Leiters
p: spezifischer Widerstand .
k= 1/p: spezifischer Leitwert Materialgrofien
Temperaturabhdngigkeit des Widerstandes
bis 200 °C
o
p=p20 (1 +ay - A3) T—f-—"'??:@?
9
Ra=Ryg - (1 + 0y - AY) 4
9z
iiber 200 °C  bzw. nichtlinear
p=p20- [1+020° A8+ By - (A8)?]
Ry =Ry [1+ 00 - AS + B - (A)?]
mit A3 =3-20°C = -
3 4949 —= =
[ K 20
Material Symbol Q- mm? m 1 1
- 3 — oder —
m 0 -mm C K
Aluminium Al 0,028 36 0,004
Silber Ag 0,016 63 0,004
Kupfer Cu 0,018 56 0,004
Gold Au 0,023 44 0,004
Platin Pt 0,11 9 0,002
Eisen Fe 0,125 8 0,005
Manganin Cu, Fe, Mn, Ni 0,4 2,5 0,00001
Chromnickel Cr, Ni, Fe 1 1 0,00005




Die elektrische Energie und die elektrische Leistung 3

Die elektrische Energie und die elektrische Leistung

(Band 1, S.22-24)

In einem Stromkreis ist die Summe aller vorzeichenbehafteten Energien Null:

!
DW =W+ W, +..+W, =0
i=1
Energieansatz mit Quellspannungen:

Werden fiir die Spannungsquellen Quellspannungen Uy angesetzt, gilt fir den Energiesatz,
dass die Summe aller vorzeichenbehafteten Energien (zugefiihrte Energien sind negativ, nach
auflen abgegebene Energien sind positiv) Null ist.

In einer Spannungsquelle erzeugte — genauer umgewandelte — elektrische Energie :
Wer,=Q - Uq
In ohmschen Widerstinden abgegebene Energie:
2 U’
Wipe =Q-U=U-I-t=1"-R, -t :R—-t

a

[W]=1J=1Ws=1Nm 1 Joule 1 Wattsekunde 1 Newtonmeter

heute nicht mehr gebriauchliche Energiedquivalente

mechanische Arbeit Wirmeenergie elektrische Energie
426,9 kp - m =1 kcal =4,187 - 103 Ws
0,102 kp - m =0,2388 cal =1Ws

Wirmeenergie (Warmemenge)
W=c-m-AS

Die spezifische Warmekapazitit c eines Stoffes gibt an, wie viel Warmeenergie notwendig ist,
um | kg dieses Stoffes um 1 °C zu erwirmen.

Beispiele:

Wasser 4 187 J/(kg - K) Aluminium 880 J/(kg - K)
Kupfer 394 J/(kg - K) Gold 130 J/(kg - K)
Eisen 461 J/(kg - K) Sauerstoff 730 J/(kg - K)

Fiir Temperaturdifferenzen: 1 °C=1K

elektrische Leistung

[Pl=1W=1V-A



2 Gleichstromtechnik

2.1 Der unverzweigte Stromkreis

2.1.1 Der Grundstromkreis (Band 1, S.27-31)

1 T S

\

Grundstromkreis mit Quellspannung Uy Grundstromkreis mit EMK E

Ug=U+Uj; E=U+T;

normaler Betriebsfall mit 0 <R, <o

I= Yq I
R, +R; R, +R;
Kurzschluss: R,=0 mit U=0
U E

Leerlauf: R,=0 mit1=0

Ul = Uq ‘ U] =E
Anpassung: Ry =R

U = _Ul U = Ul

© Springer Fachmedien Wiesbaden 2015
W. Weilgerber, Elektrotechnik fiir Ingenieure - Formelsammlung, DOI 10.1007/978-3-658-09090-6 2



2.1 Der unverzweigte Stromkreis 5

Kennlinien des Grundstromkreises:

Kennlinie des aktiven Zweipols I T N

=
~

Ik \\
u.r, \\//\Uq,E grofer
U, 1 L /N

~
~

RigroBer

0

Kennlinie des passiven Zweipols I 1

linearer Widerstand \/ i
U=R,1 I=—uU T

R, - Rq grofer
nichtlinearer Widerstand o

U=f(I) I1=f() 0

Uberlagerung der Kennlinien des aktiven und passiven Zweipols

Werden aktiver und passi-
ver Zweipol zusammenge-
schaltet, dann stellt sich I T |
nur ein Strom I und nur ei- I
ne Klemmenspannung U k :
ein. Diese GroBen ergeben I
sich durch Uberlagerung }
1
[
[
I
I

der Kennlinien des aktiven IR
und passiven Zweipols, in- ¢
dem im Schnittpunkt (ge-

nannt Arbeitspunkt) die 0
GroBen abgelesen werden. 0

l

Aus den iiberlagerten Kennlinien lassen sich die Spannungen am Auflenwiderstand und In-
nenwiderstand abgreifen.



6 2 Gleichstromtechnik

2.1.2 Zahlpfeilsysteme (Band I, S.31,32)

Im Verbraucherzdhlpfeilsystem (VZS-System) werden die im Verbraucher (Widerstand) defi-
nierten Strom- und Spannungsrichtungen zugrunde gelegt:

2.1.3 Die Reihenschaltung von Widerstinden (Band 1, S.33,34)

U=U;+Uy+...+U, i
U=I1-(R;+Ry+..+Ry)

U= U, =1-3'R,
v=1

|
|

v Ual R3
|

U=1-R,

; Uy
R, =D)R, Ui T Ri
v=l

oder Unl Rn l
Y ]

1
G

M=

1
Gv Ersatzschaltung eines Stromkreises mit n in Reihe geschalteten ohmschen
Widerstanden

Il
—_

a v

2.1.4 Anwendungen der Reihenschaltung von Widerstinden (Band 1, S.34,35)

unbelasteter Spannungsteiler

Potentiometer

R

U, R, I Ry R2 I R 2
—1 _ 1 _":_]_r:I '?R
U2 R2 - - S——

Uq U2 Uy Us
U_ R R — S

U R,+R, R

Ausfiihrungen unbelasteter Spannungsteiler

Spannungsteilerregel

Die Spannungen iiber zwei vom gleichen Strom durchflossenen Widerstéinden verhalten sich
wie die zugehdrigen Widerstandswerte.

Messbereichserweiterung eines Spannungsmessers

Ry=(p-1)-Ro. e W
el \_/

. U — e
mit p= T Uy Uy

0 -




2.2 Der verzweigte Stromkreis

2.1.5 Die Reihenschaltung von Spannungsquellen (Band 1, S.35,36)

Die Ersatz-Quellspannung Ug ¢rs bzw. die Ersatz-EMK Eg beriicksichtigt alle Ug,, bzw. E,, die
in gleicher Richtung wirken, positiv und die entgegengesetzt wirken, negativ.

Der Ersatz-Innenwiderstand R; ¢ ist gleich der Summe aller Innenwiderstidnde R;,,.

2.2 Der verzweigte Stromkreis

2.2.1 Die Maschenregel (Der 2. Kirchhoffsche Satz) (Band 1, S.37,38)

Zur Ermittlung der Spannungsgleichungen in einem verzweigten Stromkreis werden beliebige
Maschenumlédufe gewahlt, fiir die die Maschenregel gilt:

Beim Umlauf einer Masche ist die Summe
aller vorzeichenbehafteten Spannungen
(Quellspannungen und Spannungen an
Widerstinden) in einer Masche gleich Null:

> U =0 (2.38)

Wird mit Quellspannungen gerechnet, dann
wird jede Masche nur einmal durchlaufen.

Beim Umlauf einer Masche ist die Summe
der vorzeichenbehafteten EMK E gleich der
Summe der vorzeichenbehafteten Span-
nungsabfille an den Widerstidnden:

SE =Y, (2.39)
i=1

i=1

Wird mit EMK E gerechnet, muss jede Ma-
sche zweimal durchlaufen werden, einmal
fir die EMK und einmal fiir die Span-
nungsabfille.

Vorzeichenbehaftet bedeutet, dass alle in der gewéhlten Umlaufrichtung liegenden Spannun-
gen und EMK positiv und dass alle entgegengesetzt gerichteten Spannungen und EMK negativ

in der Maschengleichung beriicksichtigt werden.

2.2.2 Die Knotenpunktregel (Der 1. Kirchhoffsche Satz) (Band 1, S.39)

Treffen sich mehrere stromdurchflossene Leiter in einem Knotenpunkt, so gilt die Knoten-

punktregel:

Die Summe aller vorzeichenbehafteten
Strome eines Knotenpunktes ist Null; vor-
zeichenbehaftet bedeutet, dass die zum
Knotenpunkt hinflieBenden Strome positiv
und die von ihm wegflieBenden Strome
negativ gezdhlt werden oder umgekehrt:

>1=0 (2.40)

Die Summe der zum Knotenpunkt hinflie-
Benden Strome ist gleich der Summe der
vom Knotenpunkt wegflieBenden Strome:

S =Y (2.41)
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2.2.3 Die Parallelschaltung von Widerstinden (Band 1, S.39,40)

Uql 1y iy Iyg o ovenly Uql()

UiT Ri

Ersatzschaltung eines Stromkreises mit n parallel geschalteten ohmschen Widerstdnden

Y \

1 1 1 1
I={+L+LK+. . +=U| —F—+—+... +— |=U- (G + G +G3+..+ G
1+th+13 n (R1 R, TR, R] (G1+G2+G3 )

n
n

1=§n:1v :U-f:i:U.ZGv
v=1 v:le

v=1

n 1
Gy=Gy + Gy +G3+..+ Gy =) G, oder TR TR TR T An

v=1 a

2.2.4 Anwendungen der Parallelschaltung von Widerstinden (Band 1, S.41,42)

Stromteiler

L_G R o ,
I, G, R A #
I G R U

2 _ 2 _ | Rq L] Ry
I G, +G, R;+R,

Stromteilerregel

Ein Stromteiler besteht aus zwei parallel geschalteten Widerstinden R; und R, , an denen die
gleiche Spannung anliegt.

In parallelen Zweigen mit ohmschen Widerstinden sind die Teilstrome proportional den
Zweigleitwerten und umgekehrt proportional den entsprechenden Zweigwiderstanden.

Fiir zwei parallel geschaltete Widerstdnde gilt die Regel:

Der Teilstrom verhilt sich zum Gesamtstrom wie der Widerstand, der nicht vom Teilstrom
durchflossen ist, zum Ringwiderstand der Parallelschaltung. Der Ringwiderstand bedeutet der
Widerstand der Reihenschaltung der beiden Widerstdnde, nicht der Gesamtwiderstand der
Parallelschaltung:

I R,

I R, +R,

|
und 2= R,
I R,+R,




2.2 Der verzweigte Stromkreis

Ersatzwiderstand von zwei
parallel geschalteten Widerstinden ]

R, R
Ra:R11+ Rz2 (] e (]

1l
n:ﬂ
—

Messbereichserweiterung eines Strommessers

|p RP
——{
I
p-1 Iy ()
S
o mif Ro
G,=(p— 1) Go.
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2 Gleichstromtechnik

normaler Belastungsfall

fiir Grundstromkreis mit Ersatzspannungsquelle

= Ra . U
R;+R, 1!
(Spannungsteiler)
Ui
I= Y
R;+R

fiir Grundstromkreis mit Ersatzstromquelle

R; I |
=R R, q
C+
i a e [] R U [] Ra
(Stromteiler)
_ Ri 'Ra
R, +R, 1
charakteristische Betriebszustinde
fiir Ersatzspannungsquelle fiir Ersatzstromquelle
u U=0 I=N=I
it R, =0: U=0 I=L=-" ko
Kurzschluss mit R, = 0: Kk R, weil I = 0
) I=0 U=U,=U,4 =0 U=U,;=I3-R;
Leerlauf mit R, = oo: ) .
weil U;=0 weil [; = Ig
b_U Uy
. 2 2
Anpassung mit R, = R;: I
1= I_k S
2 2
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2.2.6 Die Parallelschaltung von Spannungsquellen (Band 1, S.54-56)

| O vgo| O Uan g1 4 I Iy3 Ign 4
Jr zl ”q31 l - O [] é o @RH i

Rit Ri2 Ri3
Riq [] Riz [] Riz Rin

Uberfiihrung von n parallel geschalteten Spannungsquellen in n Aquivalente Stromquellen

Igers )
Im qul " " e U%rsl()
- 0000 [ [ [ = © [ =
Rig| Riz| Ria|  Rin Fiers HR-

Uberfiihrung von n parallel geschalteten Stromquellen in eine Ersatz-Stromquelle und eine Ersatz-
Spannungsquelle

1 U, U U U U,
oo calg me el
U _ v=l Riv _ Ril RiZ Ri3 Rin
e nq 1 1 1 1
— At —+.
Ry Ry Ry Ry R,
1 1
Ri ers — 1 = 1 1 1 1
z — 4.+
v=1 RIV Rll Ri2 R|3 Rin

Sind die parallel geschalteten Spannungsquellen mit einem dufleren Widerstand R, belastet,
dann ist
U i h E % + % + ..+ _an
qers i Ry Rii Rp Ry

I: = = in

R, +R L
iers a 1+Ra'zi 1+Ra.(Rl+l+“.+1j
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2.2.7 Messung von Widerstinden (Band 1, S.58-61)

Stromrichtige Messschaltung zur Messung von grof3en Widerstdnden:

U Ug+U U U F
M I 11 mit Ry
mit Rﬁ\ i R
Ry =R+ AR . ®) —r
Ua UR
. U o
mit AR = TA =R, U
Spannungsrichtige Messschaltung zur Messung von kleinen Widerstinden:
I I+1 1 I
Uy Uz Ug Uy V)
mit RV
Gy =G+4G I i .
A - .
mit R —_—
. Iy 1 A Up
mit AG=——=Gy =—
Ugr Ry
Gleichstrombriicke nach Wheatstone
Bei Abgleich der Briicke C —
. . . .. ——a—{ "} g =) =
sind zwei Zweigstrome 1 R R 1
: : : 1 1 I 2 2
gleich, weil der Diagonal- A
zweig stromlos ist: m S m
L= und I3=14 \_/ mit Ry \\_//
Die Abgleichbedingung der
Wheatstonebriicke ldsst A - 5 1 : B
sich in ohmschen Wider- 5 Ry Ri b
stinden ausdriicken: 4!
R, R, = U
R, R, — O
Ri -—Ug



2.2 Der verzweigte Stromkreis

13

Schleifdraht-Messbriicke

—_ | oS—
R1:Rx R2=RN
13 13
Ry :RNZ_:RNZ ]
4 -3 R3 R;'_
A ¢— —1B
I [3 lﬁ 1
L | -

2.2.8 Der belastete Spannungsteiler (Band 1, S.62-66)

L U, A%
" U R
Linae U —(v-v)+1
3 U
R3
I3
I 10
I3|11cu:
Y2 | 08
U V /
0.6 /
R_1. L~
Ry & ~-
0,4 /
e /
CR g
/ Ry /
2 % R_1 20
/ R3 0,1 RZ
V==
R
09 0,2 0% 0,6 08 70—
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2 Gleichstromtechnik

2.2.9 Kompensationsschaltungen (Band 1, S.66-69)

UR, -U,R

[ =— %
> R,R+RR, L

I
y 2

mit Ry

)
G

Ry |Ug t) luq,
A

i3

Im Zustand der Kompensation ist der Spannungsteiler unbelastet, denn der Belastungsstrom I3
ist Null. Die unbekannte Spannung ergibt sich dann aus

R
U, =U—=>
R

]

Feineinstellung
oA

Ry Ry

-

Ugx Ux

I L] Grobeinstellung

v

—_—

Zweifache Spannungskompensation

N

)lUQN

Die unbekannte Spannung kann unabhidngig von der Hilfsspannung auf vier Ziffern genau

berechnet werden:




2.2 Der verzweigte Stromkreis

2.2.10 Umwandlung einer Dreieckschaltung in eine Sternschaltung und
umgekehrt (Band 1, S.69-73)

Dreieck-Stern-Transformation

R2R3 R' R3R1 Rv R1R2

"R, +R, +R, > R, +R, +R, ’R,+R, +R,

Produkt der beiden Dreieckwiderstdnde

Merkregel: Sternwiderstand = - -
Summe aller Dreieckwiderstande

Stern-Dreieck-Transformation

C
Rz R1
R
A A b \ B
. . R,R, RR,+R,R;+R|R G,G.
R, =R, +Rj+-—2 2 =127 22237 1183 Gy=—222
R, R, G, +G, +G;y
. . RR; RR,+R,R;+R R G\G.
R2:R1+R3+ 1,3: 12 2,3 13 oder GZZ%
R, R, G, +G, +Gy
R, :R}+R'2+R11,{2 :R1R2+R233+R1R3 G, G,G,

R, R, G, +G,+G;
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2.3 Verfahren zur Netzwerkberechnung

Fiir ein Gleichstrom-Netzwerk, in dem Spannungsquellen, Stromquellen und ohmsche Wider-
stinde gegeben sind, sollen die Zweigstrome und Spannungen berechnet werden. Die Richtun-
gen der Spannungsquellen und Stromquellen sind durch Zahlpfeile vorgegeben.

2.3.1 Netzwerkberechnung mit Hilfe der Kirchhoffschen Siitze
(Zweigstromanalyse) (Band 1, S.80-86)

Losungsweg:
1. Kennzeichnung der Richtung der Zweigstrome

Ist die Stromrichtung nicht vorauszusagen, dann ist sie beliebig anzunechmen. Die Berech-
nung ergibt negative Strome, wenn die Stromrichtung falsch vorausgesagt wurde.

2. Aufstellen der k — 1 Knotenpunktgleichungen

Fiir ein Netzwerk mit k Knotenpunkten ergeben sich k — I voneinander unabhingige Kno-
tenpunktgleichungen mit Hilfe der Knotenpunktregel. Die Gleichungen sind voneinander
linear abhéngig, wenn sie sich aus einer oder mehreren Knotenpunktgleichungen ableiten
lassen. Stromquellen im Netzwerk werden als Ein- und Ausstromungen in jeweils zwei
Knotenpunkten und in den Knotenpunktgleichungen beriicksichtigt. Sie sind also keine
Zweige, denn sie haben einen unendlich groflen Widerstand:

I Iy I [EI,

Iy lgly+ Iy o
Beispiel zur Behandlung von

Stromquellen bei der Zweigstrom-

Iq I3=1g*l; analyse

Iy I3 I, Iy

O
Il

3. Willkiirliche Festlegung der Maschen-Umlaufrichtungen und Aufstellen der unabhdngigen
Maschengleichungen nach der Maschenregel

Fiir die Berechnung eines Netzwerkes sind z Gleichungen mit z unbekannten Zweigstro-
men notwendig, k — 1 Knotenpunktgleichungen sind bereits aufgestellt. Dazu kommen
noch die unabhingigen Maschengleichungen fiir die Spannungen der Maschen, die man er-
hilt, wenn nach jedem Maschenumlauf die behandelte Masche aufgetrennt gedacht wird.
Diese Trennstelle wird in einem Zweig des Netzes durch zwei Striche gekennzeichnet. Ein
neuer Maschenumlauf darf nicht iiber diese Trennstelle erfolgen. Nach dem Umlauf wird
eine zweite Trennstelle vorgesehen, die beim dritten Umlauf nicht iiberschritten werden
darf, usw. Ist wegen der eingezeichneten Trennstellen kein Umlauf mehr moglich, sind alle
unabhéngigen Maschengleichungen aufgestellt. Nun ist noch zu kontrollieren, ob die k — 1
Knotenpunktgleichungen und die unabhingigen Maschengleichungen z Gleichungen er-
geben.

4. Auflosen des Gleichungssystems nach den gesuchten Strémen und Spannungen

Handelt es sich um kleine Netze, konnen das Eliminationsverfahren, das Einsetzverfahren,
das Determinantenverfahren (Abschnitt 2.3.6.3), das Bilden der inversen Matrix (Abschnitt
2.3.6.2) oder der Gaullsche Algorithmus (Abschnitt 2.3.6.3) angewendet werden. Bei gro-
Beren Netzen sollte ein Rechner zu Hilfe genommen werden, fiir den z.B. der Gaufische Al-
gorithmus programmiert wird.
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2.3.2 Netzwerkberechnung mit Hilfe des Uberlagerungssatzes

(Superpositionsverfahren) (Band 1, S.86-89)

Fiir elektrische Netze lautet das Uberlagerungsprinzip:

Die Strome in den Zweigen eines linearen Netzwerks sind gleich der Summe der Teil-
strome in den betreffenden Zweigen, die durch die einzelnen Quellspannungen und
Quellstrome hervorgerufen werden. Lineares Netzwerk bedeutet, dass zwischen den
Strémen und Spannungen lineare Zusammenhinge bestehen.

Losungsweg:

1.

Kennzeichnung der Richtung der Zweigstréme
Ist die Stromrichtung nicht vorauszusagen, dann ist sie beliebig anzunehmen. Die Berech-
nung ergibt negative Strdme, wenn die Stromrichtung falsch vorausgesagt wurde.

Nullsetzen und Kurzschlieffen aller Quellspannungen und Nullsetzen und Unterbrechen
aller Quellstréme bis auf eine Quellspannung oder einen Quellstrom

Innenwiderstidnde verbleiben in der Schaltung. Es empfiehlt sich, die Schaltung mit nur ei-
ner Spannungs- oder Stromquelle noch einmal zu zeichnen.

Berechnen des von der einen Quellspannung oder von dem einen Quellstrom verursachten
Teilstrom in dem Zweig, in dem der Zweigstrom ermittelt werden soll

Da nur eine Energiequelle in der Schaltung wirkt, kann in den meisten Fillen die Strom-
richtung in dem betreffenden Zweig vorausgesagt werden. Die Richtung des Teilstroms
kann dabei auch entgegengesetzt zur angenommenen Richtung des unter 1. vereinbarten
Richtung des gesamten Zweigstroms verlaufen.

Nullsetzen und Kurzschliefsen aller Quellspannungen und Nullsetzen und Unterbrechen
aller Quellstrome bis auf eine zweite Quellspannung oder einen zweiten Quellstrom und
Berechnen des Teilstroms in dem betreffenden Zweig

Berechnen der Teilstréme in dem betreffenden Zweig auf Grund einer dritten, vierten, ...
Energiequelle

Es ergeben sich so viele Teilstrome, wie Spannungs- und Stromquellen in der Schaltung
vorhanden sind.

Aufsummieren der Teilstréme bei Beachten der Vorzeichen der Teilstrome

Teilstrome, die die gleiche Richtung haben wie der unter 1. vereinbarte gesuchte Zweig-
strom, werden positiv berticksichtigt. Die Teilstrdme, die entgegengesetzt gerichtet sind,
gehen negativ in die Berechnung ein.



18 2 Gleichstromtechnik

2.3.3 Netzwerkberechnung mit Hilfe der Zweipoltheorie (Band 1, S.46-54, 90-97)

Durch die Netzwerkberechnung nach der Zweipoltheorie wird das gegebene Gleichstrom-
Netzwerk in einen Grundstromkreis iiberfiihrt, wobei der gesuchte Zweigstrom gleich dem
Belastungsstrom des Grundstromkreises ist bzw. die gesuchte Spannung gleich der Klemmen-
spannung des Grundstromkreises ist. Es gibt zwei mdgliche Ersatzschaltungen fiir ein Gleich-
stromnetz:

die Spannungsquellen-Ersatzschaltung und
die Stromquellen-Ersatzschaltung.

Nach der Uberfiihrung kann der Strom bzw. die Spannung nach den Formeln fiir den Grund-
stromkreis berechnet werden.

Losungsweg:

1. Aufteilung des Netzwerks in einen aktiven und einen passiven Zweipol
Die Aufteilung muss so vorgenommen werden, dass der gesuchte Zweigstrom von der obe-
ren Klemme des aktiven Zweipols in die obere Klemme des passiven Zweipols und von der
unteren Klemme des passiven Zweipols in die untere Klemme des aktiven Zweipols oder
umgekehrt fliet bzw. die gesuchte Spannung zwischen den Klemmen der Zweipole liegt.

2. Berechnung der Ersatzschaltung des aktiven Zweipols

Ersatzspannungsquelle od Ersatzstromquelle
mit Ugers = Uy und Rj e mit Igers =[x und Rjers

U, .s: Die Ersatz-Quellspannung ist gleich der Leerlaufspannung

qers*
Uq ers = Up

d.h. fiir den aktiven Zweipol des Gleichstromnetzes wird bei offenen Klemmen, also
bei Leerlauf, die Klemmenspannung rechnerisch oder messtechnisch ermittelt. Soll-
ten Spannungsquellen oder Stromquellen in Reihe oder parallel geschaltet sein, dann
werden diese zusammengefasst und bei der Berechnung von U; beriicksichtigt.

Ugers =U
aktiver Zweipol l() S

Ui:o[]ﬁiers
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I

qers*

iers”

Der Ersatz -Quellstrom ist gleich dem Kurzschlussstrom

Igers = Ik,
d. h. fiir den aktiven Zweipol des Gleichstromnetzes wird bei kurzgeschlossenen
Klemmen, also bei Kurzschluss, der Klemmenstrom rechnerisch oder messtechnisch
ermittelt. In Reihe oder parallel geschaltete Spannungs- oder Stromquellen werden
zusammengefasst und bei der Ermittlung des Kurzschlussstroms beriicksichtigt.

I‘?IersdkJ [;=0

1 @ Riers ¢k

.

aktiver Zweipol

—

Der Ersatz-Innenwiderstand ist gleich dem ohmschen Widerstand des aktiven Zwei-
pols hinsichtlich der offenen Zweipolklemmen, wenn alle Spannungsquellen des
Gleichstromnetzes als kurzgeschlossen und alle Stromquellen als unterbrochen ange-
nommen werden. Innenwiderstinde bleiben beriicksichtigt in der Schaltung des Net-
zes. AnschlieBend miissen Briickenschaltungen durch Dreieck-Stern-Umwandlungen
oder Stern-Dreieck-Umwandlungen (Abschnitt 2.2.10) in zusammenfassbare Reihen-
und Parallelschaltungen iiberfiihrt werden und mit den iibrigen ohmschen Wider-
standen zusammengefasst werden.

———
Ugers
aktiver Zweipol g
Rigrs l() Riers
e -————
[ Rigrs
S
—_— -
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3. Berechnung der Ersatzschaltung des passiven Zweipols

Ersatz-Aullenwiderstand R, ¢r¢

Der Ersatz-AuBenwiderstand ist gleich dem ohmschen Widerstand des passiven
Zweipols hinsichtlich der offenen Zweipolklemmen. Dabei miissen Briickenschal-
tungen durch Dreieck-Stern-Umwandlungen oder Stern-Dreieck-Umwandlungen
(Abschnitt 2.2.10) in zusammenfassbare Reihen- und Parallelschaltungen tiberfiihrt
werden und mit den tibrigen ohmschen Widerstinden zusammengefasst werden.

acrs”

e

P ORCE |

assiver Zweipol
Rﬂer‘s P P Ruers
—_— —_— R
[] Oers
|
g ]

4. Ermittlung des gesuchten Stroms oder der gesuchten Spannung mit Hilfe der Ersatz-
schaltung (Grundstromkreis)

fiir die Spannungsquellen-Ersatzschaltung:
U

qers

+R

iers aers

R

aers
ers
+R q

iers aers

R

fiir die Stromquellen-Ersatzschaltung:

1:&.1 1 1 I , J
Riers+Raers e T U [] R
Riers g
U Riers 'Raers I
TR, +R,, I

iers aers
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2.3.4 Netzwerkberechnung nach dem Maschenstromverfahren (Band 1, S.98-102)

Beim Maschenstromverfahren werden nur Maschengleichungen fiir Spannungen beriicksich-
tigt. Deshalb sind im Gleichstromnetz vorkommende Stromquellen zundchst in dquivalente
Spannungsquellen zu iiberfithren. Bei idealen Stromquellen mit G; = 0 ist die Umwandlung
nicht moglich. In diesem Fall kann ein zur Stromquelle parallel geschalteter Innenwiderstand
angenommen werden, der dann im Endergebnis unendlich gesetzt wird. Das Maschenstromver-
fahren kann aber auch fiir ideale Stromquellen erweitert werden [16].

Jeder unabhingigen Masche wird dann ein geschlossener Maschenstrom zugeordnet. In den
Zweigen, die mehreren Maschen angehoéren, werden die Maschenstrome iiberlagert. Die
Zweigstrome sind also gleich der vorzeichenbehafteten Summe der Maschenstrome, je nach-
dem ob die Maschenstrome in dem Zweig gleich gerichtet oder entgegengesetzt gerichtet sind.

Anschliefend werden die unabhéngigen Maschengleichungen fiir die Zweigstrdome nach der
Maschenregel aufgestellt und zwar mit den angenommenen Maschenstromen.

Gegeniiber der Netzberechnung nach den Kirchhoffschen Sétzen (Abschnitt 2.3.1) werden
beim Maschenstromverfahren die Knotenpunktgleichungen eingespart, wodurch sich in vielen
Féllen Vereinfachungen ergeben.

Losungsweg:

1. Umwandlung sdmtlicher Stromquellen in dquivalente Spannungsquellen

Iq l Uq"'lq'R]

R; = Ri Behandlung von Stromquellen
beim Maschenstromverfahren

2. Jeder unabhdngigen Masche wird ein Maschenstrom zugeordnet

Dabei kann die Umlaufrichtung der Maschenstrome beliebig gewéhlt werden. Die Zuord-
nung der Maschenstrome wird so vorgenommen, dass durch den Zweig, fiir den der Strom
berechnet werden soll, nur ein Maschenstrom angenommen wird, damit nach Auflosung
des Gleichungssystems nicht die Summe oder Differenz von Maschenstromen gebildet
werden muss. Es wird also mit der Festlegung des Maschenstroms begonnen, zu dem der
gesuchte Zweigstrom gehort. Anschliefend wird dieser Zweig getrennt gedacht und mit
zwei Strichen gekennzeichnet. Dann wird ein neuer Umlauf mit einem neuen Maschen-
strom gesucht und wieder getrennt gedacht, usw. Ist infolge der gedachten Trennstellen
kein Umlauf mehr moglich, sind sdmtliche unabhiangigen Maschen beriicksichtigt.

3. Aufstellen der Maschengleichungen fiir die ausgewdhlten Maschen und zwar fiir Zweig-
strome

4. Berechnen des gesuchten Stroms oder der gesuchten Strome mit Hilfe des geordneten Glei-
chungssystems

(Eliminationsverfahren, Cramersche Regel, Matrizenrechnung, Gauf3scher Algorithmus im
Abschnitt 2.3.6.3)
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2.3.5 Netzwerkberechnung nach dem Knotenspannungsverfahren (Band 1,S.102-108)

Das Knotenspannungsverfahren basiert auf dem Knotenpunktsatz und dem Ohmschen Gesetz.
Dabei wird mit den Spannungen zwischen dem jeweiligen Knotenpunkt und einem mit dem
Potential Null festgelegten Knotenpunkt gerechnet.

Verbindet eine ideale Spannungsquelle mit R; = 0 zwei Knotenpunkte, dann wird in einem der
beiden Anschlusspunkte der Spannungsquelle das Potential Null angenommen, wodurch das
Potential des anderen Knotenpunktes iiber die Quellspannung bekannt ist. Mit den {ibrigen
Spannungen und den Leitwerten ergeben sich dann die gesuchten Zweigstrome.

Einstromungen, z.B. Quellstrome, lassen sich in den Knotenpunktgleichungen beriicksichtigen.
Losungsweg:
1. Kennzeichen der Knotenpunkte von 0 bis k— 1: k0, k1, k2, k3, ...
Der Knotenpunkt kO erhilt das Potential Null. Zwischen den k — 1 Knotenpunkten und dem
Knotenpunkt kO bestehen dann die k — 1 Spannungen Uj :
Uio=¢1-90=¢1 U0 = 92— 90 = 92 v Uk 10=0k-1-90 =@k 1
2. Festlegen der Richtungen der z Zweigstrome Iy, I, ... , I, im Gleichstromnetz
Einstromungen (zu- und abflieBende Strome) und Stromquellen (Quellstrdme) sind vorge-
geben.

3. Aufstellen der k — 1 Knotenpunktgleichungen in den Knotenpunkten ki, k2, ... nach der
Knotenpunktregel

4. Aufstellen der z Gleichungen fiir die Zweigstrome in Abhdngigkeit von den Zweigleitwer-
ten G, den Spannungen Uy und den eventuell vorhandenen Quellspannungen

Erliduterungsbeispiel:
Der Zweigstrom I; flieBt vom Knotenpunkt k2 Ugp-U1o
zum Knotenpunkt k1, dann wird er durch die o~ ) J:___:‘_:j
Spannungsdifferenz U, — Uy getrieben. -\l‘;— ;U::- Ry Tt Ry
91 2

Befinden sich zwischen den Knotenpunkten
k1 und k2 Quellspannungen, dann sind diese zu der Spannungsdifferenz U, — U, zu addieren,
wenn die Quellspannungen entgegengesetzt zum Zweigstrom I; gerichtet sind, und zu subtrahie-
ren, wenn die Quellspannungen gleichgerichtet sind mit dem Zweigstrom 1. Im Beispiel wirkt die
Quellspannung Uy stromtreibend (entgegengesetzt gerichtet zu ;) und die Quellspannung Uy,
stromhemmend (in gleicher Richtung wie I).

Flieit der Zweigstrom durch mehrere in Reihe geschaltete Widerstinde, dann ist deren Leitwert
zu ermitteln. Im Beispiel flieit der Zweigstrom I; durch die beiden Widerstinde Ry und R,; der
zugehdrige Zweigleitwert betragt G, = 1/(Ry + R»).

L =G - (Uy—Upgt Ug —Ugp)
Fiir die iibrigen k — 1 Zweigstrome werden auf die gleiche Weise die Gleichungen ermittelt.

5. Einsetzen der Gleichungen fiir die Zweigstrome in die Knotenpunktgleichungen und Ord-
nen des Gleichungssystems
Durch das Einsetzen der unter 4. entwickelten Gleichungen in die unter 3. aufgestellten
Knotenpunktgleichungen entsteht ein Gleichungssystem mit bekannten Leitwerten, gege-
benen Quellspannungen und unbekannten Spannungen Ujq

6. Losen des Gleichungssystems nach den unbekannten Spannungen Uiy und Berechnen der
gesuchten Zweigstréome 11, I, ... , I,
(Eliminationsverfahren, Cramersche Regel, Matrizenrechnung, Gaufischer Algorithmus im
Abschnitt 2.3.6.3)
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2.4 Elektrische Energie und elektrische Leistung

2.4.1 Energie und Leistung (Band 1, S.132-135)

W dw . .
P= o bzw. P= s potentielle Energie: W, =m-g-4h
n m- V2
Energiesatz: ZWV = konstant kinetische Energie: W, = 5
v=1
2.4.2 Energieumwandlungen (Band 1, S.135-138)
Elektrische Energie in Wirmeenergie
Wer =Wy U-T-t=c-m-AS
Energiedquivalente 1J=1Nm=1Ws=1kgm”s”
J=Nm=Ws cal kWh kpm eV
1J=1Nm=1Ws 1 0,2388 2,778 107 | 0,102 6,25 - 1018
1 cal 4,1868 1 1,163-107° | 0,4269 2,62 - 1019
1 kWh 3,6 - 10° 859,8 - 103 1 3,671-10° | 2,25-10%
1 kpm 9,80665 2,342 2,724 - 1076 1 6,12 - 1019
lev 1,602-10719 | 382.1020 | 444.1026 | 1,63-1020 1

2.4.3 Messung der elektrischen Energie und Leistung

Schalt -
symbol

(Band 1, S.138-142)

Wicklung
Kollektor

Dauermagnet

Magnet-Motorzéhler Leistungsmesser

Ankerumdrehungen Zeigerausschlag

c
QZE'U 1= Cstat - Pel

mit D* = Drehfederkonstante

C C
z=t-n=—".T1.t=-1.Q
¢ ¢

mit Drehzahl n
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Stromrichtige und spannungsrichtige Leistungsmessung

Imess

._® - .

Ra

Spannungsrichtige Messschaltung
mit zwei getrennten Instrumenten

e 1
R
Al

Spannungsrichtige Messschaltung

mit einem elektrodynamischen Messwerk

AU
—_—
)
S

Uness Ry C\D

Stromrichtige Messschaltung
mit zwei getrennten Instrumenten

AU

Umess

VaSu
A

Stromrichtige Messschaltung
mit einem elektrodynamischen Messwerk

Die in den Instrumenten auftretende Verlustleistung bestimmt die Messgenauigkeit:

spannungsrichtige stromrichtige
Messschaltung Messschaltung
U2
Leistung des Verbrauchers P=U-I= ? P=U-I=12.R
U2
. . AP=U- A= o— AP=AU-1=12-R,
Leistungsverlust im Spannungs- bzw. \
Strompfad U )
mit Al =—— m1tAU=I~RA
\
Messleistung Priess =P + AP Piness = P + AP
U2
Ry 2.
relativer Fehler a4 _Ry _ R AP _I-Ry Ry
P U? Ry P IR R
R
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2.4.4 Wirkungsgrad in Stromkreisen (Band I, S.142-145)

Wirkungsgrad des Grundstromkreises
mit Ersatzspannungsquelle

UQlO

Nutzleistung Py
Verlustleistung Py
zugefiihrte Gesamtleistung Pyeg

Wirkungsgrad des Grundstromkreises
mit Ersatzstromquelle

n:P_a: Pa :L n_i_ Pa 1
P P,+P 1+P1 Pp P+P R
a a
- 1 _- 1
1+& 1+Ra
R, R;
I 1
n
) s
8 ;
07 X /// g
0_6 \ /
0,5
0.
s \ I
0.3 // \<’< 9
0,2 T
/ —
0,1
0
0 1 2 3 A 5 6 7 8 Rq
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2.4.5 Anpassung (Band 1, S.145-148)
Wirkungsgrad-Maximum, Verbraucherleistung-Maximum

Leistungen im Grundstromkreis Leistungen im Grundstromkreis
mit Ersatzspannungsquelle mit Ersatzstromquelle

Erzeugerleistung: Leistung der Energiequelle
PE=Ug-1 Pp=14-U
innere Leistung: am Innenwiderstand umgesetzte Leistung
U2
P =1°-R, P =—
R.

i i i
i

dullere Leistung: am Auflenwiderstand umgesetzte Leistung (Verbraucherleistung, Klemmen-
leistung)

R.-R R.-R
Pasz'l—a2 pa:pl.l—a2
(R;+R,) (R;+R,)
mit der Kurzschlussleistung mit der Leerlaufleistung
Pr=I U Pi=I-U;
L
. . P, R; U A . .
mit P =P, =P ist = > mit —5%-=— (maximale Verbraucherleistung)
konst. R Pronst.
1+
R;
. o 1 I 1
Gleichzeitig ist U =1 und P
Io1+ e 1y 2a
R, /R; R,
u 1
Yy 0,9 \
L \ R o
1. na
e 108 —— 3}
Fa | 0,7 \ // Ui
[
konst 0.6 \ e
N7
XK
0,4
/1T
Wr—f K“\-.. L
ol [ MK
01 P. N i e —
B KonsT
0
0 1 2 3 & 5 6 7 8

( ——
Ri

Spannung, Strom und Leistung in Abhédngigkeit von den Widerstinden im Grundstromkreis
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3 Das elektromagnetische Feld

3.1 Der Begriff des Feldes (Band 1, S.150-153)

In jedem Punkt des Feldraums beschreibt eine vektorielle Feldgrofe und eine skalare Feld-
grofle den Raumzustand. Vektorfeld und Skalarfeld beschreiben also gemeinsam den Raum-
zustand. Das Feld ist mathematisch eine vektorielle und skalare Ortsfunktion. Ist der Raum-
zustand zeitlich verinderlich, ist die Funktion orts- und zeitabhingig.

1. elektrisches Stromungsfeld:

Vektoren

Skalare,
Integrale
Grofen

Ursache

E

elektrische Feldstirke
_du

E=C I szﬁ-di

Uq bzw. EMK E, U
Spannung der
Spannungsquelle,
elektrische Spannung

2. elektrostatisches Feld:

Vektoren

Skalare,
Integrale
GroBen

Wirkung

E
elektrische Feldstirke

—du

E=—
d/

I U=[E-dl

U

elektrische Spannung

3. magnetisches Feld:

Vektoren

Skalare,
Integrale
GroBen

Ursache

H
magnetische Feldstirke

magnetische Erregung

H=% I ®:fﬁ-d7

e,V
Durchflutung (MMK)
magnetische Spannung

| vl
I ]
< |7
i o

¥=Q=CU

®=Gp- O
<+“——>

©=Ry

© Springer Fachmedien Wiesbaden 2015
W. Weillgerber, Elektrotechnik fiir Ingenieure - Formelsammlung, DOI 10.1007/978-3-658-09090-6 3

Wirkung

S
Stromdichte

s:j—i ! 1=[S-dA

1
elektrischer Strom

Ursache

D
Verschiebungsfluss-
dichte

_av

D= I \P:jf)-dfx

¥Y=Q
Verschiebungsfluss

Ladung

Wirkung

B
magnetische Flussdichte
Induktion

p-d®

o I@:j]‘s-dfx

0]

magnetischer Fluss

Einheiten

[E]=V/m [S]=A/m’
[k]=m/(Q -mm?)

[p]:Q-mmz/m

[U]=V [1]=A
[G]=Q7'=5s
[R]=0Q

[E]=V/m [D]=As/m’

[e]=As/Vm

[U]=V  [¥]=[Q]=As
[C]=As/V=F

H]:A/m
[B]=Vs/m’=T

[u]zVS/Am

[0]=[V]=A [®]=Vs=Wb
[G,]=Vs/A=H
[R,]=A/Vs=H"
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Die Richtungslinien der vektoriellen Feldgrofen in einem Vektorfeld sind die Feldlinien. In
einem Quellenfeld (elektrostatisches Feld) beginnen sie in einer Quelle (positiv geladener
Korper) und enden in einer Senke (negativ geladener Korper). Befinden sich keine Quellen und
Senken im Feld (elektrisches Stromungsfeld und magnetisches Feld), dann sind die Feldlinien
in sich geschlossen.

Das zugehorige Skalarfeld wird durch Flichen veranschaulicht, den so genannten Aquipoten-
tialflichen (Fldchen gleichen Potentials) im elektrischen und magnetischen Feld. Die Feldli-
nien durchdringen die Aquipotentialflichen senkrecht: die Feldlinien und Feldvektoren sind in
Richtung des grofBten Potentialgefilles gerichtet. Der Zusammenhang zwischen den Feldlinien
und den Aquipotentialflichen lisst sich z. B. fiir das elektrostatische Feld durch die folgende
Gleichung mathematisch beschreiben:

E=- grad ¢
mit E: elektrische Feldstirke
und o: elektrisches Potential.

Obwohl die elektrischen und magnetischen Felder auch hier wie in anderer Literatur getrennt
dargestellt werden, bilden sie eine Einheit, weil sie liber den Durchflutungssatz und das Induk-
tionsgesetz miteinander verbunden sind. Die Maxwellschen Gleichungen stellen die elektro-
magnetischen Erscheinungen in Differentialform dar:

Durchflutungssatz  rot H= 6_It)+§
Induktionsgesetz rot E=— aa—}?

Der Satz von der Quellenfreiheit des magnetischen Flusses lautet in Differentialform
div B=0

und der Satz {iber den Zusammenhang zwischen der Verschiebungsflussdichte und der Raum-
ladung im elektrischen Feld, der Gaullsche Satz

din)=p

ist ebenso in Differentialform angegeben.

Zur Beschreibung der drei Felder und deren Zusammenhénge und zur Behandlung von grund-
legenden praktischen Beispielen eignet sich genauso die integrale Form obiger Gleichungen.
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3.2 Das elektrische Stromungsfeld

3.2.1 Wesen des elektrischen Stromungsfeldes (Band 1, S.154-156)

Die kollektive Bewegung von geladenen Teilchen bildet das elektrische Stromungsfeld. Es
kann also nur in elektrischen Leitern existieren — im Gegensatz zum elektrostatischen Feld, das
nur im Nichtleiter besteht.

Wird die Bewegung der Ladung durch eine Gleichspannung verursacht, dann entsteht ein
stationdres Stromungsfeld, das durch einen zeitlich konstanten Strom charakterisiert wird.

Beispiel:
Bereits im Kapitel 2 behandelte zeitlich konstante elektrische Stromungsfelder in linienhaften Leitern
der Gleichstromnetze.

3.2.2 Elektrischer Strom und elektrische Stromdichte (Band 1, S.156-159)

Elektrischer Fluss — elektrischer Strom [

Die in dem leitenden Medium sich bewegenden Ladungstrager — vorwiegend Elektronen —
bilden den elektrischen Fluss, genannt elektrischer Strom. Die Feldlinien sind die Stromungsli-
nien der beweglichen Ladungstriger. Die Gesamtheit der Feldlinien kennzeichnet also den
elektrischen Strom in einem Leiter. Nach der Richtungsdefinition des elektrischen Stroms
(positiver Strom entspricht der Bewegungsrichtung positiver Ladungen) haben die Feldlinien
die Richtung des grofiten Potentialgefélles. Die in Metallen sich bewegenden Elektronen wan-
dern also entgegen den gerichteten Feldlinien.

Elektrische Flussdichte — Stromdichte

homogene Stromungsfelder

S:i [=S-A-cosa=S-A
A
inhomogene Stromungsfelder
S Al dl

dm i Ja-fs s

und I:§§-d;s:0
A
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Fiir grundlegende Berechnungen ist es nicht notwendig, Strome durch Flachen zu berechnen,
die nicht gleich den Aquipotentialflichen sind. Werden Flichen gewihlt, die gleich den Aqui-
potentialflichen oder gleich Teilen vonaAquipotentialﬂéichen sind, dann ist der Neigungswin-
kel o zwischen den Vektoren S und dA gleich Null und das Skalarprodukt S-dA wird gleich
dem Produkt der Skalare S - dA mit cos o = 1.

Sind zusitzlich die Betrdge der Stromdichte konstant, dann kann S vor das Integralzeichen
gesetzt werden und die Flachenelemente dA konnen einfach aufsummiert werden. Sie sind
gleich der Gesamtflache A, durch die der Strom I flief3t.

Auf diese Weise lassen sich Stromdichteverteilungen einfacher inhomogener Stromungsfelder
errechnen.

Beispiel:
Stromungsfeld einer zylindersymmetrischen Anordnung der Hohe h

Die Stromdichteverteilung S = £ (r) soll ermittelt werden:

1=j§.dA:js.dA

A A

Fir das Fldchenintegral sollen die [ Leitermit g - 1
Agquipotentialflichen, die Zylinderman- U l / X
telflichen mit verdnderlichem Radius r = I 1

sind, beriicksichtigt werden. Das Ska-
larprodukt hinter dem Integralzeichen ist |

dann gleich dem Produkt der Skalare: 2 -
Auf einer Aquipotentialfliche haben die . - ' =
Stromdichtevektoren S gleiche Betrége, Aquipfoll_g?;(ieul-______,r—:‘ [

sind also unabhidngig vom Punkt der (Zylindermantel)

Aquipotentialfliche mit der Teilfliche - e -
dA. Deshalb kann S vor das Integralzei- Feldlinien — | ‘
chen gesetzt werden:

1=5-[dA |
A

Alle Flachenelemente dA aufsummiert,
ergibt die Zylindermantelflaiche A =2nrh. U

I=S-A=S-2-m-r-h,

woraus sich die Formel fiir die Stromdich-
te in Abhéngigkeit vom Radius r errechnen
lasst:

Aquipotential- _
fliache —
(Zylindermantel)

! l Feldlinien: —=
27wh r Feldstdrkelinien
Stromungslinien

S =

Die Stromdichte nimmt hyperbolisch mit
dem Radius ab.
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3.2.3 Elektrische Spannung und elektrische Feldstirke, elektrischer Widerstand
und spezifischer Widerstand (Band 1, S.160-165)

Elektrische Spannung

Up=01-¢

Elektrischer Widerstand und elektrischer Leitwert

U=R-1 bzw. 1= i'U=G'U
R
homogene Felder

R=p

oder G:i:K-
p-l

~| >

L
A «x-A

inhomogene Felder, ermittelt durch ,,Homogenitdt im Kleinen*

Beispiel:
Elektrischer Widerstand der zylindersymmetrischen Anordnung der Hohe h ohne Randstérungen
Der Widerstand R wird als Reihenschaltung von Widerstdnden der Zylinderschalen der Dicke dr
und der Fliche A von Zylinderménteln aufgefasst, wobei in den Zylinderschalen jeweils ein ho-
mogenes Feld angenommen werden kann:

dr dr

dR=p-—=p-
P A P 2rmh

b % dr a I
R=[dR = PSP gy =2L-1ni
A T

T T !

Elektrische Feldstdirke

homogene Felder inhomogene Felder
U 1 dU dI
E:—: —_— ~S E:—: —_— ~S
1 PTATP ar Paa?
E-=p-S oder S=L.B-x-E
p

Beispiel:
Elektrische Feldstirke einer stromdurchflossenen zylindersymmetrischen Anordnung der Hohe h

1
2nh

1 .
E=p-S= c— mit S=
r

- | —
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Elektrische Feldstirke und elektrische Spannung

Ulzzwl—mzszuzfﬁ-di und 9§1?:-d7:0
P 1 i

Bei praktischen Berechnungen wird grundsétzlich lings einer Feldlinie integriert, wo-
durch das Skalarprodukt gleich dem Produkt der Skalare ist.

Allgemeine Formel fiir den elektrischen Widerstand

——
esl]
o
=~

!

> —_—
vl
[oN

Beispiel:

Widerstand der zylindersymmetrischen Anordnung der Héhe h
Das Stromungsfeld ist inhomogen, deshalb ergibt sich der Widerstand aus

2 I,
U=jE-d7=jE-dr
1

5

Fiir die Ermittlung der Spannung U wird ldngs der radialen Feldlinie mit d/= dr integriert.

Die elektrische Feldstérke ist bereits berechnet

so dass sich fiir die Spannung durch Integration ergibt

yoplid_pl 1
2nhrr 2wh

1

Wird die Spannung durch den Strom geteilt, entsteht die Widerstandsformel
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3.3 Das elektrostatische Feld

3.3.1 Wesen des elektrostatischen Feldes (Band 1, S.167-169)

In der Umgebung geladener Korper sind Kréfte auf andere geladene Korper zu beobachten, die
dem elektrostatischen Feld zugeschrieben werden: gleichartige Ladungen sto3en sich ab, un-
gleichartige Ladungen ziehen sich an.

3.3.2 Verschiebungsfluss und Verschiebungsflussdichte (Band 1, S.170-174)

Verschiebungsfluss oder Erregungsfluss

Befindet sich in einem elektrostatischen Feld ein Leiter, dann werden die in ihm befindlichen
freien Elektronen aufgrund der Kréfte, die auf Ladungen wirken (Coulombsche Krifte), inner-
halb des Leiters verschoben: die Elektronen wandern an die Oberfliche des Leiters, die der
positiven Elektrode zugewandt ist; auf der anderen Seite des Leiters fehlen dann Elektronen.
Die Ladungen innerhalb des Leiters werden infolge der Ladungen des Zweicelektrodensystems
verschoben. Diesen Vorgang nennt man ,,Influenz* oder ,,elektrostatische Induktion®, in An-
lehnung an die Ladungsverschiebung infolge eines Magnetfeldes.

Um den Vorgang der Influenz zu veranschaulichen, werden Flusslinien oder Feldlinien &hnlich
wie die Stromungslinien im elektrischen Stromungsfeld eingefiihrt, die allerdings bei der posi-
tiven Ladung beginnen und bei der negativen Ladung enden. Im elektrischen Stromungsfeld
dagegen sind die Flusslinien oder Feldlinien in sich geschlossen.

Die Gesamtheit der Flusslinien des elektrostatischen Feldes charakterisieren den angenomme-
nen Fluss, den Verschiebungs- oder Erregungsfluss W. Der Verschiebungsfluss beginnt grund-
sitzlich in einer Quelle (positive Ladung) und endet in einer Senke (negative Ladung) und
kann nur so groB sein wie die Ladung, die den Fluss verursacht:

Y=Q
Verschiebungsflussdichte oder Erregungsflussdichte
homogene elektrostatische Felder

D:E:g WY=D-A-cosa=D-A
A A

inhomogene elektrostatische Felder

Do AY _d¥Y _dQ

AM—>0AA dA dA A

und T:fﬁd&:Q
A
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Fiir grundlegende Berechnungen ist es nicht notwendig, Verschiebungsfliisse durch Flachen zu
berechnen, die nicht gleich Aquipotentialﬂéichen sind. Werden Fliachen gewihlt, die gleich den
Aquipotentialflichen oder gleich Teilen von Aqu1p0tent1a1ﬂachen sind, dann ist der Nei-
gungswinkel o zwischen den Vektoren D und dA gleich Null und das Skalarprodukt D-dA
wird gleich dem Produkt der Skalare D - dA mit cos o = 1.

Sind zusétzlich die Betrdge der Verschiebungsflussdichte konstant, dann kann D vor das Integ-
ralzeichen gesetzt werden und die Fliachenelemente dA konnen einfach aufsummiert werden.
Sie sind gleich der Gesamtfldche A, durch die der Fluss ¥ hindurchtritt.

Auf diese Weise lassen sich Verschiebungsflussdichte-Verteilungen einfacher inhomogener
Felder errechnen.

Beispiel:
Elektrostatisches Feld einer Punktladung oder einer geladenen Kugel
Die Flussdichteverteilung D = f (r) soll ermittelt werden:

Ausgegangen wird vom Ansatz fiir den Fluss ¥ fiir inhomogene Felder, und zwar fiir die
Hillfliche A, denn die Kugeloberfliche mit der Punktladung im Zentrum umschliet die
Ladung Q:

W:§D~dA:Q Feld von
Punktladungen:

Die Kugeloberflidche A ist eine
Aquipotentialfliche, so dass
das Skalarprodukt hinter dem
Integralzeichen gleich dem

prod;kt d;r :i:ﬂei: 9o R 0gein: "A “'A
/ 'ib' Y

Auf der Aquipotentialfliche haben die Verschiebungsflussdichtevektoren D gleiche Betrige,
die also unabhingig vom Punkt der Aquipotentialfliche mit der Teilflache dA sind. Deshalb
kann D vor das Integralzeichen gesetzt werden:

V=D f dA=0Q
A
Alle Flichenelemente d A auf summiert, ergibt die Kugeloberfliche A =4 1 r%:
¥Y=D-A=D-4m’=Q,

woraus sich die Formel fiir die Verschiebungsflussdichte in Abhédngigkeit vom Radius r er-
rechnen ldsst:

Die Verschiebungsflussdichte nimmt quadratisch mit dem Radius ab.
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3.3.3 Elektrische Spannung und elektrische Feldstirke, Kapazitit und
Permittivitit (Dielektrizititskonstante) (Band 1, S.175-196)

Elektrische Spannung

Up=01-02

Kaparzitit eines Zweielektrodensystems

Y=C-U=Q
homogene Felder
c_& A
/
inhomogene Felder, ermittelt durch ,,Homogenitdt im Kleinen*

Beispiel:
Kapazitit der zylindersymmetrischen Anordnung der Hohe h ohne Randstérungen
(Zylinderkondensator, Kabel)
Der nichtleitende Raum zwischen den Metallelektroden wird in Zylinderschalen der Dicke dr zer-
legt, deren reziproke Kapazititen nach der Bemessungsgleichung fiir homogene Felder berechnet
und aufsummiert, d. h. integriert werden:

d(ij,i dr_1_dr
C) ¢ A ¢ 2rnh

l_Id(lj_ 1 Igzln(ra/ri) Cop. 27
Cc - C e2nh’ r €2nh ln(ra/ri)

i

Elektrische Feldstdirke

homogene Felder inhomogene Felder
g U_1¥_1Q 1, podU_1d¥_1dQ_1/
I €A A ¢ dl edA edA e
- ] = - -
E=-D  oder D=¢-E
€

Beispiel:
Elektrische Feldstirke in der Umgebung einer Punktladung oder einer geladenen Kugel

1 ¥ . g
E=-D= 5= Q 5 mit D= 5= Q
€ 4ner dner 4nr 4nr

2

Die elektrische Feldstdrke einer kugelsymmetrischen Anordnung nimmt genauso wie die Ver-
schiebungsflussdichte mit dem Quadrat des Radius ab.
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Das Coulombsche Gesetz beschreibt die Kréfte, die zwischen geladenen Koérpern wirken:

FogQ Qs Q- mit Fog U
r’ 20 r2

Beispiel:
Krifte zwischen zwei Punktladungen gleicher und ungleicher Polaritét

-

-F «0 +0y F - . ‘Q, ..
] _ 2+ P KQI Qz - Qi sz 5
T r 4 mgor
s F mit K=

*+ 04 -F-_?_E_.-Qz 4mneg

a7

Die Feldtheorie nach Faraday erklért die Kriafte zwischen zwei Ladungen nicht als Fernwir-
kung, sondern als Wechselwirkung zwischen der einen Ladung und dem Raumzustand, der
durch die andere Ladung verursacht wird oder umgekehrt.

F=E ‘Q, =K er'2Q2 T, ergibt E= K& T,

Die Richtung der Feldstirke wird in Richtung der Kraft positiv definiert, die auf eine positive
Ladung wirkt:
F
Q

Die Richtung der Krifte und die Richtung der elektrischen Feldstérken in jedem Raumpunkt
stimmt mit der Richtung der Feldlinien {iberein.

E=

Permittivitdt und Dielektrizitditskonstante

12 As und 41:80—1109AS

=€, g g= 8,8542 - 10~
Vm 9 Vm

mit g Dielektrizititskonstante des Vakuums oder Influenzkonstante

g, ist eine Verhiltniszahl mit [e;] = 1; g dagegen ist dimensionsbehaftet

Beispiele fiir relative Dielektrizititskonstanten g,:

Aceton 21,5 Hartgummi 2,5..5 Polystyrol (PS) 2,5
Acrylglas 3 Kabelpapier in Ol 43 Polyvinylchlorid (PVC) 3 ..4
Bariumtitanat 1 000 ... 2 000 Luft 1,0006 Porzellan 5..6,5
Glas 5..12 Papier, trocken 2 Schellack 3.4
Glimmer 5..8 Polyithylen (PE) 2,3 Transformatorendl 2,3

Hartpapier 4.7 Polypropylen (PP) 2,3 reinstes Wasser 80,8
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Zusammenschalten von Kapazitdten

Um vorgegebene Kapazititswerte mittels standardisierter Bauelemente — ausgefiihrt in Wi-
ckelkondensatoren, Scheibenkondensatoren, Elektrolytkondensatoren u. a. — verwirklichen zu
konnen, sind Parallelschaltungen, Reihenschaltungen oder gemischte Kondensatorschaltungen
notwendig.

Parallelschaltung von Kondensatoren:

Bei der Parallelschaltung von n Kondensatoren liegen alle Kondensatoren an der gleichen
Spannung U. Die Gesamtladung, die in den parallel geschalteten Kondensatoren gespeichert
ist, ist gleich der Summe der Einzelladungen:

Q=Q+Q+Q3+..TQy= Y. Q

i=1

Il

Die Gesamtkapazitit C von n parallelgeschalteten Kondensatoren ist gleich der Summe der
Einzelkapazititen

n
C=C+C+C3+..+Cy= Y G

i=1

AuBerdem verhalten sich bei Parallelschaltung von Kondensatoren die Ladungen wie die zuge-
horigen Kapazititen:

Q _G Qi _Ci
Q ¢ Q; €
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Reihenschaltung von Kondensatoren:

Werden n Kondensatoren in Reihe geschaltet, dann ist der Verschiebungsfluss ¥ = Q aller
Kondensatoren gleich, wie durch den Vorgang der Influenz (elektrischer Leiter innerhalb des
elektrostatischen Feldes) erklart werden kann:

Q=Q=Q=Q=...=0,=Q
Die Gesamtspannung teilt sich in die Teilspannungen an den Kondensatoren auf:

n
U =U1+U2+U3+U4+...+Un: ZUI
i=1

+Q -0 +«Q@ -0 +0Q|-0 +0 )1-Q _ +Q -0
||[1 ||[2 H[3 e, e ||c
—— —— - —— —_—

Uy Uy Us Un

Der reziproke Wert der Gesamtkapazitit der in Reihe geschalteten Kondensatoren ist gleich
der Summe der Kehrwerte der Einzelkapazitéten:

1 1 1 1 1 LI
—t—t—t— . A—= ) —
C G G G G TG

1
C

Die Spannungen verhalten sich bei Reihenschaltung von Kondensatoren reziprok zu den zuge-
horigen Kapazitéten:

U_© Ui i
U G U;
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Elektrische Feldstirke, elektrisches Potential und elektrische Spannung

Die elektrische Spannung ist ein MaB3 fiir die Arbeit bzw. Energie, die fiir das Verschieben
einer Ladung im elektrostatischen Feld aufgebracht oder gewonnen wird.

2
Uu:&ﬁ:jﬁdi und $E-dl =0
Q 1 !

Bei praktischen Berechnungen ist es nicht sinnvoll, das Wegintegral mit einem be-
liebigen Integrationsweg / zu 16sen:

die Energiec W1y bzw. die elektrische Spannung Uj, ldsst sich am einfachsten
ermitteln, wenn der Verschiebungsweg / bzw. Integrationsweg / nur lings einer
Feldlinie und quer zu den Feldlinien gewéhlt wird.

Denn nur die Energieanteile dW bzw. Spannungsanteile dU léngs einer Feldlinie
verdndern die Gesamtenergie W1, bzw. die Gesamtspannung Uj,, die Anteile quer
zu den Feldlinien sind Null.

Beispiele:
Léchenladung Linienladung Punktladung
Plattenkondensator Zylinderkondensator Kugelkondensator
n n
Upp =E-Ips Uy, = [E-dr Uy, = [E-dr
b q
mit E:& mit E= Q 1 mit E= Q
€A 2neh r 4 ner?
Q-4 Q 1
Up = A U12:2 hln_ U12=(P1—<Pz=7Q L
€ ne n 4nely
© B B Q 1
=|E-df =—— -
? '1[ 4ne r

Uberlagerung von elektrischen Potentialen

Wirken mehrere Ladungen auf einen Raumpunkt, dann iiberlagern sich die einzelnen elektri-
schen Potentiale zu einem Gesamtpotential nach dem Uberlagerungsprinzip:

n
¢ = Z 0 Beispiel: Potentialfeld zweier Punktladungen
i=1

(,,I(Qlﬂzj

4nelnp n
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Allgemeine Formel fiir die Kapazitit

Beispiele:

Kapazitit der zylindersymmetrischen Anordnung der Hohe h ohne Randstérungen

2
fE.dT
i:ﬁ:Ulz_l
cC v Q 9?13.(1}1
A

Fiir die Ermittlung der Spannung U, wird ldngs einer radialen Feldlinie integriert, wodurch sich

mitry =rund r, =1, ergibt:

27nh

Up=Up-Uy
. __Q lna—R
27'580h R
- R
up =——2 2Ry
27'[8011 R
Up=Upp+Uf,
U12— lna_R
ngph R

e—
In (r,/1;)
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3.3.4 Verschiebestrom — Strom im Kondensator (Band 1, S.197-200)
Konvektionsstrom

In den Zuleitungen zum Kondensator flieBt ein zeitlich verdnderlicher Strom in Form von
bewegten Ladungen:
izﬂzuc dC duC+CduC
dt du. dt dt

Ist die Kapazitit C unabhéngig von der anliegenden Spannung uc, dann ist

duc
dt

. 1. .
i=C und uc = c J‘I -dt+U, mit Uy Anfangsspannung
0

Die Kondensatorspannung wird in Zadhlrichtung des Stroms i positiv gezéhlt.

Verschiebestrom

Das magnetische Feld wird im Kondensator so ausgebildet, als wére der Stromfluss durch den
nichtleitenden Kondensator nicht unterbrochen. Der zeitlichen Anderung der Ladung dg/dt
entspricht die Anderung des Verschiebungsflusses d'¥/dt innerhalb des Nichtleiters des Kon-
densators:

= dv
dt
Strom durch den Kondensator > i R
—{
Der Ladestrom in den Zuleitungen wird durch t=0 ™ =

den Verschiebestrom im Nichtleiter des Konden- Ug l()
sators fortgesetzt gedacht: L. I’u‘c
HRJ r] Rj C l

. dy dq .
I=—=—mit =
dt dt V=i
Aufladen eines Kondensators
Strom- und Spannungsverlauf beim Aufladen Ui 1 Ug
eines Kondensators U /U”—
! 4
U :Uq,(l_e—t/r) R+R; .
b
~ 4 .
U i
s q —t/t . _ i
i= ‘e mitt=(R+R;)C
R +R; R+Ri) 0 N t —e
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3.3.5 Energie und Krifte des elektrostatischen Feldes (Band 1, S.201-205)

Gespeicherte Energie eines Kondensators

C'u02 d-uc_ ¢ :
= = = mitg=C -u
D 2 2.C q ¢

Energiedichte

w

In Feldgrofen ausgedriickt ist die Energie eines homogenen Feldes bezogen auf das Feldvolu-
men die so genannte Energiedichte des elektrostatischen Feldes:

W, &E* D-E D?
W, = = = e—_—=

TV 2 2 2%

Die Feldenergie ist im homogenen Feld gleichmiBig verteilt.

In inhomogenen Feldern ist der Energieanteil dW, im Volumenelement dV unterschiedlich,
d. h. die Energiedichte ist gleich dem Diffentialquotienten
o dW,
W, =
dv

Die Energie ldsst sich durch Integrieren der Energiedichte liber das Volumen ermitteln:

W, = [w,-dv
\%

Im inhomogenen Feld konzentriert sich die Energie in den Feldbereichen mit hoher elektri-
scher Feldstarke.

Kraft auf die Elektroden eines Kondensators
dw, _ dw, dC_ U/ dC Lo AW Q7

F=— e _ il e _

mi =—
dl dc d/ 2 dl dc 2C?

Die Kraft ist so gerichtet, dass bei der dadurch veranlassten Bewegung der Elektrode die Ener-
gie verkleinert wird und dass die Kapazitét bei der Bewegung der Elektrode in Richtung der
wirkenden Kraft wéchst.

Beispiel:
Kraft auf die Platten eines geladenen Plattenkondensators
U dC__eA o
2 dl 2.2 €
A dc A
. nd —=-¢-—
d/ 2

Fiir sinusférmige Wechselfelder geht in die Gleichung fiir die Kraft F der Effektivwert U der
sinusférmigen Spannung ein.
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3.3.6 Das Verhalten des elektrostatischen Feldes an der Grenze zwischen Stoffen
verschiedener Dielektrizititskonstanten (Band 1, S.206-210)

Querschichtung

E € €
D1=D2 _1:_2:L2 +0 -0
E, & &g

0 .
Beispiel: — £2 I +_l ]_| I_i
Feldstirken bei Querschichtung 0 G5
eines Plattenkondensators

Ug Uz

Léingsschichtung

_ D, _& _ gy
Ei=E; D————— + QA €4 - Q4

2 & &y 4

Beispiel:
Kapazitit eines ldngsgeschichteten +Qa|Ay -Q9 G
Plattenkondensators

_&ah N & A, C :J B

/ /

C

Ungleichartig zusammengesetzte Isolierstoffe

/ e

.
Brechnungsgesetz fiir schraggeschichtetes Dielektrikum
Dy, =Dy, E; =Ey tano, g
En _& Dy, _& tan o, _g

E,, g Dy &
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3.4 Das magnetische Feld

3.4.1 Wesen des magnetischen Feldes (Band 1, S.214-215)

In der Umgebung bewegter elektrischer Ladungen sind Kraftwirkungen zu beobachten, die
einem magnetischen Raumzustand — dem magnetischen Feld— zugeschrieben werden. Die
Ausbildung des magnetischen Feldes ist also eine Erscheinung, die die Bewegung elektrischer
Ladungen immer begleitet.

Bei Dauermagneten sind Molekular- und Elektronenstrome Verursacher der magnetischen
Erscheinungen.

Ursache des magnetischen Feldes ist der Konvektionsstrom.

Beim Aufladen und Entladen eines Kondensators ist ebenso ein magnetischer Raumzustand im
Nichtleiter zu beobachten, obwohl keine Ladungen innerhalb des Nichtleiters bewegt werden.

Ursache des magnetischen Feldes ist also ebenso der angenommene Verschiebestrom.

3.4.2 Magnetischer Fluss und magnetische Flussdichte (Band 1, S.216-221)

Magnetischer Fluss

Das mit dem Konvektions- und Verschiebestrom verbundene magnetische Feld wird durch
Feldlinien veranschaulicht, mit deren Hilfe die Stirke und die Richtung von zu erwartenden
Kréften beschrieben werden kénnen. Die Gesamtheit der Feldlinien wird analog zum Strom-
fluss im elektrischen Stromungsfeld magnetischer Fluss @ genannt. Den Raum, der von diesem
Fluss erfiillt wird, nennt man in Analogie zum elektrischen Stromkreis magnetischer Kreis.

Magnetische Flussdichte — magnetische Induktion

homogene magnetische Felder

B:% ®=B-A-cosa=B-A
inhomogene magnetische Felder

AD  dO

B= lim —=—
AA—0 AA  dA

cb:jdqnzj}é-dfx
A

und @:SEE.dA':o
A
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Fiir grundlegende Berechnungen ist es nicht notwendig, magnetische Fliisse durch Flachen zu
berechnen, die die Fliche nicht senkrecht durchstromen. Werden die Flichen senkrecht durch-
stromt, dann ist der Neigungswinkel o zwischen den Vektoren B und dA gleich Null und das
Skalarprodukt B-dA wird gleich dem Produkt der Skalare B - d A mit cos o = 1.

Beispiel:
Berechnung des magnetischen Flusses in der Umgebung eines langen stromdurchflossenen Lei-
ters in einem kreisformigen Kupferring mit rechteckigem Querschnitt

Das magnetische Feld ist inhomogen, der

magnetische Fluss wird aus % 1 T dAA@ Ib
N

= j B-dA r_udr
A
berechnet. Da die Vektoren B und dA

kollinear sind, geht das Skalarprodukt in
das Produkt der Skalare iiber:

cD:jB-dA
A

Die Induktion B nimmt mit wachsendem Radius r ab und ist lings des Leiters, also im gleichen
Abstand vom Leiter konstant:

1
T

Lo ist die Permeabilitét des Vakuums, also eine Materialgrof3e:

6Vs:

6 Vs
=1,256- 10" 00—
Ho A

0,4-1-1

Bei praktischen Berechnungen verhilt sich Kupfer magnetisch wie Vakuum.

In das Integral eingesetzt ergibt sich

Mo -1

I

~l~dA mitdA=b-dr
r

T
lIllrl If-l

T T i

o p0~I-b.i‘fdr TR
2 2
5
USRS Y

2n L

O]
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Einheit des magnetischen Flusses und der magnetischen Flussdichte
[@]=1Vs=1Wb 1 Weber
nicht mehr gebriuchlich: 1Maxwell 1M = 10-3Wb

B]= VP _IVS i1 Tesia

m?2 m?2

nicht mehr gebriuchlich: 1 GauB 1G=10"4 Vs _ 10-8 Vs
m?2 cm?
Kontinuitdtsgleichung des magnetischen Flusses

Die Summe der Teilfliisse, die eine Hiillfliche von auBlen durchsetzen, ist gleich der Sum-
me der Teilfliisse, die durch diese Hiillfliche nach auflen gerichtet sind:

Z‘Dzui =

i=1 % i

'

Il
—

q.)abi
{

Krafifeld — magnetische Induktion
Die magnetische Kraft F ist der magnetischen Induktion B direkt proportional:
F=Q (vxB) B

mit F=Q-v-B- sin/(¥,B)

<1

bewegte Ladung des positiv definierten Stroms

Q
v: Geschwindigkeit der bewegten positiven Ladung
B

i

magnetische Flussdichte, magnetische Induktion

Die Richtung der Kraft ergibt sich durch folgende Regel:

Der erste Faktor des Vektorprodukts v wird auf dem kiirzesten Weg in den zweiten Faktor B
gedreht. Die Drehrichtung zeigt in die Richtung der gekriimmten Finger der rechten Hand, und
der Daumen zeigt dann in die Richtung des Vektorprodukts, also in Richtung der Kraft F.
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3.4.3 Durchflutung, magnetische Spannung und magnetische Feldstirke
(magnetische Erregung), magnetischer Widerstand und Permeabilitit
(Band 1, S.222-242)

Durchflutung

Der Konvektionsstrom und der Verschiebestrom sind vom magnetischen Fluss umwirbelt und
konnen deshalb als Ursache des Magnetfeldes gedeutet werden. Der magnetische Raumzustand
wird verstérkt, wenn mehrere Strome oder der gleiche Strom mehrfach — wie bei einer Spule —
die Umgebung beeinflussen. Die ein magnetisches Feld verursachenden Strome, also die
Stromsumme, wird Durchflutung (nicht mehr gebrauchlich: magnetische Urspannung, Magne-
tomotorische Kraft MMK) genannt:

Die Durchflutung ist gleich der Summe der Strome, die die Flache durchfluten, die von den
geschlossenen Feldlinien gebildet werden.

Fiir die Bestimmung der Durchflutung wird eine geschlossene Feldlinie ausgewihlt, die als
Umrandung einer Flidche angesehen wird. Sdmtliche Strome, die durch diese Flidche hin-
durchtreten, bilden vorzeichenbehaftet die Durchflutung.

Die Durchflutung wird deshalb auch ,,die mit dem Magnetfeld verkettete Stromsumme* ge-
nannt.

Einheit der Durchflutung
[B]=1A

Beispiele:

Feld eines langen stromdurchflossenen Stromfadens: I=1A

O=-1-1A @
Feld mehrerer Stromfaden verschiedener Stromrichtungen: L=l

3
0= L=l+L+ @
i=1

O=-1A+1A+1A=1A

Feld einer Spule im Eisenkreis: T

r | VT TTE
1 Ll e e e e
0=1-w e a
. . Y %%
mit w Windungszahl 114 g jE
|| P A
L
-[ v 4
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Magnetischer Widerstand und magnetischer Leitwert
,»Ohmsches Gesetz des magnetischen Kreises* oder Hopkinsonsches Gesetz:
O=Ry P

Gestalt des magnetischen Kreises und die magnetischen Eigenschaften der Stoffe, in denen das
Feld existiert, werden durch den magnetischen Widerstand R, oder magnetischen Leitwert Gy,
erfasst.

homogene Felder

Rm: ! oder Gm: ! :“A
u-A R, /
A Vs
Ry,]=1— G ]=1— =1H (Hen
[Rpn] Vs [Gml A (Henry)

Bei praktischen Berechnungen ist es nur in Ausnahmeféllen moglich, mit magnetischen Wider-
stinden zu rechnen, weil nur wenige Felder homogen oder symmetrisch sind. Die in Ferro-
magnetika (Eisen, Nickel, Kobalt) vorkommenden Felder sind wohl homogen oder annéhernd
homogen, aber dic Materialgrof3e — absolute bzw. relative Permeabilitdt — ist nicht konstant.
Der wirksame magnetische Widerstand in Eisenkreisen ist also je nach Grofle der Durchflutung
von der variablen Permeabilitit u abhédngig.

In Reihe und parallel geschaltete magnetische Widerstinde werden wie elektrische Widerstén-
de zusammengefasst:

Permeabilitdt

Die absolute Permeabilitdt p ist eine MaterialgroBe, die die magnetische ,,Durchléssigkeit*
eines Stoffes charakterisiert, in dem das magnetische Feld ausgebildet ist.

Sie wird als p-faches der Permeabilitét iy des Vakuums aufgefasst:

6&:0’4.7.5.10—6&

BLo=LU Mo mit Ho= 1,256 - 10"
m Am

Bei praktischen Berechnungen wird bei allen nichtferromagnetischen Stoffen mit p, = 1 ge-
rechnet.

Bei ferromagnetischen Stoffen ist p, variabel; nur bei grober Néherung kann mit einer konstan-
ten relativen Permeabilitdt, also mit dem magnetischen Widerstand, gerechnet werden.
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Magnetische Spannungen

Im magnetischen Feld muss unterschieden werden in die Verursacher-Spannung ®, die Durch-
flutung, und in die magnetischen Spannungen V; in magnetischen Widerstinden infolge des
magnetischen Flusses ®.

In homogenen Feldern ist die Durchflutung ® gleich der magnetischen Spannung V und in
homogenen Teilfeldern ist die Durchflutung ® gleich der Summe der magnetischen Spannun-
gen Vi:

®@=V=R, @ ©0=YV,=0-3 Ry,

Durch die Durchflutung werden siamtliche Strome vorzeichenbehaftet erfasst, z. B. auch von
mehreren Spulen in einem Eisenkreis. Deshalb darf auf der linken Seite der Gleichung nur ®
und nicht ¥ ©; geschrieben werden.

Beispiele:
Magnetisches Feld der Toroidspule Magnetfeld eines Eisenkreises
mit konstanter Permeabilitét mit konstanter Permeabilitdt und zwei Luft-
spalten
. AT I I
&= Lw_pAlw b= w _ w
Rm / RmFe + RmL 11376 + L
Mol Ape  HoAL
Magnetische Feldstirke — magnetische Erregung
homogene Felder inhomogene Felder
® 1 & 1 dv. 1 do 1
H=—=—-—=—-B H=—=——=—-B
I p A pu d p dA p
- B . N
H=— oder B=p-H
n

Bei nichtferromagnetischen Stoffen ist die Permeabilitit p praktisch gleich der Induktionskon-
stanten Ly mit p, = 1, so dass sich durch die direkte Proportionalitédt die magnetische Induktion
B aus der magnetischen Feldstdrke H errechnen ldsst.

Da bei ferromagnetischen Stoffen die Permeabilitdt u von der magnetischen Feldstirke H ab-
héngig ist und dieser nichtlineare Zusammenhang nicht analytisch fassbar ist, muss zunichst
das magnetische Feld durch die materialunabhidngige magnetische Feldstirke H berechnet
werden und anschlieend die materialabhéngige magnetische Induktion B aus der nichtlinearen
Kurve, der Magnetisierungskurve,

B =f(H)

abgelesen werden.
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Durchflutungssatz fiir homogene Felder:
®=V=H"-/

Beispiel:
Magnetfeld einer stromdurchflossenen Spule

Die magnetische Feldstarke auBerhalb der Spule H, ist vernachldssigbar klein.

G):Vi
e IE
I'W:Hi‘l Hl:_lw Bizp'O'Tw

Durchflutungssatz fiir magnetische Kreise mit m homogenen Teilfeldern:

Beispiel:
Magnetfeld eines Eisenkreises mit zwei Luftspalten

®=HFC'IF6+HL'IL

allgemeiner Durchflutungssatz fiir magnetische Felder
©= ¢dv=§H-d = fH-d
! ! 1

Bei praktischen Berechnungen wird grundsétzlich léngs einer Feldlinie integriert, wodurch das
Skalarprodukt gleich dem Produkt der Skalare ist.

Beispiele:

Magnetfeld auBlerhalb eines langen stromdurchflossenen Leiters:

O=¢H, a %
1
Integrations- i
1=H, fd=H, 2rr Wl
1
I
H, =
T 2mer
1
Ba:& |
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Magnetfeld innerhalb eines langen stromdurchflossenen Leiters:

O=fH;-d
!

I,»:Hi-fﬁdl:Hi~2nr
1

1. 1 e
mit S= ——=— H;
r'-n R°m 3 L
I
i=— r’n=H; 2nr :
R%-n R '
1 1 faise
H, = Sor B = Ho — ’ ln!e\grenghons
2n-R 2m R
Verlauf von B = f (r) eines langen stromdurchflossenen Leiters:
T Bmax T TB
0
B =577 L %
|
“R 0 R —r——-
T Bmax
Magnetfeld eines langen, stromdurchflossenen Rohres: l I
L~ // s /]
innerhalb des Rohres & | VA
L]
H, =0 I
1 % : %
im Rohr 7/ l /
| I 2 / | ]
=5 = N / Hy | Ha1M3
L =5 2nr 27'C(I'a _rl) r / | ///
Niherung: é : /f
I | b
s ) Zaz
m
. L +r i1l & % 1 "a %
mit 1, = mittlerer Radius 7 P

auflerhalb des Rohres

_

®
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Permeabilitdt und Hysteresekurve

Die Permeabilitdt p, ist bei ferromagneti- TB
schen Stoffen von der magnetischen Feld- By e
stirke abhéngig:

Ur = f(H)a

Neukurve
der Zusammenhang zwischen der magneti- N
schen Induktion B und der magnetischen
Feldstirke H ist nichtlinear und nicht

eindeutig.
Dabei bedeuten
Hy Koerzitivfeldstirke

H —

-Brpartielle
Hysteresekurve

- -BS

B; Restinduktion, Remanenz

By Séttigungsinduktion

Fiir geschlossene magnetische Kreise mit weichmagnetischen Werkstoffen wird die messtech-
nisch ermittelte Magnetisierungskurve (vom Hersteller geliefert) durch eine nichtlineare ein-
deutige Kurve angenéhert. Die B- und H-Werte werden dann aus der Kurve entnommen.

In Ausnahmefillen kann die BH-Kurve durch eine Gerade angendhert werden, d. h. es wird
eine konstante Permeabilitdt angenommen. Nur dann kann mit magnetischen Widerstdnden
gerechnet werden.

Beispiel fiir die Berechnung mit der BH-Kurve:

Eine Toroid- oder Kreisringspule mit einer Windungszahl w = 60 und einem mittleren Durchmes-
ser D = 80mm enthélt einen Eisenkern aus Stahlguss, dessen mittlere Magnetisierungskurve fiir
die einseitige Magnetisierung gegeben ist. Sie wird einmal von einem Strom I; = 0,6A und zum
anderen von dem dreifachen Strom I, = 1,8A durchflossen.

1,6
I 1
®=V=H-I/ H DW PrIBIJ&_ B=f(H)
- T %
3000 1,2 +- =
I
A |
H = 1432 Hy= 4302 e '
2000 0.8 4 I
0,6 {- :
Toroidspule ohne Eisenkern: 1000 044 j ; -
Y=
By =po-H; =0,18mT  Bgy=0,54 mT oz{f! 1
| 1
0 0 T T T :
Toroidspule aus Stahlguss: 0 200 400 600 800-%-?

B;=0,6T und B,=1.2T
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3.4.4 Das Verhalten des magnetischen Feldes an der Grenze zwischen Stoffen

verschiedener Permeabilititen (Band 1, S.242-245)

Querschichtung
B; =B, Hi , Ho
* —t 1
H o _po ® R Rp
Hy w py
Liingsschichtung
== v
Hy $ i
Hl = HZ ! m
R
B _ W _Ha L v ]
By, up By
R —_—
e | — ' v

Ungleichartig zusammengesetzte Magnetmaterialien

H2
Brechungsgesetz fiir schriag geschichtete Magnetmaterialien
Bin=Bon Hj¢=Hy
tan o M
tano, 4,
Hy 1o By _ 1

Hy,, By M2
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3.4.5 Berechnung magnetischer Kreise

3.4.5.1 Berechnung geschlossener magnetischer Kreise (Band 1, S.246-275)

Streufluss, Nutzfluss und Streufaktor

D =Dy + Dy
) )

o= Ps __ Ps
O Dy +Dg

(DN:CDL:(lfG)'(D

Bei praktischen Berechnungen wird eine
Streuung von 5 % bis 20 % je nach Anord-
nung und Luftspaltlinge angenommen.

Ausweitung der Feldlinien am Luftspalt

A—L=1,03 110

Ak

mit
Luftspaltfliche Ay,
Kernfliche Ag

Eisenfiillfaktor
fpe= —= z.B. fg.=0,85
mit

Eisenflache Ag,
Kernfldche Ag

P RIS
R

SRR
SOetetereteses:

beweglic her Kern

Ag

Eisen

Isolation

ALY

Fii

AL

e

ra

" i

Eisenfiillfaktor
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Aufgabenstellung 1:

Gegeben: magnetische Induktion B oder der magnetische Fluss ® an einer Stelle des
Magnetkreises, insbesondere die Luftspaltinduktion By,
Magnetisierungskurven B = f(H) der Magnetmaterialien des magnetischen
Kreises
Gestalt und Abmessungen des magnetischen Kreises

Gesucht: erforderliche Durchflutung ®

1. Ansatz fiir die Durchflutung nach dem Durchflutungssatz fiir homogene Teilfelder:

m m

@ = ZVI = ZHI 'li

i=1 i=1

2. Berechnung der magnetischen Feldstirke (magnetische Erregung) im Luftspalt Hy aus der
gegebenen Luftspaltinduktion By :

BL
Ho

3. Ermittlung der magnetischen Feldstiarken (magnetische Erregung) in den homogenen Teil-
feldern aus Eisen mit

HL=

A AL
A A
B=By - Ay 1 :BL~AK~ ! und By=B; - —= =B -—K
Ap, 1-0 Ag. 1-o Fe Afe
Ag Ag
und mit Hilfe der Magnetisierungskurven 5 r
B =f(H). - B=f(H)

Ablesen der magnetischen Feldstidrken H aus
den magnetischen Induktionen B

4. Berechnung der mittleren Feldlinienldngen im Eisen des magnetischen Kreises.

5. Berechnung der magnetischen Spannungen V; in den Eisenabschnitten und im Luftspalt
und Berechnung der Durchflutung ©.

Ist die magnetische Induktion in einem Eisenabschnitt oder der magnetische Fluss gegeben,
dann muss der Losungsweg entsprechend gedndert werden, wobei die Gleichungen unter 3.
umgestellt werden.
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Ergdnzungen zu der Aufgabenstellung 1:
Zu 1. Ansatz fiir die Durchflutung

Zu 4. Berechnung der mittleren Feldlinienldngen im Eisen

Beispiel 1:

Wegen der Streuung ist der magnetische Fluss im

Eisenabschnitt 2 kleiner als im Eisenabschnitt 1:
[
©=Hg ’2'7L+HFel “lpe1 +Hpeo lpe 2

Die mittleren Feldldngen sind gegeben:

lre1=60cm und /lge, =150 cm

Beispiel 2: M65-Stahlgussblech

Die Ermittlung der Durchflutung ist genau genug,
wenn angenommen wird, dass im Eisen der mag-
netische Gesamtfluss bis an den Luftspalt heran
auftritt, und im Luftspalt der um den Streufluss
verminderte Gesamtfluss vorhanden ist.

©=Hp - I + Hpe " Ire

lge=2a-2c+b-c— g — [ =154 mm

Beispiel 3: EI-84-Blech

Die magnetischen Feldstarken (magnetische Erre-
gung) im E-Kern und I-Kern sind unterschiedlich,
weil der magnetische Fluss im [-Kern wegen der
Streuung kleiner ist als im E-Kern.

®:HL'1L+HE'1E+HI'II
=g+2c=42mm

l[g=2e+g+2c=126 mm

a=65mm

S56mm — o

f.—— b

Je——— b=65mm — =
O c=10mm ‘ O

[L:1mm‘

45mm

f=20mm [g=125/mm

SS——-]

| _c=14mm

2mm

f=28mm = C
1hmm

L2mm —=
~

[

———a=8mm — o



3.4 Das magnetische Feld 57

Aufgabenstellung 2:

Gegeben: Durchflutung ®
Magnetisierungskurven B = f(H) der Magnetmaterialien des magnetischen
Kreises

Gestalt und Abmessungen des magnetischen Kreises
Gesucht: magnetische Induktion B oder der magnetische Fluss @

Sind im magnetischen Kreis zwei Voraussetzungen erfiillt, dann ist die Berechnung des mag-
netischen Flusses oder der magnetischen Induktionen bei gegebener Durchflutung einfach
moglich:

1. Der magnetische Kreis besteht aus einem homogenen Magnetmaterial mit konstantem
Querschnitt, so dass der Durchflutungssatz

®=H-/ oder H= %
nur die magnetische Feldstirke (magnetische Erregung) H als unbekannte Grofle enthélt,
die iiber die Magnetisierungskennlinie zur magnetischen Induktion B und iiber die Flache
zum magnetischen Fluss @ fiihrt.

2. Der magnetische Kreis besteht nur aus zwei Abschnitten oder lésst sich in zwei Abschnitte
zusammenfassen, in denen jeweils ein homogener Feldverlauf angenommen werden kann.
In den meisten Anwendungsféllen handelt es sich dann um einen Eisenkreis mit Luftspalt,
fiir den der Durchflutungssatz fiir homogene Teilfelder

B
Ho

© =Hpe - Ige + Hy - I = Hpe * Ipe + I

zwei Unbekannte enthélt, so dass die Gleichung analytisch nicht l6sbar ist; die Permeabili-
tét des Eisens ist nicht konstant.

Losung:
Uberlagerung der Kennlinien
des aktiven Zweipols

Ve @

—
Vo @

und des passiven Zweipols

1

O =

R : VFe

(umgerechnete Magnetisierungskurve,
indem im Schnittpunkt die GroBen

@ und Vg, abgelesen werden)

mFe
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Rechenverfahren:

Zunichst werden die Koordinaten der gegebenen Magnetisierungskurve By, = f(Hg,) bei Be-
riicksichtigung der Eisenfldche Ap, und der mittleren Feldlinienldnge /g, im Eisen in den Ordi-
natenwert ® = Bg, + Age und Abszissenwert Vg, = Hg, * g umgerechnet, so dass diec Magneti-
sierungskurve in die Funktion @ = f(Vg,) libergeht.

Dann wird der Achsenabschnitt @5 = ®/R,; errechnet und an der Ordinate eingetragen.

Mit dem Abszissenabschnitt ® bildet er die Gerade, die den Schnittpunkt mit der Funktion ®
= f(Vge) ergibt.

Nun kann der magnetische Fluss @ abgelesen werden und mit den Flachen die magnetischen
Induktionen im Eisen und im Luftspalt errechnet werden. Auflerdem kann die magnetische
Spannung V. im Schnittpunkt abgelesen werden, wodurch sich mit der Eisenwegldnge /g, die

magnetische Feldstarke H, ergibt. Die Feldstirke im Luftspalt Hy wird aus By oder aus dem
ablesbaren Vi, errechnet.

Beispiel:
Fiir einen UI-Kern 30 aus Dynamoblech III mit einem Gesamtluftspalt /; = 0,3 mm soll die Kennli-
nie des magnetischen Kreises ®@ = f (®) entwickelt werden:

Zunéchst ist die Kennlinie des passiven Zweipols @ = f(V.) anzugeben, indem die gegebene Mag-
netisierungskennlinie verwendet wird. Die Schichtdicke betragt 20 mm.

Dann ist fiir die Durchflutungen ® = 100A, 200A, 300A und 400A die Kennlinie des aktiven Zwei-
pols einzutragen und die gesuchte Kennlinie zu ermitteln.

fiir Bpe=1T: ® =1Vs/m? - 200 - 10-m? = 200pVs Immm
fiir HFe = 1 000A/m: VFe = 1 000A/m - 120 - 10-3m = 120A 0,15mm
®in A 100 200 300 | 400 Lomm
Dg in Vs 84 167 251 335
F=—30mm ——
QI 1 I Magnetisierungskurve $ T 1
18gg' ] von Dynamoblech Il 1
3601 1.8 360 4
ws4 T 1 uVs

3?0‘ 1,6 3204 & =f(O)
2601 14 2801 260,vs \
2601 1,2:\/\ 207 5i6uvs )/;l
2004 1,0 /\ \ 2004 /‘.
4 4 I
1601 08 f\ 160 4 15‘.?st |

N

|
|
'. ! :
1201 06 \ 19 / | ' i
1 1 81V ! '
80 04 = '[ : |
404 024 = 3 3 S 40 - ] ' ! :
B . = 4 " s * " + l
04 0 T T —r—r—r—rT T T 1] T T S £ T
0 1000 2000 3000A/n > 0 100 200 300 400 A

e
020 120 240 360A Vo B)

Fe

Magnetisierungskennlinie von Dynamoblech III, ® = f(Vg,) und @ = f(®)
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Die Kennlinieniiberlagerung kann aber auch mit der ungeénderten Magnetisierungskennlinie
vorgenommen werden, die gleich der Kennlinie des passiven Zweipols ist. Fiir die Kennlinie
des aktiven Zweipols miissen nur die Achsenabschnitte umgerechnet werden:
Rechenverfahren:

In die Magnetisierungskennlinie des Magnetmaterials wird die Achsenabschnittsgerade mit
den Abschnitten

BozM und Hy = ©

ZL lFe
die so genannte ,,Luftspaltgerade®, eingezeichnet. Zunéchst miissen also By und Hy errechnet werden.
Aus dem Schnittpunkt lassen sich B = B, und H, ablesen.

Die magnetische Feldstirke (magnetische Erregung) im Luftspalt Hy, kann aus By mit pg be-
rechnet werden oder aus der Kennlinie mit dem Abschnitt Hy - (/1 //g.) ermittelt werden, indem
der abgelesene Wert mit /. / /i, multipliziert wird.

Ist zusétzlich eine Streuung o zu beriicksichtigen, dann muss der Achsenabschnitt By auf
By/(1 — o) erhoht werden. AnschlieBend wird genauso verfahren wie oben beschrieben.

Beispiel:

Eine Toroid- oder Kreisringspule mit einer Windungszahl w = 1 500, durch die ein Strom von 2A
flieBt, enthilt einen Eisenkern aus Stahlguss (mittlerer Durchmesser diy; = 95,5 cm, Querschnittfla-
che 100 cm? ) mit einem Luftspalt mit der Luftspaltlange /, = 3 mm.

1,256-107° VS 30004
Am

By= H0©_ ! ~1.256T
I 3-10" m 3
ot
I 2A-1 A * |
Hy= 2 - 1w _ 300 _gp0 2k Bo—3\
lge dp-m 0,955m-m m 1]\ H
1\ Fe
Bo— |
abgelesen aus der BH-Kurve: : . 2“_\[(\ Hf‘ [“LF‘e i
_ _ -~ A Bre 10 N/ "i
BL = BFC = 0,93 T und HFC = 260 —_— BL: BFE =7 LN
m 08 {HFe/ \ MH.lL |
i 1 .
Streuung von 20%: 0,61 X 8 H
i \ :
B 1,256 T 0,44 !
Bj=Do _L20T _, 50 : N
1-o 0,8 0,21 N
abgelesen aus der BH-Kurve: 0+ ..., A
A 0 200 400 600 800 1{1!00ﬁ
Bfe =1,04T und  Hf, =340— M e
m o HFQ

Bl =(1-6)-Bp.=0,8-1,04 T=0,832 T
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3.4.5.2 Berechnung des nichteisengeschlossenen magnetischen Kreises einer
Doppelleitung und mehrerer paralleler Leiter (Band 1, S.276-278)

Die magnetische Feldstirke (magnetische Erregung) in einem Punkt P in der Umgebung der
stromdurchflossenen Leiter ergibt sich durch vektorielle Addition der Teilfeldstirken, die sich
nach der Gleichung der magnetischen Feldstirke auBerhalb eines Leiters berechnen lassen.

Beispiel:

Die magnetische Feldstiarke (magnetische Erregung) H in einem Punkt, der von den Mittelpunkten von
zwei stromdurchflossenen Leitern r| und rp entfernt ist, ist gleich der Vektorsumme

ﬁ:ﬁ] +ﬁ2

mit
1
Hl = 1
2ny
und
I
Hz = 2
27,

d HT d
d Hy 2
1

2 d2 I
X—E R

Leiter 2

Leiter 1

Magnetische Feldstirke der Doppelleitung bei gleicher Stromrichtung:

I

275' 5 (dJZ Leiter 2
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3.4.5.3 Berechnung magnetischer Kreise mit Dauermagneten (Band 1, S.279-287)

®=0=Hp /L +Hpe ' lpe T Hp " I Daver -

weichmagne -
mugnet\ — 1 tischer
mit Vg, = Hge * [pe  vernachléssigt _I- % Abschnitt
AL . J
| / Luft-
M / Ay > U
D =Dy // M = spalt
7
oder Bp-Ap =By Am l //

Berechnung eines Dauermagnetkreises

Der Entmagnetisierungskennlinie wird eine Nullpunktsgerade tiberlagert:

B
h A “I /
By=- po- M- 2Ly, =R g, B

A
L Ay MON
mit
N NY 0 " Bup
Im AL :
Entmagnetisierungsfaktor |
|
A |
BL= A—M'BMP 7 i ]

Die Luftspaltinduktion lasst sich auch angenédhert berechnen, wenn die Entmagnetisierungs-

kennlinie durch eine Achsenabschnittsgerade mit den Achsenabschnitten B, und Hy ersetzt
wird und diese mit der Nullpunktsgeraden iiberlagert wird.

By H1,2T
T 4*:

Bygp = Hy 1,0

H 1 I Ay 0s

B, mo M AL 0.6

B _ Br 50,"'

L — AL R Br i 0,2

Ay mo-Hi Iy

e
pS0103 4 <40 30 20 10 0 T
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Optimierung des Dauermagnetkreises
B2V, 1

Ko By -Hy
mit dem Maximum (Bps * Hy)max

Vy =—

Im Maximum wird eine Waagerechte auf die Entmagnetisierungskurve gezogen, wodurch sich
der optimale Arbeitspunkt P, ergibt:

By 1 By T
/ Br B
- 'BM'HH]A

Popt e 1 ¥ —— ==X FPopt
l/I“Iopi‘ |
[ Lo/
I
7, ~ 1
Hy HMopr 0 Hy — Hi Hy —=
ByHy —

Die Diagonale des Rechtecks, das mit der Remanenz B, und der Koerzitivfeldstirke Hy gebil-
det werden kann, schneidet geniigend genau die Entmagnetisierungskennlinie im optimalen
Arbeitspunkt.

V, V;
BLopt = \/_“0 M_. (BM 'HM)max = \/_”’0 —_. BMopt 'HMopt

AL AL
A \%
Ay = L _.B. opt und hy= -
M opt IM
oder
H -l I -B V
hp=-— Lopt 'L _ L " PLopt und AM:_M
H opt o - Hygopt v
Dauermagnetkreis mit Streuung
®=0=Hp-IL+tHym Im BL-AL=(1-0) By AMm

Vi
BLopt = \/_(1 —0)-Ho V_M -(Bum - Hv) max
L
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3.4.6 Elektromagnetische Spannungserzeugung — das Induktionsgesetz

3.4.6.1 Bewegte Leiter in einem zeitlich konstanten Magnetfeld — Bewegungsinduktion
(Band 1, S.288-299)

Kraftwirkung auf elektrische Ladungen im Magnetfeld
Foe =Q-(VxB) :

mit  Fpae=Q v B sina

-

Der erste Faktor v wird auf dem kiirzesten Weg in den B
zweiten Faktor B gedreht. Die Drehrichtung zeigt in die B
Richtung der gekriimmten Finger der rechten Hand, und -
der Daumen zeigt dann in die Richtung in Richtung der -
magnetischen Kraft F -

mag*

=2
\-Ci

|
I
|
|

Bewegter Leiter im Magnetfeld

Wird ein Leiter im Magnetfeld bewegt, dann bewegt
sich das positive Ionengeriist des Metalls und mit ihm
die freien und gebundenen Elektronen. Auf die beweg-
ten positiven und negativen Ladungen wirken magne-
tische Krifte, so dass die Ladungsschwerpunkte ldngs
des Leiters getrennt werden:

L3

1301 = —ﬁmag Coulombsche Krifte 1:"61

Q-E=—Q-(VxB) |

E=-(VxB) B

mit E=—v-B-sina x v

ug=E-/ Fmag -0

ug =-v-B-/sina 2 Fel
Befindet sich der Leiter im Magnetfeld nicht senk- L
recht zur v, B-Ebene, sondern bildet mit der Norma- B l
len N der v, B-Ebene einen Winkel 8, dann ist die - ‘*1-.
induzierte Spannung entsprechend kleiner: o v

— —-
u, =—v-B-/-sina-cos 3 BN
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Bewegte Leiterschleife im Magnetfeld

Wird der Teil der Leiterschleife, der sich im magnetischen Feld befindet, mit einer Geschwin-
digkeit v bewegt, dann wird eine Spannung ug induziert:

I
—
i . . -
uq =-v-B-/ __//.
/C L L~
mit  sin o =sin 90° =1 1 —
L1 » R
und cosPB=cos0°=1 L 1)
—
I

duferes Feld 1

- - §
®©° ® §® ®
=N
Ogi_e ﬂ§ ® + | oder
® ® §® ® Uql
I Sk I
® .® No ®
ud%ﬁ.uql
Nes
® ® 'N® ®
,__\ ds
o 2 |-a

Die Spannung ug treibt einen Strom i in der angegebenen Richtung durch den Widerstand R.

Dieser Strom bewirkt ein magnetisches Feld, das das &uflere Feld innerhalb der Leiterschleife
vergrofert und auBlerhalb der Leiterschleife schwicht, wie mit der ,,Rechte-Hand-Regel nach-
gewiesen werden kann. Durch die Bewegung des Leiters wird der durch die Leiterschleife
umfasste magnetische Fluss vermindert.

Das magnetische Feld des Stroms i versucht, diese Flussverminderung aufzuheben.

Auf die beweglichen Ladungstriger des Stroms i im Magnetfeld wirken magnetische Krifte,
die insgesamt so gerichtet sind, dass sie die Bewegung des Leiters zu hemmen versuchen. Die
Gesamtkraft kann mit Hilfe des Vektorprodukts F =Q - (vx B) nachgewiesen werden, indem
der Geschwindigkeitsvektor v in Richtung des Stroms zu legen ist.
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Wird der Leiter in der angegebenen Richtung mit der Geschwindigkeit v bewegt, dann wird
die durch die Leiterschleife umfasste Flache kleiner, d. h. die Flichendnderung ist negativ:

dA [-ds
dt dt

Damit lésst sich die induzierte Spannung auch durch die zeitliche Anderung des von der Lei-
terschleife umfassten magnetischen Flusses errechnen:

uq:—V-B-l=B~d—A
dt

mit dd®=B-dA
o
4 gt

Wird die Leiterschleife in umgekehrter Richtung mit der Geschwindigkeit v verschoben, dann

wird die elektrische Feldstirke E und damit die induzierte Spannung ug nach dem Vektor-
produkt F(vx B) umgekehrt gerichtet:

duBeres Feld |-q i
T = R
® 8 ®§ 0] ®
® oNlfe
@ oN''e ®
l v @ § F o
® ®§ (?oder ®
® . N0
dA‘\%
® ® Q cﬁ ®
1 —N- °

Bewegte Spule im Magnetfeld

Wird in einem zeitlich konstanten Magnetfeld eine Spule mit der Windungszahl w mit der
Geschwindigkeit v bewegt, dann werden in w parallelen, eng beieinander liegenden Leitern
einer Spulenseite w gleiche Spannungen induziert, die insgesamt

uy =-w-v-B-/-sina-cosf3
0 —w do
q dt

betragen.
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Beispiel 1:

Verschieben einer rechteckigen Spule in ein homogenes, zeitlich konstantes Magnetfeld

Beim Eintauchen der einen Seite der Spule und wenn die
andere Seite der Spule aus dem Luftspalt gefiihrt wird,
wird in jedem der w Leiterstiicke der Lénge b eine recht-

eckformige Impulsspannung in der Zeit B
~
b -
. v
(= A-cosy 3 R
v i
~L

ravd

induziert:

uq=7W'V'B'b

mit o =90° und B =0°

Beim Verschieben einer Spule innerhalb eines homogenen, zeitlich konstanten Magnetfeldes ent-
steht an den Spulenklemmen keine Spannung, weil sich die induzierten Spannungen kompen-

sieren.

Beispiel 2:

Drehen einer rechteckigen Spule mit einer konstanten Winkelgeschwindigkeit in einem homoge-

nen, zeitlich konstanten Magnetfeld

Beide Spannungen sind so gerichtet, dass sie sich zu einer
Gesamtspannung addieren: °
u,

g U TUu=—2"w-v-B-b-sina

mit cosfB=1

-

Bei konstanter Winkelgeschwindigkeit o betrdgt die

Bahngeschwindigkeit
a-m

v= ——
T

\

Drehachse

mit a-m:  Umfang des Kreises
T = 1/f: Periodendauer,
f: Frequenz
Mit der Kreisfrequenz
o 2z 2n

o=—=—=2-1-f ergibtsich T=—
t T )

und damit fiir die Bahngeschwindigkeit

a-mw a

2n 2
Die induzierte Gesamtspannung in der Spule ist sinusformig

v=
uq=—2~w-%~o)~B~b~sinoc mit A=a-b Spulenfliche

uq:—w-A~m~B~sin0)t und a=wt

Durch Drehen einer Spule im zeitlich konstanten Magnetfeld sind zwei Spulenseiten an der Span-
nungsinduktion beteiligt. Deshalb werden elektrische Spannungen vorwiegend in rotierenden Ge-

neratoren erzeugt.
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3.4.6.2 Zeitlich verinderliches Magnetfeld und ruhende Leiter — Ruheinduktion
(Band 1, S.300-304)

Eine in der Elektrotechnik wichtige Anwendung der Ruheinduktion ist der Transformator.

Befindet sich in einem Magnetfeld, dessen feldbeschreibende Groen B und H sich zeitlich
andern, eine oder mehrere ruhende Leiterschleifen, dann werden in ihnen Spannungen indu-
ziert, die in Analogie zur Bewegungsinduktion behandelt werden kdnnen.

In der gezeichneten Magnetanordnung ist ;
S L N sp
der Strom igp in der Spule zeitlich verén- —
derlich. Damit verdndert sich der damit - _E,
verbundene magnetische Fluss @ und die A -
magnetische Induktion B im Luftspalt. '//: 42{7
./:l’ R
—1 p
*—
—
Isp

Bei Verringerung des Stroms nimmt auch der von der Leiterschleife umfasste magnetische
Fluss @ ab, wodurch in der Leiterschleife Ladungen verschoben werden. Die durch die Fluss-

verkleinerung induzierte Spannung
- do
4 dt

treibt durch die Leiterschleife einen Strom i, der so gerichtet ist, dass der durch ihn verursachte
magnetische Fluss der dulleren Flussverringerung entgegenwirkt.

duferes Feld |+Q !

“Bih
®

— Y
® ® ® @  |kleiner

It
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Wird umgekehrt der Strom ig, in der Spule vergroBert, dann nimmt auch der von der Leiter-
schleife umfasste magnetische Fluss @ zu. Die in der Leiterschleife induzierte Spannung

W 4o
4 dt
ist umgekehrt gerichtet und treibt einen Strom i durch die Leiterschleife in umgekehrter Rich-

tung. Der mit dem Strom verbundene magnetische Fluss versucht die Flussvergroferung auf-
zuheben.

duﬂgres Feld -Q
NBiH)

® ® ® ® grofler

+0Q

Die ,,Rechte-Hand-Regel* gibt die Richtung der induzierten Quellspannung ug an, indem die
Vergrofserung des magnetischen Flusses zugrunde gelegt wird:

Der Daumen der rechten Hand zeigt in die Richtung des sich zeitlich vergroBernden mag-
netischen Flusses @, der von der Leiterschleife umfasst wird. Dann geben die gekriimmten
Finger die Richtung der induzierten Spannung ug an.

Diese Regel ldsst sich analog fiir die durch die Flussdnderung gedeutete Bewegungsinduktion
anwenden.

Die induzierte Spannung entsteht nur in einer geschlossenen Leiterschleife, die den zeitlich
verdanderlichen magnetischen Fluss umfasst. Deshalb wird die induzierte Spannung Umlauf-
spannung genannt.
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Induktionsfluss oder mit den Leitern verketteter Fluss

Sdd. d |\ d¥ . u
Uy = —_— L= D |=—— mit Y= O.
q ~ dt  dt Z YT dt 2%

i= i=1 i=1

In praktischen Anordnungen, z.B. im Transformator, wird der magnetische Fluss, der sich
zeitlich dndert, durch eine Spule umfasst. Der fiir die induzierten Umlaufspannungen bestim-
mende Induktionsfluss ist dann

dd d(w-®) d¥
U,=W—=—"—"=——

q mit Y=w-O
dt dt dt

Beispiel:

Neben einem langen stromdurchflossenen Leiter
befindet sich eine rechteckige Spule mit der Win-
dungszahl w. Die in der Spule induzierte Spannung

ist zu bestimmen, wenn der Leiter von einem sinus- [ i
formigen Strom i=1i-sinwt durchflossen wird.

4o I a8,
u.=w.—— h — ], dr r
d dt — -

1 N
cD:jB-dA f—— b —f= 0 =
A
Br =il nd da=h-dr
2w r

. a+b B .
o=t lh I dr_Moih  ath :HO'I.h-ln[HRj
27 r 27 a 27 a

-h i -h N
Ug=w- dﬁ:w~“0—vln(I+Ej~2=w~“0—vln£1+kj-w-i~coscot
dt 2n a/ dt 27

Uberlagerung beider Induktionserscheinungen

Die Vorginge der Bewegungsinduktion und Ruheinduktion kénnen sich iiberlagern. Beide
Erscheinungen lassen sich mathematisch in einer Formel (allgemeines Induktionsgesetz) zu-
sammenfassen

Ug=-w- §(Vxl§)~d7+w~%f§~d/§,
! A

wobei der erste Term die Bewegungsinduktion und der zweite Term die Ruheinduktion erfasst.
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3.4.7 Selbstinduktion und Gegeninduktion

3.4.7.1 Die Selbstinduktion (Band I, S.305-318)

Induktivitdit

L:% w-O Vs

=— mit [L]= IX =1H (Henry)
bei homogenen Feldern
w2

L=w?:-Gyp= —
Rm

Ist das Magnetfeld inhomogen, aber symmetrisch, dann ldsst sich der magnetische Leitwert
oder der magnetische Widerstand und damit die Induktivitdt durch ,,Homogenitit im Kleinen*

ermitteln.

Beispiel 1:

Induktivitét einer Zylinderspule ohne Eisenkern oder mit Eisenkern und konstanter Permeabilitéit p

Der magnetische Widerstand und damit die
magnetische Spannung auflerhalb der Spule \
wird vernachldssigt. I

» D?
[

i
L=p-—w
Hy

mit
/
R = 4
m WA

und
2
n-D /
A= H=Ho

4

Bei praktischen Berechnungen der Induktivitét einer Zylinderspule mit Eisenkern kann der Anteil
des magnetischen Widerstandes auBerhalb der Spule nicht vernachldssigt werden.

Beispiel 2:
Induktivitét einer Toroidspule (Kreisringspule) ohne Eisenkern oder mit Eisenkern und konstanter
Permeabilitét p

exakt: inhomogen angendhert: homogen

2 2
pokwih 1 n Lo bwih non

b1 2 5 T I, +1j
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Beispiel 3:

Induktivitét eines unverzweigten magnetischen Kreises aus Eisen mit konstanter Permeabilitét p

2
L W oHo M A
lFe
mit
I
R Fe — ¢
e Ho-Hp-A
Beispiel 4:

A
A

Z
22

Induktivitét eines unverzweigten magnetischen Kreises aus Eisen mit konstanter Permeabilitét

und einem Luftspalt

2
_ w 'HO'ur'A
ZFe+p'r'lL
mit
Ro—_ e . h B

Tougpec A pg-A g

Beispiel 5:

b2

NP
\

N
W

Induktivitét eines konzentrischen Kabels ohne Beriicksichtigung der Permeabilitét

des Innenleiters und des Mantels

AT TR AR AT I AR TR VRGN




72 3 Das elektromagnetische Feld

Induktivitiit bei verdnderlicher Permeabilitdit

bei Annahme eines homogenen Feldes

) 2 = dB
L(I):E:W-CD:W -A.E:w .A-u(H) ) aH
I I I, H Iy B LT
differentielle Induktivitt
2 2
w A dB w -A
Li= — = . B
Mt
differentielle, umkehrbare oder
reversible Permeabilitdt |,
H H —
Selbstinduktion

FlieBt durch eine Spule ein zeitlich verdnderlicher Strom, dann sind der magnetische Fluss @
und der w-mal umschlossene Fluss, der Induktionsfluss ¥, auch zeitlich verdnderlich. Dadurch
wird ldngs jeden Umlaufs um den magnetischen Fluss eine Umlaufspannung induziert, die
aufgrund der Flussverkleinerung und Flussvergroflerung eine Spannung u; ergibt, die zu einer
Spannung an der Induktivitit zusammengefasst werden:

do d¥ d@L-i) . di . dL di
W'—:—:—:L'—+1'—_'—
dt dt dt dt di dt

NI
dt

Ist die Induktivitdt L vom Strom i unabhéngig, ist also die Permeabilitit p konstant, dann ist
die Induktivitit L konstant und die wirksame Induktivitét ist stationdr.

Die differentielle Induktivitit Ly geht in die stationdre Induktivitdt L iiber, wenn die Induktivi-
tdt vom Strom unabhéngig ist:
Lo di
dt

Spannung und Strom der Induktivitdt
di

= —+ = .1 + _ x
u=ugrtu,=R-1 Ldt o R —— i L ] .
—_— —_—
. d¥ di u u
mit uy =——=L-— i =
dt dt u -

Ersatzschaltbild einer verlustbehafteten Spule
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3.4.7.2 Die Gegeninduktion (Band 1, S.319-336)

Gegeninduktivitdt

¥, wy D
My, = 12 - W2 Pr
I L
mit Dy =k D
und 0<k <1

My =kj - Gy - Wi wy

Permeabilitét p konstant
Mp =My =M
Vs

[M]=1-5=1H (Henry)

mit ki Gp =ko Gy

Beispiel 1:

hg wi-O
My =—2L - W1 P21

I I
mit Dy =ky Dy

und 0<ky<1

My =ky - G - Wy =Wy

Gegeninduktivitdten eines Toroidkerns mit zwei iibereinander liegenden Spulen

VYo wy-®p wy
M, I I ‘@
1 1 1
q)l H Il'Wl'h.]nra
2n T
Vo W@y wy
My =—== I I—'q)z
2 2 2
q)z H 12W2 h]n ra
2n T
pewp-wy-h o
Mig =My =—— 1 ra=M
1
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Beispiel 2:
Gegeninduktivititen eines Eisenkreises mit konstanter Permeabilitit p

Wi W
My, = k- —L—2
ml
3 15 1
ky=— Ry = ———
4 4 LA
Wi WA
M =
12 =]
o WwWy A B
My =k, - | B
- — % }% N %‘ N?E
W [
k2: l Rm2: i ! 1 QZS‘“‘-
B Wl
A F : (1]
M, = Wp-Wo i
> — : ! 4
Beispiel 3:

Gegeninduktivititen eines Eisenkreises mit drei gekoppelten Spulen

M, = SN2 A:M21
5-1
e (AT
Bolele PSS
Moz W2 WA 5] 3t
23 — V132 % [
51 s
PSS KX
.'0:*:: ::::0
wote Joares
Ma; = Wip-W3 -l A_
31— 15-1 — V3
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Gegeninduktion

FlieBt durch eine der beiden Spulen ein zeitlich verdnderlicher Strom, dann wird in dieser Spu-
le aufgrund der Selbstinduktion eine Spannung induziert und in der anderen Spule aufgrund
der Gegeninduktion ebenfalls eine Spannung induziert.

Sind beide Spulen gleichzeitig durch zeitlich verdnderliche Strome durchflossen, dann werden
in beiden Spulen jeweils zwei Spannungen induziert, und zwar infolge der Selbstinduktion und

der Gegeninduktion.

vom Strom i
in der Spule 2 induzierte Spannung:
di;

-2 dt

mit

Yip=wy ®1p=Mjp iy

vom Strom i
in der Spule 1 induzierte Spannung:
_d¥y M di,

dte 2 de

UM 1
mit

Vo1 =wy @y =My - ip

Mit Hilfe der ,,Rechte-Hand-Regel* lassen sich die Richtungen der induzierten Spannungen

bestimmen.

Beispiel:
Dreieckformig verénderliche Strome i; und i5:

.12 T

e

Strom kleiner
UM2
UM1

Strom grafler
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In Ersatzschaltungen werden gekoppelte Spulen durch einen beidseitig gerichteten Pfeil ge-
kennzeichnet, der die gekoppelten Spulen verbindet. Die Spulenenden werden jeweils mit
einem Punkt versehen.

Handelt es sich um eine gleichsinnige

Wicklungsanordnung, dann befinden sich o |laafe a—a

beide Punkte an den gleichen Enden der l l I ‘

Spulen (beide Punkte oben oder unten). . .
gleichsinnig

Bei einer gegensinnigen Wicklungsan-
ordnung wird ein Punkt an das eine Ende o la—al a—al o
und der andere Punkt an das andere Ende
gezeichnet (ein Punkt unten, ein Punkt
oben).

gegensinnig

Die Vorzeichen der beiden gegeninduzierten Spannungen upg; und upp richten sich nur nach
den Richtungen der Strome, nachdem die Spulenenden mit Punkten gekennzeichnet sind:

FlieBen beide Spulenstrome in die beiden je mit einem Punkt gekennzeichneten Enden der
Spulen oder in die beiden nicht gekennzeichneten Enden der Spulen, dann haben die beiden
gegeninduzierten Spannungen in den Maschengleichungen das gleiche Vorzeichen wie die
selbstinduzierten Spannungen.

FlieBt der eine Spulenstrom in ein gekennzeichnetes Ende der Spule und der andere Spu-
lenstrom in ein nicht gekennzeichnetes Ende der Spule, dann haben die beiden gegenindu-
zierten Spannungen in den Maschengleichungen umgekehrte Vorzeichen wie die selbstin-
duzierten Spannungen.

FlieBen durch beide Spulen gleichzeitig zeitlich verdnderliche Strome, dann entstehen in bei-
den Spulen jeweils drei Spannungen:

infolge ohmscher | infolge der infolge der
Verluste Selbstinduktion Gegeninduktion
Spule 1 ug; =R; 1 ule%zwl% uMl=%:wl%
upp = Ll% Uy = le%
Spule 2 upy =Ry - iy Uy = dd% =W, d;th U = d:ltlz = Wzdi)—tlz
upy = Lz% upp = MIZ%
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Gleichsinnige Kopplung

Bei gleichsinniger Kopplung zweier Spulen, d. h. mit gleichsinnigem Wickelsinn und mit glei-
chen Einstromungen, wirken die Spannungen ug, up; und upg; und ugp, up, und upgp in glei-
cher Richtung wie die entsprechenden Strome i; und i,. Die Maschengleichungen gelten fiir
Augenblickswerte der Spannungen:

up =uRp tupLy tumg iy grofer
i YLt
1 ,
— + + o= = ..—"é,' uf‘ﬂ
Uy =URrp tup +umm 6 | wel o =1
1 U U1 [T ] 8 s
oder | 1b 121~
di
UI—Rl 11+L1 1+M21—2
d dt
di
u27R2 12+L2 2+M12—1
dt
Ersatzschaltung
Gegensinnige Kopplung

Bei gegensinniger Kopplung zweier Spulen, d. h. mit gegensinnigem Wickelsinn und mit glei-
chen Einstromungen, wirken die Spannungen ug; und up; und ug, und uj, in gleicher Rich-
tung wie die entsprechenden Stréme 1; und i, und die Spannungen uyy; und upyp in entgegen-
gesetzter Richtung wie die Stromung i; und i,:

up =urj tuL; —umi iy grofer
i i
e UpM1
Uz =UR2 +up2 —up2 1]
u u u - D
oder 1 l L"l ”1I T w | B Sypl L |
di, di .
. 1 i 11 =
u = R1'11+L1 le—z o -_-_—2 " _:-T E .¥21
dt dt i LW, ) 8o
“21 Uz | Ym2| 2
b qu
di, di iy || Lz
Uy = R2 12 +L2——M12 1 12
dt dt iy grofer
“91 ”Rz ,
" 12
[«2 - - 0
#‘_‘l
u u
Ersatzschaltung 1 uy- “M |_1 LZ-UHZ 2
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Zusammenschalten gekoppelter Spulen

1. Reihenschaltung von gekoppelten verlustlosen Spulen mit M, =My = M:

Reihenschaltung: Gegen-Reihenschaltung
L L L /"tl"‘\ L
1 ) 1 - 2 I . 1 .
- T Camm NP i L
— —_— —i ——
Uy us _ uy usz .
u u
i Lr1 i Lr2
= o——ll— = o == ©
Lr1:L1+L2+2M Lr2=L1+L2—2M

werden die ohmschen Verluste der Spulen beriicksichtigt: R =R; +R;

Beispiel:
Zusammenschalten gekoppelter Spulen im Variometer

Mit Hilfe eines Variometers konnen Induktivititen zwischen einem Minimalwert und einem
Maximalwert variiert werden. Die Anordnung besteht aus zwei gleichen Spulen mit gleichen
Induktivitdten, die in Reihe geschaltet sind. Die eine Spule ist feststehend (obere Spule) und
die andere Spule ist von 0° bis 180° drehbar (untere Spule).

Lrlszax:Ll+L2+2M

Lop=Lpin=L1+L,-2M

Reihenschaltung von n Spulen ohne Kopplung

Ry L R, L, Ry, Ly
! —_— —— —_— —
YRt U bpz U2 YRn  UYin
- -
n
Ly=Li+Ly+..+Ly= D L; Re Ly
; = ——1{_1—ll—
i=1 i - —
Ur UL

n
R, =Ry +Ry+..+R, = D R;
i=1
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2. Parallelschaltung gekoppelter verlustloser Spulen mit M, = M| = M:

1 !
v
[y 1%
e | N |
9 |L1 IL2 2 = C le‘| Yq
) s

L,-L, M2
L= — =27
L1+L2—2M

Parallelschaltung von n verlustlosen Spulen
ohne Kopplung:

111 1 w1 :
—_——— =) —
L, L, L, L, ~L

Netzberechnung fiir Netze mit gekoppelten Spulen

us = u Lp2
L,-L,-M2
Lpp= ——*———
Ll +L2 +2M
i
_ u

Maschensatz fiir Spannungen:

Knotenpunktsatz fiir Strome:
!

D i) =0

i=1

Beispiel:
Netzberechnung mit Hilfe der Kirchoffschen
Sétze
kl:
il = iz + i3
Masche I:
. di; diz
u,=R;-ij+L— My, —+—
am T e g T e
Masche II:
di, dij . diy
0=L,—+M;3;,—+R,-i,—L;—
2 dt 32 dt 2°12 3 dt

1. di
J'13 dt+L3_3—M13d_t+M23d_t

/

D u®=0

i=1

4 1 k1
== i

N
foNo f

uqmi(

| e |

Ry

i3
k2

i

di; di,

dt

di, 1

di;

+ —_—— — iy-dt
1341 BYT T C 13
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Transformator mit gleichsinnigem Wickelsinn und ohmscher Belastung

oder ?12 §21

. U | /
5) . 1

hikS

=
T —
L =
=
—
c
=
.5
1.1s
Shn Ao
’ _F_.!Pv
(=]
ry
el
I.\Jl'
/
/
T.
|
\
:V
M
s
=
s
Py
LT
W]
o
—_— T —| ™
I~y
—

. S . il | LA, T [“M2uL2Y2] R
T E e (|| U T
2 u u 24 W |
U 12|z 2K [12 RIS 350 R
iy L 1
Ersatzschaltung:
. diy d12
u1=R1'11+L1d—t— n : UR1
1 —
. o - i
. dlz dll R
w=—-Ry-ip—Ly—=+Mp — i 1
dt dt 1 Upq=Upg

up=R-ip

Transformator mit gegensinnigem Wickelsinn und ohmscher Belastung

d
oder ?1? Bii
iy . g | /
——
Uy u u 1%5 51 ) & L)
ul i TEEH, ) O I 14
oa
FoR u [
1 a5 3, 1 ]|_1 M1
U i i
12 . L2
Ersatzschaltung
. ug u
_ 1 dip i m
u=Ry-ip+L; —-My—= " =
d dt
di, di i u
u=—Ry- 12 L, —= +M12—1 UH‘] L1 UL2 UMz ZIR
dt dt
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3.4.7.3 Haupt- und Streuinduktivititen, Kopplungs- und Streufaktoren

D =Dy + Dy

primdrer Fluss @

primdrer Hauptfluss @1, =k - @

primdrer Streufluss = o - D
Koppelfaktor kg mit 0 <k; < 1
Streufaktor oy mit 0 <o} < 1
und kj+o;=1

Wi
Li=Lint+tLis=Mpp — + 1L
Wo

primdre Induktivitdt L
primdren Hauptinduktivitdit

@y - Wy Wi
Lih =—= =M

1 Wo
primdre Streuinduktivitdit

_Dy-wy

Lis = =01y

1

Kopplungsfaktoren oder Kopplungsgrad

M, -M
= iy = M Moy
12

(Band 1, S.337-342)

Dy =Dy + Dy

sekunddrer Fluss ®;

sekunddrer Hauptfluss @y =k, - @,

sekunddre Streufluss @y =65 + Oy
Koppelfaktor k, mit 0 <k, < 1
Streufaktor o, mit 0 <o, < 1

und kr+top=1

Wo
Ly =Lop + Los =My W—+ Los
1

sekunddre Induktivitdt L,

sekunddren Hauptinduktivitdt
©y1 W) W)

Loh =—— =My —

12 Wi

sekunddre Streuinduktivitdt

[OPYRRS
Lyy=—2—2 =051,

13

0<k<l1

bei konstanter Permeabilitét p ist M, = My =M

k: '\’kl'kZ :—’LIIV,I—LZ

bei fester Kopplung mitk; = 1,ky=1und k=1

M= Ll . L2
Streufaktoren
c=0]t0,—0G1" 0y mit

Da das Produkt 6; - o, gegeniiber 6| und o, sehr klein ist, kann es fiir praktische Félle ver-

nachlissigt werden: 6 = 6| + 3.
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3.4.8 Magnetische Energie und magnetische Krifte (Band 1, S.343-362)
Magnetische Energie

- w2 bei konstanter Permeabilitét p,

oL d. h. L unabhéngig von i

L-i2 ¥.i
2

Magnetische Energie im magnetischen Feld induktiv gekoppelter Stromkreise
bei konstanter Permeabilitit p,

Mp=Mz1=M

Ly-i? L, iy’

Wm = +M- il . i2 +
Magnetische Energie und Energiedichte im magnetischen Feld ferromagnetischer Stoffe

homogene Felder:
Linearer Verlauf B =f (H):

© _ Wy _p-H> B-H_B

Wy = = bei konstanter Permeabilitit pt
v 2 2 2.
Nichtlinearer Verlauf: Nichtlinearer, nichteindeutiger Verlauf
von B = f(H) von B = f(H): Hysteresekurve
> -4
B ‘ dB‘-l < B 1 =7
T j‘\l\B: f(H) !;’
| ~H-dB
/8
|
b —n
A : IR
/A
L Y e
/1 li v
/1 /I 1
A /é{_’{ I
P .| | IV |
. w. B B
Wi === [H-dB und  Wp=V-[H-dB mit V=I-A
0 0

inhomogene Felder:

o dWy ,
Wy =—0r und szjwm-dV
dv v
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Krdfte auf Trennflichen, Anziehungskraft von Magneten

2
Fe_ B°-A
219
po 12 db
2 dx
Die Kraft im Magnetkreis ist so gerichtet,
dass bei gegebenem Strom i der magnetische

Fluss @ und die Induktivitit L moglichst grof3
werden.

Kraft auf stromdurchflossenen Leiter im Magnetfeld

F=Q:(vxB) ‘

w}

mit

\7:% und Q=I-t

est}
Il
—
—_—
~l
X
W
~—~—
iR ]

F=1.1-B-sin /(I,B)
(Der Lingenvektor / liegt in Richtung der Geschwindigkeit v und des Stroms 1.)

Krdfte zwischen parallelen stromdurchflossenen Leitern

f a —
F=12'I'B12=11'I'B21 11 Iz
mit F '_, L F
I , B21 By
312:50_1 und 1321:;0_2
T-a “Tt-a -

By| F F I2
Ho-Iy _ Ho I

F=Iz'l'
2-m-a 2-m-a
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4 Wechselstromtechnik

4.1 Wechselgrofien und sinusformige Wechselgroflen (Band 2, S.1-4)

Y v v t
v v
—_—
t teT , Periodische
to v(t) v(t+T) Wechselgrofie
N

- T —+ T -
Dabei bedeuten
T: Periodendauer oder kurz Periode des Wechselvorgangs, das ist die kiirzeste

Zeit zwischen zwei Wiederholungen des Vorgangs mit [T] = Is

f=1/T: Frequenz des Wechselvorgangs, das ist die Anzahl der Wiederholungen pro
Zeit, also der Kehrwert der Periodendauer mit [f] = 1s~! = 1Hz (Hertz)

to: Nullzeit, das ist die Zeit vom Nullpunkt des Koordinatensystems zum
ersten Nulldurchgang der WechselgroBe

V =V Maximal- oder GroBtwert, das ist der hochste Wert, den die Wechselgrofe
v(t) annehmen kann.

Periodische WechselgroBen geniigen also der Bedingung:

V) =v(t+k-T) mit k=0,+1,+2, ...

In der Elektrotechnik wird der Begriff ,,WechselgroBe* enger gefasst als in der Physik,
indem unter einer Wechselgrofe eine physikalische Grofe verstanden wird, die periodisch
ist und deren arithmetischer Mittelwert Null ist:

lT
— | v(t)-dt=0
T{()

Eindeutiger jedoch ist es, wenn die Wechselgrofe néher bezeichnet wird, z.B. sinusformi-
ge Wechselgrofie oder nichtsinusformige periodische Wechselgrofe:

N /N W
\\ .ﬁ/ A\ // _f_/.

v

Sinusformige und nichtsinusférmige periodische Wechselgrofie

T

© Springer Fachmedien Wiesbaden 2015
W. Weillgerber, Elektrotechnik fiir Ingenieure - Formelsammlung, DOI 10.1007/978-3-658-09090-6 4
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Grundsétzlich wird eine sinusformige Wechselgrofie
v (t)= ¥ -sin (ot + @y)

durch drei Gréflen bestimmt:

durch den Maximalwert oder die Amplitude ¥,

die Kreisfrequenz ® = 2nf = 2/T

und den Anfangsphasenwinkel ¢, der von dem willkiirlichen Beginn der
Zeitzéhlung bei t = 0 abhéngt.

Eine sinusférmige Wechselgrofle 1isst sich sowohl in Abhédngigkeit von der Zeit t als auch
vom Winkel o = ot darstellen:

U\ A N AN

=

A AN,
“Fe \ T o\ )T

7" NETANY/

Bei der Darstellung der Sinusgréfe in Abhédngigkeit von ot lautet die Bedingungsglei-
chung fiir die Periodizitdt entsprechend:

viot)=v(ot+k-21) mit k=0,+1,+2, ...

Mittelwerte sinusformiger Wechselgrofsen

Arithmetischer Mittelwert wihrend einer Halbperiode:
T/2 b

V, :E j v(t)-dt = iJ.V((;)’[) -d(ot) = E{/ =0,637-v
T 21 i
0 0
Gleichrichtwert:
— 1 T 1 2 1 5
v = ¥£ V(1) |t = J(; [ Vo) | d(on) =2 J(; v(ot) - d(ot) = V,

Quadratischer Mittelwert oder Effektivwert:

T 2n
_ | 2 - | L 2. _v 5
Ve JO' V(02 - dt = |- .([ M@V - d(ot) =—==0,707 -9

Fiir sinusférmige WechselgroBBen haben Form- und Scheitelfaktor folgende Werte:

4
Formfaktor :i = \/E L 11 Scheitelfaktor =

=2 =1,414
v,

[~
QN
<>
[\]
5
<|<
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4.2 Berechnung von sinusformigen Wechselgrofien mit Hilfe
der komplexen Rechnung (Band 2, S.5-27)

Transformation ins Komplexe

Jede sinusformige Wechselgrofe v(t) wird in eine entsprechende komplexe Zeitfunktion
v(t) eineindeutig abgebildet:

Zeitbereich (Originalbereich) komplexer Bereich (Bildbereich)
v(t) =¥ - sin (ot + @) —  v(t) =V - cos (ot + @)
mit V:  Amplitude +j -V sin (ot + @)

A

und @,:  Anfangsphasenwinkel v(t) =V - el©t+ o))

v(t) =y - alfy - giOt

V() =+/2 - V- eiov - eiot

V() =¥ el =2V elot

mit ¥ =¥ -el®v
als komplexe Amplitude
(Vv : Amplitude,
¢y: Anfangsphasenwinkel)

und V=V -el® als komplexer
Effektivwert
(V: Effektivwert,
¢y : Anfangsphasenwinkel)

Zeitbereich (Originalbereich) komplexer Bereich (Bildbereich)

Transformation einer sinusférmigen Zeitfunktion in einen rotierenden Zeiger
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Die Differentiation der komplexen Zeitfunktion bedeutet eine Multiplikation mit jo, die
Integration eine Division durch jo:

dv(y a2v(t)
g ey a2

0% ¥(1) [u(-ar= Ly
jo

Verfahren 2 (Band 2, S.8-12)

Transformation der Differentialgleichung ins Komplexe

Dadurch lassen sich die mit Hilfe des Maschensatzes und der Knotenpunktregel aufge-
stellten Differentialgleichungen in algebraische Gleichungen tiberfiihren.

Losung der algebraischen Gleichung

Die algebraischen Gleichungen kdnnen nun einfach nach der transformierten gesuchten
GroBe aufgelost werden.

Riicktransformation in den Zeitbereich
1. Der komplexe Nenner in algebraischer Form wird in die Exponentialform umgeformt:

X+jy=r-el® mit 1 = \/x2 + y2

und @ =arctan A
X

2. Der e/?-Anteil des Nenners wird mit ¢ J® in den Zihler gebracht und mit dem e-Anteil
der abgebildeten SinusgroBe im Zéhler zusammengefasst.

3. Der gesamte e-Anteil des Zahlers wird nach der Eulerschen Formel
d?=cosp+j-sing
in die trigonometrische Form tiberfiihrt.

4. Die Riicktransformation der komplexen Zeitfunktion in die gesuchte sinusférmige
Zeitfunktion kann nun vorgenommen werden, indem nur der Imaginirteil beriicksich-
tigt wird.

v(t) = Im{v(t)}

Beispiel:

A . 3 i ' R L

i-sin(ot+ ) = R i) + L0 — -
dt —_— —

G-ed@+ew) =R i(t)+ joL - i(t) R L

0 - ed(@t+oy) 0 - ed(@t+oy)

R + joL - \/R2 + ((DL)Z . gl-arctan (oL/R)

i(t) = —— . gi(otte, —arctanwL/R)
- R2 + (0L)?

i(t) = Im{i(t)} = ésin(wt + @, — arctanm—Lj
N JR2 + (wL)2 ! R
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Uberlagerung zweier sinusformiger Wechselgrofien bzw. zweier Zeiger
im Zeitbereich:
Vp = V] +Vp = ¥ - sin(ot + @y ) = ¥y - sin(ot + @yp) + Vo - sin(ot + @yp)
im komplexen Bereich:
Vp = 91 + Yy = Uy el Ot ovr) = G el (@trovl) 1§, el (0tey2)

ergibt mit @y = Qy2 — Py

- - - P V1 -sin @y + ¥ - sin
¥, = \/Vlz +992 +2-91 -9, - cos @y ¢y, = arctan {/1 o z\d " ‘72 COS((ZVZ
1 vl 2" v2

Vereinfachte Zeigerbilder =~ Verfahren4 (Band 2, S.17-18)

In der Praxis werden die abgebildeten SinusgroBen grundsdtzlich zum Zeitpunkt
t=0, also als ,,ruhende Zeiger* gezeichnet.

Weil Effektivwerte in weiteren Berechnungen, z.B. Leistungsberechnungen, bendtigt
werden, beriicksichtigt man in Zeigerbildern nicht die komplexen Amplituden, sondern
die komplexen Effektivwerte. Das bedeutet gegeniiber den komplexen Amplituden eine
MaBstabsanderung mit V2.

Die reellen und imagindren Achsen werden bei vereinfachten Zeigerbildern weggelassen,
weil fiir die Beurteilung der sinusformigen WechselgroBien einer Schaltung nur die Effek-
tivwerte und die gegenseitige Phasenverschiebung wichtig sind. Die Anfangsphasenwin-
kel hdngen von der willkiirlichen Festlegung des Zeitpunktes t = 0 ab, d. h. auch die Lage
des Achsenkreuzes der komplexen Ebene zu den Zeigern bedeutet die Festlegung des
gleichen Zeitpunktes t = 0.

Ein Zeigerbild wird grundsitzlich von innen nach auflen entwickelt, so dass immer nur die
Zeiger von einem oder zwei Schaltelementen, also von einfachen Zweipolen, gezeichnet
werden. Sind ein Strom oder eine Spannung in einem Zweig innerhalb der Schaltung nicht
gegeben, sondern die Gesamtspannung oder der Gesamtstrom, dann wird trotzdem von
diesen GroBen ausgegangen, indem ein Zahlenwert vorgegeben wird; nachtriaglich ldsst
sich dieser dann proportional korrigieren. Die weiteren Zeiger ergeben sich dann durch
Multiplikation oder Division mit einfachen Operatoren. Resultierende Zeiger lassen sich
dann durch geometrische Addition ermitteln, so dass sich schlielich die Gesamtspannung
und der Gesamtstrom der Schaltung ergeben.

Im vereinfachten Zeigerbild konnen also mit einfachen geometrischen Beziehungen die
Effektivwerte und Phasenverschiebungen ermittelt und ablesen werden, so dass sie bei der
Behandlung der verschiedensten Wechselstromschaltungen unverzichtbar sind.

zum Beispiel: Reihenschaltung eines ohmschen Widerstandes und einer Induktivitét

UR / u
/
»
NLL o y
s
- L4
R ) _JR
n/?2 m 32r 2m 5/2m iR 1
Komplexe Amplituden . T
Zeitfunktionen im Zeitbereich im komplexen Bereich Vereinfachtes Zeigerbild

Beispiel fiir den Ubergang von SinusgroBen zum Zeigerbild
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Komplexe Operatoren

ohmscher induktiver kapazitiver
Widerstand Widerstand Widerstand
u=R-i u:Lg u:lj.hdt
dt C
_md
Zeitbereich dt
Originalbereich
(Oone ) =2 =G| i=fuea —cdu
R L dt
1
i= Mfu -dt
u=R-i u=joL-i u=—
. joC
u=joM-i
komplexe L_u _u .
Zeitfunktionen | * R G-u 1= io i=joC-u
. u
j=—2
joM
. - A L
u=R-i u=joL-i U=
N joC
komplexer u=joM-1
Bereich komlplege ~ 0 G.d N ) N _
. . A tu 1=== -0 ]:.; L:J(D H
(Bildbereich) mplituden ~7R u =7 JaL
2 i}
i=—
- joM
. 1
U=R-1I U=joL-1 U=—
. joC
U=joM-1
komplexe U U .
Effektivwerte I===G-U [=— [=joC-U
R joL
=Y
joM

Fiir ohmsche Widerstinde sind die Operatoren reell:

Widerstand R Leitwert G
fiir induktive Widersténde sind die Operatoren positiv und negativ imaginr:
. . . . 1 o1 1 o1
Widerstand joL bzw. joM Leitwert — = —j— bzw. —— = —j—
joL ol joM oM
fiir kapazitive Widerstdande sind die Operatoren negativ und positiv imaginér:
. 1 o1 . .
Widerstand —— = —j— Leitwert joC

joC oC
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Maschensatz und Knotenpunktsatz der Wechselstromtechnik

Die Summe der Augenblickswerte der
Spannungen  (Quellspannungen  und
Spannungsabfille an den Wechselstrom-
widerstinden) in einer Masche ist Null:

/
D ui(t)=0
i=1

In einem Knotenpunkt eines verzweigten
Wechselstromkreises ist die Summe aller
vorzeichenbehafteten Augenblickswerte
der Strome gleich Null:

/
it =0
i=1

Maschen- und Knotenpunktgleichungen in komplexen Effektivwerten:
/ [
2. Ui=0 2 k=0
i=1 i=1

Symbolische Methode Verfahren3 (Band 2, S.21-22)

Alle sinusférmigen Zeitfunktionen werden in entsprechende komplexe Effektivwerte
iiberfiihrt.
Ohmsche Widerstinde R bleiben im Schaltbild unverandert, da der Operator zwischen den
komplexen Effektivwerten von Strom und Spannung R ist.
Induktivititen L und Gegeninduktivititen M werden wie induktive Widerstinde mit den
imagindren Operatoren joL und joM behandelt. Die Operatoren ersetzen im Schaltbild L
und M.
Kapazititen C werden als kapazitive Widerstande mit dem Operator 1/joC beriicksichtigt,
weil der komplexe Effektivwert des Stroms durch Multiplikation mit dem Operator 1/joC
in den komplexen Effektivwert der Spannung tberfithrt wird. Anstelle von C wird im
Schaltbild 1/joC geschrieben.
Nachdem die Operatoren im Schaltbild eingetragen sind, werden die Netzberechnungshil-
fen (Spannungs- und Stromteilerregel, S. 6 und 8 bzw. S. 96) und die Netzberechnungs-
verfahren im Abschnitt 2.3, S. 16-22 angewendet, wodurch sich die algebraischen Glei-
chungen in komplexen Effektivwerten ergeben, die dann geldst werden.
Die Losungen in komplexen Effektivwerten miissen in Losungen in komplexen Zeitfunk-
tionen Uberfihrt werden, indem sie mit V2 - elot multipliziert werden. Die Riicktransfor-
mation der komplexen Zeitfunktion in die sinusformige Zeitfunktion ist bereits beschrie-
ben worden.

zum Beispiel: Reihenschaltung eines ohmschen Widerstandes und einer Induktivitét

Schaltung im Zeitbereich Schaltung im Bildbereich

i R L I R jul
o—»—{"1 . — mp o——{""— o —0
> — —_—
uR ug Ur Up
u ~ u

Beispiel fiir den Ubergang einer Wechselstromschaltung in eine
Schaltung mit komplexen Effektivwerten und komplexen Operatoren
U u

U=Up+tU.=R-I+joL-I I=—= ity=——=——= :
R+ joL R+ joL R+ joL

0 - edot+oy)
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91

4.3 Wechselstromwiderstinde und Wechselstromleitwerte

(Band 2, S.28-63)
Ohmscher Widerstand

i(t) =1-sin(ot + ;)

u(t)=R-i(t)=R-i-sin(mt+<pi)

u(t) =u - sin (ot + @)
u=R-i U=R-1
a U
R:T:T P=0y—¢i=0
i

Induktiver Widerstand

i(t) = 1-sin(ot + ¢;)

u(t) = dld(tt) =oL-1-cos (ot + @)

u(t) = oL - i sin(wt + @; +§j

u(t) =0 -sin(ot+ @)

u=jol-i U=joL-1

XL =olL =

P=Pu i ==

U
H b
I 2

._..)l =

Kapazitiver Widerstand
u(t) =0 -sin(ot + @)

i(=c. 20

=®-C-0-cos(ot +
" (ot +¢y)

i(t):w'Coﬁ~sin(wt+(pu +gj
i (t)=1-sin(ot+¢;)

i=joC-

=
'—8‘.
@)
Ic

1
X = ——
¢ oC

R
u,i 1 °“') e
/. ~ ul{t)= R -i(t)
/’-; o 4l

\3
/] ——f
4 N

Zeigerbild

L

i(t) —
di(t)
ult)=L 5 af

L /X
A

Zeigerbild

. T mu(ﬂ
LN

i ~ // —_—
;ﬁ \‘\/ wt

Zeigerbild
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Komplexer Widerstand

4800 _
i(t)

_ U itou-op)
I

[EN[I=
I—|Ic

Z=27 eP=Z-cosp+j-Z-sing=R+j-X

Betrag von Z: Phasenverschiebung
Scheinwiderstand oder Impedanz zwischen Spannung und Strom:

G X
|Z|:Z:g=2= R2 + X2 @ =@y —@; = arcZ= arc tan —

i I R
Realteil von Z: Imaginarteil von Z:
Wirkwiderstand oder Resistanz Blindwiderstand oder Reaktanz
R=Re{Z}=Z" cos o X=Im{Z}=Z sin@

Komplexer Widerstand der Reihenschaltung von Wechselstromwiderstdinden

1 1 1

I Ry Ry RmR july  julp julmL juG  July  juCpe
- - || .. ——
Upt  Up2 UpmR Up Y 2 U mt Ut Ye2 Ucme
]
1
[ R jule ot
— P — I o
— —_— _—
Ur UL Yc
; -
m mR mp, mC mR mp, me o
U=>Ui=>Ux+D Ui+ Ug=)Ri-I+) joLi-I+» ——-1
i1 i1 i1 i1 i1 i1 iT JoC;
mR mp, mC 1 1
U= Ri+) joLi+) —— 'l:(Rr"'ijr"'. J'l
mR my, 1 mcC 1
R. = R; joL, = joL; = _
r i JoL, ZJ i joC, — G

i=1 i=1

— 1 1
L= 2L e
i=1 roogo i
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Q{Rrﬂ(mu— 1 Hl
oC,

U=[R,+ (X0 +Xe) ] L=[R )X, ] 1=Z, -1

mit Zr—Rr+j-Xr:Rr+j-(XL+XC):Rr+j-(o)Lr— IC]
@ T

1
oC,;
Die ohmschen Anteile eines komplexen Widerstandes Z, finden sich also grundsétzlich im

Realteil, die induktiven Anteile im positiven Imaginérteil und die kapazitiven Anteile im
negativen Imaginarteil.

Der komplexe Effektivwert der Gesamtspannung U teilt sich in drei Teilspannungen auf:

und X, =X +Xc¢ Xp = oL, Xc =-

. 1
U=Ur+Ux=Ur+UpL+Uc=R; " I+joL - 1+- -1

joC;
mit Ur=R;‘1 auch ,,Wirkspannung® Uy,
und Ux=Up+Uc=jXy+Xp) ' I=jX;-1 auch ,,Blindspannung* Uy,

. . . 0] .U
Zi=Z7Z,-e)r=Z.-cos@+j-Z -sin@ =T'coscp+JoT-s1n(p
Z.-1=U=U-cosp+j-U-sinq,

Ur=U"cos @ Ux=U -sin ¢ U= UR2+Ux2

Xp<0
mit 9<0
und <0

Zeigerbilder der Strome und Spannungen und komplexen Widerstinde
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94
Komplexer Leitwert
“7Z un 4 U U

Y=Y e =Y -cosp—j-Y-sing =G+j-B

Betrag von Y:
Scheinleitwert oder Admittanz

=+G?2 + B2

Y=Y=7=5-3
U

=> | ——>

1
z

Realteil von Y:
Wirkleitwert oder Konduktanz

G=Re{Y} =Y -coso

Phasenverschiebung
zwischen Spannung und Strom:

B
O =0y — ¢ :—arctana

Imaginérteil von Y
Blindleitwert oder Suszeptanz

B=Imn{Y}=-Y-sing

Komplexer Leitwert der Parallelschaltung von Wechselstromwiderstinden

= Ipyy Ipo Ler ¢ L1 4 Loz Ieme ¢ It g 2 Lo

jwlme

._.
1]
—
1]
—
Il
—
-
Il
—
=

mp
1= Z—+Z_]COC +z mLJ _=[R—1p+_]0)C +J®1ij.[_j

i=1

1 ‘% 1 rf 1 <= 1
—=) — joC, joC; = -
Rp P R; P— ]wLp Pt joL;
mC 1 my,
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l{%ﬂ”(Bc+BL)]I_J=[Gp+j-Bp]-I_J=Xp-I_J
p
mit Y, —-—1—~+'-13 -——J;—+-'-(IS +B )-——}—-+-'- o b
Ip Rp Jbp Rp ] C L Rp J P (DLp
1 1
und B,=B-+B Br=oC By =———— G.=—
coLp Rp

Die ohmschen Anteile eines komplexen Leitwertes Yp finden sich also grundsitzlich im
Realteil, die kapazitiven Anteile im positiven Imaginérteil und die induktiven Anteile im
negativen Imaginarteil.

Der komplexe Effektivwert des Gesamtstroms I teilt sich also in drei Teilstrome auf:

1 .
I=R+=R+lc+IL =—U+joC, -U+- -U
R, ™ - joL, T
. 1 .
mit Iy =R—I_J =G,-U auch ,,Wirkstrom* Iy
p

und =Ic+1L =j-(Bc+Br)-U=j-B,-U auch,Blindstrom* I
— -jo — . . I 1 .
Y, =Y, —Yp-coscp—J~Yp~s1n(p=Ecoscp—1~6~sm(p

Yp-U=1=1-cos¢o+j-1-sin(-¢)

Ir=1-cos¢ Ig=1"sin(— @)=—1"sin @ I =4Ig2 + 12

Bp>0
mit ¥p>0
und p<0

Bp=
mit 9p=0
und p=0

1=1g=U/Rp=GpU Ip=1/Rp=Gp

1/Rp=6p

Bp<0
mit Wp<0
und >0

Zeigerbilder der Spannungen und Stréme und komplexen Leitwerte von Wechselstromleitwerten
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Spannungsteilerregel

Fir zwei in Reihe geschaltete Wechselstromwiderstdnde gilt die Spannungsteilerregel

analog wie in der Gleichstromtechnik nur im komplexen Bereich:
Die komplexen Zeitfunktionen oder die komplexen Effektivwerte der Spannungen
iiber zwei vom gleichen sinusférmigen Strom durchflossenen Widerstinde verhalten
sich wie die zugehorigen komplexen Widersténde.

U _Z I 2
=1_% ! s
U, 27, e —
J Z4 1y J
U _ 7 U 7 -
U 2+2 U Z+2, =
Stromteilerregel

Fiir zwei parallel geschaltete Wechselstromwiderstinde gilt die Stromteilerregel analog
wie in der Gleichstromtechnik nur im komplexen Bereich:

Die komplexen Zeitfunktionen oder die komplexen Effektivwerte der Strome durch
zwei parallel geschaltete Wechselstromwidersténde, an denen die gleiche sinusfor-
mige Spannung anliegt, verhalten sich wie die zugehorigen komplexen Leitwerte
und sind umgekehrt proportional zu den komplexen Widerstédnden.

Die komplexe Zeitfunktion oder der komplexe Effektivwert des Teilstroms verhélt
sich zur komplexen Zeitfunktion oder zum komplexen Effektivwert des Gesamt-
stroms wie der komplexe Widerstand, der nicht vom Teilstrom durchflossen ist, zum
komplexen Ringwiderstand.

o—e
L v _z A
L Y, 7
RIERIE
Lz Lz
1 4+2, 1 Z+2 L ¢ L
'
o



4.3 Wechselstromwiderstinde und Wechselstromleitwerte

Dreieck-Stern-Transformation:

A
7, = Zs 23 7, = 23 -2 75 = Zi -2
T L+t T L+t T L+t

Merkregel:

Produkt der beiden Dreieckwiderstidnde
Summe aller Dreieckwiderstdnde

Sternwiderstand =

Stern-Dreieck-Transformation:
c C

4]

Z Z)
Z3
A B A — B
| N g

, . ZrZs 2y -Zh+Zh T+ 72
Y A A e
Z Z

Z =Zi+Z'3+Zl "Zs _ZLi-24 +ZZ"Z3 +2)-Z3
2, 4

Zs =Z1+Zz+ZI "Zz _ LI+ "Z3 +2)-Z3

Z3 Z3
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Parallel geschaltete Reihenschaltungen — dquivalente Schaltungen

-———arr-—- r————" - ——n
:— “r- —= | |1 I
M i M o l
[ R 1 l | P |
orel o Reel] | : : I i
1 I | | L =
I Iy |-’ IRCpLj1—-[ IRLp[] | = []
:.JC..I. P ojul B : jwlp : : ijp| [
Juwlp 1 | |
! Il | | ! I
R T | [ - '
I B S L b —__1
b
R C 1 .
ch _ Cr ; +] ol : = R +J(0Cp
R Re,2 Cp
T 22 T w2c,2
1 1
Ree? + 20 2 2
C; o*C,
mit ch = und Cp =
RCr RCr 1
®?C,2
RLI‘ (DLr 1 1
TR w2 TR0l Ry, el
L ® Lo~ + oLy Lp oLy
R 2+ 2L2 R 2+ 2L2
mit Ry, = Li” 7O und L= L~ T
RLr (DZLr
Y, =Y, + Y, [ ! +—1 J+] (coC ! J
p — XCp Lp j ——
o Rip Ly
1
Y. = Rer Rir + oC, B oL,
- 1 R+l | ] 1 R; .2 + @2L.2
RCr2+ Lr r RCr2+ Lr r
0)2Cr2 mzcrz
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In Reihe geschaltete Parallelschaltungen — dquivalente Schaltungen

r——=-- i T it = r—— """ - -"7
| 1 ! 1 I | l |
! RL ! : R : : i : _ :
o S ST S R . o B B <
1 [ 1 T [ T E L |
| julp |1 jwCp ! : ! ; !
I : : I | | Pl I
N . Y S |
1 1
RL ol .
ZLr = 1 £ 1 +] 1 . L 1 = RLr + J(DLr
RLp2 C02Lp2 RLp2 0)2Lp2
1 1
mit RLI’ = 1+—1 und LI' = 1 . 1
RL 2 0)2Lp2 RL 2 mZL 2
b
RC oC 1
Zey = I ; -] L =Rer - C
5+ 0Cp2 +®2C,2 Or
Cp C
% Rl + 0)2Cp2
mit Rg, = 1 Cp und C, = Cp 5
n (chpz 0°C,
ch2
. 1
Zr :ZLr+ZCr :(RLr+RCr)+]' (DLr_ C
T
1 1 1
R R oL oC
Z, = Lp i Cp 4y P P
12+ 21 2 12+(’°2CP2 12+ 21 2 12+(’°2CP2
Rip o°L, Rep Rip o°L, Rep
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Komplexer Leitwert einer Reihenschaltung von Wechselstromwiderstinden:

1 . R . -X
Y, =—=G, +jB, = L +j- L
Zr Rr2 + sz er + XI'2
. R R X X
mit Gy =———=—-=R;-Y,? und B,=-—"—=-—L=-X, Y2
RZ+X.2 72 R2+X.2 72
Beispiel: 1
p Ry
a2
o e |l - i jwlp -
v———\_r—_—"1——v 4 & —r S
Rr jULr v
juCr juLp
-
. 1
Y, =—+]j | oC, -
by ooy oL
2 2
s 1 1 s 1
R, +| oL, - R,7+| oL, -
oC, ®C oC;
R, = C, = r L,=
R, 1) %L,
R,% +| oL, -
oC,
Komplexer Widerstand einer Parallelschaltung von Wechselstromwiderstinden:
1 . Gy . Bp
Zi=——=R;+)X; = -J
= 2 2 2 2
Y, Gp~+B, Gp~+B,
G G -B -B
mit Ry =——"—=—2=G,-7,2 ud X, =——5Ft—=—2=-B,.7?
Gy +Bp Y, Gy +Bp Yp
Beispiel: 3
R
g
jwC
o =2 o wp o-——'{:—-——-“—1—°
R jwl iwC
julp r Jubr  juwCp
.-
. 1
Z, =R, +]-| oL, oC,
| 2
S ! o,
R, oL, . oL,
R, = L = C = -
o°C,
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4.4 Praktische Berechnung von Wechselstromnetzen
(Band 2, $.23-27 und S.64-93)

Schaltung
mit sinusformigen Energiequellen
und linearen Schaltelementen

] + I 4

3 4 |
112
' Schaltung
mit komplexen Effcktivwerten
und komplexen Operatoren
Differentialgleichung
im Zeitbereich 314
[
2 *
4
algebraische algebraische
Gleichung in 3 Gleichung in Y 1
komplexen - komplexen
Zeitfunktionen Effektivwerten
L4
2" 3 3‘
Y
Losung der Losung der
algebraischen 3 algebraischen Zeigerbild mit
1 Gleichung in > Gleichung in komplexen
Y komplexen komplexcn Effektivwerten
Zcitfunktionen Effektivwerlen
2]3 4
‘ \
Losung der
Differentialgleichung
im Zeitbereich

Das Verfahren 1, die Losung der Differentialgleichung im Zeitbereich, ist wohl prinzipiell
einfach, aber rechnerisch zu aufwendig und findet deshalb in der Praxis keine Anwen-
dung.

Die Losung der Differentialgleichung mit Hilfe von komplexen Zeitfunktionen, also das
Verfahren 2, wird dann bevorzugt, wenn die Differentialgleichung aus anderen Griinden
aufgestellt werden muss.

Die meist gewéhlten Verfahren fiir die Behandlung von Wechselstromnetzen sind das
Verfahren 3 ,,die Losungsmethode mit Widerstandsoperatoren* und das Verfahren 4 ,,die
grafische Losung mit Hilfe von Zeigerbildern®. Beide Verfahren gehen von der Schaltung
mit komplexen Operatoren und komplexen Effektivwerten aus. Die Rechenhilfen (Span-
nungsteilerregel und Stromteilerregel, siche Abschnitt 4.3, S. 96) und die fiinf Netzbe-
rechnungsverfahren der Gleichstromtechnik (siche Abschnitt 2.3, S. 16-22) fithren ohne
Differentialgleichungen zu Losungen im Bildbereich, die dann auf die beschriebene Wei-
se riicktransformiert werden kdnnen (siche Abschnitt 4.2, S. 87). Die Zeigerdarstellung ist
die grafische Beschreibung des Rechenverfahrens.
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4.5 Die Reihenschaltung und Parallelschaltung von ohm-
schen Widerstinden, Induktivititen und Kapazititen

4.5.1 Die Reihenschaltung von Wechselstromwiderstinden —
die Reihen- oder Spannungsresonanz (Band 2, S.94-106)

u Y
i L. 1 2.
Rr Rr
Lr 1UL jwlr LQL
v Ux U X
y 1
Cr ]-l C 'J’l-d—[—r ]—lu[
Reihenschwingkreis mit Schaltbild des
u =10-sin(ot+0,) Reihenschwingkreises im Bildbereich
L u U u_ u_u
- Rr+j.((,0Lr—1 j Ri+j-(Xp+Xc) Re+j-X; Z; Zr-ej(Pr
oC,

2
mit 7, =|Z| = yR2 + X2 = JR2 + (X +X()? = \/er +(er _ )

oC;
1
X Xy +X e
+ (o]
und @,=arcZ, = arctan—- = arc tan =L =C = arctan————
T T r
. u {i-el(ot+oy)
1 = — =
N . 1 2
Ry +j| oL, _E Rr2 +| oL, - 1 .ejrarctan (oL —1/0Cr)/Ry
T oC,
1
. oL, ———
i= 4 -sin| ot + @ —arctan—mCr
2 Y R
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Reihenresonanz, Spannungsresonanz

Z,=7Z,=R;
. 1
mit X, =Xy +Xc=0oL, ——=0
oC,
Resonanzbedingung:  Resonanzkreisfrequenz: Resonanzfrequenz:
1 1 1
oL, = Wy = fp=—F7+——
oC; L.C, 2n-,/L,C,
l.J.L=jULr.l .’ )
. ij=)ULI‘
= I
. _ | usug  U=UR=RrI i Zr=Rr
U= U U =0 — Bre0 ———r
o (I Pl
Y e Jutt

Zeigerbild des Reihenschwingkreises bei X, =0

Induktiver und kapazitiver Widerstand bei Resonanz - Kennwiderstand

LI'

Xy, =—Xc =Xy = C_ mit X 1=1Q

T

Frequenzabhdngigkeit der Blindwiderstdinde

mit o=x"® und 0<x<ow
Xr induktiver XL=wL,-= Wolp x =X
XL Wechselstrom -
X¢ widerstand
. ,'—r -
el = [ Xkr
! Xr=XL’xc=f(X) _w
| X-Uo
0 s

S IR B IV
X060 X - Xk

><|-~

kapazitiver Wechselstromwiderstand
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relative Verstimmung v,

1 . 1 £ f
Xr:Xkr'(X——jZXkr'Vr mit v =x——:ﬂ—ﬂ:___0
X X (O] Q)] fo f

zB. ©=2w) vy =13=150 zB. o=10y v =-14=-1,50
® =30y Vv =2%=2,67 o=t0) vp=-2%=-2,67
®=409 v =33=375 o=to) vp=-33=-375
®=500 vp=4%=4.80 o=tog v =-4%=-4380
normierte Verstimmung V;
Z R, +j-X . X . X . .
i:#:lﬁ_‘]._r:l_i_‘]. kr'Vr:1+J'Qr'Vr:1+J'Vr
Ry Ry Ry Ry
L
. Xy C; als Kreisgiite, Giitefaktor oder
mit Q, = R, - R, Resonanzschirfe des Kreises

und V, =Q, -v, =Q, .(X _lJ =Q, (i _ f_Oj als normierte

X fo f Verstimmung

Bandbreite

Die Bandbreite eines Reihen-Resonanzkreises ist gleich der Differenz der Grenzfre-
quenzen fyo und fy:

Af= ng — fgl
mit und j - g
Vio=Qr vpp=+1 |Zrl|:|Zr2|:\/§ I
Vi =Qr vg =-1 R; R, Re Ve
r
und 45°
0 fo
fo? = fy1 - fyo I r
Iy Vr1
Die Kreisgiite Q, und die 1 fo o R
Bandbreite Af sind also Qr=7— = AF = s
umgekehrt proportional: |Vrg| ® ") fgq
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Frequenzabhdngigkeit des Stroms — Strom-Resonanzkurven

. U _ U

2 R, 14Q2 v,2
\/er +Xkr2~(x—lj ! P
X

I 1 1 1

U/Rr_ 1 2_\/1_"Qr2‘\’r2_\/l_"vrz
1+Qr2~(x—)

X

. . . . i U
Der Strom hat sein Maximum bei Resonanz, also bei x = 1 und betrigt [,,x = e
T

UI_ 1,0 -
el s ] m
08

1 {_1?__ =0,707 / /
0,7 3

NN

0,5 1
0.6 1
0.3
0,21
01 -

0,6 -
'/

.-

\Qr=3,16

N Qr=10
Qr=31,6

i
!
|
|
I
!
|
|
|
!
I
I
|
I
1

F— A x —
Xgy =032 xg2
Bei 45°-Verstimmung ist V. =+ 1 und

I 1

=—=0,707
U/R, 2

Die Bandbreite Af ist mit Ao = 2n - Af

Ao  ©Ogr — Og]
Ax:—:u:xgz—xgl
®o ®o

und die Kreisgiite

_fo _
Qr—Af_

o _ 1
Ao  AX

0 010203 04 05 0.6 07 08[091,0 11 [12 13 14 15 1.6 1,7 18

—_—
X
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Frequenzabhdngigkeit der Spannungen

U = x-U _ x-U
1 1) \/1+V2
—+|x—— 2 r
Q/? x) V&

e U ~ U

Die Maxima der induktiven und der kapazitiven Spannung liegen bei

® 1 ®
X[, = ULmax _ >1  und Xc = Ycmax _ fj_ ! <1
g 1 ) 2Q;
2Q,?
und sind gleich:
ULmax — UCmax _ 1 _ Qr

U U O - \/1 B
Q2 | 4Q.2 4Q;?
Frequenzabhdngigkeit der Phasenverschiebung

1
¢, = arctan Q, (x - —J

X

Beispiel: Resonanzkurven I(x), UL(x), Uc(x) und ¢.(x) bei der Giite Q,=2: (linearer Mafistab)

_u
Imctx'R_

. VAN

/ /

N

0 05 1,0 15 2,0 25 3.0 35 —

_—

_x , , : .
Z .y 05 1,0 15 2,0 25 3,0 35 —a




4.5 Die Reihenschaltung und Parallelschaltung von R, L und C

107

4.5.2 Die Parallelschaltung von Wechselstromwiderstinden —
die Parallel- oder Stromresonanz (Band 2, S.107-120)

' g ‘ci i
Rp cpT Lp

(=g

i<

Parallelschwingkreis
mit i=1-sin(ot+@;)

I
[_J —

I

I

1 :
,-Tc‘pI Julp
o g

Schaltbild des Parallelschwingkreises
im Bildbereich

L

I 1

1

Gp+j| oCy———
p J( P oL,

1 J_ Gp+j(Bc+BL) G,+jB,

Xp Yp el Pp

und

=

BP
¢p =arc Y, =arctan——=arctan

2
Y, =|S_{'p|=\/Gp2 +B,2 :\/sz +(Bc +B)? =,|Gp2 +[mcp —L]

BC +B
p

i

coLp

. el(ot+9;)

1 . 1
—+j| oC, —] 1
Rp [ oaLp 7Rp2 +

2
(x)Cp _ 1 _ej-arctaan-(me—l/mLp)
oL,

1
-sin| ot+@; —arctanR , | ®C,, ———
2 [ i p[ P (DLp H
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Parallelresonanz, Stromresonanz

1 . 1
Xp:Yp :Gp :R— mit Bp :BC+BL :O)CP—EZO
p p
Resonanzbedingung: Resonanzkreisfrequenz: Resonanzfrequenz:
1 1 1
oC, = 0) = —— fi=—
p 0 0
oL, CoLp 27, /Cpr
K iBc=jwlp
U Yp=Gp=1/R
L =] +l =0 Z= JB =0 ~-p P P
B~ L I=1 < p
= iBi=tior
= __1_ :-'1_ wLp
I= julp u=-g Cp U

Zeigerbild des Parallelschwingkreises bei B, =0

Kapaczitiver und induktiver Leitwert bei Resonanz - Kennleitwert

CP
BC = _BL = ka = L_

p

mit [Bypl = 1Q71 =18

Frequenzabhdngigkeit der Blindleitwerte

mit o=x-®y und 0<x<o

Bp kapazitiver Bc=pr=u,Cp-x=ka-x

B Wechselstrom- ’ /
C leitwert /
B'L i \

C
= o|E = Byp -
W, Cp ‘jlp kp | Bp=Bc+By =f(x)
0
LI - N
FYPR [P

induktiver Wechselstromleitwert
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relative Verstimmung Vp

1 .
Bp=ka~(x—;j:kaovp mit Vp=EX-—=-—-—=———>

zB. o=2w0) vp :1%:1,50 z.B m—%mo Vp :—1%:—1,50
m:3w)vp:2%:2ﬁ7 wz%wo vp =22 =-2,67
®=40) vy =33=375 o=1mg vy =-33=-375
®=500 vy =47 =480 o=1wy v, =-4%=-4380
normierte Verstimmung
Y, G,+j'B B B
—_p:u:1+j._p:1+j.ﬁ.vp =1+j-Qp vy =1+j-V,
Gp Gp Gp Gp
G, )
R als Kreisgiite, Giitefaktor oder
mit Q, = Bip I Resonanzschirfe des Kreises
p
p Gp
! £ f . .
und Vp, =Qp v, =Qp - X — <) Qp - g ~7 | alsnormierte Verstimmung
Bandbreite

Die Bandbreite eines Parallel-Resonanzkreises ist gleich der Differenz der Grenz-
frequenzen fgp und fy;:

Af= fg2 - fg]
mit und i fg2
Via=Qp vgr=+1 Yp2
p2 p Vg2 |¥p1| _ |Xp2| _ \/5 —q_
Vo1=Qp Vg =-1 "= 7757~ V2
p p
45° f
0 o
und 4,5° 1 r
o2 = £y - T,
0 gl " tg2 Ip1 Vp1
Je groBer die Kreisgiite Q. = 1 fp o Gp
Qp ist, umso kleiner ist P |Vpg| A Ao - ﬂ fg1

die Bandbreite Af:
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Frequenzabhdngigkeit der Spannung und der Stréme

U - I - I
2 G2+Bk2'\/2
\/Gp2+ka2-(x—1) \/ P p” " Vp
X
I x-1 x-1
. =
2
1 1 42
| x = 2V
\/p2 ( xj \/Qp
I I

Die Resonanzkurven fiir U, I¢ und Iy des Parallelschwingkreises entsprechen den Reso-
nanzkurven fiir [, U, und U¢ des Reihenschwingkreises.

Parallelschaltung verlustbehafteter Blindwiderstinde

1 I
I =Cr lLl’ = ey I¢ IaL
_u RCI‘ RLr ‘ R
1 L j |
Jo cr]— Jwlp JUCP
© C
1
R R . oC ol
1= Cr : 5 Lr — +] r : _ 5 r — . I_J
RCr2 + RLr + O Lr RCr2 + RLr + O Lr
2Cr2 O)ZCrZ
Parallelresonanz oder Stromresonanz
Resonanzbedingung: Resonanzkreisfrequenz:

oL, _ oC;
Rp,? + 0’L,?
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Praktischer Parallel-Resonanzkreis

mit Re,=0:
o—y o
Rir
1 == = RLp[] 1:; I
wC ; L.
Jwlp }er jUCp jULp
o—rt

komplexer Leitwert:

R . L 1 . 1
‘—{p:%ﬂ(@cr‘ e 2J: SR R e
Ri“ + o°L; Rp“ + o°L; Rip oL

Resonanzkreisfrequenz:
5 2
op = L RG] _[Ruj
\/chr Lr chr Lr
Giite:
By L
Qp__p:RLp'mOCp: ro_
Gp Rercr
mit G, = | 1 und Byp = C
P L T Rw. kp — @0 ~p
Ry Rpp
komplexer Widerstand:
. 1
(RLr + Jer) T
Z= JO‘)CI'
Ri; + joL, + ;
joC;
7 = Ry i L.d- (oerCr) - Rercr

+ ]JO©
(1 - merCr)z + ((DRLrCr)2 (1 - (’)ZLrCr)z + ((DRLrCr )2
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4.6 Spezielle Schaltungen der Wechselstromtechnik

4.6.1 Schaltungen fiir eine Phasenverschiebung von 90° zwischen Strom und
Spannung (Band 2, S.123-126)

Hummelschaltung
L R julet 1, Rr2 julr2
o——r—-:]—-—j—v—-l:—-—°
Lp Rp
L SRS 4
Uy Uz

=

Zwischen dem Spulenstrom i; und der anliegenden
Spannung u besteht die Phasenverschiebung
von 90°, wenn

_ ®® Ly Ly =Ry -Rpp

R

p
Ry +Rpp

Polekschaltung

14 R Jule 1, Rrz julr2

o — - — - C - Ry +Rp
p
I b ——1?— Yz o’ (Ly1-Rpp + L2 -Ryp)
P M
ir
y

Briickenschaltung fiir eine 90°-Phasenverschiebung

Zy .
L Rer =1 jule K1

Zwischen dem Spulen-
strom i} und der anliegen-
den Spannung u wird eine
Phasenverschiebung von
90° erreicht, wenn folgen-
de Bedingung erfiillt wird:

(R2 + Rr) ) (er + R3) - 0~)2LrLr1
R2 + R3

Ry + R+ =0
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4.6.2 Schaltung zur automatischen Konstanthaltung des Wechselstroms —
die Boucherot-Schaltung (Band 2, S.126-127)

L4 A Z,-U
— I = Z,-U
DLy + 215 (4 + 2)
g L 43 Soll I unabhiingig vom komplexen Widerstand Z3
I I3 sein, dann muss Z3 - (Z; + Z) Null sein,
¢ ' d.h Z+Z,=0:
! !
R1+R2£0 und XlJerﬁO
Realisierung:
(] , 1
Zy+Zy=j|———=+0L|=0 Zi+Zy=j|ol-——|=0
oC oC
o .
mit — = oL mit oL = —
o ®
[« PO
¢ c

4.6.3 Wechselstrom-Messbriickenschaltungen (Band 2, S.128-135)

Grundsdtzlicher Aufbau und Abgleichbedingung

Z _Z3
Zy Z4
oder
Z _Z3
——=5— und Q- =3 -4
Zy Zy4 A
Vergleich von Wechselstromwiderstinden | I
gleicher Art: verschiedener Art: u
R _Zy R_Z
Ry Z4 Z, Ry
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Kapaczitdts-Messbriicke:

Ry _
R,

joCq _Ca C:C3:C4R—2

joC; Gy Ry

Wechselstrombriicke mit
verlustbehafteten Kondensatoren:

g oRig Ripg (R Lo
Ry~ Ry Rz JoCry joCy3
R R
Rr3 :Rrx :_er4 Cr3 =C 2C
2 Ry

Maxwell-Wien-Briicke:

. R .
Z3 =Ry3 + jol;; = —Ry + joRR4Cp)
sz
R
Rp3 =Ry = —Ry

L3 = Ly = RR4C

2
Ry P
Illiovicibriicke:
R
Ry = -%(R3 +Rs)
Ry
Rs
Ly =CRyRy-|1+—
rl 2R3 ( R4 J
Andersonbriicke:
R
Ry = —2. Rj
Ry
R R
Lrl = CR2R3 . 1+—5+ >
Ry R,

R Ry
T 1':_—‘
1L 1
ll.] LI
jwC3 Jwly
)é—-i}—{}——«
jw C3 Rrd JwCr4
Ry
-1
JUCPZ
Re3  jwlr3 Ry
—_1— . 1}
) e
r—‘:—- S
Rr1 juwlp Ry
{1
R3 [ Rs 1 R4
jwC
]
)
! )\
— - -
Rr1 julp Ry
if
1
R3 Rs E
Ry
]
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Schering-Messbriicke
1 1 R C
Rpp +- = LRy B
JoCry  joCy Ry Cy4
Cp3 Rp3
R., =R, .-—P> Coh =Cy P2
r2 1 Ca r2 4 R,
Tangens des Verlustwinkels: j
Ura I Rr2 r
tand, = w-R;y -Cpp = (D'Rp3 'Cp3
"Pr lp!‘
A 5
1
Yea jut;
Up Z,
Zeigerbilder
Frequenz-Messbriicke nach Wien: Ry Ry
1 ° —

R; Ry C . 1

—1=—r3+i4+_]0)Rr3Cp4 +—

Ry Rps GCis JoRpaCrs3 1 R
Ry R;3 Cp4 1 Rr3  jwC,3
—=—+——  oRpCy=—"—— ——1—]

Ry Rps G ©Rp4Cr3 1
1 jwCps
w =

[}
\er3Cr3Rp4Cp4 o=

{==d

Wien-Robinson-Briicke:
R1:2'R2 Cr3:Cp4:C Rr3:Rp4=R

w=—-
R-C

Der Messbereich der Frequenz-Messbriicken umfasst Frequenzen f von 30Hz bis 100kHz.
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4.7 Die Leistung im Wechselstromkreis

4.7.1 Augenblicksleistung, Wirkleistung, Blindleistung, Scheinleistung und

komplexe Leistung (Band 2, S.138-

Wechselstromleistung
p=u-i

1T 1 2n
p —¥'([p(t) = { p(ot) - d(ot)

160)

Augenblicksleistung

der arithmetische Mittelwert
der Augenblicksleistung,

Wirkleistung

Leistung im ohmschen
Widerstand i _p_ e 0 T
p=U-I-(1-cos2mwt) 7
2
P=U.1=R.-12 = n I
Soc oY wt
.
Leistung und magnetische |
Energie im induktiven S P- B e "\‘-L °
Widerstand \u A L WS ." \. .’ \

2 \ “m f 7] \‘
p=u-i=U-1"sin2et %"'T' -__l___ = ___\‘__ Ul
p=oL-12-sin 20t |\“t\ “‘\

P=0 \ P\
. L-i2 0 /) n
Wm > / < i wt
LIZ T R e o e == -UI
m=" -(1-cos2mt) bmipest Rl

Leistung und elektrische
Energie im kapazitiven
Widerstand

p=u-i=U-1"sin2mt
p=oC - U2 sin 20t

P=0
w :C-uz
)
C-Uu?
We = —cos2mt)
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Augenblicksleistung eines beliebigen Wechselstromwiderstandes
Wirkleistung, Blindleistung, Scheinleistung
Mit u=0-sinwt mit ¢,=0 und i=1- sinflot—@) mit Q;=Qu—P=—0
p=u-i=U-T-cosp—-U-1-cosot— )
p=P—-S:cos Qut— )
p=P-(1—cos2mt)—Q - sin 2wt

Wirkleistung Blindleistung Scheinleistung Leistungsfaktor

P=U-1-coso Q=S-sing S=U"1 P

. . . cosp = —

in W in Var in VA S
Beispiel:

Strom, Spannung und Augenblicksleistung fiir einen verlustbehafteten induktiven Wechselstrom-
widerstand fiir die Phasenverschiebung ¢ = /3 bzw. 60° :

LTR A T

‘i
P=UIcosy \\\ / }// \\ \\j Zn\/ ;
/) \

/
V4
0
—_—

U-I1 n
L. "-\*\— a b sl -—\~; wt
9
P>0
Zerlegung der Augenblicksleistung in einen Wirkanteil und einen Blindanteil
2 N 7INT 2P
/ / UHINIS/TTTN Pit-cos 2uh)
0 — 0
—
wt
2 8 T FREFFFERE RS AFFERE @
, / \ NERRY
0 0 -Q-sin 2wt
y / of
e NN AL -
3
2 p=P{1-cos 2wt)
/ / -Q-sin 2wt
1 P
0 0
e
-1 wt,
I

- -W2 0 n/2 n 3/2m 2rm  5/2n
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Reihenschaltung:

1 Rr Jxl"
o "1}

—_— —
Up Uy

—_——
u

P=1-(U-coso)=1-Ug

P=12"R,

Q=I1-U-singp)=1-Ux

Q:IZ'Xr

Q=12 oL,

Parallelschaltung:
Rp =1/ Gp

Wirkleistung

P=U-(I-cosp)=U"I
2
P=U2'Gp=U—
p

Blindleistung

Q=U-(I-sing)=U-(-Ip)

= 2.
Q=-U2-B,

induktive Blindleistung

kapazitive Blindleistung

1
Q_UZ._
oaLp
Q=-U% 0C,

Scheinleistung

S=U-1=12"Y,

S=U2-/G,? + B2

induktive Scheinleistung

S=uZ?. %+ 21 5
Rp O] Lp
S=U? —R12+(D2C2



4.7 Die Leistung im Wechselstromkreis

119

Komplexe Leistung
s=u-I’

mit U=U-el®n und I =1-¢7i%i

S=U-I-el®u-9i) =§.eci¢

mit S=U-1 und ¢o=0¢,—¢;

S=S-cosp+j-S-sing=P+j-Q

mit P=Re{S} =S-cos¢ und
Q

und tan @ = T und

wenn der Strom I gegeben:

12

s=z-P

IN

Giitefaktor Verlustfaktor

Q| 1 P
=t = d=—=t o=
g=tan@ P . an |Q|

Reihenschaltung

~tan =l
g=tan @ R

fiir Spulen:

()
gL =tan ¢p =
Lr

dp =tan o =

ja Z

Leistungsdreieck

Q=Im{S)=S " sin@
S=|8|=yP2 + Q2

wenn die Spannung gegeben:

2
S= =Y U2
z

Parallelschaltung
[yl
g=tan p =——
GP
d=tand=—"-
By |
Ry,
g = tan g =—
oL,
oL,
dp =tan oy, =———
Lp

fur Kondensatoren:

1
(DRCrCr
dc =tan §c =R, C;

gc =tan oc =

gc = tan ¢c =R, Cp

dc =tan ¢ = !

(DRCpCp

mit dem Verlustwinkel d=7/2—| ¢ |
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4.7.2 Die Messung der Wechselstromleistung (Band 2, S.161-166)

Messung der Scheinleistung

(L]

~N
(o=

Spannungsrichtige Messung

c ®
R 1
NO) z L]
O~

Stromrichtige Messung

Messung der Wirk- und Blindleistung mit elektrodynamischem Leistungsmesser

Imess

P

t—

N
J
c

Spannungsrichtige Messschaltung

juwlr2

O

Blindleistungsmessung
mit der Hummelschaltung

R
. e ol
/
Rx Li=1
R z
I
O

Stromrichtige Messschaltung

Blindleistungsmessung
mit der Polekschaltung

<
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Messung der Wirk- und Blindleistung mit der Drei-Voltmeter-Methode

i O

_ U - (U2 +U5?)

P_
2R,
2 (a2 2
coscp:Ul (U~ +U57)
2-U, Uz
2
U U2 — (U2 + U2
Q=—2.lu2-|= (U 3%)
R, 2-U,

Die Innenwiderstédnde der Spannungs-
messer miissen so hochohmig sein, dass
die durch sie flieBenden Strome ver-

= nachléssigbar klein gegentiiber den
Strémen durch die Widerstande sind.

Zeigerbild:

Messung der Wirk- und Blindleistung mit der Drei-Amperemeter-Methode

O—r—
T &
22 p
L4 I3 z
)
1 \\J,
>0
U

Die Innenwidersténde der Strommesser miis-
sen so niederohmig sein, dass die an ihnen
abfallenden Spannungen vernachléssigbar
klein gegeniiber den Spannungen an den
Widerstdnden sind.

P 2
cos @ = L2 - (1 +15%) Zeigerbild:
2-1 13 }RB mit Ipg=I3cosy
2 T}
Q=L R, |15 —(Ilz — (1’ +I32)J lgs
2-1p mit -IB3=I3'Sin‘?
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4.7.3 Verbesserung des Leistungsfaktors — Blindleistungskompensation
(Band 2, S.167-174)

Zeigerbild der teilweisen

Zeigerbild der teilweisen
Reihen-Kompensation

Parallel-Kompensation

<
=X
o
"
=

Zeigerbild der vollstdndigen

Zeigerbild der vollstindigen
Reihen-Kompensation

Parallel-Kompensation

Fiir die vollstandige Kompensation ist

P . .
C=———— mit Ug=Ug C, =1 e
- Uk - tan@ o - Ugp?

mit UKp =U

Die Spannung U bzw. der Strom I werden vermindert auf

Ugr=Ur=U"cos ¢ Igp=Ir =U/R,

Wird bei der Reihenkompensation Uy, = Ur auf die Netzspannung U erhoht, dann ver-
groBert sich der Strom von Iy, = Ur/R; auf Ix,= U/R,.
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4.7.4 Wirkungsgrad und Anpassung (Band 2, S.174-183)

Wirkungsgrad
Pn Py mit  PN:  genutzte Wirkleistung
n= Pyes TPy +Py Pges:  zugefiihrte gesamte Wirkleistung

Py: Wirkleistungsverluste

Wirkungsgrad und komplexe Anpassung im Grundstromkreis
Grundstromkreis mit Ersatzspannungsquelle:
P, 1

n_Pa+Pi B

l+&
R,

_ Ug? R,
YR+ R+ (X +X,)2

=Ry, X,)

Anpassungsbedingung:
Z, = ZT

mit Ry +jX,=R;—jX; oder Z, -elPa =Z; -e i

2
p,— o
4.R;
Grundstromkreis mit Ersatzstromquelle: I
I; -
po P 1 g *
R;
U2 I,2-G
P,=—=U2-G, = 9 a =f(G,,B,)
Ry (Gi +Gy)? +(B; +By)?
Anpassungsbedingung:
Y. = Xi*

mit G, +jB,=G;—jB; bzw. Y, ePa=Y; ¢I®i
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5 Ortskurven

5.1 Begriff der Ortskurve (Band 2, S.186-188)

Allgemeine Ortskurvengleichung
Atp-B+p>-C+p’-D+..
A+p-B +p2-C'+p3-D'+..

0= p ein reeller Parameter

Ermittlung der Ortskurve

Jeder Punkt der Ortskurve konnte fiir ein gewdahltes p errechnet und in der GauB3schen Zah-
lenebene eingetragen werden. Die Punkte verbunden ergeben die Ortskurve. Bei Ortskurven
hoherer Ordnung bleibt auch nichts anderes {ibrig, als die Ortskurve auf diese Weise zu
ermitteln, weil sie nicht konstruiert werden kann.

Sind die Ortskurven einfach wie Geraden, Kreise und Parabeln oder handelt es sich um
iiberlagerte einfache Ortskurven, dann sollten die Ortskurven nach Konstruktionsanleitun-
gen konstruiert werden.

Bei der Uberlagerung von einfachen Ortskurven werden zunichst die einfachen Ortskur-
ven konstruiert und anschlieend die Zeiger fiir gleiche Parameter p iiberlagert.

Bei der Ermittlung einer Ortskurve sollte nach folgenden Schritten vorgegangen werden:

1. Ermittlung der Gleichung fiir die GroRe, fiir die die Ortskurve ermittelt werden soll.

2. Einfiihrung des Parameters p in den variablen Teil der Grofe, wodurch sich die
Ortskurvengleichung ergibt.

3. Konstruktion der Ortskurve, falls es sich um eine einfache Ortskurve oder um {iiberla-
gerte einfache Ortskurven handelt.

Gerade: G=A+p'B
. 1 1
Kreis durch den Nullpunkt: K=—=
G A+p-B
Kreis in allgemeiner Lage: K= Aer'B=I_4+ !
C+p-D E+p-F
Parabel: P=A+p-B+p?-C
. 2.
zirkulare Kubik: o-A+pBrpC_ o g, 1
- D+p-E - D E
7+p.7
F °F

(Das ist die Uberlagerung eines Kreises mit einer Geraden.)
oder

Berechnung der einzelnen Ortskurvenpunkte bei Variation des reellen Parameters p. Hier-
bei geniligen meist einige Ortskurvenpunkte fiir ganze p, um der Verlauf der Ortskurve zu
erkennen. Zwischenwerte der Ortskurve fiir gebrochene p-Werte lassen sich nachtriaglich
errechnen und in das Ortskurvenbild eintragen.

© Springer Fachmedien Wiesbaden 2015
W. Weillgerber, Elektrotechnik fiir Ingenieure - Formelsammlung, DOI 10.1007/978-3-658-09090-6 5
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5.2 Ortskurve ,,Gerade* (Band 2, S.188-192)

G=A+p-'B p=b
mit —oco<p<owm
. p=3
speziell: p=2
Q=A+(p—lj-g o1
p 6 p=0
mit 0<p<ow
P B A p=-1
Konstruktionsanleitun
g p=-2N

Zuerst werden die Zeiger A und B ge-
zeichnet, dann wird parallel zum Zeiger B eine Gerade gezeichnet und schliefSlich wer-
den mit der Lénge des Zeigers B die Parameter p=0, = 1, + 2, £ 3, ... eingetragen.

Kann der Parameter p nur Null und positive Zahlen annehmen, dann besteht die Ortskurve
aus einer entsprechenden Teilgeraden. Bevor die Ortskurve gezeichnet wird, sollte iiber-
priift werden, ob der Parameter auch negativ werden kann.

5.3 Ortskurve ,,Kreis durch den Nullpunkt* (Band 2, S.193-206)

1 1

Ke—r=—— . p=1
G A+pB j

mit —oo<p<o B

speziell

kol
G

A+(p—1)-B
p

mit 0<p<ow

Konstruktionsanleitung 4
1. Zeichnen der Nennergeraden
G=A+p'B

2. Spiegelung der Nennergeraden
an der reellen Achse ergibt

3. Zeichnen der Senkrechten auf der gespiegelten Nennergeraden G*, die durch den
Nullpunkt verlauft.

4. Berechnen von 1/(2A), Festlegen des Maf3stabs fiir 1/(2A) und Zeichnen der Senkrech-
ten auf A" im Abstand 1/(2A). Die Festlegung der Lénge von 1/(2A) bestimmt die
Grofle des Kreises.

5. Schnittpunkt der beiden Senkrechten ergibt den Mittelpunkt M des Kreises.

Zeichnen des Kreises mit dem Radius MO .

6. Bezifferung des Kreises mit den Parameterwerten p entsprechend der gespiegelten

Nennergeraden G".
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5.4 Ortskurve ,,Kreis in allgemeiner Lage* (Band 2, S.207-209)

k-a*pB_, 1
~ C+p-D = E+p-E

Konstruktionsanleitung

1. Errechnen des Zeigers N=A — =N-.elv

|&

les!

2. Errechnen und Zeichnen der Nennergeraden G :% +p- % =E+p-

*

Spiegelung der Nennergeraden an der reellen Achse ergibt G™ = E*+ p-E

4. Zeichnen der Senkrechten auf der gespiegelten Nennergeraden G*, die durch den
Nullpunkt verlauft.

5. Berechnen von 1/(2E) = N/(2C), Festlegen des Mafstabs fiir 1/(2E) und Zeichnen der
Senkrechten auf E* im Abstand 1/(2E). Die Festlegung der Lénge von 1/(2E) be-
stimmt die Grofe des Kreises.

6. Schnittpunkt der beiden Senkrechten ergibt den Mittelpunkt M des Kreises. Zeichnen
des Kreises mit dem Radius MO .

7. Bezifferung des Kreises mit den Parameterwerten p entsprechend der gespiegelten

Nennergeraden G™.

*

W

. B . .
8. Errechnen des Zeigers —L = — E und Verschieben des Koordinatenursprungs um —L.

5.5 Ortskurven hoherer Ordnung (Band 2, S.210-214)

Ortskurve ,, Parabel
P=A+p-B+p?-C

Sie kann entweder aus der Geraden
A +p-B und dem Anteil p? - C
oder aus der Geraden A + p? - C
und dem Anteil p - B durch Uberla-
gerung der Zeiger zusammengesetzt
werden.

Ortskurve ., Zirkulare Kubik*
A+p-B+p?-C

0=
B D+p-E
1 .
O=R+p-S+———  mit
- - D, E
FoP F

Wird also die Ortskurvengleichung in der allgemeinen Form erkannt, dann muss diese
zuerst in die Summenform der beiden Ortskurvengleichungen iiberfiihrt werden, ehe die
Konstruktion erfolgen kann. Dann werden der Kreis durch den Nullpunkt und die Gerade
getrennt konstruiert. AnschlieBend werden fiir gleiche Parameterwerte die jeweiligen bei-
den Zeiger durch Addition der Realteile und Imaginérteile iiberlagert.
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6 Der Transformator

6.1 Ubersicht iiber Transformatoren
(Band 2, S.218-219)

1. Transformatoren der Starkstrom- oder Energietechnik — die ,,Umspanner*

2. Niederfrequenz-Transformatoren (NF-Transformatoren) — die ,,Ubertrager der Fern-
melde- und Verstarkertechnik

3. Hochfrequenz-Transformatoren (HF-Transformatoren) fiir Anpassungszwecke.

6.2 Transformatorgleichungen und Zeigerbild

(Band 2, S.220-230)
Transformator mit gleichsinnigem Wickelsinn und Belastung mit einem beliebigen Wech-
selstromwiderstand, speziell bei induktiver Belastung

oder
%2 3y
i o —
e I
Uy 1 "ul “mt RINEELE RN o @
4 u §12~\\1 ' f‘_" b 1s
W | | uslu L u b
"oy N 8. L I R m._/ .
p = 21 1 >1 wa
U, yu %2 §Zs |
2 Y )UMf 24 o—e——11] %,
]
- 1
12
§=§12‘§21
S di dis
up =uRy +tup —upm =Ry g +LIE_M21_dt

. di,
Uy =-ugp —upz +ume =Ry iy _LZE"‘MIZE

. di
u2=R~12+Lﬁ

, R, Z=R+jolL =2 ei®
o I 1
Rip - mit Z =+/R2 + (eL)?
L"] _ jwly
Ypg=Upy
und ¢ = arctan (oL / R)
L

Ersatzschaltbild des Transformators
Uy =Ugri +UpL —Uwi =Ry - L+ joL; - I, - joM - I,
Uy =-Urz = U2 +Umz =Ry - I, — joLy - 1) + joM - 1)
Uy =R+jol) I, =2Z-1,

© Springer Fachmedien Wiesbaden 2015
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128 6 Der Transformator

Zeigerbild des Transformators

Reihenfolge der Darstellung:

passiver Zweipol:
I, (ist gegeben oder wird gewéhlt)
U=Z-h=2-¢%1

Maschengleichung des Sekundérkreises:
Ura =Ry - 1, “jwhiy

Up, = joly - 1,
Um2 = Uy + Ry - L)+ joLy - I,
Umz = joM - I

Primérstrom:

Zeigerbild des Transformators
I == M mit gleichsinnigem Wickelsinn
Jo und induktiver Belastung

Maschengleichung des Primérkreises:

_Um2

-Umi =-joM - 1,

Uri =Ry -

Up = joly - 1

Uy =-joM 1L, + Ry - Lj + joL; - I

Transformator mit gegensinnigem Wickelsinn und Belastung mit einem beliebigen Wech-
selstromwiderstand, speziell bei induktiver Belastung

oder ?12 QZ?

r 1 -
[j r 1 ) ‘ |1 3
2] W 2s
T“z "Lzlunz Ttl: i 33

i2

23,73y

IC

URZ

| By

jwM

Uy =Ry L+ joL; - I, - joM- I,
o we Um “"L‘ ""LZ uLz Uy 21 |2 Uy =Ry L-joLy - L+ joM- I,
U, =R+joL)-I,=2-1,

4

Ersatzschaltbild des Transformators
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Leerlauf am Ausgang des Transformators

Ly juM =0 L
R R
|l | =] s
Y u u
1 jul, july =2 =
ij1
o =
Eingangwiderstand
Ry-1y _.
U . Up=jwM-I4 €
(Zin)1,_ = Zin1 == =Ry + jol oL
l1 Zin( July
jwlyly
Uberset haltni "1
ersetzungsverhiltnis N . .
ZUngsv Zeigerbild Widerstandsdreieck

2 2
g & — 1 & — (&j + (ﬁ\] . eJ-arctan(-Rj/wLy)
[_Jz M oM

- M oM

2
e
Ul M ol
wobei tan g = R
oL

Wird R; vernachléssigt, dann ist

U _L

e
wird zusétzlich der Kopplungsfaktor k = 1 betréigt, dann ist

U _w

[

Spannungsverhdltnis und Eingangswiderstand des Transformators mit Z =R

U, 1

U ((R+R2)-Ll +R, -L2j+ [ @(LiL, -M2?)— (R +Ry) R,
MR ! oM -R

2N2 2N 2
Zm_ 1+ OJM(R+R2) +j0)' L]— (,0ML2
(R +R»)? + (wLy)? (R +R»)? + (wL,)?
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6.3 Ersatzschaltbilder mit galvanischer Kopplung
(Band 2, S.230-236)

Ersatzschaltbild mit Ly — M und Ly — M

I Ry jullyM) jully=M) Ry

Uy =Ry L+ jo(L; =M)- L; + joM - (I; - 1,)
Uy =-Ry - L —jo(Ly ~=M)- L, + joM - (I, - 1))
U,=2-1,

Ersatzschaltbild mit Ly —M'" und Ly — M’

Iy Ry Jully=M) jully-M) Ry I

I~

<
=
[y S —
1ot
My
=
1 €
I
S X
Jo—t
A5
.
(=4
N
—
i

Uy =R; - L+ joL; -M)- L+ joM - (I; - 1,)
Uy =Ry - L —jo(L, -M) - L+ joM - (I, - 1)

Uy=2"1,

mit den reduzierten Groflen

Uy =i-U Ry =% Ry
1 ,

L==1 L, =i? L,
u

M =ii-M zZ =i2-Z,

wobei ii beliebig gewahlt werden kann (in vielen Fallen i = wi/w»).
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Ersatzschaltbild mit Streuinduktivitdten

I, Ry julgg julys Ry I
jU01L1 jwozL‘2
Uy i juM ) L] z'
I L-Ip=1y Iy
Oo—=

U =R; - L+ joLi - L+ joM - (I, - 1,)

IC

Uy =21,

mit dem Magnetisierungsstrom

I

L=L-1,

und den Streuinduktivititen
Lls = Ll —M' = 0] 'Ll

L'25 :va—M':G2'L'2

Ersatzschaltbild ohne Lingsinduktivitit Ly — M’

2 =Ry L—jol)g 1)+ joM - (I - 1))

. (ﬂ)?R L2,
1 R4 jwoly L/ 72 M =2
o——{ il 3
jwk2L H
Yy JWi 0, % [ M
jwli-0)L4 L2
L2 L2
Ly L-w L 'k
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6.4 Messung der Ersatzschaltbildgrofien des Transformators
(Band 2, S.237-241)

GroBen des Ersatzschaltbildes:

R jwM R2
Ry, Ry, Ly, Ly —
und M, =My =M juiy j‘*’LZ
° —0

Messung der ohmschen Spulenwiderstinde Ry und Ry mittels Gleichspannung:

R, =—L Ri | [« R
(o0 -0
[1=0 1
U
R, = =2 Ry . . R2
12 U2
o O

Messung des primdren Leerlaufwiderstandes Z,] (Leerlauf-Eingangswiderstand Z, |)

und des sekunddren Leerlaufwiderstandes Z»j (Leerlauf-Ausgangswiderstand Zyy])
mittels Wechselspannung

U . .
2y =Zin = I—l'e”’l =R; + joL,
1

U U . Yy
RI:—1~coscp1 L1:—1~sm(p1
I] &)I]
U, . : i I
2oy = Zows=—>¢192 = Ry + joL, Jurt :
12 R1 ° i RZ
U, U, . jwl jul Y
R, =—=.cosqpy; L, =—="sing, L 2
12 0)[2
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Messung der Gegeninduktivitit M bei konstanter Permeabilitit y mittels
Wechselspannung:

1. Messung der sekundéiren Leerlauf Spannung und des Primérstroms

j ! i Lz=0
Uy = joM-1, 5 juM
Rq . |, Ry
U
. Uj ) U
M = _Jﬁ =ﬁ-eJ((Pu2—(Pil—Tf/2) Jwlg jwl,

2. Ermittlung der Gegeninduktivitit M durch Messung des Widerstandes der Reihen-
schaltung und Gegenreihenschaltung der beiden Spulen des Transformators

I I

i JwM i =
R1 ° - . RZ
july july R

1 1 ! =4
> jwley

Jo—

I
<

jwlp

Zy =

:%eiwu—%) =R+ joLy =Ry +Ry + jo (L + Ly —2M)

= I

mit R=R1+R2und Lpo=Li+L,-2M
Die Gegeninduktivitét ldsst sich mit der Formel
j 1
M=——L(Zy = Z) = — (X~ Xp2)
4o 4o

berechnen.
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6.5 Frequenzabhingigkeit der Spannungsiibersetzung eines
Transformators (Band 2, S.242-246)

Voraussetzungen: . )
& I Ry jwoly 12
R,=0 ! !
2 I ju(1-k2)L1| l
- jwit-o)y, M 2
_M 2} T (Ll)R
u=- L-#1 2
L2 ' =T M !
U, 1

Bezugsfrequenz:

R R,

Oy =, |[————
0 G'Ll'Lz

Bandbreite:

Af= fg2 - fgl

obere Grenzfrequenz:

2.
o - 1 (k R+&j

_2TE'G. L2 L1

untere Grenzfrequenz:

1.t
2 k2L Ly
R, R

fg1

Ortskurven der frequenzabhingigen Spannungs-
verhéltnisse von Transformatoren (Ubertragern)
zur Ermittlung der Bandbreite
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7 Mehrphasensysteme
7.1 Die m-Phasensysteme (Band 2, S.249-256)

Mehrphasensysteme oder m-Phasensysteme

Ein Mehrphasensystem ist ein Wechselstromsystem mit mehr als zwei Strombahnen, in
und entlang denen die elektrischen und magnetischen Gréfen mit gleicher Frequenz,
mit gleichen oder angendhert gleichen Amplituden, in vorgegebener Phasenfolge mit
gleichen oder angenéhert gleichen Phasenverschiebungswinkeln verlaufen (DIN 40108).

Mehrphasensysteme sind also die Mehrphasengeneratoren, die belastenden Widerstéinde
und die sie verbindenden Leitungen, also die Gesamtheit der Stromkreise.

Operator des m-Phasensystems

Mit dem Drehzeiger a = e J% = ¢~ I"2/m |agsen sich benachbarte Spannungszeiger und
Stromzeiger entsprechend der Nummerierung ineinander iiberfiihren.

Fiir ein Dreiphasensystem ist der Operator mit m =3
a=cd2m3 =i 120° = co5 120° —j - sin 120°=—1/2—j - 1/2- /3

Verkettete Mehrphasensysteme

Um eine Sternschaltung eines Mehrphasensystems handelt es sich, wenn sdmtliche Strén-
ge (Phasenwicklungen) an einem ihrer Enden in einem Sternpunkt N zusammengeschlos-
sen sind. Die an den Spulenklemmen anliegenden Spannungen uj, uy, ..., Uy heilen
Strangspannungen ugt, die im einzelnen mit ujy;, usN;, ..., UyN bezeichnet werden.

Eine Ring- oder Polygonschaltung eines Mehrphasensystems liegt vor, wenn sdmtliche
Strange (Phasenwicklungen) hintereinander geschaltet einen geschlossenen Ring ergeben.
Die an den Generatorspulen anliegenden Spannungen uy, up, ..., Uy sind dann gleich
den AuBenleiterspannungen up;, die im einzelnen mit ujp, U3, U34, ..., Up_|m» Um
bezeichnet werden. Fiir ein Dreiphasensystem heifit die Ring- oder Polygonschaltung
Dreieckschaltung.

Die Verbindungsleiter der Auflenpunkte des Generators und der AuBenpunkte des
Verbrauchers heillen Aufsenleiter, die mit L1, L2, ... , Lm bezeichnet werden.

Zwischen einem Mehrphasengenerator in Sternschaltung und einem Mehrphasenverbrau-
cher in Sternschaltung heiit der Verbindungsleiter zwischen den Sternpunkten Stern-
punktleiter oder Neutralleiter, der mit dem Buchstaben N gekennzeichnet wird.

Stréme und Spannungen _ _ . m
der Stern-Stern-Schaltung Ie=Ist ULe=2-Ust: smg
Strome und Spannungen .n _
der Polygon-Polygon-Schaltung 1Lt =2 Ist- s ULe=Ust

Wirkleistung des symme- m
P=m: Ug - Ig - cosp =— Uy, - I14 -coso
2 -sin—
m

trischen m-Phasensystems

© Springer Fachmedien Wiesbaden 2015
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7.2 Symmetrische verkettete Dreiphasensysteme
(Band 2, S.256-266)

Sternschaltung
U Lzl L3
Ut Vi wi
COEEC—
w2 U2 V2 IN
) Sh—

Strangspannungen Ug;:
Ujn=Ug; - e =Ug  (Ujy reell angenommen)
Upn = Ug; - a=Ug; - €323 = Ug, - e7120° = Ug, - (—1/2 —j-12 - ﬁ)

Usn =Ug; - a2 =Ug; - e 343 = Ug, - e/'120° = Ug, - (—1/2 +j-12 ~\/§)

Die AuBenleiterstrome Iy ; sind Die Auflenleiterspannungen Uy ¢
gleich den Strangstromen Ig;: sind um das /3 -fache (/3 = 1,73) groBer
als die Strangspannungen Ug; :
Ipe=Igt mit Ie=Ig Up=2-Ug - sm — =3 Ug
das sind 11, 12 und 13 das sind U12, U23 und U31

U

U

Uyg=UqN-UaN =31
Uz3 Uz3=UaN-U3
U3q1=U3N-Ury

Zeitdiagramm und Zeigerbild der Auflenleiterspannungen und Strangspannungen
in einem symmetrischen Dreiphasensystem

IN=L+L+1 Sind Zy, Z,, Z3 gleich groB,
3
dannist In=I;+L+13=0

und ILt=II=12=I3=I
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Dreieckschaltung
(2 I
L L2f L3 Ip =
u
QV 2
| Ul Vi
" iwimi 1
u
w2 8u28v2 I3 1'23
w2
~ v2
W I23
3 L3 I
L1 Ly
Ui oder U1z
U3
N Uz3
Zeigerbild der
AuBenleiterspannungen U
Uz3
Die AuBenleiterstrome Iy ; sind Die AuBenleiterspannungen Uy ¢ sind
um das /3 -fache (\/5 = 1,73) grofBer gleich den Strangspannungen Ug;:
als die Strangstrome Ig; :
. T .
Ie=2-1Ig; sin= =3Iy Upt=Ugt mit Ugy=Ug;
das sind Ij, I, und I3 das sind Uj,, Ups und Uz,

Sind Ziy, Zo3 und Z3; gleich groB, dannsind Ij;=1;=1,=13=1

oder
1= 1pp-13
o & —eba— X e (o X =i I=h3-1y;
2n g bn -
0 3 "3 2 I3= 131 -Ip3

Zeitdiagramm und Zeigerbild der AuBenleiterstrome und Strangstrome

in einem symmetrischen Dreiphasensystem

Wirkleistung, Blindleistung und Scheinleistung der symmetrischen Dreiphasensysteme
P=3-Ug-Ig-cos o= x/g'ULt‘ILt'coscp
Q=3-UgIg~sing=~3-Up I sing
S=3-UsiIs = V3 Upe- I
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7.3 Unsymmetrische verkettete Dreiphasensysteme
(Band 2, S.267-278)

Vierleiternetz mit Generator in Sternschaltung und Verbraucher in Sternschaltung

Gegeben:
Strangspannungen des Generators Uy, Usn, Usn
komplexe Verbraucherwiderstinde Z, Z», Z3
komplexer Widerstand des Sternpunktleiters Zy

Gesucht:

AuBenleiterstrome I; I, I3 und Sternpunktleiterstrom Iy

Rechenschritte:
1. Berechnung der Spannung Uy iiber dem Sternpunktleiter nach

Un +22N +Q3N
Z Z Z
Ue = =1 £ £3
=N 1 1 1 1

ZN Zl Zz ZS

2. Ermittlung der Strangspannungen U}y, Usn, U3y
iiber den Verbraucherwiderstinden Z;, Z,, Z3 nach

[_JiN = Q]N _QN
[_Jva = HzN - QN

[_J'3N = H3N - QN
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3. Ermittlung der AuBenleiterstrome 1, I, I3 und des Sternpunktleiterstroms Iy nach

=R oSN 2N =~
Z, Z, I, VAN

I Usn _ Usn  Un
h Zy Zy  Z

Speziell:
Mit Zn=0 ist Uy=0, mit Ug =220V

[_JiN =Ujy =220V
Uhn = Uyy =220V -e737120° = (=110 - j-190,5)V
Usn = Uy = 220V -ei'120° = (=110 + j-190,5)V

= Uin
h=7
L - Uon
Z,
L - Usn
Zs

mit L +h+h=Iy
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Dreileiternetz mit Generator in Sternschaltung und Verbraucher in Sternschaltung

Dreileiternetz mit Generator in Stern und Verbraucher in Stern

Rechenschritte:
1. Berechnung der Spannung Uy iiber dem Sternpunktleiter nach

Un , U | Usy

Z Z, Zj

[N B R
=N 1 1 1
Z, Z, Zj

2. Ermittlung der Strangspannungen U}y, Usnund U3y

iiber den Verbraucherwiderstinden Z;, Z, und Z3 nach
glN =Un —Uy
[_J'2N =U,n - Ux
[_JéN =Usy - Uy
3. Ermittlung der AuBenleiterstrome I;, I, und I3 nach

I U I ~ Uiy I Uiy
i1 — 2 = =3 =
Z, Z, Zy
und Kontrolle der Aullenleiterstrome mit
L+L+13=0

4. Kontrolle der Rechenergebnisse mittels Zeigerbild
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Dreileiternetz mit Generator in Dreieckschaltung und Verbraucher in Sternschaltung

Uy, U
, z, z U,
Uin =57 L ==
Z, Z, 1L
Uy Up
Ly Z _Uxn
eNET T T kT
Z Z, I
Uz Uy
Ly Z ~ Uy
BT YT
Z, 7, Zj

mit [} +LHh+13=0

Zeigerbild des Dreileitersystems Dreieck/Stern
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Dreileiternetz mit Generator in Stern- oder Dreieckschaltung
und Verbraucher in Dreieckschaltung

L3 §
L1 I4 3

Dreileiternetz mit Generator in Stern und Verbraucher in Dreieck

I, = 212 I, = =2 I = 2!
=7 =7 Li=7
Zyp 2y 23
U U
=1, - I3 =E—12—E—31
Ly L3
U U
L=1s -1 =E_23—E—12
Lyy Iy
U U
=15 -1y 22—31—2—23
L3 Ly
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7.4 Messung der Leistungen des Dreiphasensystems
(Band 2, S.279-282)

Messung der Phasenleistung bei symmetrischer Belastung




144

8 Ausgleichsvorgange in linearen Netzen

8.1 Grundlagen fiir die Behandlung von Ausgleichsvorgingen
Ausgleichsvorgang (Band 3, S.1-3)

Der Begriff des Ausgleichsvorgangs ist von allgemeiner physikalischer Bedeutung:
Wird in einem physikalischen System ein stationdrer Vorgang durch einen Eingriff ge-
stort, so erfolgt der Ubergang von einem eingeschwungenen Vorgang in einen anderen
eingeschwungenen Vorgang nicht sprungartig im Anderungszeitpunkt, sondern stetig.
Dieser so genannte Ausgleichsvorgang zwischen zwei eingeschwungenen Vorgingen
wird durch das Zeitverhalten einer bestimmten physikalischen Grof3e beschrieben.

Ausgleichsvorgdnge der Elektrotechnik

Die héufigste Ursache von Ausgleichsvorgidngen in elektrischen Netzen sind die Schalt-
vorginge, das sind Ausgleichsvorginge nach dem SchlieBen oder Offnen eines Schalters
im Netzwerk.

Aktive Schaltelemente:
ideale Spannungsquelle mit R;=0 i i
dargestellt durch die Quellspannung: Uql uqml

fur Gleichspannung Uy fiir Wechselspannung u (t)

ideale Stromquelle mit G; =0,

dargestellt durch den Quellstrom: Iq iq(t)
fur Gleichstrom I fir Wechselstrom i (t)
Passive Schaltelemente:
ohmscher Widerstand R
up =R-ig und iR:%-uRzGMR iR '—U-Lb
R
Kapazitit C
ic=c. & g :l~ti ~dt +uc(0 i L.
C @ C=3 !; C c(0) C “C
Induktivitit L
. t
uL:L-d(;—tL und iL:%-guL-dt+iL(O) i Ly
L
Gegeninduktivitit M
u1=Rl~i1+Ll-%+M-ﬁ i, R % i

dt M o
. di, i ul Ry e R |
u; =Ry ip + L 'E+M'E 11 ULg* U l Ly ! !Lz l"LZ’ Upz l“z
o~ -0

© Springer Fachmedien Wiesbaden 2015
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8.2 Berechnung von Ausgleichsvorgingen
durch Losung von Differentialgleichungen (Band 3, S.3-29)

Zusammenfassung der Berechnung eines Ausgleichsvorgangs

Ein Ausgleichsvorgang in einem elektrischen Netz mit Gleich- oder Wechselspannungser-
regung und mit einem Schalter kann nach folgendem Schema rechnerisch behandelt wer-
den:

1. Aufstellen der Differentialgleichung bzw. Differentialgleichungen ab t=0
fiir den Strom ip, bzw. einer Spannung uc

2. Bestimmung des zu erwartenden eingeschwungenen Vorgangs fiir t — oo,
das entspricht einer Gleichstrom- oder Wechselstromberechnung
(Dieser Rechenschritt entféllt, wenn die Differentialgleichung homogen ist.)

3. Losung der zugehorigen homogenen Differentialgleichung mit dem eM-Ansatz
(fliichtiger Vorgang)
Bei Differentialgleichungen erster Ordnung kann auf den e*-Ansatz verzichtet wer-
den, weil die Losung immer K - e VT ist, wobei t aus der Differentialgleichung abge-
lesen werden kann:
7 ist gleich dem Quotient des Koeffizienten der Ableitung dividiert durch den Koeffi-
zienten der Stammfunktion.

4. Bestimmung der Konstanten mit den Anfangsbedingungen nach

ip(0-) =ip(04) =iLe(04) +irr(04)
uc(0-) =uc(04) = uce(04) +ucr(04)

und Einsetzen der Konstanten in die allgemeine Losung

5. Uberlagerung des eingeschwungenen Vorgangs und des fliichtigen Vorgangs zum
Ausgleichsvorgang
(Ist der eingeschwungene Vorgang Null, dann entfillt selbstverstindlich die Uberlage-
rung.)

6. Weitere Berechnungen, grafische Darstellungen der Zeitverldufe und dhnliches

Beispiel 1:
Ubergangsfunktion einer RC-Schaltung

Zul. Ry +Ry)-C-JC . —y | R, G
. 1 2 dt C :40 o,_E_'R }-—.—o

Zu2. uce=U t=0 1ot
Zu 3. (R1+R2)~C~d1:1ff+ucf:0 v U Ry [] K
ucr =K~ e mit t= (R +Rp)-C o —0 -0

Zu4. uc(0-) =uc(0+) = uce (0+) +uce(04)
0=U+K dh K=-U ucg=-U- et
Zu5. uc=ucetucg=U-U-e"=U-(1-¢eV7)

du_c— Ry .U.-et/t

Zu6. up =Ry-i=R,-C-: =—
2 2 2 dt R;i +R,
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Beispiel 2:
Einschaltvorgang einer Wechselspannung
Zul.

. . di,
Ry -1+Ry -ip +L—=u
11 L-1L at

mit
RL . iL + L%
ip =1 +1p =1 +
1 L 2 L R2
R . R
Ry+—--Rp +Rp [-ip +L-[ - +1
R2 R2
Zu?2.
. di . ) . . o
Rers~ Ie + Lers . % =u- sm(wt + (pu) Rers' ipe + JmLerS i, =10 eJ(mt'HPu)
i - eiotroy) © . (Ot o —0) .
1le = 2° B S b : - . el(0t+0y —¢)
Rerst joLers \/Rers2 + (0 - Legg )2 ZLeors
iLC = : Sin(Q)t + (pu - (P) = ,I:Le . Sin((,l)t + (PIC)

€18

. oL
mit @ =arc tan—= und Zg = \/Rer52 + (@ Lo )?

ers
Zu 3.
. i . L L X
Rers i + Lers - dize =0 ipp=K-elr 1=— bzw. ot= Qbers _ Alers
dt RCI'S Rers Rers
Zu 4.
ip(0-) =ip(04) =iLe(04) +ipf(04)
0=—"—sin(p, —¢) + K, K = = sin(gy — @) = ——— - sinpic
ers ers ers
N Zu 6.
A —t/t
irf =-— - 8in Qe - €
ers
Zus.

ip =ipe +irf

A

. 0 . :
ip = . [sm(wt + Qje ) — SIN Qje - e‘”q
ers
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Beispiel 3:
Entladung eines Kondensators mittels einer Spule
Zu 1. U
d? uc R duc 1 | —
‘Uc = 0 -Q © L —
a2 L dt L.C . R
24 u
d 5 E + ! -i=0 9 l C L I u
Zu?2. I T
UCe = 0 ie =0 ¢
Zu 3.
d? qu R ducf 1
. + ‘ucr =0
@ L d L.c ¢
2
eM-Ansatz: ucr = K-eM ducr _ gy on ducr _ g g2
dt dt?
.. . 5, R 1
charakteristische Gleichung: A+ — A+——=0
L L-C
12 :——+1f 2L =-3+48% —wy? =-8*x«
. R
mit K= 8 — o2 S = 5L Abklingkonstante
1 Resonanzkreisfrequenz
0y = —
0 JLC der stationiren Schwingung
fiir }\.1 # )\.22

entweder reell und von einander verschieden (aperiodischer Fall)

oder konjugiert komplex (periodischer Fall, Schwingfall)

ucr = Ky ceMt 4 Ky - ghat

. :C-dlcllif = Co (K - et £ Ky -0y - eh2t)

firhii=A =\
eine reelle Doppelwurzel (aperiodischer Grenzfall)
Variation der Konstanten: ucy = K(t) - eM

Ucf = (Kl +Ky - t)- et

¢ =C-dl(11—$f=C-(K2+X-K1+X~K2-t)~e7‘t
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Zu4.

7\.1 ¢7\.22

uc(0-) =uc(04) = uce (04) +uce(04)

—Uq=0+K1+K2

1(0-) =1(04) =1 (04) + i (04)
0=0+C- (K A +Ky- 1)

7»127\.227&

Zu 5.

Uy - A U, - A
Ky =942 Ky=-—3 -1
M = Ao M=o
U
— — q At Aot
Uc =Ucr = Ay ceMt—A et
c=ver =3 (2 1 )
i=if=M.C.Uq.(exlt_ex2t)
A =2
mit 7\.1’2=—8il{
uc(0-) =uc(0+) =uce (0+) +ucr(04)
—Uq=0+K1
1(0-) =i(0+4) =i (0+) +1f (0+)
0=C-(Ky+1-Ky)
K]Zqu K2:7\.'Uq

U.C:quszq'(l77\.'t)'eM

i=if=C'Uq'k2~t'eM

mit Aj=A;=A=-0

Uc = ucr i=if
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Zu 6.
Interpretation der Losungen:

Aperiodischer Fall:

3>

£>L R>2-\/E
2L JLC C

U
i(5t) = qL LBt sinh%(St)

uc(dt) =-Ug - e ot [é . sinhE(St) + coshE(St)}
K o )

Aperiodischer Grenzfall:

i ]
8:(0023 Uq/Rto,s- i
2L - [
0,4 - ;
T |
0,2 -
R__1  Rroa \E o
2L JLC C 6 : A .
U -0,251
i(sH=_—_L.9. . oot
i(5t) 22 (8t) - e %C_T_O’S |
_ , Uy -0
bei (dt) =1 Imax = = 0,736-? -1

uc(8t) =—Ugq - [1 + (81)] - ¢

Periodischer Fall — Schwingfall:
5 <my

R __1 RQF
2L JLC C

)
-—(ot) .
e o - sin ot

. Uq
1 (CDT,) = E

5 . 5V ey
uc(ot) =-Ug eot [; -sin @t + cos cot} =-Uq- [a) +1-¢ o -sin(ot + @)
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8.3 Berechnung von Ausgleichsvorgingen mit Hilfe

der Laplace-Transformation

8.3.1 Grundlagen fiir die Behandlung der Ausgleichsvorginge

mittels Laplace-Transformation

Transformation
L{f(1)} = j f(t)- =St - dt = F(s)
+0

Beispiele fiir die Transformationen von Zeitfunktionen:

1. Transformation einer Sprungfunktion

0 fir t<0

uy=U-at)= {U fiir t>0

L{U-G(t)} :%

2. Transformation einer Rampenfunktion

0 firt<o0
u(t) =
(U/T) -t fiirt >0

3. Transformation einer Exponentialfunktion

0 firt<0
u(t) = 7t/ )
U-e V" firt>0

I T
s+1/t l+s-1

L{U-e ¥} =U-

Erweiterung:
1

L{U- (- =U ———

{ ¢ )} s-(I+s-1)
Riicktransformation

| c+j-oo

=— F(s)-est-ds

2n- ]

c—j-0

f(t) = LN {F(s)}

(Band 3, S.30-50)

Ao
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Laplace-Transformierte der Ableitung einer Funktion
L{f'(t)} =s-L{f(t)} - £(0)
L{f"(t)} =s2 - L{f(t)} —s - £(0) — £'(0)
L{f"(t)} = s3 - L{f(t)} —s2 - £(0) —s - f'(0) — £"(0)
L{EO (0} = s7 - L{f()} = s"1-£(0) =772 - £/(0) .. = s - £(=2)(0) - £-D(0)

Beispiele:

L{C-%} = C-[s-Uc(s) — uc(0)]

L{Lc-dz(‘;cz(t)} = LC-[s?- Uc(s) s - uc(0) ~ ug.(0)]

Hat die Zeitfunktion f(t) der Differentialgleichung an der Stelle t = 0 eine Sprungstelle,
dann ist die Losung der Differentialgleichung mit Hilfe der Laplace-Transformation auch
moglich, weil die Laplace-Transformation die Zeitfunktionen erst ab t = 0. erfasst. Dann
ist der rechtsseitige Grenzwert (0, ) zu beriicksichtigen:

L{f'(t)} =s-L{f(t)} - £(0,),

aber die Laplace-Transformierte der Ableitung der Sprungfunktion, also des Dirac-
Impulses, auch Dirac’sche Deltafunktion genannt, ist

L{s(t)} = L{8(t)} =1

Laplace-Transformierte des Integrals einer Funktion

t
L{{f(t) : dt} :éL{f(t)}

-1
L{jf(t) : dt} - i L{F(O)} + % mit £-1(0) = U £(t)- dtLO
Beispiele:
; 1 1
L{je_t/r ’dt} B ;L{e_t/r} s (s+1/7)
0

L{J.e*t/r .dt} - é . L{eft/r} + é . Ue—t/r 'dtlzo _ : ;:/T

—t/t
mit L{e‘t/’} = L und Ue‘t/"' Adt} =& =-1
s+1/t t=0 -],
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Berechnung von Ausgleichsvorgdngen bei verschwindenden Anfangsbedingungen

L{f’(t)} =s- L{f(t)} mit f(0)=0
1 . -1
L{If(t) : dt} =~ L{f(1)} mit  £-1(0) = Uf(t) : dt} ~0
s t=0
ohmscher induktiver kapazitiver
Widerstand Widerstand Widerstand
di I r.
u=R-i =L — u=—-|i-dt
T a C /
o di
Zeitbereich umM dt
(Originalbereich) =Y _G.u o _c.du
R i= T Iu -dt ! dt
.1
i= Iva Iu -dt
U(s)=R - 1(s) U(s)=sL - I(s) UGs) - I(s)
U(s) =sM - I(s) S
komplexer Bereich _U(s)
(Bildbereich) )= —27=6-U6) | 1= KLS) I(s) = sC - U(s)
s
U(s)
I = —
(s) M

Alle Zeitfunktionen werden in entsprechende Laplace-Transformierte iiberfiihrt.

Ohmsche Widerstinde R bleiben im Schaltbild unverédndert, da der Operator zwischen der
Laplace-Transformierten von Strom und Spannung R ist.

Induktivititen L und Gegeninduktivititen M werden wie induktive Widerstdnde mit den
komplexen Operatoren s und sM behandelt. Die Operatoren ersetzen im Schaltbild L
und M.

Kapazititen C werden als kapazitive Widerstdnde mit dem Operator 1/sC beriicksichtigt,
weil die Laplace-Transformierte des Stroms durch Multiplikation mit dem Operator 1/sC
in die Laplace-Transformierte der Spannung {iberfithrt wird. Anstelle von C wird im
Schaltbild 1/sC geschrieben.

Nachdem die Operatoren im Schaltbild eingetragen sind, werden die Netzberechnungshil-
fen Spannungs- und Stromteilerregel (siche S. 96) angewendet, wodurch sich algebraische
Gleichungen fiir die Laplace-Transformierten ergeben, die dann geldst werden.

Die Losungen fiir die Laplace-Transformierten werden dann mit Hilfe der Laplace-
Korrespondenzen in den Zeitbereich riicktransformiert.
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8.3.2 Losungsmethoden fiir die Berechnung von Ausgleichsvorgingen

(Band 3, S.51-91)
Verfahren 1:  Losung der Differentialgleichung im Zeitbereich

Verfahren 2:  Lésung der Differentialgleichung
mit Hilfe der Laplace-Transformation

Verfahren 3:  Losungsmethode mit Operatoren - Symbolische Methode
(anwendbar nur bei verschwindenden Anfangsbedingungen)

Rechenschema

Schaltung
mit Zeitfunktionenabt=0
und linearen Schaltelementen

Y3
Schaltung

mit transformierten Zeitfunktionen
1y2 und komplexen Operatoren in s

Differentialgleichung
im Zeitbereichab t =0

[ Y3
2
Laplace-Transformation

algebraische
1 / Gleichung in's

2y3

Losung der
algebraischen
Gleichung in s

e

Riicktransformation

Losung der 2* 3
Differentialgleichung
im Zeitbereich
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Beispiel 1: % t=0
(Verfahren 2) 7 ] l
du ic .
+(R,+R)-C-—E =0 ic 4
uc +( p) dt Ugq l() uc 1 C

Uc(®) + (R +Rp) - C - [s - Ug(s) —uc(0)] = 0

mit u(0) =Ry

1

Uc(S) + (Rr + Rp) -C-s- Uc(S)

(R, +R,)-C R, U,

q
+R

[

Re
p

(R, +Ry)-C-Ry-Uy
Ri+Rp

1

Uele)= R; +R
1 p

Mit der Korrespondenz Nr. 48
i

1+sT
ist
(Rr+Rp)-C~Rp~Uq

1
= T

T

uc(t) =

1+s-(R;+R,)-C

1 —t/t _ RP 'UCI Le—t/t

R; +R, '

Beispiel 2:
(Verfahren 3)
1
sC
1

R +sL+—
sC

Ucs) _
Ui(s)

Uc(s) = Ui(s)

SRC+s2LC+1
mit U;(s) U
S

U 1
Uc(s) =—-
c(s) c

2+ —s+—

LC

mit s2+ ES+L=0
L LC

|

6 =_R
L2779

R
2L

[RI
S
L

jz_l__
LC

R, +R;)-C Ri+R,

uqlt)

[+]

Is) R

)

Uqls) = luc(s)

o—

8iq82—0)02 =-d+«x
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Aperiodischer Fall:

fir s; #s, ist

L S
Ve = LC s-(s—s1)(s—s3)

nach Korrespondenz Nr. 37

L {1 } = 1. [1 + ;(beat - aebt)}
s(s—a)(s—b) ab a—-b

mita=s; und b=s,

uC(t)ZE- LI P (sz-eslt—sl-eSZ‘)
LC S1-8 S| — 8y

mit s;=—0+x, s5=—3—-«k und s;—-s;=2K

1
und  §;-85 =82 — k2 =82 - 8% + 2 = 0y = —

LC

uc(t)=U - {1 + i[(—s — k) eI (—§ 4 k) - e(*S*K)tJ}

. Kt _ a—Kt it —Kt
uc(t)=U~{1—ebt~{6~e R H

K 2 2

uc(t)=U -{1 —e 0t P -sinh(xt) + cosh(Kt)}
K

uedt)=U- {1 —e Ot P -sinh = (8t) + coshE(St)}}
K ) o

it =Y et . sinh X (51)
k-L ) 1 uc
_itd4,V t 1

) 1 U/xL

mit k=0 - 02 % mit %=0,6
3 i =2
0,1 - UIxL %'L' JA

R
und 0=—

2L —0 . ,

0o 1 2 3 4k  st—
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Periodischer Fall — Schwingfall:

mit K =jo ist

uc(t)=U- {1 —e ot {6 -sinh(jot) + cosh(jcot)}}
jo

mit sinh (jot) =j - sin ot

()

und cosh (jot) = cos ot

uc(et)=U - {1 —e0t. ‘:E -sinot + cos wt}}

3

2
uc(ot)=U 91— (7j +1 -e
®

[0}

ot) .
-sin(ot + @)

. U (ot) .
(ot)= —-¢ © - sin ot Y
(@) oL iT chf
Ut 11 — 1
mit o= L—82 W_C
LC 0,3 1 u
R 0.2 ] i mit 9.20,75
und == UlwL w
2L 041 - ot
® 8 —
und @ =arc tang M x 1‘1\'_/ 5' T
Vi 3n am 3nm
_O'AW 2 2 2n )
Aperiodischer Grenzfall:
flir 8 =5y =s5], ist
U 1
U= ———
LC s-(s—s13)
nach Korrespondenz Nr. 35
1 1
LH————t=—|1+(at - et
{s(sa)z} a2 [ ( ) J
mit a=sj,
U 1
uc(t) =—— - —— [ 1+ (s;p - t — 1) - esi2t
C 5y [1+Gin-t-D) ]
mit s;=-8=-0wy und s;,% = u
12 0 12" =76 T %1 I
ﬁﬁ-ﬂ UR 1
ue(®) = U {1 ~[1+ 0] e 061 /] %
! i
b |
0,4 1+
i =22 (51)- Ot !
R 0,2 - f
it = R © ) T T T T
ko= 0 1 3 b gt
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Operationen
Nr. F(s) f(t)
1] FO=[ et f(t)
+0
2| s F(s)-f(04) af© _ .
3 | s Fgs)-f(0.) o o
4 | $2-F(@s) s f0,) ' (0.) % = £"(t)
t
5 | s3 F(s)—s2-f(0)—s-f' (0, —f"(05) % =f"(1)
t
n _ -1, =2 o1 _ (n)
6 s"-F(s)—s f(0,)-s f'(0,) —... d f];(t) o
s £07D(0,) - £ D(0,) dt
1 t
7| = Fe) [t
S
0
< 1-F(s)+1-{[f(t)~dt} [EGRE
S S
t=0
9 a- F(s) a-f(t)
10 | aj-Fy(s)+ay-Fp(s)+...a, Fu(s) ap - fi(t) +ay - H(t) + ...+ ay - (D)
1 F S .
11 2\ f(a-t) mit a>0,reell
12| a-Fa-s) f(£) mit a> 0, reell
a
13
14 F(s—a) bzw. F(s+a) e f(t) bzw. ¢ f(t) mit a beliebig
b
12t (1) . aso
15 F(a-s—-b) g'ea f[g] mit bkor(:*lplex
0
16 | s {F(s)+ If(X)~e’S’X ~dX} f(t—a) mit a2 0
17 | & -{F(S) - J.f(X) e dx} f(t +a) mit 220
0
t
18 | Fi(s) Fx(s) B0 * B0 = [1()-f(t-1)-de
0
19 1 gF d"F
20 % bzw. T]ES) —t-f(t) bzw. (-1t f(t)
T 1
F(s)- d =
21| [ F)-ds 0

S
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Korrespondenzen der Laplace-Transformation

(s—a)(s-b)’

Nr. F(s) f(t)
22 0 0
23 1 3(t)
24 | e fiir a>0 3(t—a)
25 1 o(t) bzw. 1
s
1 —as
26 ge * o(t—a)
1
27 | —
52 !
28 1 1 . n
0| & bzw. —— mit n =0,1,... 2 bzw %
1
30 . et a beliebig, z.B.a =3 * jo
1
at
31 (S _ a)z te
I S "
32 (S _ a)n+1 ;
1 |
(e -1
3 s(s—a) a (e )
1 1 at _ bt
1 G-ae-b) asp® 7%
35| - L1+ e -ne)
s(s—a)? a?
36 S i(ea‘t —1—at)
s2(s —a) a?
1 1 1
- - —|1+———(b at _ ,.bt
37 s(s—a)(s—b) ab[ a—b(e ae )}
1 edt ebt ect
38| —m + +
(s—a)(s—Db)(s—c) (b-a)c—a) (c—b)a-b) (a—c)b-c)
1 e —[1+ (a—Db)t]e?
9| T o -2
(s—a)(s—b) (a-b)
40| —— (1+at)e
(s-a)?
S 1 at bt
> at _,
4l (s—a)(s—b) a—b(ae )
s aet beb cet
42| —mm + +
(s—a)(s—b)(s-c) (b-a)c—a) (c—b)a-b) (a—c)b-c)
s o —[a + b(a — b)t]e™
5 ac™ —[a +b(a—Db)tle

(a-b)’
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Nr. F(s) f(t)
S 1 2 | .at
— t+—at? |e
RS ( 2 j
2
45 | =5 [1+2at+la2t2je‘“
(s—a)? 2
52 a2eat bZebt CZGCt
46 | ——————— n "
(s—a)(s —b)(s—c) (b-a)c—-a) (c—-b)a—-b) (a-c)b-c)
47 s? aZe? —[2ab— b2 + b2(a — b)t]e?
(s—a)(s—b)? (a-b)?
48 ! Lot
1+sT
1
4 1— —t/T
% | SiasT) ¢
1 1 —t/T
0 s te
1 T
SU| Faesn) t—T(1—e VT
5 1 1— T+t eil/T
s(1+sT)?
53 1 L 2T
(1+sT) 213
54 1 1 (e—t/Tl _ e—t/Tz)
(1+5sT))(1+5Ty) T,-T,
1 1 —UT, ~UT
55 1+ (Ty-e™1 =T, -e " 2)
s(1+sT,)(1 +Ty) T,-T
56 1 T-e LM =Tt ~TiTy]e ™
(1+5sTy)(1+5T,)? (T, - T,)? T,(T, - T))?
1 T, .- UT T, .e VT Ty e VT
57 : + +
(1+sT)(A+sTy)(1+5T3) (T -T)T -T;) (L, -T)T,-T;) (-T)XT;-T,)
sT 1
S(t)y——e T
o8 1+sT ® T
S 1
_s Lo pet/T
I (45T (T 0e
6 s 1 (Tl T LT, e U )
A +sTy)(1+5T,) TT,(T, - Ty)
o s (T, = Ty)e ™ + (T - T)e V2 + (T, - T,)e VD

(1+ST))(1 + 5Ty )(1 +5Ty)

(T =)L -T)(TG - T)
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Nr. F(s) (1)

o s T2V 4 T2 + (T - Ty)t]e VT2

(1+5sT)(1 +5T,)? T,2(T, - T,)2
s t 2
—— e

63 1 (e sT)] (T3 2T4J

s® U oT2 Z a4 2)et/T
04 | ey o3 17 4Tt e

o UTy o UTs
+ +

65 52 T1 (Tl - TZ )(Tl - T}) T2 (TZ - T1 )(TZ - T3)
1+ ST +sTy)(1 +5Ty) o UTs

+—
L(TG-TXT; - Ty)

6 s? e VM J{ T,-2T, t } T,
(1+sT)(1+5T,)? T(-T)* |[TA(T-T,)° TG -T))
1+sA

67 > t+A

S

o | LA Lo AT ot
s(1+sT) T

o 1+sA T-A Al ur
(1+5T)? T T2

70 1+sA T,-A VT _ T,-A et/
(I+sT)A +5Ty) T(T - Ty) (T, -Ty)

1+sA
_Ty(] _ t/T

| Zarsn A-T)1-eVT)+¢

1+sA -

. +5 ; 1+(A T )evt
s(1+5sT) T2

. 1+sA (2 TA o DA
s(L+ST,)(1+5Ty) T,-T, T,-T,

5 1+sA T,-A e—t/h{ L-A ., A-T, },HB
(1+5Ty)(1+5T,)? (T, - T,)? T,X(T,-T) (T,-T)?

T-A —UT, T,-A T,
7 1+sA (T, - T)(T, - Ty) (T, -T)T, - T)
(1+5Ty)(1 +5T)(1 +5Ty) . T-A v,
(G-T)T; - T,)
2
76 1+sA+s'B t+A7T7(A7T7Eje_‘/T
s2(1+5sT) T

77 1+3sA +5s’B - 17£+B—AT+T2te_t/T

s(1+5T)? T? T3
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Nr. F(s) f(t)
7 1+sA +s’B +B—AT]+T12.C,”TI _B—AT2+T22.C,”T2
s(1+sTy)(A +5T;) Ti(T, - Ty) (T, -T)
1 1
79 —sinat
s% +a? a
1 1
80 —sinhat
s? —a? a
T ——— L1 cosat
s(s? +a?) 7( ~ cosat)
1 t sinat
82 -5 5 ——
s2(s2 +a?) PRI
1 1 b b .
8 | 55— e ™ + —sinat — cosat
(s> +a%)(s+b) a? +b2( a )
1 1 1 sinat bcosat et
84 | —5 55— - +
s(s? +a%)(s+b) aZ-b a?+b? a a2 b
—bt
g5 1 %b - zlbz 3 c 02 c;)s(a;-# (D2) mit @ = arctan(b/a)
(2 +a2)(s+ b) a’b a (a® +b%) a2va2 +b
e M et sin(at — @)
I 2,2
%6 ! (c=b)@*+b%)  (b=0)@’+¢*)  a\fa(b+c) + (be—a?)
2., .2
(s +a”)(s +b)(s +¢) mit ® = arctan(a/b) + arctan(a/c)
1 efbt efct
——+ + +
) a’bc b(b-c)a?+b?) c(c—b)a®+c?)
87 cos(at + ®
s(s? +a%)(s +b)(s +¢) + ( )
a2\/(bc —a2) + a2 (b + )2
mit @ = arctan(c/a) + arctan(b/a)
- 1 1 [sin at _sin bt)
(s® +a%)(s? + b?) b2 -a?\ a b
1 1
89 | 57— —e bl
22+ (51b) © sinat
1 2b e Ptsin(at + @)
90 | bt 202 20 a@ )
s2[a% + (s +b)?] .
mit ® =2 arctan(a/b)
91 L Le‘b‘(sin at —at cosat)
[a + (s +b)* ] 2a3
1 1 .
92 m Py (sinat — at cosat)
93 ! L(lfcosat)fitsinat
a* 2a3

2)2

s(s?> +a
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Nr. F(s) (1)
94 s cos at
s2 +a?
s
95
a2 coshat
96 S ——(cosat—cosbt) mita’ # b’
(s® +a%)(s? + b?) b% —a?
97 > L sinat - sin bt
[s? + (a + b)?][s? + (a — b)?] 2ab
S t .
98 — —-sinat
(s* +a?)? 2a
s? 1, .
99 [ — —(sinat + at - cosat) a/d
(s? +a%)? 2a
s+d 2, .2
100 s2 4 a2 ﬂsin(at +®) mit ® = arctan(a/d)
s+d d-b b d2+a2 . o
101 | (s®> +a2)(s+Db) aZ b2’ aZb2 + 2’ sin(at + @)
mit ® = arctan(b/a) — arctan(d/a)
s+d l+d-t [a?+d?
2,2 4.2 - sin(at + @
102 s7(s” +a”) a2 26 ( )
mit ® = arctan(a/d)
s+d 2, ,2
. d d-b d”+a
103 | s(s® +a?)(s +b) 2% b@al+b) ¢ ‘/7«&%2 a0 cos(at + @)
mit ® = arctan(b/a) — arctan(d/a)
s+d (d—b)e™ (d-c)e™
(s? +a?)(s +b)(s +c) (c—b)@+b?) (b—c)(a?+c?)
104 2 2
+ % sin(at + @)
a“(a®+b“)(a” +c”)
mit ® = arctan(c/a) — arctan(d/a) — arctan(a/b)
s+d _h)2
105 | 37 (s +b)? 4/1 L azb) P .sin(at + ®) @ = arctan q i 5
s-sinb+a-cosb
106 _——— in (at +b
Z1a2 sin (at +b)
s-cosb—a-sinb
107 | ——— t+b
212 cos(at + b)
1 1
108 _ —sin(t/T
1+5°T? oD
1+sA 1 L[t
109 | ——= —J1+(A/T)?sin| —+ D | @ = arctan(A/T
1+8%T? T (A/D) (T j (AT)
110 S

1+s2T?

1
?cos(t/T)
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9 Fourieranalyse von nichtsinusformigen periodischen
Wechselgrofien und nichtperiodischen Grofien

9.1 Fourierreihenentwicklung von analytisch gegebenen

nichtsinusformigen periodischen Wechselgrofien
(Band 3, S.95-115)

Darstellung nichtsinusformiger periodischer Wechselgréfien durch Fourierreihen
o0 0
V) =D v = D - sin(kot + @)
k=0 k=0
v(t) =¥ - Sin @y + Vq - sin(ot + @y1) + V5 - sin2ot + @yo) + V3 - sin(3ot + @y3) + ...

Gleichanteil 1. Harmonische 2. Harmonische 3. Harmonische
oder Grundwelle oder 1. Oberwelle oder 2. Oberwelle

Fourierreihe mit Fourierkoeffizienten

v(t)=ag+ Y (a - coskot + by - sinkot)

k=1
mit Amplitudenspektrum Uk =+/ax? + b2
und Phasenspektrum Pvk = arc tan E—k
k
Fourierkoeffizienten (keine Symmetrien)
T 2
- j v(t) - dt 2 = fv(mt) d(wt)
0 T 0 2n
0 0
T 2
2 17
a=—- Iv(t) -coskomt - dt a=—"- ‘[ v(mt) - cosk(wt) - d(mt)
T b
0 0
2 r 1 F .
b == - j v(t) - sin koot - dt by =— - j v(ot) - sink(ot) - d(ot)
T T
0 0
und und
T/2
ag = j v(t) - dt a =L~]T‘V(cot)~d(0)t)
0 T 0 27
-T/2 -n
T/2 n
ay = J. v(t) - coskmt - dt ak=l- Iv(mt)-coskcot~d(mt)
-T/2 e
2 ¢ . 17 .
by=—="- j v(t) - sinkot - dt by=—- J v(mwt) - sinkot - d(wt)
T I
-T/2 -n
mit k=1,2,...,n mit k=1,2,...,n

© Springer Fachmedien Wiesbaden 2015
W. Weilgerber, Elektrotechnik fiir Ingenieure - Formelsammlung, DOI 10.1007/978-3-658-09090-6 9
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Vereinfachungen bei der Berechnung der Fourierkoeffizienten

Symmetrie 1. Art: gerade Funktionen mit v(—t) =v(t) bzw. v(— ot) = v(wt)

(spiegelungssymmetrisch zur Ordinate)

0 0
v(t)=ap+ z a; - coskmt v(ot) =ag + Z ay - cosk(ot)
k=1 k=1
mit b =0 mit b =0
5 T/2 1 b
und ag=—- I v(t)-dt und apg=—- IV((Dt) -d(owt)
T e
0 0
T/2 b
4 2
und ay = T I v(t) - coskamt - dt und ay =—- I v(wt) - cosk(wt) - d(mt)
0 T 0
Beispiele:

X v

VAA DT

-T -T/2 0 /2 T — -

Symmetrie 2. Art: ungerade Funktionen mit v(—t)=—v(t) bzw. v(-ot)=- v(wt)

(zentralsymmetrisch)
v(t) =Y by -sinkot V(o) = Y by -sink(ot)
k=1 k=1
mit ag=0 mit ap=0
und a,=0 und a,=0
T/2 b
4 . 2 .
und by = T I v(t) - sinkot - dt und by=— oJ-v(oat) -sink(ot) - d(wt)
0 T 0
Beispiele:
!l / d
-2 0 1/2 T i lo w2 T qn
t wt
Y/
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Symmetrie 3. Art: v(t+T/2)=-v(t) bzw. v(ot+ T)=- v(0t)
(Verschieben um T/2 bzw. © und Spiegeln an der t-Achse bzw. wt-Achse)

V()= D [ag,; - cos(2k + Dot + by, - sin(2k + Dot |

k=0
T/2
mit ajyi| _4. J. v(t) - cos(2k + 1wt - dt a =0
T 0
T/2
und bops :% : _[ v(t) - sin(2k + Dot - dt by =0
0

fir k=0,1,2,3,4, ...
oder

v(ot) = D [ay -cos(2k + Dot + by, - sin(2k + Dot |

k=0
2 T
mit ajgs] =—- jv(cot) -cos(2k + Dot - d(wt) a) =0
T 0
T
und boyiq =% . Iv(mt) -sin(2k + Dot - d(wt) by =0
0

fir k=0,1,2,3,4, ...

Beispiele:
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Symmetrie 1. und 3. Art:

0
v(t) = Z a5y, - cos(2k + Dot
k=0

mit by=0, ay =0

und
T/4
8
Aok+1 =$~ J. v(t) - cos(2k + )t - dt
0
Beispiel:

AN

k=0

mit by=0, ay =0

und

/2

0

/.

-T2 T 0
- -n/2

Symmetrie 2. und 3. Art:

0
V(t) =D by, -sin(2k + Dot
k=0

mit ag=0, ax=0, by =0

T/t T/2

/2
—
wt

0
v(wt) = Z a5, - €os(Zk + Dot

aesy = [ V(o) cos2k + Do - d(ot)
T

v(ot) = D by, -sin(2k + Dot

k=0

mit ag=0, ay=0, by =0

bojes =%- I v(ot) - sin(2k + Dot - d(ot)

und und
g T4 /2
baicr = f v(t) - sin(2k + Dot - dt
0 0
Beispiel:
|
AN . . .
-T/k 0 T/4 i/} T .
-n/2 2 oom a1t
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Symmetrie 4. Art: v(t+ T/2) =v(t) bzw. v(ot+ ®)=v(®t)
(Verschieben um T/2 bzw. 1)

0
v(t)=agp+ Z[azk -cos 2kot + by, - sin kat]

k=1
T/2
mit a():?- I v(t)-dt
0
T/2
4
und a2k=?- J‘ v(t) - cos 2kot - dt a_1=0
0
4 T/2
und by~ j v(t) - sin 2koot - dt bo 1 =0
0
fir k=1,2,3,4, ...

oder

v(ot) =ag+ [ a, - cos 2k(et) + by, - sin 2k(wt) |
k=1

T
mit ag=-. j v(ot) - d(ot)
T
0

T
und apy _2. Jv(wt) -cos 2k(mt) - d(mt) k-1 =0
T 0
Y
und by = 2, Iv(cot) -sin 2k(t) - d(wt) b-1=0
T 0
fir k=1,2,3,4, ...
Beispiele:

f

Io T /2 T I

IO w 2 —_—
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Gang der Berechnungen

Bei der Uberfiihrung einer analytisch gegebenen, nichtsinusformigen periodischen Funk-
tion v(t) oder v(wt) in eine Fourierreihe mit Sinus- und Kosinus-Gliedern sollte nach fol-
genden Schritten vorgegangen werden:

1. Angabe der Funktionsgleichung und grafische Darstellung der Funktion

2. Untersuchung der Funktion nach Symmetrien

3. Berechnung der Fourierkoeffizienten nach den angegebenen Formeln in t oder ot
4. Aufstellen der Fourierreihe in Summenform und in ausfiihrlicher Form

5. Weitere Berechnungen, z.B. Effektivwert, Klirrfaktor, Leistungen.

Beispiel: Fourierreihe einer Siigezahnfunktion

Zu 1. Funktionsgleichung
u(wt)=ﬁ-(l—m—tj fir 0 < ot <27
2n

Grafische Darstellung der Funktion:

Zu 2. Die Sdgezahnfunktion besitzt keine der beschriebenen Symmetrien.
Zu 3.

2n
1
ag = p ;[ v(ot) - d(ot)

2n 2n 2n
g fioet). _ U _1 .
307275-([ [1 an d(ot) = { { d(ot) - E[((nt) d((ot)}

ao= o oL @2l _a |, 1em?|_a
O 2n o 2t 2 |of 2n 2 2 2
a =1

72

Der Gleichanteil kann auch aus der Funktion abgelesen werden, indem die Dreieckfldche in
eine flachengleiche Rechteckfliche mit den Seiten 27 und a, iberfiihrt wird.
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2n 2n
ay _L J- v(wt) - cosk(mt) - d(wt) = 1 J a- [1 - m—t] -cosk(wt) - d(ot)
0 Ty 271

n 2
ak:% { j cosk(ot) - d((x)t)—— I (ot) - cosk(wt) - d(wt)}
0

cosax X -sinax
5+

mit Ix~c0sax-dx =

a a

i {sin k(ot)
ak = R
b k

I [cosk(mt) (mt).sink(mt)J
k2 k

2n
0

0 [sink(2m)—sin0 1 (cosk(2m)—1 (27)-sink(2m)
ax = E ———— — —* +
0

0 2n

k 2n k2 k

2n 2n
b = j V(o) - sink(ot) - d(ot) = - J (pfj sink(ot) - d(ot)
T 0 T 0 2

by =

:\m

2n
{I sink(wt) - d(ot) —— I (wt) - sink(ot) - d(oot)}

0

sinax X -cosax
e

mit Ix~sinax-dx =

a a

. {—cosk((ot)
b =— 4 —— 2
b k

1 v[sink((ot)_(wt)-cosk(mt)j
k2 k

2n
0

0 2m

b =E. —cosk(2n)+l_i. sink(ZTc)—O_(2n)-cosk(2n)—0]
K k 21 k2 k
b =2 {LLH}
n (2n k
il
b, = —
k nk

Zu4. v(ot)y=ay+ Z(ak - coskot + by - sinkot)

k=1
0 0 <=sinkot
u(ot) =—+— Z (Summenform)
2 n Pt
a ﬁ sin mt sm20)t sin3mwt  sin4mt vy 1
u(wt) = E — + 3 + p +... (ausfiihrliche Form)
b1
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9.2 Reihenentwicklung
von in diskreten Punkten vorgegebenen

nichtsinusformigen periodischen Funktionen

Direkte trigonometrische Interpolation (Band 3, S.116-140)
Festgelegt werden:
o . . . -1
m Teilintervalle mit gleichen Ax =2m/m, wobei m>2n+1 bzw. m2 >n
mit m Stiitzstellen mit den x;-Werten
. .2 .
X :1-Ax:1~—TE mit 1=0,1,2,3,...,m—-1
m
und m zugehdrigen Funktionwerten v; = f(x;)
:imz: a:L 2vy +4vi+2v, +4ve +..+ 4V )
m & 07 3m 0 1 2 37T m-1
(durch die Simpsonregel ersetzt mit v = vy,)
m-1
k——Z:V1 coskx; fir k=1, 2, 3, -1
i=0
b m-1
bk——zv1 sinkx; fir k=1,2,3,...,n-1
i=0

und zusitzlich fiir gerade m:

RSP
=;§;( i

2

Beispiel:
=12 Stiitzstellen v I

mit den Funktionwerten

Vo, Vi, V2, ooo 5 V10, V11 V2 wt=x
AA —_—
m-1 vy In 4n 3m Sm Hn
T =s5>n=5 4 W & 3 2 3 6 "

n
und m gerade K3

Fourierkoeffizienten: Vg
ap, A
ar, ..., as,
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Tafel fiir die direkte trigonometrische Interpolation mit m = 12 (Zipperer-Tafel)
vi | 0 1 5 6
Vo 2V0 + \0) + Vo
Vi AV | T tp1 | -V
Vo | 2va2 | tp2 - | tva
V4 | 2v4 | —Dp4 —q4 | tvy4
Vs 4V5 —(5 +ps - Vs
Ve 2V6 — Vg - + Ve
vz | 4v; | —q7 | =p7 | tP7 | Ty -p7 | td7 | tq7 | =p7 | —Vv7
Vg | 2vg | —pg | —dg +qg | Tvg
Vio | 2vio | T P10 | —di0 10 | T V1o
vit | 4vi |t | —pi —P11 | — Vi1

- 36ay | 6a, | 6b 6bs | 12a4

Die folgende leere Zipperer-Tafel kann fiir Rechenbeispiele kopiert und nach obiger Vorschrift
ausgefiillt werden:

1.

Ablesen und Eintragen der 12 Funktionswerte v;

2. Berechnen und Eintragen der p; =v; - 0,5 und q;=v; - 0,866
3. Aufsummieren der Spaltenwerte und Berechnen der a, und by
4. Aufstellen der trigonometrischen Summe
Vi 0 6
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Harmonische Analyse mit Hilfe einer Ersatzfunktion

An den Stellen &; hat die periodische Ersatzfunktion v(x) die Ordinatenspriinge

si= V(& +0)-v(&-0)

mit v(§ —0) linksseitiger Grenzwert
und v(§; +0) rechtsseitiger Grenzwert,

an den r’ Stellen & hat die 1. Ableitungsfunktion die Ordinatenspriinge
si=V'(E +0)-V'(& - 0),

an den r"” Stellen & hat die 2. Ableitungsfunktion die Ordinatenspriinge
= V(] +0) = V'(E/-0),

an den r" Stellen &!" hat die 3. Ableitungsfunktion die Ordinatenspriinge
S{'= V" (E" 0) = V(5" 0),

an den r™ Stellen (:gn) hat die n-te Ableitungsfunktion die Ordinatenspriinge

s = v (™ 4 0) - v (g™ ~0)

Fiir die Fourierkoeftizienten ergibt sich dann

1 r
A== g

{-cosk- &}

" "

T

1 M ” 1 " ”n
NE -Zs{“smkf_,i + _— -ZSi ~cosk-&i"— ...

i=1 i=1

r(n) 21

(n) Sm (n) (n+1) sin
+ + . . X -
an Z k-&; e J.SV (x) COSk X -dx
bzw.
1< 1 <
bk=—.k~Zsi- 2-Zsi-sink-€;{
TR D i=1
1 r” '
- 3 -Zsi’~cosk-§{’+ 2 Z -sink - El"+.
T i=1 i=1
1 cos T
(n) | (n) (n+1)
+ + . X -
w4 z “in k-&; e .(I;V (x)- smk X -dx

mit k=1,2,3,...,n



9.2 Reihenentwicklung 173

Beispiel:
Fiir alle periodischen Rechteckfunktionen und fiir periodische Funktionen, die durch Treppenkurven
angendhert werden, konnen die Fourierkoeffizienten ohne Integration ermittelt werden.

2n
ay :—ﬁ “(s; -sinkg; +s, - sinkg, +...+s_ -sinkE ) — ‘([ v'(x) - sinkx - dx

2n
1 1 ,
by :H - (s; - coskg; +s, - coskE, +...+ s, - coskE.) +H ‘([ v'(x) - coskx - dx

und mit den Ordinatenspriingen s; = v(& +0)—v(§ —0) und v'(x)=0.

Geradenapproximation und Sprungstellenverfahren mit m =12 Stiitzstellen

I va(x) vy lx)
v 3 “ \’5[*]
Vi vleJ
v1[x] vﬁlx} wt=x
0 & 2n 31 4n 5S¢
t T T T %
N T A A A T A A AN
- -
ag =— - » si-cosk-E&! by =— - Y si-sink-&!
TC'k2 ; 1 1 TC'k2 ; 1 1

mit den r’ Ordinatenspriingen der 1. Ableitungsfunktionen an den Stellen & :

si = V'(§ +0) = V'(§ - 0)
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Tafel fiir die Berechnung der 8 Fourierkoeffizienten bei Geradenapproximation
mit m =12 Stiitzstellen und Anwendung des Sprungstellenverfahrens

Arbeitsschritte:

1.

Ablesen und Eintragen der v 1
12 Funktionswerte v;

Eintragen der 2 - vi-Werte bzw.
4 - vi-Werte und Berechnen des
Gleichanteils a(
Die Berechnung des Gleichan-
teils erfolgt nach der Simpson-
formel.

Berechnen und Eintragen der Ordinatenspriinge +s; der Ableitungsfunktion

6

i :%(Vi—z =2:Vi tVy)
Die Ordinatenspriinge der Ableitungsfunktion s} = v'(&/ +0) — v'(& — 0) ergeben sich
mit Ax =7/6 und v, = vy:

SI=AL -~ Am = AL~ AL

S =Ap - Ay miti=2,34,..,12

Vi~ Vil

. 1 0] V11
mit Al,i = e

X Ax
Die Formeln fiir die Ordinatenspriinge lauten dann:

VI_VO_VO_VII 6

Si=A A= =—-(vi;—=2-vy+Vvy)
1 1,1 1,12 Ax Ax L 0 1
Vy—V vV, —V 6
sh=Ap-Ay =2t -1 L= (vy-2.v,+vy)

’ AX AX T
Vy,—V V, —V 6
5= Ay — Ay =t -l == (v =2V, +vy)
’ ’ AX AX b
Vy—V V,—V 6
Sp=Apg A= 22— (vy =23+ V)
’ ’ AX AX b8
M
Vin —V Vi1 —V 6
Sip = A — A = 12Ax il lle 10=;'(V10—2'V11+V12)

Berechnen und Eintragen der +p;j=+0,5-s; und =q;==0,866s;

Die auf den vorigen Seiten entwickelten Formeln fiir die Fourierkoeffizienten entspre-
chen den Spalten 1 bis 8 der folgenden Tabelle.

Aufsummieren der Spaltenwerte und

Berechnen der Fourierkoeffizienten ai und by

Die Aufsummierung erfolgt spaltenweise, und die Spaltensummen miissen noch durch
7 - k2 dividiert werden.
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\A 0 s 1 7 8
Vo | 2vg | sy +sq +s1 + 51
Vi |4V sh | a4 et Py |~
Vo | 2vy | sy | tps |taz| —ps —P3 | Ta3
vy | vy | sy -+s§1 +s4 E-
Vg | 2v4 | S5 | =Ps [*ds|—Ds ~Ps | Qs
Vs | 4vs | sg | 96 [t Pe| tPs ~Ps | Tds
Vo | 26 | 87 | =% - +s5 +s4 -
Vo | 4V | sg | —gg | —Ps| ths —Pg |~ s
Vg | 2Vg | 8§ | =Py |~ Qo |~ Py ~Py [ Ty
Vo | 4vy | sig -—Sio —sio E-
Vig | 2Vio | St1 | TP, |79, | Pu P |~ 9n
Vie |4V | sia [ ta, =P, TP, —Pia|tdi2
- Ay - A | B Ay Ag | Bg
a( :ﬂ ax = — Ak
36 - k2

Die folgende leere Tafel kann fiir Rechenbeispiele kopiert und nach obiger Vorschrift

ausgefiillt werden:
4 5 6 7 8

[

Vi 0 s} 1
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9.3 Anwendungen der Fourierreihe

(Band 3, S.141-149)
Wirkleistung bei nichtsinusformigen Strémen und Spannungen

T T
1 1 .
P=T£p(t).dt=Tgu(t)-l(t)-dt

0
u(t) =ag + z (ay - coskot + b, - sinkot)
k=1

0
i(t)=ay + Z (ay - coskot + by - sinkot)

k=1
. a;-a;j+b -by a,-a,+b,-b, as-a,+bsy-b
PP s ] i W B B/ BP  R hi R W
2 2 2
Mit
ag = Uy - sinQyg aj = iy - sin @y
by = 1y - cos by = iy - cOS Pik

P=Uy - Ip+U;-I;-cosp; +Uy-Ir-cospr+Usz-I3-cospy+...

Die Wirkleistung bei nichtsinusformigen periodischen Spannungen und Strémen ist gleich
der Summe der Gleichleistung und der Wechselstromleistungen der Grund- und Ober-
wellen.

Effektivwert einer nichtsinusférmigen periodischen Wechselgrofie

T
V= % { [V T -dt

0
v(t)=ag+ Y (ay - coskot + by - sinkot)
k=1

2 2 2 2 2 2

a”+b a,“+b a,*+b

V=\/a02+ 1 L 22 2 3 3
2 2 2

+ ...

Mit ag = Vg -sin@y  und by = Vi - cos @y

Der Effektivwert einer nichtsinusférmigen periodischen Wechselgrofe ist gleich der geo-
metrischen Summe der Effektivwerte des Gleichanteils, der Grundwelle und der Ober-
wellen.
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Beurteilung der Abweichung vom sinusférmigen Verlauf
Verzerrungsfaktor
V, V, V,
k= 1 _ 1
v T

Vo2 + V2 + V2 + V2 +
Sfvor-a /

Klirrfaktoren

. Vo2 + V2 4,2
\/V12 +V,2+V2+V,2 +

o \/VZZ + V2 +V,2 +

V1
mit  k=—_K__
V1+k'2
Beispiele:

Klirrfaktoren der Rechteckfunktion

4 2,(1+1+1+) nz
o Wava) 975 a0 5

72 0 172 i .
t
Y8 o35 . |
4 Y (1,0 1 =
-2 9 25 49 8
(5] Goig
\ : 9 25 49 7 2 2
K = mA2 . = 1=0,483 mltz L
4u 8 (21<+1)2 8
m2

Klirrfaktoren der Sdgezahnfunktion

kJJh.%f(r;l F N\N
23] (1

-n -n
1 +Z+§+E+m] r
Ja) (obener)
: 5 - 5
oo Wrea2 4 9 16 = 120,803 mitziﬁi
_u 6 e S
2
Formfaktor Scheitelfaktor
v R
f= £="
Va

Sinusfunktion: f=1,11 Sinusfunktion: & = V2 = 1,414
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9.4 Die Darstellung nichtsinusformiger periodischer Wechsel-
groflen durch komplexe Reihen (Band 3, S.150-155)

v(t) = Z ¢, - elkot v(ot) = Z ¢ -elkot
k=-o0 k=—00
1 T 1 2n
mit ¢, = T Jv(t) -e~Jkot . dt mit mit ¢ = P I v(ot) - e~Ik@Y) . d(wmt)
0 i
1 T/2 1 b
cp=—- v(t) - e~ Jkot . gt c =—-vat~e‘jk(®t)~dwt
g =5 [ v g =5+ | vien (00)
-T/2 -n
. bk _ i
1 1
=—..\a.2 2 .3
mit Amplitudenspektrum |9k| T VAT bk 2 Yk
-0 <k <o 0 < k<o
bk ag T T
und Phasenspektrum Y = arctan| —— | = arctan — — — = Qyx — —
ag bk 2 2

9.5 Transformation von nichtsinusformigen nichtperiodischen
Groflen durch das Fourierintegral (Band 3, S.156-166)
S,
f(t):%- I F(jw)-elot . dw
mit F(jo) = j f(t)-e-iot . dt = F{f()}  und J' [f()]-dt <K < oo

—0 —00

F(jo) =R(0) + j- X(0) = [F(jo)|- o)

mit Amplitudenspektrum [F(jo)| = J[R(m)]Z +[X(0)?

X(o)
R(w)

Phasenspektrum ¢ (o) = arctan
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Korrespondenzen der Fouriertransformation

f(t)

F(jo)

5(t)
8(t — to)

1

o(t)
cos oot

sin gt

o(t) - cos mpt

o(t) - sin gt

G(t) cem at

efat

G(t) .tn.
n!
mit n=0,1,2, ...

o(t) - e 3t cos mpt

o(t) - e 3~ sin wgt

Rechteckimpuls:

I fiir ff < T
qr(t) = .

0 fir |t| >T

Doppel-Rechteckimpuls:
qr(t—T) —qp(t+T)

R mit Re{a} >0
+a

sinTt T >0

1
e jotg
27 - ()

,L + 7 - 6(w)
JoO
- [8(w — g) +8(w + wg)]

%[&w—mw—&w+ww]
+g[&w—mw+&®+ww]

+—-[0(®—wy) — (0 + )]
(002—0)2 2] 0 0

- mita > 0 bzw. Re{a} >0
a+jo

W mita > 0 bzw. Re{a}>0
a+jo

)08 it a>0 bzw. Re{a} >0
(jo +2a)? + mg?
()

m mit a >0 bzw. Refa} >0

2-sinoT

. sin?2 oT
T e—aw

T qr(®)
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10 Vierpoltheorie

10.1 Grundlegende Zusammenhiinge der Vierpoltheorie

(Band 3, S.171-174)
Elektrische Schaltungen zur Ubertragung von Energien oder zur Verarbeitung von Infor-
mationen sind in den meisten Fillen ,,Zweitore” oder ,,Vierpole®, also Schaltungen mit
zwei Eingangsklemmen und zwei Ausgangsklemmen.

Diese Richtungsdefinitionen sind in der nachrichtentechnischen Literatur {iblich:

1 b
e O . g 0—
aktiver U Ubertragungs- U passiver
Zweipol =1 vierpol 2 Zweipol
e e
I I

Dem normalen Vorwiértsbetrieb ist stets eine Riickwirkung vom Ausgang zum Eingang
iiberlagert, die auch zu Stérungen bei der Signaliibertragung fithren kann.

Vierpolschaltung
in Vorwirtsbetrieb

Vierpolschaltung
in Riickwértsbetrieb

10.2 Vierpolgleichungen, Vierpolparameter und

Ersatzschaltungen
(Band 3, S.175-185)

Leitwertform der Vierpolgleichungen:

L=Y Ui+Yi-Us oder M ]2 [Xn Yz ) (G
L=Yy U +Y»n- U I, Yy Yo ) \Uy
Kurzschluss-Eingangsleitwert: Kurzschluss-Ubertragungsleitwert
riickwirts:
L Iy
Yu=|qo =Yy, Yo=|1o =Yy
=1/u,=0 =2Ju,=0
Kurzschluss-Ubertragungsleitwert Kurzschluss-Ausgangsleitwert:
vorwirts:
I L
Yo=|yo = Yir)v, Yo =\ 4o = Yout)Yiew
=1Ju,=0 =2/U,=0

© Springer Fachmedien Wiesbaden 2015
W. Weillgerber, Elektrotechnik fiir Ingenieure - Formelsammlung, DOI 10.1007/978-3-658-09090-6 10



10.2 Vierpolgleichungen, Vierpolparameter und Ersatzschaltungen 181

Widerstandsform der Vierpolgleichungen

Ui=Zn-L+Zin b oder [ ] (% Z2 ) (L
U=2Zp 1 tZn- 1 U, 2y Zy 10}
Leerlauf-Eingangswiderstand: Leerlauf-Ubertragungswiderstand
riickwirts:
u u
Zy = [Y—l] = (Zin)Y g Zp = [I__lj = (Zir)Yio
=l J1,=0 =2/11=0
Leerlauf-Ubertragungswiderstand Leerlauf-Ausgangswiderstand:
vorwirts:
U, Y,
In=|\7" = (Zar)y oo In =T =@y
=1 12:0 =2 Il =0

Reihen-Parallel-Form der Vierpolgleichungen

Uy =Hj - +H;p Uy oder | S| _(Hin Hiz ) (L
L=Hy 1) +Hy U L Hyy Hy ) (Uy
Kurzschluss-Eingangswiderstand: Leerlauf-Spannungsriickwirkung:
U Y
Hy=| 7~ = Zin)Y, s Ho =501 =My
=1 JUu,=0 =2/5=0
Kurzschluss-Stromiibersetzung Leerlauf-Ausgangsleitwert:
vorwirts:

I, I
Hy = (I_j = (Vi)Y as Hy = [U_J = You)yig
U, =0

-1
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Parallel-Reihen-Form der Vierpolgleichungen

L=Ci-U+Cpn-b oder (B ]S G2 (G
Uu=C Ui+tCn- by U, Cy Cyp 10
Leerlauf-Eingangsleitwert: Kurzschluss-Stromriickwirkung:
f I
Ch= U = Xin)Y,c0 Cp= 1. = (Vi)Y
=1/1,=0 =2/U,=0
Leerlauf-Spannungsiibersetzung Kurzschluss-Ausgangswiderstand:
vorwirts:
U U
Gy = ([_J_ZJ = (Vup)y a0 Cp = (Y_Z] = Zow)yis,
=1/1,=0 =2 Ju;=0

Kettenform der Vierpolgleichungen

Ui=An U+ Ap-(h) oder | 2| (A A (U
L1 =AUyt Axp (1) L Ayl Ay -1
reziproke negativer reziproker
Leerlauf-Spannungsiibersetzung Kurzschluss-Ubertragungsleitwert
vorwirts: vorwirts:
U U
Y20 Mty Ly Fat)y,,
reziproker negative reziproke
Leerlauf-Ubertragungswiderstand Kurzschluss-Stromiibersetzung
vorwirts: vorwirts:
I 1 I 1
Yoo Vit ly,, D y,-0 TNt )y,
I1=1 L I Ir=l,
O——tt | —2—O
Uy 1 1 2 U,
o——] l——0
L1=1} L L =l

Definition der A-Parameter mittels Kettenschaltung
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Umrechnung der Vierpolparameter von einer Form in eine andere
v v Zy, —Zy 1 -Hj, detC C Ay  —detA
- 2 | detZz detz | Hy Hy Co Cn | An Ap
) v v 2y 4y Hy  detH Cn L | U Al
- 2 | detZ detZ | Hy Hy Cy Cn | Ap A
Yo Y, 7 7 detH  Hj b G | Ay detA
dety —dety | =M =21 Hy Hy, Ci Cii | Ay A
2)
Y, Y, 7 7 -Hy; 1 Gy detC | 1 An
detY — detY S I £} Hy Cn Cii | Ay Ay
1 Yy, | detZ  Zy Cyn L | Ap  detA
Y. v 7 7 Hy, Hyp, a
X1 1| 42 22 etC  detC | Ay Ay
(H)
Y, detY | =Z,; 1 H H -Gy G -1 A
Y Yiu | Zn  Zn 2! T2 | detC detC | Ay Ay
detY Y, | L Zn| Hp Hp| c. | Au  —deta
Y, Y, Z, Zy, detH detH =1 =12 Ay Ay
C
© Yy 1 Zy detZ | -Hy Hy, C C 1 Ap
Y22 XZZ le le detH detH =21 =22 éll éll
_Xzz -1 le det; —detH _Hll 1 222
Y Y, | z,, z H H c, C A An
@) X X Ly Ly 0y Hy Lo o
—detY Y, 1 Zy Hy -1 Gy detC
Y Y Z, Z,, | H Hy | ¢, C A Az
X X Ly Ly Hy Hy oy 21
Formeln fiir Vierpoldeterminanten:
H C A
detY = Y, Yo, =Y, ¥y, = L _n_Sn 2y
detZ H; Gy Ap

H, C»n Ap
=22y~ 2112y, = =~ =

detZ =

detY Hy G Ay
Y Z 1 A
detH = =2 = =1L = H;|H,, ~H,Hy, = ==l
Yy Zp detC  Ap
Y Z 1
detC == ==2 = =C1Cp —CpyCay = =2
Yy Zj; detH Ay

Y Z H C
detA==12-=12_ =12 _ =12 _ AjAy —ApAy
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Ersatzschaltungen von Vierpolen

-0

a | T 8 s
gl g —
11 [H 'l12 ﬁ (L I
Y+ Yy Y2+ Xy

°

n-Ersatzschaltung:

U,

Yy U
l (!21"112’911
T-Ersatzschaltung: — — -,
& Ly In-2p 299-1 - I
(Zn-Zp)h
Yq [] 1 1)
5 1
U-Ersatzschaltungen: o <—0
Iy I
Yy Yy Y7 Yy
YU .
L =2 YorlUs I
Iy 17
Z11 Zzz
Yy Y2
21y 1 1121'11
el I
o~
L
é [] Hyp Y
Horrly
I y
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10.3 Vierpolparameter passiver Vierpole

(Band 3, S.186-188)

Lingswiderstand ) (2
o—t{_"}—0 1 1
Z 7 — (2) existiert nicht
- - Matrixelemente sind
1 1
- ~Z unendlich)
(A) H) ©
z Z 1 0 -1
0 1 -1 0 1 Z
Querwiderstand (X) (Z)
Y) existiert nicht Z Z
Z
= (Matrixelemente sind
unendlich) Z Z
A) (H) ©
1
1 0 0 1 7 -1
1 1 1 1 1 0
z N z
I'-Vierpol I Y) V4
1.1 _1
z 7, 3 Z, Z,
1 1
A A Z, VAR
A) (H) ©
Z -7, Z 1
! = 2,+2, 2,+2, Z, -
L 1+ 2 — 1 1 Z
Z Z Z,+Z, Z1+Z, =
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I-Vierpol 11 &) @
1 1
Z, Z VARYA) Zy
L | .
Z Z, Z, =2 =2
(A) (H) ©
V4 1 y4
1+=L =2
Z, Zi £ ! Z,+1Z, Z,+Z,
= 1 1 1 Z, Z-Z,
Z, a Z, Z+1Z, 4L+4;
) (V4]
Zy+ Z, Z,
P —— —_—— +
K X VAR Zy
L axs Vi Z,+2
mit K K L Lt
K=2Z1Zy+ 272123+ ZoZ3
(A) (H) ©
Z Z
1+=L Z +Zy+ 1 K =2 ! =
Z, Z, Zy+Zs Zy+ 27, Z +Z, Z +Z,
. 1+ Zs __ L ! Z, 2,2,
Z, Z, Z, + 27, Zy+Zy Z+2, Z+27,
Y y4
n-Schaltung &) Z)
LR _ Z,(Z, + Z3) Z,Z,
2, 2, Z, Z, Z, Zi+Zy+Zy Ly +Zy+ 14
_L 1 L Z2\Z4 Z5(Z, +Z,)
Z, Z, Zy Zi+Zy+2Zy Zi+Zy+Zy
(A) (H) ©
1+22 7 Z 2, Z Li+Zy+Zy L
z, = 2,+2, Li+2y | L(Zy+Zy) Lyt
1. 1. % 1+22 __ % Ly +Zy+ 74 Z; ZyZ4
Z 1y ZZ4 Z Z,+1Z, Zy(Z, + Zy) Zy+1Zy Zy+1Zy
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Umpoler Y) (V)
existiert nicht existiert nicht
(A) (H) ©
-1 0 0 -1 0 1
0 -1 1 0 -1 0
Symmetrische X-Schaltung Y) (2
Y4
= (1 1 (1 1 1 1
2[Z+ZJ Z[Z_Z 5@1 +Z) E(Zl -Z,)
Z1 Z_1 = =2 = £2
T T T B N D P
0z, z) 2z ') | R R
(A) (H) ©
Z,+2Z, 2-2-% 2-2,-7, Z -2, 2 _L4-Z
Z,-7Z, Z,-72, Z,+2, Z,+2, VAR Z,+2Z,
2 VAR Z,-72, 2 Z,-72, 2-2,-2,
Z,-2, Z,-72, Z,+2Z, Z,+2, Z,+2Z, Z,+2,
Symmetrischer Briicken-T- Y)
Vierpol
. Z+2, N 1 B Z, s
27 +2-2)2y, %y Z12+2'Z1'Zz Z,
B Z, . s Z+27, 1
722+2.2.-2, Z 724222, Z3
Z°+2-2,-2, Z3 4 44, £
(2)
2 2
7.+ 7Z,-Z y4
= £ =3 + ZZ =1 + Zz
2.7, + Zs 2.7, + Zs
2 2
Z,°+7Z,-Z
4 17, L th 'S,
2.7, +Z, 2.7, +Z,
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10.4 Betriebskenngrofien von Vierpolen

Kenngrofien eines Vierpols im Vorwdrtsbetrieb

(Band 3, S.189-202)

Betriebskenngrofe Leerlauf Kurzschluss
1
Eingangsleitwert Xin = {Tl Ch Y
=1
U
Eingangswiderstand Z, = ?1 VA Hy
4
. , L !
Ubertragungsleitwert vorwérts Xap =7 0 Yy =
g Ap
. . YUy !
Ubertragungswiderstand vorwiérts Ly =/ Zy = 0
L A
[0 !
Spannungsiibersetzung vorwérts Nuf =T Cy=— 0
U Ap
L 1
Stromiibersetzung vorwérts Nir = 0 Hy =~
I Axn
Kenngréfien eines Vierpols im Riickwdrtsbetrieb
Betriebskenngrofle Leerlauf Kurzschluss
I
Ausgangsleitwert You = {Tz Hy Y
2
U
Ausgangswiderstand Lout = ?2 Zy Cr
2
. I
Ubertragungsleitwert riickwirts Y = Ufl 0 Yoo
=2
.. U
Ubertragungswiderstand riickwérts Ly = Tl Z1» 0
2
U
Spannungsriickwirkung Vir = 671 Hy, 0
=2
L 4
Stromriickwirkung Mir = 0 Ci2
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Kenngrdfien des beschalteten Vierpols im Vorwdrtsbetrieb
Y) @ (H) © (A)

v [ gt Y, Y, +Zy Y, Hy+Y, G +Y, detC| Ay +Ap-Y,
- Yy +Y, Zj+ Y, detZ | detH+H,;-Y, | 1+Cy-Y, A +Ap-Y,
7 Y tY, Zy+ Y, detZ [detH+Hy, Y, | 1+Cp Y, | Ay+4Ap-Y,
T detY Yy Y, | 142y Y, Hyp+Y, |C+Y, - detC| Ay +Ay Y,
v Yo Y, 25 Y, Hy Y, G Y, Y,
Yy, Y, Zy+Y, detZ [detH+H - Y, | 1+Cp Y, | A +4A-Y,
- Y5, Zy —Hy, Gy 1

S detY +Y,-Y, 142y Y, Hy+Y, Cii+Y,-detC | Ay +Ay-Y,
v -Y,, Zy —Hy, Gy 1
=Y, +Y Zj+ Y, detZ |detH+Hy Y, | 1+Cp-Y, | A+Ap-Y,
v Yo Y, —Zy Y, Hy, Y, -G Y, -Y,

T detY + Y, Y, 1+Zy-Y, Hy+Y, C+Y, detC| Ay +Ay-Y,
Kenngroflen des beschalteten Vierpols im Riickwdrtsbetrieb

) 2 (H) © (A)

v detY + Yoo ¥ | 14Z-Y; |Hp+Yi-detH| C+Y; Ay Ay Y
Y,y Zyp+Yi-detZ | 1+H; Yy detC+Coy Y| Ap+Ap Y,
7 Y tY Zyp+Yi-detZ | T+H; oYy [detC+Cpy Y| Ay +Ap-Y;
T detY + Yoy Xy | 14Z0Y; | Hypy +YdetH | Gy +Y; Ay + A Y,

- Yo Y, ~Zp Y, —Hp Y, Cn-Y; —Y; -detA

Yty Zyy+Y;-detZ | 1+Hy Yy detC+Coy Y| Ay +Ap-Y;

7 Y Zp, Hp —Ch detA

T |detY + Yoy Xy | 142y Yy | Hyy+YedetH | Gty Ay + A Y,

v Y Zp Hy —Ci detA

Yty Zyp+Yi-detZ | 1+H; Yy detC+Coy Y| Ap+Ap Y,

V. X]z.Xi _ZIZ.Xi _le'zi QIZX] _X‘deté

T detY + Yor Yy | 14Zyy Y, | Hy +YiedetH | G+ Y Ay + A Y,
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10.5 Leistungsverstirkung und Dimpfung
(Band 3, $.203-217)

Bei aktiven Vierpolschaltungen wird fiir die Beurteilung der Leistungsiibertragung die
Leistungsverstirkung V,, definiert.

Bei passiven Vierpolen wird der Kehrwert der Leistungsverstirkung als Leistungskenn-
groBe verwendet und Ddmpfung genannt.

Die Leistungsverstirkung (Klemmen-Leistungsverstirkung, power gain) ist gleich dem
Verhéltnis der Wirkleistung am Vierpolausgang P, zur Wirkleistung am Vierpoleingang
Pin:

v, = Lo v, = 10-1g(@j in dB
Pin Pin
Vp = [V g_a mit Giy =Re{Y;, )
in
oder
v, =[vie - R mit Riy =Re{Z;, |

m
Sind der Eingangswiderstand und der Belastungswiderstand reell, dann kann die Leis-
tungsverstarkung auch aus der Strom- und Spannungsverstarkung errechnet werden:

I, IH-R I, U
vy=l BeRa b Us gy
L LRy L U

Vp-Formel mit Y-Parametern:

Y[ - G,

Vp = * *
Re{(detX+X“ Y,) (Yo + Y, )}
Vp-Formel mit H-Parametern:
2
|H21| ‘Gy

Re{(ﬂzz +Y,)- [(detﬂ)* +H), Y, }}

Vp =

Vp-Formel mit A-Parametern:

Ga

V —
Re{(ézl +An 'Xa)'(én + A, 'Xa)}

b=
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10.6 Spezielle Vierpole
(Band 3, .218-225)

Umkehrbare Vierpole

Ein Vierpol ist umkehrbar (reziprok, iibertragungssymmetrisch), wenn fiir diesen Vierpol
der Kirchhoffsche Umkehrungssatz gilt:

U= Ui

Iq Y le Ya 5| Yy l Yy I

L=1

%] %2 L I -~

£ Ug Za Zj Yg | [2a
Passive Vierpole sind umkehrbar.
Bedingungsgleichungen fiir einen umkehrbaren Vierpol:

Yo=Yy Zip=1 Hypp=—-Hy Cip=-Cy detA=1

Symmetrische Vierpole

Ein symmetrischer oder widerstandslingssymmetrischer Vierpol hat gleiches Ubertra-
gungsverhalten in Vorwiérts- und Riickwértsrichtung.

Umkehrbarer Vierpol mit Richtungssymmetrie: Yin(Y) =Y u(Y)

Yo o1 ™ Yout
— Yy *
o —o

Bedingungsgleichungen fiir einen symmetrischen Vierpol:

Y =Y Z11=2Zy detH=1 detC=1 Al =A»

Y=Yy Z1p=2y Hjp, =—Hy Cip=-Cy detA=1

Riickwirkungsfreie Vierpole

Wird bei einem Vierpol eine Ausgangsgrofie nicht auf den Eingang iibertragen, dann ist
der Vierpol riickwirkungsfrei; ein Riickwértsbetrieb ist nicht moglich.

Bedingungsgleichungen fiir einen riickwirkungsfreien Vierpol:

Yip=0 Z1=0 Hip=0 Ci2=0 detA=0
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10.7 Zusammenschalten zweier Vierpole

10.7.1 Grundsitzliches iiber Vierpolzusammenschaltungen

(Band 3, S.226-229)
Vierpolparameter einer Vierpolzusammenschaltung
Um das Wechselstromverhalten von nicht einfachen passiven Vierpolen (z.B. Symmetri-
sche X-Schaltung, Symmetrischer Briicken-T-Vierpol, Phasenketten, Laufzeitketten) und
von riickgekoppelten aktiven Vierpolen (z.B. einstufige und mehrstufige Transistorver-
stirker im Kleinsignalbetrieb) mit Hilfe der Betriebskenngréen beschreiben zu kdnnen,
sind deren Vierpolparameter zu berechnen.
Die Parameter konnen aber erst ermittelt werden, wenn die Vierpolzusammenschaltung
entwickelt ist, d. h. wenn untersucht ist, auf welche Art die vorkommenden einfachen
Vierpole wechselstrommaéfig zusammengeschaltet sind. Bei einem Verstérker z.B. soll-
te beim Vierpol ,,Transistor” begonnen werden und dann die Zusammenschaltung des
Transistors mit den Widerstdnden untersucht werden.
Sind mehr als zwei einfache Vierpole zusammengeschaltet, dann werden zundchst zwei
Vierpole zu einem Vierpol zusammengefasst und dann der dritte Vierpol mit dem zusam-
mengefassten Vierpol vereinigt, usw. Dabei ist darauf zu achten, dass die Reihenfolge
nicht vertauschbar ist. Es handelt sich also immer nur um die Zusammenschaltung von
jeweils zwei Vierpolen.
Arten des Zusammenschaltens von Vierpolen:

_____ [— —]

=~ ’
2 2 \E 2,/
[ — e e of P S
Parallel-Parallel - Reihen-Reihen - Reihen-Parallel - Parallel-Reihen -
Schaltung Schaltung Schaltung Schaltung
Ketten-Schaltung 1 2

Werden zwei Dreipole (z.B. Transistor und I' -Vierpol) zusammengeschaltet, dann muss
bei der Zusammenschaltung die durchgehende Verbindung mit der gestrichelten Linie in
den Prinzipschaltungen iibereinstimmen.

Riickkopplungs-Vierpole
Parallel-Parallel-Schaltung (Spannung-Strom-Riickkopplung)
Reihen-Reihen-Schaltung (Strom-Spannung-Riickkopplung)
Reihen-Parallel-Schaltung (Spannung-Spannung-Riickkopplung)
Parallel-Reihen-Schaltung (Strom-Strom-Riickkopplung)
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10.7.2 Die Parallel-Parallel-Schaltung zweier Vierpole
(Band 3, S.230-232)

1 I
00—

I . . I
O .U.‘l 1 ly_z ——0
!11 ot Indniadntndntntine —0— Y2
' . 21 I .
1 14 I I,
uj 1 2 1!2'

W] - - - ==
Iy I3

Die Leitwertmatrix von zwei Vierpolen in Parallel-Parallel-Schaltung wird berechnet,
indem die entsprechenden Leitwert-Vierpolparameter der Einzelvierpole addiert werden:

Y Y| |[Yn+Y, Yp+Yp

Yy Yy Yo +Yy Yy +XYp
Beispiele:
1. Symmetrischer Briicken-T-Vierpol:

o]
13 Z
o—r b—o o—4 —o O—— $—+—0
Z4 Z4
Iy = —
Z
° —o0 o— =3 -
Y—0—

2. Riickgekoppelter Transistor in Emitterschaltung (Spannung-Strom-Riickkopplung):

+Ug

| &
Rc
R O \j *]
R
Rg Rc
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10.7.3 Die Reihen-Reihen-Schaltung zweier Vierpole
(Band 3, S.232-235)

I 1 &) L
[ B — Ol 0
Ui 1 1 lu‘z
———————— D
- I 15 v
L o [ SRS W—
U3 1 2 lu'é ’
(!—C————-—O—T—' ——0—————1—0
Iy 11 12 I

Die Widerstandsmatrix von zwei Vierpolen in Reihen-Reihen-Schaltung wird berechnet,
indem die entsprechenden Widerstand-Vierpolparameter der Einzelvierpole addiert wer-
den.

Zyy Ly | | Zn+tZ4y Ziptip

Ly Zy Zyy+Zyy Loy +Zy

Beispiele:
1. Symmetrischer Briicken-T-Vierpol:

1 £3

3 Z4 Z4
o—d —o
2y I
=)

Zz — T

o I glz
0

2. Riickgekoppelter Transistor in Emitterschaltung (Strom-Spannung-Riickkopplung):

Rp=Rp1l| Rz
+Upg
Rp1 Re
Re
J®s ~
mp
IE
R Re
o .
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10.7.4 Die Reihen-Parallel-Schaltung zweier Vierpole
(Band 3, S.236-241)

L 14 I
4SS S - b ——————— I
Us 1 1 lui <5
- - ———— — - f-a——— lgz
1 1
U ! =2
_1 " " - <
I I I
——— L 2 ——C
Uy l M 1!2
! N
O | B -
Ly 1 )

Die Hybridmatrix von zwei Vierpolen in Reihen-Parallel-Schaltung wird berechnet, in-
dem die entsprechenden Hybrid-Vierpolparameter der Einzelvierpole addiert werden:

[Hn lel :{Hn +H;; Hp +H12J

Hyy Zyp Hy +Hy; Hy +Hy

Die in der Tabelle 10.3 angegebenen H-Parameter miissen also hinsichtlich dieser beiden
Parameter gedndert werden, ehe sie zu den H-Parametern des Vierpols 1 addiert werden.
Die Parameter H;, und Hy; erhalten umgekehrte Vorzeichen.

Gednderte Zusammenschaltung

Damit die Vierpolparameter des Riickkopplungsvierpols unverdndert mit den Parametern
des Vierpols 1 zusammengefasst werden konnen, lasst sich auch die Zusammenschaltung so
verdndern, dass die durchgehende Verbindung des Vierpols 2 wie bei der Reihen-Reihen-
Schaltung oben liegt:

I I I
O e O POy
. . 1
Uy 1 1 Y2 24‘:
________ U,
I4 I, l
21 '1'3 -3 0
il 12 _1_2
| 2 |u2
Iy I I3
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Beispiele:
1. Kollektorschaltung als riickgekoppelter Transistor in Emitterschaltung
ohne Kollektorwiderstand (Spannung-Spannung-Riickkopplung):

Rg=Rp1llRg2

19T
:

(H):[ Hy, + H), —(Hiz—H'{z)]
- \—~(Hz1-Hy) Hy+Hy

2. Kollektorschaltung als riickgekoppelter Transistor in Emitterschaltung mit Kollektorwi-
derstand:

+ug RB=Ra1ll Re2

|

R

Der Kollektorwiderstand ist als Langswiderstand in Kette zum Transistor geschaltet und ver-
andert dessen Parameter.
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3. Phasenumkehrstufe

’UB

Yz

—

l
Uy
R2
- o Jr—
10.7.5 Die Parallel-Reihen-Schaltung zweier Vierpole
(Band 3, S.241-242)
1 I
e O] e g0
o g&l 1
u*]l O] — =
4 1
o " Y2
I Iy
o—p— -
" d
U1 l e L
7
- - =7 o0
Iy L

Die C-Parameter von zwei Vierpolen in Parallel-Reihen-Schaltung werden berechnet,
indem die entsprechenden C-Parameter der Einzelvierpole addiert werden:

[911 912} _ (911 +Cp G +Q12J
G Cp Co+Cy1 Cpn+Cyy

Transistoren in Parallel-Reihen-Schaltung finden in der Praxis keine Anwendung.
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10.7.6 Die Ketten-Schaltung zweier Vierpole

(Band 3, S.243-247)

L I I by 5 I
pem—— O] o O——{ e ©
u 1 uil 1 19& uﬁl 2 lu; 1gz
[ . e et POt )
Iy It I 1 I I
A Ap _ A Ap A Ap
Ay Ap Ay Ap) (Ay Ay
Falksches Schema der Matrizenmultiplikation:
All Alz
Ay Ay
Ay Ap A A tAn Ay At Apt At Ap
Ay Ay Apm AT Ay Ay Axim At Ay Ap
Beispiel:
Transistorverstiarker
®Ug=+15V
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10.8 Die Umrechnung von Vierpolparametern von Dreipolen
(Band 3, S.248-252)
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10.9 Die Wellenparameter passiver Vierpole

(Band 3, S.253-258)
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