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 V 

Vorwort  

Viele Studenten kommen mit der ausführlichen Darstellung der elektrotechnischen Zu-
sammenhänge in den drei Bänden der „Elektrotechnik für Ingenieure“ gut zurecht. Geht 
es dann in die Phase der Prüfungsvorbereitung, wünschen sie sich eine kompakte Darstel-
lung, in der die wichtigsten Zusammenhänge, Lösungsabläufe und Formeln zusammenge-
fasst sind, mit denen Übungs- und Prüfungsaufgaben gelöst werden können. Vor der Prü-
fung erschlägt sie förmlich die Fülle des Stoffes in einem umfangreichen Lehrbuch, der 
während des Studiums nur einmal gehört und nur einmal mittels Übungsaufgaben nachbe-
reitet werden konnte. Etwa ein Sechstel des Textes ist leichter zu überschauen und zur 
Prüfung zu wiederholen.   

Diese vorliegende Formelsammlung sollte die Studenten allerdings nicht dazu verführen, 
die Elektrotechnik mit Hilfe dieser Zusammenfassung verstehen zu wollen. Die Formel-
sammlung kann erst nützlich sein, nachdem die Zusammenhänge im Lehrbuch bearbeitet 
und verstanden worden sind. Dann erst hilft die Formelsammlung bei der Lösung von 
Übungs- und Prüfungsaufgaben.  

Die berufspraktische Tätigkeit eines Diplomingenieurs setzt die Kenntnis von elektro-
technischen Grundlagen voraus. Dafür ist oft ein komprimiertes Buch mit Zusammenfas-
sungen, Formeln und Arbeitsanweisungen ausreichend und sinnvoll, und es findet in je-
dem Schreibtisch einen Platz.  

Sollte diese „Formelsammlung und mehr“ für ein zu lösendes Problem nicht ausreichend 
sein, kann mit dem Seitenbezug zu den Lehrbüchern die jeweilige ausführliche Darstel-
lung gefunden werden. Sie steht hinter den Überschriften jeden Kapitels.   

Textbild und Zeichnungen sind ganz bewusst aus den Lehrbüchern entnommen, damit das 
in den Lehrbüchern vertraute Bild wieder erkannt wird.   

Die 2. Auflage wurde um ein Sachwortverzeichnis und ein Verzeichnis der verwendeten 
Formelzeichen ergänzt. Die 3. Auflage wurde vollständig überarbeitet, und die 4. Auflage 
wurde nochmals korrigiert. Diese 5. Auflage wurde noch einmal durchgesehen. 

Für die gute Zusammenarbeit möchte ich allen Mitarbeitern des Verlags und der Fa. 
Fromm MediaDesign danken. 
 
 
Wedemark, im Juli 2015  Wilfried Weißgerber 
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Schreibweise physikalischer Größen und ihrer Abbildungen 

u, i  Augenblicks- oder Momentanwert zeitabhängiger Größen:  
  kleine lateinische Buchstaben 
U, I  Gleichgrößen, Effektivwerte: große lateinische Buchstaben 
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u, i  komplexe Zeitfunktion, dargestellt durch rotierende Zeiger 
û, î  komplexe Amplitude 
U, I  komplexer Effektivwert, dargestellt durch ruhende Zeiger 
Z, Y, z  komplexe Größen 
Z*,Y*, z*  konjugiert komplexe Größen 
E,D, r   vektorielle Größen 

 
Schreibweise von Zehnerpotenzen 

  10 12 p Piko     10 2 c Zenti     103 k Kilo  
  10 9 n Nano     10 1 d Dezi     106 M Mega  

  10 6 Mikro      101 da Deka     109 G Giga  
  10 3 m Milli      102 h Hekto     1012 T Tera  
 
 
 
Formelzeichen physikalischer Größen 

a Länge 
Vierpolparameter 
Wellendämpfungsmaß 

ka  Fourierkoeffizient 
a Operator des m-Phasensystems 
A Fläche, Querschnittsfläche,  
A komplexe Größe 
 Vierpolparameter 
b Länge,  
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kb  Fourierkoeffizient 

B, B  magnetische Flussdichte oder 
magnetische Induktion, 

B komplexe Größe 
B Blindleitwert (Suszeptanz) 
 
 
 

c Länge 
 Konstante 
 Lichtgeschwindigkeit  

c = 2,99792·108 m/s 
 spezifische Wärmekapazität 

(spezifische Wärme) 
Vierpolparameter 

ck komplexer Fourierkoeffizient 
kc  Amplitudenspektrum 

C elektrische Kapazität 
 Konstante 
C komplexe Größe 
 Vierpolparameter 
d Dicke,  
 Durchmesser 
 Verlustfaktor 
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D, D  elektrische Verschiebungs-
flussdichte oder Erregungs-
flussdichte 

D Durchmesser 
D* Drehfederkonstante 
e Elementarladung  

e = 1,602·10–19 As 
 zeitlich veränderliche EMK 
E EMK 
E, E  elektrische Feldstärke 
E komplexe Größe 
f Frequenz 
 Formfaktor 

Fef  Eisenfüllfaktor 
f(t) Zeitfunktion 
F, F  Kraft 
F komplexe Größe 
F(s) Laplacetransformierte der 

Zeitfunktion f(t) 
F f(t)  Fouriertransfomierte der 

Zeitfunktion f(t) 
F(j ) Fouriertransfomierte der 
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F( j )  Amplitudenspektrum 
g Gütefaktor 
 Wellen-Übertragungsmaß 
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H Vierpolparameter 
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 Kopplungsfaktor 
 Klirrfaktor 
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K Konstante 
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l, l  Länge 
l Anzahl 
L Induktivität 
L komplexe Größe 
L f(t)  Laplacetransformierte der Zeit-

funktion f(t) 
m Masse 
 Anzahl 
M Gegeninduktivität 
 Drehmoment 
n Anzahl 
 Drehzahl 
N Entmagnetisierungsfaktor 
N  Normale 
N komplexe Größe 
O allgemeine Ortskurvenglei-

chung 
p Augenblicksleistung 
 Verhältniszahl 
 Parameter 
 Tastverhältnis 
pi Größen der Zipperer-Tafel 
P Leistung (Gleichleistung, Wirk-

leistung) 
P Ortskurve Parabel 
q zeitlich veränderliche Ladung 
qi   Größen der Zipperer-Tafel 
Q Ladung, Elektrizitätsmenge 
 Blindleistung 
 Kreisgüte, Gütefaktor, Reso-

nanzschärfe 
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r variabler Radius 
 Betrag einer komplexen Zahl 
 reelle Achse 
 Widerstandsverhältnis 
r  Radiusvektor, Ortsvektor 
R elektrischer Widerstand 
 Wirkwiderstand (Resistanz) 
 Radius 

mR  magnetischer Widerstand 
 R komplexe Größe 
s Weg, Länge 
 komplexe Variable der  

Laplacetransformation 
si   Ordinatensprünge 
sn(t)  Summenfunktion 
  S,S  Stromdichte 
S Scheinleistung 
S komplexe Leistung 
 komplexe Größe 
t Zeit 
T Periodendauer (Dauer einer 

Schwingung) 
u zeitlich veränderliche elektri-

sche Spannung (Augenblicks- 
oder Momentanwert) 

 Realteil einer komplexen Zahl 
û Amplitude, Maximalwert der 

sinusförmigen Spannung 
u komplexe Zeitfunktion der 

elektrischen Spannung 
û komplexe Amplitude der  
 elektrischen Spannung 
U elektrische Spannung (Gleich-

spannung, Effektivwert) 
U komplexer Effektivwert der  

elektrischen Spannung 
ü Übersetzungsverhältnis  
  v, v  Geschwindigkeit 
v allgemeine zeitlich veränderli-

che Größe 
 Imaginärteil einer komplexen 

Zahl 
 Widerstandsverhältnis 
vi   abgelesene Ordinatenwerte 
vi(x) Geradenstücke einer Ersatz-

funktion 
 
 

V Volumen 
 magnetische Spannung 
 Effektivwert einer allgemeinen 

Größe v 
 Verstärkung 
 normierte Verstimmung 
w Windungszahl 
 zeitlich veränderliche Energie 
w´ Energiedichte 
w komplexe Zahl 
W Arbeit, Energie 
x unabhängige Veränderliche 

laufende Ordinate auf der Ab-
zissenachse 

 Verhältniszahl 
 Realteil einer komplexen Zahl 
x(t)  Eingangs-Zeitfunktion 
X Blindwiderstand (Reaktanz) 
X(s) Laplacetransformierte der Ein-

gangs-Zeitfunktion 
y laufende Ordinate auf der Ordi-

natenachse 
 Imaginärteil einer komplexen 

Zahl 
 Vierpolparameter 
y(t)  Ausgangs-Zeitfunktion 
Y Scheinleitwert (Admittanz) 
Y(s) Laplacetransformierte der Aus-

gangs-Zeitfunktion 
Y komplexer Leitwert bzw. kom-

plexer Leitwertoperator 
 Vierpolparameter 
z Zweigzahl 
 Ankerumdrehungen 
 laufende Ordinate 
 Vierpolparameter 
z komplexe Zahl 
Z Scheinwiderstand (Impedanz) 
Z komplexer Widerstand bzw. 

komplexer Widerstandsoperator 
 Vierpolparameter 
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 Winkel 
 Temperaturkoeffizient 
 Zeigerausschlag 

 Winkel 
 Temperaturkoeffizient 
 Winkel 

 Zeigerausschlag 
 Verlustwinkel 

 Abklingkonstante 
 Realteil der komplexen  

Variablen s 
(t) Dirac-Impuls oder Dirac’sche 

Deltafunktion 
 Differenz, Abweichung 
f Bandbreite 
 Dielektrizitätskonstante 

 Dielektrizitätskonstante des 
Vakuums, Influenzkonstante: 

  0 8,8542 10 12 As
Vm

 

 Fehlwinkel 
 Wirkungsgrad 
 elektrisches Potential 

 Phasenverschiebung 
Argument einer komplexen 
Zahl 

i Anfangsphasenwinkel des 
Stroms  

u Anfangsphasenwinkel der 
Spannung 

vk   Phasenspektrum 
( ) Phasenspektrum 
 magnetischer Fluss 
 Temperatur 
 spezifischer Leitwert 

Teil der Lösung der charakteris-
tischen Gleichung 

 Lösung der charakteristischen 
Gleichung 

 Permeabilität Permeabilität des 
Vakuums: 

 0 1,256 10 6 Vs
Am

 

 laufender Index 
 relative Verstimmung 

 spezifischer Widerstand 
 Durchflutung 
 Streufaktor 
(t) Sprungfunktion 
 Zeitkonstante 

 Temperaturkennwert 
 Kreisfrequenz 
 Verschiebungsfluss 

 Induktionsfluss oder verketteter 
Fluss 

k Phasenspektrum 
 Abszissenwert von Stützstellen 

   Scheitelfaktor 
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Einheiten des SI-Systems (Système International d’Unités) 
 
 
Basiseinheit 
 
der Länge l 
der Masse m 
der Zeit t 
der elektrischen Stromstärke I 
der absoluten Temperatur T 
der Lichtstärke I 
der Stoffmenge n 

das Meter, m 
das Kilogramm, kg 
die Sekunde, s 
das Ampere, A 
das Kelvin, K 
die Candela, cd 
das Mol, mol 

 
von den Basiseinheiten abgeleitete Einheit 
 
der Kraft F 
der Energie W 
der Leistung P 
der Ladung Q gleich 
des Verschiebungsflusses  
der elektrischen Spannung U 
des elektrischen Widerstandes R 
des elektrischen Leitwertes G 
der Kapazität C 
des magnetischen Flusses  
der Induktivität L 
der magnetischen Induktion B 
der Frequenz f 

Newton, 
Joule, 
Watt, 
Coulomb, 
 
Volt, 
Ohm, 
Siemens, 
Farad, 
Weber, 
Henry, 
Tesla, 
Hertz, 

1N = 1kg · m · s–2 = 1V · A · s · m–1 

1J = 1kg · m2 · s–2 = 1V · A · s 
1W = 1kg · m2 · s–3 = 1V · A 
1C = 1A · s 
 
1V = 1kg · m2 · s–3 · A–1 = 1W · A–1 

1  = 1kg · m2 · s–3 · A–2 = 1V · A–1 

1S = 1kg–1 · m–2 · s3 · A2 = 1V–1 · A 
1F = 1kg–1 · m–2 · s4 · A2 = 1C · V–1 

1Wb = 1kg · m2 · s–2 · A–1 = 1Vs 
1H = 1kg · m2 · s–2 · A–2 = 1Wb · A–1 

1T = 1kg · s–2 · A–1 = 1Wb · m–2 

1Hz = s–1 
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1  Physikalische Grundbegriffe der Elektrotechnik 

Das Coulombsche Gesetz und das elektrische Feld (Band 1, S. 4) 

elektrische Kraft zwischen geladenen Körpern 
1 2 1

2 22 2
Q Q QF K E Q K Q

r r
       mit       1

2
QE K
r

   elektrische Feldstärke 

Das elektrische Potential und die elektrische Spannung  (Band 1, S.5-7) 

1
1

2

W
Q

                 2
2

2

W
Q

 

W = W2 – W1 = ( 2 – 1) · Q2 
 

2 1
2

WU
Q

 

mit      N m1 V 1
C

  

Der elektrische Strom   (Band 1, S.10-12) 

Arten des elektrischen Stroms: 
der Verschiebungsstrom im Nichtleiter und der Konvektionsstrom im Leiter 

 
 

Konvektionsstrom           Stromdichte 

QI
t

  Gleichstrom IS
A

     dIS
dA

 mit    [S] = 1 2
A

mm
 

dqi
dt

  zeitlich veränderlicher Ladungsstrom 

mit     
18C 6,24 10 Elektronen1 A 1

s Sekunde
 

Stromarten 
         Gleichstrom  
             (Band 1, Kapitel 2),  
         Wechselstrom  
             (Band 2, Kapitel 4). 
 

vor der Trennung                nach der Trennung           nach weiterer Trennung 
 

 

Ladungsverschiebungen 

© Springer Fachmedien Wiesbaden 2015 
W. Weißgerber, Elektrotechnik für Ingenieure - Formelsammlung, DOI 10.1007/978-3-658-09090-6_1 



2 1  Physikalische Grundbegriffe der Elektrotechnik 

Der elektrische Widerstand  (Band 1, S.12-21) 
 

elektrischer Widerstand 

a
UR
I

          a
V[R ] 1 1
A

 
 

U = Ra · I oder    
a

UI
R

 

elektrischer Leitwert 

Ga= 
a

1
R

           [Ga] = 1 S = 1 –1 

Bemessungsgleichung 

  aR
A A

l l       

         mit        l:  Länge des Leiters,    A:  Querschnittfläche des Leiters 
 

 
 

Temperaturabhängigkeit des Widerstandes 
bis 200 ºC 

 

 = 20 · (1 + 20 · )  
Ra = R20 · (1 + 20 · ) 

über 200 ºC   bzw.  nichtlinear 
 
 

 = 20 · [1 + 20 ·  + 20 · ( )2] 
 

Ra = R20 [1 + 20 ·  + 20  ( )2] 
      mit    =  – 20 ºC 
 

  20 
Material Symbol  2mm

m
 2

m
mm

 
1 1oder

KC
 

Aluminium Al  0,028  36  0,004  
Silber Ag  0,016  63  0,004  
Kupfer Cu  0,018  56  0,004  
Gold Au  0,023  44  0,004  
Platin Pt  0,11  9  0,002  
Eisen Fe  0,125  8  0,005  
Manganin  Cu, Fe, Mn, Ni 0,4 2,5 0,00001 
Chromnickel Cr, Ni, Fe  1  1  0,00005  

 

 

 :  spezifischer Widerstand 
  = 1/ :  spezifischer Leitwert 

 
 Materialgrößen 
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Die elektrische Energie und die elektrische Leistung 

 (Band 1, S.22-24) 
 
In einem Stromkreis ist die Summe aller vorzeichenbehafteten Energien Null: 

i 1 2
i 1

W W W ... W 0
l

l  

Energieansatz mit Quellspannungen: 
Werden für die Spannungsquellen Quellspannungen Uq angesetzt, gilt für den Energiesatz, 
dass die Summe aller vorzeichenbehafteten Energien (zugeführte Energien sind negativ, nach 
außen abgegebene Energien sind positiv) Null ist. 
In einer Spannungsquelle erzeugte – genauer umgewandelte – elektrische Energie : 

Werz = Q · Uq 

In ohmschen Widerständen abgegebene Energie: 
 

2
2

abg a
a

UW Q U U I t I R t t
R

 

 

 [W] = 1 J = 1 Ws = 1 Nm          1 Joule       1 Wattsekunde     1 Newtonmeter 
 

heute nicht mehr gebräuchliche Energieäquivalente 
mechanische Arbeit Wärmeenergie elektrische Energie 
426,9 kp · m   = 1 kcal   = 4,187 · 103 Ws 
0,102 kp · m   = 0,2388 cal   = 1 Ws 
 

Wärmeenergie (Wärmemenge) 
 W = c · m ·  
Die spezifische Wärmekapazität c eines Stoffes gibt an, wie viel Wärmeenergie notwendig ist,   
um 1 kg dieses Stoffes um 1 ºC zu erwärmen. 
 

Beispiele: 
Wasser 4 187 J/(kg · K) Aluminium 880 J/(kg · K) 
Kupfer 394 J/(kg · K) Gold 130 J/(kg · K) 
Eisen 461 J/(kg · K) Sauerstoff 730 J/(kg · K) 

 

Für Temperaturdifferenzen: 1 ºC = 1 K 
elektrische Leistung 

 
 

[P] = 1 W = 1V · A 
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2  Gleichstromtechnik 

2.1  Der unverzweigte Stromkreis 

2.1.1  Der Grundstromkreis  (Band 1, S.27-31) 
 

  
      Grundstromkreis mit Quellspannung Uq            Grundstromkreis mit EMK E 
 

Uq = U + Ui 
 

 
E = U + Ui 
 

                                         normaler Betriebsfall mit   0 < Ra <  

q

a i

U
I

R R
 

a i

EI
R R

 

 
                                        Kurzschluss: Ra = 0   mit  U = 0 

q
k

i

U
I

R
 k

i

EI
R

 

 
                                          Leerlauf: Ra =   mit I = 0 

Ul = Uq Ul = E 

 
                                          Anpassung: Ra = Ri 

k
1I I
2

 

1U U
2 l  

k
1I I
2

 

1U U
2 l  

 
 

© Springer Fachmedien Wiesbaden 2015 
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2.1  Der unverzweigte Stromkreis 5 

Kennlinien des Grundstromkreises: 
 

 

Kennlinie des aktiven Zweipols 

 

k

U I 1
U Il

 

 

 

Kennlinie des passiven Zweipols 

               linearer Widerstand 

                 U = Ra  I      
a

1I U
R

 

               nichtlinearer Widerstand 
 
                  U =f (I)        I = f (U) 

 

 

 
Überlagerung der Kennlinien des aktiven und passiven Zweipols 

 
Werden aktiver und passi-
ver Zweipol zusammenge-
schaltet, dann stellt sich
nur ein Strom I und nur ei-
ne Klemmenspannung U
ein. Diese Größen ergeben 
sich durch Überlagerung
der Kennlinien des aktiven
und passiven Zweipols, in-
dem im Schnittpunkt (ge-
nannt Arbeitspunkt) die
Größen abgelesen werden.

 

 

 
 

Aus den überlagerten Kennlinien lassen sich die Spannungen am Außenwiderstand und In-
nenwiderstand abgreifen. 
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2.1.2  Zählpfeilsysteme   (Band 1, S.31,32) 
Im Verbraucherzählpfeilsystem (VZS-System) werden die im Verbraucher (Widerstand) defi-
nierten Strom- und Spannungsrichtungen zugrunde gelegt: 

2.1.3  Die Reihenschaltung von Widerständen   (Band 1, S.33,34) 
 
U = U1 + U2 + ... + Un 
U = I  (R1 + R2 + ... + Rn)  

U =
n n

v v
v 1 v 1

U I R  

U = I  Ra 
n

a v
v 1

R R  

oder 

a

1
G

=
n

vv 1

1
G

 

 

 
Ersatzschaltung eines Stromkreises mit n in Reihe geschalteten ohmschen 
Widerständen 

2.1.4  Anwendungen der Reihenschaltung von Widerständen   (Band 1, S.34,35) 
unbelasteter Spannungsteiler 

 

1 1

2 2

U R
U R

 

1 1 1

1 2

U R R
U R R R

 

 

                                                              Potentiometer 

 
Ausführungen unbelasteter Spannungsteiler 

Spannungsteilerregel 
Die Spannungen über zwei vom gleichen Strom durchflossenen Widerständen verhalten sich 
wie die zugehörigen Widerstandswerte. 
 
Messbereichserweiterung eines Spannungsmessers  

Rv = (p – 1)  R0. 

mit   
0

Up
U
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2.1.5  Die Reihenschaltung von Spannungsquellen   (Band 1, S.35,36) 
Die Ersatz-Quellspannung Uq ers bzw. die Ersatz-EMK Eers berücksichtigt alle Uqv bzw. Ev, die 
in gleicher Richtung wirken, positiv und die entgegengesetzt wirken, negativ. 
Der Ersatz-Innenwiderstand Ri ers ist gleich der Summe aller Innenwiderstände Riv. 

2.2  Der verzweigte Stromkreis 

2.2.1  Die Maschenregel (Der 2. Kirchhoffsche Satz)   (Band 1, S.37,38) 
Zur Ermittlung der Spannungsgleichungen in einem verzweigten Stromkreis werden beliebige 
Maschenumläufe gewählt, für die die Maschenregel gilt: 
Beim Umlauf einer Masche ist die Summe 
aller vorzeichenbehafteten Spannungen 
(Quellspannungen und Spannungen an 
Widerständen) in einer Masche gleich Null: 

l

i
i 1

U 0  (2.38) 

Beim Umlauf einer Masche ist die Summe 
der vorzeichenbehafteten EMK E gleich der 
Summe der vorzeichenbehafteten Span-
nungsabfälle an den Widerständen: 

n m

i i
i 1 i 1

E U .  (2.39)

Wird mit Quellspannungen gerechnet, dann 
wird jede Masche nur einmal durchlaufen. 

Wird mit EMK E gerechnet, muss jede Ma-
sche zweimal durchlaufen werden, einmal 
für die EMK und einmal für die Span-
nungsabfälle. 

Vorzeichenbehaftet bedeutet, dass alle in der gewählten Umlaufrichtung liegenden Spannun-
gen und EMK positiv und dass alle entgegengesetzt gerichteten Spannungen und EMK negativ 
in der Maschengleichung berücksichtigt werden. 
 

2.2.2  Die Knotenpunktregel (Der 1. Kirchhoffsche Satz)    (Band 1, S.39) 
Treffen sich mehrere stromdurchflossene Leiter in einem Knotenpunkt, so gilt die Knoten-
punktregel: 
Die Summe aller vorzeichenbehafteten 
Ströme eines Knotenpunktes ist Null; vor-
zeichenbehaftet bedeutet, dass die zum 
Knotenpunkt hinfließenden Ströme positiv 
und die von ihm wegfließenden Ströme 
negativ gezählt werden oder umgekehrt: 
 

l

i
i 1

I 0  (2.40) 

Die Summe der zum Knotenpunkt hinflie-
ßenden Ströme ist gleich der Summe der 
vom Knotenpunkt wegfließenden Ströme: 
 
 

 
n m

i i
i 1 i 1

I I .  (2.41)

          



8 2  Gleichstromtechnik  

2.2.3 Die Parallelschaltung von Widerständen   (Band 1, S.39,40) 

 
  Ersatzschaltung eines Stromkreises mit n parallel geschalteten ohmschen Widerständen 

I = I1 + I2 + I3 + ... + In=
1 2 3 n

1 1 1 1U
R R R R

= U  (G1 + G2 + G3 + ... + Gn) 

I =
n n n

v v
vv 1 v 1 v 1

1I U U G
R

 

Ga = G1 + G2 + G3 + ...+ Gn =
n

v
v 1

G   oder    
n

a 1 2 3 n vv 1

1 1 1 1 1 1
R R R R R R

 

2.2.4  Anwendungen der Parallelschaltung von Widerständen   (Band 1, S.41,42) 
Stromteiler 

1 1 2

2 2 1

I G R
I G R

 

2 2 1

1 2 1 2

I G R
.

I G G R R
 

 
 

Stromteilerregel 
Ein Stromteiler besteht aus zwei parallel geschalteten Widerständen R1 und R2 , an denen die 
gleiche Spannung anliegt. 
In parallelen Zweigen mit ohmschen Widerständen sind die Teilströme proportional den 
Zweigleitwerten und umgekehrt proportional den entsprechenden Zweigwiderständen. 
Für zwei parallel geschaltete Widerstände gilt die Regel: 
Der Teilstrom verhält sich zum Gesamtstrom wie der Widerstand, der nicht vom Teilstrom 
durchflossen ist, zum Ringwiderstand der Parallelschaltung. Der Ringwiderstand bedeutet der 
Widerstand der Reihenschaltung der beiden Widerstände, nicht der Gesamtwiderstand der 
Parallelschaltung: 

1 2

1 2

I R
I R R

                und                2 1

1 2

I R
I R R
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Ersatzwiderstand von zwei 
parallel geschalteten Widerständen 
  

Ra = 1 2

1 2

R R
R R

 

 
 
 
 

Messbereichserweiterung eines Strommessers  
 

Rp = 0R
p 1

        mit         p =
0

I
I

 

 
Gp = (p – 1)  G0. 

 
 

2.2.5  Ersatzspannungsquelle und Ersatzstromquelle   (Band 1, S.44-46) 
 
 

 

 

 
 

 

 
 

 
 
 
 

 
 

 

q
q

i

U
I

R
 bzw.     q

i

EI
R

 

q q iU I R  bzw.     q iE I R  
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normaler Belastungsfall 
für Grundstromkreis mit Ersatzspannungsquelle  
 

 

a
q

i a

R
U U

R R
 

(Spannungsteiler) 
 

q

i a

U
I

R R
  

 
 
für Grundstromkreis mit Ersatzstromquelle  
 

 

i
q

i a

R
I I

R R
 

(Stromteiler) 
 

i a
q

i a

R R
U I

R R
 

 

 
 
charakteristische Betriebszustände  

 für Ersatzspannungsquelle für Ersatzstromquelle 

Kurzschluss mit Ra = 0: U = 0 I = Ik = q

i

U
R

 U = 0 I = Ik = Iq 
 weil Ii = 0 

Leerlauf mit Ra = : 
I = 0 U = Ul = Uq 
 weil Ui = 0  

I = 0 U = Ul = Iq  Ri 
 weil Ii = Iq 

Anpassung mit Ra = Ri: 

qUU
U

2 2
l  

qk II
I

2 2
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2.2.6  Die Parallelschaltung von Spannungsquellen   (Band 1, S.54-56) 
 

 
Überführung von n parallel geschalteten Spannungsquellen in n äquivalente Stromquellen 

 
Überführung von n parallel geschalteten Stromquellen in eine Ersatz-Stromquelle und eine Ersatz-
Spannungsquelle 

n
qv q1 q2 q3 qn

ivv 1 i1 i2 i3 in
q ers n

i1 i2 i3 inivv 1

U U U U U
R R R R R

U
1 1 1 11

R R R RR

 

 

i ers n

i1 i2 i3 inivv 1

1 1R
1 1 1 11

R R R RR

 

 
Sind die parallel geschalteten Spannungsquellen mit einem äußeren Widerstand Ra belastet, 
dann ist 

q ers

i ers a

U
I

R R

n
qv q1 q2 q3 qn

ivv 1 i1 i2 i3 in
n

a a
iv i1 i2 inv 1

U U U U U
R R R R R

1 1 1 11 R 1 R
R R R R
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2.2.7  Messung von Widerständen   (Band 1, S.58-61) 
 
Stromrichtige Messschaltung zur Messung von großen Widerständen: 
 

      R A R A
M

U U U UUR
I I I I

 

 
       RM = R + R     
 

       mit R = A
A

U
R

I
 

 
 
Spannungsrichtige Messschaltung zur Messung von kleinen Widerständen: 
 

V VA
M

R R R R

I I II IG
U U U U

 

 

MG G G       

 

mit     V
V

R V

I 1G G
U R

 

 
Gleichstrombrücke nach Wheatstone 
 
Bei Abgleich der Brücke 
sind zwei Zweigströme
gleich, weil der Diagonal-
zweig stromlos ist:  
        I1 = I2  und   I3 = I4 
Die Abgleichbedingung der
Wheatstonebrücke lässt
sich in ohmschen Wider-
ständen ausdrücken: 

31

2 4

RR
R R
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Schleifdraht-Messbrücke 
 
 
 
 

3 3
X N N

4 3
R R R

l l
l l l

 

 
 
 
 
 
 

2.2.8  Der belastete Spannungsteiler   (Band 1, S.62-66) 
 
 

3 2

23max

3

I U v
RI U (v v ) 1
R
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2.2.9  Kompensationsschaltungen   (Band 1, S.66-69) 

 
Im Zustand der Kompensation ist der Spannungsteiler unbelastet, denn der Belastungsstrom I3 
ist Null. Die unbekannte Spannung ergibt sich dann aus 
 

2
qx

R
U U

R
 

 
 

 
                      Zweifache Spannungskompensation 

 
Die unbekannte Spannung kann unabhängig von der Hilfsspannung auf vier Ziffern genau 
berechnet werden: 

x
x qN

N

R
U U

R
 

 

 
 
 

            2 qx
3

A 1 2

UR U R
I

R R R R
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2.2.10  Umwandlung einer Dreieckschaltung in eine Sternschaltung und 
umgekehrt   (Band 1, S.69-73) 

 

Dreieck-Stern-Transformation 
 
 

 
 
 
 

' 2 3
1

1 2 3

R R
R

R R R
         ' 3 1

2
1 2 3

R R
R

R R R
           ' 1 2

3
1 2 3

R R
R

R R R
 

 

Merkregel:          Produkt der beiden DreieckwiderständeSternwiderstand 
Summe aller Dreieckwiderstande

 

 
 
 
Stern-Dreieck-Transformation 
 

 
 

' ' ' ' ' ' ' '
' ' 2 3 1 2 2 3 1 3

1 2 3 ' '
1 1

R R R R R R R R
R R R

R R
 

' '
3 2

1 ' ' '
1 2 3

G G
G

G G G
 

' ' ' ' ' ' ' '
' ' 1 3 1 2 2 3 1 3

2 1 3 ' '
2 2

R R R R R R R R
R R R

R R
          oder 

' '
1 3

2 ' ' '
1 2 3

G G
G

G G G
 

' ' ' ' ' '' '
' ' 1 2 2 3 1 31 2

3 1 2 ' '
3 3

R R R R R RR R
R R R

R R
 

' '
1 2

3 ' ' '
1 2 3

G G
G

G G G
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2.3  Verfahren zur Netzwerkberechnung 
Für ein Gleichstrom-Netzwerk, in dem Spannungsquellen, Stromquellen und ohmsche Wider-
stände gegeben sind, sollen die Zweigströme und Spannungen berechnet werden. Die Richtun-
gen der Spannungsquellen und Stromquellen sind durch Zählpfeile vorgegeben. 

2.3.1  Netzwerkberechnung mit Hilfe der Kirchhoffschen Sätze 
(Zweigstromanalyse)   (Band 1, S.80-86) 

Lösungsweg: 
1. Kennzeichnung der Richtung der Zweigströme 

Ist die Stromrichtung nicht vorauszusagen, dann ist sie beliebig anzunehmen. Die Berech-
nung ergibt negative Ströme, wenn die Stromrichtung falsch vorausgesagt wurde. 

2. Aufstellen der k – 1 Knotenpunktgleichungen 
Für ein Netzwerk mit k Knotenpunkten ergeben sich k – l voneinander unabhängige Kno-
tenpunktgleichungen mit Hilfe der Knotenpunktregel. Die Gleichungen sind voneinander 
linear abhängig, wenn sie sich aus einer oder mehreren Knotenpunktgleichungen ableiten 
lassen. Stromquellen im Netzwerk werden als Ein- und Ausströmungen in jeweils zwei 
Knotenpunkten und in den Knotenpunktgleichungen berücksichtigt. Sie sind also keine 
Zweige, denn sie haben einen unendlich großen Widerstand: 

 
Beispiel zur Behandlung von 
Stromquellen bei der Zweigstrom-
analyse 

 
3. Willkürliche Festlegung der Maschen-Umlaufrichtungen und Aufstellen der unabhängigen 

Maschengleichungen nach der Maschenregel 
Für die Berechnung eines Netzwerkes sind z Gleichungen mit z unbekannten Zweigströ-
men notwendig, k – 1 Knotenpunktgleichungen sind bereits aufgestellt. Dazu kommen 
noch die unabhängigen Maschengleichungen für die Spannungen der Maschen, die man er-
hält, wenn nach jedem Maschenumlauf die behandelte Masche aufgetrennt gedacht wird. 
Diese Trennstelle wird in einem Zweig des Netzes durch zwei Striche gekennzeichnet. Ein 
neuer Maschenumlauf darf nicht über diese Trennstelle erfolgen. Nach dem Umlauf wird 
eine zweite Trennstelle vorgesehen, die beim dritten Umlauf nicht überschritten werden 
darf, usw. Ist wegen der eingezeichneten Trennstellen kein Umlauf mehr möglich, sind alle 
unabhängigen Maschengleichungen aufgestellt. Nun ist noch zu kontrollieren, ob die k – 1 
Knotenpunktgleichungen und die unabhängigen Maschengleichungen z Gleichungen er-
geben. 

4. Auflösen des Gleichungssystems nach den gesuchten Strömen und Spannungen 
Handelt es sich um kleine Netze, können das Eliminationsverfahren, das Einsetzverfahren, 
das Determinantenverfahren (Abschnitt 2.3.6.3), das Bilden der inversen Matrix (Abschnitt 
2.3.6.2) oder der Gaußsche Algorithmus (Abschnitt 2.3.6.3) angewendet werden. Bei grö-
ßeren Netzen sollte ein Rechner zu Hilfe genommen werden, für den z.B. der Gaußsche Al-
gorithmus programmiert wird. 
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2.3.2  Netzwerkberechnung mit Hilfe des Überlagerungssatzes 
(Superpositionsverfahren)   (Band 1, S.86-89) 

 
 
Für elektrische Netze lautet das Überlagerungsprinzip:  

Die Ströme in den Zweigen eines linearen Netzwerks sind gleich der Summe der Teil-
ströme in den betreffenden Zweigen, die durch die einzelnen Quellspannungen und 
Quellströme hervorgerufen werden. Lineares Netzwerk bedeutet, dass zwischen den 
Strömen und Spannungen lineare Zusammenhänge bestehen. 

 
 
 
 
Lösungsweg: 
1. Kennzeichnung der Richtung der Zweigströme 

Ist die Stromrichtung nicht vorauszusagen, dann ist sie beliebig anzunehmen. Die Berech-
nung ergibt negative Ströme, wenn die Stromrichtung falsch vorausgesagt wurde. 

2. Nullsetzen und Kurzschließen aller Quellspannungen und Nullsetzen und Unterbrechen 
aller Quellströme bis auf eine Quellspannung oder einen Quellstrom 
Innenwiderstände verbleiben in der Schaltung. Es empfiehlt sich, die Schaltung mit nur ei-
ner Spannungs- oder Stromquelle noch einmal zu zeichnen. 

3. Berechnen des von der einen Quellspannung oder von dem einen Quellstrom verursachten 
Teilstrom in dem Zweig, in dem der Zweigstrom ermittelt werden soll 
Da nur eine Energiequelle in der Schaltung wirkt, kann in den meisten Fällen die Strom-
richtung in dem betreffenden Zweig vorausgesagt werden. Die Richtung des Teilstroms 
kann dabei auch entgegengesetzt zur angenommenen Richtung des unter 1. vereinbarten 
Richtung des gesamten Zweigstroms verlaufen. 

4. Nullsetzen und Kurzschließen aller Quellspannungen und Nullsetzen und Unterbrechen 
aller Quellströme bis auf eine zweite Quellspannung oder einen zweiten Quellstrom und 
Berechnen des Teilstroms in dem betreffenden Zweig 

5. Berechnen der Teilströme in dem betreffenden Zweig auf Grund einer dritten, vierten, ... 
Energiequelle 
Es ergeben sich so viele Teilströme, wie Spannungs- und Stromquellen in der Schaltung 
vorhanden sind. 

6. Aufsummieren der Teilströme bei Beachten der Vorzeichen der Teilströme 
Teilströme, die die gleiche Richtung haben wie der unter l. vereinbarte gesuchte Zweig-
strom, werden positiv berücksichtigt. Die Teilströme, die entgegengesetzt gerichtet sind, 
gehen negativ in die Berechnung ein. 
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2.3.3  Netzwerkberechnung mit Hilfe der Zweipoltheorie   (Band 1, S.46-54, 90-97) 
Durch die Netzwerkberechnung nach der Zweipoltheorie wird das gegebene Gleichstrom-
Netzwerk in einen Grundstromkreis überführt, wobei der gesuchte Zweigstrom gleich dem 
Belastungsstrom des Grundstromkreises ist bzw. die gesuchte Spannung gleich der Klemmen-
spannung des Grundstromkreises ist. Es gibt zwei mögliche Ersatzschaltungen für ein Gleich-
stromnetz: 

die Spannungsquellen-Ersatzschaltung und 
die Stromquellen-Ersatzschaltung. 

Nach der Überführung kann der Strom bzw. die Spannung nach den Formeln für den Grund-
stromkreis berechnet werden. 
Lösungsweg: 
1. Aufteilung des Netzwerks in einen aktiven und einen passiven Zweipol 

Die Aufteilung muss so vorgenommen werden, dass der gesuchte Zweigstrom von der obe-
ren Klemme des aktiven Zweipols in die obere Klemme des passiven Zweipols und von der 
unteren Klemme des passiven Zweipols in die untere Klemme des aktiven Zweipols oder 
umgekehrt fließt bzw. die gesuchte Spannung zwischen den Klemmen der Zweipole liegt. 

 
2. Berechnung der Ersatzschaltung des aktiven Zweipols 

Ersatzspannungsquelle Ersatzstromquelle 
mit  Uq ers = Ul  und Ri ers 

oder mit  Iq ers = Ik  und  Ri ers 
 
 

q ersU :  Die Ersatz-Quellspannung ist gleich der Leerlaufspannung 

Uq ers = Ul, 
d.h. für den aktiven Zweipol des Gleichstromnetzes wird bei offenen Klemmen, also 
bei Leerlauf, die Klemmenspannung rechnerisch oder messtechnisch ermittelt. Soll-
ten Spannungsquellen oder Stromquellen in Reihe oder parallel geschaltet sein, dann 
werden diese zusammengefasst und bei der Berechnung von Ul berücksichtigt. 
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q ersI :  Der Ersatz -Quellstrom ist gleich dem Kurzschlussstrom 
 Iq ers = Ik, 
 d. h. für den aktiven Zweipol des Gleichstromnetzes wird bei kurzgeschlossenen

Klemmen, also bei Kurzschluss, der Klemmenstrom rechnerisch oder messtechnisch
ermittelt. In Reihe oder parallel geschaltete Spannungs- oder Stromquellen werden 
zusammengefasst und bei der Ermittlung des Kurzschlussstroms berücksichtigt. 
 

 

 
 
 
 
 
 

i ersR :  Der Ersatz-Innenwiderstand ist gleich dem ohmschen Widerstand des aktiven Zwei-
pols hinsichtlich der offenen Zweipolklemmen, wenn alle Spannungsquellen des
Gleichstromnetzes als kurzgeschlossen und alle Stromquellen als unterbrochen ange-
nommen werden. Innenwiderstände bleiben berücksichtigt in der Schaltung des Net-
zes. Anschließend müssen Brückenschaltungen durch Dreieck-Stern-Umwandlungen 
oder Stern-Dreieck-Umwandlungen (Abschnitt 2.2.10) in zusammenfassbare Reihen-
und Parallelschaltungen überführt werden und mit den übrigen ohmschen Wider-
ständen zusammengefasst werden. 
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3. Berechnung der Ersatzschaltung des passiven Zweipols 
Ersatz-Außenwiderstand Ra ers 

 
 

a ersR :  Der Ersatz-Außenwiderstand ist gleich dem ohmschen Widerstand des passiven 
Zweipols hinsichtlich der offenen Zweipolklemmen. Dabei müssen Brückenschal-
tungen durch Dreieck-Stern-Umwandlungen oder Stern-Dreieck-Umwandlungen 
(Abschnitt 2.2.10) in zusammenfassbare Reihen- und Parallelschaltungen überführt 
werden und mit den übrigen ohmschen Widerständen zusammengefasst werden. 
 

 

 
 
4. Ermittlung des gesuchten Stroms oder der gesuchten Spannung mit Hilfe der Ersatz-

schaltung (Grundstromkreis) 
 

für die Spannungsquellen-Ersatzschaltung: 

q ers

i ers a ers

U
I

R R
 

 

a ers
q ers

i ers a ers

R
U U

R R
 

 
 
 für die Stromquellen-Ersatzschaltung: 

i ers
q ers

i ers a ers

R
I I

R R
 

 

i ers a ers
q ers

i ers a ers

R R
U I

R R
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2.3.4  Netzwerkberechnung nach dem Maschenstromverfahren   (Band 1, S.98-102) 
Beim Maschenstromverfahren werden nur Maschengleichungen für Spannungen berücksich-
tigt. Deshalb sind im Gleichstromnetz vorkommende Stromquellen zunächst in äquivalente 
Spannungsquellen zu überführen. Bei idealen Stromquellen mit Gi = 0 ist die Umwandlung 
nicht möglich. In diesem Fall kann ein zur Stromquelle parallel geschalteter Innenwiderstand 
angenommen werden, der dann im Endergebnis unendlich gesetzt wird. Das Maschenstromver-
fahren kann aber auch für ideale Stromquellen erweitert werden [16]. 
Jeder unabhängigen Masche wird dann ein geschlossener Maschenstrom zugeordnet. In den 
Zweigen, die mehreren Maschen angehören, werden die Maschenströme überlagert. Die 
Zweigströme sind also gleich der vorzeichenbehafteten Summe der Maschenströme, je nach-
dem ob die Maschenströme in dem Zweig gleich gerichtet oder entgegengesetzt gerichtet sind. 
Anschließend werden die unabhängigen Maschengleichungen für die Zweigströme nach der 
Maschenregel aufgestellt und zwar mit den angenommenen Maschenströmen. 
Gegenüber der Netzberechnung nach den Kirchhoffschen Sätzen (Abschnitt 2.3.1) werden 
beim Maschenstromverfahren die Knotenpunktgleichungen eingespart, wodurch sich in vielen 
Fällen Vereinfachungen ergeben. 
 
Lösungsweg: 
1. Umwandlung sämtlicher Stromquellen in äquivalente Spannungsquellen 
 

 

 
Behandlung von Stromquellen 
beim Maschenstromverfahren 

 
2. Jeder unabhängigen Masche wird ein Maschenstrom zugeordnet 

Dabei kann die Umlaufrichtung der Maschenströme beliebig gewählt werden. Die Zuord-
nung der Maschenströme wird so vorgenommen, dass durch den Zweig, für den der Strom 
berechnet werden soll, nur ein Maschenstrom angenommen wird, damit nach Auflösung 
des Gleichungssystems nicht die Summe oder Differenz von Maschenströmen gebildet 
werden muss. Es wird also mit der Festlegung des Maschenstroms begonnen, zu dem der 
gesuchte Zweigstrom gehört. Anschließend wird dieser Zweig getrennt gedacht und mit 
zwei Strichen gekennzeichnet. Dann wird ein neuer Umlauf mit einem neuen Maschen-
strom gesucht und wieder getrennt gedacht, usw. Ist infolge der gedachten Trennstellen 
kein Umlauf mehr möglich, sind sämtliche unabhängigen Maschen berücksichtigt. 

3. Aufstellen der Maschengleichungen für die ausgewählten Maschen und zwar für Zweig-
ströme 

4. Berechnen des gesuchten Stroms oder der gesuchten Ströme mit Hilfe des geordneten Glei-
chungssystems 
(Eliminationsverfahren, Cramersche Regel, Matrizenrechnung, Gaußscher Algorithmus im 
Abschnitt 2.3.6.3) 
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2.3.5  Netzwerkberechnung nach dem Knotenspannungsverfahren (Band 1,S.102-108) 
Das Knotenspannungsverfahren basiert auf dem Knotenpunktsatz und dem Ohmschen Gesetz. 
Dabei wird mit den Spannungen zwischen dem jeweiligen Knotenpunkt und einem mit dem 
Potential Null festgelegten Knotenpunkt gerechnet. 
Verbindet eine ideale Spannungsquelle mit Ri = 0 zwei Knotenpunkte, dann wird in einem der 
beiden Anschlusspunkte der Spannungsquelle das Potential Null angenommen, wodurch das 
Potential des anderen Knotenpunktes über die Quellspannung bekannt ist. Mit den übrigen 
Spannungen und den Leitwerten ergeben sich dann die gesuchten Zweigströme. 
Einströmungen, z.B. Quellströme, lassen sich in den Knotenpunktgleichungen berücksichtigen. 
Lösungsweg: 
1. Kennzeichen der Knotenpunkte von 0 bis k – 1: k0, k1, k2, k3, ... 

Der Knotenpunkt k0 erhält das Potential Null. Zwischen den k – 1 Knotenpunkten und dem 
Knotenpunkt k0 bestehen dann die k – l Spannungen Ui0 : 

U10 = 1 – 0 = 1  U20 = 2 – 0 = 2  ... Uk – 1,0 = k – 1 – 0 =  k – 1 
2. Festlegen der Richtungen der z Zweigströme I1, I2, ... , Iz im Gleichstromnetz 

Einströmungen (zu- und abfließende Ströme) und Stromquellen (Quellströme) sind vorge-
geben. 

3. Aufstellen der k – 1 Knotenpunktgleichungen in den Knotenpunkten k1, k2, ... nach der 
Knotenpunktregel 

4. Aufstellen der z Gleichungen für die Zweigströme in Abhängigkeit von den Zweigleitwer-
ten G, den Spannungen U10 und den eventuell vorhandenen Quellspannungen 

Erläuterungsbeispiel: 
Der Zweigstrom I1 fließt vom Knotenpunkt k2 
zum Knotenpunkt k1, dann wird er durch die 
Spannungsdifferenz U20 – U10 getrieben. 
Befinden sich zwischen den Knotenpunkten 
k1 und k2 Quellspannungen, dann sind diese zu der Spannungsdifferenz U20 – U10 zu addieren, 
wenn die Quellspannungen entgegengesetzt zum Zweigstrom I1 gerichtet sind, und zu subtrahie-
ren, wenn die Quellspannungen gleichgerichtet sind mit dem Zweigstrom I1. Im Beispiel wirkt die 
Quellspannung Uq1 stromtreibend (entgegengesetzt gerichtet zu I1) und die Quellspannung Uq2 
stromhemmend (in gleicher Richtung wie I1). 
Fließt der Zweigstrom durch mehrere in Reihe geschaltete Widerstände, dann ist deren Leitwert 
zu ermitteln. Im Beispiel fließt der Zweigstrom I1 durch die beiden Widerstände R1 und R2; der 
zugehörige Zweigleitwert beträgt G12 = 1/(R1 + R2). 

I1 = G12  (U20 – U10 + Uq1 – Uq2) 
Für die übrigen k – l Zweigströme werden auf die gleiche Weise die Gleichungen ermittelt. 

5. Einsetzen der Gleichungen für die Zweigströme in die Knotenpunktgleichungen und Ord-
nen des Gleichungssystems 
Durch das Einsetzen der unter 4. entwickelten Gleichungen in die unter 3. aufgestellten 
Knotenpunktgleichungen entsteht ein Gleichungssystem mit bekannten Leitwerten, gege-
benen Quellspannungen und unbekannten Spannungen Ui0 

6. Lösen des Gleichungssystems nach den unbekannten Spannungen Ui0 und Berechnen der 
gesuchten Zweigströme I1, I2, ... , Iz 
(Eliminationsverfahren, Cramersche Regel, Matrizenrechnung, Gaußscher Algorithmus im 
Abschnitt 2.3.6.3) 
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2.4  Elektrische Energie und elektrische Leistung 

2.4.1  Energie und Leistung   (Band 1, S.132-135) 
WP
t

         bzw.       dWP
dt

               potentielle Energie:    potW m g h  

Energiesatz: 
n

v
v 1

W konstant                kinetische Energie:    
2

kin
m vW

2
 

2.4.2  Energieumwandlungen   (Band 1, S.135-138) 
Elektrische Energie in Wärmeenergie 

Wel = Wth           U  I  t = c  m   
Energieäquivalente     1 J = 1 Nm = 1 Ws = 1 kg·m2·s-2 

 J = Nm = Ws cal kWh kpm eV 

1 J = 1 Nm = 1 Ws 1 0,2388 2,778  10–7 0,102 6,25  1018 

1 cal 4,1868 1 1,163  10–6 0,4269 2,62  1019 

1 kWh 3,6  106 859,8  103 1 3,671  105 2,25  1025 

1 kpm 9,80665 2,342 2,724  10–6 1 6,12  1019 

1 eV 1,602  10–19 3,82  10–20 4,44  10–26 1,63  10–20 1 

2.4.3  Messung der elektrischen Energie und Leistung   (Band 1, S.138-142) 

  

                                     Magnet-Motorzähler                 Leistungsmesser 

Ankerumdrehungen  

z = t  n = 1 1

2 2

c c
I t Q

c c
 

mit Drehzahl n 
 

Zeigerausschlag  

 = c
D*

U  I = cstat  Pel 

mit  D* = Drehfederkonstante 
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Stromrichtige und spannungsrichtige Leistungsmessung 

  
Spannungsrichtige Messschaltung  
mit zwei getrennten Instrumenten 

 

Stromrichtige Messschaltung  
mit zwei getrennten Instrumenten 

  
Spannungsrichtige Messschaltung  
mit einem elektrodynamischen Messwerk 

Stromrichtige Messschaltung  
mit einem elektrodynamischen Messwerk 

 
Die in den Instrumenten auftretende Verlustleistung bestimmt die Messgenauigkeit: 

 spannungsrichtige 
Messschaltung  

stromrichtige 
Messschaltung 

Leistung des Verbrauchers P = U  I =
2U

R
 P = U  I = I2  R 

Leistungsverlust im Spannungs- bzw. 
Strompfad  

P = U  I= 
2

V

U
R

 

mit I =
V

U
R

 

P = U  I = I2  RA 
 

mit U = I  RA 

Messleistung Pmess = P + P Pmess = P + P 

relativer Fehler 

2

V
2

V

U
RP R

P RU
R

 
2

A A
2

I R RP
P RI R
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2.4.4  Wirkungsgrad in Stromkreisen   (Band 1, S.142-145) 
 

        N N

ges N V

P P
P P P

 

 
Nutzleistung PN 
Verlustleistung PV 

  zugeführte Gesamtleistung Pges 
 

Wirkungsgrad des Grundstromkreises   
mit Ersatzspannungsquelle 
 

 Wirkungsgrad des Grundstromkreises 
mit Ersatzstromquelle 
 

 
 

  

 
a a

iE a i

a

P P 1
PP P P 1
P

 

 

 

a a

iE a i

a

P P 1
PP P P 1
P

 

 

i

a

1
R1
R

 
 

a

i

1
R1
R
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2.4.5  Anpassung   (Band 1, S.145-148) 
Wirkungsgrad-Maximum, Verbraucherleistung-Maximum 
Leistungen im Grundstromkreis  
mit Ersatzspannungsquelle 
Erzeugerleistung: Leistung der Energiequelle 

PE = Uq  I 

Leistungen im Grundstromkreis  
mit Ersatzstromquelle 

 
PE = Iq  U 

innere Leistung: am Innenwiderstand umgesetzte Leistung 

2
i iP I R  

2

i
i

UP  
R

 

äußere Leistung: am Außenwiderstand umgesetzte Leistung (Verbraucherleistung, Klemmen-
leistung) 

i a
a k 2

i a

R R
P P

R R
 

mit der Kurzschlussleistung 
  

Pk = Ik  Ul 

i a
a l 2

i a

R R
P P

R R
 

mit der Leerlaufleistung 
  

Pl = Ik  Ul 

mit k konst.P P Pl  ist  

a

a i
2

konst. a

i

R
P R

P R1
R

   mit  a max

konst.

P 1
P 4

 (maximale Verbraucherleistung) 

Gleichzeitig ist          

a i

U 1
1U 1

R / R
l

      und       
ak

i

I 1
RI 1
R

 

 
Spannung, Strom und Leistung in Abhängigkeit von den Widerständen im Grundstromkreis 
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3  Das elektromagnetische Feld 

3.1  Der Begriff des Feldes   (Band 1, S.150-153) 
In jedem Punkt des Feldraums beschreibt eine vektorielle Feldgröße und eine skalare Feld-
größe den Raumzustand. Vektorfeld und Skalarfeld beschreiben also gemeinsam den Raum-
zustand. Das Feld ist mathematisch eine vektorielle und skalare Ortsfunktion. Ist der Raum-
zustand zeitlich veränderlich, ist die Funktion orts- und zeitabhängig. 
 

1. elektrisches Strömungsfeld:   Einheiten 

 Ursache  Wirkung  

Vektoren E  
elektrische Feldstärke 

S E  
 

E S  

 

S  
Stromdichte 

E V / m      2S A / m  
2m / ( mm )  

 
  
E dU

dl
         U E dl   S dI

dA
      I S dA

2mm / m  

Skalare, 
Integrale 
Größen 

Uq bzw. EMK E, U 
Spannung der 

Spannungsquelle, 
elektrische Spannung 

I = G · U 
 

U = R · I 

 
I 

elektrischer Strom 

U V         I A  
1G S  

R  

 

2. elektrostatisches Feld:    

 Wirkung   Ursache  

Vektoren 
E  

elektrische Feldstärke 
 

 
D E  

 

 

 
 

D  
Verschiebungsfluss-

dichte 
 

E V / m     2D As / m  

As / Vm  

 
  
E dU

dl
         U E dl   D d

dA
    D dA  

Skalare, 
Integrale   
Größen 

U 
elektrische Spannung 

 

 
 = Q = C·U

 

 

 = Q 
Verschiebungsfluss 

Ladung 

U V      Q As  
C As / V F  

 

3. magnetisches Feld:    

 Ursache   Wirkung  

Vektoren 
H  

magnetische Feldstärke 
magnetische Erregung 

  
B H  

 

 

 
 

B  
magnetische Flussdichte

Induktion 

H A / m     
2B Vs / m T  

Vs / Am  

 
  
H

l
         H dl   B d

dA
    B dA  

Skalare, 
Integrale 
Größen 

, V 
Durchflutung (MMK) 
magnetische Spannung 

 

 = Gm ·  
 

 = Rm ·  
 

 
  

magnetischer Fluss 
 

V A   Vs Wb

mG Vs / A H  
1

mR A / Vs H  
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Die Richtungslinien der vektoriellen Feldgrößen in einem Vektorfeld sind die Feldlinien. In 
einem Quellenfeld (elektrostatisches Feld) beginnen sie in einer Quelle (positiv geladener 
Körper) und enden in einer Senke (negativ geladener Körper). Befinden sich keine Quellen und 
Senken im Feld (elektrisches Strömungsfeld und magnetisches Feld), dann sind die Feldlinien 
in sich geschlossen. 
Das zugehörige Skalarfeld wird durch Flächen veranschaulicht, den so genannten Äquipoten-
tialflächen (Flächen gleichen Potentials) im elektrischen und magnetischen Feld. Die Feldli-
nien durchdringen die Äquipotentialflächen senkrecht: die Feldlinien und Feldvektoren sind in 
Richtung des größten Potentialgefälles gerichtet. Der Zusammenhang zwischen den Feldlinien 
und den Äquipotentialflächen lässt sich z. B. für das elektrostatische Feld durch die folgende 
Gleichung mathematisch beschreiben: 
 

E  = – grad  
 

mit E : elektrische Feldstärke 
und : elektrisches Potential. 
 

Obwohl die elektrischen und magnetischen Felder auch hier wie in anderer Literatur getrennt 
dargestellt werden, bilden sie eine Einheit, weil sie über den Durchflutungssatz und das Induk-
tionsgesetz miteinander verbunden sind. Die Maxwellschen Gleichungen stellen die elektro-
magnetischen Erscheinungen in Differentialform dar: 
 

Durchflutungssatz rot H  = S
t
D  

Induktionsgesetz  rot E  = – 
t
B  

 

Der Satz von der Quellenfreiheit des magnetischen Flusses lautet in Differentialform 
 

div B  = 0 
 

und der Satz über den Zusammenhang zwischen der Verschiebungsflussdichte und der Raum-
ladung im elektrischen Feld, der Gaußsche Satz 
 

div D  =  
 

ist ebenso in Differentialform angegeben. 
 
 
 
Zur Beschreibung der drei Felder und deren Zusammenhänge und zur Behandlung von grund-
legenden praktischen Beispielen eignet sich genauso die integrale Form obiger Gleichungen. 
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3.2  Das elektrische Strömungsfeld 

3.2.1  Wesen des elektrischen Strömungsfeldes   (Band 1, S.154-156) 
Die kollektive Bewegung von geladenen Teilchen bildet das elektrische Strömungsfeld. Es 
kann also nur in elektrischen Leitern existieren – im Gegensatz zum elektrostatischen Feld, das 
nur im Nichtleiter besteht. 
Wird die Bewegung der Ladung durch eine Gleichspannung verursacht, dann entsteht ein 
stationäres Strömungsfeld, das durch einen zeitlich konstanten Strom charakterisiert wird. 
 

 

Beispiel: 
Bereits im Kapitel 2 behandelte zeitlich konstante elektrische Strömungsfelder in linienhaften Leitern 
der Gleichstromnetze. 
 

 

3.2.2  Elektrischer Strom und elektrische Stromdichte   (Band 1, S.156-159) 
 

Elektrischer Fluss – elektrischer Strom I 
Die in dem leitenden Medium sich bewegenden Ladungsträger – vorwiegend Elektronen –
bilden den elektrischen Fluss, genannt elektrischer Strom. Die Feldlinien sind die Strömungsli-
nien der beweglichen Ladungsträger. Die Gesamtheit der Feldlinien kennzeichnet also den 
elektrischen Strom in einem Leiter. Nach der Richtungsdefinition des elektrischen Stroms 
(positiver Strom entspricht der Bewegungsrichtung positiver Ladungen) haben die Feldlinien 
die Richtung des größten Potentialgefälles. Die in Metallen sich bewegenden Elektronen wan-
dern also entgegen den gerichteten Feldlinien. 
 

Elektrische Flussdichte – Stromdichte  
 
 homogene Strömungsfelder 
 

IS
A

 I S A cos S A  

 
 inhomogene Strömungsfelder 
 

A 0

I d IS lim
A d A

 
A

I dI S dA  

 

 und 
A

I S dA 0  
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Für grundlegende Berechnungen ist es nicht notwendig, Ströme durch Flächen zu berechnen, 
die nicht gleich den Äquipotentialflächen sind. Werden Flächen gewählt, die gleich den Äqui-
potentialflächen oder gleich Teilen von Äquipotentialflächen sind, dann ist der Neigungswin-
kel  zwischen den Vektoren S  und dA  gleich Null und das Skalarprodukt S dA  wird gleich 
dem Produkt der Skalare S · dA mit cos  = 1.  
Sind zusätzlich die Beträge der Stromdichte konstant, dann kann S vor das Integralzeichen 
gesetzt werden und die Flächenelemente dA können einfach aufsummiert werden. Sie sind 
gleich der Gesamtfläche A, durch die der Strom I fließt. 
 
Auf diese Weise lassen sich Stromdichteverteilungen einfacher inhomogener Strömungsfelder 
errechnen. 
 

Beispiel: 
 Strömungsfeld einer zylindersymmetrischen Anordnung der Höhe h 

Die Stromdichteverteilung S = f (r) soll ermittelt werden: 
 

A A

I S dA S dA  

 
Für das Flächenintegral sollen die 
Äquipotentialflächen, die Zylinderman-
telflächen mit veränderlichem Radius r 
sind, berücksichtigt werden. Das Ska-
larprodukt hinter dem Integralzeichen ist 
dann gleich dem Produkt der Skalare: 
Auf einer Äquipotentialfläche haben die 
Stromdichtevektoren S  gleiche Beträge, 
sind also unabhängig vom Punkt der 
Äquipotentialfläche mit der Teilfläche 
dA. Deshalb kann S vor das Integralzei-
chen gesetzt werden: 

 

A

I S dA   

Alle Flächenelemente dA aufsummiert, 
ergibt die Zylindermantelfläche A =2 rh. 

 

I S A S 2 r h , 
 

woraus sich die Formel für die Stromdich-
te in Abhängigkeit vom Radius r errechnen 
lässt: 

 

I 1
S

2 h r
  

Die Stromdichte nimmt hyperbolisch mit 
dem Radius ab. 
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3.2.3  Elektrische Spannung und elektrische Feldstärke, elektrischer Widerstand 
und spezifischer Widerstand   (Band 1, S.160-165) 

 

Elektrische Spannung 
 

U12 = 1 – 2 
 

Elektrischer Widerstand und elektrischer Leitwert 
 

U = R · I bzw. I = 
R
1 · U = G · U 

 homogene Felder  
 

  
R l

A
l
A

 oder  
 
G A

l
A
l

 

 
 

 inhomogene Felder, ermittelt durch „Homogenität im Kleinen“ 
 

Beispiel: 
Elektrischer Widerstand der zylindersymmetrischen Anordnung der Höhe h ohne Randstörungen 
Der Widerstand R wird als Reihenschaltung von Widerständen der Zylinderschalen der Dicke d r 
und der Fläche A von Zylindermänteln aufgefasst, wobei in den Zylinderschalen jeweils ein ho-
mogenes Feld angenommen werden kann: 

 

  
dR dr

A
dr

2 r h
 

 

 
 

aa

ii

rra
a

iri r

rdrR dR ln | r | ln
2 h r 2 h 2 h r

 

 

 
Elektrische Feldstärke 
 homogene Felder   inhomogene Felder 

    
U
l

I
A

S 
  

dU
d l

d I
d A

S 

 E S  oder S 1 E E  

 
 

 
 

Beispiel: 
Elektrische Feldstärke einer stromdurchflossenen zylindersymmetrischen Anordnung der Höhe h  

 

E S
I

2 h
1
r
 mit S I

2 h
1
r
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Elektrische Feldstärke und elektrische Spannung 
 

2

1

P 2

12 1 2
P 1

U dU E dl  und E d 0
l

l  

 

Bei praktischen Berechnungen wird grundsätzlich längs einer Feldlinie integriert, wo-
durch das Skalarprodukt gleich dem Produkt der Skalare ist. 

 

 
Allgemeine Formel für den elektrischen Widerstand 
 
 

2

1

A

E d
UR
I S dA

l
 

 
 
 

Beispiel: 
 

 Widerstand der zylindersymmetrischen Anordnung der Höhe h  
Das Strömungsfeld ist inhomogen, deshalb ergibt sich der Widerstand aus 

 

a

i

r2

1 r

U E d E drl  

 
Für die Ermittlung der Spannung U wird längs der radialen Feldlinie mit  d l = d r integriert. 

 

Die elektrische Feldstärke ist bereits berechnet  
 
 

I 1E ,
2 h r

 

 
 

so dass sich für die Spannung durch Integration ergibt 
 

a

i

r
a

ir

rI dr IU ln
2 h r 2 h r

 

 

Wird die Spannung durch den Strom geteilt, entsteht die Widerstandsformel 
 
 

a

i

rUR ln
I 2 h r
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3.3  Das elektrostatische Feld 

3.3.1  Wesen des elektrostatischen Feldes   (Band 1, S.167-169) 
 

In der Umgebung geladener Körper sind Kräfte auf andere geladene Körper zu beobachten, die 
dem elektrostatischen Feld zugeschrieben werden: gleichartige Ladungen stoßen sich ab, un-
gleichartige Ladungen ziehen sich an. 

3.3.2  Verschiebungsfluss und Verschiebungsflussdichte   (Band 1, S.170-174) 
 

Verschiebungsfluss oder Erregungsfluss 
Befindet sich in einem elektrostatischen Feld ein Leiter, dann werden die in ihm befindlichen 
freien Elektronen aufgrund der Kräfte, die auf Ladungen wirken (Coulombsche Kräfte), inner-
halb des Leiters verschoben: die Elektronen wandern an die Oberfläche des Leiters, die der 
positiven Elektrode zugewandt ist; auf der anderen Seite des Leiters fehlen dann Elektronen. 
Die Ladungen innerhalb des Leiters werden infolge der Ladungen des Zweielektrodensystems 
verschoben. Diesen Vorgang nennt man „Influenz“ oder „elektrostatische Induktion“, in An-
lehnung an die Ladungsverschiebung infolge eines Magnetfeldes. 
Um den Vorgang der Influenz zu veranschaulichen, werden Flusslinien oder Feldlinien ähnlich 
wie die Strömungslinien im elektrischen Strömungsfeld eingeführt, die allerdings bei der posi-
tiven Ladung beginnen und bei der negativen Ladung enden. Im elektrischen Strömungsfeld 
dagegen sind die Flusslinien oder Feldlinien in sich geschlossen. 
Die Gesamtheit der Flusslinien des elektrostatischen Feldes charakterisieren den angenomme-
nen Fluss, den Verschiebungs- oder Erregungsfluss . Der Verschiebungsfluss beginnt grund-
sätzlich in einer Quelle (positive Ladung) und endet in einer Senke (negative Ladung) und 
kann nur so groß sein wie die Ladung, die den Fluss verursacht: 
 

 = Q 
 

Verschiebungsflussdichte oder Erregungsflussdichte 
 

 homogene elektrostatische Felder 

 D
A

Q
A

   = D · A · cos  = D A  

 inhomogene elektrostatische Felder 
 

D = 
Ad
Qd

Ad
d

A
lim

0A
 

A

d D dA  

 

 und 
A

D dA Q  
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Für grundlegende Berechnungen ist es nicht notwendig, Verschiebungsflüsse durch Flächen zu 
berechnen, die nicht gleich Äquipotentialflächen sind. Werden Flächen gewählt, die gleich den 
Äquipotentialflächen oder gleich Teilen von Äquipotentialflächen sind, dann ist der Nei-
gungswinkel  zwischen den Vektoren D  und dA  gleich Null und das Skalarprodukt D dA  
wird gleich dem Produkt der Skalare D dA mit cos  = 1.  
Sind zusätzlich die Beträge der Verschiebungsflussdichte konstant, dann kann D vor das Integ-
ralzeichen gesetzt werden und die Flächenelemente d A können einfach aufsummiert werden. 
Sie sind gleich der Gesamtfläche A, durch die der Fluss  hindurchtritt. 
Auf diese Weise lassen sich Verschiebungsflussdichte-Verteilungen einfacher inhomogener 
Felder errechnen. 
 

Beispiel: 
Elektrostatisches Feld einer Punktladung oder einer geladenen Kugel 
Die Flussdichteverteilung D = f (r) soll ermittelt werden: 
Ausgegangen wird vom Ansatz für den Fluss  für inhomogene Felder, und zwar für die 

 Hüllfläche A, denn die Kugeloberfläche mit der Punktladung im Zentrum umschließt die 
 Ladung Q: 

 

A

D dA Q  

Die Kugeloberfläche A ist eine
Äquipotentialfläche, so dass
das Skalarprodukt hinter dem
Integralzeichen gleich dem
Produkt der Skalare ist: 
 

A

D dA Q  

 

 

 
Auf der Äquipotentialfläche haben die Verschiebungsflussdichtevektoren D  gleiche Beträge, 
die also unabhängig vom Punkt der Äquipotentialfläche mit der Teilfläche dA sind. Deshalb 
kann D vor das Integralzeichen gesetzt werden: 

 
 

  
A

D dA Q  

 

Alle Flächenelemente d A auf summiert, ergibt die Kugeloberfläche A = 4  r2: 
 

 

  D A D 4 r2 Q , 
 

 

woraus sich die Formel für die Verschiebungsflussdichte in Abhängigkeit vom Radius r er-
rechnen lässt: 
 

       D = 
2 2

1 Q 1
4 4r r

 

 
Die Verschiebungsflussdichte nimmt quadratisch mit dem Radius ab. 
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3.3.3  Elektrische Spannung und elektrische Feldstärke, Kapazität und  
Permittivität (Dielektrizitätskonstante)   (Band 1, S.175-196) 

 

Elektrische Spannung 
 

U12 = 1 – 2 
 

Kapazität eines Zweielektrodensystems 
 

 = C · U = Q 
homogene Felder 

 
 

  
C A

l
 

inhomogene Felder, ermittelt durch „Homogenität im Kleinen“ 
 
 

Beispiel: 
 Kapazität der zylindersymmetrischen Anordnung der Höhe h ohne Randstörungen  
 (Zylinderkondensator, Kabel) 

Der nichtleitende Raum zwischen den Metallelektroden wird in Zylinderschalen der Dicke dr zer-
legt, deren reziproke Kapazitäten nach der Bemessungsgleichung für homogene Felder berechnet 
und aufsummiert, d. h. integriert werden: 
 

d 1
C

1 d r
A

1 d r
2 r h

 

a

i

ra
a i

i r

ln(r / r )1 1 1 dr
d

C C 2 h r 2 h
 

a i

2 h
C

ln r / r
 

Elektrische Feldstärke 
 

homogene Felder  inhomogene Felder 
 

 U 1 1 Q 1E D
A Al

 
 
E dU

d l
1 d

dA
1 dQ

dA
1 D 

 

 E 1 D  oder D E  

Beispiel: 
 Elektrische Feldstärke in der Umgebung einer Punktladung oder einer geladenen Kugel 

 
 

E 1 D
4 r2

Q
4 r 2  mit D

4 r2
Q

4 r2  

 

Die elektrische Feldstärke einer kugelsymmetrischen Anordnung nimmt genauso wie die Ver-
schiebungsflussdichte mit dem Quadrat des Radius ab.  
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Das Coulombsche Gesetz beschreibt die Kräfte, die zwischen geladenen Körpern wirken: 

F K Q1 Q2

r 3 r K Q1 Q2

r 2 r 0 mit 
2

21
r

QQKF   

Beispiel: 
 Kräfte zwischen zwei Punktladungen gleicher und ungleicher Polarität 

 

 

F K
Q1 Q2

r2 r 0
Q1 Q2

4 0r2 r 0  

mit K 1
4 0

 

 

 
Die Feldtheorie nach Faraday erklärt die Kräfte zwischen zwei Ladungen nicht als Fernwir-
kung, sondern als Wechselwirkung zwischen der einen Ladung und dem Raumzustand, der 
durch die andere Ladung verursacht wird oder umgekehrt. 

 F E Q2 K Q1 Q2

r 2 r 0 ergibt E K Q1

r 2 r 0 

Die Richtung der Feldstärke wird in Richtung der Kraft positiv definiert, die auf eine positive 
Ladung wirkt: 
 

E F 
Q

 

 

Die Richtung der Kräfte und die Richtung der elektrischen Feldstärken in jedem Raumpunkt 
stimmt mit der Richtung der Feldlinien überein. 
 
Permittivität und Dielektrizitätskonstante 

r 0  0= 8,8542 · 10 12

Vm
As  und 4  0 = 

1
9

10 9 As
Vm

 

mit  0 Dielektrizitätskonstante des Vakuums oder Influenzkonstante  

  r ist eine Verhältniszahl mit [ r] = 1;   0 dagegen ist dimensionsbehaftet 
 
 

Beispiele für relative Dielektrizitätskonstanten r: 
Aceton 21,5  Hartgummi 2,5...5  Polystyrol (PS) 2,5 
Acrylglas 3  Kabelpapier in Öl 4,3  Polyvinylchlorid (PVC) 3 ... 4 
Bariumtitanat 1 000 ... 2 000  Luft 1,0006  Porzellan 5 ... 6,5 
Glas 5 ... 12  Papier, trocken 2  Schellack 3 ... 4 
Glimmer 5 ... 8  Polyäthylen (PE) 2,3  Transformatorenöl 2,3 
Hartpapier 4 ... 7  Polypropylen (PP) 2,3  reinstes Wasser 80,8 
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Zusammenschalten von Kapazitäten 
Um vorgegebene Kapazitätswerte mittels standardisierter Bauelemente – ausgeführt in Wi-
ckelkondensatoren, Scheibenkondensatoren, Elektrolytkondensatoren u. a. – verwirklichen zu 
können, sind Parallelschaltungen, Reihenschaltungen oder gemischte Kondensatorschaltungen 
notwendig. 
Parallelschaltung von Kondensatoren: 
Bei der Parallelschaltung von n Kondensatoren liegen alle Kondensatoren an der gleichen 
Spannung U. Die Gesamtladung, die in den parallel geschalteten Kondensatoren gespeichert 
ist, ist gleich der Summe der Einzelladungen: 
 
 

Q = Q1 + Q2 + Q3 + ... + Qn = 
n

1i
iQ  

 
 

 
 

 
 
Die Gesamtkapazität C von n parallelgeschalteten Kondensatoren ist gleich der Summe der 
Einzelkapazitäten 
 
 

C = C1 + C2 + C3 + ... + Cn = 
n

1i
iC  

 
 

 

Außerdem verhalten sich bei Parallelschaltung von Kondensatoren die Ladungen wie die zuge-
hörigen Kapazitäten: 
 

 

C
C

Q
Q ii  

j

i

j

i
C
C

Q
Q  
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Reihenschaltung von Kondensatoren: 
Werden n Kondensatoren in Reihe geschaltet, dann ist der Verschiebungsfluss  = Q aller 
Kondensatoren gleich, wie durch den Vorgang der Influenz (elektrischer Leiter innerhalb des 
elektrostatischen Feldes) erklärt werden kann: 
 
 

Q1 = Q2 = Q3 = Q4 = ... = Qn = Q 
 
 

Die Gesamtspannung teilt sich in die Teilspannungen an den Kondensatoren auf: 
 

U = U1 + U2 + U3 + U4 + ... + Un = 
n

1i
iU  

 
 

 

 
 

 
Der reziproke Wert der Gesamtkapazität der in Reihe geschalteten Kondensatoren ist gleich 
der Summe der Kehrwerte der Einzelkapazitäten: 
 

n

1i in4321 C
1

C
1...

C
1

C
1

C
1

C
1

C
1  

 
 

 

Die Spannungen verhalten sich bei Reihenschaltung von Kondensatoren reziprok zu den zuge-
hörigen Kapazitäten: 
 

i

i
C
C

U
U  

i

j

j

i
C
C

U
U  
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Elektrische Feldstärke, elektrisches Potential und elektrische Spannung 
 
Die elektrische Spannung ist ein Maß für die Arbeit bzw. Energie, die für das Verschieben 
einer Ladung im elektrostatischen Feld aufgebracht oder gewonnen wird. 
 

 
2

12
12

1

W
U E d

Q
l  und E d 0

l

l  

 

 
 Bei praktischen Berechnungen ist es nicht sinnvoll, das Wegintegral mit einem be-
 liebigen Integrationsweg l zu lösen:  
 die Energie W12 bzw. die elektrische Spannung U12 lässt sich am einfachsten 
 ermitteln, wenn der Verschiebungsweg l bzw. Integrationsweg l nur längs einer 
 Feldlinie und quer zu den Feldlinien gewählt wird.  
 Denn nur die Energieanteile dW bzw. Spannungsanteile dU längs einer Feldlinie 
 verändern die Gesamtenergie W12 bzw. die Gesamtspannung U12, die Anteile quer 
 zu den Feldlinien sind Null. 
 

Beispiele: 
Lächenladung 

Plattenkondensator 
Linienladung 

Zylinderkondensator 
Punktladung 

Kugelkondensator 
 
 
 

1212 EU l  
2

1

r

12
r

U E dr  
2

1

r

12
r

U E dr  

mit    E Q
A

 mit   E Q
2 h

1
r

 mit   
 
E Q

4 r2  

 
U12

Q l12
A

 U12
Q

2 h
ln

r2
r1

 
12 1 2

1 2

Q 1 1U
4 r r

 

  

P

Q 1E dr
4 r

 

 
 

 
 
Überlagerung von elektrischen Potentialen 
Wirken mehrere Ladungen auf einen Raumpunkt, dann überlagern sich die einzelnen elektri-
schen Potentiale zu einem Gesamtpotential nach dem Überlagerungsprinzip:  

 
i

i 1

n
 Beispiel:   Potentialfeld zweier Punktladungen 

 1 2

1 2

1 Q Q
4 r r

 



40 3  Das elektromagnetische Feld 

Allgemeine Formel für die Kapazität 
 

A
2

12 12

1

D dA
QC

U U
E dl

 

 

Beispiele: 
 
 Kapazität der zylindersymmetrischen Anordnung der Höhe h ohne Randstörungen 

 

 

2

12 12 1

A

E d
U U1

C Q D dA

l

 

 

Für die Ermittlung der Spannung U12 wird längs einer radialen Feldlinie integriert, wodurch sich 
mit r1 = r und r2 = ra  ergibt: 

 

 
  
U12

Q
2 h

ln
ra
ri

 
 
 

 

  

1
C

U12
Q

1
2 h

ln
ra
ri

 und 
 
C 2 h

ln (ra /ri )
 

 
 

 

 

 Kapazität einer Doppelleitung mit vorgegebener Länge h 
 

 
 
 

 
U12 U 12 U 21 
 

  
U 12

Q
2 0h

ln a R
R

 

 

  
U 21

Q
2 0h

ln a R
R

U 12 

 
U12 U 12 U 12  

 

 
 

  
U12

Q

0h
ln a R

R
 

 

C Q
U12

0h 1
a R

R
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3.3.4  Verschiebestrom – Strom im Kondensator   (Band 1, S.197-200) 
Konvektionsstrom 
In den Zuleitungen zum Kondensator fließt ein zeitlich veränderlicher Strom in Form von 
bewegten Ladungen: 

i dq
dt

uC
dC
duC

duC
dt

C duC
dt

  

Ist die Kapazität C unabhängig von der anliegenden Spannung uC, dann ist 
 

i C duC
dt

 und 
t

C 0
0

1u i dt U
C

 mit U0 Anfangsspannung 

 

Die Kondensatorspannung wird in Zählrichtung des Stroms i positiv gezählt. 
 
Verschiebestrom  
Das magnetische Feld wird im Kondensator so ausgebildet, als wäre der Stromfluss durch den 
nichtleitenden Kondensator nicht unterbrochen. Der zeitlichen Änderung der Ladung dq/dt 
entspricht die Änderung des Verschiebungsflusses d /dt innerhalb des Nichtleiters des Kon-
densators: 
 

 i d
dt

 

 

 
 

Strom durch den Kondensator 
Der Ladestrom in den Zuleitungen wird durch 
den Verschiebestrom im Nichtleiter des Konden-
sators fortgesetzt gedacht: 
 

           i d
dt

dq
dt

    mit    q 

 

 

  Aufladen eines Kondensators 

Strom- und Spannungsverlauf beim Aufladen 
eines Kondensators 
            t /c qu U (l e )  
 

            q t / i
i

U
i e mit (R R ) C

R R
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3.3.5  Energie und Kräfte des elektrostatischen Feldes   (Band 1, S.201-205) 
 

Gespeicherte Energie eines Kondensators 
 

we
C uC

2

2
q uC

2
q2

2 C
 mit q = C · uC  

Energiedichte 
In Feldgrößen ausgedrückt ist die Energie eines homogenen Feldes bezogen auf das Feldvolu-
men die so genannte Energiedichte des elektrostatischen Feldes: 
 

we
' We

V
E2

2
D E

2
D2

2
 

 

Die Feldenergie ist im homogenen Feld gleichmäßig verteilt.  
 

In inhomogenen Feldern ist der Energieanteil dWe im Volumenelement dV unterschiedlich, 
d. h. die Energiedichte ist gleich dem Diffentialquotienten 

dV
dWw e'e  

Die Energie lässt sich durch Integrieren der Energiedichte über das Volumen  ermitteln: 
 

'
e e

V

W w dV  

Im inhomogenen Feld konzentriert sich die Energie in den Feldbereichen mit hoher elektri-
scher Feldstärke. 

 
Kraft auf die Elektroden eines Kondensators 

 
  
F dWe

dl
dWe
dC

dC
dl

UC
2

2
dC
dl

 mit dWe
dC

Q2

2 C2  

 

Die Kraft ist so gerichtet, dass bei der dadurch veranlassten Bewegung der Elektrode die Ener-
gie verkleinert wird und dass die Kapazität bei der Bewegung der Elektrode in Richtung der 
wirkenden Kraft wächst. 
  

Beispiel: 
Kraft auf die Platten eines geladenen Plattenkondensators 

 

  
F UC

2

2
dC
dl

A
2 l 2 UC

2 
 

mit C = · 
l
A  und 

    

dC
dl

A
l2

 
 
 

Für sinusförmige Wechselfelder geht in die Gleichung für die Kraft F der Effektivwert UC der 
sinusförmigen Spannung ein. 
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3.3.6  Das Verhalten des elektrostatischen Feldes an der Grenze zwischen Stoffen 
verschiedener Dielektrizitätskonstanten   (Band 1, S.206-210) 

 

Querschichtung 
 

 

 

D1 = D2         
E1
E 2

2

1

r2

r1
 

Beispiel: 
Feldstärken bei Querschichtung 
eines Plattenkondensators 

  

E1
U

r1
l1
r1

l2
r 2

 

 

 

  
 

Längsschichtung 
 

 
 
 

Ungleichartig zusammengesetzte Isolierstoffe 
 

 
                                                           Brechnungsgesetz für schräggeschichtetes Dielektrikum 
 
 
 

D1n D2n  

E1n

E2n

2

1
 

E1t E2t  

  D1t

D2t

1

2
 

 

tan 1

tan 2

1

2
 

 

E1 = E2        
D1

D2

1

2

r1

r 2
 

Beispiel: 
Kapazität eines längsgeschichteten 
Plattenkondensators 

  
C 1A1

l
2A2

l
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3.4  Das magnetische Feld 

3.4.1  Wesen des magnetischen Feldes   (Band 1, S.214-215) 
 

In der Umgebung bewegter elektrischer Ladungen sind Kraftwirkungen zu beobachten, die 
einem magnetischen Raumzustand – dem magnetischen Feld– zugeschrieben werden. Die 
Ausbildung des magnetischen Feldes ist also eine Erscheinung, die die Bewegung elektrischer 
Ladungen immer begleitet. 
Bei Dauermagneten sind Molekular- und Elektronenströme Verursacher der magnetischen 
Erscheinungen. 
Ursache des magnetischen Feldes ist der Konvektionsstrom. 

 
Beim Aufladen und Entladen eines Kondensators ist ebenso ein magnetischer Raumzustand im 
Nichtleiter zu beobachten, obwohl keine Ladungen innerhalb des Nichtleiters bewegt werden. 
Ursache des magnetischen Feldes ist also ebenso der angenommene Verschiebestrom. 

 

3.4.2  Magnetischer Fluss und magnetische Flussdichte   (Band 1, S.216-221) 
 

Magnetischer Fluss 
Das mit dem Konvektions- und Verschiebestrom verbundene magnetische Feld wird durch 
Feldlinien veranschaulicht, mit deren Hilfe die Stärke und die Richtung von zu erwartenden 
Kräften beschrieben werden können. Die Gesamtheit der Feldlinien wird analog zum Strom-
fluss im elektrischen Strömungsfeld magnetischer Fluss  genannt. Den Raum, der von diesem 
Fluss erfüllt wird, nennt man in Analogie zum elektrischen Stromkreis magnetischer Kreis.  

 

Magnetische Flussdichte – magnetische Induktion  

 homogene magnetische Felder 

 B
A

  B A cos B A  
 

 inhomogene magnetische Felder  

B lim
A 0 A

d
dA

 
A

d B dA  

 

 und 
A

B dA 0  
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Für grundlegende Berechnungen ist es nicht notwendig, magnetische Flüsse durch Flächen zu 
berechnen, die die Fläche nicht senkrecht durchströmen. Werden die Flächen senkrecht durch-
strömt, dann ist der Neigungswinkel  zwischen den Vektoren B  und dA  gleich Null und das 
Skalarprodukt B dA  wird gleich dem Produkt der Skalare B · d A mit cos  = 1. 
 
 

Beispiel: 
Berechnung des magnetischen Flusses in der Umgebung eines langen stromdurchflossenen Lei-
ters in einem kreisförmigen Kupferring mit rechteckigem Querschnitt 

 
Das magnetische Feld ist inhomogen, der
magnetische Fluss wird aus 
 
 

A

B dA  

berechnet. Da die Vektoren B  und dA 
kollinear sind, geht das Skalarprodukt in 
das Produkt der Skalare über: 

A

B dA  

 

 
 
 
 

Die Induktion B nimmt mit wachsendem Radius r ab und ist längs des Leiters, also im gleichen 
Abstand vom Leiter konstant: 

 

B 0 I
2

1
r

 

 
0 ist die Permeabilität des Vakuums, also eine Materialgröße: 

 

0 = 1,256 · 10–6 Vs
Am

0,4 10 6 Vs
Am

 

 

Bei praktischen Berechnungen verhält sich Kupfer magnetisch wie Vakuum. 
 

In das Integral eingesetzt ergibt sich 
 
 

0

A

I 1
dA

2 r
 mit  d A = b · d r 

 

a

i

r
0 0 a

ir

I b I bdr rln r r2 r 2
 

 
 

0 a

i

I b r
ln

2 r
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Einheit des magnetischen Flusses und der magnetischen Flussdichte 
 

[ ] = 1 Vs = 1 Wb 1 Weber 

 nicht mehr gebräuchlich:   1Maxwell   1M = 10–8Wb 
 
 
 
 

[B] = T1
m
Vs1

m
Wb1

22
 1 Tesla 

 
 

 nicht mehr gebräuchlich:  1 Gauß         1G = 
2

8
2

4
cm
Vs10

m
Vs10  

 
Kontinuitätsgleichung des magnetischen Flusses 
 
 

Die Summe der Teilflüsse, die eine Hüllfläche von außen durchsetzen, ist gleich der Sum-
me der Teilflüsse, die durch diese Hüllfläche nach außen gerichtet sind: 

 
 

m

1i
ab

n

1i
zu ii  

 
Kraftfeld – magnetische Induktion 

Die magnetische Kraft F ist der magnetischen Induktion B direkt proportional: 

F  = Q · ( v   B )  

mit      F = Q · v · B ·  sin (v ,B )  

  
Q:    bewegte Ladung des positiv definierten Stroms 
v : Geschwindigkeit der bewegten positiven Ladung 

 B : magnetische Flussdichte, magnetische Induktion 
 

 

 
 
 

Die Richtung der Kraft ergibt sich durch folgende Regel: 

Der erste Faktor des Vektorprodukts v  wird auf dem kürzesten Weg in den zweiten Faktor B  
gedreht. Die Drehrichtung zeigt in die Richtung der gekrümmten Finger der rechten Hand, und 
der Daumen zeigt dann in die Richtung des Vektorprodukts, also in Richtung der Kraft F . 
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3.4.3  Durchflutung, magnetische Spannung und magnetische Feldstärke  
(magnetische Erregung), magnetischer Widerstand und Permeabilität  
 (Band 1, S.222-242) 

Durchflutung  
Der Konvektionsstrom und der Verschiebestrom sind vom magnetischen Fluss umwirbelt und 
können deshalb als Ursache des Magnetfeldes gedeutet werden. Der magnetische Raumzustand 
wird verstärkt, wenn mehrere Ströme oder der gleiche Strom mehrfach – wie bei einer Spule – 
die Umgebung beeinflussen. Die ein magnetisches Feld verursachenden Ströme, also die 
Stromsumme, wird Durchflutung (nicht mehr gebräuchlich: magnetische Urspannung, Magne-
tomotorische Kraft MMK) genannt: 

 = 
n

1i
iI  

 
 

Die Durchflutung ist gleich der Summe der Ströme, die die Fläche durchfluten, die von den 
geschlossenen Feldlinien gebildet werden. 
 
 
 

Für die Bestimmung der Durchflutung wird eine geschlossene Feldlinie ausgewählt, die als 
Umrandung einer Fläche angesehen wird. Sämtliche Ströme, die durch diese Fläche hin-
durchtreten, bilden vorzeichenbehaftet die Durchflutung. 

 
 
 

Die Durchflutung wird deshalb auch „die mit dem Magnetfeld verkettete Stromsumme“ ge-
nannt. 

Einheit der Durchflutung 
 [ ] = 1 A 

Beispiele: 
 

Feld eines langen stromdurchflossenen Stromfadens: 
 

 = I = 1 A 
 

 
 

 

Feld mehrerer Stromfäden verschiedener Stromrichtungen: 

 = 321

3

1i
i IIII  

 = – 1 A + 1 A + 1 A = 1 A 
  

 
 
 
 

Feld einer Spule im Eisenkreis: 

 = I · w 
 

 mit w Windungszahl 
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Magnetischer Widerstand und magnetischer Leitwert 
„Ohmsches Gesetz des magnetischen Kreises“ oder Hopkinsonsches Gesetz: 
 

 = Rm ·   

Gestalt des magnetischen Kreises und die magnetischen Eigenschaften der Stoffe, in denen das 
Feld existiert, werden durch den magnetischen Widerstand Rm oder magnetischen Leitwert Gm 
erfasst. 

homogene Felder 

 Rm
l
A

 oder Gm = 1
Rm

A
l

 

 

 [Rm] = 
Vs
A1  [Gm] = 1 Vs

A
 = 1 H (Henry) 

Bei praktischen Berechnungen ist es nur in Ausnahmefällen möglich, mit magnetischen Wider-
ständen zu rechnen, weil nur wenige Felder homogen oder symmetrisch sind. Die in Ferro-
magnetika (Eisen, Nickel, Kobalt) vorkommenden Felder sind wohl homogen oder annähernd 
homogen, aber die Materialgröße – absolute bzw. relative Permeabilität – ist nicht konstant. 
Der wirksame magnetische Widerstand in Eisenkreisen ist also je nach Größe der Durchflutung 
von der variablen Permeabilität  abhängig. 

In Reihe und parallel geschaltete magnetische Widerstände werden wie elektrische Widerstän-
de zusammengefasst: 

 Rm Rmi
i 1

n

 1
Rm

1
Rm ii 1

n

 

Permeabilität 
Die absolute Permeabilität  ist eine Materialgröße, die die magnetische „Durchlässigkeit“ 
eines Stoffes charakterisiert, in dem das magnetische Feld ausgebildet ist. 
Sie wird als r 

-faches der Permeabilität 0 des Vakuums aufgefasst: 
 

 = r · 0 mit 0 = 1,256 · 10–6 
Am
Vs = 0,4 ·  · 10–6 

Am
Vs  

Bei praktischen Berechnungen wird bei allen nichtferromagnetischen Stoffen mit r = 1 ge-
rechnet.  

Bei ferromagnetischen Stoffen ist r variabel; nur bei grober Näherung kann mit einer konstan-
ten relativen Permeabilität, also mit dem magnetischen Widerstand, gerechnet werden. 
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Magnetische Spannungen 
 

Im magnetischen Feld muss unterschieden werden in die Verursacher-Spannung , die Durch-
flutung, und in die magnetischen Spannungen Vi in magnetischen Widerständen infolge des 
magnetischen Flusses . 
In homogenen Feldern ist die Durchflutung  gleich der magnetischen Spannung V und in 
homogenen Teilfeldern ist die Durchflutung  gleich der Summe der magnetischen Spannun-
gen Vi: 
 

V Rm   = 
m

1i
im

m

1i
i RV  

 

Durch die Durchflutung werden sämtliche Ströme vorzeichenbehaftet erfasst, z. B. auch von 
mehreren Spulen in einem Eisenkreis. Deshalb darf auf der linken Seite der Gleichung nur  
und nicht  i geschrieben werden. 

Beispiele: 
Magnetisches Feld der Toroidspule  
mit konstanter Permeabilität 

 = 
  

I w
Rm

A I w
l

 

 Magnetfeld eines Eisenkreises  
mit konstanter Permeabilität und zwei Luft-
spalten 

  

I w
RmFe RmL

I w
lFe

0 r AFe

lL
0AL

 

 
 

Magnetische Feldstärke – magnetische Erregung 

homogene Felder inhomogene Felder 

H = 
  l

1
A

1 B  H = 
 

dV
dl

1 d
dA

1 B 

 H B  oder B H  

Bei nichtferromagnetischen Stoffen ist die Permeabilität  praktisch gleich der Induktionskon-
stanten 0 mit r = 1, so dass sich durch die direkte Proportionalität die magnetische Induktion 
B aus der magnetischen Feldstärke H errechnen lässt. 
 

Da bei ferromagnetischen Stoffen die Permeabilität  von der magnetischen Feldstärke H ab-
hängig ist und dieser nichtlineare Zusammenhang nicht analytisch fassbar ist, muss zunächst 
das magnetische Feld durch die materialunabhängige magnetische Feldstärke H berechnet 
werden und anschließend die materialabhängige magnetische Induktion B aus der nichtlinearen 
Kurve, der Magnetisierungskurve, 
 

B = f (H) 
 

abgelesen werden. 
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Durchflutungssatz für homogene Felder: 
 

 = V = H · l 

Beispiel:  
Magnetfeld einer stromdurchflossenen Spule 

Die magnetische Feldstärke außerhalb der Spule Ha ist vernachlässigbar klein. 

Vi 

  I w H i l  
  
Hi

I w
l

 Bi 0
I w

l
 

 

Durchflutungssatz für magnetische Kreise mit m homogenen Teilfeldern: 
 

 = 
m

1i
ii

m

1i
i HV l  

Beispiel: 
 Magnetfeld eines Eisenkreises mit zwei Luftspalten 

 

 = HFe · lFe + HL · lL 

 

allgemeiner Durchflutungssatz für magnetische Felder 
 

 

 = dV H d H d
l l l

l l  

 

Bei praktischen Berechnungen wird grundsätzlich längs einer Feldlinie integriert, wodurch das 
Skalarprodukt gleich dem Produkt der Skalare ist. 
 

Beispiele: 
 

Magnetfeld außerhalb eines langen stromdurchflossenen Leiters: 
 
 

aH d
l

l  

a aI H d H 2 r
l

l  

         Ha
I

2 r
 

         0
a

1B I
2 r
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Magnetfeld innerhalb eines langen stromdurchflossenen Leiters: 
 

iH d
l

l  

Ii = i iH d H 2 r
l

l  

mit S = 
I i

r 2
I

R2  

Ii = I
R2 r2 Hi 2 r  

Hi = I
2 R2 r          Bi = 0

2
I

R2 r  

 

 

Verlauf von B = f (r) eines langen stromdurchflossenen Leiters: 

Bmax
0 I

2 R
 

 
 

Magnetfeld eines langen, stromdurchflossenen Rohres: 

innerhalb des Rohres 
 

H1 = 0  

im Rohr 

H2 = 
2 2 2

i i
2 2 2 2

a i a i

r r I I rr
2 r rr r 2 (r r )

 

Näherung: 
H2

I
2 rm d

r ri  

mit   
2

rrr ia
m  mittlerer Radius 

außerhalb des Rohres 

H3 = I
2 r
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Permeabilität und Hysteresekurve 
Die Permeabilität r ist bei ferromagneti-
schen Stoffen von der magnetischen Feld-
stärke abhängig: 

r = f (H),  

der Zusammenhang zwischen der magneti-
schen Induktion B  und der magnetischen 
Feldstärke H  ist nichtlinear und nicht 
eindeutig.  
Dabei bedeuten 

       Hk  Koerzitivfeldstärke  
       Br  Restinduktion, Remanenz  
       Bs  Sättigungsinduktion  

 

 

 
 

Für geschlossene magnetische Kreise mit weichmagnetischen Werkstoffen wird die messtech-
nisch ermittelte Magnetisierungskurve (vom Hersteller geliefert) durch eine nichtlineare ein-
deutige Kurve angenähert. Die B- und H-Werte werden dann aus der Kurve entnommen.  

In Ausnahmefällen kann die BH-Kurve durch eine Gerade angenähert werden, d. h. es wird 
eine konstante Permeabilität angenommen. Nur dann kann mit magnetischen Widerständen 
gerechnet werden.  

 
Beispiel für die Berechnung mit der BH-Kurve: 
Eine Toroid- oder Kreisringspule mit einer Windungszahl w = 60 und einem mittleren Durchmes-
ser D = 80mm enthält einen Eisenkern aus Stahlguss, dessen mittlere Magnetisierungskurve für 
die einseitige Magnetisierung gegeben ist. Sie wird einmal von einem Strom I1 = 0,6A und zum 
anderen von dem dreifachen Strom I2 = 1,8A durchflossen. 
 

 
 

 = V = H · l         H = I w
D

 

 

H1 = 143 A
m

       H2 = 430 A
m

  

Toroidspule ohne Eisenkern:  

B01 = 0 · H1 = 0,18 mT        B02 = 0,54 mT  

Toroidspule aus Stahlguss:  

B1 = 0,6T    und    B2 = 1,2T 
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3.4.4  Das Verhalten des magnetischen Feldes an der Grenze zwischen Stoffen 
verschiedener Permeabilitäten   (Band 1, S.242-245) 

Querschichtung 
 

B1 = B2 
 

H1
H2

2

1

r 2

r1
 

 
 

 

 

Längsschichtung 
 
 

H1 = H2 
 

 

B1
B2

1

2

r1

r 2
 

 
  

 
 

 

Ungleichartig zusammengesetzte Magnetmaterialien 
 
 

                                                   Brechungsgesetz für schräg geschichtete Magnetmaterialien 
 

 
 

B1n = B2n 

H1n
H2n

2

1
 

 H1t = H2t 

B1t
B2t

1

2
 

 
tan 1
tan 2

1

2
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3.4.5  Berechnung magnetischer Kreise 

3.4.5.1  Berechnung geschlossener magnetischer Kreise   (Band 1, S.246-275) 
 
Streufluss, Nutzfluss und Streufaktor 
 

 = N + S 

 = 
SN

SS  

N = L = (1 – ) ·  
 
 
Bei praktischen Berechnungen wird eine
Streuung von 5 % bis 20 % je nach Anord-
nung und Luftspaltlänge angenommen. 

 

 

 

Ausweitung der Feldlinien am Luftspalt 

10,1...03,1
A
A

K

L   

mit 
Luftspaltfläche AL  
Kernfläche AK 

 
 

Eisenfüllfaktor 

 

fFe = 
K

Fe
A
A

          z.B.   fFe = 0,85 

mit 
Eisenfläche AFe 
Kernfläche AK 
 

 
Eisenfüllfaktor 
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Aufgabenstellung 1: 
Gegeben: magnetische Induktion B oder der magnetische Fluss  an einer Stelle des 

Magnetkreises, insbesondere die Luftspaltinduktion BL  
 Magnetisierungskurven B = f (H) der Magnetmaterialien des magnetischen 

Kreises 
 Gestalt und Abmessungen des magnetischen Kreises 
Gesucht: erforderliche Durchflutung  

 
 

1. Ansatz für die Durchflutung nach dem Durchflutungssatz für homogene Teilfelder: 

 = i

m

1i
i

m

1i
i HV l  

2. Berechnung der magnetischen Feldstärke (magnetische Erregung) im Luftspalt HL aus der 
gegebenen Luftspaltinduktion BL : 

HL = 
0

LB  

3. Ermittlung der magnetischen Feldstärken (magnetische Erregung) in den homogenen Teil-
feldern aus Eisen mit  

B = BL · AL
AFe

1
1

BL

AL

AK
AFe
AK

1
1

 und  BN = BL · 

K

Fe

K

L

L
Fe

L

A
A
A
A

B
A
A  

und mit Hilfe der Magnetisierungskurven  
B = f (H): 

Ablesen der magnetischen Feldstärken H aus
den magnetischen Induktionen B 

 

 

 
4. Berechnung der mittleren Feldlinienlängen im Eisen des magnetischen Kreises. 

5. Berechnung der magnetischen Spannungen Vi in den Eisenabschnitten und im Luftspalt 
und Berechnung der Durchflutung . 

Ist die magnetische Induktion in einem Eisenabschnitt oder der magnetische Fluss gegeben, 
dann muss der Lösungsweg entsprechend geändert werden, wobei die Gleichungen unter 3. 
umgestellt werden. 
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Ergänzungen zu der Aufgabenstellung 1: 
Zu 1. Ansatz für die Durchflutung 
Zu 4. Berechnung der mittleren Feldlinienlängen im Eisen 

 
Beispiel 1: 

 

Wegen der Streuung ist der magnetische Fluss im 
Eisenabschnitt 2 kleiner als im Eisenabschnitt 1: 

 = 2Fe2Fe1Fe1Fe
L

L HH
2

2H lll  

Die mittleren Feldlängen sind gegeben: 

lFe1 = 60 cm     und lFe2 = 50 cm 

 

 

 
 

Beispiel 2:  M65- Stahlgussblech 
 

Die Ermittlung der Durchflutung ist genau genug, 
wenn angenommen wird, dass im Eisen der mag-
netische Gesamtfluss bis an den Luftspalt heran 
auftritt, und im Luftspalt der um den Streufluss
verminderte Gesamtfluss vorhanden ist.  

 = HL · lL + HFe · lFe 

lFe = 2 a – 2 c + b – c – 
2
f  – lL = 154 mm 

 

 
 

Beispiel 3:  EI-84-Blech 
 

Die magnetischen Feldstärken (magnetische Erre-
gung) im E-Kern und I-Kern sind unterschiedlich,
weil der magnetische Fluss im I-Kern wegen der
Streuung kleiner ist als im E-Kern. 

 = HL · lL + HE · lE + HI · lI  

lI = g + 2 c = 42 mm  

lE = 2 e + g + 2 c = 126 mm 
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Aufgabenstellung 2: 
Gegeben: Durchflutung  

  Magnetisierungskurven B = f (H) der Magnetmaterialien des magnetischen 
Kreises 

  Gestalt und Abmessungen des magnetischen Kreises 
Gesucht: magnetische Induktion B oder der magnetische Fluss  
 
Sind im magnetischen Kreis zwei Voraussetzungen erfüllt, dann ist die Berechnung des mag-
netischen Flusses oder der magnetischen Induktionen bei gegebener Durchflutung einfach 
möglich: 
 
1. Der magnetische Kreis besteht aus einem homogenen Magnetmaterial mit konstantem 

Querschnitt, so dass der Durchflutungssatz 
 

 = H · l oder H = 
l

 

 

nur die magnetische Feldstärke (magnetische Erregung) H als unbekannte Größe enthält, 
die über die Magnetisierungskennlinie zur magnetischen Induktion B und über die Fläche 
zum magnetischen Fluss  führt. 
 

2. Der magnetische Kreis besteht nur aus zwei Abschnitten oder lässt sich in zwei Abschnitte 
zusammenfassen, in denen jeweils ein homogener Feldverlauf angenommen werden kann. 
In den meisten Anwendungsfällen handelt es sich dann um einen Eisenkreis mit Luftspalt, 
für den der Durchflutungssatz für homogene Teilfelder 

 

 = HFe · lFe + HL · lL = HFe · lFe + BL

0
 · lL 

 

zwei Unbekannte enthält, so dass die Gleichung analytisch nicht lösbar ist; die Permeabili-
tät des Eisens ist nicht konstant. 

Lösung: 
Überlagerung der Kennlinien 
des aktiven Zweipols 

1
V
V

00

Fe  

und des passiven Zweipols 

Fe
Fem

V
R

1  

(umgerechnete Magnetisierungskurve, 
indem im Schnittpunkt die Größen  

 und VFe abgelesen werden) 
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Rechenverfahren: 
Zunächst werden die Koordinaten der gegebenen Magnetisierungskurve BFe = f (HFe) bei Be-
rücksichtigung der Eisenfläche AFe und der mittleren Feldlinienlänge lFe im Eisen in den Ordi-
natenwert  = BFe · AFe und Abszissenwert VFe = HFe · lFe umgerechnet, so dass die Magneti-
sierungskurve in die Funktion  = f (VFe) übergeht.  
Dann wird der Achsenabschnitt 0 = /RmL errechnet und an der Ordinate eingetragen.  
Mit dem Abszissenabschnitt  bildet er die Gerade, die den Schnittpunkt mit der Funktion  
= f (VFe) ergibt.  
Nun kann der magnetische Fluss  abgelesen werden und mit den Flächen die magnetischen 
Induktionen im Eisen und im Luftspalt errechnet werden. Außerdem kann die magnetische 
Spannung VFe im Schnittpunkt abgelesen werden, wodurch sich mit der Eisenweglänge lFe die 
magnetische Feldstärke HFe ergibt. Die Feldstärke im Luftspalt HL wird aus BL oder aus dem 
ablesbaren VL errechnet. 

Beispiel: 
Für einen UI-Kern 30 aus Dynamoblech III mit einem Gesamtluftspalt lL = 0,3 mm soll die Kennli-
nie des magnetischen Kreises  = f ( ) entwickelt werden: 
Zunächst ist die Kennlinie des passiven Zweipols  = f (VFe) anzugeben, indem die gegebene Mag-
netisierungskennlinie verwendet wird. Die Schichtdicke beträgt 20 mm. 
Dann ist für die Durchflutungen  = 100A, 200A, 300A und 400A die Kennlinie des aktiven Zwei-
pols einzutragen und die gesuchte Kennlinie zu ermitteln. 

 

für  BFe = 1T :              = 1Vs/m2 · 200 · 10–6m2 = 200 Vs  
für HFe = 1 000A/m: VFe = 1 000A/m · 120 · 10–3m = 120A 
 

 in A  100  200  300 400  

0 in Vs    84  167  251 335  

 
 
 

 
Magnetisierungskennlinie von Dynamoblech III,  = f (VFe) und  = f ( ) 
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Die Kennlinienüberlagerung kann aber auch mit der ungeänderten Magnetisierungskennlinie 
vorgenommen werden, die gleich der Kennlinie des passiven Zweipols ist. Für die Kennlinie 
des aktiven Zweipols müssen nur die Achsenabschnitte umgerechnet werden: 
Rechenverfahren: 
In die Magnetisierungskennlinie des Magnetmaterials wird die Achsenabschnittsgerade mit 
den Abschnitten 
 

  
B0

0
lL

 und 
Fe

0H
l

, 

 
die so genannte „Luftspaltgerade“, eingezeichnet. Zunächst müssen also B0 und H0 errechnet werden. 
Aus dem Schnittpunkt lassen sich BL = BFe und HFe ablesen.  
Die magnetische Feldstärke (magnetische Erregung) im Luftspalt HL kann aus BL mit 0 be-
rechnet werden oder aus der Kennlinie mit dem Abschnitt HL · (lL/lFe) ermittelt werden, indem 
der abgelesene Wert mit lFe / lL multipliziert wird. 
Ist zusätzlich eine Streuung  zu berücksichtigen, dann muss der Achsenabschnitt B0 auf 
B0/(1 – ) erhöht werden. Anschließend wird genauso verfahren wie oben beschrieben.  
 

Beispiel: 
Eine Toroid- oder Kreisringspule mit einer Windungszahl w = 1 500, durch die ein Strom von 2A 
fließt, enthält einen Eisenkern aus Stahlguss (mittlerer Durchmesser dm = 95,5 cm, Querschnittflä-
che 100 cm2 ) mit einem Luftspalt mit der Luftspaltlänge lL = 3 mm. 

B0 = 
    

0
lL

1,256 10 6 Vs
Am

3000A

3 10 3 m
 = 1,256 T 

H0 = 
  lFe

I w
dm

2 A 1500
0,955 m

1000 A
m

 

abgelesen aus der BH-Kurve: 

BL = BFe = 0,93 T und HFe = 260 
m
A  

Streuung von 20%: 

B0
* B0

1
1,256 T

0,8
1,57 T  

abgelesen aus der BH-Kurve:  
*FeB  = 1,04 T und *FeH  = 340

m
A  

BL
* (1 ) BFe

* 0,8 1,04 T 0,832 T  
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3.4.5.2  Berechnung des nichteisengeschlossenen magnetischen Kreises einer    
Doppelleitung und mehrerer paralleler Leiter   (Band 1, S.276-278) 

Die magnetische Feldstärke (magnetische Erregung) in einem Punkt P in der Umgebung der 
stromdurchflossenen Leiter ergibt sich durch vektorielle Addition der Teilfeldstärken, die sich 
nach der Gleichung der magnetischen Feldstärke außerhalb eines Leiters berechnen lassen. 

Beispiel: 
Die magnetische Feldstärke (magnetische Erregung) H  in einem Punkt, der von den Mittelpunkten von 
zwei stromdurchflossenen Leitern r1 und r2 entfernt ist, ist gleich der Vektorsumme 
 

H H 1 H 2  

mit 

H1
I1

2 r1
 

und 

H2
I 2

2 r2
 

 
 
 

Magnetische Feldstärke der Doppelleitung bei verschiedener Stromrichtung: 

 

H = I
2

d

x2 d
2

2  

 
 

Magnetische Feldstärke der Doppelleitung bei gleicher Stromrichtung: 

H = I
2

2 x

x2 d
2

2  
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3.4.5.3  Berechnung magnetischer Kreise mit Dauermagneten   (Band 1, S.279-287) 

 = 0 = HL · lL + HFe · lFe + HM · lM  

mit VFe = HFe · lFe    vernachlässigt 

L = M 

oder      BL · AL = BM · AM 

 
 

Berechnung eines Dauermagnetkreises 
Der Entmagnetisierungskennlinie wird eine Nullpunktsgerade überlagert: 
 
 

 

BM = – 
  

0
lM
lL

AL
AM

HM
0

N
HM 

mit 

N = 
L

M

M

L
A
A

l
l   

Entmagnetisierungsfaktor 

BL = AM
AL

BMP  

  

 

Die Luftspaltinduktion lässt sich auch angenähert berechnen, wenn die Entmagnetisierungs-
kennlinie durch eine Achsenabschnittsgerade mit den Achsenabschnitten Br und Hk ersetzt 
wird und diese mit der Nullpunktsgeraden überlagert wird. 

 

  

BMP
Hk

Hk
Br

1

0

lL
lM

AM
AL

 

  

BL
Br

AL
AM

Br

0 Hk

lL
lM
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Optimierung des Dauermagnetkreises 

VM
BL

2 VL

0

1
BM HM

 

mit dem Maximum  (BM · HM)max  
Im Maximum wird eine Waagerechte auf die Entmagnetisierungskurve gezogen, wodurch sich 
der optimale Arbeitspunkt Popt ergibt: 

 
 

 
 
Die Diagonale des Rechtecks, das mit der Remanenz Br und der Koerzitivfeldstärke Hk gebil-
det werden kann, schneidet genügend genau die Entmagnetisierungskennlinie im optimalen 
Arbeitspunkt. 

  
BLopt 0

VM
AL lL

(BM HM)max 0
VM

AL lL
BM opt HM opt  

 

 AM = optL
optM

L B
B

A  und  lM = 
M

MV
l

 

oder 
 

 lM = – 
optM

LoptL

H
H l

 = – 
 

lL BL opt

0 HM opt
 und AM = 

M

MV
l

 

 

Dauermagnetkreis mit Streuung 
 

 = 0 = HL · lL + HM · lM  BL · AL = (1 – ) · BM · AM 

 

BLopt = (1 ) 0
VM
VL

(BM HM)max  
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3.4.6  Elektromagnetische Spannungserzeugung – das Induktionsgesetz 

3.4.6.1  Bewegte Leiter in einem zeitlich konstanten Magnetfeld – Bewegungsinduktion  
(Band 1, S.288-299) 

 

Kraftwirkung auf elektrische Ladungen im Magnetfeld 

F mag Q (v B )  

mit     Fmag = Q · v · B · sin   

Der erste Faktor v  wird auf dem kürzesten Weg in den 
zweiten Faktor B gedreht. Die Drehrichtung zeigt in die 
Richtung der gekrümmten Finger der rechten Hand, und 
der Daumen zeigt dann in die Richtung in Richtung der 
magnetischen Kraft F mag. 
 

 

 

 
 

Bewegter Leiter im Magnetfeld 

Wird ein Leiter im Magnetfeld bewegt, dann bewegt 
sich das positive Ionengerüst des Metalls und mit ihm 
die freien und gebundenen Elektronen. Auf die beweg-
ten positiven und negativen Ladungen wirken magne-
tische Kräfte, so dass die Ladungsschwerpunkte längs 
des Leiters getrennt werden:  

F el F mag      Coulombsche Kräfte  F el  

 

 

Q E Q (v B )  

E (v B )  

mit     E = – v · B · sin  

  uq E l 

sinBvuq l  
  

 

Befindet sich der Leiter im Magnetfeld nicht senk-
recht zur v, B-Ebene, sondern bildet mit der Norma-
len N  der v, B-Ebene einen Winkel , dann ist die 
induzierte Spannung entsprechend kleiner: 

  uq v B l sin cos  
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Bewegte Leiterschleife im Magnetfeld 
Wird der Teil der Leiterschleife, der sich im magnetischen Feld befindet, mit einer Geschwin-
digkeit v  bewegt, dann wird eine Spannung uq induziert: 
 

lBvuq  

mit     sin  = sin 90º = 1 
und     cos  = cos 0º = 1 
 

 

 
 
 
 
 

 
 

 
 

 
Die Spannung uq treibt einen Strom i in der angegebenen Richtung durch den Widerstand R. 

Dieser Strom bewirkt ein magnetisches Feld, das das äußere Feld innerhalb der Leiterschleife 
vergrößert und außerhalb der Leiterschleife schwächt, wie mit der „Rechte-Hand-Regel“ nach-
gewiesen werden kann. Durch die Bewegung des Leiters wird der durch die Leiterschleife 
umfasste magnetische Fluss vermindert.  
Das magnetische Feld des Stroms i versucht, diese Flussverminderung aufzuheben. 

Auf die beweglichen Ladungsträger des Stroms i im Magnetfeld wirken magnetische Kräfte, 
die insgesamt so gerichtet sind, dass sie die Bewegung des Leiters zu hemmen versuchen. Die 
Gesamtkraft kann mit Hilfe des Vektorprodukts F Q (v B )  nachgewiesen werden, indem 
der Geschwindigkeitsvektor v  in Richtung des Stroms zu legen ist. 
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Wird der Leiter in der angegebenen Richtung mit der Geschwindigkeit v  bewegt, dann wird 
die durch die Leiterschleife umfasste Fläche kleiner, d. h. die Flächenänderung ist negativ: 

    

dA
dt

l ds
d t

l v 

 

Damit lässt sich die induzierte Spannung auch durch die zeitliche Änderung des von der Lei-
terschleife umfassten magnetischen Flusses errechnen: 

  
uq v B l B dA

dt
 

mit    d  = B · dA 

td
duq  

 

Wird die Leiterschleife in umgekehrter Richtung mit der Geschwindigkeit v  verschoben, dann 
wird die elektrische Feldstärke E  und damit die induzierte Spannung uq nach dem Vektor-
produkt (v B )  umgekehrt gerichtet: 
 
 

 
 

Bewegte Spule im Magnetfeld 
Wird in einem zeitlich konstanten Magnetfeld eine Spule mit der Windungszahl w mit der 
Geschwindigkeit v  bewegt, dann werden in w parallelen, eng beieinander liegenden Leitern 
einer Spulenseite w gleiche Spannungen induziert, die insgesamt 

  uq w v B l sin cos  

td
dwuq  

betragen. 
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Beispiel 1: 
Verschieben einer rechteckigen Spule in ein homogenes, zeitlich konstantes Magnetfeld 
Beim Eintauchen der einen Seite der Spule und wenn die 
andere Seite der Spule aus dem Luftspalt geführt wird,
wird in jedem der w Leiterstücke der Länge b eine recht-
eckförmige Impulsspannung in der Zeit 

 t = a cos
v

 

induziert: 

uq = – w · v · B · b 

mit   = 90º  und    = 0º 
 

Beim Verschieben einer Spule innerhalb eines homogenen, zeitlich konstanten Magnetfeldes ent-
steht an den Spulenklemmen keine Spannung, weil sich die induzierten Spannungen kompen-
sieren. 

 

 
Beispiel 2: 
Drehen einer rechteckigen Spule mit einer konstanten Winkelgeschwindigkeit in einem homoge-
nen, zeitlich konstanten Magnetfeld 
Beide Spannungen sind so gerichtet, dass sie sich zu einer 
Gesamtspannung addieren: 

uq = uqo + uqu = – 2 · w · v · B · b · sin  

mit     cos  = 1  

Bei konstanter Winkelgeschwindigkeit  beträgt die 
Bahngeschwindigkeit 

 

v = a
T

      

mit       a ·  :      Umfang des Kreises 

 

 
 

 T = 1/f:  Periodendauer, 
 f:            Frequenz 

 

Mit der Kreisfrequenz 
 

 = 
  t

2
T

2 f        ergibt sich     T = 2
 

und damit für die Bahngeschwindigkeit 

v = a
2

a
2

 

Die induzierte Gesamtspannung in der Spule ist sinusförmig 

uq = – 2 · w · 
2
a  ·  · B · b · sin   mit A = a · b Spulenfläche 

 uq = – w · A ·  · B · sin  t  und  =  t 
 
 

Durch Drehen einer Spule im zeitlich konstanten Magnetfeld sind zwei Spulenseiten an der Span-
nungsinduktion beteiligt. Deshalb werden elektrische Spannungen vorwiegend in rotierenden Ge-
neratoren erzeugt. 
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3.4.6.2  Zeitlich veränderliches Magnetfeld und ruhende Leiter – Ruheinduktion  
 (Band 1, S.300-304) 

Eine in der Elektrotechnik wichtige Anwendung der Ruheinduktion ist der Transformator.  
Befindet sich in einem Magnetfeld, dessen feldbeschreibende Größen B und H sich zeitlich 
ändern, eine oder mehrere ruhende Leiterschleifen, dann werden in ihnen Spannungen indu-
ziert, die in Analogie zur Bewegungsinduktion behandelt werden können. 

In der gezeichneten Magnetanordnung ist 
der Strom isp in der Spule zeitlich verän-
derlich. Damit verändert sich der damit 
verbundene magnetische Fluss  und die 
magnetische Induktion B im Luftspalt. 

 

 

 

 

Bei Verringerung des Stroms nimmt auch der von der Leiterschleife umfasste magnetische 
Fluss  ab, wodurch in der Leiterschleife Ladungen verschoben werden. Die durch die Fluss-
verkleinerung induzierte Spannung 

 
td

duq  

treibt durch die Leiterschleife einen Strom i, der so gerichtet ist, dass der durch ihn verursachte 
magnetische Fluss der äußeren Flussverringerung entgegenwirkt. 
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Wird umgekehrt der Strom isp in der Spule vergrößert, dann nimmt auch der von der Leiter-
schleife umfasste magnetische Fluss  zu. Die in der Leiterschleife induzierte Spannung 

td
duq  

ist umgekehrt gerichtet und treibt einen Strom i durch die Leiterschleife in umgekehrter Rich-
tung. Der mit dem Strom verbundene magnetische Fluss versucht die Flussvergrößerung auf-
zuheben. 
 
 
 

 
 

Die „Rechte-Hand-Regel“ gibt die Richtung der induzierten Quellspannung uq an, indem die 
Vergrößerung des magnetischen Flusses zugrunde gelegt wird: 

Der Daumen der rechten Hand zeigt in die Richtung des sich zeitlich vergrößernden mag-
netischen Flusses , der von der Leiterschleife umfasst wird. Dann geben die gekrümmten 
Finger die Richtung der induzierten Spannung uq an.  
 

Diese Regel lässt sich analog für die durch die Flussänderung gedeutete Bewegungsinduktion 
anwenden. 
 

Die induzierte Spannung entsteht nur in einer geschlossenen Leiterschleife, die den zeitlich 
veränderlichen magnetischen Fluss umfasst. Deshalb wird die induzierte Spannung Umlauf-
spannung genannt. 
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Induktionsfluss oder mit den Leitern verketteter Fluss 

uq = d i

dt
i 1

n
d

dt i
i 1

n
d
dt

 mit  = 
n

1i
i  

In praktischen Anordnungen, z.B. im Transformator, wird der magnetische Fluss, der sich 
zeitlich ändert, durch eine Spule umfasst. Der für die induzierten Umlaufspannungen bestim-
mende Induktionsfluss ist dann 
 

uq w d
dt

d (w )
d t

d
dt

 mit  = w ·  

 

Beispiel: 
Neben einem langen stromdurchflossenen Leiter 
befindet sich eine rechteckige Spule mit der Win-
dungszahl w. Die in der Spule induzierte Spannung
ist zu bestimmen, wenn der Leiter von einem sinus-
förmigen Strom i ˆ i sin t  durchflossen wird. 

uq w d
dt

 

A

B dA  

B (r) = 0
2

i 1
r

 und dA = h · dr  
 

a b
0 0 0

a

i h i h i hdr a b b
ln ln 1

2 r 2 a 2 a
 

 
 

uq = w · d
d t

w 0 h
2

ln 1 b
a

di
dt

w 0 h
2

ln 1 b
a

ˆ i cos t  

 

Überlagerung beider Induktionserscheinungen 
Die Vorgänge der Bewegungsinduktion und Ruheinduktion können sich überlagern. Beide 
Erscheinungen lassen sich mathematisch in einer Formel (allgemeines Induktionsgesetz) zu-
sammenfassen 
 

uq = – w · 
A

dv B d w B dA
dt

l

l , 

 

wobei der erste Term die Bewegungsinduktion und der zweite Term die Ruheinduktion erfasst. 
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3.4.7  Selbstinduktion und Gegeninduktion 

3.4.7.1  Die Selbstinduktion   (Band 1, S.305-318) 
 

Induktivität 

 L = 
I

w
I

 mit [L] = 1
A
Vs  = 1 H  (Henry) 

 

bei homogenen Feldern 

L = w2 · Gm = 
m

2

R
w  

Ist das Magnetfeld inhomogen, aber symmetrisch, dann lässt sich der magnetische Leitwert 
oder der magnetische Widerstand und damit die Induktivität durch „Homogenität im Kleinen“ 
ermitteln. 

 

Beispiel 1: 
Induktivität einer Zylinderspule ohne Eisenkern oder mit Eisenkern und konstanter Permeabilität  

 

Der magnetische Widerstand und damit die 
magnetische Spannung außerhalb der Spule 
wird vernachlässigt. 

L =  · 
  4

w 2 D2

l
 

mit 

  
Rm

l
A

 

und 

A = D2

4
 

 

Bei praktischen Berechnungen der Induktivität einer Zylinderspule mit Eisenkern kann der Anteil 
des magnetischen Widerstandes außerhalb der Spule nicht vernachlässigt werden. 

Beispiel 2: 
Induktivität einer Toroidspule (Kreisringspule) ohne Eisenkern oder mit Eisenkern und konstanter 
Permeabilität  

exakt: inhomogen 

L = w2 h 1
2

ln
ra
ri

 

angenähert: homogen 

L = w 2 h ra ri
ra ri
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Beispiel 3: 
Induktivität eines unverzweigten magnetischen Kreises aus Eisen mit konstanter Permeabilität  

 

L = 
  

w 0 r A
lFe

 

mit 
 

RmFe =
 

lFe

0 r A
 

 

Beispiel 4: 
Induktivität eines unverzweigten magnetischen Kreises aus Eisen mit konstanter Permeabilität 
und einem Luftspalt 

L = 
  

w 0 r A
lFe r lL

 

mit 
 

Rm = 
  

lFe

0 r A
lL
0 A

r

r
 

 

 

Beispiel 5: 
Induktivität eines konzentrischen Kabels ohne Berücksichtigung der Permeabilität 
des Innenleiters und des Mantels 

L = Gm = 
a

m
i

dG  

mit 

d Gm = 
 0

l dr
2 r

 

 
L = 

    
0 l

2
ln

ra
ri

  



72 3  Das elektromagnetische Feld 

Induktivität bei veränderlicher Permeabilität 

bei Annahme eines homogenen Feldes 
 

L(I) = 
    I

w
I

w2 A
lm

B
H

w2 A
lm

(H)

differentielle Induktivität  

Ld = 
    

w2 A
lm

dB
dH

w2 A
lm

u 

differentielle, umkehrbare oder          
reversible Permeabilität u 

  
 

Selbstinduktion 
Fließt durch eine Spule ein zeitlich veränderlicher Strom, dann sind der magnetische Fluss  
und der w-mal umschlossene Fluss, der Induktionsfluss , auch zeitlich veränderlich. Dadurch 
wird längs jeden Umlaufs um den magnetischen Fluss eine Umlaufspannung induziert, die 
aufgrund der Flussverkleinerung und Flussvergrößerung eine Spannung ui ergibt, die zu einer 
Spannung an der Induktivität zusammengefasst werden: 

u w d
dt

d
dt

d(L i)
dt

L di
d t

i dL
di

d i
d t

 

u L i dL
di

d i
d t

Ld
di
dt

 

Ist die Induktivität L vom Strom i unabhängig, ist also die Permeabilität  konstant, dann ist 
die Induktivität L konstant und die wirksame Induktivität ist stationär. 

Die differentielle Induktivität Ld geht in die stationäre Induktivität L über, wenn die Induktivi-
tät vom Strom unabhängig ist: 

u = L · 
td
id

 

 
 

Spannung und Strom der Induktivität 

u = uR + uL = R · i + L
td
id  

mit      uL
d
dt

L di
dt

 

 

 

 

 Ersatzschaltbild einer verlustbehafteten Spule 
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3.4.7.2  Die Gegeninduktion   (Band 1, S.319-336) 
Gegeninduktivität 

M12 = 12
I1

w2 12
I1

 

mit      12 = k1 · 1 

und 0  k1  1 

M12 = k1 · Gm1 · w1 · w2 

M21= 21
I2

w1 21
I2

 

mit     21 = k2 · 2 

und 0  k2  1 

M21 = k2 · Gm2 · w1 · w2 

Permeabilität  konstant 

 M12 = M21 = M 

 M 1 Vs
A

 = 1 H  (Henry) 

 mit k1 · Gm1 = k2 · Gm2 

Beispiel 1: 
Gegeninduktivitäten eines Toroidkerns mit zwei übereinander liegenden Spulen 

M12
12

I1

w 2 12
I1

w2
I1

1 

1 = 
 

I1 w1 h
2

ln
ra
ri

 

M21
21

I 2

w1 21
I2

w1
I 2

2 

2 = 
 

I2 w 2 h
2

ln
ra
ri

 

  
M12 M21

w1 w2 h
2

ln
ra
ri

M  
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Beispiel 2: 
Gegeninduktivitäten eines Eisenkreises mit konstanter Permeabilität  

 

 

M12 = 
1m

21
1 R

wwk  

k1
3
4

         Rm1 = 
    

15
4

l
A

 

 

M12 = 
  
w1 w 2 A

5 l
  

 

M21 = 
2m

21
2 R

wwk  

k2 = 1
2

          Rm2 = 
    

5
2

l
A

 

 

M21 = 
    
w1 w 2 A

5 l
 

 

 
 
 

Beispiel 3: 
Gegeninduktivitäten eines Eisenkreises mit drei gekoppelten Spulen 

 
 

M12 = 
 
w1 w 2 A

l
M 21 

M23 = 
 
w 2 w 3 A

l
M 32 

M31 = 
 
w1 w 3 A

l
M13  
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Gegeninduktion 
Fließt durch eine der beiden Spulen ein zeitlich veränderlicher Strom, dann wird in dieser Spu-
le aufgrund der Selbstinduktion eine Spannung induziert und in der anderen Spule aufgrund 
der Gegeninduktion ebenfalls eine Spannung induziert. 
Sind beide Spulen gleichzeitig durch zeitlich veränderliche Ströme durchflossen, dann werden 
in beiden Spulen jeweils zwei Spannungen induziert, und zwar infolge der Selbstinduktion und 
der Gegeninduktion. 
 
 

vom Strom i1  
in der Spule 2 induzierte Spannung: 
 

uM 2 = 
td
idM

td
d 1

12
12  

mit 

12 = w2 · 12 = M12 · i1 
 

vom Strom i2  
in der Spule 1 induzierte Spannung: 

 

uM 1 = 
td
idM

td
d 2

21
21  

mit 

21 = w1 · 21 = M21 · i2 
 

 

Mit Hilfe der „Rechte-Hand-Regel“ lassen sich die Richtungen der induzierten Spannungen 
bestimmen. 
 

 
 
 

Beispiel: 
Dreieckförmig veränderliche Ströme i1 und i2: 
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In Ersatzschaltungen werden gekoppelte Spulen durch einen beidseitig gerichteten Pfeil ge-
kennzeichnet, der die gekoppelten Spulen verbindet. Die Spulenenden werden jeweils mit 
einem Punkt versehen. 

Handelt es sich um eine gleichsinnige
Wicklungsanordnung, dann befinden sich
beide Punkte an den gleichen Enden der
Spulen (beide Punkte oben oder unten). 

 

 

 

Bei einer gegensinnigen Wicklungsan-
ordnung wird ein Punkt an das eine Ende
und der andere Punkt an das andere Ende
gezeichnet (ein Punkt unten, ein Punkt
oben). 

 

 

 

 
Die Vorzeichen der beiden gegeninduzierten Spannungen uM1 und uM2 richten sich nur nach 
den Richtungen der Ströme, nachdem die Spulenenden mit Punkten gekennzeichnet sind: 

Fließen beide Spulenströme in die beiden je mit einem Punkt gekennzeichneten Enden der 
Spulen oder in die beiden nicht gekennzeichneten Enden der Spulen, dann haben die beiden 
gegeninduzierten Spannungen in den Maschengleichungen das gleiche Vorzeichen wie die 
selbstinduzierten Spannungen. 

Fließt der eine Spulenstrom in ein gekennzeichnetes Ende der Spule und der andere Spu-
lenstrom in ein nicht gekennzeichnetes Ende der Spule, dann haben die beiden gegenindu-
zierten Spannungen in den Maschengleichungen umgekehrte Vorzeichen wie die selbstin-
duzierten Spannungen. 

 
Fließen durch beide Spulen gleichzeitig zeitlich veränderliche Ströme, dann entstehen in bei-
den Spulen jeweils drei Spannungen: 

 infolge ohmscher 
Verluste  

infolge der 
Selbstinduktion  

infolge der 
Gegeninduktion  

uR1 = R1 · i1 uL1 = 
td

dw
td

d 1
1

1  uM1 = 
td

dw
td

d 21
1

21  Spule 1 

 
uL1 = 

td
idL 1

1  uM1 = 
td
idM 2

21  

uR2 = R2 · i2 uL2 = 
td

dw
td

d 2
2

2  uM2 = 
td

dw
td

d 12
2

12  Spule 2 

 
uL2 = 

td
idL 2

2  uM2 = 
td
idM 1

12  
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Gleichsinnige Kopplung 
Bei gleichsinniger Kopplung zweier Spulen, d. h. mit gleichsinnigem Wickelsinn und mit glei-
chen Einströmungen, wirken die Spannungen uR1, uL1 und uM1 und uR2, uL2 und uM2 in glei-
cher Richtung wie die entsprechenden Ströme i1 und i2. Die Maschengleichungen gelten für 
Augenblickswerte der Spannungen: 

u1 = uR1 + uL1 + uM1 
 
u2 = uR2 + uL2 + uM2 

oder 

u1 = 
td

idM
td
idLiR 2

21
1

111  

 

u2 = 
td
idM

td
idLiR 1

12
2

222   

Ersatzschaltung 

 

Gegensinnige Kopplung 
Bei gegensinniger Kopplung zweier Spulen, d. h. mit gegensinnigem Wickelsinn und mit glei-
chen Einströmungen, wirken die Spannungen uR1 und uL1 und uR2 und uL2 in gleicher Rich-
tung wie die entsprechenden Ströme i1 und i2 und die Spannungen uM1 und uM2 in entgegen-
gesetzter Richtung wie die Strömung i1 und i2: 
 

u1 = uR1 + uL1 – uM1 
 
u2 = uR2 + uL2 – uM2 

oder 

u1 = 
td

idM
td
idLiR 2

21
1

111  

 

u2 = 
td
idM

td
idLiR 1

12
2

222  
 

 

Ersatzschaltung 
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Zusammenschalten gekoppelter Spulen 
1. Reihenschaltung von gekoppelten verlustlosen Spulen mit M12 = M21 = M: 
Reihenschaltung: 
 

Gegen-Reihenschaltung 

  
 

Lr1 L1 L2 2M  

 

Lr2 L1 L2 2M  

werden die ohmschen Verluste der Spulen berücksichtigt:      R = R1 + R2 
 

Beispiel: 
Zusammenschalten gekoppelter Spulen im Variometer 

Mit Hilfe eines Variometers können Induktivitäten zwischen einem Minimalwert und einem 
Maximalwert variiert werden. Die Anordnung besteht aus zwei gleichen Spulen mit gleichen 
Induktivitäten, die in Reihe geschaltet sind. Die eine Spule ist feststehend (obere Spule) und 
die andere Spule ist von 0º bis 180º drehbar (untere Spule).  

Lr1 = Lmax = L1 + L2 + 2 M 

Lr2 = Lmin = L1 + L2 – 2 M 

 
 

Reihenschaltung von n Spulen ohne Kopplung 

 

Lr L1 L2 ... Ln Li
i 1

n

 

Rr R1 R2 ... Rn Ri
i 1

n
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2. Parallelschaltung gekoppelter verlustloser Spulen mit M12 = M21 = M: 
 

 

Lp1 = 
M2LL

MLL

21

221  Lp2 = 
M2LL

MLL

21

221  

Parallelschaltung von n verlustlosen Spulen 
ohne Kopplung: 

1
Lp

1
L1

1
L2

... 1
Ln

1
Lii 1

n

 

 
 
 

Netzberechnung für Netze mit gekoppelten Spulen 
Knotenpunktsatz für Ströme: Maschensatz für Spannungen:  

    
ii (t) 0

i  1

l

  
  

ui (t) 0
i  1

l

 

 

Beispiel: 
Netzberechnung mit Hilfe der Kirchoffschen 
Sätze  

 
k1: 

i1 = i2 + i3 
 

Masche I: 
 

u q R1 i1 L1
d i1
d t

M 31
d i3
d t

1
C

i3 d t L 3
d i3
d t

M13
d i1
d t

M 23
d i2
d t

 

Masche II: 
 

0 L 2
di2
d t

M 32
d i3
d t

R2 i2 L 3
d i3
d t

M13
d i1
d t

M 23
di2
d t

1
C

i3 d t  
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Transformator mit gleichsinnigem Wickelsinn und ohmscher Belastung 

 
 

Ersatzschaltung: 

u1 = R1 · i1 + L1
di1
d t

M21
di2
d t

 

u2= – R2 · i2 – L2
di2
d t

M12
di1
d t

 

u2 = R · i2 

  

 

 

Transformator mit gegensinnigem Wickelsinn und ohmscher Belastung 
 

 
 

Ersatzschaltung: 
 

u1 = R1 · i1 + L1 
td
idM

td
id 2

21
1  

u2 = – R2 · i2 – L2 d i2
d t

M12
di1
d t

 

u2 = R · i2 
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3.4.7.3  Haupt- und Streuinduktivitäten, Kopplungs- und Streufaktoren              
 (Band 1, S.337-342) 

1 = 12 + 1s 

primärer Fluss 1 
primärer Hauptfluss 12 = k1 · 1 
primärer Streufluss 1s = 1 · 1 

Koppelfaktor k1 mit 0 k1  1 
Streufaktor 1 mit 0 1  1 
und   k1 + 1 = 1 

 

L1 = L1h + L1s = M12 
2

1
w
w + L1s 

primäre Induktivität L1 
primären Hauptinduktivität  

L1h 
1

112
i

w  = M12 
2

1
w
w  

primäre Streuinduktivität 

L1s 
1

1s1
i

w
 = 1 · L1 

2 = 21 + 2s 

sekundärer Fluss 2 
sekundärer Hauptfluss 21 = k2 · 2 
sekundäre Streufluss 2s = 2 · 2 

Koppelfaktor k2 mit 0 k2  1 
Streufaktor 2 mit 0 2  1 
und   k2 + 2 = 1 

 

L2 = L2h + L2s = M21 
1

2
w
w + L2s 

sekundäre Induktivität L2 
sekundären Hauptinduktivität 

L2h 
2

221
i

w  = M21 
1

2
w
w  

sekundäre Streuinduktivität 

L2s 
2

2s2
i

w
 = 2 · L2 

 
Kopplungsfaktoren oder Kopplungsgrad 
 

k = k1 k2
M12 M21

L1 L2
 0  k  1 

 

bei konstanter Permeabilität  ist M12 = M21 = M 

k = 
21

21
LL

Mkk  

 

bei fester Kopplung mit k1 = 1, k2 = 1 und k = 1 

M = 21 LL  

 

Streufaktoren 

 = 1 + 2 – 1 · 2 mit  k2 = 1 –  
 

Da das Produkt 1 · 2 gegenüber 1 und 2 sehr klein ist, kann es für praktische Fälle ver-
nachlässigt werden:   1 + 2. 
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3.4.8  Magnetische Energie und magnetische Kräfte   (Band 1, S.343-362) 
Magnetische Energie 

wm = L i2

2
i

2

2

2 L
 

 bei konstanter Permeabilität , 
d. h.   L unabhängig von i 

Magnetische Energie im magnetischen Feld induktiv gekoppelter Stromkreise 

wm = L1 i1
2

2
M i1 i2

L2 i2
2

2
 

 bei konstanter Permeabilität , 

M12 = M21 = M 
 

Magnetische Energie und Energiedichte im magnetischen Feld ferromagnetischer Stoffe 

homogene Felder:  
Linearer Verlauf B = f (H): 

wm
' Wm

V
H2

2
B H

2
B2

2
  bei konstanter Permeabilität  

Nichtlinearer Verlauf: Nichtlinearer, nichteindeutiger Verlauf 
von B = f(H) von B = f(H): Hysteresekurve  

B
' m
m

0

W
w H dB

V
 und  Wm = 

B

0

V H dB      mit     V = l · A 

inhomogene Felder:  

dV
dWw m'm  und  '

m m
V

W w dV  
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Kräfte auf Trennflächen, Anziehungskraft von Magneten 
 
 

F = – B2 A
2 0

 

F = 
dx
dL

2
i2

 

Die Kraft im Magnetkreis ist so gerichtet, 
dass bei gegebenem Strom i der magnetische 
Fluss  und die Induktivität L möglichst groß 
werden. 

 

 

 

Kraft auf stromdurchflossenen Leiter im Magnetfeld 

F Q v B  

mit 

v l 
t

 und Q = I · t 

F I Bl  

mit 
F I B sin ,Bl l  

 

(Der Längenvektor l  liegt in Richtung der Geschwindigkeit v  und des Stroms I.) 

Kräfte zwischen parallelen stromdurchflossenen Leitern 
 

F = I2 · l · B12 = I1 · l · B21 

mit 

B12
0 I1

2 a
 und B21

0 I2
2 a

 

F = I2 · l · 0 I1
2 a

 = I1 · l · 0 I2
2 a
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4  Wechselstromtechnik 

4.1  Wechselgrößen und sinusförmige Wechselgrößen  (Band 2, S.1-4) 

 
Periodische 
Wechselgröße 

 

Dabei bedeuten 
T: Periodendauer oder kurz Periode des Wechselvorgangs, das ist die kürzeste 

Zeit zwischen zwei Wiederholungen des Vorgangs mit [T] = 1s 
f = 1/T: Frequenz des Wechselvorgangs, das ist die Anzahl der Wiederholungen pro 

Zeit, also der Kehrwert der Periodendauer mit [f] = 1s–1 = 1Hz (Hertz) 
t0: Nullzeit, das ist die Zeit vom Nullpunkt des Koordinatensystems zum 

ersten Nulldurchgang der Wechselgröße 
v̂  = Vm: Maximal- oder Größtwert, das ist der höchste Wert, den die Wechselgröße 

v(t) annehmen kann. 
Periodische Wechselgrößen genügen also der Bedingung: 

v(t) = v(t + k · T)         mit      k = 0, ± 1, ± 2, … 

In der Elektrotechnik wird der Begriff „Wechselgröße“ enger gefasst als in der Physik, 
indem unter einer Wechselgröße eine physikalische Größe verstanden wird, die periodisch 
ist und deren arithmetischer Mittelwert Null ist: 

T

0

1 v(t) dt 0
T

 

Eindeutiger jedoch ist es, wenn die Wechselgröße näher bezeichnet wird, z.B. sinusförmi-
ge Wechselgröße oder nichtsinusförmige periodische Wechselgröße: 

 Sinusförmige und nichtsinusförmige periodische Wechselgröße 

© Springer Fachmedien Wiesbaden 2015 
W. Weißgerber, Elektrotechnik für Ingenieure - Formelsammlung, DOI 10.1007/978-3-658-09090-6_4 
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Grundsätzlich wird eine sinusförmige Wechselgröße 

v (t) = v̂  · sin ( t + v) 
durch drei Größen bestimmt: 
 durch den Maximalwert oder die Amplitude v̂ , 
 die Kreisfrequenz  = 2 f = 2 /T 
 und den Anfangsphasenwinkel v, der von dem willkürlichen Beginn der 
 Zeitzählung bei t = 0 abhängt. 

Eine sinusförmige Wechselgröße lässt sich sowohl in Abhängigkeit von der Zeit t als auch 
vom Winkel  = t darstellen: 

 

Bei der Darstellung der Sinusgröße in Abhängigkeit von t lautet die Bedingungsglei-
chung für die Periodizität entsprechend: 

v( t) = v( t + k · 2 )    mit   k = 0, ± 1, ± 2, … 

Mittelwerte sinusförmiger Wechselgrößen 
Arithmetischer Mittelwert während einer Halbperiode: 

Va =
T/ 2

0 0

2 2 2 ˆ ˆv(t) dt v( t) d( t) v 0,637 v
T 2

 

Gleichrichtwert: 
T 2

a
0 0 0

1 1 1v | v(t) | dt | v( t) | d( t) 2 v( t) d( t) V
T 2 2

 

Quadratischer Mittelwert oder Effektivwert: 

V =
T 2

2 2

0 0

ˆ1 1 v ˆ[v(t) dt [v( t)] d( t) 0,707 v
T 2 2

 

Für sinusförmige Wechselgrößen haben Form- und Scheitelfaktor folgende Werte: 

Formfaktor =
a

v̂
V 2 1,112V 2 2v̂

         Scheitelfaktor =
v̂ 2 1,414
V
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4.2  Berechnung von sinusförmigen Wechselgrößen mit Hilfe 
der komplexen Rechnung  (Band 2, S.5-27) 

Transformation ins Komplexe 
Jede sinusförmige Wechselgröße v(t) wird in eine entsprechende komplexe Zeitfunktion 
v(t) eineindeutig abgebildet: 
 
Zeitbereich (Originalbereich) komplexer Bereich (Bildbereich) 

v(t) = v̂ · sin ( t + v)  
mit v̂ : Amplitude 
und v: Anfangsphasenwinkel 

v(t) = v̂ · cos ( t + v) 
 + j · v̂ · sin ( t + v) 
v(t) = v̂ · ej( t + v) 
v(t) = v̂ · ej v · ej t 

v(t) = vj j t2 V e e  

v(t) = j t j tv̂ e 2 V e  

mit vjˆ ˆv v e  
 als komplexe Amplitude 
 ( v̂ : Amplitude, 

v: Anfangsphasenwinkel) 
und V = V · ej v als komplexer 
 Effektivwert 
 (V: Effektivwert, 

v : Anfangsphasenwinkel) 
 
 

 

Transformation einer sinusförmigen Zeitfunktion in einen rotierenden Zeiger 
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Die Differentiation der komplexen Zeitfunktion bedeutet eine Multiplikation mit j , die 
Integration eine Division durch j : 

dv(t) j v(t)
dt

 
2

2
2

d v(t) v(t)
dt

 1v(t) dt v(t)
j

 

Verfahren 2     (Band 2, S.8-12) 
Transformation der Differentialgleichung ins Komplexe 
Dadurch lassen sich die mit Hilfe des Maschensatzes und der Knotenpunktregel aufge-
stellten Differentialgleichungen in algebraische Gleichungen überführen. 
 
Lösung der algebraischen Gleichung 
Die algebraischen Gleichungen können nun einfach nach der transformierten gesuchten 
Größe aufgelöst werden. 
 
Rücktransformation in den Zeitbereich 
1. Der komplexe Nenner in algebraischer Form wird in die Exponentialform umgeformt: 

x + jy = r · ej  mit 2 2r x y  

 und  = yarc tan
x

 

2. Der ej -Anteil des Nenners wird mit e–j  in den Zähler gebracht und mit dem e-Anteil 
der abgebildeten Sinusgröße im Zähler zusammengefasst. 

3. Der gesamte e-Anteil des Zählers wird nach der Eulerschen Formel 
ej  = cos  + j · sin  

in die trigonometrische Form überführt. 
4. Die Rücktransformation der komplexen Zeitfunktion in die gesuchte sinusförmige 

Zeitfunktion kann nun vorgenommen werden, indem nur der Imaginärteil berücksich-
tigt wird. 

 v(t) = Im{v(t)} 
Beispiel:  

u
d i(t)û sin ( t ) R i(t) L

dt
 

uj( t )û e R i (t) j L i (t)  
 

u uj( t ) j( t )

2 2 j arc tan ( L/R)

ˆ ˆu e u ei (t)
R j L R ( L) e

 

uj( t arc tan L/R)
2 2

ûi (t) e
R ( L)

 

u2 2

û Li(t) Im{i (t)} sin t arc tan
RR ( L)

 



88 4  Wechselstromtechnik 

Überlagerung zweier sinusförmiger Wechselgrößen bzw. zweier Zeiger 
im Zeitbereich:  

r 1 2 r vr 1 v1 2 v2ˆ ˆ ˆv v v v sin ( t ) v sin ( t ) v sin ( t )  
im komplexen Bereich: 

j ( t ) j ( t ) j ( t )vr v1 v2r 1 2 r 1 2ˆ ˆ ˆ ˆ ˆ ˆv v v v e v e v e  
ergibt mit   v = v2 – v1 

2 2r 1 2 1 2 vˆ ˆ ˆ ˆ ˆv v v 2 v v cos       1 v1 2 v2
vr

1 v1 2 v2

ˆ ˆv sin v sinarc tan
ˆ ˆv cos v cos

 

Vereinfachte Zeigerbilder      Verfahren 4     (Band 2, S.17-18) 
In der Praxis werden die abgebildeten Sinusgrößen grundsätzlich zum Zeitpunkt 
t = 0, also als „ruhende Zeiger“ gezeichnet. 
Weil Effektivwerte in weiteren Berechnungen, z.B. Leistungsberechnungen, benötigt 
werden, berücksichtigt man in Zeigerbildern nicht die komplexen Amplituden, sondern 
die komplexen Effektivwerte. Das bedeutet gegenüber den komplexen Amplituden eine 
Maßstabsänderung mit 2 . 
Die reellen und imaginären Achsen werden bei vereinfachten Zeigerbildern weggelassen, 
weil für die Beurteilung der sinusförmigen Wechselgrößen einer Schaltung nur die Effek-
tivwerte und die gegenseitige Phasenverschiebung wichtig sind. Die Anfangsphasenwin-
kel hängen von der willkürlichen Festlegung des Zeitpunktes t = 0 ab, d. h. auch die Lage 
des Achsenkreuzes der komplexen Ebene zu den Zeigern bedeutet die Festlegung des 
gleichen Zeitpunktes t = 0. 
Ein Zeigerbild wird grundsätzlich von innen nach außen entwickelt, so dass immer nur die 
Zeiger von einem oder zwei Schaltelementen, also von einfachen Zweipolen, gezeichnet 
werden. Sind ein Strom oder eine Spannung in einem Zweig innerhalb der Schaltung nicht 
gegeben, sondern die Gesamtspannung oder der Gesamtstrom, dann wird trotzdem von 
diesen Größen ausgegangen, indem ein Zahlenwert vorgegeben wird; nachträglich lässt 
sich dieser dann proportional korrigieren. Die weiteren Zeiger ergeben sich dann durch 
Multiplikation oder Division mit einfachen Operatoren. Resultierende Zeiger lassen sich 
dann durch geometrische Addition ermitteln, so dass sich schließlich die Gesamtspannung 
und der Gesamtstrom der Schaltung ergeben. 
Im vereinfachten Zeigerbild können also mit einfachen geometrischen Beziehungen die 
Effektivwerte und Phasenverschiebungen ermittelt und ablesen werden, so dass sie bei der 
Behandlung der verschiedensten Wechselstromschaltungen unverzichtbar sind. 
zum Beispiel: Reihenschaltung eines ohmschen Widerstandes und einer Induktivität 

 
Beispiel für den Übergang von Sinusgrößen zum Zeigerbild 
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Komplexe Operatoren 
 ohmscher 

Widerstand 
induktiver 
Widerstand 

kapazitiver 
Widerstand 

Zeitbereich 
(Originalbereich) 

 

u = R · i 
 
 
 

i = u G u
R

 

u = diL
dt

 

u = diM
dt

 

i = 1 u dt
L

 

i = 1 u dt
M

 

u = 1 i dt
C

 

 
 

i = duC
dt

 

komplexe 
Zeitfunktionen 

 

u = R · i 
 

i = u G u
R

 

 

u = j L · i 
u = j M · i 

i = u
j L

 

i = u
j M

 

u = i
j C

 

 

i = j C · u 

komplexe 
Amplituden 

 

ˆû R i  

 
 

ûˆ ˆi G u
R

 

 

ˆû j L i  

ˆû j M i  

ûî
j L

 

ûî
j M

 

îû
j C

 

 
ˆ ˆi j C u  

komplexer 
Bereich 

(Bildbereich) 

komplexe 
Effektivwerte 

 

U = R · I 
 

I = U G U
R

 

 

U = j L · I 
U = j M · I 

I = U
j L

 

I = U
j M

 

U = I
j C

 

 

I = j C · U 

Für ohmsche Widerstände sind die Operatoren reell: 
Widerstand R Leitwert G 

für induktive Widerstände sind die Operatoren positiv und negativ imaginär: 

Widerstand j L bzw. j M Leitwert 1 1j
j L L

 bzw. 1 1j
j M M

 

für kapazitive Widerstände sind die Operatoren negativ und positiv imaginär: 

Widerstand 1 1j
j C C

 Leitwert j C 
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Maschensatz und Knotenpunktsatz der Wechselstromtechnik 
Die Summe der Augenblickswerte der 
Spannungen (Quellspannungen und 
Spannungsabfälle an den Wechselstrom-
widerständen) in einer Masche ist Null:  

In einem Knotenpunkt eines verzweigten 
Wechselstromkreises ist die Summe aller 
vorzeichenbehafteten Augenblickswerte 
der Ströme gleich Null: 

i
i 1

u (t) 0
l

 i
i 1

i (t) 0
l

 

Maschen- und Knotenpunktgleichungen in komplexen Effektivwerten: 

i
i 1

U 0
l

 i
i 1

I 0
l

 

Symbolische Methode     Verfahren 3     (Band 2, S.21-22) 
Alle sinusförmigen Zeitfunktionen werden in entsprechende komplexe Effektivwerte 
überführt. 
Ohmsche Widerstände R bleiben im Schaltbild unverändert, da der Operator zwischen den 
komplexen Effektivwerten von Strom und Spannung R ist. 
Induktivitäten L und Gegeninduktivitäten M werden wie induktive Widerstände mit den 
imaginären Operatoren j L und j M behandelt. Die Operatoren ersetzen im Schaltbild L 
und M. 
Kapazitäten C werden als kapazitive Widerstände mit dem Operator 1/j C berücksichtigt, 
weil der komplexe Effektivwert des Stroms durch Multiplikation mit dem Operator 1/j C 
in den komplexen Effektivwert der Spannung überführt wird. Anstelle von C wird im 
Schaltbild 1/j C geschrieben.  
Nachdem die Operatoren im Schaltbild eingetragen sind, werden die Netzberechnungshil-
fen (Spannungs- und Stromteilerregel, S. 6 und 8 bzw. S. 96) und die Netzberechnungs-
verfahren im Abschnitt 2.3, S. 16-22 angewendet, wodurch sich die algebraischen Glei-
chungen in komplexen Effektivwerten ergeben, die dann gelöst werden. 
Die Lösungen in komplexen Effektivwerten müssen in Lösungen in komplexen Zeitfunk-
tionen überführt werden, indem sie mit 2 · ej t multipliziert werden. Die Rücktransfor-
mation der komplexen Zeitfunktion in die sinusförmige Zeitfunktion ist bereits beschrie-
ben worden. 

zum Beispiel: Reihenschaltung eines ohmschen Widerstandes und einer Induktivität 

 
Beispiel für den Übergang einer Wechselstromschaltung in eine 
Schaltung mit komplexen Effektivwerten und komplexen Operatoren 

U = UR + UL = R · I + j L · I I = U
R j L

 i(t) =
uj( t )ˆu u e

R j L R j L
 



4.3  Wechselstromwiderstände und Wechselstromleitwerte 91 

4.3  Wechselstromwiderstände und Wechselstromleitwerte 
         (Band 2, S.28-63) 

Ohmscher Widerstand  

 

iˆi (t) i sin ( t )  

u(t) = R · i(t) = R · î · sin ( t + i) 

u(t) = û · sin ( t + u) 

u R i U R I  

  R = û U
ˆ Ii

          = u – i = 0 
             

Zeigerbild 

Induktiver Widerstand 

 

i

i

i

u

ˆi (t) i sin ( t )
di(t) ˆu(t) L L i cos ( t )

dt

ˆu(t) L i sin t
2

ˆu(t) u sin ( t )

 

u j L i U j L I  

L
û UX L ˆ Ii

      u i 2
 

       Zeigerbild 

Kapazitiver Widerstand 

 

u

u

u

i

ˆu(t) u sin ( t )
du(t) ˆi (t) C C u cos ( t )

dt

ˆi (t) C u sin t
2

ˆi (t) i sin ( t )

 

i j C u I j C U  

 – C
ˆ1 u UX ˆC Ii

     u i 2
         Zeigerbild 
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Komplexer Widerstand 

Z = j( )u i
ˆu(t) u U U eˆi (t) I Ii

 

Z =  Z · ej  = Z · cos  + j · Z · sin  = R + j · X 
 

Betrag von Z: Phasenverschiebung  
Scheinwiderstand oder Impedanz zwischen Spannung und Strom: 

2 2û UZ Z R Xˆ Ii
 u i arcZ  arc tan X

R
 

Realteil von Z: Imaginärteil von Z: 
Wirkwiderstand oder Resistanz Blindwiderstand oder Reaktanz 
R = Re{Z} = Z · cos   X = Im{Z} = Z · sin  

 
Komplexer Widerstand der Reihenschaltung von Wechselstromwiderständen 
 

 

m mm m m mm C CR L R L
i Ri Li Ci i i

ii 1 i 1 i 1 i 1 i 1 i 1 i 1

1U U U U U R I j L I I
j C

 

mm m CR L
i i r r

i ri 1 i 1 i 1

1 1U R j L I R j L I
j C j C

 

 
m mR L

r i r i
i 1 i 1

R R j L j L  
mC

r ii 1

1 1
j C j C

 

  
Lm

r i
i 1

L L   
Cm

r ii 1

1 1
C C
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U r r
r

1R j L I
C

 

 
r L C r r rU R j X X I R j X I Z I  

mit   Zr = r r r L C r r
r

1R j X R j (X X ) R j L
C

 

und   Xr = XL + XC XL = Lr C
r

1X
C

 

Die ohmschen Anteile eines komplexen Widerstandes Zr finden sich also grundsätzlich im 
Realteil, die induktiven Anteile im positiven Imaginärteil und die kapazitiven Anteile im 
negativen Imaginärteil. 
Der komplexe Effektivwert der Gesamtspannung U teilt sich in drei Teilspannungen auf: 

U = UR + UX = UR + UL + UC = Rr · I + j Lr · I +
r

1
j C

I 

   mit UR = Rr · I auch „Wirkspannung“ Uw  

   und UX = UL + UC = j (XL + XC) · I = jXr · I auch „Blindspannung“ Ub 

Zr = rjrZ e = Zr · cos  + j · Zr · sin U Ucos j sin
I I

 

Zr · I = U = U · cos  + j · U · sin , 

UR = U · cos  UX = U · sin  U = 2 2R XU U  

 

                 Zeigerbilder der Ströme und Spannungen und komplexen Widerstände  
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Komplexer Leitwert 

j( )u i
ˆ1 i (t) i I IY e
ˆZ u(t) u U U

 

jY Y e  Y · cos  – j · Y · sin = G + j · B 

Betrag von Y: Phasenverschiebung  
Scheinleitwert oder Admittanz zwischen Spannung und Strom: 

2 2
ˆ1 i IY Y G B
ˆZ u U

 u i – arc tan B
G

 

Realteil von Y: Imaginärteil von Y: 
Wirkleitwert oder Konduktanz Blindleitwert oder Suszeptanz 

G = Re{Y} = Y · cos   B = Im{Y} = – Y · sin  

Komplexer Leitwert der Parallelschaltung von Wechselstromwiderständen 

 

 
CR Lmm mm

i Ri Ci Li
i 1 i 1 i 1 i 1

I I I I I  

CR Lmm m

i
i ii 1 i 1 i 1

1 1I U j C U U
R j L

 
 

  
CR Lmm m

i p
i i p pi 1 i 1 i 1

1 1 1 1I j C U j C U
R j L R j L

 

mR

p ii 1

1 1
R R

 
mC

p i
i 1

j C j C  
mL

p ii 1

1 1
j L j L

 

   Cp =
mC

i
i 1

C   
Lm

p ii 1

1 1
L L
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p
p p

1 1I j C U
R L

C L p p p
p

1I j B B U G j B U Y U
R

 

mit   p p C L p
p p p p

1 1 1 1Y j B j (B B ) j C
R R R L

 

und   Bp = BC + BL BC = Cp BL =
p

1
L

 Gp =
p

1
R

 

Die ohmschen Anteile eines komplexen Leitwertes pY finden sich also grundsätzlich im 
Realteil, die kapazitiven Anteile im positiven Imaginärteil und die induktiven Anteile im 
negativen Imaginärteil. 
Der komplexe Effektivwert des Gesamtstroms I teilt sich also in drei Teilströme auf: 

R B R C L p
p p

1 1I I I I I I U j C U U
R j L

 

mit       R p
p

1I U G U
R

  auch „Wirkstrom“ Iw 

und       B C L C L pI I I j (B B ) U j B U   auch „Blindstrom“ Ib 

jp p p pY Y e Y cos j Y sin I Icos j sin
U U

 

pY · U = I = I · cos  + j · I · sin(– ) 

 IR = I · cos  IB = I · sin(– ) = – I · sin 2 2R BI I I  

 
Zeigerbilder der Spannungen und Ströme und komplexen Leitwerte von Wechselstromleitwerten 
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Spannungsteilerregel 
Für zwei in Reihe geschaltete Wechselstromwiderstände gilt die Spannungsteilerregel 
analog wie in der Gleichstromtechnik nur im komplexen Bereich: 

Die komplexen Zeitfunktionen oder die komplexen Effektivwerte der Spannungen 
über zwei vom gleichen sinusförmigen Strom durchflossenen Widerstände verhalten 
sich wie die zugehörigen komplexen Widerstände. 

1 1

2 2

U Z
U Z

 

1 1

1 2

U Z
U Z Z

          2 2

1 2

U Z
U Z Z

 

 
 

 

Stromteilerregel 

Für zwei parallel geschaltete Wechselstromwiderstände gilt die Stromteilerregel analog 
wie in der Gleichstromtechnik nur im komplexen Bereich: 

Die komplexen Zeitfunktionen oder die komplexen Effektivwerte der Ströme durch 
zwei parallel geschaltete Wechselstromwiderstände, an denen die gleiche sinusför-
mige Spannung anliegt, verhalten sich wie die zugehörigen komplexen Leitwerte 
und sind umgekehrt proportional zu den komplexen Widerständen. 
Die komplexe Zeitfunktion oder der komplexe Effektivwert des Teilstroms verhält 
sich zur komplexen Zeitfunktion oder zum komplexen Effektivwert des Gesamt-
stroms wie der komplexe Widerstand, der nicht vom Teilstrom durchflossen ist, zum 
komplexen Ringwiderstand. 

1 1 2

2 2 1

I Y Z
I Y Z

 

 

1 2

1 2

I Z
I Z Z

             2 1

1 2

I Z
I Z Z
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Dreieck-Stcrn-Transformation: 

 

2 3'1
1 2 3

Z ZZ
Z Z Z

 3 1'2
1 2 3

Z ZZ
Z Z Z

 1 2'3
1 2 3

Z ZZ
Z Z Z

 

Merkregel: 

Sternwiderstand = Produkt der beiden Dreieckwiderstände
Summe aller Dreieckwiderstände

 

 
Stern-Dreieck-Transformation: 

 
 

' ' ' ' ' ' ' '2 3 1 2 2 3 1 3'1 2 3 ' '1 1

Z Z Z Z Z Z Z ZZ Z Z
Z Z

'  

' ' ' ' ' ' ' '1 3 1 2 2 3 1 3' '2 1 3 ' '2 2

Z Z Z Z Z Z Z ZZ Z Z
Z Z

 

' ' ' ' ' ' ' '1 2 1 2 2 3 1 3' '3 1 2 ' '3 3

Z Z Z Z Z Z Z ZZ Z Z
Z Z
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Parallel geschaltete Reihenschaltungen – äquivalente Schaltungen 

 

Cr r
Cp p

2 2 CpCr Cr2 2 2 2r r

1
R 1CY j j C

1 1 RR R
C C

 

mit    

2Cr 2 2r
Cp

Cr

1R
CR

R
 und    

2 r
p

2Cr 2 2r

1
CC

1R
C

 

Lr r
Lp 2 2 2 2 2 2 Lp pLr r Lr r

R L 1 1Y j j
R LR L R L

 

mit    RLp =
2 2 2Lr r

Lr

R L
R

 und   Lp =
2 2 2Lr r

2 r

R L
L

 

p Cp Lp p
Cp Lp p

1 1 1Y Y Y j C
R R L

 

Cr Lr rr
p 2 2 2 2 2 22 2Lr r Lr rCr Cr2 2 2 2r r

1
R R LCY j

1 1R L R LR R
C C
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In Reihe geschaltete Parallelschaltungen – äquivalente Schaltungen 
 

 
 

Lp p
Lr Lr r

2 2 2 2 2 2Lp p Lp p

1 1
R L

Z j R j L
1 1 1 1

R L R L

 

mit    Lp
Lr

2 2 2Lp p

1
R

R
1 1

R L

 und      
2 p

r

2 2 2Lp p

1
L

L
1 1

R L

 

Cp p
Cr Cr

2 2 2 2 rp p2 2Cp Cp

1
R C 1Z j R j

1 1 CC C
R R

 

mit     Cp
Cr

2 2p2Cp

1
R

R
1 C

R

 und      

2 2p2Cp
r 2 p

1 C
R

C
C

 

r Lr Cr Lr Cr r
r

1Z Z Z (R R ) j L
C

 

Lp Cp p p
r

2 2 2 2p p2 2 2 2 2 2 2 2Lp p Cp Lp p Cp

1 1 1
R R L C

Z j
1 1 1 1 1 1C C

R L R R L R
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Komplexer Leitwert einer Reihenschaltung von Wechselstromwiderständen:  

r r
p p p 2 2 2 2r r r r r

1 R XY G jB j
Z R X R X

 

mit   r r 2p r r2 2 2r r r

R RG R Y
R X Z

   und    r r 2p r r2 2 2r r r

X XB X Y
R X Z

 

Beispiel: 

 

 

p p
p p

1 1Y j C
R L

 

2
2

r r
r

p
r

1R L
C

R
R

       
2

r
p 2

2
r r

r

1
CC

1R L
C

         

2
2

r r
r

p 2
r

1R L
C

L
L

 

Komplexer Widerstand einer Parallelschaltung von Wechselstromwiderständen:  

p p
r r r 2 2 2 2p p p p p

G B1Z R jX j
Y G B G B

 

mit   p p 2r p p2 2 2p p p

G G
R G Z

G B Y
     und   p p 2r p p2 2 2p p p

B B
X B Z

G B Y
 

Beispiel: 
 

 

r r r
r

1Z R j L
C

 

p
r 2

p2
pp

1
R

R
1 1C

LR

       
2

p
r 2

p2
pp

1
L

L
1 1C

LR

    

2

p2
pp

r 2
p

1 1C
LR

C
C
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4.4  Praktische Berechnung von Wechselstromnetzen                
   (Band 2, S.23-27 und S.64-93) 

 
Das Verfahren 1, die Lösung der Differentialgleichung im Zeitbereich, ist wohl prinzipiell 
einfach, aber rechnerisch zu aufwendig und findet deshalb in der Praxis keine Anwen-
dung. 
Die Lösung der Differentialgleichung mit Hilfe von komplexen Zeitfunktionen, also das 
Verfahren 2, wird dann bevorzugt, wenn die Differentialgleichung aus anderen Gründen 
aufgestellt werden muss. 
Die meist gewählten Verfahren für die Behandlung von Wechselstromnetzen sind das 
Verfahren 3 „die Lösungsmethode mit Widerstandsoperatoren“ und das Verfahren 4 „die 
grafische Lösung mit Hilfe von Zeigerbildern“. Beide Verfahren gehen von der Schaltung 
mit komplexen Operatoren und komplexen Effektivwerten aus. Die Rechenhilfen (Span-
nungsteilerregel und Stromteilerregel, siehe Abschnitt 4.3, S. 96) und die fünf Netzbe-
rechnungsverfahren der Gleichstromtechnik (siehe Abschnitt 2.3, S. 16-22) führen ohne 
Differentialgleichungen zu Lösungen im Bildbereich, die dann auf die beschriebene Wei-
se rücktransformiert werden können (siehe Abschnitt 4.2, S. 87). Die Zeigerdarstellung ist 
die grafische Beschreibung des Rechenverfahrens.                    
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4.5 Die Reihenschaltung und Parallelschaltung von ohm-
schen Widerständen, Induktivitäten und Kapazitäten 

4.5.1 Die Reihenschaltung von Wechselstromwiderständen – 
die Reihen- oder Spannungsresonanz   (Band 2, S.94-106) 

 

  
Reihenschwingkreis mit 

uˆu u sin ( t )  
Schaltbild des 
Reihenschwingkreises im Bildbereich 

 

rjr L C r r r r
r r

r

U U U U UI
R j (X X ) R j X Z Z e1R j L

C

 

mit 
2

2 2 2 2 2r r r r r L C r r
r

1Z Z R X R (X X ) R L
C

 

und r =
r

r L C r
r

r r r

1L
X X X Carc Z arc tan arc tan arc tan
R R R

 

 
u

r r r

j( t )

2
r r 2 j arc tan ( L 1/ C )/ Rr rr

r

ˆu u ei
1 1R j L R L eC C

 

r
r

u2 r
2r r

r

1L
û Ci sin t arc tan

R1R L
C
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Reihenresonanz, Spannungsresonanz 

Zr = Zr = Rr 

mit r L C r
r

1X X X L 0
C

 

 Resonanzbedingung:  Resonanzkreisfrequenz:  Resonanzfrequenz: 

r
r

1L
C

 0 =
r r

1
L C

 0
r r

1f
2 L C

 

 

Zeigerbild des Reihenschwingkreises bei Xr = 0 
 

Induktiver und kapazitiver Widerstand bei Resonanz - Kennwiderstand 

r
L C kr

r

LX X X
C

   mit     kr[X ] 1  

Frequenzabhängigkeit der Blindwiderstände 

mit  = x · 0    und     0  x   
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relative Verstimmung vr 
 

r kr kr r
1X X x X
x

 mit    vr  = 0 0

0 0

1 f fx
x f f

 

 
1

0 r 2
2

0 r 3
3

0 r 4
4

0 r 5

z.B. 2 1 1,50

3 2 2,67

4 3 3,75

5 4 4,80

 

1 1
0 r2 2

1 2
0 r3 3

31
0 r4 4

1 4
0 r5 5

z.B. 1 1,50

2 2,67

3 3,75

4 4,80

 

 
normierte Verstimmung rV  

r r r r kr
r r r r

r r r r

Z R j X X X1 j 1 j 1 j Q 1 j V
R R R R

 

mit  

r

rkr
r

r r

L
CXQ

R R
 

als Kreisgüte, Gütefaktor oder 
Resonanzschärfe des Kreises 

und  0
r r r r r

0

1 f fV Q Q x Q
x f f

 als normierte   
Verstimmung 

 
Bandbreite 
 Die Bandbreite eines Reihen-Resonanzkreises ist gleich der Differenz der Grenzfre-

quenzen fg2 und fg1: 

f = fg2 – fg1 

mit 
Vr2 = Qr · vg2 = + 1 
Vr1 = Qr · vg1 = – 1 

und 
20 g1 g2f f f  

Die Kreisgüte Qr und die 
Bandbreite f sind also 
umgekehrt proportional: 

 

und 

r1 r2

r r

Z Z
2

R R
 

Qr = 0 0

rg

1 f
f
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Frequenzabhängigkeit des Stroms – Strom-Resonanzkurven 

I =
2 2 2r r r2 2r kr

U U

R 1 Q1R X x
x

 

2 2 2 2r r r r2r

I 1 1 1
U / R 1 Q 1 V11 Q x

x

 

Der Strom hat sein Maximum bei Resonanz, also bei x = 1 und beträgt Imax =
r

U
R

. 

 
 

Bei 45°-Verstimmung ist Vr =  1 und 

r

I 1 0,707
U / R 2

 

Die Bandbreite f ist mit   = 2  · f 

g2 g1
g2 g1

0 0
x x x  

und die Kreisgüte 

0 0
r

f 1Q
f x
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Frequenzabhängigkeit der Spannungen 

 UL =
2 2r22 rr

x U x U
11 1x QxQ

 

 UC =
2 2r22 rr

U U
11 1 xx x QxQ

 

Die Maxima der induktiven und der kapazitiven Spannung liegen bei 

 LmaxU
L

0
2r

1x 1
11

2Q

      und CmaxU
C 20 r

1x 1 1
2Q

 

und sind gleich: 

L max C max r

22 2 rr r

U U 1 Q
U U 11 1 11 4QQ 4Q

 

Frequenzabhängigkeit der Phasenverschiebung 

r r
1arc tan Q x
x

 

Beispiel: Resonanzkurven I(x), UL(x), UC(x) und r(x) bei der Güte Qr =2: (linearer Maßstab) 
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4.5.2 Die Parallelschaltung von Wechselstromwiderständen – 

die Parallel- oder Stromresonanz   (Band 2, S.107-120) 

 

  
Parallelschwingkreis  
mit  i

ˆi i sin( t )  
Schaltbild des Parallelschwingkreises 
im Bildbereich 

 

  
pjp C L p p p p

p p
p

I I I I IU
G j (B B ) G j B Y Y e1G j C

L

 

mit 
2

2 2 2 2 2p p p p p C L p p
p

1Y Y G B G (B B ) G C
L

 

und p =
p

p pC L
p

p p p

1C
B LB Barc Y arc tan arc tan arc tan
G G G

 

 

i

p p p

j( t )

2
j arc tan R ( C 1/ L )p

pp p 2 pp

ˆi i eu
1 1 1 1j C C eR L LR

 

u = i p p2 p

p2 pr

î 1sin t arc tan R C
L

1 1C
LR
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Parallelresonanz, Stromresonanz 

p p p
p

1Y Y G
R

 mit p C L p
p

1B B B C 0
L

 

Resonanzbedingung:  Resonanzkreisfrequenz: Resonanzfrequenz: 

p
p

1C
L

 0
p p

1
C L

 0
p p

1f
2 C L

 

 

Zeigerbild des Parallelschwingkreises bei Bp = 0 

 

Kapazitiver und induktiver Leitwert bei Resonanz - Kennleitwert 

p
C L kp

p

C
B B B

L
 mit    [Bkp] = 1 –1 = 1S 

Frequenzabhängigkeit der Blindleitwerte 

mit     = x · 0    und    0  x   
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relative Verstimmung vp 

Bp = kp kp p
1B x B
x

 mit       vp = 0

0 0

1 f fx
x f f

 

1
0 p 2

2
0 p 3

3
0 p 4

4
0 p 5

z.B. 2 1 1,50

3 2 2,67

4 3 3,75

5 4 4,80

 

1 1
0 p2 2

1 2
0 p3 3

31
0 p4 4

1 4
0 p5 5

z.B. 1 1,50

2 2,67

3 3,75

4 4,80

 

 
normierte Verstimmung 

p p p p kp
p p p p

p p p p

Y G j B B B
1 j 1 j 1 j Q 1 j V

G G G G
 

mit  

p

pkp
p

p p

C
LB

Q
G G

 
als Kreisgüte, Gütefaktor oder  
Resonanzschärfe des Kreises 

und 0
p p p p p

0

1 f fV Q Q x Q
x f f

 als normierte Verstimmung 

 
Bandbreite 
 Die Bandbreite eines Parallel-Resonanzkreises ist gleich der Differenz der Grenz-

frequenzen fg2 und fg1: 

f = fg2 – fg1 

mit 

   Vp2 = Qp · vg2 = + 1 
   Vp1 = Qp · vg1 = – 1 

und 

    20 g1 g2f f f  

Je größer die Kreisgüte 
Qp ist, umso kleiner ist 
die Bandbreite f: 

und 

p1 p2

p p

Y Y
2

G G
 

Qp = 0 0

pg

1 f
f
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Frequenzabhängigkeit der Spannung und der Ströme 

U =
2 2 2 2p kp p2 2p kp

I I

G B1G B x
x

 

IC =
2 2p22 pp

x I x I
11 1x QxQ

 

IL =
2 2p22 pp

I I
11 1 xx x QxQ

 

Die Resonanzkurven für U, IC und IL des Parallelschwingkreises entsprechen den Reso-
nanzkurven für I, UL und UC des Reihenschwingkreises. 

Parallelschaltung verlustbehafteter Blindwiderstände 
 

 
 

Cr Lr rr
2 2 2 2 2 22 2Lr r Lr rCr Cr2 2 2 2r r

1
R R LCI j U

1 1R L R LR R
C C

  

 
Parallelresonanz oder Stromresonanz  

Resonanzbedingung:  Resonanzkreisfrequenz: 

r r
2 2 2 2Lr r Cr 2 2r

1
L C

1R L R
C

 

r2Lr
r

0
r2r r Cr
r

LR
1 C

LL C R
C
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Praktischer Parallel-Resonanzkreis 

mit   RCr = 0:  

 

komplexer Leitwert: 

Lr r
p r p2 2 2 2 2 2 Lp pLr r Lr r

R L 1 1Y j C j C
R LR L R L

 

 
Resonanzkreisfrequenz: 

22Lr r Lr
0

r r r rr r

1 R C 1 R1
L L C LL C

 

Güte: 

Qp = kp r
Lp 0 p 2p Lr r

B LR C 1
G R C

 

mit   Gp = 
p Lp

1 1
R R

  und    Bkp = 0 Cp 

komplexer Widerstand: 

Lr r
r

Lr r
r

1(R j L )
j CZ

1R j L
j C

 

2 2Lr r r Lr r
2 2 2 2 2 2r r Lr r r r Lr r

R L (1 L Cr) R CZ j
(1 L C ) ( R C ) (1 L C ) ( R C )
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4.6  Spezielle Schaltungen der Wechselstromtechnik 
4.6.1 Schaltungen für eine Phasenverschiebung von 90° zwischen Strom und 

Spannung   (Band 2, S.123-126) 

Hummelschaltung 

 
 
Zwischen dem Spulenstrom i1 und der anliegenden 
Spannung u besteht die Phasenverschiebung
von 90°, wenn 

2 r1 r2 r1 r2
p

r1 r2

L L R RR
R R

 
 

 

Polekschaltung 

 

Cp = r1 r2
2 r1 r2 r2 r1

R R
(L R L R )

 

 

Brückenschaltung für eine 90°-Phasenverschiebung 

Zwischen dem Spulen-
strom i1 und der anliegen-
den Spannung u wird eine
Phasenverschiebung von 
90° erreicht, wenn folgen-
de Bedingung erfüllt wird: 

 

 

Rr1 + Rr +
22 r r1 3 r r1

2 3

(R R ) (R R ) L L 0
R R
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4.6.2 Schaltung zur automatischen Konstanthaltung des Wechselstroms – 

die Boucherot-Schaltung   (Band 2, S.126-127) 

 

2
3

1 2 3 1 2

Z UI
Z Z Z (Z Z )

 

Soll I3 unabhängig vom komplexen Widerstand Z3 
sein, dann muss  Z3 · (Z1 + Z2)  Null sein, 
 d. h.    Z1 + Z2 = 0: 

R1 + R2
! 0   und   X1 + X2 ! 0 

Realisierung: 

1 2
1Z Z j L 0
C

 

1mit L
C

 

1 2
1Z Z j L 0
C

 

mit  1L
C

 

  

3
CI j U
L

 3
CI j U
L

 

4.6.3  Wechselstrom-Messbrückenschaltungen   (Band 2, S.128-135) 

Grundsätzlicher Aufbau und Abgleichbedingung 

1 3

2 4

Z Z
Z Z

 

oder 

1 3
1 2 3 4

2 4

Z Z und
Z Z

 

Vergleich von Wechselstromwiderständen  
gleicher Art:               verschiedener Art: 

 1 3

2 4

R Z
R Z

                    1 3

2 4

R Z
Z R
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Kapazitäts-Messbrücke: 

1 4 4

2 3 3

R j C C
R j C C

          Cx = 2
3 4

1

RC C
R

 

 

Wechselstrombrücke mit  
verlustbehafteten Kondensatoren: 

1 1 1
3 4 r4 r3

2 2 2 r4 r3

R R R 1 1Z Z R R
R R R j C j C

 

1 2
r3 rx r4 r3 rx r4

2 1

R RR R R C C C
R R

 

 

Maxwell-Wien-Brücke: 

1
3 r3 r3 4 1 4 p2

p2

RZ R j L R j R R C
R

 

1
r3 rx 4 r3 rx 1 4 p2

p2

RR R R L L R R C
R

 

 

Illiovicibrücke: 

2
r1 3 5

4

RR (R R )
R

 

5
r1 2 3

4

RL CR R 1
R

 

 

Andersonbrücke: 

2
r1 3

4

RR R
R

 

5 5
r1 2 3

4 3

R RL CR R 1
R R
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Schering-Messbrücke 

p31
r2 1

r2 4 p3 4

C1 1 RR R
j C j C R C

 

p3 p3
r2 1 r2 4

4 1

C R
R R C C

C R
 

 
 

Tangens des Verlustwinkels: 

r r2 r2 p3 p3tan R C R C  
 
 
 
 
                                                    Zeigerbilder 

 

 
 

Frequenz-Messbrücke nach Wien: 

p41 r3
r3 p4

2 p4 r3 p4 r3

CR R 1j R C
R R C j R C

 

p41 r3
r3 p4

2 p4 r3 p4 r3

CR R 1R C
R R C R C

 

r3 r3 p4 p4

1
R C R C

 

 

 

Wien-Robinson-Brücke: 
R1 = 2 · R2  Cr3 = Cp4 = C  Rr3 = Rp4 = R 

1
R C

 

Der Messbereich der Frequenz-Messbrücken umfasst Frequenzen f von 30Hz bis 100kHz. 
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4.7  Die Leistung im Wechselstromkreis 

4.7.1 Augenblicksleistung, Wirkleistung, Blindleistung, Scheinleistung und 
komplexe Leistung   (Band 2, S.138-160) 

Wechselstromleistung 
  p = u · i   Augenblicksleistung 

P =
T 2

0 0

1 1p(t) dt p( t) d( t)
T 2

 
der arithmetische Mittelwert        
der Augenblicksleistung, 
Wirkleistung 

Leistung im ohmschen    
Widerstand 

p = u · i 

p U I (1 cos 2 t)  

P =
2

2 UU I R I
R

 

Leistung und magnetische 
Energie im induktiven   
Widerstand 

p = u · i = U · I · sin 2 t 
p = L · I2 · sin 2 t 
P = 0 

wm =
2L i

2
 

2
m

L Iw (1 cos 2 t)
2

 

Leistung und elektrische 
Energie im kapazitiven 
Widerstand 

p = u · i = U · I · sin 2 t 
p = C · U2 · sin 2 t 
P = 0 

we =
2C u

2
 

we =
2C U (1 cos 2 t)

2
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Augenblicksleistung eines beliebigen Wechselstromwiderstandes  
Wirkleistung, Blindleistung, Scheinleistung 

Mit u = û · sin t mit  u = 0 und i = î · sin( t – )    mit  i = u –  = –  
p = u · i = U · I · cos  – U · I · cos(2 t – )  
p = P – S · cos (2 t – ) 
p = P · (1 – cos 2 t) – Q · sin 2 t 

Wirkleistung Blindleistung Scheinleistung Leistungsfaktor
P = U · I · cos 
in W

Q = S · sin 
in Var

S = U · I 
in VA

Pcos
S

Beispiel: 
Strom, Spannung und Augenblicksleistung für einen verlustbehafteten induktiven Wechselstrom-
widerstand für die Phasenverschiebung   = /3 bzw. 60° : 

Zerlegung der Augenblicksleistung in einen Wirkanteil und einen Blindanteil 
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Reihenschaltung: Parallelschaltung: 

 
 

 Wirkleistung 

P = I · (U · cos ) = I · UR  P = U · (I · cos ) = U · IR 

P = I2 · Rr  P =
2

2 p
p

UU G
R

 

Blindleistung 

Q = I · (U · sin ) = I · UX Q = U · (I · sin ) = U · (– IB) 

Q = I2 · Xr  Q = – U2 · Bp 

induktive Blindleistung 

Q = I2 · Lr Q = U2 ·
p

1
L

 

kapazitive Blindleistung 

Q = – I2 ·
r

1
C

 Q = – U2 · Cp 

Scheinleistung  
S = U · I = I2 · Zr 

S = I2 2 2r rR X  

S = U · I = U2 · Yp 

S = 2 2 2p pU G B  

induktive Scheinleistung 

S = I2 2 2 2r rR L  S = 2
2 2 2p p

1 1U
R L

 

kapazitive Scheinleistung  

S = I2 2r 2 2r

1R
C

 S = 2 2 2p2p

1U C
R
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Komplexe Leistung  

 

*S U I  

mit   u ij * jU U e und I I e  

u ij( ) jS U I e S e  

mit     S = U · I       und     = u – i 

S S · cos  + j · S · sin  = P + j · Q      Leistungsdreieck 

mit  P = Re{S} = S · cos        und        Q = Im{S) = S · sin   

und    tan  = Q
P

      und       S = | S | = 2 2P Q  

wenn der Strom I gegeben:  wenn die Spannung gegeben: 

2
2 IS Z I

Y
 

2
* 2

*
US Y U
Z

 

Gütefaktor  Verlustfaktor 

g =
Q

tan
P

  d = 1
g

= tan  = P
Q

         mit dem Verlustwinkel    = /2 – |  | 

Reihenschaltung 

g = tan  = r

r

X
R

 

d = tan  = r

r

R
X

 

Parallelschaltung 

g = tan  = p

p

B

G
 

d = tan  = p

p

G

B
 

für Spulen:  

gL = tan L = r

Lr

L
R

 

dL = tan L = Lr

r

R
L

 

gL = tan L = Lp

p

R
L

 

dL = tan L = p

Lp

L
R

 

für Kondensatoren:  

gC = tan C =
Cr r

1
R C

 

dC = tan C = Cr rR C  

gC = tan C = Cp pR C  

dC = tan C =
Cp p

1
R C

 



120 4  Wechselstromtechnik 

4.7.2 Die Messung der Wechselstromleistung   (Band 2, S.161-166) 

Messung der Scheinleistung 
 

Spannungsrichtige Messung  Stromrichtige Messung  
 

Messung der Wirk- und Blindleistung mit elektrodynamischem Leistungsmesser 
 

 
Spannungsrichtige Messschaltung Stromrichtige Messschaltung  

 
 

  
Blindleistungsmessung 
mit der Hummelschaltung 

Blindleistungsmessung 
mit der Polekschaltung 
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Messung der Wirk- und Blindleistung mit der Drei-Voltmeter-Methode 

 

Die Innenwiderstände der Spannungs-
messer müssen so hochohmig sein, dass 
die durch sie fließenden Ströme ver-
nachlässigbar klein gegenüber den 
Strömen durch die Widerstände sind. 
 

 

   P =
2 2 21 2 3

v

U (U U )
2 R

 

   cos  =
2 2 21 2 3

2 3

U (U U )
2 U U

 

   Q 
22 2 22 1 2 323

v 2

U U (U U )U
R 2 U

  

Zeigerbild: 

Messung der Wirk- und Blindleistung mit der Drei-Amperemeter-Methode 
 

 

Die Innenwiderstände der Strommesser müs-
sen so niederohmig sein, dass die an ihnen 
abfallenden Spannungen vernachlässigbar 
klein gegenüber den Spannungen an den 
Widerständen sind. 

 

   P =
2 2 21 2 3

p
I (I I )R

2
 

cos  =
2 2 21 2 3

2 3

I (I I )
2 I I

 

Q =
22 2 21 2 322 p 3

2

I (I I )I R I
2 I

 

Zeigerbild: 
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4.7.3  Verbesserung des Leistungsfaktors – Blindleistungskompensation    
 (Band 2, S.167-174) 

 
 

Reihen-Kompensation Parallel-Kompensation 

  

Zeigerbild der teilweisen  
Reihen-Kompensation 

Zeigerbild der teilweisen 
Parallel-Kompensation 

 

  
Zeigerbild der vollständigen 
Reihen-Kompensation 

Zeigerbild der vollständigen 
Parallel-Kompensation 

 

Für die vollständige Kompensation ist 

Cr = 2Kr

P
U tan

   mit   UKr = UR Cp = 2Kp

P tan
U

   mit   UKp = U 

Die Spannung U bzw. der Strom I werden vermindert auf 

UKr = UR = U · cos  IKp = IR = U/Rp 

Wird bei der Reihenkompensation  UKr = UR auf die Netzspannung U erhöht, dann ver-
größert sich der Strom von  IKr = UR/Rr  auf KrI' = U/Rr. 
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4.7.4  Wirkungsgrad und Anpassung   (Band 2, S.174-183) 

Wirkungsgrad 

N N

ges N V

P P
P P P

 
mit PN: genutzte Wirkleistung 

Pges: zugeführte gesamte Wirkleistung 
 Pv: Wirkleistungsverluste 

 
Wirkungsgrad und komplexe Anpassung im Grundstromkreis 

Grundstromkreis mit Ersatzspannungsquelle: 

a
ia i
a

P 1
RP P 1
R

 

 

Pa = I2 · Ra=
2q a

a a2 2i a i a

U R
f (R , X )

(R R ) (X X )
 

Anpassungsbedingung: 
*a iZ Z  

mit   Ra + j·Xa = Ri – j·Xi    oder    a ij ja iZ e Z e  

  Pa max =
2q

i

U
4 R

 

 

Grundstromkreis mit Ersatzstromquelle: 

a
aa i
i

P 1
RP P 1
R

 

 
 

 

Pa =
2

2 a
a

U U G
R

=
2q a

a a2 2i a i a

I G
f (G , B )

(G G ) (B B )
 

Anpassungsbedingung: 
*iaY Y  

mit  Ga + j·Ba = Gi – j·Bi     bzw.     Ya · ej a = Yi · e–j i 

  Pa max 
2q

i

I
4 G
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5  Ortskurven 

5.1  Begriff der Ortskurve  (Band 2, S.186-188) 

Allgemeine Ortskurvengleichung 

 
O A + p B p2 C p3 D ...

A + p B p2 C p3 D ...
  p ein reeller Parameter 

 

Ermittlung der Ortskurve 
Jeder Punkt der Ortskurve könnte für ein gewähltes p errechnet und in der Gaußschen Zah-
lenebene eingetragen werden. Die Punkte verbunden ergeben die Ortskurve. Bei Ortskurven 
höherer Ordnung bleibt auch nichts anderes übrig, als die Ortskurve auf diese Weise zu 
ermitteln, weil sie nicht konstruiert werden kann. 
Sind die Ortskurven einfach wie Geraden, Kreise und Parabeln oder handelt es sich um 
überlagerte einfache Ortskurven, dann sollten die Ortskurven nach Konstruktionsanleitun-
gen konstruiert werden.  
Bei der Überlagerung von einfachen Ortskurven werden zunächst die einfachen Ortskur-
ven konstruiert und anschließend die Zeiger für gleiche Parameter p überlagert.  
Bei der Ermittlung einer Ortskurve sollte nach folgenden Schritten vorgegangen werden: 
1. Ermittlung der Gleichung für die Größe, für die die Ortskurve ermittelt werden soll. 
2. Einführung des Parameters p in den variablen Teil der Größe, wodurch sich die 

Ortskurvengleichung ergibt. 
3. Konstruktion der Ortskurve, falls es sich um eine einfache Ortskurve oder um überla-

gerte einfache Ortskurven handelt. 

Gerade: G = A + p · B 

Kreis durch den Nullpunkt: K = 1
G

1
A p B

 

Kreis in allgemeiner Lage: K = A p B
C p D

L 1
E p F

 

Parabel: P A p B p2 C  

zirkulare Kubik: O = A p B p2 C
D p E

R p S 1
D
F

p E
F

 

(Das ist die Überlagerung eines Kreises mit einer Geraden.) 
oder 
Berechnung der einzelnen Ortskurvenpunkte bei Variation des reellen Parameters p. Hier-
bei genügen meist einige Ortskurvenpunkte für ganze p, um der Verlauf der Ortskurve zu 
erkennen. Zwischenwerte der Ortskurve für gebrochene p-Werte lassen sich nachträglich 
errechnen und in das Ortskurvenbild eintragen. 

© Springer Fachmedien Wiesbaden 2015 
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5.2  Ortskurve „Gerade“  (Band 2, S.188-192) 
 

G = A + p · B 
mit  –  < p <  

speziell: 

G = A + 1p
p

· B 

mit  0 < p <  

Konstruktionsanleitung 
Zuerst werden die Zeiger A und B ge-  
zeichnet, dann wird parallel zum Zeiger B eine Gerade gezeichnet und schließlich wer-
den mit der Länge des Zeigers B die Parameter p = 0, ± 1, ± 2, ± 3, … eingetragen. 
Kann der Parameter p nur Null und positive Zahlen annehmen, dann besteht die Ortskurve 
aus einer entsprechenden Teilgeraden. Bevor die Ortskurve gezeichnet wird, sollte über-
prüft werden, ob der Parameter auch negativ werden kann. 

5.3  Ortskurve „Kreis durch den Nullpunkt“  (Band 2, S.193-206) 

K =
 

1
G

1
A p B

 

mit    –  < p <  
speziell 

K = 1 1
G 1A p B

p

 

mit    0 < p <   

Konstruktionsanleitung  
1. Zeichnen der Nennergeraden 

G = A + p · B 
2. Spiegelung der Nennergeraden 

an der reellen Achse ergibt  
G* = A* + p · B* 

 

 
 

3. Zeichnen der Senkrechten auf der gespiegelten Nennergeraden G*, die durch den 
Nullpunkt verläuft. 

4. Berechnen von 1/(2A), Festlegen des Maßstabs für 1/(2A) und Zeichnen der Senkrech-
ten auf A* im Abstand 1/(2A). Die Festlegung der Länge von 1/(2A) bestimmt die 
Größe des Kreises. 

5. Schnittpunkt der beiden Senkrechten ergibt den Mittelpunkt M des Kreises.  
Zeichnen des Kreises mit dem Radius M0 . 

6. Bezifferung des Kreises mit den Parameterwerten p entsprechend der gespiegelten 
Nennergeraden G*. 
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5.4  Ortskurve „Kreis in allgemeiner Lage“  (Band 2, S.207-209) 

 
K A p B

C p D
L 1

E p F
 

Konstruktionsanleitung  

1. Errechnen des Zeigers   N = A – B C
D

N e j  

2. Errechnen und Zeichnen der Nennergeraden   G = C
N

p D
N

E p F  

3. Spiegelung der Nennergeraden an der reellen Achse ergibt   G* = E* + p · F* 
4. Zeichnen der Senkrechten auf der gespiegelten Nennergeraden G*, die durch den 

Nullpunkt verläuft. 
5. Berechnen von 1/(2E) = N/(2C), Festlegen des Maßstabs für 1/(2E) und Zeichnen der 

Senkrechten auf E* im Abstand 1/(2E). Die Festlegung der Länge von 1/(2E) be-
stimmt die Größe des Kreises. 

6. Schnittpunkt der beiden Senkrechten ergibt den Mittelpunkt M des Kreises. Zeichnen 
des Kreises mit dem Radius M0 . 

7. Bezifferung des Kreises mit den Parameterwerten p entsprechend der gespiegelten 
Nennergeraden G*. 

8. Errechnen des Zeigers –L = – B
D

und Verschieben des Koordinatenursprungs um –L. 

5.5  Ortskurven höherer Ordnung  (Band 2, S.210-214) 
Ortskurve „Parabel“ 

P = A + p · B + p2 · C  
Sie kann entweder aus der Geraden 
A + p · B  und dem Anteil  p2 · C  
oder aus der Geraden  A + p2 · C  
und dem Anteil  p · B  durch Überla-
gerung der Zeiger zusammengesetzt 
werden. 

Ortskurve „Zirkulare Kubik“ 

 
O A p B p2 C

D p E
 

 

 

 

O R p S 1
D
F

p E
F

  mit  F A D
E

B C D
E

 

Wird also die Ortskurvengleichung in der allgemeinen Form erkannt, dann muss diese 
zuerst in die Summenform der beiden Ortskurvengleichungen überführt werden, ehe die 
Konstruktion erfolgen kann. Dann werden der Kreis durch den Nullpunkt und die Gerade 
getrennt konstruiert. Anschließend werden für gleiche Parameterwerte die jeweiligen bei-
den Zeiger durch Addition der Realteile und Imaginärteile überlagert. 
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6  Der Transformator 

6.1  Übersicht über Transformatoren  
  (Band 2, S.218-219) 

1. Transformatoren der Starkstrom- oder Energietechnik – die „Umspanner“ 
2. Niederfrequenz-Transformatoren (NF-Transformatoren) – die „Übertrager“ der Fern-

melde- und Verstärkertechnik 
3. Hochfrequenz-Transformatoren (HF-Transformatoren) für Anpassungszwecke. 

6.2  Transformatorgleichungen und Zeigerbild  
  (Band 2, S.220-230) 

Transformator mit gleichsinnigem Wickelsinn und Belastung mit einem beliebigen Wech-
selstromwiderstand, speziell bei induktiver Belastung 
 

 

1 2
1 R1 L1 M1 1 1 1 21

di diu u u u R i L M
dt dt

 

2 1
2 R2 L2 M2 2 2 2 12

di diu u u u R i L M
dt dt

 

2
2 2

diu R i L
dt

 

 

jZ R j L Z e   

mit   2 2Z R ( L)  

und  arctan ( L / R)  

Ersatzschaltbild des Transformators  

1 R1 L1 M1 1 11 1 2U U U U R I j L I j M I  

2 R2 L2 M2 2 22 12U U U U R I j L I j M I  

2 2 2U (R j L) I Z I  

© Springer Fachmedien Wiesbaden 2015 
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Zeigerbild des Transformators  
Reihenfolge der Darstellung: 
passiver Zweipol: 

I2 (ist gegeben oder wird gewählt) 
U2 = Z · I2 = Z · ej  · I2 

Maschengleichung des Sekundärkreises: 

R2 2 2U R I  

L2 2 2U j L I  

M2 2 2 22 2U U R I j L I  

M2 1U j M I  
Primärstrom: 

M2
1

UI
j M

 
Zeigerbild des Transformators  
mit gleichsinnigem Wickelsinn 
und induktiver Belastung 

Maschengleichung des Primärkreises: 

M1 2U j M I  

R1 1 1U R I  

L1 1 1U j L I  

1 1 12 1 1U j M I R I j L I  

Transformator mit gegensinnigem Wickelsinn und Belastung mit einem beliebigen Wech-
selstromwiderstand, speziell bei induktiver Belastung 
 

 
 

1 1 11 1 2U R I j L I j M I  

2 2 22 12U R I j L I j M I  

2 2 2U (R j L) I Z I  

Ersatzschaltbild des Transformators   
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Leerlauf am Ausgang des Transformators 
 

 

Eingangwiderstand 

02
1

in I in 1 1
1

U(Z ) Z R j L
Il  

 

Übersetzungsverhältnis     
Zeigerbild                    Widerstandsdreieck 

1 1
2 2

1 1 1 1 1 j arctan( R / L )
2

U L R L Rj e
U M M M M

 

mit       
2

1 1 1

2 1

U L Rü = 1
U M L

 

wobei   1

1

Rtan
L

 

Wird R1 vernachlässigt, dann ist 

 1 1

2

U L
U M

, 

wird zusätzlich der Kopplungsfaktor k = 1 beträgt, dann ist  

 1 1

2 2

U w
U w

 

Spannungsverhältnis und Eingangswiderstand des Transformators mit Z =R 

2
2 21 2 1 1 2 1 2 2 1

U 1
U (R R ) L R L (L L M ) (R R ) Rj

M R M R

 

2 2 2 22 2
in 1 12 2 2 22 2 2 2

M (R R ) M LZ R j L
(R R ) ( L ) (R R ) ( L )
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6.3  Ersatzschaltbilder mit galvanischer Kopplung   
 (Band 2, S.230-236) 

 
Ersatzschaltbild mit L1 – M und L2 – M 
 

 

1 1 11 1 21U R I j (L M) I j M ( I I )  

2 2 22 2 1 2U R I j (L M) I j M ( I I )  

2 2U Z I  

Ersatzschaltbild mit L1 – M  und 2L  – M  

 
' ' '1 1 11 11 2U R I j (L M ) I j M ( I I )  

' ' ' ' '' ' '2 2 2 12 2 2U R I j (L M ) I j M ( I I )  

' ' '2 2U Z I  

 
mit den reduzierten Größen 

'2 2U ü U  ' 22 2R ü R  

'2 2
1I I
ü

 ' 22 2L ü L  

'M ü M  ' 2Z ü Z , 

wobei ü beliebig gewählt werden kann (in vielen Fällen ü = w1/w2). 
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Ersatzschaltbild mit Streuinduktivitäten 

für  1

2

wü
w

 

 

' '1 1 1s1 1 1 2U R I j L I j M ( I I )  

' '' ' ' ' '2 12 2 2s 2 2U R I j L I j M ( I I )  

' ' '2 2U Z I  

mit dem Magnetisierungsstrom 

' '1 2I I I  

und den Streuinduktivitäten 

'1s 1 1 1L L M L=  

' ' ' '2s 2 2 2L L M L=  

Ersatzschaltbild ohne Längsinduktivität 2L  – M  

 für  
2

Mü
L
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6.4  Messung der Ersatzschaltbildgrößen des Transformators 
  (Band 2, S.237-241) 

Größen des Ersatzschaltbildes: 

R1,  R2,  L1,  L2 

und   M12 = M21 = M 

 
 
Messung der ohmschen Spulenwiderstände R1 und R2 mittels Gleichspannung: 

1
1

1

UR
I

 

 

2
2

2

UR
I

 

 

 
 

Messung des primären Leerlaufwiderstandes Z1l (Leerlauf-Eingangswiderstand Zin l) 
und des sekundären Leerlaufwiderstandes Z2l (Leerlauf-Ausgangswiderstand Zout l) 
mittels Wechselspannung 

11 j1 in
1

UZ Z e
Il l 1 1R j L  

1
1 1

1

UR cos
I

      1
1 1

1

UL sin
I

 

 

22 j2 out
2

UZ Z = e
Il l 2 2R j L  

2
2 2

2

UR cos
I

    2
2 2

2

UL sin
I
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Messung der Gegeninduktivität M bei konstanter Permeabilität  mittels 
Wechselspannung: 

1. Messung der sekundären Leerlauf Spannung und des Primärstroms 

2 1U j M Il  

u2 i12 2 j( / 2)
11

U UM j e
I I
l l  

 
 

2. Ermittlung der Gegeninduktivität M durch Messung des Widerstandes der Reihen-
schaltung und Gegenreihenschaltung der beiden Spulen des Transformators 

 

u ij( )r1 r1 1 2 1 2
U UZ e R j L R R j (L L 2M)
I I

 

mit   R = R1 + R2   und   Lr1 = L1 + L2 + 2 M 

 
 

u ij( )r2 r2 1 2 1 2
U UZ e R j L R R j (L L 2M)
I I

 

mit  R = R1 + R2 und  Lr2 = L1 + L2 – 2 M 

Die Gegeninduktivität lässt sich mit der Formel 

r1 r2 r1 r2
j 1M (Z Z ) (X X )

4 4
 

berechnen. 
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6.5  Frequenzabhängigkeit der Spannungsübersetzung eines 
Transformators   (Band 2, S.242-246) 

 

Voraussetzungen: 

R2 = 0 

Z = R 

2

Mü
L

 

 
'2

1 1 1 1 1
0' 2 ' 21 0 1

U 1
U R L L R1 j p

R k L R p k L

 mit  = p · 0 

 

Bezugsfrequenz: 

1
0

1 2

R R
L L

 

Bandbreite:  

 f = fg2 – fg1 

obere Grenzfrequenz: 

2 1
g2

2 1

1 k R Rf
2 L L

 

untere Grenzfrequenz: 

g1 2 1 2

1

1 1f
2 k L L

R R

 

 
 

 

 Ortskurven der frequenzabhängigen Spannungs-
verhältnisse von Transformatoren (Übertragern) 
zur Ermittlung der Bandbreite 
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7  Mehrphasensysteme 
7.1  Die m-Phasensysteme   (Band 2, S.249-256)  
Mehrphasensysteme oder m-Phasensysteme 
Ein Mehrphasensystem ist ein Wechselstromsystem mit mehr als zwei Strombahnen, in 
und entlang denen die elektrischen und magnetischen Größen mit gleicher Frequenz, 
mit gleichen oder angenähert gleichen Amplituden, in vorgegebener Phasenfolge mit 
gleichen oder angenähert gleichen Phasenverschiebungswinkeln verlaufen (DIN 40108). 

Mehrphasensysteme sind also die Mehrphasengeneratoren, die belastenden Widerstände 
und die sie verbindenden Leitungen, also die Gesamtheit der Stromkreise. 

Operator des m-Phasensystems 
Mit dem Drehzeiger  a = e– j  = e– j·2 m  lassen sich benachbarte Spannungszeiger und 
Stromzeiger entsprechend der Nummerierung ineinander überführen.  

Für ein Dreiphasensystem ist der Operator mit  m = 3 

a = e–j·2  = e– j · 120° = cos 120° – j · sin 120° = – 1/2 – j · 1/2 · 3  

Verkettete Mehrphasensysteme 
Um eine Sternschaltung eines Mehrphasensystems handelt es sich, wenn sämtliche Strän-
ge (Phasenwicklungen) an einem ihrer Enden in einem Sternpunkt N zusammengeschlos-
sen sind. Die an den Spulenklemmen anliegenden Spannungen u1, u2, … , um heißen 
Strangspannungen uSt, die im einzelnen mit u1N, u2N, , umN bezeichnet werden. 
Eine Ring- oder Polygonschaltung eines Mehrphasensystems liegt vor, wenn sämtliche 
Stränge (Phasenwicklungen) hintereinander geschaltet einen geschlossenen Ring ergeben. 
Die an den Generatorspulen anliegenden Spannungen  u1, u2, … , um  sind dann gleich 
den Außenleiterspannungen uLt, die im einzelnen mit  u12, u23, u34, … , um–1,m, um,1  
bezeichnet werden. Für ein Dreiphasensystem heißt die Ring- oder Polygonschaltung 
Dreieckschaltung. 
Die Verbindungsleiter der Außenpunkte des Generators und der Außenpunkte des 
Verbrauchers heißen Außenleiter, die mit L1, L2, … , Lm bezeichnet werden. 
Zwischen einem Mehrphasengenerator in Sternschaltung und einem Mehrphasenverbrau-
cher in Sternschaltung heißt der Verbindungsleiter zwischen den Sternpunkten Stern-
punktleiter oder Neutralleiter, der mit dem Buchstaben N gekennzeichnet wird. 

Ströme und Spannungen 
der Stern-Stern-Schaltung ILt = ISt                       ULt = 2 · USt · sin

m
 

Ströme und Spannungen  
der Polygon-Polygon-Schaltung Lt StI 2 I sin

m
    ULt = USt 

Wirkleistung des symme- 
trischen m-Phasensystems P = m · USt · ISt · cos = Lt Lt

m U I cos
2 sin

m
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7.2  Symmetrische verkettete Dreiphasensysteme   
  (Band 2, S.256-266) 
Sternschaltung 

 
Strangspannungen  USt:  

U1N = USt · ej·0° = USt       (U1N reell angenommen) 

U2N = USt · a = USt · e–j·2 /3 = USt · e–j·120° = USt · 1/2 j 1/2 3  

U3N = USt · a2 = USt · e–j·4 /3 = USt · ej·120° = USt · 1/2 j 1/2 3  

Die Außenleiterströme ILt sind 
gleich den Strangströmen ISt: 

 

Die Außenleiterspannungen ULt  
sind um das 3 -fache ( 3 = 1,73) größer  
als die Strangspannungen USt : 

ILt = ISt         mit         ILt = Ist 

das sind  I1, I2 und I3 

ULt = 2 · USt · sin St3 U
3

 

das sind U12, U23 und U31 

 
Zeitdiagramm und Zeigerbild der Außenleiterspannungen und Strangspannungen  
in einem symmetrischen Dreiphasensystem 

 

IN = I1 + I2 + I3 Sind   Z1, Z2, Z3   gleich groß,  

 dann ist    IN = I1 + I2 + I3 = 0 

 und          ILt = I1 = I2 = I3 = I 
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Dreieckschaltung 

 
 

Zeigerbild der  
Außenleiterspannungen 

 

Die Außenleiterströme ILt sind 

um das 3 -fache 3 1,73  größer 
als die Strangströme ISt : 

Die Außenleiterspannungen ULt sind 

gleich den Strangspannungen USt: 

ILt = 2 · ISt · sin
3

 = 3 · ISt 

das sind  I1, I2 und I3 

   ULt = USt     mit     ULt = USt 

   das sind  U12, U23 und U31 

Sind  Z12, Z23 und Z31 gleich groß, dann sind  ILt = I1 = I2 = I3 = I. 

 
Zeitdiagramm und Zeigerbild der Außenleiterströme und Strangströme  
in einem symmetrischen Dreiphasensystem 

Wirkleistung, Blindleistung und Scheinleistung der symmetrischen Dreiphasensysteme 

P = 3 · USt · ISt · cos  = 3 · ULt · ILt · cos   

Q = 3 · USt · ISt · sin  = 3 · ULt · ILt · sin  

S = 3 · USt · ISt = 3 · ULt · ILt  
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7.3  Unsymmetrische verkettete Dreiphasensysteme   
 (Band 2, S.267-278) 

Vierleiternetz mit Generator in Sternschaltung und Verbraucher in Sternschaltung 

 

Gegeben: 
Strangspannungen des Generators U1N, U2N, U3N 
komplexe Verbraucherwiderstände Z1, Z2, Z3 
komplexer Widerstand des Sternpunktleiters ZN 

Gesucht: 
Außenleiterströme I1, I2, I3 und Sternpunktleiterstrom IN 

Rechenschritte: 
1. Berechnung der Spannung UN über dem Sternpunktleiter nach 

1N 2N 3N

1 2 3
N

N 1 2 3

U U U
Z Z Z

U
1 1 1 1

Z Z Z Z

 

2. Ermittlung der Strangspannungen ' ' '1N 2N 3NU , U , U   
über den Verbraucherwiderständen Z1, Z2, Z3 nach  

'1N 1N NU U U  

'2N 2N NU U U  

'3N 3N NU U U  
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3. Ermittlung der Außenleiterströme I1, I2, I3 und des Sternpunktleiterstroms IN nach  

'1N 1N N
1

1 1 1

U UUI
Z Z Z

 

'2N 2N N
2

2 2 2

U UUI
Z Z Z

  und N
N

N

U
I

Z
 

'3N 3N N
3

3 3 3

U UUI
Z Z Z

 

4. Kontrolle der Rechenergebnisse mittels Zeigerbild 
 

 
 
Speziell: 

Mit  ZN = 0   ist   UN = 0,  mit USt = 220V 
'1N 1NU U 220V  

' j 120º2N 2NU U 220V e ( 110 j 190,5)V  

' j 120º3N 3NU U 220V e ( 110 j 190,5)V  

'1N
1

1

UI
Z

 

'2N
2

2

UI
Z

 

'3N
3

3

UI
Z

 

mit     I1 + I2 + I3 = IN 
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Dreileiternetz mit Generator in Sternschaltung und Verbraucher in Sternschaltung 
 

 

   Dreileiternetz mit Generator in Stern und Verbraucher in Stern 
 

Rechenschritte: 
1. Berechnung der Spannung UN über dem Sternpunktleiter nach 

1N 2N 3N

1 2 3
N

1 2 3

U U U
Z Z Z

U
1 1 1
Z Z Z

 

2. Ermittlung der Strangspannungen ' ' '1N 2N 3NU , U und U   

über den Verbraucherwiderständen Z1, Z2 und Z3 nach 

'1N 1N NU U U  

'2N 2N NU U U  

'3N 3N NU U U  

3. Ermittlung der Außenleiterströme I1, I2 und I3 nach 

'1N
1

1

UI
Z

 
'2N

2
2

UI
Z

 
'3N

3
3

UI
Z

 

und Kontrolle der Außenleiterströme mit 

I1 + I2 + I3 = 0 

4. Kontrolle der Rechenergebnisse mittels Zeigerbild 



7.3  Unsymmetrische verkettete Dreiphasensysteme 141 

Dreileiternetz mit Generator in Dreieckschaltung und Verbraucher in Sternschaltung 

 

3112

2 3'1N

1 2 3

UU
Z Z

U
1 1 1
Z Z Z

 
'1N

1
1

UI
Z

 

23 12

3 1'2N

1 2 3

U U
Z Z

U
1 1 1
Z Z Z

 
'2N

2
2

UI
Z

 

31 23

1 2'3N

1 2 3

U U
Z Z

U
1 1 1
Z Z Z

 
'3N

3
3

UI
Z

 

 mit   I1 + I2 + I3 = 0  

 

 

Zeigerbild des Dreileitersystems Dreieck/Stern 
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Dreileiternetz mit Generator in Stern- oder Dreieckschaltung  
und Verbraucher in Dreieckschaltung 
 

 
Dreileiternetz mit Generator in Stern und Verbraucher in Dreieck 

 

 
Dreileiternetz mit Generator in Dreieck und Verbraucher in Dreieck 

 

12
12

12

U
I

Z
 23

23
23

U
I

Z
 31

31
31

U
I

Z
 

3112
1 12 31

12 31

UU
I = I  – I

Z Z
 

23 12
2 23 12

23 12

U U
I = I  – I

Z Z
 

31 23
3 31 23

31 23

U U
I = I  – I

Z Z
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7.4  Messung der Leistungen des Dreiphasensystems   
 (Band 2, S.279-282) 

Messung der Phasenleistung bei symmetrischer Belastung  

 
 
 
Aronschaltung in der unsymmetrischen Sternschaltung 

 
 
 
Aronschaltung in der unsymmetrischen Dreieckschaltung 

 
 



144  

8  Ausgleichsvorgänge in linearen Netzen 
8.1  Grundlagen für die Behandlung von Ausgleichsvorgängen 
Ausgleichsvorgang  (Band 3, S.1-3) 
Der Begriff des Ausgleichsvorgangs ist von allgemeiner physikalischer Bedeutung:  
Wird in einem physikalischen System ein stationärer Vorgang durch einen Eingriff ge-
stört, so erfolgt der Übergang von einem eingeschwungenen Vorgang in einen anderen 
eingeschwungenen Vorgang nicht sprungartig im Änderungszeitpunkt, sondern stetig. 
Dieser so genannte Ausgleichsvorgang zwischen zwei eingeschwungenen Vorgängen 
wird durch das Zeitverhalten einer bestimmten physikalischen Größe beschrieben. 
Ausgleichsvorgänge der Elektrotechnik 
Die häufigste Ursache von Ausgleichsvorgängen in elektrischen Netzen sind die Schalt-
vorgänge, das sind Ausgleichsvorgänge nach dem Schließen oder Öffnen eines Schalters 
im Netzwerk. 
Aktive Schaltelemente: 
ideale Spannungsquelle mit Ri = 0  

dargestellt durch die Quellspannung: 
für Gleichspannung Uq     für Wechselspannung uq (t)   

ideale Stromquelle mit Gi = 0,  
dargestellt durch den Quellstrom: 

für Gleichstrom Iq           für Wechselstrom iq (t) 

Passive Schaltelemente:  

ohmscher Widerstand R  

R Ru R i    und    R R R
1i u G u
R  

 
Kapazität C  

C
C

dui C
dt

    und    
t

C C C
0

1u i dt u (0)
C

 

 
Induktivität L  

L
L

diu L
dt

   und     
t

L L L
0

1i u dt i (0)
L

 

 
Gegeninduktivität M 

1 2
1 1 1 1

di diu R i L M
dt dt

 

2 1
2 2 2 2

di diu R i L M
dt dt

 

 

© Springer Fachmedien Wiesbaden 2015 
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8.2  Berechnung von Ausgleichsvorgängen  
durch Lösung von Differentialgleichungen   (Band 3, S.3-29) 

Zusammenfassung der Berechnung eines Ausgleichsvorgangs 
Ein Ausgleichsvorgang in einem elektrischen Netz mit Gleich- oder Wechselspannungser-
regung und mit einem Schalter kann nach folgendem Schema rechnerisch behandelt wer-
den: 
1. Aufstellen der Differentialgleichung bzw. Differentialgleichungen ab  t = 0 
 für den Strom iL bzw. einer Spannung uC 
2. Bestimmung des zu erwartenden eingeschwungenen Vorgangs für t  ,  
 das entspricht einer Gleichstrom- oder Wechselstromberechnung 

(Dieser Rechenschritt entfällt, wenn die Differentialgleichung homogen ist.) 
3. Lösung der zugehörigen homogenen Differentialgleichung mit dem e t-Ansatz  
 (flüchtiger Vorgang) 

Bei Differentialgleichungen erster Ordnung kann auf den e t-Ansatz verzichtet wer-
den, weil die Lösung immer  K · e–t/   ist, wobei  aus der Differentialgleichung abge-
lesen werden kann:  
 ist gleich dem Quotient des Koeffizienten der Ableitung dividiert durch den Koeffi-

zienten der Stammfunktion. 
4. Bestimmung der Konstanten mit den Anfangsbedingungen nach  

L L Le Lfi (0 ) i (0 ) i (0 ) i (0 )          

C C Ce Cfu (0 ) u (0 ) u (0 ) u (0 )  
und Einsetzen der Konstanten in die allgemeine Lösung 

5. Überlagerung des eingeschwungenen Vorgangs und des flüchtigen Vorgangs zum 
Ausgleichsvorgang 
(Ist der eingeschwungene Vorgang Null, dann entfällt selbstverständlich die Überlage-
rung.) 

6. Weitere Berechnungen, grafische Darstellungen der Zeitverläufe und ähnliches 

 

Beispiel 1: 
Übergangsfunktion einer RC-Schaltung 

Zu 1. C
1 2 C

du(R R ) C u U
dt

 

Zu 2.    uCe = U  

Zu 3.   Cf
1 2 Cf

du(R R ) C u 0
dt

 

  uCf  = K · e–t/    mit    = (R1 + R2) · C 

Zu 4.    uC(0–) = uC(0+) = uCe (0+) + uCf (0+) 

  0 = U + K         d. h.    K = – U       uCf = – U · e–t/   

Zu 5.  uC = uCe + uCf = U – U · e–t/ t /U (1 e )

Zu 6.   C 2 t /2 2 2
1 2

du Ru R i R C U e
dt R R
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Beispiel 2: 
Einschaltvorgang einer Wechselspannung 
Zu 1. 

L
1 1 L L

diR i R i L u
dt

 

mit 
L

L L
1 L 2 L

2

diR i L
dti i i i

R
 

1 1 L L
1 L L e rs L ers uL

2 2

R R di di ˆR R R i L 1 R i L u sin( t )
R R dt dt

 

Zu 2. 
Le

e rs Le ers u
di ˆR i L u sin( t )
dt

           uj( t )e rs ersLe Le ˆR i j L i u e  

u u
u

j( t ) j( t )
j( t )

Le 2 2e rs ers ersers ers

ˆ ˆ ˆu e u e ui e
R j L ZR ( L )

 

Le u Le ie
ers

û ˆi sin( t ) i sin( t )
Z

 

mit     ers 2 2ers ers ers
e rs

Larc tan     und    Z R ( L )
R

 

Zu 3. 
Lf

e rs Lf ers
diR i L 0
dt

 t /Lfi K e  ers ers Lers

ers ers ers

L L X   bzw.   
R R R

 

Zu 4. 

L L Le Lfi (0 ) i (0 ) i (0 ) i (0 )  

u
ers

û0 sin( ) K
Z

, u ie
ers ers

ˆ ˆu uK sin( ) sin
Z Z

 

t /Lf ie
ers

ûi sin e
Z

  

Zu 5. 

L Le Lfi i i  

t /L ie ie
ers

ûi sin( t ) sin e
Z

 

 

Zu 6. 
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Beispiel 3: 
Entladung eines Kondensators mittels einer Spule  
Zu 1. 

2 C C
C2

d u R du 1 u 0
L dt L Cdt

 

2

2
d i R di 1 i 0

L dt L Cdt
 

Zu 2. 

Ceu 0          ei 0  

Zu 3. 
2 Cf Cf

Cf2
d u R du 1 u 0

L dt L Cdt
 

e -Ansatz:  tCfu K e  Cf tdu K e
dt

 
2 Cf 2 t

2
d u K e

dt
 

charakteristische Gleichung:         2 R 1 0
L L C

 

2
2 21,2 0

R R 1   
2L 2L L C

 

mit 2 20  R
2L

             Abklingkonstante 

 0
Resonanzkreisfrequenz1        

der stationären SchwingungLC
 

für 1  2:  
entweder reell und von einander verschieden (aperiodischer Fall) 
oder konjugiert komplex (periodischer Fall, Schwingfall) 

1 2t tCf 1 2u K e K e  

1 2Cf t tf 1 1 2 2
dui C C (K e K e )

dt
 

für 1 = 2 =  
eine reelle Doppelwurzel (aperiodischer Grenzfall) 

Variation der Konstanten: tCfu K(t) e  
tCf 1 2u (K K t) e  

Cf tf 2 1 2
dui C C (K K K t) e

dt
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Zu 4. 

1 2 : 

uC(0–) = uC(0+) = uCe (0+) + uCf (0+) 

 – Uq = 0 + K1 + K2 

i(0–) = i(0+) = ie (0+) + if (0+) 

 0 = 0 + C · (K1 · 1 + K2 · 2) 

 q 2
1

1 2

U
K  q 1

2
1 2

U
K  

1 2q t tC Cf 2 1
1 2

U
u u e e  

i = if = 1 2

1 2
· C · Uq · 1 2t te e  

mit  1,2 = –

1 = 2 =  

uC(0–) = uC(0+) = uCe (0+) + uCf (0+) 

  – Uq = 0 + K1 

 i(0–) = i(0+) = ie (0+) + if (0+) 

  0 = C · (K2 +  · K1) 

  K1 = – Uq K2 =  · Uq 

uC = uCf = – Uq · (1 –  · t) · e t 

i = if = C · Uq · 2 · t · e t 

mit  1 = 2 =  = –  

Zu 5. 

uC = uCf  i = if 
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Zu 6. 
Interpretation der Lösungen: 

Aperiodischer Fall: 

 > 0 

R 1
2L LC

       R > 2 · L
C

 

i( t) = q tU
e sinh ( t)

L
 

 

uC( t) = –Uq · e– t · sinh ( t) cosh ( t)  

Aperiodischer Grenzfall: 

 = = R
2L

 

R 1
2L LC

         R = 2 · L
C

 

i( t) = qU
R

· 2 · ( t) · e– t 

bei  ( t) =1       imax = qU
0,736

R  
uC( t) = – Uq · [l + ( t)] · e– t 

Periodischer Fall – Schwingfall: 
 <  

R 1
2L LC

        R < 2 · L
C

 

( t)qU
i ( t) e sin t

L
 

 
2 ( t)tC q qu ( t) U e sin t cos t U 1   e sin( t )   
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8.3  Berechnung von Ausgleichsvorgängen mit Hilfe 
der Laplace-Transformation 

8.3.1  Grundlagen für die Behandlung der Ausgleichsvorgänge  
          mittels Laplace-Transformation (Band 3, S.30-50) 
Transformation  

s t

0

L f (t) f (t) e dt F(s)  

Beispiele für die Transformationen von Zeitfunktionen: 

1. Transformation einer Sprungfunktion 

u(t) = U · (t) = 
0   für  t   0
U  für    t   0

 

UL U (t)
s

 

2. Transformation einer Rampenfunktion 

u(t) = 
        0      für t 0
(U/T) t   für t 0

 

2

U U 1L t .
T T s

 

3.  Transformation einer Exponentialfunktion 

t /

     0         für t < 0
u(t)

U e    für t > 0
 

t / 1L U e U U
s 1/ 1 s

 

Erweiterung: 

t / 1L U (1 e ) U
s (1 s )

 

Rücktransformation 

c j
1 s t

c j

1f (t) L F(s) F(s) e ds
2 j
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Laplace-Transformierte der Ableitung einer Funktion 
L f (t) s L f (t) f (0)  

2L f (t) s L f (t) s f (0) f (0)  

3 2L f (t) s L f (t) s f (0) s f (0) f (0)  

(n) n n 1 n 2 (n 2) (n 1)L f (t) s L f (t) s f (0) s f (0) ... s f (0) f (0)  
 

Beispiele: 

C
C C

du (t)L C C s U (s) u (0)
dt

 

2
C 2

C C C2
d u (t)L LC LC s U (s) s u (0) u (0)

dt
 

Hat die Zeitfunktion f(t) der Differentialgleichung an der Stelle t = 0 eine Sprungstelle, 
dann ist die Lösung der Differentialgleichung mit Hilfe der Laplace-Transformation auch 
möglich, weil die Laplace-Transformation die Zeitfunktionen erst ab t = 0+ erfasst. Dann 
ist der rechtsseitige Grenzwert f (0 ) zu berücksichtigen: 

L f (t) s L f (t) f (0 ) ,  

aber die Laplace-Transformierte der Ableitung der Sprungfunktion, also des Dirac-
Impulses, auch Dirac’sche Deltafunktion genannt, ist 

L (t) L (t) 1 

Laplace-Transformierte des Integrals einer Funktion 

t

0

1L f (t) dt L f (t)
s

  

11 f (0)L f (t) dt L f (t)
s s

     mit  1
t 0

f (0) f (t) dt  

Beispiele: 

t
t / t /

0

1 1L e dt L e
s s (s 1/ )

 

t / t / t /
t 0

1 1L e dt L e e dt
s s s 1/

 

mit   t / 1L e
s 1/

 und 
t /

t /
t 0 t 0

ee dt
1/
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Berechnung von Ausgleichsvorgängen bei verschwindenden Anfangsbedingungen 
L f (t) s L f (t)  mit     f(0) = 0 

1L f (t) dt L f (t)
s

 mit     f 
–1(0) = 

t 0
f (t) dt 0  

 ohmscher 
Widerstand 

induktiver 
Widerstand 

kapazitiver 
Widerstand 

Zeitbereich 
(Originalbereich) 

u = R · i 

i =
u

G u
R

 

u = L ·
di

dt
 

u = M
di
dt

 

1i u dt
L

 

1i u dt
M

 

1u i dt
C

 

dui C
dt

 

komplexer Bereich 
(Bildbereich) 

U(s) = R · I(s) 

I(s) = 
U(s) G U(s)

R

U(s) = sL · I(s) 

U(s) = sM · I(s) 

I(s) = 
U(s)
sL

 

I(s) = 
U(s)
sM

 

U(s) = 
I(s)
sC

 

I(s) = sC · U(s) 

Alle Zeitfunktionen werden in entsprechende Laplace-Transformierte überführt. 

Ohmsche Widerstände R bleiben im Schaltbild unverändert, da der Operator zwischen der 
Laplace-Transformierten von Strom und Spannung R ist. 

Induktivitäten L und Gegeninduktivitäten M werden wie induktive Widerstände mit den 
komplexen Operatoren sL und sM behandelt. Die Operatoren ersetzen im Schaltbild L 
und M. 

Kapazitäten C werden als kapazitive Widerstände mit dem Operator 1/sC berücksichtigt, 
weil die Laplace-Transformierte des Stroms durch Multiplikation mit dem Operator 1/sC 
in die Laplace-Transformierte der Spannung überführt wird. Anstelle von C wird im 
Schaltbild 1/sC geschrieben.  

Nachdem die Operatoren im Schaltbild eingetragen sind, werden die Netzberechnungshil-
fen Spannungs- und Stromteilerregel (siehe S. 96) angewendet, wodurch sich algebraische 
Gleichungen für die Laplace-Transformierten ergeben, die dann gelöst werden.  

Die Lösungen für die Laplace-Transformierten werden dann mit Hilfe der Laplace-
Korrespondenzen in den Zeitbereich rücktransformiert. 
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8.3.2  Lösungsmethoden für die Berechnung von Ausgleichsvorgängen 

 (Band 3, S.51-91) 

Verfahren 1: Lösung der Differentialgleichung im Zeitbereich 

Verfahren 2: Lösung der Differentialgleichung  
 mit Hilfe der Laplace-Transformation 

Verfahren 3: Lösungsmethode mit Operatoren - Symbolische Methode 
(anwendbar nur bei verschwindenden Anfangsbedingungen) 

Rechenschema 
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Beispiel 1: 
(Verfahren 2)  

uC + (Rr + Rp) · C · Cdu 0   
dt

 

UC(s) + (Rr + Rp) · C · [s · UC(s) – uC(0)] = 0 

mit    uC(0) = Rp · q

i p

U
R R

 

 

UC(s) + (Rr + Rp) · C · s · UC(s) – r p p q

i p

(R R ) C R U
0

R R
 

UC(s) = r p p q

i p r p

(R R ) C R U 1
R R 1 s (R R ) C

 

Mit der Korrespondenz Nr. 48 

1 t /T1 1L e
1 sT T

 

ist 

uC(t) = r p p q p qt / t /

i p r p i p

(R R ) C R U R U1 e e
R R (R R ) C R R

 

Beispiel 2: 
(Verfahren 3)  

C

1

1
U (s) sC

1U (s) R sL
sC

 

UC(s) = 12
1 U (s)

sRC s LC 1
 

mit  U1(s) = U
s

 
 

UC(s) =
2

U 1
R 1LC s s s
L LC

 

mit  s2 + R 1s 0
L LC

 

 

s1,2 =
2

2 2
0

R R 1
2L 2L LC
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Aperiodischer Fall: 

für  1 2s s   ist 

UC(s) =
1 2

U 1
LC s (s s )(s s )

 

nach Korrespondenz Nr. 37  

1 at bt1 1 1L 1 (be ae )
s(s a)(s b) ab a b

 

mit a = s1   und   b = s2 

uC(t) = 1 2s t s t
2 1

1 2 1 2

U 1 11 s e s e
LC s s s s

 

mit    s1 = –  + ,    s2 = –     und    s1 – s2 = 2

und    2 2 2 2 2 2
1 2 0 0

1s s
LC

 

uC(t) = U · ( )t ( )t11 ( ) e ( ) e
2

 

uC(t) = U ·
t t t t

t e e e e1 e
2 2

 

uC(t) = U t1 e sinh( t) cosh( t)  

uC( t) = U · t1 e sinh ( t) cosh ( t)  

i( t) = U te sinh ( t)
L

 

mit        = 2 1         
LC

 

Rund       
2L
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Periodischer Fall – Schwingfall: 

mit    = j   ist  

uC(t) = U · t1 e sinh( j t) cosh( j t)
j

 

mit  sinh (j t) = j · sin t    und    cosh (j t) = cos t 

uC( t) = U · t1 e sin t cos t  

uC( t) = U ·
2 ( t)

1 1   e sin( t )  

i( t) = 
( t)U e sin t

L
 

mit       = 21      
LC

 

und     R
2L

 

und      = arc tan

  

Aperiodischer Grenzfall: 

für  s1 = s2 = s12  ist 

UC(s) = 2
12

U 1
LC s (s s )

 

nach Korrespondenz Nr. 35  

1 at
2 2

1 1L 1 (at 1)e
s(s a) a

 

mit  a = s12 

uC(t) = 12s t
122

12

U 1 1 (s t 1) e
LC s

 

mit  s12 = –  = – 0    und    2
12

1s
LC

 

uC( t) = U · – t1 – [1 + ( t)] · e  

i( t) = U t2 ( t) e
R

 

mit  R
2L
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Operationen 
Nr. F(s) f(t) 

1 F(s) = s t

0

f (t) e dt  f(t) 

2 
3 

s · F(s) – f(0+) 
s · FS(s) – f(0–) 

df (t) f (t)
dt

dt 

4 s2 · F(s) – s · f(0+) – f (0+) 
2

2
d f (t) f (t)

dt
 

5 s3 · F(s) – s2 · f(0+) – s f (0+) – f (0+) 
3

3
d f (t) f (t)

dt
 

6 
n n 1 n 2

(n 2) (n 1)

s F(s) s f (0 ) s f (0 ) ...

... s f (0 ) f (0 )
 

(n)
(n)

n
d f (t) f (t)

dt
 

7 
1 F(s)
s

 
t

0

f (t) dt  

8 
t 0

1 1F(s) f (t) dt
s s

 f (t) dt  

9 a · F(s) a · f(t) 

10 a1 · F1(s) + a2 · F2(s) + … an · Fn(s) a1 · f1(t) + a2 · f2(t) + …+ an · fn(t) 

11 
1 sF
a a

 f(a · t)   mit  a > 0, reell 

12  a · F(a · s) 
tf
a

   mit  a > 0, reell 

13
14

 F (s – a)   bzw.   F (s + a) eat ·  f(t)  bzw.   e–at · f(t)   mit  a  beliebig 

15 F (a · s – b) 
b t a   0,a

b komplex
1 te f   mit  
a a

 

16 
0

a s s x

a

e F(s) f (x) e dx  f(t – a)  mit  a  0 

17 
a

a s s x

0

e F(s) f (x) e dx  f(t + a)  mit  a  0 

18 F1(s) · F2(s) f1(t) f2(t) = 
t

1 2
0

f ( ) f (t ) d  

19
20

 dF(s)
ds

   bzw.   
n

n
d F(s)

ds
 – t · f(t)   bzw.   (– 1)n · tn · f(t) 

21 
s

F(s) ds  1 f (t)
t
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Korrespondenzen der Laplace-Transformation 

Nr. F(s) f(t) 

22 0 0 

23 1 (t) 

24 e–as  für  a > 0 (t – a) 

25 1
s

 (t)   bzw.   1 

26 as1 e
s

 (t – a) 

27 2
1
s

 t 

28
29

 3
1
s

  bzw. n 1
1   mit  n 0,1,...

s
 21 t

2
   bzw.    

nt
n!

 

30 1
s a

 eat  a  beliebig, z.B. a =   j  

31 2
1

(s a)
 teat 

32 n 1
1

(s a)
 

n
att e

n!
 

33 
1

s(s a)
 at1 (e 1)

a
 

34 
1

(s a)(s b)
 at bt1 (e e )

a b
 

35 2
1

s(s a)
 at

2
1 [1 (at 1)e ]
a

 

36 2
1

s (s a)
 at

2
1 (e 1 at)
a

 

37 
1

s(s a)(s b)
 at bt1 11 (be ae )

ab a b
 

38 
1

(s a)(s b)(s c)
 

at bt cte e e
(b a)(c a) (c b)(a b) (a c)(b c)

 

39 2
1

(s a)(s b)
 

at bt

2
e [1 (a b)t] e

(a b)
 

40 2
s

(s a)
 (1+at)eat 

41 
s

(s a)(s b)
 at bt1 (ae be )

a b
 

42 
s

(s a)(s b)(s c)
 

at bt ctae be ce
(b a)(c a) (c b)(a b) (a c)(b c)

 

43 2
s

(s a)(s b)
 

at bt

2
ae [a b(a b)t]e

(a b)
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Nr. F(s) f(t) 

44 3
s

(s a)
 2 at1t at e

2
 

45 
2

3
s

(s a)
 2 2 at11 2at a t e

2
 

46 
2s

(s a)(s b)(s c)
 

2 at 2 bt 2 cta e b e c e
(b a)(c a) (c b)(a b) (a c)(b c)

 

47 
2

2
s

(s a)(s b)
 

2 at 2 2 bt

2
a e [2ab b b (a b)t] e

(a b)
 

48 
1

1 sT
 t /T1 e

T
 

49 
1

s(1 sT)
 1 – e–t/T 

50 2
1

(1 sT)
 t /T

2
1 t e

T
 

51 2
1

s (1 sT)
 t – T(1 – e–t/T) 

52 2
1

s(1 sT)
 t /TT t1 e

T
 

53 3
1

(1 sT)
 2 t /T

3
1 t e

2T
 

54 
1 2

1
(1 sT )(1 sT )

 1 2t /T t /T

1 2

1 e e
T T

 

55 
1 2

1
s(1 sT )(1 sT )

 1 2t /T t /T
1 2

2 1

11 (T e T e )
T T

 

56 2
1 2

1
(1 sT )(1 sT )

 1 2t /T t /T
1 2 1 1 2

2 2
2 1 2 2 1

T e [(T T )t T T ] e
(T T ) T (T T )

 

57 
1 2 3

1
(1 sT )(1 sT )(1 sT )

 31 2 t /Tt /T t /T
31 2

1 2 1 3 2 1 2 3 3 1 3 2

T eT e T e
(T T )(T T ) (T T )(T T ) (T T )(T T )

 

58 
sT

1 sT
 (t) – t /T1 e

T
 

59 2
s

(1 sT)
 t /T

3
1 (T t) e

T
 

60 
1 2

s
(1 sT )(1 sT )

 2 1t /T t /T
1 2

1 2 1 2

1 T e T e
T T (T T )

 

61 
1 2 3

s
(1 sT )(1 sT )(1 sT )

 31 2 t /Tt /T t /T
2 3 3 1 1 2

1 2 2 3 3 1

(T T ) e (T T ) e (T T ) e
(T T )(T T )(T T )
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Nr. F(s) f(t) 

62 2
1 2

s
(1 sT )(1 sT )

 1 2t /T t /T2 2
2 2 1 2

2 2
2 1 2

T e [T (T T )t] e
T (T T )

 

63 3
s

(1 sT)
 

2
t /T

3 4
t t  e

T 2T
 

64 
2

3
s

(1 sT)
 2 2 t /T

5
1 (2T 4Tt t ) e

2T
 

65 
2

1 2 3

s
(1 sT )(1 sT )(1 sT )

 

1 2

3

t /T t /T

1 1 2 1 3 2 2 1 2 3
t /T

3 3 1 3 2

e e
T (T T )(T T ) T (T T )(T T )

e
T (T T )(T T )

 

66 
2

2
1 2

s
(1 sT )(1 sT )

 
1

2
t /T

t /T1 2
2 2 2 3

1 1 2 2 1 2 2 1 2

T 2Te t e
T (T T ) T (T T ) T (T T )

 

67 2
1 sA

s
 t + A 

68 
1 sA

s(1 sT)
 1 + t /TA T e

T
 

69 2
1 sA

(1 sT)
 t /T

3 2
T A At e

T T
 

70 
1 2

1 sA
(1 sT )(1 sT )

 1 2t /T t /T1 2

1 1 2 2 1 2

T A T Ae e
T (T T ) T (T T )

 

71 2
1 sA

s (1 sT)
 (A –T)(1 – e–t/T) + t 

72 2
1 sA

s(1 sT)
 1 + t /T

2
A T t 1  e

T
 

73 
1 2

1 sA
s(1 sT )(1 sT )

 1 + 1 2t /T t /T1 2

2 1 2 1

T A T Ae e
T T T T

 

74 2
1 2

1 sA
(1 sT )(1 sT )

 1 2t /T t /T1 2 1
2 2 2

1 2 2 2 1 2 1

T A T A A Te t  e
(T T ) T (T T ) (T T )

 

75 
1 2 3

1 sA
(1 sT )(1 sT )(1 sT )

 
1 2

3

t /T t /T1 2

1 2 1 3 2 3 2 1

t /T3

3 1 3 2

T A T Ae e
(T T )(T T ) (T T )(T T )

T A e
(T T )(T T )

 

76 
2

2
1 sA s B

s (1 sT)
 t /TBt A T A T  e

T
 

77 
2

2
1 sA s B

s(1 sT)
 1 –

2
t /T

2 3
B B AT T1 t  e

T T
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Nr. F(s) f(t) 

78 
2

1 2

1 sA s B
s(1 sT )(1 sT )

 1 + 1 2
2 2

t /T t /T1 1 2 2

1 2 1 2 2 1

B AT T B AT Te e
T (T T ) T (T T )

 

79 2 2
1

s a
 1 sin at

a
 

80 2 2
1

s a
 1 sinh at

a
 

81 2 2
1

s(s a )
 

2
1 (1 cosat)
a

 

82 2 2 2
1

s (s a )
 

2 3
t sin at

a a
 

83 2 2
1

(s a )(s b)
 bt

2 2
1 be sin at cos at

aa b
 

84 2 2
1

s(s a )(s b)
 

bt

2 2 2 2
1 1 sin at b cosat e

a ba b a b a
 

85 2 2 2
1

s (s a )(s b)
 

bt

2 2 2 2 2 2 2 2 2

t 1 e cos(at )  mit   = arctan(b/a)
a b a b (a b )b a a b
                        

 

86 2 2
1

(s a )(s b)(s c)
 

bt ct

2 2 2 2 2 2 2 2

e e sin(at )
(c b)(a b ) (b c)(a c ) a a (b c) (bc a )
mit   = arctan(a/b) + arctan(a/c)
                     

 

87 2 2
1

s(s a )(s b)(s c)
 

bt ct

2 2 2 2 2

2 2 2 2

1 e e
a bc b(b c)(a b ) c(c b)(a c )

cos(at )

a (bc a ) a (b c)
                          mit   = arctan(c/a) + arctan(b/a)

 

88 2 2 2 2
1

(s a )(s b )
 

2 2
1 sin at sin bt

a bb a
 

89 2 2
1

a (s b)
 bt1 e sin at

a
 

90 2 2 2
1

s [a (s b) ]
 

bt

2 2 2 2 2 2
1 2b e sin(at )t

a b a b a(a b )
                            mit   = 2 arctan(a/b)

 

91 2 2 2
1

[a (s b) ]
 bt

3
1 e (sin at at cosat)

2a
 

92 2 2 2
1

(s a )
 

3
1 (sin at at cosat)

2a
 

93 2 2 2
1

s(s a )
 

4 3
1 1(1 cosat) t sin at
a 2a
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Nr. F(s) f(t) 

94 
2 2

s
s a

 cos at 

95 2 2
s

s a
 cos h at 

96 2 2 2 2
s

(s a )(s b )
 2 2

2 2
1 (cos at cos bt)    mit a b

b a
 

97 2 2 2 2
s

[s (a b) ][s (a b) ]
 1 sin at sin bt

2ab
 

98 2 2 2
s

(s a )
 t sin at

2a
 

99 
2

2 2 2
s

(s a )
 

1 (sin at at cosat)
2a

a/d 

100 2 2
s d

s a
 2 2d a sin(at )    mit   arctan(a/d)

a
 

101 2 2
s d

(s a )(s b)
 2 2

bt
2 2 2 2 4
d b d ae sin(at )

a b a b a
                            mit   = arctan(b/a) arctan(d/a)

 

102 2 2 2
s d

s (s a )
 2 2

2 6
1 d t a d sin(at )

a a
                       mit  arctan(a/d)

 

103 2 2
s d

s(s a )(s b)
 2 2

bt
2 2 2 4 2 6
d d b d ae cos(at )

a b b(a b ) a b a
                          mit  arctan(b/a) arctan(d/a)

 

104 

2 2
s d

(s a )(s b)(s c)
 

bt ct

2 2 2 2

2 2

2 2 2 2 2 sin(at )

mit  arctan(c/a) arctan(d/a) arctan(a/b)

(d b)e (d c)e
(c b)(a b ) (b c)(a c )

d a
a (a b )(a c )

          

 

105 2 2
s d

a (s b)
 2

bt
2

(d b) a1 e sin(at )    arctan
d ba

 

106 2 2
s sin b a cos b

s a
 sin (at + b) 

107 2 2
s cos b a sin b

s a
 cos(at + b) 

108 2 2
1

1 s T
 1 sin(t/T)

T
 

109 2 2
1 sA

1 s T
 2/T /T1 t1 (A ) sin     arctan(A )

T T
 

110 2 2
s

1 s T
 2

1 cos(t/T)
T
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9  Fourieranalyse von nichtsinusförmigen periodischen     
Wechselgrößen und nichtperiodischen Größen 

9.1  Fourierreihenentwicklung von analytisch gegebenen  
nichtsinusförmigen periodischen Wechselgrößen     
 (Band 3, S.95-115) 

Darstellung nichtsinusförmiger periodischer Wechselgrößen durch Fourierreihen 

v(t) = k k vk
k 0 k 0

ˆv v sin(k t )  

v(t) = 0 v0 1 v1 2 v2 3 v3ˆ ˆ ˆ ˆv sin v sin( t ) v sin(2 t ) v sin(3 t ) ...  

 Gleichanteil 1. Harmonische 
oder Grundwelle

2. Harmonische 
oder 1. Oberwelle 

3. Harmonische  
oder 2. Oberwelle 

Fourierreihe mit Fourierkoeffizienten 

v(t) = a0 + (ak cos k t bk sin k t)
k 1

 

 mit Amplitudenspektrum 2 2k k kv̂ a b  

 und Phasenspektrum vk = arc tan
ak
bk

 

Fourierkoeffizienten   (keine Symmetrien) 

a0 =

 

1
T

v(t) dt
0

T

 

ak =

 

2
T

v(t) cos k t dt 
0

T

 

bk =

 

2
T

v(t) sin k t dt
0

T

 

und 

a0 =

 

1
T

v(t)
T/2

T/2

dt  

ak =

 

v(t)
T/2

T/2

cos k t dt  

bk =

 

2
T

v(t)
T/2

T/2

sin k t dt  

mit   k = 1, 2, …, n 

a0 = 1
2

v( t)
0

2

d( t)  

ak = 1 v( t)
0

2

cos k( t) d( t)  

bk = 1 v( t)
0

2

sin k( t) d( t)  

und 

a0 = 1
2

v( t) d( t)  

ak = 1 v( t) cos k t d( t)  

bk = 1 v( t) sin k t d( t)  

mit   k = 1, 2, …, n 

© Springer Fachmedien Wiesbaden 2015 
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Vereinfachungen bei der Berechnung der Fourierkoeffizienten 

Symmetrie 1. Art: gerade Funktionen mit   v(– t) = v(t)   bzw.   v(– t) = v( t) 

 (spiegelungssymmetrisch zur Ordinate) 

v(t) = a0 + 
 

ak cos k t
k 1

 v( t) = a0 + ak cos k( t)
k 1

 

mit  bk = 0 mit  bk = 0 

und  a0 =

 

2
T

v(t) dt
0

T/2

 und  a0 = 1 v( t) d( t)
0

 

und  ak =

 

4
T

v(t)
0

T/2

cos k t dt  und  ak = 2 v( t)
0

cos k( t) d( t)  

Beispiele: 

Symmetrie 2. Art: ungerade Funktionen mit   v(– t) = – v(t)   bzw.   v(– t) = – v( t) 
 (zentralsymmetrisch) 

v(t) =
 

bk sin k t
k 1

 v( t) = bk sin k( t)
k 1

 

mit   a0 = 0 
und   ak = 0 

mit   a0 = 0 
und   ak = 0 

und   bk =

 

4
T

v(t) sin k t dt
0

T/2

 und   bk =
0

2 v( t) sin k( t) d( t)  

Beispiele: 
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Symmetrie 3. Art:   v(t + T/2) = – v(t)   bzw.   v( t + ) = – v( t) 
 (Verschieben um T/2 bzw.  und Spiegeln an der t-Achse bzw. t-Achse) 

v(t) =
 

a2k 1 cos(2k 1) t b2k 1 sin(2k 1) t
k 0

 

mit   a2k+1 =

 

4
T

v(t) cos(2k 1) t dt
0

T/2

 a2k = 0 

und   b2k+1 =

 

4
T

v(t)
0

T/2

sin(2k 1) t dt  b2k = 0 

für   k = 0, 1, 2, 3, 4, … 

oder 

v( t) =
 

a2k 1 cos(2k 1) t b2k 1 sin(2k 1) t
k 0

 

mit   a2k+1 =

 

2 v( t) cos(2k 1) t d( t)
0

 a2k = 0 

und   b2k+1 =

 

2 v( t)
0

sin(2k 1) t d( t)  b2k = 0 

für   k = 0, 1, 2, 3, 4, … 

Beispiele: 

 
 
 

 



166 9  Fourieranalyse 

Symmetrie 1. und 3. Art: 

v(t) =
 

a2k 1 cos(2k 1) t
k 0

 

mit  bk = 0,    a2k = 0 

und 

a2k+1 =

 

8
T

v(t) cos(2k 1) t dt
0

T/4

 

v( t) = a2k 1 cos(2k 1) t
k 0

 

mit  bk = 0,    a2k = 0 

und 

a2k+1 = 4 v( t)
0

/2

cos(2k 1) t d( t)  

Beispiel: 

 

Symmetrie 2. und 3. Art: 

v(t) =
 

b2k 1 sin(2k 1) t
k 0

 

mit  a0 = 0,    ak = 0,    b2k = 0 

und 

b2k+1 =

 

8
T

v(t)
0

T/4

sin(2k 1) t dt  

v( t) = b2k 1 sin(2k 1) t
k 0

 

mit  a0 = 0,    ak = 0,    b2k = 0 

und 

b2k+1 = 4 v( t) sin(2k 1) t d( t)
0

/2

 

Beispiel: 
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Symmetrie 4. Art:   v(t + T/2) = v(t)   bzw.   v( t + ) = v( t) 
  (Verschieben um T/2 bzw. ) 

v(t) = a0 + a2k cos 2k t b2k sin 2k t
k 1

 

mit   a0 = 2
T

v(t) dt
0

T/2

 

und   a2k = 4
T

v(t) cos 2k t dt
0

T/2

 a2k–1 = 0 

und   b2k = 4
T

v(t) sin 2k t dt
0

T/2

 b2k–1 = 0 

für   k = 1, 2, 3, 4, … 

oder 

v( t) = a0 +
 

a2k cos 2k( t) b2k sin 2k( t)
k 1

 

mit   a0 = 1 v( t) d( t)
0

 

und   a2k = 2 v( t)
0

cos 2k( t) d( t)  a2k–1 = 0 

und   b2k = 

 

2 v( t) sin 2k( t) d( t)
0

 b2k–1 = 0 

für   k = 1, 2, 3, 4, … 
Beispiele: 
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Gang der Berechnungen 
Bei der Überführung einer analytisch gegebenen, nichtsinusförmigen periodischen Funk-
tion v(t) oder v( t) in eine Fourierreihe mit Sinus- und Kosinus-Gliedern sollte nach fol-
genden Schritten vorgegangen werden: 

1. Angabe der Funktionsgleichung und grafische Darstellung der Funktion 

2. Untersuchung der Funktion nach Symmetrien 

3. Berechnung der Fourierkoeffizienten nach den angegebenen Formeln in t oder t 

4. Aufstellen der Fourierreihe in Summenform und in ausführlicher Form 

5. Weitere Berechnungen, z.B. Effektivwert, Klirrfaktor, Leistungen. 
 

Beispiel:  Fourierreihe einer Sägezahnfunktion 

Zu 1. Funktionsgleichung 

u( t) = tû 1     für  0 t 2
2

 

Grafische Darstellung der Funktion: 

 
 

Zu 2. Die Sägezahnfunktion besitzt keine der beschriebenen Symmetrien. 
Zu 3. 

a0 =
2

0

1 v( t) d( t)
2

  

a0 =
2

0

1 tû 1 d( t)
2 2

= 
2 2

0 0

û 1d( t) ( t) d( t)
2 2

 

a0 =
2 22 2

0 0

ˆ ˆ ˆu 1 ( t) u 1 (2 ) u( t) 2
2 2 2 2 2 2 2

 

a0 û
2

 

Der Gleichanteil kann auch aus der Funktion abgelesen werden, indem die Dreieckfläche in 
eine flächengleiche Rechteckfläche mit den Seiten 2  und a0 überführt wird. 
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ak =
2 2

0 0

1 1 tˆv( t) cosk( t) d( t) u 1 cosk( t) d( t)
2

 

ak =
2 2

0 0

û 1cosk( t) d( t) ( t) cosk( t) d( t)
2

 

mit  2
cosax x sin axx cosax dx

aa
 

ak =
2 2

2
0 0

û sin k( t) 1 cosk( t) ( t) sin k( t)
k 2 kk

 

ak = 2
û sin k(2 ) sin 0 1 cosk(2 ) 1 (2 ) sin k(2 )

k 2 kk
 

ak = 0 

bk =
2 2

0 0

1 1 tˆv( t) sin k( t) d( t) u 1 sin k( t) d( t)
2

 

bk =
2 2

0 0

û 1sin k( t) d( t) ( t) sin k( t) d( t)
2

 

mit 2
sin ax x cosaxx sin ax dx

aa
 

bk =
2 2

2
0 0

û cosk( t) 1 sin k( t) ( t) cosk( t)
k 2 kk

 

bk = 2
û cosk(2 ) 1 1 sin k(2 ) 0 (2 ) cosk(2 ) 0

k 2 kk
 

bk = û 1 2
2 k

 

bk = û
k

 

Zu 4.  v( t) = a0 + k k
k 1

(a cosk t b sink t)  

u( t) =
k 1

ˆ ˆu u sin k t
2 k

 (Summenform) 

u( t) =
ˆ ˆu u sin t sin 2 t sin3 t sin 4 t ...
2 1 2 3 4

 (ausführliche Form) 
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9.2  Reihenentwicklung  
 von in diskreten Punkten vorgegebenen  
 nichtsinusförmigen periodischen Funktionen 

Direkte trigonometrische Interpolation  (Band 3, S.116-140) 
 Festgelegt werden: 

  m Teilintervalle mit gleichen  x = 2 /m, wobei   m  2n + 1   bzw.   
 

m 1
2

n  

 mit m Stützstellen mit den xi-Werten 

 i
2x i x i     mit    i 0,1 , 2, 3, ... , m 1
m

 

 und m zugehörigen Funktionwerten  vi = f(xi) 

 a0 = 1
m

vi
i 0

m 1
  a0 = 1

3m
(2v0 4v1 2v2 4v3 ... 4vm 1)  

  (durch die Simpsonregel ersetzt mit v0 = vm) 

 ak =
m 1

i i
i 0

2 v cos kx    für  k 1,  2,  3,  ... , n 1
m

 

bk =
m 1

i i
i 0

2 v sin kx     für  k = 1, 2, 3, ... , n 1
m

  

und zusätzlich für gerade m: 

 

a m
2

1
m

( 1)i vi
i 0

m 1
  

Beispiel: 

m = 12  Stützstellen  

mit den Funktionwerten  

V0 , v1, v2, … , v10, v11 

 

m 1
2

5,5 n 5  

und m gerade 

Fourierkoeffizienten: 
a0,  
a1, … , a5,  
b1, … , b5,  
a6  

 



9.2  Reihenentwicklung 171 

Tafel für die direkte trigonometrische Interpolation mit m = 12 (Zipperer-Tafel) 

vi 0 1 2 3 4 5 6 

v0 2v0 + v0  + v0  + v0  + v0  + v0  + v0 

v1 4v1 + q1 + p1 + p1 + q1  + v1 – p1 + q1 – q1 + p1 – v1 

v2 2v2 + p2 + q2 – p2 + q2 – v2  – p2 – q2 + p2 – q2 + v2 

v3 4v3  + v3 – v3   – v3 + v3   + v3 – v3 

v4 2v4 – p4 + q4 – p4 – q4 + v4  – p4 + q4 – p4 – q4 + v4 

v5 4v5 – q5 + p5 + p5 – q5  + v5 – p5 – q5 + q5 + p5 – v5 

v6 2v6 – v6  + v6  – v6  + v6  – v6  + v6 

v7 4v7 – q7 – p7 + p7 + q7  – v7 – p7 + q7 + q7 – p7 – v7 

v8 2v8 – p8 – q8 – p8 + q8 + v8  – p8 – q8 – p8 + q8 + v8 

v9 4v9  – v9 – v9   + v9 + v9   – v9 – v9 

v10 2v10 + p10 – q10 – p10 – q10 – v10  – p10 + q10 + p10 + q10 + v10 

v11 4v11 + q11 – p11 + p11 – q11  – v11 – p11 – q11 – q11 – p11 – v11 

 36a0 6a1 6b1 6a2 6b2 6a3 6b3 6a4 6b4 6a5 6b5 12a6 

Die folgende leere Zipperer-Tafel kann für Rechenbeispiele kopiert und nach obiger Vorschrift 
ausgefüllt werden: 

1. Ablesen und Eintragen der 12 Funktionswerte vi 
2. Berechnen und Eintragen der pi = vi · 0,5  und  qi = vi · 0,866 
3. Aufsummieren der Spaltenwerte und Berechnen der ak und bk 
4. Aufstellen der trigonometrischen Summe 

vi 0 1 2 3 4 5 6 
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Harmonische Analyse mit Hilfe einer Ersatzfunktion 

An den Stellen i hat die periodische Ersatzfunktion v(x) die Ordinatensprünge 

si = v( i + 0) – v( i – 0) 

mit  v( i – 0)   linksseitiger Grenzwert 
und  v( i + 0)   rechtsseitiger Grenzwert, 

an den  r  Stellen  i  hat die 1. Ableitungsfunktion die Ordinatensprünge 

 si v ( i 0) v ( i 0) , 

an den  r  Stellen  i  hat die 2. Ableitungsfunktion die Ordinatensprünge 

 si v ( i 0) v ( i 0) , 

an den  r  Stellen  i  hat die 3. Ableitungsfunktion die Ordinatensprünge 

 si v ( i 0) v ( i 0) , 

an den r(n) Stellen  i
(n)  hat die n-te Ableitungsfunktion die Ordinatensprünge 

 si
(n) v(n) ( i

(n) 0) v(n) ( i
(n) 0) . 

Für die Fourierkoeffizienten ergibt sich dann 

ak =
 

1
k

si sin k i
1
k2

si cos k i
i 1

r

i 1

r
 

 

1
k3

si
i 1

r
sin k i

1
k4

si cos k i
i 1

r
...  

 

... 1
kn 1

si
(n) sin

cos
k i

(n)

i 1

r(n)
1
kn 1

v(n 1) (x)
sin
cos

k x dx
0

2

 

bzw. 

bk =
 

1
k

si cos k i
1
k2

si
i l

r
sin k i

i l

r
 

 
 

1
k3

si cos k i
1
k4

si sin k i ...
i 1

r

i 1

r
 

 

 

... 1
kn 1

si
(n)

i 1

r(n)
cos
sin

k i
(n) 1

kn 1
v(n 1)

0

2

(x)
cos
sin

k x dx  

mit  k = 1, 2, 3, … , n. 
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Beispiel: 
Für alle periodischen Rechteckfunktionen und für periodische Funktionen, die durch Treppenkurven 
angenähert werden, können die Fourierkoeffizienten ohne Integration ermittelt werden. 

ak =
 

1
k

(s1 sin k 1 s2 sin k 2 ... sr sink r ) 1
k

v (x) sinkx dx
0

2

 

bk =
 

1
k

(s1 cosk 1 s2 cosk 2 ... sr cosk r ) 1
k

v (x)
0

2

coskx dx  

und mit den Ordinatensprüngen  si = v( i + 0) – v( i – 0)   und v (x) 0 . 

Geradenapproximation und Sprungstellenverfahren mit m =12 Stützstellen  

 

ak =
 

1
k2

si cos k i
i 1

r
 bk = 1

k2
si sin k i

i 1

r
 

mit den  r  Ordinatensprüngen der 1. Ableitungsfunktionen an den Stellen i : 

 si v ( i 0) v ( i 0)  
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Tafel für die Berechnung der 8 Fourierkoeffizienten bei Geradenapproximation  
mit m =12 Stützstellen und Anwendung des Sprungstellenverfahrens 

Arbeitsschritte: 

1. Ablesen und Eintragen der   
12 Funktionswerte vi 

2. Eintragen der  2 · vi-Werte  bzw.
4 · vi-Werte  und Berechnen des
Gleichanteils a0  

Die Berechnung des Gleichan-
teils erfolgt nach der Simpson-
formel.   

3. Berechnen und Eintragen der Ordinatensprünge ± si der Ableitungsfunktion 

  
 
s1

6 (v11 2v0 v1)    und    si
6 (vi 2 2 vi 1 vi )  

Die Ordinatensprünge der Ableitungsfunktion  si v ( i 0) v ( i 0)   ergeben sich 
mit  x = /6  und  v12 = v0: 

  

 

s1 A1,1 A1,m A1,1 A1,12

si A1,i A1,i 1    mit  i 2, 3, 4, ... , 12

mit  A1,i
vi vi 1

x
   und   A1,12

v0 v11
x

 

Die Formeln für die Ordinatensprünge lauten dann: 

 

 

s1 A1,1 A1,12
v1 v0

x
v0 v11

x
6 (v11 2 v0 v1)

s2 A1,2 A1,1
v2 v1

x
v1 v0

x
6 (v0 2 v1 v2 )

s3 A1,3 A1,2
v3 v2

x
v2 v1

x
6 (v1 2 v2 v3)

s4 A1,4 A1,3
v4 v3

x
v3 v2

x
6 (v2 2 v3 v4 )

M

s12 A1,12 A1,11
v12 v11

x
v11 v10

x
6 (v10 2 v11 v12 )

 

4. Berechnen und Eintragen der   ± pi = ± 0,5 · si   und   ± qi = ± 0,866 · si  
Die auf den vorigen Seiten entwickelten Formeln für die Fourierkoeffizienten entspre-
chen den Spalten 1 bis 8 der folgenden Tabelle. 

5. Aufsummieren der Spaltenwerte und 
Berechnen der Fourierkoeffizienten ak und bk 
Die Aufsummierung erfolgt spaltenweise, und die Spaltensummen müssen noch durch 

 · k2 dividiert werden. 
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vi 0 si  1 2 3 4 5 6 7 8 

v0 2v0 s1  s1   + s1   + s1  + s1  + s1  + s1  + s1  + s1   

v1 4v1  s2  + q2 + p2 + p2 + q2  + s2 – p2 + q2 – q2 + p2 + s2  – q2 – p2 – p2 – q2 

v2 2v2  s3  + p3 + q3 – p3 + q3 – s3  – p3 – q3 + p3 – q3 + s3  + p3 + q3 – p3 + q3 

v3 4v3  s4   + s4  + s4    – s4 + s4   + s4 – s4   – s4  + s4   

v4 2v4  s5  – p5 + q5 – p5 + q5 + s5  – p5 + q5 – p5 – q5 s5  – p5 + q5 – p5 – q5 

v5 4v5  s6  – q6 + p6 + p6 – q6  + s6 – p6 – q6 + q6 + p6 s6  + q6 –p6 – p6 + q6 

v6 2v6  s7  – s7   + s7   – s7  + s7  – s7  + s7  – s7  + s7   

v7 4v7  s8  – q8 – p8 + p8 + q8  – s8 – p8 + q8 + q8 – p8 – s8  + q8 + p8 – p8 – q8 

v8 2v8  s9  – p9 – q9 – p9 + q9 + s9  – p9 – q9 – p9 + q9 + s9  – p9 – q9 – p9 + q9 

v9 4v9  s10   – s10  – s10    + s10 + s10   – s10 – s10   + s10  + s10   

v10 2v10 s11  + p
11

 – q
11

 –p11 – q11 – s11  – p11 + q11 + p11 + q11 s11  + p11 – q11 – p11 – q11 

v11 4v11  s12  + q
12

 – p
12

 + p
12

 – q
12

 – s12 – p
12

– q
12

– q
12

– p
12

– s12  – q12 + p
12

 – p12 + q12 

 A0  A1 B1 A2 B2 A3 B3 A4 B4 A5 B5 A6  A7 B7 A8 B8 

a0 =
 

A0
36

 ak =
 

Ak
k2

 bk =
Bk

k2
 mit   k = 1, 2, 3, … , 8 

Die folgende leere Tafel kann für Rechenbeispiele kopiert und nach obiger Vorschrift 
ausgefüllt werden: 

vi 0 si  1 2 3 4 5 6 7 8 
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9.3  Anwendungen der Fourierreihe  
 (Band 3, S.141-149) 
Wirkleistung bei nichtsinusförmigen Strömen und Spannungen           

P =

 

1
T

p(t)
0

T

dt 1
T

u(t) i(t) dt
0

T

 

u(t) = a0 +
 

(ak cos k t bk sin k t)
k 1

 

i(t) = a0
' (ak

' cos k t bk
' sin k t)

k 1
 

 
P a0 a0

' a1 a1
' b1 b1

'

2
a2 a2

' b2 b2
'

2
a3 a3

' b3 b3
'

2
...  

Mit 
'k k uk k k ikˆˆa u sin a i sin  

'k k uk k k ikˆˆb u cos b i cos  

P = U0 · I0 + U1 · I1 · cos 1 + U2 · I2 · cos 2 + U3 · I3 · cos 3 + … 

Die Wirkleistung bei nichtsinusförmigen periodischen Spannungen und Strömen ist gleich 
der Summe der Gleichleistung und der Wechselstromleistungen der Grund- und Ober-
wellen. 

Effektivwert einer nichtsinusförmigen periodischen Wechselgröße 

V =

 

1
T

v(t) 2 dt
0

T

 

 v(t) = a0 + (ak cos k t bk sin k t)
k 1

 

V =
 

a0
2 a1

2 b1
2

2
a2

2 b2
2

2
a3

2 b3
2

2
...  

Mit k k vkˆa v sin  und k k vkˆb v cos  

V = V0
2 V1

2 V2
2 V3

2 V4
2 ...  

Der Effektivwert einer nichtsinusförmigen periodischen Wechselgröße ist gleich der geo-
metrischen Summe der Effektivwerte des Gleichanteils, der Grundwelle und der Ober-
wellen. 
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Beurteilung der Abweichung vom sinusförmigen Verlauf 
Verzerrungsfaktor  

kv =

 

V1
V

V1

1
T

[v(t)]2 dt
0

T

V1

V0
2 V1

2 V2
2 V3

2 ...
 

Klirrfaktoren  

k =

 

V2
2 V3

2 V4
2 ...

V1
2 V2

2 V3
2 V4

2 ...
 k' V2

2 V3
2 V4

2 ...
V1

 

mit k =
 

k'

1 k' 2
 

Beispiele: 
Klirrfaktoren der Rechteckfunktion 

2 2

2 2

ˆ4u 1 1 1 ... 19 25 492 8k 0,435
ˆ4u 1 1 11 ... 89 25 492

 
 

2

2 2
'

2
k 0

ˆ4u 1 1 1 ...
9 25 49 12k 1 0,483      mit   ˆ4u 8 8(2k 1)

2

 

Klirrfaktoren der Sägezahnfunktion  

2 2

2 2

û 1 1 1 ... 14 9 162 6k 0,626
û 1 1 11 ... 64 9 162

 
 

2

2 2
'

2
k=1

û 1 1 1 ...
4 9 16 12k 1 0,803       mit   û 6 6k

2

 

Formfaktor  Scheitelfaktor  

f =
 

V
Va

 v̂
V

 

Sinusfunktion: f = 1,11  Sinusfunktion: 2 1,414  
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9.4  Die Darstellung nichtsinusförmiger periodischer Wechsel-
größen durch komplexe Reihen   (Band 3, S.150-155) 

v(t) =
 

ck e jk t

k
 v( t) = ck e jk t

k
 

mit   

 

ck
1
T

v(t)
0

T

e jk t dt  mit mit ck
1

2
v( t) e jk( t) d( t)

0

2

 

 

ck
1
T

v(t) e jk t dt
T/2

T/2

 ck
1

2
v( t) e jk( t) d( t)  

 
ck

ak
2

j
bk
2

ck e j k  

mit Amplitudenspektrum       
2 2k k kk

k 0 k<

1 1 ˆ      c a b v
2 2
                             

 

und Phasenspektrum k k
k vk

k k

b aarctan arctan
a b 2 2

 

9.5  Transformation von nichtsinusförmigen nichtperiodischen 
Größen durch das Fourierintegral   (Band 3, S.156-166) 

f(t) =

 

1
2

F( j ) e j t d  

mit  F(j ) = j tf (t) e dt F f (t)  und  f (t) dt K  

F(j ) =
 
R( ) j X( ) F( j ) e j ( )  

mit Amplitudenspektrum F( j ) [R( )]2 [X( )]2  

Phasenspektrum ( ) = arctan X( )
R( )
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Korrespondenzen der Fouriertransformation 

f(t) F(j ) 

(t) 

(t – t0) 

1 

(t) 

cos 0t 

sin 0t 

(t) · cos 0t 

(t) · sin 0t 

(t) · e– at 

(t) · tn ·
 

e at

n!
 

 mit  n = 0, 1, 2, … 

(t) · e– at · cos 0t 

(t) · e– at · sin 0t 

Rechteckimpuls: 

qT(t) =
1     für t T

0    für t T
 

Doppel-Rechteckimpuls: 

qT(t – T) – qT(t + T) 

2 2
a    mit  Re a 0

t a
 

 

sin Tt
t

      mit T 0  

1 

e j t0  

2  · ( ) 

1
j

( )  

 · [ (  – 0) + (  + 0)] 

j
[ ( 0 ) ( 0 )]  

j

0
2 2 2

[ ( 0 ) ( 0 )]  

0

0
2 2 2 j

[ ( 0 ) ( 0 )]  

1    mit a 0  bzw.  Re a 0
a j

 

n 1
1   mit a 0  bzw.  Re a 0

(a j )
 

2 20

j a   mit  a 0  bzw.  Re a 0
( j a)

 

0
2 20

  mit  a 0  bzw.  Re a 0
( j a)

 

2 sin T  

2sin T 4 j  

 · e–a  

 · qT( ) 
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10  Vierpoltheorie 
10.1  Grundlegende Zusammenhänge der Vierpoltheorie 

(Band 3, S.171-174) 
Elektrische Schaltungen zur Übertragung von Energien oder zur Verarbeitung von Infor-
mationen sind in den meisten Fällen „Zweitore“ oder „Vierpole“, also Schaltungen mit 
zwei Eingangsklemmen und zwei Ausgangsklemmen.  
Diese Richtungsdefinitionen sind in der nachrichtentechnischen Literatur üblich: 

Dem normalen Vorwärtsbetrieb ist stets eine Rückwirkung vom Ausgang zum Eingang 
überlagert, die auch zu Störungen bei der Signalübertragung führen kann. 

Vierpolschaltung  
in Vorwärtsbetrieb 

 

Vierpolschaltung  
in Rückwärtsbetrieb 

 

10.2  Vierpolgleichungen, Vierpolparameter und 
Ersatzschaltungen    

 (Band 3, S.175-185) 
Leitwertform der Vierpolgleichungen: 

I1 = Y11 · U1 + Y12 · U2 
I2 = Y21 · U1 + Y22 · U2 

oder 1 11 12 1

2 21 22 2

UI Y Y
I Y Y U

 

Kurzschluss-Eingangsleitwert: Kurzschluss-Übertragungsleitwert  
rückwärts: 

a
2

1
Y11 in

1 U 0

I
Y (Y )

U
 i

1

1
Y12 ür

2 U 0

I
Y (Y )

U
 

Kurzschluss-Übertragungsleitwert  
vorwärts: 

Kurzschluss-Ausgangsleitwert: 

a
2

2
Y21 üf

1 U 0

I
Y (Y )

U
 i

1

2
Y22 out

2 U 0

I
Y (Y )

U
 

© Springer Fachmedien Wiesbaden 2015 
W. Weißgerber, Elektrotechnik für Ingenieure - Formelsammlung, DOI 10.1007/978-3-658-09090-6_10 
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Widerstandsform der Vierpolgleichungen 

U1 = Z11 · I1 + Z12 · I2 
U2 = Z21 · I1 + Z22 · I2 

oder 1 11 12 1

21 22 22

U Z Z I
U Z Z I

 

Leerlauf-Eingangswiderstand: Leerlauf-Übertragungswiderstand  
rückwärts: 

a 0
2

1
Y11 in

1 I 0

U
Z (Z )

I
 i 0

1

1
Y12 ür

2 I 0

U
Z (Z )

I
 

Leerlauf-Übertragungswiderstand  
vorwärts: 

Leerlauf-Ausgangswiderstand: 

a 0
2

2
Y21 üf

1 I 0

U
Z (Z )

I
 i 0

1

2
Y22 out

2 I 0

U
Z (Z )

I
 

 

 

Reihen-Parallel-Form der Vierpolgleichungen 

U1 = H11 · I1 + H12 · U2 
 I2 =  H21 · I1 + H22 · U2 

oder 111 121

21 222 2

U  IH H
UH H I

 

Kurzschluss-Eingangswiderstand: Leerlauf-Spannungsrückwirkung: 

a
2

1
Y11 in

1 U 0

U
H (Z )

I
 i 0

1

1
Y12 ur

2 I 0

U
H (V )

U
 

Kurzschluss-Stromübersetzung 
vorwärts: 

Leerlauf-Ausgangsleitwert: 

a
2

2
Y21 if

1 U 0

I
H (V )

I
 i 0

1

2
Y22 out

2 I 0

I
H (Y )

U
 

 

 

 

 

 

 

 



182 10  Vierpoltheorie 

Parallel-Reihen-Form der Vierpolgleichungen 

I1 = C11 · U1 + C12 · I2 
U2 = C21 · U1 + C22 · I2 

oder 1 11 12 1

2 221 22

C CI U
U C C I

 

Leerlauf-Eingangsleitwert: Kurzschluss-Stromrückwirkung: 

a 0
2

1
Yin11

1 I 0

I
C (Y )

U
 i

1

1
Y12 ir

2 U 0

I
C (V )

I
 

Leerlauf-Spannungsübersetzung 
vorwärts: 

Kurzschluss-Ausgangswiderstand: 

a 0
2

2
Y21 uf

1 I 0

U
C (V )

U
 i

1

2
Yout22

2 U 0

U
C (Z )

I
 

 

 
Kettenform der Vierpolgleichungen 

U1 = A11 · U2 + A12 · (–I2) 
 I1 = A21 · U2 + A22 · (–I2) 

oder 11 121 2

21 221 2

U  UA A
A AI I

 

reziproke 
Leerlauf-Spannungsübersetzung 
vorwärts: 

negativer reziproker 
Kurzschluss-Übertragungsleitwert 
vorwärts: 

a 02

1
11

2 ufI 0 Y

U 1A
U V

 
a2

1
12

2 üfU 0 Y

U 1A
I Y

 

reziproker 
Leerlauf-Übertragungswiderstand 
vorwärts: 

negative reziproke 
Kurzschluss-Stromübersetzung 
vorwärts: 

a 02

1
21

üf2 YI 0

I 1A
U Z

 
a2

1
22

2 ifU 0 Y

I 1A
I V

 

 

 
Definition der A-Parameter mittels Kettenschaltung 
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Umrechnung der Vierpolparameter von einer Form in eine andere 

Y11 Y12 22Z
det Z

 12Z
det Z 11

1
H

 12

11

H
H 22

det C
C

 12

22

C
C

 22

12

A
A

 
12

det A
A

 
 

(Y) 
Y21 Y22 21Z

det Z
 11Z

det Z
21

11

H
H

 
11

det H
H

 21

22

C
C

  
22

1
C

  
12

1
A

  11

12

A
A

 

22Y
det Y

 12Y
det Y

 Z11 Z12 
22

det H
H

 12

22

H
H

 
11

1
C

 12

11

C
C

11

21

A
A

 
21

det A
A

 

(Z) 
21Y

det Y
 11Y

det Y
 Z21 Z22 21

22

H
H

 
22

1
H

 21

11

C
C

 
11

det C
C 21

1
A

 22

21

A
A

 

11

1
Y

 12

11

Y
Y

 
22

det Z
Z

 12

22

Z
Z

 H11 H12 22C
det C

 12C
det C

12

22

A
A

 
22

det A
A

 

(H) 
21

11

Y
Y

 
11

det Y
Y

 21

22

Z
Z

 
22

1
Z

 H21 H22 21C
det C

 11C
det C 22

1
A

 21

22

A
A

 

22

det Y
Y

 12

22

Y
Y

 
11

1
Z

 12

11

Z
Z

22H
det H

 12H
det H C11 C12 21

11

A
A

 
11

det A
A

 

(C) 
21

22

Y
Y

 
22

1
Y

 21

11

Z
Z

 
11

det Z
Z

21H
det H

 11H
det H

C21 C22 
11

1
A

 12

11

A
A

 

22

21

Y
Y

 
21

1
Y

 11

21

Z
Z

 
21

det Z
Z 21

det H
H

11

21

H
H 21

1
C

 22

21

C
C

 A11 A12 

(A) 

21

det Y
Y

 11

21

Y
Y

 
21

1
Z

 22

21

Z
Z

 22

21

H
H

 
21

1
H

 11

21

C
C

 
21

det C
C A21 A22 

 

Formeln für Vierpoldeterminanten: 

22 11 21
11 22 12 21

11 1222

CH A1det Y Y Y Y Y
det Z H C A

 

11 22 12
11 22 12 21

22 2111

CH A1det Z Z Z Z Z
det Y H C A

 

22 11 11
11 22 12 21

11 22 22

Y Z A1det H H H H H
Y Z det C A

 

11 22 22
2111 22 12

22 11 11

Y Z A1det C C C C C
Y Z det H A

 

12 12 12 12
11 22 12 21

2121 21 21

CY Z H
det A A A A A

Y Z H C
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Ersatzschaltungen von Vierpolen 
 

-Ersatzschaltung: 

 
 
 
 

T-Ersatzschaltung: 

 
 
 
 

U-Ersatzschaltungen: 
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10.3  Vierpolparameter passiver Vierpole  
 (Band 3, S.186-188) 
 

(Y) (Z) 
1
Z

 1
Z

 

 
1
Z

 1
Z

 

(Z) existiert nicht 
(Matrixelemente sind 

unendlich) 

(A) (H) (C) 
1 Z Z 1 0 – 1 
0 1 – 1 0 1 Z 

   

(Y) (Z) 

Z Z 

 

(Y) existiert nicht 
(Matrixelemente sind 

unendlich) Z Z 

(A) (H) (C) 

1 0 0 1 
1
Z

 – 1 

1
Z

 1 – 1 
1
Z

 1 0 
   

(Y) (Z) 

1 2

1 1
Z Z

 
2

1
Z

 Z1 Z1 

 2

1
Z

 
2

1
Z

 Z1 Z1 + Z2 

(A) (H) (C) 

1 Z2 1 2

1 2

Z Z
Z Z

 1

1 2

Z
Z Z

 
1

1
Z

 – 1 

1

1
Z

 2

1

Z
1

Z
 1

1 2

Z
Z Z

 
1 2

1
Z Z

 1 Z2 
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(Y) (Z) 

1

1
Z

 
1

1
Z

 Z1 + Z2 Z2 

 
1

1
Z

 
1 2

1 1
Z Z

 Z2 Z2 

(A) (H) (C) 

1

2

Z
1

Z
 Z1 Z1 1 

1 2

1
Z Z

 2

1 2

Z
Z Z

 

2

1
Z

 1 – 1 
2

1
Z

 2

1 2

Z
Z Z

 1 2

1 2

Z Z
Z Z

 

   

(Y) (Z) 

2 3Z Z
K

 2Z
K

 Z1 + Z2 Z2 

 
mit 
K = Z1Z2 + Z1Z3 + Z2Z3 

2Z
K

 1 2Z Z
K

 Z2 Z2 + Z3 

(A) (H) (C) 

1

2

Z
1

Z
 1 3

1 3
2

Z Z
Z Z

Z
 

2 3

K
Z Z

 2

2 3

Z
Z Z

 
1 2

1
Z Z

 2

1 2

Z
Z Z

 

2

1
Z

 3

2

Z
1

Z
 – 2

2 3

Z
Z Z

 
2 3

1
Z Z

 2

1 2

Z
Z Z

 1 2
3

1 2

Z Z
Z

Z Z
 

   

(Y) (Z) 

1 2

1 1
Z Z

 
2

1
Z

 1 2 3

1 2 3

Z (Z Z )
Z Z Z

1 3

1 2 3

Z Z
Z Z Z

 

 
2

1
Z

 
2 3

1 1
Z Z

 1 3

1 2 3

Z Z
Z Z Z

3 1 2

1 2 3

Z (Z Z )
Z Z Z

 

(A) (H) (C) 

2

3

Z
1

Z
 Z2 1 2

1 2

Z Z
Z Z

 1

1 2

Z
Z Z

 1 2 3

1 2 3

Z Z Z
Z (Z Z )

3

2 3

Z
Z Z

 

2

1 3 1 3

Z1 1
Z Z Z Z

2

1

Z
1

Z
 1

1 2

Z
Z Z

 1 2 3

3 1 2

Z Z Z
Z (Z Z )

3

2 3

Z
Z Z

 2 3

2 3

Z Z
Z Z
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(Y) (Z) 

 

existiert nicht existiert nicht 

(A) (H) (C) 

– 1    0 0 – 1    0 1 

  0 – 1 1   0 – 1 0 
   

(Y) (Z) 

1 2

1 1 1
2 Z Z 1 2

1 1 1
2 Z Z 1 2

1 (Z Z )
2

 1 2
1 (Z Z )
2

 

 1 2

1 1 1
2 Z Z 1 2

1 1 1
2 Z Z 1 2

1 (Z Z )
2

 1 2
1 (Z Z )
2

 

(A) (H) (C) 

1 2

1 2

Z Z
Z Z

 1 2

1 2

2 Z Z
Z Z

 1 2

1 2

2 Z Z
Z Z

 1 2

1 2

Z Z
Z Z

 
1 2

2
Z Z

 1 2

1 2

Z Z
Z Z

 

1 2

2
Z Z

 1 2

1 2

Z Z
Z Z

 1 2

1 2

Z Z
Z Z

 
1 2

2
Z Z

 1 2

1 2

Z Z
Z Z

 1 2

1 2

2 Z Z
Z Z

 
   

(Y) 

1 2
2

31 1 2

Z Z 1
ZZ 2 Z Z

 2
2

31 1 2

Z 1
ZZ 2 Z Z

 

2
2

31 1 2

Z 1
ZZ 2 Z Z

 1 2
2

31 1 2

Z Z 1
ZZ 2 Z Z

 

(Z) 
2

1 1 3
2

1 3

Z Z Z
Z

2 Z Z
 

2
1

2
1 3

Z
Z

2 Z Z
 

 

2
1

2
1 3

Z
Z

2 Z Z
 

2
1 1 3

2
1 3

Z Z Z
Z

2 Z Z
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10.4  Betriebskenngrößen von Vierpolen  
 (Band 3, S.189-202) 
Kenngrößen eines Vierpols im Vorwärtsbetrieb 
 

Betriebskenngröße  Leerlauf Kurzschluss 

Eingangsleitwert 1
in

1

I
Y

U
 C11 Y11 

Eingangswiderstand 1
in

1

U
Z

I
 Z11 H11 

Übertragungsleitwert vorwärts 2
üf

1

I
Y

U
 0 21

12

1Y
A

 

Übertragungswiderstand vorwärts 2
üf

1

U
Z

I
 21

21

1Z
A

 0 

Spannungsübersetzung vorwärts 2
uf

1

U
V

U
 21

11

1C
A

 0 

Stromübersetzung vorwärts 2
if

1

I
V

I
 0 21

22

1H
A

 

 
Kenngrößen eines Vierpols im Rückwärtsbetrieb 
 

Betriebskenngröße  Leerlauf Kurzschluss 

Ausgangsleitwert 2
out

2

I
Y

U
 H22 Y22 

Ausgangswiderstand 2
out

2

U
Z

I
 Z22 C22 

Übertragungsleitwert rückwärts 1
ür

2

I
Y

U
 0 Y12 

Übertragungswiderstand rückwärts 1
ür

2

U
Z

I
 Z12 0 

Spannungsrückwirkung 1
ur

2

U
V

U
 H12 0 

Stromrückwirkung 1
ir

2

I
V

I
 0 C12 
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Kenngrößen des beschalteten Vierpols im Vorwärtsbetrieb 

 (Y) (Z) (H) (C) (A) 

Yin 11 a

22 a

detY + Y · Y
 

Y  + Y
 22 a

11 a

1 Z Y
Z Y det Z

22 a

11 a

H Y
det H H Y

a11

a22

C Y det C
1 C Y

21 22 a

11 12 a

A A Y
A A Y

 

Zin 22 a

11 a

Y  + Y
detY + Y · Y

 11 a

22 a

Z Y det Z
1 Z Y

11 a

22 a

det H H Y
H Y

a22

a11

1 C Y
C Y det C

11 12 a

21 22 a

A A Y
A A Y

 

Yüf 
21 a

22 a

Y · Y
 

Y  + Y
 21 a

11 a

Z Y
Z Y det Z

21 a

11 a

H Y
det H H Y

a21

a22

C Y
1 C Y

 a

11 12 a

Y
A A Y

 

Züf 
21

11 a

Y
det Y Y Y

 21

22 a

Z
1 Z Y

 21

22 a

H
H Y

 21

a11

C
C Y det C 21 22 a

1
A A Y

 

Vuf 
21

22 a

 Y
Y  + Y

 21

11 a

Z
Z Y det Z

21

11 a

H
det H H Y

21

a22

C
1 C Y

 
11 12 a

1
A A Y

 

Vif 
21 a

11 a

Y  Y
detY + Y · Y

 21 a

22 a

Z Y
1 Z Y

 21 a

22 a

H Y
H Y

 a21

a11

C Y
C Y det C

a

21 22 a

Y
A A Y

 

 
 
Kenngrößen des beschalteten Vierpols im Rückwärtsbetrieb 

 (Y) (Z) (H) (C) (A) 

Yout 
22 i

11 i

detY + Y · Y
Y  + Y

 11 i

22 i

1 Z Y
Z Y det Z

22 i

11 i

H Y det H
1 H Y

i11

i22

C Y
det C C Y

21 11 i

22 12 i

A A Y
A A Y

 

Zout 
11 i

22 i

Y  + Y
detY + Y · Y

 22 i

11 i

Z Y det Z
1 Z Y

11 i

22 i

1 H Y
H Y det H

i22

i11

det C C Y
C Y

22 12 i

21 11 i

A A Y
A A Y

 

Yür 
12 i

11 i

Y · Y
Y  + Y

 12 i

22 i

Z Y
Z Y det Z

12 i

11 i

H Y
1 H Y

 i12

i22

C Y
det C C Y

i

22 12 i

Y det A
A A Y

 

Zür 
12

22 i

Y
det Y Y Y

 12

11 i

Z
1 Z Y

 12

22 i

H
H Y det H

12

i11

C
C Y

 
21 11 i

det A
A A Y

 

Vur 
12

11 i

 Y
Y  + Y

 12

22 i

Z
Z Y det Z

12

11 i

H
1 H Y

 12

i22

C
det C C Y 22 12 i

det A
A A Y

 

Vir 
12 i

22 i

Y Y
detY + Y · Y

 12 i

11 i

Z Y
1 Z Y

 12 i

22 i

H Y
H Y det H

i12

i11

C Y
C Y

 i

21 11 i

Y det A
A A Y
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10.5  Leistungsverstärkung und Dämpfung 
 (Band 3, S.203-217) 

Bei aktiven Vierpolschaltungen wird für die Beurteilung der Leistungsübertragung die 
Leistungsverstärkung Vp definiert. 
Bei passiven Vierpolen wird der Kehrwert der Leistungsverstärkung als Leistungskenn-
größe verwendet und Dämpfung genannt. 
Die Leistungsverstärkung (Klemmen-Leistungsverstärkung, power gain) ist gleich dem 
Verhältnis der Wirkleistung am Vierpolausgang Pout zur Wirkleistung am Vierpoleingang 
Pin: 

out
p

in

PV  
P  

out
p

in

PV 10 lg     in dB 
P

 

2 a
p uf

in

GV V
G

 mit   Gin = inRe Y  

oder 
2 a

p if
in

RV V
R

 mit   Rin = inRe Z  

Sind der Eingangswiderstand und der Belastungswiderstand reell, dann kann die Leis-
tungsverstärkung auch aus der Strom- und Spannungsverstärkung errechnet werden: 

2 2 a 2 2
p if uf

1 1 in 1 1

I I R I UV  V V
I I R I U

 

Vp-Formel mit Y-Parametern: 

2
a21

p * *
11 a 22 a

Y G
V

Re det Y Y Y Y Y
 

Vp-Formel mit H-Parametern: 
2

a21
p * **

22 a 11 a

H  G
V

Re (H +Y ) detH) H Y(
 

 
Vp-Formel mit A-Parametern: 

 

a
p * * *

21 22 a 11 12 a

GV
Re A A Y A A Y
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10.6  Spezielle Vierpole 
 (Band 3, S.218-225) 

Umkehrbare Vierpole 
Ein Vierpol ist umkehrbar (reziprok, übertragungssymmetrisch), wenn für diesen Vierpol 
der Kirchhoffsche Umkehrungssatz gilt: 

U2 = 1U  

 

I2 = 1I  

 
Passive Vierpole sind umkehrbar. 

Bedingungsgleichungen für einen umkehrbaren Vierpol: 

Y12 = Y21 Z12 = Z21 H12 = – H21 C12 = – C21 det A = 1 

Symmetrische Vierpole 

Ein symmetrischer oder widerstandslängssymmetrischer Vierpol hat gleiches Übertra-
gungsverhalten in Vorwärts- und Rückwärtsrichtung.  

Umkehrbarer Vierpol mit Richtungssymmetrie: Yin(Y) = Yout(Y) 

 
Bedingungsgleichungen für einen symmetrischen Vierpol: 

Y11 = Y22 Z11 = Z22 det H = 1 det C = 1 A11 = A22 
Y12 = Y21 Z12 = Z21 H12 = – H21 C12 = – C21 det A = 1 

Rückwirkungsfreie Vierpole 

Wird bei einem Vierpol eine Ausgangsgröße nicht auf den Eingang übertragen, dann ist 
der Vierpol rückwirkungsfrei; ein Rückwärtsbetrieb ist nicht möglich. 

Bedingungsgleichungen für einen rückwirkungsfreien Vierpol: 

Y12 = 0 Z12 = 0 H12 = 0 C12 = 0 det A = 0 
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10.7  Zusammenschalten zweier Vierpole 

10.7.1  Grundsätzliches über Vierpolzusammenschaltungen  

 (Band 3, S.226-229) 
Vierpolparameter einer Vierpolzusammenschaltung 
Um das Wechselstromverhalten von nicht einfachen passiven Vierpolen (z.B. Symmetri-
sche X-Schaltung, Symmetrischer Brücken-T-Vierpol, Phasenketten, Laufzeitketten) und 
von rückgekoppelten aktiven Vierpolen (z.B. einstufige und mehrstufige Transistorver-
stärker im Kleinsignalbetrieb) mit Hilfe der Betriebskenngrößen beschreiben zu können, 
sind deren Vierpolparameter zu berechnen. 
Die Parameter können aber erst ermittelt werden, wenn die Vierpolzusammenschaltung 
entwickelt ist, d. h. wenn untersucht ist, auf welche Art die vorkommenden einfachen 
Vierpole wechselstrommäßig zusammengeschaltet sind. Bei einem Verstärker z.B. soll-
te beim Vierpol „Transistor“ begonnen werden und dann die Zusammenschaltung des 
Transistors mit den Widerständen untersucht werden. 
Sind mehr als zwei einfache Vierpole zusammengeschaltet, dann werden zunächst zwei 
Vierpole zu einem Vierpol zusammengefasst und dann der dritte Vierpol mit dem zusam-
mengefassten Vierpol vereinigt, usw. Dabei ist darauf zu achten, dass die Reihenfolge 
nicht vertauschbar ist. Es handelt sich also immer nur um die Zusammenschaltung von 
jeweils zwei Vierpolen. 
Arten des Zusammenschaltens von Vierpolen: 

 

Werden zwei Dreipole (z.B. Transistor und -Vierpol) zusammengeschaltet, dann muss 
bei der Zusammenschaltung die durchgehende Verbindung mit der gestrichelten Linie in 
den Prinzipschaltungen übereinstimmen. 

Rückkopplungs-Vierpole 
Parallel-Parallel-Schaltung (Spannung-Strom-Rückkopplung) 
Reihen-Reihen-Schaltung (Strom-Spannung-Rückkopplung) 
Reihen-Parallel-Schaltung (Spannung-Spannung-Rückkopplung) 
Parallel-Reihen-Schaltung (Strom-Strom-Rückkopplung) 
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10.7.2  Die Parallel-Parallel-Schaltung zweier Vierpole 
 (Band 3, S.230-232) 

 
Die Leitwertmatrix von zwei Vierpolen in Parallel-Parallel-Schaltung wird berechnet, 
indem die entsprechenden Leitwert-Vierpolparameter der Einzelvierpole addiert werden: 

' " ' "
11 12 11 11 12 12

' " ' "
21 22 21 21 22 22

Y Y Y Y Y Y

Y Y Y Y Y Y
 

Beispiele: 
1. Symmetrischer Brücken-T-Vierpol: 

 
2. Rückgekoppelter Transistor in Emitterschaltung (Spannung-Strom-Rückkopplung): 
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10.7.3  Die Reihen-Reihen-Schaltung zweier Vierpole 

 (Band 3, S.232-235) 

 
Die Widerstandsmatrix von zwei Vierpolen in Reihen-Reihen-Schaltung wird berechnet, 
indem die entsprechenden Widerstand-Vierpolparameter der Einzelvierpole addiert wer-
den. 

 
' " ' "

11 12 11 11 12 12
' " ' "

21 22 21 21 22 22

Z Z Z Z Z Z

Z Z Z Z Z Z
 

Beispiele: 
1. Symmetrischer Brücken-T-Vierpol: 

 

2. Rückgekoppelter Transistor in Emitterschaltung (Strom-Spannung-Rückkopplung):  
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10.7.4  Die Reihen-Parallel-Schaltung zweier Vierpole 

 (Band 3, S.236-241) 

 
Die Hybridmatrix von zwei Vierpolen in Reihen-Parallel-Schaltung wird berechnet, in-
dem die entsprechenden Hybrid-Vierpolparameter der Einzelvierpole addiert werden: 

 
' " ' "

11 12 11 11 12 12
' " ' "

21 22 21 21 22 22

H H H H H H

H Z H H H H
 

Die in der Tabelle 10.3 angegebenen H-Parameter müssen also hinsichtlich dieser beiden 
Parameter geändert werden, ehe sie zu den H-Parametern des Vierpols 1 addiert werden. 
Die Parameter H12 und H21 erhalten umgekehrte Vorzeichen. 

Geänderte Zusammenschaltung 
Damit die Vierpolparameter des Rückkopplungsvierpols unverändert mit den Parametern 
des Vierpols 1 zusammengefasst werden können, lässt sich auch die Zusammenschaltung so 
verändern, dass die durchgehende Verbindung des Vierpols 2 wie bei der Reihen-Reihen-
Schaltung oben liegt: 

 

 

' " ' "
11 12 11 11 12 12

' " ' "
21 22 21 21 22 22

H H H H H H

H H H H H H
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Beispiele: 
1. Kollektorschaltung als rückgekoppelter Transistor in Emitterschaltung  

ohne Kollektorwiderstand (Spannung-Spannung-Rückkopplung): 
 

 
 

 

' " ' "
11 11 12 12
' " ' "
21 21 22 22

  H H (H H )H
(H H )   H H

 

2. Kollektorschaltung als rückgekoppelter Transistor in Emitterschaltung mit Kollektorwi-
derstand: 

 
 
Der Kollektorwiderstand ist als Längswiderstand in Kette zum Transistor geschaltet und ver-
ändert dessen Parameter.  



10.7  Zusammenschalten zweier Vierpole 197 

3. Phasenumkehrstufe 

 
 

10.7.5  Die Parallel-Reihen-Schaltung zweier Vierpole 
 (Band 3, S.241-242) 

 

 Die C-Parameter von zwei Vierpolen in Parallel-Reihen-Schaltung werden berechnet, 
indem die entsprechenden C-Parameter der Einzelvierpole addiert werden: 

 
' " ' "

11 12 11 11 12 12
' " ' "

21 22 21 21 22 22

C C C C C C

C C C C C C
 

Transistoren in Parallel-Reihen-Schaltung finden in der Praxis keine Anwendung. 
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10.7.6  Die Ketten-Schaltung zweier Vierpole 
 (Band 3, S.243-247) 

 
 

 

' ' " "
11 12 11 12 11 12

' ' " "
21 22 21 22 21 22

A A A A A A
 

A A A A A A
 

Falksches Schema der Matrizenmultiplikation: 

 "
11A  
"
21A  

"
12A  
"
22A  

'
11A  
'
21A  

'
12A  
'
22A  

'
11A · "

11A + '
12A · "

21A  
'
21A · "

11A + '
22A · "

21A  

'
11A · "

12A + '
12A · "

22A  
'
21A · "

12A + '
22A · "

22A  
 
Beispiel: 
Transistorverstärker 

 
Ersatzschaltbild 

 



10.8  Die Umrechnung von Vierpolparametern von Dreipolen 199 

10.8  Die Umrechnung von Vierpolparametern von Dreipolen 
 (Band 3, S.248-252) 

 

11e 12e
c

21e 22e

h 1 h
h

(h 1) h  

11e e 12e

21e 21e
b

21e 22e

21e 21e

h det h h
1 h 1 h

h
h h

1 h 1 h

 

Umrechnung der Vierpolparameter mittels Umpoler-Zusammenschaltungen 

 Kollektorschaltung Basisschaltung 
 als Reihen-Parallel-Schaltung  als Parallel-Reihen-Schaltung 

 

Umrechnung der Vierpolparameter mittels vollständiger Leitwertmatrix 
gegeben: 

 

1 11 12 1

21 222 2

UI y y
I y y U

 

 

 

11 12 11 121 10

21 22 21 222 20

11 21 12 22 11 12 21 223 30

I y y (y y ) U
I y y (y y ) U
I (y y ) (y y ) y y y y U

 
11 12 21 22mit    y y y y y  

gesucht: 

12 223 3

21 22 222 2

UI y (y y )
UI (y y y
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10.9  Die Wellenparameter passiver Vierpole 
 (Band 3, S.253-258) 
Wellenwiderstände passiver Vierpole 

Eingangs-Wellenwiderstand Zw1   Ausgangs-Wellenwiderstand Zw2 

 
 

11 12
w1 in in k

21 22

A A
Z Z Z

A A l  

22 12
w2 out out k

21 11

A A
Z Z Z

A A l  

 
Wellenwiderstand eines symmetrischen Vierpols 

12
w1 w2 w in in k out out k k

21

A
Z Z Z Z Z Z Z Z Z

A l l l  

 

11 22
k

Z
A A

Z Z
l

l
 12 k

k

Z
A Z

Z Z
l

l
 21

k

1A
Z (Z Z )l l

 

Übertragungsmaß 

mittleres Wellenübertragungsmaß 

u i 11 22 12 21
1g (g g ) a j b ln A A A A
2

 

mit    a Re g     Wellendämpfungsmaß 

und   b Im g     Wellenphasenmaß (Winkelmaß) 

Spannungs-Wellenübertragungsmaß 
1

u
2

U
g ln

U
 

Strom-Wellenübertragungsmaß 
1

i
2

I
g ln

I
 

Übertragungsmaß symmetrischer passiver Vierpole 
2

11 12 21 11 11g a j b ln A A A ln A A 1   
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