

Gerd Küveler

Dietrich Schwoch

C/C++ für

Studium und Beruf

Eine Einführung mit vielen Beispielen,

Aufgaben und Lösungen

C/C++ für Studium und Beruf

Lizenz zum Wissen.

Sichern Sie sich umfassendes Technikwissen mit Sofortzugriff auf

tausende Fachbücher und Fachzeitschriften aus den Bereichen:

Automobiltechnik, Maschinenbau, Energie + Umwelt, E-Technik,

Informatik + IT und Bauwesen.

Exklusiv für Leser von Springer-Fachbüchern: Testen Sie Springer

für Professionals 30 Tage unverbindlich. Nutzen Sie dazu im

Bestel verlauf Ihren persönlichen Aktionscode C0005406 auf

 www.springerprofessional.de/buchaktion/

Jetzt

30 Tage

testen!

Springer für Professionals.

Digitale Fachbibliothek. Themen-Scout. Knowledge-Manager.

 Zugriff auf tausende von Fachbüchern und Fachzeitschriften

 Selektion, Komprimierung und Verknüpfung relevanter Themen

durch Fachredaktionen

 Tools zur persönlichen Wissensorganisation und Vernetzung

 www.entschieden-intel igenter.de

Springer für Professionals

Gerd Küveler · Dietrich Schwoch

C/C++ für

Studium und Beruf

Eine Einführung mit vielen Beispielen,

Aufgaben und Lösungen

Gerd Küveler

Dietrich Schwoch

Hochschule RheinMain

Hochschule RheinMain

Rüsselsheim, Deutschland

Rüsselsheim, Deutschland

ISBN 978-3-658-18580-0

ISBN 978-3-658-18581-7 (eBook)

DOI 10.1007/978-3-658-18581-7

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detail-

lierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Springer Vieweg

© Springer Fachmedien Wiesbaden GmbH 2017

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht

ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags.

Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die

Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt

auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen-

und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden

dürften.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in

diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag noch

die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des

Werkes, etwaige Fehler oder Äußerungen. Der Verlag bleibt im Hinblick auf geografische Zuordnungen und

Gebietsbezeichnungen in veröffentlichten Karten und Institutionsadressen neutral.

Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier

Springer Vieweg ist Teil von Springer Nature

Die eingetragene Gesellschaft ist Springer Fachmedien Wiesbaden GmbH

Die Anschrift der Gesellschaft ist: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany

Vorwort

 C/C++ für Studium und Beruf führt in die Hochsprachen-Programmierung ein. Nicht zufäl-

lig wurde als Sprache C/C++ gewählt, weil sie sich im Laufe der Jahre zur bedeutendsten

Universalsprache mit breitestem Anwendungsspektrum entwickelt hat. Das gilt nicht nur

für die Systemprogrammierung, sondern gerade auch für technische und wissenschaftliche

Anwendungen, wo sich FORTRAN lange und hartnäckig gehalten hat.

Das hier vorliegende Buch entspricht inhaltlich einer zweisemestrigen Einführung in die

Programmierung. Der Stundenumfang wird dabei mit insgesamt vier Semesterwochenstun-

den Vorlesung und ebenso vielen Übungen angenommen. Es ist auch als Begleitbuch zu

einem entsprechenden Kompaktkurs oder zum Selbststudium geeignet. Eigentlich kann es

von jedem benutzt werden, der Wert auf eine systematische Vorgehensweise legt.

Voraussetzung zum Erfolg ist außer Motivation der Zugang zu einem PC mit C++-Com-

piler. Den kann man sich kostenlos aus dem Internet herunterladen. Im Anhang C gehen

wir auf dieses Thema ein. Den sollten Sie unbedingt lesen, falls Sie noch keine Erfahrung

mit einem Compiler haben. Wir haben als Entwicklungsumgebung für die Beispiele in

diesem Buch das Visual Studio Express von Microsoft mit der Variante „Leeres CLR-

Projekt“ benutzt.

Diese Programmier-Einführung ist zwar systematisch, aber dennoch praxisnah angelegt,

d. h. Sie erhalten stets die Gelegenheit, das Gelernte nachzuvollziehen. Aus diesem Grund

ergänzen diverse Übungsaufgaben die einzelnen Kapitel.

Die Sprache C/C++ ist nicht nur Selbstzweck, sondern eröffnet einen fundierten Zugang zu

anderen Spezialsprachen, besonders im technisch-wissenschaftlichen Bereich, wie etwa die

grafische Spezialsprache LabVIEW. Auch Java, nicht nur für Web-Anwendungen interes-

sant, basiert auf C++. Aber selbst zu Tools wie Excel, MATLAB und Simulink oder

Mathematica findet man als geübter Programmierer leichteren Zugang. Die Hauptschwie-

rigkeit beim Programmieren bereitet nämlich nicht etwa die Sprache, sondern die Lösungs-

idee für das betreffende Projekt. Bei der Entwicklung der benötigten Algorithmen ist man

auf die eigene Klugheit und Kreativität angewiesen, und natürlich auf Erfahrung. Die sam-

melt man zunächst, indem man möglichst viele Übungsaufgaben löst.

Die Quelltexte der im Buch abgedruckten Programme sowie die Lösungen zu den Übungs-

aufgaben finden Sie im Internet unter

http://www.utd.hs-rm.de/C-Cpp-Studium-Beruf.

Sie haben dort auch die Möglichkeit, uns eine E-Mail zu schicken. Über Hinweise auf Feh-

ler, Anregungen und Kritiken würden wir uns freuen.

Unser Dank gilt allen, die einen Beitrag zu diesem Buches geleistet haben. Viele Anregungen

und Hinweise stammen von Studenten und Kollegen, denen wir hiermit ebenfalls danken.

Glashütten, im Juli 2017

Gerd Küveler

Dieburg, im Juli 2017

Dietrich Schwoch

Inhaltsverzeichnis

Vorwort .. V

Programmieren in C/C++ ... 1

1 Über C und C++ ... 3

2 Grundlagen ... 5

2.1 Einführende Beispiele ... 5

2.2 Anweisungen, Wertzuweisungen und Datentypen .. 7

2.3 Der Aufbau eines C++-Programms .. 9

2.3.1 Die Bausteine der Sprache .. 9

2.3.2 Der Blockaufbau eines Programms ... 12

2.3.3 Separationszeichen ... 14

2.3.4 Kommentare .. 14

2.3.5 Die Freiheit der äußeren Form .. 15

2.4 Fehler.. 16

2.4.1 Syntaxfehler .. 16

2.4.2 Laufzeitfehler .. 17

2.4.3 Logische Fehler ... 17

2.5 Die Entwicklung von C/C++-Programmen ... 18

2.6 Aufgaben .. 19

3 Vordefinierte Standard-Datentypen .. 21

3.1 Der Umgang mit Zahlen .. 21

3.1.1 Ein wesentlicher Unterschied: int oder float 21

3.1.2 Ganzzahlige Datentypen .. 23

3.1.3 Reelle Datentypen .. 29

3.1.4 Standardfunktionen mit Zahlen .. 32

3.2 Verarbeitung von Einzelzeichen: Der Datentyp char .. 34

3.2.1 Der Umgang mit der ASCII-Tabelle ... 36

3.2.2 Standardfunktionen mit char .. 39

3.3 Logische Ausdrücke .. 40

3.4 Operatoren und Ausdrücke .. 44

3.5 Benutzerdefinierte Konstanten ... 50

3.6 Aufgaben .. 51

VIII

Inhaltsverzeichnis

4 Interaktive Ein-/Ausgabe ... 53

4.1 Standard Ein-/Ausgabe mit C++ .. 53

4.2 Formatierte Bildschirm-Ausgabe ... 59

4.3 Standard-Eingabe .. 61

4.4 Standard Ein-/Ausgabe mit C .. 65

4.5 Aufgaben .. 69

5 Programm-Ablaufstrukturen .. 71

5.1 Die Selektion .. 71

5.1.1 Die einseitige Verzweigung: if 71

5.1.2 Die bilaterale Alternative: if ... else .. 73

5.1.3 Die Mehrfach-Fallunterscheidung: switch 75

5.2 Die Iteration .. 78

5.2.1 Die Zählschleife: for 78

5.2.2 Bedingungsschleifen .. 82

5.3 Die Schachtelung von Kontrollstrukturen ... 91

5.4 Aufgaben .. 94

6 Modularisierung von Programmen: Functions 101

6.1 Vereinbarungen von Functions .. 104

6.2 Der Aufbau von Funktionen .. 106

6.3 Die Parameterübergabe.. 109

6.4 Die return-Anweisung ... 114

6.5 Der Geltungsbereich von Vereinbarungen .. 117

6.6 Rekursionen .. 120

6.7 Aufgaben .. 123

7 Höhere Datenstrukturen .. 127

7.1 Felder.. 127

7.1.1 Eindimensionale Felder .. 127

7.1.2 Mehrdimensionale Felder ... 136

7.1.3 Zeichenketten: Strings .. 138

7.1.4 Initialisierung von Feldern .. 143

7.2 Pointer .. 145

7.2.1 Pointer und Felder .. 148

7.2.2 Dynamische Speicherverwaltung .. 150

7.3 Datenverbunde: Strukturen .. 154

7.3.1 Übergabe von Strukturen an Funktionen ... 157

7.3.2 Struktur-Pointer .. 158

7.3.3 Der typedef-Operator .. 161

7.4 Aufgaben .. 162

Inhaltsverzeichnis

IX

8 Arbeiten mit Dateien .. 165

8.1 ASCII-Dateien: Der Dateityp Text ... 167

8.2 Binärdateien .. 171

8.3 Aufgaben .. 176

9 Einführung in die OOP mit C++ .. 179

9.1 Klassen ... 179

9.2 Der ObjektOrientierte Ansatz ... 183

9.3 Konstruktoren und Destruktoren .. 185

9.4 Dateiorganisation .. 193

9.5 Friend Funktionen und -Klassen .. 196

9.6 Überladen von Funktionen... 198

9.7 Überladen von Operatoren ... 201

9.8 Der this-Zeiger .. 215

9.9 Übergabe von Objekten an Funktionen .. 218

9.10 Dynamischer Speicher und Klassen ... 222

9.11 Vererbung ... 227

9.12 Schrittweise Entwicklung eines einfachen OOP-Projektes 232

9.12.1 Definition einer Klasse „TIME" .. 232

9.12.2 Definition der Methoden außerhalb der Klassendefinition 233

9.12.3 Konstruktoren und die Überladung des +-Operators 235

9.12.4 Zusätzliche Überladung für Ein- und Ausgaben 237

9.13 Abschlussbemerkungen ... 240

9.14 Aufgaben .. 241

Anhang .. 243

A: ASCII-Tabelle .. 243

B: Häufige Fehler .. 244

C: Compiler .. 246

Sachwortverzeichnis ... 247

Programmieren in C/C++

Mit diesem Buch beabsichtigen wir, in die Grundlagen der Programmierung einführen.

Aufgrund ihrer zunehmenden praktischen Bedeutung wählen wir dazu die Sprache C bzw.

C++. Als Entwicklungsumgebung stellen wir uns einen PC unter Windows vor. Allerdings

ist C hervorragend portabel, d. h. Programme lassen sich ohne großen nderungsaufwand

auf andere Betriebssysteme oder andere Rechner, z. B. UNIX- oder Linux-Workstations

oder -Notebooks, übertragen, sofern man sich an den Standard hält und auf compilerspezi-

fische Funktionen verzichtet.

Es ist nicht beabsichtigt, die Möglichkeiten von C/C++ erschöpfend darzustellen. Vielmehr

möchten wir am Beispiel von C/C++ die sich in verschiedenen Sprachen oft ähnelnden

Konzepte einer höheren Programmiersprache vorstellen. C++ stellt eine Spracherweite-

rung von C dar. Während C v. a. system- und hardwarenahe Probleme unterstützt, strebt

C++ eine bessere Unterstützung der Anwendungsprogrammierung an, v. a. durch Objekto-

rientierung. Die Ideen der objektorientierten Programmierung können hier nur in ihren

Grundzügen dargestellt werden. Ignoriert man weitgehend die objektorientierten Elemente,

so ist C++ eine prozedurale Sprache, die den C-Standard nutzbringend erweitert. Das Pro-

gramm läuft später im Rechner so ab, wie es programmiert wurde. Die Reihenfolge der

Befehle bestimmt exakt die Reihenfolge der Abarbeitung. Diese prozessorientierte (struktu-

rierte) Vorgehensweise bestimmt nach wie vor die Lösung der meisten technischen und

wissenschaftlichen Softwareprobleme. Die so entwickelten Programme sind konkurrenzlos

schnell. Soweit sich die Aussagen der folgenden Kapitel nicht nur auf C sondern auch

auf C++ beziehen, sprechen wir von C/C++.

Für technische Anwendungen, also Aufgaben aus dem Bereich der Automatisierung

und Messdatenerfassung, ist C/C++ Standard, auch wenn immer häufiger graphische Ent-

wicklungstools, z. B. LabVIEW, eingesetzt werden. Der sichere Umgang mit solchen Tools

setzt jedoch ebenfalls fundierte „klassische“ Programmierkenntnisse voraus, denn auch

in Tools findet man die Grundstrukturen der klassischen Programmierung wieder. Sequen-

zen, Verzweigungen und Schleifen bleiben die Grundlagen jeglicher Programmierung.

Und auch die Lösungsidee, die Entwicklung eines Algorithmus, nimmt einem leider kein

Tool ab. Natürlich ist das Erlernen einer Programmiersprache für den Anfänger keine

ganz leichte Aufgabe. In der Praxis stellt jedoch die Entwicklung einer Lösungsidee, wie

schon im Vorwort angedeutet, für das jeweilige Problem die weitaus größere Schwierigkeit

dar.

Das Einmaleins der Programmierung lernt man am besten anhand einer prozeduralen Spra-

che, zumal sie zusätzlich ein „sicheres Gefühl“ für die Arbeitsweise eines Rechners vermit-

telt. Und wenn sie darüber hinaus auch noch die Objektorientierung unterstützt und eine so

große praktische Bedeutung wie C++ aufweist, dann umso besser.

Die zahlreichen Beispiele dieses Textes sollten mit jedem C/C++-Compiler auf jedem

Rechner, sofern er über die entsprechende Peripherie (Tastatur, Bildschirm, Festplatte)

verfügt, unter jedem Betriebssystem funktionieren. Für alle gängigen Computer und

© Springer Fachmedien Wiesbaden GmbH 2017

G. Küveler und D. Schwoch, C/C++ für Studium

 und Beruf, DOI 10.1007/978-3-658-18581-7_1

2

Programmieren in C/C++

Betriebssysteme gibt es Compiler, die man kostenlos aus dem Internet herunterladen kann.

Die auf PC unter Windows am häufigsten eingesetzte komplette Entwicklungsumgebung ist

 Microsoft Visual Studio in den Varianten 2010, 2013, 2015 und 2017. Sie können in den

 Express- und Community-Versionen kostenlos herunter geladen werden. Mehr zum Thema

Compiler finden Sie im Anhang C.

1 Über C und C++

Die Entwicklung der Programmiersprache C ist eng mit der des Betriebssystems UNIX ver-

knüpft. Nachdem die erste UNIX-Version noch in Assembler erstellt worden war (1969),

entwickelte Ken Thomson 1970 die Sprache B zur Implementierung eines UNIX-Systems

für eine PDP-7-Maschine. Aus der mit zu vielen Schwächen behafteten Sprache B entwi-

ckelte Dennis Ritchie 1972 C. Seit 1973 ist das Betriebssystem UNIX fast vollständig in C

geschrieben. Zunächst gab es keinen offiziellen Sprachstandard. Stattdessen erreichte die

Sprachdarstellung in einem Lehrbuch – deutsch: Kernighan, Ritchie; Programmieren in C.

Hanser Verlag 1983 – den Status eines Quasi-Standards (Kernighan-Ritchie-Standard).

Kleinere Erweiterungen und Verbesserungen führten zum ANSII-Standard. Die Sprache

C++ wurde Anfangs der 80er Jahre von Bjarne Stroustrup an den Bell Laboratories ent-

wickelt. Es handelt sich dabei um einen Zusatz für C.

C ist in C++ vollständig enthalten.

(Fast) alles was in C funktioniert, funktioniert auch in C++

C ist eine Sprache der 3. Generation (strukturierte Sprache) und ist die wichtigste höhere

Programmiersprache im Ingenieurbereich. Die wesentlichen Merkmale der Sprache sind:

 breites Anwendungsspektrum

 knappe Befehle (short is beautiful)

 sehr klares Sprachkonzept.

Was oben als Vorteil erscheint, erweist sich als Nachteil bezüglich der Erlernbarkeit als

„Erstsprache“. Die „knappen Befehle“ könnte man etwas böswillig auch als kryptisch be-

zeichnen und das „klare Sprachkonzept“ verlangt vom Programmierer Grundkenntnisse

über Aufbau und Arbeitsweise von Computern, deutlich mehr als Pascal und FORTRAN.

Allerdings steigen diese Grundkenntnisse bei der jungen Generation von Jahrgang zu Jahr-

gang. Fast jeder (Interessierte) kann mit einem PC bzw. Notebook umgehen. Viele haben

bereits gelernt, kleinere Probleme in Basic oder Python zu lösen. Und so kann man es heute

wagen, ernsthaft mit C zu starten. Die Mühe lohnt sich! Es klingt paradox aber es ist wahr:

Obwohl C++ der 5. Sprachgeneration (objektorientiert) angehört und mächtiger als C ist,

gelingt der Einstieg mit C++ leichter als mit C „pur“. Der Grund: C++ bietet einige Erleich-

terungen, v. a. bei der Datenein- und Ausgabe, auch lassen sich die gefürchteten Pointer in

der Anfangsphase umgehen.

Im letzten, großen Kapitel (9) dieses Teils erhalten Sie eine Einführung in die objektorien-

tierte Programmierung (OOP).

© Springer Fachmedien Wiesbaden GmbH 2017

G. Küveler und D. Schwoch, C/C++ für Studium

 und Beruf, DOI 10.1007/978-3-658-18581-7_2

2 Grundlagen

Eine Programmiersprache ist im Wesentlichen durch zwei Themenbereiche gekennzeichnet:

 Datenstrukturen

 Programm-Ablaufstrukturen

Mit „Datenstrukturen“ werden die verschiedenen Organisationsmöglichkeiten von Daten

beschrieben. Der Programmierer muss sich sehr gut überlegen, welche Datenstrukturen am

ehesten dem Problem angemessen sind. So kann es in dem einen Fall günstig sein, skalare

Einzelwerte zu verarbeiten, während in einem anderen Fall die Zusammenfassung von

Daten zu Feldern (z. B. Vektoren, Matrizen), Verbunden (z. B. Adressen von Studenten)

oder ganzen Dateien (z. B. ein eine komplette Serie von Messwerten) erheblich sinnvoller

ist.

„Ablaufstrukturen“ kennzeichnen die Möglichkeiten, vom linearen Ablauf des Programms

abzuweichen und Schleifen oder Verzweigungen durchzuführen. Der Programmierer muss

anhand der von der Sprache unterstützten Ablaufstrukturen entscheiden, welche zur Lösung

der jeweiligen Aufgabe optimal geeignet ist. Bei größeren Programmen sollte man evtl.

Planungshilfen wie Programm-Ablaufpläne oder Struktogramme benutzen.

2.1 Einführende Beispiele

Das klassische Programm, mit dem jeder C/C++-Lehrgang beginnt, sieht etwa so aus:

// BSP_2_1_1 (Dies ist eine Kommentarzeile)

#include <iostream>

#include <cstdio> // fuer getchar()

using namespace std;

int main(void)

{

cout << "Hallo world" << endl;

getchar(); // cstdio mit #include einbinden

}

Wenn Sie es mit einem Editor in eine Datei, etwa „hallo.cpp“ eingeben und von Ihrem

C++-Compiler übersetzten lassen, gibt es bei der Ausführung den entsprechenden Satz, ge-

folgt von einem Zeilenvorschub (endl) auf den Bildschirm aus. getchar() bewirkt, dass sich die Bildschirmkonsole, die sich für die Ausgabe geöffnet hat, erst nach einem Tas-tendruck wieder schließt. Ob diese Maßnahme in Ihrer Arbeitsumgebung (Betriebs-

system, Compiler) notwendig ist, probieren Sie am besten selbst aus. Für zukünftige

Beispiele verzichten wir auf die getchar()-Anweisung. Auf unserer Buch-Webseite ist sie

jedoch immer enthalten.

 #include-Anweisungen binden Compiler-Dateien (Header-Dateien) ein, die für das Pro-

gramm notwendige Definitionen enthalten. Beginnt ihr Name mit c (wie oben cstdio), so

© Springer Fachmedien Wiesbaden GmbH 2017

G. Küveler und D. Schwoch, C/C++ für Studium

 und Beruf, DOI 10.1007/978-3-658-18581-7_3

6

2 Grundlagen

handelt es sich um eine „alte“ Header-Datei, die es bereits zu C-Zeiten (vor Einführung von

C++) gab.

Das folgende Programm vermittelt einen tieferen Eindruck von der Sprache C++:

// BSP_2_1_2 (Programmname, wie aud unserer Buch-Webseite)

/* Programm zur Berechnung von 1. Kugelvolumen

und 2. Kugeloberflaeche bei Eingabe des Radius */

#include <iostream>

#include <cmath>

using namespace std;

int main(void)

{

float radius, volumen, oberflaeche;

cout << "Radius >"; // Eingabeaufforderung (Prompt)

cin >> radius; // Tastatureingabe

while(radius != 0) // while-Schleife von { bis }

{ // Kugelberechnung

Volumen = 4.0 / 3.0 * M_PI * radius * radius * radius;

Oberflaeche = 4.0 * M_PI * radius * radius;

cout << "eingegebener Radius = " << radius

<< endl; // Bildschirmausgabe

cout << "Volumen = " << volumen << " Oberflaeche = "

<< oberflaeche << endl;

cout << endl << "Radius >";

cin >> radius;

} // Ende der Kugelberechnung

cout << "Es wurde 0 für Radius eingegeben" << endl;

return 0;

}

Das Programm berechnet Volumen V und Oberfläche O einer Kugel bei eingegebenem

Radius R gemäß den bekannten Beziehungen:

4

3

V =

π R und

2

O = π R .

3

Das Programm ist als while-Schleife aufgebaut, so dass die Berechnungen für mehrere

nacheinander eingegebene Radien ausgeführt werden können. Wird „0“ für den Radius

eingegeben, endet das Programm. Die fettgedruckten Wörten sind Schlüsselwörter von C.

Vermutlich hätten Sie auch ohne diese Beschreibung mit etwas Mühe das Programm direkt

aus seinem Code heraus analysieren können. Das ist typisch für höhere Sprachen, wenn

auch in C++ etwas schwieriger als in anderen Sprachen, weil die Befehle manchmal „kryp-

tisch“ anmuten. Einige Details erscheinen zunächst rätselhaft, etwa das endl (es steht für

Zeilenvorschub) in der cout-Anweisung. Mehrzeilige (/* ... */) oder einzeilige (//) Kom-

mentare werden vom Programmübersetzer, dem Compiler, ignoriert.

2.2 Anweisungen, Wertzuweisungen und Datentypen

7

Die äußere Form eines Programms ist dabei für sein Lese-Verständnis von großer Bedeu-

tung. Wir werden daher

 die vom Compiler vorgeschriebenen Regeln – und –

 selbst auferlegte Verabredungen über die äußere Form

des Programmaufbaus im Kap. 2.3.2 genauer vorstellen.

2.2 Anweisungen, Wertzuweisungen und Datentypen

Ein Programm besteht aus den einzelnen Anweisungen, die durch ein Trennzeichen (Semi-

kolon „ ; “) voneinander separiert sind. Anweisungen sind z. B. Wertzuweisungen an Vari-

ablen, Ein-/Ausgabe-Anweisungen oder Funktionsaufrufe.

 Beispiele für Anweisungen

summe = summand1 + summand2;

/* Wertzuweisung */

cout << "Berechnung von y";

/* Ausgabe-Anweisung */

cin >> x;

/* Eingabe-Anweisung */

ausgabe(alpha, beta);

/* Funktionsaufruf */



Eine der häufigsten Anweisungen sind Zuweisungen von Ausdrücken an Variablen:

Wertzuweisung

Zuweisungsrichtung:



variable = ausdruck;

Zuweisungsoperator: „=“ (nicht zu verwechseln mit dem Gleichheitsoperator „==“)

Ausdrücke können Konstanten, Variablen oder zusammengesetzte Größen, z. B. komplexe

mathematische Formeln sein.

 Beispiele für Wertzuweisungen:

a = 5;

y = 3 * x - 127.15;

volumen = breite * laenge * hoehe;

wurzel = sqrt(alpha); // sqrt(): Wurzelfunktion

anzahl = anzahl + 1;

Die Größen

a, y, x, breite, laenge, hoehe, volumen, wurzel, alpha, anzahl

sind Variablen, dagegen die Zahlen

5

3

127.15

1

(unveränderliche) Konstanten, auch Literale genannt.



8

2 Grundlagen

Variablen sind Namen für Speicherplätze. Diese müssen vor dem ersten Aufruf vorher

reserviert, d. h. vereinbart worden sein. Speicherplätze für Variable können je nach Typ der

Variablen unterschiedlich groß sein. Der Rechner wertet beim Zugriff auf diese Speicher-

plätze die vorgefundene Information unterschiedlich aus, je nachdem, ob in der Variablen

z. B. ein Text, eine vorzeichenlose Ganzzahl oder eine reelle Zahl geführt wird.

 Beispiele

Variablenname:

Speicherinhalt:

Datentyp:

anzahl

-7

Ganzzahl,

Typ int

spannung

2.341

reelle Zahl,

Typ

(Dezimalpunkt statt -komma!)

float

ch

z

Zeichen

Typ char



Die Speicherplätze sind mit verschiedenen Datentypen belegt. Wir sagen, die Variablen

anzahl, spannung und ch besitzen einen unterschiedlichen Datentyp. So kann z. B. eine

Variable vom Datentyp float nur reelle Werte speichern, eine Variable vom Datentyp char

speichert Zeichen, usw. Je nach Datentyp sind auch unterschiedliche Verknüpfungsoperato-

ren definiert.

Das Konzept der Datentypen ist für die Programmierung von zentraler Bedeutung.

Regeln für Datentypen

– Jede in einem Programm vorkommende Variable oder Konstante besitzt einen

bestimmten Datentyp.

– Der Datentyp legt fest, welche Operationen mit einem Element dieses Typs erlaubt

sind.

– Jede Variable muss vor ihrem ersten Aufruf auf den Datentyp festgelegt, d. h. ver-

einbart werden.

– Eine Variable kann im Laufe eines Programms nicht ihren Datentyp ändern.

– Eine Konstante kann im Laufe eines Programms weder ihren Datentyp noch ihren

Wert ändern.

Einer der häufigsten Programmierfehler liegt in der Nicht-Beachtung von Datentyp-Regeln

(Typverletzungen)!

Für den Anfänger ist besonders die Unterscheidung der verschiedenen Zahlen-Datentypen

ungewohnt, die beim praktischen Rechnen ohne Computer in der Regel keine Rolle spielt.

2.3 Der Aufbau eines C++-Programms

9

 Beispiel

.....

float a;

int b, c;

.....

a = 2.7;

b = 3;

c = a / b; 

die Variable c hat den Wert 0, weil bei der Zuweisung der

Nachkommateil entfällt!



Programmiersprachen unterscheiden grundsätzlich zwischen dem Ganzzahlentyp (in C/C++

„int“) und dem mit Dezimalpunkt geschriebenen reellen Zahlentyp (in C/C++ „float“). Die

beiden Werte

5 und 5.0

sind also streng zu unterscheiden und im Allgemeinen nicht austauschbar!

2.3 Der Aufbau eines C++-Programms

Bevor wir die in C++ verfügbaren Datentypen näher untersuchen, soll der generelle Aufbau

von Programmen vorgestellt werden.

2.3.1 Die Bausteine der Sprache

Jede Programmiersprache besteht aus

 reservierten Wörtern (Schlüsselwörter)

 reservierten Symbolen

 benutzerdefinierten Bezeichnern.

Reservierte Wörter (Schlüsselwörter, in unseren Programmen durch Fettdruck gekenn-

zeichnet) sind die „Vokabeln“ der Sprache mit fest vorgegebener Bedeutung. Diese Wörter

dürfen nicht vom Programmierer für andere Zwecke, z. B. als Variablennamen eingesetzt

werden. Zum Glück beschränkt sich das „Vokabellernen“ auf nur wenige Wörter:

Schlüsselwörter in C

asm *

double

long

typedef

auto

else

register

union

break

enum

return

unsigned

case

extern

short

void

char

float

signed

volatile

const

for

sizeof

while

continue

goto

static

default

if

struct

do

int

switch

* nicht bei allen Compilern

10

2 Grundlagen

Zusätzliche Schlüsselwörter in C++

asm

friend

static_cast

bool

inline

template

const_cast

mutable

this

catch

namespace

throw

class

new

true

delete

operator

try

dynamic_cast

private

typeid

explicit

protected

typename

export

public

using

false

reinterpret_cast

virtual

Außerdem existieren diverse compilerabhängige Schlüsselwörter.

Die Bedeutung der meisten Wörter werden wir in den folgenden Abschnitten kennenlernen.

Etwa die Hälfte davon spielt in der Praxis nur eine geringe Rolle.

Reservierte Symbole dienen dazu, die meisten Operatoren der Programmiersprache zu

definieren. Hierzu werden die Sonderzeichen

+ – * / = ; , < > & | () [] # % \ ~ ^ ? ! :

verwendet. Da C/C++ extrem viele Operatoren kennt, erfahren einige Symbole Doppel-

oder gar Mehrfachverwendungen.

Benutzerdefinierte Bezeichner wählt der Programmierer z. B. für Variablen-, Konstanten-,

Funktions- und Prozedurnamen. Um Missverständnisse zu vermeiden, müssen Regeln bei

selbstgewählten Bezeichnern eingehalten werden:

Regeln für benutzerdefinierte Bezeichner (Namensregeln)

– Jeder Bezeichner muss mit einem Buchstaben beginnen.

– Anschließend eine beliebige Folge von alphanumerischen Zeichen.

– „_“ (Unterstrich) ist wie ein Buchstabe einsetzbar.

– Umlaute und „ß“ sind nicht erlaubt.

– Die Länge ist beliebig, jedoch unterscheiden viele Compiler nur die ersten

31 Zeichen (ältere C-Compiler für Mikroprozessoren und –controller oft nur 6 bis

8).

– Reservierte Wörter (Schlüsselwörter) sind verboten.

– C/C++ unterscheidet Groß- und Kleinbuchstaben!

– Man vermeide Namen von vordefinierten Standard-Bezeichnern (das sind

meist Namen von Standardfunktionen wie sqrt, sin, cos, ...). Konsultieren

Sie im Zweifelsfall die Online-Hilfe Ihres Compilers.

2.3 Der Aufbau eines C++-Programms

11

C/C++-Konvention (nicht zwingend)

Üblicherweise schreibt man Variablen- und Funktionsnamen in Kleinbuchstaben,

symbolische Konstanten dagegen in Großbuchstaben.

 Beispiele

zulässige Bezeichner:

alpha

zweite_aufgabe

ss94

autor

_5eck

(sollte nur in Zusammenhang mit Klassen benutzt werden)

nicht-zulässige Bezeichner:

5eck

(1. Zeichen kein Buchstabe)

übung6

(„ü“ nicht zulässig)

ws94/95

(„/“ nicht alphanumerisch,

Divisionsoperator!)

auto

(reserviertes Wort)

zweite-aufgabe

(„-“ nicht alphanumerisch,

Subtraktionsoperator!)

zweite aufgabe

(„blank“ nicht alphanumerisch, das sind 2 Bezeichner) 

Wählen Sie nach Möglichkeit immer Namen, die dem Problem angepasst sind. Aussagefä-

hige Namen tragen ganz wesentlich zur Lesbarkeit eines Programms bei, z. B.

statt:

x,

y,

a,

b

besser:

spannung,

anzahl,

zeit,

ergebnis.

Hier können Sie in der sonst so restriktiven Informatik einmal kreativ sein! Böse Zungen

behaupten, dass ein Ingenieur die längste Zeit beim Programmieren damit verbringt, geeig-

nete Namen zu ersinnen!

Anfänger unterschätzen häufig die durch eine einheitliche Schreibweise erzielte bessere

Lesbarkeit von Programmen. Daher:

Dringende Empfehlung:

Halten Sie unbedingt die C/C++-Konvention ein! Wenn Sie sich nicht von Anfang an

daran gewöhnen, werden Sie sich auch später nicht umstellen können!

12

2 Grundlagen

2.3.2 Der Blockaufbau eines Programms

Jede Programmiersprache erfordert einen bestimmten Programmaufbau, damit der Compi-

ler richtig arbeiten kann. Der Aufbau soll an folgendem Beispiel erklärt werden:

 Beispiel: Berechnung der Summe von zwei eingelesenen Werten

// BSP_2_3_2_1

// Berechnet die Summe von 2 eingelesenen int-Zahlen

#include <iostream> // wegen cout und cin

using namespace std; // sonst müsste es z.B. std::cout heißen

int main(void) // oder int main()

{

int summand1, summand2;

int ergebnis;

cout << "Eingabe Summand1 >";

cin >> summand1;

cout << "Eingabe Summand2 >";

cin >> summand2;

ergebnis = summand1 + summand2;

cout << "Summe = " << ergebnis

<< endl;

return 0; // Denken Sie daran, evtl. zuvor getchar()

 // einzufuegen.

}



C/C++-Programme sind im Gegensatz zu solchen in FORTRAN oder Pascal namenlos.

Natürlich muss die Datei, in der das Programm abgespeichert wird, einen Namen besitzen.

Dieser muss den Namensregeln des verwendeten Betriebssystems genügen. In der Regel

verlangt der Compiler zusätzlich eine bestimmte Erweiterung, etwa „.c“ für reine C-

Compiler, oder heute meist „.cpp“ für C++-Compiler.

Unser obiges Programm (BSP_2_3_2_1) könnte etwa mit dem Namen „summe.cpp“ unter

den Betriebssystemen LINUX oder Windows 10 abgespeichert sein.

C/C++-Programme bestehen aus einzelnen Funktionen. Insofern stellt unser Summenpro-

gramm einen Sonderfall dar, denn es besteht nur aus einer einzigen Funktion, der Funktion

 main(). Jede Funktion besitzt einen Datentyp, der einzig und allein vom Rückgabewert

(return value) abhängt. Da wir eine ganze Zahl zurückgeben (return 0), besitzt unsere

Funktion main() den Datentyp int (Ganzzahl). Das Wort „void“ (dt. leer) in der Klammer

hinter „main“, besagt, dass diese Funktion keine Übergabe-Parameter erhält.

Eine Funktion besteht aus den Komponenten

Funktionskopf – Vereinbarungsteil

– Ausführungsteil

2.3 Der Aufbau eines C++-Programms

13

<datentyp> <name(parameter)>

Funktionskopf

{

int <variablenliste>;

...

float <variablenliste>;

Variablenvereinbarungen

...

char <variablenliste>;

...

/* gültige ausführbare

C/C++-Anweisungen und

Ausführungsteil

Funktionsaufrufe. */

.

.

.

.

.

}

Wie das Beispiel zeigt, existiert zwischen Vereinbarungsteil und Ausführungsteil keine

deutlich sichtbare Grenze. Hingegen werden beide Teile zusammen, der so genannte Funk-

tionskörper, durch geschweifte Klammern begrenzt. Die „#include ...“-Anweisung ist nicht

Bestandteil der Funktion. Wir werden später darauf zurückkommen.

Die allen unseren Programmen vorangestellte Compiler-Direktive (= Anweisung an den

Compiler) using namespace std; besagt, dass der Standard-C++-Namensraum benutzt

werden soll, wenn Zugriffe auf die C++-Standard-Bibliotheken erfolgen. Die Vereinbarung

unterschiedlicher „namespaces“ kann in großen Projekten, an denen viele Entwickler arbei-

ten, Namenskonflikte vermeiden. Für die hier vorgestellten Programme ist das jedoch nicht

erforderlich. Einige Compiler haben die Setzung auf den Standard-C++-Namensraum als

Voreinstellung integriert, so dass die hier gezeigte using-Direktive ganz entfallen kann.

Der Vereinbarungsteil definiert Variablen, die durch die RESERVIERTEN WÖRTER

„int“, „float“, „char“, usw. eingeführt werden. Diese legen den Datentyp der nach-

folgend aufgelisteten Variablen fest. Unser Beispiel enthält hier die Vereinbarungen der

Variablen summand1, summand2 und summe als ganzzahlige int-Größen. Der Vereinba-

rungsteil führt keine Anweisungen aus, sondern stellt nur die benutzten Datenstrukturen

14

2 Grundlagen

bereit. Eigentlich müssen Variablen lediglich vor ihrer ersten Verwendung deklariert

werden. Das kann also irgendwo im Programm sein, ist aber unübersichtlich.

Der Ausführungsteil enthält die ausführbaren Anweisungen. Diese realisieren den Algo-

rithmus zur Lösung des Problems. Die ausführbaren Anweisungen sind in größeren Pro-

grammen häufig in einzelne Strukturblöcke unterteilt, die wiederum durch „{“ und „}“

geklammert sind.

Strukturblock:

{

...

...

...

}

In unserem einfachen Beispiel besteht die Funktion main() aus nur einem Strukturblock.

Größere C/C++-Programme bestehen in der Regel aus mehreren Funktionen. Diese werden

einfach untereinander definiert (d. h. geschrieben), so dass sich der obige Aufbau entspre-

chend oft wiederholt. Jede Funktion ist also prinzipiell gleich aufgebaut, benötigt jedoch

einen eigenen unverwechselbaren Namen. Nur eine Funktion heißt zwingend main(). Un-

abhängig davon, ob sie oben, in der Mitte oder unten definiert wurde: mit der Funktion

 main() wird jedes C++-Programm gestartet. Im Kapitel 6 werden wir uns eingehend mit

Funktionen befassen.

2.3.3 Separationszeichen

Wie generell in jeder Sprache gibt es auch in C/C++ Trennzeichen, die die einzelnen logi-

schen Einheiten des Codes gegeneinander abgrenzen.

Separationszeichen

Semikolon: ;

Abtrennung der einzelnen Anweisungen gegeneinander

Komma:

,

Listentrenner: Eine Liste ist eine Aufzählung gleichartiger

Objekte, z. B. „float alpha, beta, gamma;“

Leerstelle:

„ “ häufig als „blank“ bezeichnet; Abtrennung der einzelnen Worte

im Quelltext

Vor und nach Separationszeichen können beliebig viele Leerstellen eingefügt werden.

2.3.4 Kommentare

Obwohl C/C++-Programme weitgehend selbsterklärend sind, kann es sinnvoll sein, im

Programmtext erläuternde Informationen einzufügen. Typisch sind eine Kurzbeschreibung

am Programmbeginn und einzelne Hinweise im Quelltext. Kommentare lassen sich an jeder

Stelle des Quelltextes mit den Symbolen

2.3 Der Aufbau eines C++-Programms

15

/*

......................*/

einfügen. Der Kommentar kann aus einem Wort, einzelnen Textzeilen oder ganzen Textab-

sätzen bestehen. Achtung: Nur C++-Compiler erlauben zusätzlich

//.......................

Ein derart gestalteter Kommentar endet immer am Zeilenende und hat daher kein Endzei-

chen.

 Beispiel

int main(void)

/*

Berechnung des Quotienten

von zwei eingelesenen Werten */

{ //Strukturblock A

....

....

}

{ //Strukturblock B

....

....

nenner = alpha - beta; // koennte 0 sein!

// Prüfung, ob Nenner = Null ist:

....

....



Bei der Programmentwicklung ist es manchmal hilfreich, Anweisungen oder ganze Struk-

turblöcke vorübergehend „auszukommentieren“, um Fehler zu finden.

2.3.5 Die Freiheit der äußeren Form

Es besteht eine weitgehende Gestaltungsfreiheit der äußeren Form eines Programms. Die

äußere Form trägt jedoch ganz entscheidend dazu bei, ein Programm verständlich und

damit wartbar zu machen. Neben den bereits getroffenen Vereinbarungen über Groß-

/Kleinschreibung haben sich in der Praxis folgende Regeln bewährt:

„Freiwillige“ Grundsätze für die äußere Form

– Beginn eines Programms immer in der 1. Schreibspalte

– Je Zeile nur eine Anweisung (Ausnahmen möglich, z.B. „Prompt“-Eingaben)

– Strukturblöcke werden nach rechts um etwa 3–4 Positionen eingerückt

– Leerzeilen einfügen, um Text zu strukturieren

– Leerstellen („blanks“) einfügen, um Anweisungen übersichtlich zu halten

– Eher einen Kommentar mehr als einen zu wenig!

16

2 Grundlagen

Dringende Empfehlung:

Versuchen Sie unbedingt diese Regel einzuhalten! Wenn Sie sich nicht von Anfang an

daran gewöhnen, werden Sie sich auch später nicht umstellen können!

2.4 Fehler

Die Entwicklung eines Programms ist ein iterativer Prozess. In den seltensten Fällen wird

ein neu eingegebenes Programm auf Anhieb richtig arbeiten. In der Regel treten Fehler auf,

deren Korrektur einen nicht unerheblichen Anteil der Entwicklungszeit beanspruchen. Wir

unterscheiden drei Kategorien von Fehlern:

 Syntaxfehler

 Laufzeitfehler

 logische Fehler (Semantikfehler).

2.4.1 Syntaxfehler

Fehler im formalen Aufbau und „Rechtschreibfehler“ führen zu Syntaxfehlern. Sie werden

vom Compiler während der Übersetzung erkannt. Das Programm wird nicht compiliert. Die

meisten modernen Compiler sind „intelligent“ und geben in der Fehlermeldung die Fehler-

position (Zeilennummer im Quelltext) und einen erklärenden Text mit aus.

 Beispiele für Syntaxfehler:

int main //mein 1. Versuch



Parameterklammern () vergessen

...

...

quotient = zaehler : nenner;



Falscher Operator: „:“ statt „/“

...

...

alpha = radius + 3.5



„;“ am Anweisungsende vergessen

x := y;



irrtümlich das Pascalzuweisungs-

zeichen „:=“ statt „=“ verwendet

...

...

...

10 = zahl;



falsche Zuweisungsrichtung

...

ferner:

 Benutzung von Variablen, die nicht vereinbart wurden

 Typverletzungen



Syntaxfehler sind schnell zu korrigieren und bereiten in der Praxis kaum Probleme.

2.4 Fehler

17

2.4.2 Laufzeitfehler

Ein syntaktisch korrektes Programm kann auch nach seinem Start während der Pro-

grammausführung mit einer Fehlermeldung abbrechen. Diese erst zur Laufzeit auftretenden

Fehler heißen „Laufzeitfehler“.

Laufzeitfehler hängen von den aktuell bearbeiteten Daten ab. Häufig treten sie beim ersten

Testlauf auf. Es kann aber auch vorkommen, dass ein Programm viele Male richtig arbeitet

und nur bei bestimmten „kritischen“ Datenkombinationen mit einem Laufzeitfehler ab-

bricht. So kann z. B. die fehlerhafte Anweisung in einem Programmteil liegen, der nur bei

bestimmten Dateneingaben durchlaufen wird. Laufzeitfehler treten manchmal erst nach

jahrelanger Nutzung des Programms auf. Ein besonderes Problem bei der Software-

Entwicklung ist die Zusammenstellung geeigneter Testdatensätze, die möglichst alle kriti-

schen Fälle abdecken.

 Beispiele für Anweisungen, die zu Laufzeitfehlern führen:

1) Division durch Null:

...

cin >> n;

q = z / n;



Abbruch, falls für n Null eingegeben wird

...

2) Wurzel aus negativer Zahl:

...

...

c = sqrt(x – y);



Abbruch, falls aktuell x – y < 0

...



Leider sind die Ursachen für Laufzeitfehler nicht immer so offensichtlich wie in den obigen

Beispielen. Es ist sehr aufwendig, Programme „DAU-sicher“ zu machen, d. h. gegen jede

(auch unsinnig erscheinende) Eingabe abzusichern.

DAU

Dümmster Anzunehmender User

2.4.3 Logische Fehler

Logische Fehler (Semantikfehler) verstoßen weder gegen Rechtschreib- noch gegen

Grammatikregeln einer Sprache.

Beispiel:

„Das Rad ist viereckig“

18

2 Grundlagen

Wenn ein Programm ohne Fehlermeldungen abgearbeitet wird aber falsche Ergebnisse

liefert, liegt ein logischer Fehler vor. Logische Fehler werden nur erkannt, wenn zu be-

stimmten Test-Eingaben die erwarteten Programm-Ergebnisse bekannt sind (z. B. durch

Handrechnung oder Taschenrechner). Diese Fehler entstehen durch einen falschen Algo-

rithmus und zwingen manchmal zu einer grundlegenden Umorganisation des Programms.

Einfaches Beispiel für einen logischen Fehler:

Statt Berechnung der Summe zweier Größen wird das Produkt gebildet.

Ein solcher logischer Fehler kann natürlich auch auf einem Tippfehler beruhen.

Fehlern in der Logik größerer Programme lässt sich durch ein klares Konzept des Pro-

grammaufbaus (Programm-Ablaufplan, Struktogramm, …) vorbeugen.

2.5 Die Entwicklung von C/C++-Programmen

Vor allem C, aber auch C++ ist eine sehr gut portable Sprache. Deshalb werden Sie fast alle

hier vorgestellten Beispielprogramme ohne wesentliche nderungen auf Ihrem System

„zum Laufen bekommen“. Bekannte PC-Compiler sind u. a.: Microsoft Visual C++ (Visual

Studio), Watcom C/C++, Dev C++ sowie Symantech C++ Professional in der jeweils aktu-

ellen Version. Sie alle erlauben auch die Entwicklung von reinen C-Programmen.

Für die Programmentwicklung sind neben dem Compiler auch noch die Hilfsprogramme

Editor, Linker und Debugger erforderlich. Unabhängig vom Typ des Compilers sind bei der

Programmentwicklung bestimmte Phasen zu durchlaufen:

Die wichtigsten Schritte bei der Programmentwicklung

C/C++ Compiler bzw. Entwicklungsumgebung (z.B Visual C++ 2010 Express) starten

Erstellen des Quelltextes (lesbarer C/C++-Programmtext) mit dem Editor

Korrektur des Quelltextes im Editor

Sichern (Abspeichern) des Quellprogramms

Programm compilieren, linken und starten

Fehler korrigieren

– oder –

Editor explizit aktivieren

C/C++ Compiler verlassen, zurück zum Betriebssystem (BS)

Unter „Quelltext“ oder „Quellprogramm“ versteht man den Klartext, den der Programmie-

rer, entsprechend der Syntax der verwendeten Sprache, mit dem Editor eingibt. Das Quell-

programm steht nach Abspeicherung im Fall von C++ in der Datei <name>.cpp, den aktu-

ellen Namen wählt der Programmierer selbst, wobei er an die Konventionen seines Be-

triebssystems gebunden ist.

2.6 Aufgaben

19

Das „Übersetzen“ eines C/C++-Quellprogramms beinhaltet folgende Schritte:

1. Der Prä-Prozessor wertet alle Anweisungen aus, die mit einem #-Zeichen beginnen. So

fügt er im Fall der #include-Anweisung „im Geiste“ die in spitzen Klammern angege-

bene Datei, z. B. iostream für den Compiler in den Quelltext ein.

2. Der C++-Compiler erzeugt ein sogenanntes Objektmodul, in der Regel unter dem Na-

men <name>.obj. Verstößt der Quelltext gegen die Syntaxregeln, wird kein Objektmo-

dul angelegt. Stattdessen gibt der Compiler Fehlermeldungen aus.

3. Der Linker verbindet den Objektcode mit den benötigten C/C++-Bibliotheken und er-

zeugt ein ausführbares Programm, unter Windows in der Regel unter dem Namen

 <name>.exe, unter Linux/UNIX ohne Namenserweiterung.

2.6 Aufgaben

1) Untersuchen Sie das Programm BSP_2_1_1.cpp von Kap. 2.1 auf RESERVIERTE

WÖRTER und benutzerdefinierte Bezeichner.

2) Welche der folgenden selbst gewählten Bezeichner sind zulässig:

a) z

b) 14okt

c) ende

d) mat.nr

e) eingabedatum

f)

c2356

g) ws94/95

h) ausgabe-vektor

i)

zero

j)

x_achse

k) RADIUS

l)

Var

3) Welche Anweisungen sind fehlerhaft:

a) alpha = 10.7;

b) q = alpha * beta

c) 2 * x = 36.7 - z;

d) gamma = gamma - epsilon;

4) Untersuchen Sie folgendes Programm nach RESERVIERTEN WÖRTERN und selbst

definierten Namen:

#include <iostream>

using namespace std;

int main(void)

{

int a, b, prod;

cout <<"Geben Sie zwei ganze Zahlen ein >";

cin >> a >> b;

prod = a * b;

cout << "\nDas Produkt von " << a << " und " << b

<< " ist " << prod << '\n';

return 0;

}

20

2 Grundlagen

Geben Sie das Programm ein und bringen Sie es nach Compilierung zur Ausführung.

Evtl. müssen Sie vor der return-Anweisung ein- oder zweimal „getchar();“ einfügen,

damit die Konsole nicht sofort geschlossen wird, sondern erst nach Drücken einer belie-

bigen Taste.

5) Schreiben Sie ein Programm, das fogenden Text ausgibt:

„Dies ist mein erstes eigenes C++ Programm“

Die Lösungen finden Sie, wie bei allen folgenden Aufgaben auch, auf unserer Buch-

Webseite: http://www.utd.hs-rm.de/C-Cpp-Studium-Beruf

3 Vordefinierte Standard-Datentypen

und einfache Operationen

C/C++ besitzt, wie die meisten höheren Programmiersprachen, einige vordefinierte Stan-

dard-Datentypen. Die wichtigsten sind:

 ganze Zahlen:

Typ int

(und ganzzahlige Sub-Typen)

 reelle Zahlen:

Typ float

(und reelle Sub-Typen)

 Einzel-Zeichen:

Typ char

(und Sub-Typen)

Einen logischen Datentyp, wie LOGICAL in FORTRAN oder BOOLEAN in Pascal, gibt

es in C nicht, wohl aber in C++ (bool).

Der Wertevorrat, bzw. Wertebereich dieser Größen ist fest vorgegeben. Konstanten dieser

Typen können unmittelbar im Programm auftreten, Variablen werden vereinbart durch:

Variablenvereinbarung

<datentyp_1> <variablenliste_1>;

<datentyp_2> <variablenliste_2>;

<datentyp_2> <variablenliste_2>;

Beispiel:

int oma, opa, summe;

float messwert, mittel;

char zeichen, z1, z2, c;

3.1 Der Umgang mit Zahlen

In einem Programm können Zahlen als Konstante oder als Variablen eines bestimmten

Datentyps auftreten. In dem Ausdruck

3 * r + s - 4.7

ist „3“ eine Integer-Konstante, „4.7“ eine float-Konstante, r und s sind Variablen, deren

Typen zuvor im Vereinbarungsteil festgelegt wurden.

3.1.1 Ein wesentlicher Unterschied: int oder float

Jede Zahl benötigt zu ihrer Speicherung Platz im Arbeitsspeicher des Rechners. Je mehr

Platz für eine Zahl verfügbar ist, desto mehr Information lässt sich darin ablegen. Typische

Speicherbelegungen liegen bei 1–8 Bytes pro Zahl. Aus der Beschränkung auf eine be-

© Springer Fachmedien Wiesbaden GmbH 2017

G. Küveler und D. Schwoch, C/C++ für Studium

 und Beruf, DOI 10.1007/978-3-658-18581-7_4

22

3 Vordefinierte Standard-Datentypen

stimmte Speichergröße folgt, dass grundsätzlich nur Ausschnitte des unendlichen Zahlen-

bereichs auf Rechnern dargestellt werden können. Bei jedem Rechner und bei jeder Pro-

grammiersprache gibt es Grenzen für die Absolutgröße der darstellbaren Zahlen.

Geht es um die Darstellung ganzer Zahlen (Typ int), so ist nur die Einschränkung auf den

darstellbaren Wertebereich zu beachten.

Zahlen vom Typ int:

Beachte die Grenzen des Wertebereichs

Für gebrochene Zahlen tritt neben diesen Bereichsgrenzen eine weitere Einschränkung da-

durch auf, dass nicht beliebig viele Nachkommastellen im vorgegebenen Speicherrahmen

unterbringbar sind. Es ist offensichtlich, dass z. B. ein reeller Wert von 0.45023 weniger

Speicherplatz erfordert, als der Wert 0.263846073567484923 (obwohl die zweite Zahl vom

Betrag her kleiner ist). Das bedeutet aber, dass innerhalb eines darstellbaren Zahlenbereichs

gebrochene Zahlen (Typ float) nur bis zu einer bestimmten Genauigkeit dargestellt

werden können.

Nicht jede float-Zahl ist exakt speicherbar und es kann vorkommen, dass z. B. eine

eingegebene Zahl 0.3 intern als 0.2999999999 geführt und evtl. auch so wieder ausgegeben

wird.

Um auch sehr große und sehr kleine Zahlen speichern zu können, werden float-Zahlen

grundsätzlich in Exponentialschreibweise als „Fließpunktzahl“ (Floating Point Value)

abgelegt.

z. B. 0.00000000000000000000034

Festpunktzahl (Fix Point Value)

gespeichert als: 3.4 * 10–22

Fließpunktzahl (Floating Point Value)

In Wahrheit natürlich zur Basis 2 statt zur Basis 10, denn der Computer ist ein digitaler

Automat. Gespeichert werden lediglich die kurze Mantisse und der Exponent. Der je

float-Wert verfügbare Speicher muss in einem Kompromiss zwischen Mantisse und

Exponent aufgeteilt werden.

Zahlen vom Typ float:

Beachte die Grenzen

– im Zahlenbereich

– in der Genauigkeit

Welche Konsequenzen ergeben sich daraus für die Datenverarbeitung?

Bei Rechnungen in der „float-Welt“ ergeben sich aufgrund der Genauigkeitsgrenzen

Unterschiede zwischen rein mathematischer Behandlung und Computerrechnung. Diese

Abweichungen können manchmal störend sein (z. B. Postleitzahl 64807.99999!), in un-

günstigen Fällen erheblich werden und in Extremfällen Ergebnisse total verfälschen!

3.1 Der Umgang mit Zahlen

23

 Beispiel

// BSP_3_1_1_1

#include <iostream>

using namespace std;

int main(void)

{

float r, s, t;

r = 50000000.00003;

s = 50000000.00007;

t = 10000000.0 *(s - r);

cout << endl << "t = " << t;

// ggf. getchar();

return 0;

}

Ausgabewert:

wahrscheinlich 0

(compilerabhängig)

mathematisch:

400



Ungenauigkeiten von Rechenergebnissen aufgrund der nicht genauen Darstellbarkeit von

Zahlen in Rechnern können in der „int-Welt“ nicht auftreten. Viele Berechnungen in der

Praxis sind typische „Ganzzahlen-Probleme“, z. B. Statistiken, Ereigniszählungen oder

Indexberechnungen, und sollten möglichst auch in der „int-Welt“ durchgeführt werden,

um richtige und eindeutige Ergebnisse zu erzielen. Anderenfalls kann es vorkommen, dass

wir z. B. mit 2345.3 Studenten, 23.5 Ereignissen oder Index 6.8 umgehen müssen!

Im Gegensatz zur mathematischen Behandlung, bei der die ganzen Zahlen als Untermenge

in den reellen Zahlen enthalten sind, muss der Programmierer entscheiden, welche Daten-

typen – int oder float – eingesetzt werden sollen und in welchen „Welten“ gerechnet

wird. Die meisten wissenschaftlichen- oder Ingenieur-Probleme erfordern zweifellos eine

Bearbeitung in der „float-Welt“.

Gegenüberstellung: int und float

 Vorteil

 Nachteil

int-Welt:

genaue Zahlen

kleinerer Zahlenbereich

als bei float

float-Welt:

größerer Zahlen-

„abgeschnittene“ Zahlen

bereich als bei int

3.1.2 Ganzzahlige Datentypen

C/C++ bietet neben dem Grund-Datentyp int weitere vorzeichenbehaftete und auch vor-

zeichenlose ganzzahlige Datentypen an, die unterschiedliche Bereiche der ganzen Zahlen

erfassen.

24

3 Vordefinierte Standard-Datentypen

Integer-Datentypen

Typ

Wertebereich

Speicherbedarf

int

–32768...32767

2 Bytes

– oder –

int

–2147483648...2147483647

4 Bytes

short int

–32768...32767

2 Bytes

unsigned short int

0...65535

2 Bytes

long int

–2147483648...2147483647

4 Bytes

unsigned long int

0...4294967295

4 Bytes

In C++ gibt es noch zusätzlich die Varianten long long int (8 Bytes) und _int128 (16

Bytes, Microsoft C++-spezifisch). Die Wortlänge von int ist compilerabhängig: Verge-

wissern Sie sich, ob Ihr Compiler mit 16- oder 32-Bit-int arbeitet. Manche Compiler

ermöglichen Ihnen die Wahl. Wir gehen im Weiteren von 32 Bit aus. Alle Subtypen sind

mit dem int-Typ verträglich und befolgen die gleichen Integer-Regeln. Zur Unterschei-

dung von der „float-Welt“ werden wir im Folgenden gelegentlich von „Integer“ spre-

chen, damit aber alle Ganzzahlen-Typen meinen. Die geplante Verwendung bestimmt die

Wahl des jeweiligen Subtyps. Bei möglichen int-Werten jenseits von –32768 oder

+32767 ist der Programmierer im Fall eines 16-Bit-Compilers gezwungen, long int zu

verwenden. Andererseits verlängert jedoch das Rechnen mit long int-Werten eventuell

die Ausführzeit des Programms, was aber heute kaum noch eine Rolle spielt.

Integer-Zahlen werden ohne Dezimalpunkt geschrieben.

Ein Pluszeichen ist optional und wird in der Praxis meistens weggelassen.

 Beispiele für short int-Konstanten:

0

1000

–735

32333

+560

0xB (Hexadezimal)

037 (Oktal)

falsch ist:

3.4

7.0f

12.

44567 (zu groß)

–33123 (zu klein)



3.1 Der Umgang mit Zahlen

25

Die oktale, v. a. aber hexadezimale Schreibweise von Integer-Zahlen spielt vornehmlich in

der hardwarenahen Programmierung eine wichtige Rolle.

Wünscht man ausdrücklich eine long-Konstante, so muss der Zahl ein „l“ oder „L“ nachge-

stellt werden, wenn die Länge der Zahl dem Compiler nicht ohnehin long signalisiert.

 Beispiele für long int-Konstanten:

0l

100L

–7L

36000

–456324567

0xFBE4AD9C (Hex.)

07773456 (Okt.)

falsch ist:

5555555555555555

–333333333333

0xFFFFEEEEDDDD

12.



Für die mathematische Verknüpfung und Manipulation von Integer-Werten bietet C/C++

die folgenden Grundoperatoren:

Integer-Operatoren

+

Addition

–

Subtraktion

*

Multiplikation

/

Ganzzahlen-Division

%

Modulo-Division

++

Inkrement um 1

--

Dekrement um 1

„/“ liefert nur das ganzzahlige Anteil bei der Division, „%“ den entsprechenden Rest.

 Beispiele für Integer-Ausdrücke

35 +

6  41

04 *

–9  –36

48 /

9  05

48 %

9 

3

24 /

7  03

24 %

7 

3

36 /

6  06

36 %

6 

0

08 /

9  00

8 %

9 

8



26

3 Vordefinierte Standard-Datentypen

Integer-Variablen werden vereinbart durch:

Variablenvereinbarung

int <variablenliste>;

unsigned int <variablenliste>;

short <variablenliste>;

unsigned short <variablenliste>;

long <variablenliste>;

unsigned long <variablenliste>;

 Beispiel

int jahr, anzahl, index;

unsigned int ziffer, zeilen_laenge;

short nummer, zaehler;

unsigned long studentinnen;

long einwohner;

Wie man sieht, lässt sich statt short int kurz short schreiben, usw. Integer-Variablen

können nur Ganzzahlen speichern.

Richtig ist:

anzahl = 36;

index = -12;

nummer = 0;

ziffer = 38.42;

// zugewiesen wird 38

ziffer = 38.7;

// zugewiesen wird 38

index++;

// wie: index = index + 1;

++index;

// wie: index = index + 1;

anzahl--;

// wie: anzahl = anzahl -

// 1;

--anzahl;

// wie: anzahl = anzahl -

// 1;

nummer = 'a';

// zugewiesen wird 97,

// der ASCII-Code von 'a'

Falsch wäre:

nummer = 50000;

// Zahl zu groß für short

ziffer = -33;

// negative Zahl bei

// unsigned int 

Der Compiler ist also sehr großzügig. Bei der Zuweisung erfolgt ggf. eine Umwandlung in

den Datentyp der Variablen links vom Zuweisungszeichen, wobei C++-Compiler evtl. eine

Warnung ausgeben. Allerdings darf der Wertebereich nicht überschritten werden.

3.1 Der Umgang mit Zahlen

27

 Programmbeispiel

// BSP_3_1_2_1

#include <iostream>

using namespace std;

int main(void)

{

int int1, int2, erg;

int1 = 12;

int2 = 5;

erg = int1 + int2;

cout << erg << endl;

//Ausgabe:17

erg = int1 - int2;

cout << erg << endl;

//Ausgabe:7

erg = int1 * int2;

cout << erg << endl;

//Ausgabe:60

erg = int1 / int2;

cout << erg << endl;

//Ausgabe:2

erg = int1 % int2;

cout << erg << endl;

//Ausgabe:2

erg = ++int1 + int2--;

cout << erg << endl;

//Ausgabe:18

cout << int1 << int2

//Ausgabe:13 4

<< endl;

// evtl. getchar();

return 0;

}



Bezüglich der Operatoren ++ und -- entnehmen wir dem Beispiel:

1. ++ und -- dürfen auch in Ausdrücken vorkommen

2. steht ++ oder -- vor der Variablen, wird diese vor Verwendung in dem Ausdruck

erhöht bzw. erniedrigt

3. steht ++ oder -- hinter der Variablen, wird diese nach Verwendung in dem Ausdruck

erhöht bzw. erniedrigt

In C++ sind einige Konstanten vordefiniert, die ohne vorherige Vereinbarung direkt einge-

setzt werden können.

Vordefinierte Ganzzahl-Konstanten (Beispiele)

INT_MAX = 32767 oder 2147483647

INT_MIN = -32768 oder -2147483648

Diese Konstanten wurden in der Header-Datei limits.h mit der Präprozessor-Anweisung

#define definiert. Sie stehen nur zur Verfügung, wenn diese Datei mit der #include-Anwei-

28

3 Vordefinierte Standard-Datentypen

sung eingefügt wird: #include <climits>. Man kann diese Datei, wie alle include-Dateien,

mit dem Editor untersuchen.

 Beispiel

// BSP_3_1_2_2

#include <climits>

#include <iostream>

using namespace std;

//32-Bit int-Datentyp

int main(void)

{

int alpha;

alpha = INT_MAX - 2767;

cout << alpha << endl;

//Ausgabe 2147480880

return 0;

}



 Übungsbeispiel

Aufgabe:

Es ist die Quersumme einer dreistelligen Zahl zu berechnen und auszugeben.

Lösung:

Es handelt sich um ein typisches int-Problem. Die eingegebene Zahl zahl

wird in ihre Ziffern zerlegt und in q_summe aufaddiert.

Zeile // BSP_3_1_2_3

1

#include <iostream>

2

using namespace std;

3

int main(void)

4

// Berechnung der Quersumme einer dreistelligen Zahl

5

6

{

7

int zahl, q_summe;

8

int hunderter, zehner, einer;

9

cout << endl << "3-stellige Zahl >";

10

cin >> zahl;

11

hunderter = zahl / 100;

12

zahl = zahl % 100;

13

zehner = zahl / 10;

14

einer = zahl % 10;

15

q_summe = hunderter + zehner + einer;

16

cout << q_summe << endl;

17

return 0;

18

}

Erklärung: Es werde z. B. 384 eingegeben. So verändern sich in diesem Fall die Spei-

cherinhalte nach Abarbeitung der obigen Zeilen:

3.1 Der Umgang mit Zahlen

29

Variable/ Zeile

zahl

q_summe

hunderter

zehner

einer

1–9

???

???

???

???

???

10

384

???

???

???

???

11

384

???

3

???

???

12

84

???

3

???

???

13

84

???

3

8

???

14

84

???

3

8

4

15–18

84

15

3

8

4



3.1.3 Reelle Datentypen

Neben dem Standard-Typ float gibt es die Sub-Typen double und long double.

Sie unterscheiden sich im darstellbaren Wertebereich und in der Genauigkeit, d. h. in der

Anzahl der zuverlässigen Stellen.

Float-Datentypen

Typ

Wertebereich 

Signifikante Stellen Speicherbedarf

float

1.2E–38...3.4E+38

ca. 07

04 Bytes

double

2.2E–308...1.7E+308

ca. 15

08 Bytes

long double 3.3E–4932...1.2E+4932

ca. 18

8 - 10 Bytes

Unter „signifikante Stellen“ sind nicht etwa Nachkommastellen, sondern allgemein die

signifikante Folge von Ziffern innerhalb der Zahl gemeint. Wegen der internen Umformung

in die Exponentialschreibweise sind z. B. die Werte

34.895

348950000000000000000000000.0

0.0000000000000034895

wegen gleicher Mantissenlänge mit der gleichen Genauigkeit speicherbar. Führende und

nachstehende Nullen werden intern in den Exponenten „verbannt“. Dagegen sind die bei-

den folgenden Zahlen

34.895067892342

34895067892342.0

nicht vollständig in einem Datentyp float unterzubringen und es würde etwa mit

34.89507

und

3489507xxxxxxx. (x: zufällige Ziffer)

gerechnet.

float-Werte können als Festpunktzahl oder Gleitpunktzahl geschrieben werden.

30

3 Vordefinierte Standard-Datentypen

Festpunktzahlen müssen einen Dezimalpunkt enthalten.

In der Gleitpunktschreibweise wird der Zehner-Exponent mit „e“ oder „E“ eingeleitet. Ein

„+“-Zeichen ist auch bei dem Exponenten optional.

 Beispiel Gleitpunktschreibweise

mathematisch:

C/C++

6.74 x 103 :

6.74e3

– oder – 6.74E+3

–0.5 x 10–8 :

–0.5e–8



Tritt ein „e“ oder „E“ in einer Zahl auf, liegt ein float-Typ (in Gleitpunktdarstellung)

vor.

Enthalten die Nachkommastellen der Mantisse nur Nullen, dürfen Dezimalpunkt und die

Nachkommastellen (in der Gleitpunktschreibweise!) auch weggelassen werden, z. B.:

5 x 1024 : 5e24

Bei dieser Schreibweise muss man sich den Dezimalpunkt vor dem „e“ gesetzt denken. Das

Fehlen des Dezimalpunktes macht den float Typ der Zahl weniger deutlich. Wir werden

daher diese Schreibweise vermeiden.

Die Gleitpunktschreibweise ist nicht eindeutig, denn

–12.345e0 oder –1234.5e–2 oder ... oder –1.2345e+1

sind alle gleichwertig.

Die letzte Form, bei der nur eine Vorkommastelle existiert, heißt die Normalform der

Gleitpunktdarstellung. Der Rechner gibt Gleitpunktwerte stets in der Normalform aus.

 Beispiele für float-Zahlen:

Festpunktschreibweise

Gleitpunktschreibweise

Normalform

3.4

3.4e0

3.4e0

–350725.78

–350725.78e0

–3.5072578e5

0.007f

0.007e0f

7.0e–3



3.1 Der Umgang mit Zahlen

31

Achtung: Bei reellen Zahlenkonstanten unterstellt der Compiler den Datentyp dou-

ble, wenn der Programmierer nicht ausdrücklich float durch Nachstel-

len von „f“ oder „F“ verlangt.

Beispiele:

23.89



double

23.89d



double

23.89D



double

23.89f



float

23.89F



float

Zur Verknüpfung von float-Werten benutzt man in der Regel die in der Mathematik be-

kannten Operatoren:

Float-Operatoren

+ Addition

– Subtraktion

* Multiplikation

/ float-Division

Der Modulo-Operator „%“ wäre in der float-Welt sinnlos! Er ist hier deshalb nicht er-

laubt.

 Beispiele

3.4

+

9.1 

12.5

–8.8

/

2.0  0–4.4

1.2

*

–5.0  0–6.0

3.2

–

4.6  0– .4

1



float-Variablen werden vereinbart durch:

Variablenvereinbarung

float <variablenliste>;

double <variablenliste>;

long double <variablenliste>;

32

3 Vordefinierte Standard-Datentypen

Die meisten wissenschaftlich- technischen Probleme lassen sich mit dem Typ float gut

bearbeiten, so dass double nicht unbedingt gebraucht wird, zumal Verknüpfungen von

reellen Zahlen automatisch im double -Bereich vorgenommen werden.

 Beispiel

float x_wert, y_wert;

double kosmos;

...



 Programmbeispiel

// BSP_3_1_3_1

#include <iostream>

using namespace std;

int main(void)

/* Berechnung des Mittelwertes von

3 eingegebenen float-Werten */

{

float in1, in2, in3;

float m_wert;

cout << "3 Zahlen >";

cin >> in1 >> in2 >> in3;

Eingabe: 7.7 8.2 6.9

m_wert = (in1+in2+in3) / 3.0;

cout << m_wert <<endl;

Ausgabe: 7.6

return 0;

}



Da Punktrechnung vor Strichrechnung geht, muss der Rechenausdruck geklammert werden.

Mit den genauen Regeln zur Auswertung zusammengesetzter Ausdrücke werden wir uns

etwas später befassen.

3.1.4 Standardfunktionen mit Zahlen

Jede Programmiersprache bietet einen Satz von vordefinierten Standardfunktionen, die in

einem Programm direkt eingesetzt werden können. Funktionen liefern einen Wert zurück

und gehören deshalb einem bestimmten Datentyp an. Die an Funktionen übergebene Para-

meter (Argumente) müssen mit dem erwarteten Datentyp übereinstimmen.

Nachstehend wird nur eine kleine Auswahl der von C/C++ angebotenen Standardfunktio-

nen wiedergegeben:

3.1 Der Umgang mit Zahlen

33

Wichtige mathematische Standardfunktionen

Funktion

Typ

Bedeutung

Beispiel

sin(a)

d

sin in Bogenmaß

sin(1.5)

 0.997...

cos(a)

d

cos in Bogenmaß

cos(1.5)

 0.070...

tan(a)

d

tan in Bogenmaß

tan(3.14)

 –0.001...

atan(a)

d

Arcustangens

atan(1.4)

 0.950...

log(a)

d

natürlicher Logarithmus log(10.0)

 2.302...

log10(a)

d

dekadischer Logarithmus log10(10.0)

 1.000...

exp(a)

d

e hoch a

exp(4.5)

 90.01...

sqrt(a)

d

Wurzelfunktion

sqrt(19.3)

 4.393...

fabs(a)

d

Absolutbetrag

fabs(–2.7)

 2.700...

pow(a, b)

d

a hoch b

pow(4.9, 0.87)

 3.985...

floor(a)

d

rundet nach unten ab

floor(1.034)

 1.000...

(ganzzahlig)

floor(–1.22)

 –2.000.

ceil(a)

d

rundet nach oben ab

ceil(1.034)

 02.000...

(ganzzahlig)

ceil(–1.22)

 –1.000...

Alle oben gezeigten Funktionen verlangen double-Argumente. Als Ergebnis liefern sie

einen double-Wert zurück.

Achtung: Bei Verwendung von mathematischen Funktionen muss die Headerdatei

 cmath eingebunden werden: #include <cmath>

Funktionen werden wie Variablen in Anweisungen eingesetzt. Die Funktionsargumente

(Parameter) können durchaus auch komplizierte mathematische Ausdrücke sein, die ihrer-

seits Funktionsaufrufe enthalten können (d. h. „nesting“ ist erlaubt), z. B.:

sqrt(3.5 - sin(alpha * pi / epsilon))

 Übungsbeispiel

Mit folgendem Programm soll die Speicherung von float-Zahlen geprüft werden: Ein Pro-

gramm soll eine float-Zahl einlesen und die erste Nachkommastelle als Ziffer ausgeben. Es

sollen nur Eingaben mit einer Nachkommastelle gemacht werden.

z. B. Eingabe 1.6 => Ausgabe 6

Lösung:

// BSP_3_1_4_1

#include <iostream>

#include <cmath>

using namespace std;

int main(void)

34

3 Vordefinierte Standard-Datentypen

/* Eingabe einer float-Zahl mit einer

Nachkommastelle und Ausgabe der

Nachkommastelle als int-Wert */

{

float zahl, ganz;

int ziffer;

cout << endl << "float-Zahl >";

cin >> zahl; // keine Ueberpruefung auf Nachkommastellen

ganz = floor(zahl);

ziffer = (zahl - ganz) * 10;

cout << ziffer << endl;

return 0;

}

Erläuterung: In dem Ausdruck „ ziffer = ...“ steht links vom Zuweisungsoperator eine int-

Variable, rechts ein float-Ausdruck. In C/C++ ist das kein ernstliches

Problem. Zugewiesen wird stets der nach unten abgerundete und nach int

gewandelte Wert. Manche C++-Compiler geben eine „Warning“ aus. Möch-

ten Sie diese vermeiden, sollten Sie mittels Cast-Operator (<datentyp>) die

Umwandlung explizit vornehmen ( s. Kap. 3.4), in diesem Fall:

ziffer = (int)((zahl - ganz) * 10).

Geben Sie das Programm ein und prüfen Sie es mit verschiedenen Eingaben.

Ergebnis: Das Programm gibt nicht immer die richtige Ziffer aus, z. B.:

Eingabe 2.2



Ausgabe 2

Eingabe 1.7



Ausgabe 7

Eingabe 2.3



Ausgabe 2 !!

Eingabe 3.6



Ausgabe 5 !!

Erklärung: Aufgrund der nicht-genauen Speicherung von float-Werten ist intern z. B.

statt 2.3 der Wert 2.2999...999 und statt 3.6 der Wert 3.5999...999 gespei-

chert. Haben Sie eine Idee, wie man diesen Fehler vermeiden kann?



3.2 Verarbeitung von Einzelzeichen: Der Datentyp char

Programmiersprachen unterscheiden zwischen Einzelzeichen und Zeichenketten (Strings,

 s. Kap. 7). Der Datentyp char (von „character“) dient zur Speicherung von Einzel-

zeichen. Die Länge beträgt 1 Byte.

Variablenvereinbarung

char <variablenliste>;

3.2 Verarbeitung von Einzelzeichen: Der Datentyp char

35

In einem Programm auftretende Zeichen(-Konstanten) müssen zur Unterscheidung von

Variablennamen und reservierten Symbolen in einfache Hochkommata eingeschlossen

werden, z. B.

'a', '*', '3', 'B', '+', '$', ' ' (blank)

nicht jedoch: "AB" (das ist ein „String“!)

Zeichen in einem Programm werden in Hochkommata eingeschlossen.

Das Zeichen '+' hat natürlich nichts mit dem Additionsoperator zu tun!

 Beispiel

char c1, c2, c3, blank;

...

c1 = 'A';

c2 = '6';

blank = ' ';

...

c2 = c1;

c3 = blank;

...



 Beispiel 1: Eingabe zweier Zeichen und Ausgabe in umgekehrter Reihenfolge:

// BSP_3_2_1

#include <iostream>

using namespace std;

int main(void)

{

Ein-/Ausgabe ohne ' '!

char eins ,zwei;

Cout << "Erstes Zeichen >";

B

e

i

spiel:

cin >> eins;

Eingabe z

cout << "Zweites Zeichen >";

cin >> zwei;

Eingabe a

cout << zwei << endl;

Ausgabe a

cout << eins << endl;

Ausgabe z

return 0;

}



36

3 Vordefinierte Standard-Datentypen

 Beispiel 2: Austausch der Speicherinhalte zweier Zeichenvariablen:

// BSP_3_2_2

#include <iostream>

using namespace std;

int main(void)

{

Ein-/Ausgabe

char eins, zwei, temp;

cout << "Gib erstes Zeichen ein >";

Beispiel:

cin >> eins;

Eingabe 5

cout << "Gib zweites Zeichen ein >";

cin >> zwei;

Eingabe 8

cout << eins << zwei << endl;

Ausgabe 5 8

temp = eins; // Dreiecktausch

eins = zwei;

zwei = temp;

cout << eins << zwei << endl;

Ausgabe 8 5

return 0;

}



Beachten Sie den Unterschied zwischen den Zeichen '5' und '8' und den int-Zahlen 5 und

8! Mit den im Beispiel 2 eingegebenen Größen wird man in der Regel nicht rechnen, da sie

als alphanumerische Werte vom Typ char gespeichert werden.

3.2.1 Der Umgang mit der ASCII-Tabelle

Der verfügbare Zeichenvorrat ist von dem Zeichencode abhängig, den der Rechner einsetzt.

PC benutzen den „erweiterten“ ASCII Code (American Standard Code of Information Inter-

change), eine Erweiterung des standardisierten ASCII-Codes. Er umfasst 256 Zeichen und

enthält große und kleine Buchstaben, die Ziffern 0...9 sowie Sonderzeichen und spezielle

Symbole und Steuerzeichen. Die ASCII-Tabelle finden Sie im Anhang A.

Jedes Zeichen kann aufgrund seiner Position in der ASCII-Tabelle eindeutig angesprochen

werden, z. B.:

'A'

ASCII-Position 65

'a'

ASCII-Position 97

'3'

ASCII-Position 51

'+'

ASCII-Position 43

' '

ASCII-Position 32

' '

ASCII-Position 39

Die Repräsentation von Zeichen durch ihre ASCII-Position bzw. ihren ASCII-Code ermög-

lichen Vergleiche der Art:

'a' > 'A' oder ')' < '1'

(Vergleichsausdrücke werden später behandelt.)

3.2 Verarbeitung von Einzelzeichen: Der Datentyp char

37

Aus der ASCII-Tabelle folgt:

'A' < 'B' < 'C' <... < 'Z' und '0' < '1' < '2' <... < '9'

Diese ASCII-Ordnung bildet die Grundlage von Text-Sortierprogrammen.

Um auf besonders wichtige Steuerzeichen und auf Zeichen, die in C/C++ eine Sonderbe-

deutung haben, zugreifen zu können, gibt es so genannte Escape-Sequenzen, die durch

einen vorangestellten Backslash (\) gekennzeichnet sind.

Escape-Sequenz

ASCII-Code

Wirkung bzw. Bedeutung

\a

07 bzw. 0x7 (hexadezimal)

Bell (Piepzeichen)

\b

08

0x8

Backspace (1 Position zurück)

\f

12

0xC

Formfeed (Seitenvorschub)

\n

10

0xA

Linefeed (neue Zeile)

\r

13

0xD

Carriage Return (Zeilenanfang)

\t

09

0x9

Tabulator (horizontal)

\v

11

0xB

Tabulator (vertical)

\\

92

0x5C

Backslash (entwertet)

\'

44

0x2C

Single quote (entwertet)

\"

34

0x22

Double quote (entwertet)

\?

63

0x3F

Question mark (entwertet)

\0

00

0x0

NUL (Stringende-Markierung)

Beispiel: Ein Zeilenvorschub (Linefeed) soll der char-Variablen linefeed zugewiesen wer-

den:

char linefeed;

...

linefeed = '\n'; // '\n' gilt als ein ASCII-Zeichen

Beispiel: Eine Ausgabe mit anschließendem Zeilenvorschub:

cout << "Ausgabe mit Zeilenvorschub\n"

 Beispiel

// BSP_3_2_1_1.cpp

#include <iostream>

using namespace std;

int main(void)

{

cout << "Nicht einschlafen! \a\a\a";

cout << "\n\n\n";

// gleiche Wirkung wie: cout << endl << endl << endl;

return 0;

}

38

3 Vordefinierte Standard-Datentypen

Ausgabe:

Nicht einschlafen! <Piep><Piep><Piep>

drei Leerzeilen



Ein Zugriff auf alle Steuerzeichen am Beginn der ASCII-Tabelle ist in C/C++ problemlos

möglich, indem einfach der dezimale oder hexadezimale ASCII-Code angegeben wird.

 Beispiel

Ein Druckerseitenvorschub (Formfeed) hat den ASCII-Code 12 (dez.) bzw.

0xC (hex.). Dieser Wert soll der char-Variablen formfeed zugewiesen werden:

char formfeed;

...

formfeed = 12; // oder: formfeed = 0xC;



Wenn dies möglich ist, gibt es keinen Grund, warum nicht auch Ziffern oder Buchstaben

mit ihrem ASCII-Code angesprochen werden können. Identische Wirkung haben z. B.

folgende drei Anweisungen:

char zeichen;

...

zeichen = 'A';

// Zeichenkonstante

zeichen = 65;

// dezimaler ASCII-Code

zeichen = 0x41; // hexadezimaler ASCII-Code

In Wahrheit ist char ebenfalls ein numerischer Datentyp, eine Art „super short int“

mit 8-Bit-Wortlänge (1 Byte). Es existieren sogar Varianten von char:

Character Datentypen

Typ

Wertebereich

Speicherbedarf

char

–128 ... +127

1 Byte

signed char

–128 ... +127

1 Byte

unsigned char

0 ... 255

1 Byte

Zwar dienen char-Variablen in der Hauptsache zur Speicherung von ASCII-Zeichen, je-

doch kann man problemlos mit ihnen rechnen. Man beachte allerdings den geringen Werte-

bereich.

Umgekehrt kann man ein Zeichen ohne weiteres einer int-Variablen zuweisen. Das Zeichen

steht dann im unteren Byte, das obere enthält 0 (alle 8 Bits auf 0).

 Beispiel: Merkwürdig aber korrekt!

// BSP_3_2_1_2

#include <iostream>

using namespace std;

int main(void)

3.2 Verarbeitung von Einzelzeichen: Der Datentyp char

39

{

char z1, z2;

int erg;

z1 = '0'; // ASCII-Code 48

z2 = 7;

erg = z1 + z2; // besser: erg = int(z1 + z2);

cout << erg << '\n'; // Ausgabe: 55

return 0;

}



3.2.2 Standardfunktionen mit char

C/C++ bietet eine Reihe von Standardfunktionen, die den Umgang mit Zeichen erleichtern.

Die wichtigsten seien nachfolgend aufgeführt (Achtung: Headerdatei ctype einbinden!):

Wichtige Standardfunktionen mit char

#include <ctype>

char c;

int i;

Funktion

Ergebnis

isalnum(c)  i

i ungleich 0 falls c Buchstabe oder Ziffer, sonst i gleich 0.

isalpha(c)

 i

i ungleich 0 falls c Buchstabe, sonst i gleich 0.

isdigit(c)

 i

i ungleich 0 falls c Ziffer (0 ... 9), sonst i gleich 0.

isprint(c)

 i

i ungleich 0 falls c druckbares Zeichen incl. Leerzeichen, sonst i

gleich 0.

isspace(c)  i

i ungleich 0 falls c Standardtrennzeichen (Leerzeichen, Tabulator

oder Zeilenvorschub), sonst i gleich 0.

tolower(c)  i

i liefert kleingeschriebenes quivalent von c, falls c Buchstabe,

sonst bleibt c unverändert.

toupper(c)  i

i liefert großgeschriebenes quivalent von c, falls c Buchstabe,

sonst bleibt c unverändert.

 Beispiel 1

...

int i;

char c;

...

cout << "Neue Rechnung? [J/N] >";

cin >> c ;

i = toupper(c); // verwandelt Klein- in Grossbuchstaben

40

3 Vordefinierte Standard-Datentypen

...

 später keine zusätzlichen Abfragen für „j“ und „n“ nötig.



 Beispiel 2

...

char c;

int i;

...

cout << "Bitte Zeichen eingeben >";

cin >> c;

i = isdigit(c);

if(i != 0)

cout << "Das Zeichen ist eine Ziffer"

<< '\n';

...

 produziert die Ausgabe „Das Zeichen ist eine Ziffer“, wenn eine Ziffer (0...9) eingege-

ben wurde. „if(i != 0)“ bedeutet: falls i ungleich 0 ist.



3.3 Logische Ausdrücke

Logische Ausdrücke werden in Programmen vor allem bei Entscheidungen in Kontroll-

strukturen (Verzweigungen und Schleifen,  s. Kap. 5) benutzt (z.B. „if(i != 0)“).

In C existiert jedoch kein logischer Standarddatentyp wie BOOLEAN in Pascal oder

LOGICAL in FORTRAN. In C++ gibt es dagegen den Datentyp bool. Wegen der numeri-

schen Bewertung des Wahrheitswerts ist er jedoch eigentlich überflüssig. Logische Aus-

drücke werden je nach Wahrheitswert numerisch bewertet:

Wahrheitswert

Bewertung mit

wahr (true)

Zahl ungleich 0, in der Praxis meist 1

falsch (false)

0

Relationale Ausdrücke werden mit den folgenden Vergeichsoperatoren gebildet:

Vergleichsoperatoren

== gleich

!=

ungleich

<=

kleiner gleich

>=

größer gleich

<

kleiner

>

größer

3.3 Logische Ausdrücke

41

Jede Vergleichsoperation ist eine Frage, die mit „true“ (wahr) oder „false“ (falsch) zu be-

antworten ist.

 Beispiele für logische Ausdrücke:

(10 == 12)



false

(13.5 <= 24.9)



true

('a' < 'B')



false

(3 > 3)



false

(0x33 == '3')



true



Das Ergebnis eines logischen Ausdrucks kann in einer ganzzahligen Variablen gespeichert

werden. Obwohl logische Ausdrücke meistens nur für Programm-interne Steuerungen

eingesetzt werden, lassen sie sich auch einer Variablen zuweisen.

 Beispiel

// BSP_3_3_1

#include <iostream>

using namespace std;

int main(void)

{

int i, k;

int l1, l2, l3;

cout << "2 Integer eingeben ";

Beispiel:

cin >> i >> k;

Eingabe 6 3

l1 = i == k;

cout << l1 << endl;

Ausgabe 0

l2 = i > 5;

cout << l2 << endl;

Ausgabe 1

l3 = 22 <= k;

cout << l3 << endl;

Ausgabe 0

return 0;

}



Logische Ausdrücke können mit logischen Operatoren kombiniert werden.

Logische Operatoren

&&

logisch UND

|

logisch ODER

!

Negation (unitär, d.h. nur 1 Operand)

Für die Auswertung von Kombinationsausdrücken gelten die von der Booleschen Algebra

bekannten Wahrheitstabellen:

42

3 Vordefinierte Standard-Datentypen

Die Booleschen Algebra spielt beispielsweise in der Digitaltechnik eine bedeutende Rolle.

Wahrheitstabellen

T : true; F : false

&& (UND)

| (ODER)

!

T && T  T

T | T  T

!T  F

T && F  F

T | F  T

!F  T

F && T  F

F | T  T

F && F  F

F | F  F

Bei der Programmierung kommen oft solche Abfragen (Auswahlen, Selektionen) vor:

„wenn i negativ und j größer 100 ist, dann ...“

als C/C++-Anweisung sieht das so aus:

if ((i < 0) && (j > 100)) ...

 Beispiel

// BSP_3_3_2

#include <iostream>

using namespace std;

int main(void)

// - Logik -

{

int p, q, r, s, ergebnis;

p = 1;

q = p;

r = 0;

s = r;

Ausgabe:

ergebnis = !p;

cout << ergebnis << endl;

0

ergebnis = !(!(q));

cout << ergebnis << endl;

1

ergebnis = q || s;

cout << ergebnis << endl;

1

ergebnis = p && s;

cout << ergebnis << endl;

0

ergebnis = p && q && r;

cout << ergebnis << endl;

0

ergebnis = (p || r) && q;

cout << ergebnis << endl;

1

return 0;

}



3.3 Logische Ausdrücke

43

Rangfolge der logischen und Vergleichsoperatoren

höchster Rang:

1.

!

NOT

2.

< > <= >=

Vergleich

3.

== !=

Gleichheit

4.

&&

UND

tiefster Rang:

5.

| |

ODER

Beachte: && (UND) bindet stärker als | | (ODER)!

Häufig treten in Ausdrücken mathematische Operatoren gemeinsam mit Vergleichs- und

logischen Operatoren auf. Wir verweisen diesbezüglich auf das folgende Kapitel 4.

Im Gegensatz zu C enthält C++ den Datentyp bool

Sollten Sie einen älteren Compiler verwenden, ist es möglich, dass dieser Datentyp noch

nicht unterstützt wird. Ein Beispiel für den Datentyp bool:

...

bool log1, log2, log3;

...

log1 = true;

log2 = false;

log3 = log1 && log2;

cout << log3 << endl;// Ausgabe: 0

...

Boolesche Variablen können also die beiden Wahrheitswerte „true“ und „false“ annehmen.

Es besteht eine Kompatibilität zur C-Logik (0 ist unwahr, nicht 0 ist wahr). Dies erläutert

das folgende Beispiel:

...

bool b1, b2, b3;

...

b1 = 3;

b2 = 4;

b3 = b1 && b2;

cout << b3 << endl;

// Ausgabe: 1, denn 3 und 4

// werden bei der Zuweisung an

// b1 und b2 in "true" umgewandelt

...

44

3 Vordefinierte Standard-Datentypen

3.4 Operatoren und Ausdrücke

Die wichtigsten Operatoren haben Sie bereits kennen gelernt. Jedoch bietet C/C++ eine

geradezu verwirrende Vielfalt an Operatoren. Diese werden in 15 Vorranggruppen einge-

ordnet. Treten in einem Ausdruck verschiedene Operatoren auf, so ist die Reihenfolge der

einzelnen Operationen durch die Operatoren-Rangfolge geregelt: Je kleiner die Vorrangstu-

fe (Gruppennummer), je höher der Vorrang. Für gleichrangige Operatoren gilt die „Rich-

tung der Abarbeitung“ in der letzten Spalte unserer Operatorentabelle.

Richtung der Abarbeitung:

von links nach rechts – oder – von rechts nach links

C Operatorentabelle

Gruppe Operatoren

Reihenfolge der Abarbeitung

1

() [] –> .

links nach rechts



2

! ~ ++ -- –

rechts nach links



(typ) * & sizeof

3

* / %

links nach rechts



4

+ –

links nach rechts



5

<< >>

links nach rechts



6

< <= >= >

links nach rechts



7

== !=

links nach rechts



8

&

links nach rechts



9

^

links nach rechts



10

|

links nach rechts



11

&&

links nach rechts



12

|

links nach rechts



13

?:

rechts nach links



14

= += –= *= /=

rechts nach links



%= >>= <<=

&= |= ^=

15

,

links nach rechts



3.4 Operatoren und Ausdrücke

45

Die Gruppe entspricht der Vorrangstufe.

Natürlich sind alle C-Operatoren auch für C++ gültig. Darüber hinaus bietet C++ noch

einige weitere Operatoren, auf die wir hier noch nicht näher eingehen ( s. Kap. 9).

Es folgt eine kurze Beschreibung der Operatoren. Die Bedeutung einiger Operatoren wird

allerdings erst später klar.

Gruppe Operator

Beschreibung

Beispiel

1

()

Funktionsklammer

sin(a * b)

// s. Kap. 6

[]

Vektorklammer

a[i]

// s. Kap. 7

–>

Strukturpointer

adr–>strasse // s. Kap. 7

.

Strukturselektor

mitarb.vname // s. Kap. 7

2

!

Negationsoperator

!x

// liefert 1 oder 0

~

Komplementoperator

~b

// kippt b bitweise um

++

Incrementoperator

++i

// vor Verwendung erhöhen

i++

// nach Verwendung erhöhen

--

Dekrementoperator

--i

// vor Verwendung

// vermindern

i--

// nach Verwendung verm.

–

negatives Vorzeichen

–z

// negativer Wert von z

(typ)

Cast-Operator

(int) ausdr

// Wert des Ausdrucks wird

// nach int umgewandelt

*

Inhaltsoperator

*p

// Inhalt des Pointers p

&

Adressoperator

&a

// Adresse der Variablen a

sizeof

Größenoperator

sizeof(x)

// Größe der Variablen x

// in Byte

sizeof(int)

// Größe von int in Byte

3

*

Multiplikationsop.

x * y

/

Divisionsoperator

a / 4.7

%

Modulo-Operator

z % 7

// 0 wenn z / 7 = 0

4

+

Additionsoperator

b + 3

–

Subtraktionsop.

z – y

5

<<

Links-Shift-Op.

a << 3

// a um 3 Bits nach links

// schieben

>>

Rechts-Shift-Op.

b >> 2

// b um 2 Bits nach rechts

// schieben

46

3 Vordefinierte Standard-Datentypen

Gruppe Operator

Beschreibung

Beispiel

6

<

kleiner-Operator

x < 5

// 1 wenn wahr

<=

kleiner-gleich-Op.

x <= 5

// 1 wenn wahr

>

größer-Operator

y > 5

// 1 wenn wahr

>=

größer-gleich-Op.

y >= 5

// 1 wenn wahr

7

==

Gleichheitsoperator

a == b

// 1 wenn wahr

!=

Ungleichheitop.

!= 7 // 1 wenn wahr

8

&

bitweiser UND-Op.

a & 0x7

// jedes einzelne Bitpaar

9

^

bitweiser XOR-Op.

b ^ x

// der beiden Operanden

10

|

bitweiser ODER-Op.

c | 0x4

// wird verglichen

11

&&

logischer UND-Op.

x && y

// 1 wenn beide nicht 0

12

|

logischer ODER-Op.

a | b

// 1 wenn mind. ein Operand

// ungleich 0

13

?:

bedingter Bewertungs-Op

a ? b : c

// liefert b wenn. a ungleich 0

// (wahr), sonst c

14

=

Zuweisungsoperator

y = a / b

+=

Zuweisungsoperator

a += b + 4 // a = a + (b + 4)

–=

Zuweisungsoperator

a –= b + 4

// a = a – (b + 4)

*=

Zuweisungsoperator

a *= b + 4

// a = a * (b + 4)

/=

Zuweisungsoperator

a /= b + 4

// a = a / (b + 4)

%=

Zuweisungsoperator

a %= b + 4 // a = a % (b + 4)

>>=

Zuweisungsoperator

a >>= 1

// a = a >> 1

<<=

Zuweisungsoperator

a <<= 2

// a = a << 2

&=

Zuweisungsoperator

a &= 0xdf

// a = a & 0xdf

|=

Zuweisungsoperator

a |= 0xa8

// a = a | 0xa8

14

^=

Zuweisungsoperator

a ^= 0x3e

// a = a ^ 0x3e

15

,

Folgeoperator

x = (i++, a // zuerst wird i erhöht, dann

+ 4)

// wird a + 4 berechnet; der

// letzte Ausdruck (hier: a + 4)

// wird x zugewiesen

Einige der Ihnen noch nicht geläufigen Operatoren werden wir nach und nach, bei Bedarf,

einführen. Einige wenige werden Ihnen erst in einem Fortgeschrittenen-Kurs wieder begeg-

nen.

3.4 Operatoren und Ausdrücke

47

Mit Hilfe der Operatoren lassen sich zusammengesetzte Ausdrücke bilden, die entsprechend

der Vorrangstufen auflöst werden können. Beachten Sie, dass die Klammer jede Vorrang-

stufe außer Kraft setzt (die Klammer hat die höchste Vorrangstufe)!

 Beispiele

Ausdruck

abgearbeitet als

Ergebnis

2 * 15 + 3

(2 * 15) + 3

33

12.0 / 3.0 * 4.0

(12.0 / 3.0) * 4.0

16.0

120 / 9 % 5

(120 / 9) % 5

3

24.6 / 1.2 / 2.5

(24.6 / 1.2) / 2.5

8.2



Da in C/C++ nahezu jeder Ausdruck erlaubt ist, lassen sich phantastische Gebilde erschaf-

fen, nach deren praktischem Sinn man lieber nicht fragen sollte. Mit Hilfe unserer Vorrang-

tabelle kann man derartige Denksportaufgaben jedoch lösen.

 Beispiel: Der Ausdruck

4 && 2 + 3 | !3 == 3 – 2 / 2 >= –3

wird folgendermaßen aufgelöst:

((4 && (2 + 3)) | ((!3) == ((3 – (2 / 2)) >= (–3))))

und mit 1 bewertet.

Beachten Sie dabei: !3 = 0, (0 && x) = 0,

(0 | x) = 1, falls x ungleich 0, sonst 0



Natürlich treten in praktischen Ausdrücken nicht nur Zahlenwerte, sondern auch Variablen

oder Funktionsaufrufe auf.

Die beteiligten Operanden bestimmen den Datentyp eines Ausdrucks. Es dürfen durchaus

Operanden verschiedenen Typs in einem Ausdruck vorkommen. Entsprechend der Operato-

ren und deren Vorrangstufen wird ein Ausdruck, wie in unserem obigen Beispiel, zunächst

in Teilausdrücke zerlegt. Dabei gelten folgende Regeln:

1. Ist der Operator binär (z. B. + – * / < &&) und haben die beiden beteiligten Operanden

den gleichen Datentyp, so erhält der Teilausdruck meistens ebenfalls diesen Datentyp,

in einigen Fällen jedoch den nächst höheren. So führt die Verknüpfung zweier float-

Größen immer zu einem double-Wert.

2. Ist der Operator binär und besitzen die beiden beteiligten Operanden unterschiedliche

Datentypen, so erhält der Teilausdruck meistens den Datentyp des typhöheren der bei-

den Operanden, in einigen Fällen jedoch einen noch höheren. So führt die Verknüpfung

von long int und float zu einem double-Wert.

3. Durch weitere Zusammenfassung der Teilausdrücke nach den Regeln 1. bis 2. ergibt

sich schließlich der Wert des gesamten Ausdrucks.

48

3 Vordefinierte Standard-Datentypen

Die nachstehende Liste zeigt die Hierarchie der Datentypen:

long double

double

float

unsigned long

long int

unsigned int

int

char

short int

Leider sind unsere Regeln unpräzise. Wir geben deshalb eine vollständige Umwandlungs-

tabelle (nächsten Seite) für binäre Ausdrücke an. Dabei gelten folgende Abkürzungen:

c

= char

li = long int

si = short int

uli = unsigned long

i

= int

f = float

usi = unsigned short

d = double

ui = unsigned int

 Beispiele:

c + c  i

si + i

 i

i + f

 d

usi + usi  ui

f + f

 d



Viele mathematische Funktionen erwarten double-Argumente. Wenn Sie beispielsweise

die Wurzel aus dem Wert einer int-Variablen ziehen, müssen Sie das Argument zunächst

in einen double-Wert umwandeln. Hierzu dient der cast-Operator „(typ)“.

3.5 Benutzerdefinierte Konstanten

49

c

i

si

li

ui

usi

uli

f

d

c

i

i

i

li

ui

ui

uli

d

d

i

i

i

i

li

ui

ui

uli

d

d

si

i

i

i

li

ui

ui

uli

d

d

li

li

li

li

li

uli

uli

uli

d

d

ui

ui

ui

ui

uli

ui

ui

uli

d

d

usi

ui

ui

ui

uli

ui

ui

uli

d

d

uli

uli

uli

uli

uli

uli

uli

uli

d

d

f

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

 Beispiel:

int z;

float y;

...

y = sqrt((double) z); // cast-Operator

...



Die meisten modernen Compiler führen ein internes automatisches Casten aus und erlauben

die Schreibweise y = sqrt(z). Natürlich bleibt z selbst weiterhin int. Die Funktion sqrt()

liefert als Ergebnis einen double-Wert zurück. Bei der Zuweisung an die float-

Variable y erfolgt eine „Zwangsumwandlung“ nach float, was je nach Compiler-

Einstellung zu einer „warning“ führt.

 Beispiel:

int z;

float y;

...

z = 4 / y;

...



Der Ausdruck auf der rechten Seite ist nach obiger Tabelle (i + f) vom Typ double. Bei

der Zuweisung an z erfolgt eine „Zwangsumwandlung“ nach int. Eventuelle Nachkom-

mastellen werden abgeschnitten.

C++-Compiler geben bei impliziten Typumwandlungen nach obigem Muster oft Warnun-

gen (warnings) aus, die jedoch den späteren Programmablauf nicht beeinträchtigen. Möch-

ten Sie warnings vermeiden, sollten Sie explizite Typenumwandlungen mit dem cast-

Operator vornehmen.

50

3 Vordefinierte Standard-Datentypen

3.5 Benutzerdefinierte Konstanten

Neben Variablen können auch eigene Konstanten vom Benutzer definiert werden.

Konstantendefinition

const <typ> <NAME> = <wert>;

Im Programm wird statt des Wertes selbst nur der Name angegeben. <NAME> kann im

Programm kein neuer Wert zugewiesen werden.

Um Konstanten von Variablen zu unterscheiden, ist es in C/C++ üblich, Konstanten

großzuschreiben.

 Beispiel:

const int DIMENSION = 100;

const float C0 = 2.99793E8; // Lichtgeschwindigkeit

const char BLANK = ' ';

...

y = 3 * C0 * sin(z);

...



Die Benutzung von Konstanten bringen folgende Vorteile:

 Die Werte sind an zentraler Stelle (Programmanfang) leicht erkennbar abgelegt.

Eine Modifikation des Wertes ist wesentlich leichter möglich, als das gesamte

Programm nach den Konstantenwerten durchsuchen zu müssen.

 Es ist sichergestellt, dass im gesamten Programm mit genau dem gleichen Wert

gerechnet wird (und nicht vielleicht bei der einen Anweisung eine Dezimalstelle

mehr als bei einer anderen Anweisung).

 Durch sinnvolle Namen wird das Programm verständlicher.

Es gibt eine alternative Möglichkeit, Konstanten mit Hilfe des Präprozessors zu erzeugen:

#define <NAME> <ersetzung>

In diesem Fall wird jedoch kein Speicherplatz belegt. Vielmehr ersetzt der Präprozessor im

gesamten Quelltext das Wort <NAME> durch <ersetzung>.

3.6 Aufgaben

51

 Beispiel

#include <iostream>

#define PI 3.14159

#define SEK_PRO_TAG (60 * 60 * 24)

using namespace std;

int main(void)

...

float umfang, radius;

long int sek_pro_jahr;

...

umfang = 2 * PI * radius;

sek_pro_jahr = SEK_PRO_TAG * 365;

...



Mit der #define-Anweisung lassen sich sogar so genannte Makros schreiben, eine Möglich-

keit, auf die wir hier nicht näher eingehen.

3.6 Aufgaben

1) Finden Sie geeignete Datentypen für:

a) Postleitzahlen

b) Durchschnitt von Klausurnoten

c) Jahreszahlen

d) Programmsteuervariable

e) Berechnung von tan(x)

f) Monatstage

g) Speicherung von ´@´

2) Welche Zahl ist falsch geschrieben:

a) 2165E2

b) 5.E+8

c) 300000.0E+2 d) 1.0E–4.5 e) .5

3) Geben Sie den Typ des Ergebnisses an:

a) 2E3 – 20 b) 12 / 3 c) 24 / 5

4) Berechne folgende Ausdrücke:

a) (int) 67.89

b) ceil(–0.5)

c) 4 / 5 / 2

d) 15 / 16

e) 90 / 5 * 6

f) 120 / 8 % 7 – 120 % 7 / 8

5) Tippen Sie das Übungsbeispiel zur Berechnung der Quersumme einer dreistelligen Zahl

(Kap. 3.1.2) ab und bringen es zur Ausführung. Verändern Sie das Programm so, dass

es mit fünfstelligen Zahlen arbeitet.

52

3 Vordefinierte Standard-Datentypen

6) Programmieren Sie die Formeln:

a) y = a2 + b2 – 2 a b sin(alpha); alpha in Grad!

b)

2

1

y

3e-

=

 x

+

 x

7

7) Es gelte:

char ch;

...

ch = 't';

Was liefern folgende Funktionsaufrufe:

a) isascii(ch)

b) isalnum(ch) c) isdigit(ch)

d) isprint(ch)

e) toupper(ch) f) tolower(ch)

8) Welcher Ausdruck ist falsch? Wie wird ausgewertet (Vorrangstufen!)?

a) 4.5 > –6.3

b) 5 * 6 / 2.0

c) (3 + 7) = (12 – 2)

d) p = q = a == 0;

e) p = p | q && a > 0;

9) Was wird ausgegeben (i, j seien int-Variablen)?

a) i = 12;

b) i = 200;

j = 10;

j = 60;

cout << (i / j);

cout << (i / j);

cout << (i % j);

cout << (i % j);

10) Schreiben Sie ein Programm, das einen Geldbetrag als float-Wert einliest und dann

den Euro-Betrag und den Cent-Betrag getrennt als Integer(!)-Werte ausgibt.

Anleitung:

#include <iostream>

using namespace std;

int main(void)

{

...

cout << "Geldbetrag: >;

cin >> ...;

...

return 0;

}

4 Interaktive Ein-/Ausgabe

Die Eingabe von Programmdaten und die Ausgabe von Ergebnissen sind über verschiedene

Geräte möglich. So können z. B. Eingaben teils von der Tastatur eingegeben, teils auch aus

einer vorbereiteten Datei gelesen und Ausgaben statt auf dem Bildschirm auf einem ange-

schlossenen Drucker ausgegeben werden. Die Ein- und Ausgabeanweisungen müssen i. a.

Angaben über die beteiligten Geräte enthalten. Standard Ein-/Ausgabegeräte sind die Tasta-

tur bzw. der Bildschirm.

Wie wir schon in den vorgestellten Beispielen gesehen haben, erfolgen die Standard Ein-/

Ausgabe-Operationen interaktiv während des Programmlaufs. Damit hat der Anwender

Möglichkeiten, z. B. auf Eingabefehler unmittelbar zu reagieren oder nach evtl. schon

ausgegebenen Zwischenergebnissen weitere Eingaben anzupassen. Aus der zeitlichen Rei-

henfolge der interaktiven Ein-/Ausgaben weiß der Anwender, an welcher Stelle das Pro-

gramm gerade abgearbeitet wird. Bei sehr lange rechnenden Programmen ist es sinnvoll,

gelegentlich kurze Ausgabemeldungen auf dem Bildschirm vorzunehmen, damit der An-

wender den Fortgang der Rechnung verfolgen kann.

Wir befassen uns in diesem Kapitel mit der Standard Ein-/Ausgabe. Nicht-interaktive

Schreib-/ Lese-Operationen mit Dateien werden in Kapitel 8 behandelt.

Die Ein-/Ausgabekonzepte von C und C++ unterscheiden sich grundlegend. Da das C++-

Konzept flexibler und sicherer ist, stellen wir dieses ausführlicher vor. Das C-Konzept wird

hier nur kurz angerissen. Man sollte darauf nur noch zurückgreifen, wenn kein C++-Com-

piler zur Verfügung steht, oder wenn die eine oder andere systemnahe Anwendung dies

nahelegt.

4.1 Standard Ein-/Ausgabe mit C++

Das C++-Ein-/Ausgabe-Konzept arbeitet mit Streams. Darunter ist ein zeichenweiser Da-

tenfluss von einer Datenquelle (z. B. Tastatur) zu einer Datensenke (z. B. Variable) zu

verstehen. Allerdings hat es sich eingebürgert, die Datenquellen und -senken selbst als

Streams zu bezeichnen. Das ist sicher nicht logisch, aber auch wir wollen uns an diese

Bezeichnungsweise halten.

Beispiele für Streams:

Tastatur

Quelle

Bildschirm

Senke

Variable

Quelle oder Senke

Datei

Quelle oder Senke

Machen wir uns das Grobkonzept an einem kleinen Programmbeispiel klar:

© Springer Fachmedien Wiesbaden GmbH 2017

G. Küveler und D. Schwoch, C/C++ für Studium

 und Beruf, DOI 10.1007/978-3-658-18581-7_5

54

4 Interaktive Ein-/Ausgabe

// BSP_4_1_1

// Ein-/Ausgabe mit Streams

#include <iostream>

#include <ctype>

using namespace std;

int main(void)

{

char sex;

cout << "Bist Du maennlich oder weiblich [m/w]? ";

cin >> sex;

if(tolower(sex) == 'm') // falls Eingabe: m oder M

cout << "Guten Tag, mein Herr\n";

else // sonst

cout << "Guten Tag, gnaedige Frau" << endl;

return 0;

}

Vermutlich halten Sie bis jetzt cin und cout für Ein-/Ausgabebefehle. Das ist nicht ganz

richtig: Es handelt sich um Streams. Betrachten wir die erste Ausgabeanweisung im obigen

Programm:

cout

ist Zielstream (Bildschirm)

<<

ist Ausgabeoperator

„Bist Du ...“ ist Quellstream (Textstring)

Der Ausgabeoperator „<<“ führt die Ausgabe durch. Er veranlasst einen Datenstrom von

der Quelle (Textstring) zur Senke (Bildschirm). Ein Blick in unsere Operatorentabelle (

Kap. 3.4) belehrt uns, dass es sich eigentlich um den Linksschiebeoperator handelt. C++

erlaubt das

Überladen von Operatoren.

Der Linksschiebeoperator „<<“ ist in diesem Fall bereits Compiler-seitig als Ausgabeopera-

tor überladen, d. h. angewendet auf bestimmte Objekte (Streams) wirkt er anders als ur-

sprünglich vorgesehen ( s. Kap. 9.7).

Die meisten Streams sind gepuffert, d. h. die Ein-/Ausgabe erfolgt nicht unmittelbar, son-

dern über einen Puffer im RAM-Speicher des Rechners. Die Weitergabe an die Datensenke

erfolgt erst, wenn der Puffer voll ist. Im obigen Programmbeispiel bedeutet dies, dass unse-

re erste Ausgabe nicht unmittelbar auf dem Bildschirm erscheinen müsste. Aber:

Bei einer Eingabe über cin wird der Ausgabepuffer für cout automatisch geleert.

Die übrigen beiden Ausgaben schließen mit '\n' ab. Dies bewegt nicht nur den Cursor auf

den Anfang der nächsten Zeile (unter Standard Unix muss dort “\n\r“ stehen), sondern leert

auch den Puffer. Es ist also ratsam, Ausgabeanweisungen, die keinen Prompt darstellen,

also nicht unmittelbar von einer Eingabeanweisung gefolgt werden, mit endl abzuschließen.

4.1 Standard Ein-/Ausgabe mit C++

55

Die unterschiedliche Positionierung des Cursors in beiden Fällen wirkt sich wie bei der

Eingabe erst in der nachfolgenden Ein- oder Ausgabeanweisung aus.

Zum Unterschied von Ausgaben mit und ohne endl (Cursor = ):

Ausgabe:

cout << "HALLO" << endl;

HALLO



Ausgabe:

cout << "HALLO";

HALLO

Jeder Programmeingabe sollte die Ausgabe eines erklärenden Textes vorausgehen, um den

Anwender zu unterstützen. Dazu eignet sich besonders die Konstruktion der „Prompt-

Eingabe“:

 Beispiel

cout << "Gib Zahl ein > "; cin >> a;

Bildschirm:

Gib Zahl ein > 

 Eingabe-Cursorposition



Anmerkung:

Häufig schreibt man die beiden C++-Anweisungen in eine Zeile, um

damit die „Prompt-Eingabe“ zu verdeutlichen.

Statt endl kann man alternativ die Escape-Sequenz ' \n' benutzen. endl ist vorzuziehen, da es automatisch, je nach Bedarf des Betriebssystems, ein ' \n' oder ein " \n\r" generiert. Die Sprache C (ohne ++) kennt jedoch kein endl! Der Manipulator flush leert den Puffer ohne Zeilenvorschub.

C++ Manipulatoren zur Ausgabepufferleerung

endl Leeren des Puffers plus Zeilenvorschub

flush Leeren des Puffers ohne Zeilenvorschub

 Beispiele

cout << "Guten Tag, mein Herr" << endl;

// sofort ausgeben mit Zeilenvorschub

cout << "Guten Tag, mein Herr" << flush;

// sofort ausgeben ohne Zeilenvorschub



56

4 Interaktive Ein-/Ausgabe

Manipulatoren werden an geeigneter Stelle in den Ein-/Ausgabestrom eingeschoben

Bei unserer Eingabeanweisung

cin >> sex

entsteht ein Datenstrom von der Quelle Tastatur (cin) zur Variablen sex. >> ist der über-

ladene Rechtsshiftoperator (Operatorüberladung,  s. Kap. 9.7).

Überladene C++ Operatoren zur Standard-Ein/Ausgabe

<<

Ausgabeoperator (Ausgabe-Transferoperator)

>>

Eingabeoperator (Eingabe-Transferoperator)

Neben cin und cout unterstützt die IOStream-Bibliothek von C++ noch weitere Standard-

Streams, d. h. Streams die normalerweise mit Tastatur und Bildschirm verbunden sind.

Standard Streams

Stream

Anwendung

standardmäßig

verbunden mit

cin

Standard-Eingabe

Tastatur

cout

Standard-Ausgabe

Bildschirm

clog

Standard-Protokoll

Bildschirm

cerr

Standard-Fehlerausgabe

Bildschirm

 clog stellt eine Alternative zu cout dar.

 clog ist immer ungepuffert.

 clog eignet sich damit besonders für Testausgaben bei der Programmentwicklung.

 Beispiel

clog << "summe = " << sum;

// auch ohne endl oder flush sofortige Ausgabe



 cerr dient der Ausgabe von Fehler und Statusmeldungen.

Fehlermeldungen sollte man statt auf cout auf cerr schreiben. Zwar sieht man bei der „nor-

malen“ Anwendung keinen Unterschied. Einige Betriebssysteme, wie z. B. Unix, erlauben

jedoch eine differenzierte Ausgabeumlenkung auf Shellebene.

4.1 Standard Ein-/Ausgabe mit C++

57

 Beispiel

cerr << "Falsche Eingabe" << endl;

// Fehlermeldung



Standard Ein/Ausgaben sind kaskadierbar

 Beispiele

// "Normal"-Ausgabe:

cout << "Fuer den Radius ";

cout << rad;

cout << " betraegt der Flaecheninhalt ";

cout << area;

cout << endl;

// Ausgabe-Kaskadierung:

cout << "Fuer den Radius " << rad

<< "betraegt der Flaecheninhalt " << area << endl;

// "Normal"-Eingabe:

cin >> anf;

cin >> end;

cin >> step;

// Eingabe-Kaskadierung:

cin >> anf >> end >> step;



Kaskadierte Ein/Ausgaben erfolgen von links nach rechts.

Statt der Angabe einer Variablen kann in der Ausgabe-Anweisung auch ein Ausdruck ste-

hen, der unmittelbar vor der Ausgabe ausgewertet wird, z. B.

cout << (sin(M_PI / 180.0 *(aplha - beta))) << endl;

Damit der Ausdruck auswertbar ist, muss allen Variablen vorher ein Wert zugewiesen wor-

den sein. M_PI ist eine vordefinierte Konstante für den Wert von .

Merke:

Zusammengesetzte Ausdrücke dürfen nur in Ausgabe-Anweisungen stehen!

cout << (a / b) << endl;  möglich

cin >> (a / b);

 Fehler!!

(keine Zuweisung an einen Ausdruck möglich)

Aber auch Vorsicht bei der Ausgabe von Ausdrücken

58

4 Interaktive Ein-/Ausgabe

<< und >> sind Operatoren mit einer relativ niedrigen Priorität ( s. Operatorentabelle

Kap. 3.4). Diese bleibt auch bei Überladung. Einige Operatoren besitzen jedoch eine noch

geringere. Dies kann zu Komplikationen bei der Ausgabe von Ausdrücken führen.

 Beispiel

cout << a | b; // bitweises ODER

// ausgegeben wird der Wert der Variablen a,

// weil << stärker bindet als |



Sicher ist dies ein ungewolltes Resultat! Deshalb sollte man den auszugebenden Ausdruck

immer klammern. Man ist dann auf der sicheren Seite und muss nicht ständig in die Vor-

rang-Tabelle schauen.

 Beispiel

cout << (a | b);

// ausgegeben wird der Wert des Ausdrucks a | b



Die Elemente einer Ausgabeliste werden unmittelbar hintereinander ausgegeben:

 Beispiel

int i, j;

float x;

...

i = -503;

j = 23;

x = -1.5;

...

a)

Ausgabe:

cout << i << j << x << endl;

–50323–1.50000e+000

(unleserlich!)

Ausgabe:

b)

cout << i << ' ' << j << ' '

–503 23 –1.50000e+000

<< x << endl;

(für Abstände sorgen!)

Ausgabe:

c)

cout << " i = " << i

i = –503 j = 23 x =

<< " j = " << j

–1.50000e+000

4.2 Formatierte Bildschirm-Ausgabe

59

<< " x = " << x <<

(nebeneinander)

endl;

Ausgabe: (mit erklärendem Text)

d)

cout << "i = " << i << endl

i = –503

<< "j = " << j << endl

j = 23

<< "x = " << x << endl;

x = –1.50000e+000

(untereinander)

cout << endl

Ausgabe von zwei Leer-

<< endl;

zeilen



WICHTIG: Brechen Sie niemals einen Text um, der in Hochkommata steht!

4.2 Formatierte Bildschirm-Ausgabe

Die Darstellung der auszugebenden Zahlen haben wir bis hierhin dem Compiler überlassen.

Für „quick and dirty“-Ausgaben reicht das aus, nicht aber beispielsweise für exakt forma-

tierte Tabellen. Formatierungen lassen sich in C++ über so genannte Mitgliedsfunktionen

( s. Kap. 9) oder über Manipulatoren gestalten. Wir stellen hier die zweite Möglichkeit

vor. Einige Manipulatoren sind parametrisiert, andere nicht. Die folgende Tabelle zeigt die

wichtigsten Ein/Ausgabe-Manipulatoren:

Manipulatoren zur Ausgabe-Formatierung (Auswahl)

dec

Ganzzahl in dezimaler Form ausgeben (Standard)

oct

Ganzzahl in oktaler Form ausgeben

hex

Ganzzahl in hexadezimaler Form ausgeben

setw()

Feldbreite festlegen (für alle Datentypen)

setfill()

Füllzeichen festlegen (Standard ist blank)

setprecision()

Anzahl der signifikanten Stellen bei float-Werten:

bei ios::fixed (s. Tab. unten): Stellen nach dem Komma

setiosflags()

Setzen von Formatierungsflags (s. Tab. unten)

resetiosflags()

Löschen von Formatierungsflags (s. Tab. unten)

Jeweils ein Formatierungsflag kann als Parameter an die Manipulatoren setiosflag() oder

 resetiosflag() übergeben werden:

60

4 Interaktive Ein-/Ausgabe

Tabelle der wichtigsten Ausgabe-Formatierungsflags

ios::left

Linksbündige Ausgabe (im Feld)

ios::right

Rechtsbündige Ausgabe (im Feld, Standard)

ios::dec

Dezimale Ganzzahlausgabe (Standard)

ios::oct

Oktale Ganzzahlausgabe

ios::hex

Hexadezimale Ganzzahlausgabe

ios::showbase

Basis-Indikator bei Ausgabe anzeigen

ios::showpoint

float-Wert-Ausgabe mit Dezimalpunkt erzwingen

ios::uppercase

Hexadezimale Buchstabenziffern groß schreiben

ios::showpos

Positives Vorzeichen bei Ganzzahlen zeigen

ios::scientific

float-Wert-Ausgabe in Gleitpunktdarstellung

ios::fixed

float-Wert-Ausgabe in Festpunktdarstellung

ios::unitbuf

Alle Stream-Puffer leeren

ios::stdio

cout- und cerr-Puffer leeren

ios::boolalpha

Boolsche Ausgaben mit true und false statt 1 und 0

 Beispiele

1)

cout << "Rechnungsbetrag" << setw(12) << setfill('.')

<< betrag << ",-- EURO" << endl;

//

ausgegeben wird z. B.:

//

Rechnungsbetrag.........120,-- EURO

2)

cout << "Der Hexwert von" << setw(5) << i

<< " betraegt" << setw(10) << hex

<< setiosflags(ios::uppercase) << i << endl;

//

ausgegeben wird z. B.:

//

Der Hexwert von 200 betraegt C8

3)

Um Verwechslungen auszuschließen, sollte man bei hexadezimalen oder oktalen

Zahlen die Basis mit ausgeben:

int i = 8;

cout << "Der Hexwert von" << setw(5) << i

<< " betraegt" << setw(10) << hex

<< setiosflags(ios::showbase)

<< setiosflags(ios::uppercase) << i << endl;

cout << "Der Oktwert von" << setw(5) << i

<< " betraegt" << setw(10) << oct

<< setiosflags(ios::showbase) << i << endl;

// ausgegeben wird:

// Der Hexwert von 8 betraegt 0x8

// Der Oktwert von 8 betraegt 010

Ein vorgestelltes 0x kennzeichnet die Basis 16 (hexadezimal),

eine vorgestellte 0 kennzeichnet die Basis 8 (oktal).

4.3 Standard-Eingabe

61

4)

float a = -3.0;

float b = 7.2123567:

cout << a << endl << b << endl;

cout << setiosflags(ios::fixed)

<< a << endl;

//

Die Addition von Formatierungsflags ist erlaubt!

cout << setprecision(4) << b << endl;

cout << setiosflags(ios::scientific) << b << endl;

// ausgegeben wird:

// -3

// 7.21236 (die letzte Stelle wird gerundet)

// -3.0

// 7.2124

// 7.2124e+000

5)

float x = 123.1234:

cout << setprecision(5);

cout << setiosflags(ios::scientific) << x << endl;

cout << resetiosflags(ios::scientific) ; // wichtig !

cout << setiosflags(ios::fixed) << setprecision(2) << x

<< endl;

// ausgegeben wird:

// 1.23123e+002

// 123.12



Binden Sie bei Verwendung von parametrisierten Formatierungs-Manipulatoren (sol-

che mit „()“) immer die Headerdatei iomanip.h mit ein:

#include <iomanip>

Die mit setiosflags() gesetzten Flags bleiben bis zum Programmende gültig, es sei denn, sie

wurden mit resetiosflags() zurückgesetzt. Ebenso gültig bleiben die nichtparametrisierten

Manipulatoren dec, oct und hex. Widersprüchliche Zahlenbasis-Formatbeschreiber schlie-

ßen sich gegenseitig aus. Wenn Sie beispielsweise die Hexadezimalausgabe wählen, müs-

sen Sie die dezimale nicht explizit zurücksetzen.

4.3 Standard-Eingabe

Bei einer Eingabe-Anweisung wartet das Programm auf die Eingabe der entsprechenden

Werte von der Tastatur. Eingaben erreichen das Programm nicht direkt, sondern nur über

den Eingabepuffer. Mit der Betätigung der ENTER-Taste wird der Eingabepuffer dem

Programm übergeben.

Die eingegebenen Werte werden von links nach rechts 1:1 den Variablen im Eingabestrom

zugewiesen.

62

4 Interaktive Ein-/Ausgabe

Eingegebene Zahlen oder Zeichen werden durch so genannte Whitespace-Zeichen vonein-

ander abgetrennt.

Whitespace-Zeichen

' '

Leerzeichen (blank)

'\n'

neue Zeile

'\r'

Wagenrücklauf (CR)

'\f'

Seitenvorschub

'\t'

horizontaler Tabulator

'\v'

vertikaler Tabulator

In der Regel werden die einzelnen Elemente der Eingabeliste durch ' ' oder '\n' getrennt:

 Beispiele

1) Für die int-Variablen alpha, beta und gamma sollen die Werte –7, 109, 34 eingelesen werden.

Möglichkeit:

a)

Eingabe:

cin >> alpha >> beta >> gamma;

–7 109 34<ENTER>

...

(einzeilig)

b)

Eingabe:

cin >> alpha >> beta >> gamma;

–7<ENTER>

109<ENTER>

34<ENTER>

(dreizeilig)

c)

Eingabe:

cin >> alpha;

–7<ENTER>

cin >> beta;

109<ENTER>

cin >> gamma;

34<ENTER>

(dreizeilig)

d)

Eingabe:

cin >> alpha;

// 1.Wert aus Puffer

–7 109 34<ENTER>

cin >> beta;

(einzeilig)

// 2.Wert aus Puffer

cin >> gamma;

// 3.Wert aus Puffer

// und Puffer loeschen

...

2)

float x, y, z;

int i, j;

char c,d;

...

4.3 Standard-Eingabe

63

cin >> x;

cin >> y >> i;

cin >> c >> d;

cin >> j >> z;

...

Eingabe:

3.89<ENTER>

-0.002 300<ENTER>



ab<ENTER>

24 -2.6e7<ENTER>

Im Programm wird zugewiesen:

x  3.89

y  –0.002

i  300

c  'a'

d  'b'

j  24

z  –2.6e7

Anmerkung:

Hätte man statt ab<ENTER> eingegeben: a b<ENTER>

so wäre ebenfalls zugewiesen worden: c  'a' d  'b'

Whitespace-Zeichen werden als Trennzeichen verwendet, jedoch aus dem Eingabestrom

entfernt. Liest man Elemente vom Typ char ein, so kann auf ein Trennzeichen verzichtet

werden.

3) int i1, i2, i3, i4;

...

cin >> i1;

z

= alpha * i1;

cin >> i2 >> i3;

k

= i2 - i3; cin >> i4;

...

Eingabe:

1. Möglichkeit:

7<ENTER>

6 5<ENTER>

4<ENTER>

2. Möglichkeit:

7 6 5 4<ENTER> eine Zeile! (wegen Eingabepufferung)

Zuweisungen im Programm:

i1  7

i2  6

i3  5

i4  4



Die folgende Tabelle zeigt die Eingabe-Manipulatoren:

64

4 Interaktive Ein-/Ausgabe

Manipulatoren zur Eingabe-Formatierung

dec

dezimale Eingabe bei Ganzzahl (Standard)

hex

hexadezimale Eingabe bei Ganzzahl (Standard)

oct

oktale Eingabe bei Ganzzahl (Standard)

ws

Whitespace-Zeichen bei der Eingabe überlesen

setw()

Eingabepuffer begrenzen

setiosflags()

Setzen von Formatierungsflags (siehe unten)

resetiosflags()

Löschen von Formatierungsflags (siehe unten)

Das folgende Eingabe-Manipulationsflag kann sinnvollerweise als Parameter an die Mani-

pulatoren setiosflags() oder resetiosflags() übergeben werden:

Eingabe-Manipulationsflag

ios::skipws

Whitespace-Zeichen bei der Eingabe überlesen

Whitespace-Zeichen dienen bei der Eingabe, wie gesagt, grundsätzlich als Elementtrenner.

Somit ist es nicht so ohne weiteres möglich, Whitespace-Zeichen explizit einzulesen, es sei

denn, man setzt ios::skipws zurück.

 Beispiele

1)

char c;

...

cin >> c;

cout << c;

Eingabe: <blank><blank>a<Enter>

Ausgabe: a

2)

char c;

cin >> resetiosflags(ios::skipws);

cin >> c; cout << c;

Eingabe: <blank><blank>a<Enter>

Ausgabe: <blank>, dann wird die Eingabe abgebrochen



Möchte man Whitespace-Zeichen explizit einlesen, so sollte man besser die Funktion

 cin.get() verwenden. Das folgende Beispielprogramm liest „alles was kommt“:

// BSP_4_3_1

#include <iostream>

using namespace std;

int main(void)

{

char ch;

ch = cin.get(); cout << ch;

ch = cin.get(); cout << ch;

ch = cin.get(); cout << ch;

4.4 Standard Ein-/Ausgabe mit C

65

ch = cin.get(); cout << ch;

return 0;

}

1) Eingabe: abcd<Enter>

Ausgabe: abcd

2) Eingabe: a d<Enter>

Ausgabe: a d

3) Eingabe: <Enter><Enter><Enter><Enter>

Ausgabe: 4 Leerzeilen

Von praktischem Interesse ist dies v. a. in Verbindung mit Schleifen ( s. Kap. 5.2).

4.4 Standard Ein-/Ausgabe mit C

Das Ein-/Ausgabe-Konzept von C unterscheidet sich grundlegend von dem von C++. Ein

C++-Compiler unterstützt beide Möglichkeiten. Sie können sich von Programm zu Pro-

gramm neu entscheiden, welches Konzept Sie verwenden möchten. Allerdings sollten Sie

nicht innerhalb eines Programms „mischen“, denn auch die C-Ein-/Ausgabe ist gepuffert,

jedoch auf eine nicht kompatible Weise, so dass Probleme auftreten könnten.

Verwenden Sie innerhalb eines Programms entweder nur C oder nur C++

Ein/Ausgabe-Anweisungen, zumindest bei den formatierten Ein/Ausgaben.

Bei Verwendung des C-Ein-/Ausgabesystems ist die Datei cstdio.h einzubinden:

#include <cstdio>

Wir stellen das C-Konzept nur sehr knapp dar. Bezüglich Standard-Ein-/Ausgabe unter-

scheiden wir in C die einfachen unformatierten und die formatierten Funktionen printf()

und scanf().

Zu den einfachsten Anweisungen gehören getchar() und putchar(). getchar() wartet auf die

Eingabe eines Zeichens und zeigt dieses auf dem Bildschirm an (Echo). putchar() gibt ein

Zeichen an der aktuellen Cursorposition aus.

Ein kleines Beispielprogramm erläutert die Arbeitsweise:

// BSP_4_4_1

#include <cstdio>

using namespace std;

int main(void)

{

int c;

c = getchar();

putchar(c);

66

4 Interaktive Ein-/Ausgabe

 return 0;

}

// Bei Eingabe von 'w'<Enter>

// lautet die Ausgabe:

// w



Es existiert eine Reihe weiterer Anweisungen zur unformatierten Ein-/Ausgabe. Beispiels-

weise lässt die Anweisung

puts("Hallo Oma");

auf dem Bildschirm den entsprechenden Text erscheinen.

Wir sollten uns jedoch noch unbedingt mit den wichtigen formatierten Ein-/Ausgabe-

Funktionen printf() und scanf() befassen.

 printf() hat prinzipiell folgendes Aussehen:

printf("Control String", Argumentenliste);

Der Control-String kann Textkonstanten und Formatbeschreiber enthalten. Letztere begin-

nen mit einem %-Zeichen und haben die Funktion von Platzhaltern.

Die folgende Tabelle zeigt die Formatbeschreiber für printf(). Bei double-Argumenten ver-

wendet man %lf (= long float), %ld für long int. Short-Argumente werden mit h gekenn-

zeichnet, also etwa %hd für short int.

Formatbeschreiber

für

%c

ein einzelnes Zeichen

%d

eine int-Zahl

%i

eine int-Zahl

%x

eine Hexadezimalzahl

%o

eine Oktalzahl

%u

eine vorzeichenlose Dezimalzahl

%f

eine float-Zahl in Festkommadarstellung

%e

eine float-Zahl in Gleitkommadarstellung

%g

eine float-Zahl in %f- oder %e-Darstellung

%s

eine Zeichenkette (String)

%p

einen Pointer

%%

ein Prozentzeichen

 Beispiel

printf("He %c %d %s\n", 'A', 10, "da!");

würde He A 10 da! <Zeilenvorschub> ausgeben.



4.4 Standard Ein-/Ausgabe mit C

67

Zwischen %-Zeichen und Formatbefehl kann eine Dezimalzahl stehen, die die Feldweite

bestimmt. Die Ausgabe erfolgt rechtsbündig. Steht jedoch ein '–'-Zeichen vor der Zahl,

erfolgt die Ausgabe linksbündig.

%05d würde eine Integerzahl mit weniger als 5 Stellen mit vorgestellten Nullen auf die

Länge 5 bringen.

%5.7s würde einen String mit mindestens 5 (evtl. incl. blanks) höchstens aber 7 Zeichen

ausgeben. Ggf. wird rechts abgeschnitten.

%10.2lf würde eine double-Zahl rechtsbündig in 10 Druckpositionen mit 2 Stellen nach

dem Dezimalpunkt ausgeben.

In der nachfolgenden Tabelle finden Sie einige praktische Beispiele:

int i = 1234;

long j = 1234567;

float x = 123.4567f, y = 1.2345f;

double z = 12.3456789;

char str[10] = "Hey Joe";

printf("%5d", i);

printf("%10ld", j);

printf("%10.2f", x);

printf("%10.2e", x);

printf("%5.2f", y);

printf("%10.5lf", z);

printf("%10s", str);

Ausgaben:

1234

1234567

0123.46

1.23e02

1.23

12.34567

Hey Joe

 scanf() ist die entsprechende Eingabe-Funktion. Die eingelesen Zeichen und Zahlen werden

automatisch in die internen Formate umgewandelt. Die allgemeine Form von scanf() lautet:

scanf("Control String", Argumentenliste);

Der Control-String enthält ausschließlich Formatbeschreiber, keine Texte. Die Formatbe-

schreiber beginnen mit einem %-Zeichen und entsprechen denen der printf()- Funktion.

Feldlängenangaben sind jedoch nur bei Strings sinnvoll.

Die folgende Tabelle zeigt die Formatbeschreiber für scanf():

68

4 Interaktive Ein-/Ausgabe

Formatbeschreiber

für

%c

ein einzelnes Zeichen

%d

eine int-Zahl

%i

eine int-Zahl

%x

eine Hexadezimalzahl

%o

eine Oktalzahl

%h

eine short int-Zahl

%f

eine float-Zahl

%e

eine float-Zahl

%s

eine Zeichenkette (String)

%p

einen Pointer

Beispiel:

scanf("%c %d %", &ch, &i, &x);

würde z. B. a 234 17.987 einlesen

und den Variablen ch, i und x zuweisen.

Der Funktion scanf() müssen die Adressen der Variablen übergeben werden, welche die

Eingabedaten aufnehmen sollen. Aus diesem Grund muss vor den jeweiligen Variablen-

namen der Adressoperator & stehen. Adressen werden in C auch Pointer genannt. Mit

diesem zu Unrecht (?) gefürchteten Datentyp werden wir uns später genauer befassen ( s.

Kap. 7.2).

Wichtig: durch ein Blank (Leerzeichen) im Control-String wird scanf() angewiesen, ein

oder mehrere Whitespace-Zeichen in der Eingabekette zu überlesen.

Beispiel:

scanf("%c %c %d ", &a, &b, &i);

ignoriert beliebige Blanks und TABs zwischen den eingelesenen Zeichen. Außerdem wird

ein evtl. Zeilenvorschub am Ende der Eingabekette eingelesen und ignoriert.

Ein „Non-White-Space-Zeichen“, etwa ein Komma, veranlasst scanf() zum Einlesen und

Ignorieren des entsprechenden Zeichens.

Beispiel:

scanf("%d,%d", &i, &j);

erwartet ein Komma als Trennzeichen in der Eingabekette. Wird dieses nicht gefunden,

erfolgt ein Abbruch. Mit dem Multiplikationszeichen * statt % kann ein entsprechendes

Element in der Eingabekette überlesen werden.

Beispiel:

scanf("%d*c%d", &i, &j);

würde bei Eingabe von 10/20 10 für i und 20 für j einsetzen. Das '/'-Zeichen würde überle-

sen.

Bei Eingabe von Zeichen kann auf Trennzeichen verzichtet werden:

Beispiel:

scanf("%c%c%c", &a, &b, &c);

Bei Eingabe von "x y" landet 'x' in a, ' ' in b und 'y' in c.

Beispiel:

scanf("%20s", str1);

4.5 Aufgaben

69

setzt voraus, dass str1 der Name eines Character-Vektors (String) ist. Bei Eingabe von

ABCDEFGHIJKLMNOPQRSTUVWXYZ

wird UVWXYZ nicht mit eingelesen, da die Feldweite 20 mit dem 'T' endet. Ein zweiter

Aufruf von scanf() würde den Rest einlesen:

scanf("%s", str2);

Der &-Operator fehlt im Fall von Strings, da Stringnamen bereits Adressen (Pointer) sind.

Achtung:

 scanf() ist nicht in der Lage, einen Prompt auszugeben. Ist ein solcher

gewünscht, muss dies vor dem scanf()-Aufruf, z. B. mit printf(), ge-

schehen.

Beispiel:

printf("Eingabe Ganzzahl >");

scanf("%d", &zahl);

4.5 Aufgaben

1) Was geben folgende Programme aus?

Geben Sie die Programme ein und testen Sie:

a) #include <iostream>

b) #include <iostream>

using namespace std;

using namespace std;

int main(void)

int main(void)

{

{

int i,j;

char ch;

i = 1110;

cin >> ch; cout << ch;

j = 60;

cin >> ch; cout << ch;

cout << (i / j) << endl;

cin >> ch; cout << ch;

cout << (i % j) << endl;

cin >> ch; cout << ch;

return 0;

return 0;

}

}

Beachten Sie, dass b) nur eine(!) Variable enthält und auch korrekt arbeitet, wenn alle

vier Zeichen auf einmal eingegeben werden.

2) Schreiben Sie ein Programm, das folgenden Dialog erzeugt:

Geben Sie eine Integer-Zahl ein: ________

<leerzeile>

Geben Sie 5 Zeichen ein: ________

<leerzeile>

Geben Sie eine float-Zahl ein: ________

<leerzeile>

Es wurde eingegeben:

<Ausgabe aller eingegebener Werte in einer Zeile>

70

4 Interaktive Ein-/Ausgabe

3) a) Schreiben Sie ein Programm, das 2 Zeichen (Type char) einliest und die entspre-

chenden Positionen in der ASCII-Tabelle ausgibt.

b) Umkehrung: Eingabe von 2 Integer-Werten und Ausgabe der an diesen Stellen be-

findlichen ASCII-Zeichen.

4) Schreiben Sie ein Programm, das 5 positive Zahlen einliest, jeweils Wurzel und Quadrat

berechnet und als Tabelle mit 2 Nachkommastellen in folgender Form ausgibt:

Zahl Wurzel Quadrat

5.00 2.24 25.00

...

5) Schreiben Sie ein Programm, das folgendes Muster etwa in der Bildschirmmitte ausgibt:

* *

* *

* *

* *

* C++ *

6) Ein Programm soll folgende Ausgabe erzeugen:

Es wurden <n> Messwerte ausgewertet.

Für <n> soll der jeweilige Variablenwert (0 < n <= 10000) so ausgegeben werden, dass

keine überflüssigen Blanks vor der Zahl erscheinen. Wie lautet die Ausgabeanweisung?

5 Programm-Ablaufstrukturen

Die bisher vorgestellten Programme wurden stets in der Reihenfolge der codierten Pro-

grammanweisungen sequentiell abgearbeitet. Der diesen Programmen zugrunde liegende

Strukturblock ist die „Sequenz“.

Die Mächtigkeit einer Programmiersprache zeigt sich jedoch erst beim Einsatz von Kon-

troll- oder Ablaufstrukturen, die in Abhängigkeit von Variablenwerten Abweichungen von

der linearen Folge der Anweisungen ermöglichen.

Das sind die grundlegenden Kontrollstrukturen:

Kontrollstrukturen (Programm-Ablaufstrukturen)

Sequenz (Folge)

Iteration (Schleife, Wiederholung)

Selektion (Auswahl)

Die beiden Strukturen Iteration und Selektion lassen sich in weitere Unterstrukturen glie-

dern.

5.1 Die Selektion

Mit Selektionen lassen sich Fallunterscheidungen treffen, etwa: Falls a > b dann ..., sonst ...

C/C++ stellt eine einfache Verzweigung (if) und eine Mehrfachverzweigung (switch) bereit.

5.1.1 Die einseitige Verzweigung: if ...

Die Entscheidung zur Verzweigung ist abhängig vom aktuellen Wert eines logischen Aus-

drucks:

Die einseitige Verzweigung als Struktogramm

<logischer Ausdruck>

wahr

falsch

< if-Block>

if(<logischer Ausdruck>)

<eine Anweisung>;

– oder –

if(<logischer Ausdruck>)

{

<mehrere Anweisungen>;

}

© Springer Fachmedien Wiesbaden GmbH 2017

G. Küveler und D. Schwoch, C/C++ für Studium

 und Beruf, DOI 10.1007/978-3-658-18581-7_6

72

5 Programm-Ablaufstrukturen

Die nach if(<logischer Ausdruck>) folgenden Anweisungen (if-Block) werden nur ausge-

führt, wenn die Auswertung des logischen Ausdrucks „wahr“ ergibt, anderenfalls über-

sprungen. Das Ende des if-Blocks muss gegen die nachfolgenden Anweisungen eindeutig

vom Compiler erkannt werden. Daher ist die { ... }-Blockung bei mehr als einer Anweisung

erforderlich. Durch die eingerückte Schreibweise ist die Struktur schon optisch erkennbar.

 Beispiele

a)

if(zahl < 0)

cout << "Der Wert ist negativ" << endl;

cout << "Berechnung von y:" << endl;

...

Fall a)

(falls zahl = –7)

Fall b)

(falls zahl = 5)

Ausgabe:

Ausgabe:

Der Wert ist negativ

Berechnung von y:

Berechnung von y:

b)

if(euro >= 1000000.0)

millionaer++;

cout << millionaer << endl;

...

(falls millionaer = 5 und euro = 3000000.0)

Ausgabe:

6

c)

float x;

int zugelassen;

...

zugelassen = (x >= 1.0) && (x <= 2.0);

if(!zugelassen)

{

cout << "x wird korrigiert:" << endl;

x = 1.5;

}

cout << x << endl;

(Für x = 2.5)

Ausgabe: x wird korrigiert:

1.5



Das letzte Beispiel enthält die erstaunliche Anweisung

zugelassen = <logischer Ausdruck>,

wobei die Variable zugelassen vom Typ int ist. In C/C++ werden logische Ausdrücke mit

einem Wert ungleich 0 (in der Regel 1) bewertet, wenn sie wahr sind, anderenfalls mit 0.

5.1 Die Selektion

73

Somit gilt:

0 ist unwahr

ungleich 0 ist wahr

int zugelassen könnte man auch durch bool zugelassen ersetzen, sofern der Compiler diesen Datentyp unterstützt.

5.1.2 Die bilaterale Alternative: if ... else

Bei den einseitigen Verzweigungen wird entweder der if-Block durchlaufen oder es ge-

schieht gar nichts. Die bilaterale Alternative bietet dagegen einen zweiten Block an (else-

Block), der abgearbeitet wird, falls der logische Ausdruck „falsch“ ergibt.

Die bilaterale Alternative

wahr

<logischer Ausdruck>

falsch

< if-Block>

< else-Block>

if(<logischer Ausdruck>)

{

...

<Anweisungen>;

...

}

else

{

...

<Anweisungen>;

...

}

Falls nur eine Anweisung in den jeweiligen Blöcken vorhanden ist, kann die { ... }-Klam-

merung entfallen.

Beachten Sie in den nachfolgenden Beispielen auch die eingerückte Schreibweise:

 Beispiele

a)

cin >> eingabe;

if((eingabe < 0) | (eingabe > 10))

cout << "Eingabe ist gueltig" << endl;

else

cout << "Eingabe ist falsch" << endl;

74

5 Programm-Ablaufstrukturen

b)

if(a >= 0.0)

{

b = sqrt(a);

cout

<< "Die Wurzel ist reell: "

<< b << endl;

}

else

{

b = sqrt(-a);

cout << "Die Wurzel ist imaginär:"

<< b << 'j' << endl;

}



 Programmbeispiel

Aufgabe: Es ist zu prüfen, ob eine eingegebene ganze Zahl durch n ohne Rest teilbar ist.

Das Programm soll entsprechende Meldungen ausgeben. n ist ebenfalls einzu-

lesen.

Lösung: Wir rechnen in der int-Welt. Zur Teilbarkeitsprüfung bietet sich der %-Operator

an:

// BSP_5_1_2_1

#include <iostream>

using namespace std;

int main(void)

{

int zahl, n;

cout << "Welche Zahl soll untersucht werden:";

cin >> zahl;

cout << "Durch welche Zahl soll geteilt werden:";

cin >> n;

cout << endl;

// Leerzeile

if(!(zahl % n))

// falls zahl % n gleich 0

cout << zahl << " ist durch " << n

<< "teilbar" << endl;

else

cout << zahl << " ist nicht durch " << n

<< " teilbar" << endl;

return 0;

}

Dialog a) Welche Zahl soll untersucht werden:

36

Durch welche Zahl soll geteilt werden:

05

36 ist nicht durch 5 teilbar

Dialog b) Welche Zahl soll untersucht werden:

22835

Durch welche Zahl soll geteilt werden:

04567

22835 ist durch 4567 teilbar



5.1 Die Selektion

75

5.1.3 Die Mehrfach-Fallunterscheidung: switch ...

Nicht immer lässt sich „die Welt einfach in zwei Fälle einteilen“. Häufig ist eine differen-

ziertere Auswahl zu treffen, die nur mit mehreren hintereinander angelegten if ...

else-Anweisungen realisiert werden kann. Die meisten Programmiersprachen bieten

jedoch spezielle Kontrollstrukturen für die Mehrfach-Fallunterscheidung an. In C/C++ ist

dies die switch-Konstruktion:

Mehrfach-Fallunterscheidung

<ausdruc

k> ?

<wert_1>

<wert_2>

...

<wert_n>

<Anweisungs-

<Anweisungs-

...

<Anweisungs-

block 1>

block 2>

block n>

switch(<ausdruck>)

{

case <wert_1>: <Anweisungsblock 1>;

case <wert_2>: <Anweisungsblock 2>;

...

case <wert_n>: <Anweisungsblock n>;

}

– oder –

<ausdruck> ?

<wert_1>

<wert_2>

...

<wert_n>

default

<Anweisungs-

<Anweisungs-

...

<Anweisungs- <Anweisungs-

block 1>

block 2>

block n>

block>

switch(<ausdruck>)

{

case

<wert_1>: <Anweisungsblock 1>;

case

<wert_2>: <Anweisungsblock 2>;

...

case

<wert_n>: <Anweisungsblock n>;

default:

<Anweisungsblock>;

}

Nimmt <ausdruck> einen Wert an, der unter den genannten Werten 1 bis n vorkommt, wird

der entsprechende Anweisungsblock durchlaufen. Das zusätzliche default in der unteren

Konstruktion fängt dabei die „Gegenwelt“ ab, wenn also keiner der vorangegangenen Fälle

zutrifft. Anweisungsblöcke können auch leer sein.

76

5 Programm-Ablaufstrukturen

 Beispiel

char ch;

...

cout

<< "Bitte einen Buchstaben eingeben >";

cin

>> ch;

switch(ch)

{

case 'a':

case 'A': cout << "Sie haben a oder A eingegeben"

<< endl;

...

}



Die Ausgabe erfolgt sowohl im Fall 'a' als auch im Fall 'A'. Trifft nämlich ein Fall zu, so

werden von dort an sämtliche Anweisungen bzw. Anweisungsblöcke durchlaufen, unab-

hängig davon, welche case-Anweisung davorsteht. Wenn dies nicht gewünscht wird, muss

man diesen Lauf „gewaltsam“ beenden. Dazu dient die Kontrolltransfer-Anweisung break,

die an der entsprechenden Stelle zu einem Abbruch der switch-Struktur führt.

 Beispiel

int tag;

...

cout << "Nr. des Tages >";

cin >> tag;

switch(tag)

{

case 1: cout << "Montag";

break;

case 2: cout << "Dienstag";

break;

case 3: cout << "Mittwoch";

break;

case 4: cout << "Donnerstag";

break;

case 5: cout << "Freitag";

break;

case 6: cout << "Samstag";

break;

case 7: cout << "Sonntag";

break;

default:cout << "Fehler! "

<< "[1 ... 7] "

<< "erlaubt" << endl;

}

Dialog a)

Nr. des Tages >4

Donnerstag

5.1 Die Selektion

77

Dialog b)

Nr. des Tages >12

Fehler! [1 ... 7] erlaubt

Beim Dialog a) verhindert beispielsweise die break-Anweisung nach cout << "Donnerstag" das Durchlaufen der weiteren Anweisungen.



 Programmbeispiel

Ein Programm soll zwei float-Zahlen einlesen und je nach eingegebenem Operator-

Symbol miteinander verknüpfen und das Ergebnis ausgeben.

'+': Addition

'–': Subtraktion

'*': Multiplikation

'/': Division

Wird keines der Rechensymbole eingegeben, soll eine entsprechende Fehlermeldung ge-

schrieben werden. Bei der Division darf der Nenner nicht Null sein!

// BSP_5_1_3_1

#include <iostream>

using namespace std;

int main(void)

{

float r1, r2, erg;

char op;

cout << "Gib zwei Real-Zahlen ein >";

cin >> r1 >> r2;

cout << "Operator ? [+-*/] >";

cin >> op;

switch(op)

{

 case '+': erg = r1 + r2;

cout << "Die Summe ist " << erg

<< endl;

break;

 case '-': erg = r1 - r2;

cout << "Die Differenz ist " << erg

<< endl;

break;

 case '*': erg = r1 * r2;

cout << "Das Produkt ist " << erg

<< endl;

break;

 case '/': if(r2 == 0.0)

cout << "Nenner ist Null!" << endl;

else

78

5 Programm-Ablaufstrukturen

{

erg = r1 / r2;

cout << "Der Quotient ist "

<< erg << endl;

}

break;

 default: cout << "Ungueltiger Operator" << endl;

}

return 0;

}



5.2 Die Iteration

Iterationen oder Schleifen bedeuten eine ungeheure Erleichterung bei der Programmierung

sich wiederholender Vorgänge. C/C++ bietet drei verschiedene Schleifen-Strukturen an,

zwischen denen sich der Programmierer, je nach Aufgabenstellung, entscheiden kann.

5.2.1 Die Zählschleife: for ...

Liegt die Zahl der Schleifenwiederholungen bereits vor Eintritt in die Schleife fest, können

wir die Zählschleife einsetzen. Sie ist zweckmäßig in Fällen, bei denen z. B. mehrere

gleichartige Komponenten die gleiche Datenbehandlung erfahren sollen. Die Zählschleife

ist eine „abweisende“ Schleife, weil die Zahl der Durchläufe auch 0 sein kann. In diesem

Fall wird die Schleife gar nicht ausgeführt.

Zählschleife

 for(<Ausdruck1>; <Ausdruck2>; <Ausdruck3>)

Schleifenkern

<Ausdruck1> ist die Initialisierung. Sie wird einmal zu Beginn der Schleife ausgeführt.

<Ausdruck2> enthält die Schleifenbedingung, die bei jedem Schleifendurchlauf mit wahr

oder falsch bewertet wird. Solange sie wahr ist, wird die Schleife erneut durchlaufen.

<Ausdruck3> wird nach Ausführung des Schleifenkerns jedesmal bewertet bzw. ausge-

führt.

Alle drei Ausdrücke dürfen auch aus mehreren Anweisungen bestehen. In solchen Fällen

werden die einzelnen Anweisungen durch Kommata (,) getrennt.

Die Ausdrücke 1, 2 oder 3 dürfen fehlen. Die Semikolons jedoch dürfen nicht fehlen. Ext-

rembeispiel: for(;;) bewirkt eine Endlosschleife.

Der Schleifenkern wird geklammert { ... }, wenn er aus mehr als einer Anweisung besteht.

5.2 Die Iteration

79

 Typische Fälle

a) aufwärts zählend:

for(<laufvariable> = <startwert>; <Bedingung>; <laufvariable erhöhen>)

{

...

<Schleifenkern>

...

}

b) abwärts zählend:

for(<laufvariable>=<startwert>; <Bedingung>;<laufvariable erniedrigen>)

{

...

<Schleifenkern>

...

}



Falls der Schleifenkern nur aus einer Anweisung besteht, darf die { ... }-Klammerung feh-

len, da keine Missverständnisse auftreten können.

Die Laufvariable kann von beliebigem Datentyp sein. In der Regel ist sie ganzzahlig und

wird dann auch Schleifenindex genannt.

Der Schleifenkern kann beliebige Strukturblöcke enthalten.

 Beispiele

a)

BSP_5_2_1_1

#include <iostream>

using namespace std;

int main(void)

//Aufaddieren von n eingegebenen int-Werten

{

int i,n,zahl,summe;

cout << "Anzahl der Eingaben >"; cin >> n;

summe = 0; // Initialisierung

for(i = 1; i <= n; i++)

{

cout << '>'; cin >> zahl;

summe += zahl; //summe = summe + zahl

80

5 Programm-Ablaufstrukturen

}

cout << "Die Summe ist: " << summe << endl;

return 0;

}

Dialog:

Anzahl der Eingaben >3

>12

>6

>8

Die Summe ist: 26

b)

...

for(k = 2; k >= -2; k--)

cout << k << " mal " << k << " = " << k*k;

Ausgabe:

2 mal 2 = 4

1 mal 1 = 1

0 mal 0 = 0

-1 mal -1 = 1

-2 mal -2 = 4

c)

for(z = 'A'; z <= 'F'; z++)

cout << z;

cout << endl;

Ausgabe:

ABCDEF



jedoch:

for(z = 'A'; z <= 'F'; z++)

cout << z << endl;

Ausgabe:

A

B

C

D

E

F



d)

for (k = 1; k <= 10; k++) cout << endl;



 Ausgabe von 10 Leerzeilen

Treten in Schleifen rekursive Ausdrücke auf wie bei Beispiel a:

summe += zahl;

so muss die Variable summe vor dem Eintritt in die Schleife einen Startwert erhalten, d. h.

die Variable muss initialisiert werden:

summe = 0;

Derartige Initialisierungen sind typisch für Schleifenkonstruktionen.

5.2 Die Iteration

81

 Programmbeispiel 1

Aufgabe: Eine eingegebene positive Integer-Zahl ist auf ihre Teiler hin zu untersuchen.

Jeder Teiler soll ausgegeben werden.

Lösung:

// BSP_5_2_1_2

#include <iostream>

using namespace std;

int main(void)

{

int n,j;

cout << "Eingabe einer ganzen Zahl >0: "; cin >> n;

for(j = 2; j <= (n-1); j++)

if(!(n % j)) //falls (n % j) = 0

cout << j << " ist ein Teiler von "

<< n << endl;

return 0;

}



Beachten Sie, dass im obigen Beispiel weder bei der for-Schleife noch bei der if-Kon-

struktion eine { ... }-Klammerung erforderlich ist, da sie jeweils nur eine Anweisung ent-

halten! Der if-Block zählt für die for-Schleife immer nur als eine einzige Anweisung, egal

wieviele Anweisungen er selbst enthält. Im obigen Beispiel ist es allerdings nur eine.

 Programmbeispiel 2

Aufgabe: Von 10 eingegebenen Integer-Werten ist die größte Zahl zu finden und auszugeben.

Lösung:

// BSP_5_2_1_3

#include <iostream>

using namespace std;

int main(void)

{

int eingabe, max, i;

cout << "Gib 10 Integer-Werte ein >";

cin >> max; // 1. Zahl

for(i = 2; i <= 10; i++)

{

cout << '>'; cin >> eingabe;

if(eingabe > max)

max = eingabe;

}

cout << endl;

cout << "Das Maximum ist " << max

<< endl;

return 0;

}



82

5 Programm-Ablaufstrukturen

Zählschleifen eignen sich besonders gut für die Verarbeitung von indizierten Größen wie

Vektoren, Matrizen oder sonstigen Feldern. Hier dient der Index als Laufvariable, so dass

ein Ansprechen einzelner Feldelemente möglich ist. Felder werden in Kap. 7.1 behandelt.

5.2.2 Bedingungsschleifen

Ein Nachteil von Zählschleifen ist die Festlegung auf die Anzahl der Schleifendurchläufe.

Häufig ergeben sich während eines Schleifendurchlaufs neue Bedingungen, die vielleicht

mehr oder weniger weitere Durchläufe erfordern. So ist es z. B. sinnvoll, bei einem mathe-

matischen Näherungsverfahren nach jedem neuen Iterationsschritt zu prüfen, ob nicht schon

die geforderte Genauigkeit des Ergebnisses erreicht ist. Weitere Schleifendurchläufe sollten

dann nicht mehr ausgeführt werden.

Soll z. B. eine Schleifenkonstruktion falsche Eingaben abfangen, lässt sich natürlich nicht

im Voraus festlegen, wie oft die Schleife wiederholt werden muss, um eine gültige Eingabe

zu erhalten.

Die notwendige Flexibilität für die Anzahl der Schleifendurchläufe bieten die sogenannten

Bedingungsschleifen. Die Steuerung der Schleife erfolgt hier über eine Bedingung, die vor

oder nach jedem Schleifendurchlauf neu geprüft wird und entweder eine erneute Ausfüh-

rung des Schleifenkerns bewirkt oder zum Verlassen der Schleife führt.

Je nach Position der steuernden Bedingung innerhalb der Schleife bieten Programmierspra-

chen zwei Kontrollstrukturen an:

Grundtypen Bedingungsschleifen

1. Abweisende Bedingungsschleife

– Bedingung am Schleifenkopf

– Typ „solange Bedingung wahr ... tue“

2. Nicht-abweisende Bedingungsschleife

– Bedingung am Schleifenende

– Typ „wiederhole ... solange Bedingung wahr“

 5.2.2.1 Die abweisende Bedingungsschleife: while...

Da die steuernde Bedingung am Schleifenkopf liegt, kann die Ausführung abgewiesen

werden:

while-Schleife

while(<logischer Ausdruck>)

{

...

<Schleifenkern>

...

}

5.2 Die Iteration

83

Enthält der Schleifenkern nur eine Anweisung, kann die {...} Klammerung entfallen.

 Beispiele

a) Näherungsverfahren:

while(abweichung > 1.0E-6)

{

<Iterationsschritt>

...

abweichung = fabs(neu-alt);

}

Möchten Sie das Beispiel programmieren, müssen Sie wegen der fabs-Funktion (Absolut-

betrag für float oder double) zusätzlich <cstdlib> einbinden.

b) Abbruch bei Eingabe von „0“:

int eingabe,summe;

...

summe = 0; //Initialisierung

cout << ">";

cin >> eingabe;

while(eingabe) //(eingabe != 0)

{

summe = summe + eingabe;

cout << ">"; cin >> eingabe;

}

cout << "Summe: " << summe << endl;

c) „Abfangen“ falscher Eingaben:

...

cout << ">"; cin >> wert;

while((wert < 0.0) || (wert > 1.0E5))

{

cout << "Wert nicht zulaessig!"

<< endl;

cout << "Neue Eingabe>"; cin >> wert;

}

s = sqrt(wert);

...

Möchten Sie das Beispiel programmieren, müssen Sie wegen der sqrt()- Funktion (Wurzel)

zusätzlich <cmath> einbinden.

d) Ausgabe einer Zahlenfolge 0 3 6 9 12 ... 30 Programmende:

// BSP_5_2_2_1_1

#include <iostream>

_

using namespace std;

int main(void)

84

5 Programm-Ablaufstrukturen

{

int x;

x = 0; //Initialisierung

while(x <= 30)

{

cout << x << endl;

x = x + 3;

}

cout << " Programmende" << endl;

return 0;

}

Diese Aufgabe ließe sich allerdings mit einer for-Schleife kürzer lösen! Wie sähe die aus?

e) Dauerschleife:

while(1);

...

Beachten Sie jeweils die eingerückte Schreibweise, aus der die Struktur schon optisch

erkannt werden kann.



 Programmbeispiel 1

Aufgabe: Es sollen die ungeraden Zahlen aufaddiert werden bis die Summe s >= 100 er-

reicht hat. Welches ist die größte addierte Zahl, wenn mit 1 begonnen wird?

Lösung:

// BSP_5_2_2_1_2

#include <iostream>

#define GRENZE 100 //Konstante

using namespace std;

int main(void)

{

int s = 1, zaehler = 1; //Initialisierung

while(s < GRENZE)

{

zaehler += 2; // zaehler = zaehler + 2;

s += zaehler; // s = s + zaehler;

}

cout << "Die letzte addierte Zahl"

<< " war: " << zaehler << endl;

cout << "Damit wurde s = " << s

<< endl;

return 0;

}

Ausgabe: Die letzte addierte Zahl war: 19

Damit wurde s = 100



5.2 Die Iteration

85

Enthält die Schleifenbedingung einen relationalen (vergleichenden) Ausdruck wie im obi-

gen Beispiel, ist besonders auf die Unterscheidung von „<“ und „<=“ (bzw. „>“ und „>=“)

zu achten! Die Auswirkung kann ein zusätzlicher Schleifendurchlauf sein, der ein Pro-

grammergebnis unter Umständen entscheidend verändert.

Hätten wir im Beispielprogramm geschrieben

while(s <= GRENZE)

so erhielten wir das (falsche!) Ergebnis:

Die letzte addierte Zahl war: 21

Damit wurde s = 121

Hätten wir aber z. B. als Grenze die Zahl 10 gewählt, so wäre für beide Programmversionen

das gleiche Ergebnis (7 und 16) aufgetreten.

MERKE: Enthält eine Schleifenbedingung einen relationalen Ausdruck, so ist es im-

mer eine extra Überlegung wert, ob „<“ oder „<=“ eingesetzt werden muss!!

Überlegen Sie, welche Veränderungen sich für die Ausgaben ergäben, wenn im Beispiel 1

die beiden Anweisungen im Schleifenkörper (cout << … und x = …) vertauscht wären.

 Programmbeispiel 2

Aufgabe: Ausdruck einer Funktionstabelle

Das Polynom

3

2

 y = 2 x + 5 x - 3 x + 2

soll im Intervall

–3.0 <= x <= 3.0

mit einer Schrittweite von x = 0.5 berechnet und in einer Tabelle ausgegeben werden.

Lösung:

// BSP_5_2_2_1_3

#include <iostream>

#include <iomanip>

using namespace std;

int main(void)

// Ausdruck Funktionstabelle

{

float x, y;

cout << " Funktionstabelle"

<< endl;

cout << " x-Wert y-Wert"

<< endl;

cout << "----------------------------"

<< endl;

x = -3.0; //Initialisierung

86

5 Programm-Ablaufstrukturen

while (x <= 3.0)

{

y = 2*x*x*x + 5*x*x - 3*x + 2;

cout << setw(10) // siehe Kap. 4.2

<< setiosflags(ios::fixed)

<< setprecision(2)

<< x << setw(15) << y << endl;

x = x + 0.5;

}

return 0;

}

Ausgabe:

Funktionstabelle

x-Wert

y-Wert

–3.00

2.00

–2.50

9.50

–2.00

12.00

–1.50

11.00

–1.00

8.00

–0.50

4.50

0.00

2.00

0.50

2.00

1.00

6.00

1.50

15.50

2.00

32.00

2.50

57.00

3.00

92.00

Wie könnte die (elegantere) Lösung mit for... aussehen?



 Programmbeispiel 3

Aufgabe: Von einer eingegebenen Textzeile soll festgestellt werden, wieviel blanks vor

dem ersten „echten“ Zeichen liegen.

// BSP_5_2_2_1_4

#include <iostream>

#include <iomanip>

using namespace std;

int main (void)

{

const char BLANK = ' ';

int zaehler;

char c;

cout << "Geben Sie eine Textzeile ein:" << endl;

zaehler = 0;

cin >> resetiosflags(ios::skipws);

5.2 Die Iteration

87

while((cin >> c),(c == BLANK))// ungewohnt aber ok!

// - oder - while(getchar()== BLANK)

zaehler++;

cout << "Es gab " << zaehler << "Leerstellen" << endl;

return 0;

}



 5.2.2.2 Die nicht-abweisende Bedingungsschleife: do...while

Da die Bedingung zur Wiederholung am Ende der Schleife steht, wird diese Schleife in

jedem Fall mindestens einmal ausgeführt.

do...while-Schleife

do

{

...

<Schleifenkern>

...

}

while(<logischer Ausdruck>)

Der logische Ausdruck enthält die Bedingung zum Fortsetzen der Schleife.

 Beispiele

a) Programmwiederholung:

do

{

...

<Berechnungen>

...

cout >> "neue Rechnung? [j/n]:";

cin >> nocheinmal;

}

while(nocheinmal != 'n');

b) Addition der natürlichen Zahlen bis die Summe mindestens 100 erreicht hat:

summe = 0;

i = 0;

do

{

summe += i++; // summe = summe + i++;

}

while(summe < 100);

cout << "mit " << --i << " Zahlen wurde "

<< summe << " erreicht";

88

5 Programm-Ablaufstrukturen

c) Näherungsverfahren:

do

{

...

 <Iterationsschritt>

...

alt_y = ...

neu_y = ...

delta = fabs(neu_y - alt_y);

}

while(delta >= epsilon);

Möchten Sie das Beispiel programmieren, müssen Sie wegen der fabs()-Funktion zusätzlich

 <cstdlib> einbinden.

d) Abfangen falscher Eingaben:

do

{

cin >> buchstabe;

buchstabe = toupper(buchstabe);

}

while((buchstabe != 'J' || buchstabe != 'N'));

Möchten Sie das Beispiel programmieren, müssen Sie wegen der toupper()-Funktion zu-

sätzlich <ctype> einbinden. Die do … while-Schleife benötigt immer Klammern {}.

e) Dauerschleife:

do

{

...

}

while(1);

f) Inkrementieren von Speicherplätzen:

// BSP_5_2_2_2_1

#include <iostream>

#include <conio> //für kbhit(); kein ANSI-Standard!

using namespace std;

int main(void)

{

short int x;

cout << "Gib Startwert ein >";

cin >> x;

do

5.2 Die Iteration

89

{

cout << x << endl;

x = x + 1; // oder : x++;

}

while(!kbhit());

return 0;

}

Das Programm f) läuft solange, bis Sie eine beliebige Taste drücken. Die Funktion kbhit()

liefert den Wert 0 wenn keine Taste gedrückt worden ist, sonst ungleich 0. Sie wird nicht

von jedem Compiler unterstützt. Die ausgegebenen Zahlen steigen an bis zum größten

darstellbaren Wert für short int und schlagen dann um in den negativen Bereich:

...

32766

32767

– 32768

– 32767

...

Dieser Überlauf des Speichers erfolgt ohne eine Fehlermeldung! Bereichsüberläufe gehören

mit zu den unangenehmsten Laufzeitfehlern, da sie in komplexen Rechnungen nicht immer

gleich entdeckt werden.

Geben Sie das Programm ein und starten Sie es mit einem Wert von 32700.



Häufig lassen sich do ... while- und while-Schleifen gegenseitig ersetzen.

 Programmbeispiel 1

Aufgabe: Formulierung des 1. Programmbeispiels von Kap. 5.2.2.1 mit einer do ... while-

Schleife.

Lösung:

// BSP_5_2_2_2_2

#include <iostream>

#define GRENZE 100

using namespace std;

int main(void)

{

int s, zaehler;

s = 1;

//Initialisierung

zaehler = 1; //Initialisierung

do

{

zaehler += 2;

s += zaehler;

}

while(s < GRENZE);

cout << "Die letzte addierte Zahl"

90

5 Programm-Ablaufstrukturen

<< " war: " << zaehler << endl;

cout << "Damit wurde s = " << s

<< endl;

return 0;

}



 Programmbeispiel 2

Aufgabe: Berechnung der Wurzel einer eingegebenen reellen Zahl mit dem Verfahren der

fortgesetzten Intervallhalbierung.

Lösung:

 zahl ist der float-Wert, dessen Wurzel gesucht ist. Wir suchen also die Nullstellen x einer

Funktion f

2

 f (x) = x - zahl.

Wir schätzen zwei Startwerte x1 und x2 so, dass die zugehörigen Funktionswerte oberhalb

und unterhalb der x-Achse liegen (z. B. f(x1) < 0.0 und f(x2) > 0.0). Wir wissen nun, dass

die gesuchte Lösung x zwischen diesen Punkten liegt. Das (x1, x2)-Intervall wird halbiert

durch den Punkt xm. xm wird zum neuen x1-Wert oder zum neuen x2-Wert erklärt, je

nachdem, ob f(xm) < 0.0 oder f(xm) > 0.0. Dann wird das Verfahren wiederholt.

Der gefundene Näherungswert soll mit der Standardfunktion sqrt() verglichen werden.

f(x)

f(x)

1

f m

(x)

x 2

x 1

x

f(x)

x m

2

x 1

Programm:

// BSP_5_2_2_2_3

#include <iostream>

#include <cmath>

using namespace std;

int main(void)

{

5.3 Die Schachtelung von Kontrollstrukturen

91

float zahl,x1,x2,eps,fx1,fx2,xm,fxm;

int iter=0;

do

{

cout << "Eingabe: zahl x1 x2 eps ";

cin >> zahl >> x1 >> x2 >> eps;

fx1 = x1*x1 - zahl;

fx2 = x2*x2 - zahl;

}

while(fx1*fx2 >=0);

do

{

iter++;

xm = (x1+x2)/2;

fxm = xm*xm - zahl;

if(fx1*fxm > 0)

x1=xm;

 else

x2=xm;

}

while(fabs(x1-x2) > eps);

cout << "Die Wurzel ist " << (x1+x2)/2 << endl;

cout << "Standardfunktion: " << sqrt(zahl) << endl;

cout << "Iterationen: " << iter << endl;

cout << endl <<"Programmende" ;

return 0;

}



Dieses Beispiel lässt sich leicht auf andere Nullstellenprobleme übertragen.

5.3 Die Schachtelung von Kontrollstrukturen

Die dargestellten Ablauf-Strukturen enthalten klar abgegrenzte Strukturblöcke, die wir z. B.

als „if-Block“ oder Schleifenkern bezeichnet haben. Diese Strukturblöcke können ihrerseits

wieder aus verschiedenen Unter-Kontrollstrukturen bestehen. Aus dem Prinzip eines struk-

turierten Programmaufbaus folgt die allgemeine Regel für Schachtelungen von Kontroll-

strukturen:

Schachtelung von Kontrollstrukturen

– Jede Kontrollstruktur kann weitere (Unter-) Kontrollstrukturen enthalten.

– Es muss eine Hierarchie der Strukturen erkennbar sein.

– Kontrollstrukturen dürfen sich nicht überschneiden.

92

5 Programm-Ablaufstrukturen

So kann z. B. ein else-Block eine for-Schleife enthalten oder ein Schleifenkern der

do...while-Schleife eine switch-Struktur, ein Fall dieser switch-Struktur weitere if-Blöcke oder Schleifen usw. Verschachtelte Strukturen sind leicht im Struktogramm erkennbar. Im

Programmcode treten die unterschiedlichen Hierarchien der Strukturen durch die jeweils

eingerückte Schreibweise deutlich hervor.

 Beispiel

if...

Sequenz

if...

switch...

Sequenz

if...

Sequenz

do... while

while...

Sequenz

while...

Sequenz

do... while

Die Übersetzung in C++ liefert:

if...

//if-1

{

<sequenz>

do

{

switch

{

<1>: ...

...

break;

<2>: ...

...

break;

<3>: ...

...

break;

}

}

while...;

<sequenz>

}

else

//if-1

{

5.3 Die Schachtelung von Kontrollstrukturen

93

if...

//if-2

{

<sequenz>

<sequenz>

while...

{

...

...

}

}

else

//if-2

{

if...

//if-3

{

...

...

}

else

//if-3

{

...

...

}

}

}

//if-1

while...

{

<sequenz>

do

{

...

...

}

while...;

}



Verboten:

STRUKTURBLOCK A

STRUKTURBLOCK B

Denn: Strukturblöcke folgen entweder aufeinander oder sind vollständig ineinander ge-

schachtelt.

Gerade Programmieranfänger „übersehen“ oft die Forderung nach einer strukturierten

Programmschreibweise. Die Verschachtelung von Strukturblöcken macht ein Programm

94

5 Programm-Ablaufstrukturen

schnell unübersichtlich, wenn die einzelnen Strukturblöcke optisch nicht klar erkennbar

sind. Damit wäre ein Programm unverständlich, fehleranfällig und schwer wartbar.

Die folgenden formalen Regeln sollen helfen, sich einen strukturierten Programmierstil

anzueignen:

Empfehlungen zur strukturierten Schreibweise von Programmen

1. Öffnende und schließende geschweifte Klammern stehen stets untereinander in

derselben Spalte. Ein Klammerpartner ist immer durch UP-/DOWN-Cursortasten

aufzufinden, ohne dabei durch ein anderes Zeichen gestört zu sein,

{

{

}

}

2. Die öffnende Klammer steht allein in einer Zeile an 1. Position direkt unter der

Anweisung, die den Block einleitet, z. B.:

for(...

{

do

{

if(...

{

while(...

{

3. Der Blockinhalt ist um ca. 3 - 4 Leerstellen von der Klammer nach rechts einge-

rückt, z. B.:

....

{

i = 5;

5.4 Aufgaben

1) Übersetzen Sie folgende Ausdrücke in C:

a) a < b <= c b)  z – 7 < 10 – 3

5.4 Aufgaben

95

2) Schreiben Sie ein Programm, das eine float-Zahl x einliest und diese überprüft:

– falls 0 < x <= 15.0

 Ausgabe „Die Zahl liegt im gueltigen Bereich“

– sonst:

 Ausgabe „Die Zahl liegt nicht im gueltigen Bereich“

3) Wo steckt der Fehler?

#include <iostream>

using namespace std;

int main(void)

{

int alter;

cout << "Alter ? ";

cin >> alter;

if(alter >= 18);

 cout << "Du darfst Auto fahren"

<< endl;

 return 0;

}

4) Ein Programm soll die float-Größe geld einlesen und untersuchen:

– falls geld > 0.0:

Ausgabe: „Du hast Geld“

– falls geld > 100.0:

Ausgabe: „Mach Dir einen schönen Abend“

– falls geld > 1000000.0: Ausgabe: „Du bist reich!“

5) Ein Programm soll zwei Buchstaben in einer Zeile einlesen und ausgeben:

entweder:

„Alphabetische Reihenfolge“

oder :

„Nicht alphabetisch geordnet“

6) Schreiben Sie ein Mengenrabatt-Programm. Es soll der Kaufpreis mehrerer Schreibblö-

cke ermittelt werden. Es werden folgende Preise mit Mengenrabatt ab 10 Stück berech-

net:

1–9 Stück:

à 1.60 Euro

10–99 Stück:

à 1.40 Euro

>= 100 Stück:

à 1.20 Euro

Alle Preise zuzüglich Mehrwertsteuer (MWSt) von 19 %.

Das Programm fragt die Menge ab und gibt den Gesamtpreis aus.

Ferner:

„Im Preis sind _____ Euro MwSt. enthalten“

96

5 Programm-Ablaufstrukturen

7) Schreiben Sie drei kurze Programme, die die Zahlen von 10 bis 0 untereinander ausge-

ben,

a) mit einer for-Schleife

b) mit einer while-Schleife

c) mit einer do...while-Schleife

8) Was wird ausgegeben?

#include <iostream>

using namespace std;

int main(void)

{

int i;

for(i = 1; i <= 10; i++)

cout << "Tangled up in blue" << endl;

return 0;

}

9) Schreiben Sie ein Programm, das die erweiterte ASCII-Tabelle von ASCII-32 bis

ASCII-255 ausgibt. Zeilenaufbau:

ASCII-65: A

............

10) Ein Programm soll die geraden Zahlen 0, 2, 4, ..., 100 ausgeben. Ist das mit folgender

Schleife möglich?

for(j = 0; j <= 100; j++)

{

cout << j << endl;

j = j + 2;

}

11) Schreiben Sie ein Programm, das eine unsigned char-Variable in einer Schleife hoch-

zählt und jeweils in einer Zeile ausgibt. Das Programm soll solange laufen, bis eine

Taste betätigt wird.

12) Warum läuft das folgende Programm nicht richtig?

//Hier ist der Wurm drin

#include <iostream>

using namespace std;

int main(void)

{

float summe;

summe = 0.0;

do

{

5.4 Aufgaben

97

cout << summe;

summe += 0.1;

}

while(summe != 2.5);

return 0;

}

13) Konten-Zinsberechnung:

Eingabe: Einlage, Zinssatz, Laufzeit in Jahren Zinsgutschrift jeweils am Jahresende.

Ausgabe: Gesamtkapital und Gesamtzinsen.

14) Abfangen falscher Eingaben:

Ein Programm soll nur Buchstaben akzeptieren. Bei Eingabe eines anderen Zeichens

soll ein Text auf den Fehler hinweisen und erneut die Eingabe erwarten. Bei richtiger

Eingabe soll ausgegeben werden: „Richtig!“

15) Textanalyse:

Geben Sie eine Textzeile ein und untersuchen Sie diese auf das Vorkommen des Zei-

chens 'n'.

Ausgabe: Das Zeichen 'n' kam ____ mal vor.

Anleitung: Benutzen Sie cin.get() für die Eingabe und fragen Sie auf '\n' (End of

Line) ab.

16) Geben Sie eine Wertetabelle aus für die Funktion:

y = 3.5 * sin(0.5 * x * x) – 2.0

x-Wertebereich:

–4.0 <= x <= 4.0

Schrittweite für x:

0.5

Hinweis: <cmath> einbinden.

17) Eingabe von 5 float-Werten und Ausgabe des größten und des kleinsten Wertes.

18) Ein Programm soll ein Zeichen einlesen und dieses zehnmal hintereinander in einer

Zeile wieder ausgeben. Das Programm soll als Schleife aufgebaut sein, also mehrfach

durchlaufen werden, bis „Space“ (<Leertaste>) eingegeben wird.

19) Schreiben Sie ein Programm zur Berechnung der Fakultät einer eingegebenen ganzen

Zahl n (z. B.

5! = 1 * 2 * 3 * 4 * 5 = 120).

20) Die Reihe 1 + 1/2 + 1/3 + 1/4 + divergiert („geht“ gegen Unendlich). Stellen Sie

mit einem Programm fest, wieviel Summanden erforderlich sind, um mindestens zur

Summe s = 10 und s = 20 zu gelangen. (Programmabbruch mit <Strg><c>).

98

5 Programm-Ablaufstrukturen

21) Bringen Sie nachfolgendes Programm zur Ausführung und korrigieren Sie, falls erfor-

derlich:

#include <iostream>

#include <ctype>

using namespace std;

int main(void)

//switch

//Menue-Steuerung

{

char c;

cout << "

M E N U E";

cout << endl;

cout << "

PASCAL : [P]"

<< endl;

cout << "

FORTRAN : [F]"

<< endl;

cout << "

C/C++ : [C]"

<< endl;

cout << "

EXIT : [E]"

<< endl;

cout << endl;

cout << "

Waehlen Sie: ";

cin >> c;

c = toupper(c);

while ((c != 'P') || (c != 'F') || (c != 'C') ||

(c != 'E'))

cin >> c;

cout << endl << endl;

switch(toupper(c))

{

case

'P': cout

<< "Sie haben PASCAL gewählt"

<< endl;

break;

case

'F': cout

<< "Sie haben FORTRAN gewählt"

<< endl;

break;

case

'C': cout

<< "Sie haben C/C++ gewählt"

<< endl;

break;

case

'E': cout

<< "Das Programm ist beendet"

<< endl;

}

return 0;

}

5.4 Aufgaben

99

22) Schreiben Sie ein Programm, das von einer eingegebenen Textzeile die Anzahl der

Worte zählt und ausgibt. Zwischen den Worten soll ein beliebiger Zwischenraum

möglich sein.

23) Schreiben Sie ein Programm, das eingegebene Großbuchstaben in Kleinbuchstaben

wandelt und ausgibt.

24) Schreiben Sie ein Programm, das HEX-Zahlen akzeptiert und die entsprechenden

Dezimalwerte ausgibt. Benutzen Sie das C-I/O-System (Kap. 4.4).

25) Schreiben Sie ein Programm, das einen eingegebenen Geldbetrag in möglichst große

Scheine und Münzen zerlegt.

Ausgabe z. B.:

1 x 200 EUR

1 x 100 EUR

1 x 020 EUR

4 x 001 EUR

1 x 050 Ct

2 x 020 Ct

1 x 002 Ct

falls Gesamtbetrag = 324.92 EUR

26) Welche Ausgabe wird erzeugt?

#include <iostream>

using namespace std;

int main(void)

{

int i, k = 0;

for(i = 0; i <= 9; i++)

if(i % 2) k += i;

cout << k << endl;

return 0;

}

27) Welche Ausgabe erzeugt das Programm:

#include <iostream>

using namespace std;

int main(void)

{

int a, s;

s = a = 0;

do

{

s = s + 2 * a + 1;

100

5 Programm-Ablaufstrukturen

cout << s << endl;

a = a + 1;

}

while(a != 10);

return 0;

}

28) Wo ist der Fehler?

#include <iostream>

using namespace std;

int main(void)

{

int n;

n = 1;

do

{

if(!(n % 3))

{

cout << n << endl;

n++;

}

}

while(n != 20);

 return 0;

}

29) Schreiben Sie ein Programm, das nur die Zeichen '0'... '9' und 'a'... 'z' akzeptiert und

diese eingegebenen Zeichen je zehnmal nebeneinander auf dem Bildschirm wieder

ausgibt. Bei Eingabe von '*' soll das Programm abbrechen und die Anzahl der gültigen

eingegebenen Zeichen ausgeben. Verwenden Sie cin.get() zur Eingabe eines einzelnen

Zeichens, z. B. char zeichen;

…

 cin.get(zeichen);

6 Modularisierung von Programmen: Functions

Ein praktisches Beispiel: Sie haben ein Programm geschrieben, das aus einer mehrstelligen

int-Zahl die Quersumme berechnet. Sie möchten die Berechnung nicht nur einmal, sondern

wiederholt mit verschiedenen Zahlen nacheinander ausführen. Also muss das Programm als

Schleife angelegt werden, z. B.:

..............

do

{

........

........ //hier steht mein "altes" Programm

........

........

cout << "noch einmal? [j/n] >"; cin >> janein;

}

while(toupper(janein) == 'J');

..............

Das gesamte Programm muss als Schleifenkern eingerückt in die Schleifenkonstruktion

eingebettet werden. Das ist bei längeren Programmen lästig und wird unübersichtlich!

Die bessere Lösung:

..............

int quersumme(int zahl)

{

.....

..... // hier steht mein "altes" Programm

..... // als FUNCTION

}

int main (void)

..............

..............

do

{

cout << quersumme(z) << endl;

cout << "noch einmal? [j/n]: ";

cin >> janein;

}

while(toupper(janein) == 'J');

..............

Hier haben wir die Rechnung in ein separates Modul, eine FUNCTION quersumme() aus-

gelagert. Das Hauptprogramm bleibt übersichtlich.

© Springer Fachmedien Wiesbaden GmbH 2017

G. Küveler und D. Schwoch, C/C++ für Studium

 und Beruf, DOI 10.1007/978-3-658-18581-7_7

102

6 Modularisierung von Programmen: Functions

Wir verallgemeinern: Wie wir in den vorangegangenen Kapiteln gelernt haben, lässt sich

jeder Algorithmus aus den drei Grundstrukturen Sequenz, Selektion und Iteration aufbauen.

Bei komplexen Problemen tritt dabei jedoch eine so große Schachtelungstiefe in den Struk-

turblöcken auf, dass das Programm unübersichtlich wird. Es ist daher günstiger, ein Prob-

lem in überschaubae Teilprobleme zu zerlegen und diese als separate Programm-Module zu

entwickeln. Die höheren Programmiersprachen unterstützen diese Modularisierung eines

Gesamtproblems durch die Unterprogrammtechnik. Auch für Unterprogramme gilt wieder

das Schachtelungsprinzip, d. h. ein Programm-Modul kann weitere Unter-Module enthalten

bzw. aufrufen. Dies führt zu einer übersichtlichen hierarchischen Programmstruktur.

Die Modularisierung bietet folgende Vorteile:

 Zerlegung von Algorithmen in überschaubare Unteralgorithmen

 Planungsvorgaben, z. B. in Form von Struktogrammen, werden übersichtlicher

 Unterstützung des „top-down“-Programmentwurfs, d. h. schrittweise Verfeinerung vom

Grobentwurf zum Feinentwurf

 wiederholter Aufruf eines Moduls spart Speicher und Entwicklungszeit

 einmal entwickelte und ausgetestete Module sind auch in anderen Programmen einsetz-

bar

 Aufbau von universellen Programmbibliotheken (Librarys) möglich

 bei großen Projekten bessere Unterstützung von Teamarbeit.

 Beispiel

Bei der Bearbeitung eines mathematischen Problems ist an den mit „x“ gekennzeichneten

Programmstellen das Lösen einer quadratischen Gleichung erforderlich:

Programmablauf:

a) ohne Unterprogramme (Functions)

Start



x

//Algorithmus

x

//quad. Gleichung

x



x

//Algorithmus

x

//quad. Gleichung

x



x

//Algorithmus

x

//quad. Gleichung

x



Ende

6 Modularisierung von Programmen: Functions

103

b) mit einem ausgelagerten Unterprogramm:

Hauptprogramm

Unterprogramm

Start

//Algorithmus

Aufrufe der Function

//quad. Gleichung

x

x

x

Ende



In C/C++ gibt es nur eine Art von Unterprogramm-Modul, die Function.

Realisierung eines Unterprogramm-Moduls in C/C++

- Function: <datentyp> name (<parameterliste>)

Streng genommen existiert überhaupt nur eine Art von Programm-Modul, die Funktion

oder Function, denn auch die main()-Function ist nach obigem Muster aufgebaut. Wir

schrieben:

int main(void)

Dabei ist:

int

der Datentyp (return-Wert) der Function

main

der Name der Function

void

der Hinweis, dass keine Parameter übergeben werden sollen

(void = leer).

Die Function main() unterscheidet sich von allen anderen lediglich durch ihren Namen.

Dieser verleiht ihr die Bedeutung eines Hauptprogramms. Unabhängig von ihrer Stellung

im Quelltext wird jedes C/C++-Programm immer mit der main()-Function gestartet. Fassen

wir zusammen:

1. ein C/C++-Programm besteht aus einer oder mehreren Funktionen

2. genau eine Funktion heißt main()

3. jedes C/C++-Programm wird mit der Funktion main() gestartet

Funktionen sind uns nicht nur in Gestalt von main() sondern auch in Form der vom Compi-

ler angebotenen Standardfunktionen, z. B.

 sin(), sqrt(), abs(), ...

begegnet. Ihre Verwendung setzt lediglich voraus, dass die Headerdatei mit eingebunden

wird, in der der sogenannte Prototyp der Funktion definiert ist, z. B. für sin()

#include <cmath>

Was genau unter dem Prototypen zu verstehen ist, erfahren Sie im folgenden Abschnitt.

104

6 Modularisierung von Programmen: Functions

6.1 Vereinbarungen von Functions

Jedes Programm beginnt mit der Abarbeitung der Anweisungen des Hauptprogramms, d. h.

der Funktion main(). Der Aufruf einer Funktion ist nur möglich, wenn das entsprechende

Modul vorher bekanntgemacht worden ist. Funktionen werden in C/C++ nacheinander

definiert, d. h. „hingeschrieben“. Es ist nicht erlaubt, Funktionen innerhalb von Funktionen

zu definieren!

Regeln für den Einsatz von Functions

– Functions müssen hintereinander definiert werden.

– Jede in einem Programm angesprochene Function muss vorher definiert worden

sein.

Wir erhalten somit folgenden Aufbau eines C/C++-Programms:

C/C++-Programmaufbau (Variante 1)

#include <...>

//evtl. Header-Dateien einbinden

#include <...>

...

#define ...

//evtl. Konstantenvereinbarungen

#define ...

using namespace std;

...

<datentyp> function_1(<Parameterliste>)

{

..........

..........

}

<datentyp> function_2(<Parameterliste>)

{

..........

..........

..........

}

<datentyp> main(<Parameterliste>)

{

..........

..........

}

Die Funktion main() steht am Ende, da sie die anderen Funktionen, mindestens aber eine

von ihnen, aufruft. Keine Funktion darf jedoch vor ihrer Vereinbarung aufgerufen werden.

Da auch Funktionen ihrerseits Funktionen aufrufen dürfen, kann dies zu unübersichtlichen

Situationen führen, so dass sich die folgende Variante des Programmaufbaus empfiehlt:

6.1 Vereinbarungen von Functions

105

C/C++-Programmaufbau (Variante 2)

#include <...>

//evtl. Header-Dateien einbinden

#include <...>

#define ...

//evtl. Konstantenvereinbarungen

#define ...

using namespace std;

...

<datentyp> function_1(<Parameterliste>); //Prototyp

//function_1

<datentyp> function_2(<Parameterliste>); //Prototyp

//function_2

...

<datentyp> main(<Parameterliste>)

{

..........

..........

..........

}

<datentyp> function_1(<Parameterliste>)

{

..........

..........

..........

}

<datentyp> function_2(<Parameterliste>)

{

..........

..........

..........

}

..

Wenn der Compiler die so genannten Prototypen der Funktionen kennt, dürfen die entspre-

chenden Funktionen auch später definiert werden, insbesondere darf man main() als erste

Funktion definieren, was das Programm besser lesbar macht. Der Prototyp einer Funktion

ist prinzipiell nichts anderes als deren Überschrift. Man kopiert mit Hilfe des Editors ein-

fach die einzelnen Funktionsüberschriften an die entsprechende Stelle im Quelltext und fügt

ein abschließendes Semikolon hinzu. Bei sehr großen Programmen mit zahlreichen Funkti-

onen empfiehlt es sich, eine eigene Header-Datei (include-Datei) anzulegen, um die Funk-

tions-Prototypen dort zu definieren.

Auch die Konstanten können dort vereinbart werden. Im Gegensatz zu den Standard-

Header-Dateien, wie iostream, werden selbsterstellte z. B. mit

#include "mars.h"

eingebunden, also "..." statt <...>. Die <...>-Dateien sucht der Compiler im include-Verzeichnis, die "..."-Dateien zunächst im Arbeitsverzeichnis.

106

6 Modularisierung von Programmen: Functions

In den Standard-Header-Dateien sind u.a. die Prototypen der Standard-Funktionen verein-

bart. Dies ist der Grund, warum wir sie bei der Verwendung von Standard-Funktionen mit

einbinden müssen. Alle Standard-Header-Dateien können Sie sich mit Hilfe des Editors

anschauen.

Aus dem Funktions-Prototyp erfährt der Compiler alles, was er zunächst über die entspre-

chende Funktion wissen muss:

1. den Datentyp (return-Wert) der Funktion selbst

2. die Anzahl der Parameter

3. die Datentypen der Parameter.

Damit kann er überprüfen, ob eine Funktion formal korrekt aufgerufen wird.

 Beispiel

Betrachten wir zum Abschluss dieses Abschnitts ein sehr einfaches Beispiel eines Pro-

gramms mit zwei Funktionen ohne Parameter, main() und spruch():

// BSP_6_1_1

#include <iostream>

using namespace std;

void spruch(void); //Prototyp von spruch()

int main(void)

//Hauptprogramm

{

spruch();

return 0;

}

void spruch(void) //Funktion spruch()

{

cout << "Ja wo laufen Sie denn!?" << endl;

}

Ausgabe:

Ja wo laufen Sie denn!?

Das Programm wird mit der Funktion main() gestartet, welche die Funktion spruch() auf-

ruft. Diese gibt ihren Spruch aus und kehrt zu main() zurück, welche das Programm mit der

Anweisung return 0 fortsetzt bzw. beendet.



6.2 Der Aufbau von Funktionen

Der Aufbau selbstdefinierter Funktionen ist im Prinzip kein Geheimnis mehr, denn alle

bisher betrachteten Programmbeispiele bestehen aus mindestens einer Funktion, nämlich

 main().

6.2 Der Aufbau von Funktionen

107

Aufbau von Funktionen

<datentyp> <f_name>(<formale Parameter>)

{

....

....

//Funktions-Anweisungen

....

return <Ausdruck>; // fehlt falls void-Funktion

}

Der Datentyp einer Funktion, z. B. int, char, float, ..., entspricht dem Datentyp ihres Rück-

gabewerts (return-Werts). Das ist der Wert des Ausdrucks, der mit der return-Anweisung

an die rufende Funktion, z. B. main(), „zurückgeliefert“ wird. Was die Funktion sonst noch

leistet, ist für ihren Datentyp unerheblich. Fehlt die return-Anweisung, so muss die Funk-

tion vom Typ void sein, da sie keinen Wert zurückliefert.

Die Liste der formalen Parameter besteht aus „Platzhaltern“ für die Argumente (Werte), die

von der rufenden Funktion, z. B. main(), übergeben werden. Diese sogenannten Formalpara-

meter werden innerhalb der Klammer, jeweils durch Kommata getrennt, mit ihrem jeweiligen

Datentyp vereinbart. Innerhalb der Funktion können sie wie „normale“ Variablen verwendet

werden.

 Beispiel

int maximum(int a, int b, int c)

{

int max;

max = a;

........

........

//weitere Anweisungen

........

//innerhalb der Funktion

........

return max;

}



Die Funktion maximum() ist vom Typ int, weil die return-Anweisung einen int-Wert

zurückliefert. Die drei Formalparameter a, b und c sind in diesem Beispiel ebenfalls vom

Typ int. Das nun folgende Beispiel zeigt die komplette Funktion, eingebettet in ein kom-

plettes Programm.

 Programmbeispiel

Aufgabe: Eine Funktion soll aus 3 int-Argumenten das Maximum finden:

// BSP_6_2_1

#include <iostream>

using namespace std;

int maximum(int a, int b, int c); //Prototyp von maximum()

int main(void)

//"Hauptprogramm"

{

int i1, i2, i3, m;

108

6 Modularisierung von Programmen: Functions

cout << "Eingabe von 3 Integer-Zahlen: ";

cin >> i1 >> i2 >> i3;

m = maximum(i1, i2, i3);

cout << "Das Maximum ist " << m << endl;

return 0;

}

int maximum(int a, int b, int c)

{

int max;

max = a;

if(b > max) max = b;

if(c > max) max = c;

return max;

}



Da sich Funktionen mit Rückgabewerten aus Sicht der rufenden Funktion ähnlich wie

Variablen verhalten, lassen sich Funktionen auch als Argumente anderer Funktionen einset-

zen. Im Beispiel oben hätten wir im „Hauptprogramm“ auch schreiben können:

cout << "Das Maximum ist " << maximum(i1, i2, i3) << endl;

und damit den Quelltext kompakter gestaltet sowie die Variable m eingespart.

Ein einfacher Sonderfall liegt vor, wenn eine Funktion keine Parameter (Übergabewerte) benö-

tigt.

Funktion ohne Parameter

<datentyp> <f_name>(void)

{

......

......

//Funktionsanweisungen

......

 return <Ausdruck>;

//kann fehlen

}

In diesem Fall muss anstelle der Formalparameter das Wort „void“ (für leer) in die Parame-

terklammer geschrieben werden, für uns eine gewohnte Übung, wenn wir an unsere main()-

Funktionen denken. Beim Aufruf einer solchen parameterlosen Funktion schreibt man ihren

Namen, gefolgt von leeren Klammern (), an die entsprechende Stelle im rufenden Pro-

gramm.

Die Tatsache, dass eine Funktion keine Parameter benötigt, hat nichts mit ihrem Datentyp

zu tun. Dieser kann beliebig oder auch void sein, wenn die return-Anweisung fehlt.

6.3 Die Parameterübergabe

109

 Beispiel

// BSP_6_2_2

#include <iostream>

#define ZEILENLAENGE 25

using namespace std;

void sternenzeile(void);

//Prototyp

int main(void)

{

int zeilenzahl, j;

cout << "Wieviel Zeilen ausgeben: ";

H

cin >> zeilenzahl;

P

for(j = 1; j <= zeilenzahl; j++)

sternenzeile();

//Aufruf

cout << "Programm-Ende" << endl;

return 0;

}

//function ohne Parameter

void sternenzeile(void)

F

//schreibt einen Sternenblock

u

//der Laenge "ZEILENLAENGE"

n

{

k

int i;

t

for(i = 1; i <= ZEILENLAENGE; i++)

i

cout << '*';

o

cout << endl;

n

//keine return-Anweisung, daher void

}



Funktionen sind allerdings wesentlich flexibler einsetzbar, wenn Parameter übergeben wer-

den. Fordern wir z. B. im letzten Beispiel, dass die Sternenzeile bei verschiedenen Funk-

tionsaufrufen unterschiedlich lang sein soll, muss „ZEILENLAENGE“ als Variable der

Funktion übergeben werden.

6.3 Die Parameterübergabe

Die zwischen beiden Modulen ausgetauschten Parameter müssen sowohl bei der Vereinba-

rung der Funktion als auch beim Aufruf nach Anzahl und Datentyp übereinstimmen. Eine

Funktion soll natürlich möglichst universell einsetzbar sein und verarbeitet die übergebenen

Parameter „formal“ (z. B. allgemeine Lösung einer quadratischen Gleichung). Das auf-

rufende Programm übergibt dagegen „aktuelle“ Parameter (z. B. aktuelle Zahlenwerte), die

sich bei wiederholten Aufrufen jeweils der aktuellen Situation des Programms anpassen:

110

6 Modularisierung von Programmen: Functions

gerufene Funktion:

<datentyp> <f_name>(<formale Parameter>)

...

aufrufende Funktion:

...

<f_name>(<aktuelle Parameter>);

...

...

<f_name>(<aktuelle Parameter>);

...

Beim Funktionsaufruf werden die aktuellen Parameter 1:1 auf die formalen Parameter

abgebildet. Die Funktion legt die formalen Parameter auf ihren Datentyp fest:

 Beispiel

...

void berechne(float a, float b, int c, char d);

int main(void)

//Hauptprogramm

{

float alpha, beta, x, y;

int zahl, z;

char t, s;

...

...

berechne(alpha, beta, zahl, t);

//1.Aufruf

...

berechne(x, y, z, s);

//2.Aufruf

...

...

}

Parameterabbildung:

Datentyp: float

float

int

char

1.Aufruf: Aktuelle

alpha

beta

zahl

t

Parameter

formale

a

b

c

d

Parameter:

2.Aufruf: aktuelle

x

y

z

s

Parameter:

formale

a

b

c

d

Parameter:



6.3 Die Parameterübergabe

111

Der Aufruf: berechne(x, y, z, alpha); hätte zu einem Typverletzungsfehler geführt (alpha

ist nicht vom Typ char) und die Übersetzung wäre mit einer entsprechenden Fehlermel-

dung abgebrochen worden. Unzulässig wäre auch ein Aufruf berechne(alpha, beta); da die

Parameterlisten unterschiedlich lang sind (2 statt 4 Aktualparameter).

 Programmbeispiel

Aufgabe: Das Programm „sternenblock“ ist so umzuschreiben, dass ein Sterndreieck aus-

gegeben wird:

...

**

*

Lösung:

// BSP_5_3_1

#include <iostream>

using namespace std;

void sternenzeile(int breite);

//Prototyp

int main(void)

{

int zeilenzahl, j;

cout << "Wieviel Zeilen ausgeben: ";

cin >> zeilenzahl;

for(j = zeilenzahl; j >= 1; j--)

sternenzeile(j);

cout << "Programm-Ende" << endl;

return 0;

}

void sternenzeile(int breite)

{

int i;

for(i = 1; i <= breite; i++)

cout << '*';

cout << endl;

}



In der Unterprogrammtechnik unterscheidet man zwei Arten der Parameterübergabe. Die

Parameter können als W e r t („call by value“) oder als R e f e r e n z („call by reference“)

übergeben werden. Die Unterscheidung wird in der Parameterliste der gerufenen Funktion

getroffen.

Achtung: „call by reference“ ist nur in C++ möglich, C kennt nur „call by value“.

112

6 Modularisierung von Programmen: Functions

a) „call by value“

Die aktuellen Parameter der rufenden Funktion werden in die formalen Parameter der ge-

rufenen Funktion kopiert. Die Funktion arbeitet mit diesen Kopien. Innerhalb der Funktion

können diese Parameter neue Werte erhalten, ohne dass die originalen (aktuellen) Parame-

ter des rufenden Programms verändert werden. Nachdem die gerufene Funktion beendet ist,

arbeitet die rufende mit den originalen Werten weiter, d. h. die aktuellen Parameter können

nicht durch die gerufene Funktion verändert werden.

Typischer Anwendungsfall:

Datenausgabe mit Funktionen

(Datentransfer: )

b) „call by reference“

Hier werden nicht die Werte selbst übergeben, sondern ein Verweis (= reference), wo die

Variablen im Speicher stehen. Modifiziert die gerufene Funktion diese Speicherstellen

(Referenzen) durch neue Wertzuweisungen an den entsprechenden Parametern, so wirkt

sich diese nderung später in der rufenden Funktion aus. Die gerufene Funktion kann also

auf diese Weise die aktuellen Parameter verändern. Variablen, die „by reference“ überge-

ben werden, müssen in der Parameterliste der gerufenen Funktion besonders gekennzeich-

net werden. Dies geschieht durch Verwendung des Referenzoperators & .

Funktionsüberschrift mit Referenzparametern

<datentyp> <function_name>(<datentyp ¶meter_name1,

...>)

Beispiel:

void funci(int &oma, char &opa, float &tante)

Referenzen wird man immer dann wählen, wenn die gerufene Funktion mehr als einen

Wert zurückliefern soll, denn für nur einen Wert genügt die return-Anweisung.

Typische Anwendungsfälle:

– Dateneingabe mit Funktionen

– Modifikation von Daten (Datentransfer:  oder ).

Arten der Parameterübergabe

„by value“:

es werden keine Parameter an die rufende Funktion zurückgeliefert.

„by reference“:

durch die gerufene Funktion veränderte Parameter werden an die

rufende Funktion zurückgeliefert (nur mit C++ möglich).

Eine Mischung beider Übergabemöglichkeiten ist möglich, d. h. es können bei ein und

demselben Funktionsaufruf einige Parameter „by value“, andere „by reference“ übergeben

werden.

„call by value“ ist prinzipiell für Sie nichts Neues mehr, denn unsere beiden bisherigen

Beispiele mit Parameterübergabe nutzten diesen Mechanismus. Trotzdem soll das Prinzip

noch verdeutlicht werden.

6.3 Die Parameterübergabe

113

 Beispiele

1) // // BSP_6_3_2

//call by value

#include <iostream>

#include <iomanip>

using namespace std;

void by_val_func(int a, int b);

int main(void)

{

int i, k;

i = 3;

k = 9;

cout << i << setw(3) << k << endl;

by_val_func(i, k);

cout << i << setw(3) << k << endl;

return 0;

}

void by_val_func(int a, int b)

{

a = 2 * a;

b = -7;

cout << a << setw(3) << b << endl;

}

 Ausgabe:

3 9

 Hauptprogramm

6 -7

 Prozedur

3 9

 Hauptprogramm

2) //call by reference (BSP_6_3_3)

#include <iostream>

#include <iomanip>

using namespace std;

void by_ref_func(int &a, int &b);

int main(void)

{

int i, k;

i = 3;

k = 9;

cout << i << setw(3) << k << endl;

by_ref_func(i, k);

cout << i << setw(3) << k << endl;

return 0;

}

void by_ref_func(int &a, int &b)

{

114

6 Modularisierung von Programmen: Functions

a = 2 * a;

b = -7;

cout << a << setw(3) << b << endl;

}

 Ausgabe:

3 9

 Hauptprogramm

6 7

 Prozedur

6 -7  Hauptprogramm



Aktuelle Parameter, die „by value“ übergeben werden, können auch aus Konstanten oder

Ausdrücken bestehen, die beim Prozeduraufruf zu einem Wert auflösbar, d. h. berechenbar

sein müssen. Für „by reference“-Parameter gilt das natürlich nicht, da eine Konstante nicht

verändert werden kann und ein Ausdruck, z. B. a + b, keine Speicheradresse besitzt. „by

reference“-Aktualparameter müssen demnach Variablen sein.

6.4 Die return-Anweisung

Es lohnt sich, noch einige Betrachtungen zur return-Anweisung anzustellen. Sie hat zwei

Aufgaben:

1. Die Funktion wird verlassen (Rücksprung zur aufrufenden Funktion, z. B. main(), wenn

eine return-Anweisung auftritt.

2. Der rufenden Funktion wird ein return-Wert vom Datentyp der gerufenen Funktion

zurück geliefert (Rückgabewert).

 Beispiele: return -1; // Rücksprung aus einer int-Funktion

// mit Rückgabewert –1

if(a == b) return; // vorzeitiger Ausstieg aus einer void-Funktion

// (sollte man vermeiden!)

return a / b + 1.0; // Rücksprung aus einer float-Funktion,

// Ausdruck als Rückgabewert



Typischerweise erfolgt der Rücksprung aus einer void-Funktion ohne return-Anweisung

automatisch nach Ausführung des letzten Befehls. Wird eine nicht-void-Funktion ohne

return-Anweisung verlassen (sollte vermieden werden), so ist der Rückgabewert 0 oder 0.0.

Aufgrund des Rückgabewerts unterscheidet man 3 grundsätzliche Arten von Funktionen:

1. return-Wert = Ergebnis, meist mathematische Funktion wie sin().

2. return-Wert = Erfolgssignal einer prozeduralen Funktion, return-Wert ist nicht das

eigentliche Ergebnis der Funktion, Beispiel: fwrite() schreibt Daten auf Diskfile, re-

turn-Wert = Anzahl der geschriebenen Datensätze.

6.4 Die return-Anweisung

115

3. return-Wert = Statussignal, Funktion ist rein prozedural wie oben, return-Wert sagt

etwas über den Verlauf der Funktion (normal/Ausnahmesituation) aus.

 Beispiele

zu 1.: // BSP_6_4_1

// Berechnung des Abstands zweier Punkte im Raum

// gegeben durch die einzulesenden Koordinaten

// x1, y1, z1, x2, y2, z2

#include <iostream>

#include <cmath>

using namespace std;

float abstand(float a1, float a2, float a3, float b1,

float b2, float b3);

int main(void)

{

float x1, y1, z1, x2, y2, z2, dis;

cout << "Gib 1. Punkt ein x,y,z: ";

cin >> x1 >> y1 >> z1;

cout << "Gib 2. Punkt ein x,y,z: ";

cin >> x2 >> y2 >> z2;

dis = abstand(x1, y1, z1, x2, y2, z2);

cout << endl;

cout << "Der Abstand betraegt: " << dis << endl;

return 0;

}

float abstand(float a1, float a2, float a3,

float b1, float b2, float b3)

{

float wurzel;

wurzel = (a1-b1)*(a1-b1) + (a2-b2)*(a2-b2)

+(a3-b3)*(a3-b3);

return sqrt(wurzel);

}

zu 3.: // BSP_6_4_2

#include <cstdio> //zur Abwechslung Ein/Ausgaben

//unter Verwendung des C-Ein-/

//Ausgabesystems

#include <cmath>

using namespace std;

int quadrat(float p, float q);

int main(void)

{

float s, t, a, b;

printf("1. Rechnung \n");

if(quadrat(-24.5, 12.0) == 1)

116

6 Modularisierung von Programmen: Functions

printf("Keine reellen Loesungen!\n");

s = 7.0;

t = 16.0;

printf(("2. Rechnung \n");

if(quadrat(s / 3.5, -(t + s) * 4.0) == 1)

printf("Keine reellen Loesungen!\n");

printf("3. Rechnung \n");

scanf("%f %f", &a, &b);

if(quadrat(a, b) == 1)

printf("Keine reellen Loesungen!\n");

 return 0;

}

int quadrat(float p, float q)//Loesung von x*x + px + q = 0

{

float w, x1, x2;

w = p * p / 4.0 - q;

if(w >= 0.0f)

{

x1 = -p / 2.0 - sqrt(w);

x2 = -p / 2.0 + sqrt(w);

printf("x1 =%f6.2 x2=%f6.2\n", x1, x2);

return 0;

//normaler Verlauf

}

else

return 1;

//Ausnahmesituation

}

Dialog:

1. Rechnung

x1 = 0.50

x2 = 24.00

2. Rechnung

x1 =-10.64

x2 = 8.64

3. Rechnung

2.5

8.2

 Eingabe

Keine reellen Loesungen!



Funktionsaufrufe können in Programmen folgendermaßen auftreten:

1. isoliert, Beispiel: printf("2. Rechnung\n");

2. in einer Zuweisung, Beispiel: dis = abstand(x1, y1, z1, x2, y2, z2);

3. in einem sonstigen Ausdruck, Beispiel: if(quadrat(a, b) == 1) ...

Die folgende Anweisung ist natürlich nicht erlaubt:

swap(x, y) = 10; //unzulaessige Anweisung

6.5 Der Geltungsbereich von Vereinbarungen

117

6.5 Der Geltungsbereich von Vereinbarungen

Eine C-Funktion ist ein selbständiger Programmteil. Ein Zugriff von außen auf Teile der

Funktion ist nicht möglich, also beispielsweise kein goto von außen in die Funktion. (Mit

dem goto-Befehl lassen sich innerhalb einer Funktion unbedingte Sprünge realisieren. Dies

ist eine Unart aus den Anfängen der Programmierung. Deshalb verzichten wir auf die nähe-

re Erläuterung des goto-Befehls.) Code und Daten einer Funktion haben keine Wechselwir-

kung mit anderen Funktionen, es sei denn, Variablen sind als global (s. u.) definiert.

Funktionen dürfen nicht innerhalb von Funktionen deklariert werden. Innerhalb einer Funk-

tion deklarierte Variablen heißen lokale Variablen. Sie sind lokal und temporär, d. h. sie

verlieren ihren Wert (Inhalt) zwischen zwei Funktionsaufrufen. Ausnahme: für eine Variab-

le wurde die Speicherklasse static vereinbart. static-Variablen behalten ihren alten Wert.

Beispiel: static int zaehler; Formalparameter dürfen innerhalb ihrer Funktion wie

andere lokale Variablen behandelt werden. Trotzdem sollte man ihren Inhalt aus Gründen

der besseren Übersicht nur dann verändern, wenn es sich um Referenzen ( s. Kap. 6.3)

handelt.

Wir wollen uns zunächst auf Variablen beschränken, um den Unterschied zwischen „lokal“

und „global“ zu verstehen. Jede in einer Function vereinbarte Variable ist lokal. Andere

Functions kennen die dort vereinbarten Variablen nicht, können also nicht auf die lokalen

Variablen zugreifen.

Eine globale Variable ist dagegen von überall her zugreifbar.

Ob eine Variable global, lokal oder Formalparameter ist, ergibt sich aus der Plazierung der

Deklaration im Programm. Das folgende Beispiel erläutert die verschiedenen Arten der

Vereinbarung:

 Beispiel

// BSP_6_5_1

#include <iostream>

//Praeprozessoranweisung

using namespace std;

float max(int x, int y);

//Prototypen sind global

int alarmflag;

//globale Variable

int main(void)

//kein Formalparameter (void)

{

float a, b, c;

//lokale Variablen von main()

alarmflag = 0;

//Zugriff auf globale Variable

a = 4.234;

//Anweisungen innerhalb main()

b = 3.89;

c = max(a, b);

//Funktionsaufruf von max()

cout << "Max = " << c << endl;

if(alarmflag == 1)

//Zugriff auf globale Variable

cout << "Alarm" << endl;

return 0;

//Funktionsdatentyp int

}

118

6 Modularisierung von Programmen: Functions

float max(int x, int y)

//Formalparameter x und y

{

float a;

//lokale Variable von max()

if(x > y) a = x;

//Anweisungen innerhalb max()

else a = y;

if(a > 100000.0)

alarmflag = 1;

//Zugriff auf globale Variable

return a;

//Funktionsdatentyp float

}

Anmerkungen: Die beiden lokalen Variablen namens a haben nichts miteinander zu tun.

Die Lösung mit der globalen Variablen (alarmflag) ist unschön. Sicherer

und eleganter wäre ein dritter Parameter als Referenz.



Verallgemeinerung: Geltungsbereich von Vereinbarungen

Die innerhalb einer Funktion vereinbarten Größen sind lokal. Es ist kein Zugriff von

der aufrufenden Funktion oder übergeordneten Programmebenen möglich.

In unterschiedlichen Funktionen dürfen lokale Variablen namensgleich sein. Sie reprä-

sentieren trotzdem verschiedene Speicherplätze.

Vereinbarungen, die außerhalb einer Funktion getroffen wurden, sind global. Sie gelten

in allen Funktionen, die im Quelltext unterhalb der Vereinbarung stehen, d. h. sie sind

dort überall zugreifbar.

Lokale Variablen verdrängen globale: Wird in einer Funktion eine lokale Variable

vereinbart, die den gleichen Namen hat wie eine globale, so gilt innerhalb der Funktion

die lokale. Sie ist zwar namensgleich, besitzt jedoch eine andere Speicheradresse.

Aus Sicherheitsgründen sollte man auf globale Variablen weitgehend verzichten.

 Weitere Beispiele

a) // BSP_6_5_2

#include <iostream>

using namespace std;

void unter(void);

int main(void)

{

int a;

a = -500;

unter();

cout << a << endl;

unter();

return 0;

}

6.5 Der Geltungsbereich von Vereinbarungen

119

void unter(void)

{

int a;

a = 100;

cout << a << endl;

}

 Ausgabe:

100

-500

100

b) // BSP_6_5_3

#include <iostream>

using namespace std;

int a,b;

// globale Variablen

void unter(void);

int main(void)

{

a = 3;

b = 9;

cout << a << b << endl;

unter();

cout << a << b << endl;

return 0;

}

void unter(void)

{

int a, c;

a = b + 2;

b = a + b;

c = a - 4;

cout << a << " " << b << " " << c << endl;

}

 Ausgabe:

3 9

11 20 7



Während in den Anfängen der Programmierung ein undurchsichtiger Programmcode als

besonders „raffiniert“ galt, und den Entwickler als genialen Experten auswies, ist heute die

Lage grundsätzlich umgekehrt: Ein Programm muss klar aufgebaut, verständlich und nach-

vollziehbar sein, weil nur so eine Wartung des Programms möglich ist. Benutzen Sie lieber

eine Hilfsvariable mehr zur Lösung eines Problems, wenn damit der Programmaufbau

transparenter wird! Beispiel b) ist in diesem Sinne kein gutes Programm, weil es unnöti-

gerweise mit globalen Variablen operiert.

120

6 Modularisierung von Programmen: Functions

Benutzen Sie zur Rückgabe von Ergebnissen aus einer Function die return-Anweisung

oder die Parameterliste (Referenzübergabe), jedoch keine globalen Variablen.

6.6 Rekursionen

C/C++ erlaubt, dass sich eine Function selbst aufruft. In einem solchen Fall sprechen wir

von Rekursionen. Rekursive Algorithmen gestatten manchmal eine sehr elegante Beschrei-

bung des Lösungswegs. Typisch sind Anwendungen, bei denen die Lösung eines „n-

Problems“ auf ein „(n-1)-Problem“ zurückgeführt werden kann.

 Beispiel

Fakultätsberechnung: N! = N * (N-1)!

long int fakultaet (long int n)

{

long int faku;

if(n == 1)

faku = 1;

else

faku = n * fakultaet(n-1);

return faku;

}

Bei jedem erneuten Aufruf des Moduls (Function) werden die bis dahin berechneten Grö-

ßen und die zu übergebenen Parameter in einem speziellen (begrenzten!) Datenbereich,

dem Stack, zwischengespeichert. Nach jeder Rückkehr aus dem Modul werden die Werte

vom Stack wieder ins aktuelle Programm zurückkopiert.

Jedes rekursiv lösbare Problem ist auch nicht rekursiv, mit einer Schleife, lösbar.

6.6 Rekursionen

121

Für n=6 ergibt sich für obiges Beispiel die folgende Rekursionstiefe (Schachtelungstiefe):

Modul-Aufruf

n

Status

fakultaet

1. Aufruf

6

n  Stack

unterbrochen

2. Aufruf

5

n  Stack

unterbrochen

3. Aufruf

4

n  Stack

unterbrochen

4. Aufruf

3

n  Stack

unterbrochen

5. Aufruf

2

n  Stack

unterbrochen

6. Aufruf

1

ausgeführt bis Ende

1

Stack  n

fortgesetzt bis Ende

2*1=2

Stack  n

fortgesetzt bis Ende

3*2=6

Stack  n

fortgesetzt bis Ende

4*6=24

Stack  n

fortgesetzt bis Ende

5*24=120

Stack  n

fortgesetzt bis Ende 6*120=720



Ist die Rekursionstiefe zu hoch oder ist der Stackbereich zu klein, bricht ein rekursives

Programm mit dem Fehler „Stacküberlauf“ ab. In diesen Fällen muss man das Problem als

Iteration (Schleife) formulieren, was, wie gesagt, immer möglich ist.

Rekursive Programm-Module müssen stets eine Abbruchbedingung enthalten!

122

6 Modularisierung von Programmen: Functions

Typischer Aufbau eines Rekursionmoduls:

<datentyp> <f_name>(<Parameterliste)>

{

...

if(<abbruchbedingung>)

....

else

<Reduktionsschritt durch rekursiven Aufruf>

....

}

Ein Vorteil rekursiver Algorithmen ist ihre knappe und übersichtliche Formulierung. Nach-

teilig ist, dass diese Programme sehr speicherintensiv sein können und in der Regel lang-

samer laufen als entsprechende iterative Algorithmen. Außerdem sind sie schwerer zu

verstehen.

 Programmbeispiel

Widerstandsebene: n n-1 . . . 4 3 2 1

R1

R1

...

R1

R2

RGES

R2

... ...

R1

R1

R2

R2

R2

R3

Aufgabe:

Es ist der Gesamtwiderstand des Widerstandsnetzwerks zu berechnen.

6.7 Aufgaben

123

Idee:

rekursive Berechnung in einer FUNCTION

widerstand(ebene=n)  widerstand(ebene=n–1)

Lösung:

// BSP_6_6_1

#include <iostream>

using namespace std;

float widerstand(int ebene, float r1, float r2, float r3);

int main(void)

{

float w1, w2, w3;

int n;

cout << "Gib ein: R1 R2 R3 [Ohm]: ";

cin >> w1 >> w2 >> w3; cout << "Anzahl Ebenen: ";

cin >> n; cout << endl;

cout << "Der Gesamtwiderstand ist: "

<< widerstand(n, w1, w2, w3) << " Ohm" << endl;

return 0;

}

float widerstand(int ebene, float r1, float r2, float r3)

{

if(ebene ==1)

return r3;

else

return 1 /(1/widerstand((ebene-1), r1, r2, r3) +1 / r2)

+ r1;

}



In der Funktion widerstand() verzichten wir auf eine lokale Hilfsvariable zur Aufnahme des

return-Wertes (vgl. mit der Fakultätsfunktion, Hilfsvariable faku). Somit ist unsere Lösung

etwas kürzer, entspricht aber nicht ganz der „reinen Lehre“ (nur einmal return pro Funkti-

on und immer als letzte Anweisung).

Eine indirekte Rekursion ist gegeben, wenn sich zwei Module gegenseitig aufrufen. Auch

dieses ist möglich.

6.7 Aufgaben

1) Warum führt die nachfolgende Funktion nicht zum gewünschten Erfolg?

void tausche(char zeichen1, char zeichen2)

{

char tmp;

tmp = zeichen1;

zeichen1 = zeichen2;

zeichen2 = tmp;

}

124

6 Modularisierung von Programmen: Functions

2) Unter welchen Umständen darf eine Konstante als Parameter an eine Funktion überge-

ben werden?

3) Was wir ausgegeben?

#include <iostream>

#define J 1

#define K 2

using namespace std;

void unter_a(int &l, int m);

int main(void)

{

int r, s;

r = J;

s = K;

unter_a(r, s);

cout << r << s << endl;

return 0;

}

void unter_a(int &l, int m)

{

l = K;

m = 3;

}

4) Berechnen Sie mit einem Programm den log-Wert („Zehner“-log) eines eingegebenen

Wertes. Die Berechnung soll in einer Funktion erfolgen.

5) Aus 3 eingegebenen int-Werten soll das Maximum gefunden und ausgegeben werden.

Verwenden Sie eine Funktion suche_max().

6) Schreiben Sie ein Programm, das ein Feld von a*b Sternen ausgibt. Verwenden Sie eine

Funktion drucke(), die jeweils eine Zeile druckt.

7) Schreiben Sie ein Programm, das aus einer eingegebenen Größe „zeit“ Tage, Stunden,

Minuten und Sekunden berechnet. Die eingegebene Zahl sei in Sekunden. Setzen Sie

eine Funktion ein.

8) Warum läuft nachfolgendes Programm nicht richtig?

//Programm mit Seiteneffekt

#include <iostream>

#include <cmath>

using namespace std;

int hoch4(int &a);

int main(void)

6.7 Aufgaben

125

{

int x, ergebnis;

cout << "Berechnung von x**4 - x" << endl << endl

<< "Gib x ein [Integer]: ";

cin >> x;

ergebnis = hoch4(x) - x;

cout << endl << "Das Ergebnis ist: " << ergebnis

<< endl;

return 0;

}

int hoch4(int &a)

{

a = a * a;

return a * a;

}

9) Berechnen Sie ab für ganzzahlige b. Arbeiten Sie mit einer Rekursion.

10) Es soll ein Algorithmus entwickelt werden, der die Anzahl der Primzahlen von 2 bis

zu einer eingegebenen positiven Zahl n > 2 berechnet und ausgibt. Setzen Sie eine

int-Funktion ein, die prüft, ob die jeweils untersuchte Zahl eine Primzahl ist.

7 Höhere Datenstrukturen

Die bisher vorgestellten skalaren Datentypen sind bereits in C/C++ vollständig vordefiniert.

Zusätzlich kann der Nutzer zusammengesetzte Datenstrukturen einführen.

Höhere Datenstrukturen sollen an zwei wichtigen Beispielen vorgestellt werden:

 Die Zusammenfassung gleichartiger Daten in Feldern, auch Arrays genannt.

 Die Zusammenfassung inhaltlich zusammengehöriger Daten in Strukturen (struct).

Außerdem wagen wir einen Blick auf den Datentyp Pointer, der v. a. in der reinen C-

Programmierung eine wichtige Rolle spielt und der eine enge Beziehung zu Feldern auf-

weist.

7.1 Felder

Stellen Sie sich vor, ein Programm verarbeitet 100 (oder mehr!) Messwerte, und Sie müss-

ten für jeden einen individuellen Namen vergeben und diesen auch bei jeder Datenmanipu-

lation hinschreiben! Das wäre sehr mühsam, der Code wäre lang und unübersichtlich.

Eine wesentliche Eigenschaft höherer Programmiersprachen besteht in der Möglichkeit,

gleichartige Daten mit einem Index zu versehen und als Feld zu verarbeiten. Die Mächtig-

keit der Feldbearbeitung kommt besonders bei Schleifenkonstruktionen zum Tragen: Es

werden nur die Indizes in der Schleife verändert, um auf die Feldelemente zuzugreifen.

Um z. B. von 100 gespeicherten Messwerten x[i] das Maximum zu finden, genügen die

Zeilen:

max = x[0];

for(i = 1; i <= 99; i++)

 if(x[i] > max) max = x[i];

Wir unterscheiden zwischen ein- und mehrdimensionalen Feldern.

7.1.1 Eindimensionale Felder

Die Vereinbarung von 1D-Feldern, auch Vektoren genannt, geschieht wie folgt:

Vereinbarung eindimensionaler Felder

<datentyp> <feldname>[<N>] (mit: N = Anzahl der Feldelemente)

Beispiel:

float messwert[1000];

© Springer Fachmedien Wiesbaden GmbH 2017

G. Küveler und D. Schwoch, C/C++ für Studium

 und Beruf, DOI 10.1007/978-3-658-18581-7_8

128

7 Höhere Datenstrukturen

Achtung:

– Der Indexbereich beginnt immer bei 0 (ist also nicht frei wählbar!)

– Der höchste Index beträgt immer (N–1)

Vorsicht vor Verwechslungen:

– alpha[k]: k ist Index, alpha ist ein Feld (Array)

– alpha(k): k ist Parameter, alpha ist eine Function

 Beispiel einer Feldvereinbarung

int x_wert[20], y_wert[20];

Damit sind zwei Felder zu je 20 Komponenten vom Typ int verfügbar. Grundsätzlich

erfolgt der Zugriff auf Felder über die Komponenten, d. h. indexgesteuert, z. B.

x_wert[9] = 12; // x_wert[k] mit 9 als int-Index

Die Verarbeitung der Komponenten richtet sich nach den Regeln des jeweiligen <grund-

typ>, z. B.

y_wert[3] = x_wert[2*j-2] / 3;



 Beispiele für Feldvereinbarungen

a) float x[101];

// 101 float-Werte

...

// Indexbereich 0 bis 100

x[0] = 0.0;

b) unsigned char a[11];

// 11 Byte-Werte

...

// Indexbereich 0 bis 10

a[4] = 12;

c) #define DIMENSION 50

int i;

float feld1[DIMENSION];

float feld2[DIMENSION];

...

for (i = 0; i < DIMENSION; i++)

feld2[i] = feld1[i] * 5.0;



Das Beispiel c) zeigt die Möglichkeit, Dimensionen als vorher definierte Konstante einzu-

setzen. Dieses Programm ist besonders wartungsfreundlich: Bei der nderung der Dimen-

sion muss nur zentral an einer Stelle ein Wert geändert werden. Häufig nutzt man dies

während der Testphase von Programmen, indem man zunächst mit kleinen Feldern arbeitet

und später auf die geforderte Dimension vergrößert. Dimensionen dürfen auch konstante

Ausdrücke aber keine Variablen sein!

7.1 Felder

129

 Beispiele für Feldvereinbarungen

a) Eingabe eines float-Feldes:

...

float gemessen[10];

...

for(i = 0; i <= 9; i++) cin >> gemessen[i];

b) Ausgabe eines Integer-Feldes zu je 5 Werten pro Zeile:

...

#define LAENGE 100

...

int i_feld[LAENGE];

...

for(k = 1; k <= LAENGE; k++)

{

cout << i_feld[k-1];

if(k % 5 == 0) cout << endl;

}

c) Mittelwertbildung von Werten:

...

float z[1000], sum, mittel;

...

sum = 0.0;

for(index = 0; index <= 999; index++)

sum = sum + z[index];

mittel = sum / 1000.;

d) Übergabe einzelner Feldelemente als Funktions-Parameter:

...

float berechne(float a, float b, float c);

// Funktionsprototyp

...

float erg, x[11];

...

...

//Aufruf in main():

erg = berechne(x[0], x[4], x[k]);

e) Übergabe von kompletten Feldern als Parameter:

...

void auswerte(float v1[], float v2[], float v3[]);

// Funktionsprototyp

...

float gemessen[20], berechnet[20], differenz[20];

...

130

7 Höhere Datenstrukturen

...

// Aufruf in main():

auswerte(gemessen, berechnet, differenz);



Im Fall e) werden drei komplette Vektoren an die Funktion auswerte() übergeben. Beim

Aufruf geschieht dies einfach durch Einsetzen der Vektornamen als Aktualparameter. Bei

den Formalparametern (Platzhalter) kann die Dimensionsangabe in den eckigen Klammern

fehlen. Übergeben werden in Wahrheit nur die Anfangsadressen der Felder (Adressüberga-

be, call by adress). Im Ergebnis kommt dies einer Referenzübergabe gleich: Werden näm-

lich Feldelemente in der Function verändert, so wirken sich diese nderungen auch auf das

entsprechende Feld im rufenden Programm aus. Der Grund: In Wahrheit existiert ein über-

gebener Vektor nur einmal im Speicher. Der Function wird lediglich dessen Anfangsadres-

se mitgeteilt. Aus diesem Grund ist es auch sinnlos, bei den Formalparametern eine Dimen-

sion einzusetzen. Diese wird vom Compiler ohnehin nicht abgeprüft. Der Programmierer

muss selbst darauf achten, dass die Dimensionsgrenzen innerhalb der gerufenen Function

nicht überschritten werden!

Ein Feldname repräsentiert die Anfangsadresse des Feldes, somit ist er ein Pointer

( s. Kap. 7.2.1), genauer gesagt eine Pointerkonstante.

 Programmbeispiel 1

Aufgabe:

Es ist ein Feld von 100 int-Elementen zu erzeugen und mit dem 10-fachen

des jeweiligen Index-Wertes zu beschreiben (z. B. feld[7] = 70) und an-

schließend in umgekehrter Reihenfolge zu je drei Werten pro Zeile auszu-

geben.

Lösung:

// BSP_7_1_1_1

#include <iostream>

#include <iomanip>

#define DIM 100

using namespace std;

int main(void)

{

int i;

int feld[DIM];

for(i = 0; i < DIM; i++)

feld[i] = i * 10;

for(i = 0; i < DIM; i++)

{

cout << setw(7) << feld[DIM-i-1];

if(((i+1)% 3) == 0)

cout << endl;

}

return 0;

}



7.1 Felder

131

 Programmbeispiel 2

Aufgabe: Berechnung eines Polynoms

y = a[0]x0 + a[1]x1 + a[2]x2 + … + a[n]xn

Lösung: Umständliche xn-Berechnungen lassen sich durch eine Umformung vermeiden:

y = a[0] + x(a[1] + x(a[2] + ... + x(a[n-1] + a[n])...))

// BSP 7_1_1_2

#include <iostream>

#include <iomanip>

#define MAXGRAD (10 + 1)

using namespace std;

int main(void)

{

int n, i;

float x, y;

float a[MAXGRAD];

cout << "Eingabe Grad des Polynoms >";

cin >> n;

cout << "Eingabe der Koeffizienten >";

for(i = 0; i <= n; i++)

{

cout << "a[" << i << "]: "; cin >> a[i];

}

cout << "Eingabe x-Wert: "; cin >> x;

y = 0;

cout << setiosflags(ios::fixed)

<< setprecision(3);

for (i = n; i >= 0; i--)

y = y * x + a[i];

cout << endl << "y " << y;

return 0;

}



Beachten Sie in dem Beispiel oben, dass wir uns mit „MAXGRAD“ auf eine feste Index-

grenze festlegen mussten. Es ist nicht möglich, mit z. B.

float a[n]; // nicht erlaubt, da n eine Variable ist

...

cin >> n; // auch nicht: cin >> n; float a[n];

in der Feldgröße flexibel zu bleiben. Felder sind vom Grundsatz her statisch, allerdings ist

es mit Hilfe von Pointern möglich, dynamische Felder während der Laufzeit des Pro-

gramms „anzufordern“ ( s. Kap. 7.2.2).

132

7 Höhere Datenstrukturen

Grundsätzlich können nur statische Felder vereinbart werden, d. h. Felder haben stets

feste Indexgrenzen.

Für die folgenden Beispiele stellen wir eine interessante C/C++-Funktion vor:

C/C++-Funktionen zur Erzeugung von Zufallszahlen

Die C Standardfunktion

int rand()

erzeugt int-Zufallszahlen im Bereich 0 ... 32767. Vor dem ersten Aufruf von rand() muss

der Zufallsgenerator einmalig initialisiert werden durch die Funktion:

void srand(int start)

Wird das Programm bei jedem Lauf mit unterschiedlichen Werten für start versorgt, lie-

fert ein mehrmaliger Aufruf von rand() auch eine unterschiedliche Sequenzen von Zu-

fallszahlen, anderenfalls erhält man stets die gleiche Sequenz von Zufallszahlen.

Beispiel: Es sollen Zufallszahlen x aus dem Bereich 1  x  100 erzeugt werden:

srand(int(time(NULL))); // Argument: aktuelle Systemzeit

...

x = rand()%100 + 1;

Als Startwert des Zufallsgenerators wird hier als „Trick“ die sich ständig ändernde System-

zeit time(NULL) benutzt. Diese C-Standardfunktion liefert die Zeit in Sekunden seit dem

1.1.1970 00:00:00 Uhr zurück, so dass jeder Programmlauf unterschiedliche x-Werte lie-

fert.

 Programmbeispiel 3

Aufgabe:

Ein Programm soll 20 Integer-Zufallszahlen in einem Feld ablegen. Die Zah-

lenwerte sollen im Bereich 1...100 liegen. Die Zahlen sollen in einer Funk-

tion erzeugt und dem Hauptprogramm als Parameter übergeben werden, die-

ses gibt die Werte aus.

Lösung:

#include <iostream> // BSP_7_1_1_3

#include <cstdlib>

#include <iomanip>

#include <ctime> // wegen time()

#define DIM 20

using namespace std;

void erzeuge_feld(int x[]); // Prototyp

int main(void)

{

int z_feld[DIM];

int k;

7.1 Felder

133

srand(int(time(NULL))); // nur einmal aufrufen!

erzeuge_feld(z_feld);

for (k = 0; k < DIM; k++)

cout << setw(4) << z_feld[k] << endl;

return 0;

}

void erzeuge_feld(int x[])

{

int j;

for(j = 0; j < DIM; j++)

x[j] = rand()%100 + 1;

}



 Programmbeispiel 4

Aufgabe:

Es ist ein Programm zu schreiben, das Lotto-Zahlen „6 aus 49“ generiert.

Das Programm soll mehrere Ziehungen erlauben.

Idee:

Es muss vermieden werden, dass zwei gleiche Zahlen gezogen werden.

Dazu benutzen wir ein Feld schon_gezogen[50]. Es wird mit false initiali-

siert. Bei jeder Ziehung einer Zahl, z. B. der Zahl 7, setzen wir

schon_gezogen[7] = true;

Das 0. Feldelement wird nicht verwendet. Wird eine Zahl gezogen, deren

Feldelement bereits true ist, muss die Ziehung wiederholt werden.

Lösung:

// BSP_7_1_1_4 --- Lotto 6 aus 49 --

#include <iostream>

#include <iomanip>

#include <cstdlib>

#include <ctime>

using namespace std;

int main(void)

{

int anzahl, i;

int x, j; // 1...49

int k; // 1...6

bool schon_gezogen[50];

srand(int(time(NULL)));

cout << "Anzahl der Ziehungen > ";

cin >> anzahl;

for(i = 1; i <= anzahl; i++)

{

for(j = 1; j <= 49; j++)

schon_gezogen[j] = false;

for(k = 1; k <= 6; k++)

{

do

134

7 Höhere Datenstrukturen

x = rand()%49 + 1;

while(schon_gezogen[x]);

schon_gezogen[x] = true;

}

for(j = 1; j <= 49; j++)

if(schon_gezogen[j])

cout << setw(3) << j;

cout << endl;

}

return 0;

}



 Programmbeispiel 5

Aufgabe:

Sortieren einer Zahlenfolge mit dem „bubble-sort“-Verfahren. Eine Funkti-

on erzeuge ein Feld mit Zufallszahlen im Bereich 1...100. Das Feld soll in

einer weiteren Funktion aufsteigend sortiert und in einer dritten Funktion

ausgegeben werden.

„bubble-sort“: Jedes Element i des Feldes wird mit seinem Folge-Element i+1 vergli-

chen. Ist das Element i+1 kleiner als Element i, werden diese beiden

Elemente getauscht. Der Elementevergeich geschieht in einer Schleife

mit i als Laufvariable. Das Durchsuchen des Feldes wird solange wie-

derholt, bis keine Tauschpaare mehr gefunden werden. Dann ist das Feld

vollständig sortiert.

Kleine Elemente bewegen sich bei jedem Durchlauf nur jeweils eine

Position „nach oben“. Bei mehrfachem Durchsuchen steigt ein kleines

Element wie eine Blase (bubble) im Wasser auf.

ausgetauscht = false

for(i = 0; i < laenge–1; i++)

x[i] > x[i+1]

ja

nein

tausche x[i], x[i+1]

ausgetauscht = true

do ... while(ausgetauscht)

Lösung:

//

BSP_7_1_1_3 --- bubble-sort --

#include <iostream>

#include <iomanip>

#include <cstdlib>

#include <ctime>

#define DIM 100

using namespace std;

void tausche (int &a, int &b); // call by reference

void bubble_sort (int x[], int laenge);

7.1 Felder

135

void erzeuge_feld (int zufall[], int anzahl);

void feld_ausgeben(int liste[], int max);

int main(void)

{

int zahl[DIM];

int dim = DIM;

erzeuge_feld(zahl, dim);

cout << "Das unsortierte Feld:" << endl;

feld_ausgeben(zahl, dim);

bubble_sort(zahl, dim);

cout << "Das sortierte Feld:" << endl;

feld_ausgeben(zahl, dim);

return 0;

}

void tausche (int &a, int &b)

// call by reference

{

// Dreieckstausch

int hilf;

hilf = a;

a = b;

b = hilf;

}

void bubble_sort (int x[], int laenge)

{

int index;

int oben = laenge - 1;

bool ausgetauscht;

do

{

ausgetauscht = false;

for(index = 0; index < oben; index++)

{

if(x[index] > x[index+1])

{

tausche(x[index], x[index+1]);

ausgetauscht = true;

}

}

oben--;

}

while(ausgetauscht);

}

void erzeuge_feld (int zufall[], int anzahl)

{

int i;

srand(int(time(NULL)));

for(i = 0; i < anzahl; i++)

136

7 Höhere Datenstrukturen

zufall[i] = rand()%100 + 1;

}

void feld_ausgeben(int liste[], int max)

{

int i;

for(i = 0; i < max; i++)

{

cout << setw(5) << liste[i];

if((i+1) % 10 == 0) cout << endl;

}

cout << endl;

}

Die Ausgabe eines Laufs (Beispiel, da Zufallszahlen):

Das unsortierte Feld:

40

65

43

15

28

23

6

85

11

45

39

24

48

93

84

84

12

100

42

92

19

38

66

56

70

29

78

71

2

30

1

32

67

97

75

68

65

21

70

34

78

93

88

38

41

41

71

66

85

49

29

51

64

69

36

34

98

45

45

43

37

34

80

2

64

53

88

55

60

63

67

12

97

52

8

4

100

72

56

43

75

91

50

32

98

64

98

78

53

21

76

58

3

85

29

44

78

90

14

76

Das sortierte Feld:

1

2

2

3

4

6

8

11

12

12

14

15

19

21

21

23

24

28

29

29

29

30

32

32

34

34

34

36

37

38

38

39

40

41

41

42

43

43

43

44

45

45

45

48

49

50

51

52

53

53

55

56

56

58

60

63

64

64

64

65

65

66

66

67

67

68

69

70

70

71

71

72

75

75

76

76

78

78

78

78

80

84

84

85

85

85

88

88

90

91

92

93

93

97

97

98

98

98

100

100 

7.1.2 Mehrdimensionale Felder

Die Vereinbarung mehrdimensionaler Felder erfolgt einfach durch Zufügung weiterer ecki-

ger Klammern mit Dimensionsangabe:

Vereinbarung mehrdimensionaler Felder

<datentyp> <feldname>[<dim1>][<dim2>]...[<dimn>];

7.1 Felder

137

 Beispiel: Vereinbarung von zwei 3x3-Matrizen:

float mat1[3][3], mat2[3][3];

Die Verarbeitung mehrdimensionaler Felder erfolgt indexgesteuert. Typisch sind Konstruk-

tionen von zwei geschachtelten for-Schleife, z. B.:

int i, j, tab[20][4];

...

...

for(i = 0; i < 20, i++)

for

(j = 0; j < 4; j++)

tab[i][j] = 1;

...

 Programmbeispiel

Aufgabe: Generierung einer 6x4-int-Matrix. Die Feldelemente sollen aus ihren Indizes

abgeleitet werden gemäß:

mat[zeile][spalte] = 10 * zeile + spalte;

Die Matrix ist auszugeben. Anschließend ist die gestürzte Matrix (Zeilen und

Spalten vertauscht) auszugeben.

Lösung:

// BSP_7_1_2_1 --- Erzeugen einer 6x4-Matrix ---

#include <iostream>

#include <iomanip>

using namespace std;

int main(void)

{

int mat[6][4];

int zeile, spalte;

// Beschreiben der Matrix

for(zeile = 0; zeile < 6; zeile++)

for(spalte = 0; spalte < 4; spalte++)

mat[zeile][spalte] = 10 * zeile + spalte;

// Ausgabe

for(zeile = 0; zeile < 6; zeile++)

{

for(spalte = 0; spalte < 4; spalte++)

cout << setw(5) << mat[zeile][spalte];

cout << endl;

}

cout << endl << endl;

// Ausgabe gestuerzt

for(spalte = 0; spalte < 4; spalte++)

{

138

7 Höhere Datenstrukturen

for(zeile = 0; zeile < 6; zeile++)

cout << setw(5) << mat[zeile][spalte];

cout << endl;

}

return 0;

}

Ausgabe:

00

01

02

03

10

11

12

13

20

21

22

23

30

31

32

33

40

41

42

43

50

51

52

53

0

10

20

30

40

50

1

11

21

31

41

51

2

12

22

32

42

52

3

13

23

33

43

53

Die Ausgabe der gestürzten Matrix hätte auch mit den folgenden Anweisungen erreicht

werden können:

// Ausgabe gestuerzt

for(zeile = 0; zeile < 4; zeile++)

{

for(spalte = 0; spalte < 6; spalte++)

cout << setw(5) << mat[spalte][zeile];

cout << endl;

}



7.1.3 Zeichenketten: Strings

Zeichenketten sind Felder, deren Elemente Einzelzeichen sind. Standard C hat hierfür kei-

nen eigenen Datentyp string vorgesehen. Um mit String-Variablen zu arbeiten, muss ein

char-Array vereinbart werden:

char <name> [<dimension>];

im Falle eines eindimensionalen char-Feldes. Entsprechend besitzt ein mehrdimensionales

char-Feld mehrere Dimensionsklammern. Von daher besteht kein Unterschied zu sonsti-

gen Feldern. Trotzdem gibt es bei der String-Verarbeitung einige Besonderheiten, auf die

an dieser Stelle hingewiesen werden soll.

Mit String-Konstanten haben wir bereits Erfahrung: Es sind alle Ausdrücke im Programm,

die durch „Gänsefüßchen“ (double quotes) eingeschlossen sind, z. B.

cout << "Eingabe von x: "; // "Eingabe … " ist ein String

7.1 Felder

139

Die Speicherung von Strings erfolgt nach besonderen Regeln. Da diese für verschiedene

Programmiersprachen oft unterschiedlich sind, können bei der Übernahme von Zeichenket-

ten von einer anderen Sprache Probleme auftreten.

In C/C++ ist es üblich, Strings mit dem ASCII-Zeichen 00, repräsentiert durch die Escape-

Sequenz '\0', abzuschließen. Die im letzten Beispiel benutzte String-Konstante scheint die

Länge n=15 zu besitzen. In Wahrheit hat sie die Länge n=16, weil der Compiler bei String-

Konstanten automatisch ein '\0' ans Ende hängt. Auch bei String-Eingaben wird automa-

tisch ein '\0' angehängt. Wird ein char-Feld im Programm selbst erzeugt, so sollte man

nicht vergessen, am Ende '\0' anzufügen. C/C++ bietet eine Reihe von Standard-

Funktionen, die die String-Verarbeitung erleichtern. Sie alle erwarten am Ende ein '\0'.

Strings sollten in C/C++ unbedingt mit '\0' abgeschlossen sein

Auf die Frage, was der Unterschied zwischen

'A'

und "A"

ist, lautet die Antwort: 'A' ist eine char-Konstante, "A" dagegen ein String-Konstante, die

aus 2 Zeichen, nämlich 'A' und '\0' besteht.

Beispiel:

char land[7] = "Hessen";

char ort[13] = "Ruesselsheim";

Ein char-Feld muss so groß vereinbart werden, dass die längste zu speichernde Zeichen-

kette (+ 1) darin Platz findet. Möchte man etwa in den oben definierten Feldern auch andere

Bundesländer oder Städte speichern, so müssen die Dimensionen erheblich erhöht werden.

Andererseits wird oft die vereinbarte Zeichenlänge nicht durch die aktuelle Belegung aus-

genutzt. Wir unterscheiden daher zwischen der aktuellen und der vereinbarten Länge von

Strings.

Ausgewählte Standardfunktionen zur String-Verarbeitung

char* strcpy_s(char * str1, int maxlength, char * str2) kopiert String2 auf String1

 Beispiel: char zk[40];

strcpy_s(zk, 39, "You’ll never walk alone");

 Bemerkung: strcpy_s() wird stets verwendet, um einem char-Feld innerhalb eines

Programms einen String zuzuweisen. Eine Zuweisung mit ...= "..." ist nur bei der

Vereinbarung zulässig. Alternativ zu strcpy_s() und strcat_s(): strcpy() und strcat().

char* strcat_s(char * str1, int maxlength, char * str2) hängt zwei Strings aneinander

char zk1[80], zk2[40]; // zk1 muss groß genug sein

cin << zk1 << zk2;

strcat_s(zk1,40, zk2); // Wirkung: zk1 = zk1 + zk2

140

7 Höhere Datenstrukturen

 Bemerkung: eine Anweisung der Art zk1 = zk1 + zk2 ist nicht zulässig.

int strcmp(char *str1, char *str2)

vergleicht zwei Strings

 Beispiel:

char zk[80];

cin >> zk;

if(!strcmp(zk1, "quit")) return 0;

Bemerkung: Rückgabewert Bedeutung

< 0 String1 ist kleiner als String2

> 0 String1 ist größer als String2

0 String1 und String2 sind gleich

unsigned strlen(char * str) bestimmt die aktuelle Länge eines Strings (ohne '\0')

char zk[80];

int len;

cin >> zk;

len = strlen(zk);

Achtung: cin ist zum Einlesen von Strings nur bedingt geeignet, da die Eingabe beim

Auftreten eines Blanks abbricht. Dies lässt sich mit cin.getline() vermeiden!

cin.getline(<stringname>, <dim>) liest eine komplette Zeile mit allen Blanks ein.

Achtung: bei Verwendung dieser oder anderer Standardfunktionen mit Strings muss

die Datei cstring eingebunden werden: #include <cstring>.

Alle Strings müssen mit '\0' abgeschlossen sein.

" char * str" bedeutet: „Pointer auf char-Feld“

(zur Erinnerung: ein Feldname ist ein Pointer,  s. Kap. 7.2).

Mit Hilfe des Index lässt sich auf jedes Zeichen eines String einzeln zugreifen.

In unserem Beispiel ist:

land:

H e

s

s

e

n

\0

0

1

2

3

4

5

6

 Index

land[0]  'H'

land[1]  'e'

land[2]  's'

land[3]  's'

usw.

strlen(land)  6 ('\0' zählt nicht mit!)

7.1 Felder

141

 Beispiel

// BSP_7_1_3_1 Strings: Ausgabe einer eingegebenen

// Textzeile in umgekehrter Reihenfolge

#include <iostream>

#include <cstring>

using namespace std;

int main(void)

{

char zeile[80];

int index;

cout << "Geben Sie eine Zeile ein:" << endl;

cin.getline(zeile,80);

//liest eine komplette Zeile

for(index = strlen(zeile)–1; index >= 0; --index)

cout << zeile[index];

cout << endl;

return 0;

}

Dialog:

Geben Sie eine Zeile ein:

Das ist toll

llot tsi saD



Im folgenden Beispiel wird ein dreidimensionales Stringfeld benutzt, um jeweils maximal

20 Städte aus drei verschiedenen Ländern (D, F, E) abzuspeichern.

// BSP_7_1_3_2 --– 3-dim-Strings --–

#include <iostream>

#define D 0

#define F 1

#define E 2

using namespace std;

int main(void)

{

char stadt[3][20][10]; // 3 dimensionales Feld

cout << "deutsche Stadt Nr. 1 >";

cin >> stadt[D][0];

cout << "franz. Stadt Nr. 16 >";

cin >> stadt[F][15];

cout << "engl. Stadt Nr. 5 >";

cin >> stadt[E][4];

cout << endl;

cout << stadt[D][0] << endl;

cout << stadt[F][4] << endl;

cout << stadt[E][15] << endl;

return 0;

}

142

7 Höhere Datenstrukturen

Dialog: deutsche Stadt Nr. 1 >Berlin

franz. Stadt Nr. 16 >Bordeaux

engl. Stadt Nr. 5 >Dover

Berlin

Bordeaux

Dover

Merke: Bei Ein/Ausgaben von Strings wird die letzte (rechte) Dimension weggelassen.

 Programmbeispiel

Aufgabe:

Ein Programm soll die Anzahl der Worte einer eingegebenen Textzeile

 feststellen und ausgeben.

Idee:

Worte werden durch Leerzeichen getrennt.

String eingeben

wortzahl = 0;

gezaehlt = false;

Für jedes Zeichen des String:

zeichen == ' '

ja

nein

gezaehlt = false

gezaehlt ==

false

ja

nein

wortzahl=wortzahl++

gezaehlt = true

Ausgabe wortzahl

Lösung:

// BSP_7_1_3_3 --– Anzahl der Worte --

// --– einer Textzeile --

#include <iostream>

#include <cstring>

using namespace std;

int main(void)

{

char zeile[80];

int i, wortzahl, laenge;

bool gezaehlt;

cout << "Gib eine Textzeile ein:"

<< endl;

cin.getline(zeile,80);

wortzahl = 0;

gezaehlt = false;

laenge = strlen(zeile);

for(i = 0; i < laenge; i++)

{

7.1 Felder

143

if(zeile[i] == ' ')

 gezaehlt = false;

else

 if(!gezaehlt)

 {

wortzahl++;

gezaehlt = true;

 }

}

cout << "Es waren " << wortzahl

<< " Worte" << endl;

return 0;

}



Vergleichsoperationen mit Strings basieren auf dem Vergleich der beteiligten Zeichen

(ASCII-Tabelle). Das 1. Zeichen des 1. Strings wird verglichen mit dem 1. Zeichen des 2.

Strings. Sind beide Zeichen gleich, wird das 2. Zeichen verglichen usw.

Beispiele:

"Juni"

> "Juli"



wahr

(n' > 'l')

"abc"

< "abcdef" 

wahr

('d' hat keinen Partner)

" abc"

< "abc"



wahr

(Leerzeichen < 'a')

"ABCDEF" < "a"



wahr

('A' < 'a')

7.1.4 Initialisierung von Feldern

Felder können bei ihrer Deklaration initialisiert werden. Die allgemeine Syntax lautet:

<datentyp> <feldname>[<dim1>][<dim2>]...[<dimn>] = {Werteliste};

Die Werteliste enthält typgerechte Konstanten, die durch Kommata zu trennen sind.

Beispiel eines Integer-Felder mit 8 Elementen und den Initialwerten i * 10 (i = Index):

int vek[8] = {0, 10, 20, 30, 40, 50, 60, 70};

Für String-Felder gilt, wie wir bereits im letzten Kapitel gesehen haben, eine Sonderrege-

lung:

char <stringname>[<dimension>] = "<zeichenkette>"

 Beispiel

char zk[80] = "Long may you run";

Dies ist gleichbedeutend mit:

char zk[80] = {'L','o','n','g',' ','m','a','y',

' ','y','o','u',' ','r','u','n','\0'};

144

7 Höhere Datenstrukturen

Achten Sie bei dieser Form auf ein zusätzliches Element für das '\0'-Zeichen. Sicher ist die

vereinfachte Form vorzuziehen.

Die Initialisierung mehrdimensionaler Felder soll an einem 2-d-Feld mat[5][3] veranschau-

licht werden, welches mit den Zahlen 1 bis 15 initialisiert wird:

int mat[5][3] = {

01, 02, 03,

04, 05, 06,

07, 08, 09,

10, 11, 12,

13, 14, 15

};

In diesem Fall ist die Matrixstruktur optisch sauber darstellbar. Der Compiler lässt sich

davon natürlich nicht beeindrucken. Für ihn ist die folgende Anordnung völlig gleichbedeu-

tend:

int mat[5][3] = { 1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 11, 12, 13, 14, 15};

Entscheidend ist allein die Speicherreihenfolge (in welcher Reihenfolge werden die Matrix-

Elemente intern abgespeichert?). Der rechte Index (Spaltenindex) wächst im linearen Spei-

cher des Rechners schneller als der linke (Zeilenindex), d. h., es wird zeilenweise abgespei-

chert.

Es gilt:

FELD[ZEILE][SPALTE]

Zeile zuerst

Spalte schneller

Speicherbedarf eines 2-d-Feldes

Zeilendimension x Spaltendimension x sizeof(<typ>)

Entsprechendes gilt nun auch für höherdimensionale Felder.

Beispiel: int dreid[2][3][2] = {1,2,3,4,5,6,7,8,9,10,11,12};

Welchen Index hat das Element mit Wert 9? Der rechte Index läuft am schnellsten (Kilo-

meterzählerprinzip). Man beachte, dass für jede Dimension der Indexbereich bei 0 beginnt

und bei dim –1 endet. Folglich besitzt das Element mit dem Wert 1 den Index [0][0][0], das

mit dem Wert 2 den Index [0][0][1] und das letzte (Wert 12) den Index [1][2][1]. Zum

Element mit dem Wert 9 gehört also der Index [1][1][0].

Auch in der Beziehung zwischen Feldern und Pointern spielt die Speicherreihenfolge der

Elemente eine entscheidende Rolle. Wir werden darauf zurückkommen.

7.2 Pointer

145

Werden Felder bei der Deklaration mit Anfangswerten initialisiert, darf man ausnahmswei-

se auf die Dimensionsfestlegung verzichten. Die trifft dann der Compiler durch Abzählen

der Initialwerte.

Beispiel:

char zk[] = "Long may you run";

In diesem Fall wird die Dimension automatisch auf 17 (inklusive '\0') gesetzt.

Diese Vereinfachung sollte man in der Praxis nur dann in Anspruch nehmen, wenn die

Initialwerte im Laufe des Programms unverändert bleiben. Eine typische Anwendung stel-

len Fehlermeldungsfelder dar.

Beispiel:

char f1[] = "falsche Eingabe\n";

char f2[] = "Datei kann nicht geoeffnet werden\n";

...

char f8[] = "falsches Passwort\n";

Ausgabe der 8. Fehlermeldung:

cout << f8;

Ausgabe:

falsches Passwort

Noch eleganter ist die folgende Form:

char f[][80] = {"falsche Eingabe\n",

"Datei kann nicht geoeffnet"

"werden\n",

...

"falsches Passwort\n"};

Man beachte, dass bei mehrdimensionalen Arrays nur die linke (innere) Dimension „offen“

bleiben darf, weil sonst die Struktur verloren geht.

Beispiel: Ausgabe der 8. Fehlermeldung des zweidimensionalen Feldes:

cout << f[7];

Ausgabe: falsches Passwort

7.2 Pointer

Mit Pointern schreibt man in C++, v.a. aber in C, das keine Referenzen kennt, effizientere

Programme. Mit Pointern lässt sich die Verarbeitung von Feldern schneller und eleganter

gestalten. Außerdem ist die dynamische Allokierung von Speicherplatz möglich. Weitere

typische Anwendungen für Pointer sind „verkettete Listen“ und „binäre Bäume“. Beim

Umgang mit Pointern ist Sorgfalt und ein tiefes Verständnis angebracht. Pointer können

schwere Fehler verursachen, die oft nur mühsam zu finden sind.

POINTER sind ADRESSEN

146

7 Höhere Datenstrukturen

Wir blicken in den Adressraum (Speicher) eines hypothetischen einfachen Rechners:

Variable

Adresse

Inhalt

...

...

...

oma

5000

1111

opa

5001

2222

zi

5002

5000

tante

5003

3333

...

...

...

Generell kann man Speicherinhalten ihre Bedeutung nicht ansehen. Erst die Software ent-

scheidet darüber. Speicherinhalte können Maschinenbefehle, Daten oder auch Adressen

sein. In Hochsprachen arbeiten wir selten oder gar nicht mit absoluten Adressen, wie z. B.

5000, sondern mit symbolischen Adressen, den so genannten Variablen. Der Datentyp einer

Variablen legt fest, welcher Art die Daten sind, die der entsprechende Speicherplatz enthält:

int, float, char, ... , oder eben Pointer. Zu jedem Grund-Datentyp existiert ein

Datentyp „Pointer auf <datentyp>“, z. B. Pointer auf int. Entsprechend gibt es

neben „normalen“ Variablen auch Pointervariablen. Normale Variablen enthalten zu verar-

beitende Daten des entsprechenden Typs.

POINTERVARIABLEN enthalten bzw. zeigen auf ADRESSEN

In der obigen Abbildung seien die Variablen oma, opa und tante int-Variablen, die Vari-

able zi sei eine Pointervariable auf int. Während die int-Variablen int-Werte enthalten, enthält die Pointervariable eine Adresse, im Beispiel die von oma (5000).

Deklaration einer Pointervariablen

<typ> *name; // z. B. int *zi;

Im Prinzip könnte jede beliebige Pointervariable jede beliebige Adresse aufnehmen. Aller-

dings funktioniert die POINTERARITHMETIK (s. u.) nur dann einwandfrei, wenn die

Datentypen von Pointervariablen und Pointern übereinstimmen. Deshalb achtet der Compi-

ler auf Typenverträglichkeit.

Pointer-Operatoren

*

Inhaltsoperator:

liefert den Wert der Adresse, welche die Pointervariable

enthält (auf die die Pointervariable zeigt)

&

Adressoperator : liefert die numerische Adresse einer Variablen

7.2 Pointer

147

 1. Beispiel: // BSP_7_2_1

#include <iostream>

using namespace std;

int main(void)

{

int a = 1, b = 2; // Variablen-Deklaration

int *p; // Pointer-Deklaration

p = &a;

b = *p;

cout << b << endl;

return 0;

}

Ausgabe:

1

2. Beispiel:

// BSP_7_2_2

#include <iostream>

using namespace std;

int main(void)

{

float x = 1.1, y = 2.2;

int *p;

p = &x;

y = *p;

cout << y << endl;

return 0;

}

Das 1. Beispiel ist korrekt, das 2. erzeugt mindestens eine Compiler-Warnung, meist sogar

eine Fehlermeldung (Error). Warum? Eine float-Adresse soll einem int-Pointer zugewiesen

werden!

Auch Pointervariable dürfen rechts vom Zuweisungszeichen stehen:

// BSP_7_2_3

#include <iostream>

using namespace std;

int main(void)

{

int a;

int *z1, *z2;

z1 = &a;

z2 = z1;

cout << hex << z1 << endl;

cout << hex << z2 << endl;

return 0;

}

148

7 Höhere Datenstrukturen

Ausgegeben wird in beiden Fällen der Hex-Wert der Adresse (Rechner-abhängig) von a. 

Pointerarithmetik darf nur mit den Operationen Addition und Subtraktion mit Integern

durchgeführt werden.

Beispiele:

p sei ein Pointer

p++;

// vorruecken um 1 Element

p--;

// zurueck um 1 Element

p = p + 2; // vorruecken um 2 Elemente

p = p - 5; // zurueck um 5 Elemente

Das Ergebnis ist vom Datentyp abhängig, weil generell jede Speicheradresse genau 1 Byte

enthält. Sei nun p ein char-Pointer, so entspricht 1 Element einer Adresse. Für den Fall,

dass p ein float-Pointer ist, entspricht 1 Element vier Adressen, bei double sogar 8, usw.

Pointerarithmetik ist sozusagen dimensionsbehaftet:

n Elemente = n x sizeof(<datentyp>) Adressen

Außerdem dürfen zwei Pointer subtrahiert werden:

Beispiel:

float *p1, *p2;

...

...

if(p1 - p2) ...

Verboten sind:

– Multiplikation und Division im Zusammenhang mit Pointern.

– Addition zweier Pointer

– Verknüpfungen mit float und double (Adressen sind Ganzz.).

– Bitoperationen

Vergleiche von Pointern sind dagegen möglich:

if(p1 < p2) cout << "p1 ist kleiner als p2" << endl;

(das ist nur sinnvoll, wenn p1 und p2 auf Felder zeigen)

7.2.1 Pointer und Felder

Pointer und Felder haben in C sehr viel gemeinsam. Wie Sie bereits wissen, ist der Feldna-

me eines Vektors ohne Index eine Pointerkonstante auf das erste Element, also auf den

Feldanfang.

Die Verwandtschaft von Pointern und Feldern lässt sich an folgendem Beispiel demonstrie-

ren:

char str[100], *pc;

pc = str; // str soll nicht veraendert werden

Nach der Zuweisung ist z. B. str[5] gleich *(pc + 5).

Man kann auf Feldelemente also entweder in der konventionellen Elementschreibweise

oder in der Pointerschreibweise zugreifen.

7.2 Pointer

149

Beispiel:

...

char s[40] = "Ein Ausgabetest", *zs;

int i;

...

zs = s; // zs "zeigt auf" s

// entweder:

for(i = 0; s[i]; i++) cout << s[i];

// Elementschreibweise

// oder:

while(*zs) cout << *zs++;

// Pointerschreibweise

 s[i] bzw. *zs funktionieren deshalb als Abbruchbedingungen, weil das letzte Element eines

Strings '\0' enthält. Zur Erinnerung: 0 ist unwahr.

Die zweite Methode ist effektiver. Bei freiem Zugriff auf einzelne Elemente ist dagegen die

Index-Methode (Elementschreibweise) vorzuziehen, weil sie verständlicher ist.

Entsprechendes gilt natürlich auch für mehrdimensionale Felder. Wir machen uns das bei-

spielhaft an dem Feld a[4][4] klar (Achtung: a ist ein Doppelpointer = Pointer auf Pointer):

a[4]

a[4][4]

a 



1

2



3





4

Es gilt (weil eine Matrix zeilenweise abgespeichert wird, d. h. der Spaltenindex läuft

schneller!):

**a

: = *a[0]

:= a[0][0]

// 1

a[0][3]

: = *(*a + 3) := *(*(a + 0) + 3) // 2

a[1][2]

: = *(*a + 6) := *(*(a + 1) + 2) // 3

a[3][3]

: = *(*a + 15) := *(*(a + 3) + 3) // 4

oder allgemein für 2-d-Felder:

a[j][k] := *(*(a + j) + k) // a ist Doppelpointer

Pointer-Arithmetik ist eleganter aber gewöhnungsbedürftiger als der Zugriff über Feld-

Indexierung, vor allem bei sequentiellem Zugriff in Schleifen. Ein zweidimensionales Feld

entspricht im Prinzip einem Feld von Zeilen-Pointern (Bild oben: a[4]) auf die einzelnen

Zeilen des zweidimensionalen Feldes (Bild oben: a[4][4]). Im Bild oben ist dann a ein Zeiger auf das Zeigerfeld a[4]. Damit ist a ein „Pointer auf Pointer“. Aus diesem Grund

muss in den obigen Beispielen der Inhaltsoperator * je zweimal angewendet werden, um

endlich an den Inhalt des Feldelements zu kommen.

150

7 Höhere Datenstrukturen

Diese Aussagen lassen sich auf mehrdimensionale Felder übertragen. Allgemein ist ein n-di-

mensionales Feld stets auf einen Pointer und ein (n–1)-dimensionales Feld reduzierbar. Durch

mehrfache Anwendung kann man jedes Feld auf ein eindimensionales Feld zurückführen.

Auch unsere „Formel“ a[j][k] := *(*(a + j) + k) lässt sich beliebig erweitern, z. B. 3–dim:

a[j][k][l] := *(*(*(a + j) + k) + l)

Die Pointerschreibweise wird gerne bei der Übergabe von Feldern an Funktionen benutzt.

Beispiel:

...

int main(void)

{

char zk[80];

...

gross(zk);

...

return 0;

}

1. Alternative:

void gross(char ch[])

// Feldschreibweise

{

int i;

i = 0;

while(ch[i])

{

ch[i] = toupper(ch[i]);

i++;

}

}

2. Alternative:

void gross(char *ch) // Pointerschreibweise

{

while(*ch)

{

*ch = toupper(*ch);

ch++;

}

}

Bei zweidimensionalen Feldern sieht die Funktionsüberschrift so aus:

int func(char feld[][100])

7.2.2 Dynamische Speicherverwaltung

Neben statischen Feldern erlaubt C/C++ eine dynamische Dimensionierung von Feldern.

Das hilft einerseits, unnötigen Speicherplatz zu sparen, andererseits möchte man bei einigen

Anwendungen, z. B. bei einem Texteditor, möglichst den gesamten aktuell verfügbaren

Speicherplatz allokieren. Dazu dient klassischerweise die C-Funktion

7.2 Pointer

151

malloc(),

die einen Pointer auf den Anfang des allokierten Bereichs zurückliefert.

Die Funktion

free()

gibt den durch malloc() allokierten Speicherbereich wieder frei.

So sieht die allgemeine Form des Aufrufs aus:

void *p;

...

...

p = malloc(anzahl_der_bytes);

...

...

free(p);

Die Prototypen von malloc() und free() liegen in cstdlib. Sie sind dort sinngemäß wie folgt definiert:

void *malloc(unsigned size anz_der_bytes);

void free(void *Pointer);

Da malloc() immer einen void-Pointer liefert, muss im konkreten Fall in einen Pointer auf

den gewünschten Datentyp umgewandelt werden. Dies geschieht, wie stets in solchen Fäl-

len, mit dem Cast-Operator.

1. Beispiel: Es sollen 2500 Bytes für ein Character-Array aus dem Heap reserviert werden

#include <cstdlib>

...

char *cp;

...

cp = (char*) malloc(2500);

// cp zeigt auf das 1. Element

...

// Freigabe:

free(cp);

2. Beispiel: Es sollen 10000 Elemente für ein Integer-Array (je 2 Byte oder 4 Byte groß, je

nach Compiler) reserviert werden

#include <cstdlib>

...

int *ci;

...

152

7 Höhere Datenstrukturen

ci = (int*) malloc(10000 * sizeof(int));

...

// Freigabe:

free(ci);

Falls nicht genügend Speicherplatz vorhanden ist, liefert malloc() einen Nullpointer. Daher

sollte eine entsprechende Kontrollabfrage niemals fehlen, so dass etwa unsere Zeile „ci =

...“ im 2. Beispiel durch folgende Konstruktion zu ersetzen wäre:

if(!(ci = (int*) malloc(10000 * sizeof(int))))

{

cout << "Nicht genuegend Speicher vorhanden" << endl;

exit(1); // Programm beenden

}

Mit Hilfe der Index- oder Pointerschreibweise können Sie auf jedes Element des dynamisch

allokierten Felds zugreifen, z. B.

for(i = 0; i <= 10000; i++)

*ci++ = i; // oder: ci[i] = i;

exit(errorcode) beendet jedes Programm sofort, alle evtl. offenen Dateien werden ge-

schlossen, der gewünschte Errorcode wird an die übergeordnete Ebene (z. B. Komman-

dointerpreter des Betriebssystems) übergeben und kann dort ggf. ausgewertet werden.

Der Prototyp von exit() liegt sowohl in cprocess als auch in cstdlib.

 free() darf nur für zuvor mit malloc() reservierten Speicherplatz aufgerufen werden!

 Beispiel 1: Speicherung von n Integer-Werten auf dem Heap (= dynamischer

Speicher)

// BSP_7_2_2_1

#include <iostream>

// Anlegen eines Feldes im Heap

#include <cstdlib>

using namespace std;

int main(void)

{

int *a;

int n, i;

cout << "Anzahl der Werte im Heap: ";

cin >> n;

a = (int*)malloc(n * sizeof(int));

for(i = 0; i < n; i++)

a[i] = -i;

// oder

*(a+i) = -i;

for(i = 0; i < n; i++)

cout << a[i] << endl;

// oder

// cout <<

*(a+i) << endl;

free(a);

7.3 Datenverbunde: Strukturen

153

return 0;

}



C++ bietet alternativ ein Operatorpaar zur dynamischen Speicherbelegung des Heap:

<pointer> = new <Datentyp>[dimension]

und

delete <pointer>

 Beispiel 2: Speicherung von n Integer-Werten auf dem Heap

// BSP_7_2_2_2

// new -- Anlegen eines Feldes im Heap

#include <iostream>

using namespace std;

int main(void)

{

int i, max;

int *a;

cout << "Wieviel Werte im Heap ablegen: ";

cin >> max;

a = new int[max];

// Feld auf Heap anlegen

for (i = 0; i < max; i++)

{

cout << "Gib Wert ein " ; // cin >> a[i];

cin >> *(a+i);

}

cout << endl<< endl;

for (i = 0; i < max; i++)

cout << *(a+i) << endl; // cout << a[i]<< endl;

delete a;

return 0;

}



In beiden Beispielen erzeugen wir ein Feld im Heap, dessen Größe erst dynamisch zur

Laufzeit festgelegt wird. Allerdings mussten wir das gesamte Feld im Speicher reservieren,

bevor der erste Zugriff auf eine Komponente erfolgen konnte.

Eine noch größere Flexibilität wäre erreicht, wenn wir nach der Speicherung jedes einzel-

nen Wertes neu entscheiden könnten, ob wir noch weitere Werte speichern möchten (z. B.

Einlesen einer unbekannten Anzahl von Messwerten. Das wird möglich beim Einsatz der

Datenstruktur struct, die im folgenden Kapitel vorgestellt wird.

154

7 Höhere Datenstrukturen

7.3 Datenverbunde: Strukturen

Durch die Zusammenfassung inhaltlich zusammengehöriger Daten zu Verbunden wird ein

Programm verständlicher und wartungsfreundlicher. Ein Datenverbund kann im Gegensatz

zu Feldern aus unterschiedlichen Grund-Datentypen aufgebaut sein. Prototypen (Schablo-

nen) von Datenverbunden werden mit dem Schlüsselwort struct definiert.

Struktur-Schablone

Vereinbarung:

struct <name>

{

<typ> <1.komponente>;

<typ> <2.komponente>;

...

<typ> <n.komponente>;

};

Beispiel:

struct student // selbstdefinierte Datenstruktur

{

char name[20];

char vorname[20];

long int mat_nr;

bool vordiplom;

};

Es existiert nun eine Datenstruktur student, aber noch keine Variable dieses Typs. Diese

erhält man mit einer Deklaration wie

struct student physiker, e_techniker;

Alternative:

struct student

{

char name[20];

char vorname[20];

long int mat_nr;

bool vordiplom;

} physiker, e_techniker;

In beiden Fällen sind physiker und e_techniker Variablen vom Typ student. Der erste Weg

ist vorzuziehen, wobei man die Struktur-Schablone global definiert.

Der Zugriff auf einzelne Strukturkomponenten erfolgt über den Punkt-Operator:

Zugriff auf die j.-Komponente einer Strukturvariablen

< struct_variable>.<j.komponente>

7.3 Datenverbunde: Strukturen

155

Beispiel:

strcpy_s(physiker.name, "Weisalles");

Strcpy_s(physiker.vorname, "Nullbert");

physiker.mat_nr = 603458;

physiker.vordiplom = true; // 1

Operationen mit struct-Komponenten richten sich nach den Regeln des vereinbarten

Grund-Datentyps.

Ein/Ausgaben von Strukturen sind stets nur über die Komponenten möglich, also

cin >> physiker.mat_nr;

cout << physiker.name;

Die Komponenten einer Struktur können selbst Strukturen sein (Schachtelungsprinzip).

Außerdem ist es möglich, Strukturfelder zu vereinbaren:

...

struct datum

{

int tag;

int monat;

int jahr;

};

struct adresse

{

char strasse[20];

int hausnr;

char stadt[20];

long int postlz;

};

struct student

{

char name[20];

struct adresse wohnort;

struct datum geburtstag;

};

...

int main(void)

...

struct student physiker[200];

struct student e_techniker[500];

Da es natürlich nicht nur einen Studenten gibt, wurden im Beispiel Felder angelegt. Der

Zugriff auf eine Komponente sieht in einem solchen Fall so aus:

cout << e_techniker[k].wohnort.stadt;

156

7 Höhere Datenstrukturen

Die Stukturvariable e_techniker[500] ist indexiert (der k. E-Technik-Student).

Der Zugriff erfolgt bei geschachtelten Strukturen von außen nach innen.

 Programmbeispiel

Aufgabe: Eingabe der aktuellen Zeit in Stunden/Minuten/Sekunden und Berechnung der

Zeit, die bis zum Feierabend noch vor uns liegt.

Idee:

 zeit als Struktur anlegen mit den Komponenten stunden, minuten und sekunden.

Lösung:

// BSP_7_3_1

#include <iostream>

using namespace std;

struct zeit // globale Strukturschablone

{

int h;

int m;

int s;

};

int main(void)

{

struct zeit jetzt, feierabend = {17, 0, 0}, vormir;

long int sec1, sec2, dif;

sec1 = feierabend.h * 60 * 60 + feierabend.m * 60

+ feierabend.s;

cout << "Wie spaet ist es? [hh mm ss] >";

cin >> jetzt.h >> jetzt.m >> jetzt.s;

cout << endl;

sec2 = jetzt.h * 60 * 60 + jetzt.m * 60 + jetzt.s;

dif = sec1 – sec2;

if (dif > 0)

{

vormir.h = dif / (60*60);

dif = dif %(60*60);

vormir.m = dif / 60;

vormir.s = dif % 60;

cout << "Bis zum Feierabend sind es noch:" << endl

<< "

" << vormir.h

<< " Stunden" << endl

<< "

" << vormir.m

<< " Minuten" << endl

<< "

" << vormir.s

<< " Sekunden" << endl;

}

else

cout << "Glueckspilz! Du hast schon Feierabend"

7.3 Datenverbunde: Strukturen

157

<< endl;

return 0;

}

Dialog: Wie spaet ist es? [hh mm ss] >14 31 20

Bis zum Feierabend sind es noch:

2 Stunden

28 Minuten

40 Sekunden



7.3.1 Übergabe von Strukturen an Funktionen

Strukturkomponenten werden wie normale Variablen übergeben.

Beispiel:

....

struct abc

// Strukturschablone

{

char a;

int b;

char c[80];

};

...

int main(void)

...

struct abc bsp;

// Strukturvariable

...

func1(bsp.a);

// Wertübergabe

func2(bsp.c);

// Pointerübergabe (String)

func3(&bsp.b);

// Adressübergabe

Achtung: der &-Operator steht vor dem Strukturnamen.

Eine komplette Struktur wird mit ihrem Namen übergeben. Achtung: im Gegensatz zu Vek-

toren erfolgt die Übergabe jedoch by value!

Das folgende Beispielprogramm gibt drei Strings nacheinander in einer Zeile auf dem

Bildschirm aus:

// BSP_7_3_1_1

#include <iostream>

#include <cstring>

using namespace std;

void outstr(struct str out);

struct str // Strukturschablone

{

char a[20];

char b[60];

char c[20];

};

158

7 Höhere Datenstrukturen

int main(void)

{

struct str str_v;

strcpy_s(str_v.a, "*** ");

strcpy_s(str_v.c, " ***");

cout << "Eingabe String > ";

cin >> str_v.b;

outstr(str_v); // outstr wird komplett uebergeben

return 0;

}

void outstr(struct str out)

{

cout << out.a << out.b << out.c << endl;

}

Man beachte, dass die Strukturschablone nur einmal (global) definiert wird. Das spart

Schreibarbeit und auch die Fehleranfälligkeit ist geringer.

7.3.2 Struktur-Pointer

So wird ein Struktur-Pointer auf eine Struktur deklariert:

struct <prototyp> *<struct_pointer>;

Beispiel:

struct addr *pers_ptr;

Anwendungsgründe für Strukturpointer sind

1. call-by-address

2. verkettete Listen

Strukturpointer vermindern den Stack-Aufwand bei der Übergabe an Funktionen, da nur

eine Adresse und keine komplette Struktur übergeben werden muss.

Zur Erinnerung: Der Name einer Strukturvariablen ist kein Pointer. Die Adresse einer

Strukturvariablen erhält man durch Vorsetzen des &-Operators.

Beispiel:

struct pers

{

char n_name[40];

char v_name[40];

int alter;

};

...

struct pers person, *pers_ptr;

...

pers_ptr = &person;

Mit der letzten Anweisung erfolgt die Adresszuweisung an die Strukturpointer-Variable.

7.3 Datenverbunde: Strukturen

159

Auf die Komponente person.alter greift man wie folgt zu:

(*pers_ptr).alter

Die () sind notwendig, weil der Punkt-Operator die höhere Priorität besitzt.

Es gibt jedoch zwei Zugriffsmöglichkeiten auf Strukturelemente mit Hilfe von Pointern:

1. expliziter Pointer-Verweis, z. B.:

(*p).balance

2. mit Pfeil-Operator –>, z. B. :

p–>balance

Die 2. Variante ist gebräuchlicher.

Das folgende Beispielprogramm ruft eine Funktion auf, die Personendaten erfragt:

 Beispiel

// BSP_7_3_2_1

#include <iostream>

using namespace std;

void input(struct pers *out);

struct pers

{

char n_name[40];

char v_name[40];

int alter;

};

int main(void)

{

struct pers you;

input(&you);

cout << endl << endl;

cout << "Sie heissen " << you.v_name

<< ' ' << you.n_name << endl

<< "und sind " << you.alter

<< " Jahre alt." << endl;

return 0;

}

void input(struct pers *out)

{

cout << "Nachname > ";

cin >> out->n_name;

cout << "Vorname > ";

cin >> out->v_name;

cout << "Alter > ";

cin >> out->alter;

}

Möglicher Dialog:

Nachname > Cyrus

Vorname > Miley

Alter > 26

160

7 Höhere Datenstrukturen

Sie heissen Miley Cyrus

und sind 26 Jahre alt.



Ohne Adressübergabe könnte main() nicht auf die Eingaben zugreifen!

Wenn die letzte Komponente einer Struktur ein Strukturpointer ist, der auf die nächste

Struktur zeigt, usw., spricht man von einer verketteten Liste.

Folgendes Programmbeispiel zeigt das Prinzip einer verketteten Liste:

 Beispiel

Ein Programm soll eine nicht festgelegte Anzahl von Integer-Werten dynamisch auf dem

Heap speichern. Bei Eingabe des Wertes 0 soll die Eingabe abgeschlossen sein und die

Werte in der Reihenfolge der Eingabe wieder ausgegeben werden.

Idee: Anlegen der Werte in der Form der Struktur.

daten

start



daten  wert

daten  zeiger

 daten  wert

daten  zeiger

 ...

Lösung:

// BSP_7_3_2_2

// lineare Liste

#include <iostream>

using namespace std;

struct dat_im_heap

{

int wert;

struct dat_im_heap *zeiger;

};

int main(void)

{

struct dat_im_heap *daten, *start;

daten = new struct dat_im_heap;

start = daten;

//Startzeiger festhalten

cout << "Werteingabe >";

cin >> daten->wert;

while(daten->wert)

{

daten->zeiger = new struct dat_im_heap;

daten = daten->zeiger;

cout << "Werteingabe >";

cin >> daten->wert;

}

cout << endl << "Ausgabe"<< endl;

daten = start;

do

7.3 Datenverbunde: Strukturen

161

{

cout << daten->wert << endl;

daten = daten->zeiger;

}

while (daten->wert);

return 0;

}



7.3.3 Der typedef-Operator

„Neue“ Datentypen können mit dem typedef-Operator erzeugt werden. Es handelt sich

jedoch in Wahrheit nicht um vollkommen neue Datentypen, eher um neue Namen für be-

stehende Datentypen.

Die allgemeine Form der Anweisung lautet:

typedef <typ> <name>;

Beispiel:

typedef float real;

Besser sollte man schreiben:

typedef float REAL;

weil selbstdefinierte Datentypen ebenso wie Konstanten in C/C++ üblicherweise großge-

schrieben werden.

Die typedef-Anweisung wird in der Regel im Programmkopf vor main() oder in einer

Header-Datei stehen.

Beispiel:

#include <iostream>

using namespace std;

typedef float REAL;

int main(void)

{

REAL x, y;

...

}

Wirklich interessant ist typedef in Verbindung mit komplexeren Datentypen wie struct.

Beispiel:

typedef struct

{

double re;

double im;

} COMPLEX;

COMPLEX zahl1, zahl2; // vereinbart zwei

// komplexe Variablen

COMPLEX c_add(COMPLEX zahl1, COMPLEX zahl2);

// Prototyp einer Funktion

// vom Typ COMPLEX

162

7 Höhere Datenstrukturen

Mit typedef erspart man sich das lästige Wörtchen struct bei der Vereinbarung von Strukturvariablen, insbesondere bei reinen C-Compilern, die struct unbedingt verlangen.

Viele C++-Compiler verzichten auch ohne Gebrauch von typedef auf das Wörtchen

struct.

Programme, die hauptsächlich mit normalen Variablen arbeiten, sind prozessorientiert.

Spielen Strukturen eine entscheidende Rolle spricht man von datenorientierten Program-

men. Der nächste Schritt ist die Objektorientierung ( s. Kap. 9).

7.4 Aufgaben

1) Legen Sie ein Integer-Feld von 10 Werten an. Lesen Sie die Werte ein. Speichern Sie in

einem weiteren Feld gleichen Typs die Werte in umgekehrter Reihenfolge, d. h. a[0] < -

- > b[9]. Geben Sie beide Felder paarweise aus.

2) Wieviel Feldelemente und wieviele Bytes ergeben folgende Vereinbarungen:

a) float dreid [21][11][3];

b) int oma[31] [3];

3) Legen Sie ein int-Feld mit 20 Elementen an. Füllen Sie das Feld mit Zufallszahlen aus

dem Bereich 0 <= x <100. Geben Sie das Feld zu je 5 Werten/Zeile aus. Stellen Sie fest,

wieviel Zahlen einen Wert über 50 besitzen.

4) Es sind n Messwerte (float) einzulesen. Es ist der Mittelwert zu berechnen und aus-

zugeben. Die Abweichungen vom Mittelwert sind in einem Feld abzulegen. Ausgabe

einer Tabelle der Form:

<Messwert>

<Abweichung vom Mittelwert>

5) Was gibt das folgende Programm aus?

#include <iostream>

#include <cstring>

using namespace std;

int main(void)

{

char worte[5][10];

strcpy_s(worte[0],"wer nicht ");

strcpy_s(worte[1],"geht ");

strcpy_s(worte[2],"Zeit ");

strcpy_s(worte[3],"der ");

strcpy_s(worte[4],"mit ");

cout << worte[0] << worte[4] << worte[3]

<< worte[2] << worte[1] << endl;

7.4 Aufgaben

163

cout << worte[1] << worte[4] << worte[3]

<< worte[2] << endl;

return 0;

}

6) Es ist eine Textzeile einzugeben. Das Programm soll die Wortlänge des ersten darin

vorkommenden Wortes ermitteln und ausgeben. Leerstellen vor dem ersten Wort seien

möglich!

7) Passwort-Generator: Erzeugen Sie 20 zufällig zusammengesetzte Worte mit Großbuch-

staben und geben Sie diese aus. Die Worte sollen 8 Zeichen lang sein.

Anleitung:

Benutzen Sie rand() und srand (),

sowie den Ausdruck: rand() % 26 + int('A').

8) Ein Programm soll in einer eingegebenen Textzeile ersetzen: ae  ä, oe  ö, ue  ü,

Ae  , Oe  Ö und Ue  Ü. Der korrigierte Text soll in einer neuen Textzeile ge-

speichert und ausgegeben werden. (compilerabhängig, da nicht jeder Compiler Umlaute

in Textstrings unterstützt).

9) Eine Bank speichert für jeden ihrer Kunden: Name, Vorname, Adresse, 6-stellige Kon-

to-Nr., Kontostand.

Schreiben Sie ein Programm, das Kundendaten einliest und wieder ausgibt (2 Kunden

genügen!). Benutzen Sie Strukturen.

10) Komplexe Zahlen sollen als Struktur gespeichert werden.

Schreiben Sie ein Programm, das zwei komplexe Zahlen einliest und ihre Summe

ausgibt. Verwenden Sie ggf. den typedef-Operator.

8 Arbeiten mit Dateien

Die Verarbeitung größerer Datenmengen ist ohne Zugriffe auf Dateien praktisch unmög-

lich. Eingaben können statt der bisher benutzten interaktiven Tastatureingabe aus Dateien

(Files) gelesen, die Ergebnisse statt auf dem Bildschirm dargestellt, wieder in Dateien

geschrieben werden.

Die Verwaltung von Dateien gehört zu den Aufgaben des Betriebssystems. Dateizugriffe

durch ein Programm greifen in eine wichtige Schnittstelle zwischen Programmiersprache

und Betriebssystem ein. Es ist daher nicht verwunderlich, dass gerade bei der Dateiverar-

beitung oft Inkompatibilitäten der verschiedenen Compiler bzw. Betriebssysteme auftreten

und Softwareanpassungen erforderlich sind, wenn Programme auf anderen Systemen laufen

sollen.

Eine Datei ist in der Regel aus gleichartigen Elementen aufgebaut. Die Elemente haben

eine feste Datenstruktur, z. B. die Zeilenstruktur von Text(ASCII)-Dateien, einzelne

float-Werte, komplette Felder oder eine struct-Struktur. Der Datenaustausch mit Da-

teien erfolgt grundsätzlich in Einheiten dieser Elemente über eine vereinbarte Filevariable.

Die Programmiersprache „sieht“ die Datei über das Fenster eines logischen Schreib- oder

Lesezeigers, der sich elementweise über die Datei schiebt. Das Ende einer Datei ist durch

die EOF-Marke (End-Of-File) gekennzeichnet.

Dateizugriff:

1. Element 2. Element

...

k. Element

...

EOF

|

Schreib-/

Lesezeiger



zum Programm

Um mit Dateien zu arbeiten, sind prinzipiell die folgenden Schritte erforderlich:

 Filevariable vereinbaren

 Verbindung zum Dateinamen unter dem jeweiligen Betriebssystem herstellen

 Datei öffnen zum Lesen oder zum Schreiben

 Datei lesen oder beschreiben

 Datei schließen

hnlich wie schon bei der Konsol-Ein/Ausgabe verfügen C und C++ über völlig unter-

schiedliche Konzepte des Dateizugriffs. Wir stellen hier nur das C++-Konzept vor, weil für

die meisten größeren Rechner mit Festplatten und sonstigen Massenspeicher-Medien C++-

Compiler zur Verfügung stehen. Die ganz kleinen, wie Mikrocontroller, benötigen keinen

Dateizugriff.

© Springer Fachmedien Wiesbaden GmbH 2017

G. Küveler und D. Schwoch, C/C++ für Studium

 und Beruf, DOI 10.1007/978-3-658-18581-7_9

166

8 Arbeiten mit Dateien

Für die Datei-Ein/Ausgabe mittels Streams bietet C++ die Klassen ( s. Kap. 9) istream

(für Input), ostream (für Output) und fstream (für Input und Output). Vereinbart sind sie in

der Header-Datei fstream.

Wir beschränken uns im Folgenden auf die Verwendung von fstream. Der Zugriff auf Da-

teien nach dem C++-Konzept mit Streams läuft nach folgendem, beispielhaft gezeigten,

Muster ab:

#include <iostream>

#include <fstream>

fstream my_file;

// Filevariable vereinbaren

my_file.open("dat_name", ios::out);

// Datei "dat_name" zur Ausgabe oeffnen

// und mit der Filevariable verbinden

if(!my_file)

// falls Oeffnen nicht moeglich

{

cerr << "Datei kann nicht geoeffnet werden" << endl;

exit(-1);

// Programmabruch

}

...

// in die Datei schreiben

...

my_file.close();

// Datei schliessen

Eine Datei kann zum Beispiel dann nicht geöffnet werden, wenn

 sie gelesen werden soll, jedoch nicht existiert

 eine Datei auf einem USB-Stick gelesen werden soll, jedoch kein Stick in der USB-

Buchse steckt

 eine Datei beschrieben werden soll, die jedoch schreibgeschützt ist

 eine Fehlerbedingung im Open-Modus ( s. Tabelle unten) zutrifft.

Der zweite Parameter der Elementfunktion open() ist der sogenannte Open-Modus. In der

Klasse ios sind dafür folgende Konstanten definiert:

Konstanten für den Open-Modus von Dateien

Konstante

numerischer Wert

Bedeutung

ios::in

0x01

für Eingabe öffnen

ios::out

0x02

für Ausgabe öffnen

ios::ate

0x04

öffnen und Schreib/Lesezeiger auf Dateiende

positionieren

ios::app

0x08

Ausgabe nur am Dateiende

ios::trunc

0x10

Datei löschen, falls ios::out, nicht aber

ios::ate oder ios::app gesetzt sind

ios::nocreate

0x20

erzeugt Fehler, falls Datei noch nicht existiert

ios::noreplace

0x40

erzeugt Fehler, falls Datei schon existiert

ios::binary

0x80

dokumentiert Binärmodus

8.1 ASCII-Dateien: Der Dateityp Text

167

Aufgrund der besonderen Hexadezimalstruktur der verschiedenen Modi lassen sich diese

mit dem bitweisen Oder-Operator (|) beliebig (sinnvoll) kombinieren. Einige Compiler

erlauben auch den Plus-Operatot (+), den man aber vermeiden sollte, weil er kein Standard

ist.

Beispiel: ios::out | ios::binary (=0x82), bedeutet: öffnen für Ausgabe im Binär-Format

Auf sinnvolle Kombinationen muss man selbst achten.

Grundsätzlich muss zwischen zwei Dateitypen unterschieden werden:

 Typ „Text“: formatierte Dateien, aus ASCII-Zeichen aufgebaut

 Typ „Binär“: unformatierte Dateien, binär aufgebaut.

Das eigentliche Schreiben und Lesen erfolgt analog zur Standard-Ein/Ausgabe

( s. Kap. 4), inklusive der Formatierung.

 Beispiel

int a;

char ch, zeile[81];

fstream rf;

...

rf.open("test.txt", ios::in);

// oeffnen zum Lesen

if(!rf) { ... }

// Fehlerbehandlung

...

rf >> a;

// liest eine int Zahl in die Variable a

// ein

// Trennzeichen ist Blank, Tab oder '\n'

// oder

ch = rf.get();

// liest ein Byte

// oder

rf.getline(zeile, 80); // liest eine komplette Zeile



8.1 ASCII-Dateien: Der Dateityp Text

Verzichtet man beim Öffnen einer Datei auf den Open-Modus ios::binary wird automatisch

das ASCII-Format unterstellt, z. B.:

my_f.open("in_dat", ios::in);// ASCII-Datei "in_dat" zum

// Lesen oeffnen und mit Stream-

// zeiger "my_f" verbinden

Für Text-Dateien gilt:

 Dateien sind aus Zeichen aufgebaut

 Dateien können am Bildschirm ausgegeben oder ausgedruckt werden

168

8 Arbeiten mit Dateien

 Dateien besitzen eine Zeilenstruktur (\n am Zeilenende)

 die einzelnen Zeilen der Datei können unterschiedlich lang sein

 auf Text-Dateien kann in der Regel nur sequentiell zugegriffen werden.

Aufbau einer Text-Datei:

*****************\n

*************************\n

*************\n

****\n

************\n

...

...

<EOF>

Der Typ „Text“ bedeutet nicht, dass nur Buchstaben zulässig sind! Die Datei kann auch

mit Zahlen (float, int) beschrieben werden. Diese werden dann aber ebenfalls lesbar

(als ASCII-Zeichen) abgelegt.

Beispiel:

fstream zf;

float wert1, wert2;

zf.open("z_dat", ios::out);

...

wert1 = -17.123;

wert2 = 333.957312;

zf << wert1 << " " << wert2;

Vor dem Schreiben werden die Zahlen von der internen Binärdarstellung in einen String

gewandelt. Die umgekehrte Wandlung findet beim Lesen statt. Das Blank ist als Trennzei-

chen notwendig, weil sonst beim Lesen die beiden Zahlen nicht auseinander zu halten sind.

Anmerkung:

Das Gleiche geschieht automatisch, wenn Zahlen von der Tastatur

eingegeben bzw. auf dem Bildschirm ausgegeben werden.

Das folgende Beispiel beschreibt eine Datei im aktuellen Verzeichnis mit den Wurzelwer-

ten der Zahlen 1...100:

// BSP_8_1_1

#include <iostream>

#include <fstream>

#include <cmath>

using namespace std;

int main(void)

{

int k;

float wert;

fstream f;

// Filevariable vereinbaren

f.open("wurzel_1.txt", ios::out | ios::trunc);

8.1 ASCII-Dateien: Der Dateityp Text

169

if(!f)

// falls Oeffnen nicht

// moeglich

{

cerr << "Datei kann nicht geoeffnet werden" <<

endl;

exit(-1);

// Programmabruch

}

for(k = 1; k <= 100; k++)

{

wert = sqrt((double)(k));

f << wert << endl;

// 1 Wert pro Zeile

}

f.close();

return 0;

}

Nachdem dieses Programm ausgeführt ist, gibt es im aktuellen Directory (Verzeichnis) eine

Datei WURZEL_1.TXT. Sehen Sie sich die Datei z. B. mit einem Editor an.

Im folgenden Beispiel greifen wir auf die eben angelegte Datei zu und geben den Inhalt am

Bildschirm aus:

// BSP_8_1_2

#include <iostream>

#include <fstream>

#include <iomanip>

using namespace std;

int main(void)

{

float wert;

fstream f;

// Filevariable vereinbaren

f.open("wurzel_1.txt", ios::in);

if(!f)

// falls Oeffnen nicht moeglich

{

cerr << "Datei kann nicht geoeffnet werden" <<

endl;

exit(-1);

// Programmabruch

}

while(f >> wert)

// liefert 0 falls EOF erreicht

cout << setiosflags(ios::fixed) << setprecision(3)

<< wert << endl;

// 1 Wert pro Zeile

f.close();

return 0;

}

Hier ist die for-Schleife durch eine while-Konstruktion ersetzt. Das hat den Vorteil, dass

wir uns nicht auf eine Länge festlegen müssen. Ist das Dateiende (EOF = End-Of-FILE)

170

8 Arbeiten mit Dateien

erreicht, liefert unsere Eingabeoperation (f >> wert) den Wert 0 und damit unwahr zurück,

so dass sich die while-Schleife beendet.

Auch die Mitgliedsfunktion eof() liefert !=0 zurück, wenn das Dateiende erreicht ist. Hätten

wir sie benutzt, würde die Schleife lauten:

while(!f.eof())

{

f >> wert;

cout ...

}

 eof() liefert !0, wenn das Dateiende erreicht ist.

Natürlich hätte die Datei WURZEL_1.TXT auch mit einem Editor geschrieben oder durch

ein Programm in einer anderen Sprache erzeugt sein können.

Nachfolgend noch einige Programmiertipps für die Dateiverarbeitung. Sie sind nicht auf

Text-Dateien beschränkt.

a) Eingabe des Dateinamens im Dialog:

In den Programmen oben haben wir uns bei der Assign-Anweisung auf eine ganz be-

stimmte Datei (WURZEL_1.TXT) festgelegt. Flexibler ist:

fstream f;

char datname[20];

...

...

cout << "Gib Dateinamen ein: ";

cin >> datname;

f.open(datname, ios::out);

...

b) Schutz vor dem Überschreiben einer existierenden Datei:

fstream f;

char datname[20];

...

...

cout << "Gib Dateinamen ein: ";

cin >> datname;

f.open(datname, ios::out | ios::noreplace);

if(!f)

// Fehler falls Datei existiert

{

cerr << "Datei kann nicht geoeffnet werden\n"

<< "oder ist bereits vorhanden" << endl;

f.clear(); // Fehlerbehandlung

}

...

8.2 Binärdateien

171

 clear() setzt die Fehlerbedingung zurück.

 Programmbeispiel

Aufgabe:

Ein Programm soll die Anzahl der Zeilen eines C-Programms (einer beliebi-

gen Text-Datei) feststellen.

Idee:

Eine Text-Datei zeilenweise lesen; es kommt nur auf das '\n' an.

Lösung:

// BSP_8_1_3

zaehlt die Zeilen einer Datei

#include <iostream>

#include <fstream>

using namespace std;

int main(void)

{

int zzeile;

char f_name[20];

char zeile[81];

fstream f;

// Filevariable vereinbaren

cout << "Gib Dateinamen ein: ";

cin >> f_name;

f.open(f_name, ios::in | ios::nocreate);

if(!f)

// falls Oeffnen nicht moeglich

{

cerr << "Datei kann nicht geoeffnet werden" << endl;

exit (-1);

// Programmabruch

}

zzeile = 0;

// Zeilenzaehler

while(f.getline(zeile, 81)) // liefert 0 falls EOF

zzeile++;

f.close();

cout << "Die Datei " << f_name << " hat "

<< zzeile << " Zeilen." << endl;

return 0;

}



8.2 Binärdateien

Zahlenwerte lassen sich oft erheblich platzsparender in Binärdateien speichern. Diese Da-

teien enthalten direkte Abbilder der internen binären Darstellung der Daten. Damit entfällt

für diesen Dateityp der Schritt der Wandlung in (ASCII-) Zeichen. Zugriffe auf Binärdatei-

en sind daher schneller als auf Textdateien.

172

8 Arbeiten mit Dateien

Vereinbarung von Binärdateien (Beispiel)

fstream bin_out, bin_in;

bin_out.open("outdat", ios::out | ios::binary);

bin_in.open("indat", ios::in | ios::binary);

Lesen und Schreiben von Binärdateien

<name>.read(<zeiger_auf_1.byte>, <anz_der_byte>);

<name>.write(<zeiger_auf_1.byte>, <anz_der_byte>);

Folgende Anweisung schreibt einen float-Wert x binär in die Datei mit dem Deskriptor f:

f.write((char*)&x, sizeof(x));

// casten

Binärdateien sind nur mit Programmen beschreibbar und lesbar (nicht mit einem Text-

Editor). Sie besitzen keine Zeilenstruktur.

Dateien vom Typ „binary“ können am Bildschirm nicht direkt ausgegeben und auch

nicht sinnvoll ausgedruckt werden.

Im folgenden Beispiel greifen wir auf die Demonstrationsprogramme des vorangegangenen

Kapitels zurück, ersetzen jedoch die Text-Datei durch eine Binärdatei:

// BSP_8_2_1

#include <iostream>

#include <fstream>

#include <cmath>

#include <cstdlib>

using namespace std;

int main(void)

{

int k;

float wert;

fstream f;

f.open("wurzel_2.txt", ios::out | ios::binary);

if(!f)

{

cerr << "Datei kann nicht geoeffnet werden!" << endl;

exit (-1);

}

for(k=1;k<=100;k++)

{

wert = sqrt((double)(k));

f.write((char *)&wert, sizeof(wert));

}

f.close();

return 0;

}

8.2 Binärdateien

173

Die im aktuellen Verzeichnis erzeugte Datei WURZEL_2.TXT besitzt eine Länge von 400

Byte: 100 x (Speicherbedarf für float) = 100 x 4 Byte = 400 Byte.

Überzeugen Sie sich mit Hilfe eines Editors vom Binärinhalt der Datei.

Mit dem folgenden Programm lässt sich die Datei WURZEL_2.TXT lesen und am Bild-

schirm ausgeben:

// BSP_8_2_2

#include <iostream>

#include <fstream>

#include <cstdlib>

#include <iomanip>

using namespace std;

int main(void)

{

int k;

float wert;

fstream f;

f.open("wurzel_2.txt", ios::in | ios::binary);

if(!f)

{

cerr << "Datei kann nicht geoeffnet werden!" << endl;

exit (-1);

}

while(f.read((char*)&wert, sizeof(wert)))

{

cout << setw(10) << setiosflags(ios::fixed)

<< setprecision(3) << wert << endl;

}

f.close();

return 0;

}

Während Text-Dateien unterschiedliche Zeilenlängen haben können (z. B. ein C++-Quell-

programm), ist eine Binärdatei aus Einheiten konstanter Länge aufgebaut. Ein Trennzei-

chen ist deshalb überflüssig. Diese Einheiten nennt man auch Records.

Aufbau einer Binärdatei:

* * * * * * | * * * * * * | * * * * * * | | * * * * * <EOF>

Dadurch ist für Binärdateien ein direkter Zugriff auf das k. Record möglich.

Die C++-Klassen ( s. Kap. 9) ostream und istream, definiert in der Header-Datei

 iostream, bieten jeweils einen logischen Schreib- und Lesezeiger sowie entsprechende Ele-

mentfunktionen zur Abfrage und Manipulation.

174

8 Arbeiten mit Dateien

Funktionen zum Direktzugriff

Positionierung des Lesezeigers:

<name>.seekg(<anz_der_bytes>, <seek_dir>)

<anz_der_bytes> : long int

<seek_dir>

= ios::beg: relativ zum Dateianfang

= ios::cur: relativ zur aktuellen Position

= ios::end: relativ zum Dateiende

Beachte:

Das erste Byte hat die Nr. 0!

Beispiel:

Zugriff auf das 17. Byte einer Datei

#include <iostream>

#include <fstream>

...

fstream in_z;

...

in_z.seekg(16, ios::beg);

...

Positionierung des Schreibzeigers:

<name>.seekp(<anz_der_bytes>, <seek_dir>)

<anz_der_bytes> : long int

<seek_dir>

= ios::beg: relativ zum Dateianfang

= ios::cur: relativ zur aktuellen Position

= ios::end: relativ zum Dateiende

Beispiel:

Zugriff um 9 Bytes zurück

#include <iostream>

#include <fstream>

...

fstream out_z;

...

out_z.seekp(-9, ios::cur);

...

Aktuelle Position des Lesezeigers:

<long_var> = <name>.tellg()

<long_var>: long int - Variable zur Position des Zeigers

Beachte:

Das erste Byte hat die Nr. 0!

Beispiel:

Abfragen des Lesezeigers

#include <iostream>

8.2 Binärdateien

175

#include <fstream>

...

fstream in_z;

streampos lz;

// sicherer als: long int lz;

...

lz = in_z.tellg();

...

Aktuelle Position des Schreibzeigers:

<long_var> = <name>.tellp()

< long_var>: long int - Variable zur Position des Zeigers

Beachte:

Das erste Byte hat die Nr. 0!

Beispiel:

Abfragen des Schreibzeigers

#include <iostream>

#include <fstream>

...

fstream out_z;

streampos sz;

// sicherer als: long int sz;

...

sz = out_z.tellp();

...

Der Direktzugriff auf Dateien bietet eine bequeme Möglichkeit, einzelne Records in großen

Dateien gezielt anzusprechen und zu ändern.

 Beispiel

In unserer angelegten Datei WURZEL_2.TXT wollen wir den 49.Eintrag modifizieren.

// BSP_8_2_3

#include <iostream>

#include <iomanip>

#include <fstream>

#include <cstdlib>

using namespace std;

int main(void)

{

float dateiwert, neu;

fstream f;

f.open("wurzel_2.txt", ios::out | ios::in | ios::binary);

if(!f)

{

cerr << "Datei kann nicht geoeffnet werden" << endl;

exit(-1);

}

// direkt lesen

f.seekg(48*sizeof(float),ios::beg);

176

8 Arbeiten mit Dateien

cout << "Inhalt von 49. Eintrag vor Aenderung: ";

f.read((char *)&dateiwert, sizeof(dateiwert));

cout << setw(10) << setiosflags(ios::fixed)

<< setprecision(3) << dateiwert << endl;

// direkt schreiben

neu = -1.0;

f.seekp(48*sizeof(float),ios::beg);

f.write((char *)&neu, sizeof(neu));

// erneut direkt lesen

f.seekg(48*sizeof(float),ios::beg);

cout << "Inhalt von 49. Eintrag NACH Aenderung: ";

f.read((char *)&dateiwert, sizeof(dateiwert));

cout << setw(10) << setiosflags(ios::fixed)

<< setprecision(3) << dateiwert << endl;

f.close();

return 0;

}

Ausgabe:

Inhalt von Eintrag 49 vor nderung: 7.000 Inhalt nach nderung: -1.000



8.3 Aufgaben

1. Schreiben Sie ein Programm, mit dem eine Text-Datei „UEB1.TXT“ angelegt wird, die

folgende Tabelle (von 1...n) enthält:

n

log(n) sqrt(n)

n wird eingelesen. Prüfen Sie das Inhaltsverzeichnis.

2. Schreiben Sie ein 2. Programm, das den Namen der oben angelegten Datei im Dialog

übernimmt und geben Sie die Tabelle auf dem Bildschirm aus.

3. Stellen Sie fest, wie lang die längste Zeile und die kürzeste Zeilenlänge eines C++-

Quellprogramms sind. Das untersuchte Quellprogramm ist als Textdatei einzulesen.

Anleitung: Benutzen Sie die Elementfunktion <name>.getline(zeile, sizeof(zeile)).

4. Schreiben Sie ein Programm, mit dem festgestellt werden kann, wie häufig ein be-

stimmtes Zeichen in einer Textdatei vorkommt. Das Zeichen soll im Dialog eingegeben

werden.

8.3 Aufgaben

177

5. Schreiben Sie ein Programm, das eine Tabelle als Datei ablegt. Die Tabelle soll für i = 1

bis i = 1000 enthalten:

i

i * i

sqrt(i)

log(i)

Typen:

int

int

float

float

Prüfen Sie, ob der gewählte Dateiname bereits existiert und geben Sie eine entsprechen-

de Warnung aus. Fordern Sie zur Eingabe eines neuen Namens auf. Geben Sie die er-

zeugte Datei am Bildschirm aus (Editor).

6. Schreiben Sie ein Programm, mit dem auf die in Aufgabe 5 angelegte Datei wahlfrei

zugegriffen werden kann. Das Programm soll im Dialog die Integer-Größe n einlesen

und den n. Eintrag der Datei ausgeben.

Anleitung: Bei dem Positionieren des Lesezeigers ist bei Text-Dateien das Format zu

berücksichtigen, mit dem die Daten in die Datei geschrieben wurden. Beachten Sie die

Zeichen CR und LF am Zeilenende.

9 Einführung in die OOP mit C++

Die objektorientierte Programmierung (OOP) ist ein hilfreiches Konzept zur Entwicklung

von Programmen. C++ bietet im Gegensatz zu C hierfür bestimmte Werkzeuge an, was aber

nicht bedeutet, dass die Programmierung mit C++ automatisch objektorientiert ist. Es ist

sogar möglich, mit C objektorientiert zu programmieren, allerdings nicht so komfortabel

wie unter C++.

Die OOP sollte nicht als Alternative zu der konventionellen prozeduralen Programmierung

gesehen werden, die es erlauben würde, auf die bisher vorgestellten Inhalte zu verzichten.

Sie stellt eher einen „Überbau“ zur konventionellen Programmierung dar, ergänzt sie also.

Selbst Programmiersprachen wie Java, die ausschließlich objektorientiert angelegt sind,

gehen in der tiefsten Implementierungsebene schließlich zurück auf die konventionelle pro-

zedurale Programmierung.

Bevor wir die Prinzipien der OOP vorstellen, führen wir den Datentyp class wie einen „nor-

malen“ C++Datentyp ein:

9.1 Klassen

Eine Klasse ist ein benutzerdefinierter Datentyp und wird durch das Schlüsselwort class

definiert. Klassen stellen eine Verallgemeinerung des Datentyps struct dar. Eine Klasse

wird als globale Datenstruktur außerhalb von Funktionsmodulen bereitgestellt. Im einfach-

sten Fall unterscheidet sich eine Klasse praktisch kaum von einer Struktur:

class <klassenname>

{

public:

<Datentyp> <bezeichner>;

<Datentyp> <bezeichner>;

.....

<Datentyp> <bezeichner>;

};

 Beispiel

class student

{

public:

 char name[20];

 long int mat_nr;

 int fachbereich;

};

int main()

{

class student s1; // oder einfach: student s1;

© Springer Fachmedien Wiesbaden GmbH 2017

G. Küveler und D. Schwoch, C/C++ für Studium

 und Beruf, DOI 10.1007/978-3-658-18581-7_10

180

9 Einführung in die OOP mit C++

...

cin >> s1.name;

...

k = s1.mat_nr;

....



Das Beispiel zeigt, dass ein Zugriff auf die Daten einer Klasse mit dem gleichen Mecha-

nismus erfolgt wie bei Strukturen. Über den Zugriffsmodifizierer, das Schlüsselwort public,

wird der Zugriff auf die Klassenelemente „öffentlich zugelassen“, d. h. von allen Pro-

grammmodulen aus erlaubt. Eine Klasse bietet die Möglichkeit, Teile ihrer Elemente als

 private (bzw. protected) zu deklarieren, um damit einen Zugriff von außerhalb der Klasse zu unterbinden. Standardmäßig, d. h. ohne Angabe eines Zugriffsmodifizierers sind alle

Elemente einer Klasse private, dagegen die Elemente einer Struktur grundsätzlich public.

Die Bedeutung dieser Zugriffssteuerung stellt eines der Grundprinzipien der OOP dar und

wird im nächsten Kapitel erklärt.

Ein weiterer Unterschied von Klassen gegenüber Strukturen besteht darin, dass Klassen

neben Datenfeldern auch Funktionen, sog. Elementfunktionen (auch Methoden der Klasse

genannt), enthalten können, die ebenfalls den Zugriffsmodifizierern unterliegen:

Allgemeiner Klassenaufbau:

class <klassenname>

{

public:

<datentyp> <datenbezeichner>; // 1. public Datenelement

<datentyp> <datenbezeichner>; // 2. public Datenelement

...

<methodentyp> <methodenname(parameter...)> // 1.public

// Elementfunktion

{

<Anweisungen der Methode>

}

<methodentyp> <methodenname(parameter...)>// 2.public

// Elementfunktion

{

<Anweisungen der Methode>

}

.....

private:

<datentyp> <datenbezeichner>; // 1. private Datenelement

<datentyp> <datenbezeichner>; // 2. private Datenelement

...

<methodentyp> <methodenname(parameter...)> // 1.private

// Elementfunktion

{

<Anweisungen der Methode>

}

9.1 Klassen

181

<methodentyp> <methodenname(parameter...)> // 2.private

// Elementfunktion

{

<Anweisungen der Methode>

}

};

 Beispiel: Klasse student

#include <iostream> //BSP_9_1_1

#include <cstdio>

#include <cstdlib>

#include <iomanip>

using namespace std;

class student

{

public:

char name[20];

long int mat_nr;

void set_anzahl(int anzahl)

{ anzahl_lv = anzahl; }

void set_notenschnitt(float schnitt)

{ noten_mittel = schnitt; }

void neuer_schein(float note)

{

float sum = noten_mittel*anzahl_lv;

noten_mittel = (sum + note)/(anzahl_lv+1);

anzahl_lv++;

}

int zeige_anzahl()

{ return anzahl_lv; }

float zeige_notenschnitt()

{ return noten_mittel;}

private:

int anzahl_lv;

float noten_mittel;

};

//---

int main(void)

{

class student s1;

strcpy_s(s1.name,"Klever");

s1.mat_nr = 123456;

s1.set_anzahl(4);

s1.set_notenschnitt(1.6);

cout << fixed << setprecision(1)

<< s1.name << " hat bisher " << s1.zeige_anzahl()

182

9 Einführung in die OOP mit C++

<< " Lehrveranstaltungen besucht " << endl

<< "bisheriger Notendurchschnitt: "

<< s1.zeige_notenschnitt() << endl << endl;

s1.neuer_schein(2.0);

s1.neuer_schein(1.5);

cout << s1.name << " hat nun " << s1.zeige_anzahl()

<< " Lehrveranstaltungen besucht " << endl

<< "neuer Notendurchschnitt: "

<< s1.zeige_notenschnitt() << endl;

return 0;

}

Programmausgabe:

Klever hat bisher 4 Lehrveranstaltungen besucht

bisheriger Notendurchschnitt: 1.6

Klever hat nun 6 Lehrveranstaltungen besucht

neuer Notendurchschnitt: 1.7



In diesem Beispiel wird eine Klasse student definiert, die neben einer Anzahl von public

und private-Datenelementen auch einige public-Methoden bereitstellt:

void set_anzahl(int anzahl)

: Setzen der Anzahl der Lehrveranstal-

tungen

void

set_notenschnitt(float: Setzen des Notendurchschnitts bis-

schnitt)

heriger Lehrveranstaltungen

void neuer_schein(float note)

: Hinzufügen einer neuen Note und

Ermitteln des neuen Durchschnitts

int zeige_anzahl()

: Rückgabe der aktuellen Anzahl der

Lehrveranstaltungen

float zeige_notenschnitt()

: Rückgabe des aktuellen Notendurch-

schnitts

 private-Methoden gibt es in diesem Beispiel nicht.

Die main()-Funktion legt mit der Anweisung class student s1 ein Objekt s1 der Klasse student an. Ein Zugriff auf public-Daten oder Elementfunktionen erfolgt stets über Angabe

des zugehörigen Objektnamens, z. B.

s1.mat_nr oder s1.zeige_anzahl(); Zugriffe auf private Elemente

sind nur innerhalb der Klasse

erlaubt, nicht jedoch von außer-

halb der Klasse. So führen z. B.

Anweisungen in der main()-

Funktion wie

s1.anzahl_lv = 12; oder cout << s1.noten_mittel;

wegen Zugriffsverletzungen zu Fehlermeldungen.

9.2 Der ObjektOrientierte Ansatz

183

Natürlich hätte man im obigen Programm auch gleich mehrere Objekte des Typs student

vereinbaren können, z. B. mit:

class student s1,s2,s3;

Die Datenelemente der Klasse wären dann dreimal angelegt worden und eindeutig durch

die Schreibweise s2.name oder s3.name zu unterscheiden. Der Code der Klassenmethoden

gilt für alle angelegten Objekte der Klasse. Bei ihrem Aufruf wird der Zugriff auf die „ei-

genen“ Datenelemente des jeweiligen Objekts ebenfalls ermöglicht durch Angabe des Ob-

jektnamens, z. B. s2.zeige_notenschnitt().

Mit Hilfe des sizeof()-Operators lässt sich der Speicherbedarf von Klassen und Objekten

ermitteln:

Speicherbedarf des Typs:

sizeof(<class>) : z. B.

: 32

sizeof(student)

Speicherbedarf des Objekts: sizeof(<object>) : z. B. sizeof(s1)

: 32

Die Größe von 32 Byte ergibt sich im obigen Beispiel aus der Definition der Datenstruktur

der Klasse:

name[20] =>20Byte; 3xInteger =>12Byte.

9.2 Der ObjektOrientierte Ansatz

Bei der OOP hat der Begriff der Klasse zentrale Bedeutung. Wir werden uns daher im

weiteren Verlauf dieses Kapitels mit dem praktischen Einsatz und Umgang von Klassen

beschäftigen.

Worin unterscheidet sich ein OOP-Ansatz von der konventionellen prozeduralen Program-

mierung? Wir kommen noch einmal zurück auf das Beispiel im vorigen Abschnitt. Um für

einen Studenten die Veränderungen des Notendurchschnitts durch die Berücksichtigung

einiger neuen Scheine zu berechnen, hätte man in der konventionellen Programmierung

vermutlich, ohne überhaupt weitere Funktionen zu verwenden, schnell ein kurzes main()-

Programm geschrieben, das sehr effizient das spezielle Problem gelöst hätte.

Beim OO-Ansatz denkt man wesentlich allgemeiner und umfassender. Dem OOP-Program-

mierer könnten z. B. die folgenden Gedanken durch den Kopf gehen:

 Um was geht es eigentlich? Es geht um Studenten. Studenten sind die Objekte (das ist

 nicht despektierlich gemeint). Es ist eine Klasse zu entwickeln, deren Objekte Studenten

 sind. Welche Eigenschaften haben Studenten? Sie haben einen Namen und eine Matri-

 kelnummer. Sie haben sicher noch andere, aber von denen abstrahieren wir hier. Diese

 Daten sollten für jeden Studenten verfügbar, d. h. gespeichert und abrufbar sein. Stu-

 denten können eine Anzahl von Lehrveranstaltungen besuchen, für die Noten vergeben

 werden. Die Durchschnittsnote ist eine interessante Eigenschaft, die sich bei jedem neu-

 en Schein verändert. Bei Eingabe eines neuen Scheins mit Hilfe einer Methode soll in

 einer weiteren Methode der neue Durchschnitt automatisch berechnet werden und je-

 derzeit abrufbar sein. Der neu berechnete Notendurchschnitt und die neu berechnete

 Anzahl der Lehrveranstaltungen sollen nicht direkt von „außen“ manipulierbar sein,

 diese Daten legt man am besten als private an. Über Read-only-Methoden kann man

184

9 Einführung in die OOP mit C++

 auf sie zugreifen. Zu Beginn muss für jeden Studenten noch die bisher besuchte Anzahl

 der Lehrveranstaltungen und der bis dahin geltende Notendurchschnitt über Methoden

 eingegeben werden. Für das aktuelle Problem genügt mir der Student „Klever“ und die

 Bearbeitung einiger neuen Scheine. Aber wenn erstmal die Klasse student implementiert

 ist, kann ich später in einem anderen Programm (mit einer anderen main()-Funktion)

 wieder darauf zurückgreifen, um ein ähnliches Problem zu lösen.

Für den OO-Ansatz steht also die Entwicklung einer Klasse (oder mehrerer) im Mittel-

punkt, die losgelöst von einem „Hauptprogramm“ bereitgestellt, d. h. entwickelt wird. Die

Eigenschaften der Objekte werden dabei als Daten der Klasse implementiert. Durch sie ist

ein bestimmter Zustand eines Objektes definiert. Die Methoden der Klasse operieren mit

den Daten eines Objekts und überführen das Objekt in einen anderen Zustand. Diese Me-

thoden unterscheiden sich von den übrigen globalen Funktionen dadurch, dass sie innerhalb

der Klasse definiert werden und eng an die Objekte der Klasse gebunden sind. Die Zu-

griffsmodifizierer public und private (es gibt auch noch protected,  Kap. 9.11) definieren die Schnittstelle der Klasse nach außen. Nur public-Elemente sind von außerhalb der Klasse sichtbar. Durch das „Verbergen“ von private-Elementen („information hiding“, auch

„Kapselung“ genannt) wird verhindert, dass ein Anwender der Klasse diese Daten direkt

manipulieren kann, was bei komplex aufgebauten Klassen zu inkonsistenten und unüber-

sichtlichen Objektzuständen führen kann. Dadurch wird die Software sicherer und robuster

gegen Fehler. Besonders bei größeren Software-Projekten erweist sich dieser Zugriffs-

schutz als sehr nützlich: Ein Anwender einer Klasse muss sich nicht mit den internen Ein-

zelheiten der Klasse beschäftigen und ihre Implementation verstehen, er muss nur mit der

Schnittstelle der Klasse umgehen.

Das Verbergen von Daten gehört zu den Grundprinzipien der OOP.

Aus dem beschriebenen Beispiel wird deutich, dass die OOP einen gewissen „Overhead“

aufweist. Im Mittelpunkt steht nicht die Programmentwicklung für die zielgerichtete Lö-

sung eines Einzelproblems, sondern die Entwicklung der Klasse(n), die sehr viel allgemei-

ner die Eigenschaften der Objekte (Klassendaten) und Manipulationsmöglichkeiten dieser

Eigenschaften (Klassenmethoden) beschreibt, die vielleicht gar nicht alle im aktuellen

Problem gebraucht werden. Die OOP wird daher hauptsächlich in größeren Projekten

(>1000 Codezeilen) eingesetzt, bei denen häufiger auf zuvor erstellte Klassen zurückgegrif-

fen wird. Die Wiederverwendbarkeit von Code durch wiederholten Einsatz einmal entwi-

ckelter Klassen und durch die Ableitung neuer Klassen von bereits bestehenden („Verer-

bung“) sind wesentliche Merkmale der OOP.

Die wichtigsten Fähigkeiten der OOP sind:

 Kapselung und das Verbergen von Daten

 Polymorphie

 Vererbung

Polymorphie und Vererbung werden in den nächsten Abschnitten vorgestellt.

9.3 Konstruktoren und Destruktoren

185

9.3 Konstruktoren und Destruktoren

Wie wir wissen, wird durch die Deklaration einer gewöhnlichen Variablen, z. B

float x; // Reservierung von 4 Bytes

der erforderliche Speicher zur Aufnahme eines entsprechenden Datums reserviert. In

C/C++ ist es möglich, die Variable bei der Deklaration mit einem bestimmten Wert zu

initialisieren:

float x = 4.56;

Um Objekte einer Klasse zu erzeugen, schreiben wir z. B.

class student s1, s2; // Reservierung von 2 x 32 Bytes

 s1 und s2 sind „Instanzen“ der Klasse student. Der Begriff „ Instanz oder Objekt einer Klasse“ entspricht dem Begriff „Variable eines bestimmten gewöhnlichen Datentyps“, z. B.

 x mit Datentyp float.

Mit der obigen Deklaration haben die erzeugten Instanzen (Objekte) noch keinerlei Daten.

Diese erhalten sie entweder über direkte Zuweisungen, sofern sie public sind, z. B.

s1.mat_nr = 345678;

strcpy_s(s2.name, "weisalles");

oder durch Aufruf von public Klassenmethoden, z. B:

s1.set_notenschnitt(2.4);

Auch Instanzen einer Klasse können bei ihrer Deklaration initialisiert werden. Dies ge-

schieht über die sog. Konstruktoren der Klasse. Ein Konstruktor ist eine spezielle Methode,

die keinen Datentyp besitzt, also auch keinen Rückgabewert, und stets den Namen der

Klasse hat. Konstruktoren befinden sich grundsätzlich im public-Bereich der Klasse. Wir

führen einen Konstruktor in die Klasse student ein:

class student

{

public:

student(char *nachname, long int nummer=0) // Konstruktor

{

strcpy_s(name, nachname);

mat_nr = nummer;

anzahl_lv = 0;

noten_mittel = 0;

}

char name[20];

......

......

Konstruktoren werden automatisch immer beim Anlegen von Instanzen im Hauptprogramm

aufgerufen. Es gibt zwei mögliche Schreibweisen; für unser Beispiel lauten diese:

186

9 Einführung in die OOP mit C++

 explizit: class student s1 = student ("Klever", 123456);

 implizit: class student s1("Klever", 123456);

In der Praxis benutzt man meistens die kürzere implizite Form.

Nachdem wir einen parametrisierten Konstruktor in unserer Klasse eingeführt haben, würde

unsere alte Deklaration

class student s1; //keine Parameter

nun zu einer Fehlermeldung führen, da der neue Konstruktor nicht zu dieser Deklaration

passt. Es ist jedoch möglich mit Hilfe der Funktionsüberladung mehrere Konstruktoren in

die Klassendefinition einzubauen. Bei der Bildung eines Objekts wird dann automatisch

derjenige Konstruktor benutzt, der „passt“.

Der Standardkonstruktor

Ein Konstruktor ohne Parameter heißt Standardkonstruktor. Mit Standardkonstruktoren

werden nicht-initialisierte Objekte der Klasse erzeugt. Enthält eine Klasse keinen Konstruk-

tor (wie unser erstes Beispiel), wird ein nicht sichtbarer Standardkonstruktor benutzt, der

nichts tut. Im obigen Beispiel ist das der Konstruktor

student() {} // Default-Konstruktor

Diesen müssten wir neben unserem parametrisierten Konstruktor nun explizit zusätzlich in

unsere Klasse aufnehmen, wenn wir sowohl initialisierte als auch nicht-initialisierte Objek-

te erzeugen wollen, da der unsichtbare Default-Konstruktor nicht mehr angesprochen wer-

den kann, sobald ein Konstruktor in der Klasse explizit definiert wird.

Standardkonstruktoren können aber auch vollständig mit Vorgabewerten ausgestattet sein,

z. B.

//Konstruktor mit Vorgabe:

student(char *nachname = "noname", long int nummer = -999999)

{

strcpy_s(name, nachname);

mat_nr = nummer;

}

oder innerhalb ihres Funktionskörpers eine Initialisierung der Elementdaten vornehmen,

z. B.

student() // Konstruktor

{

strcpy_s(name, "noname");

mat_nr = -999999;

}

Wir wollen die unterschiedlichen Möglichkeiten der Konstruktor-Aufrufe an einer sehr

einfach aufgebauten Klasse punkt demonstrieren:

9.3 Konstruktoren und Destruktoren

187

 Programmbeispiel: Konstruktor1

// BSP_9_3_1 --- Sichtbarmachen der Konstruktor-Aufrufe ---

#include <iostream>

using namespace std;

class punkt

{

public:

punkt()

// Default Konstruktor

{ cout << "***Default-Konstruktor aufgerufen" << endl;}

punkt(int x, int y, int z) // parametrisierter K.

{

cout << "***Konstruktor mit Initialisierung aufgerufen"

<< endl;

_x = x;

_y = y;

_z = z;

}

punkt(int x, int y)

// teil-parametrisierter K.

{

cout << "***Konstruktor mit z=0 aufgerufen"

<< endl;

_x = x;

_y = y;

_z = 0;

}

punkt(int z)

// teil-parametrisierter K.

{

cout << "***Konstruktor mit x=y=0 aufgerufen"

<< endl;

_x = 0;

_y = 0;

_z = z;

}

void ausgabe()

{

cout << "x-Koordinate: " << _x << endl

<< "y-Koordinate: " << _y << endl

<< "z-Koordinate: " << _z << endl;

}

private:

int _x,_y,_z;

};

//---

int main(void)

{

class punkt p1;

188

9 Einführung in die OOP mit C++

class punkt p2(2, 5, 3);

class punkt p3(6, 4);

class punkt p4(100);

cout << endl << "Ausgabe p1:" << endl;

p1.ausgabe();

cout << endl << "Ausgabe p2:" << endl;

p2.ausgabe();

cout << endl << "Ausgabe p3:" << endl;

p3.ausgabe();

cout << endl << "Ausgabe p4:" << endl;

p4.ausgabe();

return 0;

}

Das Programm erzeugt die Ausgabe:

***Default-Konstruktor aufgerufen

***Konstruktor mit Initialisierung aufgerufen

***Konstruktor mit z = 0 aufgerufen

***Konstruktor mit x = y = 0 aufgerufen

Ausgabe p1:

x-Koordinate: 4285524

y-Koordinate: 4359664

z-Koordinate: 1

Ausgabe p2:

x-Koordinate: 2

y-Koordinate: 5

z-Koordinate: 3

Ausgabe p3:

x-Koordinate: 6

y-Koordinate: 4

z-Koordinate: 0

Ausgabe p4:

x-Koordinate: 0

y-Koordinate: 0

z-Koordinate:100



Je nach Übereinsimmung der Parameter wird ein passender Konstruktor beim Anlegen der

Objekte ausgewählt. Die Instanz p1 wird nicht initialisiert, deshalb enthält die Ausgabe von

 p1 Zufallswerte.

Der Kopierkonstruktor

Im „Hauptprogramm“ (main()- Funktion) lässt sich ein neues Objekt aus einer bestehenden

Instanz einer Klasse einfach durch Kopieren erzeugen, z. B.

9.3 Konstruktoren und Destruktoren

189

int main(void)

{

class student s1("Klever", 123456);

class student s2 = s1; //Instanzbildung durch Kopieren

// alternative Schreibweise: class student s2(s1);

..........

Damit wird eine Kopie der Instanz s1 angelegt, d. h. s2 enthält die gleichen Daten wie s1, unabhängig davon, mit welchem Konstruktor s1 erzeugt wurde. Natürlich sind die Klassendaten von s2 anschließend veränderbar.

Die Instanzenbildung durch Kopieren wird ermöglicht mit Hilfe eines, in jeder Klasse stets

vorhandenen unsichtbaren, Kopierkonstruktors, der eine bitweise Kopie der betreffenden

Instanz erzeugt. In unserer Klasse student ist er wie folgt definiert:

class student

{

 public:

......... // evtl. andere Konstruktoren

student(const student &ursprung_student) // Kopierk.

{

strcpy_s(name,ursprung_student.name);

mat_nr = ursprung_student.mat_nr;

anzahl_lv = ursprung_student.anzahl_lv;

noten_mittel = ursprung_student.noten_mittel;

}

...............

Der Parameter des Konstruktors ist eine Referenz auf das zu kopierende Objekt ur-

 sprung _ student. Bei einem Aufruf durch die Anweisung im Hauptprogramm

class student s2 = s1;

wird &s1 als Parameter übergeben und auf &ursprung_student abgebildet. Damit das Ori-

ginal bei der Referenzübergabe nicht verändert werden kann, ist sicherheitshalber noch das

Schlüsselwort const dem Parameter vorangestellt.

Durch die Definition eines explizit aufgeführten Kopierkonstruktors in der Klasse kann

man auf den ausgeführten Code Einfluss nehmen.

Beachte: class abc x1,x2,x3;

...

class abc x4=x1; // Kopierkonstruktor, neues Objekt

...

x3 = x1;

// Objektkopie, kein Kopierkonstruktor,

// kein neues Objekt

190

9 Einführung in die OOP mit C++

 Programmbeispiel: Kopierkonstruktor

// BSP_9_3_2 --- Kopierkonstruktor ---

#include <iostream>

using namespace std;

class punkt

{

public:

punkt(int x, int y, int z)

// Konstruktor

{

cout << "Konstruktor mit Initialisierung aufgerufen"

<< endl ;

_x = x ;

_y = y ;

_z = z ;

}

punkt (punkt &original_punkt)

// Kopierkonstruktor

{

cout

<< "Kopierkonstruktor aufgerufen" << endl;

_x = original_punkt._x;

_y = original_punkt._y ;

_z = original_punkt._z ;

}

void ausgabe()

{

cout << "x-Koordinate: " << _x << endl

<< "y-Koordinate: " << _y << endl

<< "z-Koordinate: " << _z << endl;

}

private:

int _x, _y, _z ;

};

//--

int main(void)

{

class punkt p1(2, 5, 3);

class punkt p2 = p1;

cout << endl << "Ausgabe p2: " << endl;

p2.ausgabe();

return 0;

}

Programmausgabe:

Konstruktor mit Initialisierung aufgerufen

Kopierkonstruktor aufgerufen

9.3 Konstruktoren und Destruktoren

191

Ausgabe p2:

x-Koordinate: 2

y-Koordinate: 5

z-Koordinate: 3



Destruktoren

Ein Objekt wird nach seiner Erzeugung durch den Konstruktor bis zu seinem Existenzende

vom Programm verwaltet. Hört das Objekt auf zu existieren, ruft das Programm automa-

tisch den Destruktor auf. Der Destruktor ist eine spezielle Klassenmethode, die dafür sorgt,

dass nach der Auflösung eines Objekts keine „Speicherleichen“ übrig bleiben. Dies ist vor

allen Dingen bei der Verwendung von dynamischem Speicher notwendig. Dynamischer

Speicher, der mit new erzeugt wurde, bleibt bis zum Programmende belegt. Dieser Speicher

kann bei Bedarf mit delete wieder freigegeben werden. Diese Funktion übernimmt dann der

Destruktor für den vom Objekt allokierten Speicher.

Enthält die Klassendefinition keinen expliziten Destruktor, so übernimmt ein Default-

Destruktor diese Aufgabe. Wäre dieser Destruktor in unserem Beispiel sichtbar, so hätte er

das Aussehen:

class student

{

public:

…....

~student() {} // Standard-Destruktor

…...

Destruktoren besitzen keine Parameter und tragen den Klassennamen, dem das „~“-Zeichen

vorangestellt ist.

Um den automatischen Aufruf von Destruktoren in einem Programmbeispiel sichtbar zu

machen, verwenden wir wieder unsere Klasse punkt. Dabei nutzen wir aus, dass in einem

C++-Programm die Lebensdauern von lokalen Variablen und Instanzen auf denjenigen

{...}-Block beschränkt bleiben, in dem sie deklariert wurden. (Bei Beendigung des Pro-

gramms wird zwar auch der Destruktor aufgerufen, wir hätten aber diesen Aufruf nicht

mehr sichtbar machen können!)

 Programmbeispiel: Destruktoraufruf

// BSP_9_3_3 --- Destruktoren ---

#include <iostream>

using namespace std;

class punkt

{

public:

punkt(int x, int y, int z)

{

cout

<< "Konstruktor mit Initialisierung aufgerufen"

<< endl;

192

9 Einführung in die OOP mit C++

_x = x;

_y = y;

_z = z;

}

void ausgabe()

{

cout

<< "x-Koordinate: " << _x << endl

<< "y-Koordinate: " << _y << endl

<< "z-Koordinate: " << _z << endl;

}

~punkt() //Destruktor

{ cout << "Destruktor aufgerufen" << endl; }

private:

int _x, _y, _z;

};

//---

int main(void)

{

{

cout << "Subblock A" << endl;

class punkt p1(13, -7, 65);

cout << "Ausgabe p1:" << endl;

p1.ausgabe();

} // Lebensende von p1

getchar(); // Pause, weiter mit <Enter>

{

cout << endl << "Subblock B" << endl;

class punkt p1(2, 5, 3);

cout << "Ausgabe p1:" << endl;

p1.ausgabe();

} // Lebensende von p1

return 0;

}

Das Programm gibt aus:

Subblock A

Konstruktor mit Initialisierung aufgerufen

Ausgabe p1:

x-Koordinate: 13

y-Koordinate: -7

z-Koordinate: 65

Destruktor aufgerufen

Subblock B

Konstruktor mit Initialisierung aufgerufen

Ausgabe p1:

x-Koordinate: 2

9.4 Dateiorganisation

193

y-Koordinate: 5

z-Koordinate: 3

Destruktor aufgerufen



9.4 Dateiorganisation

Bisher haben wir in unseren Beispielprogrammen mit nur einer einzigen Quelldatei gearbei-

tet. In der Praxis legt man bei größeren Projekten jedoch häufig getrennte Dateien für die

Klassen an und arbeitet mit Include-Dateien, was die Verwendung einer Klasse in verschie-

denen Hauptprogrammen vereinfacht. Treten längere Methoden in der Klasse auf, lagert

man die Implementation der Methoden in einer separaten Datei aus und deklariert nur den

Prototyp der Methode in die Klassendefinition. Damit ergibt sich eine Dreiteilung der Da-

teistruktur für den Quellcode:

1. Header-Datei für die Klassendeklaration: <classname>.h

class <classname>

{

Datenstruktur der Klasse

Prototypen der Methoden

inline Methoden

};

2. Datei für die Implementationen der ausgelagerten Klassenmethoden:

<classname>.cpp

#include "classname.h"

using namespace std;

<Code der ausgelagerten Methoden>

3. Hauptprogramm: <programmname>.cpp

#include

#include

#include "classname.cpp"

<globale Funktionen>

.........

int main (void)

{

.....

.....

}

Die Syntax bei Include-Angaben ist unterschiedlich für Include-Dateien des Compilers und

selbstgeschriebene Include-Dateien. Letztere werden mit " " geschrieben; sie liegen ent-

weder im aktuellen Verzeichnis oder werden mit vorgesetzten Dateipfad angegeben:

#include < c++_Datei >

#include "eigene_datei"

194

9 Einführung in die OOP mit C++

Das Schlüsselwort inline vor einigen Klassenmethoden ist optional und ein Hinweis für den

Compiler, den Code dieser Funktionen wie Makros direkt an die Positionen ihres Aufrufs

im Quellcode einzumontieren, um damit den umständlicheren Mechanismus eines Unter-

programmaufrufs zu umgehen. Dies ist sinnvoll, wenn es sich um sehr kleine Klassenme-

thoden handelt, die den Gesamtcode nur unwesentlich verlängern, dafür jedoch das Pro-

gramm schneller machen. Der Compiler behandelt Klassenmethoden, die vollständig inner-

halb der Klassendeklaration definiert werden, von sich aus als inline ohne besondere Kenn-

zeichnung.

Erfolgt die Implementierung der Klassenmethode außerhalb der Klassendeklaration, z. B. in

einer separaten Datei classname.cpp, so muss der Name der Methode mit dem „Zugehörig-

keitsoperator“ :: an den Klassennamen gebunden werden,

<typ> <classname>::<methode> (<parameter>)

z. B.: void student::neuer_schein (float note)

{

......

}

Bei der Aufteilung in mehrere Quellcode-Module gibt es unterschiedliche Möglichkeiten.

Entscheidend ist, dass die mit #include einkopierten Programmteile zu einem Gesamt-

code führen, der dem unaufgeteilten Originalprogramm entspricht, immer unter Beachtung

der Regeln:

 jeder eingesetzte Name muss vor der ersten Benutzung deklariert worden sein

 es dürfen keine Doppeldeklarationen vorkommen.

Als Beispiel einer möglichen Dateistruktur wählen wir unser Studentenproblem:

 Programmbeispiel: Dateistruktur

// 1.Datei: student.h **Definition der Klasse

class student

{

public:

char name[20];

 long int mat_nr;

student(char *nachname, long int nummer); // Konstruktor

void set_anzahl(int anzahl)

{ anzahl_lv = anzahl; }

void set_notenschnitt(float schnitt)

{ noten_mittel = schnitt; }

void neuer_schein(float note); // Prototyp

int zeige_anzahl()

{ return anzahl_lv; }

float zeige_notenschnitt()

{ return noten_mittel;}

private:

9.4 Dateiorganisation

195

int anzahl_lv;

float noten_mittel;

};

// 2.Datei: student.cpp ** Implementation einiger

// Klassenmethoden

#include "student.h"

void inline student::neuer_schein(float note)// Inline Funk.

{

float sum = noten_mittel * anzahl_lv;

noten_mittel = (sum + note) / (anzahl_lv + 1);

anzahl_lv++;

}

student::student(char *nachname, long int nummer)//Konstruktor

{

strcpy_s(name, nachname);

mat_nr = nummer;

anzahl_lv = 0;

noten_mittel = 0;

}

// 3.Datei: Hauptprogramm BSP_9_4_1

#include <iostream>

#include <iomanip>

using namespace std;

#include "student.cpp"

int main(void)

{

class student s1("Klever", 123456);

s1.set_anzahl(4);

s1.set_notenschnitt(1.6);

cout << fixed << setprecision(1)

<< s1.name << " hat bisher " << s1.zeige_anzahl()

<< " Lehrveranstaltungen besucht " << endl

<< "bisheriger Notendurchschnitt: "

<< s1.zeige_notenschnitt() << endl << endl;

s1.neuer_schein(2.0);

s1.neuer_schein(1.5);

cout << s1.name << " hat nun " << s1.zeige_anzahl()

<< " Lehrveranstaltungen besucht " << endl

<< "neuer Notendurchschnitt: "

<< s1.zeige_notenschnitt() << endl;

return 0;

}



Eine weitere Variante besteht darin, für eine Klasse nur eine Headerdatei für Klassendekla-

ration und anschließende Definition der Klassenmethoden anzulegen, die mit einer include-

196

9 Einführung in die OOP mit C++

Anweisung eingebunden wird. Da wir in den folgenden Übungsbeispielen nur kleine Pro-

jekte vorstellen, werden wir meistens nur mit einer einzigen Quelldatei arbeiten, in der sich

alle oben beschriebenen Module befinden.

9.5 Friend Funktionen und -Klassen

C++-Klassen unterstützen die OOP-Forderung des Verbergens von Daten. Das heißt, eine

Veränderung von privaten Daten ist nur mit Hilfe von Elementfunktionen möglich. Dieser

kontrollierte Zugriff schließt bei richtiger Anwendung der Elementfunktionen Missbrauch

und Datenverlust aus. In einigen Fällen ist es aber dennoch nötig, einer klassenfremden

Funktion den Zugriff auf private-Daten zu gewähren. Eine solche Funktion nennt man

 friend-Funktion. Sie wird am häufigsten eingesetzt, wenn eine Funktion auf zwei separate

Klassen gleichzeitig zugreifen muss. Da in diesem Fall eine Funktion nicht Elementfunk-

tion beider Klassen sein kann, wird sie eigenständig als friend beider Klassen deklariert.

Zur Demonstration einer friend-Funktion entwerfen wir ein neues Beispiel mit zwei Klas-

sen und einer globalen friend-Funktion, die auf den private-Daten beider Klassen arbeitet:

 Beispielprogramm: Friend-Funktion

// BSP_9_5_1

#include <iostream>

using namespace std;

class kreis

//1.Klasse

{

public:

kreis (float mittel_x, float mittel_y,

 float radius);

//Konstruktor

void print_kreis();

float flaeche();

float umfang();

friend void punktlage(class kreis kk, class punkt pp);

private:

float mx, my, r;

};

class punkt

//2.Klasse

{

public:

punkt(float px, float py);

void verschiebe(float delta_x, float delta_y);

void print_punkt();

friend void punktlage(kreis kk, punkt pp);

private:

float x,y;

};

9.5 Friend Funktionen und -Klassen

197

inline kreis::kreis(float mittel_x, float mittel_y,

float radius)

{

mx = mittel_x;

my = mittel_y;

r = radius;

}

inline void kreis::print_kreis()

{

cout

<< "Mittelpunkt x-Koordinate: " << mx << endl

<< "Mittelpunkt y-Koordinate: " << my << endl

<< "Radius: " << r << endl;

}

inline float kreis::flaeche()

{ return M_PI * r * r; }

inline float kreis::umfang()

{ return 2 * M_PI * r; }

inline punkt::punkt(float px, float py)

{

x = px;

y = py;

}

inline void punkt::verschiebe(float delta_x, float delta_y)

{

x = x + delta_x;

y = y + delta_y;

}

inline void punkt::print_punkt()

{

cout << "x-Koordinate: " << x << endl;

cout << "y-Koordinate: " << y << endl;

}

// globale Funktion

void punktlage(kreis kk, punkt pp)

{

float diff_x, diff_y;

diff_x = kk.mx - pp.x;

diff_y = kk.my - pp.y;

if((diff_x*diff_x + diff_y*diff_y)<= kk.r * kk.r)

cout << "Der Punkt liegt innerhalb des Kreises" << endl;

else

cout << "Der Punkt liegt ausserhalb des Kreises" << endl;

}

//--

int main(void)

{

198

9 Einführung in die OOP mit C++

class kreis k(1.2, 2.5, 5.4);

class punkt p(6.4, 3.8);

cout << "Punkt-Daten" << endl;

p.print_punkt();

cout << "Kreis-Daten" << endl;

k.print_kreis();

punktlage(k, p);

p.verschiebe(-1.8, 4.6);

cout << endl << "verschobene Punkt-Daten" << endl;

p.print_punkt();

punktlage(k, p);

return 0;

}

Das Programm gibt aus:

Punkt-Daten

x-Koordinate: 6.4

y-Koordinate: 3.8

Kreis-Daten

Mittelpunkt x-Koordinate: 1.2

Mittelpunkt y-Koordinate: 2.5

Radius: 5.4

Der Punkt liegt innerhalb des Kreises

verschobene Punkt-Daten

x-Koordinate: 4.6

y-Koordinate: 8.4

Der Punkt liegt ausserhalb des Kreises



Bei der Erzeugung einer friend-Funktion muss das Schlüsselwort friend im Prototyp, der sich in der Klassendefinition befindet, eingesetzt werden. Es darf aber nicht in der Funkti-onsdefinition verwendet werden, die außerhalb der Klassendefinition platziert ist.

Grundsätzlich sollte man mit friend-Deklarationen sparsam und überlegt umgehen, weil

damit ja die Kapselung von Daten als Grundprinzip der OOP teilweise wieder „durchlö-

chert“ wird.

Weitere Beispiele für friend-Funktionen werden wir bei der Operatorüberladung (

Kap. 9.7) kennenlernen.

9.6 Überladen von Funktionen

In C++ können Funktionen und Operatoren überladen werden. Während die Operatorüber-

ladung grundsätzlich an die Existenz von Klassen gebunden ist ( s. Kap. 9.7), ist die

Funktionsüberladung keine spezielle Eigenschaft von Klassen, also auch ohne Klassenbil-

dung einsetzbar. Erstmals im Kap. 9.3, bei der Vorstellung unterschiedlich parametrisierter

Konstruktoren der Klassen, sind wir auf dieses Thema gestoßen. Hier soll nun allgemein

auf die Möglichkeit des Überladens von Funktionen eingegangen werden.

9.6 Überladen von Funktionen

199

Eine Funktion ist charakterisiert durch ihren Namen, den Typ ihres Rückgabewertes und

durch die Funktionsparameter. Unter der Signatur einer Funktion versteht man die Kombi-

nation von Funktionsnamen und der Anordnung der Parameter nach Anzahl und Typ:

Signatur einer Funktion:

Name der Funktion + Reihenfolge und Typen der Parameter

Funktionen unterschiedlicher Signatur werden von C++ als unterschiedliche Funktionen

behandelt, können also nebeneinander existieren. Unterschiedliche Signaturen entstehen,

wenn Funktionen gleichen Namens jedoch mit unterschiedlicher Parameteranordnung

definiert werden. Bei Funktionsaufruf wählt der Compiler diejenige Funktion aus, die von

der Signatur her „passt“. Überladene Funktionen müssen keine Klassen-Methoden sein!

Das folgende Beispiel soll dies verdeutlichen.

 Beispiel: Demonstration Überladung von Funktionen

// BSP_9_6_1

#include <iostream>

using namespace std;

int demo(int a, int b, int c)

{

return (a + b + c);

}

int demo(int a, int b)

{

return a * b;

}

float demo(int a)

{

return 1.0 / a;

}

int main(void)

{ cout << "demo(20,30,60) : " << demo(20, 30, 60) << endl;

cout << "demo(20,30)

: " << demo(20, 30) << endl;

cout << "demo(20)

: " << demo(20) << endl;

return 0;

}

Ausgabe:

demo(20, 30, 60) : 110

demo(20, 30) :600

demo(20) :0.05



Die Funktionsüberladung in diesem Beispiel würde wohl eher zur Verwirrung als zur Klar-

heit beitragen und man hätte in der Praxis für die völlig unterschiedlichen Algorithmen

200

9 Einführung in die OOP mit C++

auch unterschiedliche Funktionsnamen gewählt. Sinnvoll eingesetzt kann sie jedoch erheb-

lich zur besseren Lesbarkeit eines Programms beitragen, z. B. bei der Aufgabe, von unter-

schiedlich vielen Parametern durch eine Funktion das Maximum zu wählen:

int max(int i1, int i2, int i3, int i4); //Prototyp 1

int max(int i1, int i2, int i3);

//Prototyp 2

int max(int i1, int i2);

//Prototyp 3

int max(int i1);

//Prototyp 4

oder Vorgabewerte von den überladenen Funktionen bereitzustellen, falls nicht alle Parame-

ter angegeben wurden, z. B.

float bearbeite_punkt (float x, float y, float z)

//1.Funktion

{

cout << "Der Punkt liegt im 3-dim. Raum" << endl;

.....

}

float bearbeite_punkt (float x, float y) //2.Funkt. überladen

{

float z = 0;

cout << "Der Punkt liegt in der x-y-Ebene" << endl;

......

}

Es ist zu beachten, dass Signaturen nicht unterschiedlich sind, wenn die Typen der Parame-

ter durch automatisches casten gewandelt werden können. Das ist z. B. bei den „typenver-

träglichen“ Zahlentypen von float- und int-Typen zu beachten:

 Beispiel: Überladen von Funktionen

// BSP_9_6_2

#include <iostream>

using namespace std;

int multipliziere(int a, int b)

{ return a * b; }

int multipliziere(int a, int b, int c)

{ return a * b * c; }

float multipliziere(float a, float b)

{ return a * b; }

int main(void)

{

int a = 5, b = 4, c = 3;

float x = 2.4, y = 1.6, z = 0.8;

cout << multipliziere(a, b) << endl;

cout << multipliziere(a, b, c) << endl;

cout << multipliziere(x, y) << endl;

//cout << multipliziere(a, z) << endl; Fehler, mehrdeutig!

9.7 Überladen von Operatoren

201

cout << multipliziere(a, b, z) << endl; //!!ok!!

return 0;

}

Das Programm gibt aus:

20

60

3.84

0



Die Überladung von Funktionen wird häufig bei Konstruktoren in Klassen angewandt, um

erzeugte Objekte mit einer unterschiedlichen Anzahl von Parametern zu versorgen, ( vgl.

auch Kap. 9.3), z. B.

class bankkunde

{

public:

bankkunde() {};

// Default-Konstruktor

bankkunde(char *name);

// ueberladen

bankkunde(char *name, int kontonr); // ueberladen

bankkunde(char *name, int kontonr, float kontostand);

// ueberladen

...

Damit sind z. B. die folgenden Instanzbildungen im Hauptprogramm möglich:

class bankkunde k1("Reich", 987654, 15000.45);

class bankkunde k2;

class bankkunde k3("Meier", 2056943);

class bankkunde k4("Schneider");

Viele Funktionen der Laufzeitbibliothek von C++ sind überladen und können deshalb sehr

flexibel eingesetzt werden.

9.7 Überladen von Operatoren

Die Operatorüberladung ist ein weiteres Beispiel für die C++-Polymorphie. Mit Hilfe der

Operatorüberladung kann man Objektoperationen zu einem verständlicheren ußeren

verhelfen. Funktionspolymorphie bedeutet, dass mehrere Funktionen den gleichen Namen

haben können, solange sie über unterschiedliche Signaturen (Argumentenlisten) verfügen.

Die Funktionspolymorphie bietet die Möglichkeit, verschiedene Datentypen möglichst

einheitlich mit einer Grundfunktion zu bearbeiten. Bei der Operatorüberladung wird dieses

Konzept auf Operatoren übertragen. Es ist so möglich, einem C++-Operator verschiedene

Bedeutungen zuzuweisen. Dies ist bei Standardtypen des Compilers bereits realisiert. Zum

Beispiel wird das *-Zeichen einerseits als Multiplikationszeichen verwendet, anderseits als

Indirektionsoperator, um den Wert, der unter einer Adresse abgespeichert ist, anzuzeigen.

202

9 Einführung in die OOP mit C++

In C++ kann die Operatorüberladung auch auf anwenderdefinierte Typen ausgeweitet wer-

den. Damit ein Operator überladen werden kann, muss er in einer Operatorfunktion dekla-

riert werden.

operator(Argumentenliste)

wobei  für das Zeichen eines gültigen C++-Operator (z. B. + , – , < , >=) steht.

Die Operatorüberladung ist grundsätzlich an Klasseninstanzen gebunden. Man kann also

nicht dem +-Operator bei dem Datentyp int eine neue Bedeutung geben (int ist nicht als

Klasse angelegt).

Operatorfunktionen können entweder innerhalb von Klassen als Elementfunktion oder

außerhalb von Klassen als globale Funktion eingeführt werden:

Schreibweise:

Aufruf als Elementfunktion:

Aufruf als globale Funktion:

a  b

a. operator(b)

operator(a, b)

Bei Elementfunktionen ist der 1. Operand identisch mit der aktuellen Instanz, so dass ein

Argument weniger auftritt als bei globalen Funktionen. Operatorfunktionen innerhalb von

Klassen dürfen maximal nur einen Parameter besitzen (keinen, falls ein unärer Operator

vorliegt).

Wir beginnen mit einem Übungsbeispiel, zunächst ohne Operatorüberladung.

Das Ausgangsproblem

 Programmbeispiel: Binär-Byte Version 1

Aufgabe: Es ist eine Klasse zur Speicherung und Bearbeitung von 1-Byte-Daten zu entwi-

ckeln, die in binärer Form dargestellt werden.

Ansatz: Die Klasse soll „binbyte“ heißen, die Objekte sind 1-Byte-Daten (8 Bit Länge) in

binärer Form,

z. B. 11001010.

Als private Daten soll der Bytestring (char string[9]) und der zugehörige dezimale Wert (int decwert) geführt werden. Ein Konstruktor initialisiert neu angelegte Objekte mit dem

Wert 0, bzw. mit „00000000“.

Die folgenden public Elementfunktionen sollen bereitgestellt werden:

void input_byte()

Eingabe von 8 Bits durch ausschließliche

Annahme der Zeichen „0“ und „1“

char *get_byte()

Lesen der Bitfolge eines Bytes

int get_decwert()

Lesen des Dezimalwertes

void add_byte(binbyte &ein_byte)

zum aktuellen Byte „ein_byte“ hinzuaddieren

void sum(binbyte &byte1, binbyte

aktuelles Byte enthält die Summe aus „byte1“

byte2)

und „byte2“

9.7 Überladen von Operatoren

203

Die beiden Wandel-Routinen void string_to_dec() und void dec_to_string() werden nur innerhalb einiger Klassenmethoden aufgerufen, sie werden nicht außerhalb der Klasse

benötigt und daher als private angelegt.

Deklarationen und Definitionen werden weitgehend voneinander getrennt, indem der Code

der Methoden ausgelagert wird.

Lösung:

// BSP_9_7_1

#include <iostream>

#include <cstdio>

#include <conio.h> // fuer _getch() (oder getch())

using namespace std;

class binbyte

{

public:

binbyte();

//Konstruktor

void input_byte();

char* get_byte()

{ return _string; }

int get_decwert()

{ return decwert; }

void add_byte(const binbyte &ein_byte);

void sum(const binbyte &byte1, const binbyte &byte2);

private:

char _string[9];

int decwert;

void string_to_dec();

void dec_to_string();

};

// Klassenmethoden

binbyte::binbyte()

//Konstruktor

{

strcpy_s(_string, "00000000");

decwert = 0;

}

void binbyte::input_byte()

{

int i = 0;

unsigned char c;

do

{

c = _getch();

// oder: getchar()

if((c =='0')||(c == '1'))

{

204

9 Einführung in die OOP mit C++

cout << (c - '0'); // Echo für den Benutzer

_string[i] = c;

i++;

}

_string[8] = '\0'; // erzeugten String abschliessen

}

while(i<8);

cout << endl;

string_to_dec();

}

void binbyte::string_to_dec()

{

decwert = 0;

for(int i = 0; i < 8;i++)

decwert = decwert * 2 + (_string[i] - '0');

}

void binbyte::add_byte(const binbyte &ein_byte)

{

decwert = (decwert + ein_byte.decwert) % 256;

dec_to_string();

}

void binbyte::sum(const binbyte &byte1, const binbyte &byte2)

{

decwert = (byte1.decwert + byte2.decwert) % 256;

dec_to_string();

}

void binbyte::dec_to_string()

{

int teiler = 128, wert = decwert;

for(int i = 0; i < 8; i++)

{

_string[i] = '0' + wert / teiler;

wert = wert % teiler;

teiler = teiler / 2;

}

_string[8] = '\0'; // ordentlich abschließen

}

int main(void)

{

class binbyte b1, b2, b3;

cout << "b3: " << b3.get_byte() << endl;

cout << endl << "Eingabe b1: ";

b1.input_byte();

9.7 Überladen von Operatoren

205

cout << endl << "Eingabe b2: ";

b2.input_byte();

cout << "Es wurde eingegeben:" << endl;

cout << "b1: " << b1.get_byte()

<< " Dezimalwert: " << b1.get_decwert() << endl

<< "b2: " << b2.get_byte()

<< " Dezimalwert: " << b2.get_decwert() << endl

<< endl;

cout << "b2 zu b1 addieren:" << endl;

b1.add_byte(b2);

cout << "b1: " << b1.get_byte()

<< " Dezimalwert: " << b1.get_decwert() << endl

<< "b2: " << b2.get_byte()

<< " Dezimalwert: " << b2.get_decwert() << endl

<< endl;

cout << "Die Summe von b1 und b2 ist:" << endl;

b3.sum(b2,b1);

cout << "b3: " << b3.get_byte()

<< " Dezimalwert: " << b3.get_decwert() << endl

<< endl;

b3 = b1;

cout << "b3 = b1:" << endl;

cout << "b3: " << b3.get_byte()

<< " Dezimalwert: " << b3.get_decwert() << endl;

return 0;

}

Dialog:

b3: 00000000

Eingabe b1: 00110001

Eingabe b2: 01011010

Es wurde eingegeben:

b1: 00110001 Dezimalwert: 49

b2: 01011010 Dezimalwert: 90

b2 zu b1 addieren:

b1: 10001011 Dezimalwert: 139

b2: 01011010 Dezimalwert: 90

Die Summe von b1 und b2 ist:

b3: 11100101 Dezimalwert: 229

b3 = b1:

b3: 10001011 Dezimalwert: 139

206

9 Einführung in die OOP mit C++

Anmerkungen zum Programm:

Damit nach der Erzeugung eines neuen Objektes definierte Werte vorliegen, initialisiert der

Konstruktor mit „00000000“ bzw. mit dem Dezimalwert 0. Dies demonstriert die Ausgabe

des Programms in der ersten Zeile.

Durch die Methode zur Eingabe input_byte() wird der initialisierte Wert überschrieben. Am

Ende dieser Funktion erzeugt die private Methode string_to_dec() den zugehörigen Dezi-

malwert decwert.

Die Additionsroutine add_byte(const binbyte &ein_byte) addiert ein_byte zum aktuellen Byte hinzu, d. h. zum Byte der aufrufenden Instanz, so dass sich der Wert der aufrufenden

Instanz verändert. Das Argument ist ein Objekt der gleichen Klasse binbyte. Es wird als

Referenz übergeben, soll aber selber nicht verändert werden. Dies wird durch das Schlüs-

selwort const kenntlich gemacht, das dem Argument vorgestellt ist.

 sum(const binbyte &byte1, const binbyte &byte2) übergibt der aufrufenden Instanz (im Programm ist das b3) die Summe der beiden Objekte byte1 und byte2, die ebenfalls wieder

als konstante Referenz übergeben werden und somit selber unverändert bleiben. Beide

Additionsfunktionen arbeiten mit den Dezimalwerten und bilden mit Hilfe der private

Methode dec_to_string() die Binärbitfolgen.

Mit „=“ ist eine direkte Zuweisung einer Instanz an eine andere existierende(!) Instanz

möglich. Dabei werden die Datenelemente bitweise kopiert. Dieser Vorgang ruft nicht den

Kopierkonstruktor auf, da ja kein neues Objekt erzeugt wird.



Überladen des Operators „+=“

Wir wollen die Anweisungen im Hauptprogramm

b1.add_byte(b2); ersetzen durch b1 += b2;

Dafür muss der Operator „+=“, der ja in C/C++ bereits eine feste Bedeutung hat, in unsere

Klasse binbyte eingeführt werden und bezüglich seiner Wirkung auf Objekte der Klasse

definiert werden, d. h. der Operator wird überladen.

Unsere Operatorfunktion lautet:

void binbyte::operator+= (const binbyte &ein_byte)

{

decwert = (decwert + ein_byte.decwert) % 256;

dec_to_string ();

}

Damit wird die Elementfunktion

void binbyte::add_byte(const binbyte &ein_byte)

in unserer Klasse ersetzt.

Die Anweisung im Hauptprogramm

b1 += b2;

wird abgearbeitet als: b1. operator+= (b2);

9.7 Überladen von Operatoren

207

Überladen des „+“-Operators

Die Ersetzung der sum()-Funktion durch eine Operatorfunktion ist dagegen nicht als Ele-

mentfunktion möglich, da sie zu viele Parameter besitzt (zwei). Wollten wir sie als klassen-

externe globale Funktion anlegen, ergeben sich neue Probleme: die Funktion kann nicht auf

die private Datenelemente der Klasse zugreifen!

Dieses Problem wird durch die Möglichkeit gelöst, klassenexterne Funktionen als „ friend“

zu deklarieren:

// friend Funktion zu binbyte

binbyte operator+(const binbyte &byte1, const binbyte &byte2)

{

binbyte hilf;

hilf.decwert = byte1.decwert + byte2.decwert;

hilf.dec_to_string();

return hilf;

}

Diese Funktion erlaubt es, auch verkettete Additionen im Hauptprogramm vorzunehmen,

z. B.:

...........

class binbyte b1,b2,b3,b4;

...........

b4 = b2 + b1 + b3;

Die Abarbeitung dieses Ausdrucks verläuft über die folgenden Schritte:

1. b2+b1

1.Aufruf der Operatorfunktion: Erzeugung des Objektes „hilf“; Erzeugung

eines temporären Objekts <bb1> vom Typ

binbyte; Zwischenspeicherung des Ergeb-

nisses darin; Löschung des Objekts „hilf“

2. <bb1> + b3 2.Aufruf der Operatorfunktion: Erzeugung des Objekes; „hilf“-Erzeugung

eines weiteren temporären Objekts <bb2> zur

Speicherung der Summe; Löschung von

<bb1>; Löschung des Objektes „hilf“

3. Zuweisung von <bb2> an b3; Löschung von <bb2>.

Die nachfolgende Programmversion mit den Operatorfunktionen erzeugt die gleiche Aus-

gabe wie oben:

 Programmbeispiel: Binär-Byte Version 2

// BSP_9_7_2

#include <iostream>

#include <cstdio>

#include <conio.h> // für _getch()

using namespace std;

208

9 Einführung in die OOP mit C++

class binbyte

{

public:

binbyte();

//Konstruktor

void input_byte();

char* get_byte()

{ return _string; }

int get_decwert()

{ return decwert; }

//

void add_byte(const binbyte &ein_byte);

//

void sum(const binbyte &byte1, const binbyte &byte2);

void operator+=(const binbyte &ein_byte);

friend binbyte operator+(const binbyte &byte1,

const binbyte &byte2);

private:

char _string[9];

int decwert;

void string_to_dec();

void dec_to_string();

};

// Klassenmethoden

binbyte::binbyte()

//Konstruktor

{

strcpy_s(_string, "00000000"); decwert = 0;

}

void binbyte::input_byte()

{

int i = 0;

unsigned char c;

do

{

c = _getch(); // Linux: getchar()

if((c == '0')||(c == '1'))

{

cout << (c - '0'); // Echo für den Benutzer

string[i] = c;

i++;

}

_string[8] = '\0'; // erzeugten String abschließen

}

while(i<8);

cout << endl;

string_to_dec();

}

void binbyte::string_to_dec()

{

9.7 Überladen von Operatoren

209

decwert = 0;

for(int i = 0; i < 8; i++)

decwert = decwert * 2 + (_string[i] - '0');

}

void binbyte::dec_to_string()

{

int teiler = 128, wert = decwert;

for(int i = 0; i < 8; i++)

{

_string[i] = '0' + wert / teiler;

wert = wert % teiler;

teiler = teiler / 2;

}

_string[8] = '\0'; // ordentlich abschließen

}

void binbyte::operator+=(const binbyte &ein_byte)

{

decwert = (decwert + ein_byte.decwert) % 256;

dec_to_string();

}

// globale Funktion

binbyte operator+(const binbyte &byte1, const binbyte &byte2)

{

binbyte hilf;

hilf.decwert = (byte1.decwert + byte2.decwert) % 256;

hilf.dec_to_string();

return hilf;

}

//---

int main(void)

{

class binbyte b1, b2, b3;

cout << "b3: " << b1.get_byte() << endl;

cout << endl << "Eingabe b1: ";

b1.input_byte();

cout << endl << "Eingabe b2: ";

b2.input_byte();

cout << "Es wurde eingegeben:" << endl;

cout << "b1: " << b1.get_byte()

<< " Dezimalwert: " << b1.get_decwert() << endl

<< "b2: " << b2.get_byte()

<< " Dezimalwert: " << b2.get_decwert() << endl

<< endl;

cout << "b2 zu b1 addieren:" << endl;

// b1.add_byte(b2); ersetzt durch

b1 += b2;

210

9 Einführung in die OOP mit C++

cout << "b1: " << b1.get_byte()

<< " Dezimalwert: " << b1.get_decwert() << endl

<< "b2: " << b2.get_byte()

<< " Dezimalwert: " << b2.get_decwert() << endl

<< endl;

cout << "Die Summe von b1 und b2 ist:" << endl;

// b3.sum(b2, b1); ersetzt durch

b3 = b2 + b1;

cout << "b3: " << b3.get_byte()

<< " Dezimalwert: " << b3.get_decwert() << endl

<< endl;

b3 = b1;

cout << "b3 = b1:" << endl;

cout << "b3: " << b3.get_byte()

<< " Dezimalwert: " << b3.get_decwert() << endl;

return 0;

}



Die stream-Operatoren „>>“ und „<<“ für die Ein- und Ausgabe

Aus der Sicht eines C++-Programms besteht die Ein- und Ausgabe aus zwei Strömen, dem

Ein- und Ausgabestrom. Standardmäßig sind die Ströme mit der Tastatur und dem Bild-

schirm verbunden. Mit einer Anweisung wie etwa

cout << a << b << c;

werden die Daten von a, b und c in den Ausgabestrom cout eingefügt. Ebenso lässt sich mit

 cin >> ein Eingabestrom erzeugen. Dabei erweisen sich die Operatoren „<<“ und „>>“ als

sehr anpassungsfähig, da sie mit Zahlen, Strings oder Einzelzeichen arbeiten können, d. h.

sie erkennen automatisch den Datentyp.

 cin und cout sind keine C++-Befehle, sondern vordefinierte Objekte der Klassen istream und ostream. Beide Klassen sind in der Headerdatei iostream definiert, die von uns fast immer eingebunden wurde. Darin sind u. a. die folgenden Objekte festgelegt:

ostream cout; // Standardausgabe

ostream cerr; // Standardfehlerausgabe

ostream clog; // gepufferte Standardfehlerausgabe

istream cin; // Standardeingabe

Eine Operation mit dem Objekt cout ist z. B. das Einfügen einer String-Konstanten in den

Ausgabestrom. Anstelle eines Methodenaufrufs der Form cout.xxx(...) werden Operator-

funktionen benutzt. Die unterschiedliche Arbeitsweise der Operatoren „<<“ und „>>“ erge-

ben sich durch Operatorüberladungen je nach Typ der übergebenen Parameter. Die Klasse

 ostream enthält somit sinngemäß die Deklarationen:

ostream & operator<<(char *cc);

ostream & operator<<(char c);

ostream & operator<<(int i);

ostream & operator<<(float f);

9.7 Überladen von Operatoren

211

// ...usw

Entsprechend enthält die Klasse istream die Deklarationen:

istream & operator>>(char *cc);

istream & operator>>(char &c);

istream & operator>>(int &i);

istream & operator>>(float &f);

// ...usw

Die return-Werte der Operatorfunktionen sind Referenzen auf istream bzw. ostream.

Dadurch wird eine Verkettung bei den Ein-/Ausgabeströmen erreicht. Eine Anweisung der

Art

cout << a << b << c;

wird also abgearbeitet wie

((cout. operator << (a)). operator << (b)). operator << (c);

Überladen der Operatoren „>>“ und „>>“ für selbstdefinierte Objekte

Die in den Klassen istream und ostream bereitstehenden Operatorüberladungen beziehen

sich nur auf die C++-Standarddatentypen und natürlich nicht auf benutzerdefinierte Objek-

te. Um in unserer oben erstellten Programm Objekte vom Typ binbyte in der geläufigen

Syntax

cout << b1; bzw. cin >> b2;

schreiben zu können, müssen wir entsprechende Operatorfunktionen selber definieren.

Zunächst zur Ausgabe:

Wie wir ja wissen, bestimmen die Operanden den Operationsablauf (z. B. float- Addition

bei einem Ausdruck 3 + 6.8). Bei der hier gewünschten Form

cout << b1;

stammen beiden Operanden des Operators „<<“ aus zwei verschiedenen Klassen, cout ist

ein Objekt der Klasse ostream, b1 ist ein Objekt der Klasse binbyte. Der return-Wert unserer Funktion muss analog zu unseren obigen Überlegungen eine Referenz auf den Typ

 ostream sein, damit eine Verkettung bei der Ausgabe möglich ist. Folglich muss die Opera-

torfunktion folgenden Aufbau haben:

ostream & operator<< (ostream &aus, binbyte &ein_byte)

{

aus << ein_byte._string;

return aus;

}

Die Funktion greift auf die private Datenelemente des Objektes ein_byte zu, so dass es naheliegt, diese Funktion als Elementfunktion der Klasse binbyte anzulegen. Dies ist aber

wegen der Anzahl der Funktionsparameter nicht möglich (zwei Parameter sind nicht erlaubt

bei Operatorfunktionen, s. o.). Somit bleibt nur die Möglichkeit, sie klassenextern global zu

212

9 Einführung in die OOP mit C++

deklarieren und innerhalb der Klasse binbyte als friend bekannt zu machen. (auf private

Elemente der Klasse ostream wird zum Glück nicht zugegriffen!)

Analoge Überlegungen führen zu der friend-Funktion für die Eingabe:

istream & operator>> (istream &in, binbyte &ein_byte)

{

.........

< Anweisungen aus der Methode input_byte() >

.........

return in;

}

Nachdem wir die Methoden input_byte(), get_byte(), add_byte() und sum() durch die neuen Operatorfunktionen ersetzt haben, erhalten wir nun für unser Programm:

 Programmbeispiel: Binär-Byte Version 3

// BSP_9_7_3

#include <iostream>

#include <cstdio>

#include <conio.h> // für _getch()

using namespace std;

class binbyte

{

public:

binbyte();

//Konstruktor

int get_decwert()

{ return decwert; }

void operator+=(const binbyte &ein_byte);

friend binbyte operator+(const binbyte &byte1,

const binbyte &byte2);

friend ostream & operator<<(ostream &aus,

binbyte &ein_byte);

friend istream & operator>>(istream &in,

binbyte &ein_byte);

private:

char _string[9];

int decwert;

void string_to_dec();

void dec_to_string();

};

// Klassenmethoden

binbyte::binbyte()

//Konstruktor

{

strcpy_s(_string, "00000000");

decwert = 0;

9.7 Überladen von Operatoren

213

}

void binbyte::string_to_dec()

{

decwert = 0;

for(int i = 0; i < 8; i++)

decwert = decwert * 2 + (_string[i] - '0');

}

void binbyte::dec_to_string()

{

int teiler = 128,wert = decwert;

for(int i = 0; i < 8; i++)

{

_string[i] = '0'+ wert/teiler;

wert = wert % teiler;

teiler = teiler / 2;

}

_string[8] = '\0'; // ordentlich abschliessen

}

void binbyte::operator+=(const binbyte &ein_byte)

{

decwert = (decwert + ein_byte.decwert) % 256;

dec_to_string();

}

// globale Funktion

binbyte operator+(const binbyte &byte1, const binbyte &byte2)

{

binbyte hilf;

hilf.decwert = (byte1.decwert + byte2.decwert) % 256;

hilf.dec_to_string();

return hilf;

}

ostream & operator<<(ostream &aus, binbyte &ein_byte)

{

aus << ein_byte._string;

return aus;

}

istream & operator>>(istream &in, binbyte &ein_byte)

{

int i = 0;

unsigned char c;

do

{

c = _getch(); // Linux: getchar()

if((c == '0')||(c == '1'))

{

cout << (c - '0'); // Echo für den Benutzer

ein_byte._string[i] = c;

214

9 Einführung in die OOP mit C++

i++;

}

}

while(i < 8);

ein_byte._string[8] = '\0'; // ordentlich abschliessen

cout << endl;

ein_byte.string_to_dec();

return in;

}

//---

int main(void)

{

class binbyte b1, b2, b3, b4;

cout << endl << "Eingabe b1, b2, b3: "<<endl;

cin >> b1 >> b2 >> b3;

cout << "Es wurde eingegeben:" << endl

<< "b1: " << b1

<< " Dezimalwert: " << b1.get_decwert() << endl

<< "b2: " << b2

<< " Dezimalwert: " << b2.get_decwert() << endl

<< "b3: " << b3

<< " Dezimalwert: " << b3.get_decwert() << endl

<< endl;

cout << "b2 zu b1 addieren:" << endl;

b1 += b2;

cout << "b1: " << b1

<< " Dezimalwert: " << b1.get_decwert() << endl

<< "b2: " << b2

<< " Dezimalwert: " << b2.get_decwert() << endl

<< endl;

cout << " b4 = b1 + b2 + b3 :" << endl

<< b1 <<"+"<< b2 <<"+"<< b3 << endl;

b4 = b1 + b2 + b3;

cout << "b4: " << b4

<< " Dezimalwert: " << b4.get_decwert() << endl

<< endl;

return 0;

}

Dialog:

Eingabe b1,b2,b3:

00100100

01000011

00011001

Es wurde eingegeben:

9.8 Der this-Zeiger

215

b1: 00100100 Dezimalwert: 36

b2: 01000011 Dezimalwert: 67

b3: 00011001 Dezimalwert: 25

b2 zu b1 addieren:

b1: 01100111 Dezimalwert: 103

b2: 01000011 Dezimalwert: 67

b4 = b1 + b2 + b3 :

01100111+01000011+00011001

b4: 11000011 Dezimalwert: 195



9.8 Der this-Zeiger

Jedes erzeugte Objekt einer Klasse besitzt neben seiner Datenstruktur einen unsichtbaren

Zeiger auf sich selbst, den sog. this-Zeiger. Über das Schlüsselwort this lässt sich innerhalb

einer Elementfunktion das eigene Objekt ansprechen, z. B.

class demo

{

public:

<Datenelemente>

<Elementfunktionen>

......

void zeige_this()

{ cout << this; }

........

};

Werden im Hauptprogramm mit class demo d1, d2, d3; Objekte der Klasse angelegt, so

kann man sich die unterschiedlichen Zeiger (Adressen) für die Objekte anzeigen lassen:

d1.zeige_this(); // Adresse 1.Objekt

d2.zeige_this(); // Adresse 2.Objekt

d3.zeige_this(); // Adresse 3.Objekt

Dies erscheint zunächst wenig sinnvoll, da man sich ja die Adressen der Objekte auch mit

dem Adressoperator hätte besorgen können (sofern diese Information überhaupt interes-

siert), z. B.:

cout << &d1; usw.

Im folgenden Fall lässt sich der this-Zeiger dagegen gut nutzen: Eine Elementfunktion

übernehme ein oder mehrere Objekte der gleichen Klasse als Parameter und liefere nach

gewissen Auswahlkriterien ein Objekt als return-Wert zurück. Das zurückgelieferte Objekt

kann auch das der aufrufenden Instanz sein:

demo waehle_aus(demo dd1) // Elementfunktion

{

if (..........)

216

9 Einführung in die OOP mit C++

return dd1;

// Objekt zurück

else

return *this;

// aufrufendes Objekt zurueck

}

Hier ist zu beachten, dass *this nicht der Zeiger auf das Objekt, sondern das Objekt selber

ist

(analog zu *p = 3, wenn p ein Zeiger auf int ist).

Der this-Zeiger

Jedes erzeugte Objekt besitzt einen nicht sichtbaren Zeiger this auf sich selbst.

this : Zeiger auf das aktuelle Objekt

*this : das aktuelle Objekt selber

Das folgende Programmbeispiel verdeutlicht dies:

 Programmbeispiel: this-demo

// BSP_9_8_1

#include <iostream>

using namespace std;

class punkt

{

public:

punkt(float px, float py);

//Konstruktor

punkt() {}

//Konstruktor

void verschiebe(float delta_x, float delta_y);

void print_punkt();

void objektzeiger()

{cout << this; }

punkt max_vektor(const punkt pp);

private:

float x, y;

};

inline punkt::punkt(float px, float py)

{

x = px;

y = py;

}

inline void punkt::verschiebe(float delta_x, float delta_y)

{

x = x + delta_x;

y = y + delta_y;

}

inline void punkt::print_punkt()

{

9.8 Der this-Zeiger

217

cout << "Punkt(" << x << "," << y << ")" << endl;

}

inline punkt punkt::max_vektor(const punkt pp)

{

if ((pp.x * pp.x + pp.y * pp.y) > (x * x + y * y))

return pp;

else

return *this;

}

int main(void)

{

class punkt p1(3, 4), p2(-3, 8), p3;

p1.print_punkt();

p2.print_punkt();

cout << endl << "Objektadressen:" << endl

<< &p1 << " " //Adressoperator

<< &p2 << endl;

p1.objektzeiger();

cout << " ";

p2.objektzeiger();

cout << endl;

p3 = p1.max_vektor(p2);

cout << endl

<< "Laengeren Ortsvektor hat : ";

p3.print_punkt();

cout << "Punkt1 wird verlegt nach: ";

p1.verschiebe(5, 7);

p1.print_punkt();

p3 = p1.max_vektor(p2);

cout << endl

<< "Laengeren Ortsvektor hat nun : ";

p3.print_punkt();

return 0;

}

Programmausgabe:

Punkt(3,4)

Punkt(-3,8)

Objektadressen:

0012FF84 0012FF7C

0012FF84 0012FF7C

Laengeren Ortsvektor hat: Punkt(-3,8)

Punkt1 wird verlegt nach: Punkt(8,11)

Laengeren Ortsvektor hat nun: Punkt(8,11)



218

9 Einführung in die OOP mit C++

Die Rückgabe eines Objektes macht eine Verkettung von Elementfunktionen möglich. Statt

der Anweisungen

p3 = p1.max_vektor(p2);

p3.print_punkt();

Hätte man auch kürzer schreiben können

p1.max_vektor(p2).print_punkt();

9.9 Übergabe von Objekten an Funktionen

Wir haben in den vorangegangenen Beispielen bereits häufig Objekte an Klassenmethoden

übergeben. Hier wollen wir noch einmal die Möglichkeiten grundsätzlich zusammenfassen:

Objekte als Funktionsparemeter

Übergabetechnik

Beispiel

Bemerkungen

Rufendes

Prototyp

Modul

1) „by value“

f1(p);

<typ> f1 (democlass q);

hohe Stackbelastung,

.......

nderungen gehen verloren.

q.<element >

Nicht zu empfehlen!

2) „by reference“ f2(p);

<typ> f2 (democlass &q);

Standardfall,

........

geringe Stackbelastung,

q.<element>

nderungen bleiben erhalten

– oder –

<typ> f2(const democlass &q); Ersatz für „by value“,

........

geringe Stackbelastung

q.<element>

Parameter nicht verändert

3) „by address“

f3(&p);

<typ> f3 (democlass *q);

Pointer-Technik,

........

geringe Stackbelastung,

q  <element>

nderungen bleiben erhalten

Um die unterschiedlichen Übergabemöglichkeiten zu demonstrieren, benutzen wir eine

Modifikation unserer Klasse punkt:

 Programmbeispiel: Objekte als Parameter in Funktionen

Klasse punkt:

// Datei punkt.h

#include <iostream>

using namespace std;

class punkt

{

public:

punkt() {}

// Konstruktor

9.9 Übergabe von Objekten an Funktionen

219

punkt(float px, float py);

// Konstruktor

void verschiebe(float delta_x, float delta_y);

void print_punkt();

void setze_punkt(float px, float py);

private:

float x, y;

};

inline punkt::punkt(float px, float py)

{

x = px;

y = py;

}

inline void punkt::verschiebe(float delta_x, float delta_y)

{

x = x + delta_x;

y = y + delta_y;

}

inline void punkt::print_punkt()

{

cout << " Koordinate x: " << x

<< " y: " << y << endl;

}

inline void punkt::setze_punkt(float px, float py)

{

x = px;

y = py;

}

//globale Funktionen

void input_val(punkt pp1, punkt pp2);

void input_ref(punkt &pp1, punkt &pp2);

void input_adr(punkt *pp1, punkt *pp2);

Das Hauptprogramm bindet die Klasse mit der entsprechenden include-Anweisung ein:

// BSP_9_9_1

// Datei uebergabe.cpp

#include <iostream>

#include "punkt.h" // im aktuellen Verzeichnis

using namespace std;

int main(void)

{

class punkt p1, p2;

cout << "Uebergabe by value:" << endl;

input_val(p1, p2);

220

9 Einführung in die OOP mit C++

p1.print_punkt();

p2.print_punkt();

cout << "Uebergabe by reference:" << endl;

input_ref(p1, p2);

p1.print_punkt();

p2.print_punkt();

cout << "Uebergabe by address:" << endl;

input_adr(&p1, &p2);

p1.print_punkt();

p2.print_punkt();

return 0;

}

void input_val(punkt pp1, punkt pp2)

{

pp1.setze_punkt(-2.5, 9.5);

pp2.setze_punkt(4.8, 3.4);

}

void input_ref(punkt &pp1, punkt &pp2)

{

pp1.setze_punkt(-2.5, 9.5);

pp2.setze_punkt(4.8, 3.4);

}

void input_adr(punkt *pp1, punkt *pp2)

{

pp1->verschiebe(10.0, 20.0);

pp2->setze_punkt(-10.0, -20.0);

}

Ausgabe:

Uebergabe by value:

Koordinate x: 6.10318e-39 y: 1.4013e-45

Koordinate x: 6.05581e-39 y: 6.00505e-39

Uebergabe by reference:

Koordinate x: -2.5 y: 9.5

Koordinate x: 4.8 y: 3.4

Uebergabe by address:

Koordinate x: 7.5 y: 29.5

Koordinate x: -10 y: -20



Sollen Objekte an das aufrufende Modul als return-Wert zurückgegeben werden, haben wir

die folgenden Möglichkeiten:

9.9 Übergabe von Objekten an Funktionen

221

Objekte als return-Wert

Beispiel

Funktionstyp

Funktion

return-

Bemerkungen

Anweisung

1) Objekt:

democlass g1(....)

return p_obj;

2) Referenz auf Objekt: democlass &g2(....)

return p_obj;

Achtung! Rückga-

be einer Referenz

auf lokales Objekt

nicht möglich!

3) Zeiger auf Objekt:

democlass *g3(....)

return p_point;

Zeiger auf eine

existierende Daten-

struktur des

rufenden Moduls

Für ein Programmbeispiel nutzen wir wieder die oben erstellte Klasse punkt:

 Programmbeispiel: Objekte als return-Wert

// BSP_9_9_2

#include <iostream>

#include "punkt.h" // im aktuellen Verzeichnis

using namespace std;

punkt hole_obj();

punkt &hole_ref(punkt &q);

punkt *hole_poin(punkt &q);

int main(void)

{

class punkt p1, p2, *p3;

cout << "Rueckgabe: Objekt:" << endl;

p1 = hole_obj();

p1.print_punkt();

cout << "Rueckgabe: Referenz auf Objekt:" << endl;

p2 = hole_ref(p1);

p2.print_punkt();

p1.print_punkt();

cout << "Rueckgabe: Zeiger auf Objekt:" << endl;

p3 = hole_poin(p1);

p3->print_punkt();

p1.print_punkt();

return 0;

}

punkt hole_obj()

{

class punkt pp(3.4, 2.1);

return pp;

222

9 Einführung in die OOP mit C++

}

punkt &hole_ref(punkt &q)

{

q.verschiebe(11.1, 55.5);

return q;

}

punkt *hole_poin(punkt &q)

{

class punkt *pp;

pp = &q;

// Adresszuordnung

pp->setze_punkt(9.9, 2.2);

return pp;

}

Ausgabe:

Rueckgabe: Objekt:

Koordinate x: 3.4 y: 2.1

Rueckgabe: Referenz auf Objekt:

Koordinate x: 14.5 y: 57.6

Koordinate x: 14.5 y: 57.6

Rueckgabe: Zeiger auf Objekt:

Koordinate x: 9.9 y: 2.2

Koordinate x: 9.9 y: 2.2



Man beachte in diesem Beispiel, dass bei den Funktionsaufrufen hole_ref(p1) und hole_poin(p1)

auch die Argumente verändert zurückgegeben werden!

Im Funktionsprototyp punkt &hole_ref(punkt &q) muss der Parameter als Referenz überge-

ben werden, weil sonst versucht wird, nach Beendigung der Funktion eine Referenz auf

eine nicht mehr existierende Datenstruktur zurückzuliefern.

9.10 Dynamischer Speicher und Klassen

„Dynamischer Speicher“ unterstützt die Forderung der OOP, Entscheidungen während der

Laufzeit zu treffen. Dynamische Objekte werden im Heap abgelegt. Das Programm ent-

scheidet während der Laufzeit und nicht während der Kompilation, wieviel Speicher allo-

kiert wird. Damit man den Speicherbedarf dynamisch kontrollieren kann, arbeitet C++ mit

den Operatoren new und delete, die wir schon in Kapitel 7.2 kennengelernt haben. Der Einsatz von dynamischem Speicher in einer Klasse ist jedoch etwas komplizierter und wird

im folgenden Abschnitt näher behandelt. Grundlage hierfür ist eine Klasse random_f10, die

wir zunächst vorstellen:

9.10 Dynamischer Speicher und Klassen

223

 Programmbeispiel: Die Klasse random_f10

// dyn.h

#include <iostream>

#include <iomanip>

#include <ctime>

using namespace std;

class random_f10

{

public:

random_f10();

//Konstruktor

random_f10(int start, int ende); //Konstruktor

void gen_f(int s, int e);

void print_f();

// weitere Elementfunktionen ...

// ... int max(); int min(); void sortiere();

~random_f10();

private:

int f[10];

static int obj_counter;

static bool erstlauf;

void tausche(int &a, int &b);

};

random_f10::random_f10()

{

obj_counter++;

cout << "*1*Konstruktoraufruf: Es leben nun "

<< obj_counter << " Objekte" << endl;

}

random_f10::random_f10(int start, int ende)

{

gen_f(start, ende);

obj_counter++;

cout << "*2*Konstruktoraufruf: Es leben nun "

<< obj_counter << " Objekte" << endl;

}

void random_f10::gen_f(int s, int e)

{

if(erstlauf) srand(time(NULL));

erstlauf = false;

if(s > e) tausche(s, e);

for(int i = 0; i < 10; i++)

f[i] = rand()%(e – s + 1)+ s;

}

void random_f10::print_f()

{

for(int i = 0; i < 10; i++)

224

9 Einführung in die OOP mit C++

cout << setw(5) << f[i];

cout << endl;

}

random_f10::~random_f10()

{

obj_counter--;

cout << "###Destruktoraufruf: Es leben nun "

<< obj_counter << " Objekte" << endl;

}

void random_f10::tausche(int &a, int &b)

{

int tmp;

tmp = a;

a = b;

b = tmp;

}

// initialisieren statischer Variablen

int random_f10::obj_counter = 0; // klassenextern ...

bool random_f10::erstlauf = true; // ...initialisieren



Objekte der Klasse sind Integer-Felder der Dimension 10. Die Feldelemente können mit

Zufallszahlen aus einem vorgegebenen Bereich beschrieben und ausgegeben werden.

Static Elemente

Neu ist in diesem Beispiel der Einsatz von statischen Elementen, die durch das Schlüssel-

wort static gekennzeichnet werden. Das Programm legt nur ein einziges Element einer statischen Klassenvariablen an, unabhängig von der Anzahl der Objekte, die erzeugt werden. Alle Objekte haben aber Zugriff auf die Variable und können sie, wie im Beispiel

gezeigt, verändern. Ein static-Klassenelement eignet sich für Werte, die nur innerhalb einer

Klasse bekannt und in allen Klassenobjekten gleich sein sollten. Initialisierungen von stati-

schen Elementen müssen außerhalb der Klassendefinition stattfinden, hier:

int random_f10::obj_counter = 0; //Zahl der erzeugten Objekte

bool random_f10::erstlauf = true; //wichtig für srand()

Das liegt daran, dass die Klassendefinition nur eine Schablone ist und selbst keinen Spei-

cher reserviert. Die statische Variable obj_counter wird im Beispiel dazu verwendet, die

Anzahl der erzeugten Objekte zu verwalten. Aktualisiert wird die Anzahl durch die Anwei-

sung obj_counter++ in den beiden Konstruktoren und obj_counter-- im Destruktor, die

diesen Wert jeweils zu Kontrollzwecken ausgeben. Die statische Variable erstlauf arbeitet

als Merker und verhindert, dass die Initialisierung mit srand() mehrfach ausgeführt wird.

Dynamische Speicherbelegung einzelner Objekte

Um die dynamische Speicherung voll auszunutzen, müssen die mit new angelegten Objekte

mit delete wieder freigegeben werden, damit neue Objekte Platz finden. delete ruft den Destruktor auf. Im nachfolgenden Beispiel werden Konstruktor- und Destruktoraufrufe

ausgegeben. Es ist die Klasse random_f10 eingebunden:

9.10 Dynamischer Speicher und Klassen

225

 Programmbeispiel: Dynamische Speicherung einzelner Objekte

// BSP_9_10_1

#include <iostream>

#include <cstdio>

#include <iomanip>

#include "dyn.h"

using namespace std;

//--

int main(void)

{

{

class random_f10 feld1(0, 100);

class random_f10 *feld2;

feld1.print_f();

feld2 = new random_f10;

feld2->gen_f(9, 9); //Zugriff ueber Zeiger

feld2->print_f();

delete feld2;

class random_f10 * feld3 = new random_f10 (20, 30);

feld3->print_f();

delete feld3;

}

getchar();

 return 0;

}

Ausgabe:

*2*Konstruktoraufruf: Es leben nun 1 Objekte

19 27 99 93 50 64 58 80 80 65

*1*Konstruktoraufruf: Es leben nun 2 Objekte

09 09 09 09 09 09 09 09 09 09

###Destruktoraufruf: Es leben nun 1 Objekte

*2*Konstruktoraufruf: Es leben nun 2 Objekte

25 27 21 27 30 24 22 25 30 20

###Destruktoraufruf: Es leben nun 1 Objekte

###Destruktoraufruf: Es leben nun 0 Objekte



Dynamische Speicherung von Objekt-Feldern

Erst bei der Speicherung größerer Objekte oder bei Objekt-Feldern kommt die dynamische

Reservierung von Speicher mit new und delete voll zur Geltung. Die Allokierung erfolgt mit:

class <classname> <feldname> = new <classname>[<dimension>];

die Freigabe mit:

226

9 Einführung in die OOP mit C++

delete [] <feldname>;

Im Gegensatz zu statisch angelegten Feldern kann hier erst zur Laufzeit die Felddimension

festgelegt werden. Es empfiehlt sich der Einsatz eines parameterlosen Konstruktors, da man

normalerweise unterschiedliche Objekte anlegen möchte. Im nachfolgenden Beispiel wird

die Felddimension erst zur Laufzeit interaktiv abgefragt.

 Programmbeispiel: Dynamische Speicherung von ObjektFeldern

// BSP_9_10_2

#include <iostream>

#include <cstdio>

#include <iomanip>

#include "dyn.h"

using namespace std;

//--

int main(void)

{

int anzahl;

cout << "Anzahl 10-Felder: ";

cin >> anzahl;

class random_f10 * ff = new random_f10[anzahl];

for(int j = 0; j < anzahl; j++)

ff[j].gen_f(-j, + j); // (ff + j)->gen(-j, + j);

for(int j = anzahl - 1; j >= 0; j--)

ff[j].print_f(); // (ff + j)->print_f();

delete[] ff;

getchar();

return 0;

}

Dialog:

Anzahl 10-Felder: 4

*1*Konstruktoraufruf: Es leben nun 1 Objekte

*1*Konstruktoraufruf: Es leben nun 2 Objekte

*1*Konstruktoraufruf: Es leben nun 3 Objekte

*1*Konstruktoraufruf: Es leben nun 4 Objekte

0 -2

3

1 -2

1 -3

3 -2 -1

-1 -2

1 -1

1

0

0 -1 -2

2

1

1 -1 -1 -1

0

1

0

1 -1

0

0

0

0

0

0

0

0

0

0

###Destruktoraufruf: Es leben nun 3 Objekte

###Destruktoraufruf: Es leben nun 2 Objekte

###Destruktoraufruf: Es leben nun 1 Objekte

###Destruktoraufruf: Es leben nun 0 Objekte



9.11 Vererbung

227

9.11 Vererbung

Die Wiederverwendbarkeit von Code als ein Grundprinzip der OOP wird durch die Verer-

bung von Klassen unterstützt. Unter „Vererbung“ versteht man die Ableitung neuer Klassen

von einer vorhandenen „Basisklasse“. Dabei „vererbt“ die Basisklasse ihre Eigenschaften

an die neue abgeleitete Klasse zusätzlich zu den in der abgeleiteten Klasse neu definierten

Elementen. Abgeleitete Klassen stellen daher eine Spezialisierung der Basisklasse dar.

Basisklasse



abgeleitete Klasse

 allgemein

 speziell

z. B.: Basisklasse:

class fahrzeug

abgeleitete Klassen: class flugzeug

class auto

class zug

Der Zugriff von einer abgeleiteten Klasse auf Elemente ihrer Basisklasse richtet sich nach

den Zugriffsmodifizierern. Die „harten“ Einstellungen public und private werden bezüglich der Vererbung um einen dritten Mofifizierer protected ergänzt. Um abgeleiteten Klassen

einen Zugriff auf „nicht öffentliche“ Elemente zu gewähren, deklariert man diese Elemente

als protected. Damit bleibt der Zugriffsschutz von außerhalb der beteiligten Klassen ge-

wahrt:

Zugriffsschutz bei Klassenelementen

Zugriff von:

Modifizierer

eigene Klasse

abgeleitete Klasse

von außerhalb

private

ja

nein

nein

protected

ja

ja

nein

public

ja

ja

ja

Nun stellt sich zusätzlich noch die Frage, welchen Schutz die vererbten Elemente von der

Basisklasse, die ja nun von der abgeleiteten angeboten werden, nach außen besitzen. Dieser

gesamte „Durchgriff“ auf die Basisklasse wird mit einem zweiten globalen Zugriffsfilter

gesteuert, den man beim Anlegen der abgeleiteten Klasse mit angibt. Die Deklaration einer

abgeleiteten Klasse lautet:

class <abgeleitete Klasse> :<globaler Zugriffsfilter auf Basisklasse> <Basisklasse> z. B.:

class kind : public mutter

Dieser Filter besteht wiederum aus den drei Schlüsselworten public, protected oder private

und gestattet eine weitere Zugriffsrestriktion.

228

9 Einführung in die OOP mit C++

Zusammenwirken von Vererbungsfilter und Element-Zugriffsmodifizierer

Zugriffsmodifizierer in Basisklasse

Vererbungsfilter

private

protected

public

private

private

private

private

protected

private

protected

protected

public

private

protected

public

In der Praxis benutzt man meistens den public-Filter, der die Element-Zugriffe nicht weiter

einschränkt.

Nachfolgend sehen wir ein einfaches Beispiel für Vererbung.

 Programmbeispiel: Einfach-Vererbung

// Bsp_9_11_1

#include <iostream>

#include <cstdio>

using namespace std;

class rechner // Basisklasse

{

public:

rechner() {} // Standardkonstruktor

void eingabe();

void ausgabe();

void setze_name(char *r_name);

protected:

char name[12];

char ptyp[10];

int ram;

int festplatte;

float frequenz;

};

class netzrechner: public rechner // abgeleitet

{

public:

netzrechner() {}

netzrechner(char *rechnername, char *prozessor, int speicher,

int platte, float takt);

netzrechner(char *rechnername, char *prozessor,

int speicher, int platte, float takt,

int ip_adr1, int ip_adr2, int ip_adr3,

int ip_adr4);

void setze_ip(int ip_adr1, int ip_adr2,

int i

 p_adr3, int ip_adr4);

9.11 Vererbung

229

void print_ip();

private:

int ip1,ip2,ip3,ip4;

};

void rechner::eingabe()

{

cout << "** Eingabe **" << endl;

cout << "Rechnername: ";

cin >> name;

cout << "Prozessor: ";

cin >> ptyp;

cout << "Speicher [GB]: ";

cin >> ram;

cout << "Festplatte [GB]: ";

cin >> festplatte;

cout << "Frequenz [GHz]: ";

cin >> frequenz;

}

void rechner::setze_name(char *r_name)

{

strcpy_s(name,r_name);

}

void rechner::ausgabe()

{

cout << " Rechnername: " << name << endl

<< " Prozessor: " << ptyp << endl

<< " Speicher [GB]: " << ram << endl

<< " Festplatte [GB]: " << festplatte << endl

<< " Frequenz [GHz]:

" << frequenz << endl;

}

//Konstruktoren:

netzrechner::netzrechner(char *rechnername, char *prozessor,

int speicher, int platte, float takt)

{

strcpy_s(name,rechnername);

strcpy_s(ptyp,prozessor);

ram = speicher;

festplatte = platte;

frequenz = takt;

}

230

9 Einführung in die OOP mit C++

netzrechner::netzrechner(char *rechnername, char *prozessor,

int speicher, int platte, float takt,

int ip_adr1, int ip_adr2, int ip_adr3,

int ip_adr4)

{

strcpy_s(name,rechnername);

strcpy_s(ptyp,prozessor);

ram = speicher;

festplatte = platte;

frequenz = takt;

ip1 = ip_adr1;

ip1 = ip_adr1;

ip2 = ip_adr2;

ip3 = ip_adr3;

ip4 = ip_adr4;

}

void netzrechner::setze_ip(int ip_adr1, int ip_adr2,

int ip_adr3, int ip_adr4)

{

ip1 = ip_adr1;

ip2 = ip_adr2;

ip3 = ip_adr3;

ip4 = ip_adr4;

}

void netzrechner::print_ip()

{

cout << " IP-Netzwerkadresse: "

<< ip1 << "." << ip2 << "."

<< ip3 << "." << ip4 << endl;

}

//---

int main()

{

class rechner pc1;

class netzrechner serv1;

class netzrechner serv2("Server 2","Intel",

16,2000,3.33f,192,168,101,56);

class netzrechner workstation("Pluto","AMD",

8,1000,2.41f);

pc1.eingabe();

serv1 = workstation;

serv1.setze_name("UNIX Server");

serv1.setze_ip(192,168,30,12);

workstation.setze_ip(192,168,45,17);

cout << endl

9.11 Vererbung

231

<< " Es gibt die folgenden Rechner: " << endl;

pc1.ausgabe();

cout << endl;

serv1.ausgabe();

serv1.print_ip();

cout << endl;

serv2.ausgabe();

serv2.print_ip();

cout << endl;

workstation.ausgabe();

workstation.print_ip();// evtl. getchar(); getchar();

return 0;

}

Programmdialog:

** Eingabe **

Rechnername: Jupiter

Prozessor: Intel

Speicher [GB]: 4

Festplatte [GB]: 500

Frequenz [GHz]: 1.5

Es gibt die folgenden Rechner:

Rechnername:

Jupiter

Prozessor:

AMD

Speicher [GB]:

4

Festplatte [GB]:

500

Frequenz [GHz]:

1.5

Rechnername:

UNIX Server

Prozessor:

AMD

Speicher [GB]:

8

Festplatte [GB]:

1000

Frequenz [GHz]:

2.41

IP-Netzwerkadresse: 192.168.30.12

Rechnername:

Server2

Prozessor:

Intel

Speicher [GB]:

16

Festplatte [GB]:

2000

Frequenz [GHz]:

3.33

IP-Netzwerkadresse: 192.168.101.56

Rechnername:

Pluto

Prozessor:

AMD

Speicher [GB]:

8

Festplatte [GB]:

1000

Frequenz [GHz]:

2.41

IP-Netzwerkadresse: 192.168.45.17



232

9 Einführung in die OOP mit C++

C++ erlaubt die Mehrfachvererbung von Klassen und damit den Aufbau von mächtigen

Klassenhierarchien. Der C++-Compiler verfügt selber über eine große Anzahl von Klassen-

hierarchien, von denen hier beispielhaft, und ohne näher darauf einzugehen, ein Auszug der

 streams-Klassen angeführt wird ( steht für „abgeleitet von“):

ios_base  ios  ostream  ostringstream

 ofstream

 iostream

 stringstream

 fstream

 istream  istringstream

 ifstream

9.12 Schrittweise Entwicklung eines einfachen OOP-Projektes

Um die grundlegenden Lehrinhalte des vorliegenden Kapitels zu festigen, entwickeln wir

im Folgenden Schritt für Schritt eine einfache Klasse TIME mit Methoden zur Ein- und

Ausgabe von TIME-Variablen und zur Addition von Zeiten.

9.12.1 Definition einer Klasse „TIME"

Das nachstehende Beispiel 1 demonstriert die Grundlagen der objektorientierten Program-

mierung am Beispiel der selbst definierten Klasse TIME. Sie besteht aus den private-

Variablen hh, mm und ss für die Zeitkomponenten Stunden, Minuten und Sekunden sowie

den public-Methoden read_time(), write_time() und add_time(). Eine kleine main()-

Funktion testet die Methoden, indem sie zwei Zeiten einliest, diese addiert und das Ergeb-

nis ausgibt. Zu diesem Zweck werden zu Beginn drei TIME-Variablen deklariert.

//--

// BSP_9_12_1_1

// Beispiel 1

// Implementierung der Klasse TIME (Grundversion)

#include <iostream>

#include <cstdio>

using namespace std;

class TIME // Klassendefinition

{

public:

void read_time() // Eingabemethode

{

cout << "Stunden [hh] >";

cin >> hh;

cout << "Minuten [mm] >";

cin >> mm;

cout << "Sekunden [ss] >";

cin >> ss;

}

9.12 Schrittweise Entwicklung eines einfachen OOP-Projektes

233

void write_time() // Ausgabemethode

{

cout << hh << ":" << mm << ":" << ss << endl;

}

void add_time(TIME t1, TIME t2) // Additionsmethode

{

int sec1, sec2, sec3;

sec1 = t1.hh * 3600 + t1.mm * 60 + t1.ss;

sec2 = t2.hh * 3600 + t2.mm * 60 + t2.ss;

sec3 = sec1 + sec2;

hh = sec3 / 3600;

sec3 = sec3 % 3600;

mm = sec3 / 60;

ss = sec3 % 60;

}

private:

int hh, mm, ss;

};

//---

int main(void)

{

class TIME t1, t2, t3; // Deklaration von Objekten

t1.read_time();

cout << endl;

t2.read_time();

cout << endl;

t3.add_time(t1, t2);

t3.write_time();

// getchar(); // ggf. verwenden, um sofortiges Schließen

// der Konsole zu verhindern

return 0;

}

9.12.2 Definition der Methoden außerhalb der Klassendefinition

Im Beispiel 2 erfolgt die Definition der Methoden im Unterschied zu Beispiel 1 mit Hilfe

des ::-Operators außerhalb der Klassendefinition. Damit wird der Quelltext etwas über-

sichtlicher

//--

// BSP_9_12_2_1

// Beispiel 2

// Definition der Klassen-Methoden ausserhalb der Klassen-

// Definition

#include <iostream>

#include <cstdio>

234

9 Einführung in die OOP mit C++

using namespace std;

class TIME

{

public:

void read_time();

void write_time();

void add_time(TIME t1, TIME t2);

private:

int hh, mm, ss;

};

//---

int main(void)

{

class TIME t1, t2, t3;

t1.read_time();

cout << endl;

t2.read_time();

cout << endl;

t3.add_time(t1, t2);

t3.write_time();

// getchar(); // ggf. verwenden, um sofortiges Schließen

// der Konsole zu verhindern

return 0;

}

//---

void TIME::read_time()

{

cout << "Stunden [hh] >";

cin >> hh;

cout << "Minuten [mm] >";

cin >> mm;

cout << "Sekunden [ss] >";

cin >> ss;

}

//---

void TIME::write_time()

{

cout << hh << ":" << mm << ":" << ss;

}

//---

void TIME::add_time(TIME t1, TIME t2)

{

int sec1, sec2, sec3;

9.12 Schrittweise Entwicklung eines einfachen OOP-Projektes

235

sec1 = t1.hh * 3600 + t1.mm * 60 + t1.ss;

sec2 = t2.hh * 3600 + t2.mm * 60 + t2.ss;

sec3 = sec1 + sec2;

hh = sec3 / 3600;

sec3 = sec3 % 3600;

mm = sec3 / 60;

ss = sec3 % 60;

}

9.12.3 Konstruktoren und die Überladung des +-Operators

Zur Erleichterung des Progammtests fügen wir zwei Konstruktoren bei: Einer, der bei der

Deklaration der beiden TIME-Variablen t1 und t2 Standardwerte vorgibt sowie ein Default-

Konstruktor, der bei der Erzeugung von t3 aufgerufen wird. Um das sichtbar zu machen,

gibt er einen entsprechenden Text aus. Die Additionsfunktion überladen wir mit dem +-

Operator. Die Überladefunktion kann nicht Klassenmethode sein, weil sie mehr als einen

Übergabeparameter benötigt. Damit sie als globale Funktion dennoch Zugriff auf die pri-

 vate-Variablen erhält, bekommt sie den friend-Status.

//--

// BSP_9_12_3_1

// Beispiel 3

// mit Verwendung von Konstruktoren

// +-Operator-Ueberladung als friend-Funktion

#include <iostream>

#include <cstdio>

using namespace std;

class TIME

{

public:

TIME()

{ cout << "Ich bin der Default-Konstruktor" << endl; }

TIME(int _hh, int _mm, int _ss) // Ein weiterer

{ hh = _hh; mm = _mm; ss =_ss; } // Konstruktor

void read_time();

void write_time();

//void add_time(TIME t1, TIME t2); "alte" Methode

friend TIME operator+(TIME t1, TIME t2);

// "friend" weil die Operatorfunktion 2 Parameter hat

private:

int hh, mm, ss;

};

//---

int main(void)

{

class TIME t1(6, 31, 59), t2(13, 56, 47), t3;

236

9 Einführung in die OOP mit C++

char janein;

cout << "Defaultwerte? [j/n] >";

cin >> janein;

if(janein == 'n')

{

t1.read_time();

cout << endl;

t2.read_time();

cout << endl;

}

//t3.add_time(t1, t2); "alte" Methode

t3 = t1 + t2;

t3.write_time();

// getchar();

return 0;

}

//---

void TIME::read_time()

{

cout << "Stunden [hh] >";

cin >> hh;

cout << "Minuten [mm] >";

cin >> mm;

cout << "Sekunden [ss] >";

cin >> ss;

}

//---

void TIME::write_time()

{

cout << hh << ":" << mm << ":" << ss;

}

//---

TIME operator+ (TIME t1, TIME t2)

{

TIME tsum;

int sec1, sec2, sec3;

sec1 = t1.hh * 3600 + t1.mm * 60 + t1.ss;

sec2 = t2.hh * 3600 + t2.mm * 60 + t2.ss;

sec3 = sec1 + sec2;

tsum.hh = sec3 / 3600;

sec3 = sec3 % 3600;

tsum.mm = sec3 / 60;

tsum.ss = sec3 % 60;

return tsum;

}

9.12 Schrittweise Entwicklung eines einfachen OOP-Projektes

237

9.12.4 Zusätzliche Überladung für Ein- und Ausgaben

Das Kapitel 9.7 beschreibt ausführlich die Überladung der Operatoren << und >> für

selbstdefinierte Objekte. Die praktische Anwendung ist einfach, da sie immer dem gleichen

Schema folgt. Die auf diese Weise überladenen Operatoren können auch kaskadiert ver-

wendet werden, z. B. cout << a << b << c << endl. Dabei können a, b und c Variablen von unterschiedlichen Standard-Datentypen oder selbstdefinierte Objekte sein. Wegen der

zwei übergebenen Parameter, Referenz auf ostream bzw . istream und selbstdefiniertes

Objekt (hier von der Klasse TIME), handelt es sich immer um friend-Funktionen. Die

Überladung aller Methoden führt zu einer äußerst benutzerfreundlichen Verwendung, wie

unsere Test- main()-Funktion beweist.

//--

// BSP_9_12_4_1

// Beispiel 4

// ohne selbstdefinierte Konstruktoren

// mit Operatorueberladung (+, >> und <<) fuer alle Methoden

#include <iostream>

#include <cstdio>

using namespace std;

class TIME

{

public:

//void read_time(); // "alte" Methoden

//void write_time();

//void add_time(TIME t1, TIME t2);

friend istream & operator>>(istream &in, TIME &t);

friend ostream & operator<<(ostream &out, TIME &t);

friend TIME operator+(TIME t1, TIME t2);

private:

int hh, mm, ss;

};

//---

int main(void)

{

class TIME t1, t2, t3;

cin >> t1;

cout << endl;

cin >> t2;

cout << endl;

t3 = t1 + t2;

cout << t3 << endl;

// getchar();

return 0;

}

238

9 Einführung in die OOP mit C++

//---

istream & operator>>(istream &in, TIME &t)

{

cout << "Stunden [hh] >";

in >> t.hh;

cout << "Minuten [mm] >";

in >> t.mm;

cout << "Sekunden [ss] >";

in >> t.ss;

return in;

}

//---

ostream & operator<<(ostream &out, TIME &t)

{

out << t.hh << ":" << t.mm << ":" << t.ss;

return out;

}

//---

TIME operator+(TIME t1, TIME t2)

{

TIME tsum;

int sec1, sec2, sec3;

sec1 = t1.hh * 3600 + t1.mm * 60 + t1.ss;

sec2 = t2.hh * 3600 + t2.mm * 60 + t2.ss;

sec3 = sec1 + sec2;

tsum.hh = sec3 / 3600;

sec3 = sec3 % 3600;

tsum.mm = sec3 / 60;

tsum.ss = sec3 % 60;

return tsum;

}

Das letzte Beispiel verwendet statt des überladenen Operators + die Operatoren += und ++.

Die Operator-Überladefunktion für += benötigt nur einen Übergabeparameter, die für den

unären Operator ++ gar keinen. Damit können beide als Klassenmethoden (und nicht als

friend-Funktionen) definiert werden.

//--

// BSP_9_12_4_2

// Beispiel 5:

// Mit Operatorueberladung (alternative Version)

#include <iostream>

#include <cstdio>

using namespace std;

class TIME

{

public:

9.12 Schrittweise Entwicklung eines einfachen OOP-Projektes

239

friend istream &operator>>(istream &in, TIME &t);

friend ostream &operator<<(ostream &out, TIME &t);

void operator+=(TIME t); // nur ein Parameter

void operator++(); // unitaerer Operator

private:

int hh, mm, ss;

};

//---

int main(void)

{

class TIME t1, t2;

cin >> t1;

cout << endl;

cin >> t2;

cout << endl;

t1 += t2;

cout << t1 << endl;

t1++;

cout << t1 << endl;

// getchar();

return 0;

}

//---

istream & operator>>(istream &in, TIME &t)

{

cout << "Stunden [hh] >";

in >> t.hh;

cout << "Minuten [mm] >";

in >> t.mm;

cout << "Sekunden [ss] >";

in >> t.ss;

return in;

}

//---

ostream & operator<<(ostream &out, TIME &t)

{

out << t.hh << ":" << t.mm << ":" << t.ss;

 return out;

}

//---

void TIME::operator+=(TIME t)

{

int sec1, sec2;

sec1 = hh * 3600 + mm * 60 + ss;

240

9 Einführung in die OOP mit C++

sec2 = t.hh * 3600 + t.mm * 60 + t.ss;

sec1 = sec1 + sec2;

hh = sec1 / 3600;

sec1 = sec1 % 3600;

mm = sec1 / 60;

ss = sec1 % 60;

}

//---

void TIME::operator++()

{

int sec1;

sec1 = hh * 3600 + mm * 60 + ss;

sec1 = sec1 + 1;

hh = sec1 / 3600;

sec1 = sec1 % 3600;

mm = sec1 / 60;

ss = sec1 % 60;

}

9.13 Abschlussbemerkungen

Aufgrund der zahlreichen Sprachmittel von C++ zur Objektorientierung konnten wir in

dem vorliegenden Kapitel nur eine Einführung in die OOP leisten. Es dürfte aber klar ge-

worden sein, dass mit den Klassen der Horizont weiter geworden ist. Gewachsen ist aber

auch der Aufwand. Das C-Motto „short is beautiful“ scheint vergessen, die Sprache ist „ge-

schwätziger“ geworden. Bei vielen kleineren Problemen im technischen Bereich ist der

Verzicht auf Objektorientierung durchaus erlaubt. OOP lohnt sich aber in jedem Fall bei

sehr großen Projekten, insbesondere dann, wenn mehrere Personen daran mitarbeiten. Die

Tatsache, dass man Daten und Funktionen als private oder public erklären kann, schafft klare Abgrenzungen und Schnittstellen.

Sehr nützlich sind auch die vorgefertigten Klassen der C++-Standardbibliothek (Standard

Template Library, STL), auf die wir hier nicht näher eingehen.

Möchte man mit grafischen Benutzerschnittstellen (GUI) unter Windows-Betriebssystemen

arbeiten, kommt man auch bei kleinen Projekten nicht um die OOP herum, denn nun ist der

Ablauf nicht länger prozedural sondern ereignisgesteuert (durch Anklicken von Schaltflä-

chen durch den Benutzer). Die API-Schnittstelle (Application Programming Interface) des

Betriebssystems Windows ermöglicht den Zugriff auf graphische Elemente wie Fenster,

Schaltflächen und Menüs, die als vorgefertigte Objekte mit Eigenschaften wie Größe und

Farbe vorliegen. Man nutzt jedoch meist die einfacher zu handhabende „drag&drop“-RAD-

Entwicklungsumgebung (RAD = Rapid Application Development) seines Compilers. Diese

ist aber nicht standardisiert und zwischen verschiedenen Compilern nicht portabel, oft nicht

einmal zwischen verschiedenen Versionen des gleichen Compilers. Abhilfe vom Problem

mangelnder Kompatibilität ermöglicht die Programmiersprache Java von Sun, die eine

grafische Programmentwicklung, unabhängig von Hardware und Betriebssystem, bietet.

9.14 Aufgaben

241

Java-Programme werden in eine „allgemeinverständliche“ Zwischensprache übersetzt, die

von dem jeweiligen Zielcomputer interpretiert werden. Java ist C++-ähnlich und ist bei

entsprechenden Vorkenntnissen relativ leicht erlernbar.

9.14 Aufgaben

1) Ergänzen Sie die Klasse binbyte von Kap. 9.7 durch die Methoden:

 bit_set(int bitposition);

setze an Bitposition bitposition eine „1“ im Byte;

 bit_del(int bitposition);

lösche an Bitposition bitposition eine „0“ im Byte;

 bit_invert(int bitposition);

invertiere Bitposition bitposition im Byte;

Führen Sie Operatorfunktionen ein für Vergleiche von zwei Byte (> < <= >=).

Schreiben Sie eine kurze Anwendung, um die Methoden zu testen.

2) Entwerfen Sie eine Klasse zeit, die die Tageszeit als Objekt enthält. Die Zeit soll in

unterschiedlichen Formaten ein- und ausgegeben werden können, z. B.: „16:30h“ oder

„16h 30min“.

Stellen Sie Methoden bereit, mit denen eine Zeitspanne hinzuaddiert bzw. abgezogen

werden kann und eine Zeitdifferenz berechnet wird.

Machen Sie nur diejenigen Elemente public, auf die das Hauptprogramm unbedingt Zu-

griff haben muss.

3) Warum ist es nicht möglich, einen Operator „**“ zum Potenzieren von Integer-Zahlen

einzuführen? (2 Gründe!)

4) Verändern Sie die Klasse binbyte (Kap.9.7) derart, dass alle Konstruktor- und Destruk-

toraufrufe sichtbar werden. Erklären Sie alle auftretenden Aufrufe. Führen Sie einen sta-

tischen Objektzähler ein.

5) Entwerfen Sie eine Klasse compl zum Arbeiten mit komplexen Zahlen. Überladen Sie

die Operatoren

„+“, „–“, „*“ und „/“.

6) Was geschieht, wenn innerhalb eines Destruktors ein Konstruktor aufgerufen wird?

Schreiben Sie dazu ein kleines Testprogramm.

7) Definieren Sie eine Klasse automobil („auto“ ist Schlüsselwort und darf nicht benutzt

werden!). Die Klasse soll den Namen der Automarke, den momentanen Ort (x-Koor-

dinate) und Geschwindigkeit als private Datenelemente enthalten. Die Klasse soll einen

parametrisierten Konstruktor enthalten, der Automarke und Ort initialisiert und die

übrigen Klassendaten auf 0 setzt. Es soll Methoden geben zum Beschleunigen (Ge-

schwindigkeit um einen übergebenen Betrag erhöhen) und Ausgeben aller Daten eines

242

9 Einführung in die OOP mit C++

Autos. Außerdem soll eine Methode „void fahre(double t)“ definiert werden, die be-

wirkt, dass das Auto sich für die angegebene Zeit t weiterbewegt. Simulieren Sie damit

zwei Autos. Das erste bewegt sich mit konstanter Geschwindigkeit (z. B. 30 m/s), das

zweite startet mit einer tieferen Geschwindigkeit (z. B. 20 m/s) und beschleunigt dann

jede Sekunde um einen bestimmten Betrag (z. B. 2 m/s). Zunächst soll angenommen

werden, dass beide Autos bei x = 0 starten. Finden Sie experimentell heraus, wann (Zeit

und Ort) das zweite Auto das erste einholt bzw. überholt hat. Erweiterung: Erweitern Sie

die Klasse „automobil“ um den Tankinhalt (zusätzliches Datenelement). Definieren Sie

eine Methode zum Tanken. Das Auto darf sich nur fortbewegen, wenn der Tank nicht

leer ist! Ferner soll beim Fahren Benzin verbraucht werden (zur Vereinfachung soll

7.0 Liter/100 km für beide Autos angenommen werden). Lassen Sie ein Objekt so lange

fahren, bis der Tank leer ist. Geben Sie diese Zeit aus.

Anhang

Anhang A: ASCII-Tabelle

ASCII-Tabelle (0–127 sowie erweitert 128–255)

Hex-

code

2.

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

1.

NUL SOH STX EXT EOT ENQ ACK BEL BS

HT

LF

VT

FF

CR

SO

SI

0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS

GS

RS

US

1

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

!

"

$

%

&

'

(

)

*

+

,

-

.

/

2

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

3

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

4

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

5

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

à

b

c

d

e

f

g

h

i

j

k

l

m

n

o

6

96

97

98

99

100 101 102 103 104 105 106 107 108 109 110 111

p

q

r

s

t

u

v

w

x

y

z

{

|

}

~

▓

7

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

Ç

ü

é

â

ä

à

å

ç

ê

ë

è

ï

î

ì

Ä

Å

8

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

É

æ

Æ

ô

ö

ò

û

ù

ÿ

Ö

Ü

¢

£





ƒ

9

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

á

í

ó

ú

ñ

Ñ

ª

º

¿

⌐

¬

½

¼

¡

«

»

A

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

░

▒

│

┤

╡

╢

╖

╕

╣

║

╗

╝

╜

╛

┐

B

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

└

┴

┬

├

─

┼

╞

╟

╚

╔

╩

╦

╠

═

╬

╧

C

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

╨

╤

╥

╙

╘

╒

╓

╫

╪

┘

┌

█

▄

▌

▐

▀

D

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

α

ß

Γ

π

Σ

σ

µ

τ

Φ

Θ

Ω

δ

∞

φ

ε

∩

E

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

≡

±

≥

≤

⌠

⌡

÷

≈

°

∙

·

√

ⁿ

²

■

F

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

© Springer Fachmedien Wiesbaden GmbH 2017

G. Küveler und D. Schwoch, C/C++ für Studium

 und Beruf, DOI 10.1007/978-3-658-18581-7

244

Anhang

Anhang B: Häufige Fehler

1)

…

a = b + c // Semikolon vergessen

cout << a << endl;

2)

while(a != b); // irrtümlich Semikolon hinter while-Anweisung (oder for oder if)

{

 …

 …

}

3)

do

{

…

 …

}

while(a <= b) // Semikolon hinter do…while vergessen

4)

while(a = b) // Zweisungsoperator “=” statt Gleichheitsoperator “==” verwendet

5)

int fahrzeug, moped;

…

Fahrzeug = moped / 7; // Variable “fahrzeug“ groß geschrieben,

 // in der Deklaration aber klein

Anhang B: Häufige Fehler

245

6)

int summe, i, a[100];

…

for(i = 0; i <= 100; i++) // Indexbereich ueberschritten, letztes Element ist a[99] !

summe = summe + a[i];

7)

double x, y, *pd;

…

x= 4.1;

y = 7.18;

*pd = y; // formal korrekt aber die Pointervariable pd ist noch uninitialisiert

// (zeigt irgendwo hin)

pd = x; // Wert zu Pointer ist verboten, richtig: pd = &x

8)

class TIME

{

public:

void read_time();

void write_time();

void add_time(TIME t1, TIME t2);

private:

int hh, mm, ss;

} // hier wurde das abschließende Semikolon vergessen, richtig: };

9)

Falls Ihre Ein/Ausgaben über ein Konsolenfenster erfolgt, das sich nach Programmende

automatisch schließt:

Sie können das sofortige Schließen verhindern, damit Sie die letzte Ausgebe auch sehen

können. Dies erreichen Sie am besten mit der Anweisung getchar() (ggf. zweimal).

246

Anhang

Anhang C: Compiler

Zur Lösung der Aufgaben benötigen Sie einen C++-Compiler. Das kann ein kommerzieller

oder ein im Internet frei verfügbarer sein. Unter dem Betriebssystem UNIX/Linux gehört

ein C-Compiler zu den Standard-Dienstprogrammen, unter Windows muss man ihn sich auf

jeden Fall erst besorgen. Man unterscheidet Kommandozeilen-Compiler und Compiler mit

integrierter Entwicklungsumgebung (IDE). Letztere bieten einen eigenen Editor zur Einga-

be des Quelltextes sowie alle Funktionen zum Übersetzen, Debuggen und Verwalten der

Programme „auf Knopfdruck“, während sich ein Kommandozeilen-Compiler auf die

Grundfunktionen beschränkt und vom Benutzer weiter reichende Kenntnisse im Umgang

mit dem Betriebssystem verlangt. Dafür ist letzterer häufig schneller und effizienter.

Beispiele für weit verbreitete Compiler

 Microsoft Visual C++: Compiler mit IDE, erlaubt Konsolen- und grafische Anwendungen.

Dazu bietet er spezielle Entwicklungs-Werkzeuge. Er ist Marktführer unter Windows, wird

häufig zur Schulung eingesetzt. Nur für das Betriebssystem Windows. Auch als Bestandteil

von Microsoft Visual Studio Express 2010 und 2017 Community erhältlich und kostenlos

(mit Registrierung) „downloadbar“. Für die Beispiele in diesem Buch verwendeten wir

diesen Compiler mit der Option „Leeres CLR-Projekt“. Benutzeranleitungen finden Sie auf

unserer Buchwebseite (s. Vorwort).

 C++ Builder: Compiler mit IDE, erlaubt Konsolen- und grafische Anwendungen. Dazu

bietet er spezielle Entwicklungs-Werkzeuge. Sehr weit verbreitet, wird häufig zur Schulung

eingesetzt. Früher von der Firma Borland vertrieben, heute von Embarcadero Für die Be-

triebssysteme Windows und Linux. Starteredition kostenlos zum Download verfügbar.

 Intel C/C++ (ICC): Kommandozeilencompiler für hoch effizienten Code. Für die Betriebssysteme Windows und Linux.

 g++: Nornalerweise Kommandozeilen-Compiler für Unix und Linux. Ist Bestandteil von GCC. Unter Linux (KDevelop) und Windows (Dev-C++) auch mit IDE verfügbar. Für die

Betriebssysteme Unix, Linux, Windows und Mac OS X.

 Orwell Dev-C++: Siehe g++. Besonders bei Studenten beliebter kostenlos (per Download)

erhältlicher Compiler.

Bei Konsolenanwendungen kann es je nach verwendetem Compiler oder Betriebssystem

Probleme beim Schließen der Konsole geben. Manche Compiler halten die Konsole von

sich aus offen bis der Benutzer sie explizit schließt. Bei den meisten jedoch schließt sich

die Konsole unmittelbar nach Beendigung des Programms. Dies ist häufig nicht gewünscht,

weil dann sofort alle Ausgaben verschwinden. Dies kann durch das Standardmakro

 getchar() (#include <cstdio>) in der Regel verhindert werden. Erst die Betätigung der

<Enter>-Taste führt dann zur Beendigung des Programms und damit zum Schließen der

Konsole. Sollte Ihr Compiler Probleme mit getchar() haben, können Sie es alternaiv aber

nicht Standard gemäß mit _getch() (#include <conio.h>) oder auch mit dem Systemaufruf

 system(“Pause“) (#include <cstdlib>) versuchen.

Allgemein lassen sich mit system() Betriebssystem-Kommandos aus einem C-Programm

heraus absetzen.

Sachwortverzeichnis

A

cos(a) 33

abgeleitete Klasse 227

cout 54

Adressen 68, 146

Adressoperator 45, 68, 146

D

Adressübergabe 130, 158

Dateien 165

Aktualparameter 111

Dateiorganisation 193

Algorithmus 1

Datentypen 8

ANSII-Standard 3

Datenstrukturen 5

ASCII-Dateien 167

Datenverbunde 154

ASCII-Tabelle 36, 243

define 50

atan(a) 33

-Anweisung 51

Ausdruck 7

delete 153, 224

Ausgabe-Formatierungsflags 60

Destruktoren 191

Dev-C++ 246

B

Direktzugriff 174

Basisklasse 227

do...while 87

Bedingungsschleifen 82

double 29

Binärdateien 171

Dynamische Klassen 222

Blockaufbau 12

Dynamische Speicher 222

bool 40

Dynamische Speicherverwaltung 150

break 76

bubble-sort 134

E

Elementfunktionen 173, 196

C

eof() 170

C 3

Escape-Sequenzen 37

C++ 3

exit() 152

C++ Builder 246

exp(a) 33

C++-Compiler 246

call by adress 130

F

– by reference 111

fabs(a) 33

– by value 111

false 40

case 75

Fehler 16, 244

ceil(a) 33

Felder 127

cerr 56

Festpunktzahl 22, 30

char 34

Filevariable 165

cin 54

float 21, 29

cin.get() 64

float-Datentypen 29

cin.getline() 140

float-Operatoren 31

clear() 171

floor(a) 33

clog 56

for ... 78

Compiler 1, 246

Formalparameter 107

const 50, 189

Formatbeschreiber 68

© Springer Fachmedien Wiesbaden GmbH 2017

G. Küveler und D. Schwoch, C/C++ für Studium

 und Beruf, DOI 10.1007/978-3-658-18581-7

248

Sachwortverzeichnis

FORTRAN 3

J

free() 151

Java 179

friend-Funktion 196

fstream 166

K

Function 101

Kapselung 184

Funktionsüberladung 198

kbhit() 89

Kernighan-Ritchie-Standard 3

G

Klasse 166, 179

g++ 246

Kommandozeilen-Compiler 246

Geltungsbereich v. Vereinbarungen 117

Kommentare 6, 14

_getch() 203, 246

Konstanten 7, 50

getchar() 5, 65, 245

Konstruktoren 185

Gleitpunktzahl 30

Kopierkonstruktor 188

Globale Variablen 117

goto 117

L

LabVIEW 1

H

Laufzeitfehler 17

Header-Datei 5, 103, 193

lineare Liste 160

Heap 151

Linux 246

Literale 8

I

log(a) 33

IDE 246

log10(a) 33

if 71

Logische Ausdrücke 40

if ... else 73

– Fehler 17

include 5

– Operatoren 41

Inhaltsoperator 45, 146

lokale Variablen 117

inline 194

long double 29

Instanz einer Klasse 185

long int 24

int 21, 24

long long int 24

INT_MAX 27

INT_MIN 27

M

_int128 24

M_PI 6, 57

Integer-Operatoren 25

main() 12, 103

Intel C/C++ (ICC) 246

malloc() 151

Interaktive Ein-/Ausgabe 53

Manipulator 55

Intervallhalbierung 90

zur Ausgabe-Formatierung 59

ios 60, 166

zur Eingabe-Formatierung 64

isalnum(c) 39

mathematische Standardfunktionen 33

isalpha(c) 39

mehrdimensionaler Felder 136

isdigit(c) 39

Microsoft Visual C++ 246

isprint(c) 39

Modularisierung 101

isspace(c) 39

Modulo 25

istream 210

Iteration 78

N

Namensregeln 10

namespaces 13

Sachwortverzeichnis

249

new 153

reservierte Wörter 9

Normalform 30

return 114

NULL 132

Nullstellenproblem 91

S

scanf() 67

O

Schachtelung von Kontrollstrukturen 91

Objekte 183

Schleifen 78

Objektmodul 19

Schlüsselwörter 9

objektoriente Programmierung 179

seekg() 174

Objektübergabe 218

seekp() 147

OOP 179

Selektion 71

Open-Modus 167

Separationszeichen 14

Operatoren 44

short 24

Operatorentabelle 44

Signatur 199

Operatorfunktion 202

signed char 38

Operatorüberladung 201

sin(a) 33

ostream 210

sizeof 45

Sonderzeichen 10

PQ

Speicherplätze 8

Parameter 108

sqrt(a) 33

Parameterübergabe 109

srand() 132

Pfeil-Operator 159

Standard-Datentypen 21

Pointer 145

Standardfunkionen mit char 39

Pointervariablen 146

Standardkonstruktor 186

Polymorphie 184, 201

Standard Streams 56

pow(a, b) 33

Standard Template Library, STL 240

Prä-Prozessor 19

static 117, 224

printf() 66

strcat_s() 139

private 180, 184, 227

strcmp() 140

Programm-Ablaufstrukturen 5, 71

strcpy_s() 139

Programmentwicklung 19

Streams 53

protected 227

Strings 138

Prototyp 105

strlen() 140

public 180, 184, 227

Stroustrup 3

putchar() 65

struct 154

Python 3

Strukturen 154

Quellprogramm 19

Strukturpointer 158

switch 75

R

Syntaxfehler 16

RAD 240

system() 246

rand() 132

Record 173

T

Referenzoperator 112

tan(a) 33

Rekursionen 120

tellg() 174

250

Sachwortverzeichnis

tellp() 175

Vererbung 227

Text-Dateien 167

Vergleichsoperatoren 40, 43

this-Zeiger 215

verketteten Liste 158, 160

time() 132

void 103, 113

tolower() 39

Top-Down-Entwurf 102

W

toupper(c) 39

Wertzuweisung 7

Trennzeichen 7

while... 82

true 40

Whitespace-Zeichen 62

typedef-Operator 161

Widerstandsnetzwerk 122

Windows 1, 246

U

Wurzel (Näherungsvervahren) 90

UNIX 3, 246

unsigned int 24

Z

unsigned char 38

Zeichenketten 34, 138

Unterprogramm 102

Zufallsgenerator 132

Unterprogrammtechnik 102

Zufallszahlen 132

Zugehörigkeitsoperator 194

V

Zugriffsmodifizierer 180, 228

Variablen 7

Zuweisungsoperator 7, 46

Variablenvereinbarung 13

[bookmark: outline]

Document Outline

	Vorwort

	Inhaltsverzeichnis

	Programmieren in C/C++

	1 Über C und C++

	2 Grundlagen

	2.1 Einführende Beispiele

	2.2 Anweisungen, Wertzuweisungen und Datentypen

	2.3 Der Aufbau eines C++-Programms

	2.3.1 Die Bausteine der Sprache

	2.3.2 Der Blockaufbau eines Programms

	2.3.3 Separationszeichen

	2.3.4 Kommentare

	2.3.5 Die Freiheit der äußeren Form

	2.4 Fehler

	2.4.1 Syntaxfehler

	2.4.2 Laufzeitfehler

	2.4.3 Logische Fehler

	2.5 Die Entwicklung von C/C++-Programmen

	2.6 Aufgaben

	3 Vordefinierte Standard-Datentypen und einfache Operationen

	3.1 Der Umgang mit Zahlen

	3.1.1 Ein wesentlicher Unterschied: int oder float

	3.1.2 Ganzzahlige Datentypen

	3.1.3 Reelle Datentypen

	3.1.4 Standardfunktionen mit Zahlen

	3.2 Verarbeitung von Einzelzeichen: Der Datentyp char

	3.2.1 Der Umgang mit der ASCII-Tabelle

	3.2.2 Standardfunktionen mit char

	3.3 Logische Ausdrücke

	3.4 Operatoren und Ausdrücke

	3.5 Benutzerdefinierte Konstanten

	3.6 Aufgaben

	4 Interaktive Ein-/Ausgabe

	4.1 Standard Ein-/Ausgabe mit C++

	4.2 Formatierte Bildschirm-Ausgabe

	4.3 Standard-Eingabe

	4.4 Standard Ein-/Ausgabe mit C

	4.5 Aufgaben

	5 Programm-Ablaufstrukturen

	5.1 Die Selektion

	5.1.1 Die einseitige Verzweigung: if ...

	5.1.2 Die bilaterale Alternative: if ... else

	5.1.3 Die Mehrfach-Fallunterscheidung: switch ...

	5.2 Die Iteration

	5.2.1 Die Zählschleife: for ...

	5.2.2 Bedingungsschleifen

	5.3 Die Schachtelung von Kontrollstrukturen

	5.4 Aufgaben

	6 Modularisierung von Programmen: Functions

	6.1 Vereinbarungen von Functions

	6.2 Der Aufbau von Funktionen

	6.3 Die Parameterübergabe

	6.4 Die return-Anweisung

	6.5 Der Geltungsbereich von Vereinbarungen

	6.6 Rekursionen

	6.7 Aufgaben

	7 Höhere Datenstrukturen

	7.1 Felder

	7.1.1 Eindimensionale Felder

	7.1.2 Mehrdimensionale Felder

	7.1.3 Zeichenketten: Strings

	7.1.4 Initialisierung von Feldern

	7.2 Pointer

	7.2.1 Pointer und Felder

	7.2.2 Dynamische Speicherverwaltung

	7.3 Datenverbunde: Strukturen

	7.3.1 Übergabe von Strukturen an Funktionen

	7.3.2 Struktur-Pointer

	7.3.3 Der typedef-Operator

	7.4 Aufgaben

	8 Arbeiten mit Dateien

	8.1 ASCII-Dateien: Der Dateityp Text

	8.2 Binärdateien

	8.3 Aufgaben

	9 Einführung in die OOP mit C++

	9.1 Klassen

	9.2 Der ObjektOrientierte Ansatz

	9.3 Konstruktoren und Destruktoren

	9.4 Dateiorganisation

	9.5 Friend Funktionen und -Klassen

	9.6 Überladen von Funktionen

	9.7 Überladen von Operatoren

	9.8 Der this-Zeiger

	9.9 Übergabe von Objekten an Funktionen

	9.10 Dynamischer Speicher und Klassen

	9.11 Vererbung

	9.12 Schrittweise Entwicklung eines einfachen OOP-Projektes

	9.12.1 Definition einer Klasse „TIME"

	9.12.2 Definition der Methoden außerhalb der Klassendefinition

	9.12.3 Konstruktoren und die Überladung des +-Operators

	9.12.4 Zusätzliche Überladung für Ein- und Ausgaben

	9.13 Abschlussbemerkungen

	9.14 Aufgaben

	Anhang

	Anhang A: ASCII-Tabelle

	ASCII-Tabelle (0–127 sowie erweitert 128–255)

	Anhang B: Häufige Fehler

	Anhang C: Compiler

	Sachwortverzeichnis

Table of Contents

		Vorwort

	Inhaltsverzeichnis

	Programmieren in C/C++

	1 Über C und C++

	2 Grundlagen

		2.1 Einführende Beispiele

		2.2 Anweisungen, Wertzuweisungen und Datentypen

		2.3 Der Aufbau eines C++-Programms
	
			2.3.1 Die Bausteine der Sprache

			2.3.2 Der Blockaufbau eines Programms

			2.3.3 Separationszeichen

			2.3.4 Kommentare

			2.3.5 Die Freiheit der äußeren Form

		

	

		2.3.1 Die Bausteine der Sprache

		2.3.2 Der Blockaufbau eines Programms

		2.3.3 Separationszeichen

		2.3.4 Kommentare

		2.3.5 Die Freiheit der äußeren Form

		2.4 Fehler
	
			2.4.1 Syntaxfehler

			2.4.2 Laufzeitfehler

			2.4.3 Logische Fehler

		

	

		2.4.1 Syntaxfehler

		2.4.2 Laufzeitfehler

		2.4.3 Logische Fehler

		2.5 Die Entwicklung von C/C++-Programmen

		2.6 Aufgaben

	

	2.1 Einführende Beispiele

	2.2 Anweisungen, Wertzuweisungen und Datentypen

	2.3 Der Aufbau eines C++-Programms

		2.3.1 Die Bausteine der Sprache

		2.3.2 Der Blockaufbau eines Programms

		2.3.3 Separationszeichen

		2.3.4 Kommentare

		2.3.5 Die Freiheit der äußeren Form

	

	2.3.1 Die Bausteine der Sprache

	2.3.2 Der Blockaufbau eines Programms

	2.3.3 Separationszeichen

	2.3.4 Kommentare

	2.3.5 Die Freiheit der äußeren Form

	2.4 Fehler

		2.4.1 Syntaxfehler

		2.4.2 Laufzeitfehler

		2.4.3 Logische Fehler

	

	2.4.1 Syntaxfehler

	2.4.2 Laufzeitfehler

	2.4.3 Logische Fehler

	2.5 Die Entwicklung von C/C++-Programmen

	2.6 Aufgaben

	3 Vordefinierte Standard-Datentypen und einfache Operationen

		3.1 Der Umgang mit Zahlen
	
			3.1.1 Ein wesentlicher Unterschied: int oder float

			3.1.2 Ganzzahlige Datentypen

			3.1.3 Reelle Datentypen

			3.1.4 Standardfunktionen mit Zahlen

		

	

		3.1.1 Ein wesentlicher Unterschied: int oder float

		3.1.2 Ganzzahlige Datentypen

		3.1.3 Reelle Datentypen

		3.1.4 Standardfunktionen mit Zahlen

		3.2 Verarbeitung von Einzelzeichen: Der Datentyp char
	
			3.2.1 Der Umgang mit der ASCII-Tabelle

			3.2.2 Standardfunktionen mit char

		

	

		3.2.1 Der Umgang mit der ASCII-Tabelle

		3.2.2 Standardfunktionen mit char

		3.3 Logische Ausdrücke

		3.4 Operatoren und Ausdrücke

		3.5 Benutzerdefinierte Konstanten

		3.6 Aufgaben

	

	3.1 Der Umgang mit Zahlen

		3.1.1 Ein wesentlicher Unterschied: int oder float

		3.1.2 Ganzzahlige Datentypen

		3.1.3 Reelle Datentypen

		3.1.4 Standardfunktionen mit Zahlen

	

	3.1.1 Ein wesentlicher Unterschied: int oder float

	3.1.2 Ganzzahlige Datentypen

	3.1.3 Reelle Datentypen

	3.1.4 Standardfunktionen mit Zahlen

	3.2 Verarbeitung von Einzelzeichen: Der Datentyp char

		3.2.1 Der Umgang mit der ASCII-Tabelle

		3.2.2 Standardfunktionen mit char

	

	3.2.1 Der Umgang mit der ASCII-Tabelle

	3.2.2 Standardfunktionen mit char

	3.3 Logische Ausdrücke

	3.4 Operatoren und Ausdrücke

	3.5 Benutzerdefinierte Konstanten

	3.6 Aufgaben

	4 Interaktive Ein-/Ausgabe

		4.1 Standard Ein-/Ausgabe mit C++

		4.2 Formatierte Bildschirm-Ausgabe

		4.3 Standard-Eingabe

		4.4 Standard Ein-/Ausgabe mit C

		4.5 Aufgaben

	

	4.1 Standard Ein-/Ausgabe mit C++

	4.2 Formatierte Bildschirm-Ausgabe

	4.3 Standard-Eingabe

	4.4 Standard Ein-/Ausgabe mit C

	4.5 Aufgaben

	5 Programm-Ablaufstrukturen

		5.1 Die Selektion
	
			5.1.1 Die einseitige Verzweigung: if ...

			5.1.2 Die bilaterale Alternative: if ... else

			5.1.3 Die Mehrfach-Fallunterscheidung: switch ...

		

	

		5.1.1 Die einseitige Verzweigung: if ...

		5.1.2 Die bilaterale Alternative: if ... else

		5.1.3 Die Mehrfach-Fallunterscheidung: switch ...

		5.2 Die Iteration
	
			5.2.1 Die Zählschleife: for ...

			5.2.2 Bedingungsschleifen

		

	

		5.2.1 Die Zählschleife: for ...

		5.2.2 Bedingungsschleifen

		5.3 Die Schachtelung von Kontrollstrukturen

		5.4 Aufgaben

	

	5.1 Die Selektion

		5.1.1 Die einseitige Verzweigung: if ...

		5.1.2 Die bilaterale Alternative: if ... else

		5.1.3 Die Mehrfach-Fallunterscheidung: switch ...

	

	5.1.1 Die einseitige Verzweigung: if ...

	5.1.2 Die bilaterale Alternative: if ... else

	5.1.3 Die Mehrfach-Fallunterscheidung: switch ...

	5.2 Die Iteration

		5.2.1 Die Zählschleife: for ...

		5.2.2 Bedingungsschleifen

	

	5.2.1 Die Zählschleife: for ...

	5.2.2 Bedingungsschleifen

	5.3 Die Schachtelung von Kontrollstrukturen

	5.4 Aufgaben

	6 Modularisierung von Programmen: Functions

		6.1 Vereinbarungen von Functions

		6.2 Der Aufbau von Funktionen

		6.3 Die Parameterübergabe

		6.4 Die return-Anweisung

		6.5 Der Geltungsbereich von Vereinbarungen

		6.6 Rekursionen

		6.7 Aufgaben

	

	6.1 Vereinbarungen von Functions

	6.2 Der Aufbau von Funktionen

	6.3 Die Parameterübergabe

	6.4 Die return-Anweisung

	6.5 Der Geltungsbereich von Vereinbarungen

	6.6 Rekursionen

	6.7 Aufgaben

	7 Höhere Datenstrukturen

		7.1 Felder
	
			7.1.1 Eindimensionale Felder

			7.1.2 Mehrdimensionale Felder

			7.1.3 Zeichenketten: Strings

			7.1.4 Initialisierung von Feldern

		

	

		7.1.1 Eindimensionale Felder

		7.1.2 Mehrdimensionale Felder

		7.1.3 Zeichenketten: Strings

		7.1.4 Initialisierung von Feldern

		7.2 Pointer
	
			7.2.1 Pointer und Felder

			7.2.2 Dynamische Speicherverwaltung

		

	

		7.2.1 Pointer und Felder

		7.2.2 Dynamische Speicherverwaltung

		7.3 Datenverbunde: Strukturen
	
			7.3.1 Übergabe von Strukturen an Funktionen

			7.3.2 Struktur-Pointer

			7.3.3 Der typedef-Operator

		

	

		7.3.1 Übergabe von Strukturen an Funktionen

		7.3.2 Struktur-Pointer

		7.3.3 Der typedef-Operator

		7.4 Aufgaben

	

	7.1 Felder

		7.1.1 Eindimensionale Felder

		7.1.2 Mehrdimensionale Felder

		7.1.3 Zeichenketten: Strings

		7.1.4 Initialisierung von Feldern

	

	7.1.1 Eindimensionale Felder

	7.1.2 Mehrdimensionale Felder

	7.1.3 Zeichenketten: Strings

	7.1.4 Initialisierung von Feldern

	7.2 Pointer

		7.2.1 Pointer und Felder

		7.2.2 Dynamische Speicherverwaltung

	

	7.2.1 Pointer und Felder

	7.2.2 Dynamische Speicherverwaltung

	7.3 Datenverbunde: Strukturen

		7.3.1 Übergabe von Strukturen an Funktionen

		7.3.2 Struktur-Pointer

		7.3.3 Der typedef-Operator

	

	7.3.1 Übergabe von Strukturen an Funktionen

	7.3.2 Struktur-Pointer

	7.3.3 Der typedef-Operator

	7.4 Aufgaben

	8 Arbeiten mit Dateien

		8.1 ASCII-Dateien: Der Dateityp Text

		8.2 Binärdateien

		8.3 Aufgaben

	

	8.1 ASCII-Dateien: Der Dateityp Text

	8.2 Binärdateien

	8.3 Aufgaben

	9 Einführung in die OOP mit C++

		9.1 Klassen

		9.2 Der ObjektOrientierte Ansatz

		9.3 Konstruktoren und Destruktoren

		9.4 Dateiorganisation

		9.5 Friend Funktionen und -Klassen

		9.6 Überladen von Funktionen

		9.7 Überladen von Operatoren

		9.8 Der this-Zeiger

		9.9 Übergabe von Objekten an Funktionen

		9.10 Dynamischer Speicher und Klassen

		9.11 Vererbung

		9.12 Schrittweise Entwicklung eines einfachen OOP-Projektes
	
			9.12.1 Definition einer Klasse „TIME"

			9.12.2 Definition der Methoden außerhalb der Klassendefinition

			9.12.3 Konstruktoren und die Überladung des +-Operators

			9.12.4 Zusätzliche Überladung für Ein- und Ausgaben

		

	

		9.12.1 Definition einer Klasse „TIME"

		9.12.2 Definition der Methoden außerhalb der Klassendefinition

		9.12.3 Konstruktoren und die Überladung des +-Operators

		9.12.4 Zusätzliche Überladung für Ein- und Ausgaben

		9.13 Abschlussbemerkungen

		9.14 Aufgaben

	

	9.1 Klassen

	9.2 Der ObjektOrientierte Ansatz

	9.3 Konstruktoren und Destruktoren

	9.4 Dateiorganisation

	9.5 Friend Funktionen und -Klassen

	9.6 Überladen von Funktionen

	9.7 Überladen von Operatoren

	9.8 Der this-Zeiger

	9.9 Übergabe von Objekten an Funktionen

	9.10 Dynamischer Speicher und Klassen

	9.11 Vererbung

	9.12 Schrittweise Entwicklung eines einfachen OOP-Projektes

		9.12.1 Definition einer Klasse „TIME"

		9.12.2 Definition der Methoden außerhalb der Klassendefinition

		9.12.3 Konstruktoren und die Überladung des +-Operators

		9.12.4 Zusätzliche Überladung für Ein- und Ausgaben

	

	9.12.1 Definition einer Klasse „TIME"

	9.12.2 Definition der Methoden außerhalb der Klassendefinition

	9.12.3 Konstruktoren und die Überladung des +-Operators

	9.12.4 Zusätzliche Überladung für Ein- und Ausgaben

	9.13 Abschlussbemerkungen

	9.14 Aufgaben

	Anhang

		Anhang A: ASCII-Tabelle
	
			ASCII-Tabelle (0–127 sowie erweitert 128–255)

		

	

		ASCII-Tabelle (0–127 sowie erweitert 128–255)

		Anhang B: Häufige Fehler

		Anhang C: Compiler

	

	Anhang A: ASCII-Tabelle

		ASCII-Tabelle (0–127 sowie erweitert 128–255)

	

	ASCII-Tabelle (0–127 sowie erweitert 128–255)

	Anhang B: Häufige Fehler

	Anhang C: Compiler

	Sachwortverzeichnis

OEBPS/Images/image00436.png

OEBPS/Images/image00557.png

OEBPS/Images/image00678.png

OEBPS/Images/image00800.png

OEBPS/Images/image00921.png

OEBPS/Images/image00437.png

OEBPS/Images/image00558.png

OEBPS/Images/image00679.png

OEBPS/Images/image00801.png

OEBPS/Images/image00434.png

OEBPS/Images/image00555.png

OEBPS/Images/image00676.png

OEBPS/Images/image00798.png

OEBPS/Images/image00919.png

OEBPS/Images/image00435.png

OEBPS/Images/image00556.png

OEBPS/Images/image00677.png

OEBPS/Images/image00799.png

OEBPS/Images/image00920.png

OEBPS/Images/image00440.png

OEBPS/Images/image00438.png

OEBPS/Images/image00559.png

OEBPS/Images/image00680.png

OEBPS/Images/image00439.png

OEBPS/Images/image00560.png

OEBPS/Images/image00681.png

OEBPS/Images/image00803.png

OEBPS/Images/image00561.png

OEBPS/Images/image00682.png

OEBPS/Images/image00804.png

OEBPS/Images/image00802.png

OEBPS/Images/image00443.png

OEBPS/Images/image00564.png

OEBPS/Images/image00685.png

OEBPS/Images/image00807.jpeg

OEBPS/Images/image00444.png

OEBPS/Images/image00565.png

OEBPS/Images/image00686.png

OEBPS/Images/image00808.png

OEBPS/Images/image00441.png

OEBPS/Images/image00562.png

OEBPS/Images/image00683.png

OEBPS/Images/image00805.png

OEBPS/Images/image00442.png

OEBPS/Images/image00563.png

OEBPS/Images/image00684.png

OEBPS/Images/image00806.png

OEBPS/Images/image00425.png

OEBPS/Images/image00546.png

OEBPS/Images/image00667.png

OEBPS/Images/image00789.png

OEBPS/Images/image00910.png

OEBPS/Images/image00426.png

OEBPS/Images/image00547.png

OEBPS/Images/image00668.png

OEBPS/Images/image00790.png

OEBPS/Images/image00911.png

OEBPS/Images/image00423.jpeg

OEBPS/Images/image00544.png

OEBPS/Images/image00665.png

OEBPS/Images/image00787.png

OEBPS/Images/image00908.png

OEBPS/Images/image00424.png

OEBPS/Images/image00545.png

OEBPS/Images/image00666.png

OEBPS/Images/image00788.png

OEBPS/Images/image00909.png

OEBPS/Images/image00429.png

OEBPS/Images/image00550.png

OEBPS/Images/image00430.png

OEBPS/Images/image00427.png

OEBPS/Images/image00548.png

OEBPS/Images/image00669.png

OEBPS/Images/image00791.png

OEBPS/Images/image00428.png

OEBPS/Images/image00549.png

OEBPS/Images/image00670.png

OEBPS/Images/image00792.png

OEBPS/Images/image00913.png

OEBPS/Images/image00671.png

OEBPS/Images/image00793.png

OEBPS/Images/image00914.png

OEBPS/Images/image00912.png

OEBPS/Images/image00432.png

OEBPS/Images/image00553.png

OEBPS/Images/image00674.png

OEBPS/Images/image00796.png

OEBPS/Images/image00917.png

OEBPS/Images/image00433.png

OEBPS/Images/image00554.png

OEBPS/Images/image00675.png

OEBPS/Images/image00797.png

OEBPS/Images/image00918.png

OEBPS/Images/image00551.png

OEBPS/Images/image00672.png

OEBPS/Images/image00794.jpeg

OEBPS/Images/image00915.png

OEBPS/Images/image00431.png

OEBPS/Images/image00552.png

OEBPS/Images/image00673.png

OEBPS/Images/image00795.png

OEBPS/Images/image00916.png

OEBPS/Images/image00458.png

OEBPS/Images/image00579.png

OEBPS/Images/image00700.png

OEBPS/Images/image00459.png

OEBPS/Images/image00580.png

OEBPS/Images/image00456.png

OEBPS/Images/image00577.png

OEBPS/Images/image00698.png

OEBPS/Images/image00820.png

OEBPS/Images/image00457.png

OEBPS/Images/image00578.jpeg

OEBPS/Images/image00699.png

OEBPS/Images/image00821.png

OEBPS/Images/image00460.png

OEBPS/Images/image00461.png

OEBPS/Images/image00582.png

OEBPS/Images/image00703.png

OEBPS/Images/image00462.png

OEBPS/Images/image00583.png

OEBPS/Images/image00704.png

OEBPS/Images/image00701.png

OEBPS/Images/image00581.png

OEBPS/Images/image00702.png

OEBPS/Images/image00465.png

OEBPS/Images/image00586.png

OEBPS/Images/image00707.png

OEBPS/Images/image00466.png

OEBPS/Images/image00587.png

OEBPS/Images/image00708.png

OEBPS/Images/image00463.png

OEBPS/Images/image00584.png

OEBPS/Images/image00705.png

OEBPS/Images/image00464.png

OEBPS/Images/image00585.png

OEBPS/Images/image00706.png

OEBPS/Images/image00447.png

OEBPS/Images/image00568.png

OEBPS/Images/image00689.png

OEBPS/Images/image00811.png

OEBPS/Images/image00448.png

OEBPS/Images/image00569.png

OEBPS/Images/image00690.png

OEBPS/Images/image00445.png

OEBPS/Images/image00566.png

OEBPS/Images/image00687.png

OEBPS/Images/image00809.png

OEBPS/Images/image00446.png

OEBPS/Images/image00567.png

OEBPS/Images/image00688.png

OEBPS/Images/image00810.png

OEBPS/Images/image00449.png

OEBPS/Images/image00570.png

OEBPS/Images/image00450.png

OEBPS/Images/image00571.png

OEBPS/Images/image00692.png

OEBPS/Images/image00814.png

OEBPS/Images/image00451.png

OEBPS/Images/image00572.png

OEBPS/Images/image00693.png

OEBPS/Images/image00815.png

OEBPS/Images/image00812.png

OEBPS/Images/image00691.png

OEBPS/Images/image00813.png

OEBPS/Images/image00454.jpeg

OEBPS/Images/image00575.png

OEBPS/Images/image00696.jpeg

OEBPS/Images/image00818.png

OEBPS/Images/image00455.png

OEBPS/Images/image00576.png

OEBPS/Images/image00697.png

OEBPS/Images/image00819.png

OEBPS/Images/image00452.png

OEBPS/Images/image00573.png

OEBPS/Images/image00694.png

OEBPS/Images/image00816.png

OEBPS/Images/image00453.png

OEBPS/Images/image00574.png

OEBPS/Images/image00695.png

OEBPS/Images/image00817.png

OEBPS/Images/image00480.png

OEBPS/Images/image00478.png

OEBPS/Images/image00599.jpeg

OEBPS/Images/image00720.png

OEBPS/Images/image00479.png

OEBPS/Images/image00600.png

OEBPS/Images/image00400.png

OEBPS/Images/image00399.png

OEBPS/Images/image00398.png

OEBPS/Images/image00397.png

OEBPS/Images/image00396.jpeg

OEBPS/Images/image00395.png

OEBPS/Images/image00394.png

OEBPS/Images/image00393.png

OEBPS/Images/image00392.png

OEBPS/Images/image00391.png

OEBPS/Images/image00601.png

OEBPS/Images/image00483.png

OEBPS/Images/image00604.png

OEBPS/Images/image00484.png

OEBPS/Images/image00605.png

OEBPS/Images/image00481.png

OEBPS/Images/image00602.jpeg

OEBPS/Images/image00482.png

OEBPS/Images/image00603.png

OEBPS/Images/image00487.png

OEBPS/Images/image00608.png

OEBPS/Images/image00488.png

OEBPS/Images/image00609.png

OEBPS/Images/image00485.png

OEBPS/Images/image00606.png

OEBPS/Images/image00486.png

OEBPS/Images/image00607.png

OEBPS/Images/image00469.png

OEBPS/Images/image00590.png

OEBPS/Images/image00470.png

OEBPS/Images/image00467.png

OEBPS/Images/image00588.png

OEBPS/Images/image00709.png

OEBPS/Images/image00468.png

OEBPS/Images/image00589.png

OEBPS/Images/image00710.png

OEBPS/Images/image00390.png

OEBPS/Images/image00389.png

OEBPS/Images/image00388.png

OEBPS/Images/image00387.png

OEBPS/Images/image00386.png

OEBPS/Images/image00385.png

OEBPS/Images/image00384.png

OEBPS/Images/image00383.png

OEBPS/Images/image00382.png

OEBPS/Images/image00381.png

OEBPS/Images/image00711.png

OEBPS/Images/image00472.png

OEBPS/Images/image00593.png

OEBPS/Images/image00714.png

OEBPS/Images/image00473.png

OEBPS/Images/image00594.png

OEBPS/Images/image00715.png

OEBPS/Images/image00591.png

OEBPS/Images/image00712.png

OEBPS/Images/image00471.png

OEBPS/Images/image00592.png

OEBPS/Images/image00713.png

OEBPS/Images/image00476.png

OEBPS/Images/image00597.png

OEBPS/Images/image00718.png

OEBPS/Images/image00477.png

OEBPS/Images/image00598.png

OEBPS/Images/image00719.png

OEBPS/Images/image00474.png

OEBPS/Images/image00595.png
B springerverea

OEBPS/Images/image00716.png

OEBPS/Images/image00475.png

OEBPS/Images/image00596.png

OEBPS/Images/image00717.png

OEBPS/Images/image00500.png

OEBPS/Images/image00420.png

OEBPS/Images/image00419.png

OEBPS/Images/image00418.png

OEBPS/Images/image00417.png

OEBPS/Images/image00416.png

OEBPS/Images/image00415.png

OEBPS/Images/image00414.png

OEBPS/Images/image00413.png

OEBPS/Images/image00412.png

OEBPS/Images/image00501.png

OEBPS/Images/image00411.png

OEBPS/Images/image00502.png

OEBPS/Images/image00505.jpeg

OEBPS/Images/image00506.png

OEBPS/Images/image00503.png

OEBPS/Images/image00504.png

OEBPS/Images/image00509.png

OEBPS/Images/image00510.png

OEBPS/Images/image00507.png

OEBPS/Images/image00508.png

OEBPS/Images/image00489.png

OEBPS/Images/image00610.jpeg

OEBPS/Images/image00490.png

OEBPS/Images/image00410.png

OEBPS/Images/image00409.png

OEBPS/Images/image00408.png

OEBPS/Images/image00407.png

OEBPS/Images/image00406.png

OEBPS/Images/image00405.png

OEBPS/Images/image00404.png

OEBPS/Images/image00403.jpeg

OEBPS/Images/image00402.png

OEBPS/Images/image00401.png

OEBPS/Images/image00611.png

OEBPS/Images/image00491.png

OEBPS/Images/image00612.png

OEBPS/Images/image00494.png

OEBPS/Images/image00615.png

OEBPS/Images/image00495.png

OEBPS/Images/image00616.png

OEBPS/Images/image00492.png

OEBPS/Images/image00613.png

OEBPS/Images/image00493.png

OEBPS/Images/image00614.png

OEBPS/Images/image00498.png

OEBPS/Images/image00619.png

OEBPS/Images/image00499.png

OEBPS/Images/image00620.png

OEBPS/Images/image00496.png

OEBPS/Images/image00617.png

OEBPS/Images/image00497.jpeg

OEBPS/Images/image00618.png

OEBPS/Images/image00360.png

OEBPS/Images/image00359.png

OEBPS/Images/image00358.png

OEBPS/Images/image00357.png

OEBPS/Images/image00356.png

OEBPS/Images/image00355.png

OEBPS/Images/image00354.png

OEBPS/Images/image00353.jpeg

OEBPS/Images/image00352.jpeg

OEBPS/Images/image00351.png

OEBPS/Images/image00350.png

OEBPS/Images/image00349.png

OEBPS/Images/image00348.png

OEBPS/Images/image00347.png

OEBPS/Images/image00346.png

OEBPS/Images/image00345.png

OEBPS/Images/image00344.png

OEBPS/Images/image00343.png

OEBPS/Images/image00342.png

OEBPS/Images/image00341.png

OEBPS/Images/image00512.png

OEBPS/Images/image00513.png

OEBPS/Images/image00511.png

OEBPS/Images/image00516.png

OEBPS/Images/image00517.png

OEBPS/Images/image00514.png

OEBPS/Images/image00515.png

OEBPS/Images/image00520.png

OEBPS/Images/image00518.png

OEBPS/Images/cover00747.jpeg
C/C(++ fur
Studium und Beruf

A Springer Vieweg

OEBPS/Images/image00519.png

OEBPS/Images/image00380.png

OEBPS/Images/image00379.png

OEBPS/Images/image00378.png

OEBPS/Images/image00377.png

OEBPS/Images/image00376.png

OEBPS/Images/image00375.png

OEBPS/Images/image00374.png

OEBPS/Images/image00373.png

OEBPS/Images/image00372.png

OEBPS/Images/image00371.png

OEBPS/Images/image00370.png

OEBPS/Images/image00369.png

OEBPS/Images/image00368.png

OEBPS/Images/image00367.png

OEBPS/Images/image00366.png

OEBPS/Images/image00365.png

OEBPS/Images/image00364.png

OEBPS/Images/image00363.png

OEBPS/Images/image00362.png

OEBPS/Images/image00361.png

OEBPS/Images/image00340.png

OEBPS/Images/image00339.png

OEBPS/Images/image00338.jpeg

OEBPS/Images/image00337.png

OEBPS/Images/image00336.png

OEBPS/Images/image00335.png

OEBPS/Images/image00334.png

OEBPS/Images/image00333.png

OEBPS/Images/image00332.png

OEBPS/Images/image00331.png

OEBPS/Images/image00329.png

OEBPS/Images/image00328.png

OEBPS/Images/image00330.png

OEBPS/Images/image01032.png

OEBPS/Images/image01035.png

OEBPS/Images/image01036.png

OEBPS/Images/image01033.png

OEBPS/Images/image01034.png

OEBPS/Images/image01039.png

OEBPS/Images/image01040.png

OEBPS/Images/image01037.png

OEBPS/Images/image01038.png

OEBPS/Images/image01041.png

OEBPS/Images/image01024.png

OEBPS/Images/image01025.png

OEBPS/Images/image01022.png

OEBPS/Images/image01023.png

OEBPS/Images/image01028.png

OEBPS/Images/image01029.png

OEBPS/Images/image01026.png

OEBPS/Images/image01027.png

OEBPS/Images/image01030.png

OEBPS/Images/image01031.png

OEBPS/Images/image00932.png

OEBPS/Images/image01053.png

OEBPS/Images/image00933.png

OEBPS/Images/image01054.png

OEBPS/Images/image01052.png

OEBPS/Images/image00936.png

OEBPS/Images/image01057.png

OEBPS/Images/image00937.png

OEBPS/Images/image01058.png

OEBPS/Images/image00934.png

OEBPS/Images/image01055.png

OEBPS/Images/image00935.png

OEBPS/Images/image01056.png

OEBPS/Images/image00940.png

OEBPS/Images/image01061.png

OEBPS/Images/image00941.png

OEBPS/Images/image00938.png

OEBPS/Images/image01059.png

OEBPS/Images/image00939.png

OEBPS/Images/image01060.jpeg

OEBPS/Images/image01042.png

OEBPS/Images/image00922.png

OEBPS/Images/image01043.png

OEBPS/Images/image00925.png

OEBPS/Images/image01046.png

OEBPS/Images/image00926.png

OEBPS/Images/image01047.png

OEBPS/Images/image00923.png

OEBPS/Images/image01044.png

OEBPS/Images/image00924.png

OEBPS/Images/image01045.png

OEBPS/Images/image00929.png

OEBPS/Images/image01050.png

OEBPS/Images/image00930.png

OEBPS/Images/image01051.png

OEBPS/Images/image00927.png

OEBPS/Images/image01048.png

OEBPS/Images/image00928.png

OEBPS/Images/image01049.png

OEBPS/Images/image00931.png

OEBPS/Images/image00833.png

OEBPS/Images/image00954.png

OEBPS/Images/image00834.png

OEBPS/Images/image00955.png

OEBPS/Images/image00952.png

OEBPS/Images/image00832.png

OEBPS/Images/image00953.png

OEBPS/Images/image00837.png

OEBPS/Images/image00958.png

OEBPS/Images/image00838.png

OEBPS/Images/image00959.png

OEBPS/Images/image00835.png

OEBPS/Images/image00956.png

OEBPS/Images/image00836.jpeg

OEBPS/Images/image00957.png

OEBPS/Images/image00841.png

OEBPS/Images/image00839.png

OEBPS/Images/image00960.png

OEBPS/Images/image00840.png
I Umueltschutz

OEBPS/Images/image00961.png

OEBPS/Images/image00962.png

OEBPS/Images/image00822.png

OEBPS/Images/image00943.png

OEBPS/Images/image01064.png

OEBPS/Images/image00823.png

OEBPS/Images/image00944.png

OEBPS/Images/image01065.png

OEBPS/Images/image01062.png

OEBPS/Images/image00942.png

OEBPS/Images/image01063.png

OEBPS/Images/image00826.png

OEBPS/Images/image00947.png

OEBPS/Images/image01068.png

OEBPS/Images/image00827.png

OEBPS/Images/image00948.png

OEBPS/Images/image01069.png

OEBPS/Images/image00824.png

OEBPS/Images/image00945.png

OEBPS/Images/image01066.png

OEBPS/Images/image00825.png

OEBPS/Images/image00946.png

OEBPS/Images/image01067.png

OEBPS/Images/image00830.png

OEBPS/Images/image00951.png

OEBPS/Images/image00831.png

OEBPS/Images/image00828.png

OEBPS/Images/image00949.png

OEBPS/Images/image01070.png

OEBPS/Images/image00829.png

OEBPS/Images/image00950.png

OEBPS/Images/image00733.png

OEBPS/Images/image00855.png

OEBPS/Images/image00976.png

OEBPS/Images/image00734.png

OEBPS/Images/image00856.png

OEBPS/Images/image00977.png

OEBPS/Images/image00731.png

OEBPS/Images/image00853.png

OEBPS/Images/image00974.png

OEBPS/Images/image00732.png

OEBPS/Images/image00854.png

OEBPS/Images/image00975.png

OEBPS/Images/image00737.png

OEBPS/Images/image00859.png

OEBPS/Images/image00980.png

OEBPS/Images/image00738.png

OEBPS/Images/image00860.png

OEBPS/Images/image00981.png

OEBPS/Images/image00735.png

OEBPS/Images/image00857.png

OEBPS/Images/image00978.png

OEBPS/Images/image00736.png

OEBPS/Images/image00858.png

OEBPS/Images/image00979.png

OEBPS/Images/image00739.png

OEBPS/Images/image00861.png

OEBPS/Images/image00740.png

OEBPS/Images/image00862.png

OEBPS/Images/image00983.png

OEBPS/Images/image00741.png

OEBPS/Images/image00863.png

OEBPS/Images/image00984.png

OEBPS/Images/image00982.png

OEBPS/Images/image00722.png

OEBPS/Images/image00844.png

OEBPS/Images/image00965.png

OEBPS/Images/image00723.png

OEBPS/Images/image00845.png

OEBPS/Images/image00966.jpeg

OEBPS/Images/image00842.png

OEBPS/Images/image00963.png

OEBPS/Images/image00721.png

OEBPS/Images/image00843.png

OEBPS/Images/image00964.png

OEBPS/Images/image00726.png

OEBPS/Images/image00848.png

OEBPS/Images/image00969.jpeg

OEBPS/Images/image00727.png

OEBPS/Images/image00849.png

OEBPS/Images/image00970.png

OEBPS/Images/image00724.png

OEBPS/Images/image00846.png

OEBPS/Images/image00967.png

OEBPS/Images/image00725.png

OEBPS/Images/image00847.png

OEBPS/Images/image00968.png

OEBPS/Images/image00730.png

OEBPS/Images/image00728.png

OEBPS/Images/image00850.png

OEBPS/Images/image00971.png

OEBPS/Images/image00729.png

OEBPS/Images/image00851.png

OEBPS/Images/image00972.png

OEBPS/Images/image00852.png

OEBPS/Images/image00973.png

OEBPS/Images/image00634.png

OEBPS/Images/image00756.png

OEBPS/Images/image00877.png

OEBPS/Images/image00998.jpeg

OEBPS/Images/image00635.png

OEBPS/Images/image00757.png

OEBPS/Images/image00878.png

OEBPS/Images/image00999.png

OEBPS/Images/image00632.png

OEBPS/Images/image00754.png

OEBPS/Images/image00875.png

OEBPS/Images/image00996.png

OEBPS/Images/image00633.png

OEBPS/Images/image00755.png

OEBPS/Images/image00876.png

OEBPS/Images/image00997.png

OEBPS/Images/image00638.png

OEBPS/Images/image00760.png

OEBPS/Images/image00881.png

OEBPS/Images/image00639.png

OEBPS/Images/image00761.png

OEBPS/Images/image00636.png

OEBPS/Images/image00758.png

OEBPS/Images/image00879.png

OEBPS/Images/image01000.png

OEBPS/Images/image00637.png

OEBPS/Images/image00759.png

OEBPS/Images/image00880.png

OEBPS/Images/image01001.png

OEBPS/Images/image00640.png

OEBPS/Images/image01002.png

OEBPS/Images/image00641.png

OEBPS/Images/image00763.png

OEBPS/Images/image00884.png

OEBPS/Images/image01005.png

OEBPS/Images/image00521.png

OEBPS/Images/image00642.png

OEBPS/Images/image00764.png

OEBPS/Images/image00885.png

OEBPS/Images/image01006.png

OEBPS/Images/image00882.png

OEBPS/Images/image01003.png

OEBPS/Images/image00762.png

OEBPS/Images/image00883.png

OEBPS/Images/image01004.png

OEBPS/Images/image00623.png

OEBPS/Images/image00744.png

OEBPS/Images/image00866.png

OEBPS/Images/image00987.png

OEBPS/Images/image00624.png

OEBPS/Images/image00745.png

OEBPS/Images/image00867.png

OEBPS/Images/image00988.png

OEBPS/Images/image00621.png

OEBPS/Images/image00742.png
oy

OEBPS/Images/image00864.png

OEBPS/Images/image00985.png

OEBPS/Images/image00622.png

OEBPS/Images/image00743.png

OEBPS/Images/image00865.png

OEBPS/Images/image00986.png

OEBPS/Images/image00627.png

OEBPS/Images/image00749.png

OEBPS/Images/image00870.png

OEBPS/Images/image00991.png

OEBPS/Images/image00628.png

OEBPS/Images/image00750.png

OEBPS/Images/image00871.png

OEBPS/Images/image00625.png

OEBPS/Images/image00746.png

OEBPS/Images/image00868.png

OEBPS/Images/image00989.png

OEBPS/Images/image00626.png

OEBPS/Images/image00869.png

OEBPS/Images/image00990.jpeg

OEBPS/Images/image00629.png

OEBPS/Images/image00751.png

OEBPS/Images/image00630.png

OEBPS/Images/image00752.png

OEBPS/Images/image00873.png

OEBPS/Images/image00994.png

OEBPS/Images/image00631.png

OEBPS/Images/image00753.png

OEBPS/Images/image00874.png

OEBPS/Images/image00995.png

OEBPS/Images/image00992.jpeg

OEBPS/Images/image00872.png

OEBPS/Images/image00993.png

OEBPS/Images/image00535.png

OEBPS/Images/image00656.png

OEBPS/Images/image00778.png

OEBPS/Images/image00899.png

OEBPS/Images/image01020.png

OEBPS/Images/image00536.png

OEBPS/Images/image00657.png

OEBPS/Images/image00779.jpeg

OEBPS/Images/image00900.png

OEBPS/Images/image01021.png

OEBPS/Images/image00533.png

OEBPS/Images/image00654.png

OEBPS/Images/image00776.png

OEBPS/Images/image00897.png

OEBPS/Images/image01018.png

OEBPS/Images/image00534.png

OEBPS/Images/image00655.png

OEBPS/Images/image00777.jpeg

OEBPS/Images/image00898.png

OEBPS/Images/image01019.png

OEBPS/Images/image00539.png

OEBPS/Images/image00660.png

OEBPS/Images/image00540.png

OEBPS/Images/image00537.png

OEBPS/Images/image00658.png

OEBPS/Images/image00780.png

OEBPS/Images/image00901.png

OEBPS/Images/image00538.png

OEBPS/Images/image00659.png

OEBPS/Images/image00781.png

OEBPS/Images/image00902.png

OEBPS/Images/image00782.png

OEBPS/Images/image00903.png

OEBPS/Images/image00421.png

OEBPS/Images/image00542.png

OEBPS/Images/image00663.png

OEBPS/Images/image00785.png

OEBPS/Images/image00906.png

OEBPS/Images/image00422.png

OEBPS/Images/image00543.png

OEBPS/Images/image00664.png

OEBPS/Images/image00786.png

OEBPS/Images/image00907.png

OEBPS/Images/image00661.png

OEBPS/Images/image00783.png

OEBPS/Images/image00904.png

OEBPS/Images/image00541.png

OEBPS/Images/image00662.png

OEBPS/Images/image00784.png

OEBPS/Images/image00905.png

OEBPS/Images/image00524.png

OEBPS/Images/image00645.png

OEBPS/Images/image00767.png

OEBPS/Images/image00888.png

OEBPS/Images/image01009.png

OEBPS/Images/image00525.png

OEBPS/Images/image00646.png

OEBPS/Images/image00768.png

OEBPS/Images/image00889.png

OEBPS/Images/image01010.png

OEBPS/Images/image00522.png

OEBPS/Images/image00643.png

OEBPS/Images/image00765.png

OEBPS/Images/image00886.png

OEBPS/Images/image01007.png

OEBPS/Images/image00523.png

OEBPS/Images/image00644.png

OEBPS/Images/image00766.png

OEBPS/Images/image00887.png

OEBPS/Images/image01008.png

OEBPS/Images/image00528.png

OEBPS/Images/image00649.png

OEBPS/Images/image00771.jpeg

OEBPS/Images/image00529.png

OEBPS/Images/image00650.png

OEBPS/Images/image00526.png

OEBPS/Images/image00647.png

OEBPS/Images/image00769.png

OEBPS/Images/image00890.png

OEBPS/Images/image01011.png

OEBPS/Images/image00527.png

OEBPS/Images/image00648.png

OEBPS/Images/image00770.png

OEBPS/Images/image00891.png

OEBPS/Images/image00530.png

OEBPS/Images/image01012.png

OEBPS/Images/image00892.png

OEBPS/Images/image01013.jpeg

OEBPS/Images/image00531.png

OEBPS/Images/image00652.png

OEBPS/Images/image00774.png

OEBPS/Images/image00895.png

OEBPS/Images/image01016.png

OEBPS/Images/image00532.png

OEBPS/Images/image00653.png

OEBPS/Images/image00775.png

OEBPS/Images/image00896.png

OEBPS/Images/image01017.png

OEBPS/Images/image00772.png

OEBPS/Images/image00893.png

OEBPS/Images/image01014.png

OEBPS/Images/image00651.png

OEBPS/Images/image00773.png

OEBPS/Images/image00894.png

OEBPS/Images/image01015.jpeg

