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Einführung

Allein der Gedanke, einen Analysiskurs zu besuchen, beschert unzähligen Schülern kalte Schweißausbrüche. Andere, die nicht vorhaben, das Fach je zu belegen, denken wahrscheinlich, Analysis sei extrem schwierig, wenn man nicht gerade ein direkter Nachfahre von Einstein ist.

Gut, ich will Ihnen hier sagen, dass Analysis zu schaffen ist. Ein Großteil der Analysis ist einfach nur fortgeschrittene Geometrie, Algebra und Trigonometrie. Sie baut darauf auf und stellt letztlich eine logische Fortsetzung dieser Themenbereiche dar. Wenn Sie mit Algebra, Geometrie und Trigonometrie zurechtgekommen sind, dann werden Sie auch mit der Analysis zurechtkommen.

Aber warum sollten Sie sich das alles antun – wenn Sie nicht gerade einen Kurs belegen müssen? Warum auf den Mount Everest steigen? Warum den Louvre besuchen, um die Mona Lisa zu sehen? Warum Die Simpsons sehen? So wie diese Unternehmungen kann auch die Analysis einfach Spaß machen. Viele sagen, Analysis sei eine der wichtigsten Errungenschaften in der gesamten Wissenschaftsgeschichte. Und damit ist sie alle Mühen wert. Lesen Sie dieses Buch, machen Sie sich ein Bild und genießen Sie es, zu denen zu gehören, die sagen können: »Analysis? Klar, kann ich! Kein Problem!«


Über dieses Buch

Analysis kompakt für Dummies richtet sich an Schüler, die ihren ersten Analysiskurs belegen, und an Erwachsene jeden Alters, die für Studium oder Beruf eine schnelle Einführung in das Thema brauchen.

Wenn Sie schon einmal Analysis hatten, das aber schon mehrere Jahre her ist, und Sie die Konzepte wiederholen müssen, weil Sie sie für andere Kurse benötigen, bietet Ihnen Analysis kompakt für Dummies eine schnelle Auffrischung Ihres Wissens.

Dies ist ein benutzerfreundliches Mathematikbuch. Wo immer möglich, erkläre ich die Konzepte der Analysis, indem ich die Verbindungen zwischen der Analysis und der Algebra und der Geometrie aufzeige. Anschließend demonstriere ich, wie die Konzepte der Analysis für konkrete Beispiele angewendet werden können. Alle Erklärungen sind in verständlicher Sprache formuliert und nicht im Mathematik-Slang.


Konventionen in diesem Buch

Die folgenden Konventionen halten den Text konsistent und leicht verständlich.


[image: ipad] Variablen sind kursiv dargestellt.

[image: ipad] Begriffe aus der Analysis sind kursiv dargestellt und werden bei ihrem ersten Auftreten erklärt.

[image: ipad] Bei der schrittweisen Lösung von Aufgaben ist die allgemeine Vorgehensweise fett dargestellt, gefolgt von den Besonderheiten der jeweiligen Aufgabe.


Was Sie nicht lesen müssen

Dieses Buch ist wie alle Dummies-Bücher als Nachschlagewerk vorgesehen, nicht als Lehrbuch. Die grundlegende Idee dabei ist, dass alle Kapitel eigenständig sind. Falls Sie nicht das ganze Buch vom Anfang bis zum Ende lesen wollen, dann ist das auch nicht erforderlich. Wenn Sie Anfänger sind, sollten Sie vielleicht mit Kapitel 1 beginnen und sich durch das Buch arbeiten. Aber wenn Sie bereits Grundwissen besitzen, können Sie jederzeit nur die Themenbereiche lesen, die Sie gerade interessieren.

Es kann eine große Hilfe sein, die Analysis wirklich zu verstehen, um sich neben dem Wie auch auf das Warum konzentrieren zu können. Mit diesem Gedanken im Hinterkopf habe ich mir viel Mühe gemacht, die zugrunde liegende Logik vieler der in diesem Buch angesprochenen Konzepte zu erklären. Wenn Sie sich eine solide Grundlage verschaffen wollen, sollten Sie diese Erklärungen lesen. Wenn Sie es dagegen eilig haben, können Sie sich auf die einführenden Informationen konzentrieren, dann die Beispielaufgaben lösen und alle Regeln und Definitionen neben den Symbolen durchlesen.


Törichte Annahmen über den Leser

Halten Sie mich für verrückt, aber ich setze voraus, ...

[image: ipad] dass Sie Grundkenntnisse aus Algebra, Geometrie und Trigonometrie mitbringen.
Wenn Sie eingerostet sind, bietet Ihnen Teil II (und die Schummelseite) eine gute Wiederholung dieser Themen, bevor Sie mit der Analysis beginnen.

[image: ipad] dass Sie fleißig sind.
Ich habe versucht, den Stoff so eingängig wie möglich zu gestalten, aber das Ganze bleibt Analysis. Es ist nicht möglich, Analysis zu lernen, indem Sie einfach eine Kassette im Auto anhören oder eine Pille schlucken – noch nicht, jedenfalls.


Wie dieses Buch aufgebaut ist

Das Buch ist in Teilen angeordnet, die Teile in Kapiteln, die Kapitel in Themenbereiche und Unterthemenbereiche. (Für diese Struktur habe ich ein Patent angemeldet.)


Teil I: Analysis – ein Überblick

Ich erkläre in verständlicher Sprache die beiden wesentlichen Konzepte der Analysis: Differentiation und Integration. Schließlich zeige ich Ihnen noch das Schlüsselkonzept der Mathematik, mit dem die Analysis erst funktioniert: die Grenzwerte.


Teil II: Die Voraussetzungen für die Analysis

Teil II ist ein Überblick über Algebra (einschließlich Funktionen) und Trigonometrie (einschließlich Geometrie), die Sie für die Analysis brauchen. Wenn Sie diesen Überblick nicht benötigen, können Sie ihn einfach überblättern oder gegebenenfalls nur darin nachschlagen.


Teil III: Grenzwerte

Der gesamten Analysis liegt die Mathematik der Grenzwerte zu Grunde. Grenzwerte erlauben uns in gewisser Weise, den Graphen einer Kurve so lange zu vergrößern, bis er schließ-lich gerade wird. Nachdem eine Kurve schließlich gerade ist, können die ganz gewöhnliche Algebra und Geometrie angewendet werden. Das ist die Magie der Analysis.


Teil IV: Differentiation

Differentiation ist das erste der beiden großen Konzepte der Analysis. Das andere ist die Integration (Teil V). Differentiation und Integration bilden das Herz des Analysislehrplans. Differentiation ist der Prozess, eine Ableitung zu finden, diese ist einfach eine Änderungs-rate, wie etwa Kilometer pro Stunde. Auf dem Graphen einer Kurve gibt sie die Steigung der Kurve an.

In diesem Teil geht es um Differentiationsregeln für Anfänger, Differentiationsregeln für Profis und darum, was Ihnen die Ableitung über die Form einer Kurve mitteilt und wie Sie die Ableitung nutzen, um Probleme aus der Praxis zu lösen.


Teil V: Integration

Integration, das zweite große Konzept, ist eine verrückte Addition. Es handelt sich dabei um den Prozess, eine Form zu betrachten, deren Fläche Sie nicht direkt berechnen können, sie in winzige Teile zu zerlegen, deren Flächen Sie berechnen können, und dann alle winzigen Teile zu addieren, um die Gesamtfläche zu erhalten. Dieser Teil beschreibt Integrationstechniken für Anfänger, Integrationstechniken für Profis, numerische oder annähernde Integration und zeigt, wie die Integration genutzt werden kann, um Probleme aus der Praxis zu lösen.


Teil VI: Der Top-Ten-Teil

Hier finden Sie zwei Top-Ten-Listen. Zehn Dinge, die Sie sich merken sollten, und zehn Dinge, die Sie vergessen können.


Symbole, die in diesem Buch verwendet werden

Achten Sie auf die folgenden Symbole:

Neben diesem Symbol finden Sie wichtige Analysisregeln, Definitionen und Formeln, die Sie unbedingt kennen sollten.

Dies sind Dinge, die Sie aus der Algebra, Geometrie oder Trigonometrie kennen sollten, oder Dinge, die Sie in diesem Buch bereits kennen gelernt haben.

Dieses Symbol wird neben Informationen angezeigt, die Ihnen das Leben leichter machen. Lesen Sie sie unbedingt durch.

Dieses Symbol weist auf häufig gemachte Fehler in der Analysis hin. Achten Sie darauf!

Im Gegensatz zu den wichtigen Konzepten müssen Sie sich die komplizierten Formeln neben diesem Symbol größtenteils nicht merken, es sei denn, Ihr Analysislehrer besteht darauf.


Wie es weitergeht

Mit Kapitel 1 natürlich, wenn Sie ganz vorne anfangen wollen. Wenn Sie bereits Grundwissen aus der Analysis mitbringen oder nur eine Auffrischung für das eine oder andere Thema benötigen, können Sie jederzeit an anderen Stellen anfangen zu lesen.



Teil I

Analysis – ein Überblick


In diesem Teil ... ...

beantworte ich häufig gestellte Fragen, wie etwa »Was ist Analysis?«, »Wofür ist die Analysis eigentlich gut?« oder »Wie funktioniert die Analysis?« Ich werde hier verschiedene praktische Anwendungszwecke der Analysis vorstellen, und wie sie die Welt auf die verschiedensten Weisen verändert hat. Außerdem erkläre ich die zwei entscheidenden Konzepte der Analysis: Differentiation und Integration. Und schließ-lich zeige ich Ihnen das wichtigste mathematische Konstrukt, durch das die Analysis überhaupt erst funktioniert: den Grenzwert.





1

Was ist Analysis?

In diesem Kapitel ...

[image: ipad] Sie sind erst auf Seite 1 und schon müssen Sie sich einem Analysistest stellen

[image: ipad] Analysis – ein bisschen auffrisierte Mathematik

[image: ipad] Der Trick liegt im Vergrößern

[image: ipad] Die Welt vor und nach der Analysis



In diesem Kapitel beantworte ich Ihnen die Frage »Was ist Analysis?« in verständlicher Sprache und zeige Ihnen durch Beispiele aus der Praxis, wie die Analysis genutzt wird. Nachdem Sie dieses und die beiden folgenden kurzen Kapitel gelesen haben, werden Sie verstehen, worum es sich bei Analysis handelt. Aber zuerst machen wir es ganz anders: Sie werden erfahren, was Analysis nicht ist.

Was Analysis nicht ist

Das Unvermeidbare hinauszuzögern, ist wenig sinnvoll. Bereit für den ersten Analysistest? Antworten Sie mit Richtig oder Falsch!




	Frage	Wenn Sie nicht wirklich gerne einen Kopfschutz tragen, brauchen Sie sich gar nicht mit Analysis zu beschäftigen?

	Frage	Analysis gefährdet Ihre Gesundheit?

	Frage	Analysis ist längst überholt?





Falsch, falsch, falsch! Man erzählt sich heute noch über die Analysis, sie sei ein unheimlich schwieriges, unwahrscheinlich geheimnisvolles Thema, das kein Mensch, der noch halbwegs bei Verstand ist, lernen will – es sei denn, man braucht eine gute Note.

Und die Analysis ist keine tote Sprache wie Latein, die nur von Akademikern gesprochen wird. Es handelt sich dabei um die Sprache der Ingenieure, Natur- und Wirtschaftswissenschaftler – und ist damit vielleicht nicht Teil Ihres Alltagslebens und auch nicht unbedingt der Brüller auf Partys. Aber die Arbeit dieser Ingenieure, Natur- und Wirtschaftswissenschaftler hat einen wesentlichen Einfluss auf Ihr tägliches Leben – von Ihrer Mikrowelle, dem Handy, dem Fernsehgerät und dem Auto bis hin zu der Medizin, die Sie schlucken, den Leistungen der Wirtschaft und unserem Verteidigungssystem.



Was also ist Analysis?

Analysis ist im Grunde genommen eine Fortsetzung der Algebra und der Geometrie. In gewisser Hinsicht handelt es sich dabei nicht einmal um einen neuen Themenbereich – hier werden die bekannten Regeln der Algebra und Geometrie angewendet, wenn auch vielleicht etwas optimiert, um sie für komplexere Aufgabenstellungen zu verwenden.

Betrachten Sie jetzt Abbildung 1.1. Auf der linken Seite schiebt ein Mann eine Kiste eine gerade Steigung nach oben. Auf der rechten Seite schiebt der Mann dieselbe Kiste eine gekrümmte Steigung entlang. In beiden Situationen lautet die Frage, wie viel Energie erforderlich ist, um die Kiste ganz nach oben zu schieben. Für die rechte Seite brauchen Sie die Analysis (vorausgesetzt, Sie kennen keine Abkürzungen aus der Physik).

Für die gerade Steigung schiebt der Mann mit unveränderter Kraft und die Kiste wird entlang der Steigung mit unveränderter Geschwindigkeit bewegt. Mit ein paar Formeln aus der Physik und ganz normaler Mathematik (einschließlich Algebra und Trigonometrie) können Sie berechnen, wie viele Kalorien Energie erforderlich sind, um die Kiste die Steigung nach oben zu schieben. Beachten Sie, dass die in jeder Sekunde verbrauchte Energie gleich bleibt.



[image: ipad] 

Abbildung 1.1: Der Unterschied zwischen normaler Mathematik und Analysis: die Kurve

Für die gekrümmte Steigung dagegen ändern sich die Dinge ständig. Die Steilheit der Steigung ändert sich – und zwar nicht nur so, dass eine Steilheit für die ersten 10 m und eine andere Steilheit für die nächsten 10 m gilt –, sie ändert sich stetig. Und der Mann schiebt mit einer sich ständig ändernden Kraft – je steiler die Steigung, desto schwerer ist es, zu schieben. Das Ergebnis ist, dass sich auch die Menge der verbrauchten Energie ständig ändert. Aus diesem Grund handelt es sich hier um eine Aufgabenstellung für die Analysis.

Für die Aufgabenstellung mit der gekrümmten Steigung bleiben die Formeln aus der Physik dieselben und die Algebra und die Trigonometrie, die Sie verwenden, bleiben ebenfalls gleich. Der Unterschied ist, dass Sie – im Gegensatz zu der Aufgabenstellung mit der geraden Steigung, wo Sie alles in einem einzigen Schritt berechnen können – die gekrümmte Steigung in kleine Abschnitte zerlegen und jeden Abschnitt separat berechnen müssen. Abbildung 1.2 zeigt einen kleinen Abschnitt der gekrümmten Steigung, der hier um ein Vielfaches vergrößert wurde.


[image: ipad] 

Abbildung 1.2: Wenn man die Kurve ausreichend vergrößert, wird sie gerade (zumindest fast)

Wenn Sie weit genug vergrößern, wird der kleine Abschnitt der gekrümmten Steigung, den Sie dabei betrachten, praktisch gerade. Und weil er gerade ist, können Sie diesen kleinen Abschnitt wie eine gerade Steigung berechnen. Jeder dieser kleinen Abschnitte wird auf dieselbe Weise berechnet, und anschließend addieren Sie alle Ergebnisse.

Das ist die Analysis im Groben. Sie betrachtet Aufgabenstellungen, die mit der normalen Mathematik nicht gelöst werden können, weil sich die Gegebenheiten ständig ändern – die sich ändernden Mengen stellen sich im Graphen als Kurven dar. Die Analysis vergrößert die Kurve, bis sie schließlich gerade wird, und wendet dann die normale Mathematik zur Lö-sung der Aufgabe an.

Beispiele für die Analysis aus der Praxis

Mit Hilfe der herkömmlichen Mathematik können Sie die Aufgabe mit der geraden Steigung lösen; mit Hilfe der Analysis können Sie die Aufgabenstellung mit der gekrümmten Steigung lösen. Nachfolgend zeige ich Ihnen noch ein paar weitere Beispiele.

Mit der herkömmlichen Mathematik können Sie die Länge eines Erdkabels berechnen, das diagonal von einer Ecke eines Grundstücks zur anderen Ecke verläuft. Mit Hilfe der Analysis können Sie die Länge eines Kabels berechnen, das zwischen zwei Türmen hängt und die Form einer Seilkurve hat (die sich übrigens von einem einfachen Bogen oder einer Parabel unterscheidet). Die Kenntnis der genauen Länge ist selbstverständlich wichtig für ein Energieversorgungsunternehmen, das Hunderte Kilometer neuer Elektrokabel verlegen muss. Sehen Sie sich dazu auch Abbildung 1.3 an.

[image: ipad] 

Abbildung 1.3: Ohne und mit Analysis


Mit der regulären Mathematik und ein bisschen einfacher Physik können Sie berechnen, um wie viel ein Mittelfeldspieler seinem Linksaußen voraus sein muss, um einen Pass spielen zu können. Beachten Sie, dass der Linksaußen in einer geraden Linie und bei konstanter Geschwindigkeit läuft. Als jedoch die NASA 1975 den »Vorlauf« für die Zielrichtung der Viking I auf den Mars berechnete, brauchte man dazu die Analysis, weil sich sowohl die Erde als auch der Mars in elliptischen Umlaufbahnen bewegen und sich die Geschwindigkeiten von beiden ständig ändern. Betrachten Sie dazu Abbildung 1.4.

[image: ipad] 

Abbildung 1.4: v.A. und n.A. (vor Analysis und nach Analysis)
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Die beiden wichtigen Konzepte der Analysis: Differentiation und Integration

In diesem Kapitel ...

[image: ipad] Auf zur Ableitung: Es ist eine Änderungsrate oder eine Steigung

[image: ipad] Und dann weiter zum Integral – Addition für Profis



Dieses Buch beschreibt die beiden wichtigsten Themen der Analysis – Differentiation und Integration. Diese Themen berühren Himmel und Erde, weil sie auf den Regeln der normalen Mathematik aufbauen und das Konzept der Unendlichkeit beinhalten.

Differentiation – Definition

Die Differentiation ist der Prozess, eine Ableitung zu finden. Die Ableitung einer Kurve ist einfach der der Analysis eigene Begriff für die Steigung oder die Steilheit der Kurve. Die Steigung einer Kurve ist auch eine einfache Änderungsrate, wie etwa Kilometer pro Stunde.

Die Ableitung ist eine Steigung

In der Algebra haben Sie die Steigung einer Geraden kennen gelernt – sie ist gleich dem Verhältnis von Höhe zu Weite. Anders formuliert: [image: ipad] Höhe Steigung Weite. Betrachten Sie dazu Abbildung 2.1. Ich ahne es: Sie haben einen plötzlichen Anfall von Algebra-Nostalgie. In Abbildung 2.1 ist die Höhe etwa halb so groß wie die Weite, die Gerade hat also eine Steigung von etwa ½.

[image: ipad] 

Abbildung 2.1: Die Steigung einer Geraden ist gleich der Höhe dividiert durch die Weite

Auf einer Kurve ändert sich die Steigung ständig, Sie brauchen also die Analysis, um ihre Steigung zu bestimmen. Betrachten Sie dazu Abbildung 2.2.

[image: ipad] 

Abbildung 2.2: Die Steigung einer Kurve ist nicht so einfach zu berechnen

So wie die Gerade in Abbildung 2.1 hat auch die Gerade in Abbildung 2.2 eine Steigung von annähernd ½. Diese ist an jedem Punkt zwischen A und B gleich. Aber Sie erkennen, dass sich dagegen die Steilheit der Kurve zwischen A und B ändert. Am Punkt A ist die Kurve weniger steil und am Punkt B steiler als die Gerade. Was machen Sie, um beispielsweise die genaue Steigung am Punkt C zu berechnen? Sie vergrößern. Betrachten Sie dazu Abbildung 2.3.

[image: ipad] 

Abbildung 2.3: Die Kurve wird vergrößert

Wenn Sie die Kurve weit genug vergrößern – und zwar wirklich weit, nämlich unendlich weit –, wird der kleine Kurvenabschnitt gerade und Sie können die Steigung auf die übliche Weise berechnen. Und so funktioniert die Differentiation.

Die Ableitung ist eine Änderungsrate

Weil die Ableitung einer Kurve die Steigung ist – die wiederum gleich [image: ipad] oder Höhe pro Weite ist –, ist auch die Ableitung eine Änderungsrate, wie etwa dies pro jenes, Kilometer pro Stunde oder Liter pro Minute (der Name der jeweiligen Änderungsrate ist davon abhängig, welche Einheiten auf der x- und der y-Achse verwendet werden). Die beiden Graphen in Abbildung 2.4 zeigen eine Beziehung zwischen Abstand und Zeit auf – sie könnten beispielsweise eine Autofahrt darstellen.

Abbildung 2.4 zeigt eine normale Aufgabenstellung aus der Algebra. Wenn Sie die Positionen von A und B kennen, können Sie die Steigung zwischen A und B bestimmen. Sie erhalten die durchschnittliche Geschwindigkeit in Kilometer pro Stunde für das Intervall zwischen A und B.

[image: ipad] 

Abbildung 2.4: Durchschnittliche Geschwindigkeit und unmittelbare Geschwindigkeit

Für die Aufgabenstellung auf der rechten Seite dagegen brauchen Sie die Analysis. Unter Verwendung der Ableitung der Kurve können Sie die exakte Steigung oder Steilheit am Punkt C ermitteln. Unmittelbar links von C ist die Steigung geringer und rechts von C ist die Steigung höher. Genau am Punkt C, für einen einzigen, endlichen Moment, erhalten Sie eine Steigung, die sich von den benachbarten Steigungen unterscheidet. Die Steigung für diesen einzigen, endlichen Punkt auf der Kurve zeigt Ihnen die momentane Geschwindigkeit in Kilometer pro Stunde am Punkt C.

Und jetzt zur Integration

Die Integration ist das zweite große Konzept der Analysis. Dabei handelt es sich letztlich einfach nur um eine auffrisierte Addition. Die Integration ist der Prozess, eine Fläche in winzige Abschnitte zu zerschneiden, die Flächen der kleinen Abschnitte zu berechnen und diese kleinen Flächenabschnitte dann zu addieren, um die Gesamtfläche zu bestimmen. Abbildung 2.5 zeigt zwei Aufgabenstellungen für die Flächenberechnung – eine, die Sie mit Hilfe normaler Geometrie lösen können, und eine, für die Sie die Analysis brauchen.

[image: ipad] 

Abbildung 2.5: Wenn Sie die Fläche auf der linken Seite nicht berechnen können, werfen Sie Ihren Taschenrechner weg!

Die schattierte Fläche auf der linken Seite ist einfach ein Rechteck. Die Fläche ist also einfach Länge mal Breite. Die Fläche auf der rechten Seite können Sie nicht mit Hilfe einfacher Geometrie berechnen, weil es keine Formel für einen solchen unregelmäßigen Umriss gibt. Was machen Sie also? Sie wissen es: vergrößern. Abbildung 2.6 zeigt den oberen Teil eines schmalen Streifens des unregelmäßigen Umrisses, vielfach vergrößert.

[image: ipad] 

Abbildung 2.6: Und noch einmal: Wenn Sie vergrößern, wird die Kurve irgendwann gerade

Wenn Sie die Kurve vergrößern, wie in Abbildung 2.6 gezeigt, wird die Kurve praktisch gerade, und je weiter Sie vergrößern, desto gerader wird sie – mit der Integration vergrößern Sie letztlich unendlich weit. Sie erhalten schließlich den Umriss rechts in Abbildung 2.6, ein normales Trapez. Weil Sie die Flächen von Rechtecken, Dreiecken und Trapezen mit Hilfe normaler Geometrie berechnen können, können Sie die Fläche dieses und aller anderen schmalen Streifen berechnen und diese Flächen dann zur Gesamtfläche addieren. Das ist Integration.

Abbildung 2.7 zeigt zwei Graphen für den Stromverbrauch einer Stadt an einem typischen Sommertag. Die horizontale Achse zeigt die Stunden nach Mitternacht an, die vertikale Achse zeigt den Stromverbrauch (in Kilowatt) der Stadt, wodurch sich der Verbrauch zu den verschiedenen Tageszeiten ergibt.

[image: ipad] 

Abbildung 2.7: Gesamtzahl der Kilowattstunden an Energie, die von einer Stadt an einem Tag verbraucht wird

Die kantige Linie auf der linken Seite und die Kurve auf der rechten Seite zeigen, wie die Zahl der Kilowattstunden an Energie von der Tageszeit abhängig ist. In beiden Fällen zeigt die schattierte Fläche die Anzahl der während eines typischen Zeitraums über 24 Stunden verbrauchten Kilowattstunden. Das auf der linken Seite vereinfacht dargestellte Problem kann mit gewöhnlicher Geometrie gelöst werden. Aber die Beziehung zwischen der verbrauchten Energiemenge und der Tageszeit ist komplizierter als in der kantigen geraden Linie, Sie brauchen also die Analysis, um die Gesamtfläche zu berechnen. In der realen Welt ist die Beziehung zwischen verschiedenen Variablen selten so einfach wie in dem Graphen mit den geraden Linien. Und genau dafür ist die Analysis so praktisch.
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Warum die Analysis funktioniert

In diesem Kapitel ...

[image: ipad] Mit Hilfe von Grenzwerten Kurven vergrößern

[image: ipad] Steigung ist Höhe durch Weite

[image: ipad] Die Dreiecksfläche ist gleich die halbe Basis mal der Höhe

[image: ipad] Der Satz von Pythagoras: a2 + b2 = c2



Wenn Sie die Kapitel 1 und 2 gelesen haben, stellten Sie fest, dass ich viel über das Vergrößern einer Kurve geschrieben habe, bis sie gerade aussieht. Die Mathematik der Analysis funktioniert dank dieser grundlegenden Eigenschaft der Kurven – dass sie lokal gerade sind – mit anderen Worten: Kurven sind auf mikroskopischer Ebene gerade. Die Erde ist eine Kugel, aber wir haben den Eindruck, sie sei flach, weil wir uns auf der mikroskopischen Ebene bewegen – verglichen mit der Größe der Erde. Die Analysis funktioniert, weil die Kurven, nachdem sie gerade geworden sind, mit Hilfe der üblichen Algebra und Geometrie berechnet werden können. Der Vergrößerungsprozess wird durch die Mathematik der Grenzwerte realisiert.


Das Grenzwertkonzept: Ein mathematisches Mikroskop

Die Mathematik der Grenzwerte ist das Mikroskop, das eine Kurve vergrößert darstellt. Nachfolgend erkläre ich, wie ein Grenzwert funktioniert. Angenommen, Sie suchen die genaue Steigung oder Steilheit der Parabel y = x2 am Punkt (1|1). Betrachten Sie dazu Abbil-dung 3.1.

[image: ipad] 

Abbildung 3.1: Die Parabel y = x2 mit einer Tangente am Punkt (1/1)

Mit der Steigungsformel aus der Algebra können Sie die Steigung der Linie zwischen den Punkten (1|1) und (2|4) berechnen. Von (1|1) zu (2|4) gehen Sie 1 Einheit nach rechts und 3 Einheiten nach oben, die Steigung ist also 3/1 oder einfach 3. In Abbildung 3.1 sehen Sie jedoch, dass diese Linie steiler ist als die Tangente an der Stelle (1|1), die die Steilheit der Parabel an diesem bestimmten Punkt zeigt. Der Grenzwertprozess erlaubt Ihnen gewissermaßen, den Punkt zu verschieben, beginnend an der Stelle (2|4) und in Richtung zum Punkt (1|1), bis er einen Tausendstel Zentimeter entfernt ist, dann einen Millionstel Zenti-meter, einen Milliardstel Zentimeter usw., bis zur mikroskopischen Ebene. Wenn Sie die Mathematik nachvollziehen, würden die Steigungen zwischen (1|1) und Ihrem wandernden Punkt etwa wie 2,001, 2,000001, 2,000000001 usw. aussehen. Und mit der geradezu magischen Mathematik der Grenzwerte können Sie schließen, dass die Steigung am Punkt (1|1) genau 2 ist, selbst wenn der wandernde Punkt nie den Punkt (1|1) erreicht. (Wenn er das täte, hätten Sie nur noch einen Punkt übrig, und man braucht zwei Punkte, um die Steigungsformel anwenden zu können.) Die Mathematik der Grenzwerte basiert auf diesem Vergrößerungsprozess, und auch hier funktioniert er, denn je mehr Sie vergrößern, desto gerader wird die Kurve.


Was passiert beim Vergrößern?

Abbildung 3.2 zeigt drei Diagramme einer Kurve und drei Dinge, die Sie vielleicht über die Kurve wissen wollen: 1) die exakte Steigung oder Steilheit am Punkt C, 2) die Fläche unter der Kurve zwischen den Punkten A und B, und 3) die exakte Länge der Kurve zwischen A und B. Sie können diese Fragen nicht mit normaler Mathematik beantworten, weil die Formeln für die Steigung, die Fläche und die Länge hier nur für gerade Linien funktionieren (und für einfache Kurven, wie etwa Kreise), aber nicht für unregelmäßige Kurven wie diese.

Die erste Zeile in Abbildung 3.3 zeigt ein vergrößertes Detail aus den drei Diagrammen der Kurve in Abbildung 3.2. Die zweite Zeile zeigt eine weitere Vergrößerung und die dritte Zeile noch eine weitere. Sie sehen, wie jede Vergrößerung die Kurven immer gerader macht und sie immer näher zur Diagonalen bringt. Dieser Prozess wird unendlich fortgesetzt.


[image: ipad] 

Abbildung 3.2: Eine Kurve – drei Fragestellungen


[image: ipad] 

Abbildung 3.3: Vergrößerung bis auf mikroskopische Ebene

Nachdem »unendlich« vergrößert wurde, ist die Kurve völlig gerade. Jetzt funktionieren die Formeln aus der gewöhnlichen Algebra und Geometrie.

Für die Zeichnung oben in Abbildung 3.4 können Sie jetzt die normale Steigungsformel aus der Algebra anwenden, um die Steigung am Punkt C zu ermitteln. Sie ist genau ¾. Das ist die Antwort auf die erste Frage in Abbildung 3.2.

Für die Zeichnung in der Mitte bestimmt die normale Dreiecksformel aus der Geometrie die Fläche der Größe 6. Um die gesamte schattierte Fläche zu berechnen, die in Abbildung 3.2 gezeigt ist, müssen Sie diese 6 zu der Fläche des schmalen Rechtecks unter diesem Dreieck addieren (in Abbildung 3.2 zeigt das dunkel schattierte Rechteck das grundlegende Konzept) und diesen Prozess für alle anderen schmalen Streifen wiederholen und dann alle kleinen Flächen addieren.

Für das Diagramm unten berechnet der Satz von Pythagoras aus der Geometrie die Länge 5. Um die Gesamtlänge der Kurve von A nach B in Abbildung 3.2 zu berechnen, machen Sie dasselbe für alle anderen winzigen Kurvenabschnitte und addieren dann die winzigen Längen.


[image: ipad] 

Abbildung 3.4: Ihr Endziel – die Ebene unter, unter, unter ... dem Atom

Das war’s. Die Analysis verwendet den Grenzwertprozess, um eine Kurve zu vergrößern, bis sie gerade ist. Und nachdem sie gerade ist, gelten die Gesetze der gewöhnlichen Mathematik. Die Analysis verleiht also der gewöhnlichen Algebra und Geometrie die Macht, komplizierte Aufgabenstellungen mit sich ändernden Mengen zu verarbeiten (was auf einem Graphen als Kurve dargestellt ist). Dies erklärt, warum die Analysis so viele praktische Verwendungszwecke hat, denn wenn man sich auf eines verlassen kann, dann darauf, dass sich die Dinge immer ändern – so wie die Zeiten und die Menschen.

Zwei Warnungen – nur zur Vorsicht

Nicht alles in diesem Kapitel (oder auch in diesem Buch) genügt den hohen Standards der Koryphäen, die über die Genauigkeit in mathematischer Literatur wachen.

Ich könnte meine Lizenz verlieren, Mathematik zu betreiben

Was die mittleren Diagramme in Abbildung 3.2 bis Abbildung 3.4 betrifft, spiele ich ein biss-chen unvorsichtig mit der Mathematik. Der Prozess der Integration, also die Fläche unter einer Kurve zu berechnen, funktioniert nicht genau so, wie ich es erklärt habe. Es ist nicht falsch, sondern nur ein Abstecher. Aber mir ist es egal, was die anderen sagen. Ich erkläre es so, und ich bleibe dabei. Es ist nicht die schlechteste Vorstellung, wie die Integration funktioniert, und außerdem ist dies nur ein Einführungskapitel.

Und was um alles in der Welt bedeutet »unendlich« eigentlich?

Die zweite Warnung betrifft die Unendlichkeit. Wenn ich über die Unendlichkeit schreibe – wie im letzten Abschnitt, wo es um die unendlich oft stattfindende Vergrößerung ging –, dann setze ich das Wort »unendlich« gerne in Anführungszeichen oder sage, man vergrößert gewissermaßen endlos. Damit will ich mich auf die sichere Seite bringen. Immer wenn Sie über die Unendlichkeit sprechen, befinden Sie sich auf unsicherem Boden. Was sollte es bedeuten, endlos zu vergrößern? Sie können das nicht – Sie würden ja nie zu einem Ende kommen. Wir können uns vorstellen – gewissermaßen –, was es bedeutet, unendlich zu vergrößern, aber das Konzept ist nicht ganz wasserdicht – und damit auch die Bedingungen.




Teil II

Die Voraussetzungen für die Analysis


In diesem Teil ...

In diesem Teil erhalten Sie einen schnellen Überblick über die Algebra (einschließlich Funktionen) und die Trigonometrie (einschließlich der Geometrie), die Sie für die Analysis brauchen. Wenn Sie diesen Überblick nicht benötigen, blättern Sie einfach weiter oder verwenden ihn als Referenz. Wenn Sie dagegen etwas eingerostet sind, ist es sehr ratsam, diese Dinge zu lesen – oder sie zumindest zu überfliegen. Ohne diese Voraussetzungen werden Sie nicht mit der Analysis zurechtkommen – vor allem nicht ohne die Algebra.
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Überblick über Vor-Algebra und Algebra


In diesem Kapitel ...

[image: ipad] Den Kampf mit den Brüchen gewinnen: Teilen und herrschen

[image: ipad] Potenzen machen stark

[image: ipad] Zu den Wurzeln der Wurzeln gehen

[image: ipad] Die Gesetze der Logarithmen verstehen

[image: ipad] Spaß beim Faktorisieren haben

[image: ipad] Quadratische Ausdrücke im Handumdrehen lösen



Die Sprache der Analysis ist die Algebra. Ohne Algebra ist keine Analysis möglich, so wie Sie kein chinesisches Gedicht schreiben können, ohne Chinesisch zu sprechen.


Was Sie über Brüche wissen sollten

Wenn Sie ein Analysis-Buch auf einer beliebigen Seite aufschlagen, dann wird Ihnen mit ziemlicher Sicherheit ein Bruch begegnen. Sie können nicht davonlaufen. Für den Umgang mit Brüchen brauchen Sie ein paar Regeln.

Ein paar schnelle Regeln

Die erste Regel ist ganz einfach, aber sehr wichtig, weil sie in der Welt der Analysis immer wieder vorkommt:

[image: image] Der Nenner eines Bruchs darf nie null sein.


[image: ipad] ist null, aber [image: ipad] ist undefiniert.

Man erkennt ganz leicht, warum [image: ipad] undefiniert ist, wenn man betrachtet, wie die Division funktioniert:


[image: image] 

Diese Berechnung besagt natürlich, dass 2 viermal in 8 passt; mit anderen Worten: 2 + 2 + 2 + 2 = 8. Aber wie viele Nullen bräuchten Sie, um 5 zu erhalten? Es ist nicht möglich, deshalb können Sie 5 (oder irgendeine andere Zahl) nicht durch null dividieren.

Und noch eine schnelle Regel:

[image: image] Der Kehrwert einer Zahl oder eines Ausdrucks ist ihr multiplikatives Inverses – eine verrückte Methode zu sagen, dass irgendetwas mit seinem Kehrwert multipliziert gleich 1 ist. Um den Kehrwert eines Bruchs zu erhalten, kehren

Sie ihn einfach um. Der Kehrwert von [image: ipad]ist also [image: ipad], das Reziprok von 6 (was man auch als [image: ipad]schreiben kann) ist [image: ipad]und der Kehrwert von x – 2 ist [image: ipad].



Brüche multiplizieren

Das Addieren ist üblicherweise einfacher als das Multiplizieren, aber bei Brüchen gilt das Umgekehrte – ich werde also mit der Multiplikation beginnen.

Die Multiplikation von Brüchen ist ein Kinderspiel – Sie multiplizieren einfach alles Obenstehende miteinander und alles Untenstehende miteinander:


[image: image] oder [image: ipad]
 

Brüche dividieren

Die Division von Brüchen umfasst noch einen zusätzlichen Schritt: Sie kehren den zweiten Bruch um und multiplizieren dann – etwa so:

[image: image] 

Jetzt kürzen Sie Zähler und Nenner mit 5 und erhalten:

[image: image] 

Beachten Sie, dass Sie auch vor der Multiplikation hätten kürzen können. Weil 5 einmal in 5 passt und in 10 zweimal, können Sie eine 5 kürzen:

[image: image] 

Beachten Sie außerdem, dass die ursprüngliche Aufgabenstellung auch als [image: ipad] hätte darge-stellt werden können.



Brüche addieren

Sie wissen, dass Folgendes gilt:

[image: image] 

Sie können diese Brüche addieren, weil sie einen gemeinsamen Nenner haben. Dasselbe funktioniert mit Variablen:

[image: image] 

Beachten Sie, dass dort, wo in der obigen Gleichung eine 2 stand, in der unteren Gleichung ein a steht; wo in der obigen Gleichung eine 3 stand, steht in der unteren Gleichung ein b, und ebenso verhält es sich für 7 und c. Daran erkennen Sie das mächtige Prinzip:


[image: image] Variablen verhalten sich immer genau wie Zahlen.

Wenn Sie sich also fragen, was mit der Variablen oder den Variablen in einer Aufgabenstel-lung zu tun ist, dann fragen Sie sich, wie die Aufgabe aussähe, wenn anstelle der Variablen Zahlen stünden. Anschließend gehen Sie mit den Variablen in der Aufgabenstellung genauso um. Sie erkennen es am folgenden Beispiel:


[image: image] 

Sie können diese Brüche nicht addieren, wie im obigen Beispiel gezeigt, weil es hier keinen gemeinsamen Nenner gibt. Angenommen, Sie versuchen, die Aufgabe mit Zahlen statt mit Variablen zu lösen. Wissen Sie noch, wie man [image: ipad] addiert? Ich werde hier nicht jede Zeile der Lösung kürzen. Sie werden gleich sehen, warum.

1. Suchen Sie den kleinsten gemeinsamen Nenner (eigentlich funktioniert bei der Addition von Brüchen jeder gemeinsame Nenner) und wandeln Sie die Brüche entsprechend um.

Der kleinste gemeinsame Nenner ist 5 mal 8 oder 40. Wandeln Sie also die Brüche in 40stel um:



[image: image] 


Diese Brüche sind 40stel, aber ich möchte hier die 5 . 8 in den Nennern vorübergehend beibehalten).

2. Addieren Sie die Zähler und behalten Sie den gemeinsamen Nenner unverändert bei:


[image: image] 

Jetzt können Sie wieder die ursprüngliche Aufgabenstellung betrachten, [image: ipad]. Hier steht statt der 2 ein a, statt der 5 ein b, statt der 3 ein c und statt der 8 ein d. Jetzt führen Sie genau dieselben Schritte aus wie bei der Addition von [image: ipad]. Sie können sich jede der Zahlen in der oben gezeigten Lösung als die Zahl auf einer Münze vorstellen und die Variable ist der Kopf auf der anderen Seite. Angenommen, Sie haben eine Münze mit einer 2 auf der einen Seite und einem a auf der anderen Seite; eine weitere Münze hat eine 8 auf der einen Seite und ein d auf der anderen Seite usw. Jetzt gehen Sie nach den Schritten aus der vorigen Lösung vor, drehen die Münzen um, und schon haben Sie die Lösung für die ursprüngliche Aufgabenstellung. Und hier die fertige Lösung:


[image: image] 


Brüche subtrahieren

Bei der Subtraktion von Brüchen gehen Sie genau wie bei der Addition vor, außer dass Sie hier subtrahieren statt addieren. Mit Einsichten wie diesen kann man wirklich gutes Geld verdienen.

Brüche kürzen

Für Aufgabenstellungen aus der Analysis brauchen Sie manchmal – nachdem Sie alle Schritte der Berechnungen für die Analysis durchgeführt haben – etwas unübersichtliche Algebra, einschließlich des Kürzens. Sie sollten wissen, was Kürzen ist und wie es ausgeführt wird.

Im Bruch [image: ipad] können drei x aus dem Zähler und aus dem Nenner gekürzt werden, wodurch sich der vereinfachte Bruch [image: ipad] ergibt. Wenn Sie die x ausschreiben, statt Exponenten zu verwenden, sehen Sie deutlicher, wie das Ganze funktioniert:


[image: image] 

Jetzt kürzen Sie drei x aus dem Zähler und aus dem Nenner:

[image: image] 


Sie erhalten [image: ipad]


Ausdruckskraft

Ein algebraischer Ausdruck oder einfach Ausdruck ist etwas wie xyz oder
[image: ipad], also grundsätzlich alles ohne ein Gleichheitszeichen. (Wenn ein Gleichheitszeichen enthalten ist, handelt es sich um eine Gleichung.) Das Kürzen funktioniert bei Ausdrücken genau wie bei einzelnen Variablen. Dies ist übrigens ein Tipp, der nicht nur für das Kürzen, sondern für alle Themen aus der Algebra gilt.

[image: image] Ausdrücke verhalten sich immer genau wie Variablen.

Wenn also jedes x in der obigen Aufgabenstellung durch (xyz – q) ersetzt wird, erhalten Sie


[image: image] 

Und jetzt können drei der Ausdrücke (xyz – q) aus dem Zähler und dem Nenner gekürzt werden, so wie oben die drei x gekürzt wurden. Das vereinfachte Ergebnis lautet:


[image: image] 

Die Multiplikationsregel

Jetzt wissen Sie, wie man kürzt. Ebenso wichtig ist zu wissen, wann man kürzt.

[image: image] Sie können in einem Bruch nur dann kürzen, wenn er eine ununterbrochene Multiplikationsverknüpfung im gesamten Zähler und im gesamten Nenner aufweist.

Das Kürzen ist erlaubt in Brüchen wie etwa dem folgenden:


[image: image] 

Stellen Sie sich die Multiplikation wie einen elektrischen Leiter vor. Der Strom kann von einem Ende des Zählers zum anderen fließen, vom a2 zum (c + d), weil alle Variablen und Ausdrücke über die Multiplikation verknüpft sind. (Beachten Sie, dass eine Addition oder Subtraktion innerhalb der Klammern – z.B. das »+« in (c + d) – die Stromleitung nicht unterbricht.) Weil der Nenner ebenfalls eine ununterbrochene Multiplikationsverknüpfung aufweist, können Sie kürzen: ein a, drei b und dreimal den Ausdruck (xy – pq). Und hier das Ergebnis:


[image: image] 

[image: image] Wenn jedoch eine völlig harmlos aussehende 1 zum Zähler (oder zum Nenner) des ursprünglichen Bruchs addiert wird, ändert sich alles:

[image: image] 

Das Pluszeichen vor der 1 unterbricht den Strom und der Bruch kann an keiner Stelle mehr gekürzt werden.

Betrag (Absolutwert) – absolut einfach

Der Betrag macht eine negative Zahl zu einer positiven Zahl und bewirkt nichts für eine positive Zahl oder Null. Ein Beispiel:

|–6| = 6, |3| = 3 und |0| = 0

Etwas komplizierter ist das Ganze mit Variablen. Wenn x gleich null oder positiv ist, bewirken die Striche für den Betrag nichts, und damit ist

|x| = x

Ist x dagegen negativ, ist der Betrag von x positiv, und Sie schreiben

|x| = –x

Ist beispielsweise x = –5, dann gilt |–5| = –(–5) = 5.

[image: image] Wenn x eine negative Zahl ist, dann ist –x (sprich »minus x« oder »die Gegenzahl von x«) eine positive Zahl.

Potenzen machen stark

Sie sind in der Analysis völlig hilflos, wenn Sie die Potenzregeln nicht kennen:

[image: ipad] x0 = 1

Diese Regel gilt immer, egal um welches x es sich handelt – einen Bruch, eine negative Zahl, irgendetwas – außer für null (dieser Fall ist nicht eindeutig definiert, in der Praxis wird jedoch häufig 00 = 1 gesetzt).

[image: ipad] [image: ipad] und [image: ipad]


Beispielsweise ist [image: ipad]. Klasse! Vergessen Sie das nicht! Beachten Sie, dass die Lösung [image: ipad] nicht negativ ist.


[image: ipad] [image: ipad] und [image: ipad] 


Diese praktische Regel können Sie rückwärts anwenden, um eine Aufgabenstellung mit Wurzel in eine einfachere Form mit einer Potenz umzuwandeln.


[image: ipad] [image: image] 


Hier addieren Sie die Exponenten. (Bei x2 + x3 dagegen können Sie gar nichts machen, weil es keine ähnlichen Terme sind. Sie können nur Terme addieren oder subtrahieren, wenn der variable Teil jedes Terms gleich ist, z.B. 3xy2z + 4xy2z = 7xy2z.


[image: ipad] [image: ipad] und [image: ipad] und [image: ipad] 
 
Hier subtrahieren Sie die Exponenten.


[image: ipad] (x2)3 = x6 und (xa)b = xab


Hier multiplizieren Sie die Exponenten.


[image: ipad] (xyz)3 = x3y3z3 und (xyz)a = xayaza

Hier multiplizieren Sie die Exponenten in jede Variable ein.


[image: ipad] [image: ipad] und [image: ipad] 


Und hier dasselbe.

[image: image] [image: ipad] Es gilt NICHT (x + y)2 = x2 + y2

In diesem Fall dürfen Sie die Exponenten nicht einmultiplizieren. Stattdessen multiplizieren Sie auf die übliche Weise aus:


(x + y)2 = (x + y)(x + y) = x2 + xy + yx + y2 = x2 + 2xy + y2.


Zu den Wurzeln der Wurzeln

Wurzeln, insbesondere Quadratwurzeln, begegnen uns überall in der Analysis. Es ist also unabdingbar, dass Sie wissen, wie sie funktionieren, und dass Sie die grundlegende Bezie-hung zwischen Wurzeln und Potenzen verstehen. Und genau das werde ich Ihnen beibringen.

Wurzeln, Wurzeln überall!

Jede Wurzel kann in eine Potenz umgewandelt werden, z.B. [image: ipad] oder [image: ipad]. Sie brauchen eigentlich die folgenden Wurzelregeln gar nicht – Sie wandeln einfach jede Wurzel in eine Potenz um und wenden die Potenzregeln an.


[image: ipad] [image: ipad] und [image: ipad] 

Aber das wussten Sie sicher schon.


[image: image] Sie können jedoch keine negative Zahl unter einer Quadratwurzel oder einer anderen geradzahligen Wurzel berechnen – zumindest nicht in der grundlegenden Analysis.

[image: ipad] [image: ipad] und [image: ipad] 


[image: ipad] [image: ipad] und [image: ipad] 


[image: ipad] [image: ipad] und [image: ipad] 


Sie multiplizieren die Wurzelindizes.


[image: ipad] [image: ipad]


[image: image] Wenn Sie eine geradzahlige Wurzel haben, brauchen Sie die Absolutwertstriche für die Lösung, denn die Antwort ist immer positiv, egal ob a positiv oder negativ ist. Handelt es sich um eine ungeradzahlige Wurzel, brauchen Sie die Absolutwertstriche nicht. Somit gilt:

[image: ipad] [image: ipad]

[image: image] [image: ipad] Es gilt NICHT [image: ipad] 

Wenn Sie diesen Fehler machen, werden Sie sofort in den Kerker geworfen. Versuchen Sie es einmal mit Zahlen: [image: ipad] was nicht gleich 2 + 3 ist.

Logarithmen ... wirklich keine Hexerei

Ein Logarithmus ist einfach nur eine andere Möglichkeit, eine exponentielle Beziehung zwischen Zahlen auszudrücken. Zum Beispiel:

23 = 8, dann gilt

log28 = 3 (sprich »Der Logarithmus mit der Basis 2 von 8 ist 3«)

Diese beiden Gleichungen drücken genau dasselbe aus. Sie können sich die eine davon als die griechische Methode vorstellen, diese mathematische Beziehung zu beschreiben, und die andere als die lateinische Methode, dasselbe zu sagen. Die Basis eines Logarithmus kann eine beliebige Zahl größer 0 oder 1 sein. Wenn die Basis gleich 10 ist, geben Sie sie konventionsgemäß nicht an. log1000 = 3 beispielsweise bedeutet, log101000 = 3. Auch die logarithmische Basis e (e ≈ 2,72) wird als ln statt als loge dargestellt – Mathematiker verwenden dies so oft, dass sie vermutlich deswegen eine spezielle Abkürzung dafür eingeführt haben.

Die folgenden Eigenschaften von Logarithmen sollten Ihnen geläufig sein:

[image: ipad] logc 1 = 0

[image: ipad] logc c = 1

[image: ipad] logc (ab) = logc a + logc b



[image: ipad] [image: ipad] 



[image: ipad] logc ab - b logc a


[image: ipad] [image: ipad] 

Mit dieser Eigenschaft können Sie Dinge wie etwa log3 20 auf Ihrem Taschenrechner berechnen, indem [image: ipad] unter Verwendung der Basis 10 für c eingeben.


[image: ipad] loga ab = b



[image: ipad] aloga b = b



Faktorisieren – wer braucht das schon?

Wann sollten Sie je faktorisieren? Die Analysis bietet Ihnen die Gelegenheit!

Faktorisieren bedeutet »Entmultiplizieren«, indem etwa 12 als 2 . 2 . 3 dargestellt wird. Sie werden in der Analysis jedoch keinen solchen Problemen begegnen. In der Analysis müssen Sie in der Lage sein, algebraische Ausdrücke zu faktorisieren, wie etwa 5xy + 10yz, und dabei zum Ergebnis 5y(x + 2z) zu gelangen.

Den größten gemeinsamen Teiler herausziehen

Der erste Schritt bei der Faktorisierung eines beliebigen Ausdrucks ist, den größten gemeinsamen Teiler, auch GGT, herauszuziehen (das heißt zu faktorisieren). Beispielsweise enthält jeder der drei Terme 8x3y4 + 12x2y5 + 20x4y3z den Teiler 4x2y3, er kann also wie folgt herausgezogen werden: 4x2y3(2xy + 3y2 + 5x2z). Achten Sie immer darauf, nach einem größten gemeinsamen Teiler zu suchen, der herausgezogen werden kann, bevor Sie andere Faktorisierungstechniken anwenden.

Differenz der Quadrate

Es ist wichtig, dass Sie wissen, wie die Differenz der Quadrate faktorisiert wird:

a2 – b2 = (a – b) (a + b) (3. Binomische Formel)

Wenn Sie etwas wie 9x4 – 25 umschreiben können, so dass es etwa wie (dieses)2 – (jenes)2 aussieht, können Sie das Faktorisierungsmuster anwenden. Und das geht so:


 9x4 - 25 = (3x2)2 - (5)2


Weil (dieses)2 – (jenes)2 = (dieses – jenes)(dieses + jenes) ist, können Sie das Ganze faktorisieren:


 (3x2)2 - (5)2 = (3x2 - 5)(3x2 + 5)



[image: image] Eine Differenz der Quadrate, a2 – b2, kann faktorisiert werden, nicht jedoch die Summe der Quadrate, a2 + b2.

Summe und Differenz von Kubikausdrücken

Vielleicht sollten Sie sich auch die Faktorisierungsregeln für die Summe und die Differenz von Kubikausdrücken merken:


a3 + b3 = (a + b) (a2 - ab + b2)

a3 + b3 = (a - b) (a2 + ab + b2)


Quadratische Gleichungen lösen

Eine quadratische Gleichung ist eine beliebige Polynomgleichung zweiten Grades – das heißt, die höchste Potenz von x oder der verwendeten Variablen ist gleich 2.

Es gibt drei Methoden, quadratische Gleichungen zu lösen.

Methode 1: Faktorisieren

Lösen Sie 2x2 – 5x = 12.

1. Bringen Sie alle Terme auf eine Seite der Gleichung, damit auf der anderen Seite 0 steht.

2x2 – 5x – 12 = 0

2. Faktorisieren Sie.

(2x + 3) (x – 4) = 0

Sie können überprüfen, ob diese Faktoren korrekt sind, indem Sie sie multiplizieren. Erinnert Sie E-Ä-I-L (Erstes-Äußeres-Inneres-Letztes) an etwas?

3. Setzen Sie jeden Faktor gleich 0 und lösen Sie auf (unter Verwendung der Produkteigenschaft von 0).


[image: image] 


Diese Gleichung hat also zwei Lösungen: [image: ipad] und x = 4.


Methode 2: Die abc-Formel

Die Lösung oder die Lösungen einer quadratischen Gleichung, ax2 + bx + c = 0, ergeben sich aus der abc-Formel:


[image: image] 


Jetzt lösen Sie dieselbe Gleichung wie bei der Beschreibung von Methode 1 unter Verwen-dung der abc-Formel:

1. Bringen Sie alle Terme auf eine Seite der Gleichung, damit auf der anderen Seite nur noch null steht. 2x2 – 5x – 12 = 0

2. Setzen Sie die Koeffizienten in die Formel ein.

In diesem Beispiel ist a gleich 2, b ist –5 und c ist –12, damit erhalten Sie:


[image: image] 


Dies stimmt mit den oben ermittelten Lösungen überein.

[image: image] Hier folgt ein praktischer Trick für die Anwendung der abc-Formel bei der Faktorisierung von Trinomen (Polynome zweiten Grades):

Angenommen, Sie wollen das Trinom 2x2 – 5x – 12 faktorisieren, lösen Sie zunächst die entsprechende quadratische Gleichung, 2x2 – 5x – 12 = 0.

1. Verwenden Sie die abc-Formel oder den Taschenrechner, um Lösungen für x zu erhalten.

Die beiden Lösungen sind 4 und [image: ipad].

2. Nehmen Sie die beiden Lösungen und setzen Sie sie als Faktoren ein. Wenn eine Lö-sung positiv ist, verwenden Sie die Subtraktion. Ist die Lösung negativ, verwenden Sie die Addition.

Bei der Lösung 4 erhalten Sie (x – 4); bei der Lösung [image: ipad] erhalten [image: ipad]: 


[image: image] 


3. Wenn eine der Lösungen ein Bruch ist, nehmen Sie den Nenner und bringen ihn vor das x:


[image: image] 

Und schon ist das Trinom faktorisiert: (x – 4)(2x + 3).



Methode 3: Quadratische Ergänzung

Die dritte Methode zur Lösung quadratischer Gleichungen ist die so genannte Quadratische Ergänzung.

Lösen Sie 3x2 = 24x + 27.

1. Bringen Sie die x2- und die x-Terme auf eine Seite und die Konstante auf die andere Seite.

3x2 – 24x = 27

2. Dividieren Sie beide Seiten durch den Koeffizienten von x2.

x2 – 8x = 9

3. Halbieren Sie den Koeffizienten von x, quadrieren Sie ihn und addieren Sie ihn auf beiden Seiten.

Die Hälfte von –8 ist –4, und (–4)2 ist 16, Sie addieren also 16 auf beiden Seiten:

x2 – 8x + 16 = 9 + 16

4. Faktorisieren Sie die linke Seite. Beachten Sie, dass der Faktor immer dieselbe Zahl enthalten muss, die Sie in Schritt 3 ermittelt haben (in diesem Fall ist das –4).

(x – 4)2 = 25

5. Ziehen Sie die Quadratwurzel aus beiden Seiten. Achten Sie dabei darauf, auf der rechten Seite das Zeichen ± zu verwenden.


[image: image] 


6. Lösen Sie.

[image: image] 


5

Verrückte Funktionen und ihre wunderbaren Graphen

In diesem Kapitel ...

[image: ipad] Funktionen und Relationen unterscheiden

[image: ipad] Geraden genauer betrachten

[image: ipad] Die Besonderheiten von Parabeln erkennen

[image: ipad] Graphen beherrschen

[image: ipad] Funktionen transformieren

[image: ipad] Inverse Funktionen untersuchen



Fast alles, womit Sie es in der Analysis zu tun haben, betrifft auf die eine oder andere Weise Funktionen oder ihre Graphen. Die Differential-Analysis beschäftigt sich damit, die Steigung oder Steilheit verschiedener Funktionen zu bestimmen, und die Integral-Analysis berechnet die Fläche unterhalb der Funktionen.

Was ist eine Funktion?

Grundsätzlich ist eine Funktion eine Beziehung zwischen zwei Dingen, wobei der numerische Wert des einen Dings auf bestimmte Weise von dem Wert des anderen abhängig ist. Beispiele finden wir überall um uns herum: Die durchschnittliche Tagestemperatur für Ihre Stadt ist von der Jahreszeit abhängig und stellt eine Funktion davon dar. Die Distanz, wie weit ein Objekt gefallen ist, ist eine Funktion der Zeit, die seit dem Fallen vergangen ist.

Die definierende Eigenschaft einer Funktion

[image: image] Eine Funktion erzeugt für jede Eingabe nur eine Ausgabe.

Betrachten Sie dazu Abbildung 5.1.

Der Cola-Automat ist eine Funktion, denn nach Abschluss der Eingaben (Ihre Auswahl und Ihr Geld) wissen Sie genau, welche Ausgabe Sie zu erwarten haben. Bei dem Spielautomaten dagegen ist die Ausgabe ein Geheimnis, deshalb handelt es sich nicht um eine Funktion. Schauen Sie sich Abbildung 5.2 an.

[image: ipad] 

Abbildung 5.1: Der Cola-Automat ist eine Funktion, der Spielautomat nicht

Die Quadratfunktion, f, ist eine Funktion, weil sie für jede Eingabe genau eine Ausgabe erzeugt. Dabei spielt es keine Rolle, dass sowohl 2 als auch –2 dieselbe Ausgabe erzeugen, 4. Wenn Sie eine Eingabe machen, beispielsweise –2, ist die Ausgabe kein Geheimnis. Wenn Sie dagegen in g eine 3 eingeben, wissen Sie nicht, ob Sie als Ausgabe 1 oder 2 erhalten. In Funktionen sind keine Unsicherheiten in Hinblick auf die Ausgabe erlaubt, deshalb ist g keine Funktion.

[image: ipad] 

Abbildung 5.2: f ist eine Funktion, g nicht

[image: image] Die Menge aller Eingaben einer Funktion wird als Definitionsbereich bezeichnet, die Menge aller Ausgaben als Wertebereich.

Unabhängige und abhängige Variablen

[image: image] In einer Funktion wird das, was von anderen Dingen abhängig ist, als die abhängige Variable bezeichnet; das andere ist die unabhängige Variable. Weil Sie Zahlen in die unabhängige Variable einsetzen, spricht man auch von der Eingabevariablen. Nachdem Sie eine Zahl eingesetzt haben, berechnen Sie die Ausgabe oder die Lösung für die abhängige Variable, deshalb heißt die abhängige Variable auch Ausgabevariable. Wenn Sie eine Funktion als Graphen darstellen, wird die unabhängige Variable an der x-Achse, die abhängige Variable an der y-Achse angetragen.

Manchmal ist die Abhängigkeit zwischen den beiden Dingen Ursache und Wirkung – wenn beispielsweise die Temperatur eines Gases steigt, wird dadurch verursacht, dass der Druck steigt. In diesem Fall ist die Temperatur die unabhängige Variable und der Druck ist die abhängige Variable, weil der Druck von der Temperatur abhängig ist.

Funktionsnotation

Eine übliche Methode, die Funktion y = 5x3 – 2x2 + 3 darzustellen, ist es, das »y« durch »f(x)« zu ersetzen und f(x) = 5x3 – 2x2 + 3 zu schreiben. Dabei handelt es sich einfach nur um eine andere Notation, die dasselbe ausdrückt. Diese beiden Gleichungen sind in jeder Hinsicht mathematisch identisch. Die Schüler sind häufig von der Funktionsnotation verwirrt, wenn sie sie zum ersten Mal sehen. Sie fragen sich, was das »f« bedeutet, und ob f(x) vielleicht f mal x bedeutet. Das tut es nicht. Wenn Sie die Funktionsnotation verwirrt, stellen Sie sich f(x) einfach so vor, als würde y in einer anderen Sprache so heißen. Betrachten Sie f und x nicht separat voneinander. Stellen Sie sich f(x) (sprich »f von x«) als Abkürzung für »eine Funktion von x« bzw. einfach als Symbol für y vor.

Zusammengesetzte Funktionen

Eine zusammengesetzte Funktion ist eine Kombination aus zwei Funktionen. Beispielsweise sind die Kosten für die Stromversorgung eines Haushalts davon abhängig, wie viel Sie verbrauchen, und der Verbrauch ist von der Außentemperatur abhängig. Weil die Kosten von dem Verbrauch und der Verbrauch von der Temperatur abhängig sind, sind die Kosten von der Temperatur abhängig. In Funktionssprache sind die Kosten eine Funktion des Verbrauchs, der Verbrauch ist eine Funktion der Temperatur, und die Kosten sind damit eine Funktion der Temperatur. Diese letzte Funktion, eine Kombination aus den beiden ersten, ist eine zusammengesetzte Funktion.

Seien f(x) = x2 und g(x) = 5x – 8. Setzen Sie 3 in g(x) ein: g(3) = 5 . 3 – 8, was gleich 7 ist. Jetzt nehmen Sie diese Ausgabe, 7, und setzen sie in f(x) ein: f(7) = 72 = 49. Die Automatenmetapher verdeutlicht, was ich hier gemacht habe. Betrachten Sie dazu Abbildung 5.3. Die g-Maschine macht die 3 zu einer 7, und die f-Maschine macht die 7 zu einer 49.

[image: ipad] 

Abbildung 5.3: Zwei Funktionsmaschinen

Sie können das Endergebnis der beiden Funktionen auch in einem Schritt angeben, indem Sie die folgende zusammengesetzte Funktion verwenden:

f(g(3))=49

Sie berechnen zuerst die innere Funktion einer zusammengesetzten Funktion – g(3) = 7. Anschließend berechnen Sie für die Ausgabe, 7, die äußere Funktion, f(7), woraus sich 49 ergibt.

Um die allgemeine zusammengesetzte Funktion f(g(x)) zu bestimmen, setzen Sie g(x), das gleich 5x – 8 ist, in f(x) ein. Mit anderen Worten, Sie bestimmen f(5x – 8). Die f-Funktion oder f-Maschine nimmt eine Eingabe entgegen und quadriert sie. Damit erhalten Sie

[image: ipad] 

[image: image] Bei zusammengesetzten Funktionen kommt es auf die Reihenfolge an. Als allgemeine Regel gilt f(g(x))ζg(f(x)).

Wie sieht eine Funktion aus?

Betrachten Sie die zwei Graphen in Abbildung 5.4. Bei diesen zwei Kurven handelt es sich um Funktionen, weil sie dem Test der vertikalen Linie genügen. (Hinweis: Ich verwende hier den Begriff Kurve für beliebige Formen, egal ob es sich dabei um gekrümmte oder um gerade Linien handelt.)

[image: image] Eine Kurve ist eine Funktion, wenn eine vertikal durch die Kurve gezogene Gerade die Kurve nur ein einziges Mal schneidet, unabhängig davon, wo sie gezeichnet wird. Damit ist garantiert, dass es für jede Eingabe nur genau eine Ausgabe gibt.

Egal wo Sie eine vertikale Linie in einem der zwei Graphen in Abbildung 5.4 ziehen, schneidet diese die Kurve nur an einem einzigen Punkt. Probieren Sie es aus!

[image: ipad] 

Abbildung 5.4: Zwei Funktionen

Wenn jedoch eine vertikale Linie so gezeichnet werden kann, dass sie die Kurve an zwei oder mehr Stellen schneidet, handelt es sich bei der Kurve nicht um eine Funktion. Die beiden Kurven in Abbildung 5.5 beispielsweise sind keine Funktionen.

[image: ipad] 

Abbildung 5.5: Diese beiden Kurven sind keine Funktionen, weil sie den Test mit der vertikalen Linie nicht bestehen. Es handelt sich dabei aber um Relationen

Die zwei Kurven in Abbildung 5.4 sind also Funktionen, die beiden Kurven in Abbildung 5.5 sind es nicht, aber alle vier Kurven sind Relationen.

[image: image] Eine Relation ist eine beliebige Menge von Punkten im x-y-Koordinaten-system.

In der Analysis verbringen Sie einige Zeit mit der Untersuchung bestimmter Relationen, die keine Funktionen sind – Kreise beispielsweise –, aber ein Großteil der Aufgabenstellungen der Analysis beschäftigt sich mit Funktionen.

Allgemeine Funktionen und ihre Graphen

Sie werden bei Ihrer Arbeit in der Analysis Hunderten von Funktionen begegnen, deshalb ist es sinnvoll, sich in diesem Abschnitt mit den grundlegenden Funktionen vertraut zu ma-chen: der Geraden, der Parabel, der Betragsfunktion, der Kubik- und der Kubikwurzelfunktion sowie der Exponential- und der Logarithmusfunktion.

Geradeheraus – Geraden in der Ebene

Eine Gerade ist die einfachste Funktion, die Sie in der Koordinatenebene zeichnen können. (Geraden sind in der Analysis wichtig, denn wenn Sie weit genug vergrößern, sieht eine Kurve aus wie eine Gerade und verhält sich auch wie eine solche.) Abbildung 5.6 zeigt ein Beispiel: y = 3x + 5.

[image: ipad] 

Abbildung 5.6: Der Graph der Geraden y = 3x + 5

Die Steigungen treffen

Das Wichtigste an der Geraden in Abbildung 5.6 – zumindest für Ihre Betrachtungen inner-halb der Analysis – ist ihre Steigung oder Steilheit. Beachten Sie, dass y jeweils um drei Einheiten nach oben geht, wenn x um eine Einheit nach rechts geht. Sie können sich die Steigung gut vorstellen, indem Sie eine Treppe unterhalb der Geraden zeichnen (siehe Abbildung 5.7). Der vertikale Teil einer Treppenstufe wird als Höhe bezeichnet, der horizontale Teil als Weite. Die Steigung ist definiert als das Verhältnis zwischen Höhe und Weite:

[image: ipad] 

Sie müssen die Weite nicht gleich eine Einheit setzen. Das Verhältnis zwischen Höhe und Weite und damit die Steigung ergibt sich immer als derselbe Wert, unabhängig davon, welche Schrittweite Sie wählen.

[image: image] Geraden, die nach rechts steigen, haben eine positive Steigung; Geraden, die nach rechts fallen, haben eine negative Steigung. Horizonale Geraden haben eine Steigung von null und vertikale Geraden haben keine Steigung – man sagt, die Steigung einer vertikalen Geraden ist nicht definiert.

Und hier die Formel für die Steigung:

[image: ipad] 

[image: ipad] 

Abbildung 5.7: Die Gerade y = 3x + 5 hat die Steigung 3

Wählen Sie zwei beliebige Punkte auf der Geraden aus Abbildung 5.7 aus, beispielsweise (1|8) und (3|14), und setzen Sie sie in die Formel ein, um die Steigung zu berechnen:

[image: ipad] 

Die Lösung 3 stimmt mit der Steigung überein, die Sie in Abbildung 5.7 erkennen.

Jede zu dieser Geraden parallele Gerade hat dieselbe Steigung und jede zu dieser Geraden senkrechte Gerade hat die Steigung [image: ipad], was der umgekehrte Wert (Kehrwert) zu 3 ist.

[image: image] Parallele Geraden haben dieselbe Steigung. Senkrecht aufeinander stehende Geraden haben umgekehrt reziproke Steigungen mit unterschiedlichen Vorzeichen.

Geraden zeichnen

Wenn Sie die Gleichung der Geraden y = 3x + 5 haben, können Sie die Gerade auf die altmodische Art oder mit Ihrem grafischen Taschenrechner zeichnen. Die altmodische Art ist, eine Wertetabelle anzulegen, indem Sie Zahlen für x einsetzen und das y berechnen. Wenn Sie 0 für x einsetzen, ist y gleich 5 usw. Tabelle 5.1 zeigt die Ergebnisse.

[image: ipad] 

Tabelle 5.1: Punkte auf der Geraden y = 3x + 5

Zeichnen Sie die Punkte, verbinden Sie die Punkte und schon haben Sie Ihre Gerade.

Mit einem grafischen Taschenrechner (GTR) ist das ein Kinderspiel. Sie geben einfach y = 3x + 5 ein und Ihr Taschenrechner zeichnet die Gerade und gibt eine Tabelle aus, wie in Tabelle 5.1 gezeigt.

Steigung-Schnittpunkt-Form (Normalform) und Punkt-Steigung-Form

In Abbildung 5.7 sehen Sie, dass die Gerade die y-Achse an der Stelle 5 kreuzt (Schnittstelle mit der y-Achse). Weil sowohl die Steigung 3 als auch der sogenannte y-Achsenabschnitt 5 in der Gleichung y = 3x + 5 erscheinen, sagt man, diese Gleichung befindet sich in Steigung/Schnittpunkt-Form. Und so sieht die Form in allgemeiner Darstellung aus:

y = mx + b

(Dabei ist m die Steigung und b ist der y-Achsenabschnitt.)

Die Gleichung für eine horizontale Gerade lautet y = b, beispielsweise y = 10. Hier ist die Steigung m = 0.

[image: image] Eine Gerade ist der einfachste Funktionstyp und eine horizontale Gerade (eine so genannte konstante Funktion) ist der einfachste Geradentyp.

Wenn m = 1 und b = 0 sind, erhalten Sie die Funktion y = x. Diese Gerade verläuft durch den Ursprung (0|0) und bildet einen 45°-Winkel mit den Koordinatenachsen. Sie heißt auch Identitätsfunktion, weil ihre Ausgaben dieselben sind wie die Eingaben.

Vertikale Geraden haben immer eine Form wie x = 6. Anhand der Zahl erkennen Sie, wo die vertikale Gerade die x-Achse kreuzt.

Achtung: Vertikale Geraden sind keine Funktionen.

Neben der Steigung-Schnittpunkt-Form für die Gleichung einer Geraden sollten Sie auch die Punkt-Steigung-Form kennen:

y – y1 = m(x – x1)

Um diese Form verwenden zu können, müssen Sie – Sie haben es geahnt! – einen Punkt auf einer Geraden sowie die Steigung der Geraden kennen. Sie können dafür einen beliebigen Punkt auf der Geraden verwenden. Betrachten Sie noch einmal die Gerade in Abbildung 5.7. Wählen Sie einen beliebigen Punkt aus, beispielsweise (2|1), und setzen Sie dann die x- und y-Koordinaten dieses Punkts für x1 und y1 ein und die Steigung, 3, für m.

y – 11 = 3(x – 2)

Mit ein wenig Algebra können Sie diese Gleichung in die bereits bekannte Gleichung umformen, y = 3x + 5. Probieren Sie es aus!

Parabel- und Betragsfunktionen – gerade heraus

Betrachten Sie die beiden in Abbildung 5.8 gezeigten Funktionen: Parabel, f(x) = x2, und Betragsfunktion, g(x) = |x|.

[image: ipad] 

Abbildung 5.8: Die Graphen von f(x) = x2 und g(x) = |x|

Beachten Sie, dass beide Funktionen symmetrisch zur y-Achse sind. Das macht sie zu geraden Funktionen. Eine Polynomfunktion, wie etwa y = 9x4 – 4x2 + 3, in der alle Exponenten von x gerade sind (mit oder ohne konstanten Term), ist eine Art gerader Funktion. Eine weitere gerade Funktion ist y = cos(x) (siehe Kapitel 6).

Einige ungerade Funktionen

x zeichnen. Diese beiden Funktionen zeigen eine ungerade Symmetrie. Ungerade Funktionen sind symmetrisch zum Ursprung. Eine Polynomfunktion wie etwa y = 4x5 – x3 + 2x, in der alle Potenzen von x ungerade sind, ist eine Art ungerader Funktion. Eine weitere ungerade Funktion ist y = sin(x) (siehe Kapitel
6). Viele Funktionen sind weder gerade noch ungerade, beispielsweise y = 3x2 – x.
Lassen Sie die Graphen für f(x) = x3 und

Exponentialfunktionen

Eine Exponentialfunktion hat einen Exponenten, der eine Variable enthält, beispielsweise f(x) = 2x oder g(x) = 10x. Abbildung 5.9 zeigt die Graphen dieser beiden Funktionen in einem einzigen x-y-Koordinatensystem.

[image: ipad] 

Abbildung 5.9: Die Graphen von f(x) = 2x und g(x) = 10x

Beide Funktionen laufen durch den Punkt (0|1), so wie alle Exponentialfunktionen der Form f(x) = bx. Wenn b größer als 1 ist, liegt ein exponentielles Wachstum vor. Alle diese Funktionen wachsen nach rechts hin endlos, und wenn sie links gegen minus unendlich gehen, schmiegen sie sich an die x-Achse an und kommen ihr immer näher, ohne sie jedoch ganz zu berühren. Sie verwenden diese und ähnliche Funktionen, um Dinge wie etwa Investitionen, Inflation oder ein Populationswachstum zu modellieren.

Liegt b zwischen 0 und 1, haben Sie eine Funktion mit exponentieller Abnahme. Funktionen für eine exponentielle Abnahme kreuzen die y-Achse ebenfalls am Punkt (0|1), aber sie steigen endlos nach links und nähern sich der x-Achse rechts an. Diese Funktionen modellieren Dinge, die mit der Zeit schrumpfen, beispielsweise den Zerfall von radioaktivem Uran.

Logarithmische Funktionen

Eine logarithmische Funktion ist einfach eine Exponentialfunktion mit vertauschten x- und y-Achsen. Sie sehen diese Beziehung in Abbildung 5.10 verdeutlicht, wo f(x) = 2x und g(x) = log2 x in einem Koordinatensystem dargestellt sind.

[image: ipad] 

Abbildung 5.10: Die Graphen für f(x) = 2x und g(x)  = log2x

Sowohl Exponentialfunktionen als auch logarithmische Funktionen sind monoton. Eine monotone Funktion steigt entweder innerhalb ihres gesamten Definitionsbereichs (und heißt dann monoton steigende Funktion), oder sie fällt innerhalb ihres gesamten Definitionsbereichs (und heißt dann monoton fallende Funktion).

Beachten Sie die Symmetrie der beiden Funktionen in Abbildung 5.10 zur Geraden y = x. Dies macht sie zu Inversen voneinander, womit wir zum nächsten Thema kommen.

Inverse Funktionen

Die Funktionen f(x) = x2 (füx ≥ 0) und die Funktion [image: ipad] (sprich »f hoch minus eins von x«) sind inverse Funktionen, weil die eine jeweils rückgängig macht, was die andere bewirkt. f –1(16) = 4 (weil [image: ipad] ist), und f(4) = 16 (weil 42 = 16 ist). Wenn Sie dies in einem Schritt darstellen, erhalten Sie f(f−1(16))=16 bzw. f(f−1(16))=16.


[image: image] Eine abgehobene Methode, all dies zusammenzufassen, wäre es, zu sagen, dass f(x) und f –1(x) inverse Funktionen dann und nur dann sind, wenn f-1 (f(x))=x und f(f-1(x))=x ist.

[image: image] Verwechseln Sie die Hochstellung –1 in f-1(x) nicht mit dem Exponenten –1. Der Exponent –1 erzeugt den Kehrwert von irgendetwas, beispielsweise [image: ipad]. f-1(x) dagegen ist das Inverse von f(x). Es bedeutet nicht [image: ipad], was den Kehrwert von f(x) darstellt.

Wenn Sie inverse Funktionen grafisch darstellen, ist jede der Funktionen das Spiegelbild der jeweils anderen, gespiegelt an der Geraden y = x. Betrachten Sie Abbildung 5.11, wo die inversen Funktionen f(x) = x2 (für x τ 0) und [image: ipad] dargestellt sind.

[image: ipad] 

Abbildung 5.11: Die Graphen von f(x) = x2 (für x τ 0) und [image: ipad]

Schieben, spiegeln, dehnen, stauchen

Alle Funktionen können in verwandte Funktionen umgewandelt werden, indem sie horizontal oder vertikal verschoben, horizontal oder vertikal gedreht (gespiegelt) oder horizontal oder vertikal gedehnt oder gestaucht werden.

Horizontale Transformationen

Betrachten Sie die Exponentialfunktion y = 2x in Abbildung 5.12. Horizontale Veränderungen erfolgen, indem eine Zahl zur Eingabevariablen x addiert oder von ihr subtrahiert wird oder indem x mit irgendeiner Zahl multipliziert wird. Alle horizontalen Transformationen (außer der Spiegelung) arbeiten in der umgekehrten Richtung, als Sie es vielleicht erwarten: Wenn Sie etwas zu x addieren, geht die Funktion nach links, wenn Sie etwas von x subtrahieren, geht die Funktion nach rechts, wenn Sie x mit einer Zahl größer 1 multiplizieren, schrumpft die Funktion, wenn Sie x mit einer Zahl kleiner 1 multiplizieren, vergrößert sich die Funktion. Beispielsweise hat der Graph von y = 2x +3 dieselbe Form und dieselbe Ausrichtung wie der Graph von y = 2x in Abbildung 5.12; er ist einfach nur um drei Einheiten nach links verschoben. Statt (0|1) und (1|2) zu durchlaufen, durchläuft die verschobene Funktion (–3|1) und (–2|2). Der Graph von y = 2x –3 ist drei Einheiten nach rechts gegenüber y  = 2x verschoben. Die ursprüngliche Funktion und beide Transformationen sind in Abbildung 5.12 dargestellt.

[image: ipad] 

Abbildung 5.12: Die Graphen von y = 2x, y = 2x + 3, y = 2x–3

Wenn Sie das x in y = 2x mit 2 multiplizieren, schrumpft die Funktion horizontal um einen Faktor von 2. Jeder Punkt auf der neuen Funktion liegt auf der Hälfte der ursprünglichen Distanz von der y-Achse. Die y-Koordinate jedes Punkts bleibt gleich; die x-Koordinate wird halbiert. Ein paar Beispiele: Läuft y = 2x durch (1|2), dann läuft y = 22x durch (½|2); läuft y = 2x durch [image: ipad], dann läuft y = 22x durch [image: ipad]. Wenn man x mit einer Zahl kleiner 1 multipliziert, hat das den umgekehrten Effekt. Wenn y = 2x in [image: ipad] umgewandelt wird, wird jeder Punkt auf y = 2x um das Vierfache von der y-Achse weggezogen. Um den
Graphen von [image: ipad] einschätzen zu können, stellen Sie sich vor, Sie haben den Graphen von y = 2x in ein elastisches Koordinatensystem eingetragen. Jetzt packen Sie das Koordinatensystem auf der linken und auf der rechten Seite und ziehen es um einen Faktor von 4 auseinander, wodurch alles von der y-Achse weggezogen wird, die y-Achse aber in der Mitte bleibt. Jetzt haben Sie den Graphen von [image: ipad].

Die letzte horizontale Transformation ist die Spiegelung an der y-Achse. Wenn Sie das x in y = 2x mit –1 multiplizieren, wird es an der y-Achse gespiegelt. Beispielsweise wird der Punkt (1|2) zu (–1|2), und (–2|¼) wird zu (2|¼). Betrachten Sie dazu Abbildung 5.13.

[image: ipad] 

Abbildung 5.13: Die Graphen von y = 2x und y = 2-x

Vertikale Transformationen

Um eine Funktion vertikal zu transformieren, addieren Sie eine Zahl zu der gesamten Funktion, subtrahieren eine Zahl von der Funktion oder multiplizieren die Funktion mit einer Zahl. Um etwas für eine ganze Funktion durchzuführen, wie etwa y = 10x, stellen Sie sich vor, dass die gesamte rechte Seite der Gleichung in Klammern steht, also y = 10x. Jetzt erfolgen alle vertikalen Transformationen, indem eine Zahl irgendwo auf der rechten Seite der Gleichung außerhalb der Klammern platziert wird. (Offensichtlich brauchen Sie die Klammern hier eigentlich gar nicht.) Anders als horizontale Transformationen funktionieren vertikale Transformationen genau so, wie Sie es erwarten: Wenn Sie etwas addieren, bewegt sich die Funktion nach oben; wenn Sie etwas subtrahieren, bewegt sie sich nach unten; wenn Sie mit einer Zahl größer 1 multiplizieren, streckt sich die Funktion; und wenn Sie mit einer Zahl kleiner 1 multiplizieren, wird die Funktion gestaucht. Zum Beispiel:

[image: ipad]y = 10x + 6 verschiebt die ursprüngliche Funktion um 6 Einheiten nach oben.

[image: ipad][image: ipad] staucht die ursprüngliche Funktion vertikal um den Faktor 3.

Wenn Sie die Funktion mit –1 multiplizieren, wird sie an der x-Achse gespiegelt.
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Trigonometrie ist Trumpf!


In diesem Kapitel ...

[image: ipad] Die Grundlagen wiederholen

[image: ipad] Trigonometrische Funktionen grafisch darstellen

[image: ipad] Inverse trigonometrische Funktionen betrachten



Für viele Aufgabenstellungen in der Analysis braucht man die Trigonometrie und die Analysis ist schon komplex genug, wenn man nicht die gesamte Trigonometrie neu lernen muss. Wenn Ihre Trigonometrie eingerostet ist – Sie sehen mich fassungslos! –, sollten Sie die folgenden Grundlagen noch einmal durchlesen.


Trigonometrie im Crashkurs


Die Trigonometrie steht und fällt mit dem rechtwinkligen Dreieck. Die drei wichtigsten trigonometrischen Funktionen (Sinus, Kosinus und Tangens) teilen Ihnen alle etwas über die Längen der Seiten eines rechtwinkligen Dreiecks mit, das einen spitzen Winkel enthält – beispielsweise den Winkel x in Abbildung 6.1. Die längste Seite eines rechtwinkligen Dreiecks wird als Hypotenuse bezeichnet. Die Seite, die hier drei Einheiten lang ist, wird als die gegenüberliegende Seite (Gegenkathete) bezeichnet, weil sie dem Winkel x im Dreieck gegenüberliegt, und die Seite der Länge 4 wird als anliegende Seite (Ankathete) bezeichnet, weil sie am Winkel x anliegt, ihn also berührt.


[image: ipad] 

Abbildung 6.1: So sieht es am rechtwinkligen Dreieck aus


Für jeden Winkel θ gilt:


[image: ipad]


Für das Dreieck in Abbildung 6.1 gilt:


[image: ipad]


Sinus, Kosinus und Tangens zeichnen

Abbildung 6.2 zeigt die Graphen von Sinus, Kosinus und Tangens, die Sie natürlich auch auf einem grafischen Taschenrechner erzeugen können.

[image: image] Sinus, Kosinus und Tangens sind periodische Funktionen, das heißt, ihre Graphen haben eine grundlegende Form, die sich immer wieder unendlich oft nach links und rechts wiederholt. Die Periode einer solchen Funktion ist die Länge einer ihrer Zyklen.


[image: ipad] 

Abbildung 6.2: Die Graphen der Funktionen Sinus, Kosinus und Tangens

Wenn Sie den Einheitskreis kennen, können Sie diese drei Graphen ganz einfach per Hand reproduzieren. Beachten Sie als Erstes, dass die Graphen für Sinus und Kosinus dieselbe Form haben – der Kosinus ist dasselbe wie der Sinus, nur um 90° nach links verschoben. Beachten Sie außerdem, dass ihre einfache Wellenform höchstens bis 1 und –1 geht und dass sie endlos nach links und rechts verläuft und sich dabei alle 360° wiederholt. Das ist die Periode der beiden Funktionen, also 360°. Der Einheitskreis teilt Ihnen mit, dass sin0° = 0, sin90° = 1, sin180° = 0, sin270° = –1 und sin360° = 0 sind. Wenn Sie bei diesen fünf Ausgangspunkten beginnen, können Sie einen ganzen Zyklus skizzieren. Der Zyklus wiederholt sich nach links und nach rechts. Sie können den Einheitskreis auf dieselbe Weise nutzen, um die Kosinus-Funktion zu skizzieren.

Beachten Sie in Abbildung 6.2, dass die Periode der Tangensfunktion gleich 180° ist. Wenn Sie sich das merken, ebenso wie das grundlegende Muster der sich wiederholenden umgekehrten S-Formen, ist es nicht schwierig, eine Skizze anzufertigen. Weil [image: ipad] ist, können Sie den Einheitskreis verwenden, um festzustellen, dass tan(–45°) = –1, tan0° = 0 und tan45° = 1 sind. Damit erhalten Sie die Punkte (–45°|1), (0|0) und (45°|1). Weil sowohl tan(–90°) als auch tan90° undefiniert sind [image: ipad] erzeugt an diesen Punkten eine Null im Nenner), zeichnen Sie vertikale Asymptoten an den Stellen –90° und 90°.

[image: image] Eine Asymptote ist eine imaginäre Linie, der eine Kurve immer näher kommt, die sie aber nie berührt.

Inverse trigonometrische Funktionen

Eine inverse trigonometrische Funktion kehrt, wie jede inverse Funktion, das um, was die ursprüngliche Funktion bewerkstelligt hat. Angenommen, wir haben [image: ipad]; die inverse Sinus-Funktion (dargestellt als sin–1) kehrt also Eingabe und Ausgabe um. Wir erhalten [image: ipad]. Für die anderen trigonometrischen Funktionen verhält es sich genauso.

[image: image] Die hochgestellte –1 für die inverse Sinus-Funktion ist kein negativer Exponent, auch wenn es vielleicht so aussieht. x–1 ist der Kehrwert von x Sie glauben also vielleicht, sin–1x sei der Kehrwert von sinx, aber der Kehrwert von Sinus ist Kosekans und nicht der inverse Sinus. Wenn Sie jetzt denken, man hätte sich vielleicht eine eindeutigere Methode zur Bezeichnung der Funktionen ausdenken können, dann haben Sie völlig Recht.

Der einzige Trick bei inversen trigonometrischen Funktionen ist, sich ihre Wertebereiche zu merken – das heißt das Intervall ihrer Ausgaben. Weil sowohl [image: ipad] als auch [image: ipad] ist, wissen Sie nicht, ob [image: ipad] gleich 30° oder 150° ist, es sei denn, Sie wissen, wie das Ausgabeintervall definiert ist.



Teil III

Grenzwerte


In diesem Teil ...

Der gesamten Analysis liegt die Mathematik der Grenzwerte zu Grunde. Grenzwerte erlauben uns in gewisser Weise, den Graphen einer Kurve so lange zu vergrößern, bis er schließ-lich gerade wird. Nachdem eine Kurve schließlich gerade ist, können die ganz gewöhnliche Algebra und Geometrie angewendet werden. Das ist die Magie der Analysis.
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Grenzwerte und Stetigkeit


In diesem Kapitel ...


[image: ipad] Einen Blick auf die Grenzwerte werfen


[image: ipad] Funktionen mit Löchern auswerten – holt die Mottenkugeln!


[image: ipad] Stetigkeit und Unstetigkeit erkunden





Grenzwerte sind ein grundlegendes Konzept für die Differentiation und die Integration in der Analysis. Die formale Definition einer Ableitung beinhaltet einen Grenzwert, ebenso wie die Definition eines bestimmten Integrals. (Wenn Sie ein wirklicher Durchstarter sind und gleich die richtigen Definitionen lesen wollen, blättern Sie weiter zu Kapitel 9 und Kapitel 13.) Es stellt sich jedoch heraus, dass Sie, wenn Sie die Abkürzungen für die Berechnung von Ableitungen und Integralen kennen, die längeren Grenzwertmethoden nicht mehr brau-chen. Nichtsdestotrotz ist es wichtig, die Mathematik der Grenzwerte zu verstehen, weil sie das Fundament bildet, auf dem die gewaltige Architektur der Analysis aufbaut.


Bis an die Grenzen – NEIN


Grenzwerte können kompliziert sein. Machen Sie sich also keine Gedanken, wenn Sie das Konzept nicht sofort verstehen.


[image: image] Der Grenzwert einer Funktion (falls er existiert) für einen x-Wert, a, ist die Höhe der Funktion, der sich die Funktion immer weiter annähert, wenn x sich von links und rechts immer weiter an a annähert.


Am einfachsten versteht man das Konzept des Grenzwerts, indem man Beispiele betrachtet, und nicht anhand dieser theoretischen Aussagen. Wir werden also ein paar Beispiele heranziehen.


Drei Funktionen erklären den Grenzwert


Betrachten Sie die Funktion f(x) = 3x + 1 links in Abbildung 7.1. Wenn wir sagen, dass der Grenzwert von f(x), wenn sich x dem Wert 2 annähert, gleich 7 ist, dargestellt als [image: ipad], meinen wir damit, dass sich f(x), wenn sich x von links oder rechts immer weiter an 2 annähert, immer mehr dem Wert 7 annähert. Soweit ich weiß, hat die Zahl 2 in diesem Beispiel übrigens keinen formalen Namen, ich nenne sie einfach den x-Wert. Mit dem x in ihrem Namen sollten Sie darauf achten, sie nicht mit der Lösung für die Aufgabenstellung zum Grenzwert zu verwechseln, oder auch mit dem Grenzwert, die sich beide auf einen y-Wert oder die Höhe der Funktion beziehen (in diesem Beispiel 7). Jetzt betrachten Sie Tabelle 7.1.


[image: ipad] 

Abbildung 7.1: Die Graphen von f(x), g(x) und h(x)


[image: ipad] 

Tabelle 7.1: Ein- und Ausgabewerte von f(x) = 3x + 1, wenn sich x dem Wert 2 annähert


Aus Tabelle 7.1 erkennen Sie, dass sich y sowohl von links als auch von rechts sehr weit an 7 annähert. Wenn Sie sich fragen, worum es überhaupt geht – warum setzt man nicht einfach die Zahl 2 für x ein und erhält die Lösung 7? –, dann befinden Sie sich vermutlich in bester Gesellschaft. Und wenn alle Funktionen stetig (ohne Lücken) wären, wie die links in Abbildung 7.1 gezeigte, könnten Sie einfach den x-Wert einsetzen, um die Lösung zu erhalten, und es gäbe keinen Bedarf für diese Aufgabenstellung mit dem Grenzwert. Wir brauchen die Grenzwerte in der Analysis wegen der unheimlich wichtigen Funktionen mit den Löchern.


Die Funktion g(x) in Abbildung 7.1 (Mitte) ist identisch mit der Funktion f(x), außer dass sie an der Stelle (2|7) ein Loch hat und dass es an der Stelle (2|5) einen Punkt gibt.


Diese Funktion, g(x), würde in einer normalen Aufgabenstellung der Analysis niemals auftauchen – ich verwende sie nur, um die Arbeitsweise von Grenzwerten zu verdeutlichen.


Die wichtigen Funktionen sind Funktionen wie h(x) (rechts in Abbildung 7.1), die bei der Betrachtung von Ableitungen häufig vorkommen. Diese dritte Funktion, h(x), ist identisch mit f(x), außer dass der Punkt (2|7) entfernt wurde, wodurch ein Loch an der Stelle (2|7) erscheint und es keinen anderen Punkt gibt, wo x gleich 2 ist.


Stellen Sie sich vor, wie die Tabelle mit den Ein- und Ausgabewerten für g(x) und h(x) aussehen würde. Erkennen Sie, dass die Werte identisch mit den Werten in Tabelle 7.1 für f(x) wären? Für g(x) und h(x) nähert sich y immer weiter einer Höhe von 7 an, wenn x sich von links und rechts immer weiter an 2 annähert. Für alle drei Funktionen ist der Grenzwert, wenn sich x dem Wert 2 annähert, gleich 7. Damit kommen wir zu einem kritischen Punkt: Wenn man den Grenzwert einer Funktion bestimmt, bei der sich x wie hier beispielsweise 2 annähert, ist der Wert von f(2) – und sogar die Tatsache, ob f(2) überhaupt existiert – völlig irrelevant.


Betrachten Sie die drei Funktionen an der Stelle x = 2: f(2) ist gleich 7, g(2) ist 5 und h(2) existiert nicht (oder, wie die Mathematiker sagen: Es ist undefiniert). Aber wenn Sie den Grenzwert dieser Funktionen bestimmen, wenn sich x dem Wert 2 annähert, ist es irrelevant, was an der Stelle x = 2 passiert.


[image: image] Bei einer Aufgabenstellung mit Grenzwert nähert sich x immer weiter dem x-Wert an, aber es kommt nie dort an, und was mit der Funktion passiert, wenn x gleich dem x-Wert ist, hat keine Auswirkung auf die Lösung für die Grenzwertaufgabe (obwohl für stetige Funktionen wie f(x) der Funktionswert gleich dem Grenzwert ist und damit zur Berechnung des Grenzwerts verwendet werden kann).


Weiter zu den einseitigen Grenzwerten


Einseitige Grenzwerte verhalten sich wie normale, zweiseitige Grenzwerte, außer dass sich x dem x-Wert nur von links oder nur von rechts annähert. Der wichtigste Zweck solcher Grenzwerte ist, dass sie in der formalen Definition eines regulären Grenzwerts verwendet werden (lesen Sie dazu den nächsten Abschnitt über die formale Definition eines Grenzwerts).


Um einen einseitigen Grenzwert darzustellen, schreiben Sie ein kleines hochgestelltes Minuszeichen neben den x-Wert, wenn sich x dem x-Wert von links annähert, oder ein hochgestelltes Pluszeichen, wenn sich x dem x-Wert von rechts annähert. Etwa so:


[image: image] 


Betrachten Sie Abbildung 7.2. Die Lösung für die Aufgabenstellung zum regulären Grenzwert [image: ipad] ist, dass der Grenzwert nicht existiert. Obwohl nämlich x sich von links und rechts dem Wert 3 nähert, läuft p(x) nicht auf einen einzigen Punkt zu.


Es existieren jedoch beide einseitigen Grenzwerte. Wenn sich x dem Wert 3 von links annähert, pendelt sich p(x) bei einer Höhe von 6 ein, und wenn sich x von rechts her dem Wert 3 annähert, pendelt sich p(x) bei einer Höhe von 2 ein. Wie bei regulären Grenzwerten hat der Wert von p(3) keine Auswirkung auf die Lösung für eine dieser einseitigen Grenzwertaufgaben. Damit gilt:


[image: image] 


[image: ipad] 

Abbildung 7.2: p(x): Eine Darstellung des einseitigen Grenzwerts


Die formale Definition eines Grenzwerts – wie erwartet!


[image: image] Definition des Grenzwerts: Seien f eine Funktion und a eine reelle Zahl. [image: ipad] existiert dann und nur dann, wenn


1. [image: ipad] existiert,


2. [image: ipad] existiert und


3. [image: ipad]


Analysisbücher demonstrieren dies immer als dreiteiligen Test auf die Existenz eines Grenzwerts, aber eigentlich brauchen Sie sich nur um die dritte Bedingung zu kümmern, weil die beiden anderen darin implizit enthalten sind. Merken Sie sich einfach, dass Bedingung 3 nicht erfüllt werden kann, wenn die linke und die rechte Seite der Gleichung undefiniert oder nicht existent sind; mit anderen Worten, es ist nicht wahr, dass undefiniert = undefiniert oder nichtexistent = nichtexistent ist. Solange Sie dies berücksichtigen, brauchen Sie nur Bedingung 3 zu prüfen.


[image: image] Wenn wir sagen, ein Grenzwert existiert, dann bedeutet das, dass der Grenzwert eine endliche Zahl ist. Einige Grenzwerte sind gleich unendlich oder minus unendlich, aber nichtsdestotrotz sagt man, dass sie nicht existieren. Das hört sich vielleicht seltsam an, aber glauben Sie es mir einfach. (Weitere Informationen über unendliche Grenzwerte finden Sie im nächsten Abschnitt.)


Unendliche Grenzwerte und vertikale Asymptoten


Eine rationale Funktion wie etwa [image: ipad] hat vertikale Asymptoten an den Stellen x = 3 und x = –1. Erinnern Sie sich an die Asymptoten? Es handelt sich dabei um imaginäre Linien, an die sich eine Funktion immer weiter annähert, wenn sie nach oben, unten, links oder rechts Richtung unendlich geht. Betrachten Sie dazu Abbildung 7.3.


[image: ipad] 

Abbildung 7.3: Eine typische rationale Funktion


Betrachten Sie den Grenzwert der Funktion in Abbildung 7.3, wenn sich x dem Wert 3 annähert. Wenn sich x dem Wert 3 von links annähert, geht f(x) nach oben gegen ∞, und wenn sich x dem Wert 3 von rechts annähert, geht f(x) nach unten gegen –∞. Manchmal ist es sinnvoll, sich dies zu verdeutlichen, indem man Folgendes schreibt:


[image: image] 


Aber man kann auch richtigerweise sagen, dass die beiden oben gezeigten Grenzwerte nicht existieren, weil unendlich keine reelle Zahl ist. Wenn Sie aufgefordert werden, den regulären zweiseitigen Grenzwert, [image: ipad] zu bestimmen, haben Sie keine andere Wahl, als zu sagen, dass er nicht existiert, weil die Grenzwerte von links und von rechts ungleich sind.


Grenzwerte an der Unendlichkeit – haben Sie gute Schuhe an?


Bisher habe ich Grenzwerte betrachtet, wo sich x einer regulären, endlichen Zahl annähert. Aber x kann sich auch ∞ oder –∞ annähern. Grenzwerte bei unendlich existieren, wenn eine Funktion eine horizontale Asymptote hat. Beispielsweise hat die Funktion in Abbildung 7.3, [image: ipad], eine horizontale Asymptote in y = 1, an der sich die Funktion entlangtastet, wenn sie rechts gegen ∞ und links gegen –∞ geht. Die Grenzwerte sind gleich der Höhe der horizontalen Asymptote und werden geschrieben als


[image: image] . 


Weitere Informationen über Grenzwerte bei unendlich finden Sie in Kapitel 8.


Grenzwerte und Stetigkeit verknüpfen


Eine stetige Funktion ist einfach eine Funktion ohne Lücken – eine Funktion, die Sie zeichnen können, ohne Ihren Bleistift vom Papier abzuheben. Betrachten Sie etwa die vier Funk-tionen in Abbildung 7.4.


[image: ipad] 

Abbildung 7.4: Die Graphen für f(x), g(x), p(x) und q(x)


Ob eine Funktion stetig ist oder nicht, ist fast immer offensichtlich. Die beiden ersten Funk-tionen in Abbildung 7.4 – f(x) und g(x) – haben keine Lücken, sie sind also stetig. Die beiden nächsten – p(x) und q(x) – haben Lücken an der Stelle x = 3, sie sind also nicht stetig. Das ist alles. Na gut, nicht ganz. Die beiden Funktionen mit den Lücken sind nicht überall stetig, aber weil Sie Abschnitte von ihnen zeichnen können, ohne den Stift vom Papier anzuheben, können Sie sagen, dass Teile dieser Funktionen stetig sind. Und manchmal ist eine Funktion überall dort stetig, wo sie definiert ist. Eine solche Funktion wird als stetig im gesamten Definitionsbereich bezeichnet, das heißt, ihre Lücke oder Lücken treten an x-Werten auf, wo die Funktion nicht definiert ist. Die Funktion p(x) ist stetig in ihrem gesamten Definitions-bereich; q(x) dagegen ist nicht stetig in ihrem gesamten Definitionsbereich, weil sie an der Stelle x = 3 nicht stetig ist, die im Definitionsbereich der Funktion enthalten ist. Häufig ist der wichtige Aspekt, ob eine Funktion an einem bestimmten x-Wert stetig ist. Sie ist es, es sei denn, es gibt dort eine Lücke.


[image: image] Alle Polynomfunktionen sind an jeder Stelle stetig.


[image: image] Alle rationalen Funktionen – eine rationale Funktion ist der Quotient von zwei Polynomfunktionen – sind über ihren gesamten Definitionsbereich stetig.


Stetigkeit und Grenzwerte gehen normalerweise Hand in Hand


Betrachten Sie die vier Funktionen in Abbildung 7.4 an der Stelle x = 3. Überlegen Sie, ob jede Funktion dort stetig ist und ob es an diesem x-Wert einen Grenzwert gibt. Die beiden ersten, f und g, haben keine Lücken an der Stelle x = 3, sie sind also dort stetig. Beide Funk-tionen haben auch Grenzwerte an der Stelle x = 3, und in beiden Fällen ist der Grenzwert gleich der Höhe der Funktion an der Stelle x = 3, denn wenn x sich von links und rechts immer weiter an 3 annähert, nähert sich y immer weiter an f(3) bzw. g(3) an.


Die Funktionen p und q dagegen sind nicht stetig an der Stelle x = 3 – Sie können auch sagen, sie sind dort unstetig – und keine hat einen Grenzwert an der Stelle x = 3. Für beide Funktionen unterbrechen die Lücken an der Stelle x = 3 nicht nur die Stetigkeit, sondern sie bewirken auch, dass es dort keine Grenzwerte gibt, denn wenn Sie von links und rechts gegen x = 3 gehen, pendeln Sie sich nicht auf einem bestimmten y-Wert ein.


Da haben Sie es also. Die Stetigkeit an einem x-Wert bedeutet, dass es einen Grenzwert für diesen x-Wert gibt. Unstetigkeit an einem x-Wert bedeutet, dass es dort keinen Grenzwert gibt. Na gut, fast. Lesen Sie weiter, um etwas über die Ausnahme zu erfahren.


Die Ausnahme für ein Loch bringt die Wahrheit ans Licht


Die Ausnahme mit dem Loch ist die einzige Ausnahme zu der Regel, dass Stetigkeit und Grenzwerte Hand in Hand gehen, aber dabei handelt es sich um eine gewaltige Ausnahme.


Die beiden Funktionen in Abbildung 7.5 haben Lücken an der Stelle x = 3 und offensichtlich sind sie dort nicht stetig, aber sie haben Grenzwerte, wenn sich x dem Wert 3 annähert.


[image: ipad] 

Abbildung 7.5: Die Graphen von r(x) und s(x)


[image: image] Eine infinitesimale Lücke in einer Funktion ist die einzige Stelle, wo eine Funktion einen Grenzwert haben kann, obwohl sie dort nicht stetig ist.


Beide Funktionen in Abbildung 7.5 haben also denselben Grenzwert, wenn sich x dem Wert 3 annähert. Der Grenzwert ist 9 und die Tatsachen, dass r(3) = 2 ist und dass s(3) undefiniert ist, spielen keine Rolle.


[image: image] Der Grenzwert an einer Lücke ist gleich der Höhe der Lücke.


[image: image] Eine Ableitung beinhaltet immer den nicht definierten Bruch [image: ipad] und immer den Grenzwert einer Funktion mit einer Lücke.


Die überflüssige Mathematik der Stetigkeit aussortieren


[image: image] Definition der Stetigkeit: Eine Funktion f(x) ist stetig an der Stelle x = a, wenn die drei folgenden Bedingungen erfüllt sind:


1. f(a) ist definiert,


2. [image: ipad] existiert und


3. [image: ipad]


So wie die formale Definition eines Grenzwerts ist die Definition der Stetigkeit immer als dreiteilige Überprüfung formuliert, aber eigentlich brauchen Sie sich nur um die Bedingung 3 zu kümmern, weil 1 und 2 in 3 enthalten sind. Sie müssen jedoch daran denken, dass Bedingung 3 nicht erfüllt ist, wenn die linke und die rechte Seite der Gleichung beide undefiniert oder nicht existent sind.
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Grenzwerte auswerten


In diesem Kapitel ...


[image: ipad] Grenzwerte mit einem Taschenrechner berechnen


[image: ipad] Konjugierte Formen multiplizieren


[image: ipad] Grenzwerte an der Unendlichkeit finden





In Kapitel 7 haben Sie das Konzept des Grenzwerts kennen gelernt. Dieses Kapitel geht ins Detail und stellt verschiedene Techniken für die Berechnung der Lösungen von Grenzwertproblemen vor.


Einfache Grenzwerte

Einige Grenzwertprobleme sind sehr einfach. Ich habe sie in zwei Kategorien unterteilt, die ich Ihnen vorstellen möchte.


Grenzwerte, die Sie sich merken sollten


Sie sollten sich unbedingt die folgenden Grenzwerte merken. Wenn Sie sich die letzten drei nicht merken, könnten Sie sehr viel Zeit damit vergeuden, sie herauszufinden. Glauben Sie mir.


[image: image] [image: image] 


(y = c ist eine horizontale Gerade, der Grenzwert – also die Höhe der Funktion – muss also unabhängig von dem x-Wert gleich c sein.)


[image: image] [image: image] 


[image: image] [image: image] 


[image: image] [image: image] 


[image: image] [image: image] 


[image: image] [image: image] 


[image: image] [image: image] 


[image: image] [image: image] 


Einsetzen und Einkochen


Aufgabenstellungen, wobei Sie einsetzen und dann weiterbruzzeln, gehören zur zweiten Kategorie einfacher Grenzwerte. Sie setzen einfach den x-Wert in die Grenzwertfunktion ein, und wenn die Berechnung eine Zahl ergibt, haben Sie die Lösung. Betrachten Sie folgendes Beispiel:


[image: image] 


Diese Methode funktioniert für Grenzwerte für stetige Funktionen sowie für Funktionen, die über ihren gesamten Definitionsbereich stetig sind.


[image: image] Die Methode mit dem Einsetzen und dem Weiterrechnen funktioniert für jede Art von Funktion, auch für stückweise Funktionen, es sei denn, es besteht eine Unstetigkeit am x-Wert, den Sie eingesetzt haben. (Weitere Informationen über stückweise Funktionen finden Sie in Kapitel 7.)


[image: image] Wenn Sie den x-Wert in einen Grenzwert wie [image: ipad] einsetzen und eine beliebige Zahl (ungleich null) erhalten, die durch 0 dividiert wird, etwa [image: ipad], wissen Sie, dass der Grenzwert nicht existiert.


Die »echten« Aufgabenstellungen mit Grenzwert


Für die meisten der Grenzwertprobleme funktioniert keine der schnellen Methoden, die ich im vorigen Abschnitt vorgestellt habe. Wenn Sie den x-Wert einsetzen und das Ergebnis nicht definiert ist, normalerweise [image: ipad], haben Sie ein »echtes« Grenzwertproblem – und eine Menge Arbeit vor sich. Und genau darauf konzentriert sich dieser Abschnitt. Dies sind die interessanten Grenzwertprobleme, diejenigen, die höchstwahrscheinlich Infinitesimal-Lücken haben, und diejenigen, die wichtig für die Differentiationsanalysis sind – mehr darüber in Kapitel 9.


Wenn Sie den x-Wert einsetzen und das Ergebnis nicht definiert ist, können Sie vier verschiedene Dinge ausprobieren: Ihren Taschenrechner, Algebra und die Regel von L’Hôpital (siehe Kapitel 16).


Einen Grenzwert mit dem Taschenrechner bestimmen


Angenommen, Sie wollen den Grenzwert [image: ipad] berechnen. Die Methode mit dem Einsetzen und Weiterrechnen funktioniert nicht, denn wenn Sie 5 für x einsetzen, erhalten Sie das nicht definierte Ergebnis [image: ipad]. Aber wie die meisten Grenzwertprobleme können Sie auch dieses mit Ihrem Taschenrechner lösen.


Methode 1


Die erste Methode ist es, eine sehr nah an 5 liegende Zahl zu wählen und sie für x einzusetzen, etwa 4,9999. Das Ergebnis, 9,9999 ist extrem nah an einer runden Zahl, 10, das ist also Ihre Lösung.


Methode 2


Die zweite Taschenrechnermethode ist, eine Wertetabelle zu erzeugen, wie z. B. in Tabelle
8.1 gezeigt.




	x

	y




	4,998

	9,998




	4,999

	9,999




	5

	Fehler




	5,001

	10,001




	5,002

	10,002




	5,003

	10,003






Tabelle 8.1: Wertetabelle für [image: ipad]



Weil y sehr nahe an 10 liegt, wenn x sich von unten und oben her bei 5 einpendelt, ist 10 der Grenzwert.


[image: image]Viele Aufgabenstellungen aus der Analysis können algebraisch, grafisch und numerisch gelöst werden. Wenn möglich, verwenden Sie zwei oder drei dieser Ansätze. Jeder Ansatz bietet Ihnen eine andere Betrachtungsweise eines Problems und steigert Ihr Verständnis für die wichtigen Konzepte.


Verwenden Sie die Taschenrechnermethoden, um die algebraischen Methoden zu ergänzen, aber verlassen Sie sich nicht zu sehr darauf. Erstens erhalten Sie über die Taschenrechnertechniken keine exakten Lösungen, es sei denn, die Zahlen, die Ihr Taschenrechner ausspuckt, nähern sich einer Zahl an, die Sie erkennen – wie etwa 9,99998, was fast 10 ist, oder 0,333332, was fast 1/3 ist.


Aber wenn die Lösung für eine Grenzwertaufgabe etwas wie [image: ipad] ist, dann erkennen Sie sie wahrscheinlich nicht.


[image: image] Die zweite Einschränkung bei der Methode mit dem Taschenrechner ist, dass sie bei bestimmten Funktionen überhaupt nicht funktioniert, beispielsweise für [image: ipad]. Dieser Grenzwert ist gleich 0, aber Sie erhalten das Ergebnis nicht mit Hilfe Ihres Taschenrechners.


Aufgabenstellungen mit Grenzwert algebraisch lösen


Für »echte« Grenzwertprobleme verwenden Sie zwei wichtige Techniken aus der Algebra: Faktorisieren und konjugierte Multiplikation.


Faktorisieren aus Leidenschaft


Hier folgt ein Beispiel. Berechnen Sie [image: ipad].


1. Versuchen Sie, 5 für x einzusetzen – Sie sollten immer zuerst die Substitution probieren.


Sie erhalten [image: ipad] nicht gut, weiter mit Plan B.


2. x2 – 25 kann faktorisiert werden, machen Sie das also.


[image: image] 


3. Kürzen Sie (x – 5) aus dem Nenner und Zähler.


[image: image] 


4. Jetzt funktioniert die Substitution.


= 5 + 5


 = 10


[image: ipad], was die Lösung des Taschenrechners bestätigt.


Übrigens ist die Funktion, die Sie nach dem Kürzen erhalten haben, (x + 5), identisch mit der ursprünglichen Funktion, [image: ipad], außer dass die Lücke in der ursprünglichen Funktion an der Stelle (5|10) gefüllt wurde.


Konjugierte Multiplikation – Und das hat wirklich nichts mit Fortpflanzung zu tun!


Probieren Sie diese Methode für rationale Funktionen aus, die Quadratwurzeln enthalten. Die konjugierte Multiplikation rationalisiert den Zähler oder den Nenner eines Bruchs, das heißt, man schafft sich die Quadratwurzel vom Leib. Probieren Sie es aus. Berechnen Sie [image: ipad].


1. Probieren Sie die Substitution aus.


Setzen Sie 4 ein. Sie erhalten [image: ipad] weiter mit Plan B.


2. Multiplizieren Sie Zähler und Nenner (Erweitern) mit dem Konjugierten von [image: ipad], das ist [image: ipad].


[image: image] Das Konjugierte eines Ausdrucks mit zwei Termen ist genau derselbe Ausdruck, außer dass die Subtraktion durch eine Addition ersetzt wird oder umgekehrt. Das Produkt von Konjugierten ist immer gleich dem Quadrat des ersten Terms minus dem Quadrat des zweiten Terms.


Und jetzt rationalisieren Sie.


[image: image] 


3. Kürzen Sie (x – 4) aus Nenner und Zähler.


[image: image] 


4. Jetzt funktioniert die Substitution.



[image: image] 


Wir erhalten also [image: ipad].


Wie in dem Beispiel mit der Faktorisierung wurde bei diesem Rationalisierungsprozess die Lücke in die ursprüngliche Funktion eingesetzt. In diesem Beispiel ist 4 der x-Wert, [image: ipad] ist die Lösung und die Funktion [image: ipad] hat eine Lücke an der Stelle [image: ipad].


Grenzwerte bei unendlich auswerten


In den vorigen Abschnitten habe ich die Grenzwerte bei Annäherung von x an eine endliche Zahl betrachtet, aber Sie können auch Grenzwerte haben, wo x sich plus unendlich oder minus unendlich annähert. Betrachten Sie die Funktion [image: ipad] und sehen Sie sich ihren Graphen in Abbildung 8.1 an.



[image: ipad] 


Abbildung 8.1: Der Graph von



Sie sehen auf dem Graphen, dass, wenn x immer größer wird – mit anderen Worten, wenn x gegen unendlich geht –, die Höhe der Funktion immer kleiner wird, aber nie 0 erreicht. Dies wird bestätigt, wenn Sie überlegen, was passiert, wenn Sie immer größere Zahlen in [image: ipad] einsetzen. Die Ausgaben werden immer kleiner. Dieser Graph hat also eine horizontale Asymptote von y = 0 (die x-Achse), und wir sagen, [image: ipad].


Grenzwerte bei unendlich und horizontale Asymptoten


Horizontale Asymptoten und Grenzwerte bei unendlich gehen immer Hand in Hand. Wenn Sie eine rationale Funktion wie [image: ipad] haben, ist das Bestimmen des Grenzwerts bei plus oder minus unendlich dasselbe, als wenn Sie die Position der horizontalen Asymptote suchen.


Und das geht so: Stellen Sie zuerst fest, welchen Grad der Zähler (das heißt der höchste Exponent des x im Zähler) und welchen Grad der Nenner haben. Es gibt drei Fälle:


[image: image] Wenn der Grad des Zählers größer als der Grad des Nenners ist, beispielsweise [image: ipad], gibt es keine horizontale Asymptote und der Grenzwert der Funktion für x gegen unendlich (oder minus unendlich) existiert nicht.


[image: image] Wenn der Grad des Nenners größer als der Grad des Zählers ist, beispielsweise [image: ipad], ist die x-Achse (das heißt die Gerade y = 0) die horizontale Asymptote und [image: ipad].


[image: image] Wenn die Grade von Zähler und Nenner gleich sind, setzen Sie den Koeffizienten der höchsten Potenz von x in den Zähler und dividieren ihn durch den Koeffizienten der höchsten Potenz von x im Nenner. Dieser Quotient ist die Lösung für das Grenzwertproblem – und die Höhe der Asymptote. Wenn beispielsweise [image: ipad] ist, dann [image: ipad] und h hat eine horizontale Asymptote an der Stelle [image: ipad].


[image: image] Die Substitution funktioniert für die Aufgabenstellungen in diesem Abschnitt nicht. Wenn Sie versuchen, φ für das x einer der rationalen Funktionen in diesem Abschnitt einzusetzen, erhalten Sie [image: ipad], und das ist nicht gleich 1. Ein Ergebnis von [image: ipad] sagt Ihnen nichts über die Lösung für ein Grenzwertproblem.


Algebra für Grenzwerte bei unendlich verwenden


Jetzt probieren Sie es mit der Algebra für die Aufgabenstellung [image: ipad].


1. Probieren Sie es mit der Substitution – immer eine gute Idee.


Kein Erfolg. Sie erhalten φ – φ, was Ihnen gar nichts sagt. Weiter mit Plan B.


Weil [image: ipad] eine Quadratwurzel enthält, wäre die konjugierte Multiplikation die


Methode der Wahl, außer dass diese Methode für Bruchfunktionen verwendet wird. Schreiben Sie einfach [image: ipad] über den Nenner 1, und schon haben Sie einen Bruch: [image: ipad]. Jetzt führen Sie die konjugierte Multiplikation aus.


2. Multiplizieren Sie Zähler und Nenner mit der konjugierten Form von [image: ipad] und kürzen Sie.


[image: image] 


[image: image] 


3. Jetzt funktioniert die Substitution.


[image: image] 


Wir erhalten also [image: ipad].



Teil IV

Differentiation


In diesem Teil ...

Die Differentiation ist das erste der beiden großen Konzepte der Analysis. Das zweite ist die Integration (um die es in Teil V gehen wird). Differentiation und Integration bilden das Herz des Analysislehrplans. Bei der Differentiation sucht man eine Ableitung und eine Ableitung ist einfach eine Änderungsrate, wie etwa Kilometer pro Stunde oder Euro pro Artikel. Auf dem Graphen einer Kurve teilt Ihnen die Ableitung die Steigung oder Steilheit der Kurve mit.
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Differentiation – Orientierung

In diesem Kapitel ...

[image: ipad] Die einfache Algebra hinter der Analysis entdecken

[image: ipad] Seltsame Symbole der Analysis verstehen lernen

[image: ipad] Die Ableitungen linearer und quadratischer Gleichungen finden

[image: ipad] Das Problem der Tangente und den Differenzquotienten erforschen



Die Differentialanalysis ist die Mathematik der Änderung und die Mathematik des Infinitesimals. Man sagt auch, es ist die Mathematik infinitesimaler Änderungen – Änderungen, die in winzigen Sekundenbruchteilen stattfinden.

Ohne die Differentialanalysis – d.h. wenn Sie nur Algebra, Geometrie und Trigonometrie zur Verfügung haben – sind Sie auf die Mathematik der Dinge beschränkt, die sich entweder nicht ändern oder die sich mit einer unveränderten Geschwindigkeit ändern.

Stellen Sie sich vor, wie der erste Mensch auf dem Mond gelandet ist. Apollo 11 hob von einer bewegten Startbahn ab (die Erde dreht sich sowohl um ihre eigene Achse als auch um die Sonne). Als Apollo immer höher flog, änderten sich die durch die Atmosphäre verursachte Reibung und die Wirkung der Schwerkraft der Erde nicht nur jede Sekunde und nicht nur jede Millionstel Sekunde, sondern jeden infinitesimalen Bruchteil einer Sekunde. Wie können Sie die Mathematik für diese flüchtige Änderung in jedem unendlich kleinen Teil einer Sekunde realisieren? Ohne die Differentiation ist es nicht möglich.

Differentiation: Sucht die Steigung!

Die Differentiation ist das erste der beiden großen Konzepte der Analysis – das andere ist die Integration (Teil V). Die Differentiation ist das Verfahren, die Ableitung einer Funktion wie etwa y = x2 zu finden. Die Ableitung ist einfach ein Begriff aus der Analysis für ein einfaches Konzept, das Sie bereits aus der Algebra kennen – Steigung. Die Steigung ist der Begriff aus der Algebra für die Steilheit.

[image: image] In der Differentialanalysis untersuchen Sie die Differentiation, das ist das Verfahren des Ableitens, das heißt Ableitungen zu finden. Große Worte für ein einfaches Konzept: Sie suchen die Steilheit oder Steigung einer Kurve oder einer Geraden.

Betrachten Sie jetzt Abbildung 9.1. Eine Steilheit von ½ bedeutet, dass das Strichmännchen, wenn es um einen Meter nach rechts geht, um einen halben Meter nach oben geht; ist die Steilheit 3, geht es drei Meter nach oben und einen Meter nach rechts. Ist die Steilheit gleich 0, ist es ganz oben, das heißt, es geht weder nach oben noch nach unten; wo die Steilheit negativ ist, geht es nach unten. Eine Steilheit von -2 beispielsweise bedeutet, dass es für jeden Meter, den es nach rechts geht, um zwei Meter nach unten geht. Abbildung 9.2 verdeutlicht das Ganze.

[image: ipad] 

Abbildung 9.1: Differentiation bedeutet einfach, die Steilheit zu finden

[image: ipad] 

( , ausgesprochen als d-y-d-x, ist eines der vielen Symbole für die Ableitung – siehe Einschub.)

Abbildung 9.2: Die Ableitung = Steigung = Steilheit

[image: image] Reihen Sie sich nicht in die Horden von Studenten ein, die die Steigungen vertikaler und horizontaler Linien verwechseln. Wie steil ist eine flache, horizontale Straße? Überhaupt nicht steil, natürlich. Null steil. Eine horizontale Linie hat also eine Steigung von 0. Und was ist, wenn Sie eine vertikale Straße entlangfahren sollen? Das geht nicht. Und Sie können auch die Steigung einer vertikalen Linie nicht bestimmen – sie existiert nicht. Die Mathematiker sagen: Sie ist undefiniert.


Vielfalt ist die Lebenswürze

Für die Ableitung gibt es die folgenden verschiedenen Symbole – und sie bedeuten alle genau dasselbe: [image: ipad] oder fχ(x) oder yχ oder f oder y oder Dxf oder Df oder Dx y oder Dxf(x). Und es gibt noch mehr.

Behandeln Sie diese unterschiedlichen Symbole einfach wie Wörter in unterschiedlichen Sprachen für dasselbe Ding. Mit anderen Worten: Nehmen Sie es nicht zu schwer.



Die Steigung einer Geraden

Bleiben wir beim Konzept der Steigung. Sie wissen mittlerweile, dass es bei der Differentiation um die Steigung geht. Betrachten Sie den Graphen der Geraden y = 2x + 3, wie in Abbildung 9.3 gezeigt.

[image: ipad] 

Abbildung 9.3: Der Graph für y = 2x + 3

Aus der Algebra wissen Sie – und da bin ich mir sicher –, dass Sie Punkte auf dieser Geraden finden, indem Sie Zahlen für x einsetzen und y berechnen. Setzen Sie 1 für x ein, erhalten Sie y als 5, womit Sie den Punkt (1|5) haben.

Und bestimmt wissen Sie auch noch, wie man die Steigung dieser Geraden berechnet. Sie gehen zwei Einheiten nach oben, wenn Sie eine Einheit nach rechts gehen, die Steigung ist also automatisch gleich 2. Sie können auch einfach in der Gleichung y = 2x + 3 den Wert m = 2 ablesen.

[image: image] [image: ipad]

Jetzt nehmen Sie zwei beliebige Punkte von der Geraden, beispielsweise (1|5) und (6|15), und bestimmen Höhe und Weite. Die Höhe beträgt 10 von (1|5) bis (6|15), weil 15 minus 5 10 ist). Und die Länge ist 5 von (1|5) bis (6|15), denn 6 minus 1 ist 5). Jetzt dividieren Sie, um die Steigung zu erhalten:

[image: ipad]

Und jetzt dieselbe Aufgabe mit der Steigungsformel:

[image: ipad]

Setzen Sie die Punkte (1|5) und (6|15) ein:

[image: ipad]

Die Ableitung einer Geraden

Der vorige Abschnitt hat Ihnen die Algebra der Steigung näher gebracht. Jetzt kommen wir zur Analysis. Die Ableitung (die Steigung) der Geraden in Abbildung 9.3 ist immer 2, Sie schreiben also:

[image: ipad]

(Sie lesen d-y-d-x ist gleich 2.)

Eine weitere gebräuchliche Schreibweise für dasselbe Konzept lautet:

y′ = 2

(Sie lesen y Strich gleich 2.)

Und Sie sagen:

Die Ableitung der Funktion y = 2x + 3 ist 2.

(Sie lesen Die Ableitung der Funktion y = 2x + 3 ist 2. Das war ein Scherz!)

Die Ableitung: Einfach eine Änderungsrate

Es gibt noch eine Möglichkeit, sich das Konzept der Ableitung vorzustellen, das noch grundlegender als das Konzept der Steigung ist: Eine Ableitung ist eine Änderungsrate.

Geschwindigkeit – die uns vertrauteste Änderungsrate

Wenn Sie mit Kilometern pro Stunde arbeiten, könnten Sie beispielsweise sagen, Sie fahren mit der konstanten Geschwindigkeit von 60 Kilometern pro Stunde. Das ist die Geschwindigkeit Ihres Autos, und 60 Kilometer pro Stunde ist die Ableitung der Position Ihres Autos (p) für die Zeit (t). Mit Hilfe der Symbole aus der Analysis schreiben Sie:

[image: ipad]

Daran erkennen Sie, dass sich die Position Ihres Autos für jede vergangene Stunde um 60 Kilometer ändert. Auch hier gibt die Ableitung einfach an, um wie viel sich ein Ding im Vergleich zu einem anderen ändert.

Diese Ableitung kann wie alle anderen Ableitungen umgekehrt werden:

[image: ipad]

Diese Änderungsrate von Stunden pro Kilometer ist Ihnen wahrscheinlich weniger vertraut als die übliche Änderungsrate Kilometer pro Stunde, aber dennoch ist es eine völlig zulässige Änderungsrate. Sie teilt Ihnen mit, dass sich mit jedem gefahrenen Kilometer die Zeit um [image: ipad] einer Stunde ändert. Und sie teilt Ihnen außerdem mit, dass die Zeit (in Stunden) sich um [image: ipad] so viel wie die Position des Autos (in Kilometern) ändert.

[image: image] Es gibt unzählige verschiedene Änderungsraten: Kilometer pro Liter (bei Ölpipelines), Liter pro Minute (bei Wasser, das aus einem Pool geleert wird), Aus-gang pro Angestelltem (für die Produktivität einer Fabrik) usw. Änderungsraten können konstant sein oder sich ändern. In jedem Fall ist jede Änderungsrate eine Ableitung und jede Ableitung ist eine Änderungsrate.

Die Beziehung zwischen Änderungsrate und Steigung

Änderungsraten und Steigungen stehen in einer einfachen Beziehung zueinander. Alle vorigen Beispiele für Änderungsraten können in einem x-y-Koordinatensystem dargestellt werden, wo jede Änderungsrate als Steigung erscheint. Betrachten Sie erneut das Beispiel der Position des Autos. Die Position des Autos ändert sich pro Stunde um 60 Kilometer, also gilt p = 60 · t. Abbildung 9.4 zeigt den Graphen dieser Funktion.

[image: ipad] 

Abbildung 9.4: Der Graph für p  = 60 · t

Die Kilometer auf der p-Achse geben an, wie weit sich das Auto von der Ausgangsposition wegbewegt hat. Die Stunden auf der t-Achse zeigen, wieviel Zeit vergangen ist. Die Gerade geht für jede Stunde, die sie nach rechts verläuft, um 60 Kilometer nach oben, und ihre

Steigung ist damit [image: ipad] oder 60. Dies ist die visuelle Darstellung von [image: ipad].

Noch ein letzter Kommentar, bevor wir weitergehen. Sie wissen, dass [image: ipad] ist.

Sie können sich jetzt dp als die Höhe und dt als die Weite vorstellen. Damit verknüpft sich alles aufs Wunderbarste.

Sie wissen, dass eine Ableitung einfach eine Steigung ist und eine Ableitung einfach eine Änderungsrate.

[image: image] [image: ipad]

Die Ableitung einer Kurve

Die früheren Abschnitte in diesem Kapitel haben sich mit linearen Funktionen beschäftigt – geraden Linien mit unveränderten Steigungen. Aber wenn alle Funktionen und Graphen Geraden mit unveränderten Steigungen wären, bräuchte man die Analysis nicht. Die Analysis ist die Mathematik der Veränderung, deshalb ist es sinnvoll, jetzt zu den Parabeln weiterzugehen, Kurven mit sich ändernden Steigungen. Abbildung 9.5 ist der Graph für die Parabel [image: ipad]

[image: ipad] 

Abbildung 9.5: Der Graph von

Beachten Sie, wie die Parabel immer steiler wird, je weiter Sie nach rechts wandern. Aus dem Graphen erkennen Sie, dass am Punkt (2|1) die Steigung gleich 1 ist; am Punkt (4|4) ist die Steigung gleich 2; am Punkt (6|9) ist die Steigung gleich 3 usw. Es stellt sich heraus, dass die Ableitung dieser Funktion gleich [image: ipad] ist, wie ich Ihnen gleich zeigen werde. Um die Steigung der Kurve an einem beliebigen Punkt zu finden, setzen Sie einfach die x-Koordi- nate des Punkts in die Ableitung ein, [image: ipad], und Sie haben die Steigung.

Und hier folgt die Analysis. Sie schreiben:

[image: image] 

Und Sie sagen:

Die Ableitung der Funktion[image: ipad].

Sie können auch sagen:

Die Ableitung[image: image].

Aber ich habe Ihnen versprochen, zu zeigen, wie man diese Ableitung von [image: ipad] erhält:

1. Nehmen Sie den Exponenten und setzen Sie ihn vor den Koeffizienten.

[image: image] 

2. Multiplizieren Sie.

2 mal [image: ipad]ist [image: ipad], Sie erhalten also [image: ipad].

3. Verringern Sie den Exponenten um 1.

In diesem Beispiel wird die 2 zu einer 1. Die Ableitung lautet also:

[image: ipad]oder einfach[image: ipad]

Diese und viele andere Techniken der Differentiation sind in Kapitel 10 beschrieben.

Der Differenzquotient

Tusch! Sie kommen jetzt zu dem, was sehr wahrscheinlich den Meilenstein der Differential-analysis darstellt: zum Differenzquotienten, der Brücke zwischen Grenzwerten und Ableitung. In Abbildung 9.5 habe ich Ihnen die Steigung der Parabel an mehreren Punkten gezeigt und dann die Abkürzung vorgestellt, mit der Sie die Ableitung finden – aber ich habe dabei die wichtige Mathematik in der Mitte ausgelassen. Diese Mathematik beinhaltet die Grenzwerte und sie bringt uns an die Schwelle der Analysis. Halten Sie sich fest!

[image: image] Steigung ist definiert als[image: ipad] und

Um eine Steigung zu berechnen, brauchen Sie zwei Punkte, die Sie in diese Formel einsetzen können. Nehmen wir an, Sie wollen die Steigung der in Abbildung 9.6 gezeigten Parabel am Punkt (2|4) bestimmen.

Sie erkennen die Tangente der Kurve am Punkt (2|4) und weil die Steigung der Tangente gleich der Steigung der Parabel am Punkt (2|4) ist, müssen Sie nur die Steigung der Tangente berechnen. Aber Sie kennen die Gleichung für die Tangente nicht, deshalb können Sie den zweiten Punkt nicht bestimmen (zusätzlich zu (2|4)), den Sie für die Steigungsformel benötigen.

[image: ipad] 

Abbildung 9.6: Der Graph von y = x2 mit einer Tangente am Punkt (2/4)

Und hier erfahren Sie, wie die Erfinder der Analysis dieses Hindernis überwunden haben. Abbildung 9.7 zeigt die Tangente erneut, ebenso wie eine Sekante, die die Parabel an den Punkten (2|4) und (10|100) schneidet.

[image: image] Eine Sekante ist eine Gerade, die eine Kurve an zwei Punkten schneidet. Das ist etwas vereinfacht ausgedrückt, aber es reicht.

[image: ipad] 

Abbildung 9.7: Der Graph von y = x2 mit einer Tangente und einer Sekante

Die Steigung dieser Sekante erhalten Sie durch die Steigungsformel:

[image: image] 

Sie erkennen, dass diese Sekante etwas steiler als die Tangente ist und damit die Steigung der Sekante, 12, höher als die gesuchte Steigung ist.

Jetzt fügen Sie einen weiteren Punkt an der Stelle (6|36) ein und zeichnen unter Verwen-dung dieses Punkts und des Punkts (2|4) eine weitere Sekante. Betrachten Sie dazu Abbil-dung 9.8.

[image: ipad] 

Abbildung 9.8: Der Graph von y = x2 mit einer Tangente und zwei Sekanten

Berechnen Sie die Steigung dieser zweiten Sekante:

[image: image] 

Sie sehen, dass diese Sekante eine bessere Annäherung der Tangente als die erste Sekante darstellt.

Stellen Sie sich jetzt vor, was passieren würde, wenn Sie den Punkt an der Stelle (6|36) nehmen und ihn an der Parabel nach unten in Richtung von (2|4) schieben würden, wobei Sie die Sekante mitnehmen würden. Erkennen Sie, dass, wenn der Punkt immer näher an (2|4) rückt, die Sekante immer näher an die Tangente rückt und dass die Steigung dieser Sekante damit immer näher an die Steigung der Tangente rückt?

Sie erhalten also die Steigung der Tangente, indem Sie den Grenzwert der Steigung dieser verschobenen Sekante verwenden. Jetzt geben Sie dem bewegten Punkt die Koordinaten (x2|y2). Wenn dieser Punkt (x2|y2) immer näher an (x1|y1), nämlich (2|4), rückt, dann rückt die Weite – d.h. (x2 – x1) – immer näher an 0. Und hier der Grenzwert, den Sie brauchen:

[image: image] 

Beobachten Sie, was mit diesem Grenzwert passiert, wenn Sie drei weitere Punkte in die Parabel einsetzen, die immer näher an (2|4) liegen:

• Wenn der Punkt an die Stelle (2,01|4,0401) rückt, ist die Steigung gleich 4,01.

• Wenn der Punkt an die Stelle (2,00|4,004001) rückt, ist die Steigung gleich 4,001.

Es sieht also aus, als ginge die Steigung gegen 4.

Wie bei den Grenzwertproblemen nähert sich die Variable in dieser Aufgabenstellung, nämlich die Weite, der Null an, wird aber niemals gleich 0. Wenn sie 0 würde – was passierte, wenn Sie den ausgewählten Punkt an der Parabel entlangschieben, bis er wirklich auf (2|4) liegt –, hätten Sie eine Steigung [image: ipad], was nicht definiert ist. Aber natürlich ist das genau die gesuchte Steigung – die Steigung der Geraden, wenn der Punkt auf (2|4) liegt. Mit diesem Grenzwert erhalten Sie die exakte Steigung der Tangente, auch wenn die Grenzwertfunktion,[image: ipad], Steigungen der Sekanten erzeugt.
 
Und hier noch einmal die Gleichung für die Steigung der Tangente:

[image: image] 

Und die Steigung der Tangente ist – Sie haben es erraten – die Ableitung.

[image: image] Die Ableitung einer Funktion f(x) an einer Zahl x = c, dargestellt als fχ(c), ist die Steigung der Tangente von f an der Stelle c.

[image: image] Es gibt einen seltsamen Begriff in der Analysis für den allgemeinen Steigungsbruch,[image: ipad] oder [image: ipad]. Ein Bruch ist ein Quotient. Und y2 – y1 und x2 – x1 sind Differenzen. Das Ganze wird deshalb als Differenzquotient bezeichnet.

Und hier die üblichste Darstellung des Differenzquotienten (es gibt aber auch noch andere, äquivalente Darstellungsweisen). Erstens, die Weite, x2 – x1 (in diesem Beispiel x2 – 2), wird als h bezeichnet. Zweitens, weil x1 = 2 und die Weite gleich h ist, ist x2 gleich 2 + h. Sie schreiben y1 als f(2) und y2 als f(2 + h). Nachdem Sie alle diese Ersetzungen vorgenommen haben, erhalten Sie die Definition der Ableitung von x2 an der Stelle x = 2 als den Grenzwert des Differenzquotienten:

[image: image] 

[image: image] [image: ipad]ist einfach die schrumpfende Treppenstufe[image: ipad], die Sie in Abbildung 9.9 sehen, wenn der Punkt in der Parabel nach unten in Richtung (2|4) verschoben wird.

[image: ipad] 

Abbildung 9.9: Der Graph von y = x2 zeigt, wie ein Grenzwert die Steigung der Tangente an der Stelle (2/4) erzeugt

Mit der Mathematik erhalten Sie schließlich die Steigung der Tangente an der Stelle (2|4):

[image: image] 

Die Steigung ist also gleich 4.

[image: image] Definition der Ableitung: Wenn Sie den Punkt (2|f(2)) in der obigen Grenzwertgleichung durch den allgemeinen Punkt (x|f(x)) ersetzen, erhalten Sie die allgemeine Definition der Ableitung als Funktion von x:

[image: image] 

Abbildung 9.10 zeigt diese allgemeine Definition grafisch. Beachten Sie, dass Abbildung 9.10 fast identisch mit Abbildung 9.9 ist, außer dass hier die 2 durch x ersetzt ist und dass der Punkt in Abbildung 9.10 nach unten auf irgendeinen beliebigen Punkt (x|f(x)) statt an den Punkt (2|f(2)) verschoben wird.

[image: ipad] 

Abbildung 9.10: Der Graph von y = x2, wo gezeigt wird, wie ein Grenzwert die Steigung der Tangente am allgemeinen Punkt (x/f(x)) erzeugt

Jetzt berechnen Sie diesen Grenzwert und erhalten die Ableitung für die Parabel f(x) = x2.

[image: image] 

Für diese Parabel ist also die Ableitung, die gleich der Steigung der Tangente ist, gleich 2x. Setzen Sie eine beliebige Zahl für x ein, dann erhalten Sie die Steigung der Parabel an diesem x-Wert. Probieren Sie es aus!

Durchschnittliche Änderungsrate und momentane Änderungsrate

Jede Sekante in Abbildung 9.7 und Abbildung 9.8 hat eine Steigung, die durch die Formel [image: ipad] angegeben ist. Diese Steigung ist die durchschnittliche Änderungsrate über das Intervall von x1 bis x2. Wenn y die Kilometer und x die Stunden angibt, erhalten Sie die durchschnittliche Geschwindigkeit in Kilometern pro Stunde im Zeitintervall zwischen x1 und x2.

Wenn Sie den Grenzwert nehmen und die Steigung der Tangente bestimmen, erhalten Sie die momentane Änderungsrate an der Stelle (x1|y1). Wenn auch hier y in Kilometern und x in Stunden angegeben ist, erhalten Sie die momentane Geschwindigkeit am Zeitpunkt x1. Weil die Steigung der Tangente die Ableitung ist, erhalten wir damit eine weitere Definition der Ableitung.

[image: image] Die Ableitung einer Funktion f(x) an einem x-Wert ist die momentane Änderungsrate von f an diesem x-Wert.

Sein oder nicht sein? Drei Fälle, in denen die Ableitung nicht existiert

Ich möchte drei Situationen vorstellen, in denen eine Ableitung nicht existiert. Bisher wissen Sie, dass die Ableitung einer Funktion an einem bestimmten Punkt die Steigung der Tangente an diesem Punkt ist. Wenn Sie also keine Tangente zeichnen können, gibt es auch keine Ableitung – das passiert in den beiden ersten Fällen. Im dritten Fall gibt es eine Tangente, aber ihre Steigung und die Ableitung sind nicht definiert.

[image: ipad]Es gibt keine Tangente und damit keine Ableitung an jeder Art Unstetigkeit: egal ob unendlich, entfernbar oder Sprung. (Diese Arten der Unstetigkeit sind in Kapitel 7 genauer beschrieben.) Die Stetigkeit ist also eine notwendige Bedingung für die Differenzierbarkeit. Sie ist jedoch keine ausreichende Bedingung, wie die beiden nächsten Fälle zeigen.

[image: ipad]Es gibt keine Tangente und damit keine Ableitung an einem Knickpunkt einer Funktion. Siehe Funktion f in Abbildung 9.11.

[image: ipad]Wenn eine Funktion einen vertikalen Spiegelpunkt hat, ist die Steigung nicht definiert, und damit kann auch die Ableitung nicht existieren. Betrachten Sie dazu Funktion g in Abbildung 9.11. (Spiegelpunkte werden in Kapitel 11 erklärt.)

[image: ipad] 

Abbildung 9.11: Die Fälle II und III, in denen es keine Ableitung gibt
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Regeln für die Differentiation – was sein muss, muss sein!

In diesem Kapitel ...

[image: ipad] Regeln lernen – es tut mir leid!

[image: ipad] Die grundlegenden Regeln für die Differentiation kennen lernen

[image: ipad] Zu Profiregeln fortschreiten

[image: ipad] Die implizite Differentiation erkunden

[image: ipad] Logarithmen in der Differentiation verwenden

[image: ipad] Inverse Funktionen differenzieren

[image: ipad] Zweite und dritte Ableitungen finden



In Kapitel 9 haben Sie einen grundlegenden Überblick erhalten, worum es sich bei einer Ableitung eigentlich handelt – letztlich ist sie eine Änderungsrate wie die Geschwindigkeit und damit einfach die Steigung einer Funktion. Es ist wichtig, dass Sie diese grundlegenden Konzepte wirklich verstanden haben.

Außerdem kennen Sie mittlerweile die mathematische Grundlage der Ableitung und ihre technische Definition unter Verwendung des Grenzwerts des Differenzquotienten. In diesem Kapitel stelle ich Ihnen abkürzende Techniken für die Bestimmung von Ableitungen vor, mit deren Hilfe Sie schwierige Grenzwerte und den Differenzquotienten vermeiden können.


Grundlegende Regeln der Differentiation

Die Analysis kann schwierig sein, aber nach diesem ersten Abschnitt können Sie das noch gar nicht einschätzen. Es ist ganz einfach, diese ersten paar Regeln zu lernen. Allerdings sollten Sie sich auf ein paar Herausforderungen im nächsten Abschnitt gefasst machen.

Die Konstantenregel

Diese Regel ist ganz einfach. f(x) = 5 ist eine horizontale Gerade mit einer Steigung von 0, damit ist die Ableitung ebenfalls 0. Für jede Zahl c mit f(x) = c gilt fχ(x) = 0. Sie können auch schreiben [image: ipad]. Fertig!

Die Potenzregel

Angenommen, f(x) = x5. Um die Ableitung der Funktion zu bestimmen, nehmen Sie den Exponenten, 5, stellen ihn vor das x und verringern dann den Exponenten um 1 (in diesem Beispiel wird der Exponent also zu 4). Damit erhalten Sie fχ(x) = 5x4. Noch einmal: den Exponenten nach vorne, den Exponenten um 1 reduzieren. Das ist alles.

In Kapitel 9 habe ich y = x2 mit dem Differenzquotienten differenziert:


[image: image] 

Dazu bedarf es einiger Arbeit. Stattdessen können Sie auch die Potenzregel anwenden: Die 2 nach vorne bringen, die Potenz um 1 verringern, so dass Sie schließlich eine Potenz von 1 haben, die Sie vergessen können (weil eine Potenz von 1 nichts bewirkt). Also haben wir:


y = x2

yχ = 2x


Die Potenzregel funktioniert für jede Potenz: eine positive, eine negative oder einen Bruch:


[image: ipad]


[image: image] Merken Sie sich, wie die letzte Funktion zu behandeln ist. Es handelt sich dabei um die einfachste Funktion, die aber auch am leichtesten übersehen wird.

[image: image] Sie differenzieren Wurzelfunktionen, indem Sie diese in Potenzfunktionen umschreiben und dann die Potenzregel anwenden. Wenn beispielsweise [image: ipad] ist, schreiben Sie die Funktion in f(x) = x2/3 um und wenden die Potenzregel an. Sie können die Potenzregel auch verwenden, um Funktionen wie etwa [image: ipad] zu differenzieren. Sie formen um in f(x) = x–3 und wenden die Potenzregel an.



Die Regeln zu dem Vielfachen von Konstanten

Was machen Sie, wenn die zu differenzierende Funktion mit einem Koeffizienten beginnt? Das macht keinen Unterschied. Ein Koeffizient wirkt sich nicht auf den Prozess der Differentiation aus. Sie können ihn einfach ignorieren und gemäß der geeigneten Regel differenzieren. Der Koeffizient bleibt, wo er ist, und zwar bis zum letzten Schritt, wo Sie Ihre Lösung vereinfachen, indem Sie mit dem Koeffizienten multiplizieren.

Differenzieren Sie y = 4x3.

Lösung: Sie wissen nach der Potenzregel, dass die Ableitung von x3 gleich 3x2 ist, die Ableitung von 4(x3) ist also 4(3x2). Die 4 bleibt einfach stehen und es passiert nichts damit. Im letzten Schritt vereinfachen Sie: 4(3x2) ist 12x2. yχ = 12x2.

Ein letztes Beispiel: Differenzieren Sie [image: ipad]


Lösung: Der Koeffizient ist hier gleich [image: ipad]. Und weil [image: ipad] ist (nach der Potenzregel), ist [image: ipad]


[image: image] Vergessen Sie nicht, dass auch Σ (~ 3,14) und e (~ 2,72) Zahlen sind und keine Variablen, deshalb verhalten sie sich auch wie normale Zahlen. Konstanten in Aufgabenstellungen, wie etwa c und k, verhalten sich auch wie normale Zahlen.

Die Summenregel – und die kennen Sie schon

Wenn Sie die Ableitung einer Summe von Termen suchen, bestimmen Sie die Ableitung jedes Terms einzeln.

Was ist fχ(x) für f(x) = x6 + x3 + x2 + x + 10?

Lösung: Sie wenden einfach die Potenzregel für jeden der ersten vier Terme und die Konstantenregel für den letzten Term an. Sie erhalten fχ(x) = 6x5 + 3x2 + 2x + 1.

Die Differenzregel – macht kaum einen Unterschied

Wenn Sie eine Differenz haben (d.h. eine Subtraktion) statt einer Summe, macht das keinen Unterschied. Sie differenzieren weiterhin jeden Term separat. Für den Fall, dass Sie also y = 3x5 – x4 – 2x3 + 6x2 + 5x haben, ist yχ = 15x4 – 4x3 – 6x2 + 12x + 5. Additions- und Subtraktionszeichen bleiben bei der Differentiation unverändert.

Trigonometrische Funktionen differenzieren

Meine Damen und Herren: Ich habe die große Ehre und das unzweifelhafte Vergnügen, Ihnen die Ableitungen der drei trigonometrischen Funktionen vorstellen zu dürfen.


[image: image] 

Sie sollten sich mindestens die ersten beiden merken – und das ist ganz einfach. Ich kenne niemanden, der sie vergessen hätte.



Exponentielle und logarithmische Funktionen differenzieren

Vorsicht: Es gibt wieder etwas zu merken. Diese Freude ...

Exponentialfunktionen

Wenn Sie sich die nächste Regel nicht merken können, werfen Sie Ihren Taschenrechner weg.


[image: image] 

Es stimmt – holen Sie das Riechfläschchen –, die Ableitung von ex ist gleich ex. Das ist eine spezielle Funktion. ex und ihre Vielfachen, beispielsweise 5ex, sind die einzigen Funktionen, die ihre eigenen Ableitungen darstellen. Überlegen Sie, was das bedeutet. Betrachten Sie den Graphen von y = ex in Abbildung 10.1.


[image: ipad] 

Abbildung 10.1: Der Graph von y = ex

Wählen Sie einen beliebigen Punkt auf dieser Funktion aus, etwa (2|~7,4). Die Höhe der Funktion an diesem Punkt, ~7,4, ist gleich der Steigung an diesem Punkt.


Wenn die Basis eine andere Zahl als e ist, müssen Sie die Ableitung etwas in Form bringen, indem Sie sie mit dem natürlichen Logarithmus der Basis multiplizieren:

Wenn y = 2x, dann ist yχ = 2x ln 2.

Wenn y = 10x, dann ist yχ = 10x ln 10.

Logarithmische Funktionen

Und jetzt kommt, worauf Sie immer gewartet haben – die Ableitungen von logarithmischen Funktionen. Hier die Ableitung des natürlichen Logarithmus – das ist der Logarithmus mit der Basis e:

[image: image] 

Wenn die Basis des Logarithmus eine andere Zahl ist als e, bringen Sie diese Ableitung in Form – wie bei den Exponentialfunktionen, außer dass Sie hier durch den natürlichen Logarithmus der Basis dividieren statt zu multiplizieren. Wir haben also


[image: image] 


Differentiationsregeln für Profis – Wir sind die Champs!

Nachdem Sie nun wirklich alle grundlegenden Regeln vollständig verstanden haben, lehnen Sie sich zurück und genießen Sie Ihren Erfolg. Fertig für die nächste Hürde? Die nachfolgenden Regeln, insbesondere die Kettenregel, können ans Eingemachte gehen. Aber Sie wissen ja: »Ohne Schweiß kein Preis!«

Die Produktregel

Diese Regel verwenden Sie für – wer hätte das gedacht! – das Produkt von zwei Funktionen, wie etwa

y = x3 · sin x


[image: image] Die Produktregel:

Wenn y = dies · das,

dann ist yχ = diesχ · das + dies · dasχ

Für y = x3 · sinx erhalten wir also:

yχ = (x3)χ · sin x + x3 · (sin x)χ

 = 3x2 sin x + x3 cos x


Die Quotientenregel

Ich habe das Gefühl, Sie wissen bereits, wofür diese Regel gedacht ist: für den Quotienten von zwei Funktionen, wie etwa:


[image: image] 

[image: image] Die Quotientenregel:

[image: ipad]



Und hier die Ableitung von [image: ipad]:

[image: image] 


Die Kettenregel

Die Kettenregel ist die trickreichste Ableitungsregel, aber wirklich nicht zu schwierig, wenn Sie sich sorgfältig auf ein paar wichtige Punkte konzentrieren. Beginnen Sie damit, [image: ipad] abzuleiten. Hier wenden Sie die Kettenregel an, weil Sie eine Funktion (4x3 – 5) innerhalb einer anderen Funktion (der Quadratwurzelfunktion) haben. Mit anderen Worten: Es handelt sich um eine zusammengesetzte Funktion.

1. Sie beginnen mit der äußeren Funktion, [image: ipad], und differenzieren diese. Ignorieren Sie, was innerhalb der Funktion steht. Damit Sie die Innenseite auch wirklich ignorieren, ersetzen Sie den Inhalt vorübergehend durch das Wort irgendwas.

Sie haben also [image: ipad]. Also differenzieren Sie [image: ipad] genau so, wie Sie [image: ipad] differenzieren. Weil [image: ipad] ist, erhalten Sie mit der Potenzregel [image: ipad]. Für diese Aufgabenstellung also [image: ipad]

2. Multiplizieren Sie das Ergebnis aus Schritt 1 mit der Ableitung der inneren Funktion, irgendwas.

[image: image] 

Sehen Sie sich das genau an. Alle grundlegenden Aufgabenstellungen für die Kettenregel beherzigen diese Formel.

3. Differenzieren Sie das innere irgendwas.

Das innere irgendwas bei dieser Aufgabenstellung ist 4x3 – 5 und seine Ableitung ist nach der Potenzregel gleich 12x2.

4. Jetzt bringen Sie das eigentliche irgendwas und seine Ableitung an die Stellen, wo sie hingehören.

[image: image] 

5. Vereinfachen Sie.

yχ = 6x2(4x3 - 5)-1/2

Wenn Sie etwas gegen negative Exponenten und Bruchexponenten haben, können Sie auch χ [image: ipad] schreiben.

Jetzt versuchen wir, eine weitere zusammengesetzte Funktion zu differenzieren.

Angenommen, Sie wollen f(x) = ln(x3) differenzieren. Das Argument dieser natürlichen Logarithmusfunktion ist x3. Im ersten Schritt zur Lösung dürfen Sie dieses Argument nicht berühren, wenn Sie die Regel für den natürlichen Logarithmus anwenden: [image: ipad] ln [image: ipad]. Diese Regel besagt, dass Sie das Argument der Funktion in den Nenner unter den Zähler 1 schreiben sollen. Nach dem ersten Schritt zur Differenzierung von ln (x3) haben Sie also [image: ipad]. Anschließend multiplizieren Sie dies noch mit der Ableitung von x3, das ist 3x2.

[image: image] Sie können die Kettenregel auch exakt anwenden, wenn Sie sich merken, nie mehr als eine Ableitungsregel gleichzeitig anzuwenden.

Im vorigen Beispiel, ln (x3), wenden Sie zuerst die Regel für den natürlichen Logarithmus an und dann als Einzelschritt zur Differenzierung von x3 die Potenzregel. Nirgendwo in einer Aufgabe für die Kettenregel wenden Sie beide Regeln gleichzeitig an. Für ln (x3) wenden Sie beispielsweise nicht die Regel für den natürlichen

Logarithmus und die Potenzregel gleichzeitig an, womit [image: ipad] erhalten würden.

Und jetzt die ganze Mathematik für die Kettenregel.


[image: image] Die Kettenregel (für die Differenzierung zusammengesetzter Funktionen):

Wenn y = f(g(x)) ist,

dann gilt yχ = fχ (g(x)) · gχ.


Ein letztes Beispiel und ein letzter Tipp. Differenzieren Sie 4x2 sin (x3). Diese Aufgabe enthält eine neue Hürde – sie beinhaltet die Kettenregel und die Produktregel. Wie fangen Sie an?

[image: image] Wenn Sie nicht sicher sind, wo Sie mit der Differenzierung eines komplexen Ausdrucks beginnen, stellen Sie sich vor, Sie setzen eine Zahl für x ein und werten dann den Ausdruck schrittweise auf Ihrem Taschenrechner aus. Ihre letzte Berechnung ist das, was Sie als Erstes tun sollten.

Angenommen, Sie setzen die Zahl 5 für die x in 4x2 sin (x3) ein. Sie berechnen 4 · 52 – das ist 100. Nachdem Sie anschließend 53 = 125 berechnet haben, bestimmen Sie sin(125), das ist ca. –0,616. Schließlich multiplizieren Sie 100 mit –0,616. Weil Ihre letzte Berechnung die Multiplikation ist, ist der erste Schritt bei der Differentiation die Anwendung der Produktregel. (Wäre Ihre letzte Berechnung stattdessen etwas wie sin(125) gewesen, würden Sie mit der Kettenregel anfangen.) Erinnern Sie sich an die Produktregel?

[image: image] Wenn f(x) = dies · jenes ist, dann ist fχ(x) = diesχ · jenes + dies · jenesχ.

Für f(x) = 4x2 sin (x3) erhalten wir also:

fχ (x) = (4x2)χ (sin (x3)) + (4x2) (sin (x3))χ

Jetzt stellen Sie die Aufgabe fertig, indem Sie die Ableitung von 4x2 mit der Potenzregel und die Ableitung von sin (x3) mit der Kettenregel bestimmen:


fχ(x) = (8x) (sin (x3)) + (4x2) (cos(x3)·3x2)

Und jetzt vereinfachen wir:


fχ(x) = 8x sin (x3) + 12x4 cos(x3)
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Differentiation und die Form von Kurven


In diesem Kapitel ...


[image: ipad] Das Auf und Ab depressiver Funktionen erkennen


[image: ipad] Extremwerte finden


[image: ipad] Tests für die erste und zweite Ableitung anwenden


[image: ipad] Konkavität und Wendepunkte interpretieren


[image: ipad] Die Graphen von Funktionen und Ableitungen interpretieren





In diesem Kapitel verwenden Sie die Ableitungen, um die Form von Funktionen zu verstehen – warum sie steigen, warum sie fallen, wo sie Maxima und Minima haben, wie sie sich krümmen usw. In Kapitel 12 werden Sie Ihr Wissen über die Form von Funktionen anwenden, um Aufgabenstellungen aus der Praxis zu lösen.


Ein Ausflug mit der Analysisgruppe


Betrachten Sie den Graphen in Abbildung 11.1.


[image: ipad] 

Abbildung 11.1: Der Graph von f(x) mit mehreren interessanten Punkten


Stellen Sie sich vor, Sie fahren diese Funktion entlang von links nach rechts. Während Ihrer Fahrt gibt es zwischen a und l mehrere interessante Punkte. Alle davon (außer Start- und Endpunkte) beziehen sich auf die Steilheit der Straße.


Über die Berge und durch die Täler: Positive und negative Steigungen


Bei Ihrem Ausflug von a aus fahren Sie zunächst nach oben. Die Funktion steigt also und ihre Steigung und ihre Ableitung sind positiv. Sie fahren den Berg nach oben, bis Sie die Spitze an der Stelle b erreicht haben, wo die Straße wieder gerade wird. Die Straße ist eben, also sind Steigung und Ableitung gleich null.


Weil die Ableitung an der Stelle b gleich null ist, bezeichnet man b auch als stationären Punkt der Funktion. Punkt b ist außerdem ein lokales Maximum oder ein relatives Maximum von f, weil es sich um eine Bergspitze handelt. Damit b ein lokales Maximum sein kann, muss es sich dabei um den höchsten Punkt in seiner unmittelbaren Umgebung handeln. Es spielt dabei keine Rolle, dass der nahe gelegene Berg an der Stelle g noch höher ist.


Nachdem Sie die Bergkuppe an der Stelle b erreicht haben, fahren Sie wieder nach unten. Hinter b werden die Steigung und die Ableitung also negativ und die Funktion fällt. Links von jedem lokalen Maximum ist die Steigung positiv, rechts von einem Maximum ist die Steigung negativ.


Krümmung und Wendepunkte


Der nächste interessante Punkt ist c. Erkennen Sie, dass bei der Fahrt nach unten von b nach c die Straße immer steiler wird, dass Sie nach c zwar immer noch nach unten fahren, die Straße aber langsam beginnt, sich wieder nach oben zu krümmen und weniger steil zu werden? Dieser Abschnitt der Straße krümmt sich nach unten – man sagt, die Funktion ist dort konkav.


[image: image] Wenn eine Funktion konkav ist, fällt ihre Ableitung; wenn eine Funktion konvex (nach oben gekrümmt) ist, steigt ihre Ableitung.


Die Straße ist also konkav bis zum Punkt c, wo sie dann konvex wird. Weil sich die Krüm-mung am Punkt c umkehrt, handelt es sich bei c um einen Wendepunkt. Der Punkt c ist gleichzeitig der steilste Punkt auf diesem Straßenabschnitt. Die steilsten Punkte auf einer Funktion treten immer an Wendepunkten auf.


[image: image] Seien Sie vorsichtig mit Funktionsabschnitten, die eine negative Steigung haben. Punkt c ist der steilste Punkt in seiner Umgebung, weil er eine größere negative Steigung hat als alle anderen nahe gelegenen Punkte. Beachten Sie jedoch, dass eine große negative Zahl eigentlich eine sehr kleine Zahl ist, weshalb Steigung und Ableitung in c eigentlich die kleinsten aller Punkte in der Umgebung sind. Von b nach c fällt die Ableitung der Funktion (weil sie zu einer größeren negativen Zahl wird). Von c nach d steigt die Ableitung (weil sie zu einer kleineren negativen Zahl wird).


Das Tal der Tränen: Ein lokales Minimum


Zurück zu unserem Ausflug. Nach Punkt c fahren Sie weiterhin nach unten, bis Sie d errei-chen, die Talsohle. Punkt d ist ebenfalls ein stationärer Punkt, weil die Straße dort eben ist und die Ableitung gleich null ist. Punkt d ist außerdem ein lokales oder relatives Minimum, weil es sich dabei um den niedrigsten Punkt in seiner unmittelbaren Umgebung handelt.


Ein atemberaubender Ausblick: Das absolute Maximum


Nach d fahren Sie nach oben und durchqueren dabei e, wobei es sich um einen weiteren Wendepunkt handelt. Es ist der steilste Punkt zwischen d und g und der Punkt, an dem die Ableitung am größten ist. Sie halten am Ausblick an der Stelle g an, einem weiteren stationären Punkt und einem weiteren lokalen Maximum. Darüber hinaus ist der Punkt g das absolute Maximum im Intervall von a bis l, weil es sich dabei um den allerhöchsten Punkt auf der Straße zwischen a und l handelt.


Autopanne: Auf dem Scheitelpunkt hängen geblieben


Wenn Sie von g aus nach unten fahren, durchqueren Sie einen weiteren Wendepunkt, h, ebenso wie ein lokales Minimum, i, und fahren dann nach oben bis j, wo Sie in einem Anfall von Wahnsinn versuchen, über die Spitze zu fahren. Ihre Vorderräder schaffen das gerade noch, aber dann bleibt das Auto auf der Klippe hängen, so dass Sie ein bisschen schaukeln können, während sich Ihre Räder drehen. Ihr Auto schaukelt an der Stelle j, weil Sie dort keine Tangente ziehen können. Keine Tangente – keine Steigung. Keine Steigung – keine Ableitung. Sie können sagen, die Ableitung an der Stelle j ist nicht definiert. Ein scharfer Wendepunkt wie j wird als Knickpunkt bezeichnet.


Von nun an ging’s bergab!


Nachdem Sie Ihr Auto wieder aus seiner misslichen Lage befreit haben, wird die Straße immer weniger steil, bis sie für einen Moment lang am Punkt k völlig flach wird. Punkt k ist ebenfalls ein stationärer Punkt, weil seine Ableitung gleich null ist. Außerdem handelt es sich dabei um einen Wendepunkt, weil die Krümmung im Punkt k von oben nach unten wechselt. Nachdem Sie k durchquert haben, fahren Sie nach unten zu l, Ihrem Ziel. Weil l der Endpunkt des Intervalls ist, handelt es sich nicht um ein lokales Minimum – Endpunkte können keine lokalen Minima oder Maxima sein –, aber er ist das absolute Minimum im Intervall, weil es sich dabei um den allerniedrigsten Punkt zwischen a und l handelt.


Ich hoffe, der Ausflug hat Ihnen Spaß gemacht!


Ihr Reisetagebuch


Ich möchte hier noch einmal auf Ihren Ausflug und die dabei verwendeten Begriffe und Definitionen eingehen – und noch ein paar weitere Begriffe einführen:


[image: ipad] Die Funktion f in Abbildung 11.1 hat eine Ableitung von null an den stationären Punkten b, d, g, i und k. Wenn Sie dieser Liste j hinzufügen – an der Stelle j ist die Ableitung nicht definiert –, erhalten Sie die vollständige Liste aller kritischen Punkte der Funktion. Kritische Punkte sind Stellen, wo die Ableitung gleich null oder nicht definiert ist. Die x-Werte von kritischen Punkten werden als die kritischen Werte der Funktion bezeichnet.


[image: ipad] Alle lokalen Maxima und Minima – die Gipfel und Täler – müssen an kritischen Punkten liegen. Nicht alle kritischen Punkte sind jedoch notwendigerweise lokale Maxima oder Minima. Der Punkt k beispielsweise ist ein kritischer Punkt, aber weder ein Maximum noch ein Minimum. Lokale Maxima oder Minima werden in ihrer Gesamtheit als die lokalen Extremwerte der Funktion bezeichnet.


[image: ipad] Die Funktion steigt, wenn Sie nach oben fahren – wo die Ableitung positiv ist; sie fällt, wenn Sie nach unten fahren – wo die Ableitung negativ ist. Die Funktion fällt auch am Punkt k, an einem horizontalen Wendepunkt, auch wenn die Steigung und die Ableitung dort gleich null sind. Ich weiß, dass sich das etwas seltsam anhört, aber genau so funktioniert es – glauben Sie es mir einfach. An allen horizontalen Wendepunkten steigt oder fällt eine Funktion. An den lokalen Extremwerten b, d, g, i und j steigt und fällt die Funktion nicht.


[image: ipad] Die Funktion ist konvex, wo sie wie eine Tasse oder wie ein Lächeln aussieht, und konkav, wo sie wie ein Schmollmund aussieht. Die Wendepunkte c, e, h und k liegen an Stellen, wo die Krümmung von oben nach unten wechselt oder umgekehrt. Wendepunkte sind gleichzeitig die steilsten oder die am wenigsten steilen Punkte (größte negative Steigung) in ihrer unmittelbaren Umgebung.


Lokale Extremwerte finden


Nachdem Sie den vorigen Abschnitt verarbeitet haben und wissen, was lokale Extremwerte sind, sollten Sie die Mathematik kennen lernen, mit deren Hilfe Sie sie suchen. Beim ersten Schritt suchen Sie die kritischen Werte (die x-Werte der kritischen Punkte) einer Funktion.


Die kritischen Werte herausleiern


Finden Sie die kritischen Werte von f(x) = 3x5 − 20x2. Betrachten Sie dazu Abbildung 11.2.


Dazu gehen Sie wie folgt vor.


1. Suchen Sie die erste Ableitung von f unter Anwendung der Potenzregel.


[image: image] 


2. Setzen Sie die Ableitung gleich null und lösen Sie nach x auf.


[image: image] 


[image: ipad] 

Abbildung 11.2: Der Graph von f(x) = 3x5 − 20x3


Diese drei x-Werte sind kritische Werte von f. Es könnte weitere kritische Werte geben, wenn die erste Ableitung an einigen x-Werten nicht definiert wäre, aber weil die Ableitung 15x4 − 60x2 für alle Eingabewerte definiert ist, ist die oben gezeigte Lösungsmenge, 0, –2 und 2, die vollständige Liste aller kritischen Werte. Weil die Ableitung von f für diese drei kritischen Werte gleich null ist, hat die Kurve an diesen Werten horizontale Tangenten.


Nachdem Sie die Liste der kritischen Werte kennen, müssen Sie bestimmen, ob sich an diesen x-Werten Gipfel oder Täler befinden. Dazu können Sie einen Test mit der ersten Ableitung oder einen Test mit der zweiten Ableitung durchführen.


Der Test der ersten Ableitung


Der Test der ersten Ableitung basiert auf nobelpreisverdächtigen Konzepten, nämlich darauf, dass Sie, wenn Sie über den Gipfel eines Berges wollen, zuerst nach oben und dann nach unten gehen, und dass Sie, wenn Sie ein Tal durchqueren, erst nach unten und dann nach oben gehen. Die Analysis ist bisweilen wirklich erstaunlich.


[image: ipad] 

Abbildung 11.3: Die kritischen Werte von f(x) = 3x5 − 20x3
 

Und so gehen Sie bei dem Test vor. Sie legen einen Zahlenstrahl an und tragen darunter die kritischen Werte ein, die wir oben bestimmt haben: 0, –2 und 2. Betrachten Sie dazu Abbildung 11.3.


Dieser Zahlenstrahl wird jetzt in vier Bereiche unterteilt: links von –2, von –2 bis 0, von 0 bis 2 und rechts von 2. Jetzt wählen Sie aus jedem dieser Bereiche einen Wert aus, setzen ihn in die erste Ableitung ein und sehen nach, ob Ihr Ergebnis positiv oder negativ ist. Wir verwenden für die Überprüfung der Bereiche die Werte –3, –1, 1 und 3.


[image: image] 


Hätten Sie übrigens bemerkt, dass diese erste Ableitung eine gerade Funktion ist, dann hätten Sie ohne weitere Berechnungen erkannt, dass f(1) = f(–1) und dass f(3) = f(–3) ist. (Gerade Funktionen sind in Kapitel 5 beschrieben.)


Diese vier Ergebnisse sind jeweils positiv, negativ, negativ und positiv. Betrachten Sie jetzt den Zahlenstrahl und markieren Sie die Bereiche entsprechend mit einem Plus- oder mit einem Minussymbol und kennzeichnen Sie, wo die Funktion steigt (wo die Ableitung positiv ist) und wo sie fällt (wo die Ableitung negativ ist). Das Ergebnis ist ein so genannter Vorzeichengraph, wie in Abbildung 11.4 gezeigt.



[image: ipad] 

Abbildung 11.4: Der Vorzeichengraph für f (x) = 3x5 − 20x3


Dies ist wirklich Forschungsarbeit. Die Funktion wechselt an der Stelle –2 von steigend nach fallend; mit anderen Worten, Sie gehen aufwärts bis –2 und dann wieder abwärts. An der Stelle –2 haben Sie also einen Gipfel oder ein lokales Maximum. Weil die Funktion dagegen an der Stelle 2 von fallend nach steigend wechselt, haben Sie hier ein Tal oder ein lokales Minimum. Und weil die Vorzeichen der ersten Ableitung an der Stelle 0 nicht wechseln, gibt es an diesem x-Wert weder ein Minimum noch ein Maximum.


Im letzten Schritt ermitteln Sie die Funktionswerte:


[image: image] 


Das lokale Maximum befindet sich also am Punkt (–2|64) und das lokale Minimum befindet sich am Punkt (2|–64). Fertig!


[image: image] Um den Test mit der ersten Ableitung zu verwenden, wenn Sie nach einem lokalen Extremwert an einem bestimmten kritischen Wert suchen, müssen Sie sicher sein, dass die Funktion an diesem x-Wert stetig ist.


Der Test der zweiten Ableitung – Tests, Tests, Tests!


Wenn Ihnen der Test mit der ersten Ableitung nicht gefällt, können Sie auch den Test mit der zweiten Ableitung verwenden, um die lokalen Extremwerte einer Funktion zu bestimmen.


Der Test der zweiten Ableitung basiert auf zwei weiteren preisverdächtigen Ideen: Erstens, am Gipfel eines Berges hat die Straße eine bucklige Form – mit anderen Worten, sie krümmt sich nach unten oder ist konkav. Zweitens, an einer Talsohle hat die Straße die Form einer Tasse, das heißt, sie krümmt sich nach oben oder ist konvex.


Die Krümmung einer Funktion an einem bestimmten Punkt wird durch ihre zweite Ableitung bestimmt: Eine positive zweite Ableitung bedeutet, dass die Funktion konvex ist, eine negative zweite Ableitung bedeutet, dass die Funktion konkav ist, und eine zweite Ableitung gleich null bedeutet, dass sie keine Entscheidung treffen können (die Funktion könnte konvex oder konkav sein und es könnte sich ein Wendepunkt dort befinden). Für unsere Funktion f brauchen Sie also nur die zweite Ableitung zu bestimmen und dann die ermittelten kritischen Werte einsetzen – –2, 0 und 2 –, und dann feststellen, ob Ihre Ergebnisse positiv, negativ oder null sind. Ein Kinderspiel.


[image: image] 


An der Stelle –2 ist die zweite Ableitung negativ (–240). Daran erkennen Sie, dass f hier konkav ist, wo x gleich –2 ist, und dass sich an der Stelle –2 ein lokales Maximum befindet. An der Stelle 2 ist die zweite Ableitung positiv (240), deshalb ist f konvex und es liegt ein lokales Minimum an der Stelle x = 2 vor. Weil die zweite Ableitung für x = 0 gleich 0 ist, schlägt der Test der zweiten Ableitung fehl – er sagt nichts über die Krümmung an der Stelle x = 0 aus und auch nicht darüber, ob sich dort ein lokales Minimum oder Maximum befindet. Wenn dies passiert, müssen Sie den Test der ersten Ableitung anwenden.


Absolute Extremwerte für ein geschlossenes Intervall finden


Jede Funktion, die für ein geschlossenes Intervall stetig ist, hat einen Maximumwert und einen Minimumwert in diesem Intervall – mit anderen Worten, einen höchsten und einen niedrigsten Punkt –, aber wie Sie im folgenden Beispiel sehen werden, kann es ein Problem für den höchsten oder niedrigsten Wert geben.


[image: image] Ein geschlossenes Intervall beispielsweise [2, 5] enthält die Endpunkte 2 und 5. Ein offenes Intervall wie ]2, 5[ enthält die Endpunkte nicht.


Es ist ein Kinderspiel, das absolute Maximum und das absolute Minimum zu finden. Sie berechnen einfach nur die kritischen Werte der Funktion im vorgegebenen Intervall, bestimmen die Höhe der Funktion an jedem dieser kritischen Werte und bestimmen dann die Höhe der Funktion an den beiden Endpunkten des Intervalls. Die größte dieser Höhen ist das absolute Maximum. Die niedrigste dieser Höhen ist das absolute Minimum. Nachfolgend ein Beispiel: Finden Sie absolutes Maximum und absolutes Minimum von h(x) = cos (2x) – 2 sin x im geschlossenen Intervall [image: ipad].


1. Bestimmen Sie die kritischen Werte von h im offenen Intervall [image: ipad].


[image: image] 


Die Nullstellen von h' sind also [image: ipad] und [image: ipad] und weil h' für alle Eingabewerte definiert ist, ist dies die vollständige Liste aller kritischen Werte.


2. Berechnen Sie die Funktionswerte (die Höhen) für jeden kritischen Wert.


[image: image] 


3. Bestimmen Sie die Funktionswerte an den Endpunkten des Intervalls.


[image: image] 


Aus den Schritten 2 und 3 haben Sie fünf Höhen ermittelt: 1,5, 1, 1,5, –3 und 1. Die höchste Zahl in dieser Liste, 1,5, ist das absolute Maximum. Die kleinste Zahl, –3, ist das absolute Minimum.


Das absolute Maximum tritt an zwei Stellen auf: [image: ipad] und [image: ipad]. Das absolute Minimum tritt an einem der Endpunkte auf, [image: ipad], und wird deshalb als EndpunktExtremwert bezeichnet.


Tabelle 11.1 zeigt die Werte von h(x) = cos (2x) – 2 sin x an den drei kritischen Werten im Intervall zwischen [image: ipad] und 2π sowie an den Endpunkten des Intervalls. Abbildung 11.5 zeigt den Graphen von h.


[image: ipad] 

Tabelle 11.1: Werte von h(x) = cos (2x) – 2 sin x an den kritischen Werten und an den Endpunkten für das Intervall [image: ipad]


[image: ipad] 

Abbildung 11.5: Der Graph von h(x) = cos (2x) – 2 sin x


Die absoluten Extremwerte über den gesamten Definitions-bereich einer Funktion finden


Das absolute Maximum und das absolute Minimum einer Funktion über den gesamten Definitionsbereich sind der einzige höchste und der einzige niedrigste Wert, die die Funktion überhaupt annimmt. Eine Funktion kann ein absolutes Maximum oder ein absolutes Minimum oder beides oder keines haben. Beispielsweise hat die Parabel y = x2 ein absolutes Minimum an der Stelle (0|0) – die Talsohle ihrer Kurvenform –, aber kein absolutes Maximum, weil sie nach links und rechts endlos steigt. Sie könnten sagen, ihr absolutes Maximum ist unendlich.


Um das absolute Maximum und das absolute Minimum über den gesamten Definitionsbe-reich zu finden, suchen Sie die Höhe der Funktion für jeden ihrer kritischen Werte. Dies haben Sie im vorigen Abschnitt bereits gemacht, außer dass Sie jetzt alle kritischen Werte betrachten und nicht nur die kritischen Werte innerhalb eines bestimmten Intervalls. Der höchste dieser Werte ist das absolute Maximum, es sei denn, die Funktion steigt irgendwo gegen plus unendlich. In diesem Fall gibt es kein absolutes Maximum. Der niedrigste dieser Werte ist das absolute Minimum, es sei denn, die Funktion geht gegen minus unendlich, dann hat sie kein absolutes Minimum.


Wenn eine Funktion gegen plus unendlich steigt oder gegen minus unendlich fällt, dann macht sie dies ganz rechts oder ganz links oder an einer vertikalen Asymptote. Ihr letzter Schritt (nach Auswertung aller kritischen Werte) ist es also, [image: ipad] und lim [image: ipad] zu bestimmen – das so genannte Globalverhalten der Funktion – ebenso wie den Grenzwert der Funktion, wenn sich x einer vertikalen Asymptote von links und von rechts annähert. Wenn einer dieser Grenzwerte gleich plus unendlich ist, hat die Funktion kein absolutes Maximum; gibt es keinen Grenzwert gleich plus unendlich, ist das absolute Maximum der Funk-tionswert an dem höchsten der kritischen Werte. Und wenn einer dieser Grenzwerte minus unendlich ist, hat die Funktion kein absolutes Minimum; ist keiner davon minus unendlich, ist das absolute Minimum der Funktionswert für den kleinsten der kritischen Werte.



Abbildung 11.6 zeigt einige Funktionen, für die die oben beschriebene Methode nicht funk-tioniert. Die Funktion f(x) hat kein absolutes Maximum, obwohl sie nicht gegen unendlich steigt. Ihr Maximum ist nicht 4, weil sie nie den Wert 4 annimmt, und ihr Maximum kann nichts sein, was kleiner ist als 4, wie etwa 3,999, weil sie noch größer wird, beispielsweise 3,9999. Die Funktion g(x) hat kein absolutes Minimum, obwohl sie nicht gegen minus unendlich fällt. Auf dem Weg nach links schmiegt sich g(x) an die horizontale Asymptote y = 0, aber nimmt nie den Wert 0 an, deshalb können weder 0 noch eine andere Zahl das absolute Minimum sein.


[image: ipad] 

Abbildung 11.6: Zwei Funktionen ohne absolute Extremwerte


Krümmung und Wendepunkte bestimmen


Betrachten Sie noch einmal die Funktion f(x) = 3x5 − 20x3 in Abbildung 11.2. Sie haben die drei kritischen Werte von f verwendet, –2, 0 und 2, um die lokalen Extremwerte der Funktion zu finden, (–2|64) und (2|–64). Dieser Abschnitt betrachtet, was an anderen Stellen der Funktion passiert – insbesondere dort, wo die Funktion konvex oder konkav ist und wo die Krümmung wechselt (die Wendepunkte).


Das Verfahren, Krümmung und Wendepunkte zu finden, erfolgt analog zur Verwendung des Tests der ersten Ableitung und des Vorzeichengraphen auf lokale Extremwerte, außer dass Sie jetzt die zweite Ableitung verwenden. (Siehe Abschnitt Lokale Extremwerte finden.) Und so gehen Sie vor, um die Intervalle der Krümmung und die Wendepunkte von f(x) = 3x5 − 20x3 zu finden.


1. Bestimmen Sie die zweite Ableitung von f.


[image: image] 


2. Setzen Sie die zweite Ableitung gleich null und lösen Sie auf.


[image: image] 


3. Stellen Sie fest, ob die zweite Ableitung für irgendwelche x-Werte nicht definiert ist.


f″(x) = 60x3 − 120x ist für alle reellen Zahlen definiert, es gibt also keine weiteren x-Werte, die der Liste aus Schritt 2 hinzuzufügen wären. Die vollständige Liste ist also [image: ipad] und [image: ipad].


In den Schritten 2 und 3 haben Sie die so genannten »kritischen Werte der zweiten Ableitung« von f bestimmt, weil sie analog zu den kritischen Werten von f sind, die Sie unter Verwendung der ersten Ableitung finden. Aber soweit ich weiß, hat diese Zahlenmenge keinen speziellen Namen. In jedem Fall sollten Sie wissen, dass diese Liste aus den Nullstellen von f″ sowie allen x-Werten, an denen f″ nicht definiert ist, besteht.


4. Tragen Sie diese Zahlen in einen Zahlenstrahl ein und überprüfen Sie die Bereiche mit der zweiten Ableitung.


Verwenden Sie als Testwerte –2, –1, 1 und 2.


[image: image] 


Abbildung 11.7 zeigt den Vorzeichengraphen.


[image: ipad] 

Abbildung 11.7: Ein Vorzeichengraph für die zweite Ableitung von f(x) = 3x5 – 20x3 


Ein positives Vorzeichen auf diesem Vorzeichengraphen teilt Ihnen mit, dass die Funktion in diesem Intervall nach konvex ist; ein negatives Vorzeichen bedeutet konkav. Die Funktion hat (normalerweise) einen Wendepunkt an jedem x-Wert, wo das Vorzeichen von positiv nach negativ wechselt oder umgekehrt.


Weil die Vorzeichen an den Stellen [image: ipad] und [image: ipad] wechseln und weil diese drei Werte Nullstellen von f″ sind, befinden sich an diesen x-Werten Wendepunkte.


5. Setzen Sie diese drei x-Werte in f ein, um die Funktionswerte der drei Wendepunkte zu erhalten.


[image: image] 


Die Quadratwurzel von 2 ist ungefähr 1,4, es gibt also Wendepunkte an den Stellen ca. (–1,4|39,6), (0|0) und ca. (1,4|–39,6). Fertig!


Abbildung 11.8 zeigt die Wendepunkte von f sowie die lokalen Extremwerte und die Krümmungsintervalle.


[image: ipad] 

Abbildung 11.8: Ein Graph von f(x) = 3x5 – 20x3, der die lokalen Extremwerte, die Wendepunkte und die Krümmungsintervalle zeigt


Die Graphen von Ableitungen – Bis zum Abwinken


Sie erfahren eine Menge über Funktionen und ihre Ableitungen, wenn Sie sie nebeneinander stellen und ihre wichtigsten Merkmale vergleichen. Durchlaufen Sie f(x) = 3x5 – 20x3 von links nach rechts (siehe Abbildung 11.9), betrachten Sie dabei genauer ihre interessanten Punkte und beobachten Sie, was mit dem Graphen von f′(x) = 15x4 − 60x2 an denselben Stellen passiert.


[image: image] Wenn Sie sich den Graphen von f′ in Abbildung 11.9 ansehen oder den Graphen einer beliebigen anderen Ableitung, müssen Sie immer daran denken, dass dies eine Ableitung ist, die Sie hier betrachten, und nicht die eigentliche Funktion – noch einmal: Dies ist nicht die Funktion.


[image: ipad] 

Abbildung 11.9: f(x) = 3x5 – 20x3 und ihre erste Ableitung, f′(x) = 15x4 – 60x2


Wir beginnen ganz links. f steigt bis zum lokalen Maximum an der Stelle (–2|64). Es steigt, deshalb ist die Steigung positiv, aber f wird immer weniger steil, weshalb seine Steigung fällt. Die Steigung fällt, bis sie am Gipfel zu 0 wird. Das entspricht dem Graphen von f′ (der Steigung), der positiv ist (weil er über der x-Achse liegt), aber fällt, weil er abwärts zum Punkt (–2|0) verläuft.


[image: image] Nachdem ich Sie nun schon verwirrt habe, können Sie sich auch gleich mit den Regeln beschäftigen, nach denen sich der Graph einer Funktion zum Graphen ihrer Ableitung verhält:


[image: ipad] Ein steigendes Intervall auf einer Funktion entspricht einem Intervall auf dem Graphen ihrer Ableitung, das positiv ist (oder null für einen Punkt, wenn die Funktion einen horizontalen Wendepunkt hat). Mit anderen Worten, das steigende Intervall einer Funktion entspricht einem Teil des Ableitungsgraphen, der oberhalb der x-Achse liegt (oder die Achse an einem Punkt berührt, wenn es einen horizontalen Wendepunkt gibt). Betrachten Sie dazu die Intervalle A und F in Abbildung 11.9.


[image: ipad] Ein lokales Maximum auf dem Graphen einer Funktion entspricht einer Null (oder einem x-Schnittpunkt) auf einem Graphen ihrer Ableitung, d.h. dem Punkt, wo er die x-Achse nach unten kreuzt.


[image: image] Wenn Sie verschiedene Punkte auf dem Ableitungsgraphen betrachten, verges-sen Sie nicht, dass die y-Koordinate eines Punkts – wie (–2|0) – auf einem Graphen einer ersten Ableitung Ihnen die Steigung der Originalfunktion anzeigt, nicht ihre Höhe. Stellen Sie sich die y-Achse für den Graphen der ersten Ableitung als Steigungsachse oder m-Achse vor.


[image: ipad] Ein fallendes Intervall einer Funktion entspricht einem negativen Intervall auf dem Graphen der Ableitung (oder null für einen Punkt, wenn die Funktion einen horizontalen Wendepunkt hat). Das negative Intervall auf dem Ableitungsgraphen liegt unterhalb der x-Achse (im Fall eines horizontalen Wendepunkts berührt der Ableitungsgraph die x-Achse an einem einzigen Punkt). Betrachten Sie dazu die Intervalle B, C, D und E in Abbildung 11.9, wo f bis zum lokalen Minimum an der Stelle (2|–64) fällt, und wo f′ negativ ist – außer für den Punkt (0|0) – bis die Funktion zu (2|0) gelangt.


[image: ipad] Ein lokales Minimum auf dem Graphen einer Funktion entspricht einer Null (oder einem x-Schnittpunkt) auf dem Graphen ihrer Ableitung, also dem Punkt, wo er die x-Achse nach oben kreuzt.


Jetzt vollziehen Sie Ihre Schritte noch einmal nach und betrachten die Krümmung und die Wendepunkte von f in Abbildung 11.9. Betrachten Sie zuerst die Intervalle A und B in der Abbildung. Wenn Sie auch wieder von links beginnen, verläuft der Graph von f konkav – das heißt, bis er zum Wendepunkt bei ca. (–1,4|39,6) gelangt.


Der Graph von f′ fällt also, bis er bei ca. (–1,4|–60) abflacht. Diese Koordinaten teilen Ihnen mit, dass der Wendepunkt an der Stelle –1,4 auf f eine Steigung von –60 hat. Beachten Sie, dass der Wendepunkt an der Stelle (–1,4|39,6) der steilste Punkt auf diesem Funktionsabschnitt ist, aber die kleinste Steigung hat, weil seine Steigung eine größere negative Zahl ist als die Steigung jedes Punkts in der Umgebung.


Zwischen (–1,4|39,6) und dem nächsten Wendepunkt an der Stelle (0|0) ist f konvex, was dasselbe ist wie eine steigende Steigung. Der Graph von f′ steigt also von –1,4 bis hin zu seinem lokalen Maximum an der Stelle (0|0). Betrachten Sie dazu das Intervall C in Abbil-dung 11.9.


[image: image] Noch ein paar weitere Regeln:


[image: ipad] Ein konkaves Intervall auf dem Graphen einer Funktion entspricht einem fallenden Intervall auf dem Graphen ihrer Ableitung – siehe Intervalle A, B und D in Abbildung 11.9. Und ein konvexes Intervall der Funktion entspricht einem steigenden Intervall auf der Ableitung – Intervalle C, E und F.


[image: ipad] Ein Wendepunkt auf einer Funktion (außer ein vertikaler Wendepunkt an einer Stelle, wo die Ableitung nicht definiert ist) entspricht einem lokalen Extremwert auf dem Graphen ihrer Ableitung. Ein Wendepunkt minimaler Steigung entspricht einem lokalen Minimum auf dem Ableitungsgraphen. Ein Wendepunkt maximaler Steigung entspricht einem lokalen Maximum auf dem Ableitungsgraphen.


Hinter (0|0) ist f konkav, bis zum Wendepunkt bei ca. (1,4|–39,6) – dies entspricht dem fallenden Abschnitt von f′ von (0|0) bis zu seinem Minimum an der Stelle (1,4|–60) – Intervall D in Abbildung 11.9. Den Rest des Weges schließlich ist f konvex, was dem steigenden Abschnitt von f′ entspricht, der bei (1,4 | –60) beginnt – in der Abbildung die Intervalle E und F.


12

Problemlos glücklich: Der Differentiation sei Dank!

In diesem Kapitel ...

[image: ipad] Optimierungsprobleme – das meiste für sein Geld bekommen

[image: ipad] ROOOOAAAAAR – Position, Geschwindigkeit und Beschleunigung betrachten

[image: ipad] Verwandte Änderungsraten unter die Lupe nehmen

[image: ipad] Mit den Tangenten fummeln

[image: ipad] Normalen bestimmen



In der Einführung habe ich geschrieben, dass die Analysis die Welt auf vielerlei Weise verändert hat. Dieser Einfluss ist nicht etwa auf den Elfenbeinturm der Mathematik begrenzt, sondern erstreckt sich auf viele Alltäglichkeiten, wie etwa Mikrowellenherde, Handys oder Autos. Sie befinden sich jetzt in Kapitel 12 und ich kann Ihnen endlich zeigen, wie man mit Hilfe der Analysis ein paar praktische Probleme löst. Es ist nie zu spät!


Wie Sie das meiste aus Ihrem Leben machen: Optimierungsprobleme

Einer der wichtigsten praxisorientierten Einsatzbereiche der Differentiation ist die Ermitt-lung des Maximum- oder Minimumwerts einer Funktion aus dem täglichen Leben: den maximalen Ausstoß einer Fabrik, die maximale Stärke eines Strahls, die minimale Zeit zur Bewerkstelligung einer bestimmten Aufgabe, die maximale Reichweite einer Rakete usw.

Das maximale Volumen einer Schachtel

Aus einem 30 cm × 30 cm großen Stück Pappe soll eine Schachtel ohne Deckel angefertigt werden, indem der Karton wie in Abbildung 12.1 geschnitten und gefaltet wird.

Welche Maße erzeugen eine Schachtel mit maximalem Volumen? Die Mathematik scheint häufig abstrakt und unpraktisch zu sein, aber dies ist ein wirklich und wahrhaftig praktisches Problem. Wenn ein Hersteller größere Schachteln für mehr Geld verkaufen kann und er Hunderttausende von Schachteln herstellt, dann kann man davon ausgehen, dass er eine exakte Antwort auf diese Frage erwartet. Sie gehen dafür so vor:



[image: ipad] 

Abbildung 12.1: Die Schachtel wird aus einem 30 cm × 30 cm großen Karton gefertigt, indem die Ecken abgeschnitten und die Seiten hochgeklappt werden

1. Drücken Sie das, was Sie maximieren wollen, nämlich das Volumen, als Funktion der Unbekannten aus, der Schachtelhöhe (was gleich der Länge des Schnitts entspricht).

[image: image] 


2. Bestimmen Sie den Definitionsbereich Ihrer Funktion.

Die Höhe kann nicht negativ oder höher als 15 cm sein (der Karton ist nur 30 cm breit und die Hälfte davon ist die maximale Höhe). Sinnvolle Werte für h sind also 0 δ h δ 15. Jetzt wollen Sie den maximalen Wert für V(h) in diesem Intervall finden. Sie verwenden die Methode aus dem Abschnitt Absolute Extremwerte für ein geschlossenes Intervall finden aus Kapitel 11.

3. Finden Sie die kritischen Werte von V(h) im offenen Intervall ]0, 15[, indem Sie die Ableitung gleich 0 setzen und auflösen. Vergessen Sie nicht, auf Werte zu überprüfen, für die die Ableitung nicht definiert ist.


[image: image] 

Weil 15 nicht im offenen Intervall ]0, 15[ liegt, qualifiziert es sich nicht als kritischer Wert (obwohl dies eine müßige Angelegenheit ist, weil Sie nachfolgend trotzdem darauf testen). Und weil diese Ableitung für alle Eingabewerte definiert ist, gibt es keine zusätz-lichen kritischen Werte. 5 ist also der einzige kritische Wert.

4. Werten Sie die Funktion für den kritischen Wert 5 aus, ebenso wie für die Endpunkte des Intervalls, 0 und 15, um das Maximum der Funktion zu finden. 

[image: image] 

[image: image] Der Extremwert, nach dem Sie suchen, tritt häufig nicht an einem Endpunkt auf, kann dies aber tun – vergessen Sie also nicht, die Funktion an den beiden Endpunkten des Intervalls auszuwerten.

Eine Höhe von 5 Zentimetern erzeugt also die Schachtel mit dem maximalen Volumen (2000 Kubikzentimeter). Weil die Länge und die Breite gleich 30 – 2h sind, ergibt eine Höhe von 5 eine Länge und Breite von 30 – 2 · 5 = 20. Damit sind die Maße der gesuchten Schachtel gleich 20 cm × 20 cm × 5 cm. Das ist alles.

Husch, husch: Position, Geschwindigkeit und Beschleunigung

Immer wenn Sie in Ihr Auto einsteigen, werden Sie unmittelbarer Zeuge der Differentiation. Ihre Geschwindigkeit ist die erste Ableitung Ihrer Position. Und wenn Sie auf das Gas oder auf die Bremse drücken – beschleunigen oder bremsen –, dann nehmen Sie eine zweite Ableitung wahr.

[image: image] Wenn eine Vorschrift die Position von etwas als Funktion der Zeit ausdrückt, stellt die erste Ableitung die Geschwindigkeit dar und die zweite Ableitung die Beschleunigung. Sie differenzieren also die Position, um die Geschwindigkeit zu erhalten, und Sie differenzieren die Geschwindigkeit, um die Beschleunigung zu erhalten.

Hier ein Beispiel. Ein Jojo läuft gerade nach oben und nach unten. Seine Höhe über dem Boden als Funktion der Zeit ist gegeben durch die Funktion H(t) = t3 – 6t2 + 5t + 30, wobei t die Sekunden angibt und H(t) die Zentimeter. Am Punkt t = 0 befindet es sich 30 Zentimeter über dem Boden und nach 4 Sekunden befindet es sich in einer Höhe von 18 Zentimetern. Betrachten Sie dazu Abbildung 12.2.


[image: ipad] 

Abbildung 12.2: Die Höhe des Jojos von 0 bis 4 Sekunden


Die Geschwindigkeit, V(t), ist die Ableitung der Position (in diesem Fall ist das die Höhe), und die Beschleunigung, A(t), ist die Ableitung der Geschwindigkeit. Wir haben also:


[image: image] 

Betrachten Sie die Graphen dieser drei Funktionen in Abbildung 12.3.

Anhand der drei Funktionen und ihrer Graphen will ich verschiedene Dinge zur Bewegung des Jojos aufzeigen:

[image: ipad] Maximale und minimale Höhe

[image: ipad] Maximale, minimale und durchschnittliche Geschwindigkeit

[image: ipad] Gesamtentfernung

[image: ipad] Zurückgelegte Gesamtdistanz

[image: ipad] Beschleunigungs- und Bremszeiträume

[image: ipad] Maximale und minimale Beschleunigung

Weil dies eine Menge Stoff ist, will ich ein paar Abkürzungen nehmen – so muss man z. B. nicht immer die Endpunkte überprüfen, wenn man nach Extremwerten sucht, wenn es offensichtlich ist, dass diese nicht an den Endpunkten liegen. Das macht Ihnen doch sicher nichts aus. (Aufgabenstellungen zu Position, Geschwindigkeit und Beschleunigung nutzen verschiedene Konzepte aus Kapitel 11 – lokale Extremwerte, Krümmung, Wendepunkte –, weshalb Sie dort die jeweiligen Definitionen vielleicht noch einmal nachlesen sollten, wenn Sie sich nicht ganz sicher sind.)


[image: ipad] 

Abbildung 12.3: Die Graphen für die Jojo-Funktionen für Höhe, Geschwindigkeit und Beschleunigung von 0 bis 4 Sekunden


Maximale und minimale Höhe

Maximum und Minimum von H(t) treten an den lokalen Extremwerten auf, die Sie in Abbil-dung 12.3 sehen. Um sie zu finden, setzen Sie die Ableitung von H(t), das ist V(t), gleich 0 und lösen auf.


[image: image] 

Diese beiden Werte sind die Nullstellen von V(t) und die t-Koordinaten, das heißt ZeitKoordinaten des Maximums und des Minimums von H(t), wie Sie in Abbildung 12.3 sehen. Mit anderen Worten, es handelt sich dabei um die Zeiten, zu denen Ihr Jojo die maximale und die minimale Höhe erreicht. Setzen Sie diese Zahlen in H(t) ein, um die Höhen zu erhalten:

[image: image] 

Das Jojo steigt also etwa 31,1 Zentimeter über den Boden zum Zeitpunkt t ≈ 0,47 Sekunden und ist etwa 16,9 cm tief zum Zeitpunkt t ≈ 3,53 Sekunden.



Geschwindigkeit und Abstand

Für die Geschwindigkeitsfunktion in Abbildung 12.3 ist die Aufwärtsbewegung für das Jojo als positive Geschwindigkeit definiert und die Abwärtsbewegung als negative Geschwindigkeit. Die zurückgelegte Distanz ist immer positiv, aber wenn sie nach unten verläuft, gilt sie als negativer Abstand.

Gesamtabstand

Der Gesamtabstand ist definiert als die Endposition minus der Anfangsposition. Weil das Jojo auf einer Höhe von 30 beginnt und bei einer Höhe von 18 endet, ist der

Gesamtabstand = 18 – 30 = –12

Dieser Wert ist negativ, weil die Netto-Bewegung nach unten verläuft.



Durchschnittliche Geschwindigkeit

Die durchschnittliche Geschwindigkeit ist gegeben durch den Gesamtabstand dividiert durch die vergangene Zeit. Damit haben wir:


[image: image] 

Daran erkennen Sie, dass sich das Jojo durchschnittlich 3 Zentimeter pro Sekunde nach unten (zu erkennen am negativen Vorzeichen) bewegt.

Maximale und minimale Geschwindigkeit

Um die maximale und minimale Geschwindigkeit des Jojos während des Intervalls von 0 bis 4 Sekunden zu bestimmen, setzen Sie die Ableitung von V(t), also A(t), gleich null und lösen auf:


[image: image] 


Betrachten Sie erneut Abbildung 12.3. An der Stelle t = 2 erhalten Sie die Nullstelle von A(t), das lokale Minimum von V(t) und den Wendepunkt von H(t). Aber das wissen Sie schon, oder? (Wenn nicht, lesen Sie in Kapitel 11 nach.)

Jetzt werten wir V(t) am kritischen Wert 2 aus, ebenso wie an den Endpunkten des Intervalls:

V(0) = 5

V(2) = –7

V(4) = 5

Das Jojo hat also zweimal eine maximale Geschwindigkeit von 5 Zentimeter pro Sekunde – sowohl am Anfang als auch am Ende des Intervalls. Es erreicht seine minimale Geschwindigkeit von –7 Zentimetern pro Sekunde bei t = 2 Sekunden. Das Vorzeichen gibt wieder die Bewegungsrichtung an: – nach unten, + nach oben.

Gesamte zurückgelegte Distanz

Um die Gesamtdistanz zu ermitteln, addieren Sie die zurückgelegten Distanzen für jeden Weg des Jojos: den Weg nach oben, den Weg nach unten und den zweiten Weg nach oben.

Zuerst geht das Jojo von einer Höhe von etwa 30 Zentimetern auf eine Höhe von etwa 31,1 Zentimetern (wo sich der erste Umkehrpunkt befindet). Das ist eine Distanz von etwa 1,1 Zentimetern. Anschließend geht es von etwa 31,1 auf 16,9 (die Höhe des zweiten Umkehrpunkts). Dies ist eine Distanz von 31,1 minus 16,9 oder etwa 14,2 Zentimetern. Schließ-lich geht das Jojo wieder von etwa 16,9 Zentimetern auf seine endgültige Höhe von 18 Zentimetern nach oben. Das sind ebenfalls wieder 1,1 Zentimeter. Addieren Sie diese drei Distanzen, dann erhalten Sie die gesamte zurückgelegte Distanz: ~1,1 + ~14,2 + ~1,1 ≈ 16,4 Zentimeter.

Gummigeruch und Bremsstreifen: Beschleunigung und Abbremsen

Vergessen Sie nicht, dass Beschleunigen und Abbremsen für die Analysis technische Definitionen haben. Die Beschleunigung ist als Änderungsrate der Geschwindigkeit definiert, wobei eine negative Beschleunigung als Abbremsen bezeichnet wird.

Perioden von Beschleunigung und Abbremsen

Auf dem Graphen von A(t) in Abbildung 12.3 erkennen Sie die Perioden der Beschleunigung und des Abbremsens. Wo A(t) negativ ist – von t = 0 bis t = 2 –, ist dies eine negative Beschleunigung oder ein Abbremsen, das heißt, dass die Geschwindigkeit sinkt. Wo A(t) positiv ist – von t = 2 bis t = 4 –, haben Sie eine Beschleunigung, das heißt, die Geschwindigkeit steigt. Wo t genau gleich 2 ist, ist A(t) gleich 0, weshalb es weder eine Beschleunigung noch ein Abbremsen gibt – die Geschwindigkeit für diesen Moment ist unverändert.

Maximale und minimale Beschleunigung

Die Verwendung der Analysis zur Bestimmung der maximalen und minimalen Beschleunigung scheint sinnlos zu sein, wenn Sie einfach den Graphen von A(t) betrachten können und erkennen, dass die minimale Beschleunigung von –12 ganz links für t = 0 erfolgt und dass die Beschleunigung ganz rechts für t = 4 auf ihr Maximum von 12 gelangt.

Und jetzt alles zusammen

Beachten Sie die folgenden Beziehungen zwischen den drei Graphen in Abbildung 12.3. Der negative Abschnitt im Graphen von A(t) – von t = 0 bis t = 2 – entspricht einem sinkenden Abschnitt des Graphen von V(t) und einem konkaven Abschnitt des Graphen von H(t). Das positive Intervall auf dem Graphen von A(t) – von t = 2 bis t = 4 – entspricht einem ansteigenden Intervall auf dem Graphen von V(t) und einem konvexen Intervall auf dem Graphen von H(t). Für t = 2 Sekunden hat A(t) eine Nullstelle, V(t) hat ein lokales Minimum und H(t) hat einen Wendepunkt.

(Relativ) verkettete Änderungsraten

Angenommen, Sie füllen Ihren Pool und wissen, wie schnell das Wasser aus Ihrem Schlauch kommt. Sie wollen berechnen, wie schnell der Wasserstand im Pool steigt. Sie kennen eine Änderungsrate (wie schnell das Wasser einfließt) und Sie wollen eine andere Änderungsrate bestimmen (wie schnell der Wasserstand steigt). Diese Änderungsraten werden auch als verkettete Änderungsraten bezeichnet, weil sie voneinander abhängig sind – je schneller das Wasser eingefüllt wird, desto schneller steigt der Wasserstand. In einer typischen Aufgabenstellung für verwandte Änderungsraten sind die vorgegebenen Änderungsraten unveränderlich, aber die zu bestimmende Änderungsrate ändert sich über die Zeit. Sie müssen diese Änderungsrate für einen bestimmten Zeitpunkt bestimmen.

Die Lösung solcher Aufgaben kann zunächst recht kompliziert sein, aber mit der Übung werden Sie sich bald dafür begeistern. Die Vorgehensweisen und Tipps, die ich hier beschreibe, stellen eine große Hilfe dar.

Einen Trog auffüllen

Ein Trog soll mit Schweinefutter gefüllt werden. Er ist 300 Zentimeter lang und sein Querschnitt ist ein gleichschenkliges Dreieck mit einer Grundlinie von 60 Zentimetern und einer Höhe von 75 Zentimetern (das ist die Spitze unten im Boden). Das Schweinefutter wird mit einer Änderungsrate von 135000 Kubikzentimetern pro Minute eingefüllt. Wenn die Tiefe des Schweinefutters gleich 37,5 Zentimeter ist, wie schnell steigt dann die Futterhöhe?

1. Zeichnen Sie ein Diagramm und beschriften Sie es mit allen unveränderlichen Messwerten. Weisen Sie allen sich ändernden Dingen Variablen zu. Betrachten Sie dazu Abbildung 12.4.


[image: ipad] 

Abbildung 12.4: Ein Trog soll mit Schweinefutter gefüllt werden – Essen ist fertig!

Beachten Sie, dass Abbildung 12.4 die unveränderbaren Maße des Trogs zeigt, 60 cm, 75 cm und 300 cm, und dass diese Ausmaße keine Variablennamen wie etwa l für die Länge oder h für die Höhe haben. Beachten Sie außerdem, dass die veränderbaren Dinge – die Höhe (oder Tiefe) des Schweinefutters und die Breite der Oberfläche des Futters (die mit dem Ansteigen des Futters immer breiter wird) – Variablennamen besitzen, also h für Höhe und b für Basis (ich sage Basis statt Breite, weil es sich dabei um die Grundlinie des umgekehrten Dreiecks handelt, das das Schweinefutter bildet). Das Volumen des Schweinefutters ändert sich eben-falls, deshalb können Sie dies als V bezeichnen – naheliegenderweise.

2. Listen Sie alle gegebenen Änderungsraten auf, ebenso wie die Änderungsrate, die Sie bestimmen sollen, und zwar als Ableitungen in Hinblick auf die Zeit.


[image: image] 

3.a. Schreiben Sie alle Formeln auf, die die Variablen in der Aufgabenstellung verknüpfen: V, h und b.

Ich bin absolut sicher, dass Sie sich an die Formel für das Volumen eines rechtwinkligen Prismas erinnern (das ist die Form des Schweinefutters im Trog):

V = Fläche der Basis · Höhe

Beachten Sie, dass diese »Basis« die Basis des Prismas ist (das gesamte Dreieck am Ende des Trogs) und nicht die Basis des Dreiecks, das in Abbildung 12.4 mit b beschriftet ist. Und auch die Höhe ist die Höhe des Prismas (die Länge des Trogs) und nicht die Höhe, die in Abbildung 12.4 mit h beschriftet ist. Entschuldigen Sie diese Komplikation. Aber wir müssen damit zurechtkommen.

Die Fläche der Dreiecksbasis ist gleich [image: ipad] und die »Höhe« des Prismas beträgt 3 m = 300 cm, wodurch die Formel wie folgt aussieht:


[image: image] 

Diese Formel enthält eine Variable, b, die Sie in Ihrer Liste der Ableitungen aus Schritt 2 nicht sehen. Schritt 3 umfasst also noch einen zweiten Teil – Sie müssen diese zusätzliche Variable loswerden.

3.b. Finden Sie eine Gleichung, die die unerwünschte Variable, b, in irgendeine Beziehung zu einer anderen Variablen innerhalb der Aufgabenstellung bringt, damit Sie eine Substitution machen können, bei der nur noch V und h übrig bleiben.

Die Dreiecksoberfläche des Schweinefutters im Trog ist ähnlich der Dreiecksoberfläche des eigentlichen Trogs, deshalb sind die Basis und die Höhe dieser Dreiecke proportional. (Aus der Geometrie wissen Sie, dass ähnliche Dreiecke Dreiecke derselben Form sind; ihre Seiten sind proportional.) Damit ergibt sich (Strahlensatz):


[image: image] 

[image: image] Ähnliche Dreiecke kommen in Aufgabenstellungen mit verwandten Änderungsraten häufig vor. Achten Sie darauf, wenn in der Aufgabe ein Dreieck, ein dreieckiges Prisma oder eine konische Form vorkommen.

Jetzt setzen Sie 0,8h für b in Ihrer Formel aus Schritt 3a ein.

[image: image] 

4. Differenzieren Sie diese Gleichung nach t.

[image: image] 

5. Setzen Sie die bekannten Werte für die Änderungsrate und die Variable in der Gleichung aus Schritt 4 ein und lösen Sie.

Sie wissen, dass [image: ipad] pro Minute ist, und wollen [image: ipad] bestimmen, wenn h gleich 37,5 cm. Setzen Sie also 135000 und 37,5 ein und lösen Sie nach [image: ipad] auf.


[image: image] 


Das ist alles. Der Futterstand steigt mit einer Änderungsrate von 15 Zentimetern pro Minute, wenn der Futterstand 37,5 Zentimeter beträgt. Guten Appetit!


Tangenten und Normalen: Auf die Spitze getrieben

Bisher wissen Sie, wie eine Tangente für eine Kurve aussieht – andernfalls hat einer von uns beiden irgendetwas versäumt. Eine Normallinie ist einfach eine Linie, die senkrecht auf einer Tangente am Tangentenpunkt steht. Aufgabenstellungen mit Tangenten und Norma-len sind häufige Anwendungen der Differentiation.

Die Aufgabenstellung mit der Tangente

Bestimmen Sie die Tangentenpunkte der Linien durch den Punkt (1|–1), die Tangenten zur Parabel y = x2 sind. Wenn Sie die Parabel zeichnen und den Punkt eintragen, erkennen Sie, dass es zwei Möglichkeiten gibt, die Tangente von (1|–1) aus nach rechts oben und nach links oben zu zeichnen. Betrachten Sie dazu Abbildung 12.5.

[image: ipad] 

Abbildung 12.5: Die Parabel y = x2 und zwei Tangenten durch den Punkt (1/–1)

Der Schlüssel zu diesem Problem liegt in der Bedeutung der Ableitung: Die Ableitung einer Funktion an einem bestimmten Punkt ist die Steigung der Tangente an diesem Punkt. Sie brauchen also nur die Ableitung der Parabel gleich der Steigung der Tangenten zu setzen und aufzulösen.

1. Weil die Gleichung der Parabel gleich y = x2 ist, können Sie einen allgemeinen Punkt auf der Parabel wählen, (x|y), und x2 für y einsetzen.

Beschriften Sie die beiden Tangentenpunkte (x|x2).

2. Bestimmen Sie die Ableitung der Parabel.

[image: image] 

3. Setzen Sie unter Verwendung der Steigungsformel [image: ipad] die Steigung jeder Tangente von (1|–1) zu (x|x2) gleich der Ableitung an der Stelle (x|x2), die gleich 2x ist, und lösen Sie nach x auf.

Die Mathematik, die Sie in diesem Schritt anwenden, ist übrigens besser nachvollziehbar, wenn Sie sich vorstellen, sie nur auf eine der Tangenten anzuwenden – beispielsweise auf die nach rechts oben –, aber eigentlich gilt die Mathematik für beide Tangenten gleichzeitig.



[image: image] 

[image: image] 


Die x-Koordinaten der Tangentenpunkte sind also [image: ipad] und [image: ipad].


4. Setzen Sie diese x-Koordinaten in y = x2 ein, um die y-Koordinaten zu erhalten.

[image: image] 


Das Normallinienproblem

Und jetzt das analoge Problem zum Tangentenproblem aus dem vorigen Abschnitt. Finden Sie alle Punkte für rechtwinklige Normallinien zu der Parabel [image: ipad], die den Punkt (3|15) durchlaufen.

[image: image] Eine Normallinie einer Kurve an einem vorgegebenen Punkt ist die Senkrechte zu der Linie, die für diesen Punkt die Tangente darstellt.

Zeichnen Sie die Parabel und tragen Sie den Punkt (3|15) ein. Bevor Sie mit der Mathematik beginnen, versuchen Sie, die Positionen aller Normallinien anzunähern. Wie viele erkennen Sie? Man sieht ganz einfach, dass beginnend bei (3|15) eine Normallinie leicht nach rechts unten und die andere ein bisschen steiler nach links unten verläuft. Aber haben Sie auch die dritte gesehen, die zwischen den beiden ersten liegt? Keine Sorge. Wenn Sie sie nicht gesehen haben, dann hätten Sie spätestens mit der Mathematik alle drei Lösungen gefunden.

[image: image] Wenn Sie die Analysis oder irgendwelche andere Mathematik anwenden, sollten Sie Ihren gesunden Menschenverstand einsetzen und die Lösung für eine Berechnung abschätzen, bevor Sie sich an die eigentliche Mathematik machen (falls das möglich ist und die Zeit es erlaubt). Dies ist von Ihrem Verständnis der zutreffenden Konzepte abhängig und stellt eine sinnvolle Überprüfung der mathematischen Lösung dar.

Abbildung 12.6 zeigt die Parabel und die drei Normallinien.


[image: ipad] 

Abbildung 12.6: Die Parabel [image: ipad] und drei Normallinien durch (3/15)

Betrachten Sie noch einmal Abbildung 12.6. Sie erkennen, dass es sich hier durchaus um eine Aufgabenstellung aus der Praxis handelt. Das Ganze wird dann praktisch, wenn Sie innerhalb einer parabelförmigen Wand stehen und die genaue Position der drei Punkte an der Wand ermitteln wollen, an die Sie einen Ball werfen könnten, so dass er ganz gerade zu Ihnen zurückspringt.

Die Lösung ist der Lösung des Tangentenproblems ganz ähnlich, außer dass Sie hier die Regel für senkrechte Linien verwenden:

[image: image] Die Steigungen von senkrechten Linien sind negative Kehrwerte.

Jede der Normallinien in Abbildung 12.6 ist senkrecht zu der Tangente, die an dem Punkt angelegt wird, an dem die Normale die Kurve schneidet. Die Steigung jeder Normallinie ist also der negative Kehrwert der Steigung der entsprechenden Tangente – die natürlich durch die Ableitung vorgegeben ist. Fangen wir also an.

1. Wählen Sie einen allgemeinen Punkt (x|y) auf der Parabel [image: ipad] und setzen Sie [image: ipad] für y ein.

Beschriften Sie jeden Punkt der Senkrechten als [image: ipad].

2. Bestimmen Sie die Ableitung der Parabel.


[image: image] 

3. Setzen Sie unter Verwendung der Steigungsformel [image: ipad] die Steigung jeder Normal-linie von (3|15) nach [image: ipad] gleich dem negativen Kehrwert der Ableitung am Punkt [image: ipad]und lösen Sie nach x auf.


[image: image] 

Es gibt keine automatische Methode, exakte Lösungen für diese kubische Gleichung (Gleichung dritten Grades) zu finden, die vergleichbar damit wäre, wie die Quadratformel die Lösungen für eine Gleichung zweiten Grades bestimmt. Stattdessen können Sie y = x3 – 112x – 384 grafisch darstellen. Die x-Schnittpunkte stellen die Lösungen dar. Aber mit dieser Methode haben Sie keinerlei Garantie, für exakte Lösungen. (Häufig sind für kubische Gleichungen Schätzwerte das Beste, was man erzeugen kann.) Hier haben Sie jedoch Glück – und um ehrlich zu sein, ich habe daran gedreht – und Sie erhalten die exakten Lösungen –8, –4 und 12.

4. Setzen Sie jede dieser x-Koordinaten in [image: ipad] ein, um die y-Koordinaten zu erhalten.


[image: image] 

Die drei Punkte der Normalen sind also (–8|4), (–4|1) und (12|9) – holen Sie sofort Ihren Ball!





Teil V

Integration


In diesem Teil ...

Die Integration ist eine Art eigenwilliger Addition – eine sehr seltsame. Es handelt sich dabei um den Prozess, eine Form zu betrachten, deren Fläche Sie nicht direkt bestimmen können, sie in winzige Teile zu zerlegen, deren Flächen Sie bestimmen können, und all die Teile zu addieren, um daraus die Fläche des Ganzen zu erhalten.
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Integration und Flächenannäherung – Ein Einstieg

In diesem Kapitel ...


[image: ipad] Flächen annähern

[image: ipad] Sigma-Summen einrichten

[image: ipad] Mit dem bestimmten Integral exakte Flächen bestimmen



Wenn Sie immer noch in diesem Buch lesen, gehe ich davon aus, dass Sie die Differentiation (Kapitel 9 bis 12) überlebt haben. Jetzt widmen wir uns dem zweiten großen Thema der Analysis – der Integration. So wie zwei einfache Konzepte das Herz der Differentiation bilden – Änderungsraten (wie etwa Kilometer pro Stunde) und die Steilheit oder Steigung einer Kurve –, kann auch die Integration anhand von zwei einfachen Konzepten betrachtet werden – dem Addieren kleiner Stücke von irgendetwas und der Fläche unter einer Kurve. In diesem Kapitel stelle ich Ihnen diese beiden grundlegenden Konzepte genauer vor.

Die Fläche unter einer Kurve bestimmen

Wie in Kapitel 9 beschrieben, ist die grundlegendste Bedeutung einer Ableitung, dass es sich dabei um eine Änderungsrate handelt, dieses pro jenes, wie etwa Kilometer pro Stunde. Wenn Sie dieses als Funktion von jenes darstellen (wie beispielsweise Kilometer als Funktion von Stunden), wird die Ableitung zur Steigung der Funktion. Mit anderen Worten, die Ableitung ist eine Änderungsrate, die auf einem Graphen als Steigung dargestellt wird.

Bei der Integration verhält es sich irgendwie genauso. Die grundlegendste Bedeutung der Integration ist, etwas zu addieren. Und wenn Sie die Integration auf einem Graphen darstellen, erkennen Sie den Additionsprozess als Addition kleiner Abschnitte der Fläche, um schließ-lich die Gesamtfläche unter einer Kurve zu erhalten. Betrachten Sie dazu Abbildung 13.1.

Die schattierte Fläche in Abbildung 13.1 kann mit dem folgenden Integral berechnet werden:


[image: image] 


Betrachten Sie das dünne Rechteck in Abbildung 13.1. Es hat eine Höhe von f(x) und eine Breite von dx (ein kleines bisschen x). Seine Fläche (Länge mal Breite, natürlich) ist also gegeben durch f(x) · dx. Das oben gezeigte Integral teilt Ihnen mit, dass die Flächen aller schmalen rechteckigen Streifen zwischen a und b unter der Kurve f(x) addiert werden sollen. Wenn die Streifen immer schmaler werden, erhalten Sie eine immer bessere Annähe-rung der Fläche. Die Leistung der Integration liegt in der Tatsache, dass sie Ihnen die exakte Fläche mitteilt, indem letztlich eine unendliche Anzahl unendlich schmaler Rechtecke addiert wird.


[image: ipad] 

Abbildung 13.1: Die Integration von f(x) von a nach b bedeutet, es wird die Fläche unter der Kurve zwischen a und b berechnet


Unabhängig davon, worum es sich bei den kleinen Abschnitten handelt, die Sie addieren – es könnten winzige Abschnitte von Distanzen, Volumen oder Energie (oder einfach nur eine Fläche) sein –, können Sie die Summe als Addition der Flächen kleiner rechteckiger Streifen unter einer Kurve darstellen. Wenn die Einheiten sowohl auf der x- als auf der y-Achse beispielsweise Zentimeter sind, dann ist die Fläche jedes schmalen Rechtecks irgendein Wert in Quadratzentimetern. In diesem Fall erhalten Sie mit der Gesamtfläche aller Rechtecke die Fläche unter der Kurve zwischen a und b (praktisch, wenn nicht skaliert wird).

Wenn die Einheiten auf der x-Achse dagegen Stunden (t) sind und die y-Achse mit Kilometern pro Stunde beschriftet ist, dann stellt, weil Änderungsrate mal Zeit gleich Distanz ist, die Fläche jedes Rechtecks natürlich einen Betrag der Distanz dar und die Gesamtfläche teilt Ihnen die innerhalb des vorgegebenen Zeitintervalls zurückgelegte Gesamtdistanz mit.


Der Umgang mit negativen Flächen

In den Beispielen mit Volumen oder Distanz addieren Sie immer positive Abschnitte von irgendetwas. Das ist bei praktischen Aufgabenstellungen üblicherweise so der Fall, weil Sie beispielsweise kein negatives Wasservolumen haben können und auch keine negative Anzahl an Kilowattstunden Energie verbrauchen können. Manchmal integrieren Sie jedoch Funktionen, die ins Negative gehen – also unter die x-Achse. Nachfolgend einige Hinweise, was zu tun ist, wenn das passiert.

[image: image] Wenn Sie die Integration einsetzen, um eine Fläche zu berechnen, dann gilt die Fläche unterhalb der x-Achse als negative Fläche. Die Gesamtfläche zwischen a und b für eine Kurve f(x) – dargestellt durch das Integral [image: ipad] tatsächlich eine Nettofläche, wobei die Gesamtfläche unterhalb der x-Achse (und oberhalb der Kurve) von der Gesamtfläche oberhalb der x-Achse (und unterhalb der Kurve) abgezogen wird.

Stellen Sie sich die x-Achse als den Erdboden vor. Flächen oberhalb der x-Achse sind Erdhügel, Flächen unterhalb der x-Achse sind Bodenmulden. Die Nettofläche stellt dann den Betrag der Erde dar, die sich oberhalb des Erdbodens befindet, nachdem Sie die Erdhügel verwendet haben, um die Mulden aufzufüllen. (Dabei kann sich ein negativer Betrag ergeben.)


Flächen annähern

Bevor ich erkläre, wie man exakte Flächen berechnet, werde ich Ihnen zeigen, wie man Flä-chen annähert. Die Annäherungsmethode ist nicht nur deshalb praktisch, weil sie die Grundlage für die exakte Methode bildet – die Integration –, sondern auch, weil für einige Kurven eine Integration nicht möglich ist und man die Fläche bestenfalls annähern kann.


Flächen mit Hilfe linker Summen annähern

Angenommen, Sie wollen die exakte Fläche unter der Kurve f(x) = x2 + 1 zwischen 0 und 3 berechnen. Betrachten Sie dazu den schattierten Bereich im Graphen links in Abbil-dung 13.2.

Als Erstes erhalten Sie eine grobe Schätzung der Fläche, indem Sie drei Rechtecke unter die Kurve zeichnen, wie rechts in Abbildung 13.2 gezeigt, und ihre Flächen addieren.



[image: ipad] 


Abbildung 13.2: Die exakte Fläche unter f(x)  = x2 + 1 zwischen 0 und 3 (links) wird durch die Fläche von drei Rechtecken (rechts) angenähert


Die Rechtecke in Abbildung 13.2 stellen eine so genannte linke Summe dar, weil die obere linke Ecke jedes Rechtecks die Kurve berührt. Jedes Rechteck hat die Breite 1, und die Höhe wird durch die Höhe der Funktion an der linken Kante des Rechtecks angegeben. Rechteck 1 hat also eine Höhe von f(0) = 02 + 1; seine Fläche (Länge × Breite oder Höhe × Breite) ist 1 × 1, also 1. Rechteck 2 hat eine Höhe von f(1) = 12 + 1 = 2, seine Fläche ist 2 × 1, also 2. Rechteck 3 hat die Höhe f(2) = 22 + 1 = 5, seine Fläche ist 5 × 1, also 5. Wenn Sie diese drei Flächen addieren, erhalten Sie insgesamt 1 + 2 + 5, also 8. Sie erkennen, dass damit die Gesamtfläche unter der Kurve unterschätzt wird, weil es zwischen den Rechtecken und der Kurve Lücken gibt, wie in Abbildung 13.2 gezeigt.

Um eine bessere Annäherung vornehmen zu können, verdoppeln Sie die Anzahl der Rechtecke auf sechs. Abbildung 13.3 zeigt sechs »linke« Rechtecke unter der Kurve, und auch, wie die sechs Rechtecke beginnen, die Lücken zu füllen, die Sie in Abbildung 13.2 noch sehen.




[image: ipad] 


Abbildung 13.3: Sechs »linke« Rechtecke nähern die Fläche unter f(x) = x2 + 1 an



Die drei kleinen schattierten Rechtecke im Graphen rechts in Abbildung 13.3 stellen dar, um wie viel sich die Annäherung verbessert hat, wenn sechs Rechtecke anstelle von drei Rechtecken verwendet werden.

Jetzt summieren Sie die Flächen der sechs Rechtecke. Jedes hat eine Breite von 0,5, und die Höhen sind f(0), f(0,5), f(1), f(1,5) usw. Ich erspare Ihnen die reine Arithmetik. Und hier die Summe: 0,5 + 0,625 + 1 + 1,625 + 2,5 + 3,625 = 9,875. Dies ist eine bessere Annäherung, aber immer noch unterschätzend, weil es die sechs Lücken gibt, die Sie im linken Graphen in Abbildung 13.3 sehen.

Tabelle 13.1 zeigt die Flächenannäherungen mit 3, 6, 12, 24, 48, 96, 192 und 384 Rechtecken. Sie brauchen die Anzahl der Rechtecke nicht jedes Mal zu verdoppeln, wie ich es hier gemacht habe. Sie können beliebig viele Rechtecke verwenden.

Können Sie schon erkennen, wohin die Annäherung aus Tabelle 13.1 läuft? Ich würde sagen: 12.

Und jetzt die wunderbare Formel für eine Summe linker Rechtecke.





	Anzahl der Rechtecke
	Angenäherte Fläche





	3
	8



	6
	9,875



	12
	≈10,906



	24
	≈11,445



	48
	≈11,721



	96
	≈11,860



	192
	≈11,930



	384
	≈11,965






Tabelle 13.1: Annäherung der Fläche unter f(x) = x2 + 1 unter Verwendung steigender Werte von »linken« Rechtecken


[image: image] Die Regel linker Rechtecke: Sie können die exakte Fläche unter einer Kurve zwischen a und b, [image: ipad], mit Hilfe einer Summe linker Rechtecke annähern, indem Sie die folgende Formel anwenden. Im Allgemeinen gilt, je mehr Rechtecke Sie verwenden, desto besser ist die Annäherung.


[image: image] 


Dabei ist n die Anzahl der Rechtecke, [image: ipad] ist die Breite der einzelnen Rechtecke und die Funktionswerte sind die Höhen der Rechtecke.


[image: image] Egal, ob Sie Flächen annähern oder ob Sie exakte Flächen finden, zählen die Flächen unterhalb der x-Achse als negativ. Weitere Informationen finden Sie im Abschnitt Der Umgang mit negativen Flächen früher in diesem Kapitel.


Flächen mit Hilfe rechter Summen annähern

Jetzt nähern wir dieselbe Fläche unter f(x) = x2 + 1 von 0 bis 3 mit Hilfe von rechten Rechtecken an. Diese Methode funktioniert genau wie die Methode mit der linken Summe, außer dass jedes Rechteck so gezeichnet wird, dass seine rechte obere Ecke die Kurve berührt. Betrachten Sie dazu Abbildung 13.4.

Die Höhen der drei Rechtecke in Abbildung 13.4 sind durch die Funktionswerte ihrer rechten Ecken gegeben: f(1) = 2, f(2) = 5 und f(3) = 10. Jedes Rechteck hat eine Breite von 1, die Flächen sind also 2, 5 und 10, das sind insgesamt 17. Sie brauchen kein Astrophysiker zu sein, um zu erkennen, dass Sie jetzt die tatsächliche Fläche unter der Kurve überschätzt haben, im Gegensatz zur Unterschätzung, die Sie mit Hilfe der Methode mit den linken Rechtecken erhalten, die ich im vorigen Abschnitt beschrieben habe (weitere Informationen darüber gleich). Tabelle 13.2 zeigt die verbesserten Annäherungen, die Sie erhalten, wenn Sie immer mehr rechte Rechtecke verwenden.


[image: ipad] 


Abbildung 13.4: Drei rechte Rechtecke, die verwendet werden, um die Fläche unter f(x) = x2 + 1 anzunähern





	Anzahl der Rechtecke
	Flächenannäherung





	3
	17



	6
	14,375



	12
	≈13,156



	24
	≈12,570



	48
	≈12,283



	96
	≈12,141



	192
	≈12,070



	384
	≈12,035






Tabelle 13.2: Annäherung der Fläche unter f(x) = x2 + 1 durch eine steigende Anzahl »rechter« Rechtecke


Auch hier scheint die Annäherung gegen 12 zu gehen. Und jetzt die Formel für eine Summe rechter Rechtecke.


[image: image] Die Regel für rechte Rechtecke: Sie können die exakte Fläche unter einer Kurve zwischen a und [image: ipad], annähern, indem Sie eine Summe rechter Rechtecke verwenden, die durch die folgende Formel vorgegeben ist. Im Allgemeinen gilt, je mehr Rechtecke Sie verwenden, desto besser wird die Annäherung.


[image: image] 


Dabei ist n die Anzahl der Rechtecke und [image: ipad] ist die Breite der einzelnen Rechtecke und die Funktionswerte sind die Höhen der Rechtecke.

Wenn Sie jetzt diese Formel mit der Formel für die Summe linker Rechtecke vergleichen, können Sie sich einen Gesamtüberblick über diese Indizes verschaffen. Die beiden Formeln sind gleich, außer in einem Aspekt. Die Formel für die rechte Summe hat einen Wert, f(xn), den die Formel für die linke Summe nicht enthält, und die Formel für die linke Summe hat einen Wert, f(x0), den die Formel für die rechte Summe nicht enthält. Alle Funktionswerte zwischen diesen beiden Werten erscheinen in beiden Formeln.


Die Summen der Flächen sind gleich, außer für das ganz linke linke Rechteck und das ganz rechte rechte Rechteck.


Die Summennotation

Bevor ich zur formalen Definition des bestimmten Integrals komme – das ist das unglaublichste Werkzeug der Analysis, das eine Fläche in eine unendliche Anzahl an Rechtecken zerlegt und Ihnen damit die exakte Bestimmung der Fläche erlaubt –, gibt es noch etwas, das ich erwähnen möchte: die Summennotation.


Die Grundlagen summieren

Für die Addition langer Zahlenreihen, wie etwa der Rechtecksflächen in einer linken, rechten oder Mittelpunkt-Summe, ist die Summennotation oder die Sigma-Notation ganz praktisch. Und sie funktioniert wie folgt. Angenommen, Sie wollen die ersten 100 Vielfachen von 5 addieren – von 5 bis 500. Sie könnten die Summe ausschreiben, etwa wie folgt:

5 + 10 + 15 + 20 + 25 + ... + 490 + 495 + 500

Aber mit der Sigma-Notation (Sigma, Σ, der 18. Buchstabe des griechischen Alphabets) wird die Summe sehr viel kompakter und sie sieht auch noch gut aus:


[image: image] 


Diese Notation weist Sie einfach an, für das i in 5i den Wert 1 einzusetzen, dann für das i in 5i den Wert 2 einzusetzen, dann 3, dann 4 usw., bis 100. Anschließend werden die Ergebnisse addiert. Wir haben also 5 × 1 plus 5 × 2 plus 5 × 3 usw., bis 5 × 100. Dies ist dasselbe, als würden Sie die Summe in ausführlicher Schreibweise darstellen. Der Buchstabe i hat hier übrigens keine spezielle Bedeutung. Sie könnten die Summe auch als [image: ipad] darstellen, oder mit einem beliebigen anderen Buchstaben.

Und noch ein Beispiel. Wenn Sie 102 + 112 + 122 + ... + 292 + 302 addieren wollen, können Sie die Summe mit dem Summenzeichen in Sigma-Notation auch wie folgt schreiben:


[image: image] 


Riemann-Summen in Sigma-Notation

Sie können die Sigma-Notation verwenden, um die Summe der rechten Rechtecke für die Kurve x2 + 1 aus den Abschnitten zur Annäherung der Fläche darzustellen.


[image: image] 


Dieselbe Formel können Sie auch in Sigma-Notation darstellen:


[image: image] 


Jetzt arbeiten Sie dies für die sechs rechten Rechtecke in Abbildung 13.5 aus.


[image: ipad] 

Abbildung 13.5: Sechs rechte Rechtecke nähern die Fläche unter f(x) = x2 + 1 zwischen 0 und 3 an


Sie ermitteln die Fläche unter x2 + 1 zwischen 0 und 3 mit Hilfe von sechs Rechtecken. Die Breite von jedem dieser Rechtecke, [image: ipad] also [image: ipad] oder [image: ipad]. Damit haben Sie:


[image: image] 


Weil die Breite jedes Rechtecks gleich [image: ipad] ist, fallen die rechten Ecken dieser sechs Rechtecke auf die ersten sechs Vielfachen von [image: ipad]: 0,5, 1, 1,5, 2, 2,5 und 3. Diese Werte sind die x-Koordinaten der sechs Punkte x1 bis x6. Sie können über den Ausdruck [image: ipad] erzeugt werden, wobei i gleich 1 bis 6 ist.


[image: image] 


Unsere Funktion, f(x), ist x2 + 1, deshalb ist [image: ipad] und wir können schreiben:


[image: image] 


Die allgemeine Summe für eine unbekannte Anzahl (n) rechter Rechtecke folgt jetzt. Die Gesamtspannweite der betreffenden Fläche ist 3. Sie dividieren diese Spannweite durch die Anzahl der Rechtecke, um die Breite jedes der Rechtecke zu erhalten. Bei n Rechtecken ist die Breite jedes einzelnen Rechtecks gleich [image: ipad]. Die rechten Ecken der n Rechtecke werden durch [image: ipad] erzeugt, wobei i gleich 1 bis n ist. Damit erhalten Sie:


[image: image] 


Weil f(x) = x2 + 1 ist, ergibt sich:


[image: image] 


Wie fast jeder weiß, ist die Summe der ersten n Quadratzahlen, 12 + 22 + 32 + ... + n2, gleich [image: ipad]. (Diese 6 hat übrigens nichts mit der Tatsache zu tun, dass wir vor ein paar Seiten sechs Rechtecke verwendet haben.) Sie können also diesen Ausdruck für [image: ipad] in der letzten Zeile der Lösung einsetzen, und gleichzeitig n für [image: ipad]:


[image: image] 


Fertig! Endlich! Dies ist die Formel für die Fläche von n rechten Rechtecken zwischen 0 und 3 unter der Funktion x2 + 1. Sie können diese Formel anwenden, um die in Tabelle 13.2 gezeigten Ergebnisse zu erzeugen.

Die Formel für die n linken Rechtecke unter der Funktion x2 + 1 erzeugt die Flächenannäherungen in Tabelle 13.1.


[image: image] 


Exakte Flächen mit Hilfe des bestimmten Integrals ermitteln

Nachdem Sie alle erforderlichen Grundlagen besitzen, können Sie jetzt exakte Flächen bestimmen – das ist schließlich der Sinn der Integration. Sie brauchen die Analysis nicht für diese ganzen Annäherungen, die Sie in den vorigen Abschnitten kennen gelernt haben.

Wie Sie mit Hilfe der linken und rechten Rechtecke in den Abschnitten zur Flächenannähe-rung erfahren haben, erhalten Sie umso bessere Annäherungen, je mehr Rechtecke Sie haben. Sie brauchen also zur Bestimmung der exakten Fläche unter einer Kurve »nur« eine unendliche Anzahl an Rechtecken zu verwenden. Sie können verständlicherweise nicht unendlich viele Rechtecke verwenden, aber mit der fantastischen Erfindung der Grenzwerte passiert genau das. Und hier die Definition des bestimmten Integrals, mit dem Sie die exakten Flächen berechnen:


[image: image] Das bestimmte Integral (»einfache« Definition): Die exakte Fläche unter einer Kurve zwischen a und b ist gegeben durch das bestimmte Integral, das wie folgt definiert ist:


[image: image] 



Hier die exakte Fläche unter unserer vertrauten Funktion x2 + 1 zwischen 0 und 3:


[image: image] 


Große Überraschung.

Dieses Ergebnis ist recht erstaunlich, wenn Sie darüber nachdenken. Unter Verwendung des Grenzwertprozesses erhalten Sie eine exakte Lösung von 12 – das ist 12,00000000... mit einer unendlichen Anzahl an Dezimalstellen – für die Fläche unter der glatten, gekrümmten Funktion x2 + 1 basierend auf den Flächen von oben flach abschließenden Rechtecken, die der Kurve in einer Art Sägezahnform folgen. Die Schönheit dieser Lösung treibt einem die Tränen in die Augen!

Die Bestimmung der exakten Fläche von 12 unter Anwendung des Grenzwerts einer Riemann-Summe bedeutet eine Menge Arbeit (Sie mussten zuerst die Formel für n rechte Rechtecke herleiten). Diese komplizierte Methode der Integration ist vergleichbar mit der Bestimmung einer Ableitung auf die harte Tour, indem die formale Definition angewendet wird, die auf dem Differenzquotienten basiert (falls Sie nicht mehr wissen, was das ist, lesen Sie in Kapitel 9 nach). Und so wie Sie aufgehört haben, die formale Definition der Ableitung zu verwenden, nachdem Sie die Abkürzungen für die Differentiation kennen gelernt haben, müssen Sie auch die formale Definition des bestimmten Integrals, die auf einer Riemann-Summe basiert, nicht mehr anwenden, nachdem Sie in den Kapiteln 14 und 15 die Abkürzungen kennen gelernt haben – es sei denn, es geht um Ihre Abschlussprüfung.

Weil der Grenzwert aller Riemann-Summen gleich ist, sollte der Grenzwert bei unendlich von n linken Rechtecken – für x2 + 1 zwischen 0 und 3 – genau dasselbe Ergebnis wie der Grenzwert für n rechte Rechtecke erzeugen, was auch der Fall ist. Der Ausdruck hinter dem folgenden Grenzwertsymbol ist die Formel für n linke Rechtecke, die am Ende des Abschnitts Riemann-Summen in Sigma-Notation bereits gezeigt wurde.


[image: image] 

[image: image] 


Wenn Sie irgendwie nicht glauben können, dass diese Grenzwerte tatsächlich die exakte Fläche unter x2 + 1 zwischen 0 und 3 ergeben, dann sind Sie damit nicht allein. Schließlich ist der x-Wert (in diesem Beispiel φ) in allen diesen Grenzwerten so wie in allen Grenzwertproblemen nur eine Annäherung und er wird nie wirklich erreicht. Und überhaupt, was würde es bedeuten, unendlich zu erreichen? Es ist einfach nicht möglich. Und unabhängig davon, wie viele Rechtecke Sie haben, besteht immer eine ausgefranste, sägezahnartige Kante. Wie kann also eine solche Methode die exakte Fläche bestimmen?


Betrachten Sie es so. Sie können aus Abbildung 13.2 und Abbildung 13.3 erkennen, dass die Flächensumme der linken Rechtecke, unabhängig von ihrer Anzahl, immer eine Unterschätzung darstellt (das ist der Fall für Funktionen, die im gesuchten Intervall steigen). Und aus Abbildung 13.4 erkennen Sie, dass die Flächensumme der rechten Rechtecke, unabhängig davon, wie viele Sie haben, immer eine Überschätzung ist (ebenfalls für steigende Funktionen). Weil die Grenzwerte für unendlich sowohl für die Unterschätzung als auch für die Überschätzung beide gleich 12 sind, muss dies die exakte Fläche sein. (Ein vergleichbares Argument gibt es für fallende Funktionen.)


[image: image] Nicht nur die Grenzwerte für rechte und linke Rechtecke sind bei unendlich gleich – der Grenzwert jeder Riemann-Summe erzeugt dieselbe Lösung. Sie können eine Reihe von Rechtecken mit ungleichmäßigen Breiten verwenden; Sie können eine Mischung aus linken und rechten Rechtecken verwenden und Sie können die Rechtecke so konstruieren, dass sie die Kurve an einer anderen Stelle als an ihrer linken oder rechten oberen Ecke schneiden. Das Einzige, worauf es hier ankommt, ist, dass im Grenzwert die Breite aller Rechtecke gegen null geht. Das bringt uns zu dem folgenden völlig extremen, schnellen und schmutzigen Integrationskonstrukt, das alle diese Möglichkeiten berücksichtigt:


[image: image] Das bestimmte Integral (echte Definition): Das bestimmte Integral von a bis [image: ipad], ist der Wert, zu dem alle Riemann-Summen tendieren, wenn die Anzahl der Rechtecke gegen unendlich geht und die Breite aller Rechtecke gegen null geht:


[image: image] 


Dabei ist Δxi die Breite des i-ten Rechtecks und ci ist die x-Koordinate des Punkts, an dem das i-te Rechteck f(x) schneidet.




14

Integration: Die Rückwärts-Differentiation


In diesem Kapitel ...

[image: ipad] Stammfunktionen suchen

[image: ipad] Die Flächenfunktion anwenden

[image: ipad] Mit dem Hauptsatz der Analysis warm werden

[image: ipad] Stammfunktionen finden

[image: ipad] Exakte Flächen auf die einfache Art bestimmen




In Kapitel 13 haben Sie die schwierige Methode kennen gelernt, die Fläche unter einer Funktion zu berechnen, nämlich unter Anwendung der formalen Definition der Integration – mit dem Grenzwert einer Riemann-Summe. In diesem Kapitel geht es um die einfache Methode, wozu wir die wichtigste und erstaunlichste Entdeckung in der Mathematik verwenden – nämlich, die Tatsache, dass die Integration im Wesentlichen die umgekehrte Differentiation ist.


Stammfunktionen suchen – die umgekehrte Differentiation


Die Suche nach einer Stammfunktion ist einfach nur die umgekehrte Differentiation. Die Ableitung von sinx ist cosx, die Stammfunktion von cosx ist also sinx; die Ableitung von x3 ist 3x2, eine Stammfunktion von 3x2 ist also x3 – man geht einfach nur rückwärts vor.

Jetzt betrachten wir erneut x3 und seine Ableitung, 3x2. Die Ableitung von x3 + 10 ist eben-falls 3x2, ebenso wie die Ableitung von x3 – 5. Jede Funktion der Form x3 + C, wobei C eine beliebige Zahl ist, hat die Ableitung 3x2. Jede dieser Funktionen ist also eine Stammfunktion von 3x2.


[image: image] Das unbestimmte Integral: Das unbestimmte Integral einer Funktion f(x), dargestellt als ∫ ( ) f x dx, ist die Familie aller Stammfunktionen der Funktion. Weil beispielsweise die Ableitung von x3 gleich 3x2 ist, ist das unbestimmte Integral von 3x2 gleich x3 + C, und Sie schreiben:


∫3x2 dx = x3 + C


Sie haben dieses Integrationssymbol, ∫, möglicherweise aus den Beschreibungen des bestimmten Integrals in Kapitel 13 wiedererkannt. Das Symbol für das bestimmte Integral enthält jedoch zwei kleine Zahlen oben und unten, zum Beispiel [image: ipad] , die Ihnen mitteilen, dass die Fläche einer Funktion zwischen diesen beiden Werten berechnet werden soll, den so genannten Integrationsgrenzen. Die unbeschriftete Version des Symbols, ∫, steht für ein unbestimmtes Integral oder eine Stammfunktion. Dieses Kapitel beschäftigt sich mit der engen Beziehung zwischen diesen beiden Symbolen.


Abbildung 14.1 zeigt die Familie der Stammfunktionen von 3x2, nämlich x3 + C. Beachten Sie, dass diese Kurvenfamilie eine unendliche Anzahl von Kurven enthält. Sie gehen endlos auf und ab und liegen unendlich dicht beieinander. Die vertikale Lücke von zwei Einheiten zwischen den Kurven in Abbildung 14.1 ist nur eine visuelle Erleichterung.


[image: ipad] 

Abbildung 14.1: Die Familie der Kurven x3 + C. Alle diese Funktionen haben dieselbe Ableitung, 3x2


Das Vokabular: Welchen Unterschied macht es?

Wenn Sie ein Pedant sind, sollten Sie sagen, dass das unbestimmte Integral von 3x2 gleich x3 + C ist, dass x3 + C die Familie oder Menge aller Stammfunktionen von 3x2 ist (Sie sagen nicht, x3 + C ist die Stammfunktion) und dass beispielsweise x3 + 10 eine Stammfunktion von 3x2 ist. Bei einer Prüfung sollten Sie natürlich +3x3 dx − x3 + C schreiben. Wenn Sie das C weglassen, verlieren Sie wertvolle Punkte.


Die müßige Flächenfunktion

Jetzt wird es ernst. Angenommen, Sie haben irgendeine Funktion f(x). Stellen Sie sich vor, dass Sie an irgendeinem t-Wert, nennen wir ihn s, eine fest verankerte vertikale Linie zeichnen. Betrachten Sie dazu Abbildung 14.2.


[image: ipad] 

Abbildung 14.2: Die Fläche unter f zwischen s und x wird durch die Bewegung der Linie an x immer weiter abgedeckt


Anschließend tragen Sie eine bewegliche vertikale Linie ein, die am selben Punkt beginnt, s (»s« steht für Startpunkt), und ziehen sie nach rechts. Wenn Sie die Linie verschieben, decken Sie eine immer größer werdende Fläche unter der Kurve ab. Diese Fläche ist eine Funktion von x, der Position der sich bewegenden Linie. In Symbolen schreiben Sie:


[image: image] 


Beachten Sie, dass t die Eingabevariable in f(t) ist, und nicht x, weil x bereits belegt ist – es ist die Eingabevariable in Af(x). Der Index f in Af gibt an, dass Af(x) die Flächenfunktion für die jeweilige Kurve f oder f(t) ist. Das dt ist ein kleiner Inkrementschritt entlang der t-Achse – letztlich ein unendlich kleiner Inkrementschritt.

Angenommen, Sie haben die einfache Funktion f(t) = 10 – das ist eine horizontale Linie bei y = 10. Wenn Sie über die Fläche gleiten und dabei an der Stelle s = 3 beginnen, erhalten Sie die folgende Flächenfunktion:


[image: image] 


Sie sehen, dass die Fläche, die von 3 bis 4 aufgespannt wird, gleich 10 ist, wenn Sie die Linie von 3 bis 4 ziehen. Dabei wird ein Rechteck abgedeckt, das die Breite 1 und die Höhe 10 hat, also eine Fläche von 1 mal 10, was gleich 10 ist. Betrachten Sie dazu Abbildung 14.3.



[image: ipad] 

Abbildung 14.3: Die Fläche unter f(t) = 10 zwischen 3 und x wird durch die bewegte vertikale Linie an der Stelle x abgedeckt


Af(4), die Fläche, die Sie abdecken, wenn Sie bei 4 ankommen, ist also gleich 10. Af(5) ist gleich 20, Af(6) ist 30 usw.


Das gilt für alle Funktionen, nicht nur für horizontale Linien. Betrachten Sie die Funktion g(t) und ihre Flächenfunktion, Ag(x), die in Abbildung 14.4 eine Fläche beginnend bei s = 2 abdeckt.



[image: ipad] 

Abbildung 14.4: Die Fläche unter g(t) zwischen 2 und x wird durch die bewegte vertikale Linie an x abgedeckt


Sie erkennen, dass Ag(3) etwa 20 ist, weil die Fläche, die zwischen 2 und 3 abgedeckt wird, eine Breite von 1 hat und die gekrümmte Oberseite des »Rechtecks« eine durchschnittliche Höhe von etwa 20 hat. In diesem Intervall liegt die Wachstumsrate von Ag(x) also bei etwa 20 Quadrateinheiten pro Sekunde. Zwischen 3 und 4 decken Sie etwa 15 Quadrateinheiten der Fläche ab, weil das etwa die durchschnittliche Höhe von g(t) zwischen 3 und 4 ist. Während der zweiten Sekunde – dem Intervall von x = 3 bis x = 4 – ist die Wachstumsrate von Ag(x) also etwa 15.


[image: image] Die Änderungsrate der Fläche, die unter einer Kurve von einer Flächenfunktion bis zu einem bestimmten x-Wert abgedeckt wird, ist gleich der Höhe der Kurve an diesem x-Wert.


Ich weiß, ich bin ein wenig ungenau – in meiner Beschreibung von Abbildung 14.4 –, weil ich Dinge wie »etwa« oder »Durchschnitt« sage. Aber glauben Sie mir einfach, wenn Sie es schließlich mathematisch nachvollziehen, wird alles funktionieren. In Kapitel 13 haben Sie gesehen, dass die Fläche unter einer Kurve immer besser angenähert wird, wenn eine steigende Anzahl immer schmaler werdender Rechtecke addiert wird, und dass die exakte Fläche bestimmt wird, indem irgendwie die Flächen einer unendlichen Anzahl unendlich schmaler Rechtecke addiert werden. Derselbe Grenzwertprozess ist auch hier zu erkennen – die Fläche und die Änderungsraten, die »etwa« dies-und-das sind, werden im Grenzwert exakt. Beachten Sie hier, dass die Änderungsrate der Fläche, die unter einer Kurve abgedeckt wird, gleich der Höhe der Kurve ist.


Ruhm und Ehre mit dem Hauptsatz der Analysis


Fanfaren! Nachdem Sie die Verbindung zwischen der Änderungsrate des Wachstums einer Flächenfunktion und der Höhe der betreffenden Kurve kennen gelernt haben, werden Sie jetzt den Hauptsatz der Analysis kennen lernen – von dem behauptet wird, er sei einer der wichtigsten Sätze in der Geschichte der Mathematik.


[image: image] Der Hauptsatz der Analysis: Für eine Flächenfunktion Af, die eine Fläche unter f(t) abdeckt,


[image: image] 


gilt, dass die Änderungsrate, mit der die Fläche abgedeckt wird, gleich der Höhe der ursprünglichen Funktion ist. Weil die Änderungsrate gleich der Ableitung ist, ist die Ableitung der Flächenfunktion gleich der ursprünglichen Funktion:


[image: image] 


Weil [image: ipad] ist, können Sie die obige Gleichung auch wie folgt schreiben:


[image: image] 


Das Riechfläschchen!

Weil die Ableitung von Af(x) gleich f(x) ist, ist Af(x) definitionsgemäß eine Stammfunktion von f(x). Überprüfen Sie, wie das sein kann, indem Sie wieder die einfache Funktion aus dem vorigen Abschnitt betrachten, f(t) = 10 sowie ihre Flächenfunktion, [image: ipad]

Gemäß dem Hauptsatz gilt [image: ipad]. Af muss also eine Stammfunktion von 10 sein. Mit anderen Worten, Af ist eine Funktion, deren Ableitung gleich 10 ist. Weil jede Funktion der Form 10x + C, wobei C eine beliebige Zahl ist, eine Ableitung von 10 hat, ist die Stammfunktion von 10 gleich 10x + C. Die jeweilige Zahl C ist von Ihrer Auswahl von s abhängig, dem Punkt, an dem Sie beginnen, die Fläche abzudecken. Angenommen, für diese Funktion beginnen Sie mit der Abdeckung der Fläche bei s = 0, dann ist C = 0, und damit [image: ipad]. (Beachten Sie, dass C nicht unbedingt gleich s sein muss. Normalerweise ist es das nämlich nicht. Die Beziehung zwischen C und s ist im Einschub Null ist nicht immer null am Ende dieses Abschnitts erklärt.)


Abbildung 14.5 zeigt, warum Af(x) = 10 die richtige Flächenfunktion ist, wenn Sie bei 0 anfangen, die Fläche abzudecken. In dem oberen Graphen in der Abbildung sehen Sie die Fläche unter der Kurve von 0 bis 3, also 30, gegeben durch Af(3) = 10 · 3 = 30. Und Sie erkennen, dass die Fläche von 0 bis 5 gleich 50 ist, was mit der Tatsache übereinstimmt, dass Af(5) = 10 · 5 = 50 ist.


Wenn Sie stattdessen beginnen, die Fläche ab s = –2 abzudecken und eine neue Flächenfunktion definieren, [image: ipad], dann ist C gleich 20, und Bf(x) ist damit 10x + 20. Diese Flächenfunktion ist um 20 größer als Af(x), das bei s = 0 beginnt, denn wenn Sie bei s = –2 beginnen, haben Sie bereits eine Fläche von 20 abgedeckt, wenn Sie zur 0 gelangen. Abbil-dung 14.5 zeigt, warum Bf(3) um 20 größer ist als Af(3).



[image: ipad] 

Abbildung 14.5: Drei Flächenfunktionen für f(t) = 10


Und wenn Sie mit dem Abdecken der Fläche bei s = 3 beginnen, ist die Flächenfunktion gleich [image: ipad]. Diese Funktion ist um 30 kleiner als Af(x), denn bei Cf(x) verlieren Sie das 3×10 große Rechteck zwischen 0 und 3, das in Af(x) enthalten ist (siehe unterer Graph in Abbildung 14.5).


[image: image] Die Fläche, die unter der horizontalen Linie f(t) = 10 von irgendeiner Zahl s bis x abgedeckt wird, ist durch eine Stammfunktion von 10 gegeben, nämlich 10x + C, wobei der Wert von C davon abhängig ist, wo Sie mit dem Abdecken der Fläche beginnen.


Für das nächste Beispiel betrachten Sie erneut die Parabel x2 + 1.


Die Flächenfunktion für das Abdecken der Fläche unter x2 + 1 ist [image: ipad]. Nach dem Hauptsatz der Analysis gilt [image: ipad] und damit ist Af eine Stammfunktion von x2 + 1. Jede Funktion der Form [image: ipad] hat eine Ableitung von x2 + 1. Für diese Flä chenfunktion sowie für das obige Beispiel ist C = 0, wenn s = 0 ist, und damit:


[image: image] 


Die Fläche, die von 0 bis 3 abgedeckt wird – und die wir in Kapitel 13 schon auf die harte Tour berechnet haben, indem wir den Grenzwert einer Riemann-Summe berechnet haben –, ist einfach Af(3):


[image: image] 


Wunderbar. Das war doch schon sehr viel weniger Arbeit als bei der harten Tour.


Und nachdem Sie die Flächenfunktion kennen, die bei 0 beginnt, [image: ipad] , ist es ein Kinderspiel, die Fläche anderer Bereiche unter der Parabel zu bestimmen, die nicht bei 0 beginnen. Angenommen, Sie wollen die Fläche unter der Parabel zwischen 2 und 3 ermitteln. Sie können diese Fläche berechnen, indem Sie die Fläche zwischen 0 und 2 von der Fläche zwischen 0 und 3 abziehen, sie ist gleich 12. Und die Fläche zwischen 0 und 2 ist [image: ipad] . Die Fläche zwischen 2 und 3 ist also 12 − 4⅔ oder 7⅓. Diese Subtraktionsmethode bringt uns zum nächsten Thema – der zweiten Version des Hauptsatzes.



Schlagzeile: Stammfunktionen vom Erbe ausgeschlossen, weil sie keinen x-Schnittpunkt hatten!

Betrachten Sie erneut Abbildung 14.1. Alle Familien der Stammfunktionen sehen wie ein Stapel paralleler Kurven aus, die endlos auf und ab laufen. Aber nur eine Untermenge jeder dieser Familien kann als Flächenfunktionen verwendet werden – nämlich die Stammfunktionen, die mindestens einen x-Schnittpunkt haben (manchmal ist diese Untermenge die ganze Familie, so wie in Abbildung 14.1). Und hier die Erklärung: Wenn eine Flächenfunktion beispielsweise an der Stelle x = 5 anfängt, eine Fläche abzudecken, muss Af(5) gleich null sein, weil an der Stelle 5 noch keine Fläche abgedeckt wurde. Die Stammfunktion für die Flächenfunktion, die bei 5 beginnt, muss also einen x-Schnittpunkt, eine Nullstelle, bei x = 5 haben. Wenn die Abdeckung bei x = –10 beginnt, würden Sie die Stammfunktion mit dem x-Schnittpunkt bei –10 verwenden usw. Eine Stammfunktion ohne x-Schnittpunkte kann nicht als Flächenfunktion genutzt werden. Sie wird aus der Familie ausgeschlossen.





Null ist nicht immer gleich null

In den beiden Beispielen f(t) = 10 und f(t) = t2 + 1 haben die Flächenfunktionen, die bei s = 0 beginnen, einen Wert von 0 für C in der Stammfunktion. Das ist für viele Funktionen der Fall – einschließlich aller Polynomfunktionen –, aber keineswegs für alle Funk-tionen. Für die Neugierigen unter Ihnen: Sie können den jeweiligen Wert von C für Ihre Auswahl von s bestimmen, indem Sie die Stammfunktion gleich 0 setzen, den Wert von s in x einsetzen und nach C auflösen.




Der Hauptsatz der Analysis: Teil 2

Jetzt sind wir endlich bei der wunderbaren Abkürzung für den Integrationssatz angekommen, den Sie den Rest Ihres Lebens anwenden werden – wenigstens, solange Sie es mit der Analysis zu tun haben.


[image: image] Wenn Sie eine Flächenfunktion anwenden, werten die erste Version des Hauptsatzes der Analysis und auch seine zweite Version die Flächen unterhalb der x-Achse als negative Flächen. Weitere Informationen über negative Flächen finden Sie in Kapitel 13.

[image: image] Der Hauptsatz der Analysis (abgekürzte Version): Sei F eine beliebige Stammfunktion der Funktion f, dann gilt:


[image: image] 


Dieser Satz verschafft Ihnen die wunderbare Abkürzung für die Berechnung eines bestimmten Integrals, wie etwa [image: ipad], der Fläche unter der Parabel x2 + 1 zwischen 2 und 3. [image: ipad] ist die einfache Stammfunktion von x2 + 1. Nach dem Satz


[image: image] 


kann also F(3) – F(2) geschrieben werden als [image: ipad] , und damit


[image: image] 


Das ist dieselbe Berechnung, wie ich sie im vorigen Abschnitt unter Verwendung der Flächenfunktion mit s = 0 durchgeführt habe, aber nur, weil für die Funktion x2 + 1, wenn s gleich 0 ist, C ebenfalls 0 ist. Es ist reiner Zufall und gilt nicht für alle Funktionen. Aber unabhängig von der Funktion funktioniert die Abkürzung und Sie brauchen sich keine Sorgen mehr über Flächenfunktionen oder s oder C zu machen. Sie lösen einfach nur F(b) – F(a).


Noch ein Beispiel. Was ist die Fläche unter f(x) = ex zwischen x = 3 und x = 5? Die Ableitung von ex ist ex, ex ist also eine Stammfunktion von ex, und damit:


[image: image] 


Einfacher geht es nicht. Und wenn eine riesige Abkürzung noch nicht genug war, um Sie durch den Tag zu bringen, sehen Sie sich Tabelle 14.1 an, wo Sie einige Regeln zu bestimmten Integralen finden, die Ihnen das Leben sehr viel leichter machen können.





	1.
	[image: ipad]
	(Zwischen a und a gibt es einfach keine Fläche.)



	2.
	[image: ipad]
	 



	3.
	[image: ipad]
	 



	4.
	[image: ipad]
	(k ist eine Konstante; Konstanten können aus dem Integral gezogen werden.)



	5.
	[image: ipad]
	 





Tabelle 14.1: Fünf einfache Regeln für bestimmte Integrale


Warum der Hauptsatz funktioniert: Die Verbindung zwischen Integration und Differentiation


Abbildung 14.6 zeigt eine Funktion, x2 + x, und ihre Ableitung, 2x + 1. Betrachten Sie die Zahlen 4, 6 und 8 in beiden Graphen sehr sorgfältig. Die Verbindung zwischen 4, 6 und 8 in dem Graphen von f – wobei es sich hier um die Beträge der Höhe zwischen aufeinanderfolgenden Punkten auf der Kurve handelt – und 4, 6 und 8 auf dem Graphen von fχ – wobei es sich um die Flächen der Trapeze unter fχ handelt – zeigt die enge Beziehung zwischen



[image: ipad] 

Abbildung 14.6: Das Wesen der Differentiation und Integration in einer einzigen Abbildung! Eine Art Yin und Yang!



Integration und Differentiation. Abbildung 14.6 ist wahrscheinlich die wichtigste Abbildung im ganzen Buch. Diese Abbildung steht für Tausende von Symbolen und Gleichungen, die das Wesen der Integration in einer einzigen Momentaufnahme einschließen. Sie demonstriert, wie die zweite Version des Hauptsatzes funktioniert, weil sie zeigt, dass die Fläche unter 2x + 1 zwischen 1 und 4 gleich der gesamten Höhe von f zwischen (1|2) und (4|20) ist, mit anderen Worten:


[image: image] 


Beachten Sie, dass ich die beiden Funktionen in Abbildung 14.6 und in der obigen Gleichung als f und fχ bezeichnet habe, um zu verdeutlichen, dass 2x + 1 die Ableitung von x2 + x ist. Ich hätte x2 + x stattdessen auch als F und 2x + 1 als f bezeichnen können, womit ich verdeutlicht hätte, dass x2 + x eine Stammfunktion von 2x + 1 ist. In diesem Fall würden Sie die obige Flächengleichung auf die Standardweise schreiben:


[image: image] 


Jedenfalls bedeuten beide dasselbe. Ich verwende die Ableitungsversion, um zu zeigen, wie die Bestimmung der Fläche eine umgekehrte Differentiation ist. Wenn Sie in Abbildung 14.6 von links nach rechts gehen, haben Sie eine Differentiation: Die Höhen von fχ teilen Ihnen die Steigungen von f mit. Wenn Sie von rechts nach links gehen, haben Sie die Integration: Die Änderung zwischen den beiden Höhen auf f ergeben die Fläche unter fχ.


Und so funktioniert es. Stellen Sie sich vor, Sie gehen f entlang von (1|2) zu (2|6) nach oben. Jeder Punkt auf dem Weg hat eine bestimmte Steilheit, eine Steigung. Diese Steigung wird als die y-Koordinate, oder die Höhe, auf dem Graphen von fχ eingetragen. Die Tatsache, dass fχ von (1|3) nach (2|5) steigt, teilt Ihnen mit, dass die Steigung von f von 3 bis 5 steigt, wenn Sie sich von (1|2) nach (2|6) bewegen. Das alles folgt aus der grundlegenden Differentiation.

Wenn Sie jetzt f von (1|2) bis (2|6) entlanggehen, ändert sich die Steigung ständig. Es stellt sich jedoch heraus, dass, weil Sie um einen Gesamtanstieg von 4 nach oben gehen, der Durchschnitt aller Steigungen auf f zwischen (1|2) und (2|6) gleich [image: ipad] oder 4 ist, wenn Sie sich um eine Einheit nach rechts bewegen. Weil jede dieser Steigungen als y-Koordinate oder Höhe auf fχ dargestellt ist, folgt daraus, dass die durchschnittliche Höhe von fχ zwischen (1|3) und (2|5) ebenfalls 4 ist. Zwischen zwei bestimmten Punkten auf f ist die durchschnittliche Steigung von f also gleich der durchschnittlichen Höhe auf fχ.


Wir sind fast fertig. Die Steigung ist gleich Anstieg [image: ipad], wenn die Weite also gleich 1 ist, ist die Steigung gleich dem Anstieg. Von (1|2) bis (2|6) auf f beispielsweise steigt die Kurve 4 nach oben und die durchschnittliche Steigung zwischen diesen Punkten ist ebenfalls 4. Zwischen zwei gegebenen Punkten auf f ist also die durchschnittliche Steigung gleich dem Anstieg.


Die Fläche eines Trapezes wie desjenigen rechts in Abbildung 14.6 ist gleich seiner Breite mal seiner durchschnittlichen Höhe. (Das gilt auch für alle anderen vergleichbaren Formen, die eine Grundfläche wie ein Rechteck haben; die Oberseite kann eine beliebig gekrümmte

Linie oder eine abgefahrene Kurve sein, ganz wie Sie möchten.) Weil die Breite jedes Trapezes gleich 1 ist und alles mal 1 gleich wieder sich selbst ergibt, ist die durchschnittliche Höhe des Trapezes unter fχ gleich seiner Fläche; beispielsweise ist die Fläche des ersten Trapezes gleich 4 und seine durchschnittliche Höhe ist ebenfalls 4.


Und jetzt zum großen Finale? Hier die gesamte Argumentation in Kurzform. Auf f ist Anstieg = durchschnittliche Steigung; wenn Sie von f nach fχ gehen, ist die durchschnittliche Steigung = durchschnittliche Höhe; auf fχ ist die durchschnittliche Höhe = Fläche. Damit erhalten Sie Anstieg = Steigung = Höhe = Fläche und damit Anstieg = Fläche. Und das ist genau das, was die zweite Version des Hauptsatzes besagt:


[image: image] 


Wunderbar. (Und auch wenn Sie, wie ich vermute, nicht alles auf Anhieb verstanden haben, dann ändert dies nichts an der Tatsache, dass ich mächtig stolz auf das eben Geschriebene bin.) Spaß beiseite. Dies alles ist natürlich schwierig. Möglicherweise müssen Sie es zweimal oder auch dreimal lesen, damit Sie es wirklich verstehen.


Beachten Sie, dass es keinen Unterschied für die Beziehung zwischen Steigung und Fläche bedeutet, wenn Sie eine andere Funktion der Form x2 + x + C statt x2 + x verwenden. Jede Parabel wie etwa x2 + x + 10 oder x2 + x + 5 hat genau dieselbe Form wie x2 + x – sie wurde einfach nur vertikal nach oben oder unten verschoben. Jede dieser Parabeln steigt zwischen x = 1 und x = 4 auf genau dieselbe Weise wie die Parabel in Abbildung 14.6. Von 1 bis 2 gehen diese Parabeln um eine Einheit nach rechts und vier Einheiten nach oben. Von 2 bis 3 gehen sie eine nach rechts und sechs nach oben usw. Deshalb kann auch jede Stammfunktion verwendet werden, um die Fläche zu ermitteln. Die Gesamtfläche unter fχ zwischen 1 bis 4, nämlich 18, entspricht dem Gesamtanstieg auf jeder dieser Parabeln von 1 bis 4, nämlich 4 + 6 + 8 = 18.


Gut, damit haben wir es. Das waren die Erklärungen dafür, warum die Kurzversion des Hauptsatzes funktioniert und warum die Bestimmung der Fläche die umgekehrte Differentiation ist. Wenn Sie auch nur die Hälfte des hier Geschriebenen verstanden haben, dann sind Sie den meisten Analysisstudenten weit voraus. Und Sie haben den Vorteil, dass Sie zu diesem Stoff sehr wahrscheinlich keine Prüfung schreiben.


Aber jetzt zurück auf den Boden.


Stammfunktionen finden: Drei grundlegende Techniken


Ich habe jetzt viel über Stammfunktionen geschrieben, aber wie findet man sie? In diesem Abschnitt zeige ich Ihnen drei einfache Techniken.


Umkehrregeln für Stammfunktionen

Die einfachsten Regeln für Stammfunktionen sind diejenigen, die das Umgekehrte der bereits bekannten Ableitungsregeln darstellen. Dabei handelt es sich um automatische, einstufige Stammfunktionen, mit Ausnahme der umgekehrten Potenzregeln, die aber auch nur unwesentlich schwieriger ist.


Umkehrregeln für Denkschwache

Sie wissen, dass die Ableitung von sinx gleich cosx ist; wenn Sie das Ganze also umkehren, können Sie sagen, dass sinx Stammfunktion von cosx ist. Kann es noch einfacher sein? Aber vergessen Sie nicht, dass alle Funktionen der Form sinx + C Stammfunktionen von cosx sind. In Symbolen dargestellt, schreiben Sie:



[image: image] 


Tabelle 14.2 listet die Umkehrregeln für Stammfunktionen auf.






	1.
	∫ dx = x + C
	2.
	[image: ipad]



	3.
	∫ ex dx = ex + C
	4.
	[image: ipad]



	5.
	[image: ipad]
	 
	 



	6.
	∫ sin dx = −cos x + c
	7.
	∫ cos x dx = sin x + c






Tabelle 14.2: Grundlegende Formeln für die Stammfunktionen


Die etwas schwierigere umgekehrte Potenzregel


Nach der Potenzregel wissen Sie, dass gilt:


[image: image] 


Und hier die einfache Methode für die Umkehrung der Potenzregel. Betrachten Sie hier die Funktion 5x4. Sie wissen, dass die Potenzregel wie folgt vorgeht:


1. Bringen Sie die Potenz nach vorne, wo sie mit der restlichen Ableitung multipliziert wird.


5 x4 → 4 · 5x4


2. Reduzieren Sie die Potenz um 1 und vereinfachen Sie.


4 · 5x4 → 4 · 5x3 = 20x3


Um diesen Prozess umzukehren, kehren Sie die Reihenfolge der beiden Schritte um und machen die Mathematik innerhalb dieser beiden Schritte rückgängig. Und so geht das für die obige Aufgabenstellung:


1. Erhöhen Sie die Potenz um 1.

Die 3 wird zu einer 4.

20x3 → 20x4

2. Dividieren Sie durch die neue Potenz und vereinfachen Sie.


[image: image] 

Sie schreiben also ∫ 20x3dx = 5x4 + C.


[image: image] Insbesondere, wenn Sie noch nicht viel Erfahrung mit der Rückgängigmachung der Differentiation gesammelt haben, sollten Sie Ihre Stammfunktionen testen, indem Sie sie differenzieren – Sie können dabei das C ignorieren. Wenn Sie wieder zu Ihrer ursprünglichen Funktion zurückgelangen, wissen Sie, dass Ihre Stammfunktion korrekt ist.


Mit der eben gefundenen Stammfunktion und der zweiten Version des Hauptsatzes können Sie die Fläche unter 20x3 zwischen beispielsweise 1 und 2 ermitteln:


[image: image] 


Raten und Prüfen

Die Raten-und-Prüfen-Methode funktioniert, wenn der Integrand – das heißt das, wofür Sie die Differentiation rückgängig machen wollen (der Ausdruck hinter dem Integralsymbol ohne das dx) – in der Nähe einer Funktion liegt, für die Sie die Umkehrregel kennen. Angenommen, Sie suchen die Stammfunktion für cos (2x). Sie wissen, dass die Ableitung von Sinus gleich Kosinus ist. Wenn Sie dies umkehren, wissen Sie, dass die Stammfunktion von Kosinus gleich Sinus ist. Sie könnten jetzt denken, die Stammfunktion von cos (2x) sei sin (2x). Das raten Sie. Jetzt prüfen Sie, indem Sie differenzieren, um zu sehen, ob Sie die ursprüngliche Funktion wieder erhalten, cos (2x).


[image: image] 


Dieses Ergebnis liegt sehr nah an der ursprünglichen Funktion, außer dass wir hier den zusätzlichen Koeffizienten 2 haben. Mit anderen Worten, die Lösung ist doppelt so groß, wie Sie erwartet haben. Weil Sie ein Ergebnis haben wollen, das die Hälfte davon ausmacht, probieren Sie es mit einer Stammfunktion, die die Hälfte Ihrer ersten Schätzung darstellt: [image: ipad]. Prüfen Sie die zweite Schätzung, indem Sie sie differenzieren. Damit erhalten Sie das gewünschte Ergebnis.


Noch ein Beispiel. Was ist die Stammfunktion von (3x – 2)4?


1. Schätzen Sie die Stammfunktion.

Das Ganze sieht sehr nach einer Potenzregel aus, deshalb probieren wir es mit der umgekehrten Potenzregel. Die Stammfunktion von x4 ist nach der umgekehrten Potenzregel gleich [image: ipad], Ihre Schätzung ist also [image: ipad].

2. Prüfen Sie Ihre Schätzung, indem Sie sie differenzieren.

[image: image] 

3. Passen Sie Ihre erste Schätzung an.

Ihr Ergebnis, 3(3x – 2)4 ist dreimal so hoch, deshalb verwenden Sie als zweite Schätzung ein Drittel Ihrer ersten Schätzung, das heißt [image: ipad] oder [image: ipad].

4. Prüfen Sie Ihre zweite Schätzung, indem Sie sie differenzieren.

[image: image] 


Die beiden vorigen Beispiele zeigen, dass Schätzen und Prüfen gut funktioniert, wenn die Funktion, für die Sie die Differentiation rückgängig machen wollen, ein Argument wie etwa 3x oder 3x + 2 hat (wobei x in die erste Potenz erhoben ist) statt eines ganz normalen x. (Sie wissen, dass in einer Funktion wie etwa [image: ipad] der Term 5x als Argument bezeichnet wird.) In diesem Fall brauchen Sie Ihre Schätzung nur noch ein bisschen anzupassen, nämlich mit dem Kehrwert des Koeffizienten von x – der 3 in 3x + 2, beispielsweise (die 2 in 3x + 2 wirkt sich nicht auf Ihre Lösung aus). Für diese einfachen Aufgabenstellungen brauchen Sie aber letztlich kein Schätzen und Prüfen. Sie erkennen sofort, wie Sie Ihre Schätzung anpassen müssen. Das Ganze wird zu einem einstufigen Prozess. Wenn das Argument der Funktion komplizierter als 3x + 2 ist, beispielsweise das x2 in cos (x2), müssen Sie es mit der nächsten Methode ausprobieren: Substitution.


Die Substitutionsmethode

Angenommen, Sie suchen die Stammfunktion von cos (x2) und schätzen, dass sie gleich sin (x2) ist. Beobachten Sie jetzt, was passiert, wenn Sie sin (x2) differenzieren, um das Ganze zu prüfen:


[image: image] 


Hier erzeugt die Kettenregel ein zusätzliches 2x, weil die Ableitung von x2 gleich 2x ist, aber wenn Sie versuchen, dies zu kompensieren, indem Sie Ihrer Schätzung [image: ipad] hinzufügen, funktioniert das nicht. Probieren Sie es aus!


Weil die Ableitung von sin (x2) gleich 2x cos (x2) ist, muss die Stammfunktion von 2x cos (x2) gleich sin (x2) sein. Diese Funktion, 2x cos (x2), ist die Art Funktion, deren Stammfunktion Sie mit Hilfe der Substitutionsmethode finden.


[image: image] Die Substitutionsmethode funktioniert, wenn der Integrand eine Funktion und die Ableitung des Funktionsarguments enthält – mit anderen Worten, wenn er das zusätzliche Ding enthält, das die Kettenregel produziert –, oder etwas Ähnliches, außer einer Konstanten. Außerdem darf der Integrand nichts anderes enthalten.


Die Ableitung von ex3 ist ex3 · 3x2 (nach der ex-Regel und der Kettenregel). Die Stammfunktion von ex3 · 3x2 ist also ex3. Und wenn Sie aufgefordert werden, die Stammfunktion von ex3 · 3x2 zu bestimmen, wissen Sie, dass die Substitutionsmethode funktioniert, weil dieser Ausdruck 3x2 enthält, was die Ableitung des Arguments von ex3 ist, nämlich x3.


Wir bestimmen nun die Stammfunktion von ∫ 2x cos (x2)dx mit Hilfe der Substitution.


1. Setzen Sie u gleich dem Argument der Hauptfunktion.

Das Argument von cos (x2) ist x2, deshalb setzen Sie u gleich x2.

2. Bestimmen Sie die Ableitung von u für x.

[image: image] 

3. Lösen Sie nach dx auf.

[image: image] 

4. Machen Sie die Substitutionen.

In ∫ 2x cos (x2)dx nimmt u die Stelle von x2 ein, und [image: ipad] nimmt die Stelle von dx ein. Damit haben Sie [image: ipad]. Die beiden 2x heben sich auf, wodurch Sie ∫ cos udu erhalten.

5. Suchen Sie die Stammfunktion unter Verwendung der einfachen Umkehrregel.

∫ cos udu = sin u + C

6. Setzen Sie für u wieder x2 ein – womit sich der Kreis schließt.

u ist gleich x2, deshalb wird x2 für das u eingesetzt:

∫ cos udu = sin (x2) + C

Das ist alles.

∫ 2x cos (x2) dx = sin(x2) + C.


Flächen mit Hilfe von Substitutionsaufgaben bestimmen

Sie können den Hauptsatz verwenden, um die Fläche unter einer Funktion zu berechnen, die Sie mit Hilfe der Substitutionsmethode integrieren. Dazu gibt es zwei Methoden. Im vorigen Abschnitt verwende ich die Substitution, indem ich u gleich x2 setze, um die Stammfunktion von 2x cos (x2) zu finden:


∫ 2x cos (x2)dx = sin (x2) + C


Wenn Sie die Fläche unter dieser Kurve beispielsweise von ½ bis 1 berechnen wollen, hilft Ihnen der Hauptsatz:


[image: image] 


Eine weitere Methode, die dasselbe ergibt, ist es, die Integrationsgrenzen zu ändern und die gesamte Aufgabe mit u zu lösen. Betrachten Sie dazu die sechsstufige Lösung im Abschnitt Die Substitutionsmethode. Was folgt, ist sehr ähnlich, außer dass Sie jetzt eine bestimmte Integration vornehmen, statt eine unbestimmte. Auch hier wollen Sie die Fläche berechnen, die durch [image: ipad] abgedeckt wird.


1. Setzen Sie u gleich x2.

2. Bestimmen Sie die Ableitung von u für x.

[image: image] 

3. Lösen Sie nach dx auf.

[image: image] 

4. Bestimmen Sie die neuen Integrationsgrenzen.

u = x2, wenn also [image: ipad] ist, dann ist [image: ipad] und wenn x = 1 ist, dann ist u = 1.

5. Nehmen Sie die Substitutionen vor, berücksichtigen Sie dabei die neuen Integrations-grenzen und kürzen Sie die beiden 2x.

Bei dieser Aufgabenstellung ist nur eine der Grenzen neu, denn wenn x = 1 ist, dann ist u = 1.

[image: image] 

6. Wenden Sie die Stammfunktion und den Hauptsatz an, um die gewünschte Fläche zu erhalten, ohne wieder zu x2 zurückzuwechseln.

[image: image] 

Diese beiden Methoden sind Jacke wie Hose. Der Arbeitsaufwand ist bei beiden derselbe. Wählen Sie eine aus!




15

Integrationstechniken für Profis

In diesem Kapitel ...

[image: ipad] Integrale in Teile zerlegen

[image: ipad] A, B und C in Teilbrüchen verstehen

[image: ipad] LIATE: Liliputaner In Afrika Tragen Elefantenohren



Ich glaube, nach all den theoretischen Grundlagen aus Kapitel 14 wird eine Pause nicht schaden. Dieses Kapitel verschafft Ihnen eine solche Pause und zeigt Ihnen praxisbezogene Integrationstechniken.


Teilweise (partielle) Integration: Teilen und Herrschen!

Die teilweise Integration ist die Integrationsvariante der Produktregel für die Differentiation. Glauben Sie mir einfach. Das grundlegende Konzept der teilweisen Integration ist ein Integral, das Sie nicht integrieren können, in ein einfaches Produkt minus einem Integral umzuwandeln, wofür das möglich ist. Hier die Formel:

[image: image] Teilweise Integration: ∫ u dv = uv - ∫ v du

Versuchen Sie nicht, dies gleich zu verstehen. Die folgenden Beispiele werden Ihnen helfen.

Beachten Sie, dass in ∫ udv und in uv das u und das v in alphabetischer Reihenfolge auftreten.

Und hier die Beschreibung dieser Methode in Kurzfassung. Was ist [image: ipad]ln(x)dx? Zuerst teilen Sie den Integranden in u und in dv auf, wodurch er der Formel entspricht. Für diese Aufgabe soll ln (x) Ihr u sein. Alles andere ist dann dv, also [image: ipad]. (Ich werde Ihnen im nächsten Abschnitt zeigen, wie das u zu wählen ist – es ist ganz einfach.) Anschließend differenzieren Sie u, um Ihr du zu erhalten, und dann integrieren Sie dv, um Ihr v zu erhalten. Schließlich setzen Sie alles in die Formel ein und haben gewonnen.

[image: image] Um alles möglichst einfach zu halten, ordnen Sie Ihre Aufgabenstellungen mit der teilweisen Integration in einem Rahmen an, wie in Abbildung 15.1 gezeigt. Zeichnen Sie einen leeren 2×2-Rahmen, setzen Sie Ihr u, in diesem Fall ln (x), in die obere linke Ecke ein und Ihr dv,[image: ipad], in die untere rechte Ecke. Betrachten Sie dazu Abbildung 15.2.


[image: ipad] 

Abbildung 15.1: Der Rahmen für die teilweise Integration

[image: ipad] 

Abbildung 15.2: Der Rahmen wird gefüllt.

Die Pfeile in Abbildung 15.2 erinnern Sie daran, dass Sie links differenzieren und rechts integrieren. Stellen Sie sich die Differentiation – das ist das Einfachere – als von oben nach unten (wie beim Skifahren) vor, und die Integration – das ist das Schwierigere – als von unten nach oben (wie beim Bergsteigen).

Jetzt berechnen Sie die fehlenden Einträge für den Rahmen:

[image: image] 


Abbildung 15.3 zeigt den fertig ausgefüllten Rahmen.

[image: ipad] 

Abbildung 15.3: Der ausgefüllte Rahmen für [image: ipad]ln(x)dx

Sie können sich die Formel für die teilweise Integration gut merken, indem Sie im linken oberen Feld beginnen und dann eine imaginäre 7 zeichnen – erst nach rechts und dann nach unten links. Betrachten Sie dazu Abbildung 15.4.

[image: ipad] 

Abbildung 15.4: Ein Rahmen mit 7. Wer behauptet, Analysis sei kompliziert?

Merken Sie sich, wie Sie die 7 eingetragen haben, und betrachten Sie erneut Abbil-dung 15.3. Die Formel für die teilweise Integration besagt, dass Sie den oberen Teil der 7 erledigen müssen, nämlich ln[image: ipad], minus dem Integral des diagonalen Teils der 7, [image: ipad]. Das ist übrigens sehr viel einfacher zu tun als zu erklären. Probieren Sie es aus!

Sie werden sehen, wie Ihnen dieses Schema hilft, die Formel zu lernen und diese Aufgabenstellungen auf die Reihe zu bekommen.

Und jetzt weiter. Setzen Sie alles in die Formel ein:


[image: image] 


Im letzten Schritt ersetzen [image: ipad] durch C, weil [image: ipad] multipliziert mit irgendeiner Zahl wieder irgendeine Zahl ergibt.



Das u auswählen

Und jetzt folgt eine wunderbare Eselsbrücke, wie Sie das u auswählen können (auch hier gilt: Wenn Sie das u ausgewählt haben, ist alles andere automatisch das dv).

[image: image] Herbert E. Kasube hat sich das Akronym LIATE ausgedacht, das Ihnen bei der Auswahl des u helfen sollte (Analysisfreaks können den Artikel von Herrn Kasube im American Mathematical Monthly 90, Ausgabe 1983, nachlesen):





	L 
	Logarithmisch 
	(wie log (x))



	I 
	Invers trigonometrisch 
	(wie arctan (x))



	A 
	Algebraisch 
	(wie 5x2 + 3)




	T 
	Trigonometrisch 
	(wie cos (x))



	E 
	Exponentiell 
	(wie 10x)







Um Ihr u auszuwählen, durchlaufen Sie diese Liste der Reihe nach: Der erste Funktionstyp in der Liste, der im Integranden auftaucht, ist Ihr u.

Und jetzt ein paar extrem hilfreiche Hinweise, wie Sie sich das Akronym LIATE merken können. Wie wäre es mit Liliputaner In Afrika Tragen Elefantenohren? Oder Lustig Ist Auch Tante Erna. Leider Ist Auch Thomas Enterbt. Denken Sie sich einfach etwas aus, was Sie sich irgendwie merken können!

Und jetzt zu einem Beispiel. Integrieren Sie ∫ x sin(3x)dx.

1. Durchlaufen Sie die LIATE-Liste und wählen Sie das u aus.

Wenn Sie die LIATE-Liste nach unten durchlaufen, ist der erste Funktionstyp, den Sie in x sin (3x) dx finden, eine sehr einfache algebraische Funktion, nämlich x. Das ist also Ihr u.

2. Legen Sie den Rahmen an.

Betrachten Sie dazu Abbildung 15.5.


[image: ipad] 

Abbildung 15.5: Noch mehr Rahmen

3. Setzen Sie alles in die Formel für die teilweise Integration ein oder zeichnen Sie eine imaginäre 7 durch den Rahmen rechts in Abbildung 15.5.


[image: image] 


∫ cos(3x)dx können Sie ganz leicht durch Substitution oder die Schätzen-und-Prüfen-Methode integrieren. Probieren Sie es. Ihr Ergebnis sollte [image: ipad] sein.



Teilweise Integration: Beim zweiten wie beim ersten Mal

Manchmal müssen Sie die Methode der teilweisen Integration mehrfach anwenden, weil der erste Durchlauf nicht die endgültige Lösung erbringt. Hier ein Beispiel: Bestimmen Sie ∫ x2ex dx.

1. Durchlaufen Sie die LIATE-Liste nach unten und wählen Sie das u.

x2ex dx enthält eine algebraische Funktion, x2, ebenso wie eine Exponentialfunktion, ex (es ist eine Exponentialfunktion, weil ein x im Exponenten steht). Auf der LIATE-Liste finden Sie als Erstes x2, deshalb ist dies Ihr u.

2. Jetzt die Sache mit den Rahmen.

Betrachten Sie dazu Abbildung 15.6.


[image: ipad] 

Abbildung 15.6: Die Rahmen für ∫ x2ex dx

3. Verwenden Sie die Formel für die teilweise Integration – oder die Eselsbrücke mit der 7.


[image: image] 

Sie erhalten ein weiteres Integral, ∫ xex dx, das Sie nicht mit Hilfe einer der einfacheren Methoden aus der Welt schaffen können – Umkehrregeln, Schätzen und Prüfen oder Substitution. Beachten Sie jedoch, dass die Potenz von x um 1 reduziert wurde, Sie haben also schon Fortschritte gemacht. Wenn Sie für ∫ xex dx erneut die teilweise Integration anwenden, verschwindet das x völlig und Sie sind fertig.

4. Führen Sie erneut die teilweise Integration durch.

Diesmal machen Sie es selbst.


[image: image] 

5. Nehmen Sie das Ergebnis aus Schritt 4 und setzen Sie es für das ∫ xex dx in der Lösung aus Schritt 3 ein, um jetzt den ganzen Schmodder zu erzeugen.


[image: image] 


A, B und C in Teilbrüchen (Partialbrüchen)

Sie verwenden die Methode der Teilbrüche, um rationale Funktionen zu integrieren, beispielsweise [image: ipad]. Die grundlegende Idee dabei ist, einen Bruch zu »entaddieren«: [image: ipad], Sie können also [image: ipad] aufsplitten in [image: ipad] plus [image: ipad]. Wir beginnen mit einem Bruch wie etwa [image: ipad], und zerlegen ihn in eine Summe aus Brüchen, [image: ipad] nur dass wir es hier mit komplizierten rationalen Funktionen zu tun haben und nicht mit gewöhnlichen numerischen Brüchen.


Bevor wir die Technik der Teilbrüche anwenden, müssen Sie prüfen, ob Ihr Integrand ein »echter« Bruch ist, das heißt ein Bruch, bei dem der Grad des Zählers kleiner als der Graddes Nenners ist. Wenn der Integrand nicht »echt« ist, wie etwa [image: ipad], müssen Sie zuerst eine lange Polynomdivision ausführen, um den unechten Bruch in eine Summe aus einem Polynom (was manchmal einfach eine Zahl ist) und einem echten Bruch umzuwandeln. Und hier die Division für diesen unechten Bruch (ohne weitere Erklärung). Grundsätzlich gehen Sie dabei vor wie bei gewöhnlichen langen Divisionen.


[image: image] 


Mit der regulären Division erhalten Sie, wenn Sie 23 durch 4 teilen, einen Quotienten von 5 und einen Rest von 3, woran Sie erkennen, dass [image: ipad] gleich [image: ipad] oder [image: ipad] ist. Das Ergebnis der obigen Polynomdivision teilt Ihnen dasselbe mit. Der Quotient ist 2 und der Rest ist x2 + 6x – 6, Sie erhalten also [image: ipad] ist gleich [image: ipad]. Die ursprüngliche Aufgabenstellung, [image: ipad] wird zu [image: ipad]. Das erste Integral ist einfach nur 2x. Anschließend lösen Sie das zweite Integral mit der Teilbruchmethode. Nachfolgend erfahren Sie, wie das funktioniert. Das erste Beispiel ist grundlegend, beim zweiten wird es schon etwas komplizierter.



1. Fall: Der Nenner enthält nur lineare Faktoren

Integrieren Sie [image: ipad]. Dies ist ein Problem des 1. Falls, weil der faktorisierte Nenner (siehe Schritt 1) nur lineare Faktoren enthält – mit anderen Worten, Polynome ersten Grades.


1. Faktorisieren Sie den Nenner.


[image: image] 

2. Zerlegen Sie den Bruch auf der rechten Seite in eine Summe aus Brüchen, wobei jeder Faktor des Nenners in Schritt 1 zum Nenner eines separaten Bruchs wird. Anschließend setzen Sie Unbekannte in den Zähler jedes Bruchs ein.


[image: image] 

3. Multiplizieren Sie beide Seiten dieser Gleichung mit dem Nenner von der linken Seite. Das ist Algebra I, deshalb muss ich die einzelnen Schritte hier sicher nicht zeigen.

5 = A(x + 3) + B(x – 2)

4. Bestimmen Sie die Nullstellen der linearen Faktoren und setzen Sie sie – nacheinander – für das x in der Gleichung aus Schritt 3 ein. Lösen Sie nach den Unbekannten auf.


[image: image] 


5. Setzen Sie diese Ergebnisse für A und B in der Gleichung aus Schritt 2 ein.


[image: image] 

6. Teilen Sie das ursprüngliche Integral in die Teilbrüche aus Schritt 5 auf – fertig.

[image: image] 


2. Fall: Der Nenner enthält nicht zu kürzende quadratische Faktoren

Manchmal kann man einen Nenner nicht linear faktorisieren, weil irgendwelche Quadrate nicht gekürzt werden können – wie Primzahlen, die ebenfalls nicht weiter aufgeteilt werden können. Sie können einfach überprüfen, ob ein quadratischer Ausdruck (ax2 + bx + c) reduzierbar ist, indem Sie seine Diskriminante überprüfen, b2 – 4ac. Ist die Diskriminante negativ, dann ist der quadratische Ausdruck nicht reduzierbar. Die Anwendung der Technik von Teilbrüchen mit nicht reduzierbaren quadratischen Ausdrücken verhält sich etwas anders.

Hier eine Aufgabenstellung: Integrieren Sie [image: ipad].

1. Faktorisieren Sie den Nenner.


Das ist bereits passiert. Sagen Sie nicht, ich sei nicht gut zu Ihnen!

2. Zerlegen Sie den Bruch in eine Summe von »Teilbrüchen«.

Wenn Sie einen nicht reduzierbaren quadratischen Faktor haben (wie etwa x2 + 4), brau-chen Sie für den Zähler dieses Teilbruchs zwei Unbekannte in der Form Ax + B.


[image: image] 


3. Multiplizieren Sie beide Seiten dieser Gleichung mit dem Nenner auf der linken Seite.


[image: image] 


4. Bestimmen Sie die Nullstellen der linearen Faktoren und setzen Sie sie – nacheinander – für das x in der Gleichung aus Schritt 3 ein und lösen Sie auf.


[image: image]


Anders als bei dem Beispiel aus dem 1. Fall können Sie hier nicht nach allen Unbekannten auflösen, indem Sie die Nullstellen der linearen Faktoren einsetzen, deshalb haben Sie ein wenig mehr Arbeit.


5. Setzen Sie die bekannten Werte von A und B in die Gleichung aus Schritt 3 ein und zwei beliebige Werte für x, die in Schritt 4 nicht verwendet wurden (kleine Zahlen machen die Arithmetik geringfügig einfacher), um ein System von zwei Gleichungen für die Ausdrücke C und D zu erhalten.

A = 1 und B = 2, dann erhalten wir:


[image: image] 


6. Lösen Sie das System auf: 1 = − C + D und 7 = 2C + D.

Sie erhalten C = 2 und D = 3. Die Mathematik können Sie selbst nachprüfen.


7. Teilen Sie das ursprüngliche Integral auf und integrieren Sie.

Unter Verwendung der Werte aus den Schritten 4 und 6, A = 1, B = 2, C = 2 und D = 3, und der Gleichung aus Schritt 2 können Sie das ursprüngliche Integral in drei Teile zerlegen:


[image: image] 


Mit Hilfe einfacher Algebra können Sie das dritte Integral auf der rechten Seite in zwei Teile zerlegen, wodurch Sie die endgültige Teilbruchzerlegung erhalten:

[image: image] 

Die beiden ersten Integrale sind einfach. Für das dritte Integral verwenden Sie die Substitution mit u = x2 + 4 und du = 2x dx. Das vierte Integral wird mit Hilfe der Arkustangens-Regel gelöst, die Sie auf der Schummelseite finden.


[image: image] 



Bonusrunde: Koeffizienten ähnlicher Terme gleichsetzen

Und es gibt noch eine Methode, Ihre großbuchstabigen Unbekannten zu finden, die Sie unbedingt in Ihre Trickkiste aufnehmen sollten. Angenommen, Sie erhalten Folgendes für Ihre Gleichung aus Schritt 3 (das Ganze stammt aus einer Aufgabenstellung mit zwei nicht reduzierbaren quadratischen Faktoren):

2x3 + x2 – 5x + 4 = (Ax + B)(x2 + 1) + (Cx + D)(x2 + 2x + 2)

Diese Gleichung hat keine linearen Faktoren, deshalb können Sie die Nullstellen nicht einsetzen, um die Unbekannten zu erhalten. Stattdessen multiplizieren Sie die rechte Seite der Gleichung aus:

2x3 + x2 – 5x + 4 = Ax3 + Ax + Bx2 + B + Cx3 + 2Cx2 + 2Cx + Dx2 + 2Dx + 2D 

Und jetzt fassen Sie ähnliche Terme zusammen:

2x3 + x2 – 5x + 4 = (A + C) x3 + (B + 2C + D) x2 + (A + 2C + 2D) x + (B + 2D) 

Anschließend setzen Sie die Koeffizienten ähnlicher Terme von der linken und der rechten Seite der Gleichung gleich:


[image: image] 


Jetzt können Sie dieses Gleichungssystem lösen, um A, B, C und D zu erhalten.

[image: image] Sie können das Beispiel aus dem 2. Fall abschließen, indem Sie eine Kurzversion der Methode mit dem Gleichsetzen der Koeffizienten anwenden. Betrachten Sie die Gleichung in Schritt 3 des 2. Falls und setzen Sie die Koeffizienten des x3-Terms auf der linken und auf der rechten Seite der Gleichung gleich. Erkennen Sie ohne Ausmultiplikation, dass Sie auf der rechten Seite (A + B + C) x3 erhalten würden? (Wenn Sie es nicht erkennen, vergessen Sie diese Abkürzung und entschuldigen Sie, dass ich Sie damit verwirrt habe!) 5x3 = (A + B + C) x3, das heißt 5 = A + B + C. Weil A = 1 und B = 2 (aus Schritt 4) ist, muss C gleich 2 sein. Mit diesen Werten für A, B und C und einem beliebigen Wert für x (außer 0 und 1) erhalten Sie D. Praktisch!

[image: image] Kurz gesagt, es gibt drei Möglichkeiten, A, B, C usw. zu finden: 1) Sie setzen die Nullstellen der linearen Faktoren des Nenners ein, falls es solche gibt, 2) Sie setzen andere Werte für x ein und lösen das resultierende Gleichungssystem auf, und 3) Sie setzen die Koeffizienten ähnlicher Terme gleich. Mit ein wenig Übung werden Sie lernen, diese Methoden zu kombinieren und Ihre Unbekannten schnell zu bestimmen.




16

Grau ist alle Theorie: Mit Integralen echte Probleme lösen


In diesem Kapitel ...

[image: ipad] Der Mittelwertsatz: »Reine Freundlichkeit? Dass ich nicht lache!«

[image: ipad] Die Fläche zwischen Kurven aufaddieren

[image: ipad] Pfannkuchen und Donuts: Volumen unregelmäßiger Formen bestimmen

[image: ipad] Bogenlänge bestimmen

[image: ipad] Die Regel von l’Hôpital: Falls Sie von der vielen Mathematik krank werden

[image: ipad] Manierenlose Integrale verstehen lernen




Wie in Kapitel 13 erklärt, handelt es sich bei der Integration einfach um das Addieren winziger Stücke von irgendetwas, um daraus die Summe für das Ganze zu erhalten – und wir sprechen von wirklich kleinen, letztlich unendlich kleinen Stücken. Das Integral


[image: image] 


bedeutet also, dass Sie alle winzigen Abschnitte der Distanz addieren, die während des 15 Sekunden dauernden Intervalls von 5 Sekunden bis 20 Sekunden zurückgelegt wurde, um die Gesamtdistanz innerhalb dieses Intervalls zu erhalten.


Das winzige Stück, von dem wir sprechen, ist immer ein Ausdruck mit x (oder mit irgendeiner anderen Variablen). Für das oben gezeigte Integral beispielsweise könnte das winzige Distanzstück gleich x2 dx sein. Dafür würden Sie mit dem bestimmten Integral


[image: image] 


die zurückgelegte Gesamtdistanz berechnen. Weil Sie jetzt schon Profi bei der Berechnung von Integralen wie diesem sind, ist Ihre eigentliche Aufgabe in diesem Kapitel, den algebraischen Ausdruck für die kleinen Stücke zu finden, die Sie addieren wollen.



Der Mittelwertsatz für Integrale und der Durchschnittswert


Die beste Methode, den Mittelwertsatz für Integrale zu verstehen, ist eine Skizze – betrachten Sie Abbildung 16.1.



[image: ipad] 

Abbildung 16.1: Ein visueller »Beweis« für den Mittelwertsatz für Integrale


Die Zeichnung links in Abbildung 16.1 zeigt ein Rechteck, dessen Fläche deutlich kleiner als die Fläche unter der Kurve zwischen den Punkten 2 und 5 ist. Dieses Rechteck hat eine Höhe, die gleich dem niedrigsten Punkt auf der Kurve im Intervall zwischen 2 und 5 ist. Die mittlere Zeichnung zeigt ein Rechteck, dessen Höhe gleich dem höchsten Punkt auf der Kurve zwischen 2 und 5 ist. Seine Fläche ist offensichtlich größer als die Fläche unter der Kurve. Jetzt denken Sie vielleicht »Gibt es kein Rechteck, das größer als das kleine und kleiner als das große ist, dessen Fläche gleich der Fläche unter der Kurve ist?« Natürlich gibt es das. Und dieses Rechteck schneidet die Kurve natürlich irgendwo im Intervall. Dieses so genannte »Mittelwertrechteck« ist auf der rechten Seite in der Abbildung gezeigt. Es stellt eine Zusammenfassung des Mittelwertsatzes für Integrale dar – nach unserem gesunden Menschenverstand. Aber jetzt kommt die Theorie.


[image: image] Der Mittelwertsatz für Integrale: Wenn f(x) eine stetige Funktion im geschlossenen Intervall [a, b] ist, dann gibt es eine Zahl c in dem geschlossenen Intervall, für die gilt:


[image: image] 


Der Satz garantiert einfach die Existenz des Mittelwertrechtecks.

Die Fläche des Mittelwertrechtecks – die gleich der Fläche unter der Kurve ist – ist gleich Länge mal Breite oder Basis mal Höhe. Wenn Sie also seine Fläche, [image: ipad] , durch seine Basis, (b – a), dividieren, erhalten Sie seine Höhe, f(c). Diese Höhe ist der Durchschnittswert der Funktion über das betreffende Intervall.

[image: image] Durchschnittswert: Der Durchschnittswert einer Funktion f(x) über ein geschlossenes Intervall [a, b] ist

[image: image] 


nämlich die Höhe des Mittelwertrechtecks.


Hier ein Beispiel. Welche Durchschnittsgeschwindigkeit hat ein Auto zwischen t = 9 Sekunden und t = 16 Sekunden, dessen Geschwindigkeit in Meter pro Sekunde durch die Funktion [image: ipad] angegeben ist? Gemäß der Definition des Durchschnittswerts ist diese Durchschnittsgeschwindigkeit gegeben durch [image: ipad].



1. Bestimmen Sie die Fläche unter der Kurve zwischen 9 und 16.

[image: image] 

Diese Fläche ist übrigens gleich der Gesamtdistanz, die zwischen 9 und 16 Sekunden zurückgelegt wurde. Erkennen Sie, warum das so ist? Betrachten Sie das Mittelwertrechteck für diese Aufgabenstellung. Seine Höhe ist eine Geschwindigkeit (weil die Funktionswerte bzw. Höhen Geschwindigkeiten sind) und seine Basis ist eine Zeitdauer, deshalb ist seine Fläche Geschwindigkeit mal Zeit und das ist gleich Distanz. Alternativ können Sie sich auch daran erinnern, dass die Ableitung der Position gleich der Geschwindigkeit ist (siehe Kapitel 12). Die Stammfunktion der Geschwindigkeit – das, was ich in diesem Schritt erstellt habe – ist also die Position und die Positionsänderung von 9 bis 16 Sekunden gibt die insgesamt zurückgelegte Distanz an.

2. Dividieren Sie diese Fläche, die Gesamtdistanz, durch das Zeitintervall von 9 bis 16, also 7.

[image: image] 

Die Definition des Durchschnittswerts bedingt, dass Sie die Gesamtfläche durch [image: ipad] dividieren, das ist in dieser Aufgabenstellung gleich [image: ipad] oder [image: ipad]. Weil jedoch die Division durch 7 dasselbe ist wie die Multiplikation mit [image: ipad], können Sie so dividieren, wie ich in diesem Schritt gezeigt habe. Es ist sinnvoller, sich diese Aufgabenstellungen unter Verwendung der Division vorzustellen: Fläche ist gleich Basis mal Höhe, die Höhe des Mittelwertrechtecks ist also gleich seine Fläche dividiert durch seine Basis.




Der Mittelwertsatz für Integrale und für Ableitungen – Zwei Fliegen mit einer Klappe

Erinnern Sie sich an den Mittelwertsatz für Ableitungen aus Kapitel 11? Die Skizze links in der Abbildung zeigt, wie er funktioniert. Die grundlegende Idee dabei ist, dass es einen Punkt auf der Kurve zwischen 0 und 2 gibt, an dem die Steigung gleich der Steigung der Sekante von (0|0) nach (2|8) ist – das heißt eine Steigung von 4. Wenn Sie die Mathematik dafür betrachten, erhalten Sie für diesen Punkt die Gleichung [image: ipad]. Es stellt sich heraus, dass der Punkt, der durch den Mittelwertsatz für Integrale garantiert ist – der Punkt, an dem das Mittelwertrechteck die Kurvenableitung schneidet (rechts in der Abbildung gezeigt) –, genau denselben x-Wert hat. Praktisch!

Wenn Sie die enge Beziehung zwischen der Differentiation und der Integration wirklich verstehen wollen, denken Sie lange und angestrengt über die Verknüpfung zwischen den beiden Graphen in der hier gezeigten Abbildung nach. Diese Abbildung ist ein wirkliches Juwel. (Weitere Informationen über die Beziehung zwischen Differentiation und Integration finden Sie in meinem anderen Favoriten, Abbildung 14.6.)

[image: ipad] 


[image: ipad] An der Stelle [image: ipad] ist die Steigung gleich 4, was die durchschnittliche Steigung von f zwischen 0 und 2 ist.

[image: ipad] Die kleinste Steigung von f im Intervall ist gleich 0.

[image: ipad] Die größte Steigung von f im Intervall ist gleich 12.

[image: ipad] Der Gesamtanstieg von f von 0 bis 2 ist gleich 8.

[image: ipad] An der Stelle [image: ipad] ist die Höhe gleich 4, was die durchschnittliche Höhe von f zwischen 0 und 2 ist.

[image: ipad] Die kleinste Höhe von fχ im Intervall ist gleich 0.

[image: ipad] Die größte Höhe von fχ im Intervall ist gleich 12.

[image: ipad] Der Gesamtfläche unter fχ von 0 bis 2 ist gleich 8.





Die Fläche zwischen zwei Kurven – Der doppelte Spaß

Dies ist das erste von sieben Themen in diesem Kapitel, wo Sie einen Ausdruck für ein winziges Stück von irgendetwas suchen und dann diese winzigen Stücke addieren, indem Sie integrieren. Für den ersten Aufgabentyp ist das winzige Stück ein schmales Rechteck, das auf einer Kurve sitzt und bis zu einer weiteren Kurve verläuft. Hier ein Beispiel: Bestimmen Sie die Fläche zwischen y = 2 – x2 und [image: ipad] von x = 0 bis x = 1. Betrachten Sie dazu Abbildung 16.2.



[image: ipad] 

Abbildung 16.2: Die Fläche zwischen y = 2 – x2 und [image: ipad]


Um die Höhe des entsprechenden Rechtecks in Abbildung 16.2 zu erhalten, subtrahieren Sie die y-Koordinate seiner Unterseite von der y-Koordinate seiner Oberseite – das heißt [image: ipad]. Seine Basis ist das infinitesimale dx. Weil also Fläche gleich Höhe mal Basis ist, gilt


Fläche des repräsentativen [image: ipad]


Jetzt addieren Sie die Flächen aller Rechtecke von 0 bis 1, indem Sie integrieren:


[image: image] 

[image: image] 


Um das Ganze noch etwas komplizierter zu machen, kreuzen sich in der nächsten Aufgabe die Kurven (siehe Abbildung 16.3). Wenn dies passiert, müssen Sie den gesamten schattierten Bereich in separate Abschnitte unterteilen, bevor Sie integrieren. Probieren Sie es aus: Finden Sie die Fläche zwischen [image: ipad] und x3 von x = 0 bis x = 2.


[image: ipad] 

Abbildung 16.3: Wer ist oben?


1. Bestimmen Sie, wo sich die Kurven kreuzen.

Sie kreuzen sich am Punkt (1|1) – was für ein wunderbarer Zufall! Sie haben also zwei separate Bereiche – einen von 0 bis 1 und einen weiteren von 1 bis 2.


2. Bestimmen Sie die Fläche des linken Bereichs.

Für diesen Bereich liegt [image: ipad] über x3. Die Höhe eines repräsentativen Rechtecks ist also [image: ipad]. Seine Fläche ist die Höhe mal der Basis oder [image: ipad] und die Fläche des Bereichs ist deshalb


[image: image] 


3. Bestimmen Sie die Fläche des Bereichs auf der rechten Seite.

Jetzt liegt x3 über [image: ipad], die Höhe eines Rechtecks ist also gleich [image: ipad] und damit erhalten Sie

[image: image] 


4. Addieren Sie die Flächen der beiden Bereiche, um die Gesamtfläche zu erhalten.

[image: image] 


[image: image] Beachten Sie, dass die Höhe eines repräsentativen Rechtecks immer oben minus unten ist, unabhängig davon, ob diese Zahlen positiv oder negativ sind. Beispielsweise hat ein Rechteck, das von 20 bis 30 reicht, eine Höhe von 30 – 20, also 10; ein Rechteck, das von –3 bis 8 reicht, hat eine Höhe von 8 – (–3), also 11; und ein Rechteck, das von –15 bis –10 reicht, hat eine Höhe von –10 – (–15), also 5.


Wenn Sie sich diese Oben-minus-unten-Methode vorstellen, um die Höhe eines Rechtecks zu ermitteln, erkennen Sie jetzt – vorausgesetzt, Sie haben es nicht schon längst gesehen –, warum das bestimmte Integral einer Funktion die Fläche unterhalb der x-Achse als negativ interpretiert. (Ich habe dies ohne weitere Erklärung in Kapitel 13 erwähnt.) Betrachten Sie beispielsweise Abbildung 16.4.


[image: ipad] 

Abbildung 16.4: Wie groß ist die schattiert dargestellte Fläche? Hinweis: Es ist nicht [image: ipad]



Wenn Sie die Gesamtfläche des in Abbildung 16.4 gezeigten schattierten Bereichs bestimmen wollen, müssen Sie den schattierten Bereich in zwei Abschnitte zerlegen, wie Sie es bereits aus der vorigen Aufgabenstellung kennen. Ein Abschnitt verläuft von 0 bis π, der zweite von π bis [image: ipad].

Die Fläche des ersten Abschnitts ist gegeben durch das gewöhnliche bestimmte Integral [image: ipad].

Um die Fläche des zweiten Abschnitts zu ermitteln, berechnen Sie das bestimmte Integral des Negativen der Funktion, [image: ipad], was dasselbe wie [image: ipad] ist.

Weil dieses negative Integral Ihnen die normale positive Fläche des Abschnitts unterhalb der x-Achse mitteilt, erzeugt das positive bestimmte Integral [image: ipad] eine negative Fläche.

Wenn Sie also das bestimmte Integral [image: ipad] über die gesamte Spanne berechnen, gilt der Abschnitt unterhalb der x-Achse als negative Fläche und die Lösung zeigt die Nettofläche, also die Fläche oberhalb der x-Achse minus der Fläche unterhalb der Achse – und nicht die gesamte schattierte Fläche.


Die Volumen unregelmäßiger Körper ermitteln

In der Geometrie haben Sie gelernt, wie man die Volumen einfacher Körper berechnet, beispielsweise von Quadern, Zylindern oder Kugeln. Mit Hilfe der Integration können Sie die Volumen einer unendlichen Vielfalt sehr viel komplizierterer Formen berechnen.


Die Pfannkuchenstapelmethode

Bestimmen Sie das Volumen des Körpers – zwischen x = 2 und x = 3 –, der durch Drehen der Kurve y = ex um die x-Achse entsteht. Betrachten Sie dazu Abbildung 16.5.


1. Bestimmen Sie die Fläche eines beliebigen Querschnitts oder eines repräsentativen Pfannkuchens.

Jeder Querschnitt ist ein Kreis mit einem Radius von ex. Seine Fläche ist damit durch die Formel für die Kreisfläche gegeben, A = π r2. Wenn Sie ex für r einsetzen, erhalten Sie

A = π(ex)2 = πe2x

2. Bestimmen Sie ein dx, um das Volumen eines unendlich dünnen repräsentativen Pfannkuchens zu bestimmen.

[image: image] 


[image: ipad] 

Abbildung 16.5: Ein umgefallener Pfannkuchenstapel


3. Addieren Sie die Volumen der Pfannkuchen von 2 bis 3, indem Sie integrieren.


[image: image] 


Die Stapel-Donuts-auf-den-sich-jemand-gesetzt-hat-Methode

Andere Bücher sprechen von der Dichtungsringmethode, aber welchen Unterhaltungswert hat das? Der einzige Unterschied zwischen der Donut-Methode und der PfannkuchenMethode ist, dass jetzt jedes Stück ein Loch in der Mitte hat, das Sie subtrahieren müssen. Nichts dabei.


Und so fangen wir an. Berechnen Sie die Fläche, die durch y = x2 und [image: ipad] gegeben ist und erzeugen Sie einen Körper, indem Sie diese Fläche um die x-Achse drehen. Betrachten Sie dazu Abbildung 16.6.



[image: ipad] 

Abbildung 16.6: Ein gekippter Donut-Stapel – Sie addieren einfach alle Volumen aller Donuts


1. Bestimmen Sie, an welcher Stelle die beiden Kurven sich schneiden.

Sie müssen nur sehr wenig herumprobieren, um festzustellen, dass y = x2 und [image: ipad] sich an den Stellen x = 0 und x = 1 schneiden. Ist es nicht wunderbar? Der betreffende Körper deckt also das Intervall von 0 bis 1 auf der x-Achse ab.

2. Bestimmen Sie die Fläche eines dünnen Querschnitt-Donuts oder eines Dichtungsrings.

Jede Scheibe hat die Form eines Donuts, wie in Abbildung 16.7 gezeigt. Die Fläche ist also gleich der Fläche des Gesamtkreises minus der Lochfläche.


[image: ipad] 

Abbildung 16.7: Die schattierte Fläche ist gleich π R2 – π r2. Der Gesamtkreis minus den Lochkreis. Verstanden?


Die Fläche des Kreises minus des Lochs ist gleich π R2 – π r2, wobei R den äußeren Radius (den großen Radius) und r den Lochradius (den kleinen Radius) darstellt. Für diese Aufgabenstellung ist der äußere Radius gleich [image: ipad] und der Lochradius ist gleich x2, Sie erhalten also


[image: image] 


3. Multiplizieren Sie diese Fläche mit der Dicke, dx, um das Volumen eines repräsentativen platt gedrückten Donuts zu erhalten.

Volumen = (πx – πx4) dx

4. Addieren Sie die Volumen der hauchdünnen Donuts von 0 bis 1, indem Sie integrieren.


[image: image] 


[image: image] Konzentrieren Sie sich auf die einfache Tatsache, dass die Fläche eines Donuts oder eines Dichtungsrings gleich der Fläche des Gesamtkreises, π R2, minus der Fläche des Lochs, π r2, ist: Fläche = π R2 – π r2. Wenn Sie integrieren, erhalten Sie [image: ipad]. Das ist natürlich dasselbe wie [image: ipad] – wie die Formel in den meisten Büchern aussieht. Sie können sich wahrscheinlich besser merken, wie diese Aufgabenstellungen zu lösen sind, wenn Sie an das einfache Konzept »Großer Kreis minus kleiner Kreis« denken.


Bogenlängen analysieren

Bisher haben Sie in diesem Kapitel die Flächen von Rechtecken addiert, um Gesamtflächen zu erhalten, und die Volumen von dünnen Scheiben, um das Gesamtvolumen zu erhalten, und die Volumen dünner Zylinder, ebenfalls um das Gesamtvolumen zu erhalten. Jetzt werden Sie Minutenlängen entlang einer Kurve addieren, also entlang eines »Bogens«, um die Gesamtlänge zu erhalten.


Die Idee dabei ist, die Länge der Kurve in kleine Abschnitte zu zerlegen, die Länge jedes dieser Abschnitte zu bestimmen und dann alle Längen zu addieren. Abbildung 16.8 zeigt, wie jeder Abschnitt einer Kurve durch die Hypotenuse eines winzigen rechtwinkligen Dreiecks angenähert werden kann.



[image: ipad] 

Abbildung 16.8: Der Satz des Pythagoras, a2 + b2 = c2, ist der Schlüssel zur Bogenlängenformel


Sie können sich vorstellen, dass bei immer weiteren Vergrößerungen, d. h. wenn die Kurve in immer mehr Abschnitte zerlegt wird, die Minutenabschnitte immer gerader werden und die Hypotenusen eine immer bessere Annäherung an die Kurve darstellen. Wenn also dieser Prozess, immer kleiner werdende Kurvenabschnitte zu addieren, bis auf die Spitze getrieben wird, erhalten Sie die exakte Länge der Kurve.


Sie brauchen nur alle Hypotenusen entlang der Kurve zwischen ihrem Anfangs- und ihrem Endpunkt zu addieren. Die Längen der Schenkel jedes unendlich kleinen Dreiecks sind dx und dy und damit ist die Länge der Hypotenuse – gemäß dem Satz des Pythagoras – gleich


[image: image] 


Um alle Hypotenusen von a bis b entlang der Kurve zu addieren, integrieren Sie einfach:


[image: image] 


Ein bisschen Fummelei und Sie haben die Formel für die Bogenlänge. Als Erstes ziehen Sie ein (dx)2 unter der Quadratwurzel heraus und vereinfachen:


[image: image] 


Jetzt können Sie die Wurzel aus (dx)2 ziehen – was natürlich dx ist – und es hinter die Wurzel bringen. Und schon haben Sie die Formel.


[image: image] Bogenlänge: Die Bogenlänge entlang einer Kurve y = f(x) von a bis b ist durch das folgende Integral gegeben:


[image: image] 


Der Ausdruck innerhalb des Integrals ist einfach die Länge einer repräsentativen Hypotenuse.


Die Regel von L’Hôpital: Analysis für die Kranken


Die Regel von L’Hôpital ist eine praktische Abkürzung für Grenzwertprobleme. Erinnern Sie sich noch an Grenzwerte wie [image: ipad] aus den Kapiteln 7 und 8? Wenn Sie sich übrigens fragen, warum ich Ihnen dies gerade jetzt zeige – Sie brauchen es vielleicht eines Tages, um irgendwelche Aufgabenstellungen mit uneigentlichen Integralen (Thema des nächsten Abschnitts in diesem Kapitel) zu lösen, obwohl ich kein solches Beispiel gezeigt habe.

Wie bei den meisten Grenzwertproblemen können Sie [image: ipad] nicht einfach berechnen, indem Sie direkt einsetzen: Wenn Sie 3 für x einsetzen, erhalten Sie [image: ipad], was nicht definiert ist. In Kapitel 8 faktorisieren Sie den Zähler in (x – 3)(x + 3) und kürzen dann (x – 3). Damit erhalten [image: ipad], das ist gleich 6.


Jetzt beobachten Sie, wie einfach es ist, den Grenzwert mit Hilfe der Regel von L’Hôpital zu berechnen. Sie bestimmen einfach die Ableitung des Zählers und des Nenners. Wenden Sie nicht die Quotientenregel an; bestimmen Sie einfach die Ableitungen von Zähler und Nenner separat voneinander. Die Ableitung von x2 – 9 ist 2x und die Ableitung von x – 3 ist 1. Die Regel von L’Hôpital erlaubt Ihnen, den Zähler und den Nenner durch die jeweiligen Ableitungen zu ersetzen, nämlich wie folgt:


[image: ipad]


Der neue Grenzwert ist easy: [image: ipad]


Das ist alles. Die Regel von L’Hôpital wandelt einen Grenzwert, den Sie nicht durch direkte Substitution lösen können, in einen Grenzwert um, der mit Substitution lösbar ist. Damit stellt sie eine wunderbare Abkürzung dar.


Und jetzt die ganze Mathematik.


[image: image] Die Regel von L’Hôpital: Seien f und g differenzierbare Funktionen. Wenn der Grenzwert von [image: ipad] für x gegen c, den Wert [image: ipad] oder [image: ipad] ergibt, wenn Sie den Wert von c in x einsetzen, dann gilt:


[image: image] 


Beachten Sie, dass c eine Zahl oder ±φ sein kann.


Und hier ein Beispiel, in dem [image: ipad] vorkommt. Was ist [image: ipad]? Durch direktes Einsetzen erhalten Sie [image: ipad], Sie können also die Regel von L’Hôpital anwenden. Die Ableitung von ln(x) ist [image: ipad] und die Ableitung von x ist 1, Sie haben also:


[image: image] 


Uneigentliche Integrale: Am Verlauf zu erkennen

Bestimmte Integrale sind uneigentlich, wenn sie unendlich weit nach oben, unten, rechts oder links gehen. Sie gehen unendlich weit nach oben oder unten in Aufgabenstellungen wie etwa [image: ipad], die eine oder mehrere vertikale Asymptoten haben. Sie gehen unendlich weit nach rechts oder links in Aufgabenstellungen wie etwa [image: ipad] oder [image: ipad], wobei eine oder beide Integrationsgrenzen unendlich sind. (Es gibt noch ein paar andere eigenwillige Arten uneigentlicher Integrale, aber sie sind selten – denken Sie einfach nicht darüber nach.) Es würde sinnvoll scheinen, statt uneigentlich den Begriff unendlich zu verwenden, um diese Integrale zu beschreiben, bis auf die bemerkenswerte Tatsache, dass viele dieser »unendlichen« Integrale eine endliche Fläche haben. Mehr darüber gleich.


Sie lösen beide Arten uneigentlicher Integrale, indem Sie sie in Grenzwertprobleme umformen. Sie können nicht einfach auf die übliche Weise damit umgehen. Betrachten Sie ein paar Beispiele.



Uneigentliche Integrale mit vertikalen Asymptoten

Eine vertikale Asymptote kann sich am Rand oder in der Mitte der betreffenden Fläche befinden.


Eine vertikale Asymptote an einer der Integrationsgrenzen

Was ist die Fläche unter [image: ipad] von 0 bis 1? Diese Funktion ist an der Stelle x = 0 undefiniert und hat dort eine vertikale Asymptote. Sie müssen also das bestimmte Integral in einen Grenzwert umwandeln:





	[image: ipad]
	(die betreffende Fläche befindet sich rechts von 0, c nähert sich der 0 also von rechts her an)






[image: image] 


Diese Fläche ist unendlich, was Sie wahrscheinlich nicht überrascht, weil die Kurve unendlich nach oben verläuft. Aber halten Sie sich fest! Trotz der Tatsache, dass die nächste Funktion ebenfalls für x = 0 unendlich weit nach oben geht, ist ihre Fläche endlich!


Bestimmen Sie die Fläche unter [image: ipad] von 0 bis 1. Diese Funktion ist ebenfalls bei x = 0 undefiniert, der Prozess ist also derselbe wie im vorigen Beispiel.


[image: image] 


[image: image] Konvergenz und Divergenz: Man sagt, ein uneigentliches Integral konvergiert, wenn der Grenzwert existiert, das heißt, wenn der Grenzwert gleich einer end-lichen Zahl ist, wie im zweiten Beispiel gezeigt. Andernfalls sagt man, ein uneigentliches Integral divergiert – wie im ersten Beispiel. Wenn ein uneigentliches Integral divergiert, dann ist die betreffende Fläche (oder ein Teil davon) gleich φ oder –φ.


Eine vertikale Asymptote zwischen den Integrationsgrenzen

Wenn der nicht definierte Punkt des Integranden irgendwo zwischen den Integrations-grenzen liegt, teilen Sie das Integral in zwei Teile – am nicht definierten Punkt –, wandeln dann jedes Integral in einen Grenzwert um und arbeiten von dort aus weiter.


Uneigentliche Integrale mit einer oder zwei unendlichen Integrationsgrenzen


Sie lösen diese uneigentlichen Integrale, indem Sie sie in Grenzwerte umwandeln, wo c gegen unendlich oder minus unendlich geht. Hier zwei Beispiele: [image: ipad] und [image: ipad]


[image: image] 


Dieses uneigentliche Integral konvergiert also.

Im nächsten Integral ist der Nenner kleiner – x statt x2 – und damit ist der Bruch größer, Sie würden also erwarten, dass [image: ipad] größer als [image: ipad] wäre, was auch der Fall ist. Aber es ist nicht nur größer, sondern sehr viel größer.


[image: image] 


Dieses uneigentliche Integral divergiert.

Abbildung 16.9 zeigt diese beiden Funktionen. Die Fläche unter [image: ipad] von 1 bis φ ist gleich der Fläche des 1 × 1-Quadrats – also etwa 1 Quadratzentimeter. Die Fläche unter [image: ipad] von 1 bis φ ist viel, viel größer – nämlich unendlich viel größer als ein Quadrat, das groß genug wäre, selbst die Milchstraße zu umschließen – und mehr. Ihre Formen sind relativ ähnlich, aber ihre Flächen könnten nicht unterschiedlicher sein.



[image: ipad] 

Abbildung 16.9: Die Fläche unter [image: ipad] von 1 bis φ und die Fläche unter [image: ipad] von 1 bis φ


Wenn beide Integrationsgrenzen unendlich sind, teilen Sie das Integral in zwei Teile und machen aus jedem Teil einen Grenzwert. Wenn Sie das Integral an der Stelle x = 0 aufteilen, ist das praktisch, weil 0 als Zahl einfach zu behandeln ist, aber Sie können es auch an jeder anderen Stelle unterteilen. 0 scheint auch deshalb eine gute Wahl zu sein, weil sie möglicherweise in der Mitte zwischen –φ und φ liegt. Letztlich ist das jedoch eine Illusion, weil es keine Mitte zwischen –φ und φ gibt und Sie sagen könnten, dass jeder beliebige Punkt auf der x-Achse in der Mitte liegt.


Hier ein Beispiel: [image: ipad]


1. Zerlegen Sie das Integral in zwei Teile.


[image: image] 


2. Wandeln Sie jeden Teil in einen Grenzwert um.


[image: image] 


3. Berechnen Sie jeden Teil und addieren Sie die Ergebnisse.

[image: image] 


[image: image] Wenn eines der »halben« Integrale divergiert, divergiert auch das ganze.




Teil VI

Der Top-Ten-Teil


In diesem Teil ...

Jedes Dummies-Buch endet mit lustigen Top-Ten-Listen. Ich werde Ihnen hier zehn Dinge zeigen, die Sie sich merken sollten und zehn Dinge, die Sie vergessen können.
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Zehn Dinge, die Sie sich merken sollten

In diesem Kapitel ...

[image: ipad] Kritische Konzepte der Analysis

[image: ipad] Lebensrettende Maßnahmen



In diesem Kapitel finden Sie zehn Punkte, an die Sie auf jeden Fall denken sollten. Zehn, das sind ja wirklich nicht viele. Wenn Ihr Hirn jetzt zu vollgestopft sein sollte, in Kapitel 19 erfahren Sie, was Sie vergessen können. Also es wird auch noch Platz frei.


Den Platz, wo Ihre Sonnenbrille liegt

[image: image] Auch wenn Sie Analysis lernen müssen, können Sie gut aussehen. Wenn Sie eine Sonnenbrille und einen Regenmantel tragen, könnte das die ganze Wirkung zunichte machen.

a2 – b2 = (a – b)(a + b)

Dieses Faktorisierungsmuster heißt 3. Binomische Formel und kommt wirklich überall vor. Wenn Sie es vergessen, machen Sie die schlimmsten Fehler.


[image: ipad], aber [image: ipad] ist undefiniert


Sie wissen, dass [image: ipad] ist und 4 mal 2 gleich 8 ist. Gäbe es auf [image: ipad] eine Antwort, wäre diese Antwort mal 0 gleich 5. Aber das ist unmöglich, deshalb muss [image: ipad] undefiniert sein.

Irgendetwas0 = 1

Die einzige Ausnahme ist 00, was nicht eindeutig definiert ist. Diese Regel gilt für alles andere, einschließlich negativer Zahlen und Brüche. Das scheint seltsam, ist aber so.


SghKahTga

Das ist nicht die Bestellnummer für einen Skipullover (Größe 46, Farbe Rot), sondern nur eine Abkürzung, anhand derer Sie sich die drei grundlegenden trigonometrischen Funktionen merken sollen:


[image: image] 

Trigonometrische Werte für 30-, 45- und 60-Grad-Winkel


[image: ipad] 


sin2 θ + cos2 θ = 1

Diese Identität gilt für jeden Winkel.

Die Produktregel


[image: image] 

Die Quotientenregel


[image: image] 

Wo Sie Ihre Schlüssel hingelegt haben

Niemand kann vorhersagen, welche Note Sie in der nächsten Analysis-Prüfung erhalten – es sei denn, Sie gehen gar nicht erst hin.
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Zehn Dinge, die Sie vergessen können

In diesem Kapitel ...

[image: ipad] Ein paar häufig gemachte Fehler

[image: ipad] Einige Konzepte, die Sie sich aus dem Kopf schlagen sollten



Dies ist zweifellos das einfachste Kapitel des gesamten Buchs. Es muss nichts gelernt, nichts verstanden und nichts gemerkt werden. Einfach weg mit dem albernen Ding!


(a + b)2 = a2 + b2 – Falsch!

Verwechseln Sie dies nicht mit (ab)2 = a2b2, was richtig ist. (a + b)2 ist natürlich a2 + 2ab + b2.


[image: ipad]

Verwechseln Sie dies nicht mit [image: ipad], was richtig ist. [image: ipad] kann nicht vereinfacht werden.


[image: ipad]

Es ist umgekehrt. Steigung ist [image: ipad].


[image: ipad]

Die 3a können nicht gekürzt werden, weil es sich dabei nicht um einen Faktor des Zählers und des Nenners handelt. Verwechseln Sie dies nicht mit [image: ipad], wo Sie die 3a selbstver-ständlich kürzen können.


[image: ipad]


Pi (Σ) ist eine Zahl, keine Variable, deshalb ist Σ3 ebenfalls eine Zahl und die Ableitung einer Zahl ist 0. [image: ipad]



Wenn k eine Konstante ist, dann ist [image: ipad] Falsch!

Hier wird nicht die Produktregel angewendet. Konstanten verhalten sich wie Zahlen, nicht wie Variablen, [image: ipad] verhält sich also genau wie [image: ipad], was gleich 3 ist. [image: ipad].


Die Quotientenregel ist [image: ipad] Falsch!

Lesen Sie dazu den vorletzten Punkt in Kapitel 18, Zehn Dinge, die Sie sich merken sollten.


[image: image] 


Erkennen Sie selbst, warum das falsch ist?


[image: ipad]

Die Ableitung des Kosinus ist der negative Sinus, deshalb ist die Ableitung des negativen Kosinus der Sinus, und damit ist [image: ipad].


Den Satz von Green


[image: image] 


Das ist richtig, aber versuchen Sie gar nicht erst, es sich zu merken.
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