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Vorwort

Dieses Buch ist ein
Lehrbuch der theoretischen Physik.

Es ist aus Vorlesungen und Seminaren entstanden, die ich in den letzten Jahren an der Univer-
sitat Konstanz zum Thema

Quanteninformationstheorie  und
die Grundlagen der Quantentheorie

gehalten bzw. veranstaltet habe.

Die unrelativistische Quantenphysik hat in den letzten ein bis zwei Jahrzehnten eine stiir-
mische Entwicklung durchgemacht. Quantencomputer, Quantenteleportation, Quantenkrypto-
graphie, Quanteninformation sind die typischen Schlagwdrter, die Gber den Kreis der Physiker
hinaus in populéarwissenschaftlichen Artikeln und im Feuilleton mit dieser Entwicklung ver-
bunden werden. Das Konzept der Verschrankung ist das zentrale theoretische Konzept auf
diesen ,,neuen Wegen* der Quantenphysik, die immer haufiger auch im Physikunterricht an
den Schulen beschrieben werden. Die theoretischen Grundlagen der neuen Entwicklungen
sind das Thema dieses Buches.

An wen wendet sich das Buch? Das Buch wendet sich in erster Linie an Studenten, aber
dariiber hinaus auch an alle, die an der Quantenphysik interessiert oder vielleicht sogar von ihr
fasziniert sind. Es sollen aber nicht nur Physikstudenten und Physiker, sondern auch Studen-
ten der Informatik, Chemie und anderer Naturwissenschaften, sowie Ingenieure und Lehrer
angesprochen werden. Das Buch setzt voraus, dass der Leser schon durch eine Lehrveranstal-
tung oder durch Selbststudium erste Einblicke in die Quantentheorie hatte. Es fangt also nicht
bei null an.

Allerdings werden alle mathematischen und physikalischen Grundkenntnisse, die fir die
Lektire spaterer Kapitel bendtigt werden, als Einstieg in den Anfangskapiteln 1 und 2 wie-
derholt und aus einer fur den Leser moglicherweise neuen Sicht aufgearbeitet. Dabei soll u.a.
darauf vorbereitet werden, dass in der Quantentheorie die Konzepte Zustand und Zustandsent-
wicklung einschlieflich Messung anders als in der klassischen Physik zu verstehen sind. Hier-
auf bauen die in den spéteren Kapiteln beschriebenen Verallgemeinerungen auf. Das zweite
Kapitel enthalt auch ein wissenschaftstheoretisches Ristzeug, mit dem die Frage diskutiert
werden kann, auf welche Realitat sich die Quantentheorie bezieht.

Verschrénkte Systeme: Die Quantenphysik auf neuen Wegen. Jiirgen Audretsch
Copyright © 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40452-X



Xl Vorwort

Anschlielend steigen die Anforderungen an den Leser von Kapitel zu Kapitel an. Die Ka-
pitel bauen aufeinander auf. Ubungsaufgaben konnen zur Kontrolle dienen. Kursiv geschrie-
bene Séatze fassen Ergebnisse zusammen. Fortgeschrittene Leser kdnnen mit ihrer Hilfe den
Text schnell querlesen.

Zielsetzung Dieses Buch will dem Leser dabei helfen, die raschen Entwicklungen der Quan-
teninformationstheorie besser tiberblicken, einordnen und mit angemessenem Aufwand nach-
vollziehen zu kdénnen.

Beschrankung und Ergédnzung Der Anspruch an mathematische Prézision entspricht dem
der gebrduchlichen Lehrbiicher der theoretischen Physik. Inhaltlich beschranke ich mich auf
die theoretischen Aspekte. Die Beschreibung der entsprechenden Experimente und techni-
schen Anwendungen wirde noch einmal so viele Kapitel benétigen. Jedes Kapitel enthalt
aber ein Unterkapitel Uber ergdnzende Themen und weiterfihrende Literatur. Dort wird auf
Experimente hingewiesen.

Diese Unterkapitel weisen auch auf theoretische Ubersichtsartikel und Biicher hin. Mit
deren Hilfe kann der Leser das Dargestellte vervollstandigen und vertiefen. Zusammenfas-
senden Darstellungen wurde gegeniber Originalartikeln der Vorzug gegeben. Es werden also
nicht die fir die Entwicklung wichtigen Arbeiten riickblickend historisch korrekt aufgelis-
tet, vielmehr sollen in erster Linie fiir den Leser nutzliche weiterfiihrende Literaturhinweise
gegeben werden.

Inhalt Im Anschluss an die beiden ersten Kapitel wird in Kap. 3 und 4 zunéchst die Physik
abgeschlossener Quantensysteme weiterentwickelt. Viele Beispiele und Anwendungen bezie-
hen sich auf Qubits (2-Niveau-Systeme). Mit dem Dichteoperator wird das Konzept des Quan-
tenzustands in Kap. 4 abschlieBend erweitert. Allgemeinere Zustande gibt es nicht. Kapitel 5
und 6 fihren in das klassische bzw. quantentheoretische Entropie- und Informationskonzept
ein.

Die Grundlagen der Physik zusammengesetzter Quantensysteme werden in Kap. 7 be-
schrieben. Dass sich Teilsysteme zusammen in einem verschrankten Zustand befinden kon-
nen, hat eine Vielzahl von tiberraschenden Effekten zur Folge. Eine Einfiihrung wird in Kap. 8
gegeben. Verschrankung bedingt Korreliertheit der Teilsysteme. Zur Nicht-Lokalitat der Zu-
stdnde treten noch die Mdglichkeiten nicht-lokaler Messungen hinzu (Kap. 9).

Die experimentell nachgewiesenen spezifischen Quantenkorrelationen (EPR-Korrelatio-
nen) bestatigen die fundamentale Aussage, dass es keine klassische Alternative zur Quan-
tentheorie gibt (Kap. 10). Diese EPR-Korrelationen konnen zur Grundlage einer im Prinzip
vollig abhorsicheren Quantenkryptographie gemacht werden. Auch die Quantenteleportation
beruht auf ihnen (Kap. 12). Fir den Quantencomputer ist Verschrankung ein wesentliches
Hilfsmittel. Die Ausnutzung der Quantenparallelitat erlaubt es, sehr viele Funktionswerte in
sehr wenigen Operationen zu berechnen. Das Problem ist dann das Auslesen der Ergebnisse
(Kap. 12).

In Kap. 13 wenden wir uns der allgemeinen Dynamik offener Quantensysteme zu und
diskutieren zundchst verallgemeinerte Messungen, die die projektiven Messungen als Spezi-
alfall enthalten. Sie spielen zusammen mit den operatorwertigen Mafen (POVM) eine immer
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groRere Rolle in den aktuellen Publikationen. Die allgemeine Entwicklung von offenen Quan-
tensystemen zwischen Préparation und Messung wird mit Hilfe der Quantenoperationen be-
schrieben. Verschiedene Quantenkanéle werden diskutiert (Kap. 14). Die Verallgemeinerung
der projektiven Messungen und der unitaren Transformationen filhren auf ein neues Szenario
der Quantenphysik.

Dekohérenz ist der Verlust der Interferenzfahigkeit und stellt daher ein Problem beim
Quantencomputer dar. Umgekehrt spielt die umgebungsinduzierte Dekoh&renz eine wichti-
ge Rolle bei der Beantwortung der Frage warum es klassische Objekte gibt (Kap. 15). Es liegt
nahe, diesen Ansatz auch bei der Begriindung des Quantenmessprozesses zu versuchen. Mit
dem Nachtrag einiger Beweise in Kap. 16 schliefit das Buch ab.
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1 Der mathematische Rahmen

Es ist die Aufgabe der Quantentheorie — genau wie die jeder anderen physikalischen Theo-
rie — das Ergebnis von Experimenten vorherzusagen und diese Prognose zu begriinden. Dazu
muss man den Zustand des physikalischen Systems zu Beginn eines Experiments beschreiben,
man muss die Entwicklung des Systems wahrend des Experiments formulieren und das Er-
gebnis einer Wechselwirkung mit dem Messapparat vorhersagen kénnen. Der mathematische
Rahmen, der sich fiir die Formulierung der Quantentheorie bewahrt hat, ist die Theorie des
Hilbert-Raums und die Wahrscheinlichkeitstheorie. Die fundamentale Verkniipfung zwischen
mathematischen GrélRen und physikalischer Realitat wird dabei tber die folgenden Zuordnun-
gen etabliert:

Quantensystem < Hilbert-Raum
Quantenzustand «  Vektor im oder Operator auf dem Hilbert-Raum
Entwicklung des Quantenzustands «  Lineare Operatoren, die auf den Vektoren wir-
ken bzw. lineare Operatoren, die auf den Raum
der Operatoren (Liouville-Raum) wirken.
Prognosen «  Wahrscheinlichkeitstheoretische Aussagen.

Wir werden dieses Grundschema der Quantentheorie noch im Einzelnen darstellen. In
diesem Kapitel sollen zun&chst die bendtigten Definitionen und Satze zusammengestellt wer-
den. Dabei werden wir nicht alle mathematischen Sétze beweisen. Insbesondere werden wir
voraussetzen, dass der Leser schon einmal Kontakt mit der Quantentheorie hatte, sodass die
Darstellung knapp gehalten werden kann.

Da wir durchweg d-Niveau-Quantensysteme (d = 2, 3,...) untersuchen werden, wollen
wir eine stark vereinfachende Einschrénkung machen:

Mathematische Generalvoraussetzung: Wir betrachten Quantensysteme, die mit
Hilfe eines endlich-dimensionalen Hilbert-Raums H,; der Dimension d = 2,3, ...
beschrieben werden kdnnen.

Die Einschrankung ist gerechtfertigt, weil die wesentlichen begrifflichen Probleme so-
wie die neuen Konzepte und zentralen Methoden bereits mit Bezug auf einen endlich-
dimensionalem Hilbert-Raum eingefuhrt werden kénnen. Wir wollen den konzeptionellen
physikalischen Problemen nicht noch mathematische Subtilititen hinzufiigen. Fur die meisten
physikalisch relevanten Fallen, die eine Beschreibung im unendlich-dimensionalen Hilbert-
Raum erfordern, lassen sich die Ergebnisse fir endlich-dimensionale Raume direkt tbertra-
gen.

Wie in der theoretischen Physik (iblich, werden wir die Dirac-Schreibweise benutzen. In
diesem Rahmen ist es gunstig, die dyadische Zerlegung von Operatoren in den Mittelpunkt

Verschrénkte Systeme: Die Quantenphysik auf neuen Wegen. Jiirgen Audretsch
Copyright © 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40452-X



2 1 Der mathematische Rahmen

der Behandlung zu stellen. Sie ist fur praktische Anwendungen wichtig, da sie ein einfaches
direktes Ablesen von Operatoreigenschaften und Operatorwirkungen erlaubt.

1.1 Hilbert-Raum der Vektoren
1.1.1 Skalarprodukt, Dirac-Schreibweise

Ein d-dimensionaler Hilbert-Raum 4, wie er in der Quantentheorie verwendet wird, ist ein
linearer Vektorraum Uber dem Korper der komplexen Zahlen C, auf dem ein Skalarprodukt
definiert ist. Die Vektoren bezeichnen wir durch |p), 1), |u), |®) usw., |[Null) ist der Null-
vektor.

Addition, Multiplikation mit einer komplexen Zahl, lineare Unabhéangigkeit, Basis und
Dimension des Hilbert-Raums H 4 sind analog zu den Begriffen in reellen Vektorraumen defi-
niert.

Je zwei Vektoren |¢) und |¢) ist als Skalarprodukt(scalar product) oder inneres Produkt
(inner product) eine komplexe Zahl zugeordnet, die wir in der Form (p|¢) schreiben. Als
Grundlage fiir diese Dirac-Schreibweise® (Dirac notation) haben wir einen Ket-Raum mit den
Ket-Vektoren |¢), 1), ... und den hierzu dualen Vektorraum der Bra-Vektoren (x|, (6], ...
eingeflihrt (Raum der linearen Funktionale). Es ist eine Korrespondenz zwischen den Vektoren
des Ket- und des Bra-Raum erklart (wir verwenden das gleiche Kernsymbol).

o) %5 (gl (1.1)

die duale Korrespondenz (dual correspondence) genannt wird. Dabei wird dem Ket-Vektor
|p) = c1]e1) + calp2) eineindeutig der Bra-Vektor (p| = ¢ {p1] + ¢ {w2| zugeordnet (x be-
deutet konjugiert komplex). Die Reihenfolge im Produkt {x|«) ist daher wichtig. Es gilt:

(o) = (Ple)*
(plerhr + cathe) = 1 (@) + cal{plth2), c1,c2 € C (1.2)
(ple) 20 V) € Hy, ((¢¢) =0 < [p) = [Null)) .

Daraus folgt

(c1p1 + capa|th) = ci{p1]Yh) + c3{palth) . (1.3)

Das Skalarprodukt ist linear im zweiten Argument und antilinear im ersten Argument. Falls
(p|) = 0 gilt, werden die Vektoren als zueinander orthogonal (orthogonal) bezeichnet.
Durch das Produkt wird auf dem Hilbert-Raum eine Norm (norm) geman

el == Ml = v{ele) (1.4)

induziert. Sie verschwindet genau dann, wenn |¢) der Nullvektor ist. Wir erwéhnen ohne
Beweis die Schwarzsche Ungleichung

(el < llell 1] (1.5)

INach Dirac wird das Skalarprodukt (p|+) geschrieben und ,bracket* genannt. Die Bestandteile ,.bra“ (| und
ket |) haben eine eigenstandige Bedeutung
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und die Dreiecksungleichungen

lel =Nl < v —=ell,  lle+vl < llell+ 1l - (1.6)

Durch Einsetzen bestatigt man

1
(el = 7 (o + %17 = llo = vI? +ille — iwll® — i o+ iwl?) (L7)

sowie die Parallelogrammgleichung

llo +¢11* + llo = wl1* = 2[lell* + 21[l)1* - (1.8)
Fir einen Satz {|¢1),|p2),.--,|wi)} von Vektoren aus H,; wird durch
span(|e1), .- ., |¢i)) die Menge aller mdglichen Linearkombinationen dieser Vektoren

bezeichnet. Diese Menge bildet einen Unterraum von H,, der ebenfalls ein Hilbert-Raum
ist. Wir bezeichnen eine orthonormale Basis (orthonormal basis) mit ONB. Fir eine ONB
{li),1=1,...,d} gilt die Identitat

d

o) =) li)(il) (1.9)

i=1

mit den Komponenten (i|¢) des Vektors |¢) beziiglich der ONB. Zu einem Unterraum
von ‘H bildet die Menge aller Vektoren |¢), die zu allen Vektoren |y) € H orthogonal sind
({¥]x)=0), einen weiteren Unterraum von H, der das orthogonale Komplement(orthogonal
complement) HL genannt wird. Die direkte Summe beider Unterrdume ist wieder der Hilbert-
Raum H = H & H~ = {a|x) + BJ¥) mit |x) € H, |¢) € H- und a, 3 € C}.

1.1.2 Lineare Operatoren auf dem Hilbert-Raum

Lineare Operatoren(linear operators) A, B, ... bilden Ket-Vektoren in linearer Weise aufein-
ander ab

Alalg) + B19)) = aAly) + BA[¢)  Linearitat
(A+ B)w) = Alg) + BlY) Summe
(AB)|y) = A(B|y)) Produkt (1.10)
Al,) = alty) Eigenvektor (eigenvector) |v,) von A
Eigenwert (eigenvalue) a von A
1) = |) Identitatsoperator, Einsoperator

(identity operator).

(cv, B € C). Fur den Identitdtsoperator 1 gilt 1|¢)) = |¢) flr alle |) aus H4. Der Definitions-
bereich von A muss nicht der gesamte Hilbert-Raum sein und der Wertebereich muss nicht mit
dem Definitionshereich tibereinstimmen. Wenn notig, weisen wir darauf hin. Flr den inversen
Operator (invers operator) A=! gilt AA=! = A=1A = 1.
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Wir wollen die Dirac-Schreibweise weiter ausbauen und vereinbaren, dass Operatoren auf
dem Bra-Raum von rechts auf die Bra-Vektoren wirken sollen:

(¢'| = (¢|B =:|Byp) . (1.11)

Die Operatoren auf dem Ket-Raum wirken entsprechend von links. Wir schreiben flir den
resultierenden Vektor

') = Al) =: |Ay). (1.12)

Dem Ket-Vektor |¢') entspricht tiber die duale Korrespondenz (1.1) ein Bra-Vektor (1|

) B | = (Ay) . (113)

Wir fihren noch zusétzlich eine duale Korrespondenz fir Operatoren ein. In der Dirac-
Schreibweise wird der zum Ket-Operator A korrespondierende Bra-Operator ebenfalls mit
demselben Symbol A bezeichnet und durch folgende Bedingung an die Skalarprodukte fest-
gelegt (erste Gleichung):

(el D)) = (ol (Alp)) =: (p|Al) . (1.14)
Die zweite Gleichung ist eine fiir die Dirac-Schreibweise charakteristische geschickte Abkdr-

zung.

Adjungierter Operator Die duale Korrespondenz fiir Vektoren ordnet dem Ket-Vektor |¢)
einen Bra-Vektor (1| zu und dem Ket-Vektor |¢/') einen Bra-Vektor (¢’

(W] 5 ) (1.15)

(W' = (Ayp] B 'y = |Ay) . (1.16)

Hiervon ausgehend definieren wir einen zu einem Operator A im Ket-Raum adjungierten
Operator (adjoint operator) AT im Bra-Raum, der die linken Seiten der GI. (1.15) und (1.16)
verkniipft und (v auf (’| abbildet:

('] = (Ay| =: (p|AT . (1.17)

Bei der dualen Schreibweise von Operatoren wird sich diese Relation als niitzlich erweisen.
Uber die duale Korrespondenz der Operatoren ist damit aber wiederum ein Ket-Operator
AT eingefiihrt. Wir werten (¢)/|) mit GI. (1.17) und (1.14) aus.

(Agle) = (W|AN)p) = (](ATle)) = (v|ATe) = (¥]AT|0) (1.18)

und fassen zusammen

(Avlp) = (Y| ATp) = (| Al|p) . (1.19)
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Mit (p|w) = (]p)* folgt aus GI. (1.19)

(Y] AT|p) = (plAY)" = (p|Alp)" . (1.20)
Zweifache Anwendung der GI. (1.20) ergibt
(el Al) = (| Al)*)" = (|AT|)* = (| (AN)T|0) (1.21)

fur beliebige Vektoren (x| und (|. Daher gilt

(AHt =4 (1.22)
und wir erhalten die der Gl. (1.19) entsprechende Relation

(ATYle) = (Y] Ap) = (Y| Alp) - (1.23)

In &hnlicher Weise Uiberzeugt man sich leicht von der Gultigkeit der folgenden Operatorrela-
tionen:

(A =N, (e =cal (1.24)
(A+B) = AT+ B, (4B)' = BTA'. (1.25)
Neben der Definition (1.17) werden die Gleichungen (1.22) und (1.23) h&ufig verwendet.

Dyadische Zerlegung Aus zwei Vektoren |u) und |v) kénnen wir das dyadische Produkt
(outer product) oder die Dyade (dyad) |u)(v| bilden. Sie ist ein linearer Operator

lp) = |1) = [u){vlep),
der in einen Vektor parallel zu |u) tiberfuhrt. Dabei gilt

(afu) (v) = a*[v) (u] . (1.26)
Fur Operatorprodukte finden wir

Alu)(v] = [Au) (o], [u) (V] A = Ju) (ATl . (1.27)

Wir haben in Gl. (1.9) gesehen, dass sich mit Hilfe einer ONB {|i),i = 1,...,d} des
Hilbert-Raums der ldentitatsoperator dyadisch darstellen I&sst:

1= Z i) (] . (1.28)

Man nennt dies auch eine Vollstandigkeitsrelation (completeness relation) oder die dyadische
Zerlegung des Identitatsoperators (resolution of the identity). Es folgt unmittelbar, dass jeder
lineare Operator eine dyadische Zerlegung (AuRere-Produkt-Darstellung)

A= ZI il Al = (il Al ZA7]| (1.29)
]
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mit den Matrixelementen A;; := (i|A|j) besitzt. Fur den adjungierten Operator ergibt sich
=Y A1l (1.30)
i
Uber die Supremumsnorm || A|| kann man einem linearen Operator A eine positive Zahl zu-

ordnen

[All:== max [{p[A|p)]. (1.31)
(plp)=1

Spur Die Spur (trace) ist eine sehr hdufig gebrauchte komplexwertige Funktion eines linea-
ren Operators:

tr[A] := Z (i| Al4) ZA”, i)} ONB . (1.32)

Die Spur eines Operators ist unabhangig von der Wahl der Basis. Der Beweis demonstriert die
Niitzlichkeit der dyadischen Zerlegung (1.28) des Identitétsoperators. Seien {|{;) } und {|m;) }
beliebige ONB, dann gilt:

trfA] =D {LlAll) = D {lmy) (my| Alm) (L)

[ i,5,k
= > (L) (lmy) (my | Almg) =~ (mglmy) (m| Ajmy,) (1.33)
i,5,k 7,k
= (m;|Alm;) .

J
In &hnlicher Weise beweist man mit Hilfe von GI. (1.28) die folgenden Eigenschaften der
Spur:

tr[AB] = tr[BA] zyklische Vertauschung
tr{A + B] = tr[A] + tr[B] Linearitat
trjaA] = atr[A] Linearitat
tr[Aw) (W|] = (Y| Al) Erwartungswert von A (1.34)
trl|p) (¥]] = (p]®) Spur einer Dyade
tr[AT] = (tr[A])* adjungierter Operator

Die physikalische Bezeichnung Erwartungswert (expectation value) von A wird spéter ge-
rechtfertigt.

1.1.3 Normale Operatoren und spektrale Zerlegung

Unter den linearen Operatoren auf H; spielen die diagonalisierbaren oder normalen Operato-
ren (normal operators) mathematisch und physikalisch eine herausragende Rolle. Ein Opera-
tor N heil’t diagonalisierbar, wenn es eine ONB {|i) } von H, und komplexe Zahlen \; € C
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gibt, so dass
N|i)y = N\ili) (1.35)

gilt. Dabei ist A; = 0 nicht ausgeschlossen. Als unmittelbare Folge ergibt sich, dass die Matrix
von N in der ONB der Eigenvektoren diagonal ist

Nij = (i|N[j) = A\idy; (1.36)

und sich der Operator A in der Form der spektralen Zerlegung (spectral decomposition)
N = Al (1.37)

schreiben ldsst. Sie heif3t auch orthogonale Zerlegung (orthogonal decomposition). Die ONB
{]#)} von GI. (1.35) wird auch Eigenbasis (eigenbasis) von N genannt. Umgekehrt folgt aus
jeder dieser Relationen direkt die Erfillung der Diagonalisierbarkeitsbedingung (1.35).

Gehdren zu einem Eigenwert \; des Eigenwertproblems (1.35) g > 2 linear unabhén-
gige Eigenvektoren, so heilst \; g-fach entartet (degenerate). Jede Linearkombination dieser
Eigenvektoren

W) =>aili) (1.38)
=1

ist dann ebenfalls Eigenvektor zum Eigenwert a. Die Eigenvektoren spannen einen g-
dimensionalen Unterraum 7,y von H auf. Der Projektor

g
P=>"lij(il; P'=P; P*=P (1.39)
i=1

projiziert in den Unterraum 7 ,.Der Projektor ) = 1 — P projiziert in das orthogonale
Komplement von H .

Diagonalisierbarkeit ist keine trivialerweise vorliegende Eigenschaft. Bereits im zweidi-
mensionalen Hilbert-Raum H- gibt es vielfach gebrauchte Operatoren, die nicht diagonali-
sierbar sind. Ein Beispiel ist

A=10)(1] mit (0]1)=0 und (0]0) = (1]1) =1 (1.40)

wie mit dem nachfolgenden Satz gezeigt werden kann.

Um zu erkennen, ob ein gegebener Operator ein normaler Operator ist, ist der folgende
zentrale Satz sehr nutzlich: Notwendig und hinreichend dafir, dass es fur einen Operator N
eine spektrale Zerlegung gibt — dass er also diagonalisierbar ist — ist das Verschwinden des
Kommutators ([A, B]_ := AB — BA)von N und NT:

[N,NT]_=0. (1.41)

Der Beweis kann als Anwendungsbeispiel fur den bisher aufgebauten Formalismus die-
nen. Dass aus der Diagonalisierbarkeit die GI. (1.41) folgt, ist offensichtlich. Die andere Rich-
tung des Beweises zerlegen wir in zwei Schritte:
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1. Schritt: Jeder Operator in H,, hat zumindest einen Eigenwert A und einen Eigenvektor
[1), die sich mit Hilfe der Sakulargleichung ergeben.

N1) = A1), (1N =x*(1]. (1.42)

Daraus folgt

(1N|1) =X, (1|NT|1) = \* (1.43)
und damit
NYL) = MN[1) +a), (1IN = (1| + (al (1.44)

mit (1ja) = 0. Mit Normalitatsbedingung [V, NT]_ = 0 ergibt sich nach Auswertung
mit Gl. (1.42) und (1.44)

0 = (1|[N,NT]_|0) = (a|a) . (1.45)
|a) ist somit der Nullvektor |Null) und (1.44) lasst sich folgendermafen schreiben
N1 =X |1), (AN = A(]. (1.46)

Wir kennen damit die Wirkung von N und N auf |1).

2. Schritt: Wir ergénzen |1) zu einer ONB {J7) } und fuhren mit Hilfe der dualen Schreib-
weise von N

N = "ngli)(jl, = (INlG), n1=na = A (1.47)
ij

den Operator M ein:

M=N-\N){I|, M= nglil. (1.48)
i,j#1
M ist die Einschrankung von N auf das orthogonale Komplement von |1).

Mit Hilfe von GI. (1.42) und (1.46) kdnnen wir zeigen, dass auch M ein normaler Ope-
rator ist ([M, MT]_ = 0). Fur ihn I4sst sich auf dem zu |1) senkrechten Unterraum das
gleiche Verfahren anwenden. Auch M hat einen Eigenvektor, den wir |2) nennen. Wir
ergdnzen |1) und |2) zu einer ONB und wiederholen die Prozedur. So fahren wir fort bis
der ganze Hilbert-Raum ausgeschopft ist und |1) zu einer wohlbestimmten ONB ergénzt
wurde. Zugleich wird dadurch N bezlglich dieser Basis spektral zerlegt. Das schlief3t
den Beweis ab.

Das Diagramm in Abb. 1.1 demonstriert wie den verschiedenen Eigenschaften der Ope-
ratoren im Hilbert-Raum eine zunehmende Spezialisierung in der dyadischen Zerlegung ent-
spricht. Wir werden im Folgenden im Diagramm Schritt fiir Schritt nach unten gehen.
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linearer Operator  (bi-orthogonale Entwicklung,
L= Zz )\Z‘l1><7“z| mit ONB {llz>} und ONB {|’I“l>}, A € C)

normaler Operator (diagonalisierbar, N = . A;|7) (i, mit ONB {|¢)} , \; € C)

Well“

hermitescher Operator (\; € R)

.-Phase® |  positiver Operator (\; > 0)

Projektionsoperator (A\; = {0,1})

Identitatsoperator (\; = 1, V1)

unitérer Operator (\; = ¥, reine Phase)

Abbildung 1.1: Operatorenhierarchie. Charakterisierung von Operatoren durch ihre dyadische Zerle-
gung. — ist jeweils die Richtung einer Spezialisierung. In den Klammern (') werden die Eigenwerte
charakterisiert. Man beachte, dass mit A; = {1, —1} spezielle hermitesche Operatoren auch unitar sein
kénnen und umgekehrt. Die bi-orthogonale Entwicklung eines linearen Operators wird in Abschn. 13.3.3
abgeleitet.

Funktionen von Operatoren Eine Operatorfunktion f(N) ist durch ihre Entwicklung in
eine Potenzreihe definiert. Fiir einen normalen Operator N l&sst sie sich in der dyadischen
Zerlegung in einfacher Weise auf die Funktionen der Eigenwerte zuriickfuhren.

F(N) ::Zf<Ai>|i><i| = F(N)]i) = F(Na)li) - (1.49)

f(N) hat die gleichen Eigenvektoren wie N. Wir geben ein Beispiel, das in der Matrixdar-
stellung bezliglich der Basis der Eigenvektoren formuliert ist:

.= (5 5y) =m0l mal (150)
7= = ?|0)(0] 4+ e~ #|1)(1] = (ew 0 > . (1.51)

1.1.4 Hermitesche Operatoren

Wir folgen dem rechten Ast der Verzweigung in Abb. 1.1. Ein linearer Operator H heif3t
hermitesch (hermitian) oder selbstadjungiert (self-adjoint) auf 4, wenn fir ihn T = H
gilt. Hermitesche Operatoren sind spezielle normale Operatoren. Wegen der folgenden Ei-
genschaften spielen sie in der Quantentheorie ein wichtige Rolle: Hermitesche Operatoren
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besitzen eine Spektralzerlegung mit einer ONB {|7) }

H=> rli)(i|, reR (1.52)

und reellen Eigenwerten r;. Bei Entartung kénnen die Eigenvektoren orthonormal gewahlt
werden, sodass {|¢) } eine ONB bildet. Eigenvektoren zu verschiedenen Eigenwerten sind or-
thogonal. Dies wird oft als Spektraltheorem (spectral theorem) bezeichnet. Hermitesche Ope-
ratoren heilRen auch Observable (observable). Der Grund fur diese physikalische Bezeichnung
wird spater deutlich werden.

Aus Gl. (1.52) folgt unmittelbar, dass fiir einen beliebigen Vektor |¢) der Erwartungswert
(expectation value) {p|H |p) reell ist. Es ist eine wichtige Kennzeichnung hermitescher Ope-
ratoren, dass auch die Umkehrung gilt: Der Erwartungswert (x| A|) ist genau dann fir alle
Vektoren reell, wenn A hermitesch ist.

Fir den Beweis der Umkehrung nehmen wir an, dass fur einen Operator A der Mittelwert
(x|A|x) fur alle Vektoren |y) reell ist. Fur irgend zwei Vektoren |p) und |¢) aus H gilt die
Identitét

AplAlp) = {({el + WD A + [¥) = (el = (WD A(p) = ¥))}
+ (ol =i Ale) — ily)) = (ol + i) Alle) +il¥))] (1.53)

Wenn wir in diesem Ausdruck |¢) und [¢) vertauschen, dann geht der Teil {...} in sich Uber
und der Teil [...] wird mit (—1) multipliziert. Berlicksichtigen wir noch, dass alle Erwar-
tungswerte reell sind, so folgt daraus (¢)|Ap) = (p|A)* = (A)|p). Der Operator A ist also
hermitesch. Es ist bemerkenswert, dass in Gl. (1.53) rechts nur Erwartungswerte und links ein
Ubergangsmatrixelement stehen. Wenn fiir einen hermiteschen Operator alle Erwartungswer-
te bekannt sind, sind auch alle Ubergangsmatrixelemente bekannt.

Kommutierende hermitesche Operatoren Fir sie gilt der Satz (0.B.) lber die simultane
Diagonalisierbarkeit: Zwei hermitesche Operatoren (Observablen) A und B sind genau dann
vertauschbar ([A, B]— = 0), wenn sie eine gemeinsame ONB {|i)} aus Eigenvektoren besit-
zen.

Ist der Eigenwert a einer Observablen A entartet, so bilden die Eigenvektoren einen min-
destens zweidimensionalen Unterraum. Mit Angabe von a ist daher kein zugehoriger Eigen-
vektor eindeutig charakterisiert. Wenn wir im Unterraum nur solche Eigenvektoren von A
betrachten, die zugleich Eigenvektoren einer Observablen B zum Eigenwert b sind (Schnitt-
menge), kénnte ein gemeinsamer Eigenvektor durch diese Zusatzforderung bereits eindeutig
festgelegt sein. Wir bezeichnen ihn mit |a, b):

Ala,b) = ala,b), Bla,b) =bla,b). (1.54)

Sollte wiederum dadurch nur ein Unterraum festgelegt sein, dann werden wir fortfahren und
verlangen, dass ein Eigenvektor von A und B zugleich Eigenvektor von einer mit A und B
vertauschbaren Observablen C ist: |a, b, ¢) Das Verfahren muR bis zur Aufhebung aller Entar-
tung fortgesetzt werden. Man nennt einen Satz von Observablen, die genau ein gemeinsames
System von Eigenvektoren besitzen, ein vollstandiges System kommutierender Observabler.
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Durch Angabe der Eigenwerte zu allen Operatoren ist genau ein Vektor festgelegt. Wichtig ist,
dass das oben beschriebene Verfahren auch tatséchlich abbricht. Dies garantiert der Satz: Auf
jedem Hilbert-Raum H existiert eine endliche(!) vollstandige Menge paarweise kommutieren-
der Operatoren (Funktionen von Operatoren nicht berlicksichtigt). Zum Beweis verweisen wir
auf die Literatur (vergl. Abschn. 1.4)

1.1.5 Unitéare Operatoren

Wir folgen zunéchst dem linken Ast der Verzweigung der Operatorhierarchie in Abb. 1.1 und
kehren danach zum rechten Ast zurtick. Ein linearer Operator U heif3t unitar (unitary), wenn
Ut = U~ gilt. Unitare Operatoren sind spezielle normale Operatoren. Sie besitzen daher
eine Spektralzerlegung

U= Zew”’

mit einer ONB {|7) }, wobei aufgrund der definierenden Gleichung die Eigenwerte reine ,,Pha-
senterme** sind. Wie bei hermiteschen Operatoren spannen die Eigenvektoren den ganzen
Raum auf. Eigenvektoren zu verschiedenen Eigenwerten sind orthogonal. Eigenvektoren zu
entarteten Eigenwerten kdnnen orthogonal gewahlt werden. Man zeigt leicht: Ein linearer
Operator ist genau dann unitér, wenn jede seiner Matrixdarstellungen unitér ist.

Aus der Spektralzerlegung folgt unmittelbar die Unitaritat von U(t) = et ¢ € R, falls
H hermitesch ist. Weiterhin gilt in diesem Fall:

Ut=0) = 1 (1.56)
Ut2)U(tr) = Ultz+t1) - (1.57)

i) (i, ¢i€R, (1.55)

Unitaraquivalenz und Normerhaltung Unter kombinierten unitdren Transformationen
von Vektoren und Operatoren gemafn

|y =Ulp) A =UAU! (1.58)

bleiben Skalarprodukte (speziell auch die Norm eines Vektors), Eigenwerte und Erwartungs-
werte unverdndert. Umgekehrt ist ein linearer Operator T, der bei Anwendung auf beliebige
\ektoren aus H,, die Norm erhalt

ITell = llel (1.59)

ein unitarer Operator: 7T = T~ Zum Beweis verwenden wir die GI. (1.7) und formen mit
Gl. (1.59) um. Fur T gilt die Unitaritatsrelation

(TolT) = (pl¥) . (1.60)

1.1.6 Positive Operatoren und Projektionsoperatoren

Wir wollen noch Spezialfélle hermitescher Operatoren diskutieren. Ein positiver Operator ist
dadurch definiert, dass fur einen beliebigen Vektor |¢) die Ungleichung

(plAlp) >0 Vp), (1.61)
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gilt, dass also sein Erwartungswert stets reell und nicht negativ ist. Wir schreiben dann
A>0. (1.62)
Weiterhin erkléren wir
A>B& (A-B)>0. (1.63)

Aus der Positivitat folgt fur die Spektralzerlegung: Jeder positive Operator A ist hermitesch
A" = A. Er besitzt die Spektralzerlegung

A:E:mm@L a; > 0. (1.64)

mit nicht-negativen Eigenwerten.
Firr einen beliebigen Operator A ist AT A ein positiver Operator. Andererseits gibt es fiir
jeden positiven Operator A einen linearen Operator B, so dass A sich in der Form

A=B'B (1.65)

schreiben lasst. B ist nur bis auf unitére Transformationen festgelegt (B — U B). Wir finden
B explizit Uber die Spektralzerlegung (1.64) von A und eine ONB {|p;)}

B =} Vaile:)il. (1.66)

Einsetzen betatigt (1.65).

Ein linearer Operator P ist ein Projektionsoperator (projection operator) (genauer: ortho-
gonaler Projektionsoperator), wenn er die folgenden Bedingungen erfiillt:

(i) P2=P idempotent.
(iiy Pt =P hermitesch.

linear

normal NTN = NNt unitar
Ut = -t

hermitesch HT = H

Projektor | 1

P =pt = p?

positiv
(Y| Alp) >0 V[ih) € H

Abbildung 1.2: ,,Schnittmengen* der Operatortypen
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Aus dieser Eigenschaft folgt
(v[Plv) = (v|PP|v) = (v|PTPJv) = | Plv)||* = 0. (1.67)

P ist daher ein positiver Operator und es gilt

P=> "pili)(il; pi=0 (1.68)

mit der ONB {|7) }. Wegen der Idempotenz (i) haben wir weiterhin

und damit p? = p; beziehungsweise p; € {0, 1}. Der Projektionsoperator P nimmt deshalb
die Form

P=> 1)l I — Untermenge der ONB (1.70)
J€I
an. P projiziert auf den durch {|j)} mit j € I aufgespannten Unterraum.

In Ergdnzung zu Abb. 1.1 sind in Abb. 1.2 im Ruckblick die ,,Schnittmengen* der ver-
schiedenen Operatortypen dargestellt.

1.2 Liouville-Raum der Operatoren

Wir werden in Kap. 2 sehen, dass sich im Spezialfall der reinen Zustdnde quantentheoreti-
sche Systeme durch normierte Vektoren |¢) in einem Hilbert-Raum 7 beschreiben lassen. Im
allgemeinen Fall der gemischten Quantenzusténde erfolgt die Beschreibung tber den Dich-
teoperator (Kap. 4). Alle moéglichen dynamischen Zustandsédnderungen kénnen als lineare
Transformationen von Ubergangen zwischen Dichteoperatoren beschrieben werden (Schré-
dinger Bild). Wir werden das ganz allgemein in Kap. 14 diskutieren. Im Hinblick darauf ist
es zweckmalRig den Liouville-Raum IL als den Raum der auf dem Hilbert-Raum wirkenden li-
nearen Operatoren einzufiihren. Wir kdnnen die Darstellung knapp halten, da im Wesentlichen
die Vorgehensweise aus Abschn. 1.1 wiederholt wird.

1.2.1 Skalarprodukt

Der Liouville-Raum I. ist ein linearer Vektorraum iber dem Korper der komplexen Zahlen,
dessen Elemente | A), | B), .. . die linearen Operatoren A, B, . .. auf einem Hilbert-Raum sind.
Man priift leicht nach, dass diese linearen Operatoren tatsachlich die Axiome eines linearen
Vektorraums erfiillen. Wir werden die Klammern |) spater zur Vereinfachung der Schreibweise
weglassen.

Die dyadische Zerlegung (1.29) eines Operators A nach der Basis {|i)} von H4 hat in der
neuen Schreibweise die Form

d
1A) = > Aylli) () - (1.71)

i,j=1
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Die d? Dyaden [i)(j| in H,4 bilden die d* Elemente ||i){;|) einer Basis in L. Fur die Dimen-
sionen der Raume gilt daher
dim T, = (dim Hy)? . (1.72)

Selbstverstandlich gibt es neben den Dyaden andere Basen in IL. Wir kdnnen den Liouville-
Raum IL mit einem Skalarprodukt (A|B) ausstatten. Es hat formal dieselben Eigenschaften
wie das Skalarprodukt im Hilbert-Raum 7, (vergl. Abschn. 1.1.1). (A|B) ist eine komplexe
Zahl und es gilt

(A|B) = (B|A)* N (A|ClBl + CQBQ) = Cl(A|Bl) + CQ(A‘BQ) 5 (A|A) Z 0. (173)
Operatorbasis Zwei Operatoren A und B heil3en orthogonal, wenn
(A|IB)=0 (1.74)

erfullt ist, ohne dass einer der Operatoren der Nulloperator ist. Es gelten die Dreiecksun-
gleichung (1.6) und die zur Parallelogrammungleichung (1.8) analogen Gleichungen. Jeder

Operator | A) lasst sich nach einer orthonormalen Basis {|Q,),s = 1,...,d?} von IL
d2
(QslQ1) =0ar, Y 1Q:)(Qs =1 (1.75)
s=1
zerlegen:
d2
14) = 1Q:)(QslA) . (1.76)
s=1

Skalarprodukt als Spur Skalarprodukte auf I kénnen in ganz verschiedener Weise reali-
siert werden. Wir werden das uber die Spur in H4 gebildete Skalarprodukt verwenden, da in
diesem Fall die fir die einfachsten Quantensysteme wichtigen Paulischen Spinoperatoren zu
einer Basis ergdnzt werden konnen (vergl. Abschn. 3.1)

(A|B) :=tr[A'B] . (1.77)

Die Zerlegung (1.76) nimmt dann bei weggelassenen Vektorklammern die Form

2

A=>"Q.trQIA] (L78)
s=1
an. Die aus den Dyaden |i)(j|, 4,7 = 1,...,d gebildete Basis des Liouville-Raums ist bei

Bezug auf das Spur-Skalarprodukt (1.77) orthonormal

(141

#)(5'1) = By (1.79)
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1.2.2  Superoperatoren

Wie zu vermuten ist, lassen sich auf einem Liouville-Raum selber wiederum lineare Operato-
ren definieren, die Elemente aufeinander abbilden:

|A) — |A) = S|A) = [SA) . (1.80)

Diese kursiv geschriebenen Operatoren heilen Superoperatoren (superoperators). Aus der
Sicht des Hilbert-Raums ., bilden sie lineare Operatoren in linearer Weise aufeinander ab

A B=S8A. (1.81)

Beispiele  Wir geben zwei Beispiele flir Superoperatoren an: Beim Superoperator A

B — AB:= ABA™! (1.82)
folgt die Linearitat aus der Linearitat von A. Man sieht leicht, dass

A'B=A"'BA (1.83)

gilt. Ein fur die Beschreibung der dynamischen Entwicklung von gemischten Zusténden wich-
tiger Superoperator (vergl. Kap. 4) ist der Liouville-Operator (Liouvillian) £

A— LA = %[H,A]i . (1.84)

([H, A] := HA— AH). Inder physikalischen Anwendung ist H dabei der Hamilton-Operator.
Die Potenz von £ schreibt sich

LPA = % [H,[H,A]_]_ . (1.85)

Vom Hilbert-Raum lassen sich direkt die Konzepte des adjungierten, hermiteschen, unitaren
und positiven Superoperators (ibertragen.

1.3 Elemente der Wahrscheinlichkeitstheorie

Die zentrale Aufgabe der Quantentheorie ist es, Vorhersagen Uber die Wahrscheinlichkeiten
des Eintreffens von Messergebnissen zu machen. Dabei wird vorausgesetzt, dass Informatio-
nen Uber den Zustand des Quantenobjekts vorliegen, an dem gemessen wird. Im Hinblick auf
diese Aufgabe ist es sinnvoll die Grundkonzepte der Wahrscheinlichkeitstheorie kurz darzu-
stellen.

Vorhersagen sind ein Schluss von der Vergangenheit auf die Zukunft. In der klassischen
Physik spielt die umgekehrte Schlussrichtung eine vergleichbar wichtige Rolle. Aus den Mes-
sergebnissen wird auf den Zustand des Objekts vor der Messung zuriick geschlossen. In wel-
chem Umfang ist das auch fiir Quantensysteme mdoglich? Bei der Diskussion dieser Frage
spielt der Satz von Bayes eine wichtige Rolle. Wir skizzieren seinen Beweis nachdem wir
Vorlberlegungen zur bedingten Wahrscheinlichkeit angestellt haben.
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1.3.1 Wahrscheinlichkeit zufalliger Ereignisse

Bei der Wiederholung eines Zufallsexperiments liegt das Ergebnis nicht vorher fest. Es ist ein
zufélliges Ereignis (random event). Solche Ereignisse konnen beim Werfen eines Wiirfels z. B.
das Auftreten einer geraden (bzw. ungeraden) Augenzahl oder das Auftreten einer Augenzahl
groBer als 2 sein. Sei {4;; ¢ =1,...,n} die Menge der mdglichen Ereignisse. Es werden
folgende Bezeichnungen in Analogie zur Mengenlehre eingefihrt:

A;NA;N Ay ist das Ereignis das darin besteht, dass die Ereignisse A;, A; und A;, zusam-
men (gleichzeitig) auftreten. Beim Werfen eines Wurfels kann A; z. B. das Ereignis ,,gerade
Augenzahl“ und A, das Ereignis ,,Augenzahl > 4“ sein, dann ist A; N A, das Ereignis ,,Es
fallt die Sechs“. p(A; N Az) ist die Wahrscheinlichkeit, dass sowohl A4; als auch A eintritt
(Verbundwahrscheinlichkeit, joint probability) . Wir schreiben auch p(A;, As) := p(4A1NAs).

A; U Aj U Ay ist das Ereignis das im Auftreten wenigstens eines der Ereignisse A;, A;
und Ay, besteht. Fur die Augenzahl Z mdge 2 < Z < 4 das Ereignis A; und 3 < Z < 5 das
Ereignis A bedeuten. Dann ist A; U A, das Ereignis 2 < Z < 5.

Das unmdgliche Ereignis wird mit @ und das sichere mit 2 bezeichnet. Zwei Ereignisse
A; und A; heien unvereinbar (exclusive events), wenn A; N A; = @ gilt. Sie konnen nicht
gleichzeitig eintreten.

Axiomatik Jedem zufélligen Ereignis A wird eine reelle Zahl p(A) mit 0 < p(4) < 1
zugeordnet, die die Wahrscheinlichkeit (probability) von A genannt wird und eine Reihe
von Axiomen erflllt, die wir hier nicht auffiihren wollen. Ein Beispiel ist die Kolmogorov-
Axiomatik. Wir notieren nur das Additivitatsaxiom: Fir paarweise unvereinbare zuféllige Er-
eignisse A1, Ao, ..., A, qgilt

Wenn die Ereignisse A; und As vereinbar sind, gilt
p(A1U Az) = p(A1) +p(A2) — p(A1 N As) . (1.87)

Das Mengendiagramm von Abb. 1.3 veranschaulicht diese Relation. Beim Wirfeln moge
Z < 2 das Ereignis A; und Z > 4 das Ereignis A, sein, dann ist die Wahrscheinlichkeit
dafiir, dass entweder A; oder A; eintritt p(A; U Ay) = 2 4+ 3 = 3.

Haufigkeitsinterpretation  Wir haben uns zur Veranschaulichung des Axioms auf das Wer-
fen eines Wiirfels bezogen. Tatsachlich erfordert die Axiomatik wie jede mathematische Axio-
matik keine physikalische Interpretation. p(A) ist durch die Axiome selber festgelegt. Bei der
Anwendung auf physikalische Ereignisse wird Wahrscheinlichkeit tblicherweise als Grenz-
wert der relativen Haufigkeit (relative frequency) interpretiert:

p(A) = lim N(4)

Noso N (1.88)

Dabei ist N(A) die absolute Haufigkeit des Auftretens von A bei einer Gesamtzahl N von
Versuchen. Diese physikalische Interpretation ist nicht unproblematisch. Fur endliche groRe
N kann sie als Schatzung von p(A) aufgefasst werden.
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N

AUA,

Abbildung 1.3: Mengendiagramm der Wahrscheinlichkeiten.

1.3.2 Bedingte Wahrscheinlichkeit und Satz von Bayes

Wir erweitern das Konzept der Wahrscheinlichkeit, Die bedingte Wahrscheinlichkeit (condi-
tional probability) p(A|B) eines Ereignisses A ist die Wahrscheinlichkeit des Eintretens von
A unter der Bedingung, dass ein anderes Ereignis B, das selber die Wahrscheinlichkeit p(B)
hat, bereits eingetreten ist. Wir definieren:

p(ANB)
p(B)

Auflosung fuhrt auf die plausible Gleichung flr die Wahrscheinlichkeit p(A N B) dafir, dass
sowohl A als auch B eintritt:

p(A|B) := (1.89)

p(ANB) = p(A[B) - p(B) . (1.90)
Wir schreiben in spateren Kapiteln
p(A,B):=p(ANB). (1.92)

Als Beispiel betrachten wir zwei Urnen. Die Urne U; enthalt 3 weilRe und 3 schwarze
Kugeln, die Urne U, 2 weile und 4 schwarze Kugeln. In jede der Urnen wird mit gleicher
Wahrscheinlichkeit p(Uy) = p(Us) = % gegriffen. Die Wahrscheinlichkeit gezogen zu wer-
den ist flr jede Kugel einheitlich 1—12 Die Wahrscheinlichkeit sowohl in U; zu greifen als
auch eine weiBe Kugel zu ziehen ist p(w N Uy) = 5 = 1. Die bedingte Wahrscheinlichkeit
p(w|Uy) nachdem man in eine Urne U; gegriffen hat eine weiRe Kugel zu ziehen ist nach
Gl. (1.89)

CplwnUy) 2 1
p(w|U1)*W*Z*§ : (1.92)

Das folgt auch anschaulich unmittelbar aus der Beschreibung der Zufallssituation. Analog

findet man p(w|Uz) = 3.
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Unabhéngigkeit Zwei zuféllige Ereignisse A und B heif’en voneinander unabhéngig, wenn
durch das Eintreten des einen das Eintreten des anderen nicht beeinflusst wird

p(A|B) = p(A) . (1.93)
In diesem Fall faktorisiert p(A N B)
p(ANB) = p(A)p(B) . (1.94)

Hiervon ist zu unterscheiden, dass die Ereignisse A und B unvereinbar (einander widerspre-
chend) sind AN B = &. Dann gilt p(A|B) = 0.

Totale Wahrscheinlichkeit Das sichere Ereignis 2 mdge sich als Summe von n paarweise
unvereinbaren zufalligen Ereignissen A; darstellen lassen (4; N A; = @, Vi # j):

Fr ein beliebiges zufélliges Ereignis B giltdann B = (A, N B)U(AsNB)U...U(A,NDB).
Mit dem Additivitatsaxiom (1.86) folgt daraus

n

p(B) =) p(BNA) (1.96)

1=1
und mit GI. (1.90) ergibt sich der Satz von der totalen Wahrscheinlichkeit

n

p(B) =Y p(B|A:)p(A;) - (L97)

i=1

Wir geben ein Beispiel im nachsten Abschnitt.

Satz von Bayes Mit p(A N B) = p(B N A) flhrt die GI. (1.90) auf
p(A|B)p(B) = p(B|A)p(A) . (1.98)

Unter der Voraussetzung, dass die paarweise Unvereinbarkeit und Vollstandigkeit (1.95) er-
fallt ist, gewinnen wir daraus mit Gl. (1.97) den fundamentalen Satz von Bayes (Bayes’s theo-
rem)

p(B|Ai)p(Ai)
> -1 p(BlA;)p(4;)

Der Nenner garantiert die Normierung >, p(A4;|B) = 1, die besagt, dass irgendeines der
Ereignisse A; eintreten muB.

Der Satz von Bayes hat folgende Bedeutung: Es seien in einer Situation die Wahrschein-
lichkeit p(A;) und die bedingten Wahrscheinlichkeiten p(B|A;) bekannt. Dann erlaubt die
Formel (1.99) die Berechnung der Wahrscheinlichkeit p(A;|B) dafir, dass in einem Zufalls-
experiment unter der Voraussetzung ,,B ist eingetreten* die Bedingung A; erfullt war (bzw.
ist).

p(4;|B) = (1.99)
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Wir geben ein Beispiel an, dass sich wieder auf das Ziehen von Kugeln aus Urnen bezieht.
Es mdgen drei Urnen von Typ | mit jeweils 2 weil3en und 6 schwarzen Kugeln vorliegen und
eine Urne vom Typ 1l mit 1 weiRen und 7 schwarzen Kugeln. Mit gleicher Wahrscheinlichkeit
wird in eine der Urnen gegriffen und eine Kugel gezogen. Das Ereignis B ist das Ziehen
einer weilRen Kugel. Das Ereignis A; ist das Greifen in eine Urne vom Typ | (bzw. Typ II).
Dann liegen die folgenden Wahrscheinlichkeiten vor: p(A4;) = 2,p(Ay) = 1,p(B|4A;) =
1.0(BlA2) = % Die Wahrscheinlichkeit, dass die gezogene weilRe Kugel aus einer Urne
von Typ | stammt, ist nach dem Satz von Bayes p(A;|B) = g = 0,86 und daher groler
als p(A4;). Aus der Urne vom Typ Il stammt die weiBe Kugel mit der Wahrscheinlichkeit
p(A2|B) = 1 = 0,14, die kleiner als p(A,) ist. Die Wahl eines Urnentyps erfolgt mit den a-
priori-Wahrscheinlichkeiten p(A4;). Wenn eine weiRBe Kugel gezogen wurde, kann man darauf
riickschlieien, in welche Urne gegriffen wurde. Fiir diesen Rickschluss gibt es i.a. wiederum
nur eine Wahrscheinlichkeitsaussage, die durch p(A4;|B) gegeben ist. Wiirde die Urne vom
Typ 1l keine weille Kugel enthalten, kénnte mit Sicherheit (p(A;|B) = 1) der Riickschluss

gemacht werden, dass in eine Urne vom Typ | gegriffen wurde.

Annahme von Bayes Sie sollte nicht mit dem Satz von Bayes verwechselt werden. Wenn
es keinen Anlass zur Vermutung gibt, dass ein Ereignis A; durch die Situation ausge-
zeichnet ist, kann es sinnvoll sein, die Bayessche Annahme zu machen, dass alle a-priori-
Wahrscheinlichkeiten Ubereinstimmen

(A1) =p(A2) = ... =p(A,) . (1.100)

Nach dem Eintreten von B wird dann diese Annahme durch die Wahrscheinlichkeiten
p(A;|B) von Gl. (1.99) ersetzt. So lassen sich die Wahrscheinlichkeiten schétzen.

1.3.3 Zufallsgréfiien

Eine ZufallsgroRe X ist durch die Zuordnung von Zahlen x zu den zufalligen Ereignissen
gegeben. Wirfe eines Wiirfels sind ein Beispiel. Eine diskrete zuféllige Grofe X ist bestimmt
durch die Werte z1, 25, ...,z, und die Wahrscheinlichkeiten p(x1), p(z2),. .., p(z,), mit
denen die Werte angenommen werden (3", p; = 1). Die Verallgemeinerung auf abzahlbar
unendlich viele Werte z; und auf stetige « ist i.a. unproblematisch.

Wichtige GroRen zur Charakterisierung einer Zufallsgroe X sind Erwartungswert (ex-
pectation value) oder Mittelwert (mean value)

(X) 1= > pias (1.101)

und die Streuung (dispersion) oder mittlere quadratische Abweichung (mean square deviation)
var(X) = (AX)? = (X?) — (X)? = (X — (X))?) , (1.102)

die auch Varianz (variance) genannt wird. Die Standardabweichung (standard deviation)
AX = y/var(X) gibt an, wie sehr eine Zufallsvariable um ihren Mittelwert streut. In der
Quantentheorie wird A(X) auch als die Unbestimmtheit (uncertainty) von X bezeichnet.
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1.4 Erganzende Themen und weiterfihrende Literatur

e Die meisten Lehrbiicher der Quantentheorie enthalten eine Darstellung der mathemati-
schen Grundlagen. Auf folgende Biicher sei besonders hingewiesen: [Sak 85], [CDL 91],
[Ish 95], [Bal 98], [Gri 02].

e Eine ausfiihrliche Darstellung des Hilbert-Raums mit Bezug auf die Quantentheorie fin-
det sich in [Jor 69].

e Bra-Raum als Vektorraum aller linearen stetigen Funktionale auf einem Vektorraum V'
(auch Dualraum V* genannt): [FK 98, Kap. 2.8 und 4.2].

e Literatursammlung zu 1.3: [Per 93, z. B. 53], [Ish 95], [NC 00].

1.5 Ubungsaufgaben

UA 1.1[zu 1.1] Beweisen Sie die Relationen (1.5), (1.6), (1.7), (1.8), (1.24), (1.25), (1.59),
(1.34).

UA 1.2 [zu 1.1] Geben Sie mehrere Beispiele fiir eine Basis im 75 an.

UA 1.3 [zu 1.1] {]i),i = 1,...,d} sei eine ONB. Beweisen Sie, dass die Parsevalsche
Identitat

el =" 1{eli)? (1.103)
=1
fir alle Vektoren |¢) € H- gilt.

UA1.4[zu1.1] Zeigen Sie, dass die Matrix, die dem Operatorprodukt A B entspricht, gleich
dem Produkt der Matrizen zu A und B ist.

UA 1.5[zu 1.1] Zeigen Sie, dass die Determinante einer unitiren Matrix + 1 ist.

UA 1.6 [zu 1.1] Zeigen Sie, dass fiir zwei unitére n x n Matrizen U; und Us auch die Matrix
U 0 unitar ist
0 U, '

UA 1.7 [zu 1.1] Besitzt der Projektionsoperator P = |u){(u| ein Inverses?

UA 1.8 [zu 1.1]
a) Der Operator A sei diagonalisierbar. Wie findet man seine Spektraldarstellung?

b) Sind die Pauli-Operatoren o, = [0)(1| + |1)(0], o, = —i|0)(1]| +4|1)(0], 0, = |0){0] —
|1) (1| diagonalisierbar? Finden Sie ihre Spektraldarstellung.
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UA1.9[zu1.2] Bestitigen Sie fiir den in Gl. (1.82) definierten Superoperator A die Relation
tr[C(AB)] = tr[(A~1C)B] (1.104)

gilt.

UA 1.10[zu 1.2] H sei ein hermitescher Operator mit Eigenwertgleichung

Bestimmen Sie Eigenvektoren und Eigenwerte des Liouville-Operators £ von GlI. (1.84).

UA 1.11 [zu 1.2] Zeigen Sie, dass der Liouville-Operator von Gl. (1.84) die Matrixdarstel-
lung

1
Eij,i’j/ = ﬁ(Hij/(;i’j - 5ij’Hi’j) (1106)
hat.

UA 1.12 [zu 1.2] Beweisen Sie mit Bezug auf die Definition des Liouville-Operators £ die
Relation

e A =enH e 7T (1.107)
UA1.13[zu1.2] Geben Sie Situationen an, mit deren Hilfe die bedingte Wahrscheinlichkeit,

der Satz von der totalen Wahrscheinlichkeit oder der Satz von Bayes veranschaulicht werden
koénnen.
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2 Grundkonzepte der Quantentheorie

2.1 Erste Fassung der Postulate (reine Zustande
abgeschlossener Quantensysteme)

2.1.1 Das Szenario der Quantentheorie

Wenn man die Quantentheorie auf konzeptionell weniger vertraute Situationen anwenden will,
wie sie im Zusammenhang mit zusammengesetzten Systemen auftreten, dann ist es nitzlich,
sich zunéchst noch einmal an die Grundstrukturen der Quantentheorie zu erinnern. Dazu soll
das Kapitel 2 dienen.

Wir machen die physikalische Generalvoraussetzung, dass wir nur Vorgénge
untersuchen, die keine relativistische Beschreibung benétigen und die auf einem
endlich-dimensionalen Hilbert-Raum formuliert werden kdnnen.

Doppelspaltexperiment Die charakteristischen Ziige der Quantenphysik werden deutlich,
wenn man sie mit denen der klassischen Physik vergleicht. Hierzu betrachtet man zwei ana-
loge physikalische Situationen. In einem Fall kann die Situation im Rahmen der klassischen
Physik beschrieben werden, im anderen Fall ist eine quantentheoretische Beschreibung erfor-
derlich. Das Doppelspaltexperiment ist hierfur ein gerne diskutiertes konkretes Beispiel, an
dem man viele Elemente der Quantentheorie ablesen kann. Wir besprechen das Experiment
daher ausfihrlich. Die Ergebnisse sollen die Einfiihrung der Postulate in Abschn. 2.1.2 und der
Konzepte in Kap. 4 vorbereiten. Verschrénkung werden wir spéter an anderen Experimenten
veranschaulichen und damit das Szenario der Quantentheorie noch erweitern.

Wir beschreiben zundchst die experimentelle Situation bei einem Doppelspalt mit den
Spaltéffnungen 1 und 2. Vor dem Spalt, d. h. links in der Abb. 2.1a befindet sich ein Apparat
fur das SchieBen von kleinen Kugeln, den wir durch den Wurf einer Miinze steuern. Je nach-
dem wie die Miinze fallt, schief3t der Apparat durch Spalt 1 oder durch Spalt 2. Dabei soll tiber
die jeweilige Spaltoffnung hin eine gleichmaRige Streuung der Durchschussorte gegeben sein.
Hinter dem Doppelspalt wird ein Schirm aufgestellt, auf dem die Einschlagorte der Kugeln re-
gistriert werden. Wir diskutieren die Falle, in denen nur einer der beiden Spalte offen ist (der
andere ist abgedeckt), und den Fall, dass beide Spalte offen sind. Wir tragen in allen drei Fallen
die relative Haufigkeit der Auftreffer auf dem Schirm als Funktion des Ortes auf. Je haufiger
geschossen wird, umso klarer zeigen die relativen Haufigkeiten, wenn nur ein Spalt offen ist,
die in Abb. 2.1a angegebene raumliche Verteilung. Sie gibt im Grenzfall vieler Schisse die
Wahrscheinlichkeit P(x) fur das Auftreffen der Kugeln wieder. Wenn Spalt 1 abgedeckt wird,

Verschrénkte Systeme: Die Quantenphysik auf neuen Wegen. Jiirgen Audretsch
Copyright © 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40452-X
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finden wir eine entsprechende Verteilung hinter Spalt 2. Es ist eine Alltagserfahrung, dass sich
bei Offnen beider Spalte die mit dem Faktor 3 multiplizierten Auftreffwahrscheinlichkeiten
der Einzelspalte addieren.

In dem analogen quantenphysikalischen Experiment wird der Schussapparat durch eine
Apparatur ersetzt, die einen Atomofen enthalt’. Man findet geeignete Apparaturen und pas-
send préparierte Schirme, so dass Folgendes gilt: Wenn man den Schirm, ohne dass ein Dop-
pelspalt vorhanden ist, hinter der Apparatur aufbaut, dann werden nacheinander regellos tber
den Schirm verteilt einzelne Treffer registriert. Wenn man lange genug wartet, entsteht eine
homogene Verteilung der Auftreffpunkte. Da die Treffer zeitlich getrennte Einzelereignisse
sind, wollen wir damit die Vorstellung verbinden, dass ein einzelnes Objekt, das wir schon
Atom genannt haben, den Ofen verlassen hat und auf dem Schirm aufgeschlagen ist. Uber
ein Atom zwischen Ofen und Schirm kdnnen wir keine Aussage machen. Sodann schieben
wir einen geeignet dimensionierten Doppelspalt zwischen Ofen und Schirm ein und schlielen
wieder zum Beispiel Spalt 2. Dann messen wir im Grenzfall sehr vieler Aufschlage fur die
relative Haufigkeit (und damit fur die Auftreffwahrscheinlichkeit P(z)) die raumliche Vertei-
lung von Abb. 2.1b. Ihr Maximum liegt gegeniiber der Spaltdffnung. Wenn Spalt 1 geschlossen
ist, finden wir eine entsprechend verschobene Kurve gegentber dem offenen Spalt. Wenn wir
allerdings fur Atome beide Spalte 6ffnen, ergibt sich die in Abb. 2.2 dargestellte Verteilung der
relativen Haufigkeiten, die ihr Maximum gerade hinter dem Steg zwischen den beiden Spalten
hat. Wieder ist der Grenzfall sehr vieler Aufschldge eingezeichnet. Wie bei den Kugeln andert
sich eine Wiederholung des Experimentes die Reihenfolge der Orte der einzelnen Einschlage
in vollig zufalliger Weise (vergl. Abb. 2.3). Nur im Grenzfall sehr vieler Einschlage ergibt sich
in deterministischer Weise immer dieselbe Haufigkeitsverteilung.

Als wesentliches Ergebnis halten wir fest: Fir Atome erhalten wir die Wahrscheinlich-
keitsverteilung beim Doppelspalt — anders als bei Kugeln — nicht durch Addition der Wahr-
scheinlichkeitsverteilungen der Einzelspalte. Es ist ein Interferenzbild entstanden, wie wir es
von der Optik her kennen, das nicht dadurch erklért werden kann, dass wir den Atomen Bah-
nen zuordnen, wie wir das fir die einzelnen Kugeln tun konnten. Wegen der verbluffenden
Analogie zur optischen Beugung kdénnen wir vermuten, dass die mathematische Berechnung
der Wahrscheinlichkeitsverteilung beim Doppelspalt in dhnlicher Weise das Phanomen der
Interferenz durch Uberlagerung wiederspiegeln wird.

Entweder-Oder versus Weder-Noch  Im Hinblick auf spater immer wieder verwendete Be-
griffe wollen wir die Experimente mit Kugeln bzw. Atomen noch etwas genauer charakteri-
sieren. Wir fassen die durch die Miinze gesteuerte Schieanlage fiir Kugeln und die jeweiligen
Spalte davor als ein Praparationsverfahren auf. Prapariert wird der entsprechende Zustand der
Kugeln. Wenn nur Spalt 1 (bzw. 2) gedffnet ist, wollen wir den Zustand Z; (bzw. Z3) nennen.
Fur jeden Zustand liegen die Wahrscheinlichkeitsverteilungen der Auftreffer auf dem Schirm
fest. SchieRanlage und Doppelspalt praparieren einen weiteren Zustand, den wir Z, (1, 2) nen-
nen wollen. Die zugehdrige Wahrscheinlichkeitsverteilung ergibt sich durch Addition der Ver-
teilungen zu den klassischen Zustanden 7, und Z, die noch jeweils mit der Wahrscheinlich-
keit % multipliziert werden. GemaR der Miinzsteuerung der SchieRanlage liegen jeweils mit

1Das Doppelspaltexperiment wurde fiir Elektronen, Atome, van-der-Waals-Cluster, Fullerene und Biomolekiile
mit Erfolg durchgefihrt (vergl. Abschn. 15.6).
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Abbildung 2.3: Es ist vollig zuféllig, wo ein einzelnes Quantenobjekt auf dem Schirm auftrifft. Das

Streifenbild aus vielen Auftreffpunkten ist hingegen wohlbestimmt.
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der Wahrscheinlichkeit % Kugeln im Zustand Z; und im Zustand Z5 vor. Durch Mischen
der Zustédnde Z; und Z, mit diesen Gewichten entsteht der Zustand Z,(1,2). Wir nennen
so entstandene Zustande klassische Gemische (classical mixtures). Fir eine einzelne Kugel
liegt immer entweder Z; oder Z5 vor. Klassische Gemische sind in diesem Sinne Entweder-
Oder-Zustande. Das klassische Gemisch enthélt Uiber die Wirfe der Minze ein statistisches
Element. Die Bahn einer einzelnen Kugel ist dagegen vollig determiniert.

Fiir Atome kénnen wir ebenfalls durch SchlieRen eines der Spalte die Quantenzustande Z;
bzw. Z, praparieren. Fir viele Atome in diesen Zustanden finden wir eindeutig entweder die
Wahrscheinlichkeitsverteilungen von Abb. 2.1a oder die verschobene Verteilung. Wenn wir
jeweils mit der Wahrscheinlichkeit % einen der Spalte abdecken, entsteht der Quantenzustand
29(1, 2). Die zugehorige Wahrscheinlichkeitsverteilung ergibt sich wie in der klassischen
Physik durch Addition der mit dem Faktor % gewichteten Wahrscheinlichkeitsverteilungen
von Z; und Z,. Wieder haben wir nur gemischt. Das Ergebnis wird in der Quantenphysik sta-
tistisches Gemisch (statistical mixture) oder Gemenge genannt. Der Begriff Quantengemisch
(quantum mixture), den wir in Kap. 4 diskutieren werden, ist allgemeiner und enthélt das Ge-
menge als Spezialfall. Da immer nur einer der Spalte offen war, kénnen wir in diesem Fall
davon sprechen, dass das einzelne Atom entweder durch Spalt 1 oder durch Spalt 2 geflogen
sein muss. Es liegt ein quantenphysikalischer Entweder-Oder-Zustand vor. Soweit existiert
also eine Analogie zu den Zustanden der Kugel.

Fir Atome gibt es aber noch einen weiteren Zustand Z,.(1,2) mit einer Wahrscheinlich-
keitsverteilung, die fir Kugeln nicht auftreten kann. Er entsteht, wenn beide Spalte gedffnet
sind (vergl. Abb. 2.2). Wichtig ist, dass diese Wahrscheinlichkeitsverteilung nicht durch Mi-
schen prapariert werden kann. Wir nennen einen ungemischten Zustand einen reinen Zustand
(pure state). Z}(l, 2) ist ein Beispiel. Anders als bei Kugeln im Zustand Z,(1,2) liegt hier
ein einzelnes Atom hinter dem Doppelspalt weder im Zustand Z; noch im Zustand Z, vor.
Der reine Zustand Z,.(1,2) ist ein Weder-Noch-Zustand. Wir kénnen dementsprechend auch
vom Atom nicht sagen, es sei durch einen der Spalte gekommen. Diese an Kugeln orientierte
klassische Vorstellung versagt bei Atomen. Wir erwédhnen noch, dass die ungemischten
Zustande Z; und Z, ebenfalls gemald unserer Definition reine Zusténde sind.

Selektive und nicht-selektive Messung  Wir wollen durch Messung flr die gemischten Zu-
stande Z,(1,2) und Z,(1,2) von Kugeln bzw. Atomen und fiir den reinen Zustand Z,.(1,2)
der Atome feststellen, hinter welchem Spalt eine einzelne Kugel oder ein einzelnes Atom an-
zutreffen ist. Die moglichen Messergebnisse sind daher ,,hinter dem ersten Spalt* und ,,hinter
dem zweiten Spalt®. Wir strahlen zur Messung Licht ein, das von den Kugeln, bzw. den Ato-
men gestreut werden kann. Dabei beobachten wir, dass ein Aufblitzen immer nur hinter einem
der beiden Spalte stattfindet. Wir haben also die gewtinschte Messung realisiert. AnschlieRend
hinterlésst die Kugel bzw. das Atom wieder seinen Einschlagspunkt auf dem Schirm. Tatséch-
lich ist die experimentelle Realisierung komplizierter. Literaturangaben hierzu finden sich in
Abschn. 8.6.

Welche H&ufigkeitsverteilungen entstehen, wenn wir wieder sehr viele Einschlége abwar-
ten? Die Antwort hangt nicht nur vom Zustand ab, an dem wir messen, sondern auch davon,
wie wir die Messergebnisse auswerten (vergl. Tab. 2.1). Ein mogliches Verfahren besteht dar-
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in, selektiv vorzugehen und immer nur die Einschlagspunkte zu markieren, die zum Beispiel
zum Aufblitzen hinter Spalt 1 gehdren. Wir nennen dies eine selektive Messung (selective mea-
surement). Sie bestehen aus vielen Messungen mit anschlieRender Selektion je nach Messer-
gebnis. Wir lesen an den resultierenden Haufigkeitsverteilungen folgendes ab: Das klassische
Gemisch im Zustand Z, (1, 2) geht in den Zustand Z (1) uber. In analoger Weise geht das quan-
tenphysikalische Gemenge Z, (1, 2) in den Zustand Z (1) tiber. Beides ist nicht verwunderlich.
Wir haben einfach durch selektive Messung die gemischten Zustande wieder entmischt.

Fir Atome kdnnen wir dariiber hinaus aber auch den reinen Zustand Z,.(1, 2) préaparieren.
Die selektive Messung, die zum Aufblitzen hinter Spalt 1 gehért, Uberfuhrt diesen Zustand
gemal resultierender Haufigkeitsverteilung in den Zustand Z(l). Beim Doppelspalt Gberfuhrt
die selektive Messung also einen reinen Zustand in einen davon verschiedenen reinen Zustand.
Die Messung greift ein und andert ab. Wir kénnen eine selektive Messung auch als eine Um-
praparation auffassen. Das Resultat der Interferenz beim reinen Zustand wird aufgebrochen.
In Spezialfallen wird nicht umprapariert: Wenn der reine Zustand Z (1) vorliegt (Spalt 2 ist
geschlossen), dann blitzt es immer hinter Spalt 1 auf. Darliber hinaus zeigt die registrierte
Héufigkeitsverteilung der Atome, die geblitzt haben, dass der Zustand Z(l) nicht abgeandert
wurde. In diesen Féllen bestétigt die Messung nur die Praparation.

Ein alternatives Auswertungsverfahren besteht darin, dass wir nicht selektiv messen, al-
so zwar die Atome und die Kugeln anstrahlen, aber die Aufschlagspunkte unabhangig davon
wo der Blitz aufgeleuchtet hat (und daher ohne Auswahl) auf dem Schirm zu einem einzigen
Bild zusammenfassen (nicht-selektive Messung, non-selective measurement). An der resul-
tierenden Wahrscheinlichkeitsverteilung kdnnen wir ablesen, dass fir Kugeln wie fiir Atome
gleichermalien statistisches ein Gemisch (bzw. Gemenge) wieder in ein statistisches Gemisch
(bzw. Gemenge) lbergeht. Das ist plausibel. Da wir nicht selektieren, mischen wir die Zu-
stande wieder. Fir Atome kénnen wir zusétzlich den reinen Zustand Z,.(1,2) praparieren,
der keine Entsprechung fir Kugeln hat. Wenn wir an diesem Zustand nicht-selektiv messen,
erhalten wir die Haufigkeitsverteilung, die zum Gemenge Zg(l, 2) gehort. Wir haben die zu
den beiden Messergebnissen gehérigen Zustande Z(1) und Z(2) gemischt. Im Bereich der
Quantenphysik berflhrt eine nicht-selektive Messung einen reinen Zustand in ein Gemenge.

SchlieBlich wollen wir eine letzte Bemerkung zur Messung an Atomen machen. Wir hat-
ten oben schon beschrieben, dass Z(1) durch eine Messung unverandert bleibt. Eine direkt
nachfolgende Messung erfolgt daher wieder am Zustand Z(l), und wir registrieren erneut
ein Aufblitzen hinter Spalt 1. Das ist der Grund dafir, dass man Atomen mit Aufblitzen zum
Beispiel hinter dem ersten Spalt die Eigenschaft ,,hinter Spalt 1* durchaus zuordnen kann.

Die Messung, die die Frage wiederholt ,,hinter welchem Spalt?* fiihrt bei diesen Atomen
wieder auf die Antwort ,,hinter Spalt 1“.

Die typische experimentelle Situation Wir kdénnen noch in anderer Weise als durch eine
Messung zwischen Doppelspalt und Schirm eingreifen. Wenn die Kugeln bzw. die Atome ge-
laden sind, kénnen wir zum Beispiel ein elektrisches Feld anlegen, dann wird sich das Bild der
Auftreffwahrscheinlichkeiten verzerren. Je schwécher das Feld ist umso schwacher ist die Ver-
zerrung. Das elektrische Feld bewirkt eine Anderung des Zustandes. Selbstverstandlich ist das
Anlegen des elektrischen Feldes nur ein Beispiel. Es gibt andere Eingriffsformen. Einheitlich
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| Klassische Physik | Quantenphysik |
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Tabelle 2.1: Die Auswirkungen von Messungen in der klassischen Physik und der Quantenphysik. Der
Pfeil ,,—* besagt: ,,...“ wird durch Messung in ,,...“ Uberfuhrt. Wir verwenden fir Gemenge auch die
Bezeichnung statistisches Gemisch. Wie wir spater sehen werden, gilt (*) nur, wenn keine Entartung
vorliegt.

werden wir sie als das Einwirken eines Transformationsapparates auffassen. Die ungestorte
freie Entwicklung ist als Spezialfall enthalten.

Zusammenfassend l&sst sich sagen, dass wir es in der Physik mit drei Typen von Ap-
paraten zu tun haben: Praparationsapparate, Transformationsapparate und Messapparate. Bei
einem Versuchsaufbau im Labor liegt jeweils ein spezieller Typ dieser Apparate vor. Das Ex-
periment kann in drei unabhéngige aufeinander folgende Phasen zerlegt werden: Praparation,
Transformation und Messung (vergl. Abb. 2.4).

Anwendungsbereich der Quantentheorie Die Aufgabe einer physikalischen Theorie ist
es, zu bekanntem Préparations- und Transformationsapparat die Messergebnisse, die der
Messapparat anzeigt, zu prognostizieren und hierfur eine Begriindung auf der Grundlage einer
Theorie zu geben. Es zeigt sich bereits am Doppelspalt — insbesondere beim Zustand Z,.(l, 2),
den wir als Ergebnis einer ,,Interferenz* charakterisiert haben — dass es in gewissen Féllen kei-
ne Begriindung im Rahmen der klassischen Physik gibt. Diese Experimente setzten dem An-
wendungsbereich der klassischen Physik Grenzen. Sie liegen auBerhalb im Quantenbereich.
Ein Quanteneffekt liegt dann vor, wenn eine rein klassische Begriindung des Verhaltens der
drei Apparatetypen nicht méglich ist.

Die Quantentheorie begrlindet die Quanteneffekte. Ob und in welcher Weise sie auch eine
Begrundung fur die Effekte der klassischen Physik geben kann, ob also die klassische Physik
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Abbildung 2.4: Die Einflusse auf den Zustand eines physikalischen Systems.

als ein Grenzfall aus der Quantentheorie ableitbar ist, ist eine offene Frage. Sie ist Gegen-
stand aktueller Forschung und wir werden noch auf sie in Kap. 15 zurickkommen. Auch die
umgekehrte Begriindungsrichtung ist denkbar. Der Anwendungsbereich der Quantentheorie
konnte leer sein. Kann man mdglicherweise Quanteneffekte mit Hilfe der klassischen Phy-
sik beschreiben? Wir greifen die Frage in Kap. 10 wieder auf, wenn wir die ,,verborgenen
Parameter* diskutieren.

2.1.2 Postulate fur reine Zustande abgeschlossener Quantensysteme

Wir wollen im Folgenden die theoretische Begriindung der Phdnomene im Quantenbereich auf
einige wenige Grundannahmen zurtckfiuhren. Wir verallgemeinern hierzu die Erfahrungen,
die wir im Experiment zur Atominterferometrie gemacht haben. Dabei streben wir allerdings
nicht die mathematische und begriffliche Prazision einer Axiomatisierung der Quantentheorie
an. Hierfir sei auf die Literatur verwiesen. Wir prazisieren zundchst den schon verwendeten
Begriff des Quantenzustandes und stellen dann die Postulate vor, die die Quantenphdnome-
ne begriinden kénnen, die bei reinen Zustdnden auftreten. In spateren Kapiteln dieses Bu-
ches werden wir die Postulate Schritt fur Schritt allgemeiner fassen. Dabei wird sich zeigen,
dass die Grundgliederung, die letztlich durch das Schema von Abb. 2.4 bestimmt ist, erhalten
bleibt.

Quantensysteme Die Apparate in Abbildung 2.4 werden nacheinander von links nach
rechts wirksam. Die Pfeile kennzeichnen dabei den Ubergang eines Quantensystems von
einem Apparat zum anderen. Mit Quantensystem (quantum system) bezeichnen wir etwas,
das einen Préparationsvorgang durchlaufen hat und an dem Messungen vorgenommen werden
konnen. Die Begriindung dieser Messungen muss dabei in den Bereich der Quantentheorie
fallen. Im oben diskutierten Beispiel ist ein einzelnes Atom ein solches Quantensystem. Auch
die Spinorientierung eines Atoms oder die Polarisation eines Photons kann prépariert und re-
gistriert werden. In der Standardinterpretation der Quantentheorie, die wir in diesem Kapitel
anwenden wollen, wird dem einzelnen Quantensystem physikalische Realitat zugesprochen.
Seine Existenz wird behauptet, so wie wir das, ausgehend von den Einzelaufschlagen auf
dem Schirm, fiir die Atome im Atominterferometer bereits getan haben. Wir kommen auf das
Problem der Realitat im Abschn. 2.5 noch einmal zuriick. Wir werden sehen, dass Quanten-
systeme selber wieder aus Teilsystemen zusammengesetzt sein kdnnen. In diesem Fall spielen
die verschrankten Zusténde eine zentrale Rolle.

Quantenzustand und Messungen Quantensysteme, die in gleicher Weise prapariert wur-
den, kénnen zu verschiedenen Messergebnissen fiihren. Beispielsweise kdnnen in unse-
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rem Experiment die Atome an verschiedenen Orten des Schirms detektiert werden (vergl.
Abb. 2.3). Eine bestimmte Praparation legt nur die Wahrscheinlichkeiten fiir die verschie-
denen Messergebnisse fest. Damit die Wahrscheinlichkeitsverteilung experimentell bestimmt
werden kann, miissen Messungen an sehr vielen gleich praparierten Systemen durchgefiihrt
werden. Der Zustand eines Quantensystems ist dem durchlaufenen speziellen Praparations-
verfahren zugeordnet. Unter einem Quantenzustand (quantum state) verstehen wir dasjenige
mathematische (1) Objekt, das es erlaubt, eindeutig die Wahrscheinlichkeiten fiir die Ergeb-
nisse aller moglichen Messungen an Systemen zu berechnen, die das zugeordnete Praparati-
onsverfahren durchlaufen haben. Der Quantenzustand charakterisiert somit das Préaparations-
verfahren. Wir erwarten also nicht, dass der so eingeflihrte Quantenzustand eine Entsprechung
in der Realitédt hat, die dem einzelnen Quantensystem zugeordnet werden kann. Flr die Zu-
stdnde von Objekten in der klassischen Physik ist das der Fall. Weiterhin kdnnen verschiedene
Préaparationsverfahren auf den gleichen Zustand fiihren. Diese Verfahren bilden in diesem Sin-
ne eine Aquivalenzklasse von Zustandspraparationen. Die mathematische Beschreibung des
Zustandes und die Berechnung der Wahrscheinlichkeiten werden wir weiter unten postulie-
ren. Durch den Bezug auf Aquivalenzklassen werden auch die individuellen Strukturen der
einzelnen Praparations- und Messapparate gleichen Typs eliminiert.

Es ist wichtig, auf diesem Hintergrund noch eine Sprechweise zu erkldren, die sich einge-
blrgert hat und die wir auch verwenden wollen: Haufig sagt man, dass ein einzelnes Quanten-
system sich in einem speziellen Zustand befindet oder einen Zustand hat. Gemeint ist damit,
dass es die entsprechende Praparationsprozedur aus einer bestimmten Aquivalenzklasse von
Préparationen durchlaufen hat. Nur in diesem Sinne ordnet man einem Einzelsystem einen
Zustand zu. Wir sind also in diesem ersten Schritt hin zur Formulierung der Standardinter-
pretation der Quantentheorie sehr zuriickhaltend mit Aussagen tber Quantensysteme selber.
Weitergehende Festlegungen uber Existenz von Eigenschaften wie Energie, Ort usw. werden
wir erst nach Formulierung der Postulate treffen.

Reine Zustande abgeschlossener Quantensysteme Wie fur die Klassische Mechanik der
»freie Massenpunkt* so ist fir den Aufbau der Quantentheorie das Konzept des total isolierten
oder freien Systems fundamental. Es handelt sich dabei um eine Idealisierung, die tatsachlich
nur naherungsweise realisiert werden kann. lhr liegt die Vorstellung zugrunde, dass in gewis-
sen Situationen Quantensysteme so vollstandig vom Rest der Welt entkoppelt werden konnen,
dass alle mdglichen Vorgange in diesem Rest den Zustand des Systems unverandert lassen.
Insbesondere kdnnte der Rest ohne Einfluss auf das System vollig leer geraumt werden?.
Freie Quantensysteme sind flir Anwendungen uninteressant. Wir lassen daher zu, dass sich
der Zustand des Systems zwischen der Zeit der Préparation und der Zeit der Messung andern
kann. Das &ufRert sich darin, dass Messungen zu den beiden Zeiten zu verschiedenen Wahr-
scheinlichkeitsverteilungen der Messwerte filhren. Wie in der klassischen Mechanik wird fiir
diese Abweichung vom freien Verhalten eine Ursache angegeben, die hier durch den Trans-
formationsapparat reprasentiert wird. Er beschreibt eine innere Entwicklung des Systems bzw.
auBere konstante oder zeitabhéngige Einflisse wie sie zum Beispiel durch elektromagnetische

2Wie wir in nachfolgenden Kapiteln sehen werden reicht fur Quantensysteme die Abschirmung aller von auRen
angreifenden Wechselwirkungen nicht aus. Zur totalen Isolierung missen zusétzlich alle EPR-Korrelationen mit der
AuBenwelt verhindert werden. Abschirmung hat so eine neue Qualitét erhalten.
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oder gravitative Felder verursacht werden. Wir setzen dabei aber voraus, dass es keine Riick-
wirkung auf das den Einfluss bewirkende &uf3ere System geben soll. Das Quantensystem soll
also fur Ruckwirkungen ,,nach auflen hin“ abgeschlossen sein. Dies wird im Allgemeinen
ebenfalls nur ndherungsweise der Fall sein. Wir nennen diese Systeme abgeschlossene Quan-
tensysteme (closed systems).

Unser Praparationsapparat kann selber aus anderen Praparationsapparaten aufgebaut sein,
die mit wohlbestimmten Haufigkeiten tatig werden und entsprechend unterschiedliche Prépa-
rationen des Quantensystems durchfiihren. Auch in diesem Fall ist die Prognose der Wahr-
scheinlichkeiten aller Messergebnisse eindeutig moglich. Der alles zusammenfassenden Pré-
parationsapparat prapariert einen Zustand, den man mit Blick auf die vielen beteiligten Préa-
parationsprozeduren statistisches Gemisch oder Gemenge nennt. Der Zustand Zg(l, 2) istein
Beispiel. Wir werden so praparierte Zusténde spéter noch im Einzelnen untersuchen. Sie sind
spezielle Gemische. Fur die erste Fassung der Postulate sollen solche Gemische ausgeschlos-
sen sein. Wir beschrénken uns auf Zustande, die in keiner Weise durch eine echte Mischungs-
prozedur erzeugt oder hinsichtlich der Wahrscheinlichkeitsaussage simuliert werden kénnen
und nennen sie reine Zusténde (pure states). Neben der Abgeschlossenheit des Systems ist die
Reinheit der Zustédnde die zweite starke Idealisierung. Wie in der klassischen Mechanik, die
auf einem Postulat fur die Messpunkte (Inertialsystem) aufbaut, werden wir schrittweise zur
Beschreibung realistischer physikalischer Situationen ibergehen.

Postulate Es stehen uns damit alle Konzepte zur Verfligung, um die erste Fassung der Pos-
tulate zu formulieren. Wir werden alle drei Postulate in spateren Kapiteln

Postulat 1 (reiner Zustand) Ein abgeschlossenes Quantensystem, das sich in einem reinen
Zustand befindet, wird durch seinen Zustandsvektor |¢)) beschrieben. Er ist ein normierter
Vektor in einem dem System zugeordneten Hilbert-Raum H.

Wir vereinfachen zunéchst unsere experimentelle Grundsituation und gehen direkt zu
Messungen Uber. Wir denken uns daher den Transformationsapparat herausgenommen oder
fassen ihn als Teil des Préparationsapparates auf. Auch flir die Messgeréte soll an dieser Stel-
le zunéchst nicht der allgemeinste Fall behandelt werden. Wir beschranken uns vielmehr auf
Projektionsmessungen. Dies ist ein bestimmter fundamentaler Typ von Messungen, der aber
auch bei den spateren Verallgemeinerungen immer wieder eine zentrale Rolle spielen wird.

Postulat 2 (Projektionsmessung, von Neumann-Messung)

a) Eine an einem Quantensystem durchgefiihrte Projektionsmessung einer physikalischen
GroRe (z.B. Energie, Drehimpuls, usw.) wird durch einen hermiteschen Operator be-
schrieben, der auf H wirkt. Wir sprechen von einer Messung der Observablen A und
bezeichnen den Operator mit dem selben Symbol A.

b) Die mdglichen Messergebnisse einer Messung der Observablen A sind die Eigenwer-
te a,, des zugehdrigen Observablenoperators A. Wir setzen voraus, dass das Spektrum
diskret ist:

A‘uz) :a"‘u;% 7’: 1)7911 (21)
Die |u,) bilden eine orthonormale Basis. g,, ist der Entartungsgrad degeneracy von a,.
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¢) Wenn die Messung der Observablen A an einem System mit normiertem Zustandsvek-
tor |¢) auf das Messergebnis a,, fihrt, dann ist der unnormierte Zustandsvektor |¢/,)
unmittelbar nach der Messung durch die Projektion von |4))

W) = [i),) = Pa|t) (2.2)

mit dem Projektionsoperator

9n
=D i) {uy) (2.3)
i=1
gegeben, der in den Raum der Eigenvektoren zu a,, projiziert.

d) Wir bezeichnen mit N(a,,) die H&ufigkeit mit der sich der Messwert a,, ergibt, wenn
die Messung an N gleich praparierten Systemen im Zustand |¢) durchgefuhrt wird. Die

relativen Hauflgkelten Nlan) gehen fir alle solchen Ensemble im Grenzfall N — oo
einheitlich in die Wahrscheinlichkeit p(a,,) als Grenzwert tiber:

N(an) N —oo

N p(an) (2.4)

e) Die Wahrscheinlichkeit p(a,,) den Messwert a,, zu erhalten, ist gleich dem Erwartungs-
wert des Projektionsoperators P, vor der Messung bzw. gleich dem Quadrat der Norm
des Zustandsvektors |¢7,) nach der Messung:

plan) = (Q|PaJp) = [l ]|. (2.5)

Messungen, die durch dieses Postulat beschrieben werden, heilen Projektionsmessungen (pro-
jection measurements) oder Von-Neumann-Messungen . Da A ein hermitescher Operator ist,
gilt > P, = 1 und damit, wie fiir die Gesamtwahrscheinlichkeit zu erwarten ist,

> plan) = (olv) =1. (2.6)

Wir beschreiben schliellich noch die Wirkung des Transformationsapparates flr abge-
schlossene Systeme:

Postulat 3 (dynamische Entwicklung zwischen Préparation und Messung)

a) Die Zeitentwicklung eines abgeschlossenen Quantensystems zwischen zwei beliebigen
Zeiten to und t; wird durch einen unitéren Zeitentwicklungsoperator (time development
operator) U (ty,to) beschrieben:

Ul(ty,to) = U (t1,t0) . (2.7)
Er erfullt die Bedingungen U (to,to) = 1 und
Ul(ta, t1)U(t1,t0) = Ulta, to) (2.8)

fur beliebige Zeiten g, t1, to.
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b) Aus den Bedingungen (2.7) und (2.8) ergibt sich (siehe unten) fur U(¢, to) die Differenti-
algleichung

0
z‘haU(t,to) = H(t)U(t,to) (2.9)
mit einem hermiteschen Operator H, der explizit zeitabh&ngig sein kann. & = 1, 0546 x
10=3*Joule - sec ist die Plancksche Konstante. Es wird postuliert, dass H () diejenige
Observable ist, die zur Gesamtenergie des Systems gehdrt (Hamilton-Operator).

¢) Das Schrodinger-Bild (Schrodinger picture) ist eine der vielen moglichen Beschreibun-
gen der Zeitentwicklung. In diesem Bild wird die dynamische Entwicklung in linearer
Weise allein durch den Zustandsvektor gemaf

[v(t)) = Ul(t, to)[v(t0)) (2.10)

wiedergegeben. Observablen kénnen nur explizit zeitabhangig sein.

Andere Bilder, wie z. B. das Heisenberg- und das Wechselwirkungsbild, ergeben sich mit Hil-
fe der Unitaraquivalenz. Sie sorgt dafiir, dass alle Aussagen lber Messungen am Ende der
Zeitentwicklung in allen Bildern gleich sind. Wir verwenden i.A. das Schrédinger-Bild.

Warum unitére Zeitentwicklung? Infolge der Unitaritat des Zeitentwicklungsoperators
bleibt der Zustandsvektor |¢)) normiert und die Gesamtwahrscheinlichkeit irgendeinen der
Messwerte zu messen ist gleich eins: Y~ p(a,) = 1. Wenn man umgekehrt die Erhaltung der
Gesamtwahrscheinlichkeit wahrend der dynamischen Entwicklung mit einem (noch nicht als
unitér vorausgesetzten) Zeitentwicklungsoperator 7T'(¢y, to) fordert, so muss auch zum Zeit-
punkt ¢4

> pi(an) = (T(tr,to) Y[T(t1,t0) ¥) = 1 (2.11)

fur alle Zusténde |¢) gelten. Wie wir in Abschn. 1.1.5 gezeigt haben, folgt aus dieser Normer-
haltung die Unitaritdt von 7'. Man kdnnte also das Postulat 3 umformulieren und die Forderung
der Erhaltung der Gesamtwahrscheinlichkeit an die Spitze stellen.

Schrodinger-Gleichung  Der inverse Operator U~ ! ist wiederum unitér. Die zeitliche Ent-
wicklung eines Quantensystems aulerhalb des Messprozesses ist daher umkehrbar. Wé&hIt man
in Gl. (2.8) t, = tg, dann sieht man, dass der inverse Operator durch

U= (t1,t0) = Ulto, 11) (2.12)
gegeben ist. Gemal Gl. (2.10) ist die infinitesimale Zeitentwicklung
[¥(to +dt)) = Ulto + dt, to)[th(to)) (2.13)

durch den Operator Uty + dt, to) bestimmt. Seine Entwicklung nach der Zeit kann in der
Form

Wm+&¢@:ﬂ—%H@& (2.14)
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geschrieben werden, wobei H ein hermitescher Operator (H' = H) mit der Dimension Ener-
gie ist. H kann explizit zeitabhéngig sein. Die Unitaritat ergibt sich dann mit

U (to + dt, to)U(to + dt, to) = (1 + EH(t)dt) (1 - EH(t)dt) ~1 (2.15)
h h
Durch Auswerten von

Ut + dty + dta, tg) = Ulte + dty + dta, to + dtg) U(te + dty, to) (2.16)

kann man leicht zeigen, dass der infinitesimale Zeitentwicklungsoperator von (2.14) auch die
Relation (2.8) bis auf einen Term der Ordnung dt erfullt.

Die Differentialgleichung fiir den Zeitentwicklungsoperator U (¢, t,) erhalten wir mit Hilfe
von (2.8) und (2.14). Aus

Ut + dt, o) = Ut +dt, U (1, o) = (1 - %H(t)dt) Ut to) 2.17)
folgt
Ut + dt, to) — Ut to) = —%H(t)dt (2.18)

und damit die GI. (2.9)

ih%U(t, to) = H)U(t,to) - (2.19)
Im Schrddinger-Bild folgt daraus mit Gl. (2.10) fiir die Zeitentwicklung des Zustandsvektors

die Schrédinger-Gleichung
iho-h(t)) = H(t)[y (1)) - (2.20)

Physikalische Eigenschaften Die Postulate ermdglichen es uns die bisherige Interpretati-
on zu erweitern. Inwieweit kénnen Quantensysteme bestimmte physikalische Eigenschaften
(properties) haben, wie das in der Standardinterpretation Ublicherweise angenommen wird?
Wenn der Zustand ein Eigenvektor |u,,) zum Eigenwert a,, des Observablenoperators A ist,
dann flhrt eine Messung von A mit Sicherheit auf das Messergebnis a,,. Wiederholen wir
die Messung so ergibt sich immer wieder mit Sicherheit a,,. Dies ist wegen P, P, = P, die
charakteristische Eigenschaft projektiver Messungen.

Es macht daher Sinn davon zu sprechen, dass das im Zustand |u,,) préparierte System
die physikalische Eigenschaft a,, besitzt. Sie wird als real angenommen. Wenn A z. B. der
Energie-Operator ist, dann hat das System die Energie a,,. Ergibt sich fur einen allgemei-
nen Zustand |¢) # |u,,) bei Messung von A der Messwert a,,, so kann man allerdings nicht
davon sprechen, dass das System die Eigenschaft a,, schon vorher hatte. Erst durch das Zu-
sammenwirken von Quantensystem und Messapparat im Messprozess geht das System in den
Zustand |u,,) Uber und der Messapparat zeigt a,, an. Wir kommen in Abschn. 2.4 auf die oben
beschriebene Interpretation der Quantentheorie noch einmal zuriick.
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2.1.3 Kommentare zu den Postulaten

- Die Dimension des Hilbert-Raums eines Quantensystems ist physikalisch charakterisiert
als die maximale Zahl von Zusténden, die in einer Einzelmessung verlasslich von einan-
der unterschieden werden kdnnen. Das wird deutlich, wenn man als Observablenoperator
einen hermiteschen Operator nimmt, bei dem keiner der Eigenwerte entartet ist.

- Neben der Dimension des Hilbert-Raums gibt es weitere beobachterunabhéngige Cha-
rakterisierungen von Quantensystemen, die keiner Wahrscheinlichkeitsaussage unterlie-
gen. Dazu gehdren die klassischen Variablen Masse, Ladung und Betrag des Spins eines
Quantensystems. Obwohl diese GroRen Messgrofien sind, tauchen sie in der unrelativis-
tischen Quantentheorie nur als Parameter auf.

- Die Entwicklung des Systems gemadl Postulat 3 ist deterministisch und reversibel. Zeit
ist in der Quantentheorie eine klassische Variable und keine Observable.

- Eswird angenommen, dass nicht nur jeder reine Zustand durch einen Zustandsvektor dar-
gestellt wird, sondern, dass auch jeder Zustandsvektor einen mdglichen reinen Zustand
reprasentiert. Das zugehorige Praparationsverfahren l&sst sich im Prinzip experimentell
realisieren.

- Den reinen Zustand haben wir als einen Zustand eingefiihrt, der nicht gemischt ist. Diese
negative Charakterisierung ist fir praktische Anwendungen nur bedingt brauchbar. Wir
haben aber mit Postulat 2.c ein Verfahren zur Auszeichnung eines reinen Zustandes ken-
nen gelernt, das leichter operationalisierbar ist und auf das wir zuriickgreifen kénnen.
Ein reiner Zustand entsteht als Ergebnis einer Messung, wenn der Messwert nicht ent-
artet ist. Falls Entartung vorliegt muss ein vollstandiger Satz paarweise kommutierender
Observablen gemessen werden. Der Satz der zugehdrigen Messwerte charakterisiert den
resultierenden Zustandsvektor eindeutig.

- Ein dynamischer Prozess stellt einen beobachtbaren Wechsel in den Wahrscheinlichkeits-
verteilungen dar. Die Postulate gehen davon aus, dass es im Quantenbereich zwei vél-
lig verschiedene Typen dynamischer Prozesse gibt: den irreversiblen probabilistischen
Messprozess (Postulat 2) und die reversible unitare Zustandsentwicklung zwischen Pré-
paration und Messung (Postulat 3).

- Das legt den Gedanken nahe, das Quantensystem um ein quantentheoretisch beschrie-
benes Messgerét zu einem groReren abgeschlossenen Quantensystem zu erweitern. Man
kénnte dann versuchen die gemeinsame Entwicklung im Sinne von Postulat 3 zu be-
schreiben. Das Postulat 2 wirde Uberflissig. Wir werden spéter solche Ansdtze noch
diskutieren (vergl. Kap. 15). Zun&chst bleiben wir dabei, dass mit den Postulaten 2 und
3 zwei ganz verschiedene Dynamiken eingefiihrt sind: die Messdynamik und die Trans-
formationsdynamik.

- Es ist das mathematische Zusammenwirken von Zustandsvektor und Observable, das das
physikalische Zusammenwirken von Quantensystem und Messapparat im Laboratorium
abbildet. Dabei geht — anders als in der klassischen Physik — nicht nur der Messapparat
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in einen neuen Zustand Uber, sondern das Quantensystem ebenfalls. Es muss in der Regel
mit einem neuen Zustandsvektor beschrieben werden.

- Es ist zugelassen, dass die Messung das Quantensystem zerstort. Dann entfallt Ab-
schnitt c) von Postulat 2.

- Wir werden annehmen, dass sich zu jedem hermiteschen Operator ein Messapparat finden
lasst, der durch den Operator beschrieben wird. Tats&chlich ist es in den meisten Féllen
eine keineswegs einfache Aufgabe, eine solche experimentelle Realisierung anzugeben.

2.2 Ausblick

Wir haben bei der Formulierung der Postulate eine ganze Reihe von physikalischen Einschrén-
kungen gemacht, die wir in den kommenden Kapiteln Schritt fiir Schritt aufgeben wollen, bis
sich die ganz allgemeine Struktur der Quantentheorie ergibt.

e Wir haben uns auf reine Zustdnde beschrankt. Der allgemeine Quantenzustand ist ein
Gemisch (Kap. 4).

e Quantensysteme kdnnen aus Untersystemen zusammengesetzt sein, die dann im Allge-
meinen nicht mehr abgeschlossen sind. Die Quantentheorie solcher offenen Systeme ist
zu entwickeln (Kap. 7 und 8). Bei zusammengesetzten Systemen werden wir zum ersten
Mal den verschrankten Zustdnden begegnen.

e Projektionsmessungen sind ein spezieller Typ von Quantenmessungen. Wir werden in
Kap. 13 und Kap. 14 und Verallgemeinerungen einfiihren.

e Fir offene Quantensysteme sind dynamische Entwicklungen mdglich, die sich nicht
mehr durch unitére Zeitentwicklungsoperatoren beschreiben lassen. Wir werden sie mit
Hilfe von Superoperatoren formulieren (Kap. 14).

e Was lasst sich erreichen, wenn man versucht, die Messdynamik von Postulat 2 auf die
Dynamik von Postulat 3 zurtickzufihren (vergl. Kap. 15)?

Alle diese Fortentwicklungen vertiefen nicht nur das Verstandnis der unrelativistischen
Quantentheorie. Sie fihren auch auf neue physikalische Effekte und sind die Grundlage von
Quanteninformationstheorie und von Quantencomputern.

Weitere Verallgemeinerungen, die wir aber nicht diskutieren wollen, lieRen sich anschlie-
Ren: Wir kdnnten Observablenoperatoren mit kontinuierlichem Eigenwertspektrum wie Ort
und Impuls einbeziehen. Wenn die Zahl der Quantensysteme nicht fest oder wohlbestimmt
ist, ist zur Beschreibung ein Fock-Raum notig. In beiden Fallen sind weitere neue Effekte zu
erwarten. Beim Ubergang zu Hilbert-Raumen mit abzahlbarer unendlicher Dimension kénnen
dagegen die bisherigen Ergebnisse in den physikalisch relevanten Fallen direkt bertragen
werden.

Bevor wir die angekiindigten Verallgemeinerungsschritte durchfihren, wollen wir im Fol-
genden die Macht der Projektionsmessung kennen lernen und in den Abschnitten 2.4 und 2.5
von héherer Warte einen Blick auf den bisher beschrieben Aufbau der Theorie werfen.



2.3 Manipulation der Zustandsbewegung durch projektive Messungen 37

2.3 Manipulation der Zustandsbewegung durch projektive
Messungen

Quantentheoretische Messungen greifen in die dynamische Entwicklung eines Quantensys-
tems ein und andern sie ab. Bei Projektionsmessungen ist dieser Eingriff besonders stark. Wir
kdnnen durch eine Sequenz von Projektionsmessungen die Entwicklung vollig ,.einfrieren*
oder aber dem Zustand eine willkurliche Entwicklung aufprégen, ihn also durch Messungen
»reiben®.

2.3.1 Quanten-Zeno-Effekt

Kurzzeitverhalten Wir betrachten folgende Situation: Der Zustand des Systems zur Zeit
t = 0 ist ein Eigenvektor |a) einer Observablen A: |¢)(t = 0)) = |a). A hat ein diskretes
Spektrum. Die unitare Entwicklung erfolgt mit dem zeitunabhangigen Hamilton-Operator H.
Wir setzen i = 1.

(1) = e ]a). (2.21)

Nach der Zeit ¢ messen wir die Observable A. Die Wahrscheinlichkeit des Systems nach
dieser Messung wieder im Anfangszustand |a) zu finden ist

p(t) = [{ale™"*|a)[>. (222)
Fir kleine Zeiten erhalten wir daraus

p(t) =1 — (AH)*t* + O((AH)*t") (2.23)
mit der Energie-Unbestimmtheit A H

(AH)? := (a|H?|a) — (a|H|a)? =: 7,2. (2.24)

z

Die Zeit . heil’t Zeno-Zeit. Sie ist umso groRer, je &hnlicher |a) einem Energie-Eigenzustand
ist. Im Grenzfall AH = 0 ergibt sich p(t) = 1. Fir AH # 0 hangt p(t) fur kleine Zeiten
t < T, quadratisch von t ab.

Quanten-Zeno-Effekt® Wir filhren nun (iber eine Zeit 7 hin N Messungen der gleichen
Observablen A in gleichen Zeitintervallen

T = — (2.25)

mit 7 < 7. durch. Die bedingte Wahrscheinlichkeit p(™)(T') nach jeder einzelnen Messung
in der Sequenz immer wieder den Anfangszustand |a) zu finden ist mit (2.23)

pY(T) = p(n))™ = p(T/N)Y ~ (1 -5 (%) ) : (226)

2
T

3Benannt nach dem Pfeil-Paradoxon des Zeno von Elea ca. 495-430 v.Chr.
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Je mehr Messungen im Zeitintervall [0, T bei festem T stattfinden, d.h je kleiner das
Zeitintervall — wird, desto gréRer ist die Wahrscheinlichkeit, dass das System im Anfangszu-
stand |a) bleibt. Im Grenzfall N — oo bzw. 7 — 0 der kontinuierlichen projektiven Messung
hat sich die Messdynamik vollig gegeniiber der unitaren Entwicklung durchgesetzt und das
System wird im Anfangszustand ,,eingefroren*:

PN (1) = (2.27)

Dies nennt man den Quanten-Zeno-Effekt. Anders als die GI. (2.26) ist der Grenziibergang
in Gl. (2.27) aber tatsachlich unphysikalisch: Der quantentheoretische Messprozess hat eine
gewisse endliche Dauer.

2.3.2 Treiben eines Zustandsvektors durch eine Sequenz von
Projektionsmessungen

Wir kdnnen durch Projektionsmessungen die Entwicklung eines Quantenzustandes nicht nur
néherungsweise unterbinden, sondern auch ihren zeitlichen Verlauf bestimmen. Der Hilbert-
Raum des Systems mdge zweidimensional sein mit der ONB {|1), ||)}. Der Anfangszustand
zur Zeit t = 0 sei |T). Flr eine Observable, die einen dagegen gedrehten Eigenzustand

|a) = cosa|l) + sinal]) (2.28)
hat, ist die Wahrscheinlichkeit das System nach der Messung im Zustand |«) zu finden
p(a) = cos? ar. (2.29)

Wir fithren wieder N Messungen mit Zeitabstand 7 = L im Zeitintervall [0, 7] durch.
Aber in diesem Fall gehen wir dabei nacheinander jeweils zu neuen Observablenoperatoren
Uber, die die Eigenzusténde |cv,) mit a,, = nwT und n =1,2,3,... besitzen. Wir nehmen
an, dass es keine zusétzliche unitére Entwicklung gibt. Dann ist die bedingte Wahrscheinlich-
keit das System im Zustand |a,,) zu finden, wenn es vorher im Zustand |c,, 1) war

p(n) = [{an]an_1)]* = cos?wr. (2.30)
Die Wahrscheinlichkeit das System nach jeder dieser Messungen im entsprechenden Eigen-
zustand |a1), |aa), |aus) - . . zu finden ist

2N 2m2
~(N) _ . Z Ngrof W T N—oo
P (n) = (c%wN) 1 2 2N 1. (2.31)
Im Grenzfall N — oo bei festem ¢ bzw. fir den Zeitabstand 7 — 0 stimmt der Systemzustand
stets mit dem Zustand |a) von Gl. (2.28) mit o = wt Uberein. Dem System ist eine vorgegebe-
ne Zustandsbewegung durch eine Sequenz angepasster projektiver Messungen aufgezwungen
worden. Auch in diesem Fall ist der Grenzfall = — 0 im strengen Sinne unphysikalisch wegen
der endlichen Dauer des Messprozesses.
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2.4 Die Struktur physikalischer Theorien*

Wir haben bisher immer nur von der Standardinterpretation gesprochen. Gibt es andere In-
terpretationen? Was versteht man unter der Interpretation einer physikalischen Theorie? Wir
werden uns in den nachsten beiden Kapiteln diesen Fragen zuwenden. Beide Kapitel sind zum
Versténdnis der restlichen Kapitel nicht nétig und kénnen daher auch Uberlesen werden. An-
dererseits spielen gerade die mit Interpretationsproblemen verkniipften naturphilosophischen?
und wissenschaftstheoretischen > Fragen sowohl in Grundsatzdiskussionen als auch in popu-
larwissenschaftlichen Darstellungen eine grol3e Rolle. Gerade die Frage ,,Was sagt die Quan-
tenphysik tber die Wirklichkeit aus?* tibt offenbar auf viele Physiker und Nicht-Physiker eine
groRe Faszination aus. Das rechtfertigt ein mit einem Stern versehene Anmerkungen dazu, wie
solche Fragen einzuordnen sind. Sie kdnnen auch fir den mehr ,,praktisch* orientierten Leser
nltzlich sein, da dadurch manche Konfusion in der Diskussion quantentheoretische Probleme
und der Interpretation von Aussagen vermieden werden kann.

2.4.1 Bauelemente einer physikalischen Theorie*

Vortheorien Wir schlielen das Kapitel 2 Uber die Grundkonzepte der Quantentheorie mit
einigen strukturellen Uberlegungen ab. Dabei soll insbesondere nach der Wirklichkeit gefragt
werden, auf die sich die Quantentheorie bezieht. Hierzu ist es niitzlich sich zunéchst klar
zu machen wie physikalische Theorien aufgebaut sind. Wir machen hierzu einen Ausflug in
die klassische Physik und betrachten die Elektrodynamik. Typische elementare Experimente
bestehen darin, dass Krafte gemessen werden, Dréhte sich erwdrmen und Ahnliches. Kraft-
messung, Warmemessung und andere Messungen beziehen sich dabei auf Theorien wie Me-
chanik, Thermodynamik usw., die bereits vor der Elektrodynamik und unabhangig von ihr
formuliert werden. Sie sind fir die Elektrodynamik Vortheorien. Neben Drahten und Massen
werden wir auch Kraftfelder, Wéarme usw. zur physikalischen Wirklichkeit z&hlen. Es sind
die Elemente der Wirklichkeit, die mit Hilfe der Vortheorien bereits eingefuhrt wurden. Wenn
wir die Elektrodynamik experimentell und theoretisch entwickeln, gehen wir davon aus, dass
die auf den Vortheorien beruhenden Apparaturen und Messgerate Teile der physikalischen
Wirklichkeit sind.

Bauelemente Damit kénnen wir bereits am Beispiel der Elektrodynamik mehrere Bauele-
mente einer physikalischen Theorie ablesen. Eine physikalische Theorie ist ein mathematisch-
deduktives Schema, das die folgenden Mindestbestandteile enthalt:

1. einen mathematischen Teil MT, der aus mathematischen GroRen, Definitionen, Gleichun-
gen, Umformungen, Lésungsprozeduren usw. besteht,

2. einen Teil der Natur, den man Grundbereich GB nennt und von dem angenommen wird,
dass er existiert

*Die mit einem Stern gekennzeichneten Kapitel kénnen bei einem ersten Durchgang iiberschlagen werden.

“4Die Naturphilosophie untersucht die Begriffe, die erforderlich sind um zu verstehen, was die Naturwissenschaf-
ten Uber die Natur aussagen. Sie ist eine auf die Natur bezogene Ontologie, also eine Lehre vom Sein.

SWissenschaftstheorie (Erkenntnistheorie) gibt eine logische Analyse wissenschaftlicher Theorien und vergleicht
Theorien miteinander. Themen sind dabei u.a.: Konzepte der Wirklichkeit, Grenzen der Erkenntnis, physikalische
Theorien als Handlungsanweisungen, Wirklichkeit als Konstruktion und vieles mehr.
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3. und Abbildungsprinzipien AP, die man auch Korrespondenzregeln nennt, die den Grund-
bereich GB und Teile vom mathematischen Teil MT aufeinander beziehen.

Erst dadurch, dass die Abbildungen zu den mathematischen Relationen hinzukommen, ent-
steht eine physikalische Theorie. Typischerweise kdnnen die mathematischen GréfRen dann
auch dimensionsbehaftet sein.

So wird z. B. in der Elektrodynamik der Buchstabe F im mathematischen Teil mit dem
Wort ,,Kraft” bezeichnet und eine Abbildung zu dem hergestellt, was man z. B. mit realen
Federwaagen messen oder an der Bewegung von Massen ablesen kann. Es werden mit den
Abbildungsprinzipien in den Grundbereich nur Abbildungen in den Wirklichkeitshereich der
Vortheorien hergestellt. Die Vortheorie ist in diesem Fall die Mechanik bzw. Thermodynamik.
Zur Beschreibung und zur Vorhersage von Experimenten zur Elektrodynamik gentigen diese
Abbildungen aber vollig. Die Messgrofien entstammen diesem Bereich. Zwar gibt es im ma-
thematischen Teil der Theorie z. B. auch das Symbol j, zu dem wir ,,elektrische Stromdichte*
sagen, es reicht aber fur die experimentelle Aussage, dass wir der Theorie entnehmen kdnnen,
dass ein Draht sich erwarmt. Wir kdnnen so Strdme messen. Es ist nicht notig hierflr voraus-
zusetzen, dass es elektrische Strome ,,in Wirklichkeit* gibt und sie irgendwie durch Dréhte
»flieBen®. Das Wort Strom dient zundchst dann nur dazu, sich tber Teile der Theorie schneller
verstandigen zu kdénnen.

Interpretation  Wir verstehen unter der Interpretation (interpretation) einer Theorie die An-
gabe der Abbildungsprinzipien, mit denen Symbole des mathematischen Teils MT der phy-
sikalischen Theorie durch Verkniipfung mit Teilen der Wirklichkeit physikalisch interpretiert
werden. Es werden fur einige mathematische Symbole physikalische Referenzen angegeben.
In diesem Sinne ist eine physikalische Theorie ein teilweise interpretiertes formales System.
Man sollte streng dazwischen unterscheiden, ob zu gleichem MT die Abbildungsprinzipien
gedndert oder erweitert werden, oder ob in einer Alternativtheorie auch der MT gedndert und
z.B. andere Feldgleichungen postuliert werden. Die bisher geschilderte Interpretation, die sich
nur auf den Wirklichkeitsbereich der Vortheorie bezieht, wollen wir die Minimalinterpretation
(minimal interpretation) nennen. Sie umfasst den Minimalbestand an Abbildungsprinzipien,
die ndtig sind, um fir den mathematischen Teil den Anschluss an die Beobachtungsebene
zu erreichen. Auf der Grundlage der Minimalinterpretation kann Uber die empirische Richtig-
keit einer physikalischen Theorie entscheiden werden. Daruiber hinausgehende Elemente einer
Interpretation konnen weder experimentell bestatigt noch widerlegt werden. Es sind viele sol-
cher konsistenten Erweiterungen und damit viele Interpretationen denkbar. Sie sind weder
richtig noch falsch. Es sind Fragen der Erklarungskraft und Verstehbarkeit, die dazu motivie-
ren kénnen (ber die Minimalinterpretation hinauszugehen. Von erweiterten Interpretationen
kdnnen wertvolle Impulse fir neue Forschungsprogramme ausgehen. Die Suche nach einer
Theorie des Quantenmessprozesses ist ein Beispiel (vergl. Kap. 15). Wir machen noch darauf
aufmerksam, dass der Begriff Minimalinterpretation in der Literatur unterschiedlich verwen-
det wird.



2.4 Die Struktur physikalischer Theorien* 41

2.4.2 Theoretische Terme*

Schon das Beispiel Elektrodynamik zeigt, dass die meisten Physiker Uiber die Minimalinter-
pretation hinausgehen. Im mathematischen Teil der Elektrodynamik tauchen neben Termen,
die eine Abbildung in die Ausschldge von Messgeraten erlauben, weitere Terme wie z. B.
das elektrische Feld E oder der Strom j auf, von denen ebenfalls eine Entsprechung in der
Realitdt angenommen wird. Die hierzu gehdrigen zusétzlichen Abbildungsprinzipien wollen
wir hypothetische Abbildungsprinzipen hAP nennen. Der Bereich in den sie abbilden, heift
erschlossener Wirklichkeitsbereich eWB und die entsprechenden Terme der mathematischen
Theorie nennt man theoretische Terme (vergl. Abb. 2.5). Ublicherweise herrscht Konsens dar-
liber, dass man die hypothetischen Abbildungsprinzipien zur Theorie hinzunimmt und so zu-
gleich die physikalische Wirklichkeit tiber den Grundbereich hinaus erweitert. Wir wollen das
mit Blick auf die Quantentheorie die Standardinterpretation (standard interpretation) nennen.
Auch diese Bezeichnungen werden in der Literatur unterschiedlich verwendet.

< ---- = GB

AP

hAP
MT eWB

Abbildung 2.5: Die Abbildungsprinzipien AP beziehen den mathematischen Teil MT einer physikali-
schen Theorie und den Grundbereich GB der physikalischen Wirklichkeit aufeinander. Hypothetische
Abbildungsprinzipien hAP verkniipfen mit einem erschlossenen Wirklichkeitsbereich eWB.

Es sollte aber deutlich geworden sein, dass die Festlegung eines erschlossenen Wirklich-
keitsbereichs ein Element der Willkur enthdlt und dass mit ihm die Wirklichkeit zumindest in
Teilen theorieabh&ngig wird. Noch aus einem anderen Grund entsteht die physikalische Welt
mit Hilfe der Theorie. Alternativtheorien, die die gleichen Erfahrungen in anderer Weise be-
griinden, kénnen in diesem Sinne verschiedene Wirklichkeiten haben. Beispiele dafiir sind ei-
ne speziell-relativistische Gravitationstheorie in der flachen Raum-Zeit, die mit dem Konzept
des Gravitationsfeldes arbeitet und die Allgemeine Relativitatstheorie, in der das Gravitations-
feld vollig eliminiert und die Raum-Zeit gekrimmt ist. Die jeweilige Standardinterpretation
beantwortet die Frage nach der Existenz eines Gravitationsfeldes unterschiedlich.

Die Elektrodynamik zeigt allerdings weiterhin, dass auch in der Standardinterpretation
keineswegs zu allen GrofRen der mathematischen Theorie eine Entsprechung in der Wirklich-
keit behauptet wird. So wird Ublicherweise dem eichabhéngigen Vektorpotential an einem Ort
keine Realitat zugesprochen. Vektorpotentiale werden nur als rechnerische Hilfsmittel aufge-
fasst. In der Coulomb-Eichung andert sich das Vektorpotential instantan. Es wird damit aber
kein realer Ausbreitungsvorgang mit Uberlichtgeschwindigkeit verbunden.
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2.5 Interpretationen der Quantentheorie und physikalische
Wirklichkeit*

2.5.1 Minimalinterpretation*

Wie fugt sich die Quantentheorie in das im vorigen Kapitel beschriebene Schema ein? Die
Minimalinterpretation der Quantentheorie schreibt nur den Praparations-, Transformations-
und Messgeraten Realitdt zu. Es gibt nur deren Wirklichkeit und dariiber hinaus keine
hypothetischen Abbildungsprinzipien hAP und keine erschlossene Wirklichkeit eWB. Die
Abbildung AP erfolgt in die klassisch bechreibbare Realitat (z.B. Zeigerausschlédge der
Messgerate). Das empirische Wissen in der Quantentheorie kann mit den Elementen der klas-
sischen Physik formuliert werden. Alle anderen Bestandteile des mathematischen Teils MT
der Quantentheorie sind nur rechnerische Hilfsmittel. Diese Einstellung lasst sich gut mit der
zugespitzten Formulierung von Niels Bohr charakterisieren: ,, There is no quantum world.“.
Elektronen, Atome usw. gibt es nicht. Man wird diese Einstellung wissenschaftstheoretisch
als instrumentalistisch und pragmatisch charakterisieren. Der Vorteil der Beschrankung auf
die Minimalinterpretation liegt in der Vermeidung von scheinbaren Paradoxien. Das ist er-
kauft um den Preis, dass keine Veranschaulichung und kaum physikalische Intuition angeregt
wird.

Die einzige Aufgabe der Quantentheorie in dieser Interpretation ist es, prézise Vorhersa-
gen Uber mogliche Ergebnisse von Messungen und die Wahrscheinlichkeiten ihres Eintretens
zu machen. Weitere Aussagen sind Uberflissig und werden nicht gemacht. Objektivitat ist
garantiert. Nach Abschluss der Messung kann ein Beobachter ein Messergebnis nur ablesen
aber nicht mehr beeinflussen. Es ist Teil der klassischen Welt. Die so gewonnenen empirischen
Aussagen (z.B. Uber Zeigerausschldge) lassen sich im Rahmen der klassischen Physik als
der zugehorigen Vortheorie beschreiben. Sie kdnnen aber nicht im Rahmen der klassischen
Physik erklart, bzw. theoretisch begriindet werden. Man braucht dazu den mathematischen
Teil MT der Quantentheorie und einige wenige Abbildungsprinzipien. Es gibt in der Literatur
keine einheitlichen Festlegungen dartiber, was man unter der Kopenhagener Interpretation
verstehen soll. Die Minimalinterpretation gibt aber sicher charakteristische Ziige dieser
Interpretation wieder.

2.5.2 Standardinterpretation*

Die unter Physikern allseits akzeptierte Standardinterpretation geht dartiber hinaus. Man
stellt fest, dass zu einzelnen Quantensystemen Eigenschaften gehdren, die abtrennbar sind
von Prdparation und Registration, die also nicht Relationen zwischen dem System und dem
Préparations- und Registrationsgeraten beschreiben. Die zugehorigen physikalischen GroRen
sind elektrische Ladung, Baryonenladung, Masse und Betrag des Spins eines Elementarteil-

6,,There is no quantum world. There is only an abstract quantum physical description. It is wrong to think, that the
task of physics is to find out how nature is. Physics concerns with what we can say about nature.” Nach [Pet 63, S.
12].
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chens. Sie heiRen auch klassische Observable’. Da sie sich zum Teil auf die Vortheorien zur
Quantentheorie beziehen, ist es sinnvoll, auch diesen Eigenschaften eine objektive Realitét
zuzusprechen und damit zugleich auch dem zugehdérigen Quantensystem. Quantensysteme
haben dann reale Trager in einer erschlossenen Wirklichkeit, die man Quantenobjekte (quan-
tum objects) nennen kann. Man kann von einzelnen Quantenobjekten wie Atomen, Elektro-
nen usw. sprechen und verbindet damit in der Standardinterpretation folgende Vorstellung:
Die makroskopischen Effekte der Messgerate werden klassisch beschrieben, z. B. in der Form
von Zeigerausschlagen. Sie stellen in dieser Interpretation gewissermalen nur die ,,Oberfla-
che* dar und lassen sich auf die Wirkungen real vorhandener Quantensysteme bzw. Quante-
nobjekte zurtickfahren. Es gibt eine Quantenwelt. Es gibt keine physikalische Theorie ohne
Interpretation. Die Postulate spiegeln in ihrer Formulierung in Abschn. 2.1.2 bereits die Ab-
bildungsprinzipien der Standardinterpretation wider.

Wiederum wird aber nicht von allen Termen des mathematischen Teils MT behauptet, dass
sie in Elemente der Wirklichkeit abgebildet werden kénnen. Anders als beim elektrischen Feld
gibt es in der Quantentheorie fiir den durch ein Praparationsverfahren festgelegten Zustands-
vektor (bzw. Dichteoperator) keine Entsprechung in der Wirklichkeit. Er erlaubt nur im Zusam-
menwirken mit den Messoperatoren, die Berechnung von Wahrscheinlichkeitsverteilungen. Er
&hnelt damit in seinem Status dem Vektorpotential in der Elektrodynamik. Was sich unter dem
Einfluss eines Transformationsapparates deterministisch entwickelt, sind die vorhersagbaren
Wahrscheinlichkeitsverteilungen von Messresultaten. Der Zeitentwicklungsoperator U (¢, tg)
représentiert diese Entwicklung.

Auch wenn das im Folgenden nicht immer explizit durchgefuhrt wird, kann es fur das
Verstandnis nitzlich sein sich klar zu machen, ob eine Aussage sich auf die volle Standardin-
terpretation bezieht oder mit weniger Interpretation auskommt.

Weitere Interpretationen Die Viele-Welten-Interpretation der Quantentheorie ist ein Bei-
spiel flr eine alternative Interpretation, die unter Beibehaltung des mathematischen Teils an-
dere Aussagen Uber die Wirklichkeit macht. Wir werden sie in Abschn. 15.5 kurz besprechen.

2.6 Erganzende Themen und weiterfihrende Literatur

e Wissenschaftstheorie: [Sch 64], [Mai 96], [Mit 96], [Bal 70], [Hom 97], [Bub 97],
[Mai 96], [St6 86], [Lal 01], [DG 71], [Esf 02a], [Mut 98].

Zeno-Effekt: [NPN 97, S. 172], [Hom 97, Kap. 6].

Hinweise auf Experimente zum Zeno-Effekt: [IHB 90], Literatur zur Diskussion Uber
dieses Experiment und Vorschléage weiterer Experimente in [NPN 97, S. 177].

e Theoretische Terme und Abbildungsprinzipien: [Sch 90], [Sch 88].

Interpretation der Quantentheorie: [FP 00], [Lud 55], [Lud 89] [Lud 90], [Omn 94],
[Lud 96].

"Die Zustande von Quantenobjekten, die sich in diesen Eigenschaften unterscheiden, kénnen nicht superponiert
werden. Linearkombinationen solcher Zusténde sind physikalisch nicht realisiert (Superauswahlregeln).
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3 Die einfachsten Quantensysteme: Qubits

Alle Quantensysteme, die nicht mehr als zwei linear unabhangige Zustande besitzen, werden
in einem zweidimensionalem Hilbert-Raum 7, beschrieben. Sie sind die einfachsten nicht
trivialen Quantensysteme. Quantenzustande im M5 heiBen mit Blick auf ihre spétere Rolle in
der Quanteninformationstheorie Qubits. Sie sind von der Form

[¥) = col0) + el eo]* +ea|* =1 3.1)

mit der ONB {]0), |1)}, die auch Rechenbasis oder Standardbasis genannt wird. Observablen
besitzen zwei Messwerte.
Wichtige physikalische Realisierungen von Qubit-Systemen sind:

e 2-Niveau-Atom (auch Atome mit mehr Niveaus, wenn nur zwei Niveaus in einem Prozess
eine Rolle spielen), lonen mit zwei Energieniveaus

Polarisation von Spin-%-TeiIchen

Polarisation einzelner Photonen (horizontal « vertikal oder linksdrehend « rechtsdre-
hend)

Strahlengédnge in einem Zwei-Wege-Interferometer, in dem sich genau ein Photon befin-
det.

Quantenpunkte

e Moden des elektromagnetischen Feldes in einer Kavitét

Es gibt weitere Qubit-Systeme. Auch der Doppelspalt und das Stern-Gerlach-Experiment las-
sen sich vereinfacht so beschreiben.

Wir haben in Abschn. 1.2.1 die Operatorbasis der Ubergangsoperatoren kennen gelernt.
Fir Rechnungen im Hs ist die Operatorbasis, die aus dem Einsoperator 1 und den o-
Operatoren (Pauli-Operatoren) besteht, ein wichtiges Hilfsmittel. Pauli-Operatoren werden
ublicherweise im Zusammenhang mit dem Spin als innerem Drehimpuls eingefthrt. Da sie
aber bei anderen Qubit-Systemen im Allgemeinen physikalisch nicht mit einem Drehimpuls
zusammenhangen, kénnen wir von dieser Bedeutung zundchst absehen. Wir fuhren Pauli-
Operatoren in Abschn. 3.1 ein und beschreiben in Abschn. 3.2 und Abschn. 3.3 eine sehr
haufig verwendete Veranschaulichung von Quantenzustanden im > und ihrer Dynamik mit
Hilfe der Bloch-Kugel.

Qubit-Systeme sind die Trager einer Einheit der Quanteninformation. Die Verarbeitung
von Quanteninformation wird wie die Verarbeitung von klassischer Information mit Hilfe von

Verschrénkte Systeme: Die Quantenphysik auf neuen Wegen. Jiirgen Audretsch
Copyright © 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40452-X
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elementaren Operationen beschrieben, den sogenannten logischen Schaltungen oder Gattern
(gates). Quantengatter (quantum gates) sind unitére Transformationen oder Messungen auf
dem Ho. Wir beschreiben unitére Gatter, die auf nur einem Qubit wirken, in Abschn. 3.4.

Realisierungen von Qubit-Systemen und Quantengattern werden in Abschn. 3.5 bis 3.7
vorgestellt.

3.1 Pauli-Operatoren

Operatorbasis  Wir fihren im Ho drei hermitesche Operatoren o) mit & = 1,2,3 oder
k=x,y,zein

J,t = oy, (3.2)
flr die wir
ol =1 (3.3)

fordern. Da o}, # 1 sein soll und die Eigenwerte reell sind, folgt daraus und aus der Hermite-
zitat, dass jeder Operator oy, die Eigenwerte (1) und (—1) besitzt. Wie die Spektralzerlegung
zeigt, sind die o}, damit zugleich unitar

‘711 = 0;1. (3.4)
und spurfrei
trjox] = 0. (3.5)

Die Abb. 1.2 verdeutlicht, wie speziell die o-Operatoren sind. Abbildung 1.2 zeigt auch, dass
man die Forderungen Hermitezitat, Unitaritdt und o # 1 an die Spitze stellen kdnnte. Die
Eigenwerte +1 und —1 sowie die Gl. (3.3) und (3.5) wéren dann die Folge.

Wir wollen die o}, durch eine Forderung, die sie untereinander verkntpft, zu einer Ope-
ratorbasis ausbauen (vergl. Abschn. 1.2.1). Das wird erreicht, wenn wir in Erganzung zu
Gl. (3.2) und (3.3) noch die Bedingung

tr[UZ‘O’j] = 25” (36)
erflllen, indem wir vom Antikommutator ([A, B], := AB + BA)
[Ui, Uj]Jr = 2(52]]1 (37)

verlangen. Die Operatoren {%]l, %ok} bilden dann eine orthonormale Operatorbasis im
Liouville-Raum. Jeder Operator A lasst sich in der Form

3
1 1
A= St[AJl + o ;tr[flak]ak (3.8)

darstellen.
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Drehimpulsoperatoren Die zweite wichtige Eigenschaft der o, ergibt sich durch die fol-

gende Festlegung des Kommutators ([A, B]- := AB — BA) durch die die GI. (3.7) ergénzt
wird:
3
o3, 05]- = 2iz€ijk0k- (3.9)
k=1

€51 ist der in allen Indizes total antisymmetrische Tensor mit €123 = 1. Hierdurch werden
die o formal proportional zu Drehimpulsoperatoren und kénnen Observable des 2-Niveau-
Systems Spin beschreiben. Zusammenfassend schreiben wir fir GI. (3.7) und (3.9)

3
0;0; :5ij]1 +izeijk0k- (310)
k=1

Die hermiteschen Operatoren o, die GI. (3.10) erftllen, heien Pauli-Operatoren (Pauli ope-
rators) oder o-Operatoren. Die Gleichungen zeigen, dass die Indizes vollig gleichberechtigt
eingehen. Dies I&sst sich in manchen Rechnungen ausnutzen.

Als Grundlage einer indexfreien Formulierung fiihren wir den vektoriellen Pauli-Operator
o = o.e, + oye, + 0.e; ein. Die Vektoren e,, e, und e, sind dabei die kartesischen
Basisvektoren des R3. Mit Hilfe von GlI. (3.10) lasst sich fiir beliebige Vektoren a, b € R3

(ca)(ob) = (ab)1 + io(a x b) (3.11)
ableiten. Diese Gleichung geht flr beliebige normierte Vektoren e in
(oge)(oe) =1 (3.12)

uber. Damit erhalten wir mit Hilfe der Spektralzerlegung fir die Entwicklung der Exponenti-
alfunktion

1 .
exp(ifed) = 1 + ifec — =0? (ed)? i Peo + ... (3.13)
2 L 3l
=1
und nach geeigneter Zusammenfassung die haufig benutzte Relation
exp(ifeo) = (cos )1 + i(sinb)eo. (3.14)
Matrixdarstellung Wenn wir die ONB der Eigenvektoren |0) und |1) von o, mit den Ei-

genwerten (+1) bzw. (—1)

0:]0) = +0) (3.15)
o.[1) = —|1)

als Rechenbasis nehmen, dann ist die Matrixdarstellung von o,

=5 %) (3.16)
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Mit Hilfe der Gl. (3.2) und(3.10) kénnen die Matrixdarstellungen von o, und o, in der
Rechenbasis im Einzelnen berechnet werden. Hier soll nur das Ergebnis angegeben werden.
Wir bezeichnen diese Pauli-Matrizen ebenfalls mit dem gleichen Symbol wie den Operator
und fligen die dyadische Darstellung direkt an:

o= (1 o) =al+mo
o= (1 ) =i~ o) (3.17)
o= (5 O) == mal.

Es ist niitzlich, die Wirkung der o-Operatoren auf die Vektoren der Rechenbasis zu notie-
ren:

0,]0) = |1) o vertauscht (bit flip)

ox|1) = |0)

o,|0) =i|1) oy vertauscht und flgt die relative Phase +i ein (3.18)
ay|l) = —il0)

0.|0) = +|0) o fugt die relative Phase +1 ein (phase flip).

o:[1) = —[1).

Damit lassen sich schlielich in der Rechenbasis die orthonormalen Eigenzustande von o,
und o, direkt als

0]0z) = [0z) 0zlz) = —|1z)
1 1
102) = —=(10) +[1)) 112) = 75(@) - 1) (3.19)
und
oyl0y) = [0y) oylly) = —[1y)
1 ) _ 1 _
|0y) = ﬁ(\@ +il1)) 11y) = \/5(\0> 1) (3.20)
bestétigen.

3.2 Veranschaulichung von Qubits auf der Bloch-Kugel

Wir fuhren eine auf der Zerlegung nach der Operatorbasis beruhende mathematische \Vor-
uberlegung durch, auf die wir uns spater haufiger beziehen werden. Ein Operator p mit den
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Eigenschaften pf = p und tr[p] = 1 lasst sich mit GI. (3.8) in der Form

. %(]1 +ro) (3.21)

mit reellem Vektor r
r := tr[po] (3.22)
schreiben. Mit Gl. (3.5) und (3.10) gewinnen wir daraus
1
tr[pQ] = Ztr[]l + 2ro + ZTiTjO'in]
’Ll.j
1 2
= 5(1 + |r]?). (3.23)
Wir betrachten als Spezialfall den mit einem beliebigen normierten Vektor |¢) gebildeten

Operator p := [|¢)(y|. Fur ihn gilt p> = p sowie tr[p?] = tr[p] = 1 und mit (3.23) folgt
|r] = 1. Einsetzen von p in (3.22) liefert als Interpretation von r den Erwartungswert

r= (Wlofy), (3.24)
sowie (¥|ro|v) = rr = 1 und damit als weiteres Resultat
ro|y) = [). (3.25)

Wir haben zwei Ergebnisse gefunden: Fir einen beliebigen normierten Zustandsvektor [¢) €
H, ist der Erwartungswert des vektoriellen Pauli-Operators o ein reeller Vektor r € R3
vom Betrag 1. Zugleich ist |¢)) Eigenvektor des hiermit gebildeten Operators ro zum Eigen-
wert (41).

Bloch-Kugel Uber den Erwartungswert von o ist gemaR Gl. (3.24) jedem Qubit |z)) ein-
deutig ein Vektor r im R? zugeordnet, der Bloch-Vektor genannt wird. Seine Spitze liegt auf
der Oberflache der Einheitskugel (Bloch-Kugel) (vergl. Abschn. 3.1). Wir nennen den damit
bezeichneten Punkt den Bloch-Punkt. Mit Hilfe von r kénnen wir Zustandsvektoren |¢) sowie
die Auswirkungen der Messdynamik und der unitren Dynamik auf |} einfach dreidimen-
sional veranschaulichen. Darin liegt die Bedeutung der Bloch-Vektoren.

ro ist hermitesch. r ist normiert und Gl. (3.12) gilt entsprechend. Wir kénnen daher die
Argumentation vom Anfang des Kapitels Gibertragen: Die Eigenwerte der vektoriellen Pauli-
Operatoren ro sind (+1) und (—1). Der Eigenvektor zu (+1) ist 1)) mit Bloch-Vektor r von
Gl. (3.24). Der zweite Eigenvektor zu ro steht auf |+)) senkrecht ({x|¢’) = 0) und erfullt

rolx) = —[x) . (3.26)
Multiplikation mit (x| flhrt mit |(x|o|x)| = —1 (vergl. Gl. (3.24)) auf

(xlo[x) =-r. (3.27)
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Abbildung 3.1: Bloch-Kugel mit den Bloch-Vektoren zu den Eigenzustanden der Pauli-Operatoren. Die
Bloch-Vektoren r und —r zu zwei beliebigen orthonormalen Qubits |)) und |x) liegen spiegelsymme-
trisch zum Ursprung.

Der Bloch-Vektor zum Eigenwert (—1) entsteht durch Spiegelung von r am Ursprung (vergl.
Abschn. 3.1)

Allgemein gehdren zu zwei orthogonalen Qubits am Ursprung gespiegelte Bloch-
Vektoren. Der zugehdrige vektorielle Pauli-Operator ergibt sich direkt tber den Bloch-Vektor
r als ro. Speziell finden wir, dass die Bloch-Vektoren zu den Eigenzustanden der drei Pauli-
Operatoren fiir die Eigenwerte (+1) mit den Basisvektoren e,, e, , e, Ubereinstimmen. Fir
die Eigenwerte (—1) liegen die Bloch-Vektoren in der jeweiligen Gegenrichtung. Dies ist in
Abschn. 3.1 dargestellt. Wir wollten noch die Bloch-Punkte mit Hilfe von Polarkoordinaten
durchparametrisieren. Ein beliebiges Qubit |¢) (vergl. Gl. (3.1)) lasst sich stets mit Hilfe von
2 Parametern 6 und ¢ in der Form

1) = e™'% cos (g) 0) 4 ¢'% sin (g) 1) (3.28)

=e % {cos (g) 0) + € sin (g) |1>}

(0 < <2m, 0 <6 < 7)darstellen. Mit Gl. (3.17) und (3.24) berechnen wir damit leicht fir
den zu |v) gehdrigen Bloch-Vektor

r = (sinf cos ¢, sinfsin @, cos 0). (3.29)

Die Parameter 6 und ¢ erhalten also bei der Veranschaulichung auf der Bloch-Kugel gerade
die Bedeutung der Polarkoordinaten des Bloch-Punktes (Abb. 3.2). Charakteristisch ist das
Auftreten der halben Polarwinkel beim zugehérigen Zustandsvektor von Gl. (3.28).

Das hat zur Folge, dass einerseits zu gegebenem Qubit |¢) der Bloch-Vektor r wohlbe-
stimmt ist, dass aber andererseits ein Bloch-Vektor zwei verschiedenen Qubits zugeordnet ist.
Wenn wir z. B. den Bloch-Vektor um die 2-Achse in der y—z-Ebene drehen (o = %), dann
kehrt er nach einer 27-Drehung (¢ = 0 — ¢ = @ — ¢ = 0) wieder in seine Ausgangsla-
ge zurick. Gleichung (3.28) zeigt, dass dabei der zugehdrige Zustandsvektor das Vorzeichen
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Abbildung 3.2: Polarkoordinaten veranschaulichen die Winkel 6 und ¢ von GI. 3.28.

wechselt |¢)) — —|«). Erst nach einer vollen 47-Drehung des Blochvektors erreicht der Zu-
standsvektor wieder seine Ausgangsstellung [i)) — +|1).

Es ist ntzlich noch die Komponentendarstellungen des Operators ro in der Rechenbasis
Zu notieren:

cos) e sinf
roe = (ew sinf  —cos# ) ' (3.30)

Wir bezeichnen die Eigenvektoren von ro mit |0,.) und |1,.). Der Eigenvektor |0,.) = |¢)
wurde schon in GI. (3.28) angegeben. Wir ergdnzen den Eigenvektor |1,.) = |x) zum Eigen-
wert —1:

e~ /2 cos —e /2 gin
00 = 10) = (Lot ) s b =0 = (T et ) - @3

3.3 Veranschaulichung der Messdynamik und der unitaren
Dynamik

Projektive Messung Wir haben in den Postulaten zwei Dynamiken eingefihrt, die Mess-
dynamik und die unitidre Dynamik. Die Messdynamik der projektiven Messung lasst sich ein-
fach veranschaulichen. Ein Observablenoperator im zweidimensionalen Hilbert-Raum 75 der
Qubits hat zwei orthogonale Eigenvektoren |0) und |1). Wir kdnnen sie immer als Eigenvek-
toren von o, auffassen. Auf der Bloch-Kugel legen wir hierzu die Richtung von e, in die
Richtung des Bloch-Vektors von |0). Eine Messung dieser Observablen bewirkt dann einen
sprunghaften Ubergang von einem Ausgangszustand |¢) in den Endzustand |0) oder |1) je
nach Messergebnis (siehe Abb. 3.3).
Wenn wir |«) in der Form

1) = c0l0) + c1[1) (3.32)

schreiben, dann sind die zugehérigen Wahrscheinlichkeiten |co|? bzw. |c;|?. Die Projektion r,
des Bloch-Vektors r auf die z-Achse ist mit GI. (3.29)
2

r, = cosv = cos’ g — sin g = |col® = |e1]? . (3.33)
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102)

I12)

Abbildung 3.3: Bei einer Projektionsmessung eines Observablenoperators mit Eigenvektoren |0.) und
|1.) wird der Zustandsvektor |v) sprunghaft je nach Messergebnis in |0.) oder |1.) Gberflihrt. Darge-
stellt sind die entsprechenden Bloch-Punkte auf der Bloch-Kugel.

Da |co|? + |c1]? gilt, folgt daraus fiir die Wahrscheinlichkeit |co|?

r,+1

|col? = 5

(3.34)

Unitare Transformation Wir wollen ergénzend die Wirkung der unitdren Dynamik veran-
schaulichen, die mit einem unitéren Operator U einen Ausgangszustand |¢) gemalR

[9) = Ul) (339

in den Endzustand |+’ Gberfiihrt. Dazu gehen wir von einigen mathematischen Eigenschaften
unitérer Transformationen und ihrer Matrixdarstellungen im 5 aus.

Sowohl die Zeilen als auch die Spalten einer unitaren Matrix sind untereinander paarweise
orthonormal (Zj Uf;Uyj = dir). Die Auswertung der entsprechenden Relationen, die wir hier
nicht vorflhren, zeigt, dass fiir eine unitare Matrix U im H, vier reelle Parameter «, 3, v und
o existieren, sodass U sich als Matrix

in e~ N2 cog (,u/2)e_i”/2 —e~ M 24in (Iu/2)eiu/2
U=e < M2 gin (u/2)e‘“’/2 M2 cos (u/2)eiu/2 > (3.36)

oder als Operatorprodukt

U = exp(ik) exp <—%)\02) exp (—%,uay) exp (—%uaz> (3.37)

schreiben lésst. Nur die Pauli-Operatoren ¢, und o, tauchen auf. Es ist geschickt noch den
unitaren Operator U/ einzufiihren

U =: e, (3.38)
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der mit U bis auf den globalen Phasenfaktor e~ ubereinstimmt. An Gl. (3.36) lesen wir direkt
die folgenden Eigenschaften der Matrixdarstellung von U ab:

Ugo = U7,
Uy = -Ug, (3.39)
UooUss — U Uy = 1.

Wir zerlegen U nach der Operatorbasis {%11, %ak} geméaR Gl. (3.8)

U=yl —ivo. (3.40)
wobei vg und v durch Spurbildungen bestimmt sind:

1 - ) oA
v =tl0], v= %tr[Ua] . (3.41)
Mit Hilfe der Relationen (3.39) lasst sich einfach zeigen, dass v, und v reell sind. Die Unita-
ritatsrelation UTU = 1 ist mit GI. (3.11) gleichbedeutend mit der Bedingung

v +vv=1. (3.42)

Sie bestatigt noch einmal, dass eine unitdre 2x2-Matrix durch eine globale Phase und drei
reelle Parameter bestimmt ist.

Da die Bedingung (3.42) erfullt ist, hat die Gl. (3.40) die Struktur der Gl. (3.14). Fur
spatere Zwecke gehen wir wieder zum halben Winkel tber und fihren den Winkel ¢ und den
Einheitsvektor e gemal

Vg 1= COS %5 , v= (sin g) e (3.43)

ein. Zu gegebenem U sind dabei ¢ und e durch Gl. 3.41 festgelegt. Damit erhalt die Gl. (3.40)
die Gestalt

U = exp <—i§ea> : (3.44)

wobei e und ¢ durch die Gl. (3.41) und (3.43) gegeben sind. Jede unitére Transformation im
H lasst sich bis auf einen Phasenfaktor e’ eindeutig in die Form (3.44) bringen.

SchlieBlich wollen wir die Wirkung von U auf der Bloch-Kugel veranschaulichen. Der
Phasenfaktor e’ hat keinen Einfluss auf den Bloch-Vektor. Wegen der Symmetrie der Dar-
stellung kénnen wir ohne Einschrankung e, in die Richtung von e legen. Der Operator [/
nimmt dann mit Gl. (3.44) die Form

U = e 75(0)(0] — 1% |1)(1] (3.45)
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an (vergl. Gl. (1.52)). Mit Hilfe von GI. (3.28) lesen wir direkt ab, dass U/|¢) aus |¢) durch
die Substitution ¢ — ¢+ ¢ hervorgeht. Daraus folgt eine einfache Interpretation der Wirkung
von U auf der Bloch-Kugel: Wenn der Zustand |¢) durch den Bloch-Vektor = représentiert
wird, dann entsteht der Bloch-Vektor ' zum unitéren transformierten Vektor

) = Re(@lV). Rel0) = oxp (-ifec) (2.40

durch Rotation von r um den Drehwinkel ¢ auf einem Kegel um die Achse e (vergl. Abb. (3.4)).
Die GroRen e und ¢> sind dabei Uber die Gl. (3.41) und (3.43) festgelegt. Die unitare Trans-
formation exp(— 1202) (bzw. exp(—i% ox) oder exp(—z%y)) entspricht einer Drehung des
Bloch-Vektors um die z-Achse (bzw. x- Achse oder y-Achse) um den Winkel ¢.

Abbildung 3.4: Wirkung der unitaren Transformation U auf die Endpunkte der Bloch-Vektoren reiner
Zustande. Der Vektor e ist durch die GI. (3.41) und (3.43) gegeben.

Beispiel: Rabi-Oszillationen Wir wollen eine physikalische Situation beschreiben, in der
sich der Bloch-Vektor periodisch bewegt. In einer Kavitat wechselwirkt ein einzelnes Pho-
ton mit einem einzelnen 2-Niveau-Atom mit den Energie-Niveaus |0) und |1). Der Einfach-
heit halber soll Resonanz vorliegen. Das heif3t, die Energiedifferenz der Niveaus stimmt mit
der Photonenenergie Uberein. Dann wird das Photon periodisch absorbiert und emittiert. Die
Wahrscheinlichkeit |co|? das Atom im angeregten Zustand |0) zu finden oszilliert. Die entspre-
chende Frequenz wird Rabi-Frequenz Qi genannt, ihre Hohe ist ein Mal3 fir die Stérke der
Wechselwirkung zwischen Atom und quantisiertem Strahlungsfeld. Die quantenelektrodyna-
mische Rechnung zeigt, dass der resultierende Einfluss auf den Zustandsvektor des Atoms
durch die unitére Transformation

Ul(t,tg) = exp [—i(t - to)%al} (3.47)

beschrieben wird.
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Wie wir gesehen haben, hat das zur Folge, dass sich der Bloch-Vektor r mit der Frequenz
Qr auf einem Kegel um die z-Achse dreht (vergl. Abb. 3.5). Im Grenzfall des véllig gedff-
neten Kegels dreht er sich in der y—z-Ebene. Die Wahrscheinlichkeit |cq|? ergibt sich aus der
Projektion r,(t) = r,(t — 5—:;) von r auf die z-Achse gemaR

r.(t)+1 '

|col® = )

(3.48)
Der maximale Wert der Projektion . (¢) kann nur dann den maximal méglichen Wert 1 anneh-
men, wenn r sich in der y—z-Ebene dreht. Hierzu reicht es, dass r z. B. durch eine anféngliche
Projektionsmessung parallel zu e, oder —e, ausgerichtet wird. Dem entspricht der Zustand
|0) oder |1). Im anderen Grenzfall wird das Atom im Eigenzustand |0,) oder |1,) von o, pra-
pariert (vergl. Abb. 3.1). Dann stimmt der Bloch-Vektor mit e, bzw. —e,, iberein und bleibt
unter dem Einfluss der Wechselwirkung unveréndert. Der Grund dafur ergibt sich aus der
quantentheoretischen Rechnung. Der Hamilton-Operator des Gesamtsystems, der sich additiv
aus aus den Hamilton-Operatoren flr das freie Photon, das freie Atom und fur die Wechselwir-
kung zusammensetzt, hat zwei Eigenzustande. Wenn sich das Gesamtsystem in einem dieser
Zusténde befindet, bleibt es in diesem Zustand. Die zugehdrigen atomaren Zusténde sind |0,.)
und |1,).

€z

Abbildung 3.5: Rabi-Oszillationen des Bloch-Vektors r.

3.4 Quantengatter fur einzelne Qubit-Systeme

Wir wollen noch einmal die mathematisch und physikalisch besonders relevanten unitaren
Transformationen im H, zusammenstellen. Wir haben im vorigen Kapitel gesehen, dass die
Transformationen exp(i¢oy) Drehungen des Bloch-Vektors um die Koordinatenachsen ey,
bewirken. Wesentlich ist, dass gemal Gl. (3.37) jede beliebige unitdre Transformation durch
mehrfache Anwendung dieser speziellen Transformationen gewonnen werden kann.
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Phasengatter In der Quanteninformationstheorie spielen spezielle unitare Operatoren eine
besondere Rolle, die auch als Quantengatter (quantum gates) bezeichnet werden. Hierzu ge-
horen die drei Pauli-Operatoren o, deren Wirkung wir bereits beschrieben haben, und das
Phasengatter (phase gate)

1 0 ia
@)= (5 o) = 1001+ e, (3.49)
das eine Phasenverschiebung der |0)-Komponente eines Vektors bewirkt (Phasenschieber).
¢ () lasst sich auch in der Form
pla) =€'Ze 57" (3.50)

schreiben und stimmt daher bis auf einen globalen Phasenfaktor mit einer der einleitend er-
wahnten Drehungen Uberein.

Hadamard-Gatter Wir fihren noch das unitare und hermitesche Hadamard-Gatter H ein

1 /1 1 1
H:i= = (0p+0.), H' =H=H', 3.51
5 L) = St (35)
das sich als Summe von Pauli-Operatoren schreiben lasst. H stimmt mit seinem Inversen
Uberein und Uberflhrt die Vektoren der Rechenbasis in die Eigenvektoren von o, (vergl.
Gl. (3.19)):

1
HI0) = —(]0)+]1 3.52
0 = 500+ 1) (352)
1
H|l) = —(|0)—[1)).
= 2500 -1
Wir notieren noch die Beziehungen
Ho.H =0, HoyH = -0y, Ho.H =o0,, (3.53)

die man z. B. durch Anwenden der Relation (3.7) erhalt.

Um welche Achse e und mit welchem Drehwinkel 6 wird der Bloch-Vektor gedreht,
wenn das Hadamard-Gatter auf einen Zustand wirkt? Wir verwenden die Ergebnisse aus Ab-
schn. 3.4. Mit dem Phasenfaktor ¢~ = —; ergibt sich aus H ein unitarer Operator U (vergl.
Gl. (3.39)) mit der Wirkungsweise

0]0) = ;—;<|o> ), O = 7;<\0> —). (3.54)

Damit kdnnen wir mit Hilfe von GI. (3.17) die Gl. (3.41) leicht auswerten mit dem Ergebnis:
Das Hadamard-Gatter bewirkt eine Drehung mit dem Winkel

0 = 180° (3.55)
um die Achse
1

e= 75(% +e,). (3.56)

Weitere Gatter finden sich in Tab. (3.1).
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Tabelle 3.1: Haufig benutzte Gatter flr ein Qubit.

Gatter g,rﬁ[;:)tlor' Operator Matrix
1
NOT {} NOT, o, | |0)(1] + |1)(0] ((1) 0)
< (0, +02) L (11
Hadamard A HE H fe*iu’ya G (1 _1)
i 1 0
Phase — ¢(a) — gb(()t) |0><0‘ +e ‘1><1| 0 et
x-Rotation R.(¢) | e itoe cos§  —ising
—1X@) [— ‘ —1 sin% COS%
-Rotation Ry(¢) |e it cos§  —sing
Y — Y(@) — Y sin% cos%
) eii% 0
-Rotation | | .| R, —i30s
o-Operator — X = Oz Oz ((1) (1))
o,,-Operator VA oy oy (? _OZ
1 0
o ,-Operator — 7= o, o, (0 1

35 Spin-1

Eine besonders wichtige Realisierung eines Qubit-Systems ist der Spin mit der Quantenzahl %
Er ist ein innerer Freiheitsgrad von Elementarteilchen, wie z. B. den Elektronen, und wird in
einem zweidimensionalen Hilbert-Raum 7, beschrieben (Spinraum). Die zugehérige Obser-
vable ist

S = go' . (3.57)

Ihre Komponenten erflillen geméaR Gl. (3.9) die Kommutatorrelationen fir Drehimpulse
[Si, Sj], = ihEiijk . (358)
Mit dem Spin ist ein magnetisches Moment verbunden mit der Observablen

M =+S. (3.59)
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Das gyromagnetische \erhéltnis ~ ist fur Elektronen -=. In einem Magnetfeld B fiihrt

die Wechselwirkung zwischen dem Magnetfeld und der%wmagnetischen Moment zu einem
Hamilton-Operator

H=-9BS. (3.60)
Wir orientieren e, in Richtung von B und filhren w := —yB mit B = |B| ein. Dann hat der
Hamilton-Operator die Form H = 2 mit den beiden Eigenwerten i%‘” und den Eigenzu-

i

standen [0.) und |1.). Fr ein Spin-5-System kann die Observable o bis auf einen Faktor je
nach physikalischer Situation als Komponente des magnetischen Moments oder als Energie
im Magnetfeld interpretiert werden (2-Niveau-System).

3.6 Photonenpolarisationen

Bei linearer Polarisation haben die elektrischen Wellenfelder die Form
Ey ~egexpi(kr —wt); Ey ~eyexpi(kr — wt); (3.61)

mit dem Ausbreitungsvektor k (siehe Abb. 3.6). Die Indizes H und V' bezeichnen horizontale
und vertikale Polarisation bzw. Schwingungsebene. Eine andere Basis ist

1 1
e = €450 = —(eg +ey); ey =e_y50 = —(eg —ey). 3.62
H +45 \/5 ( H V) 14 45 \/i ( H V) ( )

Sie entspricht einer Drehung der Schwingungsebenen um 45°. Die rechts- und linkszirkular
polarisierten Wellen sind durch

E(R,L) ~e(R,L)expi(kr —wt) (3.63)
mit
e(R) = %(eH +iey); e(L)= %(eH —iey) (3.64)

gegeben. Die diesen Polarisationen entsprechenden Zustandsvektoren des Quantensystems
Photon sind Vektoren in einem Hilbert-Raum s und daher Qubits. Die Zuordnung lautet:

e [H) = [0), ey = V) =|1) (369
by L _
e < |H') = | +45%) = () + V) = [0.)
AN o _L _ _
v = V') == 45%) = () = V) = [1.) (360
e(R) = [R) = —=(1H) +ilV) = [0,)
1 .
e(l) = |L) = (1) =ilV) = |1, @67

Den Zusammenhang zu den Eigenvektoren der Pauli-Operatoren haben wir flr die drei Pola-
risationstypen angefugt.
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€eH

€k

Abbildung 3.6: Polarisationsvektoren und Ausbreitungsvektor bei linear polarisierten Photonen

3.7 Einzelne Photonen im Strahlteiler und Interferometer

Wir wollen ein weiteres Qubit-System kennen lernen, das insbesondere fiir quantenoptische
Experimente zur Quanteninformationstheorie von Bedeutung ist. Es handelt sich um ein ein-
zelnes Photon auf das im Sinne von Abschn. 1.2 ein Transformationsapparat wirkt, der aus
einer Abfolge von einzelnen Strahlteilern, Phasenschiebern und Spiegeln aufgebaut ist. Ein-
fache Beispiele fir ein solches photonisches Netzwerk zur Quanteninformationsverarbeitung
sind Strahlteiler und Interferometer selber (vergl. Abb. 3.8).

Das Photon ist das Quant eines Strahlungsfeldes mit wohlbestimmten Modenfunktionen,
die in diesem Falle durch den Wellenvektor charakterisiert sind. Die von uns betrachtete op-
tische Anlage soll so einfach sein, dass nur zwei Lichtmoden oder Wege, ein 0-Weg und ein
1-Weg, durch sie hindurch gelegt werden kénnen. Das Photon soll bei einer Messung vor, im
Innern und hinter der Anlage immer nur auf genau einem der \Wege registriert werden. Dann
konnen wir das Photon in dieser Situation als Qubit beschreiben, wobei die Zusténde |0) bzw.
|1) den jeweiligen Wegen zugeordnet sind. Den normierten Photonenzustand beschreiben wir
in der Form

[¥) = col0) + c1]1). (3.68)

mit |co|?+|c1|? = 1 . Wenn wir einen Detektor in den 0-Weg stellen (0-Detektor), dann spricht
er mit der Wahrscheinlichkeit |co|? an. Entsprechendes gilt fir den 1-Weg. Die verwendeten
optischen Apparate haben zwei einlaufende und zwei auslaufende Wege und bewirken eine
Abfolge unitérer Transformationen des Zustandsvektors |¢). Sie &ndern die Wahrscheinlich-
keit das Photon auf einem bestimmten Weg zu registrieren, wobei die Gesamtwahrscheinlich-
keit erhalten bleibt.

Phasenschieber haben wir schon beschrieben. Verlustfreie Spiegel bewirken allenfalls ei-
ne Phasenverschiebung. Strahlteiler werden wir im Anschluss beschreiben und danach die
optischen Bauteile zu einem Interferometer zusammensetzen.

3.7.1 Strahlteiler

Strahlteiler allgemein  Wir betrachten einen verlustfreien Strahlteiler (lossless beamsplit-
ter) mit zwei einfallenden und zwei ausfallenden Strahlungsmoden wie er schematisch in
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Abb. 3.7 dargestellt ist. Der einlaufende Photonenzustand |¢)) wie der auslaufende Photo-
nenzustand |¢’) sind von der Form (3.68). Die Zuordnung zu den Strahlungsmoden erfolgt
gemé&Rl Abb. 3.7.

Abbildung 3.7: Wege beim Strahlteiler

Die Verlustfreiheit des Strahlteilers hat die Wahrscheinlichkeitserhaltung zur Folge. Mit
einlaufendem Zustand |+ ist damit auch der auslaufende Zustand |¢)") ein normierter Vektor
und die Wirkung des Strahlteilers wird durch eine unitére Transformation U wiedergegeben
(vergl. Abschn. 1.1.5)

") = Ulp). (3.69)

Wir notieren U in der Form der Matrix (3.36) und fuhren neue Bezeichnungen fir Amplituden
und Phasen ein. p, 7 und ¢ sind reell.

@0 —id

_ in [(pe’T —Te "

U =€ <’7’6i6t pe_,i(sT > . (370)

Die Wirkung von U l&sst sich einfach beschreiben, wenn der einlaufende Photonenzustand
nur aus einem Vektor der Rechenbasis besteht

0) = Uoo|0) + Uno[1),  [1) = Uo1|0) + U1[1). (3.71)

Beim Einlaufen von |0) bewirkt der Strahlteiler in Reflexion ein Phasenverschiebung  + 4,
und eine Multiplikation mit dem reellen Reflexionsfaktor p. Die Transmission ist entsprechend
durch die Phasenverschiebung ~ + 6; und den Transmissionsfaktor 7 bestimmt. Die Wirkung
auf Superpositionen ist eine unmittelbare Folge.

Mit Gl. (3.36) erhalten wir als Ausdruck der Wahrscheinlichkeitserhaltung und damit der
Unitaritat

pr T =1. (3.72)

Wir fuhren noch die Phasendifferenz ¢, zwischen reflektiertem und transmittiertem Zustand
bei Einfall im Zustand |0) ein (d; fir den Zustand |1))

g =0, —0;; 01 =—0,+ 06 £ (3.73)
Dann folgt aus Gl. (3.70) als eine stets erfiillte Beziehung

8o + 61 = . (3.74)
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Spezielle Strahlteiler Zwei Typen von dielektrischen Strahlteilern werden in der Praxis
haufig verwendet. Das ist einmal der Strahlteiler, der bei Reflexion eine Phasenverschiebung
von 7 und bei Transmission keine Phasenverschiebung bewirkt:

_(ip T
U, = (T Z.p) . (3.75)
Dem entspricht eine Festlegung , = 0, 6; = —3 und x = 7. Der Strahlteiler ist nicht

zeitlich symmetrisch, da U; ! # U Die raumlich symmetrische Version dieses Strahlteilers,
bei der Reflexivitat und Transmissivitat Ubereinstimmen, ist durch p = 7 = % gegeben und
bewirkt

1.

110) = 5010 +11), (2.76)
1 )

0h1) = 75(0) +4l1). @)

Fir beide einfallenden Moden gilt, dass ein Photon mit der gleichen Wahrscheinlichkeit % auf
einer der auslaufenden Moden wieder auslauft (50 : 50 beamsplitter) . Wir schreiben Gl. (3.75)
mit p = cosf und 7 = sin § um und erhalten die unitare Transformation in der Form

Uy = (cos0)1 —i(sinf)o, = exp(—iboy). (3.78)
Ein globaler Phasenfaktor i ist weggelassen.

Der andere gebréauchliche Strahlteiler bewirkt einen Phasensprung um 7 bei der Reflexion
an einer der Seiten:

N
Us; = (T _p) . (3.79)
Er entspricht der Wahl 6, = 5, 6; = 5 und x = —7 und ist mit U—! = U zeitlich symme-

trisch. Dafir ist er raumlich nicht symmetrisch, d. h. er wirkt unterschiedlich auf die in den
Moden |0) bzw. |1) einlaufenden Photonen. Im symmetrischen Spezialfall p = 7 = % ergibt
sich eine optische Realisierung des Hadamard-Gatters H von Gl. (3.51), dessen Wirkung in
Gl. (3.52) beschrieben ist.

Wir schreiben p = cos¢ und 7 = sin ¢ und bilden o,U,. Explizites Ausrechnen der
entsprechenden Matrizen zeigt dann mit GI. (3.14)

exp(igoy) = 0,Us. (3.80)

Da o, mit Phasenschiebern realisierbar ist, und GI. (3.37) neben Phasenverschiebungen
exp(—4Ac.) und exp(—4vo.) nur einen Operator der Form exp(iuo,) enthélt, lasst sich
jede unitére Transformation (3.69) mit dem durch Us von Gl. (3.79) beschriebenen Strahltei-
ler (Hadamard-Gatter) und Phasenschiebern realisieren.
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3.7.2 Interferometer

Ein Mach-Zehnder-Interferometer entsteht, wenn man zwischen zwei Hadamard-Strahlteilern
einen Phasenschieber z. B. in den 1-Weg einbaut, durch den die |1)-Komponente des Pho-
tonzustands mit einem Phasenfaktor multipliziert wird (vergl. Abb. 3.8). Wir setzen den Pha-
senfaktor in der Form exp(—ic«) an. Die Strahlumlenkung durch zwei gleichartige ideale re-
flektierende Spiegel hat keinen Einfluss auf relative Phasen. Mit dem Phasengatter ¢(«) von

NN A

Abbildung 3.8: Mach-Zehnder Interferometer mit Phasenschieber

Gl. (3.49) konnen wir das Interferometer durch das Diagramm von Abb. 3.9 symbolisieren.

— | H H —»

\i

\i

¢(—a)

Abbildung 3.9: Schaltbild fir das Mach-Zehnder-Interferometer.

Anweisungen fiir die Anwendung von Gattern (gates) in einer speziellen Reihenfolge heilien
Schaltungen (circuits). Das Interferometer ist ein Beispiel eine einfache Quantenschaltung
(quantum circuit).

Wenn ein Photon im Zustand |0) und damit in der 0-Mode einlauft, erfahrt es nacheinander
die Transformationen

b

0
0~ .

(10) + 1) = —=(10) +e7[1)) — o [(1+e7™)[0) + (1 —eT™)[1)] .

(3.81)

|~

L
V2

5

Die Wahrscheinlichkeit, dass danach ein Detektor das Photon im Zustand |0) detektiert (d. h.,
dass ein Detektor im 0-Ausgang anspricht) ist

po = %(1 +cosa) . (3.82)

Es entsteht in Abh&ngigkeit von der Phasenverschiebung « ein periodisch oszillierendes In-
terferenzbild.
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Interferenzbild Gemd&R Gl. (3.81) hat der erste Hadamard-Strahlteiler nur die Funktion
einen einfachen in beiden Moden symmetrischen Zustandsvektor zu préparieren. Die Wahr-
scheinlichkeit, dass ein Detektor hinter dem Strahlteiler im 0-Weg oder im 1-Weg anspricht, ist
dann jeweils % Die GI. (3.81) zeigt, dass die Wirkung des zweiten Strahlteilers darin besteht
die komplexen Amplituden der |0)- und |1)-Komponenten des Zustandsvektors zur komple-
xen Amplitude des auslaufenden |0)-Vektors zu superponieren und so zur Interferenz zu brin-
gen. Das Interferenzbild kann als Funktion von «: von einem Detektor im 0-Weg hinter dem

Interferometer registriert werden.

Abbildung 3.10: Strahlteiler mit Phasenschieber

Die Interferenz erzeugende Wirkung des zweiten Strahlteilers wollen wir fir spétere Zwe-
cke noch auf andere Weise beschreiben. Der in Phasenschieber und Strahlteiler der Anordnung
von Abb. 3.10 einlaufende Zustand |¢") wird durch die Wirkung von ¢(«)) und H gemaf

[9°) = H(10)(0] + e~ [1){1)|&") (3.83)

in den auslaufenden Zustand [4°“t) Gberfihrt. Die Wahrscheinlichkeit, das Photon im Zu-
stand |0) zu finden ist

po(a) = [0 2. (3.84)
Wir setzen [+/°!) ein und lassen die Operatoren auf |0) wirken, dann folgt

po(@) = |{aly™)? (3.85)
mit

) := (J0){0] + €"*[1)(1]) H|0) = %(I@ +e'1)). (3.86)

Die MessgroBe p(«) lasst sich direkt als Mittelwert des Projektionsoperators P, := |a)(«]
im einlaufenden Zustand |4'") schreiben:

po(er) = (" Py |y™). (3.87)

Wihlt man |«) selber als einlaufenden Zustand, dann spricht wegen po(«) = 1 nur
der Detektor auf dem auslaufenden 0-Weg an. Gl. (3.87) kann man daher folgendermalRen
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interpretieren: Die Wahrscheinlichkeit, dass der 0-Detektor anspricht, ist gleich der Wahr-
scheinlichkeit, dass der einlaufende Zustand |¢") mit demjenigen Zustand |«) Ubereinstimmt,
der mit Sicherheit das Ansprechen des 0-Detektors bewirkt.

Fur den allgemeinen einlaufenden Zustand,
[y = cos §|O> +e'% sin g|1>, (3.88)

der durch die Parameter 6 und ¢ charakterisiert ist, lasst sich Gl. (3.85) leicht mit dem Ergebnis

pola) = % {1 + sin 6 cos (a - %S)] (3.89)

auswerten. Bei Variation von « durch entsprechende Einstellung des Phasenschiebers entsteht
ein periodisches Interferenzbild po(a) mit einem Streifenkontrast

y = Pmax ~ Pmin _ 9. (3.90)
Pmax + Pmin

Durch Ausmessen der Interferenzkurve kénnen die Phasenverschiebung ¢ und der Streifen-
kontrast sin 6 ermittelt werden. Damit haben wir ein interferometrisches Messverfahren zur
Bestimmung des Zustands |¢)'"") gefunden.

3.8 Erganzende Themen und weiterflihrende Literatur
e Wechselwirkung zwischen Licht und einem 2-Niveau-Atom: [MW 95].
e Allgemeiner verlustfreier Strahlteiler: [CST 89], [MW 95]

e Systeme mit hoherem Spin als % werden im Hinblick auf ihre Rolle als Teilsysteme zu-
sammengesetzter Quantensysteme ausfiihrlich in [Zei 81], [PSM 87], [CST 89], [MW 95]

untersucht.

3.9 Ubungsaufgaben

UA3.1[zu3.1und 3.3] leiten Sie die GI. (3.11), (3.17), (3.36), (3.37), (3.42), (3.53), (3.54)
ab.

UA 3.2 [zu 3.1] Bestimmen Sie die Komponenten des Operators ;0 in der Operatorbasis
der o-Operatoren.

UA3.3[zu3.4] Berechnen Sie die Darstellungen der Operatoren in Tab. 3.1 soweit das nicht
schon im Text geschehen ist.



3.9 Ubungsaufgaben 65

UA 3.4 [zu 3.7.2] In ein Mach-Zehnder-Interferometer ist im 0-Strahlengang ein Phasen-
schieber mit der Wirkung e® und im 1-Strahlengang einer mit der Wirkung e~** eingebaut.
Zeigen Sie, dass die resultierende Transformation von der Form

U= (Cosa isina) (3.91)

isina  cosa

ist. Durch Einbau zusatzlicher Phasenschieber in den ein- und auslaufenden Moden kann eine
beliebige unitare Transformation realisiert werden.
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4 Gemischter Zustand und Dichteoperator

Wir haben schon im einleitenden Abschnitt 2.1.1 Gemische kennen gelernt und uns dann aber
bei der Formulierung der Postulate auf reine Zusténde beschrénkt. Die reinen Zustande ha-
ben wir durch Vektoren im Hilbert-Raum beschrieben. Wir wollen nun zundchst eine andere
Darstellung der reinen Zusténde vorstellen, die direkt auf einen Zugang zur Beschreibung von
statistischen Gemischen (Gemenge) und allgemeinen Gemischen mit Hilfe von Dichteopera-
toren flihrt. Dichteoperatoren beschreiben den allgemeinen Quantenzustand. Die Postulate aus
Abschn. 2.1.2 werden verallgemeinert.

4.1 Dichteoperator zu gegebenem Ensemble (statistisches
Gemisch)

4.1.1 Reiner Zustand

Dem reinen Zustand, dem wir bisher den normierten Zustandsvektor |¢)) zugeordnet haben,
kénnen wir in eineindeutiger Weise den Operator

p = [)(¥ (4.1)

zuordnen. Er wird Dichteoperator (density operator) eines reinen Zustands und oft auch Dich-
tematrix genannt.
Die folgenden Eigenschaften von p lassen sich direkt ablesen:

(i) pistpositiv: (p|p|p) > 0,V|p) € Hq (und damit hermitesch, pf = p)

@ity trp=1
(i)  p*=p.
Eigenschaft (ii) ist eine Folge der Normiertheit von |¢)). Umgekehrt garantieren die drei Ei-
genschaften zusammen, dass die Spektralzerlegung von p die Form (4.1) hat und daher p
eindeutig bis auf eine Phase einen Vektor |)) bestimmt. Mit Hilfe der Spektralzerlegung kann

man auch zeigen, dass bei Giiltigkeit von (i) und (ii) fiir einen Operator p die Eigenschaft (iii)
gleichbedeutend ist mit

(iii*) tr[p?] = 1 . 4.2)

Verschrénkte Systeme: Die Quantenphysik auf neuen Wegen. Jiirgen Audretsch
Copyright © 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40452-X
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Eine Messung der Observablen A mit dem Messergebnis a,, und dem zugehorigen Pro-
jektionsoperator P,, von GlI. (2.3) Uberfihrt p gemé&R Gl. (2.2) in den Dichteoperator p!,

1
p— pn=—"—PnpPn. (4.3)
plan)
Hierbei ist
p(ay) = tr[P,p) (4.9)
entsprechend GI. (2.5) die Wahrscheinlichkeit den Wert a,, als Messwert zu erhalten. Es kann
guinstig sein, den resultierenden Dichteoperator in der unnormierten Form p), = |¢]) (]

zu schreiben. In dieser Form muf die Spur nicht gleich Eins sein. Wie beim Zustandsvektor
charakterisieren wir das durch eine Tilde:

/5:1 = PupP, . (45)

Die Messwahrscheinlichkeit ist dann gleich der Spur des unnormierten resultierenden Dichte-
operators nach der selektiven Messung.

plan) = tr[p,] . (4.6)

Den Erwartungswert (A) der Observablen A erhalten wir durch Einschieben des mit der ONB
{Jus)} gebildeten Identitatsoperators

Z (46 (| A )

Z | plug)(u;| Alug)

Z ug|pAlug) 4.7
%

= tr[p4].

Bleibt noch die Aufgabe, die unitdre Dynamik im Schrddinger-Bild fur p umzuschreiben.
Mit Gl. (2.14) finden wir

p(t) = Ult, to)p(to)U ™" (t, o) (4.8)
und mit Gl. (2.9) ergibt sich die von-Neumann-Gleichung
ilip(t) = ihUp(to)U ™" + ihUp(to)U ™"
= HUp(to)U ™" = Up(to)U ™" H
= [H,p(t)] - (4.9)
Sie kann mit dem Liouville-Operator £ von Gl. (1.84) auch in der Form
ihp = Lp (4.10)

geschrieben werden.
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{I¥i), pi}

Abbildung 4.1: Das statistische Gemisch (Gemenge) zum Ensemble {|«;), p;} entsteht indem immer
einer der Praparationsapparate fur {|v;) } mit der Wahrscheinlichkeit p; tatig wird.

Zusammenfassend stellen wir fest, dass die Physik abgeschlossener Quantensysteme in
reinen Zustanden, die durch das mathematische Objekt Zustandsvektor |i) beschrieben wird,
gleichwertig durch den Dichteoperator p von Gl. (4.1) beschrieben werden kann. In diesem
Sinne kann man mit der gleichen operationalen Bedeutung wie bei |¢)) sagen: das System
befindet sich im Zustand p. Im Gegensatz zur vektoriellen Formulierung kénnen wir aber die
Zustandsformulierung mit dem Dichteoperator unmittelbar auf eine allgemeinere Klasse von
Quantenzustanden, die statistischen Gemische, tibertragen. Wir beschreiben das im ndchsten
Kapitel im Einzelnen.

4.1.2 Die Physik der statistischen Gemische (Gemenge)

Praparation Wir betrachten die folgende experimentelle Situation: Es steht flir ein abge-
schlossenes Quantensystem eine beliebige aber endliche Anzahl unterschiedlicher Préparati-
onsverfahren zur Verfligung, die mit dem Index ¢ durchnummeriert sind (¢ = 1,..., N) und
entsprechend in die reinen Zusténde |v;) Uberfihren. Diese Zustdnde miissen weder ortho-
gonal noch linear unabhédngig sein. N kann groRer sein als die Dimension d. Wir gehen zu
einem neuen Typ von Praparationsverfahren Gber, der darin besteht, dass immer eines der
Ausgangsverfahren mit einer gewissen klassischen Wahrscheinlichkeit p; mit

N
> pi=1 (4.11)
=1

zum Einsatz kommt. Es wird also zur Praparation des betrachteten Quantensystems in zufél-
liger Weise immer genau einer der Préparationsapparate angeschaltet (vergl. Abb. 4.1). Der
entsprechende Zustand |+;) liegt dann beim Einzelsystem tatséchlich vor. Dabei wird aber ein-
gehalten, dass der i-te Apparat mit der Wahrscheinlichkeit p; tatig wird. Man sagt, dass durch
»Mischen® der reinen Zustande das Ensemble {|«);), p;} realisiert wird. Bei Kenntnis der Zu-
stande [4);) und der Préparationswahrscheinlichkeiten p; ist wieder fir beliebige Messungen
eine sichere Prognose der Wahrscheinlichkeit des Eintretens von Messergebnissen maoglich.
Nach dem von uns verwendeten Konzept definiert dieses verallgemeinerte Praparationsver-
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fahren also einen Quantenzustand. Er wird statistisches Gemisch? (statistical mixture) oder
Gemenge genannt und beinhaltet den reinen Zustand als Spezialfall.

Dichteoperator statistischer Gemische Wir zeigen, dass sich die Gleichung fiir die physi-
kalischen Aussagen aus Abschnitt 4.1.1 Ubertragen, wenn das statistische Gemisch durch den
Dichteoperator

N N
pi=_pili) (Wil = pipi (4.12)

i=1 i=1
mit p; := |v;) (1| beschrieben wird. Hierzu flihren wir Aussagen Uber das Gemisch auf

Aussagen Uber die Ensemblezusténde p; zuriick.
So wird bei einer Messung der Observablen A mit der Wahrscheinlichkeit

p(an) = Zp(anu)pi (4.13)

der Wert a,, gemessen. Dabei ist p(a,,|¢) die bedingte Wahrscheinlichkeit (conditional proba-
bility), dass der Messwert a,, gemessen wird, wenn der Zustand p; vorliegt. Mit (4.4) erhalten
wir

planli) = tr[Pupi] . (4.14)
Das flihrt mit (4.12) und den Rechenregeln fur die Spurbildung auf
play) = tr[P,p] . (4.15)

Gleichung (4.4) Ubertragt sich also. Auch die Gl. (4.7) ubertragt sich fir statistische Gemische
mit dem Argument, dass sich Erwartungswerte zu den einzelnen Zustdnden mit den Wahr-
scheinlichkeiten p; zum Erwartungswert beitragen.

(4) = D _pitrlApi] = tAp] . (4.16)

Wie Gl. (4.13) und (4.16) zeigen, treten bei der Berechnung von Messwahrscheinlichkeiten
und Erwartungswerten Produkte aus klassischen und quantentheoretischen Wahrscheinlich-
keiten auf.

Selektive und nicht-selektive Messungen Abzuleiten sind noch die Gleichungen fir die
beiden Formen des dynamischen Verhaltens. Wir beginnen mit der Messdynamik. Fur jeden
der einzelnen Zustande p; des Ensembles ergibt sich mit Gl. (4.5) als Ergebnis einer selektiven
Messung (selective measurement) mit Messwert a,, der unnormierte Zustand

pi — ﬁ;n = P,pi P, . (4.17)

1Durch den Zusatz ,statistisch“ soll hervorgehoben werden, dass ein Ensemble prapariert wurde. In der englisch-
sprachigen Literatur findet sich hierfur auch die Bezeichnung proper mixture. Wir werden auch andere Gemische
kennen lernen.
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Wir lassen ausdriicklich Entartung der Messwerte zu. Fir den Dichteoperator p von Gl. (4.12)
folgt aus GlI. (4.17)

p— = Zm o= PupPy . (4.18)

Dies stimmt mit der Relation (4.5) tiberein. Mit Gl. (4.15) erhalten wir fiir den normierten
Dichteoperator nach der selektiven Messung in Ubereinstimmung mit Gl. (4.3)

p— p{n = LPnPPn . (419)
p(an)
Eine Ableitung dieser Gleichung, die von der bestimmenden empirischen Grof3e, also vom
Messergebnis a,, ausgeht, l&sst sich auch mit Hilfe des Satzes von Bayes (vergl. Abschn. 1.3.2)
gewinnen? . Die Wahrscheinlichkeit p(a,,) fiir den Messwert a,, kann gemaB Gl. (4.15) und
(4.18) in Ubereinstimmung mit GI. (4.6) auch in der Form

plan) = tr[p,] (4.23)

geschrieben werden kann.

Wir erwdhnen noch den Spezialfall, dass fir den Messwert a,, keine Entartung vorliegt.
Dannist P,, = |a,,){a,| mit dem zum Eigenwert a,, gehdrigen Eigenvektor |a,,). Damit wird
Gl. (4.19)

p = pr, = lan){(an|. (4.24)

Wenn der Messwert nicht entartet ist, prapariert daher die zugehdrige selektive Messung an
einem statistischen Gemisch einen reinen Zustand. Das ist plausibel, denn jeder der Zustands-
vektoren |1;) des Ensembles wird in diesem Fall durch die Messungen in |a,,) Uberflhrt.

Bei einer nicht-selektiven Messung (nonselective measurement) der Observablen A wie-
derholt man die Messung sehr oft an Quantensystemen im gleichen Zustand, aber sortiert

2Die Messung der Observablen A mége auf das Ergebnis a,, filhren. Falls dabei vor der Messung der Zustand p;
vorlag, dann befindet sich nach der Messung der normierte Zustand

1
plan?)
(vergl. Gl. (4.14) und (4.23)). Mit welcher Wahrscheinlichkeit p(i|an) lag vor der Messung p; vor, wenn a,, re-
gistriert wurde? Nach dem bereits in Abschn. 1.3.2 genauer diskutierten Satz von Bayes gilt (wir formen noch mit
Gl. (4.13) um)
plan|i)pi  _ plan|i)pi

plilan) = > planli)p; T plan) (4.21)

mit Y. p(ilan) = 1. p(ilan) stimmt also i.a. nicht etwa mit p; dberein. Insgesamt folgt, daf zum Messergebnis a,
der Ubergang

p— = plilan)p}, (4.22)

gehort. Einsetzen von p;’n fuhrt direkt auf Gleichung (4.19).
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nicht wie in der selektiven Messung die Zusténde p/, aus, die zu einem bestimmten Mess-
ergebnis a,, gehoren. Als resultierender Zustand p’ entsteht in diesem Fall das statistische
Gemisch, das sich additiv aus den Zusténden p/, zusammensetzt, die bei der Messung mit den
Wahrscheinlichkeiten p(a,,) erzeugt werden:

n.s. PTL P’n
p—pl = Zp(an) Prn Z P.pP,, trlp]=1. (4.25)

trlp ]

Wir haben dabei Gebrauch von Gl. (4.15) gemacht.

Unitére Dynamik Zu ergénzen ist noch die unitdre Dynamik. Hierbei andern sich die klas-
sischen Zusammensetzungswahrscheinlichkeiten p; nicht. Die GI. (4.8) Ubertragt sich daher
direkt fur statistische Gemische:

p(t) = U(t, to)p(to)U " (¢, 10) (4.26)
und es ergibt sich die von Neumann-Gleichung (4.9) bzw. (4.10).

Wo treten statistische Gemische auf? Das am Anfang des Kapitels beschriebene Préaparati-
onsverfahren mag etwas kiinstlich erscheinen. Wir haben aber gesehen, dass fur abgeschlosse-
ne Quantensysteme statistische Gemische tatsachlich in sehr naturlicher Weise auftreten. Alle
nicht-selektiven Messungen an reinen Zustdnden und an statistischen Gemischen uberftihren
in statistische Gemische und nicht in reine Zusténde.

Auch selektive Messungen an statistischen Gemischen fiihren im Allgemeinen auf statis-
tische Gemische, wenn der eingetretene Messwert ein entarteter Eigenwert des Observablen-
operators ist. Entartung kann zu Mischung flihren. Mit p von GI. (4.12) ist p!, von GI. (4.19)

A Y
o= ey ;pzpmwpn : (4.27)

Projektionsoperatoren P, zu entarteten Eigenwerten projizieren in Unterrdume (vergl.
Gl. (2.3)), daher werden die P, |v;) im Allgemeinen nicht tibereinstimmen. Der resultierende
Dichteoperator ist eine Summe von Dichteoperatoren reiner Zustande und kann damit selber
nicht der Dichteoperator eines reinen Zustands sein. Wir flihren das unten im Zusammenhang
mit Konvexkombinationen néher aus. Das Gemisch wird bei Entartung durch eine selektive
Messung nicht vollig entmischt.

Schlielich soll noch eine weitere Messsituation erwahnt werden, die auf statistische
Gemische flhrt. Bei einem Messapparat mogen die Messwerte nicht entartet sein. Es soll
aber eine Ungenauigkeit in der Anzeige vorliegen, so dass alle Messwerte aus dem Intervall
[an, am>r] tatséchlich vom Apparat als Messwert a,, angezeigt werden. Eine selektive Mes-
sung zum abgelesenen Messwert a,, prépariert dann nicht einen reinen Zustand, sondern ein
statistisches Gemisch.

Wir haben bisher nur abgeschlossene Systeme behandelt. Es wird sich in Abschnitt 7.3 zei-
gen, dass die Teilsysteme verschrankter Systeme ebenfalls durch Dichteoperatoren beschrie-
ben werden kénnen. Dies fuhrt zu einer wichtigen Erweiterung des Konzepts ,,Gemisch* auf
nicht-statistische Gemische, denen kein wohlbestimmtes Ensemble aus realisierten Zustanden
entspricht.



4.1 Dichteoperator zu gegebenem Ensemble (statistisches Gemisch) 73

4.1.3 Definition und Eigenschaften des allgemeinen Dichteoperators

Definition  Wir haben noch zu prifen, welche der fir reine Zustédnde abgeleiteten Eigen-
schaften (i) bis (iii®*)) aus Abschnitt 4.1.1 auch fiir den Dichteoperator eines statistischen
Gemisches gelten. Mit Hilfe von GI. (4.11) und (4.12) bestatigen wir (i) und (ii) unmittelbar.
Zur Diskussion von (iii) betrachten wir die Spektralzerlegung von p

d
p=_ Nl (4.28)
j=1

{l7)} ist eine ONB und in Folge von (i) und (ii) gilt A; = A7, A; > 0und >~ A; = 1. Damit
erhalten wir

0<) <1 (4.29)
und daher
trlp*] < 1. (4.30)

Durch das Gleichheitszeichen in Gl. (4.30) ist eineindeutig das Vorliegen eines reinen Zu-
stands charakterisiert. Die Ungleichung gilt nur fiir ein echtes Gemisch (kein reiner Zustand).

Wir lésen uns von den bisherigen Realisierungen und nennen allgemein einen Operator
einen Dichteoperator, wenn er die Bedingungen

(i) p ist positiv (und damit hermitesch, pf = p)

(ii) tr[p] =1
erfullt.

Gemischtheitsgrad Aus GI. (4.28) ergibt sich fir den kleinsten Wert von tr[p?] der Quoti-
ent %, wobei d die Dimension des Hilbert-Raums ist. Der Wert wird fir A; = - angenommen
und gehort somit zu
_1 1 (4.31)
p= g .

Dieser vollig strukturlose Dichteoperator heil3t der maximal gemischte Dichteoperator.

Wie oben beschrieben entstehen statistische Gemische operational im Experiment durch
»Mischen* von Zustdnden. Man kann tber den Parameter

== 1—tr[p? (4.32)

den Gemischtheitsgrad (degree of mixtureness) beschreiben, der zwischen dem des reinen
Zustands = = 0 und dem der maximalen Mischung = =1 — é variiert:

<11 (4.33)
< 7 .
Bei statistischen Gemischen nahert sich = der 1 an, wenn die Dimension d des Hilbert-Raums
zunimmt. Wir geben hierfiir ein Beispiel: Flr p; = $[0)(0] + 2[1)(1] ist tr[p?] = 2 und fur
p2 = L10)(0] + L1)(1] + §[2)(2] folgt tr[p?] = 1.

0<

(1]
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Konvexkombination Wir notieren eine einfache Folge der Definition des Dichteoperators.
Wenn {p;,l = 1,..., k} Dichteoperatoren sind und {r;} positive Zahlen mit )", r; = 1, dann
ist die konvexe Summe (convex sum)

k
p=2 1 (434)
=1

wieder ein Dichteoperator.

Wir zeigen, dass der Dichteoperator p eines reinen Zustandes auRer durch tr[p?] = 1
noch in einer anderen Weise ausgezeichnet ist. Anders als alle anderen Dichteoperatoren kann
der Dichteoperator eines reinen Zustands nicht in eine konvexe Summe zerlegt werden. Zum
Beweis machen wir mit dem Dichteoperator

p =)W (4.35)
den Zerlegungsversuch

p=Ap1+ (1= X\)ps, 0<A<l. (4.36)
Fir einen zu |¢) orthogonalen Vektor |x) erhalten wir

(xlplx) = 0= Xx|p1lx) + (1 = A){x|p2]x) - (4.37)

Da A und 1 — X positiv sind und die Operatoren p; und po positive Operatoren sind, folgt
daraus

(xlp1lx) = (xlp2lx) = 0. (4.38)

Wir ergénzen |¢) durch Hinzunahme von Vektoren zu einer ONB. Fir diese Vektoren gilt
jeweils GI. (4.38). Wir bilden die Matrixelemente von p; und p in dieser Basis und nutzen
tr(p1] = tr[p2] = 1 aus. Dann finden wir als einzige nichtverschwindende Matrixelemente

(Ylpal) = (blp2lp) = 1. (4.39)
Damit ist
p=p1=p2. (4.40)

Die Zerlegung (4.36) ist daher nicht moglich. Durch Mischen reiner Zustdnde (oder Gemi-
sche) kann nicht wieder ein reiner Zustand entstehen. Dies zeichnet reine Zustédnde sowohl
mathematisch wie auch im Prinzip operational aus. Wir haben diese Eigenschaft zur Definiti-
on des reinen Zustands bei der Formulierung der Postulate in Abschnitt 2.1.2 verwendet.

4.1.4 Inkoharente Uberlagerung reiner Zustande

Wiéhrend einer unitaren dynamischen Entwicklung gilt als Folge von Gl. (4.26) die Erhaltung
der Positivitat und der Spur von p

trp(t)] = trp(to)] (4.41)
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sowie der Spur von p?

trlp? ()] = tr[p*(to)] - (4.42)

Daher kann durch eine unitare Dynamik weder ein reiner Zustand in ein Gemisch tbergehen
noch umgekehrt. Demgegeniber kann als Ergebnis einer selektiven Messung mit nicht entar-
tetem Messwert aber sehr wohl ein echtes Gemisch in einen reinen Zustand Ubergehen, wie
wir in Gl. (4.24) gesehen haben. Ist bei einer Messung, also der zweiten Form von Dynamik
die durch die Postulate beschrieben wird, auch der umgekehrte Vorgang, den man Dekohérenz
(decoherence) nennt, méglich? Wir werden diese Frage im Zusammenhang mit der Theorie
der Messung in Kap. 15 préazisieren. Hier wollen wir zunachst veranschaulichen, warum die
Bezeichnung Koharenz bzw. Inkohéarenz in diesem Zusammenhang sinnvoll ist.

An Gl. (4.16) konnen wir ablesen, dass bei der Bildung des Erwartungswertes (A) die
Mittelung in den Erwartungswerten tr[Ap;] und nicht wie bei der Superposition in den Zu-
stdnden erfolgt. Es handelt sich beim statistischen Gemisch in diesem Sinne um eine inko-
harente Uberlagerung (incoherent superposition) reiner Zustande. Die beteiligten Zusténde
interferieren nicht miteinander. lhre relative Phase ist experimentell nicht bestimmbar. Das ist
bei dem in Abschn. 4.1.2 angegebenen Praparationsverfahren auch unmittelbar verstandlich.
Dieser Aussage kann man eine direkte operationale Veranschaulichung in einem Interferenz-
experiment geben. Die Verhdltnisse am Doppelspalt (vergl. Abschn. 2.1) sind ein weiteres
Beispiel.

Wir haben in Abschn. 3.7.2 gesehen wie mit Hilfe eines Strahlteilers die 0-Komponente
und die 1-Komponente eines Photonenzustands [¢™) = cos £]0) + €i% sin 211) zur koha-
renten Uberlagerung gebracht werden kann. Der Phasenschieber bewirkt ein Interferenzbild,
das von der Phase o abhéngt. In den Spezialfallen [4)™) = |0) und /™) = |1) entsteht kein
Interferenzbild. Fiir ein einlaufendes Gemisch p™" ist die Ansprechwahrscheinlichkeit des 0-
Detektors in Abhangigkeit von der Phasenverschiebung o durch

p(a) = tr[Payp"] (4.43)

mit Plo) = |v)(a| von Gl. (3.86) gegeben. Fir " = [0)(0] und p™ = [1)(1] ist p(a) = 3.
Wenn wir die Zustande |0) und |1) nicht superponieren wie bei |¢/"), sondern mischen

p™ = No|0)(0] + Ay [1)(1] (4.44)

(Ao1 > 0, Ao + A1 = 1), erhalten wir fir die Ansprechwahrscheinlichkeiten den von «
unabhéngigen Wert

Das statistische Gemisch p™ ist eine inkohérente Uberlagerung, bei der ebenfalls beim Inter-
ferometer mit den Wegen |0) und |1) keine Interferenz auftritt. Das wird plausibel, wenn man
sich vorstellt, dass Objekte in den Zusténden |0) und |1) nacheinander einlaufen.
Bemerkenswerterweise ergibt sich aber das gleiche Resultat auch fir statistische Gemi-
sche mit Ensemble {|+;), p; }, das nicht mit dem Ensemble {]0), |1), Ao, A1 } Ubereinstimmt,
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wenn nur der zugehorige Dichteoperator sich in der Form (4.44) schreiben lasst. Das ist mog-
lich, wenn |0) und |1) eine Eigenbasis von p sind. Auch in diesen Féllen zeigt das aus vie-
len Messpunkten zusammengesetzte Interferenzbild keinen Streifenkontrast, obwohl mdogli-
cherweise die Zustande |+;) einzeln sehr wohl zu Interferenz mit Streifenkontrast fuhren.
Wir kdnnen die Beitrdge im Interferenzbild nicht nach den Zusténden sortieren, in dem sich
die einzelnen registrierten Objekte befunden haben. Wir werden im Zusammenhang mit dem
Quantenradierer in Abschn. 8.5 auf diesen Punkt zuriickkommen.

4.2 Der allgemeine Quantenzustand

Wir erinnern an die Definition des Zustands eines Quantensystems wie sie in Abschnitt 2.1.2
gegeben wurde. Der Zustand ist dasjenige mathematische Objekt, das es erlaubt, die Wahr-
scheinlichkeit der Ergebnisse aller moglichen Messungen am System zu berechnen. Er ist
einem Projektionsverfahren zugeordnet. Wir verstehen unter Messungen weiterhin nur pro-
jektive Messungen.

Messpostulate Dichteoperatoren, also alle positiven (und damit hermiteschen) Operato-
ren p, die die Bedingung tr[p] = 1 erflllen, sind offenbar solche mathematische Objekte,
wenn man als Postulat fordert: Die Wahrscheinlichkeiten sind durch Gl. (4.15) gegeben. Der
Messprozess Uberflhrt in die Zustande p!, von GI. (4.19) bzw. p’ von GI. (4.25). Dies verall-
gemeinert das Postulat 2 aus Abschn. 2.1.2. Man kann zeigen, dass es keine anderen mathe-
matischen Objekte gibt, die die an einen Zustand gestellten Forderungen erfiillen (Theorem
von Gleason, vergl. Abschn. 4.5).

Bisher haben wir nur statistische Gemische (d. h. Gemenge) als Quantenzustande kennen
gelernt. Wir werden in Kap. 7 mit den reduzierten Dichteoperatoren der Teilsysteme von zu-
sammengesetzten Systemen andere Realisierungen von Zustdnden behandeln. Sie unterschei-
den sich durch ihre Préparation von statistischen Gemischen. Das Postulat, das das Postulat 1
von Abschn. 2.1 verallgemeinert, lautet dann: Quantenzustéande werden durch Dichteoperato-
ren reprasentiert. Sie werden allgemein Gemische (mixtures) genannt. Statistische Gemische
sind ein physikalischer Spezialfall, der durch das Préparationsverfahren ausgezeichnet ist.

4.3 Verschiedene Ensemblezerlegungen eines
Dichteoperators und Ignoranzinterpretation

Wir beginnen mit einer einfachen Beobachtung. Die Zerlegung von zwei Qubit-Zustanden |a)
und |b) (die z. B. Spin-3-Zustande beschreiben) nach der Rechenbasis moge

la) = \/g|0> + \gll)
|b) = \/§|0> - \/§|1> (4.46)
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sein. Dann lésst sich der Dichteoperator p, der zum Ensemble aus den Zustanden |a) und |b)
mit den Wahrscheinlichkeiten p, = p, = % gehort, in zweifacher Weise schreiben:

p=la)lal + 3I) 6l = 210}l + 31 (1. (@.47)

Er ist also zugleich der Dichteoperator zum Ensemble mit den Zusténden |0) und |1) (z.B.
Spinpolarisationen in z-Richtung) und den Wahrscheinlichkeiten po = 2 und p; = 1.

Wir geben noch ein physikalisches Beispiel. In einer Versuchsanordnung werden mit glei-
cher Haufigkeit horizontal und vertikal polarisierte Photonen erzeugt. Das zugehorige Ensem-

ble {|H),|V),ps = pv = 3} wird durch den Dichteoperator

1

p=1 (4.48)
beschrieben. In einer vollig anders aufgebauten Versuchsanordnung werden rechtszirkular
und linkszirkular polarisierte Photonen mit gleicher H&ufigkeit produziert. Das Ensemble
{IR),|L),pr = pr = %} hat den selben Dichteoperator p. Die Photonen befinden sich daher
in dem selben Zustand. Durch kein mit den Photonen durchgefiihrtes Experiment kann man
entscheiden, durch welches der beiden Verfahren die Photonen prapariert wurden. Aus der
Kenntnis des Dichteoperators p l&sst sich auch in diesem Fall nicht eindeutig darauf schlie-
Ren, welches Ensemble vorliegt. Wir wollen beweisen, dass das fir jeden Dichteoperator gilt
und zugleich zeigen, wie die verschiedenen Ensembles auseinander hervorgehen. Im Folgen-
den wollen wir voraussetzen, dass der Dichteoperator keinen reinen Zustand beschreibt.

Ensemblezerlegungen Wir betrachten den Dichteoperator
P = Zpa|z/}a><1/)a| = Z |1/~}a><1;a|7 Wa> = VPalta), (4.49)

den wir mit unnormierten Vektoren formulieren, die durch eine Tilde gekennzeichnet sind.
Wieder mussen die Vektoren {|,)} weder orthogonal noch linear unabhéngig sein. Dass
ein Dichteoperator p als Dichteoperator des Ensembles {|+,), p, } aufgefasst und damit wie
Gl. (4.49) geschrieben werden kann, nennen wir eine Ensemblezerlegung (ensemble decom-
position) von p. Wir wollen annehmen, dass es eine weiter Ensemblezerlegung von p gibt:

p= Z |@i) (@il - (4.50)

Dariiber hinaus existiert stets die Spektralzerlegung von p

d d
p= 3 Alnnl = 3 i) (@51)
n=1 n=1

mit der ONB {|n)}, die ebenfalls eine Ensemblezerlegung von p darstellt. Die Laufbereiche

der Indizes der Typen a, b, ... und i, j, ... sowie n,m, ... missen nicht tbereinstimmen.
Wir beschrénken uns auf Eigenwerte \,, # 0 und schréanken den Laufbereich vonn,m, ...

entsprechend ein. Dann bilden die zugehdrigen {|n)} nicht notwendig eine Basis des ganzen
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Hilbert-Raums H. Wir nehmen an, dass sie den Unterraum 7’ aufspannen. Fir |y) aus dem
orthogonalen Komplement von ' gilt

0= (xlplx) = > {(x[vha) (Yalx) = ZI (x[a)[? (4.52)
und damit
(X|tha) =0 (4.53)

fiir alle | y) und alle Indizes a. Entsprechendes gilt fir die Vektoren |3, ). Somit liegen alle |¢),)
und alle |#;) im Unterraum 7’ und wir kénnen sie nach der Basis {|n) } von H’ entwickeln:

[$a) =Y Canl@),  120) =Y dinl0) - (4.54)

Einsetzen in Gl. (4.49) und Berucksichtigung von Gl. (4.51) fuhrt auf

P="D Canlioml®) (| = |7) (A (4.55)

a,n,m

und damit auf
Z Can am — 5nm s Z dindfm = 5717” . (456)

Die aus Gl. (4.50) folgende Beziehung haben wir ebenfalls aufgefiihrt. Wenn die Laufbereiche
der Indizes Ubereinstimmen, besagen die Gl. (4.56), dass die Matrizen c,,, und dj, unitér sind.
Wir finden mit Gl. (4.54) und (4.56)

ZCZmW;a) = Zc:mcan|ﬁ> = |’ﬁ7/> . (457)

Da GI. (4.57) fir jeden Basisvektor von ' gilt, kann die Zahl der Vektoren |¢,) und |¢;)
nicht geringer als die Dimension von H’ sein. Abschlieend setzen wir GI. (4.57) noch in
Gl. (4.54) ein und erhalten

i) = ) dinCinltPa) - (4.58)

Eine entsprechende Zerlegung lasst sich daraus mit Hilfe von Gl. (4.56) fiir |+, ) gewinnen.

Wir haben gezeigt: Fiir zwei Ensemblezerlegungen {|¢),)} und {|;)} eines Dichteope-
rators lassen sich die Vektoren der einen Zerlegung gemaR Gl. (4.58) als Linearkombination
der Vektoren der anderen Zerlegung schreiben, wobei Gl. (4.56) erfullt ist. Umgekehrt zeigt
man leicht, dass Vektoren |3;) und |¢,), die wie in GI. (4.58) verkniipft sind, jeweils eine
Ensemblezerlegung desselben Dichteoperators darstellen, wenn die Matrizen die Bedingun-
gen (4.56) erfiillen Offenbar gibt es beliebig viele solcher Matrizen und damit beliebig viele
Ensemblezerlegungen eines Dichteoperators.

Das Beispiel von Gl. (4.47) und der Beweis haben deutlich gemacht, dass die Mehrdeutig-
keit der Ensemblezerlegung eine fiir die Quantentheorie typische Ursache hat: Ein Zustands-
vektor l&sst sich in unendlich vielen verschiedenen Weisen als Linearkombination anderer
Zustandsvektoren schreiben. Etwas Analoges gibt es flr klassische Zustande nicht.
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Ignoranzinterpretation Wir haben gesehen, dass ein Dichteoperator mathematisch ver-
schiedenen Ensemblezerlegungen zul&sst. Das sollte im Zusammenhang mit der Frage, was
physikalisch tatséchlich vorliegt, nicht zu Verwirrungen filhren. Wenn ein Quantensystem im
Zustand p als ein statistisches Gemisch (bzw. Gemenge) mit Ensemble {|+;), p;} nach dem
Verfahren aus Abschnitt 4.1.2 prépariert wurde, dann kann man die ber die Minimalinterpre-
tation hinausgehende Annahme machen, dass es sich auch real und objektiv stets in einem der
Zusténde |4;) befindet. Wir wissen nur subjektiv nicht in welchem. Im Prinzip kann es aber
jemand wissen, wenn er z. B. die Mdglichkeit hat festzustellen, welcher Préparationsapparat
gerade tatig war. Man sagt dann, dass der Zustand p eine Ignoranzinterpretation (ignoran-
ce interpretation) zuldsst. Selbstverstandlich kann man auch eine minimale Interpretation der
Quantentheorie bevorzugen, in der die oben gestellte Frage gar nicht erst auftritt.

4.4 Dichteoperatoren von Qubits

Der Dichteoperator p in H5 lasst sich wie in Abschn. 3.1 nach der Pauli-Operatorbasis zerle-
gen

p= %(]l +ro) (4.59)
mit dem Bloch-Vektor
r=trjpo] = (o), reR. (4.60)
Mit
2 1 2
trlp?) = (1 + |rf?) (4.61)
von Gl. (3.23) folgt aus

<trp’] <1 (4.62)

DN | =

fur den Bloch-Vektor

r><1. (4.63)
Der Gemischtheitsgrad wird unmittelbar durch den Betrag des Bloch-Vektors bestimmt:

- 1 2

=01 (4.64)

Fr ein echtes Gemisch liegt der Bloch-Vektor r im Inneren der Bloch-Kugel. Der vollstandig
gemischte Zustand %11 wird durch den Kugelmittelpunkt (r = 0) représentiert.
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Zustandsbestimmung Der Zusammenhang p < r gemal Gl. (4.59) und (4.60) ist, anders
als die Beziehung |¢)) « r, eine eineindeutige Beziehung, da Phasenfaktoren durch p nicht
wiedergegeben werden. Wir kénnen den Zustand p durch Messung der Erwartungswerte (o)
der drei verschiedenen Observablen o bestimmen. Beim Spin geschieht das durch Messung
der Mittelwerte der Spinkomponenten in drei unabhé&ngige Richtungen. Beim reinen Zustand
reichen wegen der Normiertheit von r zwei Richtungen.

Wir notieren noch die Matrixelemente als Funktionen der Komponenten des Bloch-
Vektors:

p(I‘) _ l ( 1 +T’3 T — iTg) (465)

2 1 + i'f’Q 1-— T3
(4.66)
mit
T3 = Poo — P11
ro = i(po1 — P10) (4.67)

r1 = po1 + pP1o -

4.5 Erganzende Themen und weiterfliihrende Literatur

e Theorem von Gleason: Wir haben Quantenzustdnde zunéachst durch Zustandsvektoren
und dann durch Dichteoperatoren beschrieben. Gibt es andere mathematische Objek-
te, die sichere Wahrscheinlichkeitsaussagen ermoglichen? Das Theorem von Gleason
[Gle 57] besagt, dass

(A) = tr[Ap)] (4.68)

die allgemeinste Formel flir den Erwartungswert ist, die mit der Wahrscheinlichkeitss-
truktur der Quantentheorie vertréglich ist, wenn die Dimension des Hilbert-Raums gro-
Rer als 2 ist. Die Zustandsbeschreibung mit positiven Operatoren der Spur 1 ist die all-
gemeinste quantentheoretische Zustandsbeschreibung. Das gilt auch dann, wenn Mes-
sungen durch ein POVM (vgl. Abschn. 13.4) beschreiben werden. Literatur: [Per 93, S.
190f], [BGL 95, S. 124f], [Aul 00, S. 199f]. In [Bus 99] wird das auch fiir die Dimensi-
on 2 bewiesen.

e Ergénzende Literatur zu Dichteoperatoren: [Fan 57].

4.6 Ubungsaufgaben

UA 4.1 [zu4.1und 4.4] Der Zustand eines Quantensystems ist durch die Dichtematrix

=(57)

mita,b € R,a >0,b>0unda+ b =1 gegeben.
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a) Wie groR ist die Wahrscheinlichkeit bei einer Messung von o, den Wert +1 bzw. —1 zu
erhalten?
b) Berechnen Sie ohne Bezug auf a) direkt den Erwartungswert bei einer o,.-Messung.

c) Berechnen Sie die entsprechenden GroRen fir o, statt 0.

d) Bestimmen Sie den Bloch-Vektor und veranschaulichen Sie die Ergebnisse fur die Erwar-
tungswerte.

UA 4.2 Geben Sie fiir die Dichtematrix

_L1/10
P=5\ 0 1

eines Spinsystems verschiedene Ensemblezerlegungen an.

UA 4.3 [zu 4.4] Zeigen Sie, dass sich ein Dichteoperator bei Bezug auf die Eigenbasis sich
einfach als Funktion des Betrages des Bloch-Vektors schreiben lasst:

o - lr> 0
P 0 1+ |r|?
(Hinweis: Bestimmen Sie die Eigenwerte von p(r).)
UA 4.4 [zu 4.4] Die Observablen A, B und C besitzen die Darstellung

3.0 11 0 -2
A:(o —1)’ 32(1 —1>’ CZ(% 0 ) (4.69)

in der Rechenbasis. Messungen am Zustand mit dem Dichteoperator p fihren auf die Erwar-
tungswerte

(€)=0. (4.70)

Bestimmen Sie den Dichteoperator p.
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5 Shannon-Entropie und klassische Information

Entropie ist ein Konzept, das im Rahmen der Thermodynamik entwickelt wurde. In der
klassischen statistischen Mechanik und in der Quantenstatistik wird es zur Beschreibung
statistischer Gemische herangezogen. Entropie dient dabei als MaR fiir Unordnung und fiir
die fehlende Information Uber einen Zustand. Ausgehend von dieser Interpretation wurde
Entropie zu einem Schliisselkonzept der klassischen Informationstheorie (Shannon-Entropie)
und der Quanteninformationstheorie (von Neumann-Entropie).

Die Quanteninformationstheorie beschreibt die Ubertragung und Verarbeitung von Infor-
mation mit Hilfe von Quantensystemen als Informationstréger. Dabei spielt die von Neumann-
Entropie eine mehrfache Rolle:

(i) Sie erlaubt Aussagen (ber den klassischen Informationsgehalt — denn nur den kdnnen
wir ,,ablesen* — der auf quantentheoretischen Trégern kodierten Information.

(if) Sie quantifiziert, welche quantentheoretischen Ressourcen mindestens bendétigt werden,
um eine vorgegebene Information zu speichern.

(iii) SchlieBlich kommt noch eine Aufgabe hinzu, die kein klassisches Analogon hat: Mit Hil-
fe der von Neumann-Entropie l&sst sich die Verschrénktheit zusammengesetzter Systeme
quantifizieren.

Zu diesen drei Aufgaben treten im Zusammenhang mit der Messtheorie, mit gestérten Quan-
tenkanalen usw. noch weitere Aufgaben hinzu.

Wir beginnen mit dem ersten Punkt, der unmittelbar an die bisherigen Uberlegungen
zum statischen Gemisch anschlief3t, und stellen als Vorbereitung zunéchst die klassische
Shannon-Entropie vor. AnschlieBend werden wir den Informationstransport durch Quanten-
kandle untersuchen, um der Quantenentropie eine operationale Veranschaulichung zu geben.
Die Bedeutung des Entropie-Konzeptes fiir die Beschreibung verschrénkter Systeme werden
wir im Ubernéchsten Kapitel skizzieren.

5.1 Definition und Eigenschaften

Problemstellung In einem einfiihrenden Kapitel wollen wir das Konzept der Shannon-
Entropie am Beispiel eines geschriebenen Textes (z. B. einer Zeitung) verdeutlichen, der eine

Verschrénkte Systeme: Die Quantenphysik auf neuen Wegen. Jiirgen Audretsch
Copyright © 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40452-X
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—

{zi,pi}

Abbildung 5.1: Eine Signalquelle mit Signalensemble {x;, p; } erzeugt eine Zeichenfolge.

Information Ubermitteln soll. Der Text ist aus einer Reihe von n Buchstaben eines Alphabets
gebildet.

Texte in einer Sprache sind fiir unsere Zwecke allerdings noch viel zu komplexe Gebilde.
Sie bestehen z. B. aus deutschen Wartern, d. h. es sind nicht alle Buchstabenkombinationen
zugelassen. Weiterhin sind Buchstaben in ihrer Abfolge nicht unabhéngig voneinander, denn
es folgt im deutschen Text z. B. auf ,,sc* mit hoher Wahrscheinlichkeit ,,h*. Von diesen Korre-
lationen zwischen Buchstaben wollen wir absehen und nur Texte betrachten, die von Signal-
quellen (signal source) ohne Erinnerung produziert werden, die einer Bedingung unterliegen:
Ein Buchstabe x; soll mit der a-priori-Wahrscheinlichkeit p; mit Zf\ilpi = 1 erzeugt wer-
den. N ist die Zahl der verschiedenen Buchstaben. Sie héngt von der Sprache ab. In einem
deutschen Text kommt z. B. im Gegensatz zu einem englischen Text der Buchstabe y eher
selten vor. Eine solche stochastische erinnerungslose Signalquelle ist allein durch das Signa-
lensemble {z;,p;} miti = 1,..., N charakterisiert. Es stellt eine Menge von unterscheid-
baren Alternativen x; zusammen mit ihren Wahrscheinlichkeiten p; dar. Man bezeichnet das
Signalensemble auch als Zufallsvariable (random variable) X .

Man kann sich als operationale Realisierung vorstellen, dass N Druckmaschinen vorlie-
gen, die jeweils einen der Buchstaben x; drucken kénnen. Mit Hilfe dieser Druckmaschinen
kann nun Alice als der Absender einen Text drucken. Diese Botschaft (message) besteht aus
einer Zeichenfolge (string) oder Sequenz (sequence) aus n Buchstaben. Die Zahl der mogli-
chen Botschaften ist dann N™. Die Maschinen sind dabei aber so eingestellt, dass sie eine
Nebenbedingung erfiillen. Wir betrachten sehr viele solcher Sequenzen, wie sie von der An-
lage gedruckt werden. Die relative Haufigkeit mit der der Buchstabe 2; gedruckt wird, soll
dann p; sein. Im Spezialfall p; = 1, p;»; = 0 gibt es z. B. immer nur eine einzige Sequenz:
w121 ... 71 .. .. Aber auch fiir p; # 1 kann diese Sequenz vorkommen . Alle Maschi-
nen zusammengefasst bilden eine grof3e Druckanlage, die in unserer Veranschaulichung die
Signalquelle darstellt (siehe Abb. 5.1 und vergleiche mit Abb. 4.1)

Der spezielle von Alice gedruckte Text wird Buchstabe fiir Buchstabe stérungsfrei mit Hil-
fe eines mit klassischer Physik beschreibbaren Tragers (z. B. auf Papier) an den Empfanger
Bob tbermittelt. Bob weil} nicht welchen Buchstaben er als Nachsten empfangen wird, aber

LWir haben uns mit dem Bild von Druckmaschinen weitgehend von ,,Sprache* geldst, denn yy . . . y wird ebenfalls
von einer Druckanlage gedruckt, deren p; mit den Buchstabenh&ufigkeiten der deutschen Sprache ubereinstimmen,
allerdings geschieht das sehr selten.
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er soll wissen, welche Druckanlage Alice verwendet. Bob hat daher eine wichtige Vorinfor-
mation: Er kennt das Signalensemble {z;, p; } und damit insbesondere die Wahrscheinlichkei-
ten {p;}. Dies ist sein Vorwissen (a-priori-Wissen). Wir suchen ein MaR flr die verbliebene
a-priori-Ungewissheit von Bob. Dies Mal3 kann zugleich als ein MaR fir die Information (in-
formation) dienen, die diese Ungewissheit (uncertainty) beseitigt. Wir werden sehen, dass die
Entropie ein solches Mal fiir die Information darstellt. Das wird bereits bei der jetzt folgenden
heuristischen Einftihrung der Entropie deutlich. Eine genauere Quantifizierung und Operatio-
nalisierung diskutieren wir anschlielend in Abschn. 5.2.

Shannon-Entropie ? Alice druckt eine Zeichensequenz aus n Zeichen. Es gibt N™ solcher
Sequenzen. Wenn n eine sehr groRe Zahl ist, dann ist es wahrscheinlich, dass viele dieser
Sequenzen jeweils in sich bereits die relativen Haufigkeiten p; widerspiegeln, dass also mit der
Héaufigkeit n; = np; der Buchstabe x; in der langen Sequenz irgendwo auftaucht. Sequenzen
der Form x;x; . . . ; sind nicht ausgeschlossen aber unwahrscheinlich, wenn die p; klein sind.
Wenn n groB ist, darf Bob daher vermuten, dass er eine der Sequenzen erhalten hat, die die
x; mit den Haufigkeiten n; enthalt. Wie viele verschiedene Sequenzen von diesem Typ gibt
es? Es gibt n! Mdglichkeiten n Buchstaben anzuordnen. Vertauschen derselben Buchstaben
untereinander fiihrt auf keinen neuen Text. Flr z; sind n;! Vertauschungen mdglich. Daher
handelt es sich um
n!

Zy = ————— (5.1)
nilna!. .. ny!

Sequenzen mit 3" n; = n.

Um zu den Wahrscheinlichkeiten p; Ubergehen zu kénnen, betrachten wir den Grenzfall
unendlich langer Texte (n — oo,n; — o0). Dann ist p; = =% und es ergibt sich mit der
Stirlingschen Formel log(n!) = nlogn — n + O(log n) fir den Logarithmus der Anzahl Z,,

N
logZ, — mnlogn—n— Z(m logn; —n;)
i=1
N
= -n va: log p;. (5.2)
i=1

Wir verwenden 0 log 0 = 0.

Wenn wir den Logarithmus der Anzahl Z,, der Mdglichkeiten durch n dividieren, ihn
also als Mittelwert auf die einzelne Buchstabenstelle beziehen, entsteht die Shannon-Entropie
oder klassische Entropie H(p) der Wahrscheinlichkeitsverteilung p < {p;,i = 1,...,N},
die folgendermaRen definiert ist:

N
1
H(p):= lim —logZ, = — Zpi logp; > 0. (5.3)

n—oo N .
i=1

Der Logarithmus wird dabei zur Basis 2 genommen. Auch die Bezeichnung H (X)) statt H(p)
ist gebréuchlich. Die Zahl Z,, der mdglichen Texte mit einer Anzahl n von Buchstaben ergibt

2 [Sha 48], [Sha 49]
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sich dann im Grenzfall als
Z, =2 @) (5.4)

Da viele (wenige) Moglichkeiten ein groBRes (kleines) MaR von a-priori-Ungewissheit von
Bob widerspiegelt, ist H(p) von Gl. (5.3) ein MaR fur die mittlere a-priori-Unbestimmtheit
eines Buchstabens, den Bob empfangt. Damit ist A zugleich die mittlere Information, die
Bob pro Gbermittelten Buchstaben erhélt. Sie erlaubt es ihm unter den alternativ méglichen
Sequenzen die Ubermittelte zu identifizieren. H ist dimensionslos. Der Wert von H gibt die
Information in der Einheit Bit an. Wir werden das in Abschn. 5.3 noch weiter prézisieren.

H (p) charakterisiert die Wahrscheinlichkeitsverteilung {p; } des Signalensembles. Ob das
Signal dabei aus Buchstaben oder anderen Zeichen besteht, ist unwesentlich. Die z; kdnnen
irgendwelche Alternativen sein, die mit den zugehdrigen Wahrscheinlichkeiten p; vorliegen.
Im Unterschied zu einer Signalibertragung mit Quantensystemen haben wir vorausgesetzt,
dass die Zeichen (z. B. Buchstaben) klassische Zeichen sind. Sie kénnen eindeutig vonein-
ander unterschieden werden und werden im Prozess des Auslesens nicht verandert. Kommt
x; bei Bob an, dann liest Bob auch x;. Dabei spielt es keine Rolle, mit welchem klassischen
Trager (Papier, Tone usw.) die Information Gbermittelt wird.

Eigenschaften Wir wollen zundchst noch einige mathematische Eigenschaften der Entropie
beweisen. Der Maximalwert von H (p) ist log N, wenn N die Zahl der Zeichen im Signalen-
semble ist. Er wird fir die Gleichverteilung p; = ps = ... = p, = N~! angenommen. Zum
Beweis schreiben wir die Nebenbedingung . p; = 1 in der Formpy =1 — Zf\;’llpi und
betrachten die anderen p;x als unabhéngige Variablen. Die Ableitung von

N—-1
H(p) =~ pilogp; — pn logpy (5.5)
i=1
verschwindet dann wegen
OH/0p; = —logpi + logpn (5.6)
furpl =DPN = % mit
H™(p) = H(p; = N™') = log N. (5.7)

Ein weiteres Extremum, beispielsweise am Rand, gibt es nicht. Wir notieren noch den Mini-
malwert von H(p):
H™@) =0 < p=1, piu=0 (5.8)
Er liegt vor, wenn die Sprache nur einen einzigen Buchstaben besitzt.
Insgesamt gilt also

0< H <logN (5.9)
und bei binarer Kodierung (binary coding) (N = 2):

0<HCLI. (5.10)
H(p) istin diesem Fall (p; = p, pa =1 — p) eine Funktion von p mit 0 < p < 1.

H(p) = —plogp — (1 — p)log(1l — p) (5.11)

die in Abb. 5.2 dargestellt ist. Ein klassisches System mit zwei Zustanden hat eine maximale
Informationskapazitat von H(p = 1) = 1 Bit.
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Abbildung 5.2: Shannon-Entropie H (p) bei bindrer Kodierung mit den Wahrscheinlichkeiten p; = p
undp2 =1 — p.

5.2 Shannons Theorem

5.2.1 Typische Sequenzen

Wir wollen zeigen, dass die Entropie H(p) ein gutes MaR fiir den Informationsgehalt pro
Buchstabe darstellt, wenn ein langer Text (n — oo) aus einer Quelle mit Signalensemble
{x;, p;} kommt. Wie kann man Information operational genauer fassen? Nehmen wir an, Ali-
ce hat einen Text, den wir den Ausgangstext nennen wollen, und sie méchte ihn Bob mitteilen.
Alice verwendet dabei nicht das Signalensemble selber, sondern das einfachste nicht-triviale
Alphabet. Es besteht aus zwei Zeichen (z. B. aus den Binarzahlen (binary digits) 0 und 1), die
mit gleicher Wahrscheinlichkeit auftreten sollen. Der neue Text ist dann eine Bit-Sequenz (bit
sequence, binary string). Die Ubertragung an Bob soll wieder stérungsfrei sein. Immer wenn
eines dieser Symbole von Bob empfangen wird, wollen wir sagen, dass er die Information 1
Bit erhalten hat. Die Antwort auf eine Ja-Nein-Frage (,,Liegt die Zahl 0 vor?*) enthalt die In-
formation 1 Bit. Wir bestimmen den Informationsgehalt des Ausgangstextes indem wir zahlen
wie viele Bits Alice bei geschicktestem Vorgehen senden muss, damit Bob erfahrt, welcher
aus der Menge der Texte der Lange n der Ausgangstext war. Da wir nur sehr lange Texte be-
trachten, reicht es, die mittlere Zahl notwendiger Bits pro Buchstabe des Ausgangsalphabets
zu bestimmen. Wir werden zeigen, dass sie gleich der Shannon-Entropie H (p) ist. Die Infor-
mation im Ausgangstext ist dann nH (p) bits. Zur Analyse des Vorgehens von Alice gehen wir
vom Gesetz der grofRen Zahlen aus.

Grenzwertsatz  Wir betrachten eine stochastische erinnerungslose Quelle, die keine Buch-
staben, sondern reelle Zahlen y; , < = 1... N mit den Wahrscheinlichkeiten p; erzeugt. Eine
Sequenz von n dieser Zahlen ist z. B.

Yayry17ya - - - Y1 - (5.12)
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Wir nummerieren die Zahlen durch. Die reelle Zahl an der Stelle [ nennen wir w; mit
l=1,...,n.In (5.12) ist z.B. ws = y;. Die Sequenz in (5.12) kénnen wir dann auch in
der durchnummerierten Form

WLWoWS3 . . . Wy, (5.13)

schreiben.

Wir wollen sehr lange Sequenzen betrachten. Dann gilt das Gesetz der groRen Zahlen (law
of large numbers). Es besagt, dass das arithmetische Mittel der Zahlen in der Sequenz gegen
den mit den Wahrscheinlichkeiten p; gebildeten Erwartungswert geht:

n N
. 1
Jim -~ > wi = piyi = (y) . (5.14)
=1 1=1

Man kann den Grenzprozess noch etwas genauer formulieren: Zu gegebenem beliebig kleinen
e > 0und § > 0 gibt es bei endlicher Varianz der y; eine groRe Sequenzlange n, so dass die
Wahrscheinlichkeit dafiir, dass eine Sequenz mit |+ >, w; — (y)| < & erzeugt wird groRer als
1—eist.

Typische Sequenzen Wir gehen zu unseren Buchstaben bzw. Zeichen x; aus dem Signalen-
semble {x;, p;} Uber. Eine spezielle Sequenz der Lange n ist z. B.
LAX1T17LA - .. X1 - (5.15)
Die Gesamtwahrscheinlichkeit P(x4 ... x1) flr das Auftreten dieser Sequenz ist das Produkt
P(xy...21) =psa-p1-pi7-Pa---p1- (5.16)

Wir bilden den negativen Logarithmus und dividieren durch n.

1 1
- log P(x4,21,...,21) = - {—logps —logp;...—logpi} . (5.17)
Diese Summe hat die Struktur eines Mittelwertes. Die Summanden in der Klammer bilden
eine Sequenz reeller Zahlen. Sie entspricht der Sequenz (5.12) mit y4 = — logps USW. Im
Anschluss an Gl. (5.13) kdnnen wir schreiben: w; = —logpy, . .., w, = — log p;. Die Wahr-

scheinlichkeit fur das Auftreten von — log p; auf der rechten Seite von Gl. (5.17) ist gleich der
des Auftretens von x; in der Sequenz (5.15) und damit gleich p;. Mit Gl. (5.14) lasst sich das
arithmetische Mittel wieder als Erwartungswert schreiben. Die Gl. (5.17) zusammen mit der
Definition (5.3) fUhrt dann auf:

n—oo

N
1
li ——logP;=— i logp; =: (—1 =:H(p) . 5.18
im {08} == Loy = (~hoxp) = 1(7) .19
Wieder wollen wir dieses Ergebnis durch Einfuhren von infinitesimalen Grofien e und &
prézisieren. Hohere Potenzen von e und § lassen wir weg. Die Wahrscheinlichkeit dafir, dass

eine Sequenz mit P(. . .) auftritt, die auf einen Wert von — 1 log P aus dem Intervall

1
H—5<—ElogP<H+5 (5.19)
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fuhrt, ist grofRer als 1 — e. Es wird daher mit an Sicherheit grenzender Wahrscheinlichkeit eine
Sequenz erzeugt, deren Gesamtwahrscheinlichkeit P von Gl. (5.16) die Bedingung (5.19)
erflllt. Oder wie oben formuliert: Zu vorgegebenem ¢ und § gibt es eine Sequenzlédnge n,
sodass (5.19) mit der Wahrscheinlichkeit 1 — € erfillt ist. Mit immer kleineren e und ¢ wird n
immer groRer. Wir formen Gl. (5.19) um:

9~H+0) < p < g=n(H=0) (5.20)

Gleichung (5.20) besagt, dass fast ausschlieflich (ndmlich mit Wahrscheinlichkeit 1 — ¢)
Sequenzen auftreten, deren gemal Gl. (5.16) gebildete Wahrscheinlichkeiten P tbereinstim-
mend alle gleich 2="# sind. Diese Sequenzen werden typische Sequenzen(typical sequences)
genannt. Fir hinreichend groRe n zerfallt die Menge der Sequenzen der Lange n in zwei
disjunkte Mengen: in die gleichwahrscheinlichen typischen Sequenzen und den Rest der
untypischen Sequenzen.

Wie groB ist die Anzahl Z(n, ¢, d) dieser typischen Sequenzen? Die Summe der Wahr-
scheinlichkeiten aller typischen Sequenzen muss zwischen 1 — e und 1 liegen:

1—e<Z(n,e,6)P <1 (5.21)

Wir dividieren durch P und beachten, dass P selber aus dem Intervall von GlI. (5.20) stammt.
Dann folgt fir die Anzahl typischer Sequenzen

(1 —€)2"H=9) < Z(n, e, §) < 2nHF) (5.22)

Dies prazisiert Gl. (5.4).

5.2.2 Klassische Datenkompression

Kodierung langer Blécke und Datenkompression Die Ungleichungen (5.20) und (5.22)
haben eine unmittelbare praktische Bedeutung. Mit wachsender Buchstabenzahl n der Bot-
schaft tauchen untypische Sequenzen so gut wie nicht mehr auf. Die Anzahl Z(n, e, ) der
typischen Sequenzen geht gegen 27

Z(n,e,6) 224 onH (5.23)

Weiterhin treten alle typischen Sequenzen mit der gleichen Wahrscheinlichkeit P = 2" auf
(Gleichverteilung). Wir nummerieren die 2 verschiedenen typischen Sequenzen mit Zahlen
in bindrer Schreibweise durch. Wir kodieren somit ganze Sequenzen (Block-Kodieren, block
coding) und betrachten nicht mehr individuelle Signale. Dann bendtigen wir dazu Zahlen mit
nH Stellen (H # 0 vorausgesetzt).

Die Zahl der insgesamt moglichen Sequenzen ist demgegeniiber N = 271 N \\enn wir
sie in binarer Schreibweise durchnummerieren, brauchen wir Zahlen mit n log N Stellen. Fir
eine Charakterisierung einer speziellen typischen Sequenz der Lénge n reicht somit im Fall
H # H™ = log N ein binérer Text der kleineren Lange nH (vergl. Gl. (5.9)). Eine kiirzere
Kodierung mit weniger Bits ist allerdings nicht mdglich, da alle typischen Sequenzen be-
reits gleichwahrscheinlich sind. Durch Umkodieren kann nichts gewonnen werden. Der Text
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wird dem Empfanger Ubermittelt. Wenn die Durchnummerierung dem Empféanger bekannt
ist, kann er die spezielle typische Sequenz eindeutig rekonstruieren. Durch die Beschrénkung
auf die typischen Sequenzen — nur diese treten fir grolRe n als Botschaften auf — und binéres
Durchnummerieren hat eine Datenkompression (data compression) stattgefunden. Eine dar-
Uber hinaus gehende Kompression ist nicht moglich. Im Hinblick auf eine analoge Aussage
Uber Quantensysteme als Informationstrager notieren wir noch: Die Shannon-Entropie gibt
die Anzahl der klassischen bindren Informationstrager an, die mindestens notig ist, um die
Information in einer Botschaft zu Gbermitteln. Klassische bindre Informationstrager kénnen
z.B. Zettel sein, die entweder mit 0 oder mit 1 bedruckt sind, oder Tone, die nur in zwei
Frequenzen ausgesendet werden.

Shannons Theorem  Wir formulieren das Ergebnis (5.22) noch einmal in einer anderen Wei-
se und gehen dabei auch auf die Fehlerwahrscheinlichkeit ein. Die rechte Ungleichung (5.22)
besagt, dass wir jede typische Sequenz eineindeutig in eine Sequenz von n(H + §) bindren
Zahlenstellen abbilden kdnnen. Die verbliebenen wenig wahrscheinlichen untypischen Se-
quenzen bildet Alice ,fehlerhaft” alle auf eine einzige bindre Sequenz ab (z. B. 000...00).
Dann ist es bei diesem Verfahren mdglich, dass zwei urspriingliche Botschaften durch die-
selbe bindre Sequenz kodiert sind und es kann ein Fehler bei der Dekodierung auftreten. Wir
schreiben die Fehlerwahrscheinlichkeit in der Form 1 — F. F wird die Treue (fidelity) des
Kodierung-Dekodierung-Schemas genannt. Shannons Theorem?® der fehlerfreien Kodierung
(Shannons noiseless coding theorem) fasst die obigen Uberlegungen in folgender Form zu-
sammen: Wenn n(H + 0) Bits fiir die Kodierung von Botschaften der (groflen) Lange n zur
Verfligung stehen, dann kénnen die Botschaften mit einer Fehlerwahrscheinlichkeit 1 — F' < ¢
in den entsprechenden binéren Sequenzen kodiert werden (Zu gegebenem ¢ und ¢ gibt es ein n
sodass dieser Satz gilt). Stehen nur H — § Bits zur Verfiigung, dann ist die Fehlerwahrschein-
lichkeit groRer als 1 — .

5.3 Information

Wir kommen auf unser am Anfang von Abschn. 5.1 formuliertes Ausgangsproblem zurtick.
Alice hat einen ihr bekannten Text mit n Buchstaben bzw. Zeichen aus einer erinnerungslo-
sen Quelle mit Signalensemble {z;, p;} vorliegen. Die zugeordnete Entropie ist H(p). Alice
hat mit Bob, der das Signalensemble kennt, vorher vereinbart, wie die typischen Sequenzen
digital mit Zahlen der L&nge nH (p) durchnummeriert werden. Wie wir in Abschn. 5.2.2 ge-
zeigt haben, muss Bob an Alice dann nH (p) Ja-Nein-Fragen stellen, um zu erfahren welches
die Nummer des Ausgangstextes und damit welcher Text der Ausgangstext selber ist. Damit
ergibt sich eine operationale Interpretation der Entropie: Die Shannon-Entropie H (p) ist die
mittlere Zahl der benétigten Ja-Nein-Fragen pro Buchstabe des Ausgangstextes. Je kleiner die
Shannon-Entropie H (p) ist, desto weniger Fragen muss Bob stellen. Es ist also sinnvoll H(p)
als den Informationsgehalt pro Buchstabe des Ausgangstextes zu bezeichnen. Hat das Signa-
lensemble {x;, p;} miti = 1,..., N z. B. nur einen einzigen Buchstaben (N = 1), dann kennt
Bob den Text bereits. Er muss gar keine Fragen mehr stellen. Dem entspricht H(p) = 0 (vgl.

3 [Sha 48], [Sha 49]
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Gl. (5.7)). Wie GlI. (5.8) zeigt, muss Bob die meisten Fragen pro Buchstabe stellen — ndmlich
log N —wenn die Wahrscheinlichkeiten p; gleich verteilt sind: p; = po = ... =py = N L.

5.4 Kilassische relative Entropie
Gibbs-Ungleichung Es ist fur viele Beweise nitzlich fur zwei Wahrscheinlichkeitsvertei-

lungen {p;} und {g; } zum selben Alphabet {x;} als Hilfsmittel die klassische relative Entro-
pie H(p||q) von {p;} relativ zu {¢;} einzufiihren und ihre Eigenschaften auszunutzen.

N N
)~ Di ~
H(pllg) := > pilog o = HO) - > pilogg; . (5.24)
i=1 v i=1

Mit Hilfe der die Logarithmen verknupfenden fundamentalen Ungleichung fir alle positiven
logzln2=Inzx <z -1 (5.25)

konnen wir H (p||g) abschatzen

N
o g
H(plg) = *Zpilog;
i=1 v

1 N qi
— (11— 2
IHQZZ::lp( o)
1N

= n2 Z(pi —q;) =0. (5.26)

1=

vV

Diese Ungleichung wird Gibbs-Ungleichung genannt. Die relative Entropie H (p||g) ist nicht
negativ. Sie ist gleich Null genau dann wenn p; = ¢; flr alle i gilt (identische Verteilungen).

Konkavitat Dass die Shannon-Entropie eine konkave Funktion ist, ist eine direkte Kon-
sequenz der Gibbs-Ungleichung. Wenn p; und py zwei Wahrscheinlichkeitsverteilungen mit
Wahrscheinlichkeiten {py;} und {p2;} sind, dann gilt fur die Verteilung p = A\p1 + (1 — \)po
mit Wahrscheinlichkeiten {p; = Ap1; + (1 — M)p;und 0 < A < 1

H(Apy + (1= X)p2) > AH(p1) + (1 = AN H(p2) . (5.27)

Die Gleichheit gilt genau dann, wenn die Verteilungen p, und p> identisch sind. Das heifit,
wenn man Uber zwei Wahrscheinlichkeitsverteilungen mittelt, dann erhéht sich die Entropie.
Der Beweis folgt aus der Gibbs-Ungleichung (5.26) durch Ausschreiben der Terme mit Hilfe
von Gl. (5.24):

0 < AH(p1||p) + (1 = N H(p2||p) = H(p) — AH(p1) — (1 — N H(p2) - (5.28)
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5.5 Wechselseitige Information als Mal3 fir die
Korreliertheit zweier Botschaften

Wir nehmen an, dass zwei Signalensemble X «— {z;,p;} und Y < {y;,p;} vorliegen,

deren Signale nicht unabhangig voneinander auftreten. Es sollen Korrelationen vorliegen. Wir

wollen ein MaR fur die Korreliertheit von Botschaften der beiden Signalensemble gewinnen.

Zur Vereinfachung schreiben wir flir die Ensemble X < {z, p(x)} undY < {y, p(y)} sowie

>_; = >_, usw. Wir haben dann z.B. H(p(z)) = H(X).

p(y|x) ist die bedingte Wahrscheinlichkeit fiir das Auftreten von y, wenn x bereits aufge-
treten ist. Wie wir in Abschn. 1.3 diskutiert haben gilt

p(ylz)p(z) = p(y, z) = p(x,y) . (5.29)

p(x,y) ist dabei die Wahrscheinlichkeit daftir, dass X und Y gemeinsam auftreten (joint pro-
bability). Die mittlere Ungewissheit Giber das Auftreten eines Paares (joint entropy) bei be-
kanntem Signalensemble {(z,y), p(z, y)} der Paare ist

H(X,Y) ==Y p(z,y)logp(z,y) = H(Y,X) . (5.30)

z,y

H(X,Y)

Abbildung 5.3: Mengentheoretische Veranschaulichung der verschiedenen Entropiearten.

5.5.1 Wechselseitige Information

Als wechselseitige Information (mutual information) fihren wir die GroRe

I(X:Y):=H(X)+HY)-HX,Y)=I1(Y:X) (5.31)
ein mit den Entropien H(X) := — )" p(x)logp(x) und H(Y') der einzelnen Ensembles
(vgl. Abb. 5.3). Wenn wir GI. (5.31) nach H(X,Y") aufldsen

HX,)Y)=HX)+HY)-I(X:Y) (5.32)

sehen wir, dass I(X : Y') angibt, um wie viel die Unbestimmtheit der Paare kleiner ist als
die Summe der Unbestimmtheiten der beiden Ensembles. Dies ist ein sinnvolles Mal} fiir die
Korreliertheit der beiden Ensembles.
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Wir geben ein Beispiel an. Alice besitzt nur Socken in griiner und blauer Farbe. Sie zieht
aber immer Socken gleicher Farbe an. Bob weil3 das und weil3 noch dartiber hinaus, dass Alice
mit der Wahrscheinlichkeit p(g) = 1 gruine und mit der Wahrscheinlichkeit p(b) = 3 blaue
Socken tragt. Die Ensemble X < L und Y < R beziehen sich auf den linken bzw. rechten
Socken. Dann haben wir p(g, g) = 1, p(b,b) = 2, p(g,b) = 0, p(b, g) = 0 und damit

H(L,R) = H(L) = H(R) = —0, 251og(0,25) — 0, 751og(0,75) = 0,81 .  (5.33)

Bevor Bob z.B. auf den linken Socken schaut, ist seine Ungewissheit Giber die Farbe der
rechten Socke gleich H (R). Schaut er aber auf den linken Socken, dann ist diese Ungewissheit
vollig beseitigt. Bob hat die Information

I(L:R) = H(R) (5.34)

erhalten. Das wird gerade durch die Relation (5.31) zusammen mit Gl. (5.33) wiedergegeben.
I(L: R) wird am groRten, namlich I(L: R) = 1, fur p(g) = p(b) = 3. Die wechselseitige
Information h&ngt wie alle Informationen vom Vorwissen ab. Wenn man sie als ein MaR fur
die Korreliertheit der beiden Signalensemble auffasst, sollte man das im Blick behalten.

Es ist instruktiv, sich die Interpretation von I(X : Y) noch einmal auf andere Weise zu
verdeutlichen.

5.5.2 Bedingte Entropie

Wir kénnen die Entropie H(X) = — " p(x)logp(x) auch folgendermaRen interpretieren:
—log p(x) ist die Ungewissheit fir das Auftreten des Signals x. Gewichtung mit der Wahr-
scheinlichkeit p(z) fur das Auftreten und Summation Uber alle = fuhrt zu H (X)) als mittlere
Ungewissheit pro Signal. Mit der Wahrscheinlichkeit p(z, y), dass sowohl z als auch y eintritt
und der Ungewissheit — log p(x|y) des Auftretens von z, wenn y schon aufgetreten ist, bilden
wir analog

H(X[Y) ==Y plx,y)logp(zly) > (5.35)

z,y

Diese GroRe ist, anders als bei H(X,Y") von Gl. (5.30) bezogen auf die bedingte Wahrschein-
lichkeit p(x|y). H(X|Y) heil3t bedingte Entropie (conditional entropy). H(X|Y") beschreibt
wie unsicher wir (im Mittel) noch lber den Wert von z sind, wenn wir y bereits kennen. Es
handelt sich also um eine Restunsicherheit*

4Man kann die bedingte Entropie H(X|Y") auch noch etwas anders einfiihren. Die verbliebene Entropie der Va-
riablen X, wenn das spezielle Signal y empfangen wurde, ergibt sich im Mittel Uber die bedingte Wahrscheinlichkeit

p(zly)
H(X|y) = Zp aly) log p(zy) - (5.36)

Mittelung tiber y fiihrt mit (5.29) auf die bedingte Entropie H (X |Y")

H(X|Y) = Zp Zp(xly )logp(zly) = — > p(z,y) logp(zly) . (5.37)

z,y
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Wir formen H(X,Y") mit GI. (5.29) um:

HX,Y) = =Y px,y)logp(xly)p(y)
= —Zp z,y)logp(y) — > _ p(x,y)log p(a|y) (5.38)

- Zp )logp(y) + H(X]Y).

Damit ergibt sich
HX|Y)=HX,Y)-H(Y) und H(Y)<HX)Y). (5.39)

Die Unsicherheit fur Paare H(X,Y") verringert sich zur Restunsicherheit H (X |Y"), wenn die
Information H(Y") Uiber das y-Signal vorliegt. Analoge Relationen gelten bei Vorliegen des
x-Signals. In unserem Sockenbeispiel ist die Restunsicherheit gleich Null. Die Abb. 5.3 gibt
die Bezeichnungen der verschiedenen Entropiekonzepte in anschaulicher Weise geometrisch
wieder.

Die Gleichungen (5.31) und (5.39) fiihren auf

H(X|Y)=H(X)-I(X:Y). (5.40)

Die Unsicherheit Gber = wenn y aufgetreten ist, verringert sich gegeniiber der a-priori-
Unsicherheit Uber das Auftreten von z, wenn Korrelationen zwischen den Ensembles X
und Y vorliegen. Man kann I(X : Y') auch als die mittlere Information interpretieren,
die man Uber den Wert von X erhalt, wenn der Wert von Y bekannt ist und umgekehrt
(I(X:Y) = I(Y : X)). Die wechselseitige Information [(X :Y) ist ein MaR fiir die Kor-
reliertheit des Ensembles. Wir werden auf Korrelationen in Kap. 9 im Zusammenhang mit
verschrankten Quantensystemen zurtickkommen.

Subadditivitat Abschlieend erwéhnen wir noch, dass man mit Hilfe der Konvexitat der
Logarithmus-Funktion die Ungleichung

H(X)> H(X[Y) >0 (5.41)

beweisen kann. Dann folgt mit Gl. (5.40), dass die wechselseitige Information nicht negativ
sein kann

I(X:Y)>0. (5.42)

Eine Information Uber Y kann das Wissen Uiber X nicht verringern und umgekehrt. Gleichheit
gilt genau dann, wenn X und Y unabhangig sind. GI. (5.31) fiihrt als unmittelbare Konsequenz
auf die Subadditivitat (subadditivity) der Entropie

H(X,Y)< H(X)+H(Y). (5.43)
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5.6 Erganzende Themen und weiterfiihrende Literatur

Siehe auch Abschn. 6.6.
o Ubersichtsartikel: [Ved 02], [Ste 98], [Weh 78].

5.7 Ubungsaufgaben

UA 5.1 [zu 5.2] Notieren Sie die méglichen Botschaften der Lange n = 4 aus den Binar-
zahlen O und 1 (d. h. N = 2). Demonstrieren Sie wie bei Annadherung von pg an 1 und p; an 0
sich die Anzahl der typischen Sequenzen andert. Wie verhalt sich die Wahrscheinlichkeit der
typischen Sequenzen? Was passiert fur wachsende Lénge n?

UA 52 [zu 55.2] Beweisen Sie die Subadditivitit (5.43) mit Hilfe der Gibbs-
Ungleichung (5.26).

UA5.3[zu5.5.2] Beweisen Sie die Ungleichungen

H(X)>H(X|Y)>0. (5.44)

UA 5.4 [zu 5.5.2] Zeigen Sie, dass die wechselseitige Information 7(X : Y') genau dann
verschwindet, wenn X und Y unabhéngig sind, d. h. wenn p(z,y) = p(z)p(y) gilt.
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6 Von-Neumann-Entropie und
Quanteninformation

6.1 Quantenkanal und Quantenentropie

Quantenkanal Wir betrachten die folgende physikalische Situation (vergl. Tab. 6.1):

Eine klassische Signalquelle erzeugt nacheinander die Buchstaben einer Zeichenfol-
ge. Wie wir gesehen haben, kann diese Signalquelle durch ein Ensemble {x;,p;} mit
i1 =1,..., N beschrieben werden. Die Botschaft soll durch einen Quantenkanal tibertragen
werden. Dabei Ubernehmen gleichartige Quantenobjekte (z. B. Atome derselben Sorte mit
Spin % oder Photonen) die Rolle der Tréger eines quantentheoretischen Signalalphabets. Dazu
wird zu jedem Buchstaben x; ein Praparationsgerat mit der Nummer ¢ tétig, das ein einzel-
nes Exemplar des Quantensystems im Signalzustand |«;) (signal state) erzeugt und abschickt
(vergl. Abb. 4.1 mit Abb. 5.1). Der Zusammenhang zwischen Buchstabe x; und Zustand |¢;)
soll eindeutig sein. Die Gesamtanlage heif3t Quantensignalquelle (quantum signal source).
Durch Praparation wird so die klassische Information in reinen Quantenzustanden kodiert. An
dieser ersten Schnittstelle wird ein statistisches Gemisch aus Signalzustdnden mit Dichteope-
rator

N
p="> pilthi) (il (6.1)
i=1
auf einem Hilbert-Raum H, der Dimension d erzeugt. Der Dichteoperator p (auch Zu-
stand p genannt) bezeichnet wieder ein Praparationsverfahren. Das zugehorige Ensemble ist
das Quantensignalensemble {|v;), p; }. Wichtig ist, dass wir i.a. nicht verlangen, dass die nor-
mierten Zustandsvektoren |v;) orthogonal sind. Weiterhin muss die Dimension d nicht mit
N Ubereinstimmen, N kann z. B. gréBer sein. Der ibertragende Quantenkanal soll stérungs-
frei und nach aufen abgeschlossen sein. Das Quantensignalensemble soll also der Einfachheit
halber im Kanal unveréndert bleiben.

An einer zweiten Schnittstelle wird versucht durch projektive Messung die urspring-
lich von der Signalquelle ausgesandte Information wieder auszulesen. Dazu wird am
Gemisch p eine Detektorobservable D gemessen. Die orthonormalen Eigenzustéande
{|dm), m =1,...,d} der Observablen D

bilden eine ONB von H,. Die zugehdrigen Eigenwerte d,,, sollen nicht entartet sein. Damit
ist die Zuordnung zwischen Messwert d,,, und Zustand |d,,,) nach der Messung eineindeutig.

Verschrénkte Systeme: Die Quantenphysik auf neuen Wegen. Jiirgen Audretsch
Copyright © 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40452-X
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Tabelle 6.1: Klassische Information wird in Quanteninformation kodiert. Durch Messung entsteht wie-

der klassische Information.

klassische

stochastische Quelle

Kodierung
(Praparation)

Quantenkanal

Dekodierung

nicht-selektiv

Signalensemble
{zi{ypihi=1,...,N

1. Schnittstelle:

klassischer Tréger
— Quantentréager

R
-

M
) (Messung) @

2. Schnittstelle:

S

Messwert-Ensemble
{dm,p(dm)}, H(p(d))

Quantentréger
— Klassischer Trager

Kodieren in |¢;) € Hq
{zi,pi} — {|¥i), pi}
p =N pil) (Wi

Spektrale Zerlegung:

p= 1 Amlm)(m
{Um) = 61

Auslesen: Messen der
Detektorobservablen D.
Dld,,) = dp|dpm)
m=1,...,d

Messwert d,,, mit Wahr-
scheinlichkeit

p(dm) = trlpldm ) (dnl]

Zustande |d,,,) € Hq nach der
Messung: {d;|dm) = dim

Nicht selektiv:
P =3y P(din)[din) (o

Entropie: H(p(x))

Y

~
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Die Wahrscheinlichkeit, mit der der Messwert d,,, bei einer Messung an p auftritt, nennen
wir p(d,,). Die Signalibertragung durch einen Quantenkanal spiegelt das Grundschema der
Quantentheorie wieder: Am Anfang steht eine Zustandspréparation und am Ende eine Mes-
sung. Eingegeben wird eine Sequenz klassischer Signale mit einer Shannon-Entropie H (p)
und ausgelesen wird eine Sequenz von Messwerten mit Shannon-Entropie H (p(d)).

Zur Vervollstdndigung der Beschreibung notieren wir noch die spektrale Zerlegung des
Dichteoperators p:

d
p=> Amlm)(m|, (m|m') = Gpmm (6.3)
m=1
mit den Eigenvektoren |m) und den Eigenwerten \,,,. Auch die {|m), m = 1,...,d} bilden

eine ONB von H,, die auch die Eigenbasis von p genannt wird.

Von-Neumann-Entropie  Wir betrachten zunéchst eine spezielle Situation, in der die ein-
gegebene klassische Information ohne Verlust wieder ausgelesen werden kann. Das Quan-
tensystem wird hierfir so gewéhlt, dass die Dimension d von H, mit der Anzahl N der
Buchstaben im klassischen Signalensemble tibereinstimmt. An der ersten Schnittstelle werden
durch geeignete Wahl des Préaparationsverfahrens zu den Buchstaben z; in eineindeutiger Ab-
bildung speziell die orthonormalen Eigenzustande der Detektorobservablen D erzeugt (d. h.

Vi) = |di)).
N N
p= Zp7|d7><d7| = ZMZMZI . (6.4)

Wir haben in diesem Fall also p; = X; und |d;) = [i). Die Quantensignalquelle wird we-
gen der Unterscheidbarkeit der Signalzustdnde zu einer quasi-klassischen Quelle. SchlieR3-
lich wird an der zweiten Schnittstelle die Observable D gemessen. Am Eintreten des Mess-
werts d; kann dann wegen der Unterscheidbarkeit eindeutig auf das urspriingliche Vorliegen
des Signalbuchstabens x; geschlossen werden. Alle beteiligten Wahrscheinlichkeitsverteilun-
gen stimmen Uberein: p(d;) = p; = A;. Entsprechend erhalten wir fur die Shannon-Entropie
des Signalensembles und des Messwertensembles H(p) = H (p(d)).

Die in dieser speziellen quasi-klassischen Situation vorliegende eineindeutige Beziehung
zwischen den Ensembles {x;, p;}, {|v:), s} und {d;, p(d;)} und entsprechend die Uberein-
stimmung der drei Wahrscheinlichkeitsverteilungen legen es nahe, dem statistischen Gemisch
mit Dichteoperator p von Gl. (6.4) eine Quantenentropie 5(5\) mit dem Wert der Shannon-
Entropie zuzuordnen (S(\) = H(p):

d
S(A) ==Y AilogA; > 0. (6.5)

i=1

Mit der Spektralzerlegung von p von Gl. (6.3) lasst S()\) sich als Funktion des Dichteopera-
tors p schreiben

S(p) :== S(N) = —trplogp] > 0. (6.6)
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Die Quantenentropie S(p) heilt auch die von-Neumann-Entropie! des Gemisches mit Dich-
teoperator p. Die Einheit dieser Entropie ist Quantenbit oder ein Qubit. Wir werden diese
Bezeichnung im nachsten Kapitel begrinden.

Da S(p) bei Vorgabe von p eindeutig bestimmt ist, kann man sich von dem oben beschrie-
benen speziellen Schema einer Informationsiibertragung l6sen und auch in physikalischen Si-
tuationen, in denen gar keine Signalubertragung oder -verarbeitung vorliegt, jedem Dichteope-
rator p und damit jedem Quantenzustand seine von-Neumann-Entropie S(p) geméR Gl. (6.6)
zuordnen. S(p) charakterisiert einen Dichteoperator p unabhangig davon wie das zugehdrige
Gemisch physikalisch prapariert wurde. Ein Zustand p mit spektraler Zerlegung (6.3) kann
hinsichtlich aller Wahrscheinlichkeitsaussagen nicht vom statistischen Gemisch der Zustéande
der Eigenbasis mit Ensemble {|m), \,,,} unterschieden werden. Mit diesem statistischen Ge-
misch wird pro Signalzustand im Mittel die klassische Information H (\) = S(p) tibertragen.
Wir werden S(p) allgemein als Informationsgehalt eines Zustands p auffassen.

Messung der von-Neumann-Entropie Es reicht hierfir, p zu bestimmen und die Eigen-
werte abzulesen. Das wird besonders einfach wenn die Eigenzustande {|m)} von p bekannt
sind. Messungen in der Eigenbasis von p sind besonders glinstig. Sie fiihren auf die Wahr-
scheinlichkeiten

p(dm) =Am ) (67)

mit denen sich die von-Neumann-Entropie von p bestimmen Iasst:

d
— > p(dm)logp(dm) = H(p(d)). (6.8)

m=1

6.2 Qubit als Einheit der Quanteninformation

Unter Quanteninformation (quantum information) wollen wir die Information verstehen, die
durch den Zustand eines Quantensystems reprasentiert wird und mit Hilfe von Quantensyste-
men als Trager Gbermittelt wird. Dabei ist der Sender ein Prdparationsgerat und der Empfanger
ein Messgerit. Dies sind die Schnittstellen fir die Ubergénge klassische — quantentheoreti-
sche bzw. quantentheoretische — klassische Information. Nur die klassische Information ist
eine Information, die wir direkt ablesen kénnen.

Wir nehmen an, dass eine klassische Sequenz aus N Buchstaben des Signalensembles
{x;, p;} mit Entropie H(p) in N Quantenzusténde aus dem Quantensignalensemble {|;), p; }
mit Entropie S(p) = H(p) umkodiert wird. Die Ensemblezusténde {|v;)} sollen orthonor-
mal sein. Die Ursprungssequenz kann durch Messen in der ONB {|¢;)} vollstandig ausge-
lesen werden. Wie wir bereits gesehen haben, kann man die klassische Sequenz auch in nH
Buchstaben eines bindren Codes kodieren, die in einer Sequenz von n H quantentheoretischen
2-Niveau-Systemen (Qubit-Systemen) mit Zustanden |0) und |1) Gbermittelt und eindeutig
ausgelesen werden kénnen. Die Ubertragene Information pro Buchstabe ist H (gemessen in

1 [vNe 68]
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bits). Pro einzelnem Ubermittelten Signalzustand |¢);) hatte man wegen H (p) = S(p) im Mit-
tel also auch eine Anzahl S(p) von 2-Niveau-Systeme in wohlbestimmten Zusténden (z. B.
|0) oder |1)) Ubermitteln kdnnen. Die von-Neumann-Entropie S(p) eines Ensembles ortho-
normaler Quantenzustande ist also gerade die mittlere Zahl von 2-Niveau-Systemen, die nétig
ist, um die Zusténde des Ensembles zu kodieren.

Die obige Aussage geht nicht iber das Theorem von Shannon hinaus. Da die Zustande
{|#;)} orthogonal sind, hatte man nach Auslesen der Ursprungssequenz durch Messung an p
die Information dem Empfanger auch klassisch lbertragen konnen und der hatte mit dieser
Information die Sequenz der Quantenzustande praparieren kdnnen. Im allgemeinen Fall sind
die Signalzusténde aber nicht orthogonal. Sie kdnnen durch Messung nicht eindeutig bestimmt
werden. Die Informationstibermittlung tber einen klassischen Kanal fuhrt nicht zum Ziel. Die
einfachste Losung ist es in diesem Fall, die Signalzustédnde selber durch einen Quantenkanal
zu Ubertragen, der die Zustande der Quantensysteme nicht beeinflusst. Dabei wiirde allerdings
keine Datenkompression stattfinden.

Es ist die Aufgabe, eine Sequenz von Quantenzustanden |¢)1), ..., |1, ) aus einem ge-
gebenen Signalensemble mit mdglichst wenigen Quantensystemen zu Ubertragen. Man kann
zeigen [Sch 95], dass sich eine solche Sequenz ohne Bezug auf klassische Information in uni-
tarer Weise so komprimieren l&sst, dass sie beim Empfanger mit asymptotisch perfekter Treue
(Ubereinstimmung mit dem Ausgangszustand) mit Hilfe einer unitaren Transformation wieder
zuriickgewonnen werden kann. Hierzu werden Qubit-Systeme als quantentheoretische Tré-
gersysteme verwendet. Die mittlere Zahl der ben6tigten Qubit-Systeme pro Signalzustand bei
optimaler Kompression stimmt mit der von-Neumann-Entropie des durch den Dichteoperator
beschriebenen Signalensembles {|v;), p;} Uberein. Dieses Theorem ist das quantentheoreti-
sche Analogon zum Shannon-Theorem. Es ist von Schumacher in préziserer Form mit Hilfe
von Quantendatenkompression (quantum data compression) abgeleitet worden und heif3t auch
Schumachers quantum noiseless coding theorem. Wir kénnen die Aussage an dieser Stelle
nicht beweisen, da im Beweis die Sequenz von Quantenzustédnden als ein Produktzustand ei-
nes groRen zusammengesetzten Systems aufgefasst wird. Solche Quantensysteme werden wir
erst im nachsten Kapitel kennenlernen. Wir verweisen fiir den nicht ganz einfachen Beweis?
auf die Literatur (vergl. Abschn. 6.6). Die Einheit der Quantenentropie S(p) wird Qubit ge-
nannt. Ein Quantensystem mit zwei Niveaus (z. B. |0) und |1)), durch das man gerade ein
Qubit an Information kodieren kann, wird selber auch als Qubit (oder Qubit-System) bezeich-
net.

Wir wollen die klassische Ubertragung von Quanteninformation mit der quantentheoreti-
schen vergleichen. Das Signalensemble mdge aus den Zustanden

o) =10}, |1h1) = |0z) (6.9)

2Der Beweis ahnelt dem von Shannon in Abschn. 5.2, der auf der Idee der typischen Sequenzen beruht. Wenn wir
uns auf Qubit-Systeme beschrénken, dann sind die Signalzustéande |v;) Zustande in H2, die nicht notwendig ortho-
gonal sein mussen. Wir fassen die n Systeme einer langen Sequenz zu einem zusammengesetzten System mit einem
Zustandsvektor im 2" -dimensionalen Produktraum zusammen. Dann ladt sich Folgendes zeigen (vergl. Abschn. 6.6):
Wenn das Signalensemble {|+;), p; } eine von-Neumann-Entropie S(p) < 1 hat, dann ist die (mit » anwachsende)
Wahrscheinlichkeit gro3, dass der Zustandsvektor in einem vom Ensemble abhéngigen typischen Unterraum (typical
subspace) des Produktraums liegt. Dessen Dimension ist 25(P), Es reichen daher Produktzustande aus nS(p) Qubit-
Zusténden aus, um solche Zustandsvektoren darzustellen. Entsprechend werden nur n.S(p) Qubit-Systeme als Tréger
zur Ubermittlung bendtigt. Aus ihrem Gesamtzustand kann die Ausgangssequenz durch eine unitére Transformation
rekonstruiert werden. Der Fehler nimmt dabei mit wachsendem n ab.
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bestehen, die mit den Wahrscheinlichkeiten

1
P1=DpP2 =35 (6.10)

2
auftauchen. Bei klassischer Ubermittlung der Information ist wegen H (p1,p2) = 1 Bit keine
Datenkompression moglich. Fur eine Sequenz von n Quantenzustanden werden nach Umko-
dieren n klassische Tréager fur jeweils 1 Bit bendtigt. Die von-Neumann-Entropie ergibt sich
Uber den Dichteoperator

=]

1
p = poltbo) (Yol + palap) | = . (6.11)

1
1

W=

Die Matrix bezieht sich auf die Rechenbasis. Die Eigenwerte lassen sich bestimmen (A, =
cosQ§ = 0,853, \; = sin® § = 0,146) und fuhren mit Gleichung (6.5) auf S(p) = 0,601
Qubits (vergl. Abschn. 6.7). Zur Ubermittlung einer Sequenz von Zustinden des Signalen-
sembles bendtigen wir daher nur 0,601 Qubit-Systeme pro Zustand. Dies belegt, dass die
Quantenkompression mit Quantenkodieren in Qubit-Systeme ein niitzliches Hilfsmittel bei der
Ubertragung von Quanteninformation ist. Insbesondere erhélt durch dieses Ergebnis die von-
Neumann-Entropie eine operationale Interpretation, die keinen Bezug mehr auf die klassische
Entropie enthélt. Das Qubit ist eine sinnvolle Einheit fiir Quanteninformation. Hervorzuheben
ist noch, dass das Kompressionsverfahren von Schumacher zu gegebenem Signalensemble
universell ist. Zu seiner Durchfihrung muss man den zu tbermittelnden Zustand nicht ken-
nen.

6.3 Eigenschaften

Mit Bezug auf Gl. (6.8) I&sst sich in Analogie zur Shannon-Entropie direkt zeigen:

(i) Ein reiner Zustand p = |+)(¢| hat den Minimalwert der Entropie S(p) = 0.

(if) Fur einen Dichteoperator mit d nicht verschwindenden Eigenwerten findet man
0 < S(p) <logd. (6.12)

Das Gleichheitszeichen gilt, wenn alle nicht verschwindenden Eigenwerte Uibereinstim-
men. Der vollstdndig gemischte Zustand p = 5]1 im Hilbert-Raum der Dimension d hat
die maximale von-Neumann-Entropie S(p) = logd.

(iif) Als Folge der Konkavitét der Shannon-Entropie gilt auch fir die von Neumann-Entropie
furp; > 0mit 3, p; = 1 die Konkavitétsrelation

S(pip1 + ... +prpr) 2 p1S(p1) +...+prS(pr) - (6.13)
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Zum Beweis geht man zur Spektralzerlegung der p; tber. Zj pjp; ist der Zustand eines
Quantensystems, das sich mit der Wahrscheinlichkeit p; im unbekannten Zustand p; befin-
det. Das Ergebnis ist plausibel. Es sind mehrere Ensembles zusammengefiihrt worden bzw.
die zugehorigen Ensemblezerlegungen sind gemischt worden. Unser Unwissen Uber dieses
Gemisch ist groRer als das mittlere Unwissen tber die Zusténde p;. Die Information dariiber,
von welchem Gemisch ein Zustand kommt, ist verloren gegangen . Die Entropie ist groRer,
weil wir weniger tiber die Praparation wissen. Mit (i) folgt speziell

S(p) >0, (6.14)

wenn p kein reiner Zustand ist.

Unitare Dynamik Allgemein gilt bei einer unitéren Transformation des Dichteoperators
SWpU") = 5(p) (6.15)

da S nur von den Eigenwerten von p abhé&ngt. Die Entropie ist also — unabhé&ngig davon
welches Bild man fir die unitére dynamische Entwicklung wahlt — immer zeitunabhangig:
as
dt
Unsere Information (ber einen Zustand &ndert sich wahrend der unitaren dynamischen Ent-
wicklung nicht. Das ist anders in der Messdynamik.

0. (6.16)

Quantentheoretische relative Entropie und Kleinsche Ungleichung  Sie wird uns in erster
Linie als mathematische Hilfsgrolie dienen. Wir betrachten zwei Dichteoperatoren p und o
und fuhren die quantentheoretische relative Entropie S(p||o) von p beziiglich o ein:

S(p || o) :=tr[plog p] — tr[plog o] . (6.17)

Wie im analogen klassischen Fall wollen wir eine Abschéatzung ableiten. Die orthogonalen
Zerlegungen von p und o seien durch Gl. (6.3) und

d d
pP= Z >\m|¢m><¢m| , 0= Z Hm‘fm><£m| (618)
m=1 m=1
gegeben. Daraus folgt:
S(pHO’) = Z Am log Ay — Z<¢m|910g U|¢m> . (6.19)

Mit (& |p = A (& | SChreiben wir den zweiten Term um

<¢m| log U|¢m> = <¢m|(z log K/ ‘gm’><€m’ |)|¢m> = Z P 10g Ky (6.20)

m/’

Hierbei haben wir

Pmm’ = <¢m‘€’m/><£m’|¢m> (621)
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mit den Eigenschaften P,,,,, > 0, > Pp, = 1und > , Py, = 1 eingeflhrt. Wir
schreiben GI. (6.19) weiter um.

S(pllo) = Am(10g Ay = Y P 108 i) (6.22)
Der Logarithmus ist eine konkave Funktion, daher gilt >° , P log Ky < log g, mit
P = P K. Mit Gl (6.22) Ubertragt sich diese Ungleichung

S(pllo) > 3" A log :—’” (6.23)

Die rechte Seite stimmt formal mit einer klassischen relativen Entropie Uiberein. Das fihrt auf
die Kleinsche Ungleichung:

S(plle) = 0. (6.24)

Die quantentheoretische relative Entropie ist nicht negativ. Sie verschwindet genau dann,
wenn p = o (Ubereinstimmende Zustédnde). Wie sein klassisches Gegenstiick werden wir
diesen Satz in erster Linie als Hilfssatz verwenden.

6.4 Die Schnittstellen von Praparation und Messung

In Kapitel 6.1 haben wir ideal angepasst prapariert und ideal angepasst ausgelesen. Abwei-
chungen hiervon fihren zu Informationsverlust. Woran liegt das und wie kann man das quan-
titativ fassen?

Bei Transport und Verarbeitung quantentheoretische kodierter Information wirken sich
drei charakteristische Ziige der Quantentheorie besonders aus, die in der klassischen Phy-
sik nicht zu finden sind: Das ist einmal der Umstand, dass nicht-orthogonale reine Zustande
durch eine Messung nicht perfekt unterschieden werden kénnen. Selbst orthogonale Zustéan-
de konnen durch eine Messung nur dann unterschieden werden, wenn die Eigenzustande des
Observablenoperators mit ihnen tbereinstimmen. Hinzu kommt als zweites, dass eine Quan-
tenmessung i.a. den Zustand abéndert. Ein dritter Punkt ist die Mehrdeutigkeit der Ensem-
blezerlegung eines Dichteoperators. Das hat umgekehrt zur Folge, dass es viele klassische
Ensembles mit unterschiedlichen Shannon-Entropien gibt, die nach der Kodierung an der ers-
ten Schnittstelle auf den gleichen Dichteoperator fiilhren und dann durch keine Messung mehr
unterscheidbar sind. Die von-Neumann-Entropie des Zustands p ist aber tber seine orthogo-
nale Zerlegung bestimmt, die nur genau eins der klassischen Ensembles kodiert. Wir wollen
die Konsequenzen néher diskutieren und beginnen mit der Messung, also mit der zweiten
Schnittstelle von Tab. 6.1.

6.4.1 Entropie der projektiven Messung

Die Zustdnde im Quantenkanal werden durch den Dichteoperator p mit der von Neumann-
Entropie S(p) beschrieben. Die nicht-selektive Messung der Dekodierungsobservablen D
fuhrt auf eine Wahrscheinlichkeitsverteilung {p(d,,)} der Messwerte d,,,. Man kann die Mes-
sung als klassische stochastische Quelle mit dem Signalensemble {d,,, p(d,,) } auffassen. Das
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Signalensemble hat die Shannon-Entropie H(p(d,,)). Dabei ist {p(d,,)} zugleich die Wahr-
scheinlichkeitsverteilung der Zustande {|d.,,)}, in die das System bei der nicht-selektiven
Messung Uberfiihrt wird. Als Ergebnis liegt ein Dichteoperator p’ mit der orthogonalen Zerle-
gung
d
p=">" pldm)ldm) Z PpPr, (6.25)
m=1

vor. Fur die Projektionsoperatoren gllt. P,% = P, und ) P, = 1. Die Shannon-Entropie
H(q) der Messwerte und die von-Neumann-Entropie S(p’) des Gemisches der Quantenzu-
stdnde nach der Messung stimmen uberein:

S(p') = H(p(d)). (6.26)

Die Kleinsche Ungleichung erlaubt es, die Quantenentropien S(p) und S(p") vor und nach
der nicht-selektiven Messung zu vergleichen. Wir gehen von

0 < S(pllp") = =S(p) — tr[plog '] (6.27)
aus und betrachten den zweiten Term genauer:
trlplog 4] Z Py)plog ] = Z Py plog(p) Pr] (6.28)

Wir haben P2 = P,, verwendet. Gl. (6.25) zeigt, dass P,,p’ = P,,pP,, = p' Py, gilt. Daher
vertauscht P, auch mit der Operatorfunktion log p’ und wir finden

trplog p'] = ZPmpP log ']

= tr[p logp] =-S(p). (6.29)
Damit haben wir nach Einsetzen in Gl. (6.27) und mit Gl. (6.26) insgesamt das Ergebnis
erhalten:

S(p') = H(p(d)) = S(p) - (6.30)
Bei einer nicht-selektiven projektiven Messung stimmt die Quantenentropie des Zustandes p’
nach der Messung nur dann mit der von-Neumann-Entropie des Zustandes p vor der Messung
tiberein, wenn die Messung in der Eigenbasis von p erfolgt, sonst ist sie groRer. Eine nicht-
selektive Messung Uberfiihrt daher i.a. in ein neues Signalensemble mit groRerer Entropie und
vernichtet auf diese Weise Information. Das gilt auch fur eine selektive Messung. Man kann
sich das an einem sehr einfachen Beispiel veranschaulichen. Der reine Zustand

o) = (o) + 1) (6.31)

V2
hat verschwindende Entropie. Nicht-selektive Messung in der Eigenbasis berflhrt in den

total gemischten Zustand
1

mit maximaler Entropie S(p) = 1.
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6.4.2 Entropie der Praparation

Bei der Quantenkodierung wird die klassische Signalquelle mit Ensemble {x;,p;} in das
Quantenensemble {|;),p;}, beschrieben durch den Dichteoperator p von Gl. (6.1), um-
kodiert (vergl. Tab. 6.1). Wegen der fehlenden Eindeutigkeit der Ensemblezerlegung von p
fihren verschiedene klassische Ensemble mit vielen verschiedenen Entropiewerten H auf
Quantenensembles mit demselben Dichteoperator p und damit auf dieselbe von-Neumann-
Entropie S(p). Der Maximalwert der Quantenentropie ist tber GI. (6.12) durch die Dimension
des Hilbert-Raums des Quantensystems gegeben, in dessen Zustanden kodiert wird. Der Ma-
ximalwert der Praparationsentropie H (p) ist durch die Zahl NV der Buchstaben im klassischen
Alphabet x; gegeben. Sie stimmt mit der Zahl der Zustandsvektoren |¢;) Uberein, die groRer
als die Zahl der Basisvektoren von H,; sein kann, da die |;) nicht orthogonal sein mussen.
Wir werden eine Relation der Form

H(p) > S(p) (6.33)

erwarten. Sie lasst sich tatséchlich in einem langeren Beweis bestétigen (vergl. [Weh 78,
S. 238] oder [CD 94, S. 527]). In Gl. (6.33) besteht Gleichheit genau dann, wenn die Zusténde
|1;) wechselseitig orthogonal sind. Wenn die Signalzustande nicht orthogonal sind, kénnen
sie nicht unterschieden werden. Es gibt keine Dekodierungsobservable mit deren Hilfe der
volle Informationsgehalt der kodierten klassischen Botschaft wieder ausgelesen werden
konnte. Durch p wird weniger Information Ubermittelt als das urspriingliche klassische Signal
enthélt. Auch mit optimal angepasster anschlieBender Messung kann die Information nicht
zuriickgewonnen werden.

6.5 Quanteninformation

Wir fassen zusammen: In der klassischen Informationstheorie kann man davon absehen, wie
der Trager der Information physikalisch realisiert ist. Gedruckte Buchstaben kdnnen z.B.
ohne Fehler in die Laute gesprochener Buchstaben konvertiert werden und umgekehrt. Wie
wir gesehen haben, kann Quanteninformation im Allgemeinen nicht verlustfrei in klassische
Information und zuriick Ubertragen werden. Die Ursache liegt unter anderem in der nicht-
klassischen Struktur des Messprozesses. Quanteninformation ist daher eine von der klassi-
schen Information i.a. sehr verschiedene Art von Information, ahnlich wie ein Quantenzustand
eine andere Art von Zustand ist als der Zustand eines klassischen Systems.

Quanteninformation wird in Quantenzustanden gespeichert. Ihre Tréger sind Quantensys-
teme. lhre Ubermittlung besteht darin, dass die Trager zwischen Praparations- und Messge-
rat propagieren. Die Verarbeitung von Quanteninformation besteht in der Manipulation von
Quantenzustanden. Unitare Transformationen sind hierfir ein Beispiel. Den beiden Informa-
tionstypen sind verschiedene Informationseinheiten zugeordnet: Bit bzw. Qubit. Die Quanten-
informationstheorie gilt einheitlich fir die unterschiedlichen Qubit-Systeme (Spin, Photonen-
polarisation usw.).
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Wie wir in den nachfolgenden Kapiteln noch im Einzelnen darstellen werden, unterschei-
det sich die Speicherung und Verarbeitung von Quanteninformation wesentlich von der klas-
sischer Information: (i) Die Zustdnde eines Qubits sind nicht auf 0 und 1 beschrankt. Sie
werden durch die ganze Bloch-Kugel beschrieben. (ii) Der Zustand eines Quantensystems,
das aus mehreren Qubit-Systemen zusammengesetzt ist, kann verschrénkt sein. (iii) Klassisch
gibt es nur Spriinge zwischen 0 und 1. Unitare Transformationen und andere Operationen sind
aber sehr viel allgemeiner und reichhaltiger. (iv) Allerdings kann man in einer Messung den
quantentheoretischen Endzustand nicht so auslesen wie den klassischen Zustand.

6.6 Erganzende Themen und weiterfiihrende Literatur
Siehe auch Abschn. 5.6.

o Ubersichtsartikel: [Weh 78], [CD 94], [CF 96], [Ste 98], [Joz 98], [Ved 02].

e Zum Konzept ,,Quanteninformation®: [Wer 01], [Wer 02].

e Zu Schumachers Theorem und zur Quantendatenkompression: [JS 94], [Sch 95],
[Joz 98], [\Ved 02], [Ben 95].

6.7 Ubungsaufgaben

UA 6.1 [zu 6.1] Bestimmen Sie mit Bezug auf ein Ergebnis in Kap. 3 die Entropie eines
Zustands p in H5 als Funktion des Bloch-Vektors.

UA 6.2 [zu 6.2] Bestimmen Sie den Bloch-Vektor r zum Dichteoperator p von Gl. (6.11).
Die Eigenvektoren von p und ro stimmen Uberein (warum?). Lesen Sie mit Bezug auf Ab-
schn. 3.2 an ro die Darstellung der Eigenvektoren in der Rechenbasis ab und bestimmen Sie
die Eigenwerte Ao und \;. Berechnen Sie S(p).
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7 Zusammengesetzte Systeme

Wir gehen zu zusammengesetzen Systemen Uber und stellen zunachst wieder den mathemati-
schen Rahmen zur Verfligung. Dann werden die Postulate verallgemeinert und der Spezialfall
der Messungen an Teilsystemen ausfiihrlich diskutiert. Die Konsequenzen von Verschrankung
werden verdeutlicht. Die unitdre Dynamik kann wieder mit Hilfe von Liouville-Operatoren
formuliert werden. Die Wirkung einfacher Quantengatter auf mehreren Qubit-Systemen wird
vorgestellt.

7.1 Teilsysteme

Wir sind von der klassischen Physik her gewohnt, dass zusammengesetzte Systeme (composite
systems, compound systems) in Teilsysteme oder Untersysteme (subsystems) zerlegt werden
kénnen und dass umgekehrt Systeme zu Gesamtsystemen zusammengesetzt werden kénnen.
Das klassische Gesamtsystem ist dabei vollstandig durch die Zustdnde der Teilsysteme und
ihre dynamischen Wechselwirkungen untereinander beschreibbar. Das Sonnensystem mit
Sonne, Planeten und Gravitationsfeld ist ein Beispiel. In der Quantenphysik zeigt sich, dass
zusammengesetzte Systeme dartiber hinaus voéllig andere und Uberraschende ganzheitliche
Eigenschaften aufweisen kdnnen. Sie treten auf, wenn sich zusammengesetzte Quantensys-
teme in verschrankten Zustéanden (entangled states) befinden. In diesen Féllen ist tatsachlich
,,das Ganze mehr als die Summe seiner Teile*. Wir werden zur Darstellung der Einzelheiten
&hnlich wie in Abschn. 1.2 vorgehen und die Diskussion von Praparation und Messung an
den Anfang stellen.

Was sind zusammengesetzte Systeme? Es gibt spezielle Quantensysteme, die eine innere
Struktur aufweisen. Man kann bei ihnen zwei oder mehrere Teilsysteme unterscheiden, auf
die man getrennt Zugriff hat. Damit ist gemeint, dass sich experimentell Teilsysteme finden
lassen, an denen man jeweils einzeln (und in diesem Sinne lokal) Eingriffe durchfiihren kann.
Diese Operationen werden lokale Operationen (local operations) genannt. Es kdnnen z. B.
Messungen sein.

Wir geben einige 2-Teile-Systeme (bi-partite-systems) an. Es kdnnen z. B. Quantensyste-
me préapariert werden, bei denen man an zwei verschiedenen Orten bei Messungen jeweils ein
Photon registriert. Analoge Systeme gibt es fur Elektronen. Es gibt Systeme, bei denen an ei-
nem Ort ein Photon und an einem anderen Ort ein Atom registriert wird. Teilsysteme werden
allgemein als lokal bezeichnet, miissen aber tatsachlich nicht raumlich getrennt sein. Es kann

Verschrénkte Systeme: Die Quantenphysik auf neuen Wegen. Jiirgen Audretsch
Copyright © 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40452-X



110 7 Zusammengesetzte Systeme

sich beim zusammengesetzten System z. B. auch um die Bahn (&uRerer Freiheitsgrad) und die
Polarisierung (innerer Freiheitsgrad) vom einzelnen Quantenobjekt handeln. Selbstverstand-
lich kann man auch zwei getrennte Systeme, die vollig unabhangig voneinander sind, formal
als ein Gesamtsystem auffassen.

Wesentlich ist, dass man z. B. bei einem 2-Photonen-System nicht davon ausgeht, dass
die beteiligten Photonen unterscheidbar sind (was sie bekanntlich nicht sind). Unterscheidbar
sind z. B. die Orte, an denen bei einer Messung eine Photonenpolarisation gemessen wird. Von
Messungen wissen wir auch, dass immer zwei und nicht mehr Photonen zusammen prépariert
werden und daher das Gesamtsystem ein 2-Teile-System ist. Die entsprechenden Teilsysteme
S4 und SZ sind in diesem Fall den Orten A und B zugeordnet (Photon am Ort A bzw. am
Ort B). Allgemein sind Gerate klassische Objekte und haben daher Individualitat . Demgegen-
Uber macht es wegen der Ununterscheidbarkeit der Photonen keinen Sinn zu fragen, welchem
der beiden Photonen bei einer Messung z. B. am Ort A gemessen wurde.

Alice und Bob  Um besonders deutlich zu machen, dass an verschiedenen Teilsystemen S4
und S des zusammengesetzten Systems S47 gemessen oder manipuliert wird, werden héu-
fig die Experimentatoren Alice und Bob eingefiihrt, die am Teilsystem S4 bzw. S (oft aber
nicht notwendig an verschiedenen Orten) lokale Operationen ausfuhren. Mit dem Bezug auf
Alice und Bob unterstreicht man auch nochmal, dass sehr viele quantentheoretische Aussagen
operational (operational) oder operativ (d. h. als Handlungsanweisungen) zu verstehen sind
z.B. von der Art: Wenn Alice am Teilsystem S dieses ausfiihrt, wird Bob am Teilsystem S*
jenes messen.

Existenz  Wir werden gemal’ der Standardinterpretation aus Abschn. 1.2 wiederum anneh-
men, dass solche Teilsysteme keine gedanklichen Hilfskonstruktionen sind wie die Quan-
tensysteme in der Minimalinterpretation, sondern tatséchlich existieren. Damit ist allerdings
nicht gemeint, dass dem einzelnen Teilsystem ein vom Zustand der anderen Teilsysteme unab-
hangiger Zustand zugeschrieben werden kann. Bei verschrankten Gesamtsystemen liegt diese
Unabhangigkeit gerade nicht vor. Dies ist die Ursache fur viele verbliffende quantenphysi-
kalische Effekte. Es ist darliber hinaus mit der Existenzaussage auch nicht unterstellt, dass
gleichartige Elementarteilchen derselben Sorte, wie z. B. zwei Photonen, Individualitét besit-
zen und daher unterscheidbar sind. So weit geht die Annahme, dass die Photonen existieren,
nicht. Die einzelne Zugriffsmdglichkeit und nicht die Individualitat von Quantenobjekten de-
finiert das Teilsystem.

7.2 Produktraum

Wir wollen zunéchst den mathematischen Formalismus bereitstellen, mit dessen Hilfe die
Physik der zusammengesetzten Systeme formuliert werden kann. Wir bendtigen hierzu den
Produkt-Hilbert-Raum.
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7.2.1 \ektoren

Das Tensorprodukt 4% aus zwei Hilbert-Raumen <4 und HZ, deren Dimensionen nicht
libereinstimmen mussen

HAB = A @ HP (7.1)

ist wieder ein Hilbert-Raum. Wir nennen H* und H? die Faktorraume. Zu jedem Paar von
Vektoren |o?) € HA und |xP) € HPE gehort ein Produktvektor (product vector) aus HAE,
der unterschiedlich geschrieben werden kann

lo™) @ [xP) =t [ IxP) =t [o*, xP) =t [0, X) . (7.2)

Er ist beziiglich der Multiplikation mit komplexen Zahlen in jedem Argument linear.
Mit A\, p € C

le®) @ (AIXT) + uixE)) = Ale™) @ XP) + ple™) @ [xF) (7.3)

(Aleth) + o)) @ IXP) = Al @ ulx®) + leg) ® [xP) - (7.4)

Verschrénkte Vektoren Wenn {|n4)} eine Basis von H* und {|i®)} eine Basis von H?
ist, dann ist

{In") @ 1i®)} (7.5)

eine von HAB. Fir die Dimension von HAZ gilt dimHA2 = (dimH4)-(dimH 7). Jeder Vek-
tor [¢AB) aus HAP kann nach der Basis zerlegt werden

[WAP) = apin®,i”) . (7.6)

Alle Definitionen und Aussagen lassen sich direkt auf das Produkt einer endlichen Zahl von
Hilbert-Raumen HABM = HA@HB @ ... @ HM (bertragen. Vektoren aus HAZ, die keine
Produktvektoren sind, werden verschrankt (entangled) genannt. Durch sie werden wir ver-
schrankte reine Zustande reprasentieren, die im Folgenden eine wichtige Rolle spielen wer-
den. An der Zerlegung (7.6) nach der Basis ist zumeist nicht direkt ablesbar, ob ein Vektor
|pAB) verschrankt ist. Wir werden hierzu spiter ein Kriterium entwickeln (Abschn. 8.2.1)
und auch das Konzept der Verschrankung auf Dichteoperatoren erweitern (Abschn. 8.1.1).

Skalarprodukt Der Bra-Vektor zum Produktvektor [o4) @ |x?) hat die Form
(™) @ IXNT = (@ (P = (1P| = (e Xl =2 (o,xl - (7.7)

Daraus folgt fiir [, ?) von Gl. (7.6)

(lpAB)t = (pAP| = Za:i<nA,iB| : (7.8)
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Das Skalarprodukt wird ,,raumweise* gebildet:

(% X718, ¢P) = (e (XPICP) - (7.9)
Eine Basis {|n,i?)} von HAB ist orthonormal, wenn

(AP, iB) = G B (7.10)

gilt, d. h. wenn {|n?)} und {|i®)} ONB sind.
Bell-Basis®  Wie man leicht nachpriifen kann bilden die folgenden vier Vektoren eine spe-
zielle ONB im Raum HAE = 14 @ HE der 2-Qubit-Vektoren:

1 1
V2 V2

Diese Basis spielt bei vielen Untersuchungen ein besondere Rolle. Wir werden spater zeigen,
dass diese haufig verwendeten Bell-Zustande maximal verschrankt sind.

1) := —=(10,0) £ [1,1)) ,  [¥) :=—=(|0,1) £[1,0)) . (7.11)

7.2.2 Operatoren

Produktoperatoren C“ sei ein linearer Operator auf 4 und D% ein linearer Operator
auf HB. Das Tensorprodukt

Cc4® DP = cADP (7.12)
bezeichnet einen Produktoperator, der ,,raumweise* wirkt

[C% © DP)lp?,xP) = 04?4, DPXP) . (7.13)
Der Produktoperator ist ein linearer Operator auf +4 5.

[C* @ DP]Y " aniln®,i?) =) ani|C4n?, DPiP) . (7.14)

n,t n,t

Der aus den Produktvektoren [p45) = |4, xB) und [#45) = |€4, ¢P) gebildete dyadi-
sche Operator |1p42) (95| ist ebenfalls ein Produktoperator.

AP0 = Lo xP)ER ¢Fl = () (e @ (INP)CP) - (7.15)

Man kann die Klammern auch weglassen. Der Identitatsoperator auf /4% kann mit der Basis
von Gl. (7.5) dyadisch zerlegt werden:

147 =3 ", i) (nt P =14 @ 17 (7.16)

1Benannt nach J.S. Bell (1928-1990)



7.2 Produktraum 113

Mit dem Identitatsoperator eines Faktorraums lassen sich spezielle Produktoperatoren bil-
den. Die durch ein Dach gekennzeichneten erweiterten Operatoren (Teilsystem-Operatoren)

CAB — cA g8, DAB — 14 g DB (7.17)

sind auf HAB = HA @ HP definiert, wirken jedoch nur in den jeweiligen Faktor-Hilbert-
Raumen in nicht-trivialer Weise. CAB und DB kommutieren auf H2 und es gilt

CAB @ DAB = DAB @ CAB = ¢4 @ D . (7.18)

Allgemeine Operatoren Mit Bezug auf die dyadische Zerlegung (7.16) von 145 kénnen
wir den allgemeinen Operator Z45 auf H“% in der Form

ZAB = 1A ZABIAB =3 TN (0 B 248 A P () (m @ 1) (7)) (7.19)

n,m i,j

schreiben. Er ist durch seine Matrixelemente in der orthonormalen Basis (7.5) bestimmt.

Spur und Teilspur  Die Spur (trace) ist auch in H4? (iber eine orthonormale Basis in ge-
wohnter Weise definiert

trap(Z4P) = (24P :=> " (n?,iP| 245 n,iP) . (7.20)

n,i

Fur Produktoperatoren folgt daraus

tr[c* @ DB] = Z CA DB = tr [ rp[CP], (7.21)

mit den Matrixelementen C4, und DZ. Die Spur wird ,,raumweise* gebildet.
Die Bildung der Teilspur (partial trace) Uber einen der Faktorrdume, beispielsweise den
Raum 4, ist fiir die Physik besonders wichtig. Sie ist durch

tra[Z4P] =Y (|2 |n?) (7.22)

n

definiert. Wie man an Gl. (7.19) ablesen kann, entsteht dabei ein Operator auf 7. Fir Pro-
duktoperatoren folgt

tra[C* @ DP] = try[CA|DP . (7.23)
Die Gesamtspur ergibt sich als Abfolge von Teilspuren
tr[ZA8) = trp[tra[Z4P]] = traftrg[Z4P]] . (7.24)

Dabei kommt es auf die Reihenfolge der Bildung der Teilspuren nicht an.
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Operatorbasis  Auch dieses Konzept, das wir in Abschn. 1.2 kennen gelernt haben, lasst
sich direkt auf den Produktraum 4% tbertragen. Wenn {Q4, a = 1,..., (dim H*)?} eine

[ 'R)

Operatorbasis auf H4 und {RE, x = 1,...,(dim H?)?} eine Operatorbasis auf H? ist,
dann bilden die Produktoperatoren

T,P = Q4 ® RY (7.25)
wegen
tr[TanTTé)\B] = 5a66f€/\ (726)

eine Operatorbasis des Produktraums 2. Man kann jeden Operator Z45, der auf HA5
wirkt, nach ihr entwickeln:

ZAB =N " TAPU[TAPT 24P (7.27)

a,K

Es gibt Operatoren auf 47, die nicht als Produkt von zwei Operatoren in der Form C4 @ DB
geschrieben werden kénnen. Aber alle Operatoren auf 42 konnen als Summe von Produkt-
operatoren geschrieben werden.

Produkt-Liouville-Raum  Wir Ubertragen die Konzepte aus Abschn. 1.2 und bilden den
Produkt-Liouville-Raum

LA =LA LB . (7.28)
Seine Elemente sind die Operatoren

CAB =N ¢5Q2 @ RE . 7.29
B B
a,3

auf HAB. Der Liouville-Operator wird in Verallgemeinerung von Gl. (1.84) mit dem
Hamilton-Operator HAZ auf HAP definiert:

LABZAB . — %[HAB,ZAB], . (7.30)
7.3 Grundlagen der Physik zusammengesetzter
Quantensysteme

7.3.1 Postulat fur zusammengesetzte Systeme und Ausblick

Wir betrachten zusammengesetzte Quantensysteme(composite quantum systems), die selber
abgeschlossen sein sollen. Daher kénnen wir alle Postulate von Kap. 2 und 4 direkt tGibertragen.
Insbesondere wird der Zustand des zusammengesetzten Systems durch einen Dichteoperator
in einem Hilbert-Raum beschrieben. Die operationale Interpretation des Konzepts ,,Zustand*
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eines Quantensystems als ,,das System hat ein bestimmtes Préparationsverfahren durchlau-
fen* (ibertragt sich. Das zusammengesetzte System S5 soll aus Teilsystemen (subsystems)
S4,SB ... bestehen. Da wir Teilsysteme betrachten wollen, die selber Quantensysteme sind,
liegt es nahe, ihnen zur Beschreibung jeweils einen Hilbert-Raum H4, %, ... zuzuordnen.
Dann bleibt zunéchst noch die Frage offen, welche Struktur der Hilbert-Raum des Gesamt-
systems hat, d. h. wie er sich aus den H4, H?, ... mathematisch zusammensetzt. Hier gibt es
im Prinzip viele Moglichkeiten. Eine ist z. B. die direkte Summe HA5~ = HA o HP @ .. ..
Tatsachlich postuliert man aber das Tensorprodukt, wie wir es in Abschn. 7.2.1 beschrieben
haben, um Ubereinstimmung mit den Experimenten zu erzielen. Diese Festlegung hat weitrei-
chende Konsequenzen fir alle physikalischen Aussagen iber zusammengesetzte Quantensys-
teme, deren Teilsysteme nicht véllig voneinander isoliert sind. Wir sind im Folgenden gerade
an diesen Aussagen interessiert.

Postulat Die Zustdnde eines aus den Teilsystemen S4,SZ. ... zusammengesetzten ab-
geschlossenen Gesamtsystems S45- werden durch Dichteoperatoren pAZ im Produkt-
Hilbert-Raum

HAB = HAoHP @ ... (7.31)

beschrieben. Die Postulate flir abgeschlossene Systeme aus Abschn. 2.1 und Abschn. 4.2 iiber-
tragen sich auf das Gesamtsystem S45,

Ausblick  An dem Postulat kann man unmittelbar eine Reihe von Besonderheiten der Phy-
sik zusammengesetzter Systeme ablesen. Die mathematische Produktstruktur (7.31) gibt eine
Gliederung vor. Wir stellen sie am Beispiel eines 2-Teile-Systems S4Z dar.

(i) Zusténde: Ein reiner Zustand kann ein Produktzustand |4 5) = |¢*) @ |x”) oder ein
verschrénkter Zustand [/47) # |¢4) ® |x®) sein. Die ungewdhnlichen Eigenschaften
verschrankter Zustande, insbesondere das Auftreten nicht-klassischer Korrelationen und
ihre Nutzung, werden wir im Rest dieses Kapitels und in allen weiteren Kapiteln im
Einzelnen diskutieren. Auf korrelierte Dichteoperatoren pA2 # p4 © p® gehen wir in
Abschn. 8.1 ein.

(ii) Observablen: Es gibt den Spezialfall der erweiterten Observablenoperatoren, wie z. B.
CAB = C4@15B, die mit einem Observablenoperator gebildet werden, der nur auf einem
der Produktrdume wirkt. Mit ihnen werden lokale Messungen (local measurements) be-
schrieben, die nur an einem der Teilsysteme durchgefiihrt werden (z. B. Messung der Ob-
servablen C am Teilsystem S4). Es gibt aber auf 7“7 allgemeinere hermitesche Ope-
ratoren Z4 5 die nicht als erweiterte Operatoren schreibbar sind. Auch ihnen entsprechen
Messungen physikalischer Observablen Z4Z. Diese Observablen werden nicht-lokale
Observablen (non-local observables) oder kollektive Observablen (collective observa-
bles) genannt. Die entsprechenden Messungen sind nicht-lokale Messungen (non-local
measurements), die i.a. nicht direkt als lokale Messungen an S und S® durchgefiihrt
werden kdnnen. Das gilt auch flir den Spezialfall der Observablen, die Operatorproduk-
ten entsprechen (z.B. Z42 = C4 @ DP). Nicht-lokale Messungen werden im Zusam-
menhang mit Quantenkorrelationen und der nicht-lokalen Speicherung von Information
wichtig. Wir besprechen sie daher erst in Abschn. 9.2.
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(iif) Unitare Entwicklungen: Auch die unitaren Entwicklungen missen nicht von der Struktur
UAB = U4 @ UP sein. Es kann z. B. eine Wechselwirkung zwischen den Systemen S4
und SP existieren. Wir diskutieren das in Abschn. 7.3.5. Nicht-lokale unitare Entwick-
lungen koénnen verschrankend und entschrankend wirken. .

7.3.2 Messungen an einem Teilsystem und reduzierter Dichteoperator

Uber das Postulat sind insbesondere die Einzelheiten der projektiven Messung einer Obser-
vablen des Gesamtsystems festgelegt. Diese Messung am Gesamtsystem wird durch einen
hermiteschen Operator auf 7“2 beschrieben. Die Messung einer Observablen mit Obser-
vablenoperator C' nur an einem Teilsystem, z. B. an S, ist als ein Spezialfall enthalten. Ihr
ist ein Observablenoperator C* zugeordnet, der auf 7 wirkt. Dieser lokalen Messung (local
measurement) entspricht in 745 ein lokaler Observablenoperator (local observable)

CAB-E_cAg1Bg . o1F . (7.32)

Wir wollen uns in diesem Kapitel auf Gesamtsysteme beschranken, die aus zwei Teilsystemen
zusammengesetzt sind. Die Erweiterung auf mehr Teilsysteme ist trivial.

Wahrscheinlichkeitsaussagen Gemal Postulat bertragen sich die Regeln fir die Mess-
dynamik auf die Zustinde p?Z des zusammengesetzten Systems S4Z. Wir wollen die sich
daraus ergebenden Konsequenzen fir lokale Messungen untersuchen. Hierzu ist es nutzlich je-
dem Teilsystem durch die Bildung der Teilspur tber das andere Teilsystem einen reduzierten
Dichteoperator (reduced density operator) zuzuordnen.

pti=trp [pAB} . pPi=tra [,oAB] (7.33)

Da p“® ein Dichteoperator ist, erfiillen p und p? ebenfalls die Bedingungen fiir einen Dich-
teoperator. Das Eigenwertproblem des Observablenoperators C4
CA|C§1T)A> :cn|c,(f)A>, r=1,...,0n (7.34)

flihrt auf die ONB {\cﬁf”)} von H4 und die Eigenwerte {c,, } mit Entartung g,,. Die Wahr-
scheinlichkeit bei einer Messung von C' am System S den Messwert ¢,, zu erhalten, ist dann
mit dem lokalen Projektionsoperator

9n
Pl=Plo1P  Pl=3 1) (e (7.35)
r=1
durch
plen) = [P p"P] = traltrp{ £} p" P} = tra [P o] (7.36)
gegeben. In analoger Weise erhalten wir fir den Erwartungswert der Observablen C
(CAY = tr[pABCA) = try[pAC4) . (7.37)

Zusammenfassend stellen wir fest: Alle Wahrscheinlichkeitsaussagen fiir lokale Messungen
am Teilsystem S ergeben sich indem man dem System S den reduzierten Dichteoperator p*
von Gl. (7.33) zuordnet und die fiir die Dichteoperatoren abgeschlossener Systeme postulierte
Regeln anwendet.
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Zustand eines Teilsystems Da alle Wahrscheinlichkeitsaussagen fiir Messungen an S4
durch den reduzierten Dichteoperator p” eindeutig bestimmt sind, liegt es nahe davon zu
sprechen, dass sich das Teilsystem S4 im Zustand p# befindet. So hatten wir in Kap. 2 das
Zustandskonzept eingefiihrt. Das Gesamtsystem S4Z durchliuft ein Préparationsverfahren,
das auf den Zustand p* fuhrt. Damit ist zugleich der Zustand p* = tr [p7] prapariert.

Gemische allgemein  Bei einem Produktzustand |, 37) des Gesamtzustands 5“7 ist das
Untersystem S im reinen Zustand |a4). Ist der Zustand von S4Z speziell ein statistisches
Gemisch (Gemenge) aus solchen Produktzustanden prépariert worden (vergl. Kap. 4)

= pilaf, 82) (. BY), Zpgfl (7.38)

dann befindet sich S ebenfalls in einem statistischen Gemisch

pt =trplp Zpk|ak (o] (7.39)

aus den Zustanden {|a:')}. Eine Ignoranzinterpretation (vergl. Abschn. 4.3) ist moglich (pro-
per mixture). Im allgemeinen wird der Zustand S“ nach der Praparation von pZ aber kein
statistisches Gemisch reiner Zustdnde sein wie in Gl. (7.39). Dennoch wird er durch einen
Dichteoperator p* beschrieben. Man (ibertragt daher operational den Begriff Gemisch (mix-
ture) auch auf diesen Zustand p* von S4, dem — wie schon in Abschn. 4.2 beschrieben —
kein Mischen zugrunde liegt, und lasst zur Verdeutlichung den Zusatz ,statistisches* weg.
Zur Kennzeichnung wird in diesem Fall auch von improper mixture im Gegensatz zur proper
mixture gesprochen. Gemisch ist also der Uberbegriff. Bei Teilsystemen kénnen Gemische
auftreten, die hinsichtlich ihrer Préparation keine statistischen Gemische sind und daher keine
Ignoranzinterpretation zulassen. Fiir sie gibt es formal viele Ensemblezerlegungen. Es gibt da-
her viele statistische Gemische eines abgeschlossenen Systems S4, durch die sie hinsichtlich
aller Wahrscheinlichkeitsaussagen flr lokale Messungen ununterscheidbar simuliert werden
konnen. Dies rechtfertigt noch einmal die Ubertragung des Begriffs Gemisch auf alle redu-
zierten Dichteoperatoren.

7.3.3 Zustand nach einer Messung an einem Teilsystem

Auch den Zustand p7 ’ nach der selektiven Messung der Observablen C' am System S4 mit
Messwert c,, erhalten wir nach den fur das Gesamtsystem gultigen Postulaten mit Hilfe des
lokalen Projektionsoperators P von GI. (7.35) wie in GI. (4.19)

A AB DA
traftrg{ P pAP}]
Mit Gl. (7.33) finden wir flir diese selektive lokale Messung
PApAPA
pt = o (7.42)

[Pl
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Fur die entsprechende nicht-selektive lokale Messung gilt mit Gl. (7.36) in Analogie zu
Gl. (4.25)

ph s A UB[Z PAYAB pA] — ZPr?pAP’? . (7.42)

n n

Wir kénnen fir lokale Messungen auch hinsichtlich der resultierenden Zustande die Regeln
fiir Dichteoperatoren von Kap. 4 anwenden, wenn wir dabei dem Teilsystem S den reduzier-
ten Dichteoperator p* von GI. (7.33) zuordnen. Entsprechendes gilt fiir das Teilsystem S5,
Die Messwahrscheinlichkeiten (7.36) lassen sich wieder mit dem unnormierten (Spur # 1)
Dichteoperator 52" = P4 4B PA nach der Messung schreiben:

plen) = tralpd] (7.43)

Wir betrachten noch den Spezialfall, dass sich das Gesamtsystem S4Z vor der Messung in
einem verschrankten reinen Zustand |/ ?) befindet. Nach Definition (vergl. Abschn. 7.2.1)
ist ein verschrankter reiner Zustand nicht als Produktvektor schreibbar. Im Hinblick auf die
Messung der Observablen C' am Teilsystem S entwickeln wir [¢)A5Z) nach der ONB von
HAB, die die Eigenvektoren {|c2)} von C4 enthélt. Es moge keine Entartung vorliegen.

[WAP) = anilel, dP) . (7.44)

Wenn die Messung auf den Wert ¢,, fihrt, ergibt sich (Tilde kennzeichnet fehlende Normie-
rung)

[WAB) = [Py = PlygtP) =
= ) ® Y anld?) = (7.45)
= ‘Cf’ﬁ)5>
mit
7)== omild?). (7.46)

Die Messung Uberfuhrt somit in einen Produktzustand. Fur einen verschrénkten Zustand
|pAB) bricht die nicht entartete Messung an einem Teilsystem die Verschréankung. Es ist be-
merkenswert, dass dabei das andere Teilsystem S in einen speziellen Zustand |w?2) Gibergeht,
der iiber den Index n bei a,,; vom Ergebnis der Messung an S4 abhéngt. Auch wenn die ver-
schrankten Teilsysteme S und S® raumlich weit voneinander getrennt sind, hat die lokale
Messung an S instantan eine wohlbestimmte Zustandsénderung des Systems S zur Fol-
ge. Die Messung an einem Teilsystem S wirkt praparierend auf das andere Teilsystem S5.
Wenn fiir ein System im Bell-Zustand |<I>3§B> die Messung von o, an einem Teilsystem in den
Zustand |0) Uberfiihrt, dann auch beim anderen und entsprechend mit dem Zustand |1) (vergl.
den Neckerschen Wiirfel in Abb. 7.1). Dies ist Ausdruck der besonderen Ganzheitlichkeit des
verschrénkten Systems. Entsprechendes gilt fir zusammengesetzte klassische Systeme nicht.
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Abbildung 7.1: Der Neckersche Wirfel und die Analogie zum verschrankten System. Die beiden lin-
ken unteren Eckpunkte (Kugel und Wiirfel) entsprechen den verschiedenen Zustdnden von Teilsystem
54, die rechten denen von Teilsystem SZ. Messen wird durch Hinsehen realisiert. Entweder sind als
Ergebnis die beiden Kugelzusténde vorn oder die beiden Wurfelzustdnde sind vorn (Blick von oben oder
von unten auf den Wirfel). Immer wird bei Uberfilhrung des einen Teilsystems in einen Zustand auch
das andere in den korrelierten Zustand Uberfuhrt. Vor der Messung durch Hinsehen ist der Zustand des
Neckerschen Wiirfels eine klassisch unmégliche ,,Superposition®.

7.3.4 Lokale Messungen an zwei Teilsystemen

Nachdem wir lokale Messungen an einem Teilsystem beschrieben haben, gehen wir zu loka-
len Messungen an beiden Teilsystemen iiber. Wir betrachten wieder ein Quantensystem S45,
das aus den Systemen S4 und S® zusammengesetzt ist. Wir wollen am Teilsystem S4 die
Observable C' und am Teilsystem S die Observable D messen. Die zugehérigen Observa-
blenoperatoren C4 = C4 @ 15 und D? = 1,4 ® D® kommutieren

(€A, DP)_ —0. (7.47)
Wir notieren noch die entsprechenden Eigenwertgleichungen
CAlep) = ealen),  DPldP) = dild?) . (7.48)

Die Vektoren {|c)} und {|d?)} bilden ONB von H4 bzw. HE. Die mdglichen Messwerte
{e,} und {d;} der lokalen Messungen sollen der Einfachheit halber nicht entartet sein.

Relativzustdnde Das Gesamtsystem S soll sich vor den Messungen in einem reinen Zu-
stand |+»47) befinden, den wir nach der den Messungen angepassten Basis von 47 zerlegen

W) =" anilel, dP) . (7.49)

Es erweist sich als geschickt, im Hinblick auf das Ergebnis (7.45) die Doppelsumme in der
Form

(W) = et ) (7.50)
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g4 5B Gesamtsystem: [ 7)
n.s. GD sortiere nicht aus
; Gesamtsystem: pia?
prs

Abbildung 7.2: Nicht-selektive Messung am Teilsystem S4.

aufzuspalten mit

~B
= S aild?); fwf) = —Zn) (751)
: (@7 |wf})

Der Vektor |w?) heilt der relative Zustand (relative state) zu |c2). Unnormierte Zustande
sind wieder durch eine Tilde gekennzeichnet. Die relativen Vektoren {|w?Z)} bilden i.a. kein
Orthonormalsystem. Ihre Anzahl muf auch nicht mit der Dimension des Hilbert-Raums + 2
tibereinstimmen. |4 5) I4sst sich analog zu Gl. (7.50) auch bezuglich der zu {|d?)} relativen
Zustinde {|o)} zerlegen.

[pAB) Z |57, d! (7.52)

Nicht-selektive lokale Messung ~ Wir fiihren eine Messung der Observablen C an S durch.
Dabei soll sich der Messwert ¢,, ergeben. Dann geht das Gesamtsystem in den Produktvektor
|2, wB) bzw. den normierten Vektor |c, w?) tber. Die Wahrscheinlichkeit den Messwert
¢, zU erhalten ist gemaR Gl. (7.36) durch das Quadrat der Norm des unnormierten relativen
Zustandsvektors |702) gegeben

plen) = W8] (Iea)enl @ 17) [4P) = (@] @) = ||@;] || . (7.53)

Nach einer nicht-selektiven Messung an S befindet sich das Gesamtsystem S5 in einem
gemischten Zustand mit Dichteoperator

PP =" plen)len, wl)(eh, Bl—Z\c"‘ 02 (e o (7.54)

Dabei haben wir Gl. (7.53) verwendet. Die Superposition von Gl. (7.50) ist in das Gemisch
von Gl. (7.54) zerlegt worden.

Alle Messungen am System S® nach dieser nicht-selektiven Messung an S4 konnen
durch den reduzierten Dichteoperator pZ . beschrieben werden

ol =tapltl =" [k @l (7.55)
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Gesamtsystem: |4 5)

s4 SB sS4 SB
sortiere nach Ergebnis @
. len) | lwi) o) | 1dP)
O
lea) | ld?) lea) | 1dP)

Abbildung 7.3: Selektive Messung an den Teilsystemen S und S®. Links wird zuerst an S“ und
dann an S® gemessen, rechts in der anderen Reihenfolge. Es wird jeweils nach den Messwerten d;
und c,, selektiert. Die Wahrscheinlichkeit das Messwertepaar (c,, d;) zu erhalten und der entsprechende
Endzustand |cia , d?) ist in beiden Fallen gleich.

der direkt durch den relativen Zustand @) gegeben ist. GI. (7.50) zeigt unmittelbar, dass er
mit dem reduzierten Dichteoperator des Teilsystems S? vor der Messung iibereinstimmt.

pP = tral|wB) (A8 = pl, B, (7.56)

Dies ist ein bemerkenswertes Ergebnis. Betrachten wir die Situation, dass das System S4
sich bei Alice befindet und das System S? raumlich getrennt davon bei Bob. In einem Pra-
parationsverfahren wird sehr oft ein 2-Teile-System im Zustand [, 5) erzeugt. Alice ist es
freigestellt, ob sie Messungen der Observablen C' an ihrem System durchfiihrt oder nicht. Bob
kann dann in keiner Weise durch Messungen welcher Observablen auch immer an seinem Teil-
system S feststellen, ob Alice Messungen durchgefiihrt hat oder nicht. Das besagt gerade die
Gl. (7.56). Da die Situation vollstandig symmetrisch ist, gilt die Aussage entsprechend wenn
Bob die ersten Messungen durchfihrt.

Nicht-selektiv bedeutet in diesem Zusammenhang, dass es Alice nicht erlaubt ist nach ih-
rer Messung z. B. die Zustande |c2, wZ) des Gesamtsystems herauszusuchen, die zu ihrem
Messergebnis ¢,, gehdren und daflir zu sorgen, dass nur an Systemen in diesen Zustdnden
weitere Messungen durchgefiihrt werden. Das konnte sie offenbar nur erreichen, wenn Bob
in gleicher Weise bei seinen Teilsystemen selektionieren wiirde. Dazu misste Alice nach je-
der ihrer Messungen Bob die Information Ubermitteln, ob er sein zugehériges Teilsystem fir
anschlieBende Messungen weiter verwenden kann oder ob er es aussondern soll. Wenn Bob
aber im Gegensatz dazu misst ohne vorher zu selektieren, kann er nicht feststellen, ob Ali-
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ce gemessen hat oder nicht. Wenn er Anweisungen fir eine Selektion bekommt, weil3 er das
trivialerweise.

Selektive lokale Messungen Wir gehen zu selektiven Messungen (ber und stellen sie zur
Eintbung in den Formalismus ausfiihrlicher dar. Zunéachst misst Alice und erhélt mit der
Wahrscheinlichkeit p(c,, ) = (@wZ|@2) den Messwert c,,. Das System geht in den Gesamtzu-
stand |c, w?) tber (vgl. Abb. 7.3). Wenn anschlieRend an diese Selektion Bob misst, erhalt
er den Messwert d; mit der bedingten Wahrscheinlichkeit

|0‘ni|2

pldilen) = T2

(7.57)

Dies kann man an den Gl. (7.51) ablesen. Das Gesamtsystem geht dabei in den Produktzustand
|c2t, dP) tiber. Wenn umgekehrt zuerst Bob und dann — nach Selektion nach dem Messwert d;
— Alice misst, erhalten wir analog (vgl. Abb. 7.3) den gleichen Endzustand fur das Messwer-
tepaar (¢, d;). Fir die Wahrscheinlichkeiten ergibt sich

|0‘m| .
p(d;)

Die Wahrscheinlichkeit p(c,,, d;), mit der das Messwertepaar (c,,, d;) erhalten wird, ist unab-
hangig von der Reihenfolge der Messungen:

plenldi) = (7.58)

p(cn,di) = plenldi)p(di) = p(dilen)p(en) = |am“2 = <1/}AB|PAB|1/}AB> (7.59)

mit Projektionsoperator PA5 := |c2, dP)(c2, dP|. Da die Operatoren C* und D? kom-
mutieren, war das auch nicht anders zu erwarten. Wir erganzen noch, dass alle oben fiir den
reinen Ausgangszustand [, 7) gemachten Aussagen sich in bekannter Weise iibertragen las-

sen, wenn der Ausgangszustand ein Gemisch mit Dichteoperator p 5 ist.

Erwartungswerte von Produktoperatoren Produktoperatoren repréasentieren spezielle
nicht-lokale Observable. Fur Anwendungen ist es wichtig, dass ihre Erwartungswerte durch
lokale Messungen und klassische Kommunikation bestimmt werden kénnen. Die dyadische
Zerlegung des Operators C* @ D ist von der Form (vgl. Gl. (7.48))

CA@DB = chd ‘0717 7 >< n7dF‘ . (760)

n,i
Fir seinen Erwartungswert im Zustand p4% gilt

tr [CA@DP pAP] Ztr ABp*P) c,d; . (7.61)

Die Spur auf der rechten Seite ist die Wahrscheinlichkeit dafiir, dass bei lokalen Messungen an
den Teilsystemen S“ und S? das Messwertepaar (c2, d?) auftritt. Der Erwartungswert eines
Produktoperators stimmt mit dem Erwartungswert der Produkte korrelierter Messwerte tber-
ein. Zu seiner Bestimmung messen Alice und Bob an einem Quantensystem im Zustand p42
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an denen ihnen jeweils zugénglichen Teilsystemen , informieren sich tiber die Messergebnis-
se und bilden das Produkt der beiden korrelierten Messwerte. Das wiederholen sie an vielen
Systemen im Zustand pZ und berechnen schlieRlich den Mittelwert der Messwertprodukte.
Wir kommen auf nicht-lokale Observable noch einmal in Abschn. 9.2 zurtick.

7.3.5 Unitare Dynamik zusammengesetzter Systeme

Die von-Neumann-Gleichung (4.9) bzw. (4.10) (ibertragt sich nach den Postulaten auf zusam-
mengesetzte Systeme

_ [gAB ,AB ‘dPAB _ [AB,AB 7.62
= [HAP p P i = £ (7.62)

dpAB

i
BT

mit dem Liouville-Operator £A? € T.4 ® IL.Z. Wir verwenden das Schrédinger-Bild.
Wenn eine durch einen Hamilton-Operator H;;3P # 0 beschrieben Wechselwirkung zwi-
schen den Teilsystemen S4 und S* vorliegt, sind die einzelnen Teilsysteme offen (open quan-

tum systems). Der Gesamt-Hamilton-Operator hat dann die Form

HAB = gA 1P +14 @ HP + HAP . (7.63)
Der zugehorige Liouville-Operator ergibt sich als

LAB = A 4 P 4 B (7.64)
und fur die von-Neumann-Gleichung folgt:

_dpAB

=g = (LA + LB+ £dBYpB (1) . (7.65)

Dies fiihrt firr den reduzierten Dichteoperator p* auf die Differentialgleichung

A

A RS T = a0} (7.66)
Zur Bestimmung von p“(¢) muss man die volle Gl. (7.65) integrieren. Hierfir gibt es ver-
schiedene Naherungsverfahren. Wir werden in Abschn. 13.1 und 14 einen In-Out-Zugang (in-
out-approach) zur Dynamik offener Systeme kennenlernen, der nicht auf dem durch Gl. (7.66)
beschriebenen differentiellen zeitlichen Verhalten von p“(t) beruht, sondern in phdnomeno-
logischer Weise durch einen Superoperator den Endzustand p* (¢) auf den Anfangszustand
0 (tin) zuriickfuhrt,

7.4 Quantengatter fir mehrere Qubit-Systeme
7.4.1 Verschrankung durch das CNOT-Gatter

Die Verarbeitung von Quanteninformation wird oft schematisch ohne Bezug auf eine expe-
rimentelle Realisierung durch Quantenschaltungen (quantum circuits) veranschaulicht. Die
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Kontroll-Qubit |xz) |z)

Ziel-Qubit |y) |z ®©y)

g

Abbildung 7.4: CNOT-Gatter.

wesentlichen Bauelelemente, die dabei auftauchen, sind: Quantendrahte (quantum wires),
dies sind spezielle Quantenkanéle durch die Quantensysteme unbeeinflusst propagieren, sowie
Quantengatter (quantum gates), durch die unitdre Transformationen von Quantensystemen
bewirkt werden. Die Systeme sind Multi-Qubits aus Raumen Ho @ Ho @ Hos . . . Q@ Hs. Messun-
gen dienen zum Auslesen von Information. \Wegen der Unitaritét représentieren Quantengatter
umkehrbare Prozesse. Messungen sind demgegentber irreversibel. Quantencomputer (quan-
tum computers) sind ein Netzwerk von Quantengattern. Quantengatter fir Quantensysteme
aus Ho haben wir bereits in Abschn. 3.4 kennengelernt. Wir gehen jetzt zu Produktrdumen
uber. In Kap. 12 werden wir Quantenschaltungen zu Quantencomputern zusammensetzen.

Verschrankung durch das CNOT-Gatter Ein einfaches Quantengatter, das einen Qubit-
Produktzustand in einen verschrankten Zustand uberfihrt, ist das CNOT-Gatter (CNOT gate,
controlled NOT gate , XOR gate). Seine Wirkung auf der Rechenbasis von Hs!' @ H 2 ist durch

lz,y) — |2,y © ) (7.67)

mit «,y,... € {0,1} definiert. Damit liegt die Wirkung auf einen beliebigen Vektor aus
H4 @ HE fest. @ bezeichnet die Addition modulo 2, d.h. es gilt 1 & 1 = 0. Im Einzelnen
bedeutet das:

CNOT

0,0) = 10,0) (7.68)
0,1) 2 10, 1) (7.69)
11,0) 21, 1) (7.70)
11,1) 2971, 0) . (7.71)
Daraus folgt
(CNOT) - (CNOT) =1 . (7.72)

Mit Hilfe der Matrixdarstellung in der Rechenbasis priift man leicht die Unitaritat nach
(CNOT)' = (CNOT) ™! . (7.73)

Die Qubits des Systems A bzw. B werden Kontroll-Qubit (control qubit) bzw. Ziel-Qubit (tar-
get qubit) genannt (siehe Abb. 7.4).  Ein einfaches Beispiel zeigt, dass das CNOT-Gatter
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—Lrfe—li
—
Abbildung 7.5: Zwei dquivalente Netzwerke.

Superpositionen im Kontroll-Qubit in Verschrankungen von Kontroll- und Ziel-Qubit ber-
fuhrt:

(al0?) £ 8[1))[0%) = al0?,07) £ g1, 17) | (7.74)
(a]0?) £ B|1Y) [15) = o[04, 17) £ |14,05). (7.75)
Fira =g = % entstehen so die vier Bell-Zustande. Der reduzierte Dichteoperator vom

Ziel-Qubit ist in diesem Fall p® = 117 (entsprechend beim Kontroll-Qubit). Die Messung in
irgendeiner ONB von H# liefert die beiden Messwerte und Zustande in perfekter Zufalligkeit
mit den Wahrscheinlichkeiten 3.

Ein CNOT-Gatter und vier Hadamard-Gatter lassen sich zum Inversen eines CNOT-Gatters
zusammenbauen (siehe Abb. 7.5).

Die Schaltung von Abb. 7.6 aus drei CNOT vertauscht Kontroll- und Ziel-Qubit

lz,y) — |z, D y) — |y, Dy) — |y, 7). (7.76)

Abbildung 7.6: Vertauschen von zwei Qubits.

Das CNOT-Gatter ist der Spezialfall eines kontrollierten U-Gatters (controlled U gate)
(siehe Abb. 7.7). Es lasst |0,0) und |0, 1) unverdndert. |1,y) mity = 0,1 gehtin |1) ® Uly)
tber. CNOT ergibt sich mit U = o,.

Kontroll-Qubit |z)

Ziel-Qubit |y)

Abbildung 7.7: Kontrolliertes U-Gatter.
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Kontroll-Qubit |z) ——&———

Kontroll-Qubit |y) ———

Ziel-Qubit |z)

Abbildung 7.8: Toffoli-Gatter.

7.4.2 Toffoli-Gatter

Das Toffoli-Gatter (Toffoli gate) von Abb. 7.8 wird auch CCNOT-Gatter (controlled-
controlled NOT) oder doppelt kontrolliertes NOT-Gatter genannt. Bei ihm wird das NOT-
Gatter genau dann auf das Ziel-Qubit angewendet, wenn beide Kontroll-Qubits im Zustand
|1) sind. Die Wirkung von CCNOT ist

,y,2) = |z, y, 2 B xy) . (7.77)

Analog kann man ein doppelt kontrolliertes U-Gatter konstruieren (siehe Abb. 7.9)
Universelle Quantengatter (universal quantum gates) sind eine Menge von Quantengat-
tern, mit denen man jede unitére Transformation auf H, ® Ho ® ... ® Hs erzeugen kann. Es
lasst sich zeigen, dass z. B. das Deutsch-Gatter (Deutsch gate) hierflr ausreicht. Bei diesem
Gatter ist die unitare Transformation U von Abb. 7.8

0
U= —iexp (z;n) . (7.78)

Es gibt weitere universelle Gatter (vergl. Abschn. 7.5).

|z) ———

Abbildung 7.9: Doppelt kontrolliertes U-Gatter.

7.5 Erganzende Themen und weiterfihrende Literatur

e Zu ,proper mixture* und ,,improper mixture*: [d’Es95], [d"ES99].

e Die Idee, dass das Ganze mehr ist als die Summer seiner Teile, wird in der Philsophie als
Holismus (holism) oder Ganzheitlichkeit bezeichnet. Es gibt eine Reihe von philosophi-
schen Analysen, in denen versucht wird, dieser Idee in ganz verschiedenen Gebieten von
der Soziologie bis zur Physik ein prazise Bedeutung zu geben und ihre Konsequenzen
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zu untersuchen. Fir die naturphilosophische Frage, ob es Holismus in der Physik gibt,
haben sich mit den nicht-separablen Zustdnden zusammengesetzter Systeme ganz neue
Aspekte ergeben. Zwei unterschiedliche darauf aufbauende Analysen werden in [Esf 04]
und [See 04] vorgestellt (vergl. [Esf 02]). Dort ist auch weiterfiihrende Literatur angege-
ben. Siehe auch [Hea 99].

e Das Deutsch-Gatter ist ein universelles Gatter: [Deu 89], [Pre 98, Kap. 6.2.3].
e Zu weiteren universellen Gattern: [Pre 98, Kap. 6.2.3], [NC 00, S. 188], [BBC 95].
e Lokale Messungen und die Forderung der Relativitatstheorie: [PT 04].

o Ubersicht iiber Quantengatter fir Qubits: [Bra 02], [DiV 98].

7.6 Ubungsaufgaben

UA7.1[zu7.3.2] Zeigen Sie, dass p* und p? von Gl. (7.33) die Eigenschaften eines Dich-
teoperators erfillen.

UA 7.2 [zu 7.3.4] Bestatigen Sie die Ergebnisse von Abschn. 7.3.4 fir den Fall, dass der
Ausgangszustand kein reiner Zustand |4 ?), sondern ein Gemisch pA 7 ist.

UA 7.3 [zu 7.4] Zeigen Sie jeweils die Aquivalenz der Netzwerke von Abb. 7.5 und

S
7] By

Abbildung 7.10: Zwei dquivalente Netzwerke.

UA 7.4 [zu 7.4] Zeigen Sie, dass das Netzwerk von Abb. 7.11 Paare von Bell-Zustanden in
Paare von Bell-Zustanden Gberfihrt.

| |
— ]

Abbildung 7.11: Abbildung von Bell-Zusténden auf Bell-Zusténde.
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8 Verschrankung

Das Konzept der EPR-Korrelationen wird in Abgrenzung zu klassischen Korrelationen, die
es auch flir Quantensysteme gibt, operational begriindet und mit Verschrankung in Verbin-
dung gebracht. Fur reine Zustande kann das Vorliegen von Verschrankung tber die Schmidt-
Zerlegung festgestellt werden. Ein MaB fur Verschrankung wird angegeben und ein Beispiel
fur die Erzeugung verschrankter Zustande vorgestellt. Es ist eine fiir Anwendungen wichtige
Eigenschaft, dass Quantenzusténde nicht kopiert werden konnen. Dass Zustdnde durch Ver-
schrankung mit anderen Zustdnden markiert werden konnen, fihrt auf den Quantenradierer
und die Frage nach der verzogerten Wahl (,,delayed choice®).

8.1 Korrelationen und Verschrankung

Ein zusammengesetztes Spin-System mit zwei Teilsystemen kann sich z. B. in den Produkt-
zustanden |04, 05) und |14, 17), aber auch in deren Superpositionen |04, 05) + 814, 15)
befinden. Die Superposition o # 0, 3 # 0 ist ein Beispiel fur einen verschrénkten Zustand.
Verschrankte Zustande spielen eine fundamentale Rolle in der Quanteninformation. Sie sind
das zentrale Hilfsmittel mit dem nicht-klassische Effekte bewirkt werden.

Zusammengesetzte Systeme in verschrankten Zustanden sind korreliert. Wenn beim obi-
gen Zustand an den Teilsystemen jeweils die Observable o, gemessen wird, dann ergibt sich
immer nur die Messwertekombination (—1, —1) oder (+1, +1). Im Gegensatz zu korrelierten
klassischen Systemen sind aber in diesem Fall die Korrelationen von anderer Struktur. Mit
ihrer Hilfe sind Prozesse mdglich, die auf der Basis klassischer Korrelationen nicht méglich
sind. Wir wollen im Folgenden die entsprechenden Konzepte naher erlautern.

8.1.1 Kilassisch korrelierte Quantenzustande und LOCC

Korrelierte Quantenzustande Wir betrachten wieder ein zusammengesetztes System 545
mit den Teilsystemen S4 und SZ. Zu irgend zwei (voneinander unabhingigen) Zusténden p*
und p? gibt es immer einen Zustand pAB, so dass p? = trg[pAB] und pB = tro[pAB] gilt.
Der Produktzustand p48 = p# @ p? erfiillt diese Forderung. Nach Konstruktion liefern Mes-
sungen an den Teilsystemen stets voneinander unabhangige Messwerte. Umgekehrt wollen
wir Zustinde pA 7, die keine Produktzusténde sind

pAP £ pt @ pP (8.1)
korreliert (correlated) nennen.

Verschrénkte Systeme: Die Quantenphysik auf neuen Wegen. Jiirgen Audretsch
Copyright © 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40452-X



130 8 \erschrankung

Diese mathematische Charakterisierung ist &quivalent zu einer operationalen Aussage Uiber
Messwerte, die im Prinzip durch Messungen an den Teilsystemen Uberprift werden kann
(vergl. Abschn. 7.3.3): Ein Zustand p% ist genau dann korreliert, wenn es Observablen C4
und DZ gibt, fiir die der Erwartungswert von C4 ® D — gewonnen iber die Produkte der
zusammengehorigen Messergebnisse an S4 und S? — sich nicht als Produkt der Erwartungs-
werte der reduzierten Dichteoperatoren ergibt. (vergl. Ubungsaufgabe UA. 1 in Abschn. 8.7).

Klassisch korrelierte Quantenzustdénde Nach dieser allgemeinen Charakterisierung von
Korreliertheit wollen wir einen speziellen Typ von Korrelationen beschreiben. Wir gehen dazu
nicht wie oben von den Messwerten, sondern vom Praparationsverfahren aus.

Das Gesamtsystem S“Z wird von Alice und Bob durch lokale Operationen (das sind uni-
tare dynamische Entwicklung, Messungen und alle anderen Manipulationen mit lokalen Hilfs-
mitteln) und klassische Kommunikation prépariert werden. Man kiirzt ,,local operations and
classical communication” mit LOCC ab. Hierzu prépariert Alice am System S den Zustand
p2 und teilt das Bob tiber klassische Kommunikationskanéle mit, der seinerseits p? prapariert.
Dies wird haufig fur unterschiedliche r in zufélliger Weise unter Einhaltung der relativen H&u-
figkeiten p, wiederholt. Der praparierte Gesamtzustand p ist dann nach Konstruktion eine
Konvexkombination bzw. ein statistisches Gemisch (Gemenge) von Produktzustanden

PP = "pept @l (82)
r=1

Die klassische Kommunikation wird dabei von Alice und Bob dazu verwendet, um ihre loka-
len Aktionen zu korrelieren. Eine solche Prozedur kénnte genauso mit klassischen Zustanden
durchgefiihrt werden. Der Vergleich mit GI. (8.1) zeigt, dass der resultierende Zustand pZ
korreliert ist, wenn sich die Summe nicht auf einen Term reduziert. Da die Korrelationen
durch LOCC mit den Wahrscheinlichkeiten {p,} rein klassisch bewirkt werden, nennt man
einen Quantenzustand p“ %, der sich in Form (8.2) schreiben lésst, klassisch korreliert (clas-
sically correlated). Wir notieren noch, dass man nach Einfiihrung von Ensemblezerlegungen
fur alle p2 und pZ den Dichteoperator auch in der Form

PP =3 " mila ) ag @ bP) (6] (83)
J

mit0 < m; < 1und ), m; = 1 schreiben kann. Die beteiligten Zustande mussen dabei nicht
orthogonal sein.

Wie beim Ubergang von Gemenge zu Gemisch ldsen wir uns wieder vom speziellen vom
Praparationsverfahren. Ein Quantenzustand pZ wird auch dann als klassisch korreliert be-
zeichnet, wenn er nicht in dem oben beschriebenen Préparationsverfahren erzeugt worden ist.
Es reicht, dass er durch einen in dieser Weise préparierten Zustand in jeder Hinsicht simuliert
werden kann, dass also seine statistischen Eigenschaften durch einen LOCC-Mechanismus
reproduziert werden konnen. Mathematisch bedeutet das, dass p4Z sich in der Form (8.3)
schreiben lasst.

Eine allerdings begrenzte Analogie zu korrelierten klassischen Systemen ist offensichtlich.
Wir betrachten das Beispiel, dass in die Kisten von vielen Kistenpaaren mit der Wahrschein-
lichkeit p; entweder je eine rote oder mit der Wahrscheinlichkeit ps je eine blaue Kugel gelegt
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wird (p1 + p2 = 1). Wenn die Kisten gedffnet werden, stellt man eine Korrelation fest, die der
Korrelation bei der Messung der Spinkomponenten in z-Richtung im klassisch korrelierten
Quantenzustand

= 004 @ 07)(0%] + pa[ 1) (14| @ [17) (17| (8.4)

entspricht. Wenn man beim klassisch korrelierten Zustand (8.4) am Teilsystem S eine Mes-
sung in der Rechenbasis durchfihrt, dann fuhrt sie mit der Wahrscheinlichkeit p; auf den
Zustand |04) und SP befindet sich nach der Messung in dem zu |04) korrelierten Zustand
|0B).

Man sollte aber die Bezeichnung ,,klassisch korreliert* fir Quantensysteme nicht physika-
lisch Uberinterpretieren. Anders als in der klassischen Physik kann man in der Quantenphysik
in gedrehten Basen messen. Eine Messung am Zustand p*Z von Gl. (8.4) mit p; = p, = 3 in
der Basis {|02), [124)} mit dem Endzustand |04) fiir S4 fiihrt auf

/ 1
PP — p M =007 @ 17 (8.5)

Der Zustand von S® ist ein maximal gemischter Zustand. Die Zustédnde von S4 und S? sind
nach dieser Messung nicht korreliert. Dass pAZ von Gl. (8.4) klassisch korreliert ist, besagt
nur, dass man p“%Z durch LOCC préparieren kann, und dass man eine spezielle Messung
finden kann (in diesem Fall die Messung in der Rechenbasis), nach der die Zustdnde der
Teilsysteme Kkorreliert sind.

8.1.2 Separabilitat und Verschrankung

Es hat sich als sinnvoll erwiesen, die folgenden Begriffe einzufihren. Ein Zustand p 7 ei-
nes zusammengesetzten Systems S47 heilt separabel (separable) genau dann, wenn er in der
Form (8.2) einer Konvexkombination von Produktzustanden geschrieben werden kann. Ein se-
parabler Zustand ist somit klassisch korreliert oder gar nicht korreliert (m = 1). Einen reinen
oder gemischten Quantenzustand, der nicht separabel ist, nennen wir verschrénkt (entangled).
Ein verschrankter Quantenzustand enthélt daher nicht-klassische Korrelationen, die auch
Quantenkorrelationen (quantum correlations) oder EPR-Korrelationen' (EPR correlations)
genannt werden. Darin liegt seine grofRe physikalische Bedeutung.

Das Praparationsverfahren LOCC flihrt auf separable Zustande. Verschrankte Zustande
konnen nicht durch LOCC erzeugt werden. Man kann diese Charakterisierung auch als eine
aquivalente Definition von Verschrankung nehmen.

Es ist ein wichtiges Charakteristikum der Quantenphysik verglichen mit der klassischen
Physik, dass nicht alle Korrelationen klassisch sein mussen. Das sieht man unmittelbar am
Beispiel der reinen Zustinden in H4 @ HZ. Wir haben in Abschn. 4.1.3 gesehen, dass der
Dichteoperator eines reinen Zustands [:»45) nicht in eine konvexe Summe zerlegt werden

1Das Akronym EPR kiirzt die Namen A. Einstein, B. Podolsky und N. Rosen ab. Diese Personen haben in einer
bedeutenden Arbeit [EPR 35] den AnstoB zu solchen Uberlegungen gegeben, wie wir sie insbesondere in Kap. 10
durchfiihren wollen. Die Bezeichnung EPR hat sich allerdings in der Zwischenzeit weitgehend von dieser Arbeit ge-
16st und charakterisiert z. B. die Korrelationen, die an verschrankten Systemen gemessen werden, und die zugehdrigen
Experimente. EPR ist daher heute eine systematische Bezeichnung und kein historischer Verweis.
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kann. Damit kann er nicht wie in Gl. (8.2) klassisch korreliert sein. Wenn ein reiner Zustand
kein Produktzustand ist

[WAB) £ 16 @ [XP) (8.6)

und somit die Bedingung (8.1) fir Korreliertheit erfallt, ist er verschréankt und damit nicht-
klassisch korreliert. Das heif3t, er muR3 einen neuen Typ von Korrelationen enthalten, der bei
klassischen Systemen nicht auftritt. Wir werden die weitreichenden physikalischen Konse-
quenzen noch ausfuhrlich diskutieren.

8.1.3 Das Separabilitatsproblem

Da Verschrankung als Hilfsmittel eine groRBe Rolle spielt, ist es eine wichtige Aufgabe, Kri-
terien zu entwickeln, mit deren Hilfe abgelesen werden kann, ob ein gegebener Zustand ver-
schrankt ist. FUr reine Zustande von 2-Teile-Systemen ist das einfach. Der Zustand |/ ist
genau dann separabel, wenn er von der Form |/45) = |¢4) @ |\ P ) ist, d.h wenn jeder seiner
beiden reduzierten Dichteoperatoren ein reiner Zustand ist. Wir werden in Abschn. 8.2 mit der
Schmidt-Zerlegung ein weiteres Kriterium kennelernen, das auch auf ein Mal} fir Verschran-
kung fiihrt. Mit Hilfe der Quantenentropie der Teilsysteme werden wir in Abschn. 8.2.3 das
heute allgemein akzeptierte MaR fur die Verschrankung reiner Zusténde von 2-Teile-Systemen
einfuhren.

Fur gemischte Zusténde ist die Situation schwieriger. Wir verdeutlichen das an einem Bei-
spiel. Die Bell-Zusténde von Gl. (7.11) sind verschrankte reine Zusténde. Das kann man nach
dem oben angegebenen Kriterium unmittelbar an den reduzierten Dichteoperatoren ablesen,
die gleich 11 sind. Durch Mischen der verschrankten (1) Zustande |®47) und |®4F) mit

2
gleichen Wahrscheinlichkeiten entsteht der Zustand

1
PP = S(IBLEN@LT| + |@2F)(@27)).

2
Wenn man die Definitionen der Bell-Zustande einsetzt, ergibt sich
1
AP = S(0%,0%)(0%,07 4+ 14, 17)(14,17))
1
= 5 (10404 @ [07)(0%] + [14) (14 ® [17)(17]) . 8.7)

Der Zustand p4Z ist vom Typ (8.2) und daher nicht verschrénkt. Es ist moglich ihn alternativ
auch allein durch LOCC zu préparieren.

Ein gegebener Dichteoperator hat unendlich viele Ensemblezerlegungen. Wenn eine dar-
unter die Form (8.2) hat, ist der Zustand separabel, sonst ist er verschrankt. Eine Aussage
hiertber, die sich ja auf alle mdglichen Ensemblezerlegungen beziehen muB ist bis heute nicht
befriedigend méglich. Das entsprechende Forschungsprogramm wird das Separabilitatspro-
blem (separability problem) genannt: Ist ein durch einen Dichteoperator gegebener Zustand
eines zusammengesetzten Quantensystems separabel oder nicht? Allgemein anwendbare Mal3
fur die Verschrdnkung von Gemischen existieren ebenfalls bisher nicht. Wenn ein System aus
mehr als zwei Teilen besteht, ist die Situation noch komplizierter.
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Eine andere Aufgabe ist es, ein MaR fur die Korreliertheit von zwei Teilsystemen anzu-
geben. Wir werden den Korreliertheitsgrad in Kap. 6 mit Hilfe der von-Neumannschen wech-
selseitigen Entropie (bzw. Information) beschreiben. Dies ist ein weiter Themenkreis, in dem
Entropie eine wichtige Rolle spielt.

8.2 \erschrankte reine Zustande

8.2.1 Schmidt-Zerlegung

Fir die Diskussion der Verschrankung reiner Zustande |1, 7) von 2-Teile-Systemen hat sich
die Schmidt-Zerlegung (Schmidt decomposition) als besonders hilfreich erwiesen. Sie wird
auch bi-orthogonale oder polare Zerlegung (bi-orthogonal or polar expansion) des Vektors
|pAB) genannt. Sie besagt das Folgende:

|pAB) sei ein normierter Zustand des zusammengesetzten Systems S4Z im Produkt-
Hilbert-Raum HAZ = HA @ HP mit dimHA = o und dimHP = b. Mit pAB8 =
|pABY (A8 sind pA = trp[pAB] und pB = tra[pAP] die reduzierten Dichteoperatoren
der Teilsysteme S4 und SZ. Dann gilt:

(i) Der Vektor [¢»4B) kann in Form der Schmidt-Zerlegung?

k
W) =" palug, wh)  mitp, >0 (8.8)
n=1

geschrieben werden, wobei {|u2) (bzw. {|wZ)}) die orthonormierten Eigenvektoren von
pAinHA (bzw. pP in HP) mit geeignet gewahlten Phasen sind. Fiir paarweise verschie-
dene p,, sind die Vektoren |u:!) und |w?) bis auf eine Phase eindeutig bestimmt. Daraus
folgt:

(i) p? und p® haben dieselben nicht verschwindenden positiven Eigenwerte py,...,p, mit
k< min (a,b) (bei g-facher Entartung wird der entsprechende Eigenwert g-fach wieder-
holt).

Die Zahl & heiRt der Schmidt-Rang (Schmidt rank) von |4 5).

Zum Beweis zerlegen wir [¢»47) nach den ONB {|¢*)} bzw. {|d?)} von HA bzw. HP

a,b

[WP) =" aulef, af) (8.9)

li=1

und fiihren wieder die relativen Zustande

i) = auld?) (8.10)
=1

2E. Schmidt, Math. Ann. 63,433 (1906).
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ein:
a
=> et af) . (8.11)
=1

Die relativen Zustande |@{) sind i. a. weder orthogonal noch normiert. Wir zeigen wie die fiir
Gl. (8.8) behauptete Orthogonalitét erreicht werden kann.

Dazu wahlen wir als ONB {|c)} in GI. (8.9) speziell die orthonormalen Eigenvektoren
{|u)} von p# und zerlegen p*

A= an\u;?ﬂu;ﬂ mit p,, > 0, an =1 (8.12)

Esseip, > 0fir0 <n < kundp, = 0firk+1 < n < a. Die Vektoren |u?) sind nur
bis auf einen Phasenfaktor festgelegt. Andererseits gilt mit den zu {|u)} relativen Zustande

{lw7)}
pt o= st @)

= sl Juf)(u| © [0f )l =

l,n=1

Z [uit) (ur [trs ([of) (@7 ]] =
l,n=1

a

> (@l uit) (ug| (8.13)

I,n=1

wobei im letzten Schritt

=

trpllof W@y ] = Y (dPlaf) (@) |df) (8.14)
=1
b

= > (@FldP)afaf) = (@F |wf) (8.15)
=1

eingesetzt wurde. Der Vergleich von (8.12) mit (8.13) fuhrt auf die Orthogonalitét:

(WP 10P) = ppdy i k=1...n (8.16)

n

Furn > k + 1 sind die |@2) Nullvektoren. Damit ist die Behauptung von (i) bewiesen. (ii) ist
eine direkte Folge.
Mit GI. (8.16) reduziert sich die Summe in GI. (8.13) auf

k
A= palul)(ul] . (8.17)
=1
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Die {p,, } heiBen Schmidt-Koeffizienten. Wir ergdnzen noch, dass auch der reduzierte Dichte-
operator p? die p,, als Eigenwerte hat

k
p? =" palwf)(wf]. (8.18)
n=1

Das hat unmittelbar zur Folge, dass jede Funktion eines Dichteoperators, die nur von seinen
Eigenwerten abhangt, fir beide reduzierten Dichteoperatoren denselben Wert hat. Die von-
Neumann-Entropie, die wir in Kap. 6 eingeflhrt haben, ist ein Beispiel.

Ein Schmidt-Zerlegung bezieht sich immer auf einen bestimmten reinen Zustand ei-
nes zusammengesetzten Systems. Verschiedene Zustande haben verschiedene Schmidt-
Zerlegungen. Im allgemeinen kann die Schmidt-Zerlegung nicht auf Systeme mit mehr als
zwei Teilsystemen ausgedehnt werden. Etwas ahnliches wie die Schmidt-Zerlegung gibt es
fur Gemische nicht.

8.2.2 Schmidt-Zahl und Verschrankung

Wir wollen einige Beispiele fur die Nutzlichkeit der Schmidt-Zerlegung geben. {|u:)} bzw.
{lwB} mit n = 1,...., k heiRen Schmidt-Basen von H* bzw. 1. In ihnen sind die beiden
reduzierten Dichteoperatoren diagonal. Die Schmidt-Zahl & ist die Zahl der nicht verschwin-
denden Schmidt-Koeffizienten. |4 5) ist genau dann ein Produktzustand und damit nicht ver-
schrénkt, wenn die Schmidt-Zahl gleich Eins ist. p und p? habe dann den Rang Eins. Das
ist gleichbedeutend mit ¢r[(p*)?] = tr[(p?)?] = 1 Ob ein reiner Zustand |y 5) verschrankt
ist oder nicht, l&sst sich somit direkt an dem reduzierten Dichteoperator eines Teilsystems
ablesen. Die Schmidt-Zahl kann als ein MaR fir die Verschrénkung dienen. Darin liegt ihre
hauptséachliche Bedeutung. Weiterhin kénnen wir direkt ablesen: Wenn einer der reduzierten
Dichteoperatoren einen reinen Zustand beschreibt, dann tut es auch der andere. Wenn sich das
Gesamtsystem S5 in einem reinen Zustand [/ Z) befindet ist es daher unméglich, dass ei-
nes der Untersysteme sich in einem reinen Zustand befindet und das andere in einem echten
Gemisch. Wir werden diese Aussage noch verallgemeinern.

Ahnlich finden wir: Wenn ein Qubit-System mit einem System mit m linear unabhangi-
gen Zustanden verschrankt ist, dann besteht die Schmidt-Zerlegung nur aus zwei Termen. In
Rechnungen ist es oft geschickt diese Schmidt-Basis einzuflihren. Allgemein gilt der Satz:
Wenn ein Teilsystem die Dimension d hat, dann kann es mit nicht mehr als d orthogonalen
Zustanden eines anderen Systems verschrankt werden.

Wenn p und damit auch p® als einzige entartete Eigenwerte allenfalls die Null haben,
dann ist die Schmidt-Zerlegung durch p und p? eindeutig festgelegt. Man bestimmt dazu die
Eigenzustande von p# und p” und bildet das Produkt der Zustande zum gleichen Eigenwert

wie in Gl. (8.8).
Wir geben ein Beispiel fur Entartung an. Der Bell-Zustand
1
PABY = — (104,15 — 14,05 8.19
weP) ﬂ(l )= | ) (8.19)

ist wie alle anderen Bell-Zustande verschrankt. Die zugehorigen Basen in H4 bzw. H? sind
z.B. {|04),[14)} und {|1B), —|0F)}. Der Zustand | U4 5) weist eine sphérische Symmetrie
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auf, denn man bestétigt leicht, dass
L
V2

gilt, wobei |0,.) und |1,.) die Eigenvektoren von ro zu beliebigem Bloch-Vektor r sind (vergl.
Gl. (3.31)). Dies demonstriert, dass in diesem Fall die Schmidt-Zerlegung nicht eindeutig ist.
Wenn mehrere p,, in Gl. (8.8) Ubereinstimmen, kénnen die entsprechenden Vektoren |u? | w?)
durch Linearkombinationen ersetzt werden. Dem entspricht es, dass fiir [U45) die Eigenvek-
toren der reduzierten Dichteoperatoren

(wAB) = —_(j02,17) — [11,07)) (8.20)

A= P = %]1 (8.21)
nicht festgelegt sind.

Purifizierung Der folgende Hilfssatz ist niitzlich: Fir jedes System mit Dichteoperator p*
aus H existiert ein reiner Zustand |5 aus HA@H?, so dass p* der zugehorige reduzierte
Dichteoperator ist:

pt = tra]|6"P) (647]] . (8.22)

Zum Beweis betrachten wir die ONB {|u)}, in der p* diagonal ist:

p = palug)(upl. (8.23)

n=1

GemaR Schmidt-Zerlegung ist dann
645) = /palup, wh) (8.24)
n=1

mit irgendeiner ONB {|wZ”)} eine maogliche Purifizierung. Andere Purifizierungen gehen
durch unitdre Transformationen dieser Basis daraus hervor.Dies macht noch einmal deutlich,
dass es zur Bildung der Teilspur keine eindeutige Umkehrung gibt. Es gibt unendlich viele
Gesamtsysteme S5, die im Zustand S4 tibereinstimmen.

8.2.3 Entropie der Teilsysteme als Maf3 fur Verschrankung

Reine Zustinde eines 2-Teile-Systems S“% sind entweder in einem Produktzustand, dann
sind die Teilsysteme nicht korreliert, oder sie sind verschrankt, dann sind sie EPR-korreliert.
Korrelationen kdnnen in diesem Fall nur nicht-klassisch sein. Wir bezeichnen die Entropie
des Gesamtsystems mit S(AB) und die mit den reduzierten Dichteoperatoren p* = trg[p*?]
und p? = tr4[p“P] gebildeten Entropien der Teilsysteme mit S(A) und S(B). Da wir nur
reine Zustande betrachten liegt stets die maximale Information (iber den Gesamtzustand vor.

S(AB)=0. (8.25)
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Bei einem Produktzustand liegt auch Uber den Zustand der Teilsysteme die maximale In-
formation vor

S(A)=5(B)=0. (8.26)
Demgegeniber sind z. B. die Dichteoperatoren der Bell-Zustéande véllig strukturlos

pA =B = %]1 . (8.27)
Die Teilsysteme sind in diesem Fall maximal gemischt und maximal unbestimmt

S(A)=S(B)=1. (8.28)

Die Entropie (Unbestimmtheit des Zustands) der Teilsysteme ist ein MaR fiir die — vergli-
chen mit dem reinen Zustand — fehlende Information. Wenn man nur die Teilsysteme betrach-
tet, verliert man umsomehr Information tiber den Gesamtzustand, je mehr Informationen in
den Korrelationen zwischen den Teilzustdnden enthalten ist. Je groRer daher die Entropie der
Zustéande der Teilsysteme ist, umso starker ist der reine Zustand des Gesamtsystems korreliert
und damit verschrankt. Wir nehmen daher bei einem reinen Zustand [:/47) des Gesamtsys-
tems den Wert E(¢)) der Entropie der Teilsysteme

0< E(®@):=S(A)=8(B) <1 (8.29)

als MaR fur die Verschréanktheit des Zustandes. E () heilit auch Entropie der Verschrén-
kung (entropy of entanglement). Diese Quantifizierung der Verschrankung gilt nur flr reine
Gesamtzusténde. Fir gemischte Zustande gibt es eine Reihe von Vorschlégen fur Verschran-
kungsmaR, die im Spezialfall reiner Zustdnde von 2-Teile-Systemen mit E(1)) Ubereinstim-
men (vergl. Abschn. 8.6).

Die Entropie der Verschrankung hangt nur von den Schmidt-Koeffizienten ab. Sie ist basi-
sunabhangig und andert sich nicht unter lokalen unitaren Transformationen. Mit |p458) =
U4 @ UB|pAB) gilt E(v') = E(v). Zustande in Hy @ Hy fiir die E(y) = logd mit
d = dim H gilt, heiBen maximal verschrankt (maximally entangled). Bell-Zusténde sind hier-
fur ein Beispiel.

8.2.4 Teilsysteme in reinen Zustanden sind total isoliert

Wir beweisen einen Satz fiir Gemische, den wir fir reine Zustande von S4Z oben schon
erwahnt haben: Wenn bei einem 2-Teile-System S5, das sich in einem gemischten Zustand
pAB befindet, der reduzierte Dichteoperator p” eines Teilsystems S der eines reinen Zu-
stands ist, dann ist p*Z separabel. Da wir eine Aussage iiber Gemische anstreben, ist zum
Beweis dieses Satzes ein Ruckgriff auf die Schmidt-Zerlegung nicht méglich.

Wir diskutieren zunéchst den Fall, dass p“ ein Gemisch ist. p4 ist ein positiver Operator.
Er lasst sich nach seinen orthonormalen Eigenzusténden zerlegen, die wir zu einer ONB |u?)
ergénzen

p = Zrﬂuﬁ}(uf} , Zrn =1, Ty > 0. (8.30)

n n
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Entsprechendes gilt fiir p45

=D " sglud Py WPl D sg=1,  5,>0. (8.31)
q q

Es ist rechentechnisch giinstig, die Eigenvektoren |w;143> mit Hilfe der jeweiligen Relativ-

zustande | ~(”")B) zu |uZt) zu schreiben (vergl. Abschn. 7.3.5). Um die Rechnung tbersichtlich
zu gestalten, werden wir weitgehend auf die Indizes A und B sowie auf die Tilde verzichten.
Wir erhalten

[0g %) = i) = Z [t w0 (8.32)
und damit
pAB = Z sq\un,waQ)Mum,wfg”
q,n,m
= ) ) (um| @Y sglw( @) (wl?] . (8.33)
n,m q

Dies ist im allgemeinen kein separabler Zustand. Fiir den reduzierten Dichteoperator p* des
Teilsystems S folgt
A

p? = trp[p?P] = Zmn um|§js Dw?) . (8.34)

Bei der Spurbildung mit der ONB {|v;)} von H haben wir von der Relation
Z Z (Wil (wiP[v;) = sq(wi@wi?) (8.35)
q

Gebrauch gemacht.
Mit GI. (8.30) und (8.34) ergeben sich die Matrixelemente von p als

<uk|p |’U,1 = rkékl qu (q) . (836)
Wenn speziell r, = 0 ist, dann gilt
> sellwll =0 (837)
q

und mit s, > 0
w2 =0, |w?) =0 (8.38)

fir alle q.
Mit diesem Ergebnis kehren wir zum Ausgangsproblem zuriick. p* soll ein reiner Zustand
sein. Ohne Einschrankung setzen wir

pt = Jur) (w] . (839)
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Dann gilt 7,1 = 0 und damit |wﬁl‘?ﬂ> = 0 . Einsetzen in GI. (8.33) flhrt auf

PP = Jur) (ua| © D sglwi®) (wi?]. (8.40)
q

Der Dichteoperator p 7 ist also separabel. Das ergibt das bemerkenswerte physikalische Er-
gebnis: Wenn ein System in einem reinen Zustand ist, kann es nicht mit einem anderen System
verschrénkt sein. Es existieren keine Korrelationen zwischen diesem System und irgendeinem
anderen System. Es ist total isoliert.

Die Postulate aus Abschn. 2.1 beziehen sich auf reine Zustdnde. Die durch diese Pos-
tulate beschriebenen Systeme sind daher notwendigerweise auch gegen EPR-Korrelationen
isoliert. Wir notieren noch eine weitere Folge: Eine Messung an einem Teilsystem mit nicht-
entartetem Messwert Uberflhrt dieses Teilsystem in einen reinen Zustand. Daher durchbricht
diese projektive Messung die Verschrankung mit anderen Teilsystemen unabhéngig davon, ob
das Gesamtsystem vorher in einem gemischten oder in einem reinen Zustand war. Wieder
erwiest sich eine projektive Messung als ein i.a. starker Eingriff.

8.3 Erzeugung verschrankter Zustande

Die Erzeugung von verschrankten Zustanden ist vom theoretischen Standpunkt aus sehr ein-
fach. Ein zusammengesetztes System, das aus zwei Teilsystemen bestehen soll, mége sich
zum Zeitpunkt ¢q in einem Produktzustand

[pAP) = |¢ph) @ [xP) (8.41)

befinden. Wenn das System fir ¢ > ¢y eine dynamische Entwicklung mit einem unitéren
Operator UAP erfahrt, der kein Produktoperator ist

UAB LUAQUP | (8.42)

— dies ist der Normalfall — dann geht es dabei in einen verschrankten Zustand uber. In diesem
Sinne ist Verschranktheit der ,,Normalzustand,,. Tatsachlich erfordert die gezielte Produktion
wohlbestimmter verschrankter Zustande (wie z. B. der Bell-Zusténde) fiir vorgegebene Sorten
von Quantenobjekten (wie z. B. Photonen) experimentellen Aufwand.

Kaskaden-Photonen Es gibt heute eine Reihe experimenteller Méglichkeiten, verschrankte
Zustande im Labor zu erzeugen. Wir wollen exemplarisch ein Beispiel diskutieren. Fir den
Nachweis von Korrelationen sind die Polarisationen von Photonenpaaren besonders geeignet,
da Photonen ohne Stdrung Uber Labordistanzen und noch groRere Entfernungen propagie-
ren. Wir schildern eine Quelle fiir Verschrankung, die im optischen Bereich arbeitet. Weitere
Einzelheiten finden sich in den Literaturangaben in Abschn. 8.6.

Ein Atom geht in zwei aufeinander folgenden Ubergéngen in einer Kaskade (cascade) aus
einem angeregten Zustand uber einen Zwischenzustand in den Grundzustand tiber. Eine solche
Kaskade kann z. B. mit Kalziumatomen realisiert werden (vgl. Abb. 8.1). Die beiden emittier-
ten Photonen haben die Wellenldngen A4 = 551,3 nm bzw. Ag = 422,7 nm. Sie werden
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i.a. nicht in entgegengesetzten Richtungen davonfliegen. Man beschrankt sich im Experiment
aber auf Paare, bei denen z. B. das Photon mit Wellenldnge A 4 in positiver und das mit Wel-
lenlange Ap in negativer z-Richtung fliegt. Da bei dem J =0 — J = 1 — J = 0 Ubergang
sich der Gesamtdrehimpuls J nicht &ndert, mussen diese Photonen zirkular polarisiert sein
und entgegengesetzten Drehimpuls haben. Aus den Einzelheiten des atomaren Zerfalls folgt
weiterhin, dass der Gesamtzustand der beiden Photonen gerade Paritdt haben muss. Diese
beiden Bedingungen sind vom Zustand des 2-Photonen-Systems zu erfullen.

Wir haben in Abschn. 3.6 gesehen, dass die rechts- und linkspolarisierten Zustédnde bei
vorgegebener Ausbreitungsrichtung k eine Basis im Hilbert-Raum 7 der Polarisationen bil-
den. Fir das Photonenpaar sind also |[R4, RB), |[RA, LP),|LA, RB), |LA, LP) eine Basis des
Produktraumes H4 @ HZ, Mit A und B bezeichnen wir dabei die positive bzw. negative z-
Richtung in der die einzelnen Photonen fliegen. Der Wellenvektor k ist also in einem Fall
proportional zu e, und im anderen zu —e,. Wegen des verschwindenden Gesamtdrehimpul-
ses kann der 2-Photonen-Zustand nur eine Linearkombination aus |R4, R®) und |LA, LP)
sein (vergl. Abb. 8.2)

0"%) = a|RA, RP) + B|LA, LF) . (8.43)

Aus der Physik des atomaren Ubergangs kommt eine weitere Forderung hinzu: Der 2-
Photonen-Zustand mu gerade Paritat haben, Das heifst, wenn man Rechtshandigkeit mit
Linkshandigkeit vertauscht, muB er in sich selbst tibergehen. Das ist offenbar nur méglich
fiir eine spezielle Wahl von o und 3:

L
V2

Der 2-Photonen-Zustand ist daher auf Grund der Symmetrien des Erzeugungsprozesses, die
er widerspiegeln muf3, ein Bell-Zustand.

Die Verschranktheit wird plausibel, wenn man berucksichtigt, dass der intermediére Zu-
stand mit J = 1 entartet ist. Der Grundzustand kann daher tber zwei verschiedene Zwischen-
zusténde erreicht werden (vgl. Abb. 8.1). Beide ,,Wege* sind mdglich. In Analogie zu den
»Wegen* beim Doppelspalt interferieren die resultierenden Zustande. Dabei werden auf dem
einen ,,Weg" zwei rechtszirkular polarisierte Photonen emittiert und auf dem anderen zwei
linkszirkulare. Diese Korrelation filhrt zusammen mit der Superposition auf Verschrankung.

4By = (|R*, RP) +|L*, LP)) . (8.44)

J=0
Aa = Hblnm

J=1
Ap = 423nm

J=0

Abbildung 8.1: Ubergangsschema der Kaskaden-Photonen.
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|RB) |RA)
B O Ap JRY: A
y
xr
[LP) )
B Q Ap JRY: A
y

Abbildung 8.2: Polarisationen der Kaskaden-Photonen

Der Bell-Zustand |<I>ﬁ3> von Gl. (8.44) gibt genau diese Entstehungssituation der Photonen-
paare wieder.

Fur spatere Zwecke rechnen wir noch auf die linearen Polarisierungen in xz-Richtung und
y-Richtung um. Wir kénnen hierzu Gl. (3.63) und (3.64) benutzen, miissen dabei aber die
Konvention von Abb. 8.2 bei der Ausbreitungsrichtung beachten. Wir finden

R = () + i)
24 = (o) = ily) (8.45)
IRE) = = (la) = ily™)
27) = (™) +ily™)
und damit fir den verschrankten Zustand
@27 = (2" 2®) + " o™). (8.46)

In unserer Rechnung war die Lage der z-Achse und der y-Achse nicht festgelegt. Gl. (8.46)
gilt fur beliebige Orientierungen. Der Zustand |®<7) ist rotationssymmetrisch bezglich der
z-Achse. Wir kommen auf diesen 2-Photonen-Zustand in Kap. 10 zurick.

8.4 Informationsubertragung mit
Uberlichtgeschwindigkeit und das No-cloning-Theorem

Wir haben gesehen, dass eine Messung am Teilsystem A das Teilsystem B instantan in einen
wohlbestimmten Zustand Uberfiihrt. Das Wort ,,instantan* ist verfiihrerisch. Stellen wir uns
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vor, es ist ein verschrankter reiner Zustand erzeugt worden, dessen Teilsystem S sich bei
Alice befindet und dessen anderes Teilsystem S? sehr weit entfernt bei Bob befindet. Alice
versucht an Bob eine Information mit einem Bit zu (ibermitteln, indem sie wahlweise eine von
zwei nicht kommutierenden Observablen an ihrem Untersystem S4 misst. Falls es Bob gelingt
durch Messung an seinem Untersystem SZ diese Information auszulesen, dann wére sie mit
Uberlichtgeschwindigkeit tibertragen worden und die Relativititstheorie ware widerlegt.

Wir beschreiben das vorgeschlagene Verfahren im Einzelnen. Alice und Bob haben jeweils
Zugriff auf ein Photon eines polarisationsverschrankten Photonenpaars, das sich z. B. im Bell-
Zustand

_ L S
V2 V2

befindet. Alice flihrt eine Messung entweder in der {|H), |V')}-Basis oder in der um 45°
gedrehten Basis mit den Vektoren |+45°) = (|H)+|V))/v2und | -45°) = (|H)—|V))/v/2
durch. Diese beiden Basissysteme sind Bob bekannt. Die Wahl der einen oder der anderen
Basis durch Alice ist die Information, die Gibertragen werden soll.

In dem Augenblick, in dem Alice durch Messung mit einem Observablenoperator zu ei-
nem der beiden Basissysteme ihr Photon in einen bestimmten Zustand (z.B. | — 45°)) tber-
fiihrt, geht der Zustand des Photons bei Bob in den dazu senkrechten Zustand tiber (im Beispiel
| + 45°)). Wenn Bob die Polarisation seines Photons messen kdnnte, dann kénnte er die Bot-
schaft von Alice lesen. Bob kann aber zur Messung nur zuféllig eine der beiden Basen wahlen
und es steht ihm zur Messung auch nur ein Photon zur Verfligung. Wenn Bobs Photon wie in
unserem Beispiel im Zustand | + 45°) ist und er in der Basis {|H?), |V )} misst kann ent-
weder der Detektor zu H-Polarisation oder der Detektor zu V-Polarisation ansprechen. Eine
einzige Messung reicht also nicht aus, um die (+45°)-Polarisation mit Sicherheit zu ermitteln.
Bob kann daher die Information nicht auslesen. Wenn Bob aber eine Maschine hétte, die viele
Kopien seines Photons herstellen kann, dann ware eine Zustandsbestimmung und damit die
Informationsuibertragung mdglich. Das fiihrt auf die Frage, ob man Quantensysteme klonen
kann.

V) (1H,V) = [V, H)) = —=(| — 45°,45°%) + [45°, —45%)) (8.47)

No-cloning-Theorem  Wir wollen beweisen, dass es keine Maschine gibt, die beliebige un-
bekannte reine Quantenzustéande kopieren kann. Zunéchst beschreiben wir eine andere Situati-
on, in der Kopieren maglich ist. Wir zeigen, dass es fur orthogonale Zusténde |0) und |1) einen
hierfiir angepassten Kopierer gibt. Es ist das entsprechende CNOT-Gatter aus Abschn. 7.4.1.
Wenn das Kontroll-Qubit die Form |1)4) = «[0) + B|1) hat und |07) als Ziel-Qubit gewahlt
wird, dann besteht die Wirkung des CNOT-Gatters zur Basis {|0),|1)} in

A, 07) — [¢7F) = 2|0,0) + 8|1, 1) (8.48)

Die beiden orthogonale Zusténde des Kontroll-Qubits |0) oder |1) (d.h. 5 = 0 oder o = 0)
werden daher durch das dieser Basis angepasste Gatter kopiert. Bis auf diese beiden Grenzfalle
wird die Superposition |») aber auf diese Weise nicht kopiert.

Wir wenden uns dem allgemeinen Fall zu. Ein Quantensystem S ist im Zustand [/4).
Dieser Zustand soll kopiert werden. Das heift, ein zweites Quantensystem S, das sich zu-
nachst im Zustand |i?) befindet, soll in den Zustand |+/?) tberfihrt werden. Dabei kann der
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anfangliche Zustand |i“) des Kopiersystems S¢ in einer von |)?) abhangigen Weise in einen
neuen Zustand | f(1/)¢) tibergehen. Die Gesamtprozedur soll universell sein, d. h. fiir alle Zu-
stande von S soll mit der gleichen unitiren Transformation U eine Kopie erstellt werden.

| ) ist ein zweiter zu kopierender Zustand. Dann lautet die Forderung:

[WENCY 5 )P F(@)) (8.49)

eiPN%) 5 [P F(2)C) - (8.50)
Die unitare Transformation erhélt das innere Produkt

WAy = WA e (WP 1) (F ()1 f(9)€) . (8.51)
Wenn |¢4) und |p4) nicht orthogonal sind ({1)*|p4) # 0) folgt

1= (@P10%) (F()°1f(9)€) - (8.52)

Wir gehen zu Betragen iiber. Da alle Zustdnde normiert sind mit |(/Z|¢®)| < 1 und

[{F@)C1f(@)9)] < 1, ist
[WPleP) =1 d.h[g?) = |pP) (853)

eine notwendige Bedingung fir die Erfiillung von (8.52). Daher hat die Anlage keinen zwei-
ten zu |¢4) nicht orthogonalen Zustand o) kopieren kénnen. Es gibt keinen universellen
Kopierer fiir reine Quantenzustéande (No-cloning-Theorem).

Damit misslingt auch der oben beschriebene Versuch, einen Widerspruch zwischen Rela-
tivitatstheorie und Quantentheorie zu konstruieren. Die konfliktfreie Koexistenz beider Theo-
rien ist bemerkenswert, da bei der Formulierung der Quantentheorie in der unrelativistischen
Form, wie wir sie verwenden, die Forderungen der Relativitatstheorie nicht beriicksichtigt
wurden.

8.5 Zustandsmarkierung durch Verschrankung

8.5.1 Welcher-Weg-Markierung

2-Wege-Interferometer Wir erinnern zunéchst an das in Abschn. 3.7 behandelte Mach-
Zehnder-Interferometer (vgl. Abb. (3.8)), das von einem einzelnen Quantenobjekt durchlaufen
wird. Der erste Strahlteiler dient dazu, eine symmetrische Superposition der den beiden Wegen
zugeordneten Zusténde |0) und |1) zu erreichen. Das Quantensystem in diesem Zustand trifft
auf einen Strahlteiler mit Phasenschieber. Hierdurch werden die komplexen Amplituden des
|0)- und des |1) -Vektors im 0-Ausgang hinter dem Strahlteiler superponiert. Ein Detektor im
0-Ausgang kann dann je nach Situation ein von der eingestellten Phasenverschiebung « abhén-
giges Interferenzbild registrieren. Genauer besagt das, dass seine Ansprechwahrscheinlichkeit
p(a) eine Funktion von « sein kann. GemdR Gl. (3.87) ergibt sie sich flr einen beliebigen
einfallenden Zustand p als

pp(a) = tr[p|a){a] (8.54)
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mit
1
a) = —
) 7
Fr einen einlaufenden reinen Zustand |¢) sind Ansprechwahrscheinlichkeit und Streifenkon-

trast des Interferenzbildes in Abschn. 3.7.2 angegeben worden. Wir notieren diese Ergebnisse
noch einmal.

(10) + e[1)). (8.55)

Die Zuordnung eines einlaufenden Zustands |x) zu einem Weg ergibt sich indem man vor
Phasenschieber und Strahlteiler einen Detektor entweder in Weg 0 oder Weg 1 einschiebt.
Bei |x) = |0) (bzw. |x) = |1)) spricht nur der Detektor auf Weg 0 (bzw. auf Weg 1) an.
Das Quantenobjekt propagiert auf dem 0-Weg (bzw. dem 1-Weg). Bei der Interpretation des
Gemischs

1 1
p=5(0)(0]+ [1)(1]) = 51 (8.56)

als Gemenge wirde das Quantenobjekt entweder auf dem Weg 0 oder auf dem Weg 1 jeweils
mit der relativen Haufigkeit 1/2 einlaufen. In all diesen Féllen tritt keine a-Abhéngigkeit und
damit keine Interferenz auf:

Py (@) =Py (0) = pyla) = 5 (®57)

Der Streifenkontrast v ist
Vigy = Vj1y = v, = 0. (8.58)
Einem reinen Zustand |x), der eine Superposition von |0) und |1) ist, kann man keinen

Weg mehr zuordnen. Dementsprechend tritt Interferenz auf. Der allgemeine Qubit-Vektor
[x(©, ¢)) und der dazu senkrechte Vektor |y, (©, )) haben die Form (vgl. Gl. (3.88))

IX(0,¢)) = cos g\O) + €' sin %|1> (8.59)
IX1(0,¢)) = —sin%|0) + et COS%|1> (8.60)
= Ix(m+6,¢)).

Sie bilden eine ONB. Mit p(«) von GI. (3.87) folgt damit fiir die Ansprechwahrscheinlichkeit
des Detektors als Funktion der Phasenverschiebung

P (@) = %[1 + sin © cos(a — ¢)] (8.61)
Py (@) = %[1 —sin O cos(a — ¢)] . (8.62)

Fur den Streifenkontrast ergibt sich

V\X) = V|X¢> = sin ©. (863)
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Wenn nicht speziell der Zustand |0) oder |1) einl&uft, entsteht mit variierendem « ein Interfe-
renzbild.

Die Interferenzbilder zu [x) und |y ) sind fur ¢ = —7 in Abb. (8.3) dargestellt. Man
sieht, dass sich bei Addition der Wahrscheinlichkeiten bzw. relativen Haufigkeiten die Ab-
hangigkeiten der Kurven von der Phasenverschiebung o gerade aufheben. Die Interferenz

verschwindet:

Pl Py = 1. (8.64)
Diese Addition gibt die Situation wieder, die bei dem gleich gewichteten statistischen Gemisch

1 1
p= 500+ Ixnlel) = 51 (8.65)
aus den Basiszustanden |x) und |y ) vorliegt. Wie in GI. (8.57) erhalten wir p,, = 1.
Pl (@) Plxy)(@) Py (@) + Py ) (@)
1+ 1+ 1+

1/2 \/ 1/2 /\ 1/2

T T T
or @ 2r @ or @

Abbildung 8.3: Die Interferenzbilder zum Zustand | ) und dem dazu senkrechten Zustand |x 1 ).

Verschrankung mit Markerzustdénden Wir betrachten als Beispiel einzelne Atome im
Atominterferometer. Die folgenden Uberlegungen gelten aber allgemein. Das Atom im Qubit-
Zustand mit maximalem Streifenkontrast

IX?) = col0?) + 1) (8.66)

soll im Interferometer mit einem weiteren Qubit-System S so in nicht-lokaler Weise wech-
selwirken, dass daraus der verschrénkte Zustand

M) = o[04, 0M) 4 ¢q 14, 1) (8.67)

des Gesamtsystems 54 entsteht. Die Atomzusténde {|04),|14)} werden durch die zugeho-
rigen Markerzustande {|0*), |1)}, die ebenfalls Eigenzustande zu o, sind, ,,markiert*. S™
heilst das Markersystem. Im vorliegenden Fall handelt es sich entsprechend der Bedeutung
von |0M) und |1M) um Welcher-Weg-Marker (which-way marker). In anderen physikalischen
Situationen kdnnen Marker auch innere Freiheitsgrade z. B. eines Atoms oder andere Quante-
nobjekte sein.

Die Wechselwirkung zwischen S4 und S, die die Markierung bewirkt, muss folgendes
erreichen

(col0™) + c1 1) [iM) — ¢0|0,0M) 4 ¢ |14, 1M) . (8.68)
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Wenn man Fragen der physikalischen Realisierbarkeit auler Acht lasst, kann eine unitére
Transformation, die das leistet, leicht angegeben werden:

UAE =104 (0] @ [0™) 0] + [14) (14 @ [14)(1™]. (8.69)

Als Ausgangszustand des Marker-Systems wahlen wir |iM) = %(OM) + [1MY), UAB st
offenbar eine nicht-lokale Transformation. Im Spezialfall, dass das Atom auf dem Weg 0
kommt, wird der Marker in die ,,Position“ |0™) gebracht und entsprechend in die Position
|1M) bei Weg 1. Nur wenn das Atom in einer Superposition einlduft, entsteht ein verschrank-
ter Zustand.

Verlust der Interferenzfahigkeit Was besagt die Welcher-Weg-Markierung von Gl. (8.67)
physikalisch? Wir messen am Marker-Qubit in der Rechenbasis {|0*),[1%)} oder anders
gesagt, wir messen die Markerobservable. Beim Messergebnis +1, das zu [0*) gehort, lauft
das Atom auf dem 0-Weg weiter, bei —1 auf dem 1-Weg. Messung der Markerobservablen
bricht also die Interferenz auf und legt fiir das Atom einen Weg fest.

Bemerkenswerter Weise ist es fir den Verlust der Interferenzfahigkeit gar nicht nétig,
dass am Markersystem gemessen wird. Nachdem durch Markieren der verschrankte Zustand
|4 von GI. (8.67) mit reduziertem Dichteoperator

p = trar[p™M] = [eof 2|04 (04 + fea 1) (1 (8.70)

entstanden ist, stimmt der reduzierte Dichteoperator des Atomsystems p* hinsichtlich aller
Wahrscheinlichkeitsaussagen mit Gemenge der Zustande |0) und |14) Gberein. Die Interfe-
renz verschwindet. Wenn man interferierende Zustande markiert, geht die Interferenzfahigkeit
selbst dann verloren, wenn an den Markern garnicht gemessen wird.

Die Information, die vor der Markierung im reinen Zustand |x*) des Atoms steckte und
die das Interferenzbild bestimmt hat, ist nicht mehr im Zustand des Atoms gespeichert und
kann durch Messungen am Atom nicht abgerufen werden. Tatsdchlich ist sie bei der unitéren
Verschrankungsdynamik aber nicht verloren gegangen. Sie wurde als wechselseitige Informa-
tion in den Korrelationen mit dem Markersystem deponiert. Wir wollen jetzt sehen, wie man
sie dort wieder abrufen kann indem man Korrelationen misst.

8.5.2 Quantenradieren

Wir betrachten der Einfachheit halber den Spezialfall ¢; = ¢ = %
1
AM A M A 1M
= — (|0%,0™) + 17,1 8.71
M) = 5 (0%, 0%+ 1,1M)) ®71)
i %nf‘. (8.72)

Da der Interferenz zerstérende Einfluss der Markierung wieder beseitigt werden soll, spricht
man vom Quantenradieren(quantum erasure). Die Uberlegungen im vorigen Kapitel zu den
Basiszustanden |x (O, ¢)) und |y (©,¢)) mit © = 0,7 geben einen Hinweis darauf, wie
man aus dem vorliegenden Gemisch p* Informationen gewinnen kann. p* ist in unserem Fall
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kein statistisches Gemisch (Gemenge), sondern ein reduzierter Dichteoperator eines Teilsys-
tems. Er ist aber im Hinblick auf alle denkbaren Aussagen tiber Messungen nicht von einem
Gemenge zu unterscheiden, das durch Mischen der Zustande |y#) und |x4') entsteht. Wenn
es nach der Markierung gelénge, erstens die Atome in die Zustande | ) oder |x4) zu tber-
fuhren und zweitens Atome im Zustand [x“) von denen im Zustand |x') zu trennen, dann
wirden die zugehdrigen atomaren Ensemble auf die Interferenzbilder von Abb. 8.3 fiihren.
Sie stimmen mit den urspriinglichen Interferenzbildern zum Zustand |x4) bzw. |x4') bis auf
eine Phasenverschiebung und mdglicherweise geringeren Phasenkontrast iberein. Da das Ge-
samtsystem p4 in einem reinen Zustand |¢) vorliegt, kénnen wir tatsichlich beide For-
derungen durch geeignete Messung am Markersystem S™ erfiillen. Wir werden ein solches
oder ein &hnliches Verfahren noch haufiger verwenden. Es besteht allgemein darin, dass ein
System mit einem Hilfssystem verschrankt wird und dann am Hilfssystem gemessen wird, um
den Zustand des Ausgangssystems in gewinschter Weise zu manipulieren.

Um im vorliegenden Fall Quantenradieren zu erreichen, gehen wir folgendermalien vor:
Der verschrankte Zustand |4 von GI. (8.67) lasst sich mit Hilfe ,,gedrehter* Markerzu-
stande (vergl. Bloch-Kugel)

IAM(©,¢)) = %(cos %OM> et sing\lM» (8.73)
AV (O, ¢)) = %(— sin%|0M> et cos%\lM» (8.74)
in der zu GI. (8.71) vollig analogen Form
1 ,
[044) = (e AY) + Ixd AL)) (8.75)

schreiben. Dadurch sind bei unverandertem Gesamtzustand | ') die interferenzfahigen Zu-
stande |x“) und |x7') statt der Zustande [04) und [14) mit den neuen Markerzustanden ver-
schrénkt. Eine Messung am Markersystem in der Basis {|AM), |AY1)}, die auf die Messwerte
1+ und —1 fihren soll, Uberfiihrt den Atomzustand in |x“), wenn der Messwert +1 ein-
getreten ist, bzw. in |x4') beim Messwert —1. Bei einer nicht-selektiven Messung fiihrt das
resultierende statistische Gemisch p** von GI. (8.65) aber noch immer nicht auf ein Interfe-
renzbild.

Der entscheidende zweite Schritt besteht daher in einer Selektion, also in einer Entmi-
schung des Gemisches. Betrachten wir nur die Beitrdge derjenigen Atome zum Interferenz-
bild, die in der Messung mit dem Messergebnis + prépariert wurden, dann erhalten wir das
Interferenzbild von Abb. 8.3 zu pj,)(a) von Gl. (8.61). Entsprechend finden wir nach Se-
lektion zum Messergebnis —1 die Interferenzkurve p,  y(«) von Gl. (8.62). Durch selektive
Messung in einer ,,gedrehten‘“Markerbasis wird der die Interferenz zerstérende Einfluss auf-
gehoben. Die Interferenzkurve wird reproduziert. Der Streifenkontrast v = 1 wird mit© = 3
erzielt. Fir ¢ = 0 sind dann die Markerzustande die Eigenzusténde zu o..

8.5.3 Tatsachlich ,,delayed choice*?

Gedankenexperimente Die Experimente, die zur ,,Welcher-Weg“-Markierung vorgeschla-
gen oder durchgefiihrt wurden, sind quantenoptische bzw. atomoptische Experimente. Wir
mussen uns hier mit Literaturhinweisen begnugen (vergl. Abschn. 8.6).
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Ohne Anspruch auf einfache Realisierbarkeit kénnen wir uns in Abwandlung vom oben
beschriebenen Experiment in einem Gedankenexperiment folgenden Versuchsaufbau vorstel-
len: Ein Atom durchléuft ein Atominterferometer. Im Zustand |0) emittiert es ein Photon mit
vertikaler Polarisation |[V*), im Zustand |1) mit horizontaler Polarisation | *!). Das Photon
dient als Markersystem M. Seine beiden Polarisationszusténde sind die Markerzusténde. Die
von den einzelnen Atomen emittierten Photonen werden getrennt gespeichert. Es wird dafur
gesorgt, dass z. B. durch Durchnummerieren eine eindeutige Zuordnung zwischen den ein-
zelnen Photonen und Ereignissen am Atomdetektor besteht. Es wird dabei zunachst nicht an
den Photonen gemessen, sondern erst die Messung an vielen Atomen abgewartet. Ist in dieser
Situation, in der die Atome nicht mehr zur Verfligung stehen, noch Quantenradieren méglich?
Wir kommen auf diese Frage noch zurlick.

Die in Abschn. 3.7 beschriebene Situation des Strahlteilers mit Phasenschieber hat grofe
Ahnlichkeit mit der physikalischen Situation hinter einem Doppelspalt, wie wir sie in Ab-
schn. 2.1.1 diskutiert haben. Der Zustand |04) bzw. [14) steht in Analogie zu dem Zustand,
der vorliegt, wenn nur der erste (bzw. nur der zweite) Spalt gedffnet ist. Diese Zustédnde su-
perponieren. Das Resultat wird als unterschiedlich starke Schwarzung an Orten des Schirms
beobachtet. Durch die Wegunterschiede interferieren die Zustédnde |0) und |1) dabei mit einer
Phasenverschiebung «. Eine mdgliche Markierung kénnte dann im Prinzip darin bestehen,
dass Atome hinter Spalt 1 dazu gebracht werden, vertikal polarisierte Photonen auszusenden
und hinter Spalt 2 entsprechend horizontal polarisierte Photonen. Auch dieses Gedankenex-
periment ist zu einfach, um direkt experimentell realisierbar zu sein. Wir erwahnen es, da in
der ,,Welcher-Weg“-Diskussion gerne der Doppelspalt angefuhrt wird. Wiederum kénnte man
im Prinzip zunéchst alle Atome registrieren und erst dann die Polarisation der zugehdrigen
Photonen bestimmen.

Interpretation Weil in Diskussionen zur ,,Welcher-Weg*“-Markierung haufig Missversténd-
nisse auftauchen, wollen wir uns kritisch fragen, wie die oben beschriebene Rechnung zu
interpretieren ist. Die Markierung besteht darin, dass das Gesamtsystem S4 aus einem
Produktzustand in den verschrénkten Zustand (8.67) tiberfuhrt wird. Der Zustand |x4) von
Gl. (8.66), der urspriinglich vorlag, hat Interferenz gezeigt. Die darin enthaltene Information
ist nach der Verschrankung in den Korrelationen gespeichert. Sie kann durch Messungen al-
lein an S4 oder allein an S* nicht abgerufen werden. Wir miissen an beiden Untersystemen
messen und die Messergebnisse in Paaren zusammenfassen: am ersten Atom-Photon-Paar er-
haltene Messergebnisse, am zweiten Atom-Photon-Paar ... usw.

Wir wollen in diesem Zusammenhang auf einen fir die Interpretation wichtigen Punkt
hinweisen. Wir hatten schon in Abschn. 7.3.4 gesehen, dass es fur die Korrelationen zwischen
den Messergebnissen nicht darauf ankommt, in welcher zeitlichen Reihenfolge an den Teil-
systemen gemessen wird. Das ist auch hier so. Man muss also nicht, wie oben dargestellt,
zunachst am Markersystem messen. Man kann mit gleichem Ergebnis auch erst Detektor-
messungen an einer grofen Zahl nacheinander eintreffenden Atome machen und die Ergeb-
nisse durchnummerieren. Die zugehdrigen Photonen werden in diesem Gedankenexperiment
ebenfalls jeweils durchnummeriert und ohne Messung getrennt abgespeichert. Erst in einer
spateren Phase des Experiments werden dann die Photonen mit der ,,gedrehten* Markerob-
servablen einzeln gemessen und die Ergebnisse durchnummeriert. Korreliert man schlielich
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gemal ihrer Nummer die Messergebnisse an Atomen und Photonen, dann ergibt sich nach
Selektion das Interferenzbild. Die Ergebnisse der Messungen an den Atomen alleine und die
der Messungen an den Photonen alleine enthalten keine Information.

Nachdem die Atome das Interferometer durchlaufen haben und bereits detektiert wurden,
kann man somit durch Wahl der an den Photonen gemessenen Observablen bestimmen, ob ein
Interferenzbild entsteht (JA*), |A})) oder nicht (]0*), [1%)). Dies kénnte man so verste-
hen, dass man zwischen den Alternativen (i) Atome kommen immer nur auf einem der Wege
(Teilchenverhalten und daher keine Interferenz) und (ii) Atome kommen im Sinne einer Su-
perposition ,,auf beiden Wegen* (Wellenverhalten und daher Interferenz) wéhlen kann, wenn
die Atome schon lange das Interferometer verlassen haben und an ihnen gemessen wurde.
Diese verzogerte Wahl (delayed choice) scheint eine Beeinflussung des Geschehens in der
Vergangenheit zu sein. Was ist falsch bei dieser Interpretation?

Falsch ist die Annahme, dass vom Ereignis ,,auf einem Weg* tiberhaupt gesprochen wer-
den kann. Das System S befindet sich vor der Messung im vollsténdig gemischten und daher
vollig strukturlosen Zustand. Man kann Photonen auf den beiden Wegen 0 und 1 registrieren.
Es ergibt sich bei Messung an S4 kein Interferenzbild (p(a) = %). Das bleibt so bei anschlie-
Render Messung in der nicht gedrehten ONB {|0*/), |1™)}. Erst wenn man an den Photonen
in der gedrehten ONB {|AM), |A})} misst, z. B. die Messwerte heraussucht, die zum Mess-
ergebnis +1 gehdren und die relativen Haufigkeiten als Funktionen von « in eine Abbildung
eintragt, entsteht fur die Wahrscheinlichkeit der Kurvenverlauf p,x)(a) von Abb. 8.3, der In-
terferenz wiederspiegelt. Die Alternativen (i) und (ii) realisieren sich daher erst in der Form
(i) ,keine Interferenz* und (ii) ,,Interferenz* mit der Wahl der entsprechenden Messung an
den Photonen gefolgt von einer Selektion und nicht schon mit der Messung an den Atomen.
Vorher hat nichts vorgelegen, was mit (i) oder (ii) verbunden werden kdnnte. Es gibt also kein
,.delayed choice*“- Paradoxon.

8.6 Erganzende Themen und weiterfiihrende Literatur

e Kriterien fur Separabilitat fur Systeme mit zwei und mehr Untersystemen, Verschréan-
kungsmaR auch fur Gemische: [Wer 89], [Key 02], [Bru 01], [DHR 02], [HHH 01],
[Cir 02], [LBC 00], [Ter 01].

e Erzeugung von Verschrankung: [Aul 00], [BEZ 00], [NC 00], [BZ 02], [DM 02],
[Hei 02], [SS 04].

e Zum Konzept der klassisch korrelierten Quantenzustande: [Wer 89].

e Experimente zu ,,delayed choice*: [Aul 00, Kap. 26], [DR 00].

e Der Anstol3 zur ,,delayed choice“-Diskussion: [Weh 78].

o Welcher-Weg-Experimente: [DNR 98], [Rem 02], [Eng 99], [ESW 99], [DR 00].
e Quantenradierer: [Eng 99], [ESW 99].

e \erschrankung von gemischten Zustdnden: [Cir 02], [HHH 01].
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8.7 Ubungsaufgaben

UA 8.1[zu 8.1.1] Beweisen Sie die in Abschn. 8.1.1 im Anschluss an Gl. (8.1) aufgestellte
Behauptung ber die Charakterisierung korrelierter Zustande.

UA 8.2 [zu 8.1.2] Beweisen Sie, dass die Separabilititsbedingung (8.2) gleichbedeutend ist
mit der Forderung

PP = ald) (6t © IXP) (x| (8.76)
l

mit0 < ¢ < 1und >, ¢ = 1. Der Vergleich mit dem allgemeinen Operator ZAB von
Gl. (7.19) zeigt, dass die Forderung (8.76) tatséchlich eine Einschrankung bedeutet.

UA 8.3[zu 8.3] Bestitigen Sie die Gl. (8.45).

UA 8.4 [zu 8.5] Wie andern sich die Uberlegungen zum Quantenradieren, wenn man vom
Zustand (8.67) statt vom Zustand (8.71) ausgeht.

UA8.5[zu8.2] Zeigen Sie, dass es fiir den Zustand
1
[677€) = —510%)(10%,09) + 117,19)) (8.77)
keine Schmidt-Zerlegung

642) = ol o) |ws) (8.78)

mit orthonormalen Schmidt-Basen {|u)}, {|v2)}, {|wS)} gibt.
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O Korrelationen und nicht-lokale Messungen

Quanteninformation kann in Korrelationen zwischen Teilsystemen stecken. Das soll im Ein-
zelnen prézisiert werden. Bei zusammengesetzten Systemen sind (iber die Messungen an Teil-
systemen hinaus auch nicht-lokale Messungen mdglich, mit deren Hilfe u.a. nicht-lokal ge-
speicherte Information abgefragt werden kann.

0.1 Entropien und Korreliertheit zusammengesetzter
Quantensysteme

9.1.1 Wechselseitige Information als Mal? fur Korreliertheit

Additivitat Mit Hilfe der Definition der Gesamtentropie (joint entropy) fiir zusammenge-
setzte Systeme

S(AB) := S(A, B) := S(p"P) := —trsp[p"? log p*P] (9.1)

oriift man sofort nach, dass sich flr einen Produktzustand die Entropien der Teilsysteme ad-
dieren

S(pt @ p”) = S(p*) + S(p"”). (92)

Subadditivitait Wenn p“ kein Produktzustand ist, kénnen wir statt GI. (9.2) nur eine Ab-
schatzung ableiten. Wir gehen dazu von der Kleinschen Ungleichung (6.24) aus, die wir jetzt
im Produktraum H# @ HP anwenden.

Wir ersetzen in Gl. (6.17) p durch p% und o durch 04Z = p4 ® p” mit den reduzierten
Dichteoperatoren p und p? von pAZ, die wir nach den Basen von H4 und H? zerlegen

pA = Zan‘nAMnA'a (93)
pPo= D nliP)Go
j
Dann gilt
logo®? =logp* @ pP = log(anbs)n?, %) (n?, ;7| (9.4)
J

(log p™) 17 + 14 (log p”) .

Jerschrénkte Systeme: Die Quantenphysik auf neuen Wegen. Jirgen Audretsch
Copyright © 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
SBN: 3-527-40452-X
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Damit folgt aus der Kleinschen Ungleichung (6.24)
S(p*P) < —traplp?Ploga?”] (9.5)

= —trap[p"?(log p)17] — traplp* P14 log(p”)]
= —tra[p?log p"] — trg[p” log p”] = S(p?) + S(p").
Wir schreiben das Resultat in der Form
S(AB) < S(A) + S(B). (9.6)

Diese Eigenschaft wird als Subadditivitét (subadditivity) der Entropie zusammengesetzter
Quantensysteme bezeichnet. Das Gleichheitszeichen gilt genau dann, wenn die Teilsysteme
S4 und S® unabhéngig voneinander sind: p4Z = p4 @ pB. Die analoge Gleichung fiir klas-
sische Systeme ist GI. (5.43). Wenn die Teilsysteme nicht unabhangig voneinander sind, der
Gesamtzustand p“ 2 also nicht separabel ist, dann enthélt das Gesamtsystem mehr Informa-
tion als insgesamt aus den Teilsystemen ausgelesen werden kann. Wir werden das noch an
einem Beispiel verdeutlichen.

Wechselseitige Information der Teilsysteme Im klassischen wie im quantentheoretischen
Fall steckt die Zusatzinformation in den Korrelationen zwischen den Systemen. Um das fr
zusammengesetzte Quantensysteme quantitativ zu fassen, fuhren wir als MaR fiir die Korre-
liertheit der Teilsysteme die wechselseitige Information (mutual information) S(A : B) der
Teilsysteme in Analogie zur GlI. (5.31) ein:

S(A:B) := S(A) + S(B) — S(AB) > 0 . 9.7)

S(A: B) gibt fiir einen Zustand pZ an, wie viel die durch die Entropie ausgedriickte Un-
bestimmtheit des Gesamtsystems S 7 kleiner ist als die der Teilsysteme S und S? zusam-
men, wenn diese Teilsysteme nicht verschrankt wéren (vgl. Gl. (9.5)). Oder anders formuliert:
S(A: B) ist ein MaR dafiir, wie viel mehr Information im Gesamtsystem als in den Teilsys-
temen steckt. S(A : B) kann zugleich den Abstand des Zustands p“Z vom unverschrankten
Zustand p* @ p® charakterisieren.

9.1.2 Dreiecksungleichung

Das System S45Z moge sich in einem Zustand p4Z befinden. Wir hatten in Abschn. 8.2.2
gesehen, dass dieser Zustand immer purifiziert werden kann. Das besagt, dass man immer
ein System S zu S45 hinzufiigen kann und dann im erweiterten Gesamtsystem S45¢ einen
reinen Zustand finden kann, so dass der reduzierte Dichteoperator des Teilsystems S4Z gerade
AB ;
po7 st
Wir wenden die Ungleichung fir Subadditivitat an:

S(C) + S(A) > S(AC). (9.8)

Da das System S4B in einem reinen Zustand ist, stimmen die reduzierten Dichteoperatoren
bei Zerlegung in zwei Teilsysteme Uberein. Das haben wir im im Zusammenhang mit der
Schmidt-Zerlegung gezeigt.

S(AC) = S(B), S(C)= S(AB). (9.9)
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Einsetzen in Gl. (9.8) fuhrt auf

S(AB) > S(B) — S(A). (9.10)
Die Systeme S4 und S” gehen symmetrisch in die Uberlegung ein. Es gilt also auch

S(AB) > S(A) — S(B) (9.11)
und damit

S(AB) > |S(A) — S(B)] . (9.12)

Dies ist die Dreiecksungleichung (triangle inequality), die manchmal auch Araki-Lieb-
Ungleichung genannt wird.

Wir haben in Gl. (5.39) gezeigt, dass fiir die Shannon-Entropie der klassischen Systeme
immer

H(A, B) >{ ggg% } (9.13)

erflllt ist. Die Unbestimmtheit des Gesamtsystems (bertrifft die jedes Einzelsystems. Dass
kann fur Quantensysteme nicht gelten. Die Bell-Zusténde, fur die wir S(AB) = 0 und
S(A) = S(B) = 1 gezeigt hatten, sind ein einfaches Gegenbeispiel.

9.1.3 Verschrankte versus klassische korrelierte Quantensysteme

Wir wollen am Beispiel eines 2-Teile-Systems S4% in drei verschiedenen Zustdnden die
Entropie der Teilsysteme S4 und SB, die in allen Fallen gleich eins sein soll, mit der Entropie
des Gesamtsystems vergleichen. Die Teilsysteme sollen der Einfachheit halber Qubits sein.
Unser Ziel ist es dabei, Korrelation und Verschrankung mit der Entropie und dabei insbeson-
dere Uber die GI. (9.7) mit der wechselseitigen Information S(A : B) in Zusammenhang zu
oringen. Die Verhéltnisse sind graphisch in Abb. 9.1 dargestellt.

Beispiel 1: Unabhangige Teilsysteme Im ersten Zustand sind die Teilsysteme vollig unab-
nangig voneinander, d. h. p47 ist ein Produktzustand

1 1 1

pAB — 4B _ (14 ) o (-18) = pA ® pB. (9.14)
4 2 2

Es existieren keine Korrelationen zwischen den Teilsystemen. Die Quantenentropien ergeben

sich unmittelbar als

S(AB) = log4=2, (9.15)
S(A) = S(B)=log2=1 (9.16)
S(A:B) = 0. (9.17)

Fiir einen spateren Vergleich notieren wir noch p% in der Rechenbasis von H4 ® HP
1
P17 = 1(0%,07)(0%, 07 + 04, 17) (04,17
+[14,0%) (14,07 4 [14,17) (14,17)). (9.18)
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Beispiel I

S(AB) =2

vollig unabhéngig

Beispiel 11

S(AB) =1

D

klassisch korreliert

Beispiel 11T

S(AB) =0

<

verschrankt

Abbildung 9.1: Wechselseitige Information S(A : B) bei gleicher Entropie der Teilsysteme.

Beispiel I1: Klassische korrelierte Teilsysteme Wir wollen Korrelationen etablieren, ohne
dass dabei Verschréankung entsteht. Das konnen wir z. B. mit dem separablen Gemisch

pP = %(KVW<0A|®IOB>«Vﬂ-+|T4M1A|®\IB><1BD (9.19)
= %(\OA,OB><0A,OB|4+\1A,1B><1A,1B\) (9.20)

aus reinen Produktzustanden erreichen. p4 ist verglichen mit Gl. (9.18) eingeschrankt. In
der Rechenbasis von H* © HPE hat pAZ die Matrixdarstellung

MB:mw<;QQ%). (9.21)
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Es treten nur Diagonalterme auf. Damit ergibt sich die Entropie als
1 1

Die reduzierten Dichteoperatoren der Teilsysteme stimmen mit denen in den anderen Beispie-
len Uberein

1 1
A_ 154 B_ 1B
pt = 2]l ., P 2]l . (9.23)
Daraus folgt wieder
S(A)=8(B)=1 (9.24)

und in diesem Fall eine nicht verschwindende wechselseitige Information
S(A:B)=1. (9.25)

An Gl. (9.20) ist unmittelbar ablesbar, dass die Ergebnisse von Messungen in der Rechenbasis
an den beiden Teilsystemen korreliert sind: Ergibt die Messung an S den zu |0) gehorigen
Messwert, dann ergibt auch die Messung an S diesen Messwert. Entsprechendes gilt fur
1). Die Teilsysteme heiBen klassisch korreliert , weil sie durch LOCC entstanden sind und
weil die Messung an einem Teilsystem den wohlbestimmten (korrelierten) reinen Zustand des
anderen Teilsystems nicht abandert. Damit wird noch einmal mit anderen Worten ausgedriickt,
dass der Zustand von S4% ein separables Gemisch ist.

Beispiel 111: Verschrankte Teilsysteme Hier nehmen wir als Beispiel den Bell-Zustand
1
V2

Da er ein reiner Zustand ist, haben wir

[@4P) = —(]04,0%) +14,17)). (9.26)

S(AB) = 0. (9.27)

Wie in den beiden Beispielen vorher finden wir

A _ l A B _ l B
pt=g1" pP=21 (9.28)
und damit
S(A)=5(B)=1. (9.29)

~Ur einen Bell-Zustand nimmt man die wechselseitige Information den gréten moglichen
Wert an

S(A:B)=2. (9.30)
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Vergleich der drei Beispiele Dass bei Verschrédnkung die Ergebnisse von Messungen an den
Teilsystemen korreliert sind, haben wir schon diskutiert. Im Zusammenhang mit der Bellschen
Ungleichung werden wir in Kap. 10 explizit zeigen, dass sich die Korrelationen in Beispiel
11 und 11 quantitativ unterscheiden. Hier wollen wir den Unterschied mit Hilfe der Entropie
beschreiben.

In allen drei Féllen liegt wegen S(A) = S(B) die gleiche Unbestimmtheit der Zustande
der Teilsysteme vor. Die Unbestimmtheit S(AB) des Zustands des Gesamtsystems ist demge-
geniber in jedem Fall verschieden (vergl. Abb. 9.1). Die wechselseitige Information (mutual
information) S(A : B) gibt wegen

S(AB) = S(A)+ S(B) — S(A: B) (9.31)

an, um wie viel die tatséchliche Entropie des Gesamtsystems kleiner ist als es die Gesam-
tentropie ware, wenn die Teilsysteme mit Dichteoperatoren p“ und p? véllig unabhangig
waren. Geringere Entropie bedeutet geringere Unbestimmtheit des Zustands. In allen drei Bei-
spielen sind die Zustande der Teilsysteme maximal unbestimmt. Dennoch ist im Beispiel 111
der verschrénkte Gesamtzustand maximal bestimmt. Die Information, die hierflr noch gefehlt
hat, steckt vollstdndig in den Korrelationen und wird durch S(A : B) veranschaulicht. Im
Beispiel 11 reichen die Korrelationen nicht zur vélligen Festlegung des Zustandes von S45.
Dementsprechend befindet sich das Gesamtsystem in einem Gemisch. S(A : B) ist in die-
sem Fall kleiner. Wie wir gesehen haben, bezieht sich die wechselseitige Quantenentropie
S(A : B) nicht auf Verschrankung alleine, sondern gibt auch die klassischen Korrelationen
mit wieder.

9.2 Nicht-lokale Messungen
9.2.1 Bell-Zustande

Die vier Bell-Zustande

BAZ) = %uof‘,of% £ [14,15)) ©.32)
WA = %uof‘ﬂ £ [14,0%)) 0.33)

bilden eine orthonormale Basis (Bell-Basis) des Produktraums H3' @ HZ. Sie sind maximal
verschrankt. Die reduzierten Dichteoperatoren sind maximal gemischt. p* = p” = 11. Man
kann durch Eingriff bei nur einem Teilsystem (also lokal ohne klassische Kommunikation) in
unitarer Weise mit Hilfe der o-Operatoren einen Bell-Zustand in jeden anderen Uberfiihren.
Wir geben ein Beispiel:

Bit-Flip o' : |¥4P) — f(|1A 12y +04,07) = |05 (9.34)
Phasen-Flip o2': |[W4P) — f(|oA 05y — 14,15)) = —i|®4B).  (9.35)
o3 o [WEP) — <|0A 1%) - 14,07%) = |w2P) (9.36)

%|
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Héufig treten in Rechnungen Produkte von Pauli-Operatoren auf, deren Matrixelemente
in der Bell-Basis auszuwerten sind (z. B. <<I>AB|01 of|®45)). In diesen Fallen ist es giinstig,
die Wirkung der Pauli-Operatoren in H% auf die in Hg‘ zurlckzufihren, dann kann man
alle in Abschn. 3.1 fiir Pauli-Operatoren abgeleitete Relationen (z.B. in Gl. (3.11)) direkt
Ibernehmen. Wir geben ein Beispiel, auf das wir spéter zuriickkommen werden:

i @fP) — [witP), op :[P4F) — |wiP) (9.37)
A edly — —j|uAB) 0P |®4P) — i|uAF) (9.38)
3 |efP) — |e2F), oy 1 |#4P) — |@4P) (9.39)

Die Wirkung von o auf |®45) kann durch die Wirkung von o4 ersetzt werden usw.. Es
gibt entsprechende Relationen fir alle Vektoren der Bell-Basis. Man bestétigt auf diese Weise
7.B., dass

(@28)01 07 |94P) = (21|00 [@17)
~ (24P |og!|@P) ~ (@P|02P) =0 (9.40)
gilt.

Wir notieren noch eine weitere mathematische Eigenschaft der Bell-Zustédnde. Sie sind
Eigenvektoren zu Produkten der o-Operatoren:

oitol|®4P) = (+1)[@L") (9.41)
ool |WLP) = (£1)|¥P) (9.42)
0303 F1oLt) = |94P). (9.43)
oo |WiP) = —|wiP). (9.44)

0.2.2 Lokale und nicht-lokale Messungen

Wie wir in Abschn. 7.3.1 gesehen haben, kann Nicht-Lokalitat in zweifacher Weise auftreten:
(i) Zusténde kdnnen nicht separabel sein.

(i) Messungen konnen zu Observablenoperatoren auf H4 @ HZ @ HE ® ... gehoren, die
nicht von der Form C4 @ 1% @ 1¢ ... oder 14 @ DB @ 1¢ ... usw. sind (nicht-lokale
Messungen). Sie stellen dann keine lokalen Messungen dar (Messungen an nur einem
Teilsystem). Sie heiBen nicht-lokale Messungen (non-local measurements) und messen
nicht-lokale Observablen (non-local observables)

Wir betrachten speziell hermitesche Produktoperatoren CA D auf dem Raum HA @ HE.
Sie beschreiben die nicht-lokale Messung der kollektiven physikalischen GrbBe CAD?B (als
2in einziges Symbol zu lesen) an einem 2-Teile-System. Die Observable 042 eines 2-Spin-
Systems ist ein Beispiel. Wie Gl. (9.43) und (9.44) zeigen sind die zugehdrigen Messwerte +1
und —1 entartet. Als Ergebnis der Messung mit Messwert +1 wir der Zustand in den durch
©48) und |@AB) aufgespannten Unterraum projiziert. Alle Bell-Zustande bleiben bei der
Messung der Observablen o4 o unveréndert.
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Ix*P)

00y ———d——7)

Abbildung 9.2: Nicht-lokale Messungen in der Rechenbasis am System S“Z durch projektive Messung
am Hilfssystem S°.

Misst Bob hingegen in lokaler Weise bei einem 2-Spin-System im Zustand |®47) am Un-
tersystem B die Observable o (Spin in z-Richtung), so wird beim Messergebnis —1 das Sys-
tem in den Zustand |14, 17) uberfiihrt. Der Ausgangszustand |®4Z) liegt nicht mehr vor. Die
Verschrankung wurde durch die lokale Messung gebrochen. Eine nachfolgende Messung von
o4 durch Alice am Untersystem S ergibt den Messwert —1 und lasst den Zustand |14, 17)
unverandert. Das Beispiel zeigt: Mathematisch entsteht die Wirkung des Operators o' o da-
durch, dass die Operatoren o4' und o in H2' bzw. HZ wirken. Physikalisch stimmt aber die
Messung der kollektiven Observablen o' o2 i.a. nicht mit zwei lokalen Spinmessungen durch
Alice bzw. Bob (berein. Das wird schon durch die unterschiedlichen Endzustande belegt. Ob-
servablen, denen hermitesche Operatoren auf dem Produktraum entsprechen, bendtigen zu
ihrer Messung i.a. einen nicht-lokalen Messprozess. Wie kann man nicht-lokale Messungen
auf lokale Messungen zurtickfiihren?

Wir betrachten ein einfaches Beispiel. Die Eigenwerte des Operators 4'o 2 sind 41 und
—1. Sie sind entartet. Das sieht man auch daran, dass neben |®47) und W47 die Vektoren der
Rechenbasis

U?af|0,0>
oa0,1)

|010>7 J?JSB‘LD = |71>
—j0, 1), cfobl0,1) = —[o.1 (9.45)

ebenfalls Eigenzustande zu +1 und —1 sind.

Die 2-Qubit-Observable o5'c* wird nicht-lokal durch eine kollektive Messung bestimmt.
Sie kann mit Hilfe von zwei CNOT-Gattern und einem im Zustand [0) préparierten Hilfs-
Qubit wie in Abb. 9.2 realisiert werden. Wir fiigen also zu S4% ein Hilfssystem S mit
Zustand in H$ hinzu. Ein beliebiger Zustand | ?) aus H4? lasst sich nach der Rechenbasis
zerlegen

IXAB) = 1]04,08) + 2|14, 18) + ¢5]14,08) + 404, 15) (9.46)

mit >_, |c;|> = 1. Die Quantenschaltung tiberfihrt den Anfangszustand |x4Z)|0¢) unitar in
den Zustand

UxAP)Y09) = ¢1]04,08,09) +¢o| 14, 15,09) +¢3|14,08,19) +¢4|04, 18, 1) (9.47)

Eine projektive Messung von ¢§ auf dem Hilfssystem S¢ ergibt die Messwerte +1 oder —1
mit den Wahrscheinlichkeiten p(+1) und p(—1). Zugleich tberfuhrt sie den Ausgangszustand
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A7) je nach Messergebnis in den Zustand y/A? bzw. x'45

+1: [ WAB) = |04,08) 4 p14,15)

p(+1) = e’ +eal? (9.48)
—1: |YB) = 314, 08) + ¢404,15)

p(=1) = lesl’ + eal? . (9.49)

X {*P) ist die Projektion von |[x*%) in den von [04,07) und |14, 17) aufgespannten Unter-
raum von HAE zum Eigenwert +1 von o' o2 Entsprechendes gilt fur |y AB) Die Messun-
gen am Hilfssystem haben auf die Messwerte und Wahrscheinlichkeiten der direkten Messung
geﬂjhrt Die resultierenden Zustidnde von SA%Z stimmen mit den Resultaten der Messungen
von o5t a¥ tiberein.

Wir haben nach Verschrankung durch die unitare Transformation U und projektive Mes-
sungen im Hilfsraum S eine projektive nicht-lokale Messung am Zustand in 4% bewirkt.
Die Messergebnisse und die Wahrscheinlichkeiten mit denen sie eintreten, konnten an der pro-
ektiven Messung in H¢ abgelesen werden. Dieses Beispiel fiir eine nicht-lokale Messung in
HAEB spiegelt eine ganz allgemeine Struktur von Quantenmessungen wieder. Wir werden sol-
che verallgemeinerten Messungen noch ausfihrlich in Kap. 13 darstellen. Mit der beschriebe-
nen 2-Qubit-Messung der Observablen o5'a# kann noch nicht zwischen zwei Zustéanden zum
gleichen Eigenwert +1 oder —1 unterschieden werden. Wir schildern im ndchsten Kapitel,
wie eine nicht-lokale Messung an der Bell-Basis auf zwei lokale Messungen zuriickgefuihrt
werden kann.

9.2.3 Nicht-lokal gespeicherte Information und Bell-Messungen

In der Rechenbasis von Hs' @ HE lassen sich zwei Bit in Form der 4 Moglichkeiten (0,0),
(0,1), (1,0), (1, 1) speichern und durch zwei lokale Messungen mit o45' @ 17 bzw. 14 ® o
wieder auslesen. Die zugehdrigen Projektionsoperatoren sind:

Poo == [0%,0%)(04,07|, P :=[0*,17)(0%, 17| (9.50)
Py = [14,08)(14,08|, P = 14,1814, 18] (9.51)

Die Information ist lokal gespeichert. In der Bell-Basis von H5' @ HE lassen sich ebenfalls
zwei Bit speichern. Man spricht vom Paritétsbit (parity bit) & oder W (d. h. parallele oder
antiparallele ,,Spins®) und vom Phasenbit (phase bit) (Morzeichen + bzw. —). Wie wir schon
gesehen haben, ist diese Information als wechselseitige Information in den Korrelationen und
daher nicht-lokal gespeichert.

Wenn wir an einem System im Bell-Zustand |®47) lokal die Observablen o4' @ 17 und
14 ® oF messen und das Produkt der Messergebnisse bilden, so ergibt sich +1. Bei |W45)
ergibt sich entsprechend —1 Damit ist lokal das Paritatsbit ausgemessen. Danach liegt aber
nicht mehr der Ausgangszustand, sondern ein Zustand der Rechenbasis vor. Wir kénnen daher
lokal nur 1 bit auslesen. Entsprechendes gilt fur die lokale Messung des Phasenbits durch
7{ @ 12 und 14 @ of. Durch lokale Messungen kann nicht die volle in Bell-Zustanden
jespeicherte Information ausgelesen werden. Wir brauchen eine Projektionsmessung, die auf
die Zustande der Bell-Basis statt auf die der Rechenbasis projiziert. Die beiden Basissysteme
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B N

Abbildung 9.3: Quantenschaltung zur Erzeugung von Bell-Zustanden.

gehen durch eine unitére Transformation im Raum H3' ® H%
wir ausnutzen.

ineinander Uber. Das kdnnen

Wir notieren die Wirkung einer Hadamard-Transformation gefolgt von einer CNOT-
Transformation auf die Rechenbasis. Die Quantenschaltung (quantum circuit) hierzu findet

sich in Abbh. 9.3.
04,07 L L0y 4 1)) 07
f\ |
CNOT
ﬁaof* 0%) 4 [14,15) = |4 P)
7 1 CNOT
04,18) L 75(\0% +[14))15) L g 4By

H CNOT
14,0%) = (\0A> [14)107) == |@27)

Sl

H CNOT
14,1%) = (\0A> [1)ILF) == |2F).

Sl

Wegen
H=H' H?>=1
CNOT = (CNOT)', (CNOT)? =1
gilt insgesamt fur die angewandte unitare Transformation

UAB .= (CNOT) - H, (UAB)~! = H.(CNOT)

(9.52)
(9.53)
(9.54)

(9.55)

(9.56)
(9.57)

(9.58)

Wenn wir Bell-Zustédnde die Quantenschaltung in umgekehrter Richtung durchlaufen lassen,
dann entstehen daraus durch Wirkung von (U45)~1 wieder die entsprechenden Zusténde der

Rechenbasis. Die Projektoren der Basissysteme sind tiber

62P) (047 = UAPPGEUAR)T!
WP wiP) = UAPPGRE(UAE)T
|¢AB><¢AB| _ UABPf(x)B(UAB)A
[pABY(pAB| = yABpAB([AB)-1

verknupft.

(9.59)
(9.60)
(9.61)
(9.62)
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Eine Bell-Messung (Bell measurement) an einem Zustand |x“?) besteht darin, ihn zu-
ndchst unitér und nicht-lokal mit (UA8)~! = H . (CNOT) zu transformieren und dann eine
lokale Messung am resultierenden Zustand in der Rechenbasis durchzufiihren. Dann wird z. B.
mit der Wahrscheinlichkeit, die zum Projektionsoperator |®47)(®4Z| gehort,

poo = (x* P[4 )(@LF |xAP) (9.63)

das Messwertepaar (0, 0) erhalten. Entsprechend ergibt sich mit der Wahrscheinlichkeit pp; =
(XAP|WLP) (ULP (A7) das Paar (0,1) usw. Dabei gilt poo + po1 + pio +pir = 1. Im
Spezialfall [y47) = |®47) ist pog = 1. Entsprechendes gilt fir die anderen Bell-Zustande.
Kodiert man 2 Bit Information in Bell-Zustanden, dann kann diese Information eindeutig Gber
die Bell-Messung ausgelesen werden mit den Entsprechungen (0,0) < |¢47), (0,1) <
YP), (1,0) < [¢27), (1,1) < [2P).

Um zu erreichen, dass die Bell-Messung auch in einen Bell-Zustand tiberfiihrt, muss der in
den lokalen Messungen erhaltene Zustand der Rechenbasis noch die Quantenschaltung (An-
wendung von U4B) riickwiérts durchlaufen. Beim Messwertepaar (0,0) iberfiihrt sie dann
7. B. in den zugehorigen Bell-Zustand |®47).

0.3 Erganzende Themen und weiterfihrende Literatur

Siehe Abschn. 5.6 und 6.6.

0.4 Ubungsaufgaben

UA 9.1 [zu9.2.2] Fuhren Sie hintereinander lokale Messungen von o4 ® 17 und 14 @ o
an [xA8) von Gl. (9.46) durch. Bestimmen Sie die resultierenden Zusténde und die Wahr-
scheinlichkeiten flr die verschiedenen Messwertepaare. Bilden Sie Messwerteprodukte und
die zugehdrigen Wahrscheinlichkeiten. Vergleichen Sie mit den Ergebnissen (9.48) und (9.49)
sowie mit der Aussage Uber die Erwartungswerte aus Abschn. 7.3.4.
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10 Es gibt keine (lokal-realistische) Alternative
zur Quantentheorie

Wir haben im vorherigen Kapitel gesehen, dass bei verschrankten Zustdnden, im Unter-
schied zu Zusténden Klassischer Systeme, die Information nicht-lokal gespeichert ist. Im
Folgenden soll ein Zugang beschrieben werden, der es erlaubt operational in direkter Weise
zu demonstrieren, dass Verschrankung kein Gegenstlick in der klassischen Physik hat. Wir
wollen zeigen, dass Verschrankung eines der zentralen nicht-klassischen Strukturelemente der
Quantentheorie ist. Hierzu geben wir exemplarisch zwei Experimente an, deren Ergebnisse
klassisch nicht begriindet werden kénnen.

Von welchem Typ werden solche Experimente sein? Einen unmittelbaren experimentel-
len Zugriff auf zusammengesetzte Systeme haben wir tUber lokale Messungen an den Unter-
systemen. Wenn man die Paare der Messergebnisse vergleicht, zeigen sich charakteristische
Unterschiede zwischen Systemen in verschrénkten reinen Zustanden einerseits und nicht ver-
schrankten sowie klassischen Systemen andererseits. Dies kann als eine weitere theoretische
Charakterisierung von Verschrankung dienen. Von grolRerer Bedeutung ist aber in diesem Zu-
sammenhang die Abgrenzung von Quantentheorie und klassischer Physik. Wenn sich klas-
sische zusammengesetzte Systeme und verschrankte Quantensysteme in den Korrelationen
unterscheiden und das Experiment die Existenz von Quantenkorrelationen bestatigt, dann gibt
es ein Ph&nomen, das nicht klassisch begriindet werden kann. Damit wére gezeigt, dass die
Quantentheorie nicht auf klassische Physik zuriickfthrbar ist. Um dieses Programm durchzu-
flhren, missen wir typische Korrelationsexperimente beschreiben und sowohl quantentheo-
retisch wie auch klassisch durchrechnen. Dazu missen wir aber zunéchst die Frage ,,Was ist
klassisch?* beantworten und daraus experimentell priifbare Konsequenzen ableiten.

10.1 EPR-Experimente und ihre quantentheoretische
Deutung

Photonen  Wir wollen ein Experiment mit den Kaskaden-Photonen beschreiben, die wir be-
reits in Abschn. 8.3 kennen gelernt haben. Eine Quelle emittiert paarweise Photonen mit ver-
schiedenen Frequenzen v4 und v in entgegengesetzte Richtungen. Sie propagieren entlang
der z-Achse zu den Beobachtern an den Orten A und B (vgl. Abb. 10.1). Die Abstande der
Beobachter von der Quelle kdnnen sehr groR sein. Sie mussen nicht Ubereinstimmen. Die
Photonenpaare sind polarisationsverschrankt. Sie befinden sich im rotationssymmetrischen

Verschrénkte Systeme: Die Quantenphysik auf neuen Wegen. Jiirgen Audretsch
Copyright © 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40452-X
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Abbildung 10.1: Polarisationsmessung an Photonenpaaren.

(@) (b)
Abbildung 10.2: Orientierung der Analysatoren.
Bell-Zustand
[®2P) = \/—‘l’o L5) + 1y ) (10.1)

|xo) und |yo) sind Zustadnde mit linearer Polarisation in xo- bzw. yo-Richtung.

Die Beobachter messen an den beiden Photonen die lineare Polarisation (vergl.
Abb. 10.2a). Hierzu ist in A ein Analysator mit der Orientierung (z4,y*) aufgestellt.
Er ist um einen Winkel o um die z-Achse gegen die durch die x- und y- Achse gegebene Ori-
entierung gedreht. Hinter ihm befinden sich zwei Detektoren, die jeweils ansprechen, wenn
die Polarisation |z4) oder |y) gefunden wird. Der Polarisation |+“) ordnen wir das Mes-
sergebnis +1 und der Polarisation [y“) das Ergebnis —1 zu. Die Messung in B am zweiten
Photon erfolgt in gleicher Weise. Wir wollen insbesondere zulassen, dass der B-Analysator
um den Winkel 5 # « gegen die Ausgangsorientierung verdreht ist. Die entsprechenden
Polarisationsrichtungen sind |x7) bzw. |y?). lhnen sind wieder die Messwerte +1 bzw. —1
zugeordnet. Die Observablenoperatoren fiir die lokalen Messungen an den Photonen in A und
B sind dementsprechend

EY = )@ =y )y (102)

EP = [2P)@P ~1y") (Y7 (10.3)

Wir betrachten zundchst Messungen nur am Photon in A bzw. nur am Photon in B. Die
reduzierten Dichteoperatoren des Bell-Zustandes |®4Z) sind jeweils maximal gemischt. Die

Wahrscheinlichkeit in A das Resultat +1 oder —1 zu erhalten ist daher unabhéngig von den
Verdrehungen « und 3 jeweils % Das gleiche gilt fur die Messung am zweiten Photon in B.
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Im ndchsten Schritt untersuchen wir Korrelationen und bestimmen die Wahrscheinlichkei-
ten fur das Auftreten von Messwertepaaren. Mit P _ bezeichnen wir die Wahrscheinlichkeit,
dass in A die z*-Polarisation und in B die y”-Polarisation gemessen wird. Das entspricht
den lokalen Messwerten +1 und —1 und dem Messwerteprodukt —1. Die Wahrscheinlich-
keiten flr die restlichen Kombinationen sind entsprechend bezeichnet. Fur die vektoriellen
Polarisationszustande haben wir

lz4) = cosalz) + sinaly) (10.4)
ly) = —sinalz) + cosaly). (10.5)
Analoge Relationen gelten fir [22) und |y®) mit dem Drehwinkel 3. Damit ergibt sich fur
die Wahrscheinlichkeit P,
1
Py = (9482 2By (a2 P |9 P) = 5 cos? (8 — ). (10.6)
und entsprechend fir die anderen Wahrscheinlichkeiten

P_ = P, = %cos2(ﬁ — ) (10.7)

P, = P, = %sinQ(ﬁ —a). (10.8)

Dass nur die Differenz der Drehwinkel o und /5 auftaucht, spiegelt die Rotationssymmetrie
des Ausgangszustands |®4'2) wieder.

EPR-Korrelationen verschrankter Photonen Im Spezialfall der parallelen Ausrichtung
der Polarisatoren (« = (3) finden wir eine vollstandige Korrelation der Messergebnisse:
Wenn in A die |z4)-Polarisation gefunden wird, dann wird in B mit Sicherheit ebenfalls die
|zP)-Polarisation gefunden (P, . = 1). Gleiches gilt fiir die y-Polarisationen (P__ = 1).
Die beiden Polarisationsrichtungen treten dabei in A und B in vollig zufélliger Weise jeweils
mit der Wahrscheinlichkeit % auf. Unterschiedliche Polarisationen werden nie registriert
(Py_=P_, =0).

Um die Korrelationen der Messergebnisse bei nicht-paralleler Ausrichtung der Analysa-
toren zu erfassen, filhren wir den Korrelationskoeffizienten (correlation coefficient) e ein.
Er ist definiert als der Erwartungswert des Produktes der lokalen Messwerte in A und B. Wie
wir in Abschn. 9.2.2 gesehen haben, l&sst er sich als Erwartungswert des Produktoperators
E4 ® EB berechnen:

AP = (0P| B @ EB|94P) . (10.9)
Die explizite Auswertung mit GI. (10.2) und GI. (10.3) fiihrt auf die Wahrscheinlichkeiten von
Gl. (10.7) und (10.8) (vergl. Gl. (10.6)).

AB=p ,+P _—P,_—-P,. (10.10)

Die Gleichung (10.10) kann auch direkt abgelesen werden. Sie enthélt die Messwerteprodukte
+1 und —1 multipliziert mit den Wahrscheinlichkeiten ihres Auftretens. GI. (10.10) wird mit
Gl. (10.7) und (10.8) ausgewertet und fthrt auf das Ergebnis

AP = cos2(f — ) . (10.11)
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Im Spezialfall parallel orientierter Analysatoren (« = (3) ergibt sich die perfekte Korrelation
AB
e? = 1.

Objekte mit Spin—% Fur Polarisationsmessungen an zwei Objekten mit Spin-% kénnen wir
ganz analog vorgehen. Es wird zu einer gegebenen es-Richtung der Bell-Zustand

L
V2

durch eine Quelle prépariert. |0) und |1) sind die Eigenzustdnde zu 5. In A und B werden die
Polarisationen in Richtung a bzw. b gemessen. Um die Rechnung zu vereinfachen nehmen
wir an, dass a und b senkrecht auf e, stehen

a = (sina,0,cosa), b= (sinf,0,cospf). (10.13)

[248) = — (|04, 07) + |14,17)) (10.12)

Die entsprechenden Observablen sind
E4 =o0%a, EP = oPb. (10.14)

Den Korrelationskoeffizienten £47 von GI. (10.9) kénnen wir mit Riickgriff auf einige schon
abgeleitete Hilfsrelationen einfach bestimmen. Wir wenden zunéchst GI. (9.37) und (9.39) an
und berucksichtigen dabei ay = b, = 0. Dann greifen wir auf Gl. (3.11) zurlck, verwenden
a X b ~ ey sowie die Gl. (9.38) und die Orthonormalitat der Bell-Vektoren. Nacheinander
finden wir so fiir den Korrelationskoeffizienten ¢4 5:

AP = (918|(0%a)(0Pb)|@1F) = 1B |(0%a)(a”b)|@4F) (10.15)
(@) (@b)14|047) + i(@4P | (@ x b))
= ab=cosacosf+sinasin = cos(f — a).

Verglichen mit e filr Photonen taucht bei Spinoren typischerweise wieder der halbe Winkel
auf.

10.2 Kaorrelierte Handschuhe

Wir haben gesehen, dass bei paralleler Ausrichtung der Analysatoren in A und B vollstdndige
Korrelation herrscht. Wenn an einem Photon am Ort A die x-Polarisation gemessen wird,
dann wird mit Sicherheit auch am Photon in B die parallele x-Polarisation registriert und
umgekehrt. Entsprechendes finden wir fiir die y-Polarisation. Es kommt dabei nicht darauf an,
ob zuerst in A oder zuerst in B gemessen wird. Weiterhin kann der Abstand zwischen A und
B beliebig groB sein (ideale Ubertragung der Photonen vorausgesetzt). Ist das ein Resultat,
das man nur fur Quantenobjekte findet?

Handschuhpaar Wir wollen unter einem Handschuhpaar einen linken und einen rechten
Handschuh verstehen. Jeder der Handschuhe wird in einen Kasten getan. Ein Kasten wird
nach A und der andere nach B transportiert. Die dortigen Beobachter wissen, dass er sich
um ein Handschuhpaar handelt. Wird dann nach Offnen des Kastens in A ein rechter (bzw.
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ein linker) Handschuh gefunden, dann kann der Beobachter in A im selben Augenblick mit
Sicherheit sagen, dass in B ein linker (bzw. ein rechter) Handschuh schon gefunden wurde
oder noch gefunden wird. Eine entsprechende Aussage kann der Beobachter in B machen,
wenn er seinen Kasten gedffnet hat.

Selbstverstandlich lag der jeweilige Handschuhtyp real schon vor der Offnung der Késten
in A und B fest. Die Handschuhe sind klassisch korreliert. Ermittlung des Handschuhtyps in
A hat weder auf den Handschuh in A selber noch auf den in B einen Einfluss gehabt (Entspre-
chendes gilt flir B). Die physikalische Realitat am Ort eines Beobachters wird nicht durch ein
entferntes Experiment des Partners abgeandert. Es gibt flir Handschuhe nur lokale Vorgange.
Obwohl eine vollstandige Information tiber den anderen Handschuh gewonnen wird, hat kei-
ne Informationsubertragung stattgefunden. Die vollstdndige Korrelation geht einfach darauf
zuriick, dass das 2-Handschuhe-System am Anfang als ein Handschuhpaar prapariert wurde.

Wir haben bei den Handschuhen eine Situation der klassischen Physik beschrieben, die —
soweit es die Messergebnisse betrifft — genau der Situation beim Photonenpaar bei paralle-
ler Analysatorausrichtung entspricht. Lasst sich daher mdglicherweise auch das 2-Photonen-
Experiment im Rahmen einer rein klassischen Theorie, d. h. ohne Bezug auf die Quantentheo-
rie, beschreiben? Um eine moglichst allgemein gultige Antwort zu geben, wollen wir zunéchst
am Beispiel der Handschuhe ablesen, welche Prinzipien fir eine klassische Theorie gelten.

10.3 Lokaler Realismus

Wir orientieren uns begrifflich an dem Artikel von A. Einstein, B. Podolsky und N. Rosen
[EPR 35] und charakterisieren die klassische Physik durch die zwei Prinzipien des lokalen
Realismus (local realism), die wir am Handschuhpaar ablesen kénnen:

Physikalische Realitat!  Eigenschaften (z. B. Energie) physikalischer Systeme sind dieje-
nigen physikalischen GroRen, deren Wert man mit Sicherheit vor der entsprechenden Mes-
sung (z. B. Energiemessung) vorhersagen kann. Diese Eigenschaften liegen real bereits vor
der Messung vor. Das System ,,hat sie”. Sie sind Elemente der physikalischen Realitat (ele-
ments of physical reality). Ihr Wert ist unabh&ngig davon, ob er gemessen wird oder nicht. Wir
nennen dieses klassische Realitatskonzept Einstein-Realitét.

Lokalitat?  Die physikalische Realitat kann in lokaler Weise beschrieben werden. Das
heift, dass jedes System seine Eigenschaften unabhdngig von allen anderen Systemen hat.
Insbesondere bleibt das Resultat einer Messung an einem System unbeeinflusst von Ein-
wirkungen auf davon rdumlich getrennte andere Systeme. Dieses Lokalitatskonzept der
klassischen Physik heifl3t Einstein-Lokalitét.

LElemente der Realitét: ,,If without in any way disturbing a system, we can predict with certainty the value of a
physical quantity, then there exists an element of physical reality corresponding to this physical quantity. This means
that this physical quantity has a value independent of whether we measure it or not. [EPR 35]

2| okalitat: ,, The real factual situation of system A is independent of what is done with system B, which is spatially
separated from the former.”. [EPR 35].
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\erborgene Parameter Wir gehen — wie die EPR-Autoren auch — davon aus, dass die
experimentellen Aussagen der Quantentheorie korrekt sind. Wenn man dann annimmt, dass
Einstein-Realitat und Einstein-Lokalitat zutreffende Beschreibungen physikalischer Systeme
sind, dann ist die Quantentheorie zwar nicht falsch aber unvollstandig (incomplete).® Es gibt
Elemente der Realitat, die nicht in der Theorie wiedergegeben werden. Sie tauchen dort nicht
auf und sind daher verborgene Parameter (hidden variables).

Unter einer klassischen Theorie (classical theory) wollen wir eine Theorie verstehen, die —
anders als die Quantentheorie — die beiden Forderungen des lokalen Realismus erfillt. Wir
werden versuchen, die bisher verborgenen Parameter explizit einzufiihren, um eine lokal-
realistische und somit klassische Alternativtheorie zur Quantentheorie zu konstruieren, die al-
le experimentellen Phanomene im Quantenbereich begriinden kann. Verkirzt gesagt: Es gibt
nur klassische Physik. Wir wollen diesem Programm folgen und versuchen Photonen und
Spin-1/2 Objekte so zu beschreiben, wie man Handschuhe beschreibt. Es wird sich zeigen,
dass dieser Versuch misslingt.

10.4 Verborgene Parameter, Bellsche Ungleichungen und
Konflikt mit dem Experiment

Stochastische lokal-realistische Theorie Wir berechnen die Ergebnisse des Polarisati-
onsexperiments aus Abschn. 10.1 im Rahmen einer ganz allgemein angesetzten lokal-
realistischen Theorie. Ein im Symbol A zusammengefasster Satz von verborgenen Parametern
reprasentiert die ,,Elemente der Realitat”, die im Zusammenhang mit der Polarisation eines
nunmehr klassisch beschriebenen einzelnen Photons oder Spin-1/2-Teilchens auftauchen. A
ist variabel. Die Eigenschaften eines einzelnen Teilchens ist durch einen bestimmten Parame-
ter A charakterisiert. Wir formulieren eine stochastische lokal-realistische Theorie. Teilchen
mit Parameter A werden von der Quelle mit der Wahrscheinlichkeitsdichte p(\) produziert,
fur die

/p()\)d)\ =1, p(N)=>0 (10.16)

gilt.

Fur ein durch X charakterisiertes Photon in A und den Drehwinkel §; des Analysators in
A liegt fest, ob die Polarisationsrichtung = oder y gemessen wird. Wir ordnen wie in Ab-
schn. 10.2 dem Messergebnis den Messwert +1 bzw. —1 zu. Dann gibt es dementsprechend
eine eindeutige Funktion S (&) von A und &; mit den Werten +1 bzw. —1. Analog gibt es ei-
ne maglicherweise davon verschiedene Funktion S% (J2), die zu gegebenem A und gegebener
Verdrehung 5 in B eindeutig den dortigen Messwert +1 oder —1 bestimmt.

+1 +1
sio={ 1 sy -{ 1] (1017)
Der klassische Korrelationskoeffizient ist
(61,0,) = / p(N)SA(61)S%(62)d. (10.18)

3\ollstandigkeit: ,,In a complete theory there is an element corresponding to each element of reality. [EPR 35]
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Dass das Produkt der beiden Funktionen auftaucht, driickt die Lokalitat aus. Durch die For-
mulierung mit verborgenen Parametern X ist eine lokal-realistische Theorie fir den Korrelati-
onskoeffizienten entstanden.

Bellsche Ungleichung In einem ersten Schritt passen wir die bisher noch sehr allgemein
formulierte Theorie an die zu reproduzierenden quantentheoretischen Messergebnisse an. Im
Spezialfall gleicher Ausrichtung soll die gut bestatigte vollstdndige Korrelation

(5,6) = / p(N)SA(6)SH(8)dN =1 (10.19)
gelten. Mit Gl. (10.16), (10.17) und (10.18) folgt daraus
SA(8) = SH(6) =: SM0) . (10.20)

Die beiden Observablen haben die gleiche funktionale Abh&ngigkeit von der verborgenen
Variablen A und dem Winkel 6.

Wir gehen zu einer allgemeineren Situation iber und betrachten drei Orientierungen 61, d-
und 3. Es werden Messungen durchgefuhrt mit folgenden Einstellungen der Analysatoren in
Aund B: (61, 92), (d2,93) und (61, d3). Fir die Observablen gilt dann wegen GI. (10.17)

S (61)8*(82) — S*(81)S™(853) = $™(61) 5™ (82) [1 — S*(62)S™(93)] . (10.21)
=+1 >0
Integration fiihrt hiermit und mit GI. (10.16) und (10.17) auf
| [ POV (61)57(62) — S™(61)57 (83) YA (10.22)

= \ J PNSM61)SM(E2)[1 — 57 (62)5(83)]d|
< [ NI [1— 8525 (63)] dA| = 1 — [ p(A\)SM(82)S* (83)dA

>0
Gl. (10.22) bedeutet fur die klassischen Korrelationsfunktionen
|eF (81, 62) — €1(81,05)| < 1 — €1(82,05) . (10.23)

Dies ist die Bellsche Ungleichung (Bell inequality).

Konflikt mit der Quantentheorie Auf welches Ergebnis fiihrt demgegeniber die Quanten-
theorie? Wir untersuchen Spin-1/2-Teilchen im Zustand \@ﬁB> und wéhlen als Einstellungen
fur die Analysatoren: §; = 60°, 9, = 120°, 3 = 180°. Dann erhalten wir fir die Korrelati-
onskoeffizienten

1 1 1
EAB(51,(52) = 5, GAB((Sl,(Sg) = —5 GAB((sg,(Sg) = 5 . (1024)
Einsetzen in Gl. (10.23) fihrt auf
1< %, (10.25)

d.h. die Bellsche Ungleichung ist verletzt. Quantentheorie und lokal-realistische Theorien
fhren auf unterschiedliche Aussagen. Fir Photonen wéhlt man einen Winkel von 30° statt
von 60° und stellt ebenfalls eine Verletzung der Bellschen Ungleichung fest.
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CHSH-Ungleichung  Wir diskutieren noch eine andere Kombination von Drehwinkeln. Ein
Bezug auf das Experiment, wie wir ihn in GI. (10.20) eingebaut haben, ist dabei nicht nétig.
In A wird mit den Einstellungen «; und as und in B mit 3; und 55 gemessen. Wir betrachten
die folgende Kombination von Observablenfunktionen und notieren die verschiedenen Werte,
die in Folge von S} , = +1 angenommen werden konnen:

{SA(a2) [Sp(B1) + S5(B2)] +54 () [S5(B1) — Sp(B2)] = {...}
+2 0
0 1o (10.26)
Es gilt somit
{-.}H=2 (10.27)
und daher mit GI. (10.16)
‘/p()\){...}d/\ < /p()\)|{...}\d/\ = Q/p()\)d)\: 2. (10.28)

Fur die klassischen Korrelationskoeffizienten bei den Messungen mit den verschiedenen Win-
keleinstellungen bedeutet das

SYP = | (az, 1) + (a2, B2) + EM (a1, 1) — € (an, B2)| < 2. (10.29)

Dies ist die nach J. F. Clauser, M. A. Horne, A. Shimony und R. A. Hold [CHS 69] benannte
CHSH-Ungleichung (CHSH inequality).

Alle Ungleichungen fur die Korrelationskoeffizienten in stochastischen Theorien mit ver-
borgenen Parametern (stochastische lokal-realistische Theorien) werden Ublicherweise ein-
heitlich Bellsche Ungleichungen (Bell inequalities) genannt. Sie sind Gleichungen der klassi-
schen Physik. Ihre Bedeutung fur die Quantentheorie wird erst deutlich, wenn man Prognosen
aufgrund der Bell-Ungleichungen den quantentheoretischen Prognosen gegenuberstellt (wie
in GI. (10.25)) und beide mit den tatsachlichen experimentellen Ergebnissen vergleicht.

Konflikt mit der Quantentheorie Fir die entsprechende Messung an korrelierten Photonen
im Zustand \(I);‘;B> wahlt man Winkel, die sich um 22, 5° unterscheiden (vergl. Abb. 10.2b):
ap = 22,5° 01 = 45°, as = 67,5°, und B = 90°. Das fuhrt mit Gl. (10.11) auf:

eAB(al,ﬁl) = eAB(ag,ﬁl) = GAB(az, B2) = COS% = \/L? (10.30)
e“B(ay, fy) = cos ?ZTW = —% . (10.31)

(Far Spin-%-TeiIchen doppelte Winkel einstellen.) Die quantentheoretische Berechnung der

Korrelationskoeffizienten in GI. (10.29) liefert
S@M —9./2. (10.32)

Vergleich mit der CHSH-Ungleichung fiihrt zu dem Ergebnis: Die Quantentheorie verletzt die
CHSH-Ungleichung.
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Experimentum crucis* ~ Wir haben zwei experimentelle Anordnungen beschrieben, fiir
die Quantentheorie einerseits und Theorien mit verborgenen Parametern andererseits auf
sich widersprechende Prognosen fulhren. In einer solchen Situation kdnnen Experimente eine
Entscheidung herbeifiihren. Die Experimente bestatigen die quantentheoretischen Prognosen
(vergl. Abschn. 10.8). Die lokal-realistischen Alternativtheorien zur Quantentheorie sind da-
mit widerlegt. Die Ursache ist darin zu suchen, dass die EPR-Korrelationen im verschrénkten
Bell-Zustand nicht durch Einfihrung verborgener lokaler Parameter simuliert werden kdnnen.
Sie sind echte Quantenkorrelationen.

10.5 Separable Quantengemische erfillen die Bellsche
Ungleichung

Wir betrachten separable d. h. nicht verschrankte Gemische von 2-Teilchen-Zustédnden

pPP=N"Npt@pP,  0<n<L Y a=1 (10.33)
und bilden wieder den quantentheoretischen Korrelationskoeffizienten (vergl. Gl. (10.9))
EP(a,8) = trap[p"?E4(a) @ EP(9)]
= ) NAi()Bi(B) (10.34)
mit
Ai(a) = tralpf EA(a)],  Bi(B) :=trp[pP E?(B)]. (10.35)

Die Betrdge der Erwartungswerte von Operatoren mit Eigenwerten +1 kénnen 1 nicht Uber-
steigen, daher haben wir

[Ai(e)[ <1, [Bi(p)| < 1. (10.36)
Die Auswertung der CHSH-Ungleichung flhrt auf

|EAB (g, B1) + EAP (0, B2) + EAP (a1, B1) — EAP (a, B2)| (10.37)
= Z Ai{Ai(az2)Bi(61) + Ai(a2)Bi(82) + Ai(an) Bi(B1) — Ai(a1) Bi(B2)}

< Z Ai{lAi(a2) Bi(B1) + Ai(a2) Bi(B2)| + [Ai(a1) Bi(B1) — Ai(a1)Bi(B2)]} -

Als Folge der Separabilitat treten nur Produkte auf. Wir schétzen den Inhalt der geschweiften
Klammer {...} mit Gl. (10.36) ab

{.-} <1Bi(B1) + Bi(B2)| + [Bi(B1) — Bi(B2)| < 2 (10.38)

4Ein Experiment, das es gestattet, unter mehreren Theorien eine zu bestitigen und die tbrigen zu widerlegen,
nennt man ein experimentum crucis.
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und erhalten mit GI. (10.33) fiir die rechte Seite der Ungleichung (10.37)
doafp<2. (10.39)

Einsetzen in Gl. (10.37) und Vergleich mit der CHSH-Ungleichung (10.29) zeigt, dass flr
2-Teile-Systeme ein separables Gemisch von Quantenzustanden (und damit auch jeder reine
Produktzustand) die Bellsche Ungleichung erfullt. Die Erfullung der CHSH-Ungleichung ist
daher nur eine notwendige Bedingung fiir das Vorliegen einer lokalen Theorie mit verborge-
nen Parametern und keine hinreichende Bedingung.

10.6 Bell-Verletzung als Kriterium fur Verschrankung bei
reinen Zustanden

Fur separable Zusténde erfiillt sowohl die nicht-realistische Quantentheorie mit den Beson-
derheiten ihres nicht-klassischen Messprozesses wie auch jede realistische Theorie (vergl.
Abschn. 10.5) die Bellsche Ungleichung. Wir haben gesehen, dass das Durchbrechen der
Ungleichung beim maximal verschrankten Zustand |<I>ﬁ’3> eine Folge der fehlenden Sepa-
rabilitat, d. h. eine Folge seiner Verschrénktheit ist. Diese Aussage lasst sich verallgemeinern.
Man kann ausgehend von der Schmidt-Zerlegung aus Abschn. 8.2.1 zeigen, dass sich fur alle
verschréankten reinen Zusténde von 2-Teile-Systemen, also auch fir nicht maximal verschrénk-
te Zustande, Observablen finden lassen, sodass die Bell-Ungleichung durch die korrelierten
Messergebnisse verletzt wird. [Hom 97, S. 206], [HS 91, Kap. 2.1.4].

Zusammenfassend kénnen wir daher feststellen: Fur reine Zustéande von 2-Teile-Systemen
ist Verschrankung aquivalent mit Verletzung der Bell-Ungleichung. Wir haben damit fiir diese
Zustande ein operationales, d. h. im Prinzip experimentell realisierbares Verfahren gefunden,
um Verschrankung festzustellen. Eine entsprechende Aussage flir Gemische oder Zustande
von Systemen mit mehr als zwei Teilen gibt es zur Zeit noch nicht.

10.7 3-Teilchen-Verschrankung und Quantennichtlokalitat

10.7.1 GHZ-Zustand

D. M. Greenberger, M. A. Horne und A. Zeilinger (GHZ) haben in einer vom Bell-Zugang
unabh&ngigen nicht-statistischen Weise gezeigt, dass Quantentheorie und lokaler Realismus
nicht miteinander vertraglich sind. ([GHZ 89], [GHZ 90]). Wir geben hier ihre Argumentation
mit Bezug auf die Spins von 3 Quantenobjekten wieder, die sich voneinander getrennt an den
Orten A, B und C befinden sollen. Sie sind miteinander verschrénkt. Ihr Gesamtzustand liegt
in H4' @ HE ® H$ und soll durch

1
7

gegeben sein. |0) bzw. |1) sind wieder die Eigenvektoren von o, mit den Eigenwerten +1
und —1. Der Zustand (10.40) des 3-Teile-Systems heilt GHZ-Zustand (GHZ state). Er ist
symmetrisch gegenuber einer Vertauschung der Bezeichnungen A, B und C.

[y ABC) (|0%,07,0%) +]14,17,19)) (10.40)
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10.7.2 Lokaler Realismus und Quantentheorie im Konflikt

Wir bestimmen zunéchst das Ergebnis von lokalen quantentheoretischen Spinmessungen an
den drei Teilsystemen. Dabei werden verschiedene Polarisationsrichtungen gewahlt. In der
yyx-Messung zum Beispiel werden jeweils die Observablen Jﬁ,of und ¢¢ gemessen. Die
Reihenfolge der Messungen ist unwichtig. Zur Bestimmung des Messergebnisses ist es ge-
schickt, in den Raumen 4", H¥ und HS die Eigenvektoren der jeweiligen Observablen als
Basis einzufiihren und den Zustandsvektor |45 hiernach zu zerlegen. Dann ergibt sich

1
[pABYY = —(104,12,09) + 114,08,09) + |04, 08,19y + 114,18,19)) . (10.41)

T oWy ty Ve Yooy e Yooy Yoy

Die Messwerte bezeichnen wir mit s, und s,. Sie sind stets +1 oder —1. Wie man an
Gl. (10.41) ablesen kann, erfillen die moglichen Kombinationen der korrelierten Messwer-
te fur jedes einzelne 3-Teile-System die Relation

s’;sfsg =-—1. (10.42)

Symmetrie unter Vertauschung der Bezeichnungen der Teilsysteme fiihrt auf

sﬁsfs? = -1, sfsfsg =-1. (10.43)

Fiir eine zxx-Messung der Observablen o2, o2 und o zerlegen wir 4B nach den Ei-
genvektoren von o,

1
[pABCY) = 502,02, 02) + (02, 1, 1) + |1, 0z, 1) + [, 1, 00)) (10.44)
und finden
sAsBsC L4, (10.45)

An den Gl. (10.42) und (10.43) lasst sich die folgende Eigenschaft des Systems im GHZ-
Zustand ablesen: Das Resultat der o,.-Messung an einem der Teilsysteme kann mit Sicherheit
vorhergesagt werden, wenn die Ergebnisse der o,,-Messungen an den beiden anderen Teilsys-
temen bekannt sind. Um z. B. das Ergebnis s2 der o2'-Messung zu bestimmen, mu man nur
an den Systemen die Observablen o2 und oyc messen. Analog kann man das Resultat einer
o,-Messung vorhersagen, wenn man an den beiden anderen Systemen eine o,.- und eine o -
Messung vornimmt. Dies sind die Aussagen der Quantentheorie, die durch das Experiment
bestatigt werden.

Wir wollen jetzt diese Prognosen der Quantentheorie (bzw. die experimentellen Aussa-
gen) vom Standpunkt des lokalen Realismus interpretieren. Um die durch die GI. (10.42) bis
(10.44) wiedergegebenen Korrelationen im Rahmen dieses Zugangs zu begriinden, miissen
wir annehmen: Die in den o-Messungen ermittelten individuellen Eigenschaften der einzel-
nen Teilsysteme liegen schon vor der Messung fest. Sie sind daher auch unabhéngig davon,
welchen Typ von o-Messung wir flr die drei Teilsysteme wéhlen. Der Ausgang einer jeden
Messung ist z. B. iber verborgene Parameter vorherbestimmt. Wenn das so ist, dann sind bei

einem der 3-Teile-Objekte die individuellen Werte s;‘;yB’C in allen drei Gleichungen (10.42)
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und (10.43) dieselben. Wir multiplizieren die linken Seiten der Gl. (10.42)-(10.43) miteinan-
der und erhalten mit s/s;' = sPsB = s0sC = 1 im Gegensatz zu Gl. (10.45)

s3sBsC L 1, (10.46)

Dies ist in der lokal-realistischen Theorie das Ergebnis einer xxzxz-Messung. Die x-
Polarisationen missen bereits vor der Messung so beschaffen sein, dass Gl. (10.46) gilt. In der
quantentheoretischen Beschreibung der Messergebnisse liegen beim nicht separablen GHZ-
Zustand vor der Messung keine Polarisationen fest. Eine zzx-Messung fuhrt auf Messwerte,
die Gl. (10.45) erflillen. Damit besteht ein klarer Widerspruch zwischen der Aussage lokal-
realistischer Theorien und der Quantentheorie. Wenn die Experimente die quantentheoretische
Gleichung (10.45) bestatigen — was tatséchlich der Fall ist (vergl. Abschn. 10.8) — dann ist der
lokale Realismus widerlegt.

Warum kann man in der Quantentheorie nicht in gleicher Weise aus den Gl. (10.42) und
(10.43) eine Relation (10.45) ableiten? Gleichung (10.41) zeigt, dass die quantentheoretischen

Messergebnisse korreliert sind. Wenn die lokalen Messungen z. B. s;;‘ = +1 und syB = -1
ergeben, dann findet man s = +1. Fir s;' = +1 und s = +1 findet man entsprechend
s¢ = —1 usw. Das Ergebnis s¢ liegt nicht vorher fest und stimmt i.a. in den GI. (10.42) und

(10.43) nicht Gberein.

Wir haben folgendes gezeigt: Drei Objekte werden in einem Pré&parationsverfahren so
prapariert, dass der resultierende Zustand im Rahmen der Quantentheorie der GHZ-Zustand
(10.40) ist. Wenn sich dann flr die oben beschriebenen Polarisationsmessungen die quanten-
theoretischen Vorhersagen als richtig erweisen, dann ist jede lokal-realistische Theorie flir
diese Systeme widerlegt. Die Quantentheorie kann daher durch solche Theorien nicht ersetzt
werden.

Wir haben in Abschn. 3.6 gesehen, dass die beiden linearen Polarisationen und die zirkula-
re Polarisation im - in enger Analogie zum Spin formuliert werden kénnen. Fir photonische
GHZ-Zusténde lasst sich in gleicher Weise ein Widerspruch ableiten. Fir Photonen bestatigen
die experimentellen Resultate die quantentheoretischen Vorhersagen und widerlegen so den
lokal-realistischen Ansatz. Eine Ubersicht tber die Experimente findet sich z. B. in [PZ 02].

Wir weisen abschlieBend noch auf Unterschiede zur Bell-Argumentation hin. Die CHSH-
Ungleichung macht Aussagen Uber klassische Erwartungswerte und ist eine direkte Folge
des lokalen Realismus. Sie macht eine Aussage Uber die klassische Physik ohne Bezug auf
die Quantentheorie. Das GHZ-Argument basiert demgegeniiber auf dem Versuch einer lokal-
realistischen Interpretation von quantentheoretischen Resultaten (10.42) und (10.43), von de-
nen angenommen wird, dass sie experimentell bestatigt sind. Der Widerspruch zur Quanten-
theorie ist nicht probabilistisch sondern direkt. In beiden Féllen bestétigen die Experimente
die Quantentheorie.

10.8 Erganzende Themen und weiterfiihrende Literatur

o Die Klassiker : [EPR 35], [Bel 64], [CHS 69], [Boh 51], [GHZ 89], [GHZ 90].

o Ubersichtsartikel: [Aul 00, Kap. 1X], [HS 91], [Hom 97, Kap. 4], [Per 93, Kap. 6],
[HS 91], [WW 01].
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e Das Argument von Hardy: In einer vom Bell- und vom GHZ-Zugang unabhéngigen Wei-
se hat Hardy gezeigt, dass lokaler Realismus und Quantentheorie nicht kompatibel sind.
Eine Darstellung des verbluffenden Theorems mit Hinweisen auf weitere Literatur findet
sich z. B. in [Hom 97, Kap. 4.2.2.1] und [Aul 00, Kap. 36.6].

e Biicher mit Ubersichtsartikeln zur Bellschen Ungleichung und Experimenten dazu:
[BZ 02], [Asp 02].

e Zur Einsteinschen Kritik an der Quantentheorie: [Hom 97, Kap. 8].

10.9 Ubungsaufgaben

UA 10.1 [zu 10.1] Geben Sie einen alternativen (direkten) Beweis fiir Gl. (10.15) an.
UA 10.2 [zu 10.4] Beweisen Sie Gl. (10.20).

UA 10.3 [zu 10.4] An einem linear polarisierten Photon im Zustand o) werden Messun-
gen mit einem Analysator A mit den Richtungen 2 und y* durchgefuhrt. Formulieren Sie
fur diese Situation ein Modell mit verborgenen Parametern, d. h. geben Sie A, p(A\) und S?} so
an, dass die Messergebnisse richtig wiedergegeben werden.

UA 10.4 [zu 10.7] Geben Sie eine Quantenschaltung an, die den Zustand |04, 07,0 in
den GHZ-Zustand Uberfihrt.
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11 Verschrankung als Hilfsmittel

Verschrankung ist die Grundlage fiir neue Effekte und deren technische Anwendung. Wir
diskutieren einige Beispiele.

11.1 Quantenkryptographie

11.1.1 Die Vernam-Verschlisselung

Alice mdchte an Bob eine verschliisselte Botschaft schicken, die perfekt geheim bleiben soll.
Niemand aufRer Bob soll sie entschliisseln kénnen. In dem von Vernam 1926 vorgeschlagenen
Verfahren [Ver 26] wird ein Quellentext (source text), der bereits digital als (0,1)-Folge der
Lange n vorliegen soll, mit Hilfe eines Schlissels (key) verschlisselt. Es entsteht das Krypto-
gramm (cryptogram). Der Schlussel selber besteht aus einer (0,1)-Zufallsfolge, die ebenfalls
die Lange n hat. Zur Verschlisselung werden die Zahlen von Quelltext und Schlissel glied-
weise modulo 2 addiert. Wir machen ein Beispiel:

Quelltext 01101100
Schlissel 10000110
Kryptogramm 11101010

Das Kryptogramm wird an Bob geschickt. Bob soll im Besitz des Schlussels sein. Die
Entschlisselung besteht darin, dass Bob den Schltssel zu der verschlisselten Nachricht glied-
weise modulo 2 addiert. Wegenz +0+0=x+ 0=z undz + 1+ 1 =z + 0 = x entsteht
dann wieder der Quelltext:

Kryptogramm 11101010
Schlissel 10000110
Quelltext 01101100

Da der Schlissel aus einer Zufallsfolge besteht, wird der verschlisselte Text vom Quelltext
vollig unabhéngig. Er kann offen von Alice an Bob geschickt werden. Fur einen Lauscher, der
nicht den Schlssel besitzt, enthalt das Kryptogramm keinerlei Information. Entscheidend ist,
dass der Schlussel nur Alice und Bob bekannt ist, dass er tatséchlich eine echte Zufallsfolge
ist, dass er so lang wie der Quelltext ist und insbesondere, dass er nur einmal verwendet wird
(one-time pad system). Unter diesen Voraussetzungen kann der \ernam-Kode nicht gebrochen
werden [Sha 49].

Das Problem bei dem Verfahren besteht darin, dass Bob und Alice immer wieder fiir jede
Botschaft in den Besitz eines neuen Schlissels kommen miissen und dass bei diesem Pro-
zess sicher gestellt sein muf3, dass der Schlussel nicht von einem Lauscher gelesen wurde.

Verschrénkte Systeme: Die Quantenphysik auf neuen Wegen. Jiirgen Audretsch
Copyright © 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40452-X
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Wir wollen zeigen, dass eine solche Schliisselibermittlung mit Hilfe von Quantensystemen
mdglich ist. Es gibt eine ganze Reihe von quantenkryptographischen Verfahren (vergl. Ab-
schn. 11.5). Wir diskutieren hier nur zwei Typen von Verfahren. Die einen Verfahren nutzen
die Besonderheiten des quantenphysikalischen Messprozesses aus, die anderen verwenden die
nicht-lokalen EPR-Korrelationen. Die Abfolge von Handlungsanweisungen zur Durchfiihrung
eines kryptographischen Schemas nennt man Protokoll (protocol).

11.1.2 B92-Protokoll

Das nach der Arbeit [Ben 92] von C.H. Bennett aus dem Jahre 1992 benannte B92-Protokoll
verwendet zur Schllsselubertragung zwei nicht-orthogonale Quantenzustédnde und nutzt die
folgenden fir Quantensysteme charakteristischen Eigenschaften aus: (i) Es gibt keine Mes-
sung mit der zwischen den beiden Zustdnden unterschieden werden kann. (ii) Die Zustande
kénnen nicht durch einen Quantenkopierer geklont werden. (iii) Eine Messung andert i.a.
einen Quantenzustand ab.

Der Ablauf der Schlusseltibermittlung Wir wollen Photonen flr die Durchfiihrung des
B92-Protokolls verwenden. Alice hat zwei Filter, die Photonen vertikal im Zustand |V') oder
unter der Neigung —45°, d. h. im Zustand |V} linear polarisieren kdnnen (vergl. Abschn. 3.6).
Es gilt [(V|V’)|? = 1. Alice verwendet eine binare Zufallsfolge, z.B. 1,0,0,1,1,0,..., und
erzeugt bei Vorliegen der 0 ein Photon mit der Polarisation |V') und bei 1 mit der Polarisati-
on |V’). Die Photonen fliegen stérungsfrei zu Bob.

Bob hat ein Messgerat in Form eines Detektors, der hinter einem Polarisationsfilter steht.
Er kann fur den Filter zwei Orientierungen wahlen: horizontale Polarisation | H), ihr entspricht
der Projektionsoperator P, = 1 — |V )(V| = |H)(H]|, und um —45° gedrehte Polarisation,
ihr entspricht der Projektionsoperator P, = 1 — |V')(V'| = |H')(H’|. Bob hat ebenfalls eine
binare Zufallsfolge zur Verfiigung, die unabhangig von der Folge ist, die Alice benutzt, z. B.
0,0,1,0,1,0,.... Die Zahlen 0 und 1 kommen in beiden Fallen gleich hdufig vor. Die i-te
Zahl von Bobs Folge bestimmt die Art der Messung am i-ten von Alice préparierten Photon.
Wenn bei Bob die Zahl 0 vorliegt, stellt er die Analysatorrichtung |H’) (entspricht P) ein
und bei der 1 die Richtung |H) (entspricht P;). In jedem Fall registriert er, ob sein Detektor
anspricht oder nicht.

Wegen der Orthogonalitét der Vektoren gilt Py|V’) = 0 und P;|V) = 0. Wenn Alice
und Bob verschiedene Zahlen vorliegen haben, spricht daher der Detektor bei Bob nicht an.
Haben Alice und Bob gleiche Zahlen vorliegen, dann spricht der Detektor wegen (V| P|V) =
(V'|Py|V') = £ mit der Wahrscheinlichkeit £, also in der Halfte der Falle an. Ein Beispiel ist
in Tabelle 11.1 dargestellt. ,,ja/nein besagt, dass bei der Versuchsanordnung das Ergebnis ja
oder nein jeweils mit der Wahrscheinlichkeit 2 mdglich ist. Der tatsachlich eingetretene Fall
ist unterstrichen.

Im néchsten Schritt teilt Bob Uber einen offentlichen Kanal Alice mit, bei welchen Pho-
tonen sein Detektor angesprochen hat. Die zugehdérige Orientierung teilt er nicht mit. In dem
in der Tabelle dargestellten Beispiel sind das die Photonen mit den Nummern 2 und 6. Damit
besitzen Alice und Bob eine Ubereinstimmende Zahlenfolge 0, 0, . . ., die nur ihnen beiden be-
kannt ist und die sie als Schliissel verwenden kénnen. Es ist wie gewunscht eine Zufallsfolge
der Zahlen 0 und 1, besteht aber nur im Mittel noch aus 25% der Zahlen der urspriinglichen
Folge.
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Tabelle 11.1: B92-Protokoll zur Quantenkryptografie.

Photonennummer 1 2 3 4 5 6
Zahlenfolge Alice 1 0 0 1 1 0
erzeugte Polarisation  |V") V) vy |[vy V) (V)
Zahlenfolge Bob 0 0 1 0 1 0
Analysatorstellung |H'Y |H'Y |H)Y |H') |H) |H")
Ansprechen nein  ja/nein nein nein ja/nein ja/nein

Abwehr von Lauschangriffen  Wir wollen kurz auf die Sicherheit bei dieser Erzeugung ei-
nes gemeinsamen Schliissels eingehen. Nehmen wir an, eine dritte Person mit Namen Eve !
versucht in einem Lauschangriff (eavesdropping) durch Abfangen und Polarisationsmessun-
gen an den Photonen in den Besitz des Schlissels zu kommen, dann hat sie die oben mit (i)
bis (iii) aufgefuhrten Probleme. Sie kann den Polarisationszustand eines einzelnen Photons
in einer Messung nicht sicher bestimmen. Sie kann den Zustand auch nicht auf viele Photo-
nen kopieren, ein Photon weiterlaufen lassen und an den Kopien Messungen durchzufihren.
SchlieBlich wird sie durch eine Messung den Zustand des anschlieend zu Bob geschickten
Photons abé&ndern. Es ist dieser Umstand, der es Alice und Bob ermdglicht festzustellen, ob
ein Lauscher tatig war. Durch die Zustandsanderung wird Bob hin und wieder ein Ansprechen
seines Analysators feststellen, obwohl bei ihm und Alice nicht die gleichen Zahlen vorliegen.
Das kdnnen beide feststellen, indem sie einen zuféllig ausgewahlten Teil ihres Schlissels 6f-
fentlich austauschen und vergleichen. Liegt Lauschen vor, dann wird der ganze Schlissel nicht
verwendet und ein neuer Versuch einer Schlisselerzeugung begonnen. Ein Test auf Lauschen
besteht zusétzlich in der Priifung, ob 25% der Photonen zum Schlussel beitragen.

Verbesserung der Sicherheit Tatséchlich ist der Transport der Quantenobjekte von Alice
zu Bob, auch dann wenn nicht abgehért wird, anfallig fir Stérungen. Der Quantenkanal ist im
Allgemeinen verrauscht. Damit in der Praxis tberhaupt ein Schlissel erzeugt wird, missen
Alice und Bob ein gewisses Ausmaf an Fehlern akzeptieren, von denen sie nicht wissen, ob
sie nicht doch auf den Einfluss von Eve zurlickgehen. Diese Situation taucht in allen quanten-
theoretischen Kryptographieverfahren auf. Im letzten Schritt des entsprechenden Protokolls
werden daher klassische Algorithmen eingesetzt um zundchst Fehler zu korrigieren. In einem
Protokoll (error correction protocol) wird versucht einen kiirzeren Schlissel zu gewinnen. dar-
an schlief3t sich ein Verfahren an, in dem Eves Information auf ein Minimum reduziert wird
(private amplification algorithm). Firr Ubersichtsartikel siehe Abschn. 11.5.

11.1.3 Weitere 1-Qubit-Protokolle

Das auf zwei nicht-orthogonalen Zustdnden beruhende B92-Protokoll ist anféllig gegentiber
POVM-Messungen. Diese nicht projektiven Messungen werden wir in Kap. 13 vorstellen.
Daher ist es Standard geworden, wie beim BB84-Protokoll vier Zustdnde zu verwenden. Ein
weiterer Ansatz ist der folgende: Die Symmetrie der Bloch-Kugel legt es nahe, die Eigenzu-
stande von o, o, und o, zu verwenden. Das entsprechende 6-Zustande-Protokoll erlaubt eine
vereinfachte Sicherheitsanalyse (vergl. Abschn. 11.5).

1\on eavesdropper, das ist der Lauscher
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11.1.4 EPR-Protokolle

Quantenkryptographie unter Verwendung des Bellschen Theorems Das in Abschn. 10.4
beschriebene Experiment mit Photonenpaaren zum Test der CHSH-Ungleichung kann auch
zur Schlusselibermittlung verwendet werden. Das Protokoll sieht die folgenden Schritte vor,
die entweder &ffentlich erfolgen oder von Alice (in A) und Bob (in B) jeweils im Geheimen
durchgefiihrt werden.

Offentlich Jeweils in A und B geheim

In A und B einheitliche Festlegung der
vier Messrichtungen oy = 22,5°,38; =
45°, ap = 67,5°, B2 = 90° im Raum (wie
in Abschn. 10.4, vergl. Abb. 10.1)

Die Quelle erzeugt Paare verschrankter
Photonen im Bell-Zustand |®4Z). In A
und B werden unabhé&ngig voneinander in
vollig zufélliger Reihenfolge die Analysa-
toren in eine der 4 Richtungen gedreht. In
A werden wie in Abschn. 10.1 die Polari-
sationszustande |z4) (Messwert +1) bzw.
ly4) (Messwert —1) gemessen und in B
entsprechend |zZ) (Messwert +1) bzw.

_ ) lyB) (Messwert —1).
Es wird offentlich ausgetauscht, welche

Polarisationsrichtungen in A und B bei
den einzelnen Photonenpaaren jeweils ge-

wahlt wurden. P,
In A und B wurden jeweils die Messergeb-

nisse danach sortiert, ob gleiche oder un-

] ) ) ] gleiche Analysatorrichtungen vorlagen.
Die Messergebnisse zu ungleicher Orien-

tierung werden zusammen mit der Num-
mer der Photonenpaare 6ffentlich ausge-
tauscht. Hiermit pruft jede Seite nach,
ob der quantentheoretische Wert S@M —
2v/2 von Gl. (10.32) fiir die Korrela-
tionen erreicht wurde. Wenn nicht, wird
die Ubertragungsreihe verworfen, da ab-

gehort wurde. Wird S@M erreicht, o
dann sind die nicht ausgetauschten Er-

gebnisse zu gleicher Orientierung perfekt
korreliert (vergl. Abschn. 10.1). Sie stel-
len eine vollig zufallige Abfolge der Zah-
len 0 und 1 dar, die von Alice und Bob als
Schlissel verwendet werden kann.
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Fur die Schlisselerzeugung mit Spin-4-Teilchen werden Orientierungen mit den doppelten
Winkeln eingestellt.

Die einzelnen Teilsysteme bei Alice und Bob befinden sich in den maximal gemischten
Zustanden p? = pf = %11. An ihnen kann keinerlei Information abgelesen werden. Wie
wir schon in Kap. 9 gesehen haben, steckt Information allein in den Korrelationen. Wenn
ein Lauscher eine Messung z. B. an den zu Alice fliegenden Objekten durchfihrt, dann iber-
fuhrt er dieses Untersystem in einen reinen Zustand. Wir haben in Abschn. 8.2.4 gezeigt,
dass damit die Verschrankung durchbrochen wird und ein separabler Zustand entsteht. Gemaf
Abschn. 10.5 erfiillen separable Zustdnde die CHSH-Ungleichung, d. h. es gilt | S| < 2. Die
explizite Rechnung fiihrt sogar auf | S| < /2 (vergl. [UA 11.3]). Dieser Wert unterscheidet
sich deutlich vom quantentheoretischen Wert S@M = 2,/2.

BBM92-Protokoll 2 Es gibt ein sehr einfaches Protokoll, das auf EPR-Korrelationen beruht
und keinen Bezug auf eine Bellsche Ungleichung benétigt. Wir verwenden wieder Photo-
nenpaare im drehsymmetrischen Bell-Zustand |®f3>, den wir mit Bezug auf die linearen
Polarisationen |H), |V') und |H"), V') aus Abschn. 3.6 in der Form

S S
V2 V2

schreiben. Alice und Bob messen unabhéngig voneinander in vollig zufélliger Weise entweder
die Polarisationen |H) und |V') oder die um —45° dagegen gedrehten Polarisationen |H’) und
[V7').

Nach einer Reihe von Messungen an Photonenpaaren tauschen Alice und Bob aus, welche
Richtung sie bei den einzelnen Paaren eingestellt hatten. Die Ergebnisse, die zu verschiede-
nen Richtungen gehéren, und diejenigen, bei denen ein Photon verloren gegangen ist, werden
eliminiert. Die verbleibenden Messergebnisse missen perfekt korreliert sein, wenn nicht ge-
lauscht wurde. Um das zu priifen, vergleichen Alice und Bob wieder eine hinreichend groRe
Untermenge dieser Messungen uber einen dffentlichen Kanal. Im positiven Fall liefert die fir
beide gleiche Sequenz der verbliebenen Messergebnisse den gewiinschten Schlissel.

|048) = —(|[HA, HY) + VA V) = —([H H'?) + [V'A4,V'4)  (111)

11.1.5 Das Schema der Quantenkryptografie

Die Grundidee besteht darin, Bob und Alice mit Hilfe von Quantensystemen als Trager in
den Besitz des selben Schliissels kommen zu lassen. Die Botschaft selber wird nach ihrer
Verschlusselung in einem allgemein zugénglichen Kanal Uibertragen. Das Protokoll muss so
gestaltet werden, dass Alice und Bob jeder fur sich feststellen kann, ob bei der Schlissel-
Ubertragung ein Lauscher tatig war. Hierfur nutzen sie aus, dass eine Quantenmessung durch
den Lauscher den Zustand abandert, wenn er nicht gerade ein Eigenzustand der gemessenen
Observablen ist.

Wenn die Préparationen von Alice und die Ergebnisse der zugehorigen Messungen von
Bob mit der theoretischen Prognose tbereinstimmen, ist kein Messeingriff erfolgt und es gibt

2Benannt nach der Arbeit [BBM 92].
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keinen Informationsgewinn fiir einen Lauscher. Alice und Bob tauschen einen Teil ihrer Er-
gebnisse 6ffentlich aus und priifen so die Ubereinstimmung. Wenn sie nicht vorliegt, wird die
Schlusseltbermittlung verworfen und das Protokoll neu durchlaufen. Im anderen Fall haben
Alice und Bob einen geheimen Schlissel erhalten, der dartiber hinaus eine perfekte Zufalls-
verteilung darstellt, da er auf Quantenprozessen beruht.

11.2 Ein Qubit Gbertragt zwei Bit (dense coding)

In Kap. 6 haben wir gesehen, dass man ein Bit in einem Qubit kodieren und wieder ausle-
sen kann. Kann man mehr klassische Information mit einem einzigen Qubit Ubertragen? Wir
wollen zeigen, dass dichtes Quantenkodieren (quantum dense coding) die Ubertragung von
zwei Bits durch ein Qubit ermoglicht. Der Trick ist dabei, dass vor der Ubertragung bereits
ein verschréanktes 2-Qubit-System mit Teilsystemen bei Alice und Bob etabliert wurde. Zum
Beispiel hat Alice ein Qubit-System (z. B. ein Photon eines Photonenpaares) an Bob geschickt
und den damit verschrénkten Partner bei sich behalten. Der Zustand des Gesamtsystems sei
z.B. |®47). Bob erhalt dadurch keine Information. Weiterhin wurde vorher zwischen Alice
und Bob abgesprochen, wie Sie zwei Bits den vier Bellzustanden [@47), |®45), |¥45) und
|wAB) zuordnen.

Wir haben in Abschn. 9.2.1 darauf hingewiesen, dass man lokal mit Hilfe der o-Operatoren
in unitérer Weise einen Bell-Zustand in jeden anderen Bell-Zustand transformieren kann. Ali-
ce soll die Transformationen 14 (trivial), o', o5' und o4 an ihrem Qubit ausfuhren kénnen.
Zur Ubertragung der zwei Bit Information tberfuhrt sie so den verschrankten Zustand |4 5)
in den entsprechenden Bell-Zustand und schickt ihr Qubit-System an Bob. Damit kann Bob
auf beide Teilsysteme zugreifen und durch Messung feststellen, welcher Bell-Zustand vor-
liegt. Durch Ubermittlung eines Qubits sind an ihn zwei Bits tibertragen worden.

Dichtes Kodieren lasst sich nur schwer implementieren. Wenn der verwendete verschréank-
te reine Zustand nicht maximal verschrankt ist, nimmt die Menge der Ubertragenen Informa-
tion ab und wird im Grenzfall ein Bit. Eine wichtige Eigenschaft des \Verfahrens ist die Ab-
horsicherheit. Es kann im gunstigsten Fall an dem Qubit-System das Alice an Bob schickt,
ein Bit ausgelesen werden. Dichtes kodieren demonstriert noch einmal die Bedeutung von
Verschrankung als Hilfsmittel bei der Informationsubertragung.

11.3 Quantenteleportation

Alice besitzt ein ihr unbekanntes klassisches Objekt, z. B. eine Eisenkugel, die in einem Kas-
ten eingeschlossen ist. Bob hatte gerne ein gleiches Objekt. Dazu muss Alice den Kasten
aufmachen und optische Messungen an der Kugel durchfiihren. Sie Gbermittelt tber einen
klassischen Kanal die Informationen an Bob und der kann sich aus einem Eisenblock eine
Kugel im gleichen Zustand herstellen. Kann ein analoges Verfahren auch bei Quantenobjek-
ten zum Erfolg fihren?

Eine einzige Messung an einem Quantenobjekt in einem unbekannten Zustand reicht nicht
zur Zustandsbestimmung. Selbst wenn Alice der Quantenzustand bekannt wére, weil sie die
Préaparationsanlage kennt, miisste sie an Bob unendlich viele Bits ibertragen. Das sieht man
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bereits am Beispiel von Qubit-Systemen. Das Qubit-System das Alice besitzt, mége in einem
Eigenzustand von o sein. Um den Vektor r zu beschreiben, braucht man eine bindre Zahl
mit unendlich vielen Stellen. Nur bei vollstandiger Kenntnis von r kénnte Bob das Praparati-
onsverfahren exakt wiederholen. Alice muss daher einen anderen Zugang wéhlen.

Mit Blick auf das Vorgehen bei dichtem Kodieren liegt es nahe, wieder eine verschrén-
kungsunterstiitzte Informationsibertragung zu versuchen. Tatsachlich fiihrt das folgende Pro-
tokoll der Quantenteleportation (quantum teleportation) zum Erfolg (vergl. Abb. 11.1): Alice
und Bob teilen sich wieder den Bell-Zustand |®45). Die Teilsysteme sind die Quantensys-
teme S4 und S, die sich bei Alice bzw. Bob befinden. Bei Alice befindet sich ein weiteres
Quantensystem S in einem ihr unbekannten reinen Zustand

lo®) = al0) + b[1¢) (11.2)

mit |a|? + [b]* = 1.

Dieser Zustand |¢), nicht das Quantensystem S selber, soll zu Bob teleportiert werden,
das heiBt, dass das sich bei Bob befindliche Teilsystem SZ in den reinen Zustand |p?) iber-
gehen soll. S ist dann notwendigerweise mit keinem anderen System mehr verschrankt. Ins-
gesamt liegt ein 3-Teile-System vor. An seinem Zustand in HS ® Hs' @ HE fiihren wir einige
algebraische Umformungen durch. Dazu verwenden wir die Definition der Bell-Zustande so-
wie die Eigenschaften der Pauli-Operatoren und fiihren in einem Zwischenschritt in 1§ © H2'
eine Bell-Basis ein.

[PONRE) = —= (@) + B1Y) (0H10%) + 14)112))
= (@O0 + 014 n?)
T H19)[04)[05) + 519 [14) 1))
= {al95%) + 99 07) 1 a(lwSA) 4 [9E) 1)
£ DS — [ 07) 4 (0% — [P} a1
= S{1B4) @0%) + 611%)) + (9G4 al1P) + bio™))

+ [29%)(a1?) - bl0%)) + [@94) (al0?) — 1)) }
= S{1B94107) + [9GAoPle”) +
HECA) (—iof) ") + (094 |07 }

Bisher haben wir den Ausgangszustand nur mathematisch nach einer Bell-Basis in dem
Alice zuganglichen Raum H§ ® H3' entwickelt. Dabei ist in 72 bis auf Transformationen
mit den Pauli-Operatoren der Zustand|¢?) entstanden. Bob muR diese Transformation noch
durch einen Eingriff kompensieren. Dazu wird zundchst Alice tatig. Sie fuhrt an den Teilsys-
temen S¢ und S eine Bell-Messung durch, beispielsweise so wie wir das in Abschn. 9.2.3
beschrieben haben. Damit iberfuhrt sie das Gesamtsystem in einen der vier Summanden in der
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letzten Gleichung (11.3). Welcher Summand nach der Messung vorliegt, kann sie dem Mes-
sergebnis entnehmen. Die entsprechenden zwei Bits an klassischer Information — mehr Bits
werden nicht bendtigt — tbertrégt Alice z. B. telefonisch an Bob. Der kennt damit ebenfalls
den Zustand des Gesamtsystems und kann durch Transformationen mit einem der Operatoren
(18,08) wegen 0 PP = 17 sein System S in den Zustand |x?) tberfiihren. Damit ist die

Teleportation gelungen.
klassische /

Information unitare
Alice Transf.
Vi

Messung

\ /
\
N
\ / .
Ny verschrankter
\ /

c> Zustand
EPR-

Quelle

Abbildung 11.1: Quantenteleportation.

Am Ende der Zustandsiibertragung befindet sich keines der Systeme S¢ und S4 im Zu-
stand |¢). Das spiegelt das Kopierverbot wieder. Die anféngliche Verschranktheit von S# und
SB wurde auf S und S4 tibertragen. Jedes der Ergebnisse der Bell-Messung von Alice tritt
mit der gleichen Wahrscheinlichkeit i auf. Aus dieser Messung kann weder Alice noch Bob
eine Information Uber den teleportierten Zustand |») gewinnen. Wenn der Zustand |¢) vorher
unbekannt ist, taucht er als unbekannter Zustand am System S® wieder auf. Die Relativitéts-
theorie ist nicht verletzt, da eine klassische Informationstibermittlung verwendet wurde. Der
Zustand der Teilsysteme S¢ und S bei Alice ist am Ende der Ubertragung der vollstandig
gemischte Zustand 1145,

11.4 Verschrankungsaustausch

Wir haben die Produktion verschrankter Qubit-Paare in Abschn. 8.3 beschrieben. Tatsachlich
ist es fur die Verschrankung von zwei Qubits nicht nétig, dass der Zustand in einem einzigen
Gesamtprozess mit Hilfe unitdrer Dynamik erzeugt wird. Durch Verschrankungsaustausch
(entanglement swapping) kdnnen zwei Quantensysteme an getrennten Orten ohne Wechsel-
wirkung untereinander in einen vom Rest isolierten verschréankten Gesamtzustand versetzt
werden. Wir diskutieren ein Beispiel.
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Abbildung 11.2: Austausch von Verschrankung von den Systemen 5% und S¢ auf die Systeme S
und SEC,

Zwei EPR-Quellen I und 11 erzeugen simultan jeweils ein 2-Teile-System S4Z und S¢P
im Bell-Zustand U4 5) bzw. [#P) (siehe Abb. 11.2. Insgesamt liegt daher der Produktzu-
stand

|ABY | gCPy = % (j04,15) — [14,07)) (j0%,17) — |19,07)) (11.4)

aus H4 @ HE @ HS @HE vor. Wir fuhren in den Raumen H4' @ HY und HE @ HS Bell-Basen
ein. Dann kdnnen wir den Zustand umschreiben:

AR WEP) = 2 (JWAPWEC) — [wAP)WE) — 4P} @) 4 [8AP)]EC)

(11.5)

DO | =

Man sieht unmittelbar, dass eine Bell-Messung an den Teilsystemen SZ und S die vorher
unverschrankten Teilsysteme S4 und S” in einen Bell-Zustand tiberfiihren. Projektion z. B.
auf |U %) erzeugt | U4 P). Die Bell-Zustande der verschrankten Untersysteme S42 und SZ¢
stimmen jeweils Uberein. Bei diesem Prozess handelt es sich nicht um die Teleportation vom
Zustanden, sondern eher um die Ubertragung von Verschrankung.

11.5 Erganzende Themen und weitere Literatur

o Weiterflihrende Literatur zur Abwehr von Lauschangriffen: [GRT 02], [Lom 02a],
[Lom 02a], [Gru 99], [HN 99].

e Protokolle mit mehr als zwei Zustdnden: [GRT 02], [Lom 02a].
e B92-Protokoll: [HAD 95], [Lom 02a], [Gru 99].

e Experimentelle Quantenkryptographie: [HAD 95], [EGH 00], [HN 99], [Zbi 98],
[BD 00], [GM 02], [GRT 02].

o BBM92: [BBM 92], [GM 02, S. 369].
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Ubersicht: [Wer 01].

Experimente zum dichten Kodieren: [BHL 02], [BEZ 00, S. 62], [BD 00].

Teleportation von héherdimensionalen Zustdnden und Gemischen [Wer 01, S. 53],
[Key 02, S. 474], [vLo 02, 1232].

e Experimente zur Teleportation: [BHL 02], [BD 00], [BEZ 00], [GM 02, S. 363].

11.6 Ubungsaufgaben

UA 11.1 Félschungssichere Banknoten.
Nehmen Sie an, dass es technisch mdéglich ist, auf einer Banknote Photonen in einzelnen Zel-
len Uber langere Zeit zu speichern. Wie kann man so falschungssichere Banknoten drucken?

UA 11.2 [zu 11.3] Was andert sich an den Uberlagerungen in Abschn. 11.3, wenn der Zu-
stand |WAB) = % (10,1) — |1,0)) statt |®+'7) verwendet wird?

UA 11.3 [zu 11.1] Nehmen Sie an, dass der Lauscher an den beiden Photonen (Spin—%—
Teilchen) jeweils eine Polarisationsmessung durchfiihrt und die Photonen anschliefend an
Alice bzw. Bob weiterlaufen lasst. Der Lauscher préapariert also mit einer Wahrscheinlichkeit
p(64,07) Photonenpaare mit Photonen in den Zustanden |#4) und |97). Die beiden Polarisa-
tionsrichtungen werden durch die Winkel 4 und 67 beschrieben. Bestimmen Sie explizit die
Korrelationskoeffizienten und zeigen Sie, dass |S| < /2 gilt. Alice und Bob wiirden daher
diesen Eingriff feststellen kénnen.

UA 11.4 [Zu 11.3] In vorangegangenen Kapiteln wurde der Begriff des Quantenzustands
naher prazisiert. Prifen Sie, ob in diesem Sinne in Abschn. 11.3 von der Teleportation eins
Quantenzustands gesprochen werden kann.
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12 Quantencomputer

Wir wollen in diesem Kapitel zeigen, wie man mit Quantensystemen Rechnungen durchftih-
ren kann und worin sich die Durchflihrung von denen mit einem Kklassischen Computer unter-
scheiden. Dabei soll deutlich gemacht werden, bei welchen Fragestellungen Quantencomputer
uiberlegen sind. Eine solche Uberlegenheit wird auf die typischen nicht-klassischen Strukturen
der Quantentheorie wie Superposition und Verschrankung zuriickgehen.

12.1 Register und Netzwerke

Register Eine Reihe von n Qubit-Systemen stellt ein Quantenregister (quantum regis-
ter) dar. Der Zustand dieses zusammengesetzten Systems wird durch einen Vektor |¢™") im
Hilbert-Raum ’Hg") = Ha®@H2®- - - ®Ho mit n Faktorrdumen H, beschrieben. Wir arbeiten
in allen Hilbert-Raumen in der Rechenbasis {|0), [1)}. In den Registern wird die Information
in bindrer Form gespeichert. Der natiirlichen Zahl a wird der Registerzustand

la) = |an—1)|an—2)...lag) ,a; € {0,1} (12.1)
aus Hgn) zugeordnet. Wir beziehen uns dabei auf die binare Schreibweise von a
a = an,12”_1 + an,22"_2 + -+ Cl,020 — (an,l, Apy—2y - - - 7CL()) . (122)

Es gibt d := 2™ Zusténde dieser Art. Sie bilden die Rechenbasis von Hgn). Die naturlichen
Zahlen a = 0 bis a = d — 1 nummerieren die Basiszustdnde durch. Mit a € {0, 1}" kenn-
zeichnet man, dass der Zustand |a) ein Element der Rechenbasis zu einem Register der L&nge
n ist. Zum Beispiel ist 6 € {0, 1}3 und der zugehdrige Zustand hat die Form |6) = |1, 1, 0).

Es ist eine wichtige Eigenschaft eines Quantenregisters, dass in ihm durch Superposition
mehrere Zahlen gleichzeitig in orthogonalen und damit unterscheidbaren Zustanden gespei-
chert werden kénnen. Ein Beispiel ist

1 1
— (0,1,1) +[1,1,1)) = — (]3) +|7)) . 12.3
ﬂ(l )+ | ) ﬁ(|>+|>) (12.3)
Der allgemeine Zustand eines Registers der L&nge n ist
d—1
) = cala), D leal’=1. (12.4)
a=0 a

Verschrénkte Systeme: Die Quantenphysik auf neuen Wegen. Jiirgen Audretsch
Copyright © 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40452-X
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Abbildung 12.1: Schema eines Quantennetzwerks mit Bit-fur-Bit-Messung.

Die Anzahl d der zugleich speicherbaren Basiszustande wéchst exponentiell mit der Register-
lange n an. Fur n = 200 ist ihre Zahl bereits groRer als die geschatzte Zahl der Atome im
Universum. In dieser Speicher- und Verarbeitungskapazitét liegt eine der Stérken des Quan-
tencomputers.

Bei ungeschicktem Vorgehen kann diese Starke allerdings durch die Eigenart der Quan-
tenmessung wieder kompensiert werden. Zu beachten ist, dass Messungen in der Rechenba-
sis am auslaufenden Zustand |1)°"), die nacheinander oder simultan an den Registerstellen
durchgefiihrt werden, immer in einen der beteiligten Basiszusténde Uberfiihren. Sie erlau-
ben es nur, eine einzige Zahl a auszulesen. Bei der Messung am Zustand (12.3) ist das die
Zahl 3 oder 7. Solche Messungen in der Rechenbasis heiflen Bit-fiir-Bit-Messungen (bit by bit
measurements). Eine nachfolgende Messung am resultierenden Zustand ergibt keine weitere
Information.

Netzwerke Die Manipulationen der Registerzustdnde durch den Quantencomputer erfolgt
mit Hilfe von unitéren Transformationen auf Hé"). Ein Quantengatter (quantum gate) fuhrt ei-
ne wohlbestimmte unitare Transformation durch, die meist eine Analogie zu einem logischen
Gatter der klassischen Computer hat. Ein Quantennetzwerk (quantum network) oder eine
Quantenschaltung (quantum circuit) besteht aus mehreren Quantengattern, die in zeitlich ge-
ordneter Weise gleichzeitig oder nacheinander auf den Zustand einwirken (vergl. Abb. 12.1).
Die Gatter sind dabei durch Quantendrdhte (quantum wires) verbunden, die einen der Teil-
raume Hy von Hé") und damit einem der Quantensysteme zugeordnet sind. Ideale Dréahte
beeinflussen den Zustand nicht. Reale Drahte sind zumeist Quellen fir Fehler. Wir haben be-
reits in Kap. 3 und 7 solche Gatter und Netzwerke kennen gelernt.
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Abbildung 12.2: Nicht eindeutig umkehrbare Funktion.

Ein Quantencomputer (quantum computer) ist ein Quantennetzwerk, das eine Quantenbe-
rechnung (quantum computation) durchfiihrt, indem er den Eingangszustand |«/™) in unitarer
Weise in einen Ausgangszustand |1/°") tiberfiihrt. Messungen werden in der Regel projektiv
und Bit-fur-Bit an einigen oder allen Qubits (Registerstellen) des Ausgangszustands durch-
gefuhrt. Im ganz allgemeinen Fall kann auch die unitare Entwicklung durch Messungen in
einem oder mehreren Faktorrdumen Hs unterbrochen werden.

Fur die experimentelle Realisierung von Quantennetzwerken ist es wichtig, dass auf ein-
zelnen Faktorrdumen oder auf Produkten von Faktorraumen getrennt (lokal) wohlbestimm-
te unitdre Transformationen in kontrollierter Weise induziert werden kénnen. Diese unitéren
Transformationen der Teilsysteme durch die Quantengatter entstehen durch einen &uferen
Eingriff auf die Qubit-Systeme oder durch Wechselwirkung mit Nachbarqubits. Sie stellen
eine der Herausforderungen beim Bau von Quantencomputern dar.

12.2 Funktionsberechnung und Quantenparallelismus

Zur Berechnung einer Booleschen Funktion (boolean function) f : {0,1}" — {0,1}"™ mit
Hilfe des Quantencomputers wird ein Register der Lange n bendtigt, in dem im Anfangszu-
stand |¢") eingegeben wird, und ein zweites Register der Lange m, in dem im Ausgangszu-
stand der Funktionswert f(x) gespeichert wird. Beide Register haben endliche Léngen. Die
Rechnung wird daher nach den Regeln der modularen Arithmetik (modular arithmetic) durch-
gefuihrt. Sie beschreibt das Rechnen mit Resten (remainder). Unter ¢ mod n versteht man den
Rest, der bei der Division der natiirlichen Zahl a durch die nattirliche Zahl n entsteht!. Es
gilt daher a = ¢gn + r mit ¢ € IN. Gleichungen, die auf der rechten Seite durch (mod n)
gekennzeichnet werden, beschreiben die Gleichheit der Reste (z.B. 1 = 9 = 25 (mod n)).

1Ganze Zahlen (integers) Z: {...,—2,—1,0,4+1,+2,...}. Natirrliche Zahlen (natural numbers) IN:
{0,1,2,...}. Sie werden auch positive ganze Zahlen (positive integers) oder nicht-negative ganze Zahlen (non-
negative integers) genannt.
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Abbildung 12.3: Funktionsberechnung als unitére Transformation.

Wir werden beim Rechnen mit Resten in erster Linie die Addition bendtigen. Fir sie gilt

(a+b) modn = (amodn) =+ (bmodn) (modn). (12.5)

Man l&sst bei der Addition hdufig den Zusatz mod n weg und schreibt
(a+b)modn=:a®b. (12.6)

Quantencomputer basieren auf unitdren und daher umkehrbaren Zustandsentwicklungen.
Funktionen f, die keine ein-eindeutige Abbildung darstellen (fir die also f(x) = f(y) fir Ar-
gumente = # y gilt) kénnen nicht direkt durch unitére Operationen berechnet werden (vergl.
Abb. 12.2). Dieses Problem wird dadurch geldst, dass man das Argument z in einem ersten
Reqgister unverandert mitfuhrt. Daher besteht die Notwendigkeit von zwei Registern, einem
ersten Register (x-Register) der L&nge n und einem zweiten Register (y-Register) der Lénge
m. Die unitdre Transformation zur Bestimmung von f(x) wirkt dann auf einen Zustand aus

H™ @ HE™ in folgender Weise:

2, y) 5 [, (y + f(x)) mod 2") = |a,y & f(x)) . (12.7)

Schematisch ist das in Abb. 12.3 dargestellt. U ist eine kontrollierte Operation, da das was mit
dem Inhalt des zweiten Registers durchgefhrt wird, vom Inhalt des ersten Registers abhéngt.
Das CNOT-Gatter, das wir in Abschn. 7.4 beschrieben haben, ist ein Spezialfall mit m =
n = 1und f(x) = «. Die graphische Darstellungsweise wird von dort tbertragen. Uy von
Gl. (12.7) wird durch das Schaltbild von Abb. 12.4 wiedergegeben.

Wir geben ein Beispiel zur Veranschaulichung von Gl. (12.7) an. Die Quantenregister
sollen die Lange n = 2 und m = 3 haben. Die Boolesche Funktion f ist dann von der Form
f:{0,1}" — {0, 1}™. Wir betrachten speziell die Berechnung von f(x) = x>

|z, 0) 2, |z, 2% mod 2%) . (12.8)
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Abbildung 12.4: Funktionsberechnung als kontrollierte Operation.

Die unitare Transformation Uy muf dann Folgendes leisten:

|0,0)]0,0,0) — |0,0)|0,0,0)
|0,1)]0,0,0) —|0,1)|0,0,1)
|1,0)]0,0,0) — |1,0)|1,0,0)
|1,1)]0,0,0) — |1,1)]0,0,1). (12.9)

Wir haben dabei 9 mod 2% = 1 verwendet.

Bleibt noch die Frage zu beantworten, ob eine solche unitare Transformation Uy immer
mit Hilfe von Gattern implementiert werden kann. Es l&sst sich zeigen, dass fir jede Boolesche
Funktion f : {0,1}" — {0, 1}" das Quantennetzwerk, das die Transformation U; und damit
die Berechnung einer jeden Funktion f auf dem Quantencomputer bewirkt, allein aus Toffoli-
Gattern aufgebaut werden kann. Damit ist zugleich die Unitaritat von Uy gewahrleistet. Das
Toffoli-Gatter ist in diesem Sinn ein universelles reversibles Gatter. Flr den Beweis verweisen
wir auf die Literatur (vergl. Abschn. 8.6).

Unitaritat Wir wollen einen einfachen Spezialfall von GI. (12.7) untersuchen und zeigen,
dass fir jede Funktion f : {0,1} — {0, 1} die Transformation U; eine unitére Transfor-
mation auf Hs ® H, ist. Sie kann daher durch eine Kombination einfacher Quantengatter
implementiert werden. Wir haben

UsUsle,y) = Usle,y © f(2)) = o,y @ f(2) © f(2)) = |2, y) (12.10)

und damit U, Uy = 1.
Zu zeigen ist noch, dass Ul = Uy gilt. Es gibt vier Funktionen f;:

IR
20 = 5 2]. =
3000 =0 ,  f3(1) =1 (12.11)
fa(0) =1, fu1) =0

Wir untersuchen die mit Bezug auf die Rechenbasis gebildete Matrix U. Fur f; haben wir
Urlz,y) = Uylz,y ® 0) = |z,y) und damit Uy = 1 = U;E. Fur fo gilt U;|0,0) = |0,0),
Url0,1) = 10,1), Ug|1,0) = [1,1) und Uf|1,1) = |1,0). Fur die Matrixdarstellung von U
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kénnen wir daraus

100 0

o t1oo |

U=109 010 |=0 (12.12)
000 1

ablesen. Die Unitaritat von Uy fur fs und f4 zeigt man in analoger Weise.

Kick-back Wir betrachten eine Funktion f : {0,1}" — {0,1}, d.h. den Fall m = 1,
und stellen im zweiten Register im Anfangszustand die Superposition %(\0) — |1)) her. Die
Wirkung von Uy besteht dann in

1 Uy 1
510 =11 = o)z (f@) - L& f(@)

- |x>(—1)f(z)% (l0) — 1)) - (12.13)

)

S

Basisvektoren |x), fur die f(x) = 1 gilt, werden mit —1 multipliziert. Das Argument x kon-
trolliert daher einen Vorzeichenflip. Obwohl die Funktionsherechnung und die Addition im
zweiten Register erfolgt, bleibt der Zustand im zweiten Register unverandert %(m) — 1))
und nur im ersten Register treten abhéngig von f(x) Vorzeichendnderungen auf. Man nennt
diesen Vorgang, den wir noch mehrfach nutzen werden, einen Kick-back (kick back).

12.3 Quantenparallelismus

Durch parallele Anwendung von Hadamard-Gattern auf den Registerzustand |0, 0, ..., 0) des
ersten Registers der Lange n

Q) = HeH®---® H|0,0,...,0)
1 1 1
= 5(|0>+|1>)5(I0>+I1>)~~ﬁ(\0>+\1>)
d—1
= %Zm (12.14)
x=0

(d := 2™) entsteht eine gleichgewichtete Superposition der d Basisvektoren von Hé"). Wir
kdénnen den Zustand |Q2) als die ,,Superposition* der Zahlen 0 < x < d auffassen. Wenn wir
das zweite Register der L&nge m mit Zustand |0) hinzufuigen und die unitare Transformation
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wirken lassen, Uberfihrt sie in den Zustand

1 d—1
) = Us <ﬁ2|ﬂc,0>>
=0

d—1

1
AT
iz
1 d—1
= — |z, f(z) mod n) . (12.15)
Vi

Als Folge der Linearitét von Uy und der Superposition (12.14) im Zustand |2) im ersten Re-
gister wird nach einmaligem Durchlaufen des Netzwerks simultan der Wert f(x) fir d = 2™
Argumente berechnet. Diese Parallelverarbeitung von Information wird als Quantenparalle-
lismus (quantum parallelism) bezeichnet. d steigt mit der Registerlange n exponentiell an.
Abgesehen von Trivialfallen ist der resultierende Zustand |+) verschréankt.

Wenn wir bei dem Zustand |¢)) von GI. (12.15) die ersten n Qubits (d. h. das z-Register)
mit Bezug auf die Standardbasis ausmessen, erhalten wir mit einheitlicher Wahrscheinlich-
keit é einen der Zustande |z). Wenn z.B. |zo) gemessen wird, wird der Gesamtzustand in
|xo, f(xo)) Uberfihrt. Eine Messung am zweiten Register liefert f(xz(). Aussagen Uber ande-
re z-Werte kénnen nicht mehr gewonnen werden. Bei dieser Berechnung von f(z) Argument
nach Argument ist der Quantencomputer schlechter als der klassische Computer, da beim
klassischen Computer der Wert oy nach Belieben vorgegeben werden kann. Beim Quanten-
computer ist o ein Zufallsergebnis. Die Uberlegenheit der Quantencomputer wird sich bei
anderen Fragestellungen zeigen.

Quantenalgorithmen Die Uberlegenheit von Quantenalgorithmen (quantum algorithms)
gegeniiber klassischen Algorithmen beruht in erster Linie auf der Ausnutzung von Super-
position und Verschrankung fur ganz spezifische Fragestellungen. In erster Linie werden die
folgenden beiden Techniken verfolgt:

(i) Aufsuchen von globalen Eigenschaften einer Funktion f(x), wie z. B. der Periode. Hier-
zu werden nicht wie beim klassischen Computer zunéchst Funktionswerte berechnet und
anschlieBend miteinander verglichen, sondern direkt Korrelationen zwischen den Zu-
stdnden des Ausgangsregisters untersucht. Wir werden das beim Deutsch-Problem, beim
Deutsch-Jozsa-Problem und beim Shor-Algorithmus kennenlernen.

(if) Amplitudenverstarkung (amplitude amplification) in zumeist iterativer Weise. Dabei wird
die Superposition so transformiert, dass der Zustand mit dem gesuchten Resultat eine
besonders grofle Amplitude erhdlt und daher mit grof3er Wahrscheinlichkeit gemessen
wird. Als ein Beispiel hierfur behandeln wir den Grover-Algorithmus.
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Abbildung 12.5: Erzeugung eines Kick-back im ersten Register.

12.4  Zwei einfache Quantenalgorithmen

12.4.1 Deutsch-Problem

Wir diskutieren die Situation, dass eine Funktion f : {0,1} — {0, 1} als Blackbox (black
box) bzw. als Orakel (oracle) gegeben ist. Die Blackbox kann den Funktionswert f(z) zu
jedem eingegebenen Argument a: berechnen, liefert aber keine dartiber hinaus gehende Infor-
mationen Uber f(x). Man kann wie bei einem Orakel eine Anfrage (query) stellen und erhalt
jeweils eine Antwort. Die Aufgabe besteht darin, bestimmte Eigenschaften von f(x) mit einer
minimalen Zahl von Anfragen zu bestimmen. Wir vergleichen dabei eine klassische Blackbox
mit einer quantentheoretischen Blackbox, in der f(x) als Quantenalgorithmus implementiert
ist.

Es gibt vier Funktionen f(x), die in Gl. (12.11) aufgelistet sind. Die Funktionen f;(z)
und f>(z) heiBen konstant. Die Funktionen fs(x) und f4(x) heiflen ausgeglichen, da gleich
viele Werte 0 und 1 angenommen werden. Beides sind globale Eigenschaften der Funktionen.
Es soll festgestellt werden, ob die Funktion f(x) der Blackbox konstant oder ausgeglichen ist.
Hierzu mul im klassischen Fall die Berechnung mit den Werten 2 = 0 und 2 = 1 laufen. Das
Orakel muss also zweimal befragt werden.

Beim Quantencomputer verwenden wir den Deutsch-Algorithmus? und fragen nicht ,,Wel-
cher Funktionswert?* sondern ,,Welche Funktion?*. Wir nutzen den Kick-back von GI. (12.13)
aus und verwenden im z-Register den Zustand % (|0) — |1)). Das kann man erreichen, indem
man dort |0) einlaufen lasst und eine Hadamard-Transformation anschlief3t (vergl. Abb. 12.5).
Nach der Anwendung von U, gemaf Gl. (12.13) liegt der Gesamtzustand

5 10+ 1) (10) = 1) 22 2 [(=1)7@0) + 1 O] (o) - 1)) (1216

vor. Das zweite Register wird nicht mehr betrachtet. Wenn f () konstant ist, enthélt das erste
Register den Zustand

1
7 (|0) + |1)) < konstant . (12.17)
Im ausgeglichenen Fall liegt der Zustand
1
7 (|0) — |1)) < ausgeglichen (12.18)

2D. Deutsch, 1985, [Deu85].
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Abbildung 12.6: Quantenschaltung fiir den Deutsch-Algorithmus.

vor. Zur Ausmessung fiihren wir wie in Abb. 12.6 eine zweite Hadamard-Transformation H
durch, die auf

|0) < konstant, |1) < ausgeglichen (12.19)

fuhrt. Eine einzige Messung in der Rechenbasis liefert dann bereits mit Sicherheit die ge-
wiinschte Antwort.

12.4.2 Deutsch-Jozsa-Problem

Es werden Funktionen f : {0,1}™ — {0, 1} betrachtet, die auf d = 2" Werten flr x erklart
sind. f(z) soll entweder konstant oder ausgeglichen sein. Ausgeglichen bedeutet, dass die
Haélfte aller Funktionswerte null und die andere Hélfte eins ist. Die Aufgabe besteht wieder
darin zu ermitteln, welcher Typ von Funktion in einer Blackbox vorliegt.

Der Quantenalgorithmus von Deutsch und Jozsa® entsteht durch Erweiterung des Deutsch-
Algorithmus. Wir betrachten das in Abb. 12.7 dargestellte Schaltbild. Die Hadamard-Gatter
H™ = H® H ® --- ® H haben auf den Zustanden des z-Registers die in Gl. (12.14)
beschriebene Wirkung.

1
0,0,...,0)——
| '

Nach der simultanen Funktionsberechnung entsteht daraus wie in Gl. (12.13)

(l0) — 1)) 2 [y = f Z| — 1) . (12.20)

1)@ |z , :
) -5 WZ | f<|0> 1)) (12.21)

Wir schlielen eine weitere Transformation des z-Registers mit Hadamard-Gattern an. Die
Wirkung von H™) = H® H @ - - - @ H wollen wir an dieser Stellen nicht im Einzelnen aus-
rechnen. Die folgende Uberlegung reicht fiir unsere Zwecke aus. Die Wirkung des einzelnen

. H H
Hadamard-Gatters ist |0) — %(|O> + (1)) bzw. |1) — %(|0> —|1)). Der Zustand |x) des
x-Registers ist wie in Gl. (12.2) ,,binar geschrieben“. Mit H (™) entsteht

) 2, % (10Y[0) ... |0) + Rest), Rest #[0)[0) ... [0) . (12.22)

3D. Deutsch und R. Jozsa, 1992, [DJ 92].
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Abbildung 12.7: Quantenschaltung fir den Deutsch-Jozsa-Algorithmus.

Als Zustand beider Register erhalten wir daher durch Auswerten von Gl. (12.21)

HD oy L d_l_ (@) R
| >—ﬂ<;( 1) ){|0>|0>...|0)+Rebt}\/§(|0> 1)) . (12.23)

Schlielich messen wir die einzelnen Stellen des x-Registers in der Rechenbasis. Die
Wahrscheinlichkeit das Messergebnis (0,0, ..., 0) zu erhalten ist

[¥')

2

d—1
1
L0) == —1)f@ 12.24
p(0.0,...,0) d;( ) (12.24)
Daraus folgt
p(0,0,...,0) = 1 <« f(z) konstant
p(0,0,...,0) = 0 <& f(x)ausgeglichen (12.25)

Wir messen daher nur einmal das z-Register. Wenn dabei das Resultat 0,0, ..., 0 eintritt, ist
f(z) konstant. Wenn irgendein anderes Messresultat eintritt, kann f(z) nicht konstant sein,
d.h. f(z) muss ausgeglichen sein.

Fur beliebige Registerlange n reicht beim Quantennetzwerk bereits eine Anfrage an das
Orakel aus. Beim klassischen Netzwerk fragt man nacheinander den Wert f(z) zu den N
moglichen x-Werten ab. Sobald man firr zwei Eingaben verschiedene Werte fir f(x) erhalt, ist
die Funktion nicht konstant und also ausgeglichen. Um sicher zu wissen, dass f(z) konstant
ist, muss sich derselbe Wert in mehr als der Halfte aller Falle, als mindestens in 27~ ! + 1
Fallen, ergeben. Die Zahl der klassisch nétigen Anfragen wachst daher exponentiell mit » an.
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12.5 Suchalgorithmus von Grover

Telefonbuchproblem Das Telefonbuchproblem (phone book problem) besteht darin, in ei-
nem Telefonbuch zu gegebener Telefonnummer (z. B. 7581) den zugehdrigen Namen zu fin-
den.

X =Name Nummer

Miiller 4892
Meier 1739

Schmidt 7581

Die Verteilung der Nummern soll zuféllig sein. Das Telefonbuch ist im Orakel gespeichert.
Beim klassischen Algorithmus lautet die Frage ,,Hat Miller die Nummer 7581?* Das Ora-
kel antwortet in diesem Fall mit ,,nein“. So werden die Namen nacheinander abgefragt,
bis ,,Schmidt* gefunden ist. Die Nutzung des Quantenparallelismus im Grover-Algorithmus?
(Grover’s algorithm) erlaubt es wieder, alle Fragen gleichzeitig zu stellen. Das Auslesen er-
folgt in diesem Fall mit Hilfe von Amplitudenverstarkung (vergl. Abschn. 12.3).

Das Telefonbuch — oder allgemeiner eine nicht strukturierte Datenbank, in der ein Eintrag
gesucht werden soll — entspricht einer Funktion f(z),z = 0,1,...,d — 1 mit den Werten

fly=0firz£1 flz)=1firz=1. (12.26)

Das Quantenorakel erlaubt die Berechnung von f : {0,1}" — {0, 1} wie in Gl. (12.21) mit
d = 2™. Das zweite Register soll wieder aus nur einem Qubit bestehen. Wir lassen dort den
Zustand %(|O> —|1)) einlaufen und nutzen den Kick-back aus. Der Zustand %(|O> — (1))
lauft wieder aus. Wir geben im Folgenden nur die Transformationen des ersten Registers an.
Dann wird die Wirkung der quantentheoretischen Funktionsberechnung durch den unitaren
Operator U,

lz) L5 (—1)F @) (12.27)

beschrieben. U; flippt den Zustand |I) in —|I) und l&sst alle anderen Zustdnde unveréndert.
Man kann diesen Operator daher auch in der Form

U =1-2){ (12.28)

schreiben.
Wir nutzen wieder den Quantenparallelismus aus. Durch Anwendung des Produkts
H™ = H® H® H---® H erzeugen wir wie in Gl. (12.14) aus den Zustand |0)|0) . .. |0)

(n)

die gleichgewichtete Superposition aller Zustande der Rechenbasis von Hy

1 d—1
Q) = 7 > ) (12.29)
=0

4L.K. Grover, 1996 [Gro 96].
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Der unitére Operator
Us :=2|Q)(Q| — 1 (12.30)

bewirkt eine ,,Spiegelung® an |€2). Er erhdlt |2) und flippt das Vorzeichen von jedem Vektor
orthogonal zu |©2). Mit GI. (12.14) I8sst sich Us mit Hadamard-Transformationen in der Form

Us = H™(2[0)(0] — 1)H™ (12.31)

mit |0) = |0,0,...,0) schreiben.
Wir wollen die Wirkung der Spiegelung auf einen allgemeinen Zustand

) =) a.lz), @, €R (12.32)
angeben. Die Projektion auf |$2) fiihrt auf

(Qly) = % gja =Vda (12.33)
mit dem Mittelwert der Amplituden

a:= é %: as . (12.34)

Damit ergibt sich als Resultat der Anwendung von Ug auf |¢) mit Gl. (12.30) und (12.32)

x

Usl) = (212)(0] - 1)[p) =2 (Z |x>> i anle) = (23 a,)la) . (12.35)

Die Amplituden a, von |¢) werden wie a, — 2a — a, transformiert. Das entspricht einer
Spiegelung von a, am Mittelwert a.

Der Algorithmus besteht nun darin, in einem ersten Iterationsschritt UsU; auf |Q2) anzu-
wenden

Q1) = Usl|Q) . (12.36)

In Abb. 12.8 sind die Amplituden a, Uber 2 aufgetragen. Fir |Q2) haben sie einheitlich den
Wert Ld. Anwendung von U; flippt a; in —a; und l&sst die anderen Amplituden unverén-
dert. Der Mittelwert @ verschiebt sich dabei nach unten. Die nachfolgende Transformation Ug
spiegelt die Werte a,. am neuen Mittelwert und bewirkt eine Verstarkung der Amplitude a; im
Zustand |€2,). Dies ist ein erster Durchgang. Auf |2;) wird dann wieder UsU; angewendet
usw. Schlielich wird das xz-Register Bit-flir-Bit ausgemessen. Dann ist die Wahrscheinlich-
keit am groften, den Zustand |I) und damit das Messergebnis [ in dualer Schreibweise zu
finden.

Der Grover-Algorithmus beschreibt eine Situation, in der der Quantencomputer das ge-
winschte Resultat nicht mit Sicherheit, sondern nur mit groRer Wahrscheinlichkeit liefert.
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Abbildung 12.8: Amplitudenverstarkung beim Grover-Algorithmus.

Dafur ist er offenbar in Folge des Quantenparallelismus wesentlich schneller als eine wieder-
holte Befragung des klassischen Orakels.

Eine unitére Transformation ist eine Rotation im komplexen Raum. Wiederholte Anwen-
dungen kdnnen einen Zustand immer nadher an einen gewiinschten Zustand heranrotieren.
Es kann aber auch passieren, dass die Rotation ber den gewiinschten Zustand hinausgeht
und bei Wiederholung der Rotation sich mehr und mehr von ihm entfernt. Es ist daher beim
Grover-Algorithmus wichtig zu wissen, wann das Iterationsverfahren abzubrechen ist (vergl.
Abschn. 12.8).

Die systematische klassische Durchsuchung der Datenbank benétigt eine Anzahl von
Fragen in der GroRenordnung 2". Sie steigt exponentiell mit » an. Um mit dem Grover-
Algorithmus mit groRer Wahrscheinlichkeit den richtigen Eintrag zu finden, reichen /2" An-
fragen (vergl. Abschn. 12.8).

12.6 Faktorisierungsalgorithmus von Shor

In schnell wachsendem Umfang beruht die Kommunikation im militarischen und nicht-
militarischen Bereich auf einer sicheren Kryptographie fiir die 6ffentliche Ubertragung von
Schliisseln und Signaturen. Bis heute beruht das Verschliisselungsverfahren auf der Annah-
me, dass es keine effektive Faktorisierung groRer Zahlen gibt. Der Quantenalgorithmus von
Shor® erlaubt eine, verglichen mit klassischen Methoden, sehr viel schnellere Faktorisierung.
Wenn sich ein effektiver Quantenprozessor fiir diesen Algorithmus technisch realisieren las-
sen lieRe, hétte das eine groRe Auswirkung auf die Sicherheit von geheimer Datenlbertra-
gung und Datenspeicherung. Dies ist einer der Grinde fur das schnell wachsende Interes-
se an Quantenalgorithmen und an der Realisierung von Quantencomputern. Wir wollen den

5P, Shor, 1994 [Sho 94] und 1997 [Sho 97].
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quantentheoretischen Faktorisierungsalgorithmus hier vorstellen. Er besteht aus einem klassi-
schen Algorithmus, der stochastische Elemente (Zufallselemente) enthdlt, und dem eigentli-
chen Quantenalgorithmus zum Auffinden der Periode einer Funktion. Wir beginnen mit dem
klassischen Teil.

12.6.1 Ruckfuhrung von Faktorisierung auf Periodensuche

Der groRte gemeinsame Teiler als HilfsgroRe Das Fundamentaltheorem der Arithmetik
besagt: Fir jede natlrliche Zahl a > 1 gibt es eine eindeutige Primfaktorzerlegung (prime
factorization)

a=pi'ps?...ppn (12.37)
mit verschiedenen Primzahlen pq,...,p, und nicht verschwindenden natiirlichen Zahlen
a, ..., a,. Unser Ziel ist die Angabe eines schnellen Algorithmus zur Primzahlzerlegung.

Wir machen dabei davon Gebrauch, dass es effiziente Methoden zur Bestimmung des groR-
ten gemeinsamen Teilers ggT(a, b) (greatest common divisor) von zwei natiirlichen Zahlen a
und b gibt (vergl. 12.8). ggT(a, b) ist die grofite ganze Zahl, die sowohl Teiler von a wie von b
ist.

12: Teiler1,2,3,4,6,12.

18 : Teiler1,2,3,6,9,18 .
= 0gT(12,18) =6 (12.38)
N sei ungerade und keine Primzahl. Zur Primzahlzerlegung von N ermitteln wir einen
nicht-trivialen Teiler von N und wenden das Verfahren sukzessive wieder auf die gefundenen
Faktoren von NN an. Hierzu reicht es, eine natirliche Zahl b zu finden, die mit N mindestens
einen Teiler # 1 gemeinsam hat, dann haben wir mit ggT(b, ) insbesondere auch einen Teiler

von N gefunden. Eine solche Situation liegt vor, wenn es natirliche nicht durch N teilbare
Zahlen ¢ > N und d > N gibt, sodass die Gleichung

cd

v -
fur eine natirliche Zahl m erfullt ist. Dann muss es mdglich sein, alle Faktoren der Primzahl-
zerlegung von NN gegen einige oder alle Faktoren von ¢ und d zu kirzen. Es gibt also einen
ggT(c, N) und einen ggT(d, N). Wir berechnen beide mit dem ggT-Algorithmus und haben
damit zugleich Faktoren von N gefunden.

m (12.39)

Die Rolle der Periodenbestimmung Wie gewinnen wir zu vorgegebenem N eine solche
Relation (12.39)? Hierzu stellen wir eine Voriiberlegung an. a sei eine natirliche Zahl mit
2 < a < N — 1. Wir setzen voraus, dass

g9T(a,N) =1 (12.40)
erflllt ist, sonst ware bereits ein Teiler von N gefunden, und bilden die Funktion

f(x):=a" (mod N). (12.41)
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Man kann zeigen (vergl. Abschn. 12.8), dass die Funktion f(z) eine Periode r hat. Darunter
verstehen wir die kleinste natiirliche Zahl, fiir die

flx+7r)= f(x) (mod N) (12.42)
gilt. Die Periode r hdngt von a ab. Aus

a*t" =a"a" = a® (mod N) (12.43)
folgt der Zusammenhang

" =1 (mod N). (12.44)
Wir machen ein einfaches Beispiel und berechnen modular

(z, f(x) =2 mod 3): (1,2), (2,1), (3,2), (4,1),... (12.45)
Die Periode ist » = 2 und es gilt

a"=2=1 (mod 3). (12.46)

Nehmen wir an, zu gegebenem a sei die Periode r in einem geeigneten Verfahren bereits
bestimmt worden. Und nehmen wir weiter an, dass die folgenden beiden Bedingungen erfillt
sind:

r ist gerade, (12.47)

a2 +1#0 (mod N). (12.48)
Dann kdnnen wir wegen Bedingung (12.47) die GI. (12.44) umformen

a"—1=(a%? +1)(a% —1)=0 (mod N) . (12.49)

Die linke Seite der Gl. (12.49) muss ein Vielfaches von N sein. Es gibt daher eine natirliche
Zahl m > 0, sodass wir

(a2 +1)(a? —1)
N
schreiben kénnen.

Gleichung (12.48) besagt, dass a2 + 1 kein Vielfaches von N ist. Da r die kleinste Zahl
mit der Eigenschaft (12.42) ist, muss weiterhin

—m (12.50)

a2 —1#0 (mod N) (12.51)

gelten, denn sonst ware wegen GI. (12.44) bereits 5 die Periode. Daher ist auch a% — 1 kein
Vielfaches von N. Andererseits besagt Gl. (12.50), dass wir auf ihrer linken Seite nach einer
Primzahlzerlegung alle Faktoren von N gegen Faktoren im Zahler wegkurzen konnen. Das

T r
Kirzen muss dabei in (a2 + 1) und in (a2 — 1) erfolgen, denn sonst wére einer dieser Terme



202 12 Quantencomputer

ein Vielfaches von N und im Widerspruch zu Gl. (12.48) und (12.51). Beide Terme haben
daher mit V gemeinsame Teiler. Darunter gibt es jeweils Grofite mit

99T (a% +1,N) (f) . ggT(a% —1,N) # (]D . (12.52)

Diese Existenzaussage ist unser Ergebnis. Wenn wir schlieBlich den Algorithmus zur ggT-
Bestimmung anwenden, haben wir einen oder zwei Faktoren von N gewonnen.

Wir sind nur dann erfolgreich, wenn wir zu vorgegebenem N ein a finden, sodass die
Bedingungen (12.47) und (12.48) erfillt sind. Die Suche erfolgt, indem Zufallswerte fir a
eingegeben werden und so lange der Algorithmus immer wieder durchlaufen wird, bis sich
ein a findet, das die Bedingungen erfullt. Es handelt sich daher um einen Zufallsalgorithmus
(randomized algorithm). Die gewonnenen Faktoren von N werden in gleicher Weise weiter
bearbeitet, bis die Faktorzerlegung erreicht ist.

Flussdiagramm Das oben beschriebene Schema des Faktorisierungsalgorithmus ist in
Abb. 12.9 dargestellt. Nur fir den doppelt gerahmten Teil der Periodensuche wird ein Quan-
tenalgorithmus eingesetzt.

Das Beispiel N = 15 Die Zahl 15 ist die kleinste ungerade Zahl, die keine Primzahl ist. 15
ist daher die kleinste Zahl, die mit der beschriebenen Methode faktorisiert werden kann. Mit
N = 15 haben wir 2 < a < 14. Da Gl. (12.40) zu erfllen ist, gibt es fur die Wahl von « die
folgenden Maglichkeiten:

a€{2,4,7,8,11,13,14} . (12.53)
Wir wahlen z. B. @ = 11 und suchen die Periode » von f(x) von Gl. (12.41).

r=0 : 11°=1 (mod 15)

r=1 : 11'=11 (mod 15)

r=2 : 11°=121=8-15+1=1 (mod 15)

r=3 : 11=1331=88-15+11 =11 (mod 15). (12.54)
Wir haben die Periode » = 2 erhalten und damit

ggT(11 + 1, 15) = 3, ggT(11—1,15)=5. (12.55)

Die Zahlen 3 und 5 sind Teiler von 15. Die Primzahlzerlegung von 15 lautet 15 = 3 - 5.
Wenn die zufallige Festlegung von a auf a = 14 flhrt, erhalten wir:

r=0 : 14°=1 (mod 15)

r=1 : 14' =14 (mod 15)

r=2 : 14°=196=13-15+1=1 (mod 15)

r=3 : 14> =2744=182-15+14=14 (mod 15). (12.56)
Die Periode ist wieder » = 2. Wir bilden

99T (14 +1,15) = 15, ggT(14 —1,15) =1. (12.57)

Damit ist die Bedingung (12.52) verletzt. In Abb. 12.9 (Flussdiagramm) fuhrt die Schleife
zurlick. Es muss ein neuer Wert fur a gewahlt werden.
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Wabhle in zufalliger
Weisea € {2,...,N — 1}

Berechne
z1 = 09T (a

NEIN /P

Bestimme Periode r
der Funktion a® mod N

JA

z=max{ggT(aZ + 1,N),ggT(aZ — 1,N)}

z1 bzw. 2z ist
ein Faktor

Abbildung 12.9: Schema des Faktorisierungsalgorithmus. Nur der doppelt gerahmte Teil wird auf dem
Quantencomputer durchgefihrt.

12.6.2 Quantenalgorithmus zur Periodenbestimmung

Die verbliebene Aufgabe besteht in der Bestimmung der Periode der Funktion f(z) = a®
(mod N). Wir verwenden wieder zwei Register der Ladnge »n und m. Im ersten Register kdn-

nen die d = 2" Basisvektoren |z) von Hé”) sowie jede Superposition |¢) € Hé") eingegeben
werden. Im zweiten Register wird f(x) (mod N) abgelegt. Die Lange m ist so zu wahlen,
dass die Dimension 2™ > N ist. Zustande in diesem Register bezeichnen wir mit |x) € H(m).
Ein Gesamtzustand aller Register ist von der Form |¢) = |¢)|x) € Hé") ® H{”).

1.Schritt: Initialisierung Als Ausgangspunkt fir die Nutzung des Quantenparallelismus
wird im ersten Schritt der Zustand |)) in bekannter Weise in die gleichgewichtige Superposi-
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tion der Basiszustande von H(") gebracht

1) = Vil Z |z)]0) . (12.58)

Beispiel N = 15:
1. Register: n=3 Qubits fur die Zahlen 0 bis 7. Damit ist d = 8.
2. Register: m = 4 Qubits fur die Zahlen 0 bis N = 15.
Wihle a = 11.

Y1) = 25 (10) + (1) +...17)) 0)

2. Schritt: Berechnung von f(x) im zweiten Register Das Ergebnis der unitéren Trans-
formation ist der verschrénkte Zustand

1 d—1 N
|w2>=ﬁ;0|x>|a> (mod N) (12.59)
Beispiel N = 15:
l2) = 7(I0>I1>+I1>I11>+I2>I1>+I3>|11>
+- 4+ |7)11)) (12.60)
2) = \1[{(\0>+|2>+I4>+I6>)\1>

+ (1) +3) + [5) + 7)) [11) } . (12.61)
Periodizitat kann man an der Folge der x-Werte ablesen, fir die die Funktionswerte sich
wiederholen. Die Periode ist eine globale Eigenschaft der Funktion. Sie ist nach einem einzi-
gen Rechenschritt bereits in den Zustanden reprasentiert. In Gl. (12.61) ist nach den Funkti-
onswerten im zweiten Register zusammengefasst worden. Die Periode (hier » = 2) ist in den
verschiedenen Zustédnden des ersten Registers gespeichert, die sich bei der Zusammenfassung
ergeben. Die Zerlegungen dieser Zustdnde nach Basiszustdnden kdnnen in den Nummern der
Basiszustdnde Verschiebungen um [ € IN gegeniiber 0 aufweisen, die auch Offset genannt
werden. In Gl. (12.61) haben wir als Nummern der Basisvektoren (0, 2, 4, 6) und (1, 3, 5, 7).
Der Offsetist = 0 bzw. [ = 1.
Die Periode ist damit bereits im Prinzip ablesbar. Wir messen in der Rechenbasis des
zweiten Registers und Uberfuhren dabei das erste Register je nach Offset in den Zustand

l95(1) ,/{ ] Z L+ jr) . (12.62)

[4] ist dabei die groRte natiirliche Zahl kleiner oder gleich . Im Beispiel ist 2] = 4. Diese
Messung wiederholen wir sehr oft und selektieren nach dem Messergebnis (also nach dem
Offset [). |¢5(1)) wird dann in der Rechenbasis gemessen. Im Beispiel wiirde I = 1 die Mes-
sergebnisse (0, 2, 4, 6) liefern und die Perioden » = 2 ist ablesbar. Dies wird allerdings mit
wachsendem N immer aufwendiger. Man verwendet daher ein anderes Verfahren.
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3. Schritt: Diskrete Fourier-Transformation Ein schnelleres Verfahren besteht darin, mit
Hilfe einer Fourier-Transformation den Offset in einen fur die quantentheoretische Mes-
sung irrelevanten Phasenfaktor zu verschieben. Der unitire Operator zur diskreten Fourier-
Transformation bewirkt

Uppr|z) = Zexp <2m )| ) (12.63)

mit z € IN. Die Zustdnde im ersten Register sind in (12.62) angegeben. Wir diskutieren zu-
nachst den Spezialfall

¢, (12.64)
.

Dann ist

d/r—1
|pa (1) \/>Z L+ jr) (12.65)

und
Uprr|é2(l) Z fz (12.66)
und
d_
; VS (L +jr)z
flz) = i Z exp ZMT
7=0
d_y
- \/7; ;} exp (2m’j%) exp <2m%> . (12.67)
Wir untersuchen den Faktor [...] weiter. Wenn z ein Vielfaches (einschlieRlich der Null)

von % ist, dann liegt eine geometrische Reihe vor

otz . dy _ 1
[..]= P ( 4 ) =0, (12.68)
exp (2#1%) -1

da z € IN. Wir missen also nur z = k% betrachten.
Der neue Laufbereich von z zieht sich auf die Zusténde |z) durch. Das flihrt auf

Uprr|da(l) \[ Zexp <2m—> k=) . (12.69)



206 12 Quantencomputer

Wahrschein- Wiahrschein-
| lichkeit a) L ichkeit b)
0 d 2d 3d > 0 d 2d 3d >
T ™ T T T T

Abbildung 12.10: Wahrscheinlichkeitsverteilung der Messergebnisse x im ersten Register beim Shor-
Algorithmus.

Der Offset [ steht jetzt in der Phase. Die Periode r steht in den Bezeichnungen der Zustande
(k;% € IN). Der Gesamtzustand ist

[¥s(D) ~ Z k)& - (12.70)

Den Zustand des zweiten Registers miissen wir nicht explizit hinschreiben. Insgesamt sind
bisher erst zwei unitare Transformationen erfolgt.

3. Schritt: Messung am ersten Register Wir messen in der Rechenbasis und wiederholen
die ganze Prozedur mehrfach. Nur die Messergebnisse x;, = kg mitk =0...,r — 1 werden
mit nicht verschwindender konstanter Wahrscheinlichkeit angezeigt (vergl. Abb. 12.10a).
Daraus lasst sich % ablesen. Da d bekannt ist, ist so die Periode r bestimmt.

Beispiel N = 15:
Wir haben d = 8.
Die Summanden in GI. (12.61) haben den Offset [ = 0 und [ = 1. Die unitére Transformation
Uprr Uberfuhrt in

|Ys) = f{|0 + [4))[1) + ([0) + e T[4))[11) } (12.71)

Mit der Wahrscheinlichkeit % wird am ersten Register das Ergebnis 0 gemessen. Das enthalt
keine Information. Wenn der zu & = 1 gehdrige Wert 4 gemessen wird, folgt aus 4 = k:% fir
die Periode r» = 2. Das beendet die Periodenbestimmung.

Wir ergénzen noch, dass man bei nur einer Messung mit dem Messwert x’ mit einer
gewissen Wahrscheinlichkeit auf ein &’ trifft, dass mit » keinen gemeinsamen Teiler hat.
(ggT(K',r) = 1).

A

2= (12.72)

Dann kiirzt man =z’ /d so lange, bis ein irreduzibler Bruch entsteht und liest » ab. Mit einer ge-
wissen Wahrscheinlichkeit reicht daher schon eine einzige Messung zur Periodenbestimmung.
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Allgemeiner Fall Wenn r kein Teiler von d ist und damit die Annahme (12.64) nicht erfullt
ist, werden wir trotzdem erwarten, dass sich die Wahrscheinlichkeitsverteilung um die Werte
von x konzentriert ist, die ,fast” ein Vielfaches von % sind (vergl. Abb. 12.10b). Das l&sst
sich auch beweisen. Ein passendes Auswertungsverfahren kann angegeben werden (vergl.
Abschn. 12.8). Die Zeit zur Durchfihrung der Quanten-Fourier-Transformation in einem d-
dimensionalen Raum ist von der GroRenordnung (log d)?. Die klassische schnelle Fourier-
Transformation ist von der Ordnung d log d. Daraus ergibt sich ihre Unterlegenheit (vergl.
Abschn. 12.8).

12.7 Quantenfehlerkorrektur mit Hilfe nicht-lokaler
Messungen

Wie in klassischen Computern, so treten auch in realen Quantencomputern Fehler auf. Wie wir
in Kap. 15 im Einzelnen sehen werden, fiihrt die Wechselwirkung mit der Umgebung zu Deko-
harenz. Die reinen Zustande, auf denen die Berechnung beruht, werden in Gemische tberfihrt.
Eine andere Stdrung besteht darin, dass die Quantengatter, aus denen der Quantencomputer
aufgebaut ist, nicht vollig perfekt arbeiten und moglicherweise gestdrte unitére Transformatio-
nen durchfiihren. Besonders drastische Stérungen entstehen, wenn Zusténde in Registerstellen
umspringen (z. B. |0) — |1)) oder eine Phasenanderung erfahren (z.B. |0) — —|0)). Sowohl
im Computer wie auch bei der Ubertragung in Kanilen muB Quanteninformation gegen Ver-
lust geschitzt werden indem man Fehler aufspurt (Diagnose) und beseitigt (Therapie).

Die ublichen Verfahren zur Fehlerkorrektur bei klassisch verarbeiteter Information sind
nicht Ubertragbar, da sie auf dem Kopieren von Zustanden und auf lokalen Messungen be-
ruhen. Es gibt aber keine universellen Kopierer fur Quantenzustdnde und lokale Messungen
zerstoren die Verschrankung. Man benétigt Quantenverfahren zur Fehlerkorrektur. Wir geben
einige an.

Die quantentheoretischen fehlerkorrigierenden Kodes (quantum error-correcting codes,
QECC) sind ein Beispiel fir die Verwendung von Verschrankung und von nicht-lokalen Mes-
sungen als Hilfsmittel. Die Grundidee besteht darin, Information redundant zu speichern. Es
entstehen verschrankte Zustande. Im einfachsten Fall treten einzelnen Fehler lokal, d. h. in Un-
tersystemen und einzelnen Registern auf. Dann kénnen diese Fehler durch nicht-lokale Mes-
sungen (vergl. Abschn. 9.2) aufgespurt werden und die lokal-verborgene Information kann
wieder hergestellt werden. Wir wollen das an einigen Beispielen demonstrieren.

12.7.1 Bit-Flip-Fehler

Ein Bit-Flip-Fehler (bit flip error) |0) — |1),|1) — |0) tritt lokal an einer einzelnen Register-
stelle auf. Man kann sich dagegen schitzen, indem man ein einzelnes Qubit durch drei Qubits
in der folgenden Weise redundant kodiert:

|0) — |0) :=]0,0,0) 1) — [1) :=[1,1,1) . (12.73)
Damit wird aus dem Zustand |,) der verschrankte Zustand |¢)

lp) :=col0) + c1]1)  —  |@) :=¢0]0,0,0) + ¢q|1,1,1) . (12.74)
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Abbildung 12.11: Erzeugung einer redundanten Kodierung.

Die entsprechende Quantenschaltung l&sst sich mit Hilfe von zwei CNOT-Gattern wie in
Abb. 12.11 aufbauen.

Wir bezeichnen die Produkt-HiIbert—Raume nicht mehr mit groBen Buchstaben, sondern
nummerieren sie durch HY @H?) .. Die Zustande |0) und |1) sind beide Eigenzustande

von o Mot? und ¢ 0P zum Elgenwert +1. Die entsprechenden nicht-lokalen Messungen
in der Rechenbasis ergeben den Messwert +1 (vergl. Abschn. 9.2).

Ein Bit-Flip an einer Registerstelle fuhrt z. B. auf den Zustand
|¢/> = CO|170a0>+Cl|071a1> . (1275)

Die Messung der Observablen oMel? ergibt nun den Messwert —1, die der Observablen
a§2>az3) den Messwert +1. Daraus kann eindeutig geschlossen werden, dass der Bit-Flip im
ersten Register stattgefunden hat. Wichtig ist, dass bei der nicht-lokalen Messung der Zustand
|¢") nicht abgeandert wurde. Daher fiihrt eine unitdre Transformation o’ @13 13, die

einen Bit-Flip beim ersten Registerzustand bewirkt, dort W|eder auf den Zustand |¢) zuruck

Die Messwertepaare, die bei der Messung von o\ (? und o2 o(®) erhalten werden, sind:
(+1,41), (=1,41), (=1, =1), (+1,—1). Sie entsprechen der Relhe nach: kein Flip, Flip in
der ersten, der zweiten oder der dritten Registerstelle. Der Bit-Flip wird wieder durch einen
weiteren Bit-Flip an derselben Stelle riickgdngig gemacht.

Unitare Transformationen kdnnen nahe an der Identitat sein. Dann findet nur selten ein
Bit-Flip statt. Wir betrachten das Beispiel (|¢] < 1)

[6) = 16") = ¢ (]0,0,0) +€[1,0,0))
c1(]1,1,1) +€0,1,1)) (12.76)

Durch Messung von oo und o ¢{*) wird mit der Wahrscheinlichkeit 1 — |¢|? das Mess-
ergebnis (0, 0) erhalten und auf den Zustand |¢) zuriick projiziert. Mit der Wahrscheinlichkeit
|e|? findet man das Ergebnis (—1,+1) und die Messung tberfiihrt in |¢’). Aus dem Messer-
gebnis kann auf den Endzustand geschlossen werden und, wenn notig, der Fehler korrigiert
werden.
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12.7.2 Phasen-Flip-Fehler

Es wird ein Qubit in folgender Weise in 9 Qubits kodiert, die zu Clustern von 3 Qubits zusam-
mengefasst sind:

0) — |0)= |0,0,0) +1,1,1)) (]0,0,0) + |1,1,1)) (|0,0,0) + |1,1,1))

1
m<
‘1> - ‘I> 23/2 (|O 0, O> ‘1a171>)(|07070>7|13171>) (|03070>7|17171>)
(12.77)

Jeder Cluster hat eine redundante Bit-Kodierung. Ein einzelner Bit-Flip kann wie in Ab-
schn. 12.7.1 ermittelt und behoben werden. Ein Phasen-Flip-Fehler (phase flip error), der
an einer der 9 Registerstellen stattfindet, kann folgendermalien festgestellt werden: Man misst
die zwei nicht-lokalen 6-Qubit-Observablen

( (2) (3) (4) (5) (

Oy Og Ogx

5 0),6),(6) () (8 >U( ) (12.78)

die mit o, gebildet werden. Die Zustande |0) und|1) sind Eigenzustande zum Eigenwert +1.

Wenn ein Phasenflip (Vorzeichenwechsel) in einem der Register stattfindet, dann andert
sich flir diesen Cluster der Messwert der o,.0,0,-Messung um den Faktor —1. Durch Mes-
sung der Operatoren (12.78) kann man dhnlich wie beim Bit-Flip-Fehler ermitteln, in welchem
Cluster der Phasen-Flip stattgefunden hat. Die Fehlerkorrektur besteht dann darin, dass in die-
sem Cluster an irgendeiner Registerstelle eine o, -Transformation durchgefiihrt wird. Dadurch
wird der Ausgangszustand wieder hergestellt.

Fehler bei allen Registerstellen  Wir lassen zu, dass an allen Registerstellen ein Fehler auf-
treten kann, verlangen aber, dass das bei jeder einzelnen Registerstelle nur selten geschieht.
Auf das einzelne Qubit kann dann die unitdre Transformation U = 1 + O(e) mite < 1
wirken. Sie hat ganz allgemein die Struktur

U=1+ie,0, +icyoy +i€.0, . (12.79)

Die einzelnen Terme bewirken Bit-Flip, Phasen-Flip oder beides zusammen. Wir betrachten
die Kodierung (12.77). Man fuhrt wieder die Diagnose flr Phasen-Flip und Bit-Flip durch und
erreicht damit bereits, dass mit groRer Wahrscheinlichkeit auf den ungestorten Zustand zurtick
projiziert wird. Mit einer geringen Wahrscheinlichkeit |¢|? hat ein Bit-Flip oder Phasen-Flip in
einem Register stattgefunden. Dieser Fehler wird erkannt und kann auf bekannte Weise beho-
ben werden. Bei Fehlern an zwei oder mehr Stellen ist das so nicht mdglich. Diese Situation
tritt allerdings auch nur mit einer Wahrscheinlichkeit |¢[* oder kleiner auf.

12.8 Erganzende Themen und weiterfuhrende Literatur

e Das Toffoli-Gatter ist ein universelles reversibles Gatter. Jede unitdre Transformation
lasst sich durch Kombination von Toffoli-Gattern realisieren: [Pre 98, Kap. 6], [Gru 99,
Kap. 1.7.1 und 3.1], [Hir 01, Kap. 2.3.2].
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Rechenzeiten flr klassische und quantentheoretische Fourier-Transformation: [Pre 98,
Kap. 6].

Diskrete Fourier-Transformation, wenn Gl. (12.64) nicht erflllt ist: [EJ 96], [Pre 98, Kap.
6.9.1].

Dekohéarenz durch Kopplung an die Umgebung zerstort die unitdre Entwicklung im
Quantencomputer und ist daher eine wichtige Fehlerquelle: [Bar 96], [PSE 96].

Dekoharenzfreie Unterrdume und Systeme gelten als eine der erfolgversprechenden L&-
sungen des Dekohérenzproblems beim Quantencomputing: [LW 03].

Wissen tber Computational Complexity ermdglicht die Einschatzung von Vorteilen und
Grenzen von Quantencomputern: [Mer 02].

Fehlerkorrigierende Quantenkodes: [Pre 98, Kap. 7], [Pre 98 a], [Gru 99, Kap. 7],
[Pre 99].

Anzahl der nétigen Anfragen beim Grover-Algorithmus: [Pre 98, Kap. 6], [EHI 01].
Beschreibung weiterer Such-Algorithmen: [Gru 99, Kap. 3].

Optimale Zahl der Wiederholungen beim Grover-Algorithmus: [BBH 98], [EHI 01].
Ubersichtsartikel zum Shor-Algorithmus: [EJ 96].

Ubersichtsartikel zum Quantencomputing: [Ben 95], [Bar 96], [PVK 96], [Bar 98],
[CEM 98], [DE 98], [Pre 98, Kap. 6], [Ste 98], [VP 98], [Bra 99a], [Joz 00], [NC 00, Part
11], [RP 00], [EHI 01], [CB 02], [GM 02], [Lom 02a], [Wer 02].

Euklidischer Algorithmus zur Bestimmung des gréfiten gemeinsamen Teilers: [NC 00,
Appendix 4].

Wenn die Bedingung (12.40) erflllt ist, hat die Funktion f(z) von Gl. (12.42) eine Peri-
ode. Beweis mit Hilfe des Satzes von Euler und Fermat: [HW 79].

Bucher Giber Quantencomputing: [BDM 98], [WC 98], [Bra 99], [Bro 99], [Gru 99],
[Pit 00], [CP 01], [Hir 01], [DM 02], [KSV 02], [LB 02], [Lom 02], [SS 04].

Biicher oder Ubersichtsartikel zur experimentellen Realisierung von Quantencomputern:
[Pel 98], [Gru 99, Kap. 7.6], [BEZ 00], [CLK 00], [DiV 00], [NC 00, Part I1], [DM 02],
[SS 04].

Biicher mit Ubersichtsartikeln zur experimentellen Realisierung von Quantencomputern:
[LSP 98], [Bra 99], [BEZ 00], [DM 02], [Hei 02].

Buch mit einer Gesamtdarstellung der Ansdtze zur experimentellen Realisierung von
Quantencomputern: [SS 04].

Biicher mit Ubersichtsartikeln zur Theorie der Quantencomputer: [LSP 98], [Bra 99],
[CB 02], [GM 02], [Hei 02], [Lom 02].



12.9 Ubungsaufgaben 211

12.9 Ubungsaufgaben

UA 12.1 [Zu 12.4.2]

(i) Zeigen Sie, dass die Wirkung der Hadamard-Transformation von n Qubits H(") = H @
H®---® H auf |z) die Form

d
) 25 = 3Dy (12.80)
y=0

hat. Es entsteht eine gleichgewichtete Superposition der Basisvektoren von H§2) mit
Vorzeichen +1 und —1. Dabei ist (x - y) das ,,vektorielle innere Produkt* der Register-
zusténde

(-y) = Tp_1Yn—1+ Tn—2Yn—2+ ...+ Toyo - (12.81)

(if) Geben Sie [¢"") von Gl. (12.23) vollstandig an.
(iii) Eine Blackbox berechnet die Funktion f, : {0,1}" — {0, 1} definiert durch

fa(z) = (a-2). (12.82)

Geben Sie einen Quantenalgorithmus an, der in der Lage ist, durch einmalige Berech-
nung von f, und Messung des x-Registers die 2 Funktionen f, zu unterscheiden
(Bernstein-Vazirani-Problem). Gehen Sie hierzu von dem in der Teilaufgabe (ii) gewon-
nenen Ausdruck fir |4} aus.

UA 12.2 [Zu 12.5] Fiir welchen Wert von N ist beim Grover-Algorithmus der gesuchte
Zustand |1) bereits nach einem Durchgang mit Sicherheit bestimmt?
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13 Verallgemeinerte Messungen, POVM

In der Quantentheorie sind nicht nur projektive Messungen moglich. Verallgemeinerte Mes-
sungen beschreiben komplexe Messsituationen und erdffnen neue Messmaglichkeiten. Wir
fuhren am Beispiel des nicht-idealen Stern-Gerlach-Experiments in diese Messungen und in
die POVM-Messungen ein.

13.1 Aufgaben einer allgemeinen Dynamik offener
Quantensysteme

13.1.1 Fragestellungen

Wir haben schon bisher ein Quantensystem S4 um ein weiteres System S? zu einem 2-
Teile-System S4B erweitert. Wechselwirkungen und Verschrankungen zwischen den beiden
Teilsystemen sind erlaubt. Dadurch wird S zu einem offenen System (open system). Das Ge-
samtsystem S5 soll aber wieder ein geschlossenes System sein. Es kann wie alle geschlosse-
nen Systeme eine unitdre dynamische Entwicklung durchlaufen (unitdre Dynamik) und man
kann an ihm projektive Messungen durchfihren (Messdynamik). Die Regeln fur beide For-
men von Dynamik haben wir im vorangegangenen Kapitel 7.3.1 in den Postulaten formuliert.
Wir wollen in den néchsten Kapiteln eine andere Betrachtungsweise vorstellen und dabei die
Offenheit des Systems S in den Mittelpunkt stellen.
Die folgenden Fragestellungen sollen behandelt werden:

(i) Welche Form hat die Dynamik von S in der speziellen Situation, in der S4 Teilsystem
eines abgeschlossenen Systems S5 ist, das eine unitare Entwicklung durchlauft?

(i) Welche Struktur hat die allgemeinste physikalische Dynamik eines offenen Systems S4?
Diese Frage soll weitgehend ohne einen Bezug auf ein zweites System (also auf S?)
beantwortet werden.

(iif) Kann man diese — nicht mehr notwendig unitére — verallgemeinerte Dynamik von S4
immer als Folge einer unitaren Dynamik eines um SZ erweiterten Gesamtsystems S42
auffassen? Wenn das mdglich ist, ware zugleich ein Verfahren fur die experimentelle
Realisierung der verallgemeinerten Dynamik von S“ angegeben.

Bisher haben wir die unitdre Dynamik verallgemeinert. Analog kann man die projektive
Messdynamik verallgemeinern. Zunéchst gehen wir wieder vom verschrénkten Gesamtsystem
SAB aus.

Verschrénkte Systeme: Die Quantenphysik auf neuen Wegen. Jiirgen Audretsch
Copyright © 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40452-X
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(i) Eine projektive Messung am zweiten System S* (iberfiihrt ein damit verschranktes Sys-
tem S mit gewissen Wahrscheinlichkeiten in entsprechende neue Zusténde.

(if) Wenn wir von der moglichen Existenz eines zweiten Systems SZ absehen und nur S4
betrachten, welches ist die allgemeinste physikalische Struktur einer Messung an einem
System S4?

(iii) Kann man diese — nicht mehr notwendig projektive — verallgemeinerte Messung an 54
immer als Folge einer projektiven Messung an einem mit S verschrénkten System SZ
auffassen? Geeignete Verschriankung mit einem Hilfssystem S 2 wére dann die Grundla-
ge fur die Realisierung einer verallgemeinerten Messung an S4.

Wir werden zun&chst an einem einfachen Beispiel ablesen, welche Antworten auf die bei-
den Fragen (i) zu erwarten sind. Danach wenden wir uns den verallgemeinerten Messungen
und den POV-Mal3en zu. In Kap. 14 betrachten wir Quantenoperationen als Verallgemeine-
rung der unitdren Dynamik und ergénzen in Kap. 16 noch fehlende Beweise.

13.1.2 Ein einfaches Beispiel

Verallgemeinerte Dynamik  Um uns mit den zu erwartenden Strukturen vertraut zu machen,
diskutieren wir zunéchst ein mathematisch einfaches Beispiel. Wir beginnen mit einer unitéren
Dynamik des Gesamtsystems S5, Der Anfangszustand in 4 @ HZ sei der Produktzustand

ptP = p? @ [07)(07]. (13.1)

Er wird durch die unitare Transformation

1
UAB = —_ (o @18 462 @0 13.2
7 ( ) ©07) (13.2)
in den verschrankten Zustand
p/AB _ UABpABUABT (13.3)

1 A A _A B B A A _A B B
= 5{odptod © 107)(07 | + o ptast 0 17) (17|
ol plat @ 0P) (1P| + ot piol @ [17) (0P|
iiberfiinrt. Das System S geht dabei in den Zustand
pt — p'A = trp[p' 1P {O’ApAUA+U A o, } (13.4)

uber.

Die unitire Entwicklung des Gesamtsystems bewirkt daher am Teilsystem S eine nicht-
unitare spurerhaltende Entwicklung, die mit Hilfe eines Superoperators £4 in der Form einer
Operatorsummenzerlegung (operator-sum decomposition)

2
ph=E(pt) =Y KK (135)
i=1
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geschrieben werden kann. Dabei ist

1 1

Die K7 heiRen Kraus-Operatoren (Kraus operators) (oder Operationselemente (operation
elements) bzw. Zerlegungsoperatoren (decomposition operators). Sie erfillen die \Vollstan-
digkeitsrelation

2
S EME =1, (13.7)
=1

Im Vorgriff auf einen noch zu fiihrenden Beweis stellen wir fest: Die Dynamik des offenen
Systems S l4sst sich mit einem Superoperator £4 beschreiben, der nur auf den Zustand von
SA wirkt. Fiir £4 gibt es eine Operatorsummen-Darstellung.

Man kann sich die Entwicklung (13.4) auch dadurch nicht-unitér erzeugt denken, dass
mit den Wahrscheinlichkeiten § die unitéren Operatoren auf o' und o;' auf S angewendet
werden. Das ware physikalisch ein ganz anderer Vorgang als der durch U4Z von Gl. (13.2)
beschriebene. Die nicht-unitére Entwicklung von S Iasst sich durch die unitéare Entwicklung
des erweiterten Systems S4% realisieren. Beide stimmen in ihrer Auswirkung auf S tiberein.
Wir werden zeigen, dass zu vorgegebener Entwicklung p”* — p’4 auch die Operatorsummen-
Zerlegung nicht eindeutig festgelegt ist. Viele Einwirkungen auf S kénnen zum selben End-
zustand fhren.

Verallgemeinerte Messung Wir schlieRen eine spezielle projektive Messung am zweiten
Teilsystem SB an. Hierfiir wahlen wir die Projektoren zur Rechenbasis von HZ

PE =105)(07|, PP =]17)(17. (13.8)
Die Wahrscheinlichkeiten fur das Auftreten der Messergebnisse + und — sind
P =trg [P_pPPP_] . (13.9)

p'B = try [p/4P] ist dabei der reduzierte Dichteoperator der Umgebung S nach der unitaren
Entwicklung. Wir kénnen p, _ auch mit Blick auf das Teilsystem S4 interpretieren. p,
sind zugleich die Wahrscheinlichkeiten dafiir, dass sich das System S4 nach der Messung in
einem der Zusténde

- 1
;/ﬁ_ =trp [Pﬁ_p’ABP_E_] = iaﬁyp‘qaﬁy (13.10)

befindet. Wir haben zur Ableitung die GI. (13.3) verwendet. Mit der Tilde kennzeichnen wir
wieder, dass der Zustand noch nicht normiert ist. Der Normierungsfaktor wére 2. Die Gesamt-
entwicklung von S4 istalso p* — p'4 — pt _.

Die Zusténde /13‘;7_ des Untersystems S nach der Messung an SZ wurden nicht durch
Projektionen des Ausgangszustandes p” gewonnen. Wie sind die Superoperatoren auf 5"



216 13 \Verallgemeinerte Messungen, POVM

aufgebaut, die den Anfangszustand p* in diese beiden Zustande tiberfiihren? Zur Beantwor-
tung schreiben wir die erste Gl. (13.10) fir den Index + unter Verwendung der Gl. (13.1) und
(13.3) aus:

it =t (14 © [0P) (0P |UAP (o @ [07) 0 NUAP (14 @ 07 (07))]

= trg [(0B|UE]07)p* (0 |UP107) @ [07)(07]] . (13.0)
Wir fliihren noch

M= (0P| UAP|05) = \%af (13.12)
ein und finden

A = MApAMLT (13.13)
Entsprechend ergibt sich fiir das Messergebnis —

A = MApAMAT (13.14)
mit

M2 = 1B|UAB|0P) = 14 (13.15)

N

Die Messoperatoren (measurement operators) M f,f auf +4' gentigen der \Vollstandigkeitsre-
lation

MAMA + MATMA =1 (13.16)

Mit einer &hnlichen Umformung von GI. (13.9) bestétigt man leicht, dass sich auch die
Messwahrscheinlichkeiten, die ja zu Messungen an SZ gehoren, mit Hilfe der Messoperatoren
schreiben lassen (trz und tr 4 vertauschen)

Py =1tra [MfTprA} (13.17)

entsprechend fur p_. Esgiltp, +p_ = 1.

Wir haben die Systeme S und S® durch eine unitdre Entwicklung verschrankt. Eine
anschlieRende projektive Messung am zweiten Teilsystem S? filhrt mit den Wahrscheinlich-
keiten p bzw. p_ auf die Messergebnisse + oder —. Abhéngig vom Messergebnis geht da-
bei zugleich das Ausgangssystem S in einen von zwei wohlbestimmten Zustanden (13.10)
iiber. Wir kénnen diesen nicht-projektiven Eingriff an 54 als eine verallgemeinerte selektive
Messung (generalized selective measurement) an S interpretieren. Zu ihr gehéren die Mes-
sergebnisse + oder — mit den Wahrscheinlichkeiten p, bzw. p_ und den Endzustanden [/f
bzw. i 4. Wir kommen darauf noch genauer in Abschn. 13.3 zuriick. Diese Messung lasst
sich mit Hilfe der Messoperatoren M* _ formulieren, die nur auf den Zustand p** von S vor
der Messung wirken.
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Das spezielle Beispiel zeigt, dass verallgemeinerte Messungen Situationen beschreiben
koénnen, die sich deutlich von den am Projektionsformalismus orientierten traditionellen Vor-
stellungen von einer Quantenmessung unterscheiden. Mit den Messoperatoren von Gl. (13.12)
und (13.15) finden wir

1
pr=p_=—. (13.18)

2
Die Wahrscheinlichkeiten fiir die beiden Messergebnisse hangen daher gar nicht vom Zustand
p? ab, an dem gemessen wird. Bei den physikalisch relevanten verallgemeinerten Messun-
gen ist das allerdings i.a. nicht so. Nachdem wir zur Verdeutlichung gewissermafen einen
»Extremfall* vorgestellt haben, wollen wir im néchsten Kapitel ein physikalisches Beispiel
diskutieren, in dem sich die Beschreibung als verallgemeinerte Messung in natlrlicher Weise
ergibt. Die allgemeine Struktur behandeln wir danach in Abschn. 13.3.

13.2 Das nicht-ideale Stern-Gerlach-Experiment als
Beispiel flr eine verallgemeinerte Messung

13.2.1 Der Versuchsaufbau

Der Versuchsaufbau Im Stern-Gerlach-Experiment (S-G-Experiment) werden in einer
Quelle Spin-1-Objekte erzeugt, die nach Austritt in y-Richtung durch ein inhomogenes
Magnetfeld B fliegen. Der Magnetfeldvektor liegt ndherungsweise in z-Richtung (vergl.
Abb. 13.1) sein Betrag ist eine Funktion von z. Das magnetische Moment der Objekte ver-
ursacht eine Wechselwirkung mit dem Magnetfeld, die eine polarisationsabhéngige Kraft auf
die Objekte bewirkt. Sie flihrt dazu, dass Objekte im Zustand | ) (= |0.)) in positiver z-
Richtung und Objekte im Zustand ||) (= |1.)) in negativer z-Richtung abgelenkt werden. Fur
unsere Uberlegungen brauchen wir nur diese sehr idealisierte Beschreibung. Einzelheiten der
Bahnberechnung finden sich in den Lehrbiichern der Quantentheorie. Die abgelenkten Objek-
te treffen auf einen detektierenden Schirm in der x-z-Ebene, auf dem sie Schwarzungspunkte
erzeugen.

Das ideale Stern-Gerlach-Experiment Beim idealen S-G-Experiment ist die Schrédinger-
Funktion |¢4 (r)), die das Ortsverhalten bei der Polarisation |1) beschreibt, in einem engen
Bereich um die obere Bahn in Abb. 13.1 lokalisiert und die Schwérzungspunkte liegen aus-
schlieBlich in der oberen Halbebene (z > 0) des Schirms. Objekte mit Spin |]) haben eine
um die untere Bahn in Abb. 13.1) lokalisierte Zustandsfunktion |¢)_(r)) im Ortsraum und
treffen entsprechend nur auf der unteren Halbebene (z < 0) des Schirms auf. Die Wahr-
scheinlichkeitsverteilungen fiir diese beiden Félle sind in Abb. 13.2a dargestellt. Beim idealen
S-G-Experiment uberlappen sie nicht.

Vereinfachte Beschreibung Wir wollen jedes Auftreffen bei z > 0 einheitlich als Messer-
gebnis +1 und bei z > 0 als Messergebnis —1 auffassen. Die Objekte werden durch Zusténde
in einem Produkt-Hilbert-Raum beschrieben. Er setzt sich zusammen aus dem Spin-Raum
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Schirm

le) =4l +¢ll)

Ofen

Abbildung 13.1: Stern-Gerlach-Experiment. Zeichnung nach [BGL 95].

@ 5 (b) y

~4la=0 (alt) +alD)12)
Abbildung 13.2: Ideales Stern-Gerlach-Experiment. Auftreffwahrscheinlichkeiten (a) und schematische

Darstellung (b). Die Detektoren + und — sprechen bei Auftreffen auf der oberen bzw. unteren Halbebene
an.

s des inneren Spinfreiheitsgrads und dem Raum der &uBeren Bahnfreiheitsgrade. Im idea-
len S-G-Experiment werden die Spinpolarisationen in z-Richtung und damit die Observable
0. gemessen.

Um die Rechnungen Ubersichtlicher zu gestalten, vereinfachen wir die Beschreibung und
fuhren statt des Bahnraums einen Raum 7+ mit der ONB {|+),|—)} ein. Die Observable
O = |+)(+|—|—)(—| mit den Messwerten +1 und —1 gibt das Ansprechen auf den Halbebe-
nen z > 0 bzw. z < 0 wieder. Wir représentieren das durch das Ansprechen eines projektiv
wirkenden (+)-Detektors bzw. (—)-Detektors wie in Abb. 13.2b. Der komplexe Ablenkungs-
prozess ist dadurch auf zwei ,,Bahnen® reduziert worden. Anders als der Schirm, sollen die
Detektoren keine zerstérenden Messungen durchfiihren. Es macht daher Sinn vom Zustand
des Objekts nach der Messung zu sprechen.

Das nicht optimale Stern-Gerlach-Experiment Im nicht optimal realisierten S-G-
Experiment sind die Schrddinger-Funktionen 4 (r) nicht streng auf einer Halbebene
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lokalisiert. Die Funktion v (r) verschwindet nicht fiir = < 0 (vergl. Abb. 13.3a und 13.3b).
Das hat zur Folge, dass flir Objekte mit Spin |T) mit einer gewissen Wahrscheinlichkeit auch
der (—)-Detektor anspricht und fur Spin ||) der (+4)-Detektor anspricht. Aus dem Anspre-
chen eines Detektors kann daher nicht mehr sicher auf das Vorliegen einer Spinpolarisation
geschlossen werden. Im Folgenden diskutieren wir die bisher nur qualitativ beschriebenen
verschiedenen physikalischen Situationen im Einzelnen.

(a) 1 (b)
+ I +
M
e > d1.2z2=0 - — = z=0
[
[

Abbildung 13.3: Nicht-optimales Stern-Gerlach-Experiment. Aus dem Ansprechen eines Detektors
kann nicht eindeutig auf die Spinpolarisation geschlossen werden.

13.2.2 Beispiel einer verallgemeinerten Messung
Vor Durchlaufen des Magnetfelds liegen der Spinzustand
o) = crlt) +elll)s e + ey P =1 (13.19)

und der Bahnzustand ) vor. Der Gesamtzustand aus H5 ® HZ ist der einlaufende Produkt-
zustand

) = lp)|i) - (13.20)

Die Wechselwirkung korreliert die Zustédnde | T) und |+) sowie die Zustdnde | |) und |—)
miteinander. Das fiihrt auf Verschrankung. Im idealen S-G-Experiment geht dabei |x) unitar
in den verschrénkten Zustand

X) = IX) = et D+) +ellb)]-) (13.21)

Uber. Bei einer projektiven Messung in der Rechenbasis spricht der (+)-Detektor mit der
Wahrscheinlichkeit p. an und das Spinsystem wird in den Zustand | 1) Gberfihrt. Entspre-
chendes gilt fur den (—)-Detektor.

sty =)y Py =lerl?; sl =), po=lef. (13.22)

Beim idealen Stern-Gerlach-Experiment flhrt die durch die Detektoren bewirkte projektive
Messung im Bahnraum 2 auf eine indirekte projektive Messung der Observablen o, im
Spinraum. Das ist schematisch in Abb. 13.2b dargestellt.
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Im realen S-G-Experiment liegen demgegeniiber die beiden Wahrscheinlichkeitsvertei-
lungen nicht mehr symmetrisch zu z = 0, sondern sind unsymmetrisch verschoben und ragen
jeweils Uber z = 0 hinaus (siehe Abb. 13.3). Der Anfangszustand mit Spinzustand |1)|z) wird
entsprechend durch die Wechselwirkung in

D) = (V1 =po [+) +vpo |-)) (13.23)
mit 0 < po < 1 Uberfihrt. Analoges gilt fur ||)
[D]8) — 1D (VP1 1+) + V1 =p1|=)) (13.24)

mit 0 < p; < 1. Die Parameter py und p; geben die Verschiebungen der Wahrscheinlich-
keitsverteilungen wieder. Fir die oben beschriebene indirekte Projektionsmessung gilt po = 0
und p; = 0. Die Normierung der Zustandsvektoren erzwingt die Form der Vorfaktoren in
Gl. (13.23) und (13.24).

Mit den GI. (13.23) und (13.24) liegt zugleich fest, wie der allgemeine einlaufende Zustand
|x) = |¢)]¢) durch die Wechselwirkung verschrénkt wird:

IX) = IX) = {V/1=poct[1) +v/p1 el [DH+) +{Vpo ei[1) + /1 =p1ci|)}-) .
(13.25)

Eine Messung besteht wieder im Ansprechen des (+) - Detektors oder (—) - Detektors. Wir
fiihren die Messoperatoren

My = /1= po )T+ Vo1 [ M- = y/po [T){T]+ V1 —p1 [L)(L] (13.26)
ein. Sie erfillen die Vollstandigkeitsrelation
MIM, +M_+tM_=1. (13.27)

Als Verallgemeinerung von GlI. (13.22) finden wir dann (vergl. Abb. 13.4a)

1
w1 le) = ler) = AVI=poerll) +Vir e} o
1
= Mo o (13.28)
py = (L=po)let]* +pile” = (p|Milp), (13.29)
1
wm o) = o) = Whoal +VI=pialD} G
1
= Mg} o (13.30)
- = poler2+ (1—py)let)? . = (p|M_|e) . (13.31)

Das nicht-optimale Stern-Gerlach-Experiment stellt ebenfalls eine verallgemeinerte Messung
dar. Die Analogie zu den GI. (13.12)—(13.17) ist offensichtlich.
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@ (b)

Abbildung 13.4: (a) Schematische Darstellung des nicht-optimalen Stern-Gerlach-Experiments. (b) Er-
weiterung durch unitére Einwirkungen zu einer nicht-minimalen Messung.

13.2.3 Unscharfe und schwache Messungen

Beim nicht optimalen S-G-Experiment fiihrt die projektive Messung im Bahnraum % nicht
mehr auf eine Projektion im Spinraum. Aus den Wahrscheinlichkeiten p, und p_ kann nicht
mehr auf |c;|? und |¢;|* geschlossen werden. Die verallgemeinerte Messung ist in diesem
Sinne eine unscharfe Messung der Spinpolarisation. Es gibt zwei Grenzfalle:

(i) po = p1 = 0: Der Zustand |x’) zeigt zu vorgegebenem Spinzustand |,) die gréRte mog-
liche Verschrankung die Messung ist eine scharfe (oder exakte) Messung (sharp mea-
surement), da aus den Messergebnissen direkt auf |c;|? und |c;|* geschlossen werden
kann. Das S-G-Gerdt ist perfekt eingestellt. Der Informationsgewinn ist in diesem Fall
am groften. Der Ausgangszustand wird andererseits am stérksten durch die Messung
abgeéndert.

(i) po =p1 = 5 : Der Zustand | ') ist gar nicht verschrankt (|x) = —=|¢) @ {|-+) +[—)}).
Die Messung ist vollig unscharf (oder unexakt) (unsharp measurement). Wegen p, =
p— = 3 erlauben die Messungen keinen Schluss auf |c; |? oder |c,|2. Die S-G-Anlage ist
fur die Bestimmung dieser Grol3e vollig unbrauchbar. Ein Informationsgewinn liegt nicht
vor. Der Ausgangszustand wird andererseits durch die Messung nicht verandert. Wir er-
wahnen noch, dass diese Parameterwahl der Situation entspricht, in der in Abb. 13.3 die
beiden Kurven tbereinander liegen und einen zu z = 0 spiegelsymmetrischen Verlauf
haben.

Wenn die Werte der Parameter po und p; in der N&he von % liegen ist die Abanderung des
Spinzustands gering. Wir nennen diesen Eingriff eine schwache Messung (weak measure-
ment). Entsprechend ist auch der Informationsgewinn durch die Messung gering. Die Mes-
sung ist unscharf.

Wir kehren noch einmal zum System S4 und dem Hilfssystem S® von Abschn. 13.1.2
zuriick. Das nicht-ideale S-G-Experiment ist ein Beispiel dafir, wie durch Wahl von S (hier
das Bahnsystem) und geeignete Anpassung der unitér erzeugten Verschrankung mit S4 (hier
mit dem Spinsystem) ein kontinuierliches Spektrum von verallgemeinerten Messungen von
S4 bewirkt werden kann. Hierzu wir an S® projektiv gemessen. Kann man auf diese Weise
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an jedem System S4 eine beliebig vorgegebene nicht-projektive Messung realisieren? Wir
kommen auf die Frage in Abschn. 13.3.5, 13.4 und in Abschn. 16.3 zurtick.

13.3 Verallgemeinerte Messungen

13.3.1 Was ist eine Quantenmessung?

In Kap. 2 wurden die unitdre Dynamik und die Messdynamik eingefiihrt. Beide Typen von
Entwicklungen werden durch Eingriffe (interventions) bewirkt. Wir haben in den vorangegan-
genen Kapiteln 13.1 und 13.2 gesehen, dass es allgemeinere Entwicklungen zwischen zwei
Messungen gibt und dass man nicht-projektive Messungen durchfiihren kann. Wir wollen bei-
de Eingriffe genauer beschreiben und beginnen dabei mit den Messungen.

Eine allgemeine Messung (general measurement) ist ein Eingriff besonderen Typs an ei-
nem einzelnen Quantensystem bei dem (von trivialen Spezialfallen abgesehen) eine Verzwei-
gung (branching) in der Entwicklung des Quantensystems stattfindet. Diese Verzweigung ist
mit einer wohlbestimmten Anderung eines klassischen Systems verbunden, die die Ablesung
einer reellen Zahl (Messergebnis, z. B. Zeigerstellung) aus einem fur den Eingriff spezifischen
Wertebereich erlaubt. Die Wahrscheinlichkeiten flr das Eintreten der verschiedenen Verzwei-
gungsaste und der zugeordneten Messergebnisse liegen fest, wenn der Messeingriff spezifi-
ziert ist und der Zustand des Systems vor der Messung fixiert ist. Die projektive Messung ei-
ner Observablen ist ein Spezialfall. Wir haben das am Beispiel des Stern-Gerlach-Experiments
veranschaulicht.

Auch im allgemeinen Fall berflhrt eine selektive Messung des Quantensystems abhén-
gig vom Messergebnis in einen bestimmten Zustand und wirkt daher praparierend. Ublicher-
weise laufen dabei irreversible Prozesse ab, so dass das Messergebnis fixiert ist (z. B.: der
Zeiger bewegt sich nicht mehr tGber der Skala). Unmittelbare Wiederholung derselben Mes-
sung (d. h. des gleichen Eingriffs) muss aber nicht wieder auf dasselbe Messergebnis flhren.
Anders als bei einer projektiven Messung kann bei einer allgemeinen Messung i.a. nicht von
der Messung einer physikalischen GroRe (Observablen) wie Energie, Spinpolarisation usw.
gesprochen werden.

In der Quantentheorie kann die Bezeichnung ,,Messung“ leicht ebenso missverstanden
werden wie die Bezeichnung ,,Zustand®, da Assoziationen mit den Bedeutungen dieser Be-
griffe in der klassischen Physik geweckt werden. Es gibt fir Quantensysteme i.a. keine Ei-
genschaften, die vor der Messung festliegen und die wir durch die Messung ermitteln. Mes-
sen heil3t nur, einen speziellen Eingriff durchftihren, bei dem in Gestalt der Messwerte eine
Information abgelesen werden kann, die sich primér auf den auslaufenden Zustand bezieht.
Wir werden Beispiele diskutieren, wie man diese Information ausnutzen kann. Bei gewissen
Fragestellungen kdénnen allgemeine Messungen den projektiven Messungen tberlegen sein.
Auch hierfiir geben wir Beispiele. Wir betrachten in diesem Kapitel zunéchst noch die ein-
fachste Verallgemeinerung der projektiven Messung und diskutieren die véllig allgemeinen
Messungen in Abschn. 14.2.
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13.3.2 Verallgemeinerte Messpostulate

Eine verallgemeinerte Messung (generalized measurement) wird durch einen Satz { M,,,} von
linearen Messoperatoren (measurement operators) beschrieben. Zu jedem ablesbaren reellen
Messwert m (measurement outcome) ist genau ein Messoperator M,,, erklart. Der Einfachheit
halber setzen wir die Messwerte wieder als diskret voraus. Durch den Messeingriff wird der
Zustand [¢)) des Quantensystems in den Zustand

M7fb|w>
(| M, M, |)

uiberfiihrt. Diese Uberfiihrung und der zugehorige Messwert m treten mit der Wahrscheinlich-
keit

1) = [¥n,) = (13.32)

p(m) = (Y| M, My, |0) (13.33)

auf. Da M, M,, ein positiver Operator ist, ist die Bedingung p(m) > 0 erfiillt. Wir miissen
zur Erhaltung der Wahrscheinlichkeitsinterpretation (3, p(m) = 1) noch zuséatzlich von den
Messoperatoren die Vollstandigkeitsrelation

> MM, =1 (13.34)
fordern. (vergl. das Beispiel in Abschn. 13.1.2)

Die Verallgemeinerung auf Dichteoperatoren als Zustinde ergibt sich mit den gleichen
Begriindungen wie in Kap. 4:

p— ﬁ’lm = M”an’:ﬂ (13.35)
Bei einer nicht-selektiven Messung haben wir

p = p =" MyupM], . (13.37)

\Von den Operatoren M,,, wird nur Linearitat verlangt. Dadurch ist garantiert, dass sich die
Relationen von Kap. 4 fiir Gemische und insbesondere die physikalisch unmittelbar plausi-
ble Gl. (4.13) Ubertragen. Die Operatoren M,,, missen nicht hermitesch sein. Sie sind keine
Observablenoperatoren. Es wird i.a.

M’rnjvj'm’ 7é 6m,m/Mm (1338)

sein. Insbesondere kann die Anzahl der Messoperatoren auch groRer als die Dimension des
Hilbert-Raums sein. Die M,,, sind also nur im Spezialfall der projektiven Messungen (M,,, =
P,,) orthogonale Projektoren. An den Gl. (13.32) und (13.38) lasst sich ablesen, dass bei der
Wiederholung einer Messung sich die Wahrscheinlichkeitsverteilung der Messwerte andert.
Mit einem Satz {1, } wird i.a. nicht die Messung einer Eigenschaft verknlipft. Wir werden
in Abschn. 14.2 sehen, dass die hier beschriebenen verallgemeinerten Messungen (zu einem
Messwert gehort nur ein Messoperator) noch nicht die allgemeinsten Messungen sind.
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13.3.3 Polare Zerlegung eines linearen Operators

Wir stellen zun&chst einige mathematische Voriiberlegungen an, die wir dann bei der Interpre-
tation der verallgemeinerten Messungen anwenden.

Bi-orthogonale Entwicklung eines unitéren Operators U sei ein unitérer Operator und
{|v;)} eine ONB des Hilbert-Raums. Dann entsteht durch die unitare Transformation

lw;) = Ulvy) (13.39)

wieder eine ONB {|w;)}. Ein beliebiger unitérer Operator U l&sst sich daher bei Vorgabe
einer ONB {|v;)} stets in der Form

U=> |w)vil (13.40)
mit einer ONB {|v;) }schreiben.

Polare Zerlegung und bi-orthogonale Entwicklung eines linearen Operators L sei ein
linearer Operator. Dann sind LYL, LLT, v LTL und v LL' positive Operatoren. Wir gehen
von der spektralen Zerlegung

LTL =Y "Nlri)(ril, Xi=>0 (13.41)

aus. {|r;)} ist eine ONB. Die Wirkung von L fiihrt auf die Vektoren

Im;) := L|rq) , (13.42)
fir die

(milmi) = (ri| L'L|r;) = X; (13.43)

gilt. Fir die Indexwerte i, fiir die \; # 0 ist, kdnnen wir die Vektoren |m;) normieren:

1
Diese |I;) sind orthonormal
1
(Li]1;) = WWLTLW =0 (13.45)
i J

Wir ergdnzen diese Vektoren |I;) zu einer ONB.
Mit Hilfe der ONB {|r;)} und {|i;)} flhren wir den unitéren Operator

U:= Z |1:) (7] (13.46)
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ein. Fur U ergibt sich mit Gl. (13.41)
UVLIL = V/Ailla)(ril - (13.47)

Andererseits folgt aus Gl. (13.42) und (13.44)

Liry) = V/Ailli) - (13.48)
Da die Wirkung von Uv/LTL und L auf der Basis {|r;)} tbereinstimmt, gilt

L=UVLL. (13.49)

U ist eindeutig durch L bestimmt, wenn \; # 0 fir alle 7. Die Relation (13.49) wird die links-
polare Zerlegung (left polar decomposition) des linearen Operators L genannt. Damit soll an
die Analogie zur Zerlegung ¢ = ¢*?|c| einer komplexen Zahl ¢ in Betrag und Phase erinnert
werden.

Wir schreiben Gl. (13.49) noch mit Hilfe der Gl. (13.41) und (13.46) um

L=Y VAll)(rl,  A>0. (13.50)

Fir jeden linearen Operator L gibt es eine bi-orthogonale Zerlegung (13.50) (bi-orthogonal
decomposition) beziiglich zweier ONB {|/;)} und {|r;) }, deren Konstruktion oben angegeben
ist. Wir ergénzen noch ohne Beweis die rechts-polare Zerlegung (right-polar decomposition)

L=VLLIU (13.51)

Man beachte die andere Reihenfolge der Operatoren unter der Wurzel. LTL und LLT haben
dieselben Eigenwerte A; (vergl. Gl. (13.41))

LLT = Z AT (13.52)

13.3.4 Minimale Messungen

Die Messoperatoren M,,, einer verallgemeinerten Messung kann man immer polar zerlegen

My, = Up/Enm (13.53)
mit
Ep, = M M, . (13.54)

Die E,, erfillen als Folge von Gl. (13.34) die Bedingung

> En=1. (13.55)
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Die positiven Operatoren E,,, bilden ein POVM (positive operator valued measure). Sie heif3en
Effektoperatoren (effect operators) oder POVM-Elemente (POVM elements). Wir kommen
auf die POVM-Messung in Abschn. 13.3.5 zurlck. Der unzerlegte Messoperator M,,, be-
wirkt gemaR GI. (13.32) bzw. (13.35) den Ubergang zum neuen Zustand, der zum angezeigten
Messwert m gehort. Der gleiche Endzustand wird erreicht, wenn man den Ausgangszustand
zunéchst mit dem positiven Operator /E,,, transformiert und die unitire Entwicklung U,,
anschlief3t. Die Wahrscheinlichkeit p(m) von Gl. (13.42) fur das Auftreten des Messwertes m
ist nur eine Funktion von E,,,

p(m) =tr[pE,,] . (13.56)

Die unitére Entwicklung hat keinen Einfluss auf die durch p(m) gewonnene Information.
Wir kdnnen uns daher eine verallgemeinerte Messung mit Messwert m formal zerlegt denken
in eine durch \/E,, reprasentierte Messdynamik, die mit der Wahrscheinlichkeit p(m) kor-
reliert ist, und einer unitdren Dynamik U,,, die keinen Einfluss auf p(m) hat, wohl aber den
ausgehenden Zustand p/,, mit bestimmt. Es gibt zu einem POVM beliebig viele Operatoren
U, die auf die gleiche Wahrscheinlichkeitsverteilung p(m) filhren. Verallgemeinerte Mes-
sungen mit U,,, = 1, bei denen also der unitére Einfluss auf den Zustand nicht vorhanden ist,
werden minimale Messungen (minimal measurements) genannt. Projektive Messungen sind
minimal.

Minimale Messungen an Qubits Wir wollen wie im Stern-Gerlach-Experiment vorausset-
zen, dass nur zwei Messergebnisse + und — mdglich sind. Wegen der Bedingung (13.55) gilt
dann

E.=1-FE_ (13.57)
und die POVM-Operatoren vertauschen
[E+,E_]=0. (13.58)

Da die Operatoren positiv sind, sind sie auch hermitesch und es gibt eine orthonormale Basis
{]0), |1)} beztiglich derer beide orthogonal sind:

By = alo)(o] +pi1)(1] (13.59)
B = pol0){0] +BL)(]. (13.60)

Die Bedingung (13.58) wird durch a = 1 — po und b = 1 — p; erfullt. Die Positivitét der Ope-
ratoren bedingt dann 0 < py < 1und 0 < p; < 1. Die Messoperatoren fiir die zugehdrigen
minimale Messung ergeben sich ganz allgemein in der Form

My = T=polo)(o] + Al (13.61)

M_

VDol0){(0] + /1 —py|1)(1] . (13.62)
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Wie die GI. (13.28) und (13.30) zeigen, beruht das in Abschn. 13.2 beschriebene Stern-
Gerlach-Experiment auf diesen Messoperatoren. Es stellt eine minimale Messung dar. Eine
nicht-minimale Messung ergibt sich, wenn man wie in Abb. 13.4b hinter den Detektoren je-
weils noch eine zusétzliche unitare Dynamik anschlieft.

13.3.5 Realisierung einer verallgemeinerten Messung durch unitére
Transformation und Projektion

Wir haben in Abschn. 13.1.2 gesehen, dass man eine verallgemeinerte Messung bewirken
kann, indem man das System S um ein Hilfssystem S erweitert, auf H“ @ H? eine unitére
Transformation durchfiihrt und am System S® projektiv misst.Wir wollen jetzt zeigen, dass
jede verallgemeinerte Messung so realisiert werden kann.

Wir erweitern das System S4 um das Hilfssystem (ancilla) SZ. Die Dimension von H*
ist beliebig. Die Dimension von H® soll gleich der Anzahl der Messoperatoren sein. In H?
wahlen wir eine ONB {|m?)} und einen beliebigen aber festen Zustand |05). Wir definieren
auf einem Unterraum von H# ® H” den linearen Operator U5 durch

UB1p" 0%) = > Mple™) @ mP) (13.63)

fiir beliebige |¢*) aus . Die Messoperatoren |A/) und die Basis {|m?”)} legen U5 fest.
Fir irgend zwei Vektoren |¢1', 0%) und |¢3', 07) aus diesem Unterraum erhalt der Operator
UAP das innere Produkt.

(61", 07|UAPTUAP 92, 0%) = Y (o |MT M| 3') (m” |m'P)

m,m’

> (ot MM 65

= (¢703) = (87,0793 ,07) . (13.64)

Daher kénnen wir einen mathematischen Satz anwenden, der besagt, dass in diesem Fall eine
unitare Erweiterung U4® von U4B auf den ganzen Raum H* @ H? existiert. Das ist deshalb
wichtig, weil man davon ausgehen kann, dass U“% eine physikalisch realisierbare dynami-
sche Entwicklung des Gesamtsystems S4Z darstellt, die durch einen geeigneten Hamilton-
Operator auf H* ® H? beschrieben werden kann. Die Wirkung des unitaren Operators U2
auf den Vektoren des Unterraums reduziert sich auf die von U5,

Wenn man nach der unitéren Entwicklung mit U4 eine projektive Messung in H?Z mit
den Projektionsoperatoren

PB .= 14 @ |mB)(mP| (13.65)
durchfuhrt, geht das Gesamtsystem in den Zustand
1 Malet)mP)

PBUAB|¢A7OB>' _
Norm - JgA L Ao

m

(13.66)
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mit der Wahrscheinlichkeit

p(m) = (6", 0P U PIUAP |94, 07) = (oM Mgl o™) (13.67)
tber. Im letzten Schritt haben wir P2 = PBTPB und GI. (13.66) verwendet. Damit haben

wir gezeigt: Jede verallgemeinerte Messung lasst sich dadurch physikalisch realisieren, dass
das System S4 um ein Hilfssystem S? erganzt wird. Durch eine geeignete unitére Transfor-
mation des Gesamtsystems S5, deren dynamische Realisierbarkeit wir voraussetzen wollen,
wird S4Z in einen verschrankten Zustand Gberfiinrt. Projektionsmessungen am Hilfssystem
SE fiihren schlieBlich auf die verallgemeinerte Messung an S#. Die Operatoren sind in den
Gl. (13.63) und (13.65) angegeben.

13.4 POVM-Messung

13.4.1 Messwahrscheinlichkeiten und positive Operatoren

Wir diskutieren Messungen in einer reduzierten und dadurch véllig allgemeinen Betrachtungs-
weise: Von einem Messeingriff sollen nur die Messwerte m und die Wahrscheinlichkeiten
p(m) ihres Auftretens bekannt sein. Da der Messeingriff sich auf den Zustand linear auswir-
ken soll, gibt es die den jeweiligen Messergebnissen zugeordnete lineare Operatoren £,,,, mit
denen sich die Wahrscheinlichkeiten p(m) in der Form

p(m) = (Y|EnlY) (13.68)

p(m) = tr[pE,] (13.69)
schreiben lassen. Wegen p(m) > 0 missen die F,, positive Operatoren sein, die wegen
> p(m) = 1 zusétzlich der Bedingung

> En=1 (13.70)

gendgen missen. Die Operatoren E,,, sind die Elemente einer Zerlegung des Einsoperators
in positive Operatoren. Wie wir schon in Abschn. 13.3.4 festgestellt haben, heif3t eine solche
Zerlegung der Eins positiv-operatorwertiges Mall POVM (Akronym fir positive operator-
valued measure). Die Operatoren E,,, werden POVM-Elemente (POVM elements) genannt.

Bei der Einfihrung eines POVM wird nicht vorausgesetzt, dass die Messung in der in
Abschn. 13.3.2 beschriebenen Weise durch Messoperatoren beschrieben werden kann. Das
POVM-Schema gilt auch in allgemeineren Messsituationen, die wir in Abschn. 14.2 bespre-
chen werden. Fir viele Fragestellungen kann man sich mit Aussagen Uber die Wahrscheinlich-
keitsverteilung p(m) begniigen. Man spricht dann von einer POVM-Messung (POVM measu-
rement). Im Spezialfall verallgemeinerter Messungen ist

Ep = M} M, . (13.71)

Fur die physikalische Realisierung eines vorgegebenen POVM genligt es, den Messope-
rator M,, = v/E,, wie in Abschn. 13.3.5 zu realisieren. Die Projektionsoperatoren P, einer
projektiven Messung sind der Spezialfall eines POVM. Sie werden projektionswertiges Maf
PVM (projection valued measure) genannt. Anders als im PVM kann aber die Anzahl der
POVM-Elemente groRer als die Dimension des Zustandsraums sein.
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Zufallsweiche

Abbildung 13.5: Zusammengesetzte Messung

13.4.2 Zusammengesetzte Messung als Beispiel einer POVM-Messung

Wir betrachten einen Versuchsaufbau (vergl. Abb. 13.5), bei dem eine klassische Zufallswei-
che die im Zustand |¢)) eintreffenden Spin—%-Objekte mit den Wahrscheinlichkeiten w,,, w,
und w, auf Messgerate fiir die Observablen o, o, und o, lenkt (w, + w, + w, = 1).
Die drei Messgerdte zeigen als Messwerte jeweils +1 oder —1 an. Die Gerdte messen pro-
jektiv. Die zugehdrigen Projektionsoperatoren sind P;(+) = |0;)(0;| und P;(—) = |1;)(1]
mit i = x, y, z. Insgesamt gibt es sechs mogliche Messergebnisse (i, +). Die entsprechenden
Messwahrscheinlichkeiten sind

pi, £) = wilY | P(E)[Y) = (HIEi(£)¥) (13.72)
mit den sechs POVM-Operatoren

E;(£) = w; P(%), (13.73)
die die \Vollstandigkeitsrelation

STEH)+Y Ei(-) =) wil=1 (13.74)

erflllen. Durch die vorgeschaltete Zufallsweichen geht der Projektorcharakter verloren. Wir
erwahnen noch, dass die Anlage eine informationell vollstandige Messung (informationally
complete measurement) darstellt. Die durch die Messwahrscheinlichkeiten p(i, +) wiederge-
gebene Statistik erlaubt auch fiir Gemische die eindeutige Bestimmung des Anfangszustands
(vergl. UA 13.5). Wir diskutieren informationell vollstandige Messungen in Abschn. 13.4.5.

Wir erweitern die Anlage zu einer zusammenfassenden Messung indem wir nicht mehr
zwischen den drei Messgeraten unterscheiden. Registriert wird nur der Messwert unabhangig
davon welches Gerat ihn angezeigt hat. Dann finden wir fiir die verbliebenen zwei Wahr-
scheinlichkeiten

p(E) = D _p(i, %) = (PIEH)W) (13.75)

mit den Operatoren
B(x)=>wPi(£) , >, EF)=1. (13.76)

Es ist wieder eine POVM-Messung entstanden.
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13.4.3 Kann eine einzelne POVM-Messung zwei Zustande sicher
unterscheiden?

Mathematische Voriberlegungen Ein Operator E sei positiv. Dann hat er eine Spekt-
raldarstellung

E=Y Mli)il; MeR, 0<N\<1 (13.77)

mit einer ONB [i). Die Wirkung von E auf einen beliebigen normierten Vektor |¢) ist

El¢) = ZA (ilo) i ZAcA (13.78)
mit
el =1. (13.79)
Damit wird
(0|E|¢) = ZAICZI (13.80)

Ein spezieller Zustand |¢) mdge die Eigenschaft
(¢ Elo) = Z Ailes]? = (13.81)

haben. Die nicht verschwindenden ¢; haben dabei Indizes 7 aus einer Indexmenge I. Fir diese
Indizes folgt aus der Gl. (13.81) und 0 < A; <1

Aier =1. (13.82)
Einsetzen in Gl. (13.78) fuhrt auf das Ergebnis
(PIE[¢) =1 <= El|¢)=1¢). (13.83)

Die Richtung <« ist trivial. Auf &hnliche Weise zeigt man

(9IElp) =0 <= El¢)=0. (13.84)

Unmdglichkeit einen Zustand durch eine einzige POVM-Messung zu bestimmen  Wir
nehmen an, dass wir durch eine einzige Messung entscheiden kdnnen, ob ein einzelnes Quan-
tenobjekt in einen Zustand |x) ist. Dann muf3 es eine Messung mit POVM-Operatoren E,,
geben, bei der ein spezielles Messergebnis 7 mit Sicherheit eintritt, wenn |x) vorliegt, und
mit Sicherheit nicht eintritt, wenn ein beliebiger anderer Zustand |©) # |x) aus dem Hilbert-
Raum vorliegt:

px(m) = (x|Emlx) =1 (13.85)
pe(m) = (O|Ex|©)=0. (13.86)
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Wir haben also mit GI. (13.83) und (13.84)

Eanlx)=1Ix) ., Eml©)=0. (13.87)
Damit erhalten wir

(XI©) = (Em|0) = (x|Ewm) = 0. (13.88)

Das heifit, alle anderen Vektoren |©) des Hilbert-Raums missen senkrecht auf |y) stehen.
Das ist unmaglich. Es ist daher nicht méglich mit einer einzigen POVM-Messung den Zustand
eines Quantenobjekts vor der Messung zu bestimmen. Weiterhin zeigt das Ergebnis, dass es
keine POVM-Messung gibt, die es erlaubt eindeutig zwischen zwei nicht orthogonalen Zu-
standen zu unterscheiden. Diese wichtige Aussage, auf der viele heuristische Uberlegungen
basieren, gilt also nicht nur fur Projektionsmessungen, sondern fiir beliebige Messungen.

13.4.4 Vorteil einer POVM-Messung bei der Zustandsermittlung

Fur eine etwas modifizierte Fragestellung ist die Verwendung von POVM-Messungen hinge-
gen glnstiger als die projektiver Messungen. Es soll uns (oder einem Lauscher) bekannt sein,
dass ein Quantensystem mit gleicher Wahrscheinlichkeit entweder in einem Zustand |1) oder
in einem dazu nicht orthogonalen Zustand |2) préapariert wird. Wir wollen nach einer einzigen
Messung entweder keine Aussage machen (,,weill nicht*) oder mit Sicherheit sagen kénnen:
»in [1)“ oder ,,in |2)*“. Es missen daher mindestens drei Messergebnisse mdglich sein. Die
POVM-Operatoren sind E1, Fo, E3. Wir konstruieren sie so, dass Folgendes erreicht wird:
Wenn Zustand 1) vorliegt, tritt das Messergebnis 2 nie ein (d.h. (1|E>|1) = 0), aber Er-
gebnisse 1 und 3 kdnnen eintreten. Beim Zustand |2) tritt das Messergebnis 1 nie ein (d. h.
(2|E1|2) = 0), aber Ergebnisse 2 und 3 sind mdglich. Wir kénnen daher aus einer einzigen
Messung die folgenden Schliisse ziehen: Wenn sich das Messergebnis 1 ergibt, dann lag der
Zustand |1) vor. Beim Messergebnis 2 lag |2) vor. Aus Messergebnis 3 kann nichts gefolgert
werden. Fiir POVM-Operatoren bedeutet das

By = a(1—[2)(2)), (13.89)
By = ai(1—1)(1]) (13.90)
und
FEys=1—-F —FE,. (13.91)

Es ist sicher sinnvoll, die Messung zu optimieren. Dazu miissen die Parameter a; und as
so gewahlt werden, dass die Wahrscheinlichkeit p dafir, dass ein sicherer Schluss mdglich ist,
maximiert wird. Sichere Schliisse kann man nur aus den Messergebnissen 1 und 2 ziehen. Die
Wahrscheinlichkeit dafiir, dass diese Messergebnisse eintreten, ist nach Voraussetzung

1 1
p = §<1|E1|1>+§<2|E2\2> (13.92)

= Slatar) (- 1) (13.93)
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In [Bus 97] wird gezeigt, dass p unter Beachtung der Positivitdt von Fs, durch die die Para-
meter a; und as verknlipft werden, den maximalen Wert

Pmax = 1 — ‘<1|2>‘ (13.94)

fir die Parameterwahl

1

= Ty (13.95)

a1 = a9
annimmt. Gl. (13.95) zeigt, dass die Wahrscheinlichkeit, sichere Aussagen durch eine Mes-
sung zu treffen, immer geringer wird, je mehr die Zusténde |1) und |2) sich einander annéhern.
Eine Aufldsung der Zustdnde durch die POVM-Messung wird dann immer schwieriger. Fir
orthogonale Zustande (¢|x) = 0 ist pmax = 1.

13.4.5 Informationell vollstandiges POVM

Ein POVM heif3t informationell vollstéandig (informationally complete), wenn fiir einen belie-
bigen Zustand die Kenntnis der Wahrscheinlichkeiten aller moglichen Messergebnisse einer
Messung ausreicht, um den Zustand zu bestimmen. Es wird also nur ein einziges Messge-
rat (nur ein POVM) verwendet. Welche Bedingungen muss ein informationell vollstdndiges
POVM zur Bestimmung von Qubit-Zustanden erfullen?

Wir haben in Abschn. 3.1 gesehen, dass die Pauli-Operatoren durch 1 zu einer Operator-
basis auf H5 erganzt werden kénnen. Jedes POVM-Element I&sst sich in der Form

E,, =a,l+b,n,,0 (13.96)

schreiben. n,,, ist dabei ein Einheitsvektor im R? und a,,, und b,,, sollen nicht-negative reelle
Zahlen sein, damit £, und 1 — E,,, positive Operatoren sind. Die Vollstdndigkeitsbedingung
(13.70) fiuhrt auf die Bedingungen

dam = 1, (13.97)

> bpny, = 0. (13.98)

m

Wie wir in Abschn. 4.4 gezeigt haben, kann jeder Dichteoperator p auf 5 in der Form
1
p= 5(]1 +ro) (13.99)

mit dem Bloch-Vektor r geschrieben werden. Die Wahrscheinlichkeiten fur die Messergeb-
nisse der POVM-Messung sind daher

p(m) =tr[pEn] = am + byt . (13.100)

Man sieht daran, dass zur Bestimmung von r die nicht verschwindenden Vektoren b,,n,,
den R? aufspannen miissen. Daraus folgt zusammen mit der linearen Abhangigkeit (13.98),
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dass es mindestens vier \ektoren n,,, geben mufl (m = 1,2, 3,4) und dass andererseits vier
Vektoren, die die Gl. (13.98) erfillen, ausreichen.
Wir geben ein Beispiel das GI. (13.97) und (13.98) erfillt: a,,, = b, = i und

n, = (0,0,1), (13.101)
n, = <QT‘/§,07—%>, (13.102)
ng = <‘§\/§‘%> (13.103)
n, = <g\/g%> : (13.104)

Einsetzen in Gl. (13.96) fuhrt auf das informationell vollstandig POVM fiir Qubit-Zusténde.

Wir haben in Abschn. 4.4 gesehen, dass durch die Messung der Erwartungswerte der drei
verschiedenen Observablen o, o, und o der Bloch-Vektor r und damit der Zustand p be-
stimmt werden kann. Hier haben wir gezeigt, dass der Qubit-Zustand p auch durch Messung
der Wahrscheinlichkeiten p(m) einer einzigen POVM-Messung (nur ein Messgerat) mit vier
Messwerten m ermittelt werden kann.

13.4.6 Schatzung des Zustands vor der Messung

In der klassischen Physik wird durch die Messung der Zustand vor der Messung bestimmt. Bei
einer einzelnen Quantenmessung kann demgegentiber bei fehlender Entartung aus einem Mes-
sergebnis m nur auf den Zustand nach der Messung geschlossen werden. Wir wollen zeigen,
dass auf der Grundlage der Annahme von Bayes zumindest geschétzt werden kann, welcher
Zustand vor der Messung vorlag. Die Messung soll durch das POVM { E,,, } beschrieben sein.

Wir kehren zundchst zum Satz von Bayes von Gl. (1.99) zuriick und machen die Bayes-
sche Annahme (1.100), dass alle Ausgangswahrscheinlichkeiten p(A;) Gbereinstimmen. Um
den Bayesschen Satz zu veranschaulichen, betrachten wir den Fall, dass die bedingte Wahr-
scheinlichkeit p(B|A;) dafur, dass B eintritt, fiir ein spezielles Ereignis A; besonders grof3
ist: p(B|A;) > p(B|Aix;). Das Ereignis B mdge tatsachlich eintreten. Dann hat in diesem
Fall mit besonders groRer Wahrscheinlichkeit vorher A; vorgelegen: p(A;|B) > p(A;4;iB)-
Dasjenige Ereignis A;, auf das mit der groBten Wahrscheinlichkeit B folgt, ist auch dasjenige,
das mit der groten Wahrscheinlichkeit p(A,|B) vorher vorgelegen hat, wenn B eintritt. Dies
ist die plausible Aussage des Satzes von Bayes.

Wir Ubertragen die Aussage auf die quantentheoretische Messsituation. Es wird an einem
einzelnen Quantensystem eine Préparation in einem reinen Zustand durchgefiihrt. Die Mes-
sung an diesem System mit einem durch ein POVM beschriebenen Messapparat liefert den
Messwert m. Unter der Bayesschen Annahme ist der Zustand |x,.), der mit der gréRten
Wahrscheinlichkeit vor der Messung vorlag, dadurch gegeben, dass fur ihn p(m) am gréBten
ist!.

1Eine mathematisch exakte Formulierung muss beriicksichtigen, dass die mdglichen Zusténde ein Kontinuum
bilden (vergl. Abschn. 13.5)
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Die POVM-Elemente sind positive Operatoren mit der Spektralzerlegung

Em=Ya™ ™y ™). (13.105)

)
B

Die Eigenvektoren sollen nicht entartet sein. Fur p(m) erhalten wir

p(m) = (W|Enlp) =3 al™ |([r{™)[? (13.106)

mit | (y[r{"™)| < 1 und > |(xp[{™)| = 1. Wir konnen daher p(m) abschétzen:

p(m) < afs) (13.107)

mit alim) = max{a}"}. Der Maximalwert von p(m) wird in GI. (13.106) fir den zu akm) ge-

horigen Eigenvektor |xpre) = |r,(n’§§2> von E,, angenommen. Wenn keine weitere Information
vorliegt, ist die beste Schatzung fir den Zustand vor einer Messung mit dem Messergebnis
m der Eigenvektor |r§(§x)> zum grofiten Eigenwert aﬁn’;;) des POVM-Elements E,,. Bei einer
projektiven Messung (P,,, = |~("))(r(")|) ist daher der auslaufende Zustand |(")) die beste
Schétzung fur den einlaufenden Zustand.

13.5 Erganzende Themen und weiterfiihrende Literatur

o Weiterflihrende Literatur zu informationell vollstandiger Messung: [BGL 95], [Aul 00].

e Zur Unmdglichkeit, individuelle Quantenzustédnde zu bestimmen, sowie zur optimalen
Zustandsunterscheidung: [Bus 97] (dort auch weitere Literatur).

e Das Theorem von Neumark beschreibt die Realisierung einer Quantenmessung durch
eine Projektionsmessung auf dem zusammengesetzten System aus Ursprungssystem und
Umgebung: [Per 90].

o Ausflhrliche Darstellung von Quantenmessungen und POVM: [BGL 95], [Kon 03],
[Fle 00].

e Detaillierte Behandlung des Stern-Gerlach-Experiments: [BGL 95, Kap VII].

e Bucher zu den Grundlagen der Theorie der Quantenoperationen und der nicht-projektiven
Messungen: [Kra 83], [BGL 95].

e Dynamik offener Systeme: [MW 98], [Dav 76], [Hol 01], [BP 02].

e Eine Bestétigung des Ergebnisses aus Abschn. 13.4.6, die nicht auf dem Bayesschen Satz
und der Bayesschen Annahme beruht, findet sich in [ADK 03].

o Die Nutzlichkeit von schwachen Messungen zeigt sich, wenn man versucht die Zeitent-
wicklung |1 (t)) eines Zustands messend zu verfolgen: [AKK 04].
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13.6  Ubungsaufgaben

UA 13.1[zu 13.1] Bestatigen Sie GI. (13.17).

UA 13.2 [zu 13.2] Bestimmen Sie fiir das reale Stern-Gerlach-Experiment im Spezialfall
po = p1 Uber die Entropie die Verschrankung des Zustandes |x’) von GI. (13.25) und den
Informationsgewinn durch die Messung.

UA 13.3 [zu 13.2] Entwerfen Sie unter Verwendung der verschrankenden Wirkung des
CNOT-Gatters ein Schaltbild zur Erzeugung von |x’) von Gl. (13.25) im Spezialfall py = p;.
Welche Zustdnde missen einlaufen.

UA 13.4[zu 13.3] Zeigen Sie, dass die Hintereinanderausfiihrung von zwei Messungen wie-
der eine Messung ist. Geben Sie die Messoperatoren an.

UA 13.5[zu 13.3.3] Beweisen Sie die rechts-polare Zerlegung.

UA 13.6 [zu 13.3.3] Zeigen Sie ausgehend von der bi-orthogonalen Zerlegung (13.50) des
linearen Operators L, dass L sich stets in der Form

L=VDW (13.108)

schreiben lasst. V' und W sind dabei unitdare Operatoren. D ist ein positiver Operator mit den
Eigenwerten \,. Hinweis: Schreiben Sie die Zerlegung durch Einfihrung einer ONB {|a;)}
um.

UA 13.7 [zu 13.3.5] Die mit einer ONB {|n“)} von H* gebildeten Vektoren {|n*, 04)}
sind die ONB eines Unterraums von H# © HZ. UAP sei ein auf dem Unterraum definierter
linearer Operator, der auf H* @ H? abbildet und dabei innere Produkte erhalt. Dann exis-
tiert eine Erweiterung U2 von U5, die auf dem ganzen Raum als unitarer Operator wirkt
und auf dem Unterraum mit U2 (ibereinstimmt. Es konnte geschickt sein, die dyadische
Darstellung und die Ergebnisse aus Abschn. 13.3.3 zu verwenden.

UA 13.8 [zu 13.4] Zeigen Sie, dass jede Messung, bei der die Messoperatoren M,,, und die
POVM-Elemente £, Ubereinstimmen, eine projektive Messung ist.

UA 13.9 [zu 13.4.2] Zeigen Sie, dass die zusammengesetzte Messung aus Abschn. 13.4.2
informationell vollstandig ist.

UA 13.10 [zu 13.4.3] Beweisen Sie die Behauptung (13.84).

UA 13.11 [zu 13.4.3] Beweisen Sie Ergebnisse (13.94) und (13.95).
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UA 13.12[zu 13.4.5] Zeigen Sie, dass die in Abschn. 13.4.2 beschriebene POVM-Messung
informationell vollstédndig ist.

UA 13.13 [zu 13.4.6] Ein durch Messoperatoren {M,,} beschriebener Messapparat fihrt
eine Messung an einem Quantenobjekt durch, dass sich in einem reinen Zustand befindet.
Das Messergebnis ist m. Eine weitere Information ist nicht gegeben. Schatzen Sie den Zu-
stand nach der Messung. Beachten Sie dabei, dass mit dem Zustand vor der Messung auch
der Zustand nach der Messung eindeutig festliegt. Betrachten Sie auch den Spezialfall einer
minimalen Messung.
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14 Allgemeine Entwicklung eines offenen Quan-
tensystems und spezielle Quantenkanale

Teilsysteme machen i.a. keine unitaren Entwicklungen mehr durch. Quantenoperationen sind
der angemessene Zugang zu einer In-Out-Formulierung der dynamischen Entwicklung offener
Systeme. Wir veranschaulichen sie am Beispiel von Quantenkanalen. Auch die Zustandsan-
derungen bei Messungen sind im allgemeinsten Fall Quantenoperationen. Aus dieser Sicht
lassen sich das Szenario und die Regeln der Quantentheorie noch einmal neu formulieren.

14.1 Quantenoperationen und ihre
Operatorsummenzerlegungen

14.1.1 Quantenoperationen

Dynamische Entwicklung als Quantenoperation Im Zusammenhang mit Quantenkana-
len, Teleportation, Kryptographie, Quantencomputern und Quantenmessungen treten zeitliche
Entwicklungen von Quantenzustanden auf, die allgemeiner sind als unitdre Entwicklungen,
die mit Projektionen kombiniert wurden. Beispiele fir allgemeine Zustandsanderungen, die
auftreten wenn das System mit der Umgebung gekoppelt ist, haben wir in Kap. 13 kennen ge-
lernt. Wir wollen allgemeine Entwicklungen im Folgenden vom offenen System aus beschrei-
ben und nicht bereits spezielle Ansatze fur eventuell vorhandene weitere Systeme machen,
mit denen das betrachtete System verschrénkt ist oder dynamisch wechselwirkt.

Wir denken bei einer Entwicklung immer an einen spezifischen aueren Eingriff und be-
schreiben seine Auswirkung auf einen beliebigen Dichteoperator. Der Eingriff kann z. B. darin
bestehen, dass Quantenobjekte einen wohlbestimmten verrauschten Kanal passieren oder dass
an ihnen eine spezielle unscharfe Messung durchgefthrt wird. Welche mathematische Struktur
hat die Beschreibung der allgemeinen Zustandsentwicklung offener Systeme?

Die Entwicklung wird im Schrodinger-Bild durch eine fir sie spezifische Abbildung des
Anfangszustands p (mit tr[p] = 1) in einen als Dichteoperator formulierten Endzustand 5" im
Liouville Raum beschrieben (In-out-Schema):

p—p =Ep). (14.1)

Durch die Tilde wird gekennzeichnet, dass auch unnormierte Zustande (Spur # 1)zugelassen
sind. Wenn wir an Gemenge denken, ist es plausibel zu fordern, dass die Wirkung von &£ auf
den einzelnen Zustédnden eines Ensembles mit der auf dem Dichteoperator Ubereinstimmt.

Verschrénkte Systeme: Die Quantenphysik auf neuen Wegen. Jiirgen Audretsch
Copyright © 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40452-X
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& ist daher ein positiver Superoperator. Superoperatoren sind nach Abschn. 1.2 gemal Defi-
nition linear.

Wir werden allerdings nicht fordern, dass £ die Spur des Dichteoperators erhélt, sonst
hatten wir bereits die Projektionen, die im Rahmen der projektiven Messung einer Observa-
blen auftreten, ausgeschlossen. Wenn man die verallgemeinerte Messung aus Abschn. 13.3 als
Wirkung eines Superoperators schreibt, dann hat sie die Form

p—p =E(p) = MppM], (14.2)

und mit tr[p] = 1 ist tr[p] < 1 (vergl. Abschn. 13.3.2 und insbesondere Gl. (13.33)). Wir
fordern daher nur, dass die Spur des Dichteoperators nicht vergroRert wird:

tri€(p)] <1 beitrjp]=1. (14.3)

Als Drittes tritt die Forderung der vollstdndigen Positivitat (complete positivity) von &
hinzu. Durch sie wird verlangt, dass bei der Abbildung (14.1) nicht nur die Positivitat des
Dichteoperators erhalten bleibt, sondern darliber hinaus Folgendes gilt: Wenn man zum be-
trachteten System S ein beliebiges weiteres System SZ mit Hilbert-Raum #Z hinzunimmt
und den Superoperator £4 der Entwicklung von S4 trivial in der Form £4 @ 17 zum Ent-
wicklungsoperator des zusammengesetzten Systems S4Z erweitert, dann soll auch £4 ® 17
wieder ein positiver Superoperator auf H4 © H? sein. Physikalische bedeutet das: Wenn nur
54 eine dynamische Entwicklung durchlauft, dann soll garantiert sein, dass dabei der Dich-
teoperator des Zustands eines Gesamtsystems S5 wieder (eventuell nach Normierung) in
einen Dichteoperator Ubergeht. Das ist zu fordern, da nicht ausgeschlossen werden soll, dass
das betrachtete System S offen und damit ein Teilsystem eines groReren Systems ist. In die-
sem Fall konnte durch die Einwirkung £4 auf S4 z.B. iiber eine Wechselwirkung oder eine
Verschrinkung das Gesamtsystem S beeinflusst werden. Alle diese Einfliisse sollen wieder
vom erlaubten Typ sein.

Wir fassen zusammen: Die allgemeinen Entwicklungen eines Quantensystems, die im
Schrodinger-Bild Anfangszustdnde p in Endzustande 5’ uberfiihren, sind Quantenoperatio-
nen £. Eine Quantenoperation (quantum operation) ist eine durch einen Superoperator £ be-
schriebene

(i) lineare,
(i) die Spur nicht erhdhende,
(iii) vollstandig positive Abbildung

p—=E(p). (14.4)
Der Endzustand p’ ergibt sich, wenn nétig, durch Normierung

. Elp)
= ()] (14)

Wir wollen vom Ausgangszustand tr[p] = 1 annehmen, sodass Bedingung (ii) tr[€(p)] < 1
besagt.
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14.1.2 Operatorsummenzerlegung von Quantenoperationen

Wir formulieren hier ein Theorem Uber Quantenoperationen an, das wir in Kap. 16 beweisen
werden. Es ist der Satz von der Operatorsummenzerlegung (operator-sum decomposition):
Eine Abbildung p — 5’ = £(p) ist genau dann eine Quantenoperation, wenn es fir sie eine
Zerlegung (bzw. Darstellung)

Ep) = Y KipK] (14.6)

mit linearen Operatoren K; gibt, die die Bedingung

Y KK <1 (14.7)

erflllen und den Eingangs-Hilbert-Raum in den Ausgangs-Hilbert-Raum abbilden. Fir
Y KK =1 (14.8)

ist die Operation spurerhaltend. Die Zerlegung (14.6) ist nicht eindeutig. Der Satz heif3t
auch der Satz (oder das Darstellungstheorem) von Kraus. Die Operatoren K; werden Kraus-
Operatoren (Kraus operators) oder Operationselemente (operation elements) aber auch Zerle-
gungsoperatoren (decomposition operators) genannt. Wir haben ein Beispiel fur eine Opera-
torsummenzerlegung in Abschn. 13.1.2 und 13.2 kennen gelernt.

Wir betrachten den einfachen Fall, dass ein zusammengesetztes System S4Z eine uni-
tare Entwicklung mit U2 durchliuft. Um die zu U4 gehérige Operatorsummenzerlegung
fur die Quantenoperation auf S4 zu erhalten, gehen wir von der Wirkung von U4 auf den
Zustand pAP = pA @ |i%)(i®| aus. Er wird in

p/AB _ UAB|Z-B>pA <iB|UABT (149)
Uberfiihrt. Fiir den Zustand von S4 bedeutet das

P =trp[p P =Y (R [UAPNP) o (P [UAP e (14.10)

{|eB)1 ist dabei eine ONB von HE. Aus der Unitaritat von U2 folgt fiir
K; = (eB|UAB|iB) (14.11)
die Vollstandigkeitsrelation

Y K—i'K;=1. (14.12)

Die Abbildung

pt =t =E(p?) =) KipK] (14.13)
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ist eine Quantenoperation mit Kraus-Operatoren (14.11). Es folgt unmittelbar, dass zu gege-
benem U4% die Operatorsummenzerlegung nicht eindeutig ist. Wir werden in Kap. 16 zeigen,
dass auch folgende Umkehrung gilt: Zu jeder Quantenoperation £4 auf S4 Iasst sich nach
Erweiterung zum System S4% eine unitare Transformation U4 auf HAZ finden, die fiir das
Teilsystem S4 die Operation £4 bewirkt.

14.1.3 Quantenoperationen sind noch nicht die allgemeinsten
Entwicklungen

Nicht alle positiven Abbildungen sind vollstdndig positiv. Ein Beispiel hierfir ist die Trans-
position (transposition) 74 in HA.

Mit Bezug auf die Rechenbasis {|n**)} von H* ist sie als die Abbildung definiert, die
pt = Zn,m pnm|nA><mA‘ in

TA(p™) = (p™)™ =D pumlm™) (n?] (14.14)

Uberflihrt. Dies ist eine lineare und positive Abbildung. Aber ist sie auch vollstandig positiv?
Mit Bezug auf die Matrixdarstellung mit den Basen {|n“)} und {|1Z)} von H4 bzw. HE ist
die Teil-Transposition in +# (partial transposition) (74 ® 17)pA8 =: (pA8)T4 durch die
Abbildung von pA5

PP prp = (m?, 1B pAP n? 0P (14.15)
in
(p*B)4 = pla = P (14.16)

gegeben. Diese Teil-Transposition ist trivialerweise positiv auf allen separablen Dichteopera-
toren

T 218 (p* @ oP) = (T4 @ 0P . (14.17)

Zu prifen bleibt daher, ob das auch fiir verschrankte Zusténde gilt.
Wir betrachten hierzu den Bell-Zustand

®45) = %uof‘,o% ERE (14.18)

und nummerieren die Rechenbasis in H* ® H? durch:
04,07)
04,17)
14,07)
14,17)

)

)

1
P
3 (14.19)
4

r1r 11
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Dann ergibt sich als Matrixdarstellung

1 0 01
1{0 0 0 0
AB\/3,AB =
22702l =5 g 0 0 o (14.20)
1 0 0 1
Darauf wenden wir die Vorschrift (14.16) an und erhalten in Matrixschreibweise
10 00
110 0 1 0
AB\Ta -
P <3510 1 0 0 (14.21)
0 0 01

Man prift leicht nach, dass diese Matrix die Eigenzustande £, 3, 3 und —1 hat. (pAB)T“ ist
daher nicht positiv. Die Transposition ist eine lineare positive Abbildung, die nicht vollstandig
positiv ist. Das liegt in dem Beispiel daran, dass wir 74 1.7 auf einen verschrénkten Zustand
angewendet haben.

Das fiihrt auf die folgende Frage: Ist fehlende Positivitat nach Anwendung von 74 ® 1.2
mdglicherweise ein Kriterium, mit dem man die Nicht-Separabilitdt eines Zustands feststellen
kann? Ein Theorem mit dieser Aussage gibt es tatsachlich fiir niedrige Dimensionen Hs' @ HE
und H4 @ HE (vergl. Abschn. 14.5). Mit seiner Hilfe kann festgestellt werden, ob Dichteope-
ratoren p 2 separabel sind.

14.1.4 Einfache Beispiele

Eine Projektion P,,, wie sie z.B. bei einer Messung auftritt, ist eine Quantenoperation
K = P,, mit KTK < 1. Sie erhalt die Spur nicht. Eine unitire Transformation U ist ei-
ne spurerhaltende Operation mit & = U. Wenn man unitére Transformationen U; mit der
Wiahrscheinlichkeit p; auf ein System wirken lasst, entstent wegen > . p; = 1 wieder eine
Quantenoperation

E(p) =Y piUipU] . (14.22)

Auch die Bildung der Teilspur ist eine Quantenoperation. Um das zu sehen, bilden wir den
Operator K5, der von H# @ HP? auf H# in der folgenden Weise abbilden soll

KM @AP) = KPS aglae?) | = asla) (14.23)
J

{|e?)} ist eine ONB von H”. Durch Wirkung auf die Basisvektoren von H* @ H? lberzeugt
man sich von

S OEMPTRAP =147 (14.24)

%
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Damit ist
E(pP) =Y K PpPK AP (14.25)

7

eine Quantenoperation. Wir zerlegen p4Z dual nach der ONB {|i4)|eZ)} von HAE, wobei
{14} eine ONB von H# ist. Die Wirkung von K2 besteht dann gemaR GI. (14.23) in

E(p*P) = (10" Plef) - (14.26)
J

14.1.5 Mehrdeutigkeit der Operatorsummenzerlegung

Wir lassen in H, die folgenden zwei Quantenoperationen auf ein Qubit wirken:

1 1
&lp) = QP T 50iP0I, E=T,Y,2 (14.27)
Eilp) = (0ilpl0:)]0:)(0:] + (Lilp[1s) [15) (L] - (14.28)
Mit 0;)(0;] = (1 + o;)/2 und |1;)(1;| = (1 — ;) /2 finden wir nach kurzer Umformung
Ei(p) = Ei(p) - (14.29)

Die Wirkung beider Quantenoperationen ist gleich, obwohl die physikalischen Interpretatio-
nen von Gl. (14.27) und (14.28) véllig verschieden sind: In GI. (14.27) werden auf p jeweils
mit der Wahrscheinlichkeit % entweder die unitdren Transformationen 1 (d. h. keine Ande-
rung) oder o; angewandt. Gl. (14.28) entspricht der nicht-selektiven Messung in der Rechen-
basis {|0;), |1;) }. Der Bloch-Vektor r von p’ liegt dementsprechend parallel zur i-Achse. Das
kann man mit GI. (14.28) und den Relationen von Kap. 3 leicht nachpriifen. Was passiert
mit dem Bloch-Vektor, wenn alle drei Pauli-Operatoren o, o, und o, statt nur einem Pauli-
Operator o; wie in &;(p) mit gleicher Wahrscheinlichkeit wirken? Wir kommen auf diese
Frage in Abschn. 14.3.1 zurtick.

14.2  Vollig allgemeine Messung und POVM

Messoperationen statt Messoperatoren In Abschn. 13.3 haben wir gesehen, dass verallge-
meinerte Messungen jeweils durch einen Satz { M,,,} von Messoperatoren gegeben sind. Jeder
zu einem einzelnen Messwert m gehdérige dynamische Vorgang ist eine Quantenoperation

pP— /5/ =M, (P) = ManMy];z (1430)
mit nur einem Kraus-Operator M,,,. Die Gl. (13.35) zeigt, dass
p(m) = trfMp (p)] (14.31)

die Wahrscheinlichkeit dafir ist, dass die Durchfuhrung der Operation &, eintritt. Bei nicht-
trivialen verallgemeinerten Messungen (p,, < 1) verkleinert daher die Operation zu einem
Messwert m die Spur. Fir den Zerlegungsoperator gilt:

M M, <1. (14.32)

m
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Diese Uberlegungen zu verallgemeinerten Messungen zeigen bereits, dass es einen noch
allgemeineren Typ von Messungen geben muf, bei dem die Operatorsummenzerlegung
der Messoperationen M., mehr als einen Summanden enthdlt. In Verallgemeinerung der
Gl. (14.30) und (14.31) ergibt sich dann der der Zustand ﬁ'm nach der Messung als Ergeb-
nis einer Quantenoperation mit einem Superoperator M,,,

P = Mum(p) =D My i p M, (14.33)

Der Laufbereich von 7 kann dabei vom Messwert 1 abhangen. Die Wahrscheinlichkeit flir das
Eintreten des Messwerts ist wieder

p(m) = M (p)] . (14.34)

Aus > p(m) = 1 ergibt sich als Bedingung an die Zerlegungsoperatoren

S oM My, =1. (14.35)

> My, ist spurerhaltend.

POVM  Es zeigt sich, dass die in Abschn. 13.4 vorgestellte POVM-Messung von vornehe-
rein den Grad an Allgemeinheit hat, den wir flir Messungen erst mit Einflihrung der Quanten-
operationen in Gl. (14.33) und (14.34) erreicht haben. Jeder véllig allgemeinen Messung ist
ein POVM {E,,, } Uber die positiven Operatoren

B, = Z M:,L7iM771,,i 3 (1436)

zugeordnet, die mit Gl. (14.35) die Vollstandigkeitsrelation
> E,=1 (14.37)

erflillen. Die Messwahrscheinlichkeit ergibt sich mit (14.34) in der Form

p(m) = tr[Enp] . (14.38)

14.3 Quantenkanale

14.3.1 Depolarisierungskanal

Zur Beantwortung der am Ende von Abschn. 14.1.5 gestellten Frage fiihren wir in Erweiterung
von Gl. (14.27) zusétzlich zu Ky = /1 — p 1 noch die drei Zerlegungsoperatoren
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Abbildung 14.1: Auswirkung des Depolarisierungskanals auf die Bloch-Kugel.

einmit0 <p < 1.&(p) istdann
E(p)=(10-pp+ 2(01001 + o2poa + o3p03) . (14.40)

Wir wollen die Wirkung von £ auf den Bloch-Vektor r von p

(1 +ro) (14.412)

1
P=y

beschreiben. Hierzu wéhlen wir die Koordinatenachsen so, dass r = r3esist und erhalten
1
p=5(L+r303). (14.42)

Mit o30303 = 03, 010301 = —0o3 Und oa0309 = —o3 kdnnen wir £(p) wieder in der Form
(14.42) schreiben:

1 4
E(p) =5 (L +r303), 715= (1 - gp) rs . (14.43)
Die Spinpolarisation r = tr[po] wird reduziert. Man nennt das Depolarisierung (depolariza-
tion). In zentralsymmetrischer Weise werden alle Bloch-Vektoren einheitlich mit dem Faktor
(1 — %p) multipliziert (vergl. Abb. 14.1). Insbesondere werden dadurch reine Zusténde zu
Gemischen. Eliminieren von r3o3 mit Hilfe von Gl. (14.42) uberfuhrt Gl. (14.43) in

4 1

€(p) = 3p5 + (1 - gp) p (14.44)

Mit wachsendem p wachst der strukturlose Anteil 1 1.
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14.3.2 Quantenspringe und Amplitudendampfungskanal

Ein 2-Niveau-Atom S mit Grundzustand |04) und angeregtem Zustand |14) emittiert mit
der Wahrscheinlichkeit p ein Photon (spontane Emission in den Zustand |17)). Wenn kein
Photon emittiert wird, ist das Photonensystem S im Zustand |07). Wir betrachten nur den
Quantensprung, bei dem am Anfang kein Photon vorliegt (|i®) = |07)). Absorption findet
nicht statt. Dann lassen sich die Kraus-Operatoren wie in Abschn. 14.1.2 ablesen:

Ko = (0|UAB|05) :< 1 0 )

0 vi-p
K, = (1B|U4B|08) = < 8 \61_7 > . (14.45)
Sie erfiillen
K{Ko+ KK, =1. (14.46)

Der Superoperator hat damit die Wirkung
E(p") = KopKl+Kip"K]

_ (Poo-i—ppn \/1—pP01>
VI=ppwo (1-p)pu

Die Matrixelemente von p“ werden gedampft.

Fir viele Atome kann der Prozess hdufig stattfinden. Es ist immer wieder £ auf den jeweils
resultierenden Zustand p’4 anzuwenden. Die Wahrscheinlichkeit, alle Atome im Grundzu-
stand zu finden, wachst an. Das Gemisch geht in den reinen Zustand [0) (04| tiber. Da die
Komponente (1|p“|1) weggedampft wird, heiRt der Kanal Amplitudendampfungskanal (am-
plitude damping channel). Fur die Auswirkung auf die Bloch-Kugel vergl. Abb. 14.2.

(14.47)

14.4  Blick zuruck: Das Szenario und die Regeln der
Quantentheorie

Szenario Wir haben einleitend in Abschn. 2.1.1 das Szenario der Quantentheorie beschrie-
ben. Wir kommen im Rickblick noch einmal darauf zurlick. Jedes Experiment in der Quan-
tenphysik hat genauso wie jedes Experiment in der klassischen Physik den folgenden Aufbau:
Ein physikalisches System unterliegt drei Typen von Einwirkungen, die von drei Typen von
Geraten verursacht werden (vergl. Abb. 14.3):

1. Ein Préparationsgerét (preparation apparatus) prapariert das System in einem bestimm-
ten Zustand.

2. Ein Transformationsapparat (transformation apparatus) wirkt auf das System ein und an-
dert den Zustand ab (z. B. Einfluss eines auBeren Potentials, Wechselwirkung mit einem
anderen System, Wechselwirkung unter Teilsystemen. Es konnen mehrere Transforma-
tionen ,,durchlaufen* werden. Es kann auch gar kein Transformationsapparat vorhanden
sein.
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Abbildung 14.2: Auswirkung des Amplitudenddmpfungskanals auf die Bloch-Kugel.
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Abbildung 14.3: Das Szenario der Quantentheorie im Schrédinger-Bild.

3. Abschliel3end erfolgt im Messgerét eine Einwirkung, die dazu flhrt, dass an ihrem Ende
am Messgerat ein Messergebnis (measurement outcome) in Form einer reellen Zahl ab-
gelesen werden kann. Es ist moglich, dass das System durch die Messung nicht zerstort
wird, sondern auch danach noch vorliegt. Dann wirkt das Messgerat auf den einlaufenden
Zustand des Systems wie ein Transformationsapparat, das abhéngig vom Messergebnis
verschiedene Transformationen durchfiihrt und in entsprechende Zusténde tberfihrt.

Regeln  Zur Vereinfachung der Beschreibung haben wir dabei interpretierend schon voraus-
gesetzt, dass es stets einzelne physikalische Systeme gibt. In vielen Fallen misslingt der Ver-
such, die experimentellen Resultate mit Hilfe der Theorien der klassischen Physik zu erklaren,
und die Verwendung der (unrelativistischen) Quantentheorie ist erfolgreich. Dann werden die
folgenden Regeln angewendet:

e Jedem Préparationsverfahren wird ein Zustand zugeordnet. Der Zustand ist dasjenige
mathematische Objekt, das erlaubt die Wahrscheinlichkeiten des Eintretens der verschie-
denen Messergebnisse fur alle Arten von Messungen zu prognostizieren, die an den ent-
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sprechend préparierten Quantensystem durchgefihrt werden kénnen. Wahrscheinlichkeit
wird dabei Ublicherweise als Grenzwert der relativen Haufigkeit aufgefasst. Zustéande
sind Dichteoperatoren p auf einem Hilbert-Raum.

e Die Transformation ist eine Quantenoperation. Sie wird im Schrodinger-Bild durch einen
linearen vollstandig positiven Superoperator £ beschrieben

p— i =Ep), (14.48)

der die Spur von p nicht erhdht. Durch die Transformation &ndern sich die Prognosen fur
die Messergebnisse.

e Ein durch einen Messapparat durchgefiihrter Messeingriff wird durch die Messwerte m
und ein POVM {E,,} représentiert

> En=1. (14.49)

Die Wahrscheinlichkeit bei Vorliegen des Zustands p das Messergebnis m zu erhalten,
ist

Pm = tr[Emp] : (14.50)

e \Wenn das Quantensystem beim Messeingriff nicht zerstort wird, geht es abhéngig vom
Messergebnis m in den unnormierten Zustand

P = Py = Mm(p) (14.51)

tiber. Normierung fihrt auf den neuen Dichteoperator p/,, mit tr[p’,] = 1. Diese Mess-
operationen werden durch lineare, vollstandig positive Superoperatoren (Quantenopera-
tionen) M,,, dargestellt, die die Spur verringern. Ihre Form ist fur die jeweilige Messung
spezifisch. Die Wahrscheinlichkeit fiir das Auftreten des Messwerts m ist

P =t D pm=1. (14.52)

Die Operatorsummenzerlegung der Superoperatoren M,,,

Mm (,0) = Z Mm,ipM:n’i (1453)

flhrt auf den Zusammenhang
Ep =Y M} My, (14.54)
mit dem POVM {E,, }. Die Bedingung (14.49) schréankt die linearen Operatoren M,,, ;

ein. Eine selektive Messung (Aussondern nach dem Messergebnis) stellt wieder ein Pra-
parationsverfahren dar.
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14.5 Erganzende Themen und weiterfiihrende Literatur

e Siehe auch Abschn. 13.5.

e Quantenoperationen, Operatorsummenzerlegungen: [HK 69], [HK 70], [Kra 83],
[Sch 96].

o Mit Hilfe der teilweisen Transposition 74 © 17 (partial transposition) kann man fest-
stellen, ob ein Dichteoperator pZ separabel ist. Es gilt der Satz: Ein Zustand p“% in
H4 @ HE oder H2' @ HE ist genau dann separabel, wenn die Teiltransposition auf
einen positiven Operator fiihrt. Dieses Theorem ist ein wichtiger Ausgangspunkt fur die
Beantwortung der Frage, wie man bei Gemischen Verschrankung (Nicht-Separabilitét)
feststellen kann [HHH 01].

e Eine Axiomatik der Quantentheorie, die von dem in Abschn. 14.4 beschriebenen Szena-
rio ausgeht, findet sich in [Har 01a], [Har 01b].

e Man beachte auch die Literaturangeben zu Kap. 13.

14.6  Ubungsaufgaben

UA 14.1 [zu 14.1.2] Zeigen Sie, dass sich eine Quantenoperation &, die auf den Dichteope-
rator eines Qubits wirkt, in der Form

3
E(p) = Z a;j0;p0; (14.55)

i,j=1
mit a;; = ay; schreiben lasst.

UA 14.2 [zu 14.1.5] Zeigen Sie in expliziter Rechnung, dass der Bloch-Vektor von p’ von
Gl. (14.29) parallel zur i-Achse liegt.

UA 14.3 [zu 14.3] Berechnen Sie die Wirkung des Amplitudenddmpfungskanals auf den
Dichteoperator

p= %(]1 +ro). (14.56)

Wie andert sich der Bloch-\Vektor r?
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15 Dekoharenz und Ansatze flr die Beschreibung
des Quantenmessprozesses

Dekohérenz ist fir Anwendungen ein Storeffekt, fir das Verstdndnis des Quantenmesspro-
zesses aber ein wichtiger Ansatz. Die durch Streuung bewirkte Dekohérenz gibt den Hinweis
darauf, dass umgebungsinduzierte Dekohdrenz der wesentliche Effekt beim Messprozess sein
konnte. Das Herausbilden der klassischen Welt und das klassische Verhalten von Schrodingers
Katze sind weitere Beispiele. Die Frage, ob das Quantenmessproblem heute bereits gelost ist,
wird anschliefend behandelt.

15.1 Dekoharenz erzeugende Kanéle

15.1.1 Phasenddmpfungskanal

Streuung als einfache Realisierung  Wir betrachten ein Qubit-System S an dem ein Quan-
tensystem S gestreut wird. Wir wollen die Streuung firr unsere Beschreibung stark vereinfa-
chen (vergl. Abb. 15.1). Wir nehmen dazu an, dass es zwei orthonormale Zusténde [04) und
|14) des Systems S gibt, die bei der Streuung keine Anderung erfahren (stabile Zustande).
Das System S* fallt im Zustand |i”) ein. Bei der Streuung am Zustand [04) (bzw. 1))
soll das gestreute System S in der raumlichen Asymptotik in den Zustand [07) (bzw. |17))
tibergehen. Diese Zustande von S sollen ein ONB in £ bilden. Wir wollen noch zulassen,
dass mit der Wahrscheinlichkeit 1 — p das System S gar nicht gestreut wird und daher im
Zustand |i®) bleibt. Man kann sich unter [04) und [14) z. B. zwei Energieniveaus vorstellen
und unter [i%), |08) und [17) drei Impulszustande (,,Bahnen®).

Die Streuung ist ein unitérer Prozess des Gesamtsystems S4Z. Der Operator, der die Zu-
stande in der Einlaufregion in die der Auslaufregion tberfuhrt, hat die Eigenschaften

UABNA Py = /1—p14,iB) + p14,15) . (15.2)

Wir kennen daher seine Wirkung auf Teilen der ONB von 4 @ HZ und kénnen den Operator
zu einem unitaren Operator auf H4' @ H% ergénzen.

UAR = (VT pI04iP) + BI04, 07)) (04,07
+ (\/1 “p|14,iB) + p 14, 1B>) (14,45| + Rest . (15.3)
Weitere duale Bildungen mit (04, 45| oder (14, | kommen im Rest nicht vor.

Verschrénkte Systeme: Die Quantenphysik auf neuen Wegen. Jiirgen Audretsch
Copyright © 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40452-X
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Abbildung 15.1: Streuung an einem 2-Niveau-System.

Die Kraus-Operatoren, die zu der auf dem Untersystem S4 wirkenden Quantenoperation
gehoren, lassen sich gemaR Gl. (14.11) direkt ablesen:

K, = (iB|UAB|iB>:\/l—p]lA:\/l—p<(1) (1)) (15.4)
. 1 0
Ko = 04518 = a0t =i g ) (155)
. 0 0
K= o) = et =i (g 9 ) (156)
Die Bedingung
KIK,+ K Ko+ KK, =1 (15.7)

fiir Kraus-Operatoren ist erfiillt. Die Quantenoperation, die die Anderung des Systems S4
beschreibt, wenn es sich vor der Streuung im Zustand p befindet, ist durch

p—>,0/ =E&(p) = K;pK; + KopKo + K1pK3 (15.8)
gegeben (der Index A ist weggelassen). In der Rechenbasis hat sie die Form
1 —p)po1
I E(p) = P00 ( p > ) 15.9
r (o) ( (1 =p)p1o P11 (15.9)

Wenn Streuung mit Sicherheit stattfindet (p = 1), verschwinden in der Rechenbasis die Au-
Rerdiagonalelemente der Dichtematrix von S4. Fiir 0 < p < 1 werden mit jedem weiteren
einzelnen Quantensystem S, das an S gestreut wird, die AuRerdiagonalelemente um den
Faktor (1 — p) kleiner. Streuung bewirkt Dekohérenz.

Phasendampfungskanal Im Grenzfall p = 1 (perfekte Streuung) wird durch eine Streuung
eine Markierung mit orthogonalen Markerzustanden [0Z)und |15) durchgefihrt. Ein reiner
Zustand geht in in einen verschrénkten Zustand uber

(col0™) + c1 1)) [iB) — 0|04, 058) + ¢1[14,15) . (15.10)
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Abbildung 15.2: Auswirkung des Phasenddmpfungskanals auf die Bloch-Kugel.

Der reine Zustand des Untersystems S“ geht in ein Gemisch iiber. Die Phasenbeziehung zwi-
schen den Summanden des reinen Zustands und damit die Kohdrenz, d. h. die Interferenzfahig-
keit gehen verloren. Dies ist die Dekohérenz durch Markieren, die wir bereits in Abschn. 8.5
diskutiert haben. Das System S4 durchlauft fir 0 < p < 1 wahrend der Streuung einen
Quantenkanal, der Phasendampfungskanal (phase-damping channel) genannt wird. Die Aus-
wirkung des Kanals auf beliebige Gemische kann man am einfachsten an der Bloch-Kugel
demonstrieren. Man kann zeigen, dass die Bloch-Vektoren auf der z-Achse unverandert blei-
ben. Alle anderen Punkte bewegen sich fiir p # 1 bei vielen Streuungen auf die z-Achse zu
unter Beibehaltung der Rotationssymmetrie um die z-Achse (vergl. Abb. 15.2).

15.1.2 Streuung und Dekohérenz

Charakteristische Eigenschaften  Wir wollen Eigenschaften des oben beschriebenen Streu-
prozesses herausstellen, die wir in allgemeineren Situationen in denen Dekohérenz eine Rolle
spielt, teilweise wiederfinden werden.

a) Zunachst einmal muB festgehalten werden, dass der zu Grunde liegende Prozess, den das
Gesamtsystem durchlduft, eine unitére Entwicklung U4 ist, die auf die spezielle Dyna-
mik der Wechselwirkung zuriickgeht. Ein reiner Zustand von S4Z geht in einen reinen
Zustand von S45 {iber. Information geht dabei nicht verloren.

b) Dieser Streuprozess ist infolge der Unitaritét reversibel. Wenn S am Anfang in einem
reinen Zustand war, kann durch geeignete ,,Spiegelung* (Umkehrung von Bewegung und
Dynamik) der Streuprodukte wieder der reine Zustand erzeugt und die Dekohérenz von
S4 vollstandig riickgangig gemacht werden. Wie wir schon in Abschn. 9.1 gesehen haben,
haben wir beim Ubergang (15.10) Information in die Korrelationen transferiert, die dort
im Prinzip wieder abgerufen werden kann. Dazu ist ein nicht-lokaler Prozess notig, der bei
Streuung praktisch nicht realisierbar ist.
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¢) Wesentlich ist, dass durch die Wechselwirkung eine Basis {|0),[14)} aus stabilen Zu-
stdnden ausgezeichnet ist, die durch den dynamischen Einfluss nicht ge&ndert werden
(vergl. Gl. (15.9)).

£(10)(0) = 10)(0f,  E(I)(L]) = [1)(1] - (15.11)

d) Diese Eigenzustdnde von o zeichnen die Lage der z-Achse aus, auf die sich die Bloch-
Kugel zusammenzieht (vergl. Abb. 15.2). Verglichen mit der Charakterisierung der Deko-
hérenz Uber das Verschwinden der Aufendiagonalelemente des Dichteoperators, ist dies
eine basisunabhangige Charakterisierung.

e) Von c) her l&sst sich schon vermuten, dass wir eine elastische Streuung beschrieben haben.
Wenn die Zustande |0) und |1) zu Energieniveaus Ey und E; gehdren, dann kann man mit
dem Hamilton-Operator

H = Ep|0)(0] + E1[1)(1] (15.12)
leicht zeigen, dass der Erwartungswert E der Energie unverandert bleibt

E =trpH] =tr[p’H] = E'. (15.13)
Es findet keine Dissipation statt.

f) Wenn die Streuung nicht perfekt ist (p # 1), fuhrt die vielfache Wiederholung mit immer
neuen einfallenden Teilchen zu einer sich schrittweise verstarkenden Dekohérenz, die die
Bloch-Vektoren orthogonal auf die z-Achse zutreibt.

15.1.3 Phasenflipkanal

Wir hatten bereits gesehen, dass es zu einer Quantenoperation viele Operatorsummenzerle-
gungen gibt. Physikalisch bedeutet das, dass bei gleichem Anfangszustand verschiedene dyna-
mische Prozesse zu demselben Endzustand fliihren kénnen. Wir kénnen die Quantenoperation
&(p) von Abschn. 15.1.1 und damit Dekohdrenz auch durch einen Phasenflipkanal (phase-flip
channel) erreichen, der ebenfalls geordnete Phasenbeziehungen zerstort. In ihm wirkt mit der
Wahrscheinlichkeit w auf den Ausgangszustand p eine Dynamik ein, die eine unitdre Trans-
formation o, und damit einen Phasenflip bewirkt. Die Quantenoperation hat daher die zwei
Kraus-Operatoren

K, =vuwo, ,K_.=VI-wl (15.14)
mit
KIK, +K'K =1, (15.15)

Die Operation ist in der Eigenbasis von o, durch
/ _ w P11 —pP12 +(1-w P11 P12
p=r < —p21  +p22 ( ) P21 P22

B ( (1 fp21110)P21 ! 7527;’”12 ) (15.16)
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gegeben. Fiir w =  tritt totale Dekoharenz auf. Ein Kanal mit zufalligem Phasenflip ist in
seiner Wirkung einem Phasenddmpfungskanal &quivalent.

15.2 Umgebungsinduzierte Dekoharenz

15.2.1 Die Herausbildung der klassischen Welt

Das Programm  Wir haben in Abschn. 2.1.1 das Verhéltnis am Doppelspalt einmal fir Ku-
geln (also fir klassische Objekte) und einmal fiir Atome (also fur Quantenobjekte) beschrie-
ben und die Unterschiede in den experimentellen Ergebnissen herausgestellt. Die theoreti-
sche Begriindung wurde im einen Fall ganz im Rahmen der klassischen Physik gegeben und
im anderen Fall ganz im Rahmen der Quantentheorie in der Fassung, wie sie noch einmal
in Abschn. 14.4 zusammenfassend dargestellt wurde. Die Experimente am Doppelspalt le-
gen folgende Fragen nahe: Was beobachtet man, wenn man ausgehend von Elektronen und
Atomen Uber Molekile und Viren zu immer makroskopischeren Objekten Ubergeht (vergl.
Abschn. 15.6) um schlieBlich bei Tennisballen zu enden? Kann in den unterschiedlichen Be-
reichen einschlieBlich der Ballexperimente eine unveranderte Quantentheorie zur Begriindung
herangezogen werden? Dann wére letztlich die klassische Physik aus der Quantenphysik ohne
Zusétze ableitbar. Oder tritt in einem Zwischenbereich eine ganz neue Physik auf, die auch
eine neue Theorie erfordert?

Die Frage wie die klassische Physik aus der Quantentheorie hervorgeht, lasst sich wohl
auch in naher Zukunft nicht vollig befriedigend beantworten. Es macht aber Sinn, Ansatze zur
Ldsung von Teilproblemen zu diskutieren. So kann ein Geflihl daflr entstehen, was die Quan-
tentheorie in der bisher dargestellten Form zu begriinden vermag und was nicht. Wahrend wir
in Kap. 10 mit Hilfe der verborgenen Parameter vergeblich versucht haben, Quantenphéno-
mene aus der klassischen Physik heraus zu verstehen, drehen wir jetzt die Beweisrichtung um
und versuchen die klassische Physik aus der Quantentheorie heraus zu verstehen.

Das Problem Eine fir klassische mechanische Objekte charakteristische Eigenschaft ist die,
dass sie nie in einer Superposition von zwei Zustdnden beobachtet werden. Ein klassisches
Objekt ist z. B. immer entweder an einem Ort 1 oder an einem Ort 2, aber nie in einer Super-
position der beiden Ortszustande. Fir den Doppelspalt bedeutet das, dass bei Experimenten
mit klassischen Objekten keine Interferenz auftreten kann®. Die fiir Quantenobjekte mégliche
Superposition und damit die Kohérenz der Zusténde ist bei klassischen Objekten unmdglich.
Wenn wir daher versuchen, auch klassische Objekte mit Hilfe der Quantentheorie zu beschrei-
ben, taucht das Problem auf, wie wir, ohne den Rahmen dieser Theorie zu verlassen, die De-
kohérenz klassischer Zustande begriinden kénnen. Wir wollen die typisch klassische Eigen-
schaft, dass Zustande klassischer Objekte nicht superponieren, als eine emergente Eigenschaft
(emergent property) ableiten. Der Phasenddmpfungskanal zeigt, dass Verschrdnkung mit der
Umgebung in Form von Streuung dabei eine Rolle spielen kann.

LFir die Interferometrie mit Makromolekiilen vergl. Abschn. 15.6.
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Ein Beispiel Wir betrachten eine Kugel oder einen anderen makroskopischen Korper. Sei-
ne quantentheoretisch beschriebenen Ortszustande sollen |04) und |14) sein. Man kann sich
darunter z. B. die Zustande hinter den einzelnen Spalten eines Doppelspalts vorstellen. Quan-
tentheoretisch ist dann auch der Zustand

™) = co|0%) + er1) (15.17)

erlaubt, der auf ein Interferenzbild fuhren wirde. Wir mussen berticksichtigen, dass die Kugel
ein offenes System ist. Sie wechselwirkt standig mit der Umgebung z. B. durch Streuung von
Photonen. Selbst im Dunkeln bleibt die kosmische Hintergrundstrahlung présent. |04) und
|14) bleiben als klassische Zustande bei dieser Streuung unverandert (stabile Zusténde). Da-
mit haben wir eine Situation, die analog ist zu der bei der Streuung in Abschn. 15.1. Wenn die
Kugel im Zustand [04) ist, wird das Photon mit der Nummer 1 in den Zustand [0F) gestreut,
entsprechend bei [14) in [1). Wie wir in Abschn. 15.1 gesehen haben, wird der Kugelzustand
durch den reduzierten Dichteoperator

|col? coci (17°]07°)
pt = (15.18)
e (07[17) le1|?

beschrieben. Im Vergleich zu Gl. (15.9) haben wir p = 1 gesetzt, aber nicht die Orthogonalitat
der Streuzusténde gefordert.

Es wird nicht nur ein Photon, sondern es werden stdndig viele Photonen gestreut. Dement-
sprechend muss die Umgebung durch einen Produktraum H¥ = HF @ HE @ ... mit vielen
Faktorraumen beschreiben werden. Die Umgebung hat viele Freiheitsgrade. Der verschrankte
Zustand |wAE'> des Gesamtsystems nach der Streuung ist

[WAEY = ¢1|0M)[0F, 05, .. ) + eo1Y1F 15 ) (15.19)
Der Zustand der Kugel ist durch den reduzierten Dichteoperator

| ol coct (1 0F)(1510F) . .
pA = (15.20)
e (OF LF) (05 1F) . . eal?

gegeben. Die Kugeln an den verschiedenen Orten streuen Photonen in unterschiedlicher Wei-
se, sonst wirden wir sie ja auch gar nicht optisch unterscheiden kénnen. Die Zusténde |()f>
und [17) mit j = 1,2,3,... sind daher alle sehr verschieden und es gilt [(0F[1F)| < 1.
Da sehr viele Photonen gestreut werden, tauchen in den AuRerdiagonalelementen von p#" in
Gl. (15.20) sehr viele dieser dem Wert nach sehr kleinen inneren Produkte auf. Durch die
Verschrankung mit den gestreuten Photonen geht der Zustand der Kugel in ein nicht mehr
interferenzfahiges Gemisch tber

P = 1eo P04 (0% + Jea*[14) (1] - (15.21)

Dieser Dichteoperator stimmt mit dem eines Gemenges Uberein, bei dem die Kugel entweder
mit der Wahrscheinlichkeit |co|? im Zustand |04) oder mit der Wahrscheinlichkeit |c; | im
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Zustand |14) vorgefunden wird. Alle statistischen Aussagen (iber nachfolgende Messungen
stimmen Uberein. Wir kommen im Zusammenhang mit dem Quantenmessproblem auf die
Bedeutung dieser Aussage zurtick.

Was wir hier fiir Kugeln gezeigt haben, gilt entsprechend fiir alle Systeme S4, die (i) ei-
ner verschrankenden Wechselwirkung mit einem (Umgebungs-) System S¥ unterliegen. Die
Wechselwirkung soll (ii) gewisse Zustinde von S4 unveréindert lassen (stabile Zusténde) und
(iii) sie jeweils mit Zustanden von S¥ verschranken, die sehr unterschiedlich (nahezu ortho-
gonal) sind. Die dann eintretende umgebungsinduzierte Dekohérenz (environment induced
decoherence) ist umso groRer, je mehr Freiheitsgrade das Umgebungssystem hat. Sie Uber-
flhrt in ein Gemisch aus den stabilen Zustanden. Dies sind die klassischen Zustande (clas-
sical states), da jede Superposition dieser Zustande — falls sie jemals auftreten sollte — sehr
schnell durch Dekohéarenz zerfallt. Das ,,Umgebungs*-System S kann auch aus den inneren
Freiheitsgraden eines makroskopischen Kdrpers bestehen.

15.2.2 Schrodingers Katze

Das Experiment E. Schrodinger [Sch 35] hat folgendes Experiment beschrieben (vergl.
Abb. 15.3): Eine Katze ist zusammen mit einem radioaktiven Praparat in einen abgeschlosse-
nen undurchsichtigen Kasten gesperrt. Innerhalb von einer Stunde soll mit einer Wahrschein-
lichkeit % ein einzelner Zerfall stattfinden. Der Zerfall bewirkt, dass ein Flaschchen Blausdure
zertrimmert und die Katze getotet wird. Wenn man sich darauf beschrankt die Erfahrungen
zu beschreiben, die ein Experimentalphysiker bei diesem Experiment macht, tritt keinerlei
Problem auf: Der Versuch mit der Katze im Kasten wird mit vielen Katzen und Késten durch-
gefiihrt. Jeweils wird nach einer Stunde nachgeschaut bzw. gemessen, ob die Katze lebt oder
tot ist. Man stellt fest, dass sie in der Halfte der Falle tot und in der anderen Hélfte lebendig
ist.

h 2

® .
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Abbildung 15.3: Nach Offnen des Kastens findet man Schrodingers Katze mit der Wahrscheinlichkeit
1/2 entweder lebend oder tot. (Aus: Audretsch/Mainzer: Wieviele Leben hat Schrodingers Katze? 1990
(©Elsevier GmbH, Spektrum Akademischer Verlag, Heidelberg.
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Tote Katzen zum Leben erwecken Wenn man die Quantentheorie auch auf die Katze an-
wendet und ihr einen Quantenzustand |lebt) bzw. [tot) zuordnet, entsteht zunéchst noch kein
Problem. Die Katze befindet sich vor der Messung, also bevor jemand den Kasten 6ffnet und
nachschaut, in einer Superposition aus ,,lebendig* und ,,tot“ mit Markierung (vergl. Abb. 15.4)

) = %(|Iebt>|nicht zerfallen) + ¢i“|tot)|zerfallen)) . (15.22)

Das mag ungewohnt erscheinen, aber das oben geschilderte Experiment, bei dem am Ende an
der Katze ,,lebendig“ oder ,,tot* gemessen wird, wird vollig korrekt beschrieben.

»

@
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=

Abbildung 15.4: Liegt vor Offnen des Kastens eine Superposition der Quantenzustiande mit leben-
der und toter Katze vor? (Aus: Audretsch/Mainzer: Wieviele Leben hat Schrodingers Katze? 1990
(©Elsevier GmbH, Spektrum Akademischer Verlag, Heidelberg.

Wesentlich ist, dass sich Katze und Préparat im Zustand (15.22) in einer kohdrenten Su-
perposition befinden. Superposition kann auf Interferenz fiihren, wie wir das bei der Welcher-
Weg-Markierung und dem Quantenradieren gesehen haben. Es ist also nicht ausgeschlossen,
dass es eine andere Messung als ,,lebendig* oder ,,tot“ gibt, bei der eine Interferenz zwischen
lebender und toter Katze registriert wird. Eine solche Interferenz hat man weder bei Kugeln
noch bei Katzen jemals gesehen.

Schlimmer noch. Wenn es Katzenzusténde |¢) = %(Hebt) + |tot)) gdbe, wére Folgen-

des mdglich: Man nimmt ein Ensemble von Katzen im Zustand |tot) und fiihrt eine Projekti-
onsmessung mit der Observablen |©){(¢| — |p1) (@1 | Mit |1 ) = %(Hebt} — |tot)) durch.
Diese Observable gabe es dann ebenfalls. Durch eine anschlieRende Messung der Observa-
blen |lebt)(lebt| — |tot)(tot| wird in 50% der Félle die Katze in den Zustand |lebt) Uberflhrt.
Man kénnte also tote Katzen zum Leben erwecken. Bei Zustdnden von Katzen ist daher eine
Superposition nicht moglich. Wir hatten schon in Abschn. 15.2.1 gesehen, dass die umge-
bungsinduzierte Dekohédrenz das verhindert. Sie Uberfihrt in ein Gemisch aus den stabilen
Zustanden |lebt) nicht zerfallen) und |tot)|zerfallen).
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15.3 Quantenmessprozess*

15.3.1 Das Forschungsprogramm®*

Seit ihren Anfangen ist die Quantentheorie nach einem dualistischen dynamischen Schema
aufgebaut: Es gibt einerseits die Quantenoperationen, die das Verhalten des Systems zwi-
schen Praparation und Messung beschreiben, und andererseits die Quantenoperationen der
Messung. Im einfachsten Fall sind das unitére Transformationen bzw. Projektionen. Von vie-
len wird es fur unbefriedigend gehalten, zwei verschiedene Dynamiken zu postulieren. Daraus
ist das Forschungsprogramm entstanden, die bisher als Postulat eingefiihrte Messdynamik so
weitgehend wie mdglich oder vielleicht sogar vollstandig auf die unitdre Dynamik der Wech-
selwirkung zwischen System und Messapparat zurtickzufuhren. Die folgenden Forderungen
sind dabei zu erfullen:

(i) Zuverschiedenen Observablen wie Energie, Spin usw. gehdren verschiedene Messgeréte
und verschiedene Einwirkungen auf das System. Es muss aus der dynamischen Entwick-
lung hervorgehen, welche Observable durch den Apparat gemessen wird.

(ii) Der Zeigerzustand, der sich als Ergebnis einer Messung eingestellt hat, darf sich zeitlich
nicht mehr verandern.

(iii) Zeiger sind klassische Systeme. Es muss sich ergeben, dass sie nie in der Superposition
verschiedener Stellungen auftreten.

(iv) Die Rechnung muss wiedergeben, dass bei einer Einzelmessung immer genau eine Zei-
gerstellung von vielen moglichen realisiert ist, denn diese Aussage ist auch in den Mess-
postulaten enthalten. Das Ergebnis der Messung soll angezeigt werden. Es wird aller-
dings keine deterministische Begriindung dafir verlangt, welche der Zeigerstellungen
eintritt.

15.3.2 Vormessung*

Wir betrachten der Einfachheit halber als System S, an dem die Messung durchgefiihrt wer-
den soll, ein Qubit-System und einen quantentheoretisch beschriebenen Messapparat S,
dessen Hilbert-Raum H? ebenfalls die Dimension zwei hat. Die unitire Messwechselwir-
kung auf H4 ® H™, die zur Messung mit den Eigenzustanden [04) und [14) von S4 gehort,
soll markierende Wirkung haben (vergl. Abschn. 8.5). Bei Vorliegen von |04) (bzw. |14)) soll
der Messapparat in den Zustand |0*) (bzw. [1*) tbergehen. Fiir den allgemeinen Zustand
l4) = ¢c0l04) + ¢1[14) von S# bedeutet das die Verschrankung mit den Zustdnden des
Messapparats:

[67%) = e M)i™) = (ol0%) + L 1) 1) (15.23)
= M) = col0™)[0M) 4 ¢y [14)[1M) (15.24)

|iM) ist ein Anfangszustand von S*. Diese dynamische Entwicklung wird oft als Vormessung
(pre-measurement) bezeichnet.

*Die mit einem Stern gekennzeichneten Kapitel kénnen bei einem ersten Durchgang iiberschlagen werden.
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Die Zerlegung des resultierenden Zustands |¢’4) nach einer Basis von H* @ HM ist
nicht eindeutig. Fur ¢g = ¢; = % liegt der Bell-Zustand [®4'*) vor, den wir auch in der
Form

1
V2

schreiben kdnnen. Es gibt beliebig viele weitere Kombinationen von dieser Struktur. Wenn
|®"AM) der Zustand sein soll, bei dem der Messapparat die Observable

@4) = [@2M) = —= ((0)[01") + 1) 112)) (15.25)

Z4 = 2|0 (04] + 2114 (14 (15.26)

gemessen hat, dann kann man den Apparat auch ebenso als einen Apparat zur Messung der
Observablen X4 = 20[02) (04|41 [14) (12| ansehen. Es liegt also bisher gar nicht fest, wel-
che Observable bei der unitaren Entwicklung (15.23) letztlich gemessen wird. Oder anders be-
trachtet: Wenn [04) und |14) die klassischen Zeigerzustande sind, dann ist nicht ausgeschlos-
sen, dass als Ergebnis der Vormessung die Markierung mit den Superpositionen von Zeigerzu-
standen erfolgt. Die Forderung (i) ist bisher nicht erfiillt. Mit Blick auf Abschn. 15.2.1 liegt die
Vermutung nahe, dass durch Beriicksichtigung der Umgebung dieses Problem geldst werden
kann.

Auch die restlichen Forderungen werden durch die Vormessung nicht erfullt. Wir demons-
trieren das am Beispiel der Forderung (ii). Unitére Entwicklungen sind umkehrbar. Anderer-
seits ist der Messprozess aber irreversibel. Wir wollen das am Beispiel der einfachen unitéren
Entwicklung U = e~*#* mit dem Hamilton-Operator

H*™M = g0l @ o) (15.27)
auf H4 ® HM untersuchen. Der Anfangszustand sei der Produktzustand
64 (t = 0)) = (col0?) + 1)) [027) (15.28)

mit |co|? + |c1|? = 1. Eine Zwischenrechnung, die wir nicht wiedergeben (vergl. UA 15.1),
fuhrt auf

64M (1)) = c04) {sin (% + gt) 10M) + cos (% + gt) |1M>}
+ 1) {sin (% - gt) 10M) + cos (% - gt) |1M>} . (15.29)

Wir erhalten eine zeitabhangige Verschrankung, die zum Zeitpunkt ¢ = 7 g auf den gewuinsch-
ten Zustand |®'4M) von Gl. (15.23) fiihrt. Zum Zeitpunkt t = 2?” ist allerdings wieder der

unverschrénkte Anfangszustand [®4 (¢ = 0)) erreicht. Die Vormessung fiihrt somit auf kei-
ne zeitlich stabile Markierung des Gesamtsystems.

15.3.3 Verschrankung mit der Umgebung fixiert die Observable*

Ein erster Schritt zur Losung der Probleme besteht darin, die Systeme S4 und S™ um die
Umgebung S zu erweitern, die zunachst aus einem einzigen Qubit-System bestehen soll.
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Der Zustand des Gesamtsystems SAMF liegt in H4 @ HM @ HE. Wir koppeln SM an SF
iiber eine Dynamik mit einem Hamilton-Operator H ¥ der nur auf H™ ® H¥ wirkt und
daher den Zustand von S nach der Vormessung unveréndert lsst.

HME — g14 @ e @ oF . (15.30)

Die Zustande [0%) und |1%) bilden ein ONB von H*.
Der Anfangszustand zur Zeit t = 0 nach der Vormessung ist mit [¢’4*) von GI. (15.23)

[W(t = 0)) = {co[0)0M) + er[1) 1)} (0F) + B17)) (15.31)

Die anschlieBend durch HF bewirkte unitire Entwicklung fiihrt auf eine zeitabhéngige Ver-
schrankung mit der Umgebung (vergl UA 15.2)).

[9(1)) = col0™)[0M)]wg’ (8)) + er[14) 1) |l (£)) (15.32)
mit
|wi (1)) = acexp(igt)|07) + Bexp(—igt)|17) = |wf'(—1)) . (15.33)

Ist auch jetzt noch unbestimmt, welcher Zustand beim System S und beim Messappa-
rat SM vorliegt? Die Umformung von Gl. (15.23) in GI. (15.25) fir ¢ = ¢; = % ist nur
dann mdglich, wenn die Summanden keine unterschiedlichen Faktoren enthalten. Die Zustén-
de |w{) und |wE) in GI. (15.32) sind solche unterschiedlichen ,,Faktoren“. Die Verschrankung
mit der nur aus einem Qubit bestehenden Umgebung hat bereits bewirkt, dass nur noch eine
Korrelation zwischen den Eigenzustanden von 2 und o, aber nicht mehr zwischen denen
von o und o} besteht?. Der Apparat mit der Messdynamik H* ist damit der Observa-
blen Z4 zugeordnet. Die Forderung (i) ist erfillt. Allerdings wird nach wie vor periodisch
verschrénkt und entschrénkt. Zur Zeit ¢ = 27” liegt wieder der Ausgangszustand | (¢t = 0))
VOor.

15.3.4 Verschrankung mit vielen Freiheitsgraden der Umgebung*

Kollaps und Wiederkehr Realistische Umgebungen haben sehr viele Freiheitsgrade. Es
liegt also ein Gesamtsystem in einem Hilbert-Raum % = HA @ HM @ Hf}) @ ... @ Hf}
vor. N ist dabei eine groRe Zahl. Wir diskutieren den einfachen Fall, dass alle Hilbert-Raume
zweidimensional sind, und gehen wieder wie im vorigen Kapitel vor.

Vor Anschalten der Wechselwirkung zwischen Messapparat und Umgebung liegt der Zu-
stand

N

[ (t = 0)) = {cl0%)[0") + s 1) 1Y)} © {H (axlofyy) + mu{%»)} (15.34)

k=1

2Mit Hilfe des folgenden Theorems lasst sich der Beweis noch prézisieren [Bub 97, Kap. 5.5]: Eine Darstellung
eines Zustands |¢) € H ® H’ ® H'’ als triorthogonale Zerlegung (triorthogonal decomposition)
) = > eilui)vi)ws)
[
mit Basisvektoren {|u;)} € H, {|vi;)} € H' und {|w;)} € H' existiert nicht immer. Aber wenn sie existiert, ist
sie eindeutig.
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mit |ax|? + |Bx|? = 1 vor. Die Wechselwirkung soll durch den einfachen Hamilton-Operator

N
HME =N " g (15.35)
k=1
mit
HYP = g1 @ oM @ ok @ T] 15, (15.36)
i#k

gegeben sein. Der Zustand |¢(¢)) des Gesamtsystems zur Zeit ¢ erhalten wir iiber die zu HM ¥
gehdrige unitare Transformation nach einer Zwischenrechnung (vergl. UA 15.2), bei der wir
unmittelbar das Resultat (15.32) verwenden, als

[0(1)) = ¢ol0™)0M)QF (1)) + e 1Y) LM 2F (1)) (15.37)

mit

=

(1)) = [] (o expliont)|0E,) + B exp(—igit)|15,)) = [0F(~1)) . (15.38)

k=1

Die Umgebungszustande sind normiert (QF (1)|QF (¢)) = 1,  (QF#)|QF(¢)) = 1, aber i.a.
nicht zu allen Zeiten orthogonal

r(t) == (Q5 ()| (1)) - (15.39)

Zur Beschreibung der Auswirkung der Messung am System S4 durch das Messgerit S
mussen wir durch Abspuren (ber die Freiheitsgrade der Umgebung zum reduzierten Dichte-
operator des Systems S4M {ibergehen.

p M =1trg[[e(1) ()] lco[*104)(04] @ [0™) (0] (15.40)
e P (14 @ 1M) (1]

+ r(t)eoci|0h) (14 @ [0M) (1]

+ rH(t)eher |14 (04 @ [1M) (0M] . (15.41)

Man findet leicht (vergl. UA 15.2) als explizite Zeitabhangigkeit von (t)

_|_

N

r(t) = [ [{cos 2gxt + i(Jaw|* — |Bl?) sin 2gxt} . (15.42)
k=1

Nach Konstruktion ist (¢ = 0) = 1 und |r(¢)|* < 1.

Wichtig ist im Hinblick auf die Forderung (ii) das Verhalten von r(t) fir groRe Zeiten.
Wie Gl. (15.42) zeigt, ist r(t) aufgebaut aus periodischen Funktionen mit vielen verschie-
denen Frequenzen 2gy.. Es ist aus der statistischen Mechanik, aus der Quantenoptik und aus
anderen Gebieten der theoretischen Physik bekannt, dass so zusammengesetzte Funktionen
Kollaps und Wiederkehr (collapse and revival) zeigen. Beginnend bei ¢ = 0 mit » = 1 féllt
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|r(t)| zundchst ab und nahert sich dem Wert Null, kann dann aber nach langerer Zeit wie-
der ansteigen, wieder auf Null abfallen, wieder ansteigen usw. |r(¢)| kann beliebig nahe an
|r(t)| = 1 zuriickkehren®. Mit wachsendem N wird diese Rekohérenz (recoherence) aber zu
immer groferen Zeiten hin verschoben (vergl. Abb. 15.5).

) r(t) / / Wiederkehr
N=5 ¢
N=15 | —,

Abbildung 15.5: Kollaps und Wiederkehr (spezielle Parameterwahl).

r(t) erreicht sehr schnell einen Wert proportional zu 2=~ (vergl. Abschn. 15.6). Wie
Gl. (15.41) zeigt, entspricht dem ein sehr schneller Dekohédrenzvorgang in den Basen
{104y, (14} und {|0M), [1M)}. SAM geht aus einem reinen Zustand in ein Gemisch p2
uber. Insbesondere die Markerzustande [0*) und [1*) konnen nicht mehr miteinander in-
terferieren. Es sind klassische Zustdnde geworden, die man Zeigerzustéande (pointer states)
nennt. Damit ist auch die Forderung (iii) erfullt.

Der von der Umgebung S¥ induzierte Dekoharenzprozess hat beim reduzierten Dichte-
operator p™ die Basis der Zeigerzustande ausgezeichnet. Das Ergebnis ist fiir das Teilsystem
SAM der reduzierte Dichteoperator

P = oo [0, 0M) (04, 0M] e P14, 1) (14, 1M (15.43)

Ein Gemenge aus den Zustanden [04,0) und |14, 1) aus H* @ H™M mit den Wahrschein-
lichkeiten py = |co|? und p; = |c1|? wird ebenfalls durch den Dichteoperator p4* beschrie-
ben. Ein solches Gemenge entspricht gemal Messpostulat genau dem Ergebnis einer nicht-
selektiven Messung der Observablen Z#. Sind damit alle Anforderungen aus Abschn. 15.3.1
erfllt?

Welche Zeigerzustande? Mit dieser nur auf S4Z bezogenen reduzierten Betrachtungswei-
se, die von der Umgebung S¥ absieht, ist die Argumentation allerdings noch unvollstandig,
denn wir haben dadurch wieder ein Problem mit Forderung (i) bekommen. Denn pAM ist
der reduzierte Dichteoperator eines verschrénkten Teilsystems und damit nicht das Ergebnis
eines Préparationsprozesses, der auf ein Gemenge fihrt. Eine Ignoranzinterpretation (vergl.
Abschn. 4.3) ist nicht mdglich. Das Gesamtsystem befindet sich in einem reinen Zustand. Der
Dichteoperator p hat beliebig viele Ensemblezerlegungen z. B. auch

pAM — pu"LLA,’U,]M><’U,A,’U,]\/I| +p7j|’l)A,’U]\/I><’UA,’UA4| ) (1544)

3Wiederkehr kann man genauer fassen: 7 sei ein endlich-dimensionaler Hilbert-Raum und U ein unitérer Opera-
tor. Dann gibt es zu jedem & > 0 eine natlrliche Zahl g, sodass sup{||U? — 1|p)|| : |¢) € H, |l¢| =1} < e.
Wenn man die Anwendung von U h&ufig genug wiederholt, kommt man dem Ausgangszustand wieder beliebig na-
he. [SSS 04]
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Ist daher moglicherweise eine ganz andere Observable U4 = u|u”) (u”| + v|v) (v | mit
Zeigerzustanden |u™) und [v*) gemessen worden.

Wir durfen von der Umgebung nicht absehen. Wir wissen, dass beim Messprozess die
Zeigerstellung stabil ist. Die Wechselwirkung mit der Umgebung ist standig vorhanden. Wenn
sie wie oben von der Form

HME — zM o gF (15.45)

mit einem hermiteschen Operator H ist, dann vertauscht ¥ mit der Z&hlerobservablen
(pointer observable) ZM

[HME ZzM]_ =0 (15.46)

Die Zustande [0*) und |1*) und damit auch die Korrelationen mit den Zustanden [04) und
|14) bleiben unter dem Einfluss der Umgebung unverandert. Die Stabilitét dieser Korrelatio-
nen zeichnet die Zeigerbasis {|0), 1)} vor anderen Basen aus.

Die Diagonalisierung von p#Z durch umgebungsinduzierte Dekohédrenz und die Stabi-
litat der Korrelationen zwischen S4 und S™ unter fortdauerndem Einfluss der Umgebung
fuhrt auf die Festlegung der zeitlich unveranderlichen klassischen Zeigerzustande. Z4 liegt
als gemessene Observable ebenfalls fest. Damit sind die Forderungen (i) bis (iii) an eine dy-
namische begriindende Theorie des Messprozesses fir die nicht-selektive Messung in diesem
sehr einfachen Modell durch die Ankopplung an die Umgebung weitgehend erfillt. Die Ver-
schrankung mit der Umgebung S* ist allerdings nicht durchbrochen wie die Mdoglichkeit der
. Wiederkehr in sehr ferner Zukunft zeigt. Durch p™ wird kein Gemenge beschrieben. Eine
Ignoranzinterpretation (vergl. Abschn. 4.3) ist nicht moglich. Das Urteil dartiber, ob das als
ein gravierender Mangel des Erklarungsmodelles anzusehen ist, bleibt dem Leser tberlassen.

15.4 Ist das Messproblem geltst?*

Ein weiterer damit zusammenhdangender gravierender Mangel liegt in jedem Fall vor: Die For-
derung (iv) von Abschn. 15.3.1 ist nicht erflillt. Umgebungsinduzierte Dekoharenz kann nicht
erklaren, warum in jedem Einzelexperiment immer nur eine von vielen moglichen Zeiger-
stellungen eines Messapparats realisiert ist. Das ist aber gerade die elementarste Erfahrung,
die ein messender Experimentator noch vor allen anderen Erfahrungen macht. Sie ist Teil der
Messpostulate. Das Messproblem ist daher (in der Standardinterpretation) nicht gelost.

Verlangt ist allerdings keine deterministische Begriindung dafiir welche Zeigerstellung
eintritt. Das wirde auf die verborgenen Parameter zurlckfihren. Die Erklarungsliicke be-
trifft typischerweise einen Einzelprozess und damit als Konsequenz die selektive Messung
iiberhaupt, da sie auf Einzelmessungen aufbaut. Mit dem Zustand p*" des vorigen Kapitels
haben wir ein Gemisch erhalten, Wenn man das als Ergebnis einer nicht-selektiven Messung
und also als ein Gemenge interpretiert, hat man bereits vorausgesetzt, dass die Forderung (iv)
erfillt werden konnte.

Es ist offenbar so, dass man die in den Messpostulaten enthaltene Forderung (iv) im Rah-
men der vorliegenden Quantentheorie einschlielich der Standardinterpretation dynamisch
nicht begriinden kann. Wenn das so ist, hat man zwei Mdglichkeiten: Man kann einmal die
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Quantentheorie abéndern, indem man z. B. andere dynamische Gleichungen postuliert (vergl.
Abschn. 15.6). Die zweite Mdglichkeit besteht darin, die Theorie in der bestehenden ma-
thematischen Formulierung unverdndert zu lassen und zu einer anderen Interpretation fir sie
liberzugehen. Wir wollen ein Beispiel hierfur sehr kurz skizzieren.

15.5 Die Viele-Welten-Interpretation*

Die Viele-Welten-Interpretation  (many-worlds interpretation), die auch Everett*-
Interpretation (Everett interpretation) genannt wird, bezieht den Beobachter als System
mit ein. Er entspricht formal dem System S aus Abschn. 15.3.2. Wir wollen im Folgenden
SM 5o verstehen. Wie in der Vormessung entwickelt sich der Zustand von S4M wenn S$4
ein Qubit ist, in den Zustand (15.24). Die Zustande [0*) und |1*) sind die in diesem Zu-
sammenhang Erinnerungszustdnde (memory states) des Beobachters. Dies beschreibt bereits
den Messprozess. Der Zustand |¢“4*) geht nicht noch anschlieBend in einen der Zustande
(also z.B. |04)|0M)) (iber, sondern beide Zweige (branches) [04)]0*) und [14)[1M) sind
realisiert. Die Realisierung manifestiert sich allerdings in verschiedenen realen Welten, die
nicht miteinander wechselwirken. Da die Zustande [0*) und |1™) Erinnerungszustande
sein sollen, kann sich ein Beobachter mit wohlbestimmter Erinnerung, z.B. [1M), nur an
das zu |14) gehdrige Messergebnis erinnern und er findet entsprechend System S4 auch
im Zustand [14) und nicht im Zustand |04). Die Vorhersagen (iber das, was im nachsten
Experiment zu dem hinzukommen wird, an was sich ein Beobachter erinnern kann, sind
Wahrscheinlichkeitsaussagen. Auch in diesem nachfolgenden Experiment wird wieder alles
realisiert was potentiell moglich ist. Die Welt spaltet immer wieder in jeder Messung auf.

Es ist das Wesen einer Interpretation, dass sie nicht empirisch widerlegt werden kann. Das
gilt auch fur die Viele-Welten-Interpretation. Weiterhin ist jeder frei darin, diejenige Inter-
pretation zu wahlen, die er aus guten (metaphysikalischen) Griinden fur die Geeignetere halt.
Wir haben das in Abschn. 2.5 analysiert. Die Viele-Welten-Interpretation ist bizarr, aber sie
hat neben vielen Unklarheiten (vergl. Abschn. 15.6) und nicht befriedigend ausgearbeiteten
Details auch Vorteile: Die Forderung (iv) an die Theorie des Messprozesses ist erfullt. Weiter-
hin ist der Beobachter mit in das System einbezogen. Es wird ,,alles* beschrieben. Es gibt nur
ein einziges abgeschlossenes System, das das ganze kosmologische Universum représentiert.
Das konnte das Verstdndnis der Quantenphysik des extremen Friihzustands des Universums
erleichtern. Andererseits lassen sich auch Probleme erkennen. Wir geben ein Beispiel: Wie
bei der Vormessung in Abschn. 15.3.2 muss man sich fragen, warum die Aufspaltung in die
Welten nicht nach der Gl. (15.25) folgt. Wird der Beobachter S* sich an eine Messung der
Observablen Z4 oder der Observablen X4 erinnern? Es liegt nahe, zur Losung dieses Pro-
blems (welches das Problem (i) aus Abschn. 15.3.1 ist) wieder die Dekohérenz durch die
Umgebung heranzuziehen.

Wir wollen im néchsten Kapitel, dem Schlusskapitel, noch einmal zu ,,hartem* theoreti-
schem Stoff zuruckkehren und einige Beweise nachliefern.

4 [Eve 57]
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15.6 Erganzende Themen und weiterfiihrende Literatur

Alle Aspekte des Themas Dekohérenz werden in dem Sammelband [GJK 96] behandelt.

Ubersichtsartikel zur Dekoharenz: [Joo 96], [Zeh 96], [Bub 97, Kap. 5.4], [Zeh 00],
[Joo 02], [PZ 02], [Leg 02], [Zur 02], [Zur 03].

Ubersichtsartikel und Biicher zur Viele-Welten-Interpretation: [DG 73], [Deu 96],
[Bar 00], [Vai 01].

Kurze Darstellungen der Viele-Welten-Interpretation: [Pri 81, Kap. 3.6], [d’Es95, Kap.
12], [Bub 97, Kap.8.2], [Hom 97, Kap. 2] [Mit 98, Kap. 3.2], [Aul 00, Kap. 15].

Ubersichtsartikel und Biicher zur Theorie des Quantenmessprozesses: [Zur 82], [Zur 91],
[BLM 91], [Bub 97, Kap. 8], [Mit 98], [Aul 00, Kap. IV ], [PZ 02], [Leg 02].

Eine Reihe von gut lesbaren Aufsdtzen zu Schrédingers Katze, zum Verhéltnis von
Mikro- zu Makrophysik und zum Erscheinen der klassischen Welt findet sich in [AM 96].

Vergleich von Dekohérenzraten und Relaxationsraten, Zeitskalen der Dekohérenz:
[Joo 96], [PZ 02].

Zeitlicher Ablauf des Verschwindens der Dekohdrenz zwischen raumlich getrennten
Komponenten einer Wellenfunktion (Lokalisierungsraten): [Joo 96].

Ubersichtsartikel zur Beschreibung des Messprozesses mit abgeanderter Schrédinger-
und von-Neumann-Gleichungen (Zustandsreduktion als dynamischer Prozess): [Sta 96],
[Lal 01].

Wir haben nur ein besonders einfaches Modell flir umgebungsinduzierte Dekoharenz stu-
diert. Man sollte vorsichtig sein mit der Verallgemeinerung der Ergebnisse: [PZ 02].

Interferometrie mit Makromolekiilen und Dekohérenz: [ANZ 02], [HUH 03].
Superposition makroskopischer Systeme in einem SQID: [FPC 00]. [VdW 00].

Experimente zu Verschrankung, Dekohdrenz und Katzenzustdnden in Kavité-
ten: [HRB 02], [RBH 01].

15.7 Ubungsaufgaben

UA 15.1[zu 15.1] Berechnen Sie die Wirkung des Phasendampfungskanals auf den Dichte-
operator

P %(]1 tro). (15.47)

Wie andert sich der Bloch-Vektor r?
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UA 15.2 [zu 15.3] Leiten Sie die GI. (15.29), (15.32) und (15.37) ab. Berechnen Sie hierzu
zunéchst die dyadische Zerlegung der Operatoren exp(oz ® o)') und exp(oZ @ o) in
geeigneten Basen von H4 @ HM.

UA 15.3 [zu 15.3] Leiten Sie GI. (15.41) ab.
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16 Zwei Realisierungen von Quantenoperationen*

16.1 Operatorsummenzerlegung*

Relative Zustande und Indexzustande Wir betrachten ein 2-Teile-System S4B mit
Hilbert-Raum 4 ® H” und setzen der Einfachheit halber dim H4 = dim H? = d vor-
aus. In H* und H® fihren wir ONB {|a2)} und {|eZ)} ein und bilden daraus einen maximal
verschrankten unnormierten Zustand

d
A8 =" |af el) (16.1)
n=1
fur den
lag) = (e |)AP) (16.2)

gilt. Wir konnen |eZ) als einen Markerzustand fiir |a2') auffassen.
Diese Idee wird verallgemeinert. Wir konnen einen beliebigen Zustand |¢“)

6%) = cnlal) (16.3)

n

aus H4 durch Projektion in +” gewinnen. Dazu bilden wir in % den zu |¢“) gehérigen
Indexzustand (index state)

0°%) =) chlen) - (16.4)
Dann finden wir mit Gl. (16.1)

|6%) = (¢*P[F) (16.5)
und ebenso

6*7) = (¢*917) . (16.6)

|¢A) heilt relativer Zustand (relative state). Uber den nur von den beiden ONB abhangi-
gen maximal verschrankten Hilfszustand [:/7) wird zwischen einem beliebigen Zustand

*Die mit einem Stern gekennzeichneten Kapitel kénnen bei einem ersten Durchgang tiberschlagen werden.

Verschrénkte Systeme: Die Quantenphysik auf neuen Wegen. Jiirgen Audretsch
Copyright © 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40452-X
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|¢) € H* und seinem Indexzustand |¢*?) in H? ein einfacher Zusammenhang hergestellt.
|pAB) etabliert eine eineindeutige Abbildung

|6%) < [67F), (16.7)
die konjugiert linear (conjugate linear) ist. Es gilt
|0%) = a1|67') + azly), |°F) = ailei?) + azlg3?) - (16.8)

Der Beweis ergibt sich durch Zerlegung nach den Basisvektoren.

Beweis des Theorems  Wir wollen den folgenden in Abschn. 14.1.2 bereits behaupteten Satz
beweisen: Eine Abbildung p — ' = &£(p) ist genau dann eine Quantenoperation, wenn es
eine Operatorsummenzerlegung

Ep) = Y Kipk] (16.9)

mit linearen Operatoren K; gibt, die die Bedingung

Y KK <1 (16.10)
erfullen und den Eingangs-Hilbert-Raum auf den Ausgangs-Hilbert-Raum abbilden. Die Be-
dingung (16.10) ist gleichbedeutend damit, dass die Spur nicht erhéht wird

tri€(p)] <1 (16.11)

(tr[p] = 1). p ist wieder ein Dichteoperator.

Wir zeigen zunachst, dass £4 ® 1.7 einen positiven Operator 747 aus H4 @ H? in einen
positiven Operator iiberfihrt. [¢)45) sei ein beliebiger Vektor aus H“ @ H 2. Wir greifen einen
Index ¢ heraus und bilden

67) = (KT @ 17)[pA7) . (16.12)
Dann ist K;* ® 17 wegen
(AP @ 1) r P (K @ 17)[p1P) = (o2 [n 42 |6f7) 2 0 (16.13)

ein positiver Operator auf H“ ® H%. Das gilt auch fiir die Summe Giber i. £4 ist nicht nur
positiv, sondern auch vollstandig positiv.

Fur die umgekehrte Beweisrichtung gehen wir im ersten Schritt von dem maximal ver-
schrankten Zustand WNJABW/;ABI von GI. (16.1) aus. Da £4 nach Voraussetzung eine Quan-
tenoperation ist, fuhrt die Anwendung von £4 ® 17

(E4 @ 18)[pABY (yAB| = 0B (16.14)

auf einen positiven Operator C45.
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Im zweiten Schritt schreiben wir C4Z mit GI. (16.1) unter Ausnutzung der Linearitét von
E4 aus

CAB _ (64 g 12 (zmn, g ) (zmﬁ,,eﬁ)

n’

=" (laf)azd]) ® (JeB)(eB))

n,n’

(16.15)

und bilden mit GI. (16.3) und (16.4) den Erwartungszustand mit dem Indexzustand |¢* ).
(67B|CA|6P) = Y ench&A () ast]) = E(1o™ ) (0?)) (16.16)

n,n’

Dabei haben wir wieder die Linearitit von £4 ausgenutzt. Die Gl. (16.16) zeigt, dass im
Operator C4% die volle Information tiber die Wirkung des Superoperators £4 auf der Basis
des Liouville-Raums T4 steckt.

Im dritten Schritt wahlen wir eine Ensemblezerlegung von C45 aus

Z |EABY (¢AB (16.17)

und formen die linke Seite der Gl. (16.16) um.

EN(IoM) o) = Y (0" FIe ) (P 1oF) . (16.18)
Wir fuhren Operatoren K#* durch ihre Wirkung auf |¢*) ein

(6771617) = K |o%) (16.19)
und erhalten aus Gl. (16.18)

4| (0]) = ZK{“IGﬁAWﬁAIK{” : (16.20)

Wegen der Linearitat von £4 gilt damit fur alle Dichteoperatoren p auf H4:

ENpt) =D K KM (16.21)

Da die Abbildung |¢*) « |¢*B) konjugiert linear ist, sind mit GI. (16.19) auch die Operato-
ren K/ lineare Operatoren. Da weiterhin die Quantenoperation £4(p“) von Gl. (16.21) fir
alle p die Spur nicht erhalt, ergibt sich die Bedingung (16.10). Damit ist der Satz iiber die
Operatorsummenzerlegung in beiden Richtungen bewiesen.

Die Wahl der beiden Orthonormalbasen {|a)} und {|eZ)} war ebenso wie die Ensem-
blezerlegung (16.17) willkirlich. Das zeigt noch einmal, dass die Operationselemente K bei
vorgegebenem Superoperator £4 nicht eindeutig festgelegt sind.
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16.2 Unitare Realisierung von Quantenoperationen*

Spurerhaltende Quantenoperationen  Eine spurerhaltende Quantenoperation £4 auf dem
System 54

€4 (p™)] = tr[p?] = 1 (16.22)

hei3t auch vollstdndige Quantenoperation (complete quantum operation). Die zugehdrigen
Zerlegungsoperatoren erfillen die Vollstdndigkeitsrelation

S EMEA =1 (16.23)

Fir eine unitare Realisierung der Quantenoperation erganzen wir wieder das System S4 um
ein Hilfssystem S2. Die Dimension von H? soll mit der Zahl der Zerlegungsoperatoren iber-
einstimmen.

In H® wahlen wir eine Basis {|i®)}. S sei am Anfang im Zustand [07) und das Gesamt-
system im Produktzustand |¢/4)[05). Wir definieren mit Hilfe der K einen Operator (/45
durch seine Wirkung auf Zustande [1)4)|07)

UAB |4y |0B) ZKAW‘ liB) . (16.24)

Fiir beliebige Zustande |1)4) und |¢4) gilt dann mit der Vollsténdigkeitsrelation (16.23)
WAOPTAPTTAP94)(0%) = 3 (w07 KT K ¢?, 07)
i (16.25)
= (%,07]¢%,0%) .

Auf Zustanden der Form |44, 05) erhalt UAP die inneren Produkte. Mit dem schon in Ab-
schn. 13.3.5 verwendeten Hilfssatz kann daher U7 zu einem unitéren Operator U7 erwei-
tert werden, der auf ganz H4 ® H” wirkt. Von solchen Operatoren nehmen wir an, dass sie

sich physikalisch realisieren lassen.

Das Untersystem S4 wird durch die unitire Transformation des Gesamtsystems in den
Zustand

trB[UAB(llﬂA) <1/1A‘ ® |OB> <OB|)UABW
=g Kty (KT @ i) @]

= KAy (KM
= E4(Jp*) (4))

iiberfiihrt in den es auch die Quantenoperation £4 iiberfiinrt. Jede vollstindige Quantenope-
ration auf 4 hat daher eine unitére Realisierung auf H* © H? in der Form

(16.26)

ENp™) = rp[UAP (p @ [07) (0P NUAPT] . (16.27)
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In jeder vollstandigen Quantenoperation £4 eines Systems S Iasst sich ein Gesamtsystem
SAB mit Hilbert-Raum H4 © H? und eine unitire Transformation UAZ auf HAP finden,
so dass das Teilsystem die Entwicklung mit £4 durchmacht. U4 7 ist die Erweiterung des in
Gl. (16.24) definierten Operators U4 5.

Quantenoperationen, die die Spur nicht erhalten Bei unvollstdndigen Quantenoperatio-
nen (3, K;'T K/') < 1) erganzen wir die Menge der Operatoren K/* um einen Operator K.,
S0 dass ein vollstandiger Satz

SOEKM+ KK, =1 (16.28)

entsteht.

Den Raum H? ersetzen wir durch den Raum H’, dessen Dimension um eins erhoht ist.
Ein Operator U45" wird wie oben gebildet. Nach der Entwicklung mit U3" wird durch den
Projektor P? eine Projektion auf H” durchgefiihrt. Wir ersetzen also in der Rechnung oben
UAB durch PBUAB’, Dann verschwindet in der zu Gl. (16.24) analogen Gleichung gerade
der Operator K. Auch in der Operatorsummendarstellung (16.26) taucht er nicht mehr auf.

16.3 Realisierung einer vollig allgemeinen Messung durch
unitare Transformation und Projektion*
Wir wollen véllig allgemeine Messungen (most general measurements) physikalisch realisie-

ren. Bei diesen Eingriffen geht der Zustand p“ bei Eintreten des Messwerts m in den Zustand
o4 Uber, der durch eine Quantenoperation M2 gegeben ist.

pt = P = M (p?). (16.29)
Die in Abschn. 13.3 diskutierte verallgemeinerte Messung ist der Spezialfall M2 (p) =
M pA M.
Die Anzeige des Messwerts m soll mit der Wahrscheinlichkeit
p(m) = tralpr,] = tra[Mg, (p)] (16.30)
erfolgen. Es ist also fiir beliebige p**
tralY M (p")] = p(m)=1. (16.31)

Die Superoperatoren M haben eine Operatorsummenzerlegung
M (p) = M2 p* M (16.32)

7

Der Laufbereich von 4 kann von m abhangen. Als Folge von Gl. (16.31) missen die Zerle-
gungsoperatoren die Vollstandigkeitsrelation

SoMptma =1 (16.33)

erfillen.
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Es kann auch in diesem Fall eine im Prinzip durchfiihrbare physikalische Realisierung fir
diese ganz allgemeine Messung am System S4 gefunden werden, indem ein Hilfssystem 5%
hinzugenommen wird. Das Gesamtsystem S4# wird wieder geeignet unitar entwickelt und
schlieRlich wird in S eine projektive Messung durchgerhrt.

Wir fiihren ein Hilfssystem SZ mit einer ONB {|m, %)} € HPZ ein (d h. (m, i|m’,i’> =
Smme0i7), deren Vektoren den Zerlegungsoperatoren zugeordnet sind M2 , « |m,i2). Dann
kénnen wir Schritt fur Schritt dem Vorgehen in Abschn. 16.2 folgen. Der Anfangszustand des
Gesamtsystems sei |44, 07). Es wird ein Operator UAB mit der Wirkung

UAP |y, 08) o= 3" M ) |m, iP) (16.34)

m,

definiert. Er lasst sich wieder zu einem unitéren Operator UAPB auf ganz HA @ HP erweitern.
Wir fiilhren orthogonale Projektionsoperatoren P2 auf dem Hilfssystem S zu den Mess-
werten m ein:

=> " |m,i®)(m,i"|, > PE=1". (16.35)

Die unitare Gesamttransformation mit nachfolgender Projektion P2 auf dem Hilfssystem S©
ergibt

PRUAB ) |0) = (Zlmz ’B|> Z i) n, i)

Z My, il m, i) .

Zur Bestimmung des reduzierten Dichteoperators des Ausgangssystems S gehen wir wie
in Gl. (16.26) vor und erhalten mit GI. (16.32) die gewiinschte Relation (16.29)

P Z MA [94) (A MAT, = MA () @A) (16.37)

(16.36)

Die Wahrscheinlichkeit p(m), mit der bei der projektiven Messung auf SZ der Messwert m
auftritt, ist durch den reduzierten Dichteoperator p” von S nach der unitaren Entwicklung
gegeben. Durch Bilden der Teilspur tr4 bei Gl. (16.36) gewinnen wir zundchst nach einer
Zwischenrechnung p” und daraus p(m)

p(m) = trp[P; p" P71 (16.38)

Man liest dann an den expliziten Ausdriicken in der hier nicht dargestellten Zwischenrechnung
mit Hilfe von GI. (16.37) die angestrebte Endrelation (vergl. Gl. (16.30))

p(m) = tea[ My, ([ ()] (16.39)

ab. Die Rechnung Ubertragt sich infolge der Linearitat der Superoperatoren auf Dichteopera-
toren.
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Wir haben folgendes Ergebnis erhalten: Eine vollig allgemeine Messung am System S4
mit Messergebnis m ist als unitare Entwicklung U4 des um S erweiterten Gesamtsystems
SAB mit anschlieRend projektiver Messung an S mit Projektor P2 realisierbar. U4? und

m

PJ sind dabei durch die GI. (16.34) und (16.35) gegeben. Es findet eine Riickfiihrung auf
projektive Messungen statt, die physikalisch nicht weiter reduziert werden kann.

16.4 Erganzende Themen und Literatur

e Zu den Beweisen: [Sch 96].

16.5 Ubungsaufgaben

UA 16.1 [zu 16.1] Beweisen Sie Gl. (16.8).

UA 16.2 [zu 16.3] Ergénzen Sie die Zwischenrechnung, die auf GI. (16.38) fiihrt.
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