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Vorwort

Dieses Buch ist ein

Lehrbuch der theoretischen Physik. 

Es ist aus Vorlesungen und Seminaren entstanden, die ich in den letzten Jahren an der Univer-

sität Konstanz zum Thema

Quanteninformationstheorie

und

die Grundlagen der Quantentheorie

gehalten bzw. veranstaltet habe. 

Die unrelativistische Quantenphysik hat in den letzten ein bis zwei Jahrzehnten eine stür-

mische Entwicklung durchgemacht. Quantencomputer, Quantenteleportation, Quantenkrypto-

graphie, Quanteninformation sind die typischen Schlagwörter, die über den Kreis der Physiker

hinaus in populärwissenschaftlichen Artikeln und im Feuilleton mit dieser Entwicklung ver-

bunden werden. Das Konzept der Verschränkung ist das zentrale theoretische Konzept auf

diesen „neuen Wegen“ der Quantenphysik, die immer häufiger auch im Physikunterricht an

den Schulen beschrieben werden. Die theoretischen Grundlagen der neuen Entwicklungen

sind das Thema dieses Buches. 

An wen wendet sich das Buch? 

Das Buch wendet sich in erster Linie an Studenten, aber

darüber hinaus auch an alle, die an der Quantenphysik interessiert oder vielleicht sogar von ihr

fasziniert sind. Es sollen aber nicht nur Physikstudenten und Physiker, sondern auch Studen-

ten der Informatik, Chemie und anderer Naturwissenschaften, sowie Ingenieure und Lehrer

angesprochen werden. Das Buch setzt voraus, dass der Leser schon durch eine Lehrveranstal-

tung oder durch Selbststudium erste Einblicke in die Quantentheorie hatte. Es fängt also nicht

bei null an. 

Allerdings werden alle mathematischen und physikalischen Grundkenntnisse, die für die

Lektüre späterer Kapitel benötigt werden, als Einstieg in den Anfangskapiteln 1 und 2 wie-

derholt und aus einer für den Leser möglicherweise neuen Sicht aufgearbeitet. Dabei soll u.a. 

darauf vorbereitet werden, dass in der Quantentheorie die Konzepte Zustand und Zustandsent-

wicklung einschließlich Messung anders als in der klassischen Physik zu verstehen sind. Hier-

auf bauen die in den späteren Kapiteln beschriebenen Verallgemeinerungen auf. Das zweite

Kapitel enthält auch ein wissenschaftstheoretisches Rüstzeug, mit dem die Frage diskutiert

werden kann, auf welche Realität sich die Quantentheorie bezieht. 
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Anschließend steigen die Anforderungen an den Leser von Kapitel zu Kapitel an. Die Ka-

pitel bauen aufeinander auf. Übungsaufgaben können zur Kontrolle dienen. Kursiv geschrie-

bene Sätze fassen Ergebnisse zusammen. Fortgeschrittene Leser können mit ihrer Hilfe den

Text schnell querlesen. 

Zielsetzung

Dieses Buch will dem Leser dabei helfen, die raschen Entwicklungen der Quan-

teninformationstheorie besser überblicken, einordnen und mit angemessenem Aufwand nach-

vollziehen zu können. 

Beschränkung und Ergänzung

Der Anspruch an mathematische Präzision entspricht dem

der gebräuchlichen Lehrbücher der theoretischen Physik. Inhaltlich beschränke ich mich auf

die theoretischen Aspekte. Die Beschreibung der entsprechenden Experimente und techni-

schen Anwendungen würde noch einmal so viele Kapitel benötigen. Jedes Kapitel enthält

aber ein Unterkapitel über ergänzende Themen und weiterführende Literatur. Dort wird auf

Experimente hingewiesen. 

Diese Unterkapitel weisen auch auf theoretische Übersichtsartikel und Bücher hin. Mit

deren Hilfe kann der Leser das Dargestellte vervollständigen und vertiefen. Zusammenfas-

senden Darstellungen wurde gegenüber Originalartikeln der Vorzug gegeben. Es werden also

nicht die für die Entwicklung wichtigen Arbeiten rückblickend historisch korrekt aufgelis-

tet, vielmehr sollen in erster Linie für den Leser nützliche weiterführende Literaturhinweise

gegeben werden. 

Inhalt

Im Anschluss an die beiden ersten Kapitel wird in Kap. 3 und 4 zunächst die Physik

abgeschlossener Quantensysteme weiterentwickelt. Viele Beispiele und Anwendungen bezie-

hen sich auf Qubits (2-Niveau-Systeme). Mit dem Dichteoperator wird das Konzept des Quan-

tenzustands in Kap. 4 abschließend erweitert. Allgemeinere Zustände gibt es nicht. Kapitel 5

und 6 führen in das klassische bzw. quantentheoretische Entropie- und Informationskonzept

ein. 

Die Grundlagen der Physik zusammengesetzter Quantensysteme werden in Kap. 7 be-

schrieben. Dass sich Teilsysteme zusammen in einem verschränkten Zustand befinden kön-

nen, hat eine Vielzahl von überraschenden Effekten zur Folge. Eine Einführung wird in Kap. 8

gegeben. Verschränkung bedingt Korreliertheit der Teilsysteme. Zur Nicht-Lokalität der Zu-

stände treten noch die Möglichkeiten nicht-lokaler Messungen hinzu (Kap. 9). 

Die experimentell nachgewiesenen spezifischen Quantenkorrelationen (EPR-Korrelatio-

nen) bestätigen die fundamentale Aussage, dass es keine klassische Alternative zur Quan-

tentheorie gibt (Kap. 10). Diese EPR-Korrelationen können zur Grundlage einer im Prinzip

völlig abhörsicheren Quantenkryptographie gemacht werden. Auch die Quantenteleportation

beruht auf ihnen (Kap. 12). Für den Quantencomputer ist Verschränkung ein wesentliches

Hilfsmittel. Die Ausnutzung der Quantenparallelität erlaubt es, sehr viele Funktionswerte in

sehr wenigen Operationen zu berechnen. Das Problem ist dann das Auslesen der Ergebnisse

(Kap. 12). 

In Kap. 13 wenden wir uns der allgemeinen Dynamik offener Quantensysteme zu und

diskutieren zunächst verallgemeinerte Messungen, die die projektiven Messungen als Spezi-

alfall enthalten. Sie spielen zusammen mit den operatorwertigen Maßen (POVM) eine immer
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größere Rolle in den aktuellen Publikationen. Die allgemeine Entwicklung von offenen Quan-

tensystemen zwischen Präparation und Messung wird mit Hilfe der Quantenoperationen be-

schrieben. Verschiedene Quantenkanäle werden diskutiert (Kap. 14). Die Verallgemeinerung

der projektiven Messungen und der unitären Transformationen führen auf ein neues Szenario

der Quantenphysik. 

Dekohärenz ist der Verlust der Interferenzfähigkeit und stellt daher ein Problem beim

Quantencomputer dar. Umgekehrt spielt die umgebungsinduzierte Dekohärenz eine wichti-

ge Rolle bei der Beantwortung der Frage warum es klassische Objekte gibt (Kap. 15). Es liegt

nahe, diesen Ansatz auch bei der Begründung des Quantenmessprozesses zu versuchen. Mit

dem Nachtrag einiger Beweise in Kap. 16 schließt das Buch ab. 
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1 Der mathematische Rahmen

Es ist die Aufgabe der Quantentheorie – genau wie die jeder anderen physikalischen Theo-

rie – das Ergebnis von Experimenten vorherzusagen und diese Prognose zu begründen. Dazu

muss man den Zustand des physikalischen Systems zu Beginn eines Experiments beschreiben, 

man muss die Entwicklung des Systems während des Experiments formulieren und das Er-

gebnis einer Wechselwirkung mit dem Messapparat vorhersagen können. Der mathematische

Rahmen, der sich für die Formulierung der Quantentheorie bewährt hat, ist die Theorie des

Hilbert-Raums und die Wahrscheinlichkeitstheorie. Die fundamentale Verknüpfung zwischen

mathematischen Größen und physikalischer Realität wird dabei über die folgenden Zuordnun-

gen etabliert:

Quantensystem

 ↔  Hilbert-Raum

Quantenzustand

 ↔  Vektor im oder Operator auf dem Hilbert-Raum

Entwicklung des Quantenzustands

 ↔  Lineare Operatoren, die auf den Vektoren wir-

ken bzw. lineare Operatoren, die auf den Raum

der Operatoren (Liouville-Raum) wirken. 

Prognosen

 ↔  Wahrscheinlichkeitstheoretische Aussagen. 

Wir werden dieses Grundschema der Quantentheorie noch im Einzelnen darstellen. In

diesem Kapitel sollen zunächst die benötigten Definitionen und Sätze zusammengestellt wer-

den. Dabei werden wir nicht alle mathematischen Sätze beweisen. Insbesondere werden wir

voraussetzen, dass der Leser schon einmal Kontakt mit der Quantentheorie hatte, sodass die

Darstellung knapp gehalten werden kann. 

Da wir durchweg  d-Niveau-Quantensysteme ( d = 2 ,  3 , . . . ) untersuchen werden, wollen

wir eine stark vereinfachende Einschränkung machen:

 Mathematische Generalvoraussetzung:  Wir betrachten Quantensysteme, die mit

 Hilfe eines  endlich-dimensionalen  Hilbert-Raums Hd der Dimension d = 2 ,  3 , . . . 

 beschrieben werden können. 

Die Einschränkung ist gerechtfertigt, weil die wesentlichen begrifflichen Probleme so-

wie die neuen Konzepte und zentralen Methoden bereits mit Bezug auf einen endlich-

dimensionalem Hilbert-Raum eingeführt werden können. Wir wollen den konzeptionellen

physikalischen Problemen nicht noch mathematische Subtilitäten hinzufügen. Für die meisten

physikalisch relevanten Fällen, die eine Beschreibung im unendlich-dimensionalen Hilbert-

Raum erfordern, lassen sich die Ergebnisse für endlich-dimensionale Räume direkt übertra-

gen. 

Wie in der theoretischen Physik üblich, werden wir die  Dirac-Schreibweise  benutzen. In

diesem Rahmen ist es günstig, die dyadische Zerlegung von Operatoren in den Mittelpunkt
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 Der mathematische Rahmen

der Behandlung zu stellen. Sie ist für praktische Anwendungen wichtig, da sie ein einfaches

direktes Ablesen von Operatoreigenschaften und Operatorwirkungen erlaubt. 

1.1

Hilbert-Raum der Vektoren

1.1.1

Skalarprodukt, Dirac-Schreibweise

Ein  d-dimensionaler Hilbert-Raum  Hd, wie er in der Quantentheorie verwendet wird, ist ein

linearer Vektorraum über dem Körper der komplexen Zahlen

, auf dem ein Skalarprodukt



definiert ist. Die Vektoren bezeichnen wir durch  |ϕ,  |ψ,  |u,  |Φ   usw.,  | Null   ist der Nullvektor. 

 Addition, Multiplikation mit einer komplexen Zahl, lineare Unabhängigkeit, Basis und

 Dimension des Hilbert-Raums Hd sind analog zu den Begriffen in reellen Vektorräumen defi-

 niert. 

Je zwei Vektoren  |ϕ  und  |ψ  ist als  Skalarprodukt(scalar product) oder  inneres Produkt

(inner product) eine komplexe Zahl zugeordnet, die wir in der Form  ϕ|ψ  schreiben. Als

Grundlage für diese  Dirac-Schreibweise 1 (Dirac notation) haben wir einen  Ket-Raum  mit den

 Ket-Vektoren |ϕ, |ψ, . . .  und den hierzu dualen Vektorraum der  Bra-Vektoren χ|, θ|, . . . 

eingeführt (Raum der linearen Funktionale). Es ist eine Korrespondenz zwischen den Vektoren

des Ket- und des Bra-Raum erklärt (wir verwenden das gleiche Kernsymbol). 

 |ϕ d.K. 

 ↔ ϕ| , 

(1.1)

die  duale Korrespondenz (dual correspondence) genannt wird. Dabei wird dem Ket-Vektor

 |ϕ =  c 1 |ϕ 1  +  c 2 |ϕ 2   eineindeutig der Bra-Vektor  ϕ| =  c∗ 1 ϕ 1 | +  c∗ 2 ϕ 2 |  zugeordnet ( ∗  bedeutet konjugiert komplex). Die Reihenfolge im Produkt  ϕ|ψ  ist daher wichtig. Es gilt:

 ϕ|ψ =  ψ|ϕ∗

 ϕ|c 1 ψ 1 +  c 2 ψ 2  =  c 1 ϕ|ψ 1  +  c 2 ϕ|ψ 2  , c 1 , c 2  ∈

(1.2)



 ϕ|ϕ ≥  0  ∀ |ϕ ∈ Hn , ( φ|φ = 0  ⇔ |ϕ =  | Null )  . 

Daraus folgt

 c 1 ϕ 1 +  c 2 ϕ 2 |ψ =  c∗ 1 ϕ 1 |ψ +  c∗ 2 ϕ 2 |ψ . 

(1.3)

Das Skalarprodukt ist linear im zweiten Argument und  antilinear  im ersten Argument. Falls

 ϕ|ψ = 0 gilt, werden die Vektoren als zueinander  orthogonal (orthogonal) bezeichnet. 

Durch das Produkt wird auf dem Hilbert-Raum eine  Norm (norm) gemäß



 	ϕ	 =:  	|ϕ	 :=  ϕ|ϕ

(1.4)

induziert. Sie verschwindet genau dann, wenn  |ϕ  der Nullvektor ist. Wir erwähnen ohne

Beweis die  Schwarzsche Ungleichung

 |ϕ|ψ| ≤ 	ϕ	 	ψ	

(1.5)

1 Nach Dirac wird das Skalarprodukt  ϕ|ψ  geschrieben und „bracket“ genannt. Die Bestandteile „bra“  ϕ|  und

„ket“  |ψ  haben eine eigenständige Bedeutung
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und die  Dreiecksungleichungen

 	ϕ	 − 	ψ	 ≤ 	ψ − ϕ	 , 

 	ϕ +  ψ	 ≤ 	ϕ	 +  	ψ	 . 

(1.6)

Durch Einsetzen bestätigt man





 

1

 ϕ|ψ =

 	ϕ +  ψ	 2  − 	ϕ − ψ	 2 +  i 	ϕ − iψ	 2  − i 	ϕ +  iψ	 2

(1.7)

4

sowie die  Parallelogrammgleichung

 	ϕ +  ψ	 2 +  	ϕ − ψ	 2 = 2  	ϕ	 2 + 2  	ψ	 2  . 

(1.8)

Für

einen

Satz

 {|ϕ 1 , |ϕ 2 , . . . , |ϕl}  von Vektoren aus  Hd  wird durch

span( |ϕ 1 , . . . , |ϕl) die Menge aller möglichen Linearkombinationen dieser Vektoren

bezeichnet. Diese Menge bildet einen Unterraum von  Hd, der ebenfalls ein Hilbert-Raum

ist. Wir bezeichnen eine  orthonormale Basis (orthonormal basis) mit  ONB. Für eine ONB

 {|i, i = 1 , . . . , d}  gilt die Identität

 d



 |ϕ =

 |ii|ϕ

(1.9)

 i=1

mit den  Komponenten i|ϕ  des Vektors  |ϕ  bezüglich der ONB. Zu einem Unterraum ˆ

 H

von  H  bildet die Menge aller Vektoren  |ψ, die zu allen Vektoren  |χ ∈ ˆ

 H  orthogonal sind

( ψ|χ=0), einen weiteren Unterraum von  H, der das  orthogonale Komplement(orthogonal

complement) ˆ

 H⊥  genannt wird. Die direkte Summe beider Unterräume ist wieder der Hilbert-

Raum  H = ˆ

 H ⊕ ˆ

 H⊥ :=  {α|χ +  β|ψ  mit  |χ ∈ ˆ

 H, |ψ ∈ ˆ

 H⊥  und  α, β ∈ }. 



1.1.2

Lineare Operatoren auf dem Hilbert-Raum

 Lineare Operatoren(linear operators)  A, B, . . .  bilden Ket-Vektoren in linearer Weise aufein-

ander ab

 A( α|ψ +  β|φ) =  αA|ψ +  βA|φ

Linearität

( A +  B) |ψ =  A|ψ +  B|ψ

Summe

( AB) |ψ =  A( B|ψ)

Produkt

(1.10)

 A|ψa =  a|ψa

 Eigenvektor (eigenvector)  |ψa  von  A

 Eigenwert (eigenvalue)  a  von  A

 |ψ =  |ψ

 Identitätsoperator, Einsoperator



(identity operator). 

( α, β ∈ ). Für den Identitätsoperator

gilt  |ψ =  |ψ  für alle  |ψ  aus  Hd. Der Definitions-







bereich von  A  muss nicht der gesamte Hilbert-Raum sein und der Wertebereich muss nicht mit

dem Definitionsbereich übereinstimmen. Wenn nötig, weisen wir darauf hin. Für den  inversen

 Operator (invers operator)  A− 1 gilt  AA− 1 =  A− 1 A = . 
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Wir wollen die Dirac-Schreibweise weiter ausbauen und vereinbaren, dass Operatoren auf

dem Bra-Raum von rechts auf die Bra-Vektoren wirken sollen:

 ϕ| =  ϕ|B =:  |Bϕ . 

(1.11)

Die Operatoren auf dem Ket-Raum wirken entsprechend von links. Wir schreiben für den

resultierenden Vektor

 |ψ =  A|ψ =:  |Aψ . 

(1.12)

Dem Ket-Vektor  |ψ  entspricht über die duale Korrespondenz (1.1) ein Bra-Vektor  ψ|

 |ψ d.K. 

 ↔ ψ| =  Aψ| . 

(1.13)

Wir führen noch zusätzlich eine duale Korrespondenz für Operatoren ein. In der Dirac-

Schreibweise wird der zum Ket-Operator  A  korrespondierende Bra-Operator ebenfalls mit

demselben Symbol  A  bezeichnet und durch folgende Bedingung an die Skalarprodukte fest-

gelegt (erste Gleichung):

( ϕ|A) |ψ =  ϕ|( A|ψ) =:  ϕ|A|ψ . 

(1.14)

Die zweite Gleichung ist eine für die Dirac-Schreibweise charakteristische geschickte Abkür-

zung. 

Adjungierter Operator

Die duale Korrespondenz für Vektoren ordnet dem Ket-Vektor  |ψ

einen Bra-Vektor  ψ|  zu und dem Ket-Vektor  |ψ  einen Bra-Vektor  ψ|:

 ψ| d.K. 

 ↔ |ψ

(1.15)

 ψ| =  Aψ| d.K. 

 ↔ |ψ =  |Aψ . 

(1.16)

Hiervon ausgehend definieren wir einen zu einem Operator  A  im Ket-Raum  adjungierten

 Operator (adjoint operator)  A†  im Bra-Raum, der die linken Seiten der Gl. (1.15) und (1.16)

verknüpft und  ψ|  auf  ψ|  abbildet:

 ψ| =  Aψ| =:  ψ|A† . 

(1.17)

Bei der dualen Schreibweise von Operatoren wird sich diese Relation als nützlich erweisen. 

Über die duale Korrespondenz der Operatoren ist damit aber wiederum ein Ket-Operator

 A†  eingeführt. Wir werten  ψ|ϕ  mit Gl. (1.17) und (1.14) aus. 

 Aψ|ϕ = ( ψ|A†) |ϕ =  ψ|( A†|ϕ) =  ψ|A†ϕ =  ψ|A†|ϕ

(1.18)

und fassen zusammen

 Aψ|ϕ =  ψ|A†ϕ =  ψ|A†|ϕ . 

(1.19)

 1.1
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Mit  ϕ|ψ =  ψ|ϕ∗  folgt aus Gl. (1.19)

 ψ|A†|ϕ =  ϕ|Aψ∗ =  ϕ|A|ψ∗ . 

(1.20)

Zweifache Anwendung der Gl. (1.20) ergibt

 ϕ|A|ψ = ( ϕ|A|ψ∗) ∗ =  ψ|A†|ϕ∗ =  ϕ|( A†) †|ψ

(1.21)

für beliebige Vektoren  ϕ|  und  ψ|. Daher gilt

( A†) † =  A

(1.22)

und wir erhalten die der Gl. (1.19) entsprechende Relation

 A†ψ|ϕ =  ψ|Aϕ =  ψ|A|ϕ . 

(1.23)

In ähnlicher Weise überzeugt man sich leicht von der Gültigkeit der folgenden Operatorrela-

tionen:



 †   − 1

 †

 A− 1

=  A†

 , 

( cA) =  c∗A†

(1.24)

 †

 †

( A +  B) =  A† +  B† , 

( AB) =  B†A† . 

(1.25)

Neben der Definition (1.17) werden die Gleichungen (1.22) und (1.23) häufig verwendet. 

Dyadische Zerlegung

Aus zwei Vektoren  |u  und  |v  können wir das  dyadische Produkt

(outer product) oder die  Dyade (dyad)  |uv|  bilden. Sie ist ein linearer Operator

 |ϕ → |ψ =  |uv|ϕ , 

der in einen Vektor parallel zu  |u überführt. Dabei gilt

( α|uv|) † =  α∗|vu| . 

(1.26)

Für Operatorprodukte finden wir

 A|uv| =  |Auv| , 

 |uv|A =  |uA†v| . 

(1.27)

Wir haben in Gl. (1.9) gesehen, dass sich mit Hilfe einer ONB  {|i, i = 1 , . . . , d}  des

Hilbert-Raums der Identitätsoperator dyadisch darstellen lässt:



=

 |ii| . 

(1.28)



 i

Man nennt dies auch eine  Vollständigkeitsrelation (completeness relation) oder die  dyadische

 Zerlegung des Identitätsoperators (resolution of the identity). Es folgt unmittelbar, dass jeder

lineare Operator eine  dyadische Zerlegung (Äußere-Produkt-Darstellung)







 A =

 |ii|A|jj| =

 i|A|j|ij| =

 Aij|ij|

(1.29)

 i,j

 i,j

 i,j

6
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mit den  Matrixelementen Aij :=  i|A|j  besitzt. Für den adjungierten Operator ergibt sich



 A† =

 A∗ |ji| . 

 ij

(1.30)

 i,j

Über die  Supremumsnorm 	A	  kann man einem linearen Operator  A  eine positive Zahl zu-

ordnen

 	A	 := max  |ϕ|A|ϕ| . 

(1.31)

 ϕ|ϕ=1

Spur

Die  Spur (trace) ist eine sehr häufig gebrauchte komplexwertige Funktion eines linea-

ren Operators:





tr[ A] :=

 i|A|i =

 Aii , 

 {|i}  ONB  . 

(1.32)

 i

 i

 Die Spur eines Operators ist unabhängig von der Wahl der Basis.  Der Beweis demonstriert die

Nützlichkeit der dyadischen Zerlegung (1.28) des Identitätsoperators. Seien  {|li}  und  {|mj}

beliebige ONB, dann gilt:





tr[ A] =

 li|A|li =

 li|mjmj|A|mkmk|li

 i

 i,j,k





=

 mk|lili|mjmj|A|mk =

 mk|mjmj|A|mk

(1.33)

 i,j,k

 j,k



=

 mj|A|mj . 

 j

In ähnlicher Weise beweist man mit Hilfe von Gl. (1.28) die folgenden Eigenschaften der

Spur:

tr[ AB] = tr[ BA]

zyklische Vertauschung

tr[ A +  B] = tr[ A] + tr[ B]

Linearität

tr[ αA] =  α  tr[ A]

Linearität

tr[ A|ψψ|] =  ψ|A|ψ

Erwartungswert von  A

(1.34)

tr[ |ϕψ|] =  ϕ|ψ

Spur einer Dyade

tr[ A†] = (tr[ A]) ∗

adjungierter Operator

Die physikalische Bezeichnung  Erwartungswert (expectation value) von  A  wird später ge-

rechtfertigt. 

1.1.3

Normale Operatoren und spektrale Zerlegung

Unter den linearen Operatoren auf  Hd  spielen die diagonalisierbaren oder  normalen Operato-

 ren (normal operators) mathematisch und physikalisch eine herausragende Rolle. Ein Opera-

tor  N  heißt  diagonalisierbar, wenn es eine ONB  {|i}  von  Hd  und komplexe Zahlen  λi ∈  C

 1.1
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gibt, so dass

 N |i =  λi|i

(1.35)

gilt. Dabei ist  λi = 0 nicht ausgeschlossen. Als unmittelbare Folge ergibt sich, dass die Matrix

von  N  in der ONB der Eigenvektoren diagonal ist

 Nij =  i|N |j =  λiδij

(1.36)

und sich der Operator  A  in der Form der  spektralen Zerlegung (spectral decomposition)



 N =

 λi|ii|

(1.37)

 i

schreiben lässt. Sie heißt auch  orthogonale Zerlegung (orthogonal decomposition). Die ONB

 {|i}  von Gl. (1.35) wird auch  Eigenbasis (eigenbasis) von  N  genannt. Umgekehrt folgt aus

jeder dieser Relationen direkt die Erfüllung der Diagonalisierbarkeitsbedingung (1.35). 

Gehören zu einem Eigenwert  λi  des Eigenwertproblems (1.35)  g ≥  2 linear unabhän-

gige Eigenvektoren, so heißt  λi g-fach entartet (degenerate). Jede Linearkombination dieser

Eigenvektoren

 g



 |ψ =

 ci|i

(1.38)

 i=1

ist dann ebenfalls Eigenvektor zum Eigenwert  a. Die Eigenvektoren spannen einen  g-

dimensionalen Unterraum  H( a) von  H  auf. Der  Projektor

 g



 P =

 |ii| ;  P † =  P ;  P  2 =  P

(1.39)

 i=1

projiziert in den Unterraum  H( a).Der Projektor  Q = 1  − P  projiziert in das orthogonale

Komplement von  H( a). 

Diagonalisierbarkeit ist keine trivialerweise vorliegende Eigenschaft. Bereits im zweidi-

mensionalen Hilbert-Raum  H 2 gibt es vielfach gebrauchte Operatoren, die nicht diagonali-

sierbar sind. Ein Beispiel ist

 A =  | 0  1 |  mit   0 | 1  = 0 und   0 | 0  =   1 | 1  = 1

(1.40)

wie mit dem nachfolgenden Satz gezeigt werden kann. 

Um zu erkennen, ob ein gegebener Operator ein normaler Operator ist, ist der folgende

zentrale Satz sehr nützlich:  Notwendig und hinreichend dafür, dass es für einen Operator N

 eine spektrale Zerlegung gibt – dass er also diagonalisierbar ist – ist das Verschwinden des

 Kommutators ([ A, B] − :=  AB − BA)  von N und N†:

[ N, N †] − = 0  . 

(1.41)

Der Beweis kann als Anwendungsbeispiel für den bisher aufgebauten Formalismus die-

nen. Dass aus der Diagonalisierbarkeit die Gl. (1.41) folgt, ist offensichtlich. Die andere Rich-

tung des Beweises zerlegen wir in zwei Schritte:
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1. Schritt: Jeder Operator in  Hn  hat zumindest einen Eigenwert  λ  und einen Eigenvektor

 | 1 , die sich mit Hilfe der Säkulargleichung ergeben. 

 N | 1  =  λ| 1  , 

  1 |N† =  λ∗ 1 | . 

(1.42)

Daraus folgt

  1 |N| 1  =  λ ,  1 |N†| 1  =  λ∗

(1.43)

und damit

 N †| 1  =  λ∗| 1  +  |a , 

  1 |N =  λ 1 | +  a|

(1.44)

mit   1 |a = 0. Mit Normalitätsbedingung [ N, N †] − = 0 ergibt sich nach Auswertung

mit Gl. (1.42) und (1.44)

0 =   1 |[ N, N †] −| 0  =  a|a . 

(1.45)

 |a  ist somit der Nullvektor  | Null   und (1.44) lässt sich folgendermaßen schreiben

 N †| 1  =  λ∗| 1  , 

  1 |N =  λ 1 | . 

(1.46)

Wir kennen damit die Wirkung von  N  und  N †  auf  | 1 . 

2. Schritt: Wir ergänzen  | 1   zu einer ONB  {|i}  und führen mit Hilfe der dualen Schreib-

weise von  N 

 N =

 nij|ij|, 

 nij :=  i|N |j, 

 n 1 i =  ni 1 =  λδi 1

(1.47)

 ij

den Operator  M  ein:



 M :=  N − λ| 1  1 | , 

 M =

 nij|ij| . 

(1.48)

 i,j=1

 M  ist die Einschränkung von  N  auf das orthogonale Komplement von  | 1 . 

Mit Hilfe von Gl. (1.42) und (1.46) können wir zeigen, dass auch  M  ein normaler Ope-

rator ist ([ M, M †] − = 0). Für ihn lässt sich auf dem zu  | 1   senkrechten Unterraum das

gleiche Verfahren anwenden. Auch  M  hat einen Eigenvektor, den wir  | 2   nennen. Wir

ergänzen  | 1   und  | 2   zu einer ONB und wiederholen die Prozedur. So fahren wir fort bis

der ganze Hilbert-Raum ausgeschöpft ist und  | 1   zu einer wohlbestimmten ONB ergänzt

wurde. Zugleich wird dadurch  N  bezüglich dieser Basis spektral zerlegt. Das schließt

den Beweis ab. 

Das Diagramm in Abb. 1.1 demonstriert wie den verschiedenen Eigenschaften der Ope-

ratoren im Hilbert-Raum eine zunehmende Spezialisierung in der dyadischen Zerlegung ent-

spricht. Wir werden im Folgenden im Diagramm Schritt für Schritt nach unten gehen. 

 1.1
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linearer Operator

(bi-orthogonale Entwicklung, 



 L =

 λ

)

 i

 i|liri|  mit ONB  {|li}  und ONB  {|ri},  λi ∈ 



normaler Operator (diagonalisierbar,  N =

 λ

)

 i

 i|ii|,  mit ONB  {|i} , λi ∈ 

 „reell“

hermitescher Operator ( λi ∈

)



 „Phase“

positiver Operator ( λi ≥  0)

Projektionsoperator ( λi =  { 0 ,  1 })

Identitätsoperator ( λi = 1  , ∀i)

unitärer Operator ( λi =  eiϕi , reine Phase)

Abbildung 1.1: Operatorenhierarchie. Charakterisierung von Operatoren durch ihre dyadische Zerle-

gung.  →  ist jeweils die Richtung einer Spezialisierung. In den Klammern ( ) werden die Eigenwerte

charakterisiert. Man beachte, dass mit  λi =  { 1 , − 1 }  spezielle hermitesche Operatoren auch unitär sein können und umgekehrt. Die bi-orthogonale Entwicklung eines linearen Operators wird in Abschn. 13.3.3

abgeleitet. 

Funktionen von Operatoren

Eine  Operatorfunktion f ( N ) ist durch ihre Entwicklung in

eine Potenzreihe definiert. Für einen normalen Operator  N  lässt sie sich in der dyadischen

Zerlegung in einfacher Weise auf die Funktionen der Eigenwerte zurückführen. 



 f ( N ) :=

 f ( λi) |ii|

 → f( N) |i =  f( λi) |i . 

(1.49)

 i

 f ( N ) hat die gleichen Eigenvektoren wie  N . Wir geben ein Beispiel, das in der Matrixdar-

stellung bezüglich der Basis der Eigenvektoren formuliert ist:





1

0

 σz =

=  | 0  0 | − | 1  1 |

(1.50)

0

 − 1





 eϕ

0

 eϕσz =  eϕ| 0  0 | +  e−ϕ| 1  1 | =

 . 

(1.51)

0

 e−ϕ

1.1.4

Hermitesche Operatoren

Wir folgen dem rechten Ast der Verzweigung in Abb. 1.1. Ein linearer Operator  H  heißt

 hermitesch (hermitian) oder  selbstadjungiert (self-adjoint) auf  Hd, wenn für ihn  H† =  H

gilt.  Hermitesche Operatoren sind spezielle normale Operatoren. Wegen der folgenden Ei-

genschaften spielen sie in der Quantentheorie ein wichtige Rolle:  Hermitesche Operatoren
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 besitzen eine Spektralzerlegung mit einer ONB {|i}



 H =

 ri|ii| , 

 ri ∈

(1.52)



 i

 und reellen Eigenwerten ri. Bei Entartung können die Eigenvektoren orthonormal gewählt

werden, sodass  {|i}  eine ONB bildet. Eigenvektoren zu verschiedenen Eigenwerten sind or-

thogonal. Dies wird oft als  Spektraltheorem (spectral theorem) bezeichnet. Hermitesche Ope-

ratoren heißen auch  Observable (observable). Der Grund für diese physikalische Bezeichnung

wird später deutlich werden. 

Aus Gl. (1.52) folgt unmittelbar, dass für einen beliebigen Vektor  |ϕ  der  Erwartungswert

(expectation value)  ϕ|H|ϕ  reell ist. Es ist eine wichtige Kennzeichnung hermitescher Ope-

ratoren, dass auch die Umkehrung gilt:  Der Erwartungswert ϕ|A|ϕ ist genau dann für alle

 Vektoren reell, wenn A hermitesch ist. 

Für den Beweis der Umkehrung nehmen wir an, dass für einen Operator  A  der Mittelwert

 χ|A|χ  für alle Vektoren  |χ  reell ist. Für irgend zwei Vektoren  |ϕ  und  |ψ  aus  H  gilt die Identität

4 ϕ|A|ψ =

 {( ϕ| +  ψ|) A( |ϕ +  |ψ)  − ( ϕ| − ψ|) A( |ϕ − |ψ) }

+

 i[( ϕ| − iψ|) A( |ϕ − i|ψ)  − ( ϕ| +  iψ|) A( |ϕ +  i|ψ)] (1.53) Wenn wir in diesem Ausdruck  |ϕ  und  |ψ  vertauschen, dann geht der Teil {. . . } in sich über

und der Teil [. . . ] wird mit ( − 1) multipliziert. Berücksichtigen wir noch, dass alle Erwar-

tungswerte reell sind, so folgt daraus  ψ|Aϕ =  ϕ|Aψ∗ =  Aψ|ϕ. Der Operator  A  ist also

hermitesch. Es ist bemerkenswert, dass in Gl. (1.53) rechts nur Erwartungswerte und links ein

Übergangsmatrixelement stehen.  Wenn für einen hermiteschen Operator alle Erwartungswer-

 te bekannt sind, sind auch alle Übergangsmatrixelemente bekannt. 

Kommutierende hermitesche Operatoren

Für sie gilt der Satz (o.B.) über die simultane

Diagonalisierbarkeit:  Zwei hermitesche Operatoren (Observablen) A und B sind genau dann

 vertauschbar ([ A, B] − = 0 ), wenn sie eine gemeinsame ONB {|i} aus Eigenvektoren besit-

 zen. 

Ist der Eigenwert  a  einer Observablen  A  entartet, so bilden die Eigenvektoren einen min-

destens zweidimensionalen Unterraum. Mit Angabe von  a  ist daher kein zugehöriger Eigen-

vektor eindeutig charakterisiert. Wenn wir im Unterraum nur solche Eigenvektoren von  A

betrachten, die zugleich Eigenvektoren einer Observablen  B  zum Eigenwert  b  sind (Schnitt-

menge), könnte ein gemeinsamer Eigenvektor durch diese Zusatzforderung bereits eindeutig

festgelegt sein. Wir bezeichnen ihn mit  |a, b:

 A|a, b =  a|a, b, 

 B|a, b =  b|a, b . 

(1.54)

Sollte wiederum dadurch nur ein Unterraum festgelegt sein, dann werden wir fortfahren und

verlangen, dass ein Eigenvektor von  A  und  B  zugleich Eigenvektor von einer mit  A  und  B

vertauschbaren Observablen C ist:  |a, b, c  Das Verfahren muß bis zur Aufhebung aller Entar-

tung fortgesetzt werden. Man nennt einen Satz von Observablen, die genau ein gemeinsames

System von Eigenvektoren besitzen, ein  vollständiges System kommutierender Observabler. 
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Durch Angabe der Eigenwerte zu allen Operatoren ist genau ein Vektor festgelegt. Wichtig ist, 

dass das oben beschriebene Verfahren auch tatsächlich abbricht. Dies garantiert der Satz:  Auf

 jedem Hilbert-Raum H existiert eine endliche(!) vollständige Menge paarweise kommutieren-

 der Operatoren (Funktionen von Operatoren nicht berücksichtigt).  Zum Beweis verweisen wir

auf die Literatur (vergl. Abschn. 1.4)

1.1.5

Unitäre Operatoren

Wir folgen zunächst dem linken Ast der Verzweigung der Operatorhierarchie in Abb. 1.1 und

kehren danach zum rechten Ast zurück. Ein linearer Operator  U  heißt  unitär (unitary), wenn

 U † =  U − 1 gilt.  Unitäre Operatoren sind spezielle normale Operatoren. Sie besitzen daher

 eine Spektralzerlegung



 U =

 eiϕi |ii| , 

 ϕi ∈

 , 

(1.55)



 i

 mit einer ONB {|i}, wobei aufgrund der definierenden Gleichung die Eigenwerte reine „Pha-

 senterme“ sind. Wie bei hermiteschen Operatoren spannen die Eigenvektoren den ganzen

Raum auf. Eigenvektoren zu verschiedenen Eigenwerten sind orthogonal. Eigenvektoren zu

entarteten Eigenwerten können orthogonal gewählt werden. Man zeigt leicht: Ein linearer

Operator ist genau dann unitär, wenn jede seiner Matrixdarstellungen unitär ist. 

Aus der Spektralzerlegung folgt unmittelbar die Unitarität von  U ( t) =  eiHt, t ∈

, falls



H hermitesch ist. Weiterhin gilt in diesem Fall:

 U ( t = 0)

=

(1.56)



 U ( t 2) U ( t 1)

=

 U ( t 2 +  t 1)  . 

(1.57)

Unitäräquivalenz und Normerhaltung

Unter kombinierten unitären Transformationen

von Vektoren und Operatoren gemäß

 |ϕ =  U|ϕ A =  UAU− 1

(1.58)

bleiben Skalarprodukte (speziell auch die Norm eines Vektors), Eigenwerte und Erwartungs-

werte unverändert.  Umgekehrt ist ein linearer Operator T , der bei Anwendung auf beliebige

 Vektoren aus Hn die Norm erhält

 	T ϕ	 =  	ϕ	

(1.59)

 ein unitärer Operator: T † =  T − 1. Zum Beweis verwenden wir die Gl. (1.7) und formen mit

Gl. (1.59) um. Für  T  gilt die Unitaritätsrelation

 T ϕ|T ψ =  ϕ|ψ . 

(1.60)

1.1.6

Positive Operatoren und Projektionsoperatoren

Wir wollen noch Spezialfälle hermitescher Operatoren diskutieren. Ein  positiver Operator  ist

dadurch definiert, dass für einen beliebigen Vektor  |ϕ  die Ungleichung

 ϕ|A|ϕ ≥  0  ∀|ϕ , 

(1.61)
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gilt, dass also sein Erwartungswert stets reell und nicht negativ ist. Wir schreiben dann

 A ≥  0  . 

(1.62)

Weiterhin erklären wir

 A ≥ B ⇔ ( A − B)  ≥  0  . 

(1.63)

Aus der Positivität folgt für die Spektralzerlegung:  Jeder positive Operator A ist hermitesch

 A† =  A. Er besitzt die Spektralzerlegung



 A =

 ai|ii|, 

 ai ≥  0  . 

(1.64)

 i

 mit nicht-negativen Eigenwerten. 

Für einen beliebigen Operator  A  ist  A†A  ein positiver Operator. Andererseits gibt es für

jeden positiven Operator  A  einen linearen Operator  B, so dass  A  sich in der Form

 A =  B†B

(1.65)

schreiben lässt.  B  ist nur bis auf unitäre Transformationen festgelegt ( B → U B). Wir finden

 B  explizit über die Spektralzerlegung (1.64) von  A  und eine ONB  {|ϕi}

  √

 B =

 ai|ϕii| . 

(1.66)

 i

Einsetzen betätigt (1.65). 

Ein linearer Operator  P  ist ein  Projektionsoperator (projection operator) (genauer: ortho-

gonaler Projektionsoperator), wenn er die folgenden Bedingungen erfüllt:

(i)  P  2 =  P

 idempotent. 

(ii)  P † =  P

hermitesch. 

linear

normal  N †N =  N N †

unitär

 U † =  U − 1

hermitesch  H† =  H

Projektor



 P =  P † =  P  2

positiv

 ψ|A|ψ ≥  0  ∀|ψ ∈ H

Abbildung 1.2: „Schnittmengen“ der Operatortypen

 1.2
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Aus dieser Eigenschaft folgt

 v|P |v =  v|P P |v =  v|P †P |v =  	P |v	 2  ≥  0  . 

(1.67)

 P ist daher ein positiver Operator  und es gilt



 P =

 pi|ii| ; 

 pi ≥  0

(1.68)

 i

mit der ONB  {|i}. Wegen der Idempotenz (i) haben wir weiterhin





 P  2 =

 p 2 |ii| , 

 P =

 p

 i

 i|ii| , 

(1.69)

 i

 i

und damit  p 2 =  p

 i

 i  beziehungsweise  pi ∈ { 0 ,  1 }. Der Projektionsoperator  P  nimmt deshalb

die Form



 P =

 |jj|, 

 I ↔  Untermenge der ONB

(1.70)

 j∈I

an.  P  projiziert auf den durch  {|j}  mit  j ∈ I  aufgespannten Unterraum. 

In Ergänzung zu Abb. 1.1 sind in Abb. 1.2 im Rückblick die „Schnittmengen“ der ver-

schiedenen Operatortypen dargestellt. 

1.2

Liouville-Raum der Operatoren

Wir werden in Kap. 2 sehen, dass sich im Spezialfall der reinen Zustände quantentheoreti-

sche Systeme durch normierte Vektoren  |ψ  in einem Hilbert-Raum  H  beschreiben lassen. Im

allgemeinen Fall der gemischten Quantenzustände erfolgt die Beschreibung über den Dich-

teoperator (Kap. 4). Alle möglichen dynamischen Zustandsänderungen können als lineare

Transformationen von Übergängen zwischen Dichteoperatoren beschrieben werden (Schrö-

dinger Bild). Wir werden das ganz allgemein in Kap. 14 diskutieren. Im Hinblick darauf ist

es zweckmäßig den Liouville-Raum

als den Raum der auf dem Hilbert-Raum wirkenden li-



nearen Operatoren einzuführen. Wir können die Darstellung knapp halten, da im Wesentlichen

die Vorgehensweise aus Abschn. 1.1 wiederholt wird. 

1.2.1

Skalarprodukt

Der  Liouville-Raum

ist ein linearer Vektorraum über dem Körper der komplexen Zahlen, 



dessen Elemente  |A) , |B) , . . .  die linearen Operatoren  A, B, . . .  auf einem Hilbert-Raum sind. 

Man prüft leicht nach, dass diese linearen Operatoren tatsächlich die Axiome eines linearen

Vektorraums erfüllen. Wir werden die Klammern  |) später zur Vereinfachung der Schreibweise

weglassen. 

Die dyadische Zerlegung (1.29) eines Operators  A  nach der Basis  {|i}  von  Hd  hat in der

neuen Schreibweise die Form

 d



 |A) =

 Aij||ij|)  . 

(1.71)

 i,j=1
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Die  d 2 Dyaden  |ij|  in  Hd  bilden die  d 2 Elemente  ||ij|) einer Basis in . Für die Dimen-



sionen der Räume gilt daher

dim

= (dim  Hd)2  . 

(1.72)



Selbstverständlich gibt es neben den Dyaden andere Basen in

. Wir können den Liouville-



Raum

mit einem Skalarprodukt ( A|B) ausstatten. Es hat formal dieselben Eigenschaften



wie das Skalarprodukt im Hilbert-Raum  Hd (vergl. Abschn. 1.1.1). ( A|B) ist eine komplexe

Zahl und es gilt

( A|B) = ( B|A) ∗ , ( A|c 1 B 1 +  c 2 B 2) =  c 1( A|B 1) +  c 2( A|B 2)  , ( A|A)  ≥  0  . (1.73) Operatorbasis

Zwei Operatoren  A  und  B  heißen orthogonal, wenn

( A|B) = 0

(1.74)

erfüllt ist, ohne dass einer der Operatoren der Nulloperator ist. Es gelten die Dreiecksun-

gleichung (1.6) und die zur Parallelogrammungleichung (1.8) analogen Gleichungen. Jeder

Operator  |A) lässt sich nach einer orthonormalen Basis  {|Qs) , s = 1 , . . . , d 2 }  von 

 d 2



( Qs|Qt) =  δst, 

 |Qs)( Qs| =

(1.75)



 s=1

zerlegen:

 d 2



 |A) =

 |Qs)( Qs|A)  . 

(1.76)

 s=1

Skalarprodukt als Spur

Skalarprodukte auf

können in ganz verschiedener Weise reali-



siert werden. Wir werden das über die Spur in  Hd  gebildete Skalarprodukt verwenden, da in

diesem Fall die für die einfachsten Quantensysteme wichtigen Paulischen Spinoperatoren zu

einer Basis ergänzt werden können (vergl. Abschn. 3.1)

( A|B) := tr[ A†B]  . 

(1.77)

Die Zerlegung (1.76) nimmt dann bei weggelassenen Vektorklammern die Form

 n 2



 A =

 Qs  tr[ Q†A]

 s

(1.78)

 s=1

an. Die aus den Dyaden  |ij|, 

 i, j = 1 , . . . , d  gebildete Basis des Liouville-Raums ist bei

Bezug auf das Spur-Skalarprodukt (1.77) orthonormal







 |



 ij|
 |ij| =  δiiδjj . 

(1.79)
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1.2.2

Superoperatoren

Wie zu vermuten ist, lassen sich auf einem Liouville-Raum selber wiederum  lineare  Operato-

ren definieren, die Elemente aufeinander abbilden:

 |A)  → |A) =  S|A) =  |SA)  . 

(1.80)

Diese kursiv geschriebenen Operatoren heißen  Superoperatoren (superoperators). Aus der

Sicht des Hilbert-Raums  Hn  bilden sie lineare Operatoren in linearer Weise aufeinander ab

 A → B =  SA . 

(1.81)

Beispiele

Wir geben zwei Beispiele für Superoperatoren an: Beim Superoperator  A

 B → AB :=  ABA− 1

(1.82)

folgt die Linearität aus der Linearität von  A. Man sieht leicht, dass

 A− 1 B =  A− 1 BA

(1.83)

gilt. Ein für die Beschreibung der dynamischen Entwicklung von gemischten Zuständen wich-

tiger Superoperator (vergl. Kap. 4) ist der  Liouville-Operator (Liouvillian)  L

1

 A → LA :=  [ H,A] − . 

(1.84)

([ H, A] :=  HA−AH). In der physikalischen Anwendung ist  H  dabei der Hamilton-Operator. 

Die Potenz von  L  schreibt sich





 L 2

1

 A = 2  H, [ H,A] − . 

(1.85)

 −

Vom Hilbert-Raum lassen sich direkt die Konzepte des adjungierten, hermiteschen, unitären

und positiven Superoperators übertragen. 

1.3

Elemente der Wahrscheinlichkeitstheorie

Die zentrale Aufgabe der Quantentheorie ist es, Vorhersagen über die Wahrscheinlichkeiten

des Eintreffens von Messergebnissen zu machen. Dabei wird vorausgesetzt, dass Informatio-

nen über den Zustand des Quantenobjekts vorliegen, an dem gemessen wird. Im Hinblick auf

diese Aufgabe ist es sinnvoll die Grundkonzepte der Wahrscheinlichkeitstheorie kurz darzu-

stellen. 

Vorhersagen sind ein Schluss von der Vergangenheit auf die Zukunft. In der klassischen

Physik spielt die umgekehrte Schlussrichtung eine vergleichbar wichtige Rolle. Aus den Mes-

sergebnissen wird auf den Zustand des Objekts vor der Messung zurück geschlossen. In wel-

chem Umfang ist das auch für Quantensysteme möglich? Bei der Diskussion dieser Frage

spielt der Satz von Bayes eine wichtige Rolle. Wir skizzieren seinen Beweis nachdem wir

Vorüberlegungen zur bedingten Wahrscheinlichkeit angestellt haben. 
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1.3.1

Wahrscheinlichkeit zufälliger Ereignisse

Bei der Wiederholung eines Zufallsexperiments liegt das Ergebnis nicht vorher fest. Es ist ein

 zufälliges Ereignis (random event). Solche Ereignisse können beim Werfen eines Würfels z. B. 

das Auftreten einer geraden (bzw. ungeraden) Augenzahl oder das Auftreten einer Augenzahl

größer als 2 sein. Sei  {Ai; 

 i = 1 , . . . , n}  die Menge der möglichen Ereignisse. Es werden

folgende Bezeichnungen in Analogie zur Mengenlehre eingeführt:

 Ai ∩ Aj ∩ Ak  ist das Ereignis das darin besteht, dass die Ereignisse  Ai, Aj  und  Ak  zusam-

men (gleichzeitig) auftreten. Beim Werfen eines Würfels kann  A 1 z. B. das Ereignis „gerade

Augenzahl“ und  A 2 das Ereignis „Augenzahl  >  4“ sein, dann ist  A 1  ∩ A 2 das Ereignis „Es fällt die Sechs“.  p( A 1  ∩ A 2) ist die Wahrscheinlichkeit, dass sowohl  A 1 als auch  A 2 eintritt ( Verbundwahrscheinlichkeit, joint probability) . Wir schreiben auch  p( A 1 , A 2) :=  p( A 1 ∩A 2). 

 Ai ∪ Aj ∪ Ak  ist das Ereignis das im Auftreten wenigstens eines der Ereignisse  Ai, Aj

und  Ak  besteht. Für die Augenzahl  Z  möge 2  ≤ Z ≤  4 das Ereignis  A 1 und 3  ≤ Z ≤  5 das Ereignis  A 2 bedeuten. Dann ist  A 1  ∪ A 2 das Ereignis 2  ≤ Z ≤  5. 

Das unmögliche Ereignis wird mit ∅ und das sichere mit Ω bezeichnet. Zwei Ereignisse

 Ai  und  Aj  heißen  unvereinbar (exclusive events), wenn  Ai ∩ Aj = ∅ gilt. Sie können nicht

gleichzeitig eintreten. 

Axiomatik

Jedem zufälligen Ereignis  A  wird eine reelle Zahl  p( A) mit 0  ≤ p( A)  ≤  1

zugeordnet, die die  Wahrscheinlichkeit (probability) von  A  genannt wird und eine Reihe

von Axiomen erfüllt, die wir hier nicht aufführen wollen. Ein Beispiel ist die Kolmogorov-

Axiomatik. Wir notieren nur das  Additivitätsaxiom: Für paarweise unvereinbare zufällige Er-

eignisse  A 1 , A 2 , . . . , An  gilt

 p( A 1  ∪ A 2  ∪ . . . ∪ An) =  p( A 1) +  p( A 2) +  . . . +  p( An)  . 

(1.86)

Wenn die Ereignisse  A 1 und  A 2 vereinbar sind, gilt

 p( A 1  ∪ A 2) =  p( A 1) +  p( A 2)  − p( A 1  ∩ A 2)  . 

(1.87)

Das Mengendiagramm von Abb. 1.3 veranschaulicht diese Relation. Beim Würfeln möge

 Z ≤  2 das Ereignis  A 1 und  Z ≥  4 das Ereignis  A 2 sein, dann ist die Wahrscheinlichkeit

dafür, dass entweder  A 1 oder  A 2 eintritt  p( A 1  ∪ A 2) = 26 + 36 = 56 . 

Häufigkeitsinterpretation

Wir haben uns zur Veranschaulichung des Axioms auf das Wer-

fen eines Würfels bezogen. Tatsächlich erfordert die Axiomatik wie jede mathematische Axio-

matik keine physikalische Interpretation.  p( A) ist durch die Axiome selber festgelegt. Bei der

Anwendung auf physikalische Ereignisse wird Wahrscheinlichkeit üblicherweise als Grenz-

wert der  relativen Häufigkeit (relative frequency) interpretiert:

 N ( A)

 p( A) := lim

(1.88)

 N →∞

 N

Dabei ist  N ( A) die absolute Häufigkeit des Auftretens von  A  bei einer Gesamtzahl  N  von

Versuchen. Diese physikalische Interpretation ist nicht unproblematisch. Für endliche große

 N  kann sie als Schätzung von  p( A) aufgefasst werden. 
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A1

A1 ∩ A2

A2

A1 ∪ A2

Abbildung 1.3: Mengendiagramm der Wahrscheinlichkeiten. 

1.3.2

Bedingte Wahrscheinlichkeit und Satz von Bayes

Wir erweitern das Konzept der Wahrscheinlichkeit, Die  bedingte Wahrscheinlichkeit (condi-

tional probability)  p( A|B) eines Ereignisses  A  ist die Wahrscheinlichkeit des Eintretens von

 A  unter der Bedingung, dass ein anderes Ereignis  B, das selber die Wahrscheinlichkeit  p( B)

hat, bereits eingetreten ist. Wir definieren:

 p( A ∩ B)

 p( A|B) :=

 . 

(1.89)

 p( B)

Auflösung führt auf die plausible Gleichung für die Wahrscheinlichkeit  p( A ∩ B) dafür, dass

sowohl  A  als auch  B  eintritt:

 p( A ∩ B) =  p( A|B)  · p( B)  . 

(1.90)

Wir schreiben in späteren Kapiteln

 p( A, B) :=  p( A ∩ B)  . 

(1.91)

Als Beispiel betrachten wir zwei Urnen. Die Urne  U 1 enthält 3 weiße und 3 schwarze

Kugeln, die Urne  U 2 2 weiße und 4 schwarze Kugeln. In jede der Urnen wird mit gleicher

Wahrscheinlichkeit  p( U 1) =  p( U 2) = 12 gegriffen. Die Wahrscheinlichkeit gezogen zu wer-

den ist für jede Kugel einheitlich 1

12 . Die Wahrscheinlichkeit sowohl in  U 1 zu greifen als

auch eine weiße Kugel zu ziehen ist  p( w ∩ U 1) = 3

12 = 14 . Die bedingte Wahrscheinlichkeit

 p( w|U 1) nachdem man in eine Urne  U 1 gegriffen hat eine weiße Kugel zu ziehen ist nach

Gl. (1.89)

 p( w ∩ U 1)

2

1

 p( w|U 1) =

=

=

 . 

(1.92)

 p( U 1)

4

2

Das folgt auch anschaulich unmittelbar aus der Beschreibung der Zufallssituation. Analog

findet man  p( w|U 2) = 13 . 
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Unabhängigkeit

Zwei zufällige Ereignisse  A  und  B  heißen voneinander  unabhängig, wenn

durch das Eintreten des einen das Eintreten des anderen nicht beeinflusst wird

 p( A|B) =  p( A)  . 

(1.93)

In diesem Fall faktorisiert  p( A ∩ B)

 p( A ∩ B) =  p( A) p( B)  . 

(1.94)

Hiervon ist zu unterscheiden, dass die Ereignisse  A  und  B  unvereinbar (einander widerspre-

chend) sind  A ∩ B = ∅. Dann gilt  p( A|B) = 0. 

Totale Wahrscheinlichkeit

Das sichere Ereignis Ω möge sich als Summe von  n  paarweise

unvereinbaren zufälligen Ereignissen  Ai  darstellen lassen ( Ai ∩ Aj = ∅ , 

 ∀i =  j):

Ω =  A 1  ∪ A 2  ∪ . . . ∪ An;  Ai ∩ Aj = ∅ , 

 ∀i =  j . 

(1.95)

Für ein beliebiges zufälliges Ereignis  B  gilt dann  B = ( A 1  ∩ B)  ∪ ( A 2  ∩ B)  ∪ . . . ∪ ( An ∩ B). 

Mit dem Additivitätsaxiom (1.86) folgt daraus

 n



 p( B) =

 p( B ∩ Ai)

(1.96)

 i=1

und mit Gl. (1.90) ergibt sich der  Satz von der totalen Wahrscheinlichkeit

 n



 p( B) =

 p( B|Ai) p( Ai)  . 

(1.97)

 i=1

Wir geben ein Beispiel im nächsten Abschnitt. 

Satz von Bayes

Mit  p( A ∩ B) =  p( B ∩ A) führt die Gl. (1.90) auf

 p( A|B) p( B) =  p( B|A) p( A)  . 

(1.98)

 Unter der Voraussetzung, dass die paarweise Unvereinbarkeit und Vollständigkeit (1.95) er-

 füllt ist, gewinnen wir daraus mit Gl. (1.97) den fundamentalen  Satz von Bayes  (Bayes’s theo-

 rem)

 p( B|Ai) p( Ai)

 p( A



 i|B) =

 n

 . 

(1.99)

 j=1  p( B|Aj ) p( Aj )

Der Nenner garantiert die Normierung

 p( A

 i

 i|B) = 1, die besagt, dass irgendeines der

Ereignisse  Ai  eintreten muß. 

Der Satz von Bayes hat folgende Bedeutung: Es seien in einer Situation die Wahrschein-

lichkeit  p( Ai) und die bedingten Wahrscheinlichkeiten  p( B|Ai) bekannt. Dann erlaubt die

Formel (1.99) die Berechnung der Wahrscheinlichkeit  p( Ai|B) dafür, dass in einem Zufalls-

experiment unter der Voraussetzung „ B  ist eingetreten“ die Bedingung  Ai  erfüllt war (bzw. 

ist). 
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Wir geben ein Beispiel an, dass sich wieder auf das Ziehen von Kugeln aus Urnen bezieht. 

Es mögen drei Urnen von Typ I mit jeweils 2 weißen und 6 schwarzen Kugeln vorliegen und

eine Urne vom Typ II mit 1 weißen und 7 schwarzen Kugeln. Mit gleicher Wahrscheinlichkeit

wird in eine der Urnen gegriffen und eine Kugel gezogen. Das Ereignis  B  ist das Ziehen

einer weißen Kugel. Das Ereignis  A 1 ist das Greifen in eine Urne vom Typ I (bzw. Typ II). 

Dann liegen die folgenden Wahrscheinlichkeiten vor:  p( A 1) = 34  , p( A 2) = 14  , p( B|A 1) =

14 , p( B|A 2) = 18. Die Wahrscheinlichkeit, dass die gezogene weiße Kugel aus einer Urne

von Typ I stammt, ist nach dem Satz von Bayes  p( A 1 |B) = 67 = 0 ,  86 und daher größer

als  p( A 1). Aus der Urne vom Typ II stammt die weiße Kugel mit der Wahrscheinlichkeit

 p( A 2 |B) = 17 = 0 ,  14, die kleiner als  p( A 2) ist. Die Wahl eines Urnentyps erfolgt mit den a-priori-Wahrscheinlichkeiten  p( Ai). Wenn eine weiße Kugel gezogen wurde, kann man darauf

rückschließen, in welche Urne gegriffen wurde. Für diesen Rückschluss gibt es i.a. wiederum

nur eine Wahrscheinlichkeitsaussage, die durch  p( Ai|B) gegeben ist. Würde die Urne vom

Typ II keine weiße Kugel enthalten, könnte mit Sicherheit ( p( A 1 |B) = 1) der Rückschluss

gemacht werden, dass in eine Urne vom Typ I gegriffen wurde. 

Annahme von Bayes

Sie sollte nicht mit dem Satz von Bayes verwechselt werden. Wenn

es keinen Anlass zur Vermutung gibt, dass ein Ereignis  Ai  durch die Situation ausge-

zeichnet ist, kann es sinnvoll sein, die  Bayessche Annahme  zu machen, dass alle a-priori-

Wahrscheinlichkeiten übereinstimmen

 p( A 1) =  p( A 2) =  . . . =  p( An)  . 

(1.100)

Nach dem Eintreten von  B  wird dann diese Annahme durch die Wahrscheinlichkeiten

 p( Ai|B) von Gl. (1.99) ersetzt. So lassen sich die Wahrscheinlichkeiten schätzen. 

1.3.3

Zufallsgrößen

Eine  Zufallsgröße X  ist durch die Zuordnung von Zahlen  x  zu den zufälligen Ereignissen

gegeben. Würfe eines Würfels sind ein Beispiel. Eine diskrete zufällige Größe  X  ist bestimmt

durch die Werte  x 1 , x 2 , . . . , xn  und die Wahrscheinlichkeiten  p( x 1) , p( x 2) , . . . , p( xn), mit



denen die Werte angenommen werden (

 n

 i=1  pi = 1). Die Verallgemeinerung auf abzählbar

unendlich viele Werte  xi  und auf stetige  x  ist i.a. unproblematisch. 

Wichtige Größen zur Charakterisierung einer Zufallsgröße  X  sind  Erwartungswert (ex-

pectation value) oder  Mittelwert (mean value)



 X :=

 pixi

(1.101)

 i

und die  Streuung (dispersion) oder  mittlere quadratische Abweichung (mean square deviation)

var( X) = (∆ X)2 :=  X 2  − X 2 =  ( X − X)2  , 

(1.102)

die auch  Varianz (variance) genannt wird. Die  Standardabweichung (standard deviation)



∆ X =

var( X) gibt an, wie sehr eine Zufallsvariable um ihren Mittelwert streut. In der

Quantentheorie wird ∆( X) auch als die  Unbestimmtheit (uncertainty) von  X  bezeichnet. 
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1.4

Ergänzende Themen und weiterführende Literatur

 •  Die meisten Lehrbücher der Quantentheorie enthalten eine Darstellung der mathemati-

schen Grundlagen. Auf folgende Bücher sei besonders hingewiesen: [Sak 85], [CDL 91], 

[Ish 95], [Bal 98], [Gri 02]. 

 •  Eine ausführliche Darstellung des Hilbert-Raums mit Bezug auf die Quantentheorie fin-

det sich in [Jor 69]. 

 •  Bra-Raum als Vektorraum aller linearen stetigen Funktionale auf einem Vektorraum  V

(auch Dualraum  V ∗  genannt): [FK 98, Kap. 2.8 und 4.2]. 

 •  Literatursammlung zu 1.3: [Per 93, z. B. 53], [Ish 95], [NC 00]. 

1.5

Übungsaufgaben

ÜA 1.1 [zu 1.1]

Beweisen Sie die Relationen (1.5), (1.6), (1.7), (1.8), (1.24), (1.25), (1.59), 

(1.34). 

ÜA 1.2 [zu 1.1]

Geben Sie mehrere Beispiele für eine Basis im  H 3 an. 

ÜA 1.3 [zu 1.1]

 {|i, i = 1 , . . . , d}  sei eine ONB. Beweisen Sie, dass die Parsevalsche

Identität

 n



 	ϕ	 2 =

 |ϕ|i| 2

(1.103)

 i=1

für alle Vektoren  |ϕ ∈ H 2 gilt. 

ÜA 1.4 [zu 1.1]

Zeigen Sie, dass die Matrix, die dem Operatorprodukt  AB  entspricht, gleich

dem Produkt der Matrizen zu  A  und  B  ist. 

ÜA 1.5 [zu 1.1]

Zeigen Sie, dass die Determinante einer unitären Matrix  ±  1 ist. 

ÜA 1.6 [zu 1.1]

Zeigen Sie, dass für zwei unitäre  n × n  Matrizen  U 1 und  U 2 auch die Matrix





 U 1

0

unitär ist. 

0

 U 2

ÜA 1.7 [zu 1.1]

Besitzt der Projektionsoperator  P =  |uu|  ein Inverses? 

ÜA 1.8 [zu 1.1]

a) Der Operator  A  sei diagonalisierbar. Wie findet man seine Spektraldarstellung? 

b) Sind die Pauli-Operatoren  σx =  | 0  1 | +  | 1  0 |, σy =  −i| 0  1 | +  i| 1  0 |, σz =  | 0  0 | −

 | 1  1 |  diagonalisierbar? Finden Sie ihre Spektraldarstellung. 
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ÜA 1.9 [zu 1.2]

Bestätigen Sie für den in Gl. (1.82) definierten Superoperator  A  die Relation

tr[ C( AB)] = tr[( A− 1 C) B]

(1.104)

gilt. 

ÜA 1.10 [zu 1.2]

 H  sei ein hermitescher Operator mit Eigenwertgleichung

 H|ei =  Ei|ei . 

(1.105)

Bestimmen Sie Eigenvektoren und Eigenwerte des Liouville-Operators  L  von Gl. (1.84). 

ÜA 1.11 [zu 1.2]

Zeigen Sie, dass der Liouville-Operator von Gl. (1.84) die Matrixdarstel-

lung

 L

1

 ij,ij = ( Hijδij − δijHij)

(1.106)

hat. 

ÜA 1.12 [zu 1.2]

Beweisen Sie mit Bezug auf die Definition des Liouville-Operators  L  die

Relation

 c

 ecLA =  e   H Ae− c  H . 

(1.107)

ÜA 1.13 [zu 1.2]

Geben Sie Situationen an, mit deren Hilfe die bedingte Wahrscheinlichkeit, 

der Satz von der totalen Wahrscheinlichkeit oder der Satz von Bayes veranschaulicht werden

können. 
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2 Grundkonzepte der Quantentheorie

2.1

Erste Fassung der Postulate (reine Zustände

abgeschlossener Quantensysteme)

2.1.1

Das Szenario der Quantentheorie

Wenn man die Quantentheorie auf konzeptionell weniger vertraute Situationen anwenden will, 

wie sie im Zusammenhang mit zusammengesetzten Systemen auftreten, dann ist es nützlich, 

sich zunächst noch einmal an die Grundstrukturen der Quantentheorie zu erinnern. Dazu soll

das Kapitel 2 dienen. 

 Wir machen die physikalische Generalvoraussetzung , dass wir nur Vorgänge

 untersuchen, die keine relativistische Beschreibung benötigen und die auf einem

 endlich-dimensionalen Hilbert-Raum formuliert werden können. 

Doppelspaltexperiment

Die charakteristischen Züge der Quantenphysik werden deutlich, 

wenn man sie mit denen der klassischen Physik vergleicht. Hierzu betrachtet man zwei ana-

loge physikalische Situationen. In einem Fall kann die Situation im Rahmen der klassischen

Physik beschrieben werden, im anderen Fall ist eine quantentheoretische Beschreibung erfor-

derlich. Das Doppelspaltexperiment ist hierfür ein gerne diskutiertes konkretes Beispiel, an

dem man viele Elemente der Quantentheorie ablesen kann. Wir besprechen das Experiment

daher ausführlich. Die Ergebnisse sollen die Einführung der Postulate in Abschn. 2.1.2 und der

Konzepte in Kap. 4 vorbereiten. Verschränkung werden wir später an anderen Experimenten

veranschaulichen und damit das Szenario der Quantentheorie noch erweitern. 

Wir beschreiben zunächst die experimentelle Situation bei einem Doppelspalt mit den

Spaltöffnungen 1 und 2. Vor dem Spalt, d. h. links in der Abb. 2.1a befindet sich ein Apparat

für das Schießen von kleinen Kugeln, den wir durch den Wurf einer Münze steuern. Je nach-

dem wie die Münze fällt, schießt der Apparat durch Spalt 1 oder durch Spalt 2. Dabei soll über

die jeweilige Spaltöffnung hin eine gleichmäßige Streuung der Durchschussorte gegeben sein. 

Hinter dem Doppelspalt wird ein Schirm aufgestellt, auf dem die Einschlagorte der Kugeln re-

gistriert werden. Wir diskutieren die Fälle, in denen nur einer der beiden Spalte offen ist (der

andere ist abgedeckt), und den Fall, dass beide Spalte offen sind. Wir tragen in allen drei Fällen

die relative Häufigkeit der Auftreffer auf dem Schirm als Funktion des Ortes auf. Je häufiger

geschossen wird, umso klarer zeigen die relativen Häufigkeiten, wenn nur ein Spalt offen ist, 

die in Abb. 2.1a angegebene räumliche Verteilung. Sie gibt im Grenzfall vieler Schüsse die

Wahrscheinlichkeit  P ( x) für das Auftreffen der Kugeln wieder. Wenn Spalt 1 abgedeckt wird, 
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finden wir eine entsprechende Verteilung hinter Spalt 2. Es ist eine Alltagserfahrung, dass sich

bei Öffnen beider Spalte die mit dem Faktor 12 multiplizierten Auftreffwahrscheinlichkeiten

der Einzelspalte addieren. 

In dem analogen quantenphysikalischen Experiment wird der Schussapparat durch eine

Apparatur ersetzt, die einen Atomofen enthält1. Man findet geeignete Apparaturen und pas-

send präparierte Schirme, so dass Folgendes gilt: Wenn man den Schirm, ohne dass ein Dop-

pelspalt vorhanden ist, hinter der Apparatur aufbaut, dann werden nacheinander regellos über

den Schirm verteilt einzelne Treffer registriert. Wenn man lange genug wartet, entsteht eine

homogene Verteilung der Auftreffpunkte. Da die Treffer zeitlich getrennte Einzelereignisse

sind, wollen wir damit die Vorstellung verbinden, dass ein einzelnes Objekt, das wir schon

Atom genannt haben, den Ofen verlassen hat und auf dem Schirm aufgeschlagen ist. Über

ein Atom zwischen Ofen und Schirm können wir keine Aussage machen. Sodann schieben

wir einen geeignet dimensionierten Doppelspalt zwischen Ofen und Schirm ein und schließen

wieder zum Beispiel Spalt 2. Dann messen wir im Grenzfall sehr vieler Aufschläge für die

relative Häufigkeit (und damit für die Auftreffwahrscheinlichkeit  P ( x)) die räumliche Vertei-

lung von Abb. 2.1b. Ihr Maximum liegt gegenüber der Spaltöffnung. Wenn Spalt 1 geschlossen

ist, finden wir eine entsprechend verschobene Kurve gegenüber dem offenen Spalt. Wenn wir

allerdings für Atome beide Spalte öffnen, ergibt sich die in Abb. 2.2 dargestellte Verteilung der

relativen Häufigkeiten, die ihr Maximum gerade hinter dem Steg zwischen den beiden Spalten

hat. Wieder ist der Grenzfall sehr vieler Aufschläge eingezeichnet. Wie bei den Kugeln ändert

sich eine Wiederholung des Experimentes die Reihenfolge der Orte der einzelnen Einschläge

 in völlig zufälliger Weise (vergl. Abb. 2.3). Nur im Grenzfall sehr vieler Einschläge ergibt sich

in  deterministischer Weise  immer dieselbe Häufigkeitsverteilung. 

Als wesentliches Ergebnis halten wir fest: Für Atome erhalten wir die Wahrscheinlich-

keitsverteilung beim Doppelspalt – anders als bei Kugeln – nicht durch Addition der Wahr-

scheinlichkeitsverteilungen der Einzelspalte. Es ist ein  Interferenzbild  entstanden, wie wir es

von der Optik her kennen, das nicht dadurch erklärt werden kann, dass wir den Atomen Bah-

nen zuordnen, wie wir das für die einzelnen Kugeln tun konnten. Wegen der verblüffenden

Analogie zur optischen Beugung können wir vermuten, dass die mathematische Berechnung

der Wahrscheinlichkeitsverteilung beim Doppelspalt in ähnlicher Weise das Phänomen der

Interferenz durch Überlagerung wiederspiegeln wird. 

Entweder-Oder versus Weder-Noch

Im Hinblick auf später immer wieder verwendete Be-

griffe wollen wir die Experimente mit Kugeln bzw. Atomen noch etwas genauer charakteri-

sieren. Wir fassen die durch die Münze gesteuerte Schießanlage für Kugeln und die jeweiligen

Spalte davor als ein  Präparationsverfahren  auf. Präpariert wird der entsprechende  Zustand  der

Kugeln. Wenn nur Spalt 1 (bzw. 2) geöffnet ist, wollen wir den Zustand  Z 1 (bzw.  Z 2) nennen. 

Für jeden Zustand liegen die Wahrscheinlichkeitsverteilungen der Auftreffer auf dem Schirm

fest. Schießanlage und Doppelspalt präparieren einen weiteren Zustand, den wir  Zg(1 ,  2) nen-

nen wollen. Die zugehörige Wahrscheinlichkeitsverteilung ergibt sich durch Addition der Ver-

teilungen zu den  klassischen Zuständen Z 1 und  Z 2, die noch jeweils mit der Wahrscheinlich-

keit 12 multipliziert werden. Gemäß der Münzsteuerung der Schießanlage liegen jeweils mit

1 Das Doppelspaltexperiment wurde für Elektronen, Atome, van-der-Waals-Cluster, Fullerene und Biomoleküle

mit Erfolg durchgeführt (vergl. Abschn. 15.6). 
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Abbildung 2.1: Schirm hinter einem Einzelspalt: Auftreffwahrscheinlichkeit  P ( x) für klassische Ob-

jekte (a) und für Quantenobjekte (b). 

 x

1

2

 P ( x)

Abbildung 2.2: Schirm hinter einem Doppelspalt: Auftreffwahrscheinlichkeit  P ( x) für Quantenobjekte. 

Abbildung 2.3: Es ist völlig zufällig, wo ein einzelnes Quantenobjekt auf dem Schirm auftrifft. Das

Streifenbild aus vielen Auftreffpunkten ist hingegen wohlbestimmt. 







26

 2

 Grundkonzepte der Quantentheorie

der Wahrscheinlichkeit 12 Kugeln im Zustand  Z 1 und im Zustand  Z 2 vor. Durch Mischen

der Zustände  Z 1 und  Z 2 mit diesen Gewichten entsteht der Zustand  Zg(1 ,  2). Wir nennen

so entstandene Zustände  klassische Gemische (classical mixtures). Für eine einzelne Kugel

liegt immer entweder  Z 1 oder  Z 2 vor. Klassische Gemische sind in diesem Sinne  Entweder-

 Oder-Zustände. Das klassische Gemisch enthält über die Würfe der Münze ein statistisches

Element. Die Bahn einer einzelnen Kugel ist dagegen völlig determiniert. 

Für Atome können wir ebenfalls durch Schließen eines der Spalte die  Quantenzustände ˆ

 Z 1

bzw. ˆ

 Z 2 präparieren. Für viele Atome in diesen Zuständen finden wir eindeutig entweder die

Wahrscheinlichkeitsverteilungen von Abb. 2.1a oder die verschobene Verteilung. Wenn wir

jeweils mit der Wahrscheinlichkeit 12 einen der Spalte abdecken, entsteht der Quantenzustand

ˆ

 Zg(1 ,  2). Die zugehörige Wahrscheinlichkeitsverteilung ergibt sich wie in der klassischen

Physik durch Addition der mit dem Faktor 12 gewichteten Wahrscheinlichkeitsverteilungen

von ˆ

 Z 1 und ˆ

 Z 2. Wieder haben wir nur gemischt. Das Ergebnis wird in der Quantenphysik  sta-

 tistisches Gemisch (statistical mixture) oder  Gemenge  genannt. Der Begriff  Quantengemisch

(quantum mixture), den wir in Kap. 4 diskutieren werden, ist allgemeiner und enthält das Ge-

menge als Spezialfall. Da immer nur einer der Spalte offen war, können wir in diesem Fall

davon sprechen, dass das einzelne Atom entweder durch Spalt 1 oder durch Spalt 2 geflogen

sein muss. Es liegt ein quantenphysikalischer Entweder-Oder-Zustand vor. Soweit existiert

also eine Analogie zu den Zuständen der Kugel. 

Für Atome gibt es aber noch einen weiteren Zustand ˆ

 Zr(1 ,  2) mit einer Wahrscheinlich-

keitsverteilung, die für Kugeln nicht auftreten kann. Er entsteht, wenn beide Spalte geöffnet

sind (vergl. Abb. 2.2). Wichtig ist, dass diese Wahrscheinlichkeitsverteilung nicht durch Mi-

schen präpariert werden kann. Wir nennen einen ungemischten Zustand einen  reinen Zustand

(pure state). ˆ

 Zr(1 ,  2) ist ein Beispiel. Anders als bei Kugeln im Zustand  Zg(1 ,  2) liegt hier

ein einzelnes Atom hinter dem Doppelspalt weder im Zustand ˆ

 Z 1 noch im Zustand ˆ

 Z 2 vor. 

Der reine Zustand ˆ

 Zr(1 ,  2) ist ein  Weder-Noch-Zustand. Wir können dementsprechend auch

vom Atom nicht sagen, es sei durch einen der Spalte gekommen. Diese an Kugeln orientierte

klassische Vorstellung versagt bei Atomen. Wir erwähnen noch, dass die ungemischten

Zustände ˆ

 Z 1 und ˆ

 Z 2 ebenfalls gemäß unserer Definition reine Zustände sind. 

Selektive und nicht-selektive Messung

Wir wollen durch Messung für die gemischten Zu-

stände  Zg(1,2) und ˆ

 Zg(1 ,  2) von Kugeln bzw. Atomen und für den reinen Zustand ˆ

 Zr(1 ,  2)

der Atome feststellen, hinter welchem Spalt eine einzelne Kugel oder ein einzelnes Atom an-

zutreffen ist. Die möglichen Messergebnisse sind daher „hinter dem ersten Spalt“ und „hinter

dem zweiten Spalt“. Wir strahlen zur Messung Licht ein, das von den Kugeln, bzw. den Ato-

men gestreut werden kann. Dabei beobachten wir, dass ein Aufblitzen immer nur hinter einem

der beiden Spalte stattfindet. Wir haben also die gewünschte Messung realisiert. Anschließend

hinterlässt die Kugel bzw. das Atom wieder seinen Einschlagspunkt auf dem Schirm. Tatsäch-

lich ist die experimentelle Realisierung komplizierter. Literaturangaben hierzu finden sich in

Abschn. 8.6. 

Welche Häufigkeitsverteilungen entstehen, wenn wir wieder sehr viele Einschläge abwar-

ten? Die Antwort hängt nicht nur vom Zustand ab, an dem wir messen, sondern auch davon, 

wie wir die Messergebnisse auswerten (vergl. Tab. 2.1). Ein mögliches Verfahren besteht dar-
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in, selektiv vorzugehen und immer nur die Einschlagspunkte zu markieren, die zum Beispiel

zum Aufblitzen hinter Spalt 1 gehören. Wir nennen dies eine  selektive Messung (selective mea-

surement). Sie bestehen aus vielen Messungen mit anschließender Selektion je nach Messer-

gebnis. Wir lesen an den resultierenden Häufigkeitsverteilungen folgendes ab: Das klassische

Gemisch im Zustand  Zg(1 ,  2) geht in den Zustand  Z(1) über. In analoger Weise geht das quan-

tenphysikalische Gemenge ˆ

 Zg(1 ,  2) in den Zustand ˆ

 Z(1) über. Beides ist nicht verwunderlich. 

Wir haben einfach durch selektive Messung die gemischten Zustände wieder entmischt. 

Für Atome können wir darüber hinaus aber auch den reinen Zustand ˆ

 Zr(1 ,  2) präparieren. 

Die selektive Messung, die zum Aufblitzen hinter Spalt 1 gehört, überführt diesen Zustand

gemäß resultierender Häufigkeitsverteilung in den Zustand ˆ

 Z(1). Beim Doppelspalt überführt

die selektive Messung also einen reinen Zustand in einen davon verschiedenen reinen Zustand. 

Die Messung greift ein und ändert ab. Wir können eine selektive Messung auch als eine  Um-

 präparation  auffassen. Das Resultat der Interferenz beim reinen Zustand wird aufgebrochen. 

In Spezialfällen wird nicht umpräpariert: Wenn der reine Zustand ˆ

 Z(1) vorliegt (Spalt 2 ist

geschlossen), dann blitzt es immer hinter Spalt 1 auf. Darüber hinaus zeigt die registrierte

Häufigkeitsverteilung der Atome, die geblitzt haben, dass der Zustand ˆ

 Z(1) nicht abgeändert

wurde. In diesen Fällen bestätigt die Messung nur die Präparation. 

Ein alternatives Auswertungsverfahren besteht darin, dass wir nicht selektiv messen, al-

so zwar die Atome und die Kugeln anstrahlen, aber die Aufschlagspunkte unabhängig davon

wo der Blitz aufgeleuchtet hat (und daher ohne Auswahl) auf dem Schirm zu einem einzigen

Bild zusammenfassen ( nicht-selektive Messung, non-selective measurement). An der resul-

tierenden Wahrscheinlichkeitsverteilung können wir ablesen, dass für Kugeln wie für Atome

gleichermaßen statistisches ein Gemisch (bzw. Gemenge) wieder in ein statistisches Gemisch

(bzw. Gemenge) übergeht. Das ist plausibel. Da wir nicht selektieren, mischen wir die Zu-

stände wieder. Für Atome können wir zusätzlich den reinen Zustand ˆ

 Zr(1 ,  2) präparieren, 

der keine Entsprechung für Kugeln hat. Wenn wir an diesem Zustand nicht-selektiv messen, 

erhalten wir die Häufigkeitsverteilung, die zum Gemenge ˆ

 Zg(1 ,  2) gehört. Wir haben die zu

den beiden Messergebnissen gehörigen Zustände ˆ

 Z(1) und ˆ

 Z(2) gemischt. Im Bereich der

Quantenphysik überführt eine nicht-selektive Messung einen reinen Zustand in ein Gemenge. 

Schließlich wollen wir eine letzte Bemerkung zur Messung an Atomen machen. Wir hat-

ten oben schon beschrieben, dass ˆ

 Z(1) durch eine Messung unverändert bleibt. Eine direkt

nachfolgende Messung erfolgt daher wieder am Zustand ˆ

 Z(1), und wir registrieren erneut

ein Aufblitzen hinter Spalt 1. Das ist der Grund dafür, dass man Atomen mit Aufblitzen zum

Beispiel hinter dem ersten Spalt die  Eigenschaft „hinter Spalt 1“ durchaus zuordnen kann. 

Die Messung, die die Frage wiederholt „hinter welchem Spalt?“ führt bei diesen Atomen

wieder auf die Antwort „hinter Spalt 1“. 

Die typische experimentelle Situation

Wir können noch in anderer Weise als durch eine

Messung zwischen Doppelspalt und Schirm eingreifen. Wenn die Kugeln bzw. die Atome ge-

laden sind, können wir zum Beispiel ein elektrisches Feld anlegen, dann wird sich das Bild der

Auftreffwahrscheinlichkeiten verzerren. Je schwächer das Feld ist umso schwächer ist die Ver-

zerrung. Das elektrische Feld bewirkt eine Änderung des Zustandes. Selbstverständlich ist das

Anlegen des elektrischen Feldes nur ein Beispiel. Es gibt andere Eingriffsformen. Einheitlich
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 Klassische Physik

 Quantenphysik

Selektive

Klassisches

 →  in einen der

Gemenge

 →  in

einen

Messung

Gemisch

im Gemisch

reinen

enthalte-

Zustand. ( ∗)

nen

reinen

Zustände

Reiner

 →  in

einen

Zustand

(im

All-

gemeinen

verschiede-

nen) reinen

Zustand

Nicht-selektive

Klassisches

 →  in das

Gemenge

 →  in ein mög-

Messung

Gemisch

gleiche

licherweise

klassische

anderes

Gemisch

Gemenge

Reiner

 →  in ein Ge-

Zustand

menge

Tabelle 2.1: Die Auswirkungen von Messungen in der klassischen Physik und der Quantenphysik. Der

Pfeil „ →“ besagt: „...“ wird durch Messung in „...“ überführt. Wir verwenden für Gemenge auch die

Bezeichnung statistisches Gemisch. Wie wir später sehen werden, gilt (*) nur, wenn keine Entartung

vorliegt. 

werden wir sie als das Einwirken eines  Transformationsapparates  auffassen. Die ungestörte

freie Entwicklung ist als Spezialfall enthalten. 

Zusammenfassend lässt sich sagen, dass wir es in der Physik mit drei Typen von Ap-

paraten zu tun haben: Präparationsapparate, Transformationsapparate und Messapparate. Bei

einem Versuchsaufbau im Labor liegt jeweils ein spezieller Typ dieser Apparate vor. Das Ex-

periment kann in drei unabhängige aufeinander folgende Phasen zerlegt werden: Präparation, 

Transformation und Messung (vergl. Abb. 2.4). 

Anwendungsbereich der Quantentheorie

Die Aufgabe einer physikalischen Theorie ist

es, zu bekanntem Präparations- und Transformationsapparat die Messergebnisse, die der

Messapparat anzeigt, zu prognostizieren und hierfür eine Begründung auf der Grundlage einer

Theorie zu geben. Es zeigt sich bereits am Doppelspalt – insbesondere beim Zustand ˆ

 Zr(1 ,  2), 

den wir als Ergebnis einer „Interferenz“ charakterisiert haben – dass es in gewissen Fällen kei-

ne Begründung im Rahmen der klassischen Physik gibt. Diese Experimente setzten dem An-

wendungsbereich der klassischen Physik Grenzen. Sie liegen außerhalb im  Quantenbereich. 

Ein  Quanteneffekt  liegt dann vor, wenn eine rein klassische Begründung des Verhaltens der

drei Apparatetypen nicht möglich ist. 

Die  Quantentheorie  begründet die Quanteneffekte. Ob und in welcher Weise sie auch eine

Begründung für die Effekte der klassischen Physik geben kann, ob also die klassische Physik
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Präparation

Transformation

Messung

 m

Abbildung 2.4: Die Einflüsse auf den Zustand eines physikalischen Systems. 

als ein Grenzfall aus der Quantentheorie ableitbar ist, ist eine offene Frage. Sie ist Gegen-

stand aktueller Forschung und wir werden noch auf sie in Kap. 15 zurückkommen. Auch die

umgekehrte Begründungsrichtung ist denkbar. Der Anwendungsbereich der Quantentheorie

könnte leer sein. Kann man möglicherweise Quanteneffekte mit Hilfe der klassischen Phy-

sik beschreiben? Wir greifen die Frage in Kap. 10 wieder auf, wenn wir die „verborgenen

Parameter“ diskutieren. 

2.1.2

Postulate für reine Zustände abgeschlossener Quantensysteme

Wir wollen im Folgenden die theoretische Begründung der Phänomene im Quantenbereich auf

einige wenige Grundannahmen zurückführen. Wir verallgemeinern hierzu die Erfahrungen, 

die wir im Experiment zur Atominterferometrie gemacht haben. Dabei streben wir allerdings

nicht die mathematische und begriffliche Präzision einer Axiomatisierung der Quantentheorie

an. Hierfür sei auf die Literatur verwiesen. Wir präzisieren zunächst den schon verwendeten

Begriff des Quantenzustandes und stellen dann die Postulate vor, die die Quantenphänome-

ne begründen können, die bei reinen Zuständen auftreten. In späteren Kapiteln dieses Bu-

ches werden wir die Postulate Schritt für Schritt allgemeiner fassen. Dabei wird sich zeigen, 

dass die Grundgliederung, die letztlich durch das Schema von Abb. 2.4 bestimmt ist, erhalten

bleibt. 

Quantensysteme

Die Apparate in Abbildung 2.4 werden nacheinander von links nach

rechts wirksam. Die Pfeile kennzeichnen dabei den Übergang eines Quantensystems von

einem Apparat zum anderen. Mit  Quantensystem (quantum system) bezeichnen wir etwas, 

das einen Präparationsvorgang durchlaufen hat und an dem Messungen vorgenommen werden

können. Die Begründung dieser Messungen muss dabei in den Bereich der Quantentheorie

fallen. Im oben diskutierten Beispiel ist ein einzelnes Atom ein solches Quantensystem. Auch

die Spinorientierung eines Atoms oder die Polarisation eines Photons kann präpariert und re-

gistriert werden. In der  Standardinterpretation  der Quantentheorie, die wir in diesem Kapitel

anwenden wollen, wird dem einzelnen Quantensystem physikalische  Realität  zugesprochen. 

Seine Existenz wird behauptet, so wie wir das, ausgehend von den Einzelaufschlägen auf

dem Schirm, für die Atome im Atominterferometer bereits getan haben. Wir kommen auf das

Problem der Realität im Abschn. 2.5 noch einmal zurück. Wir werden sehen, dass Quanten-

systeme selber wieder aus Teilsystemen zusammengesetzt sein können. In diesem Fall spielen

die verschränkten Zustände eine zentrale Rolle. 

Quantenzustand und Messungen

Quantensysteme, die in gleicher Weise präpariert wur-

den, können zu verschiedenen Messergebnissen führen. Beispielsweise können in unse-
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rem Experiment die Atome an verschiedenen Orten des Schirms detektiert werden (vergl. 

Abb. 2.3). Eine bestimmte Präparation legt nur die Wahrscheinlichkeiten für die verschie-

denen Messergebnisse fest. Damit die Wahrscheinlichkeitsverteilung experimentell bestimmt

werden kann, müssen Messungen an sehr vielen gleich präparierten Systemen durchgeführt

werden.  Der Zustand eines Quantensystems ist dem durchlaufenen speziellen Präparations-

 verfahren zugeordnet. Unter einem  Quantenzustand  (quantum state) verstehen wir dasjenige

 mathematische (!) Objekt, das es erlaubt, eindeutig die Wahrscheinlichkeiten für die Ergeb-

 nisse aller möglichen Messungen an Systemen zu berechnen, die das zugeordnete Präparati-

 onsverfahren durchlaufen haben. Der Quantenzustand charakterisiert somit das Präparations-

verfahren. Wir erwarten also nicht, dass der so eingeführte Quantenzustand eine Entsprechung

in der Realität hat, die dem einzelnen Quantensystem zugeordnet werden kann. Für die Zu-

stände von Objekten in der klassischen Physik ist das der Fall. Weiterhin können verschiedene

Präparationsverfahren auf den gleichen Zustand führen. Diese Verfahren bilden in diesem Sin-

ne eine Äquivalenzklasse von Zustandspräparationen. Die mathematische Beschreibung des

Zustandes und die Berechnung der Wahrscheinlichkeiten werden wir weiter unten postulie-

ren. Durch den Bezug auf Äquivalenzklassen werden auch die individuellen Strukturen der

einzelnen Präparations- und Messapparate gleichen Typs eliminiert. 

Es ist wichtig, auf diesem Hintergrund noch eine  Sprechweise  zu erklären, die sich einge-

bürgert hat und die wir auch verwenden wollen: Häufig sagt man, dass ein einzelnes Quanten-

system sich in einem speziellen Zustand  befindet  oder einen Zustand  hat. Gemeint ist damit, 

dass es die entsprechende Präparationsprozedur aus einer bestimmten Äquivalenzklasse von

Präparationen durchlaufen hat. Nur in diesem Sinne ordnet man einem Einzelsystem einen

Zustand zu. Wir sind also in diesem ersten Schritt hin zur Formulierung der Standardinter-

pretation der Quantentheorie sehr zurückhaltend mit Aussagen über Quantensysteme selber. 

Weitergehende Festlegungen über Existenz von Eigenschaften wie Energie, Ort usw. werden

wir erst nach Formulierung der Postulate treffen. 

Reine Zustände abgeschlossener Quantensysteme

Wie für die Klassische Mechanik der

„freie Massenpunkt“ so ist für den Aufbau der Quantentheorie das Konzept des  total isolierten

oder  freien Systems  fundamental. Es handelt sich dabei um eine Idealisierung, die tatsächlich

nur näherungsweise realisiert werden kann. Ihr liegt die Vorstellung zugrunde, dass in gewis-

sen Situationen Quantensysteme so vollständig vom Rest der Welt entkoppelt werden können, 

dass alle möglichen Vorgänge in diesem Rest den Zustand des Systems unverändert lassen. 

Insbesondere könnte der Rest ohne Einfluss auf das System völlig leer geräumt werden2. 

Freie Quantensysteme sind für Anwendungen uninteressant. Wir lassen daher zu, dass sich

der Zustand des Systems zwischen der Zeit der Präparation und der Zeit der Messung ändern

kann. Das äußert sich darin, dass Messungen zu den beiden Zeiten zu verschiedenen Wahr-

scheinlichkeitsverteilungen der Messwerte führen. Wie in der klassischen Mechanik wird für

diese Abweichung vom freien Verhalten eine Ursache angegeben, die hier durch den Trans-

formationsapparat repräsentiert wird. Er beschreibt eine innere Entwicklung des Systems bzw. 

äußere konstante oder zeitabhängige Einflüsse wie sie zum Beispiel durch elektromagnetische

2 Wie wir in nachfolgenden Kapiteln sehen werden reicht für Quantensysteme die Abschirmung aller von außen

angreifenden Wechselwirkungen nicht aus. Zur totalen Isolierung müssen zusätzlich alle EPR-Korrelationen mit der

Außenwelt verhindert werden. Abschirmung hat so eine neue Qualität erhalten. 
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oder gravitative Felder verursacht werden. Wir setzen dabei aber voraus, dass es keine Rück-

wirkung auf das den Einfluss bewirkende äußere System geben soll. Das Quantensystem soll

also für Rückwirkungen „nach außen hin“ abgeschlossen sein. Dies wird im Allgemeinen

ebenfalls nur näherungsweise der Fall sein. Wir nennen diese Systeme  abgeschlossene Quan-

 tensysteme (closed systems). 

Unser Präparationsapparat kann selber aus anderen Präparationsapparaten aufgebaut sein, 

die mit wohlbestimmten Häufigkeiten tätig werden und entsprechend unterschiedliche Präpa-

rationen des Quantensystems durchführen. Auch in diesem Fall ist die Prognose der Wahr-

scheinlichkeiten aller Messergebnisse eindeutig möglich. Der alles zusammenfassenden Prä-

parationsapparat präpariert einen Zustand, den man mit Blick auf die vielen beteiligten Prä-

parationsprozeduren statistisches Gemisch oder Gemenge nennt. Der Zustand ˆ

 Zg(1 ,  2) ist ein

Beispiel. Wir werden so präparierte Zustände später noch im Einzelnen untersuchen. Sie sind

spezielle Gemische. Für die erste Fassung der Postulate sollen solche Gemische ausgeschlos-

sen sein. Wir beschränken uns auf Zustände, die in keiner Weise durch eine echte Mischungs-

prozedur erzeugt oder hinsichtlich der Wahrscheinlichkeitsaussage simuliert werden können

und nennen sie  reine Zustände (pure states). Neben der Abgeschlossenheit des Systems ist die

Reinheit der Zustände die zweite starke Idealisierung. Wie in der klassischen Mechanik, die

auf einem Postulat für die Messpunkte (Inertialsystem) aufbaut, werden wir schrittweise zur

Beschreibung realistischer physikalischer Situationen übergehen. 

Postulate

Es stehen uns damit alle Konzepte zur Verfügung, um die  erste Fassung  der Pos-

tulate zu formulieren. Wir werden alle drei Postulate in späteren Kapiteln

Postulat 1 (reiner Zustand)

 Ein abgeschlossenes Quantensystem, das sich in einem reinen

 Zustand befindet, wird durch seinen  Zustandsvektor  |ψ beschrieben. Er ist ein normierter

 Vektor in einem dem System zugeordneten Hilbert-Raum H. 

Wir vereinfachen zunächst unsere experimentelle Grundsituation und gehen direkt zu

Messungen über. Wir denken uns daher den Transformationsapparat herausgenommen oder

fassen ihn als Teil des Präparationsapparates auf. Auch für die Messgeräte soll an dieser Stel-

le zunächst nicht der allgemeinste Fall behandelt werden. Wir beschränken uns vielmehr auf

Projektionsmessungen. Dies ist ein bestimmter fundamentaler Typ von Messungen, der aber

auch bei den späteren Verallgemeinerungen immer wieder eine zentrale Rolle spielen wird. 

Postulat 2 (Projektionsmessung, von Neumann-Messung)

a)  Eine an einem Quantensystem durchgeführte Projektionsmessung einer physikalischen

 Größe (z. B. Energie, Drehimpuls, usw.) wird durch einen hermiteschen Operator be-

 schrieben, der auf H wirkt. Wir sprechen von einer Messung der  Observablen  A und

 bezeichnen den Operator mit dem selben Symbol A. 

b)  Die möglichen  Messergebnisse  einer Messung der Observablen A sind die Eigenwer-

 te an des zugehörigen Observablenoperators A. Wir setzen voraus, dass das Spektrum

 diskret ist:

 A|ui  =  a

 , i = 1 , . . . , g

 n

 n|uin

 n

(2.1)

 Die |ui 

 n

 bilden eine orthonormale Basis. gn ist der  Entartungsgrad  degeneracy von an. 
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c)  Wenn die Messung der Observablen A an einem System mit normiertem Zustandsvek-

 tor |ψ auf das Messergebnis an führt, dann ist der unnormierte Zustandsvektor | ˜

 ψ 

 n

 unmittelbar nach der Messung durch die Projektion von |ψ

 |ψ → | ˜

 ψ  =  P

 n

 n|ψ

(2.2)

 mit dem Projektionsoperator

 gn



 Pn :=

 |ui ui |

 n

 n

(2.3)

 i=1

 gegeben, der in den Raum der Eigenvektoren zu an projiziert. 

d)  Wir bezeichnen mit N ( an)  die Häufigkeit mit der sich der Messwert an ergibt, wenn

 die Messung an N gleich präparierten Systemen im Zustand |ψ durchgeführt wird. Die

)

 relativen Häufigkeiten N( an gehen für alle solchen Ensemble im Grenzfall N → ∞

 N

 einheitlich in die Wahrscheinlichkeit p( an)  als Grenzwert über:

 N ( an)  N→∞

 −−−−→ p( an)

(2.4)

 N

e)  Die Wahrscheinlichkeit p( an)  den Messwert an zu erhalten, ist gleich dem Erwartungs-

 wert des Projektionsoperators Pn vor der Messung bzw. gleich dem Quadrat der Norm

 des Zustandsvektors | ˜

 ψ 

 n

 nach der Messung:

 p( an) =  ψ|Pn|ψ =  	 ˜

 ψ 	 2  . 

 n

(2.5)

Messungen, die durch dieses Postulat beschrieben werden, heißen  Projektionsmessungen (pro-

jection measurements) oder  Von-Neumann-Messungen . Da  A  ein hermitescher Operator ist, 



gilt

 P

und damit, wie für die Gesamtwahrscheinlichkeit zu erwarten ist, 

 n

 n = 

  p( an) =  ψ|ψ = 1 . 

(2.6)

 n

Wir beschreiben schließlich noch die Wirkung des Transformationsapparates für abge-

schlossene Systeme:

Postulat 3 (dynamische Entwicklung zwischen Präparation und Messung)

a)  Die Zeitentwicklung eines abgeschlossenen Quantensystems zwischen zwei beliebigen

 Zeiten t 0  und t 1  wird durch einen unitären  Zeitentwicklungsoperator  (time development

 operator) U ( t 1 , t 0)  beschrieben:

 U †( t 1 , t 0) =  U − 1( t 1 , t 0)  . 

(2.7)

 Er erfüllt die Bedingungen U ( t 0 , t 0) =

 und



 U ( t 2 , t 1) U ( t 1 , t 0) =  U ( t 2 , t 0)

(2.8)

 für beliebige Zeiten t 0 , t 1 , t 2 . 
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b)  Aus den Bedingungen (2.7) und (2.8) ergibt sich (siehe unten) für U ( t, t 0)  die Differenti-

 algleichung

 i  ∂ U ( t, t 0) =  H( t) U ( t, t 0)

(2.9)

 ∂t

 mit einem hermiteschen Operator H, der explizit zeitabhängig sein kann.  = 1 ,  0546  ×

10 − 34 J oule · sec ist die Plancksche Konstante. Es wird postuliert, dass H( t)  diejenige

 Observable ist, die zur Gesamtenergie des Systems gehört (Hamilton-Operator). 

c)  Das  Schrödinger-Bild  (Schrödinger picture) ist eine der vielen möglichen Beschreibun-

 gen der Zeitentwicklung. In diesem Bild wird die dynamische Entwicklung in linearer

 Weise allein durch den Zustandsvektor gemäß

 |ψ( t)  =  U( t, t 0) |ψ( t 0) 

(2.10)

 wiedergegeben. Observablen können nur explizit zeitabhängig sein. 

Andere Bilder, wie z. B. das Heisenberg- und das Wechselwirkungsbild, ergeben sich mit Hil-

fe der Unitäräquivalenz. Sie sorgt dafür, dass alle Aussagen über Messungen am Ende der

Zeitentwicklung in allen Bildern gleich sind.  Wir verwenden i.A. das Schrödinger-Bild. 

Warum unitäre Zeitentwicklung? 

Infolge der Unitarität des Zeitentwicklungsoperators

bleibt der Zustandsvektor  |ψ  normiert und die Gesamtwahrscheinlichkeit irgendeinen der



Messwerte zu messen ist gleich eins:

 p( a

 n

 n) = 1. Wenn man umgekehrt die Erhaltung der

Gesamtwahrscheinlichkeit während der dynamischen Entwicklung mit einem (noch nicht als

unitär vorausgesetzten) Zeitentwicklungsoperator  T ( t 1 , t 0) fordert, so muss auch zum Zeit-

punkt  t 1 pt ( a 1 n)= T( t 1 ,t 0) ψ|T( t 1 ,t 0) ψ=1

(2.11)

 n

für alle Zustände  |ψ  gelten. Wie wir in Abschn. 1.1.5 gezeigt haben, folgt aus dieser Normer-

haltung die Unitarität von  T . Man könnte also das Postulat 3 umformulieren und die Forderung

der Erhaltung der Gesamtwahrscheinlichkeit an die Spitze stellen. 

Schrödinger-Gleichung

Der inverse Operator  U − 1 ist wiederum unitär. Die zeitliche Ent-

wicklung eines Quantensystems außerhalb des Messprozesses ist daher umkehrbar. Wählt man

in Gl. (2.8)  t 2 =  t 0, dann sieht man, dass der inverse Operator durch

 U − 1( t 1 , t 0) =  U ( t 0 , t 1)

(2.12)

gegeben ist. Gemäß Gl. (2.10) ist die infinitesimale Zeitentwicklung

 |ψ( t 0 + d t)  =  U( t 0 + d t, t 0) |ψ( t 0) 

(2.13)

durch den Operator  U ( t 0 + d t, t 0) bestimmt. Seine Entwicklung nach der Zeit kann in der

Form

 U ( t 0 + d t, t 0) =

 − i



 H( t)d t

(2.14)
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geschrieben werden, wobei  H  ein hermitescher Operator ( H† =  H) mit der Dimension Ener-

gie ist.  H  kann explizit zeitabhängig sein. Die Unitarität ergibt sich dann mit







 i

 U †( t 0 + d t, t 0) U ( t 0 + d t, t 0) = 1 +

 

 H( t)d t  1  − i H( t)d t

(2.15)



Durch Auswerten von

 U ( t 0 + d t 1 + d t 2 , t 0) =  U ( t 0 + d t 1 + d t 2 , t 0 + d t 0)  U ( t 0 + d t 1 , t 0) (2.16)

kann man leicht zeigen, dass der infinitesimale Zeitentwicklungsoperator von (2.14) auch die

Relation (2.8) bis auf einen Term der Ordnung d t  erfüllt. 

Die Differentialgleichung für den Zeitentwicklungsoperator  U ( t, t 0) erhalten wir mit Hilfe

von (2.8) und (2.14). Aus





 U ( t + d t, t 0) =  U ( t + d t, t) U ( t, t 0) = 1  − i H( t)d t U( t,t 0) (2.17)

folgt

 U ( t + d t, t 0)  − U ( t, t 0) =  − i H( t)d t

(2.18)

und damit die Gl. (2.9)

 i  ∂ U ( t, t 0) =  H( t) U ( t, t 0)  . 

(2.19)

 ∂t

Im Schrödinger-Bild folgt daraus mit Gl. (2.10) für die Zeitentwicklung des Zustandsvektors

die  Schrödinger-Gleichung

 i  ∂ |ψ( t)  =  H( t) |ψ( t)  . 

(2.20)

 ∂t

Physikalische Eigenschaften

Die Postulate ermöglichen es uns die bisherige Interpretati-

on zu erweitern. Inwieweit können Quantensysteme bestimmte  physikalische Eigenschaften

(properties) haben, wie das in der Standardinterpretation üblicherweise angenommen wird? 

Wenn der Zustand ein Eigenvektor  |un  zum Eigenwert  an  des Observablenoperators  A  ist, 

dann führt eine Messung von  A  mit Sicherheit auf das Messergebnis  an. Wiederholen wir

die Messung so ergibt sich immer wieder mit Sicherheit  an. Dies ist wegen  PnPn =  Pn  die

charakteristische Eigenschaft projektiver Messungen. 

Es macht daher Sinn davon zu sprechen, dass das im Zustand  |un  präparierte System

die physikalische  Eigenschaft an  besitzt. Sie wird als real angenommen. Wenn  A  z. B. der

Energie-Operator ist, dann hat das System die Energie  an. Ergibt sich für einen allgemei-

nen Zustand  |ψ =  |un  bei Messung von  A  der Messwert  an, so kann man allerdings nicht

davon sprechen, dass das System die Eigenschaft  an  schon vorher hatte. Erst durch das Zu-

sammenwirken von Quantensystem und Messapparat im Messprozess geht das System in den

Zustand  |un über und der Messapparat zeigt  an  an. Wir kommen in Abschn. 2.4 auf die oben

beschriebene Interpretation der Quantentheorie noch einmal zurück. 
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2.1.3

Kommentare zu den Postulaten

- Die Dimension des Hilbert-Raums eines Quantensystems ist physikalisch charakterisiert

als die maximale Zahl von Zuständen, die in einer Einzelmessung verlässlich von einan-

der unterschieden werden können. Das wird deutlich, wenn man als Observablenoperator

einen hermiteschen Operator nimmt, bei dem keiner der Eigenwerte entartet ist. 

- Neben der Dimension des Hilbert-Raums gibt es weitere beobachterunabhängige Cha-

rakterisierungen von Quantensystemen, die keiner Wahrscheinlichkeitsaussage unterlie-

gen. Dazu gehören die klassischen Variablen Masse, Ladung und Betrag des Spins eines

Quantensystems. Obwohl diese Größen Messgrößen sind, tauchen sie in der unrelativis-

tischen Quantentheorie nur als Parameter auf. 

- Die Entwicklung des Systems gemäß Postulat 3 ist deterministisch und reversibel. Zeit

ist in der Quantentheorie eine klassische Variable und keine Observable. 

- Es wird angenommen, dass nicht nur jeder reine Zustand durch einen Zustandsvektor dar-

gestellt wird, sondern, dass auch jeder Zustandsvektor einen möglichen reinen Zustand

repräsentiert. Das zugehörige Präparationsverfahren lässt sich im Prinzip experimentell

realisieren. 

- Den reinen Zustand haben wir als einen Zustand eingeführt, der nicht gemischt ist. Diese

negative Charakterisierung ist für praktische Anwendungen nur bedingt brauchbar. Wir

haben aber mit Postulat 2.c ein Verfahren zur Auszeichnung eines reinen Zustandes ken-

nen gelernt, das leichter operationalisierbar ist und auf das wir zurückgreifen können. 

Ein reiner Zustand entsteht als Ergebnis einer Messung, wenn der Messwert nicht ent-

artet ist. Falls Entartung vorliegt muss ein vollständiger Satz paarweise kommutierender

Observablen gemessen werden. Der Satz der zugehörigen Messwerte charakterisiert den

resultierenden Zustandsvektor eindeutig. 

- Ein dynamischer Prozess stellt einen beobachtbaren Wechsel in den Wahrscheinlichkeits-

verteilungen dar. Die Postulate gehen davon aus, dass es im Quantenbereich zwei völ-

lig verschiedene Typen dynamischer Prozesse gibt: den irreversiblen probabilistischen

Messprozess (Postulat 2) und die reversible unitäre Zustandsentwicklung zwischen Prä-

paration und Messung (Postulat 3). 

- Das legt den Gedanken nahe, das Quantensystem um ein quantentheoretisch beschrie-

benes Messgerät zu einem größeren abgeschlossenen Quantensystem zu erweitern. Man

könnte dann versuchen die gemeinsame Entwicklung im Sinne von Postulat 3 zu be-

schreiben. Das Postulat 2 würde überflüssig. Wir werden später solche Ansätze noch

diskutieren (vergl. Kap. 15). Zunächst bleiben wir dabei, dass mit den Postulaten 2 und

3 zwei ganz verschiedene Dynamiken eingeführt sind: die  Messdynamik  und die  Trans-

 formationsdynamik. 

- Es ist das mathematische Zusammenwirken von Zustandsvektor und Observable, das das

physikalische Zusammenwirken von Quantensystem und Messapparat im Laboratorium

abbildet. Dabei geht – anders als in der klassischen Physik – nicht nur der Messapparat
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in einen neuen Zustand über, sondern das Quantensystem ebenfalls. Es muss in der Regel

mit einem neuen Zustandsvektor beschrieben werden. 

- Es ist zugelassen, dass die Messung das Quantensystem zerstört. Dann entfällt Ab-

schnitt c) von Postulat 2. 

- Wir werden annehmen, dass sich zu jedem hermiteschen Operator ein Messapparat finden

lässt, der durch den Operator beschrieben wird. Tatsächlich ist es in den meisten Fällen

eine keineswegs einfache Aufgabe, eine solche experimentelle Realisierung anzugeben. 

2.2

Ausblick

Wir haben bei der Formulierung der Postulate eine ganze Reihe von physikalischen Einschrän-

kungen gemacht, die wir in den kommenden Kapiteln Schritt für Schritt aufgeben wollen, bis

sich die ganz allgemeine Struktur der Quantentheorie ergibt. 

 •  Wir haben uns auf reine Zustände beschränkt. Der allgemeine Quantenzustand ist ein

Gemisch (Kap. 4). 

 •  Quantensysteme können aus Untersystemen zusammengesetzt sein, die dann im Allge-

meinen nicht mehr abgeschlossen sind. Die Quantentheorie solcher offenen Systeme ist

zu entwickeln (Kap. 7 und 8). Bei zusammengesetzten Systemen werden wir zum ersten

Mal den verschränkten Zuständen begegnen. 

 •  Projektionsmessungen sind ein spezieller Typ von Quantenmessungen. Wir werden in

Kap. 13 und Kap. 14 und Verallgemeinerungen einführen. 

 •  Für offene Quantensysteme sind dynamische Entwicklungen möglich, die sich nicht

mehr durch unitäre Zeitentwicklungsoperatoren beschreiben lassen. Wir werden sie mit

Hilfe von Superoperatoren formulieren (Kap. 14). 

 •  Was lässt sich erreichen, wenn man versucht, die Messdynamik von Postulat 2 auf die

Dynamik von Postulat 3 zurückzuführen (vergl. Kap. 15)? 

Alle diese Fortentwicklungen vertiefen nicht nur das Verständnis der unrelativistischen

Quantentheorie. Sie führen auch auf neue physikalische Effekte und sind die Grundlage von

Quanteninformationstheorie und von Quantencomputern. 

Weitere Verallgemeinerungen, die wir aber nicht diskutieren wollen, ließen sich anschlie-

ßen: Wir könnten Observablenoperatoren mit kontinuierlichem Eigenwertspektrum wie Ort

und Impuls einbeziehen. Wenn die Zahl der Quantensysteme nicht fest oder wohlbestimmt

ist, ist zur Beschreibung ein Fock-Raum nötig. In beiden Fällen sind weitere neue Effekte zu

erwarten. Beim Übergang zu Hilbert-Räumen mit abzählbarer unendlicher Dimension können

dagegen die bisherigen Ergebnisse in den physikalisch relevanten Fällen direkt übertragen

werden. 

Bevor wir die angekündigten Verallgemeinerungsschritte durchführen, wollen wir im Fol-

genden die Macht der Projektionsmessung kennen lernen und in den Abschnitten 2.4 und 2.5

von höherer Warte einen Blick auf den bisher beschrieben Aufbau der Theorie werfen. 
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2.3

Manipulation der Zustandsbewegung durch projektive

Messungen

Quantentheoretische Messungen greifen in die dynamische Entwicklung eines Quantensys-

tems ein und ändern sie ab. Bei Projektionsmessungen ist dieser Eingriff besonders stark. Wir

können durch eine Sequenz von Projektionsmessungen die Entwicklung völlig „einfrieren“

oder aber dem Zustand eine willkürliche Entwicklung aufprägen, ihn also durch Messungen

„treiben“. 

2.3.1

Quanten-Zeno-Effekt

Kurzzeitverhalten

Wir betrachten folgende Situation: Der Zustand des Systems zur Zeit

 t = 0 ist ein Eigenvektor  |a  einer Observablen  A:  |ψ( t = 0)  =  |a.  A  hat ein diskretes Spektrum. Die unitäre Entwicklung erfolgt mit dem zeitunabhängigen Hamilton-Operator  H. 

Wir setzen  = 1. 

 |ψ( t)  =  e−iHt|a . 

(2.21)

Nach der Zeit  t  messen wir die Observable  A. Die Wahrscheinlichkeit des Systems nach

dieser Messung wieder im Anfangszustand  |a  zu finden ist

 p( t) =  |a|e−iHt|a| 2  . 

(2.22)

Für kleine Zeiten erhalten wir daraus

 p( t) = 1  − (∆ H)2 t 2 +  O((∆ H)4 t 4)

(2.23)

mit der Energie-Unbestimmtheit ∆ H

(∆ H)2 :=  a|H 2 |a − a|H|a 2 =:  τ − 2  . 

 z

(2.24)

Die Zeit  τz  heißt  Zeno-Zeit. Sie ist umso größer, je ähnlicher  |a  einem Energie-Eigenzustand

ist. Im Grenzfall ∆ H = 0 ergibt sich  p( t) = 1. Für ∆ H = 0 hängt  p( t) für kleine Zeiten t  τz  quadratisch von  t  ab. 

Quanten-Zeno-Effekt 3 Wir führen nun über eine Zeit  T  hin  N  Messungen der gleichen

Observablen  A  in gleichen Zeitintervallen

 T

 τ :=

(2.25)

 N

mit  τ  τz  durch. Die bedingte Wahrscheinlichkeit  p( N)( T ) nach jeder einzelnen Messung

in der Sequenz immer wieder den Anfangszustand  |a  zu finden ist mit (2.23)



 	 

2

 N

 T

 p( N)( T ) = [ p( τ )] N = [ p( T /N )] N ≈

1  −  1

 . 

(2.26)

 τ  2

 N

 z

3Benannt nach dem Pfeil-Paradoxon des Zeno von Elea ca. 495-430 v.Chr. 
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Je mehr Messungen im Zeitintervall [0 , T ] bei festem  T  stattfinden, d.h je kleiner das

Zeitintervall  τ  wird, desto größer ist die Wahrscheinlichkeit, dass das System im Anfangszu-

stand  |a  bleibt. Im Grenzfall  N → ∞  bzw.  τ →  0 der kontinuierlichen projektiven Messung

hat sich die Messdynamik völlig gegenüber der unitären Entwicklung durchgesetzt und das

System wird im Anfangszustand „eingefroren“:

 N →∞

 p( N)( T )  −−−−→  1  . 

(2.27)

Dies nennt man den  Quanten-Zeno-Effekt. Anders als die Gl. (2.26) ist der Grenzübergang

in Gl. (2.27) aber tatsächlich unphysikalisch: Der quantentheoretische Messprozess hat eine

gewisse endliche Dauer. 

2.3.2

Treiben eines Zustandsvektors durch eine Sequenz von

Projektionsmessungen

Wir können durch Projektionsmessungen die Entwicklung eines Quantenzustandes nicht nur

näherungsweise unterbinden, sondern auch ihren zeitlichen Verlauf bestimmen. Der Hilbert-

Raum des Systems möge zweidimensional sein mit der ONB  {|↑, |↓}. Der Anfangszustand

zur Zeit  t = 0 sei  |↑. Für eine Observable, die einen dagegen gedrehten Eigenzustand

 |α = cos  α|↑ + sin  α|↓

(2.28)

hat, ist die Wahrscheinlichkeit das System nach der Messung im Zustand  |α  zu finden

 p( α) = cos2  α . 

(2.29)

Wir führen wieder  N  Messungen mit Zeitabstand  τ =  T  im Zeitintervall [0 , T ] durch. 

 N

Aber in diesem Fall gehen wir dabei nacheinander jeweils zu neuen Observablenoperatoren

über, die die Eigenzustände  |αn  mit  αn =  nωτ

und  n = 1 ,  2 ,  3 , . . .  besitzen. Wir nehmen

an, dass es keine zusätzliche unitäre Entwicklung gibt. Dann ist die bedingte Wahrscheinlich-

keit das System im Zustand  |αn  zu finden, wenn es vorher im Zustand  |αn− 1   war

˜

 p( n) =  |αn|αn− 1 | 2 = cos2  ωτ . 

(2.30)

Die Wahrscheinlichkeit das System nach jeder dieser Messungen im entsprechenden Eigen-

zustand  |α 1 , |α 2 , |α 3  . . .  zu finden ist



2 N

 T

N groß

 N →∞

˜

 p( N)( n) =

cos  ω

 −−−→  1  − ω 2 T  2

 −−−−→  1  . 

(2.31)

 N

 N  2 2 N

Im Grenzfall  N → ∞  bei festem  t  bzw. für den Zeitabstand  τ →  0 stimmt der Systemzustand

stets mit dem Zustand  |α  von Gl. (2.28) mit  α =  ωt überein. Dem System ist eine vorgegebe-

ne Zustandsbewegung durch eine Sequenz angepasster projektiver Messungen aufgezwungen

worden. Auch in diesem Fall ist der Grenzfall  τ →  0 im strengen Sinne unphysikalisch wegen

der endlichen Dauer des Messprozesses. 
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2.4

Die Struktur physikalischer Theorien ∗

Wir haben bisher immer nur von der Standardinterpretation gesprochen. Gibt es andere In-

terpretationen? Was versteht man unter der Interpretation einer physikalischen Theorie? Wir

werden uns in den nächsten beiden Kapiteln diesen Fragen zuwenden. Beide Kapitel sind zum

Verständnis der restlichen Kapitel nicht nötig und können daher auch überlesen werden. An-

dererseits spielen gerade die mit Interpretationsproblemen verknüpften naturphilosophischen4

und wissenschaftstheoretischen 5 Fragen sowohl in Grundsatzdiskussionen als auch in popu-

lärwissenschaftlichen Darstellungen eine große Rolle. Gerade die Frage „Was sagt die Quan-

tenphysik über die Wirklichkeit aus?“ übt offenbar auf viele Physiker und Nicht-Physiker eine

große Faszination aus. Das rechtfertigt ein mit einem Stern versehene Anmerkungen dazu, wie

solche Fragen einzuordnen sind. Sie können auch für den mehr „praktisch“ orientierten Leser

nützlich sein, da dadurch manche Konfusion in der Diskussion quantentheoretische Probleme

und der Interpretation von Aussagen vermieden werden kann. 

2.4.1

Bauelemente einer physikalischen Theorie ∗

Vortheorien

Wir schließen das Kapitel 2 über die Grundkonzepte der Quantentheorie mit

einigen strukturellen Überlegungen ab. Dabei soll insbesondere nach der Wirklichkeit gefragt

werden, auf die sich die Quantentheorie bezieht. Hierzu ist es nützlich sich zunächst klar

zu machen wie physikalische Theorien aufgebaut sind. Wir machen hierzu einen Ausflug in

die klassische Physik und betrachten die Elektrodynamik. Typische elementare Experimente

bestehen darin, dass Kräfte gemessen werden, Drähte sich erwärmen und Ähnliches. Kraft-

messung, Wärmemessung und andere Messungen beziehen sich dabei auf Theorien wie Me-

chanik, Thermodynamik usw., die bereits vor der Elektrodynamik und unabhängig von ihr

formuliert werden. Sie sind für die Elektrodynamik  Vortheorien.  Neben Drähten und Massen

werden wir auch Kraftfelder, Wärme usw. zur physikalischen Wirklichkeit zählen. Es sind

die Elemente der Wirklichkeit, die mit Hilfe der Vortheorien bereits eingeführt wurden. Wenn

wir die Elektrodynamik experimentell und theoretisch entwickeln, gehen wir davon aus, dass

die auf den Vortheorien beruhenden Apparaturen und Messgeräte Teile der physikalischen

Wirklichkeit sind. 

Bauelemente

Damit können wir bereits am Beispiel der Elektrodynamik mehrere Bauele-

mente einer physikalischen Theorie ablesen. Eine  physikalische Theorie  ist ein mathematisch-

deduktives Schema, das die folgenden Mindestbestandteile enthält:

1. einen  mathematischen Teil  MT, der aus mathematischen Größen, Definitionen, Gleichun-

gen, Umformungen, Lösungsprozeduren usw. besteht, 

2. einen Teil der Natur, den man  Grundbereich  GB nennt und von dem angenommen wird, 

dass er existiert

*Die mit einem Stern gekennzeichneten Kapitel können bei einem ersten Durchgang überschlagen werden. 

4Die  Naturphilosophie  untersucht die Begriffe, die erforderlich sind um zu verstehen, was die Naturwissenschaf-

ten über die Natur aussagen. Sie ist eine auf die Natur bezogene  Ontologie, also eine Lehre vom Sein. 

5 Wissenschaftstheorie (Erkenntnistheorie) gibt eine logische Analyse wissenschaftlicher Theorien und vergleicht

Theorien miteinander. Themen sind dabei u.a.: Konzepte der Wirklichkeit, Grenzen der Erkenntnis, physikalische

Theorien als Handlungsanweisungen, Wirklichkeit als Konstruktion und vieles mehr. 
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3. und  Abbildungsprinzipien  AP, die man auch  Korrespondenzregeln  nennt, die den Grund-

bereich GB und Teile vom mathematischen Teil MT aufeinander beziehen. 

Erst dadurch, dass die Abbildungen zu den mathematischen Relationen hinzukommen, ent-

steht eine physikalische Theorie. Typischerweise können die mathematischen Größen dann

auch dimensionsbehaftet sein. 

So wird z. B. in der Elektrodynamik der Buchstabe F im mathematischen Teil mit dem

Wort „Kraft“ bezeichnet und eine Abbildung zu dem hergestellt, was man z. B. mit realen

Federwaagen messen oder an der Bewegung von Massen ablesen kann. Es werden mit den

Abbildungsprinzipien in den Grundbereich nur Abbildungen in den Wirklichkeitsbereich der

Vortheorien hergestellt. Die Vortheorie ist in diesem Fall die Mechanik bzw. Thermodynamik. 

Zur Beschreibung und zur Vorhersage von Experimenten zur Elektrodynamik genügen diese

Abbildungen aber völlig. Die Messgrößen entstammen diesem Bereich. Zwar gibt es im ma-

thematischen Teil der Theorie z. B. auch das Symbol j, zu dem wir „elektrische Stromdichte“

sagen, es reicht aber für die experimentelle Aussage, dass wir der Theorie entnehmen können, 

dass ein Draht sich erwärmt. Wir können so Ströme messen. Es ist nicht nötig hierfür voraus-

zusetzen, dass es elektrische Ströme „in Wirklichkeit“ gibt und sie irgendwie durch Drähte

„fließen“. Das Wort Strom dient zunächst dann nur dazu, sich über Teile der Theorie schneller

verständigen zu können. 

Interpretation

Wir verstehen unter der  Interpretation (interpretation) einer Theorie die An-

gabe der Abbildungsprinzipien, mit denen Symbole des mathematischen Teils MT der phy-

sikalischen Theorie durch Verknüpfung mit Teilen der Wirklichkeit  physikalisch interpretiert

werden. Es werden für einige mathematische Symbole physikalische Referenzen angegeben. 

In diesem Sinne ist eine physikalische Theorie ein teilweise interpretiertes formales System. 

Man sollte streng dazwischen unterscheiden, ob zu gleichem MT die Abbildungsprinzipien

geändert oder erweitert werden, oder ob in einer  Alternativtheorie  auch der MT geändert und

z. B. andere Feldgleichungen postuliert werden. Die bisher geschilderte Interpretation, die sich

nur auf den Wirklichkeitsbereich der Vortheorie bezieht, wollen wir die  Minimalinterpretation

(minimal interpretation) nennen. Sie umfasst den Minimalbestand an Abbildungsprinzipien, 

die nötig sind, um für den mathematischen Teil den Anschluss an die Beobachtungsebene

zu erreichen. Auf der Grundlage der Minimalinterpretation kann über die empirische Richtig-

keit einer physikalischen Theorie entscheiden werden. Darüber hinausgehende Elemente einer

Interpretation können weder experimentell bestätigt noch widerlegt werden. Es sind viele sol-

cher konsistenten Erweiterungen und damit viele Interpretationen denkbar. Sie sind weder

richtig noch falsch. Es sind Fragen der Erklärungskraft und Verstehbarkeit, die dazu motivie-

ren können über die Minimalinterpretation hinauszugehen. Von erweiterten Interpretationen

können wertvolle Impulse für neue Forschungsprogramme ausgehen. Die Suche nach einer

Theorie des Quantenmessprozesses ist ein Beispiel (vergl. Kap. 15). Wir machen noch darauf

aufmerksam, dass der Begriff Minimalinterpretation in der Literatur unterschiedlich verwen-

det wird. 
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2.4.2

Theoretische Terme ∗

Schon das Beispiel Elektrodynamik zeigt, dass die meisten Physiker über die Minimalinter-

pretation hinausgehen. Im mathematischen Teil der Elektrodynamik tauchen neben Termen, 

die eine Abbildung in die Ausschläge von Messgeräten erlauben, weitere Terme wie z. B. 

das elektrische Feld E oder der Strom j auf, von denen ebenfalls eine Entsprechung in der

Realität angenommen wird. Die hierzu gehörigen zusätzlichen Abbildungsprinzipien wollen

wir  hypothetische Abbildungsprinzipen  hAP nennen. Der Bereich in den sie abbilden, heißt

 erschlossener Wirklichkeitsbereich  eWB und die entsprechenden Terme der mathematischen

Theorie nennt man  theoretische Terme (vergl. Abb. 2.5). Üblicherweise herrscht Konsens dar-

über, dass man die hypothetischen Abbildungsprinzipien zur Theorie hinzunimmt und so zu-

gleich die  physikalische Wirklichkeit über den Grundbereich hinaus erweitert. Wir wollen das

mit Blick auf die Quantentheorie die  Standardinterpretation (standard interpretation) nennen. 

Auch diese Bezeichnungen werden in der Literatur unterschiedlich verwendet. 

GB

AP

hAP

MT

eWB

Abbildung 2.5: Die Abbildungsprinzipien AP beziehen den mathematischen Teil MT einer physikali-

schen Theorie und den Grundbereich GB der physikalischen Wirklichkeit aufeinander. Hypothetische

Abbildungsprinzipien hAP verknüpfen mit einem erschlossenen Wirklichkeitsbereich eWB. 

Es sollte aber deutlich geworden sein, dass die Festlegung eines erschlossenen Wirklich-

keitsbereichs ein Element der Willkür enthält und dass mit ihm die Wirklichkeit zumindest in

Teilen theorieabhängig wird. Noch aus einem anderen Grund entsteht die physikalische Welt

mit Hilfe der Theorie.  Alternativtheorien, die die gleichen Erfahrungen in anderer Weise be-

gründen, können in diesem Sinne verschiedene Wirklichkeiten haben. Beispiele dafür sind ei-

ne speziell-relativistische Gravitationstheorie in der flachen Raum-Zeit, die mit dem Konzept

des Gravitationsfeldes arbeitet und die Allgemeine Relativitätstheorie, in der das Gravitations-

feld völlig eliminiert und die Raum-Zeit gekrümmt ist. Die jeweilige Standardinterpretation

beantwortet die Frage nach der Existenz eines Gravitationsfeldes unterschiedlich. 

Die Elektrodynamik zeigt allerdings weiterhin, dass auch in der Standardinterpretation

keineswegs zu allen Größen der mathematischen Theorie eine Entsprechung in der Wirklich-

keit behauptet wird. So wird üblicherweise dem eichabhängigen Vektorpotential an einem Ort

keine Realität zugesprochen. Vektorpotentiale werden nur als rechnerische Hilfsmittel aufge-

fasst. In der Coulomb-Eichung ändert sich das Vektorpotential instantan. Es wird damit aber

kein realer Ausbreitungsvorgang mit Überlichtgeschwindigkeit verbunden. 
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2.5

Interpretationen der Quantentheorie und physikalische

Wirklichkeit ∗

2.5.1

Minimalinterpretation ∗

Wie fügt sich die Quantentheorie in das im vorigen Kapitel beschriebene Schema ein? Die

Minimalinterpretation der Quantentheorie schreibt nur den Präparations-, Transformations-

und Messgeräten Realität zu. Es gibt nur deren Wirklichkeit und darüber hinaus keine

hypothetischen Abbildungsprinzipien hAP und keine erschlossene Wirklichkeit eWB. Die

Abbildung AP erfolgt in die klassisch bechreibbare Realität (z. B. Zeigerausschläge der

Messgeräte). Das empirische Wissen in der Quantentheorie kann mit den Elementen der klas-

sischen Physik formuliert werden. Alle anderen Bestandteile des mathematischen Teils MT

der Quantentheorie sind nur rechnerische Hilfsmittel. Diese Einstellung lässt sich gut mit der

zugespitzten Formulierung von Niels Bohr charakterisieren: „ There is no quantum world. “6. 

Elektronen, Atome usw. gibt es nicht. Man wird diese Einstellung wissenschaftstheoretisch

als  instrumentalistisch  und  pragmatisch  charakterisieren. Der Vorteil der Beschränkung auf

die Minimalinterpretation liegt in der Vermeidung von scheinbaren Paradoxien. Das ist er-

kauft um den Preis, dass keine Veranschaulichung und kaum physikalische Intuition angeregt

wird. 

Die einzige Aufgabe der Quantentheorie in dieser Interpretation ist es, präzise Vorhersa-

gen über mögliche Ergebnisse von Messungen und die Wahrscheinlichkeiten ihres Eintretens

zu machen. Weitere Aussagen sind überflüssig und werden nicht gemacht. Objektivität ist

garantiert. Nach Abschluss der Messung kann ein Beobachter ein Messergebnis nur ablesen

aber nicht mehr beeinflussen. Es ist Teil der klassischen Welt. Die so gewonnenen empirischen

Aussagen (z. B. über Zeigerausschläge) lassen sich im Rahmen der klassischen Physik als

der zugehörigen Vortheorie beschreiben. Sie können aber nicht im Rahmen der klassischen

Physik erklärt, bzw. theoretisch begründet werden. Man braucht dazu den mathematischen

Teil MT der Quantentheorie und einige wenige Abbildungsprinzipien. Es gibt in der Literatur

keine einheitlichen Festlegungen darüber, was man unter der  Kopenhagener Interpretation

verstehen soll. Die Minimalinterpretation gibt aber sicher charakteristische Züge dieser

Interpretation wieder. 

2.5.2

Standardinterpretation ∗

Die unter Physikern allseits akzeptierte Standardinterpretation geht darüber hinaus. Man

stellt fest, dass zu einzelnen Quantensystemen Eigenschaften gehören, die abtrennbar sind

von Präparation und Registration, die also nicht Relationen zwischen dem System und dem

Präparations- und Registrationsgeräten beschreiben. Die zugehörigen physikalischen Größen

sind elektrische Ladung, Baryonenladung, Masse und Betrag des Spins eines Elementarteil-

6 „There is no quantum world. There is only an abstract quantum physical description. It is wrong to think, that the

task of physics is to find out how nature is. Physics concerns with what we can  say  about nature.“ Nach [Pet 63, S. 

12]. 
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chens. Sie heißen auch  klassische Observable 7. Da sie sich zum Teil auf die Vortheorien zur

Quantentheorie beziehen, ist es sinnvoll, auch diesen Eigenschaften eine objektive Realität

zuzusprechen und damit zugleich auch dem zugehörigen Quantensystem.  Quantensysteme

 haben dann reale Träger in einer erschlossenen Wirklichkeit, die man  Quantenobjekte  (quan-

 tum objects) nennen kann. Man kann von einzelnen Quantenobjekten wie Atomen, Elektro-

nen usw. sprechen und verbindet damit in der Standardinterpretation folgende Vorstellung:

Die makroskopischen Effekte der Messgeräte werden klassisch beschrieben, z. B. in der Form

von Zeigerausschlägen. Sie stellen in dieser Interpretation gewissermaßen nur die „Oberflä-

che“ dar und lassen sich auf die Wirkungen real vorhandener Quantensysteme bzw. Quante-

nobjekte zurückfahren.  Es gibt eine Quantenwelt.  Es gibt keine physikalische Theorie ohne

Interpretation.  Die Postulate spiegeln in ihrer Formulierung in Abschn. 2.1.2 bereits die Ab-

 bildungsprinzipien der Standardinterpretation wider. 

Wiederum wird aber nicht von allen Termen des mathematischen Teils MT behauptet, dass

sie in Elemente der Wirklichkeit abgebildet werden können.  Anders als beim elektrischen Feld

 gibt es in der Quantentheorie für den durch ein Präparationsverfahren festgelegten Zustands-

 vektor (bzw. Dichteoperator) keine Entsprechung in der Wirklichkeit. Er erlaubt nur im Zusam-

menwirken mit den Messoperatoren, die Berechnung von Wahrscheinlichkeitsverteilungen. Er

ähnelt damit in seinem Status dem Vektorpotential in der Elektrodynamik. Was sich unter dem

Einfluss eines Transformationsapparates deterministisch entwickelt, sind die vorhersagbaren

Wahrscheinlichkeitsverteilungen von Messresultaten. Der Zeitentwicklungsoperator  U ( t, t 0)

repräsentiert diese Entwicklung. 

Auch wenn das im Folgenden nicht immer explizit durchgeführt wird, kann es für das

Verständnis nützlich sein sich klar zu machen, ob eine Aussage sich auf die volle Standardin-

terpretation bezieht oder mit weniger Interpretation auskommt. 

Weitere Interpretationen

Die Viele-Welten-Interpretation der Quantentheorie ist ein Bei-

spiel für eine alternative Interpretation, die unter Beibehaltung des mathematischen Teils an-

dere Aussagen über die Wirklichkeit macht. Wir werden sie in Abschn. 15.5 kurz besprechen. 

2.6

Ergänzende Themen und weiterführende Literatur

 •  Wissenschaftstheorie: [Sch 64], [Mai 96], [Mit 96], [Bal 70], [Hom 97], [Bub 97], 

[Mai 96], [Stö 86], [Lal 01], [DG 71], [Esf 02a], [Mut 98]. 

 •  Zeno-Effekt: [NPN 97, S. 172], [Hom 97, Kap. 6]. 

 •  Hinweise auf Experimente zum Zeno-Effekt: [IHB 90], Literatur zur Diskussion über

dieses Experiment und Vorschläge weiterer Experimente in [NPN 97, S. 177]. 

 •  Theoretische Terme und Abbildungsprinzipien: [Sch 90], [Sch 88]. 

 •  Interpretation der Quantentheorie: [FP 00], [Lud 55], [Lud 89] [Lud 90], [Omn 94], 

[Lud 96]. 

7Die Zustände von Quantenobjekten, die sich in diesen Eigenschaften unterscheiden, können nicht superponiert

werden. Linearkombinationen solcher Zustände sind physikalisch nicht realisiert ( Superauswahlregeln). 
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3 Die einfachsten Quantensysteme: Qubits

Alle Quantensysteme, die nicht mehr als zwei linear unabhängige Zustände besitzen, werden

in einem zweidimensionalem Hilbert-Raum  H 2 beschrieben. Sie sind die einfachsten nicht

trivialen Quantensysteme. Quantenzustände im  H 2 heißen mit Blick auf ihre spätere Rolle in

der Quanteninformationstheorie  Qubits. Sie sind von der Form

 |ψ =  c 0 | 0  +  c 1 | 1  , |c 0 | 2 +  |c 1 | 2 = 1

(3.1)

mit der ONB  {| 0 , | 1 }, die auch  Rechenbasis  oder  Standardbasis  genannt wird. Observablen besitzen zwei Messwerte. 

Wichtige physikalische Realisierungen von  Qubit-Systemen  sind:

 •  2-Niveau-Atom (auch Atome mit mehr Niveaus, wenn nur zwei Niveaus in einem Prozess

eine Rolle spielen), Ionen mit zwei Energieniveaus

 •  Polarisation von Spin-12-Teilchen

 •  Polarisation einzelner Photonen (horizontal  ↔  vertikal oder linksdrehend  ↔  rechtsdre-

hend)

 •  Strahlengänge in einem Zwei-Wege-Interferometer, in dem sich genau ein Photon befin-

det. 

 •  Quantenpunkte

 •  Moden des elektromagnetischen Feldes in einer Kavität

Es gibt weitere Qubit-Systeme. Auch der Doppelspalt und das Stern-Gerlach-Experiment las-

sen sich vereinfacht so beschreiben. 

Wir haben in Abschn. 1.2.1 die Operatorbasis der Übergangsoperatoren kennen gelernt. 

Für Rechnungen im  H 2 ist die Operatorbasis, die aus dem Einsoperator

und den  σ-



 Operatoren ( Pauli-Operatoren) besteht, ein wichtiges Hilfsmittel. Pauli-Operatoren werden

üblicherweise im Zusammenhang mit dem Spin als innerem Drehimpuls eingeführt. Da sie

aber bei anderen Qubit-Systemen im Allgemeinen physikalisch nicht mit einem Drehimpuls

zusammenhängen, können wir von dieser Bedeutung zunächst absehen. Wir führen Pauli-

Operatoren in Abschn. 3.1 ein und beschreiben in Abschn. 3.2 und Abschn. 3.3 eine sehr

häufig verwendete Veranschaulichung von Quantenzuständen im  H 2 und ihrer Dynamik mit

Hilfe der Bloch-Kugel. 

Qubit-Systeme sind die Träger einer Einheit der Quanteninformation. Die Verarbeitung

von Quanteninformation wird wie die Verarbeitung von klassischer Information mit Hilfe von

 Verschränkte Systeme: Die Quantenphysik auf neuen Wegen.  Jürgen Audretsch
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elementaren Operationen beschrieben, den sogenannten logischen Schaltungen oder  Gattern

(gates).  Quantengatter (quantum gates) sind unitäre Transformationen oder Messungen auf

dem  H 2. Wir beschreiben unitäre Gatter, die auf nur einem Qubit wirken, in Abschn. 3.4. 

Realisierungen von Qubit-Systemen und Quantengattern werden in Abschn. 3.5 bis 3.7

vorgestellt. 

3.1

Pauli-Operatoren

Operatorbasis

Wir führen im  H 2 drei hermitesche Operatoren  σk  mit  k = 1 ,  2 ,  3 oder

 k =  x, y, z  ein

 σ† =  σ

 k

 k, 

(3.2)

für die wir

 σ 2 =

 k

(3.3)



fordern. Da  σk =

sein soll und die Eigenwerte reell sind, folgt daraus und aus der Hermite-



zität, dass jeder Operator  σk  die Eigenwerte (+1) und ( − 1) besitzt. Wie die Spektralzerlegung

zeigt, sind die  σk  damit zugleich unitär

 σ† =  σ− 1 . 

(3.4)

 k

 k

und spurfrei

tr[ σk] = 0  . 

(3.5)

Die Abb. 1.2 verdeutlicht, wie speziell die  σ-Operatoren sind. Abbildung 1.2 zeigt auch, dass

man die Forderungen Hermitezität, Unitarität und  σ =

an die Spitze stellen könnte. Die



Eigenwerte +1 und  − 1 sowie die Gl. (3.3) und (3.5) wären dann die Folge. 

Wir wollen die  σk  durch eine Forderung, die sie untereinander verknüpft, zu einer Ope-

ratorbasis ausbauen (vergl. Abschn. 1.2.1). Das wird erreicht, wenn wir in Ergänzung zu

Gl. (3.2) und (3.3) noch die Bedingung

tr[ σiσj] = 2 δij

(3.6)

erfüllen, indem wir vom Antikommutator ([ A, B]+ :=  AB +  BA)

[ σi, σj]+ = 2 δij

(3.7)



verlangen.  Die Operatoren {  1

 √

 ,  1

 √ σ

2

 k} bilden dann eine orthonormale Operatorbasis im



2

 Liouville-Raum. Jeder Operator A lässt sich in der Form

3

1

1 

 A =

tr[ A] +

tr[ Aσk] σk

(3.8)

2



2  k=1

 darstellen. 
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Drehimpulsoperatoren

Die zweite wichtige Eigenschaft der  σk  ergibt sich durch die fol-

gende Festlegung des Kommutators ([ A, B] − :=  AB − BA) durch die die Gl. (3.7) ergänzt

wird:

3



[ σi, σj] − = 2 i

 ijkσk. 

(3.9)

 k=1

 ijk  ist der in allen Indizes total antisymmetrische Tensor mit  ε 123 = 1. Hierdurch werden

die  σk  formal proportional zu Drehimpulsoperatoren und können Observable des 2-Niveau-

Systems  Spin  beschreiben. Zusammenfassend schreiben wir für Gl. (3.7) und (3.9)

3



 σiσj =  δij +  i

 ijkσk. 

(3.10)



 k=1

Die hermiteschen Operatoren  σk, die Gl. (3.10) erfüllen, heißen  Pauli-Operatoren (Pauli ope-

rators) oder  σ-Operatoren. Die Gleichungen zeigen, dass die Indizes völlig gleichberechtigt

eingehen. Dies lässt sich in manchen Rechnungen ausnutzen. 

Als Grundlage einer indexfreien Formulierung führen wir den vektoriellen Pauli-Operator

 σ :=  σxe x +  σye y +  σze z  ein. Die Vektoren e x, e y  und e z  sind dabei die kartesischen Basisvektoren des

3. Mit Hilfe von Gl. (3.10) lässt sich für beliebige Vektoren a , b  ∈  3





( σa)( σb) = (ab) +  iσ(a  × b)

(3.11)



ableiten. Diese Gleichung geht für beliebige normierte Vektoren e in

( σe)( σe) =

(3.12)



über. Damit erhalten wir mit Hilfe der Spektralzerlegung für die Entwicklung der Exponenti-

alfunktion

 i

exp( iθe σ) =

+  iθe σ −  1  θ 2 (e σ)2 +  θ 3 eσ ± . . . 

(3.13)



2

   3! 

=½

und nach geeigneter Zusammenfassung die häufig benutzte Relation

exp( iθe σ) = (cos  θ) +  i(sin  θ)e σ. 

(3.14)



Matrixdarstellung

Wenn wir die ONB der Eigenvektoren  | 0   und  | 1   von  σz  mit den Ei-

genwerten (+1) bzw. ( − 1)

 σz| 0  = + | 0 

(3.15)

 σz| 1  =  −| 1 

als Rechenbasis nehmen, dann ist die Matrixdarstellung von  σz





1

0

 σz =

 . 

(3.16)

0

 − 1
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Mit Hilfe der Gl. (3.2) und(3.10) können die Matrixdarstellungen von  σx  und  σy  in der

Rechenbasis im Einzelnen berechnet werden. Hier soll nur das Ergebnis angegeben werden. 

Wir bezeichnen diese  Pauli-Matrizen  ebenfalls mit dem gleichen Symbol wie den Operator

und fügen die dyadische Darstellung direkt an:





0

1

 σx =

=  | 0  1 | +  | 1  0 |

1

0





0

 −i





 σy =

=  −i | 0  1 | − | 1  0 |

(3.17)

 i

0





1

0

 σz =

=  | 0  0 | − | 1  1 | . 

0

 − 1

Es ist nützlich, die Wirkung der  σ-Operatoren auf die Vektoren der Rechenbasis zu notie-

ren:

 σx| 0  =  | 1 

 σx vertauscht ( bit flip)

 σx| 1  =  | 0 

 σy| 0  =  i| 1 

 σy vertauscht und fügt die relative Phase  ±i  ein

(3.18)

 σy| 1  =  −i| 0 

 σz| 0  = + | 0 

 σz fügt die relative Phase  ± 1 ein ( phase flip). 

 σz| 1  =  −| 1 . 

Damit lassen sich schließlich in der Rechenbasis die orthonormalen Eigenzustände von  σx

und  σy  direkt als

 σx| 0 x =  | 0 x

 σx| 1 x =  −| 1 x

 |

1

1

0 x =  √ ( | 0  +  | 1 )

 | 1 x =  √ ( | 0  − | 1 )

(3.19)

2

2

und

 σy| 0 y =  | 0 y

 σy| 1 y =  −| 1 y

 |

1

1

0 y =  √ ( | 0  +  i| 1 )

 | 1 y =  √ ( | 0  − i| 1 )

(3.20)

2

2

bestätigen. 

3.2

Veranschaulichung von Qubits auf der Bloch-Kugel

Wir führen eine auf der Zerlegung nach der Operatorbasis beruhende mathematische Vor-

überlegung durch, auf die wir uns später häufiger beziehen werden. Ein Operator  ρ  mit den
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Eigenschaften  ρ† =  ρ  und tr[ ρ] = 1 lässt sich mit Gl. (3.8) in der Form

1

 ρ =

( + r σ)

(3.21)

2 

mit reellem Vektor r

r := tr[ ρσ]

(3.22)

schreiben. Mit Gl. (3.5) und (3.10) gewinnen wir daraus

1



tr[ ρ 2] =

tr[ + 2r σ +

 rirjσiσj]

4



 i,j

1

=

(1 +  |r | 2) . 

(3.23)

2

Wir betrachten als Spezialfall den mit einem beliebigen normierten Vektor  |ψ  gebildeten

Operator  ρ :=  |ψψ|. Für ihn gilt  ρ 2 =  ρ  sowie tr[ ρ 2] = tr[ ρ] = 1 und mit (3.23) folgt

 |r | = 1. Einsetzen von  ρ  in (3.22) liefert als Interpretation von r den Erwartungswert r =  ψ|σ|ψ , 

(3.24)

sowie  ψ|r σ|ψ = rr = 1 und damit als weiteres Resultat

r σ|ψ =  |ψ. 

(3.25)

Wir haben zwei Ergebnisse gefunden:  Für einen beliebigen normierten Zustandsvektor |ψ ∈

 H

3

2  ist der Erwartungswert des vektoriellen Pauli-Operators σ ein reeller Vektor r  ∈ 

 vom Betrag  1 . Zugleich ist |ψ Eigenvektor des hiermit gebildeten Operators r σ zum Eigen-

 wert (+1) . 

Bloch-Kugel

Über den Erwartungswert von  σ  ist gemäß Gl. (3.24) jedem Qubit  |ψ  ein-

deutig ein Vektor r im

3 zugeordnet, der  Bloch-Vektor  genannt wird. Seine Spitze liegt auf



der Oberfläche der Einheitskugel ( Bloch-Kugel) (vergl. Abschn. 3.1). Wir nennen den damit

bezeichneten Punkt den  Bloch-Punkt. Mit Hilfe von r können wir Zustandsvektoren  |ψ  sowie

die Auswirkungen der Messdynamik und der unitären Dynamik auf  |ψ  einfach dreidimen-

sional veranschaulichen. Darin liegt die Bedeutung der Bloch-Vektoren. 

r σ ist hermitesch. r ist normiert und Gl. (3.12) gilt entsprechend. Wir können daher die

Argumentation vom Anfang des Kapitels übertragen: Die Eigenwerte der vektoriellen Pauli-

Operatoren r σ sind (+1) und ( − 1). Der Eigenvektor zu (+1) ist  |ψ  mit Bloch-Vektor r von Gl. (3.24). Der zweite Eigenvektor zu r σ steht auf  |ψ  senkrecht ( χ|ψ = 0) und erfüllt

r σ|χ =  −|χ . 

(3.26)

Multiplikation mit  χ|  führt mit  |χ|σ|χ| =  − 1 (vergl. Gl. (3.24)) auf

 χ|σ|χ =  −r  . 

(3.27)
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 | 0 z

e z

 |ψ

r

 | 1 x

 | 1 y

 | 0 y

e x

e y

 | 0 x

 −r

 |χ

 | 1 z

Abbildung 3.1: Bloch-Kugel mit den Bloch-Vektoren zu den Eigenzuständen der Pauli-Operatoren. Die

Bloch-Vektoren r und  −r zu zwei beliebigen orthonormalen Qubits  |ψ  und  |χ  liegen spiegelsymmetrisch zum Ursprung. 

Der Bloch-Vektor zum Eigenwert ( − 1) entsteht durch Spiegelung von r am Ursprung (vergl. 

Abschn. 3.1)

Allgemein gehören zu zwei orthogonalen Qubits am Ursprung gespiegelte Bloch-

Vektoren. Der zugehörige vektorielle Pauli-Operator ergibt sich direkt über den Bloch-Vektor

r als r σ. Speziell finden wir, dass die Bloch-Vektoren zu den Eigenzuständen der drei Pauli-

Operatoren für die Eigenwerte (+1) mit den Basisvektoren e x, e y, e z übereinstimmen. Für die Eigenwerte ( − 1) liegen die Bloch-Vektoren in der jeweiligen Gegenrichtung. Dies ist in

Abschn. 3.1 dargestellt. Wir wollten noch die Bloch-Punkte mit Hilfe von Polarkoordinaten

durchparametrisieren. Ein beliebiges Qubit  |ψ (vergl. Gl. (3.1)) lässt sich stets mit Hilfe von

2 Parametern  θ  und  ϕ  in der Form

 	

 	

 |

 θ

 θ

 ψ =  e−i ϕ 2 cos

 | 0  +  eiϕ 2 sin

 | 1 

(3.28)

2

2



 	

 	



 θ

 θ

=  e−i ϕ 2

cos

 | 0  +  eiϕ  sin

 | 1 

2

2

(0  ≤ ϕ ≤  2 π,  0  ≤ θ ≤ π) darstellen. Mit Gl. (3.17) und (3.24) berechnen wir damit leicht für

den zu  |ψ  gehörigen Bloch-Vektor

r = (sin  θ  cos  ϕ,  sin  θ  sin  ϕ,  cos  θ) . 

(3.29)

Die Parameter  θ  und  ϕ  erhalten also bei der Veranschaulichung auf der Bloch-Kugel gerade

die Bedeutung der Polarkoordinaten des Bloch-Punktes (Abb. 3.2). Charakteristisch ist das

Auftreten der halben Polarwinkel beim zugehörigen Zustandsvektor von Gl. (3.28). 

Das hat zur Folge, dass einerseits zu gegebenem Qubit  |ψ  der Bloch-Vektor r wohlbe-

stimmt ist, dass aber andererseits ein Bloch-Vektor zwei verschiedenen Qubits zugeordnet ist. 

Wenn wir z. B. den Bloch-Vektor um die  x-Achse in der  y– z-Ebene drehen ( ϕ =  π 2 ), dann kehrt er nach einer 2 π-Drehung ( ϑ = 0  → ϑ =  π → ϑ = 0) wieder in seine Ausgangsla-ge zurück. Gleichung (3.28) zeigt, dass dabei der zugehörige Zustandsvektor das Vorzeichen
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z

r

 θ

y

 ϕ

x

Abbildung 3.2: Polarkoordinaten veranschaulichen die Winkel  θ  und  ϕ  von Gl. 3.28. 

wechselt  |ψ → −|ψ. Erst nach einer vollen 4 π-Drehung des Blochvektors erreicht der Zu-

standsvektor wieder seine Ausgangsstellung  |ψ → + |ψ. 

Es ist nützlich noch die Komponentendarstellungen des Operators r σ in der Rechenbasis

zu notieren:





r σ

cos  θ

 e−iϕ  sin  θ

=

 . 

(3.30)

 eiϕ  sin  θ

 −  cos  θ

Wir bezeichnen die Eigenvektoren von r σ mit  | 0 r  und  | 1 r. Der Eigenvektor  | 0 r =  |ψ

wurde schon in Gl. (3.28) angegeben. Wir ergänzen den Eigenvektor  | 1r  =  |χ  zum Eigen-

wert  − 1:









 |

 e−iϕ/ 2 cos ( θ/ 2)

 −e−iϕ/ 2 sin ( θ/ 2)

0 r =  |ψ =

; 

 | 1 r =  |χ =

 . 

(3.31)

 eiϕ/ 2 sin ( θ/ 2)

 eiϕ/ 2 cos ( θ/ 2)

3.3

Veranschaulichung der Messdynamik und der unitären

Dynamik

Projektive Messung

Wir haben in den Postulaten zwei Dynamiken eingeführt, die Mess-

dynamik und die unitäre Dynamik. Die Messdynamik der projektiven Messung lässt sich ein-

fach veranschaulichen. Ein Observablenoperator im zweidimensionalen Hilbert-Raum  H 2 der

Qubits hat zwei orthogonale Eigenvektoren  | 0   und  | 1 . Wir können sie immer als Eigenvek-

toren von  σz  auffassen. Auf der Bloch-Kugel legen wir hierzu die Richtung von e z  in die

Richtung des Bloch-Vektors von  | 0 . Eine Messung dieser Observablen bewirkt dann einen

sprunghaften Übergang von einem Ausgangszustand  |ψ  in den Endzustand  | 0   oder  | 1   je nach Messergebnis (siehe Abb. 3.3). 

Wenn wir  |ψ  in der Form

 |ψ =  c 0 | 0  +  c 1 | 1 

(3.32)

schreiben, dann sind die zugehörigen Wahrscheinlichkeiten  |c 0 | 2 bzw.  |c 1 | 2. Die Projektion  rz des Bloch-Vektors r auf die  z-Achse ist mit Gl. (3.29)

 rz = cos  ϑ = cos2  ϑ −  sin2  ϑ =  |c 0 | 2  − |c 1 | 2  . 

(3.33)

2

2
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 | 0 z

 |ψ

 | 1 z

Abbildung 3.3: Bei einer Projektionsmessung eines Observablenoperators mit Eigenvektoren  | 0 z  und

 | 1 z  wird der Zustandsvektor  |ψ  sprunghaft je nach Messergebnis in  | 0 z  oder  | 1 z überführt. Dargestellt sind die entsprechenden Bloch-Punkte auf der Bloch-Kugel. 

Da  |c 0 | 2 +  |c 1 | 2 gilt, folgt daraus für die Wahrscheinlichkeit  |c 0 | 2

 |

 rz + 1

 c 0 | 2 =

 . 

(3.34)

2

Unitäre Transformation

Wir wollen ergänzend die Wirkung der unitären Dynamik veran-

schaulichen, die mit einem unitären Operator  U  einen Ausgangszustand  |ψ  gemäß

 |ψ =  U|ψ

(3.35)

in den Endzustand  |ψ überführt. Dazu gehen wir von einigen mathematischen Eigenschaften

unitärer Transformationen und ihrer Matrixdarstellungen im  H 2 aus. 

Sowohl die Zeilen als auch die Spalten einer unitären Matrix sind untereinander paarweise



orthonormal (

 U ∗ U

 j

 ij

 kj =  δik ). Die Auswertung der entsprechenden Relationen, die wir hier

nicht vorführen, zeigt, dass für eine unitäre Matrix U im  H 2 vier reelle Parameter  α, β, γ  und

 δ  existieren, sodass  U  sich als Matrix





 e−iλ/ 2 cos ( µ/ 2) e−iν/ 2

 −e−iλ/ 2 sin ( µ/ 2) eiν/ 2

 U =  eiκ

(3.36)

 eiλ/ 2 sin ( µ/ 2) e−iν/ 2

 eiλ/ 2 cos ( µ/ 2) eiν/ 2

oder als Operatorprodukt 











 U = exp( iκ) exp  − i λσz  exp  − i µσy  exp  − i νσz

(3.37)

2

2

2

schreiben lässt. Nur die Pauli-Operatoren  σy  und  σz  tauchen auf. Es ist geschickt noch den

unitären Operator ˆ

 U  einzuführen

 U =:  eiκ ˆ

 U , 

(3.38)
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der mit  U  bis auf den globalen Phasenfaktor  eiκ übereinstimmt. An Gl. (3.36) lesen wir direkt

die folgenden Eigenschaften der Matrixdarstellung von ˆ

 U  ab:

ˆ

 U 00 = ˆ

 U ∗

11

ˆ

 U 10 =  − ˆ

 U ∗

01

(3.39)

ˆ

 U 00 ˆ

 U 11  − ˆ

 U 01 ˆ

 U 10 = 1  . 

Wir zerlegen ˆ

 U  nach der Operatorbasis  {  1

 √

 ,  1

 √ σ

2

 k}  gemäß Gl. (3.8)



2

ˆ

 U =  v 0  − ivσ . 

(3.40)



wobei  v 0 und  v  durch Spurbildungen bestimmt sind:

1

 i

 v 0 =

tr[ ˆ

 U ]  , 

 v = tr[ ˆ

 U σ]  . 

(3.41)

2

2

Mit Hilfe der Relationen (3.39) lässt sich einfach zeigen, dass  v 0 und  v  reell sind. Die Unita-

ritätsrelation ˆ

 U † ˆ

 U =

ist mit Gl. (3.11) gleichbedeutend mit der Bedingung



 v 20 +  vv = 1  . 

(3.42)

Sie bestätigt noch einmal, dass eine unitäre 2 × 2-Matrix durch eine globale Phase und drei

reelle Parameter bestimmt ist. 

Da die Bedingung (3.42) erfüllt ist, hat die Gl. (3.40) die Struktur der Gl. (3.14). Für

spätere Zwecke gehen wir wieder zum halben Winkel über und führen den Winkel  φ  und den

Einheitsvektor  e  gemäß





 φ

 φ

 v 0 := cos

 , 

 v = sin

e

(3.43)

2

2

ein. Zu gegebenem ˆ

 U  sind dabei  φ  und  e  durch Gl. 3.41 festgelegt. Damit erhält die Gl. (3.40)

die Gestalt





ˆ

 φ

 U = exp

 −i eσ , 

(3.44)

2

wobei e und  φ  durch die Gl. (3.41) und (3.43) gegeben sind.  Jede unitäre Transformation im

 H 2  lässt sich bis auf einen Phasenfaktor eiα eindeutig in die Form (3.44) bringen. 

Schließlich wollen wir die Wirkung von  U  auf der Bloch-Kugel veranschaulichen. Der

Phasenfaktor  eiα  hat keinen Einfluss auf den Bloch-Vektor. Wegen der Symmetrie der Dar-

stellung können wir ohne Einschränkung e z  in die Richtung von e legen. Der Operator ˆ

 U

nimmt dann mit Gl. (3.44) die Form

ˆ

 U =  e−i φ 2  | 0  0 | − e+ i φ 2  | 1  1 |

(3.45)
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an (vergl. Gl. (1.52)). Mit Hilfe von Gl. (3.28) lesen wir direkt ab, dass ˆ

 U |ψ  aus  |ψ  durch

die Substitution  ϕ → ϕ +  φ  hervorgeht. Daraus folgt eine einfache Interpretation der Wirkung

von  U  auf der Bloch-Kugel:  Wenn der Zustand |ψ durch den Bloch-Vektor r repräsentiert

 wird, dann entsteht der Bloch-Vektor r zum unitären transformierten Vektor





 |

 φ

 ψ =  Re( φ) |ψ, 

 Re( φ) = exp  −i eσ

(3.46)

2

 durch Rotation von r um den Drehwinkel φ auf einem Kegel um die Achse e (vergl. Abb. (3.4)). 

 Die Größen e und φ sind dabei über die Gl. (3.41) und (3.43) festgelegt.  Die unitäre Trans-

formation exp( −i φ 2  σz) (bzw. exp( −i φ 2  σx) oder exp( −i φ 2 σy)) entspricht einer Drehung des Bloch-Vektors um die  z-Achse (bzw.  x-Achse oder  y-Achse) um den Winkel  φ. 

e

 U

 U

 U

Abbildung 3.4: Wirkung der unitären Transformation  U  auf die Endpunkte der Bloch-Vektoren reiner

Zustände. Der Vektor e ist durch die Gl. (3.41) und (3.43) gegeben. 

Beispiel: Rabi-Oszillationen

Wir wollen eine physikalische Situation beschreiben, in der

sich der Bloch-Vektor periodisch bewegt. In einer Kavität wechselwirkt ein einzelnes Pho-

ton mit einem einzelnen 2-Niveau-Atom mit den Energie-Niveaus  | 0   und  | 1 . Der Einfach-

heit halber soll Resonanz vorliegen. Das heißt, die Energiedifferenz der Niveaus stimmt mit

der Photonenenergie überein. Dann wird das Photon periodisch absorbiert und emittiert. Die

Wahrscheinlichkeit  |c 0 | 2 das Atom im angeregten Zustand  | 0   zu finden oszilliert. Die entsprechende Frequenz wird  Rabi-Frequenz Ω R  genannt, ihre Höhe ist ein Maß für die Stärke der

Wechselwirkung zwischen Atom und quantisiertem Strahlungsfeld. Die quantenelektrodyna-

mische Rechnung zeigt, dass der resultierende Einfluss auf den Zustandsvektor des Atoms

durch die unitäre Transformation





Ω

 U ( t, t

 R

0) = exp  −i( t − t 0)

 σx

(3.47)

2

beschrieben wird. 
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Wie wir gesehen haben, hat das zur Folge, dass sich der Bloch-Vektor r mit der Frequenz

Ω R  auf einem Kegel um die  x-Achse dreht (vergl. Abb. 3.5). Im Grenzfall des völlig geöff-

neten Kegels dreht er sich in der  y– z-Ebene. Die Wahrscheinlichkeit  |c 0 | 2 ergibt sich aus der Projektion  rz( t) =  rz( t −  2 π

Ω ) von r auf die  z-Achse gemäß

 R

 |

 rz( t) + 1

 c 0 | 2 =

 . 

(3.48)

2

Der maximale Wert der Projektion  rz( t) kann nur dann den maximal möglichen Wert 1 anneh-

men, wenn r sich in der  y– z-Ebene dreht. Hierzu reicht es, dass r z. B. durch eine anfängliche

Projektionsmessung parallel zu e z  oder  −e z  ausgerichtet wird. Dem entspricht der Zustand

 | 0   oder  | 1 . Im anderen Grenzfall wird das Atom im Eigenzustand  | 0 x  oder  | 1 x  von  σx  prä-

pariert (vergl. Abb. 3.1). Dann stimmt der Bloch-Vektor mit e x  bzw.  −e x überein und bleibt unter dem Einfluss der Wechselwirkung unverändert. Der Grund dafür ergibt sich aus der

quantentheoretischen Rechnung. Der Hamilton-Operator des Gesamtsystems, der sich additiv

aus aus den Hamilton-Operatoren für das freie Photon, das freie Atom und für die Wechselwir-

kung zusammensetzt, hat zwei Eigenzustände. Wenn sich das Gesamtsystem in einem dieser

Zustände befindet, bleibt es in diesem Zustand. Die zugehörigen atomaren Zustände sind  | 0 x

und  | 1 x. 

 ez

 r

 ex

Abbildung 3.5: Rabi-Oszillationen des Bloch-Vektors r. 

3.4

Quantengatter für einzelne Qubit-Systeme

Wir wollen noch einmal die mathematisch und physikalisch besonders relevanten unitären

Transformationen im  H 2 zusammenstellen. Wir haben im vorigen Kapitel gesehen, dass die

Transformationen exp( iφσk) Drehungen des Bloch-Vektors um die Koordinatenachsen  ek

bewirken. Wesentlich ist, dass gemäß Gl. (3.37) jede beliebige unitäre Transformation durch

mehrfache Anwendung dieser speziellen Transformationen gewonnen werden kann. 
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Phasengatter

In der Quanteninformationstheorie spielen spezielle unitäre Operatoren eine

besondere Rolle, die auch als  Quantengatter (quantum gates) bezeichnet werden. Hierzu ge-

hören die drei Pauli-Operatoren  σk, deren Wirkung wir bereits beschrieben haben, und das

 Phasengatter (phase gate)





1

0

 φ( α) =

=  | 0  0 | +  eiα| 1  1 | , 

(3.49)

0

 eiα

das eine Phasenverschiebung der  | 0 -Komponente eines Vektors bewirkt ( Phasenschieber). 

 φ( α) lässt sich auch in der Form

 φ( α) =  ei α 2  e−i α 2  σz

(3.50)

schreiben und stimmt daher bis auf einen globalen Phasenfaktor mit einer der einleitend er-

wähnten Drehungen überein. 

Hadamard-Gatter

Wir führen noch das unitäre und hermitesche  Hadamard-Gatter H  ein





1

1

1

1

 H :=  √

=  √ ( σx +  σz)  , 

 H† =  H =  H− 1  , 

(3.51)

2

1

 − 1

2

das sich als Summe von Pauli-Operatoren schreiben lässt.  H  stimmt mit seinem Inversen

überein und überführt die Vektoren der Rechenbasis in die Eigenvektoren von  σx (vergl. 

Gl. (3.19)):

1

 H| 0  =

 √ ( | 0  +  | 1 )

(3.52)

2

1

 H| 1  =

 √ ( | 0  − | 1 )  . 

2

Wir notieren noch die Beziehungen

 HσxH =  σz , 

 HσyH =  −σy , 

 HσzH =  σx , 

(3.53)

die man z. B. durch Anwenden der Relation (3.7) erhält. 

Um welche Achse e und mit welchem Drehwinkel  θ  wird der Bloch-Vektor gedreht, 

wenn das Hadamard-Gatter auf einen Zustand wirkt? Wir verwenden die Ergebnisse aus Ab-

schn. 3.4. Mit dem Phasenfaktor  e−iκ =  −i  ergibt sich aus  H  ein unitärer Operator ˆ

 U (vergl. 

Gl. (3.39)) mit der Wirkungsweise

 −

 −

ˆ

 i

 i

 U | 0  =  √ ( | 0  +  | 1 )  , 

ˆ

 U | 1  =  √ ( | 0  − | 1 )  . 

(3.54)

2

2

Damit können wir mit Hilfe von Gl. (3.17) die Gl. (3.41) leicht auswerten mit dem Ergebnis:

Das Hadamard-Gatter bewirkt eine Drehung mit dem Winkel

 θ = 180 ◦

(3.55)

um die Achse

e

1

=  √ ( ex +  ez)  . 

(3.56)

2

Weitere Gatter finden sich in Tab. (3.1). 
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Tabelle 3.1: Häufig benutzte Gatter für ein Qubit. 

Operator-

Gatter

Operator

Matrix

symbol





0

1

NOT

NOT,  σx

 | 0  1 | +  | 1  0 |

1

0





1

 √ ( σ

1

1

Hadamard

 x +  σz )

1

H

H

2

 √

=  e−i π

2

4  σy σ

1

 − 1

 z





1

0

Phase

 φ( α)

 φ( α)

 | 0  0 | +  eiα| 1  1 |

0

 eiα





cos  φ

 x-Rotation

2

 −i  sin  φ 2

X( φ)

 Rx( φ)

 e−i φ 2  σx

 −i  sin  φ 2

cos  φ 2





cos  φ

 y-Rotation

2

 −  sin  φ 2

Y( φ)

 Ry( φ)

 e−i φ 2  σy

sin  φ 2

cos  φ 2





 e−i φ 2

0

 z-Rotation

Z( φ)

 Rz( φ)

 e−i φ 2  σz

0

 ei φ 2





0

1

 σx-Operator

X

 σx

 σx

1

0





0

 −i

 σy-Operator

Y

 σy

 σy

 i

0





1

0

 σz-Operator

Z

 σz

 σz

0

 − 1

3.5

Spin-12

Eine besonders wichtige Realisierung eines  Qubit-Systems  ist der  Spin  mit der Quantenzahl 12 . 

Er ist ein innerer Freiheitsgrad von Elementarteilchen, wie z. B. den Elektronen, und wird in

einem zweidimensionalen Hilbert-Raum  H 2 beschrieben (Spinraum). Die zugehörige Obser-

vable ist



 S =  σ . 

(3.57)

2

Ihre Komponenten erfüllen gemäß Gl. (3.9) die Kommutatorrelationen für Drehimpulse

[ Si, Sj] − =  i εijkSk . 

(3.58)

Mit dem Spin ist ein magnetisches Moment verbunden mit der Observablen

M =  γS  . 

(3.59)
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Das gyromagnetische Verhältnis  γ  ist für Elektronen

 e . In einem Magnetfeld B führt

 mc

die Wechselwirkung zwischen dem Magnetfeld und dem magnetischen Moment zu einem

Hamilton-Operator

 H =  −γBS  . 

(3.60)

Wir orientieren e z  in Richtung von B und führen  ω :=  −γB  mit  B =  |B |  ein. Dann hat der Hamilton-Operator die Form  H =  ω

2  σz  mit den beiden Eigenwerten  ±  ω

2 und den Eigenzu-

ständen  | 0 z  und  | 1 z. Für ein Spin- 12 -System kann die Observable  σz  bis auf einen Faktor je nach physikalischer Situation als Komponente des magnetischen Moments oder als Energie

im Magnetfeld interpretiert werden (2-Niveau-System). 

3.6

Photonenpolarisationen

Bei linearer Polarisation haben die elektrischen Wellenfelder die Form

 EH ∼ e H  exp  i( kr − ωt);  EV ∼ e V  exp  i( kr − ωt); (3.61)

mit dem Ausbreitungsvektor  k (siehe Abb. 3.6). Die Indizes  H  und  V  bezeichnen horizontale

und vertikale Polarisation bzw. Schwingungsebene. Eine andere Basis ist

e

1

1

 H = e+45 ◦ =  √ (e H + e V ); 

e V  = e − 45 ◦ =  √ (e H − e V ) . 

(3.62)

2

2

Sie entspricht einer Drehung der Schwingungsebenen um 45 ◦. Die rechts- und linkszirkular

polarisierten Wellen sind durch

 E( R, L)  ∼ e( R, L) exp  i( kr − ωt)

(3.63)

mit

e

1

1

( R) =  √ (e H +  ie V ); 

e( L) =  √ (e H − ie V )

(3.64)

2

2

gegeben. Die diesen Polarisationen entsprechenden Zustandsvektoren des Quantensystems

Photon sind Vektoren in einem Hilbert-Raum  H 2 und daher Qubits. Die Zuordnung lautet:

e H ↔ |H =  | 0 , e V ↔ |V  =  | 1 

(3.65)

e

1

 H ↔ |H  =  | + 45 ◦ =  √ ( |H  +  |V ) =  | 0 x

2

e

1

 V  ↔ |V  =  | −  45 ◦ =  √ ( |H  − |V ) =  | 1 x

(3.66)

2

e

1

( R)  ↔ |R =  √ ( |H +  i|V ) =  | 0 y

2

e

1

( L)  ↔ |L =  √ ( |H − i|V ) =  | 1 y

(3.67)

2

Den Zusammenhang zu den Eigenvektoren der Pauli-Operatoren haben wir für die drei Pola-

risationstypen angefügt. 

 3.7

 Einzelne Photonen im Strahlteiler und Interferometer

59

 eV

 eH

 ek

Abbildung 3.6: Polarisationsvektoren und Ausbreitungsvektor bei linear polarisierten Photonen

3.7

Einzelne Photonen im Strahlteiler und Interferometer

Wir wollen ein weiteres Qubit-System kennen lernen, das insbesondere für quantenoptische

Experimente zur Quanteninformationstheorie von Bedeutung ist. Es handelt sich um ein ein-

zelnes Photon auf das im Sinne von Abschn. 1.2 ein Transformationsapparat wirkt, der aus

einer Abfolge von einzelnen Strahlteilern, Phasenschiebern und Spiegeln aufgebaut ist. Ein-

fache Beispiele für ein solches photonisches Netzwerk zur Quanteninformationsverarbeitung

sind Strahlteiler und Interferometer selber (vergl. Abb. 3.8). 

Das Photon ist das Quant eines Strahlungsfeldes mit wohlbestimmten Modenfunktionen, 

die in diesem Falle durch den Wellenvektor charakterisiert sind. Die von uns betrachtete op-

tische Anlage soll so einfach sein, dass nur zwei Lichtmoden oder Wege, ein 0-Weg und ein

1-Weg, durch sie hindurch gelegt werden können. Das Photon soll bei einer Messung vor, im

Innern und hinter der Anlage immer nur auf genau einem der Wege registriert werden. Dann

können wir das Photon in dieser Situation als Qubit beschreiben, wobei die Zustände  | 0   bzw. 

 | 1   den jeweiligen Wegen zugeordnet sind. Den normierten Photonenzustand beschreiben wir

in der Form

 |ψ =  c 0 | 0  +  c 1 | 1 . 

(3.68)

mit  |c 0 | 2+ |c 1 | 2 = 1  .  Wenn wir einen Detektor in den 0-Weg stellen (0-Detektor), dann spricht er mit der Wahrscheinlichkeit  |c 0 | 2 an. Entsprechendes gilt für den 1-Weg. Die verwendeten

optischen Apparate haben zwei einlaufende und zwei auslaufende Wege und bewirken eine

Abfolge unitärer Transformationen des Zustandsvektors  |ψ. Sie ändern die Wahrscheinlich-

keit das Photon auf einem bestimmten Weg zu registrieren, wobei die Gesamtwahrscheinlich-

keit erhalten bleibt. 

Phasenschieber haben wir schon beschrieben. Verlustfreie Spiegel bewirken allenfalls ei-

ne Phasenverschiebung. Strahlteiler werden wir im Anschluss beschreiben und danach die

optischen Bauteile zu einem Interferometer zusammensetzen. 

3.7.1

Strahlteiler

Strahlteiler allgemein

Wir betrachten einen  verlustfreien Strahlteiler (lossless beamsplit-

ter) mit zwei einfallenden und zwei ausfallenden Strahlungsmoden wie er schematisch in
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Abb. 3.7 dargestellt ist. Der einlaufende Photonenzustand  |ψ  wie der auslaufende Photo-

nenzustand  |ψ  sind von der Form (3.68). Die Zuordnung zu den Strahlungsmoden erfolgt

gemäß Abb. 3.7. 

0

0

1

1

Abbildung 3.7: Wege beim Strahlteiler

Die Verlustfreiheit des Strahlteilers hat die Wahrscheinlichkeitserhaltung zur Folge. Mit

einlaufendem Zustand  |ψ  ist damit auch der auslaufende Zustand  |ψ  ein normierter Vektor

und die Wirkung des Strahlteilers wird durch eine unitäre Transformation  U  wiedergegeben

(vergl. Abschn. 1.1.5)

 |ψ =  U|ψ. 

(3.69)

Wir notieren  U  in der Form der Matrix (3.36) und führen neue Bezeichnungen für Amplituden

und Phasen ein.  ρ,  τ  und  δ  sind reell. 





 ρeiδr

 −τe−iδt

 U =  eiκ

 . 

(3.70)

 τ eiδt

 ρe−iδr

Die Wirkung von  U  lässt sich einfach beschreiben, wenn der einlaufende Photonenzustand

nur aus einem Vektor der Rechenbasis besteht

 | 0  → U 00 | 0  +  U 10 | 1 , 

 | 1  → U 01 | 0  +  U 11 | 1 . 

(3.71)

Beim Einlaufen von  | 0   bewirkt der Strahlteiler in Reflexion ein Phasenverschiebung  κ +  δr

und eine Multiplikation mit dem reellen  Reflexionsfaktor ρ. Die Transmission ist entsprechend

durch die Phasenverschiebung  κ +  δt  und den  Transmissionsfaktor τ  bestimmt. Die Wirkung

auf Superpositionen ist eine unmittelbare Folge. 

Mit Gl. (3.36) erhalten wir als Ausdruck der Wahrscheinlichkeitserhaltung und damit der

Unitarität

 ρ 2 +  τ  2 = 1 . 

(3.72)

Wir führen noch die Phasendifferenz  δ 0 zwischen reflektiertem und transmittiertem Zustand

bei Einfall im Zustand  | 0   ein ( δ 1 für den Zustand  | 1 )

 δ 0 =  δr − δt ; 

 δ 1 =  −δr +  δt ± π. 

(3.73)

Dann folgt aus Gl. (3.70) als eine stets erfüllte Beziehung

 δ 0 +  δ 1 =  ±π. 

(3.74)
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Spezielle Strahlteiler

Zwei Typen von dielektrischen Strahlteilern werden in der Praxis

häufig verwendet. Das ist einmal der Strahlteiler, der bei Reflexion eine Phasenverschiebung

von  π 2 und bei Transmission keine Phasenverschiebung bewirkt:





 iρ

 τ

 U 1 =

 . 

(3.75)

 τ

 iρ

Dem entspricht eine Festlegung  δr = 0 , δt =  − π 2 und  κ =  π 2 . Der Strahlteiler ist nicht zeitlich symmetrisch, da  U − 1

1

 =  U 1. Die räumlich symmetrische Version dieses Strahlteilers, 

bei der Reflexivität und Transmissivität übereinstimmen, ist durch  ρ =  τ = 1

 √  gegeben und

2

bewirkt

1

 U 1 | 0  =  √ ( i| 0  +  | 1 ) , 

(3.76)

2

1

 U 1 | 1  =  √ ( | 0  +  i| 1 ) . 

(3.77)

2

Für beide einfallenden Moden gilt, dass ein Photon mit der gleichen Wahrscheinlichkeit 12 auf

einer der auslaufenden Moden wieder ausläuft (50 : 50 beamsplitter) . Wir schreiben Gl. (3.75)

mit  ρ = cos  θ  und  τ = sin  θ  um und erhalten die unitäre Transformation in der Form

 U 1 = (cos  θ)  − i(sin  θ) σx = exp( −iθσx) . 

(3.78)



Ein globaler Phasenfaktor  i  ist weggelassen. 

Der andere gebräuchliche Strahlteiler bewirkt einen Phasensprung um  π  bei der Reflexion

an einer der Seiten:





 ρ

 τ

 U 2 =

 . 

(3.79)

 τ

 −ρ

Er entspricht der Wahl  δr =  π 2  , δt =  π 2 und  κ =  − π 2 und ist mit  U− 1 =  U  zeitlich symmetrisch. Dafür ist er räumlich nicht symmetrisch, d. h. er wirkt unterschiedlich auf die in den

Moden  | 0   bzw.  | 1   einlaufenden Photonen. Im symmetrischen Spezialfall  ρ =  τ = 1

 √  ergibt

2

sich eine  optische Realisierung des Hadamard-Gatters H  von Gl. (3.51), dessen Wirkung in

Gl. (3.52) beschrieben ist. 

Wir schreiben  ρ = cos  φ  und  τ = sin  φ  und bilden  σzU 2. Explizites Ausrechnen der

entsprechenden Matrizen zeigt dann mit Gl. (3.14)

exp( iφσy) =  σzU 2 . 

(3.80)

Da  σz  mit Phasenschiebern realisierbar ist, und Gl. (3.37) neben Phasenverschiebungen

exp( − i 2  λσz) und exp( − i 2  νσz) nur einen Operator der Form exp( iµσy) enthält,  lässt sich jede unitäre Transformation (3.69) mit dem durch U 2  von Gl. (3.79) beschriebenen Strahlteiler (Hadamard-Gatter) und Phasenschiebern realisieren. 
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3.7.2

Interferometer

Ein  Mach-Zehnder-Interferometer  entsteht, wenn man zwischen zwei Hadamard-Strahlteilern

einen Phasenschieber z. B. in den 1-Weg einbaut, durch den die  | 1 -Komponente des Pho-

tonzustands mit einem Phasenfaktor multipliziert wird (vergl. Abb. 3.8). Wir setzen den Pha-

senfaktor in der Form exp( −iα) an. Die Strahlumlenkung durch zwei gleichartige ideale re-

flektierende Spiegel hat keinen Einfluss auf relative Phasen. Mit dem Phasengatter  φ( α) von

0

0

0

0

 −α

1

1

1

1

Abbildung 3.8: Mach-Zehnder Interferometer mit Phasenschieber

Gl. (3.49) können wir das Interferometer durch das Diagramm von Abb. 3.9 symbolisieren. 

 H

 φ( −α)

 H

Abbildung 3.9: Schaltbild für das Mach-Zehnder-Interferometer. 

Anweisungen für die Anwendung von  Gattern (gates) in einer speziellen Reihenfolge heißen

 Schaltungen (circuits). Das Interferometer ist ein Beispiel eine einfache  Quantenschaltung

(quantum circuit). 

Wenn ein Photon im Zustand  | 0   und damit in der 0-Mode einlauft, erfährt es nacheinander

die Transformationen





 | 0  →  1

 √ ( | 0  +  | 1 )  →  1

 √ ( | 0  +  e−iα| 1 )  →  1 (1 +  e−iα) | 0  + (1  − e−iα) | 1  . 

2

2

2

(3.81)

Die Wahrscheinlichkeit, dass danach ein Detektor das Photon im Zustand  | 0   detektiert (d. h., 

dass ein Detektor im 0-Ausgang anspricht) ist

1

 p 0 =

(1 + cos  α)  . 

(3.82)

2

Es entsteht in Abhängigkeit von der Phasenverschiebung  α  ein periodisch oszillierendes  In-

 terferenzbild. 
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Interferenzbild

Gemäß Gl. (3.81) hat der erste Hadamard-Strahlteiler nur die Funktion

einen einfachen in beiden Moden symmetrischen Zustandsvektor zu präparieren. Die Wahr-

scheinlichkeit, dass ein Detektor hinter dem Strahlteiler im 0-Weg oder im 1-Weg anspricht, ist

dann jeweils 12 . Die Gl. (3.81) zeigt, dass die Wirkung des zweiten Strahlteilers darin besteht

die komplexen Amplituden der  | 0 - und  | 1 -Komponenten des Zustandsvektors zur komple-

xen Amplitude des auslaufenden  | 0 -Vektors zu superponieren und so zur Interferenz zu brin-

gen. Das Interferenzbild kann als Funktion von  α  von einem Detektor im 0-Weg hinter dem

Interferometer registriert werden. 

0

0

1

 −α

1

Abbildung 3.10: Strahlteiler mit Phasenschieber

Die  Interferenz  erzeugende Wirkung des zweiten Strahlteilers wollen wir für spätere Zwe-

cke noch auf andere Weise beschreiben. Der in Phasenschieber und Strahlteiler der Anordnung

von Abb. 3.10 einlaufende Zustand  |ψ in   wird durch die Wirkung von  φ( α) und  H  gemäß

 |ψ out  =  H( | 0  0 | +  e−iα| 1  1 |) |ψ in 

(3.83)

in den auslaufenden Zustand  |ψ out  überführt. Die Wahrscheinlichkeit, das Photon im Zu-

stand  | 0   zu finden ist

 p 0( α) =  | 0 |ψ out | 2 . 

(3.84)

Wir setzen  |ψ out   ein und lassen die Operatoren auf  | 0   wirken, dann folgt

 p 0( α) =  |α|ψ in | 2

(3.85)

mit

 |

1

 α := ( | 0  0 | +  eiα| 1  1 |) H| 0  =  √ ( | 0  +  eiα| 1 ) . 

(3.86)

2

Die Messgröße  p( α) lässt sich direkt als Mittelwert des Projektionsoperators  P|α :=  |αα|

im einlaufenden Zustand  |ψ in   schreiben:

 p 0( α) =  ψ in |P|α|ψ in . 

(3.87)

Wählt man  |α  selber als einlaufenden Zustand, dann spricht wegen  p 0( α) = 1 nur

der Detektor auf dem auslaufenden 0-Weg an. Gl. (3.87) kann man daher folgendermaßen
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interpretieren: Die Wahrscheinlichkeit, dass der 0-Detektor anspricht, ist gleich der Wahr-

scheinlichkeit, dass der einlaufende Zustand  |ψ in   mit demjenigen Zustand  |α übereinstimmt, 

der mit Sicherheit das Ansprechen des 0-Detektors bewirkt. 

Für den allgemeinen einlaufenden Zustand, 

 |

 θ

 θ

 ψ in  = cos  | 0  +  ei φ 2 sin  | 1 , 

(3.88)

2

2

der durch die Parameter  θ  und  φ  charakterisiert ist, lässt sich Gl. (3.85) leicht mit dem Ergebnis







1

 p 0( α) =

1 + sin  θ  cos

 α − φ

(3.89)

2

2

auswerten. Bei Variation von  α  durch entsprechende Einstellung des Phasenschiebers entsteht

ein periodisches Interferenzbild  p 0( α) mit einem  Streifenkontrast

 p

 ν :=

max  − p min = sin  θ . 

(3.90)

 p max +  p min

Durch Ausmessen der Interferenzkurve können die Phasenverschiebung  ϕ  und der Streifen-

kontrast sin  θ  ermittelt werden.  Damit haben wir ein interferometrisches Messverfahren zur

 Bestimmung des Zustands |ψin gefunden. 

3.8

Ergänzende Themen und weiterführende Literatur

 •  Wechselwirkung zwischen Licht und einem 2-Niveau-Atom: [MW 95]. 

 •  Allgemeiner verlustfreier Strahlteiler: [CST 89], [MW 95]

 •  Systeme mit höherem Spin als 12 werden im Hinblick auf ihre Rolle als Teilsysteme zu-

sammengesetzter Quantensysteme ausführlich in [Zei 81], [PSM 87], [CST 89], [MW 95]

untersucht. 

3.9

Übungsaufgaben

ÜA 3.1 [zu 3.1 und 3.3]

leiten Sie die Gl. (3.11), (3.17), (3.36), (3.37), (3.42), (3.53), (3.54)

ab. 

ÜA 3.2 [zu 3.1]

Bestimmen Sie die Komponenten des Operators  σiσj  in der Operatorbasis

der  σ-Operatoren. 

ÜA 3.3 [zu 3.4]

Berechnen Sie die Darstellungen der Operatoren in Tab. 3.1 soweit das nicht

schon im Text geschehen ist. 
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ÜA 3.4 [zu 3.7.2]

In ein Mach-Zehnder-Interferometer ist im 0-Strahlengang ein Phasen-

schieber mit der Wirkung  eiα  und im 1-Strahlengang einer mit der Wirkung  e−iα  eingebaut. 

Zeigen Sie, dass die resultierende Transformation von der Form





cos  α

 i  sin  α

 U =

(3.91)

 i  sin  α

cos  α

ist. Durch Einbau zusätzlicher Phasenschieber in den ein- und auslaufenden Moden kann eine

beliebige unitäre Transformation realisiert werden. 
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4 Gemischter Zustand und Dichteoperator

Wir haben schon im einleitenden Abschnitt 2.1.1 Gemische kennen gelernt und uns dann aber

bei der Formulierung der Postulate auf reine Zustände beschränkt. Die reinen Zustände ha-

ben wir durch Vektoren im Hilbert-Raum beschrieben. Wir wollen nun zunächst eine andere

Darstellung der reinen Zustände vorstellen, die direkt auf einen Zugang zur Beschreibung von

statistischen Gemischen (Gemenge) und allgemeinen Gemischen mit Hilfe von Dichteopera-

toren führt. Dichteoperatoren beschreiben den allgemeinen Quantenzustand. Die Postulate aus

Abschn. 2.1.2 werden verallgemeinert. 

4.1

Dichteoperator zu gegebenem Ensemble (statistisches

Gemisch)

4.1.1

Reiner Zustand

Dem reinen Zustand, dem wir bisher den normierten Zustandsvektor  |ψ  zugeordnet haben, 

können wir in eineindeutiger Weise den Operator

 ρ :=  |ψψ|

(4.1)

zuordnen. Er wird  Dichteoperator (density operator)  eines reinen Zustands  und oft auch  Dich-

 tematrix  genannt. 

Die folgenden Eigenschaften von  ρ  lassen sich direkt ablesen:

(i)  ρ  ist positiv:  ϕ|ρ|ϕ ≥  0  , ∀|ϕ ∈ Hd (und damit hermitesch,  ρ† =  ρ)

(ii)  trρ = 1

(iii)

 ρ 2 =  ρ. 

Eigenschaft (ii) ist eine Folge der Normiertheit von  |ψ. Umgekehrt garantieren die drei Ei-

genschaften zusammen, dass die Spektralzerlegung von  ρ  die Form (4.1) hat und daher  ρ

eindeutig bis auf eine Phase einen Vektor  |ψ  bestimmt. Mit Hilfe der Spektralzerlegung kann

man auch zeigen, dass bei Gültigkeit von (i) und (ii) für einen Operator  ρ  die Eigenschaft (iii)

gleichbedeutend ist mit

(iii ∗) tr[ ρ 2] = 1  . 

(4.2)
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Eine Messung der Observablen  A  mit dem Messergebnis  an  und dem zugehörigen Pro-

jektionsoperator  Pn  von Gl. (2.3) überführt  ρ  gemäß Gl. (2.2) in den Dichteoperator  ρn

1

 ρ → ρ =

 P

 n

 nρPn . 

(4.3)

 p( an)

Hierbei ist

 p( an) = tr[ Pnρ]

(4.4)

entsprechend Gl. (2.5) die Wahrscheinlichkeit den Wert  an  als Messwert zu erhalten. Es kann

günstig sein, den resultierenden Dichteoperator in der  unnormierten Form ˜

 ρ =  | ˜

 ψ  ˜

 ψ |

 n

 n

 n

zu schreiben. In dieser Form muß die Spur nicht gleich Eins sein. Wie beim Zustandsvektor

charakterisieren wir das durch eine Tilde:

˜

 ρ =  P

 n

 nρPn . 

(4.5)

Die Messwahrscheinlichkeit ist dann gleich der Spur des unnormierten resultierenden Dichte-

operators nach der selektiven Messung. 

 p( an) = tr[˜

 ρ ]  . 

 n

(4.6)

Den Erwartungswert  A  der Observablen  A  erhalten wir durch Einschieben des mit der ONB

 {|ui}  gebildeten Identitätsoperators

 d



 A =

 ψ|ujuj|A|ukuk|ψ

 j,k=1



=

 uk|ρ|ujuj|A|uk

 j,m



=

 uk|ρA|uk

(4.7)

 k

= tr[ ρA]  . 

Bleibt noch die Aufgabe, die unitäre Dynamik im Schrödinger-Bild für  ρ  umzuschreiben. 

Mit Gl. (2.14) finden wir

 ρ( t) =  U ( t, t 0) ρ( t 0) U − 1( t, t 0)

(4.8)

und mit Gl. (2.9) ergibt sich die  von-Neumann-Gleichung

 i ˙ ρ( t) =  i ˙

 U ρ( t 0) U − 1 +  i U ρ( t 0) ˙

 U − 1

=  HU ρ( t 0) U − 1  − U ρ( t 0) U − 1 H

= [ H, ρ( t)]  . 

(4.9)

Sie kann mit dem Liouville-Operator  L  von Gl. (1.84) auch in der Form

 i ˙ ρ =  Lρ

(4.10)

geschrieben werden. 
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 |ψ 1 

. 

 p

. 

1

. 

 ρ

 |ψn

 pn

 {|ψi, pi}

Abbildung 4.1: Das statistische Gemisch (Gemenge) zum Ensemble  {|ψi, pi}  entsteht indem immer

einer der Präparationsapparate für  {|ψi}  mit der Wahrscheinlichkeit  pi  tätig wird. 

Zusammenfassend stellen wir fest, dass die Physik abgeschlossener Quantensysteme in

reinen Zuständen, die durch das mathematische Objekt Zustandsvektor  |ψ  beschrieben wird, 

gleichwertig durch den Dichteoperator  ρ  von Gl. (4.1) beschrieben werden kann. In diesem

Sinne kann man mit der gleichen operationalen Bedeutung wie bei  |ψ  sagen: das System

befindet sich im  Zustand ρ. Im Gegensatz zur vektoriellen Formulierung können wir aber die

Zustandsformulierung mit dem Dichteoperator unmittelbar auf eine allgemeinere Klasse von

Quantenzuständen, die statistischen Gemische, übertragen. Wir beschreiben das im nächsten

Kapitel im Einzelnen. 

4.1.2

Die Physik der statistischen Gemische (Gemenge)

Präparation

Wir betrachten die folgende experimentelle Situation: Es steht für ein abge-

schlossenes Quantensystem eine beliebige aber endliche Anzahl unterschiedlicher Präparati-

onsverfahren zur Verfügung, die mit dem Index  i  durchnummeriert sind ( i = 1 , . . . , N ) und

entsprechend in die reinen Zustände  |ψi überführen. Diese Zustände müssen weder ortho-

gonal noch linear unabhängig sein.  N  kann größer sein als die Dimension  d. Wir gehen zu

einem neuen Typ von Präparationsverfahren über, der darin besteht, dass immer eines der

Ausgangsverfahren mit einer gewissen  klassischen Wahrscheinlichkeit pi  mit

 N

  pi = 1

(4.11)

 i=1

zum Einsatz kommt. Es wird also zur Präparation des betrachteten Quantensystems in zufäl-

liger Weise immer genau einer der Präparationsapparate angeschaltet (vergl. Abb. 4.1).  Der

 entsprechende Zustand |ψi liegt dann beim Einzelsystem tatsächlich vor. Dabei wird aber ein-

gehalten, dass der  i-te Apparat mit der Wahrscheinlichkeit  pi  tätig wird. Man sagt, dass durch

„Mischen“ der reinen Zustände das  Ensemble {|ψi, pi}  realisiert wird. Bei Kenntnis der Zu-

stände  |ψi  und der Präparationswahrscheinlichkeiten  pi  ist wieder für beliebige Messungen

eine sichere Prognose der Wahrscheinlichkeit des Eintretens von Messergebnissen möglich. 

 Nach dem von uns verwendeten Konzept definiert dieses verallgemeinerte Präparationsver-
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 fahren also einen Quantenzustand. Er wird  statistisches Gemisch 1(statistical mixture) oder

 Gemenge  genannt und beinhaltet den reinen Zustand als Spezialfall. 

Dichteoperator statistischer Gemische

Wir zeigen, dass sich die Gleichung für die physi-

kalischen Aussagen aus Abschnitt 4.1.1 übertragen, wenn das statistische Gemisch durch den

 Dichteoperator

 N



 N



 ρ :=

 pi|ψiψi| =

 piρi

(4.12)

 i=1

 i=1

mit  ρi :=  |ψiψi|  beschrieben wird. Hierzu führen wir Aussagen über das Gemisch auf

Aussagen über die Ensemblezustände  ρi  zurück. 

So wird bei einer Messung der Observablen  A  mit der Wahrscheinlichkeit



 p( an) =

 p( an|i) pi

(4.13)

 i

der Wert  an  gemessen. Dabei ist  p( an|i) die  bedingte Wahrscheinlichkeit (conditional proba-

bility), dass der Messwert  an  gemessen wird, wenn der Zustand  ρi  vorliegt. Mit (4.4) erhalten

wir

 p( an|i) = tr[ Pnρi]  . 

(4.14)

Das führt mit (4.12) und den Rechenregeln für die Spurbildung auf

 p( an) = tr[ Pnρ]  . 

(4.15)

Gleichung (4.4) überträgt sich also. Auch die Gl. (4.7) überträgt sich für statistische Gemische

mit dem Argument, dass sich Erwartungswerte zu den einzelnen Zuständen mit den Wahr-

scheinlichkeiten  pi  zum Erwartungswert beitragen. 



 A =

 pi tr[ Aρi] = tr[ Aρ]  . 

(4.16)

 i

Wie Gl. (4.13) und (4.16) zeigen, treten bei der Berechnung von Messwahrscheinlichkeiten

und Erwartungswerten Produkte aus klassischen und quantentheoretischen Wahrscheinlich-

keiten auf. 

Selektive und nicht-selektive Messungen

Abzuleiten sind noch die Gleichungen für die

beiden Formen des dynamischen Verhaltens. Wir beginnen mit der Messdynamik. Für jeden

der einzelnen Zustände  ρi  des Ensembles ergibt sich mit Gl. (4.5) als Ergebnis einer  selektiven

 Messung (selective measurement) mit Messwert  an  der unnormierte Zustand

 ρi → ˜

 ρ

=  P

 i,n

 nρiPn . 

(4.17)

1 Durch den Zusatz „statistisch“ soll hervorgehoben werden, dass ein Ensemble präpariert wurde. In der englisch-

sprachigen Literatur findet sich hierfür auch die Bezeichnung  proper mixture. Wir werden auch andere Gemische

kennen lernen. 
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Wir lassen ausdrücklich Entartung der Messwerte zu. Für den Dichteoperator  ρ  von Gl. (4.12)

folgt aus Gl. (4.17)



 ρ → ˜

 ρ =

 p

=  P

 n

 i ˜

 ρi,n

 nρPn . 

(4.18)

 i

Dies stimmt mit der Relation (4.5) überein. Mit Gl. (4.15) erhalten wir für den normierten

Dichteoperator nach der selektiven Messung in Übereinstimmung mit Gl. (4.3)

1

 ρ → ρ =

 P

 n

 nρPn . 

(4.19)

 p( an)

Eine Ableitung dieser Gleichung, die von der bestimmenden empirischen Größe, also vom

Messergebnis  an  ausgeht, lässt sich auch mit Hilfe des Satzes von Bayes (vergl. Abschn. 1.3.2)

gewinnen2 . Die Wahrscheinlichkeit  p( an) für den Messwert  an  kann gemäß Gl. (4.15) und

(4.18) in Übereinstimmung mit Gl. (4.6) auch in der Form

 p( an) = tr[˜

 ρ ]

 n

(4.23)

geschrieben werden kann. 

Wir erwähnen noch den Spezialfall, dass für den Messwert  an  keine Entartung vorliegt. 

Dann ist  Pn =  |anan|  mit dem zum Eigenwert  an  gehörigen Eigenvektor  |an. Damit wird

Gl. (4.19)

 ρ → ρ =  |a

 n

 nan| . 

(4.24)

 Wenn der Messwert nicht entartet ist, präpariert daher die zugehörige selektive Messung an

 einem statistischen Gemisch einen reinen Zustand. Das ist plausibel, denn jeder der Zustands-

vektoren  |ψi  des Ensembles wird in diesem Fall durch die Messungen in  |an überführt. 

Bei einer  nicht-selektiven Messung (nonselective measurement) der Observablen  A  wie-

derholt man die Messung sehr oft an Quantensystemen im gleichen Zustand, aber sortiert

2Die Messung der Observablen  A  möge auf das Ergebnis  an  führen. Falls dabei vor der Messung der Zustand  ρi vorlag, dann befindet sich nach der Messung der normierte Zustand

1

 ρ

=

 i,n

 p( an|i)  PnρiPn

(4.20)

(vergl. Gl. (4.14) und (4.23)). Mit welcher Wahrscheinlichkeit  p( i|an) lag vor der Messung  ρi  vor, wenn  an  registriert wurde? Nach dem bereits in Abschn. 1.3.2 genauer diskutierten Satz von Bayes gilt (wir formen noch mit

Gl. (4.13) um)

 p( i|an) =

 p( an|i) pi

P

=  p( an|i) pi

(4.21)

 j p( an|j) pj

 p( an)

P

mit

 i p( i|an) = 1.  p( i|an) stimmt also i.a. nicht etwa mit  pi überein. Insgesamt folgt, daß zum Messergebnis  an der Übergang

X

 ρ → ρ =

 n

 p( i|an) ρi,n

(4.22)

 i

gehört. Einsetzen von  ρ

führt direkt auf Gleichung (4.19). 

 i,n
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nicht wie in der selektiven Messung die Zustände  ρn  aus, die zu einem bestimmten Mess-

ergebnis  an  gehören. Als resultierender Zustand  ρ  entsteht in diesem Fall das statistische

Gemisch, das sich additiv aus den Zuständen  ρn  zusammensetzt, die bei der Messung mit den

Wahrscheinlichkeiten  p( an) erzeugt werden:





 n.s. 

 PnρPn

 ρ −−→ ρ =

 p( an)

=

 PnρPn, 

tr[ ρ] = 1  . 

(4.25)

tr[ ρP

 n

 n]

 n

Wir haben dabei Gebrauch von Gl. (4.15) gemacht. 

Unitäre Dynamik

Zu ergänzen ist noch die unitäre Dynamik. Hierbei ändern sich die klas-

sischen Zusammensetzungswahrscheinlichkeiten  pi  nicht. Die Gl. (4.8) überträgt sich daher

direkt für statistische Gemische:

 ρ( t) =  U ( t, t 0) ρ( t 0) U − 1( t, t 0)

(4.26)

und es ergibt sich die von Neumann-Gleichung (4.9) bzw. (4.10). 

Wo treten statistische Gemische auf? 

Das am Anfang des Kapitels beschriebene Präparati-

onsverfahren mag etwas künstlich erscheinen. Wir haben aber gesehen, dass für abgeschlosse-

ne Quantensysteme statistische Gemische tatsächlich in sehr natürlicher Weise auftreten. Alle

nicht-selektiven Messungen an reinen Zuständen und an statistischen Gemischen überführen

in statistische Gemische und nicht in reine Zustände. 

Auch selektive Messungen an statistischen Gemischen führen im Allgemeinen auf statis-

tische Gemische, wenn der eingetretene Messwert ein entarteter Eigenwert des Observablen-

operators ist. Entartung kann zu Mischung führen. Mit  ρ  von Gl. (4.12) ist  ρn  von Gl. (4.19)

1



 ρ =

 p

 n

 iPn|ψiψi|Pn . 

(4.27)

 p( an)  i

Projektionsoperatoren  Pn  zu entarteten Eigenwerten projizieren in Unterräume (vergl. 

Gl. (2.3)), daher werden die  Pn|ψi  im Allgemeinen nicht übereinstimmen. Der resultierende

Dichteoperator ist eine Summe von Dichteoperatoren reiner Zustände und kann damit selber

nicht der Dichteoperator eines reinen Zustands sein. Wir führen das unten im Zusammenhang

mit Konvexkombinationen näher aus. Das Gemisch wird bei Entartung durch eine selektive

Messung nicht völlig entmischt. 

Schließlich soll noch eine weitere Messsituation erwähnt werden, die auf statistische

Gemische führt. Bei einem Messapparat mögen die Messwerte nicht entartet sein. Es soll

aber eine Ungenauigkeit in der Anzeige vorliegen, so dass alle Messwerte aus dem Intervall

[ an, am>n] tatsächlich vom Apparat als Messwert  an  angezeigt werden. Eine selektive Mes-

sung zum abgelesenen Messwert  an  präpariert dann nicht einen reinen Zustand, sondern ein

statistisches Gemisch. 

Wir haben bisher nur abgeschlossene Systeme behandelt. Es wird sich in Abschnitt 7.3 zei-

gen, dass die Teilsysteme verschränkter Systeme ebenfalls durch Dichteoperatoren beschrie-

ben werden können. Dies führt zu einer wichtigen Erweiterung des Konzepts „Gemisch“ auf

nicht-statistische Gemische, denen kein wohlbestimmtes Ensemble aus realisierten Zuständen

entspricht. 
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4.1.3

Definition und Eigenschaften des allgemeinen Dichteoperators

Definition

Wir haben noch zu prüfen, welche der für reine Zustände abgeleiteten Eigen-

schaften (i) bis (iii( ∗)) aus Abschnitt 4.1.1 auch für den Dichteoperator eines statistischen

Gemisches gelten. Mit Hilfe von Gl. (4.11) und (4.12) bestätigen wir (i) und (ii) unmittelbar. 

Zur Diskussion von (iii) betrachten wir die Spektralzerlegung von  ρ

 d



 ρ =

 λj|jj| . 

(4.28)

 j=1



 {|j}  ist eine ONB und in Folge von (i) und (ii) gilt  λj =  λ∗, λ

 λ

 j

 j ≥  0 und

 j

 j = 1. Damit

erhalten wir

0  ≤ λj ≤  1

(4.29)

und daher

tr[ ρ 2]  ≤  1  . 

(4.30)

 Durch das Gleichheitszeichen in Gl. (4.30) ist eineindeutig das Vorliegen eines reinen Zu-

 stands charakterisiert.  Die Ungleichung gilt nur für ein echtes Gemisch (kein reiner Zustand). 

Wir lösen uns von den bisherigen Realisierungen und nennen allgemein einen Operator

einen  Dichteoperator, wenn er die Bedingungen

(i)  ρ  ist positiv (und damit hermitesch,  ρ† =  ρ)

(ii) tr[ ρ] = 1

erfüllt. 

Gemischtheitsgrad

Aus Gl. (4.28) ergibt sich für den kleinsten Wert von tr[ ρ 2] der Quoti-

ent 1 , wobei  d  die Dimension des Hilbert-Raums ist. Der Wert wird für  λ

angenommen

 d

 j = 1

 d

und gehört somit zu

1

 ρ =

 . 

(4.31)

 d 

Dieser völlig strukturlose Dichteoperator heißt der  maximal gemischte Dichteoperator. 

Wie oben beschrieben entstehen statistische Gemische operational im Experiment durch

„Mischen“ von Zuständen. Man kann über den Parameter

Ξ := 1  −  tr[ ρ 2]

(4.32)

den  Gemischtheitsgrad (degree of mixtureness) beschreiben, der zwischen dem des reinen

Zustands Ξ = 0 und dem der maximalen Mischung Ξ = 1  −  1 variiert:

 d

0  ≤ Ξ  ≤  1  −  1  . 

(4.33)

 d

Bei statistischen Gemischen nähert sich Ξ der 1 an, wenn die Dimension  d  des Hilbert-Raums

zunimmt. Wir geben hierfür ein Beispiel: Für  ρ 1 = 13  | 0  0 | + 23  | 1  1 |  ist tr[ ρ 2] = 59 und für ρ 2 = 13  | 0  0 | + 13  | 1  1 | + 13  | 2  2 |  folgt tr[ ρ 2] = 13 . 
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Konvexkombination

Wir notieren eine einfache Folge der Definition des Dichteoperators. 



Wenn  {ρl, l = 1 , . . . , k}  Dichteoperatoren sind und  {rl}  positive Zahlen mit

 r

 l

 l = 1, dann

ist die  konvexe Summe (convex sum)

 k



 ρ =

 rlρl

(4.34)

 l=1

wieder ein Dichteoperator. 

Wir zeigen, dass der Dichteoperator  ρ  eines reinen Zustandes außer durch tr[ ρ 2] = 1

noch in einer anderen Weise ausgezeichnet ist.  Anders als alle anderen Dichteoperatoren kann

 der Dichteoperator eines reinen Zustands nicht in eine konvexe Summe zerlegt werden.  Zum

Beweis machen wir mit dem Dichteoperator

 ρ =  |ψψ|

(4.35)

den Zerlegungsversuch

 ρ =  λρ 1 + (1  − λ) ρ 2 , 

0  < λ <  1  . 

(4.36)

Für einen zu  |ψ  orthogonalen Vektor  |χ  erhalten wir

 χ|ρ|χ = 0 =  λχ|ρ 1 |χ + (1  − λ) χ|ρ 2 |χ . 

(4.37)

Da  λ  und 1  − λ  positiv sind und die Operatoren  ρ 1 und  ρ 2 positive Operatoren sind, folgt

daraus

 χ|ρ 1 |χ =  χ|ρ 2 |χ = 0  . 

(4.38)

Wir ergänzen  |ψ  durch Hinzunahme von Vektoren zu einer ONB. Für diese Vektoren gilt

jeweils Gl. (4.38). Wir bilden die Matrixelemente von  ρ 1 und  ρ 2 in dieser Basis und nutzen

tr[ ρ 1] = tr[ ρ 2] = 1 aus. Dann finden wir als einzige nichtverschwindende Matrixelemente

 ψ|ρ 1 |ψ =  ψ|ρ 2 |ψ = 1  . 

(4.39)

Damit ist

 ρ =  ρ 1 =  ρ 2  . 

(4.40)

Die Zerlegung (4.36) ist daher nicht möglich.  Durch Mischen reiner Zustände (oder Gemi-

 sche) kann nicht wieder ein reiner Zustand entstehen.  Dies zeichnet reine Zustände sowohl

mathematisch wie auch im Prinzip operational aus. Wir haben diese Eigenschaft zur Definiti-

on des reinen Zustands bei der Formulierung der Postulate in Abschnitt 2.1.2 verwendet. 

4.1.4

Inkohärente Überlagerung reiner Zustände

Während einer unitären dynamischen Entwicklung gilt als Folge von Gl. (4.26) die Erhaltung

der Positivität und der Spur von  ρ

tr[ ρ( t)] = tr[ ρ( t 0)]

(4.41)













 4.1

 Dichteoperator zu gegebenem Ensemble (statistisches Gemisch)

75

sowie der Spur von  ρ 2

tr[ ρ 2( t)] = tr[ ρ 2( t 0)]  . 

(4.42)

 Daher kann durch eine unitäre Dynamik weder ein reiner Zustand in ein Gemisch übergehen

 noch umgekehrt.  Demgegenüber kann als Ergebnis einer selektiven Messung mit nicht entar-

tetem Messwert aber sehr wohl ein echtes Gemisch in einen reinen Zustand übergehen, wie

wir in Gl. (4.24) gesehen haben. Ist bei einer Messung, also der zweiten Form von Dynamik

die durch die Postulate beschrieben wird, auch der umgekehrte Vorgang, den man  Dekohärenz

(decoherence) nennt, möglich? Wir werden diese Frage im Zusammenhang mit der Theorie

der Messung in Kap. 15 präzisieren. Hier wollen wir zunächst veranschaulichen, warum die

Bezeichnung Kohärenz bzw. Inkohärenz in diesem Zusammenhang sinnvoll ist. 

An Gl. (4.16) können wir ablesen, dass bei der Bildung des Erwartungswertes  A  die

Mittelung in den Erwartungswerten tr[ Aρi] und nicht wie bei der Superposition in den Zu-

ständen erfolgt. Es handelt sich beim statistischen Gemisch in diesem Sinne um eine  inko-

 härente Überlagerung (incoherent superposition) reiner Zustände. Die beteiligten Zustände

interferieren nicht miteinander. Ihre relative Phase ist experimentell nicht bestimmbar. Das ist

bei dem in Abschn. 4.1.2 angegebenen Präparationsverfahren auch unmittelbar verständlich. 

Dieser Aussage kann man eine direkte operationale Veranschaulichung in einem Interferenz-

experiment geben. Die Verhältnisse am Doppelspalt (vergl. Abschn. 2.1) sind ein weiteres

Beispiel. 

Wir haben in Abschn. 3.7.2 gesehen wie mit Hilfe eines Strahlteilers die 0-Komponente

und die 1-Komponente eines Photonenzustands  |ψ in  = cos  θ 2  | 0  +  ei φ 2 sin  θ 2  | 1   zur kohä-

renten Überlagerung gebracht werden kann. Der Phasenschieber bewirkt ein Interferenzbild, 

das von der Phase  α  abhängt. In den Spezialfällen  |ψ in  =  | 0   und  |ψ in  =  | 1   entsteht kein Interferenzbild. Für ein einlaufendes Gemisch  ρ in ist die Ansprechwahrscheinlichkeit des 0-Detektors in Abhängigkeit von der Phasenverschiebung  α  durch

 p( α) = tr[ P|αρ in]

(4.43)

mit  P|α =  |αα|  von Gl. (3.86) gegeben. Für  ρ in =  | 0  0 |  und  ρ in =  | 1  1 |  ist  p( α) = 12 . 

Wenn wir die Zustände  | 0   und  | 1   nicht superponieren wie bei  |ψ in , sondern mischen ρ in =  λ 0 | 0  0 | +  λ 1 | 1  1 |

(4.44)

( λ 0 ,  1  ≥  0,  λ 0 +  λ 1 = 1), erhalten wir für die Ansprechwahrscheinlichkeiten den von  α

unabhängigen Wert

1

1

 p( α) =

( λ 0 +  λ 1) =

 . 

(4.45)

2

2

Das statistische Gemisch  ρ in ist eine inkohärente Überlagerung, bei der ebenfalls beim Inter-

ferometer mit den Wegen  | 0   und  | 1   keine Interferenz auftritt. Das wird plausibel, wenn man sich vorstellt, dass Objekte in den Zuständen  | 0   und  | 1   nacheinander einlaufen. 

Bemerkenswerterweise ergibt sich aber das gleiche Resultat auch für statistische Gemi-

sche mit Ensemble  {|ψi, pi}, das nicht mit dem Ensemble  {| 0 , | 1 , λ 0 , λ 1 } übereinstimmt, 
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wenn nur der zugehörige Dichteoperator sich in der Form (4.44) schreiben lässt. Das ist mög-

lich, wenn  | 0   und  | 1   eine Eigenbasis von  ρ  sind. Auch in diesen Fällen zeigt das aus vielen Messpunkten zusammengesetzte Interferenzbild keinen Streifenkontrast, obwohl mögli-

cherweise die Zustände  |ψi  einzeln sehr wohl zu Interferenz mit Streifenkontrast führen. 

Wir können die Beiträge im Interferenzbild nicht nach den Zuständen sortieren, in dem sich

die einzelnen registrierten Objekte befunden haben. Wir werden im Zusammenhang mit dem

Quantenradierer in Abschn. 8.5 auf diesen Punkt zurückkommen. 

4.2

Der allgemeine Quantenzustand

Wir erinnern an die Definition des Zustands eines Quantensystems wie sie in Abschnitt 2.1.2

gegeben wurde. Der Zustand ist dasjenige mathematische Objekt, das es erlaubt, die Wahr-

scheinlichkeit der Ergebnisse aller möglichen Messungen am System zu berechnen. Er ist

einem Projektionsverfahren zugeordnet. Wir verstehen unter Messungen weiterhin nur pro-

jektive Messungen. 

Messpostulate

Dichteoperatoren, also alle positiven (und damit hermiteschen) Operato-

ren  ρ, die die Bedingung tr[ ρ] = 1 erfüllen, sind offenbar solche mathematische Objekte, 

wenn man als Postulat fordert: Die Wahrscheinlichkeiten sind durch Gl. (4.15) gegeben. Der

Messprozess überführt in die Zustände  ρn  von Gl. (4.19) bzw.  ρ  von Gl. (4.25). Dies verall-

gemeinert das Postulat 2 aus Abschn. 2.1.2. Man kann zeigen, dass es keine anderen mathe-

matischen Objekte gibt, die die an einen Zustand gestellten Forderungen erfüllen (Theorem

von Gleason, vergl. Abschn. 4.5). 

Bisher haben wir nur statistische Gemische (d. h. Gemenge) als Quantenzustände kennen

gelernt. Wir werden in Kap. 7 mit den reduzierten Dichteoperatoren der Teilsysteme von zu-

sammengesetzten Systemen andere Realisierungen von Zuständen behandeln. Sie unterschei-

den sich durch ihre Präparation von statistischen Gemischen. Das Postulat, das das Postulat 1

von Abschn. 2.1 verallgemeinert, lautet dann:  Quantenzustände werden durch Dichteoperato-

 ren repräsentiert.  Sie werden allgemein  Gemische (mixtures) genannt. Statistische Gemische

sind ein physikalischer Spezialfall, der durch das Präparationsverfahren ausgezeichnet ist. 

4.3

Verschiedene Ensemblezerlegungen eines

Dichteoperators und Ignoranzinterpretation

Wir beginnen mit einer einfachen Beobachtung. Die Zerlegung von zwei Qubit-Zuständen  |a

und  |b (die z. B. Spin- 12 -Zustände beschreiben) nach der Rechenbasis möge





 |

2

1

 a =

 | 0  +

 | 1 

3

3





 |

2

1

 b =

 | 0  −

 | 1 

(4.46)

3

3
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sein. Dann lässt sich der Dichteoperator  ρ, der zum Ensemble aus den Zuständen  |a  und  |b

mit den Wahrscheinlichkeiten  pa =  pb = 12 gehört, in zweifacher Weise schreiben:

1

1

2

1

 ρ =

 |aa| +  |bb| =  | 0  0 | +  | 1  1 | . 

(4.47)

2

2

3

3

Er ist also zugleich der Dichteoperator zum Ensemble mit den Zuständen  | 0   und  | 1  (z. B. 

Spinpolarisationen in  z-Richtung) und den Wahrscheinlichkeiten  p 0 = 23 und  p 1 = 13 . 

Wir geben noch ein physikalisches Beispiel. In einer Versuchsanordnung werden mit glei-

cher Häufigkeit horizontal und vertikal polarisierte Photonen erzeugt. Das zugehörige Ensem-

ble  {|H, |V , pH =  pV = 12  }  wird durch den Dichteoperator

1

 ρ =

(4.48)

 d 

beschrieben. In einer völlig anders aufgebauten Versuchsanordnung werden rechtszirkular

und linkszirkular polarisierte Photonen mit gleicher Häufigkeit produziert. Das Ensemble

 {|R, |L, pR =  pL = 12 }  hat den selben Dichteoperator  ρ. Die Photonen befinden sich daher

in dem selben Zustand. Durch kein mit den Photonen durchgeführtes Experiment kann man

entscheiden, durch welches der beiden Verfahren die Photonen präpariert wurden. Aus der

Kenntnis des Dichteoperators  ρ  lässt sich auch in diesem Fall nicht eindeutig darauf schlie-

ßen, welches Ensemble vorliegt. Wir wollen beweisen, dass das für jeden Dichteoperator gilt

und zugleich zeigen, wie die verschiedenen Ensembles auseinander hervorgehen. Im Folgen-

den wollen wir voraussetzen, dass der Dichteoperator keinen reinen Zustand beschreibt. 

Ensemblezerlegungen

Wir betrachten den Dichteoperator





 √

 ρ =

 pa|ψaψa| =

 | ˜

 ψa ˜

 ψa|, 

 | ˜

 ψa :=

 pa|ψa, 

(4.49)

 a

 a

den wir mit unnormierten Vektoren formulieren, die durch eine Tilde gekennzeichnet sind. 

Wieder müssen die Vektoren  {|ψa}  weder orthogonal noch linear unabhängig sein. Dass

ein Dichteoperator  ρ  als Dichteoperator des Ensembles  {|ψa, pa}  aufgefasst und damit wie

Gl. (4.49) geschrieben werden kann, nennen wir eine  Ensemblezerlegung (ensemble decom-

position) von  ρ. Wir wollen annehmen, dass es eine weiter Ensemblezerlegung von  ρ  gibt:



 ρ =

 | ˜

 ϕi ˜

 ϕi| . 

(4.50)

 i

Darüber hinaus existiert stets die Spektralzerlegung von  ρ

 d



 d



 ρ =

 λn|nn| =

 |˜ n˜ n|

(4.51)

 n=1

 n=1

mit der ONB  {|n}, die ebenfalls eine Ensemblezerlegung von  ρ  darstellt. Die Laufbereiche

der Indizes der Typen  a, b, . . .  und  i, j, . . .  sowie  n, m, . . .  müssen nicht übereinstimmen. 

Wir beschränken uns auf Eigenwerte  λn = 0 und schränken den Laufbereich von  n, m, . . . 

entsprechend ein. Dann bilden die zugehörigen  {|n}  nicht notwendig eine Basis des ganzen
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Hilbert-Raums  H. Wir nehmen an, dass sie den Unterraum  H  aufspannen. Für  |χ  aus dem

orthogonalen Komplement von  H  gilt





0 =  χ|ρ|χ =

 χ| ˜

 ψa ˜

 ψa|χ =

 |χ| ˜

 ψa| 2

(4.52)

 a

 a

und damit

 χ| ˜

 ψa = 0

(4.53)

für alle  |χ  und alle Indizes  a. Entsprechendes gilt für die Vektoren  | ˜

 ϕi. Somit liegen alle  | ˜

 ψa

und alle  | ˜

 ϕi  im Unterraum  H  und wir können sie nach der Basis  {|n}  von  H  entwickeln:





 | ˜

 ψa =

 can|˜

 n, 

 | ˜

 ϕi =

 d in |˜

 n . 

(4.54)

 n

 n

Einsetzen in Gl. (4.49) und Berücksichtigung von Gl. (4.51) führt auf





 ρ =

 c

 c∗ |˜

 n ˜

 m| =

 |˜ n˜ n|

 an am

(4.55)

 a,n,m

 n

und damit auf





 c

 c∗

=  δ

 d d∗

=  δ

 an am

 nm , 

in  im

 nm . 

(4.56)

 a

 i

Die aus Gl. (4.50) folgende Beziehung haben wir ebenfalls aufgeführt. Wenn die Laufbereiche

der Indizes übereinstimmen, besagen die Gl. (4.56), dass die Matrizen  can  und  d in unitär sind. 

Wir finden mit Gl. (4.54) und (4.56)





 c∗ | ˜

 ψ

 c∗ c

 |˜ n =  | ˜

 m . 

 am

 a =

 am an

(4.57)

 a

 a,n

Da Gl. (4.57) für jeden Basisvektor von  H  gilt, kann die Zahl der Vektoren  |ψa  und  |ϕi

nicht geringer als die Dimension von  H  sein. Abschließend setzen wir Gl. (4.57) noch in

Gl. (4.54) ein und erhalten



 | ˜

 ϕi =

 d c∗ | ˜

 ψ

in  an

 a . 

(4.58)

 n,a

Eine entsprechende Zerlegung lässt sich daraus mit Hilfe von Gl. (4.56) für  | ˜

 ψa  gewinnen. 

Wir haben gezeigt:  Für zwei Ensemblezerlegungen {| ˜

 ψa} und {| ˜

 ϕi} eines Dichteope-

 rators lassen sich die Vektoren der einen Zerlegung gemäß Gl. (4.58) als Linearkombination

 der Vektoren der anderen Zerlegung schreiben, wobei Gl. (4.56) erfüllt ist. Umgekehrt zeigt

 man leicht, dass Vektoren | ˜

 ϕi und | ˜

 ψa, die wie in Gl. (4.58) verknüpft sind, jeweils eine

 Ensemblezerlegung desselben Dichteoperators darstellen, wenn die Matrizen die Bedingun-

 gen (4.56) erfüllen Offenbar gibt es beliebig viele solcher Matrizen und damit beliebig viele

 Ensemblezerlegungen eines Dichteoperators. 

Das Beispiel von Gl. (4.47) und der Beweis haben deutlich gemacht, dass die Mehrdeutig-

keit der Ensemblezerlegung eine für die Quantentheorie typische Ursache hat: Ein Zustands-

vektor lässt sich in unendlich vielen verschiedenen Weisen als Linearkombination anderer

Zustandsvektoren schreiben. Etwas Analoges gibt es für klassische Zustände nicht. 
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Ignoranzinterpretation

Wir haben gesehen, dass ein Dichteoperator mathematisch ver-

schiedenen Ensemblezerlegungen zulässt. Das sollte im Zusammenhang mit der Frage, was

physikalisch tatsächlich vorliegt, nicht zu Verwirrungen führen. Wenn ein Quantensystem im

Zustand  ρ  als ein statistisches Gemisch (bzw. Gemenge) mit Ensemble  {|ψi, pi}  nach dem

Verfahren aus Abschnitt 4.1.2 präpariert wurde, dann kann man die über die Minimalinterpre-

tation hinausgehende Annahme machen, dass es sich auch real und objektiv stets in einem der

Zustände  |ψi  befindet. Wir wissen nur subjektiv nicht in welchem. Im Prinzip kann es aber

jemand wissen, wenn er z. B. die Möglichkeit hat festzustellen, welcher Präparationsapparat

gerade tätig war. Man sagt dann, dass der Zustand  ρ  eine  Ignoranzinterpretation (ignoran-

ce interpretation) zulässt. Selbstverständlich kann man auch eine minimale Interpretation der

Quantentheorie bevorzugen, in der die oben gestellte Frage gar nicht erst auftritt. 

4.4

Dichteoperatoren von Qubits

Der Dichteoperator  ρ  in  H 2 lässt sich wie in Abschn. 3.1 nach der Pauli-Operatorbasis zerle-

gen

1

 ρ =

( + r σ)

(4.59)

2 

mit dem Bloch-Vektor

r = tr[ ρσ] =  σ, r  ∈

 . 

(4.60)



Mit

1

tr[ ρ 2] =

(1 +  |r | 2)

(4.61)

2

von Gl. (3.23) folgt aus

1  ≤  tr[ ρ 2]  ≤  1

(4.62)

2

für den Bloch-Vektor

 |r | 2  ≤  1  . 

(4.63)

Der Gemischtheitsgrad wird unmittelbar durch den Betrag des Bloch-Vektors bestimmt:

1

Ξ =

(1  − |r | 2)  . 

(4.64)

2

 Für ein echtes Gemisch liegt der Bloch-Vektor r  im Inneren der Bloch-Kugel. Der vollständig

 gemischte Zustand  12  wird durch den Kugelmittelpunkt (r = 0 ) repräsentiert. 
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Zustandsbestimmung

Der Zusammenhang  ρ ↔ r  gemäß Gl. (4.59) und (4.60) ist, anders

als die Beziehung  |ψ ↔ r, eine eineindeutige Beziehung, da Phasenfaktoren durch  ρ  nicht

wiedergegeben werden. Wir können den Zustand  ρ  durch Messung der Erwartungswerte  σ

der drei verschiedenen Observablen  σ  bestimmen. Beim Spin geschieht das durch Messung

der Mittelwerte der Spinkomponenten in drei unabhängige Richtungen. Beim reinen Zustand

reichen wegen der Normiertheit von r zwei Richtungen. 

Wir notieren noch die Matrixelemente als Funktionen der Komponenten des Bloch-

Vektors:





1

1 +  r 3

 r 1  − ir 2

 ρ(r) =

(4.65)

2

 r 1 +  ir 2

1  − r 3

(4.66)

mit

 r 3 =  ρ 00  − ρ 11

 r 2 =  i( ρ 01  − ρ 10)

(4.67)

 r 1 =  ρ 01 +  ρ 10  . 

4.5

Ergänzende Themen und weiterführende Literatur

 •  Theorem von Gleason: Wir haben Quantenzustände zunächst durch Zustandsvektoren

und dann durch Dichteoperatoren beschrieben. Gibt es andere mathematische Objek-

te, die sichere Wahrscheinlichkeitsaussagen ermöglichen? Das  Theorem von Gleason

[Gle 57] besagt, dass

 A = tr[ Aρ]

(4.68)

die allgemeinste Formel für den Erwartungswert ist, die mit der Wahrscheinlichkeitss-

truktur der Quantentheorie verträglich ist, wenn die Dimension des Hilbert-Raums grö-

ßer als 2 ist. Die Zustandsbeschreibung mit positiven Operatoren der Spur 1 ist die all-

gemeinste quantentheoretische Zustandsbeschreibung. Das gilt auch dann, wenn Mes-

sungen durch ein POVM (vgl. Abschn. 13.4) beschreiben werden. Literatur: [Per 93, S. 

190f], [BGL 95, S. 124f], [Aul 00, S. 199f]. In [Bus 99] wird das auch für die Dimensi-

on 2 bewiesen. 

 •  Ergänzende Literatur zu Dichteoperatoren: [Fan 57]. 

4.6

Übungsaufgaben

ÜA 4.1 [zu 4.1 und 4.4]

Der Zustand eines Quantensystems ist durch die Dichtematrix





 a

0

 ρ =

0

 b

mit  a, b ∈

,  a ≥  0,  b ≥  0 und  a +  b = 1 gegeben. 
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a) Wie groß ist die Wahrscheinlichkeit bei einer Messung von  σx  den Wert +1 bzw.  − 1 zu

erhalten? 

b) Berechnen Sie ohne Bezug auf a) direkt den Erwartungswert bei einer  σx-Messung. 

c) Berechnen Sie die entsprechenden Größen für  σy  statt  σx. 

d) Bestimmen Sie den Bloch-Vektor und veranschaulichen Sie die Ergebnisse für die Erwar-

tungswerte. 

ÜA 4.2

Geben Sie für die Dichtematrix





1

1

0

 ρ = 2 0 1

eines Spinsystems verschiedene Ensemblezerlegungen an. 

ÜA 4.3 [zu 4.4]

Zeigen Sie, dass sich ein Dichteoperator bei Bezug auf die Eigenbasis sich

einfach als Funktion des Betrages des Bloch-Vektors schreiben lässt:





1  − |r | 2

0

 ρ ↔

0

1 +  |r | 2

(Hinweis: Bestimmen Sie die Eigenwerte von  ρ(r).)

ÜA 4.4 [zu 4.4]

Die Observablen  A,  B  und  C  besitzen die Darstellung













3

0

1

1

0

 − 2 i

 A =

 , 

 B =

 , 

 C =

(4.69)

0

 − 1

1

 − 1

2 i

0

in der Rechenbasis. Messungen am Zustand mit dem Dichteoperator  ρ  führen auf die Erwar-

tungswerte

 

1

 A = 2  , 

 B =  , C = 0  . 

(4.70)

2

Bestimmen Sie den Dichteoperator  ρ. 
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5 Shannon-Entropie und klassische Information

Entropie ist ein Konzept, das im Rahmen der Thermodynamik entwickelt wurde. In der

klassischen statistischen Mechanik und in der Quantenstatistik wird es zur Beschreibung

statistischer Gemische herangezogen. Entropie dient dabei als Maß für Unordnung und für

die fehlende Information über einen Zustand. Ausgehend von dieser Interpretation wurde

Entropie zu einem Schlüsselkonzept der klassischen Informationstheorie ( Shannon-Entropie)

und der Quanteninformationstheorie ( von Neumann-Entropie). 

Die Quanteninformationstheorie beschreibt die Übertragung und Verarbeitung von Infor-

mation mit Hilfe von Quantensystemen als Informationsträger. Dabei spielt die von Neumann-

Entropie eine mehrfache Rolle:

(i) Sie erlaubt Aussagen über den klassischen Informationsgehalt – denn nur den können

wir „ablesen“ – der auf quantentheoretischen Trägern kodierten Information. 

(ii) Sie quantifiziert, welche quantentheoretischen Ressourcen mindestens benötigt werden, 

um eine vorgegebene Information zu speichern. 

(iii) Schließlich kommt noch eine Aufgabe hinzu, die kein klassisches Analogon hat: Mit Hil-

fe der von Neumann-Entropie lässt sich die Verschränktheit zusammengesetzter Systeme

quantifizieren. 

Zu diesen drei Aufgaben treten im Zusammenhang mit der Messtheorie, mit gestörten Quan-

tenkanälen usw. noch weitere Aufgaben hinzu. 

Wir beginnen mit dem ersten Punkt, der unmittelbar an die bisherigen Überlegungen

zum statischen Gemisch anschließt, und stellen als Vorbereitung zunächst die klassische

Shannon-Entropie vor. Anschließend werden wir den Informationstransport durch Quanten-

kanäle untersuchen, um der Quantenentropie eine operationale Veranschaulichung zu geben. 

Die Bedeutung des Entropie-Konzeptes für die Beschreibung verschränkter Systeme werden

wir im übernächsten Kapitel skizzieren. 

5.1

Definition und Eigenschaften

Problemstellung

In einem einführenden Kapitel wollen wir das Konzept der Shannon-

Entropie am Beispiel eines geschriebenen Textes (z. B. einer Zeitung) verdeutlichen, der eine

 Verschränkte Systeme: Die Quantenphysik auf neuen Wegen.  Jürgen Audretsch
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Abbildung 5.1: Eine Signalquelle mit Signalensemble  {xi, pi}  erzeugt eine Zeichenfolge. 

Information übermitteln soll. Der Text ist aus einer Reihe von  n  Buchstaben eines Alphabets

gebildet. 

Texte in einer Sprache sind für unsere Zwecke allerdings noch viel zu komplexe Gebilde. 

Sie bestehen z. B. aus deutschen Wörtern, d. h. es sind nicht alle Buchstabenkombinationen

zugelassen. Weiterhin sind Buchstaben in ihrer Abfolge nicht unabhängig voneinander, denn

es folgt im deutschen Text z. B. auf „sc“ mit hoher Wahrscheinlichkeit „h“. Von diesen Korre-

lationen zwischen Buchstaben wollen wir absehen und nur Texte betrachten, die von  Signal-

 quellen (signal source)  ohne Erinnerung  produziert werden, die einer Bedingung unterliegen:



Ein Buchstabe  x

 N

 i  soll mit der a-priori-Wahrscheinlichkeit  pi  mit

 i=1  pi = 1 erzeugt wer-

den.  N  ist die Zahl der verschiedenen Buchstaben. Sie hängt von der Sprache ab. In einem

deutschen Text kommt z. B. im Gegensatz zu einem englischen Text der Buchstabe y eher

selten vor. Eine solche  stochastische erinnerungslose Signalquelle  ist allein durch das  Signa-

 lensemble {xi, pi}  mit  i = 1 , . . . , N  charakterisiert. Es stellt eine Menge von unterscheid-

baren Alternativen  xi  zusammen mit ihren Wahrscheinlichkeiten  pi  dar. Man bezeichnet das

Signalensemble auch als  Zufallsvariable (random variable)  X. 

Man kann sich als operationale Realisierung vorstellen, dass  N  Druckmaschinen vorlie-

gen, die jeweils einen der Buchstaben  xi  drucken können. Mit Hilfe dieser Druckmaschinen

kann nun Alice als der Absender einen Text drucken. Diese  Botschaft (message) besteht aus

einer  Zeichenfolge (string) oder  Sequenz (sequence) aus  n  Buchstaben. Die Zahl der mögli-

chen Botschaften ist dann  N n. Die Maschinen sind dabei aber so eingestellt, dass sie eine

Nebenbedingung erfüllen. Wir betrachten sehr viele solcher Sequenzen, wie sie von der An-

lage gedruckt werden. Die relative Häufigkeit mit der der Buchstabe  xi  gedruckt wird, soll

dann  pi  sein. Im Spezialfall  p 1 = 1,  pi=1 = 0 gibt es z. B. immer nur eine einzige Sequenz:

 x 1 x 1 x 1  . . . x 1  . . . . Aber auch für  p 1  = 1 kann diese Sequenz vorkommen 1. Alle Maschinen zusammengefasst bilden eine große Druckanlage, die in unserer Veranschaulichung die

Signalquelle darstellt (siehe Abb. 5.1 und vergleiche mit Abb. 4.1)

Der spezielle von Alice gedruckte Text wird Buchstabe für Buchstabe störungsfrei mit Hil-

fe eines mit klassischer Physik beschreibbaren Trägers (z. B. auf Papier) an den Empfänger

Bob übermittelt. Bob weiß nicht welchen Buchstaben er als Nächsten empfangen wird, aber

1 Wir haben uns mit dem Bild von Druckmaschinen weitgehend von „Sprache“ gelöst, denn  yy . . . y  wird ebenfalls

von einer Druckanlage gedruckt, deren  pi  mit den Buchstabenhäufigkeiten der deutschen Sprache übereinstimmen, 

allerdings geschieht das sehr selten. 
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er soll wissen, welche Druckanlage Alice verwendet.  Bob hat daher eine wichtige  Vorinfor-

mation : Er kennt das Signalensemble {xi, pi} und damit insbesondere die Wahrscheinlichkei-

 ten {pi}.  Dies ist sein Vorwissen (a-priori-Wissen). Wir suchen ein Maß für die verbliebene

a-priori-Ungewissheit von Bob. Dies Maß kann zugleich als ein Maß für die  Information (in-

formation) dienen, die diese  Ungewissheit (uncertainty) beseitigt. Wir werden sehen, dass die

Entropie ein solches Maß für die Information darstellt. Das wird bereits bei der jetzt folgenden

heuristischen Einführung der Entropie deutlich. Eine genauere Quantifizierung und Operatio-

nalisierung diskutieren wir anschließend in Abschn. 5.2. 

Shannon-Entropie 2 Alice druckt eine Zeichensequenz aus  n  Zeichen. Es gibt  N n  solcher

Sequenzen. Wenn  n  eine sehr große Zahl ist, dann ist es wahrscheinlich, dass viele dieser

Sequenzen jeweils in sich bereits die relativen Häufigkeiten  pi  widerspiegeln, dass also mit der

Häufigkeit  ni =  npi  der Buchstabe  xi  in der langen Sequenz irgendwo auftaucht. Sequenzen

der Form  xixi . . . xi  sind nicht ausgeschlossen aber unwahrscheinlich, wenn die  pi  klein sind. 

Wenn  n  groß ist, darf Bob daher vermuten, dass er eine der Sequenzen erhalten hat, die die

 xi  mit den Häufigkeiten  ni  enthält. Wie viele verschiedene Sequenzen von diesem Typ gibt

es? Es gibt  n! Möglichkeiten  n  Buchstaben anzuordnen. Vertauschen derselben Buchstaben

untereinander führt auf keinen neuen Text. Für  xi  sind  ni! Vertauschungen möglich. Daher

handelt es sich um

 n! 

 Zn =

(5.1)

 n 1!  n 2!  . . . nN ! 



Sequenzen mit

 N

 i=1  ni =  n. 

Um zu den Wahrscheinlichkeiten  pi übergehen zu können, betrachten wir den Grenzfall

unendlich langer Texte ( n → ∞, ni → ∞). Dann ist  pi =  ni  und es ergibt sich mit der

 n

Stirlingschen Formel log( n!) =  n  log  n − n +  O(log  n) für den Logarithmus der Anzahl  Zn N



log  Zn

 → n  log  n − n −

( ni  log  ni − ni)

 i=1

 N



=

 −n

 pi  log  pi. 

(5.2)

 i=1

Wir verwenden 0 log 0 = 0. 

Wenn wir den Logarithmus der Anzahl  Zn  der Möglichkeiten durch  n  dividieren, ihn

also als Mittelwert auf die einzelne Buchstabenstelle beziehen, entsteht die  Shannon-Entropie

oder  klassische Entropie H(˜

 p)  der Wahrscheinlichkeitsverteilung ˜

 p ↔ {pi, i = 1 , . . . , N }, 

die folgendermaßen definiert ist:

 N

1



 H(˜

 p) := lim

log  Zn =  −

 pi  log  pi ≥  0 . 

(5.3)

 n→∞ n

 i=1

 Der Logarithmus wird dabei zur Basis 2 genommen.  Auch die Bezeichnung  H( X) statt  H(˜

 p)

ist gebräuchlich. Die Zahl  Zn  der möglichen Texte mit einer Anzahl  n  von Buchstaben ergibt

2 [Sha 48], [Sha 49]
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sich dann im Grenzfall als

 Zn = 2 nH(e

 p)  . 

(5.4)

Da viele (wenige) Möglichkeiten ein großes (kleines) Maß von a-priori-Ungewissheit von

Bob widerspiegelt, ist  H(

 p) von Gl. (5.3) ein Maß für die mittlere a-priori-Unbestimmtheit

eines Buchstabens, den Bob empfängt. Damit ist  H  zugleich die mittlere Information, die

Bob pro übermittelten Buchstaben erhält. Sie erlaubt es ihm unter den alternativ möglichen

Sequenzen die Übermittelte zu identifizieren.  H  ist dimensionslos. Der Wert von  H  gibt die

Information in der Einheit  Bit  an. Wir werden das in Abschn. 5.3 noch weiter präzisieren. 

 H(

 p) charakterisiert die Wahrscheinlichkeitsverteilung  {pi}  des Signalensembles. Ob das

Signal dabei aus Buchstaben oder anderen Zeichen besteht, ist unwesentlich. Die  xi  können

irgendwelche Alternativen sein, die mit den zugehörigen Wahrscheinlichkeiten  pi  vorliegen. 

Im Unterschied zu einer Signalübertragung mit Quantensystemen haben wir vorausgesetzt, 

dass die Zeichen (z. B. Buchstaben) klassische Zeichen sind. Sie können eindeutig vonein-

ander unterschieden werden und werden im Prozess des Auslesens nicht verändert. Kommt

 xi  bei Bob an, dann liest Bob auch  xi. Dabei spielt es keine Rolle, mit welchem klassischen

Träger (Papier, Töne usw.) die Information übermittelt wird. 

Eigenschaften

Wir wollen zunächst noch einige mathematische Eigenschaften der Entropie

beweisen.  Der Maximalwert von H(˜

 p)  ist  log  N ,  wenn  N  die Zahl der Zeichen im Signalen-

semble ist . Er wird für die Gleichverteilung p 1 =  p 2 =  . . . =  pn =  N − 1  angenommen. Zum





Beweis schreiben wir die Nebenbedingung

 p

 N − 1

 i

 i = 1 in der Form  pN = 1  −

 i=1

 pi  und

betrachten die anderen  pi= N  als unabhängige Variablen. Die Ableitung von

 N − 1



 H(˜

 p) =  −

 pi  log  pi − pN  log  pN

(5.5)

 i=1

verschwindet dann wegen

 ∂H/∂pl =  −  log  pl + log  pN

(5.6)

für  pl =  pN = 1 mit

 N

 H max(˜

 p) =  H( pi =  N − 1) = log  N. 

(5.7)

Ein weiteres Extremum, beispielsweise am Rand, gibt es nicht. Wir notieren noch den  Mini-

 malwert von H(˜

 p) :

 H min(˜

 p) = 0

 ⇔ pl = 1 , pi= l = 0

(5.8)

 Er liegt vor, wenn die Sprache nur einen einzigen Buchstaben besitzt. 

Insgesamt gilt also

0  ≤ H ≤  log  N

(5.9)

und bei  binärer Kodierung (binary coding) ( N = 2):

0  ≤ H ≤  1  . 

(5.10)

 H(

 p) ist in diesem Fall ( p 1 =  p, p 2 = 1  − p) eine Funktion von  p  mit 0  ≤ p ≤  1. 

 H( p) =  −p  log  p − (1  − p) log(1  − p)

(5.11)

die in Abb. 5.2 dargestellt ist. Ein klassisches System mit zwei Zuständen hat eine maximale

Informationskapazität von  H( p = 12 ) = 1 Bit. 
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Abbildung 5.2: Shannon-Entropie  H( p) bei binärer Kodierung mit den Wahrscheinlichkeiten  p 1 =  p und  p 2 = 1  − p. 

5.2

Shannons Theorem

5.2.1

Typische Sequenzen

Wir wollen zeigen, dass die Entropie  H(

 p) ein gutes Maß für den Informationsgehalt pro

Buchstabe darstellt, wenn ein langer Text ( n → ∞) aus einer Quelle mit Signalensemble

 {xi, pi}  kommt. Wie kann man Information operational genauer fassen? Nehmen wir an, Ali-

ce hat einen Text, den wir den  Ausgangstext  nennen wollen, und sie möchte ihn Bob mitteilen. 

Alice verwendet dabei nicht das Signalensemble selber, sondern das einfachste nicht-triviale

Alphabet. Es besteht aus zwei Zeichen (z. B. aus den  Binärzahlen (binary digits) 0 und 1), die

mit gleicher Wahrscheinlichkeit auftreten sollen. Der neue Text ist dann eine  Bit-Sequenz (bit

sequence, binary string). Die Übertragung an Bob soll wieder störungsfrei sein. Immer wenn

eines dieser Symbole von Bob empfangen wird, wollen wir sagen, dass er die Information 1

 Bit  erhalten hat. Die Antwort auf eine Ja-Nein-Frage („Liegt die Zahl 0 vor?“) enthält die In-

formation 1 Bit. Wir bestimmen den Informationsgehalt des Ausgangstextes indem wir zählen

wie viele Bits Alice bei geschicktestem Vorgehen senden muss, damit Bob erfährt, welcher

aus der Menge der Texte der Länge  n  der Ausgangstext war. Da wir nur sehr lange Texte be-

trachten, reicht es, die mittlere Zahl notwendiger Bits pro Buchstabe des Ausgangsalphabets

zu bestimmen. Wir werden zeigen, dass sie gleich der Shannon-Entropie  H(

 p) ist. Die Infor-

mation im Ausgangstext ist dann  nH(

 p) bits. Zur Analyse des Vorgehens von Alice gehen wir

vom Gesetz der großen Zahlen aus. 

Grenzwertsatz

Wir betrachten eine stochastische erinnerungslose Quelle, die keine Buch-

staben, sondern reelle Zahlen  yi , i = 1  . . . N  mit den Wahrscheinlichkeiten  pi  erzeugt. Eine

Sequenz von  n  dieser Zahlen ist z. B. 

 y 4 y 1 y 17 y 4  . . . y 1  . 

(5.12)
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Wir nummerieren die Zahlen durch. Die reelle Zahl an der Stelle  l  nennen wir  wl  mit

 l = 1 , . . . , n. In (5.12) ist z. B.  w 2 =  y 1. Die Sequenz in (5.12) können wir dann auch in der durchnummerierten Form

 w 1 w 2 w 3  . . . wn

(5.13)

schreiben. 

Wir wollen sehr lange Sequenzen betrachten. Dann gilt das  Gesetz der großen Zahlen (law

of large numbers). Es besagt, dass das arithmetische Mittel der Zahlen in der Sequenz gegen

den mit den Wahrscheinlichkeiten  pi  gebildeten Erwartungswert geht:

 n

 N

1 



lim

 wl =

 piyi =:  y . 

(5.14)

 n→∞ n l=1

 i=1

Man kann den Grenzprozess noch etwas genauer formulieren: Zu gegebenem beliebig kleinen

  >  0 und  δ >  0 gibt es bei endlicher Varianz der  yi  eine große Sequenzlänge  n, so dass die





Wahrscheinlichkeit dafür, dass eine Sequenz mit 
 1

 w

 < δ  erzeugt wird größer als

 n

 l

 l − y

1  −   ist. 

Typische Sequenzen

Wir gehen zu unseren Buchstaben bzw. Zeichen  xi  aus dem Signalen-

semble  {xi, pi} über. Eine spezielle Sequenz der Länge  n  ist z. B. 

 x 4 x 1 x 17 x 4  . . . x 1  . 

(5.15)

Die Gesamtwahrscheinlichkeit  P ( x 4  . . . x 1) für das Auftreten dieser Sequenz ist das Produkt

 P ( x 4  . . . x 1) =  p 4  · p 1  · p 17  · p 4  . . . p 1  . 

(5.16)

Wir bilden den negativen Logarithmus und dividieren durch  n. 

 −  1

1

log  P ( x 4 , x 1 , . . . , x 1) =

 {−  log  p 4  −  log  p 1  . . . −  log  p 1 } . 

(5.17)

 n

 n

Diese Summe hat die Struktur eines Mittelwertes. Die Summanden in der Klammer bilden

eine Sequenz reeller Zahlen. Sie entspricht der Sequenz (5.12) mit  y 4 =  −  log  p 4 usw. Im

Anschluss an Gl. (5.13) können wir schreiben:  w 1 =  −  log  p 4 , . . . , wn =  −  log  p 1. Die Wahrscheinlichkeit für das Auftreten von  −  log  pi  auf der rechten Seite von Gl. (5.17) ist gleich der

des Auftretens von  xi  in der Sequenz (5.15) und damit gleich  pi. Mit Gl. (5.14) lässt sich das

arithmetische Mittel wieder als Erwartungswert schreiben. Die Gl. (5.17) zusammen mit der

Definition (5.3) führt dann auf:





 N



lim

 −  1 log  P =  −

 pi  log  pi =:  −  log 

 p =:  H(

 p)  . 

(5.18)

 n→∞

 n

 i=1

Wieder wollen wir dieses Ergebnis durch Einführen von infinitesimalen Größen    und  δ

präzisieren. Höhere Potenzen von    und  δ  lassen wir weg. Die Wahrscheinlichkeit dafür, dass

eine Sequenz mit  P ( . . . ) auftritt, die auf einen Wert von  −  1 log  P  aus dem Intervall

 n

 H − δ < −  1 log  P < H +  δ

(5.19)

 n
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führt, ist größer als 1  − . Es wird daher mit an Sicherheit grenzender Wahrscheinlichkeit eine

Sequenz erzeugt, deren Gesamtwahrscheinlichkeit  P  von Gl. (5.16) die Bedingung (5.19)

erfüllt. Oder wie oben formuliert: Zu vorgegebenem    und  δ  gibt es eine Sequenzlänge  n, 

sodass (5.19) mit der Wahrscheinlichkeit 1  −   erfüllt ist. Mit immer kleineren    und  δ  wird  n immer größer. Wir formen Gl. (5.19) um:

2 −n( H+ δ)  ≤ P ≤  2 −n( H−δ)  . 

(5.20)

Gleichung (5.20) besagt, dass fast ausschließlich (nämlich mit Wahrscheinlichkeit 1  − )

Sequenzen auftreten, deren gemäß Gl. (5.16) gebildete Wahrscheinlichkeiten  P übereinstim-

mend alle gleich 2 −nH  sind. Diese Sequenzen werden  typische Sequenzen(typical sequences)

genannt.  Für hinreichend große n zerfällt die Menge der Sequenzen der Länge n in zwei

 disjunkte Mengen: in die gleichwahrscheinlichen typischen Sequenzen und den Rest der

 untypischen Sequenzen. 

Wie groß ist die Anzahl  Z( n, , δ) dieser typischen Sequenzen? Die Summe der Wahr-

scheinlichkeiten aller typischen Sequenzen muss zwischen 1  −   und 1 liegen:

1  −  ≤ Z( n, , δ) P ≤  1

(5.21)

Wir dividieren durch  P  und beachten, dass  P  selber aus dem Intervall von Gl. (5.20) stammt. 

 Dann folgt für die Anzahl typischer Sequenzen

(1  − )2 n( H−δ)  ≤ Z( n, , δ)  ≤  2 n( H+ δ)

(5.22)

 Dies präzisiert Gl. (5.4). 

5.2.2

Klassische Datenkompression

Kodierung langer Blöcke und Datenkompression

Die Ungleichungen (5.20) und (5.22)

haben eine unmittelbare praktische Bedeutung. Mit wachsender Buchstabenzahl  n  der Bot-

schaft tauchen untypische Sequenzen so gut wie nicht mehr auf. Die Anzahl  Z( n, , δ) der

typischen Sequenzen geht gegen 2 nH

 n 1

 Z( n, , δ)  −−−→  2 nH . 

(5.23)

Weiterhin treten alle typischen Sequenzen mit der gleichen Wahrscheinlichkeit  P = 2 −nH  auf

(Gleichverteilung). Wir nummerieren die 2 nH  verschiedenen typischen Sequenzen mit Zahlen

in binärer Schreibweise durch. Wir kodieren somit ganze Sequenzen ( Block-Kodieren, block

coding) und betrachten nicht mehr individuelle Signale. Dann benötigen wir dazu Zahlen mit

 nH  Stellen ( H = 0 vorausgesetzt). 

Die Zahl der insgesamt möglichen Sequenzen ist demgegenüber  N n = 2 n  log  N . Wenn wir

sie in binärer Schreibweise durchnummerieren, brauchen wir Zahlen mit  n  log  N  Stellen. Für

eine Charakterisierung einer speziellen typischen Sequenz der Länge  n  reicht somit im Fall

 H =  H max = log  N  ein binärer Text der kleineren Länge  nH (vergl. Gl. (5.9)). Eine kürzere

Kodierung mit weniger Bits ist allerdings nicht möglich, da alle typischen Sequenzen be-

reits gleichwahrscheinlich sind. Durch Umkodieren kann nichts gewonnen werden. Der Text



90

 5

 Shannon-Entropie und klassische Information

wird dem Empfänger übermittelt. Wenn die Durchnummerierung dem Empfänger bekannt

ist, kann er die spezielle typische Sequenz eindeutig rekonstruieren.  Durch die Beschränkung

 auf die typischen Sequenzen – nur diese treten für große n als Botschaften auf – und binäres

 Durchnummerieren hat eine  Datenkompression  (data compression) stattgefunden. Eine dar-

 über hinaus gehende Kompression ist nicht möglich.  Im Hinblick auf eine analoge Aussage

über Quantensysteme als Informationsträger notieren wir noch:  Die Shannon-Entropie gibt

 die Anzahl der klassischen binären Informationsträger an, die mindestens nötig ist, um die

 Information in einer Botschaft zu übermitteln. Klassische binäre Informationsträger können

 z. B. Zettel sein, die entweder mit  0  oder mit  1  bedruckt sind, oder Töne, die nur in zwei

 Frequenzen ausgesendet werden. 

Shannons Theorem

Wir formulieren das Ergebnis (5.22) noch einmal in einer anderen Wei-

se und gehen dabei auch auf die Fehlerwahrscheinlichkeit ein. Die rechte Ungleichung (5.22)

besagt, dass wir jede typische Sequenz eineindeutig in eine Sequenz von  n( H +  δ) binären

Zahlenstellen abbilden können. Die verbliebenen wenig wahrscheinlichen untypischen Se-

quenzen bildet Alice „fehlerhaft“ alle auf eine einzige binäre Sequenz ab (z. B. 000. . . 00). 

Dann ist es bei diesem Verfahren möglich, dass zwei ursprüngliche Botschaften durch die-

selbe binäre Sequenz kodiert sind und es kann ein  Fehler  bei der Dekodierung auftreten. Wir

schreiben die Fehlerwahrscheinlichkeit in der Form 1  − F .  F  wird die  Treue (fidelity) des

 Kodierung-Dekodierung-Schemas  genannt.  Shannons Theorem 3 der fehlerfreien Kodierung

(Shannons noiseless coding theorem) fasst die obigen Überlegungen in folgender Form zu-

sammen:  Wenn  n( H +  δ)  Bits für die Kodierung von Botschaften der (großen) Länge n zur

 Verfügung stehen, dann können die Botschaften mit einer Fehlerwahrscheinlichkeit  1  − F < ε

 in den entsprechenden binären Sequenzen kodiert werden (Zu gegebenem  und δ gibt es ein n

 sodass dieser Satz gilt). Stehen nur H − δ Bits zur Verfügung, dann ist die Fehlerwahrschein-

 lichkeit größer als  1  − . 

5.3

Information

Wir kommen auf unser am Anfang von Abschn. 5.1 formuliertes Ausgangsproblem zurück. 

Alice hat einen ihr bekannten Text mit  n  Buchstaben bzw. Zeichen aus einer erinnerungslo-

sen Quelle mit Signalensemble  {xi, pi}  vorliegen. Die zugeordnete Entropie ist  H(

 p). Alice

hat mit Bob, der das Signalensemble kennt, vorher vereinbart, wie die typischen Sequenzen

digital mit Zahlen der Länge  nH(

 p) durchnummeriert werden. Wie wir in Abschn. 5.2.2 ge-

zeigt haben, muss Bob an Alice dann  nH(

 p) Ja-Nein-Fragen stellen, um zu erfahren welches

die Nummer des Ausgangstextes und damit welcher Text der Ausgangstext selber ist. Damit

ergibt sich eine  operationale Interpretation der Entropie: Die Shannon-Entropie H(

 p)  ist die

 mittlere Zahl der benötigten Ja-Nein-Fragen pro Buchstabe des Ausgangstextes. Je kleiner die

Shannon-Entropie  H(

 p) ist, desto weniger Fragen muss Bob stellen. Es ist also sinnvoll  H(

 p)

als den  Informationsgehalt pro Buchstabe des Ausgangstextes  zu bezeichnen. Hat das Signa-

lensemble  {xi, pi}  mit  i = 1 , . . . , N  z. B. nur einen einzigen Buchstaben ( N = 1), dann kennt Bob den Text bereits. Er muss gar keine Fragen mehr stellen. Dem entspricht  H(

 p) = 0 (vgl. 

3 [Sha 48], [Sha 49]
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Gl. (5.7)). Wie Gl. (5.8) zeigt, muss Bob die meisten Fragen pro Buchstabe stellen – nämlich

log  N – wenn die Wahrscheinlichkeiten  pi  gleich verteilt sind:  p 1 =  p 2 =  . . . =  pN =  N − 1. 

5.4

Klassische relative Entropie

Gibbs-Ungleichung

Es ist für viele Beweise nützlich für zwei Wahrscheinlichkeitsvertei-

lungen  {pi}  und  {qi}  zum selben Alphabet  {xi}  als Hilfsmittel die  klassische relative Entro-

 pie H(˜

 p	˜

 q) von  {pi}  relativ zu  {qi}  einzuführen und ihre Eigenschaften auszunutzen. 

 N



 N

 p



 i

 H(˜

 p	˜

 q) :=

 pi  log

=  −H(˜

 p)  −

 pi  log  qi . 

(5.24)

 qi

 i=1

 i=1

Mit Hilfe der die Logarithmen verknüpfenden fundamentalen Ungleichung für alle positiven  x

log  x  ln 2 = ln  x ≤ x −  1

(5.25)

können wir  H(˜

 p	˜

 q) abschätzen

 N



 qi

 H(˜

 p	˜

 q)

=

 −

 pi  log  pi

 i=1

 N



 ≥

1

 pi(1  − qi )

ln 2

 pi

 i=1

 N

1 

=

( pi − qi) = 0 . 

(5.26)

ln 2  i=1

Diese Ungleichung wird  Gibbs-Ungleichung  genannt.  Die relative Entropie H(˜

 p	˜

 q)  ist nicht

 negativ. Sie ist gleich Null genau dann wenn pi =  qi für alle i gilt (identische Verteilungen). 

Konkavität

Dass die Shannon-Entropie eine konkave Funktion ist, ist eine direkte Kon-

sequenz der Gibbs-Ungleichung. Wenn ˜

 p 1 und ˜

 p 2 zwei Wahrscheinlichkeitsverteilungen mit

Wahrscheinlichkeiten  {p 1 i}  und  {p 2 i}  sind, dann gilt für die Verteilung ˜

 p =  λ˜

 p 1 + (1  − λ)˜

 p 2

mit Wahrscheinlichkeiten  {pi =  λp 1 i + (1  − λ) p 2 i}  und 0  < λ <  1

 H( λ˜

 p 1 + (1  − λ)˜

 p 2)  ≥ λH(˜

 p 1) + (1  − λ) H(˜

 p 2)  . 

(5.27)

Die Gleichheit gilt genau dann, wenn die Verteilungen ˜

 p 1 und ˜

 p 2 identisch sind.  Das heißt, 

 wenn man über zwei Wahrscheinlichkeitsverteilungen mittelt, dann erhöht sich die Entropie. 

Der Beweis folgt aus der Gibbs-Ungleichung (5.26) durch Ausschreiben der Terme mit Hilfe

von Gl. (5.24):

0  ≤ λH(˜

 p 1 ||˜

 p) + (1  − λ) H(˜

 p 2 ||˜

 p) =  H(˜

 p)  − λH(˜

 p 1)  − (1  − λ) H(˜

 p 2)  . 

(5.28)
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5.5

Wechselseitige Information als Maß für die

Korreliertheit zweier Botschaften

Wir nehmen an, dass zwei Signalensemble  X ↔ {xi, pi}  und  Y ↔ {yj, pj}  vorliegen, 

deren Signale nicht unabhängig voneinander auftreten. Es sollen Korrelationen vorliegen. Wir

wollen ein Maß für die Korreliertheit von Botschaften der beiden Signalensemble gewinnen. 

Zur Vereinfachung schreiben wir für die Ensemble  X ↔ {x, p( x) }  und  Y ↔ {y, p( y) }  sowie





=

usw. Wir haben dann z. B.  H(˜

 p( x)) =  H( X). 

 i

 y

 p( y|x) ist die bedingte Wahrscheinlichkeit für das Auftreten von  y, wenn  x  bereits aufge-

treten ist. Wie wir in Abschn. 1.3 diskutiert haben gilt

 p( y|x) p( x) =  p( y, x) =  p( x, y)  . 

(5.29)

 p( x, y) ist dabei die Wahrscheinlichkeit dafür, dass  X  und  Y  gemeinsam auftreten (joint probability). Die  mittlere Ungewissheit über das Auftreten eines Paares (joint entropy) bei be-

kanntem Signalensemble  {( x, y) , p( x, y) }  der Paare ist



 H( X, Y ) :=  −

 p( x, y) log  p( x, y) =  H( Y, X)  . 

(5.30)

 x,y

 H( X)

 H( Y )

 H( X|Y )

 I( X :  Y )

 H( Y |X)

 H( X, Y )

Abbildung 5.3: Mengentheoretische Veranschaulichung der verschiedenen Entropiearten. 

5.5.1

Wechselseitige Information

Als  wechselseitige Information (mutual information) führen wir die Größe

 I( X :  Y ) :=  H( X) +  H( Y )  − H( X, Y ) =  I( Y :  X) (5.31)



ein mit den Entropien  H( X) :=  −

 p( x) log  p( x) und  H( Y ) der einzelnen Ensembles

 x

(vgl. Abb. 5.3). Wenn wir Gl. (5.31) nach  H( X, Y ) auflösen

 H( X, Y ) =  H( X) +  H( Y )  − I( X :  Y )

(5.32)

sehen wir,  dass I( X :  Y )  angibt, um wie viel die Unbestimmtheit der Paare kleiner ist als

 die Summe der Unbestimmtheiten der beiden Ensembles. Dies ist ein sinnvolles Maß für die

 Korreliertheit der beiden Ensembles. 
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Wir geben ein Beispiel an. Alice besitzt nur Socken in grüner und blauer Farbe. Sie zieht

aber immer Socken gleicher Farbe an. Bob weiß das und weiß noch darüber hinaus, dass Alice

mit der Wahrscheinlichkeit  p( g) = 14 grüne und mit der Wahrscheinlichkeit  p( b) = 34 blaue

Socken trägt. Die Ensemble  X ↔ L  und  Y ↔ R  beziehen sich auf den linken bzw. rechten

Socken. Dann haben wir  p( g, g) = 14 ,  p( b, b) = 34 ,  p( g, b) = 0,  p( b, g) = 0 und damit H( L, R) =  H( L) =  H( R) =  − 0 ,  25 log(0 ,  25)  −  0 ,  75 log(0 ,  75) = 0 ,  81  . 

(5.33)

Bevor Bob z. B. auf den linken Socken schaut, ist seine Ungewissheit über die Farbe der

rechten Socke gleich  H( R). Schaut er aber auf den linken Socken, dann ist diese Ungewissheit

völlig beseitigt. Bob hat die Information

 I( L :  R) =  H( R)

(5.34)

erhalten. Das wird gerade durch die Relation (5.31) zusammen mit Gl. (5.33) wiedergegeben. 

 I( L :  R) wird am größten, nämlich  I( L :  R) = 1, für  p( g) =  p( b) = 12 . Die wechselseitige Information hängt wie alle Informationen vom Vorwissen ab. Wenn man sie als ein Maß für

die Korreliertheit der beiden Signalensemble auffasst, sollte man das im Blick behalten. 

Es ist instruktiv, sich die Interpretation von  I( X :  Y ) noch einmal auf andere Weise zu

verdeutlichen. 

5.5.2

Bedingte Entropie



Wir können die Entropie  H( X) =  −

 p( x) log  p( x) auch folgendermaßen interpretieren:

 x

 −  log  p( x) ist die Ungewissheit für das Auftreten des Signals  x. Gewichtung mit der Wahr-

scheinlichkeit  p( x) für das Auftreten und Summation über alle  x  führt zu  H( X) als mittlere Ungewissheit pro Signal. Mit der Wahrscheinlichkeit  p( x, y), dass sowohl  x  als auch  y  eintritt und der Ungewissheit  −  log  p( x|y) des Auftretens von  x, wenn  y  schon aufgetreten ist, bilden wir analog



 H( X|Y ) :=  −

 p( x, y) log  p( x|y)  ≥  0  . 

(5.35)

 x,y

Diese Größe ist, anders als bei  H( X, Y ) von Gl. (5.30) bezogen auf die bedingte Wahrschein-

lichkeit  p( x|y).  H( X|Y ) heißt  bedingte Entropie (conditional entropy).  H( X|Y )  beschreibt wie unsicher wir (im Mittel) noch über den Wert von x sind, wenn wir y bereits kennen. Es

 handelt sich also um eine  Restunsicherheit4

4Man kann die bedingte Entropie  H( X|Y ) auch noch etwas anders einführen. Die verbliebene Entropie der Va-

riablen  X, wenn das spezielle Signal  y  empfangen wurde, ergibt sich im Mittel über die bedingte Wahrscheinlichkeit p( x|y)

X

 H( X|y) =  −

 p( x|y) log  p( x|y)  . 

(5.36)

 x

Mittelung über  y  führt mit (5.29) auf die bedingte Entropie  H( X|Y )

X

X

X

 H( X|Y ) =  −

 p( y)

 p( x|y) log  p( x|y) =  −

 p( x, y) log  p( x|y)  . 

(5.37)

 y

 x

 x,y
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Wir formen  H( X, Y ) mit Gl. (5.29) um:



 H( X, Y )

=

 −

 p( x, y) log  p( x|y) p( y)

 x,y





=

 −

 p( x, y) log  p( y)  −

 p( x, y) log  p( x|y)

(5.38)

 x,y

 x,y



=

 −

 p( y) log  p( y) +  H( X|Y )  . 

 y

Damit ergibt sich

 H( X|Y ) =  H( X, Y )  − H( Y ) und  H( Y )  ≤ H( X, Y )  . 

(5.39)

Die Unsicherheit für Paare  H( X, Y ) verringert sich zur Restunsicherheit  H( X|Y ), wenn die

Information  H( Y ) über das  y-Signal vorliegt. Analoge Relationen gelten bei Vorliegen des

 x-Signals. In unserem Sockenbeispiel ist die Restunsicherheit gleich Null. Die Abb. 5.3 gibt

die Bezeichnungen der verschiedenen Entropiekonzepte in anschaulicher Weise geometrisch

wieder. 

Die Gleichungen (5.31) und (5.39) führen auf

 H( X|Y ) =  H( X)  − I( X :  Y )  . 

(5.40)

 Die Unsicherheit über x wenn y aufgetreten ist, verringert sich gegenüber der a-priori-

 Unsicherheit über das Auftreten von x, wenn Korrelationen zwischen den Ensembles X

 und Y vorliegen. Man kann I( X :  Y )  auch als die mittlere Information interpretieren, 

 die man über den Wert von X erhält, wenn der Wert von Y bekannt ist und umgekehrt

 (I( X :  Y ) =  I( Y :  X) ). Die wechselseitige Information I( X :  Y )  ist ein Maß für die Korreliertheit des Ensembles.  Wir werden auf Korrelationen in Kap. 9 im Zusammenhang mit

verschränkten Quantensystemen zurückkommen. 

Subadditivität

Abschließend erwähnen wir noch, dass man mit Hilfe der Konvexität der

Logarithmus-Funktion die Ungleichung

 H( X)  ≥ H( X|Y )  ≥  0

(5.41)

beweisen kann. Dann folgt mit Gl. (5.40), dass die wechselseitige Information nicht negativ

sein kann

 I( X :  Y )  ≥  0  . 

(5.42)

Eine Information über  Y  kann das Wissen über  X  nicht verringern und umgekehrt. Gleichheit

gilt genau dann, wenn  X  und  Y  unabhängig sind. Gl. (5.31) führt als unmittelbare Konsequenz

auf die  Subadditivität (subadditivity) der Entropie

 H( X, Y )  ≤ H( X) +  H( Y )  . 

(5.43)
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5.6

Ergänzende Themen und weiterführende Literatur

Siehe auch Abschn. 6.6. 

 • Übersichtsartikel: [Ved 02], [Ste 98], [Weh 78]. 

5.7

Übungsaufgaben

ÜA 5.1 [zu 5.2]

Notieren Sie die möglichen Botschaften der Länge  n = 4 aus den Binär-

zahlen 0 und 1 (d. h.  N = 2). Demonstrieren Sie wie bei Annäherung von  p 0 an 1 und  p 1 an 0

sich die Anzahl der typischen Sequenzen ändert. Wie verhält sich die Wahrscheinlichkeit der

typischen Sequenzen? Was passiert für wachsende Länge  n? 

ÜA 5.2 [zu 5.5.2]

Beweisen Sie die Subadditivität (5.43) mit Hilfe der Gibbs-

Ungleichung (5.26). 

ÜA 5.3 [zu 5.5.2]

Beweisen Sie die Ungleichungen

 H( X)  ≥ H( X|Y )  ≥  0  . 

(5.44)

ÜA 5.4 [zu 5.5.2]

Zeigen Sie, dass die wechselseitige Information  I( X :  Y ) genau dann

verschwindet, wenn  X  und  Y  unabhängig sind, d. h. wenn  p( x, y) =  p( x) p( y) gilt. 
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6 Von-Neumann-Entropie und

Quanteninformation

6.1

Quantenkanal und Quantenentropie

Quantenkanal

Wir betrachten die folgende physikalische Situation (vergl. Tab. 6.1):

Eine klassische Signalquelle erzeugt nacheinander die Buchstaben einer Zeichenfol-

ge. Wie wir gesehen haben, kann diese Signalquelle durch ein Ensemble  {xi, pi}  mit

 i = 1 , . . . , N  beschrieben werden. Die Botschaft soll durch einen  Quantenkanal übertragen

werden. Dabei übernehmen gleichartige Quantenobjekte (z. B. Atome derselben Sorte mit

Spin 12 oder Photonen) die Rolle der Träger eines quantentheoretischen Signalalphabets. Dazu

wird zu jedem Buchstaben  xi  ein Präparationsgerät mit der Nummer  i  tätig, das ein einzel-

nes Exemplar des Quantensystems im  Signalzustand |ψi (signal state) erzeugt und abschickt

(vergl. Abb. 4.1 mit Abb. 5.1). Der Zusammenhang zwischen Buchstabe  xi  und Zustand  |ψi

soll eindeutig sein. Die Gesamtanlage heißt  Quantensignalquelle (quantum signal source). 

Durch Präparation wird so die klassische Information in reinen Quantenzuständen kodiert. An

dieser ersten Schnittstelle wird ein statistisches Gemisch aus Signalzuständen mit Dichteope-

rator

 N



 ρ =

 pi|ψiψi|

(6.1)

 i=1

auf einem Hilbert-Raum  Hd  der Dimension  d  erzeugt. Der Dichteoperator  ρ (auch Zu-

stand  ρ  genannt) bezeichnet wieder ein Präparationsverfahren. Das zugehörige Ensemble ist

das  Quantensignalensemble {|ψi, pi}. Wichtig ist, dass wir i.a. nicht verlangen, dass die nor-

mierten Zustandsvektoren  |ψi  orthogonal sind. Weiterhin muss die Dimension  d  nicht mit

 N übereinstimmen,  N  kann z. B. größer sein. Der übertragende Quantenkanal soll störungs-

frei und nach außen abgeschlossen sein. Das Quantensignalensemble soll also der Einfachheit

halber im Kanal unverändert bleiben. 

An einer zweiten Schnittstelle wird versucht durch projektive Messung die ursprüng-

lich von der Signalquelle ausgesandte Information wieder auszulesen. Dazu wird am

Gemisch  ρ  eine Detektorobservable  D  gemessen. Die orthonormalen Eigenzustände

 {|dm, m = 1 , . . . , d}  der Observablen  D

 D| d m =  dm|dm

(6.2)

bilden eine ONB von  Hd. Die zugehörigen Eigenwerte  dm  sollen nicht entartet sein. Damit

ist die Zuordnung zwischen Messwert  dm  und Zustand  |dm  nach der Messung eineindeutig. 
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Tabelle 6.1: Klassische Information wird in Quanteninformation kodiert. Durch Messung entsteht wie-

der klassische Information. 

Entropie:
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Die Wahrscheinlichkeit, mit der der Messwert  dm  bei einer Messung an  ρ  auftritt, nennen

wir  p( dm). Die Signalübertragung durch einen Quantenkanal spiegelt das Grundschema der

Quantentheorie wieder: Am Anfang steht eine Zustandspräparation und am Ende eine Mes-

sung. Eingegeben wird eine Sequenz klassischer Signale mit einer Shannon-Entropie  H(

 p)

und ausgelesen wird eine Sequenz von Messwerten mit Shannon-Entropie  H(˜

 p( d)). 

Zur Vervollständigung der Beschreibung notieren wir noch die spektrale Zerlegung des

Dichteoperators  ρ:

 d



 ρ =

 λm|mm| , 

 m|m =  δmm

(6.3)

 m=1

mit den Eigenvektoren  |m  und den Eigenwerten  λm. Auch die  {|m, m = 1 , . . . , d}  bilden

eine ONB von  Hd, die auch die  Eigenbasis  von  ρ  genannt wird. 

Von-Neumann-Entropie

Wir betrachten zunächst eine spezielle Situation, in der die ein-

gegebene klassische Information ohne Verlust wieder ausgelesen werden kann. Das Quan-

tensystem wird hierfür so gewählt, dass die Dimension  d  von  Hd  mit der Anzahl  N  der

Buchstaben im klassischen Signalensemble übereinstimmt. An der ersten Schnittstelle werden

durch geeignete Wahl des Präparationsverfahrens zu den Buchstaben  xi  in eineindeutiger Ab-

bildung speziell die orthonormalen Eigenzustände der Detektorobservablen  D  erzeugt (d. h. 

 |ψi =  |di). 

 N



 N



 ρ =

 pi| d i d i| =

 λi|ii| . 

(6.4)

 i

 i

Wir haben in diesem Fall also  pi =  λi  und  |di =  |i. Die Quantensignalquelle wird we-

gen der Unterscheidbarkeit der Signalzustände zu einer quasi-klassischen Quelle. Schließ-

lich wird an der zweiten Schnittstelle die Observable  D  gemessen. Am Eintreten des Mess-

werts  di  kann dann wegen der Unterscheidbarkeit eindeutig auf das ursprüngliche Vorliegen

des Signalbuchstabens  xi  geschlossen werden. Alle beteiligten Wahrscheinlichkeitsverteilun-

gen stimmen überein:  p( di) =  pi =  λi. Entsprechend erhalten wir für die Shannon-Entropie

des Signalensembles und des Messwertensembles  H(˜

 p) =  H(˜

 p( d)). 

Die in dieser speziellen quasi-klassischen Situation vorliegende eineindeutige Beziehung

zwischen den Ensembles  {xi, pi},  {|ψi, pi}  und  {di, p( di) }  und entsprechend die Übereinstimmung der drei Wahrscheinlichkeitsverteilungen legen es nahe, dem statistischen Gemisch

mit Dichteoperator  ρ  von Gl. (6.4) eine  Quantenentropie S(˜

 λ) mit dem Wert der Shannon-

Entropie zuzuordnen ( S(˜

 λ) =  H(˜

 p):

 d



 S(˜

 λ) =  −

 λi  log  λi ≥  0 . 

(6.5)

 i=1

Mit der Spektralzerlegung von  ρ  von Gl. (6.3) lässt  S(˜

 λ) sich als Funktion des Dichteopera-

tors  ρ  schreiben

 S( ρ) :=  S(˜

 λ) =  − tr[ ρ  log  ρ]  ≥  0  . 

(6.6)
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Die Quantenentropie  S( ρ) heißt auch die  von-Neumann-Entropie 1  des Gemisches mit Dich-

 teoperator ρ. Die Einheit dieser Entropie ist Quantenbit oder ein  Qubit. Wir werden diese

Bezeichnung im nächsten Kapitel begründen. 

Da  S( ρ) bei Vorgabe von  ρ  eindeutig bestimmt ist, kann man sich von dem oben beschrie-

benen speziellen Schema einer Informationsübertragung lösen und auch in physikalischen Si-

tuationen, in denen gar keine Signalübertragung oder -verarbeitung vorliegt, jedem Dichteope-

rator  ρ  und damit jedem Quantenzustand seine von-Neumann-Entropie  S( ρ) gemäß Gl. (6.6)

zuordnen.  S( ρ) charakterisiert einen Dichteoperator  ρ  unabhängig davon wie das zugehörige

Gemisch physikalisch präpariert wurde. Ein Zustand  ρ  mit spektraler Zerlegung (6.3) kann

hinsichtlich aller Wahrscheinlichkeitsaussagen nicht vom statistischen Gemisch der Zustände

der Eigenbasis mit Ensemble  {|m, λm}  unterschieden werden. Mit diesem statistischen Ge-

misch wird pro Signalzustand im Mittel die klassische Information  H(˜

 λ) =  S( ρ) übertragen. 

Wir werden  S( ρ) allgemein als Informationsgehalt eines Zustands  ρ  auffassen. 

Messung der von-Neumann-Entropie

Es reicht hierfür,  ρ  zu bestimmen und die Eigen-

werte abzulesen. Das wird besonders einfach wenn die Eigenzustände  {|m}  von  ρ  bekannt

sind. Messungen in der Eigenbasis von  ρ  sind besonders günstig. Sie führen auf die Wahr-

scheinlichkeiten

 p( dm) =  λm , 

(6.7)

mit denen sich die von-Neumann-Entropie von  ρ  bestimmen lässt:

 d



 S( ρ) =  −

 p( dm) log  p( dm) =  H(˜

 p( d))  . 

(6.8)

 m=1

6.2

Qubit als Einheit der Quanteninformation

Unter  Quanteninformation (quantum information) wollen wir die Information verstehen, die

durch den Zustand eines Quantensystems repräsentiert wird und mit Hilfe von Quantensyste-

men als Träger übermittelt wird. Dabei ist der Sender ein Präparationsgerät und der Empfänger

ein Messgerät. Dies sind die Schnittstellen für die Übergänge klassische  →  quantentheoreti-

sche bzw. quantentheoretische  →  klassische Information. Nur die klassische Information ist

eine Information, die wir direkt ablesen können. 

Wir nehmen an, dass eine klassische Sequenz aus  N  Buchstaben des Signalensembles

 {xi, pi}  mit Entropie  H(˜ p) in  N  Quantenzustände aus dem Quantensignalensemble  {|ψi, pi}

mit Entropie  S( ρ) =  H(˜

 p) umkodiert wird. Die Ensemblezustände  {|ψi}  sollen orthonor-

mal sein. Die Ursprungssequenz kann durch Messen in der ONB  {|ψi}  vollständig ausge-

lesen werden. Wie wir bereits gesehen haben, kann man die klassische Sequenz auch in  nH

Buchstaben eines binären Codes kodieren, die in einer Sequenz von  nH  quantentheoretischen

2-Niveau-Systemen (Qubit-Systemen) mit Zuständen  | 0   und  | 1  übermittelt und eindeutig

ausgelesen werden können. Die übertragene Information pro Buchstabe ist  H (gemessen in

1 [vNe 68]
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bits). Pro einzelnem übermittelten Signalzustand  |ψi  hätte man wegen  H(˜

 p) =  S( ρ) im Mit-

tel also auch eine Anzahl  S( ρ) von 2-Niveau-Systeme in wohlbestimmten Zuständen (z. B. 

 | 0   oder  | 1 ) übermitteln können. Die von-Neumann-Entropie  S( ρ) eines Ensembles orthonormaler Quantenzustände ist also gerade die mittlere Zahl von 2-Niveau-Systemen, die nötig

ist, um die Zustände des Ensembles zu kodieren. 

Die obige Aussage geht nicht über das Theorem von Shannon hinaus. Da die Zustände

 {|ψi}  orthogonal sind, hätte man nach Auslesen der Ursprungssequenz durch Messung an  ρ

die Information dem Empfänger auch klassisch übertragen können und der hätte mit dieser

Information die Sequenz der Quantenzustände präparieren können. Im allgemeinen Fall sind

die Signalzustände aber nicht orthogonal. Sie können durch Messung nicht eindeutig bestimmt

werden. Die Informationsübermittlung über einen klassischen Kanal führt nicht zum Ziel. Die

einfachste Lösung ist es in diesem Fall, die Signalzustände selber durch einen Quantenkanal

zu übertragen, der die Zustände der Quantensysteme nicht beeinflusst. Dabei würde allerdings

keine Datenkompression stattfinden. 

Es ist die Aufgabe, eine Sequenz von Quantenzuständen  |ψ 1 , . . . , |ψn  aus einem ge-

gebenen Signalensemble mit möglichst wenigen Quantensystemen zu übertragen. Man kann

zeigen [Sch 95], dass sich eine solche Sequenz  ohne Bezug auf klassische Information  in uni-

tärer Weise so komprimieren lässt, dass sie beim Empfänger mit asymptotisch perfekter Treue

(Übereinstimmung mit dem Ausgangszustand) mit Hilfe einer unitären Transformation wieder

zurückgewonnen werden kann. Hierzu werden Qubit-Systeme als quantentheoretische Trä-

gersysteme verwendet.  Die mittlere Zahl der benötigten Qubit-Systeme pro Signalzustand bei

 optimaler Kompression stimmt mit der von-Neumann-Entropie des durch den Dichteoperator

 beschriebenen Signalensembles {|ψi, pi} überein.  Dieses Theorem ist das quantentheoreti-

sche Analogon zum Shannon-Theorem. Es ist von Schumacher in präziserer Form mit Hilfe

von  Quantendatenkompression (quantum data compression) abgeleitet worden und heißt auch

 Schumachers quantum noiseless coding theorem. Wir können die Aussage an dieser Stelle

nicht beweisen, da im Beweis die Sequenz von Quantenzuständen als ein Produktzustand ei-

nes großen zusammengesetzten Systems aufgefasst wird. Solche Quantensysteme werden wir

erst im nächsten Kapitel kennenlernen. Wir verweisen für den nicht ganz einfachen Beweis2

auf die Literatur (vergl. Abschn. 6.6). Die Einheit der Quantenentropie  S( ρ) wird  Qubit  ge-

nannt. Ein Quantensystem mit zwei Niveaus (z. B.  | 0   und  | 1 ), durch das man gerade ein

Qubit an Information kodieren kann, wird selber auch als Qubit (oder Qubit-System) bezeich-

net. 

Wir wollen die klassische Übertragung von Quanteninformation mit der quantentheoreti-

schen vergleichen. Das Signalensemble möge aus den Zuständen

 |ψ 0  =  | 0  , |ψ 1  =  | 0 x

(6.9)

2Der Beweis ähnelt dem von Shannon in Abschn. 5.2, der auf der Idee der typischen Sequenzen beruht. Wenn wir

uns auf Qubit-Systeme beschränken, dann sind die Signalzustände  |ψi  Zustände in  H 2, die nicht notwendig orthogonal sein müssen. Wir fassen die  n  Systeme einer langen Sequenz zu einem zusammengesetzten System mit einem

Zustandsvektor im 2 n-dimensionalen Produktraum zusammen. Dann lädt sich Folgendes zeigen (vergl. Abschn. 6.6):

Wenn das Signalensemble  {|ψi, pi}  eine von-Neumann-Entropie  S( ρ)  <  1 hat, dann ist die (mit  n  anwachsende) Wahrscheinlichkeit groß, dass der Zustandsvektor in einem vom Ensemble abhängigen  typischen Unterraum (typical

subspace) des Produktraums liegt. Dessen Dimension ist 2 nS( ρ). Es reichen daher Produktzustände aus  nS( ρ) Qubit-Zuständen aus, um solche Zustandsvektoren darzustellen. Entsprechend werden nur  nS( ρ) Qubit-Systeme als Träger zur Übermittlung benötigt. Aus ihrem Gesamtzustand kann die Ausgangssequenz durch eine unitäre Transformation

rekonstruiert werden. Der Fehler nimmt dabei mit wachsendem  n  ab. 
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bestehen, die mit den Wahrscheinlichkeiten

1

 p 1 =  p 2 =

(6.10)

2

auftauchen. Bei klassischer Übermittlung der Information ist wegen  H( p 1 , p 2) = 1 Bit keine

Datenkompression möglich. Für eine Sequenz von  n  Quantenzuständen werden nach Umko-

dieren  n  klassische Träger für jeweils 1 Bit benötigt. Die von-Neumann-Entropie ergibt sich

über den Dichteoperator





3

1

4

4

 ρ =  p 0 |ψ 0 ψ 0 | +  p 1 |ψ 1 ψ 1 | = 

  . 

(6.11)

1

1

4

4

Die Matrix bezieht sich auf die Rechenbasis. Die Eigenwerte lassen sich bestimmen ( λ 0 =

cos2  π 8 = 0 ,  853,  λ 1 = sin2  π 8 = 0 ,  146) und führen mit Gleichung (6.5) auf  S( ρ) = 0 ,  601

Qubits (vergl. Abschn. 6.7). Zur Übermittlung einer Sequenz von Zuständen des Signalen-

sembles benötigen wir daher nur 0 ,  601 Qubit-Systeme pro Zustand.  Dies belegt, dass die

 Quantenkompression mit Quantenkodieren in Qubit-Systeme ein nützliches Hilfsmittel bei der

 Übertragung von Quanteninformation ist. Insbesondere erhält durch dieses Ergebnis die von-

 Neumann-Entropie eine operationale Interpretation, die keinen Bezug mehr auf die klassische

 Entropie enthält.  Das Qubit ist eine sinnvolle Einheit für Quanteninformation. Hervorzuheben

ist noch, dass das Kompressionsverfahren von Schumacher zu gegebenem Signalensemble

universell ist. Zu seiner Durchführung muss man den zu übermittelnden Zustand nicht ken-

nen. 

6.3

Eigenschaften

Mit Bezug auf Gl. (6.8) lässt sich in Analogie zur Shannon-Entropie direkt zeigen:

(i) Ein reiner Zustand  ρ =  |ψψ|  hat den Minimalwert der Entropie  S( ρ) = 0. 

(ii) Für einen Dichteoperator mit  d  nicht verschwindenden Eigenwerten findet man

0  ≤ S( ρ)  ≤  log  d. 

(6.12)

Das Gleichheitszeichen gilt, wenn alle nicht verschwindenden Eigenwerte übereinstim-

men. Der vollständig gemischte Zustand  ρ = 1

im Hilbert-Raum der Dimension  d  hat

 d 

die maximale von-Neumann-Entropie  S( ρ) = log  d. 

(iii) Als Folge der Konkavität der Shannon-Entropie gilt auch für die von Neumann-Entropie



für  pj >  0 mit

 p

 j

 j = 1 die Konkavitätsrelation

 S( p 1 ρ 1 +  . . . +  prρr)  ≥ p 1 S( ρ 1) +  . . . +  prS( ρr)  . 

(6.13)
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Zum Beweis geht man zur Spektralzerlegung der  ρj über. 

 p

 j

 j ρj  ist der Zustand eines

Quantensystems, das sich mit der Wahrscheinlichkeit  pj  im unbekannten Zustand  ρj  befin-

det. Das Ergebnis ist plausibel. Es sind mehrere Ensembles zusammengeführt worden bzw. 

die zugehörigen Ensemblezerlegungen sind gemischt worden. Unser Unwissen über dieses

Gemisch ist größer als das mittlere Unwissen über die Zustände  ρj. Die Information darüber, 

von welchem Gemisch ein Zustand kommt, ist verloren gegangen . Die Entropie ist größer, 

weil wir weniger über die Präparation wissen. Mit (i) folgt speziell

 S( ρ)  >  0  , 

(6.14)

wenn  ρ  kein reiner Zustand ist. 

Unitäre Dynamik

Allgemein gilt bei einer unitären Transformation des Dichteoperators

 S( U ρU †) =  S( ρ)  , 

(6.15)

da  S  nur von den Eigenwerten von  ρ  abhängt. Die Entropie ist also – unabhängig davon

welches Bild man für die unitäre dynamische Entwicklung wählt – immer zeitunabhängig:

d S = 0  . 

(6.16)

d t

Unsere Information über einen Zustand ändert sich während der unitären dynamischen Ent-

wicklung nicht. Das ist anders in der Messdynamik. 

Quantentheoretische relative Entropie und Kleinsche Ungleichung

Sie wird uns in erster

Linie als mathematische Hilfsgröße dienen. Wir betrachten zwei Dichteoperatoren  ρ  und  σ

und führen die  quantentheoretische relative Entropie S( ρ	σ) von  ρ  bezüglich  σ  ein:

 S( ρ 	 σ) := tr[ ρ  log  ρ]  −  tr[ ρ  log  σ]  . 

(6.17)

Wie im analogen klassischen Fall wollen wir eine Abschätzung ableiten. Die orthogonalen

Zerlegungen von  ρ  und  σ  seien durch Gl. (6.3) und

 d



 d



 ρ =

 λm|φmφm| , 

 σ =

 κm|ξmξm|

(6.18)

 m=1

 m=1

gegeben. Daraus folgt:





 S( ρ	σ) =

 λm  log  λm −

 φm|ρ  log  σ|φm . 

(6.19)

 m

 m

Mit  φm|ρ =  λmφm|  schreiben wir den zweiten Term um





 φm|  log  σ|φm =  φm|(

log  κm|ξmξm|) |φm =

 Pmm  log  κm . 

(6.20)

 m

 m

Hierbei haben wir

 Pmm :=  φm|ξmξm|φm

(6.21)
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mit den Eigenschaften  Pmm ≥  0 , 

 P

 m

 mm = 1 und

 m Pmm = 1 eingeführt. Wir

schreiben Gl. (6.19) weiter um. 





 S( ρ	σ) =

 λm(log  λm −

 Pmm  log  κm) . 

(6.22)

 m

 m



Der Logarithmus ist eine konkave Funktion, daher gilt

 m Pmm  log  κm ≤  log  µm  mit



 µm :=

 m Pmm κm . Mit Gl. (6.22) überträgt sich diese Ungleichung



 λm

 S( ρ	σ)  ≥

 λm  log

 . 

(6.23)

 µ

 m

 m

Die rechte Seite stimmt formal mit einer klassischen relativen Entropie überein. Das führt auf

die  Kleinsche Ungleichung:

 S( ρ	σ)  ≥  0 . 

(6.24)

 Die quantentheoretische relative Entropie ist nicht negativ. Sie verschwindet genau dann, 

 wenn ρ =  σ (übereinstimmende Zustände). Wie sein klassisches Gegenstück werden wir

diesen Satz in erster Linie als Hilfssatz verwenden. 

6.4

Die Schnittstellen von Präparation und Messung

In Kapitel 6.1 haben wir ideal angepasst präpariert und ideal angepasst ausgelesen. Abwei-

chungen hiervon führen zu Informationsverlust. Woran liegt das und wie kann man das quan-

titativ fassen? 

Bei Transport und Verarbeitung quantentheoretische kodierter Information wirken sich

drei charakteristische Züge der Quantentheorie besonders aus, die in der klassischen Phy-

sik nicht zu finden sind: Das ist einmal der Umstand, dass nicht-orthogonale reine Zustände

durch eine Messung nicht perfekt unterschieden werden können. Selbst orthogonale Zustän-

de können durch eine Messung nur dann unterschieden werden, wenn die Eigenzustände des

Observablenoperators mit ihnen übereinstimmen. Hinzu kommt als zweites, dass eine Quan-

tenmessung i.a. den Zustand abändert. Ein dritter Punkt ist die Mehrdeutigkeit der Ensem-

blezerlegung eines Dichteoperators. Das hat umgekehrt zur Folge, dass es viele klassische

Ensembles mit unterschiedlichen Shannon-Entropien gibt, die nach der Kodierung an der ers-

ten Schnittstelle auf den gleichen Dichteoperator führen und dann durch keine Messung mehr

unterscheidbar sind. Die von-Neumann-Entropie des Zustands  ρ  ist aber über seine orthogo-

nale Zerlegung bestimmt, die nur genau eins der klassischen Ensembles kodiert. Wir wollen

die Konsequenzen näher diskutieren und beginnen mit der Messung, also mit der zweiten

Schnittstelle von Tab. 6.1. 

6.4.1

Entropie der projektiven Messung

Die Zustände im Quantenkanal werden durch den Dichteoperator  ρ  mit der von Neumann-

Entropie  S( ρ) beschrieben. Die  nicht-selektive  Messung der Dekodierungsobservablen  D

führt auf eine Wahrscheinlichkeitsverteilung  {p( dm) }  der Messwerte  dm. Man kann die Mes-

sung als klassische stochastische Quelle mit dem Signalensemble  {dm, p( dm) }  auffassen. Das
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Signalensemble hat die Shannon-Entropie  H(˜

 p( dm)). Dabei ist  {p( dm) }  zugleich die Wahr-

scheinlichkeitsverteilung der Zustände  {|dm}, in die das System bei der nicht-selektiven

Messung überführt wird. Als Ergebnis liegt ein Dichteoperator  ρ  mit der orthogonalen Zerle-

gung

 d



 d



 ρ =

 p( dm) |dmdm| =

 PmρPm

(6.25)

 m=1

 m=1



vor. Für die Projektionsoperatoren gilt:  P  2 =  P

 P

 m

 m  und

 m

 m = 1.  Die Shannon-Entropie

 H(˜

 q)  der Messwerte und die von-Neumann-Entropie S( ρ)  des Gemisches der Quantenzu-

 stände nach der Messung stimmen überein:

 S( ρ) =  H(˜

 p( d))  . 

(6.26)

Die Kleinsche Ungleichung erlaubt es, die Quantenentropien  S( ρ) und  S( ρ) vor und nach

der nicht-selektiven Messung zu vergleichen. Wir gehen von

0  ≤ S( ρ	ρ) =  −S( ρ)  −  tr[ ρ  log  ρ]

(6.27)

aus und betrachten den zweiten Term genauer:





tr[ ρ  log  ρ] = tr[(

 Pm) ρ  log  ρ] = tr[

 Pmρ  log( ρ) Pm]  . 

(6.28)

 m

 m

Wir haben  P  2 =  P

 m

 m  verwendet. Gl. (6.25) zeigt, dass  Pmρ =  PmρPm =  ρPm  gilt. Daher

vertauscht  Pm  auch mit der Operatorfunktion log  ρ  und wir finden



tr[ ρ  log  ρ]

=

tr[

 PmρPm  log  ρ]

 m

=

tr[ ρ  log  ρ] =  −S( ρ)  . 

(6.29)

Damit haben wir nach Einsetzen in Gl. (6.27) und mit Gl. (6.26) insgesamt das Ergebnis

erhalten:

 S( ρ) =  H(˜

 p( d))  ≥ S( ρ)  . 

(6.30)

 Bei einer nicht-selektiven projektiven Messung stimmt die Quantenentropie des Zustandes ρ

 nach der Messung nur dann mit der von-Neumann-Entropie des Zustandes ρ vor der Messung

 überein, wenn die Messung in der Eigenbasis von ρ erfolgt, sonst ist sie größer.  Eine nicht-

selektive Messung überführt daher i.a. in ein neues Signalensemble mit größerer Entropie und

vernichtet auf diese Weise Information. Das gilt auch für eine selektive Messung. Man kann

sich das an einem sehr einfachen Beispiel veranschaulichen. Der reine Zustand

 |

1

 ψ =  √ ( | 0  +  | 1 )

(6.31)

2

hat verschwindende Entropie. Nicht-selektive Messung in der Eigenbasis überführt in den

total gemischten Zustand

1

 ρ =

(6.32)

2 

mit maximaler Entropie  S( ρ) = 1. 
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6.4.2

Entropie der Präparation

Bei der Quantenkodierung wird die klassische Signalquelle mit Ensemble  {xi, pi}  in das

Quantenensemble  {|ψi, pi}, beschrieben durch den Dichteoperator  ρ  von Gl. (6.1), um-

kodiert (vergl. Tab. 6.1). Wegen der fehlenden Eindeutigkeit der Ensemblezerlegung von  ρ

führen verschiedene klassische Ensemble mit vielen verschiedenen Entropiewerten  H  auf

Quantenensembles mit demselben Dichteoperator  ρ  und damit auf dieselbe von-Neumann-

Entropie  S( ρ). Der Maximalwert der Quantenentropie ist über Gl. (6.12) durch die Dimension

des Hilbert-Raums des Quantensystems gegeben, in dessen Zuständen kodiert wird. Der Ma-

ximalwert der  Präparationsentropie H(˜

 p) ist durch die Zahl  N  der Buchstaben im klassischen

Alphabet  xi  gegeben. Sie stimmt mit der Zahl der Zustandsvektoren  |ψi überein, die größer

als die Zahl der Basisvektoren von  Hd  sein kann, da die  |ψi  nicht orthogonal sein müssen. 

Wir werden eine Relation der Form

 H(˜

 p)  ≥ S( ρ)

(6.33)

erwarten. Sie lässt sich tatsächlich in einem längeren Beweis bestätigen (vergl. [Weh 78, 

S. 238] oder [CD 94, S. 527]). In Gl. (6.33) besteht Gleichheit genau dann, wenn die Zustände

 |ψi  wechselseitig orthogonal sind.  Wenn die Signalzustände nicht orthogonal sind, können

 sie nicht unterschieden werden. Es gibt keine Dekodierungsobservable mit deren Hilfe der

 volle Informationsgehalt der kodierten klassischen Botschaft wieder ausgelesen werden

 könnte.  Durch  ρ  wird weniger Information übermittelt als das ursprüngliche klassische Signal

enthält. Auch mit optimal angepasster anschließender Messung kann die Information nicht

zurückgewonnen werden. 

6.5

Quanteninformation

Wir fassen zusammen: In der klassischen Informationstheorie kann man davon absehen, wie

der Träger der Information physikalisch realisiert ist. Gedruckte Buchstaben können z. B. 

ohne Fehler in die Laute gesprochener Buchstaben konvertiert werden und umgekehrt. Wie

wir gesehen haben, kann Quanteninformation im Allgemeinen nicht verlustfrei in klassische

Information und zurück übertragen werden. Die Ursache liegt unter anderem in der nicht-

klassischen Struktur des Messprozesses.  Quanteninformation ist daher eine von der klassi-

 schen Information i.a. sehr verschiedene Art von Information, ähnlich wie ein Quantenzustand

 eine andere Art von Zustand ist als der Zustand eines klassischen Systems. 

Quanteninformation wird in Quantenzuständen gespeichert. Ihre Träger sind Quantensys-

teme. Ihre Übermittlung besteht darin, dass die Träger zwischen Präparations- und Messge-

rät propagieren. Die Verarbeitung von Quanteninformation besteht in der Manipulation von

Quantenzuständen. Unitäre Transformationen sind hierfür ein Beispiel. Den beiden Informa-

tionstypen sind verschiedene Informationseinheiten zugeordnet: Bit bzw. Qubit. Die Quanten-

informationstheorie gilt einheitlich für die unterschiedlichen Qubit-Systeme (Spin, Photonen-

polarisation usw.). 
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Wie wir in den nachfolgenden Kapiteln noch im Einzelnen darstellen werden, unterschei-

det sich die Speicherung und Verarbeitung von Quanteninformation wesentlich von der klas-

sischer Information: (i) Die Zustände eines Qubits sind nicht auf 0 und 1 beschränkt. Sie

werden durch die ganze Bloch-Kugel beschrieben. (ii) Der Zustand eines Quantensystems, 

das aus mehreren Qubit-Systemen zusammengesetzt ist, kann verschränkt sein. (iii) Klassisch

gibt es nur Sprünge zwischen 0 und 1. Unitäre Transformationen und andere Operationen sind

aber sehr viel allgemeiner und reichhaltiger. (iv) Allerdings kann man in einer Messung den

quantentheoretischen Endzustand nicht so auslesen wie den klassischen Zustand. 

6.6

Ergänzende Themen und weiterführende Literatur

Siehe auch Abschn. 5.6. 

 • Übersichtsartikel: [Weh 78], [CD 94], [CF 96], [Ste 98], [Joz 98], [Ved 02]. 

 •  Zum Konzept „Quanteninformation“: [Wer 01], [Wer 02]. 

 •  Zu Schumachers Theorem und zur Quantendatenkompression: [JS 94], [Sch 95], 

[Joz 98], [Ved 02], [Ben 95]. 

6.7

Übungsaufgaben

ÜA 6.1 [zu 6.1]

Bestimmen Sie mit Bezug auf ein Ergebnis in Kap. 3 die Entropie eines

Zustands  ρ  in  H 2 als Funktion des Bloch-Vektors. 

ÜA 6.2 [zu 6.2]

Bestimmen Sie den Bloch-Vektor r zum Dichteoperator  ρ  von Gl. (6.11). 

Die Eigenvektoren von  ρ  und  rσ  stimmen überein (warum?). Lesen Sie mit Bezug auf Ab-

schn. 3.2 an r σ die Darstellung der Eigenvektoren in der Rechenbasis ab und bestimmen Sie

die Eigenwerte  λ 0 und  λ 1. Berechnen Sie  S( ρ). 
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7 Zusammengesetzte Systeme

Wir gehen zu zusammengesetzen Systemen über und stellen zunächst wieder den mathemati-

schen Rahmen zur Verfügung. Dann werden die Postulate verallgemeinert und der Spezialfall

der Messungen an Teilsystemen ausführlich diskutiert. Die Konsequenzen von Verschränkung

werden verdeutlicht. Die unitäre Dynamik kann wieder mit Hilfe von Liouville-Operatoren

formuliert werden. Die Wirkung einfacher Quantengatter auf mehreren Qubit-Systemen wird

vorgestellt. 

7.1

Teilsysteme

Wir sind von der klassischen Physik her gewohnt, dass  zusammengesetzte Systeme (composite

systems, compound systems) in  Teilsysteme  oder Untersysteme (subsystems) zerlegt werden

können und dass umgekehrt Systeme zu Gesamtsystemen zusammengesetzt werden können. 

Das klassische Gesamtsystem ist dabei vollständig durch die Zustände der Teilsysteme und

ihre dynamischen Wechselwirkungen untereinander beschreibbar. Das Sonnensystem mit

Sonne, Planeten und Gravitationsfeld ist ein Beispiel. In der Quantenphysik zeigt sich, dass

zusammengesetzte Systeme darüber hinaus völlig andere und überraschende ganzheitliche

Eigenschaften aufweisen können. Sie treten auf, wenn sich zusammengesetzte Quantensys-

teme in  verschränkten Zuständen (entangled states) befinden. In diesen Fällen ist tatsächlich

„das Ganze mehr als die Summe seiner Teile“. Wir werden zur Darstellung der Einzelheiten

ähnlich wie in Abschn. 1.2 vorgehen und die Diskussion von Präparation und Messung an

den Anfang stellen. 

Was sind zusammengesetzte Systeme? Es gibt spezielle Quantensysteme, die eine innere

Struktur aufweisen. Man kann bei ihnen zwei oder mehrere Teilsysteme unterscheiden, auf

die man getrennt Zugriff hat. Damit ist gemeint, dass sich experimentell Teilsysteme finden

lassen, an denen man jeweils einzeln (und in diesem Sinne lokal) Eingriffe durchführen kann. 

Diese Operationen werden  lokale Operationen (local operations) genannt. Es können z. B. 

Messungen sein. 

Wir geben einige  2-Teile-Systeme (bi-partite-systems) an. Es können z. B. Quantensyste-

me präpariert werden, bei denen man an zwei verschiedenen Orten bei Messungen jeweils ein

Photon registriert. Analoge Systeme gibt es für Elektronen. Es gibt Systeme, bei denen an ei-

nem Ort ein Photon und an einem anderen Ort ein Atom registriert wird. Teilsysteme werden

allgemein als  lokal  bezeichnet, müssen aber tatsächlich nicht räumlich getrennt sein. Es kann
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sich beim zusammengesetzten System z. B. auch um die Bahn (äußerer Freiheitsgrad) und die

Polarisierung (innerer Freiheitsgrad) vom einzelnen Quantenobjekt handeln. Selbstverständ-

lich kann man auch zwei getrennte Systeme, die völlig unabhängig voneinander sind, formal

als ein Gesamtsystem auffassen. 

Wesentlich ist, dass man z. B. bei einem 2-Photonen-System nicht davon ausgeht, dass

die beteiligten Photonen unterscheidbar sind (was sie bekanntlich nicht sind). Unterscheidbar

sind z. B. die Orte, an denen bei einer Messung eine Photonenpolarisation gemessen wird. Von

Messungen wissen wir auch, dass immer zwei und nicht mehr Photonen zusammen präpariert

werden und daher das Gesamtsystem ein 2-Teile-System ist. Die entsprechenden Teilsysteme

 SA  und  SB  sind in diesem Fall den Orten  A  und  B  zugeordnet (Photon am Ort  A  bzw. am Ort  B). Allgemein sind Geräte klassische Objekte und haben daher Individualität . Demgegen-

über macht es wegen der Ununterscheidbarkeit der Photonen keinen Sinn zu fragen, welchem

der beiden Photonen bei einer Messung z. B. am Ort  A  gemessen wurde. 

Alice und Bob

Um besonders deutlich zu machen, dass an verschiedenen Teilsystemen  SA

und  SB  des zusammengesetzten Systems  SAB  gemessen oder manipuliert wird, werden häu-

fig die Experimentatoren  Alice  und  Bob  eingeführt, die am Teilsystem  SA  bzw.  SB (oft aber

nicht notwendig an verschiedenen Orten) lokale Operationen ausführen. Mit dem Bezug auf

Alice und Bob unterstreicht man auch nochmal, dass sehr viele quantentheoretische Aussagen

 operational (operational) oder  operativ (d. h. als Handlungsanweisungen) zu verstehen sind

z. B. von der Art: Wenn Alice am Teilsystem  SA  dieses ausführt, wird Bob am Teilsystem  SB

jenes messen. 

Existenz

Wir werden gemäß der Standardinterpretation aus Abschn. 1.2 wiederum anneh-

men, dass solche Teilsysteme keine gedanklichen Hilfskonstruktionen sind wie die Quan-

tensysteme in der Minimalinterpretation, sondern tatsächlich existieren. Damit ist allerdings

nicht gemeint, dass dem einzelnen Teilsystem ein vom Zustand der anderen Teilsysteme unab-

hängiger Zustand zugeschrieben werden kann. Bei verschränkten Gesamtsystemen liegt diese

Unabhängigkeit gerade nicht vor. Dies ist die Ursache für viele verblüffende quantenphysi-

kalische Effekte. Es ist darüber hinaus mit der Existenzaussage auch nicht unterstellt, dass

gleichartige Elementarteilchen derselben Sorte, wie z. B. zwei Photonen, Individualität besit-

zen und daher unterscheidbar sind. So weit geht die Annahme, dass die Photonen existieren, 

nicht. Die einzelne Zugriffsmöglichkeit und nicht die Individualität von Quantenobjekten de-

finiert das Teilsystem. 

7.2

Produktraum

Wir wollen zunächst den mathematischen Formalismus bereitstellen, mit dessen Hilfe die

Physik der zusammengesetzten Systeme formuliert werden kann. Wir benötigen hierzu den

 Produkt-Hilbert-Raum. 

 7.2
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7.2.1

Vektoren

Das  Tensorprodukt HAB  aus zwei Hilbert-Räumen  HA  und  HB, deren Dimensionen nicht

übereinstimmen müssen

 HAB =  HA ⊗ HB

(7.1)

ist wieder ein Hilbert-Raum. Wir nennen  HA  und  HB  die  Faktorräume. Zu jedem Paar von

Vektoren  |ϕA ∈ HA  und  |χB ∈ HB  gehört ein  Produktvektor (product vector) aus  HAB, 

der unterschiedlich geschrieben werden kann

 |ϕA ⊗ |χB =:  |ϕA|χB =:  |ϕA, χB =:  |ϕ, χ . 

(7.2)

Er ist bezüglich der Multiplikation mit komplexen Zahlen in jedem Argument linear. 

Mit  λ, µ ∈ 

 |ϕA ⊗ ( λ|χB 1  +  µ|χB 2 ) =  λ|ϕA ⊗ |χB 1  +  µ|ϕA ⊗ |χB 2  , (7.3)

( λ|ϕA

1   +  µ|ϕA

2  )  ⊗ |χB  =  λ|ϕA

1   ⊗ µ|χB  +  |ϕA

2   ⊗ |χB  . 

(7.4)

Verschränkte Vektoren

Wenn  {|nA}  eine Basis von  HA  und  {|iB}  eine Basis von  HB

ist, dann ist

 {|nA ⊗ |iB}

(7.5)

eine von  HAB. Für die Dimension von  HAB  gilt dim HAB = (dim HA) ·(dim HB). Jeder Vektor  |ψAB  aus  HAB  kann nach der Basis zerlegt werden



 |ψAB =

 αni|nA, iB . 

(7.6)

 n,i

Alle Definitionen und Aussagen lassen sich direkt auf das Produkt einer endlichen Zahl von

Hilbert-Räumen  HAB...M =  HA ⊗HB ⊗ · · · ⊗ HM übertragen. Vektoren aus  HAB, die keine

Produktvektoren sind, werden  verschränkt (entangled) genannt. Durch sie werden wir ver-

schränkte reine Zustände repräsentieren, die im Folgenden eine wichtige Rolle spielen wer-

den. An der Zerlegung (7.6) nach der Basis ist zumeist nicht direkt ablesbar, ob ein Vektor

 |ψAB  verschränkt ist. Wir werden hierzu später ein Kriterium entwickeln (Abschn. 8.2.1)

und auch das Konzept der Verschränkung auf Dichteoperatoren erweitern (Abschn. 8.1.1). 

Skalarprodukt

Der Bra-Vektor zum Produktvektor  |ϕA ⊗ |χB  hat die Form

( |ϕA ⊗ |χB) † =  ϕA| ⊗ χB| =:  ϕA|χB| =:  ϕA, χB| =:  ϕ, χ| . 

(7.7)

Daraus folgt für  |ψAB  von Gl. (7.6)



( |ψAB) † =  ψAB| =

 α∗ nA, iB| . 

 ni

(7.8)

 n,i
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Das Skalarprodukt wird „raumweise“ gebildet:

 ϕA, χB|ξA, ζB =  ϕA|ξAχB|ζB . 

(7.9)

Eine Basis  {|nA, iB}  von  HAB  ist orthonormal, wenn

 nA, iB|nA, iB =  δnnδii

(7.10)

gilt, d. h. wenn  {|nA}  und  {|iB}  ONB sind. 

Bell-Basis1

Wie man leicht nachprüfen kann bilden die folgenden vier Vektoren eine spe-

zielle ONB im Raum  HAB =  HA

2  ⊗ HB

2 der 2-Qubit-Vektoren:

 |

1

1

Φ ± :=  √ ( | 0 ,  0  ± | 1 ,  1 )  , 

 |Ψ ± :=  √ ( | 0 ,  1  ± | 1 ,  0 )  . 

(7.11)

2

2

Diese Basis spielt bei vielen Untersuchungen ein besondere Rolle. Wir werden später zeigen, 

dass diese häufig verwendeten  Bell-Zustände  maximal verschränkt sind. 

7.2.2

Operatoren

Produktoperatoren

 CA  sei ein linearer Operator auf  HA  und  DB  ein linearer Operator

auf  HB. Das Tensorprodukt

 CA ⊗ DB =:  CADB

(7.12)

bezeichnet einen  Produktoperator, der „raumweise“ wirkt

[ CA ⊗ DB] |ϕA, χB =  |CAϕA, DBχB . 

(7.13)

Der Produktoperator ist ein linearer Operator auf  HAB. 





[ CA ⊗ DB]

 αni|nA, iB =

 αni|CAnA, DBiB . 

(7.14)

 n,i

 n,i

Der aus den Produktvektoren  |ψAB =  |ϕA, χB  und  |θAB =  |ξA, ζB  gebildete dyadi-

sche Operator  |ψABθAB|  ist ebenfalls ein Produktoperator. 

 |ψABθAB| =  |ϕA, χBξA, ζB| = ( |ϕAξA|)  ⊗ ( |χBζB|)  . 

(7.15)

Man kann die Klammern auch weglassen. Der Identitätsoperator auf  HAB  kann mit der Basis

von Gl. (7.5) dyadisch zerlegt werden:



 AB =

 |nA, iBnA, iB| =  A ⊗ B . 

(7.16)







 n,i

1 Benannt nach J.S. Bell (1928-1990)

 7.2
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Mit dem Identitätsoperator eines Faktorraums lassen sich spezielle Produktoperatoren bil-

den. Die durch ein Dach gekennzeichneten  erweiterten Operatoren (Teilsystem-Operatoren)

ˆ

 CAB =  CA ⊗ B; 

ˆ

 DAB =  A ⊗ DB

(7.17)





sind auf  HAB =  HA ⊗ HB  definiert, wirken jedoch nur in den jeweiligen Faktor-Hilbert-

Räumen in nicht-trivialer Weise. ˆ

 CAB  und ˆ

 DAB  kommutieren auf  HAB  und es gilt

ˆ

 CAB ⊗ ˆ

 DAB = ˆ

 DAB ⊗ ˆ

 CAB =  CA ⊗ DB . 

(7.18)

Allgemeine Operatoren

Mit Bezug auf die dyadische Zerlegung (7.16) von

 AB  können



wir den allgemeinen Operator  ZAB  auf  HAB  in der Form

 

 ZAB =  ABZAB AB =

 nA, iB|ZAB|mA, jB( |nAmA|⊗|iBjB|) (7.19)





 n,m i,j

schreiben. Er ist durch seine Matrixelemente in der orthonormalen Basis (7.5) bestimmt. 

Spur und Teilspur

Die  Spur (trace) ist auch in  HAB über eine orthonormale Basis in ge-

wohnter Weise definiert



tr AB[ ZAB] :=: tr[ ZAB] :=

 nA, iB|ZAB|nA, iB . 

(7.20)

 n,i

Für Produktoperatoren folgt daraus



tr[ CA ⊗ DB] =

 CA DB =

 nn

 ii

tr A[ CA] tr B[ CB]  , 

(7.21)

 n,i

mit den Matrixelementen  CA

 nn  und  DB . Die Spur wird „raumweise“ gebildet. 

 ii

Die Bildung der  Teilspur (partial trace) über einen der Faktorräume, beispielsweise den

Raum  HA, ist für die Physik besonders wichtig. Sie ist durch



tr A[ ZAB] :=

 nA|ZAB|nA

(7.22)

 n

definiert. Wie man an Gl. (7.19) ablesen kann, entsteht dabei ein Operator auf  HB. Für Pro-

duktoperatoren folgt

tr A[ CA ⊗ DB] = tr A[ CA] DB . 

(7.23)

Die Gesamtspur ergibt sich als Abfolge von Teilspuren

tr[ ZAB] = tr B[tr A[ ZAB]] = tr A[tr B[ ZAB]]  . 

(7.24)

Dabei kommt es auf die Reihenfolge der Bildung der Teilspuren nicht an. 
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Operatorbasis

Auch dieses Konzept, das wir in Abschn. 1.2 kennen gelernt haben, lässt

sich direkt auf den Produktraum  HAB übertragen. Wenn  {QA, α = 1 , . . . , (

 α

dim  HA)2 }  eine

Operatorbasis auf  HA  und  {RB, κ = 1 , . . . , (

 κ

dim  HB)2 }  eine Operatorbasis auf  HB  ist, 

dann bilden die Produktoperatoren

 T AB :=  QA ⊗ RB

 ακ

 α

 κ

(7.25)

wegen

tr[ T AB†T AB] =  δ

 ακ

 βλ

 αβ δκλ

(7.26)

eine Operatorbasis des Produktraums  HAB. Man kann jeden Operator  ZAB, der auf  HAB

wirkt, nach ihr entwickeln:



 ZAB =

 T AB

 ZAB]  . 

 ακ  tr[ T AB†

 ακ

(7.27)

 α,κ

Es gibt Operatoren auf  HAB, die nicht als Produkt von zwei Operatoren in der Form  CA ⊗DB

geschrieben werden können. Aber alle Operatoren auf  HAB  können als Summe von Produkt-

operatoren geschrieben werden. 

Produkt-Liouville-Raum

Wir übertragen die Konzepte aus Abschn. 1.2 und bilden den

 Produkt-Liouville-Raum

 AB =  A ⊗ B . 

(7.28)







Seine Elemente sind die Operatoren



 CAB =

 cαβQA ⊗ RB . 

 α

 β

(7.29)

 α,β

auf  HAB. Der  Liouville-Operator  wird in Verallgemeinerung von Gl. (1.84) mit dem

Hamilton-Operator  HAB  auf  HAB  definiert:

 L

1

 AB ZAB := [ HAB,ZAB] − . 

(7.30)

7.3

Grundlagen der Physik zusammengesetzter

Quantensysteme

7.3.1

Postulat für zusammengesetzte Systeme und Ausblick

Wir betrachten  zusammengesetzte Quantensysteme(composite quantum systems), die selber

abgeschlossen sein sollen. Daher können wir alle Postulate von Kap. 2 und 4 direkt übertragen. 

Insbesondere wird der Zustand des zusammengesetzten Systems durch einen Dichteoperator

in einem Hilbert-Raum beschrieben. Die operationale Interpretation des Konzepts „Zustand“

 7.3
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eines Quantensystems als „das System hat ein bestimmtes Präparationsverfahren durchlau-

fen“ überträgt sich. Das zusammengesetzte System  SAB...  soll aus  Teilsystemen (subsystems)

 SA, SB, . . .  bestehen. Da wir Teilsysteme betrachten wollen, die selber Quantensysteme sind, 

liegt es nahe, ihnen zur Beschreibung jeweils einen Hilbert-Raum  HA, HB, . . .  zuzuordnen. 

Dann bleibt zunächst noch die Frage offen, welche Struktur der Hilbert-Raum des Gesamt-

systems hat, d. h. wie er sich aus den  HA, HB, . . .  mathematisch zusammensetzt. Hier gibt es

im Prinzip viele Möglichkeiten. Eine ist z. B. die direkte Summe  HAB... =  HA ⊕ HB ⊕ . . . . 

Tatsächlich postuliert man aber das Tensorprodukt, wie wir es in Abschn. 7.2.1 beschrieben

haben, um Übereinstimmung mit den Experimenten zu erzielen. Diese Festlegung hat weitrei-

chende Konsequenzen für alle physikalischen Aussagen über zusammengesetzte Quantensys-

teme, deren Teilsysteme nicht völlig voneinander isoliert sind. Wir sind im Folgenden gerade

an diesen Aussagen interessiert. 

Postulat

 Die Zustände eines aus den Teilsystemen SA, SB, . . . zusammengesetzten ab-

 geschlossenen Gesamtsystems SAB... werden durch Dichteoperatoren ρAB... im Produkt-

 Hilbert-Raum

 HAB... =  HA ⊗ HB ⊗ . . . 

(7.31)

 beschrieben. Die Postulate für abgeschlossene Systeme aus Abschn. 2.1 und Abschn. 4.2 über-

 tragen sich auf das Gesamtsystem SAB.... 

Ausblick

An dem Postulat kann man unmittelbar eine Reihe von Besonderheiten der Phy-

sik zusammengesetzter Systeme ablesen. Die mathematische Produktstruktur (7.31) gibt eine

Gliederung vor. Wir stellen sie am Beispiel eines 2-Teile-Systems  SAB  dar. 

(i) Zustände: Ein reiner Zustand kann ein Produktzustand  |ψAB =  |φA ⊗ |χB  oder ein

verschränkter Zustand  |ψAB =  |φA ⊗ |χB  sein. Die ungewöhnlichen Eigenschaften

verschränkter Zustände, insbesondere das Auftreten nicht-klassischer Korrelationen und

ihre Nutzung, werden wir im Rest dieses Kapitels und in allen weiteren Kapiteln im

Einzelnen diskutieren. Auf korrelierte Dichteoperatoren  ρAB =  ρA ⊗ ρB  gehen wir in

Abschn. 8.1 ein. 

(ii) Observablen: Es gibt den Spezialfall der erweiterten Observablenoperatoren, wie z. B. 

ˆ

 CAB =  CA⊗ B, die mit einem Observablenoperator gebildet werden, der nur auf einem



der Produkträume wirkt. Mit ihnen werden  lokale Messungen (local measurements) be-

schrieben, die nur an einem der Teilsysteme durchgeführt werden (z. B. Messung der Ob-

servablen  CA  am Teilsystem  SA). Es gibt aber auf  HAB  allgemeinere hermitesche Ope-

ratoren  ZAB, die nicht als erweiterte Operatoren schreibbar sind. Auch ihnen entsprechen

Messungen physikalischer Observablen  ZAB. Diese Observablen werden  nicht-lokale

 Observablen (non-local observables) oder  kollektive Observablen (collective observa-

bles) genannt. Die entsprechenden Messungen sind  nicht-lokale Messungen (non-local

measurements), die i.a. nicht direkt als lokale Messungen an  SA  und  SB  durchgeführt

werden können. Das gilt auch für den Spezialfall der Observablen, die Operatorproduk-

ten entsprechen (z. B.  ZAB =  CA ⊗ DB). Nicht-lokale Messungen werden im Zusam-

menhang mit Quantenkorrelationen und der nicht-lokalen Speicherung von Information

wichtig. Wir besprechen sie daher erst in Abschn. 9.2. 
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(iii) Unitäre Entwicklungen: Auch die unitären Entwicklungen müssen nicht von der Struktur

 U AB =  U A ⊗ U B  sein. Es kann z. B. eine Wechselwirkung zwischen den Systemen  SA

und  SB  existieren. Wir diskutieren das in Abschn. 7.3.5. Nicht-lokale unitäre Entwick-

lungen können verschränkend und entschränkend wirken. . 

7.3.2

Messungen an einem Teilsystem und reduzierter Dichteoperator

Über das Postulat sind insbesondere die Einzelheiten der projektiven Messung einer Obser-

vablen des Gesamtsystems festgelegt. Diese Messung am Gesamtsystem wird durch einen

hermiteschen Operator auf  HAB...  beschrieben. Die Messung einer Observablen mit Obser-

vablenoperator  C  nur an einem Teilsystem, z. B. an  SA, ist als ein Spezialfall enthalten. Ihr

ist ein Observablenoperator  CA  zugeordnet, der auf  HA  wirkt. Dieser  lokalen Messung (local

measurement) entspricht in  HAB...  ein  lokaler Observablenoperator (local observable)

ˆ

 CAB...E =  CA ⊗ B ⊗ . . . ⊗ E . 

(7.32)





Wir wollen uns in diesem Kapitel auf Gesamtsysteme beschränken, die aus zwei Teilsystemen

zusammengesetzt sind. Die Erweiterung auf mehr Teilsysteme ist trivial. 

Wahrscheinlichkeitsaussagen

Gemäß Postulat übertragen sich die Regeln für die Mess-

dynamik auf die Zustände  ρAB  des zusammengesetzten Systems  SAB. Wir wollen die sich

daraus ergebenden Konsequenzen für lokale Messungen untersuchen. Hierzu ist es nützlich je-

dem Teilsystem durch die Bildung der Teilspur über das andere Teilsystem einen  reduzierten

 Dichteoperator (reduced density operator) zuzuordnen. 









 ρA := tr B ρAB , 

 ρB := tr A ρAB

(7.33)

Da  ρAB  ein Dichteoperator ist, erfüllen  ρA  und  ρB  ebenfalls die Bedingungen für einen Dich-

teoperator. Das Eigenwertproblem des Observablenoperators  CA

 CA|c( r) A =  c

 , r = 1 , . . . , g

 n

 n|c( r) A

 n

 n

(7.34)

( r) A

führt auf die ONB  {|cn

 }  von  HA  und die Eigenwerte  {cn}  mit Entartung  gn. Die Wahr-

scheinlichkeit bei einer Messung von  C  am System  SA  den Messwert  cn  zu erhalten, ist dann

mit dem  lokalen Projektionsoperator

 gn



ˆ

 P A =  P A ⊗ B, 

 P A :=

 |c( r) Ac( r) A|

 n

 n

(7.35)



 n

 n

 n

 r=1

durch

 p( cn) = tr[ ˆ

 P AρAB] =

 ρAB}] =

 ρA]

 n

tr A[tr B{ ˆ

 P A

 n

tr A[ P A

 n

(7.36)

gegeben. In analoger Weise erhalten wir für den Erwartungswert der Observablen  C

  ˆ

 CA = tr[ ρAB ˆ

 CA] = tr A[ ρACA]  . 

(7.37)

Zusammenfassend stellen wir fest:  Alle Wahrscheinlichkeitsaussagen für lokale Messungen

 am Teilsystem SA ergeben sich indem man dem System SA den reduzierten Dichteoperator ρA

 von Gl. (7.33) zuordnet und die für die Dichteoperatoren abgeschlossener Systeme postulierte

 Regeln anwendet. 
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Zustand eines Teilsystems

Da alle Wahrscheinlichkeitsaussagen für Messungen an  SA

durch den reduzierten Dichteoperator  ρA  eindeutig bestimmt sind, liegt es nahe davon zu

sprechen, dass sich das Teilsystem  SA  im  Zustand ρA  befindet. So hatten wir in Kap. 2 das

Zustandskonzept eingeführt. Das Gesamtsystem  SAB  durchläuft ein Präparationsverfahren, 





das auf den Zustand  ρAB  führt. Damit ist zugleich der Zustand  ρA = tr B ρAB  präpariert. 

Gemische allgemein

Bei einem Produktzustand  |αA, βB  des Gesamtzustands  SAB  ist das

 k

 k

Untersystem  SA  im reinen Zustand  |αA. Ist der Zustand von  SAB  speziell ein statistisches

 k

Gemisch (Gemenge) aus solchen Produktzuständen präpariert worden (vergl. Kap. 4)





 ρAB =

 ps|αA, βBαA, βB|, 

 p

 s

 s

 s

 s

 s = 1  , 

(7.38)

 s

 s

dann befindet sich  SA  ebenfalls in einem statistischen Gemisch



 ρA = tr B[ ρAB] =

 pk|αAαA|

 k

 k

(7.39)

 k

aus den Zuständen  {|αA}. Eine Ignoranzinterpretation (vergl. Abschn. 4.3) ist möglich (pro-

 k

per mixture). Im allgemeinen wird der Zustand  SA  nach der Präparation von  ρAB  aber kein

statistisches Gemisch reiner Zustände sein wie in Gl. (7.39). Dennoch wird er durch einen

Dichteoperator  ρA  beschrieben. Man überträgt daher operational den Begriff  Gemisch (mix-

ture) auch auf diesen Zustand  ρA  von  SA, dem – wie schon in Abschn. 4.2 beschrieben –

kein Mischen zugrunde liegt, und lässt zur Verdeutlichung den Zusatz „statistisches“ weg. 

Zur Kennzeichnung wird in diesem Fall auch von  improper mixture  im Gegensatz zur  proper

 mixture  gesprochen. Gemisch ist also der Überbegriff. Bei Teilsystemen können Gemische

auftreten, die hinsichtlich ihrer Präparation keine statistischen Gemische sind und daher keine

Ignoranzinterpretation zulassen. Für sie gibt es formal viele Ensemblezerlegungen. Es gibt da-

her viele statistische Gemische eines abgeschlossenen Systems  SA, durch die sie hinsichtlich

aller Wahrscheinlichkeitsaussagen für lokale Messungen ununterscheidbar  simuliert  werden

können. Dies rechtfertigt noch einmal die Übertragung des Begriffs Gemisch auf alle redu-

zierten Dichteoperatoren. 

7.3.3

Zustand nach einer Messung an einem Teilsystem

Auch den Zustand  ρA 

 n

nach der selektiven Messung der Observablen  C  am System  SA  mit

Messwert  cn  erhalten wir nach den für das Gesamtsystem gültigen Postulaten mit Hilfe des

lokalen Projektionsoperators ˆ

 P A

 n  von Gl. (7.35) wie in Gl. (4.19)

tr B[ ˆ

 P AρAB ˆ

 P A]

 ρA → ρA =

 n

 n

 . 

 n

(7.40)

tr A[tr B{ ˆ

 P AρAB}]

 n

Mit Gl. (7.33) finden wir für diese selektive lokale Messung

 P AρAP A

 ρA → ρA =

 n

 n

 . 

 n

(7.41)

tr A[ P AρA]

 n

 n
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Für die entsprechende nicht-selektive lokale Messung gilt mit Gl. (7.36) in Analogie zu

Gl. (4.25)





 ρA n.s. 

 −−→ ρA = tr

ˆ

 B [

 P AρAB ˆ

 P A] =

 P AρAP A . 

 n

 n

 n

 n

(7.42)

 n

 n

 Wir können für lokale Messungen auch hinsichtlich der resultierenden Zustände die Regeln

 für Dichteoperatoren von Kap. 4 anwenden, wenn wir dabei dem Teilsystem SA den reduzier-

 ten Dichteoperator ρA von Gl. (7.33) zuordnen. Entsprechendes gilt für das Teilsystem SB. 

Die Messwahrscheinlichkeiten (7.36) lassen sich wieder mit dem unnormierten (Spur  = 1)

Dichteoperator ˜

 ρA =  P AρABP A

 n

 n

 n  nach der Messung schreiben:

 p( cn) = tr A[˜

 ρA ]

 n

(7.43)

Wir betrachten noch den Spezialfall, dass sich das Gesamtsystem  SAB  vor der Messung in

einem verschränkten reinen Zustand  |ψAB  befindet. Nach Definition (vergl. Abschn. 7.2.1)

ist ein verschränkter reiner Zustand nicht als Produktvektor schreibbar. Im Hinblick auf die

Messung der Observablen  C  am Teilsystem  SA  entwickeln wir  |ψAB  nach der ONB von

 HAB, die die Eigenvektoren  {|cA}

 n

von  CA  enthält. Es möge keine Entartung vorliegen. 



 |ψAB =

 αni|cA, dB . 

 n

 i

(7.44)

 n,i

Wenn die Messung auf den Wert  cn  führt, ergibt sich (Tilde kennzeichnet fehlende Normie-

rung)

 |ψAB → | ˜

 ψAB  =  P A|ψAB =

 n

 n



=

 |cA ⊗

 α

  =

 n

 ni|dB

 i

(7.45)

 i

=

 |cA, ˜

 wB

 n

 n

mit



 | ˜

 wB :=

 α

  . 

 n

 ni|dB

 i

(7.46)

 i

Die Messung überführt somit in einen Produktzustand.  Für einen verschränkten Zustand

 |ψAB bricht die nicht entartete Messung an einem Teilsystem die Verschränkung.  Es ist be-

merkenswert, dass dabei das andere Teilsystem  SB  in einen speziellen Zustand  |wB

 n

übergeht, 

der über den Index  n  bei  αni  vom Ergebnis der Messung an  SA  abhängt.  Auch wenn die ver-

 schränkten Teilsysteme SA und SB räumlich weit voneinander getrennt sind, hat die lokale

 Messung an SA instantan eine wohlbestimmte Zustandsänderung des Systems SB zur Fol-

 ge. Die Messung an einem Teilsystem SA wirkt präparierend auf das andere Teilsystem SB. 

Wenn für ein System im Bell-Zustand  |Φ AB

+    die Messung von  σz  an einem Teilsystem in den

Zustand  | 0  überführt, dann auch beim anderen und entsprechend mit dem Zustand  | 1  (vergl. 

den Neckerschen Würfel in Abb. 7.1). Dies ist Ausdruck der besonderen  Ganzheitlichkeit  des

verschränkten Systems. Entsprechendes gilt für zusammengesetzte klassische Systeme nicht. 
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Abbildung 7.1: Der Neckersche Würfel und die Analogie zum verschränkten System. Die beiden lin-

ken unteren Eckpunkte (Kugel und Würfel) entsprechen den verschiedenen Zuständen von Teilsystem

 SA, die rechten denen von Teilsystem  SB. Messen wird durch Hinsehen realisiert. Entweder sind als

Ergebnis die beiden Kugelzustände vorn oder die beiden Würfelzustände sind vorn (Blick von oben oder

von unten auf den Würfel). Immer wird bei Überführung des einen Teilsystems in einen Zustand auch

das andere in den korrelierten Zustand überführt. Vor der Messung durch Hinsehen ist der Zustand des

Neckerschen Würfels eine klassisch unmögliche „Superposition“. 

7.3.4

Lokale Messungen an zwei Teilsystemen

Nachdem wir lokale Messungen an einem Teilsystem beschrieben haben, gehen wir zu loka-

len Messungen an beiden Teilsystemen über. Wir betrachten wieder ein Quantensystem  SAB, 

das aus den Systemen  SA  und  SB  zusammengesetzt ist. Wir wollen am Teilsystem  SA  die

Observable  C  und am Teilsystem  SB  die Observable  D  messen. Die zugehörigen Observa-

blenoperatoren ˆ

 CA =  CA ⊗ B  und ˆ

 DB =  A ⊗ DB  kommutieren





[ ˆ

 CA, ˆ

 DB] − = 0  . 

(7.47)

Wir notieren noch die entsprechenden Eigenwertgleichungen

 CA|cA =  c

 , DB|dB =  d

  . 

 n

 n|cA

 n

 i

 i|dB

 i

(7.48)

Die Vektoren  {|cA}

 }

 n

und  {|dB

bilden ONB von  HA  bzw.  HB. Die möglichen Messwerte

 i

 {cn}  und  {di}  der lokalen Messungen sollen der Einfachheit halber nicht entartet sein. 

Relativzustände

Das Gesamtsystem  SAB  soll sich vor den Messungen in einem reinen Zu-

stand  |ψAB  befinden, den wir nach der den Messungen angepassten Basis von  HAB  zerlegen



 |ψAB =

 αni|cA, dB . 

 n

 i

(7.49)

 n,i

Es erweist sich als geschickt, im Hinblick auf das Ergebnis (7.45) die Doppelsumme in der

Form



 |ψAB =

 |cA, ˜

 wB

 n

 n

(7.50)

 n
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 SA

 SB

Gesamtsystem:  |ψAB

n.s. 

sortiere nicht aus

 ci

 t

Gesamtsystem:  ρAB

n.s. 

 ρB

n.s. 

Abbildung 7.2: Nicht-selektive Messung am Teilsystem  SA. 

aufzuspalten mit



 |

 

 |

˜

 wB

˜

 wB :=

 α

 ;  |wB =

 n



 . 

 n

 ni|dB

 i

 n

(7.51)

  ˜

 wB| ˜

 wB

 i

 n

 n

Der Vektor  |wB

 

 n

heißt der  relative Zustand (relative state) zu  |cA

 n . Unnormierte Zustände

sind wieder durch eine Tilde gekennzeichnet. Die relativen Vektoren  {|wB}

 n

bilden i.a. kein

Orthonormalsystem. Ihre Anzahl muß auch nicht mit der Dimension des Hilbert-Raums  HB

übereinstimmen.  |ψAB  lässt sich analog zu Gl. (7.50) auch bezüglich der zu  {|dB}  relativen

 i

Zustände  {|˜

 vA}  zerlegen. 

 i



 |ψAB =

 |˜ vA, dB . 

 i

 i

(7.52)

 i

Nicht-selektive lokale Messung

Wir führen eine Messung der Observablen  C  an  SA  durch. 

Dabei soll sich der Messwert  cn  ergeben. Dann geht das Gesamtsystem in den Produktvektor

 |cA, ˜

 wB

 , wB

 n

 n

bzw. den normierten Vektor  |cA

 n

 n

über.  Die Wahrscheinlichkeit den Messwert

 cn zu erhalten ist gemäß Gl. (7.36) durch das Quadrat der Norm des unnormierten relativen

 Zustandsvektors | ˜

 wB

 n

 gegeben





 p( c

 B

 n) =  ψAB | |cAcA| ⊗

 |ψAB =   ˜

 wB| ˜

 wB =  || ˜

 wB|| 2  . 

 n

 n

(7.53)



 n

 n

 n

Nach einer nicht-selektiven Messung an  SA  befindet sich das Gesamtsystem  SAB  in einem

gemischten Zustand mit Dichteoperator





 ρAB =

 p( c

 , wBcA, wB| =

 |cA, ˜

 wBcA, ˜

 wB| . 

 n.s. 

 n) |cA

 n

 n

 n

 n

 n

 n

 n

 n

(7.54)

 n

 n

Dabei haben wir Gl. (7.53) verwendet. Die Superposition von Gl. (7.50) ist in das Gemisch

von Gl. (7.54) zerlegt worden. 

Alle Messungen am System  SB  nach dieser nicht-selektiven Messung an  SA  können

durch den reduzierten Dichteoperator  ρB

 n.s.  beschrieben werden



 ρB =

=

 | ˜

 wB ˜

 wB| , 

 n.s. 

tr AρAB

 n.s. 

 n

 n

(7.55)

 n
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Gesamtsystem:  |ψAB

 SB

 SA

 SB

 SA

 c

sortiere nach Ergebnis

 n

 di

 |cA

 |

 

 |

 

 |

 

 n

 wB

 n

 vA

 i

 dB

 i

 t

 di

 cn

 |cA

 |

 

 n

 dB

 i

 |cA

 |

 

 n

 dB

 i

Abbildung 7.3: Selektive Messung an den Teilsystemen  SA  und  SB. Links wird zuerst an  SA  und

dann an  SB  gemessen, rechts in der anderen Reihenfolge. Es wird jeweils nach den Messwerten  di

und  cn  selektiert. Die Wahrscheinlichkeit das Messwertepaar ( cn, di) zu erhalten und der entsprechende

Endzustand  |cA

 

 n , dB

 i

ist in beiden Fällen gleich. 

der direkt durch den relativen Zustand  | ˜

 wB  gegeben ist. Gl. (7.50) zeigt unmittelbar, dass er

 i

mit dem reduzierten Dichteoperator des Teilsystems  SB  vor der Messung übereinstimmt. 

 ρB = tr A[ |ψABψAB|] =  ρB

 n.s. 

(7.56)

Dies ist ein bemerkenswertes Ergebnis. Betrachten wir die Situation, dass das System  SA

sich bei Alice befindet und das System  SB  räumlich getrennt davon bei Bob. In einem Prä-

parationsverfahren wird sehr oft ein 2-Teile-System im Zustand  |ψAB  erzeugt. Alice ist es

freigestellt, ob sie Messungen der Observablen  C  an ihrem System durchführt oder nicht.  Bob

 kann dann in keiner Weise durch Messungen welcher Observablen auch immer an seinem Teil-

 system SB feststellen, ob Alice Messungen durchgeführt hat oder nicht.  Das besagt gerade die

Gl. (7.56). Da die Situation vollständig symmetrisch ist, gilt die Aussage entsprechend wenn

Bob die ersten Messungen durchführt. 

Nicht-selektiv bedeutet in diesem Zusammenhang, dass es Alice nicht erlaubt ist nach ih-

rer Messung z. B. die Zustände  |cA, wB

 n

 n

des Gesamtsystems herauszusuchen, die zu ihrem

Messergebnis  cn  gehören und dafür zu sorgen, dass nur an Systemen in diesen Zuständen

weitere Messungen durchgeführt werden. Das könnte sie offenbar nur erreichen, wenn Bob

in gleicher Weise bei seinen Teilsystemen selektionieren würde. Dazu müsste Alice nach je-

der ihrer Messungen Bob die Information übermitteln, ob er sein zugehöriges Teilsystem für

anschließende Messungen weiter verwenden kann oder ob er es aussondern soll. Wenn Bob

aber im Gegensatz dazu misst ohne vorher zu selektieren, kann er nicht feststellen, ob Ali-
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ce gemessen hat oder nicht. Wenn er Anweisungen für eine Selektion bekommt, weiß er das

trivialerweise. 

Selektive lokale Messungen

Wir gehen zu selektiven Messungen über und stellen sie zur

Einübung in den Formalismus ausführlicher dar. Zunächst misst Alice und erhält mit der

Wahrscheinlichkeit  p( cn) =   ˜

 wB| ˜

 wB

 n

 n

den Messwert  cn. Das System geht in den Gesamtzu-

stand  |cA, wB

 n

 n

über (vgl. Abb. 7.3). Wenn anschließend an diese Selektion Bob misst, erhält

er den Messwert  di  mit der bedingten Wahrscheinlichkeit

 |αni| 2

 p( di|cn) =

 . 

(7.57)

 p( cn)

Dies kann man an den Gl. (7.51) ablesen. Das Gesamtsystem geht dabei in den Produktzustand

 |cA, dB

 n

über. Wenn umgekehrt zuerst Bob und dann – nach Selektion nach dem Messwert  d

 i

 i

– Alice misst, erhalten wir analog (vgl. Abb. 7.3) den gleichen Endzustand für das Messwer-

tepaar ( cn, di). Für die Wahrscheinlichkeiten ergibt sich

 |αni| 2

 p( cn|di) =

 . 

(7.58)

 p( di)

 Die Wahrscheinlichkeit p( cn, di) , mit der das Messwertepaar ( cn, di)  erhalten wird, ist unabhängig von der Reihenfolge der Messungen:

 p( cn, di) =  p( cn|di) p( di) =  p( di|cn) p( cn) =  |αni| 2 =  ψAB|P AB|ψAB

 ni

(7.59)

mit Projektionsoperator  P AB :=  |cA, dBcA, dB|. Da die Operatoren ˆ

 CA  und ˆ

 DB  kom-

 ni

 n

 i

 n

 i

mutieren, war das auch nicht anders zu erwarten. Wir ergänzen noch, dass alle oben für den

reinen Ausgangszustand  |ψAB  gemachten Aussagen sich in bekannter Weise übertragen las-

sen, wenn der Ausgangszustand ein Gemisch mit Dichteoperator  ρAB  ist. 

Erwartungswerte von Produktoperatoren

Produktoperatoren repräsentieren spezielle

nicht-lokale Observable. Für Anwendungen ist es wichtig, dass ihre Erwartungswerte durch

lokale Messungen und klassische Kommunikation bestimmt werden können. Die dyadische

Zerlegung des Operators  CA ⊗ DB  ist von der Form (vgl. Gl. (7.48))



 CA ⊗DB =

 cndi|cA, dBcA, dB| . 

 n

 i

 n

 i

(7.60)

 n,i

Für seinen Erwartungswert im Zustand  ρAB  gilt





 



tr  CA ⊗DB ρAB =

tr  P ABρAB c

 ni

 ndi . 

(7.61)

 n,i

Die Spur auf der rechten Seite ist die Wahrscheinlichkeit dafür, dass bei lokalen Messungen an

den Teilsystemen  SA  und  SB  das Messwertepaar ( cA, dB

 n

) auftritt.  Der Erwartungswert eines

 i

 Produktoperators stimmt mit dem Erwartungswert der Produkte korrelierter Messwerte über-

 ein.  Zu seiner Bestimmung messen Alice und Bob an einem Quantensystem im Zustand  ρAB
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an denen ihnen jeweils zugänglichen Teilsystemen , informieren sich über die Messergebnis-

se und bilden das Produkt der beiden korrelierten Messwerte. Das wiederholen sie an vielen

Systemen im Zustand  ρAB  und berechnen schließlich den Mittelwert der Messwertprodukte. 

Wir kommen auf nicht-lokale Observable noch einmal in Abschn. 9.2 zurück. 

7.3.5

Unitäre Dynamik zusammengesetzter Systeme

Die von-Neumann-Gleichung (4.9) bzw. (4.10) überträgt sich nach den Postulaten auf zusam-

mengesetzte Systeme

d ρAB

 i d ρAB = [ HAB, ρAB( t)] −

 i

=  LABρAB( t)  . 

(7.62)

d t

d t

mit dem Liouville-Operator  LAB ∈ A ⊗ B. Wir verwenden das Schrödinger-Bild. 





Wenn eine durch einen Hamilton-Operator  HAB = 0 beschrieben Wechselwirkung zwi-

int

schen den Teilsystemen  SA  und  SB  vorliegt, sind die einzelnen Teilsysteme  offen (open quan-

tum systems). Der Gesamt-Hamilton-Operator hat dann die Form

 HAB =  HA ⊗ B +  A ⊗ HB +  HAB . 

(7.63)





int

Der zugehörige Liouville-Operator ergibt sich als

 LAB =  LA +  LB +  LAB

(7.64)

int

und für die von-Neumann-Gleichung folgt:

d ρAB

 i

= ( LA +  LB +  LAB) ρAB( t)  . 

(7.65)

d t

int

Dies führt für den reduzierten Dichteoperator  ρA  auf die Differentialgleichung

d ρA

 i

=  LAρA( t) + tr B[ LABρAB( t)]

(7.66)

d t

int

Zur Bestimmung von  ρA( t) muss man die volle Gl. (7.65) integrieren. Hierfür gibt es ver-

schiedene Näherungsverfahren. Wir werden in Abschn. 13.1 und 14 einen In-Out-Zugang (in-

out-approach) zur Dynamik offener Systeme kennenlernen, der nicht auf dem durch Gl. (7.66)

beschriebenen differentiellen zeitlichen Verhalten von  ρA( t) beruht, sondern in phänomeno-

logischer Weise durch einen Superoperator den Endzustand  ρA( t out) auf den Anfangszustand

 ρA( t in) zurückführt. 

7.4

Quantengatter für mehrere Qubit-Systeme

7.4.1

Verschränkung durch das CNOT-Gatter

Die Verarbeitung von Quanteninformation wird oft schematisch ohne Bezug auf eine expe-

rimentelle Realisierung durch  Quantenschaltungen (quantum circuits) veranschaulicht. Die
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Kontroll-Qubit  |x

 |x

Ziel-Qubit  |y

 |x ⊕ y

Abbildung 7.4: CNOT-Gatter. 

wesentlichen Bauelelemente, die dabei auftauchen, sind:  Quantendrähte (quantum wires), 

dies sind spezielle Quantenkanäle durch die Quantensysteme unbeeinflusst propagieren, sowie

 Quantengatter (quantum gates), durch die unitäre Transformationen von Quantensystemen

bewirkt werden. Die Systeme sind Multi-Qubits aus Räumen  H 2  ⊗H 2  ⊗H 2  . . .⊗H 2.  Messun-

 gen  dienen zum Auslesen von Information. Wegen der Unitarität repräsentieren Quantengatter

umkehrbare Prozesse. Messungen sind demgegenüber irreversibel.  Quantencomputer (quan-

tum computers) sind ein Netzwerk von Quantengattern. Quantengatter für Quantensysteme

aus  H 2 haben wir bereits in Abschn. 3.4 kennengelernt. Wir gehen jetzt zu Produkträumen

über. In Kap. 12 werden wir Quantenschaltungen zu Quantencomputern zusammensetzen. 

Verschränkung durch das CNOT-Gatter

Ein einfaches Quantengatter, das einen Qubit-

Produktzustand in einen verschränkten Zustand überführt, ist das  CNOT-Gatter (CNOT gate, 

controlled NOT gate , XOR gate). Seine Wirkung auf der Rechenbasis von  HA

2  ⊗HB

2 ist durch

 |x, y → |x, y ⊕ x

(7.67)

mit  x, y, . . . ∈ { 0 ,  1 }  definiert. Damit liegt die Wirkung auf einen beliebigen Vektor aus

 HA 2  ⊗ HB 2 fest.  ⊕  bezeichnet die Addition modulo 2, d. h. es gilt 1  ⊕  1 = 0. Im Einzelnen bedeutet das:

 | 0 ,  0   CNOT

 −→ | 0 ,  0 

(7.68)

 | 0 ,  1   CNOT

 −→ | 0 ,  1 

(7.69)

 | 1 ,  0   CNOT

 −→ | 1 ,  1 

(7.70)

 | 1 ,  1   CNOT

 −→ | 1 ,  0  . 

(7.71)

Daraus folgt

(CNOT)  · (CNOT) =

 . 

(7.72)



Mit Hilfe der Matrixdarstellung in der Rechenbasis prüft man leicht die Unitarität nach

(CNOT) † = (CNOT) − 1  . 

(7.73)

Die Qubits des Systems  A  bzw.  B  werden  Kontroll-Qubit (control qubit) bzw.  Ziel-Qubit (tar-

get qubit) genannt (siehe Abb. 7.4). 

Ein einfaches Beispiel zeigt, dass das CNOT-Gatter
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 H

 H

=

 H

 H

Abbildung 7.5: Zwei äquivalente Netzwerke. 

Superpositionen im Kontroll-Qubit in Verschränkungen von Kontroll- und Ziel-Qubit über-

führt:

( α| 0 A ± β| 1 ) | 0 B =  α| 0 A,  0 B ± β| 1 A,  1 B , (7.74)





 α| 0 A ± β| 1 A | 1 B =  α| 0 A,  1 B ± | 1 A,  0 B . 

(7.75)

Für  α =  β = 1

 √  entstehen so die vier Bell-Zustände. Der reduzierte Dichteoperator vom

2

Ziel-Qubit ist in diesem Fall  ρB = 1  B

2

(entsprechend beim Kontroll-Qubit). Die Messung in



irgendeiner ONB von  HB

2 liefert die beiden Messwerte und Zustände in perfekter Zufälligkeit

mit den Wahrscheinlichkeiten 12 . 

Ein CNOT-Gatter und vier Hadamard-Gatter lassen sich zum Inversen eines CNOT-Gatters

zusammenbauen (siehe Abb. 7.5). 

Die Schaltung von Abb. 7.6 aus drei CNOT vertauscht Kontroll- und Ziel-Qubit

 |x, y → |x, x ⊕ y → |y, x ⊕ y → |y, x . 

(7.76)

Abbildung 7.6: Vertauschen von zwei Qubits. 

Das CNOT-Gatter ist der Spezialfall eines  kontrollierten U-Gatters (controlled U gate)

(siehe Abb. 7.7). Es lässt  | 0 ,  0   und  | 0 ,  1   unverändert.  | 1 , y  mit  y = 0 ,  1 geht in  | 1  ⊗ U |y

über. CNOT ergibt sich mit  U =  σx. 

Kontroll-Qubit  |x

Ziel-Qubit  |y

 U

Abbildung 7.7: Kontrolliertes U-Gatter. 
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Kontroll-Qubit  |x

Kontroll-Qubit  |y

Ziel-Qubit  |z

Abbildung 7.8: Toffoli-Gatter. 

7.4.2

Toffoli-Gatter

Das  Toffoli-Gatter (Toffoli gate) von Abb. 7.8 wird auch  CCNOT-Gatter (controlled-

controlled NOT) oder doppelt kontrolliertes NOT-Gatter genannt. Bei ihm wird das NOT-

Gatter genau dann auf das Ziel-Qubit angewendet, wenn beide Kontroll-Qubits im Zustand

 | 1   sind. Die Wirkung von CCNOT ist

 |x, y, z → |x, y, z ⊕ xy . 

(7.77)

Analog kann man ein doppelt kontrolliertes U-Gatter konstruieren (siehe Abb. 7.9)

 Universelle Quantengatter (universal quantum gates) sind eine Menge von Quantengat-

tern, mit denen man jede unitäre Transformation auf  H 2  ⊗ H 2  ⊗ . . . ⊗ H 2 erzeugen kann. Es

lässt sich zeigen, dass z. B. das  Deutsch-Gatter (Deutsch gate) hierfür ausreicht. Bei diesem

Gatter ist die unitäre Transformation  U  von Abb. 7.8





 θ

 U =  −i  exp  i σx

 . 

(7.78)

2

Es gibt weitere universelle Gatter (vergl. Abschn. 7.5). 

 |x

 |y

 |z

 U

Abbildung 7.9: Doppelt kontrolliertes U-Gatter. 

7.5

Ergänzende Themen und weiterführende Literatur

 •  Zu „proper mixture“ und „improper mixture“: [d’Es95], [d’Es99]. 

 •  Die Idee, dass das Ganze mehr ist als die Summer seiner Teile, wird in der Philsophie als

 Holismus (holism) oder  Ganzheitlichkeit  bezeichnet. Es gibt eine Reihe von philosophi-

schen Analysen, in denen versucht wird, dieser Idee in ganz verschiedenen Gebieten von

der Soziologie bis zur Physik ein präzise Bedeutung zu geben und ihre Konsequenzen
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zu untersuchen. Für die naturphilosophische Frage, ob es Holismus in der Physik gibt, 

haben sich mit den nicht-separablen Zuständen zusammengesetzter Systeme ganz neue

Aspekte ergeben. Zwei unterschiedliche darauf aufbauende Analysen werden in [Esf 04]

und [See 04] vorgestellt (vergl. [Esf 02]). Dort ist auch weiterführende Literatur angege-

ben. Siehe auch [Hea 99]. 

 •  Das Deutsch-Gatter ist ein universelles Gatter: [Deu 89], [Pre 98, Kap. 6.2.3]. 

 •  Zu weiteren universellen Gattern: [Pre 98, Kap. 6.2.3], [NC 00, S. 188], [BBC 95]. 

 •  Lokale Messungen und die Forderung der Relativitätstheorie: [PT 04]. 

 • Übersicht über Quantengatter für Qubits: [Bra 02], [DiV 98]. 

7.6

Übungsaufgaben

ÜA 7.1 [zu 7.3.2]

Zeigen Sie, dass  ρA  und  ρB  von Gl. (7.33) die Eigenschaften eines Dich-

teoperators erfüllen. 

ÜA 7.2 [zu 7.3.4]

Bestätigen Sie die Ergebnisse von Abschn. 7.3.4 für den Fall, dass der

Ausgangszustand kein reiner Zustand  |ψAB, sondern ein Gemisch  ρAB  ist. 

ÜA 7.3 [zu 7.4]

Zeigen Sie jeweils die Äquivalenz der Netzwerke von Abb. 7.5 und

Abb. 7.10. 

 H

 H

=

 H

 H

Abbildung 7.10: Zwei äquivalente Netzwerke. 

ÜA 7.4 [zu 7.4]

Zeigen Sie, dass das Netzwerk von Abb. 7.11 Paare von Bell-Zuständen in

Paare von Bell-Zuständen überführt. 

Abbildung 7.11: Abbildung von Bell-Zuständen auf Bell-Zustände. 
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8 Verschränkung

Das Konzept der EPR-Korrelationen wird in Abgrenzung zu klassischen Korrelationen, die

es auch für Quantensysteme gibt, operational begründet und mit Verschränkung in Verbin-

dung gebracht. Für reine Zustände kann das Vorliegen von Verschränkung über die Schmidt-

Zerlegung festgestellt werden. Ein Maß für Verschränkung wird angegeben und ein Beispiel

für die Erzeugung verschränkter Zustände vorgestellt. Es ist eine für Anwendungen wichtige

Eigenschaft, dass Quantenzustände nicht kopiert werden können. Dass Zustände durch Ver-

schränkung mit anderen Zuständen markiert werden können, führt auf den Quantenradierer

und die Frage nach der verzögerten Wahl („delayed choice“). 

8.1

Korrelationen und Verschränkung

Ein zusammengesetztes Spin-System mit zwei Teilsystemen kann sich z. B. in den Produkt-

zuständen  | 0 A,  0 B  und  | 1 A,  1 B, aber auch in deren Superpositionen  α| 0 A,  0 B +  β| 1 A,  1 B

befinden. Die Superposition  α = 0 , β = 0 ist ein Beispiel für einen verschränkten Zustand. 

Verschränkte Zustände spielen eine fundamentale Rolle in der Quanteninformation. Sie sind

das zentrale Hilfsmittel mit dem nicht-klassische Effekte bewirkt werden. 

Zusammengesetzte Systeme in verschränkten Zuständen sind korreliert. Wenn beim obi-

gen Zustand an den Teilsystemen jeweils die Observable  σz  gemessen wird, dann ergibt sich

immer nur die Messwertekombination ( − 1 , − 1) oder (+1 , +1). Im Gegensatz zu korrelierten

klassischen Systemen sind aber in diesem Fall die Korrelationen von anderer Struktur. Mit

ihrer Hilfe sind Prozesse möglich, die auf der Basis klassischer Korrelationen nicht möglich

sind. Wir wollen im Folgenden die entsprechenden Konzepte näher erläutern. 

8.1.1

Klassisch korrelierte Quantenzustände und LOCC

Korrelierte Quantenzustände

Wir betrachten wieder ein zusammengesetztes System  SAB

mit den Teilsystemen  SA  und  SB. Zu irgend zwei (voneinander unabhängigen) Zuständen  ρA

und  ρB  gibt es immer einen Zustand ˆ

 ρAB, so dass  ρA = tr B[ ˆ

 ρAB] und  ρB = tr A[ ˆ

 ρAB] gilt. 

Der Produktzustand ˆ

 ρAB =  ρA ⊗ ρB  erfüllt diese Forderung. Nach Konstruktion liefern Mes-

sungen an den Teilsystemen stets voneinander unabhängige Messwerte. Umgekehrt wollen

wir Zustände  ρAB, die keine Produktzustände sind

 ρAB =  ρA ⊗ ρB , 

(8.1)

 korreliert (correlated) nennen. 
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Diese mathematische Charakterisierung ist äquivalent zu einer operationalen Aussage über

Messwerte, die im Prinzip durch Messungen an den Teilsystemen überprüft werden kann

(vergl. Abschn. 7.3.3): Ein Zustand  ρAB  ist genau dann korreliert, wenn es Observablen  CA

und  DB  gibt, für die der Erwartungswert von  CA ⊗ DB – gewonnen über die Produkte der

zusammengehörigen Messergebnisse an  SA  und  SB – sich nicht als Produkt der Erwartungs-

werte der reduzierten Dichteoperatoren ergibt. (vergl. Übungsaufgabe ÜA. 1 in Abschn. 8.7). 

Klassisch korrelierte Quantenzustände

Nach dieser allgemeinen Charakterisierung von

Korreliertheit wollen wir einen speziellen Typ von Korrelationen beschreiben. Wir gehen dazu

nicht wie oben von den Messwerten, sondern vom Präparationsverfahren aus. 

Das Gesamtsystem  SAB  wird von Alice und Bob durch lokale Operationen (das sind uni-

täre dynamische Entwicklung, Messungen und alle anderen Manipulationen mit lokalen Hilfs-

mitteln) und klassische Kommunikation präpariert werden. Man kürzt „local operations and

classical communication“ mit  LOCC  ab. Hierzu präpariert Alice am System  SA  den Zustand

 ρA

 r  und teilt das Bob über klassische Kommunikationskanäle mit, der seinerseits  ρB

 r  präpariert. 

Dies wird häufig für unterschiedliche  r  in zufälliger Weise unter Einhaltung der relativen Häu-

figkeiten  pr  wiederholt. Der präparierte Gesamtzustand  ρAB  ist dann nach Konstruktion eine

Konvexkombination bzw. ein statistisches Gemisch (Gemenge) von Produktzuständen

 m



 ρAB =

 prρA ⊗ ρB . 

 r

 r

(8.2)

 r=1

Die klassische Kommunikation wird dabei von Alice und Bob dazu verwendet, um ihre loka-

len Aktionen zu korrelieren. Eine solche Prozedur könnte genauso mit klassischen Zuständen

durchgeführt werden. Der Vergleich mit Gl. (8.1) zeigt, dass der resultierende Zustand  ρAB

korreliert ist, wenn sich die Summe nicht auf einen Term reduziert. Da die Korrelationen

durch LOCC mit den Wahrscheinlichkeiten  {pr}  rein klassisch bewirkt werden, nennt man

einen Quantenzustand  ρAB, der sich in Form (8.2) schreiben lässt,  klassisch korreliert (clas-

sically correlated). Wir notieren noch, dass man nach Einführung von Ensemblezerlegungen

für alle  ρA

 r  und  ρB

 r  den Dichteoperator auch in der Form



 ρAB =

 πj|aAaA| ⊗ |bBbB|

 j

 j

 j

 j

(8.3)

 j



mit 0  ≤ πj ≤  1 und

 π

 j

 j = 1 schreiben kann. Die beteiligten Zustände müssen dabei nicht

orthogonal sein. 

Wie beim Übergang von Gemenge zu Gemisch lösen wir uns wieder vom speziellen vom

Präparationsverfahren. Ein Quantenzustand  ρAB  wird auch dann als klassisch korreliert be-

zeichnet, wenn er nicht in dem oben beschriebenen Präparationsverfahren erzeugt worden ist. 

Es reicht, dass er durch einen in dieser Weise präparierten Zustand in jeder Hinsicht simuliert

werden kann, dass also seine statistischen Eigenschaften durch einen LOCC-Mechanismus

reproduziert werden können. Mathematisch bedeutet das, dass  ρAB  sich in der Form (8.3)

schreiben lässt. 

Eine allerdings begrenzte Analogie zu korrelierten klassischen Systemen ist offensichtlich. 

Wir betrachten das Beispiel, dass in die Kisten von vielen Kistenpaaren mit der Wahrschein-

lichkeit  p 1 entweder je eine rote oder mit der Wahrscheinlichkeit  p 2 je eine blaue Kugel gelegt
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wird ( p 1 +  p 2 = 1). Wenn die Kisten geöffnet werden, stellt man eine Korrelation fest, die der

Korrelation bei der Messung der Spinkomponenten in  z-Richtung im klassisch korrelierten

Quantenzustand

 ρAB

=

 p 1 | 0 A,  0 B 0 A,  0 B| +  p 2 | 1 A,  1 B 1 A,  1 B|

=

 p 1 | 0 A 0 A| ⊗ | 0 B 0 B| +  p 2 | 1 A 1 A| ⊗ | 1 B 1 B|

(8.4)

entspricht. Wenn man beim klassisch korrelierten Zustand (8.4) am Teilsystem  SA  eine Mes-

sung in der Rechenbasis durchführt, dann führt sie mit der Wahrscheinlichkeit  p 1 auf den

Zustand  | 0 A  und  SB  befindet sich nach der Messung in dem zu  | 0 A  korrelierten Zustand

 | 0 B. 

Man sollte aber die Bezeichnung „klassisch korreliert“ für Quantensysteme nicht physika-

lisch überinterpretieren. Anders als in der klassischen Physik kann man in der Quantenphysik

in gedrehten Basen messen. Eine Messung am Zustand  ρAB  von Gl. (8.4) mit  p 1 =  p 2 = 12 in

der Basis  {| 0 A, | 1 A}

 

 x

 x

mit dem Endzustand  | 0 A

 x

für  SA  führt auf

 ρAB → ρAB =  | 0 A 0 A| ⊗  1  B . 

 x

 x

(8.5)

2 

Der Zustand von  SB  ist ein maximal gemischter Zustand. Die Zustände von  SA  und  SB  sind

nach dieser Messung nicht korreliert. Dass  ρAB  von Gl. (8.4) klassisch korreliert ist, besagt

nur, dass man  ρAB  durch LOCC präparieren kann, und dass man eine spezielle Messung

finden kann (in diesem Fall die Messung in der Rechenbasis), nach der die Zustände der

Teilsysteme korreliert sind. 

8.1.2

Separabilität und Verschränkung

Es hat sich als sinnvoll erwiesen, die folgenden Begriffe einzuführen. Ein Zustand  ρAB  ei-

nes zusammengesetzten Systems  SAB  heißt  separabel (separable) genau dann, wenn er in der

Form (8.2) einer Konvexkombination von Produktzuständen geschrieben werden kann. Ein se-

parabler Zustand ist somit klassisch korreliert oder gar nicht korreliert ( m = 1). Einen reinen

oder gemischten Quantenzustand, der nicht separabel ist, nennen wir  verschränkt (entangled). 

 Ein verschränkter Quantenzustand enthält daher nicht-klassische Korrelationen, die auch

Quantenkorrelationen  (quantum correlations) oder  EPR-Korrelationen1  (EPR correlations)

 genannt werden. Darin liegt seine große physikalische Bedeutung. 

Das Präparationsverfahren LOCC führt auf separable Zustände.  Verschränkte Zustände

 können nicht durch LOCC erzeugt werden.  Man kann diese Charakterisierung auch als eine

äquivalente Definition von Verschränkung nehmen. 

Es ist ein wichtiges Charakteristikum der Quantenphysik verglichen mit der klassischen

Physik, dass nicht alle Korrelationen klassisch sein müssen. Das sieht man unmittelbar am

Beispiel der reinen Zuständen in  HA ⊗ HB. Wir haben in Abschn. 4.1.3 gesehen, dass der

Dichteoperator eines reinen Zustands  |ψAB  nicht in eine konvexe Summe zerlegt werden

1Das Akronym EPR kürzt die Namen A. Einstein, B. Podolsky und N. Rosen ab. Diese Personen haben in einer

bedeutenden Arbeit [EPR 35] den Anstoß zu solchen Überlegungen gegeben, wie wir sie insbesondere in Kap. 10

durchführen wollen. Die Bezeichnung EPR hat sich allerdings in der Zwischenzeit weitgehend von dieser Arbeit ge-

löst und charakterisiert z. B. die Korrelationen, die an verschränkten Systemen gemessen werden, und die zugehörigen

Experimente. EPR ist daher heute eine systematische Bezeichnung und kein historischer Verweis. 
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kann. Damit kann er nicht wie in Gl. (8.2) klassisch korreliert sein.  Wenn ein reiner Zustand

 kein Produktzustand ist

 |ψAB =  |φA ⊗ |χB

(8.6)

 und somit die Bedingung (8.1) für Korreliertheit erfüllt, ist er verschränkt und damit nicht-

 klassisch korreliert.  Das heißt, er muß einen neuen Typ von Korrelationen enthalten, der bei

klassischen Systemen nicht auftritt. Wir werden die weitreichenden physikalischen Konse-

quenzen noch ausführlich diskutieren. 

8.1.3

Das Separabilitätsproblem

Da Verschränkung als Hilfsmittel eine große Rolle spielt, ist es eine wichtige Aufgabe, Kri-

terien zu entwickeln, mit deren Hilfe abgelesen werden kann, ob ein gegebener Zustand ver-

schränkt ist. Für reine Zustände von 2-Teile-Systemen ist das einfach.  Der Zustand |ψAB ist

 genau dann separabel, wenn er von der Form |ψAB =  |φA⊗|χB ist, d.h wenn jeder seiner

 beiden reduzierten Dichteoperatoren ein reiner Zustand ist.  Wir werden in Abschn. 8.2 mit der

Schmidt-Zerlegung ein weiteres Kriterium kennelernen, das auch auf ein Maß für Verschrän-

kung führt. Mit Hilfe der Quantenentropie der Teilsysteme werden wir in Abschn. 8.2.3 das

heute allgemein akzeptierte Maß für die Verschränkung reiner Zustände von 2-Teile-Systemen

einführen. 

Für gemischte Zustände ist die Situation schwieriger. Wir verdeutlichen das an einem Bei-

spiel. Die Bell-Zustände von Gl. (7.11) sind verschränkte reine Zustände. Das kann man nach

dem oben angegebenen Kriterium unmittelbar an den reduzierten Dichteoperatoren ablesen, 

die gleich 12 sind. Durch Mischen der verschränkten (!) Zustände  |Φ AB

+    und  |Φ AB



 −   mit

gleichen Wahrscheinlichkeiten entsteht der Zustand

1

 ρAB =

( |Φ AB

+  Φ AB

+  | +  |Φ AB

2

 − Φ AB

 − |)  . 

Wenn man die Definitionen der Bell-Zustände einsetzt, ergibt sich

1

 ρAB

=

( | 0 A,  0 B 0 A,  0 B| +  | 1 A,  1 B 1 A,  1 B|) 2

1 



=

 √ | 0 A 0 A| ⊗ | 0 B 0 B| +  | 1 A 1 A| ⊗ | 1 B 1 B| . 

(8.7)

2

Der Zustand  ρAB  ist vom Typ (8.2) und daher nicht verschränkt. Es ist möglich ihn alternativ

auch allein durch LOCC zu präparieren. 

Ein gegebener Dichteoperator hat unendlich viele Ensemblezerlegungen. Wenn eine dar-

unter die Form (8.2) hat, ist der Zustand separabel, sonst ist er verschränkt. Eine Aussage

hierüber, die sich ja auf alle möglichen Ensemblezerlegungen beziehen muß ist bis heute nicht

befriedigend möglich. Das entsprechende Forschungsprogramm wird das  Separabilitätspro-

 blem (separability problem) genannt: Ist ein durch einen Dichteoperator gegebener Zustand

eines zusammengesetzten Quantensystems separabel oder nicht? Allgemein anwendbare Maß

für die Verschränkung von Gemischen existieren ebenfalls bisher nicht. Wenn ein System aus

mehr als zwei Teilen besteht, ist die Situation noch komplizierter. 
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Eine andere Aufgabe ist es, ein Maß für die Korreliertheit von zwei Teilsystemen anzu-

geben. Wir werden den Korreliertheitsgrad in Kap. 6 mit Hilfe der von-Neumannschen wech-

selseitigen Entropie (bzw. Information) beschreiben. Dies ist ein weiter Themenkreis, in dem

Entropie eine wichtige Rolle spielt. 

8.2

Verschränkte reine Zustände

8.2.1

Schmidt-Zerlegung

Für die Diskussion der Verschränkung reiner Zustände  |ψAB  von 2-Teile-Systemen hat sich

die  Schmidt-Zerlegung (Schmidt decomposition) als besonders hilfreich erwiesen. Sie wird

auch  bi-orthogonale oder polare Zerlegung (bi-orthogonal or polar expansion) des Vektors

 |ψAB  genannt. Sie besagt das Folgende:

 |ψAB sei ein normierter Zustand des zusammengesetzten Systems SAB im Produkt-

 Hilbert-Raum HAB =  HA ⊗ HB mit  dim  HA =  a und  dim  HB =  b. Mit ρAB =

 |ψABψAB| sind ρA =  trB[ ρAB]  und ρB =  trA[ ρAB]  die reduzierten Dichteoperatoren der Teilsysteme SA und SB. Dann gilt:

(i)  Der Vektor |ψAB kann in Form der  Schmidt-Zerlegung2

 k

  √

 |ψAB =

 pn|uA, wB

 n

 n

mit  pn >  0

(8.8)

 n=1

 geschrieben werden, wobei {|uA

 }

 n

 (bzw. {|wB

 n

 ) die orthonormierten Eigenvektoren von

 ρA in HA (bzw. ρB in HB) mit geeignet gewählten Phasen sind. Für paarweise verschie-

 dene pn sind die Vektoren |uA

 

 n

 und |wB

 n

 bis auf eine Phase eindeutig bestimmt. Daraus

 folgt:

(ii)  ρA und ρB haben dieselben nicht verschwindenden positiven Eigenwerte p 1 ,...,pk mit

 k≤ min (a,b) (bei g-facher Entartung wird der entsprechende Eigenwert g-fach wieder-

 holt). 

Die Zahl  k  heißt der  Schmidt-Rang (Schmidt rank) von  |ψAB. 

Zum Beweis zerlegen wir  |ψAB  nach den ONB  {|cA}  bzw.  {|dB}  von  HA  bzw.  HB

 l

 i

 a,b



 |ψAB =

 ali|cA, dB

 l

 i

(8.9)

 l,i=1

und führen wieder die relativen Zustände

 a



 | ˜

 wB =

 a

 

 l

 li|dB

 i

(8.10)

 i=1

2E. Schmidt, Math. Ann. 63,433 (1906). 
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ein:

 a



 |ψAB =

 |cA, ˜

 wB . 

 l

 l

(8.11)

 l=1

Die relativen Zustände  | ˜

 wB  sind i. a. weder orthogonal noch normiert. Wir zeigen wie die für

 l

Gl. (8.8) behauptete Orthogonalität erreicht werden kann. 

Dazu wählen wir als ONB  {|cA}  in Gl. (8.9) speziell die orthonormalen Eigenvektoren

 l

 {|uA}

 n

von  ρA  und zerlegen  ρA

 a



 a



 ρA =

 pn|uAuA|

 p

 n

 n

mit  pn ≥  0  , 

 n = 1 . 

(8.12)

 n=1

 n=1

Es sei  pn >  0 für 0  ≤ n ≤ k  und  pn = 0 für  k + 1  ≤ n ≤ a. Die Vektoren  |uA

 n

sind nur

bis auf einen Phasenfaktor festgelegt. Andererseits gilt mit den zu  {|uA}

 n

relativen Zustände

 {| ˜

 wB}

 n

 ρA

=

tr B[ |ψABψAB|]

 a



=

tr B[

 |uAuA| ⊗ | ˜

 wB ˜

 wB|] =

 l

 n

 l

 n

 l,n=1

 a



=

 |uAuB|

  ˜

 wB|] =

 l

 n  tr B [ | ˜

 wB

 l

 n

 l,n=1

 a



=

  ˜

 wB| ˜

 wB|uAuA|

 n

 l

 l

 n

(8.13)

 l,n=1

wobei im letzten Schritt

 b



tr B[ | ˜

 wB ˜

 wB|] =

 dB| ˜

 wB ˜

 wB|dB

 l

 n

 i

 l

 n

 i

(8.14)

 i=1

 b



=

  ˜

 wB|dBdB| ˜

 wB =   ˜

 wB| ˜

 wB

 n

 i

 i

 l

 n

 l

(8.15)

 i=1

eingesetzt wurde. Der Vergleich von (8.12) mit (8.13) führt auf die Orthogonalität:

  ˜

 wB| ˜

 wB =  p

 n

 l

 nδnl

 i, k = 1  . . . n

(8.16)

Für  n ≥ k + 1 sind die  | ˜

 wB

 n

Nullvektoren. Damit ist die Behauptung von (i) bewiesen. (ii) ist

eine direkte Folge. 

Mit Gl. (8.16) reduziert sich die Summe in Gl. (8.13) auf

 k



 ρA =

 pn|uAuA| . 

 n

 n

(8.17)

 i=1
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Die  {pn}  heißen  Schmidt-Koeffizienten. Wir ergänzen noch, dass auch der reduzierte Dichte-

operator  ρB  die  pn  als Eigenwerte hat

 k



 ρB =

 pn|wBwB| . 

 n

 n

(8.18)

 n=1

 Das hat unmittelbar zur Folge, dass jede Funktion eines Dichteoperators, die nur von seinen

 Eigenwerten abhängt, für beide reduzierten Dichteoperatoren denselben Wert hat. Die von-

Neumann-Entropie, die wir in Kap. 6 eingeführt haben, ist ein Beispiel. 

Ein Schmidt-Zerlegung bezieht sich immer auf einen bestimmten reinen Zustand ei-

nes zusammengesetzten Systems. Verschiedene Zustände haben verschiedene Schmidt-

Zerlegungen. Im allgemeinen kann die Schmidt-Zerlegung nicht auf Systeme mit mehr als

zwei Teilsystemen ausgedehnt werden. Etwas ähnliches wie die Schmidt-Zerlegung gibt es

für Gemische nicht. 

8.2.2

Schmidt-Zahl und Verschränkung

Wir wollen einige Beispiele für die Nützlichkeit der Schmidt-Zerlegung geben. { |uA

 n } bzw. 

{ |wB

 n } mit  n = 1 , ...., k  heißen  Schmidt-Basen  von  HA  bzw.  HB . In ihnen sind die beiden reduzierten Dichteoperatoren diagonal. Die  Schmidt-Zahl k  ist die Zahl der nicht verschwindenden Schmidt-Koeffizienten.  |ψAB ist genau dann ein Produktzustand und damit nicht ver-

 schränkt, wenn die Schmidt-Zahl gleich Eins ist. ρA und ρB habe dann den Rang Eins. Das

 ist gleichbedeutend mit tr[( ρA)2] =  tr[( ρB)2] = 1 Ob ein reiner Zustand  |ψAB  verschränkt ist oder nicht, lässt sich somit direkt an dem reduzierten Dichteoperator eines Teilsystems

ablesen. Die Schmidt-Zahl kann als ein  Maß für die Verschränkung  dienen. Darin liegt ihre

hauptsächliche Bedeutung. Weiterhin können wir direkt ablesen: Wenn einer der reduzierten

Dichteoperatoren einen reinen Zustand beschreibt, dann tut es auch der andere.  Wenn sich das

 Gesamtsystem SAB in einem reinen Zustand |ψAB befindet ist es daher unmöglich, dass ei-

 nes der Untersysteme sich in einem reinen Zustand befindet und das andere in einem echten

 Gemisch.  Wir werden diese Aussage noch verallgemeinern. 

Ähnlich finden wir: Wenn ein Qubit-System mit einem System mit  m  linear unabhängi-

gen Zuständen verschränkt ist, dann besteht die Schmidt-Zerlegung nur aus zwei Termen. In

Rechnungen ist es oft geschickt diese Schmidt-Basis einzuführen.  Allgemein gilt der Satz:

 Wenn ein Teilsystem die Dimension d hat, dann kann es mit nicht mehr als d orthogonalen

 Zuständen eines anderen Systems verschränkt werden. 

Wenn  ρA  und damit auch  ρB  als einzige entartete Eigenwerte allenfalls die Null haben, 

dann ist die Schmidt-Zerlegung durch  ρA  und  ρB  eindeutig festgelegt. Man bestimmt dazu die

Eigenzustände von  ρA  und  ρB  und bildet das Produkt der Zustände zum gleichen Eigenwert

wie in Gl. (8.8). 

Wir geben ein Beispiel für Entartung an. Der Bell-Zustand

 |

1

Ψ AB

 −  =  √ ( | 0 A,  1 B − | 1 A,  0 B)

(8.19)

2

ist wie alle anderen Bell-Zustände verschränkt. Die zugehörigen Basen in  HA  bzw.  HB  sind

z. B.  {| 0 A, | 1 A}  und  {| 1 B, −| 0 B}. Der Zustand  |Ψ AB

 −   weist eine sphärische Symmetrie









136

 8

 Verschränkung

auf, denn man bestätigt leicht, dass

 |

1

Ψ AB

 −  =  √ ( | 0 A,  1 B − | 1 A,  0 B)

 r

 r

 r

 r

(8.20)

2

gilt, wobei  | 0 r  und  | 1 r  die Eigenvektoren von r σ zu beliebigem Bloch-Vektor r sind (vergl. 

Gl. (3.31)). Dies demonstriert, dass in diesem Fall die Schmidt-Zerlegung nicht eindeutig ist. 

Wenn mehrere  pn  in Gl. (8.8) übereinstimmen, können die entsprechenden Vektoren  |uA, wB

 n

 n

durch Linearkombinationen ersetzt werden. Dem entspricht es, dass für  |Ψ AB

 −   die Eigenvek-

toren der reduzierten Dichteoperatoren

1

 ρA =  ρB =

(8.21)

2 

nicht festgelegt sind. 

Purifizierung

Der folgende Hilfssatz ist nützlich:  Für jedes System mit Dichteoperator ρA

 aus HA existiert ein reiner Zustand |φAB aus HA⊗HB, so dass ρA der zugehörige reduzierte

 Dichteoperator ist:

 ρA = tr A[ |φABφAB|]  . 

(8.22)

Zum Beweis betrachten wir die ONB  {|uA}

 n

, in der  ρA  diagonal ist:

 a



 ρA =

 pn|uAuA| . 

 n

 n

(8.23)

 n=1

Gemäß Schmidt-Zerlegung ist dann

 a

  √

 |φAB =

 pn|uA, wB

 n

 n

(8.24)

 n=1

mit irgendeiner ONB  {|wB}

 n

eine mögliche Purifizierung. Andere Purifizierungen gehen

durch unitäre Transformationen dieser Basis daraus hervor.Dies macht noch einmal deutlich, 

dass es zur Bildung der Teilspur keine eindeutige Umkehrung gibt. Es gibt unendlich viele

Gesamtsysteme  SAB, die im Zustand  SA übereinstimmen. 

8.2.3

Entropie der Teilsysteme als Maß für Verschränkung

Reine Zustände eines 2-Teile-Systems  SAB  sind entweder in einem Produktzustand, dann

sind die Teilsysteme nicht korreliert, oder sie sind verschränkt, dann sind sie EPR-korreliert. 

Korrelationen können in diesem Fall nur nicht-klassisch sein. Wir bezeichnen die Entropie

des Gesamtsystems mit  S( AB) und die mit den reduzierten Dichteoperatoren  ρA = tr B[ ρAB]

und  ρB = tr A[ ρAB] gebildeten Entropien der Teilsysteme mit  S( A) und  S( B). Da wir nur reine Zustände betrachten liegt stets die maximale Information über den Gesamtzustand vor. 

 S( AB) = 0  . 

(8.25)
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Bei einem Produktzustand liegt auch über den Zustand der Teilsysteme die maximale In-

formation vor

 S( A) =  S( B) = 0  . 

(8.26)

Demgegenüber sind z. B. die Dichteoperatoren der Bell-Zustände völlig strukturlos

1

 ρA =  ρB =

 . 

(8.27)

2 

Die Teilsysteme sind in diesem Fall maximal gemischt und maximal unbestimmt

 S( A) =  S( B) = 1  . 

(8.28)

Die Entropie (Unbestimmtheit des Zustands) der Teilsysteme ist ein Maß für die – vergli-

chen mit dem reinen Zustand – fehlende Information. Wenn man nur die Teilsysteme betrach-

tet, verliert man umsomehr Information über den Gesamtzustand, je mehr Informationen in

den Korrelationen zwischen den Teilzuständen enthalten ist. Je größer daher die Entropie der

Zustände der Teilsysteme ist, umso stärker ist der reine Zustand des Gesamtsystems korreliert

und damit verschränkt.  Wir nehmen daher bei einem reinen Zustand |ψAB des Gesamtsys-

 tems den Wert E( ψ)  der Entropie der Teilsysteme

0  ≤ E( ψ) :=  S( A) =  S( B)  ≤  1

(8.29)

 als Maß für die Verschränktheit des Zustandes. E( ψ) heißt auch  Entropie der Verschrän-

 kung (entropy of entanglement). Diese Quantifizierung der Verschränkung gilt nur für reine

Gesamtzustände. Für gemischte Zustände gibt es eine Reihe von Vorschlägen für Verschrän-

kungsmaß, die im Spezialfall reiner Zustände von 2-Teile-Systemen mit  E( ψ) übereinstim-

men (vergl. Abschn. 8.6). 

Die Entropie der Verschränkung hängt nur von den Schmidt-Koeffizienten ab. Sie ist basi-

sunabhängig und ändert sich nicht unter lokalen unitären Transformationen. Mit  |ψAB =

 U A ⊗ U B|ψAB  gilt  E( ψ) =  E( ψ). Zustände in  Hd ⊗ Hd  für die  E( ψ) = log  d  mit d = dim  H  gilt, heißen  maximal verschränkt (maximally entangled). Bell-Zustände sind hierfür ein Beispiel. 

8.2.4

Teilsysteme in reinen Zuständen sind total isoliert

Wir beweisen einen Satz für Gemische, den wir für reine Zustände von  SAB  oben schon

erwähnt haben:  Wenn bei einem 2-Teile-System SAB, das sich in einem gemischten Zustand

 ρAB befindet, der reduzierte Dichteoperator ρA eines Teilsystems SA der eines reinen Zu-

 stands ist, dann ist ρAB separabel.  Da wir eine Aussage über Gemische anstreben, ist zum

Beweis dieses Satzes ein Rückgriff auf die Schmidt-Zerlegung nicht möglich. 

Wir diskutieren zunächst den Fall, dass  ρA  ein Gemisch ist.  ρA  ist ein positiver Operator. 

Er lässt sich nach seinen orthonormalen Eigenzuständen zerlegen, die wir zu einer ONB  |uA

 n

ergänzen





 ρA =

 rn|uAuA| , 

 r

 n

 n

 n = 1  , 

 rn ≥  0  . 

(8.30)

 n

 n
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Entsprechendes gilt für  ρAB





 ρAB =

 sq|ψABψAB| , 

 s

 q

 q

 q = 1  , 

 sq >  0  . 

(8.31)

 q

 q

Es ist rechentechnisch günstig, die Eigenvektoren  |ψAB

 q

mit Hilfe der jeweiligen Relativ-

( q) B

zustände  | ˜

 wn

   zu  |uA

 n

zu schreiben (vergl. Abschn. 7.3.5). Um die Rechnung übersichtlich

zu gestalten, werden wir weitgehend auf die Indizes  A  und  B  sowie auf die Tilde verzichten. 

Wir erhalten



 |ψAB =  |ψ

 |u

 

 q

 q  =

 n, w( q)

 n

(8.32)

 n

und damit



 ρAB

=

 sq|un , w( q) u

 |

 n

 m, w( q)

 m

 q,n,m





=

 |unum| ⊗

 sq|w( q) w( q) | . 

 n

 m

(8.33)

 n,m

 q

Dies ist im allgemeinen kein separabler Zustand. Für den reduzierten Dichteoperator  ρA  des

Teilsystems  SA  folgt





 ρA = tr B[ ρAB] =

 |unum|

 sqw( q) |w( q)  . 

 m

 n

(8.34)

 n,m

 q

Bei der Spurbildung mit der ONB  {|vi}  von  HB  haben wir von der Relation

 



 sqvi|w( q) w( q) |v

 s

 |w( q) 

 n

 m

 i =

 q w( q)

 n

 m

(8.35)

 i

 q

 q

Gebrauch gemacht. 

Mit Gl. (8.30) und (8.34) ergeben sich die Matrixelemente von  ρA  als



 

( q)

( q)

 uk|ρA|ul =  rkδkl =

 sqw

 |w  . 

(8.36)

 l

 k

Wenn speziell  rk = 0 ist, dann gilt



(

 s

 q)

 q ||w

 || = 0

(8.37)

 k

 q

und mit  sq >  0

 || (

(

 w q) || = 0  , 

 |w q)  = 0

(8.38)

 k

 k

für alle  q. 

Mit diesem Ergebnis kehren wir zum Ausgangsproblem zurück.  ρA  soll ein reiner Zustand

sein. Ohne Einschränkung setzen wir

 ρA =  |u 1 u 1 | . 

(8.39)
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( q)

Dann gilt  rn=1 = 0 und damit  |wn=1  = 0 . Einsetzen in Gl. (8.33) führt auf



(

(

 ρAB =  |u

 q)

 q)

1 u 1 | ⊗

 sq|w 1  w 1  | . 

(8.40)

 q

Der Dichteoperator  ρAB  ist also separabel. Das ergibt das bemerkenswerte physikalische Er-

gebnis:  Wenn ein System in einem reinen Zustand ist, kann es nicht mit einem anderen System

 verschränkt sein.  Es existieren keine Korrelationen zwischen diesem System und irgendeinem

anderen System. Es ist total isoliert. 

Die Postulate aus Abschn. 2.1 beziehen sich auf reine Zustände. Die durch diese Pos-

tulate beschriebenen Systeme sind daher notwendigerweise auch gegen EPR-Korrelationen

isoliert. Wir notieren noch eine weitere Folge: Eine Messung an einem Teilsystem mit nicht-

entartetem Messwert überführt dieses Teilsystem in einen reinen Zustand.  Daher durchbricht

 diese projektive Messung die Verschränkung mit anderen Teilsystemen unabhängig davon, ob

 das Gesamtsystem vorher in einem gemischten oder in einem reinen Zustand war.  Wieder

erwiest sich eine projektive Messung als ein i.a. starker Eingriff. 

8.3

Erzeugung verschränkter Zustände

Die Erzeugung von verschränkten Zuständen ist vom theoretischen Standpunkt aus sehr ein-

fach. Ein zusammengesetztes System, das aus zwei Teilsystemen bestehen soll, möge sich

zum Zeitpunkt  t 0 in einem Produktzustand

 |ψAB =  |φA ⊗ |χB

(8.41)

befinden. Wenn das System für  t > t 0 eine dynamische Entwicklung mit einem unitären

Operator  U AB  erfährt, der kein Produktoperator ist

 U AB =  U A ⊗ U B , 

(8.42)

– dies ist der Normalfall – dann geht es dabei in einen verschränkten Zustand über. In diesem

Sinne ist Verschränktheit der „Normalzustand„. Tatsächlich erfordert die gezielte Produktion

wohlbestimmter verschränkter Zustände (wie z. B. der Bell-Zustände) für vorgegebene Sorten

von Quantenobjekten (wie z. B. Photonen) experimentellen Aufwand. 

Kaskaden-Photonen

Es gibt heute eine Reihe experimenteller Möglichkeiten, verschränkte

Zustände im Labor zu erzeugen. Wir wollen exemplarisch ein Beispiel diskutieren. Für den

Nachweis von Korrelationen sind die Polarisationen von Photonenpaaren besonders geeignet, 

da Photonen ohne Störung über Labordistanzen und noch größere Entfernungen propagie-

ren. Wir schildern eine Quelle für Verschränkung, die im optischen Bereich arbeitet. Weitere

Einzelheiten finden sich in den Literaturangaben in Abschn. 8.6. 

Ein Atom geht in zwei aufeinander folgenden Übergängen in einer  Kaskade (cascade) aus

einem angeregten Zustand über einen Zwischenzustand in den Grundzustand über. Eine solche

Kaskade kann z. B. mit Kalziumatomen realisiert werden (vgl. Abb. 8.1). Die beiden emittier-

ten Photonen haben die Wellenlängen  λA = 551 ,  3 nm bzw.  λB = 422 ,  7 nm. Sie werden
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i.a. nicht in entgegengesetzten Richtungen davonfliegen. Man beschränkt sich im Experiment

aber auf Paare, bei denen z. B. das Photon mit Wellenlänge  λA  in positiver und das mit Wel-

lenlänge  λB  in negativer  z-Richtung fliegt. Da bei dem  J = 0  → J = 1  → J = 0 Übergang sich der Gesamtdrehimpuls  J  nicht ändert, müssen diese Photonen zirkular polarisiert sein

und entgegengesetzten Drehimpuls haben. Aus den Einzelheiten des atomaren Zerfalls folgt

weiterhin, dass der Gesamtzustand der beiden Photonen gerade Parität haben muss. Diese

beiden Bedingungen sind vom Zustand des 2-Photonen-Systems zu erfüllen. 

Wir haben in Abschn. 3.6 gesehen, dass die rechts- und linkspolarisierten Zustände bei

vorgegebener Ausbreitungsrichtung k eine Basis im Hilbert-Raum  H 2 der Polarisationen bil-

den. Für das Photonenpaar sind also  |RA, RB, |RA, LB, |LA, RB, |LA, LB  eine Basis des

Produktraumes  HA ⊗ HB, Mit A und B bezeichnen wir dabei die positive bzw. negative  z-

Richtung in der die einzelnen Photonen fliegen. Der Wellenvektor k ist also in einem Fall

proportional zu e z  und im anderen zu  −e z. Wegen des verschwindenden Gesamtdrehimpul-

ses kann der 2-Photonen-Zustand nur eine Linearkombination aus  |RA, RB  und  |LA, LB

sein (vergl. Abb. 8.2)

 |φAB =  α|RA, RB +  β|LA, LB . 

(8.43)

Aus der Physik des atomaren Übergangs kommt eine weitere Forderung hinzu: Der 2-

Photonen-Zustand muß gerade Parität haben, Das heißt, wenn man Rechtshändigkeit mit

Linkshändigkeit vertauscht, muß er in sich selbst übergehen. Das ist offenbar nur möglich

für eine spezielle Wahl von  α  und  β:





 |

1

Φ AB

+   =  √

 |RA, RB +  |LA, LB . 

(8.44)

2

Der 2-Photonen-Zustand ist daher auf Grund der Symmetrien des Erzeugungsprozesses, die

er widerspiegeln muß, ein Bell-Zustand. 

Die Verschränktheit wird plausibel, wenn man berücksichtigt, dass der intermediäre Zu-

stand mit  J = 1 entartet ist. Der Grundzustand kann daher über zwei verschiedene Zwischen-

zustände erreicht werden (vgl. Abb. 8.1). Beide „Wege“ sind möglich. In Analogie zu den

„Wegen“ beim Doppelspalt interferieren die resultierenden Zustände. Dabei werden auf dem

einen „Weg“ zwei rechtszirkular polarisierte Photonen emittiert und auf dem anderen zwei

linkszirkulare. Diese Korrelation führt zusammen mit der Superposition auf Verschränkung. 

 J = 0

 J = 0

 λ

 LA

 RA

 A = 551 nm

 J = 1

 J = 1

 λB = 423 nm

 LB

 RB

 J = 0

 J = 0

Abbildung 8.1: Übergangsschema der Kaskaden-Photonen. 
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 x

 |RB

 |RA

 λ

 B

 B

 λ

 z

 A

 A
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 x

 |LB

 |LA

 λ

 B

 B

 λ

 z

 A

 A

 y

Abbildung 8.2: Polarisationen der Kaskaden-Photonen

Der Bell-Zustand  |Φ AB

+    von Gl. (8.44) gibt genau diese Entstehungssituation der Photonen-

paare wieder. 

Für spätere Zwecke rechnen wir noch auf die linearen Polarisierungen in  x-Richtung und

 y-Richtung um. Wir können hierzu Gl. (3.63) und (3.64) benutzen, müssen dabei aber die

Konvention von Abb. 8.2 bei der Ausbreitungsrichtung beachten. Wir finden

 |

1

 RA =  √ ( |xA +  i|yA)

2

 |

1

 LA =  √ ( |xA − i|yA)

(8.45)

2

 |

1

 RB =  √ ( |xB − i|yB)

2

 |

1

 LB =  √ ( |xB +  i|yB)

2

und damit für den verschränkten Zustand

 |

1

Φ AB

+   =  √ ( |xA, xB  +  |yA, yB )  . 

(8.46)

2

In unserer Rechnung war die Lage der  x-Achse und der  y-Achse nicht festgelegt. Gl. (8.46)

gilt für beliebige Orientierungen. Der Zustand  |Φ AB

+    ist rotationssymmetrisch bezglich der

 z-Achse. Wir kommen auf diesen 2-Photonen-Zustand in Kap. 10 zurück. 

8.4

Informationsübertragung mit

Überlichtgeschwindigkeit und das No-cloning-Theorem

Wir haben gesehen, dass eine Messung am Teilsystem A das Teilsystem B instantan in einen

wohlbestimmten Zustand überführt. Das Wort „instantan“ ist verführerisch. Stellen wir uns
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vor, es ist ein verschränkter reiner Zustand erzeugt worden, dessen Teilsystem  SA  sich bei

Alice befindet und dessen anderes Teilsystem  SB  sehr weit entfernt bei Bob befindet. Alice

versucht an Bob eine Information mit einem Bit zu übermitteln, indem sie wahlweise eine von

zwei nicht kommutierenden Observablen an ihrem Untersystem  SA  misst. Falls es Bob gelingt

durch Messung an seinem Untersystem  SB  diese Information auszulesen, dann wäre sie mit

Überlichtgeschwindigkeit übertragen worden und die Relativitätstheorie wäre widerlegt. 

Wir beschreiben das vorgeschlagene Verfahren im Einzelnen. Alice und Bob haben jeweils

Zugriff auf ein Photon eines polarisationsverschränkten Photonenpaars, das sich z. B. im Bell-

Zustand

 |

1

1

Ψ − =  √ ( |H, V  − |V, H) =  √ ( | −  45 ◦,  45 ◦ +  | 45 ◦, − 45 ◦) (8.47)

2

2

befindet. Alice führt eine Messung entweder in der  {|H, |V }-Basis oder in der um 45 ◦

 √

 √

gedrehten Basis mit den Vektoren  |+45 ◦ = ( |H+ |V ) /  2 und  |− 45 ◦ = ( |H−|V ) /  2

durch. Diese beiden Basissysteme sind Bob bekannt. Die Wahl der einen oder der anderen

Basis durch Alice ist die Information, die übertragen werden soll. 

In dem Augenblick, in dem Alice durch Messung mit einem Observablenoperator zu ei-

nem der beiden Basissysteme ihr Photon in einen bestimmten Zustand (z. B.  | −  45 ◦) über-

führt, geht der Zustand des Photons bei Bob in den dazu senkrechten Zustand über (im Beispiel

 | + 45 ◦). Wenn Bob die Polarisation seines Photons messen könnte, dann könnte er die Bot-

schaft von Alice lesen. Bob kann aber zur Messung nur zufällig eine der beiden Basen wählen

und es steht ihm zur Messung auch nur ein Photon zur Verfügung. Wenn Bobs Photon wie in

unserem Beispiel im Zustand  | + 45 ◦  ist und er in der Basis  {|HB, |V B}  misst kann ent-

weder der Detektor zu H-Polarisation oder der Detektor zu V-Polarisation ansprechen. Eine

einzige Messung reicht also nicht aus, um die (+45 ◦)-Polarisation mit Sicherheit zu ermitteln. 

Bob kann daher die Information nicht auslesen. Wenn Bob aber eine Maschine hätte, die viele

Kopien seines Photons herstellen kann, dann wäre eine Zustandsbestimmung und damit die

Informationsübertragung möglich. Das führt auf die Frage, ob man Quantensysteme klonen

kann. 

No-cloning-Theorem

Wir wollen beweisen, dass es keine Maschine gibt, die beliebige un-

bekannte reine Quantenzustände kopieren kann. Zunächst beschreiben wir eine andere Situati-

on, in der Kopieren möglich ist. Wir zeigen, dass es für orthogonale Zustände  | 0   und  | 1   einen hierfür angepassten Kopierer gibt. Es ist das entsprechende CNOT-Gatter aus Abschn. 7.4.1. 

Wenn das Kontroll-Qubit die Form  |ψA =  α| 0  +  β| 1   hat und  | 0 B  als Ziel-Qubit gewählt wird, dann besteht die Wirkung des CNOT-Gatters zur Basis  {| 0 , | 1 }  in

 |ψA,  0 B → |φAB =  α| 0 ,  0  +  β| 1 ,  1  . 

(8.48)

Die beiden orthogonale Zustände des Kontroll-Qubits  | 0   oder  | 1  (d. h.  β = 0 oder  α = 0) werden daher durch das dieser Basis angepasste Gatter kopiert. Bis auf diese beiden Grenzfälle

wird die Superposition  |ψA  aber auf diese Weise nicht kopiert. 

Wir wenden uns dem allgemeinen Fall zu. Ein Quantensystem  SA  ist im Zustand  |ψA. 

Dieser Zustand soll kopiert werden. Das heißt, ein zweites Quantensystem  SB, das sich zu-

nächst im Zustand  |iB  befindet, soll in den Zustand  |ψB überführt werden. Dabei kann der
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anfängliche Zustand  |iC  des Kopiersystems  SC  in einer von  |ψB  abhängigen Weise in einen

neuen Zustand  |f ( ψ) C übergehen. Die Gesamtprozedur soll universell sein, d. h. für alle Zu-

stände von  SA  soll mit der gleichen unitären Transformation  U  eine Kopie erstellt werden. 

 |ϕA  ist ein zweiter zu kopierender Zustand. Dann lautet die Forderung:

 |ψA|iB|iC

 U

 −→ |ψA|ψB|f( ψ) C

(8.49)

 |ϕA|iB|iC

 U

 −→ |ϕA|ϕB|f( ϕ) C . 

(8.50)

Die unitäre Transformation erhält das innere Produkt

 ψA|ϕA =  ψA|ϕAψB|ϕBf( ψ) C|f( ϕ) C . 

(8.51)

Wenn  |ψA  und  |ϕA  nicht orthogonal sind ( ψA|ϕA = 0) folgt

1 =  ψB|ϕBf ( ψ) C|f ( ϕ) C . 

(8.52)

Wir gehen zu Beträgen über. Da alle Zustände normiert sind mit  |ψB|ϕB| ≤  1 und

 |f( ψ) C|f( ϕ) C| ≤  1, ist

 |ψB|ϕB| = 1

d. h.  |ψA =  |ϕA

(8.53)

eine notwendige Bedingung für die Erfüllung von (8.52). Daher hat die Anlage keinen zwei-

ten zu  |ψA  nicht orthogonalen Zustand  |ϕA  kopieren können.  Es gibt keinen universellen

 Kopierer für reine Quantenzustände (No-cloning-Theorem). 

Damit misslingt auch der oben beschriebene Versuch, einen Widerspruch zwischen Rela-

tivitätstheorie und Quantentheorie zu konstruieren. Die konfliktfreie Koexistenz beider Theo-

rien ist bemerkenswert, da bei der Formulierung der Quantentheorie in der unrelativistischen

Form, wie wir sie verwenden, die Forderungen der Relativitätstheorie nicht berücksichtigt

wurden. 

8.5

Zustandsmarkierung durch Verschränkung

8.5.1

Welcher-Weg-Markierung

2-Wege-Interferometer

Wir erinnern zunächst an das in Abschn. 3.7 behandelte Mach-

Zehnder-Interferometer (vgl. Abb. (3.8)), das von einem einzelnen Quantenobjekt durchlaufen

wird. Der erste Strahlteiler dient dazu, eine symmetrische Superposition der den beiden Wegen

zugeordneten Zustände  | 0   und  | 1   zu erreichen. Das Quantensystem in diesem Zustand trifft auf einen Strahlteiler mit Phasenschieber. Hierdurch werden die komplexen Amplituden des

 | 0 - und des  | 1  -Vektors im 0-Ausgang hinter dem Strahlteiler superponiert. Ein Detektor im 0-Ausgang kann dann je nach Situation ein von der eingestellten Phasenverschiebung  α  abhängiges Interferenzbild registrieren. Genauer besagt das, dass seine Ansprechwahrscheinlichkeit

 p( α) eine Funktion von  α  sein kann. Gemäß Gl. (3.87) ergibt sie sich für einen beliebigen

einfallenden Zustand  ρ  als

 pρ( α) = tr[ ρ|αα|]

(8.54)
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mit

 |

1

 α =  √ ( | 0  +  eiα| 1 ) . 

(8.55)

2

Für einen einlaufenden reinen Zustand  |ϕ  sind Ansprechwahrscheinlichkeit und Streifenkon-

trast des Interferenzbildes in Abschn. 3.7.2 angegeben worden. Wir notieren diese Ergebnisse

noch einmal. 

Die Zuordnung eines einlaufenden Zustands  |χ  zu einem Weg ergibt sich indem man vor

Phasenschieber und Strahlteiler einen Detektor entweder in Weg 0 oder Weg 1 einschiebt. 

Bei  |χ =  | 0  (bzw.  |χ =  | 1 ) spricht nur der Detektor auf Weg 0 (bzw. auf Weg 1) an. 

Das Quantenobjekt propagiert auf dem 0-Weg (bzw. dem 1-Weg). Bei der Interpretation des

Gemischs

1

1

 ρ =

( | 0  0 | +  | 1  1 |) =

(8.56)

2

2 

als Gemenge würde das Quantenobjekt entweder auf dem Weg 0 oder auf dem Weg 1 jeweils

mit der relativen Häufigkeit 1/2 einlaufen. In all diesen Fällen tritt keine  α-Abhängigkeit und

damit keine Interferenz auf:

1

 p| 0 ( α) =  p| 1 ( α) =  pρ( α) =

(8.57)

2

Der Streifenkontrast  ν  ist

 ν| 0  =  ν| 1  =  νρ = 0 . 

(8.58)

Einem reinen Zustand  |χ, der eine Superposition von  | 0   und  | 1   ist, kann man keinen Weg mehr zuordnen. Dementsprechend tritt Interferenz auf. Der allgemeine Qubit-Vektor

 |χ(Θ , ϕ)   und der dazu senkrechte Vektor  |χ⊥(Θ , ϕ)   haben die Form (vgl. Gl. (3.88))

 |

Θ

Θ

 χ(Θ , ϕ)  = cos

 | 0  +  eiϕ  sin  | 1 

(8.59)

2

2

 |

Θ

Θ

 χ⊥(Θ , ϕ)  =  −  sin

 | 0  +  eiϕ  cos  | 1 

(8.60)

2

2

=

 |χ( π + Θ , ϕ) . 

Sie bilden eine ONB. Mit  p( α) von Gl. (3.87) folgt damit für die Ansprechwahrscheinlichkeit

des Detektors als Funktion der Phasenverschiebung

1

 p|χ( α) =

[1 + sin Θ cos( α − ϕ)]

(8.61)

2

1

 p|χ

[1  −  sin Θ cos( α − ϕ)]  . 

(8.62)

 ⊥( α)

=

2

Für den Streifenkontrast ergibt sich

 ν|χ =  ν|χ⊥ = sin Θ . 

(8.63)
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Wenn nicht speziell der Zustand  | 0   oder  | 1   einläuft, entsteht mit variierendem  α  ein Interferenzbild. 

Die Interferenzbilder zu  |χ  und  |χ⊥  sind für  ϕ =  − π 2 in Abb. (8.3) dargestellt. Man

sieht, dass sich bei Addition der Wahrscheinlichkeiten bzw. relativen Häufigkeiten die Ab-

hängigkeiten der Kurven von der Phasenverschiebung  α  gerade aufheben. Die Interferenz

verschwindet:

 p|χ +  p|χ⊥ = 1 . 

(8.64)

Diese Addition gibt die Situation wieder, die bei dem gleich gewichteten statistischen Gemisch

1

1

 ρ =

( |χχ| +  |χ⊥χ⊥|) =

(8.65)

2

2 

aus den Basiszuständen  |χ  und  |χ⊥  vorliegt. Wie in Gl. (8.57) erhalten wir  pρ = 12 . 

 p|χ( α)

 p|χ⊥( α)

 p|χ( α) +  p|χ⊥( α)

1

1

1

1 / 2

1 / 2

1 / 2

2

 α

 π

2

 α

 π

2

 α

 π

Abbildung 8.3: Die Interferenzbilder zum Zustand  |χ  und dem dazu senkrechten Zustand  |χ⊥. 

Verschränkung mit Markerzuständen

Wir betrachten als Beispiel einzelne Atome im

Atominterferometer. Die folgenden Überlegungen gelten aber allgemein. Das Atom im Qubit-

Zustand mit maximalem Streifenkontrast

 |χA =  c 0 | 0 A +  c 1 | 1 A

(8.66)

soll im Interferometer mit einem weiteren Qubit-System  SM  so in nicht-lokaler Weise wech-

selwirken, dass daraus der verschränkte Zustand

 |φAM =  c 0 | 0 A,  0 M +  c 1 | 1 A,  1 M

(8.67)

des Gesamtsystems  SAM  entsteht. Die Atomzustände  {| 0 A, | 1 A}  werden durch die zugehö-

rigen  Markerzustände {| 0 M , | 1 M }, die ebenfalls Eigenzustände zu  σz  sind, „markiert“.  SM

heißt das  Markersystem. Im vorliegenden Fall handelt es sich entsprechend der Bedeutung

von  | 0 M   und  | 1 M   um  Welcher-Weg-Marker (which-way marker). In anderen physikalischen Situationen können Marker auch innere Freiheitsgrade z. B. eines Atoms oder andere Quantenobjekte sein. 

Die Wechselwirkung zwischen  SA  und  SM , die die Markierung bewirkt, muss folgendes

erreichen





 c 0 | 0 A +  c 1 | 1 A |iM  → c 0 | 0 A,  0 M  +  c 1 | 1 A,  1 M  . 

(8.68)
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Wenn man Fragen der physikalischen Realisierbarkeit außer Acht lässt, kann eine unitäre

Transformation, die das leistet, leicht angegeben werden:

 U AB =  | 0 A 0 A| ⊗ | 0 M  0 M | +  | 1 A 1 A| ⊗ | 1 M  1 M |. 

(8.69)

Als Ausgangszustand des Marker-Systems wählen wir  |iM  = 1

 √ (0 M  +  | 1 M ).  UAB  ist

2

offenbar eine nicht-lokale Transformation. Im Spezialfall, dass das Atom auf dem Weg 0

kommt, wird der Marker in die „Position“  | 0 M   gebracht und entsprechend in die Position

 | 1 M  bei Weg 1. Nur wenn das Atom in einer Superposition einläuft, entsteht ein verschränk-

ter Zustand. 

Verlust der Interferenzfähigkeit

Was besagt die Welcher-Weg-Markierung von Gl. (8.67)

physikalisch? Wir messen am Marker-Qubit in der Rechenbasis  {| 0 M , | 1 M }  oder anders

gesagt, wir messen die  Markerobservable. Beim Messergebnis +1, das zu  | 0 M   gehört, läuft

das Atom auf dem 0-Weg weiter, bei  − 1 auf dem 1-Weg.  Messung der Markerobservablen

 bricht also die Interferenz auf und legt für das Atom einen Weg fest. 

Bemerkenswerter Weise ist es für den Verlust der Interferenzfähigkeit gar nicht nötig, 

dass am Markersystem gemessen wird. Nachdem durch Markieren der verschränkte Zustand

 |φAM  von Gl. (8.67) mit reduziertem Dichteoperator

 ρA = tr M [ ρAM ] =  |c 0 | 2 | 0 A 0 A| +  |c 1 | 2 | 1 A 1 A|

(8.70)

entstanden ist, stimmt der reduzierte Dichteoperator des Atomsystems  ρA  hinsichtlich aller

Wahrscheinlichkeitsaussagen mit Gemenge der Zustände  | 0 A  und  | 1 A überein. Die Interfe-

renz verschwindet.  Wenn man interferierende Zustände markiert, geht die Interferenzfähigkeit

 selbst dann verloren, wenn an den Markern garnicht gemessen wird. 

Die Information, die vor der Markierung im reinen Zustand  |χA  des Atoms steckte und

die das Interferenzbild bestimmt hat, ist nicht mehr im Zustand des Atoms gespeichert und

kann durch Messungen am Atom nicht abgerufen werden. Tatsächlich ist sie bei der unitären

Verschränkungsdynamik aber nicht verloren gegangen. Sie wurde als wechselseitige Informa-

tion in den Korrelationen mit dem Markersystem deponiert. Wir wollen jetzt sehen, wie man

sie dort wieder abrufen kann indem man Korrelationen misst. 

8.5.2

Quantenradieren

Wir betrachten der Einfachheit halber den Spezialfall  c 1 =  c 2 = 1

 √ . 

2





 |

1

 φAM  =

 √ | 0 A,  0 M +  | 1 A,  1 M

(8.71)

2

1

 ρA

=

 A . 

(8.72)

2 

Da der Interferenz zerstörende Einfluss der Markierung wieder beseitigt werden soll, spricht

man vom  Quantenradieren(quantum erasure). Die Überlegungen im vorigen Kapitel zu den

Basiszuständen  |χ(Θ , ϕ)   und  |χ⊥(Θ , ϕ)   mit Θ  = 0 , π  geben einen Hinweis darauf, wie man aus dem vorliegenden Gemisch  ρA  Informationen gewinnen kann.  ρA  ist in unserem Fall
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kein statistisches Gemisch (Gemenge), sondern ein reduzierter Dichteoperator eines Teilsys-

tems. Er ist aber im Hinblick auf alle denkbaren Aussagen über Messungen nicht von einem

Gemenge zu unterscheiden, das durch Mischen der Zustände  |χA  und  |χA

 ⊥  entsteht. Wenn

es nach der Markierung gelänge, erstens die Atome in die Zustände  |χA  oder  |χA

 ⊥  zu über-

führen und zweitens Atome im Zustand  |χA  von denen im Zustand  |χA

 ⊥  zu trennen, dann

würden die zugehörigen atomaren Ensemble auf die Interferenzbilder von Abb. 8.3 führen. 

Sie stimmen mit den ursprünglichen Interferenzbildern zum Zustand  |χA  bzw.  |χA

 ⊥  bis auf

eine Phasenverschiebung und möglicherweise geringeren Phasenkontrast überein. Da das Ge-

samtsystem  ρAM  in einem reinen Zustand  |φAM   vorliegt, können wir tatsächlich beide For-

derungen durch geeignete Messung am Markersystem  SM  erfüllen. Wir werden ein solches

oder ein ähnliches Verfahren noch häufiger verwenden. Es besteht allgemein darin, dass ein

System mit einem Hilfssystem verschränkt wird und dann am Hilfssystem gemessen wird, um

den Zustand des Ausgangssystems in gewünschter Weise zu manipulieren. 

Um im vorliegenden Fall Quantenradieren zu erreichen, gehen wir folgendermaßen vor:

Der verschränkte Zustand  |ψAM   von Gl. (8.67) lässt sich mit Hilfe „gedrehter“ Markerzu-

stände (vergl. Bloch-Kugel)

 |

1

Θ

Θ

Λ M (Θ , ϕ)  =  √ (cos

 | 0 M +  e−iϕ  sin  | 1 M)

(8.73)

2

2

2

 |

1

Θ

Θ

Λ M

 ⊥ (Θ , ϕ)  =  √ ( −  sin

 | 0 M +  e−iϕ  cos  | 1 M)

(8.74)

2

2

2

in der zu Gl. (8.71) völlig analogen Form

 |

1

 φAM  =  √ ( |χA, Λ M  +  |χA

 ⊥, Λ M

 ⊥ )

(8.75)

2

schreiben. Dadurch sind bei unverändertem Gesamtzustand  |φAM   die interferenzfähigen Zu-

stände  |χA  und  |χA

 ⊥  statt der Zustände  | 0 A  und  | 1 A  mit den neuen Markerzuständen ver-

schränkt. Eine Messung am Markersystem in der Basis  {|Λ M , |Λ M

 ⊥ }, die auf die Messwerte

1+ und  − 1 führen soll, überführt den Atomzustand in  |χA, wenn der Messwert +1 ein-

getreten ist, bzw. in  |χA

 ⊥  beim Messwert  − 1. Bei einer nicht-selektiven Messung führt das

resultierende statistische Gemisch  ρA  von Gl. (8.65) aber noch immer nicht auf ein Interfe-

renzbild. 

Der entscheidende zweite Schritt besteht daher in einer Selektion, also in einer Entmi-

schung des Gemisches. Betrachten wir nur die Beiträge derjenigen Atome zum Interferenz-

bild, die in der Messung mit dem Messergebnis + präpariert wurden, dann erhalten wir das

Interferenzbild von Abb. 8.3 zu  p|χ( α) von Gl. (8.61). Entsprechend finden wir nach Se-

lektion zum Messergebnis  − 1 die Interferenzkurve  p|χ⊥( α) von Gl. (8.62).  Durch selektive

 Messung in einer „gedrehten“Markerbasis wird der die Interferenz zerstörende Einfluss auf-

 gehoben. Die Interferenzkurve wird reproduziert.  Der Streifenkontrast  ν = 1 wird mit Θ =  π 2

erzielt. Für  ϕ = 0 sind dann die Markerzustände die Eigenzustände zu  σx. 

8.5.3

Tatsächlich „delayed choice“? 

Gedankenexperimente

Die Experimente, die zur „Welcher-Weg“-Markierung vorgeschla-

gen oder durchgeführt wurden, sind quantenoptische bzw. atomoptische Experimente. Wir

müssen uns hier mit Literaturhinweisen begnügen (vergl. Abschn. 8.6). 
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Ohne Anspruch auf einfache Realisierbarkeit können wir uns in Abwandlung vom oben

beschriebenen Experiment in einem Gedankenexperiment folgenden Versuchsaufbau vorstel-

len: Ein Atom durchläuft ein Atominterferometer. Im Zustand  | 0   emittiert es ein Photon mit

vertikaler Polarisation  |V M , im Zustand  | 1   mit horizontaler Polarisation  |HM . Das Photon dient als Markersystem  M . Seine beiden Polarisationszustände sind die Markerzustände. Die

von den einzelnen Atomen emittierten Photonen werden getrennt gespeichert. Es wird dafür

gesorgt, dass z. B. durch Durchnummerieren eine eindeutige Zuordnung zwischen den ein-

zelnen Photonen und Ereignissen am Atomdetektor besteht. Es wird dabei zunächst nicht an

den Photonen gemessen, sondern erst die Messung an vielen Atomen abgewartet. Ist in dieser

Situation, in der die Atome nicht mehr zur Verfügung stehen, noch Quantenradieren möglich? 

Wir kommen auf diese Frage noch zurück. 

Die in Abschn. 3.7 beschriebene Situation des Strahlteilers mit Phasenschieber hat große

Ähnlichkeit mit der physikalischen Situation hinter einem Doppelspalt, wie wir sie in Ab-

schn. 2.1.1 diskutiert haben. Der Zustand  | 0 A  bzw.  | 1 A  steht in Analogie zu dem Zustand, der vorliegt, wenn nur der erste (bzw. nur der zweite) Spalt geöffnet ist. Diese Zustände superponieren. Das Resultat wird als unterschiedlich starke Schwärzung an Orten des Schirms

beobachtet. Durch die Wegunterschiede interferieren die Zustände  | 0   und  | 1   dabei mit einer Phasenverschiebung  α. Eine mögliche Markierung könnte dann im Prinzip darin bestehen, 

dass Atome hinter Spalt 1 dazu gebracht werden, vertikal polarisierte Photonen auszusenden

und hinter Spalt 2 entsprechend horizontal polarisierte Photonen. Auch dieses Gedankenex-

periment ist zu einfach, um direkt experimentell realisierbar zu sein. Wir erwähnen es, da in

der „Welcher-Weg“-Diskussion gerne der Doppelspalt angeführt wird. Wiederum könnte man

im Prinzip zunächst alle Atome registrieren und erst dann die Polarisation der zugehörigen

Photonen bestimmen. 

Interpretation

Weil in Diskussionen zur „Welcher-Weg“-Markierung häufig Missverständ-

nisse auftauchen, wollen wir uns kritisch fragen, wie die oben beschriebene Rechnung zu

interpretieren ist. Die Markierung besteht darin, dass das Gesamtsystem  SAM  aus einem

Produktzustand in den verschränkten Zustand (8.67) überführt wird. Der Zustand  |χA  von

Gl. (8.66), der ursprünglich vorlag, hat Interferenz gezeigt. Die darin enthaltene Information

ist nach der Verschränkung in den Korrelationen gespeichert. Sie kann durch Messungen al-

lein an  SA  oder allein an  SM  nicht abgerufen werden. Wir müssen an beiden Untersystemen

messen und die Messergebnisse in Paaren zusammenfassen: am ersten Atom-Photon-Paar er-

haltene Messergebnisse, am zweiten Atom-Photon-Paar ... usw. 

Wir wollen in diesem Zusammenhang auf einen für die Interpretation wichtigen Punkt

hinweisen. Wir hatten schon in Abschn. 7.3.4 gesehen, dass es für die Korrelationen zwischen

den Messergebnissen nicht darauf ankommt, in welcher zeitlichen Reihenfolge an den Teil-

systemen gemessen wird. Das ist auch hier so. Man muss also nicht, wie oben dargestellt, 

zunächst am Markersystem messen. Man kann mit gleichem Ergebnis auch erst Detektor-

messungen an einer großen Zahl nacheinander eintreffenden Atome machen und die Ergeb-

nisse durchnummerieren. Die zugehörigen Photonen werden in diesem Gedankenexperiment

ebenfalls jeweils durchnummeriert und ohne Messung getrennt abgespeichert. Erst in einer

späteren Phase des Experiments werden dann die Photonen mit der „gedrehten“ Markerob-

servablen einzeln gemessen und die Ergebnisse durchnummeriert. Korreliert man schließlich
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gemäß ihrer Nummer die Messergebnisse an Atomen und Photonen, dann ergibt sich nach

Selektion das Interferenzbild. Die Ergebnisse der Messungen an den Atomen alleine und die

der Messungen an den Photonen alleine enthalten keine Information. 

Nachdem die Atome das Interferometer durchlaufen haben und bereits detektiert wurden, 

kann man somit durch Wahl der an den Photonen gemessenen Observablen bestimmen, ob ein









Interferenzbild entsteht  |Λ M , |Λ M

 ⊥   oder nicht  | 0 M , | 1 M  . Dies könnte man so verste-

hen, dass man zwischen den Alternativen (i) Atome kommen immer nur auf einem der Wege

(Teilchenverhalten und daher keine Interferenz) und (ii) Atome kommen im Sinne einer Su-

perposition „auf beiden Wegen“ (Wellenverhalten und daher Interferenz) wählen kann, wenn

die Atome schon lange das Interferometer verlassen haben und an ihnen gemessen wurde. 

Diese  verzögerte Wahl (delayed choice) scheint eine Beeinflussung des Geschehens in der

Vergangenheit zu sein. Was ist falsch bei dieser Interpretation? 

Falsch ist die Annahme, dass vom Ereignis „auf einem Weg“ überhaupt gesprochen wer-

den kann. Das System  SA  befindet sich vor der Messung im vollständig gemischten und daher

völlig strukturlosen Zustand. Man kann Photonen auf den beiden Wegen 0 und 1 registrieren. 

Es ergibt sich bei Messung an  SA  kein Interferenzbild ( p( α) = 12 ). Das bleibt so bei anschlie-

ßender Messung in der nicht gedrehten ONB  {| 0 M , | 1 M }. Erst wenn man an den Photonen

in der gedrehten ONB  {|Λ M , |Λ M

 ⊥ }  misst, z. B. die Messwerte heraussucht, die zum Mess-

ergebnis +1 gehören und die relativen Häufigkeiten als Funktionen von  α  in eine Abbildung

einträgt, entsteht für die Wahrscheinlichkeit der Kurvenverlauf  p|χ( α) von Abb. 8.3, der In-

terferenz wiederspiegelt. Die Alternativen (i) und (ii) realisieren sich daher erst in der Form

(i) „keine Interferenz“ und (ii) „Interferenz“ mit der Wahl der entsprechenden Messung an

den Photonen gefolgt von einer Selektion und nicht schon mit der Messung an den Atomen. 

Vorher hat nichts vorgelegen, was mit (i) oder (ii) verbunden werden könnte.  Es gibt also kein

 „delayed choice“- Paradoxon. 

8.6

Ergänzende Themen und weiterführende Literatur

 •  Kriterien für Separabilität für Systeme mit zwei und mehr Untersystemen, Verschrän-

kungsmaß auch für Gemische: [Wer 89], [Key 02], [Bru 01], [DHR 02], [HHH 01], 

[Cir 02], [LBC 00], [Ter 01]. 

 •  Erzeugung von Verschränkung: [Aul 00], [BEZ 00], [NC 00], [BZ 02], [DM 02], 

[Hei 02], [SS 04]. 

 •  Zum Konzept der klassisch korrelierten Quantenzustände: [Wer 89]. 

 •  Experimente zu „delayed choice“: [Aul 00, Kap. 26], [DR 00]. 

 •  Der Anstoß zur „delayed choice“-Diskussion: [Weh 78]. 

 •  Welcher-Weg-Experimente: [DNR 98], [Rem 02], [Eng 99], [ESW 99], [DR 00]. 

 •  Quantenradierer: [Eng 99], [ESW 99]. 

 •  Verschränkung von gemischten Zuständen: [Cir 02], [HHH 01]. 
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8.7

Übungsaufgaben

ÜA 8.1 [zu 8.1.1]

Beweisen Sie die in Abschn. 8.1.1 im Anschluss an Gl. (8.1) aufgestellte

Behauptung über die Charakterisierung korrelierter Zustände. 

ÜA 8.2 [zu 8.1.2]

Beweisen Sie, dass die Separabilitätsbedingung (8.2) gleichbedeutend ist

mit der Forderung



 ρAB =

 ql|φAφA| ⊗ |χBχB|

 l

 l

 l

 l

(8.76)

 l



mit 0  ≤ ql ≤  1 und

 q

 l

 l = 1. Der Vergleich mit dem allgemeinen Operator  Z AB  von

Gl. (7.19) zeigt, dass die Forderung (8.76) tatsächlich eine Einschränkung bedeutet. 

ÜA 8.3 [zu 8.3]

Bestätigen Sie die Gl. (8.45). 

ÜA 8.4 [zu 8.5]

Wie ändern sich die Überlegungen zum Quantenradieren, wenn man vom

Zustand (8.67) statt vom Zustand (8.71) ausgeht. 

ÜA 8.5 [zu 8.2]

Zeigen Sie, dass es für den Zustand

 |

1

 φABC  =  √ | 0 A( | 0 B,  0 C +  | 1 B,  1 C)

(8.77)

2

keine Schmidt-Zerlegung

  √

 |φABC =

 pn|uA|vB|wC

 n

 n

 n

(8.78)

 n

mit orthonormalen Schmidt-Basen  {|uA}, {|vB}, {|wC}

 n

 n

 n

gibt. 
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9 Korrelationen und nicht-lokale Messungen

Quanteninformation kann in Korrelationen zwischen Teilsystemen stecken. Das soll im Ein-

zelnen präzisiert werden. Bei zusammengesetzten Systemen sind über die Messungen an Teil-

systemen hinaus auch nicht-lokale Messungen möglich, mit deren Hilfe u.a. nicht-lokal ge-

speicherte Information abgefragt werden kann. 

9.1

Entropien und Korreliertheit zusammengesetzter

Quantensysteme

9.1.1

Wechselseitige Information als Maß für Korreliertheit

Additivität

Mit Hilfe der Definition der  Gesamtentropie (joint entropy) für zusammenge-

setzte Systeme

 S( AB) :=  S( A, B) :=  S( ρAB) :=  −trAB[ ρAB  log  ρAB]

(9.1)

prüft man sofort nach, dass sich für einen Produktzustand die Entropien der Teilsysteme ad-

dieren

 S( ρA ⊗ ρB) =  S( ρA) +  S( ρB) . 

(9.2)

Subadditivität

Wenn  ρAB  kein Produktzustand ist, können wir statt Gl. (9.2) nur eine Ab-

schätzung ableiten. Wir gehen dazu von der Kleinschen Ungleichung (6.24) aus, die wir jetzt

im Produktraum  HA ⊗ HB  anwenden. 

Wir ersetzen in Gl. (6.17)  ρ  durch  ρAB  und  σ  durch  σAB =  ρA ⊗ ρB  mit den reduzierten Dichteoperatoren  ρA  und  ρB  von  ρAB, die wir nach den Basen von  HA  und  HB  zerlegen



 ρA

=

 an|nAnA|, 

(9.3)

 n



 ρB

=

 bj|jBjB|. 

 j

Dann gilt



log  σAB = log  ρA ⊗ ρB

=

log( anbj) |nA, jBnA, jB|

(9.4)

 n,j

=

(log  ρA)  B +  A(log  ρB)  . 
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Damit folgt aus der Kleinschen Ungleichung (6.24)

 S( ρAB)

 ≤ −trAB[ ρAB  log  σAB]

(9.5)

=

 −tr

 B

 A

 AB [ ρAB (log  ρA)

]  − trAB[ ρAB

log( ρB)]





=

 −trA[ ρA  log  ρA]  − trB[ ρB  log  ρB] =  S( ρA) +  S( ρB) . 

Wir schreiben das Resultat in der Form

 S( AB)  ≤ S( A) +  S( B) . 

(9.6)

Diese Eigenschaft wird als  Subadditivität (subadditivity) der Entropie zusammengesetzter

Quantensysteme bezeichnet. Das Gleichheitszeichen gilt genau dann, wenn die Teilsysteme

 SA  und  SB  unabhängig voneinander sind:  ρAB =  ρA ⊗ ρB. Die analoge Gleichung für klas-

sische Systeme ist Gl. (5.43).  Wenn die Teilsysteme nicht unabhängig voneinander sind, der

 Gesamtzustand ρAB also nicht separabel ist, dann enthält das Gesamtsystem mehr Informa-

 tion als insgesamt aus den Teilsystemen ausgelesen werden kann.  Wir werden das noch an

einem Beispiel verdeutlichen. 

Wechselseitige Information der Teilsysteme

Im klassischen wie im quantentheoretischen

Fall steckt die Zusatzinformation in den Korrelationen zwischen den Systemen. Um das für

zusammengesetzte Quantensysteme quantitativ zu fassen, führen wir  als Maß für die Korre-

 liertheit der Teilsysteme die wechselseitige Information (mutual information)  S( A :  B) der

Teilsysteme in Analogie zur Gl. (5.31) ein:

 S( A :  B) :=  S( A) +  S( B)  − S( AB)  ≥  0  . 

(9.7)

 S( A :  B) gibt für einen Zustand  ρAB  an, wie viel die durch die Entropie ausgedrückte Un-

bestimmtheit des Gesamtsystems  SAB  kleiner ist als die der Teilsysteme  SA  und  SB  zusam-

men, wenn diese Teilsysteme nicht verschränkt wären (vgl. Gl. (9.5)). Oder anders formuliert:

 S( A :  B)  ist ein Maß dafür, wie viel mehr Information im Gesamtsystem als in den Teilsys-

 temen steckt. S( A :  B)  kann zugleich den Abstand des Zustands ρAB vom unverschränkten

 Zustand ρA ⊗ ρB charakterisieren. 

9.1.2

Dreiecksungleichung

Das System  SAB  möge sich in einem Zustand  ρAB  befinden. Wir hatten in Abschn. 8.2.2

gesehen, dass dieser Zustand immer purifiziert werden kann. Das besagt, dass man immer

ein System  SC  zu  SAB  hinzufügen kann und dann im erweiterten Gesamtsystem  SABC  einen

reinen Zustand finden kann, so dass der reduzierte Dichteoperator des Teilsystems  SAB  gerade

 ρAB  ist. 

Wir wenden die Ungleichung für Subadditivität an:

 S( C) +  S( A)  ≥ S( AC) . 

(9.8)

Da das System  SABC  in einem reinen Zustand ist, stimmen die reduzierten Dichteoperatoren

bei Zerlegung in zwei Teilsysteme überein. Das haben wir im im Zusammenhang mit der

Schmidt-Zerlegung gezeigt. 

 S( AC) =  S( B) , 

 S( C) =  S( AB) . 

(9.9)
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Einsetzen in Gl. (9.8) führt auf

 S( AB)  ≥ S( B)  − S( A) . 

(9.10)

Die Systeme  SA  und  SB  gehen symmetrisch in die Überlegung ein. Es gilt also auch

 S( AB)  ≥ S( A)  − S( B)

(9.11)

und damit

 S( AB)  ≥ |S( A)  − S( B) | . 

(9.12)

Dies ist die  Dreiecksungleichung (triangle inequality), die manchmal auch  Araki-Lieb-

 Ungleichung  genannt wird. 

Wir haben in Gl. (5.39) gezeigt, dass für die Shannon-Entropie der klassischen Systeme

immer





 H( A)

 H( A, B)  ≥

(9.13)

 H( B)

erfüllt ist. Die Unbestimmtheit des Gesamtsystems übertrifft die jedes Einzelsystems. Dass

kann für Quantensysteme nicht gelten. Die Bell-Zustände, für die wir  S( AB) = 0 und

 S( A) =  S( B) = 1 gezeigt hatten, sind ein einfaches Gegenbeispiel. 

9.1.3

Verschränkte versus klassische korrelierte Quantensysteme

Wir wollen am Beispiel eines 2-Teile-Systems  SAB  in drei verschiedenen Zuständen die

Entropie der Teilsysteme  SA  und  SB, die in allen Fällen gleich eins sein soll, mit der Entropie

des Gesamtsystems vergleichen. Die Teilsysteme sollen der Einfachheit halber Qubits sein. 

Unser Ziel ist es dabei, Korrelation und Verschränkung mit der Entropie und dabei insbeson-

dere über die Gl. (9.7) mit der wechselseitigen Information  S( A :  B) in Zusammenhang zu

bringen. Die Verhältnisse sind graphisch in Abb. 9.1 dargestellt. 

Beispiel I: Unabhängige Teilsysteme

Im ersten Zustand sind die Teilsysteme völlig unab-

hängig voneinander, d. h.  ρAB  ist ein Produktzustand







1

1

1

 ρAB =

 AB =

 A

 ⊗

 B

=  ρA ⊗ ρB. 

(9.14)

4 

2 

2 

Es existieren keine Korrelationen zwischen den Teilsystemen. Die Quantenentropien ergeben

sich unmittelbar als

 S( AB)

=

log 4 = 2 , 

(9.15)

 S( A)

=

 S( B) = log 2 = 1

(9.16)

 S( A :  B)

=

0  . 

(9.17)

Für einen späteren Vergleich notieren wir noch  ρAB  in der Rechenbasis von  HA ⊗ HB

1

 ρAB

=

( | 0 A,  0 B 0 A,  0 B| +  | 0 A,  1 B 0 A,  1 B|

4

+ | 1 A,  0 B 1 A,  0 B| +  | 1 A,  1 B 1 A,  1 B|) . 

(9.18)
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Beispiel  I

 S( AB) = 2

 S( A) = 1

 S( B) = 1

völlig unabhängig

Beispiel  II

 S( AB) = 1

 S( A) = 1

 S( A :  B)

 S( B) = 1

= 1

klassisch korreliert

Beispiel  III

 S( AB) = 0

 S( A) = 1

 S( A :  B)

 S( B) = 1

= 2

verschränkt

Abbildung 9.1: Wechselseitige Information  S( A :  B) bei gleicher Entropie der Teilsysteme. 

Beispiel II: Klassische korrelierte Teilsysteme

Wir wollen Korrelationen etablieren, ohne

dass dabei Verschränkung entsteht. Das können wir z. B. mit dem  separablen Gemisch

1

 ρAB

=

( | 0 A 0 A| ⊗ | 0 B 0 B| +  | 1 A 1 A| ⊗ | 1 B 1 B|) (9.19)

2

1

=

( | 0 A,  0 B 0 A,  0 B| +  | 1 A,  1 B 1 A,  1 B|) (9.20)

2

aus reinen Produktzuständen erreichen.  ρAB  ist verglichen mit Gl. (9.18) eingeschränkt. In

der Rechenbasis von  HA ⊗ HB  hat  ρAB  die Matrixdarstellung





1

1

 ρAB = diag

 ,  0 ,  0 , 

 . 

(9.21)

2

2
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Es treten nur Diagonalterme auf. Damit ergibt sich die Entropie als





1

1

 S( AB) =  − 2

log

= 1 . 

(9.22)

2

2

Die reduzierten Dichteoperatoren der Teilsysteme stimmen mit denen in den anderen Beispie-

len überein

1

1

 ρA =

 A, 

 ρB =

 B . 

(9.23)

2 

2 

Daraus folgt wieder

 S( A) =  S( B) = 1

(9.24)

und in diesem Fall eine nicht verschwindende wechselseitige Information

 S( A :  B) = 1  . 

(9.25)

An Gl. (9.20) ist unmittelbar ablesbar, dass die Ergebnisse von Messungen in der Rechenbasis

an den beiden Teilsystemen korreliert sind: Ergibt die Messung an  SA  den zu  | 0   gehörigen

Messwert, dann ergibt auch die Messung an  SB  diesen Messwert. Entsprechendes gilt für

 | 1 . Die Teilsysteme heißen  klassisch korreliert , weil sie durch LOCC entstanden sind und

weil die Messung an einem Teilsystem den wohlbestimmten (korrelierten) reinen Zustand des

anderen Teilsystems nicht abändert. Damit wird noch einmal mit anderen Worten ausgedrückt, 

dass der Zustand von  SAB  ein separables Gemisch ist. 

Beispiel III: Verschränkte Teilsysteme

Hier nehmen wir als Beispiel den Bell-Zustand

 |

1

Φ AB

+   =  √ ( | 0 A,  0 B  +  | 1 A,  1 B ) . 

(9.26)

2

Da er ein reiner Zustand ist, haben wir

 S( AB) = 0 . 

(9.27)

Wie in den beiden Beispielen vorher finden wir

1

1

 ρA =

 A, 

 ρB =

 B

(9.28)

2 

2 

und damit

 S( A) =  S( B) = 1 . 

(9.29)

Für einen Bell-Zustand nimmt man die wechselseitige Information den größten möglichen

Wert an

 S( A :  B) = 2  . 

(9.30)
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Vergleich der drei Beispiele

Dass bei Verschränkung die Ergebnisse von Messungen an den

Teilsystemen korreliert sind, haben wir schon diskutiert. Im Zusammenhang mit der Bellschen

Ungleichung werden wir in Kap. 10 explizit zeigen, dass sich die Korrelationen in Beispiel

II und III quantitativ unterscheiden. Hier wollen wir den Unterschied mit Hilfe der Entropie

beschreiben. 

In allen drei Fällen liegt wegen  S( A) =  S( B) die gleiche Unbestimmtheit der Zustände

der Teilsysteme vor. Die Unbestimmtheit  S( AB) des Zustands des Gesamtsystems ist demge-

genüber in jedem Fall verschieden (vergl. Abb. 9.1). Die  wechselseitige Information (mutual

information)  S( A :  B) gibt wegen

 S( AB) =  S( A) +  S( B)  − S( A :  B)

(9.31)

an, um wie viel die tatsächliche Entropie des Gesamtsystems kleiner ist als es die Gesam-

tentropie wäre, wenn die Teilsysteme mit Dichteoperatoren  ρA  und  ρB  völlig unabhängig

wären. Geringere Entropie bedeutet geringere Unbestimmtheit des Zustands. In allen drei Bei-

spielen sind die Zustände der Teilsysteme maximal unbestimmt. Dennoch ist im Beispiel III

der verschränkte Gesamtzustand maximal bestimmt. Die Information, die hierfür noch gefehlt

hat, steckt vollständig in den Korrelationen und wird durch  S( A :  B) veranschaulicht. Im

Beispiel II reichen die Korrelationen nicht zur völligen Festlegung des Zustandes von  SAB. 

Dementsprechend befindet sich das Gesamtsystem in einem Gemisch.  S( A :  B) ist in die-

sem Fall kleiner.  Wie wir gesehen haben, bezieht sich die wechselseitige Quantenentropie

 S( A :  B)  nicht auf Verschränkung alleine, sondern gibt auch die klassischen Korrelationen

 mit wieder. 

9.2

Nicht-lokale Messungen

9.2.1

Bell-Zustände

Die vier Bell-Zustände

 |

1

Φ AB

 ±  =  √ ( | 0 A,  0 B ± | 1 A,  1 B)

(9.32)

2

 |

1

Ψ AB

 ±  =  √ ( | 0 A,  1 B ± | 1 A,  0 B)

(9.33)

2

bilden eine orthonormale Basis ( Bell-Basis) des Produktraums  HA

2  ⊗ HB

2 . Sie sind maximal

verschränkt. Die reduzierten Dichteoperatoren sind maximal gemischt.  ρA =  ρB = 12 .  Man



 kann durch Eingriff bei nur einem Teilsystem (also lokal ohne klassische Kommunikation) in

 unitärer Weise mit Hilfe der σ-Operatoren einen Bell-Zustand in jeden anderen überführen. 

Wir geben ein Beispiel:

Bit-Flip

 σA

1 :  |Ψ AB

+   →

1

 √ ( | 1 A,  1 B +  | 0 A,  0 B) =  |Φ AB

+  

(9.34)

2

 −i

Phasen-Flip

 σA

2 :  |Ψ AB

+   → √ ( | 0 A,  0 B  − | 1 A,  1 B )

=

 −i|Φ AB

 − . 

(9.35)

2

 σA

3 :  |Ψ AB

+   →

1

 √ ( | 0 A,  1 B − | 1 A,  0 B) =  |Ψ AB

 − 

(9.36)

2
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Häufig treten in Rechnungen Produkte von Pauli-Operatoren auf, deren Matrixelemente

in der Bell-Basis auszuwerten sind (z. B.  Φ AB

+  |σA

1  σB

3  |Φ AB

+  ). In diesen Fällen ist es günstig, 

die Wirkung der Pauli-Operatoren in  HB

2 auf die in  HA

2 zurückzuführen, dann kann man

alle in Abschn. 3.1 für Pauli-Operatoren abgeleitete Relationen (z. B. in Gl. (3.11)) direkt

übernehmen. Wir geben ein Beispiel, auf das wir später zurückkommen werden:

 σA

1 :  |Φ AB

+   −→ |Ψ AB

+   , 

 σB

1 :  |Φ AB

+   −→ |Ψ AB

+  

(9.37)

 σA

2 :  |Φ AB

+   −→ −i|Ψ AB

 −  , 

 σB

2 :  |Φ AB

+   −→ i|Ψ AB

 − 

(9.38)

 σA

3 :  |Φ AB

+   −→ |Φ AB

 −  , 

 σB

3 :  |Φ AB

+   −→ |Φ AB

 − 

(9.39)

Die Wirkung von  σB

3 auf  |Φ AB

+    kann durch die Wirkung von  σA

3 ersetzt werden usw.. Es

gibt entsprechende Relationen für alle Vektoren der Bell-Basis. Man bestätigt auf diese Weise

z. B., dass

 Φ AB

+  |σA

1  σB

3  |Φ AB

+   =  Φ AB

+  |σA

1  σA

3  |Φ AB

+  

 ∼ Φ AB

+  |σA

2  |Φ AB

+   ∼ Φ AB

+  |Ψ AB

 −  = 0

(9.40)

gilt. 

Wir notieren noch eine weitere mathematische Eigenschaft der Bell-Zustände. Sie sind

Eigenvektoren zu Produkten der  σ-Operatoren:

 σA

1  σB

1  |Φ AB

 ± 

=

( ± 1) |Φ AB

 ± 

(9.41)

 σA

1  σB

1  |Ψ AB

 ± 

=

( ± 1) |Ψ AB

 ± 

(9.42)

 σA

3  σB

3  |Φ AB

 ± 

=

 |Φ AB

 ± . 

(9.43)

 σA

3  σB

3  |Ψ AB

 ± 

=

 −|Ψ AB

 ±  . 

(9.44)

9.2.2

Lokale und nicht-lokale Messungen

Wie wir in Abschn. 7.3.1 gesehen haben, kann Nicht-Lokalität in zweifacher Weise auftreten:

(i) Zustände können nicht separabel sein. 

(ii) Messungen können zu Observablenoperatoren auf  HA ⊗ HB ⊗ HC ⊗ . . .  gehören, die

nicht von der Form  CA ⊗ B ⊗ C . . .  oder  A ⊗ DB ⊗ C . . .  usw. sind (nicht-lokale









Messungen). Sie stellen dann keine lokalen Messungen dar (Messungen an nur einem

Teilsystem). Sie heißen  nicht-lokale Messungen (non-local measurements) und messen

 nicht-lokale Observablen (non-local observables)

Wir betrachten speziell hermitesche Produktoperatoren  CADB  auf dem Raum  HA ⊗ HB. 

Sie beschreiben die nicht-lokale Messung der kollektiven physikalischen Größe  CADB (als

ein einziges Symbol zu lesen) an einem 2-Teile-System. Die Observable  σA

3  σB

3 eines 2-Spin-

Systems ist ein Beispiel. Wie Gl. (9.43) und (9.44) zeigen sind die zugehörigen Messwerte +1

und  − 1 entartet. Als Ergebnis der Messung mit Messwert +1 wir der Zustand in den durch

 |Φ AB

+    und  |Φ AB

 −   aufgespannten Unterraum projiziert. Alle Bell-Zustände bleiben bei der

Messung der Observablen  σA

3  σB

3 unverändert. 
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 |χAB

 |χAB

 | 0 C

Abbildung 9.2: Nicht-lokale Messungen in der Rechenbasis am System  SAB  durch projektive Messung

am Hilfssystem  SC. 

Misst Bob hingegen in lokaler Weise bei einem 2-Spin-System im Zustand  |Φ AB

+    am Un-

tersystem  B  die Observable  σB

3 (Spin in  z-Richtung), so wird beim Messergebnis  − 1 das Sys-

tem in den Zustand  | 1 A,  1 B überführt. Der Ausgangszustand  |Φ AB

+    liegt nicht mehr vor. Die

Verschränkung wurde durch die lokale Messung gebrochen. Eine nachfolgende Messung von

 σA

3 durch Alice am Untersystem  SA  ergibt den Messwert  − 1 und lässt den Zustand  | 1 A,  1 B 

unverändert. Das Beispiel zeigt: Mathematisch entsteht die Wirkung des Operators  σA

3  σB

3 da-

durch, dass die Operatoren  σA

3 und  σB

3 in  HA

2 bzw.  HB

2 wirken. Physikalisch stimmt aber die

Messung der kollektiven Observablen  σA

3  σB

3 i.a. nicht mit zwei lokalen Spinmessungen durch

Alice bzw. Bob überein. Das wird schon durch die unterschiedlichen Endzustände belegt.  Ob-

 servablen, denen hermitesche Operatoren auf dem Produktraum entsprechen, benötigen zu

 ihrer Messung i.a. einen nicht-lokalen Messprozess. Wie kann man nicht-lokale Messungen

auf lokale Messungen zurückführen? 

Wir betrachten ein einfaches Beispiel. Die Eigenwerte des Operators  σA

3  σB

3 sind +1 und

 − 1. Sie sind entartet. Das sieht man auch daran, dass neben  |Φ AB

 ±   und Ψ AB

 ±  die Vektoren der

Rechenbasis

 σA

3  σB

3  | 0 ,  0 

=

 | 0 ,  0 , 

 σA

3  σB

3  | 1 ,  1 

=

 | 1 ,  1 

 σA

3  σB

3  | 0 ,  1 

=

 −| 0 ,  1 , 

 σA

3  σB

3  | 0 ,  1 

=

 −| 0 ,  1 

(9.45)

ebenfalls Eigenzustände zu +1 und  − 1 sind. 

Die 2-Qubit-Observable  σA

3  σB

3 wird nicht-lokal durch eine kollektive Messung bestimmt. 

Sie kann mit Hilfe von zwei CNOT-Gattern und einem im Zustand  | 0 C  präparierten Hilfs-

Qubit wie in Abb. 9.2 realisiert werden. Wir fügen also zu  SAB  ein Hilfssystem  SC  mit

Zustand in  HC

2 hinzu. Ein beliebiger Zustand  |χAB   aus  HAB  lässt sich nach der Rechenbasis

zerlegen

 |χAB =  c 1 | 0 A,  0 B +  c 2 | 1 A,  1 B +  c 3 | 1 A,  0 B +  c 4 | 0 A,  1 B

(9.46)



mit

 |c

 i

 i| 2 = 1. Die Quantenschaltung überführt den Anfangszustand  |χAB | 0 C   unitär in

den Zustand

 U |χAB| 0 C =  c 1 | 0 A,  0 B,  0 C+ c 2 | 1 A,  1 B,  0 C+ c 3 | 1 A,  0 B,  1 C+ c 4 | 0 A,  1 B,  1 C (9.47) Eine projektive Messung von  σC

3 auf dem Hilfssystem  SC  ergibt die Messwerte +1 oder  − 1

mit den Wahrscheinlichkeiten  p(+1) und  p( − 1). Zugleich überführt sie den Ausgangszustand

 9.2
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 |χAB  je nach Messergebnis in den Zustand  χAB

+

bzw.  χAB

 − :

+1 :

 |˜ χAB

+

  =  c 1 | 0 A,  0 B +  c 2 | 1 A,  1 B

 p(+1)

=

 |c 1 | 2 +  |c 2 | 2

(9.48)

 − 1 :  |˜ χAB

 − 

=

 c 3 | 1 A,  0 B +  c 4 | 0 A,  1 B

 p( − 1) =  |c 3 | 2 +  |c 4 | 2  . 

(9.49)

 | 

˜

 χ AB

+

   ist die Projektion von  |χAB  in den von  | 0 A,  0 B  und  | 1 A,  1 B  aufgespannten Unter-

 

raum von  HAB  zum Eigenwert +1 von  σA

 AB

3  σB

3 . Entsprechendes gilt für  | ˜

 χ− . Die Messun-

gen am Hilfssystem haben auf die Messwerte und Wahrscheinlichkeiten der direkten Messung

geführt. Die resultierenden Zustände von  SAB  stimmen mit den Resultaten der Messungen

von  σA

3  σB

3 überein. 

 Wir haben nach Verschränkung durch die unitäre Transformation U und projektive Mes-

 sungen im Hilfsraum HC

2  eine projektive nicht-lokale Messung am Zustand in HAB bewirkt. 

 Die Messergebnisse und die Wahrscheinlichkeiten mit denen sie eintreten, konnten an der pro-

 jektiven Messung in HC abgelesen werden.  Dieses Beispiel für eine nicht-lokale Messung in

 HAB  spiegelt eine ganz allgemeine Struktur von Quantenmessungen wieder. Wir werden sol-

che verallgemeinerten Messungen noch ausführlich in Kap. 13 darstellen. Mit der beschriebe-

nen 2-Qubit-Messung der Observablen  σA

3  σB

3 kann noch nicht zwischen zwei Zuständen zum

gleichen Eigenwert +1 oder  − 1 unterschieden werden. Wir schildern im nächsten Kapitel, 

wie eine nicht-lokale Messung an der Bell-Basis auf zwei lokale Messungen zurückgeführt

werden kann. 

9.2.3

Nicht-lokal gespeicherte Information und Bell-Messungen

In der Rechenbasis von  HA

2  ⊗ HB

2 lassen sich zwei Bit in Form der 4 Möglichkeiten (0 ,  0), 

(0 ,  1), (1 ,  0), (1 ,  1) speichern und durch zwei lokale Messungen mit  σA

 B

 A

3  ⊗

bzw. 

 ⊗ σB 3





wieder auslesen. Die zugehörigen Projektionsoperatoren sind:

 P 00 :=  | 0 A,  0 B 0 A,  0 B|, 

 P 01 :=  | 0 A,  1 B 0 A,  1 B|

(9.50)

 P 10 :=  | 1 A,  0 B 1 A,  0 B|, 

 P 11 =  | 1 A,  1 B 1 A,  1 B|. 

(9.51)

Die Information ist lokal gespeichert. In der Bell-Basis von  HA

2  ⊗ HB

2 lassen sich ebenfalls

zwei Bit speichern. Man spricht vom  Paritätsbit (parity bit) Φ oder Ψ (d. h. parallele oder

antiparallele „Spins“) und vom  Phasenbit (phase bit) (Vorzeichen + bzw.  −). Wie wir schon

gesehen haben, ist diese Information als wechselseitige Information in den Korrelationen und

daher nicht-lokal gespeichert. 

Wenn wir an einem System im Bell-Zustand  |Φ AB

 B

 ±   lokal die Observablen  σA

3  ⊗

und



 A ⊗ σB

3 messen und das Produkt der Messergebnisse bilden, so ergibt sich +1. Bei  |Ψ AB



 ± 

ergibt sich entsprechend  − 1 Damit ist lokal das Paritätsbit ausgemessen. Danach liegt aber

nicht mehr der Ausgangszustand, sondern ein Zustand der Rechenbasis vor. Wir können daher

lokal nur 1 bit auslesen. Entsprechendes gilt für die lokale Messung des Phasenbits durch

 σA

 B

 A

1  ⊗

und

 ⊗ σB 1.  Durch lokale Messungen kann nicht die volle in Bell-Zuständen





 gespeicherte Information ausgelesen werden. Wir brauchen eine Projektionsmessung, die auf

die Zustände der Bell-Basis statt auf die der Rechenbasis projiziert. Die beiden Basissysteme
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 Korrelationen und nicht-lokale Messungen

 A

 H

 B

Abbildung 9.3: Quantenschaltung zur Erzeugung von Bell-Zuständen. 

gehen durch eine unitäre Transformation im Raum  HA

2  ⊗ HB

2 ineinander über. Das können

wir ausnutzen. 

Wir notieren die Wirkung einer Hadamard-Transformation gefolgt von einer CNOT-

Transformation auf die Rechenbasis. Die  Quantenschaltung (quantum circuit) hierzu findet

sich in Abb. 9.3. 

 | 0 A,  0 B H

 −→  1

 √ ( | 0 A +  | 1 A) | 0 B

2

CNOT

 −−−→  1

 √ ( | 0 A,  0 B +  | 1 A,  1 B =  |Φ AB

+  

(9.52)

2

 | 0 A,  1 B H

 −→  1

 √ ( | 0 A +  | 1 A) | 1 B  CNOT

 −−−→ |Ψ AB

+  

(9.53)

2

 | 1 A,  0 B H

 −→  1

 √ ( | 0 A − | 1 A) | 0 B  CNOT

 −−−→ |Φ AB

 − 

(9.54)

2

 | 1 A,  1 B H

 −→  1

 √ ( | 0 A − | 1 A) | 1 B  CNOT

 −−−→ |Ψ AB

 − . 

(9.55)

2

Wegen

 H =  H†, 

 H 2 = 1

(9.56)

CNOT = (CNOT) †, 

(CNOT)2 = 1

(9.57)

gilt insgesamt für die angewandte unitäre Transformation

 U AB := (CNOT)  · H, 

( U AB) − 1 =  H · (CNOT)

(9.58)

Wenn wir Bell-Zustände die Quantenschaltung in umgekehrter Richtung durchlaufen lassen, 

dann entstehen daraus durch Wirkung von ( U AB) − 1 wieder die entsprechenden Zustände der

Rechenbasis. Die Projektoren der Basissysteme sind über

 |φAB

+  φAB

+  |

=

 U ABP AB

00 ( U AB ) − 1

(9.59)

 |ψAB

+  ψAB

+  |

=

 U ABP AB

01 ( U AB ) − 1

(9.60)

 |φAB

 − φAB

 − |

=

 U ABP AB

10 ( U AB ) − 1

(9.61)

 |ψAB

 − ψAB

 − |

=

 U ABP AB

11 ( U AB ) − 1

(9.62)

verknüpft. 
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Eine  Bell-Messung (Bell measurement) an einem Zustand  |χAB  besteht darin, ihn zu-

nächst unitär und nicht-lokal mit ( U AB) − 1 =  H · (CNOT) zu transformieren und dann eine

lokale Messung am resultierenden Zustand in der Rechenbasis durchzuführen. Dann wird z. B. 

mit der Wahrscheinlichkeit, die zum Projektionsoperator  |Φ AB

+  Φ AB

+  |  gehört, 

 p 00 =  χAB|Φ AB

+  Φ AB

+  |χAB 

(9.63)

das Messwertepaar (0 ,  0) erhalten. Entsprechend ergibt sich mit der Wahrscheinlichkeit  p 01 =

 χAB|Ψ AB

+  Ψ AB

+  |χAB   das Paar (0 ,  1) usw. Dabei gilt  p 00 +  p 01 +  p 10 +  p 11 = 1. Im

Spezialfall  |χAB =  |Φ AB

+    ist  p 00 = 1. Entsprechendes gilt für die anderen Bell-Zustände. 

Kodiert man 2 Bit Information in Bell-Zuständen, dann kann diese Information eindeutig über

die Bell-Messung ausgelesen werden mit den Entsprechungen (0 ,  0)  ↔ |φAB

+  , (0 ,  1)  ↔

 |ψAB

+  , (1 ,  0)  ↔ |φAB

 − , (1 ,  1)  ↔ |ψAB

 − . 

Um zu erreichen, dass die Bell-Messung auch in einen Bell-Zustand überführt, muss der in

den lokalen Messungen erhaltene Zustand der Rechenbasis noch die Quantenschaltung (An-

wendung von  U AB) rückwärts durchlaufen. Beim Messwertepaar (0 ,  0) überführt sie dann

z. B. in den zugehörigen Bell-Zustand  |Φ AB

+  . 

9.3

Ergänzende Themen und weiterführende Literatur

Siehe Abschn. 5.6 und 6.6. 

9.4

Übungsaufgaben

ÜA 9.1 [zu 9.2.2]

Führen Sie hintereinander lokale Messungen von  σA

 B

 A

3  ⊗

und

 ⊗ σB 3





an  |χAB  von Gl. (9.46) durch. Bestimmen Sie die resultierenden Zustände und die Wahr-

scheinlichkeiten für die verschiedenen Messwertepaare. Bilden Sie Messwerteprodukte und

die zugehörigen Wahrscheinlichkeiten. Vergleichen Sie mit den Ergebnissen (9.48) und (9.49)

sowie mit der Aussage über die Erwartungswerte aus Abschn. 7.3.4. 

Verschränkte Systeme  

Die Quantenphysik auf neuen Wegen

Jürgen Audretsch

© 2005 WILEY-VCH Verlag GmbH & Co. 

10 Es gibt keine (lokal-realistische) Alternative

zur Quantentheorie

Wir haben im vorherigen Kapitel gesehen, dass bei verschränkten Zuständen, im Unter-

schied zu Zuständen klassischer Systeme, die Information nicht-lokal gespeichert ist. Im

Folgenden soll ein Zugang beschrieben werden, der es erlaubt operational in direkter Weise

zu demonstrieren, dass Verschränkung kein Gegenstück in der klassischen Physik hat. Wir

wollen zeigen, dass Verschränkung eines der zentralen nicht-klassischen Strukturelemente der

Quantentheorie ist. Hierzu geben wir exemplarisch zwei Experimente an, deren Ergebnisse

klassisch nicht begründet werden können. 

Von welchem Typ werden solche Experimente sein? Einen unmittelbaren experimentel-

len Zugriff auf zusammengesetzte Systeme haben wir über lokale Messungen an den Unter-

systemen. Wenn man die Paare der Messergebnisse vergleicht, zeigen sich charakteristische

Unterschiede zwischen Systemen in verschränkten reinen Zuständen einerseits und nicht ver-

schränkten sowie klassischen Systemen andererseits. Dies kann als eine weitere theoretische

Charakterisierung von Verschränkung dienen. Von größerer Bedeutung ist aber in diesem Zu-

sammenhang die Abgrenzung von Quantentheorie und klassischer Physik. Wenn sich klas-

sische zusammengesetzte Systeme und verschränkte Quantensysteme in den Korrelationen

unterscheiden und das Experiment die Existenz von Quantenkorrelationen bestätigt, dann gibt

es ein Phänomen, das nicht klassisch begründet werden kann. Damit wäre gezeigt, dass die

Quantentheorie nicht auf klassische Physik zurückführbar ist. Um dieses Programm durchzu-

führen, müssen wir typische Korrelationsexperimente beschreiben und sowohl quantentheo-

retisch wie auch klassisch durchrechnen. Dazu müssen wir aber zunächst die Frage „Was ist

klassisch?“ beantworten und daraus experimentell prüfbare Konsequenzen ableiten. 

10.1

EPR-Experimente und ihre quantentheoretische

Deutung

Photonen

Wir wollen ein Experiment mit den Kaskaden-Photonen beschreiben, die wir be-

reits in Abschn. 8.3 kennen gelernt haben. Eine Quelle emittiert paarweise Photonen mit ver-

schiedenen Frequenzen  νA  und  νB  in entgegengesetzte Richtungen. Sie propagieren entlang

der  z-Achse zu den Beobachtern an den Orten A und B (vgl. Abb. 10.1). Die Abstände der

Beobachter von der Quelle können sehr groß sein. Sie müssen nicht übereinstimmen. Die

Photonenpaare sind polarisationsverschränkt. Sie befinden sich im rotationssymmetrischen

 Verschränkte Systeme: Die Quantenphysik auf neuen Wegen.  Jürgen Audretsch

Copyright c

   2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

ISBN: 3-527-40452-X
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 |xB

 x

 |xA

 β

 α

 νB

 νA

 z

 y

 |yB

 |yA

 B

 A

Abbildung 10.1: Polarisationsmessung an Photonenpaaren. 

(a)

(b)

 x

 x

 α

 α

 x

1

 A

 β 1

 α 2

 β

 xB

 β 2

Abbildung 10.2: Orientierung der Analysatoren. 

Bell-Zustand

 |

1

Φ AB

+   =  √ |xA

0  , xB

0   +  |yA

0  , yB

0  . 

(10.1)

2

 |x 0   und  |y 0   sind Zustände mit linearer Polarisation in  x 0- bzw.  y 0-Richtung. 

Die Beobachter messen an den beiden Photonen die lineare Polarisation (vergl. 

Abb. 10.2a). Hierzu ist in A ein Analysator mit der Orientierung ( xA, yA) aufgestellt. 

Er ist um einen Winkel  α  um die  z-Achse gegen die durch die  x- und  y-Achse gegebene Ori-

entierung gedreht. Hinter ihm befinden sich zwei Detektoren, die jeweils ansprechen, wenn

die Polarisation  |xA  oder  |yA  gefunden wird. Der Polarisation  |xA  ordnen wir das Mes-

sergebnis +1 und der Polarisation  |yA  das Ergebnis  − 1 zu. Die Messung in B am zweiten

Photon erfolgt in gleicher Weise. Wir wollen insbesondere zulassen, dass der B-Analysator

um den Winkel  β =  α  gegen die Ausgangsorientierung verdreht ist. Die entsprechenden

Polarisationsrichtungen sind  |xB  bzw.  |yB. Ihnen sind wieder die Messwerte +1 bzw.  − 1

zugeordnet. Die Observablenoperatoren für die lokalen Messungen an den Photonen in A und

B sind dementsprechend

 EA

=

 |xAxA| − |yAyA|

(10.2)

 EB

=

 |xBxB| − |yByB|. 

(10.3)

Wir betrachten zunächst Messungen nur am Photon in A bzw. nur am Photon in B. Die

reduzierten Dichteoperatoren des Bell-Zustandes  |Φ AB

+    sind jeweils maximal gemischt. Die

Wahrscheinlichkeit in A das Resultat +1 oder  − 1 zu erhalten ist daher unabhängig von den

Verdrehungen  α  und  β  jeweils 12 . Das gleiche gilt für die Messung am zweiten Photon in B. 
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Im nächsten Schritt untersuchen wir Korrelationen und bestimmen die Wahrscheinlichkei-

ten für das Auftreten von Messwertepaaren. Mit  P+ −  bezeichnen wir die Wahrscheinlichkeit, 

dass in A die  xA-Polarisation und in B die  yB-Polarisation gemessen wird. Das entspricht

den lokalen Messwerten +1 und  − 1 und dem Messwerteprodukt  − 1. Die Wahrscheinlich-

keiten für die restlichen Kombinationen sind entsprechend bezeichnet. Für die vektoriellen

Polarisationszustände haben wir

 |xA = cos  α|x + sin  α|y

(10.4)

 |yA =  −  sin  α|x + cos  α|y. 

(10.5)

Analoge Relationen gelten für  |xB  und  |yB  mit dem Drehwinkel  β. Damit ergibt sich für

die Wahrscheinlichkeit  P++

1

 P++ =  Φ AB

+  |xA, xB xA, xB |Φ AB

+   =

cos2( β − α) . 

(10.6)

2

und entsprechend für die anderen Wahrscheinlichkeiten

1

 P−− =  P++ =

cos2( β − α)

(10.7)

2

1

 P+ − =  P−+ =

sin2( β − α)  . 

(10.8)

2

Dass nur die Differenz der Drehwinkel  α  und  β  auftaucht, spiegelt die Rotationssymmetrie

des Ausgangszustands  |Φ AB

+    wieder. 

EPR-Korrelationen verschränkter Photonen

Im Spezialfall der parallelen Ausrichtung

der Polarisatoren ( α =  β) finden wir eine vollständige Korrelation der Messergebnisse:

Wenn in A die  |xA-Polarisation gefunden wird, dann wird in B mit Sicherheit ebenfalls die

 |xB-Polarisation gefunden ( P++ = 1). Gleiches gilt für die y-Polarisationen ( P−− = 1). 

Die beiden Polarisationsrichtungen treten dabei in  A  und  B  in völlig zufälliger Weise jeweils

mit der Wahrscheinlichkeit 12 auf. Unterschiedliche Polarisationen werden nie registriert

( P+ − =  P−+ = 0). 

Um die Korrelationen der Messergebnisse bei nicht-paralleler Ausrichtung der Analysa-

toren zu erfassen, führen wir den  Korrelationskoeffizienten (correlation coefficient)  AB  ein. 

Er ist definiert als der Erwartungswert des Produktes der lokalen Messwerte in A und B. Wie

wir in Abschn. 9.2.2 gesehen haben, lässt er sich als Erwartungswert des Produktoperators

 EA ⊗ EB  berechnen:

 AB :=  Φ AB

+  |EA ⊗ EB |Φ AB

+   . 

(10.9)

Die explizite Auswertung mit Gl. (10.2) und Gl. (10.3) führt auf die Wahrscheinlichkeiten von

Gl. (10.7) und (10.8) (vergl. Gl. (10.6)). 

 AB =  P++ +  P−− − P+ − − P−+  . 

(10.10)

Die Gleichung (10.10) kann auch direkt abgelesen werden. Sie enthält die Messwerteprodukte

+1 und  − 1 multipliziert mit den Wahrscheinlichkeiten ihres Auftretens. Gl. (10.10) wird mit

Gl. (10.7) und (10.8) ausgewertet und führt auf das Ergebnis

 AB = cos 2( β − α)  . 

(10.11)
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Im Spezialfall parallel orientierter Analysatoren ( α =  β) ergibt sich die perfekte Korrelation

 AB = 1. 

Objekte mit Spin- 12 Für Polarisationsmessungen an zwei Objekten mit Spin-12 können wir

ganz analog vorgehen. Es wird zu einer gegebenen  e3-Richtung der Bell-Zustand

 |

1

Φ AB

+   =  √ ( | 0 A,  0 B  +  | 1 A,  1 B )

(10.12)

2

durch eine Quelle präpariert.  | 0   und  | 1   sind die Eigenzustände zu  σ 3. In A und B werden die Polarisationen in Richtung  a  bzw.  b  gemessen. Um die Rechnung zu vereinfachen nehmen

wir an, dass  a  und  b  senkrecht auf  e2 stehen

 a = (sin  α,  0 ,  cos  α) , b = (sin  β,  0 ,  cos  β) . 

(10.13)

Die entsprechenden Observablen sind

 EA =  σAa , 

 EB =  σBb. 

(10.14)

Den Korrelationskoeffizienten  EAB  von Gl. (10.9) können wir mit Rückgriff auf einige schon

abgeleitete Hilfsrelationen einfach bestimmen. Wir wenden zunächst Gl. (9.37) und (9.39) an

und berücksichtigen dabei  a 2 =  b 2 = 0. Dann greifen wir auf Gl. (3.11) zurück, verwenden

 a × b ∼ e 2 sowie die Gl. (9.38) und die Orthonormalität der Bell-Vektoren. Nacheinander

finden wir so für den Korrelationskoeffizienten  AB:

 AB

=

 Φ AB

+  |( σAa)( σBb) |Φ AB

+   = Φ AB

+  |( σAa)( σAb) |Φ AB

+  

(10.15)

=

 Φ AB

 A

+  |( ab)

 |Φ AB

+   +  iΦ AB

+  |σA( a × b) |Φ AB

+  



=

 ab = cos  α  cos  β + sin  α  sin  β = cos( β − α)  . 

Verglichen mit  AB  für Photonen taucht bei Spinoren typischerweise wieder der halbe Winkel

auf. 

10.2

Korrelierte Handschuhe

Wir haben gesehen, dass bei paralleler Ausrichtung der Analysatoren in A und B vollständige

Korrelation herrscht. Wenn an einem Photon am Ort A die x-Polarisation gemessen wird, 

dann wird mit Sicherheit auch am Photon in B die parallele x-Polarisation registriert und

umgekehrt. Entsprechendes finden wir für die y-Polarisation. Es kommt dabei nicht darauf an, 

ob zuerst in A oder zuerst in B gemessen wird. Weiterhin kann der Abstand zwischen A und

B beliebig groß sein (ideale Übertragung der Photonen vorausgesetzt). Ist das ein Resultat, 

das man nur für Quantenobjekte findet? 

Handschuhpaar

Wir wollen unter einem Handschuhpaar einen linken und einen rechten

Handschuh verstehen. Jeder der Handschuhe wird in einen Kasten getan. Ein Kasten wird

nach A und der andere nach B transportiert. Die dortigen Beobachter wissen, dass er sich

um ein Handschuhpaar handelt. Wird dann nach Öffnen des Kastens in A ein rechter (bzw. 
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ein linker) Handschuh gefunden, dann kann der Beobachter in A im selben Augenblick mit

Sicherheit sagen, dass in B ein linker (bzw. ein rechter) Handschuh schon gefunden wurde

oder noch gefunden wird. Eine entsprechende Aussage kann der Beobachter in B machen, 

wenn er seinen Kasten geöffnet hat. 

Selbstverständlich lag der jeweilige Handschuhtyp  real  schon vor der Öffnung der Kästen

in A und B fest. Die Handschuhe sind klassisch korreliert. Ermittlung des Handschuhtyps in

A hat weder auf den Handschuh in A selber noch auf den in B einen Einfluss gehabt (Entspre-

chendes gilt für B). Die physikalische Realität am Ort eines Beobachters wird nicht durch ein

entferntes Experiment des Partners abgeändert. Es gibt für Handschuhe nur  lokale  Vorgänge. 

Obwohl eine vollständige Information über den anderen Handschuh gewonnen wird, hat kei-

ne Informationsübertragung stattgefunden. Die vollständige Korrelation geht einfach darauf

zurück, dass das 2-Handschuhe-System am Anfang als ein Handschuhpaar  präpariert  wurde. 

Wir haben bei den Handschuhen eine Situation der klassischen Physik beschrieben, die –

soweit es die Messergebnisse betrifft – genau der Situation beim Photonenpaar bei paralle-

ler Analysatorausrichtung entspricht. Lässt sich daher möglicherweise auch das 2-Photonen-

Experiment im Rahmen einer rein klassischen Theorie, d. h. ohne Bezug auf die Quantentheo-

rie, beschreiben? Um eine möglichst allgemein gültige Antwort zu geben, wollen wir zunächst

am Beispiel der Handschuhe ablesen, welche Prinzipien für eine klassische Theorie gelten. 

10.3

Lokaler Realismus

Wir orientieren uns begrifflich an dem Artikel von A. Einstein, B. Podolsky und N. Rosen

[EPR 35] und charakterisieren die klassische Physik durch die zwei Prinzipien des  lokalen

 Realismus (local realism), die wir am Handschuhpaar ablesen können:

Physikalische Realität1

Eigenschaften (z. B. Energie) physikalischer Systeme sind dieje-

nigen physikalischen Größen, deren Wert man mit Sicherheit vor der entsprechenden Mes-

sung (z. B. Energiemessung) vorhersagen kann. Diese Eigenschaften liegen real bereits vor

der Messung vor. Das System „hat sie“. Sie sind  Elemente der physikalischen Realität (ele-

ments of physical reality). Ihr Wert ist unabhängig davon, ob er gemessen wird oder nicht. Wir

nennen dieses klassische Realitätskonzept  Einstein-Realität. 

Lokalität2

Die physikalische Realität kann in  lokaler  Weise beschrieben werden. Das

heißt, dass jedes System seine Eigenschaften unabhängig von allen anderen Systemen hat. 

Insbesondere bleibt das Resultat einer Messung an einem System unbeeinflusst von Ein-

wirkungen auf davon räumlich getrennte andere Systeme. Dieses Lokalitätskonzept der

klassischen Physik heißt  Einstein-Lokalität. 

1Elemente der Realität: „If without in any way disturbing a system, we can predict with certainty the value of a

physical quantity, then there exists an element of physical reality corresponding to this physical quantity. This means

that this physical quantity has a value independent of whether we measure it or not.“ [EPR 35]

2Lokalität: „The real factual situation of system A is independent of what is done with system B, which is spatially

separated from the former.“. [EPR 35]. 
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Verborgene Parameter

Wir gehen – wie die EPR-Autoren auch – davon aus, dass die

experimentellen Aussagen der Quantentheorie korrekt sind. Wenn man dann annimmt, dass

Einstein-Realität und Einstein-Lokalität zutreffende Beschreibungen physikalischer Systeme

sind, dann ist die Quantentheorie zwar nicht falsch aber  unvollständig (incomplete).3 Es gibt

Elemente der Realität, die nicht in der Theorie wiedergegeben werden. Sie tauchen dort nicht

auf und sind daher  verborgene Parameter (hidden variables). 

Unter einer  klassischen Theorie (classical theory) wollen wir eine Theorie verstehen, die –

anders als die Quantentheorie – die beiden Forderungen des lokalen Realismus erfüllt. Wir

werden versuchen, die bisher verborgenen Parameter explizit einzuführen, um eine lokal-

realistische und somit klassische  Alternativtheorie  zur Quantentheorie zu konstruieren, die al-

le experimentellen Phänomene im Quantenbereich begründen kann. Verkürzt gesagt:  Es gibt

 nur klassische Physik. Wir wollen diesem Programm folgen und versuchen Photonen und

Spin-1 / 2 Objekte so zu beschreiben, wie man Handschuhe beschreibt. Es wird sich zeigen, 

dass dieser Versuch misslingt. 

10.4

Verborgene Parameter, Bellsche Ungleichungen und

Konflikt mit dem Experiment

Stochastische lokal-realistische Theorie

Wir berechnen die Ergebnisse des Polarisati-

onsexperiments aus Abschn. 10.1 im Rahmen einer ganz allgemein angesetzten lokal-

realistischen Theorie. Ein im Symbol  λ  zusammengefasster Satz von verborgenen Parametern

repräsentiert die „Elemente der Realität“, die im Zusammenhang mit der Polarisation eines

nunmehr klassisch beschriebenen einzelnen Photons oder Spin-1 / 2-Teilchens auftauchen.  λ

ist variabel. Die Eigenschaften eines einzelnen Teilchens ist durch einen bestimmten Parame-

ter  λ  charakterisiert. Wir formulieren eine stochastische lokal-realistische Theorie. Teilchen

mit Parameter  λ  werden von der Quelle mit der Wahrscheinlichkeitsdichte  ρ( λ) produziert, 

für die 

 ρ( λ) dλ = 1 , 

 ρ( λ)  ≥  0

(10.16)

gilt. 

Für ein durch  λ  charakterisiertes Photon in  A  und den Drehwinkel  δ 1 des Analysators in

A liegt fest, ob die Polarisationsrichtung  xA  oder  yA  gemessen wird. Wir ordnen wie in Ab-

schn. 10.2 dem Messergebnis den Messwert +1 bzw.  − 1 zu. Dann gibt es dementsprechend

eine eindeutige Funktion  Sλ ( δ

 B

1) von  λ  und  δ 1 mit den Werten +1 bzw.  − 1. Analog gibt es ei-

ne möglicherweise davon verschiedene Funktion  Sλ ( δ

 A

2), die zu gegebenem  λ  und gegebener

Verdrehung  δ 2 in B eindeutig den dortigen Messwert +1 oder  − 1 bestimmt. 









+1

+1

 Sλ ( δ

 , 

 Sλ ( δ

 A

1) =

 −

2) =

(10.17)

1

 B

 − 1

Der klassische Korrelationskoeffizient ist



 kl( δ 1 , δ 2) =

 ρ( λ) Sλ ( δ

( δ

 A

1) Sλ

 B

2) dλ. 

(10.18)

3 Vollständigkeit: „In a complete theory there is an element corresponding to each element of reality“. [EPR 35]
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Dass das Produkt der beiden Funktionen auftaucht, drückt die Lokalität aus. Durch die For-

mulierung mit verborgenen Parametern  λ  ist eine lokal-realistische Theorie für den Korrelati-

onskoeffizienten entstanden. 

Bellsche Ungleichung

In einem ersten Schritt passen wir die bisher noch sehr allgemein

formulierte Theorie an die zu reproduzierenden quantentheoretischen Messergebnisse an. Im

Spezialfall gleicher Ausrichtung soll die gut bestätigte vollständige Korrelation



 kl( δ, δ) =

 ρ( λ) Sλ ( δ) Sλ ( δ) dλ = 1

 A

 B

(10.19)

gelten. Mit Gl. (10.16), (10.17) und (10.18) folgt daraus

 Sλ ( δ) =  Sλ ( δ) =:  Sλ( δ)  . 

 A

 B

(10.20)

Die beiden Observablen haben die gleiche funktionale Abhängigkeit von der verborgenen

Variablen  λ  und dem Winkel  δ. 

Wir gehen zu einer allgemeineren Situation über und betrachten drei Orientierungen  δ 1 , δ 2

und  δ 3. Es werden Messungen durchgeführt mit folgenden Einstellungen der Analysatoren in

A und B: ( δ 1 , δ 2) , ( δ 2 , δ 3) und ( δ 1 , δ 3). Für die Observablen gilt dann wegen Gl. (10.17) Sλ( δ 1) Sλ( δ 2)  − Sλ( δ 1) Sλ( δ 3) =  Sλ( δ 1) Sλ( δ 2)





 [1  − Sλ( δ 2) Sλ( δ 3)]





  . 

(10.21)

= ± 1

 ≥ 0

Integration führt hiermit und mit Gl. (10.16) und (10.17) auf



 | ρ( λ) {Sλ( δ 1) Sλ( δ 2)  − Sλ( δ 1) Sλ( δ 3) }dλ|

(10.22)



=  | ρ( λ) Sλ( δ 1) Sλ( δ 2)[1  − Sλ( δ 2) Sλ( δ 3)] dλ|





 ≤ ρ( λ) | [1  − Sλ( δ 2) Sλ( δ 3)]





  dλ| = 1  − ρ( λ) Sλ( δ 2) Sλ( δ 3) dλ. 

 ≥ 0

Gl. (10.22) bedeutet für die klassischen Korrelationsfunktionen

 |kl( δ 1 , δ 2)  − kl( δ 1 , δ 3) | ≤  1  − kl( δ 2 , δ 3)  . 

(10.23)

Dies ist die  Bellsche Ungleichung (Bell inequality). 

Konflikt mit der Quantentheorie

Auf welches Ergebnis führt demgegenüber die Quanten-

theorie? Wir untersuchen Spin-1 / 2-Teilchen im Zustand  |Φ AB

+    und wählen als Einstellungen

für die Analysatoren:  δ 1 = 60 ◦, δ 2 = 120 ◦, δ 3 = 180 ◦. Dann erhalten wir für die Korrelati-

onskoeffizienten

1

1

 AB( δ 1 , δ 2) =

 , 

 AB( δ 1 , δ 3) =  −  1

 AB( δ 2 , δ 3) =

 . 

(10.24)

2

2

2

Einsetzen in Gl. (10.23) führt auf

1  ≤  1  , 

(10.25)

2

d. h.  die Bellsche Ungleichung ist verletzt. Quantentheorie und lokal-realistische Theorien

 führen auf unterschiedliche Aussagen.  Für Photonen wählt man einen Winkel von 30 ◦  statt

von 60 ◦  und stellt ebenfalls eine Verletzung der Bellschen Ungleichung fest. 





























170

 10

 Es gibt keine (lokal-realistische) Alternative zur Quantentheorie

CHSH-Ungleichung

Wir diskutieren noch eine andere Kombination von Drehwinkeln. Ein

Bezug auf das Experiment, wie wir ihn in Gl. (10.20) eingebaut haben, ist dabei nicht nötig. 

In A wird mit den Einstellungen  α 1 und  α 2 und in B mit  β 1 und  β 2 gemessen. Wir betrachten die folgende Kombination von Observablenfunktionen und notieren die verschiedenen Werte, 

die in Folge von  Sλ

=  ± 1 angenommen werden können:

 A,B

 {Sλ( α

( β

( β

( α

( β

( β

 A

2) [ Sλ

 B

1) +  Sλ

 B

2)]





 + SλA  1) [ SλB  1)  − SλB  2)]





 =:  {. . .}

 ± 2  ←

 →  0

(10.26)

0

 ←

 → ± 2

Es gilt somit

 |{. . .}| = 2

(10.27)

und daher mit Gl. (10.16)













 ρ( λ) {. . .}dλ

  ≤

 ρ( λ) |{. . .}|dλ = 2

 ρ( λ) dλ = 2 . 

(10.28)

Für die klassischen Korrelationskoeffizienten bei den Messungen mit den verschiedenen Win-

keleinstellungen bedeutet das

 SV P :=  |kl( α 2 , β 1) +  kl( α 2 , β 2) +  Ekl( α 1 , β 1)  − kl( α 1 , β 2) | ≤  2 . 

(10.29)

Dies ist die nach J. F. Clauser, M. A. Horne, A. Shimony und R. A. Hold [CHS 69] benannte

 CHSH-Ungleichung (CHSH inequality). 

Alle Ungleichungen für die Korrelationskoeffizienten in stochastischen Theorien mit ver-

borgenen Parametern (stochastische lokal-realistische Theorien) werden üblicherweise ein-

heitlich  Bellsche Ungleichungen (Bell inequalities) genannt.  Sie sind Gleichungen der klassi-

 schen Physik. Ihre Bedeutung für die Quantentheorie wird erst deutlich, wenn man Prognosen

aufgrund der Bell-Ungleichungen den quantentheoretischen Prognosen gegenüberstellt (wie

in Gl. (10.25)) und beide mit den tatsächlichen experimentellen Ergebnissen vergleicht. 

Konflikt mit der Quantentheorie

Für die entsprechende Messung an korrelierten Photonen

im Zustand  |Φ AB

+    wählt man Winkel, die sich um 22 ,  5 ◦  unterscheiden (vergl. Abb. 10.2b):

 α 1 = 22 ,  5 ◦, β 1 = 45 ◦, α 2 = 67 ,  5 ◦,  und  β 2 = 90 ◦. Das führt mit Gl. (10.11) auf: π

1

 AB( α 1 , β 1) =  AB( α 2 , β 1) =  AB( α 2 , β 2) = cos

=  √

(10.30)

4

2

3 π

 AB( α 1 , β 2) = cos

=  −  1

 √ . 

(10.31)

4

2

(Für Spin- 12 -Teilchen doppelte Winkel einstellen.) Die quantentheoretische Berechnung der

Korrelationskoeffizienten in Gl. (10.29) liefert

 √

 SQM = 2 2  . 

(10.32)

Vergleich mit der CHSH-Ungleichung führt zu dem Ergebnis:  Die Quantentheorie verletzt die

 CHSH-Ungleichung. 
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Experimentum crucis4

Wir haben zwei experimentelle Anordnungen beschrieben, für

die Quantentheorie einerseits und Theorien mit verborgenen Parametern andererseits auf

sich widersprechende Prognosen führen. In einer solchen Situation können Experimente eine

Entscheidung herbeiführen. Die Experimente bestätigen die quantentheoretischen Prognosen

(vergl. Abschn. 10.8).  Die lokal-realistischen Alternativtheorien zur Quantentheorie sind da-

 mit widerlegt.  Die Ursache ist darin zu suchen, dass die EPR-Korrelationen im verschränkten

Bell-Zustand nicht durch Einführung verborgener lokaler Parameter simuliert werden können. 

Sie sind echte Quantenkorrelationen. 

10.5

Separable Quantengemische erfüllen die Bellsche

Ungleichung

Wir betrachten separable d. h. nicht verschränkte Gemische von 2-Teilchen-Zuständen





 ρAB =

 λiρA ⊗ ρB, 

0  ≤ λ

 λ

 i

 i

 i ≤  1 , 

 i = 1

(10.33)

 i

 i

und bilden wieder den quantentheoretischen Korrelationskoeffizienten (vergl. Gl. (10.9))

 EAB( α, β)

=

 trAB[ ρABEA( α)  ⊗ EB( β)]



=

 λiAi( α) Bi( β)

(10.34)

 i

mit

 Ai( α) :=  trA[ ρAEA( α)] , 

 B

 EB( β)]  . 

 i

 i( β) :=  trB [ ρB

 i

(10.35)

Die Beträge der Erwartungswerte von Operatoren mit Eigenwerten  ± 1 können 1 nicht über-

steigen, daher haben wir

 |Ai( α) | ≤  1 , 

 |Bi( β) | ≤  1  . 

(10.36)

Die Auswertung der CHSH-Ungleichung führt auf





 EAB( α



2 , β 1) +  EAB( α 2 , β 2) +  EAB( α 1 , β 1)  − EAB( α 1 , β 2) (10.37)









= 

  λi{Ai( α 2) Bi( β 1) +  Ai( α 2) Bi( β 2) +  Ai( α 1) Bi( β 1)  − Ai( α 1) Bi( β 2) }



 i



 ≤

 λi{|Ai( α 2) Bi( β 1) +  Ai( α 2) Bi( β 2) | +  |Ai( α 1) Bi( β 1)  − Ai( α 1) Bi( β 2) |} . 

 i

Als Folge der Separabilität treten nur Produkte auf. Wir schätzen den Inhalt der geschweiften

Klammer  {. . .}  mit Gl. (10.36) ab

 {. . .} ≤ |Bi( β 1) +  Bi( β 2) | +  |Bi( β 1)  − Bi( β 2) | ≤  2

(10.38)

4Ein Experiment, das es gestattet, unter mehreren Theorien eine zu bestätigen und die übrigen zu widerlegen, 

nennt man ein  experimentum crucis. 
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und erhalten mit Gl. (10.33) für die rechte Seite der Ungleichung (10.37)

  λi{...} ≤  2  . 

(10.39)

 i

Einsetzen in Gl. (10.37) und Vergleich mit der CHSH-Ungleichung (10.29) zeigt,  dass für

 2-Teile-Systeme ein separables Gemisch von Quantenzuständen (und damit auch jeder reine

 Produktzustand) die Bellsche Ungleichung erfüllt.  Die Erfüllung der CHSH-Ungleichung ist

 daher nur eine notwendige Bedingung für das Vorliegen einer lokalen Theorie mit verborge-

 nen Parametern und keine hinreichende Bedingung. 

10.6

Bell-Verletzung als Kriterium für Verschränkung bei

reinen Zuständen

Für separable Zustände erfüllt sowohl die nicht-realistische Quantentheorie mit den Beson-

derheiten ihres nicht-klassischen Messprozesses wie auch jede realistische Theorie (vergl. 

Abschn. 10.5) die Bellsche Ungleichung. Wir haben gesehen, dass das Durchbrechen der

Ungleichung beim maximal verschränkten Zustand  |Φ AB

+    eine Folge der fehlenden Sepa-

rabilität, d. h. eine Folge seiner Verschränktheit ist. Diese Aussage lässt sich verallgemeinern. 

 Man kann ausgehend von der Schmidt-Zerlegung aus Abschn. 8.2.1 zeigen, dass sich für alle

 verschränkten reinen Zustände von 2-Teile-Systemen, also auch für nicht maximal verschränk-

 te Zustände, Observablen finden lassen, sodass die Bell-Ungleichung durch die korrelierten

 Messergebnisse verletzt wird. [Hom 97, S. 206], [HS 91, Kap. 2.1.4]. 

Zusammenfassend können wir daher feststellen:  Für reine Zustände von 2-Teile-Systemen

 ist Verschränkung äquivalent mit Verletzung der Bell-Ungleichung. Wir haben damit für diese

Zustände ein operationales, d. h. im Prinzip experimentell realisierbares Verfahren gefunden, 

um Verschränkung festzustellen. Eine entsprechende Aussage für Gemische oder Zustände

von Systemen mit mehr als zwei Teilen gibt es zur Zeit noch nicht. 

10.7

3-Teilchen-Verschränkung und Quantennichtlokalität

10.7.1

GHZ-Zustand

D. M. Greenberger, M. A. Horne und A. Zeilinger (GHZ) haben in einer vom Bell-Zugang

unabhängigen nicht-statistischen Weise gezeigt, dass Quantentheorie und lokaler Realismus

nicht miteinander verträglich sind. ( [GHZ 89], [GHZ 90]). Wir geben hier ihre Argumentation

mit Bezug auf die Spins von 3 Quantenobjekten wieder, die sich voneinander getrennt an den

Orten A, B und C befinden sollen. Sie sind miteinander verschränkt. Ihr Gesamtzustand liegt

in  HA

2  ⊗ HB

2  ⊗ HC

2 und soll durch

 |

1

 ψABC  =  √ ( | 0 A,  0 B,  0 C +  | 1 A,  1 B,  1 C) (10.40)

2

gegeben sein.  | 0   bzw.  | 1   sind wieder die Eigenvektoren von  σz  mit den Eigenwerten +1

und  − 1. Der Zustand (10.40) des 3-Teile-Systems heißt  GHZ-Zustand (GHZ state). Er ist

symmetrisch gegenüber einer Vertauschung der Bezeichnungen  A, B  und  C. 
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10.7.2

Lokaler Realismus und Quantentheorie im Konflikt

Wir bestimmen zunächst das Ergebnis von lokalen quantentheoretischen Spinmessungen an

den drei Teilsystemen. Dabei werden verschiedene Polarisationsrichtungen gewählt. In der

 yyx-Messung zum Beispiel werden jeweils die Observablen  σA, σB

 y

 y  und  σC

 x  gemessen. Die

Reihenfolge der Messungen ist unwichtig. Zur Bestimmung des Messergebnisses ist es ge-

schickt, in den Räumen  HA

2  , HB

2 und  HC

2 die Eigenvektoren der jeweiligen Observablen als

Basis einzuführen und den Zustandsvektor  |ψABC  hiernach zu zerlegen. Dann ergibt sich

 |

1

 ψABC  = ( | 0 A,  1 B,  0 C +  | 1 A,  0 B,  0 C +  | 0 A,  0 B,  1 C +  | 1 A,  1 B,  1 C)  . (10.41) 2

 y

 y

 x

 y

 y

 x

 y

 y

 x

 y

 y

 x

Die Messwerte bezeichnen wir mit  sx  und  sy. Sie sind stets +1 oder  − 1. Wie man an

Gl. (10.41) ablesen kann, erfüllen die möglichen Kombinationen der korrelierten Messwer-

te für jedes einzelne 3-Teile-System die Relation

 sAsBsC =  − 1  . 

 y

 y

 x

(10.42)

Symmetrie unter Vertauschung der Bezeichnungen der Teilsysteme führt auf

 sAsBsC =  − 1 , 

 sAsBsC =  − 1  . 

 x

 y

 y

 y

 x

 y

(10.43)

Für eine  xxx-Messung der Observablen  σA, σB

 x

 x  und  σC

 x  zerlegen wir  |ψABC   nach den Ei-

genvektoren von  σx

 |

1

 ψABC  = ( | 0 x,  0 x,  0 x +  | 0 x,  1 x,  1 x +  | 1 x,  0 x,  1 x +  | 1 x,  1 x,  0 x) (10.44)

2

und finden

 qu

 sAsBsC = +1  . 

 x

 x

 x

(10.45)

An den Gl. (10.42) und (10.43) lässt sich die folgende Eigenschaft des Systems im GHZ-

Zustand ablesen: Das Resultat der  σx-Messung an einem der Teilsysteme kann mit Sicherheit

vorhergesagt werden, wenn die Ergebnisse der  σy-Messungen an den beiden anderen Teilsys-

temen bekannt sind. Um z. B. das Ergebnis  sA

 x  der  σA

 x -Messung zu bestimmen, muß man nur

an den Systemen die Observablen  σB

 x  und  σC

 y  messen. Analog kann man das Resultat einer

 σy-Messung vorhersagen, wenn man an den beiden anderen Systemen eine  σx- und eine  σy-

Messung vornimmt. Dies sind die Aussagen der Quantentheorie, die durch das Experiment

bestätigt werden. 

Wir wollen jetzt diese Prognosen der Quantentheorie (bzw. die experimentellen Aussa-

gen) vom Standpunkt des lokalen Realismus interpretieren. Um die durch die Gl. (10.42) bis

(10.44) wiedergegebenen Korrelationen im Rahmen dieses Zugangs zu begründen, müssen

wir annehmen: Die in den  σ-Messungen ermittelten individuellen Eigenschaften der einzel-

nen Teilsysteme liegen schon vor der Messung fest. Sie sind daher auch unabhängig davon, 

welchen Typ von  σ-Messung wir für die drei Teilsysteme wählen. Der Ausgang einer jeden

Messung ist z. B. über verborgene Parameter vorherbestimmt. Wenn das so ist, dann sind bei

einem der 3-Teile-Objekte die individuellen Werte  sA,B,C

 x,y

in allen drei Gleichungen (10.42)
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und (10.43) dieselben. Wir multiplizieren die linken Seiten der Gl. (10.42)-(10.43) miteinan-

der und erhalten mit  sAsA =  sBsB =  sC sC = 1

 y

 y

 y

 y

 y

 y

im Gegensatz zu Gl. (10.45)

 l.r. 

 sAsBsC =  − 1  . 

 x

 x

 x

(10.46)

Dies ist in der lokal-realistischen Theorie das Ergebnis einer  xxx-Messung. Die  x-

Polarisationen müssen bereits vor der Messung so beschaffen sein, dass Gl. (10.46) gilt. In der

quantentheoretischen Beschreibung der Messergebnisse liegen beim nicht separablen GHZ-

Zustand vor der Messung keine Polarisationen fest. Eine  xxx-Messung führt auf Messwerte, 

die Gl. (10.45) erfüllen. Damit besteht ein klarer Widerspruch zwischen der Aussage lokal-

realistischer Theorien und der Quantentheorie. Wenn die Experimente die quantentheoretische

Gleichung (10.45) bestätigen – was tatsächlich der Fall ist (vergl. Abschn. 10.8) – dann ist der

lokale Realismus widerlegt. 

Warum kann man in der Quantentheorie nicht in gleicher Weise aus den Gl. (10.42) und

(10.43) eine Relation (10.45) ableiten? Gleichung (10.41) zeigt, dass die quantentheoretischen

Messergebnisse korreliert sind. Wenn die lokalen Messungen z. B.  sA = +1

=  − 1

 y

und  sB

 y

ergeben, dann findet man  sC = +1

= +1

= +1

 x

. Für  sA

 y

und  sB

 y

findet man entsprechend

 sC =  − 1

 x

usw. Das Ergebnis  sC

 x  liegt nicht vorher fest und stimmt i.a. in den Gl. (10.42) und

(10.43) nicht überein. 

Wir haben folgendes gezeigt:  Drei Objekte werden in einem Präparationsverfahren so

 präpariert, dass der resultierende Zustand im Rahmen der Quantentheorie der GHZ-Zustand

 (10.40) ist. Wenn sich dann für die oben beschriebenen Polarisationsmessungen die quanten-

 theoretischen Vorhersagen als richtig erweisen, dann ist jede lokal-realistische Theorie für

 diese Systeme widerlegt.  Die Quantentheorie kann daher durch solche Theorien nicht ersetzt

werden. 

Wir haben in Abschn. 3.6 gesehen, dass die beiden linearen Polarisationen und die zirkula-

re Polarisation im  H 2 in enger Analogie zum Spin formuliert werden können. Für photonische

GHZ-Zustände lässt sich in gleicher Weise ein Widerspruch ableiten. Für Photonen bestätigen

die experimentellen Resultate die quantentheoretischen Vorhersagen und widerlegen so den

lokal-realistischen Ansatz. Eine Übersicht über die Experimente findet sich z. B. in [PZ 02]. 

Wir weisen abschließend noch auf Unterschiede zur Bell-Argumentation hin. Die CHSH-

Ungleichung macht Aussagen über klassische Erwartungswerte und ist eine direkte Folge

des lokalen Realismus. Sie macht eine Aussage über die klassische Physik ohne Bezug auf

die Quantentheorie. Das GHZ-Argument basiert demgegenüber auf dem Versuch einer lokal-

realistischen Interpretation von quantentheoretischen Resultaten (10.42) und (10.43), von de-

nen angenommen wird, dass sie experimentell bestätigt sind. Der Widerspruch zur Quanten-

theorie ist nicht probabilistisch sondern direkt. In beiden Fällen bestätigen die Experimente

die Quantentheorie. 

10.8

Ergänzende Themen und weiterführende Literatur

 •  Die Klassiker : [EPR 35], [Bel 64], [CHS 69], [Boh 51], [GHZ 89], [GHZ 90]. 

 • Übersichtsartikel: [Aul 00, Kap. IX], [HS 91], [Hom 97, Kap. 4], [Per 93, Kap. 6], 

[HS 91], [WW 01]. 
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 •  Das Argument von Hardy: In einer vom Bell- und vom GHZ-Zugang unabhängigen Wei-

se hat Hardy gezeigt, dass lokaler Realismus und Quantentheorie nicht kompatibel sind. 

Eine Darstellung des verblüffenden Theorems mit Hinweisen auf weitere Literatur findet

sich z. B. in [Hom 97, Kap. 4.2.2.1] und [Aul 00, Kap. 36.6]. 

 •  Bücher mit Übersichtsartikeln zur Bellschen Ungleichung und Experimenten dazu:

[BZ 02], [Asp 02]. 

 •  Zur Einsteinschen Kritik an der Quantentheorie: [Hom 97, Kap. 8]. 

10.9

Übungsaufgaben

ÜA 10.1 [zu 10.1]

Geben Sie einen alternativen (direkten) Beweis für Gl. (10.15) an. 

ÜA 10.2 [zu 10.4]

Beweisen Sie Gl. (10.20). 

ÜA 10.3 [zu 10.4]

An einem linear polarisierten Photon im Zustand  |ϕA  werden Messun-

gen mit einem Analysator  A  mit den Richtungen  xA  und  yA  durchgeführt. Formulieren Sie

für diese Situation ein Modell mit verborgenen Parametern, d. h. geben Sie  λ, ρ( λ) und  Sλ  so

 A

an, dass die Messergebnisse richtig wiedergegeben werden. 

ÜA 10.4 [zu 10.7]

Geben Sie eine Quantenschaltung an, die den Zustand  | 0 A,  0 B,  0 C  in

den GHZ-Zustand überführt. 
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11 Verschränkung als Hilfsmittel

Verschränkung ist die Grundlage für neue Effekte und deren technische Anwendung. Wir

diskutieren einige Beispiele. 

11.1

Quantenkryptographie

11.1.1

Die Vernam-Verschlüsselung

Alice möchte an Bob eine verschlüsselte Botschaft schicken, die perfekt geheim bleiben soll. 

Niemand außer Bob soll sie entschlüsseln können. In dem von Vernam 1926 vorgeschlagenen

Verfahren [Ver 26] wird ein  Quellentext (source text), der bereits digital als (0,1)-Folge der

Länge  n  vorliegen soll, mit Hilfe eines  Schlüssels (key) verschlüsselt. Es entsteht das  Krypto-

 gramm (cryptogram). Der Schlüssel selber besteht aus einer (0,1)-Zufallsfolge, die ebenfalls

die Länge  n  hat. Zur Verschlüsselung werden die Zahlen von Quelltext und Schlüssel glied-

weise modulo 2 addiert. Wir machen ein Beispiel:

Quelltext

01101100

Schlüssel

10000110

Kryptogramm

11101010

Das Kryptogramm wird an Bob geschickt. Bob soll im Besitz des Schlüssels sein. Die

Entschlüsselung besteht darin, dass Bob den Schlüssel zu der verschlüsselten Nachricht glied-

weise modulo 2 addiert. Wegen  x + 0 + 0 =  x + 0 =  x  und  x + 1 + 1 =  x + 0 =  x  entsteht dann wieder der Quelltext:

Kryptogramm

11101010

Schlüssel

10000110

Quelltext

01101100

Da der Schlüssel aus einer Zufallsfolge besteht, wird der verschlüsselte Text vom Quelltext

völlig unabhängig. Er kann offen von Alice an Bob geschickt werden. Für einen Lauscher, der

nicht den Schlüssel besitzt, enthält das Kryptogramm keinerlei Information. Entscheidend ist, 

dass der Schlüssel nur Alice und Bob bekannt ist, dass er tatsächlich eine echte Zufallsfolge

ist, dass er so lang wie der Quelltext ist und insbesondere, dass er nur einmal verwendet wird

(one-time pad system). Unter diesen Voraussetzungen kann der Vernam-Kode nicht gebrochen

werden [Sha 49]. 

Das Problem bei dem Verfahren besteht darin, dass Bob und Alice immer wieder für jede

Botschaft in den Besitz eines neuen Schlüssels kommen müssen und dass bei diesem Pro-

zess sicher gestellt sein muß, dass der Schlüssel nicht von einem Lauscher gelesen wurde. 

 Verschränkte Systeme: Die Quantenphysik auf neuen Wegen.  Jürgen Audretsch
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Wir wollen zeigen, dass eine solche Schlüsselübermittlung mit Hilfe von Quantensystemen

möglich ist. Es gibt eine ganze Reihe von quantenkryptographischen Verfahren (vergl. Ab-

schn. 11.5). Wir diskutieren hier nur zwei Typen von Verfahren. Die einen Verfahren nutzen

die Besonderheiten des quantenphysikalischen Messprozesses aus, die anderen verwenden die

nicht-lokalen EPR-Korrelationen. Die Abfolge von Handlungsanweisungen zur Durchführung

eines kryptographischen Schemas nennt man  Protokoll (protocol). 

11.1.2

B92-Protokoll

Das nach der Arbeit [Ben 92] von C.H. Bennett aus dem Jahre 1992 benannte B92-Protokoll

verwendet zur Schlüsselübertragung zwei nicht-orthogonale Quantenzustände und nutzt die

folgenden für Quantensysteme charakteristischen Eigenschaften aus: (i) Es gibt keine Mes-

sung mit der zwischen den beiden Zuständen unterschieden werden kann. (ii) Die Zustände

können nicht durch einen Quantenkopierer geklont werden. (iii) Eine Messung ändert i.a. 

einen Quantenzustand ab. 

Der Ablauf der Schlüsselübermittlung

Wir wollen Photonen für die Durchführung des

B92-Protokolls verwenden. Alice hat zwei Filter, die Photonen vertikal im Zustand  |V   oder

unter der Neigung  − 45 ◦, d. h. im Zustand  |V   linear polarisieren können (vergl. Abschn. 3.6). 

Es gilt  |V |V | 2 = 12 . Alice verwendet eine binäre Zufallsfolge, z. B. 1 ,  0 ,  0 ,  1 ,  1 ,  0 , . . . , und erzeugt bei Vorliegen der 0 ein Photon mit der Polarisation  |V   und bei 1 mit der Polarisation  |V . Die Photonen fliegen störungsfrei zu Bob. 

Bob hat ein Messgerät in Form eines Detektors, der hinter einem Polarisationsfilter steht. 

Er kann für den Filter zwei Orientierungen wählen: horizontale Polarisation  |H, ihr entspricht

der Projektionsoperator  P 1 =

 − |V V | =  |HH|, und um  − 45 ◦  gedrehte Polarisation, 



ihr entspricht der Projektionsoperator  P 0 =

 − |V V | =  |HH|. Bob hat ebenfalls eine



binäre Zufallsfolge zur Verfügung, die unabhängig von der Folge ist, die Alice benutzt, z. B. 

0 ,  0 ,  1 ,  0 ,  1 ,  0 , . . . . Die Zahlen 0 und 1 kommen in beiden Fällen gleich häufig vor. Die i-te Zahl von Bobs Folge bestimmt die Art der Messung am i-ten von Alice präparierten Photon. 

Wenn bei Bob die Zahl 0 vorliegt, stellt er die Analysatorrichtung  |H (entspricht  P 0) ein

und bei der 1 die Richtung  |H (entspricht  P 1). In jedem Fall registriert er, ob sein Detektor

anspricht oder nicht. 

Wegen der Orthogonalität der Vektoren gilt  P 0 |V  = 0 und  P 1 |V  = 0. Wenn Alice

und Bob verschiedene Zahlen vorliegen haben, spricht daher der Detektor bei Bob nicht an. 

Haben Alice und Bob gleiche Zahlen vorliegen, dann spricht der Detektor wegen  V |P 0 |V  =

 V |P 1 |V  = 12 mit der Wahrscheinlichkeit 12, also in der Hälfte der Fälle an. Ein Beispiel ist

in Tabelle 11.1 dargestellt. „ja/nein“ besagt, dass bei der Versuchsanordnung das Ergebnis ja

oder nein jeweils mit der Wahrscheinlichkeit 12 möglich ist. Der tatsächlich eingetretene Fall

ist unterstrichen. 

Im nächsten Schritt teilt Bob über einen öffentlichen Kanal Alice mit, bei welchen Pho-

tonen sein Detektor angesprochen hat. Die zugehörige Orientierung teilt er nicht mit. In dem

in der Tabelle dargestellten Beispiel sind das die Photonen mit den Nummern 2 und 6. Damit

besitzen Alice und Bob eine übereinstimmende Zahlenfolge 0 ,  0 , . . . , die nur ihnen beiden be-

kannt ist und die sie als Schlüssel verwenden können. Es ist wie gewünscht eine Zufallsfolge

der Zahlen 0 und 1, besteht aber nur im Mittel noch aus 25% der Zahlen der ursprünglichen

Folge. 









 11.1

 Quantenkryptographie

179

Tabelle 11.1: B92-Protokoll zur Quantenkryptografie. 

Photonennummer

1

2

3

4

5

6

Zahlenfolge Alice

1

0

0

1

1

0

erzeugte Polarisation

 |V 

 |V 

 |V 

 |V 

 |V 

 |V 

Zahlenfolge Bob

0

0

1

0

1

0

Analysatorstellung

 |H

 |H

 |H |H

 |H

 |H

Ansprechen

nein

ja/nein

nein

nein

ja/nein

ja/nein

Abwehr von Lauschangriffen

Wir wollen kurz auf die Sicherheit bei dieser Erzeugung ei-

nes gemeinsamen Schlüssels eingehen. Nehmen wir an, eine dritte Person mit Namen  Eve  1

versucht in einem  Lauschangriff (eavesdropping) durch Abfangen und Polarisationsmessun-

gen an den Photonen in den Besitz des Schlüssels zu kommen, dann hat sie die oben mit (i)

bis (iii) aufgeführten Probleme. Sie kann den Polarisationszustand eines einzelnen Photons

in einer Messung nicht sicher bestimmen. Sie kann den Zustand auch nicht auf viele Photo-

nen kopieren, ein Photon weiterlaufen lassen und an den Kopien Messungen durchzuführen. 

Schließlich wird sie durch eine Messung den Zustand des anschließend zu Bob geschickten

Photons abändern. Es ist dieser Umstand, der es Alice und Bob ermöglicht festzustellen, ob

ein Lauscher tätig war. Durch die Zustandsänderung wird Bob hin und wieder ein Ansprechen

seines Analysators feststellen, obwohl bei ihm und Alice nicht die gleichen Zahlen vorliegen. 

Das können beide feststellen, indem sie einen zufällig ausgewählten Teil ihres Schlüssels öf-

fentlich austauschen und vergleichen. Liegt Lauschen vor, dann wird der ganze Schlüssel nicht

verwendet und ein neuer Versuch einer Schlüsselerzeugung begonnen. Ein Test auf Lauschen

besteht zusätzlich in der Prüfung, ob 25% der Photonen zum Schlüssel beitragen. 

Verbesserung der Sicherheit

Tatsächlich ist der Transport der Quantenobjekte von Alice

zu Bob, auch dann wenn nicht abgehört wird, anfällig für Störungen. Der Quantenkanal ist im

Allgemeinen verrauscht. Damit in der Praxis überhaupt ein Schlüssel erzeugt wird, müssen

Alice und Bob ein gewisses Ausmaß an Fehlern akzeptieren, von denen sie nicht wissen, ob

sie nicht doch auf den Einfluss von Eve zurückgehen. Diese Situation taucht in allen quanten-

theoretischen Kryptographieverfahren auf. Im letzten Schritt des entsprechenden Protokolls

werden daher klassische Algorithmen eingesetzt um zunächst Fehler zu korrigieren. In einem

Protokoll (error correction protocol) wird versucht einen kürzeren Schlüssel zu gewinnen. dar-

an schließt sich ein Verfahren an, in dem Eves Information auf ein Minimum reduziert wird

(private amplification algorithm). Für Übersichtsartikel siehe Abschn. 11.5. 

11.1.3

Weitere 1-Qubit-Protokolle

Das auf zwei nicht-orthogonalen Zuständen beruhende B92-Protokoll ist anfällig gegenüber

POVM-Messungen. Diese nicht projektiven Messungen werden wir in Kap. 13 vorstellen. 

Daher ist es Standard geworden, wie beim BB84-Protokoll vier Zustände zu verwenden. Ein

weiterer Ansatz ist der folgende: Die Symmetrie der Bloch-Kugel legt es nahe, die Eigenzu-

stände von  σx, σy  und  σz  zu verwenden. Das entsprechende 6-Zustände-Protokoll erlaubt eine

vereinfachte Sicherheitsanalyse (vergl. Abschn. 11.5). 

1Von eavesdropper, das ist der Lauscher
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11.1.4

EPR-Protokolle

Quantenkryptographie unter Verwendung des Bellschen Theorems

Das in Abschn. 10.4

beschriebene Experiment mit Photonenpaaren zum Test der CHSH-Ungleichung kann auch

zur Schlüsselübermittlung verwendet werden. Das Protokoll sieht die folgenden Schritte vor, 

die entweder öffentlich erfolgen oder von Alice (in A) und Bob (in B) jeweils im Geheimen

durchgeführt werden. 

 Öffentlich

 Jeweils in A und B geheim

In A und B einheitliche Festlegung der

vier Messrichtungen  α 1 = 22 ,  5 ◦, β 1 =

45 ◦,  α 2 = 67 ,  5 ◦, β 2 = 90 ◦  im Raum (wie

in Abschn. 10.4, vergl. Abb. 10.1)

Die Quelle erzeugt Paare verschränkter

Photonen im Bell-Zustand  |Φ AB

+  . In A

und B werden unabhängig voneinander in

völlig zufälliger Reihenfolge die Analysa-

toren in eine der 4 Richtungen gedreht. In

A werden wie in Abschn. 10.1 die Polari-

sationszustände  |xA (Messwert +1) bzw. 

 |yA (Messwert  − 1) gemessen und in B

entsprechend  |xB (Messwert +1) bzw. 

 |yB (Messwert  − 1). 

Es wird öffentlich ausgetauscht, welche

Polarisationsrichtungen in A und B bei

den einzelnen Photonenpaaren jeweils ge-

wählt wurden. 

In A und B wurden jeweils die Messergeb-

nisse danach sortiert, ob gleiche oder un-

gleiche Analysatorrichtungen vorlagen. 

Die Messergebnisse zu  ungleicher  Orien-

tierung werden zusammen mit der Num-

mer der Photonenpaare öffentlich ausge-

tauscht. Hiermit prüft jede Seite nach, 

ob der quantentheoretische Wert  SQM =

 √

2 2 von Gl. (10.32) für die Korrela-

tionen erreicht wurde. Wenn nicht, wird

die Übertragungsreihe verworfen, da ab-

gehört wurde. Wird  SQM  erreicht, 

dann sind die nicht ausgetauschten Er-

gebnisse zu  gleicher Orientierung  perfekt

korreliert (vergl. Abschn. 10.1). Sie stel-

len eine völlig zufällige Abfolge der Zah-

len 0 und 1 dar, die von Alice und Bob als

Schlüssel verwendet werden kann. 
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Für die Schlüsselerzeugung mit Spin- 12 -Teilchen werden Orientierungen mit den doppelten

Winkeln eingestellt. 

Die einzelnen Teilsysteme bei Alice und Bob befinden sich in den maximal gemischten

Zuständen  ρA =  ρB = 12 . An ihnen kann keinerlei Information abgelesen werden. Wie



wir schon in Kap. 9 gesehen haben, steckt Information allein in den Korrelationen. Wenn

ein Lauscher eine Messung z. B. an den zu Alice fliegenden Objekten durchführt, dann über-

führt er dieses Untersystem in einen reinen Zustand. Wir haben in Abschn. 8.2.4 gezeigt, 

dass damit die Verschränkung durchbrochen wird und ein separabler Zustand entsteht. Gemäß

Abschn. 10.5 erfüllen separable Zustände die CHSH-Ungleichung, d. h. es gilt  |S| ≤  2. Die

 √

explizite Rechnung führt sogar auf  |S| ≤

2 (vergl. [ÜA 11.3]). Dieser Wert unterscheidet

 √

sich deutlich vom quantentheoretischen Wert  SQM = 2 2. 

BBM92-Protokoll 2 Es gibt ein sehr einfaches Protokoll, das auf EPR-Korrelationen beruht

und keinen Bezug auf eine Bellsche Ungleichung benötigt. Wir verwenden wieder Photo-

nenpaare im drehsymmetrischen Bell-Zustand  |Φ AB

+  , den wir mit Bezug auf die linearen

Polarisationen  |H, |V   und  |H, |V   aus Abschn. 3.6 in der Form

 |

1

1

Φ AB

+   =  √ ( |HA, HA +  |V A, V A) =  √ ( |HA, HA +  |V A, V A)

(11.1)

2

2

schreiben. Alice und Bob messen unabhängig voneinander in völlig zufälliger Weise entweder

die Polarisationen  |H  und  |V   oder die um  − 45 ◦  dagegen gedrehten Polarisationen  |H  und

 |V . 

Nach einer Reihe von Messungen an Photonenpaaren tauschen Alice und Bob aus, welche

Richtung sie bei den einzelnen Paaren eingestellt hatten. Die Ergebnisse, die zu verschiede-

nen Richtungen gehören, und diejenigen, bei denen ein Photon verloren gegangen ist, werden

eliminiert. Die verbleibenden Messergebnisse müssen perfekt korreliert sein, wenn nicht ge-

lauscht wurde. Um das zu prüfen, vergleichen Alice und Bob wieder eine hinreichend große

Untermenge dieser Messungen über einen öffentlichen Kanal. Im positiven Fall liefert die für

beide gleiche Sequenz der verbliebenen Messergebnisse den gewünschten Schlüssel. 

11.1.5

Das Schema der Quantenkryptografie

Die Grundidee besteht darin, Bob und Alice mit Hilfe von Quantensystemen als Träger in

den Besitz des selben Schlüssels kommen zu lassen. Die Botschaft selber wird nach ihrer

Verschlüsselung in einem allgemein zugänglichen Kanal übertragen. Das Protokoll muss so

gestaltet werden, dass Alice und Bob jeder für sich feststellen kann, ob bei der Schlüssel-

übertragung ein Lauscher tätig war. Hierfür nutzen sie aus, dass eine Quantenmessung durch

den Lauscher den Zustand abändert, wenn er nicht gerade ein Eigenzustand der gemessenen

Observablen ist. 

Wenn die Präparationen von Alice und die Ergebnisse der zugehörigen Messungen von

Bob mit der theoretischen Prognose übereinstimmen, ist kein Messeingriff erfolgt und es gibt

2Benannt nach der Arbeit [BBM 92]. 
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keinen Informationsgewinn für einen Lauscher. Alice und Bob tauschen einen Teil ihrer Er-

gebnisse öffentlich aus und prüfen so die Übereinstimmung. Wenn sie nicht vorliegt, wird die

Schlüsselübermittlung verworfen und das Protokoll neu durchlaufen. Im anderen Fall haben

Alice und Bob einen geheimen Schlüssel erhalten, der darüber hinaus eine perfekte Zufalls-

verteilung darstellt, da er auf Quantenprozessen beruht. 

11.2

Ein Qubit überträgt zwei Bit (dense coding)

In Kap. 6 haben wir gesehen, dass man ein Bit in einem Qubit kodieren und wieder ausle-

sen kann. Kann man mehr klassische Information mit einem einzigen Qubit übertragen? Wir

wollen zeigen, dass  dichtes Quantenkodieren (quantum dense coding) die Übertragung von

zwei Bits durch ein Qubit ermöglicht. Der Trick ist dabei, dass vor der Übertragung bereits

ein verschränktes 2-Qubit-System mit Teilsystemen bei Alice und Bob etabliert wurde. Zum

Beispiel hat Alice ein Qubit-System (z. B. ein Photon eines Photonenpaares) an Bob geschickt

und den damit verschränkten Partner bei sich behalten. Der Zustand des Gesamtsystems sei

z. B.  |Φ AB

+  . Bob erhält dadurch keine Information. Weiterhin wurde vorher zwischen Alice

und Bob abgesprochen, wie Sie zwei Bits den vier Bellzuständen  |Φ AB

+  ,  |Φ AB

 − ,  |Ψ AB

+    und

 |Ψ AB

 −   zuordnen. 

Wir haben in Abschn. 9.2.1 darauf hingewiesen, dass man lokal mit Hilfe der  σ-Operatoren

in unitärer Weise einen Bell-Zustand in jeden anderen Bell-Zustand transformieren kann. Ali-

ce soll die Transformationen  A (trivial),  σA

1 ,  σA

2 und  σA

3 an ihrem Qubit ausführen können. 



Zur Übertragung der zwei Bit Information überführt sie so den verschränkten Zustand  |Φ AB

+  

in den entsprechenden Bell-Zustand und schickt ihr Qubit-System an Bob. Damit kann Bob

auf beide Teilsysteme zugreifen und durch Messung feststellen, welcher Bell-Zustand vor-

liegt. Durch Übermittlung eines Qubits sind an ihn zwei Bits übertragen worden. 

Dichtes Kodieren lässt sich nur schwer implementieren. Wenn der verwendete verschränk-

te reine Zustand nicht maximal verschränkt ist, nimmt die Menge der übertragenen Informa-

tion ab und wird im Grenzfall ein Bit. Eine wichtige Eigenschaft des Verfahrens ist die Ab-

hörsicherheit. Es kann im günstigsten Fall an dem Qubit-System das Alice an Bob schickt, 

ein Bit ausgelesen werden. Dichtes kodieren demonstriert noch einmal die Bedeutung von

Verschränkung als Hilfsmittel bei der Informationsübertragung. 

11.3

Quantenteleportation

Alice besitzt ein ihr unbekanntes klassisches Objekt, z. B. eine Eisenkugel, die in einem Kas-

ten eingeschlossen ist. Bob hätte gerne ein gleiches Objekt. Dazu muss Alice den Kasten

aufmachen und optische Messungen an der Kugel durchführen. Sie übermittelt über einen

klassischen Kanal die Informationen an Bob und der kann sich aus einem Eisenblock eine

Kugel im gleichen Zustand herstellen. Kann ein analoges Verfahren auch bei Quantenobjek-

ten zum Erfolg führen? 

Eine einzige Messung an einem Quantenobjekt in einem unbekannten Zustand reicht nicht

zur Zustandsbestimmung. Selbst wenn Alice der Quantenzustand bekannt wäre, weil sie die

Präparationsanlage kennt, müsste sie an Bob unendlich viele Bits übertragen. Das sieht man
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bereits am Beispiel von Qubit-Systemen. Das Qubit-System das Alice besitzt, möge in einem

Eigenzustand von  σr  sein. Um den Vektor r zu beschreiben, braucht man eine binäre Zahl

mit unendlich vielen Stellen. Nur bei vollständiger Kenntnis von r könnte Bob das Präparati-

onsverfahren exakt wiederholen. Alice muss daher einen anderen Zugang wählen. 

Mit Blick auf das Vorgehen bei dichtem Kodieren liegt es nahe, wieder eine verschrän-

kungsunterstützte Informationsübertragung zu versuchen. Tatsächlich führt das folgende Pro-

tokoll der  Quantenteleportation (quantum teleportation) zum Erfolg (vergl. Abb. 11.1): Alice

und Bob teilen sich wieder den Bell-Zustand  |Φ AB

+  . Die Teilsysteme sind die Quantensys-

teme  SA  und  SB, die sich bei Alice bzw. Bob befinden. Bei Alice befindet sich ein weiteres

Quantensystem  SC  in einem ihr unbekannten reinen Zustand

 |ϕC =  a| 0 C +  b| 1 C

(11.2)

mit  |a| 2 +  |b| 2 = 1. 

Dieser Zustand  |ϕ, nicht das Quantensystem  SC  selber, soll zu Bob teleportiert werden, 

das heißt, dass das sich bei Bob befindliche Teilsystem  SB  in den reinen Zustand  |ϕB über-

gehen soll.  SB  ist dann notwendigerweise mit keinem anderen System mehr verschränkt. Ins-

gesamt liegt ein 3-Teile-System vor. An seinem Zustand in  HC

2  ⊗ HA

2  ⊗ HB

2 führen wir einige

algebraische Umformungen durch. Dazu verwenden wir die Definition der Bell-Zustände so-

wie die Eigenschaften der Pauli-Operatoren und führen in einem Zwischenschritt in  HC

2  ⊗HA

2

eine Bell-Basis ein. 



 



 |

1

 ϕC |Φ AB

+  

=

 √ a| 0 C +  b| 1 C | 0 A| 0 B +  | 1 A| 1 B

2

1 

=

 √ a| 0 C| 0 A| 0 B +  a| 0 C| 1 A| 1 B

2



+  b| 1 C| 0 A| 0 B +  b| 1 C| 1 A| 1 B



1









=

 a |Φ CA

+   +  |Φ CA

 | 0 B +  a |Ψ CA

+   +  |Ψ CA

 | 1 B

2

 − 

 − 







+  b |Ψ CA

+   − |Ψ CA

 − ) | 0 B +  b( |Φ CA

+   − |Φ CA

 −  | 1 B

(11.3)



1









=

 |Φ CA

+   a| 0 B  +  b| 1 B  +  |Ψ CA

+   a| 1 B  +  b| 0 B 

2







 

+  |Ψ CA

 −  a| 1 B − b| 0 B +  |Φ CA

 −  a| 0 B − b| 1 B



1

=

 |Φ CA

+  |ϕB +  |Ψ CA

+  σB

1  |ϕB  +

2



+ |Ψ CA

 − ( −iσB

2 ) |ϕB  +  |Φ CA

 − σB

3  |ϕB 

 . 

Bisher haben wir den Ausgangszustand nur mathematisch nach einer Bell-Basis in dem

Alice zugänglichen Raum  HC

2  ⊗ HA

2 entwickelt. Dabei ist in  HB

2 bis auf Transformationen

mit den Pauli-Operatoren der Zustand |ϕB  entstanden. Bob muß diese Transformation noch

durch einen Eingriff kompensieren. Dazu wird zunächst Alice tätig. Sie führt an den Teilsys-

temen  SC  und  SA  eine Bell-Messung durch, beispielsweise so wie wir das in Abschn. 9.2.3

beschrieben haben. Damit überführt sie das Gesamtsystem in einen der vier Summanden in der
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letzten Gleichung (11.3). Welcher Summand nach der Messung vorliegt, kann sie dem Mes-

sergebnis entnehmen. Die entsprechenden zwei Bits an klassischer Information – mehr Bits

werden nicht benötigt – überträgt Alice z. B. telefonisch an Bob. Der kennt damit ebenfalls

den Zustand des Gesamtsystems und kann durch Transformationen mit einem der Operatoren

(  B ,  σB) wegen  σBσB =  B  sein System  SB  in den Zustand  |ϕB überführen. Damit ist die



 k

 k

 k



Teleportation gelungen. 

 |ϕC

klassische

Information

unitäre

Bob

Alice

Transf. 

Bell-

Messung

 SB

 SA

 SC

 |Φ AB

+  

verschränkter

Zustand

 |ϕC

EPR-

Quelle

Abbildung 11.1: Quantenteleportation. 

Am Ende der Zustandsübertragung befindet sich keines der Systeme  SC  und  SA  im Zu-

stand  |ϕ. Das spiegelt das Kopierverbot wieder. Die anfängliche Verschränktheit von  SA  und

 SB  wurde auf  SC  und  SA übertragen. Jedes der Ergebnisse der Bell-Messung von Alice tritt

mit der gleichen Wahrscheinlichkeit 14 auf. Aus dieser Messung kann weder Alice noch Bob

eine Information über den teleportierten Zustand  |ϕ  gewinnen. Wenn der Zustand  |ϕ  vorher

unbekannt ist, taucht er als unbekannter Zustand am System  SB  wieder auf. Die Relativitäts-

theorie ist nicht verletzt, da eine klassische Informationsübermittlung verwendet wurde. Der

Zustand der Teilsysteme  SC  und  SA  bei Alice ist am Ende der Übertragung der vollständig

gemischte Zustand 1  AB

4

. 



11.4

Verschränkungsaustausch

Wir haben die Produktion verschränkter Qubit-Paare in Abschn. 8.3 beschrieben. Tatsächlich

ist es für die Verschränkung von zwei Qubits nicht nötig, dass der Zustand in einem einzigen

Gesamtprozess mit Hilfe unitärer Dynamik erzeugt wird. Durch  Verschränkungsaustausch

(entanglement swapping) können zwei Quantensysteme an getrennten Orten ohne Wechsel-

wirkung untereinander in einen vom Rest isolierten verschränkten Gesamtzustand versetzt

werden. Wir diskutieren ein Beispiel. 
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 |Ψ AD

+  

 |Ψ BC

+  

Bell-

Messung

 SA

 SD

 |Ψ AB

 − 

 |Ψ CD

 − 

 SC

 SB

I

II

Abbildung 11.2: Austausch von Verschränkung von den Systemen  SAB  und  SCD  auf die Systeme  SAD

und  SBC. 

Zwei EPR-Quellen I und II erzeugen simultan jeweils ein 2-Teile-System  SAB  und  SCD

im Bell-Zustand  |Ψ AB

 −   bzw.  |Ψ CD

 −  (siehe Abb. 11.2. Insgesamt liegt daher der Produktzu-

stand



 



 |

1

Ψ AB

 − |Ψ CD

 −  =

 | 0 A,  1 B − | 1 A,  0 B | 0 C,  1 D − | 1 C,  0 D

(11.4)

2

aus  HA

2  ⊗HB

2  ⊗HC

2  ⊗HD

2 vor. Wir führen in den Räumen  HA

2  ⊗HD

2 und  HB

2  ⊗HC

2 Bell-Basen

ein. Dann können wir den Zustand umschreiben:





 |

1

Ψ AB

 − |Ψ CD

 −  =

 |Ψ AD

+  |Ψ BC

+   − |Ψ AD

2

 − |Ψ BC

 −  − |Φ AD

+  |Φ BC

+   +  |Φ AD

 − |Φ BC

 − 

(11.5)

Man sieht unmittelbar, dass eine Bell-Messung an den Teilsystemen  SB  und  SC  die vorher

unverschränkten Teilsysteme  SA  und  SD  in einen Bell-Zustand überführen. Projektion z. B. 

auf  |Ψ BC

+    erzeugt  |Ψ AD

+  . Die Bell-Zustände der verschränkten Untersysteme  SAD  und  SBC

stimmen jeweils überein. Bei diesem Prozess handelt es sich nicht um die Teleportation vom

Zuständen, sondern eher um die  Übertragung von Verschränkung. 

11.5

Ergänzende Themen und weitere Literatur

 •  Weiterführende Literatur zur Abwehr von Lauschangriffen: [GRT 02], [Lom 02a], 

[Lom 02a], [Gru 99], [HN 99]. 

 •  Protokolle mit mehr als zwei Zuständen: [GRT 02], [Lom 02a]. 

 •  B92-Protokoll: [HAD 95], [Lom 02a], [Gru 99]. 

 •  Experimentelle Quantenkryptographie: [HAD 95], [EGH 00], [HN 99], [Zbi 98], 

[BD 00], [GM 02], [GRT 02]. 

 •  BBM92: [BBM 92], [GM 02, S. 369]. 
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 • Übersicht: [Wer 01]. 

 •  Experimente zum dichten Kodieren: [BHL 02], [BEZ 00, S. 62], [BD 00]. 

 •  Teleportation von höherdimensionalen Zuständen und Gemischen [Wer 01, S. 53], 

[Key 02, S. 474], [vLo 02, 1232]. 

 •  Experimente zur Teleportation: [BHL 02], [BD 00], [BEZ 00], [GM 02, S. 363]. 

11.6

Übungsaufgaben

ÜA 11.1

Fälschungssichere Banknoten. 

Nehmen Sie an, dass es technisch möglich ist, auf einer Banknote Photonen in einzelnen Zel-

len über längere Zeit zu speichern. Wie kann man so fälschungssichere Banknoten drucken? 

ÜA 11.2 [zu 11.3]

Was ändert sich an den Überlagerungen in Abschn. 11.3, wenn der Zu-

stand  |Ψ AB

 −  = 1

 √ ( | 0 ,  1  − | 1 ,  0 ) statt  |Φ AB

2

+    verwendet wird? 

ÜA 11.3 [zu 11.1]

Nehmen Sie an, dass der Lauscher an den beiden Photonen (Spin- 12 -

Teilchen) jeweils eine Polarisationsmessung durchführt und die Photonen anschließend an

Alice bzw. Bob weiterlaufen lässt. Der Lauscher präpariert also mit einer Wahrscheinlichkeit

 p( θA, θB) Photonenpaare mit Photonen in den Zuständen  |θA  und  |θB. Die beiden Polarisa-

tionsrichtungen werden durch die Winkel  θA  und  θB  beschrieben. Bestimmen Sie explizit die

 √

Korrelationskoeffizienten und zeigen Sie, dass  |S| ≤

2 gilt. Alice und Bob würden daher

diesen Eingriff feststellen können. 

ÜA 11.4 [Zu 11.3]

In vorangegangenen Kapiteln wurde der Begriff des Quantenzustands

näher präzisiert. Prüfen Sie, ob in diesem Sinne in Abschn. 11.3 von der Teleportation eins

Quantenzustands gesprochen werden kann. 
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12 Quantencomputer

Wir wollen in diesem Kapitel zeigen, wie man mit Quantensystemen Rechnungen durchfüh-

ren kann und worin sich die Durchführung von denen mit einem klassischen Computer unter-

scheiden. Dabei soll deutlich gemacht werden, bei welchen Fragestellungen Quantencomputer

überlegen sind. Eine solche Überlegenheit wird auf die typischen nicht-klassischen Strukturen

der Quantentheorie wie Superposition und Verschränkung zurückgehen. 

12.1

Register und Netzwerke

Register

Eine Reihe von  n  Qubit-Systemen stellt ein  Quantenregister (quantum regis-

ter) dar. Der Zustand dieses zusammengesetzten Systems wird durch einen Vektor  |ψ in   im

Hilbert-Raum  H( n)

2

=  H 2  ⊗H 2  ⊗ · · · ⊗ H 2 mit  n  Faktorräumen  H 2 beschrieben. Wir arbeiten

in allen Hilbert-Räumen in der Rechenbasis  {| 0 , | 1 }. In den Registern wird die Information

in binärer Form gespeichert. Der natürlichen Zahl  a  wird der Registerzustand

 |a =  |an− 1 |an− 2  . . . |a 0  , ai ∈ { 0 ,  1 }

(12.1)

aus  H( n)

2

zugeordnet. Wir beziehen uns dabei auf die binäre Schreibweise von  a

 a =  an− 12 n− 1 +  an− 22 n− 2 +  · · · +  a 020  ↔ ( an− 1 , an− 2 , . . . , a 0)  . 

(12.2)

Es gibt  d := 2 n  Zustände dieser Art. Sie bilden die Rechenbasis von  H( n)

2 . Die natürlichen

Zahlen  a = 0 bis  a =  d −  1 nummerieren die Basiszustände durch. Mit  a ∈ { 0 ,  1 }n  kennzeichnet man, dass der Zustand  |a  ein Element der Rechenbasis zu einem Register der Länge

 n  ist. Zum Beispiel ist 6  ∈ { 0 ,  1 } 3 und der zugehörige Zustand hat die Form  | 6  =  | 1 ,  1 ,  0 . 

Es ist eine wichtige Eigenschaft eines Quantenregisters, dass in ihm durch Superposition

mehrere Zahlen gleichzeitig in orthogonalen und damit unterscheidbaren Zuständen gespei-

chert werden können. Ein Beispiel ist

1

 √

1

( | 0 ,  1 ,  1  +  | 1 ,  1 ,  1 ) =  √ ( | 3  +  | 7 )  . 

(12.3)

2

2

Der allgemeine Zustand eines Registers der Länge  n  ist

 d− 1





 |ψ =

 ca|a , 

 |ca| 2 = 1  . 

(12.4)

 a=0

 a
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 Quantencomputer
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 |ψ out 

 |a

Abbildung 12.1: Schema eines Quantennetzwerks mit Bit-für-Bit-Messung. 

Die Anzahl  d  der zugleich speicherbaren Basiszustände wächst exponentiell mit der Register-

länge  n  an. Für  n = 200 ist ihre Zahl bereits größer als die geschätzte Zahl der Atome im

Universum. In dieser Speicher- und Verarbeitungskapazität liegt eine der Stärken des Quan-

tencomputers. 

Bei ungeschicktem Vorgehen kann diese Stärke allerdings durch die Eigenart der Quan-

tenmessung wieder kompensiert werden. Zu beachten ist, dass Messungen in der Rechenba-

sis am auslaufenden Zustand  |ψ out , die nacheinander oder simultan an den Registerstellen

durchgeführt werden, immer in einen der beteiligten Basiszustände überführen. Sie erlau-

ben es nur, eine einzige Zahl  a  auszulesen. Bei der Messung am Zustand (12.3) ist das die

Zahl 3 oder 7. Solche Messungen in der Rechenbasis heißen  Bit-für-Bit-Messungen (bit by bit

measurements). Eine nachfolgende Messung am resultierenden Zustand ergibt keine weitere

Information. 

Netzwerke

Die Manipulationen der Registerzustände durch den Quantencomputer erfolgt

mit Hilfe von unitären Transformationen auf  H( n)

2 . Ein  Quantengatter (quantum gate) führt ei-

ne wohlbestimmte unitäre Transformation durch, die meist eine Analogie zu einem logischen

Gatter der klassischen Computer hat. Ein  Quantennetzwerk (quantum network) oder eine

 Quantenschaltung (quantum circuit) besteht aus mehreren Quantengattern, die in zeitlich ge-

ordneter Weise gleichzeitig oder nacheinander auf den Zustand einwirken (vergl. Abb. 12.1). 

Die Gatter sind dabei durch  Quantendrähte (quantum wires) verbunden, die einen der Teil-

räume  H 2 von  H( n)

2

und damit einem der Quantensysteme zugeordnet sind. Ideale Drähte

beeinflussen den Zustand nicht. Reale Drähte sind zumeist Quellen für Fehler. Wir haben be-

reits in Kap. 3 und 7 solche Gatter und Netzwerke kennen gelernt. 
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Abbildung 12.2: Nicht eindeutig umkehrbare Funktion. 

Ein  Quantencomputer (quantum computer) ist ein Quantennetzwerk, das eine  Quantenbe-

 rechnung (quantum computation) durchführt, indem er den Eingangszustand  |ψ in   in unitärer

Weise in einen Ausgangszustand  |ψ out  überführt. Messungen werden in der Regel projektiv

und Bit-für-Bit an einigen oder allen Qubits (Registerstellen) des Ausgangszustands durch-

geführt. Im ganz allgemeinen Fall kann auch die unitäre Entwicklung durch Messungen in

einem oder mehreren Faktorräumen  H 2 unterbrochen werden. 

Für die experimentelle Realisierung von Quantennetzwerken ist es wichtig, dass auf ein-

zelnen Faktorräumen oder auf Produkten von Faktorräumen getrennt (lokal) wohlbestimm-

te unitäre Transformationen in kontrollierter Weise induziert werden können. Diese unitären

Transformationen der Teilsysteme durch die Quantengatter entstehen durch einen äußeren

Eingriff auf die Qubit-Systeme oder durch Wechselwirkung mit Nachbarqubits. Sie stellen

eine der Herausforderungen beim Bau von Quantencomputern dar. 

12.2

Funktionsberechnung und Quantenparallelismus

Zur Berechnung einer  Booleschen Funktion (boolean function)  f :  { 0 ,  1 }n → { 0 ,  1 }m  mit Hilfe des Quantencomputers wird ein Register der Länge  n  benötigt, in dem im Anfangszustand  |ψ in   eingegeben wird, und ein zweites Register der Länge  m, in dem im Ausgangszu-

stand der Funktionswert  f ( x) gespeichert wird. Beide Register haben endliche Längen. Die

Rechnung wird daher nach den Regeln der  modularen Arithmetik (modular arithmetic) durch-

geführt. Sie beschreibt das Rechnen mit  Resten (remainder). Unter  a  mod  n  versteht man den

Rest, der bei der Division der natürlichen Zahl  a  durch die natürliche Zahl  n  entsteht1. Es

gilt daher  a =  qn +  r  mit  q ∈

. Gleichungen, die auf der rechten Seite durch (mod  n)



gekennzeichnet werden, beschreiben die Gleichheit der Reste (z. B. 1 = 9 = 25 (mod  n)). 

1 Ganze Zahlen (integers)

:  {. . . , − 2 , − 1 ,  0 , +1 , +2 , . . .}.  Natürliche Zahlen (natural numbers)

:





 { 0 ,  1 ,  2 , . . .}. Sie werden auch positive ganze Zahlen (positive integers) oder nicht-negative ganze Zahlen (non-negative integers) genannt. 
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 |x

 |x

 Uf

 |y

 |y ⊕ f( x) 

Abbildung 12.3: Funktionsberechnung als unitäre Transformation. 

Wir werden beim Rechnen mit Resten in erster Linie die Addition benötigen. Für sie gilt

( a +  b) mod  n = ( a  mod  n)  ± ( b  mod  n) (mod  n) . 

(12.5)

Man lässt bei der Addition häufig den Zusatz mod  n  weg und schreibt

( a +  b) mod  n =:  a ⊕ b . 

(12.6)

Quantencomputer basieren auf unitären und daher umkehrbaren Zustandsentwicklungen. 

Funktionen  f , die keine ein-eindeutige Abbildung darstellen (für die also  f ( x) =  f ( y) für Argumente  x =  y  gilt) können nicht direkt durch unitäre Operationen berechnet werden (vergl. 

Abb. 12.2). Dieses Problem wird dadurch gelöst, dass man das Argument  x  in einem ersten

Register unverändert mitführt. Daher besteht die Notwendigkeit von zwei Registern, einem

ersten Register ( x-Register) der Länge  n  und einem zweiten Register ( y-Register) der Länge

 m. Die unitäre Transformation zur Bestimmung von f ( x) wirkt dann auf einen Zustand aus

 H( n)

2

 ⊗ H( m)

2

in folgender Weise:

 |x, y Uf

 −−→ |x, ( y +  f( x)) mod 2 n =  |x, y ⊕ f( x)  . 

(12.7)

Schematisch ist das in Abb. 12.3 dargestellt.  Uf  ist eine kontrollierte Operation, da das was mit

dem Inhalt des zweiten Registers durchgeführt wird, vom Inhalt des ersten Registers abhängt. 

Das CNOT-Gatter, das wir in Abschn. 7.4 beschrieben haben, ist ein Spezialfall mit  m =

 n = 1 und  f ( x) =  x. Die graphische Darstellungsweise wird von dort übertragen.  Uf  von Gl. (12.7) wird durch das Schaltbild von Abb. 12.4 wiedergegeben. 

Wir geben ein Beispiel zur Veranschaulichung von Gl. (12.7) an. Die Quantenregister

sollen die Länge  n = 2 und  m = 3 haben. Die Boolesche Funktion  f  ist dann von der Form

 f :  { 0 ,  1 }n → { 0 ,  1 }m. Wir betrachten speziell die Berechnung von  f ( x) =  x 2

 |x,  0  Uf

 −−→ |x, x 2 mod 23  . 

(12.8)

 12.2
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 |x

 |x

 |y

 f

 |y ⊕ f( x) 

Abbildung 12.4: Funktionsberechnung als kontrollierte Operation. 

Die unitäre Transformation  Uf  muß dann Folgendes leisten:

 | 0 ,  0 | 0 ,  0 ,  0  → | 0 ,  0 | 0 ,  0 ,  0 

 | 0 ,  1 | 0 ,  0 ,  0  → | 0 ,  1 | 0 ,  0 ,  1 

 | 1 ,  0 | 0 ,  0 ,  0  → | 1 ,  0 | 1 ,  0 ,  0 

 | 1 ,  1 | 0 ,  0 ,  0  → | 1 ,  1 | 0 ,  0 ,  1  . 

(12.9)

Wir haben dabei 9 mod 23 = 1 verwendet. 

Bleibt noch die Frage zu beantworten, ob eine solche unitäre Transformation  Uf  immer

mit Hilfe von Gattern implementiert werden kann. Es lässt sich zeigen, dass für jede Boolesche

Funktion  f :  { 0 ,  1 }n → { 0 ,  1 }m  das Quantennetzwerk, das die Transformation  Uf  und damit die Berechnung einer jeden Funktion  f  auf dem Quantencomputer bewirkt, allein aus Toffoli-Gattern aufgebaut werden kann. Damit ist zugleich die Unitarität von  Uf  gewährleistet. Das

Toffoli-Gatter ist in diesem Sinn ein universelles reversibles Gatter. Für den Beweis verweisen

wir auf die Literatur (vergl. Abschn. 8.6). 

Unitarität

Wir wollen einen einfachen Spezialfall von Gl. (12.7) untersuchen und zeigen, 

dass für jede Funktion  f :  { 0 ,  1 } → { 0 ,  1 }  die Transformation  Uf  eine unitäre Transformation auf  H 2  ⊗ H 2 ist. Sie kann daher durch eine Kombination einfacher Quantengatter

implementiert werden. Wir haben

 Uf Uf |x, y =  Uf |x, y ⊕ f ( x)  =  |x, y ⊕ f ( x)  ⊕ f ( x)  =  |x, y

(12.10)

und damit  Uf Uf = . 



Zu zeigen ist noch, dass  U † =  U

 f

 f  gilt. Es gibt vier Funktionen  fi:

 f 1(0)

= 0

 , 

 f 1(1)

= 0

 f 2(0)

= 1

 , 

 f 2(1)

= 1

(12.11)

 f 3(0)

= 0

 , 

 f 3(1)

= 1

 f 4(0)

= 1

 , 

 f 4(1)

= 0

 . 

Wir untersuchen die mit Bezug auf die Rechenbasis gebildete Matrix  Uf . Für  f 1 haben wir

 Uf |x, y =  Uf |x, y ⊕  0  =  |x, y  und damit  Uf =

=  U †. Für  f 2 gilt  Uf | 0 ,  0  =  | 0 ,  0 , 



 f

 Uf | 0 ,  1  =  | 0 ,  1 ,  Uf | 1 ,  0  =  | 1 ,  1   und  Uf | 1 ,  1  =  | 1 ,  0 . Für die Matrixdarstellung von  Uf
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können wir daraus





1

0

0

0

 0 1 0 0 

 U





 f = 

(12.12)

0

0

1

0  =  U †

 f

0

0

0

1

ablesen. Die Unitarität von  Uf  für  f 3 und  f 4 zeigt man in analoger Weise. 

Kick-back

Wir betrachten eine Funktion  f :  { 0 ,  1 }n → { 0 ,  1 }, d. h. den Fall  m = 1, und stellen im zweiten Register im Anfangszustand die Superposition 1

 √ ( | 0  − | 1 ) her. Die

2

Wirkung von  Uf  besteht dann in

 |

 U

 x  1

 √ ( | 0  − | 1 )

 f

 −−→ |x  1

 √ ( |f( x)  − | 1  ⊕ f( x) )

2

2

=

 |x( − 1) f( x) 1

 √ ( | 0  − | 1 )  . 

(12.13)

2

Basisvektoren  |x, für die  f ( x) = 1 gilt, werden mit  − 1 multipliziert. Das Argument  x  kontrolliert daher einen Vorzeichenflip. Obwohl die Funktionsberechnung und die Addition im

zweiten Register erfolgt, bleibt der Zustand im zweiten Register unverändert 1

 √ ( | 0  − | 1 )

2

und nur im ersten Register treten abhängig von  f ( x) Vorzeichenänderungen auf. Man nennt

diesen Vorgang, den wir noch mehrfach nutzen werden, einen  Kick-back (kick back). 

12.3

Quantenparallelismus

Durch parallele Anwendung von Hadamard-Gattern auf den Registerzustand  | 0 ,  0 , . . . ,  0   des ersten Registers der Länge  n

 |Ω  =  H ⊗ H ⊗ · · · ⊗ H| 0 ,  0 , . . . ,  0 

1

1

1

=

 √ ( | 0  +  | 1 )  √ ( | 0  +  | 1 )  . . . √ ( | 0  +  | 1 ) 2

2

2

 d− 1

1 

=

 √

 |x

(12.14)

 d x=0

( d := 2 n) entsteht eine gleichgewichtete Superposition der  d  Basisvektoren von  H( n)

2 . Wir

können den Zustand  |Ω   als die „Superposition“ der Zahlen 0  ≤ x ≤ d  auffassen. Wenn wir

das zweite Register der Länge  m  mit Zustand  | 0   hinzufügen und die unitäre Transformation
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wirken lassen, überführt sie in den Zustand





 d− 1



 |

1

 ψ =  Uf

 √

 |x,  0 

 d x=0

 d− 1

1 

=

 √

 Uf ( |x,  0 )

 d x=0

 d− 1

1 

=

 √

 |x, f( x) mod  n . 

(12.15)

 d x=0

 Als Folge der Linearität von Uf und der Superposition (12.14) im Zustand |Ω  im ersten Re-

 gister wird nach einmaligem Durchlaufen des Netzwerks simultan der Wert f ( x)  für d = 2 n

 Argumente berechnet.  Diese Parallelverarbeitung von Information wird als  Quantenparalle-

 lismus (quantum parallelism) bezeichnet.  d  steigt mit der Registerlänge  n  exponentiell an. 

Abgesehen von Trivialfällen ist der resultierende Zustand  |ψ  verschränkt. 

Wenn wir bei dem Zustand  |ψ  von Gl. (12.15) die ersten  n  Qubits (d. h. das  x-Register)

mit Bezug auf die Standardbasis ausmessen, erhalten wir mit einheitlicher Wahrscheinlich-

keit 1 einen der Zustände  |x. Wenn z. B.  |x

 d

0   gemessen wird, wird der Gesamtzustand in

 |x 0 , f( x 0)  überführt. Eine Messung am zweiten Register liefert  f( x 0). Aussagen über andere  x-Werte können nicht mehr gewonnen werden. Bei dieser Berechnung von  f ( x) Argument

nach Argument ist der Quantencomputer schlechter als der klassische Computer, da beim

klassischen Computer der Wert  x 0 nach Belieben vorgegeben werden kann. Beim Quanten-

computer ist  x 0 ein Zufallsergebnis. Die Überlegenheit der Quantencomputer wird sich bei

anderen Fragestellungen zeigen. 

Quantenalgorithmen

Die Überlegenheit von  Quantenalgorithmen (quantum algorithms)

gegenüber klassischen Algorithmen beruht in erster Linie auf der Ausnutzung von Super-

position und Verschränkung für ganz spezifische Fragestellungen. In erster Linie werden die

folgenden beiden Techniken verfolgt:

(i) Aufsuchen von globalen Eigenschaften einer Funktion  f ( x), wie z. B. der Periode. Hier-

zu werden nicht wie beim klassischen Computer zunächst Funktionswerte berechnet und

anschließend miteinander verglichen, sondern direkt Korrelationen zwischen den Zu-

ständen des Ausgangsregisters untersucht. Wir werden das beim Deutsch-Problem, beim

Deutsch-Jozsa-Problem und beim Shor-Algorithmus kennenlernen. 

(ii)  Amplitudenverstärkung (amplitude amplification) in zumeist iterativer Weise. Dabei wird

die Superposition so transformiert, dass der Zustand mit dem gesuchten Resultat eine

besonders große Amplitude erhält und daher mit großer Wahrscheinlichkeit gemessen

wird. Als ein Beispiel hierfür behandeln wir den Grover-Algorithmus. 
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 f
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Abbildung 12.5: Erzeugung eines Kick-back im ersten Register. 

12.4

Zwei einfache Quantenalgorithmen

12.4.1

Deutsch-Problem

Wir diskutieren die Situation, dass eine Funktion  f :  { 0 ,  1 } → { 0 ,  1 }  als  Blackbox (black box) bzw. als  Orakel (oracle) gegeben ist. Die Blackbox kann den Funktionswert  f ( x) zu

jedem eingegebenen Argument  x  berechnen, liefert aber keine darüber hinaus gehende Infor-

mationen über  f ( x). Man kann wie bei einem Orakel eine  Anfrage (query) stellen und erhält

jeweils eine Antwort. Die Aufgabe besteht darin, bestimmte Eigenschaften von  f ( x) mit einer

minimalen Zahl von Anfragen zu bestimmen. Wir vergleichen dabei eine klassische Blackbox

mit einer quantentheoretischen Blackbox, in der  f ( x) als Quantenalgorithmus implementiert

ist. 

Es gibt vier Funktionen  f ( x), die in Gl. (12.11) aufgelistet sind. Die Funktionen  f 1( x)

und  f 2( x) heißen konstant. Die Funktionen  f 3( x) und  f 4( x) heißen ausgeglichen, da gleich viele Werte 0 und 1 angenommen werden. Beides sind globale Eigenschaften der Funktionen. 

Es soll festgestellt werden, ob die Funktion  f ( x) der Blackbox konstant oder ausgeglichen ist. 

Hierzu muß im klassischen Fall die Berechnung mit den Werten  x = 0 und  x = 1 laufen. Das

Orakel muss also zweimal befragt werden. 

Beim Quantencomputer verwenden wir den Deutsch-Algorithmus2 und fragen nicht „Wel-

cher Funktionswert?“ sondern „Welche Funktion?“. Wir nutzen den Kick-back von Gl. (12.13)

aus und verwenden im  x-Register den Zustand 1

 √ ( | 0  − | 1 ). Das kann man erreichen, indem

2

man dort  | 0   einlaufen lässt und eine Hadamard-Transformation anschließt (vergl. Abb. 12.5). 

Nach der Anwendung von  Uf  gemäß Gl. (12.13) liegt der Gesamtzustand

#

$

1

 U

( | 0  +  | 1 ) ( | 0  − | 1 )

 f

 −−→  1 ( − 1) f(0) | 0  + ( − 1) f(1) | 1  ( | 0  − | 1 ) (12.16)

2

2

vor. Das zweite Register wird nicht mehr betrachtet. Wenn  f ( x) konstant ist, enthält das erste

Register den Zustand

1

 √ ( | 0  +  | 1 )  ⇔  konstant  . 

(12.17)

2

Im ausgeglichenen Fall liegt der Zustand

1

 √ ( | 0  − | 1 )  ⇔  ausgeglichen

(12.18)

2

2 D. Deutsch, 1985, [Deu85]. 
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 | 0 

 H

 H

Messung

 | 0  − | 1 

 Uf

 | 0  − | 1 

Abbildung 12.6: Quantenschaltung für den Deutsch-Algorithmus. 

vor. Zur Ausmessung führen wir wie in Abb. 12.6 eine zweite Hadamard-Transformation  H

durch, die auf

 | 0  ⇔  konstant , | 1  ⇔  ausgeglichen

(12.19)

führt. Eine einzige Messung in der Rechenbasis liefert dann bereits mit Sicherheit die ge-

wünschte Antwort. 

12.4.2

Deutsch-Jozsa-Problem

Es werden Funktionen  f :  { 0 ,  1 }n → { 0 ,  1 }  betrachtet, die auf  d = 2 n  Werten für  x  erklärt sind.  f ( x) soll entweder konstant oder ausgeglichen sein. Ausgeglichen bedeutet, dass die

Hälfte aller Funktionswerte null und die andere Hälfte eins ist. Die Aufgabe besteht wieder

darin zu ermitteln, welcher Typ von Funktion in einer Blackbox vorliegt. 

Der Quantenalgorithmus von Deutsch und Jozsa3 entsteht durch Erweiterung des Deutsch-

Algorithmus. Wir betrachten das in Abb. 12.7 dargestellte Schaltbild. Die Hadamard-Gatter

 H( n) =  H ⊗ H ⊗ · · · ⊗ H  haben auf den Zuständen des  x-Registers die in Gl. (12.14)

beschriebene Wirkung. 

 d− 1



 |

 H( n)

1

0 ,  0 , . . . ,  0   1

 √ ( | 0  − | 1 )  −−−→ |ψ =  √

 |x  1

 √ ( | 0  − | 1 )  . 

(12.20)

2

 d

2

 x=0

Nach der simultanen Funktionsberechnung entsteht daraus wie in Gl. (12.13)

 d− 1



 |

1

 ψ Uf

 −−→ |ψ =  √

( − 1) f( x) |x  1

 √ ( | 0  − | 1 )  . 

(12.21)

 d

2

 x=0

Wir schließen eine weitere Transformation des  x-Registers mit Hadamard-Gattern an. Die

Wirkung von  H( n) =  H ⊗ H ⊗ · · · ⊗ H  wollen wir an dieser Stellen nicht im Einzelnen aus-

rechnen. Die folgende Überlegung reicht für unsere Zwecke aus. Die Wirkung des einzelnen

Hadamard-Gatters ist  | 0  H

 −→  1

 √ ( | 0  +  | 1 ) bzw.  | 1  H

 −→  1

 √ ( | 0  − | 1 ). Der Zustand  |x  des

2

2

 x-Registers ist wie in Gl. (12.2) „binär geschrieben“. Mit  H( n) entsteht

 |x H( n)

 −−−→  1

 √ ( | 0 | 0  . . . | 0  + Rest)  ,  Rest  =  | 0 | 0  . . . | 0  . 

(12.22)

2

3D. Deutsch und R. Jozsa, 1992, [DJ 92]. 
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Abbildung 12.7: Quantenschaltung für den Deutsch-Jozsa-Algorithmus. 

Als Zustand beider Register erhalten wir daher durch Auswerten von Gl. (12.21)





 d− 1



 |

1

 ψ H( n)

 −−−→ |ψ =  √

( − 1) f( x)  {| 0 | 0  . . . | 0 +Rest }  1

 √ ( | 0  − | 1 )  . (12.23)

 d

2

 x=0

Schließlich messen wir die einzelnen Stellen des  x-Registers in der Rechenbasis. Die

Wahrscheinlichkeit das Messergebnis (0 ,  0 , . . . ,  0) zu erhalten ist



2

 d− 1



1 




 p(0 ,  0 , . . . ,  0) =



( − 1) f( x)
  . 

(12.24)

 d 




 x=0

Daraus folgt

 p(0 ,  0 , . . . ,  0)

=

1

 ⇔ f( x) konstant

 p(0 ,  0 , . . . ,  0)

=

0

 ⇔ f( x) ausgeglichen

(12.25)

Wir messen daher nur einmal das  x-Register. Wenn dabei das Resultat 0 ,  0 , . . . ,  0 eintritt, ist

 f ( x) konstant. Wenn irgendein anderes Messresultat eintritt, kann  f ( x) nicht konstant sein, d. h.  f ( x) muss ausgeglichen sein. 

Für beliebige Registerlänge  n  reicht beim Quantennetzwerk bereits eine Anfrage an das

Orakel aus. Beim klassischen Netzwerk fragt man nacheinander den Wert  f ( x) zu den  N

möglichen x-Werten ab. Sobald man für zwei Eingaben verschiedene Werte für  f ( x) erhält, ist

die Funktion nicht konstant und also ausgeglichen. Um sicher zu wissen, dass  f ( x) konstant

ist, muss sich derselbe Wert in mehr als der Hälfte aller Fälle, als mindestens in 2 n− 1 + 1

Fällen, ergeben. Die Zahl der klassisch nötigen Anfragen wächst daher exponentiell mit  n  an. 
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12.5

Suchalgorithmus von Grover

Telefonbuchproblem

Das  Telefonbuchproblem (phone book problem) besteht darin, in ei-

nem Telefonbuch zu gegebener Telefonnummer (z. B. 7581) den zugehörigen Namen zu fin-

den. 

x = Name

Nummer

Müller

4892

Meier

1739

. . . 

. . . 

Schmidt

7581

. . . 

. . . 

Die Verteilung der Nummern soll zufällig sein. Das Telefonbuch ist im Orakel gespeichert. 

Beim klassischen Algorithmus lautet die Frage „Hat Müller die Nummer 7581?“ Das Ora-

kel antwortet in diesem Fall mit „nein“. So werden die Namen nacheinander abgefragt, 

bis „Schmidt“ gefunden ist. Die Nutzung des Quantenparallelismus im  Grover-Algorithmus 4

(Grover’s algorithm) erlaubt es wieder, alle Fragen gleichzeitig zu stellen. Das Auslesen er-

folgt in diesem Fall mit Hilfe von Amplitudenverstärkung (vergl. Abschn. 12.3). 

Das Telefonbuch – oder allgemeiner eine nicht strukturierte Datenbank, in der ein Eintrag

gesucht werden soll – entspricht einer Funktion  f ( x) , x = 0 ,  1 , . . . , d −  1 mit den Werten f ( x) = 0 für  x =  l , 

 f ( x) = 1 für  x =  l . 

(12.26)

Das Quantenorakel erlaubt die Berechnung von  f :  { 0 ,  1 }n → { 0 ,  1 }  wie in Gl. (12.21) mit d = 2 n. Das zweite Register soll wieder aus nur einem Qubit bestehen. Wir lassen dort den

Zustand 1

 √ ( | 0  − | 1 ) einlaufen und nutzen den Kick-back aus. Der Zustand 1

 √ ( | 0  − | 1 )

2

2

läuft wieder aus. Wir geben im Folgenden nur die Transformationen des ersten Registers an. 

Dann wird die Wirkung der quantentheoretischen Funktionsberechnung durch den unitären

Operator  Ul

 |x Ul

 −→ ( − 1) f( x) |x

(12.27)

beschrieben.  Ul  flippt den Zustand  |l  in  −|l  und lässt alle anderen Zustände unverändert. 

Man kann diesen Operator daher auch in der Form

 Ul =

 −  2 |ll|

(12.28)



schreiben. 

Wir nutzen wieder den Quantenparallelismus aus. Durch Anwendung des Produkts

 H( n) =  H ⊗ H ⊗ H · · · ⊗ H  erzeugen wir wie in Gl. (12.14) aus den Zustand  | 0 | 0  . . . | 0 

( n)

die gleichgewichtete Superposition aller Zustände der Rechenbasis von  H 2

 d− 1



 |

1

Ω  =  √

 |x . 

(12.29)

 d x=0

4L.K. Grover, 1996 [Gro 96]. 
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Der unitäre Operator

 US := 2 |Ω Ω | −

(12.30)



bewirkt eine „Spiegelung“ an  |Ω . Er erhält  |Ω   und flippt das Vorzeichen von jedem Vektor

orthogonal zu  |Ω . Mit Gl. (12.14) lässt sich  US  mit Hadamard-Transformationen in der Form

 US =  H( n)(2 | 0  0 | − ) H( n)

(12.31)



mit  | 0  =  | 0 ,  0 , . . . ,  0   schreiben. 

Wir wollen die Wirkung der Spiegelung auf einen allgemeinen Zustand



 |ψ =

 ax|x, 

 ax ∈

(12.32)



 x

angeben. Die Projektion auf  |Ω   führt auf



 √

 

1

Ω |ψ =  √

 ax =

 d ¯

 a

(12.33)

 d x

mit dem Mittelwert der Amplituden

1 

¯

 a :=

 ax . 

(12.34)

 d x

Damit ergibt sich als Resultat der Anwendung von  US  auf  |ψ  mit Gl. (12.30) und (12.32)











 US|ψ = (2 |Ω Ω | − ) |ψ = 2

 |x ¯ a −

 ax|x =

(2¯

 a − ax) |x . (12.35)



 x

 x

 x

Die Amplituden  ax  von  |ψ  werden wie  ax →  2¯ a − ax  transformiert. Das entspricht einer

Spiegelung von  ax  am Mittelwert ¯

 a. 

Der Algorithmus besteht nun darin, in einem ersten Iterationsschritt  USUl  auf  |Ω   anzu-

wenden

 |Ω1  =  USUl|Ω  . 

(12.36)

In Abb. 12.8 sind die Amplituden  ax über  x  aufgetragen. Für  |Ω   haben sie einheitlich den

Wert 1

 √ . Anwendung von  Ul  flippt  al  in  −al  und lässt die anderen Amplituden unverän-

 d

dert. Der Mittelwert ¯

 a  verschiebt sich dabei nach unten. Die nachfolgende Transformation  US

spiegelt die Werte  ax  am neuen Mittelwert und bewirkt eine Verstärkung der Amplitude  al  im

Zustand  |Ω1 . Dies ist ein erster Durchgang. Auf  |Ω1   wird dann wieder  USUl  angewendet usw. Schließlich wird das  x-Register Bit-für-Bit ausgemessen. Dann ist die Wahrscheinlichkeit am größten, den Zustand  |l  und damit das Messergebnis  l  in dualer Schreibweise zu

finden. 

Der Grover-Algorithmus beschreibt eine Situation, in der der Quantencomputer das ge-

wünschte Resultat nicht mit Sicherheit, sondern nur mit großer Wahrscheinlichkeit liefert. 
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Amplitude

 ax

 |Ω 

1

 √d

 x

 l −  1

 l

 l + 1

 l + 2

 ax

 Ul|Ω 

1

 √d

 a

 l

 x

 a

2

 x

 √

 US Ul|Ω 

 d

1

 √d

 a

 x

 l

Abbildung 12.8: Amplitudenverstärkung beim Grover-Algorithmus. 

Dafür ist er offenbar in Folge des Quantenparallelismus wesentlich schneller als eine wieder-

holte Befragung des klassischen Orakels. 

Eine unitäre Transformation ist eine Rotation im komplexen Raum. Wiederholte Anwen-

dungen können einen Zustand immer näher an einen gewünschten Zustand heranrotieren. 

Es kann aber auch passieren, dass die Rotation über den gewünschten Zustand hinausgeht

und bei Wiederholung der Rotation sich mehr und mehr von ihm entfernt. Es ist daher beim

Grover-Algorithmus wichtig zu wissen, wann das Iterationsverfahren abzubrechen ist (vergl. 

Abschn. 12.8). 

Die systematische klassische Durchsuchung der Datenbank benötigt eine Anzahl von

Fragen in der Größenordnung 2 n. Sie steigt exponentiell mit  n  an. Um mit dem Grover-

 √

Algorithmus mit großer Wahrscheinlichkeit den richtigen Eintrag zu finden, reichen

2 n  An-

fragen (vergl. Abschn. 12.8). 

12.6

Faktorisierungsalgorithmus von Shor

In schnell wachsendem Umfang beruht die Kommunikation im militärischen und nicht-

militärischen Bereich auf einer sicheren Kryptographie für die öffentliche Übertragung von

Schlüsseln und Signaturen. Bis heute beruht das Verschlüsselungsverfahren auf der Annah-

me, dass es keine effektive Faktorisierung großer Zahlen gibt. Der Quantenalgorithmus von

Shor5 erlaubt eine, verglichen mit klassischen Methoden, sehr viel schnellere Faktorisierung. 

Wenn sich ein effektiver Quantenprozessor für diesen Algorithmus technisch realisieren las-

sen ließe, hätte das eine große Auswirkung auf die Sicherheit von geheimer Datenübertra-

gung und Datenspeicherung. Dies ist einer der Gründe für das schnell wachsende Interes-

se an Quantenalgorithmen und an der Realisierung von Quantencomputern. Wir wollen den

5P. Shor, 1994 [Sho 94] und 1997 [Sho 97]. 



200

 12

 Quantencomputer

quantentheoretischen Faktorisierungsalgorithmus hier vorstellen. Er besteht aus einem klassi-

schen Algorithmus, der stochastische Elemente (Zufallselemente) enthält, und dem eigentli-

chen Quantenalgorithmus zum Auffinden der Periode einer Funktion. Wir beginnen mit dem

klassischen Teil. 

12.6.1

Rückführung von Faktorisierung auf Periodensuche

Der größte gemeinsame Teiler als Hilfsgröße

Das Fundamentaltheorem der Arithmetik

besagt: Für jede natürliche Zahl  a >  1 gibt es eine eindeutige  Primfaktorzerlegung (prime

factorization)

 a =  pa 1

1  pa 2

2  . . . pan

 n

(12.37)

mit verschiedenen Primzahlen  p 1 , . . . , pn  und nicht verschwindenden natürlichen Zahlen

 a 1 , . . . , an. Unser Ziel ist die Angabe eines schnellen Algorithmus zur Primzahlzerlegung. 

Wir machen dabei davon Gebrauch, dass es effiziente Methoden zur Bestimmung des  größ-

 ten gemeinsamen Teilers  ggT( a, b) (greatest common divisor) von zwei natürlichen Zahlen  a

und  b  gibt (vergl. 12.8). ggT( a, b) ist die größte ganze Zahl, die sowohl Teiler von  a  wie von  b ist. 

12 :

Teiler 1 ,  2 ,  3 ,  4 ,  6 ,  12  . 

18 :

Teiler 1 ,  2 ,  3 ,  6 ,  9 ,  18  . 

 ⇒  ggT(12 ,  18) = 6

(12.38)

 N  sei ungerade und keine Primzahl. Zur Primzahlzerlegung von  N  ermitteln wir einen

nicht-trivialen Teiler von  N  und wenden das Verfahren sukzessive wieder auf die gefundenen

Faktoren von  N  an. Hierzu reicht es, eine natürliche Zahl  b  zu finden, die mit  N  mindestens

einen Teiler  = 1 gemeinsam hat, dann haben wir mit ggT( b, N ) insbesondere auch einen Teiler

von  N  gefunden. Eine solche Situation liegt vor, wenn es natürliche  nicht durch N teilbare

Zahlen  c > N  und  d > N  gibt, sodass die Gleichung

 cd =  m

(12.39)

 N

für eine natürliche Zahl  m  erfüllt ist. Dann muss es möglich sein, alle Faktoren der Primzahl-

zerlegung von  N  gegen einige oder alle Faktoren von  c  und  d  zu kürzen. Es gibt also einen

ggT( c, N ) und einen ggT( d, N ). Wir berechnen beide mit dem ggT-Algorithmus und haben

damit zugleich Faktoren von  N  gefunden. 

Die Rolle der Periodenbestimmung

Wie gewinnen wir zu vorgegebenem  N  eine solche

Relation (12.39)? Hierzu stellen wir eine Vorüberlegung an.  a  sei eine natürliche Zahl mit

2  ≤ a ≤ N −  1. Wir setzen voraus, dass

ggT( a, N ) = 1

(12.40)

erfüllt ist, sonst wäre bereits ein Teiler von  N  gefunden, und bilden die Funktion

 f ( x) :=  ax

(mod  N )  . 

(12.41)
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Man kann zeigen (vergl. Abschn. 12.8), dass die Funktion  f ( x) eine Periode  r  hat. Darunter

verstehen wir die kleinste natürliche Zahl, für die

 f ( x +  r) =  f ( x)

(mod  N )

(12.42)

gilt. Die Periode  r  hängt von  a  ab. Aus

 ax+ r =  axar =  ax

(mod  N )

(12.43)

folgt der Zusammenhang

 ar = 1

(mod  N )  . 

(12.44)

Wir machen ein einfaches Beispiel und berechnen modular

( x, f ( x) = 2 x

mod 3) :

(1 ,  2) , (2 ,  1) , (3 ,  2) , (4 ,  1) , . . . 

(12.45)

Die Periode ist  r = 2 und es gilt

 ar = 22 = 1

(mod 3)  . 

(12.46)

Nehmen wir an, zu gegebenem  a  sei die Periode  r  in einem geeigneten Verfahren bereits

bestimmt worden. Und nehmen wir weiter an, dass die folgenden beiden Bedingungen erfüllt

sind:

 r  ist gerade, 

(12.47)

 r

 a  2 + 1  = 0 (mod  N )  . 

(12.48)

Dann können wir wegen Bedingung (12.47) die Gl. (12.44) umformen

 r

 r

 ar −  1 = ( a  2 + 1)( a  2  −  1) = 0 (mod  N )  . 

(12.49)

Die linke Seite der Gl. (12.49) muss ein Vielfaches von  N  sein. Es gibt daher eine natürliche

Zahl  m >  0, sodass wir

 r

 r

( a  2 + 1)( a  2  −  1) =  m

(12.50)

 N

schreiben können. 

 r

Gleichung (12.48) besagt, dass  a  2 + 1 kein Vielfaches von  N  ist. Da  r  die kleinste Zahl

mit der Eigenschaft (12.42) ist, muss weiterhin

 r

 a  2  −  1  = 0 (mod  N )

(12.51)

 r

gelten, denn sonst wäre wegen Gl. (12.44) bereits  r

2

2 die Periode. Daher ist auch  a

 −  1 kein

Vielfaches von  N . Andererseits besagt Gl. (12.50), dass wir auf ihrer linken Seite nach einer

Primzahlzerlegung alle Faktoren von  N  gegen Faktoren im Zähler wegkürzen können. Das

 r

 r

Kürzen muss dabei in ( a  2 + 1) und in ( a  2  −  1) erfolgen, denn sonst wäre einer dieser Terme
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ein Vielfaches von  N  und im Widerspruch zu Gl. (12.48) und (12.51). Beide Terme haben

daher mit  N  gemeinsame Teiler. Darunter gibt es jeweils Größte mit

 	

 	

 r

 N

 r

 N

ggT( a  2 + 1 , N )  =

 , 

ggT( a  2  −  1 , N )  =

 . 

(12.52)

1

1

Diese Existenzaussage ist unser Ergebnis. Wenn wir schließlich den Algorithmus zur ggT-

Bestimmung anwenden, haben wir einen oder zwei Faktoren von  N  gewonnen. 

Wir sind nur dann erfolgreich, wenn wir zu vorgegebenem  N  ein  a  finden, sodass die

Bedingungen (12.47) und (12.48) erfüllt sind. Die Suche erfolgt, indem Zufallswerte für  a

eingegeben werden und so lange der Algorithmus immer wieder durchlaufen wird, bis sich

ein  a  findet, das die Bedingungen erfüllt. Es handelt sich daher um einen  Zufallsalgorithmus

(randomized algorithm). Die gewonnenen Faktoren von  N  werden in gleicher Weise weiter

bearbeitet, bis die Faktorzerlegung erreicht ist. 

Flussdiagramm

Das oben beschriebene Schema des Faktorisierungsalgorithmus ist in

Abb. 12.9 dargestellt. Nur für den doppelt gerahmten Teil der Periodensuche wird ein Quan-

tenalgorithmus eingesetzt. 

Das Beispiel N = 15 Die Zahl 15 ist die kleinste ungerade Zahl, die keine Primzahl ist. 15

ist daher die kleinste Zahl, die mit der beschriebenen Methode faktorisiert werden kann. Mit

 N = 15 haben wir 2  ≤ a ≤  14. Da Gl. (12.40) zu erfüllen ist, gibt es für die Wahl von  a  die

folgenden Möglichkeiten:

 a ∈ { 2 ,  4 ,  7 ,  8 ,  11 ,  13 ,  14 } . 

(12.53)

Wir wählen z. B.  a = 11 und suchen die Periode  r  von  f ( x) von Gl. (12.41). 

 x = 0

:

110 = 1

(mod 15)

 x = 1

:

111 = 11

(mod 15)

 x = 2

:

112 = 121 = 8  ·  15 + 1 = 1 (mod 15)

 x = 3

:

113 = 1331 = 88  ·  15 + 11 = 11 (mod 15)  . 

(12.54)

Wir haben die Periode  r = 2 erhalten und damit

ggT(11 + 1 ,  15) = 3 , 

ggT(11  −  1 ,  15) = 5  . 

(12.55)

Die Zahlen 3 und 5 sind Teiler von 15. Die Primzahlzerlegung von 15 lautet 15 = 3  ·  5. 

Wenn die zufällige Festlegung von  a  auf  a = 14 führt, erhalten wir:

 x = 0

:

140 = 1

(mod 15)

 x = 1

:

141 = 14

(mod 15)

 x = 2

:

142 = 196 = 13  ·  15 + 1 = 1 (mod 15)

 x = 3

:

143 = 2744 = 182  ·  15 + 14 = 14 (mod 15)  . 

(12.56)

Die Periode ist wieder  r = 2. Wir bilden

ggT(14 + 1 ,  15) = 15 , 

ggT(14  −  1 ,  15) = 1  . 

(12.57)

Damit ist die Bedingung (12.52) verletzt. In Abb. 12.9 (Flussdiagramm) führt die Schleife

zurück. Es muss ein neuer Wert für  a  gewählt werden. 
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Wähle in zufälliger

Weise  a ∈ { 2 , . . . , N −  1 }

Berechne

 z 1 = ggT( a, N)

NEIN

 z 1 = 1

JA

Bestimme Periode  r

der Funktion  ax  mod  N

NEIN

 r  gerade

JA

 r

 r

 z = max  { ggT( a  2 + 1 , N ) ,  ggT( a  2  −  1 , N ) }

NEIN

 z = 1 , N

JA

 z 1 bzw.  z 2 ist

ein Faktor

Abbildung 12.9: Schema des Faktorisierungsalgorithmus. Nur der doppelt gerahmte Teil wird auf dem

Quantencomputer durchgeführt. 

12.6.2

Quantenalgorithmus zur Periodenbestimmung

Die verbliebene Aufgabe besteht in der Bestimmung der Periode der Funktion  f ( x) =  ax

(mod  N ). Wir verwenden wieder zwei Register der Länge  n  und  m. Im ersten Register kön-

nen die  d = 2 n  Basisvektoren  |x  von  H( n)

2

sowie jede Superposition  |φ ∈ H( n)

2

eingegeben

werden. Im zweiten Register wird  f ( x) (mod  N ) abgelegt. Die Länge  m  ist so zu wählen, 

dass die Dimension 2 m ≥ N  ist. Zustände in diesem Register bezeichnen wir mit  |χ ∈ H( m)

2

. 

Ein Gesamtzustand aller Register ist von der Form  |ψ =  |φ|χ ∈ H( n)

2

 ⊗ H( m)

2

. 

1.Schritt: Initialisierung

Als Ausgangspunkt für die Nutzung des Quantenparallelismus

wird im ersten Schritt der Zustand  |ψ  in bekannter Weise in die gleichgewichtige Superposi-
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tion der Basiszustände von  H( n)

2

gebracht

 d− 1



 |

1

 ψ 1  =  √

 |x| 0  . 

(12.58)

 d x=0

 Beispiel N = 15:

1. Register: n=3 Qubits für die Zahlen 0 bis 7. Damit ist  d = 8. 

2. Register:  m = 4 Qubits für die Zahlen 0 bis  N = 15. 

Wähle  a = 11. 

 |ψ 1  = 1

 √ ( | 0  +  | 1  +  . . . | 7 )  | 0 

8

2. Schritt: Berechnung von  f ( x) im zweiten Register

Das Ergebnis der unitären Trans-

formation ist der verschränkte Zustand

 d− 1



 |

1

 ψ 2  =  √

 |x|ax (mod  N)

(12.59)

 d x=0

 Beispiel N = 15:

 |

1

 ψ 2  =

 √ ( | 0 | 1  +  | 1 | 11  +  | 2 | 1  +  | 3 | 11 

8

+  · · · +  | 7 | 11 )

(12.60)

 |

1

 ψ 2  =

 √ {( | 0  +  | 2  +  | 4  +  | 6 )  | 1 

8

+ ( | 1  +  | 3  +  | 5  +  | 7 )  | 11 } . 

(12.61)

Periodizität kann man an der Folge der  x-Werte ablesen, für die die Funktionswerte sich

wiederholen. Die Periode ist eine globale Eigenschaft der Funktion. Sie ist nach einem einzi-

gen Rechenschritt bereits in den Zuständen repräsentiert. In Gl. (12.61) ist nach den Funkti-

onswerten im zweiten Register zusammengefasst worden. Die Periode (hier  r = 2) ist in den

verschiedenen Zuständen des ersten Registers gespeichert, die sich bei der Zusammenfassung

ergeben. Die Zerlegungen dieser Zustände nach Basiszuständen können in den Nummern der

Basiszustände Verschiebungen um  l ∈

gegenüber 0 aufweisen, die auch  Offset  genannt



werden. In Gl. (12.61) haben wir als Nummern der Basisvektoren (0, 2, 4, 6) und (1, 3, 5, 7). 

Der Offset ist  l = 0 bzw.  l = 1. 

Die Periode ist damit bereits im Prinzip ablesbar. Wir messen in der Rechenbasis des

zweiten Registers und überführen dabei das erste Register je nach Offset in den Zustand

%

h i

   q − 1

 r



 |

 r

 φ 2( l)  =

 |l +  jr . 

(12.62)

 q

 j=0





 q

ist dabei die größte natürliche Zahl kleiner oder gleich  q . Im Beispiel ist  q = 4. Diese

 r

 r

 r

Messung wiederholen wir sehr oft und selektieren nach dem Messergebnis (also nach dem

Offset  l).  |φ 2( l)   wird dann in der Rechenbasis gemessen. Im Beispiel würde  l = 1 die Messergebnisse (0, 2, 4, 6) liefern und die Perioden  r = 2 ist ablesbar. Dies wird allerdings mit

wachsendem  N  immer aufwendiger. Man verwendet daher ein anderes Verfahren. 
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3. Schritt: Diskrete Fourier-Transformation

Ein schnelleres Verfahren besteht darin, mit

Hilfe einer Fourier-Transformation den Offset in einen für die quantentheoretische Mes-

sung irrelevanten Phasenfaktor zu verschieben. Der unitäre Operator zur diskreten Fourier-

Transformation bewirkt

 d− 1





1 

 xz

 UDF T |x =  √

exp 2 πi

 |z

(12.63)

 d

 d

 z=0

mit  z ∈

. Die Zustände im ersten Register sind in (12.62) angegeben. Wir diskutieren zu-



nächst den Spezialfall

 d ∈ . 

(12.64)

 r



Dann ist

  d/r− 1



 |

 r

 φ 2( l)  =

 |l +  jr

(12.65)

 d j=0

und

 d− 1



 U

˜

 DF T |φ 2( l)  =

 f ( z) |z

(12.66)

 z=0

und

 √ d− 1





 r



˜

 r

( l +  jr) z

 f ( z)

=

exp 2 πi

 d

 d

 j=0





 √

 d − 1









 r   r

 rz 

 lz

=



exp 2 πij

 exp 2 πi

 . 

(12.67)

 d

 d

 d

 j=0

Wir untersuchen den Faktor [ . . . ] weiter. Wenn  z  ein Vielfaches (einschließlich der Null)

von  d  ist, dann liegt eine geometrische Reihe vor

 r





exp 2 πi rz · d −  1

[ . . . ] =

 d

 r





= 0  , 

(12.68)

exp 2 πi rz −  1

 d

da  z ∈

. Wir müssen also nur  z =  k d  betrachten. 



 r

Der neue Laufbereich von  z  zieht sich auf die Zustände  |z  durch. Das führt auf

 r− 1





1 

 lk

 d

 UDF T |φ 2( l)  =  √

exp 2 πi

 |k  . 

(12.69)

 r

 r

 r

 k=0
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Wahrschein-

Wahrschein-

a)

b)

lichkeit

lichkeit

0

 d

2 d

3 d

 x

0

 d

2 d

3 d

 x

 r

 r

 r

 r

 r

 r

Abbildung 12.10: Wahrscheinlichkeitsverteilung der Messergebnisse  x  im ersten Register beim Shor-

Algorithmus. 

Der Offset  l  steht jetzt in der Phase. Die Periode  r  steht in den Bezeichnungen der Zustände

( k d ∈

). Der Gesamtzustand ist

 r



 r− 1



 |

1

 ψ 3( l)  =  √

 |k d|ξl . 

(12.70)

 r

 r

 k=0

Den Zustand des zweiten Registers müssen wir nicht explizit hinschreiben. Insgesamt sind

bisher erst zwei unitäre Transformationen erfolgt. 

3. Schritt: Messung am ersten Register

Wir messen in der Rechenbasis und wiederholen

die ganze Prozedur mehrfach. Nur die Messergebnisse  xk =  k d  mit  k = 0  . . . , r −  1 werden r

mit nicht verschwindender konstanter Wahrscheinlichkeit angezeigt (vergl. Abb. 12.10a). 

Daraus lässt sich  d  ablesen. Da  d  bekannt ist, ist so die Periode  r  bestimmt. 

 r

 Beispiel N = 15:

 Wir haben d = 8 . 

 Die Summanden in Gl. (12.61) haben den Offset l = 0  und l = 1 . Die unitäre Transformation

 UDF T überführt in

, 

-

 |

1

 ψ 3  =  √

( | 0  +  | 4 ) | 1  + ( | 0  +  eiπ| 4 ) | 11 

(12.71)

4

 Mit der Wahrscheinlichkeit  12  wird am ersten Register das Ergebnis  0  gemessen. Das enthält

 keine Information. Wenn der zu k = 1  gehörige Wert  4  gemessen wird, folgt aus  4 =  k d für

 r

 die Periode r = 2 . Das beendet die Periodenbestimmung. 

Wir ergänzen noch, dass man bei nur einer Messung mit dem Messwert  x  mit einer

gewissen Wahrscheinlichkeit auf ein  k  trifft, dass mit  r  keinen gemeinsamen Teiler hat. 

(ggT( k, r) = 1). 

 x

 k

=

(12.72)

 d

 r

Dann kürzt man  x/d  so lange, bis ein irreduzibler Bruch entsteht und liest  r  ab. Mit einer ge-

wissen Wahrscheinlichkeit reicht daher schon eine einzige Messung zur Periodenbestimmung. 
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Allgemeiner Fall

Wenn  r  kein Teiler von  d  ist und damit die Annahme (12.64) nicht erfüllt

ist, werden wir trotzdem erwarten, dass sich die Wahrscheinlichkeitsverteilung um die Werte

von  x  konzentriert ist, die „fast“ ein Vielfaches von  d  sind (vergl. Abb. 12.10b). Das lässt

 r

sich auch beweisen. Ein passendes Auswertungsverfahren kann angegeben werden (vergl. 

Abschn. 12.8). Die Zeit zur Durchführung der Quanten-Fourier-Transformation in einem d-

dimensionalen Raum ist von der Größenordnung (log  d)2. Die klassische schnelle Fourier-

Transformation ist von der Ordnung  d  log  d. Daraus ergibt sich ihre Unterlegenheit (vergl. 

Abschn. 12.8). 

12.7

Quantenfehlerkorrektur mit Hilfe nicht-lokaler

Messungen

Wie in klassischen Computern, so treten auch in realen Quantencomputern Fehler auf. Wie wir

in Kap. 15 im Einzelnen sehen werden, führt die Wechselwirkung mit der Umgebung zu Deko-

härenz. Die reinen Zustände, auf denen die Berechnung beruht, werden in Gemische überführt. 

Eine andere Störung besteht darin, dass die Quantengatter, aus denen der Quantencomputer

aufgebaut ist, nicht völlig perfekt arbeiten und möglicherweise gestörte unitäre Transformatio-

nen durchführen. Besonders drastische Störungen entstehen, wenn Zustände in Registerstellen

umspringen (z. B.  | 0  → | 1 ) oder eine Phasenänderung erfahren (z. B.  | 0  → −| 0 ). Sowohl im Computer wie auch bei der Übertragung in Kanälen muß Quanteninformation gegen Verlust geschützt werden indem man Fehler aufspürt (Diagnose) und beseitigt (Therapie). 

Die üblichen Verfahren zur Fehlerkorrektur bei klassisch verarbeiteter Information sind

nicht übertragbar, da sie auf dem Kopieren von Zuständen und auf lokalen Messungen be-

ruhen. Es gibt aber keine universellen Kopierer für Quantenzustände und lokale Messungen

zerstören die Verschränkung. Man benötigt Quantenverfahren zur Fehlerkorrektur. Wir geben

einige an. 

Die  quantentheoretischen fehlerkorrigierenden Kodes (quantum error-correcting codes, 

QECC) sind ein Beispiel für die Verwendung von Verschränkung und von nicht-lokalen Mes-

sungen als Hilfsmittel. Die Grundidee besteht darin, Information redundant zu speichern. Es

entstehen verschränkte Zustände. Im einfachsten Fall treten einzelnen Fehler lokal, d. h. in Un-

tersystemen und einzelnen Registern auf. Dann können diese Fehler durch nicht-lokale Mes-

sungen (vergl. Abschn. 9.2) aufgespürt werden und die lokal-verborgene Information kann

wieder hergestellt werden. Wir wollen das an einigen Beispielen demonstrieren. 

12.7.1

Bit-Flip-Fehler

Ein  Bit-Flip-Fehler (bit flip error)  | 0  → | 1 , | 1  → | 0   tritt lokal an einer einzelnen Registerstelle auf. Man kann sich dagegen schützen, indem man ein einzelnes Qubit durch drei Qubits

in der folgenden Weise redundant kodiert:

 | 0  → |¯0  :=  | 0 ,  0 ,  0 

 | 1  → |¯1  :=  | 1 ,  1 ,  1  . 

(12.73)

Damit wird aus dem Zustand  |ϕ  der verschränkte Zustand  |φ

 |ϕ :=  c 0 | 0  +  c 1 | 1  → |φ :=  c 0 | 0 ,  0 ,  0  +  c 1 | 1 ,  1 ,  1  . 

(12.74)

208

 12

 Quantencomputer

 |ϕ

 |φ

 | 0 

 | 0 

Abbildung 12.11: Erzeugung einer redundanten Kodierung. 

Die entsprechende Quantenschaltung lässt sich mit Hilfe von zwei CNOT-Gattern wie in

Abb. 12.11 aufbauen. 

Wir bezeichnen die Produkt-Hilbert-Räume nicht mehr mit großen Buchstaben, sondern

nummerieren sie durch:  H(1)  ⊗H(2)  ⊗ . . . . Die Zustände  |¯0   und  |¯1   sind beide Eigenzustände (1) (2)

(2) (3)

von  σz σz

und  σz σz

zum Eigenwert +1. Die entsprechenden nicht-lokalen Messungen

in der Rechenbasis ergeben den Messwert +1 (vergl. Abschn. 9.2). 

Ein Bit-Flip an einer Registerstelle führt z. B. auf den Zustand

 |φ :=  c 0 | 1 ,  0 ,  0  +  c 1 | 0 ,  1 ,  1  . 

(12.75)

(1) (2)

Die Messung der Observablen  σz σz

ergibt nun den Messwert  − 1, die der Observablen

(2) (3)

 σz σz

den Messwert +1. Daraus kann eindeutig geschlossen werden, dass der Bit-Flip im

ersten Register stattgefunden hat. Wichtig ist, dass bei der nicht-lokalen Messung der Zustand

 |

(1)

 φ  nicht abgeändert wurde. Daher führt eine unitäre Transformation  σ

(2)

(3)

 x

 ⊗

 ⊗

, die





einen Bit-Flip beim ersten Registerzustand bewirkt, dort wieder auf den Zustand  |φ  zurück. 

(1) (2)

(2) (3)

Die Messwertepaare, die bei der Messung von  σz σz

und  σz σz

erhalten werden, sind:

(+1 , +1) , ( − 1 , +1) , ( − 1 , − 1) , (+1 , − 1). Sie entsprechen der Reihe nach: kein Flip, Flip in der ersten, der zweiten oder der dritten Registerstelle. Der Bit-Flip wird wieder durch einen

weiteren Bit-Flip an derselben Stelle rückgängig gemacht. 

Unitäre Transformationen können nahe an der Identität sein. Dann findet nur selten ein

Bit-Flip statt. Wir betrachten das Beispiel ( ||   1)

 |φ → |φ =  c 0 ( | 0 ,  0 ,  0  +  | 1 ,  0 ,  0 ) c 1 ( | 1 ,  1 ,  1  +  | 0 ,  1 ,  1 )

(12.76)

(1) (2)

(2) (3)

Durch Messung von  σz σz

und  σz σz

wird mit der Wahrscheinlichkeit 1  −|| 2 das Mess-

ergebnis (0 ,  0) erhalten und auf den Zustand  |φ  zurück projiziert. Mit der Wahrscheinlichkeit

 || 2 findet man das Ergebnis ( − 1 , +1) und die Messung überführt in  |φ. Aus dem Messer-

gebnis kann auf den Endzustand geschlossen werden und, wenn nötig, der Fehler korrigiert

werden. 
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12.7.2

Phasen-Flip-Fehler

Es wird ein Qubit in folgender Weise in 9 Qubits kodiert, die zu Clustern von 3 Qubits zusam-

mengefasst sind:

 |

1

0  → |¯0  = 23 / 2 ( | 0 ,  0 ,  0  +  | 1 ,  1 ,  1 ) ( | 0 ,  0 ,  0  +  | 1 ,  1 ,  1 ) ( | 0 ,  0 ,  0  +  | 1 ,  1 ,  1 )

 |

1

1  → |¯1  = 23 / 2 ( | 0 ,  0 ,  0  − | 1 ,  1 ,  1 ) ( | 0 ,  0 ,  0  − | 1 ,  1 ,  1 ) ( | 0 ,  0 ,  0  − | 1 ,  1 ,  1 ) (12.77)

Jeder Cluster hat eine redundante Bit-Kodierung. Ein einzelner Bit-Flip kann wie in Ab-

schn. 12.7.1 ermittelt und behoben werden. Ein  Phasen-Flip-Fehler (phase flip error), der

an einer der 9 Registerstellen stattfindet, kann folgendermaßen festgestellt werden: Man misst

die zwei nicht-lokalen 6-Qubit-Observablen

(1) (2) (3) (4) (5) (6)

 σx σx σx σx σx σx

(4) (5) (6) (7) (8) (9)

 σx σx σx σx σx σx

(12.78)

die mit  σx  gebildet werden. Die Zustände  |¯0   und |¯1   sind Eigenzustände zum Eigenwert +1. 

Wenn ein Phasenflip (Vorzeichenwechsel) in einem der Register stattfindet, dann ändert

sich für diesen Cluster der Messwert der  σxσxσx-Messung um den Faktor  − 1. Durch Mes-

sung der Operatoren (12.78) kann man ähnlich wie beim Bit-Flip-Fehler ermitteln, in welchem

Cluster der Phasen-Flip stattgefunden hat. Die Fehlerkorrektur besteht dann darin, dass in die-

sem Cluster an irgendeiner Registerstelle eine  σz-Transformation durchgeführt wird. Dadurch

wird der Ausgangszustand wieder hergestellt. 

Fehler bei allen Registerstellen

Wir lassen zu, dass an allen Registerstellen ein Fehler auf-

treten kann, verlangen aber, dass das bei jeder einzelnen Registerstelle nur selten geschieht. 

Auf das einzelne Qubit kann dann die unitäre Transformation  U =

+  O( ) mit     1



wirken. Sie hat ganz allgemein die Struktur

 U =

+  ixσx +  iyσy +  izσz . 

(12.79)



Die einzelnen Terme bewirken Bit-Flip, Phasen-Flip oder beides zusammen. Wir betrachten

die Kodierung (12.77). Man führt wieder die Diagnose für Phasen-Flip und Bit-Flip durch und

erreicht damit bereits, dass mit großer Wahrscheinlichkeit auf den ungestörten Zustand zurück

projiziert wird. Mit einer geringen Wahrscheinlichkeit  || 2 hat ein Bit-Flip oder Phasen-Flip in

einem Register stattgefunden. Dieser Fehler wird erkannt und kann auf bekannte Weise beho-

ben werden. Bei Fehlern an zwei oder mehr Stellen ist das so nicht möglich. Diese Situation

tritt allerdings auch nur mit einer Wahrscheinlichkeit  || 4 oder kleiner auf. 

12.8

Ergänzende Themen und weiterführende Literatur

 •  Das Toffoli-Gatter ist ein universelles reversibles Gatter. Jede unitäre Transformation

lässt sich durch Kombination von Toffoli-Gattern realisieren: [Pre 98, Kap. 6], [Gru 99, 

Kap. 1.7.1 und 3.1], [Hir 01, Kap. 2.3.2]. 
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 •  Rechenzeiten für klassische und quantentheoretische Fourier-Transformation: [Pre 98, 

Kap. 6]. 

 •  Diskrete Fourier-Transformation, wenn Gl. (12.64) nicht erfüllt ist: [EJ 96], [Pre 98, Kap. 

6.9.1]. 

 •  Dekohärenz durch Kopplung an die Umgebung zerstört die unitäre Entwicklung im

Quantencomputer und ist daher eine wichtige Fehlerquelle: [Bar 96], [PSE 96]. 

 •  Dekohärenzfreie Unterräume und Systeme gelten als eine der erfolgversprechenden Lö-

sungen des Dekohärenzproblems beim Quantencomputing: [LW 03]. 

 •  Wissen über Computational Complexity ermöglicht die Einschätzung von Vorteilen und

Grenzen von Quantencomputern: [Mer 02]. 

 •  Fehlerkorrigierende Quantenkodes: [Pre 98, Kap. 7], [Pre 98 a], [Gru 99, Kap. 7], 

[Pre 99]. 

 •  Anzahl der nötigen Anfragen beim Grover-Algorithmus: [Pre 98, Kap. 6], [EHI 01]. 

 •  Beschreibung weiterer Such-Algorithmen: [Gru 99, Kap. 3]. 

 •  Optimale Zahl der Wiederholungen beim Grover-Algorithmus: [BBH 98], [EHI 01]. 

 • Übersichtsartikel zum Shor-Algorithmus: [EJ 96]. 

 • Übersichtsartikel zum Quantencomputing: [Ben 95], [Bar 96], [PVK 96], [Bar 98], 

[CEM 98], [DE 98], [Pre 98, Kap. 6], [Ste 98], [VP 98], [Bra 99a], [Joz 00], [NC 00, Part

II], [RP 00], [EHI 01], [CB 02], [GM 02], [Lom 02a], [Wer 02]. 

 •  Euklidischer Algorithmus zur Bestimmung des größten gemeinsamen Teilers: [NC 00, 

Appendix 4]. 

 •  Wenn die Bedingung (12.40) erfüllt ist, hat die Funktion  f( x) von Gl. (12.42) eine Peri-

ode. Beweis mit Hilfe des Satzes von Euler und Fermat: [HW 79]. 

 •  Bücher über Quantencomputing: [BDM 98], [WC 98], [Bra 99], [Bro 99], [Gru 99], 

[Pit 00], [CP 01], [Hir 01], [DM 02], [KSV 02], [LB 02], [Lom 02], [SS 04]. 

 •  Bücher oder Übersichtsartikel zur experimentellen Realisierung von Quantencomputern:

[Pel 98], [Gru 99, Kap. 7.6], [BEZ 00], [CLK 00], [DiV 00], [NC 00, Part II], [DM 02], 

[SS 04]. 

 •  Bücher mit Übersichtsartikeln zur experimentellen Realisierung von Quantencomputern:

[LSP 98], [Bra 99], [BEZ 00], [DM 02], [Hei 02]. 

 •  Buch mit einer Gesamtdarstellung der Ansätze zur experimentellen Realisierung von

Quantencomputern: [SS 04]. 

 •  Bücher mit Übersichtsartikeln zur Theorie der Quantencomputer: [LSP 98], [Bra 99], 

[CB 02], [GM 02], [Hei 02], [Lom 02]. 
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12.9

Übungsaufgaben

ÜA 12.1 [Zu 12.4.2]

(i) Zeigen Sie, dass die Wirkung der Hadamard-Transformation von  n  Qubits  H( n) =  H ⊗

 H ⊗ · · · ⊗ H  auf  |x  die Form

 d



 |x H( n)

 −−−→  1

 √

( − 1)( x·y) |y

(12.80)

 d y=0

hat. Es entsteht eine gleichgewichtete Superposition der Basisvektoren von  H(2)

2

mit

Vorzeichen +1 und  − 1. Dabei ist ( x · y) das „vektorielle innere Produkt“ der Register-

zustände

( x · y) =  xn− 1 yn− 1 +  xn− 2 yn− 2 +  . . . +  x 0 y 0  . 

(12.81)

(ii) Geben Sie  |ψ  von Gl. (12.23) vollständig an. 

(iii) Eine Blackbox berechnet die Funktion  fa :  { 0 ,  1 }n → { 0 ,  1 }  definiert durch fa( x) = ( a · x)  . 

(12.82)

Geben Sie einen Quantenalgorithmus an, der in der Lage ist, durch einmalige Berech-

nung von  fa  und Messung des  x-Registers die 2 n  Funktionen  fa  zu unterscheiden

(Bernstein-Vazirani-Problem). Gehen Sie hierzu von dem in der Teilaufgabe (ii) gewon-

nenen Ausdruck für  |ψ  aus. 

ÜA 12.2 [Zu 12.5]

Für welchen Wert von  N  ist beim Grover-Algorithmus der gesuchte

Zustand  |l  bereits nach einem Durchgang mit Sicherheit bestimmt? 
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13 Verallgemeinerte Messungen, POVM

In der Quantentheorie sind nicht nur projektive Messungen möglich. Verallgemeinerte Mes-

sungen beschreiben komplexe Messsituationen und eröffnen neue Messmöglichkeiten. Wir

führen am Beispiel des nicht-idealen Stern-Gerlach-Experiments in diese Messungen und in

die POVM-Messungen ein. 

13.1

Aufgaben einer allgemeinen Dynamik offener

Quantensysteme

13.1.1

Fragestellungen

Wir haben schon bisher ein Quantensystem  SA  um ein weiteres System  SB  zu einem 2-

Teile-System  SAB  erweitert. Wechselwirkungen und Verschränkungen zwischen den beiden

Teilsystemen sind erlaubt. Dadurch wird  SA  zu einem  offenen System (open system). Das Ge-

samtsystem  SAB  soll aber wieder ein geschlossenes System sein. Es kann wie alle geschlosse-

nen Systeme eine unitäre dynamische Entwicklung durchlaufen (unitäre Dynamik) und man

kann an ihm projektive Messungen durchführen (Messdynamik). Die Regeln für beide For-

men von Dynamik haben wir im vorangegangenen Kapitel 7.3.1 in den Postulaten formuliert. 

Wir wollen in den nächsten Kapiteln eine andere Betrachtungsweise vorstellen und dabei die

Offenheit des Systems  SA  in den Mittelpunkt stellen. 

Die folgenden Fragestellungen sollen behandelt werden:

(i) Welche Form hat die Dynamik von  SA  in der speziellen Situation, in der  SA  Teilsystem

eines abgeschlossenen Systems  SAB  ist, das eine unitäre Entwicklung durchläuft? 

(ii) Welche Struktur hat die allgemeinste physikalische Dynamik eines offenen Systems  SA? 

Diese Frage soll weitgehend ohne einen Bezug auf ein zweites System (also auf  SB)

beantwortet werden. 

(iii) Kann man diese – nicht mehr notwendig unitäre – verallgemeinerte Dynamik von  SA

immer als Folge einer unitären Dynamik eines um  SB  erweiterten Gesamtsystems  SAB

auffassen? Wenn das möglich ist, wäre zugleich ein Verfahren für die experimentelle

Realisierung der verallgemeinerten Dynamik von  SA  angegeben. 

Bisher haben wir die unitäre Dynamik verallgemeinert. Analog kann man die projektive

Messdynamik verallgemeinern. Zunächst gehen wir wieder vom verschränkten Gesamtsystem

 SAB  aus. 
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(i) Eine projektive Messung am zweiten System  SB überführt ein damit verschränktes Sys-

tem  SA  mit gewissen Wahrscheinlichkeiten in entsprechende neue Zustände. 

(ii) Wenn wir von der möglichen Existenz eines zweiten Systems  SB  absehen und nur  SA

betrachten, welches ist die allgemeinste physikalische Struktur einer Messung an einem

System  SA? 

(iii) Kann man diese – nicht mehr notwendig projektive – verallgemeinerte Messung an  SA

immer als Folge einer projektiven Messung an einem mit  SA  verschränkten System  SB

auffassen? Geeignete Verschränkung mit einem Hilfssystem  SB  wäre dann die Grundla-

ge für die Realisierung einer verallgemeinerten Messung an  SA. 

Wir werden zunächst an einem einfachen Beispiel ablesen, welche Antworten auf die bei-

den Fragen (i) zu erwarten sind. Danach wenden wir uns den verallgemeinerten Messungen

und den POV-Maßen zu. In Kap. 14 betrachten wir Quantenoperationen als Verallgemeine-

rung der unitären Dynamik und ergänzen in Kap. 16 noch fehlende Beweise. 

13.1.2

Ein einfaches Beispiel

Verallgemeinerte Dynamik

Um uns mit den zu erwartenden Strukturen vertraut zu machen, 

diskutieren wir zunächst ein mathematisch einfaches Beispiel. Wir beginnen mit einer unitären

Dynamik des Gesamtsystems  SAB. Der Anfangszustand in  HA

2  ⊗ HB

2 sei der Produktzustand

 ρAB =  ρA ⊗ | 0 B 0 B| . 

(13.1)

Er wird durch die unitäre Transformation

1 



 U AB =  √

 σA ⊗ B +  σA ⊗ σB

 x

(13.2)



 y

 x

2

in den verschränkten Zustand

 ρAB

=

 U ABρABU AB†

(13.3)



1

=

 σAρAσA ⊗ | 0 B 0 B| +  σAρAσA ⊗ | 1 B 1 B|

2

 x

 x

 y

 y



+ σAρAσA ⊗ | 0 B 1 B| +  σAρAσA ⊗ | 1 B 0 B|

 x

 y

 y

 x

überführt. Das System  SA  geht dabei in den Zustand

1 , 

-

 ρA → ρA = tr B[ ρAB] =

 σAρAσA +  σAρAσA

(13.4)

2

 x

 x

 y

 y

über. 

Die unitäre Entwicklung des Gesamtsystems bewirkt daher am Teilsystem  SA  eine nicht-

unitäre spurerhaltende Entwicklung, die mit Hilfe eines Superoperators  EA  in der Form einer

 Operatorsummenzerlegung (operator-sum decomposition)

2



 ρA =  E( ρA) =

 KAρAKA†

 i

(13.5)

 i

 i=1
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geschrieben werden kann. Dabei ist

1

1

 KA

1 :=  √ σA, 

 KA

 √ σA . 

 x

2 :=

 y

(13.6)

2

2

Die  KA  heißen  Kraus-Operatoren (Kraus operators) (oder  Operationselemente (operation

 i

elements) bzw.  Zerlegungsoperatoren (decomposition operators). Sie erfüllen die Vollstän-

digkeitsrelation

2

  KA†KA =  . 

(13.7)

 i

 i



 i=1

Im Vorgriff auf einen noch zu führenden Beweis stellen wir fest:  Die Dynamik des offenen

 Systems SA lässt sich mit einem Superoperator EA beschreiben, der nur auf den Zustand von

 SA wirkt. Für EA gibt es eine Operatorsummen-Darstellung. 

Man kann sich die Entwicklung (13.4) auch dadurch nicht-unitär erzeugt denken, dass

mit den Wahrscheinlichkeiten 12 die unitären Operatoren auf  σA

 x  und  σA

 y  auf  SA  angewendet

werden. Das wäre physikalisch ein ganz anderer Vorgang als der durch  U AB  von Gl. (13.2)

beschriebene. Die nicht-unitäre Entwicklung von  SA  lässt sich durch die unitäre Entwicklung

des erweiterten Systems  SAE  realisieren. Beide stimmen in ihrer Auswirkung auf  SA überein. 

Wir werden zeigen, dass zu vorgegebener Entwicklung  ρA → ρA  auch die Operatorsummen-

Zerlegung nicht eindeutig festgelegt ist. Viele Einwirkungen auf  SA  können zum selben End-

zustand führen. 

Verallgemeinerte Messung

Wir schließen eine spezielle projektive Messung am zweiten

Teilsystem  SB  an. Hierfür wählen wir die Projektoren zur Rechenbasis von  HB

2

 P B

+ =  | 0 B  0 B |, 

 P B

 − =  | 1 B 1 B| . 

(13.8)

Die Wahrscheinlichkeiten für das Auftreten der Messergebnisse + und  −  sind





 p+ ,− = tr B P B

+

 . 

 ,−ρB P B

+ ,−

(13.9)





 ρB = tr A ρAB  ist dabei der reduzierte Dichteoperator der Umgebung  SB  nach der unitären

Entwicklung. Wir können  p+ ,−  auch mit Blick auf das Teilsystem  SA  interpretieren.  p+ ,−

sind zugleich die Wahrscheinlichkeiten dafür, dass sich das System  SA  nach der Messung in

einem der Zustände





1

˜

 µA

+

 P B

=

 σA ρAσA

 ,− = tr B

+ ,−ρABP B

+ ,−

2  x,y

 x,y

(13.10)

befindet. Wir haben zur Ableitung die Gl. (13.3) verwendet. Mit der Tilde kennzeichnen wir

wieder, dass der Zustand noch nicht normiert ist. Der Normierungsfaktor wäre 2. Die Gesamt-

 

entwicklung von  SA  ist also  ρA → ρ A → µA

+ ,−. 

Die Zustände ˜

 µA

+ ,−  des Untersystems  SA  nach der Messung an  SB  wurden nicht durch

Projektionen des Ausgangszustandes  ρA  gewonnen. Wie sind die Superoperatoren auf  HA

2
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aufgebaut, die den Anfangszustand  ρA  in diese beiden Zustände überführen? Zur Beantwor-

tung schreiben wir die erste Gl. (13.10) für den Index + unter Verwendung der Gl. (13.1) und

(13.3) aus:





˜

 µA

 A

 A

+ = tr B (

 ⊗ | 0 B 0 B|UAB( ρA ⊗ | 0 B 0 B|) UAB(

 ⊗ | 0 B 0 B|)









(13.11)

= tr B  0 B|U AB| 0 BρA 0 B|U AB| 0 B ⊗ | 0 B 0 B| . 

Wir führen noch

1

 M A

+ :=   0 B |U AB | 0 B  =  √ σA

 x

(13.12)

2

ein und finden

˜

 µA

+ =  M A

+  ρAM A†

+  . 

(13.13)

Entsprechend ergibt sich für das Messergebnis  −

˜

 µA

 − =  M A

 − ρAM A†

 −

(13.14)

mit

1

 M A

 − :=   1 B|U AB| 0 B =  √ σA . 

 y

(13.15)

2

Die  Messoperatoren (measurement operators)  M A

+ ,−  auf  HA

2 genügen der Vollständigkeitsre-

lation

 M A†

+  M A

+ +  M A†

 − M A

 − =

 . 

(13.16)



Mit einer ähnlichen Umformung von Gl. (13.9) bestätigt man leicht, dass sich auch die

Messwahrscheinlichkeiten, die ja zu Messungen an  SB  gehören, mit Hilfe der Messoperatoren

schreiben lassen (tr B  und tr A  vertauschen)

#

$

 p+ = tr A M A†

+  M A

+  ρA

(13.17)

entsprechend für  p−. Es gilt  p+ +  p− = 1. 

Wir haben die Systeme  SA  und  SB  durch eine unitäre Entwicklung verschränkt. Eine

anschließende projektive Messung am zweiten Teilsystem  SB  führt mit den Wahrscheinlich-

keiten  p+ bzw.  p−  auf die Messergebnisse + oder  −. Abhängig vom Messergebnis geht da-

bei zugleich das Ausgangssystem  SA  in einen von zwei wohlbestimmten Zuständen (13.10)

über. Wir können diesen nicht-projektiven Eingriff an  SA  als eine  verallgemeinerte selektive

 Messung (generalized selective measurement) an  SA  interpretieren. Zu ihr gehören die Mes-

 

sergebnisse + oder  −  mit den Wahrscheinlichkeiten  p

 A

+ bzw.  p−  und den Endzuständen ˜

 µ+

 

bzw. ˜

 µ A

 − . Wir kommen darauf noch genauer in Abschn. 13.3 zurück. Diese Messung lässt

sich mit Hilfe der Messoperatoren  M A

+ ,−  formulieren, die nur auf den Zustand  ρA  von  SA  vor

der Messung wirken. 
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Das spezielle Beispiel zeigt, dass verallgemeinerte Messungen Situationen beschreiben

können, die sich deutlich von den am Projektionsformalismus orientierten traditionellen Vor-

stellungen von einer Quantenmessung unterscheiden. Mit den Messoperatoren von Gl. (13.12)

und (13.15) finden wir

1

 p+ =  p− =

 . 

(13.18)

2

Die Wahrscheinlichkeiten für die beiden Messergebnisse hängen daher gar nicht vom Zustand

 ρA  ab, an dem gemessen wird. Bei den physikalisch relevanten verallgemeinerten Messun-

gen ist das allerdings i.a. nicht so. Nachdem wir zur Verdeutlichung gewissermaßen einen

„Extremfall“ vorgestellt haben, wollen wir im nächsten Kapitel ein physikalisches Beispiel

diskutieren, in dem sich die Beschreibung als verallgemeinerte Messung in natürlicher Weise

ergibt. Die allgemeine Struktur behandeln wir danach in Abschn. 13.3. 

13.2

Das nicht-ideale Stern-Gerlach-Experiment als

Beispiel für eine verallgemeinerte Messung

13.2.1

Der Versuchsaufbau

Der Versuchsaufbau

Im  Stern-Gerlach-Experiment (S-G-Experiment) werden in einer

Quelle Spin- 12 -Objekte erzeugt, die nach Austritt in  y-Richtung durch ein inhomogenes

Magnetfeld B fliegen. Der Magnetfeldvektor liegt näherungsweise in  z-Richtung (vergl. 

Abb. 13.1) sein Betrag ist eine Funktion von  z. Das magnetische Moment der Objekte ver-

ursacht eine Wechselwirkung mit dem Magnetfeld, die eine polarisationsabhängige Kraft auf

die Objekte bewirkt. Sie führt dazu, dass Objekte im Zustand  | ↑ (=  | 0 z) in positiver  z-

Richtung und Objekte im Zustand  |↓ (=  | 1 z) in negativer  z-Richtung abgelenkt werden. Für

unsere Überlegungen brauchen wir nur diese sehr idealisierte Beschreibung. Einzelheiten der

Bahnberechnung finden sich in den Lehrbüchern der Quantentheorie. Die abgelenkten Objek-

te treffen auf einen detektierenden Schirm in der x-z-Ebene, auf dem sie Schwärzungspunkte

erzeugen. 

Das ideale Stern-Gerlach-Experiment

Beim idealen S-G-Experiment ist die Schrödinger-

Funktion  |ψ+(r) , die das Ortsverhalten bei der Polarisation  |↑  beschreibt, in einem engen

Bereich um die obere Bahn in Abb. 13.1 lokalisiert und die Schwärzungspunkte liegen aus-

schließlich in der oberen Halbebene ( z >  0) des Schirms. Objekte mit Spin  |↓  haben eine

um die untere Bahn in Abb. 13.1) lokalisierte Zustandsfunktion  |ψ−(r)   im Ortsraum und

treffen entsprechend nur auf der unteren Halbebene ( z <  0) des Schirms auf. Die Wahr-

scheinlichkeitsverteilungen für diese beiden Fälle sind in Abb. 13.2a dargestellt. Beim idealen

S-G-Experiment überlappen sie nicht. 

Vereinfachte Beschreibung

Wir wollen jedes Auftreffen bei  z >  0 einheitlich als Messer-

gebnis +1 und bei  z >  0 als Messergebnis  − 1 auffassen. Die Objekte werden durch Zustände

in einem Produkt-Hilbert-Raum beschrieben. Er setzt sich zusammen aus dem Spin-Raum
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Schirm

 z

 |↑

 B

 |ϕ =  c↑|↑ +  c↓|↓

 |↓

 x

Magnetfeld

Ofen

Abbildung 13.1: Stern-Gerlach-Experiment. Zeichnung nach [BGL 95]. 

(a)

 z

(b)

+

+

 z

“

” 

 c↑|↑|+ 

 z = 0

 c↑|↑ +  c↓|↓ |i

 z = 0

 c↓|↓|−

 −

 −

Abbildung 13.2: Ideales Stern-Gerlach-Experiment. Auftreffwahrscheinlichkeiten (a) und schematische

Darstellung (b). Die Detektoren + und  −  sprechen bei Auftreffen auf der oberen bzw. unteren Halbebene

an. 

 HS 2 des inneren Spinfreiheitsgrads und dem Raum der äußeren Bahnfreiheitsgrade. Im idea-

len S-G-Experiment werden die Spinpolarisationen in  z-Richtung und damit die Observable

 σz  gemessen. 

Um die Rechnungen übersichtlicher zu gestalten, vereinfachen wir die Beschreibung und

führen statt des Bahnraums einen Raum  HB

2 mit der ONB  {|+ , |−}  ein. Die Observable

 O =  |+ + | − |−−|  mit den Messwerten +1 und  − 1 gibt das Ansprechen auf den Halbebenen  z >  0 bzw.  z <  0 wieder. Wir repräsentieren das durch das Ansprechen eines projektiv

wirkenden (+)-Detektors bzw. ( −)-Detektors wie in Abb. 13.2b. Der komplexe Ablenkungs-

prozess ist dadurch auf zwei „Bahnen“ reduziert worden. Anders als der Schirm, sollen die

Detektoren keine zerstörenden Messungen durchführen. Es macht daher Sinn vom Zustand

des Objekts nach der Messung zu sprechen. 

Das nicht optimale Stern-Gerlach-Experiment

Im nicht optimal realisierten S-G-

Experiment sind die Schrödinger-Funktionen  ψ±(r) nicht streng auf einer Halbebene

 13.2

 Das nicht-ideale Stern-Gerlach-Experiment als Beispiel für eine verallgemeinerte Messung  219

lokalisiert. Die Funktion  ψ+(r) verschwindet nicht für  z <  0 (vergl. Abb. 13.3a und 13.3b). 

Das hat zur Folge, dass für Objekte mit Spin  |↑  mit einer gewissen Wahrscheinlichkeit auch

der ( −)-Detektor anspricht und für Spin  |↓  der (+)-Detektor anspricht. Aus dem Anspre-

chen eines Detektors kann daher nicht mehr sicher auf das Vorliegen einer Spinpolarisation

geschlossen werden. Im Folgenden diskutieren wir die bisher nur qualitativ beschriebenen

verschiedenen physikalischen Situationen im Einzelnen. 

 z

 z

(a)

(b)

+

+

 |↑

 |↑

 z = 0

 z = 0

 |↓

 |↓

 −

 −

Abbildung 13.3: Nicht-optimales Stern-Gerlach-Experiment. Aus dem Ansprechen eines Detektors

kann nicht eindeutig auf die Spinpolarisation geschlossen werden. 

13.2.2

Beispiel einer verallgemeinerten Messung

Vor Durchlaufen des Magnetfelds liegen der Spinzustand

 |ϕ =  c↑|↑ +  c↓|↓, |c↑| 2 +  |c↓| 2 = 1

(13.19)

und der Bahnzustand  |i  vor. Der Gesamtzustand aus  HS 2  ⊗ HB

2 ist der einlaufende Produkt-

zustand

 |χ =  |ϕ|i . 

(13.20)

Die Wechselwirkung korreliert die Zustände  | ↑  und  |+   sowie die Zustände  | ↓  und  |−

miteinander. Das führt auf Verschränkung. Im idealen S-G-Experiment geht dabei  |χ  unitär

in den verschränkten Zustand

 |χ → |χ =  c↑|↑|+  +  c↓|↓|−

(13.21)

über. Bei einer projektiven Messung in der Rechenbasis spricht der (+)-Detektor mit der

Wahrscheinlichkeit  p+ an und das Spinsystem wird in den Zustand  |↑ überführt. Entspre-

chendes gilt für den ( −)-Detektor. 

„ + “ :  |ϕ → |↑, 

 p+ =  |c↑| 2 ; 

„  − “ :  |ϕ → |↓, 

 p− =  |c↓| 2  . 

(13.22)

 Beim idealen Stern-Gerlach-Experiment führt die durch die Detektoren bewirkte projektive

 Messung im Bahnraum HB

2  auf eine indirekte projektive Messung der Observablen σz im

 Spinraum.  Das ist schematisch in Abb. 13.2b dargestellt. 
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Im realen S-G-Experiment liegen demgegenüber die beiden Wahrscheinlichkeitsvertei-

lungen nicht mehr symmetrisch zu  z = 0, sondern sind unsymmetrisch verschoben und ragen

jeweils über  z = 0 hinaus (siehe Abb. 13.3). Der Anfangszustand mit Spinzustand  |↑|i  wird

entsprechend durch die Wechselwirkung in



 √

 |↑|i → |↑( 1  − p 0  |+  +  p 0  |−)

(13.23)

mit 0  ≤ p 0  ≤  1 überführt. Analoges gilt für  |↓

 √



 |↓|i → |↓(  p 1  |+  + 1  − p 1  |−)

(13.24)

mit 0  ≤ p 1  ≤  1. Die Parameter  p 0 und  p 1 geben die Verschiebungen der Wahrscheinlich-

keitsverteilungen wieder. Für die oben beschriebene indirekte Projektionsmessung gilt  p 0 = 0

und  p 1 = 0. Die Normierung der Zustandsvektoren erzwingt die Form der Vorfaktoren in

Gl. (13.23) und (13.24). 

Mit den Gl. (13.23) und (13.24) liegt zugleich fest, wie der allgemeine einlaufende Zustand

 |χ =  |ϕ|i  durch die Wechselwirkung verschränkt wird:



 √

 √



 |χ → |χ =  {  1  − p 0  c↑|↑ +  p 1  c↓|↓}|+  +  { p 0  c↑|↑ + 1  − p 1  c↓|↓}|− . 

(13.25)

Eine Messung besteht wieder im Ansprechen des (+) - Detektors oder ( −) - Detektors. Wir

führen die Messoperatoren



 √

 √



 M+ :=

1  − p 0  |↑ ↑| +

 p 1  |↓ ↓| , M− :=

 p 0  |↑ ↑| +

1  − p 1  |↓ ↓| (13.26)

ein. Sie erfüllen die Vollständigkeitsrelation

 M †

+ M+ +  M− + † M− =

 . 

(13.27)



Als Verallgemeinerung von Gl. (13.22) finden wir dann (vergl. Abb. 13.4a)



 √

„ + “:

 |ϕ → |ϕ+  =  {  1  − p 0  c↑|↑ +  p 1  c↓|↓} ·  1

Norm

=

 M+ |ϕ ·

1

 , 

(13.28)

Norm

 p+

=

(1  − p 0) |c↑| 2 +  p 1 |c↓| 2 =  ϕ|M+ |ϕ , 

(13.29)

 √



„  − “:

 |ϕ → |ϕ− =  { p 0  c↑|↑ + 1  − p 1  c↓|↓} ·  1  , 

Norm

=

 M−|ϕ ·

1

(13.30)

Norm

 p− =  p 0 |c↑| 2 + (1  − p 1) |c↓| 2  . =  ϕ|M−|ϕ . 

(13.31)

 Das nicht-optimale Stern-Gerlach-Experiment stellt ebenfalls eine verallgemeinerte Messung

 dar.  Die Analogie zu den Gl. (13.12)–(13.17) ist offensichtlich. 
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(a)

(b)

+

 U+

 |ϕ

+

+ |+ 

 |ϕ|i

 |ϕ−|−

 −

 U−

 −

Abbildung 13.4: (a) Schematische Darstellung des nicht-optimalen Stern-Gerlach-Experiments. (b) Er-

weiterung durch unitäre Einwirkungen zu einer nicht-minimalen Messung. 

13.2.3

Unscharfe und schwache Messungen

Beim nicht optimalen S-G-Experiment führt die projektive Messung im Bahnraum  HB

2 nicht

mehr auf eine Projektion im Spinraum. Aus den Wahrscheinlichkeiten  p+ und  p−  kann nicht

mehr auf  |c↑| 2 und  |c↓| 2 geschlossen werden.  Die verallgemeinerte Messung ist in diesem

 Sinne eine unscharfe Messung der Spinpolarisation. Es gibt zwei Grenzfälle:

(i)  p 0 =  p 1 = 0: Der Zustand  |χ  zeigt zu vorgegebenem Spinzustand  |ϕ  die größte mög-

liche Verschränkung die Messung ist eine  scharfe (oder exakte) Messung (sharp mea-

surement), da aus den Messergebnissen direkt auf  |c↑| 2 und  |c↓| 2 geschlossen werden

kann. Das S-G-Gerät ist perfekt eingestellt. Der Informationsgewinn ist in diesem Fall

am größten. Der Ausgangszustand wird andererseits am stärksten durch die Messung

abgeändert. 

(ii)  p 0 =  p 1 = 12 : Der Zustand  |χ  ist gar nicht verschränkt ( |χ = 1

 √ |ϕ ⊗ {|+  +  |−}). 

2

Die  Messung  ist völlig  unscharf (oder unexakt) (unsharp measurement). Wegen  p+ =

 p− = 12 erlauben die Messungen keinen Schluss auf  |c↑| 2 oder  |c↓| 2. Die S-G-Anlage ist

für die Bestimmung dieser Größe völlig unbrauchbar. Ein Informationsgewinn liegt nicht

vor. Der Ausgangszustand wird andererseits durch die Messung nicht verändert. Wir er-

wähnen noch, dass diese Parameterwahl der Situation entspricht, in der in Abb. 13.3 die

beiden Kurven übereinander liegen und einen zu  z = 0 spiegelsymmetrischen Verlauf

haben. 

Wenn die Werte der Parameter  p 0 und  p 1 in der Nähe von 12 liegen ist die Abänderung des

Spinzustands gering. Wir nennen diesen Eingriff eine  schwache Messung (weak measure-

ment). Entsprechend ist auch der Informationsgewinn durch die Messung gering. Die Mes-

sung ist unscharf. 

Wir kehren noch einmal zum System  SA  und dem Hilfssystem  SB  von Abschn. 13.1.2

zurück. Das nicht-ideale S-G-Experiment ist ein Beispiel dafür, wie durch Wahl von  SB (hier

das Bahnsystem) und geeignete Anpassung der unitär erzeugten Verschränkung mit  SA (hier

mit dem Spinsystem) ein kontinuierliches Spektrum von verallgemeinerten Messungen von

 SA  bewirkt werden kann. Hierzu wir an  SB  projektiv gemessen. Kann man auf diese Weise
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an jedem System  SA  eine beliebig vorgegebene nicht-projektive Messung realisieren? Wir

kommen auf die Frage in Abschn. 13.3.5, 13.4 und in Abschn. 16.3 zurück. 

13.3

Verallgemeinerte Messungen

13.3.1

Was ist eine Quantenmessung? 

In Kap. 2 wurden die unitäre Dynamik und die Messdynamik eingeführt. Beide Typen von

Entwicklungen werden durch  Eingriffe (interventions) bewirkt. Wir haben in den vorangegan-

genen Kapiteln 13.1 und 13.2 gesehen, dass es allgemeinere Entwicklungen zwischen zwei

Messungen gibt und dass man nicht-projektive Messungen durchführen kann. Wir wollen bei-

de Eingriffe genauer beschreiben und beginnen dabei mit den Messungen. 

Eine  allgemeine Messung (general measurement) ist ein Eingriff besonderen Typs an ei-

nem einzelnen Quantensystem bei dem (von trivialen Spezialfällen abgesehen) eine  Verzwei-

 gung (branching) in der Entwicklung des Quantensystems stattfindet. Diese Verzweigung ist

mit einer wohlbestimmten Änderung eines klassischen Systems verbunden, die die Ablesung

einer reellen Zahl (Messergebnis, z. B. Zeigerstellung) aus einem für den Eingriff spezifischen

Wertebereich erlaubt. Die Wahrscheinlichkeiten für das Eintreten der verschiedenen Verzwei-

gungsäste und der zugeordneten Messergebnisse liegen fest, wenn der Messeingriff spezifi-

ziert ist und der Zustand des Systems vor der Messung fixiert ist. Die projektive Messung ei-

ner Observablen ist ein Spezialfall. Wir haben das am Beispiel des Stern-Gerlach-Experiments

veranschaulicht. 

Auch im allgemeinen Fall überführt eine selektive Messung des Quantensystems abhän-

gig vom Messergebnis in einen bestimmten Zustand und wirkt daher präparierend. Üblicher-

weise laufen dabei irreversible Prozesse ab, so dass das Messergebnis fixiert ist (z. B.: der

Zeiger bewegt sich nicht mehr über der Skala). Unmittelbare Wiederholung derselben Mes-

sung (d. h. des gleichen Eingriffs) muss aber nicht wieder auf dasselbe Messergebnis führen. 

Anders als bei einer projektiven Messung kann bei einer allgemeinen Messung i.a. nicht von

der Messung einer physikalischen Größe (Observablen) wie Energie, Spinpolarisation usw. 

gesprochen werden. 

In der Quantentheorie kann die Bezeichnung „Messung“ leicht ebenso missverstanden

werden wie die Bezeichnung „Zustand“, da Assoziationen mit den Bedeutungen dieser Be-

griffe in der klassischen Physik geweckt werden. Es gibt für Quantensysteme i.a. keine Ei-

genschaften, die vor der Messung festliegen und die wir durch die Messung ermitteln. Mes-

sen heißt nur, einen speziellen Eingriff durchführen, bei dem in Gestalt der Messwerte eine

Information abgelesen werden kann, die sich primär auf den auslaufenden Zustand bezieht. 

Wir werden Beispiele diskutieren, wie man diese Information ausnutzen kann. Bei gewissen

Fragestellungen können allgemeine Messungen den projektiven Messungen überlegen sein. 

Auch hierfür geben wir Beispiele. Wir betrachten in diesem Kapitel zunächst noch die ein-

fachste Verallgemeinerung der projektiven Messung und diskutieren die völlig allgemeinen

Messungen in Abschn. 14.2. 
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13.3.2

Verallgemeinerte Messpostulate

Eine  verallgemeinerte Messung (generalized measurement) wird durch einen Satz  {Mm}  von

linearen  Messoperatoren (measurement operators) beschrieben. Zu jedem ablesbaren reellen

 Messwert m (measurement outcome) ist genau ein Messoperator  Mm  erklärt. Der Einfachheit

halber setzen wir die Messwerte wieder als diskret voraus. Durch den Messeingriff wird der

Zustand  |ψ  des Quantensystems in den Zustand

 |

 Mm|ψ

 ψ → |ψ  = . 

 m

(13.32)

 ψ|M†mMm|ψ

überführt. Diese Überführung und der zugehörige Messwert  m  treten mit der Wahrscheinlich-

keit

 p( m) =  ψ|M † M

 m

 m|ψ

(13.33)

auf. Da  M † M

 m

 m  ein positiver Operator ist, ist die Bedingung  p( m)  ≥  0 erfüllt. Wir müssen



zur Erhaltung der Wahrscheinlichkeitsinterpretation (

 p( m) = 1) noch zusätzlich von den

 m

Messoperatoren die Vollständigkeitsrelation

  M† M

 m

 m =

(13.34)



 m

fordern. (vergl. das Beispiel in Abschn. 13.1.2)

 Die Verallgemeinerung auf Dichteoperatoren als Zustände ergibt sich mit den gleichen

 Begründungen wie in Kap. 4:

 ρ → ˜

 ρ

=

 M

 m

 mρM †

 m

(13.35)

1

 p( m)

=

tr[ M † M

]  , 

 ρ =

˜

 ρ . 

 m

 mρ] = tr[˜

 ρm

 m

(13.36)

 p( m)  m

 Bei einer nicht-selektiven Messung haben wir



n.s

 ρ −→ ρ =

 MmρM † . 

 m

(13.37)

 m

Von den Operatoren  Mm  wird nur Linearität verlangt. Dadurch ist garantiert, dass sich die

Relationen von Kap. 4 für Gemische und insbesondere die physikalisch unmittelbar plausi-

ble Gl. (4.13) übertragen. Die Operatoren  Mm  müssen nicht hermitesch sein. Sie sind keine

Observablenoperatoren. Es wird i.a. 

 MmMm =  δm,mMm

(13.38)

sein. Insbesondere kann die Anzahl der Messoperatoren auch größer als die Dimension des

Hilbert-Raums sein. Die  Mm  sind also nur im Spezialfall der projektiven Messungen ( Mm =

 Pm) orthogonale Projektoren. An den Gl. (13.32) und (13.38) lässt sich ablesen, dass bei der

Wiederholung einer Messung sich die Wahrscheinlichkeitsverteilung der Messwerte ändert. 

Mit einem Satz  {Mm}  wird i.a. nicht die Messung einer Eigenschaft verknüpft. Wir werden

in Abschn. 14.2 sehen, dass die hier beschriebenen verallgemeinerten Messungen (zu einem

Messwert gehört nur ein Messoperator) noch nicht die allgemeinsten Messungen sind. 
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13.3.3

Polare Zerlegung eines linearen Operators

Wir stellen zunächst einige mathematische Vorüberlegungen an, die wir dann bei der Interpre-

tation der verallgemeinerten Messungen anwenden. 

Bi-orthogonale Entwicklung eines unitären Operators

 U  sei ein unitärer Operator und

 {|vi}  eine ONB des Hilbert-Raums. Dann entsteht durch die unitäre Transformation

 |wi =  U|vi

(13.39)

wieder eine ONB  {|wi}.  Ein beliebiger unitärer Operator U lässt sich daher bei Vorgabe

 einer ONB {|vi} stets in der Form



 U =

 |wivi|

(13.40)

 i

 mit einer ONB {|vi}schreiben. 

Polare Zerlegung und bi-orthogonale Entwicklung eines linearen Operators

 L  sei ein

 √

 √

linearer Operator. Dann sind  L†L,  LL†, 

 L†L  und

 LL†  positive Operatoren. Wir gehen

von der spektralen Zerlegung



 L†L =

 λi|riri|, 

 λi ≥  0

(13.41)

 i

aus.  {|ri}  ist eine ONB. Die Wirkung von  L  führt auf die Vektoren

 |mi :=  L|ri , 

(13.42)

für die

 mi|mi =  ri|L†L|ri =  λi

(13.43)

gilt. Für die Indexwerte  i, für die  λi = 0 ist, können wir die Vektoren  |mi  normieren:

 |

1

 li :=  √ |mi . 

(13.44)

 λi

Diese  |li  sind orthonormal

 

1

 li|lj =  √ 

 ri|L†L|rj =  δi,j . 

(13.45)

 λi

 λj

Wir ergänzen diese Vektoren  |li  zu einer ONB. 

Mit Hilfe der ONB  {|ri}  und  {|li}  führen wir den unitären Operator



 U :=

 |liri|

(13.46)

 i
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ein. Für  U  ergibt sich mit Gl. (13.41)

 √

 

 U

 L†L =

 λi|liri| . 

(13.47)

 i

Andererseits folgt aus Gl. (13.42) und (13.44)



 L|ri =

 λi|li . 

(13.48)

 √

Da die Wirkung von  U

 L†L  und  L  auf der Basis  {|ri} übereinstimmt, gilt

 √

 L =  U

 L†L . 

(13.49)

 U  ist eindeutig durch  L  bestimmt, wenn  λi = 0 für alle  i. Die Relation (13.49) wird die  links-polare Zerlegung (left polar decomposition) des linearen Operators  L  genannt. Damit soll an

die Analogie zur Zerlegung  c =  eiφ|c|  einer komplexen Zahl  c  in Betrag und Phase erinnert

werden. 

Wir schreiben Gl. (13.49) noch mit Hilfe der Gl. (13.41) und (13.46) um

 

 L =

 λi|liri|, 

 λi ≥  0  . 

(13.50)

 i

 Für jeden linearen Operator L gibt es eine  bi-orthogonale Zerlegung  (13.50) (bi-orthogonal

 decomposition) bezüglich zweier ONB {|li} und {|ri}, deren Konstruktion oben angegeben

 ist.  Wir ergänzen noch ohne Beweis die  rechts-polare Zerlegung (right-polar decomposition)

 √

 L =

 LL†U

(13.51)

Man beachte die andere Reihenfolge der Operatoren unter der Wurzel.  L†L  und  LL†  haben

dieselben Eigenwerte  λi (vergl. Gl. (13.41))



 LL† =

 λi|lili| . 

(13.52)

 i

13.3.4

Minimale Messungen

Die Messoperatoren  Mm  einer verallgemeinerten Messung kann man immer polar zerlegen



 Mm =  Um

 Em

(13.53)

mit

 Em :=  M † M

 m

 m . 

(13.54)

Die  Em  erfüllen als Folge von Gl. (13.34) die Bedingung

  Em =  . 

(13.55)



 m
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Die positiven Operatoren  Em  bilden ein  POVM (positive operator valued measure).  Sie heißen

Effektoperatoren  (effect operators) oder  POVM-Elemente  (POVM elements).  Wir kommen

auf die POVM-Messung in Abschn. 13.3.5 zurück. Der unzerlegte Messoperator  Mm  be-

wirkt gemäß Gl. (13.32) bzw. (13.35) den Übergang zum neuen Zustand, der zum angezeigten

Messwert  m  gehört. Der gleiche Endzustand wird erreicht, wenn man den Ausgangszustand

 √

zunächst mit dem positiven Operator

 Em  transformiert und die unitäre Entwicklung  Um

anschließt. Die Wahrscheinlichkeit  p( m) von Gl. (13.42) für das Auftreten des Messwertes  m

ist nur eine Funktion von  Em

 p( m) = tr[ ρEm]  . 

(13.56)

Die unitäre Entwicklung hat keinen Einfluss auf die durch  p( m) gewonnene Information. 

Wir können uns daher eine verallgemeinerte Messung mit Messwert  m  formal zerlegt denken

 √

in eine durch

 Em  repräsentierte Messdynamik, die mit der Wahrscheinlichkeit  p( m) kor-

reliert ist, und einer unitären Dynamik  Um, die keinen Einfluss auf  p( m) hat, wohl aber den

ausgehenden Zustand  ρm  mit bestimmt.  Es gibt zu einem POVM beliebig viele Operatoren

 Um, die auf die gleiche Wahrscheinlichkeitsverteilung p( m)  führen.  Verallgemeinerte Mes-

sungen mit  Um = , bei denen also der unitäre Einfluss auf den Zustand nicht vorhanden ist, 



werden  minimale Messungen (minimal measurements) genannt. Projektive Messungen sind

minimal. 

Minimale Messungen an Qubits

Wir wollen wie im Stern-Gerlach-Experiment vorausset-

zen, dass nur zwei Messergebnisse + und  −  möglich sind. Wegen der Bedingung (13.55) gilt

dann

 E+ =

 − E−

(13.57)



und die POVM-Operatoren vertauschen

[ E+ , E−] = 0  . 

(13.58)

Da die Operatoren positiv sind, sind sie auch hermitesch und es gibt eine orthonormale Basis

 {| 0 , | 1 }  bezüglich derer beide orthogonal sind:

 E+

=

 a| 0  0 | +  p 1 | 1  1 | , 

(13.59)

 E− =  p 0 | 0  0 | +  b| 1  1 | . 

(13.60)

Die Bedingung (13.58) wird durch  a = 1  − p 0 und  b = 1  − p 1 erfüllt. Die Positivität der Operatoren bedingt dann 0  ≤ p 0  ≤  1 und 0  ≤ p 1  ≤  1. Die Messoperatoren für die zugehörigen

minimale Messung ergeben sich ganz allgemein in der Form



 √

 M+

=

1  − p 0 | 0  0 | +

 p 1 | 1  1 | , 

(13.61)

 √



 M− =

 p 0 | 0  0 | +

1  − p 1 | 1  1 | . 

(13.62)
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Wie die Gl. (13.28) und (13.30) zeigen, beruht das in Abschn. 13.2 beschriebene Stern-

Gerlach-Experiment auf diesen Messoperatoren. Es stellt eine minimale Messung dar. Eine

nicht-minimale Messung ergibt sich, wenn man wie in Abb. 13.4b hinter den Detektoren je-

weils noch eine zusätzliche unitäre Dynamik anschließt. 

13.3.5

Realisierung einer verallgemeinerten Messung durch unitäre

Transformation und Projektion

Wir haben in Abschn. 13.1.2 gesehen, dass man eine verallgemeinerte Messung bewirken

kann, indem man das System  SA  um ein Hilfssystem  SB  erweitert, auf  HA ⊗HB  eine unitäre

Transformation durchführt und am System  SB  projektiv misst.Wir wollen jetzt zeigen, dass

jede verallgemeinerte Messung so realisiert werden kann. 

Wir erweitern das System  SA  um das  Hilfssystem (ancilla)  SB. Die Dimension von  HA

ist beliebig. Die Dimension von  HB  soll gleich der Anzahl der Messoperatoren sein. In  HB

wählen wir eine ONB  {|mB}  und einen beliebigen aber festen Zustand  | 0 B. Wir definieren

auf einem Unterraum von  HA ⊗ HB  den linearen Operator ˆ

 U AB  durch



ˆ

 U AB|φA,  0 B =

 M A|φA ⊗ |mB

 m

(13.63)

 m

für beliebige  |φA  aus  HA. Die Messoperatoren  |M A

 m

und die Basis  {|mB}  legen ˆ

 U AB  fest. 

Für irgend zwei Vektoren  |φA

1  ,  0 B   und  |φA

2  ,  0 B   aus diesem Unterraum erhält der Operator

ˆ

 U AB  das innere Produkt. 



 φA 1 ,  0 B| ˆ

 U AB† ˆ

 U AB|φA

2  ,  0 B 

=

 φA 1 |MA†MA|φA

 m

 m

2  mB|mB 

 m,m



=

 φA 1 |MA†MA|φA

 m

 m

2  

 m

=

 φA 1 |φA 2  =  φA 1 ,  0 B|φA 2 ,  0 B . 

(13.64)

Daher können wir einen mathematischen Satz anwenden, der besagt, dass in diesem Fall eine

unitäre Erweiterung  U AB  von ˆ

 U AB  auf den ganzen Raum  HA ⊗HB  existiert. Das ist deshalb

wichtig, weil man davon ausgehen kann, dass  U AB  eine physikalisch realisierbare dynami-

sche Entwicklung des Gesamtsystems  SAB  darstellt, die durch einen geeigneten Hamilton-

Operator auf  HA ⊗ HB  beschrieben werden kann. Die Wirkung des unitären Operators  U AB

auf den Vektoren des Unterraums reduziert sich auf die von ˆ

 U AB. 

Wenn man nach der unitären Entwicklung mit  U AB  eine projektive Messung in  HB  mit

den Projektionsoperatoren

 P B :=  A ⊗ |mBmB|

 m

(13.65)



durchführt, geht das Gesamtsystem in den Zustand

 M A|φA|mB

 P BU AB|φA,  0 B ·

1

=

 m

. 

 m

(13.66)

Norm

 φA|MA†

 m M A|φA

 m
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mit der Wahrscheinlichkeit

 p( m) =  φA,  0 B|U AB†P BU AB|φA,  0 B =  φA|M A†M A|φA

 m

 m

 m

(13.67)

über. Im letzten Schritt haben wir  P B =  P B†P B

 m

 m

 m  und Gl. (13.66) verwendet. Damit haben

wir gezeigt:  Jede verallgemeinerte Messung lässt sich dadurch physikalisch realisieren, dass

 das System SA um ein Hilfssystem SB ergänzt wird. Durch eine geeignete unitäre Transfor-

 mation des Gesamtsystems SAB, deren dynamische Realisierbarkeit wir voraussetzen wollen, 

 wird SAB in einen verschränkten Zustand überführt. Projektionsmessungen am Hilfssystem

 SB führen schließlich auf die verallgemeinerte Messung an SA.  Die Operatoren sind in den

Gl. (13.63) und (13.65) angegeben. 

13.4

POVM-Messung

13.4.1

Messwahrscheinlichkeiten und positive Operatoren

Wir diskutieren Messungen in einer reduzierten und dadurch völlig allgemeinen Betrachtungs-

weise: Von einem Messeingriff sollen nur die Messwerte  m  und die Wahrscheinlichkeiten

 p( m) ihres Auftretens bekannt sein. Da der Messeingriff sich auf den Zustand linear auswir-

ken soll, gibt es die den jeweiligen Messergebnissen zugeordnete lineare Operatoren  Em, mit

denen sich die Wahrscheinlichkeiten  p( m) in der Form

 p( m)

=

 ψ|Em|ψ

(13.68)

 p( m)

=

tr[ ρEm]

(13.69)

schreiben lassen. Wegen  p( m)  ≥  0 müssen die  Em  positive Operatoren sein, die wegen

  p( m) = 1 zusätzlich der Bedingung

 m

  Em =

(13.70)



 m

genügen müssen. Die Operatoren  Em  sind die Elemente einer Zerlegung des Einsoperators

in positive Operatoren. Wie wir schon in Abschn. 13.3.4 festgestellt haben, heißt eine solche

Zerlegung der Eins  positiv-operatorwertiges Maß POVM (Akronym für positive operator-

valued measure). Die Operatoren  Em  werden  POVM-Elemente (POVM elements) genannt. 

Bei der Einführung eines POVM wird nicht vorausgesetzt, dass die Messung in der in

Abschn. 13.3.2 beschriebenen Weise durch Messoperatoren beschrieben werden kann. Das

POVM-Schema gilt auch in allgemeineren Messsituationen, die wir in Abschn. 14.2 bespre-

chen werden. Für viele Fragestellungen kann man sich mit Aussagen über die Wahrscheinlich-

keitsverteilung  p( m) begnügen. Man spricht dann von einer  POVM-Messung (POVM measu-

rement). Im Spezialfall verallgemeinerter Messungen ist

 Em =  M † M

 m

 m . 

(13.71)

Für die physikalische Realisierung eines vorgegebenen POVM genügt es, den Messope-

 √

rator  Mm =

 Em  wie in Abschn. 13.3.5 zu realisieren. Die Projektionsoperatoren  Pn  einer

projektiven Messung sind der Spezialfall eines POVM. Sie werden  projektionswertiges Maß

 PVM (projection valued measure) genannt. Anders als im PVM kann aber die Anzahl der

POVM-Elemente größer als die Dimension des Zustandsraums sein. 
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Abbildung 13.5: Zusammengesetzte Messung

13.4.2

Zusammengesetzte Messung als Beispiel einer POVM-Messung

Wir betrachten einen Versuchsaufbau (vergl. Abb. 13.5), bei dem eine klassische Zufallswei-

che die im Zustand  |ψ  eintreffenden Spin- 12 -Objekte mit den Wahrscheinlichkeiten  wx,  wy

und  wz  auf Messgeräte für die Observablen  σx,  σy  und  σz  lenkt ( wx +  wy +  wz = 1). 

Die drei Messgeräte zeigen als Messwerte jeweils +1 oder  − 1 an. Die Geräte messen pro-

jektiv. Die zugehörigen Projektionsoperatoren sind  Pi(+) =  | 0 i 0 i|  und  Pi( −) =  | 1 i 1 i|

mit  i =  x, y, z. Insgesamt gibt es sechs mögliche Messergebnisse ( i, ±). Die entsprechenden

Messwahrscheinlichkeiten sind

 p( i, ±) =  wiψ|Pi( ±) |ψ =  ψ|Ei( ±) |ψ

(13.72)

mit den sechs POVM-Operatoren

 Ei( ±) =  wiPi( ±) , 

(13.73)

die die Vollständigkeitsrelation







 Ei(+) +

 Ei( −) =

 wi =

(13.74)





 i

 i

 i

erfüllen. Durch die vorgeschaltete Zufallsweichen geht der Projektorcharakter verloren. Wir

erwähnen noch, dass die Anlage eine  informationell vollständige Messung (informationally

complete measurement) darstellt. Die durch die Messwahrscheinlichkeiten  p( i, ±) wiederge-

gebene Statistik erlaubt auch für Gemische die eindeutige Bestimmung des Anfangszustands

(vergl. ÜA 13.5). Wir diskutieren informationell vollständige Messungen in Abschn. 13.4.5. 

Wir erweitern die Anlage zu einer zusammenfassenden Messung indem wir nicht mehr

zwischen den drei Messgeräten unterscheiden. Registriert wird nur der Messwert unabhängig

davon welches Gerät ihn angezeigt hat. Dann finden wir für die verbliebenen zwei Wahr-

scheinlichkeiten

 p( ±) =

 p( i, ±) =  ψ|E( ±) |ψ

(13.75)

 i

mit den Operatoren





 E( ±) =

 w

 . 

 i

 iPi( ±)

 , 

+ ,− E( ±) =

(13.76)



Es ist wieder eine POVM-Messung entstanden. 
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13.4.3

Kann eine einzelne POVM-Messung zwei Zustände sicher

unterscheiden? 

Mathematische Vorüberlegungen

Ein Operator  E  sei positiv. Dann hat er eine Spekt-

raldarstellung



 E =

 λi|ii| ; 

 λi ∈

 , 

0  ≤ λi ≤  1

(13.77)



 i

mit einer ONB  |i. Die Wirkung von  E  auf einen beliebigen normierten Vektor  |φ  ist





 E|φ =

 λii|φ|i =

 λici|i

(13.78)

 i

 i

mit



 ci :=  i|φ , 

 |ci| 2 = 1  . 

(13.79)

 i

Damit wird



 φ|E|φ =

 λi|ci| 2  . 

(13.80)

 i

Ein spezieller Zustand  |φ  möge die Eigenschaft



 φ|E|φ =

 λi|ci| 2 = 1

(13.81)

 i

haben. Die nicht verschwindenden  ci  haben dabei Indizes  i  aus einer Indexmenge  I. Für diese

Indizes folgt aus der Gl. (13.81) und 0  ≤ λi ≤  1

 λi∈I = 1  . 

(13.82)

Einsetzen in Gl. (13.78) führt auf das Ergebnis

 φ|E|φ = 1  ⇐⇒ E|φ =  |φ . 

(13.83)

Die Richtung  ⇐  ist trivial. Auf ähnliche Weise zeigt man

 φ|E|φ = 0  ⇐⇒ E|φ = 0  . 

(13.84)

Unmöglichkeit einen Zustand durch eine einzige POVM-Messung zu bestimmen

Wir

nehmen an, dass wir durch eine einzige Messung entscheiden können, ob ein einzelnes Quan-

tenobjekt in einen Zustand  |χ  ist. Dann muß es eine Messung mit POVM-Operatoren  Em

geben, bei der ein spezielles Messergebnis ˆ

 m  mit Sicherheit eintritt, wenn  |χ  vorliegt, und

mit Sicherheit nicht eintritt, wenn  ein beliebiger anderer  Zustand  |Θ  =  |χ  aus dem Hilbert-Raum vorliegt:

 pχ( ˆ

 m)

=

 χ|E ˆ m|χ = 1

(13.85)

 pΘ( ˆ

 m)

=

 Θ |E ˆ m|Θ  = 0  . 

(13.86)
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Wir haben also mit Gl. (13.83) und (13.84)

 E ˆ

 m|χ =  |χ

 , 

 E ˆ

 m|Θ  = 0  . 

(13.87)

Damit erhalten wir

 χ|Θ  =  E ˆ m|Θ  =  χ|E ˆ m = 0  . 

(13.88)

Das heißt, alle anderen Vektoren  |Θ   des Hilbert-Raums müssen senkrecht auf  |χ  stehen. 

Das ist unmöglich.  Es ist daher nicht möglich mit einer einzigen POVM-Messung den Zustand

 eines Quantenobjekts vor der Messung zu bestimmen. Weiterhin zeigt das Ergebnis, dass es

 keine POVM-Messung gibt, die es erlaubt eindeutig zwischen zwei nicht orthogonalen Zu-

 ständen zu unterscheiden.  Diese wichtige Aussage, auf der viele heuristische Überlegungen

basieren, gilt also nicht nur für Projektionsmessungen, sondern für beliebige Messungen. 

13.4.4

Vorteil einer POVM-Messung bei der Zustandsermittlung

Für eine etwas modifizierte Fragestellung ist die Verwendung von POVM-Messungen hinge-

gen günstiger als die projektiver Messungen. Es soll uns (oder einem Lauscher) bekannt sein, 

dass ein Quantensystem mit gleicher Wahrscheinlichkeit entweder in einem Zustand  | 1   oder

in einem dazu nicht orthogonalen Zustand  | 2   präpariert wird. Wir wollen nach einer einzigen

Messung entweder keine Aussage machen („weiß nicht“) oder mit Sicherheit sagen können:

„in  | 1 “ oder „in  | 2 “. Es müssen daher mindestens drei Messergebnisse möglich sein. Die

POVM-Operatoren sind  E 1,  E 2,  E 3. Wir konstruieren sie so, dass Folgendes erreicht wird:

Wenn Zustand  | 1   vorliegt, tritt das Messergebnis 2 nie ein (d. h.   1 |E 2 | 1  = 0), aber Ergebnisse 1 und 3 können eintreten. Beim Zustand  | 2   tritt das Messergebnis 1 nie ein (d. h. 

  2 |E 1 | 2  = 0), aber Ergebnisse 2 und 3 sind möglich. Wir können daher aus einer einzigen

Messung die folgenden Schlüsse ziehen: Wenn sich das Messergebnis 1 ergibt, dann lag der

Zustand  | 1   vor. Beim Messergebnis 2 lag  | 2   vor. Aus Messergebnis 3 kann nichts gefolgert werden. Für POVM-Operatoren bedeutet das

 E 1

=

 a 2(  − | 2  2 |)  , 

(13.89)



 E 2

=

 a 1(  − | 1  1 |)

(13.90)



und

 E 3 =

 − E 1  − E 2  . 

(13.91)



Es ist sicher sinnvoll, die Messung zu optimieren. Dazu müssen die Parameter  a 1 und  a 2

so gewählt werden, dass die Wahrscheinlichkeit  p  dafür, dass ein sicherer Schluss möglich ist, 

maximiert wird. Sichere Schlüsse kann man nur aus den Messergebnissen 1 und 2 ziehen. Die

Wahrscheinlichkeit dafür, dass diese Messergebnisse eintreten, ist nach Voraussetzung

1

1

 p

=

  1 |E 1 | 1  +   2 |E 2 | 2 

(13.92)

2

2

1





=

( a 1 +  a 2) 1  − | 1 | 2 | 2

(13.93)

2
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In [Bus 97] wird gezeigt, dass  p  unter Beachtung der Positivität von  E 3, durch die die Para-

meter  a 1 und  a 2 verknüpft werden, den maximalen Wert

 p max = 1  − | 1 | 2 |

(13.94)

für die Parameterwahl

1

 a 1 =  a 2 = 1  − | 1 | 2 |

(13.95)

annimmt. Gl. (13.95) zeigt, dass die Wahrscheinlichkeit, sichere Aussagen durch eine Mes-

sung zu treffen, immer geringer wird, je mehr die Zustände  | 1   und  | 2   sich einander annähern. 

Eine Auflösung der Zustände durch die POVM-Messung wird dann immer schwieriger. Für

orthogonale Zustände  φ|χ = 0 ist  p max = 1. 

13.4.5

Informationell vollständiges POVM

Ein POVM heißt  informationell vollständig (informationally complete), wenn für einen belie-

bigen Zustand die Kenntnis der Wahrscheinlichkeiten aller möglichen Messergebnisse einer

Messung ausreicht, um den Zustand zu bestimmen. Es wird also nur ein einziges Messge-

rät (nur ein POVM) verwendet. Welche Bedingungen muss ein informationell vollständiges

POVM zur Bestimmung von Qubit-Zuständen erfüllen? 

Wir haben in Abschn. 3.1 gesehen, dass die Pauli-Operatoren durch

zu einer Operator-



basis auf  H 2 ergänzt werden können. Jedes POVM-Element lässt sich in der Form

 Em =  am +  bmn mσ

(13.96)



schreiben. n

3

 m  ist dabei ein Einheitsvektor im

und  am  und  bm  sollen nicht-negative reelle



Zahlen sein, damit  Em  und

 − Em  positive Operatoren sind. Die Vollständigkeitsbedingung



(13.70) führt auf die Bedingungen

  am = 1  , 

(13.97)

 m

  bmn m = 0  . 

(13.98)

 m

Wie wir in Abschn. 4.4 gezeigt haben, kann jeder Dichteoperator  ρ  auf  H 2 in der Form

1

 ρ =

( + r σ)

(13.99)

2 

mit dem Bloch-Vektor r geschrieben werden. Die Wahrscheinlichkeiten für die Messergeb-

nisse der POVM-Messung sind daher

 p( m) = tr[ ρEm] =  am +  bmn mr  . 

(13.100)

Man sieht daran, dass zur Bestimmung von r die nicht verschwindenden Vektoren  bmn m

den

3 aufspannen müssen. Daraus folgt zusammen mit der linearen Abhängigkeit (13.98), 
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dass es mindestens vier Vektoren n m  geben muß ( m = 1 ,  2 ,  3 ,  4) und dass andererseits vier Vektoren, die die Gl. (13.98) erfüllen, ausreichen. 

Wir geben ein Beispiel das Gl. (13.97) und (13.98) erfüllt:  am =  bm = 14 und

n1 = (0 ,  0 ,  1) , 

(13.101)

 √



n

2 2

2

=

 ,  0 , −  1

 , 

(13.102)

3

3

 √ 



n

2

2

3

=

 −

 , 

 , −  1

 , 

(13.103)

3

3

3

 √





n

2

2

4

=

 −

 , −

 , −  1

 . 

(13.104)

3

3

3

Einsetzen in Gl. (13.96) führt auf das informationell vollständig POVM für Qubit-Zustände. 

Wir haben in Abschn. 4.4 gesehen, dass durch die Messung der Erwartungswerte der drei

verschiedenen Observablen  σx, σy  und  σz  der Bloch-Vektor r und damit der Zustand  ρ  be-

stimmt werden kann. Hier haben wir gezeigt, dass der Qubit-Zustand  ρ  auch durch Messung

der Wahrscheinlichkeiten  p( m) einer einzigen POVM-Messung (nur ein Messgerät) mit vier

Messwerten  m  ermittelt werden kann. 

13.4.6

Schätzung des Zustands vor der Messung

In der klassischen Physik wird durch die Messung der Zustand vor der Messung bestimmt. Bei

einer einzelnen Quantenmessung kann demgegenüber bei fehlender Entartung aus einem Mes-

sergebnis  m  nur auf den Zustand nach der Messung geschlossen werden. Wir wollen zeigen, 

dass auf der Grundlage der Annahme von Bayes zumindest geschätzt werden kann, welcher

Zustand vor der Messung vorlag. Die Messung soll durch das POVM  {Em}  beschrieben sein. 

Wir kehren zunächst zum Satz von Bayes von Gl. (1.99) zurück und machen die Bayes-

sche Annahme (1.100), dass alle Ausgangswahrscheinlichkeiten  p( Ai) übereinstimmen. Um

den Bayesschen Satz zu veranschaulichen, betrachten wir den Fall, dass die bedingte Wahr-

scheinlichkeit  p( B|Ai) dafür, dass  B  eintritt, für ein spezielles Ereignis  Aj  besonders groß ist:  p( B|Aj)   p( B|Ai= j). Das Ereignis  B  möge tatsächlich eintreten. Dann hat in diesem Fall mit besonders großer Wahrscheinlichkeit vorher  Aj  vorgelegen:  p( Aj|B)   p( Ai= j|B). 

Dasjenige Ereignis  Aj, auf das mit der größten Wahrscheinlichkeit  B  folgt, ist auch dasjenige, 

das mit der größten Wahrscheinlichkeit  p( Aj|B) vorher vorgelegen hat, wenn  B  eintritt. Dies

ist die plausible Aussage des Satzes von Bayes. 

Wir übertragen die Aussage auf die quantentheoretische Messsituation. Es wird an einem

einzelnen Quantensystem eine Präparation in einem reinen Zustand durchgeführt. Die Mes-

sung an diesem System mit einem durch ein POVM beschriebenen Messapparat liefert den

Messwert  m. Unter der Bayesschen Annahme ist der Zustand  |χpre, der mit der größten

Wahrscheinlichkeit vor der Messung vorlag, dadurch gegeben, dass für ihn  p( m) am größten

ist1. 

1Eine mathematisch exakte Formulierung muss berücksichtigen, dass die möglichen Zustände ein Kontinuum

bilden (vergl. Abschn. 13.5)
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Die POVM-Elemente sind positive Operatoren mit der Spektralzerlegung

 (

(

(

 E

 m)

 m)

 m)

 m =

 a

 |r

 r

 | . 

(13.105)

 i

 i

 i

 i

Die Eigenvektoren sollen nicht entartet sein. Für  p( m) erhalten wir

 (

(

 p( m) =  ψ|E

 m)

 m)

 m|ψ =

 a

 |ψ|r

 | 2

(13.106)

 i

 i

 i

(



 m)

( m)

mit  |ψ|r

 | ≤  1 und

 |ψ|r

 | = 1. Wir können daher  p( m) abschätzen:

 i

 i

 i

 p( m)  ≤ a( m)

(13.107)

max

( m)

( m)

mit  a max = max {am}. Der Maximalwert von  p( m) wird in Gl. (13.106) für den zu  a

 i

max ge-

( m)

hörigen Eigenvektor  |χpre =  |r max    von  Em  angenommen.  Wenn keine weitere Information vorliegt, ist die beste Schätzung für den Zustand vor einer Messung mit dem Messergebnis

(

(

 m

 m)

 m)

 der Eigenvektor |rmax  zum größten Eigenwert amax des POVM-Elements Em.  Bei einer

projektiven Messung ( Pm =  |r( m) r( m) |) ist daher der auslaufende Zustand  |r( m)   die beste Schätzung für den einlaufenden Zustand. 

13.5

Ergänzende Themen und weiterführende Literatur

 •  Weiterführende Literatur zu informationell vollständiger Messung: [BGL 95], [Aul 00]. 

 •  Zur Unmöglichkeit, individuelle Quantenzustände zu bestimmen, sowie zur optimalen

Zustandsunterscheidung: [Bus 97] (dort auch weitere Literatur). 

 •  Das Theorem von Neumark beschreibt die Realisierung einer Quantenmessung durch

eine Projektionsmessung auf dem  zusammengesetzten  System aus Ursprungssystem und

Umgebung: [Per 90]. 

 •  Ausführliche Darstellung von Quantenmessungen und POVM: [BGL 95], [Kon 03], 

[Fle 00]. 

 •  Detaillierte Behandlung des Stern-Gerlach-Experiments: [BGL 95, Kap VII]. 

 •  Bücher zu den Grundlagen der Theorie der Quantenoperationen und der nicht-projektiven

Messungen: [Kra 83], [BGL 95]. 

 •  Dynamik offener Systeme: [MW 98], [Dav 76], [Hol 01], [BP 02]. 

 •  Eine Bestätigung des Ergebnisses aus Abschn. 13.4.6, die nicht auf dem Bayesschen Satz

und der Bayesschen Annahme beruht, findet sich in [ADK 03]. 

 •  Die Nützlichkeit von schwachen Messungen zeigt sich, wenn man versucht die Zeitent-

wicklung  |ψ( t)   eines Zustands messend zu verfolgen: [AKK 04]. 
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13.6

Übungsaufgaben

ÜA 13.1 [zu 13.1]

Bestätigen Sie Gl. (13.17). 

ÜA 13.2 [zu 13.2]

Bestimmen Sie für das reale Stern-Gerlach-Experiment im Spezialfall

 p 0 =  p 1 über die Entropie die Verschränkung des Zustandes  |χ  von Gl. (13.25) und den

Informationsgewinn durch die Messung. 

ÜA 13.3 [zu 13.2]

Entwerfen Sie unter Verwendung der verschränkenden Wirkung des

CNOT-Gatters ein Schaltbild zur Erzeugung von  |χ  von Gl. (13.25) im Spezialfall  p 0 =  p 1. 

Welche Zustände müssen einlaufen. 

ÜA 13.4 [zu 13.3]

Zeigen Sie, dass die Hintereinanderausführung von zwei Messungen wie-

der eine Messung ist. Geben Sie die Messoperatoren an. 

ÜA 13.5 [zu 13.3.3]

Beweisen Sie die rechts-polare Zerlegung. 

ÜA 13.6 [zu 13.3.3]

Zeigen Sie ausgehend von der bi-orthogonalen Zerlegung (13.50) des

linearen Operators  L, dass  L  sich stets in der Form

 L =  V DW

(13.108)

schreiben lässt.  V  und  W  sind dabei unitäre Operatoren.  D  ist ein positiver Operator mit den

Eigenwerten  λi. Hinweis: Schreiben Sie die Zerlegung durch Einführung einer ONB  {|ai}

um. 

ÜA 13.7 [zu 13.3.5]

Die mit einer ONB  {|nA}  von  HA  gebildeten Vektoren  {|nA,  0 A}

sind die ONB eines Unterraums von  HA ⊗ HB. ˆ

 U AB  sei ein auf dem Unterraum definierter

linearer Operator, der auf  HA ⊗ HB  abbildet und dabei innere Produkte erhält. Dann exis-

tiert eine Erweiterung  U AB  von ˆ

 U AB, die auf dem ganzen Raum als unitärer Operator wirkt

und auf dem Unterraum mit ˆ

 U AB übereinstimmt. Es könnte geschickt sein, die dyadische

Darstellung und die Ergebnisse aus Abschn. 13.3.3 zu verwenden. 

ÜA 13.8 [zu 13.4]

Zeigen Sie, dass jede Messung, bei der die Messoperatoren  Mm  und die

POVM-Elemente  Em übereinstimmen, eine projektive Messung ist. 

ÜA 13.9 [zu 13.4.2]

Zeigen Sie, dass die zusammengesetzte Messung aus Abschn. 13.4.2

informationell vollständig ist. 

ÜA 13.10 [zu 13.4.3]

Beweisen Sie die Behauptung (13.84). 

ÜA 13.11 [zu 13.4.3]

Beweisen Sie Ergebnisse (13.94) und (13.95). 
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ÜA 13.12 [zu 13.4.5]

Zeigen Sie, dass die in Abschn. 13.4.2 beschriebene POVM-Messung

informationell vollständig ist. 

ÜA 13.13 [zu 13.4.6]

Ein durch Messoperatoren  {Mm}  beschriebener Messapparat führt

eine Messung an einem Quantenobjekt durch, dass sich in einem reinen Zustand befindet. 

Das Messergebnis ist  m. Eine weitere Information ist nicht gegeben. Schätzen Sie den Zu-

stand nach der Messung. Beachten Sie dabei, dass mit dem Zustand vor der Messung auch

der Zustand nach der Messung eindeutig festliegt. Betrachten Sie auch den Spezialfall einer

minimalen Messung. 

Verschränkte Systeme  

Die Quantenphysik auf neuen Wegen

Jürgen Audretsch

© 2005 WILEY-VCH Verlag GmbH & Co. 

14 Allgemeine Entwicklung eines offenen Quan-

tensystems und spezielle Quantenkanäle

Teilsysteme machen i.a. keine unitären Entwicklungen mehr durch. Quantenoperationen sind

der angemessene Zugang zu einer In-Out-Formulierung der dynamischen Entwicklung offener

Systeme. Wir veranschaulichen sie am Beispiel von Quantenkanälen. Auch die Zustandsän-

derungen bei Messungen sind im allgemeinsten Fall Quantenoperationen. Aus dieser Sicht

lassen sich das Szenario und die Regeln der Quantentheorie noch einmal neu formulieren. 

14.1

Quantenoperationen und ihre

Operatorsummenzerlegungen

14.1.1

Quantenoperationen

Dynamische Entwicklung als Quantenoperation

Im Zusammenhang mit Quantenkanä-

len, Teleportation, Kryptographie, Quantencomputern und Quantenmessungen treten zeitliche

Entwicklungen von Quantenzuständen auf, die allgemeiner sind als unitäre Entwicklungen, 

die mit Projektionen kombiniert wurden. Beispiele für allgemeine Zustandsänderungen, die

auftreten wenn das System mit der Umgebung gekoppelt ist, haben wir in Kap. 13 kennen ge-

lernt. Wir wollen allgemeine Entwicklungen im Folgenden vom offenen System aus beschrei-

ben und nicht bereits spezielle Ansätze für eventuell vorhandene weitere Systeme machen, 

mit denen das betrachtete System verschränkt ist oder dynamisch wechselwirkt. 

Wir denken bei einer Entwicklung immer an einen spezifischen äußeren Eingriff und be-

schreiben seine Auswirkung auf einen beliebigen Dichteoperator. Der Eingriff kann z. B. darin

bestehen, dass Quantenobjekte einen wohlbestimmten verrauschten Kanal passieren oder dass

an ihnen eine spezielle unscharfe Messung durchgeführt wird. Welche mathematische Struktur

hat die Beschreibung der allgemeinen Zustandsentwicklung offener Systeme? 

Die Entwicklung wird im Schrödinger-Bild durch eine für sie spezifische Abbildung des

Anfangszustands  ρ (mit tr[ ρ] = 1) in einen als Dichteoperator formulierten Endzustand ˜

 ρ  im

Liouville Raum beschrieben ( In-out-Schema):

 ρ → ˜

 ρ =  E( ρ)  . 

(14.1)

Durch die Tilde wird gekennzeichnet, dass auch unnormierte Zustände (Spur  = 1)zugelassen

sind. Wenn wir an Gemenge denken, ist es plausibel zu fordern, dass die Wirkung von  E  auf

den einzelnen Zuständen eines Ensembles mit der auf dem Dichteoperator übereinstimmt. 

 Verschränkte Systeme: Die Quantenphysik auf neuen Wegen.  Jürgen Audretsch

Copyright c

   2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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 E  ist daher ein positiver Superoperator. Superoperatoren sind nach Abschn. 1.2 gemäß Defi-

nition linear. 

Wir werden allerdings nicht fordern, dass  E  die Spur des Dichteoperators erhält, sonst

hätten wir bereits die Projektionen, die im Rahmen der projektiven Messung einer Observa-

blen auftreten, ausgeschlossen. Wenn man die verallgemeinerte Messung aus Abschn. 13.3 als

Wirkung eines Superoperators schreibt, dann hat sie die Form

 ρ → ˜

 ρ =  E( ρ) =  MmρM †m

(14.2)

und mit tr[ ρ] = 1 ist tr[˜

 ρ]  <  1 (vergl. Abschn. 13.3.2 und insbesondere Gl. (13.33)). Wir

fordern daher nur, dass die Spur des Dichteoperators nicht vergrößert wird:

tr[ E( ρ)]  ≤  1 bei tr[ ρ] = 1  . 

(14.3)

Als Drittes tritt die Forderung der  vollständigen Positivität (complete positivity) von  E

hinzu. Durch sie wird verlangt, dass bei der Abbildung (14.1) nicht nur die Positivität des

Dichteoperators erhalten bleibt, sondern darüber hinaus Folgendes gilt: Wenn man zum be-

trachteten System  SA  ein beliebiges weiteres System  SB  mit Hilbert-Raum  HB  hinzunimmt

und den Superoperator  EA  der Entwicklung von  SA  trivial in der Form  EA ⊗ B  zum Ent-



wicklungsoperator des zusammengesetzten Systems  SAB  erweitert, dann soll auch  EA ⊗ B



wieder ein positiver Superoperator auf  HA ⊗ HB  sein. Physikalische bedeutet das: Wenn nur

 SA  eine dynamische Entwicklung durchläuft, dann soll garantiert sein, dass dabei der Dich-

teoperator des Zustands eines Gesamtsystems  SAB  wieder (eventuell nach Normierung) in

einen Dichteoperator übergeht. Das ist zu fordern, da nicht ausgeschlossen werden soll, dass

das betrachtete System  SA  offen und damit ein Teilsystem eines größeren Systems ist. In die-

sem Fall könnte durch die Einwirkung  EA  auf  SA  z. B. über eine Wechselwirkung oder eine

Verschränkung das Gesamtsystem  SAB  beeinflusst werden. Alle diese Einflüsse sollen wieder

vom erlaubten Typ sein. 

Wir fassen zusammen:  Die allgemeinen Entwicklungen eines Quantensystems, die im

 Schrödinger-Bild Anfangszustände ρ in Endzustände ˜

 ρ überführen, sind Quantenoperatio-

 nen E. Eine  Quantenoperation (quantum operation) ist eine durch einen Superoperator  E  be-

schriebene

(i) lineare, 

(ii) die Spur nicht erhöhende, 

(iii) vollständig positive Abbildung

 ρ → ˜

 ρ =  E( ρ)  . 

(14.4)

Der Endzustand  ρ  ergibt sich, wenn nötig, durch Normierung

 E( ρ)

 ρ =

 . 

(14.5)

tr[ E( ρ)]

Wir wollen vom Ausgangszustand tr[ ρ] = 1 annehmen, sodass Bedingung (ii) tr[ E( ρ)]  ≤  1

besagt. 
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14.1.2

Operatorsummenzerlegung von Quantenoperationen

Wir formulieren hier ein Theorem über Quantenoperationen an, das wir in Kap. 16 beweisen

werden. Es ist der  Satz von der  Operatorsummenzerlegung  (operator-sum decomposition):

 Eine Abbildung ρ → ˜

 ρ =  E( ρ)  ist genau dann eine Quantenoperation, wenn es für sie eine

 Zerlegung (bzw. Darstellung)



 E( ρ) =

 KiρK†

(14.6)

 i

 i

 mit linearen Operatoren Ki gibt, die die Bedingung

  K†K

(14.7)

 i

 i ≤ 

 i

 erfüllen und den Eingangs-Hilbert-Raum in den Ausgangs-Hilbert-Raum abbilden. Für

  K†K

(14.8)

 i

 i = 

 i

 ist die Operation spurerhaltend. Die Zerlegung (14.6) ist nicht eindeutig. Der Satz heißt

auch der  Satz (oder das Darstellungstheorem) von Kraus. Die Operatoren  Ki  werden  Kraus-

 Operatoren (Kraus operators) oder  Operationselemente (operation elements) aber auch  Zerle-

 gungsoperatoren (decomposition operators) genannt. Wir haben ein Beispiel für eine Opera-

torsummenzerlegung in Abschn. 13.1.2 und 13.2 kennen gelernt. 

Wir betrachten den einfachen Fall, dass ein zusammengesetztes System  SAB  eine uni-

täre Entwicklung mit  U AB  durchläuft. Um die zu  U AB  gehörige Operatorsummenzerlegung

für die Quantenoperation auf  SA  zu erhalten, gehen wir von der Wirkung von  U AB  auf den

Zustand  ρAB =  ρA ⊗ |iBiB|  aus. Er wird in

 ρAB =  U AB|iBρAiB|U AB†

(14.9)

überführt. Für den Zustand von  SA  bedeutet das



 ρA = tr B[ ρAB] =

 eB|UAB|iBρAiB|UAB†|eB . 

 n

 n

(14.10)

 n

 {|eB}

 n

ist dabei eine ONB von  HB. Aus der Unitarität von  U AB  folgt für

 Ki :=  eB|U AB|iB

 i

(14.11)

die Vollständigkeitsrelation

  K −i†Ki =  . 

(14.12)



 i

Die Abbildung



 ρA → ρA =  E( ρA) =

 KiρK†

(14.13)

 i

 i
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ist eine Quantenoperation mit Kraus-Operatoren (14.11). Es folgt unmittelbar, dass zu gege-

benem  U AB  die Operatorsummenzerlegung nicht eindeutig ist. Wir werden in Kap. 16 zeigen, 

dass auch folgende Umkehrung gilt:  Zu jeder Quantenoperation EA auf SA lässt sich nach

 Erweiterung zum System SAB eine unitäre Transformation U AB auf HAB finden, die für das

 Teilsystem SA die Operation EA bewirkt. 

14.1.3

Quantenoperationen sind noch nicht die allgemeinsten

Entwicklungen

Nicht alle positiven Abbildungen sind vollständig positiv. Ein Beispiel hierfür ist die  Trans-

 position (transposition)  T A  in  HA. 

Mit Bezug auf die Rechenbasis  {|nA}  von  HA  ist sie als die Abbildung definiert, die



 ρA =

 ρ

 n,m

 nm|nAmA|  in



 T A( ρA) = ( ρA) TA :=

 ρnm|mAnA|

(14.14)

 n,m

überführt. Dies ist eine lineare und positive Abbildung. Aber ist sie auch vollständig positiv? 

Mit Bezug auf die Matrixdarstellung mit den Basen  {|nA}  und  {|µB}  von  HA  bzw.  HB  ist

die  Teil-Transposition  in  HA (partial transposition) ( T A ⊗ B) ρAB =: ( ρAB) TA  durch die



Abbildung von  ρAB

 ρAB ↔ ρmµ,nν =  mA, µB|ρAB|nA, νB

(14.15)

in

( ρAB) TA ↔ ρTA

=  ρ

 mµ,nν

 nµ,mν

(14.16)

gegeben. Diese Teil-Transposition ist trivialerweise positiv auf allen separablen Dichteopera-

toren

 T A ⊗ B( ρA ⊗ σB) = ( ρA) TA ⊗ σB . 

(14.17)



Zu prüfen bleibt daher, ob das auch für verschränkte Zustände gilt. 

Wir betrachten hierzu den Bell-Zustand

 |

1

Φ AB

+   =  √ ( | 0 A,  0 B  +  | 1 A,  1 B )

(14.18)

2

und nummerieren die Rechenbasis in  HA ⊗ HB  durch:

 | 0 A,  0 B ↔  1  , 

 | 0 A,  1 B ↔  2  , 

 | 1 A,  0 B ↔  3

(14.19)

 | 1 A,  1 B ↔  4  . 













 14.1

 Quantenoperationen und ihre Operatorsummenzerlegungen

241

Dann ergibt sich als Matrixdarstellung





1

0

0

1





 |

0

0

0

0

Φ AB





+  Φ AB

+  | ↔  1

2 0

0

0

0  . 

(14.20)

1

0

0

1

Darauf wenden wir die Vorschrift (14.16) an und erhalten in Matrixschreibweise





1

0

0

0

0 0 1 0

( ρAB) TA ↔  1 



2 0

1

0

0  . 

(14.21)

0

0

0

1



 T

Man prüft leicht nach, dass diese Matrix die Eigenzustände 1

 A

2 , 12 , 12 und  −  12 hat.  ρAB

ist

daher nicht positiv.  Die Transposition ist eine lineare positive Abbildung, die nicht vollständig

 positiv ist.  Das liegt in dem Beispiel daran, dass wir  T A ⊗ B  auf einen verschränkten Zustand



angewendet haben. 

Das führt auf die folgende Frage: Ist fehlende Positivität nach Anwendung von  T A ⊗ B



möglicherweise ein Kriterium, mit dem man die Nicht-Separabilität eines Zustands feststellen

kann? Ein Theorem mit dieser Aussage gibt es tatsächlich für niedrige Dimensionen  HA

2  ⊗HB

2

und  HA

2  ⊗HB

3 (vergl. Abschn. 14.5). Mit seiner Hilfe kann festgestellt werden, ob Dichteope-

ratoren  ρAB  separabel sind. 

14.1.4

Einfache Beispiele

Eine Projektion  Pm, wie sie z. B. bei einer Messung auftritt, ist eine Quantenoperation

 K =  Pm  mit  K†K < 

. Sie erhält die Spur nicht. Eine unitäre Transformation  U  ist ei-



ne spurerhaltende Operation mit  K =  U . Wenn man unitäre Transformationen  Ui  mit der



Wahrscheinlichkeit  pi  auf ein System wirken lässt, entsteht wegen

 p

 i

 i = 1 wieder eine

Quantenoperation



 E( ρ) =

 piUiρU † . 

(14.22)

 i

 i

Auch die Bildung der Teilspur ist eine Quantenoperation. Um das zu sehen, bilden wir den

Operator  KAB, der von  HA ⊗ HB  auf  HA  in der folgenden Weise abbilden soll

 i







 KAB( ψAB) =  KAB 

 α

 |eB =  α

 

 i

 i

 j |aA

 j

 j

 i|aA

 i

(14.23)

 j

 {|eB}  ist eine ONB von  HB. Durch Wirkung auf die Basisvektoren von  HA ⊗HB überzeugt

 j

man sich von

  KAB†KAB =  AB . 

(14.24)

 i

 i



 i
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Damit ist



 E( ρAB) =

 KABρABKAB†

 i

(14.25)

 i

 i

eine Quantenoperation. Wir zerlegen  ρAB  dual nach der ONB  {|lA|eB}

 n

von  HAB, wobei

 i

 {|lA}

 n

eine ONB von  HA  ist. Die Wirkung von  KAB  besteht dann gemäß Gl. (14.23) in

 i



 E( ρAB) =

 eB|ρAB|eB . 

 j

 j

(14.26)

 j

14.1.5

Mehrdeutigkeit der Operatorsummenzerlegung

Wir lassen in  H 2 die folgenden zwei Quantenoperationen auf ein Qubit wirken:

 E

1

1

 i( ρ)

:=

 ρ +

 σiρσi , 

 i =  x, y, z

(14.27)

2

2

ˆ

 Ei( ρ) :=   0 i|ρ| 0 i| 0 i 0 i| +   1 i|ρ| 1 i | 1 i 1 i| . 

(14.28)

Mit  | 0 i 0 i| = ( +  σi) / 2 und  | 1 i 1 i| = (  − σi) / 2 finden wir nach kurzer Umformung





ˆ

 Ei( ρ) =  Ei( ρ)  . 

(14.29)

Die Wirkung beider Quantenoperationen ist gleich, obwohl die physikalischen Interpretatio-

nen von Gl. (14.27) und (14.28) völlig verschieden sind: In Gl. (14.27) werden auf  ρ  jeweils

mit der Wahrscheinlichkeit 12 entweder die unitären Transformationen

(d. h. keine Ände-



rung) oder  σi  angewandt. Gl. (14.28) entspricht der nicht-selektiven Messung in der Rechen-

basis  {| 0 i, | 1 i}. Der Bloch-Vektor r von  ρ  liegt dementsprechend parallel zur  i-Achse. Das kann man mit Gl. (14.28) und den Relationen von Kap. 3 leicht nachprüfen. Was passiert

mit dem Bloch-Vektor, wenn alle drei Pauli-Operatoren  σx,  σy  und  σz  statt nur einem Pauli-

Operator  σi  wie in  Ei( ρ) mit gleicher Wahrscheinlichkeit wirken? Wir kommen auf diese

Frage in Abschn. 14.3.1 zurück. 

14.2

Völlig allgemeine Messung und POVM

Messoperationen statt Messoperatoren

In Abschn. 13.3 haben wir gesehen, dass verallge-

meinerte Messungen jeweils durch einen Satz  {Mm}  von Messoperatoren gegeben sind. Jeder

zu einem einzelnen Messwert  m  gehörige dynamische Vorgang ist eine Quantenoperation

 ρ → ˜

 ρ =  Mm( ρ) =  MmρM †m

(14.30)

mit nur einem Kraus-Operator  Mm. Die Gl. (13.35) zeigt, dass

 p( m) = tr[ Mm( ρ)]

(14.31)

die Wahrscheinlichkeit dafür ist, dass die Durchführung der Operation  Em  eintritt. Bei nicht-

trivialen verallgemeinerten Messungen ( pm <  1) verkleinert daher die Operation zu einem

Messwert  m  die Spur. Für den Zerlegungsoperator gilt:

 M † M

 . 

 m

 m < 

(14.32)
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Diese Überlegungen zu verallgemeinerten Messungen zeigen bereits, dass es einen noch

allgemeineren Typ von Messungen geben muß, bei dem die Operatorsummenzerlegung

der Messoperationen  Mm  mehr als einen Summanden enthält. In Verallgemeinerung der

 

Gl. (14.30) und (14.31) ergibt sich dann der der Zustand ˜

 ρm  nach der Messung als Ergeb-

nis einer Quantenoperation mit einem Superoperator  Mm



 

 ρ → ˜

 ρ

=  M

 M

 . 

 m

 m( ρ) =

 m,i ρ M †

(14.33)

 m,i

 i

Der Laufbereich von  i  kann dabei vom Messwert  m  abhängen. Die Wahrscheinlichkeit für das

Eintreten des Messwerts ist wieder

 p( m) = tr[ Mm( ρ)]  . 

(14.34)



Aus

 p( m) = 1 ergibt sich als Bedingung an die Zerlegungsoperatoren

 m

  M† M

 . 

(14.35)

 m,i

 m,i = 

 m,i

  M

 m

 m  ist spurerhaltend. 

POVM

Es zeigt sich, dass die in Abschn. 13.4 vorgestellte POVM-Messung von vornehe-

rein den Grad an Allgemeinheit hat, den wir für Messungen erst mit Einführung der Quanten-

operationen in Gl. (14.33) und (14.34) erreicht haben. Jeder völlig allgemeinen Messung ist

ein POVM  {Em} über die positiven Operatoren



 Em :=

 M † M

 m,i

 m,i

 , 

(14.36)

 i

zugeordnet, die mit Gl. (14.35) die Vollständigkeitsrelation

  Em =

(14.37)



 m

erfüllen. Die Messwahrscheinlichkeit ergibt sich mit (14.34) in der Form

 p( m) = tr[ Emρ]  . 

(14.38)

14.3

Quantenkanäle

14.3.1

Depolarisierungskanal

Zur Beantwortung der am Ende von Abschn. 14.1.5 gestellten Frage führen wir in Erweiterung

 √

von Gl. (14.27) zusätzlich zu  K 0 =

1  − p

noch die drei Zerlegungsoperatoren



 p

 Ki =

 σi , 

 i = 1 ,  2 ,  3

(14.39)

3
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Abbildung 14.1: Auswirkung des Depolarisierungskanals auf die Bloch-Kugel. 

ein mit 0  ≤ p ≤  1.  E( ρ) ist dann

 E

 p

( ρ) = (1  − p) ρ + ( σ 1 ρσ 1 +  σ 2 ρσ 2 +  σ 3 ρσ 3)  . 

(14.40)

3

Wir wollen die Wirkung von  E  auf den Bloch-Vektor r von  ρ

1

 ρ =

( + r σ)

(14.41)

2 

beschreiben. Hierzu wählen wir die Koordinatenachsen so, dass r =  r 3e3ist und erhalten

1

 ρ =

( +  r 3 σ 3)  . 

(14.42)

2 

Mit  σ 3 σ 3 σ 3 =  σ 3,  σ 1 σ 3 σ 1 =  −σ 3 und  σ 2 σ 3 σ 2 =  −σ 3 können wir  E( ρ) wieder in der Form (14.42) schreiben:





 E

1

( ρ) =

( +  r 3 σ 3)  , 

 r 3 = 1  −  4  p r 3  . 

(14.43)

2 

3

Die Spinpolarisation r = tr[ ρσ] wird reduziert. Man nennt das  Depolarisierung (depolariza-

tion). In zentralsymmetrischer Weise werden alle Bloch-Vektoren einheitlich mit dem Faktor





1  −  43  p  multipliziert (vergl. Abb. 14.1). Insbesondere werden dadurch reine Zustände zu

Gemischen. Eliminieren von  r 3 σ 3 mit Hilfe von Gl. (14.42) überführt Gl. (14.43) in





 E

4

( ρ) =

 p  +

1  −  4  p ρ

(14.44)

3 2

3

Mit wachsendem  p  wächst der strukturlose Anteil 12 . 
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14.3.2

Quantensprünge und Amplitudendämpfungskanal

Ein 2-Niveau-Atom  SA  mit Grundzustand  | 0 A  und angeregtem Zustand  | 1 A  emittiert mit der Wahrscheinlichkeit  p  ein Photon (spontane Emission in den Zustand  | 1 B). Wenn kein

Photon emittiert wird, ist das Photonensystem  SB  im Zustand  | 0 B. Wir betrachten nur den

Quantensprung, bei dem am Anfang kein Photon vorliegt ( |iB =  | 0 B). Absorption findet

nicht statt. Dann lassen sich die Kraus-Operatoren wie in Abschn. 14.1.2 ablesen:





1

0

 K 0

=

  0 B|UAB| 0 B =

 √

0

1  − p



 √ 	

0

 p

 K 1

=

  1 B|UAB| 0 B =

 . 

(14.45)

0

0

Sie erfüllen

 K† 0 K 0 +  K† 1 K 1 =  . 

(14.46)



Der Superoperator hat damit die Wirkung

 E( ρA) =  K 0 ρAK† 0 +  K 1 ρAK† 1



 √



 ρ 00 +  pρ 11

1  − p ρ 01

=

 √

(14.47)

1  − p ρ 10

(1  − p) ρ 11

Die Matrixelemente von  ρA  werden gedämpft. 

Für viele Atome kann der Prozess häufig stattfinden. Es ist immer wieder  E  auf den jeweils

resultierenden Zustand  ρA  anzuwenden. Die Wahrscheinlichkeit, alle Atome im Grundzu-

stand zu finden, wächst an. Das Gemisch geht in den reinen Zustand  | 0 A 0 A| über. Da die

Komponente   1 |ρA| 1   weggedämpft wird, heißt der Kanal  Amplitudendämpfungskanal (am-

plitude damping channel). Für die Auswirkung auf die Bloch-Kugel vergl. Abb. 14.2. 

14.4

Blick zurück: Das Szenario und die Regeln der

Quantentheorie

Szenario

Wir haben einleitend in Abschn. 2.1.1 das Szenario der Quantentheorie beschrie-

ben. Wir kommen im Rückblick noch einmal darauf zurück. Jedes Experiment in der Quan-

tenphysik hat genauso wie jedes Experiment in der klassischen Physik den folgenden Aufbau:

Ein physikalisches System unterliegt drei Typen von Einwirkungen, die von drei Typen von

Geräten verursacht werden (vergl. Abb. 14.3):

1. Ein  Präparationsgerät (preparation apparatus) präpariert das System in einem bestimm-

ten Zustand. 

2. Ein  Transformationsapparat (transformation apparatus) wirkt auf das System ein und än-

dert den Zustand ab (z. B. Einfluss eines äußeren Potentials, Wechselwirkung mit einem

anderen System, Wechselwirkung unter Teilsystemen. Es können mehrere Transforma-

tionen „durchlaufen“ werden. Es kann auch gar kein Transformationsapparat vorhanden

sein. 
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Abbildung 14.2: Auswirkung des Amplitudendämpfungskanals auf die Bloch-Kugel. 

 ρ

 E( ρ) = ˜ ρ
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Abbildung 14.3: Das Szenario der Quantentheorie im Schrödinger-Bild. 

3. Abschließend erfolgt im  Messgerät  eine Einwirkung, die dazu führt, dass an ihrem Ende

am Messgerät ein  Messergebnis (measurement outcome) in Form einer reellen Zahl ab-

gelesen werden kann. Es ist möglich, dass das System durch die Messung nicht zerstört

wird, sondern auch danach noch vorliegt. Dann wirkt das Messgerät auf den einlaufenden

Zustand des Systems wie ein Transformationsapparat, das abhängig vom Messergebnis

verschiedene Transformationen durchführt und in entsprechende Zustände überführt. 

Regeln

Zur Vereinfachung der Beschreibung haben wir dabei interpretierend schon voraus-

gesetzt, dass es stets einzelne physikalische Systeme gibt. In vielen Fällen misslingt der Ver-

such, die experimentellen Resultate mit Hilfe der Theorien der klassischen Physik zu erklären, 

und die Verwendung der (unrelativistischen) Quantentheorie ist erfolgreich. Dann werden die

folgenden Regeln angewendet:

 •  Jedem Präparationsverfahren wird ein Zustand zugeordnet. Der Zustand ist dasjenige

mathematische Objekt, das erlaubt die Wahrscheinlichkeiten des Eintretens der verschie-

denen Messergebnisse für alle Arten von Messungen zu prognostizieren, die an den ent-

 14.4
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sprechend präparierten Quantensystem durchgeführt werden können. Wahrscheinlichkeit

wird dabei üblicherweise als Grenzwert der relativen Häufigkeit aufgefasst. Zustände

sind Dichteoperatoren  ρ  auf einem Hilbert-Raum. 

 •  Die Transformation ist eine Quantenoperation. Sie wird im Schrödinger-Bild durch einen

linearen vollständig positiven Superoperator  E  beschrieben

 ρ → ˜

 ρ =  E( ρ)  , 

(14.48)

der die Spur von  ρ  nicht erhöht. Durch die Transformation ändern sich die Prognosen für

die Messergebnisse. 

 •  Ein durch einen Messapparat durchgeführter Messeingriff wird durch die Messwerte  m

und ein POVM  {Em}  repräsentiert

  Em =  . 

(14.49)



 m

Die Wahrscheinlichkeit bei Vorliegen des Zustands  ρ  das Messergebnis  m  zu erhalten, 

ist

 pm = tr[ Emρ]  . 

(14.50)

 •  Wenn das Quantensystem beim Messeingriff nicht zerstört wird, geht es abhängig vom

Messergebnis  m  in den unnormierten Zustand

 ρ → ˜

 ρ =  M

 m

 m( ρ)

(14.51)

über. Normierung führt auf den neuen Dichteoperator  ρ

] = 1

 m  mit tr[ ρm

. Diese Mess-

operationen werden durch lineare, vollständig positive Superoperatoren (Quantenopera-

tionen)  Mm  dargestellt, die die Spur verringern. Ihre Form ist für die jeweilige Messung

spezifisch. Die Wahrscheinlichkeit für das Auftreten des Messwerts  m  ist



 pm = tr[˜

 ρ ]  , 

 p

 m

 m = 1  . 

(14.52)

 m

Die Operatorsummenzerlegung der Superoperatoren  Mm



 Mm( ρ) =

 Mm,iρM †

(14.53)

 m,i

 i

führt auf den Zusammenhang



 Em =

 M † M

 m,i

 m,i

(14.54)

 i

mit dem POVM  {Em}. Die Bedingung (14.49) schränkt die linearen Operatoren  Mm,i

ein. Eine selektive Messung (Aussondern nach dem Messergebnis) stellt wieder ein Prä-

parationsverfahren dar. 
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14.5

Ergänzende Themen und weiterführende Literatur

 •  Siehe auch Abschn. 13.5. 

 •  Quantenoperationen, Operatorsummenzerlegungen: [HK 69], [HK 70], [Kra 83], 

[Sch 96]. 

 •  Mit Hilfe der teilweisen Transposition  T A ⊗ B (partial transposition) kann man fest-



stellen, ob ein Dichteoperator  ρAB  separabel ist. Es gilt der Satz:  Ein Zustand ρAB in

 HA 2  ⊗ HB 2  oder HA 2  ⊗ HB 3  ist genau dann separabel, wenn die Teiltransposition auf

 einen positiven Operator führt.  Dieses Theorem ist ein wichtiger Ausgangspunkt für die

Beantwortung der Frage, wie man bei Gemischen Verschränkung (Nicht-Separabilität)

feststellen kann [HHH 01]. 

 •  Eine Axiomatik der Quantentheorie, die von dem in Abschn. 14.4 beschriebenen Szena-

rio ausgeht, findet sich in [Har 01a], [Har 01b]. 

 •  Man beachte auch die Literaturangeben zu Kap. 13. 

14.6

Übungsaufgaben

ÜA 14.1 [zu 14.1.2]

Zeigen Sie, dass sich eine Quantenoperation  E, die auf den Dichteope-

rator eines Qubits wirkt, in der Form

3



 E( ρ) =

 aijσiρσj

(14.55)

 i,j=1

mit  aij =  a∗  schreiben lässt. 

 ij

ÜA 14.2 [zu 14.1.5]

Zeigen Sie in expliziter Rechnung, dass der Bloch-Vektor von  ρ  von

Gl. (14.29) parallel zur i-Achse liegt. 

ÜA 14.3 [zu 14.3]

Berechnen Sie die Wirkung des Amplitudendämpfungskanals auf den

Dichteoperator

1

 ρ =

( + r σ)  . 

(14.56)

2 

Wie ändert sich der Bloch-Vektor r? 
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15 Dekohärenz und Ansätze für die Beschreibung

des Quantenmessprozesses

Dekohärenz ist für Anwendungen ein Störeffekt, für das Verständnis des Quantenmesspro-

zesses aber ein wichtiger Ansatz. Die durch Streuung bewirkte Dekohärenz gibt den Hinweis

darauf, dass umgebungsinduzierte Dekohärenz der wesentliche Effekt beim Messprozess sein

könnte. Das Herausbilden der klassischen Welt und das klassische Verhalten von Schrödingers

Katze sind weitere Beispiele. Die Frage, ob das Quantenmessproblem heute bereits gelöst ist, 

wird anschließend behandelt. 

15.1

Dekohärenz erzeugende Kanäle

15.1.1

Phasendämpfungskanal

Streuung als einfache Realisierung

Wir betrachten ein Qubit-System  SA  an dem ein Quan-

tensystem  SB  gestreut wird. Wir wollen die Streuung für unsere Beschreibung stark vereinfa-

chen (vergl. Abb. 15.1). Wir nehmen dazu an, dass es zwei orthonormale Zustände  | 0 A  und

 | 1 A  des Systems  SA  gibt, die bei der Streuung keine Änderung erfahren (stabile Zustände). 





Das System  SB  fällt im Zustand  |iB  ein. Bei der Streuung am Zustand  | 0 A  bzw.  | 1 A





soll das gestreute System  SB  in der räumlichen Asymptotik in den Zustand  | 0 B  bzw.  | 1 B

übergehen. Diese Zustände von  SB  sollen ein ONB in  HB

3 bilden. Wir wollen noch zulassen, 

dass mit der Wahrscheinlichkeit 1  − p  das System  SB  gar nicht gestreut wird und daher im

Zustand  |iB  bleibt. Man kann sich unter  | 0 A  und  | 1 A  z. B. zwei Energieniveaus vorstellen und unter  |iB,  | 0 B  und  | 1 B  drei Impulszustände („Bahnen“). 

Die Streuung ist ein unitärer Prozess des Gesamtsystems  SAB. Der Operator, der die Zu-

stände in der Einlaufregion in die der Auslaufregion überführt, hat die Eigenschaften



 √

ˆ

 U AB| 0 A, iB =

1  − p | 0 A, iB +

 p | 0 A,  0 B

(15.1)



 √

ˆ

 U AB| 1 A, iB =

1  − p | 1 A, iB +

 p | 1 A,  1 B . 

(15.2)

Wir kennen daher seine Wirkung auf Teilen der ONB von  HA

2  ⊗HB

3 und können den Operator

zu einem unitären Operator auf  HA

2  ⊗ HB

3 ergänzen. 



 √



 U AB

=

1  − p | 0 A, iB +

 p | 0 A,  0 B  0 A, iB|



 √



+

1  − p | 1 A, iB +

 p | 1 A,  1 B  1 A, iB| + Rest  . 

(15.3)

Weitere duale Bildungen mit   0 A, iB|  oder   1 A, iB|  kommen im Rest nicht vor. 

 Verschränkte Systeme: Die Quantenphysik auf neuen Wegen.  Jürgen Audretsch

Copyright c

   2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

ISBN: 3-527-40452-X













250

 15

 Dekohärenz und Ansätze für die Beschreibung des Quantenmessprozesses

 | 1 B

 | 0 B

 | 1 A

 | 0 A

 |iB

Abbildung 15.1: Streuung an einem 2-Niveau-System. 

Die Kraus-Operatoren, die zu der auf dem Untersystem  SA  wirkenden Quantenoperation

gehören, lassen sich gemäß Gl. (14.11) direkt ablesen:









1

0

 K

 A

 i

=

 iB|UAB|iB = 1  − p

=

1  − p

(15.4)



0

1





 √

 √

1

0

 K 0

=

  0 B|UAB|iB =  p | 0 A 0 A| =  p

(15.5)

0

0





 √

 √

0

0

 K 1

=

  1 B|UAB|iB =  p | 1 A 1 A| =  p

 . 

(15.6)

0

1

Die Bedingung

 K†K

(15.7)

 i

 i +  K †

0  K 0 +  K†

1  K 1 = 

für Kraus-Operatoren ist erfüllt. Die Quantenoperation, die die Änderung des Systems  SA

beschreibt, wenn es sich vor der Streuung im Zustand  ρ  befindet, ist durch

 ρ → ρ =  E( ρ) =  KiρKi +  K 0 ρK 0 +  K 1 ρK 1

(15.8)

gegeben (der Index  A  ist weggelassen). In der Rechenbasis hat sie die Form





 ρ 00

(1  − p) ρ 01

 ρ =  E( ρ) =

 . 

(15.9)

(1  − p) ρ 10

 ρ 11

 Wenn Streuung mit Sicherheit stattfindet (p = 1 ), verschwinden in der Rechenbasis die Au-

 ßerdiagonalelemente der Dichtematrix von SA. Für  0  ≤ p <  1  werden mit jedem weiteren

 einzelnen Quantensystem SE, das an SA gestreut wird, die Außerdiagonalelemente um den

 Faktor (1  − p)  kleiner. Streuung bewirkt Dekohärenz. 

Phasendämpfungskanal

Im Grenzfall  p = 1 (perfekte Streuung) wird durch eine Streuung

eine Markierung mit orthogonalen Markerzuständen  | 0 B und  | 1 B  durchgeführt. Ein reiner

Zustand geht in in einen verschränkten Zustand über





 c 0 | 0 A +  c 1 | 1 A |iB → c 0 | 0 A,  0 B +  c 1 | 1 A,  1 B . 

(15.10)
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Abbildung 15.2: Auswirkung des Phasendämpfungskanals auf die Bloch-Kugel. 

Der reine Zustand des Untersystems  SA  geht in ein Gemisch über. Die Phasenbeziehung zwi-

schen den Summanden des reinen Zustands und damit die Kohärenz, d. h. die Interferenzfähig-

keit gehen verloren. Dies ist die Dekohärenz durch Markieren, die wir bereits in Abschn. 8.5

diskutiert haben. Das System  SA  durchläuft für 0  ≤ p ≤  1 während der Streuung einen

Quantenkanal, der  Phasendämpfungskanal (phase-damping channel) genannt wird. Die Aus-

wirkung des Kanals auf beliebige Gemische kann man am einfachsten an der Bloch-Kugel

demonstrieren. Man kann zeigen, dass die Bloch-Vektoren auf der  z-Achse unverändert blei-

ben. Alle anderen Punkte bewegen sich für  p = 1 bei vielen Streuungen auf die  z-Achse zu

unter Beibehaltung der Rotationssymmetrie um die  z-Achse (vergl. Abb. 15.2). 

15.1.2

Streuung und Dekohärenz

Charakteristische Eigenschaften

Wir wollen Eigenschaften des oben beschriebenen Streu-

prozesses herausstellen, die wir in allgemeineren Situationen in denen Dekohärenz eine Rolle

spielt, teilweise wiederfinden werden. 

a) Zunächst einmal muß festgehalten werden, dass der zu Grunde liegende Prozess, den das

Gesamtsystem durchläuft, eine unitäre Entwicklung  U AE  ist, die auf die spezielle Dyna-

mik der Wechselwirkung zurückgeht. Ein reiner Zustand von  SAB  geht in einen reinen

Zustand von  SAB über. Information geht dabei nicht verloren. 

b) Dieser Streuprozess ist infolge der Unitarität reversibel. Wenn  SA  am Anfang in einem

reinen Zustand war, kann durch geeignete „Spiegelung“ (Umkehrung von Bewegung und

Dynamik) der Streuprodukte wieder der reine Zustand erzeugt und die Dekohärenz von

 SA  vollständig rückgängig gemacht werden. Wie wir schon in Abschn. 9.1 gesehen haben, 

haben wir beim Übergang (15.10) Information in die Korrelationen transferiert, die dort

im Prinzip wieder abgerufen werden kann. Dazu ist ein nicht-lokaler Prozess nötig, der bei

Streuung praktisch nicht realisierbar ist. 
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c) Wesentlich ist, dass durch die Wechselwirkung eine Basis  {| 0 A, | 1 A}  aus stabilen Zu-

ständen ausgezeichnet ist, die durch den dynamischen Einfluss nicht geändert werden

(vergl. Gl. (15.9)). 

 E( | 0  0 |) =  | 0  0 | , E( | 1  1 |) =  | 1  1 | . 

(15.11)

d) Diese Eigenzustände von  σz  zeichnen die Lage der  z-Achse aus, auf die sich die Bloch-

Kugel zusammenzieht (vergl. Abb. 15.2). Verglichen mit der Charakterisierung der Deko-

härenz über das Verschwinden der Außendiagonalelemente des Dichteoperators, ist dies

eine basisunabhängige Charakterisierung. 

e) Von c) her lässt sich schon vermuten, dass wir eine elastische Streuung beschrieben haben. 

Wenn die Zustände  | 0   und  | 1   zu Energieniveaus  E 0 und  E 1 gehören, dann kann man mit dem Hamilton-Operator

 H =  E 0 | 0  0 | +  E 1 | 1  1 |

(15.12)

leicht zeigen, dass der Erwartungswert ¯

 E  der Energie unverändert bleibt

¯

 E = tr[ ρH] = tr[ ρH] = ¯

 E . 

(15.13)

Es findet keine Dissipation statt. 

f) Wenn die Streuung nicht perfekt ist ( p = 1), führt die vielfache Wiederholung mit immer

neuen einfallenden Teilchen zu einer sich schrittweise verstärkenden Dekohärenz, die die

Bloch-Vektoren orthogonal auf die  z-Achse zutreibt. 

15.1.3

Phasenflipkanal

Wir hatten bereits gesehen, dass es zu einer Quantenoperation viele Operatorsummenzerle-

gungen gibt. Physikalisch bedeutet das, dass bei gleichem Anfangszustand verschiedene dyna-

mische Prozesse zu demselben Endzustand führen können. Wir können die Quantenoperation

 E( ρ) von Abschn. 15.1.1 und damit Dekohärenz auch durch einen  Phasenflipkanal (phase-flip

channel) erreichen, der ebenfalls geordnete Phasenbeziehungen zerstört. In ihm wirkt mit der

Wahrscheinlichkeit  w  auf den Ausgangszustand  ρ  eine Dynamik ein, die eine unitäre Trans-

formation  σz  und damit einen Phasenflip bewirkt. Die Quantenoperation hat daher die zwei

Kraus-Operatoren

 √

 √

 K+ =

 w σz

 , K− =

1  − w

(15.14)



mit

 K†+ K+ +  K†−K− =  . 

(15.15)



Die Operation ist in der Eigenbasis von  σz  durch









 ρ 11

 −ρ 12

 ρ 11

 ρ 12

 ρ → ρ

=

 w

 −

+ (1  − w)

 ρ 21

+ ρ 22

 ρ 21

 ρ 22





 ρ 11

(1  −  2 w) ρ 12

=

(15.16)

(1  −  2 w) ρ 21

 ρ 22
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gegeben. Für  w = 12 tritt totale Dekohärenz auf.  Ein Kanal mit zufälligem Phasenflip ist in

 seiner Wirkung einem Phasendämpfungskanal äquivalent. 

15.2

Umgebungsinduzierte Dekohärenz

15.2.1

Die Herausbildung der klassischen Welt

Das Programm

Wir haben in Abschn. 2.1.1 das Verhältnis am Doppelspalt einmal für Ku-

geln (also für klassische Objekte) und einmal für Atome (also für Quantenobjekte) beschrie-

ben und die Unterschiede in den experimentellen Ergebnissen herausgestellt. Die theoreti-

sche Begründung wurde im einen Fall ganz im Rahmen der klassischen Physik gegeben und

im anderen Fall ganz im Rahmen der Quantentheorie in der Fassung, wie sie noch einmal

in Abschn. 14.4 zusammenfassend dargestellt wurde. Die Experimente am Doppelspalt le-

gen folgende Fragen nahe: Was beobachtet man, wenn man ausgehend von Elektronen und

Atomen über Moleküle und Viren zu immer makroskopischeren Objekten übergeht (vergl. 

Abschn. 15.6) um schließlich bei Tennisbällen zu enden? Kann in den unterschiedlichen Be-

reichen einschließlich der Ballexperimente eine unveränderte Quantentheorie zur Begründung

herangezogen werden? Dann wäre letztlich die klassische Physik aus der Quantenphysik ohne

Zusätze ableitbar. Oder tritt in einem Zwischenbereich eine ganz neue Physik auf, die auch

eine neue Theorie erfordert? 

Die Frage wie die klassische Physik aus der Quantentheorie hervorgeht, lässt sich wohl

auch in naher Zukunft nicht völlig befriedigend beantworten. Es macht aber Sinn, Ansätze zur

Lösung von Teilproblemen zu diskutieren. So kann ein Gefühl dafür entstehen, was die Quan-

tentheorie in der bisher dargestellten Form zu begründen vermag und was nicht. Während wir

in Kap. 10 mit Hilfe der verborgenen Parameter vergeblich versucht haben, Quantenphäno-

mene aus der klassischen Physik heraus zu verstehen, drehen wir jetzt die Beweisrichtung um

und versuchen die klassische Physik aus der Quantentheorie heraus zu verstehen. 

Das Problem

Eine für klassische mechanische Objekte charakteristische Eigenschaft ist die, 

dass sie nie in einer Superposition von zwei Zuständen beobachtet werden. Ein klassisches

Objekt ist z. B. immer entweder an einem Ort 1 oder an einem Ort 2, aber nie in einer Super-

position der beiden Ortszustände. Für den Doppelspalt bedeutet das, dass bei Experimenten

mit klassischen Objekten keine Interferenz auftreten kann1. Die für Quantenobjekte mögliche

Superposition und damit die Kohärenz der Zustände ist bei klassischen Objekten unmöglich. 

Wenn wir daher versuchen, auch klassische Objekte mit Hilfe der Quantentheorie zu beschrei-

ben, taucht das Problem auf, wie wir, ohne den Rahmen dieser Theorie zu verlassen, die De-

kohärenz klassischer Zustände begründen können. Wir wollen die typisch klassische Eigen-

schaft, dass Zustände klassischer Objekte nicht superponieren, als eine  emergente Eigenschaft

(emergent property) ableiten. Der Phasendämpfungskanal zeigt, dass Verschränkung mit der

Umgebung in Form von Streuung dabei eine Rolle spielen kann. 

1Für die Interferometrie mit Makromolekülen vergl. Abschn. 15.6. 
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Ein Beispiel

Wir betrachten eine Kugel oder einen anderen makroskopischen Körper. Sei-

ne quantentheoretisch beschriebenen Ortszustände sollen  | 0 A  und  | 1 A  sein. Man kann sich darunter z. B. die Zustände hinter den einzelnen Spalten eines Doppelspalts vorstellen. Quantentheoretisch ist dann auch der Zustand

 |ϕA =  c 0 | 0 A +  c 1 | 1 A

(15.17)

erlaubt, der auf ein Interferenzbild führen würde. Wir müssen berücksichtigen, dass die Kugel

ein offenes System ist. Sie wechselwirkt ständig mit der Umgebung z. B. durch Streuung von

Photonen. Selbst im Dunkeln bleibt die kosmische Hintergrundstrahlung präsent.  | 0 A  und

 | 1 A  bleiben als klassische Zustände bei dieser Streuung unverändert (stabile Zustände). Da-

mit haben wir eine Situation, die analog ist zu der bei der Streuung in Abschn. 15.1. Wenn die

Kugel im Zustand  | 0 A  ist, wird das Photon mit der Nummer 1 in den Zustand  | 0 E

1    gestreut, 

entsprechend bei  | 1 A  in  | 1 E

1  . Wie wir in Abschn. 15.1 gesehen haben, wird der Kugelzustand

durch den reduzierten Dichteoperator





 |c 0 | 2

 c 0 c∗ 1  1 E

1  | 0 E

1  

 ρA = 



(15.18)

 c∗ 0 c 1  0 E

1  | 1 E

1  

 |c 1 | 2

beschrieben. Im Vergleich zu Gl. (15.9) haben wir  p = 1 gesetzt, aber nicht die Orthogonalität

der Streuzustände gefordert. 

Es wird nicht nur ein Photon, sondern es werden ständig viele Photonen gestreut. Dement-

sprechend muss die Umgebung durch einen Produktraum  HE =  HE

1  ⊗ HE

2  ⊗ . . .  mit vielen

Faktorräumen beschreiben werden. Die Umgebung hat viele Freiheitsgrade. Der verschränkte

Zustand  |ψAE   des Gesamtsystems nach der Streuung ist

 |ψAE =  c 1 | 0 A| 0 E 1 ,  0 E 2 . . . . +  c 2 | 1 A| 1 E 1 ,  1 E 2 , . . . . 

(15.19)

Der Zustand der Kugel ist durch den reduzierten Dichteoperator





 |c 0 | 2

 c 0 c∗ 1  1 E

1  | 0 E

1   1 E

2  | 0 E

2   . . . 

 

 ρ A = 



(15.20)

 c∗ 0 c 1  0 E

1  | 1 E

1   0 E

2  | 1 E

2   . . . 

 |c 1 | 2

gegeben. Die Kugeln an den verschiedenen Orten streuen Photonen in unterschiedlicher Wei-

se, sonst würden wir sie ja auch gar nicht optisch unterscheiden können. Die Zustände  | 0 E

 j

und  | 1 E  mit  j = 1 ,  2 ,  3 , . . .  sind daher alle sehr verschieden und es gilt  | 0 E| 1 E|   1. 

 j

 j

 j

Da sehr viele Photonen gestreut werden, tauchen in den Außerdiagonalelementen von  ρA  in

Gl. (15.20) sehr viele dieser dem Wert nach sehr kleinen inneren Produkte auf. Durch die

Verschränkung mit den gestreuten Photonen geht der Zustand der Kugel in ein nicht mehr

interferenzfähiges Gemisch über

 

 ρ A → |c 0 | 2 | 0 A 0 A| +  |c 1 | 2 | 1 A 1 A| . 

(15.21)

Dieser Dichteoperator stimmt mit dem eines Gemenges überein, bei dem die Kugel  entweder

mit der Wahrscheinlichkeit  |c 0 | 2 im Zustand  | 0 A oder  mit der Wahrscheinlichkeit  |c 1 | 2 im
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Zustand  | 1 A  vorgefunden wird. Alle statistischen Aussagen über nachfolgende Messungen

stimmen überein. Wir kommen im Zusammenhang mit dem Quantenmessproblem auf die

Bedeutung dieser Aussage zurück. 

Was wir hier für Kugeln gezeigt haben, gilt entsprechend für alle Systeme  SA, die (i) ei-

ner verschränkenden Wechselwirkung mit einem (Umgebungs-) System  SE  unterliegen. Die

Wechselwirkung soll (ii) gewisse Zustände von  SA  unverändert lassen (stabile Zustände) und

(iii) sie jeweils mit Zuständen von  SE  verschränken, die sehr unterschiedlich (nahezu ortho-

gonal) sind.  Die dann eintretende  umgebungsinduzierte Dekohärenz  (environment induced

 decoherence) ist umso größer, je mehr Freiheitsgrade das Umgebungssystem hat. Sie über-

 führt in ein Gemisch aus den stabilen Zuständen. Dies sind die  klassischen Zustände  (clas-

 sical states), da jede Superposition dieser Zustände – falls sie jemals auftreten sollte – sehr

 schnell durch Dekohärenz zerfällt.  Das „Umgebungs“-System  SE  kann auch aus den inneren

Freiheitsgraden eines makroskopischen Körpers bestehen. 

15.2.2

Schrödingers Katze

Das Experiment

E. Schrödinger [Sch 35] hat folgendes Experiment beschrieben (vergl. 

Abb. 15.3): Eine Katze ist zusammen mit einem radioaktiven Präparat in einen abgeschlosse-

nen undurchsichtigen Kasten gesperrt. Innerhalb von einer Stunde soll mit einer Wahrschein-

lichkeit 12 ein einzelner Zerfall stattfinden. Der Zerfall bewirkt, dass ein Fläschchen Blausäure

zertrümmert und die Katze getötet wird. Wenn man sich darauf beschränkt die Erfahrungen

zu beschreiben, die ein Experimentalphysiker bei diesem Experiment macht, tritt keinerlei

Problem auf: Der Versuch mit der Katze im Kasten wird mit vielen Katzen und Kästen durch-

geführt. Jeweils wird nach einer Stunde nachgeschaut bzw. gemessen, ob die Katze lebt oder

tot ist. Man stellt fest, dass sie in der Hälfte der Fälle tot und in der anderen Hälfte lebendig

ist. 

Abbildung 15.3: Nach Öffnen des Kastens findet man Schrödingers Katze mit der Wahrscheinlichkeit

1/2 entweder lebend oder tot. (Aus: Audretsch/Mainzer: Wieviele Leben hat Schrödingers Katze? 1990

c

  Elsevier GmbH, Spektrum Akademischer Verlag, Heidelberg. 
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Tote Katzen zum Leben erwecken

Wenn man die Quantentheorie auch auf die Katze an-

wendet und ihr einen Quantenzustand  | lebt   bzw.  | tot   zuordnet, entsteht zunächst noch kein Problem. Die Katze befindet sich vor der Messung, also bevor jemand den Kasten öffnet und

nachschaut, in einer Superposition aus „lebendig“ und „tot“ mit Markierung (vergl. Abb. 15.4)

 |

1

 ψ =  √ ( | lebt | nicht zerfallen  +  eiφ| tot | zerfallen )  . 

(15.22)

2

Das mag ungewohnt erscheinen, aber das oben geschilderte Experiment, bei dem am Ende an

der Katze „lebendig“ oder „tot“ gemessen wird, wird völlig korrekt beschrieben. 

Abbildung 15.4: Liegt vor Öffnen des Kastens eine Superposition der Quantenzustände mit leben-

der und toter Katze vor? (Aus: Audretsch/Mainzer: Wieviele Leben hat Schrödingers Katze? 1990

c

  Elsevier GmbH, Spektrum Akademischer Verlag, Heidelberg. 

Wesentlich ist, dass sich Katze und Präparat im Zustand (15.22) in einer kohärenten Su-

perposition befinden. Superposition kann auf Interferenz führen, wie wir das bei der Welcher-

Weg-Markierung und dem Quantenradieren gesehen haben. Es ist also nicht ausgeschlossen, 

dass es eine andere Messung als „lebendig“ oder „tot“ gibt, bei der eine Interferenz zwischen

lebender und toter Katze registriert wird. Eine solche Interferenz hat man weder bei Kugeln

noch bei Katzen jemals gesehen. 

Schlimmer noch. Wenn es Katzenzustände  |ϕ = 1

 √ ( | lebt  +  | tot ) gäbe, wäre Folgen-

2

des möglich: Man nimmt ein Ensemble von Katzen im Zustand  | tot   und führt eine Projekti-

onsmessung mit der Observablen  |ϕϕ| − |ϕ⊥ϕ⊥|  mit  |ϕ⊥ = 1

 √ ( | lebt  − | tot ) durch. 

2

Diese Observable gäbe es dann ebenfalls. Durch eine anschließende Messung der Observa-

blen  | lebt  lebt | − | tot  tot |  wird in 50% der Fälle die Katze in den Zustand  | lebt  überführt. 

Man könnte also tote Katzen zum Leben erwecken. Bei Zuständen von Katzen ist daher eine

Superposition nicht möglich.  Wir hatten schon in Abschn. 15.2.1 gesehen, dass die umge-

 bungsinduzierte Dekohärenz das verhindert. Sie überführt in ein Gemisch aus den stabilen

 Zuständen |lebt|nicht zerfallen und |tot|zerfallen. 
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15.3

Quantenmessprozess ∗

15.3.1

Das Forschungsprogramm ∗

Seit ihren Anfängen ist die Quantentheorie nach einem dualistischen dynamischen Schema

aufgebaut: Es gibt einerseits die Quantenoperationen, die das Verhalten des Systems zwi-

schen Präparation und Messung beschreiben, und andererseits die Quantenoperationen der

Messung. Im einfachsten Fall sind das unitäre Transformationen bzw. Projektionen. Von vie-

len wird es für unbefriedigend gehalten, zwei verschiedene Dynamiken zu postulieren. Daraus

ist das Forschungsprogramm entstanden, die bisher als Postulat eingeführte Messdynamik so

weitgehend wie möglich oder vielleicht sogar vollständig auf die unitäre Dynamik der Wech-

selwirkung zwischen System und Messapparat zurückzuführen. Die folgenden Forderungen

sind dabei zu erfüllen:

(i) Zu verschiedenen Observablen wie Energie, Spin usw. gehören verschiedene Messgeräte

und verschiedene Einwirkungen auf das System. Es muss aus der dynamischen Entwick-

lung hervorgehen, welche Observable durch den Apparat gemessen wird. 

(ii) Der Zeigerzustand, der sich als Ergebnis einer Messung eingestellt hat, darf sich zeitlich

nicht mehr verändern. 

(iii) Zeiger sind klassische Systeme. Es muss sich ergeben, dass sie nie in der Superposition

verschiedener Stellungen auftreten. 

(iv) Die Rechnung muss wiedergeben, dass bei einer Einzelmessung immer genau eine Zei-

gerstellung von vielen möglichen realisiert ist, denn diese Aussage ist auch in den Mess-

postulaten enthalten. Das Ergebnis der Messung soll angezeigt werden. Es wird aller-

dings keine deterministische Begründung dafür verlangt, welche der Zeigerstellungen

eintritt. 

15.3.2

Vormessung ∗

Wir betrachten der Einfachheit halber als System  SA, an dem die Messung durchgeführt wer-

den soll, ein Qubit-System und einen quantentheoretisch beschriebenen Messapparat  SM , 

dessen Hilbert-Raum  HM  ebenfalls die Dimension zwei hat. Die unitäre Messwechselwir-

kung auf  HA ⊗ HM , die zur Messung mit den Eigenzuständen  | 0 A  und  | 1 A  von  SA  gehört, soll markierende Wirkung haben (vergl. Abschn. 8.5). Bei Vorliegen von  | 0 A (bzw.  | 1 A) soll der Messapparat in den Zustand  | 0 M  (bzw.  | 1 M  übergehen. Für den allgemeinen Zustand

 |ϕA =  c 0 | 0 A +  c 1 | 1 A  von  SA  bedeutet das die Verschränkung mit den Zuständen des Messapparats:





 |φAM =  |ϕA|iM =  c 0 | 0 A +  c 1 | 1 A |iM

(15.23)

 → |φAM =  c 0 | 0 A| 0 M +  c 1 | 1 A| 1 M . 

(15.24)

 |iM  ist ein Anfangszustand von  SM. Diese dynamische Entwicklung wird oft als  Vormessung

(pre-measurement) bezeichnet. 

*Die mit einem Stern gekennzeichneten Kapitel können bei einem ersten Durchgang überschlagen werden. 
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Die Zerlegung des resultierenden Zustands  |φAM   nach einer Basis von  HA ⊗ HM  ist

nicht eindeutig. Für  c 0 =  c 1 = 1

 √  liegt der Bell-Zustand  |Φ AM

2

+

   vor, den wir auch in der

Form





 |

1

 φAM  =  |Φ AM

+

  =  √ | 0 A| 0 M +  | 1 A| 1 M

 x

 x

 x

 x

(15.25)

2

schreiben können. Es gibt beliebig viele weitere Kombinationen von dieser Struktur. Wenn

 |Φ AM  der Zustand sein soll, bei dem der Messapparat die Observable

 ZA =  z 0 | 0 A 0 A| +  z 1 | 1 A 1 A|

(15.26)

gemessen hat, dann kann man den Apparat auch ebenso als einen Apparat zur Messung der

Observablen  XA =  x 0 | 0 A 0 A|+ x

  1 A|

 x

 x

1 | 1 A

 x

 x

ansehen. Es liegt also bisher gar nicht fest, wel-

che Observable bei der unitären Entwicklung (15.23) letztlich gemessen wird. Oder anders be-

trachtet: Wenn  | 0 A  und  | 1 A  die klassischen Zeigerzustände sind, dann ist nicht ausgeschlossen, dass als Ergebnis der Vormessung die Markierung mit den Superpositionen von Zeigerzu-

ständen erfolgt. Die Forderung (i) ist bisher nicht erfüllt. Mit Blick auf Abschn. 15.2.1 liegt die

Vermutung nahe, dass durch Berücksichtigung der Umgebung dieses Problem gelöst werden

kann. 

Auch die restlichen Forderungen werden durch die Vormessung nicht erfüllt. Wir demons-

trieren das am Beispiel der Forderung (ii). Unitäre Entwicklungen sind umkehrbar. Anderer-

seits ist der Messprozess aber irreversibel. Wir wollen das am Beispiel der einfachen unitären

Entwicklung  U =  e−iHt  mit dem Hamilton-Operator

 HAM =  g σA ⊗ σM

 z

 y

(15.27)

auf  HA ⊗ HM  untersuchen. Der Anfangszustand sei der Produktzustand





 |φAM( t = 0)  =  c 0 | 0 A +  c 1 | 1 A | 0 M

 x

(15.28)

mit  |c 0 | 2 +  |c 1 | 2 = 1. Eine Zwischenrechnung, die wir nicht wiedergeben (vergl. ÜA 15.1), führt auf













 |

 π

 π

 φAM ( t)  =  c 0 | 0 A  sin

+  gt | 0 M  + cos

+  gt | 1 M 

4

4













 π

 π

+

 c 1 | 1 A  sin

 − gt | 0 M + cos

 − gt | 1 M . 

(15.29)

4

4

Wir erhalten eine zeitabhängige Verschränkung, die zum Zeitpunkt  t =  π 4  g  auf den gewünsch-

ten Zustand  |Φ AM   von Gl. (15.23) führt. Zum Zeitpunkt  t = 2 π  ist allerdings wieder der

 g

unverschränkte Anfangszustand  |Φ AM ( t = 0)   erreicht. Die Vormessung führt somit auf kei-

ne zeitlich stabile Markierung des Gesamtsystems. 

15.3.3

Verschränkung mit der Umgebung fixiert die Observable ∗

Ein erster Schritt zur Lösung der Probleme besteht darin, die Systeme  SA  und  SM  um die

Umgebung  SE  zu erweitern, die zunächst aus einem einzigen Qubit-System bestehen soll. 
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Der Zustand des Gesamtsystems  SAME  liegt in  HA ⊗ HM ⊗ HE. Wir koppeln  SM  an  SE

über eine Dynamik mit einem Hamilton-Operator  HME , der nur auf  HM ⊗ HE  wirkt und

daher den Zustand von  SA  nach der Vormessung unverändert lässt. 

 HME =  g A ⊗ σM ⊗ σE . 

(15.30)



 z

 z

Die Zustände  | 0 E  und  | 1 E  bilden ein ONB von  HE. 

Der Anfangszustand zur Zeit  t = 0 nach der Vormessung ist mit  |φAM   von Gl. (15.23)

, 

- 



 |ψ( t = 0)  =  c 0 | 0 A| 0 M +  c 1 | 1 A| 1 M α| 0 E +  β| 1 E . 

(15.31)

Die anschließend durch  HME  bewirkte unitäre Entwicklung führt auf eine zeitabhängige Ver-

schränkung mit der Umgebung (vergl ÜA 15.2)). 

 |ψ( t)  =  c 0 | 0 A| 0 M|ωE 0( t)  +  c 1 | 1 A| 1 M|ωE 1( t) 

(15.32)

mit

 |ωE 0( t)  =  α  exp( igt) | 0 E +  β  exp( −igt) | 1 E =  |ωE 1( −t)  . 

(15.33)

Ist auch jetzt noch unbestimmt, welcher Zustand beim System  SA  und beim Messappa-

rat  SM  vorliegt? Die Umformung von Gl. (15.23) in Gl. (15.25) für  c 0 =  c 1 = 1

 √  ist nur

2

dann möglich, wenn die Summanden keine unterschiedlichen Faktoren enthalten. Die Zustän-

de  |ωE

0    und  |ωE

1    in Gl. (15.32) sind solche unterschiedlichen „Faktoren“. Die Verschränkung

mit der nur aus einem Qubit bestehenden Umgebung hat bereits bewirkt, dass nur noch eine

Korrelation zwischen den Eigenzuständen von  σA

 z  und  σM

 z , aber nicht mehr zwischen denen

von  σA

 x  und  σM

 x

besteht2. Der Apparat mit der Messdynamik  HME  ist damit der Observa-

blen  ZA  zugeordnet. Die Forderung (i) ist erfüllt. Allerdings wird nach wie vor periodisch

verschränkt und entschränkt. Zur Zeit  t = 2 π  liegt wieder der Ausgangszustand  |ψ( t = 0) 

 g

vor. 

15.3.4

Verschränkung mit vielen Freiheitsgraden der Umgebung ∗

Kollaps und Wiederkehr

Realistische Umgebungen haben sehr viele Freiheitsgrade. Es

liegt also ein Gesamtsystem in einem Hilbert-Raum  H =  HA ⊗ HM ⊗ HE

(1)  ⊗ . . . ⊗ HE

( N)

vor.  N  ist dabei eine große Zahl. Wir diskutieren den einfachen Fall, dass alle Hilbert-Räume

zweidimensional sind, und gehen wieder wie im vorigen Kapitel vor. 

Vor Anschalten der Wechselwirkung zwischen Messapparat und Umgebung liegt der Zu-

stand

/

, 

-

 N

0 

1

 |ψ( t = 0)  =  c 0 | 0 A| 0 M +  c 1 | 1 A| 1 M ⊗

 αk| 0 E

(

(15.34)

 k)  +  βk| 1 E

( k) 

 k=1

2Mit Hilfe des folgenden Theorems lässt sich der Beweis noch präzisieren [Bub 97, Kap. 5.5]: Eine Darstellung

eines Zustands  |ψ ∈ H ⊗ H ⊗ H  als  triorthogonale Zerlegung (triorthogonal decomposition)

X

 |ψ =

 ci|ui|vi|wi

 i

mit Basisvektoren  {|ui} ∈ H,  {|vi} ∈ H  und  {|wi} ∈ H  existiert nicht immer. Aber wenn sie existiert, ist sie eindeutig. 
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mit  |αk| 2 +  |βk| 2 = 1 vor. Die Wechselwirkung soll durch den einfachen Hamilton-Operator

 N



 HME =

 HME

 k

(15.35)

 k=1

mit

0

 HME :=  g

 A ⊗ σM ⊗ σE

 E

 k

 k 

 z

 z( k)  ⊗

( j)

(15.36)

 j= k

gegeben sein. Der Zustand  |ψ( t)   des Gesamtsystems zur Zeit  t  erhalten wir über die zu  HME

gehörige unitäre Transformation nach einer Zwischenrechnung (vergl. ÜA 15.2), bei der wir

unmittelbar das Resultat (15.32) verwenden, als

 |ψ( t)  =  c 0 | 0 A| 0 M|Ω E 0( t)  +  c 1 | 1 A| 1 M|Ω E 1( t) 

(15.37)

mit

 N

0

 |Ω E 0( t)  :=

( αk  exp( igkt) | 0 E

( k)  +  βk  exp( −igkt) | 1 E

( k) ) =:  |Ω E

1 ( −t)  . 

(15.38)

 k=1

Die Umgebungszustände sind normiert  Ω E

0 ( t) |Ω E

0 ( t)  = 1 , 

 Ω E 1( t) |Ω E 1( t)  = 1, aber i.a. 

nicht zu allen Zeiten orthogonal

 r( t) :=  Ω E

0 ( t) |Ω E

1 ( t)  . 

(15.39)

Zur Beschreibung der Auswirkung der Messung am System  SA  durch das Messgerät  SM

müssen wir durch Abspuren über die Freiheitsgrade der Umgebung zum reduzierten Dichte-

operator des Systems  SAM übergehen. 

 ρAM = tr E[ |ψ( t) ψ( t) |] =  |c 0 | 2 | 0 A 0 A| ⊗ | 0 M  0 M |

(15.40)

+

 |c 1 | 2 | 1 A 1 A| ⊗ | 1 M 1 M|

+

 r( t) c 0 c∗ 1 | 0 A 1 A| ⊗ | 0 M  1 M |

+

 r∗( t) c∗ 0 c 1 | 1 A 0 A| ⊗ | 1 M  0 M | . 

(15.41)

Man findet leicht (vergl. ÜA 15.2) als explizite Zeitabhängigkeit von  r( t)

 N

0

 r( t) =

 { cos 2 gkt +  i( |αk| 2  − |βk| 2) sin 2 gkt} . 

(15.42)

 k=1

Nach Konstruktion ist  r( t = 0) = 1 und  |r( t) | 2  ≤  1. 

Wichtig ist im Hinblick auf die Forderung (ii) das Verhalten von  r( t) für große Zeiten. 

Wie Gl. (15.42) zeigt, ist  r( t) aufgebaut aus periodischen Funktionen mit vielen verschie-

denen Frequenzen 2 gk. Es ist aus der statistischen Mechanik, aus der Quantenoptik und aus

anderen Gebieten der theoretischen Physik bekannt, dass so zusammengesetzte Funktionen

 Kollaps und Wiederkehr (collapse and revival) zeigen. Beginnend bei  t = 0 mit  r = 1 fällt
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 |r( t) |  zunächst ab und nähert sich dem Wert Null, kann dann aber nach längerer Zeit wie-

der ansteigen, wieder auf Null abfallen, wieder ansteigen usw.  |r( t) |  kann beliebig nahe an

 |r( t) | = 1 zurückkehren3. Mit wachsendem  N  wird diese  Rekohärenz (recoherence) aber zu immer größeren Zeiten hin verschoben (vergl. Abb. 15.5). 

 r( t)

Wiederkehr

 N = 5

 t

 N = 15

 t

Abbildung 15.5: Kollaps und Wiederkehr (spezielle Parameterwahl). 

 r( t) erreicht sehr schnell einen Wert proportional zu 2 −N (vergl. Abschn. 15.6). Wie

Gl. (15.41) zeigt, entspricht dem ein sehr schneller Dekohärenzvorgang in den Basen

 {| 0 A, | 1 A}  und  {| 0 M, | 1 M}.  SAM  geht aus einem reinen Zustand in ein Gemisch  ρAB

über. Insbesondere die Markerzustände  | 0 M   und  | 1 M   können nicht mehr miteinander in-

terferieren. Es sind klassische Zustände geworden, die man  Zeigerzustände (pointer states)

nennt. Damit ist auch die Forderung (iii) erfüllt. 

Der von der Umgebung  SE  induzierte Dekohärenzprozess hat beim reduzierten Dichte-

operator  ρAM  die Basis der Zeigerzustände ausgezeichnet. Das Ergebnis ist für das Teilsystem

 SAM  der reduzierte Dichteoperator

 ρAM =  |c 0 | 2 | 0 A,  0 M  0 A,  0 M | +  |c 1 | 2 | 1 A,  1 M  1 A,  1 M | . 

(15.43)

Ein Gemenge aus den Zuständen  | 0 A,  0 M   und  | 1 A,  1 M   aus  HA ⊗ HM  mit den Wahrscheinlichkeiten  p 0 =  |c 0 | 2 und  p 1 =  |c 1 | 2 wird ebenfalls durch den Dichteoperator  ρAM  beschrieben. Ein solches Gemenge entspricht gemäß Messpostulat genau dem Ergebnis einer nicht-

selektiven Messung der Observablen  ZA. Sind damit alle Anforderungen aus Abschn. 15.3.1

erfüllt? 

Welche Zeigerzustände? 

Mit dieser nur auf  SAB  bezogenen reduzierten Betrachtungswei-

se, die von der Umgebung  SE  absieht, ist die Argumentation allerdings noch unvollständig, 

denn wir haben dadurch wieder ein Problem mit Forderung (i) bekommen. Denn  ρAM  ist

der reduzierte Dichteoperator eines verschränkten Teilsystems und damit nicht das Ergebnis

eines Präparationsprozesses, der auf ein Gemenge führt. Eine Ignoranzinterpretation (vergl. 

Abschn. 4.3) ist nicht möglich. Das Gesamtsystem befindet sich in einem reinen Zustand. Der

Dichteoperator  ρAM  hat beliebig viele Ensemblezerlegungen z. B. auch

 ρAM =  pu|uA, uM uA, uM | +  pv|vA, vM vA, vM | . 

(15.44)

3Wiederkehr kann man genauer fassen:  H  sei ein endlich-dimensionaler Hilbert-Raum und  U  ein unitärer Opera-

tor. Dann gibt es zu jedem  ε >  0 eine natürliche Zahl q, sodass sup {	Uq − |ϕ	 :  |ϕ ∈ H, 	ϕ	 = 1 } < ε. 



Wenn man die Anwendung von  U  häufig genug wiederholt, kommt man dem Ausgangszustand wieder beliebig na-

he. [SSS 04]
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Ist daher möglicherweise eine ganz andere Observable  U A =  u|uAuA| +  v|vAvA|  mit

Zeigerzuständen  |uM   und  |vM   gemessen worden. 

Wir dürfen von der Umgebung nicht absehen. Wir wissen, dass beim Messprozess die

Zeigerstellung stabil ist. Die Wechselwirkung mit der Umgebung ist ständig vorhanden. Wenn

sie wie oben von der Form

 HME =  ZM ⊗ HE

(15.45)

mit einem hermiteschen Operator  HE  ist, dann vertauscht  HME  mit der  Zählerobservablen

(pointer observable)  ZM

[ HME , ZM ] − = 0  . 

(15.46)

Die Zustände  | 0 M   und  | 1 M   und damit auch die Korrelationen mit den Zuständen  | 0 A  und

 | 1 A  bleiben unter dem Einfluss der Umgebung unverändert. Die Stabilität dieser Korrelatio-

nen zeichnet die Zeigerbasis  {| 0 M , | 1 M }  vor anderen Basen aus. 

Die Diagonalisierung von  ρAB  durch umgebungsinduzierte Dekohärenz und die Stabi-

lität der Korrelationen zwischen  SA  und  SM  unter fortdauerndem Einfluss der Umgebung

führt auf die Festlegung der zeitlich unveränderlichen klassischen Zeigerzustände.  ZA  liegt

als gemessene Observable ebenfalls fest. Damit sind die Forderungen (i) bis (iii) an eine dy-

namische begründende Theorie des Messprozesses für die nicht-selektive Messung in diesem

sehr einfachen Modell durch die Ankopplung an die Umgebung weitgehend erfüllt. Die Ver-

schränkung mit der Umgebung  SE  ist allerdings nicht durchbrochen wie die Möglichkeit der

„Wiederkehr“ in sehr ferner Zukunft zeigt. Durch  ρAM  wird kein Gemenge beschrieben. Eine

Ignoranzinterpretation (vergl. Abschn. 4.3) ist nicht möglich. Das Urteil darüber, ob das als

ein gravierender Mangel des Erklärungsmodelles anzusehen ist, bleibt dem Leser überlassen. 

15.4

Ist das Messproblem gelöst?  ∗

Ein weiterer damit zusammenhängender gravierender Mangel liegt in jedem Fall vor: Die For-

derung (iv) von Abschn. 15.3.1 ist nicht erfüllt. Umgebungsinduzierte Dekohärenz kann nicht

erklären, warum in jedem Einzelexperiment immer nur eine von vielen möglichen Zeiger-

stellungen eines Messapparats realisiert ist. Das ist aber gerade die elementarste Erfahrung, 

die ein messender Experimentator noch vor allen anderen Erfahrungen macht. Sie ist Teil der

Messpostulate.  Das Messproblem ist daher (in der Standardinterpretation) nicht gelöst. 

Verlangt ist allerdings keine deterministische Begründung dafür welche Zeigerstellung

eintritt. Das würde auf die verborgenen Parameter zurückführen. Die Erklärungslücke be-

trifft typischerweise einen Einzelprozess und damit als Konsequenz die selektive Messung

überhaupt, da sie auf Einzelmessungen aufbaut. Mit dem Zustand  ρAM  des vorigen Kapitels

haben wir ein Gemisch erhalten, Wenn man das als Ergebnis einer nicht-selektiven Messung

und also als ein Gemenge interpretiert, hat man bereits vorausgesetzt, dass die Forderung (iv)

erfüllt werden konnte. 

Es ist offenbar so, dass man die in den Messpostulaten enthaltene Forderung (iv) im Rah-

men der vorliegenden Quantentheorie einschließlich der Standardinterpretation dynamisch

nicht begründen kann. Wenn das so ist, hat man zwei Möglichkeiten: Man kann einmal die
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Quantentheorie abändern, indem man z. B. andere dynamische Gleichungen postuliert (vergl. 

Abschn. 15.6). Die zweite Möglichkeit besteht darin, die Theorie in der bestehenden ma-

thematischen Formulierung unverändert zu lassen und zu einer anderen Interpretation für sie

überzugehen. Wir wollen ein Beispiel hierfür sehr kurz skizzieren. 

15.5

Die Viele-Welten-Interpretation ∗

Die

 Viele-Welten-Interpretation

(many-worlds

interpretation), 

die

auch

 Everett 4 -

 Interpretation (Everett interpretation) genannt wird, bezieht den Beobachter als System

mit ein. Er entspricht formal dem System  SM  aus Abschn. 15.3.2. Wir wollen im Folgenden

 SM  so verstehen. Wie in der Vormessung entwickelt sich der Zustand von  SAM , wenn  SA

ein Qubit ist, in den Zustand (15.24). Die Zustände  | 0 M   und  | 1 M   sind die in diesem Zusammenhang  Erinnerungszustände (memory states) des Beobachters. Dies beschreibt bereits

den Messprozess. Der Zustand  |φAM   geht nicht noch anschließend in einen der Zustände

(also z. B.  | 0 A| 0 M ) über, sondern beide  Zweige (branches)  | 0 A| 0 M   und  | 1 A| 1 M   sind realisiert. Die Realisierung manifestiert sich allerdings in verschiedenen realen Welten, die

nicht miteinander wechselwirken. Da die Zustände  | 0 M   und  | 1 M   Erinnerungszustände

sein sollen, kann sich ein Beobachter mit wohlbestimmter Erinnerung, z. B.  | 1 M , nur an

das zu  | 1 A  gehörige Messergebnis erinnern und er findet entsprechend System  SA  auch

im Zustand  | 1 A  und nicht im Zustand  | 0 A. Die Vorhersagen über das, was im nächsten

Experiment zu dem hinzukommen wird, an was sich ein Beobachter erinnern kann, sind

Wahrscheinlichkeitsaussagen. Auch in diesem nachfolgenden Experiment wird wieder alles

realisiert was potentiell möglich ist. Die Welt spaltet immer wieder in jeder Messung auf. 

Es ist das Wesen einer Interpretation, dass sie nicht empirisch widerlegt werden kann. Das

gilt auch für die Viele-Welten-Interpretation. Weiterhin ist jeder frei darin, diejenige Inter-

pretation zu wählen, die er aus guten (metaphysikalischen) Gründen für die Geeignetere hält. 

Wir haben das in Abschn. 2.5 analysiert. Die Viele-Welten-Interpretation ist bizarr, aber sie

hat neben vielen Unklarheiten (vergl. Abschn. 15.6) und nicht befriedigend ausgearbeiteten

Details auch Vorteile: Die Forderung (iv) an die Theorie des Messprozesses ist erfüllt. Weiter-

hin ist der Beobachter mit in das System einbezogen. Es wird „alles“ beschrieben. Es gibt nur

ein einziges abgeschlossenes System, das das ganze kosmologische Universum repräsentiert. 

Das könnte das Verständnis der Quantenphysik des extremen Frühzustands des Universums

erleichtern. Andererseits lassen sich auch Probleme erkennen. Wir geben ein Beispiel: Wie

bei der Vormessung in Abschn. 15.3.2 muss man sich fragen, warum die Aufspaltung in die

Welten nicht nach der Gl. (15.25) folgt. Wird der Beobachter  SM  sich an eine Messung der

Observablen  ZA  oder der Observablen  XA  erinnern? Es liegt nahe, zur Lösung dieses Pro-

blems (welches das Problem (i) aus Abschn. 15.3.1 ist) wieder die Dekohärenz durch die

Umgebung heranzuziehen. 

Wir wollen im nächsten Kapitel, dem Schlusskapitel, noch einmal zu „hartem“ theoreti-

schem Stoff zurückkehren und einige Beweise nachliefern. 

4 [Eve 57]



264

 15

 Dekohärenz und Ansätze für die Beschreibung des Quantenmessprozesses

15.6

Ergänzende Themen und weiterführende Literatur

 •  Alle Aspekte des Themas Dekohärenz werden in dem Sammelband [GJK 96] behandelt. 

 • Übersichtsartikel zur Dekohärenz: [Joo 96], [Zeh 96], [Bub 97, Kap. 5.4], [Zeh 00], 

[Joo 02], [PZ 02], [Leg 02], [Zur 02], [Zur 03]. 

 • Übersichtsartikel und Bücher zur Viele-Welten-Interpretation: [DG 73], [Deu 96], 

[Bar 00], [Vai 01]. 

 •  Kurze Darstellungen der Viele-Welten-Interpretation: [Pri 81, Kap. 3.6], [d’Es95, Kap. 

12], [Bub 97, Kap.8.2], [Hom 97, Kap. 2] [Mit 98, Kap. 3.2], [Aul 00, Kap. 15]. 

 • Übersichtsartikel und Bücher zur Theorie des Quantenmessprozesses: [Zur 82], [Zur 91], 

[BLM 91], [Bub 97, Kap. 8], [Mit 98], [Aul 00, Kap. IV ], [PZ 02], [Leg 02]. 

 •  Eine Reihe von gut lesbaren Aufsätzen zu Schrödingers Katze, zum Verhältnis von

Mikro- zu Makrophysik und zum Erscheinen der klassischen Welt findet sich in [AM 96]. 

 •  Vergleich von Dekohärenzraten und Relaxationsraten, Zeitskalen der Dekohärenz:

[Joo 96], [PZ 02]. 

 •  Zeitlicher Ablauf des Verschwindens der Dekohärenz zwischen räumlich getrennten

Komponenten einer Wellenfunktion (Lokalisierungsraten): [Joo 96]. 

 • Übersichtsartikel zur Beschreibung des Messprozesses mit abgeänderter Schrödinger-

und von-Neumann-Gleichungen (Zustandsreduktion als dynamischer Prozess): [Sta 96], 

[Lal 01]. 

 •  Wir haben nur ein besonders einfaches Modell für umgebungsinduzierte Dekohärenz stu-

diert. Man sollte vorsichtig sein mit der Verallgemeinerung der Ergebnisse: [PZ 02]. 

 •  Interferometrie mit Makromolekülen und Dekohärenz: [ANZ 02], [HUH 03]. 

 •  Superposition makroskopischer Systeme in einem SQID: [FPC 00]. [VdW 00]. 

 •  Experimente zu Verschränkung, Dekohärenz und Katzenzuständen in Kavitä-

ten: [HRB 02], [RBH 01]. 

15.7

Übungsaufgaben

ÜA 15.1 [zu 15.1]

Berechnen Sie die Wirkung des Phasendämpfungskanals auf den Dichte-

operator

1

 ρ =

( + r σ)  . 

(15.47)

2 

Wie ändert sich der Bloch-Vektor r? 
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ÜA 15.2 [zu 15.3]

Leiten Sie die Gl. (15.29), (15.32) und (15.37) ab. Berechnen Sie hierzu

zunächst die dyadische Zerlegung der Operatoren exp( σA ⊗ σM )

 ⊗ σM)

 z

 y

und exp( σA

 z

 z

in

geeigneten Basen von  HA ⊗ HM . 

ÜA 15.3 [zu 15.3]

Leiten Sie Gl. (15.41) ab. 
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16 Zwei Realisierungen von Quantenoperationen ∗

16.1

Operatorsummenzerlegung ∗

Relative Zustände und Indexzustände

Wir betrachten ein 2-Teile-System  SAB  mit

Hilbert-Raum  HA ⊗ HB  und setzen der Einfachheit halber dim  HA = dim  HB =  d  vor-

aus. In  HA  und  HB  führen wir ONB  {|aA}

 }

 n

und  {|eB

 n

ein und bilden daraus einen maximal

verschränkten unnormierten Zustand

 d



 | ˜

 ψAB =

 |aA, eE

 n

 n

(16.1)

 n=1

für den

 |aA =  eB| ˜

 ψAB

 n

 n

(16.2)

gilt. Wir können  |eB

 

 n

als einen Markerzustand für  |aA

 n

auffassen. 

Diese Idee wird verallgemeinert. Wir können einen beliebigen Zustand  |φA



 |φA =

 cn|aA

 n

(16.3)

 n

aus  HA  durch Projektion in  HB  gewinnen. Dazu bilden wir in  HB  den zu  |φA  gehörigen

 Indexzustand (index state)



 |φ∗B :=

 c∗ |eB . 

 n

 n

(16.4)

 n

Dann finden wir mit Gl. (16.1)

 |φA =  φ∗B| ˜

 ψAB

(16.5)

und ebenso

 |φ∗B =  φA| ˜

 ψAB . 

(16.6)

 |φA  heißt  relativer Zustand (relative state). Über den nur von den beiden ONB abhängi-

gen maximal verschränkten Hilfszustand  | ˜

 ψAB  wird zwischen einem beliebigen Zustand

*Die mit einem Stern gekennzeichneten Kapitel können bei einem ersten Durchgang überschlagen werden. 

 Verschränkte Systeme: Die Quantenphysik auf neuen Wegen.  Jürgen Audretsch

Copyright c
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 |φA ∈ HA  und seinem Indexzustand  |φ∗B  in  HB  ein einfacher Zusammenhang hergestellt. 

 | ˜

 ψAB  etabliert eine eineindeutige Abbildung

 |φA ↔ |φ∗B , 

(16.7)

die  konjugiert linear (conjugate linear) ist. Es gilt

 |φA =  a 1 |φA 1  +  a 2 |φA 2 , 

 |φ∗B =  a∗ 1 |φ∗A

1   +  a∗

2 |φ∗A

2   . 

(16.8)

Der Beweis ergibt sich durch Zerlegung nach den Basisvektoren. 

Beweis des Theorems

Wir wollen den folgenden in Abschn. 14.1.2 bereits behaupteten Satz

beweisen:  Eine Abbildung ρ → ˜

 ρ =  E( ρ)  ist genau dann eine Quantenoperation, wenn es

 eine Operatorsummenzerlegung



 E( ρ) =

 KiρK†

(16.9)

 i

 i

 mit linearen Operatoren Ki gibt, die die Bedingung

  K†K

(16.10)

 i

 i ≤ 

 i

 erfüllen und den Eingangs-Hilbert-Raum auf den Ausgangs-Hilbert-Raum abbilden.  Die Be-

dingung (16.10) ist gleichbedeutend damit, dass die Spur nicht erhöht wird

tr[ E( ρ)]  ≤

(16.11)



(tr[ ρ] = 1). ˜

 ρ  ist wieder ein Dichteoperator. 

Wir zeigen zunächst, dass  EA ⊗ B  einen positiven Operator  πAB  aus  HA ⊗ HB  in einen



positiven Operator überführt.  |ψAB  sei ein beliebiger Vektor aus  HA ⊗HB. Wir greifen einen

Index  i  heraus und bilden

 |φAB := ( KA† ⊗ E) |ψAB . 

 i

(16.12)

 i



Dann ist  KA ⊗ B  wegen

 i



 ψAB|( KA ⊗ B) πAB( KA† ⊗ B) |ψAB =  φAB|πAB|φAB ≥  0

 i

(16.13)



 i



 i

 i

ein positiver Operator auf  HA ⊗ HB. Das gilt auch für die Summe über  i.  EA  ist nicht nur

positiv, sondern auch vollständig positiv. 

Für die umgekehrte Beweisrichtung gehen wir im ersten Schritt von dem maximal ver-

schränkten Zustand  | ˜

 ψAB ˜

 ψAB|  von Gl. (16.1) aus. Da  EA  nach Voraussetzung eine Quan-

tenoperation ist, führt die Anwendung von  EA ⊗ B



( EA ⊗ B) | ˜

 ψAB ˜

 ψAB| =:  CAB

(16.14)



auf einen positiven Operator  CAB. 

 16.1
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Im zweiten Schritt schreiben wir  CAB  mit Gl. (16.1) unter Ausnutzung der Linearität von

 EA  aus



 






 



 CAE =  EA ⊗ B

 |aA, eB

 aA



 n

 n

 n , eB

 n |

 n

 n





 



(16.15)

=

 EA |aAaA ⊗ |eBeB

 n

 n |

 n

 n |

 n,n

und bilden mit Gl. (16.3) und (16.4) den Erwartungszustand mit dem Indexzustand  |φ∗B. 



 φ∗B|CAB|φ∗B =

 cnc∗ EA( |aAaA|) =  E( |φAφA|)  . 

 n

 n

 n

(16.16)

 n,n

Dabei haben wir wieder die Linearität von  EA  ausgenutzt. Die Gl. (16.16) zeigt, dass im

Operator  CAB  die volle Information über die Wirkung des Superoperators  EA  auf der Basis

des Liouville-Raums

 A  steckt. 



Im dritten Schritt wählen wir eine Ensemblezerlegung von  CAB  aus



 CAB =

 |˜ cAB˜ cAB|

 i

 i

(16.17)

 i

und formen die linke Seite der Gl. (16.16) um. 



 EA( |φAφA|) =

 φ∗B|˜ cAB˜ cAB|φ∗B . 

 i

 i

(16.18)

 i

Wir führen Operatoren  KA  durch ihre Wirkung auf  |φA  ein

 i

 φ∗B|˜ cAB =:  KA|φA

 i

 i

(16.19)

und erhalten aus Gl. (16.18)



 EA( |φAφA|) =

 KA|φAφA|KA† . 

 i

(16.20)

 i

 i

Wegen der Linearität von  EA  gilt damit für alle Dichteoperatoren  ρA  auf  HA:



 EA( ρA) =

 KAρAKA† . 

 i

(16.21)

 i

 i

Da die Abbildung  |φA ↔ |φ∗B  konjugiert linear ist, sind mit Gl. (16.19) auch die Operato-

ren  KA  lineare Operatoren. Da weiterhin die Quantenoperation  EA( ρA) von Gl. (16.21) für

 i

alle  ρA  die Spur nicht erhält, ergibt sich die Bedingung (16.10). Damit ist der Satz über die

Operatorsummenzerlegung in beiden Richtungen bewiesen. 

Die Wahl der beiden Orthonormalbasen  {|aA}

 }

 n

und  {|eB

 n

war ebenso wie die Ensem-

blezerlegung (16.17) willkürlich. Das zeigt noch einmal, dass die Operationselemente  KA  bei

 i

vorgegebenem Superoperator  EA  nicht eindeutig festgelegt sind. 
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16.2

Unitäre Realisierung von Quantenoperationen ∗

Spurerhaltende Quantenoperationen

Eine spurerhaltende Quantenoperation  EA  auf dem

System  SA

tr[ EA( ρA)] = tr[ ρA] = 1

(16.22)

heißt auch  vollständige Quantenoperation (complete quantum operation). Die zugehörigen

Zerlegungsoperatoren erfüllen die Vollständigkeitsrelation

  KA†KA =  . 

(16.23)

 i

 i



 i

Für eine unitäre Realisierung der Quantenoperation ergänzen wir wieder das System  SA  um

ein Hilfssystem  SB. Die Dimension von  HB  soll mit der Zahl der Zerlegungsoperatoren über-

einstimmen. 

In  HB  wählen wir eine Basis  {|iB}.  SB  sei am Anfang im Zustand  | 0 B  und das Gesamtsystem im Produktzustand  |ψA| 0 B. Wir definieren mit Hilfe der  KA  einen Operator ˆ

 U AB

 i

durch seine Wirkung auf Zustände  |ψA| 0 B



ˆ

 U AB|ψA| 0 B :=

 KA|ψA|iB . 

 i

(16.24)

 i

Für beliebige Zustände  |ψA  und  |φA  gilt dann mit der Vollständigkeitsrelation (16.23)



 ψA| 0 B| ˆ

 U AB† ˆ

 U AB|φA| 0 B =

 ψA,  0 B|KA†KA|φA,  0 B

 i

 i

 i

(16.25)

=  ψA,  0 E|φA,  0 E . 

Auf Zuständen der Form  |ψA,  0 B  erhält ˆ

 U AB  die inneren Produkte. Mit dem schon in Ab-

schn. 13.3.5 verwendeten Hilfssatz kann daher ˆ

 U AB  zu einem unitären Operator  U AB  erwei-

tert werden, der auf ganz  HA ⊗ HB  wirkt. Von solchen Operatoren nehmen wir an, dass sie

sich physikalisch realisieren lassen. 

Das Untersystem  SA  wird durch die unitäre Transformation des Gesamtsystems in den

Zustand

tr B[ U AB( |ψAψA| ⊗ | 0 B 0 B|) U AB†] 

= tr B[

 KA|ψAψA|KA†

 i

 i

 ⊗ |iBiB|]

 i,i



(16.26)

=

 KA|ψAψA|KA†

 i

 i

 i

=  EA( |ψAψA|)

überführt in den es auch die Quantenoperation  EA überführt. Jede vollständige Quantenope-

ration auf  HA  hat daher eine  unitäre Realisierung  auf  HA ⊗ HB  in der Form

 EA( ρA) = tr B[ UAB( ρA ⊗ | 0 B 0 B|) UAB†]  . 

(16.27)
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 In jeder vollständigen Quantenoperation EA eines Systems SA lässt sich ein Gesamtsystem

 SAB mit Hilbert-Raum HA ⊗ HB und eine unitäre Transformation U AB auf HAB finden, 

 so dass das Teilsystem die Entwicklung mit EA durchmacht. U AB ist die Erweiterung des in

 Gl. (16.24) definierten Operators ˆ

 U AB. 

Quantenoperationen, die die Spur nicht erhalten

Bei unvollständigen Quantenoperatio-



nen (

 KA†KA)  < ) ergänzen wir die Menge der Operatoren  KA  um einen Operator  K

 i

 i

 i

 ∗, 



 i

so dass ein vollständiger Satz

  KA†KA +  K†

(16.28)

 i

 i

 ∗K∗ = 

 i

entsteht. 

Den Raum  HB  ersetzen wir durch den Raum  HB, dessen Dimension um eins erhöht ist. 

Ein Operator  U AB  wird wie oben gebildet. Nach der Entwicklung mit  U AB  wird durch den

Projektor  P B  eine Projektion auf  HB  durchgeführt. Wir ersetzen also in der Rechnung oben

 U AB  durch  P BU AB . Dann verschwindet in der zu Gl. (16.24) analogen Gleichung gerade

der Operator  KA

 ∗ . Auch in der Operatorsummendarstellung (16.26) taucht er nicht mehr auf. 

16.3

Realisierung einer völlig allgemeinen Messung durch

unitäre Transformation und Projektion ∗

Wir wollen  völlig allgemeine Messungen (most general measurements) physikalisch realisie-

ren. Bei diesen Eingriffen geht der Zustand  ρA  bei Eintreten des Messwerts  m  in den Zustand

˜

 ρA

 m über, der durch eine Quantenoperation  MA

 m  gegeben ist. 

 ρA → ˜

 ρA =  MA ( ρA)  . 

 m

 m

(16.29)

Die in Abschn. 13.3 diskutierte verallgemeinerte Messung ist der Spezialfall  MA ( ρ) =

 m

 M AρAM †

 m

 m. 

Die Anzeige des Messwerts  m  soll mit der Wahrscheinlichkeit

 p( m) = tr A[˜

 ρA] =

( ρ)]

 m

tr A[ MA

 m

(16.30)

erfolgen. Es ist also für beliebige  ρA





tr A[

 MA ( ρA)] =

 p( m) = 1  . 

 m

(16.31)

 m

 m

Die Superoperatoren  MA

 m  haben eine Operatorsummenzerlegung



 MA ( ρ) =

 M A ρAM A† . 

 m

 m,i

(16.32)

 m,i

 i

Der Laufbereich von  i  kann von  m  abhängen. Als Folge von Gl. (16.31) müssen die Zerle-

gungsoperatoren die Vollständigkeitsrelation

  MA†MA =

(16.33)

 m,i

 m,i



 m,i

erfüllen. 

272

 16

 Zwei Realisierungen von Quantenoperationen∗

Es kann auch in diesem Fall eine im Prinzip durchführbare physikalische Realisierung für

diese ganz allgemeine Messung am System  SA  gefunden werden, indem ein Hilfssystem  SB

hinzugenommen wird. Das Gesamtsystem  SAB  wird wieder geeignet unitär entwickelt und

schließlich wird in  SB  eine projektive Messung durchgeführt. 

Wir führen ein Hilfssystem  SB  mit einer ONB  {|m, iB} ∈ HB  ein (d. h.  m, i|m, i =

 δmmδii), deren Vektoren den Zerlegungsoperatoren zugeordnet sind  M A ↔ |m, iB. Dann

 m,i

können wir Schritt für Schritt dem Vorgehen in Abschn. 16.2 folgen. Der Anfangszustand des

Gesamtsystems sei  |ψA,  0 B. Es wird ein Operator ˆ

 U AB  mit der Wirkung



ˆ

 U AB|ψA,  0 B :=

 M A |ψA|m, iB

 m,i

(16.34)

 m,i

definiert. Er lässt sich wieder zu einem unitären Operator  U AB  auf ganz  HA ⊗ HB  erweitern. 

Wir führen orthogonale Projektionsoperatoren  P B

 m  auf dem Hilfssystem  SB  zu den Mess-

werten  m  ein: 



 P B :=

 |m, iBm, iB| , 

 P B =  B . 

 m

 m

(16.35)



 i

 m

Die unitäre Gesamttransformation mit nachfolgender Projektion  P B

 m  auf dem Hilfssystem  SB

ergibt



 







 P BU AB|ψA| 0 B =

 |m, iBm, iB| 

 M A |ψA|n, iB

 m

 n,i

 i

 n,i



(16.36)

=

 M A |ψA|m, iB . 

 m,i

 i

Zur Bestimmung des reduzierten Dichteoperators des Ausgangssystems  SA  gehen wir wie

in Gl. (16.26) vor und erhalten mit Gl. (16.32) die gewünschte Relation (16.29)



˜

 ρA =

 M A |ψAψA|M A† =  MA ( |ψAψA|)  . 

 m

 m,i

(16.37)

 m,i

 m

 i

Die Wahrscheinlichkeit  p( m), mit der bei der projektiven Messung auf  SB  der Messwert  m

auftritt, ist durch den reduzierten Dichteoperator  ρB  von  SB  nach der unitären Entwicklung

gegeben. Durch Bilden der Teilspur tr A  bei Gl. (16.36) gewinnen wir zunächst nach einer

Zwischenrechnung  ρB  und daraus  p( m)

 p( m) = tr B[ P BρBP B]  . 

 m

 m

(16.38)

Man liest dann an den expliziten Ausdrücken in der hier nicht dargestellten Zwischenrechnung

mit Hilfe von Gl. (16.37) die angestrebte Endrelation (vergl. Gl. (16.30))

 p( m) = tr A[ MA ( |ψAψA|)]

 m

(16.39)

ab. Die Rechnung überträgt sich infolge der Linearität der Superoperatoren auf Dichteopera-

toren. 

 16.4
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Wir haben folgendes Ergebnis erhalten:  Eine völlig allgemeine Messung am System SA

 mit Messergebnis m ist als unitäre Entwicklung U AB des um SB erweiterten Gesamtsystems

 SAB mit anschließend projektiver Messung an SB mit Projektor P B

 m realisierbar. U AB und

 P B

 m sind dabei durch die Gl. (16.34) und (16.35) gegeben.  Es findet eine Rückführung auf

projektive Messungen statt, die physikalisch nicht weiter reduziert werden kann. 

16.4

Ergänzende Themen und Literatur

 •  Zu den Beweisen: [Sch 96]. 

16.5

Übungsaufgaben

ÜA 16.1 [zu 16.1]

Beweisen Sie Gl. (16.8). 

ÜA 16.2 [zu 16.3]

Ergänzen Sie die Zwischenrechnung, die auf Gl. (16.38) führt. 
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