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Vorwort

Dieses Buch ist ein

Lehrbuch der theoretischen Physik.

Es ist aus Vorlesungen und Seminaren entstanden, die ich in den letzten Jahren an der Univer-
sität Konstanz zum Thema

Quanteninformationstheorie und
die Grundlagen der Quantentheorie

gehalten bzw. veranstaltet habe.
Die unrelativistische Quantenphysik hat in den letzten ein bis zwei Jahrzehnten eine stür-

mische Entwicklung durchgemacht. Quantencomputer, Quantenteleportation, Quantenkrypto-
graphie, Quanteninformation sind die typischen Schlagwörter, die über den Kreis der Physiker
hinaus in populärwissenschaftlichen Artikeln und im Feuilleton mit dieser Entwicklung ver-
bunden werden. Das Konzept der Verschränkung ist das zentrale theoretische Konzept auf
diesen „neuen Wegen“ der Quantenphysik, die immer häufiger auch im Physikunterricht an
den Schulen beschrieben werden. Die theoretischen Grundlagen der neuen Entwicklungen
sind das Thema dieses Buches.

An wen wendet sich das Buch? Das Buch wendet sich in erster Linie an Studenten, aber
darüber hinaus auch an alle, die an der Quantenphysik interessiert oder vielleicht sogar von ihr
fasziniert sind. Es sollen aber nicht nur Physikstudenten und Physiker, sondern auch Studen-
ten der Informatik, Chemie und anderer Naturwissenschaften, sowie Ingenieure und Lehrer
angesprochen werden. Das Buch setzt voraus, dass der Leser schon durch eine Lehrveranstal-
tung oder durch Selbststudium erste Einblicke in die Quantentheorie hatte. Es fängt also nicht
bei null an.

Allerdings werden alle mathematischen und physikalischen Grundkenntnisse, die für die
Lektüre späterer Kapitel benötigt werden, als Einstieg in den Anfangskapiteln 1 und 2 wie-
derholt und aus einer für den Leser möglicherweise neuen Sicht aufgearbeitet. Dabei soll u.a.
darauf vorbereitet werden, dass in der Quantentheorie die Konzepte Zustand und Zustandsent-
wicklung einschließlich Messung anders als in der klassischen Physik zu verstehen sind. Hier-
auf bauen die in den späteren Kapiteln beschriebenen Verallgemeinerungen auf. Das zweite
Kapitel enthält auch ein wissenschaftstheoretisches Rüstzeug, mit dem die Frage diskutiert
werden kann, auf welche Realität sich die Quantentheorie bezieht.
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Copyright c© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40452-X



XII Vorwort

Anschließend steigen die Anforderungen an den Leser von Kapitel zu Kapitel an. Die Ka-
pitel bauen aufeinander auf. Übungsaufgaben können zur Kontrolle dienen. Kursiv geschrie-
bene Sätze fassen Ergebnisse zusammen. Fortgeschrittene Leser können mit ihrer Hilfe den
Text schnell querlesen.

Zielsetzung Dieses Buch will dem Leser dabei helfen, die raschen Entwicklungen der Quan-
teninformationstheorie besser überblicken, einordnen und mit angemessenem Aufwand nach-
vollziehen zu können.

Beschränkung und Ergänzung Der Anspruch an mathematische Präzision entspricht dem
der gebräuchlichen Lehrbücher der theoretischen Physik. Inhaltlich beschränke ich mich auf
die theoretischen Aspekte. Die Beschreibung der entsprechenden Experimente und techni-
schen Anwendungen würde noch einmal so viele Kapitel benötigen. Jedes Kapitel enthält
aber ein Unterkapitel über ergänzende Themen und weiterführende Literatur. Dort wird auf
Experimente hingewiesen.

Diese Unterkapitel weisen auch auf theoretische Übersichtsartikel und Bücher hin. Mit
deren Hilfe kann der Leser das Dargestellte vervollständigen und vertiefen. Zusammenfas-
senden Darstellungen wurde gegenüber Originalartikeln der Vorzug gegeben. Es werden also
nicht die für die Entwicklung wichtigen Arbeiten rückblickend historisch korrekt aufgelis-
tet, vielmehr sollen in erster Linie für den Leser nützliche weiterführende Literaturhinweise
gegeben werden.

Inhalt Im Anschluss an die beiden ersten Kapitel wird in Kap. 3 und 4 zunächst die Physik
abgeschlossener Quantensysteme weiterentwickelt. Viele Beispiele und Anwendungen bezie-
hen sich auf Qubits (2-Niveau-Systeme). Mit dem Dichteoperator wird das Konzept des Quan-
tenzustands in Kap. 4 abschließend erweitert. Allgemeinere Zustände gibt es nicht. Kapitel 5
und 6 führen in das klassische bzw. quantentheoretische Entropie- und Informationskonzept
ein.

Die Grundlagen der Physik zusammengesetzter Quantensysteme werden in Kap. 7 be-
schrieben. Dass sich Teilsysteme zusammen in einem verschränkten Zustand befinden kön-
nen, hat eine Vielzahl von überraschenden Effekten zur Folge. Eine Einführung wird in Kap. 8
gegeben. Verschränkung bedingt Korreliertheit der Teilsysteme. Zur Nicht-Lokalität der Zu-
stände treten noch die Möglichkeiten nicht-lokaler Messungen hinzu (Kap. 9).

Die experimentell nachgewiesenen spezifischen Quantenkorrelationen (EPR-Korrelatio-
nen) bestätigen die fundamentale Aussage, dass es keine klassische Alternative zur Quan-
tentheorie gibt (Kap. 10). Diese EPR-Korrelationen können zur Grundlage einer im Prinzip
völlig abhörsicheren Quantenkryptographie gemacht werden. Auch die Quantenteleportation
beruht auf ihnen (Kap. 12). Für den Quantencomputer ist Verschränkung ein wesentliches
Hilfsmittel. Die Ausnutzung der Quantenparallelität erlaubt es, sehr viele Funktionswerte in
sehr wenigen Operationen zu berechnen. Das Problem ist dann das Auslesen der Ergebnisse
(Kap. 12).

In Kap. 13 wenden wir uns der allgemeinen Dynamik offener Quantensysteme zu und
diskutieren zunächst verallgemeinerte Messungen, die die projektiven Messungen als Spezi-
alfall enthalten. Sie spielen zusammen mit den operatorwertigen Maßen (POVM) eine immer
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größere Rolle in den aktuellen Publikationen. Die allgemeine Entwicklung von offenen Quan-
tensystemen zwischen Präparation und Messung wird mit Hilfe der Quantenoperationen be-
schrieben. Verschiedene Quantenkanäle werden diskutiert (Kap. 14). Die Verallgemeinerung
der projektiven Messungen und der unitären Transformationen führen auf ein neues Szenario
der Quantenphysik.

Dekohärenz ist der Verlust der Interferenzfähigkeit und stellt daher ein Problem beim
Quantencomputer dar. Umgekehrt spielt die umgebungsinduzierte Dekohärenz eine wichti-
ge Rolle bei der Beantwortung der Frage warum es klassische Objekte gibt (Kap. 15). Es liegt
nahe, diesen Ansatz auch bei der Begründung des Quantenmessprozesses zu versuchen. Mit
dem Nachtrag einiger Beweise in Kap. 16 schließt das Buch ab.

Danksagungen An erster Stelle möchte ich mich bei meiner Frau für ihre Geduld bedan-
ken. Die langjährige Zusammenarbeit mit Thomas Konrad hat sehr zum vertieften Verständ-
nis des Stoffes beigetragen. Der „Montagsrunde“ mit Thomas Konrad, Michael Nock und
Artur Scherer verdanke ich ebenfalls viele Hinweise, Anregungen und Korrekturen. Vor al-
len Dingen haben die vielen gemeinsamen Diskussionen dafür gesorgt, dass die Begeisterung
für das Thema nicht nachgelassen hat. Joseph Demuth hat die Entstehung des Manuskripts
mit Hinweisen und Kommentaren begleitet. Jan Nötzold und Marcus Kubitzki haben bei der
Erstellung des Manuskripts geholfen, aber ohne das unermüdliche Engagement von Stefan
Bretzel und insbesondere von Michael Nock wäre das Manuskript nicht termingerecht fertig
geworden. Ihnen allen vielen Dank. Danken möchte ich schließlich noch dem Zentrum für
angewandte Photonik (CAP) an der Universität Konstanz für seine Unterstützung.

Jürgen Audretsch
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1 Der mathematische Rahmen

Es ist die Aufgabe der Quantentheorie – genau wie die jeder anderen physikalischen Theo-
rie – das Ergebnis von Experimenten vorherzusagen und diese Prognose zu begründen. Dazu
muss man den Zustand des physikalischen Systems zu Beginn eines Experiments beschreiben,
man muss die Entwicklung des Systems während des Experiments formulieren und das Er-
gebnis einer Wechselwirkung mit dem Messapparat vorhersagen können. Der mathematische
Rahmen, der sich für die Formulierung der Quantentheorie bewährt hat, ist die Theorie des
Hilbert-Raums und die Wahrscheinlichkeitstheorie. Die fundamentale Verknüpfung zwischen
mathematischen Größen und physikalischer Realität wird dabei über die folgenden Zuordnun-
gen etabliert:

Quantensystem ↔ Hilbert-Raum
Quantenzustand ↔ Vektor im oder Operator auf dem Hilbert-Raum

Entwicklung des Quantenzustands ↔ Lineare Operatoren, die auf den Vektoren wir-
ken bzw. lineare Operatoren, die auf den Raum
der Operatoren (Liouville-Raum) wirken.

Prognosen ↔ Wahrscheinlichkeitstheoretische Aussagen.

Wir werden dieses Grundschema der Quantentheorie noch im Einzelnen darstellen. In
diesem Kapitel sollen zunächst die benötigten Definitionen und Sätze zusammengestellt wer-
den. Dabei werden wir nicht alle mathematischen Sätze beweisen. Insbesondere werden wir
voraussetzen, dass der Leser schon einmal Kontakt mit der Quantentheorie hatte, sodass die
Darstellung knapp gehalten werden kann.

Da wir durchweg d-Niveau-Quantensysteme (d = 2, 3, . . .) untersuchen werden, wollen
wir eine stark vereinfachende Einschränkung machen:

Mathematische Generalvoraussetzung: Wir betrachten Quantensysteme, die mit
Hilfe eines endlich-dimensionalen Hilbert-Raums Hd der Dimension d = 2, 3, . . .
beschrieben werden können.

Die Einschränkung ist gerechtfertigt, weil die wesentlichen begrifflichen Probleme so-
wie die neuen Konzepte und zentralen Methoden bereits mit Bezug auf einen endlich-
dimensionalem Hilbert-Raum eingeführt werden können. Wir wollen den konzeptionellen
physikalischen Problemen nicht noch mathematische Subtilitäten hinzufügen. Für die meisten
physikalisch relevanten Fällen, die eine Beschreibung im unendlich-dimensionalen Hilbert-
Raum erfordern, lassen sich die Ergebnisse für endlich-dimensionale Räume direkt übertra-
gen.

Wie in der theoretischen Physik üblich, werden wir die Dirac-Schreibweise benutzen. In
diesem Rahmen ist es günstig, die dyadische Zerlegung von Operatoren in den Mittelpunkt
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Copyright c© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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2 1 Der mathematische Rahmen

der Behandlung zu stellen. Sie ist für praktische Anwendungen wichtig, da sie ein einfaches
direktes Ablesen von Operatoreigenschaften und Operatorwirkungen erlaubt.

1.1 Hilbert-Raum der Vektoren

1.1.1 Skalarprodukt, Dirac-Schreibweise

Ein d-dimensionaler Hilbert-Raum Hd, wie er in der Quantentheorie verwendet wird, ist ein
linearer Vektorraum über dem Körper der komplexen Zahlen �, auf dem ein Skalarprodukt
definiert ist. Die Vektoren bezeichnen wir durch |ϕ〉, |ψ〉, |u〉, |Φ〉 usw., |Null〉 ist der Null-
vektor.

Addition, Multiplikation mit einer komplexen Zahl, lineare Unabhängigkeit, Basis und
Dimension des Hilbert-Raums Hd sind analog zu den Begriffen in reellen Vektorräumen defi-
niert.

Je zwei Vektoren |ϕ〉 und |ψ〉 ist als Skalarprodukt(scalar product) oder inneres Produkt
(inner product) eine komplexe Zahl zugeordnet, die wir in der Form 〈ϕ|ψ〉 schreiben. Als
Grundlage für diese Dirac-Schreibweise1 (Dirac notation) haben wir einen Ket-Raum mit den
Ket-Vektoren |ϕ〉, |ψ〉, . . . und den hierzu dualen Vektorraum der Bra-Vektoren 〈χ|, 〈θ|, . . .
eingeführt (Raum der linearen Funktionale). Es ist eine Korrespondenz zwischen den Vektoren
des Ket- und des Bra-Raum erklärt (wir verwenden das gleiche Kernsymbol).

|ϕ〉 d.K.↔ 〈ϕ| , (1.1)

die duale Korrespondenz (dual correspondence) genannt wird. Dabei wird dem Ket-Vektor
|ϕ〉 = c1|ϕ1〉+ c2|ϕ2〉 eineindeutig der Bra-Vektor 〈ϕ| = c∗1〈ϕ1|+ c∗2〈ϕ2| zugeordnet (∗ be-
deutet konjugiert komplex). Die Reihenfolge im Produkt 〈ϕ|ψ〉 ist daher wichtig. Es gilt:

〈ϕ|ψ〉 = 〈ψ|ϕ〉∗
〈ϕ|c1ψ1 + c2ψ2〉 = c1〈ϕ|ψ1〉+ c2〈ϕ|ψ2〉 , c1, c2 ∈ � (1.2)

〈ϕ|ϕ〉 ≥ 0 ∀ |ϕ〉 ∈ Hn , (〈φ|φ〉 = 0⇔ |ϕ〉 = |Null〉) .
Daraus folgt

〈c1ϕ1 + c2ϕ2|ψ〉 = c∗1〈ϕ1|ψ〉+ c∗2〈ϕ2|ψ〉 . (1.3)

Das Skalarprodukt ist linear im zweiten Argument und antilinear im ersten Argument. Falls
〈ϕ|ψ〉 = 0 gilt, werden die Vektoren als zueinander orthogonal (orthogonal) bezeichnet.

Durch das Produkt wird auf dem Hilbert-Raum eine Norm (norm) gemäß

‖ϕ‖ =: ‖|ϕ〉‖ :=
√
〈ϕ|ϕ〉 (1.4)

induziert. Sie verschwindet genau dann, wenn |ϕ〉 der Nullvektor ist. Wir erwähnen ohne
Beweis die Schwarzsche Ungleichung

|〈ϕ|ψ〉| ≤ ‖ϕ‖ ‖ψ‖ (1.5)

1Nach Dirac wird das Skalarprodukt 〈ϕ|ψ〉 geschrieben und „bracket“ genannt. Die Bestandteile „bra“ 〈ϕ| und
„ket“ |ψ〉 haben eine eigenständige Bedeutung
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und die Dreiecksungleichungen

‖ϕ‖ − ‖ψ‖ ≤ ‖ψ − ϕ‖ , ‖ϕ+ ψ‖ ≤ ‖ϕ‖+ ‖ψ‖ . (1.6)

Durch Einsetzen bestätigt man

〈ϕ|ψ〉 =
1
4

(
‖ϕ+ ψ‖2 − ‖ϕ− ψ‖2 + i ‖ϕ− iψ‖2 − i ‖ϕ+ iψ‖2

)
(1.7)

sowie die Parallelogrammgleichung

‖ϕ+ ψ‖2 + ‖ϕ− ψ‖2 = 2 ‖ϕ‖2 + 2 ‖ψ‖2 . (1.8)

Für einen Satz {|ϕ1〉, |ϕ2〉, . . . , |ϕl〉} von Vektoren aus Hd wird durch
span(|ϕ1〉, . . . , |ϕl〉) die Menge aller möglichen Linearkombinationen dieser Vektoren
bezeichnet. Diese Menge bildet einen Unterraum von Hd, der ebenfalls ein Hilbert-Raum
ist. Wir bezeichnen eine orthonormale Basis (orthonormal basis) mit ONB. Für eine ONB
{|i〉, i = 1, . . . , d} gilt die Identität

|ϕ〉 =
d∑

i=1

|i〉〈i|ϕ〉 (1.9)

mit den Komponenten 〈i|ϕ〉 des Vektors |ϕ〉 bezüglich der ONB. Zu einem Unterraum Ĥ
von H bildet die Menge aller Vektoren |ψ〉, die zu allen Vektoren |χ〉 ∈ Ĥ orthogonal sind
(〈ψ|χ〉=0), einen weiteren Unterraum von H, der das orthogonale Komplement(orthogonal
complement) Ĥ⊥ genannt wird. Die direkte Summe beider Unterräume ist wieder der Hilbert-
RaumH = Ĥ ⊕ Ĥ⊥ := {α|χ〉+ β|ψ〉 mit |χ〉 ∈ Ĥ, |ψ〉 ∈ Ĥ⊥ und α, β ∈ �}.

1.1.2 Lineare Operatoren auf dem Hilbert-Raum

Lineare Operatoren(linear operators) A,B, . . . bilden Ket-Vektoren in linearer Weise aufein-
ander ab

A(α|ψ〉+ β|φ〉) = αA|ψ〉+ βA|φ〉 Linearität

(A+B)|ψ〉 = A|ψ〉+B|ψ〉 Summe

(AB)|ψ〉 = A(B|ψ〉) Produkt (1.10)

A|ψa〉 = a|ψa〉 Eigenvektor (eigenvector) |ψa〉 von A

Eigenwert (eigenvalue) a von A

�|ψ〉 = |ψ〉 Identitätsoperator, Einsoperator

(identity operator).

(α, β ∈ �). Für den Identitätsoperator � gilt �|ψ〉 = |ψ〉 für alle |ψ〉 ausHd. Der Definitions-
bereich vonAmuss nicht der gesamte Hilbert-Raum sein und der Wertebereich muss nicht mit
dem Definitionsbereich übereinstimmen. Wenn nötig, weisen wir darauf hin. Für den inversen
Operator (invers operator) A−1 gilt AA−1 = A−1A = �.
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Wir wollen die Dirac-Schreibweise weiter ausbauen und vereinbaren, dass Operatoren auf
dem Bra-Raum von rechts auf die Bra-Vektoren wirken sollen:

〈ϕ′| = 〈ϕ|B =: |Bϕ〉 . (1.11)

Die Operatoren auf dem Ket-Raum wirken entsprechend von links. Wir schreiben für den
resultierenden Vektor

|ψ′〉 = A|ψ〉 =: |Aψ〉 . (1.12)

Dem Ket-Vektor |ψ′〉 entspricht über die duale Korrespondenz (1.1) ein Bra-Vektor 〈ψ′|

|ψ′〉 d.K.↔ 〈ψ′| = 〈Aψ| . (1.13)

Wir führen noch zusätzlich eine duale Korrespondenz für Operatoren ein. In der Dirac-
Schreibweise wird der zum Ket-Operator A korrespondierende Bra-Operator ebenfalls mit
demselben Symbol A bezeichnet und durch folgende Bedingung an die Skalarprodukte fest-
gelegt (erste Gleichung):

(〈ϕ|A)|ψ〉 = 〈ϕ|(A|ψ〉) =: 〈ϕ|A|ψ〉 . (1.14)

Die zweite Gleichung ist eine für die Dirac-Schreibweise charakteristische geschickte Abkür-
zung.

Adjungierter Operator Die duale Korrespondenz für Vektoren ordnet dem Ket-Vektor |ψ〉
einen Bra-Vektor 〈ψ| zu und dem Ket-Vektor |ψ′〉 einen Bra-Vektor 〈ψ′|:

〈ψ| d.K.↔ |ψ〉 (1.15)

〈ψ′| = 〈Aψ| d.K.↔ |ψ′〉 = |Aψ〉 . (1.16)

Hiervon ausgehend definieren wir einen zu einem Operator A im Ket-Raum adjungierten
Operator (adjoint operator) A† im Bra-Raum, der die linken Seiten der Gl. (1.15) und (1.16)
verknüpft und 〈ψ| auf 〈ψ′| abbildet:

〈ψ′| = 〈Aψ| =: 〈ψ|A† . (1.17)

Bei der dualen Schreibweise von Operatoren wird sich diese Relation als nützlich erweisen.
Über die duale Korrespondenz der Operatoren ist damit aber wiederum ein Ket-Operator

A† eingeführt. Wir werten 〈ψ′|ϕ〉 mit Gl. (1.17) und (1.14) aus.

〈Aψ|ϕ〉 = (〈ψ|A†)|ϕ〉 = 〈ψ|(A†|ϕ〉) = 〈ψ|A†ϕ〉 = 〈ψ|A†|ϕ〉 (1.18)

und fassen zusammen

〈Aψ|ϕ〉 = 〈ψ|A†ϕ〉 = 〈ψ|A†|ϕ〉 . (1.19)
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Mit 〈ϕ|ψ〉 = 〈ψ|ϕ〉∗ folgt aus Gl. (1.19)

〈ψ|A†|ϕ〉 = 〈ϕ|Aψ〉∗ = 〈ϕ|A|ψ〉∗ . (1.20)

Zweifache Anwendung der Gl. (1.20) ergibt

〈ϕ|A|ψ〉 = (〈ϕ|A|ψ〉∗)∗ = 〈ψ|A†|ϕ〉∗ = 〈ϕ|(A†)†|ψ〉 (1.21)

für beliebige Vektoren 〈ϕ| und 〈ψ|. Daher gilt

(A†)† = A (1.22)

und wir erhalten die der Gl. (1.19) entsprechende Relation

〈A†ψ|ϕ〉 = 〈ψ|Aϕ〉 = 〈ψ|A|ϕ〉 . (1.23)

In ähnlicher Weise überzeugt man sich leicht von der Gültigkeit der folgenden Operatorrela-
tionen:

(
A−1

)†
=
(
A†)−1

, (cA)† = c∗A† (1.24)

(A+B)† = A† + B† , (AB)† = B†A† . (1.25)

Neben der Definition (1.17) werden die Gleichungen (1.22) und (1.23) häufig verwendet.

Dyadische Zerlegung Aus zwei Vektoren |u〉 und |v〉 können wir das dyadische Produkt
(outer product) oder die Dyade (dyad) |u〉〈v| bilden. Sie ist ein linearer Operator

|ϕ〉 → |ψ〉 = |u〉〈v|ϕ〉 ,
der in einen Vektor parallel zu |u〉 überführt. Dabei gilt

(α|u〉〈v|)† = α∗|v〉〈u| . (1.26)

Für Operatorprodukte finden wir

A|u〉〈v| = |Au〉〈v| , |u〉〈v|A = |u〉〈A†v| . (1.27)

Wir haben in Gl. (1.9) gesehen, dass sich mit Hilfe einer ONB {|i〉, i = 1, . . . , d} des
Hilbert-Raums der Identitätsoperator dyadisch darstellen lässt:

� =
∑

i

|i〉〈i| . (1.28)

Man nennt dies auch eine Vollständigkeitsrelation (completeness relation) oder die dyadische
Zerlegung des Identitätsoperators (resolution of the identity). Es folgt unmittelbar, dass jeder
lineare Operator eine dyadische Zerlegung (Äußere-Produkt-Darstellung)

A =
∑

i,j

|i〉〈i|A|j〉〈j| =
∑

i,j

〈i|A|j〉|i〉〈j| =
∑

i,j

Aij |i〉〈j| (1.29)
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mit den Matrixelementen Aij := 〈i|A|j〉 besitzt. Für den adjungierten Operator ergibt sich

A† =
∑

i,j

A∗
ij |j〉〈i| . (1.30)

Über die Supremumsnorm ‖A‖ kann man einem linearen Operator A eine positive Zahl zu-
ordnen

‖A‖ := max
〈ϕ|ϕ〉=1

|〈ϕ|A|ϕ〉| . (1.31)

Spur Die Spur (trace) ist eine sehr häufig gebrauchte komplexwertige Funktion eines linea-
ren Operators:

tr[A] :=
∑

i

〈i|A|i〉 =
∑

i

Aii , {|i〉} ONB . (1.32)

Die Spur eines Operators ist unabhängig von der Wahl der Basis. Der Beweis demonstriert die
Nützlichkeit der dyadischen Zerlegung (1.28) des Identitätsoperators. Seien {|li〉} und {|mj〉}
beliebige ONB, dann gilt:

tr[A] =
∑

i

〈li|A|li〉 =
∑

i,j,k

〈li|mj〉〈mj |A|mk〉〈mk|li〉

=
∑

i,j,k

〈mk|li〉〈li|mj〉〈mj |A|mk〉 =
∑

j,k

〈mk|mj〉〈mj |A|mk〉 (1.33)

=
∑

j

〈mj |A|mj〉 .

In ähnlicher Weise beweist man mit Hilfe von Gl. (1.28) die folgenden Eigenschaften der
Spur:

tr[AB] = tr[BA] zyklische Vertauschung

tr[A+B] = tr[A] + tr[B] Linearität

tr[αA] = α tr[A] Linearität

tr[A|ψ〉〈ψ|] = 〈ψ|A|ψ〉 Erwartungswert von A (1.34)

tr[|ϕ〉〈ψ|] = 〈ϕ|ψ〉 Spur einer Dyade

tr[A†] = (tr[A])∗ adjungierter Operator

Die physikalische Bezeichnung Erwartungswert (expectation value) von A wird später ge-
rechtfertigt.

1.1.3 Normale Operatoren und spektrale Zerlegung

Unter den linearen Operatoren aufHd spielen die diagonalisierbaren oder normalen Operato-
ren (normal operators) mathematisch und physikalisch eine herausragende Rolle. Ein Opera-
tor N heißt diagonalisierbar, wenn es eine ONB {|i〉} vonHd und komplexe Zahlen λi ∈ C
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gibt, so dass

N |i〉 = λi|i〉 (1.35)

gilt. Dabei ist λi = 0 nicht ausgeschlossen. Als unmittelbare Folge ergibt sich, dass die Matrix
von N in der ONB der Eigenvektoren diagonal ist

Nij = 〈i|N |j〉 = λiδij (1.36)

und sich der Operator A in der Form der spektralen Zerlegung (spectral decomposition)

N =
∑

i

λi|i〉〈i| (1.37)

schreiben lässt. Sie heißt auch orthogonale Zerlegung (orthogonal decomposition). Die ONB
{|i〉} von Gl. (1.35) wird auch Eigenbasis (eigenbasis) von N genannt. Umgekehrt folgt aus
jeder dieser Relationen direkt die Erfüllung der Diagonalisierbarkeitsbedingung (1.35).

Gehören zu einem Eigenwert λi des Eigenwertproblems (1.35) g ≥ 2 linear unabhän-
gige Eigenvektoren, so heißt λi g-fach entartet (degenerate). Jede Linearkombination dieser
Eigenvektoren

|ψ〉 =
g∑

i=1

ci|i〉 (1.38)

ist dann ebenfalls Eigenvektor zum Eigenwert a. Die Eigenvektoren spannen einen g-
dimensionalen UnterraumH(a) vonH auf. Der Projektor

P =
g∑

i=1

|i〉〈i| ; P † = P ; P 2 = P (1.39)

projiziert in den Unterraum H(a).Der Projektor Q = 1 − P projiziert in das orthogonale
Komplement vonH(a).

Diagonalisierbarkeit ist keine trivialerweise vorliegende Eigenschaft. Bereits im zweidi-
mensionalen Hilbert-Raum H2 gibt es vielfach gebrauchte Operatoren, die nicht diagonali-
sierbar sind. Ein Beispiel ist

A = |0〉〈1| mit 〈0|1〉 = 0 und 〈0|0〉 = 〈1|1〉 = 1 (1.40)

wie mit dem nachfolgenden Satz gezeigt werden kann.
Um zu erkennen, ob ein gegebener Operator ein normaler Operator ist, ist der folgende

zentrale Satz sehr nützlich: Notwendig und hinreichend dafür, dass es für einen Operator N
eine spektrale Zerlegung gibt – dass er also diagonalisierbar ist – ist das Verschwinden des
Kommutators ([A,B]− := AB −BA) von N und N†:

[N,N†]− = 0 . (1.41)

Der Beweis kann als Anwendungsbeispiel für den bisher aufgebauten Formalismus die-
nen. Dass aus der Diagonalisierbarkeit die Gl. (1.41) folgt, ist offensichtlich. Die andere Rich-
tung des Beweises zerlegen wir in zwei Schritte:
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1. Schritt: Jeder Operator in Hn hat zumindest einen Eigenwert λ und einen Eigenvektor
|1〉, die sich mit Hilfe der Säkulargleichung ergeben.

N |1〉 = λ|1〉 , 〈1|N† = λ∗〈1| . (1.42)

Daraus folgt

〈1|N |1〉 = λ , 〈1|N†|1〉 = λ∗ (1.43)

und damit

N†|1〉 = λ∗|1〉+ |a〉 , 〈1|N = λ〈1|+ 〈a| (1.44)

mit 〈1|a〉 = 0. Mit Normalitätsbedingung [N,N†]− = 0 ergibt sich nach Auswertung
mit Gl. (1.42) und (1.44)

0 = 〈1|[N,N†]−|0〉 = 〈a|a〉 . (1.45)

|a〉 ist somit der Nullvektor |Null〉 und (1.44) lässt sich folgendermaßen schreiben

N†|1〉 = λ∗|1〉 , 〈1|N = λ〈1| . (1.46)

Wir kennen damit die Wirkung von N und N† auf |1〉.

2. Schritt: Wir ergänzen |1〉 zu einer ONB {|i〉} und führen mit Hilfe der dualen Schreib-
weise von N

N =
∑

ij

nij |i〉〈j|, nij := 〈i|N |j〉, n1i = ni1 = λδi1 (1.47)

den Operator M ein:

M := N − λ|1〉〈1| , M =
∑

i,j �=1

nij |i〉〈j| . (1.48)

M ist die Einschränkung von N auf das orthogonale Komplement von |1〉.
Mit Hilfe von Gl. (1.42) und (1.46) können wir zeigen, dass auch M ein normaler Ope-
rator ist ([M,M†]− = 0). Für ihn lässt sich auf dem zu |1〉 senkrechten Unterraum das
gleiche Verfahren anwenden. Auch M hat einen Eigenvektor, den wir |2〉 nennen. Wir
ergänzen |1〉 und |2〉 zu einer ONB und wiederholen die Prozedur. So fahren wir fort bis
der ganze Hilbert-Raum ausgeschöpft ist und |1〉 zu einer wohlbestimmten ONB ergänzt
wurde. Zugleich wird dadurch N bezüglich dieser Basis spektral zerlegt. Das schließt
den Beweis ab.

Das Diagramm in Abb. 1.1 demonstriert wie den verschiedenen Eigenschaften der Ope-
ratoren im Hilbert-Raum eine zunehmende Spezialisierung in der dyadischen Zerlegung ent-
spricht. Wir werden im Folgenden im Diagramm Schritt für Schritt nach unten gehen.
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(bi-orthogonale Entwicklung,

Projektionsoperator (λi = {0, 1})

positiver Operator (λi ≥ 0)

linearer Operator

L =
∑
i λi|li〉〈ri|mit ONB {|li〉} und ONB {|ri〉}, λi ∈ �)

normaler Operator (diagonalisierbar, N =
∑
i λi|i〉〈i|, mit ONB {|i〉} , λi ∈ �)

„Phase“

Identitätsoperator (λi = 1 , ∀i)

„reell“

hermitescher Operator (λi ∈ �)

unitärer Operator (λi = eiϕi , reine Phase)

Abbildung 1.1: Operatorenhierarchie. Charakterisierung von Operatoren durch ihre dyadische Zerle-
gung. → ist jeweils die Richtung einer Spezialisierung. In den Klammern ( ) werden die Eigenwerte
charakterisiert. Man beachte, dass mit λi = {1,−1} spezielle hermitesche Operatoren auch unitär sein
können und umgekehrt. Die bi-orthogonale Entwicklung eines linearen Operators wird in Abschn. 13.3.3
abgeleitet.

Funktionen von Operatoren Eine Operatorfunktion f(N) ist durch ihre Entwicklung in
eine Potenzreihe definiert. Für einen normalen Operator N lässt sie sich in der dyadischen
Zerlegung in einfacher Weise auf die Funktionen der Eigenwerte zurückführen.

f(N) :=
∑

i

f(λi)|i〉〈i| → f(N)|i〉 = f(λi)|i〉 . (1.49)

f(N) hat die gleichen Eigenvektoren wie N . Wir geben ein Beispiel, das in der Matrixdar-
stellung bezüglich der Basis der Eigenvektoren formuliert ist:

σz =
(

1 0
0 −1

)
= |0〉〈0| − |1〉〈1| (1.50)

eϕσz = eϕ|0〉〈0|+ e−ϕ|1〉〈1| =
(
eϕ 0
0 e−ϕ

)
. (1.51)

1.1.4 Hermitesche Operatoren

Wir folgen dem rechten Ast der Verzweigung in Abb. 1.1. Ein linearer Operator H heißt
hermitesch (hermitian) oder selbstadjungiert (self-adjoint) auf Hd, wenn für ihn H† = H
gilt. Hermitesche Operatoren sind spezielle normale Operatoren. Wegen der folgenden Ei-
genschaften spielen sie in der Quantentheorie ein wichtige Rolle: Hermitesche Operatoren
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besitzen eine Spektralzerlegung mit einer ONB {|i〉}

H =
∑

i

ri|i〉〈i| , ri ∈ � (1.52)

und reellen Eigenwerten ri. Bei Entartung können die Eigenvektoren orthonormal gewählt
werden, sodass {|i〉} eine ONB bildet. Eigenvektoren zu verschiedenen Eigenwerten sind or-
thogonal. Dies wird oft als Spektraltheorem (spectral theorem) bezeichnet. Hermitesche Ope-
ratoren heißen auch Observable (observable). Der Grund für diese physikalische Bezeichnung
wird später deutlich werden.

Aus Gl. (1.52) folgt unmittelbar, dass für einen beliebigen Vektor |ϕ〉 der Erwartungswert
(expectation value) 〈ϕ|H|ϕ〉 reell ist. Es ist eine wichtige Kennzeichnung hermitescher Ope-
ratoren, dass auch die Umkehrung gilt: Der Erwartungswert 〈ϕ|A|ϕ〉 ist genau dann für alle
Vektoren reell, wenn A hermitesch ist.

Für den Beweis der Umkehrung nehmen wir an, dass für einen Operator A der Mittelwert
〈χ|A|χ〉 für alle Vektoren |χ〉 reell ist. Für irgend zwei Vektoren |ϕ〉 und |ψ〉 aus H gilt die
Identität

4〈ϕ|A|ψ〉 = {(〈ϕ|+ 〈ψ|)A(|ϕ〉+ |ψ〉)− (〈ϕ| − 〈ψ|)A(|ϕ〉 − |ψ〉)}
+ i[(〈ϕ| − i〈ψ|)A(|ϕ〉 − i|ψ〉)− (〈ϕ|+ i〈ψ|)A(|ϕ〉+ i|ψ〉)] (1.53)

Wenn wir in diesem Ausdruck |ϕ〉 und |ψ〉 vertauschen, dann geht der Teil {. . . } in sich über
und der Teil [. . . ] wird mit (−1) multipliziert. Berücksichtigen wir noch, dass alle Erwar-
tungswerte reell sind, so folgt daraus 〈ψ|Aϕ〉 = 〈ϕ|Aψ〉∗ = 〈Aψ|ϕ〉. Der Operator A ist also
hermitesch. Es ist bemerkenswert, dass in Gl. (1.53) rechts nur Erwartungswerte und links ein
Übergangsmatrixelement stehen. Wenn für einen hermiteschen Operator alle Erwartungswer-
te bekannt sind, sind auch alle Übergangsmatrixelemente bekannt.

Kommutierende hermitesche Operatoren Für sie gilt der Satz (o.B.) über die simultane
Diagonalisierbarkeit: Zwei hermitesche Operatoren (Observablen) A und B sind genau dann
vertauschbar ([A,B]− = 0), wenn sie eine gemeinsame ONB {|i〉} aus Eigenvektoren besit-
zen.

Ist der Eigenwert a einer Observablen A entartet, so bilden die Eigenvektoren einen min-
destens zweidimensionalen Unterraum. Mit Angabe von a ist daher kein zugehöriger Eigen-
vektor eindeutig charakterisiert. Wenn wir im Unterraum nur solche Eigenvektoren von A
betrachten, die zugleich Eigenvektoren einer Observablen B zum Eigenwert b sind (Schnitt-
menge), könnte ein gemeinsamer Eigenvektor durch diese Zusatzforderung bereits eindeutig
festgelegt sein. Wir bezeichnen ihn mit |a, b〉:

A|a, b〉 = a|a, b〉, B|a, b〉 = b|a, b〉 . (1.54)

Sollte wiederum dadurch nur ein Unterraum festgelegt sein, dann werden wir fortfahren und
verlangen, dass ein Eigenvektor von A und B zugleich Eigenvektor von einer mit A und B
vertauschbaren Observablen C ist: |a, b, c〉 Das Verfahren muß bis zur Aufhebung aller Entar-
tung fortgesetzt werden. Man nennt einen Satz von Observablen, die genau ein gemeinsames
System von Eigenvektoren besitzen, ein vollständiges System kommutierender Observabler.
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Durch Angabe der Eigenwerte zu allen Operatoren ist genau ein Vektor festgelegt. Wichtig ist,
dass das oben beschriebene Verfahren auch tatsächlich abbricht. Dies garantiert der Satz: Auf
jedem Hilbert-RaumH existiert eine endliche(!) vollständige Menge paarweise kommutieren-
der Operatoren (Funktionen von Operatoren nicht berücksichtigt). Zum Beweis verweisen wir
auf die Literatur (vergl. Abschn. 1.4)

1.1.5 Unitäre Operatoren

Wir folgen zunächst dem linken Ast der Verzweigung der Operatorhierarchie in Abb. 1.1 und
kehren danach zum rechten Ast zurück. Ein linearer Operator U heißt unitär (unitary), wenn
U† = U−1 gilt. Unitäre Operatoren sind spezielle normale Operatoren. Sie besitzen daher
eine Spektralzerlegung

U =
∑

i

eiϕi |i〉〈i| , ϕi ∈ �, (1.55)

mit einer ONB {|i〉}, wobei aufgrund der definierenden Gleichung die Eigenwerte reine „Pha-
senterme“ sind. Wie bei hermiteschen Operatoren spannen die Eigenvektoren den ganzen
Raum auf. Eigenvektoren zu verschiedenen Eigenwerten sind orthogonal. Eigenvektoren zu
entarteten Eigenwerten können orthogonal gewählt werden. Man zeigt leicht: Ein linearer
Operator ist genau dann unitär, wenn jede seiner Matrixdarstellungen unitär ist.

Aus der Spektralzerlegung folgt unmittelbar die Unitarität von U(t) = eiHt, t ∈ �, falls
H hermitesch ist. Weiterhin gilt in diesem Fall:

U(t = 0) = � (1.56)

U(t2)U(t1) = U(t2 + t1) . (1.57)

Unitäräquivalenz und Normerhaltung Unter kombinierten unitären Transformationen
von Vektoren und Operatoren gemäß

|ϕ′〉 = U |ϕ〉 A′ = UAU−1 (1.58)

bleiben Skalarprodukte (speziell auch die Norm eines Vektors), Eigenwerte und Erwartungs-
werte unverändert. Umgekehrt ist ein linearer Operator T , der bei Anwendung auf beliebige
Vektoren ausHn die Norm erhält

‖Tϕ‖ = ‖ϕ‖ (1.59)

ein unitärer Operator: T † = T−1. Zum Beweis verwenden wir die Gl. (1.7) und formen mit
Gl. (1.59) um. Für T gilt die Unitaritätsrelation

〈Tϕ|Tψ〉 = 〈ϕ|ψ〉 . (1.60)

1.1.6 Positive Operatoren und Projektionsoperatoren

Wir wollen noch Spezialfälle hermitescher Operatoren diskutieren. Ein positiver Operator ist
dadurch definiert, dass für einen beliebigen Vektor |ϕ〉 die Ungleichung

〈ϕ|A|ϕ〉 ≥ 0 ∀|ϕ〉 , (1.61)
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gilt, dass also sein Erwartungswert stets reell und nicht negativ ist. Wir schreiben dann

A ≥ 0 . (1.62)

Weiterhin erklären wir

A ≥ B ⇔ (A−B) ≥ 0 . (1.63)

Aus der Positivität folgt für die Spektralzerlegung: Jeder positive Operator A ist hermitesch
A† = A. Er besitzt die Spektralzerlegung

A =
∑

i

ai|i〉〈i|, ai ≥ 0 . (1.64)

mit nicht-negativen Eigenwerten.
Für einen beliebigen Operator A ist A†A ein positiver Operator. Andererseits gibt es für

jeden positiven Operator A einen linearen Operator B, so dass A sich in der Form

A = B†B (1.65)

schreiben lässt. B ist nur bis auf unitäre Transformationen festgelegt (B → UB). Wir finden
B explizit über die Spektralzerlegung (1.64) von A und eine ONB {|ϕi〉}

B =
∑

i

√
ai|ϕi〉〈i| . (1.66)

Einsetzen betätigt (1.65).

Ein linearer Operator P ist ein Projektionsoperator (projection operator) (genauer: ortho-
gonaler Projektionsoperator), wenn er die folgenden Bedingungen erfüllt:

(i) P 2 = P idempotent.

(ii) P † = P hermitesch.

linear

Projektor

P = P † = P 2

〈ψ|A|ψ〉 ≥ 0 ∀|ψ〉 ∈ H

hermitesch H† = H

normal N†N = NN†

U† = U−1

unitär

�

positiv

Abbildung 1.2: „Schnittmengen“ der Operatortypen
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Aus dieser Eigenschaft folgt

〈v|P |v〉 = 〈v|PP |v〉 = 〈v|P †P |v〉 = ‖P |v〉‖2 ≥ 0 . (1.67)

P ist daher ein positiver Operator und es gilt

P =
∑

i

pi|i〉〈i| ; pi ≥ 0 (1.68)

mit der ONB {|i〉}. Wegen der Idempotenz (i) haben wir weiterhin

P 2 =
∑

i

p2
i |i〉〈i| , P =

∑

i

pi|i〉〈i| , (1.69)

und damit p2
i = pi beziehungsweise pi ∈ {0, 1}. Der Projektionsoperator P nimmt deshalb

die Form

P =
∑

j∈I
|j〉〈j|, I ↔ Untermenge der ONB (1.70)

an. P projiziert auf den durch {|j〉} mit j ∈ I aufgespannten Unterraum.
In Ergänzung zu Abb. 1.1 sind in Abb. 1.2 im Rückblick die „Schnittmengen“ der ver-

schiedenen Operatortypen dargestellt.

1.2 Liouville-Raum der Operatoren

Wir werden in Kap. 2 sehen, dass sich im Spezialfall der reinen Zustände quantentheoreti-
sche Systeme durch normierte Vektoren |ψ〉 in einem Hilbert-RaumH beschreiben lassen. Im
allgemeinen Fall der gemischten Quantenzustände erfolgt die Beschreibung über den Dich-
teoperator (Kap. 4). Alle möglichen dynamischen Zustandsänderungen können als lineare
Transformationen von Übergängen zwischen Dichteoperatoren beschrieben werden (Schrö-
dinger Bild). Wir werden das ganz allgemein in Kap. 14 diskutieren. Im Hinblick darauf ist
es zweckmäßig den Liouville-Raum � als den Raum der auf dem Hilbert-Raum wirkenden li-
nearen Operatoren einzuführen. Wir können die Darstellung knapp halten, da im Wesentlichen
die Vorgehensweise aus Abschn. 1.1 wiederholt wird.

1.2.1 Skalarprodukt

Der Liouville-Raum � ist ein linearer Vektorraum über dem Körper der komplexen Zahlen,
dessen Elemente |A), |B), . . . die linearen OperatorenA,B, . . . auf einem Hilbert-Raum sind.
Man prüft leicht nach, dass diese linearen Operatoren tatsächlich die Axiome eines linearen
Vektorraums erfüllen. Wir werden die Klammern |) später zur Vereinfachung der Schreibweise
weglassen.

Die dyadische Zerlegung (1.29) eines Operators A nach der Basis {|i〉} vonHd hat in der
neuen Schreibweise die Form

|A) =
d∑

i,j=1

Aij ||i〉〈j|) . (1.71)
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Die d2 Dyaden |i〉〈j| in Hd bilden die d2 Elemente ||i〉〈j|) einer Basis in �. Für die Dimen-
sionen der Räume gilt daher

dim� = (dimHd)2 . (1.72)

Selbstverständlich gibt es neben den Dyaden andere Basen in �. Wir können den Liouville-
Raum � mit einem Skalarprodukt (A|B) ausstatten. Es hat formal dieselben Eigenschaften
wie das Skalarprodukt im Hilbert-Raum Hd (vergl. Abschn. 1.1.1). (A|B) ist eine komplexe
Zahl und es gilt

(A|B) = (B|A)∗ , (A|c1B1 + c2B2) = c1(A|B1) + c2(A|B2) , (A|A) ≥ 0 . (1.73)

Operatorbasis Zwei Operatoren A und B heißen orthogonal, wenn

(A|B) = 0 (1.74)

erfüllt ist, ohne dass einer der Operatoren der Nulloperator ist. Es gelten die Dreiecksun-
gleichung (1.6) und die zur Parallelogrammungleichung (1.8) analogen Gleichungen. Jeder
Operator |A) lässt sich nach einer orthonormalen Basis {|Qs), s = 1, . . . , d2} von �

(Qs|Qt) = δst,

d2∑

s=1

|Qs)(Qs| = � (1.75)

zerlegen:

|A) =
d2∑

s=1

|Qs)(Qs|A) . (1.76)

Skalarprodukt als Spur Skalarprodukte auf � können in ganz verschiedener Weise reali-
siert werden. Wir werden das über die Spur in Hd gebildete Skalarprodukt verwenden, da in
diesem Fall die für die einfachsten Quantensysteme wichtigen Paulischen Spinoperatoren zu
einer Basis ergänzt werden können (vergl. Abschn. 3.1)

(A|B) := tr[A†B] . (1.77)

Die Zerlegung (1.76) nimmt dann bei weggelassenen Vektorklammern die Form

A =
n2
∑

s=1

Qs tr[Q†
sA] (1.78)

an. Die aus den Dyaden |i〉〈j|, i, j = 1, . . . , d gebildete Basis des Liouville-Raums ist bei
Bezug auf das Spur-Skalarprodukt (1.77) orthonormal

(
|i〉〈j|

∣∣
∣|i′〉〈j′|

)
= δii′δjj′ . (1.79)
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1.2.2 Superoperatoren

Wie zu vermuten ist, lassen sich auf einem Liouville-Raum selber wiederum lineare Operato-
ren definieren, die Elemente aufeinander abbilden:

|A)→ |A) = S|A) = |SA) . (1.80)

Diese kursiv geschriebenen Operatoren heißen Superoperatoren (superoperators). Aus der
Sicht des Hilbert-RaumsHn bilden sie lineare Operatoren in linearer Weise aufeinander ab

A→ B = SA . (1.81)

Beispiele Wir geben zwei Beispiele für Superoperatoren an: Beim Superoperator A
B → AB := ABA−1 (1.82)

folgt die Linearität aus der Linearität von A. Man sieht leicht, dass

A−1B = A−1BA (1.83)

gilt. Ein für die Beschreibung der dynamischen Entwicklung von gemischten Zuständen wich-
tiger Superoperator (vergl. Kap. 4) ist der Liouville-Operator (Liouvillian) L

A→ LA :=
1
�

[H,A]− . (1.84)

([H,A] := HA−AH). In der physikalischen Anwendung istH dabei der Hamilton-Operator.
Die Potenz von L schreibt sich

L2A =
1
�2

[
H, [H,A]−

]
− . (1.85)

Vom Hilbert-Raum lassen sich direkt die Konzepte des adjungierten, hermiteschen, unitären
und positiven Superoperators übertragen.

1.3 Elemente der Wahrscheinlichkeitstheorie

Die zentrale Aufgabe der Quantentheorie ist es, Vorhersagen über die Wahrscheinlichkeiten
des Eintreffens von Messergebnissen zu machen. Dabei wird vorausgesetzt, dass Informatio-
nen über den Zustand des Quantenobjekts vorliegen, an dem gemessen wird. Im Hinblick auf
diese Aufgabe ist es sinnvoll die Grundkonzepte der Wahrscheinlichkeitstheorie kurz darzu-
stellen.

Vorhersagen sind ein Schluss von der Vergangenheit auf die Zukunft. In der klassischen
Physik spielt die umgekehrte Schlussrichtung eine vergleichbar wichtige Rolle. Aus den Mes-
sergebnissen wird auf den Zustand des Objekts vor der Messung zurück geschlossen. In wel-
chem Umfang ist das auch für Quantensysteme möglich? Bei der Diskussion dieser Frage
spielt der Satz von Bayes eine wichtige Rolle. Wir skizzieren seinen Beweis nachdem wir
Vorüberlegungen zur bedingten Wahrscheinlichkeit angestellt haben.
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1.3.1 Wahrscheinlichkeit zufälliger Ereignisse

Bei der Wiederholung eines Zufallsexperiments liegt das Ergebnis nicht vorher fest. Es ist ein
zufälliges Ereignis (random event). Solche Ereignisse können beim Werfen eines Würfels z. B.
das Auftreten einer geraden (bzw. ungeraden) Augenzahl oder das Auftreten einer Augenzahl
größer als 2 sein. Sei {Ai; i = 1, . . . , n} die Menge der möglichen Ereignisse. Es werden
folgende Bezeichnungen in Analogie zur Mengenlehre eingeführt:

Ai∩Aj ∩Ak ist das Ereignis das darin besteht, dass die EreignisseAi, Aj und Ak zusam-
men (gleichzeitig) auftreten. Beim Werfen eines Würfels kann A1 z. B. das Ereignis „gerade
Augenzahl“ und A2 das Ereignis „Augenzahl > 4“ sein, dann ist A1 ∩ A2 das Ereignis „Es
fällt die Sechs“. p(A1 ∩ A2) ist die Wahrscheinlichkeit, dass sowohl A1 als auch A2 eintritt
(Verbundwahrscheinlichkeit, joint probability) . Wir schreiben auch p(A1, A2) := p(A1∩A2).

Ai ∪ Aj ∪ Ak ist das Ereignis das im Auftreten wenigstens eines der Ereignisse Ai, Aj
und Ak besteht. Für die Augenzahl Z möge 2 ≤ Z ≤ 4 das Ereignis A1 und 3 ≤ Z ≤ 5 das
Ereignis A2 bedeuten. Dann ist A1 ∪A2 das Ereignis 2 ≤ Z ≤ 5.

Das unmögliche Ereignis wird mit ∅ und das sichere mit Ω bezeichnet. Zwei Ereignisse
Ai und Aj heißen unvereinbar (exclusive events), wenn Ai ∩ Aj = ∅ gilt. Sie können nicht
gleichzeitig eintreten.

Axiomatik Jedem zufälligen Ereignis A wird eine reelle Zahl p(A) mit 0 ≤ p(A) ≤ 1
zugeordnet, die die Wahrscheinlichkeit (probability) von A genannt wird und eine Reihe
von Axiomen erfüllt, die wir hier nicht aufführen wollen. Ein Beispiel ist die Kolmogorov-
Axiomatik. Wir notieren nur das Additivitätsaxiom: Für paarweise unvereinbare zufällige Er-
eignisse A1, A2, . . . , An gilt

p(A1 ∪A2 ∪ . . . ∪An) = p(A1) + p(A2) + . . .+ p(An) . (1.86)

Wenn die Ereignisse A1 und A2 vereinbar sind, gilt

p(A1 ∪A2) = p(A1) + p(A2)− p(A1 ∩A2) . (1.87)

Das Mengendiagramm von Abb. 1.3 veranschaulicht diese Relation. Beim Würfeln möge
Z ≤ 2 das Ereignis A1 und Z ≥ 4 das Ereignis A2 sein, dann ist die Wahrscheinlichkeit
dafür, dass entweder A1 oder A2 eintritt p(A1 ∪A2) = 2

6 + 3
6 = 5

6 .

Häufigkeitsinterpretation Wir haben uns zur Veranschaulichung des Axioms auf das Wer-
fen eines Würfels bezogen. Tatsächlich erfordert die Axiomatik wie jede mathematische Axio-
matik keine physikalische Interpretation. p(A) ist durch die Axiome selber festgelegt. Bei der
Anwendung auf physikalische Ereignisse wird Wahrscheinlichkeit üblicherweise als Grenz-
wert der relativen Häufigkeit (relative frequency) interpretiert:

p(A) := lim
N→∞

N(A)
N

(1.88)

Dabei ist N(A) die absolute Häufigkeit des Auftretens von A bei einer Gesamtzahl N von
Versuchen. Diese physikalische Interpretation ist nicht unproblematisch. Für endliche große
N kann sie als Schätzung von p(A) aufgefasst werden.
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A1∩A2 A2A1

A1∪A2

Abbildung 1.3: Mengendiagramm der Wahrscheinlichkeiten.

1.3.2 Bedingte Wahrscheinlichkeit und Satz von Bayes

Wir erweitern das Konzept der Wahrscheinlichkeit, Die bedingte Wahrscheinlichkeit (condi-
tional probability) p(A|B) eines Ereignisses A ist die Wahrscheinlichkeit des Eintretens von
A unter der Bedingung, dass ein anderes Ereignis B, das selber die Wahrscheinlichkeit p(B)
hat, bereits eingetreten ist. Wir definieren:

p(A|B) :=
p(A ∩B)
p(B)

. (1.89)

Auflösung führt auf die plausible Gleichung für die Wahrscheinlichkeit p(A ∩B) dafür, dass
sowohl A als auch B eintritt:

p(A ∩B) = p(A|B) · p(B) . (1.90)

Wir schreiben in späteren Kapiteln

p(A,B) := p(A ∩B) . (1.91)

Als Beispiel betrachten wir zwei Urnen. Die Urne U1 enthält 3 weiße und 3 schwarze
Kugeln, die Urne U2 2 weiße und 4 schwarze Kugeln. In jede der Urnen wird mit gleicher
Wahrscheinlichkeit p(U1) = p(U2) = 1

2 gegriffen. Die Wahrscheinlichkeit gezogen zu wer-
den ist für jede Kugel einheitlich 1

12 . Die Wahrscheinlichkeit sowohl in U1 zu greifen als
auch eine weiße Kugel zu ziehen ist p(w ∩ U1) = 3

12 = 1
4 . Die bedingte Wahrscheinlichkeit

p(w|U1) nachdem man in eine Urne U1 gegriffen hat eine weiße Kugel zu ziehen ist nach
Gl. (1.89)

p(w|U1) =
p(w ∩ U1)
p(U1)

=
2
4

=
1
2
. (1.92)

Das folgt auch anschaulich unmittelbar aus der Beschreibung der Zufallssituation. Analog
findet man p(w|U2) = 1

3 .
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Unabhängigkeit Zwei zufällige EreignisseA undB heißen voneinander unabhängig, wenn
durch das Eintreten des einen das Eintreten des anderen nicht beeinflusst wird

p(A|B) = p(A) . (1.93)

In diesem Fall faktorisiert p(A ∩B)

p(A ∩B) = p(A)p(B) . (1.94)

Hiervon ist zu unterscheiden, dass die Ereignisse A und B unvereinbar (einander widerspre-
chend) sind A ∩B = ∅. Dann gilt p(A|B) = 0.

Totale Wahrscheinlichkeit Das sichere Ereignis Ω möge sich als Summe von n paarweise
unvereinbaren zufälligen Ereignissen Ai darstellen lassen (Ai ∩Aj = ∅, ∀i �= j):

Ω = A1 ∪A2 ∪ . . . ∪An; Ai ∩Aj = ∅, ∀i �= j . (1.95)

Für ein beliebiges zufälliges EreignisB gilt dannB = (A1∩B)∪ (A2∩B)∪ . . .∪ (An∩B).
Mit dem Additivitätsaxiom (1.86) folgt daraus

p(B) =
n∑

i=1

p(B ∩Ai) (1.96)

und mit Gl. (1.90) ergibt sich der Satz von der totalen Wahrscheinlichkeit

p(B) =
n∑

i=1

p(B|Ai)p(Ai) . (1.97)

Wir geben ein Beispiel im nächsten Abschnitt.

Satz von Bayes Mit p(A ∩B) = p(B ∩A) führt die Gl. (1.90) auf

p(A|B)p(B) = p(B|A)p(A) . (1.98)

Unter der Voraussetzung, dass die paarweise Unvereinbarkeit und Vollständigkeit (1.95) er-
füllt ist, gewinnen wir daraus mit Gl. (1.97) den fundamentalen Satz von Bayes (Bayes’s theo-
rem)

p(Ai|B) =
p(B|Ai)p(Ai)∑n
j=1 p(B|Aj)p(Aj)

. (1.99)

Der Nenner garantiert die Normierung
∑

i p(Ai|B) = 1, die besagt, dass irgendeines der
Ereignisse Ai eintreten muß.

Der Satz von Bayes hat folgende Bedeutung: Es seien in einer Situation die Wahrschein-
lichkeit p(Ai) und die bedingten Wahrscheinlichkeiten p(B|Ai) bekannt. Dann erlaubt die
Formel (1.99) die Berechnung der Wahrscheinlichkeit p(Ai|B) dafür, dass in einem Zufalls-
experiment unter der Voraussetzung „B ist eingetreten“ die Bedingung Ai erfüllt war (bzw.
ist).
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Wir geben ein Beispiel an, dass sich wieder auf das Ziehen von Kugeln aus Urnen bezieht.
Es mögen drei Urnen von Typ I mit jeweils 2 weißen und 6 schwarzen Kugeln vorliegen und
eine Urne vom Typ II mit 1 weißen und 7 schwarzen Kugeln. Mit gleicher Wahrscheinlichkeit
wird in eine der Urnen gegriffen und eine Kugel gezogen. Das Ereignis B ist das Ziehen
einer weißen Kugel. Das Ereignis A1 ist das Greifen in eine Urne vom Typ I (bzw. Typ II).
Dann liegen die folgenden Wahrscheinlichkeiten vor: p(A1) = 3

4 , p(A2) = 1
4 , p(B|A1) =

1
4 , p(B|A2) = 1

8 . Die Wahrscheinlichkeit, dass die gezogene weiße Kugel aus einer Urne
von Typ I stammt, ist nach dem Satz von Bayes p(A1|B) = 6

7 = 0, 86 und daher größer
als p(A1). Aus der Urne vom Typ II stammt die weiße Kugel mit der Wahrscheinlichkeit
p(A2|B) = 1

7 = 0, 14, die kleiner als p(A2) ist. Die Wahl eines Urnentyps erfolgt mit den a-
priori-Wahrscheinlichkeiten p(Ai). Wenn eine weiße Kugel gezogen wurde, kann man darauf
rückschließen, in welche Urne gegriffen wurde. Für diesen Rückschluss gibt es i.a. wiederum
nur eine Wahrscheinlichkeitsaussage, die durch p(Ai|B) gegeben ist. Würde die Urne vom
Typ II keine weiße Kugel enthalten, könnte mit Sicherheit (p(A1|B) = 1) der Rückschluss
gemacht werden, dass in eine Urne vom Typ I gegriffen wurde.

Annahme von Bayes Sie sollte nicht mit dem Satz von Bayes verwechselt werden. Wenn
es keinen Anlass zur Vermutung gibt, dass ein Ereignis Ai durch die Situation ausge-
zeichnet ist, kann es sinnvoll sein, die Bayessche Annahme zu machen, dass alle a-priori-
Wahrscheinlichkeiten übereinstimmen

p(A1) = p(A2) = . . . = p(An) . (1.100)

Nach dem Eintreten von B wird dann diese Annahme durch die Wahrscheinlichkeiten
p(Ai|B) von Gl. (1.99) ersetzt. So lassen sich die Wahrscheinlichkeiten schätzen.

1.3.3 Zufallsgrößen

Eine Zufallsgröße X ist durch die Zuordnung von Zahlen x zu den zufälligen Ereignissen
gegeben. Würfe eines Würfels sind ein Beispiel. Eine diskrete zufällige Größe X ist bestimmt
durch die Werte x1, x2, . . . , xn und die Wahrscheinlichkeiten p(x1), p(x2), . . . , p(xn), mit
denen die Werte angenommen werden (

∑n
i=1 pi = 1). Die Verallgemeinerung auf abzählbar

unendlich viele Werte xi und auf stetige x ist i.a. unproblematisch.
Wichtige Größen zur Charakterisierung einer Zufallsgröße X sind Erwartungswert (ex-

pectation value) oder Mittelwert (mean value)

〈X〉 :=
∑

i

pixi (1.101)

und die Streuung (dispersion) oder mittlere quadratische Abweichung (mean square deviation)

var(X) = (∆X)2 := 〈X2〉 − 〈X〉2 = 〈(X − 〈X〉)2〉 , (1.102)

die auch Varianz (variance) genannt wird. Die Standardabweichung (standard deviation)
∆X =

√
var(X) gibt an, wie sehr eine Zufallsvariable um ihren Mittelwert streut. In der

Quantentheorie wird ∆(X) auch als die Unbestimmtheit (uncertainty) von X bezeichnet.



20 1 Der mathematische Rahmen

1.4 Ergänzende Themen und weiterführende Literatur

• Die meisten Lehrbücher der Quantentheorie enthalten eine Darstellung der mathemati-
schen Grundlagen. Auf folgende Bücher sei besonders hingewiesen: [Sak 85], [CDL 91],
[Ish 95], [Bal 98], [Gri 02].

• Eine ausführliche Darstellung des Hilbert-Raums mit Bezug auf die Quantentheorie fin-
det sich in [Jor 69].

• Bra-Raum als Vektorraum aller linearen stetigen Funktionale auf einem Vektorraum V
(auch Dualraum V ∗ genannt): [FK 98, Kap. 2.8 und 4.2].

• Literatursammlung zu 1.3: [Per 93, z. B. 53], [Ish 95], [NC 00].

1.5 Übungsaufgaben

ÜA 1.1 [zu 1.1] Beweisen Sie die Relationen (1.5), (1.6), (1.7), (1.8), (1.24), (1.25), (1.59),
(1.34).

ÜA 1.2 [zu 1.1] Geben Sie mehrere Beispiele für eine Basis im H3 an.

ÜA 1.3 [zu 1.1] {|i〉, i = 1, . . . , d} sei eine ONB. Beweisen Sie, dass die Parsevalsche
Identität

‖ϕ‖2 =
n∑

i=1

|〈ϕ|i〉|2 (1.103)

für alle Vektoren |ϕ〉 ∈ H2 gilt.

ÜA 1.4 [zu 1.1] Zeigen Sie, dass die Matrix, die dem OperatorproduktAB entspricht, gleich
dem Produkt der Matrizen zu A und B ist.

ÜA 1.5 [zu 1.1] Zeigen Sie, dass die Determinante einer unitären Matrix ± 1 ist.

ÜA 1.6 [zu 1.1] Zeigen Sie, dass für zwei unitäre n×nMatrizen U1 und U2 auch die Matrix(
U1 0
0 U2

)
unitär ist.

ÜA 1.7 [zu 1.1] Besitzt der Projektionsoperator P = |u〉〈u| ein Inverses?

ÜA 1.8 [zu 1.1]

a) Der Operator A sei diagonalisierbar. Wie findet man seine Spektraldarstellung?

b) Sind die Pauli-Operatoren σx = |0〉〈1|+ |1〉〈0|, σy = −i|0〉〈1|+ i|1〉〈0|, σz = |0〉〈0| −
|1〉〈1| diagonalisierbar? Finden Sie ihre Spektraldarstellung.
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ÜA 1.9 [zu 1.2] Bestätigen Sie für den in Gl. (1.82) definierten SuperoperatorA die Relation

tr[C(AB)] = tr[(A−1C)B] (1.104)

gilt.

ÜA 1.10 [zu 1.2] H sei ein hermitescher Operator mit Eigenwertgleichung

H|ei〉 = Ei|ei〉 . (1.105)

Bestimmen Sie Eigenvektoren und Eigenwerte des Liouville-Operators L von Gl. (1.84).

ÜA 1.11 [zu 1.2] Zeigen Sie, dass der Liouville-Operator von Gl. (1.84) die Matrixdarstel-
lung

Lij,i′j′ =
1
�
(Hij′δi′j − δij′Hi′j) (1.106)

hat.

ÜA 1.12 [zu 1.2] Beweisen Sie mit Bezug auf die Definition des Liouville-Operators L die
Relation

ecLA = e
c
�
HAe−

c
�
H . (1.107)

ÜA 1.13 [zu 1.2] Geben Sie Situationen an, mit deren Hilfe die bedingte Wahrscheinlichkeit,
der Satz von der totalen Wahrscheinlichkeit oder der Satz von Bayes veranschaulicht werden
können.
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2 Grundkonzepte der Quantentheorie

2.1 Erste Fassung der Postulate (reine Zustände
abgeschlossener Quantensysteme)

2.1.1 Das Szenario der Quantentheorie

Wenn man die Quantentheorie auf konzeptionell weniger vertraute Situationen anwenden will,
wie sie im Zusammenhang mit zusammengesetzten Systemen auftreten, dann ist es nützlich,
sich zunächst noch einmal an die Grundstrukturen der Quantentheorie zu erinnern. Dazu soll
das Kapitel 2 dienen.

Wir machen die physikalische Generalvoraussetzung, dass wir nur Vorgänge
untersuchen, die keine relativistische Beschreibung benötigen und die auf einem
endlich-dimensionalen Hilbert-Raum formuliert werden können.

Doppelspaltexperiment Die charakteristischen Züge der Quantenphysik werden deutlich,
wenn man sie mit denen der klassischen Physik vergleicht. Hierzu betrachtet man zwei ana-
loge physikalische Situationen. In einem Fall kann die Situation im Rahmen der klassischen
Physik beschrieben werden, im anderen Fall ist eine quantentheoretische Beschreibung erfor-
derlich. Das Doppelspaltexperiment ist hierfür ein gerne diskutiertes konkretes Beispiel, an
dem man viele Elemente der Quantentheorie ablesen kann. Wir besprechen das Experiment
daher ausführlich. Die Ergebnisse sollen die Einführung der Postulate in Abschn. 2.1.2 und der
Konzepte in Kap. 4 vorbereiten. Verschränkung werden wir später an anderen Experimenten
veranschaulichen und damit das Szenario der Quantentheorie noch erweitern.

Wir beschreiben zunächst die experimentelle Situation bei einem Doppelspalt mit den
Spaltöffnungen 1 und 2. Vor dem Spalt, d. h. links in der Abb. 2.1a befindet sich ein Apparat
für das Schießen von kleinen Kugeln, den wir durch den Wurf einer Münze steuern. Je nach-
dem wie die Münze fällt, schießt der Apparat durch Spalt 1 oder durch Spalt 2. Dabei soll über
die jeweilige Spaltöffnung hin eine gleichmäßige Streuung der Durchschussorte gegeben sein.
Hinter dem Doppelspalt wird ein Schirm aufgestellt, auf dem die Einschlagorte der Kugeln re-
gistriert werden. Wir diskutieren die Fälle, in denen nur einer der beiden Spalte offen ist (der
andere ist abgedeckt), und den Fall, dass beide Spalte offen sind. Wir tragen in allen drei Fällen
die relative Häufigkeit der Auftreffer auf dem Schirm als Funktion des Ortes auf. Je häufiger
geschossen wird, umso klarer zeigen die relativen Häufigkeiten, wenn nur ein Spalt offen ist,
die in Abb. 2.1a angegebene räumliche Verteilung. Sie gibt im Grenzfall vieler Schüsse die
Wahrscheinlichkeit P (x) für das Auftreffen der Kugeln wieder. Wenn Spalt 1 abgedeckt wird,

Verschränkte Systeme: Die Quantenphysik auf neuen Wegen. Jürgen Audretsch
Copyright c© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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finden wir eine entsprechende Verteilung hinter Spalt 2. Es ist eine Alltagserfahrung, dass sich
bei Öffnen beider Spalte die mit dem Faktor 1

2 multiplizierten Auftreffwahrscheinlichkeiten
der Einzelspalte addieren.

In dem analogen quantenphysikalischen Experiment wird der Schussapparat durch eine
Apparatur ersetzt, die einen Atomofen enthält1. Man findet geeignete Apparaturen und pas-
send präparierte Schirme, so dass Folgendes gilt: Wenn man den Schirm, ohne dass ein Dop-
pelspalt vorhanden ist, hinter der Apparatur aufbaut, dann werden nacheinander regellos über
den Schirm verteilt einzelne Treffer registriert. Wenn man lange genug wartet, entsteht eine
homogene Verteilung der Auftreffpunkte. Da die Treffer zeitlich getrennte Einzelereignisse
sind, wollen wir damit die Vorstellung verbinden, dass ein einzelnes Objekt, das wir schon
Atom genannt haben, den Ofen verlassen hat und auf dem Schirm aufgeschlagen ist. Über
ein Atom zwischen Ofen und Schirm können wir keine Aussage machen. Sodann schieben
wir einen geeignet dimensionierten Doppelspalt zwischen Ofen und Schirm ein und schließen
wieder zum Beispiel Spalt 2. Dann messen wir im Grenzfall sehr vieler Aufschläge für die
relative Häufigkeit (und damit für die Auftreffwahrscheinlichkeit P (x)) die räumliche Vertei-
lung von Abb. 2.1b. Ihr Maximum liegt gegenüber der Spaltöffnung. Wenn Spalt 1 geschlossen
ist, finden wir eine entsprechend verschobene Kurve gegenüber dem offenen Spalt. Wenn wir
allerdings für Atome beide Spalte öffnen, ergibt sich die in Abb. 2.2 dargestellte Verteilung der
relativen Häufigkeiten, die ihr Maximum gerade hinter dem Steg zwischen den beiden Spalten
hat. Wieder ist der Grenzfall sehr vieler Aufschläge eingezeichnet. Wie bei den Kugeln ändert
sich eine Wiederholung des Experimentes die Reihenfolge der Orte der einzelnen Einschläge
in völlig zufälliger Weise (vergl. Abb. 2.3). Nur im Grenzfall sehr vieler Einschläge ergibt sich
in deterministischer Weise immer dieselbe Häufigkeitsverteilung.

Als wesentliches Ergebnis halten wir fest: Für Atome erhalten wir die Wahrscheinlich-
keitsverteilung beim Doppelspalt – anders als bei Kugeln – nicht durch Addition der Wahr-
scheinlichkeitsverteilungen der Einzelspalte. Es ist ein Interferenzbild entstanden, wie wir es
von der Optik her kennen, das nicht dadurch erklärt werden kann, dass wir den Atomen Bah-
nen zuordnen, wie wir das für die einzelnen Kugeln tun konnten. Wegen der verblüffenden
Analogie zur optischen Beugung können wir vermuten, dass die mathematische Berechnung
der Wahrscheinlichkeitsverteilung beim Doppelspalt in ähnlicher Weise das Phänomen der
Interferenz durch Überlagerung wiederspiegeln wird.

Entweder-Oder versus Weder-Noch Im Hinblick auf später immer wieder verwendete Be-
griffe wollen wir die Experimente mit Kugeln bzw. Atomen noch etwas genauer charakteri-
sieren. Wir fassen die durch die Münze gesteuerte Schießanlage für Kugeln und die jeweiligen
Spalte davor als ein Präparationsverfahren auf. Präpariert wird der entsprechende Zustand der
Kugeln. Wenn nur Spalt 1 (bzw. 2) geöffnet ist, wollen wir den Zustand Z1 (bzw. Z2) nennen.
Für jeden Zustand liegen die Wahrscheinlichkeitsverteilungen der Auftreffer auf dem Schirm
fest. Schießanlage und Doppelspalt präparieren einen weiteren Zustand, den wir Zg(1, 2) nen-
nen wollen. Die zugehörige Wahrscheinlichkeitsverteilung ergibt sich durch Addition der Ver-
teilungen zu den klassischen Zuständen Z1 und Z2, die noch jeweils mit der Wahrscheinlich-
keit 1

2 multipliziert werden. Gemäß der Münzsteuerung der Schießanlage liegen jeweils mit

1Das Doppelspaltexperiment wurde für Elektronen, Atome, van-der-Waals-Cluster, Fullerene und Biomoleküle
mit Erfolg durchgeführt (vergl. Abschn. 15.6).
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Abbildung 2.1: Schirm hinter einem Einzelspalt: Auftreffwahrscheinlichkeit P (x) für klassische Ob-
jekte (a) und für Quantenobjekte (b).
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Abbildung 2.2: Schirm hinter einem Doppelspalt: AuftreffwahrscheinlichkeitP (x) für Quantenobjekte.

Abbildung 2.3: Es ist völlig zufällig, wo ein einzelnes Quantenobjekt auf dem Schirm auftrifft. Das
Streifenbild aus vielen Auftreffpunkten ist hingegen wohlbestimmt.
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der Wahrscheinlichkeit 1
2 Kugeln im Zustand Z1 und im Zustand Z2 vor. Durch Mischen

der Zustände Z1 und Z2 mit diesen Gewichten entsteht der Zustand Zg(1, 2). Wir nennen
so entstandene Zustände klassische Gemische (classical mixtures). Für eine einzelne Kugel
liegt immer entweder Z1 oder Z2 vor. Klassische Gemische sind in diesem Sinne Entweder-
Oder-Zustände. Das klassische Gemisch enthält über die Würfe der Münze ein statistisches
Element. Die Bahn einer einzelnen Kugel ist dagegen völlig determiniert.

Für Atome können wir ebenfalls durch Schließen eines der Spalte die Quantenzustände Ẑ1

bzw. Ẑ2 präparieren. Für viele Atome in diesen Zuständen finden wir eindeutig entweder die
Wahrscheinlichkeitsverteilungen von Abb. 2.1a oder die verschobene Verteilung. Wenn wir
jeweils mit der Wahrscheinlichkeit 1

2 einen der Spalte abdecken, entsteht der Quantenzustand
Ẑg(1, 2). Die zugehörige Wahrscheinlichkeitsverteilung ergibt sich wie in der klassischen
Physik durch Addition der mit dem Faktor 1

2 gewichteten Wahrscheinlichkeitsverteilungen
von Ẑ1 und Ẑ2. Wieder haben wir nur gemischt. Das Ergebnis wird in der Quantenphysik sta-
tistisches Gemisch (statistical mixture) oder Gemenge genannt. Der Begriff Quantengemisch
(quantum mixture), den wir in Kap. 4 diskutieren werden, ist allgemeiner und enthält das Ge-
menge als Spezialfall. Da immer nur einer der Spalte offen war, können wir in diesem Fall
davon sprechen, dass das einzelne Atom entweder durch Spalt 1 oder durch Spalt 2 geflogen
sein muss. Es liegt ein quantenphysikalischer Entweder-Oder-Zustand vor. Soweit existiert
also eine Analogie zu den Zuständen der Kugel.

Für Atome gibt es aber noch einen weiteren Zustand Ẑr(1, 2) mit einer Wahrscheinlich-
keitsverteilung, die für Kugeln nicht auftreten kann. Er entsteht, wenn beide Spalte geöffnet
sind (vergl. Abb. 2.2). Wichtig ist, dass diese Wahrscheinlichkeitsverteilung nicht durch Mi-
schen präpariert werden kann. Wir nennen einen ungemischten Zustand einen reinen Zustand
(pure state). Ẑr(1, 2) ist ein Beispiel. Anders als bei Kugeln im Zustand Zg(1, 2) liegt hier
ein einzelnes Atom hinter dem Doppelspalt weder im Zustand Ẑ1 noch im Zustand Ẑ2 vor.
Der reine Zustand Ẑr(1, 2) ist ein Weder-Noch-Zustand. Wir können dementsprechend auch
vom Atom nicht sagen, es sei durch einen der Spalte gekommen. Diese an Kugeln orientierte
klassische Vorstellung versagt bei Atomen. Wir erwähnen noch, dass die ungemischten
Zustände Ẑ1 und Ẑ2 ebenfalls gemäß unserer Definition reine Zustände sind.

Selektive und nicht-selektive Messung Wir wollen durch Messung für die gemischten Zu-
stände Zg(1,2) und Ẑg(1, 2) von Kugeln bzw. Atomen und für den reinen Zustand Ẑr(1, 2)
der Atome feststellen, hinter welchem Spalt eine einzelne Kugel oder ein einzelnes Atom an-
zutreffen ist. Die möglichen Messergebnisse sind daher „hinter dem ersten Spalt“ und „hinter
dem zweiten Spalt“. Wir strahlen zur Messung Licht ein, das von den Kugeln, bzw. den Ato-
men gestreut werden kann. Dabei beobachten wir, dass ein Aufblitzen immer nur hinter einem
der beiden Spalte stattfindet. Wir haben also die gewünschte Messung realisiert. Anschließend
hinterlässt die Kugel bzw. das Atom wieder seinen Einschlagspunkt auf dem Schirm. Tatsäch-
lich ist die experimentelle Realisierung komplizierter. Literaturangaben hierzu finden sich in
Abschn. 8.6.

Welche Häufigkeitsverteilungen entstehen, wenn wir wieder sehr viele Einschläge abwar-
ten? Die Antwort hängt nicht nur vom Zustand ab, an dem wir messen, sondern auch davon,
wie wir die Messergebnisse auswerten (vergl. Tab. 2.1). Ein mögliches Verfahren besteht dar-
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in, selektiv vorzugehen und immer nur die Einschlagspunkte zu markieren, die zum Beispiel
zum Aufblitzen hinter Spalt 1 gehören. Wir nennen dies eine selektive Messung (selective mea-
surement). Sie bestehen aus vielen Messungen mit anschließender Selektion je nach Messer-
gebnis. Wir lesen an den resultierenden Häufigkeitsverteilungen folgendes ab: Das klassische
Gemisch im ZustandZg(1, 2) geht in den ZustandZ(1) über. In analoger Weise geht das quan-
tenphysikalische Gemenge Ẑg(1, 2) in den Zustand Ẑ(1) über. Beides ist nicht verwunderlich.
Wir haben einfach durch selektive Messung die gemischten Zustände wieder entmischt.

Für Atome können wir darüber hinaus aber auch den reinen Zustand Ẑr(1, 2) präparieren.
Die selektive Messung, die zum Aufblitzen hinter Spalt 1 gehört, überführt diesen Zustand
gemäß resultierender Häufigkeitsverteilung in den Zustand Ẑ(1). Beim Doppelspalt überführt
die selektive Messung also einen reinen Zustand in einen davon verschiedenen reinen Zustand.
Die Messung greift ein und ändert ab. Wir können eine selektive Messung auch als eine Um-
präparation auffassen. Das Resultat der Interferenz beim reinen Zustand wird aufgebrochen.
In Spezialfällen wird nicht umpräpariert: Wenn der reine Zustand Ẑ(1) vorliegt (Spalt 2 ist
geschlossen), dann blitzt es immer hinter Spalt 1 auf. Darüber hinaus zeigt die registrierte
Häufigkeitsverteilung der Atome, die geblitzt haben, dass der Zustand Ẑ(1) nicht abgeändert
wurde. In diesen Fällen bestätigt die Messung nur die Präparation.

Ein alternatives Auswertungsverfahren besteht darin, dass wir nicht selektiv messen, al-
so zwar die Atome und die Kugeln anstrahlen, aber die Aufschlagspunkte unabhängig davon
wo der Blitz aufgeleuchtet hat (und daher ohne Auswahl) auf dem Schirm zu einem einzigen
Bild zusammenfassen (nicht-selektive Messung, non-selective measurement). An der resul-
tierenden Wahrscheinlichkeitsverteilung können wir ablesen, dass für Kugeln wie für Atome
gleichermaßen statistisches ein Gemisch (bzw. Gemenge) wieder in ein statistisches Gemisch
(bzw. Gemenge) übergeht. Das ist plausibel. Da wir nicht selektieren, mischen wir die Zu-
stände wieder. Für Atome können wir zusätzlich den reinen Zustand Ẑr(1, 2) präparieren,
der keine Entsprechung für Kugeln hat. Wenn wir an diesem Zustand nicht-selektiv messen,
erhalten wir die Häufigkeitsverteilung, die zum Gemenge Ẑg(1, 2) gehört. Wir haben die zu
den beiden Messergebnissen gehörigen Zustände Ẑ(1) und Ẑ(2) gemischt. Im Bereich der
Quantenphysik überführt eine nicht-selektive Messung einen reinen Zustand in ein Gemenge.

Schließlich wollen wir eine letzte Bemerkung zur Messung an Atomen machen. Wir hat-
ten oben schon beschrieben, dass Ẑ(1) durch eine Messung unverändert bleibt. Eine direkt
nachfolgende Messung erfolgt daher wieder am Zustand Ẑ(1), und wir registrieren erneut
ein Aufblitzen hinter Spalt 1. Das ist der Grund dafür, dass man Atomen mit Aufblitzen zum
Beispiel hinter dem ersten Spalt die Eigenschaft „hinter Spalt 1“ durchaus zuordnen kann.

Die Messung, die die Frage wiederholt „hinter welchem Spalt?“ führt bei diesen Atomen
wieder auf die Antwort „hinter Spalt 1“.

Die typische experimentelle Situation Wir können noch in anderer Weise als durch eine
Messung zwischen Doppelspalt und Schirm eingreifen. Wenn die Kugeln bzw. die Atome ge-
laden sind, können wir zum Beispiel ein elektrisches Feld anlegen, dann wird sich das Bild der
Auftreffwahrscheinlichkeiten verzerren. Je schwächer das Feld ist umso schwächer ist die Ver-
zerrung. Das elektrische Feld bewirkt eine Änderung des Zustandes. Selbstverständlich ist das
Anlegen des elektrischen Feldes nur ein Beispiel. Es gibt andere Eingriffsformen. Einheitlich
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Klassische Physik Quantenphysik
Selektive
Messung

Klassisches
Gemisch

→ in einen der
im Gemisch
enthalte-
nen reinen
Zustände

Gemenge → in einen
reinen
Zustand. (∗)

Reiner
Zustand

→ in einen
(im All-
gemeinen
verschiede-
nen) reinen
Zustand

Nicht-selektive
Messung

Klassisches
Gemisch

→ in das
gleiche
klassische
Gemisch

Gemenge → in ein mög-
licherweise
anderes
Gemenge

Reiner
Zustand

→ in ein Ge-
menge

Tabelle 2.1: Die Auswirkungen von Messungen in der klassischen Physik und der Quantenphysik. Der
Pfeil „→“ besagt: „...“ wird durch Messung in „...“ überführt. Wir verwenden für Gemenge auch die
Bezeichnung statistisches Gemisch. Wie wir später sehen werden, gilt (*) nur, wenn keine Entartung
vorliegt.

werden wir sie als das Einwirken eines Transformationsapparates auffassen. Die ungestörte
freie Entwicklung ist als Spezialfall enthalten.

Zusammenfassend lässt sich sagen, dass wir es in der Physik mit drei Typen von Ap-
paraten zu tun haben: Präparationsapparate, Transformationsapparate und Messapparate. Bei
einem Versuchsaufbau im Labor liegt jeweils ein spezieller Typ dieser Apparate vor. Das Ex-
periment kann in drei unabhängige aufeinander folgende Phasen zerlegt werden: Präparation,
Transformation und Messung (vergl. Abb. 2.4).

Anwendungsbereich der Quantentheorie Die Aufgabe einer physikalischen Theorie ist
es, zu bekanntem Präparations- und Transformationsapparat die Messergebnisse, die der
Messapparat anzeigt, zu prognostizieren und hierfür eine Begründung auf der Grundlage einer
Theorie zu geben. Es zeigt sich bereits am Doppelspalt – insbesondere beim Zustand Ẑr(1, 2),
den wir als Ergebnis einer „Interferenz“ charakterisiert haben – dass es in gewissen Fällen kei-
ne Begründung im Rahmen der klassischen Physik gibt. Diese Experimente setzten dem An-
wendungsbereich der klassischen Physik Grenzen. Sie liegen außerhalb im Quantenbereich.
Ein Quanteneffekt liegt dann vor, wenn eine rein klassische Begründung des Verhaltens der
drei Apparatetypen nicht möglich ist.

Die Quantentheorie begründet die Quanteneffekte. Ob und in welcher Weise sie auch eine
Begründung für die Effekte der klassischen Physik geben kann, ob also die klassische Physik
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Präparation Transformation
m

Messung

Abbildung 2.4: Die Einflüsse auf den Zustand eines physikalischen Systems.

als ein Grenzfall aus der Quantentheorie ableitbar ist, ist eine offene Frage. Sie ist Gegen-
stand aktueller Forschung und wir werden noch auf sie in Kap. 15 zurückkommen. Auch die
umgekehrte Begründungsrichtung ist denkbar. Der Anwendungsbereich der Quantentheorie
könnte leer sein. Kann man möglicherweise Quanteneffekte mit Hilfe der klassischen Phy-
sik beschreiben? Wir greifen die Frage in Kap. 10 wieder auf, wenn wir die „verborgenen
Parameter“ diskutieren.

2.1.2 Postulate für reine Zustände abgeschlossener Quantensysteme

Wir wollen im Folgenden die theoretische Begründung der Phänomene im Quantenbereich auf
einige wenige Grundannahmen zurückführen. Wir verallgemeinern hierzu die Erfahrungen,
die wir im Experiment zur Atominterferometrie gemacht haben. Dabei streben wir allerdings
nicht die mathematische und begriffliche Präzision einer Axiomatisierung der Quantentheorie
an. Hierfür sei auf die Literatur verwiesen. Wir präzisieren zunächst den schon verwendeten
Begriff des Quantenzustandes und stellen dann die Postulate vor, die die Quantenphänome-
ne begründen können, die bei reinen Zuständen auftreten. In späteren Kapiteln dieses Bu-
ches werden wir die Postulate Schritt für Schritt allgemeiner fassen. Dabei wird sich zeigen,
dass die Grundgliederung, die letztlich durch das Schema von Abb. 2.4 bestimmt ist, erhalten
bleibt.

Quantensysteme Die Apparate in Abbildung 2.4 werden nacheinander von links nach
rechts wirksam. Die Pfeile kennzeichnen dabei den Übergang eines Quantensystems von
einem Apparat zum anderen. Mit Quantensystem (quantum system) bezeichnen wir etwas,
das einen Präparationsvorgang durchlaufen hat und an dem Messungen vorgenommen werden
können. Die Begründung dieser Messungen muss dabei in den Bereich der Quantentheorie
fallen. Im oben diskutierten Beispiel ist ein einzelnes Atom ein solches Quantensystem. Auch
die Spinorientierung eines Atoms oder die Polarisation eines Photons kann präpariert und re-
gistriert werden. In der Standardinterpretation der Quantentheorie, die wir in diesem Kapitel
anwenden wollen, wird dem einzelnen Quantensystem physikalische Realität zugesprochen.
Seine Existenz wird behauptet, so wie wir das, ausgehend von den Einzelaufschlägen auf
dem Schirm, für die Atome im Atominterferometer bereits getan haben. Wir kommen auf das
Problem der Realität im Abschn. 2.5 noch einmal zurück. Wir werden sehen, dass Quanten-
systeme selber wieder aus Teilsystemen zusammengesetzt sein können. In diesem Fall spielen
die verschränkten Zustände eine zentrale Rolle.

Quantenzustand und Messungen Quantensysteme, die in gleicher Weise präpariert wur-
den, können zu verschiedenen Messergebnissen führen. Beispielsweise können in unse-
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rem Experiment die Atome an verschiedenen Orten des Schirms detektiert werden (vergl.
Abb. 2.3). Eine bestimmte Präparation legt nur die Wahrscheinlichkeiten für die verschie-
denen Messergebnisse fest. Damit die Wahrscheinlichkeitsverteilung experimentell bestimmt
werden kann, müssen Messungen an sehr vielen gleich präparierten Systemen durchgeführt
werden. Der Zustand eines Quantensystems ist dem durchlaufenen speziellen Präparations-
verfahren zugeordnet. Unter einem Quantenzustand (quantum state) verstehen wir dasjenige
mathematische (!) Objekt, das es erlaubt, eindeutig die Wahrscheinlichkeiten für die Ergeb-
nisse aller möglichen Messungen an Systemen zu berechnen, die das zugeordnete Präparati-
onsverfahren durchlaufen haben. Der Quantenzustand charakterisiert somit das Präparations-
verfahren. Wir erwarten also nicht, dass der so eingeführte Quantenzustand eine Entsprechung
in der Realität hat, die dem einzelnen Quantensystem zugeordnet werden kann. Für die Zu-
stände von Objekten in der klassischen Physik ist das der Fall. Weiterhin können verschiedene
Präparationsverfahren auf den gleichen Zustand führen. Diese Verfahren bilden in diesem Sin-
ne eine Äquivalenzklasse von Zustandspräparationen. Die mathematische Beschreibung des
Zustandes und die Berechnung der Wahrscheinlichkeiten werden wir weiter unten postulie-
ren. Durch den Bezug auf Äquivalenzklassen werden auch die individuellen Strukturen der
einzelnen Präparations- und Messapparate gleichen Typs eliminiert.

Es ist wichtig, auf diesem Hintergrund noch eine Sprechweise zu erklären, die sich einge-
bürgert hat und die wir auch verwenden wollen: Häufig sagt man, dass ein einzelnes Quanten-
system sich in einem speziellen Zustand befindet oder einen Zustand hat. Gemeint ist damit,
dass es die entsprechende Präparationsprozedur aus einer bestimmten Äquivalenzklasse von
Präparationen durchlaufen hat. Nur in diesem Sinne ordnet man einem Einzelsystem einen
Zustand zu. Wir sind also in diesem ersten Schritt hin zur Formulierung der Standardinter-
pretation der Quantentheorie sehr zurückhaltend mit Aussagen über Quantensysteme selber.
Weitergehende Festlegungen über Existenz von Eigenschaften wie Energie, Ort usw. werden
wir erst nach Formulierung der Postulate treffen.

Reine Zustände abgeschlossener Quantensysteme Wie für die Klassische Mechanik der
„freie Massenpunkt“ so ist für den Aufbau der Quantentheorie das Konzept des total isolierten
oder freien Systems fundamental. Es handelt sich dabei um eine Idealisierung, die tatsächlich
nur näherungsweise realisiert werden kann. Ihr liegt die Vorstellung zugrunde, dass in gewis-
sen Situationen Quantensysteme so vollständig vom Rest der Welt entkoppelt werden können,
dass alle möglichen Vorgänge in diesem Rest den Zustand des Systems unverändert lassen.
Insbesondere könnte der Rest ohne Einfluss auf das System völlig leer geräumt werden2.

Freie Quantensysteme sind für Anwendungen uninteressant. Wir lassen daher zu, dass sich
der Zustand des Systems zwischen der Zeit der Präparation und der Zeit der Messung ändern
kann. Das äußert sich darin, dass Messungen zu den beiden Zeiten zu verschiedenen Wahr-
scheinlichkeitsverteilungen der Messwerte führen. Wie in der klassischen Mechanik wird für
diese Abweichung vom freien Verhalten eine Ursache angegeben, die hier durch den Trans-
formationsapparat repräsentiert wird. Er beschreibt eine innere Entwicklung des Systems bzw.
äußere konstante oder zeitabhängige Einflüsse wie sie zum Beispiel durch elektromagnetische

2Wie wir in nachfolgenden Kapiteln sehen werden reicht für Quantensysteme die Abschirmung aller von außen
angreifenden Wechselwirkungen nicht aus. Zur totalen Isolierung müssen zusätzlich alle EPR-Korrelationen mit der
Außenwelt verhindert werden. Abschirmung hat so eine neue Qualität erhalten.
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oder gravitative Felder verursacht werden. Wir setzen dabei aber voraus, dass es keine Rück-
wirkung auf das den Einfluss bewirkende äußere System geben soll. Das Quantensystem soll
also für Rückwirkungen „nach außen hin“ abgeschlossen sein. Dies wird im Allgemeinen
ebenfalls nur näherungsweise der Fall sein. Wir nennen diese Systeme abgeschlossene Quan-
tensysteme (closed systems).

Unser Präparationsapparat kann selber aus anderen Präparationsapparaten aufgebaut sein,
die mit wohlbestimmten Häufigkeiten tätig werden und entsprechend unterschiedliche Präpa-
rationen des Quantensystems durchführen. Auch in diesem Fall ist die Prognose der Wahr-
scheinlichkeiten aller Messergebnisse eindeutig möglich. Der alles zusammenfassenden Prä-
parationsapparat präpariert einen Zustand, den man mit Blick auf die vielen beteiligten Prä-
parationsprozeduren statistisches Gemisch oder Gemenge nennt. Der Zustand Ẑg(1, 2) ist ein
Beispiel. Wir werden so präparierte Zustände später noch im Einzelnen untersuchen. Sie sind
spezielle Gemische. Für die erste Fassung der Postulate sollen solche Gemische ausgeschlos-
sen sein. Wir beschränken uns auf Zustände, die in keiner Weise durch eine echte Mischungs-
prozedur erzeugt oder hinsichtlich der Wahrscheinlichkeitsaussage simuliert werden können
und nennen sie reine Zustände (pure states). Neben der Abgeschlossenheit des Systems ist die
Reinheit der Zustände die zweite starke Idealisierung. Wie in der klassischen Mechanik, die
auf einem Postulat für die Messpunkte (Inertialsystem) aufbaut, werden wir schrittweise zur
Beschreibung realistischer physikalischer Situationen übergehen.

Postulate Es stehen uns damit alle Konzepte zur Verfügung, um die erste Fassung der Pos-
tulate zu formulieren. Wir werden alle drei Postulate in späteren Kapiteln

Postulat 1 (reiner Zustand) Ein abgeschlossenes Quantensystem, das sich in einem reinen
Zustand befindet, wird durch seinen Zustandsvektor |ψ〉 beschrieben. Er ist ein normierter
Vektor in einem dem System zugeordneten Hilbert-RaumH.

Wir vereinfachen zunächst unsere experimentelle Grundsituation und gehen direkt zu
Messungen über. Wir denken uns daher den Transformationsapparat herausgenommen oder
fassen ihn als Teil des Präparationsapparates auf. Auch für die Messgeräte soll an dieser Stel-
le zunächst nicht der allgemeinste Fall behandelt werden. Wir beschränken uns vielmehr auf
Projektionsmessungen. Dies ist ein bestimmter fundamentaler Typ von Messungen, der aber
auch bei den späteren Verallgemeinerungen immer wieder eine zentrale Rolle spielen wird.

Postulat 2 (Projektionsmessung, von Neumann-Messung)
a) Eine an einem Quantensystem durchgeführte Projektionsmessung einer physikalischen

Größe (z. B. Energie, Drehimpuls, usw.) wird durch einen hermiteschen Operator be-
schrieben, der auf H wirkt. Wir sprechen von einer Messung der Observablen A und
bezeichnen den Operator mit dem selben Symbol A.

b) Die möglichen Messergebnisse einer Messung der Observablen A sind die Eigenwer-
te an des zugehörigen Observablenoperators A. Wir setzen voraus, dass das Spektrum
diskret ist:

A|uin〉 = an|uin〉, i = 1, . . . , gn (2.1)

Die |uin〉 bilden eine orthonormale Basis. gn ist der Entartungsgrad degeneracy von an.



32 2 Grundkonzepte der Quantentheorie

c) Wenn die Messung der Observablen A an einem System mit normiertem Zustandsvek-
tor |ψ〉 auf das Messergebnis an führt, dann ist der unnormierte Zustandsvektor |ψ̃′

n〉
unmittelbar nach der Messung durch die Projektion von |ψ〉

|ψ〉 → |ψ̃′
n〉 = Pn|ψ〉 (2.2)

mit dem Projektionsoperator

Pn :=
gn∑

i=1

|uin〉〈uin| (2.3)

gegeben, der in den Raum der Eigenvektoren zu an projiziert.

d) Wir bezeichnen mit N(an) die Häufigkeit mit der sich der Messwert an ergibt, wenn
die Messung an N gleich präparierten Systemen im Zustand |ψ〉 durchgeführt wird. Die
relativen Häufigkeiten N(an)

N gehen für alle solchen Ensemble im Grenzfall N → ∞
einheitlich in die Wahrscheinlichkeit p(an) als Grenzwert über:

N(an)
N

N→∞−−−−→ p(an) (2.4)

e) Die Wahrscheinlichkeit p(an) den Messwert an zu erhalten, ist gleich dem Erwartungs-
wert des Projektionsoperators Pn vor der Messung bzw. gleich dem Quadrat der Norm
des Zustandsvektors |ψ̃′

n〉 nach der Messung:

p(an) = 〈ψ|Pn|ψ〉 = ‖ψ̃′
n‖2 . (2.5)

Messungen, die durch dieses Postulat beschrieben werden, heißen Projektionsmessungen (pro-
jection measurements) oder Von-Neumann-Messungen . Da A ein hermitescher Operator ist,
gilt

∑
n Pn = � und damit, wie für die Gesamtwahrscheinlichkeit zu erwarten ist,
∑

n

p(an) = 〈ψ|ψ〉 = 1 . (2.6)

Wir beschreiben schließlich noch die Wirkung des Transformationsapparates für abge-
schlossene Systeme:

Postulat 3 (dynamische Entwicklung zwischen Präparation und Messung)

a) Die Zeitentwicklung eines abgeschlossenen Quantensystems zwischen zwei beliebigen
Zeiten t0 und t1 wird durch einen unitären Zeitentwicklungsoperator (time development
operator) U(t1, t0) beschrieben:

U†(t1, t0) = U−1(t1, t0) . (2.7)

Er erfüllt die Bedingungen U(t0, t0) = � und

U(t2, t1)U(t1, t0) = U(t2, t0) (2.8)

für beliebige Zeiten t0, t1, t2.
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b) Aus den Bedingungen (2.7) und (2.8) ergibt sich (siehe unten) für U(t, t0) die Differenti-
algleichung

i�
∂

∂t
U(t, t0) = H(t)U(t, t0) (2.9)

mit einem hermiteschen Operator H , der explizit zeitabhängig sein kann. � = 1, 0546×
10−34Joule · sec ist die Plancksche Konstante. Es wird postuliert, dass H(t) diejenige
Observable ist, die zur Gesamtenergie des Systems gehört (Hamilton-Operator).

c) Das Schrödinger-Bild (Schrödinger picture) ist eine der vielen möglichen Beschreibun-
gen der Zeitentwicklung. In diesem Bild wird die dynamische Entwicklung in linearer
Weise allein durch den Zustandsvektor gemäß

|ψ(t)〉 = U(t, t0)|ψ(t0)〉 (2.10)

wiedergegeben. Observablen können nur explizit zeitabhängig sein.

Andere Bilder, wie z. B. das Heisenberg- und das Wechselwirkungsbild, ergeben sich mit Hil-
fe der Unitäräquivalenz. Sie sorgt dafür, dass alle Aussagen über Messungen am Ende der
Zeitentwicklung in allen Bildern gleich sind. Wir verwenden i.A. das Schrödinger-Bild.

Warum unitäre Zeitentwicklung? Infolge der Unitarität des Zeitentwicklungsoperators
bleibt der Zustandsvektor |ψ〉 normiert und die Gesamtwahrscheinlichkeit irgendeinen der
Messwerte zu messen ist gleich eins:

∑
n p(an) = 1. Wenn man umgekehrt die Erhaltung der

Gesamtwahrscheinlichkeit während der dynamischen Entwicklung mit einem (noch nicht als
unitär vorausgesetzten) Zeitentwicklungsoperator T (t1, t0) fordert, so muss auch zum Zeit-
punkt t1

∑

n

pt1(an) = 〈T (t1, t0)ψ|T (t1, t0)ψ〉 = 1 (2.11)

für alle Zustände |ψ〉 gelten. Wie wir in Abschn. 1.1.5 gezeigt haben, folgt aus dieser Normer-
haltung die Unitarität von T . Man könnte also das Postulat 3 umformulieren und die Forderung
der Erhaltung der Gesamtwahrscheinlichkeit an die Spitze stellen.

Schrödinger-Gleichung Der inverse Operator U−1 ist wiederum unitär. Die zeitliche Ent-
wicklung eines Quantensystems außerhalb des Messprozesses ist daher umkehrbar. Wählt man
in Gl. (2.8) t2 = t0, dann sieht man, dass der inverse Operator durch

U−1(t1, t0) = U(t0, t1) (2.12)

gegeben ist. Gemäß Gl. (2.10) ist die infinitesimale Zeitentwicklung

|ψ(t0 + dt)〉 = U(t0 + dt, t0)|ψ(t0)〉 (2.13)

durch den Operator U(t0 + dt, t0) bestimmt. Seine Entwicklung nach der Zeit kann in der
Form

U(t0 + dt, t0) = �− i

�
H(t)dt (2.14)
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geschrieben werden, wobei H ein hermitescher Operator (H† = H) mit der Dimension Ener-
gie ist. H kann explizit zeitabhängig sein. Die Unitarität ergibt sich dann mit

U†(t0 + dt, t0)U(t0 + dt, t0) =
(
1 +

i

�
H(t)dt

)(
1− i

�
H(t)dt

)
� � (2.15)

Durch Auswerten von

U(t0 + dt1 + dt2, t0) = U(t0 + dt1 + dt2, t0 + dt0) U(t0 + dt1, t0) (2.16)

kann man leicht zeigen, dass der infinitesimale Zeitentwicklungsoperator von (2.14) auch die
Relation (2.8) bis auf einen Term der Ordnung dt erfüllt.

Die Differentialgleichung für den ZeitentwicklungsoperatorU(t, t0) erhalten wir mit Hilfe
von (2.8) und (2.14). Aus

U(t+ dt, t0) = U(t+ dt, t)U(t, t0) =
(
1− i

�
H(t)dt

)
U(t, t0) (2.17)

folgt

U(t+ dt, t0)− U(t, t0) = − i
�
H(t)dt (2.18)

und damit die Gl. (2.9)

i�
∂

∂t
U(t, t0) = H(t)U(t, t0) . (2.19)

Im Schrödinger-Bild folgt daraus mit Gl. (2.10) für die Zeitentwicklung des Zustandsvektors
die Schrödinger-Gleichung

i�
∂

∂t
|ψ(t)〉 = H(t)|ψ(t)〉 . (2.20)

Physikalische Eigenschaften Die Postulate ermöglichen es uns die bisherige Interpretati-
on zu erweitern. Inwieweit können Quantensysteme bestimmte physikalische Eigenschaften
(properties) haben, wie das in der Standardinterpretation üblicherweise angenommen wird?
Wenn der Zustand ein Eigenvektor |un〉 zum Eigenwert an des Observablenoperators A ist,
dann führt eine Messung von A mit Sicherheit auf das Messergebnis an. Wiederholen wir
die Messung so ergibt sich immer wieder mit Sicherheit an. Dies ist wegen PnPn = Pn die
charakteristische Eigenschaft projektiver Messungen.

Es macht daher Sinn davon zu sprechen, dass das im Zustand |un〉 präparierte System
die physikalische Eigenschaft an besitzt. Sie wird als real angenommen. Wenn A z. B. der
Energie-Operator ist, dann hat das System die Energie an. Ergibt sich für einen allgemei-
nen Zustand |ψ〉 �= |un〉 bei Messung von A der Messwert an, so kann man allerdings nicht
davon sprechen, dass das System die Eigenschaft an schon vorher hatte. Erst durch das Zu-
sammenwirken von Quantensystem und Messapparat im Messprozess geht das System in den
Zustand |un〉 über und der Messapparat zeigt an an. Wir kommen in Abschn. 2.4 auf die oben
beschriebene Interpretation der Quantentheorie noch einmal zurück.
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2.1.3 Kommentare zu den Postulaten

- Die Dimension des Hilbert-Raums eines Quantensystems ist physikalisch charakterisiert
als die maximale Zahl von Zuständen, die in einer Einzelmessung verlässlich von einan-
der unterschieden werden können. Das wird deutlich, wenn man als Observablenoperator
einen hermiteschen Operator nimmt, bei dem keiner der Eigenwerte entartet ist.

- Neben der Dimension des Hilbert-Raums gibt es weitere beobachterunabhängige Cha-
rakterisierungen von Quantensystemen, die keiner Wahrscheinlichkeitsaussage unterlie-
gen. Dazu gehören die klassischen Variablen Masse, Ladung und Betrag des Spins eines
Quantensystems. Obwohl diese Größen Messgrößen sind, tauchen sie in der unrelativis-
tischen Quantentheorie nur als Parameter auf.

- Die Entwicklung des Systems gemäß Postulat 3 ist deterministisch und reversibel. Zeit
ist in der Quantentheorie eine klassische Variable und keine Observable.

- Es wird angenommen, dass nicht nur jeder reine Zustand durch einen Zustandsvektor dar-
gestellt wird, sondern, dass auch jeder Zustandsvektor einen möglichen reinen Zustand
repräsentiert. Das zugehörige Präparationsverfahren lässt sich im Prinzip experimentell
realisieren.

- Den reinen Zustand haben wir als einen Zustand eingeführt, der nicht gemischt ist. Diese
negative Charakterisierung ist für praktische Anwendungen nur bedingt brauchbar. Wir
haben aber mit Postulat 2.c ein Verfahren zur Auszeichnung eines reinen Zustandes ken-
nen gelernt, das leichter operationalisierbar ist und auf das wir zurückgreifen können.
Ein reiner Zustand entsteht als Ergebnis einer Messung, wenn der Messwert nicht ent-
artet ist. Falls Entartung vorliegt muss ein vollständiger Satz paarweise kommutierender
Observablen gemessen werden. Der Satz der zugehörigen Messwerte charakterisiert den
resultierenden Zustandsvektor eindeutig.

- Ein dynamischer Prozess stellt einen beobachtbaren Wechsel in den Wahrscheinlichkeits-
verteilungen dar. Die Postulate gehen davon aus, dass es im Quantenbereich zwei völ-
lig verschiedene Typen dynamischer Prozesse gibt: den irreversiblen probabilistischen
Messprozess (Postulat 2) und die reversible unitäre Zustandsentwicklung zwischen Prä-
paration und Messung (Postulat 3).

- Das legt den Gedanken nahe, das Quantensystem um ein quantentheoretisch beschrie-
benes Messgerät zu einem größeren abgeschlossenen Quantensystem zu erweitern. Man
könnte dann versuchen die gemeinsame Entwicklung im Sinne von Postulat 3 zu be-
schreiben. Das Postulat 2 würde überflüssig. Wir werden später solche Ansätze noch
diskutieren (vergl. Kap. 15). Zunächst bleiben wir dabei, dass mit den Postulaten 2 und
3 zwei ganz verschiedene Dynamiken eingeführt sind: die Messdynamik und die Trans-
formationsdynamik.

- Es ist das mathematische Zusammenwirken von Zustandsvektor und Observable, das das
physikalische Zusammenwirken von Quantensystem und Messapparat im Laboratorium
abbildet. Dabei geht – anders als in der klassischen Physik – nicht nur der Messapparat
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in einen neuen Zustand über, sondern das Quantensystem ebenfalls. Es muss in der Regel
mit einem neuen Zustandsvektor beschrieben werden.

- Es ist zugelassen, dass die Messung das Quantensystem zerstört. Dann entfällt Ab-
schnitt c) von Postulat 2.

- Wir werden annehmen, dass sich zu jedem hermiteschen Operator ein Messapparat finden
lässt, der durch den Operator beschrieben wird. Tatsächlich ist es in den meisten Fällen
eine keineswegs einfache Aufgabe, eine solche experimentelle Realisierung anzugeben.

2.2 Ausblick

Wir haben bei der Formulierung der Postulate eine ganze Reihe von physikalischen Einschrän-
kungen gemacht, die wir in den kommenden Kapiteln Schritt für Schritt aufgeben wollen, bis
sich die ganz allgemeine Struktur der Quantentheorie ergibt.

• Wir haben uns auf reine Zustände beschränkt. Der allgemeine Quantenzustand ist ein
Gemisch (Kap. 4).

• Quantensysteme können aus Untersystemen zusammengesetzt sein, die dann im Allge-
meinen nicht mehr abgeschlossen sind. Die Quantentheorie solcher offenen Systeme ist
zu entwickeln (Kap. 7 und 8). Bei zusammengesetzten Systemen werden wir zum ersten
Mal den verschränkten Zuständen begegnen.

• Projektionsmessungen sind ein spezieller Typ von Quantenmessungen. Wir werden in
Kap. 13 und Kap. 14 und Verallgemeinerungen einführen.

• Für offene Quantensysteme sind dynamische Entwicklungen möglich, die sich nicht
mehr durch unitäre Zeitentwicklungsoperatoren beschreiben lassen. Wir werden sie mit
Hilfe von Superoperatoren formulieren (Kap. 14).

• Was lässt sich erreichen, wenn man versucht, die Messdynamik von Postulat 2 auf die
Dynamik von Postulat 3 zurückzuführen (vergl. Kap. 15)?

Alle diese Fortentwicklungen vertiefen nicht nur das Verständnis der unrelativistischen
Quantentheorie. Sie führen auch auf neue physikalische Effekte und sind die Grundlage von
Quanteninformationstheorie und von Quantencomputern.

Weitere Verallgemeinerungen, die wir aber nicht diskutieren wollen, ließen sich anschlie-
ßen: Wir könnten Observablenoperatoren mit kontinuierlichem Eigenwertspektrum wie Ort
und Impuls einbeziehen. Wenn die Zahl der Quantensysteme nicht fest oder wohlbestimmt
ist, ist zur Beschreibung ein Fock-Raum nötig. In beiden Fällen sind weitere neue Effekte zu
erwarten. Beim Übergang zu Hilbert-Räumen mit abzählbarer unendlicher Dimension können
dagegen die bisherigen Ergebnisse in den physikalisch relevanten Fällen direkt übertragen
werden.

Bevor wir die angekündigten Verallgemeinerungsschritte durchführen, wollen wir im Fol-
genden die Macht der Projektionsmessung kennen lernen und in den Abschnitten 2.4 und 2.5
von höherer Warte einen Blick auf den bisher beschrieben Aufbau der Theorie werfen.
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2.3 Manipulation der Zustandsbewegung durch projektive
Messungen

Quantentheoretische Messungen greifen in die dynamische Entwicklung eines Quantensys-
tems ein und ändern sie ab. Bei Projektionsmessungen ist dieser Eingriff besonders stark. Wir
können durch eine Sequenz von Projektionsmessungen die Entwicklung völlig „einfrieren“
oder aber dem Zustand eine willkürliche Entwicklung aufprägen, ihn also durch Messungen
„treiben“.

2.3.1 Quanten-Zeno-Effekt

Kurzzeitverhalten Wir betrachten folgende Situation: Der Zustand des Systems zur Zeit
t = 0 ist ein Eigenvektor |a〉 einer Observablen A: |ψ(t = 0)〉 = |a〉. A hat ein diskretes
Spektrum. Die unitäre Entwicklung erfolgt mit dem zeitunabhängigen Hamilton-Operator H .
Wir setzen � = 1.

|ψ(t)〉 = e−iHt|a〉 . (2.21)

Nach der Zeit t messen wir die Observable A. Die Wahrscheinlichkeit des Systems nach
dieser Messung wieder im Anfangszustand |a〉 zu finden ist

p(t) = |〈a|e−iHt|a〉|2 . (2.22)

Für kleine Zeiten erhalten wir daraus

p(t) = 1− (∆H)2t2 +O((∆H)4t4) (2.23)

mit der Energie-Unbestimmtheit ∆H

(∆H)2 := 〈a|H2|a〉 − 〈a|H|a〉2 =: τ−2
z . (2.24)

Die Zeit τz heißt Zeno-Zeit. Sie ist umso größer, je ähnlicher |a〉 einem Energie-Eigenzustand
ist. Im Grenzfall ∆H = 0 ergibt sich p(t) = 1. Für ∆H �= 0 hängt p(t) für kleine Zeiten
t� τz quadratisch von t ab.

Quanten-Zeno-Effekt 3 Wir führen nun über eine Zeit T hin N Messungen der gleichen
Observablen A in gleichen Zeitintervallen

τ :=
T

N
(2.25)

mit τ � τz durch. Die bedingte Wahrscheinlichkeit p(N)(T ) nach jeder einzelnen Messung
in der Sequenz immer wieder den Anfangszustand |a〉 zu finden ist mit (2.23)

p(N)(T ) = [p(τ )]N = [p(T/N)]N ≈
(

1− 1
τ2
z

(
T

N

)2
)N

. (2.26)

3Benannt nach dem Pfeil-Paradoxon des Zeno von Elea ca. 495-430 v.Chr.
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Je mehr Messungen im Zeitintervall [0, T ] bei festem T stattfinden, d.h je kleiner das
Zeitintervall τ wird, desto größer ist die Wahrscheinlichkeit, dass das System im Anfangszu-
stand |a〉 bleibt. Im Grenzfall N →∞ bzw. τ → 0 der kontinuierlichen projektiven Messung
hat sich die Messdynamik völlig gegenüber der unitären Entwicklung durchgesetzt und das
System wird im Anfangszustand „eingefroren“:

p(N)(T ) N→∞−−−−→ 1 . (2.27)

Dies nennt man den Quanten-Zeno-Effekt. Anders als die Gl. (2.26) ist der Grenzübergang
in Gl. (2.27) aber tatsächlich unphysikalisch: Der quantentheoretische Messprozess hat eine
gewisse endliche Dauer.

2.3.2 Treiben eines Zustandsvektors durch eine Sequenz von
Projektionsmessungen

Wir können durch Projektionsmessungen die Entwicklung eines Quantenzustandes nicht nur
näherungsweise unterbinden, sondern auch ihren zeitlichen Verlauf bestimmen. Der Hilbert-
Raum des Systems möge zweidimensional sein mit der ONB {|↑〉, |↓〉}. Der Anfangszustand
zur Zeit t = 0 sei |↑〉. Für eine Observable, die einen dagegen gedrehten Eigenzustand

|α〉 = cosα|↑〉+ sinα|↓〉 (2.28)

hat, ist die Wahrscheinlichkeit das System nach der Messung im Zustand |α〉 zu finden

p(α) = cos2 α . (2.29)

Wir führen wieder N Messungen mit Zeitabstand τ = T
N im Zeitintervall [0, T ] durch.

Aber in diesem Fall gehen wir dabei nacheinander jeweils zu neuen Observablenoperatoren
über, die die Eigenzustände |αn〉 mit αn = nωτ und n = 1, 2, 3, . . . besitzen. Wir nehmen
an, dass es keine zusätzliche unitäre Entwicklung gibt. Dann ist die bedingte Wahrscheinlich-
keit das System im Zustand |αn〉 zu finden, wenn es vorher im Zustand |αn−1〉 war

p̃(n) = |〈αn|αn−1〉|2 = cos2 ωτ . (2.30)

Die Wahrscheinlichkeit das System nach jeder dieser Messungen im entsprechenden Eigen-
zustand |α1〉, |α2〉, |α3〉 . . . zu finden ist

p̃(N)(n) =
(

cosω
T

N

)2N
N groß−−−→ 1− ω2T 2

N2
2N N→∞−−−−→ 1 . (2.31)

Im Grenzfall N →∞ bei festem t bzw. für den Zeitabstand τ → 0 stimmt der Systemzustand
stets mit dem Zustand |α〉 von Gl. (2.28) mit α = ωt überein. Dem System ist eine vorgegebe-
ne Zustandsbewegung durch eine Sequenz angepasster projektiver Messungen aufgezwungen
worden. Auch in diesem Fall ist der Grenzfall τ → 0 im strengen Sinne unphysikalisch wegen
der endlichen Dauer des Messprozesses.
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2.4 Die Struktur physikalischer Theorien∗

Wir haben bisher immer nur von der Standardinterpretation gesprochen. Gibt es andere In-
terpretationen? Was versteht man unter der Interpretation einer physikalischen Theorie? Wir
werden uns in den nächsten beiden Kapiteln diesen Fragen zuwenden. Beide Kapitel sind zum
Verständnis der restlichen Kapitel nicht nötig und können daher auch überlesen werden. An-
dererseits spielen gerade die mit Interpretationsproblemen verknüpften naturphilosophischen4

und wissenschaftstheoretischen 5 Fragen sowohl in Grundsatzdiskussionen als auch in popu-
lärwissenschaftlichen Darstellungen eine große Rolle. Gerade die Frage „Was sagt die Quan-
tenphysik über die Wirklichkeit aus?“ übt offenbar auf viele Physiker und Nicht-Physiker eine
große Faszination aus. Das rechtfertigt ein mit einem Stern versehene Anmerkungen dazu, wie
solche Fragen einzuordnen sind. Sie können auch für den mehr „praktisch“ orientierten Leser
nützlich sein, da dadurch manche Konfusion in der Diskussion quantentheoretische Probleme
und der Interpretation von Aussagen vermieden werden kann.

2.4.1 Bauelemente einer physikalischen Theorie∗

Vortheorien Wir schließen das Kapitel 2 über die Grundkonzepte der Quantentheorie mit
einigen strukturellen Überlegungen ab. Dabei soll insbesondere nach der Wirklichkeit gefragt
werden, auf die sich die Quantentheorie bezieht. Hierzu ist es nützlich sich zunächst klar
zu machen wie physikalische Theorien aufgebaut sind. Wir machen hierzu einen Ausflug in
die klassische Physik und betrachten die Elektrodynamik. Typische elementare Experimente
bestehen darin, dass Kräfte gemessen werden, Drähte sich erwärmen und Ähnliches. Kraft-
messung, Wärmemessung und andere Messungen beziehen sich dabei auf Theorien wie Me-
chanik, Thermodynamik usw., die bereits vor der Elektrodynamik und unabhängig von ihr
formuliert werden. Sie sind für die Elektrodynamik Vortheorien. Neben Drähten und Massen
werden wir auch Kraftfelder, Wärme usw. zur physikalischen Wirklichkeit zählen. Es sind
die Elemente der Wirklichkeit, die mit Hilfe der Vortheorien bereits eingeführt wurden. Wenn
wir die Elektrodynamik experimentell und theoretisch entwickeln, gehen wir davon aus, dass
die auf den Vortheorien beruhenden Apparaturen und Messgeräte Teile der physikalischen
Wirklichkeit sind.

Bauelemente Damit können wir bereits am Beispiel der Elektrodynamik mehrere Bauele-
mente einer physikalischen Theorie ablesen. Eine physikalische Theorie ist ein mathematisch-
deduktives Schema, das die folgenden Mindestbestandteile enthält:

1. einen mathematischen Teil MT, der aus mathematischen Größen, Definitionen, Gleichun-
gen, Umformungen, Lösungsprozeduren usw. besteht,

2. einen Teil der Natur, den man Grundbereich GB nennt und von dem angenommen wird,
dass er existiert

*Die mit einem Stern gekennzeichneten Kapitel können bei einem ersten Durchgang überschlagen werden.
4Die Naturphilosophie untersucht die Begriffe, die erforderlich sind um zu verstehen, was die Naturwissenschaf-

ten über die Natur aussagen. Sie ist eine auf die Natur bezogene Ontologie, also eine Lehre vom Sein.
5Wissenschaftstheorie (Erkenntnistheorie) gibt eine logische Analyse wissenschaftlicher Theorien und vergleicht

Theorien miteinander. Themen sind dabei u.a.: Konzepte der Wirklichkeit, Grenzen der Erkenntnis, physikalische
Theorien als Handlungsanweisungen, Wirklichkeit als Konstruktion und vieles mehr.
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3. und Abbildungsprinzipien AP, die man auch Korrespondenzregeln nennt, die den Grund-
bereich GB und Teile vom mathematischen Teil MT aufeinander beziehen.

Erst dadurch, dass die Abbildungen zu den mathematischen Relationen hinzukommen, ent-
steht eine physikalische Theorie. Typischerweise können die mathematischen Größen dann
auch dimensionsbehaftet sein.

So wird z. B. in der Elektrodynamik der Buchstabe F im mathematischen Teil mit dem
Wort „Kraft“ bezeichnet und eine Abbildung zu dem hergestellt, was man z. B. mit realen
Federwaagen messen oder an der Bewegung von Massen ablesen kann. Es werden mit den
Abbildungsprinzipien in den Grundbereich nur Abbildungen in den Wirklichkeitsbereich der
Vortheorien hergestellt. Die Vortheorie ist in diesem Fall die Mechanik bzw. Thermodynamik.
Zur Beschreibung und zur Vorhersage von Experimenten zur Elektrodynamik genügen diese
Abbildungen aber völlig. Die Messgrößen entstammen diesem Bereich. Zwar gibt es im ma-
thematischen Teil der Theorie z. B. auch das Symbol j, zu dem wir „elektrische Stromdichte“
sagen, es reicht aber für die experimentelle Aussage, dass wir der Theorie entnehmen können,
dass ein Draht sich erwärmt. Wir können so Ströme messen. Es ist nicht nötig hierfür voraus-
zusetzen, dass es elektrische Ströme „in Wirklichkeit“ gibt und sie irgendwie durch Drähte
„fließen“. Das Wort Strom dient zunächst dann nur dazu, sich über Teile der Theorie schneller
verständigen zu können.

Interpretation Wir verstehen unter der Interpretation (interpretation) einer Theorie die An-
gabe der Abbildungsprinzipien, mit denen Symbole des mathematischen Teils MT der phy-
sikalischen Theorie durch Verknüpfung mit Teilen der Wirklichkeit physikalisch interpretiert
werden. Es werden für einige mathematische Symbole physikalische Referenzen angegeben.
In diesem Sinne ist eine physikalische Theorie ein teilweise interpretiertes formales System.
Man sollte streng dazwischen unterscheiden, ob zu gleichem MT die Abbildungsprinzipien
geändert oder erweitert werden, oder ob in einer Alternativtheorie auch der MT geändert und
z. B. andere Feldgleichungen postuliert werden. Die bisher geschilderte Interpretation, die sich
nur auf den Wirklichkeitsbereich der Vortheorie bezieht, wollen wir die Minimalinterpretation
(minimal interpretation) nennen. Sie umfasst den Minimalbestand an Abbildungsprinzipien,
die nötig sind, um für den mathematischen Teil den Anschluss an die Beobachtungsebene
zu erreichen. Auf der Grundlage der Minimalinterpretation kann über die empirische Richtig-
keit einer physikalischen Theorie entscheiden werden. Darüber hinausgehende Elemente einer
Interpretation können weder experimentell bestätigt noch widerlegt werden. Es sind viele sol-
cher konsistenten Erweiterungen und damit viele Interpretationen denkbar. Sie sind weder
richtig noch falsch. Es sind Fragen der Erklärungskraft und Verstehbarkeit, die dazu motivie-
ren können über die Minimalinterpretation hinauszugehen. Von erweiterten Interpretationen
können wertvolle Impulse für neue Forschungsprogramme ausgehen. Die Suche nach einer
Theorie des Quantenmessprozesses ist ein Beispiel (vergl. Kap. 15). Wir machen noch darauf
aufmerksam, dass der Begriff Minimalinterpretation in der Literatur unterschiedlich verwen-
det wird.
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2.4.2 Theoretische Terme∗

Schon das Beispiel Elektrodynamik zeigt, dass die meisten Physiker über die Minimalinter-
pretation hinausgehen. Im mathematischen Teil der Elektrodynamik tauchen neben Termen,
die eine Abbildung in die Ausschläge von Messgeräten erlauben, weitere Terme wie z. B.
das elektrische Feld E oder der Strom j auf, von denen ebenfalls eine Entsprechung in der
Realität angenommen wird. Die hierzu gehörigen zusätzlichen Abbildungsprinzipien wollen
wir hypothetische Abbildungsprinzipen hAP nennen. Der Bereich in den sie abbilden, heißt
erschlossener Wirklichkeitsbereich eWB und die entsprechenden Terme der mathematischen
Theorie nennt man theoretische Terme (vergl. Abb. 2.5). Üblicherweise herrscht Konsens dar-
über, dass man die hypothetischen Abbildungsprinzipien zur Theorie hinzunimmt und so zu-
gleich die physikalische Wirklichkeit über den Grundbereich hinaus erweitert. Wir wollen das
mit Blick auf die Quantentheorie die Standardinterpretation (standard interpretation) nennen.
Auch diese Bezeichnungen werden in der Literatur unterschiedlich verwendet.

hAP

AP

MT

GB

eWB

Abbildung 2.5: Die Abbildungsprinzipien AP beziehen den mathematischen Teil MT einer physikali-
schen Theorie und den Grundbereich GB der physikalischen Wirklichkeit aufeinander. Hypothetische
Abbildungsprinzipien hAP verknüpfen mit einem erschlossenen Wirklichkeitsbereich eWB.

Es sollte aber deutlich geworden sein, dass die Festlegung eines erschlossenen Wirklich-
keitsbereichs ein Element der Willkür enthält und dass mit ihm die Wirklichkeit zumindest in
Teilen theorieabhängig wird. Noch aus einem anderen Grund entsteht die physikalische Welt
mit Hilfe der Theorie. Alternativtheorien, die die gleichen Erfahrungen in anderer Weise be-
gründen, können in diesem Sinne verschiedene Wirklichkeiten haben. Beispiele dafür sind ei-
ne speziell-relativistische Gravitationstheorie in der flachen Raum-Zeit, die mit dem Konzept
des Gravitationsfeldes arbeitet und die Allgemeine Relativitätstheorie, in der das Gravitations-
feld völlig eliminiert und die Raum-Zeit gekrümmt ist. Die jeweilige Standardinterpretation
beantwortet die Frage nach der Existenz eines Gravitationsfeldes unterschiedlich.

Die Elektrodynamik zeigt allerdings weiterhin, dass auch in der Standardinterpretation
keineswegs zu allen Größen der mathematischen Theorie eine Entsprechung in der Wirklich-
keit behauptet wird. So wird üblicherweise dem eichabhängigen Vektorpotential an einem Ort
keine Realität zugesprochen. Vektorpotentiale werden nur als rechnerische Hilfsmittel aufge-
fasst. In der Coulomb-Eichung ändert sich das Vektorpotential instantan. Es wird damit aber
kein realer Ausbreitungsvorgang mit Überlichtgeschwindigkeit verbunden.
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2.5 Interpretationen der Quantentheorie und physikalische
Wirklichkeit∗

2.5.1 Minimalinterpretation∗

Wie fügt sich die Quantentheorie in das im vorigen Kapitel beschriebene Schema ein? Die
Minimalinterpretation der Quantentheorie schreibt nur den Präparations-, Transformations-
und Messgeräten Realität zu. Es gibt nur deren Wirklichkeit und darüber hinaus keine
hypothetischen Abbildungsprinzipien hAP und keine erschlossene Wirklichkeit eWB. Die
Abbildung AP erfolgt in die klassisch bechreibbare Realität (z. B. Zeigerausschläge der
Messgeräte). Das empirische Wissen in der Quantentheorie kann mit den Elementen der klas-
sischen Physik formuliert werden. Alle anderen Bestandteile des mathematischen Teils MT
der Quantentheorie sind nur rechnerische Hilfsmittel. Diese Einstellung lässt sich gut mit der
zugespitzten Formulierung von Niels Bohr charakterisieren: „There is no quantum world.“6.
Elektronen, Atome usw. gibt es nicht. Man wird diese Einstellung wissenschaftstheoretisch
als instrumentalistisch und pragmatisch charakterisieren. Der Vorteil der Beschränkung auf
die Minimalinterpretation liegt in der Vermeidung von scheinbaren Paradoxien. Das ist er-
kauft um den Preis, dass keine Veranschaulichung und kaum physikalische Intuition angeregt
wird.

Die einzige Aufgabe der Quantentheorie in dieser Interpretation ist es, präzise Vorhersa-
gen über mögliche Ergebnisse von Messungen und die Wahrscheinlichkeiten ihres Eintretens
zu machen. Weitere Aussagen sind überflüssig und werden nicht gemacht. Objektivität ist
garantiert. Nach Abschluss der Messung kann ein Beobachter ein Messergebnis nur ablesen
aber nicht mehr beeinflussen. Es ist Teil der klassischen Welt. Die so gewonnenen empirischen
Aussagen (z. B. über Zeigerausschläge) lassen sich im Rahmen der klassischen Physik als
der zugehörigen Vortheorie beschreiben. Sie können aber nicht im Rahmen der klassischen
Physik erklärt, bzw. theoretisch begründet werden. Man braucht dazu den mathematischen
Teil MT der Quantentheorie und einige wenige Abbildungsprinzipien. Es gibt in der Literatur
keine einheitlichen Festlegungen darüber, was man unter der Kopenhagener Interpretation
verstehen soll. Die Minimalinterpretation gibt aber sicher charakteristische Züge dieser
Interpretation wieder.

2.5.2 Standardinterpretation∗

Die unter Physikern allseits akzeptierte Standardinterpretation geht darüber hinaus. Man
stellt fest, dass zu einzelnen Quantensystemen Eigenschaften gehören, die abtrennbar sind
von Präparation und Registration, die also nicht Relationen zwischen dem System und dem
Präparations- und Registrationsgeräten beschreiben. Die zugehörigen physikalischen Größen
sind elektrische Ladung, Baryonenladung, Masse und Betrag des Spins eines Elementarteil-

6„There is no quantum world. There is only an abstract quantum physical description. It is wrong to think, that the
task of physics is to find out how nature is. Physics concerns with what we can say about nature.“ Nach [Pet 63, S.
12].
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chens. Sie heißen auch klassische Observable7. Da sie sich zum Teil auf die Vortheorien zur
Quantentheorie beziehen, ist es sinnvoll, auch diesen Eigenschaften eine objektive Realität
zuzusprechen und damit zugleich auch dem zugehörigen Quantensystem. Quantensysteme
haben dann reale Träger in einer erschlossenen Wirklichkeit, die man Quantenobjekte (quan-
tum objects) nennen kann. Man kann von einzelnen Quantenobjekten wie Atomen, Elektro-
nen usw. sprechen und verbindet damit in der Standardinterpretation folgende Vorstellung:
Die makroskopischen Effekte der Messgeräte werden klassisch beschrieben, z. B. in der Form
von Zeigerausschlägen. Sie stellen in dieser Interpretation gewissermaßen nur die „Oberflä-
che“ dar und lassen sich auf die Wirkungen real vorhandener Quantensysteme bzw. Quante-
nobjekte zurückfahren. Es gibt eine Quantenwelt. Es gibt keine physikalische Theorie ohne
Interpretation. Die Postulate spiegeln in ihrer Formulierung in Abschn. 2.1.2 bereits die Ab-
bildungsprinzipien der Standardinterpretation wider.

Wiederum wird aber nicht von allen Termen des mathematischen Teils MT behauptet, dass
sie in Elemente der Wirklichkeit abgebildet werden können. Anders als beim elektrischen Feld
gibt es in der Quantentheorie für den durch ein Präparationsverfahren festgelegten Zustands-
vektor (bzw. Dichteoperator) keine Entsprechung in der Wirklichkeit. Er erlaubt nur im Zusam-
menwirken mit den Messoperatoren, die Berechnung von Wahrscheinlichkeitsverteilungen. Er
ähnelt damit in seinem Status dem Vektorpotential in der Elektrodynamik. Was sich unter dem
Einfluss eines Transformationsapparates deterministisch entwickelt, sind die vorhersagbaren
Wahrscheinlichkeitsverteilungen von Messresultaten. Der Zeitentwicklungsoperator U(t, t0)
repräsentiert diese Entwicklung.

Auch wenn das im Folgenden nicht immer explizit durchgeführt wird, kann es für das
Verständnis nützlich sein sich klar zu machen, ob eine Aussage sich auf die volle Standardin-
terpretation bezieht oder mit weniger Interpretation auskommt.

Weitere Interpretationen Die Viele-Welten-Interpretation der Quantentheorie ist ein Bei-
spiel für eine alternative Interpretation, die unter Beibehaltung des mathematischen Teils an-
dere Aussagen über die Wirklichkeit macht. Wir werden sie in Abschn. 15.5 kurz besprechen.

2.6 Ergänzende Themen und weiterführende Literatur

• Wissenschaftstheorie: [Sch 64], [Mai 96], [Mit 96], [Bal 70], [Hom 97], [Bub 97],
[Mai 96], [Stö 86], [Lal 01], [DG 71], [Esf 02a], [Mut 98].

• Zeno-Effekt: [NPN 97, S. 172], [Hom 97, Kap. 6].

• Hinweise auf Experimente zum Zeno-Effekt: [IHB 90], Literatur zur Diskussion über
dieses Experiment und Vorschläge weiterer Experimente in [NPN 97, S. 177].

• Theoretische Terme und Abbildungsprinzipien: [Sch 90], [Sch 88].

• Interpretation der Quantentheorie: [FP 00], [Lud 55], [Lud 89] [Lud 90], [Omn 94],
[Lud 96].

7Die Zustände von Quantenobjekten, die sich in diesen Eigenschaften unterscheiden, können nicht superponiert
werden. Linearkombinationen solcher Zustände sind physikalisch nicht realisiert (Superauswahlregeln).
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3 Die einfachsten Quantensysteme: Qubits

Alle Quantensysteme, die nicht mehr als zwei linear unabhängige Zustände besitzen, werden
in einem zweidimensionalem Hilbert-Raum H2 beschrieben. Sie sind die einfachsten nicht
trivialen Quantensysteme. Quantenzustände im H2 heißen mit Blick auf ihre spätere Rolle in
der Quanteninformationstheorie Qubits. Sie sind von der Form

|ψ〉 = c0|0〉+ c1|1〉 , |c0|2 + |c1|2 = 1 (3.1)

mit der ONB {|0〉, |1〉}, die auch Rechenbasis oder Standardbasis genannt wird. Observablen
besitzen zwei Messwerte.

Wichtige physikalische Realisierungen von Qubit-Systemen sind:

• 2-Niveau-Atom (auch Atome mit mehr Niveaus, wenn nur zwei Niveaus in einem Prozess
eine Rolle spielen), Ionen mit zwei Energieniveaus

• Polarisation von Spin- 1
2 -Teilchen

• Polarisation einzelner Photonen (horizontal↔ vertikal oder linksdrehend↔ rechtsdre-
hend)

• Strahlengänge in einem Zwei-Wege-Interferometer, in dem sich genau ein Photon befin-
det.

• Quantenpunkte

• Moden des elektromagnetischen Feldes in einer Kavität

Es gibt weitere Qubit-Systeme. Auch der Doppelspalt und das Stern-Gerlach-Experiment las-
sen sich vereinfacht so beschreiben.

Wir haben in Abschn. 1.2.1 die Operatorbasis der Übergangsoperatoren kennen gelernt.
Für Rechnungen im H2 ist die Operatorbasis, die aus dem Einsoperator � und den σ-
Operatoren (Pauli-Operatoren) besteht, ein wichtiges Hilfsmittel. Pauli-Operatoren werden
üblicherweise im Zusammenhang mit dem Spin als innerem Drehimpuls eingeführt. Da sie
aber bei anderen Qubit-Systemen im Allgemeinen physikalisch nicht mit einem Drehimpuls
zusammenhängen, können wir von dieser Bedeutung zunächst absehen. Wir führen Pauli-
Operatoren in Abschn. 3.1 ein und beschreiben in Abschn. 3.2 und Abschn. 3.3 eine sehr
häufig verwendete Veranschaulichung von Quantenzuständen im H2 und ihrer Dynamik mit
Hilfe der Bloch-Kugel.

Qubit-Systeme sind die Träger einer Einheit der Quanteninformation. Die Verarbeitung
von Quanteninformation wird wie die Verarbeitung von klassischer Information mit Hilfe von

Verschränkte Systeme: Die Quantenphysik auf neuen Wegen. Jürgen Audretsch
Copyright c© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40452-X

Jürgen Audretsch

Verschränkte Systeme  
Die Quantenphysik auf neuen Wegen

© 2005 WILEY-VCH Verlag GmbH & Co.
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elementaren Operationen beschrieben, den sogenannten logischen Schaltungen oder Gattern
(gates). Quantengatter (quantum gates) sind unitäre Transformationen oder Messungen auf
demH2. Wir beschreiben unitäre Gatter, die auf nur einem Qubit wirken, in Abschn. 3.4.

Realisierungen von Qubit-Systemen und Quantengattern werden in Abschn. 3.5 bis 3.7
vorgestellt.

3.1 Pauli-Operatoren

Operatorbasis Wir führen im H2 drei hermitesche Operatoren σk mit k = 1, 2, 3 oder
k = x, y, z ein

σ†
k = σk, (3.2)

für die wir

σ2
k = � (3.3)

fordern. Da σk �= � sein soll und die Eigenwerte reell sind, folgt daraus und aus der Hermite-
zität, dass jeder Operator σk die Eigenwerte (+1) und (−1) besitzt. Wie die Spektralzerlegung
zeigt, sind die σk damit zugleich unitär

σ†
k = σ−1

k . (3.4)

und spurfrei

tr[σk] = 0 . (3.5)

Die Abb. 1.2 verdeutlicht, wie speziell die σ-Operatoren sind. Abbildung 1.2 zeigt auch, dass
man die Forderungen Hermitezität, Unitarität und σ �= � an die Spitze stellen könnte. Die
Eigenwerte +1 und −1 sowie die Gl. (3.3) und (3.5) wären dann die Folge.

Wir wollen die σk durch eine Forderung, die sie untereinander verknüpft, zu einer Ope-
ratorbasis ausbauen (vergl. Abschn. 1.2.1). Das wird erreicht, wenn wir in Ergänzung zu
Gl. (3.2) und (3.3) noch die Bedingung

tr[σiσj ] = 2δij (3.6)

erfüllen, indem wir vom Antikommutator ([A,B]+ := AB + BA)

[σi, σj ]+ = 2δij� (3.7)

verlangen. Die Operatoren { 1√
2
�, 1√

2
σk} bilden dann eine orthonormale Operatorbasis im

Liouville-Raum. Jeder Operator A lässt sich in der Form

A =
1
2

tr[A]�+
1
2

3∑

k=1

tr[Aσk]σk (3.8)

darstellen.
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Drehimpulsoperatoren Die zweite wichtige Eigenschaft der σk ergibt sich durch die fol-
gende Festlegung des Kommutators ([A,B]− := AB − BA) durch die die Gl. (3.7) ergänzt
wird:

[σi, σj ]− = 2i
3∑

k=1

εijkσk. (3.9)

εijk ist der in allen Indizes total antisymmetrische Tensor mit ε123 = 1. Hierdurch werden
die σk formal proportional zu Drehimpulsoperatoren und können Observable des 2-Niveau-
Systems Spin beschreiben. Zusammenfassend schreiben wir für Gl. (3.7) und (3.9)

σiσj = δij�+ i

3∑

k=1

εijkσk. (3.10)

Die hermiteschen Operatoren σk, die Gl. (3.10) erfüllen, heißen Pauli-Operatoren (Pauli ope-
rators) oder σ-Operatoren. Die Gleichungen zeigen, dass die Indizes völlig gleichberechtigt
eingehen. Dies lässt sich in manchen Rechnungen ausnutzen.

Als Grundlage einer indexfreien Formulierung führen wir den vektoriellen Pauli-Operator
σ := σxex + σyey + σzez ein. Die Vektoren ex, ey und ez sind dabei die kartesischen
Basisvektoren des �3. Mit Hilfe von Gl. (3.10) lässt sich für beliebige Vektoren a,b ∈ �3

(σa)(σb) = (ab)�+ iσ(a× b) (3.11)

ableiten. Diese Gleichung geht für beliebige normierte Vektoren e in

(σe)(σe) = � (3.12)

über. Damit erhalten wir mit Hilfe der Spektralzerlegung für die Entwicklung der Exponenti-
alfunktion

exp(iθeσ) = �+ iθeσ − 1
2
θ2 (eσ)2
︸ ︷︷ ︸

=�

+
i

3!
θ3eσ ± . . . (3.13)

und nach geeigneter Zusammenfassung die häufig benutzte Relation

exp(iθeσ) = (cos θ)�+ i(sin θ)eσ. (3.14)

Matrixdarstellung Wenn wir die ONB der Eigenvektoren |0〉 und |1〉 von σz mit den Ei-
genwerten (+1) bzw. (−1)

σz|0〉 = +|0〉 (3.15)

σz|1〉 = −|1〉
als Rechenbasis nehmen, dann ist die Matrixdarstellung von σz

σz =
(

1 0
0 −1

)
. (3.16)
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Mit Hilfe der Gl. (3.2) und(3.10) können die Matrixdarstellungen von σx und σy in der
Rechenbasis im Einzelnen berechnet werden. Hier soll nur das Ergebnis angegeben werden.
Wir bezeichnen diese Pauli-Matrizen ebenfalls mit dem gleichen Symbol wie den Operator
und fügen die dyadische Darstellung direkt an:

σx =
(

0 1
1 0

)
= |0〉〈1|+ |1〉〈0|

σy =
(

0 −i
i 0

)
= −i(|0〉〈1| − |1〉〈0|) (3.17)

σz =
(

1 0
0 −1

)
= |0〉〈0| − |1〉〈1| .

Es ist nützlich, die Wirkung der σ-Operatoren auf die Vektoren der Rechenbasis zu notie-
ren:

σx|0〉 = |1〉 σxvertauscht (bit flip)

σx|1〉 = |0〉

σy|0〉 = i|1〉 σyvertauscht und fügt die relative Phase ±i ein (3.18)

σy|1〉 = −i|0〉

σz|0〉 = +|0〉 σzfügt die relative Phase ±1 ein (phase flip).

σz|1〉 = −|1〉.

Damit lassen sich schließlich in der Rechenbasis die orthonormalen Eigenzustände von σx
und σy direkt als

σx|0x〉 = |0x〉 σx|1x〉 = −|1x〉
|0x〉 =

1√
2
(|0〉+ |1〉) |1x〉 =

1√
2
(|0〉 − |1〉) (3.19)

und

σy|0y〉 = |0y〉 σy|1y〉 = −|1y〉
|0y〉 =

1√
2
(|0〉+ i|1〉) |1y〉 =

1√
2
(|0〉 − i|1〉) (3.20)

bestätigen.

3.2 Veranschaulichung von Qubits auf der Bloch-Kugel

Wir führen eine auf der Zerlegung nach der Operatorbasis beruhende mathematische Vor-
überlegung durch, auf die wir uns später häufiger beziehen werden. Ein Operator ρ mit den
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Eigenschaften ρ† = ρ und tr[ρ] = 1 lässt sich mit Gl. (3.8) in der Form

ρ =
1
2
(�+ rσ) (3.21)

mit reellem Vektor r

r := tr[ρσ] (3.22)

schreiben. Mit Gl. (3.5) und (3.10) gewinnen wir daraus

tr[ρ2] =
1
4

tr[�+ 2rσ +
∑

i,j

rirjσiσj ]

=
1
2
(1 + |r|2). (3.23)

Wir betrachten als Spezialfall den mit einem beliebigen normierten Vektor |ψ〉 gebildeten
Operator ρ := |ψ〉〈ψ|. Für ihn gilt ρ2 = ρ sowie tr[ρ2] = tr[ρ] = 1 und mit (3.23) folgt
|r| = 1. Einsetzen von ρ in (3.22) liefert als Interpretation von r den Erwartungswert

r = 〈ψ|σ|ψ〉 , (3.24)

sowie 〈ψ|rσ|ψ〉 = rr = 1 und damit als weiteres Resultat

rσ|ψ〉 = |ψ〉. (3.25)

Wir haben zwei Ergebnisse gefunden: Für einen beliebigen normierten Zustandsvektor |ψ〉 ∈
H2 ist der Erwartungswert des vektoriellen Pauli-Operators σ ein reeller Vektor r ∈ �3

vom Betrag 1. Zugleich ist |ψ〉 Eigenvektor des hiermit gebildeten Operators rσ zum Eigen-
wert (+1).

Bloch-Kugel Über den Erwartungswert von σ ist gemäß Gl. (3.24) jedem Qubit |ψ〉 ein-
deutig ein Vektor r im �3 zugeordnet, der Bloch-Vektor genannt wird. Seine Spitze liegt auf
der Oberfläche der Einheitskugel (Bloch-Kugel) (vergl. Abschn. 3.1). Wir nennen den damit
bezeichneten Punkt den Bloch-Punkt. Mit Hilfe von r können wir Zustandsvektoren |ψ〉 sowie
die Auswirkungen der Messdynamik und der unitären Dynamik auf |ψ〉 einfach dreidimen-
sional veranschaulichen. Darin liegt die Bedeutung der Bloch-Vektoren.

rσ ist hermitesch. r ist normiert und Gl. (3.12) gilt entsprechend. Wir können daher die
Argumentation vom Anfang des Kapitels übertragen: Die Eigenwerte der vektoriellen Pauli-
Operatoren rσ sind (+1) und (−1). Der Eigenvektor zu (+1) ist |ψ〉 mit Bloch-Vektor r von
Gl. (3.24). Der zweite Eigenvektor zu rσ steht auf |ψ〉 senkrecht (〈χ|ψ〉 = 0) und erfüllt

rσ|χ〉 = −|χ〉 . (3.26)

Multiplikation mit 〈χ| führt mit |〈χ|σ|χ〉| = −1 (vergl. Gl. (3.24)) auf

〈χ|σ|χ〉 = −r . (3.27)
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|1y〉

|1z〉

|0z〉

|0x〉

|χ〉

ez

|0y〉ey

−r

ex

r

|ψ〉

|1x〉

Abbildung 3.1: Bloch-Kugel mit den Bloch-Vektoren zu den Eigenzuständen der Pauli-Operatoren. Die
Bloch-Vektoren r und −r zu zwei beliebigen orthonormalen Qubits |ψ〉 und |χ〉 liegen spiegelsymme-
trisch zum Ursprung.

Der Bloch-Vektor zum Eigenwert (−1) entsteht durch Spiegelung von r am Ursprung (vergl.
Abschn. 3.1)

Allgemein gehören zu zwei orthogonalen Qubits am Ursprung gespiegelte Bloch-
Vektoren. Der zugehörige vektorielle Pauli-Operator ergibt sich direkt über den Bloch-Vektor
r als rσ. Speziell finden wir, dass die Bloch-Vektoren zu den Eigenzuständen der drei Pauli-
Operatoren für die Eigenwerte (+1) mit den Basisvektoren ex, ey, ez übereinstimmen. Für
die Eigenwerte (−1) liegen die Bloch-Vektoren in der jeweiligen Gegenrichtung. Dies ist in
Abschn. 3.1 dargestellt. Wir wollten noch die Bloch-Punkte mit Hilfe von Polarkoordinaten
durchparametrisieren. Ein beliebiges Qubit |ψ〉 (vergl. Gl. (3.1)) lässt sich stets mit Hilfe von
2 Parametern θ und ϕ in der Form

|ψ〉 = e−i
ϕ
2 cos

(
θ

2

)
|0〉+ ei

ϕ
2 sin

(
θ

2

)
|1〉 (3.28)

= e−i
ϕ
2

{
cos

(
θ

2

)
|0〉+ eiϕ sin

(
θ

2

)
|1〉
}

(0 ≤ ϕ ≤ 2π, 0 ≤ θ ≤ π) darstellen. Mit Gl. (3.17) und (3.24) berechnen wir damit leicht für
den zu |ψ〉 gehörigen Bloch-Vektor

r = (sin θ cosϕ, sin θ sinϕ, cos θ). (3.29)

Die Parameter θ und ϕ erhalten also bei der Veranschaulichung auf der Bloch-Kugel gerade
die Bedeutung der Polarkoordinaten des Bloch-Punktes (Abb. 3.2). Charakteristisch ist das
Auftreten der halben Polarwinkel beim zugehörigen Zustandsvektor von Gl. (3.28).

Das hat zur Folge, dass einerseits zu gegebenem Qubit |ψ〉 der Bloch-Vektor r wohlbe-
stimmt ist, dass aber andererseits ein Bloch-Vektor zwei verschiedenen Qubits zugeordnet ist.
Wenn wir z. B. den Bloch-Vektor um die x-Achse in der y–z-Ebene drehen (ϕ = π

2 ), dann
kehrt er nach einer 2π-Drehung (ϑ = 0 → ϑ = π → ϑ = 0) wieder in seine Ausgangsla-
ge zurück. Gleichung (3.28) zeigt, dass dabei der zugehörige Zustandsvektor das Vorzeichen
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x

z

y
θ

r

ϕ

Abbildung 3.2: Polarkoordinaten veranschaulichen die Winkel θ und ϕ von Gl. 3.28.

wechselt |ψ〉 → −|ψ〉. Erst nach einer vollen 4π-Drehung des Blochvektors erreicht der Zu-
standsvektor wieder seine Ausgangsstellung |ψ〉 → +|ψ〉.

Es ist nützlich noch die Komponentendarstellungen des Operators rσ in der Rechenbasis
zu notieren:

rσ =
(

cos θ e−iϕ sin θ
eiϕ sin θ − cos θ

)
. (3.30)

Wir bezeichnen die Eigenvektoren von rσ mit |0r〉 und |1r〉. Der Eigenvektor |0r〉 = |ψ〉
wurde schon in Gl. (3.28) angegeben. Wir ergänzen den Eigenvektor |1r〉 = |χ〉 zum Eigen-
wert −1:

|0r〉 = |ψ〉 =
(
e−iϕ/2 cos (θ/2)
eiϕ/2 sin (θ/2)

)
; |1r〉 = |χ〉 =

(−e−iϕ/2 sin (θ/2)
eiϕ/2 cos (θ/2)

)
. (3.31)

3.3 Veranschaulichung der Messdynamik und der unitären
Dynamik

Projektive Messung Wir haben in den Postulaten zwei Dynamiken eingeführt, die Mess-
dynamik und die unitäre Dynamik. Die Messdynamik der projektiven Messung lässt sich ein-
fach veranschaulichen. Ein Observablenoperator im zweidimensionalen Hilbert-RaumH2 der
Qubits hat zwei orthogonale Eigenvektoren |0〉 und |1〉. Wir können sie immer als Eigenvek-
toren von σz auffassen. Auf der Bloch-Kugel legen wir hierzu die Richtung von ez in die
Richtung des Bloch-Vektors von |0〉. Eine Messung dieser Observablen bewirkt dann einen
sprunghaften Übergang von einem Ausgangszustand |ψ〉 in den Endzustand |0〉 oder |1〉 je
nach Messergebnis (siehe Abb. 3.3).

Wenn wir |ψ〉 in der Form

|ψ〉 = c0|0〉+ c1|1〉 (3.32)

schreiben, dann sind die zugehörigen Wahrscheinlichkeiten |c0|2 bzw. |c1|2. Die Projektion rz
des Bloch-Vektors r auf die z-Achse ist mit Gl. (3.29)

rz = cosϑ = cos2
ϑ

2
− sin2 ϑ

2
= |c0|2 − |c1|2 . (3.33)
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|ψ〉

|0z〉

|1z〉

Abbildung 3.3: Bei einer Projektionsmessung eines Observablenoperators mit Eigenvektoren |0z〉 und
|1z〉 wird der Zustandsvektor |ψ〉 sprunghaft je nach Messergebnis in |0z〉 oder |1z〉 überführt. Darge-
stellt sind die entsprechenden Bloch-Punkte auf der Bloch-Kugel.

Da |c0|2 + |c1|2 gilt, folgt daraus für die Wahrscheinlichkeit |c0|2

|c0|2 =
rz + 1

2
. (3.34)

Unitäre Transformation Wir wollen ergänzend die Wirkung der unitären Dynamik veran-
schaulichen, die mit einem unitären Operator U einen Ausgangszustand |ψ〉 gemäß

|ψ′〉 = U |ψ〉 (3.35)

in den Endzustand |ψ′〉 überführt. Dazu gehen wir von einigen mathematischen Eigenschaften
unitärer Transformationen und ihrer Matrixdarstellungen imH2 aus.

Sowohl die Zeilen als auch die Spalten einer unitären Matrix sind untereinander paarweise
orthonormal (

∑
j U

∗
ijUkj = δik). Die Auswertung der entsprechenden Relationen, die wir hier

nicht vorführen, zeigt, dass für eine unitäre Matrix U im H2 vier reelle Parameter α, β, γ und
δ existieren, sodass U sich als Matrix

U = eiκ
(
e−iλ/2 cos (µ/2)e−iν/2 −e−iλ/2 sin (µ/2)eiν/2

eiλ/2 sin (µ/2)e−iν/2 eiλ/2 cos (µ/2)eiν/2

)
(3.36)

oder als Operatorprodukt

U = exp(iκ) exp
(
− i

2
λσz

)
exp

(
− i

2
µσy

)
exp

(
− i

2
νσz

)
(3.37)

schreiben lässt. Nur die Pauli-Operatoren σy und σz tauchen auf. Es ist geschickt noch den
unitären Operator Û einzuführen

U =: eiκÛ , (3.38)
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der mit U bis auf den globalen Phasenfaktor eiκ übereinstimmt. An Gl. (3.36) lesen wir direkt
die folgenden Eigenschaften der Matrixdarstellung von Û ab:

Û00 = Û∗
11

Û10 = −Û∗
01 (3.39)

Û00Û11 − Û01Û10 = 1 .

Wir zerlegen Û nach der Operatorbasis { 1√
2
�, 1√

2
σk} gemäß Gl. (3.8)

Û = v0�− ivσ . (3.40)

wobei v0 und v durch Spurbildungen bestimmt sind:

v0 =
1
2

tr[Û ] , v =
i

2
tr[Ûσ] . (3.41)

Mit Hilfe der Relationen (3.39) lässt sich einfach zeigen, dass v0 und v reell sind. Die Unita-
ritätsrelation Û†Û = � ist mit Gl. (3.11) gleichbedeutend mit der Bedingung

v2
0 + vv = 1 . (3.42)

Sie bestätigt noch einmal, dass eine unitäre 2×2-Matrix durch eine globale Phase und drei
reelle Parameter bestimmt ist.

Da die Bedingung (3.42) erfüllt ist, hat die Gl. (3.40) die Struktur der Gl. (3.14). Für
spätere Zwecke gehen wir wieder zum halben Winkel über und führen den Winkel φ und den
Einheitsvektor e gemäß

v0 := cos
φ

2
, v =

(
sin

φ

2

)
e (3.43)

ein. Zu gegebenem Û sind dabei φ und e durch Gl. 3.41 festgelegt. Damit erhält die Gl. (3.40)
die Gestalt

Û = exp
(
−iφ

2
eσ

)
, (3.44)

wobei e und φ durch die Gl. (3.41) und (3.43) gegeben sind. Jede unitäre Transformation im
H2 lässt sich bis auf einen Phasenfaktor eiα eindeutig in die Form (3.44) bringen.

Schließlich wollen wir die Wirkung von U auf der Bloch-Kugel veranschaulichen. Der
Phasenfaktor eiα hat keinen Einfluss auf den Bloch-Vektor. Wegen der Symmetrie der Dar-
stellung können wir ohne Einschränkung ez in die Richtung von e legen. Der Operator Û
nimmt dann mit Gl. (3.44) die Form

Û = e−i
φ
2 |0〉〈0| − e+iφ

2 |1〉〈1| (3.45)
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an (vergl. Gl. (1.52)). Mit Hilfe von Gl. (3.28) lesen wir direkt ab, dass Û |ψ〉 aus |ψ〉 durch
die Substitution ϕ→ ϕ+φ hervorgeht. Daraus folgt eine einfache Interpretation der Wirkung
von U auf der Bloch-Kugel: Wenn der Zustand |ψ〉 durch den Bloch-Vektor r repräsentiert
wird, dann entsteht der Bloch-Vektor r′ zum unitären transformierten Vektor

|ψ′〉 = Re(φ)|ψ〉, Re(φ) = exp
(
−iφ

2
eσ

)
(3.46)

durch Rotation von r um den Drehwinkel φ auf einem Kegel um die Achse e (vergl. Abb. (3.4)).
Die Größen e und φ sind dabei über die Gl. (3.41) und (3.43) festgelegt. Die unitäre Trans-
formation exp(−iφ2σz) (bzw. exp(−iφ2σx) oder exp(−iφ2σy)) entspricht einer Drehung des
Bloch-Vektors um die z-Achse (bzw. x-Achse oder y-Achse) um den Winkel φ.

e

U

U

U

Abbildung 3.4: Wirkung der unitären Transformation U auf die Endpunkte der Bloch-Vektoren reiner
Zustände. Der Vektor e ist durch die Gl. (3.41) und (3.43) gegeben.

Beispiel: Rabi-Oszillationen Wir wollen eine physikalische Situation beschreiben, in der
sich der Bloch-Vektor periodisch bewegt. In einer Kavität wechselwirkt ein einzelnes Pho-
ton mit einem einzelnen 2-Niveau-Atom mit den Energie-Niveaus |0〉 und |1〉. Der Einfach-
heit halber soll Resonanz vorliegen. Das heißt, die Energiedifferenz der Niveaus stimmt mit
der Photonenenergie überein. Dann wird das Photon periodisch absorbiert und emittiert. Die
Wahrscheinlichkeit |c0|2 das Atom im angeregten Zustand |0〉 zu finden oszilliert. Die entspre-
chende Frequenz wird Rabi-Frequenz ΩR genannt, ihre Höhe ist ein Maß für die Stärke der
Wechselwirkung zwischen Atom und quantisiertem Strahlungsfeld. Die quantenelektrodyna-
mische Rechnung zeigt, dass der resultierende Einfluss auf den Zustandsvektor des Atoms
durch die unitäre Transformation

U(t, t0) = exp
[
−i(t− t0)ΩR

2
σx

]
(3.47)

beschrieben wird.
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Wie wir gesehen haben, hat das zur Folge, dass sich der Bloch-Vektor r mit der Frequenz
ΩR auf einem Kegel um die x-Achse dreht (vergl. Abb. 3.5). Im Grenzfall des völlig geöff-
neten Kegels dreht er sich in der y–z-Ebene. Die Wahrscheinlichkeit |c0|2 ergibt sich aus der
Projektion rz(t) = rz(t− 2π

ΩR
) von r auf die z-Achse gemäß

|c0|2 =
rz(t) + 1

2
. (3.48)

Der maximale Wert der Projektion rz(t) kann nur dann den maximal möglichen Wert 1 anneh-
men, wenn r sich in der y–z-Ebene dreht. Hierzu reicht es, dass r z. B. durch eine anfängliche
Projektionsmessung parallel zu ez oder −ez ausgerichtet wird. Dem entspricht der Zustand
|0〉 oder |1〉. Im anderen Grenzfall wird das Atom im Eigenzustand |0x〉 oder |1x〉 von σx prä-
pariert (vergl. Abb. 3.1). Dann stimmt der Bloch-Vektor mit ex bzw. −ex überein und bleibt
unter dem Einfluss der Wechselwirkung unverändert. Der Grund dafür ergibt sich aus der
quantentheoretischen Rechnung. Der Hamilton-Operator des Gesamtsystems, der sich additiv
aus aus den Hamilton-Operatoren für das freie Photon, das freie Atom und für die Wechselwir-
kung zusammensetzt, hat zwei Eigenzustände. Wenn sich das Gesamtsystem in einem dieser
Zustände befindet, bleibt es in diesem Zustand. Die zugehörigen atomaren Zustände sind |0x〉
und |1x〉.

r

ez

ex

Abbildung 3.5: Rabi-Oszillationen des Bloch-Vektors r.

3.4 Quantengatter für einzelne Qubit-Systeme

Wir wollen noch einmal die mathematisch und physikalisch besonders relevanten unitären
Transformationen im H2 zusammenstellen. Wir haben im vorigen Kapitel gesehen, dass die
Transformationen exp(iφσk) Drehungen des Bloch-Vektors um die Koordinatenachsen ek
bewirken. Wesentlich ist, dass gemäß Gl. (3.37) jede beliebige unitäre Transformation durch
mehrfache Anwendung dieser speziellen Transformationen gewonnen werden kann.
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Phasengatter In der Quanteninformationstheorie spielen spezielle unitäre Operatoren eine
besondere Rolle, die auch als Quantengatter (quantum gates) bezeichnet werden. Hierzu ge-
hören die drei Pauli-Operatoren σk, deren Wirkung wir bereits beschrieben haben, und das
Phasengatter (phase gate)

φ(α) =
(

1 0
0 eiα

)
= |0〉〈0|+ eiα|1〉〈1| , (3.49)

das eine Phasenverschiebung der |0〉-Komponente eines Vektors bewirkt (Phasenschieber).
φ(α) lässt sich auch in der Form

φ(α) = ei
α
2 e−i

α
2 σz (3.50)

schreiben und stimmt daher bis auf einen globalen Phasenfaktor mit einer der einleitend er-
wähnten Drehungen überein.

Hadamard-Gatter Wir führen noch das unitäre und hermitesche Hadamard-Gatter H ein

H :=
1√
2

(
1 1
1 −1

)
=

1√
2
(σx + σz) , H† = H = H−1 , (3.51)

das sich als Summe von Pauli-Operatoren schreiben lässt. H stimmt mit seinem Inversen
überein und überführt die Vektoren der Rechenbasis in die Eigenvektoren von σx (vergl.
Gl. (3.19)):

H|0〉 =
1√
2
(|0〉+ |1〉) (3.52)

H|1〉 =
1√
2
(|0〉 − |1〉) .

Wir notieren noch die Beziehungen

HσxH = σz , HσyH = −σy , HσzH = σx , (3.53)

die man z. B. durch Anwenden der Relation (3.7) erhält.

Um welche Achse e und mit welchem Drehwinkel θ wird der Bloch-Vektor gedreht,
wenn das Hadamard-Gatter auf einen Zustand wirkt? Wir verwenden die Ergebnisse aus Ab-
schn. 3.4. Mit dem Phasenfaktor e−iκ = −i ergibt sich aus H ein unitärer Operator Û (vergl.
Gl. (3.39)) mit der Wirkungsweise

Û |0〉 =
−i√

2
(|0〉+ |1〉) , Û |1〉 =

−i√
2
(|0〉 − |1〉) . (3.54)

Damit können wir mit Hilfe von Gl. (3.17) die Gl. (3.41) leicht auswerten mit dem Ergebnis:
Das Hadamard-Gatter bewirkt eine Drehung mit dem Winkel

θ = 180◦ (3.55)

um die Achse

e =
1√
2
(ex + ez) . (3.56)

Weitere Gatter finden sich in Tab. (3.1).
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Tabelle 3.1: Häufig benutzte Gatter für ein Qubit.

Gatter
Operator-
symbol

Operator Matrix

NOT NOT, σx |0〉〈1|+ |1〉〈0|
(

0 1
1 0

)

Hadamard H H
1√
2
(σx + σz)

= e−i
π
4 σyσz

1√
2

(
1 1
1 −1

)

Phase φ(α) φ(α) |0〉〈0|+ eiα|1〉〈1|
(

1 0
0 eiα

)

x-Rotation X(φ) Rx(φ) e−i
φ
2 σx

(
cos φ2 −i sin φ

2

−i sin φ
2 cos φ2

)

y-Rotation Y(φ) Ry(φ) e−i
φ
2 σy

(
cos φ2 − sin φ

2

sin φ
2 cos φ2

)

z-Rotation Z(φ) Rz(φ) e−i
φ
2 σz

(
e−i

φ
2 0

0 ei
φ
2

)

σx-Operator X σx σx

(
0 1
1 0

)

σy-Operator Y σy σy

(
0 −i
i 0

)

σz-Operator Z σz σz

(
1 0
0 −1

)

3.5 Spin-1
2

Eine besonders wichtige Realisierung eines Qubit-Systems ist der Spin mit der Quantenzahl 1
2 .

Er ist ein innerer Freiheitsgrad von Elementarteilchen, wie z. B. den Elektronen, und wird in
einem zweidimensionalen Hilbert-Raum H2 beschrieben (Spinraum). Die zugehörige Obser-
vable ist

S =
�

2
σ . (3.57)

Ihre Komponenten erfüllen gemäß Gl. (3.9) die Kommutatorrelationen für Drehimpulse

[Si, Sj ]− = i�εijkSk . (3.58)

Mit dem Spin ist ein magnetisches Moment verbunden mit der Observablen

M = γS . (3.59)
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Das gyromagnetische Verhältnis γ ist für Elektronen e
mc . In einem Magnetfeld B führt

die Wechselwirkung zwischen dem Magnetfeld und dem magnetischen Moment zu einem
Hamilton-Operator

H = −γBS . (3.60)

Wir orientieren ez in Richtung von B und führen ω := −γB mit B = |B| ein. Dann hat der
Hamilton-Operator die Form H = �ω

2 σz mit den beiden Eigenwerten ±�ω
2 und den Eigenzu-

ständen |0z〉 und |1z〉. Für ein Spin- 1
2 -System kann die Observable σz bis auf einen Faktor je

nach physikalischer Situation als Komponente des magnetischen Moments oder als Energie
im Magnetfeld interpretiert werden (2-Niveau-System).

3.6 Photonenpolarisationen

Bei linearer Polarisation haben die elektrischen Wellenfelder die Form

EH ∼ eH exp i(kr − ωt); EV ∼ eV exp i(kr − ωt); (3.61)

mit dem Ausbreitungsvektor k (siehe Abb. 3.6). Die Indizes H und V bezeichnen horizontale
und vertikale Polarisation bzw. Schwingungsebene. Eine andere Basis ist

eH′ = e+45◦ =
1√
2
(eH + eV ); eV ′ = e−45◦ =

1√
2
(eH − eV ). (3.62)

Sie entspricht einer Drehung der Schwingungsebenen um 45◦. Die rechts- und linkszirkular
polarisierten Wellen sind durch

E(R,L) ∼ e(R,L) exp i(kr − ωt) (3.63)

mit

e(R) =
1√
2
(eH + ieV ); e(L) =

1√
2
(eH − ieV ) (3.64)

gegeben. Die diesen Polarisationen entsprechenden Zustandsvektoren des Quantensystems
Photon sind Vektoren in einem Hilbert-RaumH2 und daher Qubits. Die Zuordnung lautet:

eH ↔ |H〉 = |0〉, eV ↔ |V 〉 = |1〉 (3.65)

eH′ ↔ |H ′〉 = |+ 45◦〉 = 1√
2
(|H〉+ |V 〉) = |0x〉

eV ′ ↔ |V ′〉 = | − 45◦〉 = 1√
2
(|H〉 − |V 〉) = |1x〉 (3.66)

e(R)↔ |R〉 =
1√
2
(|H〉+ i|V 〉) = |0y〉

e(L)↔ |L〉 =
1√
2
(|H〉 − i|V 〉) = |1y〉 (3.67)

Den Zusammenhang zu den Eigenvektoren der Pauli-Operatoren haben wir für die drei Pola-
risationstypen angefügt.
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eV

eH

ek

Abbildung 3.6: Polarisationsvektoren und Ausbreitungsvektor bei linear polarisierten Photonen

3.7 Einzelne Photonen im Strahlteiler und Interferometer

Wir wollen ein weiteres Qubit-System kennen lernen, das insbesondere für quantenoptische
Experimente zur Quanteninformationstheorie von Bedeutung ist. Es handelt sich um ein ein-
zelnes Photon auf das im Sinne von Abschn. 1.2 ein Transformationsapparat wirkt, der aus
einer Abfolge von einzelnen Strahlteilern, Phasenschiebern und Spiegeln aufgebaut ist. Ein-
fache Beispiele für ein solches photonisches Netzwerk zur Quanteninformationsverarbeitung
sind Strahlteiler und Interferometer selber (vergl. Abb. 3.8).

Das Photon ist das Quant eines Strahlungsfeldes mit wohlbestimmten Modenfunktionen,
die in diesem Falle durch den Wellenvektor charakterisiert sind. Die von uns betrachtete op-
tische Anlage soll so einfach sein, dass nur zwei Lichtmoden oder Wege, ein 0-Weg und ein
1-Weg, durch sie hindurch gelegt werden können. Das Photon soll bei einer Messung vor, im
Innern und hinter der Anlage immer nur auf genau einem der Wege registriert werden. Dann
können wir das Photon in dieser Situation als Qubit beschreiben, wobei die Zustände |0〉 bzw.
|1〉 den jeweiligen Wegen zugeordnet sind. Den normierten Photonenzustand beschreiben wir
in der Form

|ψ〉 = c0|0〉+ c1|1〉. (3.68)

mit |c0|2+|c1|2 = 1 .Wenn wir einen Detektor in den 0-Weg stellen (0-Detektor), dann spricht
er mit der Wahrscheinlichkeit |c0|2 an. Entsprechendes gilt für den 1-Weg. Die verwendeten
optischen Apparate haben zwei einlaufende und zwei auslaufende Wege und bewirken eine
Abfolge unitärer Transformationen des Zustandsvektors |ψ〉. Sie ändern die Wahrscheinlich-
keit das Photon auf einem bestimmten Weg zu registrieren, wobei die Gesamtwahrscheinlich-
keit erhalten bleibt.

Phasenschieber haben wir schon beschrieben. Verlustfreie Spiegel bewirken allenfalls ei-
ne Phasenverschiebung. Strahlteiler werden wir im Anschluss beschreiben und danach die
optischen Bauteile zu einem Interferometer zusammensetzen.

3.7.1 Strahlteiler

Strahlteiler allgemein Wir betrachten einen verlustfreien Strahlteiler (lossless beamsplit-
ter) mit zwei einfallenden und zwei ausfallenden Strahlungsmoden wie er schematisch in
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Abb. 3.7 dargestellt ist. Der einlaufende Photonenzustand |ψ〉 wie der auslaufende Photo-
nenzustand |ψ′〉 sind von der Form (3.68). Die Zuordnung zu den Strahlungsmoden erfolgt
gemäß Abb. 3.7.

0 0

11

Abbildung 3.7: Wege beim Strahlteiler

Die Verlustfreiheit des Strahlteilers hat die Wahrscheinlichkeitserhaltung zur Folge. Mit
einlaufendem Zustand |ψ〉 ist damit auch der auslaufende Zustand |ψ′〉 ein normierter Vektor
und die Wirkung des Strahlteilers wird durch eine unitäre Transformation U wiedergegeben
(vergl. Abschn. 1.1.5)

|ψ′〉 = U |ψ〉. (3.69)

Wir notieren U in der Form der Matrix (3.36) und führen neue Bezeichnungen für Amplituden
und Phasen ein. ρ, τ und δ sind reell.

U = eiκ
(
ρeiδr −τe−iδt

τeiδt ρe−iδr

)
. (3.70)

Die Wirkung vonU lässt sich einfach beschreiben, wenn der einlaufende Photonenzustand
nur aus einem Vektor der Rechenbasis besteht

|0〉 → U00|0〉+ U10|1〉, |1〉 → U01|0〉+ U11|1〉. (3.71)

Beim Einlaufen von |0〉 bewirkt der Strahlteiler in Reflexion ein Phasenverschiebung κ + δr
und eine Multiplikation mit dem reellen Reflexionsfaktor ρ. Die Transmission ist entsprechend
durch die Phasenverschiebung κ+ δt und den Transmissionsfaktor τ bestimmt. Die Wirkung
auf Superpositionen ist eine unmittelbare Folge.

Mit Gl. (3.36) erhalten wir als Ausdruck der Wahrscheinlichkeitserhaltung und damit der
Unitarität

ρ2 + τ2 = 1. (3.72)

Wir führen noch die Phasendifferenz δ0 zwischen reflektiertem und transmittiertem Zustand
bei Einfall im Zustand |0〉 ein (δ1 für den Zustand |1〉)

δ0 = δr − δt ; δ1 = −δr + δt ± π. (3.73)

Dann folgt aus Gl. (3.70) als eine stets erfüllte Beziehung

δ0 + δ1 = ±π. (3.74)
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Spezielle Strahlteiler Zwei Typen von dielektrischen Strahlteilern werden in der Praxis
häufig verwendet. Das ist einmal der Strahlteiler, der bei Reflexion eine Phasenverschiebung
von π

2 und bei Transmission keine Phasenverschiebung bewirkt:

U1 =
(
iρ τ
τ iρ

)
. (3.75)

Dem entspricht eine Festlegung δr = 0, δt = −π2 und κ = π
2 . Der Strahlteiler ist nicht

zeitlich symmetrisch, da U−1
1 �= U1. Die räumlich symmetrische Version dieses Strahlteilers,

bei der Reflexivität und Transmissivität übereinstimmen, ist durch ρ = τ = 1√
2

gegeben und
bewirkt

U1|0〉 =
1√
2
(i|0〉+ |1〉), (3.76)

U1|1〉 =
1√
2
(|0〉+ i|1〉). (3.77)

Für beide einfallenden Moden gilt, dass ein Photon mit der gleichen Wahrscheinlichkeit 1
2 auf

einer der auslaufenden Moden wieder ausläuft (50 : 50 beamsplitter) . Wir schreiben Gl. (3.75)
mit ρ = cos θ und τ = sin θ um und erhalten die unitäre Transformation in der Form

U1 = (cos θ)�− i(sin θ)σx = exp(−iθσx). (3.78)

Ein globaler Phasenfaktor i ist weggelassen.
Der andere gebräuchliche Strahlteiler bewirkt einen Phasensprung um π bei der Reflexion

an einer der Seiten:

U2 =
(
ρ τ
τ −ρ

)
. (3.79)

Er entspricht der Wahl δr = π
2 , δt = π

2 und κ = −π2 und ist mit U−1 = U zeitlich symme-
trisch. Dafür ist er räumlich nicht symmetrisch, d. h. er wirkt unterschiedlich auf die in den
Moden |0〉 bzw. |1〉 einlaufenden Photonen. Im symmetrischen Spezialfall ρ = τ = 1√

2
ergibt

sich eine optische Realisierung des Hadamard-Gatters H von Gl. (3.51), dessen Wirkung in
Gl. (3.52) beschrieben ist.

Wir schreiben ρ = cosφ und τ = sinφ und bilden σzU2. Explizites Ausrechnen der
entsprechenden Matrizen zeigt dann mit Gl. (3.14)

exp(iφσy) = σzU2. (3.80)

Da σz mit Phasenschiebern realisierbar ist, und Gl. (3.37) neben Phasenverschiebungen
exp(− i

2λσz) und exp(− i
2νσz) nur einen Operator der Form exp(iµσy) enthält, lässt sich

jede unitäre Transformation (3.69) mit dem durch U2 von Gl. (3.79) beschriebenen Strahltei-
ler (Hadamard-Gatter) und Phasenschiebern realisieren.
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3.7.2 Interferometer

Ein Mach-Zehnder-Interferometer entsteht, wenn man zwischen zwei Hadamard-Strahlteilern
einen Phasenschieber z. B. in den 1-Weg einbaut, durch den die |1〉-Komponente des Pho-
tonzustands mit einem Phasenfaktor multipliziert wird (vergl. Abb. 3.8). Wir setzen den Pha-
senfaktor in der Form exp(−iα) an. Die Strahlumlenkung durch zwei gleichartige ideale re-
flektierende Spiegel hat keinen Einfluss auf relative Phasen. Mit dem Phasengatter φ(α) von

00 0 0

1 11 1
−α

Abbildung 3.8: Mach-Zehnder Interferometer mit Phasenschieber

Gl. (3.49) können wir das Interferometer durch das Diagramm von Abb. 3.9 symbolisieren.

H Hφ(−α)

Abbildung 3.9: Schaltbild für das Mach-Zehnder-Interferometer.

Anweisungen für die Anwendung von Gattern (gates) in einer speziellen Reihenfolge heißen
Schaltungen (circuits). Das Interferometer ist ein Beispiel eine einfache Quantenschaltung
(quantum circuit).

Wenn ein Photon im Zustand |0〉 und damit in der 0-Mode einlauft, erfährt es nacheinander
die Transformationen

|0〉 → 1√
2
(|0〉+ |1〉)→ 1√

2
(|0〉+ e−iα|1〉)→ 1

2
[
(1 + e−iα)|0〉+ (1− e−iα)|1〉] .

(3.81)

Die Wahrscheinlichkeit, dass danach ein Detektor das Photon im Zustand |0〉 detektiert (d. h.,
dass ein Detektor im 0-Ausgang anspricht) ist

p0 =
1
2
(1 + cosα) . (3.82)

Es entsteht in Abhängigkeit von der Phasenverschiebung α ein periodisch oszillierendes In-
terferenzbild.
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Interferenzbild Gemäß Gl. (3.81) hat der erste Hadamard-Strahlteiler nur die Funktion
einen einfachen in beiden Moden symmetrischen Zustandsvektor zu präparieren. Die Wahr-
scheinlichkeit, dass ein Detektor hinter dem Strahlteiler im 0-Weg oder im 1-Weg anspricht, ist
dann jeweils 1

2 . Die Gl. (3.81) zeigt, dass die Wirkung des zweiten Strahlteilers darin besteht
die komplexen Amplituden der |0〉- und |1〉-Komponenten des Zustandsvektors zur komple-
xen Amplitude des auslaufenden |0〉-Vektors zu superponieren und so zur Interferenz zu brin-
gen. Das Interferenzbild kann als Funktion von α von einem Detektor im 0-Weg hinter dem
Interferometer registriert werden.

00

1 1−α

Abbildung 3.10: Strahlteiler mit Phasenschieber

Die Interferenz erzeugende Wirkung des zweiten Strahlteilers wollen wir für spätere Zwe-
cke noch auf andere Weise beschreiben. Der in Phasenschieber und Strahlteiler der Anordnung
von Abb. 3.10 einlaufende Zustand |ψin〉 wird durch die Wirkung von φ(α) und H gemäß

|ψout〉 = H(|0〉〈0|+ e−iα|1〉〈1|)|ψin〉 (3.83)

in den auslaufenden Zustand |ψout〉 überführt. Die Wahrscheinlichkeit, das Photon im Zu-
stand |0〉 zu finden ist

p0(α) = |〈0|ψout〉|2. (3.84)

Wir setzen |ψout〉 ein und lassen die Operatoren auf |0〉 wirken, dann folgt

p0(α) = |〈α|ψin〉|2 (3.85)

mit

|α〉 := (|0〉〈0|+ eiα|1〉〈1|)H|0〉 =
1√
2
(|0〉+ eiα|1〉). (3.86)

Die Messgröße p(α) lässt sich direkt als Mittelwert des Projektionsoperators P|α〉 := |α〉〈α|
im einlaufenden Zustand |ψin〉 schreiben:

p0(α) = 〈ψin|P|α〉|ψin〉. (3.87)

Wählt man |α〉 selber als einlaufenden Zustand, dann spricht wegen p0(α) = 1 nur
der Detektor auf dem auslaufenden 0-Weg an. Gl. (3.87) kann man daher folgendermaßen
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interpretieren: Die Wahrscheinlichkeit, dass der 0-Detektor anspricht, ist gleich der Wahr-
scheinlichkeit, dass der einlaufende Zustand |ψin〉mit demjenigen Zustand |α〉 übereinstimmt,
der mit Sicherheit das Ansprechen des 0-Detektors bewirkt.

Für den allgemeinen einlaufenden Zustand,

|ψin〉 = cos
θ

2
|0〉+ ei

φ
2 sin

θ

2
|1〉, (3.88)

der durch die Parameter θ und φ charakterisiert ist, lässt sich Gl. (3.85) leicht mit dem Ergebnis

p0(α) =
1
2

[
1 + sin θ cos

(
α− φ

2

)]
(3.89)

auswerten. Bei Variation von α durch entsprechende Einstellung des Phasenschiebers entsteht
ein periodisches Interferenzbild p0(α) mit einem Streifenkontrast

ν :=
pmax − pmin

pmax + pmin
= sin θ . (3.90)

Durch Ausmessen der Interferenzkurve können die Phasenverschiebung ϕ und der Streifen-
kontrast sin θ ermittelt werden. Damit haben wir ein interferometrisches Messverfahren zur
Bestimmung des Zustands |ψin〉 gefunden.

3.8 Ergänzende Themen und weiterführende Literatur

• Wechselwirkung zwischen Licht und einem 2-Niveau-Atom: [MW 95].

• Allgemeiner verlustfreier Strahlteiler: [CST 89], [MW 95]

• Systeme mit höherem Spin als 1
2 werden im Hinblick auf ihre Rolle als Teilsysteme zu-

sammengesetzter Quantensysteme ausführlich in [Zei 81], [PSM 87], [CST 89], [MW 95]
untersucht.

3.9 Übungsaufgaben

ÜA 3.1 [zu 3.1 und 3.3] leiten Sie die Gl. (3.11), (3.17), (3.36), (3.37), (3.42), (3.53), (3.54)
ab.

ÜA 3.2 [zu 3.1] Bestimmen Sie die Komponenten des Operators σiσj in der Operatorbasis
der σ-Operatoren.

ÜA 3.3 [zu 3.4] Berechnen Sie die Darstellungen der Operatoren in Tab. 3.1 soweit das nicht
schon im Text geschehen ist.
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ÜA 3.4 [zu 3.7.2] In ein Mach-Zehnder-Interferometer ist im 0-Strahlengang ein Phasen-
schieber mit der Wirkung eiα und im 1-Strahlengang einer mit der Wirkung e−iα eingebaut.
Zeigen Sie, dass die resultierende Transformation von der Form

U =
(

cosα i sinα
i sinα cosα

)
(3.91)

ist. Durch Einbau zusätzlicher Phasenschieber in den ein- und auslaufenden Moden kann eine
beliebige unitäre Transformation realisiert werden.



This Page Intentionally Left Blank



4 Gemischter Zustand und Dichteoperator

Wir haben schon im einleitenden Abschnitt 2.1.1 Gemische kennen gelernt und uns dann aber
bei der Formulierung der Postulate auf reine Zustände beschränkt. Die reinen Zustände ha-
ben wir durch Vektoren im Hilbert-Raum beschrieben. Wir wollen nun zunächst eine andere
Darstellung der reinen Zustände vorstellen, die direkt auf einen Zugang zur Beschreibung von
statistischen Gemischen (Gemenge) und allgemeinen Gemischen mit Hilfe von Dichteopera-
toren führt. Dichteoperatoren beschreiben den allgemeinen Quantenzustand. Die Postulate aus
Abschn. 2.1.2 werden verallgemeinert.

4.1 Dichteoperator zu gegebenem Ensemble (statistisches
Gemisch)

4.1.1 Reiner Zustand

Dem reinen Zustand, dem wir bisher den normierten Zustandsvektor |ψ〉 zugeordnet haben,
können wir in eineindeutiger Weise den Operator

ρ := |ψ〉〈ψ| (4.1)

zuordnen. Er wird Dichteoperator (density operator) eines reinen Zustands und oft auch Dich-
tematrix genannt.

Die folgenden Eigenschaften von ρ lassen sich direkt ablesen:

(i) ρ ist positiv: 〈ϕ|ρ|ϕ〉 ≥ 0 , ∀|ϕ〉 ∈ Hd (und damit hermitesch, ρ† = ρ)

(ii) trρ = 1

(iii) ρ2 = ρ.

Eigenschaft (ii) ist eine Folge der Normiertheit von |ψ〉. Umgekehrt garantieren die drei Ei-
genschaften zusammen, dass die Spektralzerlegung von ρ die Form (4.1) hat und daher ρ
eindeutig bis auf eine Phase einen Vektor |ψ〉 bestimmt. Mit Hilfe der Spektralzerlegung kann
man auch zeigen, dass bei Gültigkeit von (i) und (ii) für einen Operator ρ die Eigenschaft (iii)
gleichbedeutend ist mit

(iii∗) tr[ρ2] = 1 . (4.2)

Verschränkte Systeme: Die Quantenphysik auf neuen Wegen. Jürgen Audretsch
Copyright c© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40452-X

Jürgen Audretsch

Verschränkte Systeme  
Die Quantenphysik auf neuen Wegen

© 2005 WILEY-VCH Verlag GmbH & Co.



68 4 Gemischter Zustand und Dichteoperator

Eine Messung der Observablen A mit dem Messergebnis an und dem zugehörigen Pro-
jektionsoperator Pn von Gl. (2.3) überführt ρ gemäß Gl. (2.2) in den Dichteoperator ρ′n

ρ→ ρ′n =
1

p(an)
PnρPn . (4.3)

Hierbei ist

p(an) = tr[Pnρ] (4.4)

entsprechend Gl. (2.5) die Wahrscheinlichkeit den Wert an als Messwert zu erhalten. Es kann
günstig sein, den resultierenden Dichteoperator in der unnormierten Form ρ̃′n = |ψ̃′

n〉〈ψ̃′
n|

zu schreiben. In dieser Form muß die Spur nicht gleich Eins sein. Wie beim Zustandsvektor
charakterisieren wir das durch eine Tilde:

ρ̃′n = PnρPn . (4.5)

Die Messwahrscheinlichkeit ist dann gleich der Spur des unnormierten resultierenden Dichte-
operators nach der selektiven Messung.

p(an) = tr[ρ̃′n] . (4.6)

Den Erwartungswert 〈A〉 der ObservablenA erhalten wir durch Einschieben des mit der ONB
{|ui〉} gebildeten Identitätsoperators

〈A〉 =
d∑

j,k=1

〈ψ|uj〉〈uj |A|uk〉〈uk|ψ〉

=
∑

j,m

〈uk|ρ|uj〉〈uj |A|uk〉

=
∑

k

〈uk|ρA|uk〉 (4.7)

= tr[ρA] .

Bleibt noch die Aufgabe, die unitäre Dynamik im Schrödinger-Bild für ρ umzuschreiben.
Mit Gl. (2.14) finden wir

ρ(t) = U(t, t0)ρ(t0)U−1(t, t0) (4.8)

und mit Gl. (2.9) ergibt sich die von-Neumann-Gleichung

i�ρ̇(t) = i�U̇ρ(t0)U−1 + i�Uρ(t0)U̇−1

= HUρ(t0)U−1 − Uρ(t0)U−1H

= [H, ρ(t)] . (4.9)

Sie kann mit dem Liouville-Operator L von Gl. (1.84) auch in der Form

i�ρ̇ = Lρ (4.10)

geschrieben werden.
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...

|ψn〉
pn

ρ

|ψ1〉
p1

{|ψi〉, pi}

Abbildung 4.1: Das statistische Gemisch (Gemenge) zum Ensemble {|ψi〉, pi} entsteht indem immer
einer der Präparationsapparate für {|ψi〉} mit der Wahrscheinlichkeit pi tätig wird.

Zusammenfassend stellen wir fest, dass die Physik abgeschlossener Quantensysteme in
reinen Zuständen, die durch das mathematische Objekt Zustandsvektor |ψ〉 beschrieben wird,
gleichwertig durch den Dichteoperator ρ von Gl. (4.1) beschrieben werden kann. In diesem
Sinne kann man mit der gleichen operationalen Bedeutung wie bei |ψ〉 sagen: das System
befindet sich im Zustand ρ. Im Gegensatz zur vektoriellen Formulierung können wir aber die
Zustandsformulierung mit dem Dichteoperator unmittelbar auf eine allgemeinere Klasse von
Quantenzuständen, die statistischen Gemische, übertragen. Wir beschreiben das im nächsten
Kapitel im Einzelnen.

4.1.2 Die Physik der statistischen Gemische (Gemenge)

Präparation Wir betrachten die folgende experimentelle Situation: Es steht für ein abge-
schlossenes Quantensystem eine beliebige aber endliche Anzahl unterschiedlicher Präparati-
onsverfahren zur Verfügung, die mit dem Index i durchnummeriert sind (i = 1, . . . , N ) und
entsprechend in die reinen Zustände |ψi〉 überführen. Diese Zustände müssen weder ortho-
gonal noch linear unabhängig sein. N kann größer sein als die Dimension d. Wir gehen zu
einem neuen Typ von Präparationsverfahren über, der darin besteht, dass immer eines der
Ausgangsverfahren mit einer gewissen klassischen Wahrscheinlichkeit pi mit

N∑

i=1

pi = 1 (4.11)

zum Einsatz kommt. Es wird also zur Präparation des betrachteten Quantensystems in zufäl-
liger Weise immer genau einer der Präparationsapparate angeschaltet (vergl. Abb. 4.1). Der
entsprechende Zustand |ψi〉 liegt dann beim Einzelsystem tatsächlich vor. Dabei wird aber ein-
gehalten, dass der i-te Apparat mit der Wahrscheinlichkeit pi tätig wird. Man sagt, dass durch
„Mischen“ der reinen Zustände das Ensemble {|ψi〉, pi} realisiert wird. Bei Kenntnis der Zu-
stände |ψi〉 und der Präparationswahrscheinlichkeiten pi ist wieder für beliebige Messungen
eine sichere Prognose der Wahrscheinlichkeit des Eintretens von Messergebnissen möglich.
Nach dem von uns verwendeten Konzept definiert dieses verallgemeinerte Präparationsver-
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fahren also einen Quantenzustand. Er wird statistisches Gemisch1(statistical mixture) oder
Gemenge genannt und beinhaltet den reinen Zustand als Spezialfall.

Dichteoperator statistischer Gemische Wir zeigen, dass sich die Gleichung für die physi-
kalischen Aussagen aus Abschnitt 4.1.1 übertragen, wenn das statistische Gemisch durch den
Dichteoperator

ρ :=
N∑

i=1

pi|ψi〉〈ψi| =
N∑

i=1

piρi (4.12)

mit ρi := |ψi〉〈ψi| beschrieben wird. Hierzu führen wir Aussagen über das Gemisch auf
Aussagen über die Ensemblezustände ρi zurück.

So wird bei einer Messung der Observablen A mit der Wahrscheinlichkeit

p(an) =
∑

i

p(an|i)pi (4.13)

der Wert an gemessen. Dabei ist p(an|i) die bedingte Wahrscheinlichkeit (conditional proba-
bility), dass der Messwert an gemessen wird, wenn der Zustand ρi vorliegt. Mit (4.4) erhalten
wir

p(an|i) = tr[Pnρi] . (4.14)

Das führt mit (4.12) und den Rechenregeln für die Spurbildung auf

p(an) = tr[Pnρ] . (4.15)

Gleichung (4.4) überträgt sich also. Auch die Gl. (4.7) überträgt sich für statistische Gemische
mit dem Argument, dass sich Erwartungswerte zu den einzelnen Zuständen mit den Wahr-
scheinlichkeiten pi zum Erwartungswert beitragen.

〈A〉 =
∑

i

pitr[Aρi] = tr[Aρ] . (4.16)

Wie Gl. (4.13) und (4.16) zeigen, treten bei der Berechnung von Messwahrscheinlichkeiten
und Erwartungswerten Produkte aus klassischen und quantentheoretischen Wahrscheinlich-
keiten auf.

Selektive und nicht-selektive Messungen Abzuleiten sind noch die Gleichungen für die
beiden Formen des dynamischen Verhaltens. Wir beginnen mit der Messdynamik. Für jeden
der einzelnen Zustände ρi des Ensembles ergibt sich mit Gl. (4.5) als Ergebnis einer selektiven
Messung (selective measurement) mit Messwert an der unnormierte Zustand

ρi → ρ̃′i,n = PnρiPn . (4.17)

1Durch den Zusatz „statistisch“ soll hervorgehoben werden, dass ein Ensemble präpariert wurde. In der englisch-
sprachigen Literatur findet sich hierfür auch die Bezeichnung proper mixture. Wir werden auch andere Gemische
kennen lernen.
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Wir lassen ausdrücklich Entartung der Messwerte zu. Für den Dichteoperator ρ von Gl. (4.12)
folgt aus Gl. (4.17)

ρ→ ρ̃′n =
∑

i

piρ̃
′
i,n = PnρPn . (4.18)

Dies stimmt mit der Relation (4.5) überein. Mit Gl. (4.15) erhalten wir für den normierten
Dichteoperator nach der selektiven Messung in Übereinstimmung mit Gl. (4.3)

ρ→ ρ′n =
1

p(an)
PnρPn . (4.19)

Eine Ableitung dieser Gleichung, die von der bestimmenden empirischen Größe, also vom
Messergebnis an ausgeht, lässt sich auch mit Hilfe des Satzes von Bayes (vergl. Abschn. 1.3.2)
gewinnen2 . Die Wahrscheinlichkeit p(an) für den Messwert an kann gemäß Gl. (4.15) und
(4.18) in Übereinstimmung mit Gl. (4.6) auch in der Form

p(an) = tr[ρ̃′n] (4.23)

geschrieben werden kann.
Wir erwähnen noch den Spezialfall, dass für den Messwert an keine Entartung vorliegt.

Dann ist Pn = |an〉〈an| mit dem zum Eigenwert an gehörigen Eigenvektor |an〉. Damit wird
Gl. (4.19)

ρ→ ρ′n = |an〉〈an| . (4.24)

Wenn der Messwert nicht entartet ist, präpariert daher die zugehörige selektive Messung an
einem statistischen Gemisch einen reinen Zustand. Das ist plausibel, denn jeder der Zustands-
vektoren |ψi〉 des Ensembles wird in diesem Fall durch die Messungen in |an〉 überführt.

Bei einer nicht-selektiven Messung (nonselective measurement) der Observablen A wie-
derholt man die Messung sehr oft an Quantensystemen im gleichen Zustand, aber sortiert

2Die Messung der Observablen A möge auf das Ergebnis an führen. Falls dabei vor der Messung der Zustand ρi

vorlag, dann befindet sich nach der Messung der normierte Zustand

ρ′i,n =
1

p(an|i)
PnρiPn (4.20)

(vergl. Gl. (4.14) und (4.23)). Mit welcher Wahrscheinlichkeit p(i|an) lag vor der Messung ρi vor, wenn an re-
gistriert wurde? Nach dem bereits in Abschn. 1.3.2 genauer diskutierten Satz von Bayes gilt (wir formen noch mit
Gl. (4.13) um)

p(i|an) =
p(an|i)piP
j p(an|j)pj

=
p(an|i)pi

p(an)
(4.21)

mit
P

i p(i|an) = 1. p(i|an) stimmt also i.a. nicht etwa mit pi überein. Insgesamt folgt, daß zum Messergebnis an

der Übergang

ρ → ρ′n =
X

i

p(i|an)ρ′i,n (4.22)

gehört. Einsetzen von ρ′i,n führt direkt auf Gleichung (4.19).
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nicht wie in der selektiven Messung die Zustände ρ′n aus, die zu einem bestimmten Mess-
ergebnis an gehören. Als resultierender Zustand ρ′ entsteht in diesem Fall das statistische
Gemisch, das sich additiv aus den Zuständen ρ′n zusammensetzt, die bei der Messung mit den
Wahrscheinlichkeiten p(an) erzeugt werden:

ρ
n.s.−−→ ρ′ =

∑

n

p(an)
PnρPn
tr[ρPn]

=
∑

n

PnρPn, tr[ρ′] = 1 . (4.25)

Wir haben dabei Gebrauch von Gl. (4.15) gemacht.

Unitäre Dynamik Zu ergänzen ist noch die unitäre Dynamik. Hierbei ändern sich die klas-
sischen Zusammensetzungswahrscheinlichkeiten pi nicht. Die Gl. (4.8) überträgt sich daher
direkt für statistische Gemische:

ρ(t) = U(t, t0)ρ(t0)U−1(t, t0) (4.26)

und es ergibt sich die von Neumann-Gleichung (4.9) bzw. (4.10).

Wo treten statistische Gemische auf? Das am Anfang des Kapitels beschriebene Präparati-
onsverfahren mag etwas künstlich erscheinen. Wir haben aber gesehen, dass für abgeschlosse-
ne Quantensysteme statistische Gemische tatsächlich in sehr natürlicher Weise auftreten. Alle
nicht-selektiven Messungen an reinen Zuständen und an statistischen Gemischen überführen
in statistische Gemische und nicht in reine Zustände.

Auch selektive Messungen an statistischen Gemischen führen im Allgemeinen auf statis-
tische Gemische, wenn der eingetretene Messwert ein entarteter Eigenwert des Observablen-
operators ist. Entartung kann zu Mischung führen. Mit ρ von Gl. (4.12) ist ρ′n von Gl. (4.19)

ρ′n =
1

p(an)

∑

i

piPn|ψi〉〈ψi|Pn . (4.27)

Projektionsoperatoren Pn zu entarteten Eigenwerten projizieren in Unterräume (vergl.
Gl. (2.3)), daher werden die Pn|ψi〉 im Allgemeinen nicht übereinstimmen. Der resultierende
Dichteoperator ist eine Summe von Dichteoperatoren reiner Zustände und kann damit selber
nicht der Dichteoperator eines reinen Zustands sein. Wir führen das unten im Zusammenhang
mit Konvexkombinationen näher aus. Das Gemisch wird bei Entartung durch eine selektive
Messung nicht völlig entmischt.

Schließlich soll noch eine weitere Messsituation erwähnt werden, die auf statistische
Gemische führt. Bei einem Messapparat mögen die Messwerte nicht entartet sein. Es soll
aber eine Ungenauigkeit in der Anzeige vorliegen, so dass alle Messwerte aus dem Intervall
[an, am>n] tatsächlich vom Apparat als Messwert an angezeigt werden. Eine selektive Mes-
sung zum abgelesenen Messwert an präpariert dann nicht einen reinen Zustand, sondern ein
statistisches Gemisch.

Wir haben bisher nur abgeschlossene Systeme behandelt. Es wird sich in Abschnitt 7.3 zei-
gen, dass die Teilsysteme verschränkter Systeme ebenfalls durch Dichteoperatoren beschrie-
ben werden können. Dies führt zu einer wichtigen Erweiterung des Konzepts „Gemisch“ auf
nicht-statistische Gemische, denen kein wohlbestimmtes Ensemble aus realisierten Zuständen
entspricht.
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4.1.3 Definition und Eigenschaften des allgemeinen Dichteoperators

Definition Wir haben noch zu prüfen, welche der für reine Zustände abgeleiteten Eigen-
schaften (i) bis (iii(∗)) aus Abschnitt 4.1.1 auch für den Dichteoperator eines statistischen
Gemisches gelten. Mit Hilfe von Gl. (4.11) und (4.12) bestätigen wir (i) und (ii) unmittelbar.
Zur Diskussion von (iii) betrachten wir die Spektralzerlegung von ρ

ρ =
d∑

j=1

λj |j〉〈j| . (4.28)

{|j〉} ist eine ONB und in Folge von (i) und (ii) gilt λj = λ∗j , λj ≥ 0 und
∑
j λj = 1. Damit

erhalten wir

0 ≤ λj ≤ 1 (4.29)

und daher

tr[ρ2] ≤ 1 . (4.30)

Durch das Gleichheitszeichen in Gl. (4.30) ist eineindeutig das Vorliegen eines reinen Zu-
stands charakterisiert. Die Ungleichung gilt nur für ein echtes Gemisch (kein reiner Zustand).

Wir lösen uns von den bisherigen Realisierungen und nennen allgemein einen Operator
einen Dichteoperator, wenn er die Bedingungen

(i) ρ ist positiv (und damit hermitesch, ρ† = ρ)

(ii) tr[ρ] = 1

erfüllt.

Gemischtheitsgrad Aus Gl. (4.28) ergibt sich für den kleinsten Wert von tr[ρ2] der Quoti-
ent 1

d , wobei d die Dimension des Hilbert-Raums ist. Der Wert wird für λj = 1
d angenommen

und gehört somit zu

ρ =
1
d
� . (4.31)

Dieser völlig strukturlose Dichteoperator heißt der maximal gemischte Dichteoperator.
Wie oben beschrieben entstehen statistische Gemische operational im Experiment durch

„Mischen“ von Zuständen. Man kann über den Parameter

Ξ := 1− tr[ρ2] (4.32)

den Gemischtheitsgrad (degree of mixtureness) beschreiben, der zwischen dem des reinen
Zustands Ξ = 0 und dem der maximalen Mischung Ξ = 1− 1

d variiert:

0 ≤ Ξ ≤ 1− 1
d
. (4.33)

Bei statistischen Gemischen nähert sich Ξ der 1 an, wenn die Dimension d des Hilbert-Raums
zunimmt. Wir geben hierfür ein Beispiel: Für ρ1 = 1

3 |0〉〈0| + 2
3 |1〉〈1| ist tr[ρ2] = 5

9 und für
ρ2 = 1

3 |0〉〈0|+ 1
3 |1〉〈1|+ 1

3 |2〉〈2| folgt tr[ρ2] = 1
3 .
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Konvexkombination Wir notieren eine einfache Folge der Definition des Dichteoperators.
Wenn {ρl, l = 1, . . . , k} Dichteoperatoren sind und {rl} positive Zahlen mit

∑
l rl = 1, dann

ist die konvexe Summe (convex sum)

ρ =
k∑

l=1

rlρl (4.34)

wieder ein Dichteoperator.
Wir zeigen, dass der Dichteoperator ρ eines reinen Zustandes außer durch tr[ρ2] = 1

noch in einer anderen Weise ausgezeichnet ist. Anders als alle anderen Dichteoperatoren kann
der Dichteoperator eines reinen Zustands nicht in eine konvexe Summe zerlegt werden. Zum
Beweis machen wir mit dem Dichteoperator

ρ = |ψ〉〈ψ| (4.35)

den Zerlegungsversuch

ρ = λρ1 + (1− λ)ρ2, 0 < λ < 1 . (4.36)

Für einen zu |ψ〉 orthogonalen Vektor |χ〉 erhalten wir

〈χ|ρ|χ〉 = 0 = λ〈χ|ρ1|χ〉+ (1− λ)〈χ|ρ2|χ〉 . (4.37)

Da λ und 1 − λ positiv sind und die Operatoren ρ1 und ρ2 positive Operatoren sind, folgt
daraus

〈χ|ρ1|χ〉 = 〈χ|ρ2|χ〉 = 0 . (4.38)

Wir ergänzen |ψ〉 durch Hinzunahme von Vektoren zu einer ONB. Für diese Vektoren gilt
jeweils Gl. (4.38). Wir bilden die Matrixelemente von ρ1 und ρ2 in dieser Basis und nutzen
tr[ρ1] = tr[ρ2] = 1 aus. Dann finden wir als einzige nichtverschwindende Matrixelemente

〈ψ|ρ1|ψ〉 = 〈ψ|ρ2|ψ〉 = 1 . (4.39)

Damit ist

ρ = ρ1 = ρ2 . (4.40)

Die Zerlegung (4.36) ist daher nicht möglich. Durch Mischen reiner Zustände (oder Gemi-
sche) kann nicht wieder ein reiner Zustand entstehen. Dies zeichnet reine Zustände sowohl
mathematisch wie auch im Prinzip operational aus. Wir haben diese Eigenschaft zur Definiti-
on des reinen Zustands bei der Formulierung der Postulate in Abschnitt 2.1.2 verwendet.

4.1.4 Inkohärente Überlagerung reiner Zustände

Während einer unitären dynamischen Entwicklung gilt als Folge von Gl. (4.26) die Erhaltung
der Positivität und der Spur von ρ

tr[ρ(t)] = tr[ρ(t0)] (4.41)
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sowie der Spur von ρ2

tr[ρ2(t)] = tr[ρ2(t0)] . (4.42)

Daher kann durch eine unitäre Dynamik weder ein reiner Zustand in ein Gemisch übergehen
noch umgekehrt. Demgegenüber kann als Ergebnis einer selektiven Messung mit nicht entar-
tetem Messwert aber sehr wohl ein echtes Gemisch in einen reinen Zustand übergehen, wie
wir in Gl. (4.24) gesehen haben. Ist bei einer Messung, also der zweiten Form von Dynamik
die durch die Postulate beschrieben wird, auch der umgekehrte Vorgang, den man Dekohärenz
(decoherence) nennt, möglich? Wir werden diese Frage im Zusammenhang mit der Theorie
der Messung in Kap. 15 präzisieren. Hier wollen wir zunächst veranschaulichen, warum die
Bezeichnung Kohärenz bzw. Inkohärenz in diesem Zusammenhang sinnvoll ist.

An Gl. (4.16) können wir ablesen, dass bei der Bildung des Erwartungswertes 〈A〉 die
Mittelung in den Erwartungswerten tr[Aρi] und nicht wie bei der Superposition in den Zu-
ständen erfolgt. Es handelt sich beim statistischen Gemisch in diesem Sinne um eine inko-
härente Überlagerung (incoherent superposition) reiner Zustände. Die beteiligten Zustände
interferieren nicht miteinander. Ihre relative Phase ist experimentell nicht bestimmbar. Das ist
bei dem in Abschn. 4.1.2 angegebenen Präparationsverfahren auch unmittelbar verständlich.
Dieser Aussage kann man eine direkte operationale Veranschaulichung in einem Interferenz-
experiment geben. Die Verhältnisse am Doppelspalt (vergl. Abschn. 2.1) sind ein weiteres
Beispiel.

Wir haben in Abschn. 3.7.2 gesehen wie mit Hilfe eines Strahlteilers die 0-Komponente
und die 1-Komponente eines Photonenzustands |ψin〉 = cos θ2 |0〉 + ei

φ
2 sin θ

2 |1〉 zur kohä-
renten Überlagerung gebracht werden kann. Der Phasenschieber bewirkt ein Interferenzbild,
das von der Phase α abhängt. In den Spezialfällen |ψin〉 = |0〉 und |ψin〉 = |1〉 entsteht kein
Interferenzbild. Für ein einlaufendes Gemisch ρin ist die Ansprechwahrscheinlichkeit des 0-
Detektors in Abhängigkeit von der Phasenverschiebung α durch

p(α) = tr[P|α〉ρin] (4.43)

mit P|α〉 = |α〉〈α| von Gl. (3.86) gegeben. Für ρin = |0〉〈0| und ρin = |1〉〈1| ist p(α) = 1
2 .

Wenn wir die Zustände |0〉 und |1〉 nicht superponieren wie bei |ψin〉, sondern mischen

ρin = λ0|0〉〈0|+ λ1|1〉〈1| (4.44)

(λ0,1 ≥ 0, λ0 + λ1 = 1), erhalten wir für die Ansprechwahrscheinlichkeiten den von α
unabhängigen Wert

p(α) =
1
2
(λ0 + λ1) =

1
2
. (4.45)

Das statistische Gemisch ρin ist eine inkohärente Überlagerung, bei der ebenfalls beim Inter-
ferometer mit den Wegen |0〉 und |1〉 keine Interferenz auftritt. Das wird plausibel, wenn man
sich vorstellt, dass Objekte in den Zuständen |0〉 und |1〉 nacheinander einlaufen.

Bemerkenswerterweise ergibt sich aber das gleiche Resultat auch für statistische Gemi-
sche mit Ensemble {|ψi〉, pi}, das nicht mit dem Ensemble {|0〉, |1〉, λ0, λ1} übereinstimmt,
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wenn nur der zugehörige Dichteoperator sich in der Form (4.44) schreiben lässt. Das ist mög-
lich, wenn |0〉 und |1〉 eine Eigenbasis von ρ sind. Auch in diesen Fällen zeigt das aus vie-
len Messpunkten zusammengesetzte Interferenzbild keinen Streifenkontrast, obwohl mögli-
cherweise die Zustände |ψi〉 einzeln sehr wohl zu Interferenz mit Streifenkontrast führen.
Wir können die Beiträge im Interferenzbild nicht nach den Zuständen sortieren, in dem sich
die einzelnen registrierten Objekte befunden haben. Wir werden im Zusammenhang mit dem
Quantenradierer in Abschn. 8.5 auf diesen Punkt zurückkommen.

4.2 Der allgemeine Quantenzustand

Wir erinnern an die Definition des Zustands eines Quantensystems wie sie in Abschnitt 2.1.2
gegeben wurde. Der Zustand ist dasjenige mathematische Objekt, das es erlaubt, die Wahr-
scheinlichkeit der Ergebnisse aller möglichen Messungen am System zu berechnen. Er ist
einem Projektionsverfahren zugeordnet. Wir verstehen unter Messungen weiterhin nur pro-
jektive Messungen.

Messpostulate Dichteoperatoren, also alle positiven (und damit hermiteschen) Operato-
ren ρ, die die Bedingung tr[ρ] = 1 erfüllen, sind offenbar solche mathematische Objekte,
wenn man als Postulat fordert: Die Wahrscheinlichkeiten sind durch Gl. (4.15) gegeben. Der
Messprozess überführt in die Zustände ρ′n von Gl. (4.19) bzw. ρ′ von Gl. (4.25). Dies verall-
gemeinert das Postulat 2 aus Abschn. 2.1.2. Man kann zeigen, dass es keine anderen mathe-
matischen Objekte gibt, die die an einen Zustand gestellten Forderungen erfüllen (Theorem
von Gleason, vergl. Abschn. 4.5).

Bisher haben wir nur statistische Gemische (d. h. Gemenge) als Quantenzustände kennen
gelernt. Wir werden in Kap. 7 mit den reduzierten Dichteoperatoren der Teilsysteme von zu-
sammengesetzten Systemen andere Realisierungen von Zuständen behandeln. Sie unterschei-
den sich durch ihre Präparation von statistischen Gemischen. Das Postulat, das das Postulat 1
von Abschn. 2.1 verallgemeinert, lautet dann: Quantenzustände werden durch Dichteoperato-
ren repräsentiert. Sie werden allgemein Gemische (mixtures) genannt. Statistische Gemische
sind ein physikalischer Spezialfall, der durch das Präparationsverfahren ausgezeichnet ist.

4.3 Verschiedene Ensemblezerlegungen eines
Dichteoperators und Ignoranzinterpretation

Wir beginnen mit einer einfachen Beobachtung. Die Zerlegung von zwei Qubit-Zuständen |a〉
und |b〉 (die z. B. Spin-1

2 -Zustände beschreiben) nach der Rechenbasis möge

|a〉 =
√

2
3
|0〉+

√
1
3
|1〉

|b〉 =

√
2
3
|0〉 −

√
1
3
|1〉 (4.46)
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sein. Dann lässt sich der Dichteoperator ρ, der zum Ensemble aus den Zuständen |a〉 und |b〉
mit den Wahrscheinlichkeiten pa = pb = 1

2 gehört, in zweifacher Weise schreiben:

ρ =
1
2
|a〉〈a|+ 1

2
|b〉〈b| = 2

3
|0〉〈0|+ 1

3
|1〉〈1| . (4.47)

Er ist also zugleich der Dichteoperator zum Ensemble mit den Zuständen |0〉 und |1〉 (z. B.
Spinpolarisationen in z-Richtung) und den Wahrscheinlichkeiten p0 = 2

3 und p1 = 1
3 .

Wir geben noch ein physikalisches Beispiel. In einer Versuchsanordnung werden mit glei-
cher Häufigkeit horizontal und vertikal polarisierte Photonen erzeugt. Das zugehörige Ensem-
ble {|H〉, |V 〉, pH = pV = 1

2} wird durch den Dichteoperator

ρ =
1
d
� (4.48)

beschrieben. In einer völlig anders aufgebauten Versuchsanordnung werden rechtszirkular
und linkszirkular polarisierte Photonen mit gleicher Häufigkeit produziert. Das Ensemble
{|R〉, |L〉, pR = pL = 1

2} hat den selben Dichteoperator ρ. Die Photonen befinden sich daher
in dem selben Zustand. Durch kein mit den Photonen durchgeführtes Experiment kann man
entscheiden, durch welches der beiden Verfahren die Photonen präpariert wurden. Aus der
Kenntnis des Dichteoperators ρ lässt sich auch in diesem Fall nicht eindeutig darauf schlie-
ßen, welches Ensemble vorliegt. Wir wollen beweisen, dass das für jeden Dichteoperator gilt
und zugleich zeigen, wie die verschiedenen Ensembles auseinander hervorgehen. Im Folgen-
den wollen wir voraussetzen, dass der Dichteoperator keinen reinen Zustand beschreibt.

Ensemblezerlegungen Wir betrachten den Dichteoperator

ρ =
∑

a

pa|ψa〉〈ψa| =
∑

a

|ψ̃a〉〈ψ̃a|, |ψ̃a〉 :=
√
pa|ψa〉, (4.49)

den wir mit unnormierten Vektoren formulieren, die durch eine Tilde gekennzeichnet sind.
Wieder müssen die Vektoren {|ψa〉} weder orthogonal noch linear unabhängig sein. Dass
ein Dichteoperator ρ als Dichteoperator des Ensembles {|ψa〉, pa} aufgefasst und damit wie
Gl. (4.49) geschrieben werden kann, nennen wir eine Ensemblezerlegung (ensemble decom-
position) von ρ. Wir wollen annehmen, dass es eine weiter Ensemblezerlegung von ρ gibt:

ρ =
∑

i

|ϕ̃i〉〈ϕ̃i| . (4.50)

Darüber hinaus existiert stets die Spektralzerlegung von ρ

ρ =
d∑

n=1

λn|n〉〈n| =
d∑

n=1

|ñ〉〈ñ| (4.51)

mit der ONB {|n〉}, die ebenfalls eine Ensemblezerlegung von ρ darstellt. Die Laufbereiche
der Indizes der Typen a, b, . . . und i, j, . . . sowie n,m, . . . müssen nicht übereinstimmen.

Wir beschränken uns auf Eigenwerte λn �= 0 und schränken den Laufbereich von n,m, . . .
entsprechend ein. Dann bilden die zugehörigen {|n〉} nicht notwendig eine Basis des ganzen
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Hilbert-Raums H. Wir nehmen an, dass sie den Unterraum H′ aufspannen. Für |χ〉 aus dem
orthogonalen Komplement vonH′ gilt

0 = 〈χ|ρ|χ〉 =
∑

a

〈χ|ψ̃a〉〈ψ̃a|χ〉 =
∑

a

|〈χ|ψ̃a〉|2 (4.52)

und damit

〈χ|ψ̃a〉 = 0 (4.53)

für alle |χ〉 und alle Indizes a. Entsprechendes gilt für die Vektoren |ϕ̃i〉. Somit liegen alle |ψ̃a〉
und alle |ϕ̃i〉 im UnterraumH′ und wir können sie nach der Basis {|n〉} vonH′ entwickeln:

|ψ̃a〉 =
∑

n

can|ñ〉, |ϕ̃i〉 =
∑

n

din|ñ〉 . (4.54)

Einsetzen in Gl. (4.49) und Berücksichtigung von Gl. (4.51) führt auf

ρ =
∑

a,n,m

canc
∗
am|ñ〉〈m̃| =

∑

n

|ñ〉〈ñ| (4.55)

und damit auf
∑

a

canc
∗
am = δnm ,

∑

i

dind
∗
im = δnm . (4.56)

Die aus Gl. (4.50) folgende Beziehung haben wir ebenfalls aufgeführt. Wenn die Laufbereiche
der Indizes übereinstimmen, besagen die Gl. (4.56), dass die Matrizen can und din unitär sind.

Wir finden mit Gl. (4.54) und (4.56)
∑

a

c∗am|ψ̃a〉 =
∑

a,n

c∗amcan|ñ〉 = |m̃〉 . (4.57)

Da Gl. (4.57) für jeden Basisvektor von H′ gilt, kann die Zahl der Vektoren |ψa〉 und |ϕi〉
nicht geringer als die Dimension von H′ sein. Abschließend setzen wir Gl. (4.57) noch in
Gl. (4.54) ein und erhalten

|ϕ̃i〉 =
∑

n,a

dinc
∗
an|ψ̃a〉 . (4.58)

Eine entsprechende Zerlegung lässt sich daraus mit Hilfe von Gl. (4.56) für |ψ̃a〉 gewinnen.
Wir haben gezeigt: Für zwei Ensemblezerlegungen {|ψ̃a〉} und {|ϕ̃i〉} eines Dichteope-

rators lassen sich die Vektoren der einen Zerlegung gemäß Gl. (4.58) als Linearkombination
der Vektoren der anderen Zerlegung schreiben, wobei Gl. (4.56) erfüllt ist. Umgekehrt zeigt
man leicht, dass Vektoren |ϕ̃i〉 und |ψ̃a〉, die wie in Gl. (4.58) verknüpft sind, jeweils eine
Ensemblezerlegung desselben Dichteoperators darstellen, wenn die Matrizen die Bedingun-
gen (4.56) erfüllen Offenbar gibt es beliebig viele solcher Matrizen und damit beliebig viele
Ensemblezerlegungen eines Dichteoperators.

Das Beispiel von Gl. (4.47) und der Beweis haben deutlich gemacht, dass die Mehrdeutig-
keit der Ensemblezerlegung eine für die Quantentheorie typische Ursache hat: Ein Zustands-
vektor lässt sich in unendlich vielen verschiedenen Weisen als Linearkombination anderer
Zustandsvektoren schreiben. Etwas Analoges gibt es für klassische Zustände nicht.
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Ignoranzinterpretation Wir haben gesehen, dass ein Dichteoperator mathematisch ver-
schiedenen Ensemblezerlegungen zulässt. Das sollte im Zusammenhang mit der Frage, was
physikalisch tatsächlich vorliegt, nicht zu Verwirrungen führen. Wenn ein Quantensystem im
Zustand ρ als ein statistisches Gemisch (bzw. Gemenge) mit Ensemble {|ψi〉, pi} nach dem
Verfahren aus Abschnitt 4.1.2 präpariert wurde, dann kann man die über die Minimalinterpre-
tation hinausgehende Annahme machen, dass es sich auch real und objektiv stets in einem der
Zustände |ψi〉 befindet. Wir wissen nur subjektiv nicht in welchem. Im Prinzip kann es aber
jemand wissen, wenn er z. B. die Möglichkeit hat festzustellen, welcher Präparationsapparat
gerade tätig war. Man sagt dann, dass der Zustand ρ eine Ignoranzinterpretation (ignoran-
ce interpretation) zulässt. Selbstverständlich kann man auch eine minimale Interpretation der
Quantentheorie bevorzugen, in der die oben gestellte Frage gar nicht erst auftritt.

4.4 Dichteoperatoren von Qubits

Der Dichteoperator ρ in H2 lässt sich wie in Abschn. 3.1 nach der Pauli-Operatorbasis zerle-
gen

ρ =
1
2
(�+ rσ) (4.59)

mit dem Bloch-Vektor

r = tr[ρσ] = 〈σ〉, r ∈ � . (4.60)

Mit

tr[ρ2] =
1
2
(1 + |r|2) (4.61)

von Gl. (3.23) folgt aus

1
2
≤ tr[ρ2] ≤ 1 (4.62)

für den Bloch-Vektor

|r|2 ≤ 1 . (4.63)

Der Gemischtheitsgrad wird unmittelbar durch den Betrag des Bloch-Vektors bestimmt:

Ξ =
1
2
(1− |r|2) . (4.64)

Für ein echtes Gemisch liegt der Bloch-Vektor r im Inneren der Bloch-Kugel. Der vollständig
gemischte Zustand 1

2� wird durch den Kugelmittelpunkt (r = 0) repräsentiert.
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Zustandsbestimmung Der Zusammenhang ρ ↔ r gemäß Gl. (4.59) und (4.60) ist, anders
als die Beziehung |ψ〉 ↔ r, eine eineindeutige Beziehung, da Phasenfaktoren durch ρ nicht
wiedergegeben werden. Wir können den Zustand ρ durch Messung der Erwartungswerte 〈σ〉
der drei verschiedenen Observablen σ bestimmen. Beim Spin geschieht das durch Messung
der Mittelwerte der Spinkomponenten in drei unabhängige Richtungen. Beim reinen Zustand
reichen wegen der Normiertheit von r zwei Richtungen.

Wir notieren noch die Matrixelemente als Funktionen der Komponenten des Bloch-
Vektors:

ρ(r) =
1
2

(
1 + r3 r1 − ir2
r1 + ir2 1− r3

)
(4.65)

(4.66)

mit

r3 = ρ00 − ρ11

r2 = i(ρ01 − ρ10) (4.67)

r1 = ρ01 + ρ10 .

4.5 Ergänzende Themen und weiterführende Literatur

• Theorem von Gleason: Wir haben Quantenzustände zunächst durch Zustandsvektoren
und dann durch Dichteoperatoren beschrieben. Gibt es andere mathematische Objek-
te, die sichere Wahrscheinlichkeitsaussagen ermöglichen? Das Theorem von Gleason
[Gle 57] besagt, dass

〈A〉 = tr[Aρ] (4.68)

die allgemeinste Formel für den Erwartungswert ist, die mit der Wahrscheinlichkeitss-
truktur der Quantentheorie verträglich ist, wenn die Dimension des Hilbert-Raums grö-
ßer als 2 ist. Die Zustandsbeschreibung mit positiven Operatoren der Spur 1 ist die all-
gemeinste quantentheoretische Zustandsbeschreibung. Das gilt auch dann, wenn Mes-
sungen durch ein POVM (vgl. Abschn. 13.4) beschreiben werden. Literatur: [Per 93, S.
190f], [BGL 95, S. 124f], [Aul 00, S. 199f]. In [Bus 99] wird das auch für die Dimensi-
on 2 bewiesen.

• Ergänzende Literatur zu Dichteoperatoren: [Fan 57].

4.6 Übungsaufgaben

ÜA 4.1 [zu 4.1 und 4.4] Der Zustand eines Quantensystems ist durch die Dichtematrix

ρ =
(
a 0
0 b

)

mit a, b ∈ �, a ≥ 0, b ≥ 0 und a+ b = 1 gegeben.
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a) Wie groß ist die Wahrscheinlichkeit bei einer Messung von σx den Wert +1 bzw. −1 zu
erhalten?

b) Berechnen Sie ohne Bezug auf a) direkt den Erwartungswert bei einer σx-Messung.

c) Berechnen Sie die entsprechenden Größen für σy statt σx.

d) Bestimmen Sie den Bloch-Vektor und veranschaulichen Sie die Ergebnisse für die Erwar-
tungswerte.

ÜA 4.2 Geben Sie für die Dichtematrix

ρ =
1
2

(
1 0
0 1

)

eines Spinsystems verschiedene Ensemblezerlegungen an.

ÜA 4.3 [zu 4.4] Zeigen Sie, dass sich ein Dichteoperator bei Bezug auf die Eigenbasis sich
einfach als Funktion des Betrages des Bloch-Vektors schreiben lässt:

ρ↔
(

1− |r|2 0
0 1 + |r|2

)

(Hinweis: Bestimmen Sie die Eigenwerte von ρ(r).)

ÜA 4.4 [zu 4.4] Die Observablen A, B und C besitzen die Darstellung

A =
(

3 0
0 −1

)
, B =

(
1 1
1 −1

)
, C =

(
0 −2i
2i 0

)
(4.69)

in der Rechenbasis. Messungen am Zustand mit dem Dichteoperator ρ führen auf die Erwar-
tungswerte

〈A〉 = 2 , 〈B〉 =
1
2
, 〈C〉 = 0 . (4.70)

Bestimmen Sie den Dichteoperator ρ.
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5 Shannon-Entropie und klassische Information

Entropie ist ein Konzept, das im Rahmen der Thermodynamik entwickelt wurde. In der
klassischen statistischen Mechanik und in der Quantenstatistik wird es zur Beschreibung
statistischer Gemische herangezogen. Entropie dient dabei als Maß für Unordnung und für
die fehlende Information über einen Zustand. Ausgehend von dieser Interpretation wurde
Entropie zu einem Schlüsselkonzept der klassischen Informationstheorie (Shannon-Entropie)
und der Quanteninformationstheorie (von Neumann-Entropie).

Die Quanteninformationstheorie beschreibt die Übertragung und Verarbeitung von Infor-
mation mit Hilfe von Quantensystemen als Informationsträger. Dabei spielt die von Neumann-
Entropie eine mehrfache Rolle:

(i) Sie erlaubt Aussagen über den klassischen Informationsgehalt – denn nur den können
wir „ablesen“ – der auf quantentheoretischen Trägern kodierten Information.

(ii) Sie quantifiziert, welche quantentheoretischen Ressourcen mindestens benötigt werden,
um eine vorgegebene Information zu speichern.

(iii) Schließlich kommt noch eine Aufgabe hinzu, die kein klassisches Analogon hat: Mit Hil-
fe der von Neumann-Entropie lässt sich die Verschränktheit zusammengesetzter Systeme
quantifizieren.

Zu diesen drei Aufgaben treten im Zusammenhang mit der Messtheorie, mit gestörten Quan-
tenkanälen usw. noch weitere Aufgaben hinzu.

Wir beginnen mit dem ersten Punkt, der unmittelbar an die bisherigen Überlegungen
zum statischen Gemisch anschließt, und stellen als Vorbereitung zunächst die klassische
Shannon-Entropie vor. Anschließend werden wir den Informationstransport durch Quanten-
kanäle untersuchen, um der Quantenentropie eine operationale Veranschaulichung zu geben.
Die Bedeutung des Entropie-Konzeptes für die Beschreibung verschränkter Systeme werden
wir im übernächsten Kapitel skizzieren.

5.1 Definition und Eigenschaften

Problemstellung In einem einführenden Kapitel wollen wir das Konzept der Shannon-
Entropie am Beispiel eines geschriebenen Textes (z. B. einer Zeitung) verdeutlichen, der eine
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...

pN
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p1

{xi, pi}

x1

xN

x5

x4x7
x2

x3x10
. . .

Abbildung 5.1: Eine Signalquelle mit Signalensemble {xi, pi} erzeugt eine Zeichenfolge.

Information übermitteln soll. Der Text ist aus einer Reihe von n Buchstaben eines Alphabets
gebildet.

Texte in einer Sprache sind für unsere Zwecke allerdings noch viel zu komplexe Gebilde.
Sie bestehen z. B. aus deutschen Wörtern, d. h. es sind nicht alle Buchstabenkombinationen
zugelassen. Weiterhin sind Buchstaben in ihrer Abfolge nicht unabhängig voneinander, denn
es folgt im deutschen Text z. B. auf „sc“ mit hoher Wahrscheinlichkeit „h“. Von diesen Korre-
lationen zwischen Buchstaben wollen wir absehen und nur Texte betrachten, die von Signal-
quellen (signal source) ohne Erinnerung produziert werden, die einer Bedingung unterliegen:
Ein Buchstabe xi soll mit der a-priori-Wahrscheinlichkeit pi mit

∑N
i=1 pi = 1 erzeugt wer-

den. N ist die Zahl der verschiedenen Buchstaben. Sie hängt von der Sprache ab. In einem
deutschen Text kommt z. B. im Gegensatz zu einem englischen Text der Buchstabe y eher
selten vor. Eine solche stochastische erinnerungslose Signalquelle ist allein durch das Signa-
lensemble {xi, pi} mit i = 1, . . . , N charakterisiert. Es stellt eine Menge von unterscheid-
baren Alternativen xi zusammen mit ihren Wahrscheinlichkeiten pi dar. Man bezeichnet das
Signalensemble auch als Zufallsvariable (random variable) X .

Man kann sich als operationale Realisierung vorstellen, dass N Druckmaschinen vorlie-
gen, die jeweils einen der Buchstaben xi drucken können. Mit Hilfe dieser Druckmaschinen
kann nun Alice als der Absender einen Text drucken. Diese Botschaft (message) besteht aus
einer Zeichenfolge (string) oder Sequenz (sequence) aus n Buchstaben. Die Zahl der mögli-
chen Botschaften ist dann Nn. Die Maschinen sind dabei aber so eingestellt, dass sie eine
Nebenbedingung erfüllen. Wir betrachten sehr viele solcher Sequenzen, wie sie von der An-
lage gedruckt werden. Die relative Häufigkeit mit der der Buchstabe xi gedruckt wird, soll
dann pi sein. Im Spezialfall p1 = 1, pi�=1 = 0 gibt es z. B. immer nur eine einzige Sequenz:
x1x1x1 . . . x1 . . .. Aber auch für p1 �= 1 kann diese Sequenz vorkommen 1. Alle Maschi-
nen zusammengefasst bilden eine große Druckanlage, die in unserer Veranschaulichung die
Signalquelle darstellt (siehe Abb. 5.1 und vergleiche mit Abb. 4.1)

Der spezielle von Alice gedruckte Text wird Buchstabe für Buchstabe störungsfrei mit Hil-
fe eines mit klassischer Physik beschreibbaren Trägers (z. B. auf Papier) an den Empfänger
Bob übermittelt. Bob weiß nicht welchen Buchstaben er als Nächsten empfangen wird, aber

1Wir haben uns mit dem Bild von Druckmaschinen weitgehend von „Sprache“ gelöst, denn yy . . . y wird ebenfalls
von einer Druckanlage gedruckt, deren pi mit den Buchstabenhäufigkeiten der deutschen Sprache übereinstimmen,
allerdings geschieht das sehr selten.
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er soll wissen, welche Druckanlage Alice verwendet. Bob hat daher eine wichtige Vorinfor-
mation: Er kennt das Signalensemble {xi, pi} und damit insbesondere die Wahrscheinlichkei-
ten {pi}. Dies ist sein Vorwissen (a-priori-Wissen). Wir suchen ein Maß für die verbliebene
a-priori-Ungewissheit von Bob. Dies Maß kann zugleich als ein Maß für die Information (in-
formation) dienen, die diese Ungewissheit (uncertainty) beseitigt. Wir werden sehen, dass die
Entropie ein solches Maß für die Information darstellt. Das wird bereits bei der jetzt folgenden
heuristischen Einführung der Entropie deutlich. Eine genauere Quantifizierung und Operatio-
nalisierung diskutieren wir anschließend in Abschn. 5.2.

Shannon-Entropie 2 Alice druckt eine Zeichensequenz aus n Zeichen. Es gibt Nn solcher
Sequenzen. Wenn n eine sehr große Zahl ist, dann ist es wahrscheinlich, dass viele dieser
Sequenzen jeweils in sich bereits die relativen Häufigkeiten pi widerspiegeln, dass also mit der
Häufigkeit ni = npi der Buchstabe xi in der langen Sequenz irgendwo auftaucht. Sequenzen
der Form xixi . . . xi sind nicht ausgeschlossen aber unwahrscheinlich, wenn die pi klein sind.
Wenn n groß ist, darf Bob daher vermuten, dass er eine der Sequenzen erhalten hat, die die
xi mit den Häufigkeiten ni enthält. Wie viele verschiedene Sequenzen von diesem Typ gibt
es? Es gibt n! Möglichkeiten n Buchstaben anzuordnen. Vertauschen derselben Buchstaben
untereinander führt auf keinen neuen Text. Für xi sind ni! Vertauschungen möglich. Daher
handelt es sich um

Zn =
n!

n1!n2! . . . nN !
(5.1)

Sequenzen mit
∑N
i=1 ni = n.

Um zu den Wahrscheinlichkeiten pi übergehen zu können, betrachten wir den Grenzfall
unendlich langer Texte (n → ∞, ni → ∞). Dann ist pi = ni

n und es ergibt sich mit der
Stirlingschen Formel log(n!) = n logn− n+O(log n) für den Logarithmus der Anzahl Zn

logZn → n logn− n−
N∑

i=1

(ni logni − ni)

= −n
N∑

i=1

pi log pi. (5.2)

Wir verwenden 0 log 0 = 0.
Wenn wir den Logarithmus der Anzahl Zn der Möglichkeiten durch n dividieren, ihn

also als Mittelwert auf die einzelne Buchstabenstelle beziehen, entsteht die Shannon-Entropie
oder klassische Entropie H(p̃) der Wahrscheinlichkeitsverteilung p̃ ↔ {pi, i = 1, . . . , N},
die folgendermaßen definiert ist:

H(p̃) := lim
n→∞

1
n

logZn = −
N∑

i=1

pi log pi ≥ 0. (5.3)

Der Logarithmus wird dabei zur Basis 2 genommen. Auch die Bezeichnung H(X) statt H(p̃)
ist gebräuchlich. Die Zahl Zn der möglichen Texte mit einer Anzahl n von Buchstaben ergibt

2 [Sha 48], [Sha 49]
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sich dann im Grenzfall als

Zn = 2nH(ep) . (5.4)

Da viele (wenige) Möglichkeiten ein großes (kleines) Maß von a-priori-Ungewissheit von
Bob widerspiegelt, ist H(p̃) von Gl. (5.3) ein Maß für die mittlere a-priori-Unbestimmtheit
eines Buchstabens, den Bob empfängt. Damit ist H zugleich die mittlere Information, die
Bob pro übermittelten Buchstaben erhält. Sie erlaubt es ihm unter den alternativ möglichen
Sequenzen die Übermittelte zu identifizieren. H ist dimensionslos. Der Wert von H gibt die
Information in der Einheit Bit an. Wir werden das in Abschn. 5.3 noch weiter präzisieren.

H(p̃) charakterisiert die Wahrscheinlichkeitsverteilung {pi} des Signalensembles. Ob das
Signal dabei aus Buchstaben oder anderen Zeichen besteht, ist unwesentlich. Die xi können
irgendwelche Alternativen sein, die mit den zugehörigen Wahrscheinlichkeiten pi vorliegen.
Im Unterschied zu einer Signalübertragung mit Quantensystemen haben wir vorausgesetzt,
dass die Zeichen (z. B. Buchstaben) klassische Zeichen sind. Sie können eindeutig vonein-
ander unterschieden werden und werden im Prozess des Auslesens nicht verändert. Kommt
xi bei Bob an, dann liest Bob auch xi. Dabei spielt es keine Rolle, mit welchem klassischen
Träger (Papier, Töne usw.) die Information übermittelt wird.

Eigenschaften Wir wollen zunächst noch einige mathematische Eigenschaften der Entropie
beweisen. Der Maximalwert von H(p̃) ist logN , wenn N die Zahl der Zeichen im Signalen-
semble ist. Er wird für die Gleichverteilung p1 = p2 = . . . = pn = N−1 angenommen. Zum
Beweis schreiben wir die Nebenbedingung

∑
i pi = 1 in der Form pN = 1 −∑N−1

i=1 pi und
betrachten die anderen pi�=N als unabhängige Variablen. Die Ableitung von

H(p̃) = −
N−1∑

i=1

pi log pi − pN log pN (5.5)

verschwindet dann wegen

∂H/∂pl = − log pl + log pN (5.6)

für pl = pN = 1
N mit

Hmax(p̃) = H(pi = N−1) = logN. (5.7)

Ein weiteres Extremum, beispielsweise am Rand, gibt es nicht. Wir notieren noch den Mini-
malwert von H(p̃):

Hmin(p̃) = 0 ⇔ pl = 1, pi�=l = 0 (5.8)

Er liegt vor, wenn die Sprache nur einen einzigen Buchstaben besitzt.
Insgesamt gilt also

0 ≤ H ≤ logN (5.9)

und bei binärer Kodierung (binary coding) (N = 2):
0 ≤ H ≤ 1 . (5.10)

H(p̃) ist in diesem Fall (p1 = p, p2 = 1− p) eine Funktion von p mit 0 ≤ p ≤ 1.

H(p) = −p log p− (1− p) log(1− p) (5.11)

die in Abb. 5.2 dargestellt ist. Ein klassisches System mit zwei Zuständen hat eine maximale
Informationskapazität von H(p = 1

2 ) = 1 Bit.
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Abbildung 5.2: Shannon-Entropie H(p) bei binärer Kodierung mit den Wahrscheinlichkeiten p1 = p
und p2 = 1 − p.

5.2 Shannons Theorem

5.2.1 Typische Sequenzen

Wir wollen zeigen, dass die Entropie H(p̃) ein gutes Maß für den Informationsgehalt pro
Buchstabe darstellt, wenn ein langer Text (n → ∞) aus einer Quelle mit Signalensemble
{xi, pi} kommt. Wie kann man Information operational genauer fassen? Nehmen wir an, Ali-
ce hat einen Text, den wir den Ausgangstext nennen wollen, und sie möchte ihn Bob mitteilen.
Alice verwendet dabei nicht das Signalensemble selber, sondern das einfachste nicht-triviale
Alphabet. Es besteht aus zwei Zeichen (z. B. aus den Binärzahlen (binary digits) 0 und 1), die
mit gleicher Wahrscheinlichkeit auftreten sollen. Der neue Text ist dann eine Bit-Sequenz (bit
sequence, binary string). Die Übertragung an Bob soll wieder störungsfrei sein. Immer wenn
eines dieser Symbole von Bob empfangen wird, wollen wir sagen, dass er die Information 1
Bit erhalten hat. Die Antwort auf eine Ja-Nein-Frage („Liegt die Zahl 0 vor?“) enthält die In-
formation 1 Bit. Wir bestimmen den Informationsgehalt des Ausgangstextes indem wir zählen
wie viele Bits Alice bei geschicktestem Vorgehen senden muss, damit Bob erfährt, welcher
aus der Menge der Texte der Länge n der Ausgangstext war. Da wir nur sehr lange Texte be-
trachten, reicht es, die mittlere Zahl notwendiger Bits pro Buchstabe des Ausgangsalphabets
zu bestimmen. Wir werden zeigen, dass sie gleich der Shannon-Entropie H(p̃) ist. Die Infor-
mation im Ausgangstext ist dann nH(p̃) bits. Zur Analyse des Vorgehens von Alice gehen wir
vom Gesetz der großen Zahlen aus.

Grenzwertsatz Wir betrachten eine stochastische erinnerungslose Quelle, die keine Buch-
staben, sondern reelle Zahlen yi , i = 1 . . .N mit den Wahrscheinlichkeiten pi erzeugt. Eine
Sequenz von n dieser Zahlen ist z. B.

y4y1y17y4 . . . y1 . (5.12)
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Wir nummerieren die Zahlen durch. Die reelle Zahl an der Stelle l nennen wir wl mit
l = 1, . . . , n. In (5.12) ist z. B. w2 = y1. Die Sequenz in (5.12) können wir dann auch in
der durchnummerierten Form

w1w2w3 . . . wn (5.13)

schreiben.
Wir wollen sehr lange Sequenzen betrachten. Dann gilt das Gesetz der großen Zahlen (law

of large numbers). Es besagt, dass das arithmetische Mittel der Zahlen in der Sequenz gegen
den mit den Wahrscheinlichkeiten pi gebildeten Erwartungswert geht:

lim
n→∞

1
n

n∑

l=1

wl =
N∑

i=1

piyi =: 〈y〉 . (5.14)

Man kann den Grenzprozess noch etwas genauer formulieren: Zu gegebenem beliebig kleinen
ε > 0 und δ > 0 gibt es bei endlicher Varianz der yi eine große Sequenzlänge n, so dass die
Wahrscheinlichkeit dafür, dass eine Sequenz mit

∣∣ 1
n

∑
l wl − 〈y〉

∣∣ < δ erzeugt wird größer als
1− ε ist.

Typische Sequenzen Wir gehen zu unseren Buchstaben bzw. Zeichen xi aus dem Signalen-
semble {xi, pi} über. Eine spezielle Sequenz der Länge n ist z. B.

x4x1x17x4 . . . x1 . (5.15)

Die Gesamtwahrscheinlichkeit P (x4 . . . x1) für das Auftreten dieser Sequenz ist das Produkt

P (x4 . . . x1) = p4 · p1 · p17 · p4 . . . p1 . (5.16)

Wir bilden den negativen Logarithmus und dividieren durch n.

− 1
n

logP (x4, x1, . . . , x1) =
1
n
{− log p4 − log p1 . . .− log p1} . (5.17)

Diese Summe hat die Struktur eines Mittelwertes. Die Summanden in der Klammer bilden
eine Sequenz reeller Zahlen. Sie entspricht der Sequenz (5.12) mit y4 = − log p4 usw. Im
Anschluss an Gl. (5.13) können wir schreiben: w1 = − log p4, . . . , wn = − log p1. Die Wahr-
scheinlichkeit für das Auftreten von− log pi auf der rechten Seite von Gl. (5.17) ist gleich der
des Auftretens von xi in der Sequenz (5.15) und damit gleich pi. Mit Gl. (5.14) lässt sich das
arithmetische Mittel wieder als Erwartungswert schreiben. Die Gl. (5.17) zusammen mit der
Definition (5.3) führt dann auf:

lim
n→∞

{
− 1
n

logP
}

= −
N∑

i=1

pi log pi =: 〈− log p̃〉 =: H(p̃) . (5.18)

Wieder wollen wir dieses Ergebnis durch Einführen von infinitesimalen Größen ε und δ
präzisieren. Höhere Potenzen von ε und δ lassen wir weg. Die Wahrscheinlichkeit dafür, dass
eine Sequenz mit P (. . .) auftritt, die auf einen Wert von − 1

n logP aus dem Intervall

H − δ < − 1
n

logP < H + δ (5.19)
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führt, ist größer als 1− ε. Es wird daher mit an Sicherheit grenzender Wahrscheinlichkeit eine
Sequenz erzeugt, deren Gesamtwahrscheinlichkeit P von Gl. (5.16) die Bedingung (5.19)
erfüllt. Oder wie oben formuliert: Zu vorgegebenem ε und δ gibt es eine Sequenzlänge n,
sodass (5.19) mit der Wahrscheinlichkeit 1− ε erfüllt ist. Mit immer kleineren ε und δ wird n
immer größer. Wir formen Gl. (5.19) um:

2−n(H+δ) ≤ P ≤ 2−n(H−δ) . (5.20)

Gleichung (5.20) besagt, dass fast ausschließlich (nämlich mit Wahrscheinlichkeit 1 − ε)
Sequenzen auftreten, deren gemäß Gl. (5.16) gebildete Wahrscheinlichkeiten P übereinstim-
mend alle gleich 2−nH sind. Diese Sequenzen werden typische Sequenzen(typical sequences)
genannt. Für hinreichend große n zerfällt die Menge der Sequenzen der Länge n in zwei
disjunkte Mengen: in die gleichwahrscheinlichen typischen Sequenzen und den Rest der
untypischen Sequenzen.

Wie groß ist die Anzahl Z(n, ε, δ) dieser typischen Sequenzen? Die Summe der Wahr-
scheinlichkeiten aller typischen Sequenzen muss zwischen 1− ε und 1 liegen:

1− ε ≤ Z(n, ε, δ)P ≤ 1 (5.21)

Wir dividieren durch P und beachten, dass P selber aus dem Intervall von Gl. (5.20) stammt.
Dann folgt für die Anzahl typischer Sequenzen

(1− ε)2n(H−δ) ≤ Z(n, ε, δ) ≤ 2n(H+δ) (5.22)

Dies präzisiert Gl. (5.4).

5.2.2 Klassische Datenkompression

Kodierung langer Blöcke und Datenkompression Die Ungleichungen (5.20) und (5.22)
haben eine unmittelbare praktische Bedeutung. Mit wachsender Buchstabenzahl n der Bot-
schaft tauchen untypische Sequenzen so gut wie nicht mehr auf. Die Anzahl Z(n, ε, δ) der
typischen Sequenzen geht gegen 2nH

Z(n, ε, δ) n�1−−−→ 2nH . (5.23)

Weiterhin treten alle typischen Sequenzen mit der gleichen Wahrscheinlichkeit P = 2−nH auf
(Gleichverteilung). Wir nummerieren die 2nH verschiedenen typischen Sequenzen mit Zahlen
in binärer Schreibweise durch. Wir kodieren somit ganze Sequenzen (Block-Kodieren, block
coding) und betrachten nicht mehr individuelle Signale. Dann benötigen wir dazu Zahlen mit
nH Stellen (H �= 0 vorausgesetzt).

Die Zahl der insgesamt möglichen Sequenzen ist demgegenüberNn = 2n logN . Wenn wir
sie in binärer Schreibweise durchnummerieren, brauchen wir Zahlen mit n logN Stellen. Für
eine Charakterisierung einer speziellen typischen Sequenz der Länge n reicht somit im Fall
H �= Hmax = logN ein binärer Text der kleineren Länge nH (vergl. Gl. (5.9)). Eine kürzere
Kodierung mit weniger Bits ist allerdings nicht möglich, da alle typischen Sequenzen be-
reits gleichwahrscheinlich sind. Durch Umkodieren kann nichts gewonnen werden. Der Text
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wird dem Empfänger übermittelt. Wenn die Durchnummerierung dem Empfänger bekannt
ist, kann er die spezielle typische Sequenz eindeutig rekonstruieren. Durch die Beschränkung
auf die typischen Sequenzen – nur diese treten für große n als Botschaften auf – und binäres
Durchnummerieren hat eine Datenkompression (data compression) stattgefunden. Eine dar-
über hinaus gehende Kompression ist nicht möglich. Im Hinblick auf eine analoge Aussage
über Quantensysteme als Informationsträger notieren wir noch: Die Shannon-Entropie gibt
die Anzahl der klassischen binären Informationsträger an, die mindestens nötig ist, um die
Information in einer Botschaft zu übermitteln. Klassische binäre Informationsträger können
z. B. Zettel sein, die entweder mit 0 oder mit 1 bedruckt sind, oder Töne, die nur in zwei
Frequenzen ausgesendet werden.

Shannons Theorem Wir formulieren das Ergebnis (5.22) noch einmal in einer anderen Wei-
se und gehen dabei auch auf die Fehlerwahrscheinlichkeit ein. Die rechte Ungleichung (5.22)
besagt, dass wir jede typische Sequenz eineindeutig in eine Sequenz von n(H + δ) binären
Zahlenstellen abbilden können. Die verbliebenen wenig wahrscheinlichen untypischen Se-
quenzen bildet Alice „fehlerhaft“ alle auf eine einzige binäre Sequenz ab (z. B. 000. . . 00).
Dann ist es bei diesem Verfahren möglich, dass zwei ursprüngliche Botschaften durch die-
selbe binäre Sequenz kodiert sind und es kann ein Fehler bei der Dekodierung auftreten. Wir
schreiben die Fehlerwahrscheinlichkeit in der Form 1 − F . F wird die Treue (fidelity) des
Kodierung-Dekodierung-Schemas genannt. Shannons Theorem3 der fehlerfreien Kodierung
(Shannons noiseless coding theorem) fasst die obigen Überlegungen in folgender Form zu-
sammen: Wenn n(H + δ) Bits für die Kodierung von Botschaften der (großen) Länge n zur
Verfügung stehen, dann können die Botschaften mit einer Fehlerwahrscheinlichkeit 1−F < ε
in den entsprechenden binären Sequenzen kodiert werden (Zu gegebenem ε und δ gibt es ein n
sodass dieser Satz gilt). Stehen nur H − δ Bits zur Verfügung, dann ist die Fehlerwahrschein-
lichkeit größer als 1− ε.

5.3 Information

Wir kommen auf unser am Anfang von Abschn. 5.1 formuliertes Ausgangsproblem zurück.
Alice hat einen ihr bekannten Text mit n Buchstaben bzw. Zeichen aus einer erinnerungslo-
sen Quelle mit Signalensemble {xi, pi} vorliegen. Die zugeordnete Entropie ist H(p̃). Alice
hat mit Bob, der das Signalensemble kennt, vorher vereinbart, wie die typischen Sequenzen
digital mit Zahlen der Länge nH(p̃) durchnummeriert werden. Wie wir in Abschn. 5.2.2 ge-
zeigt haben, muss Bob an Alice dann nH(p̃) Ja-Nein-Fragen stellen, um zu erfahren welches
die Nummer des Ausgangstextes und damit welcher Text der Ausgangstext selber ist. Damit
ergibt sich eine operationale Interpretation der Entropie: Die Shannon-Entropie H(p̃) ist die
mittlere Zahl der benötigten Ja-Nein-Fragen pro Buchstabe des Ausgangstextes. Je kleiner die
Shannon-Entropie H(p̃) ist, desto weniger Fragen muss Bob stellen. Es ist also sinnvoll H(p̃)
als den Informationsgehalt pro Buchstabe des Ausgangstextes zu bezeichnen. Hat das Signa-
lensemble {xi, pi}mit i = 1, . . . , N z. B. nur einen einzigen Buchstaben (N = 1), dann kennt
Bob den Text bereits. Er muss gar keine Fragen mehr stellen. Dem entspricht H(p̃) = 0 (vgl.

3 [Sha 48], [Sha 49]
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Gl. (5.7)). Wie Gl. (5.8) zeigt, muss Bob die meisten Fragen pro Buchstabe stellen – nämlich
logN – wenn die Wahrscheinlichkeiten pi gleich verteilt sind: p1 = p2 = . . . = pN = N−1.

5.4 Klassische relative Entropie

Gibbs-Ungleichung Es ist für viele Beweise nützlich für zwei Wahrscheinlichkeitsvertei-
lungen {pi} und {qi} zum selben Alphabet {xi} als Hilfsmittel die klassische relative Entro-
pie H(p̃‖q̃) von {pi} relativ zu {qi} einzuführen und ihre Eigenschaften auszunutzen.

H(p̃‖q̃) :=
N∑

i=1

pi log
pi
qi

= −H(p̃)−
N∑

i=1

pi log qi . (5.24)

Mit Hilfe der die Logarithmen verknüpfenden fundamentalen Ungleichung für alle positiven x

log x ln 2 = lnx ≤ x− 1 (5.25)

können wir H(p̃‖q̃) abschätzen

H(p̃‖q̃) = −
N∑

i=1

pi log
qi
pi

≥ 1
ln 2

N∑

i=1

pi(1− qi
pi

)

=
1

ln 2

N∑

i=1

(pi − qi) = 0. (5.26)

Diese Ungleichung wird Gibbs-Ungleichung genannt. Die relative Entropie H(p̃‖q̃) ist nicht
negativ. Sie ist gleich Null genau dann wenn pi = qi für alle i gilt (identische Verteilungen).

Konkavität Dass die Shannon-Entropie eine konkave Funktion ist, ist eine direkte Kon-
sequenz der Gibbs-Ungleichung. Wenn p̃1 und p̃2 zwei Wahrscheinlichkeitsverteilungen mit
Wahrscheinlichkeiten {p1i} und {p2i} sind, dann gilt für die Verteilung p̃ = λp̃1 + (1− λ)p̃2

mit Wahrscheinlichkeiten {pi = λp1i + (1− λ)p2i} und 0 < λ < 1

H(λp̃1 + (1− λ)p̃2) ≥ λH(p̃1) + (1− λ)H(p̃2) . (5.27)

Die Gleichheit gilt genau dann, wenn die Verteilungen p̃1 und p̃2 identisch sind. Das heißt,
wenn man über zwei Wahrscheinlichkeitsverteilungen mittelt, dann erhöht sich die Entropie.
Der Beweis folgt aus der Gibbs-Ungleichung (5.26) durch Ausschreiben der Terme mit Hilfe
von Gl. (5.24):

0 ≤ λH(p̃1||p̃) + (1− λ)H(p̃2||p̃) = H(p̃)− λH(p̃1)− (1− λ)H(p̃2) . (5.28)
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5.5 Wechselseitige Information als Maß für die
Korreliertheit zweier Botschaften

Wir nehmen an, dass zwei Signalensemble X ↔ {xi, pi} und Y ↔ {yj , pj} vorliegen,
deren Signale nicht unabhängig voneinander auftreten. Es sollen Korrelationen vorliegen. Wir
wollen ein Maß für die Korreliertheit von Botschaften der beiden Signalensemble gewinnen.
Zur Vereinfachung schreiben wir für die Ensemble X ↔ {x, p(x)} und Y ↔ {y, p(y)} sowie∑

i =
∑

y usw. Wir haben dann z. B. H(p̃(x)) = H(X).
p(y|x) ist die bedingte Wahrscheinlichkeit für das Auftreten von y, wenn x bereits aufge-

treten ist. Wie wir in Abschn. 1.3 diskutiert haben gilt

p(y|x)p(x) = p(y, x) = p(x, y) . (5.29)

p(x, y) ist dabei die Wahrscheinlichkeit dafür, dass X und Y gemeinsam auftreten (joint pro-
bability). Die mittlere Ungewissheit über das Auftreten eines Paares (joint entropy) bei be-
kanntem Signalensemble {(x, y), p(x, y)} der Paare ist

H(X,Y ) := −
∑

x,y

p(x, y) log p(x, y) = H(Y,X) . (5.30)

H(X,Y )

H(X) H(Y )

H(Y |X)I(X :Y )H(X|Y )

Abbildung 5.3: Mengentheoretische Veranschaulichung der verschiedenen Entropiearten.

5.5.1 Wechselseitige Information

Als wechselseitige Information (mutual information) führen wir die Größe

I(X :Y ) := H(X) +H(Y )−H(X,Y ) = I(Y :X) (5.31)

ein mit den Entropien H(X) := −∑x p(x) log p(x) und H(Y ) der einzelnen Ensembles
(vgl. Abb. 5.3). Wenn wir Gl. (5.31) nach H(X,Y ) auflösen

H(X,Y ) = H(X) +H(Y )− I(X :Y ) (5.32)

sehen wir, dass I(X : Y ) angibt, um wie viel die Unbestimmtheit der Paare kleiner ist als
die Summe der Unbestimmtheiten der beiden Ensembles. Dies ist ein sinnvolles Maß für die
Korreliertheit der beiden Ensembles.
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Wir geben ein Beispiel an. Alice besitzt nur Socken in grüner und blauer Farbe. Sie zieht
aber immer Socken gleicher Farbe an. Bob weiß das und weiß noch darüber hinaus, dass Alice
mit der Wahrscheinlichkeit p(g) = 1

4 grüne und mit der Wahrscheinlichkeit p(b) = 3
4 blaue

Socken trägt. Die Ensemble X ↔ L und Y ↔ R beziehen sich auf den linken bzw. rechten
Socken. Dann haben wir p(g, g) = 1

4 , p(b, b) = 3
4 , p(g, b) = 0, p(b, g) = 0 und damit

H(L,R) = H(L) = H(R) = −0, 25 log(0, 25)− 0, 75 log(0, 75) = 0, 81 . (5.33)

Bevor Bob z. B. auf den linken Socken schaut, ist seine Ungewissheit über die Farbe der
rechten Socke gleichH(R). Schaut er aber auf den linken Socken, dann ist diese Ungewissheit
völlig beseitigt. Bob hat die Information

I(L :R) = H(R) (5.34)

erhalten. Das wird gerade durch die Relation (5.31) zusammen mit Gl. (5.33) wiedergegeben.
I(L :R) wird am größten, nämlich I(L :R) = 1, für p(g) = p(b) = 1

2 . Die wechselseitige
Information hängt wie alle Informationen vom Vorwissen ab. Wenn man sie als ein Maß für
die Korreliertheit der beiden Signalensemble auffasst, sollte man das im Blick behalten.

Es ist instruktiv, sich die Interpretation von I(X : Y ) noch einmal auf andere Weise zu
verdeutlichen.

5.5.2 Bedingte Entropie

Wir können die Entropie H(X) = −∑x p(x) log p(x) auch folgendermaßen interpretieren:
− log p(x) ist die Ungewissheit für das Auftreten des Signals x. Gewichtung mit der Wahr-
scheinlichkeit p(x) für das Auftreten und Summation über alle x führt zu H(X) als mittlere
Ungewissheit pro Signal. Mit der Wahrscheinlichkeit p(x, y), dass sowohl x als auch y eintritt
und der Ungewissheit− log p(x|y) des Auftretens von x, wenn y schon aufgetreten ist, bilden
wir analog

H(X|Y ) := −
∑

x,y

p(x, y) log p(x|y) ≥ 0 . (5.35)

Diese Größe ist, anders als beiH(X,Y ) von Gl. (5.30) bezogen auf die bedingte Wahrschein-
lichkeit p(x|y). H(X|Y ) heißt bedingte Entropie (conditional entropy). H(X|Y ) beschreibt
wie unsicher wir (im Mittel) noch über den Wert von x sind, wenn wir y bereits kennen. Es
handelt sich also um eine Restunsicherheit4

4Man kann die bedingte Entropie H(X|Y ) auch noch etwas anders einführen. Die verbliebene Entropie der Va-
riablen X, wenn das spezielle Signal y empfangen wurde, ergibt sich im Mittel über die bedingte Wahrscheinlichkeit
p(x|y)

H(X|y) = −
X

x

p(x|y) log p(x|y) . (5.36)

Mittelung über y führt mit (5.29) auf die bedingte Entropie H(X|Y )

H(X|Y ) = −
X

y

p(y)
X

x

p(x|y) log p(x|y) = −
X

x,y

p(x, y) log p(x|y) . (5.37)
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Wir formen H(X,Y ) mit Gl. (5.29) um:

H(X,Y ) = −
∑

x,y

p(x, y) log p(x|y)p(y)

= −
∑

x,y

p(x, y) log p(y)−
∑

x,y

p(x, y) log p(x|y) (5.38)

= −
∑

y

p(y) log p(y) +H(X|Y ) .

Damit ergibt sich

H(X|Y ) = H(X,Y )−H(Y ) und H(Y ) ≤ H(X,Y ) . (5.39)

Die Unsicherheit für Paare H(X,Y ) verringert sich zur Restunsicherheit H(X|Y ), wenn die
Information H(Y ) über das y-Signal vorliegt. Analoge Relationen gelten bei Vorliegen des
x-Signals. In unserem Sockenbeispiel ist die Restunsicherheit gleich Null. Die Abb. 5.3 gibt
die Bezeichnungen der verschiedenen Entropiekonzepte in anschaulicher Weise geometrisch
wieder.

Die Gleichungen (5.31) und (5.39) führen auf

H(X|Y ) = H(X)− I(X :Y ) . (5.40)

Die Unsicherheit über x wenn y aufgetreten ist, verringert sich gegenüber der a-priori-
Unsicherheit über das Auftreten von x, wenn Korrelationen zwischen den Ensembles X
und Y vorliegen. Man kann I(X : Y ) auch als die mittlere Information interpretieren,
die man über den Wert von X erhält, wenn der Wert von Y bekannt ist und umgekehrt
(I(X : Y ) = I(Y : X)). Die wechselseitige Information I(X : Y ) ist ein Maß für die Kor-
reliertheit des Ensembles. Wir werden auf Korrelationen in Kap. 9 im Zusammenhang mit
verschränkten Quantensystemen zurückkommen.

Subadditivität Abschließend erwähnen wir noch, dass man mit Hilfe der Konvexität der
Logarithmus-Funktion die Ungleichung

H(X) ≥ H(X|Y ) ≥ 0 (5.41)

beweisen kann. Dann folgt mit Gl. (5.40), dass die wechselseitige Information nicht negativ
sein kann

I(X :Y ) ≥ 0 . (5.42)

Eine Information über Y kann das Wissen überX nicht verringern und umgekehrt. Gleichheit
gilt genau dann, wennX und Y unabhängig sind. Gl. (5.31) führt als unmittelbare Konsequenz
auf die Subadditivität (subadditivity) der Entropie

H(X,Y ) ≤ H(X) +H(Y ) . (5.43)
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5.6 Ergänzende Themen und weiterführende Literatur

Siehe auch Abschn. 6.6.

• Übersichtsartikel: [Ved 02], [Ste 98], [Weh 78].

5.7 Übungsaufgaben

ÜA 5.1 [zu 5.2] Notieren Sie die möglichen Botschaften der Länge n = 4 aus den Binär-
zahlen 0 und 1 (d. h. N = 2). Demonstrieren Sie wie bei Annäherung von p0 an 1 und p1 an 0
sich die Anzahl der typischen Sequenzen ändert. Wie verhält sich die Wahrscheinlichkeit der
typischen Sequenzen? Was passiert für wachsende Länge n?

ÜA 5.2 [zu 5.5.2] Beweisen Sie die Subadditivität (5.43) mit Hilfe der Gibbs-
Ungleichung (5.26).

ÜA 5.3 [zu 5.5.2] Beweisen Sie die Ungleichungen

H(X) ≥ H(X|Y ) ≥ 0 . (5.44)

ÜA 5.4 [zu 5.5.2] Zeigen Sie, dass die wechselseitige Information I(X : Y ) genau dann
verschwindet, wenn X und Y unabhängig sind, d. h. wenn p(x, y) = p(x)p(y) gilt.
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6 Von-Neumann-Entropie und
Quanteninformation

6.1 Quantenkanal und Quantenentropie

Quantenkanal Wir betrachten die folgende physikalische Situation (vergl. Tab. 6.1):
Eine klassische Signalquelle erzeugt nacheinander die Buchstaben einer Zeichenfol-

ge. Wie wir gesehen haben, kann diese Signalquelle durch ein Ensemble {xi, pi} mit
i = 1, . . . , N beschrieben werden. Die Botschaft soll durch einen Quantenkanal übertragen
werden. Dabei übernehmen gleichartige Quantenobjekte (z. B. Atome derselben Sorte mit
Spin 1

2 oder Photonen) die Rolle der Träger eines quantentheoretischen Signalalphabets. Dazu
wird zu jedem Buchstaben xi ein Präparationsgerät mit der Nummer i tätig, das ein einzel-
nes Exemplar des Quantensystems im Signalzustand |ψi〉 (signal state) erzeugt und abschickt
(vergl. Abb. 4.1 mit Abb. 5.1). Der Zusammenhang zwischen Buchstabe xi und Zustand |ψi〉
soll eindeutig sein. Die Gesamtanlage heißt Quantensignalquelle (quantum signal source).
Durch Präparation wird so die klassische Information in reinen Quantenzuständen kodiert. An
dieser ersten Schnittstelle wird ein statistisches Gemisch aus Signalzuständen mit Dichteope-
rator

ρ =
N∑

i=1

pi|ψi〉〈ψi| (6.1)

auf einem Hilbert-Raum Hd der Dimension d erzeugt. Der Dichteoperator ρ (auch Zu-
stand ρ genannt) bezeichnet wieder ein Präparationsverfahren. Das zugehörige Ensemble ist
das Quantensignalensemble {|ψi〉, pi}. Wichtig ist, dass wir i.a. nicht verlangen, dass die nor-
mierten Zustandsvektoren |ψi〉 orthogonal sind. Weiterhin muss die Dimension d nicht mit
N übereinstimmen, N kann z. B. größer sein. Der übertragende Quantenkanal soll störungs-
frei und nach außen abgeschlossen sein. Das Quantensignalensemble soll also der Einfachheit
halber im Kanal unverändert bleiben.

An einer zweiten Schnittstelle wird versucht durch projektive Messung die ursprüng-
lich von der Signalquelle ausgesandte Information wieder auszulesen. Dazu wird am
Gemisch ρ eine Detektorobservable D gemessen. Die orthonormalen Eigenzustände
{|dm〉, m = 1, . . . , d} der Observablen D

D|dm〉 = dm|dm〉 (6.2)

bilden eine ONB von Hd. Die zugehörigen Eigenwerte dm sollen nicht entartet sein. Damit
ist die Zuordnung zwischen Messwert dm und Zustand |dm〉 nach der Messung eineindeutig.

Verschränkte Systeme: Die Quantenphysik auf neuen Wegen. Jürgen Audretsch
Copyright c© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40452-X

Jürgen Audretsch
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Die Quantenphysik auf neuen Wegen
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Tabelle 6.1: Klassische Information wird in Quanteninformation kodiert. Durch Messung entsteht wie-
der klassische Information.
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Die Wahrscheinlichkeit, mit der der Messwert dm bei einer Messung an ρ auftritt, nennen
wir p(dm). Die Signalübertragung durch einen Quantenkanal spiegelt das Grundschema der
Quantentheorie wieder: Am Anfang steht eine Zustandspräparation und am Ende eine Mes-
sung. Eingegeben wird eine Sequenz klassischer Signale mit einer Shannon-Entropie H(p̃)
und ausgelesen wird eine Sequenz von Messwerten mit Shannon-Entropie H(p̃(d)).

Zur Vervollständigung der Beschreibung notieren wir noch die spektrale Zerlegung des
Dichteoperators ρ:

ρ =
d∑

m=1

λm|m〉〈m| , 〈m|m′〉 = δmm′ (6.3)

mit den Eigenvektoren |m〉 und den Eigenwerten λm. Auch die {|m〉, m = 1, . . . , d} bilden
eine ONB vonHd, die auch die Eigenbasis von ρ genannt wird.

Von-Neumann-Entropie Wir betrachten zunächst eine spezielle Situation, in der die ein-
gegebene klassische Information ohne Verlust wieder ausgelesen werden kann. Das Quan-
tensystem wird hierfür so gewählt, dass die Dimension d von Hd mit der Anzahl N der
Buchstaben im klassischen Signalensemble übereinstimmt. An der ersten Schnittstelle werden
durch geeignete Wahl des Präparationsverfahrens zu den Buchstaben xi in eineindeutiger Ab-
bildung speziell die orthonormalen Eigenzustände der Detektorobservablen D erzeugt (d. h.
|ψi〉 = |di〉).

ρ =
N∑

i

pi|di〉〈di| =
N∑

i

λi|i〉〈i| . (6.4)

Wir haben in diesem Fall also pi = λi und |di〉 = |i〉. Die Quantensignalquelle wird we-
gen der Unterscheidbarkeit der Signalzustände zu einer quasi-klassischen Quelle. Schließ-
lich wird an der zweiten Schnittstelle die Observable D gemessen. Am Eintreten des Mess-
werts di kann dann wegen der Unterscheidbarkeit eindeutig auf das ursprüngliche Vorliegen
des Signalbuchstabens xi geschlossen werden. Alle beteiligten Wahrscheinlichkeitsverteilun-
gen stimmen überein: p(di) = pi = λi. Entsprechend erhalten wir für die Shannon-Entropie
des Signalensembles und des Messwertensembles H(p̃) = H(p̃(d)).

Die in dieser speziellen quasi-klassischen Situation vorliegende eineindeutige Beziehung
zwischen den Ensembles {xi, pi}, {|ψi〉, pi} und {di, p(di)} und entsprechend die Überein-
stimmung der drei Wahrscheinlichkeitsverteilungen legen es nahe, dem statistischen Gemisch
mit Dichteoperator ρ von Gl. (6.4) eine Quantenentropie S(λ̃) mit dem Wert der Shannon-
Entropie zuzuordnen (S(λ̃) = H(p̃):

S(λ̃) = −
d∑

i=1

λi log λi ≥ 0. (6.5)

Mit der Spektralzerlegung von ρ von Gl. (6.3) lässt S(λ̃) sich als Funktion des Dichteopera-
tors ρ schreiben

S(ρ) := S(λ̃) = −tr[ρ log ρ] ≥ 0 . (6.6)
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Die Quantenentropie S(ρ) heißt auch die von-Neumann-Entropie1 des Gemisches mit Dich-
teoperator ρ. Die Einheit dieser Entropie ist Quantenbit oder ein Qubit. Wir werden diese
Bezeichnung im nächsten Kapitel begründen.

Da S(ρ) bei Vorgabe von ρ eindeutig bestimmt ist, kann man sich von dem oben beschrie-
benen speziellen Schema einer Informationsübertragung lösen und auch in physikalischen Si-
tuationen, in denen gar keine Signalübertragung oder -verarbeitung vorliegt, jedem Dichteope-
rator ρ und damit jedem Quantenzustand seine von-Neumann-Entropie S(ρ) gemäß Gl. (6.6)
zuordnen. S(ρ) charakterisiert einen Dichteoperator ρ unabhängig davon wie das zugehörige
Gemisch physikalisch präpariert wurde. Ein Zustand ρ mit spektraler Zerlegung (6.3) kann
hinsichtlich aller Wahrscheinlichkeitsaussagen nicht vom statistischen Gemisch der Zustände
der Eigenbasis mit Ensemble {|m〉, λm} unterschieden werden. Mit diesem statistischen Ge-
misch wird pro Signalzustand im Mittel die klassische Information H(λ̃) = S(ρ) übertragen.
Wir werden S(ρ) allgemein als Informationsgehalt eines Zustands ρ auffassen.

Messung der von-Neumann-Entropie Es reicht hierfür, ρ zu bestimmen und die Eigen-
werte abzulesen. Das wird besonders einfach wenn die Eigenzustände {|m〉} von ρ bekannt
sind. Messungen in der Eigenbasis von ρ sind besonders günstig. Sie führen auf die Wahr-
scheinlichkeiten

p(dm) = λm , (6.7)

mit denen sich die von-Neumann-Entropie von ρ bestimmen lässt:

S(ρ) = −
d∑

m=1

p(dm) log p(dm) = H(p̃(d)) . (6.8)

6.2 Qubit als Einheit der Quanteninformation

Unter Quanteninformation (quantum information) wollen wir die Information verstehen, die
durch den Zustand eines Quantensystems repräsentiert wird und mit Hilfe von Quantensyste-
men als Träger übermittelt wird. Dabei ist der Sender ein Präparationsgerät und der Empfänger
ein Messgerät. Dies sind die Schnittstellen für die Übergänge klassische→ quantentheoreti-
sche bzw. quantentheoretische→ klassische Information. Nur die klassische Information ist
eine Information, die wir direkt ablesen können.

Wir nehmen an, dass eine klassische Sequenz aus N Buchstaben des Signalensembles
{xi, pi}mit EntropieH(p̃) inN Quantenzustände aus dem Quantensignalensemble {|ψi〉, pi}
mit Entropie S(ρ) = H(p̃) umkodiert wird. Die Ensemblezustände {|ψi〉} sollen orthonor-
mal sein. Die Ursprungssequenz kann durch Messen in der ONB {|ψi〉} vollständig ausge-
lesen werden. Wie wir bereits gesehen haben, kann man die klassische Sequenz auch in nH
Buchstaben eines binären Codes kodieren, die in einer Sequenz von nH quantentheoretischen
2-Niveau-Systemen (Qubit-Systemen) mit Zuständen |0〉 und |1〉 übermittelt und eindeutig
ausgelesen werden können. Die übertragene Information pro Buchstabe ist H (gemessen in

1 [vNe 68]
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bits). Pro einzelnem übermittelten Signalzustand |ψi〉 hätte man wegen H(p̃) = S(ρ) im Mit-
tel also auch eine Anzahl S(ρ) von 2-Niveau-Systeme in wohlbestimmten Zuständen (z. B.
|0〉 oder |1〉) übermitteln können. Die von-Neumann-Entropie S(ρ) eines Ensembles ortho-
normaler Quantenzustände ist also gerade die mittlere Zahl von 2-Niveau-Systemen, die nötig
ist, um die Zustände des Ensembles zu kodieren.

Die obige Aussage geht nicht über das Theorem von Shannon hinaus. Da die Zustände
{|ψi〉} orthogonal sind, hätte man nach Auslesen der Ursprungssequenz durch Messung an ρ
die Information dem Empfänger auch klassisch übertragen können und der hätte mit dieser
Information die Sequenz der Quantenzustände präparieren können. Im allgemeinen Fall sind
die Signalzustände aber nicht orthogonal. Sie können durch Messung nicht eindeutig bestimmt
werden. Die Informationsübermittlung über einen klassischen Kanal führt nicht zum Ziel. Die
einfachste Lösung ist es in diesem Fall, die Signalzustände selber durch einen Quantenkanal
zu übertragen, der die Zustände der Quantensysteme nicht beeinflusst. Dabei würde allerdings
keine Datenkompression stattfinden.

Es ist die Aufgabe, eine Sequenz von Quantenzuständen |ψ1〉, . . . , |ψn〉 aus einem ge-
gebenen Signalensemble mit möglichst wenigen Quantensystemen zu übertragen. Man kann
zeigen [Sch 95], dass sich eine solche Sequenz ohne Bezug auf klassische Information in uni-
tärer Weise so komprimieren lässt, dass sie beim Empfänger mit asymptotisch perfekter Treue
(Übereinstimmung mit dem Ausgangszustand) mit Hilfe einer unitären Transformation wieder
zurückgewonnen werden kann. Hierzu werden Qubit-Systeme als quantentheoretische Trä-
gersysteme verwendet. Die mittlere Zahl der benötigten Qubit-Systeme pro Signalzustand bei
optimaler Kompression stimmt mit der von-Neumann-Entropie des durch den Dichteoperator
beschriebenen Signalensembles {|ψi〉, pi} überein. Dieses Theorem ist das quantentheoreti-
sche Analogon zum Shannon-Theorem. Es ist von Schumacher in präziserer Form mit Hilfe
von Quantendatenkompression (quantum data compression) abgeleitet worden und heißt auch
Schumachers quantum noiseless coding theorem. Wir können die Aussage an dieser Stelle
nicht beweisen, da im Beweis die Sequenz von Quantenzuständen als ein Produktzustand ei-
nes großen zusammengesetzten Systems aufgefasst wird. Solche Quantensysteme werden wir
erst im nächsten Kapitel kennenlernen. Wir verweisen für den nicht ganz einfachen Beweis2

auf die Literatur (vergl. Abschn. 6.6). Die Einheit der Quantenentropie S(ρ) wird Qubit ge-
nannt. Ein Quantensystem mit zwei Niveaus (z. B. |0〉 und |1〉), durch das man gerade ein
Qubit an Information kodieren kann, wird selber auch als Qubit (oder Qubit-System) bezeich-
net.

Wir wollen die klassische Übertragung von Quanteninformation mit der quantentheoreti-
schen vergleichen. Das Signalensemble möge aus den Zuständen

|ψ0〉 = |0〉 , |ψ1〉 = |0x〉 (6.9)
2Der Beweis ähnelt dem von Shannon in Abschn. 5.2, der auf der Idee der typischen Sequenzen beruht. Wenn wir

uns auf Qubit-Systeme beschränken, dann sind die Signalzustände |ψi〉 Zustände in H2, die nicht notwendig ortho-
gonal sein müssen. Wir fassen die n Systeme einer langen Sequenz zu einem zusammengesetzten System mit einem
Zustandsvektor im 2n-dimensionalen Produktraum zusammen. Dann lädt sich Folgendes zeigen (vergl. Abschn. 6.6):
Wenn das Signalensemble {|ψi〉, pi} eine von-Neumann-Entropie S(ρ) < 1 hat, dann ist die (mit n anwachsende)
Wahrscheinlichkeit groß, dass der Zustandsvektor in einem vom Ensemble abhängigen typischen Unterraum (typical
subspace) des Produktraums liegt. Dessen Dimension ist 2nS(ρ). Es reichen daher Produktzustände aus nS(ρ) Qubit-
Zuständen aus, um solche Zustandsvektoren darzustellen. Entsprechend werden nur nS(ρ) Qubit-Systeme als Träger
zur Übermittlung benötigt. Aus ihrem Gesamtzustand kann die Ausgangssequenz durch eine unitäre Transformation
rekonstruiert werden. Der Fehler nimmt dabei mit wachsendem n ab.
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bestehen, die mit den Wahrscheinlichkeiten

p1 = p2 =
1
2

(6.10)

auftauchen. Bei klassischer Übermittlung der Information ist wegen H(p1, p2) = 1 Bit keine
Datenkompression möglich. Für eine Sequenz von n Quantenzuständen werden nach Umko-
dieren n klassische Träger für jeweils 1 Bit benötigt. Die von-Neumann-Entropie ergibt sich
über den Dichteoperator

ρ = p0|ψ0〉〈ψ0|+ p1|ψ1〉〈ψ1| =



3
4

1
4

1
4

1
4



 . (6.11)

Die Matrix bezieht sich auf die Rechenbasis. Die Eigenwerte lassen sich bestimmen (λ0 =
cos2 π

8 = 0, 853, λ1 = sin2 π
8 = 0, 146) und führen mit Gleichung (6.5) auf S(ρ) = 0, 601

Qubits (vergl. Abschn. 6.7). Zur Übermittlung einer Sequenz von Zuständen des Signalen-
sembles benötigen wir daher nur 0, 601 Qubit-Systeme pro Zustand. Dies belegt, dass die
Quantenkompression mit Quantenkodieren in Qubit-Systeme ein nützliches Hilfsmittel bei der
Übertragung von Quanteninformation ist. Insbesondere erhält durch dieses Ergebnis die von-
Neumann-Entropie eine operationale Interpretation, die keinen Bezug mehr auf die klassische
Entropie enthält. Das Qubit ist eine sinnvolle Einheit für Quanteninformation. Hervorzuheben
ist noch, dass das Kompressionsverfahren von Schumacher zu gegebenem Signalensemble
universell ist. Zu seiner Durchführung muss man den zu übermittelnden Zustand nicht ken-
nen.

6.3 Eigenschaften

Mit Bezug auf Gl. (6.8) lässt sich in Analogie zur Shannon-Entropie direkt zeigen:

(i) Ein reiner Zustand ρ = |ψ〉〈ψ| hat den Minimalwert der Entropie S(ρ) = 0.

(ii) Für einen Dichteoperator mit d nicht verschwindenden Eigenwerten findet man

0 ≤ S(ρ) ≤ log d. (6.12)

Das Gleichheitszeichen gilt, wenn alle nicht verschwindenden Eigenwerte übereinstim-
men. Der vollständig gemischte Zustand ρ = 1

d� im Hilbert-Raum der Dimension d hat
die maximale von-Neumann-Entropie S(ρ) = log d.

(iii) Als Folge der Konkavität der Shannon-Entropie gilt auch für die von Neumann-Entropie
für pj > 0 mit

∑
j pj = 1 die Konkavitätsrelation

S(p1ρ1 + . . .+ prρr) ≥ p1S(ρ1) + . . .+ prS(ρr) . (6.13)
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Zum Beweis geht man zur Spektralzerlegung der ρj über.
∑

j pjρj ist der Zustand eines
Quantensystems, das sich mit der Wahrscheinlichkeit pj im unbekannten Zustand ρj befin-
det. Das Ergebnis ist plausibel. Es sind mehrere Ensembles zusammengeführt worden bzw.
die zugehörigen Ensemblezerlegungen sind gemischt worden. Unser Unwissen über dieses
Gemisch ist größer als das mittlere Unwissen über die Zustände ρj . Die Information darüber,
von welchem Gemisch ein Zustand kommt, ist verloren gegangen . Die Entropie ist größer,
weil wir weniger über die Präparation wissen. Mit (i) folgt speziell

S(ρ) > 0 , (6.14)

wenn ρ kein reiner Zustand ist.

Unitäre Dynamik Allgemein gilt bei einer unitären Transformation des Dichteoperators

S(UρU†) = S(ρ) , (6.15)

da S nur von den Eigenwerten von ρ abhängt. Die Entropie ist also – unabhängig davon
welches Bild man für die unitäre dynamische Entwicklung wählt – immer zeitunabhängig:

dS
dt

= 0 . (6.16)

Unsere Information über einen Zustand ändert sich während der unitären dynamischen Ent-
wicklung nicht. Das ist anders in der Messdynamik.

Quantentheoretische relative Entropie und Kleinsche Ungleichung Sie wird uns in erster
Linie als mathematische Hilfsgröße dienen. Wir betrachten zwei Dichteoperatoren ρ und σ
und führen die quantentheoretische relative Entropie S(ρ‖σ) von ρ bezüglich σ ein:

S(ρ ‖ σ) := tr[ρ log ρ]− tr[ρ log σ] . (6.17)

Wie im analogen klassischen Fall wollen wir eine Abschätzung ableiten. Die orthogonalen
Zerlegungen von ρ und σ seien durch Gl. (6.3) und

ρ =
d∑

m=1

λm|φm〉〈φm| , σ =
d∑

m=1

κm|ξm〉〈ξm| (6.18)

gegeben. Daraus folgt:

S(ρ‖σ) =
∑

m

λm log λm −
∑

m

〈φm|ρ log σ|φm〉 . (6.19)

Mit 〈φm|ρ = λm〈φm| schreiben wir den zweiten Term um

〈φm| log σ|φm〉 = 〈φm|(
∑

m′
log κm′ |ξm′〉〈ξm′ |)|φm〉 =

∑

m′
Pmm′ log κm′ . (6.20)

Hierbei haben wir

Pmm′ := 〈φm|ξm′〉〈ξm′ |φm〉 (6.21)
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mit den Eigenschaften Pmm′ ≥ 0,
∑
m Pmm′ = 1 und

∑
m′ Pmm′ = 1 eingeführt. Wir

schreiben Gl. (6.19) weiter um.

S(ρ‖σ) =
∑

m

λm(logλm −
∑

m′
Pmm′ log κm′). (6.22)

Der Logarithmus ist eine konkave Funktion, daher gilt
∑

m′ Pmm′ log κm′ ≤ logµm mit
µm :=

∑
m′ Pmm′κm′ . Mit Gl. (6.22) überträgt sich diese Ungleichung

S(ρ‖σ) ≥
∑

m

λm log
λm
µm

. (6.23)

Die rechte Seite stimmt formal mit einer klassischen relativen Entropie überein. Das führt auf
die Kleinsche Ungleichung:

S(ρ‖σ) ≥ 0. (6.24)

Die quantentheoretische relative Entropie ist nicht negativ. Sie verschwindet genau dann,
wenn ρ = σ (übereinstimmende Zustände). Wie sein klassisches Gegenstück werden wir
diesen Satz in erster Linie als Hilfssatz verwenden.

6.4 Die Schnittstellen von Präparation und Messung

In Kapitel 6.1 haben wir ideal angepasst präpariert und ideal angepasst ausgelesen. Abwei-
chungen hiervon führen zu Informationsverlust. Woran liegt das und wie kann man das quan-
titativ fassen?

Bei Transport und Verarbeitung quantentheoretische kodierter Information wirken sich
drei charakteristische Züge der Quantentheorie besonders aus, die in der klassischen Phy-
sik nicht zu finden sind: Das ist einmal der Umstand, dass nicht-orthogonale reine Zustände
durch eine Messung nicht perfekt unterschieden werden können. Selbst orthogonale Zustän-
de können durch eine Messung nur dann unterschieden werden, wenn die Eigenzustände des
Observablenoperators mit ihnen übereinstimmen. Hinzu kommt als zweites, dass eine Quan-
tenmessung i.a. den Zustand abändert. Ein dritter Punkt ist die Mehrdeutigkeit der Ensem-
blezerlegung eines Dichteoperators. Das hat umgekehrt zur Folge, dass es viele klassische
Ensembles mit unterschiedlichen Shannon-Entropien gibt, die nach der Kodierung an der ers-
ten Schnittstelle auf den gleichen Dichteoperator führen und dann durch keine Messung mehr
unterscheidbar sind. Die von-Neumann-Entropie des Zustands ρ ist aber über seine orthogo-
nale Zerlegung bestimmt, die nur genau eins der klassischen Ensembles kodiert. Wir wollen
die Konsequenzen näher diskutieren und beginnen mit der Messung, also mit der zweiten
Schnittstelle von Tab. 6.1.

6.4.1 Entropie der projektiven Messung

Die Zustände im Quantenkanal werden durch den Dichteoperator ρ mit der von Neumann-
Entropie S(ρ) beschrieben. Die nicht-selektive Messung der Dekodierungsobservablen D
führt auf eine Wahrscheinlichkeitsverteilung {p(dm)} der Messwerte dm. Man kann die Mes-
sung als klassische stochastische Quelle mit dem Signalensemble {dm, p(dm)} auffassen. Das
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Signalensemble hat die Shannon-Entropie H(p̃(dm)). Dabei ist {p(dm)} zugleich die Wahr-
scheinlichkeitsverteilung der Zustände {|dm〉}, in die das System bei der nicht-selektiven
Messung überführt wird. Als Ergebnis liegt ein Dichteoperator ρ′ mit der orthogonalen Zerle-
gung

ρ′ =
d∑

m=1

p(dm)|dm〉〈dm| =
d∑

m=1

PmρPm (6.25)

vor. Für die Projektionsoperatoren gilt: P 2
m = Pm und

∑
m Pm = 1. Die Shannon-Entropie

H(q̃) der Messwerte und die von-Neumann-Entropie S(ρ′) des Gemisches der Quantenzu-
stände nach der Messung stimmen überein:

S(ρ′) = H(p̃(d)) . (6.26)

Die Kleinsche Ungleichung erlaubt es, die Quantenentropien S(ρ) und S(ρ′) vor und nach
der nicht-selektiven Messung zu vergleichen. Wir gehen von

0 ≤ S(ρ‖ρ′) = −S(ρ)− tr[ρ log ρ′] (6.27)

aus und betrachten den zweiten Term genauer:

tr[ρ log ρ′] = tr[(
∑

m

Pm)ρ log ρ′] = tr[
∑

m

Pmρ log(ρ′)Pm] . (6.28)

Wir haben P 2
m = Pm verwendet. Gl. (6.25) zeigt, dass Pmρ′ = PmρPm = ρ′Pm gilt. Daher

vertauscht Pm auch mit der Operatorfunktion log ρ′ und wir finden

tr[ρ log ρ′] = tr[
∑

m

PmρPm log ρ′]

= tr[ρ′ log ρ′] = −S(ρ′) . (6.29)

Damit haben wir nach Einsetzen in Gl. (6.27) und mit Gl. (6.26) insgesamt das Ergebnis
erhalten:

S(ρ′) = H(p̃(d)) ≥ S(ρ) . (6.30)

Bei einer nicht-selektiven projektiven Messung stimmt die Quantenentropie des Zustandes ρ′

nach der Messung nur dann mit der von-Neumann-Entropie des Zustandes ρ vor der Messung
überein, wenn die Messung in der Eigenbasis von ρ erfolgt, sonst ist sie größer. Eine nicht-
selektive Messung überführt daher i.a. in ein neues Signalensemble mit größerer Entropie und
vernichtet auf diese Weise Information. Das gilt auch für eine selektive Messung. Man kann
sich das an einem sehr einfachen Beispiel veranschaulichen. Der reine Zustand

|ψ〉 =
1√
2
(|0〉+ |1〉) (6.31)

hat verschwindende Entropie. Nicht-selektive Messung in der Eigenbasis überführt in den
total gemischten Zustand

ρ =
1
2
� (6.32)

mit maximaler Entropie S(ρ) = 1.
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6.4.2 Entropie der Präparation

Bei der Quantenkodierung wird die klassische Signalquelle mit Ensemble {xi, pi} in das
Quantenensemble {|ψi〉, pi}, beschrieben durch den Dichteoperator ρ von Gl. (6.1), um-
kodiert (vergl. Tab. 6.1). Wegen der fehlenden Eindeutigkeit der Ensemblezerlegung von ρ
führen verschiedene klassische Ensemble mit vielen verschiedenen Entropiewerten H auf
Quantenensembles mit demselben Dichteoperator ρ und damit auf dieselbe von-Neumann-
Entropie S(ρ). Der Maximalwert der Quantenentropie ist über Gl. (6.12) durch die Dimension
des Hilbert-Raums des Quantensystems gegeben, in dessen Zuständen kodiert wird. Der Ma-
ximalwert der PräparationsentropieH(p̃) ist durch die ZahlN der Buchstaben im klassischen
Alphabet xi gegeben. Sie stimmt mit der Zahl der Zustandsvektoren |ψi〉 überein, die größer
als die Zahl der Basisvektoren von Hd sein kann, da die |ψi〉 nicht orthogonal sein müssen.
Wir werden eine Relation der Form

H(p̃) ≥ S(ρ) (6.33)

erwarten. Sie lässt sich tatsächlich in einem längeren Beweis bestätigen (vergl. [Weh 78,
S. 238] oder [CD 94, S. 527]). In Gl. (6.33) besteht Gleichheit genau dann, wenn die Zustände
|ψi〉 wechselseitig orthogonal sind. Wenn die Signalzustände nicht orthogonal sind, können
sie nicht unterschieden werden. Es gibt keine Dekodierungsobservable mit deren Hilfe der
volle Informationsgehalt der kodierten klassischen Botschaft wieder ausgelesen werden
könnte. Durch ρ wird weniger Information übermittelt als das ursprüngliche klassische Signal
enthält. Auch mit optimal angepasster anschließender Messung kann die Information nicht
zurückgewonnen werden.

6.5 Quanteninformation

Wir fassen zusammen: In der klassischen Informationstheorie kann man davon absehen, wie
der Träger der Information physikalisch realisiert ist. Gedruckte Buchstaben können z. B.
ohne Fehler in die Laute gesprochener Buchstaben konvertiert werden und umgekehrt. Wie
wir gesehen haben, kann Quanteninformation im Allgemeinen nicht verlustfrei in klassische
Information und zurück übertragen werden. Die Ursache liegt unter anderem in der nicht-
klassischen Struktur des Messprozesses. Quanteninformation ist daher eine von der klassi-
schen Information i.a. sehr verschiedene Art von Information, ähnlich wie ein Quantenzustand
eine andere Art von Zustand ist als der Zustand eines klassischen Systems.

Quanteninformation wird in Quantenzuständen gespeichert. Ihre Träger sind Quantensys-
teme. Ihre Übermittlung besteht darin, dass die Träger zwischen Präparations- und Messge-
rät propagieren. Die Verarbeitung von Quanteninformation besteht in der Manipulation von
Quantenzuständen. Unitäre Transformationen sind hierfür ein Beispiel. Den beiden Informa-
tionstypen sind verschiedene Informationseinheiten zugeordnet: Bit bzw. Qubit. Die Quanten-
informationstheorie gilt einheitlich für die unterschiedlichen Qubit-Systeme (Spin, Photonen-
polarisation usw.).
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Wie wir in den nachfolgenden Kapiteln noch im Einzelnen darstellen werden, unterschei-
det sich die Speicherung und Verarbeitung von Quanteninformation wesentlich von der klas-
sischer Information: (i) Die Zustände eines Qubits sind nicht auf 0 und 1 beschränkt. Sie
werden durch die ganze Bloch-Kugel beschrieben. (ii) Der Zustand eines Quantensystems,
das aus mehreren Qubit-Systemen zusammengesetzt ist, kann verschränkt sein. (iii) Klassisch
gibt es nur Sprünge zwischen 0 und 1. Unitäre Transformationen und andere Operationen sind
aber sehr viel allgemeiner und reichhaltiger. (iv) Allerdings kann man in einer Messung den
quantentheoretischen Endzustand nicht so auslesen wie den klassischen Zustand.

6.6 Ergänzende Themen und weiterführende Literatur

Siehe auch Abschn. 5.6.

• Übersichtsartikel: [Weh 78], [CD 94], [CF 96], [Ste 98], [Joz 98], [Ved 02].

• Zum Konzept „Quanteninformation“: [Wer 01], [Wer 02].

• Zu Schumachers Theorem und zur Quantendatenkompression: [JS 94], [Sch 95],
[Joz 98], [Ved 02], [Ben 95].

6.7 Übungsaufgaben

ÜA 6.1 [zu 6.1] Bestimmen Sie mit Bezug auf ein Ergebnis in Kap. 3 die Entropie eines
Zustands ρ inH2 als Funktion des Bloch-Vektors.

ÜA 6.2 [zu 6.2] Bestimmen Sie den Bloch-Vektor r zum Dichteoperator ρ von Gl. (6.11).
Die Eigenvektoren von ρ und rσ stimmen überein (warum?). Lesen Sie mit Bezug auf Ab-
schn. 3.2 an rσ die Darstellung der Eigenvektoren in der Rechenbasis ab und bestimmen Sie
die Eigenwerte λ0 und λ1. Berechnen Sie S(ρ).
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7 Zusammengesetzte Systeme

Wir gehen zu zusammengesetzen Systemen über und stellen zunächst wieder den mathemati-
schen Rahmen zur Verfügung. Dann werden die Postulate verallgemeinert und der Spezialfall
der Messungen an Teilsystemen ausführlich diskutiert. Die Konsequenzen von Verschränkung
werden verdeutlicht. Die unitäre Dynamik kann wieder mit Hilfe von Liouville-Operatoren
formuliert werden. Die Wirkung einfacher Quantengatter auf mehreren Qubit-Systemen wird
vorgestellt.

7.1 Teilsysteme

Wir sind von der klassischen Physik her gewohnt, dass zusammengesetzte Systeme (composite
systems, compound systems) in Teilsysteme oder Untersysteme (subsystems) zerlegt werden
können und dass umgekehrt Systeme zu Gesamtsystemen zusammengesetzt werden können.
Das klassische Gesamtsystem ist dabei vollständig durch die Zustände der Teilsysteme und
ihre dynamischen Wechselwirkungen untereinander beschreibbar. Das Sonnensystem mit
Sonne, Planeten und Gravitationsfeld ist ein Beispiel. In der Quantenphysik zeigt sich, dass
zusammengesetzte Systeme darüber hinaus völlig andere und überraschende ganzheitliche
Eigenschaften aufweisen können. Sie treten auf, wenn sich zusammengesetzte Quantensys-
teme in verschränkten Zuständen (entangled states) befinden. In diesen Fällen ist tatsächlich
„das Ganze mehr als die Summe seiner Teile“. Wir werden zur Darstellung der Einzelheiten
ähnlich wie in Abschn. 1.2 vorgehen und die Diskussion von Präparation und Messung an
den Anfang stellen.

Was sind zusammengesetzte Systeme? Es gibt spezielle Quantensysteme, die eine innere
Struktur aufweisen. Man kann bei ihnen zwei oder mehrere Teilsysteme unterscheiden, auf
die man getrennt Zugriff hat. Damit ist gemeint, dass sich experimentell Teilsysteme finden
lassen, an denen man jeweils einzeln (und in diesem Sinne lokal) Eingriffe durchführen kann.
Diese Operationen werden lokale Operationen (local operations) genannt. Es können z. B.
Messungen sein.

Wir geben einige 2-Teile-Systeme (bi-partite-systems) an. Es können z. B. Quantensyste-
me präpariert werden, bei denen man an zwei verschiedenen Orten bei Messungen jeweils ein
Photon registriert. Analoge Systeme gibt es für Elektronen. Es gibt Systeme, bei denen an ei-
nem Ort ein Photon und an einem anderen Ort ein Atom registriert wird. Teilsysteme werden
allgemein als lokal bezeichnet, müssen aber tatsächlich nicht räumlich getrennt sein. Es kann

Verschränkte Systeme: Die Quantenphysik auf neuen Wegen. Jürgen Audretsch
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sich beim zusammengesetzten System z. B. auch um die Bahn (äußerer Freiheitsgrad) und die
Polarisierung (innerer Freiheitsgrad) vom einzelnen Quantenobjekt handeln. Selbstverständ-
lich kann man auch zwei getrennte Systeme, die völlig unabhängig voneinander sind, formal
als ein Gesamtsystem auffassen.

Wesentlich ist, dass man z. B. bei einem 2-Photonen-System nicht davon ausgeht, dass
die beteiligten Photonen unterscheidbar sind (was sie bekanntlich nicht sind). Unterscheidbar
sind z. B. die Orte, an denen bei einer Messung eine Photonenpolarisation gemessen wird. Von
Messungen wissen wir auch, dass immer zwei und nicht mehr Photonen zusammen präpariert
werden und daher das Gesamtsystem ein 2-Teile-System ist. Die entsprechenden Teilsysteme
SA und SB sind in diesem Fall den Orten A und B zugeordnet (Photon am Ort A bzw. am
OrtB). Allgemein sind Geräte klassische Objekte und haben daher Individualität . Demgegen-
über macht es wegen der Ununterscheidbarkeit der Photonen keinen Sinn zu fragen, welchem
der beiden Photonen bei einer Messung z. B. am Ort A gemessen wurde.

Alice und Bob Um besonders deutlich zu machen, dass an verschiedenen Teilsystemen SA

und SB des zusammengesetzten Systems SAB gemessen oder manipuliert wird, werden häu-
fig die Experimentatoren Alice und Bob eingeführt, die am Teilsystem SA bzw. SB (oft aber
nicht notwendig an verschiedenen Orten) lokale Operationen ausführen. Mit dem Bezug auf
Alice und Bob unterstreicht man auch nochmal, dass sehr viele quantentheoretische Aussagen
operational (operational) oder operativ (d. h. als Handlungsanweisungen) zu verstehen sind
z. B. von der Art: Wenn Alice am Teilsystem SA dieses ausführt, wird Bob am Teilsystem SB

jenes messen.

Existenz Wir werden gemäß der Standardinterpretation aus Abschn. 1.2 wiederum anneh-
men, dass solche Teilsysteme keine gedanklichen Hilfskonstruktionen sind wie die Quan-
tensysteme in der Minimalinterpretation, sondern tatsächlich existieren. Damit ist allerdings
nicht gemeint, dass dem einzelnen Teilsystem ein vom Zustand der anderen Teilsysteme unab-
hängiger Zustand zugeschrieben werden kann. Bei verschränkten Gesamtsystemen liegt diese
Unabhängigkeit gerade nicht vor. Dies ist die Ursache für viele verblüffende quantenphysi-
kalische Effekte. Es ist darüber hinaus mit der Existenzaussage auch nicht unterstellt, dass
gleichartige Elementarteilchen derselben Sorte, wie z. B. zwei Photonen, Individualität besit-
zen und daher unterscheidbar sind. So weit geht die Annahme, dass die Photonen existieren,
nicht. Die einzelne Zugriffsmöglichkeit und nicht die Individualität von Quantenobjekten de-
finiert das Teilsystem.

7.2 Produktraum

Wir wollen zunächst den mathematischen Formalismus bereitstellen, mit dessen Hilfe die
Physik der zusammengesetzten Systeme formuliert werden kann. Wir benötigen hierzu den
Produkt-Hilbert-Raum.
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7.2.1 Vektoren

Das Tensorprodukt HAB aus zwei Hilbert-Räumen HA und HB , deren Dimensionen nicht
übereinstimmen müssen

HAB = HA ⊗HB (7.1)

ist wieder ein Hilbert-Raum. Wir nennen HA und HB die Faktorräume. Zu jedem Paar von
Vektoren |ϕA〉 ∈ HA und |χB〉 ∈ HB gehört ein Produktvektor (product vector) aus HAB ,
der unterschiedlich geschrieben werden kann

|ϕA〉 ⊗ |χB〉 =: |ϕA〉|χB〉 =: |ϕA, χB〉 =: |ϕ, χ〉 . (7.2)

Er ist bezüglich der Multiplikation mit komplexen Zahlen in jedem Argument linear.
Mit λ, µ ∈ �

|ϕA〉 ⊗ (λ|χB1 〉+ µ|χB2 〉) = λ|ϕA〉 ⊗ |χB1 〉+ µ|ϕA〉 ⊗ |χB2 〉 , (7.3)

(λ|ϕA1 〉+ µ|ϕA2 〉)⊗ |χB〉 = λ|ϕA1 〉 ⊗ µ|χB〉+ |ϕA2 〉 ⊗ |χB〉 . (7.4)

Verschränkte Vektoren Wenn {|nA〉} eine Basis von HA und {|iB〉} eine Basis von HB
ist, dann ist

{|nA〉 ⊗ |iB〉} (7.5)

eine vonHAB . Für die Dimension vonHAB gilt dimHAB = (dimHA)·(dimHB). Jeder Vek-
tor |ψAB〉 ausHAB kann nach der Basis zerlegt werden

|ψAB〉 =
∑

n,i

αni|nA, iB〉 . (7.6)

Alle Definitionen und Aussagen lassen sich direkt auf das Produkt einer endlichen Zahl von
Hilbert-RäumenHAB...M = HA⊗HB⊗· · ·⊗HM übertragen. Vektoren ausHAB , die keine
Produktvektoren sind, werden verschränkt (entangled) genannt. Durch sie werden wir ver-
schränkte reine Zustände repräsentieren, die im Folgenden eine wichtige Rolle spielen wer-
den. An der Zerlegung (7.6) nach der Basis ist zumeist nicht direkt ablesbar, ob ein Vektor
|ψAB〉 verschränkt ist. Wir werden hierzu später ein Kriterium entwickeln (Abschn. 8.2.1)
und auch das Konzept der Verschränkung auf Dichteoperatoren erweitern (Abschn. 8.1.1).

Skalarprodukt Der Bra-Vektor zum Produktvektor |ϕA〉 ⊗ |χB〉 hat die Form

(|ϕA〉 ⊗ |χB〉)† = 〈ϕA| ⊗ 〈χB| =: 〈ϕA|〈χB| =: 〈ϕA, χB| =: 〈ϕ, χ| . (7.7)

Daraus folgt für |ψAB〉 von Gl. (7.6)

(|ψAB〉)† = 〈ψAB| =
∑

n,i

α∗
ni〈nA, iB| . (7.8)
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Das Skalarprodukt wird „raumweise“ gebildet:

〈ϕA, χB|ξA, ζB〉 = 〈ϕA|ξA〉〈χB|ζB〉 . (7.9)

Eine Basis {|nA, iB〉} vonHAB ist orthonormal, wenn

〈nA, iB|n′A, iB〉 = δnn′δii′ (7.10)

gilt, d. h. wenn {|nA〉} und {|iB〉} ONB sind.

Bell-Basis1 Wie man leicht nachprüfen kann bilden die folgenden vier Vektoren eine spe-
zielle ONB im RaumHAB = HA2 ⊗HB2 der 2-Qubit-Vektoren:

|Φ±〉 := 1√
2
(|0, 0〉 ± |1, 1〉) , |Ψ±〉 := 1√

2
(|0, 1〉 ± |1, 0〉) . (7.11)

Diese Basis spielt bei vielen Untersuchungen ein besondere Rolle. Wir werden später zeigen,
dass diese häufig verwendeten Bell-Zustände maximal verschränkt sind.

7.2.2 Operatoren

Produktoperatoren CA sei ein linearer Operator auf HA und DB ein linearer Operator
aufHB . Das Tensorprodukt

CA ⊗DB =: CADB (7.12)

bezeichnet einen Produktoperator, der „raumweise“ wirkt

[CA ⊗DB ]|ϕA, χB〉 = |CAϕA, DBχB〉 . (7.13)

Der Produktoperator ist ein linearer Operator aufHAB .

[CA ⊗DB ]
∑

n,i

αni|nA, iB〉 =
∑

n,i

αni|CAnA, DBiB〉 . (7.14)

Der aus den Produktvektoren |ψAB〉 = |ϕA, χB〉 und |θAB〉 = |ξA, ζB〉 gebildete dyadi-
sche Operator |ψAB〉〈θAB| ist ebenfalls ein Produktoperator.

|ψAB〉〈θAB| = |ϕA, χB〉〈ξA, ζB| = (|ϕA〉〈ξA|)⊗ (|χB〉〈ζB|) . (7.15)

Man kann die Klammern auch weglassen. Der Identitätsoperator aufHAB kann mit der Basis
von Gl. (7.5) dyadisch zerlegt werden:

�
AB =

∑

n,i

|nA, iB〉〈nA, iB | = �
A ⊗ �B . (7.16)

1Benannt nach J.S. Bell (1928-1990)
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Mit dem Identitätsoperator eines Faktorraums lassen sich spezielle Produktoperatoren bil-
den. Die durch ein Dach gekennzeichneten erweiterten Operatoren (Teilsystem-Operatoren)

ĈAB = CA ⊗ �B ; D̂AB = �
A ⊗DB (7.17)

sind auf HAB = HA ⊗ HB definiert, wirken jedoch nur in den jeweiligen Faktor-Hilbert-
Räumen in nicht-trivialer Weise. ĈAB und D̂AB kommutieren aufHAB und es gilt

ĈAB ⊗ D̂AB = D̂AB ⊗ ĈAB = CA ⊗DB . (7.18)

Allgemeine Operatoren Mit Bezug auf die dyadische Zerlegung (7.16) von �AB können
wir den allgemeinen Operator ZAB aufHAB in der Form

ZAB = �
ABZAB�AB =

∑

n,m

∑

i,j

〈nA, iB|ZAB|mA, jB〉(|nA〉〈mA|⊗|iB〉〈jB|) (7.19)

schreiben. Er ist durch seine Matrixelemente in der orthonormalen Basis (7.5) bestimmt.

Spur und Teilspur Die Spur (trace) ist auch in HAB über eine orthonormale Basis in ge-
wohnter Weise definiert

trAB[ZAB] :=: tr[ZAB] :=
∑

n,i

〈nA, iB|ZAB |nA, iB〉 . (7.20)

Für Produktoperatoren folgt daraus

tr[CA ⊗DB] =
∑

n,i

CAnnD
B
ii = trA[CA] trB[CB] , (7.21)

mit den Matrixelementen CAnn und DB
ii . Die Spur wird „raumweise“ gebildet.

Die Bildung der Teilspur (partial trace) über einen der Faktorräume, beispielsweise den
RaumHA, ist für die Physik besonders wichtig. Sie ist durch

trA[ZAB ] :=
∑

n

〈nA|ZAB |nA〉 (7.22)

definiert. Wie man an Gl. (7.19) ablesen kann, entsteht dabei ein Operator auf HB . Für Pro-
duktoperatoren folgt

trA[CA ⊗DB] = trA[CA]DB . (7.23)

Die Gesamtspur ergibt sich als Abfolge von Teilspuren

tr[ZAB] = trB [trA[ZAB ]] = trA[trB[ZAB]] . (7.24)

Dabei kommt es auf die Reihenfolge der Bildung der Teilspuren nicht an.
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Operatorbasis Auch dieses Konzept, das wir in Abschn. 1.2 kennen gelernt haben, lässt
sich direkt auf den Produktraum HAB übertragen. Wenn {QAα , α = 1, . . . , (dimHA)2} eine
Operatorbasis auf HA und {RBκ , κ = 1, . . . , (dimHB)2} eine Operatorbasis auf HB ist,
dann bilden die Produktoperatoren

TABακ := QAα ⊗RBκ (7.25)

wegen

tr[TAB†
ακ TABβλ ] = δαβδκλ (7.26)

eine Operatorbasis des Produktraums HAB . Man kann jeden Operator ZAB , der auf HAB
wirkt, nach ihr entwickeln:

ZAB =
∑

α,κ

TABακ tr[TAB†
ακ ZAB] . (7.27)

Es gibt Operatoren aufHAB , die nicht als Produkt von zwei Operatoren in der FormCA⊗DB

geschrieben werden können. Aber alle Operatoren aufHAB können als Summe von Produkt-
operatoren geschrieben werden.

Produkt-Liouville-Raum Wir übertragen die Konzepte aus Abschn. 1.2 und bilden den
Produkt-Liouville-Raum

�
AB = �

A ⊗ �B . (7.28)

Seine Elemente sind die Operatoren

CAB =
∑

α,β

cαβQ
A
α ⊗RBβ . (7.29)

auf HAB . Der Liouville-Operator wird in Verallgemeinerung von Gl. (1.84) mit dem
Hamilton-Operator HAB aufHAB definiert:

LABZAB :=
1
�
[HAB , ZAB]− . (7.30)

7.3 Grundlagen der Physik zusammengesetzter
Quantensysteme

7.3.1 Postulat für zusammengesetzte Systeme und Ausblick

Wir betrachten zusammengesetzte Quantensysteme(composite quantum systems), die selber
abgeschlossen sein sollen. Daher können wir alle Postulate von Kap. 2 und 4 direkt übertragen.
Insbesondere wird der Zustand des zusammengesetzten Systems durch einen Dichteoperator
in einem Hilbert-Raum beschrieben. Die operationale Interpretation des Konzepts „Zustand“
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eines Quantensystems als „das System hat ein bestimmtes Präparationsverfahren durchlau-
fen“ überträgt sich. Das zusammengesetzte System SAB... soll aus Teilsystemen (subsystems)
SA, SB, . . . bestehen. Da wir Teilsysteme betrachten wollen, die selber Quantensysteme sind,
liegt es nahe, ihnen zur Beschreibung jeweils einen Hilbert-Raum HA,HB, . . . zuzuordnen.
Dann bleibt zunächst noch die Frage offen, welche Struktur der Hilbert-Raum des Gesamt-
systems hat, d. h. wie er sich aus denHA,HB, . . . mathematisch zusammensetzt. Hier gibt es
im Prinzip viele Möglichkeiten. Eine ist z. B. die direkte Summe HAB... = HA ⊕HB ⊕ . . ..
Tatsächlich postuliert man aber das Tensorprodukt, wie wir es in Abschn. 7.2.1 beschrieben
haben, um Übereinstimmung mit den Experimenten zu erzielen. Diese Festlegung hat weitrei-
chende Konsequenzen für alle physikalischen Aussagen über zusammengesetzte Quantensys-
teme, deren Teilsysteme nicht völlig voneinander isoliert sind. Wir sind im Folgenden gerade
an diesen Aussagen interessiert.

Postulat Die Zustände eines aus den Teilsystemen SA, SB, . . . zusammengesetzten ab-
geschlossenen Gesamtsystems SAB... werden durch Dichteoperatoren ρAB... im Produkt-
Hilbert-Raum

HAB... = HA ⊗HB ⊗ . . . (7.31)

beschrieben. Die Postulate für abgeschlossene Systeme aus Abschn. 2.1 und Abschn. 4.2 über-
tragen sich auf das Gesamtsystem SAB....

Ausblick An dem Postulat kann man unmittelbar eine Reihe von Besonderheiten der Phy-
sik zusammengesetzter Systeme ablesen. Die mathematische Produktstruktur (7.31) gibt eine
Gliederung vor. Wir stellen sie am Beispiel eines 2-Teile-Systems SAB dar.

(i) Zustände: Ein reiner Zustand kann ein Produktzustand |ψAB〉 = |φA〉 ⊗ |χB〉 oder ein
verschränkter Zustand |ψAB〉 �= |φA〉 ⊗ |χB〉 sein. Die ungewöhnlichen Eigenschaften
verschränkter Zustände, insbesondere das Auftreten nicht-klassischer Korrelationen und
ihre Nutzung, werden wir im Rest dieses Kapitels und in allen weiteren Kapiteln im
Einzelnen diskutieren. Auf korrelierte Dichteoperatoren ρAB �= ρA ⊗ ρB gehen wir in
Abschn. 8.1 ein.

(ii) Observablen: Es gibt den Spezialfall der erweiterten Observablenoperatoren, wie z. B.
ĈAB = CA⊗�B , die mit einem Observablenoperator gebildet werden, der nur auf einem
der Produkträume wirkt. Mit ihnen werden lokale Messungen (local measurements) be-
schrieben, die nur an einem der Teilsysteme durchgeführt werden (z. B. Messung der Ob-
servablen CA am Teilsystem SA). Es gibt aber aufHAB allgemeinere hermitesche Ope-
ratorenZAB , die nicht als erweiterte Operatoren schreibbar sind. Auch ihnen entsprechen
Messungen physikalischer Observablen ZAB . Diese Observablen werden nicht-lokale
Observablen (non-local observables) oder kollektive Observablen (collective observa-
bles) genannt. Die entsprechenden Messungen sind nicht-lokale Messungen (non-local
measurements), die i.a. nicht direkt als lokale Messungen an SA und SB durchgeführt
werden können. Das gilt auch für den Spezialfall der Observablen, die Operatorproduk-
ten entsprechen (z. B. ZAB = CA ⊗DB). Nicht-lokale Messungen werden im Zusam-
menhang mit Quantenkorrelationen und der nicht-lokalen Speicherung von Information
wichtig. Wir besprechen sie daher erst in Abschn. 9.2.
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(iii) Unitäre Entwicklungen: Auch die unitären Entwicklungen müssen nicht von der Struktur
UAB = UA ⊗UB sein. Es kann z. B. eine Wechselwirkung zwischen den Systemen SA

und SB existieren. Wir diskutieren das in Abschn. 7.3.5. Nicht-lokale unitäre Entwick-
lungen können verschränkend und entschränkend wirken. .

7.3.2 Messungen an einem Teilsystem und reduzierter Dichteoperator

Über das Postulat sind insbesondere die Einzelheiten der projektiven Messung einer Obser-
vablen des Gesamtsystems festgelegt. Diese Messung am Gesamtsystem wird durch einen
hermiteschen Operator auf HAB... beschrieben. Die Messung einer Observablen mit Obser-
vablenoperator C nur an einem Teilsystem, z. B. an SA, ist als ein Spezialfall enthalten. Ihr
ist ein Observablenoperator CA zugeordnet, der aufHA wirkt. Dieser lokalen Messung (local
measurement) entspricht in HAB... ein lokaler Observablenoperator (local observable)

ĈAB...E = CA ⊗ �B ⊗ . . .⊗ �E . (7.32)

Wir wollen uns in diesem Kapitel auf Gesamtsysteme beschränken, die aus zwei Teilsystemen
zusammengesetzt sind. Die Erweiterung auf mehr Teilsysteme ist trivial.

Wahrscheinlichkeitsaussagen Gemäß Postulat übertragen sich die Regeln für die Mess-
dynamik auf die Zustände ρAB des zusammengesetzten Systems SAB . Wir wollen die sich
daraus ergebenden Konsequenzen für lokale Messungen untersuchen. Hierzu ist es nützlich je-
dem Teilsystem durch die Bildung der Teilspur über das andere Teilsystem einen reduzierten
Dichteoperator (reduced density operator) zuzuordnen.

ρA := trB
[
ρAB

]
, ρB := trA

[
ρAB

]
(7.33)

Da ρAB ein Dichteoperator ist, erfüllen ρA und ρB ebenfalls die Bedingungen für einen Dich-
teoperator. Das Eigenwertproblem des Observablenoperators CA

CA|c(r)An 〉 = cn|c(r)An 〉, r = 1, . . . , gn (7.34)

führt auf die ONB {|c(r)An 〉} von HA und die Eigenwerte {cn} mit Entartung gn. Die Wahr-
scheinlichkeit bei einer Messung von C am System SA den Messwert cn zu erhalten, ist dann
mit dem lokalen Projektionsoperator

P̂An = PAn ⊗ �B, PAn :=
gn∑

r=1

|c(r)An 〉〈c(r)An | (7.35)

durch

p(cn) = tr[P̂An ρ
AB] = trA[trB{P̂An ρAB}] = trA[PAn ρ

A] (7.36)

gegeben. In analoger Weise erhalten wir für den Erwartungswert der Observablen C

〈ĈA〉 = tr[ρABĈA] = trA[ρACA] . (7.37)

Zusammenfassend stellen wir fest: Alle Wahrscheinlichkeitsaussagen für lokale Messungen
am Teilsystem SA ergeben sich indem man dem System SA den reduzierten Dichteoperator ρA

von Gl. (7.33) zuordnet und die für die Dichteoperatoren abgeschlossener Systeme postulierte
Regeln anwendet.
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Zustand eines Teilsystems Da alle Wahrscheinlichkeitsaussagen für Messungen an SA

durch den reduzierten Dichteoperator ρA eindeutig bestimmt sind, liegt es nahe davon zu
sprechen, dass sich das Teilsystem SA im Zustand ρA befindet. So hatten wir in Kap. 2 das
Zustandskonzept eingeführt. Das Gesamtsystem SAB durchläuft ein Präparationsverfahren,
das auf den Zustand ρAB führt. Damit ist zugleich der Zustand ρA = trB

[
ρAB

]
präpariert.

Gemische allgemein Bei einem Produktzustand |αAk , βBk 〉 des Gesamtzustands SAB ist das
Untersystem SA im reinen Zustand |αAk 〉. Ist der Zustand von SAB speziell ein statistisches
Gemisch (Gemenge) aus solchen Produktzuständen präpariert worden (vergl. Kap. 4)

ρAB =
∑

s

ps|αAs , βBs 〉〈αAs , βBs |,
∑

s

ps = 1 , (7.38)

dann befindet sich SA ebenfalls in einem statistischen Gemisch

ρA = trB [ρAB] =
∑

k

pk|αAk 〉〈αAk | (7.39)

aus den Zuständen {|αAk 〉}. Eine Ignoranzinterpretation (vergl. Abschn. 4.3) ist möglich (pro-
per mixture). Im allgemeinen wird der Zustand SA nach der Präparation von ρAB aber kein
statistisches Gemisch reiner Zustände sein wie in Gl. (7.39). Dennoch wird er durch einen
Dichteoperator ρA beschrieben. Man überträgt daher operational den Begriff Gemisch (mix-
ture) auch auf diesen Zustand ρA von SA, dem – wie schon in Abschn. 4.2 beschrieben –
kein Mischen zugrunde liegt, und lässt zur Verdeutlichung den Zusatz „statistisches“ weg.
Zur Kennzeichnung wird in diesem Fall auch von improper mixture im Gegensatz zur proper
mixture gesprochen. Gemisch ist also der Überbegriff. Bei Teilsystemen können Gemische
auftreten, die hinsichtlich ihrer Präparation keine statistischen Gemische sind und daher keine
Ignoranzinterpretation zulassen. Für sie gibt es formal viele Ensemblezerlegungen. Es gibt da-
her viele statistische Gemische eines abgeschlossenen Systems SA, durch die sie hinsichtlich
aller Wahrscheinlichkeitsaussagen für lokale Messungen ununterscheidbar simuliert werden
können. Dies rechtfertigt noch einmal die Übertragung des Begriffs Gemisch auf alle redu-
zierten Dichteoperatoren.

7.3.3 Zustand nach einer Messung an einem Teilsystem

Auch den Zustand ρAn
′ nach der selektiven Messung der Observablen C am System SA mit

Messwert cn erhalten wir nach den für das Gesamtsystem gültigen Postulaten mit Hilfe des
lokalen Projektionsoperators P̂An von Gl. (7.35) wie in Gl. (4.19)

ρA → ρ′An =
trB[P̂An ρABP̂An ]

trA[trB{P̂An ρAB}]
. (7.40)

Mit Gl. (7.33) finden wir für diese selektive lokale Messung

ρA → ρ′An =
PAn ρ

APAn
trA[PAn ρAn ]

. (7.41)
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Für die entsprechende nicht-selektive lokale Messung gilt mit Gl. (7.36) in Analogie zu
Gl. (4.25)

ρA
n.s.−−→ ρ′A = trB [

∑

n

P̂An ρ
ABP̂An ] =

∑

n

PAn ρ
APAn . (7.42)

Wir können für lokale Messungen auch hinsichtlich der resultierenden Zustände die Regeln
für Dichteoperatoren von Kap. 4 anwenden, wenn wir dabei dem Teilsystem SA den reduzier-
ten Dichteoperator ρA von Gl. (7.33) zuordnen. Entsprechendes gilt für das Teilsystem SB .
Die Messwahrscheinlichkeiten (7.36) lassen sich wieder mit dem unnormierten (Spur �= 1)
Dichteoperator ρ̃A

′
n = PAn ρ

ABPAn nach der Messung schreiben:

p(cn) = trA[ρ̃A
′

n ] (7.43)

Wir betrachten noch den Spezialfall, dass sich das Gesamtsystem SAB vor der Messung in
einem verschränkten reinen Zustand |ψAB〉 befindet. Nach Definition (vergl. Abschn. 7.2.1)
ist ein verschränkter reiner Zustand nicht als Produktvektor schreibbar. Im Hinblick auf die
Messung der Observablen C am Teilsystem SA entwickeln wir |ψAB〉 nach der ONB von
HAB , die die Eigenvektoren {|cAn 〉} von CA enthält. Es möge keine Entartung vorliegen.

|ψAB〉 =
∑

n,i

αni|cAn , dBi 〉 . (7.44)

Wenn die Messung auf den Wert cn führt, ergibt sich (Tilde kennzeichnet fehlende Normie-
rung)

|ψAB〉 → |ψ̃ABn ′〉 = PAn |ψAB〉 =
= |cAn 〉 ⊗

∑

i

αni|dBi 〉 = (7.45)

= |cAn , w̃Bn 〉
mit

|w̃Bn 〉 :=
∑

i

αni|dBi 〉 . (7.46)

Die Messung überführt somit in einen Produktzustand. Für einen verschränkten Zustand
|ψAB〉 bricht die nicht entartete Messung an einem Teilsystem die Verschränkung. Es ist be-
merkenswert, dass dabei das andere Teilsystem SB in einen speziellen Zustand |wBn 〉 übergeht,
der über den Index n bei αni vom Ergebnis der Messung an SA abhängt. Auch wenn die ver-
schränkten Teilsysteme SA und SB räumlich weit voneinander getrennt sind, hat die lokale
Messung an SA instantan eine wohlbestimmte Zustandsänderung des Systems SB zur Fol-
ge. Die Messung an einem Teilsystem SA wirkt präparierend auf das andere Teilsystem SB .
Wenn für ein System im Bell-Zustand |ΦAB+ 〉 die Messung von σz an einem Teilsystem in den
Zustand |0〉 überführt, dann auch beim anderen und entsprechend mit dem Zustand |1〉 (vergl.
den Neckerschen Würfel in Abb. 7.1). Dies ist Ausdruck der besonderen Ganzheitlichkeit des
verschränkten Systems. Entsprechendes gilt für zusammengesetzte klassische Systeme nicht.
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Abbildung 7.1: Der Neckersche Würfel und die Analogie zum verschränkten System. Die beiden lin-
ken unteren Eckpunkte (Kugel und Würfel) entsprechen den verschiedenen Zuständen von Teilsystem
SA, die rechten denen von Teilsystem SB . Messen wird durch Hinsehen realisiert. Entweder sind als
Ergebnis die beiden Kugelzustände vorn oder die beiden Würfelzustände sind vorn (Blick von oben oder
von unten auf den Würfel). Immer wird bei Überführung des einen Teilsystems in einen Zustand auch
das andere in den korrelierten Zustand überführt. Vor der Messung durch Hinsehen ist der Zustand des
Neckerschen Würfels eine klassisch unmögliche „Superposition“.

7.3.4 Lokale Messungen an zwei Teilsystemen

Nachdem wir lokale Messungen an einem Teilsystem beschrieben haben, gehen wir zu loka-
len Messungen an beiden Teilsystemen über. Wir betrachten wieder ein Quantensystem SAB ,
das aus den Systemen SA und SB zusammengesetzt ist. Wir wollen am Teilsystem SA die
Observable C und am Teilsystem SB die Observable D messen. Die zugehörigen Observa-
blenoperatoren ĈA = CA ⊗ �B und D̂B = �A ⊗DB kommutieren

[ĈA, D̂B]− = 0 . (7.47)

Wir notieren noch die entsprechenden Eigenwertgleichungen

CA|cAn 〉 = cn|cAn 〉, DB|dBi 〉 = di|dBi 〉 . (7.48)

Die Vektoren {|cAn 〉} und {|dBi 〉} bilden ONB von HA bzw. HB . Die möglichen Messwerte
{cn} und {di} der lokalen Messungen sollen der Einfachheit halber nicht entartet sein.

Relativzustände Das Gesamtsystem SAB soll sich vor den Messungen in einem reinen Zu-
stand |ψAB〉 befinden, den wir nach der den Messungen angepassten Basis vonHAB zerlegen

|ψAB〉 =
∑

n,i

αni|cAn , dBi 〉 . (7.49)

Es erweist sich als geschickt, im Hinblick auf das Ergebnis (7.45) die Doppelsumme in der
Form

|ψAB〉 =
∑

n

|cAn , w̃Bn 〉 (7.50)
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SA

sortiere nicht aus

t

n.s.
ci

SB Gesamtsystem: |ψAB〉

Gesamtsystem: ρ′AB
n.s.

ρ′Bn.s.

Abbildung 7.2: Nicht-selektive Messung am Teilsystem SA.

aufzuspalten mit

|w̃Bn 〉 :=
∑

i

αni|dBi 〉; |wBn 〉 =
|w̃Bn 〉√〈w̃Bn |w̃Bn 〉

. (7.51)

Der Vektor |wBn 〉 heißt der relative Zustand (relative state) zu |cAn 〉. Unnormierte Zustände
sind wieder durch eine Tilde gekennzeichnet. Die relativen Vektoren {|wBn 〉} bilden i.a. kein
Orthonormalsystem. Ihre Anzahl muß auch nicht mit der Dimension des Hilbert-Raums HB
übereinstimmen. |ψAB〉 lässt sich analog zu Gl. (7.50) auch bezüglich der zu {|dBi 〉} relativen
Zustände {|ṽAi 〉} zerlegen.

|ψAB〉 =
∑

i

|ṽAi , dBi 〉 . (7.52)

Nicht-selektive lokale Messung Wir führen eine Messung der ObservablenC an SA durch.
Dabei soll sich der Messwert cn ergeben. Dann geht das Gesamtsystem in den Produktvektor
|cAn , w̃Bn 〉 bzw. den normierten Vektor |cAn , wBn 〉 über. Die Wahrscheinlichkeit den Messwert
cn zu erhalten ist gemäß Gl. (7.36) durch das Quadrat der Norm des unnormierten relativen
Zustandsvektors |w̃Bn 〉 gegeben

p(cn) = 〈ψAB| (|cAn 〉〈cAn | ⊗ �B
) |ψAB〉 = 〈w̃Bn |w̃Bn 〉 = ||w̃Bn ||2 . (7.53)

Nach einer nicht-selektiven Messung an SA befindet sich das GesamtsystemSAB in einem
gemischten Zustand mit Dichteoperator

ρ′ABn.s. =
∑

n

p(cn)|cAn , wBn 〉〈cAn , wBn | =
∑

n

|cAn , w̃Bn 〉〈cAn , w̃Bn | . (7.54)

Dabei haben wir Gl. (7.53) verwendet. Die Superposition von Gl. (7.50) ist in das Gemisch
von Gl. (7.54) zerlegt worden.

Alle Messungen am System SB nach dieser nicht-selektiven Messung an SA können
durch den reduzierten Dichteoperator ρBn.s. beschrieben werden

ρ′Bn.s. = trAρ
′AB
n.s. =

∑

n

|w̃Bn 〉〈w̃Bn | , (7.55)
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t

SBSA

sortiere nach Ergebnis

SBSA

Gesamtsystem: |ψAB〉

cn di

di cn

|cAn 〉|cAn 〉 |dB
i 〉

|cAn 〉 |wB
n 〉 |vA

i 〉 |dB
i 〉

|dB
i 〉

Abbildung 7.3: Selektive Messung an den Teilsystemen SA und SB . Links wird zuerst an SA und
dann an SB gemessen, rechts in der anderen Reihenfolge. Es wird jeweils nach den Messwerten di

und cn selektiert. Die Wahrscheinlichkeit das Messwertepaar (cn, di) zu erhalten und der entsprechende
Endzustand |cAn , dB

i 〉 ist in beiden Fällen gleich.

der direkt durch den relativen Zustand |w̃Bi 〉 gegeben ist. Gl. (7.50) zeigt unmittelbar, dass er
mit dem reduzierten Dichteoperator des Teilsystems SB vor der Messung übereinstimmt.

ρB = trA[|ψAB〉〈ψAB|] = ρ′
′B
n.s. (7.56)

Dies ist ein bemerkenswertes Ergebnis. Betrachten wir die Situation, dass das System SA

sich bei Alice befindet und das System SB räumlich getrennt davon bei Bob. In einem Prä-
parationsverfahren wird sehr oft ein 2-Teile-System im Zustand |ψAB〉 erzeugt. Alice ist es
freigestellt, ob sie Messungen der Observablen C an ihrem System durchführt oder nicht. Bob
kann dann in keiner Weise durch Messungen welcher Observablen auch immer an seinem Teil-
system SB feststellen, ob Alice Messungen durchgeführt hat oder nicht. Das besagt gerade die
Gl. (7.56). Da die Situation vollständig symmetrisch ist, gilt die Aussage entsprechend wenn
Bob die ersten Messungen durchführt.

Nicht-selektiv bedeutet in diesem Zusammenhang, dass es Alice nicht erlaubt ist nach ih-
rer Messung z. B. die Zustände |cAn , wBn 〉 des Gesamtsystems herauszusuchen, die zu ihrem
Messergebnis cn gehören und dafür zu sorgen, dass nur an Systemen in diesen Zuständen
weitere Messungen durchgeführt werden. Das könnte sie offenbar nur erreichen, wenn Bob
in gleicher Weise bei seinen Teilsystemen selektionieren würde. Dazu müsste Alice nach je-
der ihrer Messungen Bob die Information übermitteln, ob er sein zugehöriges Teilsystem für
anschließende Messungen weiter verwenden kann oder ob er es aussondern soll. Wenn Bob
aber im Gegensatz dazu misst ohne vorher zu selektieren, kann er nicht feststellen, ob Ali-
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ce gemessen hat oder nicht. Wenn er Anweisungen für eine Selektion bekommt, weiß er das
trivialerweise.

Selektive lokale Messungen Wir gehen zu selektiven Messungen über und stellen sie zur
Einübung in den Formalismus ausführlicher dar. Zunächst misst Alice und erhält mit der
Wahrscheinlichkeit p(cn) = 〈w̃Bn |w̃Bn 〉 den Messwert cn. Das System geht in den Gesamtzu-
stand |cAn , wBn 〉 über (vgl. Abb. 7.3). Wenn anschließend an diese Selektion Bob misst, erhält
er den Messwert di mit der bedingten Wahrscheinlichkeit

p(di|cn) =
|αni|2
p(cn)

. (7.57)

Dies kann man an den Gl. (7.51) ablesen. Das Gesamtsystem geht dabei in den Produktzustand
|cAn , dBi 〉 über. Wenn umgekehrt zuerst Bob und dann – nach Selektion nach dem Messwert di
– Alice misst, erhalten wir analog (vgl. Abb. 7.3) den gleichen Endzustand für das Messwer-
tepaar (cn, di). Für die Wahrscheinlichkeiten ergibt sich

p(cn|di) =
|αni|2
p(di)

. (7.58)

Die Wahrscheinlichkeit p(cn, di), mit der das Messwertepaar (cn, di) erhalten wird, ist unab-
hängig von der Reihenfolge der Messungen:

p(cn, di) = p(cn|di)p(di) = p(di|cn)p(cn) = |αni|2 = 〈ψAB|PABni |ψAB〉 (7.59)

mit Projektionsoperator PABni := |cAn , dBi 〉〈cAn , dBi |. Da die Operatoren ĈA und D̂B kom-
mutieren, war das auch nicht anders zu erwarten. Wir ergänzen noch, dass alle oben für den
reinen Ausgangszustand |ψAB〉 gemachten Aussagen sich in bekannter Weise übertragen las-
sen, wenn der Ausgangszustand ein Gemisch mit Dichteoperator ρAB ist.

Erwartungswerte von Produktoperatoren Produktoperatoren repräsentieren spezielle
nicht-lokale Observable. Für Anwendungen ist es wichtig, dass ihre Erwartungswerte durch
lokale Messungen und klassische Kommunikation bestimmt werden können. Die dyadische
Zerlegung des Operators CA ⊗DB ist von der Form (vgl. Gl. (7.48))

CA⊗DB =
∑

n,i

cndi|cAn , dBi 〉〈cAn , dBi | . (7.60)

Für seinen Erwartungswert im Zustand ρAB gilt

tr
[
CA⊗DB ρAB

]
=
∑

n,i

tr
[
PAniBρ

AB
]
cndi . (7.61)

Die Spur auf der rechten Seite ist die Wahrscheinlichkeit dafür, dass bei lokalen Messungen an
den Teilsystemen SA und SB das Messwertepaar (cAn , d

B
i ) auftritt. Der Erwartungswert eines

Produktoperators stimmt mit dem Erwartungswert der Produkte korrelierter Messwerte über-
ein. Zu seiner Bestimmung messen Alice und Bob an einem Quantensystem im Zustand ρAB
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an denen ihnen jeweils zugänglichen Teilsystemen , informieren sich über die Messergebnis-
se und bilden das Produkt der beiden korrelierten Messwerte. Das wiederholen sie an vielen
Systemen im Zustand ρAB und berechnen schließlich den Mittelwert der Messwertprodukte.
Wir kommen auf nicht-lokale Observable noch einmal in Abschn. 9.2 zurück.

7.3.5 Unitäre Dynamik zusammengesetzter Systeme

Die von-Neumann-Gleichung (4.9) bzw. (4.10) überträgt sich nach den Postulaten auf zusam-
mengesetzte Systeme

i�
dρAB

dt
= [HAB, ρAB(t)]− i

dρAB

dt
= LABρAB(t) . (7.62)

mit dem Liouville-Operator LAB ∈ �A ⊗ �B . Wir verwenden das Schrödinger-Bild.
Wenn eine durch einen Hamilton-Operator HAB

int �= 0 beschrieben Wechselwirkung zwi-
schen den Teilsystemen SA und SB vorliegt, sind die einzelnen Teilsysteme offen (open quan-
tum systems). Der Gesamt-Hamilton-Operator hat dann die Form

HAB = HA ⊗ �B + �
A ⊗HB +HAB

int . (7.63)

Der zugehörige Liouville-Operator ergibt sich als

LAB = LA + LB + LABint (7.64)

und für die von-Neumann-Gleichung folgt:

i
dρAB

dt
= (LA + LB + LABint )ρAB(t) . (7.65)

Dies führt für den reduzierten Dichteoperator ρA auf die Differentialgleichung

i
dρA

dt
= LAρA(t) + trB[LABint ρ

AB(t)] (7.66)

Zur Bestimmung von ρA(t) muss man die volle Gl. (7.65) integrieren. Hierfür gibt es ver-
schiedene Näherungsverfahren. Wir werden in Abschn. 13.1 und 14 einen In-Out-Zugang (in-
out-approach) zur Dynamik offener Systeme kennenlernen, der nicht auf dem durch Gl. (7.66)
beschriebenen differentiellen zeitlichen Verhalten von ρA(t) beruht, sondern in phänomeno-
logischer Weise durch einen Superoperator den Endzustand ρA(tout) auf den Anfangszustand
ρA(tin) zurückführt.

7.4 Quantengatter für mehrere Qubit-Systeme

7.4.1 Verschränkung durch das CNOT-Gatter

Die Verarbeitung von Quanteninformation wird oft schematisch ohne Bezug auf eine expe-
rimentelle Realisierung durch Quantenschaltungen (quantum circuits) veranschaulicht. Die
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|x⊕ y〉

|x〉Kontroll-Qubit |x〉

Ziel-Qubit |y〉

Abbildung 7.4: CNOT-Gatter.

wesentlichen Bauelelemente, die dabei auftauchen, sind: Quantendrähte (quantum wires),
dies sind spezielle Quantenkanäle durch die Quantensysteme unbeeinflusst propagieren, sowie
Quantengatter (quantum gates), durch die unitäre Transformationen von Quantensystemen
bewirkt werden. Die Systeme sind Multi-Qubits aus RäumenH2⊗H2⊗H2 . . .⊗H2. Messun-
gen dienen zum Auslesen von Information. Wegen der Unitarität repräsentieren Quantengatter
umkehrbare Prozesse. Messungen sind demgegenüber irreversibel. Quantencomputer (quan-
tum computers) sind ein Netzwerk von Quantengattern. Quantengatter für Quantensysteme
aus H2 haben wir bereits in Abschn. 3.4 kennengelernt. Wir gehen jetzt zu Produkträumen
über. In Kap. 12 werden wir Quantenschaltungen zu Quantencomputern zusammensetzen.

Verschränkung durch das CNOT-Gatter Ein einfaches Quantengatter, das einen Qubit-
Produktzustand in einen verschränkten Zustand überführt, ist das CNOT-Gatter (CNOT gate,
controlled NOT gate , XOR gate). Seine Wirkung auf der Rechenbasis vonHA2 ⊗HB2 ist durch

|x, y〉 → |x, y ⊕ x〉 (7.67)

mit x, y, . . . ∈ {0, 1} definiert. Damit liegt die Wirkung auf einen beliebigen Vektor aus
HA2 ⊗ HB2 fest. ⊕ bezeichnet die Addition modulo 2, d. h. es gilt 1 ⊕ 1 = 0. Im Einzelnen
bedeutet das:

|0, 0〉 CNOT−→ |0, 0〉 (7.68)

|0, 1〉 CNOT−→ |0, 1〉 (7.69)

|1, 0〉 CNOT−→ |1, 1〉 (7.70)

|1, 1〉 CNOT−→ |1, 0〉 . (7.71)

Daraus folgt

(CNOT) · (CNOT) = � . (7.72)

Mit Hilfe der Matrixdarstellung in der Rechenbasis prüft man leicht die Unitarität nach

(CNOT)† = (CNOT)−1 . (7.73)

Die Qubits des Systems A bzw. B werden Kontroll-Qubit (control qubit) bzw. Ziel-Qubit (tar-
get qubit) genannt (siehe Abb. 7.4). Ein einfaches Beispiel zeigt, dass das CNOT-Gatter
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H

H

=

H

H

Abbildung 7.5: Zwei äquivalente Netzwerke.

Superpositionen im Kontroll-Qubit in Verschränkungen von Kontroll- und Ziel-Qubit über-
führt:

(α|0A〉 ± β|1〉)|0B〉 = α|0A, 0B〉 ± β|1A, 1B〉 , (7.74)

(
α|0A〉 ± β|1A〉) |1B〉 = α|0A, 1B〉 ± |1A, 0B〉 . (7.75)

Für α = β = 1√
2

entstehen so die vier Bell-Zustände. Der reduzierte Dichteoperator vom

Ziel-Qubit ist in diesem Fall ρB = 1
2�

B (entsprechend beim Kontroll-Qubit). Die Messung in
irgendeiner ONB vonHB2 liefert die beiden Messwerte und Zustände in perfekter Zufälligkeit
mit den Wahrscheinlichkeiten 1

2 .
Ein CNOT-Gatter und vier Hadamard-Gatter lassen sich zum Inversen eines CNOT-Gatters

zusammenbauen (siehe Abb. 7.5).
Die Schaltung von Abb. 7.6 aus drei CNOT vertauscht Kontroll- und Ziel-Qubit

|x, y〉 → |x, x⊕ y〉 → |y, x⊕ y〉 → |y, x〉 . (7.76)

Abbildung 7.6: Vertauschen von zwei Qubits.

Das CNOT-Gatter ist der Spezialfall eines kontrollierten U-Gatters (controlled U gate)
(siehe Abb. 7.7). Es lässt |0, 0〉 und |0, 1〉 unverändert. |1, y〉 mit y = 0, 1 geht in |1〉 ⊗ U |y〉
über. CNOT ergibt sich mit U = σx.

Kontroll-Qubit |x〉

Ziel-Qubit |y〉 U

Abbildung 7.7: Kontrolliertes U-Gatter.
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Ziel-Qubit |z〉

Kontroll-Qubit |x〉

Kontroll-Qubit |y〉

Abbildung 7.8: Toffoli-Gatter.

7.4.2 Toffoli-Gatter

Das Toffoli-Gatter (Toffoli gate) von Abb. 7.8 wird auch CCNOT-Gatter (controlled-
controlled NOT) oder doppelt kontrolliertes NOT-Gatter genannt. Bei ihm wird das NOT-
Gatter genau dann auf das Ziel-Qubit angewendet, wenn beide Kontroll-Qubits im Zustand
|1〉 sind. Die Wirkung von CCNOT ist

|x, y, z〉 → |x, y, z ⊕ xy〉 . (7.77)

Analog kann man ein doppelt kontrolliertes U-Gatter konstruieren (siehe Abb. 7.9)
Universelle Quantengatter (universal quantum gates) sind eine Menge von Quantengat-

tern, mit denen man jede unitäre Transformation aufH2 ⊗H2 ⊗ . . .⊗H2 erzeugen kann. Es
lässt sich zeigen, dass z. B. das Deutsch-Gatter (Deutsch gate) hierfür ausreicht. Bei diesem
Gatter ist die unitäre Transformation U von Abb. 7.8

U = −i exp
(
i
θ

2
σx

)
. (7.78)

Es gibt weitere universelle Gatter (vergl. Abschn. 7.5).

U|z〉

|x〉

|y〉

Abbildung 7.9: Doppelt kontrolliertes U-Gatter.

7.5 Ergänzende Themen und weiterführende Literatur

• Zu „proper mixture“ und „improper mixture“: [d’Es95], [d’Es99].

• Die Idee, dass das Ganze mehr ist als die Summer seiner Teile, wird in der Philsophie als
Holismus (holism) oder Ganzheitlichkeit bezeichnet. Es gibt eine Reihe von philosophi-
schen Analysen, in denen versucht wird, dieser Idee in ganz verschiedenen Gebieten von
der Soziologie bis zur Physik ein präzise Bedeutung zu geben und ihre Konsequenzen
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zu untersuchen. Für die naturphilosophische Frage, ob es Holismus in der Physik gibt,
haben sich mit den nicht-separablen Zuständen zusammengesetzter Systeme ganz neue
Aspekte ergeben. Zwei unterschiedliche darauf aufbauende Analysen werden in [Esf 04]
und [See 04] vorgestellt (vergl. [Esf 02]). Dort ist auch weiterführende Literatur angege-
ben. Siehe auch [Hea 99].

• Das Deutsch-Gatter ist ein universelles Gatter: [Deu 89], [Pre 98, Kap. 6.2.3].

• Zu weiteren universellen Gattern: [Pre 98, Kap. 6.2.3], [NC 00, S. 188], [BBC 95].

• Lokale Messungen und die Forderung der Relativitätstheorie: [PT 04].

• Übersicht über Quantengatter für Qubits: [Bra 02], [DiV 98].

7.6 Übungsaufgaben

ÜA 7.1 [zu 7.3.2] Zeigen Sie, dass ρA und ρB von Gl. (7.33) die Eigenschaften eines Dich-
teoperators erfüllen.

ÜA 7.2 [zu 7.3.4] Bestätigen Sie die Ergebnisse von Abschn. 7.3.4 für den Fall, dass der
Ausgangszustand kein reiner Zustand |ψAB〉, sondern ein Gemisch ρAB ist.

ÜA 7.3 [zu 7.4] Zeigen Sie jeweils die Äquivalenz der Netzwerke von Abb. 7.5 und
Abb. 7.10.

=

H

HH

H

Abbildung 7.10: Zwei äquivalente Netzwerke.

ÜA 7.4 [zu 7.4] Zeigen Sie, dass das Netzwerk von Abb. 7.11 Paare von Bell-Zuständen in
Paare von Bell-Zuständen überführt.

Abbildung 7.11: Abbildung von Bell-Zuständen auf Bell-Zustände.



This Page Intentionally Left Blank



8 Verschränkung

Das Konzept der EPR-Korrelationen wird in Abgrenzung zu klassischen Korrelationen, die
es auch für Quantensysteme gibt, operational begründet und mit Verschränkung in Verbin-
dung gebracht. Für reine Zustände kann das Vorliegen von Verschränkung über die Schmidt-
Zerlegung festgestellt werden. Ein Maß für Verschränkung wird angegeben und ein Beispiel
für die Erzeugung verschränkter Zustände vorgestellt. Es ist eine für Anwendungen wichtige
Eigenschaft, dass Quantenzustände nicht kopiert werden können. Dass Zustände durch Ver-
schränkung mit anderen Zuständen markiert werden können, führt auf den Quantenradierer
und die Frage nach der verzögerten Wahl („delayed choice“).

8.1 Korrelationen und Verschränkung

Ein zusammengesetztes Spin-System mit zwei Teilsystemen kann sich z. B. in den Produkt-
zuständen |0A, 0B〉 und |1A, 1B〉, aber auch in deren Superpositionen α|0A, 0B〉+ β|1A, 1B〉
befinden. Die Superposition α �= 0, β �= 0 ist ein Beispiel für einen verschränkten Zustand.
Verschränkte Zustände spielen eine fundamentale Rolle in der Quanteninformation. Sie sind
das zentrale Hilfsmittel mit dem nicht-klassische Effekte bewirkt werden.

Zusammengesetzte Systeme in verschränkten Zuständen sind korreliert. Wenn beim obi-
gen Zustand an den Teilsystemen jeweils die Observable σz gemessen wird, dann ergibt sich
immer nur die Messwertekombination (−1,−1) oder (+1,+1). Im Gegensatz zu korrelierten
klassischen Systemen sind aber in diesem Fall die Korrelationen von anderer Struktur. Mit
ihrer Hilfe sind Prozesse möglich, die auf der Basis klassischer Korrelationen nicht möglich
sind. Wir wollen im Folgenden die entsprechenden Konzepte näher erläutern.

8.1.1 Klassisch korrelierte Quantenzustände und LOCC

Korrelierte Quantenzustände Wir betrachten wieder ein zusammengesetztes System SAB

mit den Teilsystemen SA und SB . Zu irgend zwei (voneinander unabhängigen) Zuständen ρA

und ρB gibt es immer einen Zustand ρ̂AB , so dass ρA = trB [ ˆρAB] und ρB = trA[ ˆρAB] gilt.
Der Produktzustand ρ̂AB = ρA⊗ρB erfüllt diese Forderung. Nach Konstruktion liefern Mes-
sungen an den Teilsystemen stets voneinander unabhängige Messwerte. Umgekehrt wollen
wir Zustände ρAB , die keine Produktzustände sind

ρAB �= ρA ⊗ ρB , (8.1)

korreliert (correlated) nennen.

Verschränkte Systeme: Die Quantenphysik auf neuen Wegen. Jürgen Audretsch
Copyright c© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40452-X
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Diese mathematische Charakterisierung ist äquivalent zu einer operationalen Aussage über
Messwerte, die im Prinzip durch Messungen an den Teilsystemen überprüft werden kann
(vergl. Abschn. 7.3.3): Ein Zustand ρAB ist genau dann korreliert, wenn es Observablen CA

und DB gibt, für die der Erwartungswert von CA ⊗ DB – gewonnen über die Produkte der
zusammengehörigen Messergebnisse an SA und SB – sich nicht als Produkt der Erwartungs-
werte der reduzierten Dichteoperatoren ergibt. (vergl. Übungsaufgabe ÜA. 1 in Abschn. 8.7).

Klassisch korrelierte Quantenzustände Nach dieser allgemeinen Charakterisierung von
Korreliertheit wollen wir einen speziellen Typ von Korrelationen beschreiben. Wir gehen dazu
nicht wie oben von den Messwerten, sondern vom Präparationsverfahren aus.

Das Gesamtsystem SAB wird von Alice und Bob durch lokale Operationen (das sind uni-
täre dynamische Entwicklung, Messungen und alle anderen Manipulationen mit lokalen Hilfs-
mitteln) und klassische Kommunikation präpariert werden. Man kürzt „local operations and
classical communication“ mit LOCC ab. Hierzu präpariert Alice am System SA den Zustand
ρAr und teilt das Bob über klassische Kommunikationskanäle mit, der seinerseits ρBr präpariert.
Dies wird häufig für unterschiedliche r in zufälliger Weise unter Einhaltung der relativen Häu-
figkeiten pr wiederholt. Der präparierte Gesamtzustand ρAB ist dann nach Konstruktion eine
Konvexkombination bzw. ein statistisches Gemisch (Gemenge) von Produktzuständen

ρAB =
m∑

r=1

prρ
A
r ⊗ ρBr . (8.2)

Die klassische Kommunikation wird dabei von Alice und Bob dazu verwendet, um ihre loka-
len Aktionen zu korrelieren. Eine solche Prozedur könnte genauso mit klassischen Zuständen
durchgeführt werden. Der Vergleich mit Gl. (8.1) zeigt, dass der resultierende Zustand ρAB

korreliert ist, wenn sich die Summe nicht auf einen Term reduziert. Da die Korrelationen
durch LOCC mit den Wahrscheinlichkeiten {pr} rein klassisch bewirkt werden, nennt man
einen Quantenzustand ρAB , der sich in Form (8.2) schreiben lässt, klassisch korreliert (clas-
sically correlated). Wir notieren noch, dass man nach Einführung von Ensemblezerlegungen
für alle ρAr und ρBr den Dichteoperator auch in der Form

ρAB =
∑

j

πj |aAj 〉〈aAj | ⊗ |bBj 〉〈bBj | (8.3)

mit 0 ≤ πj ≤ 1 und
∑
j πj = 1 schreiben kann. Die beteiligten Zustände müssen dabei nicht

orthogonal sein.
Wie beim Übergang von Gemenge zu Gemisch lösen wir uns wieder vom speziellen vom

Präparationsverfahren. Ein Quantenzustand ρAB wird auch dann als klassisch korreliert be-
zeichnet, wenn er nicht in dem oben beschriebenen Präparationsverfahren erzeugt worden ist.
Es reicht, dass er durch einen in dieser Weise präparierten Zustand in jeder Hinsicht simuliert
werden kann, dass also seine statistischen Eigenschaften durch einen LOCC-Mechanismus
reproduziert werden können. Mathematisch bedeutet das, dass ρAB sich in der Form (8.3)
schreiben lässt.

Eine allerdings begrenzte Analogie zu korrelierten klassischen Systemen ist offensichtlich.
Wir betrachten das Beispiel, dass in die Kisten von vielen Kistenpaaren mit der Wahrschein-
lichkeit p1 entweder je eine rote oder mit der Wahrscheinlichkeit p2 je eine blaue Kugel gelegt
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wird (p1 +p2 = 1). Wenn die Kisten geöffnet werden, stellt man eine Korrelation fest, die der
Korrelation bei der Messung der Spinkomponenten in z-Richtung im klassisch korrelierten
Quantenzustand

ρAB = p1|0A, 0B〉〈0A, 0B |+ p2|1A, 1B〉〈1A, 1B|
= p1|0A〉〈0A| ⊗ |0B〉〈0B|+ p2|1A〉〈1A| ⊗ |1B〉〈1B| (8.4)

entspricht. Wenn man beim klassisch korrelierten Zustand (8.4) am Teilsystem SA eine Mes-
sung in der Rechenbasis durchführt, dann führt sie mit der Wahrscheinlichkeit p1 auf den
Zustand |0A〉 und SB befindet sich nach der Messung in dem zu |0A〉 korrelierten Zustand
|0B〉.

Man sollte aber die Bezeichnung „klassisch korreliert“ für Quantensysteme nicht physika-
lisch überinterpretieren. Anders als in der klassischen Physik kann man in der Quantenphysik
in gedrehten Basen messen. Eine Messung am Zustand ρAB von Gl. (8.4) mit p1 = p2 = 1

2 in
der Basis {|0Ax 〉, |1Ax 〉} mit dem Endzustand |0Ax 〉 für SA führt auf

ρAB → ρAB
′
= |0Ax 〉〈0Ax | ⊗

1
2
�
B . (8.5)

Der Zustand von SB ist ein maximal gemischter Zustand. Die Zustände von SA und SB sind
nach dieser Messung nicht korreliert. Dass ρAB von Gl. (8.4) klassisch korreliert ist, besagt
nur, dass man ρAB durch LOCC präparieren kann, und dass man eine spezielle Messung
finden kann (in diesem Fall die Messung in der Rechenbasis), nach der die Zustände der
Teilsysteme korreliert sind.

8.1.2 Separabilität und Verschränkung

Es hat sich als sinnvoll erwiesen, die folgenden Begriffe einzuführen. Ein Zustand ρAB ei-
nes zusammengesetzten Systems SAB heißt separabel (separable) genau dann, wenn er in der
Form (8.2) einer Konvexkombination von Produktzuständen geschrieben werden kann. Ein se-
parabler Zustand ist somit klassisch korreliert oder gar nicht korreliert (m = 1). Einen reinen
oder gemischten Quantenzustand, der nicht separabel ist, nennen wir verschränkt (entangled).
Ein verschränkter Quantenzustand enthält daher nicht-klassische Korrelationen, die auch
Quantenkorrelationen (quantum correlations) oder EPR-Korrelationen1 (EPR correlations)
genannt werden. Darin liegt seine große physikalische Bedeutung.

Das Präparationsverfahren LOCC führt auf separable Zustände. Verschränkte Zustände
können nicht durch LOCC erzeugt werden. Man kann diese Charakterisierung auch als eine
äquivalente Definition von Verschränkung nehmen.

Es ist ein wichtiges Charakteristikum der Quantenphysik verglichen mit der klassischen
Physik, dass nicht alle Korrelationen klassisch sein müssen. Das sieht man unmittelbar am
Beispiel der reinen Zuständen in HA ⊗ HB . Wir haben in Abschn. 4.1.3 gesehen, dass der
Dichteoperator eines reinen Zustands |ψAB〉 nicht in eine konvexe Summe zerlegt werden

1Das Akronym EPR kürzt die Namen A. Einstein, B. Podolsky und N. Rosen ab. Diese Personen haben in einer
bedeutenden Arbeit [EPR 35] den Anstoß zu solchen Überlegungen gegeben, wie wir sie insbesondere in Kap. 10
durchführen wollen. Die Bezeichnung EPR hat sich allerdings in der Zwischenzeit weitgehend von dieser Arbeit ge-
löst und charakterisiert z. B. die Korrelationen, die an verschränkten Systemen gemessen werden, und die zugehörigen
Experimente. EPR ist daher heute eine systematische Bezeichnung und kein historischer Verweis.
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kann. Damit kann er nicht wie in Gl. (8.2) klassisch korreliert sein. Wenn ein reiner Zustand
kein Produktzustand ist

|ψAB〉 �= |φA〉 ⊗ |χB〉 (8.6)

und somit die Bedingung (8.1) für Korreliertheit erfüllt, ist er verschränkt und damit nicht-
klassisch korreliert. Das heißt, er muß einen neuen Typ von Korrelationen enthalten, der bei
klassischen Systemen nicht auftritt. Wir werden die weitreichenden physikalischen Konse-
quenzen noch ausführlich diskutieren.

8.1.3 Das Separabilitätsproblem

Da Verschränkung als Hilfsmittel eine große Rolle spielt, ist es eine wichtige Aufgabe, Kri-
terien zu entwickeln, mit deren Hilfe abgelesen werden kann, ob ein gegebener Zustand ver-
schränkt ist. Für reine Zustände von 2-Teile-Systemen ist das einfach. Der Zustand |ψAB〉 ist
genau dann separabel, wenn er von der Form |ψAB〉 = |φA〉⊗|χB〉 ist, d.h wenn jeder seiner
beiden reduzierten Dichteoperatoren ein reiner Zustand ist. Wir werden in Abschn. 8.2 mit der
Schmidt-Zerlegung ein weiteres Kriterium kennelernen, das auch auf ein Maß für Verschrän-
kung führt. Mit Hilfe der Quantenentropie der Teilsysteme werden wir in Abschn. 8.2.3 das
heute allgemein akzeptierte Maß für die Verschränkung reiner Zustände von 2-Teile-Systemen
einführen.

Für gemischte Zustände ist die Situation schwieriger. Wir verdeutlichen das an einem Bei-
spiel. Die Bell-Zustände von Gl. (7.11) sind verschränkte reine Zustände. Das kann man nach
dem oben angegebenen Kriterium unmittelbar an den reduzierten Dichteoperatoren ablesen,
die gleich 1

2� sind. Durch Mischen der verschränkten (!) Zustände |ΦAB+ 〉 und |ΦAB− 〉 mit
gleichen Wahrscheinlichkeiten entsteht der Zustand

ρAB =
1
2
(|ΦAB+ 〉〈ΦAB+ |+ |ΦAB− 〉〈ΦAB− |) .

Wenn man die Definitionen der Bell-Zustände einsetzt, ergibt sich

ρAB =
1
2
(|0A, 0B〉〈0A, 0B|+ |1A, 1B〉〈1A, 1B|)

=
1√
2

(|0A〉〈0A| ⊗ |0B〉〈0B|+ |1A〉〈1A| ⊗ |1B〉〈1B|) . (8.7)

Der Zustand ρAB ist vom Typ (8.2) und daher nicht verschränkt. Es ist möglich ihn alternativ
auch allein durch LOCC zu präparieren.

Ein gegebener Dichteoperator hat unendlich viele Ensemblezerlegungen. Wenn eine dar-
unter die Form (8.2) hat, ist der Zustand separabel, sonst ist er verschränkt. Eine Aussage
hierüber, die sich ja auf alle möglichen Ensemblezerlegungen beziehen muß ist bis heute nicht
befriedigend möglich. Das entsprechende Forschungsprogramm wird das Separabilitätspro-
blem (separability problem) genannt: Ist ein durch einen Dichteoperator gegebener Zustand
eines zusammengesetzten Quantensystems separabel oder nicht? Allgemein anwendbare Maß
für die Verschränkung von Gemischen existieren ebenfalls bisher nicht. Wenn ein System aus
mehr als zwei Teilen besteht, ist die Situation noch komplizierter.
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Eine andere Aufgabe ist es, ein Maß für die Korreliertheit von zwei Teilsystemen anzu-
geben. Wir werden den Korreliertheitsgrad in Kap. 6 mit Hilfe der von-Neumannschen wech-
selseitigen Entropie (bzw. Information) beschreiben. Dies ist ein weiter Themenkreis, in dem
Entropie eine wichtige Rolle spielt.

8.2 Verschränkte reine Zustände

8.2.1 Schmidt-Zerlegung

Für die Diskussion der Verschränkung reiner Zustände |ψAB〉 von 2-Teile-Systemen hat sich
die Schmidt-Zerlegung (Schmidt decomposition) als besonders hilfreich erwiesen. Sie wird
auch bi-orthogonale oder polare Zerlegung (bi-orthogonal or polar expansion) des Vektors
|ψAB〉 genannt. Sie besagt das Folgende:

|ψAB〉 sei ein normierter Zustand des zusammengesetzten Systems SAB im Produkt-
Hilbert-Raum HAB = HA ⊗ HB mit dimHA = a und dimHB = b. Mit ρAB =
|ψAB〉〈ψAB| sind ρA = trB[ρAB] und ρB = trA[ρAB] die reduzierten Dichteoperatoren
der Teilsysteme SA und SB . Dann gilt:

(i) Der Vektor |ψAB〉 kann in Form der Schmidt-Zerlegung2

|ψAB〉 =
k∑

n=1

√
pn|uAn , wBn 〉 mit pn > 0 (8.8)

geschrieben werden, wobei {|uAn 〉 (bzw. {|wBn 〉}) die orthonormierten Eigenvektoren von
ρA inHA (bzw. ρB inHB) mit geeignet gewählten Phasen sind. Für paarweise verschie-
dene pn sind die Vektoren |uAn 〉 und |wBn 〉 bis auf eine Phase eindeutig bestimmt. Daraus
folgt:

(ii) ρA und ρB haben dieselben nicht verschwindenden positiven Eigenwerte p1,...,pk mit
k≤ min (a,b) (bei g-facher Entartung wird der entsprechende Eigenwert g-fach wieder-
holt).

Die Zahl k heißt der Schmidt-Rang (Schmidt rank) von |ψAB〉.

Zum Beweis zerlegen wir |ψAB〉 nach den ONB {|cAl 〉} bzw. {|dBi 〉} vonHA bzw.HB

|ψAB〉 =
a,b∑

l,i=1

ali|cAl , dBi 〉 (8.9)

und führen wieder die relativen Zustände

|w̃Bl 〉 =
a∑

i=1

ali|dBi 〉 (8.10)

2E. Schmidt, Math. Ann. 63,433 (1906).
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ein:

|ψAB〉 =
a∑

l=1

|cAl , w̃Bl 〉 . (8.11)

Die relativen Zustände |w̃Bl 〉 sind i. a. weder orthogonal noch normiert. Wir zeigen wie die für
Gl. (8.8) behauptete Orthogonalität erreicht werden kann.

Dazu wählen wir als ONB {|cAl 〉} in Gl. (8.9) speziell die orthonormalen Eigenvektoren
{|uAn 〉} von ρA und zerlegen ρA

ρA =
a∑

n=1

pn|uAn 〉〈uAn | mit pn ≥ 0 ,
a∑

n=1

pn = 1. (8.12)

Es sei pn > 0 für 0 ≤ n ≤ k und pn = 0 für k + 1 ≤ n ≤ a. Die Vektoren |uAn 〉 sind nur
bis auf einen Phasenfaktor festgelegt. Andererseits gilt mit den zu {|uAn 〉} relativen Zustände
{|w̃Bn 〉}

ρA = trB [|ψAB〉〈ψAB|]

= trB [
a∑

l,n=1

|uAl 〉〈uAn | ⊗ |w̃Bl 〉〈w̃Bn |] =

=
a∑

l,n=1

|uAl 〉〈uBn |trB [|w̃Bl 〉〈w̃Bn |] =

=
a∑

l,n=1

〈w̃Bn |w̃Bl 〉|uAl 〉〈uAn | (8.13)

wobei im letzten Schritt

trB[|w̃Bl 〉〈w̃Bn |] =
b∑

i=1

〈dBi |w̃Bl 〉〈w̃Bn |dBi 〉 (8.14)

=
b∑

i=1

〈w̃Bn |dBi 〉〈dBi |w̃Bl 〉 = 〈w̃Bn |w̃Bl 〉 (8.15)

eingesetzt wurde. Der Vergleich von (8.12) mit (8.13) führt auf die Orthogonalität:

〈w̃Bn |w̃Bl 〉 = pnδnl i, k = 1 . . . n (8.16)

Für n ≥ k+1 sind die |w̃Bn 〉 Nullvektoren. Damit ist die Behauptung von (i) bewiesen. (ii) ist
eine direkte Folge.

Mit Gl. (8.16) reduziert sich die Summe in Gl. (8.13) auf

ρA =
k∑

i=1

pn|uAn 〉〈uAn | . (8.17)
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Die {pn} heißen Schmidt-Koeffizienten. Wir ergänzen noch, dass auch der reduzierte Dichte-
operator ρB die pn als Eigenwerte hat

ρB =
k∑

n=1

pn|wBn 〉〈wBn | . (8.18)

Das hat unmittelbar zur Folge, dass jede Funktion eines Dichteoperators, die nur von seinen
Eigenwerten abhängt, für beide reduzierten Dichteoperatoren denselben Wert hat. Die von-
Neumann-Entropie, die wir in Kap. 6 eingeführt haben, ist ein Beispiel.

Ein Schmidt-Zerlegung bezieht sich immer auf einen bestimmten reinen Zustand ei-
nes zusammengesetzten Systems. Verschiedene Zustände haben verschiedene Schmidt-
Zerlegungen. Im allgemeinen kann die Schmidt-Zerlegung nicht auf Systeme mit mehr als
zwei Teilsystemen ausgedehnt werden. Etwas ähnliches wie die Schmidt-Zerlegung gibt es
für Gemische nicht.

8.2.2 Schmidt-Zahl und Verschränkung

Wir wollen einige Beispiele für die Nützlichkeit der Schmidt-Zerlegung geben. {|uAn 〉} bzw.
{|wBn } mit n = 1, ...., k heißen Schmidt-Basen von HA bzw. HB . In ihnen sind die beiden
reduzierten Dichteoperatoren diagonal. Die Schmidt-Zahl k ist die Zahl der nicht verschwin-
denden Schmidt-Koeffizienten. |ψAB〉 ist genau dann ein Produktzustand und damit nicht ver-
schränkt, wenn die Schmidt-Zahl gleich Eins ist. ρA und ρB habe dann den Rang Eins. Das
ist gleichbedeutend mit tr[(ρA)2] = tr[(ρB)2] = 1 Ob ein reiner Zustand |ψAB〉 verschränkt
ist oder nicht, lässt sich somit direkt an dem reduzierten Dichteoperator eines Teilsystems
ablesen. Die Schmidt-Zahl kann als ein Maß für die Verschränkung dienen. Darin liegt ihre
hauptsächliche Bedeutung. Weiterhin können wir direkt ablesen: Wenn einer der reduzierten
Dichteoperatoren einen reinen Zustand beschreibt, dann tut es auch der andere. Wenn sich das
Gesamtsystem SAB in einem reinen Zustand |ψAB〉 befindet ist es daher unmöglich, dass ei-
nes der Untersysteme sich in einem reinen Zustand befindet und das andere in einem echten
Gemisch. Wir werden diese Aussage noch verallgemeinern.

Ähnlich finden wir: Wenn ein Qubit-System mit einem System mit m linear unabhängi-
gen Zuständen verschränkt ist, dann besteht die Schmidt-Zerlegung nur aus zwei Termen. In
Rechnungen ist es oft geschickt diese Schmidt-Basis einzuführen. Allgemein gilt der Satz:
Wenn ein Teilsystem die Dimension d hat, dann kann es mit nicht mehr als d orthogonalen
Zuständen eines anderen Systems verschränkt werden.

Wenn ρA und damit auch ρB als einzige entartete Eigenwerte allenfalls die Null haben,
dann ist die Schmidt-Zerlegung durch ρA und ρB eindeutig festgelegt. Man bestimmt dazu die
Eigenzustände von ρA und ρB und bildet das Produkt der Zustände zum gleichen Eigenwert
wie in Gl. (8.8).

Wir geben ein Beispiel für Entartung an. Der Bell-Zustand

|ΨAB
− 〉 =

1√
2
(|0A, 1B〉 − |1A, 0B〉) (8.19)

ist wie alle anderen Bell-Zustände verschränkt. Die zugehörigen Basen in HA bzw. HB sind
z. B. {|0A〉, |1A〉} und {|1B〉,−|0B〉}. Der Zustand |ΨAB

− 〉 weist eine sphärische Symmetrie
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auf, denn man bestätigt leicht, dass

|ΨAB
− 〉 =

1√
2
(|0Ar , 1Br 〉 − |1Ar , 0Br 〉) (8.20)

gilt, wobei |0r〉 und |1r〉 die Eigenvektoren von rσ zu beliebigem Bloch-Vektor r sind (vergl.
Gl. (3.31)). Dies demonstriert, dass in diesem Fall die Schmidt-Zerlegung nicht eindeutig ist.
Wenn mehrere pn in Gl. (8.8) übereinstimmen, können die entsprechenden Vektoren |uAn , wBn 〉
durch Linearkombinationen ersetzt werden. Dem entspricht es, dass für |ΨAB

− 〉 die Eigenvek-
toren der reduzierten Dichteoperatoren

ρA = ρB =
1
2
� (8.21)

nicht festgelegt sind.

Purifizierung Der folgende Hilfssatz ist nützlich: Für jedes System mit Dichteoperator ρA

ausHA existiert ein reiner Zustand |φAB〉 ausHA⊗HB , so dass ρA der zugehörige reduzierte
Dichteoperator ist:

ρA = trA[|φAB〉〈φAB|] . (8.22)

Zum Beweis betrachten wir die ONB {|uAn 〉}, in der ρA diagonal ist:

ρA =
a∑

n=1

pn|uAn 〉〈uAn | . (8.23)

Gemäß Schmidt-Zerlegung ist dann

|φAB〉 =
a∑

n=1

√
pn|uAn , wBn 〉 (8.24)

mit irgendeiner ONB {|wBn 〉} eine mögliche Purifizierung. Andere Purifizierungen gehen
durch unitäre Transformationen dieser Basis daraus hervor.Dies macht noch einmal deutlich,
dass es zur Bildung der Teilspur keine eindeutige Umkehrung gibt. Es gibt unendlich viele
Gesamtsysteme SAB , die im Zustand SA übereinstimmen.

8.2.3 Entropie der Teilsysteme als Maß für Verschränkung

Reine Zustände eines 2-Teile-Systems SAB sind entweder in einem Produktzustand, dann
sind die Teilsysteme nicht korreliert, oder sie sind verschränkt, dann sind sie EPR-korreliert.
Korrelationen können in diesem Fall nur nicht-klassisch sein. Wir bezeichnen die Entropie
des Gesamtsystems mit S(AB) und die mit den reduzierten Dichteoperatoren ρA = trB [ρAB]
und ρB = trA[ρAB] gebildeten Entropien der Teilsysteme mit S(A) und S(B). Da wir nur
reine Zustände betrachten liegt stets die maximale Information über den Gesamtzustand vor.

S(AB) = 0 . (8.25)
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Bei einem Produktzustand liegt auch über den Zustand der Teilsysteme die maximale In-
formation vor

S(A) = S(B) = 0 . (8.26)

Demgegenüber sind z. B. die Dichteoperatoren der Bell-Zustände völlig strukturlos

ρA = ρB =
1
2
� . (8.27)

Die Teilsysteme sind in diesem Fall maximal gemischt und maximal unbestimmt

S(A) = S(B) = 1 . (8.28)

Die Entropie (Unbestimmtheit des Zustands) der Teilsysteme ist ein Maß für die – vergli-
chen mit dem reinen Zustand – fehlende Information. Wenn man nur die Teilsysteme betrach-
tet, verliert man umsomehr Information über den Gesamtzustand, je mehr Informationen in
den Korrelationen zwischen den Teilzuständen enthalten ist. Je größer daher die Entropie der
Zustände der Teilsysteme ist, umso stärker ist der reine Zustand des Gesamtsystems korreliert
und damit verschränkt. Wir nehmen daher bei einem reinen Zustand |ψAB〉 des Gesamtsys-
tems den Wert E(ψ) der Entropie der Teilsysteme

0 ≤ E(ψ) := S(A) = S(B) ≤ 1 (8.29)

als Maß für die Verschränktheit des Zustandes. E(ψ) heißt auch Entropie der Verschrän-
kung (entropy of entanglement). Diese Quantifizierung der Verschränkung gilt nur für reine
Gesamtzustände. Für gemischte Zustände gibt es eine Reihe von Vorschlägen für Verschrän-
kungsmaß, die im Spezialfall reiner Zustände von 2-Teile-Systemen mit E(ψ) übereinstim-
men (vergl. Abschn. 8.6).

Die Entropie der Verschränkung hängt nur von den Schmidt-Koeffizienten ab. Sie ist basi-
sunabhängig und ändert sich nicht unter lokalen unitären Transformationen. Mit |ψAB〉 =
UA ⊗ UB |ψAB〉 gilt E(ψ′) = E(ψ). Zustände in Hd ⊗ Hd für die E(ψ) = log d mit
d = dimH gilt, heißen maximal verschränkt (maximally entangled). Bell-Zustände sind hier-
für ein Beispiel.

8.2.4 Teilsysteme in reinen Zuständen sind total isoliert

Wir beweisen einen Satz für Gemische, den wir für reine Zustände von SAB oben schon
erwähnt haben: Wenn bei einem 2-Teile-System SAB , das sich in einem gemischten Zustand
ρAB befindet, der reduzierte Dichteoperator ρA eines Teilsystems SA der eines reinen Zu-
stands ist, dann ist ρAB separabel. Da wir eine Aussage über Gemische anstreben, ist zum
Beweis dieses Satzes ein Rückgriff auf die Schmidt-Zerlegung nicht möglich.

Wir diskutieren zunächst den Fall, dass ρA ein Gemisch ist. ρA ist ein positiver Operator.
Er lässt sich nach seinen orthonormalen Eigenzuständen zerlegen, die wir zu einer ONB |uAn 〉
ergänzen

ρA =
∑

n

rn|uAn 〉〈uAn | ,
∑

n

rn = 1 , rn ≥ 0 . (8.30)
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Entsprechendes gilt für ρAB

ρAB =
∑

q

sq|ψABq 〉〈ψABq | ,
∑

q

sq = 1 , sq > 0 . (8.31)

Es ist rechentechnisch günstig, die Eigenvektoren |ψABq 〉mit Hilfe der jeweiligen Relativ-

zustände |w̃(q)B
n 〉 zu |uAn 〉 zu schreiben (vergl. Abschn. 7.3.5). Um die Rechnung übersichtlich

zu gestalten, werden wir weitgehend auf die Indizes A und B sowie auf die Tilde verzichten.
Wir erhalten

|ψABq 〉 = |ψq〉 =
∑

n

|un, w(q)
n 〉 (8.32)

und damit

ρAB =
∑

q,n,m

sq|un , w(q)
n 〉〈um, w(q)

m |

=
∑

n,m

|un〉〈um| ⊗
∑

q

sq|w(q)
n 〉〈w(q)

m | . (8.33)

Dies ist im allgemeinen kein separabler Zustand. Für den reduzierten Dichteoperator ρA des
Teilsystems SA folgt

ρA = trB[ρAB] =
∑

n,m

|un〉〈um|
∑

q

sq〈w(q)
m |w(q)

n 〉 . (8.34)

Bei der Spurbildung mit der ONB {|vi〉} vonHB haben wir von der Relation
∑

i

∑

q

sq〈vi|w(q)
n 〉〈w(q)

m |vi〉 =
∑

q

sq〈w(q)
n |w(q)

m 〉 (8.35)

Gebrauch gemacht.
Mit Gl. (8.30) und (8.34) ergeben sich die Matrixelemente von ρA als

〈uk|ρA|ul〉 = rkδkl =
∑

sq〈w(q)
l |w(q)

k 〉 . (8.36)

Wenn speziell rk = 0 ist, dann gilt
∑

q

sq||w(q)
k || = 0 (8.37)

und mit sq > 0

||w(q)
k || = 0 , |w(q)

k 〉 = 0 (8.38)

für alle q.
Mit diesem Ergebnis kehren wir zum Ausgangsproblem zurück. ρA soll ein reiner Zustand

sein. Ohne Einschränkung setzen wir

ρA = |u1〉〈u1| . (8.39)
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Dann gilt rn�=1 = 0 und damit |w(q)
n�=1〉 = 0 . Einsetzen in Gl. (8.33) führt auf

ρAB = |u1〉〈u1| ⊗
∑

q

sq|w(q)
1 〉〈w(q)

1 | . (8.40)

Der Dichteoperator ρAB ist also separabel. Das ergibt das bemerkenswerte physikalische Er-
gebnis: Wenn ein System in einem reinen Zustand ist, kann es nicht mit einem anderen System
verschränkt sein. Es existieren keine Korrelationen zwischen diesem System und irgendeinem
anderen System. Es ist total isoliert.

Die Postulate aus Abschn. 2.1 beziehen sich auf reine Zustände. Die durch diese Pos-
tulate beschriebenen Systeme sind daher notwendigerweise auch gegen EPR-Korrelationen
isoliert. Wir notieren noch eine weitere Folge: Eine Messung an einem Teilsystem mit nicht-
entartetem Messwert überführt dieses Teilsystem in einen reinen Zustand. Daher durchbricht
diese projektive Messung die Verschränkung mit anderen Teilsystemen unabhängig davon, ob
das Gesamtsystem vorher in einem gemischten oder in einem reinen Zustand war. Wieder
erwiest sich eine projektive Messung als ein i.a. starker Eingriff.

8.3 Erzeugung verschränkter Zustände

Die Erzeugung von verschränkten Zuständen ist vom theoretischen Standpunkt aus sehr ein-
fach. Ein zusammengesetztes System, das aus zwei Teilsystemen bestehen soll, möge sich
zum Zeitpunkt t0 in einem Produktzustand

|ψAB〉 = |φA〉 ⊗ |χB〉 (8.41)

befinden. Wenn das System für t > t0 eine dynamische Entwicklung mit einem unitären
Operator UAB erfährt, der kein Produktoperator ist

UAB �= UA ⊗ UB , (8.42)

– dies ist der Normalfall – dann geht es dabei in einen verschränkten Zustand über. In diesem
Sinne ist Verschränktheit der „Normalzustand„. Tatsächlich erfordert die gezielte Produktion
wohlbestimmter verschränkter Zustände (wie z. B. der Bell-Zustände) für vorgegebene Sorten
von Quantenobjekten (wie z. B. Photonen) experimentellen Aufwand.

Kaskaden-Photonen Es gibt heute eine Reihe experimenteller Möglichkeiten, verschränkte
Zustände im Labor zu erzeugen. Wir wollen exemplarisch ein Beispiel diskutieren. Für den
Nachweis von Korrelationen sind die Polarisationen von Photonenpaaren besonders geeignet,
da Photonen ohne Störung über Labordistanzen und noch größere Entfernungen propagie-
ren. Wir schildern eine Quelle für Verschränkung, die im optischen Bereich arbeitet. Weitere
Einzelheiten finden sich in den Literaturangaben in Abschn. 8.6.

Ein Atom geht in zwei aufeinander folgenden Übergängen in einer Kaskade (cascade) aus
einem angeregten Zustand über einen Zwischenzustand in den Grundzustand über. Eine solche
Kaskade kann z. B. mit Kalziumatomen realisiert werden (vgl. Abb. 8.1). Die beiden emittier-
ten Photonen haben die Wellenlängen λA = 551, 3 nm bzw. λB = 422, 7 nm. Sie werden
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i.a. nicht in entgegengesetzten Richtungen davonfliegen. Man beschränkt sich im Experiment
aber auf Paare, bei denen z. B. das Photon mit Wellenlänge λA in positiver und das mit Wel-
lenlänge λB in negativer z-Richtung fliegt. Da bei dem J = 0→ J = 1→ J = 0 Übergang
sich der Gesamtdrehimpuls J nicht ändert, müssen diese Photonen zirkular polarisiert sein
und entgegengesetzten Drehimpuls haben. Aus den Einzelheiten des atomaren Zerfalls folgt
weiterhin, dass der Gesamtzustand der beiden Photonen gerade Parität haben muss. Diese
beiden Bedingungen sind vom Zustand des 2-Photonen-Systems zu erfüllen.

Wir haben in Abschn. 3.6 gesehen, dass die rechts- und linkspolarisierten Zustände bei
vorgegebener Ausbreitungsrichtung k eine Basis im Hilbert-RaumH2 der Polarisationen bil-
den. Für das Photonenpaar sind also |RA, RB〉, |RA, LB〉, |LA, RB〉, |LA, LB〉 eine Basis des
Produktraumes HA ⊗ HB , Mit A und B bezeichnen wir dabei die positive bzw. negative z-
Richtung in der die einzelnen Photonen fliegen. Der Wellenvektor k ist also in einem Fall
proportional zu ez und im anderen zu −ez . Wegen des verschwindenden Gesamtdrehimpul-
ses kann der 2-Photonen-Zustand nur eine Linearkombination aus |RA, RB〉 und |LA, LB〉
sein (vergl. Abb. 8.2)

|φAB〉 = α|RA, RB〉+ β|LA, LB〉 . (8.43)

Aus der Physik des atomaren Übergangs kommt eine weitere Forderung hinzu: Der 2-
Photonen-Zustand muß gerade Parität haben, Das heißt, wenn man Rechtshändigkeit mit
Linkshändigkeit vertauscht, muß er in sich selbst übergehen. Das ist offenbar nur möglich
für eine spezielle Wahl von α und β:

|ΦAB+ 〉 =
1√
2

(|RA, RB〉+ |LA, LB〉) . (8.44)

Der 2-Photonen-Zustand ist daher auf Grund der Symmetrien des Erzeugungsprozesses, die
er widerspiegeln muß, ein Bell-Zustand.

Die Verschränktheit wird plausibel, wenn man berücksichtigt, dass der intermediäre Zu-
stand mit J = 1 entartet ist. Der Grundzustand kann daher über zwei verschiedene Zwischen-
zustände erreicht werden (vgl. Abb. 8.1). Beide „Wege“ sind möglich. In Analogie zu den
„Wegen“ beim Doppelspalt interferieren die resultierenden Zustände. Dabei werden auf dem
einen „Weg“ zwei rechtszirkular polarisierte Photonen emittiert und auf dem anderen zwei
linkszirkulare. Diese Korrelation führt zusammen mit der Superposition auf Verschränkung.

J = 0

J = 1

J = 0

λA = 551nm

λB = 423nm

J = 1

J = 0

J = 0

LA

LB

RA

RB

Abbildung 8.1: Übergangsschema der Kaskaden-Photonen.
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Abbildung 8.2: Polarisationen der Kaskaden-Photonen

Der Bell-Zustand |ΦAB+ 〉 von Gl. (8.44) gibt genau diese Entstehungssituation der Photonen-
paare wieder.

Für spätere Zwecke rechnen wir noch auf die linearen Polarisierungen in x-Richtung und
y-Richtung um. Wir können hierzu Gl. (3.63) und (3.64) benutzen, müssen dabei aber die
Konvention von Abb. 8.2 bei der Ausbreitungsrichtung beachten. Wir finden

|RA〉 =
1√
2
(|xA〉+ i|yA〉)

|LA〉 =
1√
2
(|xA〉 − i|yA〉) (8.45)

|RB〉 =
1√
2
(|xB〉 − i|yB〉)

|LB〉 =
1√
2
(|xB〉+ i|yB〉)

und damit für den verschränkten Zustand

|ΦAB+ 〉 =
1√
2
(|xA, xB〉+ |yA, yB〉) . (8.46)

In unserer Rechnung war die Lage der x-Achse und der y-Achse nicht festgelegt. Gl. (8.46)
gilt für beliebige Orientierungen. Der Zustand |ΦAB+ 〉 ist rotationssymmetrisch bezglich der
z-Achse. Wir kommen auf diesen 2-Photonen-Zustand in Kap. 10 zurück.

8.4 Informationsübertragung mit
Überlichtgeschwindigkeit und das No-cloning-Theorem

Wir haben gesehen, dass eine Messung am Teilsystem A das Teilsystem B instantan in einen
wohlbestimmten Zustand überführt. Das Wort „instantan“ ist verführerisch. Stellen wir uns
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vor, es ist ein verschränkter reiner Zustand erzeugt worden, dessen Teilsystem SA sich bei
Alice befindet und dessen anderes Teilsystem SB sehr weit entfernt bei Bob befindet. Alice
versucht an Bob eine Information mit einem Bit zu übermitteln, indem sie wahlweise eine von
zwei nicht kommutierenden Observablen an ihrem Untersystem SA misst. Falls es Bob gelingt
durch Messung an seinem Untersystem SB diese Information auszulesen, dann wäre sie mit
Überlichtgeschwindigkeit übertragen worden und die Relativitätstheorie wäre widerlegt.

Wir beschreiben das vorgeschlagene Verfahren im Einzelnen. Alice und Bob haben jeweils
Zugriff auf ein Photon eines polarisationsverschränkten Photonenpaars, das sich z. B. im Bell-
Zustand

|Ψ−〉 =
1√
2
(|H,V 〉 − |V,H〉) =

1√
2
(| − 45◦, 45◦〉+ |45◦,−45◦〉) (8.47)

befindet. Alice führt eine Messung entweder in der {|H〉, |V 〉}-Basis oder in der um 45◦

gedrehten Basis mit den Vektoren |+45◦〉 = (|H〉+|V 〉)/√2 und |−45◦〉 = (|H〉−|V 〉)/√2
durch. Diese beiden Basissysteme sind Bob bekannt. Die Wahl der einen oder der anderen
Basis durch Alice ist die Information, die übertragen werden soll.

In dem Augenblick, in dem Alice durch Messung mit einem Observablenoperator zu ei-
nem der beiden Basissysteme ihr Photon in einen bestimmten Zustand (z. B. | − 45◦〉) über-
führt, geht der Zustand des Photons bei Bob in den dazu senkrechten Zustand über (im Beispiel
|+ 45◦〉). Wenn Bob die Polarisation seines Photons messen könnte, dann könnte er die Bot-
schaft von Alice lesen. Bob kann aber zur Messung nur zufällig eine der beiden Basen wählen
und es steht ihm zur Messung auch nur ein Photon zur Verfügung. Wenn Bobs Photon wie in
unserem Beispiel im Zustand | + 45◦〉 ist und er in der Basis {|HB〉, |V B〉} misst kann ent-
weder der Detektor zu H-Polarisation oder der Detektor zu V-Polarisation ansprechen. Eine
einzige Messung reicht also nicht aus, um die (+45◦)-Polarisation mit Sicherheit zu ermitteln.
Bob kann daher die Information nicht auslesen. Wenn Bob aber eine Maschine hätte, die viele
Kopien seines Photons herstellen kann, dann wäre eine Zustandsbestimmung und damit die
Informationsübertragung möglich. Das führt auf die Frage, ob man Quantensysteme klonen
kann.

No-cloning-Theorem Wir wollen beweisen, dass es keine Maschine gibt, die beliebige un-
bekannte reine Quantenzustände kopieren kann. Zunächst beschreiben wir eine andere Situati-
on, in der Kopieren möglich ist. Wir zeigen, dass es für orthogonale Zustände |0〉 und |1〉 einen
hierfür angepassten Kopierer gibt. Es ist das entsprechende CNOT-Gatter aus Abschn. 7.4.1.
Wenn das Kontroll-Qubit die Form |ψA〉 = α|0〉 + β|1〉 hat und |0B〉 als Ziel-Qubit gewählt
wird, dann besteht die Wirkung des CNOT-Gatters zur Basis {|0〉, |1〉} in

|ψA, 0B〉 → |φAB〉 = α|0, 0〉+ β|1, 1〉 . (8.48)

Die beiden orthogonale Zustände des Kontroll-Qubits |0〉 oder |1〉 (d. h. β = 0 oder α = 0)
werden daher durch das dieser Basis angepasste Gatter kopiert. Bis auf diese beiden Grenzfälle
wird die Superposition |ψA〉 aber auf diese Weise nicht kopiert.

Wir wenden uns dem allgemeinen Fall zu. Ein Quantensystem SA ist im Zustand |ψA〉.
Dieser Zustand soll kopiert werden. Das heißt, ein zweites Quantensystem SB , das sich zu-
nächst im Zustand |iB〉 befindet, soll in den Zustand |ψB〉 überführt werden. Dabei kann der
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anfängliche Zustand |iC〉 des Kopiersystems SC in einer von |ψB〉 abhängigen Weise in einen
neuen Zustand |f(ψ)C〉 übergehen. Die Gesamtprozedur soll universell sein, d. h. für alle Zu-
stände von SA soll mit der gleichen unitären Transformation U eine Kopie erstellt werden.
|ϕA〉 ist ein zweiter zu kopierender Zustand. Dann lautet die Forderung:

|ψA〉|iB〉|iC〉 U−→ |ψA〉|ψB〉|f(ψ)C〉 (8.49)

|ϕA〉|iB〉|iC〉 U−→ |ϕA〉|ϕB〉|f(ϕ)C〉 . (8.50)

Die unitäre Transformation erhält das innere Produkt

〈ψA|ϕA〉 = 〈ψA|ϕA〉〈ψB|ϕB〉〈f(ψ)C |f(ϕ)C〉 . (8.51)

Wenn |ψA〉 und |ϕA〉 nicht orthogonal sind (〈ψA|ϕA〉 �= 0) folgt

1 = 〈ψB|ϕB〉〈f(ψ)C |f(ϕ)C〉 . (8.52)

Wir gehen zu Beträgen über. Da alle Zustände normiert sind mit |〈ψB|ϕB〉| ≤ 1 und
|〈f(ψ)C |f(ϕ)C〉| ≤ 1, ist

|〈ψB |ϕB〉| = 1 d. h. |ψA〉 = |ϕA〉 (8.53)

eine notwendige Bedingung für die Erfüllung von (8.52). Daher hat die Anlage keinen zwei-
ten zu |ψA〉 nicht orthogonalen Zustand |ϕA〉 kopieren können. Es gibt keinen universellen
Kopierer für reine Quantenzustände (No-cloning-Theorem).

Damit misslingt auch der oben beschriebene Versuch, einen Widerspruch zwischen Rela-
tivitätstheorie und Quantentheorie zu konstruieren. Die konfliktfreie Koexistenz beider Theo-
rien ist bemerkenswert, da bei der Formulierung der Quantentheorie in der unrelativistischen
Form, wie wir sie verwenden, die Forderungen der Relativitätstheorie nicht berücksichtigt
wurden.

8.5 Zustandsmarkierung durch Verschränkung

8.5.1 Welcher-Weg-Markierung

2-Wege-Interferometer Wir erinnern zunächst an das in Abschn. 3.7 behandelte Mach-
Zehnder-Interferometer (vgl. Abb. (3.8)), das von einem einzelnen Quantenobjekt durchlaufen
wird. Der erste Strahlteiler dient dazu, eine symmetrische Superposition der den beiden Wegen
zugeordneten Zustände |0〉 und |1〉 zu erreichen. Das Quantensystem in diesem Zustand trifft
auf einen Strahlteiler mit Phasenschieber. Hierdurch werden die komplexen Amplituden des
|0〉- und des |1〉 -Vektors im 0-Ausgang hinter dem Strahlteiler superponiert. Ein Detektor im
0-Ausgang kann dann je nach Situation ein von der eingestellten Phasenverschiebungα abhän-
giges Interferenzbild registrieren. Genauer besagt das, dass seine Ansprechwahrscheinlichkeit
p(α) eine Funktion von α sein kann. Gemäß Gl. (3.87) ergibt sie sich für einen beliebigen
einfallenden Zustand ρ als

pρ(α) = tr[ρ|α〉〈α|] (8.54)
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mit

|α〉 = 1√
2
(|0〉+ eiα|1〉). (8.55)

Für einen einlaufenden reinen Zustand |ϕ〉 sind Ansprechwahrscheinlichkeit und Streifenkon-
trast des Interferenzbildes in Abschn. 3.7.2 angegeben worden. Wir notieren diese Ergebnisse
noch einmal.

Die Zuordnung eines einlaufenden Zustands |χ〉 zu einem Weg ergibt sich indem man vor
Phasenschieber und Strahlteiler einen Detektor entweder in Weg 0 oder Weg 1 einschiebt.
Bei |χ〉 = |0〉 (bzw. |χ〉 = |1〉) spricht nur der Detektor auf Weg 0 (bzw. auf Weg 1) an.
Das Quantenobjekt propagiert auf dem 0-Weg (bzw. dem 1-Weg). Bei der Interpretation des
Gemischs

ρ =
1
2
(|0〉〈0|+ |1〉〈1|) =

1
2
� (8.56)

als Gemenge würde das Quantenobjekt entweder auf dem Weg 0 oder auf dem Weg 1 jeweils
mit der relativen Häufigkeit 1/2 einlaufen. In all diesen Fällen tritt keine α-Abhängigkeit und
damit keine Interferenz auf:

p|0〉(α) = p|1〉(α) = pρ(α) =
1
2

(8.57)

Der Streifenkontrast ν ist

ν|0〉 = ν|1〉 = νρ = 0. (8.58)

Einem reinen Zustand |χ〉, der eine Superposition von |0〉 und |1〉 ist, kann man keinen
Weg mehr zuordnen. Dementsprechend tritt Interferenz auf. Der allgemeine Qubit-Vektor
|χ(Θ, ϕ)〉 und der dazu senkrechte Vektor |χ⊥(Θ, ϕ)〉 haben die Form (vgl. Gl. (3.88))

|χ(Θ, ϕ)〉 = cos
Θ
2
|0〉+ eiϕ sin

Θ
2
|1〉 (8.59)

|χ⊥(Θ, ϕ)〉 = − sin
Θ
2
|0〉+ eiϕ cos

Θ
2
|1〉 (8.60)

= |χ(π + Θ, ϕ)〉.
Sie bilden eine ONB. Mit p(α) von Gl. (3.87) folgt damit für die Ansprechwahrscheinlichkeit
des Detektors als Funktion der Phasenverschiebung

p|χ〉(α) =
1
2
[1 + sin Θ cos(α− ϕ)] (8.61)

p|χ⊥〉(α) =
1
2
[1− sin Θ cos(α− ϕ)] . (8.62)

Für den Streifenkontrast ergibt sich

ν|χ〉 = ν|χ⊥〉 = sin Θ. (8.63)
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Wenn nicht speziell der Zustand |0〉 oder |1〉 einläuft, entsteht mit variierendem α ein Interfe-
renzbild.

Die Interferenzbilder zu |χ〉 und |χ⊥〉 sind für ϕ = −π2 in Abb. (8.3) dargestellt. Man
sieht, dass sich bei Addition der Wahrscheinlichkeiten bzw. relativen Häufigkeiten die Ab-
hängigkeiten der Kurven von der Phasenverschiebung α gerade aufheben. Die Interferenz
verschwindet:

p|χ〉 + p|χ⊥〉 = 1. (8.64)

Diese Addition gibt die Situation wieder, die bei dem gleich gewichteten statistischen Gemisch

ρ =
1
2
(|χ〉〈χ|+ |χ⊥〉〈χ⊥|) =

1
2
� (8.65)

aus den Basiszuständen |χ〉 und |χ⊥〉 vorliegt. Wie in Gl. (8.57) erhalten wir pρ = 1
2 .

α2π

1/2

α2π

1/2

α2π

1/2

1

p|χ〉(α)

1

p|χ⊥〉(α)

1

p|χ〉(α) + p|χ⊥〉(α)

Abbildung 8.3: Die Interferenzbilder zum Zustand |χ〉 und dem dazu senkrechten Zustand |χ⊥〉.

Verschränkung mit Markerzuständen Wir betrachten als Beispiel einzelne Atome im
Atominterferometer. Die folgenden Überlegungen gelten aber allgemein. Das Atom im Qubit-
Zustand mit maximalem Streifenkontrast

|χA〉 = c0|0A〉+ c1|1A〉 (8.66)

soll im Interferometer mit einem weiteren Qubit-System SM so in nicht-lokaler Weise wech-
selwirken, dass daraus der verschränkte Zustand

|φAM 〉 = c0|0A, 0M 〉+ c1|1A, 1M 〉 (8.67)

des Gesamtsystems SAM entsteht. Die Atomzustände {|0A〉, |1A〉} werden durch die zugehö-
rigen Markerzustände {|0M 〉, |1M 〉}, die ebenfalls Eigenzustände zu σz sind, „markiert“. SM

heißt das Markersystem. Im vorliegenden Fall handelt es sich entsprechend der Bedeutung
von |0M 〉 und |1M 〉 um Welcher-Weg-Marker (which-way marker). In anderen physikalischen
Situationen können Marker auch innere Freiheitsgrade z. B. eines Atoms oder andere Quante-
nobjekte sein.

Die Wechselwirkung zwischen SA und SM , die die Markierung bewirkt, muss folgendes
erreichen

(
c0|0A〉+ c1|1A〉

) |iM 〉 → c0|0A, 0M 〉+ c1|1A, 1M 〉 . (8.68)
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Wenn man Fragen der physikalischen Realisierbarkeit außer Acht lässt, kann eine unitäre
Transformation, die das leistet, leicht angegeben werden:

UAB = |0A〉〈0A| ⊗ |0M 〉〈0M |+ |1A〉〈1A| ⊗ |1M 〉〈1M |. (8.69)

Als Ausgangszustand des Marker-Systems wählen wir |iM 〉 = 1√
2
(0M 〉 + |1M 〉). UAB ist

offenbar eine nicht-lokale Transformation. Im Spezialfall, dass das Atom auf dem Weg 0
kommt, wird der Marker in die „Position“ |0M 〉 gebracht und entsprechend in die Position
|1M 〉 bei Weg 1. Nur wenn das Atom in einer Superposition einläuft, entsteht ein verschränk-
ter Zustand.

Verlust der Interferenzfähigkeit Was besagt die Welcher-Weg-Markierung von Gl. (8.67)
physikalisch? Wir messen am Marker-Qubit in der Rechenbasis {|0M 〉, |1M 〉} oder anders
gesagt, wir messen die Markerobservable. Beim Messergebnis +1, das zu |0M 〉 gehört, läuft
das Atom auf dem 0-Weg weiter, bei −1 auf dem 1-Weg. Messung der Markerobservablen
bricht also die Interferenz auf und legt für das Atom einen Weg fest.

Bemerkenswerter Weise ist es für den Verlust der Interferenzfähigkeit gar nicht nötig,
dass am Markersystem gemessen wird. Nachdem durch Markieren der verschränkte Zustand
|φAM 〉 von Gl. (8.67) mit reduziertem Dichteoperator

ρA = trM [ρAM ] = |c0|2|0A〉〈0A|+ |c1|2|1A〉〈1A| (8.70)

entstanden ist, stimmt der reduzierte Dichteoperator des Atomsystems ρA hinsichtlich aller
Wahrscheinlichkeitsaussagen mit Gemenge der Zustände |0A〉 und |1A〉 überein. Die Interfe-
renz verschwindet. Wenn man interferierende Zustände markiert, geht die Interferenzfähigkeit
selbst dann verloren, wenn an den Markern garnicht gemessen wird.

Die Information, die vor der Markierung im reinen Zustand |χA〉 des Atoms steckte und
die das Interferenzbild bestimmt hat, ist nicht mehr im Zustand des Atoms gespeichert und
kann durch Messungen am Atom nicht abgerufen werden. Tatsächlich ist sie bei der unitären
Verschränkungsdynamik aber nicht verloren gegangen. Sie wurde als wechselseitige Informa-
tion in den Korrelationen mit dem Markersystem deponiert. Wir wollen jetzt sehen, wie man
sie dort wieder abrufen kann indem man Korrelationen misst.

8.5.2 Quantenradieren

Wir betrachten der Einfachheit halber den Spezialfall c1 = c2 = 1√
2

.

|φAM 〉 =
1√
2

(|0A, 0M 〉+ |1A, 1M 〉) (8.71)

ρA =
1
2
�
A . (8.72)

Da der Interferenz zerstörende Einfluss der Markierung wieder beseitigt werden soll, spricht
man vom Quantenradieren(quantum erasure). Die Überlegungen im vorigen Kapitel zu den
Basiszuständen |χ(Θ, ϕ)〉 und |χ⊥(Θ, ϕ)〉 mit Θ �= 0, π geben einen Hinweis darauf, wie
man aus dem vorliegenden Gemisch ρA Informationen gewinnen kann. ρA ist in unserem Fall
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kein statistisches Gemisch (Gemenge), sondern ein reduzierter Dichteoperator eines Teilsys-
tems. Er ist aber im Hinblick auf alle denkbaren Aussagen über Messungen nicht von einem
Gemenge zu unterscheiden, das durch Mischen der Zustände |χA〉 und |χA⊥〉 entsteht. Wenn
es nach der Markierung gelänge, erstens die Atome in die Zustände |χA〉 oder |χA⊥〉 zu über-
führen und zweitens Atome im Zustand |χA〉 von denen im Zustand |χA⊥〉 zu trennen, dann
würden die zugehörigen atomaren Ensemble auf die Interferenzbilder von Abb. 8.3 führen.
Sie stimmen mit den ursprünglichen Interferenzbildern zum Zustand |χA〉 bzw. |χA⊥〉 bis auf
eine Phasenverschiebung und möglicherweise geringeren Phasenkontrast überein. Da das Ge-
samtsystem ρAM in einem reinen Zustand |φAM 〉 vorliegt, können wir tatsächlich beide For-
derungen durch geeignete Messung am Markersystem SM erfüllen. Wir werden ein solches
oder ein ähnliches Verfahren noch häufiger verwenden. Es besteht allgemein darin, dass ein
System mit einem Hilfssystem verschränkt wird und dann am Hilfssystem gemessen wird, um
den Zustand des Ausgangssystems in gewünschter Weise zu manipulieren.

Um im vorliegenden Fall Quantenradieren zu erreichen, gehen wir folgendermaßen vor:
Der verschränkte Zustand |ψAM 〉 von Gl. (8.67) lässt sich mit Hilfe „gedrehter“ Markerzu-
stände (vergl. Bloch-Kugel)

|ΛM (Θ, ϕ)〉 = 1√
2
(cos

Θ
2
|0M 〉+ e−iϕ sin

Θ
2
|1M 〉) (8.73)

|ΛM⊥ (Θ, ϕ)〉 = 1√
2
(− sin

Θ
2
|0M 〉+ e−iϕ cos

Θ
2
|1M 〉) (8.74)

in der zu Gl. (8.71) völlig analogen Form

|φAM 〉 = 1√
2
(|χA,ΛM 〉+ |χA⊥,ΛM⊥ 〉) (8.75)

schreiben. Dadurch sind bei unverändertem Gesamtzustand |φAM 〉 die interferenzfähigen Zu-
stände |χA〉 und |χA⊥〉 statt der Zustände |0A〉 und |1A〉 mit den neuen Markerzuständen ver-
schränkt. Eine Messung am Markersystem in der Basis {|ΛM 〉, |ΛM⊥ 〉}, die auf die Messwerte
1+ und −1 führen soll, überführt den Atomzustand in |χA〉, wenn der Messwert +1 ein-
getreten ist, bzw. in |χA⊥〉 beim Messwert −1. Bei einer nicht-selektiven Messung führt das
resultierende statistische Gemisch ρA von Gl. (8.65) aber noch immer nicht auf ein Interfe-
renzbild.

Der entscheidende zweite Schritt besteht daher in einer Selektion, also in einer Entmi-
schung des Gemisches. Betrachten wir nur die Beiträge derjenigen Atome zum Interferenz-
bild, die in der Messung mit dem Messergebnis + präpariert wurden, dann erhalten wir das
Interferenzbild von Abb. 8.3 zu p|χ〉(α) von Gl. (8.61). Entsprechend finden wir nach Se-
lektion zum Messergebnis −1 die Interferenzkurve p|χ⊥〉(α) von Gl. (8.62). Durch selektive
Messung in einer „gedrehten“Markerbasis wird der die Interferenz zerstörende Einfluss auf-
gehoben. Die Interferenzkurve wird reproduziert. Der Streifenkontrast ν = 1 wird mit Θ = π

2
erzielt. Für ϕ = 0 sind dann die Markerzustände die Eigenzustände zu σx.

8.5.3 Tatsächlich „delayed choice“?

Gedankenexperimente Die Experimente, die zur „Welcher-Weg“-Markierung vorgeschla-
gen oder durchgeführt wurden, sind quantenoptische bzw. atomoptische Experimente. Wir
müssen uns hier mit Literaturhinweisen begnügen (vergl. Abschn. 8.6).
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Ohne Anspruch auf einfache Realisierbarkeit können wir uns in Abwandlung vom oben
beschriebenen Experiment in einem Gedankenexperiment folgenden Versuchsaufbau vorstel-
len: Ein Atom durchläuft ein Atominterferometer. Im Zustand |0〉 emittiert es ein Photon mit
vertikaler Polarisation |VM 〉, im Zustand |1〉 mit horizontaler Polarisation |HM 〉. Das Photon
dient als Markersystem M . Seine beiden Polarisationszustände sind die Markerzustände. Die
von den einzelnen Atomen emittierten Photonen werden getrennt gespeichert. Es wird dafür
gesorgt, dass z. B. durch Durchnummerieren eine eindeutige Zuordnung zwischen den ein-
zelnen Photonen und Ereignissen am Atomdetektor besteht. Es wird dabei zunächst nicht an
den Photonen gemessen, sondern erst die Messung an vielen Atomen abgewartet. Ist in dieser
Situation, in der die Atome nicht mehr zur Verfügung stehen, noch Quantenradieren möglich?
Wir kommen auf diese Frage noch zurück.

Die in Abschn. 3.7 beschriebene Situation des Strahlteilers mit Phasenschieber hat große
Ähnlichkeit mit der physikalischen Situation hinter einem Doppelspalt, wie wir sie in Ab-
schn. 2.1.1 diskutiert haben. Der Zustand |0A〉 bzw. |1A〉 steht in Analogie zu dem Zustand,
der vorliegt, wenn nur der erste (bzw. nur der zweite) Spalt geöffnet ist. Diese Zustände su-
perponieren. Das Resultat wird als unterschiedlich starke Schwärzung an Orten des Schirms
beobachtet. Durch die Wegunterschiede interferieren die Zustände |0〉 und |1〉 dabei mit einer
Phasenverschiebung α. Eine mögliche Markierung könnte dann im Prinzip darin bestehen,
dass Atome hinter Spalt 1 dazu gebracht werden, vertikal polarisierte Photonen auszusenden
und hinter Spalt 2 entsprechend horizontal polarisierte Photonen. Auch dieses Gedankenex-
periment ist zu einfach, um direkt experimentell realisierbar zu sein. Wir erwähnen es, da in
der „Welcher-Weg“-Diskussion gerne der Doppelspalt angeführt wird. Wiederum könnte man
im Prinzip zunächst alle Atome registrieren und erst dann die Polarisation der zugehörigen
Photonen bestimmen.

Interpretation Weil in Diskussionen zur „Welcher-Weg“-Markierung häufig Missverständ-
nisse auftauchen, wollen wir uns kritisch fragen, wie die oben beschriebene Rechnung zu
interpretieren ist. Die Markierung besteht darin, dass das Gesamtsystem SAM aus einem
Produktzustand in den verschränkten Zustand (8.67) überführt wird. Der Zustand |χA〉 von
Gl. (8.66), der ursprünglich vorlag, hat Interferenz gezeigt. Die darin enthaltene Information
ist nach der Verschränkung in den Korrelationen gespeichert. Sie kann durch Messungen al-
lein an SA oder allein an SM nicht abgerufen werden. Wir müssen an beiden Untersystemen
messen und die Messergebnisse in Paaren zusammenfassen: am ersten Atom-Photon-Paar er-
haltene Messergebnisse, am zweiten Atom-Photon-Paar ... usw.

Wir wollen in diesem Zusammenhang auf einen für die Interpretation wichtigen Punkt
hinweisen. Wir hatten schon in Abschn. 7.3.4 gesehen, dass es für die Korrelationen zwischen
den Messergebnissen nicht darauf ankommt, in welcher zeitlichen Reihenfolge an den Teil-
systemen gemessen wird. Das ist auch hier so. Man muss also nicht, wie oben dargestellt,
zunächst am Markersystem messen. Man kann mit gleichem Ergebnis auch erst Detektor-
messungen an einer großen Zahl nacheinander eintreffenden Atome machen und die Ergeb-
nisse durchnummerieren. Die zugehörigen Photonen werden in diesem Gedankenexperiment
ebenfalls jeweils durchnummeriert und ohne Messung getrennt abgespeichert. Erst in einer
späteren Phase des Experiments werden dann die Photonen mit der „gedrehten“ Markerob-
servablen einzeln gemessen und die Ergebnisse durchnummeriert. Korreliert man schließlich
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gemäß ihrer Nummer die Messergebnisse an Atomen und Photonen, dann ergibt sich nach
Selektion das Interferenzbild. Die Ergebnisse der Messungen an den Atomen alleine und die
der Messungen an den Photonen alleine enthalten keine Information.

Nachdem die Atome das Interferometer durchlaufen haben und bereits detektiert wurden,
kann man somit durch Wahl der an den Photonen gemessenen Observablen bestimmen, ob ein
Interferenzbild entsteht

(|ΛM 〉, |ΛM⊥ 〉
)

oder nicht
(|0M 〉, |1M 〉). Dies könnte man so verste-

hen, dass man zwischen den Alternativen (i) Atome kommen immer nur auf einem der Wege
(Teilchenverhalten und daher keine Interferenz) und (ii) Atome kommen im Sinne einer Su-
perposition „auf beiden Wegen“ (Wellenverhalten und daher Interferenz) wählen kann, wenn
die Atome schon lange das Interferometer verlassen haben und an ihnen gemessen wurde.
Diese verzögerte Wahl (delayed choice) scheint eine Beeinflussung des Geschehens in der
Vergangenheit zu sein. Was ist falsch bei dieser Interpretation?

Falsch ist die Annahme, dass vom Ereignis „auf einem Weg“ überhaupt gesprochen wer-
den kann. Das System SA befindet sich vor der Messung im vollständig gemischten und daher
völlig strukturlosen Zustand. Man kann Photonen auf den beiden Wegen 0 und 1 registrieren.
Es ergibt sich bei Messung an SA kein Interferenzbild (p(α) = 1

2 ). Das bleibt so bei anschlie-
ßender Messung in der nicht gedrehten ONB {|0M 〉, |1M 〉}. Erst wenn man an den Photonen
in der gedrehten ONB {|ΛM 〉, |ΛM⊥ 〉} misst, z. B. die Messwerte heraussucht, die zum Mess-
ergebnis +1 gehören und die relativen Häufigkeiten als Funktionen von α in eine Abbildung
einträgt, entsteht für die Wahrscheinlichkeit der Kurvenverlauf p|χ〉(α) von Abb. 8.3, der In-
terferenz wiederspiegelt. Die Alternativen (i) und (ii) realisieren sich daher erst in der Form
(i) „keine Interferenz“ und (ii) „Interferenz“ mit der Wahl der entsprechenden Messung an
den Photonen gefolgt von einer Selektion und nicht schon mit der Messung an den Atomen.
Vorher hat nichts vorgelegen, was mit (i) oder (ii) verbunden werden könnte. Es gibt also kein
„delayed choice“- Paradoxon.

8.6 Ergänzende Themen und weiterführende Literatur

• Kriterien für Separabilität für Systeme mit zwei und mehr Untersystemen, Verschrän-
kungsmaß auch für Gemische: [Wer 89], [Key 02], [Bru 01], [DHR 02], [HHH 01],
[Cir 02], [LBC 00], [Ter 01].

• Erzeugung von Verschränkung: [Aul 00], [BEZ 00], [NC 00], [BZ 02], [DM 02],
[Hei 02], [SS 04].

• Zum Konzept der klassisch korrelierten Quantenzustände: [Wer 89].

• Experimente zu „delayed choice“: [Aul 00, Kap. 26], [DR 00].

• Der Anstoß zur „delayed choice“-Diskussion: [Weh 78].

• Welcher-Weg-Experimente: [DNR 98], [Rem 02], [Eng 99], [ESW 99], [DR 00].

• Quantenradierer: [Eng 99], [ESW 99].

• Verschränkung von gemischten Zuständen: [Cir 02], [HHH 01].
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8.7 Übungsaufgaben

ÜA 8.1 [zu 8.1.1] Beweisen Sie die in Abschn. 8.1.1 im Anschluss an Gl. (8.1) aufgestellte
Behauptung über die Charakterisierung korrelierter Zustände.

ÜA 8.2 [zu 8.1.2] Beweisen Sie, dass die Separabilitätsbedingung (8.2) gleichbedeutend ist
mit der Forderung

ρAB =
∑

l

ql|φAl 〉〈φAl | ⊗ |χBl 〉〈χBl | (8.76)

mit 0 ≤ ql ≤ 1 und
∑

l ql = 1. Der Vergleich mit dem allgemeinen Operator ZAB von
Gl. (7.19) zeigt, dass die Forderung (8.76) tatsächlich eine Einschränkung bedeutet.

ÜA 8.3 [zu 8.3] Bestätigen Sie die Gl. (8.45).

ÜA 8.4 [zu 8.5] Wie ändern sich die Überlegungen zum Quantenradieren, wenn man vom
Zustand (8.67) statt vom Zustand (8.71) ausgeht.

ÜA 8.5 [zu 8.2] Zeigen Sie, dass es für den Zustand

|φABC〉 =
1√
2
|0A〉(|0B, 0C〉+ |1B , 1C〉) (8.77)

keine Schmidt-Zerlegung

|φABC〉 =
∑

n

√
pn|uAn 〉|vBn 〉|wCn 〉 (8.78)

mit orthonormalen Schmidt-Basen {|uAn 〉}, {|vBn 〉}, {|wCn 〉} gibt.
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9 Korrelationen und nicht-lokale Messungen

Quanteninformation kann in Korrelationen zwischen Teilsystemen stecken. Das soll im Ein-
zelnen präzisiert werden. Bei zusammengesetzten Systemen sind über die Messungen an Teil-
systemen hinaus auch nicht-lokale Messungen möglich, mit deren Hilfe u.a. nicht-lokal ge-
speicherte Information abgefragt werden kann.

9.1 Entropien und Korreliertheit zusammengesetzter
Quantensysteme

9.1.1 Wechselseitige Information als Maß für Korreliertheit

Additivität Mit Hilfe der Definition der Gesamtentropie (joint entropy) für zusammenge-
setzte Systeme

S(AB) := S(A,B) := S(ρAB) := −trAB[ρAB log ρAB] (9.1)

prüft man sofort nach, dass sich für einen Produktzustand die Entropien der Teilsysteme ad-
dieren

S(ρA ⊗ ρB) = S(ρA) + S(ρB). (9.2)

Subadditivität Wenn ρAB kein Produktzustand ist, können wir statt Gl. (9.2) nur eine Ab-
schätzung ableiten. Wir gehen dazu von der Kleinschen Ungleichung (6.24) aus, die wir jetzt
im Produktraum HA ⊗HB anwenden.

Wir ersetzen in Gl. (6.17) ρ durch ρAB und σ durch σAB = ρA ⊗ ρB mit den reduzierten
Dichteoperatoren ρA und ρB von ρAB , die wir nach den Basen vonHA undHB zerlegen

ρA =
∑

n

an|nA〉〈nA|, (9.3)

ρB =
∑

j

bj |jB〉〈jB|.

Dann gilt

log σAB = log ρA ⊗ ρB =
∑

n,j

log(anbj)|nA, jB〉〈nA, jB| (9.4)

= (log ρA)�B + �
A(log ρB) .
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Damit folgt aus der Kleinschen Ungleichung (6.24)

S(ρAB) ≤ −trAB [ρAB log σAB] (9.5)

= −trAB [ρAB(log ρA)�B ]− trAB[ρAB�A log(ρB)]
= −trA[ρA log ρA]− trB[ρB log ρB] = S(ρA) + S(ρB).

Wir schreiben das Resultat in der Form

S(AB) ≤ S(A) + S(B). (9.6)

Diese Eigenschaft wird als Subadditivität (subadditivity) der Entropie zusammengesetzter
Quantensysteme bezeichnet. Das Gleichheitszeichen gilt genau dann, wenn die Teilsysteme
SA und SB unabhängig voneinander sind: ρAB = ρA ⊗ ρB . Die analoge Gleichung für klas-
sische Systeme ist Gl. (5.43). Wenn die Teilsysteme nicht unabhängig voneinander sind, der
Gesamtzustand ρAB also nicht separabel ist, dann enthält das Gesamtsystem mehr Informa-
tion als insgesamt aus den Teilsystemen ausgelesen werden kann. Wir werden das noch an
einem Beispiel verdeutlichen.

Wechselseitige Information der Teilsysteme Im klassischen wie im quantentheoretischen
Fall steckt die Zusatzinformation in den Korrelationen zwischen den Systemen. Um das für
zusammengesetzte Quantensysteme quantitativ zu fassen, führen wir als Maß für die Korre-
liertheit der Teilsysteme die wechselseitige Information (mutual information) S(A : B) der
Teilsysteme in Analogie zur Gl. (5.31) ein:

S(A :B) := S(A) + S(B)− S(AB) ≥ 0 . (9.7)

S(A : B) gibt für einen Zustand ρAB an, wie viel die durch die Entropie ausgedrückte Un-
bestimmtheit des Gesamtsystems SAB kleiner ist als die der Teilsysteme SA und SB zusam-
men, wenn diese Teilsysteme nicht verschränkt wären (vgl. Gl. (9.5)). Oder anders formuliert:
S(A : B) ist ein Maß dafür, wie viel mehr Information im Gesamtsystem als in den Teilsys-
temen steckt. S(A : B) kann zugleich den Abstand des Zustands ρAB vom unverschränkten
Zustand ρA ⊗ ρB charakterisieren.

9.1.2 Dreiecksungleichung

Das System SAB möge sich in einem Zustand ρAB befinden. Wir hatten in Abschn. 8.2.2
gesehen, dass dieser Zustand immer purifiziert werden kann. Das besagt, dass man immer
ein System SC zu SAB hinzufügen kann und dann im erweiterten Gesamtsystem SABC einen
reinen Zustand finden kann, so dass der reduzierte Dichteoperator des Teilsystems SAB gerade
ρAB ist.

Wir wenden die Ungleichung für Subadditivität an:

S(C) + S(A) ≥ S(AC). (9.8)

Da das System SABC in einem reinen Zustand ist, stimmen die reduzierten Dichteoperatoren
bei Zerlegung in zwei Teilsysteme überein. Das haben wir im im Zusammenhang mit der
Schmidt-Zerlegung gezeigt.

S(AC) = S(B), S(C) = S(AB). (9.9)
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Einsetzen in Gl. (9.8) führt auf

S(AB) ≥ S(B)− S(A). (9.10)

Die Systeme SA und SB gehen symmetrisch in die Überlegung ein. Es gilt also auch

S(AB) ≥ S(A)− S(B) (9.11)

und damit

S(AB) ≥ |S(A)− S(B)| . (9.12)

Dies ist die Dreiecksungleichung (triangle inequality), die manchmal auch Araki-Lieb-
Ungleichung genannt wird.

Wir haben in Gl. (5.39) gezeigt, dass für die Shannon-Entropie der klassischen Systeme
immer

H(A,B) ≥
{
H(A)
H(B)

}
(9.13)

erfüllt ist. Die Unbestimmtheit des Gesamtsystems übertrifft die jedes Einzelsystems. Dass
kann für Quantensysteme nicht gelten. Die Bell-Zustände, für die wir S(AB) = 0 und
S(A) = S(B) = 1 gezeigt hatten, sind ein einfaches Gegenbeispiel.

9.1.3 Verschränkte versus klassische korrelierte Quantensysteme

Wir wollen am Beispiel eines 2-Teile-Systems SAB in drei verschiedenen Zuständen die
Entropie der Teilsysteme SA und SB , die in allen Fällen gleich eins sein soll, mit der Entropie
des Gesamtsystems vergleichen. Die Teilsysteme sollen der Einfachheit halber Qubits sein.
Unser Ziel ist es dabei, Korrelation und Verschränkung mit der Entropie und dabei insbeson-
dere über die Gl. (9.7) mit der wechselseitigen Information S(A : B) in Zusammenhang zu
bringen. Die Verhältnisse sind graphisch in Abb. 9.1 dargestellt.

Beispiel I: Unabhängige Teilsysteme Im ersten Zustand sind die Teilsysteme völlig unab-
hängig voneinander, d. h. ρAB ist ein Produktzustand

ρAB =
1
4
�
AB =

(
1
2
�
A

)
⊗
(

1
2
�
B

)
= ρA ⊗ ρB. (9.14)

Es existieren keine Korrelationen zwischen den Teilsystemen. Die Quantenentropien ergeben
sich unmittelbar als

S(AB) = log 4 = 2, (9.15)

S(A) = S(B) = log 2 = 1 (9.16)

S(A : B) = 0 . (9.17)

Für einen späteren Vergleich notieren wir noch ρAB in der Rechenbasis vonHA ⊗HB

ρAB =
1
4
(|0A, 0B〉〈0A, 0B|+ |0A, 1B〉〈0A, 1B|

+|1A, 0B〉〈1A, 0B|+ |1A, 1B〉〈1A, 1B |). (9.18)
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S(AB) = 2

Beispiel I

S(A) = 1 S(B) = 1

völlig unabhängig

S(A) = 1 S(A : B)

S(AB) = 1

Beispiel II

klassisch korreliert

S(B) = 1
= 1

S(A) = 1 S(A : B)

S(AB) = 0

Beispiel III

S(B) = 1
= 2

verschränkt

Abbildung 9.1: Wechselseitige Information S(A : B) bei gleicher Entropie der Teilsysteme.

Beispiel II: Klassische korrelierte Teilsysteme Wir wollen Korrelationen etablieren, ohne
dass dabei Verschränkung entsteht. Das können wir z. B. mit dem separablen Gemisch

ρAB =
1
2
(|0A〉〈0A| ⊗ |0B〉〈0B|+ |1A〉〈1A| ⊗ |1B〉〈1B|) (9.19)

=
1
2
(|0A, 0B〉〈0A, 0B|+ |1A, 1B〉〈1A, 1B|) (9.20)

aus reinen Produktzuständen erreichen. ρAB ist verglichen mit Gl. (9.18) eingeschränkt. In
der Rechenbasis vonHA ⊗HB hat ρAB die Matrixdarstellung

ρAB = diag

(
1
2
, 0, 0,

1
2

)
. (9.21)
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Es treten nur Diagonalterme auf. Damit ergibt sich die Entropie als

S(AB) = −2
[
1
2

log
1
2

]
= 1. (9.22)

Die reduzierten Dichteoperatoren der Teilsysteme stimmen mit denen in den anderen Beispie-
len überein

ρA =
1
2
�
A, ρB =

1
2
�
B. (9.23)

Daraus folgt wieder

S(A) = S(B) = 1 (9.24)

und in diesem Fall eine nicht verschwindende wechselseitige Information

S(A : B) = 1 . (9.25)

An Gl. (9.20) ist unmittelbar ablesbar, dass die Ergebnisse von Messungen in der Rechenbasis
an den beiden Teilsystemen korreliert sind: Ergibt die Messung an SA den zu |0〉 gehörigen
Messwert, dann ergibt auch die Messung an SB diesen Messwert. Entsprechendes gilt für
|1〉. Die Teilsysteme heißen klassisch korreliert , weil sie durch LOCC entstanden sind und
weil die Messung an einem Teilsystem den wohlbestimmten (korrelierten) reinen Zustand des
anderen Teilsystems nicht abändert. Damit wird noch einmal mit anderen Worten ausgedrückt,
dass der Zustand von SAB ein separables Gemisch ist.

Beispiel III: Verschränkte Teilsysteme Hier nehmen wir als Beispiel den Bell-Zustand

|ΦAB+ 〉 =
1√
2
(|0A, 0B〉+ |1A, 1B〉). (9.26)

Da er ein reiner Zustand ist, haben wir

S(AB) = 0. (9.27)

Wie in den beiden Beispielen vorher finden wir

ρA =
1
2
�
A, ρB =

1
2
�
B (9.28)

und damit

S(A) = S(B) = 1. (9.29)

Für einen Bell-Zustand nimmt man die wechselseitige Information den größten möglichen
Wert an

S(A : B) = 2 . (9.30)
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Vergleich der drei Beispiele Dass bei Verschränkung die Ergebnisse von Messungen an den
Teilsystemen korreliert sind, haben wir schon diskutiert. Im Zusammenhang mit der Bellschen
Ungleichung werden wir in Kap. 10 explizit zeigen, dass sich die Korrelationen in Beispiel
II und III quantitativ unterscheiden. Hier wollen wir den Unterschied mit Hilfe der Entropie
beschreiben.

In allen drei Fällen liegt wegen S(A) = S(B) die gleiche Unbestimmtheit der Zustände
der Teilsysteme vor. Die Unbestimmtheit S(AB) des Zustands des Gesamtsystems ist demge-
genüber in jedem Fall verschieden (vergl. Abb. 9.1). Die wechselseitige Information (mutual
information) S(A : B) gibt wegen

S(AB) = S(A) + S(B)− S(A : B) (9.31)

an, um wie viel die tatsächliche Entropie des Gesamtsystems kleiner ist als es die Gesam-
tentropie wäre, wenn die Teilsysteme mit Dichteoperatoren ρA und ρB völlig unabhängig
wären. Geringere Entropie bedeutet geringere Unbestimmtheit des Zustands. In allen drei Bei-
spielen sind die Zustände der Teilsysteme maximal unbestimmt. Dennoch ist im Beispiel III
der verschränkte Gesamtzustand maximal bestimmt. Die Information, die hierfür noch gefehlt
hat, steckt vollständig in den Korrelationen und wird durch S(A : B) veranschaulicht. Im
Beispiel II reichen die Korrelationen nicht zur völligen Festlegung des Zustandes von SAB .
Dementsprechend befindet sich das Gesamtsystem in einem Gemisch. S(A : B) ist in die-
sem Fall kleiner. Wie wir gesehen haben, bezieht sich die wechselseitige Quantenentropie
S(A : B) nicht auf Verschränkung alleine, sondern gibt auch die klassischen Korrelationen
mit wieder.

9.2 Nicht-lokale Messungen

9.2.1 Bell-Zustände

Die vier Bell-Zustände

|ΦAB± 〉 =
1√
2
(|0A, 0B〉 ± |1A, 1B〉) (9.32)

|ΨAB
± 〉 =

1√
2
(|0A, 1B〉 ± |1A, 0B〉) (9.33)

bilden eine orthonormale Basis (Bell-Basis) des Produktraums HA2 ⊗ HB2 . Sie sind maximal
verschränkt. Die reduzierten Dichteoperatoren sind maximal gemischt. ρA = ρB = 1

2�. Man
kann durch Eingriff bei nur einem Teilsystem (also lokal ohne klassische Kommunikation) in
unitärer Weise mit Hilfe der σ-Operatoren einen Bell-Zustand in jeden anderen überführen.
Wir geben ein Beispiel:

Bit-Flip σA1 : |ΨAB
+ 〉 →

1√
2
(|1A, 1B〉+ |0A, 0B〉) = |ΦAB+ 〉 (9.34)

Phasen-Flip σA2 : |ΨAB
+ 〉 →

−i√
2
(|0A, 0B〉 − |1A, 1B〉) = −i|ΦAB− 〉. (9.35)

σA3 : |ΨAB
+ 〉 →

1√
2
(|0A, 1B〉 − |1A, 0B〉) = |ΨAB

− 〉 (9.36)
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Häufig treten in Rechnungen Produkte von Pauli-Operatoren auf, deren Matrixelemente
in der Bell-Basis auszuwerten sind (z. B. 〈ΦAB+ |σA1 σB3 |ΦAB+ 〉). In diesen Fällen ist es günstig,
die Wirkung der Pauli-Operatoren in HB2 auf die in HA2 zurückzuführen, dann kann man
alle in Abschn. 3.1 für Pauli-Operatoren abgeleitete Relationen (z. B. in Gl. (3.11)) direkt
übernehmen. Wir geben ein Beispiel, auf das wir später zurückkommen werden:

σA1 : |ΦAB+ 〉 −→ |ΨAB
+ 〉 , σB1 : |ΦAB+ 〉 −→ |ΨAB

+ 〉 (9.37)

σA2 : |ΦAB+ 〉 −→ −i|ΨAB
− 〉 , σB2 : |ΦAB+ 〉 −→ i|ΨAB

− 〉 (9.38)

σA3 : |ΦAB+ 〉 −→ |ΦAB− 〉 , σB3 : |ΦAB+ 〉 −→ |ΦAB− 〉 (9.39)

Die Wirkung von σB3 auf |ΦAB+ 〉 kann durch die Wirkung von σA3 ersetzt werden usw.. Es
gibt entsprechende Relationen für alle Vektoren der Bell-Basis. Man bestätigt auf diese Weise
z. B., dass

〈ΦAB+ |σA1 σB3 |ΦAB+ 〉 = 〈ΦAB+ |σA1 σA3 |ΦAB+ 〉
∼ 〈ΦAB+ |σA2 |ΦAB+ 〉 ∼ 〈ΦAB+ |ΨAB

− 〉 = 0 (9.40)

gilt.
Wir notieren noch eine weitere mathematische Eigenschaft der Bell-Zustände. Sie sind

Eigenvektoren zu Produkten der σ-Operatoren:

σA1 σ
B
1 |ΦAB± 〉 = (±1)|ΦAB± 〉 (9.41)

σA1 σ
B
1 |ΨAB

± 〉 = (±1)|ΨAB
± 〉 (9.42)

σA3 σ
B
3 |ΦAB± 〉 = |ΦAB± 〉. (9.43)

σA3 σ
B
3 |ΨAB

± 〉 = −|ΨAB
± 〉 . (9.44)

9.2.2 Lokale und nicht-lokale Messungen

Wie wir in Abschn. 7.3.1 gesehen haben, kann Nicht-Lokalität in zweifacher Weise auftreten:

(i) Zustände können nicht separabel sein.

(ii) Messungen können zu Observablenoperatoren auf HA ⊗ HB ⊗ HC ⊗ . . . gehören, die
nicht von der Form CA ⊗ �B ⊗ �C . . . oder �A ⊗DB ⊗ �C . . . usw. sind (nicht-lokale
Messungen). Sie stellen dann keine lokalen Messungen dar (Messungen an nur einem
Teilsystem). Sie heißen nicht-lokale Messungen (non-local measurements) und messen
nicht-lokale Observablen (non-local observables)

Wir betrachten speziell hermitesche Produktoperatoren CADB auf dem Raum HA ⊗ HB .
Sie beschreiben die nicht-lokale Messung der kollektiven physikalischen Größe CADB (als
ein einziges Symbol zu lesen) an einem 2-Teile-System. Die Observable σA3 σ

B
3 eines 2-Spin-

Systems ist ein Beispiel. Wie Gl. (9.43) und (9.44) zeigen sind die zugehörigen Messwerte +1
und −1 entartet. Als Ergebnis der Messung mit Messwert +1 wir der Zustand in den durch
|ΦAB+ 〉 und |ΦAB− 〉 aufgespannten Unterraum projiziert. Alle Bell-Zustände bleiben bei der
Messung der Observablen σA3 σ

B
3 unverändert.
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|χ′AB〉

|0C〉

|χAB〉

Abbildung 9.2: Nicht-lokale Messungen in der Rechenbasis am System SAB durch projektive Messung
am Hilfssystem SC .

Misst Bob hingegen in lokaler Weise bei einem 2-Spin-System im Zustand |ΦAB+ 〉 am Un-
tersystemB die Observable σB3 (Spin in z-Richtung), so wird beim Messergebnis−1 das Sys-
tem in den Zustand |1A, 1B〉 überführt. Der Ausgangszustand |ΦAB+ 〉 liegt nicht mehr vor. Die
Verschränkung wurde durch die lokale Messung gebrochen. Eine nachfolgende Messung von
σA3 durch Alice am Untersystem SA ergibt den Messwert −1 und lässt den Zustand |1A, 1B〉
unverändert. Das Beispiel zeigt: Mathematisch entsteht die Wirkung des Operators σA3 σ

B
3 da-

durch, dass die Operatoren σA3 und σB3 in HA2 bzw.HB2 wirken. Physikalisch stimmt aber die
Messung der kollektiven Observablen σA3 σ

B
3 i.a. nicht mit zwei lokalen Spinmessungen durch

Alice bzw. Bob überein. Das wird schon durch die unterschiedlichen Endzustände belegt. Ob-
servablen, denen hermitesche Operatoren auf dem Produktraum entsprechen, benötigen zu
ihrer Messung i.a. einen nicht-lokalen Messprozess. Wie kann man nicht-lokale Messungen
auf lokale Messungen zurückführen?

Wir betrachten ein einfaches Beispiel. Die Eigenwerte des Operators σA3 σ
B
3 sind +1 und

−1. Sie sind entartet. Das sieht man auch daran, dass neben |ΦAB± 〉 und ΨAB
± die Vektoren der

Rechenbasis

σA3 σ
B
3 |0, 0〉 = |0, 0〉,

σA3 σ
B
3 |0, 1〉 = −|0, 1〉,

σA3 σ
B
3 |1, 1〉 = |1, 1〉

σA3 σ
B
3 |0, 1〉 = −|0, 1〉 (9.45)

ebenfalls Eigenzustände zu +1 und −1 sind.
Die 2-Qubit-Observable σA3 σ

B
3 wird nicht-lokal durch eine kollektive Messung bestimmt.

Sie kann mit Hilfe von zwei CNOT-Gattern und einem im Zustand |0C〉 präparierten Hilfs-
Qubit wie in Abb. 9.2 realisiert werden. Wir fügen also zu SAB ein Hilfssystem SC mit
Zustand inHC2 hinzu. Ein beliebiger Zustand |χAB〉 ausHAB lässt sich nach der Rechenbasis
zerlegen

|χAB〉 = c1|0A, 0B〉+ c2|1A, 1B〉+ c3|1A, 0B〉+ c4|0A, 1B〉 (9.46)

mit
∑
i |ci|2 = 1. Die Quantenschaltung überführt den Anfangszustand |χAB〉|0C〉 unitär in

den Zustand

U |χAB〉|0C〉 = c1|0A, 0B , 0C〉+c2|1A, 1B, 0C〉+c3|1A, 0B, 1C〉+c4|0A, 1B, 1C〉 (9.47)

Eine projektive Messung von σC3 auf dem Hilfssystem SC ergibt die Messwerte +1 oder −1
mit den Wahrscheinlichkeiten p(+1) und p(−1). Zugleich überführt sie den Ausgangszustand
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|χAB〉 je nach Messergebnis in den Zustand χ′AB
+ bzw. χ′AB

− :

+1 : |χ̃′AB
+ 〉 = c1|0A, 0B〉+ c2|1A, 1B〉
p(+1) = |c1|2 + |c2|2 (9.48)

−1 : |χ̃′AB
− 〉 = c3|1A, 0B〉+ c4|0A, 1B〉
p(−1) = |c3|2 + |c4|2 . (9.49)

|χ̃′AB
+ 〉 ist die Projektion von |χAB〉 in den von |0A, 0B〉 und |1A, 1B〉 aufgespannten Unter-

raum von HAB zum Eigenwert +1 von σA3 σ
B
3 . Entsprechendes gilt für |χ̃′AB

− 〉. Die Messun-
gen am Hilfssystem haben auf die Messwerte und Wahrscheinlichkeiten der direkten Messung
geführt. Die resultierenden Zustände von SAB stimmen mit den Resultaten der Messungen
von σA3 σ

B
3 überein.

Wir haben nach Verschränkung durch die unitäre Transformation U und projektive Mes-
sungen im Hilfsraum HC2 eine projektive nicht-lokale Messung am Zustand in HAB bewirkt.
Die Messergebnisse und die Wahrscheinlichkeiten mit denen sie eintreten, konnten an der pro-
jektiven Messung in HC abgelesen werden. Dieses Beispiel für eine nicht-lokale Messung in
HAB spiegelt eine ganz allgemeine Struktur von Quantenmessungen wieder. Wir werden sol-
che verallgemeinerten Messungen noch ausführlich in Kap. 13 darstellen. Mit der beschriebe-
nen 2-Qubit-Messung der Observablen σA3 σ

B
3 kann noch nicht zwischen zwei Zuständen zum

gleichen Eigenwert +1 oder −1 unterschieden werden. Wir schildern im nächsten Kapitel,
wie eine nicht-lokale Messung an der Bell-Basis auf zwei lokale Messungen zurückgeführt
werden kann.

9.2.3 Nicht-lokal gespeicherte Information und Bell-Messungen

In der Rechenbasis von HA2 ⊗ HB2 lassen sich zwei Bit in Form der 4 Möglichkeiten (0, 0),
(0, 1), (1, 0), (1, 1) speichern und durch zwei lokale Messungen mit σA3 ⊗ �B bzw. �A ⊗ σB3
wieder auslesen. Die zugehörigen Projektionsoperatoren sind:

P00 := |0A, 0B〉〈0A, 0B|, P01 := |0A, 1B〉〈0A, 1B| (9.50)

P10 := |1A, 0B〉〈1A, 0B|, P11 = |1A, 1B〉〈1A, 1B |. (9.51)

Die Information ist lokal gespeichert. In der Bell-Basis von HA2 ⊗ HB2 lassen sich ebenfalls
zwei Bit speichern. Man spricht vom Paritätsbit (parity bit) Φ oder Ψ (d. h. parallele oder
antiparallele „Spins“) und vom Phasenbit (phase bit) (Vorzeichen + bzw. −). Wie wir schon
gesehen haben, ist diese Information als wechselseitige Information in den Korrelationen und
daher nicht-lokal gespeichert.

Wenn wir an einem System im Bell-Zustand |ΦAB± 〉 lokal die Observablen σA3 ⊗ �B und
�A ⊗ σB3 messen und das Produkt der Messergebnisse bilden, so ergibt sich +1. Bei |ΨAB

± 〉
ergibt sich entsprechend −1 Damit ist lokal das Paritätsbit ausgemessen. Danach liegt aber
nicht mehr der Ausgangszustand, sondern ein Zustand der Rechenbasis vor. Wir können daher
lokal nur 1 bit auslesen. Entsprechendes gilt für die lokale Messung des Phasenbits durch
σA1 ⊗ �B und �A ⊗ σB1 . Durch lokale Messungen kann nicht die volle in Bell-Zuständen
gespeicherte Information ausgelesen werden. Wir brauchen eine Projektionsmessung, die auf
die Zustände der Bell-Basis statt auf die der Rechenbasis projiziert. Die beiden Basissysteme
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A

B

H

Abbildung 9.3: Quantenschaltung zur Erzeugung von Bell-Zuständen.

gehen durch eine unitäre Transformation im Raum HA2 ⊗ HB2 ineinander über. Das können
wir ausnutzen.

Wir notieren die Wirkung einer Hadamard-Transformation gefolgt von einer CNOT-
Transformation auf die Rechenbasis. Die Quantenschaltung (quantum circuit) hierzu findet
sich in Abb. 9.3.

|0A, 0B〉 H−→ 1√
2
(|0A〉+ |1A〉)|0B〉

CNOT−−−→ 1√
2
(|0A, 0B〉+ |1A, 1B〉 = |ΦAB+ 〉 (9.52)

|0A, 1B〉 H−→ 1√
2
(|0A〉+ |1A〉)|1B〉 CNOT−−−→ |ΨAB

+ 〉 (9.53)

|1A, 0B〉 H−→ 1√
2
(|0A〉 − |1A〉)|0B〉 CNOT−−−→ |ΦAB− 〉 (9.54)

|1A, 1B〉 H−→ 1√
2
(|0A〉 − |1A〉)|1B〉 CNOT−−−→ |ΨAB

− 〉. (9.55)

Wegen

H = H†, H2 = 1 (9.56)

CNOT = (CNOT)†, (CNOT)2 = 1 (9.57)

gilt insgesamt für die angewandte unitäre Transformation

UAB := (CNOT) ·H, (UAB)−1 = H · (CNOT) (9.58)

Wenn wir Bell-Zustände die Quantenschaltung in umgekehrter Richtung durchlaufen lassen,
dann entstehen daraus durch Wirkung von (UAB)−1 wieder die entsprechenden Zustände der
Rechenbasis. Die Projektoren der Basissysteme sind über

|φAB+ 〉〈φAB+ | = UABPAB00 (UAB)−1 (9.59)

|ψAB+ 〉〈ψAB+ | = UABPAB01 (UAB)−1 (9.60)

|φAB− 〉〈φAB− | = UABPAB10 (UAB)−1 (9.61)

|ψAB− 〉〈ψAB− | = UABPAB11 (UAB)−1 (9.62)

verknüpft.
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Eine Bell-Messung (Bell measurement) an einem Zustand |χAB〉 besteht darin, ihn zu-
nächst unitär und nicht-lokal mit (UAB)−1 = H · (CNOT) zu transformieren und dann eine
lokale Messung am resultierenden Zustand in der Rechenbasis durchzuführen. Dann wird z. B.
mit der Wahrscheinlichkeit, die zum Projektionsoperator |ΦAB+ 〉〈ΦAB+ | gehört,

p00 = 〈χAB|ΦAB+ 〉〈ΦAB+ |χAB〉 (9.63)

das Messwertepaar (0, 0) erhalten. Entsprechend ergibt sich mit der Wahrscheinlichkeit p01 =
〈χAB|ΨAB

+ 〉〈ΨAB
+ |χAB〉 das Paar (0, 1) usw. Dabei gilt p00 + p01 + p10 + p11 = 1. Im

Spezialfall |χAB〉 = |ΦAB+ 〉 ist p00 = 1. Entsprechendes gilt für die anderen Bell-Zustände.
Kodiert man 2 Bit Information in Bell-Zuständen, dann kann diese Information eindeutig über
die Bell-Messung ausgelesen werden mit den Entsprechungen (0, 0) ↔ |φAB+ 〉, (0, 1) ↔
|ψAB+ 〉, (1, 0)↔ |φAB− 〉, (1, 1)↔ |ψAB− 〉.

Um zu erreichen, dass die Bell-Messung auch in einen Bell-Zustand überführt, muss der in
den lokalen Messungen erhaltene Zustand der Rechenbasis noch die Quantenschaltung (An-
wendung von UAB) rückwärts durchlaufen. Beim Messwertepaar (0, 0) überführt sie dann
z. B. in den zugehörigen Bell-Zustand |ΦAB+ 〉.

9.3 Ergänzende Themen und weiterführende Literatur

Siehe Abschn. 5.6 und 6.6.

9.4 Übungsaufgaben

ÜA 9.1 [zu 9.2.2] Führen Sie hintereinander lokale Messungen von σA3 ⊗ �B und �A ⊗ σB3
an |χAB〉 von Gl. (9.46) durch. Bestimmen Sie die resultierenden Zustände und die Wahr-
scheinlichkeiten für die verschiedenen Messwertepaare. Bilden Sie Messwerteprodukte und
die zugehörigen Wahrscheinlichkeiten. Vergleichen Sie mit den Ergebnissen (9.48) und (9.49)
sowie mit der Aussage über die Erwartungswerte aus Abschn. 7.3.4.



10 Es gibt keine (lokal-realistische) Alternative
zur Quantentheorie

Wir haben im vorherigen Kapitel gesehen, dass bei verschränkten Zuständen, im Unter-
schied zu Zuständen klassischer Systeme, die Information nicht-lokal gespeichert ist. Im
Folgenden soll ein Zugang beschrieben werden, der es erlaubt operational in direkter Weise
zu demonstrieren, dass Verschränkung kein Gegenstück in der klassischen Physik hat. Wir
wollen zeigen, dass Verschränkung eines der zentralen nicht-klassischen Strukturelemente der
Quantentheorie ist. Hierzu geben wir exemplarisch zwei Experimente an, deren Ergebnisse
klassisch nicht begründet werden können.

Von welchem Typ werden solche Experimente sein? Einen unmittelbaren experimentel-
len Zugriff auf zusammengesetzte Systeme haben wir über lokale Messungen an den Unter-
systemen. Wenn man die Paare der Messergebnisse vergleicht, zeigen sich charakteristische
Unterschiede zwischen Systemen in verschränkten reinen Zuständen einerseits und nicht ver-
schränkten sowie klassischen Systemen andererseits. Dies kann als eine weitere theoretische
Charakterisierung von Verschränkung dienen. Von größerer Bedeutung ist aber in diesem Zu-
sammenhang die Abgrenzung von Quantentheorie und klassischer Physik. Wenn sich klas-
sische zusammengesetzte Systeme und verschränkte Quantensysteme in den Korrelationen
unterscheiden und das Experiment die Existenz von Quantenkorrelationen bestätigt, dann gibt
es ein Phänomen, das nicht klassisch begründet werden kann. Damit wäre gezeigt, dass die
Quantentheorie nicht auf klassische Physik zurückführbar ist. Um dieses Programm durchzu-
führen, müssen wir typische Korrelationsexperimente beschreiben und sowohl quantentheo-
retisch wie auch klassisch durchrechnen. Dazu müssen wir aber zunächst die Frage „Was ist
klassisch?“ beantworten und daraus experimentell prüfbare Konsequenzen ableiten.

10.1 EPR-Experimente und ihre quantentheoretische
Deutung

Photonen Wir wollen ein Experiment mit den Kaskaden-Photonen beschreiben, die wir be-
reits in Abschn. 8.3 kennen gelernt haben. Eine Quelle emittiert paarweise Photonen mit ver-
schiedenen Frequenzen νA und νB in entgegengesetzte Richtungen. Sie propagieren entlang
der z-Achse zu den Beobachtern an den Orten A und B (vgl. Abb. 10.1). Die Abstände der
Beobachter von der Quelle können sehr groß sein. Sie müssen nicht übereinstimmen. Die
Photonenpaare sind polarisationsverschränkt. Sie befinden sich im rotationssymmetrischen

Verschränkte Systeme: Die Quantenphysik auf neuen Wegen. Jürgen Audretsch
Copyright c© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40452-X
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Abbildung 10.1: Polarisationsmessung an Photonenpaaren.
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Abbildung 10.2: Orientierung der Analysatoren.

Bell-Zustand

|ΦAB+ 〉 =
1√
2
|xA0 , xB0 〉+ |yA0 , yB0 〉. (10.1)

|x0〉 und |y0〉 sind Zustände mit linearer Polarisation in x0- bzw. y0-Richtung.
Die Beobachter messen an den beiden Photonen die lineare Polarisation (vergl.

Abb. 10.2a). Hierzu ist in A ein Analysator mit der Orientierung (xA, yA) aufgestellt.
Er ist um einen Winkel α um die z-Achse gegen die durch die x- und y-Achse gegebene Ori-
entierung gedreht. Hinter ihm befinden sich zwei Detektoren, die jeweils ansprechen, wenn
die Polarisation |xA〉 oder |yA〉 gefunden wird. Der Polarisation |xA〉 ordnen wir das Mes-
sergebnis +1 und der Polarisation |yA〉 das Ergebnis −1 zu. Die Messung in B am zweiten
Photon erfolgt in gleicher Weise. Wir wollen insbesondere zulassen, dass der B-Analysator
um den Winkel β �= α gegen die Ausgangsorientierung verdreht ist. Die entsprechenden
Polarisationsrichtungen sind |xB〉 bzw. |yB〉. Ihnen sind wieder die Messwerte +1 bzw. −1
zugeordnet. Die Observablenoperatoren für die lokalen Messungen an den Photonen in A und
B sind dementsprechend

EA = |xA〉〈xA| − |yA〉〈yA| (10.2)

EB = |xB〉〈xB| − |yB〉〈yB|. (10.3)

Wir betrachten zunächst Messungen nur am Photon in A bzw. nur am Photon in B. Die
reduzierten Dichteoperatoren des Bell-Zustandes |ΦAB+ 〉 sind jeweils maximal gemischt. Die
Wahrscheinlichkeit in A das Resultat +1 oder −1 zu erhalten ist daher unabhängig von den
Verdrehungen α und β jeweils 1

2 . Das gleiche gilt für die Messung am zweiten Photon in B.
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Im nächsten Schritt untersuchen wir Korrelationen und bestimmen die Wahrscheinlichkei-
ten für das Auftreten von Messwertepaaren. Mit P+− bezeichnen wir die Wahrscheinlichkeit,
dass in A die xA-Polarisation und in B die yB-Polarisation gemessen wird. Das entspricht
den lokalen Messwerten +1 und −1 und dem Messwerteprodukt −1. Die Wahrscheinlich-
keiten für die restlichen Kombinationen sind entsprechend bezeichnet. Für die vektoriellen
Polarisationszustände haben wir

|xA〉 = cosα|x〉+ sinα|y〉 (10.4)

|yA〉 = − sinα|x〉+ cosα|y〉. (10.5)

Analoge Relationen gelten für |xB〉 und |yB〉 mit dem Drehwinkel β. Damit ergibt sich für
die Wahrscheinlichkeit P++

P++ = 〈ΦAB+ |xA, xB〉〈xA, xB|ΦAB+ 〉 =
1
2

cos2(β − α). (10.6)

und entsprechend für die anderen Wahrscheinlichkeiten

P−− = P++ =
1
2

cos2(β − α) (10.7)

P+− = P−+ =
1
2

sin2(β − α) . (10.8)

Dass nur die Differenz der Drehwinkel α und β auftaucht, spiegelt die Rotationssymmetrie
des Ausgangszustands |ΦAB+ 〉 wieder.

EPR-Korrelationen verschränkter Photonen Im Spezialfall der parallelen Ausrichtung
der Polarisatoren (α = β) finden wir eine vollständige Korrelation der Messergebnisse:
Wenn in A die |xA〉-Polarisation gefunden wird, dann wird in B mit Sicherheit ebenfalls die
|xB〉-Polarisation gefunden (P++ = 1). Gleiches gilt für die y-Polarisationen (P−− = 1).
Die beiden Polarisationsrichtungen treten dabei in A und B in völlig zufälliger Weise jeweils
mit der Wahrscheinlichkeit 1

2 auf. Unterschiedliche Polarisationen werden nie registriert
(P+− = P−+ = 0).

Um die Korrelationen der Messergebnisse bei nicht-paralleler Ausrichtung der Analysa-
toren zu erfassen, führen wir den Korrelationskoeffizienten (correlation coefficient) εAB ein.
Er ist definiert als der Erwartungswert des Produktes der lokalen Messwerte in A und B. Wie
wir in Abschn. 9.2.2 gesehen haben, lässt er sich als Erwartungswert des Produktoperators
EA ⊗ EB berechnen:

εAB := 〈ΦAB+ |EA ⊗ EB|ΦAB+ 〉 . (10.9)

Die explizite Auswertung mit Gl. (10.2) und Gl. (10.3) führt auf die Wahrscheinlichkeiten von
Gl. (10.7) und (10.8) (vergl. Gl. (10.6)).

εAB = P++ + P−− − P+− − P−+ . (10.10)

Die Gleichung (10.10) kann auch direkt abgelesen werden. Sie enthält die Messwerteprodukte
+1 und −1 multipliziert mit den Wahrscheinlichkeiten ihres Auftretens. Gl. (10.10) wird mit
Gl. (10.7) und (10.8) ausgewertet und führt auf das Ergebnis

εAB = cos 2(β − α) . (10.11)
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Im Spezialfall parallel orientierter Analysatoren (α = β) ergibt sich die perfekte Korrelation
εAB = 1.

Objekte mit Spin-1
2

Für Polarisationsmessungen an zwei Objekten mit Spin-1
2 können wir

ganz analog vorgehen. Es wird zu einer gegebenen e3-Richtung der Bell-Zustand

|ΦAB+ 〉 =
1√
2
(|0A, 0B〉+ |1A, 1B〉) (10.12)

durch eine Quelle präpariert. |0〉 und |1〉 sind die Eigenzustände zu σ3. In A und B werden die
Polarisationen in Richtung a bzw. b gemessen. Um die Rechnung zu vereinfachen nehmen
wir an, dass a und b senkrecht auf e2 stehen

a = (sinα, 0, cosα), b = (sinβ, 0, cosβ). (10.13)

Die entsprechenden Observablen sind

EA = σAa , EB = σBb. (10.14)

Den Korrelationskoeffizienten EAB von Gl. (10.9) können wir mit Rückgriff auf einige schon
abgeleitete Hilfsrelationen einfach bestimmen. Wir wenden zunächst Gl. (9.37) und (9.39) an
und berücksichtigen dabei a2 = b2 = 0. Dann greifen wir auf Gl. (3.11) zurück, verwenden
a × b ∼ e2 sowie die Gl. (9.38) und die Orthonormalität der Bell-Vektoren. Nacheinander
finden wir so für den Korrelationskoeffizienten εAB :

εAB = 〈ΦAB+ |(σAa)(σBb)|ΦAB+ 〉 = ΦAB+ |(σAa)(σAb)|ΦAB+ 〉 (10.15)

= 〈ΦAB+ |(ab)�A|ΦAB+ 〉+ i〈ΦAB+ |σA(a× b)|ΦAB+ 〉
= ab = cosα cosβ + sinα sin β = cos(β − α) .

Verglichen mit εAB für Photonen taucht bei Spinoren typischerweise wieder der halbe Winkel
auf.

10.2 Korrelierte Handschuhe

Wir haben gesehen, dass bei paralleler Ausrichtung der Analysatoren in A und B vollständige
Korrelation herrscht. Wenn an einem Photon am Ort A die x-Polarisation gemessen wird,
dann wird mit Sicherheit auch am Photon in B die parallele x-Polarisation registriert und
umgekehrt. Entsprechendes finden wir für die y-Polarisation. Es kommt dabei nicht darauf an,
ob zuerst in A oder zuerst in B gemessen wird. Weiterhin kann der Abstand zwischen A und
B beliebig groß sein (ideale Übertragung der Photonen vorausgesetzt). Ist das ein Resultat,
das man nur für Quantenobjekte findet?

Handschuhpaar Wir wollen unter einem Handschuhpaar einen linken und einen rechten
Handschuh verstehen. Jeder der Handschuhe wird in einen Kasten getan. Ein Kasten wird
nach A und der andere nach B transportiert. Die dortigen Beobachter wissen, dass er sich
um ein Handschuhpaar handelt. Wird dann nach Öffnen des Kastens in A ein rechter (bzw.
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ein linker) Handschuh gefunden, dann kann der Beobachter in A im selben Augenblick mit
Sicherheit sagen, dass in B ein linker (bzw. ein rechter) Handschuh schon gefunden wurde
oder noch gefunden wird. Eine entsprechende Aussage kann der Beobachter in B machen,
wenn er seinen Kasten geöffnet hat.

Selbstverständlich lag der jeweilige Handschuhtyp real schon vor der Öffnung der Kästen
in A und B fest. Die Handschuhe sind klassisch korreliert. Ermittlung des Handschuhtyps in
A hat weder auf den Handschuh in A selber noch auf den in B einen Einfluss gehabt (Entspre-
chendes gilt für B). Die physikalische Realität am Ort eines Beobachters wird nicht durch ein
entferntes Experiment des Partners abgeändert. Es gibt für Handschuhe nur lokale Vorgänge.
Obwohl eine vollständige Information über den anderen Handschuh gewonnen wird, hat kei-
ne Informationsübertragung stattgefunden. Die vollständige Korrelation geht einfach darauf
zurück, dass das 2-Handschuhe-System am Anfang als ein Handschuhpaar präpariert wurde.

Wir haben bei den Handschuhen eine Situation der klassischen Physik beschrieben, die –
soweit es die Messergebnisse betrifft – genau der Situation beim Photonenpaar bei paralle-
ler Analysatorausrichtung entspricht. Lässt sich daher möglicherweise auch das 2-Photonen-
Experiment im Rahmen einer rein klassischen Theorie, d. h. ohne Bezug auf die Quantentheo-
rie, beschreiben? Um eine möglichst allgemein gültige Antwort zu geben, wollen wir zunächst
am Beispiel der Handschuhe ablesen, welche Prinzipien für eine klassische Theorie gelten.

10.3 Lokaler Realismus

Wir orientieren uns begrifflich an dem Artikel von A. Einstein, B. Podolsky und N. Rosen
[EPR 35] und charakterisieren die klassische Physik durch die zwei Prinzipien des lokalen
Realismus (local realism), die wir am Handschuhpaar ablesen können:

Physikalische Realität1 Eigenschaften (z. B. Energie) physikalischer Systeme sind dieje-
nigen physikalischen Größen, deren Wert man mit Sicherheit vor der entsprechenden Mes-
sung (z. B. Energiemessung) vorhersagen kann. Diese Eigenschaften liegen real bereits vor
der Messung vor. Das System „hat sie“. Sie sind Elemente der physikalischen Realität (ele-
ments of physical reality). Ihr Wert ist unabhängig davon, ob er gemessen wird oder nicht. Wir
nennen dieses klassische Realitätskonzept Einstein-Realität.

Lokalität2 Die physikalische Realität kann in lokaler Weise beschrieben werden. Das
heißt, dass jedes System seine Eigenschaften unabhängig von allen anderen Systemen hat.
Insbesondere bleibt das Resultat einer Messung an einem System unbeeinflusst von Ein-
wirkungen auf davon räumlich getrennte andere Systeme. Dieses Lokalitätskonzept der
klassischen Physik heißt Einstein-Lokalität.

1Elemente der Realität: „If without in any way disturbing a system, we can predict with certainty the value of a
physical quantity, then there exists an element of physical reality corresponding to this physical quantity. This means
that this physical quantity has a value independent of whether we measure it or not.“ [EPR 35]

2Lokalität: „The real factual situation of system A is independent of what is done with system B, which is spatially
separated from the former.“. [EPR 35].
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Verborgene Parameter Wir gehen – wie die EPR-Autoren auch – davon aus, dass die
experimentellen Aussagen der Quantentheorie korrekt sind. Wenn man dann annimmt, dass
Einstein-Realität und Einstein-Lokalität zutreffende Beschreibungen physikalischer Systeme
sind, dann ist die Quantentheorie zwar nicht falsch aber unvollständig (incomplete).3 Es gibt
Elemente der Realität, die nicht in der Theorie wiedergegeben werden. Sie tauchen dort nicht
auf und sind daher verborgene Parameter (hidden variables).

Unter einer klassischen Theorie (classical theory) wollen wir eine Theorie verstehen, die –
anders als die Quantentheorie – die beiden Forderungen des lokalen Realismus erfüllt. Wir
werden versuchen, die bisher verborgenen Parameter explizit einzuführen, um eine lokal-
realistische und somit klassische Alternativtheorie zur Quantentheorie zu konstruieren, die al-
le experimentellen Phänomene im Quantenbereich begründen kann. Verkürzt gesagt: Es gibt
nur klassische Physik. Wir wollen diesem Programm folgen und versuchen Photonen und
Spin-1/2 Objekte so zu beschreiben, wie man Handschuhe beschreibt. Es wird sich zeigen,
dass dieser Versuch misslingt.

10.4 Verborgene Parameter, Bellsche Ungleichungen und
Konflikt mit dem Experiment

Stochastische lokal-realistische Theorie Wir berechnen die Ergebnisse des Polarisati-
onsexperiments aus Abschn. 10.1 im Rahmen einer ganz allgemein angesetzten lokal-
realistischen Theorie. Ein im Symbol λ zusammengefasster Satz von verborgenen Parametern
repräsentiert die „Elemente der Realität“, die im Zusammenhang mit der Polarisation eines
nunmehr klassisch beschriebenen einzelnen Photons oder Spin-1/2-Teilchens auftauchen. λ
ist variabel. Die Eigenschaften eines einzelnen Teilchens ist durch einen bestimmten Parame-
ter λ charakterisiert. Wir formulieren eine stochastische lokal-realistische Theorie. Teilchen
mit Parameter λ werden von der Quelle mit der Wahrscheinlichkeitsdichte ρ(λ) produziert,
für die

∫
ρ(λ)dλ = 1, ρ(λ) ≥ 0 (10.16)

gilt.
Für ein durch λ charakterisiertes Photon in A und den Drehwinkel δ1 des Analysators in

A liegt fest, ob die Polarisationsrichtung xA oder yA gemessen wird. Wir ordnen wie in Ab-
schn. 10.2 dem Messergebnis den Messwert +1 bzw. −1 zu. Dann gibt es dementsprechend
eine eindeutige Funktion SλB(δ1) von λ und δ1 mit den Werten +1 bzw.−1. Analog gibt es ei-
ne möglicherweise davon verschiedene Funktion SλA(δ2), die zu gegebenem λ und gegebener
Verdrehung δ2 in B eindeutig den dortigen Messwert +1 oder −1 bestimmt.

SλA(δ1) =
{

+1
−1

}
, SλB(δ2) =

{
+1
−1

}
(10.17)

Der klassische Korrelationskoeffizient ist

εkl(δ1, δ2) =
∫
ρ(λ)SλA(δ1)SλB(δ2)dλ. (10.18)

3Vollständigkeit: „In a complete theory there is an element corresponding to each element of reality“. [EPR 35]
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Dass das Produkt der beiden Funktionen auftaucht, drückt die Lokalität aus. Durch die For-
mulierung mit verborgenen Parametern λ ist eine lokal-realistische Theorie für den Korrelati-
onskoeffizienten entstanden.

Bellsche Ungleichung In einem ersten Schritt passen wir die bisher noch sehr allgemein
formulierte Theorie an die zu reproduzierenden quantentheoretischen Messergebnisse an. Im
Spezialfall gleicher Ausrichtung soll die gut bestätigte vollständige Korrelation

εkl(δ, δ) =
∫
ρ(λ)SλA(δ)SλB(δ)dλ = 1 (10.19)

gelten. Mit Gl. (10.16), (10.17) und (10.18) folgt daraus

SλA(δ) = SλB(δ) =: Sλ(δ) . (10.20)

Die beiden Observablen haben die gleiche funktionale Abhängigkeit von der verborgenen
Variablen λ und dem Winkel δ.

Wir gehen zu einer allgemeineren Situation über und betrachten drei Orientierungen δ1, δ2
und δ3. Es werden Messungen durchgeführt mit folgenden Einstellungen der Analysatoren in
A und B: (δ1, δ2), (δ2, δ3) und (δ1, δ3). Für die Observablen gilt dann wegen Gl. (10.17)

Sλ(δ1)Sλ(δ2)− Sλ(δ1)Sλ(δ3) = Sλ(δ1)Sλ(δ2)︸ ︷︷ ︸
=±1

[1− Sλ(δ2)Sλ(δ3)]︸ ︷︷ ︸
≥0

. (10.21)

Integration führt hiermit und mit Gl. (10.16) und (10.17) auf

| ∫ ρ(λ){Sλ(δ1)Sλ(δ2)− Sλ(δ1)Sλ(δ3)}dλ| (10.22)

= | ∫ ρ(λ)Sλ(δ1)Sλ(δ2)[1− Sλ(δ2)Sλ(δ3)]dλ|
≤ ∫ ρ(λ)| [1− Sλ(δ2)Sλ(δ3)]︸ ︷︷ ︸

≥0

dλ| = 1− ∫ ρ(λ)Sλ(δ2)Sλ(δ3)dλ.

Gl. (10.22) bedeutet für die klassischen Korrelationsfunktionen

|εkl(δ1, δ2)− εkl(δ1, δ3)| ≤ 1− εkl(δ2, δ3) . (10.23)

Dies ist die Bellsche Ungleichung (Bell inequality).

Konflikt mit der Quantentheorie Auf welches Ergebnis führt demgegenüber die Quanten-
theorie? Wir untersuchen Spin-1/2-Teilchen im Zustand |ΦAB+ 〉 und wählen als Einstellungen
für die Analysatoren: δ1 = 60◦, δ2 = 120◦, δ3 = 180◦. Dann erhalten wir für die Korrelati-
onskoeffizienten

εAB(δ1, δ2) =
1
2
, εAB(δ1, δ3) = −1

2
εAB(δ2, δ3) =

1
2
. (10.24)

Einsetzen in Gl. (10.23) führt auf

1 ≤ 1
2
, (10.25)

d. h. die Bellsche Ungleichung ist verletzt. Quantentheorie und lokal-realistische Theorien
führen auf unterschiedliche Aussagen. Für Photonen wählt man einen Winkel von 30◦ statt
von 60◦ und stellt ebenfalls eine Verletzung der Bellschen Ungleichung fest.
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CHSH-Ungleichung Wir diskutieren noch eine andere Kombination von Drehwinkeln. Ein
Bezug auf das Experiment, wie wir ihn in Gl. (10.20) eingebaut haben, ist dabei nicht nötig.
In A wird mit den Einstellungen α1 und α2 und in B mit β1 und β2 gemessen. Wir betrachten
die folgende Kombination von Observablenfunktionen und notieren die verschiedenen Werte,
die in Folge von SλA,B = ±1 angenommen werden können:

{SλA(α2) [SλB(β1) + SλB(β2)]︸ ︷︷ ︸
+SλA(α1) [SλB(β1)− SλB(β2)]︸ ︷︷ ︸

=: {. . .}

±2 ← → 0
0 ← → ±2 (10.26)

Es gilt somit

|{. . .}| = 2 (10.27)

und daher mit Gl. (10.16)
∣∣
∣
∣

∫
ρ(λ){. . .}dλ

∣∣
∣
∣ ≤

∫
ρ(λ)|{. . .}|dλ = 2

∫
ρ(λ)dλ = 2. (10.28)

Für die klassischen Korrelationskoeffizienten bei den Messungen mit den verschiedenen Win-
keleinstellungen bedeutet das

SV P := |εkl(α2, β1) + εkl(α2, β2) + Ekl(α1, β1)− εkl(α1, β2)| ≤ 2. (10.29)

Dies ist die nach J. F. Clauser, M. A. Horne, A. Shimony und R. A. Hold [CHS 69] benannte
CHSH-Ungleichung (CHSH inequality).

Alle Ungleichungen für die Korrelationskoeffizienten in stochastischen Theorien mit ver-
borgenen Parametern (stochastische lokal-realistische Theorien) werden üblicherweise ein-
heitlich Bellsche Ungleichungen (Bell inequalities) genannt. Sie sind Gleichungen der klassi-
schen Physik. Ihre Bedeutung für die Quantentheorie wird erst deutlich, wenn man Prognosen
aufgrund der Bell-Ungleichungen den quantentheoretischen Prognosen gegenüberstellt (wie
in Gl. (10.25)) und beide mit den tatsächlichen experimentellen Ergebnissen vergleicht.

Konflikt mit der Quantentheorie Für die entsprechende Messung an korrelierten Photonen
im Zustand |ΦAB+ 〉 wählt man Winkel, die sich um 22, 5◦ unterscheiden (vergl. Abb. 10.2b):
α1 = 22, 5◦, β1 = 45◦, α2 = 67, 5◦, und β2 = 90◦. Das führt mit Gl. (10.11) auf:

εAB(α1, β1) = εAB(α2, β1) = εAB(α2, β2) = cos
π

4
=

1√
2

(10.30)

εAB(α1, β2) = cos
3π
4

= − 1√
2
. (10.31)

(Für Spin-1
2 -Teilchen doppelte Winkel einstellen.) Die quantentheoretische Berechnung der

Korrelationskoeffizienten in Gl. (10.29) liefert

SQM = 2
√

2 . (10.32)

Vergleich mit der CHSH-Ungleichung führt zu dem Ergebnis: Die Quantentheorie verletzt die
CHSH-Ungleichung.
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Experimentum crucis4 Wir haben zwei experimentelle Anordnungen beschrieben, für
die Quantentheorie einerseits und Theorien mit verborgenen Parametern andererseits auf
sich widersprechende Prognosen führen. In einer solchen Situation können Experimente eine
Entscheidung herbeiführen. Die Experimente bestätigen die quantentheoretischen Prognosen
(vergl. Abschn. 10.8). Die lokal-realistischen Alternativtheorien zur Quantentheorie sind da-
mit widerlegt. Die Ursache ist darin zu suchen, dass die EPR-Korrelationen im verschränkten
Bell-Zustand nicht durch Einführung verborgener lokaler Parameter simuliert werden können.
Sie sind echte Quantenkorrelationen.

10.5 Separable Quantengemische erfüllen die Bellsche
Ungleichung

Wir betrachten separable d. h. nicht verschränkte Gemische von 2-Teilchen-Zuständen

ρAB =
∑

i

λiρ
A
i ⊗ ρBi , 0 ≤ λi ≤ 1,

∑

i

λi = 1 (10.33)

und bilden wieder den quantentheoretischen Korrelationskoeffizienten (vergl. Gl. (10.9))

EAB(α, β) = trAB[ρABEA(α)⊗ EB(β)]

=
∑

i

λiAi(α)Bi(β) (10.34)

mit

Ai(α) := trA[ρAi E
A(α)], Bi(β) := trB[ρBi E

B(β)] . (10.35)

Die Beträge der Erwartungswerte von Operatoren mit Eigenwerten ±1 können 1 nicht über-
steigen, daher haben wir

|Ai(α)| ≤ 1, |Bi(β)| ≤ 1 . (10.36)

Die Auswertung der CHSH-Ungleichung führt auf

∣
∣EAB(α2, β1) + EAB(α2, β2) + EAB(α1, β1)− EAB(α1, β2)

∣
∣ (10.37)

=

∣
∣∣
∣
∣

∑

i

λi{Ai(α2)Bi(β1) +Ai(α2)Bi(β2) +Ai(α1)Bi(β1)−Ai(α1)Bi(β2)}
∣
∣∣
∣
∣

≤
∑

i

λi{|Ai(α2)Bi(β1) +Ai(α2)Bi(β2)|+ |Ai(α1)Bi(β1)−Ai(α1)Bi(β2)|} .

Als Folge der Separabilität treten nur Produkte auf. Wir schätzen den Inhalt der geschweiften
Klammer {. . .} mit Gl. (10.36) ab

{. . .} ≤ |Bi(β1) +Bi(β2)|+ |Bi(β1)−Bi(β2)| ≤ 2 (10.38)

4Ein Experiment, das es gestattet, unter mehreren Theorien eine zu bestätigen und die übrigen zu widerlegen,
nennt man ein experimentum crucis.
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und erhalten mit Gl. (10.33) für die rechte Seite der Ungleichung (10.37)
∑

i

λi{. . .} ≤ 2 . (10.39)

Einsetzen in Gl. (10.37) und Vergleich mit der CHSH-Ungleichung (10.29) zeigt, dass für
2-Teile-Systeme ein separables Gemisch von Quantenzuständen (und damit auch jeder reine
Produktzustand) die Bellsche Ungleichung erfüllt. Die Erfüllung der CHSH-Ungleichung ist
daher nur eine notwendige Bedingung für das Vorliegen einer lokalen Theorie mit verborge-
nen Parametern und keine hinreichende Bedingung.

10.6 Bell-Verletzung als Kriterium für Verschränkung bei
reinen Zuständen

Für separable Zustände erfüllt sowohl die nicht-realistische Quantentheorie mit den Beson-
derheiten ihres nicht-klassischen Messprozesses wie auch jede realistische Theorie (vergl.
Abschn. 10.5) die Bellsche Ungleichung. Wir haben gesehen, dass das Durchbrechen der
Ungleichung beim maximal verschränkten Zustand |ΦAB+ 〉 eine Folge der fehlenden Sepa-
rabilität, d. h. eine Folge seiner Verschränktheit ist. Diese Aussage lässt sich verallgemeinern.
Man kann ausgehend von der Schmidt-Zerlegung aus Abschn. 8.2.1 zeigen, dass sich für alle
verschränkten reinen Zustände von 2-Teile-Systemen, also auch für nicht maximal verschränk-
te Zustände, Observablen finden lassen, sodass die Bell-Ungleichung durch die korrelierten
Messergebnisse verletzt wird. [Hom 97, S. 206], [HS 91, Kap. 2.1.4].

Zusammenfassend können wir daher feststellen: Für reine Zustände von 2-Teile-Systemen
ist Verschränkung äquivalent mit Verletzung der Bell-Ungleichung. Wir haben damit für diese
Zustände ein operationales, d. h. im Prinzip experimentell realisierbares Verfahren gefunden,
um Verschränkung festzustellen. Eine entsprechende Aussage für Gemische oder Zustände
von Systemen mit mehr als zwei Teilen gibt es zur Zeit noch nicht.

10.7 3-Teilchen-Verschränkung und Quantennichtlokalität

10.7.1 GHZ-Zustand

D. M. Greenberger, M. A. Horne und A. Zeilinger (GHZ) haben in einer vom Bell-Zugang
unabhängigen nicht-statistischen Weise gezeigt, dass Quantentheorie und lokaler Realismus
nicht miteinander verträglich sind. ( [GHZ 89], [GHZ 90]). Wir geben hier ihre Argumentation
mit Bezug auf die Spins von 3 Quantenobjekten wieder, die sich voneinander getrennt an den
Orten A, B und C befinden sollen. Sie sind miteinander verschränkt. Ihr Gesamtzustand liegt
inHA2 ⊗HB2 ⊗HC2 und soll durch

|ψABC〉 =
1√
2
(|0A, 0B , 0C〉+ |1A, 1B, 1C〉) (10.40)

gegeben sein. |0〉 bzw. |1〉 sind wieder die Eigenvektoren von σz mit den Eigenwerten +1
und −1. Der Zustand (10.40) des 3-Teile-Systems heißt GHZ-Zustand (GHZ state). Er ist
symmetrisch gegenüber einer Vertauschung der Bezeichnungen A,B und C.
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10.7.2 Lokaler Realismus und Quantentheorie im Konflikt

Wir bestimmen zunächst das Ergebnis von lokalen quantentheoretischen Spinmessungen an
den drei Teilsystemen. Dabei werden verschiedene Polarisationsrichtungen gewählt. In der
yyx-Messung zum Beispiel werden jeweils die Observablen σAy , σ

B
y und σCx gemessen. Die

Reihenfolge der Messungen ist unwichtig. Zur Bestimmung des Messergebnisses ist es ge-
schickt, in den Räumen HA2 ,HB2 und HC2 die Eigenvektoren der jeweiligen Observablen als
Basis einzuführen und den Zustandsvektor |ψABC〉 hiernach zu zerlegen. Dann ergibt sich

|ψABC〉 =
1
2
(|0Ay , 1By , 0Cx 〉+ |1Ay , 0By , 0Cx 〉+ |0Ay , 0By , 1Cx 〉+ |1Ay , 1By , 1Cx 〉) . (10.41)

Die Messwerte bezeichnen wir mit sx und sy . Sie sind stets +1 oder −1. Wie man an
Gl. (10.41) ablesen kann, erfüllen die möglichen Kombinationen der korrelierten Messwer-
te für jedes einzelne 3-Teile-System die Relation

sAy s
B
y s

C
x = −1 . (10.42)

Symmetrie unter Vertauschung der Bezeichnungen der Teilsysteme führt auf

sAx s
B
y s

C
y = −1, sAy s

B
x s

C
y = −1 . (10.43)

Für eine xxx-Messung der Observablen σAx , σ
B
x und σCx zerlegen wir |ψABC〉 nach den Ei-

genvektoren von σx

|ψABC〉 =
1
2
(|0x, 0x, 0x〉+ |0x, 1x, 1x〉+ |1x, 0x, 1x〉+ |1x, 1x, 0x〉) (10.44)

und finden

sAx s
B
x s

C
x
qu
= +1 . (10.45)

An den Gl. (10.42) und (10.43) lässt sich die folgende Eigenschaft des Systems im GHZ-
Zustand ablesen: Das Resultat der σx-Messung an einem der Teilsysteme kann mit Sicherheit
vorhergesagt werden, wenn die Ergebnisse der σy-Messungen an den beiden anderen Teilsys-
temen bekannt sind. Um z. B. das Ergebnis sAx der σAx -Messung zu bestimmen, muß man nur
an den Systemen die Observablen σBx und σCy messen. Analog kann man das Resultat einer
σy-Messung vorhersagen, wenn man an den beiden anderen Systemen eine σx- und eine σy-
Messung vornimmt. Dies sind die Aussagen der Quantentheorie, die durch das Experiment
bestätigt werden.

Wir wollen jetzt diese Prognosen der Quantentheorie (bzw. die experimentellen Aussa-
gen) vom Standpunkt des lokalen Realismus interpretieren. Um die durch die Gl. (10.42) bis
(10.44) wiedergegebenen Korrelationen im Rahmen dieses Zugangs zu begründen, müssen
wir annehmen: Die in den σ-Messungen ermittelten individuellen Eigenschaften der einzel-
nen Teilsysteme liegen schon vor der Messung fest. Sie sind daher auch unabhängig davon,
welchen Typ von σ-Messung wir für die drei Teilsysteme wählen. Der Ausgang einer jeden
Messung ist z. B. über verborgene Parameter vorherbestimmt. Wenn das so ist, dann sind bei
einem der 3-Teile-Objekte die individuellen Werte sA,B,Cx,y in allen drei Gleichungen (10.42)
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und (10.43) dieselben. Wir multiplizieren die linken Seiten der Gl. (10.42)-(10.43) miteinan-
der und erhalten mit sAy s

A
y = sBy s

B
y = sCy s

C
y = 1 im Gegensatz zu Gl. (10.45)

sAx s
B
x s

C
x
l.r.= −1 . (10.46)

Dies ist in der lokal-realistischen Theorie das Ergebnis einer xxx-Messung. Die x-
Polarisationen müssen bereits vor der Messung so beschaffen sein, dass Gl. (10.46) gilt. In der
quantentheoretischen Beschreibung der Messergebnisse liegen beim nicht separablen GHZ-
Zustand vor der Messung keine Polarisationen fest. Eine xxx-Messung führt auf Messwerte,
die Gl. (10.45) erfüllen. Damit besteht ein klarer Widerspruch zwischen der Aussage lokal-
realistischer Theorien und der Quantentheorie. Wenn die Experimente die quantentheoretische
Gleichung (10.45) bestätigen – was tatsächlich der Fall ist (vergl. Abschn. 10.8) – dann ist der
lokale Realismus widerlegt.

Warum kann man in der Quantentheorie nicht in gleicher Weise aus den Gl. (10.42) und
(10.43) eine Relation (10.45) ableiten? Gleichung (10.41) zeigt, dass die quantentheoretischen
Messergebnisse korreliert sind. Wenn die lokalen Messungen z. B. sAy = +1 und sBy = −1
ergeben, dann findet man sCx = +1. Für sAy = +1 und sBy = +1 findet man entsprechend
sCx = −1 usw. Das Ergebnis sCx liegt nicht vorher fest und stimmt i.a. in den Gl. (10.42) und
(10.43) nicht überein.

Wir haben folgendes gezeigt: Drei Objekte werden in einem Präparationsverfahren so
präpariert, dass der resultierende Zustand im Rahmen der Quantentheorie der GHZ-Zustand
(10.40) ist. Wenn sich dann für die oben beschriebenen Polarisationsmessungen die quanten-
theoretischen Vorhersagen als richtig erweisen, dann ist jede lokal-realistische Theorie für
diese Systeme widerlegt. Die Quantentheorie kann daher durch solche Theorien nicht ersetzt
werden.

Wir haben in Abschn. 3.6 gesehen, dass die beiden linearen Polarisationen und die zirkula-
re Polarisation imH2 in enger Analogie zum Spin formuliert werden können. Für photonische
GHZ-Zustände lässt sich in gleicher Weise ein Widerspruch ableiten. Für Photonen bestätigen
die experimentellen Resultate die quantentheoretischen Vorhersagen und widerlegen so den
lokal-realistischen Ansatz. Eine Übersicht über die Experimente findet sich z. B. in [PZ 02].

Wir weisen abschließend noch auf Unterschiede zur Bell-Argumentation hin. Die CHSH-
Ungleichung macht Aussagen über klassische Erwartungswerte und ist eine direkte Folge
des lokalen Realismus. Sie macht eine Aussage über die klassische Physik ohne Bezug auf
die Quantentheorie. Das GHZ-Argument basiert demgegenüber auf dem Versuch einer lokal-
realistischen Interpretation von quantentheoretischen Resultaten (10.42) und (10.43), von de-
nen angenommen wird, dass sie experimentell bestätigt sind. Der Widerspruch zur Quanten-
theorie ist nicht probabilistisch sondern direkt. In beiden Fällen bestätigen die Experimente
die Quantentheorie.

10.8 Ergänzende Themen und weiterführende Literatur

• Die Klassiker : [EPR 35], [Bel 64], [CHS 69], [Boh 51], [GHZ 89], [GHZ 90].

• Übersichtsartikel: [Aul 00, Kap. IX], [HS 91], [Hom 97, Kap. 4], [Per 93, Kap. 6],
[HS 91], [WW 01].
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• Das Argument von Hardy: In einer vom Bell- und vom GHZ-Zugang unabhängigen Wei-
se hat Hardy gezeigt, dass lokaler Realismus und Quantentheorie nicht kompatibel sind.
Eine Darstellung des verblüffenden Theorems mit Hinweisen auf weitere Literatur findet
sich z. B. in [Hom 97, Kap. 4.2.2.1] und [Aul 00, Kap. 36.6].

• Bücher mit Übersichtsartikeln zur Bellschen Ungleichung und Experimenten dazu:
[BZ 02], [Asp 02].

• Zur Einsteinschen Kritik an der Quantentheorie: [Hom 97, Kap. 8].

10.9 Übungsaufgaben

ÜA 10.1 [zu 10.1] Geben Sie einen alternativen (direkten) Beweis für Gl. (10.15) an.

ÜA 10.2 [zu 10.4] Beweisen Sie Gl. (10.20).

ÜA 10.3 [zu 10.4] An einem linear polarisierten Photon im Zustand |ϕA〉 werden Messun-
gen mit einem Analysator A mit den Richtungen xA und yA durchgeführt. Formulieren Sie
für diese Situation ein Modell mit verborgenen Parametern, d. h. geben Sie λ, ρ(λ) und SλA so
an, dass die Messergebnisse richtig wiedergegeben werden.

ÜA 10.4 [zu 10.7] Geben Sie eine Quantenschaltung an, die den Zustand |0A, 0B, 0C〉 in
den GHZ-Zustand überführt.



This Page Intentionally Left Blank



11 Verschränkung als Hilfsmittel

Verschränkung ist die Grundlage für neue Effekte und deren technische Anwendung. Wir
diskutieren einige Beispiele.

11.1 Quantenkryptographie

11.1.1 Die Vernam-Verschlüsselung

Alice möchte an Bob eine verschlüsselte Botschaft schicken, die perfekt geheim bleiben soll.
Niemand außer Bob soll sie entschlüsseln können. In dem von Vernam 1926 vorgeschlagenen
Verfahren [Ver 26] wird ein Quellentext (source text), der bereits digital als (0,1)-Folge der
Länge n vorliegen soll, mit Hilfe eines Schlüssels (key) verschlüsselt. Es entsteht das Krypto-
gramm (cryptogram). Der Schlüssel selber besteht aus einer (0,1)-Zufallsfolge, die ebenfalls
die Länge n hat. Zur Verschlüsselung werden die Zahlen von Quelltext und Schlüssel glied-
weise modulo 2 addiert. Wir machen ein Beispiel:

Quelltext 01101100
Schlüssel 10000110
Kryptogramm 11101010

Das Kryptogramm wird an Bob geschickt. Bob soll im Besitz des Schlüssels sein. Die
Entschlüsselung besteht darin, dass Bob den Schlüssel zu der verschlüsselten Nachricht glied-
weise modulo 2 addiert. Wegen x+ 0 + 0 = x+ 0 = x und x+ 1 + 1 = x+ 0 = x entsteht
dann wieder der Quelltext:

Kryptogramm 11101010
Schlüssel 10000110
Quelltext 01101100

Da der Schlüssel aus einer Zufallsfolge besteht, wird der verschlüsselte Text vom Quelltext
völlig unabhängig. Er kann offen von Alice an Bob geschickt werden. Für einen Lauscher, der
nicht den Schlüssel besitzt, enthält das Kryptogramm keinerlei Information. Entscheidend ist,
dass der Schlüssel nur Alice und Bob bekannt ist, dass er tatsächlich eine echte Zufallsfolge
ist, dass er so lang wie der Quelltext ist und insbesondere, dass er nur einmal verwendet wird
(one-time pad system). Unter diesen Voraussetzungen kann der Vernam-Kode nicht gebrochen
werden [Sha 49].

Das Problem bei dem Verfahren besteht darin, dass Bob und Alice immer wieder für jede
Botschaft in den Besitz eines neuen Schlüssels kommen müssen und dass bei diesem Pro-
zess sicher gestellt sein muß, dass der Schlüssel nicht von einem Lauscher gelesen wurde.

Verschränkte Systeme: Die Quantenphysik auf neuen Wegen. Jürgen Audretsch
Copyright c© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40452-X
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Wir wollen zeigen, dass eine solche Schlüsselübermittlung mit Hilfe von Quantensystemen
möglich ist. Es gibt eine ganze Reihe von quantenkryptographischen Verfahren (vergl. Ab-
schn. 11.5). Wir diskutieren hier nur zwei Typen von Verfahren. Die einen Verfahren nutzen
die Besonderheiten des quantenphysikalischen Messprozesses aus, die anderen verwenden die
nicht-lokalen EPR-Korrelationen. Die Abfolge von Handlungsanweisungen zur Durchführung
eines kryptographischen Schemas nennt man Protokoll (protocol).

11.1.2 B92-Protokoll

Das nach der Arbeit [Ben 92] von C.H. Bennett aus dem Jahre 1992 benannte B92-Protokoll
verwendet zur Schlüsselübertragung zwei nicht-orthogonale Quantenzustände und nutzt die
folgenden für Quantensysteme charakteristischen Eigenschaften aus: (i) Es gibt keine Mes-
sung mit der zwischen den beiden Zuständen unterschieden werden kann. (ii) Die Zustände
können nicht durch einen Quantenkopierer geklont werden. (iii) Eine Messung ändert i.a.
einen Quantenzustand ab.

Der Ablauf der Schlüsselübermittlung Wir wollen Photonen für die Durchführung des
B92-Protokolls verwenden. Alice hat zwei Filter, die Photonen vertikal im Zustand |V 〉 oder
unter der Neigung−45◦, d. h. im Zustand |V ′〉 linear polarisieren können (vergl. Abschn. 3.6).
Es gilt |〈V |V ′〉|2 = 1

2 . Alice verwendet eine binäre Zufallsfolge, z. B. 1, 0, 0, 1, 1, 0, . . ., und
erzeugt bei Vorliegen der 0 ein Photon mit der Polarisation |V 〉 und bei 1 mit der Polarisati-
on |V ′〉. Die Photonen fliegen störungsfrei zu Bob.

Bob hat ein Messgerät in Form eines Detektors, der hinter einem Polarisationsfilter steht.
Er kann für den Filter zwei Orientierungen wählen: horizontale Polarisation |H〉, ihr entspricht
der Projektionsoperator P1 = � − |V 〉〈V | = |H〉〈H|, und um −45◦ gedrehte Polarisation,
ihr entspricht der Projektionsoperator P0 = �− |V ′〉〈V ′| = |H ′〉〈H ′|. Bob hat ebenfalls eine
binäre Zufallsfolge zur Verfügung, die unabhängig von der Folge ist, die Alice benutzt, z. B.
0, 0, 1, 0, 1, 0, . . .. Die Zahlen 0 und 1 kommen in beiden Fällen gleich häufig vor. Die i-te
Zahl von Bobs Folge bestimmt die Art der Messung am i-ten von Alice präparierten Photon.
Wenn bei Bob die Zahl 0 vorliegt, stellt er die Analysatorrichtung |H ′〉 (entspricht P0) ein
und bei der 1 die Richtung |H〉 (entspricht P1). In jedem Fall registriert er, ob sein Detektor
anspricht oder nicht.

Wegen der Orthogonalität der Vektoren gilt P0|V ′〉 = 0 und P1|V 〉 = 0. Wenn Alice
und Bob verschiedene Zahlen vorliegen haben, spricht daher der Detektor bei Bob nicht an.
Haben Alice und Bob gleiche Zahlen vorliegen, dann spricht der Detektor wegen 〈V |P0|V 〉 =
〈V ′|P1|V ′〉 = 1

2 mit der Wahrscheinlichkeit 1
2 , also in der Hälfte der Fälle an. Ein Beispiel ist

in Tabelle 11.1 dargestellt. „ja/nein“ besagt, dass bei der Versuchsanordnung das Ergebnis ja
oder nein jeweils mit der Wahrscheinlichkeit 1

2 möglich ist. Der tatsächlich eingetretene Fall
ist unterstrichen.

Im nächsten Schritt teilt Bob über einen öffentlichen Kanal Alice mit, bei welchen Pho-
tonen sein Detektor angesprochen hat. Die zugehörige Orientierung teilt er nicht mit. In dem
in der Tabelle dargestellten Beispiel sind das die Photonen mit den Nummern 2 und 6. Damit
besitzen Alice und Bob eine übereinstimmende Zahlenfolge 0, 0, . . ., die nur ihnen beiden be-
kannt ist und die sie als Schlüssel verwenden können. Es ist wie gewünscht eine Zufallsfolge
der Zahlen 0 und 1, besteht aber nur im Mittel noch aus 25% der Zahlen der ursprünglichen
Folge.
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Tabelle 11.1: B92-Protokoll zur Quantenkryptografie.

Photonennummer 1 2 3 4 5 6
Zahlenfolge Alice 1 0 0 1 1 0
erzeugte Polarisation |V ′〉 |V 〉 |V 〉 |V ′〉 |V ′〉 |V 〉
Zahlenfolge Bob 0 0 1 0 1 0
Analysatorstellung |H ′〉 |H ′〉 |H〉 |H ′〉 |H〉 |H ′〉
Ansprechen nein ja/nein nein nein ja/nein ja/nein

Abwehr von Lauschangriffen Wir wollen kurz auf die Sicherheit bei dieser Erzeugung ei-
nes gemeinsamen Schlüssels eingehen. Nehmen wir an, eine dritte Person mit Namen Eve 1

versucht in einem Lauschangriff (eavesdropping) durch Abfangen und Polarisationsmessun-
gen an den Photonen in den Besitz des Schlüssels zu kommen, dann hat sie die oben mit (i)
bis (iii) aufgeführten Probleme. Sie kann den Polarisationszustand eines einzelnen Photons
in einer Messung nicht sicher bestimmen. Sie kann den Zustand auch nicht auf viele Photo-
nen kopieren, ein Photon weiterlaufen lassen und an den Kopien Messungen durchzuführen.
Schließlich wird sie durch eine Messung den Zustand des anschließend zu Bob geschickten
Photons abändern. Es ist dieser Umstand, der es Alice und Bob ermöglicht festzustellen, ob
ein Lauscher tätig war. Durch die Zustandsänderung wird Bob hin und wieder ein Ansprechen
seines Analysators feststellen, obwohl bei ihm und Alice nicht die gleichen Zahlen vorliegen.
Das können beide feststellen, indem sie einen zufällig ausgewählten Teil ihres Schlüssels öf-
fentlich austauschen und vergleichen. Liegt Lauschen vor, dann wird der ganze Schlüssel nicht
verwendet und ein neuer Versuch einer Schlüsselerzeugung begonnen. Ein Test auf Lauschen
besteht zusätzlich in der Prüfung, ob 25% der Photonen zum Schlüssel beitragen.

Verbesserung der Sicherheit Tatsächlich ist der Transport der Quantenobjekte von Alice
zu Bob, auch dann wenn nicht abgehört wird, anfällig für Störungen. Der Quantenkanal ist im
Allgemeinen verrauscht. Damit in der Praxis überhaupt ein Schlüssel erzeugt wird, müssen
Alice und Bob ein gewisses Ausmaß an Fehlern akzeptieren, von denen sie nicht wissen, ob
sie nicht doch auf den Einfluss von Eve zurückgehen. Diese Situation taucht in allen quanten-
theoretischen Kryptographieverfahren auf. Im letzten Schritt des entsprechenden Protokolls
werden daher klassische Algorithmen eingesetzt um zunächst Fehler zu korrigieren. In einem
Protokoll (error correction protocol) wird versucht einen kürzeren Schlüssel zu gewinnen. dar-
an schließt sich ein Verfahren an, in dem Eves Information auf ein Minimum reduziert wird
(private amplification algorithm). Für Übersichtsartikel siehe Abschn. 11.5.

11.1.3 Weitere 1-Qubit-Protokolle

Das auf zwei nicht-orthogonalen Zuständen beruhende B92-Protokoll ist anfällig gegenüber
POVM-Messungen. Diese nicht projektiven Messungen werden wir in Kap. 13 vorstellen.
Daher ist es Standard geworden, wie beim BB84-Protokoll vier Zustände zu verwenden. Ein
weiterer Ansatz ist der folgende: Die Symmetrie der Bloch-Kugel legt es nahe, die Eigenzu-
stände von σx, σy und σz zu verwenden. Das entsprechende 6-Zustände-Protokoll erlaubt eine
vereinfachte Sicherheitsanalyse (vergl. Abschn. 11.5).

1Von eavesdropper, das ist der Lauscher
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11.1.4 EPR-Protokolle

Quantenkryptographie unter Verwendung des Bellschen Theorems Das in Abschn. 10.4
beschriebene Experiment mit Photonenpaaren zum Test der CHSH-Ungleichung kann auch
zur Schlüsselübermittlung verwendet werden. Das Protokoll sieht die folgenden Schritte vor,
die entweder öffentlich erfolgen oder von Alice (in A) und Bob (in B) jeweils im Geheimen
durchgeführt werden.

Öffentlich Jeweils in A und B geheim

In A und B einheitliche Festlegung der
vier Messrichtungen α1 = 22, 5◦, β1 =
45◦, α2 = 67, 5◦, β2 = 90◦ im Raum (wie
in Abschn. 10.4, vergl. Abb. 10.1)

Die Quelle erzeugt Paare verschränkter
Photonen im Bell-Zustand |ΦAB+ 〉. In A
und B werden unabhängig voneinander in
völlig zufälliger Reihenfolge die Analysa-
toren in eine der 4 Richtungen gedreht. In
A werden wie in Abschn. 10.1 die Polari-
sationszustände |xA〉 (Messwert +1) bzw.
|yA〉 (Messwert −1) gemessen und in B
entsprechend |xB〉 (Messwert +1) bzw.
|yB〉 (Messwert −1).

Es wird öffentlich ausgetauscht, welche
Polarisationsrichtungen in A und B bei
den einzelnen Photonenpaaren jeweils ge-
wählt wurden.

In A und B wurden jeweils die Messergeb-
nisse danach sortiert, ob gleiche oder un-
gleiche Analysatorrichtungen vorlagen.

Die Messergebnisse zu ungleicher Orien-
tierung werden zusammen mit der Num-
mer der Photonenpaare öffentlich ausge-
tauscht. Hiermit prüft jede Seite nach,
ob der quantentheoretische Wert SQM =
2
√

2 von Gl. (10.32) für die Korrela-
tionen erreicht wurde. Wenn nicht, wird
die Übertragungsreihe verworfen, da ab-
gehört wurde. Wird SQM erreicht,

dann sind die nicht ausgetauschten Er-
gebnisse zu gleicher Orientierung perfekt
korreliert (vergl. Abschn. 10.1). Sie stel-
len eine völlig zufällige Abfolge der Zah-
len 0 und 1 dar, die von Alice und Bob als
Schlüssel verwendet werden kann.
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Für die Schlüsselerzeugung mit Spin-1
2 -Teilchen werden Orientierungen mit den doppelten

Winkeln eingestellt.

Die einzelnen Teilsysteme bei Alice und Bob befinden sich in den maximal gemischten
Zuständen ρA = ρB = 1

2�. An ihnen kann keinerlei Information abgelesen werden. Wie
wir schon in Kap. 9 gesehen haben, steckt Information allein in den Korrelationen. Wenn
ein Lauscher eine Messung z. B. an den zu Alice fliegenden Objekten durchführt, dann über-
führt er dieses Untersystem in einen reinen Zustand. Wir haben in Abschn. 8.2.4 gezeigt,
dass damit die Verschränkung durchbrochen wird und ein separabler Zustand entsteht. Gemäß
Abschn. 10.5 erfüllen separable Zustände die CHSH-Ungleichung, d. h. es gilt |S| ≤ 2. Die
explizite Rechnung führt sogar auf |S| ≤ √2 (vergl. [ÜA 11.3]). Dieser Wert unterscheidet
sich deutlich vom quantentheoretischen Wert SQM = 2

√
2.

BBM92-Protokoll 2 Es gibt ein sehr einfaches Protokoll, das auf EPR-Korrelationen beruht
und keinen Bezug auf eine Bellsche Ungleichung benötigt. Wir verwenden wieder Photo-
nenpaare im drehsymmetrischen Bell-Zustand |ΦAB+ 〉, den wir mit Bezug auf die linearen
Polarisationen |H〉, |V 〉 und |H ′〉, |V ′〉 aus Abschn. 3.6 in der Form

|ΦAB+ 〉 =
1√
2
(|HA, HA〉+ |V A, V A〉) =

1√
2
(|H ′A, H ′A〉+ |V ′A, V ′A〉) (11.1)

schreiben. Alice und Bob messen unabhängig voneinander in völlig zufälliger Weise entweder
die Polarisationen |H〉 und |V 〉 oder die um−45◦ dagegen gedrehten Polarisationen |H ′〉 und
|V ′〉.

Nach einer Reihe von Messungen an Photonenpaaren tauschen Alice und Bob aus, welche
Richtung sie bei den einzelnen Paaren eingestellt hatten. Die Ergebnisse, die zu verschiede-
nen Richtungen gehören, und diejenigen, bei denen ein Photon verloren gegangen ist, werden
eliminiert. Die verbleibenden Messergebnisse müssen perfekt korreliert sein, wenn nicht ge-
lauscht wurde. Um das zu prüfen, vergleichen Alice und Bob wieder eine hinreichend große
Untermenge dieser Messungen über einen öffentlichen Kanal. Im positiven Fall liefert die für
beide gleiche Sequenz der verbliebenen Messergebnisse den gewünschten Schlüssel.

11.1.5 Das Schema der Quantenkryptografie

Die Grundidee besteht darin, Bob und Alice mit Hilfe von Quantensystemen als Träger in
den Besitz des selben Schlüssels kommen zu lassen. Die Botschaft selber wird nach ihrer
Verschlüsselung in einem allgemein zugänglichen Kanal übertragen. Das Protokoll muss so
gestaltet werden, dass Alice und Bob jeder für sich feststellen kann, ob bei der Schlüssel-
übertragung ein Lauscher tätig war. Hierfür nutzen sie aus, dass eine Quantenmessung durch
den Lauscher den Zustand abändert, wenn er nicht gerade ein Eigenzustand der gemessenen
Observablen ist.

Wenn die Präparationen von Alice und die Ergebnisse der zugehörigen Messungen von
Bob mit der theoretischen Prognose übereinstimmen, ist kein Messeingriff erfolgt und es gibt

2Benannt nach der Arbeit [BBM 92].
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keinen Informationsgewinn für einen Lauscher. Alice und Bob tauschen einen Teil ihrer Er-
gebnisse öffentlich aus und prüfen so die Übereinstimmung. Wenn sie nicht vorliegt, wird die
Schlüsselübermittlung verworfen und das Protokoll neu durchlaufen. Im anderen Fall haben
Alice und Bob einen geheimen Schlüssel erhalten, der darüber hinaus eine perfekte Zufalls-
verteilung darstellt, da er auf Quantenprozessen beruht.

11.2 Ein Qubit überträgt zwei Bit (dense coding)

In Kap. 6 haben wir gesehen, dass man ein Bit in einem Qubit kodieren und wieder ausle-
sen kann. Kann man mehr klassische Information mit einem einzigen Qubit übertragen? Wir
wollen zeigen, dass dichtes Quantenkodieren (quantum dense coding) die Übertragung von
zwei Bits durch ein Qubit ermöglicht. Der Trick ist dabei, dass vor der Übertragung bereits
ein verschränktes 2-Qubit-System mit Teilsystemen bei Alice und Bob etabliert wurde. Zum
Beispiel hat Alice ein Qubit-System (z. B. ein Photon eines Photonenpaares) an Bob geschickt
und den damit verschränkten Partner bei sich behalten. Der Zustand des Gesamtsystems sei
z. B. |ΦAB+ 〉. Bob erhält dadurch keine Information. Weiterhin wurde vorher zwischen Alice
und Bob abgesprochen, wie Sie zwei Bits den vier Bellzuständen |ΦAB+ 〉, |ΦAB− 〉, |ΨAB

+ 〉 und
|ΨAB

− 〉 zuordnen.
Wir haben in Abschn. 9.2.1 darauf hingewiesen, dass man lokal mit Hilfe der σ-Operatoren

in unitärer Weise einen Bell-Zustand in jeden anderen Bell-Zustand transformieren kann. Ali-
ce soll die Transformationen �A (trivial), σA1 , σA2 und σA3 an ihrem Qubit ausführen können.
Zur Übertragung der zwei Bit Information überführt sie so den verschränkten Zustand |ΦAB+ 〉
in den entsprechenden Bell-Zustand und schickt ihr Qubit-System an Bob. Damit kann Bob
auf beide Teilsysteme zugreifen und durch Messung feststellen, welcher Bell-Zustand vor-
liegt. Durch Übermittlung eines Qubits sind an ihn zwei Bits übertragen worden.

Dichtes Kodieren lässt sich nur schwer implementieren. Wenn der verwendete verschränk-
te reine Zustand nicht maximal verschränkt ist, nimmt die Menge der übertragenen Informa-
tion ab und wird im Grenzfall ein Bit. Eine wichtige Eigenschaft des Verfahrens ist die Ab-
hörsicherheit. Es kann im günstigsten Fall an dem Qubit-System das Alice an Bob schickt,
ein Bit ausgelesen werden. Dichtes kodieren demonstriert noch einmal die Bedeutung von
Verschränkung als Hilfsmittel bei der Informationsübertragung.

11.3 Quantenteleportation

Alice besitzt ein ihr unbekanntes klassisches Objekt, z. B. eine Eisenkugel, die in einem Kas-
ten eingeschlossen ist. Bob hätte gerne ein gleiches Objekt. Dazu muss Alice den Kasten
aufmachen und optische Messungen an der Kugel durchführen. Sie übermittelt über einen
klassischen Kanal die Informationen an Bob und der kann sich aus einem Eisenblock eine
Kugel im gleichen Zustand herstellen. Kann ein analoges Verfahren auch bei Quantenobjek-
ten zum Erfolg führen?

Eine einzige Messung an einem Quantenobjekt in einem unbekannten Zustand reicht nicht
zur Zustandsbestimmung. Selbst wenn Alice der Quantenzustand bekannt wäre, weil sie die
Präparationsanlage kennt, müsste sie an Bob unendlich viele Bits übertragen. Das sieht man
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bereits am Beispiel von Qubit-Systemen. Das Qubit-System das Alice besitzt, möge in einem
Eigenzustand von σr sein. Um den Vektor r zu beschreiben, braucht man eine binäre Zahl
mit unendlich vielen Stellen. Nur bei vollständiger Kenntnis von r könnte Bob das Präparati-
onsverfahren exakt wiederholen. Alice muss daher einen anderen Zugang wählen.

Mit Blick auf das Vorgehen bei dichtem Kodieren liegt es nahe, wieder eine verschrän-
kungsunterstützte Informationsübertragung zu versuchen. Tatsächlich führt das folgende Pro-
tokoll der Quantenteleportation (quantum teleportation) zum Erfolg (vergl. Abb. 11.1): Alice
und Bob teilen sich wieder den Bell-Zustand |ΦAB+ 〉. Die Teilsysteme sind die Quantensys-
teme SA und SB , die sich bei Alice bzw. Bob befinden. Bei Alice befindet sich ein weiteres
Quantensystem SC in einem ihr unbekannten reinen Zustand

|ϕC〉 = a|0C〉+ b|1C〉 (11.2)

mit |a|2 + |b|2 = 1.
Dieser Zustand |ϕ〉, nicht das Quantensystem SC selber, soll zu Bob teleportiert werden,

das heißt, dass das sich bei Bob befindliche Teilsystem SB in den reinen Zustand |ϕB〉 über-
gehen soll. SB ist dann notwendigerweise mit keinem anderen System mehr verschränkt. Ins-
gesamt liegt ein 3-Teile-System vor. An seinem Zustand inHC2 ⊗HA2 ⊗HB2 führen wir einige
algebraische Umformungen durch. Dazu verwenden wir die Definition der Bell-Zustände so-
wie die Eigenschaften der Pauli-Operatoren und führen in einem Zwischenschritt inHC2 ⊗HA2
eine Bell-Basis ein.

|ϕC〉|ΦAB+ 〉 =
1√
2

(
a|0C〉+ b|1C〉) (|0A〉|0B〉+ |1A〉|1B〉)

=
1√
2

(
a|0C〉|0A〉|0B〉+ a|0C〉|1A〉|1B〉

+ b|1C〉|0A〉|0B〉+ b|1C〉|1A〉|1B〉)

=
1
2

{
a
(|ΦCA+ 〉+ |ΦCA− 〉

)|0B〉+ a
(|ΨCA

+ 〉+ |ΨCA
− 〉

)|1B〉

+ b
(|ΨCA

+ 〉 − |ΨCA
− 〉)|0B〉+ b(|ΦCA+ 〉 − |ΦCA− 〉

)|1B〉
}

(11.3)

=
1
2

{
|ΦCA+ 〉

(
a|0B〉+ b|1B〉)+ |ΨCA

+ 〉
(
a|1B〉+ b|0B〉)

+ |ΨCA
− 〉

(
a|1B〉 − b|0B〉)+ |ΦCA− 〉

(
a|0B〉 − b|1B〉)

}

=
1
2

{
|ΦCA+ 〉|ϕB〉+ |ΨCA

+ 〉σB1 |ϕB〉+

+|ΨCA
− 〉(−iσB2 )|ϕB〉+ |ΦCA− 〉σB3 |ϕB〉

}
.

Bisher haben wir den Ausgangszustand nur mathematisch nach einer Bell-Basis in dem
Alice zugänglichen Raum HC2 ⊗ HA2 entwickelt. Dabei ist in HB2 bis auf Transformationen
mit den Pauli-Operatoren der Zustand|ϕB〉 entstanden. Bob muß diese Transformation noch
durch einen Eingriff kompensieren. Dazu wird zunächst Alice tätig. Sie führt an den Teilsys-
temen SC und SA eine Bell-Messung durch, beispielsweise so wie wir das in Abschn. 9.2.3
beschrieben haben. Damit überführt sie das Gesamtsystem in einen der vier Summanden in der
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letzten Gleichung (11.3). Welcher Summand nach der Messung vorliegt, kann sie dem Mes-
sergebnis entnehmen. Die entsprechenden zwei Bits an klassischer Information – mehr Bits
werden nicht benötigt – überträgt Alice z. B. telefonisch an Bob. Der kennt damit ebenfalls
den Zustand des Gesamtsystems und kann durch Transformationen mit einem der Operatoren
(�B ,σBk ) wegen σBk σ

B
k = �B sein System SB in den Zustand |ϕB〉 überführen. Damit ist die

Teleportation gelungen.

unitäre
Transf.

klassische
Information

verschränkter

Zustand

Quelle
EPR-

Messung

Bob
Alice

SB

SC |ΦAB+ 〉

|ϕC〉

Bell-

|ϕC〉

SA

Abbildung 11.1: Quantenteleportation.

Am Ende der Zustandsübertragung befindet sich keines der Systeme SC und SA im Zu-
stand |ϕ〉. Das spiegelt das Kopierverbot wieder. Die anfängliche Verschränktheit von SA und
SB wurde auf SC und SA übertragen. Jedes der Ergebnisse der Bell-Messung von Alice tritt
mit der gleichen Wahrscheinlichkeit 1

4 auf. Aus dieser Messung kann weder Alice noch Bob
eine Information über den teleportierten Zustand |ϕ〉 gewinnen. Wenn der Zustand |ϕ〉 vorher
unbekannt ist, taucht er als unbekannter Zustand am System SB wieder auf. Die Relativitäts-
theorie ist nicht verletzt, da eine klassische Informationsübermittlung verwendet wurde. Der
Zustand der Teilsysteme SC und SA bei Alice ist am Ende der Übertragung der vollständig
gemischte Zustand 1

4�
AB .

11.4 Verschränkungsaustausch

Wir haben die Produktion verschränkter Qubit-Paare in Abschn. 8.3 beschrieben. Tatsächlich
ist es für die Verschränkung von zwei Qubits nicht nötig, dass der Zustand in einem einzigen
Gesamtprozess mit Hilfe unitärer Dynamik erzeugt wird. Durch Verschränkungsaustausch
(entanglement swapping) können zwei Quantensysteme an getrennten Orten ohne Wechsel-
wirkung untereinander in einen vom Rest isolierten verschränkten Gesamtzustand versetzt
werden. Wir diskutieren ein Beispiel.
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MessungBell-

II

|ΨAD
+ 〉

SA SD

I

|ΨAB
− 〉 |ΨCD

− 〉

|ΨBC
+ 〉

SCSB

Abbildung 11.2: Austausch von Verschränkung von den Systemen SAB und SCD auf die Systeme SAD

und SBC .

Zwei EPR-Quellen I und II erzeugen simultan jeweils ein 2-Teile-System SAB und SCD

im Bell-Zustand |ΨAB
− 〉 bzw. |ΨCD

− 〉 (siehe Abb. 11.2. Insgesamt liegt daher der Produktzu-
stand

|ΨAB
− 〉|ΨCD

− 〉 =
1
2
(|0A, 1B〉 − |1A, 0B〉) (|0C , 1D〉 − |1C , 0D〉) (11.4)

ausHA2 ⊗HB2 ⊗HC2 ⊗HD2 vor. Wir führen in den RäumenHA2 ⊗HD2 undHB2 ⊗HC2 Bell-Basen
ein. Dann können wir den Zustand umschreiben:

|ΨAB
− 〉|ΨCD

− 〉 =
1
2
(|ΨAD

+ 〉|ΨBC
+ 〉 − |ΨAD

− 〉|ΨBC
− 〉 − |ΦAD+ 〉|ΦBC+ 〉+ |ΦAD− 〉|ΦBC− 〉

)

(11.5)

Man sieht unmittelbar, dass eine Bell-Messung an den Teilsystemen SB und SC die vorher
unverschränkten Teilsysteme SA und SD in einen Bell-Zustand überführen. Projektion z. B.
auf |ΨBC

+ 〉 erzeugt |ΨAD
+ 〉. Die Bell-Zustände der verschränkten Untersysteme SAD und SBC

stimmen jeweils überein. Bei diesem Prozess handelt es sich nicht um die Teleportation vom
Zuständen, sondern eher um die Übertragung von Verschränkung.

11.5 Ergänzende Themen und weitere Literatur

• Weiterführende Literatur zur Abwehr von Lauschangriffen: [GRT 02], [Lom 02a],
[Lom 02a], [Gru 99], [HN 99].

• Protokolle mit mehr als zwei Zuständen: [GRT 02], [Lom 02a].

• B92-Protokoll: [HAD 95], [Lom 02a], [Gru 99].

• Experimentelle Quantenkryptographie: [HAD 95], [EGH 00], [HN 99], [Zbi 98],
[BD 00], [GM 02], [GRT 02].

• BBM92: [BBM 92], [GM 02, S. 369].
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• Übersicht: [Wer 01].

• Experimente zum dichten Kodieren: [BHL 02], [BEZ 00, S. 62], [BD 00].

• Teleportation von höherdimensionalen Zuständen und Gemischen [Wer 01, S. 53],
[Key 02, S. 474], [vLo 02, 1232].

• Experimente zur Teleportation: [BHL 02], [BD 00], [BEZ 00], [GM 02, S. 363].

11.6 Übungsaufgaben

ÜA 11.1 Fälschungssichere Banknoten.
Nehmen Sie an, dass es technisch möglich ist, auf einer Banknote Photonen in einzelnen Zel-
len über längere Zeit zu speichern. Wie kann man so fälschungssichere Banknoten drucken?

ÜA 11.2 [zu 11.3] Was ändert sich an den Überlagerungen in Abschn. 11.3, wenn der Zu-
stand |ΨAB

− 〉 = 1√
2

(|0, 1〉 − |1, 0〉) statt |ΦAB+ 〉 verwendet wird?

ÜA 11.3 [zu 11.1] Nehmen Sie an, dass der Lauscher an den beiden Photonen (Spin-1
2 -

Teilchen) jeweils eine Polarisationsmessung durchführt und die Photonen anschließend an
Alice bzw. Bob weiterlaufen lässt. Der Lauscher präpariert also mit einer Wahrscheinlichkeit
p(θA, θB) Photonenpaare mit Photonen in den Zuständen |θA〉 und |θB〉. Die beiden Polarisa-
tionsrichtungen werden durch die Winkel θA und θB beschrieben. Bestimmen Sie explizit die
Korrelationskoeffizienten und zeigen Sie, dass |S| ≤ √2 gilt. Alice und Bob würden daher
diesen Eingriff feststellen können.

ÜA 11.4 [Zu 11.3] In vorangegangenen Kapiteln wurde der Begriff des Quantenzustands
näher präzisiert. Prüfen Sie, ob in diesem Sinne in Abschn. 11.3 von der Teleportation eins
Quantenzustands gesprochen werden kann.
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Wir wollen in diesem Kapitel zeigen, wie man mit Quantensystemen Rechnungen durchfüh-
ren kann und worin sich die Durchführung von denen mit einem klassischen Computer unter-
scheiden. Dabei soll deutlich gemacht werden, bei welchen Fragestellungen Quantencomputer
überlegen sind. Eine solche Überlegenheit wird auf die typischen nicht-klassischen Strukturen
der Quantentheorie wie Superposition und Verschränkung zurückgehen.

12.1 Register und Netzwerke

Register Eine Reihe von n Qubit-Systemen stellt ein Quantenregister (quantum regis-
ter) dar. Der Zustand dieses zusammengesetzten Systems wird durch einen Vektor |ψin〉 im

Hilbert-RaumH(n)
2 = H2⊗H2⊗· · ·⊗H2 mit n FaktorräumenH2 beschrieben. Wir arbeiten

in allen Hilbert-Räumen in der Rechenbasis {|0〉, |1〉}. In den Registern wird die Information
in binärer Form gespeichert. Der natürlichen Zahl a wird der Registerzustand

|a〉 = |an−1〉|an−2〉 . . . |a0〉 , ai ∈ {0, 1} (12.1)

ausH(n)
2 zugeordnet. Wir beziehen uns dabei auf die binäre Schreibweise von a

a = an−12n−1 + an−22n−2 + · · ·+ a020 ↔ (an−1, an−2, . . . , a0) . (12.2)

Es gibt d := 2n Zustände dieser Art. Sie bilden die Rechenbasis von H(n)
2 . Die natürlichen

Zahlen a = 0 bis a = d − 1 nummerieren die Basiszustände durch. Mit a ∈ {0, 1}n kenn-
zeichnet man, dass der Zustand |a〉 ein Element der Rechenbasis zu einem Register der Länge
n ist. Zum Beispiel ist 6 ∈ {0, 1}3 und der zugehörige Zustand hat die Form |6〉 = |1, 1, 0〉.

Es ist eine wichtige Eigenschaft eines Quantenregisters, dass in ihm durch Superposition
mehrere Zahlen gleichzeitig in orthogonalen und damit unterscheidbaren Zuständen gespei-
chert werden können. Ein Beispiel ist

1√
2

(|0, 1, 1〉+ |1, 1, 1〉) =
1√
2

(|3〉+ |7〉) . (12.3)

Der allgemeine Zustand eines Registers der Länge n ist

|ψ〉 =
d−1∑

a=0

ca|a〉 ,
∑

a

|ca|2 = 1 . (12.4)
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U2

U3 U4

t

U1

|ψout〉|ψin〉 |a〉

Abbildung 12.1: Schema eines Quantennetzwerks mit Bit-für-Bit-Messung.

Die Anzahl d der zugleich speicherbaren Basiszustände wächst exponentiell mit der Register-
länge n an. Für n = 200 ist ihre Zahl bereits größer als die geschätzte Zahl der Atome im
Universum. In dieser Speicher- und Verarbeitungskapazität liegt eine der Stärken des Quan-
tencomputers.

Bei ungeschicktem Vorgehen kann diese Stärke allerdings durch die Eigenart der Quan-
tenmessung wieder kompensiert werden. Zu beachten ist, dass Messungen in der Rechenba-
sis am auslaufenden Zustand |ψout〉, die nacheinander oder simultan an den Registerstellen
durchgeführt werden, immer in einen der beteiligten Basiszustände überführen. Sie erlau-
ben es nur, eine einzige Zahl a auszulesen. Bei der Messung am Zustand (12.3) ist das die
Zahl 3 oder 7. Solche Messungen in der Rechenbasis heißen Bit-für-Bit-Messungen (bit by bit
measurements). Eine nachfolgende Messung am resultierenden Zustand ergibt keine weitere
Information.

Netzwerke Die Manipulationen der Registerzustände durch den Quantencomputer erfolgt
mit Hilfe von unitären Transformationen aufH(n)

2 . Ein Quantengatter (quantum gate) führt ei-
ne wohlbestimmte unitäre Transformation durch, die meist eine Analogie zu einem logischen
Gatter der klassischen Computer hat. Ein Quantennetzwerk (quantum network) oder eine
Quantenschaltung (quantum circuit) besteht aus mehreren Quantengattern, die in zeitlich ge-
ordneter Weise gleichzeitig oder nacheinander auf den Zustand einwirken (vergl. Abb. 12.1).
Die Gatter sind dabei durch Quantendrähte (quantum wires) verbunden, die einen der Teil-
räume H2 von H(n)

2 und damit einem der Quantensysteme zugeordnet sind. Ideale Drähte
beeinflussen den Zustand nicht. Reale Drähte sind zumeist Quellen für Fehler. Wir haben be-
reits in Kap. 3 und 7 solche Gatter und Netzwerke kennen gelernt.
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f(x)

x
1 2 3 4 5 6

1

2

3
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5

Abbildung 12.2: Nicht eindeutig umkehrbare Funktion.

Ein Quantencomputer (quantum computer) ist ein Quantennetzwerk, das eine Quantenbe-
rechnung (quantum computation) durchführt, indem er den Eingangszustand |ψin〉 in unitärer
Weise in einen Ausgangszustand |ψout〉 überführt. Messungen werden in der Regel projektiv
und Bit-für-Bit an einigen oder allen Qubits (Registerstellen) des Ausgangszustands durch-
geführt. Im ganz allgemeinen Fall kann auch die unitäre Entwicklung durch Messungen in
einem oder mehreren FaktorräumenH2 unterbrochen werden.

Für die experimentelle Realisierung von Quantennetzwerken ist es wichtig, dass auf ein-
zelnen Faktorräumen oder auf Produkten von Faktorräumen getrennt (lokal) wohlbestimm-
te unitäre Transformationen in kontrollierter Weise induziert werden können. Diese unitären
Transformationen der Teilsysteme durch die Quantengatter entstehen durch einen äußeren
Eingriff auf die Qubit-Systeme oder durch Wechselwirkung mit Nachbarqubits. Sie stellen
eine der Herausforderungen beim Bau von Quantencomputern dar.

12.2 Funktionsberechnung und Quantenparallelismus

Zur Berechnung einer Booleschen Funktion (boolean function) f : {0, 1}n → {0, 1}m mit
Hilfe des Quantencomputers wird ein Register der Länge n benötigt, in dem im Anfangszu-
stand |ψin〉 eingegeben wird, und ein zweites Register der Länge m, in dem im Ausgangszu-
stand der Funktionswert f(x) gespeichert wird. Beide Register haben endliche Längen. Die
Rechnung wird daher nach den Regeln der modularen Arithmetik (modular arithmetic) durch-
geführt. Sie beschreibt das Rechnen mit Resten (remainder). Unter a mod n versteht man den
Rest, der bei der Division der natürlichen Zahl a durch die natürliche Zahl n entsteht1. Es
gilt daher a = qn + r mit q ∈ �. Gleichungen, die auf der rechten Seite durch (mod n)
gekennzeichnet werden, beschreiben die Gleichheit der Reste (z. B. 1 = 9 = 25 (mod n)).

1Ganze Zahlen (integers) �: {. . . ,−2,−1, 0,+1,+2, . . .}. Natürliche Zahlen (natural numbers) �:
{0, 1, 2, . . .}. Sie werden auch positive ganze Zahlen (positive integers) oder nicht-negative ganze Zahlen (non-
negative integers) genannt.
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Uf

|x〉 |x〉

|y〉 |y ⊕ f(x)〉

Abbildung 12.3: Funktionsberechnung als unitäre Transformation.

Wir werden beim Rechnen mit Resten in erster Linie die Addition benötigen. Für sie gilt

(a+ b) mod n = (a mod n)± (b mod n) (mod n). (12.5)

Man lässt bei der Addition häufig den Zusatz mod n weg und schreibt

(a+ b) mod n =: a⊕ b . (12.6)

Quantencomputer basieren auf unitären und daher umkehrbaren Zustandsentwicklungen.
Funktionen f , die keine ein-eindeutige Abbildung darstellen (für die also f(x) = f(y) für Ar-
gumente x �= y gilt) können nicht direkt durch unitäre Operationen berechnet werden (vergl.
Abb. 12.2). Dieses Problem wird dadurch gelöst, dass man das Argument x in einem ersten
Register unverändert mitführt. Daher besteht die Notwendigkeit von zwei Registern, einem
ersten Register (x-Register) der Länge n und einem zweiten Register (y-Register) der Länge
m. Die unitäre Transformation zur Bestimmung vonf(x) wirkt dann auf einen Zustand aus
H(n)

2 ⊗H(m)
2 in folgender Weise:

|x, y〉 Uf−−→ |x, (y + f(x)) mod 2n〉 = |x, y ⊕ f(x)〉 . (12.7)

Schematisch ist das in Abb. 12.3 dargestellt.Uf ist eine kontrollierte Operation, da das was mit
dem Inhalt des zweiten Registers durchgeführt wird, vom Inhalt des ersten Registers abhängt.
Das CNOT-Gatter, das wir in Abschn. 7.4 beschrieben haben, ist ein Spezialfall mit m =
n = 1 und f(x) = x. Die graphische Darstellungsweise wird von dort übertragen. Uf von
Gl. (12.7) wird durch das Schaltbild von Abb. 12.4 wiedergegeben.

Wir geben ein Beispiel zur Veranschaulichung von Gl. (12.7) an. Die Quantenregister
sollen die Länge n = 2 und m = 3 haben. Die Boolesche Funktion f ist dann von der Form
f : {0, 1}n → {0, 1}m. Wir betrachten speziell die Berechnung von f(x) = x2

|x, 0〉 Uf−−→ |x, x2 mod 23〉 . (12.8)
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f

|x〉

|y〉 |y ⊕ f(x)〉

|x〉

Abbildung 12.4: Funktionsberechnung als kontrollierte Operation.

Die unitäre Transformation Uf muß dann Folgendes leisten:

|0, 0〉|0, 0, 0〉 → |0, 0〉|0, 0, 0〉
|0, 1〉|0, 0, 0〉 → |0, 1〉|0, 0, 1〉
|1, 0〉|0, 0, 0〉 → |1, 0〉|1, 0, 0〉
|1, 1〉|0, 0, 0〉 → |1, 1〉|0, 0, 1〉 . (12.9)

Wir haben dabei 9 mod 23 = 1 verwendet.
Bleibt noch die Frage zu beantworten, ob eine solche unitäre Transformation Uf immer

mit Hilfe von Gattern implementiert werden kann. Es lässt sich zeigen, dass für jede Boolesche
Funktion f : {0, 1}n → {0, 1}m das Quantennetzwerk, das die Transformation Uf und damit
die Berechnung einer jeden Funktion f auf dem Quantencomputer bewirkt, allein aus Toffoli-
Gattern aufgebaut werden kann. Damit ist zugleich die Unitarität von Uf gewährleistet. Das
Toffoli-Gatter ist in diesem Sinn ein universelles reversibles Gatter. Für den Beweis verweisen
wir auf die Literatur (vergl. Abschn. 8.6).

Unitarität Wir wollen einen einfachen Spezialfall von Gl. (12.7) untersuchen und zeigen,
dass für jede Funktion f : {0, 1} → {0, 1} die Transformation Uf eine unitäre Transfor-
mation auf H2 ⊗ H2 ist. Sie kann daher durch eine Kombination einfacher Quantengatter
implementiert werden. Wir haben

UfUf |x, y〉 = Uf |x, y ⊕ f(x)〉 = |x, y ⊕ f(x)⊕ f(x)〉 = |x, y〉 (12.10)

und damit UfUf = �.

Zu zeigen ist noch, dass U†
f = Uf gilt. Es gibt vier Funktionen fi:

f1(0) = 0 , f1(1) = 0
f2(0) = 1 , f2(1) = 1
f3(0) = 0 , f3(1) = 1
f4(0) = 1 , f4(1) = 0 .

(12.11)

Wir untersuchen die mit Bezug auf die Rechenbasis gebildete Matrix Uf . Für f1 haben wir
Uf |x, y〉 = Uf |x, y ⊕ 0〉 = |x, y〉 und damit Uf = � = U†

f . Für f2 gilt Uf |0, 0〉 = |0, 0〉,
Uf |0, 1〉 = |0, 1〉, Uf |1, 0〉 = |1, 1〉 und Uf |1, 1〉 = |1, 0〉. Für die Matrixdarstellung von Uf
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können wir daraus

Uf =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





 = U†

f (12.12)

ablesen. Die Unitarität von Uf für f3 und f4 zeigt man in analoger Weise.

Kick-back Wir betrachten eine Funktion f : {0, 1}n → {0, 1}, d. h. den Fall m = 1,
und stellen im zweiten Register im Anfangszustand die Superposition 1√

2
(|0〉 − |1〉) her. Die

Wirkung von Uf besteht dann in

|x〉 1√
2

(|0〉 − |1〉) Uf−−→ |x〉 1√
2

(|f(x)〉 − |1⊕ f(x)〉)

= |x〉(−1)f(x) 1√
2

(|0〉 − |1〉) . (12.13)

Basisvektoren |x〉, für die f(x) = 1 gilt, werden mit −1 multipliziert. Das Argument x kon-
trolliert daher einen Vorzeichenflip. Obwohl die Funktionsberechnung und die Addition im
zweiten Register erfolgt, bleibt der Zustand im zweiten Register unverändert 1√

2
(|0〉 − |1〉)

und nur im ersten Register treten abhängig von f(x) Vorzeichenänderungen auf. Man nennt
diesen Vorgang, den wir noch mehrfach nutzen werden, einen Kick-back (kick back).

12.3 Quantenparallelismus

Durch parallele Anwendung von Hadamard-Gattern auf den Registerzustand |0, 0, . . . , 0〉 des
ersten Registers der Länge n

|Ω〉 = H ⊗H ⊗ · · · ⊗H|0, 0, . . . , 0〉
=

1√
2

(|0〉+ |1〉) 1√
2

(|0〉+ |1〉) . . . 1√
2

(|0〉+ |1〉)

=
1√
d

d−1∑

x=0

|x〉 (12.14)

(d := 2n) entsteht eine gleichgewichtete Superposition der d Basisvektoren von H(n)
2 . Wir

können den Zustand |Ω〉 als die „Superposition“ der Zahlen 0 ≤ x ≤ d auffassen. Wenn wir
das zweite Register der Länge m mit Zustand |0〉 hinzufügen und die unitäre Transformation
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wirken lassen, überführt sie in den Zustand

|ψ〉 = Uf

(
1√
d

d−1∑

x=0

|x, 0〉
)

=
1√
d

d−1∑

x=0

Uf (|x, 0〉)

=
1√
d

d−1∑

x=0

|x, f(x) mod n〉 . (12.15)

Als Folge der Linearität von Uf und der Superposition (12.14) im Zustand |Ω〉 im ersten Re-
gister wird nach einmaligem Durchlaufen des Netzwerks simultan der Wert f(x) für d = 2n

Argumente berechnet. Diese Parallelverarbeitung von Information wird als Quantenparalle-
lismus (quantum parallelism) bezeichnet. d steigt mit der Registerlänge n exponentiell an.
Abgesehen von Trivialfällen ist der resultierende Zustand |ψ〉 verschränkt.

Wenn wir bei dem Zustand |ψ〉 von Gl. (12.15) die ersten n Qubits (d. h. das x-Register)
mit Bezug auf die Standardbasis ausmessen, erhalten wir mit einheitlicher Wahrscheinlich-
keit 1

d einen der Zustände |x〉. Wenn z. B. |x0〉 gemessen wird, wird der Gesamtzustand in
|x0, f(x0)〉 überführt. Eine Messung am zweiten Register liefert f(x0). Aussagen über ande-
re x-Werte können nicht mehr gewonnen werden. Bei dieser Berechnung von f(x) Argument
nach Argument ist der Quantencomputer schlechter als der klassische Computer, da beim
klassischen Computer der Wert x0 nach Belieben vorgegeben werden kann. Beim Quanten-
computer ist x0 ein Zufallsergebnis. Die Überlegenheit der Quantencomputer wird sich bei
anderen Fragestellungen zeigen.

Quantenalgorithmen Die Überlegenheit von Quantenalgorithmen (quantum algorithms)
gegenüber klassischen Algorithmen beruht in erster Linie auf der Ausnutzung von Super-
position und Verschränkung für ganz spezifische Fragestellungen. In erster Linie werden die
folgenden beiden Techniken verfolgt:

(i) Aufsuchen von globalen Eigenschaften einer Funktion f(x), wie z. B. der Periode. Hier-
zu werden nicht wie beim klassischen Computer zunächst Funktionswerte berechnet und
anschließend miteinander verglichen, sondern direkt Korrelationen zwischen den Zu-
ständen des Ausgangsregisters untersucht. Wir werden das beim Deutsch-Problem, beim
Deutsch-Jozsa-Problem und beim Shor-Algorithmus kennenlernen.

(ii) Amplitudenverstärkung (amplitude amplification) in zumeist iterativer Weise. Dabei wird
die Superposition so transformiert, dass der Zustand mit dem gesuchten Resultat eine
besonders große Amplitude erhält und daher mit großer Wahrscheinlichkeit gemessen
wird. Als ein Beispiel hierfür behandeln wir den Grover-Algorithmus.
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|0〉 H

f|0〉 − |1〉 |0〉 − |1〉

(−1)f(0)|0〉+ (−1)f(1)|1〉

Abbildung 12.5: Erzeugung eines Kick-back im ersten Register.

12.4 Zwei einfache Quantenalgorithmen

12.4.1 Deutsch-Problem

Wir diskutieren die Situation, dass eine Funktion f : {0, 1} → {0, 1} als Blackbox (black
box) bzw. als Orakel (oracle) gegeben ist. Die Blackbox kann den Funktionswert f(x) zu
jedem eingegebenen Argument x berechnen, liefert aber keine darüber hinaus gehende Infor-
mationen über f(x). Man kann wie bei einem Orakel eine Anfrage (query) stellen und erhält
jeweils eine Antwort. Die Aufgabe besteht darin, bestimmte Eigenschaften von f(x) mit einer
minimalen Zahl von Anfragen zu bestimmen. Wir vergleichen dabei eine klassische Blackbox
mit einer quantentheoretischen Blackbox, in der f(x) als Quantenalgorithmus implementiert
ist.

Es gibt vier Funktionen f(x), die in Gl. (12.11) aufgelistet sind. Die Funktionen f1(x)
und f2(x) heißen konstant. Die Funktionen f3(x) und f4(x) heißen ausgeglichen, da gleich
viele Werte 0 und 1 angenommen werden. Beides sind globale Eigenschaften der Funktionen.
Es soll festgestellt werden, ob die Funktion f(x) der Blackbox konstant oder ausgeglichen ist.
Hierzu muß im klassischen Fall die Berechnung mit den Werten x = 0 und x = 1 laufen. Das
Orakel muss also zweimal befragt werden.

Beim Quantencomputer verwenden wir den Deutsch-Algorithmus2 und fragen nicht „Wel-
cher Funktionswert?“ sondern „Welche Funktion?“. Wir nutzen den Kick-back von Gl. (12.13)
aus und verwenden im x-Register den Zustand 1√

2
(|0〉 − |1〉). Das kann man erreichen, indem

man dort |0〉 einlaufen lässt und eine Hadamard-Transformation anschließt (vergl. Abb. 12.5).
Nach der Anwendung von Uf gemäß Gl. (12.13) liegt der Gesamtzustand

1
2

(|0〉+ |1〉) (|0〉 − |1〉) Uf−−→ 1
2

[
(−1)f(0)|0〉+ (−1)f(1)|1〉

]
(|0〉 − |1〉) (12.16)

vor. Das zweite Register wird nicht mehr betrachtet. Wenn f(x) konstant ist, enthält das erste
Register den Zustand

1√
2

(|0〉+ |1〉)⇔ konstant . (12.17)

Im ausgeglichenen Fall liegt der Zustand

1√
2

(|0〉 − |1〉)⇔ ausgeglichen (12.18)

2D. Deutsch, 1985, [Deu85].



12.4 Zwei einfache Quantenalgorithmen 195

|0〉 H H

Uf |0〉 − |1〉

Messung

|0〉 − |1〉

Abbildung 12.6: Quantenschaltung für den Deutsch-Algorithmus.

vor. Zur Ausmessung führen wir wie in Abb. 12.6 eine zweite Hadamard-Transformation H
durch, die auf

|0〉 ⇔ konstant, |1〉 ⇔ ausgeglichen (12.19)

führt. Eine einzige Messung in der Rechenbasis liefert dann bereits mit Sicherheit die ge-
wünschte Antwort.

12.4.2 Deutsch-Jozsa-Problem

Es werden Funktionen f : {0, 1}n → {0, 1} betrachtet, die auf d = 2n Werten für x erklärt
sind. f(x) soll entweder konstant oder ausgeglichen sein. Ausgeglichen bedeutet, dass die
Hälfte aller Funktionswerte null und die andere Hälfte eins ist. Die Aufgabe besteht wieder
darin zu ermitteln, welcher Typ von Funktion in einer Blackbox vorliegt.

Der Quantenalgorithmus von Deutsch und Jozsa3 entsteht durch Erweiterung des Deutsch-
Algorithmus. Wir betrachten das in Abb. 12.7 dargestellte Schaltbild. Die Hadamard-Gatter
H(n) = H ⊗ H ⊗ · · · ⊗ H haben auf den Zuständen des x-Registers die in Gl. (12.14)
beschriebene Wirkung.

|0, 0, . . . , 0〉 1√
2

(|0〉 − |1〉) H(n)

−−−→ |ψ〉 =
1√
d

d−1∑

x=0

|x〉 1√
2

(|0〉 − |1〉) . (12.20)

Nach der simultanen Funktionsberechnung entsteht daraus wie in Gl. (12.13)

|ψ〉 Uf−−→ |ψ′〉 =
1√
d

d−1∑

x=0

(−1)f(x)|x〉 1√
2

(|0〉 − |1〉) . (12.21)

Wir schließen eine weitere Transformation des x-Registers mit Hadamard-Gattern an. Die
Wirkung von H(n) = H ⊗H ⊗ · · · ⊗H wollen wir an dieser Stellen nicht im Einzelnen aus-
rechnen. Die folgende Überlegung reicht für unsere Zwecke aus. Die Wirkung des einzelnen

Hadamard-Gatters ist |0〉 H−→ 1√
2
(|0〉+ |1〉) bzw. |1〉 H−→ 1√

2
(|0〉 − |1〉). Der Zustand |x〉 des

x-Registers ist wie in Gl. (12.2) „binär geschrieben“. Mit H(n) entsteht

|x〉 H(n)

−−−→ 1√
2

(|0〉|0〉 . . . |0〉+ Rest) , Rest �= |0〉|0〉 . . . |0〉 . (12.22)

3D. Deutsch und R. Jozsa, 1992, [DJ 92].
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|0〉 H H Messung

|0〉 H H Messung

|0〉 H H Messung

Uf |0〉 − |1〉|0〉 − |1〉

...
...

|ψ〉 |ψ′〉 |ψ′′〉

...

Abbildung 12.7: Quantenschaltung für den Deutsch-Jozsa-Algorithmus.

Als Zustand beider Register erhalten wir daher durch Auswerten von Gl. (12.21)

|ψ′〉 H(n)

−−−→ |ψ′′〉 =
1√
d

(
d−1∑

x=0

(−1)f(x)

)

{|0〉|0〉 . . . |0〉+Rest} 1√
2

(|0〉 − |1〉) . (12.23)

Schließlich messen wir die einzelnen Stellen des x-Registers in der Rechenbasis. Die
Wahrscheinlichkeit das Messergebnis (0, 0, . . . , 0) zu erhalten ist

p(0, 0, . . . , 0) =
1
d

∣
∣
∣∣
∣

d−1∑

x=0

(−1)f(x)

∣
∣
∣∣
∣

2

. (12.24)

Daraus folgt

p(0, 0, . . . , 0) = 1 ⇔ f(x) konstant

p(0, 0, . . . , 0) = 0 ⇔ f(x) ausgeglichen (12.25)

Wir messen daher nur einmal das x-Register. Wenn dabei das Resultat 0, 0, . . . , 0 eintritt, ist
f(x) konstant. Wenn irgendein anderes Messresultat eintritt, kann f(x) nicht konstant sein,
d. h. f(x) muss ausgeglichen sein.

Für beliebige Registerlänge n reicht beim Quantennetzwerk bereits eine Anfrage an das
Orakel aus. Beim klassischen Netzwerk fragt man nacheinander den Wert f(x) zu den N
möglichen x-Werten ab. Sobald man für zwei Eingaben verschiedene Werte für f(x) erhält, ist
die Funktion nicht konstant und also ausgeglichen. Um sicher zu wissen, dass f(x) konstant
ist, muss sich derselbe Wert in mehr als der Hälfte aller Fälle, als mindestens in 2n−1 + 1
Fällen, ergeben. Die Zahl der klassisch nötigen Anfragen wächst daher exponentiell mit n an.
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12.5 Suchalgorithmus von Grover

Telefonbuchproblem Das Telefonbuchproblem (phone book problem) besteht darin, in ei-
nem Telefonbuch zu gegebener Telefonnummer (z. B. 7581) den zugehörigen Namen zu fin-
den.

x = Name Nummer
Müller 4892
Meier 1739
. . . . . .
Schmidt 7581
. . . . . .

Die Verteilung der Nummern soll zufällig sein. Das Telefonbuch ist im Orakel gespeichert.
Beim klassischen Algorithmus lautet die Frage „Hat Müller die Nummer 7581?“ Das Ora-
kel antwortet in diesem Fall mit „nein“. So werden die Namen nacheinander abgefragt,
bis „Schmidt“ gefunden ist. Die Nutzung des Quantenparallelismus im Grover-Algorithmus4

(Grover’s algorithm) erlaubt es wieder, alle Fragen gleichzeitig zu stellen. Das Auslesen er-
folgt in diesem Fall mit Hilfe von Amplitudenverstärkung (vergl. Abschn. 12.3).

Das Telefonbuch – oder allgemeiner eine nicht strukturierte Datenbank, in der ein Eintrag
gesucht werden soll – entspricht einer Funktion f(x), x = 0, 1, . . . , d− 1 mit den Werten

f(x) = 0 für x �= l , f(x) = 1 für x = l . (12.26)

Das Quantenorakel erlaubt die Berechnung von f : {0, 1}n → {0, 1} wie in Gl. (12.21) mit
d = 2n. Das zweite Register soll wieder aus nur einem Qubit bestehen. Wir lassen dort den
Zustand 1√

2
(|0〉 − |1〉) einlaufen und nutzen den Kick-back aus. Der Zustand 1√

2
(|0〉 − |1〉)

läuft wieder aus. Wir geben im Folgenden nur die Transformationen des ersten Registers an.
Dann wird die Wirkung der quantentheoretischen Funktionsberechnung durch den unitären
Operator Ul

|x〉 Ul−→ (−1)f(x)|x〉 (12.27)

beschrieben. Ul flippt den Zustand |l〉 in −|l〉 und lässt alle anderen Zustände unverändert.
Man kann diesen Operator daher auch in der Form

Ul = �− 2|l〉〈l| (12.28)

schreiben.
Wir nutzen wieder den Quantenparallelismus aus. Durch Anwendung des Produkts

H(n) = H ⊗H ⊗H · · · ⊗H erzeugen wir wie in Gl. (12.14) aus den Zustand |0〉|0〉 . . . |0〉
die gleichgewichtete Superposition aller Zustände der Rechenbasis von H(n)

2

|Ω〉 =
1√
d

d−1∑

x=0

|x〉 . (12.29)

4L.K. Grover, 1996 [Gro 96].
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Der unitäre Operator

US := 2|Ω〉〈Ω| − � (12.30)

bewirkt eine „Spiegelung“ an |Ω〉. Er erhält |Ω〉 und flippt das Vorzeichen von jedem Vektor
orthogonal zu |Ω〉. Mit Gl. (12.14) lässt sich US mit Hadamard-Transformationen in der Form

US = H(n)(2|0〉〈0| − �)H(n) (12.31)

mit |0〉 = |0, 0, . . . , 0〉 schreiben.
Wir wollen die Wirkung der Spiegelung auf einen allgemeinen Zustand

|ψ〉 =
∑

x

ax|x〉, ax ∈ � (12.32)

angeben. Die Projektion auf |Ω〉 führt auf

〈Ω|ψ〉 = 1√
d

∑

x

ax =
√
d ā (12.33)

mit dem Mittelwert der Amplituden

ā :=
1
d

∑

x

ax . (12.34)

Damit ergibt sich als Resultat der Anwendung von US auf |ψ〉 mit Gl. (12.30) und (12.32)

US |ψ〉 = (2|Ω〉〈Ω|−�)|ψ〉 = 2

(
∑

x

|x〉
)

ā−
∑

x

ax|x〉 =
∑

x

(2ā−ax)|x〉 . (12.35)

Die Amplituden ax von |ψ〉 werden wie ax → 2ā − ax transformiert. Das entspricht einer
Spiegelung von ax am Mittelwert ā.

Der Algorithmus besteht nun darin, in einem ersten Iterationsschritt USUl auf |Ω〉 anzu-
wenden

|Ω1〉 = USUl|Ω〉 . (12.36)

In Abb. 12.8 sind die Amplituden ax über x aufgetragen. Für |Ω〉 haben sie einheitlich den
Wert 1√

d
. Anwendung von Ul flippt al in −al und lässt die anderen Amplituden unverän-

dert. Der Mittelwert ā verschiebt sich dabei nach unten. Die nachfolgende Transformation US
spiegelt die Werte ax am neuen Mittelwert und bewirkt eine Verstärkung der Amplitude al im
Zustand |Ω1〉. Dies ist ein erster Durchgang. Auf |Ω1〉 wird dann wieder USUl angewendet
usw. Schließlich wird das x-Register Bit-für-Bit ausgemessen. Dann ist die Wahrscheinlich-
keit am größten, den Zustand |l〉 und damit das Messergebnis l in dualer Schreibweise zu
finden.

Der Grover-Algorithmus beschreibt eine Situation, in der der Quantencomputer das ge-
wünschte Resultat nicht mit Sicherheit, sondern nur mit großer Wahrscheinlichkeit liefert.
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Amplitude

〈a〉

〈a〉

1√
d

1√
d

2√
d

1√
d
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x

x

x

l− 1 l l + 1 l + 2

l

l

Abbildung 12.8: Amplitudenverstärkung beim Grover-Algorithmus.

Dafür ist er offenbar in Folge des Quantenparallelismus wesentlich schneller als eine wieder-
holte Befragung des klassischen Orakels.

Eine unitäre Transformation ist eine Rotation im komplexen Raum. Wiederholte Anwen-
dungen können einen Zustand immer näher an einen gewünschten Zustand heranrotieren.
Es kann aber auch passieren, dass die Rotation über den gewünschten Zustand hinausgeht
und bei Wiederholung der Rotation sich mehr und mehr von ihm entfernt. Es ist daher beim
Grover-Algorithmus wichtig zu wissen, wann das Iterationsverfahren abzubrechen ist (vergl.
Abschn. 12.8).

Die systematische klassische Durchsuchung der Datenbank benötigt eine Anzahl von
Fragen in der Größenordnung 2n. Sie steigt exponentiell mit n an. Um mit dem Grover-
Algorithmus mit großer Wahrscheinlichkeit den richtigen Eintrag zu finden, reichen

√
2n An-

fragen (vergl. Abschn. 12.8).

12.6 Faktorisierungsalgorithmus von Shor

In schnell wachsendem Umfang beruht die Kommunikation im militärischen und nicht-
militärischen Bereich auf einer sicheren Kryptographie für die öffentliche Übertragung von
Schlüsseln und Signaturen. Bis heute beruht das Verschlüsselungsverfahren auf der Annah-
me, dass es keine effektive Faktorisierung großer Zahlen gibt. Der Quantenalgorithmus von
Shor5 erlaubt eine, verglichen mit klassischen Methoden, sehr viel schnellere Faktorisierung.
Wenn sich ein effektiver Quantenprozessor für diesen Algorithmus technisch realisieren las-
sen ließe, hätte das eine große Auswirkung auf die Sicherheit von geheimer Datenübertra-
gung und Datenspeicherung. Dies ist einer der Gründe für das schnell wachsende Interes-
se an Quantenalgorithmen und an der Realisierung von Quantencomputern. Wir wollen den

5P. Shor, 1994 [Sho 94] und 1997 [Sho 97].
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quantentheoretischen Faktorisierungsalgorithmus hier vorstellen. Er besteht aus einem klassi-
schen Algorithmus, der stochastische Elemente (Zufallselemente) enthält, und dem eigentli-
chen Quantenalgorithmus zum Auffinden der Periode einer Funktion. Wir beginnen mit dem
klassischen Teil.

12.6.1 Rückführung von Faktorisierung auf Periodensuche

Der größte gemeinsame Teiler als Hilfsgröße Das Fundamentaltheorem der Arithmetik
besagt: Für jede natürliche Zahl a > 1 gibt es eine eindeutige Primfaktorzerlegung (prime
factorization)

a = pa1
1 p

a2
2 . . . pan

n (12.37)

mit verschiedenen Primzahlen p1, . . . , pn und nicht verschwindenden natürlichen Zahlen
a1, . . . , an. Unser Ziel ist die Angabe eines schnellen Algorithmus zur Primzahlzerlegung.
Wir machen dabei davon Gebrauch, dass es effiziente Methoden zur Bestimmung des größ-
ten gemeinsamen Teilers ggT(a, b) (greatest common divisor) von zwei natürlichen Zahlen a
und b gibt (vergl. 12.8). ggT(a, b) ist die größte ganze Zahl, die sowohl Teiler von a wie von b
ist.

12 : Teiler 1, 2, 3, 4, 6, 12 .
18 : Teiler 1, 2, 3, 6, 9, 18 .
⇒ ggT(12, 18) = 6 (12.38)

N sei ungerade und keine Primzahl. Zur Primzahlzerlegung von N ermitteln wir einen
nicht-trivialen Teiler von N und wenden das Verfahren sukzessive wieder auf die gefundenen
Faktoren von N an. Hierzu reicht es, eine natürliche Zahl b zu finden, die mit N mindestens
einen Teiler �= 1 gemeinsam hat, dann haben wir mit ggT(b,N ) insbesondere auch einen Teiler
von N gefunden. Eine solche Situation liegt vor, wenn es natürliche nicht durch N teilbare
Zahlen c > N und d > N gibt, sodass die Gleichung

cd

N
= m (12.39)

für eine natürliche Zahl m erfüllt ist. Dann muss es möglich sein, alle Faktoren der Primzahl-
zerlegung von N gegen einige oder alle Faktoren von c und d zu kürzen. Es gibt also einen
ggT(c,N ) und einen ggT(d,N ). Wir berechnen beide mit dem ggT-Algorithmus und haben
damit zugleich Faktoren von N gefunden.

Die Rolle der Periodenbestimmung Wie gewinnen wir zu vorgegebenem N eine solche
Relation (12.39)? Hierzu stellen wir eine Vorüberlegung an. a sei eine natürliche Zahl mit
2 ≤ a ≤ N − 1. Wir setzen voraus, dass

ggT(a,N) = 1 (12.40)

erfüllt ist, sonst wäre bereits ein Teiler von N gefunden, und bilden die Funktion

f(x) := ax (mod N) . (12.41)
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Man kann zeigen (vergl. Abschn. 12.8), dass die Funktion f(x) eine Periode r hat. Darunter
verstehen wir die kleinste natürliche Zahl, für die

f(x+ r) = f(x) (mod N) (12.42)

gilt. Die Periode r hängt von a ab. Aus

ax+r = axar = ax (mod N) (12.43)

folgt der Zusammenhang

ar = 1 (mod N) . (12.44)

Wir machen ein einfaches Beispiel und berechnen modular

(x, f(x) = 2x mod 3) : (1, 2), (2, 1), (3, 2), (4, 1), . . . (12.45)

Die Periode ist r = 2 und es gilt

ar = 22 = 1 (mod 3) . (12.46)

Nehmen wir an, zu gegebenem a sei die Periode r in einem geeigneten Verfahren bereits
bestimmt worden. Und nehmen wir weiter an, dass die folgenden beiden Bedingungen erfüllt
sind:

r ist gerade, (12.47)

a
r
2 + 1 �= 0 (mod N) . (12.48)

Dann können wir wegen Bedingung (12.47) die Gl. (12.44) umformen

ar − 1 = (a
r
2 + 1)(a

r
2 − 1) = 0 (mod N) . (12.49)

Die linke Seite der Gl. (12.49) muss ein Vielfaches von N sein. Es gibt daher eine natürliche
Zahl m > 0, sodass wir

(a
r
2 + 1)(a

r
2 − 1)

N
= m (12.50)

schreiben können.
Gleichung (12.48) besagt, dass a

r
2 + 1 kein Vielfaches von N ist. Da r die kleinste Zahl

mit der Eigenschaft (12.42) ist, muss weiterhin

a
r
2 − 1 �= 0 (mod N) (12.51)

gelten, denn sonst wäre wegen Gl. (12.44) bereits r
2 die Periode. Daher ist auch a

r
2 − 1 kein

Vielfaches von N . Andererseits besagt Gl. (12.50), dass wir auf ihrer linken Seite nach einer
Primzahlzerlegung alle Faktoren von N gegen Faktoren im Zähler wegkürzen können. Das

Kürzen muss dabei in (a
r
2 + 1) und in (a

r
2 − 1) erfolgen, denn sonst wäre einer dieser Terme
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ein Vielfaches von N und im Widerspruch zu Gl. (12.48) und (12.51). Beide Terme haben
daher mit N gemeinsame Teiler. Darunter gibt es jeweils Größte mit

ggT(a
r
2 + 1, N) �=

(
N
1

)
, ggT(a

r
2 − 1, N) �=

(
N
1

)
. (12.52)

Diese Existenzaussage ist unser Ergebnis. Wenn wir schließlich den Algorithmus zur ggT-
Bestimmung anwenden, haben wir einen oder zwei Faktoren von N gewonnen.

Wir sind nur dann erfolgreich, wenn wir zu vorgegebenem N ein a finden, sodass die
Bedingungen (12.47) und (12.48) erfüllt sind. Die Suche erfolgt, indem Zufallswerte für a
eingegeben werden und so lange der Algorithmus immer wieder durchlaufen wird, bis sich
ein a findet, das die Bedingungen erfüllt. Es handelt sich daher um einen Zufallsalgorithmus
(randomized algorithm). Die gewonnenen Faktoren von N werden in gleicher Weise weiter
bearbeitet, bis die Faktorzerlegung erreicht ist.

Flussdiagramm Das oben beschriebene Schema des Faktorisierungsalgorithmus ist in
Abb. 12.9 dargestellt. Nur für den doppelt gerahmten Teil der Periodensuche wird ein Quan-
tenalgorithmus eingesetzt.

Das Beispiel N = 15 Die Zahl 15 ist die kleinste ungerade Zahl, die keine Primzahl ist. 15
ist daher die kleinste Zahl, die mit der beschriebenen Methode faktorisiert werden kann. Mit
N = 15 haben wir 2 ≤ a ≤ 14. Da Gl. (12.40) zu erfüllen ist, gibt es für die Wahl von a die
folgenden Möglichkeiten:

a ∈ {2, 4, 7, 8, 11, 13, 14} . (12.53)

Wir wählen z. B. a = 11 und suchen die Periode r von f(x) von Gl. (12.41).

x = 0 : 110 = 1 (mod 15)
x = 1 : 111 = 11 (mod 15)
x = 2 : 112 = 121 = 8 · 15 + 1 = 1 (mod 15)
x = 3 : 113 = 1331 = 88 · 15 + 11 = 11 (mod 15) . (12.54)

Wir haben die Periode r = 2 erhalten und damit

ggT(11 + 1, 15) = 3, ggT(11− 1, 15) = 5 . (12.55)

Die Zahlen 3 und 5 sind Teiler von 15. Die Primzahlzerlegung von 15 lautet 15 = 3 · 5.
Wenn die zufällige Festlegung von a auf a = 14 führt, erhalten wir:

x = 0 : 140 = 1 (mod 15)
x = 1 : 141 = 14 (mod 15)
x = 2 : 142 = 196 = 13 · 15 + 1 = 1 (mod 15)
x = 3 : 143 = 2744 = 182 · 15 + 14 = 14 (mod 15) . (12.56)

Die Periode ist wieder r = 2. Wir bilden

ggT(14 + 1, 15) = 15, ggT(14− 1, 15) = 1 . (12.57)

Damit ist die Bedingung (12.52) verletzt. In Abb. 12.9 (Flussdiagramm) führt die Schleife
zurück. Es muss ein neuer Wert für a gewählt werden.
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Wähle in zufälliger

Weise a ∈ {2, . . . , N − 1}

z1 = ggT(a,N)

Berechne

der Funktion ax mod N

Bestimme Periode r

z1 = 1

z = max {ggT(a
r
2 + 1, N), ggT(a

r
2 − 1, N)}

ein Faktor

r gerade

z �= 1, N

z1 bzw. z2 ist

JA

JA

JA

NEIN

NEIN

NEIN

Abbildung 12.9: Schema des Faktorisierungsalgorithmus. Nur der doppelt gerahmte Teil wird auf dem
Quantencomputer durchgeführt.

12.6.2 Quantenalgorithmus zur Periodenbestimmung

Die verbliebene Aufgabe besteht in der Bestimmung der Periode der Funktion f(x) = ax

(mod N). Wir verwenden wieder zwei Register der Länge n und m. Im ersten Register kön-

nen die d = 2n Basisvektoren |x〉 vonH(n)
2 sowie jede Superposition |φ〉 ∈ H(n)

2 eingegeben
werden. Im zweiten Register wird f(x) (mod N) abgelegt. Die Länge m ist so zu wählen,
dass die Dimension 2m ≥ N ist. Zustände in diesem Register bezeichnen wir mit |χ〉 ∈ H(m)

2 .

Ein Gesamtzustand aller Register ist von der Form |ψ〉 = |φ〉|χ〉 ∈ H(n)
2 ⊗H(m)

2 .

1.Schritt: Initialisierung Als Ausgangspunkt für die Nutzung des Quantenparallelismus
wird im ersten Schritt der Zustand |ψ〉 in bekannter Weise in die gleichgewichtige Superposi-
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tion der Basiszustände vonH(n)
2 gebracht

|ψ1〉 =
1√
d

d−1∑

x=0

|x〉|0〉 . (12.58)

Beispiel N = 15:
1. Register: n=3 Qubits für die Zahlen 0 bis 7. Damit ist d = 8.
2. Register: m = 4 Qubits für die Zahlen 0 bis N = 15.
Wähle a = 11.
|ψ1〉 = 1√

8
(|0〉+ |1〉+ . . . |7〉) |0〉

2. Schritt: Berechnung von f(x) im zweiten Register Das Ergebnis der unitären Trans-
formation ist der verschränkte Zustand

|ψ2〉 =
1√
d

d−1∑

x=0

|x〉|ax〉 (mod N) (12.59)

Beispiel N = 15:

|ψ2〉 =
1√
8
(|0〉|1〉+ |1〉|11〉+ |2〉|1〉+ |3〉|11〉

+ · · ·+ |7〉|11〉) (12.60)

|ψ2〉 =
1√
8
{(|0〉+ |2〉+ |4〉+ |6〉) |1〉

+ (|1〉+ |3〉+ |5〉+ |7〉) |11〉} . (12.61)

Periodizität kann man an der Folge der x-Werte ablesen, für die die Funktionswerte sich
wiederholen. Die Periode ist eine globale Eigenschaft der Funktion. Sie ist nach einem einzi-
gen Rechenschritt bereits in den Zuständen repräsentiert. In Gl. (12.61) ist nach den Funkti-
onswerten im zweiten Register zusammengefasst worden. Die Periode (hier r = 2) ist in den
verschiedenen Zuständen des ersten Registers gespeichert, die sich bei der Zusammenfassung
ergeben. Die Zerlegungen dieser Zustände nach Basiszuständen können in den Nummern der
Basiszustände Verschiebungen um l ∈ � gegenüber 0 aufweisen, die auch Offset genannt
werden. In Gl. (12.61) haben wir als Nummern der Basisvektoren (0, 2, 4, 6) und (1, 3, 5, 7).
Der Offset ist l = 0 bzw. l = 1.

Die Periode ist damit bereits im Prinzip ablesbar. Wir messen in der Rechenbasis des
zweiten Registers und überführen dabei das erste Register je nach Offset in den Zustand

|φ′2(l)〉 =
√[

r

q

]
h q
r

i
−1

∑

j=0

|l + jr〉 . (12.62)

[
q
r

]
ist dabei die größte natürliche Zahl kleiner oder gleich q

r . Im Beispiel ist
[
q
r

]
= 4. Diese

Messung wiederholen wir sehr oft und selektieren nach dem Messergebnis (also nach dem
Offset l). |φ′2(l)〉 wird dann in der Rechenbasis gemessen. Im Beispiel würde l = 1 die Mes-
sergebnisse (0, 2, 4, 6) liefern und die Perioden r = 2 ist ablesbar. Dies wird allerdings mit
wachsendem N immer aufwendiger. Man verwendet daher ein anderes Verfahren.
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3. Schritt: Diskrete Fourier-Transformation Ein schnelleres Verfahren besteht darin, mit
Hilfe einer Fourier-Transformation den Offset in einen für die quantentheoretische Mes-
sung irrelevanten Phasenfaktor zu verschieben. Der unitäre Operator zur diskreten Fourier-
Transformation bewirkt

UDFT |x〉 = 1√
d

d−1∑

z=0

exp
(
2πi

xz

d

)
|z〉 (12.63)

mit z ∈ �. Die Zustände im ersten Register sind in (12.62) angegeben. Wir diskutieren zu-
nächst den Spezialfall

d

r
∈ � . (12.64)

Dann ist

|φ2(l)〉 =
√
r

d

d/r−1∑

j=0

|l + jr〉 (12.65)

und

UDFT |φ2(l)〉 =
d−1∑

z=0

f̃(z)|z〉 (12.66)

und

f̃(z) =
√
r

d

d
r−1∑

j=0

exp
(

2πi
(l + jr)z

d

)

=
√
r

d






d
r−1∑

j=0

exp
(
2πij

rz

d

)



 exp

(
2πi

lz

d

)
. (12.67)

Wir untersuchen den Faktor [. . . ] weiter. Wenn z ein Vielfaches (einschließlich der Null)
von d

r ist, dann liegt eine geometrische Reihe vor

[. . . ] =
exp

(
2πi rzd · dr

)− 1
exp

(
2πi rzd

)− 1
= 0 , (12.68)

da z ∈ �. Wir müssen also nur z = k dr betrachten.
Der neue Laufbereich von z zieht sich auf die Zustände |z〉 durch. Das führt auf

UDFT |φ2(l)〉 = 1√
r

r−1∑

k=0

exp
(

2πi
lk

r

)
|kd
r
〉 . (12.69)
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Abbildung 12.10: Wahrscheinlichkeitsverteilung der Messergebnisse x im ersten Register beim Shor-
Algorithmus.

Der Offset l steht jetzt in der Phase. Die Periode r steht in den Bezeichnungen der Zustände
(k dr ∈ �). Der Gesamtzustand ist

|ψ3(l)〉 = 1√
r

r−1∑

k=0

|k dr 〉|ξl〉 . (12.70)

Den Zustand des zweiten Registers müssen wir nicht explizit hinschreiben. Insgesamt sind
bisher erst zwei unitäre Transformationen erfolgt.

3. Schritt: Messung am ersten Register Wir messen in der Rechenbasis und wiederholen
die ganze Prozedur mehrfach. Nur die Messergebnisse xk = k dr mit k = 0 . . . , r − 1 werden
mit nicht verschwindender konstanter Wahrscheinlichkeit angezeigt (vergl. Abb. 12.10a).
Daraus lässt sich d

r ablesen. Da d bekannt ist, ist so die Periode r bestimmt.

Beispiel N = 15:
Wir haben d = 8.
Die Summanden in Gl. (12.61) haben den Offset l = 0 und l = 1. Die unitäre Transformation
UDFT überführt in

|ψ3〉 =
1√
4

{
(|0〉+ |4〉)|1〉+ (|0〉+ eiπ|4〉)|11〉} (12.71)

Mit der Wahrscheinlichkeit 1
2 wird am ersten Register das Ergebnis 0 gemessen. Das enthält

keine Information. Wenn der zu k = 1 gehörige Wert 4 gemessen wird, folgt aus 4 = k dr für
die Periode r = 2. Das beendet die Periodenbestimmung.

Wir ergänzen noch, dass man bei nur einer Messung mit dem Messwert x′ mit einer
gewissen Wahrscheinlichkeit auf ein k′ trifft, dass mit r keinen gemeinsamen Teiler hat.
(ggT(k′, r) = 1).

x′

d
=
k′

r
(12.72)

Dann kürzt man x′/d so lange, bis ein irreduzibler Bruch entsteht und liest r ab. Mit einer ge-
wissen Wahrscheinlichkeit reicht daher schon eine einzige Messung zur Periodenbestimmung.
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Allgemeiner Fall Wenn r kein Teiler von d ist und damit die Annahme (12.64) nicht erfüllt
ist, werden wir trotzdem erwarten, dass sich die Wahrscheinlichkeitsverteilung um die Werte
von x konzentriert ist, die „fast“ ein Vielfaches von d

r sind (vergl. Abb. 12.10b). Das lässt
sich auch beweisen. Ein passendes Auswertungsverfahren kann angegeben werden (vergl.
Abschn. 12.8). Die Zeit zur Durchführung der Quanten-Fourier-Transformation in einem d-
dimensionalen Raum ist von der Größenordnung (log d)2. Die klassische schnelle Fourier-
Transformation ist von der Ordnung d log d. Daraus ergibt sich ihre Unterlegenheit (vergl.
Abschn. 12.8).

12.7 Quantenfehlerkorrektur mit Hilfe nicht-lokaler
Messungen

Wie in klassischen Computern, so treten auch in realen Quantencomputern Fehler auf. Wie wir
in Kap. 15 im Einzelnen sehen werden, führt die Wechselwirkung mit der Umgebung zu Deko-
härenz. Die reinen Zustände, auf denen die Berechnung beruht, werden in Gemische überführt.
Eine andere Störung besteht darin, dass die Quantengatter, aus denen der Quantencomputer
aufgebaut ist, nicht völlig perfekt arbeiten und möglicherweise gestörte unitäre Transformatio-
nen durchführen. Besonders drastische Störungen entstehen, wenn Zustände in Registerstellen
umspringen (z. B. |0〉 → |1〉) oder eine Phasenänderung erfahren (z. B. |0〉 → −|0〉). Sowohl
im Computer wie auch bei der Übertragung in Kanälen muß Quanteninformation gegen Ver-
lust geschützt werden indem man Fehler aufspürt (Diagnose) und beseitigt (Therapie).

Die üblichen Verfahren zur Fehlerkorrektur bei klassisch verarbeiteter Information sind
nicht übertragbar, da sie auf dem Kopieren von Zuständen und auf lokalen Messungen be-
ruhen. Es gibt aber keine universellen Kopierer für Quantenzustände und lokale Messungen
zerstören die Verschränkung. Man benötigt Quantenverfahren zur Fehlerkorrektur. Wir geben
einige an.

Die quantentheoretischen fehlerkorrigierenden Kodes (quantum error-correcting codes,
QECC) sind ein Beispiel für die Verwendung von Verschränkung und von nicht-lokalen Mes-
sungen als Hilfsmittel. Die Grundidee besteht darin, Information redundant zu speichern. Es
entstehen verschränkte Zustände. Im einfachsten Fall treten einzelnen Fehler lokal, d. h. in Un-
tersystemen und einzelnen Registern auf. Dann können diese Fehler durch nicht-lokale Mes-
sungen (vergl. Abschn. 9.2) aufgespürt werden und die lokal-verborgene Information kann
wieder hergestellt werden. Wir wollen das an einigen Beispielen demonstrieren.

12.7.1 Bit-Flip-Fehler

Ein Bit-Flip-Fehler (bit flip error) |0〉 → |1〉, |1〉 → |0〉 tritt lokal an einer einzelnen Register-
stelle auf. Man kann sich dagegen schützen, indem man ein einzelnes Qubit durch drei Qubits
in der folgenden Weise redundant kodiert:

|0〉 → |0̄〉 := |0, 0, 0〉 |1〉 → |1̄〉 := |1, 1, 1〉 . (12.73)

Damit wird aus dem Zustand |ϕ〉 der verschränkte Zustand |φ〉
|ϕ〉 := c0|0〉+ c1|1〉 → |φ〉 := c0|0, 0, 0〉+ c1|1, 1, 1〉 . (12.74)
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|0〉

|ϕ〉

Abbildung 12.11: Erzeugung einer redundanten Kodierung.

Die entsprechende Quantenschaltung lässt sich mit Hilfe von zwei CNOT-Gattern wie in
Abb. 12.11 aufbauen.

Wir bezeichnen die Produkt-Hilbert-Räume nicht mehr mit großen Buchstaben, sondern
nummerieren sie durch:H(1)⊗H(2)⊗ . . .. Die Zustände |0̄〉 und |1̄〉 sind beide Eigenzustände
von σ(1)

z σ
(2)
z und σ(2)

z σ
(3)
z zum Eigenwert +1. Die entsprechenden nicht-lokalen Messungen

in der Rechenbasis ergeben den Messwert +1 (vergl. Abschn. 9.2).

Ein Bit-Flip an einer Registerstelle führt z. B. auf den Zustand

|φ′〉 := c0|1, 0, 0〉+ c1|0, 1, 1〉 . (12.75)

Die Messung der Observablen σ(1)
z σ

(2)
z ergibt nun den Messwert −1, die der Observablen

σ
(2)
z σ

(3)
z den Messwert +1. Daraus kann eindeutig geschlossen werden, dass der Bit-Flip im

ersten Register stattgefunden hat. Wichtig ist, dass bei der nicht-lokalen Messung der Zustand
|φ′〉 nicht abgeändert wurde. Daher führt eine unitäre Transformation σ(1)

x ⊗ �(2) ⊗ �(3), die
einen Bit-Flip beim ersten Registerzustand bewirkt, dort wieder auf den Zustand |φ〉 zurück.

Die Messwertepaare, die bei der Messung von σ(1)
z σ

(2)
z und σ(2)

z σ
(3)
z erhalten werden, sind:

(+1,+1), (−1,+1), (−1,−1), (+1,−1). Sie entsprechen der Reihe nach: kein Flip, Flip in
der ersten, der zweiten oder der dritten Registerstelle. Der Bit-Flip wird wieder durch einen
weiteren Bit-Flip an derselben Stelle rückgängig gemacht.

Unitäre Transformationen können nahe an der Identität sein. Dann findet nur selten ein
Bit-Flip statt. Wir betrachten das Beispiel (|ε| � 1)

|φ〉 → |φ′′〉 = c0 (|0, 0, 0〉+ ε|1, 0, 0〉)
c1 (|1, 1, 1〉+ ε|0, 1, 1〉) (12.76)

Durch Messung von σ(1)
z σ

(2)
z und σ(2)

z σ
(3)
z wird mit der Wahrscheinlichkeit 1−|ε|2 das Mess-

ergebnis (0, 0) erhalten und auf den Zustand |φ〉 zurück projiziert. Mit der Wahrscheinlichkeit
|ε|2 findet man das Ergebnis (−1,+1) und die Messung überführt in |φ′〉. Aus dem Messer-
gebnis kann auf den Endzustand geschlossen werden und, wenn nötig, der Fehler korrigiert
werden.
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12.7.2 Phasen-Flip-Fehler

Es wird ein Qubit in folgender Weise in 9 Qubits kodiert, die zu Clustern von 3 Qubits zusam-
mengefasst sind:

|0〉 → |0̄〉 =
1

23/2
(|0, 0, 0〉+ |1, 1, 1〉) (|0, 0, 0〉+ |1, 1, 1〉) (|0, 0, 0〉+ |1, 1, 1〉)

|1〉 → |1̄〉 =
1

23/2
(|0, 0, 0〉 − |1, 1, 1〉) (|0, 0, 0〉 − |1, 1, 1〉) (|0, 0, 0〉 − |1, 1, 1〉)

(12.77)

Jeder Cluster hat eine redundante Bit-Kodierung. Ein einzelner Bit-Flip kann wie in Ab-
schn. 12.7.1 ermittelt und behoben werden. Ein Phasen-Flip-Fehler (phase flip error), der
an einer der 9 Registerstellen stattfindet, kann folgendermaßen festgestellt werden: Man misst
die zwei nicht-lokalen 6-Qubit-Observablen

σ
(1)
x σ

(2)
x σ

(3)
x σ

(4)
x σ

(5)
x σ

(6)
x

σ
(4)
x σ

(5)
x σ

(6)
x σ

(7)
x σ

(8)
x σ

(9)
x (12.78)

die mit σx gebildet werden. Die Zustände |0̄〉 und|1̄〉 sind Eigenzustände zum Eigenwert +1.
Wenn ein Phasenflip (Vorzeichenwechsel) in einem der Register stattfindet, dann ändert

sich für diesen Cluster der Messwert der σxσxσx-Messung um den Faktor −1. Durch Mes-
sung der Operatoren (12.78) kann man ähnlich wie beim Bit-Flip-Fehler ermitteln, in welchem
Cluster der Phasen-Flip stattgefunden hat. Die Fehlerkorrektur besteht dann darin, dass in die-
sem Cluster an irgendeiner Registerstelle eine σz-Transformation durchgeführt wird. Dadurch
wird der Ausgangszustand wieder hergestellt.

Fehler bei allen Registerstellen Wir lassen zu, dass an allen Registerstellen ein Fehler auf-
treten kann, verlangen aber, dass das bei jeder einzelnen Registerstelle nur selten geschieht.
Auf das einzelne Qubit kann dann die unitäre Transformation U = � + O(ε) mit ε � 1
wirken. Sie hat ganz allgemein die Struktur

U = �+ iεxσx + iεyσy + iεzσz . (12.79)

Die einzelnen Terme bewirken Bit-Flip, Phasen-Flip oder beides zusammen. Wir betrachten
die Kodierung (12.77). Man führt wieder die Diagnose für Phasen-Flip und Bit-Flip durch und
erreicht damit bereits, dass mit großer Wahrscheinlichkeit auf den ungestörten Zustand zurück
projiziert wird. Mit einer geringen Wahrscheinlichkeit |ε|2 hat ein Bit-Flip oder Phasen-Flip in
einem Register stattgefunden. Dieser Fehler wird erkannt und kann auf bekannte Weise beho-
ben werden. Bei Fehlern an zwei oder mehr Stellen ist das so nicht möglich. Diese Situation
tritt allerdings auch nur mit einer Wahrscheinlichkeit |ε|4 oder kleiner auf.

12.8 Ergänzende Themen und weiterführende Literatur

• Das Toffoli-Gatter ist ein universelles reversibles Gatter. Jede unitäre Transformation
lässt sich durch Kombination von Toffoli-Gattern realisieren: [Pre 98, Kap. 6], [Gru 99,
Kap. 1.7.1 und 3.1], [Hir 01, Kap. 2.3.2].
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• Rechenzeiten für klassische und quantentheoretische Fourier-Transformation: [Pre 98,
Kap. 6].

• Diskrete Fourier-Transformation, wenn Gl. (12.64) nicht erfüllt ist: [EJ 96], [Pre 98, Kap.
6.9.1].

• Dekohärenz durch Kopplung an die Umgebung zerstört die unitäre Entwicklung im
Quantencomputer und ist daher eine wichtige Fehlerquelle: [Bar 96], [PSE 96].

• Dekohärenzfreie Unterräume und Systeme gelten als eine der erfolgversprechenden Lö-
sungen des Dekohärenzproblems beim Quantencomputing: [LW 03].

• Wissen über Computational Complexity ermöglicht die Einschätzung von Vorteilen und
Grenzen von Quantencomputern: [Mer 02].

• Fehlerkorrigierende Quantenkodes: [Pre 98, Kap. 7], [Pre 98 a], [Gru 99, Kap. 7],
[Pre 99].

• Anzahl der nötigen Anfragen beim Grover-Algorithmus: [Pre 98, Kap. 6], [EHI 01].

• Beschreibung weiterer Such-Algorithmen: [Gru 99, Kap. 3].

• Optimale Zahl der Wiederholungen beim Grover-Algorithmus: [BBH 98], [EHI 01].

• Übersichtsartikel zum Shor-Algorithmus: [EJ 96].

• Übersichtsartikel zum Quantencomputing: [Ben 95], [Bar 96], [PVK 96], [Bar 98],
[CEM 98], [DE 98], [Pre 98, Kap. 6], [Ste 98], [VP 98], [Bra 99a], [Joz 00], [NC 00, Part
II], [RP 00], [EHI 01], [CB 02], [GM 02], [Lom 02a], [Wer 02].

• Euklidischer Algorithmus zur Bestimmung des größten gemeinsamen Teilers: [NC 00,
Appendix 4].

• Wenn die Bedingung (12.40) erfüllt ist, hat die Funktion f(x) von Gl. (12.42) eine Peri-
ode. Beweis mit Hilfe des Satzes von Euler und Fermat: [HW 79].

• Bücher über Quantencomputing: [BDM 98], [WC 98], [Bra 99], [Bro 99], [Gru 99],
[Pit 00], [CP 01], [Hir 01], [DM 02], [KSV 02], [LB 02], [Lom 02], [SS 04].

• Bücher oder Übersichtsartikel zur experimentellen Realisierung von Quantencomputern:
[Pel 98], [Gru 99, Kap. 7.6], [BEZ 00], [CLK 00], [DiV 00], [NC 00, Part II], [DM 02],
[SS 04].

• Bücher mit Übersichtsartikeln zur experimentellen Realisierung von Quantencomputern:
[LSP 98], [Bra 99], [BEZ 00], [DM 02], [Hei 02].

• Buch mit einer Gesamtdarstellung der Ansätze zur experimentellen Realisierung von
Quantencomputern: [SS 04].

• Bücher mit Übersichtsartikeln zur Theorie der Quantencomputer: [LSP 98], [Bra 99],
[CB 02], [GM 02], [Hei 02], [Lom 02].
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12.9 Übungsaufgaben

ÜA 12.1 [Zu 12.4.2]

(i) Zeigen Sie, dass die Wirkung der Hadamard-Transformation von n Qubits H(n) = H ⊗
H ⊗ · · · ⊗H auf |x〉 die Form

|x〉 H(n)

−−−→ 1√
d

d∑

y=0

(−1)(x·y)|y〉 (12.80)

hat. Es entsteht eine gleichgewichtete Superposition der Basisvektoren von H(2)
2 mit

Vorzeichen +1 und −1. Dabei ist (x · y) das „vektorielle innere Produkt“ der Register-
zustände

(x · y) = xn−1yn−1 + xn−2yn−2 + . . .+ x0y0 . (12.81)

(ii) Geben Sie |ψ′′〉 von Gl. (12.23) vollständig an.

(iii) Eine Blackbox berechnet die Funktion fa : {0, 1}n → {0, 1} definiert durch

fa(x) = (a · x) . (12.82)

Geben Sie einen Quantenalgorithmus an, der in der Lage ist, durch einmalige Berech-
nung von fa und Messung des x-Registers die 2n Funktionen fa zu unterscheiden
(Bernstein-Vazirani-Problem). Gehen Sie hierzu von dem in der Teilaufgabe (ii) gewon-
nenen Ausdruck für |ψ′′〉 aus.

ÜA 12.2 [Zu 12.5] Für welchen Wert von N ist beim Grover-Algorithmus der gesuchte
Zustand |l〉 bereits nach einem Durchgang mit Sicherheit bestimmt?
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13 Verallgemeinerte Messungen, POVM

In der Quantentheorie sind nicht nur projektive Messungen möglich. Verallgemeinerte Mes-
sungen beschreiben komplexe Messsituationen und eröffnen neue Messmöglichkeiten. Wir
führen am Beispiel des nicht-idealen Stern-Gerlach-Experiments in diese Messungen und in
die POVM-Messungen ein.

13.1 Aufgaben einer allgemeinen Dynamik offener
Quantensysteme

13.1.1 Fragestellungen

Wir haben schon bisher ein Quantensystem SA um ein weiteres System SB zu einem 2-
Teile-System SAB erweitert. Wechselwirkungen und Verschränkungen zwischen den beiden
Teilsystemen sind erlaubt. Dadurch wird SA zu einem offenen System (open system). Das Ge-
samtsystem SAB soll aber wieder ein geschlossenes System sein. Es kann wie alle geschlosse-
nen Systeme eine unitäre dynamische Entwicklung durchlaufen (unitäre Dynamik) und man
kann an ihm projektive Messungen durchführen (Messdynamik). Die Regeln für beide For-
men von Dynamik haben wir im vorangegangenen Kapitel 7.3.1 in den Postulaten formuliert.
Wir wollen in den nächsten Kapiteln eine andere Betrachtungsweise vorstellen und dabei die
Offenheit des Systems SA in den Mittelpunkt stellen.

Die folgenden Fragestellungen sollen behandelt werden:

(i) Welche Form hat die Dynamik von SA in der speziellen Situation, in der SA Teilsystem
eines abgeschlossenen Systems SAB ist, das eine unitäre Entwicklung durchläuft?

(ii) Welche Struktur hat die allgemeinste physikalische Dynamik eines offenen Systems SA?
Diese Frage soll weitgehend ohne einen Bezug auf ein zweites System (also auf SB)
beantwortet werden.

(iii) Kann man diese – nicht mehr notwendig unitäre – verallgemeinerte Dynamik von SA

immer als Folge einer unitären Dynamik eines um SB erweiterten Gesamtsystems SAB

auffassen? Wenn das möglich ist, wäre zugleich ein Verfahren für die experimentelle
Realisierung der verallgemeinerten Dynamik von SA angegeben.

Bisher haben wir die unitäre Dynamik verallgemeinert. Analog kann man die projektive
Messdynamik verallgemeinern. Zunächst gehen wir wieder vom verschränkten Gesamtsystem
SAB aus.

Verschränkte Systeme: Die Quantenphysik auf neuen Wegen. Jürgen Audretsch
Copyright c© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40452-X
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(i) Eine projektive Messung am zweiten System SB überführt ein damit verschränktes Sys-
tem SA mit gewissen Wahrscheinlichkeiten in entsprechende neue Zustände.

(ii) Wenn wir von der möglichen Existenz eines zweiten Systems SB absehen und nur SA

betrachten, welches ist die allgemeinste physikalische Struktur einer Messung an einem
System SA?

(iii) Kann man diese – nicht mehr notwendig projektive – verallgemeinerte Messung an SA

immer als Folge einer projektiven Messung an einem mit SA verschränkten System SB

auffassen? Geeignete Verschränkung mit einem Hilfssystem SB wäre dann die Grundla-
ge für die Realisierung einer verallgemeinerten Messung an SA.

Wir werden zunächst an einem einfachen Beispiel ablesen, welche Antworten auf die bei-
den Fragen (i) zu erwarten sind. Danach wenden wir uns den verallgemeinerten Messungen
und den POV-Maßen zu. In Kap. 14 betrachten wir Quantenoperationen als Verallgemeine-
rung der unitären Dynamik und ergänzen in Kap. 16 noch fehlende Beweise.

13.1.2 Ein einfaches Beispiel

Verallgemeinerte Dynamik Um uns mit den zu erwartenden Strukturen vertraut zu machen,
diskutieren wir zunächst ein mathematisch einfaches Beispiel. Wir beginnen mit einer unitären
Dynamik des Gesamtsystems SAB . Der Anfangszustand inHA2 ⊗HB2 sei der Produktzustand

ρAB = ρA ⊗ |0B〉〈0B| . (13.1)

Er wird durch die unitäre Transformation

UAB =
1√
2

(
σAx ⊗ �B + σAy ⊗ σBx

)
(13.2)

in den verschränkten Zustand

ρ′AB = UABρABUAB† (13.3)

=
1
2

{
σAx ρ

AσAx ⊗ |0B〉〈0B|+ σAy ρ
AσAy ⊗ |1B〉〈1B|

+σAx ρ
AσAy ⊗ |0B〉〈1B|+ σAy ρ

AσAx ⊗ |1B〉〈0B|
}

überführt. Das System SA geht dabei in den Zustand

ρA → ρ′A = trB[ρ′AB ] =
1
2
{
σAx ρ

AσAx + σAy ρ
AσAy

}
(13.4)

über.
Die unitäre Entwicklung des Gesamtsystems bewirkt daher am Teilsystem SA eine nicht-

unitäre spurerhaltende Entwicklung, die mit Hilfe eines Superoperators EA in der Form einer
Operatorsummenzerlegung (operator-sum decomposition)

ρ′A = E(ρA) =
2∑

i=1

KA
i ρ

AKA†
i (13.5)
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geschrieben werden kann. Dabei ist

KA
1 :=

1√
2
σAx , KA

2 :=
1√
2
σAy . (13.6)

Die KA
i heißen Kraus-Operatoren (Kraus operators) (oder Operationselemente (operation

elements) bzw. Zerlegungsoperatoren (decomposition operators). Sie erfüllen die Vollstän-
digkeitsrelation

2∑

i=1

KA†
i KA

i = � . (13.7)

Im Vorgriff auf einen noch zu führenden Beweis stellen wir fest: Die Dynamik des offenen
Systems SA lässt sich mit einem Superoperator EA beschreiben, der nur auf den Zustand von
SA wirkt. Für EA gibt es eine Operatorsummen-Darstellung.

Man kann sich die Entwicklung (13.4) auch dadurch nicht-unitär erzeugt denken, dass
mit den Wahrscheinlichkeiten 1

2 die unitären Operatoren auf σAx und σAy auf SA angewendet
werden. Das wäre physikalisch ein ganz anderer Vorgang als der durch UAB von Gl. (13.2)
beschriebene. Die nicht-unitäre Entwicklung von SA lässt sich durch die unitäre Entwicklung
des erweiterten Systems SAE realisieren. Beide stimmen in ihrer Auswirkung auf SA überein.
Wir werden zeigen, dass zu vorgegebener Entwicklung ρA → ρ′A auch die Operatorsummen-
Zerlegung nicht eindeutig festgelegt ist. Viele Einwirkungen auf SA können zum selben End-
zustand führen.

Verallgemeinerte Messung Wir schließen eine spezielle projektive Messung am zweiten
Teilsystem SB an. Hierfür wählen wir die Projektoren zur Rechenbasis vonHB2

PB+ = |0B〉〈0B|, PB− = |1B〉〈1B| . (13.8)

Die Wahrscheinlichkeiten für das Auftreten der Messergebnisse + und − sind

p+,− = trB
[
PB+,−ρ

′BPB+,−
]
. (13.9)

ρ′B = trA
[
ρ′AB

]
ist dabei der reduzierte Dichteoperator der Umgebung SB nach der unitären

Entwicklung. Wir können p+,− auch mit Blick auf das Teilsystem SA interpretieren. p+,−
sind zugleich die Wahrscheinlichkeiten dafür, dass sich das System SA nach der Messung in
einem der Zustände

µ̃′A
+,− = trB

[
PB+,−ρ

′ABPB+,−
]

=
1
2
σAx,yρ

AσAx,y (13.10)

befindet. Wir haben zur Ableitung die Gl. (13.3) verwendet. Mit der Tilde kennzeichnen wir
wieder, dass der Zustand noch nicht normiert ist. Der Normierungsfaktor wäre 2. Die Gesamt-
entwicklung von SA ist also ρA → ρ

′A → µA+,−.
Die Zustände µ̃A+,− des Untersystems SA nach der Messung an SB wurden nicht durch

Projektionen des Ausgangszustandes ρA gewonnen. Wie sind die Superoperatoren auf HA2
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aufgebaut, die den Anfangszustand ρA in diese beiden Zustände überführen? Zur Beantwor-
tung schreiben wir die erste Gl. (13.10) für den Index + unter Verwendung der Gl. (13.1) und
(13.3) aus:

µ̃′A
+ = trB

[
(�A ⊗ |0B〉〈0B|UAB(ρA ⊗ |0B〉〈0B|)UAB(�A ⊗ |0B〉〈0B|)]

= trB
[〈0B|UAB|0B〉ρA〈0B|UAB |0B〉 ⊗ |0B〉〈0B|] . (13.11)

Wir führen noch

MA
+ := 〈0B|UAB |0B〉 = 1√

2
σAx (13.12)

ein und finden

µ̃′A
+ = MA

+ρ
AMA†

+ . (13.13)

Entsprechend ergibt sich für das Messergebnis −

µ̃′A
− = MA

−ρ
AMA†

− (13.14)

mit

MA
− := 〈1B|UAB |0B〉 = 1√

2
σAy . (13.15)

Die Messoperatoren (measurement operators) MA
+,− aufHA2 genügen der Vollständigkeitsre-

lation

MA†
+ MA

+ +MA†
− MA

− = � . (13.16)

Mit einer ähnlichen Umformung von Gl. (13.9) bestätigt man leicht, dass sich auch die
Messwahrscheinlichkeiten, die ja zu Messungen an SB gehören, mit Hilfe der Messoperatoren
schreiben lassen (trB und trA vertauschen)

p+ = trA
[
MA†

+ MA
+ρ

A
]

(13.17)

entsprechend für p−. Es gilt p+ + p− = 1.
Wir haben die Systeme SA und SB durch eine unitäre Entwicklung verschränkt. Eine

anschließende projektive Messung am zweiten Teilsystem SB führt mit den Wahrscheinlich-
keiten p+ bzw. p− auf die Messergebnisse + oder −. Abhängig vom Messergebnis geht da-
bei zugleich das Ausgangssystem SA in einen von zwei wohlbestimmten Zuständen (13.10)
über. Wir können diesen nicht-projektiven Eingriff an SA als eine verallgemeinerte selektive
Messung (generalized selective measurement) an SA interpretieren. Zu ihr gehören die Mes-
sergebnisse + oder − mit den Wahrscheinlichkeiten p+ bzw. p− und den Endzuständen µ̃

′A
+

bzw. µ̃
′A
− . Wir kommen darauf noch genauer in Abschn. 13.3 zurück. Diese Messung lässt

sich mit Hilfe der MessoperatorenMA
+,− formulieren, die nur auf den Zustand ρA von SA vor

der Messung wirken.
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Das spezielle Beispiel zeigt, dass verallgemeinerte Messungen Situationen beschreiben
können, die sich deutlich von den am Projektionsformalismus orientierten traditionellen Vor-
stellungen von einer Quantenmessung unterscheiden. Mit den Messoperatoren von Gl. (13.12)
und (13.15) finden wir

p+ = p− =
1
2
. (13.18)

Die Wahrscheinlichkeiten für die beiden Messergebnisse hängen daher gar nicht vom Zustand
ρA ab, an dem gemessen wird. Bei den physikalisch relevanten verallgemeinerten Messun-
gen ist das allerdings i.a. nicht so. Nachdem wir zur Verdeutlichung gewissermaßen einen
„Extremfall“ vorgestellt haben, wollen wir im nächsten Kapitel ein physikalisches Beispiel
diskutieren, in dem sich die Beschreibung als verallgemeinerte Messung in natürlicher Weise
ergibt. Die allgemeine Struktur behandeln wir danach in Abschn. 13.3.

13.2 Das nicht-ideale Stern-Gerlach-Experiment als
Beispiel für eine verallgemeinerte Messung

13.2.1 Der Versuchsaufbau

Der Versuchsaufbau Im Stern-Gerlach-Experiment (S-G-Experiment) werden in einer
Quelle Spin-1

2 -Objekte erzeugt, die nach Austritt in y-Richtung durch ein inhomogenes
Magnetfeld B fliegen. Der Magnetfeldvektor liegt näherungsweise in z-Richtung (vergl.
Abb. 13.1) sein Betrag ist eine Funktion von z. Das magnetische Moment der Objekte ver-
ursacht eine Wechselwirkung mit dem Magnetfeld, die eine polarisationsabhängige Kraft auf
die Objekte bewirkt. Sie führt dazu, dass Objekte im Zustand | ↑〉 (= |0z〉) in positiver z-
Richtung und Objekte im Zustand |↓〉 (= |1z〉) in negativer z-Richtung abgelenkt werden. Für
unsere Überlegungen brauchen wir nur diese sehr idealisierte Beschreibung. Einzelheiten der
Bahnberechnung finden sich in den Lehrbüchern der Quantentheorie. Die abgelenkten Objek-
te treffen auf einen detektierenden Schirm in der x-z-Ebene, auf dem sie Schwärzungspunkte
erzeugen.

Das ideale Stern-Gerlach-Experiment Beim idealen S-G-Experiment ist die Schrödinger-
Funktion |ψ+(r)〉, die das Ortsverhalten bei der Polarisation |↑〉 beschreibt, in einem engen
Bereich um die obere Bahn in Abb. 13.1 lokalisiert und die Schwärzungspunkte liegen aus-
schließlich in der oberen Halbebene (z > 0) des Schirms. Objekte mit Spin |↓〉 haben eine
um die untere Bahn in Abb. 13.1) lokalisierte Zustandsfunktion |ψ−(r)〉 im Ortsraum und
treffen entsprechend nur auf der unteren Halbebene (z < 0) des Schirms auf. Die Wahr-
scheinlichkeitsverteilungen für diese beiden Fälle sind in Abb. 13.2a dargestellt. Beim idealen
S-G-Experiment überlappen sie nicht.

Vereinfachte Beschreibung Wir wollen jedes Auftreffen bei z > 0 einheitlich als Messer-
gebnis +1 und bei z > 0 als Messergebnis−1 auffassen. Die Objekte werden durch Zustände
in einem Produkt-Hilbert-Raum beschrieben. Er setzt sich zusammen aus dem Spin-Raum
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|↓〉|ϕ〉 = c↑|↑〉 + c↓|↓〉

Ofen

|↑〉
B

Abbildung 13.1: Stern-Gerlach-Experiment. Zeichnung nach [BGL 95].
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Abbildung 13.2: Ideales Stern-Gerlach-Experiment. Auftreffwahrscheinlichkeiten (a) und schematische
Darstellung (b). Die Detektoren + und − sprechen bei Auftreffen auf der oberen bzw. unteren Halbebene
an.

HS2 des inneren Spinfreiheitsgrads und dem Raum der äußeren Bahnfreiheitsgrade. Im idea-
len S-G-Experiment werden die Spinpolarisationen in z-Richtung und damit die Observable
σz gemessen.

Um die Rechnungen übersichtlicher zu gestalten, vereinfachen wir die Beschreibung und
führen statt des Bahnraums einen Raum HB2 mit der ONB {|+〉, |−〉} ein. Die Observable
O = |+〉〈+|−|−〉〈−|mit den Messwerten +1 und−1 gibt das Ansprechen auf den Halbebe-
nen z > 0 bzw. z < 0 wieder. Wir repräsentieren das durch das Ansprechen eines projektiv
wirkenden (+)-Detektors bzw. (−)-Detektors wie in Abb. 13.2b. Der komplexe Ablenkungs-
prozess ist dadurch auf zwei „Bahnen“ reduziert worden. Anders als der Schirm, sollen die
Detektoren keine zerstörenden Messungen durchführen. Es macht daher Sinn vom Zustand
des Objekts nach der Messung zu sprechen.

Das nicht optimale Stern-Gerlach-Experiment Im nicht optimal realisierten S-G-
Experiment sind die Schrödinger-Funktionen ψ±(r) nicht streng auf einer Halbebene
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lokalisiert. Die Funktion ψ+(r) verschwindet nicht für z < 0 (vergl. Abb. 13.3a und 13.3b).
Das hat zur Folge, dass für Objekte mit Spin |↑〉 mit einer gewissen Wahrscheinlichkeit auch
der (−)-Detektor anspricht und für Spin |↓〉 der (+)-Detektor anspricht. Aus dem Anspre-
chen eines Detektors kann daher nicht mehr sicher auf das Vorliegen einer Spinpolarisation
geschlossen werden. Im Folgenden diskutieren wir die bisher nur qualitativ beschriebenen
verschiedenen physikalischen Situationen im Einzelnen.

−

z = 0

+

z

|↓〉

|↑〉

−

z = 0

+

z

(b)

|↑〉

|↓〉

(a)

Abbildung 13.3: Nicht-optimales Stern-Gerlach-Experiment. Aus dem Ansprechen eines Detektors
kann nicht eindeutig auf die Spinpolarisation geschlossen werden.

13.2.2 Beispiel einer verallgemeinerten Messung

Vor Durchlaufen des Magnetfelds liegen der Spinzustand

|ϕ〉 = c↑|↑〉+ c↓|↓〉, |c↑|2 + |c↓|2 = 1 (13.19)

und der Bahnzustand |i〉 vor. Der Gesamtzustand aus HS2 ⊗HB2 ist der einlaufende Produkt-
zustand

|χ〉 = |ϕ〉|i〉 . (13.20)

Die Wechselwirkung korreliert die Zustände | ↑〉 und |+〉 sowie die Zustände | ↓〉 und |−〉
miteinander. Das führt auf Verschränkung. Im idealen S-G-Experiment geht dabei |χ〉 unitär
in den verschränkten Zustand

|χ〉 → |χ′〉 = c↑|↑〉|+〉+ c↓|↓〉|−〉 (13.21)

über. Bei einer projektiven Messung in der Rechenbasis spricht der (+)-Detektor mit der
Wahrscheinlichkeit p+ an und das Spinsystem wird in den Zustand | ↑〉 überführt. Entspre-
chendes gilt für den (−)-Detektor.

„ + “ : |ϕ〉 → |↑〉, p+ = |c↑|2 ; „− “ : |ϕ〉 → |↓〉, p− = |c↓|2 . (13.22)

Beim idealen Stern-Gerlach-Experiment führt die durch die Detektoren bewirkte projektive
Messung im Bahnraum HB2 auf eine indirekte projektive Messung der Observablen σz im
Spinraum. Das ist schematisch in Abb. 13.2b dargestellt.
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Im realen S-G-Experiment liegen demgegenüber die beiden Wahrscheinlichkeitsvertei-
lungen nicht mehr symmetrisch zu z = 0, sondern sind unsymmetrisch verschoben und ragen
jeweils über z = 0 hinaus (siehe Abb. 13.3). Der Anfangszustand mit Spinzustand |↑〉|i〉 wird
entsprechend durch die Wechselwirkung in

|↑〉|i〉 → |↑〉(
√

1− p0 |+〉+√p0 |−〉) (13.23)

mit 0 ≤ p0 ≤ 1 überführt. Analoges gilt für |↓〉

|↓〉|i〉 → |↓〉(√p1 |+〉+
√

1− p1 |−〉) (13.24)

mit 0 ≤ p1 ≤ 1. Die Parameter p0 und p1 geben die Verschiebungen der Wahrscheinlich-
keitsverteilungen wieder. Für die oben beschriebene indirekte Projektionsmessung gilt p0 = 0
und p1 = 0. Die Normierung der Zustandsvektoren erzwingt die Form der Vorfaktoren in
Gl. (13.23) und (13.24).

Mit den Gl. (13.23) und (13.24) liegt zugleich fest, wie der allgemeine einlaufende Zustand
|χ〉 = |ϕ〉|i〉 durch die Wechselwirkung verschränkt wird:

|χ〉 → |χ′〉 = {
√

1− p0 c↑|↑〉+√p1 c↓|↓〉}|+〉+ {√p0 c↑|↑〉+
√

1− p1 c↓|↓〉}|−〉 .
(13.25)

Eine Messung besteht wieder im Ansprechen des (+) - Detektors oder (−) - Detektors. Wir
führen die Messoperatoren

M+ :=
√

1− p0 |↑〉〈↑|+√p1 |↓〉〈↓| ,M− :=
√
p0 |↑〉〈↑|+

√
1− p1 |↓〉〈↓| (13.26)

ein. Sie erfüllen die Vollständigkeitsrelation

M†
+M+ +M− +† M− = � . (13.27)

Als Verallgemeinerung von Gl. (13.22) finden wir dann (vergl. Abb. 13.4a)

„ + “: |ϕ〉 → |ϕ+〉 = {
√

1− p0 c↑|↑〉+√p1 c↓|↓〉} · 1
Norm

= M+|ϕ〉 · 1
Norm

, (13.28)

p+ = (1− p0)|c↑|2 + p1|c↓|2 = 〈ϕ|M+|ϕ〉 , (13.29)

„− “: |ϕ〉 → |ϕ−〉 = {√p0 c↑|↑〉+
√

1− p1 c↓|↓〉} · 1
Norm

,

= M−|ϕ〉 · 1
Norm

(13.30)

p− = p0|c↑|2 + (1− p1)|c↓|2 . = 〈ϕ|M−|ϕ〉 . (13.31)

Das nicht-optimale Stern-Gerlach-Experiment stellt ebenfalls eine verallgemeinerte Messung
dar. Die Analogie zu den Gl. (13.12)–(13.17) ist offensichtlich.
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Abbildung 13.4: (a) Schematische Darstellung des nicht-optimalen Stern-Gerlach-Experiments. (b) Er-
weiterung durch unitäre Einwirkungen zu einer nicht-minimalen Messung.

13.2.3 Unscharfe und schwache Messungen

Beim nicht optimalen S-G-Experiment führt die projektive Messung im Bahnraum HB2 nicht
mehr auf eine Projektion im Spinraum. Aus den Wahrscheinlichkeiten p+ und p− kann nicht
mehr auf |c↑|2 und |c↓|2 geschlossen werden. Die verallgemeinerte Messung ist in diesem
Sinne eine unscharfe Messung der Spinpolarisation. Es gibt zwei Grenzfälle:

(i) p0 = p1 = 0: Der Zustand |χ′〉 zeigt zu vorgegebenem Spinzustand |ϕ〉 die größte mög-
liche Verschränkung die Messung ist eine scharfe (oder exakte) Messung (sharp mea-
surement), da aus den Messergebnissen direkt auf |c↑|2 und |c↓|2 geschlossen werden
kann. Das S-G-Gerät ist perfekt eingestellt. Der Informationsgewinn ist in diesem Fall
am größten. Der Ausgangszustand wird andererseits am stärksten durch die Messung
abgeändert.

(ii) p0 = p1 = 1
2 : Der Zustand |χ′〉 ist gar nicht verschränkt (|χ′〉 = 1√

2
|ϕ〉⊗ {|+〉+ |−〉}).

Die Messung ist völlig unscharf (oder unexakt) (unsharp measurement). Wegen p+ =
p− = 1

2 erlauben die Messungen keinen Schluss auf |c↑|2 oder |c↓|2. Die S-G-Anlage ist
für die Bestimmung dieser Größe völlig unbrauchbar. Ein Informationsgewinn liegt nicht
vor. Der Ausgangszustand wird andererseits durch die Messung nicht verändert. Wir er-
wähnen noch, dass diese Parameterwahl der Situation entspricht, in der in Abb. 13.3 die
beiden Kurven übereinander liegen und einen zu z = 0 spiegelsymmetrischen Verlauf
haben.

Wenn die Werte der Parameter p0 und p1 in der Nähe von 1
2 liegen ist die Abänderung des

Spinzustands gering. Wir nennen diesen Eingriff eine schwache Messung (weak measure-
ment). Entsprechend ist auch der Informationsgewinn durch die Messung gering. Die Mes-
sung ist unscharf.

Wir kehren noch einmal zum System SA und dem Hilfssystem SB von Abschn. 13.1.2
zurück. Das nicht-ideale S-G-Experiment ist ein Beispiel dafür, wie durch Wahl von SB (hier
das Bahnsystem) und geeignete Anpassung der unitär erzeugten Verschränkung mit SA (hier
mit dem Spinsystem) ein kontinuierliches Spektrum von verallgemeinerten Messungen von
SA bewirkt werden kann. Hierzu wir an SB projektiv gemessen. Kann man auf diese Weise
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an jedem System SA eine beliebig vorgegebene nicht-projektive Messung realisieren? Wir
kommen auf die Frage in Abschn. 13.3.5, 13.4 und in Abschn. 16.3 zurück.

13.3 Verallgemeinerte Messungen

13.3.1 Was ist eine Quantenmessung?

In Kap. 2 wurden die unitäre Dynamik und die Messdynamik eingeführt. Beide Typen von
Entwicklungen werden durch Eingriffe (interventions) bewirkt. Wir haben in den vorangegan-
genen Kapiteln 13.1 und 13.2 gesehen, dass es allgemeinere Entwicklungen zwischen zwei
Messungen gibt und dass man nicht-projektive Messungen durchführen kann. Wir wollen bei-
de Eingriffe genauer beschreiben und beginnen dabei mit den Messungen.

Eine allgemeine Messung (general measurement) ist ein Eingriff besonderen Typs an ei-
nem einzelnen Quantensystem bei dem (von trivialen Spezialfällen abgesehen) eine Verzwei-
gung (branching) in der Entwicklung des Quantensystems stattfindet. Diese Verzweigung ist
mit einer wohlbestimmten Änderung eines klassischen Systems verbunden, die die Ablesung
einer reellen Zahl (Messergebnis, z. B. Zeigerstellung) aus einem für den Eingriff spezifischen
Wertebereich erlaubt. Die Wahrscheinlichkeiten für das Eintreten der verschiedenen Verzwei-
gungsäste und der zugeordneten Messergebnisse liegen fest, wenn der Messeingriff spezifi-
ziert ist und der Zustand des Systems vor der Messung fixiert ist. Die projektive Messung ei-
ner Observablen ist ein Spezialfall. Wir haben das am Beispiel des Stern-Gerlach-Experiments
veranschaulicht.

Auch im allgemeinen Fall überführt eine selektive Messung des Quantensystems abhän-
gig vom Messergebnis in einen bestimmten Zustand und wirkt daher präparierend. Üblicher-
weise laufen dabei irreversible Prozesse ab, so dass das Messergebnis fixiert ist (z. B.: der
Zeiger bewegt sich nicht mehr über der Skala). Unmittelbare Wiederholung derselben Mes-
sung (d. h. des gleichen Eingriffs) muss aber nicht wieder auf dasselbe Messergebnis führen.
Anders als bei einer projektiven Messung kann bei einer allgemeinen Messung i.a. nicht von
der Messung einer physikalischen Größe (Observablen) wie Energie, Spinpolarisation usw.
gesprochen werden.

In der Quantentheorie kann die Bezeichnung „Messung“ leicht ebenso missverstanden
werden wie die Bezeichnung „Zustand“, da Assoziationen mit den Bedeutungen dieser Be-
griffe in der klassischen Physik geweckt werden. Es gibt für Quantensysteme i.a. keine Ei-
genschaften, die vor der Messung festliegen und die wir durch die Messung ermitteln. Mes-
sen heißt nur, einen speziellen Eingriff durchführen, bei dem in Gestalt der Messwerte eine
Information abgelesen werden kann, die sich primär auf den auslaufenden Zustand bezieht.
Wir werden Beispiele diskutieren, wie man diese Information ausnutzen kann. Bei gewissen
Fragestellungen können allgemeine Messungen den projektiven Messungen überlegen sein.
Auch hierfür geben wir Beispiele. Wir betrachten in diesem Kapitel zunächst noch die ein-
fachste Verallgemeinerung der projektiven Messung und diskutieren die völlig allgemeinen
Messungen in Abschn. 14.2.
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13.3.2 Verallgemeinerte Messpostulate

Eine verallgemeinerte Messung (generalized measurement) wird durch einen Satz {Mm} von
linearen Messoperatoren (measurement operators) beschrieben. Zu jedem ablesbaren reellen
Messwert m (measurement outcome) ist genau ein MessoperatorMm erklärt. Der Einfachheit
halber setzen wir die Messwerte wieder als diskret voraus. Durch den Messeingriff wird der
Zustand |ψ〉 des Quantensystems in den Zustand

|ψ〉 → |ψ′
m〉 =

Mm|ψ〉√
〈ψ|M†

mMm|ψ〉
(13.32)

überführt. Diese Überführung und der zugehörige Messwertm treten mit der Wahrscheinlich-
keit

p(m) = 〈ψ|M†
mMm|ψ〉 (13.33)

auf. Da M†
mMm ein positiver Operator ist, ist die Bedingung p(m) ≥ 0 erfüllt. Wir müssen

zur Erhaltung der Wahrscheinlichkeitsinterpretation (
∑
m p(m) = 1) noch zusätzlich von den

Messoperatoren die Vollständigkeitsrelation
∑

m

M†
mMm = � (13.34)

fordern. (vergl. das Beispiel in Abschn. 13.1.2)

Die Verallgemeinerung auf Dichteoperatoren als Zustände ergibt sich mit den gleichen
Begründungen wie in Kap. 4:

ρ→ ρ̃′m = MmρM
†
m (13.35)

p(m) = tr[M†
mMmρ] = tr[ρ̃′m] , ρ′m =

1
p(m)

ρ̃′m . (13.36)

Bei einer nicht-selektiven Messung haben wir

ρ
n.s−→ ρ′ =

∑

m

MmρM
†
m . (13.37)

Von den OperatorenMm wird nur Linearität verlangt. Dadurch ist garantiert, dass sich die
Relationen von Kap. 4 für Gemische und insbesondere die physikalisch unmittelbar plausi-
ble Gl. (4.13) übertragen. Die Operatoren Mm müssen nicht hermitesch sein. Sie sind keine
Observablenoperatoren. Es wird i.a.

MmMm′ �= δm,m′Mm (13.38)

sein. Insbesondere kann die Anzahl der Messoperatoren auch größer als die Dimension des
Hilbert-Raums sein. Die Mm sind also nur im Spezialfall der projektiven Messungen (Mm =
Pm) orthogonale Projektoren. An den Gl. (13.32) und (13.38) lässt sich ablesen, dass bei der
Wiederholung einer Messung sich die Wahrscheinlichkeitsverteilung der Messwerte ändert.
Mit einem Satz {Mm} wird i.a. nicht die Messung einer Eigenschaft verknüpft. Wir werden
in Abschn. 14.2 sehen, dass die hier beschriebenen verallgemeinerten Messungen (zu einem
Messwert gehört nur ein Messoperator) noch nicht die allgemeinsten Messungen sind.



224 13 Verallgemeinerte Messungen, POVM

13.3.3 Polare Zerlegung eines linearen Operators

Wir stellen zunächst einige mathematische Vorüberlegungen an, die wir dann bei der Interpre-
tation der verallgemeinerten Messungen anwenden.

Bi-orthogonale Entwicklung eines unitären Operators U sei ein unitärer Operator und
{|vi〉} eine ONB des Hilbert-Raums. Dann entsteht durch die unitäre Transformation

|wi〉 = U |vi〉 (13.39)

wieder eine ONB {|wi〉}. Ein beliebiger unitärer Operator U lässt sich daher bei Vorgabe
einer ONB {|vi〉} stets in der Form

U =
∑

i

|wi〉〈vi| (13.40)

mit einer ONB {|vi〉}schreiben.

Polare Zerlegung und bi-orthogonale Entwicklung eines linearen Operators L sei ein
linearer Operator. Dann sind L†L, LL†,

√
L†L und

√
LL† positive Operatoren. Wir gehen

von der spektralen Zerlegung

L†L =
∑

i

λi|ri〉〈ri|, λi ≥ 0 (13.41)

aus. {|ri〉} ist eine ONB. Die Wirkung von L führt auf die Vektoren

|mi〉 := L|ri〉 , (13.42)

für die

〈mi|mi〉 = 〈ri|L†L|ri〉 = λi (13.43)

gilt. Für die Indexwerte i, für die λi �= 0 ist, können wir die Vektoren |mi〉 normieren:

|li〉 := 1√
λi
|mi〉 . (13.44)

Diese |li〉 sind orthonormal

〈li|lj〉 = 1√
λi
√
λj
〈ri|L†L|rj〉 = δi,j . (13.45)

Wir ergänzen diese Vektoren |li〉 zu einer ONB.
Mit Hilfe der ONB {|ri〉} und {|li〉} führen wir den unitären Operator

U :=
∑

i

|li〉〈ri| (13.46)
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ein. Für U ergibt sich mit Gl. (13.41)

U
√
L†L =

∑

i

√
λi|li〉〈ri| . (13.47)

Andererseits folgt aus Gl. (13.42) und (13.44)

L|ri〉 =
√
λi|li〉 . (13.48)

Da die Wirkung von U
√
L†L und L auf der Basis {|ri〉} übereinstimmt, gilt

L = U
√
L†L . (13.49)

U ist eindeutig durch L bestimmt, wenn λi �= 0 für alle i. Die Relation (13.49) wird die links-
polare Zerlegung (left polar decomposition) des linearen Operators L genannt. Damit soll an
die Analogie zur Zerlegung c = eiφ|c| einer komplexen Zahl c in Betrag und Phase erinnert
werden.

Wir schreiben Gl. (13.49) noch mit Hilfe der Gl. (13.41) und (13.46) um

L =
∑

i

√
λi|li〉〈ri|, λi ≥ 0 . (13.50)

Für jeden linearen Operator L gibt es eine bi-orthogonale Zerlegung (13.50) (bi-orthogonal
decomposition) bezüglich zweier ONB {|li〉} und {|ri〉}, deren Konstruktion oben angegeben
ist. Wir ergänzen noch ohne Beweis die rechts-polare Zerlegung (right-polar decomposition)

L =
√
LL†U (13.51)

Man beachte die andere Reihenfolge der Operatoren unter der Wurzel. L†L und LL† haben
dieselben Eigenwerte λi (vergl. Gl. (13.41))

LL† =
∑

i

λi|li〉〈li| . (13.52)

13.3.4 Minimale Messungen

Die Messoperatoren Mm einer verallgemeinerten Messung kann man immer polar zerlegen

Mm = Um
√
Em (13.53)

mit

Em := M†
mMm . (13.54)

Die Em erfüllen als Folge von Gl. (13.34) die Bedingung

∑

m

Em = � . (13.55)



226 13 Verallgemeinerte Messungen, POVM

Die positiven OperatorenEm bilden ein POVM (positive operator valued measure). Sie heißen
Effektoperatoren (effect operators) oder POVM-Elemente (POVM elements). Wir kommen
auf die POVM-Messung in Abschn. 13.3.5 zurück. Der unzerlegte Messoperator Mm be-
wirkt gemäß Gl. (13.32) bzw. (13.35) den Übergang zum neuen Zustand, der zum angezeigten
Messwert m gehört. Der gleiche Endzustand wird erreicht, wenn man den Ausgangszustand
zunächst mit dem positiven Operator

√
Em transformiert und die unitäre Entwicklung Um

anschließt. Die Wahrscheinlichkeit p(m) von Gl. (13.42) für das Auftreten des Messwertesm
ist nur eine Funktion von Em

p(m) = tr[ρEm] . (13.56)

Die unitäre Entwicklung hat keinen Einfluss auf die durch p(m) gewonnene Information.
Wir können uns daher eine verallgemeinerte Messung mit Messwert m formal zerlegt denken
in eine durch

√
Em repräsentierte Messdynamik, die mit der Wahrscheinlichkeit p(m) kor-

reliert ist, und einer unitären Dynamik Um, die keinen Einfluss auf p(m) hat, wohl aber den
ausgehenden Zustand ρ′m mit bestimmt. Es gibt zu einem POVM beliebig viele Operatoren
Um, die auf die gleiche Wahrscheinlichkeitsverteilung p(m) führen. Verallgemeinerte Mes-
sungen mit Um = �, bei denen also der unitäre Einfluss auf den Zustand nicht vorhanden ist,
werden minimale Messungen (minimal measurements) genannt. Projektive Messungen sind
minimal.

Minimale Messungen an Qubits Wir wollen wie im Stern-Gerlach-Experiment vorausset-
zen, dass nur zwei Messergebnisse + und − möglich sind. Wegen der Bedingung (13.55) gilt
dann

E+ = �− E− (13.57)

und die POVM-Operatoren vertauschen

[E+, E−] = 0 . (13.58)

Da die Operatoren positiv sind, sind sie auch hermitesch und es gibt eine orthonormale Basis
{|0〉, |1〉} bezüglich derer beide orthogonal sind:

E+ = a|0〉〈0|+ p1|1〉〈1| , (13.59)

E− = p0|0〉〈0|+ b|1〉〈1| . (13.60)

Die Bedingung (13.58) wird durch a = 1− p0 und b = 1− p1 erfüllt. Die Positivität der Ope-
ratoren bedingt dann 0 ≤ p0 ≤ 1 und 0 ≤ p1 ≤ 1. Die Messoperatoren für die zugehörigen
minimale Messung ergeben sich ganz allgemein in der Form

M+ =
√

1− p0|0〉〈0|+√p1|1〉〈1| , (13.61)

M− =
√
p0|0〉〈0|+

√
1− p1|1〉〈1| . (13.62)
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Wie die Gl. (13.28) und (13.30) zeigen, beruht das in Abschn. 13.2 beschriebene Stern-
Gerlach-Experiment auf diesen Messoperatoren. Es stellt eine minimale Messung dar. Eine
nicht-minimale Messung ergibt sich, wenn man wie in Abb. 13.4b hinter den Detektoren je-
weils noch eine zusätzliche unitäre Dynamik anschließt.

13.3.5 Realisierung einer verallgemeinerten Messung durch unitäre
Transformation und Projektion

Wir haben in Abschn. 13.1.2 gesehen, dass man eine verallgemeinerte Messung bewirken
kann, indem man das System SA um ein Hilfssystem SB erweitert, aufHA⊗HB eine unitäre
Transformation durchführt und am System SB projektiv misst.Wir wollen jetzt zeigen, dass
jede verallgemeinerte Messung so realisiert werden kann.

Wir erweitern das System SA um das Hilfssystem (ancilla) SB . Die Dimension von HA
ist beliebig. Die Dimension von HB soll gleich der Anzahl der Messoperatoren sein. In HB
wählen wir eine ONB {|mB〉} und einen beliebigen aber festen Zustand |0B〉. Wir definieren
auf einem Unterraum vonHA ⊗HB den linearen Operator ÛAB durch

ÛAB |φA, 0B〉 =
∑

m

MA
m|φA〉 ⊗ |mB〉 (13.63)

für beliebige |φA〉 ausHA. Die Messoperatoren |MA
m〉 und die Basis {|mB〉} legen ÛAB fest.

Für irgend zwei Vektoren |φA1 , 0B〉 und |φA2 , 0B〉 aus diesem Unterraum erhält der Operator
ÛAB das innere Produkt.

〈φA1 , 0B|ÛAB†ÛAB|φA2 , 0B〉 =
∑

m,m′
〈φA1 |MA†

m MA
m|φA2 〉〈mB|m′B〉

=
∑

m

〈φA1 |MA†
m MA

m|φA2 〉

= 〈φA1 |φA2 〉 = 〈φA1 , 0B|φA2 , 0B〉 . (13.64)

Daher können wir einen mathematischen Satz anwenden, der besagt, dass in diesem Fall eine
unitäre Erweiterung UAB von ÛAB auf den ganzen RaumHA⊗HB existiert. Das ist deshalb
wichtig, weil man davon ausgehen kann, dass UAB eine physikalisch realisierbare dynami-
sche Entwicklung des Gesamtsystems SAB darstellt, die durch einen geeigneten Hamilton-
Operator aufHA ⊗HB beschrieben werden kann. Die Wirkung des unitären Operators UAB

auf den Vektoren des Unterraums reduziert sich auf die von ÛAB .
Wenn man nach der unitären Entwicklung mit UAB eine projektive Messung in HB mit

den Projektionsoperatoren

PBm := �
A ⊗ |mB〉〈mB| (13.65)

durchführt, geht das Gesamtsystem in den Zustand

PBmU
AB |φA, 0B〉 · 1

Norm
=

MA
m|φA〉|mB〉

√
〈φA|MA†

m MA
m|φA〉

(13.66)
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mit der Wahrscheinlichkeit

p(m) = 〈φA, 0B|UAB†PBmU
AB|φA, 0B〉 = 〈φA|MA†

m MA
m|φA〉 (13.67)

über. Im letzten Schritt haben wir PBm = PB†
m PBm und Gl. (13.66) verwendet. Damit haben

wir gezeigt: Jede verallgemeinerte Messung lässt sich dadurch physikalisch realisieren, dass
das System SA um ein Hilfssystem SB ergänzt wird. Durch eine geeignete unitäre Transfor-
mation des Gesamtsystems SAB , deren dynamische Realisierbarkeit wir voraussetzen wollen,
wird SAB in einen verschränkten Zustand überführt. Projektionsmessungen am Hilfssystem
SB führen schließlich auf die verallgemeinerte Messung an SA. Die Operatoren sind in den
Gl. (13.63) und (13.65) angegeben.

13.4 POVM-Messung

13.4.1 Messwahrscheinlichkeiten und positive Operatoren

Wir diskutieren Messungen in einer reduzierten und dadurch völlig allgemeinen Betrachtungs-
weise: Von einem Messeingriff sollen nur die Messwerte m und die Wahrscheinlichkeiten
p(m) ihres Auftretens bekannt sein. Da der Messeingriff sich auf den Zustand linear auswir-
ken soll, gibt es die den jeweiligen Messergebnissen zugeordnete lineare Operatoren Em, mit
denen sich die Wahrscheinlichkeiten p(m) in der Form

p(m) = 〈ψ|Em|ψ〉 (13.68)

p(m) = tr[ρEm] (13.69)

schreiben lassen. Wegen p(m) ≥ 0 müssen die Em positive Operatoren sein, die wegen∑
m p(m) = 1 zusätzlich der Bedingung

∑

m

Em = � (13.70)

genügen müssen. Die Operatoren Em sind die Elemente einer Zerlegung des Einsoperators
in positive Operatoren. Wie wir schon in Abschn. 13.3.4 festgestellt haben, heißt eine solche
Zerlegung der Eins positiv-operatorwertiges Maß POVM (Akronym für positive operator-
valued measure). Die Operatoren Em werden POVM-Elemente (POVM elements) genannt.

Bei der Einführung eines POVM wird nicht vorausgesetzt, dass die Messung in der in
Abschn. 13.3.2 beschriebenen Weise durch Messoperatoren beschrieben werden kann. Das
POVM-Schema gilt auch in allgemeineren Messsituationen, die wir in Abschn. 14.2 bespre-
chen werden. Für viele Fragestellungen kann man sich mit Aussagen über die Wahrscheinlich-
keitsverteilung p(m) begnügen. Man spricht dann von einer POVM-Messung (POVM measu-
rement). Im Spezialfall verallgemeinerter Messungen ist

Em = M†
mMm . (13.71)

Für die physikalische Realisierung eines vorgegebenen POVM genügt es, den Messope-
rator Mm =

√
Em wie in Abschn. 13.3.5 zu realisieren. Die Projektionsoperatoren Pn einer

projektiven Messung sind der Spezialfall eines POVM. Sie werden projektionswertiges Maß
PVM (projection valued measure) genannt. Anders als im PVM kann aber die Anzahl der
POVM-Elemente größer als die Dimension des Zustandsraums sein.
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Abbildung 13.5: Zusammengesetzte Messung

13.4.2 Zusammengesetzte Messung als Beispiel einer POVM-Messung

Wir betrachten einen Versuchsaufbau (vergl. Abb. 13.5), bei dem eine klassische Zufallswei-
che die im Zustand |ψ〉 eintreffenden Spin-1

2 -Objekte mit den Wahrscheinlichkeiten wx, wy
und wz auf Messgeräte für die Observablen σx, σy und σz lenkt (wx + wy + wz = 1).
Die drei Messgeräte zeigen als Messwerte jeweils +1 oder −1 an. Die Geräte messen pro-
jektiv. Die zugehörigen Projektionsoperatoren sind Pi(+) = |0i〉〈0i| und Pi(−) = |1i〉〈1i|
mit i = x, y, z. Insgesamt gibt es sechs mögliche Messergebnisse (i,±). Die entsprechenden
Messwahrscheinlichkeiten sind

p(i,±) = wi〈ψ|Pi(±)|ψ〉 = 〈ψ|Ei(±)|ψ〉 (13.72)

mit den sechs POVM-Operatoren

Ei(±) = wiPi(±), (13.73)

die die Vollständigkeitsrelation
∑

i

Ei(+) +
∑

i

Ei(−) =
∑

i

wi� = � (13.74)

erfüllen. Durch die vorgeschaltete Zufallsweichen geht der Projektorcharakter verloren. Wir
erwähnen noch, dass die Anlage eine informationell vollständige Messung (informationally
complete measurement) darstellt. Die durch die Messwahrscheinlichkeiten p(i,±) wiederge-
gebene Statistik erlaubt auch für Gemische die eindeutige Bestimmung des Anfangszustands
(vergl. ÜA 13.5). Wir diskutieren informationell vollständige Messungen in Abschn. 13.4.5.

Wir erweitern die Anlage zu einer zusammenfassenden Messung indem wir nicht mehr
zwischen den drei Messgeräten unterscheiden. Registriert wird nur der Messwert unabhängig
davon welches Gerät ihn angezeigt hat. Dann finden wir für die verbliebenen zwei Wahr-
scheinlichkeiten

p(±) =
∑

i

p(i,±) = 〈ψ|E(±)|ψ〉 (13.75)

mit den Operatoren

E(±) =
∑

iwiPi(±) ,
∑

+,−E(±) = � . (13.76)

Es ist wieder eine POVM-Messung entstanden.
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13.4.3 Kann eine einzelne POVM-Messung zwei Zustände sicher
unterscheiden?

Mathematische Vorüberlegungen Ein Operator E sei positiv. Dann hat er eine Spekt-
raldarstellung

E =
∑

i

λi|i〉〈i| ; λi ∈ � , 0 ≤ λi ≤ 1 (13.77)

mit einer ONB |i〉. Die Wirkung von E auf einen beliebigen normierten Vektor |φ〉 ist

E|φ〉 =
∑

i

λi〈i|φ〉|i〉 =
∑

i

λici|i〉 (13.78)

mit

ci := 〈i|φ〉 ,
∑

i

|ci|2 = 1 . (13.79)

Damit wird

〈φ|E|φ〉 =
∑

i

λi|ci|2 . (13.80)

Ein spezieller Zustand |φ〉 möge die Eigenschaft

〈φ|E|φ〉 =
∑

i

λi|ci|2 = 1 (13.81)

haben. Die nicht verschwindenden ci haben dabei Indizes i aus einer Indexmenge I . Für diese
Indizes folgt aus der Gl. (13.81) und 0 ≤ λi ≤ 1

λi∈I = 1 . (13.82)

Einsetzen in Gl. (13.78) führt auf das Ergebnis

〈φ|E|φ〉 = 1 ⇐⇒ E|φ〉 = |φ〉 . (13.83)

Die Richtung⇐ ist trivial. Auf ähnliche Weise zeigt man

〈φ|E|φ〉 = 0 ⇐⇒ E|φ〉 = 0 . (13.84)

Unmöglichkeit einen Zustand durch eine einzige POVM-Messung zu bestimmen Wir
nehmen an, dass wir durch eine einzige Messung entscheiden können, ob ein einzelnes Quan-
tenobjekt in einen Zustand |χ〉 ist. Dann muß es eine Messung mit POVM-Operatoren Em
geben, bei der ein spezielles Messergebnis m̂ mit Sicherheit eintritt, wenn |χ〉 vorliegt, und
mit Sicherheit nicht eintritt, wenn ein beliebiger anderer Zustand |Θ〉 �= |χ〉 aus dem Hilbert-
Raum vorliegt:

pχ(m̂) = 〈χ|Em̂|χ〉 = 1 (13.85)

pΘ(m̂) = 〈Θ|Em̂|Θ〉 = 0 . (13.86)
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Wir haben also mit Gl. (13.83) und (13.84)

Em̂|χ〉 = |χ〉 , Em̂|Θ〉 = 0 . (13.87)

Damit erhalten wir

〈χ|Θ〉 = 〈Em̂|Θ〉 = 〈χ|Em̂〉 = 0 . (13.88)

Das heißt, alle anderen Vektoren |Θ〉 des Hilbert-Raums müssen senkrecht auf |χ〉 stehen.
Das ist unmöglich. Es ist daher nicht möglich mit einer einzigen POVM-Messung den Zustand
eines Quantenobjekts vor der Messung zu bestimmen. Weiterhin zeigt das Ergebnis, dass es
keine POVM-Messung gibt, die es erlaubt eindeutig zwischen zwei nicht orthogonalen Zu-
ständen zu unterscheiden. Diese wichtige Aussage, auf der viele heuristische Überlegungen
basieren, gilt also nicht nur für Projektionsmessungen, sondern für beliebige Messungen.

13.4.4 Vorteil einer POVM-Messung bei der Zustandsermittlung

Für eine etwas modifizierte Fragestellung ist die Verwendung von POVM-Messungen hinge-
gen günstiger als die projektiver Messungen. Es soll uns (oder einem Lauscher) bekannt sein,
dass ein Quantensystem mit gleicher Wahrscheinlichkeit entweder in einem Zustand |1〉 oder
in einem dazu nicht orthogonalen Zustand |2〉 präpariert wird. Wir wollen nach einer einzigen
Messung entweder keine Aussage machen („weiß nicht“) oder mit Sicherheit sagen können:
„in |1〉“ oder „in |2〉“. Es müssen daher mindestens drei Messergebnisse möglich sein. Die
POVM-Operatoren sind E1, E2, E3. Wir konstruieren sie so, dass Folgendes erreicht wird:
Wenn Zustand |1〉 vorliegt, tritt das Messergebnis 2 nie ein (d. h. 〈1|E2|1〉 = 0), aber Er-
gebnisse 1 und 3 können eintreten. Beim Zustand |2〉 tritt das Messergebnis 1 nie ein (d. h.
〈2|E1|2〉 = 0), aber Ergebnisse 2 und 3 sind möglich. Wir können daher aus einer einzigen
Messung die folgenden Schlüsse ziehen: Wenn sich das Messergebnis 1 ergibt, dann lag der
Zustand |1〉 vor. Beim Messergebnis 2 lag |2〉 vor. Aus Messergebnis 3 kann nichts gefolgert
werden. Für POVM-Operatoren bedeutet das

E1 = a2(�− |2〉〈2|) , (13.89)

E2 = a1(�− |1〉〈1|) (13.90)

und

E3 = �− E1 − E2 . (13.91)

Es ist sicher sinnvoll, die Messung zu optimieren. Dazu müssen die Parameter a1 und a2

so gewählt werden, dass die Wahrscheinlichkeit p dafür, dass ein sicherer Schluss möglich ist,
maximiert wird. Sichere Schlüsse kann man nur aus den Messergebnissen 1 und 2 ziehen. Die
Wahrscheinlichkeit dafür, dass diese Messergebnisse eintreten, ist nach Voraussetzung

p =
1
2
〈1|E1|1〉+ 1

2
〈2|E2|2〉 (13.92)

=
1
2
(a1 + a2)

(
1− |〈1|2〉|2) (13.93)
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In [Bus 97] wird gezeigt, dass p unter Beachtung der Positivität von E3, durch die die Para-
meter a1 und a2 verknüpft werden, den maximalen Wert

pmax = 1− |〈1|2〉| (13.94)

für die Parameterwahl

a1 = a2 =
1

1− |〈1|2〉| (13.95)

annimmt. Gl. (13.95) zeigt, dass die Wahrscheinlichkeit, sichere Aussagen durch eine Mes-
sung zu treffen, immer geringer wird, je mehr die Zustände |1〉 und |2〉 sich einander annähern.
Eine Auflösung der Zustände durch die POVM-Messung wird dann immer schwieriger. Für
orthogonale Zustände 〈φ|χ〉 = 0 ist pmax = 1.

13.4.5 Informationell vollständiges POVM

Ein POVM heißt informationell vollständig (informationally complete), wenn für einen belie-
bigen Zustand die Kenntnis der Wahrscheinlichkeiten aller möglichen Messergebnisse einer
Messung ausreicht, um den Zustand zu bestimmen. Es wird also nur ein einziges Messge-
rät (nur ein POVM) verwendet. Welche Bedingungen muss ein informationell vollständiges
POVM zur Bestimmung von Qubit-Zuständen erfüllen?

Wir haben in Abschn. 3.1 gesehen, dass die Pauli-Operatoren durch � zu einer Operator-
basis aufH2 ergänzt werden können. Jedes POVM-Element lässt sich in der Form

Em = am�+ bmnmσ (13.96)

schreiben. nm ist dabei ein Einheitsvektor im �3 und am und bm sollen nicht-negative reelle
Zahlen sein, damit Em und �−Em positive Operatoren sind. Die Vollständigkeitsbedingung
(13.70) führt auf die Bedingungen

∑

m

am = 1 , (13.97)

∑

m

bmnm = 0 . (13.98)

Wie wir in Abschn. 4.4 gezeigt haben, kann jeder Dichteoperator ρ aufH2 in der Form

ρ =
1
2
(�+ rσ) (13.99)

mit dem Bloch-Vektor r geschrieben werden. Die Wahrscheinlichkeiten für die Messergeb-
nisse der POVM-Messung sind daher

p(m) = tr[ρEm] = am + bmnmr . (13.100)

Man sieht daran, dass zur Bestimmung von r die nicht verschwindenden Vektoren bmnm
den �3 aufspannen müssen. Daraus folgt zusammen mit der linearen Abhängigkeit (13.98),
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dass es mindestens vier Vektoren nm geben muß (m = 1, 2, 3, 4) und dass andererseits vier
Vektoren, die die Gl. (13.98) erfüllen, ausreichen.

Wir geben ein Beispiel das Gl. (13.97) und (13.98) erfüllt: am = bm = 1
4 und

n1 = (0, 0, 1), (13.101)

n2 =

(
2
√

2
3
, 0,−1

3

)

, (13.102)

n3 =

(

−
√

2
3
,

√
2
3
,−1

3

)

, (13.103)

n4 =

(

−
√

2
3
,−
√

2
3
,−1

3

)

. (13.104)

Einsetzen in Gl. (13.96) führt auf das informationell vollständig POVM für Qubit-Zustände.
Wir haben in Abschn. 4.4 gesehen, dass durch die Messung der Erwartungswerte der drei

verschiedenen Observablen σx, σy und σz der Bloch-Vektor r und damit der Zustand ρ be-
stimmt werden kann. Hier haben wir gezeigt, dass der Qubit-Zustand ρ auch durch Messung
der Wahrscheinlichkeiten p(m) einer einzigen POVM-Messung (nur ein Messgerät) mit vier
Messwerten m ermittelt werden kann.

13.4.6 Schätzung des Zustands vor der Messung

In der klassischen Physik wird durch die Messung der Zustand vor der Messung bestimmt. Bei
einer einzelnen Quantenmessung kann demgegenüber bei fehlender Entartung aus einem Mes-
sergebnis m nur auf den Zustand nach der Messung geschlossen werden. Wir wollen zeigen,
dass auf der Grundlage der Annahme von Bayes zumindest geschätzt werden kann, welcher
Zustand vor der Messung vorlag. Die Messung soll durch das POVM {Em} beschrieben sein.

Wir kehren zunächst zum Satz von Bayes von Gl. (1.99) zurück und machen die Bayes-
sche Annahme (1.100), dass alle Ausgangswahrscheinlichkeiten p(Ai) übereinstimmen. Um
den Bayesschen Satz zu veranschaulichen, betrachten wir den Fall, dass die bedingte Wahr-
scheinlichkeit p(B|Ai) dafür, dass B eintritt, für ein spezielles Ereignis Aj besonders groß
ist: p(B|Aj) � p(B|Ai�=j). Das Ereignis B möge tatsächlich eintreten. Dann hat in diesem
Fall mit besonders großer Wahrscheinlichkeit vorher Aj vorgelegen: p(Aj |B)� p(Ai�=j|B).
Dasjenige EreignisAj , auf das mit der größten WahrscheinlichkeitB folgt, ist auch dasjenige,
das mit der größten Wahrscheinlichkeit p(Aj |B) vorher vorgelegen hat, wenn B eintritt. Dies
ist die plausible Aussage des Satzes von Bayes.

Wir übertragen die Aussage auf die quantentheoretische Messsituation. Es wird an einem
einzelnen Quantensystem eine Präparation in einem reinen Zustand durchgeführt. Die Mes-
sung an diesem System mit einem durch ein POVM beschriebenen Messapparat liefert den
Messwert m. Unter der Bayesschen Annahme ist der Zustand |χpre〉, der mit der größten
Wahrscheinlichkeit vor der Messung vorlag, dadurch gegeben, dass für ihn p(m) am größten
ist1.

1Eine mathematisch exakte Formulierung muss berücksichtigen, dass die möglichen Zustände ein Kontinuum
bilden (vergl. Abschn. 13.5)
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Die POVM-Elemente sind positive Operatoren mit der Spektralzerlegung

Em =
∑

i

a
(m)
i |r(m)

i 〉〈r(m)
i | . (13.105)

Die Eigenvektoren sollen nicht entartet sein. Für p(m) erhalten wir

p(m) = 〈ψ|Em|ψ〉 =
∑

i

a
(m)
i |〈ψ|r(m)

i 〉|2 (13.106)

mit |〈ψ|r(m)
i 〉| ≤ 1 und

∑
i |〈ψ|r(m)

i 〉| = 1. Wir können daher p(m) abschätzen:

p(m) ≤ a(m)
max (13.107)

mit a(m)
max = max{ami }. Der Maximalwert von p(m) wird in Gl. (13.106) für den zu a(m)

max ge-

hörigen Eigenvektor |χpre〉 = |r(m)
max 〉 von Em angenommen. Wenn keine weitere Information

vorliegt, ist die beste Schätzung für den Zustand vor einer Messung mit dem Messergebnis
m der Eigenvektor |r(m)

max 〉 zum größten Eigenwert a(m)
max des POVM-Elements Em. Bei einer

projektiven Messung (Pm = |r(m)〉〈r(m)|) ist daher der auslaufende Zustand |r(m)〉 die beste
Schätzung für den einlaufenden Zustand.

13.5 Ergänzende Themen und weiterführende Literatur

• Weiterführende Literatur zu informationell vollständiger Messung: [BGL 95], [Aul 00].

• Zur Unmöglichkeit, individuelle Quantenzustände zu bestimmen, sowie zur optimalen
Zustandsunterscheidung: [Bus 97] (dort auch weitere Literatur).

• Das Theorem von Neumark beschreibt die Realisierung einer Quantenmessung durch
eine Projektionsmessung auf dem zusammengesetzten System aus Ursprungssystem und
Umgebung: [Per 90].

• Ausführliche Darstellung von Quantenmessungen und POVM: [BGL 95], [Kon 03],
[Fle 00].

• Detaillierte Behandlung des Stern-Gerlach-Experiments: [BGL 95, Kap VII].

• Bücher zu den Grundlagen der Theorie der Quantenoperationen und der nicht-projektiven
Messungen: [Kra 83], [BGL 95].

• Dynamik offener Systeme: [MW 98], [Dav 76], [Hol 01], [BP 02].

• Eine Bestätigung des Ergebnisses aus Abschn. 13.4.6, die nicht auf dem Bayesschen Satz
und der Bayesschen Annahme beruht, findet sich in [ADK 03].

• Die Nützlichkeit von schwachen Messungen zeigt sich, wenn man versucht die Zeitent-
wicklung |ψ(t)〉 eines Zustands messend zu verfolgen: [AKK 04].



13.6 Übungsaufgaben 235

13.6 Übungsaufgaben

ÜA 13.1 [zu 13.1] Bestätigen Sie Gl. (13.17).

ÜA 13.2 [zu 13.2] Bestimmen Sie für das reale Stern-Gerlach-Experiment im Spezialfall
p0 = p1 über die Entropie die Verschränkung des Zustandes |χ′〉 von Gl. (13.25) und den
Informationsgewinn durch die Messung.

ÜA 13.3 [zu 13.2] Entwerfen Sie unter Verwendung der verschränkenden Wirkung des
CNOT-Gatters ein Schaltbild zur Erzeugung von |χ′〉 von Gl. (13.25) im Spezialfall p0 = p1.
Welche Zustände müssen einlaufen.

ÜA 13.4 [zu 13.3] Zeigen Sie, dass die Hintereinanderausführung von zwei Messungen wie-
der eine Messung ist. Geben Sie die Messoperatoren an.

ÜA 13.5 [zu 13.3.3] Beweisen Sie die rechts-polare Zerlegung.

ÜA 13.6 [zu 13.3.3] Zeigen Sie ausgehend von der bi-orthogonalen Zerlegung (13.50) des
linearen Operators L, dass L sich stets in der Form

L = V DW (13.108)

schreiben lässt. V und W sind dabei unitäre Operatoren. D ist ein positiver Operator mit den
Eigenwerten λi. Hinweis: Schreiben Sie die Zerlegung durch Einführung einer ONB {|ai〉}
um.

ÜA 13.7 [zu 13.3.5] Die mit einer ONB {|nA〉} von HA gebildeten Vektoren {|nA, 0A〉}
sind die ONB eines Unterraums von HA ⊗HB . ÛAB sei ein auf dem Unterraum definierter
linearer Operator, der auf HA ⊗ HB abbildet und dabei innere Produkte erhält. Dann exis-
tiert eine Erweiterung UAB von ÛAB , die auf dem ganzen Raum als unitärer Operator wirkt
und auf dem Unterraum mit ÛAB übereinstimmt. Es könnte geschickt sein, die dyadische
Darstellung und die Ergebnisse aus Abschn. 13.3.3 zu verwenden.

ÜA 13.8 [zu 13.4] Zeigen Sie, dass jede Messung, bei der die Messoperatoren Mm und die
POVM-Elemente Em übereinstimmen, eine projektive Messung ist.

ÜA 13.9 [zu 13.4.2] Zeigen Sie, dass die zusammengesetzte Messung aus Abschn. 13.4.2
informationell vollständig ist.

ÜA 13.10 [zu 13.4.3] Beweisen Sie die Behauptung (13.84).

ÜA 13.11 [zu 13.4.3] Beweisen Sie Ergebnisse (13.94) und (13.95).
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ÜA 13.12 [zu 13.4.5] Zeigen Sie, dass die in Abschn. 13.4.2 beschriebene POVM-Messung
informationell vollständig ist.

ÜA 13.13 [zu 13.4.6] Ein durch Messoperatoren {Mm} beschriebener Messapparat führt
eine Messung an einem Quantenobjekt durch, dass sich in einem reinen Zustand befindet.
Das Messergebnis ist m. Eine weitere Information ist nicht gegeben. Schätzen Sie den Zu-
stand nach der Messung. Beachten Sie dabei, dass mit dem Zustand vor der Messung auch
der Zustand nach der Messung eindeutig festliegt. Betrachten Sie auch den Spezialfall einer
minimalen Messung.



14 Allgemeine Entwicklung eines offenen Quan-
tensystems und spezielle Quantenkanäle

Teilsysteme machen i.a. keine unitären Entwicklungen mehr durch. Quantenoperationen sind
der angemessene Zugang zu einer In-Out-Formulierung der dynamischen Entwicklung offener
Systeme. Wir veranschaulichen sie am Beispiel von Quantenkanälen. Auch die Zustandsän-
derungen bei Messungen sind im allgemeinsten Fall Quantenoperationen. Aus dieser Sicht
lassen sich das Szenario und die Regeln der Quantentheorie noch einmal neu formulieren.

14.1 Quantenoperationen und ihre
Operatorsummenzerlegungen

14.1.1 Quantenoperationen

Dynamische Entwicklung als Quantenoperation Im Zusammenhang mit Quantenkanä-
len, Teleportation, Kryptographie, Quantencomputern und Quantenmessungen treten zeitliche
Entwicklungen von Quantenzuständen auf, die allgemeiner sind als unitäre Entwicklungen,
die mit Projektionen kombiniert wurden. Beispiele für allgemeine Zustandsänderungen, die
auftreten wenn das System mit der Umgebung gekoppelt ist, haben wir in Kap. 13 kennen ge-
lernt. Wir wollen allgemeine Entwicklungen im Folgenden vom offenen System aus beschrei-
ben und nicht bereits spezielle Ansätze für eventuell vorhandene weitere Systeme machen,
mit denen das betrachtete System verschränkt ist oder dynamisch wechselwirkt.

Wir denken bei einer Entwicklung immer an einen spezifischen äußeren Eingriff und be-
schreiben seine Auswirkung auf einen beliebigen Dichteoperator. Der Eingriff kann z. B. darin
bestehen, dass Quantenobjekte einen wohlbestimmten verrauschten Kanal passieren oder dass
an ihnen eine spezielle unscharfe Messung durchgeführt wird. Welche mathematische Struktur
hat die Beschreibung der allgemeinen Zustandsentwicklung offener Systeme?

Die Entwicklung wird im Schrödinger-Bild durch eine für sie spezifische Abbildung des
Anfangszustands ρ (mit tr[ρ] = 1) in einen als Dichteoperator formulierten Endzustand ρ̃′ im
Liouville Raum beschrieben (In-out-Schema):

ρ→ ρ̃′ = E(ρ) . (14.1)

Durch die Tilde wird gekennzeichnet, dass auch unnormierte Zustände (Spur �= 1)zugelassen
sind. Wenn wir an Gemenge denken, ist es plausibel zu fordern, dass die Wirkung von E auf
den einzelnen Zuständen eines Ensembles mit der auf dem Dichteoperator übereinstimmt.

Verschränkte Systeme: Die Quantenphysik auf neuen Wegen. Jürgen Audretsch
Copyright c© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40452-X

Jürgen Audretsch
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Die Quantenphysik auf neuen Wegen
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E ist daher ein positiver Superoperator. Superoperatoren sind nach Abschn. 1.2 gemäß Defi-
nition linear.

Wir werden allerdings nicht fordern, dass E die Spur des Dichteoperators erhält, sonst
hätten wir bereits die Projektionen, die im Rahmen der projektiven Messung einer Observa-
blen auftreten, ausgeschlossen. Wenn man die verallgemeinerte Messung aus Abschn. 13.3 als
Wirkung eines Superoperators schreibt, dann hat sie die Form

ρ→ ρ̃′ = E(ρ) = MmρM
†
m (14.2)

und mit tr[ρ] = 1 ist tr[ρ̃] < 1 (vergl. Abschn. 13.3.2 und insbesondere Gl. (13.33)). Wir
fordern daher nur, dass die Spur des Dichteoperators nicht vergrößert wird:

tr[E(ρ)] ≤ 1 bei tr[ρ] = 1 . (14.3)

Als Drittes tritt die Forderung der vollständigen Positivität (complete positivity) von E
hinzu. Durch sie wird verlangt, dass bei der Abbildung (14.1) nicht nur die Positivität des
Dichteoperators erhalten bleibt, sondern darüber hinaus Folgendes gilt: Wenn man zum be-
trachteten System SA ein beliebiges weiteres System SB mit Hilbert-Raum HB hinzunimmt
und den Superoperator EA der Entwicklung von SA trivial in der Form EA ⊗ �B zum Ent-
wicklungsoperator des zusammengesetzten Systems SAB erweitert, dann soll auch EA ⊗ �B
wieder ein positiver Superoperator aufHA ⊗HB sein. Physikalische bedeutet das: Wenn nur
SA eine dynamische Entwicklung durchläuft, dann soll garantiert sein, dass dabei der Dich-
teoperator des Zustands eines Gesamtsystems SAB wieder (eventuell nach Normierung) in
einen Dichteoperator übergeht. Das ist zu fordern, da nicht ausgeschlossen werden soll, dass
das betrachtete System SA offen und damit ein Teilsystem eines größeren Systems ist. In die-
sem Fall könnte durch die Einwirkung EA auf SA z. B. über eine Wechselwirkung oder eine
Verschränkung das Gesamtsystem SAB beeinflusst werden. Alle diese Einflüsse sollen wieder
vom erlaubten Typ sein.

Wir fassen zusammen: Die allgemeinen Entwicklungen eines Quantensystems, die im
Schrödinger-Bild Anfangszustände ρ in Endzustände ρ̃′ überführen, sind Quantenoperatio-
nen E . Eine Quantenoperation (quantum operation) ist eine durch einen Superoperator E be-
schriebene

(i) lineare,

(ii) die Spur nicht erhöhende,

(iii) vollständig positive Abbildung

ρ→ ρ̃′ = E(ρ) . (14.4)

Der Endzustand ρ′ ergibt sich, wenn nötig, durch Normierung

ρ′ =
E(ρ)

tr[E(ρ)] . (14.5)

Wir wollen vom Ausgangszustand tr[ρ] = 1 annehmen, sodass Bedingung (ii) tr[E(ρ)] ≤ 1
besagt.
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14.1.2 Operatorsummenzerlegung von Quantenoperationen

Wir formulieren hier ein Theorem über Quantenoperationen an, das wir in Kap. 16 beweisen
werden. Es ist der Satz von der Operatorsummenzerlegung (operator-sum decomposition):
Eine Abbildung ρ → ρ̃′ = E(ρ) ist genau dann eine Quantenoperation, wenn es für sie eine
Zerlegung (bzw. Darstellung)

E(ρ) =
∑

i

KiρK
†
i (14.6)

mit linearen Operatoren Ki gibt, die die Bedingung
∑

i

K†
iKi ≤ � (14.7)

erfüllen und den Eingangs-Hilbert-Raum in den Ausgangs-Hilbert-Raum abbilden. Für
∑

i

K†
iKi = � (14.8)

ist die Operation spurerhaltend. Die Zerlegung (14.6) ist nicht eindeutig. Der Satz heißt
auch der Satz (oder das Darstellungstheorem) von Kraus. Die Operatoren Ki werden Kraus-
Operatoren (Kraus operators) oder Operationselemente (operation elements) aber auch Zerle-
gungsoperatoren (decomposition operators) genannt. Wir haben ein Beispiel für eine Opera-
torsummenzerlegung in Abschn. 13.1.2 und 13.2 kennen gelernt.

Wir betrachten den einfachen Fall, dass ein zusammengesetztes System SAB eine uni-
täre Entwicklung mit UAB durchläuft. Um die zu UAB gehörige Operatorsummenzerlegung
für die Quantenoperation auf SA zu erhalten, gehen wir von der Wirkung von UAB auf den
Zustand ρAB = ρA ⊗ |iB〉〈iB| aus. Er wird in

ρ′AB = UAB |iB〉ρA〈iB|UAB† (14.9)

überführt. Für den Zustand von SA bedeutet das

ρ′A = trB[ρ′AB] =
∑

n

〈eBn |UAB|iB〉ρA〈iB|UAB†|eBn 〉 . (14.10)

{|eBn 〉} ist dabei eine ONB vonHB . Aus der Unitarität von UAB folgt für

Ki := 〈eBi |UAB |iB〉 (14.11)

die Vollständigkeitsrelation
∑

i

K − i†Ki = � . (14.12)

Die Abbildung

ρA → ρ′A = E(ρA) =
∑

i

KiρK
†
i (14.13)
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ist eine Quantenoperation mit Kraus-Operatoren (14.11). Es folgt unmittelbar, dass zu gege-
benem UAB die Operatorsummenzerlegung nicht eindeutig ist. Wir werden in Kap. 16 zeigen,
dass auch folgende Umkehrung gilt: Zu jeder Quantenoperation EA auf SA lässt sich nach
Erweiterung zum System SAB eine unitäre Transformation UAB aufHAB finden, die für das
Teilsystem SA die Operation EA bewirkt.

14.1.3 Quantenoperationen sind noch nicht die allgemeinsten
Entwicklungen

Nicht alle positiven Abbildungen sind vollständig positiv. Ein Beispiel hierfür ist die Trans-
position (transposition) TA inHA.

Mit Bezug auf die Rechenbasis {|nA〉} von HA ist sie als die Abbildung definiert, die
ρA =

∑
n,m ρnm|nA〉〈mA| in

TA(ρA) = (ρA)TA :=
∑

n,m

ρnm|mA〉〈nA| (14.14)

überführt. Dies ist eine lineare und positive Abbildung. Aber ist sie auch vollständig positiv?
Mit Bezug auf die Matrixdarstellung mit den Basen {|nA〉} und {|µB〉} vonHA bzw.HB ist
die Teil-Transposition in HA (partial transposition) (TA ⊗ �B)ρAB =: (ρAB)TA durch die
Abbildung von ρAB

ρAB ↔ ρmµ,nν = 〈mA, µB|ρAB |nA, νB〉 (14.15)

in

(ρAB)TA ↔ ρTA
mµ,nν = ρnµ,mν (14.16)

gegeben. Diese Teil-Transposition ist trivialerweise positiv auf allen separablen Dichteopera-
toren

TA ⊗ �B(ρA ⊗ σB) = (ρA)TA ⊗ σB . (14.17)

Zu prüfen bleibt daher, ob das auch für verschränkte Zustände gilt.
Wir betrachten hierzu den Bell-Zustand

|ΦAB+ 〉 =
1√
2
(|0A, 0B〉+ |1A, 1B〉) (14.18)

und nummerieren die Rechenbasis inHA ⊗HB durch:

|0A, 0B〉 ↔ 1 ,
|0A, 1B〉 ↔ 2 ,
|1A, 0B〉 ↔ 3 (14.19)

|1A, 1B〉 ↔ 4 .
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Dann ergibt sich als Matrixdarstellung

|ΦAB+ 〉〈ΦAB+ | ↔
1
2







1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1





 . (14.20)

Darauf wenden wir die Vorschrift (14.16) an und erhalten in Matrixschreibweise

(ρAB)TA ↔ 1
2






1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




 . (14.21)

Man prüft leicht nach, dass diese Matrix die Eigenzustände 1
2 , 1

2 , 1
2 und − 1

2 hat.
(
ρAB

)TA ist
daher nicht positiv. Die Transposition ist eine lineare positive Abbildung, die nicht vollständig
positiv ist. Das liegt in dem Beispiel daran, dass wir TA⊗�B auf einen verschränkten Zustand
angewendet haben.

Das führt auf die folgende Frage: Ist fehlende Positivität nach Anwendung von TA ⊗ �B
möglicherweise ein Kriterium, mit dem man die Nicht-Separabilität eines Zustands feststellen
kann? Ein Theorem mit dieser Aussage gibt es tatsächlich für niedrige DimensionenHA2 ⊗HB2
undHA2 ⊗HB3 (vergl. Abschn. 14.5). Mit seiner Hilfe kann festgestellt werden, ob Dichteope-
ratoren ρAB separabel sind.

14.1.4 Einfache Beispiele

Eine Projektion Pm, wie sie z. B. bei einer Messung auftritt, ist eine Quantenoperation
K = Pm mit K†K < �. Sie erhält die Spur nicht. Eine unitäre Transformation U ist ei-
ne spurerhaltende Operation mit K = U . Wenn man unitäre Transformationen Ui mit der
Wahrscheinlichkeit pi auf ein System wirken lässt, entsteht wegen

∑
i pi = 1 wieder eine

Quantenoperation

E(ρ) =
∑

i

piUiρU
†
i . (14.22)

Auch die Bildung der Teilspur ist eine Quantenoperation. Um das zu sehen, bilden wir den
Operator KAB

i , der vonHA ⊗HB aufHA in der folgenden Weise abbilden soll

KAB
i (ψAB) = KAB

i




∑

j

αj |aAj 〉|eBj 〉


 = αi|aAi 〉 (14.23)

{|eBj 〉} ist eine ONB vonHB . Durch Wirkung auf die Basisvektoren vonHA⊗HB überzeugt
man sich von

∑

i

KAB†
i KAB

i = �
AB . (14.24)
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Damit ist

E(ρAB) =
∑

i

KAB
i ρABKAB†

i (14.25)

eine Quantenoperation. Wir zerlegen ρAB dual nach der ONB {|lAn 〉|eBi 〉} von HAB , wobei
{|lAn 〉} eine ONB vonHA ist. Die Wirkung von KAB

i besteht dann gemäß Gl. (14.23) in

E(ρAB) =
∑

j

〈eBj |ρAB|eBj 〉 . (14.26)

14.1.5 Mehrdeutigkeit der Operatorsummenzerlegung

Wir lassen inH2 die folgenden zwei Quantenoperationen auf ein Qubit wirken:

Ei(ρ) :=
1
2
ρ+

1
2
σiρσi , i = x, y, z (14.27)

Êi(ρ) := 〈0i|ρ|0i〉|0i〉〈0i|+ 〈1i|ρ|1i〉 |1i〉〈1i| . (14.28)

Mit |0i〉〈0i| = (�+ σi)/2 und |1i〉〈1i| = (�− σi)/2 finden wir nach kurzer Umformung

Êi(ρ) = Ei(ρ) . (14.29)

Die Wirkung beider Quantenoperationen ist gleich, obwohl die physikalischen Interpretatio-
nen von Gl. (14.27) und (14.28) völlig verschieden sind: In Gl. (14.27) werden auf ρ jeweils
mit der Wahrscheinlichkeit 1

2 entweder die unitären Transformationen � (d. h. keine Ände-
rung) oder σi angewandt. Gl. (14.28) entspricht der nicht-selektiven Messung in der Rechen-
basis {|0i〉, |1i〉}. Der Bloch-Vektor r von ρ′ liegt dementsprechend parallel zur i-Achse. Das
kann man mit Gl. (14.28) und den Relationen von Kap. 3 leicht nachprüfen. Was passiert
mit dem Bloch-Vektor, wenn alle drei Pauli-Operatoren σx, σy und σz statt nur einem Pauli-
Operator σi wie in Ei(ρ) mit gleicher Wahrscheinlichkeit wirken? Wir kommen auf diese
Frage in Abschn. 14.3.1 zurück.

14.2 Völlig allgemeine Messung und POVM

Messoperationen statt Messoperatoren In Abschn. 13.3 haben wir gesehen, dass verallge-
meinerte Messungen jeweils durch einen Satz {Mm} von Messoperatoren gegeben sind. Jeder
zu einem einzelnen Messwert m gehörige dynamische Vorgang ist eine Quantenoperation

ρ→ ρ̃′ =Mm(ρ) = MmρM
†
m (14.30)

mit nur einem Kraus-Operator Mm. Die Gl. (13.35) zeigt, dass

p(m) = tr[Mm(ρ)] (14.31)

die Wahrscheinlichkeit dafür ist, dass die Durchführung der Operation Em eintritt. Bei nicht-
trivialen verallgemeinerten Messungen (pm < 1) verkleinert daher die Operation zu einem
Messwert m die Spur. Für den Zerlegungsoperator gilt:

M†
mMm < � . (14.32)
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Diese Überlegungen zu verallgemeinerten Messungen zeigen bereits, dass es einen noch
allgemeineren Typ von Messungen geben muß, bei dem die Operatorsummenzerlegung
der Messoperationen Mm mehr als einen Summanden enthält. In Verallgemeinerung der
Gl. (14.30) und (14.31) ergibt sich dann der der Zustand ρ̃

′
m nach der Messung als Ergeb-

nis einer Quantenoperation mit einem SuperoperatorMm

ρ→ ρ̃
′
m =Mm(ρ) =

∑

i

Mm,i ρ M
†
m,i . (14.33)

Der Laufbereich von i kann dabei vom Messwertm abhängen. Die Wahrscheinlichkeit für das
Eintreten des Messwerts ist wieder

p(m) = tr[Mm(ρ)] . (14.34)

Aus
∑

m p(m) = 1 ergibt sich als Bedingung an die Zerlegungsoperatoren

∑

m,i

M†
m,iMm,i = � . (14.35)

∑
mMm ist spurerhaltend.

POVM Es zeigt sich, dass die in Abschn. 13.4 vorgestellte POVM-Messung von vornehe-
rein den Grad an Allgemeinheit hat, den wir für Messungen erst mit Einführung der Quanten-
operationen in Gl. (14.33) und (14.34) erreicht haben. Jeder völlig allgemeinen Messung ist
ein POVM {Em} über die positiven Operatoren

Em :=
∑

i

M†
m,iMm,i , (14.36)

zugeordnet, die mit Gl. (14.35) die Vollständigkeitsrelation

∑

m

Em = � (14.37)

erfüllen. Die Messwahrscheinlichkeit ergibt sich mit (14.34) in der Form

p(m) = tr[Emρ] . (14.38)

14.3 Quantenkanäle

14.3.1 Depolarisierungskanal

Zur Beantwortung der am Ende von Abschn. 14.1.5 gestellten Frage führen wir in Erweiterung
von Gl. (14.27) zusätzlich zu K0 =

√
1− p � noch die drei Zerlegungsoperatoren

Ki =
√
p

3
σi , i = 1, 2, 3 (14.39)
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Abbildung 14.1: Auswirkung des Depolarisierungskanals auf die Bloch-Kugel.

ein mit 0 ≤ p ≤ 1. E(ρ) ist dann

E(ρ) = (1− p)ρ+
p

3
(σ1ρσ1 + σ2ρσ2 + σ3ρσ3) . (14.40)

Wir wollen die Wirkung von E auf den Bloch-Vektor r von ρ

ρ =
1
2

(�+ rσ) (14.41)

beschreiben. Hierzu wählen wir die Koordinatenachsen so, dass r = r3e3ist und erhalten

ρ =
1
2
(�+ r3σ3) . (14.42)

Mit σ3σ3σ3 = σ3, σ1σ3σ1 = −σ3 und σ2σ3σ2 = −σ3 können wir E(ρ) wieder in der Form
(14.42) schreiben:

E(ρ) =
1
2

(�+ r′3σ3) , r′3 =
(

1− 4
3
p

)
r3 . (14.43)

Die Spinpolarisation r = tr[ρσ] wird reduziert. Man nennt das Depolarisierung (depolariza-
tion). In zentralsymmetrischer Weise werden alle Bloch-Vektoren einheitlich mit dem Faktor(
1− 4

3p
)

multipliziert (vergl. Abb. 14.1). Insbesondere werden dadurch reine Zustände zu
Gemischen. Eliminieren von r3σ3 mit Hilfe von Gl. (14.42) überführt Gl. (14.43) in

E(ρ) =
4
3
p
�

2
+
(

1− 4
3
p

)
ρ (14.44)

Mit wachsendem p wächst der strukturlose Anteil 1
2�.
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14.3.2 Quantensprünge und Amplitudendämpfungskanal

Ein 2-Niveau-Atom SA mit Grundzustand |0A〉 und angeregtem Zustand |1A〉 emittiert mit
der Wahrscheinlichkeit p ein Photon (spontane Emission in den Zustand |1B〉). Wenn kein
Photon emittiert wird, ist das Photonensystem SB im Zustand |0B〉. Wir betrachten nur den
Quantensprung, bei dem am Anfang kein Photon vorliegt (|iB〉 = |0B〉). Absorption findet
nicht statt. Dann lassen sich die Kraus-Operatoren wie in Abschn. 14.1.2 ablesen:

K0 = 〈0B|UAB |0B〉 =
(

1 0
0
√

1− p
)

K1 = 〈1B|UAB |0B〉 =
(

0
√
p

0 0

)
. (14.45)

Sie erfüllen

K†
0K0 +K†

1K1 = � . (14.46)

Der Superoperator hat damit die Wirkung

E(ρA) = K0ρ
AK†

0 +K1ρ
AK†

1

=
(

ρ00 + pρ11

√
1− p ρ01√

1− p ρ10 (1− p)ρ11

)
(14.47)

Die Matrixelemente von ρA werden gedämpft.
Für viele Atome kann der Prozess häufig stattfinden. Es ist immer wieder E auf den jeweils

resultierenden Zustand ρ′A anzuwenden. Die Wahrscheinlichkeit, alle Atome im Grundzu-
stand zu finden, wächst an. Das Gemisch geht in den reinen Zustand |0A〉〈0A| über. Da die
Komponente 〈1|ρA|1〉 weggedämpft wird, heißt der Kanal Amplitudendämpfungskanal (am-
plitude damping channel). Für die Auswirkung auf die Bloch-Kugel vergl. Abb. 14.2.

14.4 Blick zurück: Das Szenario und die Regeln der
Quantentheorie

Szenario Wir haben einleitend in Abschn. 2.1.1 das Szenario der Quantentheorie beschrie-
ben. Wir kommen im Rückblick noch einmal darauf zurück. Jedes Experiment in der Quan-
tenphysik hat genauso wie jedes Experiment in der klassischen Physik den folgenden Aufbau:
Ein physikalisches System unterliegt drei Typen von Einwirkungen, die von drei Typen von
Geräten verursacht werden (vergl. Abb. 14.3):

1. Ein Präparationsgerät (preparation apparatus) präpariert das System in einem bestimm-
ten Zustand.

2. Ein Transformationsapparat (transformation apparatus) wirkt auf das System ein und än-
dert den Zustand ab (z. B. Einfluss eines äußeren Potentials, Wechselwirkung mit einem
anderen System, Wechselwirkung unter Teilsystemen. Es können mehrere Transforma-
tionen „durchlaufen“ werden. Es kann auch gar kein Transformationsapparat vorhanden
sein.
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Abbildung 14.2: Auswirkung des Amplitudendämpfungskanals auf die Bloch-Kugel.

systems in einem
speziellen Zustand ρ
große Zahl identisch
präparierter Systeme

Präparation eines Einzel-

Zustannd des Systems
beeinflusst den

Transformation
(Quantenoperation) E relative Häufigkeit p(m)

von Messwerten

reeller Messwert m

Überführung mit der
QuantenoperationMm in einen i.a.
neuen Zustand

Präparation Transformation
m

Messung
ρ Mm(ρ′)E(ρ) = ρ̃′

Abbildung 14.3: Das Szenario der Quantentheorie im Schrödinger-Bild.

3. Abschließend erfolgt im Messgerät eine Einwirkung, die dazu führt, dass an ihrem Ende
am Messgerät ein Messergebnis (measurement outcome) in Form einer reellen Zahl ab-
gelesen werden kann. Es ist möglich, dass das System durch die Messung nicht zerstört
wird, sondern auch danach noch vorliegt. Dann wirkt das Messgerät auf den einlaufenden
Zustand des Systems wie ein Transformationsapparat, das abhängig vom Messergebnis
verschiedene Transformationen durchführt und in entsprechende Zustände überführt.

Regeln Zur Vereinfachung der Beschreibung haben wir dabei interpretierend schon voraus-
gesetzt, dass es stets einzelne physikalische Systeme gibt. In vielen Fällen misslingt der Ver-
such, die experimentellen Resultate mit Hilfe der Theorien der klassischen Physik zu erklären,
und die Verwendung der (unrelativistischen) Quantentheorie ist erfolgreich. Dann werden die
folgenden Regeln angewendet:

• Jedem Präparationsverfahren wird ein Zustand zugeordnet. Der Zustand ist dasjenige
mathematische Objekt, das erlaubt die Wahrscheinlichkeiten des Eintretens der verschie-
denen Messergebnisse für alle Arten von Messungen zu prognostizieren, die an den ent-
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sprechend präparierten Quantensystem durchgeführt werden können. Wahrscheinlichkeit
wird dabei üblicherweise als Grenzwert der relativen Häufigkeit aufgefasst. Zustände
sind Dichteoperatoren ρ auf einem Hilbert-Raum.

• Die Transformation ist eine Quantenoperation. Sie wird im Schrödinger-Bild durch einen
linearen vollständig positiven Superoperator E beschrieben

ρ→ ρ̃′ = E(ρ) , (14.48)

der die Spur von ρ nicht erhöht. Durch die Transformation ändern sich die Prognosen für
die Messergebnisse.

• Ein durch einen Messapparat durchgeführter Messeingriff wird durch die Messwerte m
und ein POVM {Em} repräsentiert

∑

m

Em = � . (14.49)

Die Wahrscheinlichkeit bei Vorliegen des Zustands ρ das Messergebnis m zu erhalten,
ist

pm = tr[Emρ] . (14.50)

• Wenn das Quantensystem beim Messeingriff nicht zerstört wird, geht es abhängig vom
Messergebnis m in den unnormierten Zustand

ρ→ ρ̃′m =Mm(ρ) (14.51)

über. Normierung führt auf den neuen Dichteoperator ρ′m mit tr[ρ′m] = 1. Diese Mess-
operationen werden durch lineare, vollständig positive Superoperatoren (Quantenopera-
tionen)Mm dargestellt, die die Spur verringern. Ihre Form ist für die jeweilige Messung
spezifisch. Die Wahrscheinlichkeit für das Auftreten des Messwerts m ist

pm = tr[ρ̃′m] ,
∑

m

pm = 1 . (14.52)

Die Operatorsummenzerlegung der SuperoperatorenMm

Mm(ρ) =
∑

i

Mm,iρM
†
m,i (14.53)

führt auf den Zusammenhang

Em =
∑

i

M†
m,iMm,i (14.54)

mit dem POVM {Em}. Die Bedingung (14.49) schränkt die linearen Operatoren Mm,i

ein. Eine selektive Messung (Aussondern nach dem Messergebnis) stellt wieder ein Prä-
parationsverfahren dar.
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14.5 Ergänzende Themen und weiterführende Literatur

• Siehe auch Abschn. 13.5.

• Quantenoperationen, Operatorsummenzerlegungen: [HK 69], [HK 70], [Kra 83],
[Sch 96].

• Mit Hilfe der teilweisen Transposition TA ⊗ �B (partial transposition) kann man fest-
stellen, ob ein Dichteoperator ρAB separabel ist. Es gilt der Satz: Ein Zustand ρAB in
HA2 ⊗ HB2 oder HA2 ⊗ HB3 ist genau dann separabel, wenn die Teiltransposition auf
einen positiven Operator führt. Dieses Theorem ist ein wichtiger Ausgangspunkt für die
Beantwortung der Frage, wie man bei Gemischen Verschränkung (Nicht-Separabilität)
feststellen kann [HHH 01].

• Eine Axiomatik der Quantentheorie, die von dem in Abschn. 14.4 beschriebenen Szena-
rio ausgeht, findet sich in [Har 01a], [Har 01b].

• Man beachte auch die Literaturangeben zu Kap. 13.

14.6 Übungsaufgaben

ÜA 14.1 [zu 14.1.2] Zeigen Sie, dass sich eine Quantenoperation E , die auf den Dichteope-
rator eines Qubits wirkt, in der Form

E(ρ) =
3∑

i,j=1

aijσiρσj (14.55)

mit aij = a∗ij schreiben lässt.

ÜA 14.2 [zu 14.1.5] Zeigen Sie in expliziter Rechnung, dass der Bloch-Vektor von ρ′ von
Gl. (14.29) parallel zur i-Achse liegt.

ÜA 14.3 [zu 14.3] Berechnen Sie die Wirkung des Amplitudendämpfungskanals auf den
Dichteoperator

ρ =
1
2
(�+ rσ) . (14.56)

Wie ändert sich der Bloch-Vektor r?



15 Dekohärenz und Ansätze für die Beschreibung
des Quantenmessprozesses

Dekohärenz ist für Anwendungen ein Störeffekt, für das Verständnis des Quantenmesspro-
zesses aber ein wichtiger Ansatz. Die durch Streuung bewirkte Dekohärenz gibt den Hinweis
darauf, dass umgebungsinduzierte Dekohärenz der wesentliche Effekt beim Messprozess sein
könnte. Das Herausbilden der klassischen Welt und das klassische Verhalten von Schrödingers
Katze sind weitere Beispiele. Die Frage, ob das Quantenmessproblem heute bereits gelöst ist,
wird anschließend behandelt.

15.1 Dekohärenz erzeugende Kanäle

15.1.1 Phasendämpfungskanal

Streuung als einfache Realisierung Wir betrachten ein Qubit-System SA an dem ein Quan-
tensystem SB gestreut wird. Wir wollen die Streuung für unsere Beschreibung stark vereinfa-
chen (vergl. Abb. 15.1). Wir nehmen dazu an, dass es zwei orthonormale Zustände |0A〉 und
|1A〉 des Systems SA gibt, die bei der Streuung keine Änderung erfahren (stabile Zustände).
Das System SB fällt im Zustand |iB〉 ein. Bei der Streuung am Zustand |0A〉 (bzw. |1A〉)
soll das gestreute System SB in der räumlichen Asymptotik in den Zustand |0B〉 (bzw. |1B〉)
übergehen. Diese Zustände von SB sollen ein ONB in HB3 bilden. Wir wollen noch zulassen,
dass mit der Wahrscheinlichkeit 1 − p das System SB gar nicht gestreut wird und daher im
Zustand |iB〉 bleibt. Man kann sich unter |0A〉 und |1A〉 z. B. zwei Energieniveaus vorstellen
und unter |iB〉, |0B〉 und |1B〉 drei Impulszustände („Bahnen“).

Die Streuung ist ein unitärer Prozess des Gesamtsystems SAB . Der Operator, der die Zu-
stände in der Einlaufregion in die der Auslaufregion überführt, hat die Eigenschaften

ÛAB |0A, iB〉 =
√

1− p |0A, iB〉+√p |0A, 0B〉 (15.1)

ÛAB |1A, iB〉 =
√

1− p |1A, iB〉+√p |1A, 1B〉 . (15.2)

Wir kennen daher seine Wirkung auf Teilen der ONB vonHA2 ⊗HB3 und können den Operator
zu einem unitären Operator aufHA2 ⊗HB3 ergänzen.

UAB =
(√

1− p |0A, iB〉+√p |0A, 0B〉
)
〈0A, iB|

+
(√

1− p |1A, iB〉+√p |1A, 1B〉
)
〈1A, iB|+ Rest . (15.3)

Weitere duale Bildungen mit 〈0A, iB | oder 〈1A, iB| kommen im Rest nicht vor.

Verschränkte Systeme: Die Quantenphysik auf neuen Wegen. Jürgen Audretsch
Copyright c© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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|0B〉

|1B〉

|iB〉

|1A〉
|0A〉

Abbildung 15.1: Streuung an einem 2-Niveau-System.

Die Kraus-Operatoren, die zu der auf dem Untersystem SA wirkenden Quantenoperation
gehören, lassen sich gemäß Gl. (14.11) direkt ablesen:

Ki = 〈iB|UAB |iB〉 =
√

1− p�A =
√

1− p
(

1 0
0 1

)
(15.4)

K0 = 〈0B|UAB |iB〉 = √p |0A〉〈0A| = √p
(

1 0
0 0

)
(15.5)

K1 = 〈1B|UAB |iB〉 = √p |1A〉〈1A| = √p
(

0 0
0 1

)
. (15.6)

Die Bedingung

K†
iKi +K†

0K0 +K†
1K1 = � (15.7)

für Kraus-Operatoren ist erfüllt. Die Quantenoperation, die die Änderung des Systems SA

beschreibt, wenn es sich vor der Streuung im Zustand ρ befindet, ist durch

ρ→ ρ′ = E(ρ) = KiρKi +K0ρK0 +K1ρK1 (15.8)

gegeben (der Index A ist weggelassen). In der Rechenbasis hat sie die Form

ρ′ = E(ρ) =
(

ρ00 (1− p)ρ01

(1− p)ρ10 ρ11

)
. (15.9)

Wenn Streuung mit Sicherheit stattfindet (p = 1), verschwinden in der Rechenbasis die Au-
ßerdiagonalelemente der Dichtematrix von SA. Für 0 ≤ p < 1 werden mit jedem weiteren
einzelnen Quantensystem SE , das an SA gestreut wird, die Außerdiagonalelemente um den
Faktor (1− p) kleiner. Streuung bewirkt Dekohärenz.

Phasendämpfungskanal Im Grenzfall p = 1 (perfekte Streuung) wird durch eine Streuung
eine Markierung mit orthogonalen Markerzuständen |0B〉und |1B〉 durchgeführt. Ein reiner
Zustand geht in in einen verschränkten Zustand über

(
c0|0A〉+ c1|1A〉

) |iB〉 → c0|0A, 0B〉+ c1|1A, 1B〉 . (15.10)
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Abbildung 15.2: Auswirkung des Phasendämpfungskanals auf die Bloch-Kugel.

Der reine Zustand des Untersystems SA geht in ein Gemisch über. Die Phasenbeziehung zwi-
schen den Summanden des reinen Zustands und damit die Kohärenz, d. h. die Interferenzfähig-
keit gehen verloren. Dies ist die Dekohärenz durch Markieren, die wir bereits in Abschn. 8.5
diskutiert haben. Das System SA durchläuft für 0 ≤ p ≤ 1 während der Streuung einen
Quantenkanal, der Phasendämpfungskanal (phase-damping channel) genannt wird. Die Aus-
wirkung des Kanals auf beliebige Gemische kann man am einfachsten an der Bloch-Kugel
demonstrieren. Man kann zeigen, dass die Bloch-Vektoren auf der z-Achse unverändert blei-
ben. Alle anderen Punkte bewegen sich für p �= 1 bei vielen Streuungen auf die z-Achse zu
unter Beibehaltung der Rotationssymmetrie um die z-Achse (vergl. Abb. 15.2).

15.1.2 Streuung und Dekohärenz

Charakteristische Eigenschaften Wir wollen Eigenschaften des oben beschriebenen Streu-
prozesses herausstellen, die wir in allgemeineren Situationen in denen Dekohärenz eine Rolle
spielt, teilweise wiederfinden werden.

a) Zunächst einmal muß festgehalten werden, dass der zu Grunde liegende Prozess, den das
Gesamtsystem durchläuft, eine unitäre Entwicklung UAE ist, die auf die spezielle Dyna-
mik der Wechselwirkung zurückgeht. Ein reiner Zustand von SAB geht in einen reinen
Zustand von SAB über. Information geht dabei nicht verloren.

b) Dieser Streuprozess ist infolge der Unitarität reversibel. Wenn SA am Anfang in einem
reinen Zustand war, kann durch geeignete „Spiegelung“ (Umkehrung von Bewegung und
Dynamik) der Streuprodukte wieder der reine Zustand erzeugt und die Dekohärenz von
SA vollständig rückgängig gemacht werden. Wie wir schon in Abschn. 9.1 gesehen haben,
haben wir beim Übergang (15.10) Information in die Korrelationen transferiert, die dort
im Prinzip wieder abgerufen werden kann. Dazu ist ein nicht-lokaler Prozess nötig, der bei
Streuung praktisch nicht realisierbar ist.
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c) Wesentlich ist, dass durch die Wechselwirkung eine Basis {|0A〉, |1A〉} aus stabilen Zu-
ständen ausgezeichnet ist, die durch den dynamischen Einfluss nicht geändert werden
(vergl. Gl. (15.9)).

E(|0〉〈0|) = |0〉〈0| , E(|1〉〈1|) = |1〉〈1| . (15.11)

d) Diese Eigenzustände von σz zeichnen die Lage der z-Achse aus, auf die sich die Bloch-
Kugel zusammenzieht (vergl. Abb. 15.2). Verglichen mit der Charakterisierung der Deko-
härenz über das Verschwinden der Außendiagonalelemente des Dichteoperators, ist dies
eine basisunabhängige Charakterisierung.

e) Von c) her lässt sich schon vermuten, dass wir eine elastische Streuung beschrieben haben.
Wenn die Zustände |0〉 und |1〉 zu Energieniveaus E0 und E1 gehören, dann kann man mit
dem Hamilton-Operator

H = E0|0〉〈0|+ E1|1〉〈1| (15.12)

leicht zeigen, dass der Erwartungswert Ē der Energie unverändert bleibt

Ē = tr[ρH] = tr[ρ′H] = Ē′ . (15.13)

Es findet keine Dissipation statt.

f) Wenn die Streuung nicht perfekt ist (p �= 1), führt die vielfache Wiederholung mit immer
neuen einfallenden Teilchen zu einer sich schrittweise verstärkenden Dekohärenz, die die
Bloch-Vektoren orthogonal auf die z-Achse zutreibt.

15.1.3 Phasenflipkanal

Wir hatten bereits gesehen, dass es zu einer Quantenoperation viele Operatorsummenzerle-
gungen gibt. Physikalisch bedeutet das, dass bei gleichem Anfangszustand verschiedene dyna-
mische Prozesse zu demselben Endzustand führen können. Wir können die Quantenoperation
E(ρ) von Abschn. 15.1.1 und damit Dekohärenz auch durch einen Phasenflipkanal (phase-flip
channel) erreichen, der ebenfalls geordnete Phasenbeziehungen zerstört. In ihm wirkt mit der
Wahrscheinlichkeit w auf den Ausgangszustand ρ eine Dynamik ein, die eine unitäre Trans-
formation σz und damit einen Phasenflip bewirkt. Die Quantenoperation hat daher die zwei
Kraus-Operatoren

K+ =
√
w σz ,K− =

√
1− w � (15.14)

mit

K†
+K+ +K†

−K− = � . (15.15)

Die Operation ist in der Eigenbasis von σz durch

ρ→ ρ′ = w

(
ρ11 −ρ12

−ρ21 +ρ22

)
+ (1− w)

(
ρ11 ρ12

ρ21 ρ22

)

=
(

ρ11 (1− 2w)ρ12

(1− 2w)ρ21 ρ22

)
(15.16)
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gegeben. Für w = 1
2 tritt totale Dekohärenz auf. Ein Kanal mit zufälligem Phasenflip ist in

seiner Wirkung einem Phasendämpfungskanal äquivalent.

15.2 Umgebungsinduzierte Dekohärenz

15.2.1 Die Herausbildung der klassischen Welt

Das Programm Wir haben in Abschn. 2.1.1 das Verhältnis am Doppelspalt einmal für Ku-
geln (also für klassische Objekte) und einmal für Atome (also für Quantenobjekte) beschrie-
ben und die Unterschiede in den experimentellen Ergebnissen herausgestellt. Die theoreti-
sche Begründung wurde im einen Fall ganz im Rahmen der klassischen Physik gegeben und
im anderen Fall ganz im Rahmen der Quantentheorie in der Fassung, wie sie noch einmal
in Abschn. 14.4 zusammenfassend dargestellt wurde. Die Experimente am Doppelspalt le-
gen folgende Fragen nahe: Was beobachtet man, wenn man ausgehend von Elektronen und
Atomen über Moleküle und Viren zu immer makroskopischeren Objekten übergeht (vergl.
Abschn. 15.6) um schließlich bei Tennisbällen zu enden? Kann in den unterschiedlichen Be-
reichen einschließlich der Ballexperimente eine unveränderte Quantentheorie zur Begründung
herangezogen werden? Dann wäre letztlich die klassische Physik aus der Quantenphysik ohne
Zusätze ableitbar. Oder tritt in einem Zwischenbereich eine ganz neue Physik auf, die auch
eine neue Theorie erfordert?

Die Frage wie die klassische Physik aus der Quantentheorie hervorgeht, lässt sich wohl
auch in naher Zukunft nicht völlig befriedigend beantworten. Es macht aber Sinn, Ansätze zur
Lösung von Teilproblemen zu diskutieren. So kann ein Gefühl dafür entstehen, was die Quan-
tentheorie in der bisher dargestellten Form zu begründen vermag und was nicht. Während wir
in Kap. 10 mit Hilfe der verborgenen Parameter vergeblich versucht haben, Quantenphäno-
mene aus der klassischen Physik heraus zu verstehen, drehen wir jetzt die Beweisrichtung um
und versuchen die klassische Physik aus der Quantentheorie heraus zu verstehen.

Das Problem Eine für klassische mechanische Objekte charakteristische Eigenschaft ist die,
dass sie nie in einer Superposition von zwei Zuständen beobachtet werden. Ein klassisches
Objekt ist z. B. immer entweder an einem Ort 1 oder an einem Ort 2, aber nie in einer Super-
position der beiden Ortszustände. Für den Doppelspalt bedeutet das, dass bei Experimenten
mit klassischen Objekten keine Interferenz auftreten kann1. Die für Quantenobjekte mögliche
Superposition und damit die Kohärenz der Zustände ist bei klassischen Objekten unmöglich.
Wenn wir daher versuchen, auch klassische Objekte mit Hilfe der Quantentheorie zu beschrei-
ben, taucht das Problem auf, wie wir, ohne den Rahmen dieser Theorie zu verlassen, die De-
kohärenz klassischer Zustände begründen können. Wir wollen die typisch klassische Eigen-
schaft, dass Zustände klassischer Objekte nicht superponieren, als eine emergente Eigenschaft
(emergent property) ableiten. Der Phasendämpfungskanal zeigt, dass Verschränkung mit der
Umgebung in Form von Streuung dabei eine Rolle spielen kann.

1Für die Interferometrie mit Makromolekülen vergl. Abschn. 15.6.
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Ein Beispiel Wir betrachten eine Kugel oder einen anderen makroskopischen Körper. Sei-
ne quantentheoretisch beschriebenen Ortszustände sollen |0A〉 und |1A〉 sein. Man kann sich
darunter z. B. die Zustände hinter den einzelnen Spalten eines Doppelspalts vorstellen. Quan-
tentheoretisch ist dann auch der Zustand

|ϕA〉 = c0|0A〉+ c1|1A〉 (15.17)

erlaubt, der auf ein Interferenzbild führen würde. Wir müssen berücksichtigen, dass die Kugel
ein offenes System ist. Sie wechselwirkt ständig mit der Umgebung z. B. durch Streuung von
Photonen. Selbst im Dunkeln bleibt die kosmische Hintergrundstrahlung präsent. |0A〉 und
|1A〉 bleiben als klassische Zustände bei dieser Streuung unverändert (stabile Zustände). Da-
mit haben wir eine Situation, die analog ist zu der bei der Streuung in Abschn. 15.1. Wenn die
Kugel im Zustand |0A〉 ist, wird das Photon mit der Nummer 1 in den Zustand |0E1 〉 gestreut,
entsprechend bei |1A〉 in |1E1 〉. Wie wir in Abschn. 15.1 gesehen haben, wird der Kugelzustand
durch den reduzierten Dichteoperator

ρA =




|c0|2 c0c

∗
1〈1E1 |0E1 〉

c∗0c1〈0E1 |1E1 〉 |c1|2



 (15.18)

beschrieben. Im Vergleich zu Gl. (15.9) haben wir p = 1 gesetzt, aber nicht die Orthogonalität
der Streuzustände gefordert.

Es wird nicht nur ein Photon, sondern es werden ständig viele Photonen gestreut. Dement-
sprechend muss die Umgebung durch einen Produktraum HE = HE1 ⊗HE2 ⊗ . . . mit vielen
Faktorräumen beschreiben werden. Die Umgebung hat viele Freiheitsgrade. Der verschränkte
Zustand |ψAE′〉 des Gesamtsystems nach der Streuung ist

|ψAE′〉 = c1|0A〉|0E1 , 0E2 . . . .〉+ c2|1A〉|1E1 , 1E2 , . . .〉 . (15.19)

Der Zustand der Kugel ist durch den reduzierten Dichteoperator

ρ
′A =




|c0|2 c0c

∗
1〈1E1 |0E1 〉〈1E2 |0E2 〉 . . .

c∗0c1〈0E1 |1E1 〉〈0E2 |1E2 〉 . . . |c1|2



 (15.20)

gegeben. Die Kugeln an den verschiedenen Orten streuen Photonen in unterschiedlicher Wei-
se, sonst würden wir sie ja auch gar nicht optisch unterscheiden können. Die Zustände |0Ej 〉
und |1Ej 〉 mit j = 1, 2, 3, . . . sind daher alle sehr verschieden und es gilt |〈0Ej |1Ej 〉| � 1.

Da sehr viele Photonen gestreut werden, tauchen in den Außerdiagonalelementen von ρA
′

in
Gl. (15.20) sehr viele dieser dem Wert nach sehr kleinen inneren Produkte auf. Durch die
Verschränkung mit den gestreuten Photonen geht der Zustand der Kugel in ein nicht mehr
interferenzfähiges Gemisch über

ρ
′A → |c0|2|0A〉〈0A|+ |c1|2|1A〉〈1A| . (15.21)

Dieser Dichteoperator stimmt mit dem eines Gemenges überein, bei dem die Kugel entweder
mit der Wahrscheinlichkeit |c0|2 im Zustand |0A〉 oder mit der Wahrscheinlichkeit |c1|2 im
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Zustand |1A〉 vorgefunden wird. Alle statistischen Aussagen über nachfolgende Messungen
stimmen überein. Wir kommen im Zusammenhang mit dem Quantenmessproblem auf die
Bedeutung dieser Aussage zurück.

Was wir hier für Kugeln gezeigt haben, gilt entsprechend für alle Systeme SA, die (i) ei-
ner verschränkenden Wechselwirkung mit einem (Umgebungs-) System SE unterliegen. Die
Wechselwirkung soll (ii) gewisse Zustände von SA unverändert lassen (stabile Zustände) und
(iii) sie jeweils mit Zuständen von SE verschränken, die sehr unterschiedlich (nahezu ortho-
gonal) sind. Die dann eintretende umgebungsinduzierte Dekohärenz (environment induced
decoherence) ist umso größer, je mehr Freiheitsgrade das Umgebungssystem hat. Sie über-
führt in ein Gemisch aus den stabilen Zuständen. Dies sind die klassischen Zustände (clas-
sical states), da jede Superposition dieser Zustände – falls sie jemals auftreten sollte – sehr
schnell durch Dekohärenz zerfällt. Das „Umgebungs“-System SE kann auch aus den inneren
Freiheitsgraden eines makroskopischen Körpers bestehen.

15.2.2 Schrödingers Katze

Das Experiment E. Schrödinger [Sch 35] hat folgendes Experiment beschrieben (vergl.
Abb. 15.3): Eine Katze ist zusammen mit einem radioaktiven Präparat in einen abgeschlosse-
nen undurchsichtigen Kasten gesperrt. Innerhalb von einer Stunde soll mit einer Wahrschein-
lichkeit 1

2 ein einzelner Zerfall stattfinden. Der Zerfall bewirkt, dass ein Fläschchen Blausäure
zertrümmert und die Katze getötet wird. Wenn man sich darauf beschränkt die Erfahrungen
zu beschreiben, die ein Experimentalphysiker bei diesem Experiment macht, tritt keinerlei
Problem auf: Der Versuch mit der Katze im Kasten wird mit vielen Katzen und Kästen durch-
geführt. Jeweils wird nach einer Stunde nachgeschaut bzw. gemessen, ob die Katze lebt oder
tot ist. Man stellt fest, dass sie in der Hälfte der Fälle tot und in der anderen Hälfte lebendig
ist.

Abbildung 15.3: Nach Öffnen des Kastens findet man Schrödingers Katze mit der Wahrscheinlichkeit
1/2 entweder lebend oder tot. (Aus: Audretsch/Mainzer: Wieviele Leben hat Schrödingers Katze? 1990
c©Elsevier GmbH, Spektrum Akademischer Verlag, Heidelberg.
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Tote Katzen zum Leben erwecken Wenn man die Quantentheorie auch auf die Katze an-
wendet und ihr einen Quantenzustand |lebt〉 bzw. |tot〉 zuordnet, entsteht zunächst noch kein
Problem. Die Katze befindet sich vor der Messung, also bevor jemand den Kasten öffnet und
nachschaut, in einer Superposition aus „lebendig“ und „tot“ mit Markierung (vergl. Abb. 15.4)

|ψ〉 =
1√
2
(|lebt〉|nicht zerfallen〉+ eiφ|tot〉|zerfallen〉) . (15.22)

Das mag ungewohnt erscheinen, aber das oben geschilderte Experiment, bei dem am Ende an
der Katze „lebendig“ oder „tot“ gemessen wird, wird völlig korrekt beschrieben.

Abbildung 15.4: Liegt vor Öffnen des Kastens eine Superposition der Quantenzustände mit leben-
der und toter Katze vor? (Aus: Audretsch/Mainzer: Wieviele Leben hat Schrödingers Katze? 1990
c©Elsevier GmbH, Spektrum Akademischer Verlag, Heidelberg.

Wesentlich ist, dass sich Katze und Präparat im Zustand (15.22) in einer kohärenten Su-
perposition befinden. Superposition kann auf Interferenz führen, wie wir das bei der Welcher-
Weg-Markierung und dem Quantenradieren gesehen haben. Es ist also nicht ausgeschlossen,
dass es eine andere Messung als „lebendig“ oder „tot“ gibt, bei der eine Interferenz zwischen
lebender und toter Katze registriert wird. Eine solche Interferenz hat man weder bei Kugeln
noch bei Katzen jemals gesehen.

Schlimmer noch. Wenn es Katzenzustände |ϕ〉 = 1√
2
(|lebt〉 + |tot〉) gäbe, wäre Folgen-

des möglich: Man nimmt ein Ensemble von Katzen im Zustand |tot〉 und führt eine Projekti-
onsmessung mit der Observablen |ϕ〉〈ϕ| − |ϕ⊥〉〈ϕ⊥| mit |ϕ⊥〉 = 1√

2
(|lebt〉 − |tot〉) durch.

Diese Observable gäbe es dann ebenfalls. Durch eine anschließende Messung der Observa-
blen |lebt〉〈lebt| − |tot〉〈tot| wird in 50% der Fälle die Katze in den Zustand |lebt〉 überführt.
Man könnte also tote Katzen zum Leben erwecken. Bei Zuständen von Katzen ist daher eine
Superposition nicht möglich. Wir hatten schon in Abschn. 15.2.1 gesehen, dass die umge-
bungsinduzierte Dekohärenz das verhindert. Sie überführt in ein Gemisch aus den stabilen
Zuständen |lebt〉|nicht zerfallen〉 und |tot〉|zerfallen〉.
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15.3 Quantenmessprozess∗

15.3.1 Das Forschungsprogramm∗

Seit ihren Anfängen ist die Quantentheorie nach einem dualistischen dynamischen Schema
aufgebaut: Es gibt einerseits die Quantenoperationen, die das Verhalten des Systems zwi-
schen Präparation und Messung beschreiben, und andererseits die Quantenoperationen der
Messung. Im einfachsten Fall sind das unitäre Transformationen bzw. Projektionen. Von vie-
len wird es für unbefriedigend gehalten, zwei verschiedene Dynamiken zu postulieren. Daraus
ist das Forschungsprogramm entstanden, die bisher als Postulat eingeführte Messdynamik so
weitgehend wie möglich oder vielleicht sogar vollständig auf die unitäre Dynamik der Wech-
selwirkung zwischen System und Messapparat zurückzuführen. Die folgenden Forderungen
sind dabei zu erfüllen:

(i) Zu verschiedenen Observablen wie Energie, Spin usw. gehören verschiedene Messgeräte
und verschiedene Einwirkungen auf das System. Es muss aus der dynamischen Entwick-
lung hervorgehen, welche Observable durch den Apparat gemessen wird.

(ii) Der Zeigerzustand, der sich als Ergebnis einer Messung eingestellt hat, darf sich zeitlich
nicht mehr verändern.

(iii) Zeiger sind klassische Systeme. Es muss sich ergeben, dass sie nie in der Superposition
verschiedener Stellungen auftreten.

(iv) Die Rechnung muss wiedergeben, dass bei einer Einzelmessung immer genau eine Zei-
gerstellung von vielen möglichen realisiert ist, denn diese Aussage ist auch in den Mess-
postulaten enthalten. Das Ergebnis der Messung soll angezeigt werden. Es wird aller-
dings keine deterministische Begründung dafür verlangt, welche der Zeigerstellungen
eintritt.

15.3.2 Vormessung∗

Wir betrachten der Einfachheit halber als System SA, an dem die Messung durchgeführt wer-
den soll, ein Qubit-System und einen quantentheoretisch beschriebenen Messapparat SM ,
dessen Hilbert-Raum HM ebenfalls die Dimension zwei hat. Die unitäre Messwechselwir-
kung aufHA ⊗HM , die zur Messung mit den Eigenzuständen |0A〉 und |1A〉 von SA gehört,
soll markierende Wirkung haben (vergl. Abschn. 8.5). Bei Vorliegen von |0A〉 (bzw. |1A〉) soll
der Messapparat in den Zustand |0M 〉 (bzw. |1M 〉 übergehen. Für den allgemeinen Zustand
|ϕA〉 = c0|0A〉 + c1|1A〉 von SA bedeutet das die Verschränkung mit den Zuständen des
Messapparats:

|φAM 〉 = |ϕA〉|iM 〉 =
(
c0|0A〉+ c1|1A〉

) |iM 〉 (15.23)

→ |φ′AM 〉 = c0|0A〉|0M 〉+ c1|1A〉|1M 〉 . (15.24)

|iM 〉 ist ein Anfangszustand von SM . Diese dynamische Entwicklung wird oft als Vormessung
(pre-measurement) bezeichnet.

*Die mit einem Stern gekennzeichneten Kapitel können bei einem ersten Durchgang überschlagen werden.
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Die Zerlegung des resultierenden Zustands |φ′AM 〉 nach einer Basis von HA ⊗ HM ist
nicht eindeutig. Für c0 = c1 = 1√

2
liegt der Bell-Zustand |ΦAM+ 〉 vor, den wir auch in der

Form

|φ′AM 〉 = |ΦAM+ 〉 =
1√
2

(|0Ax 〉|0Mx 〉+ |1Ax 〉|1Mx 〉
)

(15.25)

schreiben können. Es gibt beliebig viele weitere Kombinationen von dieser Struktur. Wenn
|Φ′AM 〉 der Zustand sein soll, bei dem der Messapparat die Observable

ZA = z0|0A〉〈0A|+ z1|1A〉〈1A| (15.26)

gemessen hat, dann kann man den Apparat auch ebenso als einen Apparat zur Messung der
ObservablenXA = x0|0Ax 〉〈0Ax |+x1|1Ax 〉〈1Ax | ansehen. Es liegt also bisher gar nicht fest, wel-
che Observable bei der unitären Entwicklung (15.23) letztlich gemessen wird. Oder anders be-
trachtet: Wenn |0A〉 und |1A〉 die klassischen Zeigerzustände sind, dann ist nicht ausgeschlos-
sen, dass als Ergebnis der Vormessung die Markierung mit den Superpositionen von Zeigerzu-
ständen erfolgt. Die Forderung (i) ist bisher nicht erfüllt. Mit Blick auf Abschn. 15.2.1 liegt die
Vermutung nahe, dass durch Berücksichtigung der Umgebung dieses Problem gelöst werden
kann.

Auch die restlichen Forderungen werden durch die Vormessung nicht erfüllt. Wir demons-
trieren das am Beispiel der Forderung (ii). Unitäre Entwicklungen sind umkehrbar. Anderer-
seits ist der Messprozess aber irreversibel. Wir wollen das am Beispiel der einfachen unitären
Entwicklung U = e−iHt mit dem Hamilton-Operator

HAM = g σAz ⊗ σMy (15.27)

aufHA ⊗HM untersuchen. Der Anfangszustand sei der Produktzustand

|φAM (t = 0)〉 = (
c0|0A〉+ c1|1A〉

) |0Mx 〉 (15.28)

mit |c0|2 + |c1|2 = 1. Eine Zwischenrechnung, die wir nicht wiedergeben (vergl. ÜA 15.1),
führt auf

|φAM (t)〉 = c0|0A〉
{
sin

(π
4

+ gt
)
|0M 〉+ cos

(π
4

+ gt
)
|1M 〉

}

+ c1|1A〉
{
sin

(π
4
− gt

)
|0M 〉+ cos

(π
4
− gt

)
|1M 〉

}
. (15.29)

Wir erhalten eine zeitabhängige Verschränkung, die zum Zeitpunkt t = π
4 g auf den gewünsch-

ten Zustand |Φ′AM 〉 von Gl. (15.23) führt. Zum Zeitpunkt t = 2π
g ist allerdings wieder der

unverschränkte Anfangszustand |ΦAM (t = 0)〉 erreicht. Die Vormessung führt somit auf kei-
ne zeitlich stabile Markierung des Gesamtsystems.

15.3.3 Verschränkung mit der Umgebung fixiert die Observable∗

Ein erster Schritt zur Lösung der Probleme besteht darin, die Systeme SA und SM um die
Umgebung SE zu erweitern, die zunächst aus einem einzigen Qubit-System bestehen soll.
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Der Zustand des Gesamtsystems SAME liegt in HA ⊗ HM ⊗ HE . Wir koppeln SM an SE

über eine Dynamik mit einem Hamilton-Operator HME , der nur auf HM ⊗ HE wirkt und
daher den Zustand von SA nach der Vormessung unverändert lässt.

HME = g �A ⊗ σMz ⊗ σEz . (15.30)

Die Zustände |0E〉 und |1E〉 bilden ein ONB vonHE .
Der Anfangszustand zur Zeit t = 0 nach der Vormessung ist mit |φ′AM 〉 von Gl. (15.23)

|ψ(t = 0)〉 = {
c0|0A〉|0M 〉+ c1|1A〉|1M 〉

} (
α|0E〉+ β|1E〉) . (15.31)

Die anschließend durchHME bewirkte unitäre Entwicklung führt auf eine zeitabhängige Ver-
schränkung mit der Umgebung (vergl ÜA 15.2)).

|ψ(t)〉 = c0|0A〉|0M 〉|ωE0 (t)〉+ c1|1A〉|1M 〉|ωE1 (t)〉 (15.32)

mit

|ωE0 (t)〉 = α exp(igt)|0E〉+ β exp(−igt)|1E〉 = |ωE1 (−t)〉 . (15.33)

Ist auch jetzt noch unbestimmt, welcher Zustand beim System SA und beim Messappa-
rat SM vorliegt? Die Umformung von Gl. (15.23) in Gl. (15.25) für c0 = c1 = 1√

2
ist nur

dann möglich, wenn die Summanden keine unterschiedlichen Faktoren enthalten. Die Zustän-
de |ωE0 〉 und |ωE1 〉 in Gl. (15.32) sind solche unterschiedlichen „Faktoren“. Die Verschränkung
mit der nur aus einem Qubit bestehenden Umgebung hat bereits bewirkt, dass nur noch eine
Korrelation zwischen den Eigenzuständen von σAz und σMz , aber nicht mehr zwischen denen
von σAx und σMx besteht2. Der Apparat mit der Messdynamik HME ist damit der Observa-
blen ZA zugeordnet. Die Forderung (i) ist erfüllt. Allerdings wird nach wie vor periodisch
verschränkt und entschränkt. Zur Zeit t = 2π

g liegt wieder der Ausgangszustand |ψ(t = 0)〉
vor.

15.3.4 Verschränkung mit vielen Freiheitsgraden der Umgebung∗

Kollaps und Wiederkehr Realistische Umgebungen haben sehr viele Freiheitsgrade. Es
liegt also ein Gesamtsystem in einem Hilbert-Raum H = HA ⊗ HM ⊗ HE(1) ⊗ . . . ⊗ HE(N)

vor. N ist dabei eine große Zahl. Wir diskutieren den einfachen Fall, dass alle Hilbert-Räume
zweidimensional sind, und gehen wieder wie im vorigen Kapitel vor.

Vor Anschalten der Wechselwirkung zwischen Messapparat und Umgebung liegt der Zu-
stand

|ψ(t = 0)〉 = {
c0|0A〉|0M 〉+ c1|1A〉|1M 〉

}⊗
{

N∏

k=1

(
αk|0E(k)〉+ βk|1E(k)〉

)
}

(15.34)

2Mit Hilfe des folgenden Theorems lässt sich der Beweis noch präzisieren [Bub 97, Kap. 5.5]: Eine Darstellung
eines Zustands |ψ〉 ∈ H ⊗H′ ⊗H′′ als triorthogonale Zerlegung (triorthogonal decomposition)

|ψ〉 =
X

i

ci|ui〉|vi〉|wi〉

mit Basisvektoren {|ui〉} ∈ H, {|vi〉} ∈ H′ und {|wi〉} ∈ H′′ existiert nicht immer. Aber wenn sie existiert, ist
sie eindeutig.
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mit |αk|2 + |βk|2 = 1 vor. Die Wechselwirkung soll durch den einfachen Hamilton-Operator

HME =
N∑

k=1

HME
k (15.35)

mit

HME
k := gk�

A ⊗ σMz ⊗ σEz(k) ⊗
∏

j �=k
�
E
(j) (15.36)

gegeben sein. Der Zustand |ψ(t)〉 des Gesamtsystems zur Zeit t erhalten wir über die zuHME

gehörige unitäre Transformation nach einer Zwischenrechnung (vergl. ÜA 15.2), bei der wir
unmittelbar das Resultat (15.32) verwenden, als

|ψ(t)〉 = c0|0A〉|0M 〉|ΩE0 (t)〉+ c1|1A〉|1M 〉|ΩE1 (t)〉 (15.37)

mit

|ΩE0 (t)〉 :=
N∏

k=1

(αk exp(igkt)|0E(k)〉+ βk exp(−igkt)|1E(k)〉) =: |ΩE1 (−t)〉 . (15.38)

Die Umgebungszustände sind normiert 〈ΩE0 (t)|ΩE0 (t)〉 = 1, 〈ΩE1 (t)|ΩE1 (t)〉 = 1, aber i.a.
nicht zu allen Zeiten orthogonal

r(t) := 〈ΩE0 (t)|ΩE1 (t)〉 . (15.39)

Zur Beschreibung der Auswirkung der Messung am System SA durch das Messgerät SM

müssen wir durch Abspuren über die Freiheitsgrade der Umgebung zum reduzierten Dichte-
operator des Systems SAM übergehen.

ρAM = trE [|ψ(t)〉〈ψ(t)|] = |c0|2|0A〉〈0A| ⊗ |0M 〉〈0M | (15.40)

+ |c1|2|1A〉〈1A| ⊗ |1M 〉〈1M |
+ r(t)c0c∗1|0A〉〈1A| ⊗ |0M 〉〈1M |
+ r∗(t)c∗0c1|1A〉〈0A| ⊗ |1M 〉〈0M | . (15.41)

Man findet leicht (vergl. ÜA 15.2) als explizite Zeitabhängigkeit von r(t)

r(t) =
N∏

k=1

{cos 2gkt+ i(|αk|2 − |βk|2) sin 2gkt} . (15.42)

Nach Konstruktion ist r(t = 0) = 1 und |r(t)|2 ≤ 1.
Wichtig ist im Hinblick auf die Forderung (ii) das Verhalten von r(t) für große Zeiten.

Wie Gl. (15.42) zeigt, ist r(t) aufgebaut aus periodischen Funktionen mit vielen verschie-
denen Frequenzen 2gk. Es ist aus der statistischen Mechanik, aus der Quantenoptik und aus
anderen Gebieten der theoretischen Physik bekannt, dass so zusammengesetzte Funktionen
Kollaps und Wiederkehr (collapse and revival) zeigen. Beginnend bei t = 0 mit r = 1 fällt
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|r(t)| zunächst ab und nähert sich dem Wert Null, kann dann aber nach längerer Zeit wie-
der ansteigen, wieder auf Null abfallen, wieder ansteigen usw. |r(t)| kann beliebig nahe an
|r(t)| = 1 zurückkehren3. Mit wachsendem N wird diese Rekohärenz (recoherence) aber zu
immer größeren Zeiten hin verschoben (vergl. Abb. 15.5).

Wiederkehr

t

tN = 5

N = 15

r(t)

Abbildung 15.5: Kollaps und Wiederkehr (spezielle Parameterwahl).

r(t) erreicht sehr schnell einen Wert proportional zu 2−N (vergl. Abschn. 15.6). Wie
Gl. (15.41) zeigt, entspricht dem ein sehr schneller Dekohärenzvorgang in den Basen
{|0A〉, |1A〉} und {|0M 〉, |1M 〉}. SAM geht aus einem reinen Zustand in ein Gemisch ρAB

über. Insbesondere die Markerzustände |0M 〉 und |1M 〉 können nicht mehr miteinander in-
terferieren. Es sind klassische Zustände geworden, die man Zeigerzustände (pointer states)
nennt. Damit ist auch die Forderung (iii) erfüllt.

Der von der Umgebung SE induzierte Dekohärenzprozess hat beim reduzierten Dichte-
operator ρAM die Basis der Zeigerzustände ausgezeichnet. Das Ergebnis ist für das Teilsystem
SAM der reduzierte Dichteoperator

ρAM = |c0|2|0A, 0M 〉〈0A, 0M |+ |c1|2|1A, 1M 〉〈1A, 1M | . (15.43)

Ein Gemenge aus den Zuständen |0A, 0M 〉 und |1A, 1M 〉 ausHA⊗HM mit den Wahrschein-
lichkeiten p0 = |c0|2 und p1 = |c1|2 wird ebenfalls durch den Dichteoperator ρAM beschrie-
ben. Ein solches Gemenge entspricht gemäß Messpostulat genau dem Ergebnis einer nicht-
selektiven Messung der Observablen ZA. Sind damit alle Anforderungen aus Abschn. 15.3.1
erfüllt?

Welche Zeigerzustände? Mit dieser nur auf SAB bezogenen reduzierten Betrachtungswei-
se, die von der Umgebung SE absieht, ist die Argumentation allerdings noch unvollständig,
denn wir haben dadurch wieder ein Problem mit Forderung (i) bekommen. Denn ρAM ist
der reduzierte Dichteoperator eines verschränkten Teilsystems und damit nicht das Ergebnis
eines Präparationsprozesses, der auf ein Gemenge führt. Eine Ignoranzinterpretation (vergl.
Abschn. 4.3) ist nicht möglich. Das Gesamtsystem befindet sich in einem reinen Zustand. Der
Dichteoperator ρAM hat beliebig viele Ensemblezerlegungen z. B. auch

ρAM = pu|uA, uM 〉〈uA, uM |+ pv|vA, vM 〉〈vA, vM | . (15.44)

3Wiederkehr kann man genauer fassen: H sei ein endlich-dimensionaler Hilbert-Raum und U ein unitärer Opera-
tor. Dann gibt es zu jedem ε > 0 eine natürliche Zahl q, sodass sup{‖Uq − �|ϕ〉‖ : |ϕ〉 ∈ H, ‖ϕ‖ = 1} < ε.
Wenn man die Anwendung von U häufig genug wiederholt, kommt man dem Ausgangszustand wieder beliebig na-
he. [SSS 04]
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Ist daher möglicherweise eine ganz andere Observable UA = u|uA〉〈uA| + v|vA〉〈vA| mit
Zeigerzuständen |uM 〉 und |vM 〉 gemessen worden.

Wir dürfen von der Umgebung nicht absehen. Wir wissen, dass beim Messprozess die
Zeigerstellung stabil ist. Die Wechselwirkung mit der Umgebung ist ständig vorhanden. Wenn
sie wie oben von der Form

HME = ZM ⊗HE (15.45)

mit einem hermiteschen Operator HE ist, dann vertauscht HME mit der Zählerobservablen
(pointer observable) ZM

[HME , ZM ]− = 0 . (15.46)

Die Zustände |0M 〉 und |1M 〉 und damit auch die Korrelationen mit den Zuständen |0A〉 und
|1A〉 bleiben unter dem Einfluss der Umgebung unverändert. Die Stabilität dieser Korrelatio-
nen zeichnet die Zeigerbasis {|0M 〉, |1M 〉} vor anderen Basen aus.

Die Diagonalisierung von ρAB durch umgebungsinduzierte Dekohärenz und die Stabi-
lität der Korrelationen zwischen SA und SM unter fortdauerndem Einfluss der Umgebung
führt auf die Festlegung der zeitlich unveränderlichen klassischen Zeigerzustände. ZA liegt
als gemessene Observable ebenfalls fest. Damit sind die Forderungen (i) bis (iii) an eine dy-
namische begründende Theorie des Messprozesses für die nicht-selektive Messung in diesem
sehr einfachen Modell durch die Ankopplung an die Umgebung weitgehend erfüllt. Die Ver-
schränkung mit der Umgebung SE ist allerdings nicht durchbrochen wie die Möglichkeit der
„Wiederkehr“ in sehr ferner Zukunft zeigt. Durch ρAM wird kein Gemenge beschrieben. Eine
Ignoranzinterpretation (vergl. Abschn. 4.3) ist nicht möglich. Das Urteil darüber, ob das als
ein gravierender Mangel des Erklärungsmodelles anzusehen ist, bleibt dem Leser überlassen.

15.4 Ist das Messproblem gelöst?∗

Ein weiterer damit zusammenhängender gravierender Mangel liegt in jedem Fall vor: Die For-
derung (iv) von Abschn. 15.3.1 ist nicht erfüllt. Umgebungsinduzierte Dekohärenz kann nicht
erklären, warum in jedem Einzelexperiment immer nur eine von vielen möglichen Zeiger-
stellungen eines Messapparats realisiert ist. Das ist aber gerade die elementarste Erfahrung,
die ein messender Experimentator noch vor allen anderen Erfahrungen macht. Sie ist Teil der
Messpostulate. Das Messproblem ist daher (in der Standardinterpretation) nicht gelöst.

Verlangt ist allerdings keine deterministische Begründung dafür welche Zeigerstellung
eintritt. Das würde auf die verborgenen Parameter zurückführen. Die Erklärungslücke be-
trifft typischerweise einen Einzelprozess und damit als Konsequenz die selektive Messung
überhaupt, da sie auf Einzelmessungen aufbaut. Mit dem Zustand ρAM des vorigen Kapitels
haben wir ein Gemisch erhalten, Wenn man das als Ergebnis einer nicht-selektiven Messung
und also als ein Gemenge interpretiert, hat man bereits vorausgesetzt, dass die Forderung (iv)
erfüllt werden konnte.

Es ist offenbar so, dass man die in den Messpostulaten enthaltene Forderung (iv) im Rah-
men der vorliegenden Quantentheorie einschließlich der Standardinterpretation dynamisch
nicht begründen kann. Wenn das so ist, hat man zwei Möglichkeiten: Man kann einmal die
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Quantentheorie abändern, indem man z. B. andere dynamische Gleichungen postuliert (vergl.
Abschn. 15.6). Die zweite Möglichkeit besteht darin, die Theorie in der bestehenden ma-
thematischen Formulierung unverändert zu lassen und zu einer anderen Interpretation für sie
überzugehen. Wir wollen ein Beispiel hierfür sehr kurz skizzieren.

15.5 Die Viele-Welten-Interpretation∗

Die Viele-Welten-Interpretation (many-worlds interpretation), die auch Everett4-
Interpretation (Everett interpretation) genannt wird, bezieht den Beobachter als System
mit ein. Er entspricht formal dem System SM aus Abschn. 15.3.2. Wir wollen im Folgenden
SM so verstehen. Wie in der Vormessung entwickelt sich der Zustand von SAM , wenn SA

ein Qubit ist, in den Zustand (15.24). Die Zustände |0M 〉 und |1M 〉 sind die in diesem Zu-
sammenhang Erinnerungszustände (memory states) des Beobachters. Dies beschreibt bereits
den Messprozess. Der Zustand |φAM 〉 geht nicht noch anschließend in einen der Zustände
(also z. B. |0A〉|0M 〉) über, sondern beide Zweige (branches) |0A〉|0M 〉 und |1A〉|1M 〉 sind
realisiert. Die Realisierung manifestiert sich allerdings in verschiedenen realen Welten, die
nicht miteinander wechselwirken. Da die Zustände |0M 〉 und |1M 〉 Erinnerungszustände
sein sollen, kann sich ein Beobachter mit wohlbestimmter Erinnerung, z. B. |1M 〉, nur an
das zu |1A〉 gehörige Messergebnis erinnern und er findet entsprechend System SA auch
im Zustand |1A〉 und nicht im Zustand |0A〉. Die Vorhersagen über das, was im nächsten
Experiment zu dem hinzukommen wird, an was sich ein Beobachter erinnern kann, sind
Wahrscheinlichkeitsaussagen. Auch in diesem nachfolgenden Experiment wird wieder alles
realisiert was potentiell möglich ist. Die Welt spaltet immer wieder in jeder Messung auf.

Es ist das Wesen einer Interpretation, dass sie nicht empirisch widerlegt werden kann. Das
gilt auch für die Viele-Welten-Interpretation. Weiterhin ist jeder frei darin, diejenige Inter-
pretation zu wählen, die er aus guten (metaphysikalischen) Gründen für die Geeignetere hält.
Wir haben das in Abschn. 2.5 analysiert. Die Viele-Welten-Interpretation ist bizarr, aber sie
hat neben vielen Unklarheiten (vergl. Abschn. 15.6) und nicht befriedigend ausgearbeiteten
Details auch Vorteile: Die Forderung (iv) an die Theorie des Messprozesses ist erfüllt. Weiter-
hin ist der Beobachter mit in das System einbezogen. Es wird „alles“ beschrieben. Es gibt nur
ein einziges abgeschlossenes System, das das ganze kosmologische Universum repräsentiert.
Das könnte das Verständnis der Quantenphysik des extremen Frühzustands des Universums
erleichtern. Andererseits lassen sich auch Probleme erkennen. Wir geben ein Beispiel: Wie
bei der Vormessung in Abschn. 15.3.2 muss man sich fragen, warum die Aufspaltung in die
Welten nicht nach der Gl. (15.25) folgt. Wird der Beobachter SM sich an eine Messung der
Observablen ZA oder der Observablen XA erinnern? Es liegt nahe, zur Lösung dieses Pro-
blems (welches das Problem (i) aus Abschn. 15.3.1 ist) wieder die Dekohärenz durch die
Umgebung heranzuziehen.

Wir wollen im nächsten Kapitel, dem Schlusskapitel, noch einmal zu „hartem“ theoreti-
schem Stoff zurückkehren und einige Beweise nachliefern.

4 [Eve 57]
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15.6 Ergänzende Themen und weiterführende Literatur

• Alle Aspekte des Themas Dekohärenz werden in dem Sammelband [GJK 96] behandelt.

• Übersichtsartikel zur Dekohärenz: [Joo 96], [Zeh 96], [Bub 97, Kap. 5.4], [Zeh 00],
[Joo 02], [PZ 02], [Leg 02], [Zur 02], [Zur 03].

• Übersichtsartikel und Bücher zur Viele-Welten-Interpretation: [DG 73], [Deu 96],
[Bar 00], [Vai 01].

• Kurze Darstellungen der Viele-Welten-Interpretation: [Pri 81, Kap. 3.6], [d’Es95, Kap.
12], [Bub 97, Kap.8.2], [Hom 97, Kap. 2] [Mit 98, Kap. 3.2], [Aul 00, Kap. 15].

• Übersichtsartikel und Bücher zur Theorie des Quantenmessprozesses: [Zur 82], [Zur 91],
[BLM 91], [Bub 97, Kap. 8], [Mit 98], [Aul 00, Kap. IV ], [PZ 02], [Leg 02].

• Eine Reihe von gut lesbaren Aufsätzen zu Schrödingers Katze, zum Verhältnis von
Mikro- zu Makrophysik und zum Erscheinen der klassischen Welt findet sich in [AM 96].

• Vergleich von Dekohärenzraten und Relaxationsraten, Zeitskalen der Dekohärenz:
[Joo 96], [PZ 02].

• Zeitlicher Ablauf des Verschwindens der Dekohärenz zwischen räumlich getrennten
Komponenten einer Wellenfunktion (Lokalisierungsraten): [Joo 96].

• Übersichtsartikel zur Beschreibung des Messprozesses mit abgeänderter Schrödinger-
und von-Neumann-Gleichungen (Zustandsreduktion als dynamischer Prozess): [Sta 96],
[Lal 01].

• Wir haben nur ein besonders einfaches Modell für umgebungsinduzierte Dekohärenz stu-
diert. Man sollte vorsichtig sein mit der Verallgemeinerung der Ergebnisse: [PZ 02].

• Interferometrie mit Makromolekülen und Dekohärenz: [ANZ 02], [HUH 03].

• Superposition makroskopischer Systeme in einem SQID: [FPC 00]. [VdW 00].

• Experimente zu Verschränkung, Dekohärenz und Katzenzuständen in Kavitä-
ten: [HRB 02], [RBH 01].

15.7 Übungsaufgaben

ÜA 15.1 [zu 15.1] Berechnen Sie die Wirkung des Phasendämpfungskanals auf den Dichte-
operator

ρ =
1
2
(�+ rσ) . (15.47)

Wie ändert sich der Bloch-Vektor r?
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ÜA 15.2 [zu 15.3] Leiten Sie die Gl. (15.29), (15.32) und (15.37) ab. Berechnen Sie hierzu
zunächst die dyadische Zerlegung der Operatoren exp(σAz ⊗ σMy ) und exp(σAz ⊗ σMz ) in
geeigneten Basen vonHA ⊗HM .

ÜA 15.3 [zu 15.3] Leiten Sie Gl. (15.41) ab.



This Page Intentionally Left Blank



16 Zwei Realisierungen von Quantenoperationen∗

16.1 Operatorsummenzerlegung∗

Relative Zustände und Indexzustände Wir betrachten ein 2-Teile-System SAB mit
Hilbert-Raum HA ⊗ HB und setzen der Einfachheit halber dimHA = dimHB = d vor-
aus. InHA undHB führen wir ONB {|aAn 〉} und {|eBn 〉} ein und bilden daraus einen maximal
verschränkten unnormierten Zustand

|ψ̃AB〉 =
d∑

n=1

|aAn , eEn 〉 (16.1)

für den

|aAn 〉 = 〈eBn |ψ̃AB〉 (16.2)

gilt. Wir können |eBn 〉 als einen Markerzustand für |aAn 〉 auffassen.
Diese Idee wird verallgemeinert. Wir können einen beliebigen Zustand |φA〉

|φA〉 =
∑

n

cn|aAn 〉 (16.3)

aus HA durch Projektion in HB gewinnen. Dazu bilden wir in HB den zu |φA〉 gehörigen
Indexzustand (index state)

|φ∗B〉 :=
∑

n

c∗n|eBn 〉 . (16.4)

Dann finden wir mit Gl. (16.1)

|φA〉 = 〈φ∗B|ψ̃AB〉 (16.5)

und ebenso

|φ∗B〉 = 〈φA|ψ̃AB〉 . (16.6)

|φA〉 heißt relativer Zustand (relative state). Über den nur von den beiden ONB abhängi-
gen maximal verschränkten Hilfszustand |ψ̃AB〉 wird zwischen einem beliebigen Zustand

*Die mit einem Stern gekennzeichneten Kapitel können bei einem ersten Durchgang überschlagen werden.

Verschränkte Systeme: Die Quantenphysik auf neuen Wegen. Jürgen Audretsch
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|φA〉 ∈ HA und seinem Indexzustand |φ∗B〉 in HB ein einfacher Zusammenhang hergestellt.
|ψ̃AB〉 etabliert eine eineindeutige Abbildung

|φA〉 ↔ |φ∗B〉 , (16.7)

die konjugiert linear (conjugate linear) ist. Es gilt

|φA〉 = a1|φA1 〉+ a2|φA2 〉, |φ∗B〉 = a∗1|φ∗A1 〉+ a∗2|φ∗A2 〉 . (16.8)

Der Beweis ergibt sich durch Zerlegung nach den Basisvektoren.

Beweis des Theorems Wir wollen den folgenden in Abschn. 14.1.2 bereits behaupteten Satz
beweisen: Eine Abbildung ρ → ρ̃′ = E(ρ) ist genau dann eine Quantenoperation, wenn es
eine Operatorsummenzerlegung

E(ρ) =
∑

i

KiρK
†
i (16.9)

mit linearen Operatoren Ki gibt, die die Bedingung

∑

i

K†
iKi ≤ � (16.10)

erfüllen und den Eingangs-Hilbert-Raum auf den Ausgangs-Hilbert-Raum abbilden. Die Be-
dingung (16.10) ist gleichbedeutend damit, dass die Spur nicht erhöht wird

tr[E(ρ)] ≤ � (16.11)

(tr[ρ] = 1). ρ̃′ ist wieder ein Dichteoperator.
Wir zeigen zunächst, dass EA⊗�B einen positiven Operator πAB ausHA⊗HB in einen

positiven Operator überführt. |ψAB〉 sei ein beliebiger Vektor ausHA⊗HB . Wir greifen einen
Index i heraus und bilden

|φABi 〉 := (KA†
i ⊗ �E)|ψAB〉 . (16.12)

Dann ist KA
i ⊗ �B wegen

〈ψAB|(KA
i ⊗ �B)πAB(KA†

i ⊗ �B)|ψAB〉 = 〈φABi |πAB|φABi 〉 ≥ 0 (16.13)

ein positiver Operator auf HA ⊗ HB . Das gilt auch für die Summe über i. EA ist nicht nur
positiv, sondern auch vollständig positiv.

Für die umgekehrte Beweisrichtung gehen wir im ersten Schritt von dem maximal ver-
schränkten Zustand |ψ̃AB〉〈ψ̃AB| von Gl. (16.1) aus. Da EA nach Voraussetzung eine Quan-
tenoperation ist, führt die Anwendung von EA ⊗ �B

(EA ⊗ �B)|ψ̃AB〉〈ψ̃AB| =: CAB (16.14)

auf einen positiven Operator CAB .
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Im zweiten Schritt schreiben wir CAB mit Gl. (16.1) unter Ausnutzung der Linearität von
EA aus

CAE =
(EA ⊗ �B)

(
∑

n

|aAn , eBn 〉
)(

∑

n′
〈aAn′ , eBn′ |

)

=
∑

n,n′
EA (|aAn 〉〈aAn′ |)⊗ (|eBn 〉〈eBn′ |)

(16.15)

und bilden mit Gl. (16.3) und (16.4) den Erwartungszustand mit dem Indexzustand |φ∗B〉.

〈φ∗B|CAB|φ∗B〉 =
∑

n,n′
cnc

∗
nEA(|aAn 〉〈aAn |) = E(|φA〉〈φA|) . (16.16)

Dabei haben wir wieder die Linearität von EA ausgenutzt. Die Gl. (16.16) zeigt, dass im
Operator CAB die volle Information über die Wirkung des Superoperators EA auf der Basis
des Liouville-Raums �A steckt.

Im dritten Schritt wählen wir eine Ensemblezerlegung von CAB aus

CAB =
∑

i

|c̃ABi 〉〈c̃ABi | (16.17)

und formen die linke Seite der Gl. (16.16) um.

EA(|φA〉〈φA|) =
∑

i

〈φ∗B|c̃ABi 〉〈c̃ABi |φ∗B〉 . (16.18)

Wir führen Operatoren KA
i durch ihre Wirkung auf |φA〉 ein

〈φ∗B|c̃ABi 〉 =: KA
i |φA〉 (16.19)

und erhalten aus Gl. (16.18)

EA(|φA〉〈φA|) =
∑

i

KA
i |φA〉〈φA|KA†

i . (16.20)

Wegen der Linearität von EA gilt damit für alle Dichteoperatoren ρA aufHA:

EA(ρA) =
∑

i

KA
i ρ

AKA†
i . (16.21)

Da die Abbildung |φA〉 ↔ |φ∗B〉 konjugiert linear ist, sind mit Gl. (16.19) auch die Operato-
ren KA

i lineare Operatoren. Da weiterhin die Quantenoperation EA(ρA) von Gl. (16.21) für
alle ρA die Spur nicht erhält, ergibt sich die Bedingung (16.10). Damit ist der Satz über die
Operatorsummenzerlegung in beiden Richtungen bewiesen.

Die Wahl der beiden Orthonormalbasen {|aAn 〉} und {|eBn 〉} war ebenso wie die Ensem-
blezerlegung (16.17) willkürlich. Das zeigt noch einmal, dass die OperationselementeKA

i bei
vorgegebenem Superoperator EA nicht eindeutig festgelegt sind.
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16.2 Unitäre Realisierung von Quantenoperationen∗

Spurerhaltende Quantenoperationen Eine spurerhaltende Quantenoperation EA auf dem
System SA

tr[EA(ρA)] = tr[ρA] = 1 (16.22)

heißt auch vollständige Quantenoperation (complete quantum operation). Die zugehörigen
Zerlegungsoperatoren erfüllen die Vollständigkeitsrelation

∑

i

KA†
i KA

i = � . (16.23)

Für eine unitäre Realisierung der Quantenoperation ergänzen wir wieder das System SA um
ein Hilfssystem SB . Die Dimension vonHB soll mit der Zahl der Zerlegungsoperatoren über-
einstimmen.

InHB wählen wir eine Basis {|iB〉}. SB sei am Anfang im Zustand |0B〉 und das Gesamt-
system im Produktzustand |ψA〉|0B〉. Wir definieren mit Hilfe der KA

i einen Operator ÛAB

durch seine Wirkung auf Zustände |ψA〉|0B〉

ÛAB|ψA〉|0B〉 :=
∑

i

KA
i |ψA〉|iB〉 . (16.24)

Für beliebige Zustände |ψA〉 und |φA〉 gilt dann mit der Vollständigkeitsrelation (16.23)

〈ψA|〈0B|ÛAB†ÛAB|φA〉|0B〉 =
∑

i

〈ψA, 0B|KA†
i KA

i |φA, 0B〉

= 〈ψA, 0E |φA, 0E〉 .
(16.25)

Auf Zuständen der Form |ψA, 0B〉 erhält ÛAB die inneren Produkte. Mit dem schon in Ab-
schn. 13.3.5 verwendeten Hilfssatz kann daher ÛAB zu einem unitären Operator UAB erwei-
tert werden, der auf ganz HA ⊗ HB wirkt. Von solchen Operatoren nehmen wir an, dass sie
sich physikalisch realisieren lassen.

Das Untersystem SA wird durch die unitäre Transformation des Gesamtsystems in den
Zustand

trB[UAB(|ψA〉〈ψA| ⊗ |0B〉〈0B|)UAB†]

= trB[
∑

i,i′
KA
i |ψA〉〈ψA|KA†

i′ ⊗ |iB〉〈i′B|]

=
∑

i

KA
i |ψA〉〈ψA|KA†

i

= EA(|ψA〉〈ψA|)

(16.26)

überführt in den es auch die Quantenoperation EA überführt. Jede vollständige Quantenope-
ration aufHA hat daher eine unitäre Realisierung aufHA ⊗HB in der Form

EA(ρA) = trB [UAB(ρA ⊗ |0B〉〈0B|)UAB†] . (16.27)
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In jeder vollständigen Quantenoperation EA eines Systems SA lässt sich ein Gesamtsystem
SAB mit Hilbert-Raum HA ⊗ HB und eine unitäre Transformation UAB auf HAB finden,
so dass das Teilsystem die Entwicklung mit EA durchmacht. UAB ist die Erweiterung des in
Gl. (16.24) definierten Operators ÛAB .

Quantenoperationen, die die Spur nicht erhalten Bei unvollständigen Quantenoperatio-
nen (

∑
iK

A†
i KA

i ) < �) ergänzen wir die Menge der Operatoren KA
i um einen Operator K∗,

so dass ein vollständiger Satz
∑

i

KA†
i KA

i +K†
∗K∗ = � (16.28)

entsteht.
Den Raum HB ersetzen wir durch den Raum HB′

, dessen Dimension um eins erhöht ist.
Ein Operator UAB

′
wird wie oben gebildet. Nach der Entwicklung mit UAB

′
wird durch den

Projektor PB eine Projektion auf HB durchgeführt. Wir ersetzen also in der Rechnung oben
UAB durch PBUAB

′
. Dann verschwindet in der zu Gl. (16.24) analogen Gleichung gerade

der Operator KA
∗ . Auch in der Operatorsummendarstellung (16.26) taucht er nicht mehr auf.

16.3 Realisierung einer völlig allgemeinen Messung durch
unitäre Transformation und Projektion∗

Wir wollen völlig allgemeine Messungen (most general measurements) physikalisch realisie-
ren. Bei diesen Eingriffen geht der Zustand ρA bei Eintreten des Messwerts m in den Zustand
ρ̃′Am über, der durch eine QuantenoperationMA

m gegeben ist.

ρA → ρ̃′Am =MA
m(ρA) . (16.29)

Die in Abschn. 13.3 diskutierte verallgemeinerte Messung ist der Spezialfall MA
m(ρ) =

MA
mρ

AM†
m.

Die Anzeige des Messwerts m soll mit der Wahrscheinlichkeit

p(m) = trA[ρ̃′Am ] = trA[MA
m(ρ)] (16.30)

erfolgen. Es ist also für beliebige ρA

trA[
∑

m

MA
m(ρA)] =

∑

m

p(m) = 1 . (16.31)

Die SuperoperatorenMA
m haben eine Operatorsummenzerlegung

MA
m(ρ) =

∑

i

MA
m,iρ

AMA†
m,i . (16.32)

Der Laufbereich von i kann von m abhängen. Als Folge von Gl. (16.31) müssen die Zerle-
gungsoperatoren die Vollständigkeitsrelation

∑

m,i

MA†
m,iM

A
m,i = � (16.33)

erfüllen.



272 16 Zwei Realisierungen von Quantenoperationen∗

Es kann auch in diesem Fall eine im Prinzip durchführbare physikalische Realisierung für
diese ganz allgemeine Messung am System SA gefunden werden, indem ein Hilfssystem SB

hinzugenommen wird. Das Gesamtsystem SAB wird wieder geeignet unitär entwickelt und
schließlich wird in SB eine projektive Messung durchgeführt.

Wir führen ein Hilfssystem SB mit einer ONB {|m, iB〉} ∈ HB ein (d. h. 〈m, i|m′, i′〉 =
δmm′δii′), deren Vektoren den Zerlegungsoperatoren zugeordnet sindMA

m,i ↔ |m, iB〉. Dann
können wir Schritt für Schritt dem Vorgehen in Abschn. 16.2 folgen. Der Anfangszustand des
Gesamtsystems sei |ψA, 0B〉. Es wird ein Operator ÛAB mit der Wirkung

ÛAB|ψA, 0B〉 :=
∑

m,i

MA
m,i|ψA〉|m, iB〉 (16.34)

definiert. Er lässt sich wieder zu einem unitären Operator UAB auf ganzHA⊗HB erweitern.
Wir führen orthogonale Projektionsoperatoren PBm auf dem Hilfssystem SB zu den Mess-

werten m ein:

PBm :=
∑

i

|m, iB〉〈m, iB| ,
∑

m

PBm = �
B . (16.35)

Die unitäre Gesamttransformation mit nachfolgender Projektion PBm auf dem Hilfssystem SB

ergibt

PBmU
AB |ψA〉|0B〉 =

(
∑

i′
|m, i′B〉〈m, i′B|

)


∑

n,i

MA
n,i|ψA〉|n, iB〉





=
∑

i

MA
m,i|ψA〉|m, iB〉 .

(16.36)

Zur Bestimmung des reduzierten Dichteoperators des Ausgangssystems SA gehen wir wie
in Gl. (16.26) vor und erhalten mit Gl. (16.32) die gewünschte Relation (16.29)

ρ̃′Am =
∑

i

MA
m,i|ψA〉〈ψA|MA†

m,i =MA
m(|ψA〉〈ψA|) . (16.37)

Die Wahrscheinlichkeit p(m), mit der bei der projektiven Messung auf SB der Messwert m
auftritt, ist durch den reduzierten Dichteoperator ρB von SB nach der unitären Entwicklung
gegeben. Durch Bilden der Teilspur trA bei Gl. (16.36) gewinnen wir zunächst nach einer
Zwischenrechnung ρB und daraus p(m)

p(m) = trB[PBmρ
BPBm ] . (16.38)

Man liest dann an den expliziten Ausdrücken in der hier nicht dargestellten Zwischenrechnung
mit Hilfe von Gl. (16.37) die angestrebte Endrelation (vergl. Gl. (16.30))

p(m) = trA[MA
m(|ψA〉〈ψA|)] (16.39)

ab. Die Rechnung überträgt sich infolge der Linearität der Superoperatoren auf Dichteopera-
toren.
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Wir haben folgendes Ergebnis erhalten: Eine völlig allgemeine Messung am System SA

mit Messergebnis m ist als unitäre Entwicklung UAB des um SB erweiterten Gesamtsystems
SAB mit anschließend projektiver Messung an SB mit Projektor PBm realisierbar. UAB und
PBm sind dabei durch die Gl. (16.34) und (16.35) gegeben. Es findet eine Rückführung auf
projektive Messungen statt, die physikalisch nicht weiter reduziert werden kann.

16.4 Ergänzende Themen und Literatur

• Zu den Beweisen: [Sch 96].

16.5 Übungsaufgaben

ÜA 16.1 [zu 16.1] Beweisen Sie Gl. (16.8).

ÜA 16.2 [zu 16.3] Ergänzen Sie die Zwischenrechnung, die auf Gl. (16.38) führt.
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