

1-6

Java für Dummies

Schummelseite

Schlüsselwörter

Die Programmiersprache Java hat 50 Schlüsselwörter. Jedes Schlüsselwort hat eine spezielle Bedeutung innerhalb der Sprache. Schlüsselwörter können ausschließlich für die ihnen standardmäßig zugewiesene Bedeutung verwendet werden.

Die folgende Tabelle listet alle Schlüsselwörter von Java auf.

	Schlüsselwort

	Was es bewirkt

	abstract

	Zeigt an, dass die Details einer Klasse, einer Methode oder einer Schnittstelle an anderer Stelle im Code zu finden sind.

	assert

	Überprüft die Wahrheit einer Bedingung, die der Programmierer für wahr hält.

	boolean

	Zeigt an, dass ein Wert true oder false sein kann.

	break

	Springt aus einer Schleifen‐ oder switch‐Anweisung heraus.

	byte

	Zeigt an, dass es sich bei einem Wert um eine ganze Zahl mit 8 Bit handelt.

	case

	Führt einen von mehreren möglichen Ausführungspfaden in einer switch‐Anweisung ein.

	catch

	Führt Anweisungen ein, die ausgeführt werden, wenn etwas den Ausführungsfluss in einer try‐Klausel unterbricht.

	char

	Zeigt an, dass ein Wert ein Zeichen (ein Buchstabe, eine Ziffer, ein Interpunktionszeichen usw.) ist, das in 16 Bit Speicher abgelegt ist.

	class

	Führt eine Klasse ein – eine Vorlage für ein Objekt.

	const

	Dieses Wort kann in einem Java‐Programm nicht verwendet werden. Das Wort hat keine Bedeutung, aber weil es ein Schlüsselwort ist, können Sie keine Variable namens const anlegen.

	continue

	Erzwingt den sofortigen Abbruch der aktuellen Schleifeniteration und beginnt mit der nächsten Iteration.

	default

	Führt einen Ausführungspfad ein, der zu verfolgen ist, wenn kein case in einer switch‐Anweisung einen Treffer darstellt.

	do

	Veranlasst den Computer, einige Anweisungen immer wieder auszuführen (z. B. so lange, bis der Computer nicht akzeptable Ergebnisse erhält).

	double

	Zeigt an, dass ein Wert eine 64‐Bit‐Zahl ist, mit einer oder mehreren Ziffern hinter dem Dezimaltrennzeichen.

	else

	Führt Anweisungen aus, die ausgeführt werden, wenn die Bedingung in einer if‐Anweisung nicht true ist.

	enum

	Erzeugt einen neu definierten Typ – eine Gruppe von Werten, die eine Variable annehmen kann.

	extends

	Erzeugt eine Unterklasse – eine Klasse, die die Funktionalität einer zuvor definierten Klasse wiederverwendet.

	final

	Zeigt an, dass der Wert einer Variablen nicht verändert werden kann, dass die Funktionalität einer Klasse nicht erweitert werden kann, oder dass eine Methode nicht überschrieben werden kann.

	finally

	Führt den letzten Willen und das Testament der Anweisungen in einer try‐Klausel ein.

	float

	Zeigt an, dass ein Wert eine 32‐Bit‐Zahl ist, mit einer oder mehreren Ziffern hinter dem Dezimaltrennzeichen.

	for

	Veranlasst den Computer, einige Anweisungen mehrfach zu wiederholen (z. B. in einer festgelegten Anzahl an Schleifendurchgängen).

	goto

	Dieses Wort kann in einem Java‐Programm nicht verwendet werden. Das Wort hat keine Bedeutung, aber weil es ein Schlüsselwort ist, können Sie keine Variable namens goto anlegen.

	if

	Überprüft, ob eine Bedingung true ist. Ist sie true, führt der Computer bestimmte Anweisungen aus, andernfalls führt er andere Anweisungen aus.

	implements

	Zeigt an, dass eine Klasse Rümpfe für Methoden bereitstellt, deren Header in einer Schnittstelle deklariert sind.

	import

	Ermöglicht dem Programmierer, die Namen von in einem Package definierten Klassen abzukürzen.

	instanceof

	Prüft, ob ein bestimmtes Objekt aus einer bestimmten Klasse kommt.

	int

	Zeigt an, dass es sich bei einem Wert um eine ganze Zahl mit 32 Bit handelt.

	interface

	Führt eine Schnittstelle ein. Eine Schnittstelle ist einer Klasse ähnlich, aber größtenteils haben die Methoden einer Schnittstelle keinen Rumpf.

	long

	Zeigt an, dass es sich bei einem Wert um eine ganze Zahl mit 64 Bit handelt.

	native

	Ermöglicht dem Programmierer, Code zu verwenden, der in einer anderen Sprache als Java geschrieben wurde.

	new

	Erzeugt ein Objekt aus einer vorhandenen Klasse.

	package

	Fügt den Code in ein Package ein – eine Sammlung logisch verwandter Definitionen.

	private

	Zeigt an, dass eine Variable oder eine Methode nur innerhalb einer bestimmten Klasse verwendet werden können.

	protected

	Zeigt an, dass eine Variable oder Methode in Unterklassen eines anderen Package verwendet werden können.

	public

	Zeigt an, dass eine Variable, eine Klasse oder eine Methode von anderem Java‐Code verwendet werden können.

	return

	Beendet die Ausführung einer Methode und gibt gegebenenfalls einen Wert an den aufrufenden Code zurück.

	short

	Zeigt an, dass es sich bei einem Wert um eine ganze Zahl mit 16 Bit handelt.

	static

	Zeigt an, dass eine Variable oder eine Methode zu einer Klasse gehören, statt zu einem aus der Klasse erzeugten Objekt.

	strictfp

	Begrenzt die Fähigkeit des Computers, extra große oder extra kleine Zahlen darzustellen, wenn er Zwischenberechnungen für float‐ und double‐Werte ausführt.

	super

	Verweist auf die Oberklasse des Codes, in der das Wort super vorkommt.

	switch

	Weist den Computer an, abhängig vom Wert eines Ausdrucks einem der vielen möglichen Ausführungspfade zu folgen (einem von vielen möglichen case‐Fällen).

	synchronized

	Sorgt dafür, dass sich zwei Threads nicht stören können.

	this

	Ein Selbstverweis – verweist auf das Objekt, in dem das Wort this vorkommt.

	throw

	Erzeugt ein neues Ausnahmeobjekt und zeigt an, dass eine außergewöhnliche Situation (in der Regel etwas Unerwünschtes) aufgetreten ist.

	throws

	Zeigt an, dass eine Methode oder ein Konstruktor die Verarbeitung auf jemand anderen abwälzt, wenn eine Ausnahme aufgeworfen wird.

	transient

	Zeigt an, dass der Wert einer Variablen nicht gespeichert werden soll, wenn ein Objekt serialisiert ist.

	try

	Führt Anweisungen ein, die (zur Laufzeit) daraufhin überwacht werden, ob etwas schiefgeht.

	void

	Zeigt an, dass eine Methode keinen Wert zurückgibt.

	volatile

	Gibt strenge Regeln für die Verwendung einer Variablen durch mehrere Threads gleichzeitig vor.

	while

	Wiederholt einige Anweisungen immer wieder (solange eine Bedingung true ist).

Eingeschränkte Schlüsselwörter

Mit Java 9 hat die Sprache zehn neue Wörter bekommen, die als eingeschränkte Schlüsselwörter bezeichnet werden. Ein eingeschränktes Schlüsselwort hat eine spezielle Bedeutung in der Sprache, aber nur dann, wenn Sie das Wort auf eine bestimmte Weise verwenden. Wenn Sie beispielsweise Folgendes schreiben:

requires other.stuff;

teilen Sie Java mit, dass Ihr Programm nicht läuft, wenn es nicht Zugriff auf irgendeinen anderen Code hat (den in other.stuff enthaltenen Code) Schreiben Sie aber:

int requires = 10;

ist requires eine ganz gewöhnliche int‐Variable.

Die folgende Tabelle listet die eingeschränkten Schlüsselwörter von Java auf.

	Eingeschränktes Schlüsselwort

	Was es bewirkt

	exports

	Zeigt an, dass der Code in einem Package von Code in anderen Modulen verwendet werden kann.

	module

	Eine Menge Packages.

	open

	Zeigt an, dass alle Packages in einem Modul auf bestimmte Weise von Code in anderen Modulen genutzt werden können.

	opens

	Greift auf den gesamten Code in einem anderen Modul zu. Dieser Zugriff verwendet Java‐Reflection (was unübersichtlich sein kann).

	provides

	Zeigt an, dass ein Modul einen Service zur Verfügung stellt.

	requires

	Zeigt an, dass das Programm nicht läuft, wenn es nicht Zugriff auf bestimmten anderen Code hat.

	to

	Gibt den Code an, der die Berechtigung hat, einen bestimmten Codeabschnitt zu verwenden.

	transitive

	Wenn mein Code den Code A benötigt und der Code Z meinen Code benötigt, bedeutet das Wort transitive, dass der Code Z automatisch den Code A benötigt.

	uses

	Zeigt an, dass ein Modul einen Service verwendet.

	with

	Gibt eine spezielle Verwendungsart eines Service an.

Literale (Symbole)

Neben den Schlüsselwörtern gibt es noch drei Wörter, die Sie in Java‐Programmen verwenden können, die als Literale bezeichnet werden. Jedes Literal hat eine bestimmte Bedeutung in der Sprache. Die Schlüsselwörter und die Literale werden als reservierte Wörter bezeichnet, weil alle diese Wörter für einen speziellen Gebrauch in der Programmiersprache Java reserviert sind.

Die folgende Tabelle listet die Literale von Java auf.

	Literal

	Was es bedeutet

	false

	Einer der beiden Werte, die ein Boolescher Ausdruck annehmen kann.

	null

	Der »Nichts«‐Wert. Wenn Sie wollen, dass ein Ausdruck auf ein Objekt irgendeiner Art verweist, das aber nicht der Fall ist, ist der Wert des Ausdrucks null.

	true

	Einer der beiden Werte, die ein Boolescher Ausdruck annehmen kann.

Bezeichner im Java API

Das Java API (Application Programming Interface) enthält Tausende von Bezeichnern. Jeder Bezeichner ist der Name von irgendetwas (einer Klasse, eines Objekts, einer Methode usw.). Zu diesen Bezeichnern gehören System, out, println, String, toString, JFrame, File, Scanner, next, nextInt, Exception, close, ArrayList, stream, JTextField, Math, Random, MenuItem, Month, parseInt, Query, Rectangle, Color, Oval, paint, Robot, SQLData, Stack, Queue, TimeZone, URL und viele andere.

Sie können diese Namen in Ihrem Code beliebig verwenden. Möglicherweise bekommen Sie dann aber Probleme, wenn Sie einen Namen mit seiner normalen Bedeutung aus dem Java API verwenden wollen. Sie können beispielsweise schreiben:

int System = 7;

java.lang.System.out.println(System);

Aber nicht:

int System = 7;

System.out.println(System);

Bezeichner, die Sie (der Programmierer) deklarieren

In Ihrem eigenen Java‐Programm können Sie nach Herzenslust Namen vergeben. Im Code

double mitZweiMultiplizieren(double myValue) {

return meinWert * 2;

}

beispielsweise sind die Namen mitZweiMultiplizieren und meinWert Ihre ganz persönlichen Bezeichner.

Für einen neuen Namen können Sie Buchstaben, Ziffern, Unterstriche (_) und Dollarzeichen ($) verwenden. Der Name darf jedoch nicht mit einer Ziffer beginnen. Falls Sie versuchen, ihn mit einer Ziffer beginnen zu lassen, beschwert sich Java sofort.

 [image: Titelblatt]

9-10[image:]

WILEY‐VCH Verlag GmbH & Co. KGaA

Java für Dummies

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d‐nb.de abrufbar.

7. Auflage 2017

© 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim

Original English language edition Java for Dummies 7th edition © 2017 by Wiley Publishing, Inc.All rights reserved including the right of reproduction in whole or in part in any form. This translation published by arrangement with John Wiley and Sons, Inc.

Copyright der englischsprachigen Originalausgabe Java for Dummies 7th edition © 2017 by Wiley Publishing, Inc.Alle Rechte vorbehalten inklusive des Rechtes auf Reproduktion im Ganzen oder in Teilen und in jeglicher Form. Diese Übersetzung wird mit Genehmigung von John Wiley and Sons, Inc. publiziert.

Wiley, the Wiley logo, Für Dummies, the Dummies Man logo, and related trademarks and trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries. Used by permission.

Wiley, die Bezeichnung »Für Dummies«, das Dummies‐Mann‐Logo und darauf bezogene Gestaltungen sind Marken oder eingetragene Marken von John Wiley & Sons, Inc., USA, Deutschland und in anderen Ländern.

Das vorliegende Werk wurde sorgfältig erarbeitet. Dennoch übernehmen Autoren und Verlag für die Richtigkeit von Angaben, Hinweisen und Ratschlägen sowie eventuelle Druckfehler keine Haftung.

Coverfoto © pixelliebe – Fotolia.com

Korrektur Karin Becker, Köln

Satz/ePub Reemers Publishing Services GmbH, Krefeld

Print ISBN: 978‐3‐527‐71364‐6

ePub ISBN: 978‐3‐527‐80899‐1

mobi ISBN: 978‐3‐527‐80898‐4

Inhaltsverzeichnis
	Cover
	Über den Autor
	Einführung	Wie Sie an dieses Buch herangehen sollten
	Konventionen, die in diesem Buch verwendet werden
	Was Sie nicht lesen müssen
	Ein paar einfache Annahmen
	Wie dieses Buch aufgebaut ist	Teil I: Los geht's
	Teil II: Eigene Java‐Programme schreiben
	Teil III: Das große Ganze im Auge behalten: Die objektorientierte Programmierung
	Teil IV: Clevere Java‐Techniken
	Teil V: Der Top‐Ten‐Teil

	Symbole, die in diesem Buch verwendet werden
	Anmerkung der Übersetzerin
	Wie es weitergeht

	Teil I: Los geht's	Kapitel 1: Alles über Java	Was Sie mit Java machen können
	Warum Sie Java verwenden sollten
	Einen Überblick erhalten: Wie sich Java einordnen lässt
	Objektorientierte Programmierung (OOP)	Objektorientierte Sprachen
	Objekte und ihre Klassen
	Was ist das Besondere an einer objektorientierten Sprache?
	Ihr Verständnis für Klassen und Objekte vertiefen

	Wie geht es weiter?

	Kapitel 2: Alles über Software	Anleitungen für einen Schnellstart
	Was Sie auf Ihrem Computer installieren	Was ist ein Compiler?
	Was ist eine Java Virtual Machine?
	Software entwickeln
	Was ist eine integrierte Entwicklungsumgebung?

	Kapitel 3: Die grundlegenden Teile verwenden	Die Sprache Java sprechen	Die Grammatik und die gebräuchlichen Bezeichnungen
	Die Wörter in einem Java‐Programm

	Sich zum ersten Mal mit Java‐Code beschäftigen
	Ein einfaches Java‐Programm verstehen	Die Java‐Klasse
	Die Java‐Methode
	Die Methode »main« eines Programms
	Wie Sie dem Computer letztendlich mitteilen, dass er etwas tun soll
	Geschweifte Klammern

	Kommentare, Kommentare	Dem Code Kommentare hinzufügen
	Und wie sieht Barrys Ausrede aus?
	Kommentare verwenden, um mit dem Code zu experimentieren

	Teil II: Eigene Java‐Programme schreiben	Kapitel 4: Das Optimum aus Variablen und ihren Werten herausholen	Eine Variable variieren	Zuweisungsbefehle
	Wertetypen, die Variablen annehmen können
	Text anzeigen
	Ganzzahlen
	Deklarationen kombinieren und Variablen initialisieren

	Experimente mit JShell
	Was ist mit den ganzen coolen visuellen Effekten passiert?
	Die Atome: Javas primitive Typen	Der Typ »char«
	Der Typ »boolean«

	Die Moleküle und Verbindungen: die Referenztypen
	Eine Importdeklaration
	Mit Operatoren neue Werte erstellen	Einmal initialisieren, mehrfach zuweisen
	Inkrement‐ und Dekrement‐Operatoren
	Zuweisungsoperatoren

	Kapitel 5: Den Programmablauf mit entscheidungsfindenden Befehlen steuern	Entscheidungen fällen (Java‐Befehl »if«)	Eine Zahl raten
	Tastatureingaben kontrollieren
	Zufallszahlen
	Der Befehl »if«
	Das doppelte Gleichheitszeichen
	Nichts als Klammern
	Den Code bei »if«‐Befehlen einrücken
	Elselos in Ifrika

	Blöcke in JShell verwenden
	Bedingungen mit Vergleichsoperatoren und mit logischen Operatoren bilden	Zahlen miteinander vergleichen: Vergleichsoperatoren
	Objekte vergleichen
	Alles auf einen Schlag importieren
	Javas logische Operatoren
	Vive les nuls!
	(Bedingungen in Klammern)

	Verschachtelungen
	Unter mehreren Alternativen wählen (Java‐Befehl »switch«)	Der »switch«‐Befehl
	To break or not to break
	Strings in einem »switch«‐Befehl

	Kapitel 6: Den Programmablauf mit Schleifen steuern	Anweisungen mehrfach wiederholen (Java‐Befehl »while«)
	Eine bestimmte Anzahl an Wiederholungen festlegen (Java‐Befehl »for«)	Die Anatomie eines »for«‐Befehls
	Die Weltpremiere von »Al's All Wet«

	Wiederholen, bis Ihr Wunsch erfüllt wird (Java‐Befehl »do«)	Ein einzelnes Zeichen lesen
	Java und die Behandlung von Dateien
	Variablendeklarationen und Blöcke

	Teil III: Das große Ganze: Objektorientierte Programmierung	Kapitel 7: In Begriffen wie Klassen und Objekte denken	Eine Klasse definieren (was es heißt, ein Konto zu sein)	Variablen deklarieren und Objekte erstellen
	Eine Variable initialisieren
	Die Felder eines Objekts verwenden
	Ein Programm; mehrere Klassen
	Öffentliche (»public«) Klassen

	Eine Methode in einer Klasse definieren (ein Konto anzeigen)	Ein Konto, das sich selbst anzeigt
	Der Kopf der Methode »display«

	Werte an Methoden senden und von dort erhalten (Zinsen berechnen)	Einen Wert an eine Methode übergeben
	Einen Wert von der Methode »getZinsen« zurückgeben

	Zahlen gut aussehen lassen
	Einzelheiten mit Zugriffsmethoden verbergen	Gute Programmierung
	Öffentliches Leben und private Träume: ein Feld sperren
	Regeln mit Zugriffsmethoden erzwingen

	Die eigene GUI‐Klasse von Barry

	Kapitel 8: Zeit und Geld sparen: Code wiederverwenden	Eine Klasse definieren (was es bedeutet, ein Mitarbeiter zu sein)	Das letzte Wort an Mitarbeiter
	Die Klasse gut verwenden
	Gehalt bezahlen

	Mit Dateien auf der Festplatte arbeiten (ein kleiner Umweg)	Daten in einer Datei ablegen
	Code kopieren und einfügen
	Eine Datei auslesen
	Wer hat die Datei verschoben?
	Den Dateinamen um den Verzeichnisnamen erweitern
	Eine Zeile nach der anderen lesen
	Die Verbindung zu einer Datei auf der Festplatte beenden

	Unterklassen definieren (Vollzeit‐ oder Teilzeitmitarbeiter?)	Unterklassen erstellen
	Das Anlegen von Unterklassen kann zur Gewohnheit werden

	Mit Unterklassen arbeiten	Typen passend gestalten
	Die zweite Hälfte der Geschichte

	Methoden überschreiben (Zahlungen für einige Mitarbeiter ändern)	Eine Java‐Annotation
	Methoden aus Klassen und Unterklassen verwenden

	Kapitel 9: Neue Objekte entwerfen	Konstruktoren definieren (was es bedeutet, eine Temperatur zu sein)	Was ist eine Temperatur?
	Was ist eine Temperaturskala? (Java‐Typ »enum«)
	Also gut, was ist denn nun eine Temperatur?
	Was Sie mit einer Temperatur anfangen können
	new Temperature(32.0) – eine Fallstudie
	Einige Dinge ändern sich nie

	Noch mehr Unterklassen (etwas gegen das Wetter unternehmen)	Für bessere Temperaturen sorgen
	Konstruktoren für Unterklassen
	Alles anwenden
	Der Standardkonstruktor

	Ein Konstruktor, der mehr kann	Klassen und Methoden der Java‐API
	Die Annotation »SuppressWarnings«

	Teil IV: Intelligente Java‐Techniken	Kapitel 10: Variablen und Methoden richtig platzieren	Klassen definieren (Was es heißt, ein Baseballspieler zu sein)	Ein anderer Weg, um Zahlen zu formatieren
	Die Klasse »Player« verwenden
	Eine Klasse, neun Objekte
	Eine GUI
	Eine Ausnahme von Methode zu Methode weiterreichen

	Etwas statisch machen (den Teamdurchschnitt herausfinden)	Warum gibt es da so viel Statisches?
	Das statische Initialisierungsprogramm
	Den Teamdurchschnitt anzeigen
	»static« ist von gestern
	Achtung Statisches – mit Vorsicht genießen!

	Mit Variablen experimentieren	Eine Variable richtig platzieren
	Einer Variablen aufzeigen, wohin sie gehört

	Parameter übergeben	Übergabe als Wert
	Ein Ergebnis zurückgeben
	Übergabe per Referenz
	Ein Objekt von einer Methode zurückgeben
	Nachtrag

	Kapitel 11: Arrays verwenden, um mit Werten zu jonglieren	Bereiten Sie sich gut vor	Ein Array in zwei einfachen Schritten erstellen
	Werte speichern
	Tabulatoren und anderes
	Einen Array‐Initialisierer verwenden
	Ein Array mit einer erweiterten »for«‐Schleife durchlaufen
	Suchen
	In eine Datei schreiben
	Wann eine Datei geschlossen werden muss

	Arrays aus Objekten	Die Klasse »Room« verwenden
	Und noch ein Weg, um Zahlen schön zu gestalten
	Der Bedingungsoperator

	Argumente in der Befehlszeile	Befehlszeilenargumente in einem Java‐Programm verwenden
	Prüfen, ob die richtige Anzahl an Befehlszeilenparametern vorhanden ist

	Kapitel 12: Sammlungen und Streams verwenden	Die Begrenzungen von Arrays verstehen
	Hilfe durch Sammelklassen	Eine »ArrayList« verwenden
	Generische Typen verwenden
	Wrapper‐Klassen
	Testen, ob noch mehr Daten vorhanden sind
	Einen Iterator verwenden
	Die vielen Sammelklassen Javas

	Funktionale Programmierung	Ein Problem auf die altbewährte Weise lösen
	Streams
	Lambda‐Ausdrücke
	Eine Klassifizierung von Lambda‐Ausdrücken
	Streams und Lambda‐Ausdrücke verwenden
	Warum sich Sorgen machen?
	Methodenreferenzen

	Kapitel 13: Gut aussehen, wenn sich die Dinge unerwartet ändern	Mit Ausnahmen umgehen	Der Parameter einer »catch«‐Klausel
	Ausnahmetypen
	Wer fängt die Ausnahme ein?
	Zwei oder mehr Ausnahmen gleichzeitig auffangen
	Alle Bedenken in den Wind schlagen
	Etwas Sinnvolles tun
	Unsere Freunde, die guten Ausnahmen

	Eine Ausnahme verarbeiten oder den Schwarzen Peter weitergeben
	Die Aufgabe mit der Klausel »finally« abschließen
	Ein »try«‐Befehl mit Ressourcen

	Kapitel 14: Programmteile gemeinsam nutzen	Zugriffsmodifizierer
	Klassen, Zugriff und Multipart‐Programmierung	Mitglied oder Klassen
	Zugriffsmodifizierer für Mitglieder
	Eine Zeichnung auf einem Frame platzieren
	Die Verzeichnisstruktur
	Einen Frame erstellen

	Sich vom ursprünglichen Code absetzen	Standardzugriff
	Wieder ins Paket zurückkrabbeln

	Geschützter Zugriff	Unterklassen, die sich nicht im selben Paket befinden
	Klassen, die keine Unterklassen sind (sich aber im selben Paket befinden)

	Zugriffsmodifizierer für Java‐Klassen	Öffentliche Klassen
	Nicht öffentliche Klassen

	Kapitel 15: Referenztypen	Typen in Java
	Die Java‐Schnittstelle	Zwei Schnittstellen
	Schnittstellen implementieren
	Setzen wir die Teile zusammen!

	Abstrakte Klassen	Haustierpflege
	Und jetzt alle zusammen

	Entspannen Sie sich! Sie sehen nicht doppelt!

	Kapitel 16: Auf Tastatureingaben und Mausklicks reagieren	Machen Sie weiter … Klicken Sie auf diese Schaltfläche	Ereignisse und Ereignisbehandlung
	Threads
	Das Schlüsselwort »this«
	Das Innere der Methode »actionPerformed«
	Die serialVersionUID

	Auf andere Dinge als auf das Anklicken von Schaltflächen reagieren
	Innere Klassen erstellen

	Kapitel 17: Mit Java Datenbankverbindungen aufbauen und nutzen	Eine Datenbank und eine Tabelle erstellen	Was passiert bei der Codeausführung?
	SQL‐Befehle verwenden
	Verbinden und trennen

	Daten in der Tabelle ablegen
	Daten abfragen
	Daten zerstören

	Teil V: Der Top‐Ten‐Teil	Kapitel 18: Zehn Wege, um Fehler zu vermeiden	Großbuchstaben dorthin setzen, wo sie hingehören
	Aus einer »switch«‐Anweisung aussteigen
	Werte mit einem doppelten Gleichheitszeichen vergleichen
	Einer GUI Komponenten hinzufügen
	Listeners für Ereignisbehandlungen hinzufügen
	Die benötigten Konstruktoren definieren
	Nicht statische Verweise reparieren
	Sich in den Grenzen eines Arrays aufhalten
	»NullPointers« vorhersehen
	Java bei der Suche nach seinen Dateien helfen

	Kapitel 19: Zehn Websites für Java	Die Websites zu diesem Buch
	Aus erster Hand
	News, Berichte und Beispielcode
	Es gibt nicht nur Englisches
	Jedermanns Lieblingssite

	Stichwortverzeichnis
	Wiley End User License Agreement

Abbildungsverzeichnis
	Kapitel 1	Abbildung 1.1: Die Terminologie der objektorientierten Programmierung

	Kapitel 2	Abbildung 2.1: Ein imaginäres Treffen des UN Security Councils
	Abbildung 2.2: Ein Java‐Programm entwickeln
	Abbildung 2.3: Wer macht was mit welchem Code?
	Abbildung 2.4: Code‐Entwicklung ohne integrierte Entwicklungsumgebung
	Abbildung 2.5: Code‐Entwicklung mit der Entwicklungsumgebung Eclipse
	Abbildung 2.6: In NetBeans IDE den Swing GUI Builder für »Drag and Drop« verwenden

	Kapitel 3	Abbildung 3.1: Ich verwende Eclipse, um das Programm in Listing 3.1 auszuführen.
	Abbildung 3.2: Ein Java‐Programm ist eine Klasse.
	Abbildung 3.3: Die Methode
	Abbildung 3.4: Ein Java‐Befehl
	Abbildung 3.5: Die Methode wird aufgerufen.
	Abbildung 3.6: Aus einer Gliederung wird ein Java‐Programm.
	Abbildung 3.7: Eine Klasse ist größer als eine Methode, und eine Methode ist größer als ein Befehl.
	Abbildung 3.8: Die Javadoc‐Seite, die vom Code in Listing 3.6 generiert wurde

	Kapitel 4	Abbildung 4.1: Eine Variable (vorher und nachher)
	Abbildung 4.2: So sollte die erste Zeile in Listing 4.1 gelesen werden.
	Abbildung 4.3: Die Aktion der zweiten Zeile in Listing 4.1
	Abbildung 4.4: Die extreme Vergrößerung von acht schwarzen und weißen Pixeln auf dem Bildschirm
	Abbildung 4.5: Das Programm in Listing 4.2 wird ausgeführt.
	Abbildung 4.6: Retten Sie die Brickenchickers.
	Abbildung 4.7: Eine intime Unterhaltung zwischen mir und JShell
	Abbildung 4.8: Das Ergebnis der Ausführung des Programms in Listing 4.4, wie es in der Eclipse View »Console« wiedergegeben wird
	Abbildung 4.9: Die Brickenchicker‐Zehnlinge sind wieder da.
	Abbildung 4.10: Ein leerer Frame
	Abbildung 4.11: Die Variable verweist auf eine Instanz der Klasse .
	Abbildung 4.12: 2,48 Dollar werden gewechselt.
	Abbildung 4.13: Ein Präinkrement verwenden
	Abbildung 4.14: Der Code aus Abbildung 4.13 wird ausgeführt.
	Abbildung 4.15: Ein Postinkrement verwenden
	Abbildung 4.16: Der Code in Abbildung  wird ausgeführt.
	Abbildung 4.17: Der Code in Listing 4.8 wird ausgeführt.

	Kapitel 5	Abbildung 5.1: Zwei Ausführungen des Ratespiels
	Abbildung 5.2: Ein ‐Befehl verzweigt sich wie eine Weggabelung.
	Abbildung 5.3: Zwei Ausführungen des Spiels in Listing 5.2
	Abbildung 5.4: Ein Vergleich von und der Methode
	Abbildung 5.5: Zwei Ausführungen des Codes in Listing 5.4
	Abbildung 5.6: Das Programm in Listing 5.5 wurde dreimal ausgeführt.
	Abbildung 5.7: Versuchen Sie nicht, mit dieser Gabel zu essen.
	Abbildung 5.8: Zwei Ausführungen des Codes in Listing 5.6
	Abbildung 5.9: Die Struktur des ‐Befehls in Listing 5.6
	Abbildung 5.10: Vier Ausführungen des Programms in Listing 5.7
	Abbildung 5.11: Ausführung des Programms in Listing 5.8

	Kapitel 6	Abbildung 6.1: Spielen Sie, bis Sie umfallen.
	Abbildung 6.2: Ein Ratespiel mit Wiederholungen
	Abbildung 6.3: Bis zehn zählen
	Abbildung 6.4: Die Struktur der ‐Schleife in Listing 6.2
	Abbildung 6.5: Der Code in Listing 6.4 wird zweimal ausgeführt.
	Abbildung 6.6: Der Ablauf einer ‐Schleife

	Kapitel 7	Abbildung 7.1: Zwei Objekte
	Abbildung 7.2: Vor und nach dem Aufruf eines Konstruktors
	Abbildung 7.3: Der Code in Listing 7.2 wird ausgeführt.
	Abbildung 7.4: Der Code in den Listings 7.5 und 7.6 wird ausgeführt.
	Abbildung 7.5: Mein Konto und Ihr Konto
	Abbildung 7.6: Einen Wert an eine Methode übergeben
	Abbildung 7.7: Der Programmablauf in den Listings 7.5 und 7.6
	Abbildung 7.8: Ein Methodenaufruf ist ein Ausdruck mit einem Wert.
	Abbildung 7.9: Zahlen, die wie Euro‐Beträge aussehen
	Abbildung 7.10: Einen Formatierungsstring verwenden
	Abbildung 7.11: Leerzeichen hinzufügen, um einen Wert anzuzeigen
	Abbildung 7.12: Einen Wert anzeigen, ohne die genaue Anzahl an Stellen anzugeben
	Abbildung 7.13: Zu wenig Stellen für die Anzeige eines Wertes festlegen
	Abbildung 7.14: Mit einem Formatierungsstring mehr als einen Wert anzeigen
	Abbildung 7.15: Der Code in Listing 7.10 wird ausgeführt.
	Abbildung 7.16: Der Benutzer füllt die Felder aus.
	Abbildung 7.17: Der Benutzer klickt auf die Schaltfläche.
	Abbildung 7.18: Der Code aus Listing 7.11 bei der Ausführung
	Abbildung 7.19: Ich habe gewonnen!
	Abbildung 7.20: Ich bin reich!

	Kapitel 8	Abbildung 8.1: Drei Aufrufe der Methode
	Abbildung 8.2: Jeder wird bezahlt.
	Abbildung 8.3: Die Datei
	Abbildung 8.4: und aufrufen
	Abbildung 8.5: Der Stammbaum der Klasse
	Abbildung 8.6: Das gibt das Programm in Listing 8.6 aus.
	Abbildung 8.7: Parameter passend gestalten
	Abbildung 8.8: Ein Klassenbaum
	Abbildung 8.9: Die Methode wird nicht geerbt.
	Abbildung 8.10: Der Code aus Listing 8.7 wird ausgeführt.

	Kapitel 9	Abbildung 9.1: Der Code aus Listing 9.3 wird ausgeführt.
	Abbildung 9.2: Was und bedeuten
	Abbildung 9.3: Geraten Sie nicht in Panik.
	Abbildung 9.4: Wenn die Annotation nicht vorhanden ist, warnt Java Sie, dass ein ‐Feld fehlt.

	Kapitel 10	Abbildung 1.1: Würden Sie auf diese Spieler Geld setzen?
	Abbildung 1.2: Was für ein Team!
	Abbildung 1.3: Eine Klasse und ihre Objekte
	Abbildung 1.4: Ein geschrumpfter Frame
	Abbildung 1.5: Statische und nicht statische Felder und Methoden
	Abbildung 1.6: Der Code aus Listing 10.5 wird ausgeführt.
	Abbildung 1.7: Der Code in den Listings 10.6 und 10.7 wird ausgeführt.
	Abbildung 1.8: Die Struktur der Listings 10.6 und 10.7
	Abbildung 1.9: Der Code der Listings 10.8 und 10.9 wird ausgeführt.
	Abbildung 1.10: Die Struktur des Codes der Listings 10.8 und 10.9
	Abbildung 1.11: Übergabe als Wert
	Abbildung 1.12: Übergabe per Referenz
	Abbildung 1.13: Die Methode erstellt eine Instanz von .
	Abbildung 1.14: Die neue Instanz von wird der Variablen zugewiesen.

	Kapitel 11	Abbildung 11.1: Ein abstrakter Schnappschuss der Zimmer des Java‐Motels
	Abbildung 11.2: Ein Array wird in zwei Schritten erstellt.
	Abbildung 11.3: Die Datei
	Abbildung 11.4: Das Programm in Listing 11.1 wird ausgeführt.
	Abbildung 11.5: Ein freies Zimmer belegen
	Abbildung 11.6: Das letzte freie Zimmer belegen
	Abbildung 11.7: Leider sind alle Zimmer belegt.
	Abbildung 11.8: Eine weitere abstrakte Darstellung der Zimmer im Java‐Motel
	Abbildung 11.9: Eine Datei mit Daten von Zimmern
	Abbildung 11.10: Der Code in Listing 11.6 wird ausgeführt.
	Abbildung 11.11: Die Schritte beim Erstellen eines Arrays aus Objekten
	Abbildung 11.12: Wie langweilig!
	Abbildung 11.13: Wenn Sie starten, müssen Sie zusätzliche Informationen eingeben.
	Abbildung 11.14: Eine Datei, die der Code in Listing 11.14 erstellt hat

	Kapitel 12	Abbildung 12.1: Mehrere Namen in einer Datei
	Abbildung 12.2: Der Code in Listing 12.1 ändert einige Namen.
	Abbildung 12.3: Imperative Programmierung zerlegt Probleme.
	Abbildung 12.4: Die Teile eines imperativen Programms passen nicht nahtlos in einen Multicore‐Chip.
	Abbildung 12.5: Das Problem entlang bestimmter Linien zerteilen
	Abbildung 12.6: Die Teile passen bei einer funktionalen Programmierung genau in einen Multicore‐Chip.
	Abbildung 12.7: Sie erhalten von einem bestimmten Verkauf den Preis.
	Abbildung 12.8: Zwei Preise addieren.
	Abbildung 12.9: Eine Fertigungsstraße der funktionalen Programmierung
	Abbildung 12.10: Die Methode addiert zwei Werte eines ankommenden Streams.
	Abbildung 12.11: Die Methode multipliziert Werte eines ankommenden Streams.
	Abbildung 12.12: Funktionalen Code von innen nach außen lesen
	Abbildung 12.13: Den Preis jeder DVD erhalten
	Abbildung 12.14: Den Gesamtpreis für alle DVD‐Verkäufe ermitteln

	Kapitel 13	Abbildung 13.1: Drei Ausführungen von Listing 13.1
	Abbildung 13.2: Eine Ausnahme werfen, weitergeben und fangen
	Abbildung 13.3: Drei Ausführungen des Codes in Listing 13.2
	Abbildung 13.4: Die Methoden eines Ausnahmeobjekts aufrufen
	Abbildung 13.5: Der Code aus den Listings 13.3 und 13.4 wird dreimal ausgeführt.
	Abbildung 13.6: Der Code in Listing 13.6 wurde viermal ausgeführt.
	Abbildung 13.7: Es wird keine Ausnahme geworfen.
	Abbildung 13.8: Eine wird geworfen.
	Abbildung 13.9: Es wird eine geworfen.
	Abbildung 13.10: Eine ausführen
	Abbildung 13.11: Es wird eine geworfen.
	Abbildung 13.12: Der Code aus Listing 13.7 wird ausgeführt.
	Abbildung 13.13: Vor der Zeile mit gibt es eine Pause von fünf Sekunden.
	Abbildung 13.14: Der Code in Listing 13.11 wurde ausgeführt.

	Kapitel 14	Abbildung 14.1: Mehrere Klassen und ihre Unterklassen
	Abbildung 14.2: Der Codebereich, in dem ein öffentliches Feld oder eine öffentliche Methode verwendet werden kann (schattiert)
	Abbildung 14.3: Der Codebereich, in dem ein privates Feld oder eine private Methode verwendet werden kann (schattiert)
	Abbildung 14.4: Ein
	Abbildung 14.5: Die Dateien und Verzeichnisse Ihres Projekts
	Abbildung 14.6: Ein anderer
	Abbildung 14.7: Auf Unterklassen zugeschnittene Pakete
	Abbildung 14.8: Der Codebereich, in dem ein Standardfeld oder eine Standardmethode verwendet werden kann.
	Abbildung 14.9: Der Codebereich, in dem ein geschütztes Feld oder eine geschützte Methode verwendet werden kann (schattiert).

	Kapitel 15	Abbildung 15.1: Die Datei
	Abbildung 15.2: Ausführung des Codes in Listing 15.5
	Abbildung 15.3: Spielen Sie nicht mit dem Pompej‐Wurm!

	Kapitel 16	Abbildung 16.1: Falsch geraten
	Abbildung 16.2: Endlich richtig geraten!
	Abbildung 16.3: Zwei Java‐Threads
	Abbildung 16.4: Währung umrechnen – Dollar in Pfund
	Abbildung 16.5: Das Listenfeld verwenden
	Abbildung 16.6: Währung umrechnen – Pfund in Dollar

	Kapitel 17	Abbildung 17.1: Von der Datenbank Daten erhalten

Seitenverzeichnis
	1-6
	9-10
	11-12
	23-28
	29-30
	31-42
	43-58
	59-80
	81-82
	83-118
	119-150
	151-168
	169-170
	171-204
	205-236
	237-260
	261-262
	263-294
	295-322
	323-350
	351-382
	383-408
	409-426
	427-444
	445-454
	455-456
	457-462
	463-464

11-12

Über den Autor

Barry Burd beendete sein Studium der Computerwissenschaften an der Rutgers University mit einem Master of Science und erlangte an der University of Illinois den PhD (Doktorgrad) in Mathematik. Während seiner Lehrtätigkeit als Assistent in Champaign‐Urbana wurde er von den Studenten fünf Mal in die universitätsweite Bestenliste aller Lehrkräfte gewählt.

Dr. Burd arbeitet seit 1980 als Professor am Department of Mathematics and Computer Science der Drew University in Madison, New Jersey. Er hat in den USA, in Europa, Australien und Asien auf Konferenzen Vorträge gehalten und erstellt Podcasts und Videos zu Software‐ und anderen Technologiethemen. Er hat diverse Artikel und Bücher geschrieben, zu denen die bei Wiley‐VCH erschienenen Titel Mit Java programmieren lernen für Dummies und Java für die Android‐Entwicklung für Dummies gehören.

Dr. Burd lebt mit seiner Frau in Madison, New Jersey. Seine Frau ist n Jahre alt. Dabei gilt n > 35. In seiner Freizeit ist Dr. Burd am liebsten ein »Workaholic«.

23-28

Einführung

Java ist klasse. Ich arbeite seit Jahren damit. Ich liebe Java, weil es strukturiert ist. So gut wie alles folgt einfachen Regeln. Diese Regeln können zwar gelegentlich ein wenig bedrohlich wirken, aber eine der Aufgaben dieses Buches ist es, Ihnen dabei zu helfen, diese Regeln zu verstehen. Wenn Sie also Java verwenden und eine Alternative zu den üblichen technikorientierten Taschenbüchern erleben wollen, suchen Sie sich einen gemütlichen Platz, entspannen Sie sich und lesen Sie Java für Dummies in der neuesten Auflage.

Wie Sie an dieses Buch herangehen sollten

Ich wünschte, dass ich sagen könnte: »Öffnen Sie das Buch an einer beliebigen Stelle und fangen Sie an, Java‐Code zu schreiben. Ergänzen Sie einfach die Lücken im Text und schauen Sie nicht zurück.« In gewisser Weise stimmt das auch, denn Sie können nichts kaputt machen, wenn Sie Java‐Code schreiben. Aus diesem Grund sollten Sie sich nicht scheuen, nach Belieben mit Java zu experimentieren.

Aber kommen wir auf den Boden der Tatsachen zurück. Wenn Sie das große Ganze nicht verstehen, ist es schwer, ein Programm zu schreiben. Dies gilt für jede Programmiersprache – also nicht nur für Java. Wenn Sie Code schreiben, ohne genau zu wissen, worum es dabei geht, und wenn dann dieser Code nicht das macht, was er eigentlich sollte, hängen Sie ganz schnell in der Luft.

Ich habe deshalb in diesem Buch die Java‐Programmierung in handliche Stücke aufgeteilt. Jedes dieser Stücke entspricht ungefähr einem Kapitel. Sie können an einer beliebigen Stelle einsteigen – Kapitel 5, Kapitel 10 oder anderswo. Sie können sogar in der Mitte eines Kapitels beginnen. Ich habe versucht, die Beispiele interessant zu gestalten, ohne dass ein Kapitel auf einem anderen aufbaut. Wenn ich einmal eine wichtige Idee eines Kapitels an anderer Stelle wieder aufgreife, binde ich einen Hinweis ein, damit Sie wissen, worum es geht.

Ganz allgemein rate ich Ihnen Folgendes:

[image: image] Wenn Sie etwas schon kennen, vergeuden Sie Ihre Zeit nicht damit, es erneut zu lesen.

[image: image] Wenn Sie etwas besonders interessiert, scheuen Sie sich nicht, an die entsprechenden Stellen zu springen. Sie können bei Bedarf jederzeit wieder einen Blick in ein früheres Kapitel riskieren.

Konventionen, die in diesem Buch verwendet werden

So gut wie jedes technisch orientierte Buch beginnt mit einer Erklärung der verwendeten Schriftarten, und Java für Dummies bildet hier keine Ausnahme. Es folgt nun eine kurze Beschreibung der Schriftarten, die in diesem Buch verwendet werden:

[image: image] Neue Begriffe werden kursiv gesetzt.

[image: image] Wenn Sie etwas eingeben müssen, das sich im normalen Text befindet, erscheint es in einer besonderen Schriftart. Zum Beispiel: »Geben Sie in das Textfeld MeinNeuesProjekt ein.« Ich verwende diese Schriftart auch für Meldungen, die auf dem Bildschirm erscheinen und für Java‐Objekte und ‐Befehle. Außerdem nutze ich diese Formatierung auch, wenn es um Dateinamen, Bezeichnungen von Verzeichnissen und Adressen von Webseiten (URLs) geht.

[image: image] Java‐Code, der als (längere oder kürzere) Listings wiedergegeben wird, wird so gesetzt:

public class ElevatorFitter {

 public static void main(String args[]) {

 int weightOfAPerson;

[image: image] Wenn Sie Dinge auf Ihrem eigenen Computer eingeben, müssen Sie gegebenenfalls einiges anpassen. So könnte ich Sie zum Beispiel auffordern, den folgenden Text zu schreiben:

public class EinBeliebigerName

Diese kursive Formatierung weist in diesem Fall darauf hin, dass Sie public class und einen von Ihnen gewählten, beliebigen Namen eingeben sollen.

Was Sie nicht lesen müssen

Nehmen Sie sich das erste Kapitel oder den ersten Abschnitt vor, in dem etwas steht, was Sie noch nicht kennen, und fangen Sie dort mit dem Lesen an. Wenn Sie es genauso wenig lieben wie ich, Entscheidungen zu fällen, kommen hier ein paar Hinweise, denen Sie folgen können:

[image: image] Wenn Sie bereits wissen, was sich hinter der Spezies Java verbirgt, und wenn Sie wissen, dass Sie Java einsetzen wollen, überspringen Sie Kapitel 1 und gehen Sie geradewegs zu Kapitel 2. Sie können mir glauben, dass mir das nichts ausmacht.

[image: image] Wenn Sie bereits wissen, wie Sie ein Java‐Programm ans Laufen bekommen, und wenn Sie an dem, was dabei im Hintergrund passiert, kein Interesse haben, überspringen Sie Kapitel 2 und beginnen Sie gleich mit Kapitel 3.

[image: image] Wenn Sie beruflich Programme schreiben, dabei aber eine andere Sprache als C oder C++ verwenden, beginnen Sie mit Kapitel 2 oder 3. Wenn Sie Kapitel 5 und 6 lesen, könnten Sie der Meinung sein, dass sie zu leicht für Sie sind, aber spätestens in Kapitel 7 tauchen auch Sie tief in die Materie ein.

[image: image] Wenn Sie zum Lebensunterhalt Programme in C (nicht C++) schreiben, beginnen Sie mit den Kapiteln 2, 3 und 4 und überfliegen die Kapitel 5 und 6 nur.

[image: image] Wenn Sie zum Lebensunterhalt Programme in C++ schreiben, werfen Sie einen Blick auf die Kapitel 2 und 3, überspringen Sie die Kapitel 4 bis 6 und beginnen Sie ein ernsthaftes Lesen mit Kapitel 7. (Java unterscheidet sich beim Umgang mit Klassen und Objekten ein wenig von C++.)

[image: image] Wenn Sie zum Lebensunterhalt Programme in Java schreiben, besuchen Sie mich zu Hause und helfen Sie mir dabei, die nächste Auflage von Java für Dummies zu schreiben.

Wenn Sie Randbemerkungen und die technischen Informationen überspringen wollen, hindere ich Sie nicht daran, und wenn Sie sogar auf alle Informationen verzichten möchten, haben Sie die Freiheit, dies zu tun.

Ein paar einfache Annahmen

Ich setze in diesem Buch bei Ihnen, dem Leser, einiges voraus. Wenn eine dieser Annahmen nicht richtig ist, geht das noch in Ordnung. Wenn aber alle Annahmen falsch sind … nun, dann sollten Sie das Buch trotzdem kaufen.

[image: image] Ich gehe davon aus, dass Sie Zugriff auf einen Computer haben. Die gute Nachricht ist: Sie können fast den gesamten Code, den dieses Buch enthält, auf so gut wie jedem Computer ablaufen lassen. Die einzigen Computer, die Sie nicht verwenden können, sind altehrwürdige Geräte, die vor zehn Jahren (plus/minus ein paar Jahre) modern gewesen sind.

[image: image] Ich gehe davon aus, dass Sie sich mit den normalen Menüstrukturen und Dialogfeldern Ihres Computers auskennen. Sie müssen keine besonderen Erfahrungen in Windows, Linux oder Macintosh haben, aber Sie sollten in der Lage sein, ein Programm zu starten, eine Datei zu finden, eine Datei in einem bestimmten Verzeichnis abzulegen … also diese Art von Dingen zu erledigen. Wenn Sie sich mit dem Stoff dieses Buches beschäftigen, benutzen Sie die meiste Zeit die Tastatur, statt mit der Maus zu zeigen und zu klicken.

In den seltenen Fällen, bei denen Sie etwas ziehen und fallen lassen, ausschneiden und einfügen oder anschließen und verwenden müssen, leite ich Sie umsichtig durch die einzelnen Schritte. Es kann aber vorkommen, dass Ihr Computer auf eine von Milliarden möglichen Arten eingerichtet worden ist, die dafür sorgt, dass meine Anleitung nicht ganz auf Ihre spezielle Situation zugeschnitten ist. Auch in solch einem Fall sollten Sie versuchen, den Schritten in diesem Buch zu folgen. Wenn die Schritte nicht passen, sollten Sie ein Buch zurate ziehen, das für Ihr System maßgeschneidert ist.

[image: image] Ich gehe davon aus, dass Sie logisch denken können. Mehr gehört zum Programmieren in Java nicht dazu – logisches Denken. Wenn Sie in der Lage sind, logisch zu denken, haben Sie es geschafft. Wenn Sie daran zweifeln, dass Sie logisch denken können, lesen Sie weiter. Sie werden höchstwahrscheinlich angenehm überrascht sein.

[image: image] Ich setze bei Ihnen nur geringe Programmierkenntnisse voraus. Beim Schreiben dieses Buches habe ich das Unmögliche versucht. Ich wollte dieses Buch für erfahrene Programmierer interessant machen, ohne dabei diejenigen aus den Augen zu verlieren, die nur wenige oder keine Programmierkenntnisse besitzen. Dies bedeutet, dass ich bei Ihnen keinen irgendwie gearteten programmiertechnischen Hintergrund voraussetze. Wenn Sie noch nie im Leben eine Schleife angelegt oder ein Array indexiert haben, ist das mehr als in Ordnung.

Wenn Sie sich aber mit diesen Dingen (zum Beispiel in Visual Basic, Python oder C++) beschäftigt haben, werden Sie in Java einige interessante Wendungen beim Handlungsablauf entdecken. Die Entwickler von Java haben die besten Ideen der objektorientierten Programmierung genommen, sie optimiert und das Herangehen an Probleme geradlinig gestaltet. Sie werden in Java auf viele neue, zum Nachdenken anregende Funktionen stoßen. Und Sie werden feststellen, dass Ihnen viele davon als ganz selbstverständlich vorkommen werden. Auf jeden Fall wird es Ihnen Spaß machen, Java einzusetzen.

Wie dieses Buch aufgebaut ist

Dieses Buch besteht aus Unterabschnitten, die zu Abschnitten gruppiert worden sind, die wiederum Kapitel bilden, die letztendlich in fünf Teilen zusammengefasst wurden. (Wenn Sie ein Buch schreiben, sollten Sie den Aufbau des Buches ziemlich gut kennen. Nach Monaten des Schreibens werden Sie sich selbst dabei ertappen, dass Sie nachts in Abschnitten und Kapiteln träumen.) Das Buch besteht aus diesen Teilen:

Teil I: Los geht's

Dieser Teil enthält eine vollständige Einführung in Java. Hier gibt es Dinge wie »Was ist Java?« und ein Kapitel für einen Schnellstart – Kapitel 3. Sie untersuchen in Kapitel 3 die zentralen technischen Gedanken und analysieren ein einfaches Programm.

Teil II: Eigene Java‐Programme schreiben

Die Kapitel 4 bis 6 behandeln Grundsätzliches. Diese Kapitel beschreiben die Dinge, die Sie wissen müssen, damit Ihr Computer bei Laune bleibt.

Wenn Sie bereits in Visual Basic, C++ oder einer anderen Sprache programmiert haben, kommt Ihnen vielleicht einiges aus Teil II bekannt vor. In diesem Fall können Sie einige Abschnitte überspringen oder den Stoff einfach nur querlesen. Seien Sie dabei aber nicht zu schnell. Java unterscheidet sich in einigen Dingen von anderen Programmiersprachen, wobei es hier ganz besonders um das geht, was in Kapitel 4 behandelt wird.

Teil III: Das große Ganze im Auge behalten: Die objektorientierte Programmierung

Teil III enthält einige meiner Lieblingskapitel. Dieser Teil behandelt das überaus wichtige Thema der objektorientierten Programmierung. Sie finden in diesen Kapiteln heraus, wie Sie zu großen Problemen Lösungen finden. (Klar, die Beispiele in diesen Kapiteln sind nichts Besonderes, aber sie enthalten besondere Ideen.) Sie entdecken Schritt für Schritt, wie Klassen entworfen, vorhandene Klassen erneut verwendet und wie Objekte konstruiert werden.

Haben Sie schon einmal eines dieser Bücher gelesen, in denen die objektorientierte Programmierung mit ungenauen, allgemeinen Begriffen erklärt wird? Ich bin stolz darauf, behaupten zu können, dass Java für Dummies anders ist. Ich erkläre in diesem Buch jedes Konzept mithilfe eines einfachen, aber passenden Programmbeispiels.

Teil IV: Clevere Java‐Techniken

Wenn Sie Java ausprobiert und Lust auf mehr bekommen haben, finden Sie in diesem Teil des Buches das, was Sie dazu brauchen. Die Kapitel dieses Teils beschäftigen sich mit Details – den Dingen, die Sie leicht übersehen, wenn Sie sich zum ersten Mal mit Java beschäftigen. Wenn Sie die früheren Teile des Buches gelesen und ein paar eigene Programme geschrieben haben, können Sie ein wenig tiefer in die Materie eintauchen, indem Sie Teil IV lesen.

Teil V: Der Top‐Ten‐Teil

Der Top‐Ten‐Teil ist ein kleiner Laden für Java‐Schmankerl. Hier finden Sie Listen – Listen mit Tipps, um Fehler zu vermeiden, Listen, um Hilfe zu finden, und Listen mit anderen interessanten Dingen.

Symbole, die in diesem Buch verwendet werden

Wenn Sie mich beim Schreiben dieses Buches hätten beobachten können, hätten Sie gesehen, wie ich an meinem Computer saß und mit mir selbst geredet habe. Ich habe mir in meinem Kopf jeden Satz vorgelesen. Die meisten Sätze habe ich ein paar Mal gemurmelt. Und wenn dann ein zusätzlicher Gedanke auftauchte, ein ergänzender Kommentar oder etwas, das nicht in den normalen Ablauf des Textes passte, habe ich gedankenverloren mit meinem Kopf gewackelt.

Natürlich können Sie dieses Kopfschütteln im gedruckten Buch nicht sehen. Ich muss also auf etwas anderes zurückgreifen, um diese Gedanken irgendwie darzustellen. Ich mache dies mit Symbolen. Wenn Sie ein Tipp‐ oder ein Erinnerung‐Symbol sehen, wissen Sie, dass ich einen kleinen Abstecher mache.

Hier eine Liste mit den Symbolen, die ich in diesem Buch verwende:

[image:]Ein Tipp ist eine kleine, aber feine zusätzliche Information – etwas Nützliches, das Sie in anderen Büchern vielleicht nicht finden.

[image:]Jeder Mensch macht Fehler. Auch mir ist das im Laufe der Zeit immer wieder einmal passiert. Wenn ich glaube, dass eine Situation ganz besonders dazu verleitet, Fehler zu machen, weise ich mit dem Symbol »Warnung« darauf hin.

[image:]Frage: Was ist stärker als ein Tipp, aber nicht so stark wie eine Warnung?

Antwort: Das Symbol »Erinnerung«.

[image:]Gelegentlich begegne ich technischen Leckerbissen. Ein solcher Leckerbissen kann Ihnen dabei helfen zu verstehen, was die Menschen im Hintergrund (diejenigen, die Java entwickelt haben) gedacht haben. Sie müssen Informationen dieser Art nicht lesen, aber vielleicht sind sie nützlich.

[image:]Dieses Symbol soll Ihre Aufmerksamkeit auf nützliches Material lenken, das Sie im Web finden können.

[image:]Dieses Symbol hilft Ihnen, auf einen Blick zu erkennen, wo Sie weitere Informationen im Buch nachlesen können. »Falls Sie nicht mehr wissen, was dieses oder jenes bedeutet, lesen Sie hier und dort nach.« Oder: »Weitere Informationen finden Sie da und da.«

[image:]Programmieren ist eine Aktivität. Aktivitäten lernt man am besten durch Übung. Aus diesem Grund habe ich Übungen für Sie erstellt, die Ihnen helfen, Ihre Kenntnisse zu vertiefen. Viele davon sollen einfach Ihr Selbstvertrauen stärken, andere sind echte Herausforderungen. Wenn Sie üben, werden Sie alle möglichen Probleme erkennen, die Ihnen nicht auffallen, wenn Sie die Kapitel nur lesen. Aber das bringt Sie voran! Lassen Sie sich nicht frustrieren!

Anmerkung der Übersetzerin

Die Entwicklungsumgebung, die in diesem Buch vorgestellt wird, ist – genau wie die Programmiersprache Java – englischsprachig. Aus diesem Grund werden Sie beim Lesen auch immer wieder auf englische Begriffe stoßen, wobei wir uns bemühen, diese zumindest bei ihrer ersten Verwendung auch auf Deutsch vorzustellen.

Zu diesem Buch gehören Beispieldateien, die kapitelweise den Quellcode der vorgestellten Programme beziehungsweise Programmstückchen enthalten. Um möglichst nah an diesen vom Autor vorgegebenen Beispieldateien zu bleiben, sind auch in der Übersetzung Namen und Bezeichnungen aus dem Original übernommen und nicht generell eingedeutscht worden.

Wie es weitergeht

Wenn Sie bis hierher gekommen sind, sind Sie so weit, Näheres über das Entwickeln von Anwendungen mit Java zu erfahren. Betrachten Sie mich (den Autor) als Ihren persönlichen Assistenten.

[image:]Wenn Sie Hilfe benötigen, senden Sie mir eine E‐Mail an die Adresse, die ich nur für dieses Buch eingerichtet habe: JavaForDummies@allmycode.com. Sie können mich auch über Twitter (@allmycode) und Facebook (/allmycode) erreichen. Denken Sie aber daran, dass Kontakte unbedingt in englischer Sprache erfolgen müssen.

Die Demodateien zur Übersetzung können Sie unter http://www.wileyvch.de/publish/dt/books/ISBN3527713646 herunterladen.

29-30

Teil I

Los geht's

[image:]

In diesem Teil …

[image: image] Finden Sie heraus, welche Werkzeuge Sie für das Entwickeln von Java‐Programmen benötigen.

[image: image] Finden Sie heraus, wie Java in die heutige technologische Landschaft passt.

[image: image] Lernen Sie Ihr erstes vollständiges Java‐Programm kennen.

31-42

Kapitel 1

Alles über Java

In diesem Kapitel

Was Java ist

Woher Java stammt

Warum Java so cool ist

Wie Sie sich in der objektorientierten Programmierung zurechtfinden

Sie können von Computern halten, was Sie wollen, soweit es mich betrifft, sprechen zwei gute Gründe für Computer:

[image: image] Wenn Computer ihre Arbeit erledigen, gibt es keinen Widerspruch, sie kennen keinen Stress, empfinden keine Langeweile und ermüden nie. Computer sind unsere elektronischen Sklaven. Mein Computer hat schon sieben Tage die Woche 24 Stunden am Tag gearbeitet und Berechnungen für Cosmology@Home durchgeführt. Dabei handelt es sich um ein verteiltes Berechnungsprojekt, um Modelle herauszufinden, die das Universum beschreiben. Hat mir mein Computer leidgetan, weil er so hart arbeiten musste? Hat sich der Computer beklagt? Meldet mich der Computer bei der Gewerkschaft? Nein.

Ich kann Forderungen stellen, dem Computer Anweisungen erteilen und mit der Peitsche knallen. Sollte ich mich deshalb schuldig fühlen? Nein, natürlich nicht.

[image: image] Computer bewegen Ideen, kein Papier. Vor noch nicht allzu langer Zeit mussten Sie einen Boten anheuern, wenn Sie jemandem eine Nachricht zukommen lassen wollten. Dieser Bote stieg auf sein Pferd und lieferte Ihre Nachricht persönlich ab. Die Nachricht stand auf einem Blatt Papier, einem Pergament, einer Tontafel oder was gerade verfügbar war.

Aus heutiger Sicht scheint dieser Vorgang unwirklich zu sein, aber das kommt nur daher, dass Sie und ich im elektronischen Zeitalter bequem vor einem Computer sitzen. Nachrichten sind Ideen und physische Dinge wie Tinte, Papier und Pferde haben nichts oder nur wenig mit echten Ideen zu tun; sie sind nur die Überbringer der Ideen (selbst wenn die Menschen sie jahrhundertelang als Träger von Ideen benutzt haben). Auf jeden Fall gilt, dass Ideen papierlos sind und ohne Pferde und Boten auskommen.

Das Schöne an Computern ist, dass sie Ideen effizient übertragen. Sie befördern nichts als die Ideen, ein paar Photonen und etwas Strom. Und sie erledigen dies ordentlich, ohne zu jammern und ohne zusätzliches Gepäck.

Wenn Sie anfangen, sich ernsthaft mit Ideen zu beschäftigen, geschieht etwas wirklich Angenehmes. Plötzlich verschwindet ein Großteil des Mehraufwands. Statt Papier und Bäume stoßen Sie Zahlen und Konzepte an. Sie können Dinge ohne den Mehraufwand viel schneller erledigen und sind in der Lage, sich mit viel komplexeren Sachen zu beschäftigen als je zuvor.

Was Sie mit Java machen können

Es wäre nun richtig klasse, wenn diese Vielfalt einfach so vorhanden wäre, aber unglücklicherweise ist das nicht der Fall. Jemand muss schwer nachdenken und entscheiden, was der Computer genau machen soll. Nach dem Nachdenken muss sich jemand hinsetzen und Anweisungen für den Computer schreiben, denen dieser zu folgen hat.

Der heutige Stand der Dinge verbietet es leider, diese Anweisungen in Deutsch oder einer anderen gesprochenen Sprache zu schreiben. Science‐Fiction lebt auch von Geschichten, in denen Menschen Robotern einfache Dinge sagen, die zu desaströsen, unerwarteten Ergebnissen führen. Deutsch und andere Sprachen eignen sich aus mehreren Gründen nicht für eine Kommunikation mit Computern:

[image: image] Deutsche Sätze können mehrdeutig sein. »Engländer tragen zu feierlichen Anlässen gerne eine Melone.«

[image: image] Es ist schwierig, im Deutschen einen komplizierten Befehl in seine logischen Einzelteile zu zerlegen. »Verbinden Sie Flansch A mit Protuberanz B und sorgen Sie dafür, dass nur der äußerste Ring von Flansch A mit dem größeren Ende der Protuberanz B verbunden wird, während der mittlere und der innere Ring des Flansches A an den Dichtungsring C gehören.«

[image: image] Ein deutscher Satz schleppt viel Ballast mit sich herum. »Der Satz enthält überflüssige Wörter.«

[image: image] Es ist manchmal schwierig, Deutsch zu interpretieren. »Als Teil des Verwertungsvertrages zwischen der Firma Rubbeldiwubbel GmbH & Co. KG (›Rubbel‹) und dem Autor (›Barry Burd‹) zahlt Rubbel den Betrag von eintausendzweihundertfünfundsiebzig Euro und siebzehn Cent (1.275,17 EUR) an Barry Burd als erste Abschlagszahlung für den Auftrag 631‐A19‐8612.«

Um einem Computer mitzuteilen, was er machen soll, müssen Sie eine besondere Sprache verwenden und in dieser Sprache knappe, unmissverständliche Anweisungen (auch Befehle genannt) schreiben. Eine Sprache dieser Art wird Programmiersprache genannt. Eine Folge von Anweisungen, die in solch einer Sprache geschrieben worden ist, wird Programm genannt. Eine andere Bezeichnung für ein Programm ist Software oder Code. Und so sieht Code aus, wenn er in Java geschrieben worden ist:

public class PayBarry {

 public static void main(String args[]) {

 double checkAmount = 1257.63;

 System.out.print("Zahlen Sie an ");

 System.out.print("Dr. Barry Burd ");

 System.out.print("€");

 System.out.println(checkAmount);

 }

}

Warum Sie Java verwenden sollten

Es gibt einen Grund zum Feiern. Sie haben sich gerade ein Exemplar von Java für Dummies besorgt und Sie lesen Kapitel 1. Bei diesem Tempo werden Sie im Nullkommanichts zu einem Experten in der Java‐Programmierung. In Fachkreisen hat ein Entwickler normalerweise mehr Verantwortung als ein Programmierer. In diesem Buch verwende ich die Begriffe Programmierer und Entwickler jedoch synonym. Genießen Sie deshalb Ihren voraussichtlichen Erfolg, indem Sie eine große Party veranstalten.

Als Vorbereitung für diese Party will ich einen Kuchen backen. Da ich bequem bin, verwende ich eine fertige Backmischung. Mal sehen … fügen Sie zur Mischung Wasser hinzu, dann Butter und Eier … Halt, einen Moment! Ich habe mir gerade die Liste mit den Zutaten angesehen. Was ist MSG? Und was hat es mit Propylenglykol auf sich? Das wird doch auch als Frostschutzmittel verwendet, oder?

Ich muss meine Pläne ändern und den Kuchen selbst machen. Das ist zwar ein wenig umständlicher, aber so bekomme ich genau das, was ich haben will.

Computerprogramme arbeiten auf die gleiche Weise. Sie können ein Programm verwenden, das von irgendjemandem stammt, oder Sie schreiben ein eigenes Programm. Wenn Sie sich für die erste Variante entscheiden, müssen Sie das nutzen, was Sie bekommen. Wenn Sie Ihr eigenes Programm schreiben, können Sie es auf Ihre Bedürfnisse hin maßschneidern.

Das Schreiben von Computerprogrammen ist zu einer großen, weltweiten Industrie geworden. Firmen machen es, freiberufliche Profis machen es, und es ist zum Hobby vieler geworden; alle möglichen Menschen machen es. Ganz normale große Unternehmen haben Teams, Abteilungen und Bereiche, die Programme für das Unternehmen schreiben. Und auch Sie können Programme schreiben – für sich selbst, zum Lebensunterhalt oder nur, weil es Spaß macht. Neueste Schätzungen besagen, dass die Zahl der Codezeilen, die allein in den Vereinigten Staaten tagtäglich von Entwicklern geschrieben werden, die Zahl der Methan‐Moleküle auf dem Planeten Jupiter überschreitet. (Diese Schätzung stammt von mir.) Stellen Sie sich vor, was Sie alles mit einem Computer anstellen können. Und mit dem entsprechenden Zeitaufwand sollten Sie in der Lage sein, dafür Ihr eigenes Programm zu schreiben. (Wobei der »entsprechende Zeitaufwand« ziemlich groß sein kann, worum es hier aber nicht geht. Viele interessante Programme können in wenigen Stunden oder sogar Minuten geschrieben werden.)

Einen Überblick erhalten: Wie sich Java einordnen lässt

Hier ein kurzer Abriss der modernen Programmierung auf Computern:

[image: image] 1954–1957: FORTRAN wird entwickelt.

FORTRAN war die erste moderne Programmiersprache für Computer. Es entpuppte sich für die wissenschaftliche Programmierung als echter Renner. Jahrelang war FORTRAN weltweit die führende Programmiersprache.

[image: image] 1959: Grace Hopper von Remington Rand entwickelt die Programmiersprache COBOL.

Der Buchstabe B steht in COBOL für Business, und bei COBOL geht es fast ausschließlich um Geschäftliches. Die primäre Aufgabe dieser Sprache ist es, einen Datensatz nach dem anderen, einen Kunden nach dem anderen oder einen Mitarbeiter nach dem anderen zu verarbeiten.

COBOL wurde innerhalb weniger Jahre die am häufigsten eingesetzte Sprache für die Verarbeitung geschäftlicher Daten.

[image: image] 1972: Dennis Ritchie von AT&T Bell Labs entwickelt die Programmiersprache C.

Das Aussehen der Beispielprogramme in diesem Buch hat ihren Ursprung in der Programmiersprache C. Code, der in C geschrieben wird, verwendet geschweifte Klammern, if‐ und for‐Anweisungen und so weiter.

Wenn es um die Leistungsfähigkeit geht, können Sie C verwenden, um dieselben Probleme zu lösen, die sich mit FORTRAN, Java oder einer anderen modernen Programmiersprache beseitigen lassen. (Sie können auch in COBOL einen wissenschaftlichen Taschenrechner schreiben, aber das wäre ein Akt, den Sie so schnell nicht vergessen werden.) Der Unterschied zwischen den einzelnen Programmiersprachen ist nicht die Leistungsfähigkeit. Der Unterschied liegt darin, wie einfach und bedienerfreundlich eine Sprache ist.

[image: image] 1986: Bjarne Stroustrup (wieder von den AT&T Bell Labs) entwickelt C++.

Die Sprache C++ unterstützt, anders als ihr Vorgänger C, objektorientierte Programmierung. Dies stellte einen riesigen Schritt vorwärts dar. (Siehe auch den nächsten Abschnitt in diesem Kapitel.)

[image: image] 23. Mai 1995: Sun Microsystems veröffentlicht die erste offizielle Version der Programmiersprache Java.

Java verbessert die Konzepte von C++. Javas Philosophie – »Einmal schreiben, überall ablaufen lassen« – machte die Sprache zum idealen Werkzeug, um Code über das Internet zu verteilen.

Außerdem ist Java eine Programmiersprache, die sich für so gut wie alle Zwecke einsetzen lässt. Sie können mit Java Anwendungen mit Fenstern schreiben, Datenbanken erstellen und auswerten, Handheld‐Geräte kontrollieren und vieles mehr machen. Die Programmiersprache Java erreichte innerhalb von nur fünf kurzen Jahren 2,5 Millionen Entwickler weltweit. (Ich weiß das, denn ich besitze ein entsprechendes T‐Shirt, das das beweist.)

[image: image] November 2000: Das College Board gibt bekannt, dass ab 2003 alle Computer‐Science‐Advanced‐Placement‐Examen auf Java basieren.

Sie wollen wissen, was die kleinen Rotznasen in der Highschool nur noch lernen? Sie haben es erraten – Java.

[image: image] 2002: Microsoft stellt eine neue Sprache vor, die den Namen C# trägt.

Viele der Funktionen von C# stammen direkt von Java‐Funktionen ab.

[image: image] Juni 2004: Sys‐Con Media berichtet, dass die Nachfrage nach Java‐Programmierern um 50 Prozent größer ist als die nach C++‐Programmierern (http://java.sys‐con.com/node/48507).

Aber das ist noch nicht alles. Die Nachfrage nach Java‐Programmierern schlägt die Nachfrage nach C++‐ und C#‐Programmierern zusammen um acht Prozent. Java‐Programmierer haben eine um 180 Prozent größere Chance auf einen Job als Programmierer, die mit Visual Basic (VB) arbeiten.

[image: image] 2007: Google führt Java als primäre Sprache für das Erstellen von Apps auf mobilen Android‐Geräten ein.

[image: image] Januar 2010: Die Oracle Corporation kauft Sun Microsystems auf, was dazu führt, dass Java in die Produkte der Oracle‐Familie einzieht.

[image: image] Juni 2010: eWeek führt Java zum ersten Mal in seiner Liste der zehn wichtigsten Programmiersprachen auf, die Sie Ihren Job behalten lassen (www.eweek.com/development/top‐10‐programming‐languages‐to‐keep‐you‐employed).

[image: image] August 2016: Java wird auf mehr als 15 Milliarden Geräten ausgeführt (http://java.com/en/about), davon Android Java auf 87,6 Prozent aller Mobiltelefone weltweit (http://www.idc.com/prodserv/smartphone-os-market-share.jsp).

Darüber hinaus sorgt Java bei allen Blu‐Ray‐Playern dafür, dass Interaktionen mit den Geräten möglich sind. Java ist laut dem Index der TIOBE Programming Community (www.tiobe.com/tiobe‐index) sowie nach dem PYPL, dem PopularitY of Programming Language Index (http://pypl.github.io/PYPL.html), und anderen vergleichbaren Listen die beliebteste Programmiersprache.

Wir dürfen also beeindruckt sein.

Objektorientierte Programmierung (OOP)

Es ist drei Uhr morgens. Ich träume von der Geschichtsstunde, die ich in der Highschool verpasst habe. Der Lehrer schreit mich an: »Du hast zwei Tage, um dich auf die Abschlussprüfung vorzubereiten, aber daran wirst du dich nicht erinnern. Du wirst es vergessen und dich schuldig fühlen.«

Plötzlich klingelt das Telefon. Ich werde abrupt aus dem tiefsten Schlaf gerissen. (Klar, ich liebe es nicht unbedingt, vom Geschichtsunterricht zu träumen, aber noch weniger liebe ich es, aus dem Schlaf geholt zu werden.) Als Erstes ließ ich das Telefon auf den Boden fallen. Nachdem ich eine Weile herumgefummelt hatte, um es wiederzufinden, ließ ich ein mürrisches »Hallo, wer ist da?« hören. Eine Stimme antwortete: »Ich bin Reporter bei der New York Times. Ich schreibe einen Artikel über Java und ich muss alles über diese Programmiersprache wissen – in einem kurzen Satz.«

Ich bin noch zu benebelt. Ich kann nicht denken. Ich sage also das, was mir gerade einfällt, und schlafe dann weiter.

Am nächsten Morgen kann ich mich kaum an die Unterhaltung mit dem Reporter erinnern. Wenn ich ehrlich bin, erinnere ich mich überhaupt nicht mehr daran, wie ich dessen Fragen beantwortet habe. Habe ich dem Reporter gesagt, was er mit seinem Artikel über Java machen soll?

Ich ziehe mich an und laufe nach draußen in die Zufahrt. Während ich die Morgenzeitung aufhebe, fällt mein Blick auf die riesengroße Schlagzeile: Burd nennt Java »Eine großartige objektorientierte Sprache«.

Objektorientierte Sprachen

Java ist objektorientiert. Was heißt das? Anders als Sprachen wie FORTRAN, das sich darauf konzentriert, dem Computer befehlende »Mache dies/Mache das«‐Anweisungen zu geben, richten objektorientierte Sprachen ihr Hauptaugenmerk auf Daten. Natürlich sagen auch objektorientierte Sprachen einem Computer, was er zu tun hat. Sie beginnen aber mit dem Strukturieren der Daten, und die Befehle kommen dann später.

Objektorientierte Sprachen sind besser als »Mache dies/Mache das«‐Sprachen, weil sie Daten auf eine Weise strukturieren, die es dann zulässt, viele Dinge mit diesen Daten anzustellen. Um die Daten zu modifizieren, können Sie auf das aufbauen, was Sie bereits haben, anstatt erst einmal alles zu verschrotten, was Sie bisher entwickelt haben, und jedes Mal, wenn Sie etwas Neues benötigen, wieder ganz von vorn anzufangen. Obwohl Programmierer in der Regel clevere Menschen sind, dauerte es doch eine Weile, bis sie das herausbekommen haben. Wenn Sie die ganze Geschichte erfahren wollen, schauen Sie sich den Kasten Der mühsame Weg von FORTRAN zu Java an.

Der mühsame Weg von FORTRAN zu Java

Mitte der 1950er entwickelte eine Gruppe von Leuten eine Programmiersprache mit dem Namen FORTRAN. Es war eine gute Sprache, aber sie basierte auf der Idee, dass dem Computer direkte, befehlende Anweisungen übermittelt werden. »Computer, mache dies. Und dann, Computer, mache das.« (Natürlich waren die Anweisungen in einem echten FORTRAN‐Progamm viel genauer als »Mache dies« oder »Mache das«.)

In den folgenden Jahren entwickelten Teams viele neue Computersprachen, von denen viele das »Mache dies/Mache das«‐Modell von FORTRAN kopiert haben. Eine der bekannteren »Mache dies/Mache das«‐Sprachen war die Ein‐Buchstabe‐Sprache C. Natürlich gab es im »Mache dies/Mache das«‐Lager auch einige Abtrünnige. Programmierer haben in Sprachen wie SIMULA und Smalltalk die befehlenden »Mache dies/Mache das«‐Anweisungen in den Hintergrund verlagert und sich auf Beschreibungen der Daten konzentriert. Bei diesen Sprachen stehen Sie nicht auf und sagen: »Drucke eine Liste aller zweifelhaften Konten.« Stattdessen beginnen Sie, indem Sie sagen: »Dies hier ist das, was Konto bedeutet. Ein Konto hat einen Namen und einen Kontostand.« Und dann sagen Sie: »Und so wird ein Konto gefragt, ob es ein zweifelhaftes Konto ist.« Plötzlich werden die Daten zum König. Ein Konto war ein Ding, das einen Namen, einen Kontostand und einen Weg besaß, über den es Ihnen mitteilen konnte, ob es ein zweifelhaftes Konto war.

Sprachen, deren Hauptaugenmerk auf den Daten liegt, werden objektorientierte Programmiersprachen genannt. Diese objektorientierten Sprachen erzeugen ausgezeichnete Programmierwerkzeuge. Der Grund dafür:

[image: image] Wenn Sie zuerst an die Daten denken, werden Sie zu einem guten Programmierer.

[image: image] Sie können die Beschreibung der Daten erweitern und immer wieder erneut verwenden. Wenn Sie versuchen, alten FORTRAN‐Programmen neue Tricks beizubringen, zeigen diese alten Programme, wie empfindlich sie sein können. Sie gehen in die Brüche.

In den 1970ern wurden objektorientierte Sprachen wie SIMULA und Smalltalk in den Computerzeitschriften, die von Hobbyprogrammierern gelesen wurden, beerdigt. In der Zwischenzeit vermehrten sich Sprachen, die auf dem alten FORTRAN‐Modell basierten, wie die Kaninchen.

1986 entwickelte ein Typ mit dem Namen Bjarne Stroustrup eine Sprache, die er C++ nannte. Diese Sprache wurde sehr beliebt, weil sie die Terminologie der alten Sprache C mit der besseren objektorientierten Struktur mischte. Viele Firmen wendeten dem alten Stil der FORTRAN/C‐Programmierung den Rücken zu und machten C++ zu ihrem Standard.

Aber C++ hatte eine Schwachstelle. Wenn Sie C++ verwendeten, waren Sie in der Lage, alle objektorientierten Funktionen zu umgehen und ein Programm zu schreiben, in dem Sie auf den alten FORTRAN/C‐Programmierstil zurückgriffen. Wenn Sie anfingen, ein Buchhaltungsprogramm zu schreiben, konnten Sie sich für einen von zwei Wegen entscheiden:

[image: image] Sie konnten damit anfangen, dass Sie dem Computer direkt »Mache dies/Mache das«‐Anweisungen erteilten, indem Sie ihm die mathematische Entsprechung von »Drucke eine Liste aller zweifelhaften Konten und das schnell!« vorlegten.

[image: image] Sie konnten objektorientiert vorgehen und anfangen, indem Sie beschrieben, was es heißt, ein Konto zu sein.

Einige waren der Meinung, dass C++ das Beste aus zwei Welten anbietet, während andere argumentierten, dass die erste Welt (FORTRAN und C) nichts in der modernen Programmierung zu suchen hätte. Wenn Sie einem Programmierer die Möglichkeit geben, Code auf eine von zwei Weisen zu schreiben, würde sich der Programmierer zu oft für den falschen Weg entscheiden.

1995 entwickelte dann James Gosling von Sun Microsystems eine Sprache mit dem Namen Java. Als er sich mit Java beschäftigte, griff Gosling auf das Erscheinungsbild von C++ zurück. Aber Gosling nahm die meisten »Mache dies/Mache das«‐Funktionen von C++ und warf sie auf den Müll. Dann fügte er Funktionen hinzu, die die Entwicklung von Objekten geschmeidiger machten und erleichterten. Gosling entwickelte alles in allem eine Sprache, deren objektorientierte Philosophie unverfälscht und sauber ist. Wenn Sie in Java programmieren, haben Sie keine andere Wahl, als mit Objekten zu arbeiten. Und so sollte es auch sein.

Objekte und ihre Klassen

In einer objektorientierten Sprache verwenden Sie Objekte und Klassen, um Ihre Daten zu ordnen.

Stellen Sie sich vor, dass Sie ein Computerprogramm schreiben, das die (noch im Bau befindlichen) Häuser einer neuen Wohnanlage im Auge behält. Die Häuser unterscheiden sich nur leicht voneinander. Jedes Haus hat einen unverwechselbaren Außenanstrich, einen Innenanstrich, einen Küchenschrank in einem besonderen Stil und so weiter. In Ihrem objektorientierten Programm bildet jedes Haus ein Objekt.

Aber Objekte sind noch nicht alles. Auch wenn sich die Häuser leicht voneinander unterscheiden, so haben sie doch eine Liste mit Merkmalen gemeinsam. So besitzt zum Beispiel jedes Haus ein Merkmal, das Außenanstrich genannt wird. Jedes Haus hat ein Merkmal, das Stil des Küchenschranks heißt. Sie benötigen in Ihrem objektorientierten Programm ein Stammblatt, das alle Merkmale enthält, die ein Haus besitzen kann. Diese zentrale Liste aller Merkmale wird Klasse genannt.

So, nun wissen Sie es. Objektorientierte Programmierung trägt einen falschen Namen. Sie müsste eigentlich Programmierung mit Klassen und Objekten heißen.

Beachten Sie, dass ich das Wort Klassen an die erste Stelle gesetzt habe. Wie komme ich dazu, mich so etwas zu trauen? Nun, vielleicht bin ich doch nicht verrückt. Erinnern Sie sich noch einmal an die Häuser, die sich noch im Bau befinden. Irgendwo gibt es auf dem Bauplatz in einem Container ein Stammblatt der Merkmale, das auch Bauplan genannt wird. Der Bauplan eines Architekten kann mit der Klasse eines objektorientierten Programmierers verglichen werden. Bei einem Bauplan handelt es sich um eine Liste mit Merkmalen, die jedes Haus erhalten soll. Der Bauplan sagt »Außenanstrich«. Das aktuelle Haus‐Objekt hat einen grauen Außenanstrich. Der Bauplan sagt »Küchenschrank«. Das aktuelle Haus‐Objekt hat einen Küchenschrank im Stil Ludwig XIV.

Die Analogie hört nicht mit einer Liste der Merkmale auf. Zwischen Bauplänen und Klassen gibt es eine weitere wichtige Parallele. Ein Jahr nachdem Sie den Bauplan erstellt haben, verwenden Sie ihn, um zehn weitere Häuser zu bauen. Und so funktioniert das auch mit Klassen und Objekten. Der Programmierer schreibt als Erstes Code, um eine Klasse zu beschreiben. Wenn das Programm dann läuft, erzeugt der Computer aus den Klassen (dem Bauplan) Objekte.

Und damit kennen Sie die wirkliche Beziehung zwischen Klassen und Objekten. Der Programmierer definiert eine Klasse, und der Computer macht aus den Klassen einzelne Objekte.

Was ist das Besondere an einer objektorientierten Sprache?

Stellen Sie sich anhand der Geschichte über den Hausbau aus dem vorherigen Abschnitt vor, dass Sie bereits ein Computerprogramm geschrieben haben, um die Bauanweisungen für neue Häuser zu kontrollieren. Und dann entscheidet der große Boss, den Plan zu ändern – in einen Plan, bei dem die Hälfte der Häuser drei und die andere Hälfte vier Schlafzimmer bekommt.

Wenn Sie im alten FORTRAN/C‐Stil programmiert haben, sieht Ihre Anweisung so aus:

Graben Sie einen Graben für das Fundament.

Schalen Sie die Seiten des Grabens ein, damit betoniert werden kann.

Bringen Sie an den Seiten Kanthölzer an, die das Gerüst des Fundaments bilden.

...

Hier arbeiten Sie wie ein Architekt, der statt eines Bauplans eine lange Liste mit Anweisungen erstellt. Wenn Sie den Plan ändern wollen, müssen Sie die gesamte Liste abarbeiten, um die Anweisungen zu finden, die mit dem Bau von Schlafzimmern zu tun haben. Und damit das alles dann nicht zu einfach wird, könnten diese Anweisungen über die Seiten 234, 394–410, 739, 10 und 2 verteilt sein. Und wenn der Bauleiter auch noch die komplizierten Anweisungen einer dritten Person entziffern muss, dauert die Aufgabe zehnmal so lange.

Wenn Sie nun aber mit einer Klasse beginnen, ist das so, als wenn Sie einen Bauplan anfangen. Wenn Sie festlegen, dass es sowohl Häuser mit drei als auch mit vier Schlafzimmern geben soll, beginnen Sie mit einem Bauplan, der Haus heißt und ein Erdgeschoss und einen ersten Stock enthält, wobei es in diesem ersten Stock noch keine Innenwände gibt. Dann erstellen Sie zwei Baupläne für den ersten Stock – einen für Häuser mit drei Schlafzimmern und einen für Häuser mit vier Schlafzimmern. Sie nennen diese Baupläne Drei‐Schlafzimmer‐Haus und Vier‐Schlafzimmer‐Haus.

Ihre Kollegen im Bauunternehmen sind über Ihre logische und strukturierte Vorgehensweise angenehm überrascht, aber sie haben Bedenken. Es gibt eine Frage: »Du hast einen der Baupläne Drei‐Schlafzimmer‐Haus genannt. Wieso das, wo es doch nur um ein Stockwerk und nicht um ein ganzes Haus geht?«

Sie lächeln wissend und antworten: »Der Plan mit den drei Schlafzimmern sagt, dass man sich für Informationen über das Erdgeschoss den ursprünglichen Bauplan ansehen soll. Auf diese Weise beschreibt der Drei‐Schlafzimmer‐Haus‐Bauplan ein ganzes Haus. Dasselbe sagt der Vier‐Schlafzimmer‐Haus‐Bauplan aus. Damit sind wir in der Lage, die ganze Arbeit zu nutzen, die wir bereits in den ursprünglichen Bauplan für ein Haus gesteckt haben, und können viel Geld sparen.«

In der Sprache der objektorientierten Programmierung erben die Klassen Drei‐ und Vier‐Schlafzimmer‐Haus die Funktionen der ursprünglichen Klasse Haus. Sie können auch sagen, dass die Klassen Drei‐ und Vier‐Schlafzimmer‐Haus die ursprüngliche Klasse Haus erweitern (siehe Abbildung 1.1).

Die ursprüngliche Klasse Haus wird die Oberklasse der Klassen Drei‐ und Vier‐Schlafzimmer‐Haus genannt (auch Superklasse oder übergeordnete Klasse genannt). Umgekehrt sind die Klassen Drei‐ und Vier‐Schlafzimmer‐Haus Unterklassen der ursprünglichen Klasse Haus. Doch damit nicht genug. Die ursprüngliche Klasse Haus wird auch Elternklasse der Klassen Drei‐ und Vier‐Schlafzimmer‐Haus genannt. Dementsprechend sind die Klassen Drei‐ und Vier‐Schlafzimmer‐Haus die Kindklassen der ursprünglichen Klasse Haus (siehe Abbildung 1.1).

[image:]Abbildung 1.1: Die Terminologie der objektorientierten Programmierung

Es muss nicht ausdrücklich darauf hingewiesen werden, dass Ihre Kollegen im Bauunternehmen neidisch sind. Sie werden von vielen Kollegen umringt, die alles über Ihre neue Idee wissen wollen. Das ist genau der richtige Augenblick, um die nächste Bombe hochgehen zu lassen: »Indem wir Klassen mit Unterklassen erstellen, sind wir in der Lage, den Bauplan auch zukünftig wiederzuverwenden. Und wenn dann jemand kommt und ein Haus mit fünf Schlafzimmern haben will, erweitern wir unseren ursprünglichen Bauplan, indem wir einen Fünf‐Schlafzimmer‐Haus‐Bauplan anlegen. Wir werden nie wieder Geld für einen originalen Bauplan für ein Haus ausgeben müssen.«

»Aber«, sagt einer der Kollegen in den hinteren Reihen, »was geschieht, wenn jemand ein anderes Erdgeschoss haben möchte? Wirfst du dann den ursprünglichen Bauplan des Hauses auf den Müll oder übermalst du den ursprünglichen Bauplan? Das wird ganz schön teuer, oder?«

Sie antworten in einem vertraulichen Ton: »Wir müssen am ursprünglichen Bauplan nichts ändern. Wenn jemand in seinem Wohnzimmer einen Whirlpool haben möchte, erstellen wir einfach einen neuen kleinen Bauplan, der nur das neue Wohnzimmer beschreibt, und nennen ihn Whirlpool‐im‐Wohnzimmer‐Haus‐Bauplan. Dieser neue Bauplan kann auf den ursprünglichen Bauplan Haus verweisen, um auch weiterhin Zugriff auf die Informationen über den Rest des Hauses (den Teil, der sich außerhalb des Wohnzimmers befindet) zu haben.« In der Sprache der objektorientierten Programmierung erweitert der Bauplan Whirlpool‐im‐Wohnzimmer‐Haus den ursprünglichen Haus‐Bauplan. Der Whirlpool‐Bauplan ist außerdem eine Unterklasse des ursprünglichen Haus‐Bauplans. Die gesamte Terminologie wie Oberklasse, Elternklasse und Kindklasse gilt auch hier. Neu ist nur, dass der Whirlpool‐Bauplan die ursprünglichen Funktionen des Wohnzimmers überschreibt.

In den Tagen vor den objektorientierten Sprachen durchlebte die Programmierwelt eine Krise der Softwareentwicklung. Programmierer schrieben Code, und dann entdeckten sie neue Bedürfnisse und mussten ihren Code auf den Müll werfen und ganz von vorn neu anfangen. Dies geschah immer wieder, weil der Code, den die Programmierer geschrieben haben, nicht wiederverwendet werden konnte. Dies alles wurde durch die objektorientierte Programmierung zum Besseren geändert (und wie Burd gesagt hat, ist Java »eine großartige objektorientierte Sprache«).

Ihr Verständnis für Klassen und Objekte vertiefen

Wenn Sie in Java programmieren, arbeiten Sie ständig mit Klassen und Objekten. Diese beiden Konzepte sind wirklich wichtig. Das ist auch der Grund dafür, warum ich Ihnen in diesem Kapitel eine Analogie von Klassen und Objekten nach der anderen um die Ohren haue.

Schließen Sie für eine Minute Ihre Augen und denken Sie darüber nach, was es bedeutet, ein Stuhl zu sein.

Ein Stuhl hat eine Sitzfläche, eine Rückenlehne und Beine. Jede Sitzfläche hat eine Form, eine Farbe, einen Härtegrad und so weiter. Dies sind die Eigenschaften eines Stuhls. In der objektorientierten Terminologie beschreibe ich die Klasse Stuhl.

Werfen Sie nun einen Blick über den Rand dieses Buches hinaus und schauen Sie sich einmal in Ihrem Zimmer um. (Wenn Sie gerade nicht in einem Zimmer sitzen, stellen Sie es sich vor.)

Im Zimmer gibt es mehrere Stühle, und jeder Stuhl ist ein Objekt. Jedes dieser Objekte ist ein Beispiel dieses ätherischen Elements, das als Stuhl‐Klasse bezeichnet wird. Und genau so funktioniert das – die Klasse ist die Vorstellung von Bestuhlung, und jeder einzelne Stuhl ist ein Objekt.

[image:]Eine Klasse ist nicht wirklich eine Sammlung von Elementen. Stattdessen handelt es sich bei einer Klasse um die Idee hinter einer bestimmten Art von Elementen. Wenn ich über die Klasse Stühle in Ihrem Zimmer spreche, meine ich die Tatsache, dass jeder Stuhl Beine, eine Sitzfläche, eine Farbe und anderes hat. Die verschiedenen Stühle im Raum können eine unterschiedliche Farbe haben, aber das macht nichts. Wenn Sie über eine Klasse von Elementen sprechen, geht es um die Eigenschaften, die jedes dieser Elemente besitzt.

Es macht Sinn, sich ein Objekt so vorzustellen, als ob es die greifbare Instanz einer Klasse sei. Und es ist wirklich so, dass die offizielle Terminologie mit dieser Denkweise übereinstimmt. Wenn Sie ein Java‐Programm schreiben, in dem Sie eine Klasse Stuhl definieren, wird jeder reale Stuhl (der Stuhl, auf dem Sie gerade sitzen, der leere Stuhl direkt neben Ihnen und so weiter) als Instanz der Klasse Stuhl bezeichnet.

Hier kommt ein weiterer Weg, um sich ein Bild von einer Klasse zu machen. Stellen Sie sich eine Tabelle vor, die Ihre drei Bankkonten wiedergibt (siehe Tabelle 1.1).

	Kontonummer

	Kontoart

	Kontostand

	1613154228647

	Giro

	174,87

	1011123421220000

	Kredit

	–471,03

	1617238133447

	Sparen

	247,38

Tabelle 1.1: Eine Tabelle mit Bankkonten

Stellen Sie sich die Spaltenüberschriften als eine Klasse vor, und denken Sie an die einzelnen Zeilen der Tabelle als Objekte. Die Spaltenüberschriften der Tabelle beschreiben die Klasse Konto.

Jedes Konto verfügt entsprechend der Spaltenüberschriften der Tabelle über eine Kontonummer, eine Kontoart und einen Kontostand. Wenn wir das in der Terminologie der objektorientierten Programmierung neu formulieren, hat jedes Objekt in der Klasse Konto (das heißt jede Instanz der Klasse Konto) eine Kontonummer, eine Kontoart und einen Kontostand. Daraus folgt, dass es sich bei der untersten Zeile der Tabelle um ein Objekt mit der Kontonummer 1617238133447 handelt. Dasselbe Objekt besitzt die Kontoart Sparen und einen Kontostand von 247,38. Wenn Sie ein neues Konto eröffnen würden, hätten Sie ein weiteres Objekt, und die Tabelle würde um eine Zeile wachsen. Das neue Objekt wäre eine Instanz derselben Klasse Konto.

Wie geht es weiter?

Dieses Kapitel ist mit allgemeinen Beschreibungen von Elementen gefüllt. Beschreibungen dieser Art sind immer dann nützlich, wenn Sie mit etwas anfangen. Sie verstehen einige Dinge erst dann, wenn Sie Einzelheiten kennen. Und genau darum kümmern sich die nächsten Kapitel.

Blättern Sie also um. Das nächste Kapitel möchte nicht länger darauf warten, von Ihnen gelesen zu werden.

43-58

Kapitel 2

Alles über Software

In diesem Kapitel

Die Rolle der Software Development Tools verstehen

Die für Sie richtige Java‐Version auswählen

Vorbereitungen treffen, um Java‐Programme zu schreiben und auszuführen

Die beste Art, um Java kennenzulernen, ist, mit Java zu arbeiten. Wenn Sie sich mit Java beschäftigen, schreiben und testen Sie Ihre eigenen Java‐Programme und führen sie aus. Dieses Kapitel sorgt dafür, dass Sie mit Java arbeiten können, indem es die Einrichtung der Software beschreibt, die es auf Ihrem Computer geben muss, und zwar unabhängig davon, ob dieser unter Windows, Mac, Linux oder Ottos selbst gestricktem Betriebssystem läuft. Dieses Kapitel beschreibt keine Installationsabläufe, die speziell für Windows, für einen Mac oder für ein anderes Betriebssystem gelten.

[image:]Für Ihr System spezifische Installationsanweisungen finden Sie in Englisch auf der Website zum amerikanischen Buch (http://www.allmycode.com/JavaForDummies).

Anleitungen für einen Schnellstart

Wenn Sie ein erfahrener Computerveteran sind und sich im Computerwesen auskennen (was auch immer das heißen mag) oder wenn Sie keine Lust haben, sich mit langen Installationsanleitungen abzugeben, können Sie die benötigte Software installieren, indem Sie den allgemeinen Anleitungen folgen, die dieses Kapitel für Sie bereithält. Diese Anleitungen funktionieren bei vielen, wenn auch nicht bei allen Computern. Und Sie finden in diesem Abschnitt auch keine in die Einzelheiten gehende Schritte, keine Wenn‐dies‐dann‐das‐Alternativen und keine Das‐funktioniert‐zwar‐aber‐das‐wäre‐besser‐Tipps.

Um Ihren Computer auf das Schreiben von Java‐Programmen vorzubereiten, gehen Sie so vor:

1. Installieren Sie das Java Development Kit.

Dazu besuchen Sie http://www.oracle.com/technetwork/java/javase/downloads.

Folgen Sie den Anweisungen auf der Website, um das neueste Java SE JDK herunterzuladen.

[image:]Suchen Sie nach der Standard‐Edition (SE). Die Enterprise Edition (EE) und vergleichbare Editionen können Sie ignorieren. Außerdem sollten Sie nach dem JDK suchen, nicht nach der JRE. Und wenn Sie eine Codenummer wie beispielsweise 9u3 sehen: das steht für »3. Update von Java 9«. Ganz allgemein kann man sagen, alles, was als Java 9 oder höher gekennzeichnet ist, ist für die Beispiele in diesem Buch geeignet.

2. Installieren Sie eine integrierte Entwicklungsumgebung

Eine integrierte Entwicklungsumgebung (IDE, Integrated Development Environment) ist ein Programm, das Ihnen dabei hilft, neue Software zu schreiben und zu testen. Für die Beispiele in diesem Buch können Sie eine beliebige IDE verwenden, die Java unterstützt.

Nachfolgend eine Liste der gebräuchlichsten Java IDEs:

● Eclipse

Laut www.baeldung.com/java‐ides‐2016 verwenden Mitte 2016 48,2 Prozent der Java‐Programmierer weltweit die Eclipse DIE.

Um Eclipse herunterzuladen und zu verwenden, folgen Sie den Anweisungen unter http://eclipse.org/downloads. Auf der Download‐Seite von Eclipse finden Sie möglicherweise verschiedene Pakete, unter anderem Eclipse für Java EE, Eclipse für JavaScript, Eclipse für Java und DSL und andere. Für die Beispiele in diesem Buch brauchen Sie ein relativ kleines Eclipse‐Paket – die Eclipse IDE für Java‐Entwickler.

Eclipse ist kostenlos, sowohl für den kommerziellen als auch für den privaten Gebrauch.

● IntelliJ IDEA

Im Überblick über die Java IDEs von Baeldung (http://www.baeldung.com/java-ides-2016) steht IntelliJ IDEA gleich an zweiter Stelle, mit 43,6 Prozent aller Java‐Programmierer auf seiner Seite.

Unter http://www.jetbrains.com/idea können Sie die Community Edition (die kostenlos ist) oder die Ultimate Edition (die nicht kostenlos ist) herunterladen. Für die Beispiele in diesem Buch reicht die Community Edition. Sie können die Community Edition sogar einsetzen, um kommerzielle Software zu schreiben!

● NetBeans

Laut Überblick über die Java IDEs von Baeldung (http://www.baeldung.com/java‐ides‐2016) erreicht NetBeans nur 5,9 Prozent. NetBeans ist jedoch die offizielle Java IDE von Oracle. Wenn Ihnen auf der Site ein Download‐Bundle angeboten wird, wählen Sie das Java SE‐Bundle.

Um Ihre eigene Kopie von NetBeans zu erhalten, besuchen Sie https://netbeans.org/downloads.

NetBeans ist kostenlos für den kommerziellen und den privaten Gebrauch.

3. Testen Sie die installierte Software.

Was dazu zu tun ist, ist davon abhängig, welche IDE Sie in Schritt 2 ausgewählt haben. Hier jedoch einige allgemeine Anweisungen:

● Starten Sie Ihre IDE (Eclipse, IntelliJ IDEA, NetBeans, oder was auch immer).

● Legen Sie in der IDE ein neues Java‐Projekt an.

● Erstellen Sie im Java‐Projekt eine neue Java‐Klasse und geben Sie ihr den Namen Displayer (in den meisten IDEs geht das über die Auswahl von Datei | Neu | Klasse).

● Bearbeiten Sie die neue Datei Displayer.java, indem Sie den Code in Listing 3.1 (das erste Codelisting in Kapitel 3) eingeben.

Bei den meisten IDEs fügen Sie den Code in einem großen (meistens leeren) Editorfeld ein. Versuchen Sie, den Code genauso einzugeben, wie Sie ihn in Listing 3.1 sehen. Wenn dort ein Großbuchstabe steht, geben Sie einen Großbuchstaben ein. Dasselbe gilt für Kleinbuchstaben.

[image:]Sie wollen nicht die Unmengen Code aus dem Buch eintippen? Kein Problem. Besuchen Sie die Website für das Buch (http://www.wiley-vch.de/publish/dt/books/ISBN3-527-71364-6), wo Sie die Codebeispiele herunterladen und in die IDE Ihrer Wahl laden können.

● Führen Sie Displayer.java aus und überprüfen Sie das Ergebnis, das Sie werden Java lieben! sein sollte.

Das wär's dann. Aber denken Sie daran, dass nicht jeder (Computerfreak oder nicht) diesem Anweisungsskelett fehlerfrei folgen kann. Aus diesem Grund gibt es Hilfsmittel:

[image: image] Besuchen Sie die amerikanische Website dieses Buches, wenn Sie über (halbwegs) gute Englischkenntnisse verfügen.

Gehen Sie nicht über Los. Probieren Sie die Schnellstartanleitungen dieses Kapitels nicht aus. Folgen Sie den detaillierteren, nur in englischer Sprache vorliegenden Anleitungen, die Sie unter www.allmycode.com/JavaForDummies finden.

[image: image] Probieren Sie die Schnellstartanleitungen in diesem Abschnitt aus.

Sie können beim Ausprobieren niemanden verletzen. Wenn Sie unglücklicherweise die falsche Software installiert haben, können Sie diese zur Not auf Ihrem Computer belassen. (Sie müssen sie nicht wieder deinstallieren.) Wenn Sie sich nicht sicher sind, ob Sie die Software richtig installiert haben, können Sie sich immer noch mit den detaillierten Anleitungen auf meiner Website beschäftigen.

[image: image] Schicken Sie entweder Ihre Fragen per E‐Mail (bitte nur in englischer Sprache) an JavaForDummies@allmycode.com oder besuchen Sie die Webseite des deutschen Buches unter http://www.wiley-vch.de/publish/dt/books/ISBN3-527-71364-6.

[image: image] Twittern Sie unter @allmycode mit mir.

[image: image] Besuchen Sie meine Facebook‐Seite: /allmycode.

Ich liebe es, von Lesern zu hören.

Was Sie auf Ihrem Computer installieren

Ich habe einmal einen Werkzeugmacher und Formenbauer getroffen. Er verwendete Werkzeuge, um Werkzeuge (und Formen) herzustellen. Ich war froh, ihn kennengelernt zu haben, weil ich wusste, dass ich irgendwann einmal einen Vergleich von Computerprogrammen und dem Herstellen von Werkzeugen benötigen würde.

Ein Computerprogramm verwendet vorhandene Programme als Werkzeuge, um neue Programme zu erstellen. Die vorhandenen Programme und die neuen Programme können ganz unterschiedliche Aufgaben ausführen. So kann zum Beispiel ein Java‐Programm (ein Programm, das Sie erstellt haben) den Überblick über Geschäftskunden behalten. Damit dieses Programm erstellt werden konnte, haben Sie vielleicht ein vorhandenes Programm verwendet, das sich um Fehler in Ihrem Java‐Code gekümmert hat. Dieses Programm, das nur der Fehlersuche dient, ist in der Lage, Fehler in jeder Art von Java‐Code zu finden – Code, um einen Überblick über Kunden zu bekommen, Code für die Wettervorhersage oder Code für Apps auf Handys.

Wie viele Werkzeuge benötigen Sie nun für Ihre Java‐Programme? Als Neuling kommen Sie mit drei aus:

[image: image] Sie benötigen einen Compiler.

Ein Compiler (der im Deutschen auch Kompilator oder Kompilierer genannt wird) nimmt den Java‐Code, den Sie geschrieben haben, und wandelt diesen Code in sogenannten Bytecode um.

Menschen können solchen Bytecode weder schreiben noch lesen. Es gibt jedoch Software, die Sie auf Ihrem Computer ausführen, die Bytecode‐Anweisungen interpretieren und ausführen kann.

[image: image] Sie benötigen eine Java Virtual Machine (JVM).

Eine Java Virtual Machine ist eine Software. Sie interpretiert Bytecode‐Anweisungen und führt sie aus.

[image: image] Sie benötigen eine integrierte Entwicklungsumgebung (IDE).

Eine integrierte Entwicklungsumgebung (englisch Integrated Development Environment oder IDE) hilft dabei, Ihren Code zu verwalten, und stellt Ihnen bequeme Möglichkeiten zur Verfügung, um Code zu schreiben, zu kompilieren und auszuführen.

[image:]Ehrlich gesagt, eigentlich brauchen Sie überhaupt keine integrierte Entwicklungsumgebung. Einige Programmierer sind ganz stolz darauf, ganz einfache, alte Texteditoren zu verwenden, wie beispielsweise Windows Notepad., Macintosh TextEditor oder den Vim‐Editor in Linux. Als Neuling in der Programmierung macht Ihnen jedoch eine vollfunktionale IDE das Leben sehr, sehr viel einfacher.

Im World Wide Web gibt es von jedem dieser Werkzeuge kostenlos herunterladbare Versionen:

[image: image] Wenn Sie das Java SE JDK von der Website von Oracle herunterladen (http://www.oracle.com/technetwork/java/javase/downloads/index.html), erhalten Sie den Compiler und die JVM.

[image: image] Wenn Sie auf die Website von Eclipse (http://www.eclipse.org/downloads), IntelliJ IDEA (http://www.jetbrains.com/idea) oder NetBeans (https://netbeans.org/downloads) gehen, erhalten Sie eine IDE.

[image:]Es gibt Varianten, was die Dinge in den beiden letzten Absätzen betrifft. Viele IDEs haben ihre eigenen JVMs, und auf der Website von Oracle wird möglicherweise eine Kombination aus JDK und NetBeans angeboten. Nichtsdestotrotz ist die obige Beschreibung praktisch und zuverlässig. Wenn Sie meinen Anweisungen folgen, erhalten Sie möglicherweise zwei Kopien der JVM, oder auch zwei IDEs, aber das ist kein Problem. Man weiß schließlich nie, wann man einen Ersatz brauchen kann.

Der Rest dieses Kapitels beschreibt Compiler, JVMs und IDEs.

Was ist ein Compiler?

»Ein Compiler nimmt sich den Java‐Code, den Sie schreiben, und wandelt diesen Code in viele Anweisungen um, die als Bytecode bezeichnet werden.«

Barry Burd, Java für Dummies

Sie sind ein menschliches Wesen. (Okay, jede Regel kennt Ausnahmen, aber wenn Sie dieses Buch lesen, sind Sie höchstwahrscheinlich menschlich.) Und Menschen sind in der Lage, den Code in Listing 2.1 zu schreiben und zu verstehen.

// Dies ist ein Teil eines Java‐Programms,

// kein vollständiges Java‐Programm.

roomNum = 1;

while (roomNum < 100) {

 if (guests[roomNum] == 0) {

 out.println("Room " + roomNum + " is available.");

 exit(0);

 } else {

 roomNum++;

 }

}

out.println("No vacancy");

Listing 2.1: Nach einem freien Zimmer suchen

Der Code in Listing 2.1 prüft, ob es in einem kleinen Hotel (mit den Zimmernummern 1 bis 99) freie Zimmer gibt. Sie könnten diesen Code ablaufen lassen, ohne weitere Zeilen hinzufügen zu müssen. Wichtig ist hier, dass Sie hinter die ungewöhnliche Interpunktion des Codes kommen, damit Sie erkennen, was der Code versucht zu machen:

Setze die Zimmernummer auf 1.

Solange die Zimmernummer kleiner als 100 ist,

 prüfe die Anzahl der Gäste im Zimmer.

 Wenn die Zahl der Gäste im Zimmer 0 ist, dann

 gib aus, dass das Zimmer verfügbar ist,

 und beende das Programm.

 Anderenfalls,

 sei bereit, das nächste Zimmer zu überprüfen,

 indem die Zimmernummer um 1 erhöht wird.

Wenn die nicht existierende Zimmernummer 100 erscheint,

 dann gib aus, dass alle Zimmer belegt sind.

Wenn Sie die Ähnlichkeit zwischen Listing 2.1 und seinem deutschen Äquivalent nicht erkennen, sollten Sie sich nichts daraus machen. Sie lesen gerade Java für Dummies und können wie die meisten menschlichen Wesen lernen, den Code in Listing 2.1 zu schreiben und zu lesen. Code dieser Art wird auch Java‐Quellcode genannt.

Und das ist der Haken an der Sache: Computer sind keine Menschen. Normalerweise folgen Computer keinen Anweisungen wie denen in Listing 2.1. Oder kurz gesagt, Computer folgen keinen Anweisungen, die aus Java‐Quellcode bestehen. Computer folgen stattdessen kryptischen Befehlen wie denen in Listing 2.2.

aload_0

iconst_1

putfield Hotel/roomNum I

goto 32

aload_0

getfield Hotel/guests [I

aload_0

getfield Hotel/roomNum I

iaload

ifne 26

getstatic java/lang/System/out Ljava/io/PrintStream;

new java/lang/StringBuilder

dup

ldc "Room "

invokespecial java/lang/StringBuilder/<init>(Ljava/lang/String;)V

aload_0

getfield Hotel/roomNum I

invokevirtual java/lang/StringBuilder/append(I)Ljava/lang/StringBuilder;

ldc " is available."

invokevirtual

 java/lang/StringBuilder/append(Ljava/lang/String;)Ljava/lang/StringBuilder;

invokevirtual java/lang/StringBuilder/toString()Ljava/lang/String;

invokevirtual java/io/PrintStream/println(Ljava/lang/String;)V

iconst_0

invokestatic java/lang/System/exit(I)V

goto 32

aload_0

dup

getfield Hotel/roomNum I

iconst_1

iadd

putfield Hotel/roomNum I

aload_0

getfield Hotel/roomNum I

bipush 100

if_icmplt 5

getstatic java/lang/System/out Ljava/io/PrintStream;

ldc "No vacancy"

invokevirtual java/io/PrintStream/println(Ljava/lang/String;)V

return

Listing 2.2: Die Anweisungen in Listing 2.1 – übersetzt in Java‐Bytecode

Bei den Anweisungen in Listing 2.2 handelt es sich nicht um Java‐Quellcode. Es sind Anweisungen in Form von Java‐Bytecode. Wenn Sie ein Java‐Programm schreiben, schreiben Sie Quellcode‐Anweisungen (wie die in Listing 2.1). Nachdem Sie den Quellcode geschrieben haben, führen Sie auf Ihren Quellcode ein Programm aus (das heißt, Sie wenden ein Werkzeug an). Bei diesem Programm handelt es sich um einen Compiler. Der Compiler übersetzt Ihre Quellcode‐Anweisungen in Java‐Bytecode‐Anweisungen. Oder mit anderen Worten, der Compiler nimmt Code, den Sie schreiben und verstehen (wie den in Listing 2.1), und übersetzt ihn in Code, den ein Computer sehr wahrscheinlich ausführen kann (wie den in Listing 2.2).

[image:]Sie könnten Ihren Quellcode in eine Datei mit dem Namen Hotel.java packen. In diesem Fall würde der Compiler den Java‐Bytecode in einer Datei mit dem Namen Hotel.class ablegen. Normalerweise müssen Sie sich nicht mit dem Bytecode in der Datei Hotel.class abgeben. Es ist nämlich so, dass der Compiler die Datei Hotel.class nicht wie eine normale Textdatei kodiert, was dazu führt, dass Sie den Bytecode nicht mit einem normalen Texteditor untersuchen können. Wenn Sie versuchen, Hotel.class mit Notepad, TextEdit, KWrite oder Microsoft Word zu öffnen, sehen Sie nichts als Punkte, Gekrakel und anderes Kauderwelsch. Um Listing 2.2 zu erstellen, musste ich für meine Datei Hotel.class ein besonderes Werkzeug einsetzen. Dieses Werkzeug zeigt eine textähnliche Version der Java‐Bytecodedatei an. Ich habe Ando Saabas's Java Bytecode Editor (www.cs.ioc.ee/~ando/jbe) verwendet.

[image:]Niemand (außer vielleich ein paar verrückte Programmierer, die an sehr entlegenen Orten ein einsames Leben führen) schreibt Java‐Bytecode. Sie führen Software (einen Compiler) aus, um Java‐Bytecode zu erstellen. Der einzige Grund, sich mit Listing 2.2 zu beschäftigen, ist zu verstehen, wie hart Ihr Computer arbeiten muss.

Was ist eine Java Virtual Machine?

»Eine Java Virtual Machine ist eine Software. Sie interpretiert Bytecode‐Anweisungen und führt diese aus.«

Barry Burd, Java für Dummies

Ich habe im letzten Abschnitt, Was ist ein Compiler?, viel Wind um Computer gemacht, die Anweisungen wie denen in Listing 2.2 folgen. Wenn sich die Aufregung erst einmal gelegt hat, werden Sie feststellen, dass vielleicht doch etwas hängen geblieben ist. Wenn Sie diesen Abschnitt aber nur überflogen haben, ist Ihnen vielleicht etwas entgangen. Dort heißt es: »... Computer folgen stattdessen kryptischen Anweisungen wie denen in Listing 2.2.« Die Anweisungen in Listing 2.2 haben viel mit Anweisungen (Befehlen) gemeinsam, die ein Computer ausführen kann, aber allgemein gilt, dass Computer nichts direkt mit Java‐Bytecode‐Anweisungen anfangen können. Stattdessen verfügt jeder Computer‐Prozessor über einen eigenen Satz ausführbarer Befehle, und jedes Betriebssystem verwendet den Befehlssatz eines Prozessors auf etwas andere Weise.

Hier eine hypothetische Situation: Wir schreiben das Jahr 1992 (ein paar Jahre, bevor Java veröffentlicht wurde), und Sie setzen das Betriebssystem Linux auf einem Computer mit einem alten Pentium‐Prozessor ein. Ein Freund verwendet Linux auf einem Computer, der einen etwas anderen Prozessor besitzt – einen PowerPC‐Prozessor. (In den 1990ern stellt Intel Pentium‐ und IBM PowerPC‐Prozessoren her.)

Listing 2.3 enthält einen Satz mit Anweisungen, die auf dem Bildschirm Hello world! ausgeben. (Ich habe diese Intel‐Anweisungen dem Buch Linux Assembly HOWTO von Konstantin Boldyshevs entnommen – tldp.org/HOWTO/Assembly‐HOWTO/hello.html.) Diese Anweisungen funktionieren auf einem Pentium‐Prozessor, auf dem Linux läuft.

.data

msg:

 .ascii "Hello, world!\n"

 len = . ‐ msg

.text

 .global _start

_start:

 movl $len,%edx

 movl $msg,%ecx

 movl $1,%ebx

 movl $4,%eax

 int $0x80

 movl $0,%ebx

 movl $1,%eax

 int $0x80

Listing 2.3: Ein einfaches Programm für einen Pentium‐Prozessor

Listing 2.4 enthält einen anderen Befehlssatz, der auf dem Bildschirm Hello world! ausgibt. (Ich habe den PowerPC‐Code der PowerPC‐Assembly‐Seite von Hollis Blanchard entnommen – http://www.ibm.com/developerworks/library/l-ppc. Hollis hat auch den Abschnitt »Was ist eine Java Virtual Machine?« für mich gelesen und korrigiert. Danke, Hollis!) Die Anweisungen in Listing 2.4 funktionieren auf einem PowerPC‐Prozessor, der unter Linux läuft.

.data

msg:

 .string "Hello, world!\n"

 len = . ‐ msg

.text

 .global _start

_start:

 li 0,4

 li 3,1

 lis 4,msg@ha

 addi 4,4,msg@l

 li 5,len

 sc

 li 0,1

 li 3,1

 sc

Listing 2.4: Ein einfaches Programm für einen PowerPC‐Prozessor

Die Anweisungen in Listing 2.3 laufen problemlos auf einem Pentium‐Prozessor, aber sie sagen einem PowerPC‐Prozessor nichts. Ähnlich ist das mit den Befehlen in Listing 2.4, mit denen zwar ein PowerPC‐Prozessor viel, ein Pentium‐Prozessor aber nichts anfangen kann. Aus diesem Grund steht die PowerPC‐Software Ihres Freundes nicht für Ihren Computer zur Verfügung. Und die Software Ihres Intel‐Computers wird nicht unbedingt auch auf dem Computer Ihres Freundes laufen können.

Besuchen Sie nun eine Cousine. Deren Computer besitzt einen Pentium‐Prozessor (wie Ihr Computer), aber auf dem Computer Ihrer Cousine läuft Windows und nicht Linux. Was macht der Computer Ihrer Cousine, wenn Sie ihn mit dem Pentium‐Code in Listing 2.3 füttern? Er schreit empört: »Das ist keine gültige Win32‐Anwendung!« oder »Windows kann diese Datei nicht öffnen.« Was für ein Mist!

Java‐Bytecode bringt Ordnung in dieses Chaos. Anders als der Code in den Listing 2.3 und 2.4 ist Java‐Bytecode nicht spezifisch für einen Prozessortyp oder ein Betriebssystem. Stattdessen kann auf einem beliebigen Computer eine Java Virtual Machine ausgeführt werden, und die Java‐Bytecode‐Anweisungen werden auf der Java Virtual Machine dieses Computers ausgeführt. Die JVM auf einem Pentium mit Linux übersetzt die Java‐Bytecode‐Anweisungen in eine Art Code, wie Sie ihn in Listing 2.3 sehen. Und die JVM, die auf einem PowerPC mit Linux ausgeführt wird, übersetzt Java‐Bytecode‐Anweisungen in eine Art Code, wie Sie ihn in Listing 2.4 sehen.

Wenn Sie ein Java‐Programm schreiben und es zu Bytecode kompilieren, ist nicht nur die JVM auf Ihrem Computer in der Lage, das Programm auszuführen, sondern auch die JVM auf dem Computer Ihres Freundes kann den Bytecode ausführen, und auch die JVM auf dem Supercomputer Ihrer Großmutter kann den Bytecode ausführen. Und wenn Sie ein wenig Glück haben, kann auch die JVM auf Ihrem niedlichen, kleinen Handy den Bytecode ausführen.

[image:]Wenn Sie Java‐Bytecode sehen wollen, werfen Sie einen Blick auf Listing 2.2. Denken Sie aber immer daran, dass Sie Java‐Bytecode niemals schreiben oder entziffern müssen. Das Schreiben von Bytecode ist Aufgabe des Computers. Das Entziffern von Bytecode ist die Aufgabe der Java Virtual Machine.

Bei Java können Sie eine Bytecodedatei nehmen, die Sie mit einem Windows‐Computer erstellt haben, den Bytecode auf einen x‐beliebigen Computer kopieren und den Code problemlos ausführen. Dies ist einer der vielen Gründe, warum Java so schnell so beliebt geworden ist. Diese außergewöhnliche Fähigkeit, die es Ihnen erlaubt, Code auf vielen verschiedenen Arten von Computern ablaufen zu lassen, wird Portierbarkeit genannt.

Was nun macht Java‐Bytecode so vielseitig? Diese unglaubliche universelle Einsetzbarkeit des Java‐Bytecodes hat ihren Ursprung in der Java Virtual Machine. Die Java Virtual Machine ist eines der drei Werkzeuge, die es auf Ihrem Computer geben muss.

Stellen Sie sich vor, dass Sie der Windows‐Repräsentant beim United Nations Security Council sind (siehe Abbildung 2.1). Rechts neben Ihnen sitzt der Vertreter von Macintosh und links von Ihnen der Linux‐Repräsentant. (Natürlich sind Sie mit diesen Leuten nicht dick befreundet, auch wenn Sie ganz gut miteinander auskommen. Was haben Sie erwartet? Das nennt man Politik!) Am Rednerpult steht der hervorragende Vertreter von Java. Er spricht Bytecode‐isch und weder Sie noch Ihre Kollegen (Mac und Linux) verstehen auch nur ein Wort Java‐Bytecode.

[image:]Abbildung 2.1: Ein imaginäres Treffen des UN Security Councils

Aber jeder von Ihnen hat einen Interpreter. Ihr Interpreter übersetzt Bytecode in die Windows‐Sprache, während der Java‐Repräsentant redet. Ein anderer Interpreter übersetzt Bytecode in Macintosh‐isch. Und ein dritter Interpreter übersetzt Bytecode in die Linux‐Sprache.

Stellen Sie sich Ihren Interpreter als einen virtuellen Botschafter vor. Der Interpreter repräsentiert Ihr Land nicht wirklich, aber er führt eine der wichtigsten Aufgaben aus, die auch ein echter Botschafter erledigt. Der Interpreter hört in Ihrem Auftrag dem Bytecode zu. Er macht dann das, was auch Sie machen würden, wenn Ihre Landessprache Java‐Bytecode wäre. Der Interpreter gibt vor, der Windows‐Botschafter zu sein, tut sich die langweilige Bytecode‐Rede an, nimmt jedes Wort auf und verarbeitet jedes Wort auf irgendeine Weise.

Sie besitzen einen Interpreter – einen virtuellen Botschafter. Und auf dieselbe Weise führt ein Windows‐Computer seine eigene Bytecode interpretierende Software aus. Diese Software ist die Java Virtual Machine.

Eine Java Virtual Machine (JVM) ist ein Stellvertreter, ein Botenjunge, ein Vermittler. Die JVM dient als Dolmetscher zwischen Javas Ich‐laufe‐überall‐Bytecode und dem System Ihres Computers. Die JVM führt Ihren Computer, während er läuft, durch die Anweisungen des Bytecodes. Sie untersucht Ihren Bytecode Bit für Bit und holt die Anweisungen heraus, die im Bytecode beschrieben werden. Die JVM übersetzt Bytecode für Ihre Windows‐, Mac‐ oder Linux‐Systeme oder welche Art von Computer Sie benutzen. Das ist eine gute Sache. Und das ist genau das, was Java‐Programme portierbarer macht als Programme, die in irgendeiner anderen Sprache geschrieben worden sind.

Was um Himmels willen ist Java 2 Standard Edition 1.2?

Wenn Sie ein wenig im Web herumstöbern und nach Java‐Werkzeugen suchen, finden Sie Dinge, die alle möglichen komischen Namen tragen. Sie finden das Java Development Kit, das Software Development Kit, die Java Runtime Environment und andere verwirrende Bezeichnungen.

[image: image] Die Namen Java Development Kit (JDK) und Software Development Kit (SDK) bezeichnen unterschiedliche Versionen desselben Satzes an Werkzeugen – einen Werkzeugsatz, dessen Schlüsselkomponente ein Java‐Compiler ist.

[image: image] Der Name Java Runtime Environment (JRE) bezeichnet einen Werkzeugsatz, dessen Schlüsselkomponente eine Java Virtual Machine ist.

Wenn Sie das JDK auf Ihrem Computer installieren, enthält es bereits die JRE. Sie können die JRE aber auch als eigenständiges Programm bekommen. Es kommt sogar vor (und zwar gerade bei Entwicklern), dass viele Kombinationen von JDK und JRE auf einem Computer existieren. So gibt es zum Beispiel im Moment auf meinem Windows‐Computer im Verzeichnis C:\Programme\Java das JDK 1.6, das JDK 1.8 und die JRE 8 und im Verzeichnis C:\Programme (x86)\Java das JDK 9. Und zwischen diesen Versionen kommt es nur selten zu Konflikten. Wenn Sie vermuten, dass es bei Ihnen einen Versionskonflikt geben könnte, sollten Sie am besten alle JDK‐ und JRE‐Versionen mit Ausnahme der jüngsten Version (zum Beispiel JDK 9 und JRE 9) deinstallieren.

Die Nummerierung der Java‐Versionen ist verwirrend. Statt »Java 1«, »Java 2« und »Java 3« winden sich die Java‐Versionen über einen Kurs voller Hindernisse.

Dieser Kasten hier beschreibt die Entwicklung neuer Java‐Versionen über die Jahre hinweg. Jede Java‐Version hat mehrere Namen. Bei der Produktversion handelt es sich um den offiziellen, allgemein gültigen Namen, und die Entwicklungsversion ist eine Zahl, die Versionen identifiziert, damit sie die Entwickler nachhalten können. (In ihren zwanglosen Unterhaltungen benutzen Programmierer alle möglichen Namen für die verschiedenen Java‐Versionen.) Beim Codenamen handelt es sich um einen scherzhaften Namen, der eine Version identifiziert, während sie entwickelt wird.

	Plattform

	Codename

	Funktionen

	1995 (Beta)

	
	

	1996 JDK* 1.0

	
	

	1997 JDK 1.1

	
	Innere Klassen, Java‐Beans, Reflections

	1998 J2SE* 1.2

	Playground

	Swing‐Klassen für das Erstellen von GUI‐Interfaces

	2000 J2SE 1.3

	Kestrel

	Java Naming and Directory Interface (JNDI)

	2002 J2SE 1.4

	Merlin

	Neue I/O, reguläre Ausdrücke, XML kann geparst werden

	2004 J2SE 5.0

	Tiger

	Generische Typen, Annotations, enum‐Typen, varargs, erweiterter for‐Befehl, statischer Import, neue Nebenläufigkeitsklassen

	2006 Java SE* 6

	Mustang

	Scripting‐Sprachunterstützung, Verbesserungen beim Leistungsverhalten

	2011 Java SE 7

	Dolphin

	Strings in switch‐Befehlen, Auffangen von Mehrfachausnahmen, try‐Befehle mit Ressourcen, Zusammengehen mit JavaFX

	2014 Java SE 8

	
	Lambda‐Ausdrücke

	2017

	
	Modularität mit Project Jigsaw, interaktive Codierung mit JShell

Die Sternchen in der Tabelle kennzeichnen Änderungen bei der Formulierung der Namen der Java‐Produktversionen. 1996 hießen die Produktversionen Java Development Kit 1.0 und Java Development Kit 1.1. 1998 entschied jemand, das Produkt Java 2 Standard Edition 1.2 zu taufen, was bis heute jeden verwirrt. Damals wurde jeder, der den Begriff Java Development Kit verwendet hat, aufgefordert, den Ausdruck Software Development Kit (SDK) zu benutzen.

2004 verschwand das 1. aus den Versionsnamen der Plattformen und 2006 verloren die Java‐Plattformnamen auch die 2 und die 0.

Zu den wohl bemerkenswertesten Änderungen für Java‐Programmierer kam es 2004. Mit der Freigabe von J2SE 5.0 nahmen die Java‐Aufpasser Änderungen an der Sprache vor, indem neue Funktionen hinzugefügt wurden – Funktionen wie generische Typen, Annotations, varargs und den erweiterten for‐Befehl. (Wenn Sie Annotations in Aktion sehen wollen, blättern Sie weiter zu den Kapiteln 8 und 9. Beispiele, die die Verwendung von generischen Typen zeigen, und die erweiterte for‐Anweisung finden Sie in den Kapiteln 11 und 12.)

Die meisten Programme in diesem Buch laufen nur mit Java 5.0 oder höher. Sie laufen nicht mit Java‐Versionen vor 5.0. Auf keinen Fall kommen sie mit Java 1.4 oder Java 1.4.2 klar. Aber machen Sie sich nicht zu viele Gedanken über die Versionsnummern von Java. Java 6 oder 7 ist besser als überhaupt kein Java. Sie können auch eine Menge über Java lernen, wenn Sie nicht die neueste Java‐Version besitzen.

Software entwickeln

»Dies alles ist früher schon geschehen und wird auch wieder geschehen.«

Peter Pan (J. M. Barrie) und Battlestar Galactica (2003–2009, NBC Universal)

Wenn Sie ein Java‐Programm erstellen, wiederholen Sie immer wieder dieselben Schritte. Abbildung 2.2 stellt diesen Kreislauf dar.

[image:]Abbildung 2.2: Ein Java‐Programm entwickeln

Als Erstes schreiben Sie ein Programm. Nachdem Sie den ersten Entwurf geschrieben haben, kompilieren Sie das Programm, führen es aus und ändern es immer wieder. Mit ein wenig Erfahrung verlieren die Schritte Kompilieren und Ausführen sehr schnell ihren Schrecken. In vielen Fällen reicht ein Mausklick aus, um das Kompilieren oder die Programmausführung zu starten.

Natürlich sind das Schreiben eines ersten Entwurfs und das Ändern des Codes keine Aufgaben, die sich mit einem Klicken erledigen lassen. Das Entwickeln von Code kostet Zeit und verlangt Konzentration.

[image:]Lassen Sie sich nicht entmutigen, wenn der erste Entwurf Ihres Codes nicht funktioniert. Lassen Sie sich auch nicht dadurch entmutigen, dass der fünfundzwanzigste Entwurf Ihres Codes nicht funktioniert. Das Neuschreiben von Code ist eines der wichtigsten Dinge, die Sie (neben der Sicherstellung des Weltfriedens) machen können.

[image:]Detaillierte Anweisungen zum Kompilieren und zur Ausführung von Java‐Programmen finden Sie auf der englischsprachigen Website zum amerikanischen Buch (www.allmycode.com/JavaForDummies).

Wenn über das Schreiben von Programmen gesprochen wird, werden häufig die Formulierungen aus Abbildung 2.2 verwendet. Sie besagen: »Sie kompilieren den Code« und »Sie führen den Code aus.« Aber das »Sie« ist nicht immer zutreffend, und der »Code« ist bei jedem Durchlaufen des Kreislaufs ein wenig anders. Abbildung 2.3 beschreibt den Kreislauf aus Abbildung 2.2 detaillierter.

[image:]Abbildung 2.3: Wer macht was mit welchem Code?

[image:]Abbildung 2.3 enthält für viele viel zu viele Informationen. Wenn ich auf eine Schaltfläche Ausführen oder Run klicke, muss ich mich nicht daran erinnern, dass der Computer für mich Code ausführt. Und meinetwegen kann der Computer meinen originalen Java‐Code oder ein Bytecode‐Imitat meines ursprünglichen Java‐Codes ablaufen lassen. Die genauen Formulierungen in Abbildung 2.3 sind nicht so wichtig. Der einzige Grund für Abbildung 2.3 liegt darin, Ihnen zu helfen, falls Sie die ungenauen Bezeichnungen in Abbildung 2.2 verwirren. Wenn dies nicht der Fall ist, ignorieren Sie Abbildung 2.3.

Was ist eine integrierte Entwicklungsumgebung?

»Eine integrierte Entwicklungsumgebung hilft Ihnen dabei, Ihren Java‐Code zu verwalten, und sorgt für die passenden Wege, damit Sie Ihren Code schreiben, kompilieren und ausführen können.«

Barry Burd, Java für Dummies

Früher gehörte zum Schreiben und Ausführen eines Java‐Programms das Öffnen mehrerer Fenster – eines, um das Programm zu schreiben, ein anderes, um das Programm ablaufen zu lassen, und eventuell ein drittes, um dem ganzen Code, den Sie geschrieben haben, auf der Spur zu bleiben (siehe Abbildung 2.4).

[image:]Abbildung 2.4: Code‐Entwicklung ohne integrierte Entwicklungsumgebung

Eine integrierte Entwicklungsumgebung (IDE) vereint diese Funktionen in einer gut durchdachten Anwendung (siehe Abbildung 2.5).

[image:]Abbildung 2.5: Code‐Entwicklung mit der Entwicklungsumgebung Eclipse

Für Java gibt es einige integrierte Entwicklungsumgebungen, wie beispielsweise Eclipse, IntelliJ IDEA und NetBeans. Viele Umgebungen unterstützen sogar »Drag and Drop«, was es Ihnen ermöglicht, Ihre grafischen Oberflächen unter Sichtkontrolle zu erstellen (siehe Abbildung 2.6).

[image:]Abbildung 2.6: In NetBeans IDE den Swing GUI Builder für »Drag and Drop« verwenden

Um ein Programm auszuführen, müssen Sie normalerweise nur auf eine Schaltfläche in der Symbolleiste klicken oder in einem Menü Run wählen (IDEs sind in der Regel englischsprachig). Um ein Programm zu kompilieren, müssen Sie eigentlich nichts tun. (Eventuell müssen Sie einen Befehl absetzen. Einige IDEs kompilieren Ihren Code automatisch, während Sie ihn eingeben.)

[image:]Weitere Informationen über die Installation und Verwendung einer integrierten Entwicklungsumgebung finden Sie auf der englischsprachigen Website zum amerikanischen Buch (http://www.allmycode/JavaForDummies).

59-80

Kapitel 3

Die grundlegenden Teile verwenden

In diesem Kapitel

Die Sprache Java sprechen: die API und die Besonderheiten der Sprache

Einen ersten Blick auf Java‐Code werfen

Die Bestandteile eines einfachen Programms verstehen

Den Code dokumentieren

»Все мысли, которые имеют огромные последствия всегда просты. (Alle großen Ideen sind einfach.)«

– Leo Tolstoi

Dieses Zitat gilt für alle möglichen Dinge – Dinge wie das Leben, die Liebe und die Programmierung für Computer. Aus diesem Grund nähert sich dieses Kapitel diesem Thema auf mehreren Ebenen. Sie erhalten hier Ihre ersten Grundkenntnisse der Java‐Programmierung, und während Sie die entsprechenden Einzelheiten entdecken, werden Sie überrascht sein, wie einfach sie gehalten sind.

Die Sprache Java sprechen

Wenn Sie versuchen, sich in Ihrem Kopf die gesamte deutsche Sprache bildhaft vorzustellen, was sehen Sie dann? Vielleicht Wörter, Wörter, Wörter. Wenn Sie sich eine Sprache unter dem Mikroskop anschauen, sehen Sie ein Wort nach dem anderen. Dieses Bild mit den vielen Wörtern geht in Ordnung, aber wenn Sie sich etwas zurücklehnen, fallen Ihnen vielleicht zwei andere Dinge auf:

[image: image] Die Grammatik der Sprache

[image: image] Tausende von Ausdrücken, Redewendungen, Sprichwörtern und historischen Bezeichnungen

Die erste Kategorie (die Grammatik) enthält Regeln wie: »Dieses Prädikat stimmt in Person und Numerus mit dem Substantiv überein.« Die zweite Kategorie (Ausdrücke, Redewendungen und so weiter) enthält Wissen wie: »Julius Caesar war ein bekannter römischer Kaiser. Gib deinem Sohn nur dann den Namen Julius Caesar, wenn du willst, dass er tagtäglich nach der Schule Prügel bezieht.«

Die Programmiersprache Java besitzt alle Bestandteile einer gesprochenen Sprache wie Deutsch. Und auch Java kennt Wörter, eine Grammatik, normalerweise verwendete Namen, Redensarten und andere Dinge dieser Art.

Die Grammatik und die gebräuchlichen Bezeichnungen

Die Leute von Sun Microsystems, die Java entwickelten, stellten sich ein zweiteiliges Java vor. So wie die deutsche Sprache eine eigene Grammatik und häufig verwendete Begriffe hat, kennt auch die Programmiersprache Java ihre Spezifikationen (ihre Grammatik) und ihr Application Programming Interface (ihre häufig genutzten Begriffe). Immer wenn ich Java‐Programme schreibe, liegen zwei wichtige Dokumentationen auf meinem Schreibtisch – jeweils eine für die beiden Bereiche der Sprache:

[image: image] Die Java‐Sprachspezifikation: Zu dieser Dokumentation gehören Regeln wie: »Setzen Sie immer eine öffnende Klammer hinter das Wort for« und »Verwenden Sie ein Sternchen, um zwei Zahlen miteinander zu multiplizieren«.

[image: image] Das Application Programming Interface: Javas Application Programming Interface (API; deutsch Schnittstelle für die Anwendungsprogrammierung) enthält Tausende von Namen, die Java hinzugefügt worden sind, nachdem die Grammatik der Sprache definiert worden ist. Dabei gibt es ganz gewöhnliche bis hin zu völlig exotischen Namen. So gibt es beispielsweise den Namen pow, mit der Sie Zahlen beliebig potenzieren können. Ein anderer Name (JFrame) zeigt auf dem Bildschirm des Computers ein Fenster an. Und wieder andere Namen helfen Ihnen, darauf zu achten, ob ein Benutzer Schaltflächen anklickt, fragen Datenbanken ab und erledigen alle möglichen nützlichen Aufgaben.

[image:]Sie können die Java‐Sprachspezifikation, die API‐Dokumente und die gesamte Java‐Dokumentation herunterladen (oder sich online anschauen), indem Sie http://docs.oracle.com/javase/specs besuchen.

Der erste Teil von Java, die Language Specification (die Sprachspezifikation), ist relativ klein. Das heißt nun aber nicht, dass Sie die Regeln der Sprachspezifikation im Handumdrehen erlernen können. Aber vielleicht tröstet es Sie, dass andere Programmiersprachen die doppelte, dreifache oder sogar zehnfache Anzahl an Regeln enthalten.

Der zweite Teil von Java – die API – kann wegen seines Umfangs abschreckend wirken. Die API enthält Tausende von Namen und wächst mit jeder neuen Version von Java. Allerdings müssen Sie keine Funktion der API auswendig lernen. Nichts. Nothing. Nada. Sie können den Kram, den Sie benötigen, in der Dokumentation nachlesen und das ignorieren, was Sie nicht benötigen. Was Sie oft verwenden, prägt sich von selbst in Ihr Gedächtnis ein. Was Sie nur selten anpacken, werden Sie (wie alle anderen Programmierer) schnell wieder vergessen.

[image:]Niemand kennt alle Funktionen der Java‐API. Wenn Sie ein Java‐Programmierer sind, der oft Programme schreibt, die neue Fenster öffnen, wissen Sie, wie Sie die API‐Klasse JFrame zu verwenden haben. Wenn Sie nur selten Programme schreiben, die Fenster öffnen, können Sie die ersten paar Mal, wenn Sie Fenster benötigen, die Klasse JFrame in der API‐Dokumentation nachlesen. Ich bin der Überzeugung, dass ein normaler Java‐Programmierer, den Sie davon abhalten, etwas in der API‐Dokumentation nachzuschlagen, nur maximal zwei Prozent der Namen einsetzen kann, die es in der Java‐API gibt.

In gewisser Weise enthält die Java‐API nichts Besonderes. Jedes Java‐Programm, das Sie schreiben – und sei es noch so klein und einfach –, enthält eine Klasse, die mit den Klassen der offiziellen Java‐API auf einer Stufe steht. Die API ist nichts als eine Menge von Klassen und anderen Namen, die von ganz normalen Programmierern geschrieben wurden, die zufällig beim Java Community Process (JCP) und dem OpenJDK Project mitmachen. Die Werkzeuge in der API werden, anders als die Namen, die Sie erstellen, mit jeder Java‐Version weitergegeben. (Ich unterstelle dabei, dass Sie als Leser dieses Buches nicht beim Java Community Process oder dem OpenJDK Project mitmachen. Aber bei einem so tollen Buch wie Java für Dummies weiß man das nie.)

[image:]Wenn Sie an den Aktivitäten des JCP interessiert sind, besuchen Sie www.jcp.org. Wenn Sie mehr über das OpenJDK Project wissen wollen, besuchen Sie openjdk.java.net.

[image:]Die Leute vom JCP sorgen dafür, dass die Java‐Programme in der offiziellen Java‐API kein Geheimnis bleiben. Wenn Sie Interesse daran haben, können Sie sich diese Programme ansehen. Wenn Sie Java auf Ihrem Computer installieren, legt die Installationsroutine auf Ihrer Festplatte eine Datei mit dem Namen src.zip ab. Sie können diese Datei mit dem von Ihnen favorisierten Entpackungsprogramm öffnen. Und dann haben Sie den gesamten API‐Code vor Augen.

Die Wörter in einem Java‐Programm

Ein echter Java‐Programmierer wird sagen, dass die Programmiersprache Java zwei Arten von Wörtern kennt: Schlüsselwörter und Bezeichner. Das stimmt. Aber die nackte Wahrheit führt ohne eine weitere Erklärung gerne in die Irre. Deshalb möchte ich die Betrachtung etwas erweitern und von drei Arten von Wörtern ausgehen: Schlüsselwörter, Bezeichner, die normale Programmierer wie Sie und ich erstellen, und Bezeichner der API.

Die Unterschiede zwischen diesen drei Arten von Wörtern lassen sich mit den Unterschieden zwischen Wörtern in der deutschen Sprache vergleichen. Im Satz »Sam ist eine Person« entspricht das Wort Person einem Java‐Schlüsselwort, unabhängig davon, wer das Wort Person verwendet, sagt es im Prinzip immer dasselbe aus. (Sicherlich könnten Sie sich jetzt einige bizarre Ausnahmen ausdenken, aber bitte tun Sie das nicht.)

Das Wort Sam entspricht einem Java‐Bezeichner, weil Sam der Name einer bestimmten Person ist. Wörter wie Sam, Kläusi und McGillimaroo haben im Deutschen oder Englischen normalerweise keine festgelegte Bedeutung. Diese Wörter passen abhängig vom Umfeld auf verschiedene Personen und werden zu Namen, wenn Eltern sie für ihr neugeborenes Kind auswählen.

Betrachten Sie nun den Satz »Julius Caesar ist eine Person.« Wenn Sie diesen Satz aussprechen, reden Sie vielleicht über die Person, die Rom bis zu den Iden des März regierte. Obwohl der Name Julius Caesar in der deutschen Sprache nicht fest verdrahtet ist, meint so gut wie jeder bei diesem Namen dieselbe Person. Wenn Deutsch eine Programmiersprache wäre, wäre der Name Julius Caesar ein API‐Bezeichner.

Aus diesen Gründen unterteile ich die Wörter in einem Java‐Programm in diese Kategorien:

[image: image] Schlüsselwörter: Ein Schlüsselwort ist ein Wort, das in der Programmiersprache Java seine eigene, ganz spezielle Bedeutung hat. Diese Bedeutung ändert sich nicht von Programm zu Programm. Beispiele für Java‐Schlüsselwörter sind if, else und do.

Die Mitglieder des JCP‐Komitees, die letztendlich bestimmen, was ein Java‐Programm ausmacht, haben alle Java‐Schlüsselwörter ausgewählt. Wenn Sie an die beiden Teile von Java denken, auf die ich weiter vorn in diesem Kapitel im Abschnitt Die Grammatik und die gebräuchlichen Bezeichnungen eingehe, gehören die Java‐Schlüsselwörter zur Sprachspezifikation.

[image: image] Bezeichner: Ein Bezeichner ist ein Name für ein bestimmtes Element. Die Bedeutung eines Bezeichners kann sich von einem Programm zu einem anderen ändern, wobei sich die Bedeutungen einiger Bezeichner häufiger ändern können als die Bedeutung anderer Bezeichner.

● Bezeichner, die Sie und ich erstellen: Als Java‐Programmierer (ja, sogar als Neuling unter den Java‐Programmierern) legen Sie neue Namen für Klassen und andere Elemente fest, die Sie in Ihren Programmen beschreiben. So können nicht nur Sie etwas als Tor bezeichnen, sondern auch der Kollege, der zwei Schreibtische weiter ebenfalls Code schreibt, gibt etwas den Namen Tor. Das geht in Ordnung, weil es in Java keine vorgefertigte Bedeutung für das Wort Tor gibt. In Ihrem Programm steht Tor für den Zugang zu einem Grundstück, während Ihr sportbegeisterter Kollege Tor für den »Kasten« auf dem Fußballplatz verwendet. Es kommt zu keinem Konflikt, weil Sie und Ihr Kollege zwei verschiedene Java‐Programme schreiben.

● Bezeichner der API: Die JCP‐Mitglieder haben sich für viele Dinge Namen einfallen lassen und Zehntausende davon in der Java‐API untergebracht. Die Java‐API wird immer zusammen mit jeder Java‐Version ausgeliefert, weshalb diese Namen für jeden zur Verfügung stehen, der ein Java‐Programm schreibt. Beispiele für solche Namen sind String, Integer, JWindow, JButton, JTextField und File.

Genau genommen sind die Bedeutungen der Bezeichner in der Java‐API nicht in Stein gemeißelt. Aber selbst wenn Sie JButton eine eigene Bedeutung geben können, ist dies keine besonders gute Idee. Wenn Sie so vorgehen, verwirren Sie nur andere Programmierer, die sich an die Standard‐API‐Bedeutungen dieser bekannten Bezeichner gewöhnt haben. Noch unangenehmer aber ist, dass Sie die gesamte Leistung verlieren, die sich im API‐Code für den Bezeichner wie JButton versteckt, wenn Sie ihm eine neue Bedeutung zuweisen. Die Programmierer von Sun Microsystems, Oracle, der Java Community Process und das OpenJDK Project haben die gesamte Arbeit erledigt und Java‐Code geschrieben, damit Sie problemlos mit Schaltflächen (englisch Buttons) umgehen können. Wenn Sie JButton eine neue Bedeutung zuweisen, verzichten Sie auf alle Vorteile, die das Arbeiten mit der API bietet.

[image:]Eine Liste aller Schlüsselworte von Java finden Sie auf der englischsprachigen Website zum amerikanischen Buch, http://www.allmycode.com/JavaForDummies.

Sich zum ersten Mal mit Java‐Code beschäftigen

Wenn Sie sich zum ersten Mal das Java‐Programm eines fremden Programmierers anschauen, fühlen Sie sich vielleicht etwas unwohl. Die Erkenntnis, dass Sie den gesamten Code (oder zumindest vieles davon) nicht verstehen, macht Sie möglicherweise nervös. Ich habe Hunderte (wenn nicht sogar Tausende) von Java‐Programmen geschrieben, aber ich bin immer noch unsicher, wenn ich den Code eines anderen lese.

Tatsächlich ist es so, dass die Analyse eines Java‐Programms einer Volltextsuche ähnelt. Zuerst blicken Sie das Programm ehrfurchtsvoll an. Dann führen Sie das Programm aus, um zu sehen, was es macht. Dann starren Sie das Programm eine Weile an oder lesen sich das durch, was irgendjemand als Erklärung zum Programm und seinen Komponenten geschrieben hat. Dann werfen Sie einen noch intensiveren Blick auf das Programm und führen es erneut aus. Und vielleicht kommen Sie dann irgendwann auch mit dem Programm klar. (Glauben Sie nicht den angeblichen Experten, die Ihnen weismachen wollen, dass sie diese Schritte nicht durchlaufen. Selbst die erfahrensten Programmierer gehen ein neues Projekt langsam und sorgfältig an.)

Mit Listing 3.1 erhalten Sie ein hervorragendes Beispiel eines Java‐Codes. (Und ich erwarte von Ihnen, dass Sie sich wie alle Programmierneulinge verhalten und dieses Beispiel ehrfurchtsvoll behandeln.) Ich habe in diesem Code einige wichtige Ideen versteckt, die ich im nächsten Abschnitt im Einzelnen beschreibe – zum Beispiel der Gebrauch von Klassen, Methoden und Java‐Befehlen.

public class Displayer {

 public static void main(String args[]) {

 System.out.println("Sie werden Java lieben!");

 }

}

Listing 3.1: Ein einfaches Java‐Programm

[image:]Sie müssen den Code aus Listing 3.1 (oder aus allen anderen Listings in diesem Buch) nicht eintippen. Sie können den gesamten Code für dieses Buch von der Website zum Buch herunterladen (http://www.wiley-vch.de/publish/dt/books/ISBN3-527-71364-6).

Wenn Sie das Programm in Listing 3.1 ausführen, gibt der Computer Sie werden Java lieben! aus. (Abbildung 3.1 zeigt, was das Programm Displayer wiedergibt, wenn Sie die Eclipse‐IDE verwenden.) Zugegeben, es bereitet viel Arbeit, ein Java‐Programm zu schreiben und auszuführen, nur um Sie werden Java lieben! auf dem Bildschirm eines Computers auszugeben, aber irgendwo müssen Sie ja bekanntlich anfangen.

[image:]Abbildung 3.1: Ich verwende Eclipse, um das Programm in Listing 3.1 auszuführen.

[image:]Wenn Sie nicht wissen, wie Sie den Code in Listing 3.1 ausführen können, besuchen Sie www.java‐programmieren.com/eclipse‐erste‐schritte.php.

Im nächsten Abschnitt machen Sie mehr, als nur die Ausgabe des Programms zu bewundern. Wenn Sie ihn gelesen haben, sind Sie in der Lage zu verstehen, wieso das Programm in Listing 3.1 funktioniert.

Ein einfaches Java‐Programm verstehen

Dieser Abschnitt präsentiert, erklärt, analysiert, seziert und entzaubert das Java‐Programm, das Listing 3.1 zeigt.

Die Java‐Klasse

Da Java eine objektorientierte Programmiersprache ist, ist es Ihre vorrangige Aufgabe, Klassen und Objekte zu beschreiben. (Wenn Ihnen das nicht ganz klar ist, sollten Sie den Abschnitt über objektorientierte Programmierung in Kapitel 1 lesen.)

Java weist einen viel höheren Grad an Objektorientierung auf als viele andere der sogenannten objektorientierten Sprachen. Sie können in Java erst dann etwas machen, wenn Sie eine Klasse angelegt haben.

Der Code in Listing 3.1 ist ein Java‐Programm, und dieses Programm beschreibt eine Klasse. Da ich das Programm geschrieben habe, kann ich der neuen Klasse auch einen Namen meiner Wahl geben. Ich habe mich für den Namen Displayer (deutsch Anzeiger) entschieden, weil das Programm auf dem Bildschirm des Computers eine Textzeile anzeigt. Aus diesem Grund enthält die erste Zeile in Listing 3.1 auch die Wörter class Displayer (siehe Abbildung 3.2).

[image:]Abbildung 3.2: Ein Java‐Programm ist eine Klasse.

Die ersten beiden Wörter in Listing 3.1, public und class, sind Java‐Schlüsselwörter (siehe hierzu auch weiter vorn in diesem Kapitel den Abschnitt Die Wörter in einem Java‐Programm). Unabhängig davon, wer ein Java‐Programm schreibt, werden die Wörter public und class immer auf dieselbe Weise verwendet. Dagegen ist Displayer ein Bezeichner. Mir ist das Wort Displayer in den Sinn gekommen, als ich dieses Kapitel geschrieben habe. Displayer ist der Name einer Klasse – der Klasse, die ich erstelle, indem ich dieses Programm schreibe.

[image:]Dieses Buch ist voll mit Informationen über Klassen, aber eine ausführliche Beschreibung dessen, was eine Java‐Klasse ist (der Grund für die Verwendung des Worts class in Listing 3.1), finden Sie in Kapitel 7. Das Wort public bedeutet, dass andere Java‐Klassen die in Listing 3.1 deklarierten Funktionen nutzen können. Weitere Informationen zur Verwendung des Worts public in einem Java‐Programm finden Sie in den Kapiteln 7 und 14.

[image:]dIE pROGRAMMIERSPRACHE jAVA BEACHTET gROSS‐ UND kLEINSCHREIBUNG. WENN SIE EIN WORT VON kleinbuchstaben IN GROSSBUCHSTABEN ODER VON GROSSBUCHSTABEN IN kleinbuchstaben ÄNDERN; ÄNDERN SIE GLEICHZEiTiG DIE bEDEUTUNG DIESES wORTES. sO KÖNNEN SIE ZUM BEISPIEL iN LiSting 3.1 class niCHT DURCH Class ERSETZEN. WÜRDEN sie DIES tun, würde DAS GESAMTE pROGRAMM AUFHÖREN ZU FUNKTIONIEREN. Ähnliches gilt bis zu einem gewissen Grad auch für den Namen einer Datei, die eine bestimmte Klasse enthält. So ist zum Beispiel der Name der Klasse in Listing 3.1 Displayer. Er beginnt mit einem großen D. Es wäre deshalb sinnvoll, den Code in Listing 3.1 in einer Datei zu speichern, die Displayer.java heißt und deren Name ebenfalls mit einem großen D beginnt.

Wenn Sie eine Klasse HundUndKatz definieren, wird der Java‐Code für die Klasse in der Datei HundUndKatz.java gespeichert, die genauso geschrieben wird, wie der Klassenname geschrieben wird, mit denselben Groß‐ und Kleinbuchstaben. Diese Konvention für die Dateinamen ist für die meisten Beispiele in diesem Buch zwingend einzuhalten.

Die Java‐Methode

Sie arbeiten als Mechaniker in einer Werkstatt für exklusive Autos. Ihr Chef hat es immer eilig und hängt beim Sprechen Wörter zusammen. Er ruft Ihnen zu: »WechsleDieLichtmaschine bei demAltenFord.« Sie stellen sich im Geiste vor, welche Aufgaben Sie zu erledigen haben: »Auto in die Halle fahren, Motorhaube öffnen, einen Schraubenschlüssel nehmen, den Keilriemen lösen und so weiter.« Hier laufen drei Dinge ab:

[image: image] Es gibt für das, was Sie vorhaben, einen Namen. Der Name ist wechsleDieLichtmaschine.

[image: image] Im Kopf haben Sie eine Liste mit Aufgaben, die mit dem Namen wechsleDieLichtmaschine verbunden sind. Zu dieser Liste gehören: »Fahre das Auto in die Halle, öffne die Motorhaube, nimm einen Schraubenschlüssel, löse den Keilriemen« und so weiter.

[image: image] Sie haben einen Chef, der diese Arbeit anordnet. Ihr Chef bekommt Sie dadurch ans Arbeiten, dass er sagt: »WechsleDieLichtmaschine.« Sie arbeiten, weil Ihr Chef den Namen der Sache ausspricht, die Sie erledigen sollen.

In dieser Situation ist die Verwendung des Wortes Methode nicht zu weit hergeholt. Sie kennen eine Methode, um etwas mit einer Lichtmaschine zu tun. Ihr Chef bringt diese Methode ins Spiel, und Sie reagieren darauf, indem Sie die Dinge erledigen, die Sie mit der Methode verbinden.

Wenn Sie das alles glauben (was ich hoffe), sind Sie so weit, dass Sie etwas über Java‐Methoden erfahren können. In Java ist eine Methode eine Liste mit Dingen, die erledigt werden müssen. Jede Methode hat einen Namen und Sie weisen den Computer an, die Dinge aus der Liste zu erledigen, indem er den Namen verwendet, den die Methode in Ihrem Programm hat. Ich habe noch kein Programm geschrieben, das einen Roboter dazu bringt, eine Lichtmaschine zu wechseln. Aber sollte ich das einmal tun, könnte dieses Programm die Methode wechsleDieLichtmaschine enthalten. Und die Liste mit den Anweisungen in dieser Methode würde so ähnlich aussehen wie der Text in Listing 3.2.

[image:]Lesen Sie die Listings 3.2 und 3.3 nicht zu genau. Der gesamte Code in diesen beiden Listings ist erfunden! Er sieht wie Java‐Code aus, ist es aber nicht. Außerdem ist es wichtig, dass Sie wissen, dass der Code in den Listings 3.2 und 3.3 keine Java‐Regeln zeigen soll. Aufgabe dieser beiden Listings, die Sie nicht auf eine Goldwaage legen dürfen, ist es, den Zusammenhang zwischen Methodendeklaration und Methodenaufruf zu zeigen.

void wechsleDieLichtmaschine(anEinemBestimmtenAuto) {

 driveInto(auto, halle);

 lift(motorhaube);

 get(schraubenschlüssel);

 loosen(keilRiemen);

 ...

}

Listing 3.2: Eine Methodendeklaration

Irgendwo in meinem Java‐Code (irgendwo außerhalb von Listing 3.2) benötige ich eine Anweisung, um meine Methode wechsleDieLichtmaschine aufzurufen. Diese Anweisung könnte so aussehen wie in Listing 3.3.

wechsleDieLichtmaschine(alterFord);

Listing 3.3: Ein Methodenaufruf

Nachdem Sie nun grundlegend wissen, was eine Methode ist und wie sie arbeitet, können Sie ein wenig tiefer in die entsprechende Terminologie eintauchen:

[image: image] Wenn ich es mir bequem mache, bezeichne ich den Code in Listing 3.2 als Methode, obwohl es sich dabei eigentlich um eine Methodendeklaration handelt.

[image: image] Die Methodendeklaration in Listing 3.2 besteht aus zwei Teilen. Die erste Zeile (der Teil von wechsleDieLichtmaschine bis (aber nicht einschließlich) zur öffnenden geschweiften Klammer wird als Methodenkopf bezeichnet, während der Rest (der Teil, der von den geschweiften Klammern eingeschlossen wird) Methodenkörper genannt wird.

[image: image] Der Begriff Methodendeklaration unterscheidet zwischen der Liste mit Anweisungen in Listing 3.2 und den Anweisungen in Listing 3.3, die Methodenaufruf genannt werden.

[image:]Die Deklaration einer Methode sagt dem Computer, was geschehen soll, wenn Sie die Methode aufrufen. Ein Methodenaufruf (ein eigenständiges Stückchen Code) weist den Computer an, die Methode tatsächlich zu aktivieren. Eine Methodendeklaration und ein Methodenaufruf befinden sich normalerweise in unterschiedlichen Teilen des Java‐Programms.

Die Methode »main« eines Programms

Abbildung 3.3 zeigt eine Kopie von Listing 3.1. Der größte Teil des Codes enthält die Deklaration einer Methode, die den Namen main trägt. (Suchen Sie im Methodenkopf nach dem Wort main.) Ignorieren Sie im Moment noch die übrigen Wörter im Methodenkopf – public, static, void, String und args. Ich erkläre diese Begriffe im nächsten Abschnitt.

[image:]Abbildung 3.3: Die Methode

Die Methode main ist – wie jede Java‐Methode – ein Rezept.

Wie Kekse gebacken werden

 Heizen Sie den Ofen vor.

 Rollen Sie den Teig aus.

 Backen Sie den ausgerollten Teig.

Oder

Wie den primären Anweisungen für einen Displayer zu folgen ist:

 Gib auf dem Bildschirm "Sie werden Java lieben!" aus.

Das Wort main spielt in Java eine besondere Rolle. (Dieses Wort bedeutet im Deutschen primär, wesentlich, hauptsächlich oder zentral.) Sie dürfen auf keinen Fall Code schreiben, der ausdrücklich eine Methode mit dem Namen main aufruft. Bei dem Wort main handelt es sich um den Namen der Methode, die automatisch aktiviert wird, wenn das Programm mit seiner Ausführung beginnt.

Schauen Sie sich noch einmal Abbildung 3.1 an. Wenn das Programm Displayer läuft, findet der Computer die Methode main des Programms automatisch und führt jede Anweisung aus, die sich im Körper dieser Methode befindet. Im Programm Displayer gibt es im Körper der Methode main nur eine Anweisung. Diese sagt dem Computer, dass er Sie werden Java lieben! auf dem Bildschirm ausgeben soll. Was, wie Abbildung 3.1 zeigt, auch geschieht.

[image:]Die Anweisungen einer Methode werden erst dann ausgeführt, wenn die Methode aufgerufen wird. Wenn Sie einer Methode aber den Namen main geben, wird diese Methode automatisch aufgerufen.

[image:]So gut wie jede Programmiersprache kennt so etwas wie die Java‐Methoden. Wenn Sie bereits mit anderen Sprachen gearbeitet haben, erinnern Sie sich vielleicht an Begriffe wie Unterprogramme, Prozeduren, Funktionen, Unterroutinen, Unterprozeduren und PERFORM‐Befehle. In jedem Fall handelt es sich um eine Gruppe von Anweisungen, die einen eigenen Namen bekommen haben.

Wie Sie dem Computer letztendlich mitteilen, dass er etwas tun soll

Tief im Herzen von Listing 3.1 vergraben befindet sich die einzige Zeile, die letztendlich eine direkte Anweisung an den Computer enthält. Diese Zeile, die in Abbildung 3.4 optisch hervorgehoben worden ist, weist den Computer an, Sie werden Java lieben! anzuzeigen. Eine solche Zeile wird als Befehl bezeichnet. In Java ist ein Befehl eine direkte Anweisung, die den Computer auffordert, etwas zu tun (zum Beispiel diesen Text anzuzeigen, an einer Speicherposition 7 einzufügen, ein Fenster erscheinen zu lassen).

[image:]In System.out.println ist der vorletzte Buchstabe ein kleines l (das »el« ausgesprochen wird) und keine Ziffer 1 (eins).

[image:]Abbildung 3.4: Ein Java‐Befehl

Natürlich kennt Java verschiedene Arten von Befehlen. Ein Methodenaufruf, den ich weiter vorn in diesem Kapitel im Abschnitt Die Java‐Methode vorstelle, ist einer der vielen möglichen Java‐Befehle. Listing 3.3 zeigt Ihnen, wie ein Methodenaufruf aussieht, und Abbildung 3.4 enthält einen Methodenaufruf, der so aussieht:

System.out.println("Sie werden Java lieben!");

Wenn der Computer diesen Befehl ausführt, ruft er eine Methode auf, die System.out.println heißt. (Ja, in Java kann ein Name Punkte enthalten. Und diese Punkte haben eine besondere Bedeutung, auf die in Kapitel 9 genauer eingegangen wird.)

[image:]Ich habe bereits darauf hingewiesen, aber es soll aus gutem Grund noch einmal wiederholt werden. In System.out.println ist das vorletzte Zeichen ein kleines l (wie Ludwig), nicht die Ziffer 1. Wenn Sie die Ziffer 1 eingeben, funktioniert Ihr Code nicht. Stellen Sie sich vor, println wird wie »print line« (Zeilenausgabe) ausgesprochen, dann vergessen Sie das nicht.

[image:]Weitere Informationen darüber, was die Punkte in den Java‐Namen bedeuten, finden Sie in Kapitel 7.

Abbildung 3.5 veranschaulicht den Aufruf von System.out.println. Tatsächlich sind zwei Methoden aktiv an der Ausführung des Programms Displayer beteiligt:

[image: image] Es gibt eine Deklaration der Methode main. Ich habe die Methode main selbst geschrieben. Sie wird automatisch aufgerufen, wenn ich das Programm Displayer ausführe.

[image: image] Es gibt einen Aufruf der Methode System.out.println. Der Methodenaufruf von System.out.println ist der einzige Befehl in der Aufgabenliste der Methode main.

Die Deklaration der Methode System.out.println ist irgendwo in der offiziellen Java‐API begraben. Wenn Sie Ihre Kenntnisse über die Java‐API auffrischen wollen, schauen Sie sich noch einmal weiter vorn in diesem Kapitel die Abschnitte Die Grammatik und die gebräuchlichen Bezeichnungen und Die Wörter in einem Java‐Programm an.

[image:]Abbildung 3.5: Die Methode wird aufgerufen.

[image:]Wenn ich Dinge wie »Die Deklaration der Methode System.out.println ist irgendwo in der offiziellen Java‐API begraben« schreibe, werde ich der API nicht gerecht. Klar, Sie können natürlich den gesamten praktischen Java‐Code ignorieren, den es in der API gibt. Sie müssen sich nur daran erinnern, dass System.out.println irgendwo im Code definiert wird. Aber es ist nicht fair, wenn ich so tue, als ob der API‐Code etwas Magisches sei. Bei der API handelt es sich um nichts anderes als um eine Menge von Java‐Code. Die Befehle in der API, die dem Computer sagen, was es bedeutet, einen Aufruf von System.out.println auszuführen, haben viel Ähnlichkeit mit dem Code in Listing 3.1.

In Java wird jeder Befehl (wie der hervorgehobene in Abbildung 3.4) mit einem Semikolon abgeschlossen. Die anderen Zeilen in Abbildung 3.4 enden nicht mit einem Semikolon, weil sie keine Befehle sind. So gibt zum Beispiel der Methodenkopf (die Zeile, die das Wort main enthält) dem Computer keine Anweisung, etwas zu tun. Der Methodenkopf verkündet eigentlich nur: »Falls du irgendwann einmal auf die Idee kommen solltest, main auszuführen, sagen dir die nächsten Codezeilen, wie das dann erledigt werden muss.«

[image:]Jeder vollständige Java‐Befehl wird mit einem Semikolon beendet.

Geschweifte Klammern

Vor mehr oder weniger langer Zeit hat sicherlich auch Ihr Lehrer versucht, Sie davon zu überzeugen, wie sinnvoll es ist, einen Aufsatz mit einer Gliederung zu beginnen. Mit einer Gliederung können Sie Gedanken und Ideen ordnen, den Wald und nicht nur die Bäume sehen und ganz allgemein zeigen, dass Sie ein Mitglied des Klubs der ordentlichen Menschen sind. Ein Java‐Programm ist wie eine Gliederung. Das Programm in Listing 3.1 beginnt mit einer Überschrift, die den Beginn der Klasse Displayer anzeigt. Danach verkündet eine untergeordnete Überschrift, dass nun eine Methode mit dem Namen main folgt.

Wenn nun aber ein Java‐Programm so etwas Ähnliches wie eine Gliederung ist, warum sieht es dann nicht auch wie eine Gliederung aus? Was nimmt den Platz von römischen Ziffern, Großbuchstaben und Ähnlichem ein? Die Antwort ist zweigeteilt:

[image: image] Code‐Einheiten werden in einem Java‐Programm von geschweiften Klammern eingeschlossen.

[image: image] Sie (der Programmierer) können (und sollten) Zeilen so einrücken, dass andere Programmierer die Gliederungsstruktur Ihres Codes auf einen Blick erkennen können.

Bei einer Gliederung ist alles dem Element mit der römischen Ziffer I untergeordnet. In einem Java‐Programm ist alles der obersten Zeile untergeordnet – der Zeile mit class. Um anzuzeigen, dass der Rest des Codes dieser Zeile untergeordnet ist, verwenden Sie geschweifte Klammern. Alles, was es im Programm sonst noch an Code gibt, gehört in diese geschweiften Klammern (siehe Listing 3.4).

public class Displayer {

 public static void main(String args[]) {

 System.out.println("Sie werden Java lieben!");

 }

}

Listing 3.4: Geschweifte Klammern einer Java‐Klasse

Bei einer Gliederung gibt es Einträge, die dem Großbuchstaben A untergeordnet sind (zum Beispiel I.A.). In einem Java‐Programm werden einige Zeilen dem Methodenkopf untergeordnet. Um anzuzeigen, dass etwas dem Methodenkopf untergeordnet ist, verwenden Sie wieder geschweifte Klammern (siehe Listing 3.5).

public class Displayer {

 public static void main(String args[]) {

 System.out.println("Sie werden Java lieben!");

 }

}

Listing 3.5: Geschweifte Klammern einer Java‐Methode

Bei einer Gliederung gibt es Einträge, die am Ende der Nahrungsklette stehen. In der Klasse Displayer beginnt die entsprechende Zeile mit System.out.println. Diese Zeile wird somit von allen geschweiften Klammern eingeschlossen und tiefer als alle anderen Zeilen eingerückt.

[image:]Vergessen Sie niemals, dass ein Java‐Programm zunächst nichts als eine Gliederung ist.

Wenn Sie geschweifte Klammern an der falschen Stelle setzen oder vergessen, wohin sie gehören, funktioniert Ihr Programm höchstwahrscheinlich nicht. Sollte es aber laufen, ist es mit ziemlicher Sicherheit fehlerhaft.

Wenn Sie darauf verzichten, Zeilen einzurücken, um die Struktur des Programms zu verdeutlichen, funktioniert Ihr Programm zwar problemlos, aber weder Sie noch ein anderer Programmierer wird später in der Lage sein herauszubekommen, was Sie sich beim Schreiben des Codes gedacht haben.

Wenn Sie bildhaft denken, können Sie sich auch die Struktur eines Java‐Programms bildhaft vorstellen. Einer meiner Freunde ist in der Lage, sich eine nur nummerierte Gliederung bildhaft vorzustellen und in ein Java‐Programm zu übersetzen (siehe Abbildung 3.6). Jemand anders, der namenlos bleiben möchte, verwendet noch bizarrere Bilder (siehe Abbildung 3.7).

[image:]Eine gute Entschuldigung ist immer Gold wert, aber wenn Sie Ihren Java‐Code nicht einrücken, ist das unentschuldbar. Viele IDEs beinhalten Werkzeuge, um den Code automatisch einzurücken.

[image:]Abbildung 3.6: Aus einer Gliederung wird ein Java‐Programm.

[image:]Abbildung 3.7: Eine Klasse ist größer als eine Methode, und eine Methode ist größer als ein Befehl.

[image:]Hier folgen einige Dinge, die Sie ausprobieren sollten, um den Stoff in diesem Abschnitt besser zu verstehen. Nachdem Sie diese Dinge ausprobiert haben, werden Sie sicherer im Umgang mit Java sein – das ist ebenfalls gut. Wenn es Sie nervös macht, diese Dinge auszuprobieren, lassen Sie sich nicht entmutigen. Antworten und weitere Hilfe finden Sie auf der englischsprachigen Website zum amerikanischen Buch (http://www.allmycode.com/JavaForDummies). Sie können mir aber auch eine E‐Mail (in Englisch) mit Ihren Fragen schicken (mailto:JavaForDummiesallmycode.com).

[image: image] Wenn Sie den Code von der Website zu diesem Buch heruntergeladen haben, importieren Sie Listing 3.1 (aus dem heruntergeladenen Order 03‐01) in Ihre IDE. Falls Sie nicht vorhaben, den Code herunterzuladen, legen Sie in Ihrer IDE ein neues Projekt an. In dem neuen Projekt erstellen Sie eine Klasse namens Displayer mit dem Code aus Listing 3.1. Führen Sie das Programm entweder mit dem heruntergeladenen Projekt oder mit Ihrem eigenen, neu erstellten Projekt aus und suchen Sie in der Ausgabe nach den Worten Sie werden Java lieben!.

[image: image] Versuchen Sie, den Code in Listing 3.1 auszuführen, wobei Sie "Sie werden Java lieben!" durch "Keine gebackenen Bohnen mehr!" ersetzen. Was passiert?

[image: image] Versuchen Sie, den Code in Listing 3.1 auszuführen, wobei Sie das Wort public (in Kleinbuchstaben) durch Public (mit einem Großbuchstaben beginnend) ersetzen. Was passiert?

[image: image] Versuchen Sie, den Code in Listing 3.1 auszuführen, wobei Sie das Wort main (in Kleinbuchstaben) durch Main (mit einem Großbuchstaben beginnend) ersetzen. Was passiert?

[image: image] Versuchen Sie, den Code in Listing 3.1 auszuführen, wobei Sie das Wort system (in Kleinbuchstaben) durch System (mit einem Großbuchstaben beginnend ersetzen. Was passiert?

[image: image] Versuchen Sie, den Code in Listing 3.1 mit veränderter Einrückung auszuführen. Rücken Sie keine Zeilen ein. Und entfernen Sie die Zeilenumbrüche zwischen der ersten geschweiften Klammer und dem Wort public (sodass der Code public class Displayer {public… lautet). Was passiert?

[image: image] Versuchen Sie, den Code in Listing 3.1 auszuführen, wobei Sie das Wort println durch print1n (mit der Ziffer 1 statt mit einem l) ersetzen. Was passiert?

[image: image] Versuchen Sie, den Code in Listing 3.1 mit zusätzlichen Semikolons am Ende einiger der Zeilen auszuführen. Was passiert?

[image: image] Versuchen Sie, den Code in Listing 3.1 auszuführen, wobei Sie den Text "Sie werden Java lieben!" durch "Verwenden Sie ein gerades Anführungszeichen \" statt eines typographischen Anführungszeichens \u201D" ersetzen. Was passiert?

Kommentare, Kommentare

Die Gruppe hat sich am Lagerfeuer versammelt, um die Geschichte über die Programmiererin zu hören, deren Bequemlichkeit sie in große Schwierigkeiten gebracht hat. Damit ihre Anonymität gewahrt bleibt, nennen wir sie einfach Jane Pro. Jane arbeitete viele Monate daran, den Heiligen Gral des Computerwesens zu entwickeln – ein Programm, das selbstständig denken kann. Wenn es fertiggestellt ist, kann es selbstständig arbeiten und ohne menschliche Anleitung neue Dinge erlernen. Sie schuftete Tag für Tag und Nacht für Nacht, um dem Programm den letzten Funken mitzugeben, der das kreative, unabhängige Denken zum Leuchten bringt.

Eines Tages, als sie mit dem Projekt fast fertig war, erhielt sie von ihrer Krankenkasse einen beunruhigenden Brief. Das Schreiben hatte nichts mit einer ernsthaften Erkrankung zu tun, es ging nur um einen routinemäßigen Besuch beim Arzt. Auf dem Formular für die Rückerstattung des verauslagten Arzthonorars gab es ein Feld für das Geburtsdatum (als wenn sich das seit dem letzten Mal geändert hätte). Sie war beim Ausfüllen des Formulars mit den Gedanken ganz woanders gewesen und hatte als Geburtsjahr 2016 eingetragen, was dazu führte, dass sich die Versicherung weigerte zu zahlen.

Jane wählte die Telefonnummer der Versicherungsgesellschaft, und schon nach 20 Minuten hatte sie es geschafft, mit einer lebenden Person zu sprechen. »Das tut mir leid«, sagte diese Person, »aber Sie müssen eine andere Telefonnummer wählen.« Sie können sich vorstellen, wie es weiterging. »Das tut mir leid. Sie haben leider die falsche Telefonnummer erhalten.« Und: »Das tut mir leid. Sie müssen die Nummer anrufen, die Sie zuerst gewählt haben.«

Fünf Monate später schmerzte Janes Ohr, aber nach 800 Stunden am Telefon hatte sie es wenigstens geschafft, die unverbindliche Zusage zu erhalten, dass sich die Versicherungsgesellschaft den Vorgang eventuell noch einmal vornimmt. Beschwingt wie sie gerade war, begab sich Jane wieder an ihr Programmierprojekt. Konnte sie sich noch daran erinnern, was diese Vielzahl von Codezeilen machen sollten?

Nein, das konnte sie nicht. Sie starrte auf ihr eigenes Werk, und wie bei einem Traum, den man am nächsten Morgen verloren hat, sagte ihr der Code überhaupt nichts mehr. Sie hatte eine Million Codezeilen geschrieben, von denen keine von einem informativen Kommentar begleitet wurde. Sie hatte keine Hinweise hinterlassen, die ihr helfen konnten, ihre Gedankengänge zu verstehen. Frustriert gab sie das ganze Projekt auf.

Dem Code Kommentare hinzufügen

Listing 3.6 ist eine erweiterte Version des Beispielprogramms dieses Kapitels. Das Listing enthält zusätzlich zu den Schlüsselwörtern, Bezeichnern und der Interpunktion Text, der für Menschen hinzugefügt worden ist.

/*

 * Listing 3.6 – "Java für Dummies"

 *

 * Copyright 2017 Wiley‐VCH Verlag GmbH & Co. KG.

 * Alle Rechte vorbehalten.

 */

/**

 * Die Klasse Displayer zeigt Text auf dem

 * Bildschirm des Computers an.

 *

 * @author Barry Burd

 * @version 1.0 1/24/17

 * @see java.lang.System

 */

public class Displayer {

 /**

 * Die Ausführung des Codes beginnt dort,

 * wo sich die Methode main befindet.

 *

 * @param args (siehe Kapitel 11.)

 */

 public static void main(String args[]) {

 System.out.println("Ich liebe Java!"); //Ich? Sie?

 }

}

Listing 3.6: Die drei Kommentararten

Ein Kommentar ist ein besonderer Textbereich in einem Programm. Seine Aufgabe ist es, Menschen dabei zu helfen, das Programm zu verstehen. Ein Kommentar ist Teil einer guten Programmdokumentation.

Die Programmiersprache Java kennt drei Arten von Kommentaren:

[image: image] Herkömmliche Kommentare: In Listing 3.6 bilden die ersten fünf Zeilen einen herkömmlichen Kommentar. Dieser beginnt mit /* und endet mit */. Alles, was sich zwischen /* und */ befindet, ist nur für menschliche Augen bestimmt. Angaben wie "Java für Dummies" und Wiley‐VCH Verlag GmbH & Co. KG werden vom Compiler nicht übersetzt.

[image:]Informationen über Compiler finden Sie in Kapitel 2.

Die Zeilen zwei, drei, vier und fünf haben in Listing 3.6 zusätzliche Sternchen (*) erhalten. Ich spreche von zusätzlich, weil diese Sternchen nicht notwendig sind, wenn Sie einen Kommentar erstellen. Sie sorgen nur dafür, dass der Kommentar nett aussieht. Ich habe diese Sternchen in Listing 3.6 hinzugefügt, weil die meisten Java‐Programmierer sie aus Gründen hinzufügen, die ich nicht kenne.

[image: image] Zeilenende‐Kommentare: In Listing 3.6 ist der Text //Ich? Sie? ein Kommentar am Ende einer Zeile. Diese Art von Kommentar beginnt mit zwei Schrägstrichen und reicht bis zum Ende einer Zeile. Auch hier gilt, dass der Compiler den Text im Kommentar nicht übersetzt.

[image: image] Javadoc‐Kommentare: Ein Javadoc‐Kommentar beginnt mit einem Schrägstrich und zwei Sternchen (/**). In Listing 3.6 gibt es zwei Javadoc‐Kommentare – einen mit dem Text Die Klasse Displayer ... und einen zweiten mit dem Text Die Ausführung des Codes

Ein Javadoc‐Kommentar ist eine Sonderform des herkömmlichen Kommentars. Ein Javadoc‐Kommentar ist für jemanden gedacht, der sich noch nie mit Java‐Code beschäftigt hat. Das ist aber ein Widerspruch in sich. Wie können Sie den Javadoc‐Kommentar in Listing 3.6 lesen, wenn Sie sich Listing 3.6 nicht ansehen?

Nun, es gibt ein Programm mit dem Namen javadoc (klar!), das alle Javadoc‐Kommentare in Listing 3.6 findet und in eine schöne Webseite umwandelt. Abbildung 3.8 zeigt eine solche Seite.

[image:]Abbildung 3.8: Die Javadoc‐Seite, die vom Code in Listing 3.6 generiert wurde

Javadoc‐Kommentare sind eine großartige Sache. Hier ein paar der tollen Dinge, die es über sie zu berichten gibt:

[image: image] Die einzige Person, die den Java‐Code zu Gesicht bekommt, ist der Programmierer, der den Code schreibt. Andere, die den Code verwenden, können herausfinden, was der Code macht, indem sie sich die automatisch erzeugte Webseite anschauen.

[image: image] Da sich andere Personen den Code nicht anschauen können, sind sie auch nicht in der Lage, Änderungen am Java‐Code vorzunehmen. (Was bedeutet, dass andere keine Chance haben, in Ihren Code Fehler einzubauen.)

[image: image] Da andere nicht an den Java‐Code herankommen, haben sie keine Chance, die internen Abläufe des Programms zu entschlüsseln. Alles, was diese Leute vom Code wissen müssen, ist das, was sie auf der Webseite des Codes lesen.

[image: image] Der Programmierer erstellt nicht zwei Dateien unabhängig voneinander – hier den Java‐Code und dort die Dokumentation des Codes. Stattdessen erstellt der Programmierer nur einen Java‐Code, in den er die Dokumentation (in Form von Javadoc‐Kommentaren) einbettet.

[image: image] Und das Beste von allem ist, dass das Erstellen der Javadoc‐Webseiten automatisiert ablaufen kann. Damit haben alle Dokumentationen das gleiche Format. Sie finden unabhängig davon, wessen Java‐Code Sie verwenden, alles über den Code heraus, indem Sie eine Seite wie die in Abbildung 3.8 lesen. Das klappt deshalb, weil jeder, der mit Java arbeitet, das hier verwendete Format kennt.

[image:]Sie können aus Javadoc‐Kommentaren eigene Webseiten machen. Wenn Sie wissen wollen, wie das geht, besuchen Sie (die leider nur in Englisch zur Verfügung stehende) Website www.oracle.com/technetwork/java/javase/documentation/javadoc‐137458.html.

Und wie sieht Barrys Ausrede aus?

Seit Jahren erzähle ich meinen Studenten, dass sie ihren Code mit Kommentaren versehen sollen, und seit Jahren erstelle ich Code‐Beispiele (wie das in Listing 3.1), die keine Kommentare enthalten. Warum?

Vier Wörter: »Kennen Sie Ihr Publikum?« Wenn Sie komplizierten, praktisch einsetzbaren Code schreiben, besteht Ihr Publikum aus anderen Programmierern, IT‐Managern und Menschen, die beim Entschlüsseln dessen, was Sie gemacht haben, Hilfe benötigen. Als ich die einfachen Code‐Beispiele für dieses Buch geschrieben habe, sah ich vor meinen Augen ein anderes Publikum – Sie, den Neuling als Java‐Programmierer. Sie lesen keine Java‐Kommentare, sondern kümmern sich in der Regel sofort um die Java‐Befehle – die Befehle, die der Java‐Compiler entschlüsselt. Dies ist der Grund dafür, dass es in den Listings dieses Buches so gut wie keine Kommentare gibt.

Außerdem bin ich ziemlich faul.

Kommentare verwenden, um mit dem Code zu experimentieren

Vielleicht haben Sie schon einmal gehört, dass Programmierer davon sprechen, bestimmte Teile ihres Codes auszukommentieren. Wenn Sie ein Programm schreiben und etwas nicht richtig funktioniert, hilft oft der Versuch, Code zu entfernen. Auf diese Weise können Sie herausfinden, was geschieht, wenn der verdächtige Code nicht mehr vorhanden ist. Das, was dann passiert, muss Ihnen auch nicht immer gefallen, weshalb Sie den Code nicht endgültig löschen sollten. Stattdessen verwandeln Sie Ihre normalen Java‐Befehle in Kommentare. So könnten Sie zum Beispiel aus dem Befehl

System.out.println("Ich liebe Java!");

den Kommentar

// System.out.println("Ich liebe Java!");

machen.

Diese Änderung hindert den Java‐Compiler daran, den Code zu sehen, während Sie versuchen herauszufinden, was mit Ihrem Programm nicht in Ordnung ist.

Herkömmliche Kommentare eignen sich nicht so gut dafür, Code auszukommentieren. Das Problem liegt darin, dass es nicht möglich ist, einen herkömmlichen Kommentar in einem anderen herkömmlichen Kommentar unterzubringen. Stellen Sie sich vor, Sie wollen den folgenden Befehl auskommentieren:

System.out.println("Eltern,");

System.out.println("streitet nicht");

/*

 * Die Anzeige erfolgt bewusst auf vier Zeilen

 */

System.out.println("vor den");

System.out.println("Kindern!");

Wenn Sie versuchen, aus diesem Code einen herkömmlichen Kommentar zu machen, erhalten Sie das folgende Durcheinander:

/*

 System.out.println("Eltern,");

 System.out.println("streitet nicht ");

 /*

 * Die Anzeige erfolgt bewusst auf vier Zeilen

 */

 System.out.println("vor den");

 System.out.println("Kindern!");

*/

Das erste */ (hinter Die Anzeige ...) beendet den herkömmlichen Kommentar vorzeitig. Dann werden die Befehle mit vor den und Kindern nicht auskommentiert, und das letzte */ bringt den Compiler um. Sie können herkömmliche Kommentare nicht ineinander verschachteln. Aus diesem Grund empfehle ich, Zeilenende‐Kommentare zu verwenden, wenn Sie mit Ihrem Code experimentieren wollen.

81-82

Teil II

Eigene Java‐Programme schreiben

[image:]

In diesem Teil …

[image: image] Weisen Sie neue Werte zu und ändern vorhandene Werte.

[image: image] Fügen Sie Entscheidungen in die Logik Ihrer Anwendung ein.

[image: image] Wiederholen Sie bei Bedarf Dinge, während das Programm läuft.

83-118

Kapitel 4

Das Optimum aus Variablen und ihren Werten herausholen

In diesem Kapitel

Elementen Werte zuweisen

Elemente dazu bringen, bestimmte Werte aufzunehmen

Operatoren anwenden, um neue Werte zu erhalten

Die folgende Unterhaltung zwischen Mr. Charles Van Doren und Mr. Jack Barasch hat nie stattgefunden:

Charles: Eine Seescheide frisst ihr Gehirn und verwandelt sich dadurch von einem Tier in eine Pflanze.

Jack: Charles, ist das unsere endgültige Antwort?

Charles: Ja.

Jack: Wie viel Geld hast du im Moment auf dem Konto?

Charles: Ich habe auf meinem Girokonto fünfzig Euro und zweiundzwanzig Cent.

Jack: Nun, dann rufst du jetzt am besten deinen Steuerberater an, denn du hast mit deiner Antwort zur Seescheide eine Million Euro gewonnen, die bald auf deinem Girokonto landen wird. Was hältst du davon, Charles?

Charles: Das habe ich alles meiner Ehrlichkeit, meinem Fleiß und harter Arbeit zu verdanken.

Einige Punkte dieses Dialogs können mithilfe von ein paar Codezeilen dargestellt werden.

Eine Variable variieren

Unabhängig davon, wie Sie an Ihre Million Euro gelangen, können Sie eine Variable verwenden, um Ihren Reichtum nachzuzählen. Listing 4.1 gibt den entsprechenden Code wieder.

saldo = 50.22;

saldo = saldo + 1000000.00;

Listing 4.1: Eine Variable verwenden

[image:]Beachten Sie, dass in Java das Dezimalzeichen bei der Eingabe einer Zahl über den Code ein Punkt ist.

[image:]Sie müssen den Code aus Listing 4.1 nicht eintippen (eigentlich keinen Code aus den Listings in diesem Buch). Sie können den gesamten Code von der Website zum Buch herunterladen (http://www.wiley-vch.de/publish/dt/books/ISBN3-527-71364-6).

Der Code in Listing 4.1 nutzt die Variable saldo. Eine Variable ist ein Platzhalter. Sie können darin eine Zahl wie 50.22 unterbringen. Und wenn Sie in der Variablen eine Zahl platziert und Ihre Meinung geändert haben, sind Sie in der Lage, in der Variablen eine andere Zahl abzulegen. Wenn Sie in einer Variablen eine neue Zahl aufnehmen, ist natürlich die alte Zahl nicht mehr vorhanden. Wenn Sie also diese alte Zahl nicht vorher irgendwo speichern, ist sie verloren.

Abbildung 4.1 zeigt den Zustand der Variablen vor und nach der Ausführung des Codes in Listing 4.1. Nachdem der erste Befehl ausgeführt worden ist, enthält die Variable saldo die Zahl 50.22. Nach der Ausführung des zweiten Befehls in Listing 4.1 hat sich diese Zahl plötzlich in 1000050.22 geändert. Wenn Sie an eine Variable denken, sollten Sie sich einen Ort im Arbeitsspeicher des Computers vorstellen, an dem Drähte und Transistoren 50.22, 1000050.22 oder was sonst noch speichern. Und stellen Sie sich weiter vor, dass der Kasten im linken Teil der Abbildung 4.1 von Millionen anderer Kästen dieser Art umgeben ist.

[image:]Abbildung 4.1: Eine Variable (vorher und nachher)

Nun zu einigen Fachbegriffen. Das, was in einer Variablen gespeichert wird, nennt man Wert. Der Wert einer Variablen kann sich während der Ausführung des Programms ändern (wenn Ihnen beispielsweise Jack eine Million Mäuse gibt). Der Wert, der in einer Variablen gespeichert wird, muss nicht unbedingt eine Zahl sein. (So können Sie zum Beispiel eine Variable erstellen, die immer einen Buchstaben speichert.) Die Art des Wertes, der in einer Variablen gespeichert wird, ist der Typ oder Datentyp der Variablen.

Sie erfahren weiter hinten in diesem Kapitel im Abschnitt Wertetypen, die Variablen annehmen können mehr über Typen von Variablen.

[image:]Zwischen einer Variablen und einem Variablennamen gibt es einen kleinen, aber feinen Unterschied. Selbst wenn ich formell schreibe, verwende ich oft das Wort Variable, wenn Variablenname gemeint ist. Genau genommen ist saldo ein Variablenname, und die Variable besteht aus dem Arbeitsspeicherbereich, der saldo (einschließlich Typ und Wert) enthält. Wenn Sie der Meinung sind, dass die Unterscheidung zwischen Variable und Variablenname zu viel Haarspalterei ist, willkommen im Klub.

Jeder Variablenname ist ein Bezeichner – ein Name, den Sie in Ihrem Code selbst wählen können. So habe ich mich im Code von Listing 4.1 für den Namen saldo entschieden.

[image:]Wenn Sie mehr über Java‐Namen wissen wollen, lesen Sie in Kapitel 3 nach.

Bevor wir Listing 4.1 verlassen, sollten Sie noch einmal einen Blick auf einen nicht uninteressanten Teil des Listings werfen. Im Listing gibt es 50.22 und 1000000.00. Jeder normale Mensch würde diese Dinge als Zahlen bezeichnen, aber in einem Java‐Programm werden sie Literale genannt.

Was ist denn nun so buchstäblich oder wörtlich (das bedeutet literal) an 50.22 und 1000000.00? Schauen Sie sich noch einmal die Variable saldo in Listing 4.1 an. Sie steht zuerst für 50.22 und später für 1000050.22. Sie könnten das Wort Zahl verwenden, wenn Sie von saldo reden. Aber in Wirklichkeit hängt das, wofür saldo steht, von der aktuellen Situation ab. Andererseits steht 50.22 buchstäblich (literal) für den Wert 5022/100.

[image:]Der Wert einer Variablen ändert sich, was der Wert eines Literals nicht tut.

[image:]Seit Java 7 können Sie numerischen Literalen Unterstriche hinzufügen. Statt dem guten alten 1000000.00 in Listing 4.1 können Sie saldo = saldo + 1_000_000.00 schreiben. Unglücklicherweise dürfen Sie das nicht machen, was eigentlich am natürlichsten wäre – die deutsche (1.000.000,00) oder die amerikanische Schreibweise (1,000,000.00) verwenden. Wenn Sie Zahlen wie 1,000,000.00 in der Programmausgabe darstellen wollen, müssen Sie ein paar verrückte Formatierungstechniken anwenden. Weitere Informationen über die Formatierung finden Sie in den Kapitel 10 und 11.

Zuweisungsbefehle

Befehle wie die in Listing 4.1 werden Zuweisungsbefehle genannt. Sie weisen mit einem Zuweisungsbefehl einen Wert zu. Häufig ist das Ziel der Zuweisung eine Variable.

Ich empfehle Ihnen, Zuweisungsbefehle von rechts nach links zu lesen. Abbildung 4.2 zeigt dies anhand der ersten Zeile von Listing 4.1.

[image:]Abbildung 4.2: So sollte die erste Zeile in Listing 4.1 gelesen werden.

Die zweite Zeile in Listing 4.1 ist ein wenig komplizierter. Abbildung 4.3 stellt die Aktion dieser zweiten Zeile dar.

[image:]Abbildung 4.3: Die Aktion der zweiten Zeile in Listing 4.1

[image:]In einem Zuweisungsbefehl steht der Teil, dem ein Wert zugewiesen wird, immer auf der linken Seite des Gleichheitszeichens.

Wertetypen, die Variablen annehmen können

Haben Sie im Fernsehen die Werbung gesehen, bei der man glauben könnte, durch die Schaltkreise eines Computers zu fliegen? Nicht schlecht gemacht, oder? Diese Werbung zeigt 0en (Nullen) und 1en (Einsen), die vorbeisegeln, weil 0en und 1en das Einzige sind, mit dem Computer umgehen können. Wenn Sie glauben, dass ein Computer den Buchstaben J speichert, so irren Sie sich, denn in Wirklichkeit speichert er 01001010. Und anstatt den Buchstaben K abzulegen, speichert der Computer 01001011. Alles im Computer ist eine Folge von Nullen und Einsen. Und jeder Computerfreak weiß, dass 0 oder 1 ein Bit ist.

Nun steht aber 01001010 nicht nur für den Buchstaben J, sondern auch für die Zahl 74. Dieselbe Ziffernfolge kann aber auch 1,0369608636003646 * 10‐43 bedeuten. Und wenn dann die Bits als Bildschirmpixel interpretiert werden, kann dieselbe Sequenz verwendet werden, um die Punkte darzustellen, die Abbildung 4.4 zeigt. Die Bedeutung von 01001010 hängt also davon ab, wie die Software die Folge von Nullen und Einsen interpretiert.

[image:]Abbildung 4.4: Die extreme Vergrößerung von acht schwarzen und weißen Pixeln auf dem Bildschirm

Wie können Sie nun dem Computer klarmachen, wofür 01001010 steht? Die Antwort liegt in der Idee eines Typs. Bei dem Typ einer Variablen handelt es sich um den Wertebereich, den die Variable speichern kann.

Ich habe die Zeilen von Listing 4.1 kopiert und zu einem vollständigen Java‐Programm gemacht, das Listing 4.2 bildet. Wenn ich das Programm in Listing 4.2 ablaufen lasse, erhalte ich auf dem Bildschirm die Ausgabe, die Abbildung 4.5 zeigt.

public class Millionaire {

 public static void main(String args[]) {

 double saldo;

 saldo = 50.22;

 saldo = saldo + 1000000.00;

 System.out.print("Sie haben € ");

 System.out.print(saldo);

 System.out.println(" auf Ihrem Konto.");

 }

}

Listing 4.2: Ein Programm verwendet saldo.

[image:]Abbildung 4.5: Das Programm in Listing 4.2 wird ausgeführt.

In Listing 4.2 lautet die erste Zeile im Körper der Methode main

double saldo;

Diese Zeile wird Variablendeklaration genannt. Wenn Sie diese Zeile in Ihr Programm aufnehmen, ist das so, als wenn Sie Ihre Absicht bekannt geben, im Programm eine Variable mit dem Namen saldo einzubinden.

In dieser Variablendeklaration ist das Wort double ein Java‐Schlüsselwort. Es sagt dem Computer, welche Art von Werten Sie in der Variablen saldo speichern wollen. Insbesondere steht das Wort double für Zahlen zwischen ‐1,8 * 10308 und 1,8 * 10308. (Das sind riesengroße Zahlen mit 308 Nullen vor dem Dezimalzeichen. Nur die reichsten Menschen dieser Erde würden Schecks mit 308 Nullen ausstellen. Die zweite dieser Zahlen bedeutet eins‐komma‐acht Gazazzo‐Zillion‐Kaskillionen. Die Zahl 1,8 * 10308 ist eine Konstante, die vom International Bureau of Weights and Measures definiert wurde und die Zahl der exzentrischen Programmierer zwischen Sunnyvale, Kalifornien, und der Andromeda‐Galaxie M31 angibt.)

Wichtiger noch als der riesige Wertebereich des Schlüsselwortes double ist die Tatsache, dass double‐Zahlen auch Nachkommastellen haben können. Nachdem Sie saldo als double‐Typ deklariert haben, können Sie in dieser Variablen beliebige Zahlen wie 50.22, 0.02398479 oder ‐3.0 speichern. Wenn ich saldo nicht vom Typ double deklariert hätte, wäre ich vielleicht nur in der Lage gewesen, die gute alte Ganzzahl 50 abzuspeichern.

[image:]Häufig haben Sie die Wahl. Sie können bestimmte Werte als float oder als double deklarieren. Übertreiben Sie es jedoch nicht. Verwenden Sie in den meisten Programmen einfach double. Mit den leistungsstarken Prozessoren von heute, ist der Platz, den Sie durch Verwendung des Typs float einsparen, den Verlust der Genauigkeit fast nie wert. (Weitere Informationen finden Sie im Einschub Nachkommastellen.)

[image:]Der Eine‐Million‐Euro‐Jackpot in Listing 4.2 ist ziemlich beeindruckend. Aber dieses Listing stellt nicht den besten Weg dar, um mit Eurobeträgen umzugehen. Um in einem Java‐Programm Währungen optimal darzustellen, sollten Sie die Typen double und float meiden und sich stattdessen für einen Datentyp namens BigDecimal entscheiden.

Nachkommastellen

Java kennt zwei verschiedene Typen mit Nachkommastellen: double und float. Worin besteht der Unterschied? Wenn Sie eine Variable vom Typ double deklarieren, reserviert der Computer für den Inhalt der Variablen 64 Bits im Arbeitsspeicher. Bei Variablen vom Typ float reserviert der Computer nur 32 Bits.

Sie können Listing 4.2 ändern und saldo als Variablentyp float deklarieren:

float saldo;

Natürlich reichen 32 Bits aus, um eine kleine Zahl wie 50.22 aufzunehmen, oder? Nun, sie reichen aus – und doch wieder nicht. Sie können mit 32 Bits problemlos 50.00 speichern. Es würden sogar sechs Bits ausreichen, um 50.00 zu speichern. Aber es ist nicht die Größe der Zahl entscheidend. Hier geht es um die Genauigkeit. Bei einer 64‐Bit‐Variablen vom Typ double wird der größte Teil der Bits für die Nachkommastellen verwendet. Um den .22‐Teil von 50.22 zu speichern, benötigen Sie mehr als die mageren 32 Bits, die der Typ float bereitstellt.

Glauben Sie wirklich, was Sie gerade gelesen haben – dass Sie mehr als 32 Bits benötigen, um .22 zu speichern? Um Sie davon zu überzeugen, dass dies wirklich stimmt, habe ich in Listing 4.2 einige Änderungen am Code vorgenommen. Ich habe saldo als Typ float deklariert und die ersten drei Befehle in der Methode main wie folgt geändert:

float saldo;

saldo = 50.22F;

saldo = saldo + 1000000.00F

Ich erhielt daraufhin diese Ausgabe:

Sie haben € 1000050.25 auf Ihrem Konto.

Vergleichen Sie dies mit der Ausgabe in Abbildung 4.5. Wenn ich vom Typ double zum Typ float wechsele, erhält Charles auf seinem Konto einen Bonus von drei Cent gutgeschrieben. Durch den Wechsel zum 32‐Bit‐Typ float hat die Genauigkeit an der zweiten Nachkommastelle der Variablen saldo gelitten. Das ist nicht gut.

Ein weiteres Problem mit float‐Werten ist kosmetischer Natur. Schauen Sie sich in Listing 4.2 noch einmal die Literale 50.22 und 1000000.00 an. Die Gesetze Javas verlangen, dass Literale wie diese jeweils 64 Bits belegen. Dies bedeutet, dass Sie Schwierigkeiten bekommen werden, wenn Sie saldo als float‐Typ deklarieren. Sie stehen dann nämlich vor dem Problem, diese 64‐Bit‐Literale in der nur 32 Bits großen saldo‐Variablen unterzubringen. Zum Ausgleich können Sie von double‐ zu float‐Literalen wechseln, indem Sie an jedes double‐Literal ein F hängen, wobei eine Zahl mit einem F am Ende komisch aussieht.

Wenn Sie ein wenig mit Zahlen herumspielen wollen, sollten Sie http://babbage.cs.qc.cuny.edu/IEEE-754.old/Decimal.html besuchen. Diese englischsprachige Seite nimmt sich jede Zahl vor, die Sie eingeben, und zeigt Ihnen, wie die Zahl in der 32‐Bit‐ und in der 64‐Bit‐Version dargestellt wird.

Text anzeigen

Die letzten drei Befehle in Listing 4.2 verwenden einen netten Formatierungstrick. Sie möchten auf dem Bildschirm auf einer einzelnen Zeile verschiedene Elemente anzeigen. Sie packen diese Dinge in separate Anweisungen. Mit Ausnahme des letzten Befehls rufen alle Anweisungen System.out.print auf. (Beim letzten Befehl handelt es sich um einen Aufruf von System.out.println.) Aufrufe von System.out.print zeigen Text auf einer Zeile an und belassen den Cursor auf dieser Zeile. Da sich nun der Cursor nach dem Aufruf von System.out.print noch in derselben Zeile wie der vorherige Text befindet, setzt der nächste Aufruf von System.out.wasauchimmer die Ausgabe auf eben dieser Zeile fort. Wenn Sie mehrere Aufrufe von print mit einem einzelnen Aufruf von println abschließen, erhalten Sie als Ergebnis eine ansprechende Ausgabe wie die in Abbildung 4.5.

[image:]Ein Aufruf von System.out.print gibt etwas aus und sorgt dafür, dass der Cursor am Ende der Ausgabe auf der entsprechenden Zeile wartet. Ein Aufruf von System.out.println gibt etwas aus und beendet seinen Job damit, dass der Cursor an den Anfang einer neuen Zeile gesetzt wird.

[image:]Führen Sie den Code in Listing 4.2 aus, um sicherzustellen, dass er auf Ihrem Computer richtig ausgeführt wird. Anschließend überprüfen Sie, was passiert, wenn Sie die folgenden Änderungen vornehmen:

[image: image] Fügen Sie der Zahl 1000000.00 im Code Tausendertrennzeichen hinzu. Ändern Sie also die Zahl beispielsweise in 1.000.000.00, und beobachten Sie, was passiert. (Hinweis: Nichts Gutes.)

[image: image] Versuchen Sie, im Code Unterstriche als Tausendertrennzeichen zu verwenden. Ändern Sie also 1000000.00 in 1_000_000.00, und beobachten Sie, was passiert.

[image: image] Fügen Sie der Zahl 50.22 im Code ein Währungssymbol hinzu. Wenn Sie beispielsweise für eine Angabe von US‐Dollar das Währungssymbol $ verwenden wollen, ändern Sie die erste Zuweisung in saldo = $50.22, und beobachten Sie, was passiert.

[image: image] Listing 4.2 verwendet zwei System.out.print‐Anweisungen und eine System.out.println‐Anweisung. Ändern Sie alle drei in System.out.println‐Anweisungen und führen Sie das Programm aus.

[image: image] Der Code in Listing 4.2 zeigt eine Textzeile in der Ausgabe an. Fügen Sie dem Programm unter Verwendung der Variablen saldo Anweisungen hinzu, sodass es eine zweite Textzeile anzeigt. Die zweite Textzeile soll den Text "Jetzt haben Sie noch mehr! Sie haben 2000000.00 auf Ihrem Konto." enthalten.

Ganzzahlen

»1995 hatte die amerikanische Durchschnittsfamilie 2,3 Kinder.«

An dieser Stelle gibt es immer einen Schlaumeier, der bemerkt, dass im wahren Leben keine Familie genau 2,3 Kinder haben kann. Ganze Zahlen spielen eben in unserem Leben eine wichtige Rolle. Deshalb können Sie in Java auch eine Variable deklarieren, in der sich nichts anderes als Ganzzahlen ablegen lassen. Listing 4.3 zeigt ein Programm, das ganzzahlige Variablen nutzt.

public class ElevatorFitter {

 public static void main(String args[]) {

 int weightOfAPerson;

 int elevatorWeightLimit;

 int numberOfPeople;

 weightOfAPerson = 150;

 elevatorWeightLimit = 1400;

 numberOfPeople = elevatorWeightLimit / weightOfAPerson;

 System.out.print("Es passen ");

 System.out.print(numberOfPeople);

 System.out.println(" Personen in den Fahrstuhl.");

 }

}

Listing 4.3: Den Typ int verwenden

Hinter dem Programm in Listing 4.3 verbirgt sich diese Geschichte:

In einem Hotel gibt es einen Fahrstuhl, dessen Kapazität (elevatorWeightLimit) auf 1.400 Pfund begrenzt ist. An einem Wochenende findet im Hotel das Familientreffen der Brickenchickers statt. Ein Zweig der Familie war mit eineiigen Zehnlingen gesegnet (zehn Geschwister mit derselben Statur). Normalerweise wiegt jeder der Brickenchicker‐Zehnlinge genau 145 Pfund. Aber am Samstag gab es mittags ein großartiges Büffet, zu dem auch Erdbeertörtchen gehörten. Das führte dazu, dass jeder der Brickenchicker‐Zehnlinge nun 150 Pfund wog. Unmittelbar nach dem Essen trafen sich alle zehn Brickenchickers vor dem Fahrstuhl. (Warum auch nicht? Sie hatten fast immer die gleichen Gedankengänge.) Es stellte sich nun die Frage, wie viele der Zehnlinge in den Fahrstuhl passen. Denken Sie daran, dass das Kabel des Fahrstuhls reißt, wenn Sie ein Gramm mehr als die zulässigen 1.400 Pfund in den Fahrstuhl packen, und dieses Reißen würde die Brickenchickers in einen schrecklichen Tod stürzen lassen.

Die Antwort auf die Frage (die Ausgabe des Programms in Listing 4.3) zeigt Abbildung 4.6.

[image:]Abbildung 4.6: Retten Sie die Brickenchickers.

Im Zentrum des Aufzugsproblems der Familie Brickenchicker stehen Ganzzahlen – Zahlen ohne Dezimalstellen. Wenn Sie 1.400 durch 150 teilen, erhalten Sie 9 1/3, wobei Sie 1/3 nicht ernst nehmen sollten. 1/3 Mensch lässt sich nur schlecht in einem Fahrstuhl unterbringen. Diese Tatsache berücksichtigt auch Java. In Listing 4.3 sind alle drei Variablen – weightOfAPerson (Gewicht einer Person), elevatorWeightLimit (Gewichtsbeschränkung des Fahrstuhls) und numberOfPeople (Anzahl Personen) – vom Typ int. Bei einem int‐Wert handelt es sich um eine Ganzzahl. Wenn Sie einen int‐Wert durch einen anderen int‐Wert teilen (was der Schrägstrich in Listing 4.3 bewirkt), erhalten Sie immer eine Ganzzahl als Ergebnis. Wenn Sie 1.400 durch 150 teilen, erhalten Sie 9, nicht 9 1/3. Sie sehen dies in Abbildung 4.6. Kurz gesagt, die folgenden Befehle sorgen dafür, dass auf dem Bildschirm 9 angezeigt wird:

numberOfPeople = elevatorWeightLimit / weightOfAPerson;

System.out.print(numberOfPeople);

[image:]Meine Frau und ich haben am 29. Februar geheiratet, wir haben also nur alle vier Jahre Hochzeitstag. Schreiben Sie ein Programm mit einer Variablen namens years. Basierend auf dem Wert von years soll das Programm die Anzahl der bisherigen Hochzeitstage anzeigen. Ist der Wert von years beispielsweise 4, zeigt das Programm Anzahl der Hochzeitstage: 1 an. Ist der Wert von years gleich 7, zeigt das Programm immer noch Anzahl der Hochzeitstage: 1 an. Ist der Wert von years jedoch 8, zeigt das Programm Anzahl der Hochzeitstage: 2 an.

Vier Verfahren, um Ganzzahlen zu speichern

Java kennt vier ganzzahlige Datentypen. Diese sind byte, short, int und long. Anders als das Problem mit der Genauigkeit bei den Typen double und float geht es bei Ihrer Wahl des ganzzahligen Datentyps ausschließlich um die Größe der Zahlen, die Sie in einer solchen Variablen speichern wollen. Wenn Sie vorhaben, Zahlen abzulegen, die größer als 127 sind, können Sie byte nicht verwenden, und bei Zahlen, die größer als 32.767 sind, müssen Sie auf short verzichten.

Meistens werden Sie int verwenden. Wenn Sie aber Zahlen speichern müssen, die größer als 2.147.483.647 sind, bleibt Ihnen nichts anderes übrig, als int durch long zu ersetzen. (Die Obergrenze einer Zahl vom Typ long liegt bei 9.223.372.036.854.775.807.) Alle Einzelheiten zu den Datentypen enthält Tabelle 4.1 später in diesem Kapitel.

Deklarationen kombinieren und Variablen initialisieren

Werfen Sie noch einmal einen Blick auf Listing 4.3. In diesem Listing gibt es drei Variablendeklarationen – eine für jede der drei im Programm vorkommenden int‐Variablen. Ich hätte dasselbe Ergebnis auch mit nur einer Deklaration erreichen können:

int weightOfAPerson, elevatorWeightLimit, numberOfPeople;

[image:]Wenn sich zwei Variablen im Typ unterscheiden, können Sie sie nicht in derselben Deklaration anlegen. Wenn Sie zum Beispiel eine int‐Variable mit dem Namen gewichtVonFred und eine double‐Variable mit dem Namen saldoVonFredsKonto benötigen, müssen Sie zwei eigenständige Variablendeklarationen verwenden.

Sie können Variablen in der Deklaration einen Anfangswert mitgeben. In Listing 4.3 kann eine Deklaration mehrere Zeilen der Methode main ersetzen (alle bis auf die Aufrufe von print und println):

int weightOfAPerson = 150, elevatorWeightLimit = 1400,

 numberOfPeople = elevatorWeightLimit/weightOfAPerson;

Wenn Sie so etwas machen, sprechen Sie nicht davon, dass Sie Variablen Werte zuweisen. Die Teile der Deklarationen mit den Gleichheitszeichen werden nicht wirklich Zuweisungsbefehl genannt. Stattdessen heißt es bei Variablen, dass Sie sie initialisieren. Ob Sie es mir nun glauben oder nicht, aber sich das zu merken, kann sehr hilfreich sein.

Das Initialisieren von Variablen hat – wie alles im Leben – Vor‐ und Nachteile:

[image: image] Wenn Sie sechs Zeilen von Listing 4.3 in einer Deklaration komprimieren, fassen Sie den Code naturgemäß zusammen. Manchmal lässt sich zusammengefasster Code leichter lesen. Manchmal aber auch nicht. Die Beurteilung obliegt Ihnen als Programmierer.

[image: image] Indem Sie eine Variable initialisieren, vermeiden Sie automatisch, dass es zu bestimmten Programmierungsfehlern kommt. Sie finden hierzu ein Beispiel in Kapitel 7.

[image: image] Unter Umständen haben Sie keine Wahl. Die Natur Ihres Codes zwingt Sie dazu, eine Variable zu initialisieren oder darauf zu verzichten. Ein Beispiel, das ein Initialisieren einer Variablen nicht zulässt, finden Sie in Kapitel 6.

Experimente mit JShell

Die Programme in den Listings 4.2 und 4.2 beginnen immer wieder mit demselben Refrain:

public class Irgendetwas {

 public static void main(String args[]) {

Ein Java‐Programm benötigt diese langatmige Einführung, denn:

[image: image] In Java ist das ganze Programm eine Klasse.

[image: image] Die main‐Methode wird automatisch aufgerufen, wenn das Programm ausgeführt wird.

All dies habe ich in Kapitel 3 erklärt.

Es kann jedoch mühsam sein, diesen Code immer wieder in ein Editor‐Fenster einzugeben, insbesondere dann, wenn Sie nur ein paar einfache Anweisungen testen wollen. Um dieses Problem zu beheben, haben die Java‐Verwalter in Java 9 ein völlig neues Tool eingeführt. Sie nennen es JShell.

[image:]Die Anweisungen für den Aufruf von JShell unterscheiden sich zwischen den verschiedenen Computern. Weitere Informationen, wie Sie für Ihren Computer vorgehen, finden Sie auf der englischsprachigen Website zum amerikanischen Buch (http://www.allmycode.com/JavaForDummies).

Wenn Sie JShell verwenden, geben Sie kaum noch ein ganzes Programm ein. Stattdessen geben Sie eine Java‐Anweisung ein, JShell reagiert auf Ihre Anweisung, dann geben Sie eine zweite Anweisung ein, und JShell reagiert auf Ihre zweite Anweisung, und dann geben Sie eine dritte Anweisung ein usw. Eine einzige Anweisung ist genug, um eine Antwort von JShell zu erhalten.

JShell ist nur ein Beispiel für die REPL (Read Evaluation Print Loop, also eine »Lesen‐Auswerten‐Ausgeben‐Schleife«) einer Sprache. Viele Programmiersprachen haben REPLs, und mit Java 9 hat auch endlich Java eine REPL.

In Abbildung 4.7 verwende ich JShell, um festzustellen, wie Java auf die Zuweisungen in den Listings 4.2 und 4.3 reagiert.

Wenn Sie JShell ausführen, läuft der Dialog etwa wie folgt ab:

jshell> Sie geben eine Anweisung ein.

JShell antwortet.

jshell> Sie geben eine weitere Anweisung ein.

JShell antwortet.

In Abbildung 4.7 beispielsweise habe ich double saldo eingegeben und dann die Eingabetaste gedrückt. JShell zeigt Folgendes an:

saldo ==> 0.0

[image:]Abbildung 4.7: Eine intime Unterhaltung zwischen mir und JShell

Hier einige Dinge, die Sie über JShell wissen sollten:

[image: image] Sie brauchen kein ganzes Java‐Programm einzugeben.

Geben Sie ein paar Anweisungen ein, wie beispielsweise:

double saldo

saldo = 50.22

saldo = saldo + 1000000.00

Das ist alles. Und es fühlt sich an, als ob Sie den Codeausschnitt in Listing 4.1 ausführen (außer dass in Listing 4.1 saldo nicht als double deklariert ist).

[image: image] In JShell sind Semikolons (größtenteils) optional.

In Abbildung 4.7 habe ich nur in einer meiner neun Zeilen am Ende ein Semikolon eingegeben.

[image:]Weitere Informationen über die Verwendung von Semikolons in JShell finden Sie in Kapitel 5.

[image: image] JShell reagiert sofort nach der Eingabe einer Zeile.

Nachdem ich saldo als double deklariert habe, reagiert JShell, indem es mir mitteilt, dass die Variable saldo den Wert 0.0 hat. Nachdem ich saldo = saldo + 1000000.00 eingegeben habe, teilt mir JShell mit, dass der neue Wert von saldo 1000050.22 ist.

[image: image] Sie können Anweisungen aus vielen verschiedenen Java‐Programmen mischen.

In 4.7 habe ich Anweisungen aus den Programmen in den Listings 4.2 und 4.3 vermischt. JShell ist das egal.

[image: image] Sie können JShell nach dem Wert eines Ausdrucks fragen.

Sie müssen den Wert eines Ausdrucks keiner Variablen zuweisen. In Abbildung 4.7 habe ich beispielsweise geschrieben

elevatorWeightLimit / weightOfAPerson

JShell reagiert, indem es mir mitteilt, dass der Wert von elevatorWeightLimit / weightOfAPerson gleich 9 ist. JShell verwendet einen temporären Namen für diesen Wert. In 4.7 ist dieser Name zufällig $8. In der nächsten Zeile von 4.7 frage ich nach dem Wert von $8 +1, und JShell gibt mir die Antwort 10.

[image: image] Sie erhalten auch ohne die Verwendung von Variablen Antworten von JShell.

In der letzten Zeile in 4.7 frage ich nach dem Wert von 42+7, und JShell antwortet mir großzügig mit dem Wert 49.

[image:]Während Sie JShell ausführen, brauchen Sie bereits eingegebene Befehle nicht erneut eingeben. Wenn Sie einmal die [image: [Pfeil o]]‐Taste drücken, zeigt Ihnen JShell den Befehl an, den Sie unmittelbar zuvor eingegeben haben. Wenn Sie die [image: [Pfeil o]]‐Taste zweimal drücken, zeigt Ihnen JShell den vorletzten Befehl an, den Sie eingegeben haben. Und so weiter. Wenn JShell Ihnen einen Befehl anzeigt, können Sie sich mit den [image: [Pfeil re]]‐ und [image: [Pfeil li]]‐Tasten innerhalb des Befehlsnamens beliebig bewegen und gegebenenfalls Zeichen in dem Befehl ändern. Wenn Sie anschließend die Eingabetaste drücken, führt JShell Ihren veränderten Befehl aus.

Um die Ausführung von JShell zu beenden, geben Sie /exit ein (beginnend mit einem Schrägstrich). /exit ist nur einer von vielen Befehlen, die Sie JShell geben können. Um JShell zu fragen, welche anderen Befehle noch zur Verfügung stehen, geben Sie /help ein.

Mit JShell können Sie Ihre Anweisungen testen, bevor Sie sie in Ihrem vollständigen Java‐Programm einsetzen. Damit ist JShell ein wirklich praktisches Tool.

Nachdem Sie JShell gestartet haben, geben Sie ein paar Zeilen Code aus 4.7 ein. Beobachten Sie, was passiert, wenn Sie ein paar abgewandelte Zeilen eingeben.

Was ist mit den ganzen coolen visuellen Effekten passiert?

Die Programme in den Listings 4.2 und 4.3 sind textbasiert. Ein textbasiertes Programm hat kein Fenster und keine Dialogfelder – nichts in dieser Art. Sie sehen einfach nur zeilenweise unformatierten Text. Der Benutzer gibt etwas ein, und der Computer zeigt eine Antwort unterhalb der Eingabezeile an.

Das Gegenteil eines textbasierten Programms ist ein GUI‐Programm (Graphical User Interface, Graphische Benutzeroberfläche). Ein GUI‐Programm hat Fenster, Textfelder, Schaltflächen und alle anderen möglichen visuellen Annehmlichkeiten.

Textbasierte Programme sind visuell eher unattraktiv, aber sie enthalten die grundlegenden Konzepte für die gesamte Computerprogrammierung. Außerdem sind textbasierte Programme für einen Neuling in der Programmierung einfacher zu lesen, zu schreiben und zu verstehen, als die entsprechenden GUI‐Programme. In diesem Buch habe ich deshalb einen Dreifach‐Ansatz verwendet:

[image: image] Textbasierte Beispiele: Die meisten der neuen Konzepte stelle ich anhand solcher Beispiele vor.

[image: image] Die DummiesFrame‐Klasse: Neben den textbasierten Beispielen zeige ich GUI‐Versionen unter Verwendung der Dummies‐Frame‐Klasse, die ich speziell für dieses Buch angelegt habe (ich werde die Dummies‐Frame‐Klasse in Kapitel 7 vorstellen.)

[image: image] GUI‐Programmiertechniken. Einige der bekannteren Techniken beschreibe ich in den Kapiteln 9, 10, 14 und 16. Und auch in diesem Kapitel habe ich ein winziges GUI‐Beispiel (siehe Abschnitt Die Moleküle und Verbindungen: Referenztypen, später in diesem Kapitel).

Mit dieser sorgfältigen Abwägung zwischen ganz einfachen und höchst attraktiven Programmen werden Sie sicher lernen, mit Java zu programmieren.

Die Atome: Javas primitive Typen

Die Wörter int und double, die ich in den vorherigen Abschnitten beschreibe, sind in Java Beispiele für primitive Typen (die auch einfache Typen genannt werden). Die Sprache Java kennt genau acht primitive Typen. Da Sie gerade erst mit Java anfangen, können Sie alle Typen bis auf vier ignorieren. Tabelle 4.1 enthält eine Liste aller primitiven Typen.

Die Typen, die Sie nicht ignorieren sollten, sind int, double, char und boolean. Ich gehe weiter vorn in diesem Kapitel auf die Typen double und int ein, während sich die nächsten beiden Abschnitte mit char und boolean beschäftigen.

	Name des Typs

	Wie ein Literal aussieht

	Wertebereich

	Ganzzahlige Typen

	byte

	(byte)42

	‐128 bis 127

	short

	(short)42

	‐32.768 bis 32.767

	int

	42

	‐2.147.483.648 bis 2.147.483.647

	long

	42L

	‐9.223.372.036.854.775.808 bis 9.223.372.036.854.775.807

	Dezimalzahlige Typen

	float

	42.0F

	‐3,4 * 1038 bis 3,4 * 1038

	double

	42.0

	‐1,8 * 10308 bis 1.8 * 10308

	Character‐Typen

	char

	'A'

	Tausende von Zeichen

	Logische Typen

	boolean

	true

	wahr; falsch

Tabelle 4.1: Javas primitive Typen

Der Typ »char«

Noch vor einigen Jahrzehnten dachten viele, dass sich Computer nur mit dem Berechnen riesiger Zahlenmengen beschäftigen. Heute, wo es Textverarbeitungen gibt, denkt niemand mehr so. Wenn Sie sich also in den letzten 30 Jahren tiefgefroren in einer Kältekammer aufgehalten haben, wissen Sie jetzt, dass Computer auch Buchstaben, Interpunktionszeichen und anderes abspeichern.

Der Java‐Typ, der verwendet wird, um Zeichen zu speichern, wird char genannt. (Dieser Begriff leitet sich vom englischen Ausdruck für Zeichen, character, ab.) Listing 4.4 enthält ein einfaches Programm, das den Typ char verwendet. Abbildung 4.8 zeigt, was das Programm in Listing 4.4 ausgibt.

public class CharDemo {

 public static void main(String args[]) {

 char myLittleChar = 'b';

 char myBigChar = Character.toUpperCase(myLittleChar);

 System.out.println(myBigChar);

 }

}

Listing 4.4: Den Typ char verwenden

In Listing 4.4 speichert die erste Initialisierung den Buchstaben b in der Variablen myLittleChar. Beachten Sie, dass b bei der Initialisierung von einfachen Anführungszeichen eingeschlossen wird. In Java beginnen und enden char‐Literale mit einem einfachen Anführungszeichen.

[image:]Abbildung 4.8: Das Ergebnis der Ausführung des Programms in Listing 4.4, wie es in der Eclipse View »Console« wiedergegeben wird

Wenn Sie Probleme damit haben, die Begriffe Zuweisung, Deklaration und Initialisierung einzusortieren, schauen Sie sich weiter vorn in diesem Kapitel den Abschnitt Deklarationen kombinieren und Variablen initialisieren an.

Bei der zweiten Initialisierung in Listing 4.4 ruft das Programm eine API‐Methode auf, die Character.toUpperCase heißt. (Sie erfahren in Kapitel 3 mehr über das Java Application Programming Interface, abgekürzt API.) Die Methode Character.toUpperCase macht genau das, was ihr englischer Name vermuten lässt – sie wandelt einen Kleinbuchstaben (den Buchstaben b) in einen Großbuchstaben (den Buchstaben B) um. Dieser Großbuchstabe wird dann der Variablen myBigChar zugewiesen und anschließend auf dem Bildschirm ausgegeben.

[image:]Eine Einführung in das Java Application Programming Interface (API) finden Sie in Kapitel 3.

Wenn es Sie lockt, den folgenden Code zu schreiben:

//Nicht nachmachen

char myLittleChars = 'barry';

sollten Sie der Versuchung widerstehen. Sie können in einer char‐Variablen immer nur einen einzigen Buchstaben speichern, und Sie dürfen zwischen einfachen Anführungszeichen nie mehr als einen Buchstaben unterbringen. Wenn Sie Wörter oder Sätze (und nicht nur einen einzelnen Buchstaben) speichern wollen, benötigen Sie etwas, das String genannt wird. (Sie finden weiter hinten in diesem Kapitel im Abschnitt Die Moleküle und Verbindungen: die Referenztypen mehr über den String‐Typ heraus.)

[image:]Wenn Sie Programme in anderen Sprachen schreiben, kennen Sie vielleicht etwas, das sich ASCII‐Zeichenkodierung nennt, Die meisten Sprachen verwenden ASCII; Java verwendet Unicode. Bei der alten ASCII‐Darstellung standen jedem Zeichen nur 8 Bits zu, während Unicode‐Zeichen 8, 16 oder 32 Bits einnehmen. Während ASCII nur die Zeichen des lateinischen (englischen) Alphabets speichert, hat Unicode Raum für die Zeichen fast aller auf der Welt gesprochenen Sprachen. Das einzige Problem besteht darin, dass einige der Methoden der Java‐API nur auf 16‐Bit‐Unicode abgestimmt sind. Wenn Sie zum Beispiel eine Methode verwenden, um auf dem Bildschirm Hallo zu schreiben, was dort aber zu H a l l o wird, müssen Sie sich mit der Dokumentation zu dieser Methode beschäftigen, um herauszubekommen, ob in der Dokumentation etwas zum Umgang mit Unicode steht.

Sie sollten beachten, dass die beiden Methoden Character.toUpperCase und System.out.println in Listing 4.4 ganz unterschiedlich verwendet werden. Die Methode Character.toUpperCase wird als Teil einer Initialisierung oder als Zuweisungsbefehl aufgerufen, während die Methode System.out.println für sich steht. Eine Erklärung der Rückgabewerte finden Sie in Kapitel 7.

Der Typ »boolean«

Eine Variable vom Typ boolean speichert einen von zwei Werten – true (wahr) oder false (falsch). Listing 4.5 demonstriert die Verwendung einer boolean‐Variablen und Abbildung 4.9, was das Programm in Listing 4.5 ausgibt.

public class ElevatorFitter2 {

 public static void main(String args[]) {

 System.out.println("Wahr oder Falsch?");

 System.out.println("Es passen alle zehn der ");

 System.out.println("Brickenchicker‐Zehnlinge ");

 System.out.println("in den Fahrstuhl:");

 System.out.println();

 int weightOfAPerson = 150;

 int elevatorWeightLimit = 1400;

 int numberOfPeople =

 elevatorWeightLimit / weightOfAPerson;

 boolean allTenOkay = numberOfPeople >= 10;

 System.out.println(allTenOkay);

 }

}

Listing 4.5: Den Typ boolean verwenden

In Listing 4.5 ist die Variable allTenOkay vom Typ boolean. Um für diese Variable einen Wert zu finden, prüft das Programm nach, ob numberOfPeople größer oder gleich zehn ist. (Das Symbol >= steht für größer oder gleich.)

[image:]Abbildung 4.9: Die Brickenchicker‐Zehnlinge sind wieder da.

An dieser Stelle zahlt es sich aus, es mit der Terminologie genau zu nehmen. Jede Komponente eines Java‐Programms, die einen Wert hat, wird als Ausdruck bezeichnet. Wenn Sie schreiben

weightOfAPerson = 150;

ist 150 ein Ausdruck (ein Ausdruck, dessen Wert 150 beträgt). Und wenn Sie schreiben

numberOfEggs = 2 + 2;

ist 2 + 2 ein Ausdruck (da 2 + 2 den Wert 4 hat). Wenn Sie schreiben

int numberOfPeople = elevatorWeightLimit / weightOfAPerson;

dann ist elevatorWeightLimit / weightOfAPerson ein Ausdruck. (Der Wert dieses Ausdrucks hängt davon ab, welche Werte die Variablen elevatorWeightLimit und weightOfAPerson haben, wenn der Code mit dem Ausdruck ausgeführt wird.)

[image:]Jede Komponente eines Java‐Programms, die einen Wert hat, ist ein Ausdruck.

In Listing 4.5 ist der Code numberOfPeople >= 10 ein Ausdruck. Der Wert dieses Ausdrucks hängt von dem Wert ab, der in der Variablen numberOfPeople gespeichert ist. Aber Sie wissen aus der Vorgeschichte, dass der Wert von numberOfPeople nicht größer als zehn werden kann. Bei den vorgegebenen Gewichten und der Gewichtsbegrenzung des Fahrstuhls führt die Berechnung von numberOfPeople dazu, dass numberOfPeople >= 10 den Wert false erhält, was wiederum dazu führt, dass auch der Variablen allTenOkay der Wert false zugewiesen wird.

[image:]Ich rufe in Listing 4.5 System.out.println() mit leeren Klammern auf. Dadurch erreiche ich, dass das Programm bei der Ausgabe eine leere Zeile einfügt.

Die Moleküle und Verbindungen: die Referenztypen

Wenn Sie einfache Elemente miteinander verbinden, erhalten Sie kompliziertere Elemente. So ist das eigentlich immer. Nehmen Sie primitive Java‐Typen, rühren Sie sie zu einem »primitiven« Eintopf untereinander, und was erhalten Sie? Einen komplexeren Typ, der Referenztyp genannt wird.

Das Programm in Listing 4.6 verwendet Referenztypen. Abbildung 4.10 zeigt, was geschieht, wenn Sie dieses Programm ausführen.

import javax.swing.JFrame;

public class ShowAFrame {

 public static void main(String args[]) {

 JFrame myFrame = new JFrame();

 String myTitle = "Leerer Frame";

 myFrame.setTitle(myTitle);

 myFrame.setSize(300, 200);

 myFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 myFrame.setVisible(true);

 }

}

Listing 4.6: Referenztypen verwenden

[image:]Abbildung 4.10: Ein leerer Frame

Das Programm in Listing 4.6 verwendet zwei Referenztypen. Beide sind bereits in der Java‐API definiert worden. Einer dieser Typen (der, den Sie fast immer verwenden werden) heißt String. Der andere Typ (der, den Sie verwenden können, um GUIs zu erstellen) heißt JFrame.

Ein String besteht aus Zeichen. Das ist so, als wenn es in einer Zeile mehrere char‐Werte gäbe. Dadurch, dass die Variable myTitle als String‐Variable deklariert wird, kann ihr der Text "Leerer Frame" zugewiesen werden, der dann für den neuen Frame als Titel dient. Die Klasse String wird in der Java‐API deklariert.

[image:]In Java werden die Buchstaben in einem String‐Literal von doppelten Anführungszeichen eingeschlossen.

Ein JFrame entspricht in Java quasi einem Fenster. (Der einzige Unterschied besteht darin, dass es JFrame und nicht Window genannt wird.) Damit Listing 4.6 kurz und knapp bleibt, habe ich mich entschlossen, meinen Frame leer zu lassen – keine Schaltflächen, keine Felder, nichts.

Selbst bei einem vollständig leeren Frame muss Listing 4.6 auf Tricks zurückgreifen, die ich erst weiter hinten in diesem Buch beschreibe. Versuchen Sie also gar nicht erst, jedes Wort dieses Listings zu verstehen. Was Sie aus Listing 4.6 aber unbedingt mitnehmen sollten, sind die beiden Variablendeklarationen. Beim Schreiben des Programms habe ich die beiden Namen myTitle und myFrame erfunden und die entsprechenden Typen (String beziehungsweise JFrame) zugewiesen.

Sie können String und JFrame in Javas API‐Dokumentation nachschlagen. Aber bevor Sie das tun, lassen Sie mich erklären, was Sie dort finden. Sie erfahren dort, dass String und JFrame die Namen von Java‐Klassen sind. Klassen sind nichts anderes als die Namen von Referenztypen. (Informationen darüber, was Java‐Klassen sind, stehen im Abschnitt über die objektorientierte Programmierung – OOP – in Kapitel 1.)

Sie können saldo für double‐Variablen reservieren, indem Sie

double saldo;

oder

double saldo = 50.22;

schreiben. Und so können Sie auch myFrame für eine JFrame‐Variable reservieren:

JFrame myFrame;

oder

JFrame myFrame = new JFrame();

[image:]Eine Erklärung des Konzepts einer Java‐Klasse finden Sie in den Abschnitten über objektorientierte Programmierung (OOP) in Kapitel 1.

[image:]Jede Java‐Klasse ist ein Referenztyp. Wenn Sie eine Variable so deklarieren, dass sie etwas enthält, das kein primitiver Typ ist, wird der Name der Variablen (fast immer) zum Namen einer Java‐Klasse.

Wenn Sie eine Variable so deklarieren, dass sie vom Typ int ist, können Sie sich sicherlich vorstellen, was dies für den Computer bedeutet: Irgendwo in seinem Arbeitsspeicher wird für den Wert der Variablen ein Platz reserviert. Dieser Speicherort enthält eine Folge von Bits, deren Anordnung dafür sorgt, dass eine bestimmte Ganzzahl wiedergegeben wird.

Diese Erklärung eignet sich gut für primitive Typen wie int oder double, aber wie sieht das bei Variablen aus, die Sie als Referenztyp deklariert haben? Wie sieht das bei einer Variablen wie myFrame aus, die vom Typ JFrame ist?

Nun, was bedeutet es, DerTaucher als F zu deklarieren? Ein Gedicht von Friedrich von Schiller? Was würde es bedeuten, die folgende Deklaration zu schreiben?

FvSchillerGedicht derTaucher;

Das bedeutet, dass eine Klasse von Elementen als FvSchillerGedicht bezeichnet wird, und dass derTaucher auf eine Instanz dieser Klasse verweist. Oder mit anderen Worten, derTaucher ist ein Objekt, das zur Klasse FvSchillerGedicht gehört.

Da JFrame eine Klasse ist, können Sie Objekte dieser Klasse erstellen (siehe Kapitel 1). Jedes Objekt (jede Instanz der Klasse JFrame) ist ein echter Frame – ein Fenster, das auf dem Bildschirm erscheint, wenn Sie den Code in Listing 4.6 ausführen. Indem Sie in Ihrer Deklaration festlegen, dass die Variable myFrame vom Typ JFrame ist, reservieren Sie die Verwendung des Namens myFrame. Diese Reservierung sagt dem Computer, dass myFrame auf ein tatsächlich existierendes Objekt vom Typ JFrame verweisen kann. Oder anders ausgedrückt: myFrame kann zu einem Kurznamen für eines der Fenster werden, die auf dem Bildschirm des Computers erscheinen. Abbildung 4.11 stellt diese Situation dar.

[image:]Abbildung 4.11: Die Variable verweist auf eine Instanz der Klasse .

[image:]Wenn Sie KlassenName variablenName deklarieren, sagen Sie damit aus, dass eine bestimmte Variable auf eine Instanz einer bestimmten Klasse verweisen kann.

[image:]In Listing 4.6 reserviert der Ausdruck JFrame myFrame den Namen myFrame. Auf derselben Codezeile erstellt der Ausdruck new JFrame() ein neues Objekt (eine Instanz der Klasse JFrame). Und zum Schluss sorgt das Gleichheitszeichen dafür, dass myFrame auf das neue Objekt verweist. (Man nennt so etwas auch »es referenziert das neue Objekt«.) Es kann sehr wichtig sein zu wissen, dass die beiden Wörter new JFrame ein neues Objekt erstellen. Mehr zu Objekten finden Sie in Kapitel 7.

[image:]Probieren Sie Folgendes aus:

[image: image] Führen Sie den Code aus Listing 4.6 auf Ihrem Computer aus.

[image: image] Bevor Sie den Code aus Listing 4.6 ausführen, kommentieren Sie die Anweisung myFrame.setVisible(true) aus, indem Sie zwei Schrägstriche (//) unmittelbar links vor der Anweisung einfügen. Passiert etwas, wenn Sie den veränderten Code ausführen?

[image: image] Experimentieren Sie mit dem Code aus Listing 4.6, indem Sie die Reihenfolge der Anweisungen innerhalb des Rumpfs der Methode main verändert. Welche Neuanordnung dieser Anweisungen ist in Ordnung, welche nicht?

Ein Eintopf aus primitiven Typen

Da ich Frames erwähne, was ist das eigentlich? Ein Frame ist ein Fenster, das eine bestimmte Höhe und Breite hat und auf dem Bildschirm Ihres Computers eine bestimmte Position einnimmt. Deshalb können Sie, tief verborgen in der Deklaration der Klasse JFrame, eine Variablendeklaration auftun, die so ähnlich aussieht wie das hier:

int width;

int height;

int x;

int y;

Ein weiteres Beispiel ist: Time. Eine Instanz der Klasse Time kann eine Stunde (eine Zahl von 1 bis 12), Minuten (von 0 bis 59) und einen Buchstaben (a für a.m. und p für p.m.) haben.

int hour;

int minutes;

char amOrPm;

Wie Sie sehen, ist dieses tolle Ding, das sich Java‐API‐Klasse nennt, nichts anderes als eine Sammlung von Deklarationen. Einige dieser Deklarationen sind Variablendeklarationen und einige dieser Variablendeklarationen verwenden primitive Typen, während andere Referenztypen nutzen. Diese Referenztypen wiederum stammen von anderen Klassen, deren Deklarationen ebenfalls Variablen enthalten. Und so weiter und so weiter. Aber letztendlich lässt sich alles auf primitive Typen reduzieren.

Eine Importdeklaration

In der Praxis hat es sich bewährt, als Erstes zu erklären, was man plant. Stellen Sie sich folgende Unterrichtsstunde vor:

»In unserem Kurs zur Geschichte des Films wollen wir uns mit der Karriere des Schauspielers Lionel Herbert Blythe Barrymore beschäftigen.

Barrymore, der in Philadelphia geboren wurde, wirkte in mehr als 200 Filmen mit, zu denen auch Ist das Leben nicht schön?, Key Largo und Dr. Kildare's Wedding Day gehören. Außerdem war Barrymore Schriftsteller, Komponist und Regisseur. Im Radio war er jedes Jahr die Stimme von Ebenezer Scrooge ...«

Interessant, nicht wahr? Vergleichen Sie nun die Absätze oben mit einem Vortrag, bei dem der Redner nicht damit beginnt, sein Thema vorzustellen:

»Herzlich willkommen zur Geschichte des Films.

Lionel Barrymore, der in Philadelphia geboren wurde, wirkte in mehr als 200 Filmen mit, zu denen auch Ist das Leben nicht schön?, Key Largo und Dr. Kildare's Wedding Day gehören. Außerdem war Barrymore (nicht Ethel, John oder Drew) Schriftsteller, Komponist und Regisseur. Im Radio war Lionel Barrymore jedes Jahr die Stimme von Ebenezer Scrooge ...«

Ohne eine saubere Einführung muss Sie ein Redner immer wieder daran erinnern, dass es um Lionel Barrymore und nicht um einen anderen Barrymore geht. Dasselbe gilt für ein Java‐Programm. Schauen Sie sich noch einmal Listing 4.6 an:

import javax.swing.JFrame;

public class ShowAFrame {

 public static void main(String args[]) {

 JFrame myFrame = new JFrame();

In Listing 4.6 kündigen Sie in der »Einführung des Programms« (in der import‐Deklaration) an, dass Sie in Ihrer Java‐Klasse JFrame verwenden wollen. Sie machen deutlich, was Sie wollen, indem Sie JFrame mit dem vollständigen Namen javax.swing.JFrame aufrufen. (Begann nicht auch der erste Redner mit dem vollständigen Namen Lionel Herbert Blythe Barrymore?) Nachdem Sie in der import‐Deklaration Ihre Absicht angekündigt haben, können Sie von da an im Code Ihrer Java‐Klasse problemlos die Kurzform JFrame verwenden.

Wenn Sie auf eine import‐Deklaration verzichten, müssen Sie den vollständigen Namen javax.swing.JFrame immer dann wiederholen, wenn Sie JFrame in Ihrem Code verwenden. Ohne eine import‐Deklaration sähe der Code in Listing 4.6 so aus:

public class ShowAFrame {

 public static void main(String args[]) {

 javax.swing.JFrame myFrame = new javax.swing.JFrame();

 String myTitle = "Leerer Frame";

 myFrame.setTitle(myTitle);

 myFrame.setSize(3200, 200);

 myFrame.setDefaultCloseOperation(javax.swing.JFrame.EXIT_ON_CLOSE);

 myFrame.setVisible(true);

 }

}

[image:]Im Detail können diese ziemlich wichtigen Dinge ziemlich komplex sein. Glücklicherweise haben viele IDEs praktische Helferfunktionen für Import‐Deklarationen. Weitere Informationen finden Sie auf der englischsprachigen Website zum amerikanischen Buch (www.allmycode.com/JavaForDummies).

[image:]Importdeklarationen lassen sich nicht in einem Abschnitt dieses Buches erklären, weil sie zu vielschichtig sind. Sie finden in den Kapiteln 5, 9 und 10 weitere Informationen zu diesem Deklarationstyp.

Mit Operatoren neue Werte erstellen

Wer kann einen besser beruhigen als Ihr alter Freund, das Pluszeichen? Es war das erste Thema, das Sie in der Grundschule im Rechenunterricht kennengelernt haben. So gut wie jeder weiß, wie 2 und 2 addiert werden. Und in der deutschen Sprache sagt »Der kann wohl 2 und 2 nicht zusammenzählen« ziemlich viel über das Gemüt eines Menschen aus. Und jedes Mal, wenn Sie ein Pluszeichen sehen, sagt eine Zelle in Ihrem Gehirn: »Dem Himmel sei Dank – es könnte viel schlimmer kommen.«

Auch Java kennt ein Pluszeichen. Sie können mit ihm verschiedene Dinge machen. So können Sie zum Beispiel das Pluszeichen verwenden, um zwei Zahlen zu addieren:

int apples, oranges, fruit;

apples = 5;

oranges = 16;

fruit = apples + oranges;

Sie können das Pluszeichen aber auch verwenden, um String‐Werte aneinanderzuhängen:

String startOfChapter =

 "Es ist drei Uhr morgens. Ich träume vom " +

 "Geschichtsunterricht, den ich in der Schule " +

 "verpasst habe.";

System.out.println(startOfChapter);

So etwas kann sich als sehr praktisch erweisen, weil es in Java nicht erlaubt ist, einen String zu definieren, der über mehrere Zeilen geht. Das bedeutet, dass der folgende Code nicht funktionieren würde:

String startOfChapter =

 "Es ist drei Uhr morgens. Ich träume vom

 Geschichtsunterricht, den ich in der Schule

 verpasst habe.";

System.out.println(startOfChapter);

[image:]Sie hängen String‐Werte natürlich nicht hintereinander, sondern Sie verknüpfen sie.

Sie können das Pluszeichen sogar dafür verwenden, um Zahlen neben String‐Werte zu setzen:

int apples, oranges, fruit;

apples = 5;

oranges = 16;

fruit = apples + oranges;

System.out.println("Sie haben " + fruit + " Stücke Obst.");

Natürlich gibt es auch das alte Minuszeichen (wenn auch nicht für String‐Werte).

apples = fruit ‐ oranges;

Verwenden Sie für die Multiplikation ein Sternchen (*) und für die Division einen Schrägstrich (/).

double rate, pay;

int hours;

rate = 6.25;

hours = 35;

pay = rate * hours;

System.out.println(pay);

Listing 4.3 bietet ein Beispiel für eine Division.

[image:]Wenn Sie einen int‐Wert durch einen anderen int‐Wert teilen, erhalten Sie wieder einen int‐Wert. Dabei rundet der Computer nicht. Stattdessen schneidet er bei der Division entstehende Reste einfach ab. Wenn Sie in Ihrem Programm System.out.println(11 / 4) aufnehmen, gibt der Computer 2 und nicht 2.75 aus. Um dieses Problem zu umgehen, sollten Sie die Zahl, durch die Sie teilen (am besten beide Zahlen), als double deklarieren. Wenn Sie in Ihr Programm System.out.println(11.0 / 4) aufnehmen, wird als Ergebnis 2.75 ausgegeben.

Ein anderer nützlicher Operator ist der Rest‐Operator. Sein Symbol ist das Prozentzeichen (%). Wenn Sie System.out.println(11 % 4) in Ihr Programm aufnehmen, gibt der Computer 3 aus. Warum? 4 geht wer‐weiß‐wie‐oft in 11, und es bleibt ein Rest von 3. Es hat sich gezeigt, dass der Rest‐Operator ziemlich nützlich sein kann, wie Sie Listing 4.7 entnehmen können.

import static java.lang.System.out;

public class MakeChange {

 public static void main(String args[]) {

 int total = 248;

 int quarters = total / 25;

 int whatsLeft = total % 25;

 int dimes = whatsLeft / 10;

 whatsLeft = whatsLeft % 10;

 int nickels = whatsLeft / 5;

 whatsLeft = whatsLeft % 5;

 int cents = whatsLeft;

 out.println("Sie wechseln "total + " $‐Cents in");

 out.println(quarters + " Quarters");

 out.println(dimes + " Dimes");

 out.println(nickels + " Nickels");

 out.println(cents + " Cents");

 }

}

Listing 4.7: Geld wechseln

Abbildung 4.12 zeigt, was das Programm in Listing 4.7 ausgibt. Sie beginnen mit 248 Cents. Dann dividiert

quarters = total / 25

248 durch 25, was 9 ergibt. Oder anders ausgedrückt: Sie können aus 248 Cents 9 Quarters machen. Nun dividiert

whatsLeft = total % 25

noch einmal 248 durch 25 und packt sich den Rest von 23 in whatsLeft. Jetzt können Sie mit dem nächsten Schritt weitermachen, bei dem es darum geht, so viele Dimes wie möglich aus 23 Cents herauszuholen.

[image:]Abbildung 4.12: 2,48 Dollar werden gewechselt.

Der Code in Listing 4.7 wechselt Geld, das in US‐Währung vorliegt, mit dieser Stückelung: 1 Cent, 5 Cent (ein Nickel), 10 Cent (ein Dime) und 25 Cent (ein Quarter). Die Klasse MakeChange nimmt die ursprünglichen 248 Cent und gibt Ihnen die entsprechende Stückelung als Wechselgeld zurück. Dabei erhalten Sie die kleinste Anzahl an Münzen, die aufaddiert 248 Cent ergeben. Wenn Sie in den Code ein wenig Arbeit stecken, funktioniert er mit allen Münzen dieser Erde. Sie addieren dabei immer Münztypen bis zu einer vorgegebenen Summe. Es sind nun aber in einigen Ländern auch Stückelungen bei Münzen denkbar, die dafür sorgen, dass vom Programm nicht immer die kleinste Anzahl an Münzen zurückgegeben wird. Ich suche noch nach einem Beispiel, das MakeChange daran hindert, die beste Antwort zu geben. Sollten Sie in solch einem Land wohnen, senden Sie mir bitte eine E‐Mail (mailto:JavaForDummiesallmycode.com).

[image:]Finden Sie die Werte der folgenden Ausdrücke, indem Sie jeden einzelnen davon in JShell eingeben (wenn Sie Probleme damit haben, JShell zu starten, erstellen Sie ein Java‐Programm, das die Werte der Ausdrücke anzeigt):

[image: image] 5 / 4

[image: image] 5 / 4.0

[image: image] 5.0 / 4

[image: image] 5.0 / 4.0

[image: image] "5" + "4"

[image: image] 5 + 4

[image: image] " " + 5 + 4

Import‐Deklarationen: Die hässliche Wahrheit

Beachten Sie die import‐Deklaration zu Beginn von Listing 4.7:

import static java.lang.System.out;

Vergleichen Sie dies mit der import‐Deklaration zu Beginn von Listing 4.6:

import javax.swing.JFrame;

Dadurch, dass ich Listing 4.7 die Zeile import static java.lang.System.out; hinzugefügt habe, schaffe ich es, dass der Rest des Codes etwas leichter zu lesen ist, und ich vermeide lange Java‐Befehle, die über mehr als eine Zeile gehen. Sie müssen so nicht vorgehen. Wenn Sie die Zeile import static java.lang.System.out; entfernen und den Code großzügig mit System.out.println würzen, funktioniert er genauso gut.

Eine Frage: Warum enthält eine Deklaration das Wort static und die andere nicht? Wenn ich ehrlich sein soll, wünschte ich mir, nicht gefragt zu haben.

Um das zu erfahren, was sich hinter static wirklich verbirgt, müssen Sie Kapitel 10 zumindest teilweise lesen. Und wenn ich weiterhin ehrlich sein soll, empfehle ich Ihnen nicht, schon einmal zum Abschnitt über static zu springen, wenn Ihr Kreislauf schwach ist, Sie schwanger sind oder keine Erfahrung mit anderen Programmiersprachen haben. Im Moment sollte das Wissen ausreichen, dass sich Kapitel 10 leicht lesen lässt, wenn Sie Ihre Tour durch Teil 3 dieses Buches hinter sich haben. Und wenn Sie dann entscheiden müssen, ob Sie in einer import‐Deklaration das Wort static verwenden müssen, denken Sie an diese Tipps:

[image: image] Der weitaus größte Teil der import‐Deklarationen in Java‐Programmen benötigt das Wort static nicht.

[image: image] Ich verwende in diesem Buch import static ausschließlich in Verbindung mit System.out. (Nun gut, fast ausschließlich.)

[image: image] Die meisten import‐Deklarationen verwenden static nicht, weil sie meistens Klassen importieren. Unglücklicherweise ist System.out nicht der Name einer Klasse.

Einmal initialisieren, mehrfach zuweisen

Listing 4.7 hat drei Zeilen, die Werte in die Variable whatsLeft (deutsch wasBleibtÜbrig) packen.

int whatsLeft = total % 25;

whatsLeft = whatsLeft % 10;

whatsLeft = whatsLeft % 5;

Nur bei einer dieser Zeilen handelt es sich um eine Deklaration. Die anderen beiden Zeilen sind Zuweisungsbefehle. Das geht auch so in Ordnung, denn Sie können dieselbe Variable nur einmal deklarieren (zumindest nicht, ohne etwas zu erstellen, das sich Block nennt). Wenn Sie Murks machen und in Listing 4.7

int whatsLeft = total % 25;

int whatsLeft = whatsLeft % 10;

schreiben, erscheint bei dem Versuch, das Programm zu kompilieren, eine Fehlermeldung, die aussagt, dass whatsLeft bereits definiert ist.

[image:]Wenn Sie herausfinden wollen, was ein Block ist, sehen Sie in Kapitel 5 nach. In Kapitel 10 gehe ich näher auf das erneute Deklarieren von Variablen ein.

Inkrement‐ und Dekrement‐Operatoren

Java verfügt über einige nette kleine Operatoren, die das Leben (des Prozessors des Computers, Ihres Gehirns und Ihrer Fingerchen) wesentlich erleichtern. Insgesamt gibt es vier dieser Operatoren – zwei Inkrement‐ und zwei Dekrement‐Operatoren. Die Inkrement‐Operatoren addieren 1, während die Dekrement‐Operatoren 1 abziehen. Die Inkrement‐Operatoren verwenden doppelte Pluszeichen (++) und die Dekrement‐Operatoren verwenden doppelte Minuszeichen (‐‐). Um zu sehen, wie diese Operatoren arbeiten, folgen nun einige Beispiele. Das erste befindet sich in Abbildung 4.13.

[image:]Abbildung 4.13: Ein Präinkrement verwenden

Abbildung 4.14 zeigt, was ausgegeben wird, wenn das Programm in Abbildung 4.13 ausgeführt wird. Bei diesem wenig ereignisreichen Lauf wird die Anzahl der Bunnies (deutsch Häschen) dreimal angezeigt.

[image:]Abbildung 4.14: Der Code aus Abbildung 4.13 wird ausgeführt.

Das doppelte Pluszeichen wird je nach seiner Position unterschiedlich bezeichnet. Wenn Sie es vor eine Variable setzen, wird es Präinkrement‐Operator genannt. (Prä stammt vom Lateinischen prae, deutsch vor, ab.) Das Wort vor hat zwei Bedeutungen:

[image: image] Sie setzen ++ vor die Variable.

[image: image] Der Computer fügt der Variablen 1 hinzu, bevor diese irgendwo im Befehl verwendet wird.

Um dies zu verstehen, schauen Sie sich einmal die fett gedruckte Zeile in Abbildung 4.13 an. Der Computer fügt numberOfBunnies 1 hinzu (und erhöht dabei den Wert von numberOfBunnies auf 29), bevor er 29 auf dem Bildschirm ausgibt.

[image:]Bei out.println(++numberOfBunnies) fügt der Computer numberOfBunnies 1 hinzu, bevor der neue Wert von numberOfBunnies auf dem Bildschirm ausgegeben wird.

Eine Alternative zum Präinkrement ist das Postinkrement. (Post steht für hinter, nach.) Auch dieses Wort hat zwei Bedeutungen:

[image: image] Sie setzen ++ hinter die Variable.

[image: image] Der Computer erhöht den Wert der Variablen um 1, nachdem diese irgendwo im Befehl verwendet worden ist.

Damit dieses Verhalten deutlicher wird, sollten Sie einen Blick auf die in Abbildung 4.15 fett gedruckte Zeile werfen. Der Computer gibt auf dem Bildschirm den alten Wert von numberOfBunnies aus (der 28 beträgt) und addiert danach 1 zu numberOfBunnies, das dadurch zu 29 wird.

[image:]Abbildung 4.15: Ein Postinkrement verwenden

[image:]Bei out.println(numberOfBunnies++) fügt der Computer numberOfBunnies 1 hinzu, nachdem der alte Wert von numberOfBunnies auf dem Bildschirm ausgegeben worden ist.

Abbildung 4.16 zeigt einen Lauf des Programms in Abbildung 4.15. Vergleichen Sie diese Abbildung mit Abbildung 4.14:

[image: image] Bei dem Präinkrement in Abbildung 4.14 lautet die zweite Zahl 29.

[image: image] Bei dem Postinkrement in Abbildung 4.16 lautet die zweite Zahl 28.

In Abbildung 4.16 wird 29 erst am Ende des Programmlaufs auf dem Bildschirm angezeigt, wenn der Computer ein letztes Mal out.println(numberOfBunnies) ausführt.

[image:]Abbildung 4.16: Der Code in Abbildung  wird ausgeführt.

[image:]Stehen Sie auch vor der Frage, wann ein Post‐ und wann ein Präinkrement verwendet werden soll? Hören Sie auf zu grübeln. Die meisten Programmierer verwenden Postinkremente. Sie stoßen in einem typischen Java‐Programm öfter auf Konstrukte wie numberOfBunnies++ als auf ++numberOfBunnies.

Java verfügt zusätzlich zu Prä‐ und Postinkrement über zwei Operatoren, die ‐‐ verwenden. Diese beiden Operatoren heißen Prädekrement und Postdekrement.

[image: image] Bei einem Prädekrement (‐‐numberOfBunnies) zieht der Computer 1 vom Wert der Variablen ab, bevor die Variable im Befehl verwendet wird.

[image: image] Bei einem Postdekrement (numberOfBunnies‐‐) zieht der Computer 1 vom Wert der Variablen ab, nachdem die Variable im Befehl verwendet worden ist.

[image:]Sie können denselben Effekt wie mit ++numberOfBunnies erzielen, wenn Sie numberOfBunnies = numberOfBunnies + 1 schreiben. Daraus schließen einige Leute, dass die Operatoren ++ und ‐‐ nur Tastenanschläge einsparen sollen – damit sich die armen Fingerchen nicht überarbeiten. Dies ist vollkommen falsch. Der beste Grund, um ++ zu verwenden, ist, die ineffiziente und fehlerbehaftete Doppeleingabe von Variablennamen wie numberOfBunnies in demselben Befehl zu vermeiden. Wenn Sie nur einmal numberOfBunnies schreiben müssen (wie das bei der Verwendung von ++ oder ‐‐ der Fall ist), muss der Computer nur einmal herausfinden, was numberOfBunnies bedeutet. Außerdem besteht dann nur einmal die Gefahr, den Namen der Variablen falsch einzugeben. Bei einfachen Ausdrücken wie numberOfBunnies++ macht sich dieser Vorteil kaum bemerkbar. Aber wenn Sie kompliziertere Ausdrücke wie inventarAnzahl[(mengeErhalten‐‐*anzahlProKiste+17)]++ schreiben, bedeutet die Verwendung von ++ oder ‐‐ einen erheblichen Gewinn an Effizienz und Genauigkeit.

Befehle und Ausdrücke

Sie können die Operatoren Prä‐ und Postinkrement und Prä‐ und Postdekrement auf zwei Arten beschreiben: so, dass jedermann diese Begriffe versteht, oder richtig. Ich habe mich in diesem Abschnitt dafür entschieden, (mithilfe der Begriffe vor und nach oder hinter) den Weg zu gehen, der allgemein verständlich sein sollte. Unglücklicherweise ist dies nicht der wirklich richtige Weg. Wenn Sie ++ oder ‐‐ sehen, können Sie an einen Zeitablauf denken. Leider verwenden Programmierer ++ oder ‐‐ gelegentlich auf so eine verdrehte Weise, dass vor und nach jeden Sinn verlieren. Deshalb sollten Sie bei Problemen mit diesen Operatoren in Begriffen wie Befehle und Ausdrücke denken.

Zunächst sollten Sie daran denken, dass ein Befehl den Computer anweist, etwas zu tun, und dass ein Ausdruck einen Wert hat. (Ich behandele Befehle in Kapitel 3 und Ausdrücke irgendwo in diesem Kapitel.) In welche Kategorie gehört nun numberOfBunnies? Die überraschende Antwort ist: in beide. Der Java‐Code numberOfBunnies++ ist sowohl ein Befehl als auch ein Ausdruck.

Nehmen wir einmal an, dass der Wert von numberOfBunnies 28 beträgt, bevor der Computer den Code out.println(numberOfBunnies++) ausführt.

[image: image] numberOfBunnies++ weist als Befehl den Computer an, numberOfBunnies um 1 zu erhöhen.

[image: image] Als Ausdruck beträgt der Wert von numberOfBunnies 28 und nicht 29.

Obwohl der Computer den Wert von numberOfBunnies um 1 erhöht hat, bedeutet der Code out.println(numberOfBunnies++) tatsächlich out.println(28).

Nun gilt alles, was Sie gerade über numberOfBunnies++ gelesen haben, auch für ++numberOfBunnies. Der einzige Unterschied ist, dass sich ein Ausdruck wie ++numberOfBunnies intuitiver begreifen lässt.

[image: image] ++numberOfBunnies weist als Befehl den Computer an, numberOfBunnies um 1 zu erhöhen.

[image: image] Als Ausdruck beträgt der Wert von ++numberOfBunnies 29.

Bei dem Befehl out.println(++numberOfBunnies) erhöht der Computer den Wert der Variablen numberOfBunnies um 1, und der Code out.println(++numberOfBunnies) bedeutet in Wirklichkeit out.println(29).

[image:]Bevor Sie den folgenden Code ausführen, versuchen Sie vorherzusagen, welche Ausgabe er erzeugt. Anschließend führen Sie den Code aus, um zu überprüfen, ob Sie recht hatten:

public class Main {

 public static void main(String[] args) {

 int i = 10;

 System.out.println(i++);

 System.out.println(‐‐i);

 ‐‐i;

 i‐‐;

 System.out.println(i);

 System.out.println(++i);

 System.out.println(i‐‐);

 System.out.println(i);

 i++;

 i = i++ + ++i;

 System.out.println(i);

 i = i++ + i++;

 System.out.println(i);

 }

}

Geben Sie den fett ausgezeichneten Text zeilenweise in JShell ein und beobachten Sie, was JShell ausgibt.

jshell> int i = 8

jshell> i++

jshell> i

jshell> i

jshell> i++

jshell> i

jshell> ++i

jshell> i

Zuweisungsoperatoren

Falls Sie den vorherigen Abschnitt gelesen haben, der von Operatoren handelt, die 1 hinzufügen, haben Sie sich vielleicht gefragt, ob Sie diese Operatoren nicht so ändern können, dass sie nicht nur 1, sondern 2, 5 oder 10000000 hinzufügen. Besteht die Möglichkeit, als Java‐Programmierer numberOfBunnies++++ zu schreiben? Vergessen Sie's. Wenn Sie das ausprobieren, erscheint bei dem Versuch, den Code zu kompilieren, eine Fehlermeldung.

Was also können Sie tun? Glücklicherweise verfügt Java über viele Zuweisungsoperatoren, die nur auf Sie warten. Sie können rechentechnisch mit einem Zuweisungsoperator alles erledigen, was Sie wollen: addieren, subtrahieren, multiplizieren oder dividieren. Und Sie haben die Möglichkeit, mit diesen Operatoren weitere coole Operationen auszuführen. Listing 4.8 enthält eine bunte Mischung von Zuweisungsoperatoren (den Dingern mit dem Gleichheitszeichen). Abbildung 4.17 zeigt, was dieses Programm auf dem Bildschirm ausgibt.

public class UseAssignmentOperators {

 public static void main(String args[]) {

 int numberOfBunnies = 27;

 int numberExtra = 53;

 numberOfBunnies += 1;

 System.out.println(numberOfBunnies);

 numberOfBunnies += 5;

 System.out.println(numberOfBunnies);

 numberOfBunnies += numberExtra;

 System.out.println(numberOfBunnies);

 numberOfBunnies *= 2;

 System.out.println(numberOfBunnies);

 System.out.println(numberOfBunnies ‐= 7);

 System.out.println(numberOfBunnies = 100);

 }

}

Listing 4.8: Zuweisungsoperatoren

[image:]Abbildung 4.17: Der Code in Listing 4.8 wird ausgeführt.

Listing 4.8 zeigt, wie vielseitig Javas Zuweisungsoperatoren sind. Sie können mit Zuweisungsoperatoren beliebige Zahlen zu einer Variablen addieren, von ihr subtrahieren, mit ihr multiplizieren oder durch sie dividieren. Beachten Sie, wie +=5 5 zu numberOfBunnies hinzufügt, und wie *=2 numberOfBunnies mit 2 multipliziert. Sie sind sogar in der Lage, den Wert eines anderen Ausdrucks (in Listing 4.8 numberExtra) zu nehmen, um mit ihm eine Rechenoperation durchzuführen.

Die letzten beiden Zeilen in Listing 4.8 veranschaulichen eine besondere Funktion von Javas Zuweisungsoperatoren. Sie können einen Zuweisungsoperator als Teil eines größeren Java‐Befehls verwenden. In der vorletzten Zeile in Listing 4.8 subtrahiert der Operator 7 von numberOfBunnies und verringert damit den Wert von numberOfBunnies von 172 auf 165. Dann wird der ganze Zuweisungskram in einen Aufruf von System.out.println gepackt, was dazu führt, dass auf dem Bildschirm 165 ausgegeben wird.

Die letzte Zeile von Listing 4.8 zeigt nun noch, dass Sie Dinge dieser Art auch mit dem guten alten Java‐Gleichheitszeichen veranstalten können. Der Ausdruck, den ich am Anfang dieses Kapitels als Zuweisungsbefehl beschreibe, ist in Wirklichkeit einer der Zuweisungsoperatoren, die ich in diesem Kapitel erkläre. Daraus folgt, dass Zuweisungen, die Sie vornehmen, problemlos auch Teil eines umfangreicheren Befehls sein können.

[image:]Jede Verwendung eines Zuweisungsoperators erfüllt zwei Aufgaben – eine als Befehl und eine als Ausdruck. In beiden Fällen ist der Wert des Ausdrucks gleich dem Wert, den Sie zuweisen. So hat zum Beispiel numberOfBunnies vor der Ausführung von System.out.println(numberOfBunnies ‐= 7) den Wert 172. Als Befehl weist numberOfBunnies ‐= 7 den Computer an, von numberOfBunnies 7 abzuziehen (wodurch sich der Wert von 172 auf 165 verringert). Als Ausdruck hat numberOfBunnies ‐=7 den Wert 165. System.out.println(numberOfBunnies ‐= 7) bedeutet tatsächlich System.out.println(165).

Eine ausführlichere Erklärung dieser Dinge finden Sie weiter vorn in diesem Kapitel im Kasten Befehle und Ausdrücke.

[image:]Bevor Sie den folgenden Code ausführen, versuchen Sie, seine Ausgabe vorherzusagen. Anschließend führen Sie den Code aus, um festzustellen, ob Sie recht hatten:

public class Main {

 public static void main(String[] args) {

 int i = 10;

 i += 2;

 i ‐= 5;

 i *= 6;

 System.out.println(i);

 System.out.println(i += 3);

 System.out.println(i /= 2);

 }

}

119-150

Kapitel 5

Den Programmablauf mit entscheidungsfindenden Befehlen steuern

In diesem Kapitel

Befehle schreiben, die zwischen Alternativen unterscheiden

Befehle verschachteln

Logische Bedingungen formulieren

Unter vielen Alternativen auswählen

Die Fernsehserie Dennis the Menace wurde von 1959 bis 1963 in den USA von CBS (und in den 1980er Jahren in Deutschland unter dem Titel Dennis) ausgestrahlt. Ich erinnere mich an eine Folge, in der Mr. Wilson Schwierigkeiten hatte, eine wichtige Entscheidung zu fällen. Ich glaube, es ging dabei um so etwas wie einen Wechsel der Arbeitsstelle oder einen Umzug in eine andere Stadt. Auf jeden Fall sehe ich noch die Szene vor mir, wie Mr. Wilson in seinem Garten sitzt, an einem Glas Limonade nippt und den ganzen Nachmittag lang ins Nirgendwo starrt. Natürlich tauchte alle naselang der nervige Dennis auf, um Mr. Wilsons Ruhe und seinen Frieden zu stören – was für die Komik in dieser Situation sorgte.

Was mich an dieser Folge so beeindruckt hat (und was der Grund dafür ist, dass ich mich bis heute so genau daran erinnern kann), war die Beharrlichkeit, mit der Mr. Wilson versuchte, eine Entscheidung zu fällen. Dieser Kerl hat nicht weitergemacht, als ob nichts wäre, während in seinem Kopf die Gedanken über die Entscheidung verrückt spielten. Er saß ruhig in seinem Garten und schrieb sich in Gedanken die Vor‐ und die Nachteile auf. Wer fällt heute noch Entscheidungen auf diese Weise?

Damals war ich noch ziemlich jung. Ich war noch nicht gezwungen, eine tiefgreifende Entscheidung zu fällen, die meine Familie und mich betraf. Ich fragte mich, wie solch ein Entscheidungsfindungsprozess wohl sein würde. Würde es helfen, stundenlang stumm herumzusitzen? Würde ich meine Entscheidung sorgfältig abwägen und alle Optionen prüfen? Oder würde ich einfach einen Schuss ins Blaue abgeben, alles riskieren und impulsiv handeln? Damals hatte ich darauf keine Antwort.

Entscheidungen fällen (Java‐Befehl »if«)

Wenn Sie Computerprogramme schreiben, müssen Sie sich ständig für die eine oder die andere Möglichkeit entscheiden. Hat der Benutzer das Kennwort richtig eingegeben? Wenn ja, darf er arbeiten, anderenfalls wirf ihn aus dem System. Java benötigt deshalb eine Möglichkeit, um im Programm Weggabelungen bereitzustellen. Glücklicherweise gibt es so etwas. Es nennt sich if‐Befehl.

Eine Zahl raten

Listing 5.1 demonstriert den Einsatz eines if‐Befehls. Abbildung 5.1 zeigt, was das Programm in Listing 5.1 nach zweimaliger Ausführung ausgegeben hat.

import static java.lang.System.out;

import java.util.Scanner;

import java.util.Random;

public class GuessingGame {

 public static void main(String args[]) {

 Scanner keyboard = new Scanner(System.in);

 out.print("Geben Sie eine ganze Zahl "

 + "zwischen 1 und 10 ein: ");

 int inputNumber = keyboard.nextInt();

 int randomNumber = new Random().nextInt(10) + 1;

 if (inputNumber == randomNumber) {

 out.println("**********");

 out.println("*Sie gewinnen.*");

 out.println("**********");

 } else {

 out.println("Sie verlieren.");

 out.print("Die Zufallszahl war ");

 out.println(randomNumber + ".");

 }

 out.println("Danke, dass Sie gespielt haben.");

 keyboard.close();

 }

}

Listing 5.1: Ein Ratespiel

[image:]Abbildung 5.1: Zwei Ausführungen des Ratespiels

Das Programm in Listing 5.1 spielt mit dem Benutzer ein Ratespiel. Das Programm erhält vom Benutzer eine (geratene) Zahl und generiert eine Zufallszahl zwischen 1 und 10. Wenn die Zahl, die der Benutzer eingegeben hat, mit der Zufallszahl übereinstimmt, gewinnt der Benutzer. Anderenfalls verliert er, und das Programm zeigt dem Benutzer, wie die Zufallszahl aussieht.

Tastatureingaben kontrollieren

Zusammengefasst sieht es so aus, dass in Listing 5.1 die Zeilen

import java.util.Scanner;

 Scanner keyboard = new Scanner(System.in);

 int inputNumber = keyboard.nextInt();

die Zahl übernehmen, die ein Benutzer auf der Tastatur des Computers eingibt. Die letzte der drei Zeilen packt diese Zahl in eine Variable mit dem Namen inputNumber. Lassen Sie sich nicht dadurch beirren, dass diese Zeilen ein wenig kompliziert aussehen. Sie können sie immer dann Wort für Wort übernehmen, wenn Sie Tastatureingaben auslesen wollen. Nehmen Sie die ersten beiden Zeilen (die import‐ und Scanner‐Zeilen) nur einmal in Ihr Programm auf. Und immer, wenn der Benutzer im Programm eine Zahl eingeben soll, fügen Sie eine Zeile mit nextInt hinzu (siehe die letzte der drei vorstehenden Codezeilen).

Von all den Namen in diesen drei Zeilen gehen nur zwei auf mein Konto: inputNumber und keyboard. Alle anderen Namen sind Teil von Java. Wenn ich kreativ sein möchte, kann ich die Zeilen auch so schreiben:

import java.util.Scanner;

 Scanner readingThingie = new Scanner(System.in);

 int valueTypedIn = readingThingie.nextInt();

Ich könnte die import‐Deklaration meines Programms auch so aufpolieren, wie ich das später in den Listings 5.2 und 5.3 mache, aber mehr kann ich eigentlich nicht tun.

Wenn Sie weiterlesen, werden Sie anfangen, die Muster hinter diesen drei Codezeilen zu erkennen. Ich möchte Sie hier nicht mit Informationen erschlagen. Im Moment sollte es ausreichen zu wissen, dass Sie diese drei Codezeilen kopieren können, und sich Folgendes zu merken:

[image: image] Wenn Sie java.util.Scanner importieren, verwenden Sie das Wort static nicht.

Der Import von Scanner unterscheidet sich vom Import von System.out. Wenn Sie java.lang.System.out importieren, verwenden Sie das Wort static (siehe Listing 5.1). Der Unterschied liegt im Code, denn Scanner ist der Name einer Klasse, während dies bei System.out nicht der Fall ist.

[image:]In einem der Kästen in Kapitel 4 beschreibe ich in aller Kürze, wie static verwendet wird, und in Kapitel 10 gehe ich tiefer auf dieses Thema ein.

[image: image] Der Name System.in steht (bei einem Desktop‐Computer oder Laptop) in der Regel für die Tastatur.

Um Zeichen von einer anderen Quelle als der Tastatur zu erhalten, schreiben Sie in die Klammern etwas anderes als System.in.

[image:]Was das sein kann, beschreibe ich in Kapitel 8.

[image:]Ich habe in Listing 5.1 die Entscheidung gefällt, einer meiner Variablen den Namen keyboard zu geben. Dieser Name soll Sie, den Leser, daran erinnern, dass sich die Variable auf einen Haufen von Plastiktasten vor Ihnen bezieht. Die Namensgebung keyboard sagt Java nichts über Tasten aus Plastik oder Benutzereingaben. Andererseits erinnert der Name System.in Java immer an eben diese Plastikteile. In Listing 5.1 verbindet der Code Scanner keyboard = new Scanner(System.in) den Namen keyboard mit den Plastiktasten, die wir kennen und lieben.

[image: image] Wenn Sie erwarten, dass der Benutzer einen int‐Wert (eine beliebige Ganzzahl) eingibt, verwenden Sie nextInt().

Wenn Sie davon ausgehen, dass der Benutzer einen double‐Wert (eine Zahl mit Nachkommastellen) eingibt, verwenden Sie nextDouble().Wenn Sie erwarten, dass der Benutzer true oder false eingibt, verwenden Sie nextBoolean(). Und wenn Sie erwarten, dass der Benutzer Wörter wie Barry, Java oder Hallo eingibt, verwenden Sie next(). Ein Beispiel für die Eingabe eines Wortes enthält Listing 5.3, während Listing 6.4 in Kapitel 6 ein Beispiel für die Eingabe eines einzelnen Buchstabens enthält. Und in Kapitel 8 finden Sie ein Beispiel dafür, wie ein Programm einen ganzen Satz (in einem Rutsch) einliest.

[image:]Dezimalzeichen unterscheiden sich von Land zu Land. In Deutschland stellt 10,5 (mit einem Komma) zehneinhalb dar, aber in den Vereinigten Staaten wird der gleiche Wert mit einem Punkt als Dezimalzeichen geschrieben (10.5). In der persischen Sprache sieht ein Dezimalzeichen wie ein Bindestrich aus (der etwas tiefer sitzt als die Ziffern). Das Betriebssystem Ihres Computers speichert Informationen über das Land, in dem Sie leben, und Java liest diese Informationen aus, um zu entscheiden, wie zehneinhalb auszusehen hat, wenn Sie diesen Wert über die Tastatur eingeben. Wenn Sie ein Programm ausführen, in dem die Methode nextDouble() aufgerufen wird und Java mit einer InputMismatchException antwortet, überprüfen Sie Ihre Eingabe. Es könnte sein, dass Sie 10.5 eingegeben haben, während Ihr Ländercode 10,5 (oder eine andere Darstellung des Dezimalzeichens) verlangt. Weitere Informationen finden Sie im Abschnitt Wo auf der Welt leben Sie? in Kapitel 8.

[image:]Ein Beispiel, in dem der Benutzer ein Wort eingibt, finden Sie in Listing 5.3 später in diesem Kapitel. Ein Beispiel, wo der Benutzer ein einziges Zeichen eingibt, finden Sie in Listing 6.4 in Kapitel 6. Ein Beispiel, wo das Programm eine ganze Textzeile (in einem Stück) einliest, finden Sie in Kapitel 8.

[image: image] Sie können von der Tastatur nacheinander verschiedene Werte erhalten.

Verwenden Sie zu diesem Zweck mehrfach keyboard.nextInt().

[image:]Wie ein Programm mehr als einen Wert von der Tastatur empfängt, zeigt Listing 5.4.

[image: image] Immer wenn Sie Javas Scanner verwenden, sollten Sie nach dem letzten Aufruf von nextInt (oder nextDouble oder nextWasAuchImmer) die Methode close() aufrufen.

In Listing 5.1 lautet der letzte Befehl der Methode main

keyboard.close();

Dieser Befehl übernimmt das Organisatorische und trennt das Java‐Programm von der Tastatur des Computers. Falls ich diesen Befehl in Listing 5.1 vergessen hätte, wäre nichts Schreckliches passiert. Javas virtuelle Maschine (die JVM) ist normalerweise so freundlich, selbst hinter sich aufzuräumen. Es hat sich aber bewährt, mit dem Aufrufen von close() die Trennung von der Tastatur bewusst vorzunehmen. Es gibt sogar IDEs, die Warnungen anzeigen, wenn Sie die Anweisung keyboard.close() vergessen. Deshalb denke ich in den Beispielen dieses Buches immer daran, die Variable Scanner mit close() zu schließen.

[image:]In Kapitel 13 zeige ich Ihnen einen zuverlässigeren Weg, um keyboard.close() in ein Programm einzubinden.

[image:]Wenn Ihr Programm System.out.println aufruft, verwendet es den Bildschirm Ihres Computers. Warum rufen Sie eine close()‐Methode dann nicht im Anschluss an System.out.println auf? Die Antwort ist nicht so einfach. In Listing 5.1 verbindet sich Ihr eigener Code mit der Tastatur, indem new Scanner(System.in) aufgerufen wird. Später im Programm räumt der Code hinter sich selbst auf, indem er die Methode close() aufruft. Nun ist es so, dass Ihr Code mit System.out.println keine Verbindung zum Bildschirm herstellt. (Die Variable out verweist auf einen PrintStream, aber Sie rufen new PrintStream() als Vorbereitung für den Aufruf von System.out.println nicht auf.) Stattdessen verbindet sich die Java Virtual Machine für Sie mit dem Bildschirm. Der Code der Java Virtual Machine (um den Sie sich niemals kümmern müssen) enthält als Vorbereitung für Ihren Aufruf von System.out.println einen Aufruf von PrintStream(). Und da nun der Java‐Code ein braves Stückchen Code ist, ruft die Java Virtual Machine schließlich out.close() ohne Ihr Zutun auf.

Zufallszahlen

Es ist überraschend schwer, einen echten Zufall zu erhalten. Der Mathematiker Persi Diaconis behauptete, dass eine Münze, die Sie mehrmals hintereinander in die Luft werfen und die dabei mit der Vorderseite nach oben zeigt, häufiger auf ihrer Rückseite als auf ihrer Vorderseite landet. Und wenn Sie die Münze mit ihrer Rückseite nach oben werfen, landet sie öfter auf ihrer Vorderseite als auf ihrer Rückseite. Noch nicht einmal Münzen sind fair.

Computer sind nicht besser als Münzen. Der Computer imitiert zufällige Folgen, denn letztendlich macht er nur das, was ihm gesagt wird, und das macht er unverfälscht und ohne sich aufhalten zu lassen. Wenn der Computer in Listing 5.1

import java.util.Random;

 int randomNumber = new Random().nextInt(10) + 1;

ausführt, sieht es so aus, als ob er uns eine zufällig ausgewählte Zahl – eine Ganzzahl zwischen 1 und 10 – zurückgäbe. Das ist aber eine Täuschung. Der Computer folgt nur den Anweisungen. Das hat nicht wirklich etwas mit Zufall zu tun, ist aber das Beste, was zu erreichen ist.

Ich kann Ihnen nur noch einmal den Tipp geben, diesen Code hinzunehmen. Machen Sie sich erst dann Gedanken über die Bedeutung von new Random().nextInt, wenn Sie mehr Erfahrung mit Java gesammelt haben. Kopieren Sie diesen Code einfach in Ihre eigenen Programme – und viel Vergnügen damit. Wenn die Zahlen von 1 bis 10 nicht zu Ihren Plänen passen, sollten Sie ruhig bleiben. Würfeln Sie ein wenig, indem Sie sich mit der Anweisung

int rollEmBaby = new Random().nextInt(6) + 1;

einen imaginären Würfel basteln. Wenn Sie diesen Befehl ausführen, liefert die Variable rollEmBaby Werte zwischen 1 und 6.

Der Befehl »if«

Im Zentrum von Listing 5.1 steht ein Java‐if‐Befehl. Sie können diesen Befehl mit einer Weggabelung vergleichen (siehe Abbildung 5.2). Der Computer folgt einer von zwei Möglichkeiten – der, die Sie gewinnen ausgibt, oder der mit Sie verlieren. Der Computer entscheidet, welche Richtung Sie einschlagen, indem er eine Bedingung auf richtig oder falsch hin überprüft. In Listing 5.1 lautet die Bedingung, die getestet werden soll,

inputNumber == randomNumber

[image:]Abbildung 5.2: Ein ‐Befehl verzweigt sich wie eine Weggabelung.

Entspricht der Wert der eingegebenen Zahl inputNumber dem Wert der Zufallszahl randomNumber? Wenn die Bedingung wahr ist, wird das ausgeführt, was zwischen der Bedingung und dem Wort else steht. Stellt es sich aber heraus, dass die Bedingung falsch ist, führt der Computer die Anweisungen aus, die hinter dem Wort else stehen. Auf jeden Fall führt der Computer danach den letzten println‐Aufruf aus, der Danke, dass Sie gespielt haben ausgibt.

[image:]Die Bedingung muss in einem if‐Befehl in Klammern stehen. Natürlich ist eine Zeile wie if (inputNumber == randomNumber) kein vollständiger Befehl (so wie »Wenn ich keine Steuern zahle« kein vollständiger Satz ist). Aus diesem Grund darf die Zeile if (inputNumber == randomNumber) auch nicht mit einem Semikolon enden.

[image:]Manchmal, wenn ich über eine Bedingung schreibe, die gerade getestet wird, rutscht mir das Wort Ausdruck raus, obwohl Bedingung passender wäre. Aber das geht schon in Ordnung, weil jede Bedingung ein Ausdruck ist. Ein Ausdruck ist eben etwas, das einen Wert hat, und zweifellos hat eine Bedingung einen Wert. Der Wert der Bedingung ist entweder true oder false. (Wenn Sie mehr über Ausdrücke und Bedingungen wie true und false wissen wollen, siehe Kapitel 4.)

Das doppelte Gleichheitszeichen

Der if‐Befehl in Listing 5.1 enthält in seiner Bedingung ein doppeltes Gleichheitszeichen (==). Es ist nicht dasselbe, zwei Werte miteinander zu vergleichen, um herauszufinden, ob es sich dabei um dieselben Werte handelt, oder etwas mit etwas anderem gleichzusetzen. Deshalb unterscheidet sich auch das Symbol, das bei Gleichheit verwendet wird, von dem, das Sie in einer Zuweisung benutzen. Sie dürfen in der Bedingung eines if‐Befehls das doppelte Gleichheitszeichen niemals durch ein einfaches Gleichheitszeichen ersetzen. Wenn Sie so etwas tun, funktioniert Ihr Programm nicht mehr. (Sie erhalten dann bei dem Versuch, den Code zu kompilieren, eine Fehlermeldung.)

Wenn Sie andererseits aber niemals den Fehler machen, in einer Bedingung ein einfaches Gleichheitszeichen zu verwenden, sind Sie nicht normal. Vor noch nicht allzu langer Zeit habe ich während eines Einführungskurses in Java geschworen, dass ich meinen Laserpointer verspeise, wenn niemand im Verlauf des Kurses den Fehler mit dem einfachen Gleichheitszeichen begehen würde. Dieses Versprechen konnte ich gefahrlos geben. Ich wusste, dass ich es niemals würde einlösen müssen. Und selbst wenn ich die ersten zehn Fehlermeldungen wegen des falschen Setzens einfacher Gleichheitszeichen aus meiner Wette herausgenommen hätte, wäre ich auch heute noch Laserpointer‐frei. Jeder Programmierer begeht während seiner Karriere diesen Fehler mehrmals.

[image:]Der Trick besteht nun nicht darin, den Fehler zu vermeiden, sondern ihn immer zu erkennen, wenn er passiert.

Nichts als Klammern

Der Befehl if in Listing 5.1 besteht aus zwei Hälften – einer oberen und einer unteren Hälfte. Beide Teile haben bei mir Namen. Ich nenne sie den if‐Teil (die obere Hälfte) und den else‐Teil (die untere Hälfte).

Der if‐Teil in Listing 5.1 scheint mehr als einen Befehl zu enthalten. Ich erreiche dies dadurch, dass ich die drei Befehle des if‐Teils von einem Paar geschweifter Klammern einschließen lasse. Auf diese Weise bilde ich einen Block. Bei einem Block handelt es sich um eine Reihe von Anweisungen, die durch ein Paar geschweifter Klammern zusammengehalten werden.

Mit diesem Block können drei Aufrufe von println sicher im if‐Teil verstaut werden. Durch die geschweiften Klammern werden die Zeilen mit den Sternchen und die Wörter Sie gewinnen nur dann angezeigt, wenn der Benutzer die Zahl richtig erraten hat.

Die Sache mit den Blöcken und den geschweiften Klammern gilt natürlich auch für den else‐Teil. Immer wenn inputNumber nicht gleich randomNumber ist, führt der Computer im else‐Teil drei Aufrufe von print/println aus. Um den Computer nun davon zu überzeugen, dass sich alle drei Aufrufe in der else‐Klausel befinden, habe ich sie in einen Block gepackt. Oder anders ausgedrückt, ich umschließe die drei Aufrufe mit einem Paar geschweifter Klammern.

[image:]Wenn man es genau nimmt, enthält Listing 5.1 zwischen if und else nur einen Befehl und einen weiteren Befehl hinter dem else‐Befehl. Der Trick besteht hier darin, dass Sie einen Block erhalten, wenn Sie eine Reihe von Befehlen innerhalb von geschweiften Klammern unterbringen. Und ein Block verhält sich nun einmal wie ein einziger Befehl. Das geht sogar so weit, dass Blöcke in der offiziellen Java‐Dokumentation als Befehle abgehandelt werden. Deshalb ist der Block, der Sie gewinnen und Sternchen ausgibt, ein einzelner Befehl, der drei kleinere Befehle enthält.

Den Code bei »if«‐Befehlen einrücken

In Listing 5.1 sind die Aufrufe von print und println im if‐Befehl eingerückt. (Dies betrifft die beiden Anweisungen Sie gewinnen und Sie verlieren. Die Aufrufe von print und println, die dem Wort else unmittelbar folgen, sind ebenfalls Teil des Befehls if.) Genau genommen müssen Sie die Anweisungen innerhalb eines if‐Befehls nicht einrücken. Wenn es um den Compiler geht, können Sie Ihren gesamten Code auf eine einzige Zeile oder in einem zwar kunstvollen, aber missgestalteten Zickzack schreiben. Das Problem ist dann nur, dass weder Sie noch irgendjemand sonst jemals in der Lage sein wird, in Ihrem Code einen Sinn zu erkennen. Der Grund dafür, den Code nach logischen Gesichtspunkten einzurücken, ist, ihn lesbar und damit verständlich zu machen. In Listing 5.1 helfen die Einrückungen von print und println Ihren Augen dabei, schnell zu erkennen, dass diese Befehle dem if/else‐Ablauf untergeordnet sind.

In einem kleinen Programm können fehlende oder nicht vernünftig ausgeführte Einrückungen gerade noch toleriert werden, aber in einem komplexen Programm sind fehlende oder schlecht ausgeführte Einrückungen ein Albtraum.

[image:]Wenn Sie if‐Anweisungen schreiben, könnten Sie in die Versuchung kommen, alle Regeln über geschweifte Klammern über Bord zu werfen und sich nur noch auf Einrückungen zu verlassen. Das funktioniert in anderen Programmiersprachen, wie beispielsweise Python oder Haskell, aber nicht in Java. Wenn Sie nach dem Wort else drei Befehle einrücken und vergessen, sie mit geschweiften Klammern zu umgeben, glaubt der Computer, dass der else‐Teil nur aus dem ersten der drei Befehle besteht. Schlimmer noch ist, dass die Einrückung Sie fälschlicherweise glauben lässt, dass der else‐Teil alle drei Befehle umfasst. Dadurch wird es für Sie noch schwieriger herauszufinden, warum sich Ihr Code nicht so verhält, wie Sie geplant haben. Achten Sie also auf die Klammern!

Elselos in Ifrika

Okay, der Titel dieses Abschnitts ist erfunden. Die Idee dahinter ist, dass Sie eine if‐Anweisung erstellen können, die keinen else‐Teil enthält. Vielleicht möchten Sie in Listing 5.1 dem Benutzer nicht so deutlich sagen, dass er verloren hat. Deshalb habe ich in Listing 5.2 den Code etwas abgewandelt. (Abbildung 5.3 zeigt Ihnen das Ergebnis.)

import static java.lang.System.in;

import static java.lang.System.out;

import java.util.Scanner;

import java.util.Random;

public class DontTellThemTheyLost {

 public static void main(String args[]) {

 Scanner keyboard = new Scanner(in);

 out.print("Geben Sie eine ganze Zahl "

 + "zwischen 1 und 10 ein: ");

 int inputNumber = keyboard.nextInt();

 int randomNumber = new Random().nextInt(10) + 1;

 if (inputNumber == randomNumber) {

 out.println("*Sie gewinnen.*");

 }

 out.println("Das war ein sehr guter Versuch :‐)");

 out.print("Die Zufallszahl war ");

 out.println(randomNumber + ".");

 out.println("Danke, dass Sie gespielt haben.");

 keyboard.close();

 }

}

Listing 5.2: Ein höflicheres Ratespiel

[image:]Abbildung 5.3: Zwei Ausführungen des Spiels in Listing 5.2

Die if‐Anweisung in Listing 5.2 hat keinen else‐Teil. Wenn inputNumber mit randomNumber identisch ist, gibt der Computer Sie gewinnen aus, was er andernfalls nicht macht.

Listing 5.2 enthält eine neue Idee. Wenn ich für System.in eine import‐Deklaration erstelle, bin ich in der Lage, new Scanner(System.in) auf die Kurzform new Scanner(in) zu reduzieren. Offen gestanden erspart das Hinzufügen dieser import‐Deklaration so gut wie keine Zeit. Letztendlich kostet es sogar mehr Schreibarbeit, mit dieser Deklaration zu arbeiten, als auf sie zu verzichten. Aber ich wollte Ihnen zeigen, dass es möglich ist, System.in zu importieren.

[image:]In Kapitel 4 hat Listing 4.5 herausgefunden, ob 10 Menschen in einen Aufzug passen. Eine Ausführung des Listing‐Codes könnte wie folgt aussehen:

Richtig oder falsch?

Es passen alle zehn der

Brickenchicker‐Zehnlinge

in den Aufzug:

falsch

Nutzen Sie die if‐Anweisungen, die Sie jetzt kennen, um die Ausgabe des Programms natürlicher aussehen zu lassen. Abhängig vom Wert der Variable elevatorWeightLimit im Programm sollten Sie eine der folgenden Ausgaben erhalten:

Es passen alle zehn der

Brickenchicker‐Zehnlinge

in den Aufzug.

oder

Es passen nicht alle zehn der

Brickenchicker‐Zehnlinge

in den Aufzug.

Blöcke in JShell verwenden

In Kapitel 4 wurde die interaktive JShell‐Umgebung von Java 9 vorgestellt. Sie geben eine Anweisung ein, und JShell antwortet sofort, indem es die Anweisung ausführt. Für sehr einfache Anweisungen ist das wunderbar, aber was machen Sie, wenn Sie eine Anweisung innerhalb eines Blocks haben?

In JShell können Sie eine Anweisung mit einem oder mehreren Blöcken eingeben. JShell antwortet erst, wenn Sie die gesamte Anweisung eingegeben haben – alle Blöcke und den Rest. Um zu sehen, wie das funktioniert, betrachten Sie die folgende Unterhaltung, die ich vor Kurzem mit JShell hatte:

jshell> import static java.lang.System.out

jshell> import java.util.Random

jshell> int randomNumber = new Random().nextInt(10) + 1

randomNumber ==> 4

jshell> int inputNumber = 4

inputNumber ==> 4

jshell> if (inputNumber == randomNumber) {

 ...> out.println("*Sie gewinnen.*");

 ...> }

Sie gewinnen.

jshell>

In diesem Dialog habe ich den fett ausgezeichneten Text eingegeben. Die Antworten von JShell sind nicht fett ausgezeichnet.

Wenn ich if (inputNumber == randomNumber) { eingebe und die Eingabetaste drücke, macht JShell nicht viel. Es zeigt nur eine Eingabeaufforderung (…>) an, die darauf hinweist, dass die eingegebenen Zeilen noch keine vollständige Anweisung darstellen. Ich muss noch den Rest der if‐Anweisung eingeben.

Wenn ich die if‐Anweisung mit einer schließenden geschweiften Klammer beende, erkennt JShell, dass ich eine ganze Anweisung eingegeben habe. Es führt die Anweisung aus und zeigt (in diesem Beispiel) *Sie gewinnen.* an.

Achten Sie auf das Semikolon am Ende der Zeile out.println:

[image: image] Wenn Sie eine Anweisung eingeben, die nicht innerhalb eines Blocks liegt, können Sie in JShell das Semikolon am Ende der Anweisung weglassen.

[image: image] Wenn Sie eine Anweisung innerhalb eines Blocks eingeben, dürfen Sie in JShell das Semikolon nicht weglassen (genau wie im ganz normalen Java in Listing 5.2).

[image:]Wenn Sie einen Block in JShell eingeben, haben Sie immer die Möglichkeit, den gesamten Block ohne Zeilenumbrüche in einer Zeile einzugeben, etwa wie folgt:

if (inputNumber == randomNumber) { out.println("*Sie gewinnen.*"); }

Bedingungen mit Vergleichsoperatoren und mit logischen Operatoren bilden

Java verfügt über viele kleine Gimmicks und Schmankerl, die es Ihnen ermöglichen, Bedingungen so zu formulieren, wie es Ihren Bedürfnissen entspricht. Dieser Abschnitt stellt Ihnen vor, was da alles auf Sie wartet.

Zahlen miteinander vergleichen: Vergleichsoperatoren

Tabelle 5.1 enthält die Operatoren, die Sie verwenden können, um Elemente miteinander zu vergleichen.

	Symbol

	Bedeutung

	Beispiel

	==

	ist gleich

	anzahlKatzen == 5

	!=

	ist ungleich

	anzahlKatzen != 5

	<

	ist kleiner als

	anzahlKatzen < 5

	>

	ist größer als

	anfangsBuchstabe > 'H'

	<=

	ist kleiner oder gleich

	anzahlKatzen <= 5

	>=

	ist größer oder gleich

	anzahlKatzen >= 5

Tabelle 5.1: Vergleichsoperatoren

Sie können alle Vergleichsoperatoren verwenden, die es in Java gibt, um Zahlen und Zeichen miteinander zu vergleichen. Wenn es um Zahlen geht, läuft alles so ab, wie Sie es aus der Mathematik kennen. Sobald Sie es aber mit Zeichen zu tun haben, verlangen die Vergleichsoperationen ein wenig Aufmerksamkeit von Ihnen. Wenn Sie Großbuchstaben miteinander vergleichen wollen, geht dies problemlos. Der Buchstabe B steht im Alphabet vor dem Buchstaben H, wodurch die Bedingung 'B' < 'H' wahr ist. Auch der Vergleich von Kleinbuchstaben läuft ohne Schwierigkeiten ab. Zu Problemen kommt es erst, wenn Sie einen Großbuchstaben mit einem Kleinbuchstaben vergleichen wollen, weil der Großbuchstabe immer kleiner ist als der Kleinbuchstabe. Deshalb ist 'Z' < 'A' zwar falsch, aber 'Z' < 'a' wahr.

[image:]Die Buchstaben A bis Z werden numerisch durch die Zahlen 65 bis 90 dargestellt, während dies bei den Buchstaben a bis z durch die Zahlen 97 bis 122 erfolgt. Aus diesem Grund sind Kleinbuchstaben größer als Großbuchstaben.

[image:]Passen Sie auf, wenn Sie zwei Zahlen auf Gleichheit (mit ==) oder Ungleichheit (mit !=) überprüfen. Wenn Sie Berechnungen durchgeführt und zwei double‐ oder float‐Werte erhalten haben, sind diese Werte selten wirklich gleich. (Das Problem rührt von den lästigen Nachkommastellen her.) So entsprechen zum Beispiel 21 Grad Celsius 69,8 Grad Fahrenheit. Wenn Sie die entsprechende Berechnung (9,0 / 5 * 21 + 32) manuell durchführen, lautet das Ergebnis auch 69,8. Aber die Bedingung 9.0 / 5 * 21 + 32 == 69.8 hat den Wert false, denn wenn der Computer 9.0 / 5 * 21 + 32 berechnet, lautet das Ergebnis 69.80000000000001 und nicht 69.8.

Objekte vergleichen

Wenn Sie anfangen, mit Objekten zu arbeiten, werden Sie herausfinden, dass Sie auch Objekte mit == und != vergleichen können. So ist zum Beispiel eine Schaltfläche, die Sie auf dem Bildschirm Ihres Computers sehen, ein Objekt. Und Sie können fragen, ob es sich bei dem Ding, das gerade mit der Maus angeklickt worden ist, um eine bestimmte Schaltfläche handelt. Diese Abfrage erledigen Sie mit Javas Gleichheitsoperator:

if (e.getSource() == bCopy) {

 clipboard.setText(which.getText());

[image:]Sie finden in Kapitel 16 mehr über das Antwortverhalten von Schaltflächen heraus.

Zum großen Finale mit Javas Vergleichsoperatoren kommt es, wenn Sie zwei Strings (alphanumerische Zeichenfolgen) vergleichen. (Näheres über Strings steht in Kapitel 4 im Abschnitt über Referenztypen.) Wenn Sie zwei Strings miteinander vergleichen, sollten Sie auf das doppelte Gleichheitszeichen verzichten. Mit dem doppelten Gleichheitszeichen fragen Sie: »Ist dieser String an genau derselben Stelle im Arbeitsspeicher abgelegt worden wie der andere String?« Normalerweise wollen Sie diese Frage gar nicht stellen. Stattdessen möchten Sie wissen: »Enthält dieser String dieselben Zeichen wie der andere Sting?« Um diese zweite Frage zu beantworten, enthält Javas String‐Typ eine Methode, die equals heißt. (Diese Methode ist, wie alles im bekannten Universum, Bestandteil der Java‐API.) Die Methode equals vergleicht zwei Strings (Zeichenfolgen) miteinander, um herauszufinden, ob sie aus denselben Zeichen bestehen. Listing 5.3 enthält ein Beispiel für die Verwendung von equals, und Abbildung 5.4 zeigt, was das Programm in Listing 5.3 ausgibt.

import static java.lang.System.*;

import java.util.Scanner;

public class CheckPassword {

 public static void main(String args[]) {

 out.print("Wie lautet das Kennwort? ");

 Scanner keyboard = new Scanner(in);

 String password = keyboard.next();

 out.println("Sie haben >>" + password + "<< eingegeben.");

 out.println();

 if (password == "swordfish") {

 out.print("Das Wort, das Sie eingegeben haben,");

 out.println("wurde an derselben Stelle gespeichert");

 out.println("wie das echte Kennwort.");

 out.println("Sie sind wohl ein Hacker.");

 } else {

 out.println("Das Wort, das Sie eingegeben haben,");

 out.println("wurde nicht an derselben Stelle gespeichert");

 out.println("wie das echte Kennwort.");

 out.println("Das macht aber nichts.");

 }

 out.println();

 if (password.equals("swordfish")) {

 out.println("Das Wort, das Sie eingegeben haben,");

 out.println("hat dieselben Zeichen wie das echte");

 out.println("Kennwort. Sie erhalten Zugang zu");

 out.println("unserem tollen System.");

 } else {

 out.println("Das Wort, das Sie eingegeben haben,");

 out.printl("stimmt nicht mit dem echten ");

 out.println("Kennwort überein.");

 out.println("Sie erhalten leider keinen ");

 out.println("Zugang zu unserem tollen " + "System.");

 }

 keyboard.close();

 }

}

Listing 5.3: Ein Kennwort überprüfen

[image:]Abbildung 5.4: Ein Vergleich von und der Methode

Sie gehen am besten so vor, dass Sie die Java‐Methode equals verwenden. Diese Methode hat eine ungewöhnliche Syntax: Wenn Sie sie aufrufen, müssen Sie hinter einem der Strings einen Punkt setzen, während der andere String von Klammern eingeschlossen wird.

Für den Aufruf der Methode equals ist es ohne Bedeutung, welcher der Strings den Punkt und welcher die Klammern erhält. So hätten Sie in Listing 3.3 auch

if ("swordfish".equals(password))

schreiben können. Diese Methode würde genauso gut funktionieren.

[image:]Ein Aufruf der Java‐Methode equals sieht unsymmetrisch aus, ist es aber nicht. Hinter diesem scheinbaren Missverhältnis aus Punkt und Klammern steckt als Grundgedanke, dass Sie es mit zwei Objekten zu tun haben: dem Objekt password und dem Objekt "swordfish". Beide Objekte sind vom Typ String. (Genau genommen ist password eine Variable vom Typ String und "swordfish" ein String‐Literal.) Wenn Sie schreiben password.equals("swordfish"), rufen Sie eine equals‐Methode auf, die zum password‐Objekt gehört, und übergeben ihr "swordfish" als Parameter.

[image:]Sie können in Kapitel 7 mehr über Methoden erfahren, die zu Objekten gehören.

[image:]Wenn Sie Strings miteinander vergleichen wollen, verwenden Sie die Methode equals und nicht das doppelte Gleichheitszeichen.

Alles auf einen Schlag importieren

Die erste Zeile von Listing 5.3 zeigt einen bequemen Weg auf, um sowohl System.out als auch System.in zu importieren. Wenn Sie alles importieren möchten, was System zu bieten hat, verwenden Sie das Sternchen (*) als Platzhalter. Tatsächlich ersetzt java.lang.System.* 40 einzelne Importdeklarationen, zu denen auch System.in, System.out, System.err, System.nanoTime und andere System‐Dinge gehören.

Im Allgemeinen ist es keine gute Programmierpraxis, in einer import‐Deklaration ein Sternchen zu verwenden, weshalb ich in den Beispielen dieses Buches normalerweise darauf verzichte. Wenn es aber um größere Programme geht, die Dutzende von Namen aus der Java‐API verwenden, ist der Trick mit dem Sternchen ganz schön praktisch.

[image:]Sie können ein Sternchen nicht irgendwo in einer import‐Deklaration unterbringen. So lässt sich zum Beispiel nicht alles importieren, das mit java anfängt, indem Sie import java.* schreiben. Sie dürfen ein Sternchen nur als Ersatz für einen Klassennamen oder für den Namen von etwas Statischem verwenden, das in einer Klasse untergebracht ist. Sie finden in Kapitel 9 weitergehende Informationen für den Einsatz von Sternchen in import‐Deklarationen; Statisches behandele ich in Kapitel 10.

Javas logische Operatoren

Mr. Spock wäre zufrieden. Java verfügt über alle Operatoren, die logische Tests benötigen. Ich habe sie in Tabelle 5.2 zusammengefasst.

	Operator

	Bedeutung

	Beispiel

	&&

	und

	5 < x && x < 10

	||

	oder

	x < 5 || 10 < x

	!

	nicht

	!password.equals("swordfish")

Tabelle 5.2: Logische Operatoren

Sie können mit diesen Operatoren umfangreiche Bedingungen formulieren. Listing 5.4 enthält ein Beispiel.

import javax.swing.JOptionPane;

public class Authenticator {

 public static void main(String args[]) {

 String username =

 JOptionPane.showInputDialog("Benutzername:");

 String password =

 JOptionPane.showInputDialog("Kennwort:");

 if (

 username != null && password != null &&

 (

 (username.equals("bburd") &&

 password.equals("swordfish")) ||

 (username.equals("hritter") &&

 password.equals("preakston"))

)

)

 {

 JOptionPane.showMessageDialog

 (null, "Sie erhalten Zugang.");

 } else {

 JOptionPane.showMessageDialog

 (null, "Sie benehmen sich verdächtig.");

 }

 }

}

Listing 5.4: Benutzernamen und Kennwort überprüfen

Abbildung 5.5 zeigt zwei Läufe des Programms in Listing 5.4. Ähnlich erfolgreich wie mit bbrud und swordfish sind Sie mit dem Benutzernamen hritter und dem Kennwort preakston. Alle anderen Kombinationen – einschließlich leerer Felder – scheitern.

[image:]Abbildung 5.5: Zwei Ausführungen des Codes in Listing 5.4

Ich muss gestehen, dass Abbildung 5.5 auf einer Täuschung beruht. Damit Sie den Benutzernamen und das entsprechende Kennwort lesen können, habe ich Listing 5.4 um einen zusätzlichen Befehl erweitert. Diese Anweisung (UIManager.put("TextField.font", new Font("Dialog", Font.BOLD, 14))) vergrößert die Schriftart in den Textfeldern.

Listing 5.4 demonstriert aber auch eine neue Vorgehensweise, um an die Eingaben eines Benutzers zu gelangen, wobei es hier primär darum geht, dem Benutzer für die Eingabe Dialogfelder vorzusetzen. Der Befehl

String password =

 JOptionPane.showInputDialog("Kennwort:");

erledigt mehr oder weniger dieselbe Aufgabe wie

String password = keyboard.next();

in Listing 5.3. Der große Unterschied liegt darin, dass keyboard.next() in der Console einen nicht sonderlich ansprechenden Text anzeigt, während JOptionPane.showInputDialog("Benutzername:") ein chic aussehendes Dialogfeld ausgibt, das ein Textfeld und eine Schaltfläche enthält. (Vergleichen Sie Abbildung 5.4 und Abbildung 5.5 miteinander.) Wenn der Benutzer auf OK klickt, übernimmt der Computer den Text, der sich im Textfeld befindet, und übergibt ihn an eine Variable. Tatsächlich ist es so, dass Listing 5.4 JOptionPane.showInputDialog zweimal verwendet – einmal, um einen Benutzernamen zu erhalten, und ein zweites Mal, damit der Benutzer einen Wert für die Variable password eingeben kann.

Fast am Ende von Listing 5.4 verwende ich eine leichte Variation von JOptionPane:

JOptionPane.showMessageDialog(null, "Sie erhalten Zugang.");

Mit showMessageDialog zeige ich ein ganz einfaches Dialogfeld an – ein Dialogfeld ohne Textfeld (siehe noch einmal Abbildung 5.5).

Der Name JOptionPane ist, wie Tausende anderer Namen auch, in Javas API definiert worden. (Um genau zu sein: Die Quelle von JOptionPane heißt javax.swing, was wiederum innerhalb von Javas API definiert wird.) Deshalb habe ich in Listing 5.4 javax.swing.JOptionPane importiert, damit ich den Namen JOptionPane verwenden kann. Ich importiere javax.swing.JOptionPane ganz zu Beginn des Listings.

[image:]JOptionPane.showInputDialog funktioniert in Listing 5.4 deshalb gut, weil die Eingabe des Benutzers nur aus Zeichen besteht (Benutzername und Kennwort), die nicht zum Rechnen verwendet werden. Wenn Sie wollen, dass der Benutzer Zahlen (zum Beispiel int oder double) eingibt, müssen Sie zusätzliche Arbeit investieren. Um vom Benutzer einen int‐Wert zu erhalten, schreiben Sie zum Beispiel int numberOfCows = Integer.parseInt(JOptionPane.showInputDialog("Wie viele Kühe?")). Das zusätzliche Integer.parseInt erzwingt die Eingabe eines int‐Wertes. Um vom Benutzer einen double‐Wert zu erhalten, schreiben Sie so etwas wie perMilleOfAlcohol = Double.parseDouble(JOptionPane.showInputDialog("Promille:")). Dabei sorgt Double.parseDouble dafür, dass es sich bei der Eingabe in das Textfeld um einen double‐Wert handeln muss.

Vive les nuls!

In der französischen Übersetzung heißen die »… für Dummies«‐Bücher »… Pour les Nuls«. Also ist ein deutscher Dummy in Frankreich eine Null. In Java bedeutet null nichts oder leer. Wenn Sie in Listing 5.4

if (

 username != null

lesen, bedeutet dies nichts anderes als

if (

 username ist leer

oder

if (

 username hat einen beliebigen Wert

In Russland ist ein Dummy übrigens ein чaйник, was soviel wie »Teekessel« bedeutet. In Russland heißt dieses Buch also Java für Teekessel. Würde Ihnen das gefallen?

Um herauszufinden, wie es passieren kann, dass username keinen Wert hat, sollten Sie sich noch einmal Abbildung 5.5 anschauen. Wenn Sie im ersten Dialogfeld auf Abbrechen klicken, übergibt der Computer null an Ihr Programm. Damit erhält in Listing 5.4 die Variable username den Wert null. Der Vergleich von username != null prüft nach, ob der Benutzer im ersten Dialogfeld des Programms auf Abbrechen geklickt hat. Der Vergleich password != null führt im zweiten Dialogfeld eine ähnliche Prüfung durch. Wenn Sie sich in Listing 5.4 mit der if‐Anweisung beschäftigen, lesen Sie eigentlich dieses hier:

wenn (if) (

 Sie im Dialogfeld für die Eingabe des Benutzernamens

 nicht auf Abbrechen geklickt und

 Sie im Dialogfeld für die Eingabe des Kennwortes

 nicht auf Abbrechen geklickt haben und

 (

 (Sie "bburd" im Feld für den Benutzernamen) und

 Sie "swordfish" als Kennwort eingegeben haben)

 oder

 (Sie "hritter" im Feld für den Benutzernamen und

 Sie "preakston" im Feld für das Kennwort eingegeben haben)

)

)

[image:]In Listing 5.4 sind die beiden Vergleichsaktionen username != null und password != null verpflichtend. Wenn Sie diese Befehle vergessen und während der Ausführung des Programms auf Abbrechen klicken, erhalten Sie eine üble NullPointerException‐Meldung, und das Programm stürzt vor Ihren Augen ab. Das Wort null steht in Java für nichts, und in dieser Programmiersprache ist es einfach unmöglich, einen String wie "bburd" oder "swordfish" mit nichts zu vergleichen. In Listing 5.4 sorgt der Vergleich von username != null dafür, dass Java mit der Prüfung von username.equals("bburd") nicht weitermacht, wenn der Benutzer auf Abbrechen klickt. Ohne den Einstiegstest username != null fordern Sie Probleme heraus.

[image:]Das letzte Pärchen nullen in Listing 5.4 unterscheidet sich von den anderen. Im Code JOptionPane.showMessageDialog (null, "Sie erhalten Zugang.") steht null für »kein anderes Dialogfeld«. Im Einzelnen: Der Aufruf von showMessageDialog weist Java an, ein neues Dialogfeld erscheinen zu lassen, und das Wort null gibt an, dass das neue Dialogfeld nicht aus einem vorhandenen Dialogfeld heraus entstehen soll. Merken Sie sich, dass Java darauf besteht, dass Sie etwas dazu sagen, wo der Ursprung des neuen Dialogfeldes liegt. (Aus irgendeinem Grund verzichtet Java darauf, dass Sie für showInputDialog einen Ursprung angeben müssen. Da soll mal einer schlau draus werden!) Auf jeden Fall ist es richtig gut, in Listing 5.4 über showMessageDialog auf Dialogfelder zugreifen zu können, die aus dem Nichts auftauchen.

(Bedingungen in Klammern)

Behalten Sie die Klammern im Auge! Wenn Sie Bedingungen mit logischen Operatoren zusammenfügen, lohnt es sich, damit Zeit zu »vergeuden«, Klammern zu setzen, die nicht unbedingt notwendig sind. Das ist allemal besser, als die Ergebnisse Ihrer Arbeit dadurch zu vermasseln, dass Sie irgendwo auf Klammern verzichten. Nehmen Sie zum Beispiel den Ausdruck:

2 < 5 || 100 < 6 && 27 < 1

Wenn Sie diesen Ausdruck falsch lesen, könnten Sie zu dem Ergebnis kommen, dass der Wert des Ausdrucks false ist. Sie könnten nämlich fälschlicherweise glauben, dass der Ausdruck (etwas oder etwas anderes) && 27 < 1 bedeutet. Da nun 27 < 1 falsch ist, schließen Sie, dass der ganze Ausdruck falsch ist. In Wirklichkeit wird nun aber der Operator && vor dem Operator || verarbeitet. Der Ausdruck fragt also tatsächlich 2 < 5 || (etwas oder etwas anderes). Da 2 < 5 wahr ist, ist der ganze Ausdruck wahr.

Um den Wert des Ausdrucks von true in false zu ändern, umgeben Sie die ersten beiden Vergleiche des Ausdrucks mit einer Klammer:

(2 < 5 || 100 < 6) && 27 < 1

[image:]Der Java‐Operator || ist inklusiv. Das bedeutet, dass Sie als Wert true erhalten, wenn der Operand auf der linken Seite oder der Operand auf der rechten Seite oder beide Seiten des Ausdrucks wahr ist beziehungsweise sind. So ist zum Beispiel der Ausdruck 2 < 10 || 20 < 30 wahr.

[image:]In Java ist es nicht möglich, Vergleiche wie in der Umgangssprache zu kombinieren. Im Alltag können Sie sagen: »Wir erwarten zum Abendessen zwischen drei und zehn Personen.« In Java erhalten Sie eine Fehlermeldung, wenn Sie schreiben 3 <= personen <= 10. Um einen solchen Vergleich hinzubekommen, benötigen Sie etwas wie 3 <= personen && personen <= 10.

In Listing 5.4 enthält der if‐Befehl mehr als ein Dutzend Klammern. Was passiert, wenn Sie zwei davon weglassen?

if (

 username != null &&

 password != null &&

 // die öffnende Klammer wird weggelassen

 (username.equals("bburd") &&

 password.equals("swordfish")) ||

 (username.equals("hritter") &&

 password.equals("preakston"))

 // die schließende Klammer wird weggelassen

)

Java versucht, Ihre Wünsche zu deuten, indem es alles vor dem »oder« (dem Operator ||) gruppiert:

if (

 username != null &&

 password != null &&

 (username.equals("bburd") &&

 password.equals("swordfish"))

 ||

 (username.equals("hritter") &&

 password.equals("preakston"))

)

Wenn der Benutzer auf Abbrechen klickt und username den Wert null hat, sagt Java: »Okay! Der Kram vor dem Operator || ist falsch, aber vielleicht gilt das nicht für das, was hinter diesem Operator steht. Ich werde also die Informationen dort prüfen.« (Java führt häufig Selbstgespräche und befindet sich deshalb auch in psychiatrischer Behandlung.)

Sei's drum, aber wenn Java letztendlich username.equals("hritter") überprüft, bricht Ihr Programm mit einer hässlichen Meldung vom Typ NullPointerException ab. Sie haben Java dadurch verärgert, dass Sie versucht haben, equals bei einem leeren username anzuwenden.

[image:]Nehmen Sie ein paar Änderungen an dem Code in Listing 5.4 vor:

[image: image] Fügen Sie der Liste zulässiger Anmeldungen eine neue Kombination aus Benutzername/Passwort hinzu.

[image: image] Ändern Sie die Bedingung der if‐Anweisung, sodass ein Eintrag für den Benutzernamen ganz in Großbuchstaben zulässig ist. Mit anderen Worten, BBURD ergibt dasselbe Ergebnis wie bburd, und die Eingabe HRITTER ergibt dasselbe Ergebnis wie hritter.

[image: image] Ändern Sie in Listing 5.4

username != null && password != null

in

!(username == null || password == null)

Funktioniert das Programm noch? Warum? Oder warum nicht?

[image: image] Ändern Sie in Listing 5.4

username != null && password != null

in

!(username == null && password == null)

Das ist vergleichbar mit der vorhergehenden Änderung. Der einzige Unterschied ist die Verwendung von && statt || zwischen den beiden Tests mit == null.

Funktioniert das Programm noch? Warum? Oder warum nicht?

Verschachtelungen

Kennen Sie die ineinander verschachtelten russischen Puppen, die Matrjoschkas? Wenn Sie eine Puppe öffnen, finden Sie darin eine zweite Puppe, in der es eine dritte und darin eine vierte gibt. Dasselbe können Sie mit Javas if‐Anweisungen machen. Listing 5.5 zeigt Ihnen, wie das geht.

import static java.lang.System.out;

import java.util.Scanner;

public class Authenticator2 {

 public static void main(String args[]) {

 Scanner keyboard = new Scanner(System.in);

 out.print("Benutzername: ");

 String username = keyboard.next();

 if (username.equals("bburd")) {

 out.print("Kennwort: ");

 String password = keyboard.next();

 if (password.equals("swordfish")) {

 out.println("Sie erhalten Zugang.");

 } else {

 out.println("Falsches Kennwort");

 }

 } else {

 out.println("Unbekannter Benutzer");

 }

 keyboard.close();

 }

}

Listing 5.5: Verschachtelte if‐Anweisungen

Abbildung 5.6 gibt verschiedene Läufe des Codes in Listing 5.5 wieder. Die Grundidee ist, dass Sie zwei Tests bestehen müssen, um sich anzumelden (oder anders ausgedrückt, zwei Bedingungen müssen wahr sein). Die erste Bedingung prüft, ob der Benutzername gültig ist; die zweite Bedingung prüft, ob das Kennwort richtig ist. Wenn Sie die erste Prüfung überstehen (die auf den Benutzernamen), gelangen Sie sofort zu einer weiteren if‐Anweisung, die einen zweiten Test durchführt (den auf das Kennwort). Falls Sie den ersten Test nicht bestehen, kommen Sie gar nicht erst zum zweiten. Abbildung 5.7 bietet einen Überblick über den allgemeinen Ablauf.

[image:]Der Code in Listing 5.5 erledigt seinen Job mit verschachtelten if‐Anweisungen wirklich gut, aber wenn es um eine echte Benutzerauthentifizierung geht, sollten Sie diesen Code besser vergessen. Erstens dürfen Sie ein Kennwort niemals in Klarschrift anzeigen (verwenden Sie immer Sternchen, um das Kennwort zu maskieren). Zweitens müssen Sie Kennwörter verschlüsseln. Drittens dürfen Sie einem bösartigen Benutzer nie bekannt geben, welches der beiden Wörter (der Benutzername oder das Kennwort) falsch eingegeben wurde. Und viertens … ich könnte noch eine Weile weitermachen.

[image:]Abbildung 5.6: Das Programm in Listing 5.5 wurde dreimal ausgeführt.

[image:]Abbildung 5.7: Versuchen Sie nicht, mit dieser Gabel zu essen.

[image:]Ändern Sie das Programm in Listing 5.4 so ab, dass das Programm die Meldung Nicht genügend Informationen ausgibt, wenn der Benutzer bei der Aufforderung zur Eingabe des Benutzernamens oder des Passworts auf Abbrechen klickt.

Unter mehreren Alternativen wählen (Java‐Befehl »switch«)

Ich bin der Erste, der zugibt, dass er es hasst, Entscheidungen zu fällen. Wenn etwas schiefläuft, wünsche ich mir, dass jemand anders dafür verantwortlich ist. Das Schreiben des letzten Abschnitts (über die Entscheidungsfindung mit Javas if‐Anweisung) hat mich ziemlich fertiggemacht – was auch der Grund dafür ist, dass mein Geist ein wenig Unwillen zeigte, als ich diesen Abschnitt mit seinen Auswahlmöglichkeiten begann. Aber es tut gut, so etwas einzugestehen.

Der »switch«‐Befehl

Nun ist es an der Zeit, dass Sie sich mit Situationen beschäftigen, in denen es eine Entscheidung mit vielen Alternativen gibt. Nehmen Sie den am Lagerfeuer so beliebten Song Al's All Wet (vollständiger Text im Kasten). Sie möchten unbedingt Code schreiben, der die Verse (oder Strophen) dieses Songs ausgibt. Glücklicherweise müssen Sie nicht alle Wörter immer wieder eingeben; Sie können die Wiederholungen im Text zu Ihrem Vorteil nutzen.

Al's All Wet

Gesungen zur Melodie von »Gentille Alouette«

Al's all wet. Oh, why is Al all wet? Oh,

Al's all wet 'cause he's standing in the rain.

Why is Al out in the rain?

That's because he has no brain.

Has no brain, has no brain,

In the rain, in the rain.

Ohhhhhhhh…

Al's all wet. Oh, why is Al all wet? Oh,

Al's all wet 'cause he's standing in the rain.

Why is Al out in the rain?

That's because he is a pain.

He's a pain, he's a pain,

Has no brain, has no brain,

In the rain, in the rain.

Ohhhhhhhh…

Al's all wet. Oh, why is Al all wet? Oh,

Al's all wet 'cause he's standing in the rain.

Why is Al out in the rain?

'Cause this is the last refrain.

Last refrain, last refrain,

He's a pain, he's a pain,

In the rain, in the rain.

Ohhhhhhhh…

Al's all wet. Oh, why is Al all wet? Oh,

Al's all wet 'cause he's standing in the rain.

– Harriet Ritter and Barry Burd

Ein komplettes Programm, um den gesamten Text von Al's All Wet anzuzeigen, wird erst in Kapitel 6 vorgestellt. Bis dahin wollen wir davon ausgehen, dass Sie eine Variable mit dem Namen verse (deutsch Vers, Strophe) angelegt haben. Der Wert von verse beträgt 1, 2, 3 oder 4, wobei dieser Wert davon abhängt, welche Strophe von Al's All Wet Sie ausgeben wollen. Sie könnten Code mit umständlichen if‐Anweisungen schreiben, die alle denkbaren Strophennummern prüfen.

if (verse == 1) {

 out.println("That's because he has no brain.");

}

if (verse == 2) {

 out.println("That's because he is a pain.");

}

if (verse == 3) {

 out.println("'Cause this is the last refrain.");

}

Aber diese Vorgehensweise sieht recht unwirtschaftlich aus. Warum sollten Sie keinen Befehl erstellen, der den Wert von verse nur einmal prüft und dann die passende Aktion auf der Grundlage des gefundenen Wertes ausführt? So einen Befehl gibt es. Er heißt switch. Listing 5.6 enthält ein Beispiel für den switch‐Befehl.

import static java.lang.System.out;

import java.util.Scanner;

public class JustSwitchIt {

 public static void main(String args[]) {

 Scanner keyboard = new Scanner(System.in);

 out.print("Welcher Vers? ");

 int verse = keyboard.nextInt();

 switch (verse) {

 case 1:

 out.println("That's because he has no brain.");

 break;

 case 2:

 out.println("That's because he is a pain.");

 break;

 case 3:

 out.println("'Cause this is the last refrain.");

 break;

 default:

 out.println("Einen solchen Vers gibt es nicht. "

 + "Bitte erneut versuchen.");

 break;

 }

 out.println("Ohhhhhhhh...");

 keyboard.close();

 }

}

Listing 5.6: Ein switch‐Befehl

Abbildung 5.8 zeigt das Ergebnis von zwei Läufen des Programms in Listing 5.6 (Abbildung 5.9 stellt die Struktur des Programms dar.) Zunächst gibt der Benutzer eine Zahl ein, beispielsweise 2. Dann erreicht die Ausführung des Programms den switch‐Befehl. Der Computer prüft den Wert der Variablen verse. Wenn der Computer feststellt, dass dieser Wert 2 ist, überprüft er alle case‐Klauseln des switch‐Befehls. Der Wert 2 passt nicht zum obersten case, weshalb der Computer mit der mittleren der drei case‐Klauseln weitermacht. Der Wert von case (die Zahl 2) stimmt mit dem Wert der Variablen verse überein, weshalb der Computer die Anweisungen ausführt, die unmittelbar auf case 2 folgen. Dies sind

out.println("That's because he is a pain.");

break;

[image:]Abbildung 5.8: Zwei Ausführungen des Codes in Listing 5.6

[image:]Abbildung 5.9: Die Struktur des ‐Befehls in Listing 5.6

Der erste dieser beiden Befehle zeigt auf dem Bildschirm die Zeile That's because he is a pain. an. Der zweite Befehl ist ein break‐Befehl. Wenn der Computer auf einen break‐Befehl trifft, springt er aus der switch‐Anweisung heraus, in der er sich gerade befindet. In Listing 5.6 geschieht dies, unmittelbar nachdem er 'Cause this is the last refrain. angezeigt hat. Der Computer verlässt den kompletten switch‐Befehl und begibt sich direkt zu der Anweisung, die auf das Ende des switch‐Bfehls folgt. Er zeigt nun Ohhhhhhhh... an, weil dies die Anweisung verlangt, die auf den switch‐Befehl folgt.

Wenn ein lästiger Benutzer nach Vers 6 fragt, reagiert der Computer damit, dass er case 1, case 2 und case 3 überspringt und default ausführt und Einen solchen Vers gibt es nicht. Bitte erneut versuchen. anzeigt. Danach verlässt der Computer die switch‐Anweisung endgültig und gibt Ohhhhhhhh... auf dem Bildschirm aus.

[image:]Es ist nicht zwingend notwendig, an das Ende eines switch‐Befehls ein break zu setzen. In Listing 5.6 gibt es das letzte break (das Teil von default ist) nur der Ordnung halber.

To break or not to break

Im Leben eines jeden Java‐Programmierers kommt irgendwann einmal der Zeitpunkt, an dem er einen break‐Befehl vergisst. Zunächst sieht das, was dann auf dem Bildschirm ausgegeben wird, verwirrend aus, aber schon bald erinnert sich der Programmierer an ein Durchfallen. Der Begriff Durchfallen beschreibt, was geschieht, wenn Sie eine case‐Klausel ohne break beenden. Das Programm fällt dann gewissermaßen bis zum nächsten case durch. Dieses Durchfallen wird so lange fortgesetzt, bis entweder ein break‐Befehl oder das Ende des gesamten switch‐Befehls erreicht wird.

Normalerweise möchten Sie natürlich bei einem switch‐Befehl nicht durchfallen, weshalb Sie an den entsprechenden Stellen break‐Befehle anbringen. Aber es gibt auch Situationen, in denen ein Durchfallen notwendig ist. Nehmen Sie als Beispiel den Song Al's All Wet (dessen Text im Kasten weiter vorn in diesem Kapitel abgedruckt ist). Jeder Vers von Al's All Wet erweitert die Zeilen der vorherigen Strophe und erweitert diese um eine neue Zeile. Diese Situation (das Anwachsen der Zeilen von einem Vers zum nächsten) schreit regelrecht nach einem switch‐Befehl mit Durchfallen. Listing 5.7 setzt diese Idee um.

import static java.lang.System.out;

import java.util.Scanner;

public class FallingForYou {

 public static void main(String args[]) {

 Scanner keyboard = new Scanner(System.in);

 out.print("Welcher Vers? ");

 int verse = keyboard.nextInt();

 switch (verse) {

 case 3:

 out.print("Last refrain, ");

 out.println("last refrain,");

 case 2:

 out.print("He's a pain, ");

 out.println("he's a pain,");

 case 1:

 out.print("Has no brain, ");

 out.println("has no brain,");

 }

 out.println("In the rain, in the rain.");

 out.println("Ohhhhhhhh...");

 out.println();

 keyboard.close();

 }

}

Listing 5.7: Ein switch‐Befehl mit Durchfallen

Abbildung 5.10 zeigt verschiedene Läufe des Programms in Listing 5.7. Da der switch‐Befehl keine break‐Anweisungen enthält, fällt das Programm immer durch. Wenn der Benutzer beispielsweise Vers 2 auswählt, führt der Computer die beiden Anweisungen in case 2 aus.

out.print("He's a pain, ");

out.println("he's a pain,");

Dann macht der Computer sofort mit der Ausführung der beiden Befehle in case 1 weiter:

out.print("Has no brain, ");

out.println("has no brain,");

Das ist auch richtig so, weil die zweite Strophe des Liedes alle Zeilen der ersten Strophe enthält.

[image:]Abbildung 5.10: Vier Ausführungen des Programms in Listing 5.7

Beachten Sie, was passiert, wenn der Benutzer nach Vers 6 fragt. Im switch‐Befehl gibt es weder einen case 6 noch ein default. Aus diesem Grund wird keine der Aktionen im switch‐Befehl ausgeführt. und der Computer springt sofort zum ersten Befehl, der auf die switch‐Anweisung folgt, und zeigt In the rain, in the rain und Ohhhhhhhh... an.

Strings in einem »switch«‐Befehl

In den Listings 5.6 und 5.7 steuert die Variable verse (ein int‐Wert) die switch‐Anweisung zu einem passenden case. Ein int‐Wert kann in jeder Java‐Version für switch‐Befehle verwendet werden. (Da wir gerade dabei sind: Auch char‐Werte und einige andere Wertearten können seit jeher in switch‐Befehlen der Programmiersprache Java verwendet werden.)

Wenn Sie mit Java 7 oder später arbeiten, lässt es sich einrichten, dass der case, der in einem switch‐Befehl ausgeführt werden soll, von dem Wert eines bestimmten Strings abhängt. Listing 5.8 stellt den Einsatz von Strings in switch‐Befehlen dar. Abbildung 5.11 zeigt, was der Code ausgibt, wenn er ausgeführt wird.

import static java.lang.System.out;

import java.util.Scanner;

public class SwitchIt7 {

 public static void main(String args[]) {

 Scanner keyboard = new Scanner(System.in);

 out.print("Welcher Vers (eins, zwei oder drei)? ");

 String verse = keyboard.next();

 switch (verse) {

 case "eins":

 out.println("That's because he has no brain.");

 break;

 case "zwei":

 out.println("That's because he is a pain.");

 break;

 case "drei":

 out.println("'Cause this is the last refrain.");

 break;

 default:

 out.println("Dieser Vers existiert nicht. "

 + "Versuchen Sie es bitte noch einmal.");

 break;

 }

 out.println("Ohhhhhhhh...");

 keyboard.close();

 }

}

Listing 5.8: Ein switch‐Befehl mit einem String

[image:]Abbildung 5.11: Ausführung des Programms in Listing 5.8

[image:]Üben Sie die if‐ und switch‐Anweisungen gut ein!

[image: image] Schreiben Sie ein Programm, das den Namen eines Monats als Eingabe entgegennimmt und dann die Anzahl der Wochentage in diesem Monat ausgibt. In der ersten Version des Programms gehen Sie davon aus, dass der Februar immer 28 Tage hat.

[image: image] Jetzt verbessern Sie Ihren Code. Lassen Sie den Benutzer einen Monatsnamen eingeben, aber fragen Sie von ihm auch ab, ob es sich um ein Schaltjahr handelt.

151-168

Kapitel 6

Den Programmablauf mit Schleifen steuern

In diesem Kapitel

Schleifen verwenden

Schleifen zählen

Erbarmungslos wiederholen (bis der Benutzer eine klare Antwort gibt)

1966 schrieb das Unternehmen Geschichte, dem wir Head & Shoulders zu verdanken haben. Sie konnten auf der Rückseite der Flasche als Gebrauchsanleitung lesen: »EINSCHÄUMEN, AUSWASCHEN, WIEDERHOLEN.« Niemals zuvor ist eine Gebrauchsanleitung so erfolgreich zusammengefasst worden. Die Leute, die sich beruflich um Gebrauchsanleitungen kümmern, betrachteten diese Botschaft als wegweisende Leistung. Anleitungen wie diese unterschieden sich stark von dem, was damals alltäglich war. (So lautete zum Beispiel der erste Satz auf einer Dose mit Mückenspray: »Drehen Sie diese Dose so, dass Sie von Ihrem Gesicht wegzeigt.«)

Neben ihrer Kürze bestand das Besondere, das die Anleitung von Head & Shoulders so cool machte, aus drei einfachen Wörtern, die es schafften, eine Idee einzufangen, die die Kernaussage aller Anleitungen bildet: Wiederholung. Das letzte Wort, wiederholen, machte aus einer ansonsten nichtssagenden Anleitung ein ausgeklügeltes Rezept für eine Handlung.

Der wesentliche Gedanke ist hier, dass Sie nicht eine Anweisung nach der anderen befolgen sollten, wenn Sie sich mit Anleitungen beschäftigen. Stattdessen sollten Sie vielleicht auch einmal zurückgehen. Sie treffen Entscheidungen ("Wenn DAS HAAR TROCKEN IST, dann BENUTZE EINE HAARSPÜLUNG") und Sie wiederholen Schritte ("EINSCHÄUMEN‐AUSWASCHEN und dann erneut EINSCHÄUMEN‐AUSWASCHEN"). Bei der Anwendungsentwicklung verwenden Sie die ganze Zeit über Entscheidungen und Wiederholungen. Dieses Kapitel behandelt Wiederholungen (Schleifen) in Java.

Anweisungen mehrfach wiederholen (Java‐Befehl »while«)

Hier kommt ein weiteres Ratespiel. Der Computer erzeugt eine Zufallszahl zwischen 1 und 10 und fordert Sie auf, die Zahl zu erraten. Wenn Sie falsch raten, wird das Spiel fortgesetzt. Wenn Sie richtig raten, wird das Spiel beendet. Listing 6.1 zeigt das entsprechende Programm und Abbildung 6.1 eine Spielrunde.

import static java.lang.System.out;

import java.util.Scanner;

import java.util.Random;

public class GuessAgain {

 public static void main(String args[]) {

 Scanner keyboard = new Scanner(System.in);

 int numGuesses = 0;

 int randomNumber = new Random().nextInt(10) + 1;

 out.println(" ************ ");

 out.println("Willkommen beim Ratespiel");

 out.println(" ************ ");

 out.println();

 out.print("Geben Sie eine ganze Zahl zwischen "

 + "1 und 10 ein: ");

 int inputNumber = keyboard.nextInt();

 numGuesses++;

 while (inputNumber != randomNumber) {

 out.println();

 out.println("Versuchen Sie es erneut ...");

 out.print("Geben Sie eine ganze Zahl zwischen"

 + " 1 und 10 ein: ");

 inputNumber = keyboard.nextInt();

 numGuesses++;

 }

 out.print("Sie gewinnen nach ");

 out.println(numGuesses + " Versuchen.");

 keyboard.close();

 }

}

Listing 6.1: Ein Ratespiel mit Wiederholungen

[image:]Abbildung 6.1: Spielen Sie, bis Sie umfallen.

In Abbildung 6.1 braucht der Benutzer sechs Versuche. Jedes Mal prüft der Computer, ob die geratene Zahl richtig ist. Ist sie falsch, erscheint die Aufforderung, es noch einmal zu versuchen. Bei einer richtigen Antwort wird ein begeistertes »Sie gewinnen« und die Anzahl der Versuche ausgegeben. Der Computer wiederholt mehrere Befehle und prüft bei jedem Durchlauf erneut nach, ob die Zufallszahl richtig geraten wurde. Außerdem fügt er bei jedem dieser Durchläufe seiner Liste mit Rateversuchen 1 hinzu. Wenn der Benutzer richtig geraten hat, zeigt der Computer das Ergebnis dieser Liste an. Abbildung 6.2 gibt die Struktur dieses Ablaufs wieder.

Wenn Sie noch einmal einen Blick auf Listing 6.1 werfen, sehen Sie den Code, der dies alles erledigt. Im Zentrum steht eine Sache, die while‐Befehl heißt (und die auch while‐Schleife genannt wird). In die normale Umgangssprache übersetzt, sagt dieser Befehl:

Während (while) inputNumber ungleich randomNumber ist,

führe die Anweisungen in den geschweiften Klammern aus: {

}

Die Anweisungen in den geschweiften Klammern (die Anweisungen, die für die Wiederholungen zuständig sind) sorgen dafür, dass Versuchen Sie es erneut ... und Geben Sie eine ganze Zahl zwischen 1 und 10 ein ausgegeben werden, nehmen eine Zahl von der Tastatur an und erhöhen die Anzahl der Versuche um 1.

[image:]Abbildung 6.2: Ein Ratespiel mit Wiederholungen

[image:]Wenn Sie es mit Zählern wie numGuesses in Listing 6.1 zu tun haben, besteht die Gefahr, sich um 1 nach oben oder unten zu verzählen. Sie können dies vermeiden, indem Sie dafür sorgen, dass die ++‐Befehle und die Anweisungen, deren Ereignisse Sie zählen, dicht nebeneinanderstehen. So fängt zum Beispiel in Listing 5.1 die Variable numGuess mit dem Wert 0 an, denn wenn das Programm startet, hat der Benutzer noch keinen Versuch unternommen zu raten. Weiter hinten im Programmverlauf steht dann direkt hinter jedem Aufruf von keyboard.nextInt ein numGuesses++‐Befehl. Auf diese Weise erreichen Sie, dass der Zähler immer dann erhöht wird, wenn der Benutzer einen neuen Rateversuch unternimmt.

Die Befehle in den geschweiften Klammern werden so lange wiederholt, wie inputNumber != randomNumber wahr ist. Jede Wiederholung der Befehle in der Schleife wird Iteration der Schleife oder Schleifendurchlauf genannt. In Abbildung 6.1 durchläuft die Schleife sechs Iterationen. Wenn Sie mir nicht glauben, zählen Sie in der Abbildung nach, wie oft Versuchen Sie es erneut … ausgegeben wird. (Diese Aufforderung erscheint bekanntlich nach jedem Fehlversuch beim Raten.)

Wenn Sie lange genug warten, rät der Benutzer irgendwann richtig, und der Computer geht an den Anfang des while‐Befehls zurück, prüft die Bedingung in den Klammern und findet heraus, dass er eine doppelte Verneinung erreicht hat. Die Ungleich‐Beziehung (!=) zwischen inputNumber und randomNumber ist nicht länger wahr. Da dies dazu führt, dass die Bedingung der while‐Anweisung falsch geworden ist, springt der Computer hinter die while‐Schleife zu den dort stehenden Befehlen, die dann zum Beispiel Sie gewinnen nach 6 Versuchen ausgeben.

[image:]So, wie der Code in Listing 6.1 aufgebaut ist, springt der Computer nie aus der Mitte der Schleife heraus. Wenn er herausfindet, dass inputNumber ungleich randomNumber ist, legt er los und führt die fünf Befehle aus, die sich innerhalb der geschweiften Klammern der Schleife befinden. Der Computer führt diese Prüfung nach einem vollen Durchlauf dieser fünf Befehle erneut aus (um herauszufinden, ob inputNumber immer noch ungleich randomNumber ist).

[image:][image: image] Ändern Sie das Programm in Listing 6.1 so ab, dass die generierte Zufallszahl eine Zahl zwischen 1 und 100 ist. Um dem Spieler das Leben erträglicher zu machen, lassen Sie das Programm einen Hinweis ausgeben, wenn der Spieler falsch geraten hat. Hinweise wie Versuchen Sie es mit einer höheren Zahl oder Versuchen Sie es mit einer niedrigeren Zahl sind sehr hilfreich.

[image: image] Schreiben Sie ein Programm, bei dem der Benutzer hintereinander int‐Werte eingeben muss. Der Computer beendet die Schleife, sobald der Benutzer eine nicht positive Zahl (z. B. die Zahl 0 oder die Zahl ‐17) eingibt. Nach der Schleife zeigt das Programm die größte vom Benutzer eingegebene Zahl an. Wenn der Benutzer beispielsweise die Zahlen

7

25

3

9

0

eingibt, zeigt das Programm die Zahl 25 an.

Eine bestimmte Anzahl an Wiederholungen festlegen (Java‐Befehl »for«)

»Schreibe hundertmal ›Ich soll während des Unterrichts nicht schwätzen‹ an die Tafel.«

Was Ihr Lehrer damit wirklich gemeint hat, ist:

Setze den Zähler auf 0.

So lange der Zähler kleiner oder gleich 100 ist,

 Schreibe an die Tafel:

 'Ich soll während des Unterrichts nicht schwätzen'.

 Erhöhe den Zähler um 1.

Glücklicherweise wussten Sie damals noch nichts von Schleifen und Zählern. Denn wenn Sie davon bei Ihrem Lehrer angefangen hätten, wären Sie in noch größere Schwierigkeiten gekommen.

Auf die eine oder die andere Weise stoßen Sie im Leben immer und überall auf zählende Schleifen, und eine gute Programmierung spiegelt das echte Leben wider – oder war das anders herum? Wenn Sie dem Computer mitteilen, was er zu tun hat, gehören hierzu auch die Anweisungen, drei Zeilen auszugeben, zehn Konten zu verarbeiten, eine Million Telefonnummern anzuwählen oder etwas anderes zu erledigen, das ansteht. Da zählende Schleifen zum Alltagsgeschäft der Programmierung gehören, haben die Entwickler von Programmiersprachen für diese Art von Schleifen besondere Befehle erstellt. In Java heißt der Befehl, der etwas eine bestimmte Anzahl von Wiederholungen durchlaufen lässt, for. Die Listings 6.2 und 6.3 demonstrieren, wie der for‐Befehl verwendet wird. Dabei enthält Listing 6.2 ein ganz einfaches, und Listing 6.3 ein exotischeres Beispiel. Suchen Sie sich eines aus.

import static java.lang.System.out;

public class Yawn {

 public static void main(String args[]) {

 for (int count = 1; count <= 10; count++) {

 out.print("Der Zähler hat den Wert ");

 out.print(count);

 out.println(".");

 }

 out.println("Fertig!");

 }

}

Listing 6.2: Die langweiligste for‐Schleife der Welt

Abbildung 6.3 zeigt Ihnen, was Sie erhalten, wenn Sie das Programm in Listing 6.2 ausführen. Die for‐Schleife dieses Listings beginnt damit, dass sie den Wert der Variablen count auf 1 setzt. Nun prüft der Befehl nach, ob count kleiner oder gleich 10 ist (was zu diesem Zeitpunkt sicher ist). Dann legt der for‐Befehl los und führt die Ausgabebefehle zwischen den geschweiften Klammern aus. (Die erste Anzeige lautet Der Zähler hat den Wert 1.) Jetzt erhöht der letzte Befehl in den (runden) Klammern den Wert von count um 1.

[image:]Abbildung 6.3: Bis zehn zählen

Die for‐Anweisung prüft nun, da count gleich 2 ist, erneut nach, ob count kleiner oder gleich 10 ist. Hier kommt eine Bestätigung zurück (weil 2 bekanntlich kleiner als 10 ist). Die for‐Schleife kehrt zu den Anweisungen in den geschweiften Klammern zurück und gibt auf dem Bildschirm Der Zähler hat den Wert 2. aus. Anschließend wird count wieder um 1 erhöht, und das ganze Spiel beginnt von Neuem.

So geht es weiter, bis count nach zehn Iterationen den Wert 11 hat. Wenn dies der Fall ist, schlägt der Test, ob count kleiner oder gleich 10 ist, fehl, und die Schleife wird beendet. Der Computer springt nun zu dem Befehl, der unmittelbar auf die for‐Schleife folgt. In Listing 6.2 gibt der Computer Fertig! aus. Abbildung 6.4 stellt den Ablauf noch einmal grafisch dar.

[image:]Abbildung 6.4: Die Struktur der ‐Schleife in Listing 6.2

Die Anatomie eines »for«‐Befehls

Auf das Schlüsselwort for folgt eine Klammer, die immer drei Dinge enthält: eine Initialisierung, einen Ausdruck und eine Aktualisierung.

Jedes dieser drei Elemente in den Klammern erfüllt einen ganz bestimmten Zweck:

[image: image] Die Initialisierung wird ausgeführt, wenn das Programm den for‐Befehl zum ersten Mal erreicht.

[image: image] Der Ausdruck wird mehrfach (vor jeder Iteration) ausgewertet.

[image: image] Auch die Aktualisierung wird mehrfach (am Ende jeder Iteration) vorgenommen.

Vielleicht hilft es, wenn Sie sich die Schleife mit umgebautem Text vor Augen führen:

int count = 1

for count <= 10 {

 out.print("Der Zähler hat den Wert ");

 out.print(count);

 out.println(".");

 count++

}

Sie dürfen auf diese Weise keinen echten for‐Befehl schreiben. Hier geht es nur darum, Ihnen zu zeigen, in welcher Reihenfolge die Teile des Befehls ausgeführt werden.

[image:]Wenn Sie in der Initialisierung einer for‐Schleife eine Variable deklarieren, kann diese nur innerhalb der Schleife verwendet werden. So erhalten Sie zum Beispiel eine Fehlermeldung, wenn Sie in Listing 6.2 out.println(count) nach dem Ende der Schleife verwenden.

[image:]Sie können alles, was Sie mit einer for‐Schleife machen, auch mit einer while‐Schleife durchführen. Ob Sie sich für eine for‐Schleife entscheiden, ist eine Frage des Stils und der Bequemlichkeit, und nicht eine der anstehenden Aufgaben.

[image:]Sie wollen üben? Versuchen Sie sich an den folgenden Aufgabenstellungen:

[image: image] Die Initialisierung einer for‐Anweisung kann aus mehreren Teilen bestehen. Die Aktualisierung einer for‐Anweisung kann ebenfalls aus mehreren Teilen bestehen. Um herauszufinden, wie das geht, geben Sie die folgenden Zeilen in JShell ein oder erstellen Sie ein kleines Java‐Programm aus den Zeilen:

import static java.lang.System.out

for (int i = 0, j = 10; i < j; i++, j‐‐)

{out.println(i + " " + j);}

[image: image] Welche Ausgabe erzeugt der folgende Code:

int total = 0;

for (int i = 0; i < 10; i++) {

 total += i;

}

System.out.println(total);

In diesem Code wird die Variable total als Akkumulator bezeichnet, weil es die Werte innerhalb der Schleife akkumuliert (addiert).

[image: image] In der Mathematik steht das Ausrufezeichen (!) für die Fakultät – die Zahl, die Sie erhalten, wenn Sie alle positiven int‐Werte bis zu einer und einschließlich einer bestimmten Zahl multiplizieren. Beispielsweise ist 3! gleich 1 * 2 * 3, nämlich 6. Und 5! ist 1 * 2 * 3 * 4 * 5, das ergibt 120.

Schreiben Sie ein Programm, bei dem der Benutzer einen positiven int‐Wert (n) eingibt, und Java den Wert von n! ausgibt.

[image: image] Versuchen Sie zu erkennen, welche Ausgabe der folgende Code erzeugt, ohne ihn auszuführen.

for (int row = 0; row < 5; row++) {

 for (int column = 0; column < 5; column++) {

 System.out.print("*");

 }

 System.out.println();

}

Nachdem Sie Ihre Vorhersage gemacht haben, führen Sie den Code aus, um festzustellen, ob Sie recht hatten.

[image: image] Der Code in diesem Experiment ist eine kleine Variante des Codes aus dem vorigen Experiment. Versuchen Sie zunächst, die Ausgabe des Codes zu erkennen. Anschließend führen Sie den Code aus, um festzustellen, ob Ihre Vorhersage korrekt war.

for (int row = 0; row < 5; row++) {

 for (int column = 0; column <= row; column++) {

 System.out.print("*");

 }

 System.out.println();

}

[image: image] Schreiben Sie ein Programm, das Schleifen verwendet, um nacheinander drei Kopien der folgenden Muster auszugeben.

*

**

Die Weltpremiere von »Al's All Wet«

Listing 6.2 ist zwar ganz nett, aber das Programm in diesem Listing ist ziemlich langweilig. Wenn Sie etwas Interessanteres sehen wollen, sollten Sie sich mit Listing 6.3 beschäftigen. Es erfüllt das Versprechen, das ich in Kapitel 5 gebe, und zeigt den gesamten Text des Hits Al's All Wet auf dem Bildschirm an.

import static java.lang.System.out;

public class AlsAllWet {

 public static void main(String args[]) {

 for (int verse = 1; verse <= 3; verse++) {

 out.print("Al's all wet. ");

 out.println("Oh, why is Al all wet? Oh,");

 out.print("Al's all wet 'cause ");

 out.println("he's standing in the rain.");

 out.println("Why is Al out in the rain?");

 switch (verse) {

 case 1:

 out.println("That's because he has no brain.");

 break;

 case 2:

 out.println("That's because he is a pain.");

 break;

 case 3:

 out.println("'Cause this is the last refrain.");

 break;

 }

 switch (verse) {

 case 3:

 out.println("Last refrain, last refrain,");

 case 2:

 out.println("He's a pain, he's a pain,");

 case 1:

 out.println("Has no brain, has no brain,");

 }

 out.println("In the rain, in the rain.");

 out.println("Ohhhhhhhh...");

 out.println();

 }

 out.print("Al's all wet. ");

 out.println("Oh, why is Al all wet? Oh,");

 out.print("Al's all wet 'cause ");

 out.println("he's standing in the rain.");

 }

}

Listing 6.3: Der vollständige Text von »Al's All Wet«

Listing 6.3 kombiniert viele Ideen aus den Kapiteln 5 und 6. In diesem Listing sind zwei switch‐Befehle in einer for‐Schleife verschachtelt. Einer dieser switch‐Befehle verwendet break‐Anweisungen, während der andere das Programm durchfallen lässt. Da der Wert der Zählervariablen der Schleife (verse) die Werte 1, 2 und 3 annimmt, werden alle case‐Klauseln im switch‐Befehl ausgeführt. Wenn das Programm dann fast fertig ist und die for‐Schleife verlassen hat, sorgen die restlichen vier Befehle dafür, dass die letzte Strophe des Songs ausgegeben wird.

[image:]Wenn ich lautstark verkündet habe, dass ein for‐Befehl primär zum Zählen verwendet wird, gehe ich großzügig mit der Wahrheit um. Javas for‐Befehl ist sehr vielseitig einsetzbar. Sie können einen for‐Befehl in Situationen einsetzen, die nichts mit Zählen zu tun haben. So läuft zum Beispiel eine for‐Anweisung, die wie for(i = 0; i < 10;) keinen Aktualisierungsteil enthält, endlos weiter. Die Schleife wird beendet, wenn eine Aktion in der Schleife der Variablen i einen großen Wert zuweist. Sie können sogar einen for‐Befehl erstellen, dessen Klammerpaar leer ist. Die Schleife for (; ;) läuft endlos, was sinnvoll ist, wenn sie zum Beispiel eine Maschine steuert. Normalerweise achten Sie beim Schreiben einer for‐Anweisung aber doch darauf, wie oft Befehle wiederholt werden sollen.

[image:]Große Freude! Ich habe ein paar Experimente für Sie!

[image: image] Listing 6.3 verwendet break‐Befehle, um aus einer switch‐Anweisung auszusteigen. Ein break kann aber auch in einer Schleife eine Rolle spielen Um zu erfahren, wie das funktioniert, führen Sie ein Programm mit dem folgenden Code aus:

Scanner keyboard = new Scanner(System.in);

while (true) {

 System.out.print("Geben Sie einen int‐Wert ein: ");

 int i = keyboard.nextInt();

 if (i == 0) {

 break;

 }

 System.out.println(i);

}

System.out.println("Fertig!");

keyboard.close();

Die Schleifenbedingung ist immer true. Das ist so, als würden Sie eine Schleife mit der folgenden Zeile einleiten:

while (1 + 1 == 2)

Gäbe es nicht die break‐Anweisung, würde die Schleife endlos laufen. Glücklicherweise springt Java bei der Ausführung der break‐Anweisung unmittelbar hinter die Schleife.

[image: image] Neben der break‐Anweisung gibt es in Java noch die continue‐Anweisung. Wenn Sie eine continue‐Anweisung ausführen, springt Java an das Ende seiner Schleife und beginnt mit der nächsten Iteration dieser Schleife. Um das zu beobachten, führen Sie ein Programm mit dem folgenden Code aus:

Scanner keyboard = new Scanner(System.in);

while (true) {

 System.out.print("Geben Sie einen int‐Wert ein: ");

 int i = keyboard.nextInt();

 if (i > 10) {

 continue;

 }

 if (i == 0) {

 break;

 }

 System.out.println(i);

}

System.out.println("Fertig!");

keyboard.close();

Wiederholen, bis Ihr Wunsch erfüllt wird (Java‐Befehl »do«)

Heute möchte ich jung und albern sein (auf jeden Fall albern). Schauen Sie sich noch einmal Abbildung 6.2 an und achten Sie darauf, wie die while‐Schleife funktioniert. Wenn die Programmausführung in eine while‐Schleife einsteigt, führt der Computer eine Prüfung durch, um sicherzustellen, dass die Bedingung der Schleife wahr ist. Ist dies nicht der Fall, werden die Anweisungen innerhalb der Schleife nicht ausgeführt. Sie könnten problemlos eine while‐Schleife herstellen, deren Befehle niemals ausgeführt werden (obwohl ich mir keinen Grund für eine solche Programmierung vorstellen kann):

int twoPlusTwo = 2 + 2;

while (twoPlusTwo == 5) {

 out.println("Machen Sie Witze?");

 out.println("2 + 2 ist nicht gleich 5");

 out.print("Das weiß jedes Kind.");

 out.println(" 2 + 2 ist gleich 3");

}

Trotz dieses albernen twoPlusTwo‐Beispiels hat es sich gezeigt, dass der while‐Befehl das am vielseitigsten einsetzbare Schleifenkonstrukt Javas ist. Die while‐Schleife hat sich insbesondere in Situationen bewährt, in denen Sie schauen müssen, bevor Sie loslegen. Zum Beispiel: »Während (while) Geld auf meinem Konto ist, bezahle die monatliche Kreditrate.« Hier gilt also, dass die Überweisung nur erfolgen soll, wenn Sie auf Ihrem Konto Geld haben.

Gelegentlich kommt es aber auch vor, dass Sie »springen«, bevor Sie schauen, wohin es geht. Nehmen Sie zum Beispiel die Situation, in der Sie den Benutzer auffordern, zu antworten. Es kann nun sein, dass die Eingabe des Benutzers sinnvoll ist, aber auch das Gegenteil ist denkbar. In diesem zweiten Fall möchten Sie die Aufforderung vielleicht wiederholen. Es könnte ja sein, dass der Benutzer nur eine falsche Taste erwischt oder die Frage nicht verstanden hat.

Abbildung 6.5 zeigt einige Ausführungen eines Programms, das eine Datei löschen soll. Das Programm fragt den Benutzer, ob es in Ordnung ist, wenn es die Datei löscht. Wenn der Benutzer j oder n eingibt, macht das Programm entsprechend seiner Eingabe weiter. Wenn der Benutzer aber einen anderen Buchstaben eingibt, wird er vom Programm aufgefordert, seine Antwort noch einmal einzugeben.

[image:]Abbildung 6.5: Der Code in Listing 6.4 wird zweimal ausgeführt.

Um dieses Programm zu schreiben, benötigen Sie eine Schleife – eine Schleife, die den Benutzer wiederholt fragt, ob eine Datei gelöscht werden soll. Die Schleife fragt so lange, bis der Benutzer eine eindeutige Antwort gibt. Das Bemerkenswerte an dieser Schleife ist, dass sie nichts überprüfen muss, bevor der Benutzer nicht ein erstes Mal gefragt worden ist – vorher bekommt die Schleife nichts zu tun. Sie startet also nicht mit »so lange dies und das wahr ist, erhalte vom Benutzer eine Antwort«. Stattdessen legt die Schleife los, erhält vom Benutzer eine Antwort und überprüft dann diese Antwort, um herauszufinden, ob sie brauchbar ist.

Das ist der Grund dafür, dass das Programm in Listing 6.4 eine do‐Schleife enthält (die auch do … while‐Schleife genannt wird). Bei einer do‐Schleife springt das Programm direkt in die Schleife, führt die Anweisungen dort aus und überprüft dann erst eine Bedingung, um herauszufinden, ob das Ergebnis der ausgeführten Aktion sinnvoll ist oder nicht. Wenn das Ergebnis der Antwort positiv verarbeitet werden kann, wird die Schleife beendet. Andernfalls begibt sich das Programm wieder an den Anfang der Schleife, um einen neuen Durchlauf zu starten.

import java.io.File;

import static java.lang.System.out;

import java.util.Scanner;

public class DeleteEvidence {

 public static void main(String args[]) {

 File evidence = new File("frisierteKonten.txt");

 Scanner keyboard = new Scanner(System.in);

 char reply;

 do {

 out.print("Den Beweis löschen? (j/n) ");

 reply = keyboard.findWithinHorizon(".",0).charAt(0);

 } while (reply != 'j' && reply != 'n');

 if (reply == 'j') {

 out.println("Okay, die Datei wird gelöscht...");

 evidence.delete();

 out.println("Die Datei ist gelöscht worden.");

 } else {

 out.println("Entschuldigung, war nur eine "+ "Frage.");

 }

 keyboard.close();

 }

}

Listing 6.4: Löschen oder nicht löschen, das ist hier die Frage.

Abbildung 6.5 zeigt zwei Ausführungen des Codes in Listing 6.4. Das Programm akzeptiert nur die Kleinbuchstaben j und n. Die Großbuchstaben J und N sind keine gültigen Antworten. Damit das Programm aber auch mit solchen Antworten klarkommt, ändern Sie den Code wie folgt:

do {

 out.print("Delete evidence? (y/n) ");

 reply = keyboard.findWithinHorizon(".", 0).charAt(0);

} while (reply != 'y' && reply != 'Y' &&

 reply != 'n' && reply!='N');

if (reply == 'y' || reply == 'Y') {

Abbildung 6.6 zeigt den Programmablauf in der Schleife von Listing 6.4. Bei einer do‐Schleife kann es nie zu einer Situation wie der im Programm twoPlusTwo kommen, das am Anfang dieses Abschnitts gezeigt wird. Da eine do‐Schleife ihre erste Aktion ausführt, ohne eine Bedingung zu testen, wird sie immer mindestens einmal durchlaufen.

[image:]Abbildung 6.6: Der Ablauf einer ‐Schleife

[image:]Der Ort, an dem sich die in Listing 6.4 erwähnte Datei frisierteKonten.txt auf Ihrer Festplatte befindet, hängt von verschiedenen Faktoren ab. Wenn Sie eine solche Datei im falschen Verzeichnis erstellen, kann der Code sie nicht löschen. In den meisten Fällen beginnen Sie die Tests von Listing 6.4 damit, dass Sie in Ihrer IDE ein neues Projekt anlegen. Dieses Projekt »lebt« in einem Ordner auf Ihrer Festplatte, und die Datei frisierteKonten.txt befindet sich in diesem Ordner. Angenommen, ich habe ein Projekt mit dem Namen Listing06‐04. Dieses Projekt befindet sich auf meiner Festplatte in einem Ordner mit dem Namen 06‐04. Dort gibt es die Datei frisierteKonten.txt. Wenn Sie mir nicht folgen können, fügen Sie Listing 6.4 unmittelbar hinter der Anweisung new File den folgenden Code hinzu:

try {

 out.println("Looking for " + evidence.getCanonicalPath());

} catch (java.io.IOException e) {

 e.printStackTrace();

}

Wenn Sie diesen Code ausführen, teilt Ihnen Java mit, wo sich die Datei cookedBooks.txt auf der Festplatte befinden sollte.

[image:]Sie erfahren in Kapitel 8 mehr über Dateien und ihre Ordner.

Ein einzelnes Zeichen lesen

Gehen wir weit zurück – bis zu Listing 5.3 in Kapitel 5. Dort gibt der Benutzer ein Wort über die Tastatur ein. Die Methode keyboard.next schnappt sich das Wort und bringt es in einer String‐Variablen mit dem Namen password unter. Das klappt deswegen so gut, weil eine String‐Variable viele Zeichen auf einmal speichern kann und die Methode next in der Lage ist, viele Zeichen auf einmal auszulesen.

In Listing 6.4 sind Sie nicht daran interessiert, mehrere Zeichen auszulesen. Vom Benutzer wird erwartet, dass er nur einen Buchstaben eingibt – entweder j oder n. Deshalb müssen Sie keine String‐Variable anlegen, um die Rückmeldung des Benutzers zu speichern. Stattdessen erstellen Sie eine char‐Variable – eine Variable, die immer nur ein Zeichen aufnehmen kann.

Die Java‐API kennt keine Methode nextChar. Deshalb müssen Sie improvisieren, wenn es darum geht, etwas auszulesen, das in einer char‐Variablen gespeichert werden kann. Dieses Improvisieren sieht in Listing 6.4 so aus:

keyboard.findWithinHorizon(".", 0).charAt(0)

Wenn Sie einmal ein einzelnes Zeichen auslesen wollen, können Sie diesen Code nahtlos aus Listing 6.4 übernehmen.

[image:]Eine String‐Variable kann viele oder nur ein Zeichen enthalten. Eine String‐Variable, die nur ein Zeichen enthält, wird deswegen aber nicht zu einer char‐Variablen. String‐ und char‐Variablen werden unabhängig davon, was Sie in ihnen ablegen, unterschiedlich behandelt.

Java und die Behandlung von Dateien

Wir müssen uns in Listing 6.4 die Befehle zur Dateibehandlung ein wenig näher anschauen. Zu diesen Befehlen gehören Klassen, Objekte und Methoden. Viele Einzelheiten zu diesen Dingen stehen zwar in anderen Kapiteln wie den Kapiteln 7 und 9, aber ich mache nichts falsch, wenn ich schon an dieser Stelle auf ein paar Besonderheiten hinweise.

In der Sprach‐API von Java gibt es eine Klasse mit dem Namen java.io.File. Der Befehl

File evidence = new File("frisierteKonten.txt");

erstellt im Arbeitsspeicher des Computers ein neues Objekt. Dieses Objekt, das aus der Klasse java.io.File gebildet wird, beschreibt alles, was das Programm über die Datei frisierteKonten.txt wissen muss. Von diesem Augenblick an verweist in Listing 6.4 die Variable evidence auf die Datei frisierteKonten.txt.

Das Objekt evidence, das eine Instanz der Klasse java.io.File ist, verfügt über die Methode delete. (Was ich dazu sagen kann? Es steht alles in der API‐Dokumentation.) Wenn Sie evidence.delete aufrufen, sorgt der Computer dafür, dass die Datei verschwindet.

Es sollte klar sein, dass Sie nichts loswerden können, was nicht existiert. Wenn der Computer

File evidence = new File("frisierteKonten.txt");

ausführt, prüft Java nicht nach, ob eine solche Datei wirklich vorhanden ist. Um Java zu einer solchen Prüfung zu zwingen, stehen Ihnen ein paar Möglichkeiten zur Verfügung. Am einfachsten ist es, die Methode exists aufzurufen. Wenn Sie evidence.exists() verwenden, schaut Java in dem Ordner nach, in dem es die Datei frisierteKonten.txt vermutet. Der Aufruf gibt true zurück, wenn Java die Datei in diesem Ordner findet. Ansonsten wird false zurückgegeben.

Hier eine überarbeitete Version von Listing 6.4 mit einem Aufruf von exists im Code:

import java.io.File;

import static java.lang.System.out;

import java.util.Scanner;

public class DeleteEvidence {

 public static void main(String args[]) {

 File evidence = new File("frisierteKonten.txt");

 if (evidence.exists()) {

 Scanner keyboard = new Scanner(System.in);

 char reply;

 do {

 out.print("Den Beweis löschen? (j/n) ");

 reply = keyboard.findWithinHorizon(".", 0).charAt(0);

 } while (reply != 'j' && reply != 'n');

 if (reply == 'y') {

 out.println("Okay, die Datei wird gelöscht...");

 evidence.delete();

 out.println("Die Datei ist gelöscht worden.");

 } else {

 out.println("Entschuldigung. War nur eine "+ "Frage.");

 }

 keyboard.close();

 }

 }

}

Variablendeklarationen und Blöcke

Befehle, die von geschweiften Klammern umgeben sind, bilden einen Block. Wenn Sie eine Variable in einem Block deklarieren, können Sie sie nicht außerhalb dieses Blockes verwenden. So würden Sie zum Beispiel in Listing 6.4 eine Fehlermeldung erhalten, wenn Sie folgende Änderungen vornähmen:

do {

 out.print("Delete evidence? (j/n) ");

 char reply = keyboard.findWithinHorizon(".", 0).charAt(0);

} while (reply != 'j' && reply != 'n');

if (reply == 'j')

Durch die Deklaration von char reply innerhalb der geschweiften Klammern der Schleife ist die Verwendung von reply außerhalb der Klammern nicht mehr zulässig. Wenn Sie versuchen, diesen Code zu kompilieren, erhalten Sie drei Fehlermeldungen – zwei für reply in while (reply != 'j' && reply != 'n') und eine dritte für reply im if‐Befehl.

Damit sind Ihnen in Listing 6.4 die Hände gebunden. Das Programm verwendet die Variable reply zum ersten Mal in der Schleife. Wenn Sie aber auch noch nach der Schleife auf diese Variable zugreifen wollen, müssen Sie reply vor der Schleife deklarieren. Und dann fahren Sie am besten damit, diese Deklaration ohne Initialisierung vorzunehmen.

[image:]Kapitel 4 enthält weitere Informationen über das Deklarieren von Variablen, und Blöcke behandele ich ausführlicher in Kapitel 5.

Die drei Schleifenarten, die in diesem Kapitel beschrieben werden (while‐Schleifen, for‐Schleifen und do … while‐Schleifen), gibt es in allen Java‐Versionen. Zusätzlich kennen neuere Java‐Versionen (ab Java 5) eine Schleifenart, die erweiterte for‐Schleife heißt. Ich gehe in Kapitel 11 näher auf diesen Schleifentyp ein.

[image:]Kopieren Sie den Code aus Listing 6.1 und nehmen Sie die folgenden Änderungen vor:

out.print("Geben Sie eine ganze Zahl zwischen 1 und 10 ein: ");

int inputNumber = keyboard.nextInt();

numGuesses++;

do {

 out.println();

 out.println("Versuchen Sie es noch einmal…");

 out.print("Geben Sie eine ganze Zahl zwischen 1 und 10 ein: ");

 inputNumber = keyboard.nextInt();

 numGuesses++;

} while (inputNumber != randomNumber);

out.print("Sie gewinnen nach ");

out.println(numGuesses + " Versuchen.");

Der Code in Listing 6.1 hat eine while‐Schleife, während dieser abgeänderte Code eine do‐Schleife hat. Funktioniert dieser abgeänderte Code ordnungsgemäß? Warum? Oder warum nicht?

169-170

Teil III

Das große Ganze: Objektorientierte Programmierung

[image:]

In diesem Teil …

[image: image] Finden Sie heraus, was Klassen und Objekte sind.

[image: image] Finden Sie heraus, wie die objektorientierte Programmierung hilft, vorhandenen Code wiederzuverwenden (was Zeit und Geld spart).

[image: image] Sind Sie der Beherrscher Ihrer eigenen virtuellen Welt, indem Sie ganz neue Objekte entwerfen.

171-204

Kapitel 7

In Begriffen wie Klassen und Objekte denken

In diesem Kapitel

Wie objektorientierte Programmierer denken

Werte an Methoden übergeben und von dort abholen

Die kleinen Geheimnisse im objektorientierten Code ausblenden

Als Autor von Computerbüchern ist mir immer wieder gesagt worden, dass ich nicht davon ausgehen darf, dass Abschnitte und Kapitel in ihrer logischen Reihenfolge gelesen werden. Im Buch wird geblättert und das herausgepickt, was gerade benötigt wird; die Dinge, von denen man glaubt, dass sie überflüssig sind, werden übersprungen. Daran dachte ich, als mir der Gedanke kam, dass Sie Kapitel 1 übersprungen haben könnten. Sollte dies der Fall sein, müssen Sie keine Schuldgefühle haben. Sie können alles in 60 Sekunden wiedergutmachen, indem Sie diese komprimierte Zusammenfassung von Kapitel 1 lesen:

Da Java eine objektorientierte Programmiersprache ist, ist es ihr primäres Ziel, Klassen und Objekte zu beschreiben. Eine Klasse entspricht dem Begriff eines Gegenstandes. Ein Objekt ist eine konkrete Instanz einer Klasse. Der Programmierer definiert eine Klasse, und Java erstellt aus der Klassendefinition die einzelnen Objekte.

Natürlich können Sie diese Zusammenfassung ignorieren, weil sie Ihnen immer noch zu lang ist. In diesem Fall lässt sich Kapitel 1 noch weiter kürzen:

Klassen; Objekte

Eine Klasse definieren (was es heißt, ein Konto zu sein)

Was unterscheidet ein Konto von einem anderen Konto? Wenn Sie einen Mitarbeiter einer Bank fragen, werden Sie in ein längeres Verkaufsgespräch verwickelt. Sie hören dann von Zinssätzen, Gebühren, Überziehungszinsen und vielem mehr. Sie haben Glück, dass ich daran nicht interessiert bin. Ich möchte nur wissen, wodurch sich mein Konto von Ihrem unterscheidet. Schließlich heißt mein Konto Barry Burd, Burd Brain Consulting, während Ihres vielleicht Jane Q. Public, Angehende Java‐Expertin heißt. Mein Kontostand beträgt 24,02 Euro. Und Ihrer?

Letztendlich können die Unterschiede zwischen Konten als Werte von Variablen beschrieben werden. Nehmen wir an, es gibt eine Variable mit dem Namen saldo. Bei meinem Konto hat saldo den Wert 24,02, während er bei Ihrem Konto den Wert 55,63 hat. Wenn ich nun ein Computerprogramm schreibe, das mit der Verwaltung von Konten zu tun hat, stehe ich vor der Frage, wie ich meine Variable saldo von Ihrer Variablen saldo trenne.

Die Antwort lautet: Es werden zwei separate Objekte erstellt, die jeweils eine der saldo‐Variablen enthalten. Und wenn Sie einmal dabei sind, fügen Sie jedem der Objekte noch eine Variable name und eine Variable adresse hinzu. Damit sind Sie ein ganzes Stück weiter – zwei Objekte, die jeweils ein Konto darstellen. Oder genauer: zwei Objekte, die jeweils eine Instanz der Klasse Konto sind (siehe Abbildung 7.1).

[image:]Abbildung 7.1: Zwei Objekte

So weit, so gut, aber das ursprüngliche Problem haben Sie damit leider nicht gelöst. Wie verweisen Sie nun in einem Programm statt auf Ihre Variable saldo auf meine? (Für verweisen lesen Sie gerne auch referenzieren, wobei es dann aber nicht referenzieren auf etwas, sondern etwas referenzieren heißt.) Glücklicherweise haben Sie zwei Objekte, auf die Sie vielleicht über Variablen verweisen könnten. Erstellen Sie zwei Variablen – eine mit dem Namen meinKonto und eine mit dem Namen ihrKonto. Die Variable meinKonto verweist auf mein Objekt (meine Instanz der Klasse Konto) und seinen gesamten Inhalt. Um dann auf meinen Saldo zu verweisen, schreiben Sie

meinKonto.saldo

Um auf meinen Namen zu verweisen, schreiben Sie

meinKonto.name

ihrKonto.saldo verweist auf den Wert in der Variablen saldo Ihres Objekts und ihrKonto.name verweist auf den Wert in der Variablen name Ihres Objekts. Um Java mitzuteilen, wie viel Geld ich auf meinem Konto habe, schreiben Sie

meinKonto.saldo = 24.02;

Wenn Sie Ihren Namen auf dem Bildschirm ausgeben wollen, können Sie Folgendes schreiben:

out.println(ihrKonto.name);

Listing 7.1 und 7.2 fassen obige Gedankengänge zusammen.

public class Konto {

 String name;

 String adresse;

 double saldo;

Listing 7.1: Das macht ein Konto aus.

Die Klasse Konto definiert in Listing 7.1 das, was ein Konto ausmacht. Dieses Listing weist Sie darauf hin, dass jede Instanz der Klasse Konto über drei Variablen verfügt – name, adresse und saldo. Dies stimmt mit den Informationen in Abbildung 7.1 überein. Java‐Programmierer haben für Variablen dieser Art (für Variablen, die zu den Instanzen einer Klasse gehören) einen besonderen Namen. Jede dieser Variablen – name, adresse und saldo – wird Feld genannt.

[image:]Eine Variable, die zwar innerhalb einer Klasse, nicht aber innerhalb einer Methode definiert wird, ist ein Feld. In Listing 7.1 sind die Variablen name, adresse und saldo Felder. Ein anderer Name für ein Feld ist Instanzvariable.

Wenn Sie sich mit dem Material der Kapitel 4 bis 6 beschäftigt haben, sind Sie vielleicht über den Code für die Klasse Konto (siehe Listing 7.1) mehr als überrascht. Lässt sich eine komplette Java‐Klasse in nur vier Codezeilen (gegebenenfalls zuzüglich separater Zeilen für die geschweiften Klammern) definieren? Natürlich. Eine Klasse ist eine Gruppe von Elementen. In der Klasse Konto von Listing 7.1 sind dies zwei String‐Werte und ein double‐Wert.

Die Felddeklarationen in Listing 7.1 verwenden Standardadressen, d. h. ich habe vor dem Typnamen String kein Wort eingefügt. Die Alternativen zu Standardzugriffsadressen sind public, protected und private:

public String name;

protected String adresse;

private double saldo;

Professionelle Programmierer raten von der Verwendung des Standardzugriffs ab, weil ein Feld dadurch nicht vor versehentlichem Missbrauch geschützt wird. Meiner Erfahrung nach lernen Sie jedoch am meisten, wenn Sie die ganz einfachen Dinge zuerst lernen. Und in Java ist der Standardzugriff am einfachsten. In diesem Buch werde ich den privaten Zugriff erst im Abschnitt Einzelheiten mit Zugriffsmethoden verbergen beschreiben. Und die Beschreibung eines geschützten Zugriffs erfolgt erst in Kapitel 14. Wenn Sie die Beispiele in diesem Kapitel lesen, denken Sie immer daran, dass ein Standardzugriff in einem Java‐Programm nicht optimal ist. Und wenn Sie ein professioneller Programmierer fragt, wo Sie gelernt haben, den Standardzugriff zu verwenden, dann schieben Sie es doch bitte auf jemanden anderen.

Variablen deklarieren und Objekte erstellen

Während ich die Straße entlanggehe, nähert sich mir ein junger Mann. Er fordert mich auf, Sie werden Java lieben! zu schreiben, und ich mache das. Ich schreibe den Text mit Kreide auf den Bürgersteig. Aber das ist eigentlich uninteressant. Wichtig ist nur, dass jemand Anweisungen gibt, denen ich folge.

Später am Tag sitzt eine ältere Frau neben mir auf einer Parkbank. Sie sagt: »Zu einem Konto gehören ein Name, eine Adresse und ein Saldo.« Und ich antworte: »Das stimmt, aber was möchten Sie, dass ich tue?« Ihre Reaktion sieht nun so aus, dass sie mich nur anstarrt und ich deshalb ihre Äußerungen zum Konto einfach Äußerungen sein lasse. Ich sitze, sie sitzt, und wir beide machen absolut nichts.

Listing 7.1 ist wie die ältere Frau. Dieses Listing definiert das, was ein Konto ausmacht, aber es sagt mir einfach nicht, was ich mit meinem Konto oder dem Konto einer anderen Person machen soll. Damit etwas geschieht, benötige ich zusätzlichen Code. Ich brauche eine zweite Klasse – ein Klasse, die eine main‐Methode enthält. Während die ältere Frau und ich ruhig auf der Parkbank sitzen, kommt glücklicherweise ein Kind mit Listing 7.2 vorbei.

import static java.lang.System.out;

public class NutzKonto {

 public static void main(String args[]) {

 Konto meinKonto;

 Konto ihrKonto;

 meinKonto = new Konto();

 ihrKonto = new Konto();

 meinKonto.name = "Barry Burd";

 meinKonto.adresse = "222 Cyberspace Lane";

 meinKonto.saldo = 24.02;

 ihrKonto.name = "Jane Q. Public";

 ihrKonto.adresse = "111 Consumer Street";

 ihrKonto.saldo = 55.63;

 out.print(meinKonto.name);

 out.print(" (");

 out.print(meinKonto.adresse);

 out.print(") besitzt € ");

 out.print(meinKonto.saldo);

 out.println();

 out.print(ihrKonto.name);

 out.print(" (");

 out.print(ihrKonto.adresse);

 out.print(") besitzt € ");

 out.print(ihrKonto.saldo);

 }

}

Listing 7.2: Mit Konto‐Objekten arbeiten

Die beiden Klassen – Konto und NutzKonto – bilden zusammen ein vollständiges Programm. Der Code in Listing 7.2 definiert die Klasse NutzKonto, die über eine Methode main verfügt. Diese Methode enthält eigene Variablen – ihrKonto und meinKonto.

Die ersten beiden Zeilen der Methode main führen in Listing 7.2 in die Irre. Es kann vorkommen, dass Konto ihrKonto so verstanden wird, als wenn es »ihrKonto ist ein Konto« oder »Die Variable ihrKonto verweist auf eine Instanz der Klasse Konto« bedeute. Das ist aber nicht das, was die erste Zeile aussagt. Stattdessen meint Konto ihrKonto: »Falls und wenn ich die Variable ihrKonto auf etwas verweisen lasse, wird dieses Etwas eine Instanz der Klasse Konto sein.« Worin besteht der Unterschied?

Der Unterschied besteht darin, dass die einfache Deklaration Konto ihrKonto nicht ausreicht, um die Variable ihrKonto auf ein Objekt verweisen zu lassen (das Objekt zu referenzieren). Die Deklaration reserviert lediglich den Variablennamen ihrKonto, damit er später verwendet werden kann, um auf eine Instanz der Klasse Konto zu verweisen. Das eigentliche Objekt wird erst später im Code erstellt, wenn Java new Konto() ausführt.

[image:]Aus technischer Sicht sieht es so aus, dass Sie, wenn Java new Konto() ausführt, ein Objekt erstellen, indem Sie den Konstruktor der Klasse Konto aufrufen. Mehr darüber erfahren Sie in Kapitel 9.

Wenn Java die Zuweisung ihrKonto = new Konto() ausführt, erstellt es ein neues Objekt (eine neue Instanz der Klasse Konto) und lässt die Variable ihrKonto auf dieses neue Objekt verweisen. (Dafür sorgt das Gleichheitszeichen.) Abbildung 7.2 verdeutlicht diese Situation.

[image:]Abbildung 7.2: Vor und nach dem Aufruf eines Konstruktors

Um die Behauptungen zu testen, die ich in den letzten Absätzen aufstelle, habe ich den Code in Listing 7.2 um eine Zeile erweitert. Ich habe versucht, ihrKonto.name auszugeben, nachdem ich ihrKonto zwar deklariert, aber new Konto() noch nicht aufgerufen habe.

Konto meinKonto;

 Konto ihrKonto;

 out.println(ihrKonto.name);

 meinKonto = new Konto();

 ihrKonto = new Konto();

Als ich versucht habe, den neuen Code zu kompilieren, erhielt ich diese Fehlermeldung: Variable ihrKonto might not have been initialized. (Diese Meldung besagt, dass die Variable ihrKonto möglicherweise nicht initialisiert worden ist.) Damit sollten alle Fragen beseitigt sein. Bevor Sie nicht new Konto() ausführen, ist es unmöglich, die Variable name eines Objekts auszugeben, weil dieses Objekt noch gar nicht existiert.

[image:]Wenn eine Variable einen Referenztyp hat, reicht es nicht aus, die Variable einfach nur zu deklarieren. Sie erhalten erst dann ein Objekt, wenn Sie einen Konstruktor aufrufen und das Schlüsselwort new verwenden.

[image:]Ich gehe in Kapitel 4 näher auf Referenztypen ein.

Eine Variable initialisieren

Ich behaupte in Kapitel 4, dass Sie eine primitive Variable schon bei ihrer Deklarierung initialisieren können.

int weightOfAPerson = 150;

Sie können dasselbe auch mit Referenztyp‐Variablen wie meinKonto oder ihrKonto in Listing 7.2 machen. Die ersten vier Zeilen der Methode main des Listings lassen sich in zwei Zeilen zusammenfassen:

Konto meinKonto = new Konto();

Konto ihrKonto = new Konto();

Wenn Sie Zeilen auf diese Weise kombinieren, vermeiden Sie automatisch den Fehler Variable might not have been initialized, den ich im vorherigen Abschnitt beschreibe. Ab und zu stoßen Sie auf eine Situation, in der Sie eine Variable nicht initialisieren können. Sie sollten aber immer daran denken, dass das Initialisieren von Variablen immer ein Plus ist.

Die Felder eines Objekts verwenden

Nachdem Sie die ersten vier Zeilen der Methode main analysiert haben, ist der Rest des Codes in Listing 7.2 verständlich und ohne Schnörkel. Es gibt drei Zeilen, die Werte in die Felder des Objekts meinKonto schreiben, drei Zeilen, die Werte in die Felder des Objekts ihrKonto schreiben, und vier Zeilen, die für die Ausgabe zuständig sind. Abbildung 7.3 zeigt, was das Programm in Listing 7.2 auf dem Bildschirm wiedergibt.

[image:]Abbildung 7.3: Der Code in Listing 7.2 wird ausgeführt.

Ein Programm; mehrere Klassen

Jedes Programm der Kapitel 3 bis 6 besteht nur aus einer einzigen Klasse. So etwas eignet sich fantastisch für die einleitenden Kapitel eines Buches. Aber im echten Leben besteht ein ganz normales Programm aus Hunderten, wenn nicht sogar aus Tausenden von Klassen. Das Programm, das die Listings 7.1 und 7.2 umfasst, besteht aus zwei Klassen. Natürlich sind zwei Klassen nicht so viel wie Tausende von Klassen, aber es ist ein erster Schritt in diese Richtung.

In der Praxis bringen Programmierer jede Klasse in einer eigenen Datei unter. Wenn Sie ein Programm wie das in den Listings 7.1 und 7.2 erstellen, legen Sie auf der Festplatte Ihres Computers zwei Dateien an. Deshalb erhalten Sie beim Herunterladen der Beispiele dieses Kapitels aus dem Web zwei separate Dateien: Konto.java und NutzKonto.java.

Öffentliche (»public«) Klassen

Die erste Zeile in Listing 7.1 lautet

public class Konto {

Die Klasse Konto ist also öffentlich (denn das bedeutet public auf Deutsch). Eine öffentliche Klasse steht allen anderen Klassen zur Verfügung. Wenn Sie zum Beispiel in einer weit entfernten Ecke des Cyberspace ein Steuerprogramm für Geldautomaten schreiben, kann dieses Programm Code wie meinKonto.saldo = 24.02 enthalten.

In Listing 7.2 gibt es den Code meinKonto.saldo = 24.02. Vielleicht könnten Sie nun glauben, dass die Klasse Konto öffentlich sein sollte, weil eine andere Klasse (nämlich die aus Listing 7.2) die Klasse Konto verwendet. Unglücklicherweise ist das alles nicht ganz so einfach, wie es aussieht. Mehr darüber erfahren Sie in Kapitel 14.

Das schmutzige Geheimnis im Code dieses Kapitels ist, dass ich mich ganz einfach gut fühle, wenn ich Klassen öffentlich deklariere. Ja, auch Programmierer unternehmen bestimmte Dinge nur, um sich gut zu fühlen. In Listing 7.1 hat mein gutes Gefühl seinen Ursprung in der Tatsache, dass eine Klasse Konto von vielen Programmierern genutzt werden könnte. Wenn ich eine Klasse deklariere, von der ich glaube, dass sie sinnvoll und nennenswert ist – wie die Klassen Konto, Maschine, Kunde, GedankenBlitz, Kopfschmerzen oder KuchenAusSiebenSchichten –, deklariere ich diese Klasse so, dass sie öffentlich (public) ist.

Auch die Klasse NutzKonto ist in Listing 7.2 öffentlich. Wenn eine Klasse eine main‐Methode enthält, neigen Java‐Programmierer dazu, diese Klasse public zu machen und nicht lange darüber nachzudenken, wer sie nutzen könnte. Also deklariere auch ich, ohne zu wissen, ob andere Klassen die Methode main verwenden werden, die Klasse NutzKonto als public. Da die meisten Klassen in diesem Buch eine Methode main enthalten, sind sie öffentlich.

[image:]Wenn Sie eine Klasse als öffentliche Klasse deklarieren, müssen Sie dies in einer Datei erledigen, deren Name hundertprozentig mit dem Namen der Klasse übereinstimmt (wobei der Dateiname die Erweiterung .java erhält). Wenn Sie zum Beispiel den Code public MeinWichtigerCode deklarieren, müssen Sie diesen Code in einer Datei mit dem Namen MeinWichtigerCode.java ablegen. Dabei müssen Sie unbedingt darauf achten, dass auch die Schreibweise des Namens (Groß‐/Kleinschreibung) übereinstimmt. Diese Regel für die Namensgebung hat weitreichende Folgen: Wenn Ihr Code zwei öffentliche Klassen deklariert, muss er aus mindestens zwei .java‐Dateien bestehen. Oder anders ausgedrückt: Sie können keine zwei öffentliche Klassen in einer .java‐Datei deklarieren.

[image:]Kapitel 14 enthält weitere Informationen zum Wort public und zu anderen in diese Kategorie gehörende Wörter.

[image:]In diesem Abschnitt habe ich die Klasse Konto angelegt. Sie können auch Klassen anlegen.

[image: image] Ein Unternehmen hat einen Namen (z. B. Firma XYZ), einen Jahresumsatz (z. B. 100.000,00 EUR) und einen booleschen Wert, der angibt, ob es sich um ein gewinnorientiertes oder ein gemeinnütziges Unternehmen handelt. Unternehmen, die Waren herstellen und verkaufen, sind im Allgemeinen gewinnorientiert. Gruppen, die Opfern von Naturkatastrophen helfen, sind im Allgemeinen gemeinnützige Organisationen.

Deklarieren Sie eine Klasse Unternehmen. Deklarieren Sie eine weitere Klasse, die Unternehmen anlegt und Informationen über diese anzeigt.

[image: image] Ein Produkt, das in einem Lebensmittelgeschäft verkauft wird, hat mehrere Eigenschaften: eine Art Lebensmittel (Pfirsichscheiben), ein Gewicht (500 g), einen Preis (1,83 EUR), eine Portionszahl (4) und eine Kalorienzahl pro Portion (70).

Deklarieren Sie eine Klasse LebensmittelProdukt. Deklarieren Sie eine weitere Klasse, die LebenmittelProdukt‐Instanzen erzeugt und Informationen über diese Instanzen anzeigt.

Eine Methode in einer Klasse definieren (ein Konto anzeigen)

Stellen Sie sich als Beispiel eine Tabelle vor, die Informationen über zwei Konten enthält. (Sollten Sie mit einer imaginären Tabelle Schwierigkeiten haben, werfen Sie einen Blick auf Tabelle 7.1.)

	Name

	Adresse

	Saldo

	Barry Burd

	222 Cyberspace Lane

	24.02

	Jane Q. Public

	111 Consumer Street

	55.63

Tabelle 7.1: Ohne objektorientierte Programmierung

In Tabelle 7.1 verfügt jedes Konto über drei Elemente: einen Namen, eine Adresse und einen Saldo. So wurde so etwas gehandhabt, bevor es die objektorientierte Programmierung gab, die dann zu einem großen Umdenken führte. Bei dieser Programmiertechnik kann jedes Konto einen Namen, eine Adresse und einen Saldo haben und angezeigt werden.

Bei der objektorientierten Programmierung verfügt jedes Objekt über eigene »eingebaute« Funktionen. So weiß zum Beispiel ein Konto, wie es sich selbst anzeigen kann. Ein String kann Ihnen sagen, ob es in ihm dieselben Zeichen wie in einem anderen String gibt. Eine PrintStream‐Instanz wie System.out weiß, was es mit println auf sich hat. In der objektorientierten Programmierung verfügt jedes Objekt über seine eigenen Methoden. Bei diesen Methoden handelt es sich um kleine Unterprogramme, die Sie aufrufen können, um ein Objekt anzuweisen, bestimmte Aktionen auszuführen.

Und was bringt das? Nun, Sie erreichen, dass Daten die Verantwortung für sich selbst übernehmen. Bei der objektorientierten Programmierung werden alle Funktionen, die zu einem Konto gehören, im Code für die Klasse Konto gebündelt. Alles, was Sie über einen String wissen müssen, befindet sich in einer Datei mit dem Namen String.java. Alles, was mit Jahreszahlen zu tun hat (ob sie zum Beispiel zwei‐ oder vierstellig sind), wird in der Klasse Jahr behandelt. Wenn nun jemand Probleme mit Ihren Klassen Konto oder Jahr hat, weiß er, wo er nachsehen muss. Das ist großartig!

Stellen Sie sich nun eine erweiterte Tabelle mit Konteninformationen vor. In dieser neuen Tabelle verfügt jedes Objekt über eingebaute Funktionen. Jedes Konto weiß, wie es sich selbst auf dem Bildschirm anzeigt. Jede Zeile der Tabelle verfügt über eine eigene Version der Methode display. Sie müssen nicht viel Vorstellungskraft aufwenden, um diese Tabelle vor Ihren inneren Augen erscheinen zu lassen. Außerdem will es der Zufall, dass hier im Buch eine solche Tabelle abgedruckt worden ist (siehe Tabelle 7.2).

	Name

	Adresse

	Saldo

	Anzeige

	Barry Burd

	222 Cyberspace Lane

	24.02

	out.print....

	Jane Q. Public

	111 Consumer Street

	55.63

	out.print....

Tabelle 7.2: Die objektorientierte Vorgehensweise

Ein Konto, das sich selbst anzeigt

In Tabelle 7.2 verfügt jedes Konto‐Objekt über vier Elemente: einen Namen, eine Adresse, einen Saldo und einen Weg, sich selbst auf dem Bildschirm anzuzeigen. Wenn Sie sich einmal für die objektorientierte Programmierung entschieden haben, werden Sie nie wieder auf die alte Weise arbeiten wollen. Die Listings 7.3 und 7.4 stellen Programme dar, die die Ideen aus Tabelle 7.2 umsetzen.

import static java.lang.System.out;

public class Konto {

 String name;

 String adresse;

 double saldo;

 public void display() {

 out.print(name);

 out.print(" (");

 out.print(adresse);

 out.print(") besitzt € ");

 out.print(saldo);

 }

}

Listing 7.3: Ein Konto zeigt sich selbst an.

public class NutzKonto {

 public static void main(String args[]) {

 Konto meinKonto = new Konto();

 Konto ihrKonto = new Konto();

 meinKonto.name = "Barry Burd";

 meinKonto.adresse = "222 Cyberspace Lane";

 meinKonto.saldo = 24.02;

 ihrKonto.name = "Jane Q. Public";

 ihrKonto.adresse = "111 Consumer Street";

 ihrKonto.saldo = 55.63;

 meinKonto.display();

 System.out.println();

 ihrKonto.display();

 }

}

Listing 7.4: Die verbesserte Klasse Konto verwenden

Wenn Sie den Code in den Listings 7.3 und 7.4 ausführen, erhalten Sie das gleiche Ergebnis, das die Listings 7.1 und 7.2 geliefert haben und das Abbildung 7.3 zeigt.

In Listing 7.3 enthält die Klasse Konto vier Elemente: die Methoden name, adresse, saldo und display (für die Anzeige). Diese vier Elemente entsprechen den vier Spalten in Tabelle 7.2. Damit verfügt jede Instanz der Klasse Konto über einen Namen, eine Adresse, einen Saldo und einen Weg, sich selbst anzuzeigen. Und Sie rufen diese Dinge alle einheitlich auf. Um den Namen zu referenzieren, der in meinKonto gespeichert ist, schreiben Sie

meinKonto.Name

Und wenn Sie möchten, dass sich meinKonto selbst auf dem Bildschirm wiedergibt, schreiben Sie

meinKonto.display()

Den einzigen Unterschied bilden die Klammern.

[image:]Wenn Sie eine Methode aufrufen, setzen Sie Klammern hinter den Namen der Methode.

Der Kopf der Methode »display«

Schauen Sie sich noch einmal die Listings 7.3 und 7.4 an. In der Methode main der Klasse NutzKonto gibt es einen Aufruf der Methode display. Die Deklaration hat einen Kopf und einen Körper (siehe Kapitel 3). Der Kopf besteht aus drei Wörtern und einem Klammerpaar:

[image: image] Das Wort public dient ganz grob dem gleichen Zweck wie das Wort public in Listing 7.1. Grob ausgedrückt kann jeder Code den Aufruf einer öffentlichen Methode enthalten. Das geht selbst dann, wenn der aufrufende Code und die öffentliche Methode zu zwei verschiedenen Klassen gehören. Ob das Beispiel in diesem Abschnitt eine öffentliche Methode display hat, ist reine Geschmackssache. Wenn ich eine Methode erstelle, die in vielen Anwendungen Verwendung finden kann, deklariere ich diese Methode normalerweise öffentlich (public).

[image: image] Das Wort void sagt Java, dass die Methode display keinen Wert an den Code zurückgibt, der sie aufruft. Sie lernen im nächsten Abschnitt eine Methode kennen, die Werte zurückgibt.

[image: image] Bei dem Wort display handelt es sich um den Namen der Methode. Jede Methode muss einen Namen haben. Andernfalls gibt es keine Möglichkeit, sie aufzurufen.

[image: image] Die Klammern enthalten das, was Sie an die Methode übergeben wollen, wenn Sie sie aufrufen. Wenn Sie eine Methode aufrufen, können Sie auf die Schnelle Daten an sie übergeben. Die Methode display sieht in Listing 7.3 eigenartig aus, weil die Klammern in ihrem Kopf leer sind. Diese Leere weist darauf hin, dass an die Methode display nichts übergeben wird, wenn Sie sie aufrufen. Sie lernen im nächsten Abschnitt eine inhaltsschwerere Methode kennen.

[image:]Listing 7.3 enthält die Deklaration der Methode display und in Listing 7.4 befindet sich der Aufruf dieser Methode. Obwohl beide Listings unterschiedliche Klassen enthalten, wird public in Listing 7.3 in beiden Fällen optional verwendet. Wenn Sie erfahren wollen, warum das so ist, sollten Sie sich mit Kapitel 14 beschäftigen.

[image:]Im obigen Abschnitt haben Sie die Klassen Unternehmen und LebensmittelProdukt angelegt. Erstellen Sie jetzt display‐Methoden für diese Klassen und legen Sie separate Klassen an, die diese display‐Methoden verwenden.

Werte an Methoden senden und von dort erhalten (Zinsen berechnen)

Stellen Sie sich vor, dass Sie jemanden zum Supermarkt schicken, um Brot zu kaufen. Sie sagen: »Gehe zum Supermarkt und kaufe ein Brot.« Ein anderes Mal schicken Sie die gleiche Person in den Supermarkt, um Bananen zu kaufen. Sie sagen: »Gehe zum Supermarkt und kaufe Bananen.« Und was sagt uns das? Nun, Sie haben eine Methode und Informationen (Daten), die Sie an die Methode übergeben, wenn Sie sie aufrufen. Die Methode heißt geheZumSupermarktUndKaufe. Die Daten sind – abhängig von Ihren kulinarischen Bedürfnissen – entweder Brot oder Bananen. In Java würden die Methodenaufrufe so aussehen:

geheZumSupermarktUndKaufe(brot)

geheZumSupermarktUndKaufe(bananen)

Das, was in den Klammern steht, wird als Argumente oder Parameterliste bezeichnet. Wenn Ihre Methoden über Parameter verfügen, sind sie viel vielseitiger einsetzbar. Statt jedes Mal dasselbe zu erhalten, sind Sie nun in der Lage, jemanden zum Supermarkt zu schicken, um Brot, ein anderes Mal Bananen und dann Vogelfutter zu kaufen. Wenn Sie Ihre Methode geheZumSupermarktUndKaufe aufrufen, entscheiden Sie genau dann erst, was gekauft werden soll.

Und was passiert, wenn Ihr Freund vom Supermarkt zurückkehrt? Er sagt dann: »Hier ist das Brot, das ich kaufen sollte.« Indem Ihr Freund Ihrem Wunsch nachgekommen ist, erhalten Sie etwas zurück. Sie haben eine Methode aufgerufen, und die Methode gibt Daten (oder einen frischen Laib Brot) zurück.

Das, was Sie von der Methode zurückerhalten, wird Rückgabewert genannt. Der (Daten‐)Typ dessen, was zurückgegeben wird, heißt Rückgabetyp. Die Listings 7.5 und 7.6 verdeutlichen diese Konzepte.

import static java.lang.System.out;

public class Konto {

 String name;

 String adresse;

 double saldo;

 public void display() {

 out.print(name);

 out.print(" (");

 out.print(adresse);

 out.print(") besitzt € ");

 out.print(saldo);

 }

 public double getZinsen(double zinsSatz) {

 return saldo * zinsSatz/ 100.00;

 }

}

Listing 7.5: Ein Konto, das selbstständig seine Zinsen berechnet

import static java.lang.System.out;

public class NutzKonto {

 public static void main(String args[]) {

 Konto meinKonto = new Konto();

 Konto ihrKonto = new Konto();

 meinKonto.name = "Barry Burd";

 meinKonto.adresse = "222 Cyberspace Lane";

 meinKonto.saldo = 24.02;

 ihrKonto.name = "Jane Q. Public";

 ihrKonto.adresse = "111 Consumer Street";

 ihrKonto.saldo = 55.63;

 meinKonto.display();

 out.print(" plus € ");

 out.print(meinKonto.getZinsen(5.00));

 out.println(" Zinsen ");

 ihrKonto.display();

 double ihrZinsBetragRate = 7.00;

 out.print(" plus € ");

 double ihrZinsBetrag = ihrKonto.getZinsen(ihrZinsSatz);

 out.print(ihrZinsBetrag);

 out.println(" Zinsen ");

 }

}

Listing 7.6: Zinsen berechnen

Abbildung 7.4 zeigt, was das Programm in den Listings 7.5 und 7.6 ausgibt, wenn Sie es ausführen. In Listing 7.5 verfügt die Klasse Konto über eine Methode mit dem Namen getZinsen. Diese Methode wird von der Methode main in Listing 7.6 zweimal aufgerufen. Die Kontosalden und die Zinsen sind bei jedem Aufruf anders.

[image:]Abbildung 7.4: Der Code in den Listings 7.5 und 7.6 wird ausgeführt.

[image: image] Beim ersten Aufruf betragen der Saldo 24.02 und der Zinssatz 5.00. Der erste Aufruf, meinKonto.getZinsen(5.00), verweist auf das Objekt meinKonto und auf die Werte, die in den Feldern dieses Objekts gespeichert sind (siehe Abbildung 7.5). Wenn dieser Aufruf zum ersten Mal gestartet wird, steht der Ausdruck saldo * zinsSatz/ 100.00 für 24.02 * 5.00 / 100.00.

[image:]Abbildung 7.5: Mein Konto und Ihr Konto

[image: image] Beim zweiten Aufruf betragen der Saldo 55.63 und der Zinssatz 7.00. In der Methode main wird der Variablen ihrZinsSatz unmittelbar vor dem zweiten Aufruf der Wert 7.00 zugewiesen. Der Aufruf ihrKonto.getZinsen(ihrZinsSatz) verweist auf das Objekt ihrKonto und auf die Werte, die in den Feldern dieses Objekts gespeichert sind (siehe noch einmal Abbildung 7.5). Wenn der Aufruf vorgenommen wird, steht saldo * zinsSatz/ 100.00 für 55.63 * 7.00 / 100.00.

Nebenbei bemerkt – die Methode main in Listing 7.3 enthält zwei Aufrufe von getZinsen. Ein Aufruf enthält als Parameter das Literal 5.00; der andere Aufruf enthält als Parameter die Variable ihrZinsSatz. Warum verwendet ein Aufruf ein Literal und der andere eine Variable? Ich wollte damit nur zeigen, dass beides möglich ist.

Einen Wert an eine Methode übergeben

Werfen Sie einen Blick auf den Kopf der Methode getZinsen. (Während Sie die Erklärungen in der folgenden Liste lesen, können Sie das Konzept, das dahinter steckt, optisch anhand der Abbildung 7.6 verfolgen.)

[image:]Abbildung 7.6: Einen Wert an eine Methode übergeben

[image: image] Das Wort double sagt Java, dass die Methode getZinsen bei ihrem Aufruf einen double‐Wert an den Aufrufer zurückgibt. Der Befehl im Körper der Methode getZinsen bestätigt dies. Er lautet return saldo * zinsSatz / 100.00, und auch der Ausdruck saldo * zinsSatz / 100.00 ist vom Typ double. (Der Grund dafür ist, dass alle Elemente des Ausdrucks – saldo, zinsSatz und 100.00 – vom Typ double sind.)

Wenn die Methode getZinsen aufgerufen wird, berechnet der Befehl return saldo * zinsSatz / 100.00 und gibt das Ergebnis an den Code zurück, der die Methode aufgerufen hat.

[image: image] Bei dem Wort getZinsen handelt es sich um den Namen der Methode. Dies ist dann der Name, den Sie verwenden, um die Methode aufzurufen, wenn Sie den Code für die Klasse NutzKonto schreiben.

[image: image] Die Klammern enthalten das, was Sie an die Methode übergeben, wenn Sie sie aufrufen. Wenn Sie eine Methode aufrufen, können Sie auf die Schnelle Daten an sie übergeben. Diese Daten bilden als Argumente die Parameterliste der Methode. Der Kopf der Methode getZinsen sagt aus, dass die Methode nur ein Argument haben will, das dann vom Typ double sein muss.

public double getZinsen(double zinsSatz)

Wenn Sie (in der Methode main der Klasse NutzKonto) einen Blick auf den ersten Aufruf von getZinsen werfen, enthält dieser Aufruf die Zahl 5.00. Und 5.00 ist ein Literal vom Typ double. Wenn ich getZinsen aufrufe, gebe ich dieser Variablen einen Wert vom Typ double mit.

[image:]Wenn Sie sich nicht mehr erinnern können, was ein Literal ist, lesen Sie in Kapitel 4 nach.

Ähnliches gilt für den zweiten Aufruf von getZinsen. Ich rufe gegen Ende von Listing 7.6 getZinsen auf und nehme die Variable ihrZinsSatz in die Parameterliste der Methode auf. Glücklicherweise war ich so clever, ein paar Zeilen weiter oben ihrZinsSatz so zu deklarieren, dass auch dieser Parameter vom Typ double ist.

Wenn Sie den Code in den Listings 7.5 und 7.6 ausführen, läuft er nicht geradlinig von oben nach unten ab. Der Programmablauf geht von main zu getZinsen, dann wieder zurück zu main und erneut zu getZinsen und zum Schluss wieder zu main. Abbildung 7.7 stellt dies grafisch dar.

[image:]Abbildung 7.7: Der Programmablauf in den Listings 7.5 und 7.6

Einen Wert von der Methode »getZinsen« zurückgeben

Wenn die Methode getZinsen aufgerufen wird, führt sie den return‐Befehl in ihrem Körper aus. Dieser Befehl berechnet den Wert von saldo * zinsSatz / 100.00. Wenn saldo 24.02 ist und zinsSatz 5.00 beträgt, nimmt der Ausdruck den Wert 1.201 an – was gerundeten 1,20 Euro entspricht. (Da der Computer ausschließlich mit Nullen und Einsen arbeitet, erhält Java selbst bei einer so kleinen Zahl ein falsches Ergebnis, nämlich 1.2009999999999998.)

Java führt, nachdem dieser Wert berechnet worden ist, return aus, das den Wert an die Stelle von main zurücksendet, die getZinsen aufgerufen hat. Nun nimmt der gesamte Methodenaufruf – meinKonto.getZinsen(5.00) – den Wert 1.2009999999999998 an. Der Aufruf selbst befindet sich innerhalb eines println‐Befehls:

out.println(meinKonto.getZinsen(5.00));

Damit nimmt println diese Bedeutung an:

out.println(1.2009999999999998);

Abbildung 7.8 stellt den gesamten Ablauf dar, wie ein Wert an den Methodenaufruf zurückgegeben wird.

[image:]Abbildung 7.8: Ein Methodenaufruf ist ein Ausdruck mit einem Wert.

[image:]Wenn eine Methode etwas zurückgibt, handelt es sich bei dem Aufruf der Methode um einen Ausdruck mit einem Wert. Dieser Wert kann ausgegeben, einer Variablen zugewiesen oder zu etwas hinzugefügt werden. Sie können alles, was Sie mit einem Wert machen, auch mit einem Methodenaufruf veranstalten.

[image:]Vielleicht verwenden Sie die Klasse Konto aus Listing 7.5, um ein echtes Problem zu lösen. Sie könnten die Methoden display und getZinsen der Klasse Konto in einer echten Bankanwendung aufrufen, aber die Klasse NutzKonto aus Listing 7.6 sollten Sie für so etwas nicht heranziehen. Der Code dieser Klasse erstellt »getürkte« Kontodaten und ruft dann Methoden der Klasse Konto auf, die Ihnen vorgaukeln sollen, dass der Code der Klasse Konto auch wirklich funktioniert. (Oder haben Sie ernsthaft daran geglaubt, dass eine Bank Kunden wie Jane Q. Public und Barry Burd hat?) Die Klasse NutzKonto aus Listing 7.6 ist nichts als ein Testfall – eine kurzlebige Klasse, deren einziger Zweck es ist, den Code einer anderen Klasse zu testen. Jeder Testfall in diesem Buch ist wie der Code in Listing 7.6 eine ganz normale Klasse – eine Freiformklasse mit einer eigenen Methode main. Freiformklassen kann man nehmen, aber sie sind eben nicht optimal. Für Java‐Programmierer gibt es bessere Möglichkeiten, um Programmtests durchzuführen. Einer der besten davon ist JUnit, das unter de.wikipedia.org/wiki/JUnit‎ beschrieben wird.

[image:][image: image] In den vorigen Abschnitten haben Sie Ihre eigene Klasse Unternehmen erstellt. Fügen Sie der Klasse eine Methode hinzu, die berechnet, wie viel Steuern das Unternehmen zahlen muss. Ein gewinnorientiertes Unternehmen zahlt 10 Prozent seines Gewinns als Steuer, ein gemeinnütziges Unternehmen nur 2 Prozent.

Erstellen Sie eine separate Klasse, die zwei oder drei Unternehmen erstellt und Informationen über jedes der Unternehmen anzeigt, auch den Betrag, den das Unternehmen an Steuern zu zahlen hat.

[image: image] In den vorigen Abschnitten haben Sie Ihre eigene Klasse LebensmittelProdukt erstellt. Fügen Sie der Klasse Methoden hinzu, um den Preis pro 100 g auszurechen, den Preis pro Portion und die Gesamtkalorienmenge des Produkts.

Erstellen Sie eine separate Klasse, die zwei oder drei Produkte erstellt und Informationen über jedes Produkt anzeigt.

Zahlen gut aussehen lassen

Wenn Sie noch einmal einen Blick auf Abbildung 7.4 werfen, irritiert es Sie vielleicht, dass ich nur 1.2009999999999998 Euro Zinsen erhalte. Anscheinend betrügt mich die Bank um zweihundert Trillionstel eines Cents. Eigentlich sollte ich mich unverzüglich beschweren und meinen Zinsanteil einfordern. Vielleicht sollten wir beide uns auf den Weg machen. Wir sollten in der Bank ein wenig Staub aufwirbeln und diesen Betrug öffentlich machen. Wenn meine Vermutung stimmt, kassiert hier jemand richtig ab, indem er von jedem Konto minimale Beträge abzweigt.

Aber halt, warten Sie einen Augenblick! Was ist mit Ihnen? In Listing 7.6 haben Sie ihrKonto. Und in Abbildung 7.4 ist Ihr Name Jane Q. Public. Es gibt keinen Grund, mit mir zur Bank zu gehen. Wenn ich mir noch einmal Abbildung 7.4 ansehe, fällt mir auf, dass Sie viel besser im Spiel sind. Anhand meiner Berechnungen sehe ich, dass das Programm Ihnen dreihundert Trillionstel eines Cents zu viel auszahlt. Wir beide zusammen machen also ein Plus von einhundert Trillionstel eines Cents. Wie das?

Da Computer Nullen und Einsen verwenden und für Berechnungen nicht über unendlich viel Platz verfügen, sind Ungenauigkeiten wie die in Abbildung 7.4 normal. Die schnellste Lösung sieht so aus, dass diese ungenauen Zahlen sinnvoller angezeigt werden. Sie können die Zahlen auf‐ oder abrunden und nur zwei Nachkommastellen anzeigen lassen. Dabei helfen Ihnen praktische Werkzeuge aus der Java‐API (Application Programming Interface). Listing 7.7 enthält den Code, und Abbildung 7.9 zeigt das erfreuliche Ergebnis.

import static java.lang.System.out;

public class NutzKonto {

 public static void main(String args[]) {

 Konto meinKonto = new Konto();

 Konto ihrnKonto = new Konto();

 meinKonto.saldo = 24.02;

 ihrnKonto.saldo = 55.63;

 double meinZinsBetrag = meinKonto.getZinsen(5.00);

 double ihrZinsBetrag = ihrnKonto.getZinsen(7.00);

 out.printf("%4.2f EU\n", meinZinsBetrag);

 out.printf("%5.2f EU\n", meinZinsBetrag);

 out.printf("%.2f EU\n", meinZinsBetrag);

 out.printf("%3.2f EU\n", meinZinsBetrag);

 out.printf("%.2f EU %.2f EU",

 meinZinsBetrag, ihrZinsBetrag);

 }

}

Listing 7.7: Zahlen »richtig« aussehen lassen

[image:]Abbildung 7.9: Zahlen, die wie Euro‐Beträge aussehen

[image:]Die ungenauen Zahlen in Abbildung 7.4 rühren daher, wie der Computer Nullen und Einsen verwendet. Ein der Fantasie entsprungener Computer, dessen Schaltkreise so verdrahtet sind, dass er die Ziffern 0, 1, 2, 3, 4, 5, 6, 7, 8 und 9 verwenden kann, würde eine Ungenauigkeit dieser Art nicht kennen. Um die Ungenauigkeiten von Rechenoperationen eines Computers auszugleichen, verfügt Java über eigene Wege. In Javas API gibt es die Klasse BigDecimal – eine Klasse, die die seltsamen Nullen und Einsen des Computers umgeht und für arithmetische Berechnungen ganz normale Dezimalzahlen verwendet. Sie finden eine deutschsprachige Anleitung zur Verwendung von BigDecimal unter www.i‐coding.de/www/de/java/zahl/bigdecimal‐double‐float.html, während die (englischsprachige) Java‐Dokumentation alle Informationen zu diesem Thema unter docs.oracle.com/javase/1.5.0/docs/api/java/math/BigDecimal.html bereithält.

Listing 7.7 verwendet die praktische Methode printf. Wenn Sie printf aufrufen, übergeben Sie dem Aufruf in den Klammern immer mindestens zwei Parameter:

[image: image] Der erste Parameter ist ein Formatierungsstring.

Der Formatierungsstring verwendet komisch aussehenden Code, um genau zu beschreiben, wie die übrigen Parameter angezeigt werden.

[image: image] Bei allen anderen Parametern (die auf den ersten folgen) handelt es sich um die Werte, die ausgegeben werden.

Schauen Sie sich den letzten printf‐Aufruf in Listing 7.7 an. Der Formatierungsstring des ersten Parameters weist zwei Platzhalter für Zahlen auf. Der erste Platzhalter (%.2f) beschreibt die Anzeige von meinZinsBetrag. Der zweite Platzhalter (ein weiteres %.2f) beschreibt die Anzeige von ihrZinsBetrag. Abbildung 7.10 bis Abbildung 7.14 zeigen an, wie die Formatierungsstrings funktionieren.

[image:]Abbildung 7.10: Einen Formatierungsstring verwenden

[image:]Abbildung 7.11: Leerzeichen hinzufügen, um einen Wert anzuzeigen

[image:]Abbildung 7.12: Einen Wert anzeigen, ohne die genaue Anzahl an Stellen anzugeben

[image:]Abbildung 7.13: Zu wenig Stellen für die Anzeige eines Wertes festlegen

[image:]Abbildung 7.14: Mit einem Formatierungsstring mehr als einen Wert anzeigen

[image:]Die Kapitel 8 und 9 enthalten weitere Beispiele für die Verwendung der Methode printf und ihrer Formatierungsstrings. Eine Liste aller Möglichkeiten, die die Formatierungsstrings der Methode printf bieten, finden Sie auf der Seite java.util.Formatter der Dokumentation der Java‐API unter https://docs.oracle.com/javase/8/docs/api/java/util/Formatter.html.

[image:]Der Formatierungsstring eines printf‐Aufrufs ändert nichts daran, wie eine Zahl intern für Berechnungen gespeichert wird. Der Formatierungsstring erzeugt nur nett aussehende Ziffern, die auf Ihrem Bildschirm angezeigt werden.

[image:]Die Methode printf ist praktisch für die Formatierung jeglicher Werte – gewöhnliche Zahlen, Hexadezimalzahlen, Datumswerte, Zeichenketten und verschiedene andere seltsame Werte. Aus diesem Grund habe ich sie Ihnen in diesem Abschnitt vorgestellt. Für die Verwendung von Währungsformaten sind die printf‐Tricks aus diesem Abschnitt jedoch weniger gut geeignet. Bessere Möglichkeiten für den Umgang mit Währungsformaten (z. B. für die Zinsbeträge aus dem Beispiel in diesem Abschnitt) finden Sie in Kapitel 11

[image:]Hier folgt ein »Un‐Programm« in Java. Es ist kein eigentliches Java‐Programm, weil ich einige der Zeichen im Code versteckt habe. Ich habe diese Zeichen durch Unterstriche (_) ersetzt:

import static java.lang.System.out;

public class Main {

 public static void main(String[] args) {

 out.printf("%s%_%s", ">>", 7, "<<\n");

 out.printf("%s%___%s", ">>", 7, "<<\n");

 out.printf("%s%____%s", ">>", 7, "<<\n");

 out.printf("%s%____%s", ">>", 7, "<<\n");

 out.printf("%s%__%s", ">>", 7, "<<\n");

 out.printf("%s%__%s", ">>", ‐7, "<<\n");

 out.printf("%s%__%s", ">>", ‐7, "<<\n");

 out.printf("%s%_____%s", ">>", 7.0, "<<\n");

 out.printf("%s%_%s", ">>", "Hello", "<<\n");

 out.printf("%s%_%s", ">>", 'x', "<<\n");

 out.printf("%s%_%s", ">>", 'x', "<<\n");

 }

}

Ersetzen Sie die Unterstriche so, dass das Programm die folgende Ausgabe erzeugt:

>>7<<

>> 7<<

>>7 <<

>>0000000007<<

>>+7<<

>>‐7<<

>>(7)<<

>> 7.00000<<

>>HALLO<<

>>x<<

>>X<<

Sehen Sie sich dazu die Tipps auf der Seite java.util.Formatter der Java API Dokumentation unter https://docs.oracle.com/javase/8/docs/api/java/util/Formatter.html an.

Einzelheiten mit Zugriffsmethoden verbergen

Legen Sie das Buch zur Seite und schnappen Sie sich Ihre Jacke. Sie sind ein so loyaler Leser, dass ich Sie zum Essen einladen möchte.

Ich habe da nur ein Problem. Mir ist mein Bargeld ausgegangen. Macht es Ihnen etwas aus, unterwegs an einem Geldautomaten anzuhalten und etwas Geld zu ziehen? Wir müssten aber an Ihr Konto gehen, denn auf meinem ist gerade so gut wie nichts drauf.

Glücklicherweise ist es nicht schwer, einen Geldautomaten zu bedienen. Gehen Sie einfach hin, stecken Sie Ihre Bankkarte in die Maschine und geben Sie Ihre PIN ein. Danach fragt Sie der Automat, unter welchem Variablennamen Sie Ihren aktuellen Saldo speichern wollen. Sie können unter saldo, saldo324, meinSal, aktuellerSaldo, s€, SALDO, asj999 und konStanTinopel wählen. Nachdem Sie einen Variablennamen gewählt haben, sollten Sie einen Speicherplatz für den Wert der Variablen aussuchen. Sie können jede Zahl zwischen 022FFF und 0555AA nehmen. (Diese Zahlen liegen im hexadezimalen Format vor.) Nachdem Sie die Software des Bankautomaten konfiguriert haben, sollte es kein Problem mehr sein, an Bargeld zu kommen.

Gute Programmierung

Ein guter Programmierstil lässt sich in einem Wort zusammenfassen: Einfachheit. Wenn Sie ein kompliziertes Programm schreiben, haben Sie keine Lust, sich auch noch mit falsch benannten Variablen, geschraubten Problemlösungen oder cleveren Programmiertricks herumschlagen zu müssen, die anderen Programmierern auf den letzten Drücker eingefallen sind. Sie wollen mit einer sauberen Schnittstelle arbeiten, mit der Sie Ihre und nicht die Probleme anderer Leute lösen können.

In dem Szenario mit dem Geldautomaten, das ich oben beschreibe, besteht das Problem darin, dass der Apparat Sie zwingt, sich mit anderer Leute Dinge zu beschäftigen. Statt schnell an Ihr Geld für das Mittagessen zu kommen, müssen Sie über Variablen und Speicherorte nachdenken. Es ist klar, dass sich jemand um die technischen Probleme des Geldautomaten kümmern muss – aber das ist nicht Ihre Aufgabe als Kunde der Bank.

[image:]In diesem Abschnitt geht es um Bedienungsfreundlichkeit, nicht um Sicherheit. Bedienungsfreundlicher Code verhindert, dass Sie aus Versehen Programmierfehler machen. Sicherer Code (bei dem es sich um eine ganz andere Baustelle handelt) hält bösartige Hacker davon ab, Schäden anzurichten.

Muss also alles, was einen Bezug zu einem Computerprogramm hat, einfach gehalten werden? Nein. Manchmal müssen Sie viel an Vorbereitungszeit in eine Sache stecken, damit sie im Endeffekt einfach zu bedienen ist. Die Menschen, die den Geldautomaten gebaut haben, haben hart gearbeitet, damit der Apparat benutzerfreundlich wird. Die Schnittstelle der Maschine mit ihren Nachrichten auf dem Bildschirm und den Schaltflächen machen aus dem Automaten ein kompliziertes, aber sorgfältig entworfenes Gerät.

Die Aufgabe, etwas einfach aussehen zu lassen, erfordert sorgfältige Planung. Im Fall der objektorientierten Programmierung besteht einer der Wege, Dinge einfach aussehen zu lassen, darin, Code, der außerhalb einer Klasse definiert wird, daran zu hindern, direkt auf Felder zuzugreifen, die in der Klasse angelegt werden. Werfen Sie noch einmal einen Blick auf den Code in Listing 7.1. Sie arbeiten in einem Unternehmen, das gerade zehn Millionen für den Code in der Klasse Konto bezahlt hat. (Das sind mehr als eineinhalb Millionen Euro pro Zeile.) Jetzt haben Sie die Aufgabe, die Klasse NutzKonto zu schreiben. Sie möchten

meinKonto.name = "Barry Burd";

schreiben, aber damit würden Sie zu tief in die Klasse Konto eingreifen. Schließlich dürfen Personen, die einen Geldautomaten nutzen, nicht die Variablen des Programms programmieren. Sie dürfen die Tastatur des Automaten nicht benutzen, um den Befehl

saldoDesKontos29872865457 = saldoDesKontos29872865457 + 1000000.00;

einzugeben. Stattdessen drücken Sie Tasten und Schaltflächen, die diese Aufgabe in einer vorgegebenen Reihenfolge erledigen. Und genau auf diese Weise erreichen Programmierer Bedienerfreundlichkeit und Einfachheit.

Damit alles pflegeleicht und ordentlich abläuft, müssen Sie die Klasse Konto aus Listing 7.1 ändern, indem Sie die Zeilen

meinKonto.name = "Barry Burd";

und

out.print(ihrKonto.saldo);

entfernen. Dies sorgt wiederum für ein Problem. Sie sind derjenige, der den Code für die Klasse NutzKonto schreibt. Wenn Sie meinKonto.name oder ihrKonto.saldo nicht verwenden dürfen, wie sollen Sie dann Ihr Ziel erreichen? Die Antwort besteht aus etwas, das Zugriffsmethoden heißt. Die Listings 7.8 und 7.9 führen den Umgang mit diesen Methoden vor.

public class Konto {

 private String name;

 private String adresse;

 private double saldo;

 public void setName(String n) {

 name = n;

 }

 public String getName() {

 return name;

 }

 public void setAdresse(String a) {

 adresse = a;

 }

 public String getAdresse() {

 return adresse;

 }

 public void setSaldo(double s) {

 saldo = s;

 }

 public double getSaldo() {

 return saldo;

 }

}

Listing 7.8: Die Felder verbergen

import static java.lang.System.out;

public class NutzKonto {

 public static void main(String args[]) {

 Konto meinKonto = new Konto();

 Konto ihrKonto = new Konto();

 meinKonto.setName("Barry Burd");

 meinKonto.setAdresse("222 Cyberspace Lane");

 meinKonto.setSaldo(24.02);

 ihrKonto.setName("Jane Q. Public");

 ihrKonto.setAdresse("111 Consumer Street");

 ihrKonto.setSaldo(55.63);

 out.print(meinKonto.getName());

 out.print(" (");

 out.print(meinKonto.getAdresse());

 out.print(") besitzt € ");

 out.print(meinKonto.getSaldo());

 out.println();

 out.print(ihrKonto.getName());

 out.print(" (");

 out.print(ihrKonto.getAdresse());

 out.print(") besitzt € ");

 out.print(ihrKonto.getSaldo());

 }

}

Listing 7.9: Zugriffsmethoden aufrufen

Wenn Sie das Programm in den Listings 7.8 und 7.9 ausführen, unterscheidet sich das Ergebnis nicht von dem, was Sie von den Listings 7.1 und 7.2 her kennen. Abbildung 7.3 zeigt, was beide Programme ausgeben. Der große Unterschied liegt darin, dass die Klasse Konto in Listing 7.8 die Verwendung ihrer Felder name, adresse und saldo sorgfältig kontrolliert.

Öffentliches Leben und private Träume: ein Feld sperren

Die Deklarationen der Felder der Klasse Konto sind um das Wort private erweitert worden. private ist ein Java‐Schlüsselwort. Wenn ein Feld zu einem privaten Feld gemacht wird, kann kein Code das Feld von außerhalb der Klasse direkt referenzieren. Wenn Sie dann in Listing 7.9 in der Klasse NutzKonto festlegen, dass meinKonto.name = "Barry Burd" ist, erhalten Sie die Fehlermeldung name has private access in Konto, die aussagt, dass das Feld privat deklariert wurde.

Statt nun auf meinKonto.name zu verweisen, muss der Programmierer von NutzKonto die Methode meinKonto.setName oder die Methode meinKonto.getName aufrufen. Diese Methoden werden als Zugriffsmethoden bezeichnet, weil sie dafür sorgen, dass auf das Feld name der Klasse Konto zugegriffen werden kann. (Dabei sollten Sie aber wissen, dass der Begriff Zugriffsmethode kein Bestandteil der offiziellen Java‐Terminologie ist. Er wird einfach nur von Programmierern für diese Art von Methoden verwendet.) Noch spezieller wird setName als Setter‐ (Setzer‐) oder Set‐Methode und getName als Getter‐ (Holer‐) oder Get‐Methode bezeichnet. (Ich wette, dass Sie diese Begriffe nicht mehr vergessen!)

[image:]Bei vielen IDEs müssen Sie keine eigenen Zugriffsmethoden schreiben. Geben Sie als Erstes die Deklaration des Feldes ein (zum Beispiel private String name). Wählen Sie dann in der Menüleiste Ihrer IDE Source|Generate Getter and Setter oder Code|Insert Code|Setter oder einen ähnlichen Befehl aus. Nachdem Sie Ihre Wahl getroffen haben, erstellt die IDE Zugriffsmethoden und fügt sie Ihrem Code hinzu.

Beachten Sie, dass die Setter‐ und Getter‐Methoden in Listing 7.8 als öffentliche (public) Methoden deklariert werden. Damit erreichen Sie, dass jeder diese beiden Methoden von überall her aufrufen kann. Dadurch wird es zwar unmöglich, die Felder von außerhalb des Konto‐Codes zu ändern, aber die Setter‐ und Getter‐Methoden können problemlos darauf zugreifen, um die entsprechenden Felder zu nutzen. (Sie erfahren in Kapitel 13 mehr über die Schlüsselwörter public und private.)

Denken Sie noch einmal an den Bankautomaten. Niemand, der den Automaten benutzt, ist in der Lage, einen Befehl einzugeben, der direkt den Saldo seines Kontos ändert, aber es ist leicht, einen Scheck über eine Million Euro einzureichen. Die Leute, die den Bankautomaten entwickelt haben, wissen, dass es viele Probleme gegeben hätte, wenn dieser Vorgang kompliziert gewesen wäre. Damit lässt sich zusammenfassend sagen, dass Sie alles verhindern müssen, was Benutzer nicht dürfen, und dass im Gegenzug alle Aufgaben, die getan werden müssen, auch leicht zu erledigen sind.

[image:]Setter‐ und Getter‐Methoden sind nichts Weltbewegendes. Sie müssen nur die Setter‐ und Getter‐Methoden schreiben, die Sie benötigen. So kann ich zum Beispiel in Listing 7.8 auf die Deklaration der Methode getAdresse verzichten, ohne dass dies den Programmablauf beeinflussen würde. Es könnte dann nur zu dem Problem kommen, dass jemand, der meine Konto‐Klasse verwenden und die Adresse eines Kontos erhalten möchte, völlig aufgeschmissen ist.

[image:]Wenn Sie eine Methode erstellen, die den Wert eines saldo‐Feldes setzt, müssen Sie diese Methode nicht setSaldo nennen. Sie können ihr einen beliebigen Namen wie zum Beispiel thunFisch geben. Aber mittlerweile hat sich weltweit eine stilistische Konvention mit setFeldname durchgesetzt (bei der set mit einem kleinen Anfangsbuchstaben und Feldname mit einem Großbuchstaben geschrieben werden). Eine individuelle Namensgebung oder Schreibweise würde nur zur Verwirrung anderer Java‐Programmierer führen. Wenn Ihre Entwicklungsumgebung (IDE) über die Möglichkeit verfügt, eine GUI mit der Maus zu entwerfen, kann Ihre individuelle Namensgebung dazu führen, dass Ihre IDE diese Fähigkeit zeitweilig verliert. (Java‐Entwicklungsumgebungen und Drag‐and‐Drop werden in den Kapiteln 2 und 16 behandelt.)

[image:]Wenn Sie eine Setter‐Methode aufrufen, übergeben Sie ihr einen Wert, der dem definierten Typ entspricht. Deshalb rufen Sie in Listing 7.9 ihrKonto.setSaldo(55.63) auch mit einem Parameter vom Typ double auf. Im Gegensatz dazu rufen Sie eine Getter‐Methode normalerweise ohne Werte auf. Deshalb enthält zum Beispiel in Listing 7.9 ihrKonto.getSaldo() eine leere Parameterliste. Gelegentlich kommt es vor, dass Sie einen Wert mit einem einzelnen Befehl holen oder setzen wollen. Um dem Saldo Ihres Kontos einen Euro hinzuzufügen, schreiben Sie ihrKonto.setSaldo(ihrKonto.getSaldo() + 1.00).

Regeln mit Zugriffsmethoden erzwingen

Beschäftigen wir uns noch einmal mit Listing 7.8. Werfen Sie dort einen Blick auf die Methode setName. Stellen Sie sich vor, dass Sie die Zuweisungsanweisung der Methode in eine if‐Anweisung packen.

public void setName(String n) {

 if (!n.equals("")) {

 name = n;

 }

}

Wenn nun der Programmierer, der mit der Klasse NutzKonto beschäftigt ist, meinKonto.setName("") schreibt, zeigt der Aufruf von setName keine Wirkung mehr. Da das Feld name privat ist, wird der folgende Aufruf in der Klasse NutzKonto unzulässig:

meinKonto.name = "";

Natürlich funktioniert ein Aufruf wie meinKonto.setName("Willi Schmitz") auch weiterhin, weil "Willi Schmitz" nicht gleich dem leeren String "" ist.

Das ist stark. Sie können mit einem privaten Feld und einer Zugriffsmethode verhindern, dass jemand dem Feld name eines Kontos einen leeren String zuweist. Sie sehen, dass Sie mit sauber ausgearbeiteten if‐Befehlen so gut wie jede Art von Regel erzwingen können.

[image:]In den vorigen Abschnitten haben Sie Ihre eigenen Klassen Unternehmen und LebensmittelProdukt erstellt. Ersetzen Sie in diesen Klassen die Felder mit Standardzugriff durch private Felder. Erstellen Sie Getter‐ und Setter‐Methoden für diese Felder. In den Setter‐Methoden fügen Sie Code ein, der sicherstellt, dass die String‐Werte nicht leer sind, und dass die numerischen Werte nicht negativ sind.

Die eigene GUI‐Klasse von Barry

Vielleicht gehen Ihnen die ewigen textbasierten Programme mittlerweile auf die Nerven. Sie sehnen sich nach etwas Aufregenderem – etwas mit Textfeldern und Schaltflächen. Ich habe ein paar gute Beispiele für Sie!

Ich habe eine Klasse namens DummiesFrame erstellt. Wenn Sie meine Klasse DummiesFrame importieren, können Sie mit relativ geringem Aufwand eine einfache GUI‐Anwendung (Graphical User Interface) erstellen.

Listing 7.10 verwendet meine DummiesFrame‐Klasse, und die Abbildungen 7.15 bis 7.17 zeigen Ihnen die Ergebnisse.

import com.allmycode.dummiesframe.DummiesFrame;

public class GuessingGame {

 public static void main(String[] args) {

 DummiesFrame frame = new DummiesFrame("Viele Grüße!");

 frame.addRow("Ihr Vorname");

 frame.go();

 }

 public static String calculate(String firstName) {

 return "Hallo " + firstName + "!";

 }

}

Listing 7.10: Ihr erstes DummiesFrame‐Beispiel

[image:]Abbildung 7.15: Der Code in Listing 7.10 wird ausgeführt.

[image:]Abbildung 7.16: Der Benutzer füllt die Felder aus.

[image:]Abbildung 7.17: Der Benutzer klickt auf die Schaltfläche.

Hier eine schrittweise Beschreibung der Zeilen in Listing 7.10:

[image: image] Die erste Zeile

import com.allmycode.dummiesframe.DummiesFrame;

stellt den Namen DummiesFrame für den restlichen Code im Listing zur Verfügung.

[image: image] In der Methode main erzeugt die Anweisung

DummiesFrame frame = new DummiesFrame("Greet Me!");

eine Instanz meiner Klasse DummiesFrame und lässt die Variable frame auf diese Instanz verweisen. Auf dem Bildschirm des Benutzers wird ein DummiesFrame‐Objekt als Fenster angezeigt. In diesem Beispiel hat das Fenster die Titelleiste Viele Grüße!

[image: image] Die nächste Anweisung ist ein Aufruf der addRow‐Methode des frame‐Objekts:

frame.addRow("Ihr Vorname");

Dieser Aufruf gibt eine Zeile auf dem Anwendungsfenster aus. Die Zeile besteht aus einer Beschriftung (mit dem Text Ihr Vorname), einem leeren Textfeld und einem roten X, das anzeigt, dass der Benutzer noch nichts Verwertbares in das Feld eingegeben hat (siehe Abbildung 7.17).

[image: image] Ein Aufruf der go‐Methode des frame‐Objekts

frame.go();

sorgt dafür, dass das Anwendungsfenster auf dem Bildschirm angezeigt wird.

[image: image] Der Header der calculate‐Methode

public static String calculate(String firstName) {

teilt Java zwei wichtige Dinge mit:

● Die calculate‐Methode gibt einen Wert des Typs String zurück.

● Java soll also vom Benutzer die Eingabe eines String‐Werts im Textfeld erwarten. Die Eingabe des Benutzers wird zum Wert des Parameters firstName.

Um meine DummiesFrame‐Klasse verwenden zu können, braucht Ihr Code also eine Methode namens calculate, und die calculate‐Methode muss bestimmten Regeln gehorchen:

● Der Header der calculate‐Methode muss mit den Worten public static beginnen.

● Die Methode kann einen beliebigen Java‐Typ zurückgeben: String, int, double usw. (Das ist eigentlich keine Regel, es ist eine Gelegenheit!)

● Die calculate‐Methode muss genauso viele Parameter haben, wie es Zeilen im Anwendungsfenster gibt.

● Listing 7.10 verwendet nur einen Aufruf der Methode addRow, das Fenster in Abbildung 7.15 hat also nur eine Zeile (ohne die Senden‐Schaltfläche), die calculate‐Methode hat also nur einen Parameter.

[image: image] Wenn der Benutzer beginnt, Text in das Textfeld des Fensters einzugeben, wird aus dem roten X ein grünes Häkchen (siehe Abbildung 7.16). Das grüne Häkchen weist darauf hin, dass der Benutzer einen Wert des erwarteten Typs in das Textfeld eingegeben hat (in diesem Beispiel einen String‐Wert).

[image: image] Wenn der Benutzer auf die Schaltfläche klickt, führt Java die Methode calculate aus. Der Ausdruck in der return‐Anweisung der Methode

return "Hallo " + firstName + "!";

teilt Java mit, was es unten im Fenster anzeigen soll (siehe Abbildung 7.17). In diesem Beispiel gibt der Benutzer Barry in das einzige Textfeld ein, der Wert von firstName ist also "Barry", und die calculate‐Methode gibt die Zeichenkette "Hallo Barry!" aus.

Mit meiner DummiesFrame‐Klasse können Sie mit nur zehn Codezeilen eine einfache GUI‐Anwendung erstellen.

[image:]Die DummiesFrame‐Klasse ist nicht im Java API enthalten. Um also den Code in Listing 7.10 ausführen zu können, muss meine Datei DummiesFrame.java Teil Ihres Projekts sein. Wenn Sie den Code von der Website zu diesem Buch herunterladen (http://www.wiley-vch.de/publish/dt/books/ISBN3-527-71364-6), erhalten Sie den Ordner 07‐10, der den Code von Listing 7.10 sowie den Code von DummiesFrame.java enthält. Wenn Sie Ihr eigenes Projekt mit Listing 7.10 erstellen wollen, müssen Sie meine Datei DummiesFrame manuell einfügen. Wie Sie das machen, ist von Ihrer IDE abhängig. In jedem Fall befindet sich meine Klasse DummiesFrame in einem Paket namens com.allmycode.dummiesframe. Die Datei DummiesFrame.java muss sich also in einem Ordner dummiesframe befinden, der sich in einem anderen Ordner allmycode befindet, der sich in einem weiteren Ordner namens com befindet. Weitere Informationen über Pakete finden Sie in den Kapiteln 9 und 14.

[image:]Aber ist das wirklich die beste Methode, meinen Code in Ihr Projekt einzufügen? In Kapitel 1 habe ich Dateien mit der Dateinamenerweiterung .class beschrieben, und die Rolle, die diese Dateien bei der Ausführung eines Java‐Programms spielen. Statt Ihnen meine Datei DummiesFrame.java bereitzustellen, könnte ich Ihnen nur eine Datei DummiesFrame.class als Download bereitstellen. Und wenn ich Ihnen Hunderte von .class‐Dateien bereitstellen müsste, wäre es sinnvoll, diese zu einer riesigen Archivdatei zusammenfassen. Java hat einen Namen für eine große Datei, die viele kleinere .class‐Dateien enthält. Sie heißt JAR‐Datei und hat die Dateinamenerweiterung .jar. In einer realen Anwendung sollten Sie definitiv eine JAR‐Datei verwenden, wenn Sie Ihren Code für andere Programmierer vorbereiten wollen, die diesen in ihren eigenen Anwendungen verwenden.

Meine DummiesFrame‐Klasse ist nicht nur für Grüße vorgesehen. Listing 7.11 verwendet DummiesFrame für ein bisschen Arithmetik.

import com.allmycode.dummiesframe.DummiesFrame;

public class Addition {

 public static void main(String[] args) {

 DummiesFrame frame = new DummiesFrame("Addiermaschine");

 frame.addRow("Erste Zahl");

 frame.addRow("Zweite Zahl");

 frame.setButtonText("Summe");

 frame.go();

 }

 public static int calculate(int firstNumber, int secondNumber) {

 return firstNumber + secondNumber;

 }

}

Listing 7.11: Ein ganz einfacher Taschenrechner.

Das Fenster in Abbildung 7.18 hat zwei Zeilen, weil Listing 7.11 zwei Aufrufe von addRow verwendet, und die calculate‐Methode des Listings hat zwei Parameter. Darüber hinaus ruft Listing 7.11 die setButtonText‐Methode des frame‐Objekts auf.

[image:]Abbildung 7.18: Der Code aus Listing 7.11 bei der Ausführung

Listing 7.12 enthält eine GUI‐Version des Ratespiels aus Kapitel 5. Abbildung 7.19 zeigt die Ausführung des Spiels.

import java.util.Random;

import com.allmycode.dummiesframe.DummiesFrame;

public class GuessingGame {

 public static void main(String[] args) {

 DummiesFrame frame = new DummiesFrame("Ratespiel");

 frame.addRow("Zahl von 1 bis 10");

 frame.setButtonText("Raten Sie!");

 frame.go();

 }

 public static String calculate(int inputNumber) {

 Random random = new Random();

 int randomNumber = random.nextInt(10) + 1;

 if (inputNumber == randomNumber) {

 return "Sie haben gewonnen.";

 } else {

 return "Sie haben verloren. Die Zahl war " + randomNumber + ".";

 }

 }

}

Listing 7.12: Ich denke mir eine Zahl aus.

[image:]Abbildung 7.19: Ich habe gewonnen!

In Listing 7.13 verwende ich neben der Klasse DummiesFrame eine Klasse Account, die mit der Klasse Konto aus diesem Kapitel vergleichbar ist. Ich hätte dieselben Ergebnisse ohne Einsatz von Account erstellen können, aber ich möchte Ihnen zeigen, wie Klassen zusammenarbeiten können, um ein vollständiges Programm zu ergeben. Eine Ausführung des Codes sehen Sie in Abbildung 7.20.

import com.allmycode.dummiesframe.DummiesFrame;

public class UseAccount {

 public static void main(String args[]) {

 DummiesFrame frame = new DummiesFrame("Display an Account");

 frame.addRow("Name");

 frame.addRow("Adresse");

 frame.addRow("Saldo");

 frame.setButtonText("Anzeigen");

 frame.go();

 }

 public static String calculate(String name, String address,

 double balance) {

 Account myAccount = new Account();

 myAccount.setName(name);

 myAccount.setAddress(address);

 myAccount.setBalance(balance);

 return myAccount.getName() + " (" + myAccount.getAddress() +

 ") besitzt $" + myAccount.getBalance();

 }

}

Listing 7.13: Verwendung einer zweiten Klasse

[image:]Verwenden Sie die Klasse DummiesFrame, um zwei GUI‐Programme zu schreiben.

[image: image] Ein Fenster hat Textfelder für den Namen, den Jahresumsatz und den Status (gewinnorientiert oder gemeinnützig) eines Unternehmens. Wenn der Benutzer auf eine Schaltfläche klickt, zeigt das Fenster an, wie viel Steuern das Unternehmen zahlt.

Ein gewinnorientiertes Unternehmen zahlt 10 Prozent seines Gewinns als Steuern, ein gemeinnütziges Unternehmen zahlt 2 Prozent seines Gewinns als Steuern.

[image:]Abbildung 7.20: Ich bin reich!

[image: image] Ein Fenster hat Textfelder für den Lebensmitteltyp, das Gewicht, den Preis, die Portionszahl und die Kalorien pro Portion eines Produkts. Wenn der Benutzer auf eine Schaltfläche klickt, zeigt das Fenster den Preis für 100 g, den Preis pro Portion und die Gesamtkalorienzahl des Produkts an.

205-236

Kapitel 8

Zeit und Geld sparen: Code wiederverwenden

In diesem Kapitel

Alten Code neu beleben

Code optimieren

Änderungen vornehmen, ohne ein Vermögen auszugeben

Vor langer Zeit lebte in einem fernen Land eine wunderschöne Prinzessin. Als die Prinzessin 25 Jahre alt wurde (das optimale Alter für Macht, gutes Aussehen und hohe moralische Ansprüche), erhielt sie von ihrem gütigen Vater ein Geschenk in einer goldenen Schachtel. Neugierig, wie sie war, riss die Prinzessin die goldene Verpackung auf.

Die Prinzessin war ganz aufgeregt. Die Überraschung war ihrem Vater gelungen, denn er hatte ihr das geschenkt, was sie sich schon immer gewünscht hatte – ein fehlerfrei laufendes Computerprogramm. Das Programm machte alles, was die Prinzessin von ihm verlangte, und das so, wie sie es erwartete. Die Prinzessin war glücklich, und das war auch ihr guter alter Vater.

Über viele Jahre hinweg lief das Programm fehlerfrei. Aber dann änderten sich die Bedürfnisse der Prinzessin. Sie erwartete mehr vom Leben, stellte höhere Ansprüche, kümmerte sich mehr um ihre Karriere, strebte nach immer größerer Erfüllung, jonglierte mit den Wünschen ihres Ehemannes und ihrer Kinder, nahm es mit ihrem Budget nicht so genau und suchte Frieden für ihre Seele. Und immer war das Programm ihr treuer Begleiter.

Die Prinzessin und das Programm wurden zusammen alt. Eines Abends, als sie am Kamin saß, stellte sie dem Programm eine beängstigende Frage: »Wie machst du das? Wie schaffst du es, Jahr für Jahr die richtigen Antworten zu geben?«

»Gesundes Leben«, antwortete das Programm. »Ich schwimme jeden Tag 20 Apps, und ich nehme C++ gegen Viren. Ich vermeide hogarithmische Algorithmen. Ich linke Java in Maßen. Ich sage GNU zu Bugs. Ich rauche keine Backups. Und ich byte nie mehr ab, als ich vertrage.«

Die Prinzessin war sprachlos.

Eine Klasse definieren (was es bedeutet, ein Mitarbeiter zu sein)

Wäre es nicht ganz nett, wenn jedes Stückchen Software das täte, was Sie von ihm erwarten? Sie können in einer idealen Welt ein Programm kaufen, es betriebsbereit machen, es nahtlos an neue Situationen anpassen und es problemlos aktualisieren, wenn das notwendig wird. Unglücklicherweise gibt es keine Software dieser Art. (Nichts dieser Art existiert.) Die Wahrheit ist, dass Sie Software finden können, die einiges von dem kann, was Ihnen so vorschwebt, aber eben nicht alles.

Dies ist einer der Gründe dafür, dass objektorientierte Programmierung erfolgreich geworden ist. Seit Jahren erwerben Unternehmen vorgefertigten Code, um dann festzustellen, dass dieser Code nicht das macht, was er ihrer Meinung nach tun sollte. Die Unternehmen begannen also, am Code herumzubasteln. Ihre Programmierer tauchten immer tiefer in die Programmdateien ein, änderten Namen von Variablen, umgaben alles mit Unterprogrammen, bauten Formulare neu auf und schafften es im Allgemeinen nur, den Code zu verschlimmbessern. Die Wirklichkeit sieht eben so aus, dass Sie ein Programm, das nicht das macht, was Sie wollen, nicht dadurch verbessern, dass Sie an seinem Code herumbasteln. Das gelingt Ihnen selbst dann nicht, wenn das Programm schon fast alles kann, von dem Sie träumen. Die beste Alternative sieht dann so aus, das Programm (unabhängig davon, wie teuer es war) wegzuwerfen und ganz neu von vorn anzufangen. Was für ein schlechtes Geschäft!

Objektorientierte Programmierung hat dies gewaltig geändert. Ein objektorientiertes Programm ist in seinem Kern so entworfen worden, dass es geändert werden kann. Mit sauber geschriebener Software sind Sie in der Lage, Nutzen aus Funktionen zu ziehen, die bereits vorhanden sind, neue Funktionen selbstständig hinzuzufügen und Funktionen zu überschreiben, die Ihren Bedürfnissen nicht entsprechen. Das Beste an dieser Situation ist, dass die Änderungen, die Sie vornehmen, sauber sind – kein Kratzen und Graben am, beziehungsweise im empfindlichen Programmcode anderer Entwickler. Stattdessen fügen Sie sorgfältig und ordentlich Erweiterungen und Änderungen hinzu, ohne die interne Logik des vorhandenen Codes anzurühren.

Das letzte Wort an Mitarbeiter

Wenn Sie ein objektorientiertes Programm schreiben, beginnen Sie damit, dass Sie sich Gedanken über die zu verarbeitenden Daten machen. Sie schreiben über Konten. Also, was ist ein Konto? Sie schreiben Code, der auf das Anklicken einer Schaltfläche reagiert. Also, was ist eine Schaltfläche? Sie schreiben ein Programm, um Gehaltsschecks an Mitarbeiter zu versenden. Also, was ist ein Mitarbeiter?

Im ersten Beispiel dieses Kapitels ist ein Mitarbeiter eine Person mit einem Namen und einer Funktion im Unternehmen. Natürlich haben Mitarbeiter auch noch andere Merkmale, aber im Moment wollen wir uns auf Grundlegendes konzentrieren. Der Code in Listing 8.1 beschreibt, was es heißt, ein Mitarbeiter zu sein.

import static java.lang.System.out;

public class Mitarbeiter {

 private String name;

 private String funktion;

 public void setName(String nameIn) {

 name = nameIn;

 }

 public String getName() {

 return name;

 }

 public void setFunktion(String funktionIn) {

 funktion = funktionIn;

 }

 public String getFunktion() {

 return funktion;

 }

 public void zahleGehalt(double betrag) {

 out.printf("Zahlen Sie an %s ", name);

 out.printf("(%s) ***", funktion);

 out.printf("%,.2f Euro\n", betrag);

 }

}

Listing 8.1: Was ist ein Mitarbeiter?

Anhand von Listing 8.1 können Sie sehen, dass jeder Mitarbeiter über sieben Merkmale definiert wird. Zwei dieser Merkmale sind ziemlich einfach: Jeder Mitarbeiter hat einen Namen und eine Funktion im Unternehmen. (Die Klasse Mitarbeiter verfügt in Listing 8.1 über ein Feld name und ein Feld funktion.)

Und was hat ein Mitarbeiter sonst noch zu bieten? Zum Beispiel vier Methoden, um mit den Werten für den Namen und die Funktion des Mitarbeiters umgehen zu können. Bei diesen Methoden handelt es sich um setName, getName, setFunktion und getFunktion. Ich erkläre diese Art von Methoden (Zugriffsmethoden) in Kapitel 7.

Und dann enthält die Klasse noch die Methode zahleGehalt. Ich habe mir dabei überlegt, dass die Methode, die für die Auszahlung des Gehalts zuständig ist, zu einer der beiden Klassen gehören muss. Da der größte Teil der Daten, die zu einer Gehaltszahlung gehören, für die einzelnen Mitarbeiter aufbereitet sind, befindet sich die Methode zahleGehalt in der Klasse Mitarbeiter.

Einzelheiten zum Aufruf von printf in der Methode zahleGehalt finden Sie weiter hinten in diesem Kapitel im Abschnitt Gehalt bezahlen.

Die Klasse gut verwenden

Die Klasse Mitarbeiter verfügt in Listing 8.1 nicht über eine Methode main. Damit gibt es bei der Ausführung des Codes keinen Punkt, von dem aus das Programm starten kann. Um diese Schwachstelle zu beheben, schreiben Sie ein separates Programm, das eine Methode main enthält. Verwenden Sie dann dieses Programm, um Instanzen von Mitarbeiter zu erstellen. Listing 8.2 enthält eine Klasse mit einer Methode main.

import java.util.Scanner;

import java.io.File;

import java.io.IOException;

public class Gehaltsabrechnung {

 public static void main(String args[])throws IOException {

 Scanner diskScanner = new Scanner(new File("EmployeeInfo.txt"));

 for (int empNum = 1; empNum <= 3; empNum++) {

 bezahleMitarbeiter(diskScanner);

 }

 diskScanner.close();

 }

 static void bezahleMitarbeiter(Scanner aScanner) {

 Mitarbeiter einMa = new Mitarbeiter();

 einMa.setName(aScanner.nextLine());

 einMa.setFunktion(aScanner.nextLine());

 einMa.zahleGehalt(aScanner.nextDouble());

 aScanner.nextLine();

 }

}

Listing 8.2: Eine Gehaltsanweisung fertigmachen

[image:]Um den Code in Listing 8.2 auszuführen, muss es auf Ihrer Festplatte eine Datei mit dem Namen EmployeeInfo.txt geben. Glücklicherweise finden Sie auf der Website zu diesem Buch (http://www.wiley-vch.de/publish/dt/books/ISBN3-527-71364-6) eine EmployeeInfo.txt‐Datei. Sie können das heruntergeladene Material in eine beliebige der gebräuchlichsten Java‐IDEs importieren (Eclipse, NetBeans oder IntelliJ IDEA). Bei einem Import in Eclipse erhalten Sie das Projekt 08‐01. Dieses Projekt befindet sich auf Ihrer Festplatte typischerweise im Ordner c:\Benutzer\mein‐Benutzername\workspace\08‐01. Und in diesem Ordner gibt es die Datei EmployeeInfo.txt.

[image:]Wenn Sie mehr über Dateien auf Ihrer Festplatte nachlesen wollen, schauen Sie sich weiter hinten in diesem Kapitel den Abschnitt Mit Dateien auf der Festplatte arbeiten (ein kleiner Umweg) an.

Wo auf dieser Welt leben Sie?

Die Dezimaltrennzeichen unterscheiden sich zwischen verschiedenen Ländern. Das macht beispielsweise einen großen Unterschied, wenn Sie versuchen, mit der Scanner‐Klasse von Java double‐Werte einzulesen. Damit Sie verstehen, was ich meine, betrachten Sie die folgende JShell‐Sitzung.

jshell> import java.util.Scanner

jshell> import java.util.Locale

jshell> Scanner keyboard = new Scanner(System.in)

keyboard ==> java.util.Scanner[delimiters=\p{javaWhitespace}+] … \E][infinity string=\Q8\E]

jshell> keyboard.nextDouble()

1000.00

$4 ==> 1000.0

jshell> Locale.setDefault(Locale.FRANCE)

jshell> keyboard = new Scanner(System.in)

keyboard ==> java.util.Scanner[delimiters=\p{javaWhitespace}+] … \E][infinity string=\Q8\E]

jshell> keyboard.nextDouble()

1000,00

$7 ==> 1000.0

jshell> keyboard.nextDouble()

1000.00

| java.util.InputMismatchException thrown:

| at Scanner.throwFor (Scanner.java:860)

| at Scanner.next (Scanner.java:1497)

| at Scanner.nextDouble (Scanner.java:2467)

| at (#8:1)

jshell>

Diese Sitzung habe ich auf einem Computer in den USA ausgeführt. Das Ursprungsland ist hier relevant, weil ich nach dem ersten Aufruf von keyboard.nextDouble() den Wert 1000.00 eingegeben habe (mit einem Punkt vor den beiden letzten Nullen), und Java diesen mit der Bedeutung »Eintausend« akzeptiert hat.

Anschließend rufe ich in der JShell‐Sitzung jedoch Locale.setDefault(Locale.FRANCE) auf, sodass sich Java verhält, als stünde mein Computer in Frankreich. Wenn ich eine weitere Scanner‐Instanz erzeuge und erneut keyboard.nextDouble() aufrufe, übernimmt Java die Eingabe von 1000,00 (mit einem Komma vor den beiden letzten Nullen) als mille (französisch für „Eintausend”). Darüber hinaus akzeptiert Java den Punkt in 1000.00 nicht mehr. Wenn ich 1000.00 eingebe (mit Punkt), erhalte ich eine InputMismatchException.

Standardmäßig will die Scanner‐Instanz auf Ihrem Computer, dass Sie double‐Zahlen so eingeben, wie Sie sie normalerweise in Ihrem Land schreiben. Wenn Sie die Zahlen nach der Konvention eines anderen Landes eingeben, erhalten Sie deshalb eine InputMismatchException. Wenn Sie also den Code in Listing 8.2 ausführen, müssen die Zahlen in Ihrer Datei EmployeeInfo.txt das Format Ihres Landes verwenden.

Ich führe also den Code in Listing 8.2 aus. Die Datei EmployeeInfo.txt, die Sie von der Website zu diesem Buch heruntergeladen haben, beginnt mit den beiden folgenden drei Zeilen:

Barry Burd

Vorstand

5000.00

Die letzte Zahl, 5000.00, enthält einen Punkt, und wenn in Ihrem Land ein Komma als Dezimaltrennzeichen verwendet wird, erhalten Sie eine InputMismatchException. Um dies zu umgehen, haben Sie zwei Möglichkeiten:

[image: image] Ändern Sie in der heruntergeladenen Datei EmployeeInfo.txt die Punkte zu Kommas.

[image: image] Fügen Sie im Code von Listing 8.2 vor der Deklaration von diskScanner die Anweisung Locale.setDefault(Locale.US) ein.

Und wenn Sie wollen, dass die Ausgabe den Konventionen in Ihrem Land entspricht, verwenden Sie die Formatter‐Klasse von Java. Fügen Sie Ihrem Code beispielsweise Folgendes hinzu:

out.print(new java.util.Formatter().format(java.util.Locale.FRANCE, "%,.2f", 1000.00));

Weitere Informationen finden Sie in der API‐Dokumentation für die Klasse Formatter (https://docs.oracle.com/javase/8/docs/api/java/util/Formatter.html) und die Klasse Locale (https://docs.oracle.com/javase/8/docs/api/java/util/Locale.html) von Java.

Die Klasse Gehaltsabrechnung verfügt in Listing 8.2 über zwei Methoden. Eine davon, die Methode main, ruft die Methode bezahleMitarbeiter dreimal auf. Dabei erhält diese Methode jedes Mal Daten von der Datei EmplyeeInfo.txt und füttert damit die Methoden der Klasse Mitarbeiter.

Und so wird die Variable bezahleMitarbeiter wiederverwendet:

[image: image] Wenn bezahleMitarbeiter zum ersten Mal aufgerufen wird, sorgt sie dafür, dass im Befehl Mitarbeiter einMa = new Mitarbeiter() einMa auf ein neues Objekt verweist.

[image: image] Beim zweiten Aufruf von bezahleMitarbeiter führt der Computer denselben Befehl erneut aus, wodurch es zu einer neuen Verkörperung der Variablen einMa kommt, die ein brandneues Objekt erstellt.

[image: image] Beim dritten Durchlauf geschieht dies alles noch einmal. Es kommt zu einer neuen Variablen einMa, die auf ein drittes Objekt verweist.

Abbildung 8.1 stellt diesen Ablauf grafisch dar.

[image:]Abbildung 8.1: Drei Aufrufe der Methode

[image:]Es gibt immer wieder interessante Dinge, die Sie ausprobieren können:

[image: image] Ein OrtAnDemSieLeben hat eine Adresse, eine bestimmte Zimmerzahl und eine Grundfläche (in Quadratmetern). Schreiben Sie den Code für die Klasse OrtAnDemSieLeben. Schreiben Sie Code für eine separate Klasse DieOrteAnzeigen. Ihre Klasse DieOrteAnzeigen erzeugt ein paar OrtAnDemSieLeben‐Instanzen, indem es Werte für ihre Felder Adresse, Zimmerzahl und Fläche zuweist. Außerdem liest die Klasse DieOrteAnzeigen (von der Tastatur) den Preis für die einzelnen Wohnungen. Ihr Code zeigt für jede Wohnung den Preis pro Quadratmeter und den Preis pro Zimmer an.

[image: image] Erstellen Sie mit Ihrer neuen OrtAnDemSieLeben‐Klasse und meiner DummiesFrame‐Klasse (aus Kapitel 7) eine GUI‐Anwendung. Die GUI‐Anwendung nimmt Informationen über einen OrtAnDemSieLeben entgegen und zeigt den Preis dafür pro Quadratmeter und den Preis pro Zimmer an.

Gehalt bezahlen

Listing 8.1 enthält drei printf‐Aufrufe. Jeder dieser Aufrufe verfügt über einen Formatierungsstring (wie "(%s) ****") und eine Variable (wie funktion). Jeder Formatierungsstring enthält einen Platzhalter (wie %s), der festlegt, wo und wie der Wert der Variablen angezeigt wird.

So enthält zum Beispiel der Formatierungsstring im zweiten Aufruf von printf einen Platzhalter %s, der einen Platz für den Wert der Variablen funktion frei hält. Die Schreibweise %s dient entsprechend den Java‐Regeln als Platzhalter für einen String, und funktion ist in Listing 8.2 als String definiert worden. Der Platzhalter %s wird von Klammern und ein paar anderen Zeichen umgeben, was letztendlich dazu führt, dass auch die berufliche Position des Mitarbeiters (in den Beispielen dieses Kapitels Funktion genannt) bei der Ausgabe in Klammern steht (siehe Abbildung 8.2).

[image:]Abbildung 8.2: Jeder wird bezahlt.

Beachten Sie in Listing 8.1 das Komma beim Platzhalter %,.2. Das Komma weist das Programm an, Zahlen zu gruppieren, weshalb so etwas auch gruppierender Separator genannt wird. Aus diesem Grund sehen Sie in Abbildung 8.2 nicht 5000.00 Euro, 7000.00 Euro und 10000.00 Euro, sondern 5.000,00 Euro, 7.000,00 Euro und 10.000,00 Euro.

Mit Dateien auf der Festplatte arbeiten (ein kleiner Umweg)

In Kapitel 7 lesen Programme Zeichen, die über die Tastatur des Computers eingegeben werden. Im Gegensatz dazu liest der Code in Listing 8.2 Zeichen, die aus einer Datei stammen. Diese Datei, EmployeeInfo.txt, liegt auf der Festplatte Ihres Computers.

Die Datei entspricht dem Dokument einer Textverarbeitung, wobei sie aber keine Formatierungen enthält – nichts Kursives, keine Fettschrift, keine Schriftgröße, nichts dieser Art.

Die Datei EmployeeInfo.txt enthält nur Standardzeichen – die Art von Tastatureingaben, zu denen es kommt, wenn Sie zum Beispiel das Ratespiel aus Kapitel 5 und 6 spielen. Natürlich sind das Auslesen von Tastatureingaben während eines Ratespiels und das Auslesen einer Datei auf der Festplatte nicht dasselbe. Bei einem Ratespiel zeigt das Programm Aufforderungen wie Geben Sie eine ganze Zahl zwischen 1 und 10 ein an. Das Programm steht mit der Person, die an der Tastatur sitzt, in einem Dialog. Einen solchen Dialog gibt es in Listing 8.2 nicht. Das Programm Gehaltsabrechnung liest Zeichen von der Festplatte ein und fordert niemanden auf, etwas zu tun oder einzugeben.

Der größte Teil dieses Kapitels beschäftigt sich mit der Wiederverwendung von Code. Listing 8.2 hat mit einer Idee zu tun, die nicht unmittelbar die Wiederverwendung von Code betrifft. Es liest, anders als die Beispiele in den vorherigen Kapiteln, Daten aus einer gespeicherten Datei aus. Deshalb unternehme ich in den nächsten Abschnitten einen kleinen Ausflug in die Welt der Dateien auf Festplatten.

Daten in einer Datei ablegen

Der Code in Listing 8.2 funktioniert erst dann, wenn es in einer Datei Mitarbeiterdaten gibt. Die entsprechende Datei heißt in Listing 8.2 EmployeeInfo.txt. Ich habe deshalb, bevor ich den Code in Listing 8.2 ausführe, erst einmal eine kleine Textdatei erstellt. Abbildung 8.3 zeigt, wie diese Datei aussehen muss. (Denken Sie daran, dass Java beim Einlesen von Daten des Typs double eine landesspezifische Schreibweise des Dezimalzeichens verlangt!)

[image:]Abbildung 8.3: Die Datei

[image:]Damit Listing 8.2 nicht zu kompliziert wird, müssen Sie unbedingt auch die letzte Zeile in Abbildung 8.3 mit [image: [Enter]] abschließen. (Wenn Sie sich Abbildung 8.3 noch einmal ansehen, fällt Ihnen vielleicht auf, dass der Cursor am Anfang einer neuen, leeren Zeile steht.) Wenn Sie vergessen, den Text durch Drücken von [image: [Enter]] zu beenden, stürzt der Code in Listing 8.2 ab, wenn Sie versuchen, ihn auszuführen.

[image:]Die Separatoren zum Gruppieren von Zahlen unterscheiden sich von Land zu Land. Die Datei, die in Abbildung 8.3 gezeigt wird, funktioniert nur bei einem »Komma‐orientierten« Ländercode, in dem 5000,00 »fünftausend« bedeutet. Diese Datei funktioniert nicht in einem Land, in dem der Punkt das Dezimalzeichen ist (wie zum Beispiel in den USA) und 5000.00 »fünftausend« bedeutet. Wenn Sie in der Datei das falsche Dezimalzeichen verwenden, erhalten Sie beim Ausführen des Codes mit ziemlicher Sicherheit eine Fehlermeldung vom Typ InputMismatchException. Lesen Sie dazu unbedingt den Einschub Wo auf dieser Welt leben Sie? in diesem Kapitel.

Code kopieren und einfügen

In so gut wie jeder Programmiersprache ist das Auslesen von Daten aus Dateien ziemlich trickreich. Sie benötigen zusätzliche Codezeilen, damit der Computer weiß, was er zu tun hat. Manchmal können Sie diese Zeilen aus dem Code anderer Entwickler kopieren. Sie können zum Beispiel der Struktur von Listing 8.2 folgen:

/*

 * Die Struktur von Listing 8.2

 */

import java.util.Scanner;

import java.io.File;

import java.io.IOException;

class EinKlassenName {

 public static void main(String args[]) throws IOException {

 Scanner scannerName =

 new Scanner(new File("NameEinerDatei"));

 //Hierhin kommt Code

 scannerName.nextInt();

 scannerName.nextDouble();

 scannerName.next();

 scannerName.nextLine();

 //Hierhin kommt Code

 scannerName.close();

 }

}

Sie möchten Daten lesen, die sich in einer Datei befinden. Beginnen Sie damit, dass Sie sich vorstellen, Tastatureingaben auszulesen. Bringen Sie in Ihrem Programm die üblichen Codes für Scanner und next unter. Fügen Sie dann noch ein paar Elemente aus der Struktur von Listing 8.2 hinzu:

[image: image] Fügen Sie zwei neue Importdeklarationen hinzu – eine für java.io.File und eine für java.io.IOException.

[image: image] Schreiben Sie in den Kopf Ihrer Methode throws IOException.

[image: image] Schreiben Sie in den Aufruf von new Scanner den Text new File("").

[image: image] Nehmen Sie eine Datei, die sich auf Ihrer Festplatte befindet. Setzen Sie den Namen dieser Datei zwischen die Anführungszeichen.

[image: image] Merken Sie sich den Namen Ihres Scanners. Verwenden Sie diesen Namen in den Aufrufen von next, nextInt, nextDouble und so weiter.

[image: image] Verwenden Sie den Namen Ihres Scanners beim Aufruf von close.

Gelegentlich kann Sie das Kopieren und Einfügen von Code auch in Schwierigkeiten bringen. Vielleicht schreiben Sie ein Programm, das nicht in die einfache Struktur von Listing 8.2 passt. Sie müssen die Struktur umbauen. Um das aber sauber hinzubekommen, müssen Sie verstehen, welche Idee sich hinter der Struktur verbirgt.

Und hier rettet Sie der nächste Abschnitt. Er behandelt einige dieser Ideen.

[image:]Dieser Absatz ist eigentlich ein Schuldbekenntnis. In fast allen Programmiersprachen ist die Eingabe aus einer Datei auf der Festplatte nicht besonders elegant. Es gibt keinen einfachen INPUT‐Befehl. Normalerweise müssen Sie eine Verbindung zwischen dem Code und der Festplatte einrichten, Vorkehrungen für etwaige Probleme beim Lesen treffen, den Lesevorgang durchführen, die eingelesenen Zeichen in den gewünschten Wert umwandeln und schließlich die Verbindung zur Festplatte wieder trennen. Ein riesiger Aufwand. Aus diesem Grund verwende ich in diesem Buch die Scanner‐Klasse von Java. Die Scanner‐Klasse gestaltet die Eingabe relativ schmerzlos. Aber ich gebe zu, dass ein professioneller Programmierer für Eingaben eher nicht die Scanner‐Klasse verwenden würde. Stattdessen verwenden die Programmierer den sogenannten BufferedReader oder Klassen aus dem java.nio‐Paket.

Eine Datei auslesen

In den früheren Kapiteln lesen Programme Zeichen, die über die Tastatur des Computers eingegeben werden. Diese Programme verwenden Komponenten wie Scanner, System.in und nextDouble – Komponenten, die in Javas API definiert worden sind. Das Programm Gehaltsabrechnung in Listing 8.2 bereichert die Geschichte um etwas vollkommen Neues: Statt Zeichen von der Tastatur liest das Programm Zeichen aus der Datei EmployeeInfo.txt aus. Diese Datei befindet sich auf der Festplatte Ihres Computers.

Um Zeichen aus Dateien zu lesen, verwenden Sie einige der Dinge, die auch für das Auslesen von Tastatureingaben verwendet werden. Sie setzen Scanner, nextDouble und andere tolle Sachen ein. Aber leider gibt es auch ein paar zusätzliche Hürden, die Sie überwinden müssen. Hier eine Liste davon:

[image: image] Sie benötigen ein Objekt new File. Um es genauer auszudrücken: Sie benötigen eine neue Instanz der API‐Klasse File. Sie erhalten diese Instanz über Code wie

new File("EmployeeInfo.txt")

Bei dem Objekt in Anführungszeichen handelt es sich um den Namen einer Datei – einer Datei auf der Festplatte Ihres Computers. Die Datei enthält Zeichen wie die in Abbildung 8.3.

An dieser Stelle macht die Terminologie aus Mücken Elefanten. Klar, ich verwende die Ausdrücke new File Objekt und new File Instanz, aber sie machen nichts, als mit new File("EmployeeInfo.txt") eine Datei auf der Festplatte zu bezeichnen. Nachdem Sie new File("EmployeeInfo.txt") mit

Scanner diskScanner = new Scanner(new File("EmployeeInfo.txt"));

in new Scanner untergebracht haben, können Sie alles vergessen, was mit new File zu tun hat. Ab jetzt bezeichnet diskScanner EmployeeInfo.txt eine Datei auf der Festplatte Ihres Computers.

[image:]Sie können in Listing 8.2 das Erstellen des Objekts new File mit dem Erstellen des Objekts new Mitarbeiter weiter hinten im Code oder mit new Konto in den Beispielen von Kapitel 7 vergleichen. Der einzige Unterschied sieht so aus, dass die Klassen Mitarbeiter und Konto in den Beispielen dieses Buches definiert werden, während die Klasse File aus der Java‐API stammt.

[image:]Wenn Sie über new Scanner eine Verbindung zu einer Datei auf der Festplatte aufbauen, dürfen Sie den Teil mit new File nicht vergessen. Wenn Sie new Scanner("EmployeeInfo.txt") ohne new File schreiben, macht das dem Compiler nichts aus. (Sie erhalten, bevor Sie den Code ausführen, keine Warnung oder Fehlermeldung.) Aber wenn Sie das Programm ablaufen lassen, erhalten Sie nichts von dem, was Sie erwarten.

[image: image] Sie müssen auf die Klasse File verweisen, indem Sie deren vollständigen Namen verwenden: java.io.File. Sie können dies mit einer import‐Deklaration wie dieser erledigen:

Scanner diskScanner = new Scanner(new java.io.File("EmployeeInfo.txt"));

[image: image] Sie benötigen eine Klausel throws IOException. Es kann viel schiefgehen, wenn sich Ihr Programm mit EmployeeInfo.txt verbindet. So kann es zum Beispiel sein, dass diese Datei auf der Festplatte nicht vorhanden ist, oder die Datei befindet sich im falschen Verzeichnis. Um vor den Unannehmlichkeiten dieser Art gewappnet zu sein, gibt es in Java diverse Vorsichtsmaßnahmen. Java besteht darauf, dass Sie bestätigen, die Gefahren von new Scanner zu kennen.

Für diese Bestätigung stehen Ihnen mehrere Wege zur Verfügung, von denen der einfachste darin besteht, die Klausel throws zu nutzen. In Listing 8.2 endet der Kopf der Methode main mit throws IOException. Indem Sie diese beiden Wörter hinzufügen, beruhigen Sie den Java‐Compiler. Das ist so, als würden Sie ihm sagen: »Ich weiß, dass der Aufruf von new Scanner Probleme hervorrufen kann. Daran musst du mich nicht erinnern.« Ohne die Klausel throws erhalten Sie eine Fehlermeldung vom Typ unreported exception.

[image:]Wenn Sie mehr über Javas Ausnahmen wissen wollen, lesen Sie Kapitel 12. Bis dahin fügen Sie dem Kopf einer jeden Methode, die new Scanner(new File(... aufruft, throws IOException hinzu.

[image: image] Sie müssen auf die Klasse IOException mit ihrem vollständigen Namen verweisen – java.io. IOException.

Sie erledigen dies über eine import‐Deklaration wie der in Listing 8.2. Alternativ können Sie aber auch die Klausel throws der Methode main erweitern:

public static void main(String args[]) throws java.io.IOException {

[image: image] Sie müssen den Namen des Dateiscanners an die Methode bezahleMitarbeiter übergeben.

In Kapitel 7 hat in Listing 7.5 die Methode zinsen einen Parameter mit dem Namen zinsSatz. Immer wenn Sie die Methode zinsen aufrufen, übergeben Sie der Methode ein besonderes, aktuelles Stückchen Information. (Sie übergeben der Methode eine Zahl – einen Zinssatz. Abbildung 7.7 stellt das entsprechende Konzept dar.)

Etwas Ähnliches geschieht in Listing 8.2. Die Methode bezahleMitarbeiter besitzt den Parameter aScanner. Jedes Mal, wenn Sie die Methode bezahleMitarbeiter aufrufen, übergeben Sie der Methode ein besonderes, aktuelles Stückchen Information. (Sie übergeben der Methode einen Scanner – eine Referenz auf eine Datei.)

Vielleicht wundern Sie sich darüber, dass die Methode bezahleMitarbeiter einen Parameter haben muss. Immerhin liest sie in Listing 8.2 jedes Mal dieselbe Datei aus. Warum also müssen Sie sich damit abplagen, die Methode bei jedem Aufruf darüber zu informieren, dass es die Datei EmployeeInfo.txt immer noch gibt?

Nun, es gibt Wege, um den Code in Listing 8.2 umzubauen. Einige dieser Wege verzichten auf Parameter. Aber in unserem Beispiel läuft alles über zwei Methoden: die Methode main und die Methode bezahleMitarbeiter. In der Methode main legen Sie einen Scanner an, den Sie drei Mal verwenden – jeweils einmal in jedem Aufruf der Methode bezahleMitarbeiter.

Alles, was Sie in einer Methode deklarieren, ist wie etwas, das nur im Code dieser Methode bekannt ist. Deshalb ist der diskScanner, den Sie in der Methode main definieren, nicht automatisch auch in der Methode bezahleMitarbeiter bekannt. Deshalb übergeben Sie diskScanner aus der Methode main an die Methode bezahleMitarbeiter.

[image:]Sie finden in Kapitel 10 mehr über Komponenten heraus, die Sie innerhalb oder außerhalb von Methoden deklarieren.

Wer hat die Datei verschoben?

Wenn Sie die Codebeispiele von der Website dieses Buches herunterladen, werden Sie auf Dateien wie Employee.java und DoPayroll.java stoßen – den Code in den Listings 8.1 und 8.2. Außerdem gibt es eine Datei mit dem Namen EmployeeInfo.txt. Und das ist auch gut so, denn wenn Java diese Datei nicht findet, läuft das gesamte Projekt nicht sauber, und Sie erhalten eine FileNotFoundException.

Im Allgemeinen besagt eine FileNotFoundException, dass eine Datei, die Ihr Programm benötigt, von diesem nicht gefunden wird. Zu diesem Fehler kann es sehr schnell kommen und dies kann ziemlich frustrierend sein. Für Sie ist die Datei EmployeeInfo.txt vorhanden, aber denken Sie daran, dass ein Computer dumm ist. Er kann nicht zwischen den Zeilen lesen, und wenn Sie nur einen kleinen Fehler machen, ist es aus. Wenn sich die Datei nicht auf der Festplatte Ihres Computers befindet oder Sie sich beim Dateinamen verschrieben haben, versagt Ihr Computer.

Manchmal wissen Sie ganz genau, dass es auf der Festplatte eine Datei EmployeeInfo.txt (oder WasAuchImmer.xyz) gibt. Aber wenn Sie dann Ihr Programm ausführen, erhalten Sie diese unschöne FileNotFoundException. Normalerweise liegt die Datei in solch einem Fall im falschen Verzeichnis. (Das ist natürlich eine Frage des Standpunktes. Eventuell ist die Datei zwar im richtigen Verzeichnis, aber Sie haben Java aufgefordert, im falschen Verzeichnis nachzusehen.) Um dies zu diagnostizieren, fügen Sie Listing 8.2 den folgenden Code hinzu:

File employeeInfo = new File("EmployeeInfo.txt");

System.out.println("Suche nach " + employeeInfo.getCanonicalPath());

Wenn Sie den Code ausführen, teilt Java Ihnen mit, wo sich die Datei EmployeeInfo.txt auf Ihrer Festplatte befinden sollte.

Den Dateinamen um den Verzeichnisnamen erweitern

Sie können in Ihrem Java‐Code genau angeben, wo sich eine Datei befindet. Code wie new File("C:\\Users\\bburd\\workspace\\Listing08‐01\\EmployeeInfo.txt") sieht zwar hässlich aus, funktioniert aber.

Beachten Sie im vorherigen Absatz den doppelten umgekehrten Schrägstrich (der umgekehrte Schrägstrich wird auch Backslash genannt). Wenn Sie Windows benutzen, sind Sie eigentlich daran gewöhnt, C:\Users\bburd\workspace ... mit einem einfachen Backslash zu schreiben. Aber unter Java besitzt der einfache umgekehrte Schrägstrich (Backslash) eine eigene Bedeutung. (So sagt zum Beispiel in Listing 7.7 \n aus, dass zu einer neuen Zeile gegangen wird.) Merken Sie sich deshalb, dass Sie in Java einen doppelten Backslash verwenden, wenn Sie in einem von Anführungszeichen eingeschlossenen String einen einfachen Backslash nutzen wollen.

[image:]Für Macintosh‐ und Linux‐Benutzer ist es sicherlich angenehm zu erfahren, dass das Zeichen, das Sie zum Trennen von Pfadangaben verwenden (/), in einem Java‐String keine reservierte Bedeutung hat. Auf einem Mac ist der Code new File("/Users/bburd/workspace/Listing08‐01/EmployeeInfo.txt") so normal wie regelmäßiges Atmen. Aber Mac‐ und Linux‐Benutzer sollten sich nicht zu schnell als etwas Besseres betrachten. Zeilen wie new File("/Users/bburd/workspace ... funktionieren auch unter Windows. Unter Windows können Sie sowohl einen Schrägstrich (/) als auch den umgekehrten Schrägstrich (\) verwenden, um Angaben zu Pfaden auf der Festplatte zu machen. Ich könnte auf der Windows‐Befehlszeile sogar cd c:/users\bburd eingeben, um zu meinem Home‐Verzeichnis zu gelangen.

[image:]Wenn Sie wissen, wo Ihr Java‐Programm Dateien sucht, können Sie den Weg dorthin genau vorgeben. Unterstellen wir einmal, dass der Code in Listing 8.2 die Datei EmployeeInfo.txt normalerweise im Projektordner 08‐01 sucht. Öffnen Sie als Experiment dieses Verzeichnis und legen Sie ein neues Unterverzeichnis an, das den Namen datenDateien bekommt. Verschieben Sie dann die Datei EmployeeInfo.txt in das neue Verzeichnis. Nun müssen Sie noch die entsprechende Zeile im Code in new File("datenDateien\\EmployeeInfo.txt") ändern.

Eine Zeile nach der anderen lesen

In Listing 8.2 zeigt die Methode bezahleMitarbeiter einige nützliche Tricks, um Daten auszulesen. So verfügt zum Beispiel jeder Scanner, den Sie erstellen, über eine Methode nextLine. (Vielleicht möchten Sie diese Methode nicht verwenden, aber Sie sollten auf jeden Fall wissen, dass es sie gibt.) Wenn Sie die Methode nextLine eines Scanners aufrufen, schnappt sich die Methode alles bis zum Ende der aktuellen Textzeile. In Listing 8.2 ist ein Aufruf von nextLine in der Lage, eine ganze Zeile der Datei EmployeeInfo.txt auszulesen. (In einem anderen Programm könnte der Aufruf von nextLine einer Methode dazu führen, dass alles, was ein Benutzer bis zum Drücken der Taste [image: [Enter]] eingibt, ausgelesen wird.)

Beachten Sie, wie vorsichtig ich mich ausdrücke: nextLine liest alles bis zum Ende der aktuellen Zeile. Unglücklicherweise bedeutet »bis zum Ende der aktuellen Zeile« nicht immer das, was Sie normalerweise darunter verstehen. Gemischte Aufrufe von nextInt, nextDouble und nextLine können leicht in einem Chaos enden. Sie müssen aufpassen, was Sie machen, und Sie müssen die Ausgabe Ihres Programms sorgfältig beobachten.

Wichtig ist, dass Sie peinlich genau auf die Zeilenumbrüche einer Datendatei achten. Stellen Sie sich einen Zeilenumbruch als ein zusätzliches Zeichen vor, das zwischen zwei Zeilen steckt. Und stellen Sie sich nun vor, dass der Aufruf von nextLine bedeutet, dass alles bis einschließlich dieses Zeilenumbruchzeichens gelesen wird.

Werfen Sie einen Blick auf Abbildung 8.4.

[image:]Abbildung 8.4: und aufrufen

[image: image] Wenn ein Aufruf von nextLine Barry Burd[LineBreak] liest, liest das darauf folgende nextLine die berufliche Position Vorstand[LineBreak] (wobei LineBreak das »Zeichen« für den Zeilenumbruch ist).

[image: image] Wenn ein Aufruf von nextDouble die Zahl 5000,00 liest, liest das darauf folgende nextLine das [LineBreak], das unmittelbar auf die Zahl folgt. (Eigentlich ist das auch alles, was nextLine liest – ein [LineBreak] und sonst nichts.)

[image: image] Wenn ein Aufruf von nextLine das [LineBreak] hinter der Zahl 5000,00 liest, liest der dann folgende Aufruf von nextLine Harriet Ritter[LineBreak].

Das bedeutet nun, dass Sie nach dem Lesen der Zahl 5000,00 zwei Aufrufe von nextLine haben müssen, um an den Namen Harriet Ritter zu gelangen. Normalerweise vergesse ich den ersten dieser beiden Aufrufe.

[image:]Schauen Sie sich noch einmal die Datei in Abbildung 8.3 an. Damit der Code dieses Abschnitts läuft, benötigen Sie hinter dem letzten 10000,00 ein Line Break (einen Zeilenumbruch). Ist dies nicht der Fall, sorgt der letzte Aufruf von nextLine dafür, dass Ihr Programm abstürzt. Die Fehlermeldung, die Sie daraufhin erhalten, lautet NoSuchElementException: No line found.

[image:]Ich bin immer wieder über die Macken erstaunt, die ich in den Scanner‐Methoden von Programmiersprachen finde. So liest zum Beispiel das erste nextLine in der Datei aus Abbildung 8.3 Barry Burd[LineBreak], liefert aber nur Barry Burd ohne den Zeilenumbruch ([LineBreak]) an den laufenden Code zurück. nextLine sucht also das Zeichen für den Zeilenumbruch, um es schnellstens wieder zu verlieren.

[image:]Wenn Sie die Sache mit nextDouble und nextLine irritiert, sollten Sie die Schuld dafür nicht bei Java suchen. Aufrufe von gemischten Dateneingaben sind in jeder Programmiersprache eine heikle Sache. Besonders unangenehm ist dabei, dass jede Programmiersprache anders an das Problem herangeht. Wenn Sie etwas über nextLine in Java wissen, hilft Ihnen das dabei, dieses Thema in C++ oder Visual Basic zu verstehen, wobei hier aber die entsprechenden sprachspezifischen Einzelheiten nicht geliefert werden. Klar, alles zu verstehen, kostet Zeit und Mühe, aber da alle Programmierer reich und berühmt werden, lohnt sich der Einsatz allemal.

Die Verbindung zu einer Datei auf der Festplatte beenden

Für den normalen Computerbenutzer sind eine Tastatur und eine Datei auf der Festplatte des Computers zwei grundsätzlich andere Dinge. Aber Dateien und Eingaben über die Tastatur haben viel gemeinsam. So schreibt einer der Grundsätze von Betriebssystemen vor, dass bei einer Programmierung die Unterschiede bei Eingabemöglichkeiten für den Programmierer so weit wie möglich verschwimmen müssen. Sie sollten als Java‐Programmierer Eingaben über die Tastatur und Dateien möglichst gleich behandeln. Das ist der Grund dafür, dass Listing 8.2 einen Aufruf von diskScanner.close() enthält.

Wenn Sie ein Java‐Programm ablaufen lassen, führen Sie normalerweise die Befehle der Methode main aus. Dabei beginnen Sie mit dem ersten Befehl im Körper der Methode und hören mit dem letzten Befehl im Körper der Methode auf. Auf diesem Weg können Sie Umleitungen einbauen, else‐Teile überspringen und in die Körper von Methoden eintauchen, aber grundsätzlich beenden Sie die Ausführung mit dem letzten Befehl in der Methode main. Aus diesem Grund steht in Listing 8.2 der Aufruf von close am Ende des Körpers der Methode main. Wenn Sie den Code in diesem Listing ausführen, beenden Sie als Letztes die Verbindung zur Datei auf der Festplatte.

[image:]Zuvor haben Sie in diesem Kapitel eine eigene OrtAnDemSieLeben‐Klasse erstellt und Informationen über deren Instanzen angezeigt. Ändern Sie die textbasierte Version Ihres Codes so ab, dass alle Eigenschaften einer Instanz (Adresse, Zimmerzahl und Fläche) aus einer Datei auf der Festplatte gelesen werden.

Unterklassen definieren (Vollzeit‐ oder Teilzeitmitarbeiter?)

Vor einem Jahr hat Ihr Unternehmen zehn Millionen Euro für Software ausgegeben, die in der Datei Mitarbeiter.class geliefert wurde. Die Mitarbeiter von Burd Brain Consulting (der Firma, die das Programm erstellt hat) möchten nicht, dass Sie die Interna des Programms zu Gesicht bekommen (weil man Angst hat, dass Sie deren Ideen stehlen). Das heißt, dass Sie den Quellcode der Software nicht besitzen (Ihnen die Datei Mitarbeiter.java nicht zur Verfügung steht). Sie können den Bytecode in der Datei Mitarbeiter.class ablaufen lassen. Sie können auch die Dokumentation lesen, die als Mitarbeiter.html mitgeliefert wurde. Aber Sie sind nicht in der Lage, sich die Befehle anzusehen, und Sie können den Code des Programms nicht ändern.

Seitdem ist Ihr Unternehmen gewachsen, und anders als früher gibt es jetzt zwei Arten von Mitarbeitern: Vollzeit‐ und Teilzeitmitarbeiter. Jeder in Vollzeit arbeitende Mitarbeiter erhält wöchentlich ein festes Gehalt. (Wenn ein solcher Mitarbeiter nachts und an den Wochenenden arbeitet, erhält er für den damit verbundenen, nicht unerheblichen Aufwand ein herzliches Dankeschön.) In Teilzeit arbeitende Mitarbeiter werden auf Stundenbasis bezahlt. Das Unternehmen zieht vom Gehalt der in Vollzeit arbeitenden Mitarbeiter etwas für spätere besondere Bonuszahlungen und Sozialleistungen ab. Teilzeitmitarbeiter erhalten diese Bonuszahlungen nicht.

Die Frage ist nun, wie die Software, die das Unternehmen im letzten Jahr gekauft hat, mit dessen Wachstum mithalten kann. Sie haben in ein großartiges Programm investiert, das Mitarbeiter und deren Gehaltsabrechnungen verarbeitet, das aber zwischen Vollzeit‐ und Teilzeitmitarbeitern nicht unterscheiden kann. Sie haben nun mehrere Möglichkeiten:

[image: image] Fragen Sie die zwölfjährige Tochter Ihres Nachbarn, die mehr über Programmierung weiß als jeder aus Ihrer Firma. Lassen Sie dieses hochnäsige kleine Balg die Mitarbeiter‐Software auseinandernehmen, neu schreiben und dann mit allen gewünschten Erweiterungen und Änderungen an Sie zurückgeben.

Das war nur ein Gedankenblitz, denn so etwas können Sie nicht machen. Ganz egal, wie schlau dieses Kind auch sein mag, so wird es wohl doch von der Komplexität der Aufgabe überfordert sein. Wenn Sie die Software zurückbekommen, ist sie voller Fehler und Ungereimtheiten. Und, was noch wichtiger ist, Sie dürfen dem Kind die Datei nicht aushändigen. Sie besitzen nur die Datei Mitarbeiter.class, die sich mit einem Texteditor nicht lesen oder bearbeiten lässt (siehe Kapitel 2). Aber abgesehen davon haben gerade Ihre Kinder die Nachbarskinder verdroschen, und Sie wollen sich doch jetzt nicht die Blöße geben, ausgerechnet diese Kinder um Hilfe zu bitten.

[image: image] Verschrotten Sie die zehn Millionen Euro teure Mitarbeiter‐Software. Finden Sie im Unternehmen jemanden, der das Programm vollkommen neu schreibt.

Mit anderen Worten: Sagen Sie »Tschüs« zu Freizeit und Ihrem Geld.

[image: image] Schreiben Sie für die Mitarbeiter‐Software ein neues Frontend. Das heißt, dass Sie Code schreiben, der vorbereitende Arbeiten bei Vollzeitmitarbeitern übernimmt und die Ergebnisse der Verarbeitung an Ihre zehn Millionen teure Software übergibt. Machen Sie dasselbe für Teilzeitmitarbeiter.

Diese Überlegungen können entweder erfolgreich sein oder in einem Desaster enden. Sind Sie sicher, dass die vorhandene Mitarbeiter‐Software genügend Eintrittspunkte hat, die es Ihrer Frontendsoftware erlaubt, die Daten, die Teilergebnisse, die die neue Vorverarbeitung liefert, an die teure Mitarbeiter‐Software zu senden? Denken Sie daran, dass Ihr Plan die vorhandene Software als einen großen monolithischen Block behandelt, was ziemlich umständlich werden kann. Es ist nicht leicht, die Arbeit zwischen Ihrem Frontend‐Code und dem vorhandenen Mitarbeiter‐Programm aufzuteilen. Und wenn Sie der Black Box Mitarbeiter‐Programm Ebene um Ebene hinzufügen, können Sie leicht bei einem ineffizienten System enden.

[image: image] Rufen Sie Burd Brain Consulting an, die Firma, die Ihnen die Mitarbeiter‐Software verkauft hat. Sagen Sie Dr. Burd, dass Sie die nächste Version seiner Software benötigen, um zwischen Vollzeit‐ und Teilzeitmitarbeitern unterscheiden zu können.

»Kein Problem,« sagt Dr. Burd. »Alles wird bis zum nächsten Abrechnungsquartal fertig sein.« Am Abend tätigt Dr. Burd dann einen diskreten Anruf bei seinem Nachbarn …

[image: image] Erstellen Sie zwei neue Java‐Klassen mit dem Namen VollzeitMitarbeiter und TeilzeitMitarbeiter. Beide neuen Klassen sollen zwar die Funktionalität der vorhandenen teuren Klasse Mitarbeiter erweitern, aber jede dieser neuen Klassen soll jeweils eigene Funktionen definieren, die speziell für eine bestimmte Art von Mitarbeitern gedacht sind.

Das ist es! Abbildung 8.5 stellt die Struktur dar, die Sie anlegen wollen.

[image:]Abbildung 8.5: Der Stammbaum der Klasse

Unterklassen erstellen

Ich definiere in Listing 8.1 eine Klasse Mitarbeiter. Das, was ich dort angelegt habe, kann ich verwenden und die Definition erweitern, um neue, speziellere Klassen zu erstellen. In Listing 8.3 lege ich fest, wie die neue Klasse VollzeitMitarbeiter aussehen soll.

public class VollzeitMitarbeiter extends Mitarbeiter {

 private double wochenLohn;

 private double sozialAbzug;

 public void setWochenLohn(double wochenLohnIn) {

 wochenLohn = wochenLohnIn;

 }

 public double getWochenLohn() {

 return wochenLohn;

 }

 public void setSozialAbzug(double sozialAbzugIn) {

 sozialAbzug = sozialAbzugIn;

 }

 public double getSozialAbzug() {

 return sozialAbzug;

 }

 public double berechneZahlung() {

 return wochenLohn ‐ sozialAbzug;

 }

}

Listing 8.3: Was macht einen Vollzeitmitarbeiter aus?

Sie können in Listing 8.3 sehen, dass jede Instanz der Klasse VollzeitMitarbeiter zwei Felder aufweist: wochenLohn und sozialAbzug. Aber sind dies wirklich die einzigen Felder, die jede Instanz von VollzeitMitarbeiter hat? Nein. Die erste Zeile von Listing 8.3 sagt aus, dass die Klasse VollzeitMitarbeiter die vorhandene Klasse Mitarbeiter erweitert (extends). Dies bedeutet, dass jede Instanz von VollzeitMitarbeiter zusätzlich zu ihren beiden Feldern wochenLohn und sozialAbzug auch über die beiden Felder name und funktion verfügt. Diese beiden Felder stammen aus der Definition der Klasse Mitarbeiter, die Sie Listing 8.1 entnehmen können.

Das magische Wort lautet in Listing 8.3 extends(deutsch erweitert). Wenn eine Klasse eine vorhandene Klasse erweitert, erbt die erweiternde Klasse automatisch Funktionen, die in der vorhandenen Klasse definiert werden. Aus diesem Grund erbt die Klasse VollzeitMitarbeiter die Felder name und funktion. Außerdem erbt sie alle Methoden, die in der Klasse Mitarbeiter deklariert werden: setName, getName, setFunktion, getFunktion und bezahleGehalt. Die Klasse VollzeitMitarbeiter ist eine Unterklasse der Klasse Mitarbeiter. Dies bedeutet, dass die Klasse Mitarbeiter die übergeordnete Klasse oder Superklasse der Klasse VollzeitMitarbeiter ist. Und um die Begrifflichkeit voll zu machen, können Sie auch noch in Ausdrücken reden, die mit verwandtschaftlichen Beziehungen zu tun haben. Die Klasse VollzeitMitarbeiter ist das Kind der Klasse Mitarbeiter, die umgekehrt die Elternklasse der Klasse VollzeitMitarbeiter ist.

Listing 8.4 erweckt den Anschein, als wenn sein Code die Klasse VollzeitMitarbeiter definieren würde – was aber nicht ganz stimmt.

import static java.lang.System.out;

public class VollzeitMitarbeiter {

 private String name;

 private String funktion;

 private double wochenLohn;

 private double sozialAbzug;

 public void setName(String nameIn) {

 name = nameIn;

 }

 public String getName() {

 return name;

 }

 public void setFunktion(String funktionIn) {

 funktion = funktionIn;

 }

 public String getFunktion() {

 return funktion;

 }

 public void setWochenLohn(double wochenLohnIn) {

 wochenLohn = wochenLohnIn;

 }

 public double getWochenLohn() {

 return wochenLohn;

 }

 public void setSozialAbzug(double sozialAbzugIn) {

 sozialAbzug = sozialAbzugIn;

 }

 public double getSozialAbzug() {

 return sozialAbzug;

 }

 public double berechneZahlung() {

 return wochenLohn ‐ sozialAbzug;

 }

 public void zahleGehalt(double betrag) {

 out.printf("Zahlen Sie an %s ", name);

 out.printf("(%s) ***", funktion);

 out.printf("%,.2f Euro\n", betrag);

 }

}

Listing 8.4: Nichts als Täuschung (aber informativ)

[image:]Warum wird Listing 8.4 als Täuschung bezeichnet? Nun, der größte Unterschied zwischen Listing 8.4 und der vererbenden Situation der Listings 8.1 und 8.3 ist dieser: Eine Kindklasse ist nicht in der Lage, direkt auf die privaten Felder ihrer Elternklasse zu verweisen. Damit die Kindklasse etwas mit den privaten Feldern ihrer Elternklasse anfangen kann, muss sie die Zugriffsmethoden der Elternklasse aufrufen. So wäre zum Beispiel in Listing 8.3 der Aufruf setName("Rufus") zulässig, was aber nicht für den Code name = "Rufus" gilt. Falls Sie alles glauben, was Sie in Listing 8.4 lesen, könnten Sie auf die irre Idee kommen, dass VollzeitMitarbeiter in der Lage wäre, mit name = "Rufus" umzugehen.

[image:]Die Datei Mitarbeiter.java muss sich nicht auf Ihrer Festplatte befinden, damit Sie Code schreiben können, der die Klasse Mitarbeiter erweitert. Sie benötigen nur die Datei Mitarbeiter.class.

Das Anlegen von Unterklassen kann zur Gewohnheit werden

Nachdem Sie sich daran gewöhnt haben, Klassen zu erweitern, können Sie sich daranmachen, auch eine Klasse TeilzeitMitarbeiter zu erstellen (siehe Listing 8.5).

public class TeilzeitMitarbeiter extends Mitarbeiter {

 private double stundenSatz;

 public void setStundenSatz (double sSatzIn) {

 stundenSatz = sSatzIn;

 }

 public double getStundenSatz() {

 return stundenSatz;

 }

 public double berechneZahlung(int stunden) {

 return stundenSatz * stunden;

 }

}

Listing 8.5: Was macht einen Teilzeitmitarbeiter aus?

Mit Unterklassen arbeiten

Der vorherige Abschnitt erzählt Ihnen eine Geschichte darüber, wie eine Unterklasse erstellt wird. Es ist eine schöne Geschichte, aber sie ist unvollständig. Zwar ist das Erstellen von Unterklassen eine gute Sache, aber Sie haben erst dann etwas davon, wenn Sie den Code schreiben, der es Ihnen möglich macht, diese Art von Klassen zu nutzen. Aus diesem Grund untersuchen Sie in diesem Abschnitt Code, der Unterklassen verwendet.

Jetzt ist für Sie die Zeit gekommen, sich selbst einzustufen. Sind Sie eine Person vom Typ W, eine vom Typ P oder eine vom Typ T? (Da ich der Autor dieses Buches bin, nehme ich mir die Freiheit heraus, Persönlichkeitstypen zu erfinden. Ich gehe sogar so weit zu behaupten, dass ich in aller Öffentlichkeit über jemanden sagen kann: »Das ist eine Person vom Typ T.«)

[image: image] Eine Person vom Typ W will das Wesentliche sehen. (Der Buchstabe W steht für Wesentliches.) »Zeige mir ein Programm, das die Grundlagen in ihrer reinen, ursprünglichen Form darlegt«, sagt die Person vom Typ W. Sie macht sich nichts aus Schnickschnack. Wenn Sie eine Person vom Typ W sind, erwarten Sie ein Programm, das die Unterklassen VollzeitMitarbeiter und TeilzeitMitarbeiter verwendet und Sie dann in Ruhe lässt, damit Sie Ihre Arbeit erledigen können.

[image: image] Eine Person vom Typ P erwartet praxisnahe Anwendungen. (Der Buchstabe P steht für Praxis.) Personen dieses Typs haben Schwierigkeiten, sich Ideen abstrakt vorzustellen. »Zeige mir ein Programm, das den Nutzen der Unterklassen VollzeitMitarbeiter und TeilzeitMitarbeiter aufzeigt«, sagt die Person vom Typ P. »Ich kann mit deinen blöden Abstraktionen nichts anfangen. Ich brauche Beispiele aus dem täglichen Leben, und das sofort.«

[image: image] Eine Person vom Typ T wird von etwas inspiriert, über das ich kurz in Kapitel 7 schreibe. Eine Person dieses Typs will den Code in den Unterklassen VollzeitMitarbeiter und TeilzeitMitarbeiter testen. Den Code testen bedeutet, den Code auf Herz und Nieren zu prüfen – die Genauigkeit der Ausgabe bei Standardeingaben, bei unerwarteten Eingaben und sogar bei unrealistischen Eingaben zu kontrollieren. Und für diese Tests bevorzugt die Typ‐T‐Person standardisierte, einfach nachzuvollziehende Regeln, damit ihre Programmierer die Testergebnisse schneller verstehen können. Die Person vom Typ T erstellt JUnit‐Tests, die die Unterklassen VollzeitMitarbeiter und TeilzeitMitarbeiter verwenden.

Listing 8.6 ist für die Typ‐W‐Personen gedacht. Es ist schlank und einfach und eignet sich als Bettlektüre. Gezeigt wird Ihnen ein skelettartiges Programm, das die Unterklassen VollzeitMitarbeiter und TeilzeitMitarbeiter verwendet. Abbildung 8.6 gibt wieder, was das Programm ausgibt, wenn es ausgeführt wird.

public class GehaltsabrechnungTypF {

 public static void main(String args[]) {

 VollzeitMitarbeiter vzMa = new VollzeitMitarbeiter();

 vzMa.setName("Barry Burd");

 vzMa.setFunktion("Vorstand");

 vzMa.setWochenLohn(5000.00);

 vzMa.setSozialAbzug(500.00);

 vzMa.zahleGehalt(vzMa.berechneZahlung());

 System.out.println();

 TeilzeitMitarbeiter tzMa = new TeilzeitMitarbeiter();

 tzMa.setName("Steve Surace");

 tzMa.setFunktion("Fahrer");

 tzMa.setStundenSatz(7.53);

 tzMa.zahleGehalt(tzMa.berechneZahlung(10));

 }

}

Listing 8.6: Unterklassen einsetzen

[image:]Abbildung 8.6: Das gibt das Programm in Listing 8.6 aus.

Um Listing 8.6 zu verstehen, müssen Sie drei Klassen im Auge behalten: Mitarbeiter, VollzeitMitarbeiter und TeilzeitMitarbeiter. (Wenn Sie einen Blick auf diese Klassen werfen wollen, schauen Sie sich die Listings 8.1, 8.3 und 8.5 an.)

Die erste Hälfte von Listing 8.6 hat mit einem Vollzeitmitarbeiter zu tun. Beachten Sie, dass die Variable vzMa sehr viele Methoden nutzen kann. So können Sie beispielsweise vzMa.setWochenLohn aufrufen, weil vzMa vom Typ VollzeitMitarbeiter ist. Sie können aber auch vzMa.setName aufrufen, weil die Klasse VollzeitMitarbeiter die Klasse Mitarbeiter erweitert.

Da zahleGehalt in der Klasse Mitarbeiter deklariert wird, sind Sie in der Lage, auch vzMa.berechneZahlung aufzurufen. Außerdem können Sie vzMa.berechneZahlung aufrufen, weil sich die Methode berechneZahlung in der Klasse VollzeitMitarbeiter befindet.

Typen passend gestalten

Schauen Sie sich noch einmal die erste Hälfte von Listing 8.6 an. Achten Sie dort ganz besonders auf den letzten Befehl, der dafür sorgt, dass das Gehalt des Vollzeitmitarbeiters bezahlt wird. Der Befehl besteht aus einer Aneinanderreihung von Werten und deren Typen. Sie erkennen dies am besten dadurch, dass Sie den Befehl von innen nach außen lesen.

[image: image] Die Methode vzMa.berechneZahlung wird mit einer leeren Parameterliste aufgerufen (Listing 8.6). Das ist auch gut so, denn die Methode berechneZahlung enthält keine Parameter (siehe Listing 8.3).

[image: image] Die Methode berechneZahlung gibt einen Wert vom Typ double zurück (siehe noch einmal Listing 8.3).

[image: image] Der double‐Wert, den vzMa.berechneZahlung zurückgibt, wird an die Methode vzMa.zahleGehalt übergeben (siehe Listing 8.6). Und so soll das auch sein, denn der Parameter der Methode bezahleGehalt ist vom Typ double (siehe Listing 8.1).

Abbildung 8.7 bildet diese Struktur fantasievoll nach.

[image:]Abbildung 8.7: Parameter passend gestalten

[image:]Übergeben Sie an Methoden immer nur Werte, deren Typen zu den Parameterlisten passen.

Die zweite Hälfte der Geschichte

In der zweiten Hälfte von Listing 8.6 erzeugt der Code ein Objekt vom Typ TeilzeitMitarbeiter. Eine Variable vom Typ TeilzeitMitarbeiter kann teilweise dieselben Dinge wie die Variable VollzeitMitarbeiter erledigen. Was die Klasse TeilzeitMitarbeiter nicht kennt, sind die Methoden setWochenLohn und setSozialAbzug. Stattdessen enthält die Klasse TeilzeitMitarbeiter die Methode setStundenSatz (siehe Listing 8.5). Deshalb handelt es sich bei der vorletzten Zeile in Listing 8.6 um einen Aufruf dieser Methode.

Die letzte Zeile von Listing 8.6 ist gleichzeitig auch die interessanteste. In dieser Zeile übergibt der Code die Zahl 10 (die Zahl der Arbeitsstunden) an die Methode berechneZahlung. Vergleichen Sie dies mit dem früheren Aufruf von berechneZahlung – dem Aufruf für den in Vollzeit arbeitenden Mitarbeiter in der ersten Hälfte von Listing 8.6. Es gibt für jede der beiden Unterklassen VollzeitMitarbeiter und TeilzeitMitarbeiter eine eigene Methode berechneZahlung. Und jede dieser beiden Methoden verfügt über eine eigene Parameterliste:

[image: image] Die Methode berechneZahlung der Klasse VollzeitMitarbeiter weist keine Parameter auf (Listing 8.3).

[image: image] Die Methode berechneZahlung der Klasse TeilzeitMitarbeiter enthält einen Parameter (Listing 8.5).

Das war zu erwarten. Das Berechnen eines Betrags für einen Teilzeitmitarbeiter ist nun einmal nicht dasselbe wie das Berechnen des Gehalts eines Vollzeitmitarbeiters. Das Gehalt eines Teilzeitmitarbeiters ändert sich von Woche zu Woche, während ein in Vollzeit arbeitender Mitarbeiter immer dasselbe Gehalt bekommt. Deshalb enthalten die beiden Klassen VollzeitMitarbeiter und TeilzeitMitarbeiter jeweils eine Methode berechneZahlung, die dann aber eigene Arbeitsweisen haben.

[image:]Und wieder gibt es Dinge auszuprobieren:

[image: image] Zuvor in diesem Kapitel haben Sie Instanzen Ihrer eigenen OrtAnDemSieLeben‐Klasse erstellt und Informationen über diese Instanzen angezeigt. Erstellen Sie zwei Unterklassen Ihrer OrtAnDemSieLeben‐Klasse: eine Haus‐Klasse und eine Wohnung‐Klasse. Jedes Haus‐Objekt hat Hypothekenkosten (einen monatlichen Betrag) und Grundsteuerkosten (einen jährlichen Betrag).

Eine separate DieOrteAnzeigen‐Klasse erzeugt ein paar Häuser und Wohnungen. Für jedes Haus oder jede Wohnung zeigt Ihre DieOrteAnzeigen‐Klasse die Gesamtkosten pro Quadratmeter sowie die Gesamtkosten pro Zimmer, beides pro Monat berechnet.

[image: image] In Kapitel 7 haben Sie die Klasse Unternehmen erstellt. Jede Instanz Ihrer Unternehmen‐Klasse hat einen Namen, einen Jahresgewinn und einen booleschen Wert, der angibt, ob das Unternehmen gewinnorientiert oder gemeinnützig ist.

Erstellen Sie eine neue Unternehmen_2.0‐Klasse. Jede Instanz dieser neuen Klasse hat nur einen Namen und einen Jahresgewinn. Erstellen Sie zwei Unterklassen: eine Klasse GewinnOrientiertesUnternehmen und eine Klasse GemeinNützigesUnternehmen. Ein gewinnorientiertes Unternehmen zahlt 10 Prozent seiner Gewinne als Steuer, ein gemeinnütziges Unternehmen nur 2 Prozent.

Erstellen Sei eine separate Klasse, die GewinnOrientiertesUnternehmen‐Instanzen und GemeinNützigesUnternehmen‐Instanzen erzeugt und jeweils Informationen über jede Instanz anzeigt, einschließlich des Betrags der von dem Unternehmen gezahlten Steuern.

Methoden überschreiben (Zahlungen für einige Mitarbeiter ändern)

Als ob Sie nicht damit gerechnet hätten: Irgendein Schwachkopf in der Personalabteilung bietet einem der Teilzeitmitarbeiter einen hundertprozentigen Aufschlag auf den Stundenlohn bei Überstunden an. Das spricht sich herum und nun wollen alle Teilzeitmitarbeiter für Überstunden die doppelte Bezahlung haben. Wenn sich das durchsetzt, enden Sie im Armenhaus. Also setzen Sie sich hin und verfassen ein Schreiben an alle Teilzeitmitarbeiter, in dem Sie erklären, warum eine Lohnerhöhung nicht in ihrem Sinne wäre.

In der Zwischenzeit haben Sie es mit zwei Arten von Teilzeitmitarbeitern zu tun – mit denen, deren Überstunden mit dem doppelten Satz vergütet werden, und mit denen, bei denen sich nichts ändert. Sie müssen also die Software für die Gehaltsabrechnung ändern. Welche Möglichkeiten haben Sie?

[image: image] Sie können sich tief in den Code der Klasse TeilzeitMitarbeiter stürzen, Änderungen vornehmen und das Beste hoffen. (Kein wirklich guter Plan.)

[image: image] Sie können dem Tipp des vorherigen Abschnitts folgen und eine Unterklasse der Klasse TeilzeitMitarbeiter erstellen. Sie könnten nun natürlich festhalten, dass die vorhandene Klasse TeilzeitMitarbeiter bereits über eine Methode berechneZahlung verfügt, und sich fragen, welche trickreichen Wege Sie einschlagen müssen, um diese Methode zu umgehen, wenn es um Überstunden geht, für die das Doppelte gezahlt wird.

Jetzt ist wieder einmal der Zeitpunkt gekommen, an dem Sie allen Göttern dafür danken sollten, dass Sie in Java objektorientiert programmieren. Bei dieser Art der Programmierung erstellen Sie eine Unterklasse, die die Funktionen ihrer Elternklasse überschreibt. Listing 8.7 enthält solch eine Unterklasse.

public class UeberstundenTeilzeit extends TeilzeitMitarbeiter {

 @Override

 public double berechneZahlung(int stunden) {

 if(stunden <= 40) {

 return getStundenSatz() * stunden;

 } else {

 return getStundenSatz() * 40 +

 getStundenSatz() * 2

 * (stunden ‐ 40);

 }

 }

}

Listing 8.7: Eine weitere Unterklasse

Abbildung 8.8 zeigt, in welcher Beziehung der Code in Listing 8.7 und der restliche Code in diesem Kapitel zueinander stehen. So ist UeberstundenTeilzeit die Unterklasse einer Unterklasse. In der objektorientierten Programmierung ist solch eine Kette nichts Ungewöhnliches. Verglichen mit der Wirklichkeit ist unsere Kette sogar ziemlich kurz.

[image:]Abbildung 8.8: Ein Klassenbaum

Die Klasse UeberstundenTeilzeit erweitert die Klasse TeilzeitMitarbeiter, ist aber wählerisch, wenn es um das geht, was sie von ihrer Elternklasse erbt. Da UeberstundenTeilzeit eine eigene Deklaration der Methode berechneZahlung enthält, wird diese Methode nicht von der Klasse TeilzeitMitarbeiter geerbt (siehe Abbildung 8.9).

[image:]Abbildung 8.9: Die Methode wird nicht geerbt.

Offiziell wird das, was hier geschieht, als Überschreiben bezeichnet – die Klasse UeberstundenTeilzeit überschreibt die Methode berechneZahlung ihrer Elternklasse. Wenn Sie über die Klasse UeberstundenTeilzeit ein Objekt erstellen, besitzt dieses Objekt zwar name, funktion, stundenSatz und zahleGehalt der Klasse TeilzeitMitarbeiter, aber keine eigenständig definierte Methode berechneZahlung.

Eine Java‐Annotation

Das Wort @Override in Listing 8.7 ist ein Beispiel für eine Annotation. (Annotation wird normalerweise mit Anmerkung übersetzt, aber die hier beschriebenen Annotations haben mit dem deutschen Ausdruck nichts zu tun, weshalb wir den englischen Begriff beibehalten.) Eine Java‐Annotation erzählt Ihrem Computer etwas über Ihren Code. So weist gerade die Annotation @Override in Listing 8.7 den Compiler an, auf Standardcodierungsfehler zu achten. Die Annotation sagt: »Sorge dafür, dass die Methode, die dieser Annotation direkt folgt, dieselben Dinge (denselben Namen, dieselben Parameter und so weiter) enthält wie eine der Methoden in der übergeordneten Klasse. Wenn dies nicht der Fall ist, gib eine Fehlermeldung aus.«

Falls ich also irrtümlich public double berechneZahlung(double stunden) statt int stunden wie in den Listings 8.5 und 8.7 schreibe, informiert mich mein Compiler darüber, dass meine neue Methode berechneZahlung nichts von dem überschreiben kann, was in Listing 8.5 steht.

Java kennt noch weitere Annotations (zum Beispiel @Deprecated und @SuppressWarnings). Ich gehe in Kapitel 9 kurz auf die Annotation @SuppressWarnings ein.

[image:]Javas‐Annotations sind optional. Wenn Sie in Listing 8.7 das Wort @Override entfernen, läuft der Code trotzdem fehlerfrei weiter. Aber diese Annotation sorgt in Ihrem Code für mehr Sicherheit. Wenn @Override vorhanden ist, sorgt die Überprüfung des Compilers dafür, dass sie das tun, was Sie eigentlich auch vorhaben (nämlich das Überschreiben einer Methode der übergeordneten Klasse). Und mit einem Blick auf George Orwell muss ich doch festhalten, dass einige Annotations weniger optional sind als andere. Es gibt Annotations, auf die Sie in Ihrem Code nur dann verzichten können, wenn Sie sie aufwendig durch Java‐Code ersetzen.

Methoden aus Klassen und Unterklassen verwenden

Wenn Sie wegen des Überschreibens einer Methode noch Klärungsbedarf haben, schauen Sie sich den Code in Listing 8.8 an. Was dieser Code ausgibt, wenn er ausgeführt wird, zeigt Abbildung 8.10.

public class GehaltsabrechnungTypF {

 public static void main(String args[]) {

 VollzeitMitarbeiter vzMa = new VollzeitMitarbeiter();

 vzMa.setName("Barry Burd");

 vzMa.setFunktion("Vorstand");

 vzMa.setWochenLohn(5000.00);

 vzMa.setSozialAbzug(500.00);

 vzMa.zahleGehalt(vzMa.berechneZahlung());

 TeilzeitMitarbeiter tzMa = new TeilzeitMitarbeiter();

 tzMa.setName("Chris Apelian");

 tzMa.setFunktion("Autor");

 tzMa.setStundenSatz(7.53);

 tzMa.zahleGehalt(tzMa.berechneZahlung(10));

 UeberstundenTeilzeit tzueMa = new UeberstundenTeilzeit();

 tzueMa.setName("Steve Surace");

 tzueMa.setFunktion("Fahrer");

 tzueMa.setStundenSatz(7.53);

 tzueMa.zahleGehalt(tzueMa.berechneZahlung(50));

 }

}

Listing 8.8: Den Code aus Listing 8.7 testen

[image:]Abbildung 8.10: Der Code aus Listing 8.7 wird ausgeführt.

Der Code in Listing 8.7 schreibt Überweisungen für drei Mitarbeiter. Beim ersten Mitarbeiter handelt es sich um einen Vollzeitmitarbeiter. Der zweite ist ein Teilzeitmitarbeiter, der noch keinen Wind von der neuen Regelung für die Bezahlung von Überstunden bekommen hat, und der dritte Mitarbeiter kennt die Regelung und verlangt eine faire Bezahlung.

Durch die Unterklassen bestehen alle drei Mitarbeitertypen in Listing 8.8 nebeneinander. Klar, eine Unterklasse stammt von der alten Klasse TeilzeitMitarbeiter ab, aber das bedeutet nicht, dass es unmöglich ist, ein Objekt dieser Klasse zu erstellen. Tatsächlich geht Java sehr intelligent mit solch einer Situation um. Listing 8.8 enthält drei Aufrufe der Methode berechneZahlung, die jeweils eine andere Version der Methode ansprechen:

[image: image] Beim ersten Aufruf, vzMa.berechneZahlung, ist die Variable vzMa eine Instanz der Klasse VollzeitMitarbeiter. Aus diesem Grund handelt es sich bei der Methode, die aufgerufen wird, um die aus Listing 8.3.

[image: image] Beim zweiten Aufruf, tzMa.berechneZahlung, ist die Variable tzMa eine Instanz der Klasse TeilzeitMitarbeiter. Aus diesem Grund handelt es sich bei der Methode, die aufgerufen wird, um die aus Listing 8.5.

[image: image] Beim dritten Aufruf, tzueMa.berechneZahlung, ist die Variable tzueMa eine Instanz der Klasse UeberstundenTeilzeit. Aus diesem Grund handelt es sich bei der Methode, die aufgerufen wird, um die aus Listing 8.7.

Dieser Code ist fantastisch. Er ist eindeutig, elegant und effizient. Mit dem ganzen Geld, das Sie nun an der Software sparen, sind Sie problemlos in der Lage, Überstunden gerecht zu bezahlen.

[image:]Und noch ein paar Dinge, die Sie ausprobieren können:

[image: image] In den vorigen Abschnitten haben Sie die Unterklassen Haus und Wohnung Ihrer Klasse OrtAnDemSieLeben erstellt. Legen Sie eine Unterklasse WohnungMitNebenkosten Ihrer Klasse Wohnung an. Neben der monatlichen Miete zahlt jemand, der in einer WohnungMitNebenkosten lebt, auch vierteljährlich einen festen Betrag. Legen Sie eine separate Klasse an, die die monatlichen Kosten für das Leben in einer Haus‐Instanz, in einer Wohnung‐Instanz und in einer WohnungMitNebenkosten‐Instanz anzeigt.

[image: image] Welche Ausgabe erzeugt der folgende Code? Was erfahren Sie anhand dieser Ausgabe über Variablendeklarationen und Methodenaufrufe in Java?

public class Main {

 public static void main(String[] args) {

 MyThing myThing, myThing2;

 myThing = new MySubThing();

 myThing2 = new MyOtherThing();

 myThing.value = 7;

 myThing2.value = 44;

 myThing.display();

 myThing2.display();

 }

}

class MyThing {

 int value;

 public void display() {

 System.out.println("In MyThing ist der Wert " + value);

 }

}

class MySubThing extends MyThing {

 @Override

 public void display() {

 System.out.println("in MySUBThing ist der Wert " + value);

 }

}

class MyOtherThing extends MyThing {

 @Override

 public void display() {

 System.out.println("In MyOTHERThing ist der Wert " + value);

 }

}

237-260

Kapitel 9

Neue Objekte entwerfen

In diesem Kapitel

Konstruktoren definieren

Konstruktoren in Unterklassen verwenden

Standardfunktionen der Java‐Konstruktoren verwenden

Eine einfache GUI entwerfen

Ms. Jennie Burd

121 Schoolhouse Lane

Anywhere, Kansas

Sehr geehrte Ms. Burd,

in Beantwortung Ihres Schreibens vom 21. Juni kann ich mit voller Überzeugung behaupten, dass sich Objekte nicht spontan aus dem Nichts heraus bilden. Auch wenn ich in der Tat noch nie gesehen habe, wie ein Objekt erstellt wurde (und es in unserem Unternehmen auch niemanden gibt, der so etwas je erlebt hat), bin ich der festen Überzeugung, dass der eine oder andere Prozess für das Erzeugen dieser interessanten und nützlichen Schnickschnacks verantwortlich ist. Wir hier bei KlassenUndObjekte.com unterstützen die übereinstimmenden Meinungen aus Wissenschaft und Privatwirtschaft. Darüber hinaus begrüßen wir die kürzlich erfolgte Einsetzung des Sonderausschusses im Bundestag, der zweifelsfrei zu dem Schluss gekommen ist, dass das spontane Erstellen von Objekten einen Ausblick auf die aktuelle Wirtschaftslage erschwert.

Seien Sie versichert, dass ich alle notwendigen Schritte unternommen habe, um Ihre Sicherheit und Ihr Wohlergehen zu gewährleisten. Sollten Sie noch Fragen haben, zögern Sie nicht, unsere Reklamationsabteilung zu kontaktieren. Der Leiter dieser Abteilung ist Mr. Blake Wholl. Sie erreichen ihn am besten über die Website unseres Unternehmens.

Ich möchte mich noch einmal für Ihr Interesse bedanken und hoffe, Sie auch weiterhin zu den Stammkunden von KlassenUndObjekte.com zählen zu dürfen.

Mit freundlichen Grüßen

Mr. Scott Brickenchicker

(der in Kapitel 4 nicht mehr in den Fahrstuhl ging)

Konstruktoren definieren (was es bedeutet, eine Temperatur zu sein)

Dies ist ein Befehl, der ein neues Objekt erstellt:

Konto meinKonto = new Konto();

Ich weiß, dass das funktioniert, weil es schließlich eines meiner eigenen Beispiele in Kapitel 7 ist. In diesem Kapitel schreibe ich, dass Sie, »wenn Java new Konto() ausführt, ein Objekt erstellen, indem Sie den Konstruktor der Klasse Konto aufrufen«. Was heißt das?

Wenn Sie den Computer auffordern, ein neues Objekt zu erstellen, antwortet der Computer damit, dass er bestimmte Aktionen ausführt. Zuerst sucht er in seinem Arbeitsspeicher einen Platz, an dem er die Informationen über das neue Objekt ablegen kann. Wenn das Objekt Felder aufweist, enthalten diese höchstwahrscheinlich wichtige Werte.

[image:]In Kapitel 7 erfahren Sie mehr über Felder.

Dabei stellt sich eine Frage: Wenn Sie den Computer anweisen, ein neues Objekt zu erstellen, können Sie dann steuern, was in den Feldern des Objekts gespeichert wird? Vielleicht haben Sie, wenn der Computer ein neues Objekt anlegt, eine lange Liste mit Aufgaben, die der Computer ausführen soll. So könnten Sie zum Beispiel den Computer auffordern, die Größe aller Schaltflächen eines Fensters anzupassen, wenn er ein neues Fenster‐Objekt erstellt.

Zum Erstellen neuer Objekte können alle möglichen Aufgaben gehören, aber in diesem Kapitel geht es um Konstruktoren. Ein Konstruktor weist den Computer an, alle Aufgaben zu erledigen, die zum Erstellen eines neuen Objekts gehören.

Was ist eine Temperatur?

»Guten Morgen und willkommen zu den Objekt‐Nachrichten. Die Temperatur an Ihrem Wohnort beträgt angenehme 73 Grad Fahrenheit.«

Jede Temperaturangabe besteht aus zwei Komponenten: einer Zahl und einer Temperaturskala. Eine Zahl ist einfach nur ein double‐Wert wie 32.0 oder 70.52. Aber was ist eine Temperaturskala? Handelt es sich dabei um eine Zeichenfolge (einen String) wie "Fahrenheit" oder "Celsius"? Nicht wirklich, weil Stings nicht unbedingt Temperaturskalen sein müssen. Es gibt keine Temperaturskala "Quelploof", und ein Programm, das 73 Grad Quelploof anzeigt, ist kein wirklich gutes Programm. Wie also können Sie die Temperaturskalen auf die paar Skalen beschränken, die normalerweise verwendet werden? Eine Möglichkeit besteht darin, Javas enum‐Typ einzusetzen.

Was ist eine Temperaturskala? (Java‐Typ »enum«)

Java stellt viele Wege zur Verfügung, um Dinge in Gruppen zusammenzufassen. In Kapitel 12 können Sie Komponenten in einem Array oder einer Sammlung gruppieren. In diesem Kapitel fassen Sie Komponenten in einem enum‐Typ zusammen. (Natürlich können Sie nichts gruppieren, solange Sie nicht in der Lage sind, enum auszusprechen. Sagen Sie einfach eh‐nuhm, und Sie sind dabei. Das Wort stammt vom englischen Enumeration ab, was auf Deutsch Aufzählung bedeutet.)

Es ist nicht einfach, komplizierte enum‐Typen zu erstellen, aber ein einfacher enum‐Typ lässt sich mit ein paar Wörtern schreiben, die in geschweiften Klammern stehen. Listing 9.1 definiert solch einen enum‐Typ, der den Namen TemperaturSkala bekommt.

public enum TempScale {

 CELSIUS, FAHRENHEIT, KELVIN, RANKINE,

 NEWTON, DELISLE, RÉAUMUR, RØMER, LEIDEN

}

Listing 9.1: Der enum‐Typ TempScale

[image:]In Listing 9.1 demonstriere ich meine Physikkenntnisse, indem ich nicht zwei, nicht vier, sondern neun verschiedene Temperaturskalen aufliste. Einige Computer haben Probleme mit den Sonderzeichen in Réaumur und Rømer. Wenn das bei Ihnen der Fall ist, löschen Sie diese beiden Wörter einfach aus dem Code. Das Beispiel wird darunter nicht leiden.

Wenn Sie einen enum‐Typ definieren, geschehen zwei interessante Dinge:

[image: image] Sie erstellen Werte.

Wie 13 und 151 Werte vom Typ int sind, sind CELSIUS und FAHRENHEIT TempScale‐Werte.

[image: image] Sie können Variablen erstellen, die diese Werte referenzieren.

Ich deklariere in Listing 9.2 die Felder number (für die Grad‐Angaben) und scale (für die Aufnahme des entsprechenden Skalenwertes). Und während double number eine Variable mit dem Namen number deklariert, die vom Typ double ist, sorgt TempScale scale für die Variable scale, die vom Typ TempScale ist.

Wenn etwas vom Typ TempScale ist, bedeutet dies, dass es die Werte CELSIUS, FAHRENHEIT, KELVIN und so weiter annehmen kann. Ich habe in Listing 9.2 der Variablen scale den Wert FAHRENHEIT (beziehungsweise genauer TempScale.FAHRENHEIT) gegeben.

[image:]Ein enum‐Typ ist eine getarnte Java‐Klasse. Aus diesem Grund entspricht Listing 9.1 auch einer .java‐Datei, die nichts als die Deklaration des enum‐Typs TempScale enthält. Die Deklaration eines enum‐Typs gehört also immer in eine eigene Datei. Für Listing 9.1 heißt dies, dass das Listing in der Datei TempScale.java zu finden ist.

Also gut, was ist denn nun eine Temperatur?

Jede Temperaturangabe besteht aus zwei Komponenten: einer Zahl und einer Temperaturskala. Der Code in Listing 9.2 zeigt dies in allen Einzelheiten.

public class Temperature {

 private double number;

 private TempScale scale;

 public Temperature() {

 number = 0.0;

 scale = TempScale.FAHRENHEIT;

 }

 public Temperature(double number) {

 this.number = number;

 scale = TempScale.FAHRENHEIT;

 }

 public Temperature(TempScale scale) {

 number = 0.0;

 this.scale = scale;

 }

 public Temperature(double number, TempScale scale) {

 this.number = number;

 this.scale = scale;

 }

 public void setNumber(double number) {

 this.number = number;

 }

 public double getNumber() {

 return number;

 }

 public void setScale(TempScale scale) {

 this.scale = scale;

 }

 public TempScale getScale() {

 return scale;

 }

}

Listing 9.2: Die Klasse Temperature

Der Code in Listing 9.2 enthält die üblichen Setter‐ und Getter‐Methoden (Zugriffsmethoden für die Felder number and scale).

[image:]Einzelheiten zu dieser Art von Methoden können Sie in Kapitel 7 nachlesen.

Außerdem gibt es in Listing 9.2 vier wie Methoden aussehende Elemente, die alle den Namen Temperature tragen, damit ihr Name mit dem der Klasse übereinstimmt. Keines dieser methodenähnlichen Elemente besitzt einen return‐Typ – noch nicht einmal void, das eigentlich ein aussteigender return‐Typ ist.

Jedes dieser methodenähnlichen Elemente wird Konstruktor genannt. Ein Konstruktor kann mit einer Methode verglichen werden, wobei er aber einem ganz besonderen Zweck dient: Er soll neue Objekte erstellen.

[image:]Immer wenn der Computer ein neues Objekt erstellt, führt er die Anweisungen in einem Konstruktor aus.

[image:]Sie können in der jeweils ersten Zeile von Listing 9.1 und 9.2 auf das Wort public verzichten. Aber wenn Sie das tun, kann es dazu kommen, dass andere Java‐Programme die Funktionen nicht nutzen können, die Sie in enum TempScale und in der Klasse Temperature definiert haben. (Machen Sie sich keine Gedanken über die Programme dieses Kapitels. Sie sind sowohl mit als auch ohne public lauffähig und nutzen problemlos den Code der Listings 9.1 und 9.2. Sie finden in Kapitel 13 heraus, welche Programme öffentliche (public) oder nicht öffentliche Klassen nutzen können.) Aber wenn Sie in der ersten Zeile von Listing 9.1 das Wort public verwenden, muss dieses Listing in einer eigenen Datei mit dem Namen TempScale.java gespeichert werden. Und wenn Sie das Wort public in der ersten Zeile von Listing 9.2 verwenden, muss dieses Listing in der Datei Temperature.java gespeichert werden. In beiden Fällen muss der Dateiname hundertprozentig mit dem Namen des darin enthaltenen Objekts übereinstimmen. (Sie können in Kapitel 7 eine Einführung in das Schlüsselwort public nachlesen.)

Was Sie mit einer Temperatur anfangen können

Listing 9.3 gibt den Ideen Gestalt, die ich im vorherigen Abschnitt beschreibe. Sie rufen in Listing 9.3 die Konstruktoren auf, die in Listing 9.2 deklariert werden. Abbildung 9.1 zeigt, was geschieht, wenn Sie den Code ablaufen lassen.

import static java.lang.System.out;

public class UseTemperature {

 public static void main(String args[]) {

 final String format = "%5.2f Grad %s\n";

 Temperature temp = new Temperature();

 temp.setNumber(70.0);

 temp.setScale(TempScale.FAHRENHEIT);

 out.printf(format, temp.getNumber(), temp.getScale());

 temp = new Temperature(32.0);

 out.printf(format, temp.getNumber(), temp.getScale());

 temp = new Temperature(TempScale.CELSIUS);

 out.printf(format, temp.getNumber(), temp.getScale());

 temp = new Temperature(2.73, TempScale.KELVIN);

 out.printf(format, temp.getNumber(), temp.getScale());

 }

}

Listing 9.3: Die Klasse Temperature wird verwendet.

[image:]Abbildung 9.1: Der Code aus Listing 9.3 wird ausgeführt.

In Listing 9.3 ruft jede Anweisung der Art

temp = new Temperature(bla,bla,bla);

einen der Konstruktoren in Listing 9.2 auf. Wenn nun der Code in Listing 9.3 läuft, erstellt er vier Instanzen der Klasse Temperature. Jede dieser Instanzen wird durch das Aufrufen eines anderen Konstruktors erstellt.

In Listing 9.3 enthält der Aufruf des letzten Konstruktors zwei Parameter: 2.73 und TempScale.KELVIN. Dies ist keine Besonderheit beim Aufrufen von Konstruktoren. Der Aufruf einer Methode oder der Aufruf eines Konstruktors kann einige Parameter enthalten, die durch Kommata voneinander getrennt werden. Eine andere Bezeichnung für »einige Parameter« ist Parameterliste.

Die einzige Regel, der Sie folgen müssen, ist die, dass die Parameter im Aufruf mit den Parametern in der Deklaration übereinstimmen müssen. So enthält, wie bereits erwähnt, in Listing 9.3 der vierte und damit letzte der Konstruktorenaufrufe

new Temperature(2.73, TempScale.KELVIN)

zwei Parameter, von denen der erste vom Typ double und der zweite vom Typ TempScale ist. Java akzeptiert diesen Aufruf eines Konstruktors, weil es in Listing 9.3 eine passende Deklaration gibt. Hier enthält der Kopf

public Temperature(double number, TempScale scale)

zwei Parameter, von denen der erste vom Typ double und der zweite vom Typ TempScale ist. Wenn in Listing 9.3 der Aufruf eines Temperature‐Konstruktors in Listing 9.2 keine passende Deklaration findet, stürzt Listing 9.3 ab. (Java zeigt in diesem Fall eine Fehlermeldung an, wenn Sie versuchen, den Code in Listing 9.3 zu kompilieren.)

Nebenbei bemerkt, die Sache mit mehreren Parametern ist nicht neu. Schon in Kapitel 6 gibt es keyboard.findWithinHorizon(".",0).charAt(0). Hier enthält der Methodenaufruf findWithinHorizon(".",0) zwei Parameter – einen String und einen int‐Wert. Ich hatte dabei das Glück, dass die Java‐API für mich die Deklaration der Methode findWithinHorizon übernommen hat – eine Deklaration, deren erster Parameter ein String und deren zweiter Parameter ein int‐Wert ist.

Wie »enum«‐Typen und »switch«‐Befehle ausgetrickst werden können

Die Listings 9.2 und 9.3 enthalten lange Namen wie TempScale.FAHRENHEIT und TempScale.CELSIUS. Namen wie FAHRENHEIT und CELSIUS gehören zu meinem enum‐Typ TempScale (den ich in Listing 9.1 definiert habe). Diese Namen haben außerhalb meines TempScale‐Kontextes keine Bedeutung. (Und wenn Sie nun glauben, dass ich wegen »meines TempScale‐Kontextes« eingebildet sei, löschen Sie in Listing 9.2 in TempScale.FAHRENHEIT den TempScale.‐Teil, und plötzlich weist Sie Java darauf hin, dass Ihr Code einen Fehler enthält.)

Java ist normalerweise sehr kleinlich, wenn es um Namen und Punkte geht. Aber als die Entwickler von Java enum‐Typen erstellt haben, entschieden sie, dass enum und switch‐Befehle einer besonderen Behandlung bedürfen. Sie können einen enum‐Wert verwenden, um zu entscheiden, welcher case in einer switch‐Anweisung ausgeführt werden soll. In solch einem Fall verwenden Sie aber im case‐Ausdruck nicht den Namen des enum‐Typs. So ist zum Beispiel der folgende Java‐Code richtig:

TempScale scale = TempScale.RANKINE;

char buchstabe;

switch (scale) {

case CELSIUS:

 buchstabe = 'C';

 break;

case KELVIN:

 buchstabe = 'K';

 break;

case RANKINE:

case RÉAUMUR:

case RØMER:

 buchstabe = 'R';

 break;

default:

 buchstabe = 'X';

 break;

}

Ich schreibe in der ersten Zeile des Codes TempScale.RANKINE, weil sich diese Zeile nicht innerhalb eines switch‐Befehls befindet. Aber in den dann folgenden Zeilen heißt es case CELSIUS, case KELVIN und case RANKINE ohne TempScale. Tatsächlich sieht es sogar so aus, dass sich Java in Form einer lauten und gemeinen Fehlermeldung beschwert, wenn ich eine case‐Klausel erstelle und dabei TempScale.RANKINE schreibe.

new Temperature(32.0) – eine Fallstudie

Wenn der Computer einen der Befehle new Temperature aus Listing 9.3 ausführt, muss er entscheiden, welchen der Konstruktoren aus Listing 9.2 er verwendet. Er entscheidet, indem er sich die Parameterliste anschaut – das, was hinter new Temperature in Klammern steht. Wenn der Computer beispielsweise

temp = new Temperature(32.0);

aus Listing 9.3 ausführt, sagt er sich selbst: »Bei der in Klammern stehenden Zahl 32.0 handelt es sich um einen double‐Wert. Einer der Konstruktoren in Listing 9.2 verfügt nur über einen Parameter, der auch noch vom Typ double ist. Der Kopf des Konstruktors sieht so aus:

public Temperature(double number)

Daraus schließe ich, dass ich die Befehle ausführen soll, die es in diesem Konstruktor gibt.« Der Computer macht dann mit der Ausführung dieser Befehle weiter:

this.number = number;

scale = TempScale.FAHRENHEIT;

Als Ergebnis dieser Aktion erhalten Sie ein brandneues Objekt, dessen Feld number den Wert 32.0 und dessen Feld scale den Wert FAHRENHEIT hat:

Diese beiden Codezeilen enthalten zwei Befehle, die Werte festlegen (jeweils für number und scale). Also musste derjenige, der diesen Code programmiert hat, eine Entscheidung darüber fällen, welcher Wert für das Feld scale verwendet werden soll. Der eine Programmierer hätte FAHRENHEIT oder CELSIUS wählen können, während sich ein anderer in Listing 9.1 für KELVIN, RANKINE oder einen anderen obskuren Skalennamen hätte entscheiden können. (Der Programmierer, der für dieses Beispiel hier verantwortlich ist, lebt in den USA in New Jersey, wo die Leute im Allgemeinen immer noch die alte Fahrenheit‐Temperaturskala verwenden.)

Kümmern wir uns noch einmal um den ersten der beiden Befehle. Dieser weist dem Feld number des neuen Objekts einen Wert zu. Dabei verwendet der Befehl einen netten, kleinen Trick, der in vielen Konstruktoren (und Methoden, die Feldern von Objekten Werte zuweisen) auftaucht. Um diesen Trick zu verstehen, sollten Sie einen Blick auf Listing 9.4 werfen. Das Listing zeigt Ihnen zwei Wege, wie ich den Konstruktor hätte schreiben können.

//Verwenden Sie diesen Konstruktor ...

 public Temperature(double whatever) {

 number = wasauchimmer;

 scale = TempScale.FAHRENHEIT;

 }

//... oder verwenden Sie diesen Konstruktor ...

 public Temperature(double number) {

 this.number = number;

 scale = TempScale.FAHRENHEIT;

 }

//... aber bringen Sie nicht beide Konstruktoren in Ihrem Code unter.

Listing 9.4: Zwei Wege, um an dasselbe Ziel zu gelangen

Listing 9.4 enthält zwei Konstruktoren. Ich verwende im ersten Konstruktor zwei Namen – number und wasauchimmer. Im zweiten Konstruktor benötige ich keine zwei Namen. Statt mir für den Parameter des Konstruktors einen neuen Namen einfallen zu lassen, verwende ich einen schon vorhandenen Namen erneut, indem ich this.number schreibe.

Und das geschieht nun wirklich in Listing 9.2:

[image: image] Im Befehl this.number = number verweist this number auf das Feld number des neuen Objekts – das Feld, das ziemlich weit oben in Listing 9.2 deklariert wird (siehe Abbildung 9.2).

[image:]Abbildung 9.2: Was und bedeuten

[image: image] Im Befehl this.number = number verweist das Wort number (hinter dem Gleichheitszeichen, ohne this) auf den Parameter des Konstruktors (siehe noch einmal Abbildung 9.2).

Im Allgemeinen verweist this.irgendeinName auf ein Feld, das zu dem Objekt gehört, das den Code enthält. Im Gegensatz dazu verweist das gute alte irgendeinName auf den am nächsten gelegenen Ort, an dem irgendeinName deklariert wurde. Für die Anweisung this.number = number (siehe Listing 9.2) ist dieser »nächstgelegene Ort« die Parameterliste des Konstruktors Temperature.

Was soll das alles?

Stellen Sie sich vor, dass Ihr Code einen Konstruktor enthält – hier geht es um den ersten der beiden Konstruktoren in Listing 9.4. Dem Parameter wasauchimmer wird eine Zahl wie zum Beispiel 32.0 übergeben. Dann weist der erste Befehl im Körper des Konstruktors diesen Wert, 32.0, dem Feld number des neuen Objekts zu. Der Code funktioniert. Aber Sie müssen sich beim Schreiben dieses Codes für einen Parameter einen neuen Namen einfallen lassen – den Namen wasauchimmer. Dieser Name dient nur dem Zweck, dem Feld number des Objekts einen Wert zu übergeben. Was für eine Verschwendung! Um zwischen dem Parameter und dem Feld number unterscheiden zu können, benennen Sie etwas, das nur als temporärer Speicherort für den number‐Wert dient.

Das Vergeben von Namen ist eine Kunst, keine Wissenschaft. Ich habe schon viele Phasen der Namensgebung hinter mich gebracht. Ich brauchte für einen Parameter einen neuen Namen und entschied mich für eine andere Schreibweise des originalen Variablennamens. (Ich glaube, ich habe den Parameter numbr oder nuhmber genannt.) Ich habe auch schon probiert, die Groß‐/Kleinschreibung eines Namens zu ändern, um einen Parameternamen zu bekommen. (Ich habe Parameternamen wie Number oder nUMBER verwendet.) In Kapitel 8 benenne ich meine Parameter, indem ich an den entsprechenden Variablennamen die Nachsilbe In hänge. (So gehört der Parameter funktionIn zur Variablen funktion.) Keines diese Schemata der Namensgebung funktioniert gut. Ich schaffe es einfach nicht, mich an die skurrilen neuen Namen zu erinnern, die ich erstellt habe. Die gute Nachricht ist, dass Sie sich diese ganzen Anstrengungen mit der Namensgebung sparen können. Sie haben die Möglichkeit, einem Parameter denselben Namen wie der Variablen zu geben. Und um dann zwischen beiden unterscheiden zu können, verwenden Sie das Java‐Schlüsselwort this.

Einige Dinge ändern sich nie

Kapitel 7 stellt die Methode printf vor und erklärt, dass jeder Aufruf von printf mit einem Formatierungsstring beginnt. Der Formatierungsstring beschreibt, wie die restlichen Parameter angezeigt werden.

In früheren Beispielen ist dieser Formatierungsstring immer ein von Anführungszeichen umgebenes Literal. So lautet zum Beispiel der printf‐Aufruf in Listing 7.7 (siehe Kapitel 7):

out.printf("%4.2f EU\n", myInterest);

In Listing 9.3 habe ich mit der Tradition gebrochen und den Aufruf von printf mit einer Variablen begonnen, die ich format getauft habe.

out.printf(format, temp.getNumber(), temp.getScale());

Dies geht so lange in Ordnung, wie meine Variable format vom Typ String ist. Und wirklich, in Listing 9.3 lautet die erste Variablendeklaration

final String format = "%5.2f Grad %s\n";

Beachten Sie bei dieser Deklaration der Variablen format ganz besonders das Wort final. Dieses Java‐Schlüsselwort zeigt an, dass der Wert von format nicht geändert werden kann. Wenn ich Listing 9.3 einen weiteren Zuweisungsbefehl wie

format = "%6.2f (%s)\n";

hinzufügen würde, erhielte ich vom Compiler die Fehlermeldung cannot assign a value to final variable, die aussagt, dass einer final‐Variablen keine (weiteren) Werte zugewiesen werden können.

Das Schlüsselwort final ist in Listing 9.3 nicht zwingend notwendig. Es sorgt nur für einen zusätzlichen Schutz. Wenn ich format mit "%5.2f Grad %s\n" initialisiere, habe ich vor, dies immer wieder zu verwenden. Ich weiß ganz genau, dass ich nicht vorhabe, den Wert der Variablen format zu ändern. Aber in einem Programm, das aus 10.000 Zeilen besteht, kann ich leicht den Überblick verlieren und versuchen, der Variablen format irgendwo tief im Code einen neuen Wert zuzuweisen. Deshalb deklariere ich die Variable format als final, um zu verhindern, dass ich unabsichtlich den Formatierungsstring ändere.

[image:]Und schon wieder etwas für Sie zum Ausprobieren:

[image: image] Erstellen Sie eine Klasse Student mit einem Namen, einer ID, einem Notendurchschnitt (GPA für Grade Point Average) und einem Hauptfach. Der GPA ist ein double‐Wert zwischen 0.0 und 4.0. Das Hauptfach, Major, ist ein enum‐Typ mit Werten wie INFORMATIK, MATHEMATIK, LITERATUR, PHYSIK und GESCHICHTE.

Jeder Student hat einen Namen und eine ID‐Nummer, aber ein völlig neuer Student hat möglicherweise noch keinen GPA und kein Hauptfach. Erstellen Sie Konstruktoren mit und ohne GPA und Major‐Parameter.

Wie üblich, erstellen Sie eine separate Klasse, die Ihre neue Student‐Klasse verwendet.

[image: image] Erstellen Sie eine Klasse AirplaneFlight mit einer Flugnummer, einem Abflugflughafen, der Abflugzeit und einem Ankunftsflughafen und der Ankunftszeit. Die Flugnummer ist ein int‐Wert. Die Felder für den Abflug‐ und den Ankunftsflughafen gehören zu einem enum‐Typ Airport mit Werten, die einigen der offiziellen IATA‐Flughafencodes entsprechen. Beispielsweise ist LHR der Code für London Heathrow, LAX ist der Code für Los Angeles International Airport usw. Eine durchsuchbare Datenbank mit den Flughafencodes finden Sie unter http://www.iata.org/publications/Pages/code-search.aspx.

Für die Ankunfts‐ und Abflugzeiten verwenden Sie die Java‐Klasse LocalTime. Weitere Informationen über LocalTime finden Sie unter https://docs.oracle.com/javase/8/docs/api/java/time/LocalTime.html. Um ein LocalTime‐Objekt zu erstellen, das auf 2:15 p.m. (also 14:15 Uhr) gesetzt ist, führen Sie den folgenden Code aus:

LocalTime twoFifteen = LocalTime.of(14, 15);

Um ein LocalTime‐Objekt zu erstellen, das auf die aktuelle Zeit gesetzt ist (in Übereinstimmung mit der Systemuhr des Computers), führen Sie den folgenden Code aus:

LocalTime currentTime = LocalTime.now();

Jeder Flug hat eine Nummer, einen Abflugflughafen und einen Ankunftsflughafen. Einige Flüge haben aber vielleicht keine Abflug‐ und Ankunftszeiten. Legen Sie Konstruktoren mit und ohne Parameter für die Abflug‐ und Ankunftszeit an.

Erstellen Sie eine separate Klasse, die Ihre neue AirplaneFlight‐Klasse verwendet.

Noch mehr Unterklassen (etwas gegen das Wetter unternehmen)

In Kapitel 8 wirbele ich mit der Idee von den Unterklassen ziemlich viel Staub auf – was so auch gewollt ist. Unterklassen sorgen dafür, dass Code wiederverwendet werden kann, und wiederverwendbarer Code ist guter Code. Mit diesem Gedanken im Hinterkopf ist es an der Zeit, eine Unterklasse der Klasse Temperature zu erstellen. (Ich habe die Klasse im ersten Teil dieses Kapitels entwickelt.)

Für bessere Temperaturen sorgen

Nachdem Sie den Code in Listing 9.3 durchgesehen haben, sind Sie der Meinung, dass die Verantwortung für die Anzeige der Temperaturen vollständig falsch angelegt worden ist. In Listing 9.3 gibt es überflüssige Wiederholungen der Zeilen, die für die Ausgabe der Temperaturen zuständig sind. Ein Programmierer hätte Ihnen in den 1970er‐Jahren gesagt, dass Sie diese Zeilen an einer Stelle sammeln und in eine Methode umwandeln sollten. (Dieser Programmierer hätte zwar noch nicht den Begriff Methode verwendet, aber das interessiert im Moment nicht.) Es ist eine gute Sache, Zeilen in Methoden zu sammeln, aber bei der heutigen objektorientierten Vorgehensweise bei der Programmierung denken Sie weiter. Warum soll nicht jedes temperature‐Objekt selbst die Verantwortung für seine Anzeige übernehmen? Wenn Sie zum Beispiel eine Methode display (für anzeigen) entwickeln, möchten Sie diese vielleicht mit anderen teilen, die Temperaturangaben einsetzen. Packen Sie also die Methode direkt in die Deklaration eines temperature‐Objekts. Auf diese Weise hat jeder, der Ihren Code für die Temperaturangaben verwendet, leichten Zugriff auf Ihre Methode display.

Spielen Sie nun noch einmal das Band mit Kapitel 8 ab. »Bla, bla, bla … wollen Sie vorhandenen Code nicht ändern … bla, bla, bla … zu teuer, um noch einmal ganz von vorn anzufangen … bla, bla, bla … erweitern Sie vorhandene Funktionen.« Letztendlich lässt sich das alles in einem Wort zusammenfassen:

Wiederverwendung

Sie entscheiden deshalb, dass eine Unterklasse der Klasse Temperature erstellt werden soll. Bei Temperature handelt es sich um die Klasse, die in Listing 9.2 definiert wird. Ihre neue Unterklasse ergänzt die Funktionen der Klasse Temperature durch Methoden, die Werte einheitlich und nett formatiert anzeigen. Die neue Klasse, TemperatureNice, wird in Listing 9.5 vorgestellt.

import static java.lang.System.out;

public class TemperatureNice extends Temperature {

 public TemperatureNice() {

 super();

 }

 public TemperatureNice(double number) {

 super(number);

 }

 public TemperatureNice(TempScale scale) {

 super(scale);

 }

 public TemperatureNice(double number, TempScale scale) {

 super(number, scale);

 }

 public void display() {

 out.printf("%5.2f Grad %s\n", getNumber(), getScale());

 }

}

Listing 9.5: Die Klasse TemperatureNice

Beachten Sie in Listing 9.5 in der Methode display den Aufruf der Methoden getTemperature und getScale der Klasse Temperature. Warum mache ich das? Nun, jeder direkte Verweis auf die Felder number und scale im Code der Klasse TemperatureNice würde zu Fehlermeldungen führen. Es ist schließlich so, dass das Objekt TemperatureNice über eigene number‐ und scale‐Felder verfügt. (Immerhin ist TemperatureNice eine Unterklasse der Klasse Temperature, und der Code für die Klasse Temperature definiert die Felder number und scale.) Da aber number und scale in der Klasse Temperature privat deklariert wurden, kann nur Code diese Felder direkt nutzen, der in der Klasse Temperature definiert wurde.

[image:]Hinterlegen Sie im Code der Klasse TemperatureNice keine zusätzlichen Deklarationen der Felder number und scale. Wenn Sie so etwas machen, erstellen Sie versehentlich vier verschiedene Variablen (zwei mit dem Namen number und zwei mit dem Namen scale). Sie wollen nun einem Variablenpaar Werte zuweisen und werden damit konfrontiert, dass die Werte bei der Anzeige des anderen Variablenpaares verschwunden sind.

[image:]Wenn der Code eines Objekts einen Aufruf der objekteigenen Methoden enthält, muss dieser Aufruf nicht mit einem Punkt eingeleitet werden. So ruft zum Beispiel im letzten Befehl in Listing 9.5 das Objekt seine eigenen Methoden mit getNumber() und getScale() und nicht mit einObjektName.getNumber() und etwasOderWasAnderes.getScale() auf. Wenn Sie die »Punktlosigkeit« irritiert, können Sie dies dadurch ausgleichen, dass Sie auch hier das Schlüsselwort this verwenden. Schreiben Sie einfach in der letzten Zeile von Listing 9.5 this.getNumber() und this.getScale().

Konstruktoren für Unterklassen

Das wirklich Neue ist in Listing 9.5 die Art und Weise, wie dort Konstruktoren deklariert werden. Die Klasse TemperatureNice hat vier eigene Konstruktoren. Wenn Sie sich bereits mit Unterklassen und Vererbung beschäftigt haben, fragen Sie vielleicht, warum diese Deklarationen von Konstruktoren benötigt werden. Erbt denn TemperatureNice nicht die Konstruktoren seiner Elternklasse Temperature? Nein, Unterklassen erben keine Konstruktoren.

[image:]Unterklassen erben keine Konstruktoren.

Das stimmt. Unterklassen erben keine Konstruktoren. In seltenen Ausnahmefällen kann es so aussehen, als ob ein Konstruktor geerbt sei, aber bei dieser Ausnahme handelt es sich um einen Zufallstreffer und nicht um das Normale. Im Allgemeinen gilt, dass Sie beim Definieren einer Unterklasse auch die Konstruktoren neu deklarieren.

Ich beschreibe die Ausnahme (die so aussieht, als ob ein Konstruktor geerbt sei) weiter hinten in diesem Kapitel im Abschnitt Der Standardkonstruktor.

Deshalb enthält der Code in Listing 9.5 vier Konstruktoren. Jeder dieser Konstruktoren trägt den Namen TemperatureNice und jeder Konstruktor hat eine eigene, eindeutige Parameterliste. Das ist wenig Neues. Richtig interessant wird es, wenn es darum geht, dass jeder Konstruktor etwas aufruft, das super heißt (wobei super ein Java‐Schlüsselwort ist).

In Listing 9.5 steht super für einen Konstruktor in der Elternklasse.

[image: image] Der Befehl super() ruft in Listing 9.5 den parameterlosen Konstruktor Temperature() aus Listing 9.2 auf. Dieser parameterlose Konstruktor weist dem Feld number den Wert 0.0 und dem Feld scale TempScale.FAHRENHEIT zu.

[image: image] Der Befehl super(number, scale) ruft in Listing 9.5 den Konstruktor Temperature(double number, TempScale scale) aus Listing 9.2 auf. Im Gegenzug weist der Konstruktor den Feldern number und scale Werte zu.

[image: image] Ähnliches gilt in Listing 9.5 für die Befehle super(number) und super(scale), die ebenfalls Konstruktoren aus Listing 9.2 aufrufen.

Der Computer entscheidet, welcher der Konstruktoren der Klasse Temperature aufgerufen wird, indem er sich die Parameterliste hinter dem Wort super anschaut. Wenn der Computer beispielsweise

super(number, scale);

aus Listing 9.5 ausführt, sagt er sich selbst: »Die Felder in den Klammern, number und scale, haben die Typen double beziehungsweise TempScale. Nur einer der Temperature‐Konstruktoren in Listing 9.2 verfügt über Parameter vom Typ double und TempScale. Der Kopf des Konstruktors sieht so aus:

public Temperature(double number, TempScale scale)

Da das passt, werde ich die Befehle in diesem Konstruktor ausführen.«

Alles anwenden

Ich definiere in Listing 9.5 die Klasse TemperatureNice. Nun ist es an der Zeit, diese Klasse auch einzusetzen. Listing 9.6 enthält Code, der TemperatureNice verwendet.

public class UseTemperatureNice {

 public static void main(String args[]) {

 TemperatureNice temp = new TemperatureNice();

 temp.setNumber(70.0);

 temp.setScale(TempScale.FAHRENHEIT);

 temp.display();

 temp = new TemperatureNice(32.0);

 temp.display();

 temp = new TemperatureNice(TempScale.CELSIUS);

 temp.display();

 temp = new TemperatureNice(2.73, TempScale.KELVIN);

 temp.display();

 }

}

Listing 9.6: Die Klasse TemperatureNice verwenden

Der Code in Listing 9.6 ähnelt dem Code in Listing 9.3. Die großen Unterschiede sind:

[image: image] Listing 9.6 erstellt Instanzen der Klasse TemperatureNice. Das heißt, dass Listing 9.6 Konstruktoren aus der Klasse TemperatureNice und nicht aus der Klasse Temperature aufruft.

[image: image] Listing 9.6 nutzt die Methode display der Klasse TemperatureNice. Deshalb ist dieser Code viel sauberer als sein Gegenstück in Listing 9.3.

Wenn Sie Listing 9.6 ausführen, sieht das Ergebnis genauso aus wie das, das Listing 9.3 liefert – Sie erreichen die letzte Zeile nur viel eleganter. (Das Ergebnis wird weiter vorn in diesem Kapitel in Abbildung 9.1 gezeigt.)

Der Standardkonstruktor

Die zentrale Botschaft des vorherigen Abschnitts lautet: Unterklassen erben keine Konstruktoren. Was bedeutet dies für die Listings in Kapitel 8? In Listing 8.6 lautet ein Befehl:

VollzeitMitarbeiter vzMa = new VollzeitMitarbeiter();

Das Problem dabei ist: Der Code, der (in Listing 8.3) VollzeitMitarbeiter definiert, scheint keine Konstruktoren zu enthalten. Wie schaffen Sie es dann, in Listing 8.6 den Konstruktor VollzeitMitarbeiter aufzurufen?

Das funktioniert so: Wenn Sie eine Unterklasse erstellen und in Ihren Code nicht ausdrücklich eine Konstruktorendeklaration aufnehmen, erstellt Java einen Konstruktor. Dieser wird Standardkonstruktor genannt. Wenn Sie die Unterklasse public VollzeitMitarbeiter erstellen, sieht der Standardkonstruktor so aus wie in Listing 9.7.

public VollzeitMitarbeiter() {

 super();

}

Listing 9.7: Ein Standardkonstruktor

Der Konstruktor in Listing 9.7 enthält keine Parameter, und sein einziger Befehl ruft den Konstruktor der Klasse auf, die Sie erweitern. (Wehe Ihnen, wenn die Klasse, die Sie erweitern, keinen parameterlosen Konstruktor enthält.)

Sie haben gerade von Standardkonstruktoren gelesen, aber aufgepasst! Es gibt nämlich eine Sache, die Sie von Standardkonstruktoren wissen sollten: Ein Standardkonstruktor wird nicht immer erstellt. Insbesondere wenn Sie eine Unterklasse anlegen und selbst Konstruktoren anlegen, fügt Java den Unterklassen keinen Standardkonstruktor hinzu (noch erben Unterklassen Konstruktoren von ihren Elternklassen).

Kann Ihnen dieses Verhalten ein Beinchen stellen? Listing 9.8 enthält eine Kopie des Codes in Listing 8.3, die um einen Konstruktor erweitert worden ist. Werfen Sie einen Blick auf die geänderte Version des VollzeitMitarbeiter‐Codes.

public class VollzeitMitarbeiter extends Mitarbeiter {

 private double wochenLohn;

 private double sozialAbzug;

 public VollzeitMitarbeiter(double wochenLohn) {

 this.wochenLohn = wochenLohn;

 }

 public void setWochenLohn(double wochenLohnIn) {

 wochenLohn = wochenLohnIn;

 }

 public double getWochenLohn() {

 return wochenLohn;

 }

 public void setSozialAbzug(double sozialAbzugIn) {

 sozialAbzug = sozialAbzugIn;

 }

 public double getSozialAbzug() {

 return sozialAbzug;

 }

 public double berechneZahlung() {

 return wochenLohn ‐ sozialAbzug;

 }

}

Listing 9.8: Schauen Sie, ich besitze nun einen Konstruktor!

Wenn Sie den VollzeitMitarbeiter‐Code in Listing 9.8 verwenden, funktioniert eine Zeile wie die folgende nicht:

VollzeitMitarbeiter vzMa = new VollzeitMitarbeiter();

Wenn Sie einen VollzeitMitarbeiter‐Konstruktor erstellen, der einen double‐Parameter verlangt, gibt es keinen automatisch erstellten parameterlosen Standardkonstruktor mehr.

Was bedeutet das nun für Sie? Wenn Sie einen Konstruktor deklarieren, müssen Sie alle Konstruktoren deklarieren, die Sie eventuell benötigen könnten. Nehmen Sie den Konstruktor in Listing 9.7 und fügen Sie ihn dem Code in Listing 9.8 hinzu. Dann funktioniert auch der Aufruf von new VollzeitMitarbeiter() wieder.

[image:]In diesem Abschnitt habe ich gleich drei Dinge für Sie, die Sie ausprobieren können:

[image: image] In einem der vorherigen Abschnitte haben Sie Ihre eigene Student‐Klasse angelegt. Erstellen Sie eine Unterklasse mit der Methode getString.

Wie die display‐Methode in der Klasse TemperatureNice dieses Kapitels erzeugt die getString‐Methode eine hübsche String‐Darstellung ihres Objekts. Anders als die display‐Methode der Klasse TemperatureNice gibt jedoch die getString‐Methode diese String‐Darstellung nicht auf dem Bildschirm aus. Stattdessen gibt die getString‐Methode einfach diese String‐Darstellung als Ergebnis zurück.

In gewisser Weise ist eine getString‐Methode sehr viel flexibler als eine display‐Methode. Mit einer display‐Methode können Sie nur eine String‐Darstellung auf dem Bildschirm zeigen. Mit einer getString‐Methode können Sie eine String‐Darstellung erstellen und dann damit machen, was Sie wollen.

Erstellen Sie eine separate Klasse, die ein paar Instanzen Ihrer neuen Unterklasse erstellt und Ihre getString‐Methoden nutzt.

[image: image] In einem früheren Abschnitt haben Sie Ihre eigene AirplaneFlight‐Klasse erstellt. Erstellen Sie eine Unterklasse, die eine Methode namens duration hat. Die duration‐Methode, die keine Parameter hat, gibt die Zeit zwischen der Abflugzeit und der Ankunftszeit des Flugs zurück.

Um die Anzahl der Stunden zwischen zwei LocalTime‐Objekten zu ermitteln (wie beispielsweise twoFifteen und currentTime), führen Sie den folgenden Code aus:

long hours = ChronoUnit.HOURS.between(twoFifteen, currentTime);

Um die Anzahl der Minuten zwischen zwei LocalTime‐Objekten zu ermitteln (wie beispielsweise twoFifteen und currentTime), führen Sie den folgenden Code aus:

long minutes = ChronoUnit.MINUTES.between(twoFifteen, currentTime);

[image: image] Erstellen Sie eine neue Klasse TemperatureEvenNicer – eine Unterklasse der Klasse TemperatureNice in diesem Abschnitt. Die Klasse TemperatureEvenNicer hat eine convertTo‐Methode. Wenn die Variable temp auf eine Fahrenheit‐Temperatur verweist und Java den folgenden Code ausführt:

temp.convertTo(TempScale.CELSIUS);

ändert sich das temp‐Objekt in eine Celsius‐Temperatur, wobei der Wert entsprechend umgewandelt wird. Das Umgekehrte soll passieren, wenn Java den folgenden Code

temp.convertTo(TempScale.FAHRENHEIT);

für ein temp‐Objekt ausführt, das bereits auf eine Celsius‐Temperatur verweist.

Ein Konstruktor, der mehr kann

Hier ein Zitat, das im Original irgendwo am Anfang dieses Kapitels steht: »Wenn Sie den Computer anweisen, ein neues Objekt zu erstellen, können Sie dann steuern, was in den Feldern des Objekts gespeichert wird? Vielleicht haben Sie, wenn der Computer ein neues Objekt erstellt, eine lange Liste mit Aufgaben, die der Computer ausführen soll.« Gehen wir näher auf dieses Wenn ein.

Das Beispiel dieses Abschnitts enthält einen Konstruktor, der mehr kann, als Feldern Werte zuzuweisen. Das Beispiel besteht aus den Listings 9.9 und 9.10. Abbildung 9.3 zeigt, wie das Ergebnis aussieht, wenn dieser Code ausgeführt wird.

import java.awt.FlowLayout;

import javax.swing.JFrame;

import javax.swing.JButton;

@SuppressWarnings("serial")

public class SimpleFrame extends JFrame {

 public SimpleFrame() {

 setTitle("Nicht auf die Schaltfläche klicken!");

 setLayout(new FlowLayout());

 setDefaultCloseOperation(EXIT_ON_CLOSE);

 add(new JButton("Panik"));

 setSize(340, 100);

 setVisible(true);

 }

}

Listing 9.9: Einen Frame definieren

public class ShowAFrame {

 public static void main(String args[]) {

 new SimpleFrame();

 }

}

Listing 9.10: Einen Frame anzeigen

[image:]Abbildung 9.3: Geraten Sie nicht in Panik.

Wie meine DummiesFrame‐Beispiele zeigt der Code in den Listings 9.9 und 9.10 ein Fenster auf dem Bildschirm an. Hier verweisen alle Methodenaufrufe jedoch auf Methoden im Standard‐API von Java.

[image:]Die DummiesFrame‐Beispiele finden Sie in Kapitel 7.

Pakete und Importdeklarationen

In Java gibt es eine Funktion, die es Ihnen ermöglicht, Klassen in Klassengruppen zusammenzufassen. Eine solche Zusammenfassung wird Paket genannt. In der Java‐Welt geben Programmierer diesen Paketen normalerweise lange, mit Punkten aufgefüllte Namen. Ich habe zum Beispiel den Domänennamen allmycode.com registriert. Ein Paket, das ich benenne, würde dann com.allmycode.utils.textUtils heißen. Die Java‐API ist in Wirklichkeit nichts als eine große Sammlung von Paketen. In ihr gibt es Pakete mit Namen wie java.lang, java.util, java.awt, javax.swing und so weiter.

Vielleicht gelingt es mir, mit diesen Informationen über Pakete etwas gegen die Verwirrung zu unternehmen, die beim Thema import‐Deklaration herrscht. Eine import‐Deklaration, die das Wort static nicht verwendet, muss mit dem Namen eines Pakets beginnen und mit einem der folgenden Namen enden:

[image: image] Dem Namen einer Klasse aus dem Paket

[image: image] Einem Sternchen (das auf alle Klassen im Paket verweist)

So ist zum Beispiel die Deklaration

import java.util.Scanner;

gültig, weil es sich bei java.util um den Namen eines Pakets in der Java‐API handelt und weil Scanner eine Klasse im Paket java.util ist. Der Name java.util.Scanner mit all den Punkten wird als vollqualifizierter Name der Klasse Scanner bezeichnet. Der vollqualifizierte Name einer Klasse enthält den Namen des Pakets, in dem die Klasse definiert wird. Sie können alles über java.util und Scanner herausbekommen, wenn Sie sich mit Javas API‐Dokumentation beschäftigen.

Hier ein weiteres Beispiel. Die Deklaration

import javax.swing.*;

ist gültig, weil java.swing der Name eines Pakets in der Java‐API ist und das Sternchen auf alle Klassen in diesem Paket verweist. Wenn diese import‐Deklaration am Anfang Ihres Codes steht, können Sie für die Klassen im Paket java.swing Abkürzungen verwenden – Namen wie JFrame, JButton, JMenuBar, JCheckBox und viele andere.

Hier kommt noch ein Beispiel. Eine Zeile wie

import javax.*; //Gar nicht gut!!!

ist keine gültige import‐Deklaration. In der Java‐API gibt es kein Paket, dessen Name nur aus dem Wort javax besteht. Sie könnten auf die Idee kommen, dass diese Zeile Ihnen gestattet, alle Namen abzukürzen, die mit javax beginnen (Namen wie javax.swing.JFrame und javax.sound.midi), aber leider kann eine import‐Deklaration damit nicht umgehen. Da es sich bei javax nicht um den Namen eines Pakets handelt, macht die Zeile import javax.* nichts anderes, als den Java‐Compiler zu ärgern.

Der Code in Listing 9.9 besteht hauptsächlich aus Aufrufen von Methoden der Java‐API (Application Programming Interface; deutsch: Schnittstelle für die Anwendungsprogrammierung). Dies bedeutet für Sie, dass der Code viele Namen enthält, die Sie vielleicht (noch) nicht kennen. Als ich anfing, Java zu lernen, glaubte ich dummerweise, dass es ausreicht, diese Namen zu kennen, um Java zu können. Dem ist aber nicht so, denn diese Namen sind eigentlich nichts als eine Art Handgepäck. Das echte Java besteht daraus, wie die Sprache objektorientierte Konzepte umsetzt.

Auf jeden Fall besteht in Listing 9.10 die Methode main aus nur einem Befehl, einem Aufruf des Konstruktors in der Klasse SimpleFrame. (Ein Frame entspricht einem Fenster, damit lässt sich Simple Frame grob mit einfaches Fenster übersetzen.) Beachten Sie, dass das Objekt, das dieser Aufruf erstellt, keiner Variablen zugewiesen wird. Das ist so auch in Ordnung, denn der Code verweist nirgendwo auf dieses Objekt.

Die Klasse SimpleFrame enthält nur die Deklaration eines Konstruktors. Dieser Konstruktor ist weit davon entfernt, Werte in Variablen zu setzen. Seine Aufgabe ist es, Methode um Methode aus der Java‐API aufzurufen.

Alle Methoden, die über den Konstruktor in der Klasse SimpleFrame aufgerufen werden, stammen aus der Elternklasse JFrame. Diese Klasse befindet sich im javax.swing‐Paket. Dieses Paket und das Paket java.awt enthalten Klassen, die Ihnen dabei helfen, Fenster, Bilder, Zeichnungen und andere Elemente auf dem Bildschirm eines Computers anzuzeigen. (Im Paket java.awt stehen die Buchstaben awt für Abstract Windowing Toolkit.)

[image:]Wenn Sie an Klatsch und Tratsch über die Schreibweise von Java‐Paketen interessiert sind, sollten Sie einen Blick auf den Kasten Pakete und Importdeklarationen werfen. Wenn Sie bei diesem Thema wirklich mitreden wollen, lesen Sie Kapitel 14.

[image:]Das, was normalerweise als Fenster (Window) bezeichnet wird, ist in der Java‐API eine Instanz der Klasse javax.swing.JFrame.

Klassen und Methoden der Java‐API

Wenn Sie sich Abbildung 9.3 anschauen, können Sie vielleicht bestätigen, dass eine Instanz der Klasse SimpleFrame eigentlich nicht viel macht. Der Frame hat nur eine Schaltfläche, und wenn Sie auf diese Schaltfläche klicken, passiert nichts. Ich habe den Frame bewusst so angelegt, damit er nicht zu kompliziert wird. Selbst dann benötigt der Code in Listing 9.9 mehrere API‐Klassen und ‐Methoden. Die Methoden setTitle, setLayout, setDefaultCloseOperation, add, setSize und setVisible gehören alle zur Klasse javax.swing.JFrame. Im Code werden folgende Namen verwendet:

[image: image] setTitle: Der Aufruf von setTitle platziert Text in der Titelzeile des Frames. (Das neue SimpleFrame‐Objekt ruft seine eigene Methode setTitle auf.)

[image: image] FlowLayout: Eine Instanz der Klasse FlowLayout positioniert auf dem Frame Objekte so, dass sie zentriert ausgerichtet sind. Da der Frame in Abbildung 9.3 nur eine Schaltfläche enthält, wird diese im oberen Bereich des Frames zentriert. Gäbe es auf dem Frame acht Schaltflächen, würden fünf in einer ersten und die restlichen drei in einer zweiten Reihe auf dem Frame zentriert aufgereiht werden.

[image: image] setLayout: Der Aufruf von setLayout überträgt dem neuen FlowLayout‐Objekt die Zuständigkeit für das Anordnen von Komponenten wie Schaltflächen in dem Frame. (Das neue SimpleFrame‐Objekt ruft seine eigene Methode setLayout auf.)

[image: image] setDefaultCloseOperation: Der Aufruf von setDefaultCloseOperation informiert Java darüber, was zu tun ist, wenn das kleine rote x in der rechten oberen Ecke des Frames angeklickt wird. (Auf einem Mac klicken Sie auf den kleinen roten Kreis oben links im Rahmen.) Ohne den Aufruf dieser Methode verschwindet der Frame zwar, aber die virtuelle Java‐Maschine (JVM) läuft weiter. Um die Programmausführung zu beenden, müssen Sie einen weiteren Schritt ausführen. (Möglicherweise müssen Sie in Eclipse, IntelliJ IDEA oder NetBeans nach einer Abbruchoption suchen.)

Der Aufruf von setDefaultCloseOperation(EXIT_ON_CLOSE) weist Java an, sich selbst herunterzufahren, wenn Sie in der rechten oberen Ecke des Frames auf das kleine x klicken. Alternativen zu EXIT_ON_CLOSE sind HIDE_ON_CLOSE, DISPOSE_ON_CLOSE und mein Favorit DO_NOTHING_ON_CLOSE. Verwenden Sie eine dieser Alternativen, wenn Ihr Programm noch mehr zu erledigen hat, nachdem der Benutzer Ihren Frame geschlossen hat.

[image: image] JButton: Die Klasse JButton befindet sich im Paket java.swing. Einer der Konstruktoren der Klasse nimmt sich eine String‐Instanz (wie "Panik") als Parameter. Der Aufruf dieses Konstruktors sorgt dafür, dass die String‐Instanz auf der Oberfläche der neuen Schaltfläche erscheint.

[image: image] add: Das neue SimpleFrame‐Objekt ruft seine Methode add auf. Der Aufruf dieser Methode platziert die Schaltfläche auf der Oberfläche des Objekts (in diesem Fall auf der Oberfläche des Frames).

[image: image] setSize: Der Frame wird 340 Pixel breit und 100 Pixel hoch. (Wenn Sie im Java‐Paket javax.swing Größenangaben tätigen, kommt die Breite immer vor der Höhe.)

[image: image] setVisible: Wenn ein neuer Frame erstellt wird, ist er zunächst unsichtbar. Wenn dieser neue Frame aber setVisible(true) aufruft, erscheint er auf dem Bildschirm des Computers.

Die Annotation »SuppressWarnings«

Kapitel 8 stellt die Annotations vor. Dabei handelt es sich um einen zusätzlichen Code, der Informationen über die Natur Ihres Programms zur Verfügung stellt. Kapitel 8 beschreibt die Annotation @Override.

In diesem Kapitel stellt Listing 9.9 eine andere Art von Annotation vor: SuppressWarnings (was auf Deutsch Warnungen unterdrücken bedeutet). Wenn Sie eine SuppressWarnings‐Annotation verwenden, weisen Sie Java an, Sie nicht darauf hinzuweisen, dass Ihr Programm fragwürdigen Code enthält. In Listing 9.9 sagt @SuppressWarnings("serial") Java, dass Sie nicht darauf hingewiesen werden wollen, wenn Sie etwas nicht eingerichtet haben, das serialVersionUID‐Feld genannt wird. Letztendlich sorgt SuppressWarnings dafür, dass eine Warnung wie die in Abbildung 9.4 nicht angezeigt wird.

[image:]Abbildung 9.4: Wenn die Annotation nicht vorhanden ist, warnt Java Sie, dass ein ‐Feld fehlt.

»Was ist denn bloß eine serialVersionUID?«, fragen Sie jetzt zu Recht. Das ist etwas, das mit dem Erweitern der Klasse JFrame zu tun hat – etwas, um das Sie sich wirklich nicht kümmern müssen. Wenn es kein serialVersionUID‐Feld gibt, wird eine Warnung, keine Fehlermeldung erzeugt. Lieben Sie das gefährliche Leben! Unterdrücken Sie die Warnung (mit der Annotation in Listing 9.9) und vergessen Sie die Angelegenheit.

[image:][image: image] Geben Sie die folgenden Deklarationen und Anweisungen in JShell ein. Was passiert? Warum?

jshell> import javax.swing.JFrame

jshell> JFrame frame

jshell> frame.setSize(100, 100)

jshell> frame = new JFrame()

jshell> frame.setSize(100, 100)

jshell> frame.setVisible(true)

[image: image] Ändern Sie in Listing 9.9 die Anweisung

setLayout(new FlowLayout());

in

setLayout(new BorderLayout());

Welchen Unterschied verursacht diese Änderung, wenn Sie das Programm ausführen?

261-262

Teil IV

Intelligente Java‐Techniken

[image:]

In diesem Teil …

[image: image] Legen Sie fest, wohin Deklarationen in einem Java‐Programm gehören.

[image: image] Kümmern Sie sich um Mengen (um eine Menge von Räumen, eine Menge von Verkäufen und sogar um eine Menge von Mengen).

[image: image] Nutzen Sie begeistert die objektorientierten Funktionen von Java.

[image: image] Erstellen Sie eine App mit Fenstern und reagieren Sie auf Mausklicks.

[image: image] Unterhalten Sie sich mit der Lieblingsdatenbank.

263-294

Kapitel 10

Variablen und Methoden richtig platzieren

In diesem Kapitel

Dafür sorgen, dass etwas einer ganzen Klasse gehört

Variablen innerhalb und außerhalb von Methoden platzieren

Ihre durchschnittliche Trefferquote verbessern

Hallo zusammen. Sie hören Radio WWW, und ich bin Ihr Moderator, Sam Burd. Und wieder einmal stehen wir am Anfang einer großartigen Baseball‐Saison. Heute hat Sie Radio WWW zu einer Liveübertragung des Spiels Hankees gegen Socks mitgenommen. Im Moment erwarte ich die Übertragung der letzten Spielminuten.

Heute Nachmittag noch sah es so aus, als ob die Socks mit den Hankees Schlitten fahren würden. Dann trafen die Hankees Ball auf Ball und machen es damit den Socks alles andere als leicht. Diese Socks! Ich bin froh, dass ich nicht in deren Haut stecken muss.

Aber was soll's. Im Verlauf des Spiels haben sich die Socks selbst aus dem Sumpf gezogen und liefern sich jetzt ein Kopf‐an‐Kopf‐Rennen mit den Hankees. In einer Minute erhalten wir das Endergebnis und bis dahin ein paar Programmhinweise. Bleiben Sie für das große Jersey‐Spiel am Radio. Und vergessen Sie nicht, auch nächste Woche wieder einzuschalten, wenn die Cleveland Gowns gegen die Bermuda Shorts spielen.

Und hier kommt das Endergebnis. Welches Team hat gewonnen? Welches Team war um eine Nasenlänge besser? Und das ist … oh, nein! Es ist eine Krawatte.

(Anmerkung der Übersetzerin: Wundern Sie sich nicht über die Namen und die »Pointe«. Hankees ist die verballhornte Form des englischen Ausdrucks für Taschentücher, Socks sind Socken, Jersey bezeichnet Trikots oder Pullis, Gowns sind Kleider und Bermuda Shorts bleiben Bermuda Shorts. Diese Bezeichnungen sind beibehalten worden, weil darauf die Beispiele dieses Kapitels beruhen.)

Klassen definieren (Was es heißt, ein Baseballspieler zu sein)

Soweit es mich betrifft, hat ein Baseballspieler einen Namen und einen sogenannten Batting Average. (Ein Batting Average ist das Maß für die Treffsicherheit eines Spielers, der Wert, wie oft er im Durchschnitt – englisch Average – trifft – englisch to bat.) Listing 10.1 wandelt meine Vorstellungen in ein Java‐Programm um.

import java.text.DecimalFormat;

public class Player {

 private String name;

 private double average;

 public Player(String name, double average) {

 this.name = name;

 this.average = average;

 }

 public String getName() {

 return name;

 }

 public double getAverage() {

 return average;

 }

 public String getAverageString() {

 DecimalFormat decFormat = new DecimalFormat();

 decFormat.setMaximumIntegerDigits(0);

 decFormat.setMaximumFractionDigits(3);

 decFormat.setMinimumFractionDigits(3);

 return decFormat.format(average);

 }

}

Listing 1.1: Die Klasse Player

Lassen Sie uns den Code in Listing 10.1 in seine Einzelteile zerlegen. Glücklicherweise wird vieles von dem, was dieser Code enthält, bereits in früheren Kapiteln behandelt. Der Code definiert eine Instanz der Klasse Player. Er enthält:

[image: image] Die Deklaration der Felder name und average. Ich empfehle Kapitel 7 als Bettlektüre, wenn Sie Fragen zum Deklarieren von Feldern haben.

[image: image] Einen Konstruktor, um neue Instanzen der Klasse Player herzustellen. Kapitel 9 enthält eine Übersicht über Konstruktoren.

[image: image] Zugriff auf Methoden für die Felder name und average. Für ein kleines Schwätzchen über Zugriffsmethoden (das heißt über Setter‐ und Getter‐Methoden) siehe Kapitel 7.

[image: image] Eine Methode, die den Batter Average als String zurückgibt. Nette Worte über Methoden finden Sie in Kapitel 7. (Habe ich nicht unheimlich viele gute Themen in Kapitel 7 untergebracht?)

Ein anderer Weg, um Zahlen zu formatieren

In Listing 10.1 nimmt die Methode getAverageString den Wert, den das Feld average (die durchschnittliche Trefferquote eines Spielers) hat, und sendet diesen String‐Wert direkt an den Aufrufer der Methode zurück. Dadurch, dass DecimalFormat verwendet wird, das direkt aus der Java‐API stammt, wird sichergestellt, dass der String‐Wert wie eine gut formatierte Zahl und gleichzeitig wie der Batting Average eines Baseballspielers aussieht. Es entspricht den Aufrufen von decFormat.setMaximum... und decFormat.setMinimum..., dass der String‐Wert links vom Dezimalzeichen keine und rechts vom Dezimalzeichen drei Ziffern enthält.

Die Java‐Klasse DecimalFormat kann sehr praktisch sein. Um zum Beispiel die Werte 345 und ‐345 in einem zu einer Rechnung passenden Format anzuzeigen, können Sie den folgenden Code verwenden:

DecimalFormat decFormat = new DecimalFormat();

decFormat.setMinimumFractionDigits(2);

decFormat.setNegativePrefix("(");

decFormat.setNegativeSuffix(")");

System.out.println(decFormat.format(345));

System.out.println(decFormat.format(‐345));

Bei diesem kleinen Beispiel einer String‐Formatierung legt alles vor dem Semikolon fest, wie positive Zahlen angezeigt werden, und alles hinter dem Semikolon ist für die Ausgabe negativer Zahlen zuständig. Aufgrund dieser Formatierung werden die beiden Zahlen so angezeigt:

345,00

‐345,00

Wenn Sie daran interessiert sind, weitere Tricks bei der Formatierung von Zahlen kennenzulernen, besuchen Sie die DecimalFormat‐Seite der Dokumentation der Java‐API, https://docs.oracle.com/javase/8/docs/api/java/text/DecimalFormat.html.

Die Klasse »Player« verwenden

Die Listings 10.2 und 10.3 enthalten Code, der die Klasse Player (deutsch Spieler) verwendet – die Klasse, die bereits in Listing 10.1 definiert wird.

import java.util.Scanner;

import java.io.File;

import java.io.IOException;

import javax.swing.JFrame;

import javax.swing.JLabel;

import java.awt.GridLayout;

@SuppressWarnings("serial")

public class TeamFrame extends JFrame {

 public TeamFrame() throws IOException {

 Player player;

 Scanner hankeesData = new Scanner(new File("Hankees.txt"));

 for (int num = 1; num <= 9; num++) {

 player = new Player(hankeesData.nextLine(),

 hankeesData.nextDouble());

 hankeesData.nextLine();

 addPlayerInfo(player);

 setTitle("Die Hankees");

 setLayout(new GridLayout(9, 2, 20, 3));

 setDefaultCloseOperation(EXIT_ON_CLOSE);

 pack();

 setVisible(true);

 hankeesData.close();

 }

 void addPlayerInfo(Player player) {

 add(new JLabel(" " + player.getName()));

 add(new JLabel(player.getAverageString()));

 }

}

Listing 1.2: Die Klasse Player verwenden

import java.io.IOException;

public class ShowTeamFrame {

 public static void main(String args[]) throws IOException {

 new TeamFrame();

 }

}

Listing 1.3: Einen Frame anzeigen

Abbildung 10.1 gibt wieder, was angezeigt wird, wenn Sie den Code aus den Listings 10.1 bis 10.3 ablaufen lassen.

[image:]Abbildung 1.1: Würden Sie auf diese Spieler Geld setzen?

Damit Sie selbst dieses Programm ablaufen lassen können, benötigen Sie die Datei Hankees.txt. Diese Datei enthält die Daten Ihrer Lieblingsbaseballspieler (siehe Abbildung 10.2).

[image:]Abbildung 1.2: Was für ein Team!

Die Datei Hankees.txt muss sich an einem bestimmten Ort auf der Festplatte Ihres Computers befinden. Wenn Sie Eclipse einsetzen, handelt es sich bei diesem »bestimmten Ort« um einen Projektordner in Ihrem Workspace. Wenn Sie Java aus der Befehlszeile heraus ausführen, sollte der »Ort« das Verzeichnis sein, das den Code von Listing 10.3 enthält. Wenn Sie versuchen, das Beispiel dieses Abschnitts ohne die Datei Hankees.txt auszuführen, erhalten Sie eine unschöne FileNotFoundException‐Meldung. Sollten Sie die Datei noch nicht heruntergeladen haben, denken Sie daran, dass sie Bestandteil der Beispieldateien dieses Buches ist, die Sie unter http://www.wiley-vch.de/publish/dt/books/ISBN3-527-71364-6 herunterladen können.

[image:]Damit der Code dieses Abschnitts sauber läuft, muss es hinter dem letzten ,212 in Abbildung 10.2 einen Zeilenumbruch geben (siehe hierzu auch Kapitel 8).

Eine Klasse, neun Objekte

Der Code in Listing 10.2 ruft den Konstruktor Player neunmal auf. Dies bedeutet, dass der Code neun Instanzen der Klasse Player erstellt. Beim ersten Schleifendurchgang erstellt der Code eine Instanz mit dem Namen Barry Burd. Beim zweiten Schleifendurchlauf gibt der Code die Barry Burd‐Instanz auf und erstellt eine neue Instanz mit dem Namen Harriet Ritter. Beim dritten Durchlauf gibt der Code die arme Harriet Ritter auf und erstellt die Instanz Weelie J. Katz. Der Code enthält immer nur eine Instanz gleichzeitig, aber er erstellt insgesamt neun Instanzen.

Jede Instanz von Player enthält ihre eigenen Felder name und average. Außerdem verfügt jede Instanz über einen eigenen Konstruktor Player und eigene Methoden getName, getAverage und getAverageString. Schauen Sie sich Abbildung 10.3 an und denken Sie dabei an die Klasse Player mit ihren neun Verkörperungen.

[image:]Abbildung 1.3: Eine Klasse und ihre Objekte

Eine GUI

Der Code in Listing 10.2 verwendet diverse Namen aus der Java‐API. Einige davon werden in Kapitel 9 erklärt, andere sind jetzt an der Reihe:

[image: image] JLabel: Ein JLabel ist ein Objekt, das Text enthält. Eine Möglichkeit, Text in einem Frame anzuzeigen, sieht so aus, dass dem Frame eine Instanz der Klasse JLabel hinzugefügt wird.

In Listing 10.2 wird die Methode addPlayerInfo neunmal aufgerufen – einmal für jeden Spieler des Teams. Jedes Mal, wenn diese Methode aufgerufen wird, fügt sie dem Frame zwei neue JLabel‐Objekte hinzu. Der Text für die JLabel‐Objekte stammt von der Getter‐Methode eines Player‐Objekts.

[image: image] GridLayout: Ein GridLayout ordnet die Dinge in gleichmäßigen Abständen in Zeilen und Spalten an. (Grid bedeutet auf Deutsch Raster, Gitter.) Der Konstruktor der Klasse GridLayout benötigt zwei Parameter: einen für die Zahl der Zeilen und einen für die Zahl der Spalten.

In Listing 10.2 enthält der Aufruf des Konstruktors für GridLayout die Parameter (9, 2, 20, 3). Deshalb werden in Abbildung 10.1 neun Zeilen (eine für jeden Spieler) und zwei Spalten (eine für den Namen und eine für den Durchschnitt) angezeigt. Der horizontale Abstand zwischen den Spalten beträgt 20 Pixel und der Abstand zwischen den einzelnen Zeilen ist drei Pixel groß.

[image: image] pack: Über pack legen Sie die Größe eines Frames fest. Dabei handelt es sich um die Größe, die der Frame hat, wenn er auf dem Bildschirm Ihres Computers erscheint. Der Aufruf der Methode pack() sorgt dafür, dass sich der Frame größentechnisch an die Objekte »anschmiegt«, die sich in ihm befinden.

In Listing 10.2 haben Sie, wenn Sie den Aufruf von pack erreichen, schon neunmal addPlayerInfo aufgerufen und dem Frame 18 Labels hinzugefügt. Wenn der Computer die Methode pack ausführt, sucht er für jedes Label eine Größe aus, die zu dem Text passt, den Sie im Label untergebracht haben. Dann kümmert sich der Computer darum, auch für den gesamten Frame eine Größe herauszufinden, um alle 18 Labels angemessen zu positionieren.

Wenn Sie in einem Label Daten hinterlegen, haben Sie bei der Reihenfolge, in der Sie das tun, etwas Spielraum. So können Sie zum Beispiel das Layout festlegen, bevor oder nachdem Sie dem Frame Labels und andere Komponenten hinzugefügt haben. Wenn Sie setLayout aufrufen und dann erst Labels hinzufügen, erscheinen diese sauber angeordnet auf dem Frame. Wenn Sie umgekehrt vorgehen (erst die Labels hinzufügen und dann setLayout aufrufen), sorgt der Aufruf von setLayout dafür, dass die Labels auf wundersame Weise neu angeordnet werden. Beide Wege sind gute Vorgehensweisen.

Wenn Sie einen Frame einrichten, gibt es etwas, was Sie auf keinen Fall machen dürfen – den folgenden Ablauf missachten:

Dem Frame Komponenten hinzufügen dann

pack();

setVisible(true);

Wenn Sie pack aufrufen und versuchen, dem Frame weitere Komponenten hinzuzufügen, berücksichtigt die Methode pack alles, was ganz neu ist, nicht. Wenn Sie setVisible aufrufen, bevor Sie Komponenten hinzugefügt oder pack aufgerufen haben, sieht der Benutzer den Frame in seinem Rohzustand. Und wenn Sie vergessen, die Größe des Frames festzulegen (indem Sie pack oder eine andere Methode aufrufen, die für eine Größenangabe zuständig ist), sieht der Frame, der dann erscheint, wie der in Abbildung 10.4 aus. (Normalerweise lege ich keinen Wert darauf, das Ergebnis einer anormalen Programmausführung wie in Abbildung 10.4 wiederzugeben, aber ich habe den Fehler mit pack so oft selbst gemacht, dass mir der mickrige Frame zu einem guten Freund geworden ist.)

[image:]Abbildung 1.4: Ein geschrumpfter Frame

Eine Ausnahme von Methode zu Methode weiterreichen

Kapitel 8 zeigt, wie Sie Daten mithilfe einer Datei eingeben können, und in diesem Zusammenhang fällt auch der Begriff Ausnahme oder Exception. Wenn Sie mit einer Datei auf der Festplatte liebäugeln, müssen Sie immer damit rechnen, dass es zu einer IOException kommt. Das ist die Botschaft in Kapitel 8, und das ist auch der Grund dafür, dass es im Konstruktor von Listing 10.2 die Klausel throws IOException gibt.

Wie sieht das nun aber in Listing 10.3 mit der Methode main aus? Warum benötigt sie, obwohl es keinen Verweis auf eine Datei auf der Festplatte gibt, eine eigene Klausel throws IOException? Nun, eine Ausnahme ist wie eine heiße Kartoffel. Wenn Sie eine haben, müssen Sie sie entweder verspeisen (wie das geht, zeigt Kapitel 12) oder Sie verwenden eine throws‐Klausel, um die Ausnahme irgendwohin weiterzureichen. Wenn Sie eine Ausnahme mit throw weiterreichen, lösen Sie das Problem nicht, sondern erreichen damit nur, dass sich jemand an anderer Stelle damit beschäftigen muss.

Der Konstruktor in Listing 10.2 wirft eine IOException, aber wohin wird sie nun geworfen (weitergereicht)? Wer im Code übernimmt die Verantwortung für die problematische IOException? Wer hat den Konstruktor in Listing 10.2 aufgerufen? Das war die Methode main in Listing 10.3 – hier geht es um den Aufruf des Konstruktors TeamFrame. Da der Konstruktor TeamFrame in Listing 10.3 seine heiße Kartoffel der Methode main zuwirft, muss sich diese Methode darum kümmern. Listing 10.3 zeigt, dass sie dies dadurch »erledigt«, dass sie die IOException wirft (indem sie über eine eigene Klausel throws IOException verfügt). So funktionieren in Java‐Programmen throws‐Klauseln.

[image:]Wenn eine Methode eine andere Methode aufruft, die eine throws‐Klausel enthält, muss es in der aufrufenden Methode Code geben, der mit der Ausnahme umgeht. Was Sie mit Ausnahmen machen können, steht in Kapitel 12.

[image:]Möglicherweise fallen dem scharfsinnigen Für‐Dummies‐Leser genau jetzt eine oder zwei Fragen ein. »Wenn eine Methode main eine throws‐Klausel enthält, muss sich jemand anders um die Ausnahme in der throws‐Klausel kümmern. Wer aber ruft die Methode main auf? Wer kümmert sich um die IOException in der throws‐Klausel von Listing 10.3? Die Antwort lautet, dass die Java Virtual Machine (oder JVM, das Ding, das Ihren gesamten Java‐Code ausführt) die Methode main aufgerufen hat. Es ist also die JVM, die sich in Listing 10.3 um die IOException kümmert. Wenn das Programm Schwierigkeiten hat, die Datei Hankees.txt zu lesen, wird die letzte Verantwortung an die JVM übertragen. Die JVM nimmt sich dann der Sache an, indem sie eine Fehlermeldung ausgibt und die Ausführung des Programms beendet.

[image:]Möchten Sie ein bisschen mit dem Material aus diesem Abschnitt üben? Probieren Sie doch Folgendes aus:

[image: image] Der Code in Listing 10.2 liest aus der Datei Hankees.txt. Löschen Sie die Datei Hankees.txt von der Festplatte Ihres Computers oder verschieben Sie sie vorübergehend in einen anderen Ordner. Anschließend versuchen Sie, das Programm in den Listings 10.1 bis 10.3 auszuführen. Welche schrecklichen Dinge passieren, wenn Sie das machen?

[image: image] Ein Hersteller für Männerbekleidung bietet Hemden, Hosen, Jacken, Mäntel, Krawatten und Schuhe an. Erstellen Sie eine enum, um diese sechs Artikel darzustellen. Anschließend erstellen Sie die Klasse MensClothingItem. Jede Instanz der Klasse hat einen Typ (einen der sechs enum‐Werte) und einen Namen (z. B. Legeres Sommerdesign #7).

Schreiben Sie Code, um einen Frame darzustellen (wie beispielsweise den in Abbildung 10.1). Der Frame verfügt über sechs Zeilen, um eine komplette Herrengarderobe zu beschreiben.

[image: image] Erstellen Sie eine enum, um die Farben in einem Kartendeck darzustellen (KREUZ, KARO, HERZ und PIK). Erstellen Sie eine Klasse PlayingCard. Jede Spielkarte hat eine Nummer (von 1 bis 13) und eine Farbe. Bei der Nummerierung steht 11 für den Buben, 12 steht für eine Dame, 13 für einen König. Schreiben Sie Code, der mehrere Karten erstellt und sie auf dem Bildschirm anzeigt (in reinem Textformat oder als Frame, wie beispielsweise in Abbildung 10.1).

Etwas statisch machen (den Teamdurchschnitt herausfinden)

Bei Ihrer Beschäftigung mit dem Code in den Listings 10.1 bis 10.3 kommen Sie auf die Idee, dass es doch ganz interessant sein könnte, den Schlagdurchschnitt des gesamten Teams herauszufinden. Die Hankees in Abbildung 10.1 haben nur einen Durchschnitt von ungefähr ,106 – sie sollten deshalb viel intensiver trainieren. Während sich die Spieler draußen auf dem Spielfeld tummeln, müssen Sie ein technisches Problem lösen.

In den Listings 10.1 bis 10.3 gibt es drei Klassen: die Klasse Player und zwei weitere Klassen, die helfen, Daten der Klasse Player anzuzeigen. Wo also sind in dieser undurchsichtigen Anhäufung von Klassen die Variablen abgeblieben, die den Teamdurschnitt wie eine Strichliste speichern?

[image: image] Es macht keinen Sinn, zählende Variablen in einer der Klassen unterzubringen, die für die Anzeige zuständig sind (die Klassen TeamFrame und ShowTeamFrame). Schließlich hat dieser Durchschnittswert mit Spielern, Teams und Baseball zu tun. Die anzeigenden Klassen kümmern sich um Fenster und nicht darum, Baseball zu spielen.

[image: image] Sie fühlen sich nicht wohl bei dem Gedanken, den Teamdurchschnitt in einer Instanz der Klasse Player abzulegen, weil eine solche Instanz immer nur einen Spieler des Teams darstellt. Was haben einzelne Spieler damit zu tun, allgemeine Daten des Teams zu speichern? Klar, Sie können dafür sorgen, dass der Code funktioniert, aber das wäre keine elegante Lösung des Problems.

Und dann entdecken Sie das Schlüsselwort static (deutsch statisch). Alles, was als statisch deklariert wird, gehört einer ganzen Klasse und nicht einer bestimmten Instanz der Klasse. Wenn Sie das Feld totalOfAverages (deutsch Gesamtdurchschnitt) statisch deklarieren, erstellen Sie nur eine Kopie dieses Feldes. Diese Kopie steht der gesamten Klasse Player zur Verfügung. Unabhängig davon, wie viele Instanzen der Klasse Player existieren – eine, neun oder keine –, es gibt immer nur ein Feld totalOfAverages. Und da Sie schon einmal dabei sind, legen Sie gleich noch weitere statische Felder (playerCount und decFormat) und statische Methoden (findTeamAverage und findTeamAverageString) an. Wenn Sie wissen wollen, was ich damit meine, schauen Sie sich Abbildung 10.5 an.

[image:]Abbildung 1.5: Statische und nicht statische Felder und Methoden

Es kommt sicherlich Ihrer Vorliebe für Unterklassen entgegen, wenn Sie den Code für die teamweiten Daten in einer Unterklasse der Klasse Player bereitstellen. Listing 10.4 enthält den entsprechenden Code.

import java.text.DecimalFormat;

public class PlayerPlus extends Player {

 private static int playerCount = 0;

 private static double totalOfAverages = .000;

 private static DecimalFormat decFormat = new DecimalFormat();

 static {

 decFormat.setMaximumIntegerDigits(0);

 decFormat.setMaximumFractionDigits(3);

 decFormat.setMinimumFractionDigits(3);

 }

 public PlayerPlus(String name, double average) {

 super(name, average);

 playerCount++;

 totalOfAverages += average;

 }

 public static double findTeamAverage() {

 return totalOfAverages / playerCount;

 }

 public static String findTeamAverageString() {

 return decFormat.format(totalOfAverages / playerCount);

 }

}

Listing 1.4: Einen Schlagdurchschnitt des Teams erstellen

Warum gibt es da so viel Statisches?

Vielleicht ist es Ihnen aufgefallen, dass im Code von Listing 10.4 das Wort static sehr häufig vorkommt. Das liegt daran, dass so gut wie alles in diesem Code zur gesamten Klasse PlayerPlus und nicht zu einzelnen Instanzen dieser Klasse gehört. Das muss auch so sein, denn Methoden wie playerCount (die Anzahl der Spieler, die das Team bilden) gehören nicht zu einzelnen Spielern, und es wäre mehr als unsinnig, wenn jedes PlayerPlus‐Objekt seine eigene Anzahl verwalten müsste. (»Ich weiß, wie viele Spieler ich bin. Ich bin immer nur ein Spieler.«) Wenn Sie neun einzelne playerCount‐Felder hätten, würden Sie dann in jedem Feld die Zahl 1 speichern (was sinnlos ist) oder gäbe es neun verschiedene Kopien der Anzahl (was verschwenderisch und fehleranfällig wäre)? Aber dadurch, dass Sie playerCount statisch machen, sorgen Sie dafür, dass es playerCount nur an einer einzigen Stelle gibt.

Dieselben Gründe gelten für totalOfAverages. Letztendlich speichert das Feld totalOfAverages die Summe der Batting Averages der Spieler. Sie beträgt bei den Hankees ,956. Erst wenn eine der Methoden findTeamAverage oder findTeamAverageString aufgerufen wird, berechnet der Computer den Batting Average des gesamten Hankees‐Teams.

Auch die Methoden findTeamAverage und findTeamAverageString müssen statisch sein. Ohne das Wort static gäbe es neun findTeamAverage‐Methoden – eine für jede Instanz der Klasse PlayerPlus. Auch das wäre ziemlich unsinnig. Jede Instanz enthielte den Code, um totalOfAverages/playerCount zu berechnen, und alle neun Berechnungen würden dasselbe Ergebnis liefern.

[image:]Im Allgemeinen sollte jede Aufgabe, die allen Instanzen gemeinsam ist (und die für jede Instanz dasselbe Ergebnis liefert), als statische Methode kodiert werden.

[image:]Konstruktoren sind niemals statisch.

Das statische Initialisierungsprogramm

In Listing 10.4 ist das Feld decFormat statisch. Das macht Sinn, weil decFormat dafür sorgt, dass totalOfAverages/playerCount schön anzuschauen ist, und die beiden Felder, die den Ausdruck bilden, sind ebenfalls statisch. Letztendlich benötigt der Code nur ein Element, um Zahlen zu formatieren. Wenn mehrere Zahlen darauf warten, optisch ansprechend dargestellt zu werden, ist ein decFormat‐Element, das zur ganzen Klasse gehört, in der Lage, alle Zahlen zu formatieren. Das Erstellen von decFormat für jeden einzelnen Spieler ist nicht nur wenig elegant, sondern auch vergeudete Zeit.

Aber dadurch, dass Sie decFormat statisch deklarieren, stehen Sie plötzlich vor einem kleinen Problem. Sie müssen, um die Formatierung zu aktivieren, Methoden wie decFormat.setMaximumIntegerDigits(0) aufrufen. Sie dürfen diese Methode nicht irgendwo in der Klasse PlayerPlus unterbringen. So ist zum Beispiel der folgende Code schlecht, ungültig, illegal und auf keinen Fall für Java zu gebrauchen:

// DIES IST MISERABLER CODE:

public class PlayerPlus extends Player {

 private static DecimalFormat decFormat = new DecimalFormat();

 decFormat.setMaximumIntegerDigits(0); // Schlecht!

 decFormat.setMaximumFractionDigits(3); // Schlecht!

 decFormat.setfsMinimumFractionDigits(3); // Schlecht!

Schauen Sie sich die Beispiele der vorherigen Kapitel an. Dort lasse ich Methodenaufrufe niemals so in der Luft hängen, wie es bei obigem miserablen Codebeispiel der Fall ist. Ich rufe in Listing 10.1 die Methode setMaximumIntegerDigits aus dem Körper der Methode getAverageString heraus auf. Und das geschieht nicht zufällig. Die Java‐Regeln legen strenge Maßstäbe daran an, wo Methodenaufrufe im Code platziert werden müssen, und es ist überhaupt nicht zulässig, einen Methodenaufruf direkt in der Definition einer Klasse unterzubringen.

Wo können Sie also in Listing 10.4 die Aufrufe von setMax und setMin hinpacken? Sie können sie so in den Körper der Methode findTeamAverageString schreiben, wie ich diese Aufrufe in Listing 10.1 im Körper der Methode getAverageString untergebracht habe. Nun könnte es aber so sein, dass ich dadurch, dass sich die Methodenaufrufe im Körper der Methode findTeamAverageString befinden, decFormat daran hindere, statisch zu sein. Schließlich könnte ein Programmierer findTeamAverageString mehrmals aufrufen, was dann auch für decFormat.setMaximumIntegerDigits(0) gilt. Das wäre eine sinnlose Aktion. Die gesamte Klasse PlayerPlus enthält nur ein decFormat‐Feld, dessen MaximumIntegerDigits‐Wert immer 0 ist. Also vermeiden Sie es, MaximumIntegerDigits(0) ständig neu festzulegen.

Die beste Lösung sieht so aus, dass Sie in diesem Abschnitt die Zeilen des miesen Codes nehmen und in einem statischen Initialisierer unterbringen. Dann werden schlechte Codezeilen in gutem Code zu guten Zeilen (siehe Listing 10.4). Bei einem statischen Initialisierer handelt es sich um einen Block, dem das Wort static vorangestellt ist. Java führt die Befehle eines statischen Initialisierers einmal für die gesamte Klasse aus. Und das ist genau das, was Sie sich für etwas wünschen, das »statisch« genannt wird.

Den Teamdurchschnitt anzeigen

Vielleicht fällt Ihnen ein Muster auf, denn wenn Sie Code für eine Klasse erstellen, besteht dieser im Allgemeinen aus zwei Teilen. Der erste definiert die Klasse und der zweite verwendet die Klasse. (Zum Verwenden einer Klasse gehört, dass Sie deren Konstruktor aufrufen, auf die nicht privaten Felder der Klasse verweisen, die Methoden der Klasse aufrufen und so weiter.) Listing 10.4, das weiter vorn in diesem Kapitel steht, enthält Code, der die Klasse PlayerPlus definiert, während Listing 10.5 Code enthält, der diese PlayerPlus‐Klasse verwendet.

import java.util.Scanner;

import java.io.File;

import java.io.IOException;

import javax.swing.JFrame;

import javax.swing.JLabel;

import java.awt.GridLayout;

@SuppressWarnings("serial")

public class TeamFrame extends JFrame {

 public TeamFrame() throws IOException {

 PlayerPlus player;

 Scanner hankeesData = new Scanner(new File("Hankees.txt"));

 for (int num = 1; num <= 9; num++) {

 player = new PlayerPlus(hankeesData.nextLine(), hankeesData.nextDouble());

 hankeesData.nextLine();

 addPlayerInfo(player);

 }

 add(new JLabel());

 add(new JLabel(" ‐‐‐‐‐‐"));

 add(new JLabel("Der Schlagdurchschnitt des Teams:"));

 add(new JLabel(PlayerPlus.findTeamAverageString()));

 setTitle("Die Hankees");

 setLayout(new GridLayout(11, 2, 20, 3));

 setDefaultCloseOperation(EXIT_ON_CLOSE);

 pack();

 setVisible(true);

 hankeesData.close();

 }

 void addPlayerInfo(PlayerPlus player) {

 add(new JLabel(" " + player.getName()));

 add(new JLabel(player.getAverageString()));

 }

}

Listing 1.5: Den Code aus Listing 10.4 verwenden

Wenn Sie den Code in Listing 10.5 ausführen wollen, benötigen Sie eine Klasse mit einer Methode main. Diese Aufgabe übernimmt die Klasse ShowTeamFrame aus Listing 10.3

Abbildung 10.6 zeigt, was der Code in Listing 10.5 ausgibt, wenn Sie ihn ausführen. Damit Sie das Programm erfolgreich ablaufen lassen können, muss die Datei Hankees.txt aus Abbildung 10.2 vorhanden sein. Der Code in Listing 10.5 ist eine fast vollständige Kopie des Codes in Listing 10.2. Das einzig Neue sind in Listing 10.5 die fett gedruckten Bestandteile des Codes.

[image:]Abbildung 1.6: Der Code aus Listing 10.5 wird ausgeführt.

In Listing 10.5 ist das GridLayout um zwei zusätzliche Zeilen erweitert worden: eine Zeile, die als Trennzeile dient, und eine zweite Zeile für den Teamdurchschnitt der Hankees. In beiden Zeilen gibt es jeweils zwei neue Label‐Objekte.

[image: image] Die leere Zeile enthält ein leeres Label und ein Label mit einer gestrichelten Linie. Das leere Label dient als Platzhalter. Wenn Sie einem GridLayout Komponenten hinzufügen, geschieht dies zeilenweise. Dabei wird am linken Ende einer Zeile angefangen und die Zeile nach rechts abgearbeitet. Ohne das leere Label würde die gestrichelte Linie am linken Ende der Zeile unter den Namen der Spieler erscheinen.

[image: image] Die andere Zeile enthält ein Label, das die Wörter Schlagdurchschnitt des Teams anzeigt, und ein zweites Label für die Zahl ,106. Der Methodenaufruf, der die Zahl ,106 erhält, ist interessant. Der Aufruf sieht so aus:

PlayerPlus.findTeamAverageString()

Dieser Methodenaufruf hat die Form

KlassenName.methodenName

Das ist neu! Ich weise in früheren Kapiteln darauf hin, dass Sie einen Methodenaufruf normalerweise mit dem Namen eines Objekts und nicht mit dem einer Klasse beginnen. Warum nun benutze ich hier einen Klassennamen? Wenn Sie eine statische Methode aufrufen, setzen Sie vor den Namen der Methode den Namen der Klasse, die die Methode enthält. Dasselbe gilt, wenn Sie ein statisches Feld einer anderen Klasse referenzieren. Der Grund: Die ganze Klasse, die ein statisches Feld oder eine statische Methode deklariert, ist Eigentümer dieses Feldes beziehungsweise der Methode. Um also auf eine statische Methode oder ein statisches Feld zu verweisen, beginnen Sie den Namen des Feldes oder der Methode mit dem Namen der Klasse.

[image:]Wenn Sie auf ein statisches Feld oder eine statische Methode verweisen, können Sie auch schummeln und anstelle des Klassennamens den Namen eines Objekts verwenden. Wenn Sie zum Beispiel in Listing 10.5 einige Befehle geschickt neu anordnen, können Sie den Ausdruck player.findTeamAverageString() verwenden.

»static« ist von gestern

Dieser Abschnitt macht ziemlich viel Wind um statische Felder und Methoden, aber statische Elemente tauchen schon ganz früh in diesem Buch auf. So stellt zum Beispiel Kapitel 3 System.out.println vor. Der Name System verweist auf eine Klasse und bei out handelt es sich um ein statisches Feld dieser Klasse. Aus diesem Grund verwende ich in Kapitel 4 und danach das Schlüsselwort static, um das Feld out zu importieren:

import static java.lang.System.out;

In Java kann von überall her auf statische Felder und Methoden zugegriffen werden. Wenn so etwas im Code eines anderen Programmierers deklariert wird und Sie das so Deklarierte in Ihrem Code verwenden wollen, müssen Sie sich darüber keine Gedanken machen. Aber wenn Sie Ihre Felder und Methoden deklarieren und vor der Frage stehen, ob etwas statisch sein soll, müssen Sie schon ein wenig intensiver über die richtige Entscheidung nachdenken.

[image:]Ich habe das Wort static in diesem Buch zum ersten Mal ernsthaft in Listing 3.1 verwendet. Dieses Schlüsselwort taucht in jeder main‐Methode auf (von denen es in den Listings dieses Buches ebenfalls viele gibt). Warum nun muss main statisch sein? Erinnern Sie sich daran, dass nicht statische Komponenten zu Objekten und nicht zu Klassen gehören? Wenn die Methode main nicht statisch ist, gibt es sie erst, wenn ein Objekt existiert. Wenn Sie aber ein Java‐Projekt anfangen, haben Sie noch keine Objekte erstellt. Die Befehle, die in der Methode main ausgeführt werden, erstellen die Objekte. Damit stehen Sie ohne eine statische Methode main vor dem Huhn‐Ei‐Problem.

Achtung Statisches – mit Vorsicht genießen!

Als ich anfing, Java‐Programme zu schreiben, hatte ich einen immer wiederkehrenden Traum von einer Fehlermeldung. Die Meldung lautete non static variable or method cannot be referenced from a static context (nicht statische Variable oder Methode darf aus einem statischen Kontext heraus nicht referenziert werden). Und jedes Mal, wenn ich diese Fehlermeldung zu lesen bekomme, war ich aufs Neue so perplex, dass sich diese Meldung in mein Unterbewusstsein eingebrannt hat.

Heute weiß ich, warum ich diese Fehlermeldung so oft erhalten habe. Ich kann sie bei Bedarf sogar künstlich auslösen. Aber mir läuft immer noch ein Schauer den Rücken runter, wenn ich sie auf meinem Bildschirm sehe.

Bevor Sie verstehen können, warum es zu dieser Meldung kommt und wie sich das Problem lösen lässt, müssen Sie ein paar Fachbegriffe kennenlernen. Wenn ein Feld oder eine Methode nicht statisch ist, wird es beziehungsweise sie auch als nicht statisch oder non static bezeichnet. (Eine echte Überraschung, oder?) Dies sollte nun dabei helfen, mindestens zwei Wege zu beschreiben, um die gefürchtete Fehlermeldung hervorzurufen:

[image: image] Bringen Sie irgendwo im Code Klasse.nonstaticDing unter.

[image: image] Bringen Sie irgendwo in einer statischen Methode nonstaticDing unter.

In beiden Fällen bringen Sie sich in Schwierigkeiten. Sie nehmen etwas, das zu einem Objekt (dem nicht statischen Ding) gehört, und bringen es an einer Stelle unter, an dem keine Objekte in Sichtweite sind.

Nehmen wir zum Beispiel die erste der beiden Situationen, die ich gerade beschrieben habe. Um zu sehen, wie es zu diesem Unglück kommt, schauen Sie sich noch einmal Listing 10.5 an. Ändern Sie am Ende des Listings player.getName() in Player.getName(). Das ist alles. Was könnte Player.getName() bedeuten? Wenn überhaupt, bedeutet es: »Rufe die Methode getName auf, die zur gesamten Klasse Player gehört.« Werfen Sie noch einmal einen Blick auf Listing 10.1. Die Methode getName ist nicht statisch. Jede Instanz der Klasse Player (oder PlayerPlus) enthält eine Methode getName. Keine dieser Methoden gehört der gesamten Klasse, weshalb der Aufruf Player.getName unsinnig ist.

Um in die zweite Situation hineinzuschnuppern, sehen Sie sich noch einmal Listing 10.4 an. Entfernen Sie (zu Beginn des Listings) in der Deklaration des Feldes decFormat das Wort static. Dies macht aus decFormat ein nicht statisches Feld. Und plötzlich erhält jeder Spieler des Teams ein eigenes decFormat‐Feld.

Nun, alles geht so lange gut, bis der Computer die Methode findTeamAverageString erreicht. Diese statische Methode enthält vier decFormat.DiesUndDas‐Befehle. Und erneut sind Sie gezwungen zu fragen, was ein Befehl dieser Art bedeutet. Die Methode findTeamAverageString gehört zu keiner besonderen Instanz. (Die Methode ist statisch, weshalb die gesamte Klasse PlayerPlus nur eine einzige Methode findTeamAverageString kennt.) Aber so, wie Sie den Code gerade verunstaltet haben, gibt es für das gute alte decFormat ohne eine Referenz auf ein bestimmtes Objekt keine Bedeutung mehr. Sie verweisen also wieder aus dem Kontext einer statischen Methode heraus auf das nicht statische Feld decFormat. Schande, Schande!

[image:]Ich weiß nicht, wie es Ihnen geht, aber ich könnte ein wenig Übung zu statischen Variablen und Methoden gebrauchen:

[image: image] In einem der vorigen Abschnitte haben Sie eine Klasse angelegt, um die Artikel einer Herrenbekleidungsserie darzustellen. Legen Sie eine Unterklasse an, die den Namen des Designers enthält (Dummies House of Fashion), die Farbe des Artikels und den Preis des Artikels.

Der Designername ist statisch, weil alle Artikel der Serie denselben Designer haben. Die Farbe kann ein statisches Feld aus der Java‐Klasse Color sein (siehe https://docs.oracle.com/javase/8/docs/api/java/awt/Color.html).

Schreiben Sie Code, um einen Frame anzuzeigen (wie beispielsweise den in Abbildung 10.1). Der Frame hat acht Zeilen. Die erste Zeile zeigt den Namen des Designers. Die nächsten sechs Zeilen beschreiben eine komplette Herrengarderobe. Die letzte Zeile enthält den Gesamtpreis für die Garderobe.

[image: image] In einem früheren Abschnitt haben Sie eine Klasse erstellt, um eine Spielkarte darzustellen. Fügen Sie Ihrer Klasse PlayingCard ein statisches Feld hinzu. Das Feld zeichnet auf, wie oft der Konstruktor der Klasse aufgerufen wurde, und enthält damit einen Zähler für die Spielkarten.

[image: image] Welche Ausgabe erzeugt der folgende Code? Treffen Sie eine Vorhersage, und führen Sie den Code dann aus, um festzustellen, ob Sie recht hatten:

import static java.lang.System.out;

public class Main {

 public static void main(String[] args) {

 out.println(”bigValue: ” + MutableInteger.bigValue);

 // out.println(”bigValue: ” + IntegerHolder.value); ILLEGAL

 MutableInteger holder1 = new MutableInteger(42);

 MutableInteger holder2 = new MutableInteger(7);

 out.println(”Inhaber 1: ” + holder1.value);

 out.println(”Inhaber 2: ” + holder2.value);

 out.println();

 holder1.value++;

 holder2.value++;

 MutableInteger.bigValue++;

 out.println(”hoher Wert: ” + MutableInteger.bigValue);

 out.println(”Inhaber 1: ” + holder1.value);

 out.println(”Inhaber 2: ” + holder2.value);

 out.println();

 holder1.bigValue++;

 out.println(”hoher Wert gemäß Inhaber 1: ” + holder1.bigValue);

 out.println(”hoher Wert gemäß Inhaber 2: ” + holder2.bigValue);

 }

}

class MutableInteger {

 int value;

 static int bigValue = 1_000_000;

 public MuInteger(int value) {

 this.value = value;

 }

}

Mit Variablen experimentieren

Während meiner Zeit als Student saß ich an einem schönen Sommertag in der Sonne, trödelte herum und sprach mit einer Kommilitonin. Ich glaube, ihr Name war Janine. »Wo kommst du her?«, fragte ich sie. »Mars«, antwortete sie. Sie machte eine Pause und wartete, ob ich nachhaken würde.

Wie es sich herausstellte, kam Janine aus Mars in Pennsylvania, einer kleinen Stadt, die ungefähr 20 Meilen nördlich von Pittsburgh liegt. Was will ich damit sagen? Es geht darum, dass die Bedeutung eines Namens vom Kontext abhängt. Wenn Sie sich nördlich von Pittsburgh befinden und nach dem Weg fragen und als Ziel Mars angeben, erhalten Sie vielleicht eine brauchbare Antwort. Wenn Sie aber dieselbe Frage in Manhattan stellen, werden Sie wahrscheinlich schief angesehen. (Okay, da ich Manhattan kenne, weiß ich, dass die Leute dort Sie höchstwahrscheinlich ignorieren werden.)

Natürlich wissen die Leute, die in Mars, Pennsylvania, leben genau, dass der Name ihrer Stadt zu Missverständnissen führen kann, aber sie haben sich daran gewöhnt. Aber gerade an diesem Beispiel zeigt sich, wie sehr die Bedeutung eines Namens davon abhängt, wo Sie ihn verwenden. Sicherlich denken die meisten Menschen an den Roten Planeten, wenn sie den Namen Mars hören, aber in Pennsylvania leben ein paar Leute, denen bei diesem Namen nur die Einkaufsmöglichkeiten einfallen, die ihnen der Ort Mars bietet. Für die Menschen in Pennsylvania hat der Name Mars zwei Bedeutungen. In Java würde dies wohl so aussehen: Mars und Planet.Mars.

Eine Variable richtig platzieren

Die Listings 10.6 und 10.7 enthalten Ihr erstes Experiment. Im Code werden die Unterschiede zwischen Variablen, die innerhalb von Methoden deklariert werden, und Variablen, die außerhalb von Methoden deklariert werden, optisch hervorgehoben.

import static java.lang.System.out;

class EnglishSpeakingWorld {

 String mars = " Roter Planet";

 void visitPennsylvania() {

 out.println("visitPA wird ausgeführt:");

 String mars = " Janines Heimatstadt";

 out.println(mars);

 out.println(this.mars);

 }

}

Listing 1.6: Zwei Bedeutungen von »Mars«

import static java.lang.System.out;

public class GetGoing {

 public static void main(String args[]) {

 out.println("main wird ausgeführt:");

 EnglishSpeakingWorld e = new EnglishSpeakingWorld();

 //out.println(mars); Symbol kann nicht aufgelöst werden

 out.println(e.mars);

 e.visitPennsylvania();

 }

}

Listing 1.7: Den Code in Listing 10.6 aufrufen

Abbildung 10.7 zeigt, was der Code der Listings 10.6 und 10.7 ausgibt, wenn er ausgeführt wird. Abbildung 10.8 gibt die Struktur des Codes grafisch wieder. Die Methode main erstellt in der Klasse GetGoing eine Instanz der Klasse EnglishSpeakingWorld. Die Variable e verweist auf die neue Instanz. Bei der neuen Instanz handelt es sich um ein Objekt mit einer Variablen, die im Objekt mars genannt wird. Diese Variable mars hat den Wert "Roter Planet". Die mars‐Variable "Roter Planet" ist ein Feld.

[image:]Abbildung 1.7: Der Code in den Listings 10.6 und 10.7 wird ausgeführt.

[image:]Abbildung 1.8: Die Struktur der Listings 10.6 und 10.7

[image:]Wenn Sie das Feld mars anders beschreiben wollen, bezeichnen Sie es als Instanzvariable, weil diese Variable mars (deren Wert "Roter Planet" ist) zu einer Instanz der Klasse EnglishSpeakingWorld gehört. Im Gegensatz hierzu fallen statische Felder (wie die Felder playerCount, totalOfAverages und decFormat in Listing 10.4) in die Kategorie Klassenvariablen. So ist zum Beispiel playerCount in Listing 10.4 eine Klassenvariable, weil eine Kopie dieser Variablen der gesamten Klasse PlayerPlus gehört.

Werfen Sie nun in Listing 10.7 einen Blick auf die Methode main. Sie dürfen in dieser Methode der Klasse GetGoing nicht out.println(mars) schreiben, denn es ist auf keinen Fall zulässig, ohne zusätzliche Informationen auf die Variable mars zu verweisen. Die Variable mars, um die es mir im letzten Absatz geht, gehört zum Objekt EnglishSpeakingWorld und nicht zur Klasse GetGoing.

Natürlich können Sie in der Methode main der Klasse GetGoing e.mars schreiben, weil die Variable e auf Ihr Objekt EnglishSpeakingWorld verweist.

Im unteren Bereich des Codes wird die Methode visitPennsylvania aufgerufen. Wenn Sie sich in visitPennsylvania befinden, stehen Sie vor einer anderen Deklaration der Variablen mars, deren Wert "Janines Heimatstadt" lautet. Diese mars‐Variable wird als methodenlokale Variable bezeichnet, weil sie nur zu einer einzigen Methode gehört – der Methode visitPennsylvania.

Sie haben nun zwei Variablen, die beide den Namen mars tragen. Eine davon, die ein Feld ist, hat den Wert "Roter Planet". Die andere mars‐Variable, eine methodenlokale Variable, hat den Wert "Janines Heimatstadt". Wenn Sie im Code das Wort mars verwenden, provozieren Sie die Frage, welche der beiden Variablen Sie meinen.

Wenn Sie Pennsylvania besuchen, gewinnt "Janines Heimatstadt". Und wenn Sie sich dort befinden, müssen Sie wie ein Einheimischer denken. Wenn Sie Code ausführen, der in der Methode visitPennsylvania steht, lösen Sie Namenskonflikte dadurch, dass Sie über die methodenlokalen Variablen gehen – Variablen, die direkt in der Methode visitPennsylvania deklariert werden.

Wie sieht es also aus, wenn Sie sich in Pennsylvania befinden und auf den Himmelskörper mit den zwei Monden verweisen müssen? Oder um genau zu sein: Wie kann Code, der sich in der Methode visitPennsylvania befindet, auf das Feld mit dem Wert "Roter Planet" verweisen? Ganz einfach, verwenden Sie this.mars. Das Wort this verweist auf das Objekt, das den gesamten Code enthält (und nicht auf eine Methode in diesem Code). Dieses Objekt, das eine Instanz der Klasse EnglishSpeakingWorld ist, enthält ein dickes, fettes Feld mars, und der Wert dieses Feldes ist "Roter Planet". Das ist der Weg, wie Sie Code dazu zwingen können, sich auch außerhalb der Methode umzublicken, in der er steht – indem Sie das Java‐Schlüsselwort this verwenden.

[image:]In Kapitel 9 stehen weitere Informationen zu this.

Einer Variablen aufzeigen, wohin sie gehört

Als ich vor einigen Jahren in Milwaukee, Wisconsin, lebte, habe ich regen Gebrauch von den Geldautomaten der lokalen Bank gemacht. Zu diesem Zeitpunkt begann man gerade damit, Automaten dieser Art zu standardisieren. Das lokale System dieser Automaten hieß ZAIT, was die Abkürzung von Zentraler Abruf Ihres Tagesgeldbedarfs war.

Ich erinnere mich an eine Reise mit dem Auto durch Kalifornien. Irgendwann wurde ich hungrig und stoppte, um mir etwas zum Essen zu kaufen. Da ich kein Bargeld mehr besaß, fragte ich den Mitarbeiter einer Tankstelle: »Können Sie mir sagen, wo hier in der Gegend die nächste ZAIT‐Maschine steht?«

Sie sehen, dass ein Name, der an einem Ort problemlos verstanden wird, anderswo zu ziemlichen Missverständnissen führen kann. Mit den Listings 10.8 und 10.9 möchte ich diesen Punkt (mit mehr als nur einer Anekdote über Geldautomaten) verdeutlichen.

import static java.lang.System.out;

class EnglishSpeakingWorld2 {

 String mars;

 void visitIdaho() {

 out.println("»visitID« wird ausgeführt:");

 mars = " Roter Planet";

 String atomicCity = " Einwohner: 25";

 out.println(mars);

 out.println(atomicCity);

 }

 void visitNewJersey() {

 out.println("visitNJ wird ausgeführt:");

 out.println(mars);

 //out.println(atomicCity); Symbol kann nicht aufgelöst werden

 }

}

Listing 1.8: Eine Geschichte aus Atomic City

public class GetGoing2 {

 public static void main(String args[]) {

 EnglishSpeakingWorld2 e = new EnglishSpeakingWorld2();

 e.visitIdaho();

 e.visitNewJersey();

 }

}

Listing 1.9: Den Code in Listing 10.8 aufrufen

Abbildung 10.9 zeigt, was ausgegeben wird, wenn Sie den Code in den Listings 10.8 und 10.9 ausführen. Abbildung 10.10 stellt die Struktur dieses Codes dar. Der Code von EnglishSpeakingWorld2 enthält zwei Variablen. Die eine, die Variable mars, wird nicht innerhalb einer Methode deklariert. Sie ist ein Feld. Bei der anderen Variablen, atomicCity, handelt es sich um eine methodenlokale Variable, die in der Methode visitIdaho deklariert wird.

[image:]Abbildung 1.9: Der Code der Listings 10.8 und 10.9 wird ausgeführt.

[image:]Abbildung 1.10: Die Struktur des Codes der Listings 10.8 und 10.9

Achten Sie darauf, wo in Listing 10.8 Variablen verwendet werden können oder auch nicht. Wenn Sie versuchen, die Variable atomicCity in der Methode visitNewJersey zu verwenden, erhalten Sie eine Fehlermeldung. Diese Meldung besagt wörtlich cannot resolve symbol (was bedeutet, dass ein Symbol nicht aufgelöst werden kann). Im übertragenen Sinne lautet die Botschaft: »Hallo, mein Freund, Atomic City liegt in Idaho und nicht in New Jersey.« Technisch gesehen besagt die Meldung, dass die methodenlokale Variable atomicCity nur der Methode visitIdaho zur Verfügung steht, weil die Variable dort deklariert worden ist. Aber in dieser Methode können Sie die Variable atomicCity uneingeschränkt verwenden.

Und was ist mit dem Mars? Haben Sie Ihren alten Freund, diesen eiskalten Planeten, vergessen? Nun, die beiden Methoden visitIdaho und visitNewJersey sind in der Lage, auf die Variable mars zuzugreifen. Dies geht, weil es sich bei dieser Variablen um ein Feld handelt. Sie wird zwar im Code der Klasse EnglishSpeakingWorld2 deklariert, aber nicht innerhalb einer bestimmten Methode. (Wir können wohl davon ausgehen, dass die Bewohner Idahos und New Jerseys schon vom Planeten Mars gehört haben.)

Der Lebenszyklus des Feldes mars besteht aus drei separaten Phasen:

[image: image] Wenn die Klasse EnglishSpeakingWorld2 zum ersten Mal zum Leben erweckt wird, sieht der Computer String mars und reserviert Platz für das Feld mars.

[image: image] Wenn die Methode visitIdaho ausgeführt wird, weist sie dem Feld mars den Wert "Roter Planet" zu. (Die Methode visitIdaho sorgt auch dafür, dass der Wert ausgegeben wird, den das Feld mars hat.)

[image: image] Wenn die Methode visitNewJersey ausgeführt wird, gibt sie noch einmal den Wert aus, den das Feld mars hat.

Auf diese Weise wird der Wert des Feldes mars von einer Methode zur nächsten weitergegeben.

[image:]Probieren Sie die folgenden Programme aus. Sprechen Sie Ihre Vermutungen aus!

[image: image] Welche Ausgabe erzeugt der folgende Code? Warum?

public class Main1 {

 static String name = "George";

 public static void main(String[] args) {

 System.out.println(name);

 String name = "Barry";

 System.out.println(name);

 }

}

[image: image] Welche Ausgabe erzeugt der folgende Code? Warum?

public class Main2 {

 String name = "George";

 public static void main(String[] args) {

 new Main2();

 }

 Main2() {

 System.out.println(name);

 String name = "Barry";

 System.out.println(name);

 System.out.println(this.name);

 }

}

[image: image] Welche Ausgabe erzeugt der folgende Code? Warum?

public class Main3 {

 static String name = "George";

 public static void main(String[] args) {

 String name = "Barry";

 new OtherClass();

 }

}

class OtherClass {

 OtherClass() {

 String name = "Leonard";

 System.out.println(name);

 System.out.println(Main3.name);

 }

}

[image: image] Welche Ausgabe erzeugt der folgende Code? Warum?

public class Main4 {

 String name = "George";

 public static void main(String[] args) {

 new Main4();

 }

 Main4() {

 String name = "Barry";

 new YetAnotherClass(this);

 }

}

class YetAnotherClass {

 YetAnotherClass(Main4 whoCreatedMe) {

 String name = "Leonard";

 System.out.println(name);

 // System.out.println(Main4.name); ILLEGAL

 System.out.println(whoCreatedMe.name);

 }

}

Parameter übergeben

Es gibt für eine Methode verschiedene Möglichkeiten, um mit einem anderen Teil Ihres Programms zu kommunizieren. Einer davon führt über die Parameterliste der Methode. Indem Sie eine Parameterliste verwenden, können Sie bei einem Aufruf der Methode auf die Schnelle Informationen an eine andere Methode weitergeben.

Stellen Sie sich vor, dass die Informationen, die Sie an die andere Methode übergeben wollen, in einer der Variablen des Programms gespeichert werden. Was wird dann die Methode wohl mit dieser Variablen machen? Die folgenden Abschnitte bieten ein paar interessante Fallstudien an.

Übergabe als Wert

Meine Suche im Web hat ergeben, dass der Ort Smackover in Arkansas 2.232 Einwohner hat. Doch meine Zahlen sind nicht aktuell. Erst gestern konnte Dora Kermongoos im Smackover General Hospital ein freudiges Ereignis feiern – die Geburt ihrer gesunden, blauäugigen Tochter. Damit wuchs die Einwohnerzahl auf 2.233.

Listing 10.10 enthält ein sehr schlechtes Programm. Es sollte eine Variable, in der die Einwohnerzahl Smackovers gespeichert ist, um 1 erhöhen, aber das Programm funktioniert nicht. Schauen Sie sich Listing 10.10 einmal an.

public class TrackPopulation {

 public static void main(String args[]) {

 int smackoverARpop = 2232;

 birth(smackoverARpop);

 System.out.println(smackoverARpop);

 }

 static void birth(int cityPop) {

 cityPop++;

 }

}

Listing 1.10: Dieses Programm funktioniert nicht.

Wenn Sie das Programm in Listing 10.10 ausführen, zeigt es auf dem Bildschirm die Zahl 2232 an. Nach neun Monaten Planung und Erwartung und sieben langen Stunden im Kreißsaal wurde das Baby der Kermongoos nicht im System registriert. Wie peinlich!

Das Problem ist dadurch hervorgerufen worden, dass Parameter unsauber übergeben worden sind. Wenn Sie in Java einen Parameter übergeben, der einen der acht primitiven Typen enthält, wird dieser Parameter als Wert übergeben.

[image:]Kapitel 4 enthält eine Übersicht über die acht primitiven Java‐Typen.

In Klarschrift bedeutet dies, dass jede Änderung, die die Methode am Wert ihres Parameters vornimmt, keinen Einfluss auf die Werte in Variablen hat, die aus dem aufrufenden Code stammen. In Listing 10.10 kann die Methode birth den Operator ++ so oft auf cityPop anwenden, wie sie will – diese Aktion wirkt sich in keinster Weise auf den Wert von smackoverARpop in der Methode main aus.

Technisch gesehen haben wir es hier mit dem Kopieren eines Wertes zu tun (siehe Abbildung 10.11). Wenn die Methode main die Methode birth aufruft, wird der Wert von smackoverARpop an einen anderen Ort im Arbeitsspeicher kopiert – dem Ort, der für den Wert des Parameters von cityPop reserviert ist. Während der Ausführung der Methode birth wird der Parameter von cityPop um 1 erhöht. Dies geschieht aber nicht dort, wo der ursprüngliche Wert 2232 gespeichert wurde – der Position im Arbeitsspeicher, an der die Variable smackoverARpop liegt.

[image:]Abbildung 1.11: Übergabe als Wert

[image:]Wenn Sie Parameter übergeben, die von einem der acht primitiven Typen sind, werden diese Parameter als Werte übergeben. Diese Werte, die in der Variablen des aufrufenden Codes gespeichert sind, werden dabei nicht geändert. Dies geschieht so selbst dann, wenn die Variable des aufrufenden Codes und der Parameter der aufgerufenen Methode zufällig denselben Namen haben.

Ein Ergebnis zurückgeben

Sie müssen das Problem in Listing 10.10 beheben. Schließlich kann das Baby der Kermongoos nicht unregistriert durchs Leben gehen. Um die Existenz des Babys zu erfassen, müssen Sie den Wert der Variablen smackoverARpop um 1 erhöhen. Um dieses Ziel zu erreichen, stehen Ihnen viele Wege offen, von denen der Weg, den Listing 10.11 aufzeigt, nicht der einfachste ist. Aber er hebt einen wichtigen Punkt hervor: Die Rückgabe eines Wertes durch einen Methodenaufruf kann eine mehr als brauchbare Alternative zur Parameterübergabe sein. Schauen Sie sich Listing 10.11 an, um zu sehen, was ich meine.

public class TrackPopulation2 {

 public static void main(String args[]) {

 int smackoverARpop = 2232;

 smackoverARpop = birth(smackoverARpop);

 System.out.println(smackoverARpop);

 }

 static int birth(int cityPop) {

 return cityPop + 1;

 }

}

Listing 1.11: Dieses Programm funktioniert.

Wenn Sie den Code in Listing 10.11 ausgeführt haben, ist die Zahl, die Sie dann auf dem Bildschirm Ihres Computers sehen, richtig – 2233.

Im Code von Listing 10.11 gibt es keine neuen Funktionen (außer Sie nennen das fehlerfreie Laufen eines Codes eine neue Funktion). Der wichtigste Gedanke, der hinter Listing 10.11 steckt, ist der Befehl return, der als solcher bereits in Kapitel 7 zur Sprache kommt. Auf jeden Fall bietet Listing 10.11 eine gute Alternative zur Vorgehensweise in Listing 10.10, auf die Sie besser verzichten sollten.

Übergabe per Referenz

In den letzen ein, zwei Abschnitten habe ich mir große Mühe damit gegeben, auf einen bestimmten Punkt hinzuweisen: Wenn ein Parameter von einem der acht primitiven Typen ist, wird er als Wert übergeben. Vielleicht haben Sie bisher einfach überlesen, dass diese Art der Übergabe nur für primitive Typen gilt. Diese Betonung ist wichtig, weil die Übergabe von Objekten (Referenztypen) ganz anders verläuft.

Wenn Sie ein Objekt an eine Methode übergeben, erfolgt diese Übergabe an die andere Methode per Referenz (über einen Verweis). Für Sie bedeutet dies, dass Anweisungen in der aufgerufenen Methode Werte ändern können, die in den Variablen des Objekts gespeichert sind. Diese Änderungen wirken sich auf die Werte aus, die der Code sieht, der die Methode aufruft. Die Listings 10.12 und 10.13 verdeutlichen diese Situation.

class City {

 int population;

}

Listing 1.12: Was ist eine City?

public class TrackPopulation3 {

 public static void main(String args[]) {

 City smackoverAR = new City();

 smackoverAR.population = 2232;

 birth(smackoverAR);

 System.out.println(smackoverAR.population);

 }

 static void birth(City aCity) {

 aCity.population++;

 }

}

Listing 1.13: Einer Methode ein Objekt übergeben

Wenn Sie den Code der Listings 10.12 und 10.13 ausführen, wird als Ergebnis 2233 ausgegeben. Das ist auch richtig so, denn im Code gibt es Dinge wie ++ und birth. Durch das Hinzufügen von 1 zu aCity.population innerhalb der Methode birth wird nun auch der Wert von smackoverAR.population in der Methode main tatsächlich geändert.

Wie die Methode birth den Wert von smackoverAR.population ändert, stellt Abbildung 10.12 schematisch dar. Wenn Sie ein Objekt an eine Methode übergeben, legt der Computer keine vollständige Kopie des Objekts an. Stattdessen wird nur eine Kopie der Referenz auf das Objekt erzeugt. (Stellen Sie sich den Weg in Abbildung 10.12 so vor, als wenn der Computer einen Pfeil kopiert, der auf das Objekt zeigt.)

[image:]Abbildung 1.12: Übergabe per Referenz

Sie sehen in Abbildung 10.12 nur eine Instanz der Klasse City, die eine Variable population enthält. Behalten Sie dieses Objekt im Auge, während Sie die folgenden Schritte durchlesen:

1. Unmittelbar bevor die Methode birth aufgerufen wird, verweist die Variable smackoverAR auf dieses Objekt – die Instanz der Klasse City.

2. Wenn die Methode birth aufgerufen wird und die Variable smackoverAR an den Parameter der Methode aCity übergeben worden ist, kopiert der Computer die Referenz von smackoverAR nach aCity. Nun verweist aCity auf dasselbe Objekt – die Instanz der Klasse City.

3. Wenn der Befehl aCity.population++ in der Methode birth ausgeführt wird, erhöht der Computer das Feld population des Objekts um 1. Nun wird im Feld population, der einzigen Instanz von City, die Einwohnerzahl 2233 gespeichert.

4. Bei der Programmausführung wieder jetzt wieder die Methode main angesprochen. Der Wert von smackoverAR.population wird ausgegeben. Da smackoverAR noch auf die Instanz der Klasse City verweist, hat smackoverAR.population den Wert 2233. Die Familie Kermongoos ist so stolz auf ihren Nachwuchs.

Ein Objekt von einer Methode zurückgeben

Ob Sie es glauben oder nicht, aber trotz der Informationen über die Übergabe von Parametern in den letzten Abschnitten gibt es in Java immer noch einen Winkel, in dem Unentdecktes schlummert, das mit Methoden zu tun hat. Wenn Sie eine Methode aufrufen, kann sie etwas unmittelbar an den aufrufenden Code übergeben. Ich gehe in früheren Kapiteln und Abschnitten zu primitiven Werten (wie zum Beispiel int‐Werte) darauf ein. Alternativ kann sie aber auch nichts (auch als void bekannt) zurückgeben. In diesem Abschnitt gebe ich ein vollständiges Objekt zurück. Es handelt sich dabei um ein Objekt vom Typ City aus Listing 10.12. Der Code, der zu so etwas fähig ist, befindet sich in Listing 10.14.

public class TrackPopulation4 {

 public static void main(String args[]) {

 City smackoverAR = new City();

 smackoverAR.population = 2232;

 smackoverAR = doBirth(smackoverAR);

 System.out.println(smackoverAR.population);

 }

 static City doBirth(City aCity) {

 City myCity = new City();

 myCity.population = aCity.population + 1;

 return myCity;

 }

}

Listing 1.14: Hier, eine City für Sie.

Wenn Sie den Code aus Listing 10.14 ablaufen lassen, erhalten Sie die Zahl 2233. Das geht in Ordnung. Der Code weist die Methode doBirth an, eine neue Instanz von City anzulegen. In dieser Instanz hat population den Wert 2233 (siehe Abbildung 10.13).

Wenn die Methode doBirth ausgeführt worden ist, wird die Instanz von City an die Methode main zurückgegeben. Dann wird diese zurückgegebene Instanz der Variablen smackoverAR zugewiesen (siehe Abbildung 10.14). Nun verweist smackoverAR auf eine funkelnagelneue Instanz von City – eine Instanz, deren Einwohnerzahl (Population) 2233 beträgt.

[image:]Abbildung 1.13: Die Methode erstellt eine Instanz von .

[image:]Abbildung 1.14: Die neue Instanz von wird der Variablen zugewiesen.

Achten Sie in Listing 10.14 beim Aufruf und bei der Rückgabe der Methode doBirth auf die Konsistenz der Typen:

[image: image] Die Variable smackoverAR ist vom Typ City. Diese Variable wird an den Parameter aCity übergeben, dessen Typ ebenfalls City ist.

[image: image] Die Variable myCity ist vom Typ City. Diese Variable wird in der Rückgabeanweisung der Methode doBirth zurückgesendet. Auch das ist konsistent, denn der Kopf der Methode doBirth beginnt mit static City doBirth(bla, bla, bla ... – der Zusage, ein Objekt vom Typ City zurückzugeben.

[image: image] Die Methode doBirth gibt ein Objekt vom Typ City zurück. In der Methode main wird dann das Objekt, das der Aufruf von doBirth zurückgegeben hat, der Variablen smackoverAR zugewiesen, die (Sie haben es richtig erraten) auch vom Typ City ist.

Diese Übereinstimmung der Typen wirkt nicht nur sehr harmonisch, sondern sie ist auch absolut notwendig. Wenn Sie ein Programm schreiben, in dem Ihre Typen nicht übereinstimmen, wirft der Compiler eine unsympathische Meldung aus, die von inkompatiblen Typen handelt.

Nachtrag

Dora Kermongoos und ihre neugeborene Tochter leben gesund und munter in ihrem Heim in Smackover, Arkansas.

295-322

Kapitel 11

Arrays verwenden, um mit Werten zu jonglieren

In diesem Kapitel

Mit mehreren Werten auf einmal umgehen

Dinge suchen

Werte zu Beginn der Programmausführung erstellen

Willkommen im Java‐Motel! Keine arroganten Pagen, kein überteuerter Zimmerservice, keine dummen Sprüche. Einfach nur ein sauberes Doppelzimmer zu einem ausgesprochen günstigen Preis!

Bereiten Sie sich gut vor

Das Java‐Motel hat zehn komfortable Zimmer und befindet sich in einer ruhigen Gegend. Mit Ausnahme eines kleinen, separaten Büros besteht das Motel aus einer langen Reihe von Zimmern. Jedes Zimmer kann vom großzügigen Parkplatz aus betreten werden.

Es sieht ziemlich seltsam aus, aber die Zimmer sind von 0 bis 9 durchnummeriert. Ich könnte nun behaupten, dass das Zufall sei – etwas, das mit den Plänen des Architekten zu tun hatte, aber wenn die Nummerierung der Zimmer mit 0 anfängt, lassen sich die Beispiele in diesem Kapitel leichter verstehen.

Auf jeden Fall müssen Sie immer wissen, wie viele Gäste sich in den einzelnen Zimmern aufhalten. Da es zehn Zimmer gibt, könnten Sie der Meinung sein, dass die Deklaration von zehn Variablen die beste Lösung sei:

int guestsInRoomNum0, guestsInRoomNum1, guestsInRoomNum2,

 guestsInRoomNum3, guestsInRoomNum4, guestsInRoomNum5,

 guestsInRoomNum6, guestsInRoomNum7, guestsInRoomNum8,

 guestsInRoomNum9;

Dieser Ansatz ist ziemlich ineffizient – aber Ineffizienz ist nicht das Einzige, was an diesem Code zu kritisieren ist. Noch problematischer ist, dass Sie diese Variablen nicht in einer Schleife durchlaufen können. Wenn Sie den Wert einer jeden Variablen auslesen wollen, müssen Sie die Methode nextInt zehnmal kopieren:

guestsInRoomNum0 = diskScanner.nextInt();

guestsInRoomNum1 = diskScanner.nextInt();

guestsInRoomNum2 = diskScanner.nextInt();

//... und so weiter.

Aber es gibt einen besseren Weg.

Zu diesem Weg gehört ein Array. Ein Array besteht aus einer Reihe von Werten – so wie die aneinandergereihten Zimmer eines Motels, das nur aus einem Erdgeschoss besteht. Wenn Sie sich ein Bild von einem Array machen wollen, vergleichen Sie es einfach mit dem Java‐Motel:

[image: image] Stellen Sie sich als Erstes die Zimmer vor, die nebeneinander aufgereiht sind.

[image: image] Stellen Sie sich dann dieselben Zimmer mit fehlenden Außenwänden vor. In den Zimmern sehen Sie eine bestimmte Anzahl an Gästen.

[image: image] Versuchen Sie, die beiden Gäste in Zimmer 9 zu vergessen, die Banknoten in einem Aktenkoffer stapeln. Ignorieren Sie die Gäste in Zimmer 6, die seit eineinhalb Tagen vor dem Fernsehgerät abhängen. Konzentrieren Sie sich bei all diesen Details nur auf Zahlen. In jedem Zimmer gibt eine Zahl wieder, wie viele Gäste es beherbergt. (Wenn Ihre Stärke nicht das Abstrahieren ist, schauen Sie sich Abbildung 11.1 an.)

[image:]Abbildung 11.1: Ein abstrakter Schnappschuss der Zimmer des Java‐Motels

In der Terminologie dieses Kapitels wird eine ganze Zimmerzeile Array genannt. Jedes Zimmer dieses Arrays ist eine Komponente des Arrays (was auch als Element des Arrays bezeichnet wird). Jeder Komponente sind zwei Zahlen zugeordnet:

[image: image] Die Zimmernummer (eine Zahl von 0 bis 9), die auch als Index des Arrays bezeichnet wird.

[image: image] Eine Zahl von Gästen; dabei handelt es sich um einen Wert, der in einer Komponente des Arrays gespeichert wird.

Der Einsatz eines Arrays erspart Ihnen diesen Wiederholungsunsinn des Beispielcodes vom Anfang dieses Kapitels. Wenn Sie zum Beispiel ein Array mit zehn Werten deklarieren wollen, reicht ein kurzer Befehl aus:

int guests[] = new int[10];

Wenn Sie es sehr ausführlich lieben, können Sie diese Anweisung so erweitern, dass sie aus zwei separaten Befehlen besteht:

int guests[];

guests = new int[10];

Beachten Sie bei beiden Codestückchen die Verwendung der Zahl 10. Sie weist den Computer an, das Array guests (deutsch Gäste) so einzurichten, dass es aus zehn Komponenten besteht. Jede Komponente eines Arrays hat einen eigenen Namen. Die Komponente, mit der es anfängt, heißt guests[0], die nächste guests[1] und so weiter. Die letzte der zehn Komponenten trägt den Namen guests[9].

[image:]Wenn Sie ein Array erstellen, geben Sie immer an, wie viele Komponenten es enthält. Die Indexe eines Arrays (die im Deutschen manchmal auch Indizes genannt werden) beginnen mit 0 und hören mit der Zahl auf, die um eins kleiner ist als die Gesamtzahl der Komponenten.

[image:]Die Codestückchen, die ich Ihnen zeige, stellen zwei Wege dar, um ein Array zu erstellen. Das erste Beispiel kommt mit einer Zeile aus. Das zweite verwendet zwei Zeilen. Wenn Sie einzeilig weitermachen, können Sie diese eine Zeile innerhalb oder außerhalb einer Methode schreiben. Sie haben die freie Wahl. Wenn Sie aber zwei separate Zeilen verwenden, sollte die zweite Zeile – in diesem Fall guests = new int[10] – immer innerhalb einer Methode stehen.

[image:]Sie können bei der Deklaration eines Arrays die eckigen Klammern vor oder hinter den Namen der Variablen setzen. Sie können also entweder int guests[] oder int[] guests schreiben. Der Computer erstellt unabhängig davon, wie Sie vorgehen, immer dieselbe Variable guests.

Ein Array in zwei einfachen Schritten erstellen

Schauen Sie sich noch einmal die beiden Zeilen an, die Sie verwenden können, um ein Array zu erstellen:

int guests[];

guests = new int[10];

Jede Zeile erfüllt einen ganz bestimmten Zweck:

[image: image] int guests[]: Bei dieser ersten Zeile handelt es sich um eine Deklaration. Diese Deklaration reserviert den Namen des Arrays (einen Namen wie guests), damit er im restlichen Programm verwendet werden kann. Im Bild mit dem Java‐Motel sagt diese Zeile: »Ich plane hier den Bau eines Motels und bringe in jedem Zimmer eine bestimmte Anzahl an Gästen unter.« (Siehe Abbildung 11.2.)

Kümmern Sie sich nicht darum, was die Deklaration int guests[] tatsächlich macht. Es ist viel wichtiger, dass Sie darauf achten, was die Deklaration int guests[] nicht macht. Sie reserviert keine zehn Stellen im Arbeitsspeicher. Letztendlich ist es sogar so, dass eine Deklaration wie int guests[] noch nicht einmal ein Array erstellt. Diese Deklaration macht nichts, als die Variable guests einzurichten. An dieser Stelle im Code verweist die Variable guests nicht auf ein echtes Array. (Oder anders ausgedrückt: Das Motel hat zwar schon einen Namen, aber es ist noch nicht gebaut worden.)

[image:]Abbildung 11.2: Ein Array wird in zwei Schritten erstellt.

[image: image] guests = new int[10]: Bei der zweiten Zeile handelt es sich um einen Zuweisungsbefehl. Dieser Zuweisungsbefehl reserviert für zehn int‐Werte Platz im Arbeitsspeicher des Computers. In der Terminologie der Grundbesitzer besagt dies: »Ich habe endlich das Motel gebaut. Jetzt können wir anfangen, die Zimmer mit Gästen zu belegen.« (Siehe auch hierzu Abbildung 11.2.)

Werte speichern

Nachdem Sie nun ein Array erstellt haben, können Sie in seinen Komponenten Werte ablegen. So möchten Sie zum Beispiel die Tatsache speichern, dass es in Zimmer 6 vier Gäste gibt. Um in der Komponente mit dem Index 6 den Wert 4 zu hinterlegen, schreiben Sie guests[6] = 4.

Und jetzt fängt das Motel an zu laufen. Ein großer Bus fährt vor. Er trägt die Aufschrift »Noahs Arche«. 25 Paare verlassen den Bus und bewegen sich gehend, stampfend, fliegend, hoppelnd oder kriechend zum kleinen Büro des Motels. Im Java‐Motel können nur 10 Paare bleiben, was aber in Ordnung ist, denn Sie können die verbliebenen 15 Paare zur alten C‐Side Resort and Motor Lodge schicken, die nicht weit entfernt ist.

Um nun die 10 Paare zu registrieren, bringen Sie in jedem der zehn Zimmer des Java‐Motels ein Paar (2 Gäste) unter. Wenn Sie erst einmal ein Array erstellt haben, können Sie sich dessen Indexierungsmöglichkeit zunutze machen und eine for‐Schleife wie diese hier schreiben:

for (int roomNum = 0; roomNum < 10; roomNum++) {

 guests[roomNum] = 2;

}

Diese Schleife ersetzt zehn Zuweisungsbefehle. Beachten Sie, dass der Schleifenzähler von 0 bis 9 geht. Vergleichen Sie dies mit Abbildung 11.2 und denken Sie daran, dass die Indexe eines Arrays mit 0 beginnen und mit einem Wert aufhören, der um eins kleiner ist als die Gesamtzahl der Komponenten des Arrays.

Leider geht es in der Welt nicht nur geordnet zu: Ihre Gäste kommen nicht immer paarweise an, und Sie müssen in jedem Zimmer eine andere Zahl von Gästen unterbringen. Sie könnten die Informationen über Gäste und die Zimmerbelegung in einer Datenbank ablegen. In diesem Fall können Sie das Array immer noch in einer Schleife durchlaufen und dabei die Zahl der jeweiligen Gäste abfragen. Der Code, mit dem sich eine solche Aufgabe erledigen lässt, könnte so aussehen:

resultset = statement.executeQuery("select GUESTS from RoomData");

for (int roomNum = 0; roomNum < 10; roomNum++) {

 resultset.next();

 guests[roomNum] = resultset.getInt("GUESTS");

}

Da in diesem Buch aber erst in Kapitel 17 auf Datenbanken eingegangen wird, ist es im Moment besser für Sie, die Zahl der Gäste aus einer Textdatei zu lesen. Abbildung 11.3 zeigt als Beispiel die Datei GuestList.txt.

[image:]Abbildung 11.3: Die Datei

Wenn Sie die Datei angelegt haben, können Sie die Klasse Scanner aufrufen, um Werte aus der Datei auszulesen. Der entsprechende Code steht in Listing 11.1, und das, was dieser Code ausgibt, wird in Abbildung 11.4 wiedergegeben.

import static java.lang.System.out;

import java.util.Scanner;

import java.io.File;

import java.io.IOException;

public class ShowGuests {

 public static void main(String args[]) throws IOException {

 int guests[] = new int[10];

 Scanner diskScanner = new Scanner(new File("GuestList.txt"));

 for(int roomNum = 0; roomNum < 10; roomNum++) {

 guests[roomNum] = diskScanner.nextInt();

 }

 out.println("Zimmer\tGäste");

 for(int roomNum = 0; roomNum < 10; roomNum++) {

 out.print(roomNum);

 out.print("\t");

 out.println(guests[roomNum]);

 }

 diskScanner.close();

 }

}

Listing 11.1: Ein Array mit Werten füllen

[image:]Abbildung 11.4: Das Programm in Listing 11.1 wird ausgeführt.

Im Code von Listing 11.1 gibt es zwei for‐Schleifen. Die erste Schleife liest die Zahl der Gäste aus, während die zweite Schleife Gästezahlen schreibt.

[image:]Jedes Array besitzt ein internes Längenfeld. Die Länge eines Arrays entspricht der Anzahl der Komponenten im Array. Wenn Sie in Listing 11.1 den Wert von guests.length ausgeben, erhalten Sie 10.

Tabulatoren und anderes

In Listing 11.1 verwenden einige Aufrufe von print und println die Escape‐Folge \t. Sie wird Escape‐Folge genannt, weil sie der Anzeige des Buchstabens t auf dem Bildschirm »entkommen« (to escape bedeutet im Deutschen entkommen). Die Buchstaben \t stehen für einen Tabulator. Der Computer geht an die Position des nächsten Tabulators, bevor weitere Zeichen ausgegeben werden. Java kennt eine Reihe dieser praktischen Escape‐Folgen, von denen einige in Tabelle 11.1 abgebildet sind.

	
	

	\b

	Rückschritt (Backspace)

	\t

	Horizontaler Tabulator

	\n

	Neue Zeile (Line Feed)

	\f

	Neue Seite (Form Feed)

	\r

	Wagenrücklauf (Carriage Return)

	\"

	Doppelte Anführungszeichen (")

	\'

	Einfaches Anführungszeichen (')

	\\

	Umgekehrter Schrägstrich (Backslash \)

Tabelle 11.1: Escape‐Folgen

Einen Array‐Initialisierer verwenden

Zusätzlich zu dem, was Listing 11.1 zeigt, haben Sie noch eine andere Möglichkeit, um in Java ein Array zu füllen – einen Array‐Initialisierer. Wenn Sie einen Array‐Initialisierer verwenden, müssen Sie dem Computer noch nicht einmal mitteilen, aus wie vielen Komponenten das Array besteht. Der Computer findet dies dann selbstständig heraus.

Listing 11.2 enthält eine neue Version des Codes, um ein Array zu füllen. Das Programm gibt dasselbe aus wie das Programm in Listing 11.1. (Es handelt sich um die Daten, die Abbildung 11.4 zeigt.) Fettschrift hebt in Listing 11.2 die Unterschiede zwischen den Listings 11.1 und 11.2 hervor. Das fett Gedruckte stellt einen Array‐Initialisierer dar.

import static java.lang.System.out;

public class ShowGuests {

 public static void main(String args[]) {

 int guests[] = {1, 4, 2, 0, 2, 1, 4, 3, 0, 2};

 out.println("Zimmer\tGäste");

 for (int roomNum = 0; roomNum < 10; roomNum++) {

 out.print(roomNum);

 out.print("\t");

 out.println(guests[roomNum]);

 }

 }

}

Listing 11.2: Einen Array‐Initialisierer verwenden

[image:]Ein Array‐Initialisierer kann sowohl Ausdrücke als auch Literale enthalten. Dies bedeutet in Klarschrift, dass Sie zwischen die Kommata im Initialisierer alles Mögliche packen können. So funktioniert zum Beispiel auch ein Initialisierer wie {1 + 3, keyboard.nextInt(), 2, 0, 2, 1, 4, 3, 0, 2} richtig gut.

[image:]Verwenden Sie meinen DummiesFrame (aus Kapitel 7), um basierend auf den Ideen in den Listings 11.1 und 11.2 ein GUI‐Programm zu erstellen. In Ihrem Programm hat der Frame nur eine einzige Eingabezeile: für die Zimmernummer. Wenn der Benutzer in die Zeile Zimmernummer 3 eingibt und dann auf die Schaltfläche klickt, zeigt das Programm die Anzahl der Gäste in Zimmer 3 an.

Ein Array mit einer erweiterten »for«‐Schleife durchlaufen

Java kennt eine erweiterte for‐Schleife, die ohne Zähler oder Indexe auskommt. Listing 11.3 zeigt Ihnen, wie das geht.

[image:]Dieses Kapitel verlangt Java 5.0 oder später. Die Codes laufen nicht mit älteren Java‐Versionen wie Java 1.3 oder 1.5. Sie finden in Kapitel 2 Informationen über die Versionsnummerierung von Java.

import static java.lang.System.out;

public class ShowGuests {

 public static void main(String args[]) {

 int guests[] = {1, 4, 2, 0, 2, 1, 4, 3, 0, 2};

 int roomNum = 0;

 out.println("Zimmer\tGäste");

 for (int numGuests : guests) {

 out.print(roomNum++);

 out.print("\t");

 out.println(numGuests);

 }

 }

}

Listing 11.3: Ein Array mit for‐Schleife

Die Listings 11.1 und 11.3 geben dasselbe aus (siehe weiter vorn im Kapitel Abbildung 11.4).

Eine erweiterte for‐Anweisung besteht aus drei Teilen:

for (Variablentyp Variablenname : Wertebereich)

Die ersten beiden Teile sind Variablentyp und Variablenname. Die Schleife in Listing 11.3 definiert den Variablennamen numGuests, und numGuests ist vom Typ int. Die Variable numGuests nimmt bei jedem Schleifendurchlauf einen neuen Wert an. Abbildung 11.4 gibt diese Werte wieder. Der Initialisierungswert ist 1. Der nächste Wert ist 4, danach kommt 2. Und so weiter.

Woher holt die Schleife diese Zahlen? Die Antwort liegt im Wertebereich der Schleife. In Listing 11.3 besteht der Wertebereich der Schleife aus guests. Das bedeutet, dass beim ersten Durchlauf der Schleife ihr Initialisierungswert guests[0] ist (was 1 bedeutet). Beim nächsten Durchlauf beträgt der Wert von numGuests guests[1] (entspricht 4). Danach kommt guests[2] (beträgt 2). Und so weiter.

[image:]Javas erweiterte for‐Schleife verlangt einen warnenden Hinweis. Bei jedem Schleifendurchlauf speichert die Variable, die im Wertebereich unterwegs ist, eine Kopie des Wertes. Sie zeigt also nicht auf den Wertebereich selbst.

Wenn Sie zum Beispiel einen Zuweisungsbefehl hinzufügen, der in Listing 11.3 den Wert von numGuests ändert, wirkt sich dieser Befehl auf keinen der Werte aus, die im Array guests gespeichert worden sind. Um diesen Punkt zu schließen, sollten Sie sich vorstellen, dass die Geschäfte schlecht gehen und das Array guests mit Nullen gefüllt ist. Dann führe ich den folgenden Code aus:

for (int numGuests : guests) {

 numGuests += 1;

 out.print(numGuests + " ");

}

out.println();

for (int numGuests : guests) {

 out.print(numGuests + " ");

}

Die Variable numGuests nimmt Werte an, die im Array guests gespeichert sind. Aber die Anweisung numGuests += 1 ändert die im Array gespeicherten Werte nicht. Das, was der Code ausgibt, sieht dann so aus:

1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0

[image:]Schreiben Sie ein Programm, das fünf double‐Werte in einem Array speichert und dann den Durschnitt der im Array gespeicherten Werte anzeigt.

Suchen

Sie sitzen an der Rezeption des Java‐Motels. Aufgewacht! Da kommt eine Gruppe, die aus fünf Personen besteht. Diese Leute möchten ein Zimmer, weshalb Sie eine Software benötigen, die herausfindet, ob ein Zimmer frei ist. In diesem Fall soll die Software die Datei GuestList.txt (siehe Abbildung 11.3) ändern und die Zahl 0 durch die Zahl 5 ersetzen. Sie haben Glück, denn die entsprechende Software – sie wird in Listing 11.4 gezeigt – befindet sich auf Ihrer Festplatte.

import static java.lang.System.out;

import java.util.Scanner;

import java.io.File;

import java.io.IOException;

import java.io.PrintStream;

public class FindVacancy {

 public static void main(String args[]) throws IOException {

 int guests[] = new int[10];

 int roomNum;

 Scanner diskScanner = new Scanner(new File("GuestList.txt"));

 for (roomNum = 0; roomNum < 10; roomNum++) {

 guests[roomNum] = diskScanner.nextInt();

 }

 diskScanner.close();

 roomNum = 0;

 while (roomNum < 10 && guests[roomNum] != 0) {

 roomNum++;

 }

 if (roomNum == 10) {

 out.println("Leider ist kein Zimmer frei.");

 } else {

 out.print("Wie viele Gäste in Zimmer ");

 out.print(roomNum);

 out.print("? ");

 Scanner keyboard = new Scanner(System.in);

 guests[roomNum] = keyboard.nextInt();

 keyboard.close();

 PrintStream listOut = new PrintStream("GuestList.txt");

 for (roomNum = 0; roomNum < 10; roomNum++) {

 listOut.print(guests[roomNum]);

 listOut.print(" ");

 }

 listOut.close();

 }

 }

}

Listing 11.4: Haben Sie ein freies Zimmer?

Abbildung 11.5, Abbildung 11.6 und Abbildung 11.7 stellen dar, wie der Code in Listing 11.4 ausgeführt wird. Wie Abbildung 11.3 noch zeigt, gibt es im Motel zwei freie Zimmer – die Zimmer 3 und 8. (Denken Sie daran, dass die Nummerierung der Zimmer mit 0 beginnt.) Wenn Sie den Code in Listing 11.4 zum ersten Mal ausführen, erfahren Sie, dass Zimmer 3 frei ist, und das Programm bringt in diesem Zimmer die 5 Personen unter. Wenn Sie den Code zum zweiten Mal ausführen, findet das Programm das andere leere Zimmer (Zimmer 8) und bringt dort eine Gruppe von 10 Personen unter. Und beim dritten Ausführen des Codes gibt es kein freies Zimmer mehr. Wenn das Programm dies entdeckt, gibt es die Meldung Leider ist kein Zimmer frei aus.

[image:]Abbildung 11.5: Ein freies Zimmer belegen

[image:]Abbildung 11.6: Das letzte freie Zimmer belegen

[image:]Abbildung 11.7: Leider sind alle Zimmer belegt.

[image:]Dadurch, dass Sie den Code in Listing 11.4 ausführen, wird eine ganz neue Datei GuestList.txt geschrieben. Dies kann zu Verwirrung führen, weil jede Java‐IDE den Inhalt der Datei GuestList.txt auf ihre eigene Weise darstellt. Einige IDEs zeigen den Inhalt der neuen Datei nicht automatisch an. Es kann also sein, dass Sie die an der Datei vorgenommenen Änderungen nicht sofort sehen. (Zum Beispiel ist in Abbildung 11.5 Zimmer 3 nicht belegt. Aber nachdem Sie den Code in Listing 11.4 ausgeführt haben, ist Zimmer 3 mit 5 Gästen belegt.) Selbst wenn Sie keine Änderungen feststellen, ändert das wiederholte Ausführen des Codes in Listing 11.4 die Datei GuestList.txt. Spielen Sie mit der von Ihnen bevorzugten IDE herum, um herauszufinden, wie Sie es schaffen, dass die IDE die Anzeige der Textdatei aktualisiert.

[image:]In Listing 11.4 ist die Bedingung roomNum < 10 && guests[roomNum] != 0 ziemlich trickreich. Aber wenn Sie den Code etwas umstellen und guests[roomNum] != 0 && roomNum < 10 schreiben, bekommen Sie ernsthafte Probleme.

In eine Datei schreiben

Der Code in Listing 11.4 verwendet Tricks aus anderen Kapiteln und Abschnitten dieses Buches. Die einzig wirklich neue Funktion ist der Einsatz von PrintStream, um in eine Datei auf der Festplatte zu schreiben. Denken Sie an die Beispiele, die System.out.print, out.println oder Variationen davon aufrufen. Was passiert eigentlich genau, wenn Sie eine dieser Methoden aufrufen?

Bei dem Teil mit dem Namen System.out handelt es sich um ein Objekt. Dieses Objekt wird in der Java‐API definiert. Und letztendlich ist System.out sogar die Instanz einer Klasse, die java.io.PrintStream heißt (und von ihren besten Freunden PrintStream genannt wird). Nun verfügt jedes Objekt, das aus der Klasse PrintStream erstellt wird, über die Methoden print und println. Und so, wie jedes Konto‐Objekt in Listing 7.3 eine Methode display und das Objekt DecimalFormat aus Listing 10.1 eine Methode format enthalten, verfügt das Objekt out von PrintStream über die Methoden print und println. Wenn Sie System.out.println aufrufen, betrifft dies eine Methode, die zu einer Instanz von PrintStream gehört.

Gut, aber was hat das zu bedeuten? Nun, System.out steht immer für Textbereiche auf dem Bildschirm Ihres Computers. Wenn Sie ein eigenes PrintStream‐Objekt erstellen und dafür sorgen, dass dieses Objekt auf eine Datei auf der Festplatte verweist, schreiben Sie Text in diese Datei, wenn Sie die Methode print des PrintStream‐Objekts aufrufen.

Wenn Sie also in Listing 11.4 schreiben

PrintStream listOut = new PrintStream("GuestList.txt");

listOut.print(guests[roomNum]);

listOut.print(" ");

weisen Sie Java an, Text in die Datei auf Ihrer Festplatte – die Datei GuestList.txt – zu schreiben.

Auf diese Weise aktualisieren Sie die Gästeliste des Motels. Wenn Sie für die Anzeige der Gäste in Zimmer 3 listOut.print aufrufen, geben Sie die Zahl 5 aus. Zwischen Abbildung 11.5 und Abbildung 11.6 muss also mit der Datei GuestList.txt etwas geschehen sein, weil sich die Anzahl der Gäste in Zimmer 3 von 0 in 5 geändert hat. In Abbildung 11.6 wird das Programm zum zweiten Mal ausgeführt. Wenn es dann von der neu geschriebenen Datei GuestList.txt Daten erhält, steht Zimmer 3 nicht mehr leer, weshalb nun Zimmer 8 vorgeschlagen wird.

[image:]Dies ist mehr eine Beobachtung als ein Tipp. Gehen wir davon aus, dass Sie Daten aus einer Datei mit dem Namen Mitarbeiter.txt lesen wollen. Um dies zu erledigen, rufen Sie new Scanner(new File("Mitarbeiter.txt")) auf. Sollten Sie unglücklicherweise new Scanner("Mitarbeiter.txt") ohne den Teil mit new File aufrufen, stellt der Aufruf keine Verbindung zur Datei Mitarbeiter.txt her. Beachten Sie nun, wie das Schreiben von Daten in eine Datei vorbereitet wird. Sie legen eine Instanz von PrintStream an, indem Sie new PrintStream("GuestList.txt") aufrufen. In diesem Aufruf kommt new File nicht vor. Wenn Sie nicht aufpassen und unglücklicherweise new File in den Aufruf aufnehmen, wird der Compiler sauer.

Wann eine Datei geschlossen werden muss

Achten Sie in Listing 11.4 auf die Platzierung der Aufrufe von new Scanner, new PrintStream und close. Wie bei allen Beispielen enthält auch der Aufruf von new Scanner einen hierzu gehörenden Aufruf von close. In Listing 11.4 verfügt der Aufruf von new PrintStream über einen eigenen close‐Aufruf (den Aufruf listOut.close()). In Listing 11.4 achte ich peinlich genau darauf, diese Aufrufe direkt bei den Aufrufen von nextInt und print zu platzieren. So habe ich zum Beispiel diskScanner nicht gleich am Anfang des Programms eingerichtet, und ich habe auch nicht bis fast zum Ende des Programms gewartet, um diskScanner wieder zu schließen. Stattdessen führe ich alle Aufgaben von diskScanner in schneller Folge nacheinander aus:

Scanner diskScanner = new Scanner(new File("GuestList.txt")); //erstellen

for (roomNum = 0; roomNum < 10; roomNum++) {

 guests[roomNum] = diskScanner.nextInt(); //lesen

}

diskScanner.close(); //schließen

Ich mache dasselbe mit den Objekten keyboard und listOut.

Ich veranstalte dieses Tänzchen mit Eingabe und Ausgabe, weil mein Programm GuestList.txt zweimal verwendet – einmal zum Auslesen von Zahlen und ein zweites Mal zum Schreiben von Zahlen. Wenn ich dabei nicht aufpasse, kann die zweimalige Verwendung von GuestList.txt zu einem Konflikt führen. Stellen Sie sich dieses Programm vor:

// DIES IST SCHLECHTER CODE

import java.io.File;

import java.io.IOException;

import java.io.PrintStream;

import java.util.Scanner;

public class BadCode {

 public static void main(String args[]) throws IOException {

 int guests[] = new int[10];

 Scanner diskScanner = new Scanner(new File("GuestList.txt"));

 PrintStream listOut = new PrintStream("GuestList.txt");

 guests[0] = diskScanner.nextInt();

 listOut.print(5);

 diskScanner.close();

 listOut.close();

 }

}

Der Konstruktor PrintStream kommt, wie viele Methoden und Konstruktoren dieser Art, bei Dateien gleich zur Sache. Wenn die Datei GuestList.txt nicht gefunden wird, legt der Konstruktor eine neue an und ist bereit, dort hinein Werte zu schreiben. Wenn aber die entsprechende Datei bereits vorhanden ist, löscht der Konstruktor PrintStream sie und bereitet sich darauf vor, eine neue, leere Datei zu erstellen, in die er dann Werte schreiben kann. In der Klasse BadCode löscht der Aufruf des Konstruktors new PrintStream eine vorhandene Datei GuestList.txt. Dieses Löschen geschieht vor dem Aufruf von diskScanner.nextInt(). Damit hat diskScanner.nextInt() keine Chance mehr, irgendetwas in der ursprünglichen und nun nicht mehr vorhandenen Datei GuestList.txt zu lesen. Das ist gar nicht gut!

Um dieses Desaster zu vermeiden, trenne ich in Listing 11.4 die beiden Verwendungen von GuestList.txt sorgfältig. Ich entwerfe zu Beginn des Listings diskScanner, dann lese ich die ursprüngliche Datei GuestList.txt aus und schließe diskScanner. Später, gegen Ende des Listings, baue ich listOut zusammen, schreibe dann in eine neue Datei GuestList.txt und schließe listOut wieder. Indem ich das Schreiben vollständig vom Lesen trenne, läuft alles sauber ab.

[image:]In Listing 11.4 verweist die Variable keyboard nicht auf GuestList.txt, weshalb es zwischen keyboard und den anderen Variablen, die für die Eingabe oder Ausgabe zuständig sind, nicht zu Konflikten kommt. Alles geht gut, wenn Sie meiner normalen Routine folgen und keyboard = new Scanner(System.in) an den Anfang und keyboard.close() an das Ende des Programms setzen. Damit Listing 11.4 aber einfach und einheitlich aufgebaut ist, habe ich den keyboard‐Konstruktor und den Aufruf von close so nahe wie möglich an den Aufruf von keyboard.nextInt platziert.

[image:]Verwenden Sie DummiesFrame (aus Kapitel 7), um ein GUI‐Programm zu schreiben, das auf den Ideen in Listing 11.4 basiert. In Ihrem Programm hat der Frame nur eine einzige Eingabezeile. Wenn Zimmer 3 frei ist, enthält die Beschriftung der Eingabezeile Wie viele Gäste in Raum 3? Gibt der Benutzer 5 ein und klickt dann auf die Schaltfläche, belegt das Programm Raum 3 mit 5 Gästen.

Arrays aus Objekten

Im Java‐Motel wird jetzt mit einer verbesserten Software für das Registrieren der Gäste gearbeitet. Diejenigen, die für den ersten Abschnitt dieses Kapitels zuständig waren, kratzen sich noch immer am Kopf und suchen nach dem besten Weg, um ihren Service zu verbessern. Nachdem sie nun immer mehr in den Bahnen der objektorientierten Programmierung denken, kommt ihnen eine Klasse Room (Zimmer) in den Sinn.

Ihre Frage nach dem Aussehen dieser Klasse lässt sich leicht beantworten. Die Instanz einer Klasse Room besitzt drei Eigenschaften: Anzahl der Gäste im Zimmer, Zimmerpreis und ein Raucher/Nichtraucher‐Merkmal. Abbildung 11.8 stellt die Situation grafisch dar.

[image:]Abbildung 11.8: Eine weitere abstrakte Darstellung der Zimmer im Java‐Motel

Listing 11.5 enthält den Code mit der Klasse Room. Wie versprochen, gibt es in jeder Instanz dieser Klasse drei Felder: guests (für die Anzahl der Gäste), rate (für den Zimmerpreis) und smoking. (Der Wert false weist im Booleschen Feld smoking auf ein Nichtraucherzimmer hin.) Zusätzlich verfügt die gesamte Klasse Room über ein static‐Feld mit dem Namen currency (Währung), das für die Formatierung der Zimmerpreise sorgt. (Welche Bedeutung das Wort static hat, können Sie in Kapitel 10 nachlesen.)

import static java.lang.System.out;

import java.util.Scanner;

import java.text.NumberFormat;

public class Room {

 private int guests;

 private double rate;

 private boolean smoking;

 private static NumberFormat currency = NumberFormat.getCurrencyInstance();

 public void readRoom(Scanner diskScanner) {

 guests = diskScanner.nextInt();

 rate = diskScanner.nextDouble();

 smoking = diskScanner.nextBoolean();

 }

 public void writeRoom() {

 out.print(guests);

 out.print("\t");

 out.print(currency.format(rate));

 out.print(" \t");

 out.println(smoking ? "ja" : "nein");

 }

}

Listing 11.5: So sieht ein Zimmer aus.

Listing 11.5 enthält ein paar interessante Wendungen, die ich aber erst dann beschreibe, wenn Sie den gesamten Code in Aktion gesehen haben. Deshalb mache ich an dieser Stelle sofort mit dem Code weiter, der den Code in Listing 11.5 aufruft. Nachdem Sie dann von Arrays gelesen haben, die aus Zimmern bestehen (und in Listing 11.6 gezeigt werden), sollten Sie sich mit meiner Beschreibung von Listing 11.5 beschäftigen.

[image:]Diese Warnung ist eine bewusste Wiederholung eines Gedankens aus den Kapiteln 4, 7 und wer weiß wo sonst noch: Seien Sie sehr vorsichtig, wenn Sie die Typen double oder float verwenden, um Geldbeträge zu speichern. Berechnungen, die Sie mit double oder float durchführen, sind ungenau. Ausführliche Informationen zu diesem Thema finden Sie in Kapitel 4.

[image:]Dieser Tipp hat überhaupt nichts mit Java zu tun. Wenn Sie zu denen gehören, die gerne ein Raucherzimmer hätten (mit dem boolean‐Feld smoking = true in Listing 11.5), sollten Sie jemanden suchen, den Sie mögen – jemanden, der sich für drei Tage Urlaub nehmen kann. Diese Person muss dann 72 Stunden lang auf Sie aufpassen, während Sie auf das Rauchen verzichten. Während das Nikotin Ihren Körper verlässt, werden Sie zeitweilig ungenießbar sein, aber danach sollte alles in Ordnung sein. Und Ihr Freund wird sich wie ein wahrer Held fühlen.

Die Klasse »Room« verwenden

Sie benötigen nun ein Array aus Zimmern. Der Code, um so etwas zu erstellen, befindet sich in Listing 11.6. Er liest Daten aus der Datei RoomList.txt aus. (Abbildung 11.9 gibt den Inhalt der Datei RoomList.txt wieder.)

Abbildung 11.10 zeigt, wie es aussieht, wenn der Code in Listing 11.6 ausgeführt wird.

import static java.lang.System.out;

import java.util.Scanner;

import java.io.File;

import java.io.IOException;

public class ShowRooms {

 public static void main(String args[]) throws IOException {

 Room rooms[];

 rooms = new Room[10];

 Scanner diskScanner = new Scanner(new File("RoomList.txt"));

 for (int roomNum = 0; roomNum < 10; roomNum++) {

 rooms[roomNum] = new Room();

 rooms[roomNum].readRoom(diskScanner);

 }

 out.println("Zimmer\tGäste\tPreis\tRaucher?");

 for (int roomNum = 0; roomNum < 10; roomNum++) {

 out.print(roomNum);

 out.print("\t");

 rooms[roomNum].writeRoom();

 }

 diskScanner.close();

 }

}

Listing 11.6: Möchten Sie ein Zimmer besichtigen?

[image:]Abbildung 11.9: Eine Datei mit Daten von Zimmern

[image:]Abbildung 11.10: Der Code in Listing 11.6 wird ausgeführt.

Sagen Sie über den Code in Listing 11.6, was Sie wollen. Soweit es mich betrifft, gibt es im gesamten Listing nur ein Element, um das Sie sich wirklich kümmern sollten. Im Gegensatz zu einem Array aus primitiven Werten erstellen Sie ein Array aus Objekten, in dem Sie drei Dinge erledigen müssen: die Array‐Variable anlegen, das Array selbst erstellen und dann jedes einzelne Objekt im Array entwerfen. Dies ist anders als beim Erstellen eines Arrays aus int‐Werten oder eines Arrays aus anderen primitiven Wertetypen. Wenn Sie ein Array aus primitiven Typen erstellen, kümmern Sie sich nur um die ersten beiden dieser drei Dinge.

Damit Sie den Sinn der folgenden Punkte besser verstehen, sollten Sie beim Lesen immer wieder einen Blick auf Listing 11.6 und Abbildung 11.11 werfen:

[image:]Abbildung 11.11: Die Schritte beim Erstellen eines Arrays aus Objekten

[image: image] Room rooms[];: Diese Deklaration erstellt eine Variable room. Diese Variable soll auf ein Array verweisen (was aber im Moment nicht der Fall ist, weil sie noch auf überhaupt nichts verweist).

[image: image] rooms = new Room[10];: Dieser Befehl reserviert im Arbeitsspeicher des Computers zehn Speicherplätze. Außerdem sorgt dieser Befehl dafür, dass die Variable room auf die Gruppe der Speicherplätze verweist. Jeder Speicherplatz soll später auf ein Objekt verweisen.

[image: image] rooms[roomNum] = new Room();: Diese Anweisung befindet sich in einer for‐Schleife. Die Anweisung wird einmal für jede der zehn Zimmernummern ausgeführt. So lautet dieser Befehl beim ersten Durchlauf der Schleife rooms[0] = new Room() und sorgt dafür, dass der Speicherplatz rooms[0] auf ein tatsächliches Objekt (eine Instanz der Klasse Room) verweist.

Obwohl es technisch nicht zum Erstellen eines Arrays gehört, müssen Sie die Felder der einzelnen Objekte mit Werten füllen. Beim ersten Durchlaufen der Schleife lautet der Aufruf von readRoom rooms[1].readRoom(diskScanner), was bedeutet: »Lies Daten aus der Datei RoomList.txt in die Felder (guests, rate und smoking) des Objekts rooms[1] ein.« Bei jedem Durchlaufen der Schleife erstellt das Programm ein neues Objekt und liest Daten in dessen Felder ein.

Sie können die Schritte so zusammenfassen, wie das beim Erstellen eines Arrays aus primitiven Werten möglich ist. Sie können zum Beispiel die ersten beiden Schritte in einem Rutsch ausführen lassen:

Room rooms[] = new Room[10];

Sie können aber auch einen Array‐Initialisierer verwenden. (Eine Einführung in dieses Thema steht weiter vorn in diesem Kapitel im Abschnitt Einen Array‐Initialisierer verwenden.)

Und noch ein Weg, um Zahlen schön zu gestalten

Es gibt viele Wege, um Zahlen »schön« aussehen zu lassen. Wenn Sie noch einmal einen Blick in frühere Kapitel werfen, sehen Sie zum Beispiel, dass Listing 7.7 printf und Listing 10.1 ein DecimalFormat verwenden. In Listing 11.5 zeige ich einen Währungsbetrag an. Ich verwende die Klasse NumberFormat mit ihrer Methode getCurrencyInstance.

Wenn Sie die Formatierungsbefehle in den Listings 10.1 und 11.5 miteinander vergleichen, werden Sie kaum Unterschiede feststellen:

[image: image] Ein Listing verwendet einen Konstruktor; das andere Listing ruft getCurrencyInstance auf. Die Methode getCurrencyInstance ist ein gutes Beispiel für das, was Fabrikmethode (englisch Factory Method) genannt wird. Bei einer Fabrikmethode handelt es sich um ein allgemein die Arbeit erleichterndes Werkzeug, mit dem Objekte für den alltäglichen Gebrauch erstellt werden. Ständig wird Code benötigt, der Beträge in Euro anzeigt. Deshalb gibt es die Methode getCurrencyInstance, die einen Betrag im landesspezifischen Währungsformat und mit dem entsprechenden Währungssymbol (wie € in Deutschland oder $ in den USA) versieht, ohne dass Sie gezwungen sind, new DecimalFormat ("###0,00 €;(###0,00 €)") zu schreiben.

Eine Fabrikmethode gibt wie ein Konstruktor ein ganz neues Objekt zurück. Aber eine Fabrikmethode besitzt, anders als ein Konstruktor, keinen besonderen Status. Wenn Sie eine eigene Fabrikmethode erstellen, können Sie ihr einen beliebigen Namen geben. Wenn Sie eine Fabrikmethode aufrufen, verwenden Sie das Schlüsselwort new nicht.

[image: image] Ein Listing verwendet DecimalFormat; das andere Listing verwendet NumberFormat. Bei einer Dezimalzahl handelt es sich um eine bestimmte Art von Zahl. (Es ist eine Zahl, die zu einem Zahlensystem gehört, das als Basis die 10 verwendet.) Dementsprechend ist die Klasse DecimalFormat eine Unterklasse der Klasse NumberFormat, wobei die DecimalFormat‐Methoden spezialisierter sind, weshalb ich sie gerne einsetze. Sie sollten aber wissen, dass die Methode getCurrencyInstance der Klasse DecimalFormat schwieriger anzuwenden ist. Aus diesem Grund ziehe ich es vor, NumberFormat zu verwenden, wenn es um Programme geht, die mit Geld zu tun haben.

[image: image] Beide Listings verwenden format‐Methoden. Letztendlich schreiben Sie so etwas wie currency.format(rate) oder decFormat.format(average). Den Rest der Arbeit übernimmt dann Java.

[image:]Seit Kapitel 4 streue ich immer wieder Warnungen gegen das Speichern von Währungswerten in Typen wie double und float ein. Wenn Sie genau mit Währungen rechnen müssen, verwenden Sie int, long oder am besten BigDecimal.

[image:]Weitere Informationen über die Gefahren von double‐Typen und Währungswerten finden Sie in Kapitel 7.

Der Bedingungsoperator

Listing 11.5 verwendet etwas Interessantes, das sich Bedingungsoperator nennt. Dieser Operator übernimmt drei Ausdrücke und gibt den Wert nur eines dieser Ausdrücke zurück. Der Bedingungsoperator ist wie eine if‐Anweisung im Miniformat. Wenn Sie diesen Operator verwenden, sieht das so aus:

testBedingung ? ausdruck1 : ausdruck2

Der Computer wertet die Bedingung testBedingung aus. Wenn die Bedingung wahr ist, gibt der Computer den Wert von ausdruck1 zurück, ansonsten wird der Wert von ausdruck2 zurückgegeben.

Im Ausdruck

smoking ? "ja" : "nein"

prüft der Computer, ob smoking den Wert true hat. In diesem Fall steht der gesamte dreiteilige Ausdruck für den ersten String "ja". Im anderen Fall steht der Ausdruck für den zweiten String, "nein".

In Listing 11.5 sorgt der Ausdruck out.println dafür, dass entweder ja oder nein angezeigt werden. Welcher String schließlich auf dem Bildschirm erscheint, hängt davon ab, ob smoking den Wert true oder false hat.

[image:]Wie lernen Sie Java? Genauso, wie Sie zu einem Auftritt in der Carnegie Hall kommen – Üben! Üben! Üben!

[image: image] In Kapitel 9 haben Sie die Klasse Student erstellt. Jeder Student hat einen Namen und eine ID. Stellen Sie sich jetzt vor, jeder Student hat fünf Noten – eine für jeden der fünf Kurse, die er belegt hat. Jede Note ist ein double‐Wert von 0.0 bis 4.0 (4.0 ist die beste Note). Ein GPA (Grade Point Average, Durchschnittsnotenwert) eines Studenten ist der Durchschnitt aus den fünf Notenwerten des Studenten.

In der Student‐Klasse dieses Kapitels ist eines der fünf Felder ein Array mit fünf double‐Werten. Ihr Programm findet den GPA des Studenten und zeigt ihn auf dem Bildschirm an (zusammen mit dem Namen und der ID des Studenten).

[image: image] Und hier eine anspruchsvolle Übung: Schreiben Sie eine einfache Textverarbeitung. Um Ihnen zu zeigen, was Ihr Programm leisten soll, habe ich einen Beispieldurchlauf durchgeführt. Die Eingaben des Benutzers sind fett ausgezeichnet.

>

>

>

>

>

Zu ersetzende Zeile (oder ‐1 zum Beenden): 0

Geben Sie die neue Zeile ein: Der alte Mann konnte es kaum fassen,

> Der alte Mann konnte es kaum fassen,

>

>

>

>

Zu ersetzende Zeile (oder ‐1 zum Beenden): 1

Geben Sie die neue Zeile ein: Er erfuhr von Objekten und Klassen.

> Der alte Mann konnte es kaum fassen,

> Er erfuhr von Objekten und Klassen.

>

>

>

Zu ersetzende Zeile (oder ‐1 zum Beenden): 3

Geben Sie die neue Zeile ein: Auf den Baum gestiegen.

> Der alte Mann konnte es kaum fassen,

> Er erfuhr von Objekten und Klassen.

>

> Auf den Baum gestiegen.

>

Zu ersetzende Zeile (oder ‐1 zum Beenden): 2

Geben Sie die neue Zeile ein: "Nicht mehr geschwiegen!

> Der alte Mann konnte es kaum fassen,

> Er erfuhr von Objekten und Klassen.

> "Nicht mehr geschwiegen!

> Auf den Baum gestiegen.

>

Zu ersetzende Zeile (oder ‐1 zum Beenden): 4

Geben Sie die neue Zeile ein: Ich spreche darüber vor Massen!"

> Der alte Mann konnte es kaum fassen,

> Er erfuhr von Objekten und Klassen.

> "Nicht mehr geschwiegen!

> Auf den Baum gestiegen.

> Ich spreche darüber vor Massen!"

Zu ersetzende Zeile (oder ‐1 zum Beenden): 3

Geben Sie die neue Zeile ein: Alle werden es lieben!

> Der alte Mann konnte es kaum fassen,

> er erfuhr von Objekten und Klassen.

> "Nicht mehr geschwiegen!

> Alle werden es lieben!

> Ich spreche darüber vor Massen!"

Zu ersetzende Zeile (oder ‐1 zum Beenden): ‐1

Argumente in der Befehlszeile

Vor langer, langer Zeit verwendeten Programmierer eine textbasierte Oberfläche. Um das Displayer‐Beispiel in Kapitel 3 auszuführen, wählten sie nicht im Menü einer wunderbar integrierten Entwicklungsumgebung Run aus. Stattdessen wurde in einem leer aussehenden Fenster ein Befehl eingetippt. Abbildung 11.12 gibt diese Vorgehensweise wieder. Ich habe in dieser Abbildung die Wörter java Displayer eingegeben, und der Computer antwortet mit dem, was mein Programm ausgibt (den Wörtern Sie werden Java lieben!).

[image:]Abbildung 11.12: Wie langweilig!

Diese Art von Fenster hat abhängig von dem Betriebssystem, das Sie verwenden, viele Namen. In Windows wird ein Fenster dieser Art Eingabeaufforderung genannt. Beim Mac und in Linux heißt es Terminal, wobei einige Linux‐ und Unix‐Versionen auch von einer Shell sprechen.

Also, in der »guten, alten Zeit« konnten Sie ein Programm schreiben, das zusätzliche Informationen benötigte, wenn Sie den Befehl für den Programmstart eingaben. Abbildung 11.13 zeigt Ihnen, was ich damit meine.

[image:]Abbildung 11.13: Wenn Sie starten, müssen Sie zusätzliche Informationen eingeben.

In Abbildung 11.13 gibt der Programmierer java MakeRandomNumsFile ein, um das Programm MakeRandomNumsFile zu starten. Das reicht aber für einen Erfolg nicht aus, weshalb diesem ersten Teil noch weitere Informationen in Form von MyNumberedFile.txt und 5 folgen. Wenn das Programm MakeRandomNumsFile läuft, verwendet es diese zusätzlichen Informationen, um seinen Job zu erledigen. Beim nächsten Programmstart kann es sein, dass als zusätzliche Information nicht MyNumberedFile.txt und 5, sondern IrgendEtwas 28 oder EinHaufenZahlen 2000 eingegeben werden muss. Es kommt vor, dass sich die Zusatzinformationen von Programmstart zu Programmstart ändern.

Deshalb lautet die nächste Frage: »Wie weiß ein Java‐Programm, dass es bei jedem Programmstart zusätzliche Informationen verarbeiten muss?« Seitdem Sie angefangen haben, mit Java zu arbeiten, haben Sie es im Kopf der Methode main mit String args[] zu tun. Es ist nun höchste Zeit, dass Sie herausfinden, worum es dabei geht. Der Parameter args[] ist ein Array aus String‐Werten. Diese String‐Werte werden Befehlszeilenargumente genannt.

[image:]Einige Programmierer schreiben:

public static void main(String args[])

Andere Programmierer schreiben:

public static void main(String[] args)

In jedem Fall ist args ein Array mit String‐Werten.

Befehlszeilenargumente in einem Java‐Programm verwenden

Listing 11.7 zeigt, wie Befehlszeilenargumente im Code verwendet werden.

import java.util.Random;

import java.io.PrintStream;

import java.io.IOException;

public class MakeRandomNumsFile {

 public static void main(String args[]) throws IOException {

 Random generator = new Random();

 if (args.length < 2) {

 System.out.println("Verwendung: MakeRandomNumsFile Dateiname " + "Zahl");

 System.exit(1);

 }

 PrintStream printOut = new PrintStream(args[0]);

 int numLines = Integer.parseInt(args[1]);

 for (int count = 1; count <= numLines; count++) {

 printOut.println(generator.nextInt(10) + 1);

 }

 printOut.close();

 }

}

Listing 11.7: Eine Datei voller Zahlen erzeugen

[image:]Wenn ein Programm Befehlszeilenargumente erwartet, können Sie es nicht auf dieselbe Weise starten wie die meisten anderen Programme in diesem Buch. Wie Sie Befehlszeilenargumente an ein Programm übergeben, hängt von der IDE ab, die Sie verwenden.

Wenn der Code in Listing 11.7 ausgeführt wird, erhält das Array args Werte. Bei der in Abbildung 11.13 gezeigten Programmausführung übernimmt die Komponente args[0] des Arrays automatisch den Wert "MyNumberedFile.txt", und args[1] wird automatisch zu 5. Damit lautet der Zuweisungsbefehl des Programms wie folgt:

PrintStream printOut = new PrintStream("MyNumberedFile.txt");

int numLines = Integer.parseInt("5");

Das Programm erstellt eine Datei mit dem Namen MyNumberedFile.txt und setzt numLines auf 5. Weiter hinten im Programm erzeugt das Programm fünf Zufallswerte und schreibt diese Werte in die Datei MyNumberedFile.txt. Ich habe das Programm einmal ausgeführt und die Datei erhalten, die Abbildung 11.14 zeigt.

[image:]Abbildung 11.14: Eine Datei, die der Code in Listing 11.14 erstellt hat

[image:]Wo können Sie, nachdem der Code in Listing 11.7 abgelaufen ist, die Datei (MyNumberedFile.txt) auf Ihrer Festplatte finden? Ich möchte mich hier nicht auf eine Antwort festlegen. Wenn Sie eine IDE einsetzen, bei der die Programme als Projekte verwaltet werden, befindet sich die Datei irgendwo im Projektordner. Sie können aber Listing 11.7 so ändern, dass es einen vollständigen Pfad zu einem Zielordner wie "c:\\MeinName\\Dokumente\\MyNumberFile.txt" enthält.

[image:]In Windows enthalten die Namen von Dateipfaden umgekehrte Schrägstriche (die auch im deutschen Sprachgebrauch Backslash genannt werden). Wenn Sie in Java die Adresse eines Verzeichnisses auf einem Speichermedium angeben wollen, müssen Sie bei einem String‐Literal einen doppelten und keinen einfachen Backslash für die Adressierung verwenden. Aus diesem Grund enthält "c:\\MeinName\\Dokumente\\MyNumberFile.txt" zwei dieser umgekehrten Schrägstriche. Im Gegensatz dazu enthalten Dateipfade in den Betriebssystemen Linux und Macintosh Schrägstriche. Um in einem Java‐String einen Schrägstrich anzugeben, verwenden Sie einfach einen Schrägstrich.

Achten Sie darauf, dass in Listing 11.7 jedes Befehlszeilenargument ein String‐Wert ist. Wenn Sie args[1] anschauen, sehen Sie die Zahl 5 – nein, Sie sehen den String "5", der eine Ziffer enthält. Unglücklicherweise können Sie diese "5" nicht zum Zählen verwenden. Um aus "5" einen int‐Wert zu machen, müssen Sie die Methode parseInt anwenden (siehe noch einmal Listing 11.7).

Die Methode parseInt befindet sich in der Klasse Integer. Um die Methode parseInt aufzurufen, stellen Sie dem Methodennamen den Namen der Klasse Integer voran. Diese Klasse verfügt über viele praktische Methoden, um mit int‐Werten zu arbeiten.

[image:]In Java ist Integer der Name einer Klasse und int der Name eines primitiven (einfachen) Typs. Diese beiden Objekte sind zwar miteinander verwandt, aber nicht dasselbe. Die Klasse Integer enthält Methoden und andere Werkzeuge, um mit int‐Werten umzugehen.

Prüfen, ob die richtige Anzahl an Befehlszeilenparametern vorhanden ist

Was geschieht, wenn der Benutzer einen Fehler macht? Was, wenn der Benutzer in der ersten Zeile in Abbildung 11.13 die Eingabe der Zahl 5 vergisst?

Dann weist der Computer args[0] zwar "MyNumberedFile.txt" zu, aber args[1] geht im wahrsten Sinne des Wortes leer aus – und das ist schlecht. Wenn der Computer dann den Befehl

int numLines = Integer.parseInt(args[1]);

erreicht, stürzt das Programm mit einer unfreundlichen ArrayIndexOutOfBoundsException ab.

Wie gehen Sie mit diesem Problem um? Sie können in Listing 11.7 die Länge des Arrays überprüfen. Sie vergleichen args.length mit 2. Wenn das Array args weniger als zwei Komponenten enthält, zeigen Sie auf dem Bildschirm eine Meldung an und steigen mit dieser Bildschirmausgabe aus dem Programm aus:

Usage: MakeRandomNumsFile Dateiname Zahl

Diese Zeile sagt Ihnen, mit welchen Parametern Sie den Code in Listing 11.7 starten müssen.

[image:]Der Code ist trotz der Überprüfung von args.length in Listing 11.7 nicht sicher. Wenn der Benutzer fünf statt 5 eingibt, stürzt das Programm mit einer NumberFormatException ab. Das zweite Befehlszeilenargument darf kein Wort, sondern es muss eine Zahl (sogar eine Ganzzahl) sein. Ich könnte Listing 11.7 um Befehle erweitern, die den Code narrensicher machen, aber Sie lernen in Kapitel 12 einen viel besseren Weg kennen, um eine Prüfung von NumberFormatException vorzunehmen.

[image:]Wenn Sie mit Befehlszeilenargumenten arbeiten, können Sie auch einen String‐Wert eingeben, der ein Leerzeichen enthält. Packen Sie den String einfach in doppelte Anführungszeichen. So können Sie zum Beispiel den Code in Listing 11.7 auch mit den Argumenten "My Big Fat File.txt" 7 ausführen.

[image:]Sie können gar nicht genug üben:

[image: image] Schreiben Sie ein Programm, dessen Befehlszeilenargumente drei int‐Werte sind. Als Ausgabe zeigt das Programm den größten der drei int‐Werte an.

[image: image] In einem der vorigen Abschnitte haben Sie eine einfache Textverarbeitung erstellt. Verbessern Sie das Programm, indem Sie zwei Befehlszeilenargumente hinzufügen:

● Das erste Argument ist der Name einer Eingabedatei. Die Eingabedatei enthält fünf Textzeilen, die zum Teil oder komplett leer sein können. Zu Beginn der Ausführung liest das Programm Zeilen aus der Eingabedatei ein und zeigt sie auf dem Bildschirm an.

● Das zweite Argument ist der Name einer anderen Datei – einer Ausgabedatei. Zum Abschluss der Ausführung schreibt das Programm den bearbeiteten Text in die Ausgabedatei.

323-350

Kapitel 12

Sammlungen und Streams verwenden

In diesem Kapitel

Sich den Begrenzungen von Arrays stellen

Mit vielen Objekten gleichzeitig umgehen

Die coolen Programmierfunktionen von Java verwenden

Code für Multicore‐Prozessoren entwickeln

Kapitel 11 handelt von Arrays. Sie können mit einem Array viele Objekte gleichzeitig verwalten. Mit einem Programm zur Verwaltung eines Hotels sind Sie in der Lage, bei der Zimmerbelegung immer auf dem Laufenden zu sein. Sie können schnell herausfinden, mit wie vielen Personen ein Zimmer belegt ist, oder Sie können nach einem freien Zimmer suchen.

Aber nicht immer ist es mit Arrays getan. In diesem Kapitel erfahren Sie, wo Arrays nicht ausreichen und wie Ihnen Sammlungen den Tag retten.

Die Begrenzungen von Arrays verstehen

Arrays sind ganz schön, aber sie haben auch ernst zu nehmende Begrenzungen. Stellen Sie sich vor, dass Sie die Namen von Kunden in einer vorher festgelegten Reihenfolge ablegen. Ihr Code enthält ein Array, das 100 Namen aufnehmen kann:

String name[] = new String[100];

for (int i = 0; i < 100; i++) {

 name[i] = new String();

}

Alles ist gut – bis eines Tages Kunde Nummer 101 erscheint. Während Sie die Daten von Kunde 101 eingeben, hoffen Sie inständig, dass sich das Array mit 100 Komponenten erweitert, um den gewachsenen Anforderungen zu entsprechen.

Das geschieht nicht. Arrays vergrößern sich nicht. Ihr Programm stürzt mit einer ArrayIndexOutOfBoundsException ab.

Sie schwören sich, in Ihrem nächsten Leben nur noch Arrays mit einer Länge von 1.000 zu erstellen. Und als dieses »nächste Leben« anrollt, handeln Sie dementsprechend:

String name[] = new String[1000];

for (int i = 0; i < 1000; i++) {

 name[i] = new String();

}

Aber in Ihrem nächsten Leben ändern sich die wirtschaftlichen Bedingungen und es kommt zu einer Rezession. Statt 101 Kunden haben Sie nur noch 3. Nun vergeuden Sie Platz für 1.000 Namen, wo Platz für 3 Namen ausgereicht hätte.

Und wenn es nicht zu einer Rezession kommt? Dann verfügen Sie über ein Array mit einer Größe von 1.000. Sie nutzen davon vielleicht 825 Plätze. Die Komponenten mit den Indexen 0 bis 824 werden verwendet und die Komponenten mit den Indexen 825 bis 999 liegen brach und warten darauf, gefüllt zu werden.

Eines Tages taucht dann ein ganz neuer Kunde auf. Da Sie Ihre Kunden in einer ganz bestimmten Reihenfolge abgelegt haben (alphabetisch nach Nachnamen oder nach Postleitzahlen und so weiter), möchten Sie diesen Kunden in Ihrem Array an der richtigen Stelle unterbringen. Das Problem ist nun, dass Ihr Kunde ziemlich weit vorn im Array platziert werden muss – in der Komponente mit dem Index 7. Was geschieht nun?

Sie nehmen den Namen, der sich in der Komponente Nummer 824 befindet, und verschieben ihn in die Komponente 825. Sie nehmen den Namen, der sich in der Komponente Nummer 823 befindet, und verschieben ihn in die Komponente 824. Sie nehmen den Namen, der sich in der Komponente Nummer 822 befindet, und verschieben ihn in die Komponente 823. Dies setzen Sie fort, bis Sie den Namen in der Komponente Nummer 7 verschoben haben, und bringen jetzt endlich dort den Namen des neuen Kunden unter. So etwas tut richtig weh! Klar, dem Computer ist das ziemlich egal. Aber während Sie die ganzen Namen verschieben, verschwenden Sie Prozessorzeit, Stream und alle möglichen Ressourcen – ganz zu schweigen von Ihrer Arbeitsleistung.

»In meinem nächsten Leben reserviere ich alle zwei Namen zwei leere Komponenten.« Und wenn sich dann Ihr Geschäft immer besser entwickelt, finden Sie heraus, dass drei vielleicht doch die bessere Wahl gewesen wäre.

Hilfe durch Sammelklassen

Die Themen im vorigen Abschnitt sind nicht neu. Computerexperten arbeiten schon lange daran. Sie haben zwar bis heute noch keine Lösung gefunden, die auf alles passt, aber sie haben ein paar schlaue Tricks entdeckt.

In der Java‐API gibt es eine Reihe von Klassen, die unter dem Begriff Sammelklassen bekannt geworden sind. Jede Sammelklasse enthält Methoden, um viele Werte zu speichern. Und jede Methode einer Sammelklasse verwendet Tricks. Zusammengefasst gilt für Sie, dass sich bestimmte Sammelklassen so effizient wie möglich um die Dinge kümmern, die im letzten Abschnitt zur Sprache gekommen sind. Wenn Sie beim Schreiben von Code auf Probleme obiger Art stoßen, können Sie Sammelklassen verwenden und die Methoden dieser Klassen aufrufen. Anstatt sich über einen Kunden zu ärgern, dessen Name an Position 7 gehört, rufen Sie einfach die Methode add einer Klasse auf. Diese Methode fügt den Namen an einer Position Ihrer Wahl ein und kümmert sich um alles, was an Störungen auftauchen könnte. Wenn alles gut verläuft, wird erfolgreich eingefügt, anderenfalls können Sie zumindest sicher sein, dass der Code versucht, sein Bestes zu geben.

Eine »ArrayList« verwenden

Eine der vielseitigsten Sammelklassen Javas ist die ArrayList. Listing 12.1 zeigt Ihnen, wie sie arbeitet.

import static java.lang.System.out;

import java.util.Scanner;

import java.io.File;

import java.io.IOException;

import java.util.ArrayList;

public class ShowNames {

 public static void main(String args[]) throws IOException {

 ArrayList<String> people = new ArrayList<String>();

 Scanner diskScanner = new Scanner(new File("names.txt"));

 while (diskScanner.hasNext()) {

 people.add(diskScanner.nextLine());

 }

 people.remove(0);

 people.add(2, "Jim Newton");

 for (String name : people) {

 out.println(name);

 }

 diskScanner.close();

 }

}

Listing 12.1: Mit einer Java‐Sammlung arbeiten

Abbildung 12.1 zeigt die Beispieldatei name.txt. Der Code in Listing 12.1 liest diese Datei aus und gibt die Inhalte so wieder, wie es Abbildung 12.2 zeigt.

[image:]Abbildung 12.1: Mehrere Namen in einer Datei

[image:]Abbildung 12.2: Der Code in Listing 12.1 ändert einige Namen.

Die interessanten Dinge geschehen, wenn Sie die Methoden add und remove ausführen. Die Variable people verweist auf das Objekt ArrayList. Wenn Sie die Methode remove dieses Objekts über

people.remove(0);

aufrufen, entfernen Sie einen Eintrag aus der Liste. In diesem Fall löschen Sie jeden Wert an der Anfangsposition der Liste (der Position mit der Nummer 0). In Listing 12.1 wird auf diese Weise Barry Burd aus der Liste entfernt.

Damit bleiben nur noch acht Namen in der Liste zurück, aber dann sorgt der Befehl

people.add(2, "Jim Newton");

dafür, dass ein Name an Position 2 eingefügt wird. (Nachdem Barry Burd gelöscht worden ist, befindet sich Harry Spoonswagler an Position 2. Nun wird Harry Spoonswagler an Position 3 verschoben und Jim Newton zur Nummer 2 gemacht.)

Beachten Sie, dass ein ArrayList‐Objekt über zwei verschiedene add‐Methoden verfügt. Die Methode, die Jim Newton hinzufügt, weist zwei Parameter auf: eine Positionsnummer und einen Wert, der hinzugefügt wird. Die andere add‐Methode

people.add(diskScanner.nextLine());

enthält nur einen Parameter. Dieser Befehl übernimmt den Namen, den er auf einer Zeile der Eingabedatei findet, und fügt diesen Namen dem Ende der Liste hinzu. (Die Methode add mit nur einem Parameter fügt ihren Wert immer dem Ende des aktuellen ArrayList‐Objekts hinzu.)

Die letzten Zeilen von Listing 12.1 enthalten eine erweiterte for‐Schleife. Diese Schleife hat, wie die Schleife in Listing 11.3, die Form

for (Variablentyp variablenName : Wertebereich)

In Listing 12.1 ist der Variablentyp String, der Variablenname lautet name und der Wertebereich umfasst die Objekte, die in der Sammlung people gespeichert sind. (Wenn also die Sammlung people neun Werte enthält, durchläuft die for‐Schleife neun Iterationen.) Der Befehl in der Schleife zeigt bei jedem Durchlauf auf dem Bildschirm einen Namen an.

Generische Typen verwenden

Schauen Sie sich noch einmal Listing 12.1 an und achten Sie auf die ungewöhnliche Deklaration der ArrayList:

ArrayList<String> people = new ArrayList<String>();

Seit Java 5.0 ist jede Sammelklasse generifiziert. Dieses fürchterliche Wort bedeutet, dass jede Deklaration einer Sammlung Elemente in spitzen Klammern wie <String> enthalten sollte. Die Komponente, die von < und > eingeschlossen wird, sagt Java, welche Art von Werten die neue Sammlung enthält. So informieren zum Beispiel in Listing 12.1 die Wörter ArrayList<String> people Java darüber, dass es sich bei people um viele Strings handelt. Dies bedeutet, dass people String‐Objekte enthält.

[image:]Sie können generische Typen (seltener auch Generics genannt) nicht in Java‐Versionen vor 5.0 verwenden, und der Code in Listing 12.1 wird in jeder Version vor Java 7 gnadenlos abstürzen. Der Kasten Alles über generische Typen (in diesem Kapitel) enthält weitergehende Informationen zu diesem Thema, und in Kapitel 2 können Sie mehr über Javas Versionsnummerierung nachlesen.

In Listing 12.1 besagen die Wörter ArrayList<String> people, dass die Variable people nur auf eine Sammlung von String‐Werten verweisen kann. Also wird von diesem Zeitpunkt an jeder Verweis der Sammlung people auf ein Element nur noch als String behandelt. Wenn Sie

people.add(new Room());

schreiben, verschluckt sich der Compiler an Ihrem Code und spuckt ihn aus, weil ein Room (erstellt in Kapitel 11) nicht dasselbe ist wie ein String. (Zu solch einer Aktion des Compilers kommt es selbst dann, wenn er Zugriff auf den Code der Klasse Room hat.) Aber der Befehl

people.add("George Gow");

geht in Ordnung. Da "George Gow" vom Typ String ist, ist der Compiler glücklich.

Alles über generische Typen

Eines der Ziele beim Entwerfen von Java war es, die Sprache so einfach wie möglich zu halten. Bei der Entwicklung von Java hat James Gosling, sein Erfinder, einige der unnötig komplizierten Funktionen von C++ genommen und auf den Müll geworfen. Das Ergebnis war eine elegante und geschmeidige Sprache. Es hieß sogar, dass diese Sprache zu geschmeidig sei. Nach einigen Jahren der Diskussion wurde Java ein wenig komplizierter. Bis 2004 hatte Java enum‐Typen, erweiterte for‐Schleifen, statischen Import und einige andere interessante Funktionen erhalten. Aber am meisten wurde über die Einführung von generischen Typen gesprochen.

ArrayList<String> people = new ArrayList<String>();

Die Verwendung von etwas wie <String> war in Java 5.0 neu. Im Java davor haben Sie Folgendes geschrieben:

ArrayList people = new ArrayList();

Damals war eine ArrayList in der Lage, so gut wie alles zu speichern, was Sie dort hineinpackten – eine Zahl, ein Konto, einen Room, einen String, einfach alles. Die Klasse ArrayList war sehr vielseitig, aber diese Vielseitigkeit führte auch zu Kopfschmerzen. Sie konnten zwar alles in einer ArrayList unterbringen, aber es war schwierig vorherzusagen, was Sie von ihr erhalten. So war es nicht möglich, einfach Code zu schreiben, der davon ausging, dass bestimmte Arten von Werten in einer ArrayList gespeichert waren. Hier ein Beispiel:

ArrayList things = new ArrayList();

things.add(new Konto());

Konto meinKonto = things.get(0);

//DIESEN CODE NICHT VERWENDEN. ER IST SCHLECHT.

In der dritten Zeile nimmt sich der Aufruf von get(0) den ersten Wert in der Sammlung things. Der Aufruf von get(0) geht in Ordnung, aber dann verschluckt sich der Compiler an der versuchten Zuweisung zu meinKonto. Diese dritte Zeile ruft eine Meldung hervor, die besagt, dass nichts von dem, was Sie aus der Liste things erhalten, in der Variablen meinKonto abgelegt werden kann. Zu dieser Meldung kommt es, weil der Compiler, wenn er diese dritte Zeile erreicht, vergessen hat, dass das Element, das auf der zweiten Zeile hinzugefügt wird, vom Typ Konto ist!

Dieses Problem wurde durch die Einführung der generischen Typen behoben:

ArrayList<Konto> things = new ArrayList<Konto>();

things.add(new Konto());

Konto meinKonto = things.get(0);

//VERWENDEN SIE DIESEN CODE. ER IST IN ORDNUNG.

Dadurch, dass Sie <Konto> an zwei Stellen hinzufügen, wird der Compiler darüber informiert, dass things nur Instanzen von Konto speichert. Deshalb erhalten Sie beim letzten Code in der dritten Zeile von der Sammlung things einen Wert. Da things nur Konto‐Objekte enthält, können Sie dafür sorgen, dass meinKonto auf diesen neuen Wert verweist.

Seit Java 5.0 gibt es in Java generische Typen. Aber schon kurz nach dem Erscheinen von Java 5.0 fiel Programmierern auf, wie umständlich der Code für generische Typen sein kann. Schließlich sind Sie in der Lage, generische Typen innerhalb von generischen Typen zu erstellen. Eine ArrayList kann viele Arrays enthalten, von denen jedes eine ArrayList sein kann. So können Sie schreiben:

ArrayList<ArrayList<String>[]> mess =

 new ArrayList<ArrayList<String>[]>();

Die Wiederholungen in der Deklaration von mess bereiten mir Kopfschmerzen! Um Unschönheiten dieser Art zu vermeiden, enthalten Java 7 und spätere Versionen den Diamantoperator <>. Dieser Operator weist Java an, das wiederzuverwenden, was Sie im davor stehenden Teil der Deklaration des generischen Typs untergebracht haben. Im folgenden Beispiel sagt <> Java, dass <ArrayList<String>[]> wiederverwendet werden soll, obwohl Sie <ArrayList<String>[]> nur einmal geschrieben haben. Und so sieht der abgespeckte Java‐Code dann aus:

ArrayList<ArrayList<String>[]> mess = new ArrayList<>();

In Java 7 oder später können Sie beide Versionen der mess‐Deklaration schreiben – die alte, scheußliche Deklaration, in der ArrayList<String>[] zweimal vorkommt, oder die modernisierte (weniger schreckliche) mit dem Diamantoperator und dem nur einmal vorkommenden ArrayList<String>[].

Auch der modernisierte Code ist noch recht kompliziert, aber ohne die ganzen Wiederholungen von ArrayList<String>[] ist er weniger umständlich. Der Diamantoperator von Java 7 nimmt Ihnen gleichzeitig die Möglichkeit, etwas Falsches zu kopieren und damit im Code einen großen Fehler zu erzeugen.

Wrapper‐Klassen

In Kapitel 4 habe ich gezeigt, dass Java zweierlei Typen unterstützt: primitive Typen und Referenztypen. (Wenn Sie diese Abschnitte nicht gelesen haben oder sich nicht daran erinnern können – das macht nichts.) Dinge wie int, double, char und boolean sind primitive Typen, Dinge wie String, JFrame, ArrayList und Account sind Referenztypen.

Die Unterscheidung zwischen primitiven Typen und Referenztypen ist seit der Entstehung Javas im Jahr 1995 ein Streitthema. Und noch heute hegen die Zauberer bei Oracle Pläne, die unangenehmen Konsequenzen zu umgehen, die durch die Verwendung von zweierlei Typen entstehen. Eine dieser Konsequenzen ist natürlich die Tatsache, dass Sammlungen, wie beispielsweise die ArrayList, keine Werte eines primitiven Typs enthalten können. Beispielsweise kann man schreiben:

ArrayList<String>; people = new ArrayList<>();

nicht jedoch

ArrayList<int> numbers = new ArrayList<>(); // SEHR SCHLECHT!

weil int ein primitiver Typ ist. Was also machen Sie, wenn Sie Werte wie 3, 55 und 21 in ArrayList speichern wollen? Statt int‐Werte in der ArrayList zu speichern, speichern Sie Integer‐Werte von Java:

ArrayList<Integer> list = new ArrayList<>();

In früheren Kapiteln haben Sie die Integer‐Klasse in Verbindung mit der parseInt‐Methode kennengelernt:

int numberOfCows = Integer.parseInt("536");

Die Integer‐Klasse hat viele Methoden, wie beispielsweise parseInt, um mit int‐Werten umzugehen. Die Klasse hat außerdem Felder wie MAX_VALUE und MIN_VALUE, die für den größten und den kleinsten Wert stehen, die int‐Variablen annehmen können.

Die Integer‐Klasse ist ein Beispiel für eine Wrapper‐Klasse (auch als Hüllklasse bezeichnet). Es gibt für jeden der acht primitiven Typen in Java eine entsprechende Wrapper‐Klasse. Sie können in den Wrapper‐Klassen Double, Character, Boolean, Long, Float, Short und Byte von Java Methoden und Felder verwenden. Beispielsweise hat die Double‐Klasse Methoden namens parseDouble, compareTo und toHexString, und Felder namens MAX_VALUE und MAX_EXPONENT.

Die Integer‐Klasse hüllt den primitiven Typ int mit praktischen Methoden und Werten ein. Darüber hinaus können Sie eine Integer‐Instanz erzeugen, die einen einzigen int‐Wert einhüllt:

Integer myInteger = new Integer(42);

In dieser Codezeile enthält die Variable myInteger einen int‐Wert: den int‐Wert 42. Damit wird der int‐Wert irgendwie leichter verdaulich für Sammlungen usw.

Instanzen der anderen Wrapper‐Klassen verhalten sich ähnlich. Eine Instanz der Double‐Klasse beispielsweise hüllt einen einzelnen primitiven double‐Wert ein.

Double durchschnittlicheAnzahlTomaten = new Double(1.41421356237);

Das nachfolgende Programm speichert fünf Integer‐Werte in einer ArrayList:

import java.util.ArrayList;

public class Main {

 public static void main(String[] args) {

 ArrayList<Integer> list = new ArrayList<>();

 fillTheList(list);

 for (Integer n : list) {

 System.out.println(n);

 }

 }

 public static void fillTheList(ArrayList<Integer> list) {

 list.add(85);

 list.add(19);

 list.add(0);

 list.add(103);

 list.add(13);

 }

}

Achten Sie in dem Code auf Aufrufe wie list.add(85), die int‐Werte als Parameter haben. Nun denkt man vielleicht, man hätte der ArrayList den primitiven int‐Wert 85 hinzugefügt. Aber so ist es nicht wirklich.

In diesem Code enthält die list‐Sammlung Integer‐Werte, keine int‐Werte. Ein primitiver int‐Wert ist einer Instanz der Integer‐Klasse ganz ähnlich. Aber ein primitiver int‐Wert ist nicht genau dasselbe wie eine Integer‐Instanz.

Hier findet ein sogenanntes Autoboxing statt, also ein automatisches Verpacken. Vor Java 5.0 mussten Sie schreiben

list.add(new Integer(85));

wenn Sie einer ArrayList einen Integer hinzufügen wollten. Seit Java 5.0 kann ein int‐Wert automatisch eingepackt werden. Ein int‐Wert in einer Parameterliste wird zu einem Integer in einer ArrayList. Die Autoboxing‐Funktion von Java vereinfacht das Lesen und Schreiben von Programmen ganz maßgeblich.

Testen, ob noch mehr Daten vorhanden sind

Hier kommt eine erfreuliche Überraschung. Bei einem Programm wie dem, das weiter vorn in Listing 12.1 gezeigt wird, müssen Sie nicht wissen, wie viele Namen es in der Eingabedatei gibt. Wenn Sie wüssten, wie viele Namen in der Datei stehen, könnten Sie vielleicht auf die Idee kommen, auf die leicht zu erweiternde Klasse ArrayList zu verzichten. Wenn Sie das machen, durchlaufen Sie so lange Schleifen, bis die vorgegebene Anzahl an Namen (in unserem Beispiel genau neun) gelesen worden sind, während Sie anderenfalls so lange Schleifen drehen können, bis Ihnen die Daten ausgehen.

Die Klasse Scanner kennt verschiedene Methoden wie hasNextInt, hasNextDouble und das gute alte hasNext. Jede dieser Methoden prüft nach, ob noch mehr Eingabedaten vorhanden sind. In diesem Fall gibt die Methode true zurück. Anderenfalls wird false zurückgegeben.

Listing 12.1 verwendet die überall einsetzbare Methode hasNext. Diese Methode gibt true zurück, solange es bei den Eingabedaten des Programms noch etwas zu lesen gibt. Nachdem das Programm in der letzten Zeile von Abbildung 12.1 Hugh R. DaReader aufgenommen hat, gibt der nächste Aufruf von hasNext false zurück. Dies beendet die while‐Schleife und der Computer stürzt sich auf den Rest des Codes in Listing 12.1.

Die Methode hasNext ist sehr praktisch. Sie ist sogar so praktisch, dass sie Teil eines größeren Konzepts ist, das unter dem Namen Iterator bekannt geworden ist. Iteratoren sind feste Bestandteile aller Java‐Sammelklassen.

Einen Iterator verwenden

Ein Iterator gibt nacheinander die Werte einer Sammlung aus. Um aus einer Sammlung einen Wert zu erhalten, rufen Sie die Methode next des Iterators auf. Um herauszufinden, ob es in der Sammlung noch weitere Werte gibt, rufen Sie die Methode hasNext des Iterators auf. Listing 12.2 verwendet einen Iterator, um die Namen von Personen anzuzeigen.

import static java.lang.System.out;

import java.util.Iterator;

import java.util.Scanner;

import java.io.File;

import java.io.IOException;

import java.util.ArrayList;

public class ShowNames {

 public static void main(String args[]) throws IOException {

 ArrayList<String> people = new ArrayList<String>();

 Scanner diskScanner = new Scanner(new File("names.txt"));

 while (diskScanner.hasNext()) {

 people.add(diskScanner.nextLine());

 }

 people.remove(0);

 people.add(2, "Jim Newton");

 Iterator<String> iterator = people.iterator();

 while (iterator.hasNext()) {

 out.println(iterator.next());

 }

 diskScanner.close();

 }

}

Listing 12.2: Durch eine Sammlung iterieren

Sie können am Ende von Listing 12.1 die erweiterte for‐Schleife durch den fett gedruckten Code in Listing 12.2 ersetzen. Wenn Sie dies machen, erhalten Sie dieselbe Ausgabe wie zuvor (siehe Abbildung 12.2). In Listing 12.2 erstellt die erste fett gedruckte Zeile aus der Sammlung people einen Iterator. Die zweite und die dritte Zeile rufen die Methoden hasNext und next des Iterators auf, um sich alle Objekte der Sammlung people zu holen – bei jedem Durchgang der Schleife eines. Diese Zeilen zeigen alle Werte der Sammlung people an.

Welches ist nun die bessere Lösung? Eine erweiterte for‐Schleife oder ein Iterator? Java‐Programmierer bevorzugen die erweiterte for‐Schleife, weil sie weniger Gepäck mit sich herumschleppt – es gibt kein iterator‐Objekt, das von einer Codezeile zur nächsten weitergereicht werden muss. Aber wie Sie weiter hinten in diesem Kapitel sehen, lassen sich die meisten erweiterten Programmierfunktionen auch später noch aktualisieren, modernisieren, genauer einstellen und neu aufbauen. Auf dem Weg, Ihren Code zu verbessern, ist noch kein Ende in Sicht.

Die vielen Sammelklassen Javas

Die Klasse ArrayList, die ich in vielen Beispielen dieses Kapitels verwende, ist nur die Spitze des Eisbergs der Java‐Sammlungen. Die Java‐Bibliothek enthält viele Sammelklassen, die alle ihre Vorteile haben. Tabelle 12.1 enthält ein paar Beispiele.

	Klassenname

	Merkmale

	ArrayList

	Ein größenveränderbares Array

	LinkedList

	Eine Liste mit Werten, die alle ein Feld haben, das auf den nächsten Wert in der Liste zeigt

	Stack

	Eine Struktur, die von unten nach oben wächst. Die Struktur ist für den Zugriff auf den obersten Wert optimiert. Sie können oben leicht Werte hinzufügen oder von dort entfernen.

	Queue

	Eine Struktur, die an einem Ende wächst. Die Struktur ist dafür optimiert worden, an einem Ende Werte hinzuzufügen und am anderen Ende Werte zu entfernen.

	PriorityQueue

	Eine Struktur wie eine Warteschlange, die es zulässt, dass Komponenten mit einer höheren Priorität nach vorne verschoben werden

	HashSet

	Eine Sammlung, die keine doppelten Werte enthält

	HashMap

	Eine Sammlung von Schlüssel/Wert‐Paaren

Tabelle 12.1: Ein paar Sammelklassen

Jede Sammelklasse hat einen eigenen Satz an Methoden, die die Methoden ergänzen, die jede Sammelklasse von AbstractCollection, der Urahnin aller Sammelklassen, erbt.

[image:]Wenn Sie herausfinden wollen, welche Sammelklasse Ihren Ansprüchen am besten entspricht, besuchen Sie die Seiten mit den Dokumentationen zu diesem Thema (docs.oracle.com/javase/8/docs/api).

[image:]Und auch hier möchte ich Sie zur Übung motivieren:

[image: image] Erstellen Sie eine ArrayList mit Integer‐Werten. Anschließend durchlaufen Sie die Werte in der Liste, um den größten Wert aller Werte in der Liste zu finden. Enthält die Liste beispielsweise die Zahlen 85, 19, 0, 103 und 13, zeigen Sie die Zahl 103 an.

[image: image] Erstellen Sie eine ArrayList mit String‐Werten in alphabetischer Reihenfolge. Wenn der Benutzer ein weiteres Wort über die Tastatur eingibt, fügt das Programm das neue Wort an der richtigen Stelle (nach dem Alphabet) in die ArrayList ein.

Nehmen wir an, die Liste beginnt mit den Wörtern Hund, Katze, Pferd und Zebra (in dieser Reihenfolge). Wenn der Benutzer jetzt das Wort Maus über die Tastatur eingibt (und die Eingabetaste drückt), enthält die Liste die Wörter Hund, Katze, Maus, Pferd und Zebra (in dieser Reihenfolge).

Um dieses Programm zu schreiben, könnten Sie die compareToIgnoreCase‐Methode der String‐Klasse und die size‐Methode der ArrayList‐Klasse verwenden. Weitere Informationen über diese Methoden finden Sie unter https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#compareToIgnoreCase‐java.lang.String‐ und http://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html%23size--.

[image: image] In Kapitel 11 haben Sie eine einfache Textverarbeitung erstellt. Ihr Programm speichert Textzeilen in einem Array, die Anzahl der Zeilen ist also durch die Größe des Arrays begrenzt.

In diesem Kapitel können Sie Ihr Programm aus Kapitel 11 verbessern, indem Sie Textzeilen in einer ArrayList speichern. Eine ArrayList hat keine feste Größe, die Zeilenzahl kann also nach Bedarf zunehmen.

Ihre verbesserte Textverarbeitung unterstützt drei Befehlsarten:

● Der Befehl i 21 weist Ihr Programm an, die 21. Textzeile in das Dokument einzufügen. (Wenn es bereits eine 21. Textzeile gibt, wird die neue Zeile zwischen der vorhandenen 20. und 21. Zeilen eingefügt.)

● Der Befehl r 13 weist Ihr Programm an, die 13. Textzeile im Dokument zu ersetzen. (Falls es bereits eine 13. Textzeile gibt, verschwindet diese alte Textzeile.)

● Der Befehl d 7 weist Ihr Programm an, die siebte Textzeile zu löschen. (Falls es bereits eine achte Textzeile gibt, wird diese vorhandene Zeile zur siebten Textzeile.)

Diese Textverarbeitung kann relativ kompliziert sein. Arbeiten Sie langsam und sorgfältig und lassen Sie sich nicht entmutigen. Wenn Sie es nicht sofort schaffen, legen Sie das Projekt beiseite und versuchen es später noch einmal.

Funktionale Programmierung

In der Zeit von 1953 bis 1957 entwickelten John Backus und andere die Programmiersprache FORTRAN, die das Basisgerüst für die Programmiersprachen des 20. Jahrhunderts gelegt hat. Dieses Gerüst wird wegen seiner »Mache dies und dann das«‐Natur auch imperative Programmierung genannt.

Ein paar Jahre nach dem Aufstieg von FORTRAN entwickelte John McCarthy eine Programmiersprache mit dem Namen Lisp. Das Lisp zugrunde liegende Gerüst ist, anders als bei FORTRAN, eine funktionale Programmierung. Sie vermeiden in einer rein funktionalen Programmierung das Schreiben von »Tue dies und dann das«. Stattdessen schreiben Sie Dinge wie »Hier steht, wie du das hier in dieses dort umwandelst, wenn du so weit bist, etwas umzuwandeln.«

Aus irgendwelchen Gründen hat sich letztendlich die imperative Programmierung durchgesetzt. Deshalb ist auch Java grundsätzlich eine imperative Programmiersprache. Aber neuerdings erlebt die funktionale Programmierung eine Art Wiedergeburt als leistungsfähige und sinnvolle Möglichkeit, um über Code nachzudenken.

Ich möchte Sie jetzt nicht damit langweilen, dass ich die funktionale Programmierung im Einzelnen beschreibe, und beginne diesen Abschnitt lieber mit einer Analogie. Danach zeige ich Ihnen im Rest dieses Kapitels einige Beispiele.

Die Analogie, die ich verwende, um funktionale Programmierung zu beschreiben, ist ziemlich grob gestrickt. Einer meiner Freunde hat sie als »weit hergeholt« bezeichnet. Er erinnerte mich daran, dass die Analogie auf viele verschiedene Programmierumgebungen und nicht nur auf die funktionale Programmierung zuträfe. Trotzdem bin ich der Meinung, dass die folgende Analogie hilfreich ist:

Stellen Sie sich ein Programmierproblem als Würfel vor und stellen Sie sich weiter vor, dass die imperative Programmierungslösung eine Möglichkeit ist, den Würfel in überschaubare Teile zu zerlegen (siehe Abbildung 12.3).

[image:]Abbildung 12.3: Imperative Programmierung zerlegt Probleme.

Bis 2007 war alles in Ordnung. Dann wurden zum ersten Mal Computer mit Multicore‐Prozessoren an Endbenutzer verkauft. Ein Multicore‐Prozessor kann mehr als einen Befehl gleichzeitig ausführen. Abbildung 12.4 zeigt, was geschieht, wenn Sie versuchen, ein imperatives Programm in einen Multicore‐Prozessor zu zwängen.

[image:]Abbildung 12.4: Die Teile eines imperativen Programms passen nicht nahtlos in einen Multicore‐Chip.

Um aus einem Prozessor mit vier Kernen das Optimum herauszuholen, teilen Sie Ihren Code in vier Bereiche auf – einen für jeden Kern. Aber bei der imperativen Programmierung passen die einzelnen Teile nicht problemlos in die Kerne des Prozessors.

[image:]Bei der imperativen Programmierung tauschen sich die Teile Ihres Codes untereinander aus. So könnten alle Teile den Preis der Oracle‐Aktie (Ticker‐Symbol ORCL) aktualisieren. Diese gleichzeitigen Aktualisierungen verheddern sich. Das ist so, als wenn mehrere Jungs unabhängig voneinander dasselbe Mädchen fragen, ob es mit ihnen auf den Abi‐Ball ginge. So etwas kann nicht gut gehen. Sie machen eine ähnliche Erfahrung, wenn Sie auf die Schaltfläche Kaufen einer Website klicken, um dann zu erfahren, dass die Ware, die Sie erwerben wollten, nicht mehr vorrätig ist. Irgendjemand hat einen Einkauf abgeschlossen, während Sie noch die Daten Ihrer Kreditkarte eingegeben haben. Zu viele Kunden waren gleichzeitig hinter demselben Artikel her.

Abbildung 12.3 schlägt vor, dass Sie Ihren Code bei der imperativen Programmierung aufteilen. Auch die funktionale Programmierung zerlegt den Code in einzelne Teile, aber dies geschieht hier entlang bestimmter Strukturen (siehe Abbildung 12.5). Die gute Nachricht dabei ist, dass diese Teile problemlos in die Kerne des Prozessors passen (siehe Abbildung 12.6).

[image:]Abbildung 12.5: Das Problem entlang bestimmter Linien zerteilen

[image:]Abbildung 12.6: Die Teile passen bei einer funktionalen Programmierung genau in einen Multicore‐Chip.

Ein Problem auf die altbewährte Weise lösen

In Kapitel 11 haben Sie Arrays verwendet, um das Java‐Motel zu verwalten. Dieses Unternehmen mussten Sie abhaken. Sie haben sich aus dem Hotelgeschäft zurückgezogen. (Sie erzählen zwar überall, dass Sie sich weiterentwickeln wollen, aber in Wirklichkeit hat das Hotel nur viel Geld gekostet. Deshalb sind Sie mit dem Ding in die Insolvenz geschliddert.)

Seitdem Sie das Hotelgewerbe aufgegeben haben, beschäftigen Sie sich mit Onlineverkäufen. Heute unterhalten Sie eine Website, auf der Bücher, DVDs und andere mit Inhalten dieser Art zusammenhängende Objekte vertrieben werden.

In Ihrer Welt sieht der Verkauf (englisch Sale) eines einzelnen Objekts so ähnlich aus wie das, was Listing 12.3 enthält. Zu jedem Verkauf gehören ein Objekt und ein Preis.

public class Sale {

 private String item;

 private double price;

 public String getItem() {

 return item;

 }

 public void setItem(String item) {

 this.item = item;

 }

 public double getPrice() {

 return price;

 }

 public void setPrice(double price) {

 this.price = price;

 }

 public Sale(String item, double price) {

 this.item = item;

 this.price = price;

 }

}

Listing 12.3: Die Klasse Sale

Um die Klasse Sale zu verwenden, erstellen Sie ein kleines Programm. Dieses Programm summiert die Beträge auf, die über die DVD‐Verkäufe hereingekommen sind. Listing 12.4 gibt das Programm wieder.

import java.text.NumberFormat;

import java.util.ArrayList;

public class TallySales {

 public static void main(String[] args) {

 ArrayList<Sale> sales = new ArrayList<Sale>();

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 fillTheList(sales);

 double total = 0;

 for (Sale sale : sales) {

 if (sale.getItem().equals("DVD")) {

 total += sale.getPrice();

 }

 }

 System.out.println(currency.format(total));

 }

 static void fillTheList(ArrayList<Sale> sales) {

 sales.add(new Sale("DVD", 15.00));

 sales.add(new Sale("Book", 12.00));

 sales.add(new Sale("DVD", 21.00));

 sales.add(new Sale("CD", 5.25));

 }

}

Listing 12.4: Die Klasse Sale verwenden

In Kapitel 11 durchlaufen Sie mit einem erweiterten for‐Befehl ein Array. Listing 12.4 hat einen eigenen erweiterten for‐Befehl, der aber in diesem Listing die Werte einer Sammlung durchläuft. Bei jedem dieser Werte handelt es sich um einen Verkauf. Die Schleife überprüft immer wieder die einzelnen Verkäufe, um herauszufinden, ob es sich bei dem verkauften Objekt um eine DVD handelt. In diesem Fall fügt der Code den Verkaufspreis der Gesamtsumme hinzu. Ausgegeben werden 36,00 € – die Summe wird im Währungsformat angezeigt.

Das Szenario in Listing 12.4 ist nichts Besonderes. Sie verfügen über eine Sammlung von Dingen (wie beispielsweise eine Sammlung von Verkäufen). Sie gehen schrittweise durch die Dinge in der Sammlung und suchen das Ding, das bestimmten Kriterien entspricht (zum Beispiel Bestandteil des Verkaufs einer DVD zu sein). Sie greifen sich einen bestimmten Wert (wie den Verkaufspreis), der zu dem Ding gehört. Dann machen Sie mit den Werten, die Sie übernommen haben, etwas Sinnvolles (beispielsweise addieren Sie sie).

Hier weitere Beispiele:

[image: image] Schauen Sie sich die Liste mit Ihren Mitarbeitern an und zahlen Sie jedem mit einem Leistungsindex von 3 oder besser 100 Euro Prämie.

[image: image] Durchforsten Sie Ihre Kundenliste. Senden Sie jedem Kunden, der Interesse am Kauf eines Smartphones gezeigt hat, eine E‐Mail mit den Sonderangeboten des Monats.

[image: image] Durchlaufen Sie die Liste mit den bisher entdeckten Planeten. Finden Sie für jeden Planeten der M‐Klasse die Wahrscheinlichkeit heraus, ob es dort intelligentes Leben gibt. Berechnen Sie dann den Durchschnitt der Wahrscheinlichkeiten.

Zu diesen Szenarien kommt es so häufig, dass es sich lohnt, immer bessere Lösungswege zu finden. Einer davon ist der Einsatz der funktionalen Programmierung in Java.

Streams

Der Abschnitt Einen Iterator verwenden stellt Iteratoren vor. Sie verwenden die Methode next eines Iterators, um die Werte einer Sammlung auszugeben. Java 8 führt dieses Konzept mit der Vorstellung eines Streams einen Schritt weiter. Ein Stream (deutsch Stream) ist wie ein Iterator, bei dem Sie keine Methode next aufrufen müssen. Nachdem ein Stream erstellt worden ist, spuckt er automatisch die Werte einer Sammlung aus.

Wie funktioniert so etwas in einem Java‐Programm? Wie erstellen Sie einen Stream, der Werte ausgibt? Woher weiß der Stream, bei welchem Wert er anfangen und wohin er die Werte ausgeben soll? Antworten auf diese und andere Fragen gibt es in den nächsten Abschnitten.

Lambda‐Ausdrücke

In den 1930ern verwendete der Mathematiker Alonzo Church den griechischen Buchstaben Lamda (λ), um ein bestimmtes mathematisches Gedankengebäude darzustellen, das »auf die Schnelle« erstellt worden ist. Die Idee überlebte die nächsten Jahrzehnte in der Mathematik und der Informationstechnologie. Heute stellt der Begriff Lambda‐Ausdruck ein Stückchen Code dar, das sowohl als Deklaration einer Methode als auch als Methodenaufruf dient und »auf die Schnelle« erstellt worden ist.

Ihr erster Lambda‐Ausdruck

Hier ein Beispiel eines Lambda‐Ausdrucks:

(sale) ‐> sale.getItem().equals("DVD")

Abbildung 12.7 beschreibt, was der Lambda‐Ausdruck bedeutet.

[image:]Abbildung 12.7: Sie erhalten von einem bestimmten Verkauf den Preis.

Ein Lambda‐Ausdruck ist eine Kurzfassung, eine Methode zu definieren und aufzurufen, ohne ihr einen Namen zu geben. Der Lambda‐Ausdruck in Abbildung 12.7 macht (grob ausgedrückt) das, was auch der folgende Code täte:

boolean itemIsDVD(Sale sale) {

 if sale.getItem().equals("DVD") {

 return true;

 } else {

 return false;

 }

}

itemIsDVD(sale);

Der Lambda‐Ausdruck in Abbildung 12.7 nimmt sich Objekte aus einem Stream und ruft auf jedem Objekt eine Methode auf, die itemIsDVD ähnelt. Das Ergebnis besteht aus boolean‐Werten – true für jeden Verkauf einer DVD und false für den Verkauf anderer Artikel.

[image:]Sie können die Methode itemIsDVD mit oder ohne Lambda‐Ausdruck als einzeiligen Rumpf neu schreiben:

boolean itemIsDVD(Sale sale) {

 return sale.getItem().equals("DVD");

}

Ein Lambda‐Ausdruck mit zwei Parametern

Schauen Sie sich den folgenden Lambda‐Ausdruck an:

(price1, price2) ‐> price1 + price2

Abbildung 12.8 beschreibt die Bedeutung dieses neuen Lambda‐Ausdrucks.

[image:]Abbildung 12.8: Zwei Preise addieren.

Der Lambda‐Ausdruck in Abbildung 12.8 macht (grob ausgedrückt) das, was auch der folgende Code täte:

double sum(double price1, double price2) {

 return price1 + price2;

}

sum(price1, price2);

Der Lambda‐Ausdruck in Abbildung 12.8 nimmt einen Wert aus einem Stream und ruft eine Methode auf, die sum ähnelt und beide Werte addiert. Das Ergebnis ist die Summe aller Preise.

Das schwarze Schaf der Lambda‐Ausdrücke

Hier ein sehr interessanter Lambda‐Ausdruck:

(sale) ‐> System.out.println(sale.getPrice())

Dieser Lambda‐Ausdruck macht (grob ausgedrückt) das, was auch der folgende Code täte:

void display(Sale sale) {

 System.out.println(sale.getPrice());

}

display(sale);

Der Lambda‐Ausdruck nimmt sich Objekte aus einem Stream und ruft auf jedem Objekt eine Methode auf, die display ähnelt. Im Kopf der Methode display weist das Wort void darauf hin, dass die Methode keinen Wert zurückgibt. Wenn Sie die Methode display aufrufen (oder ihre Entsprechung als Lambda‐Ausdruck verwenden), erwarten Sie eigentlich auch keinen Rückgabewert. Stattdessen rechnen Sie damit, dass der Code etwas als Reaktion auf den Aufruf macht (zum Beispiel Text auf dem Bildschirm des Computers anzeigt).

Um eine genaue Trennlinie zwischen der Rückgabe eines Wertes und »Etwas machen« zu ziehen, haben funktionale Programmierer einen Namen dafür, wenn etwas ohne Rückgabe eines Wertes getan wird. Sie nennen es Seiteneffekt. In der funktionalen Programmierung wird ein Seiteneffekt als Bürger zweiter Klasse, als letzter Ausweg oder als eine Taktik betrachtet, auf die Sie zurückgreifen, wenn Sie nicht einfach ein Ergebnis zurückgeben können. Komischerweise wird auch die Anzeige von Daten auf dem Bildschirm (was eigentlich eine der Aufgaben vieler Programme ist) als Seiteneffekt betrachtet. Jedes Programm, das eine Ausgabe (auf einem Bildschirm, auf Papier oder als Kaffeesatz) anzeigt, ist ein funktionales Programm.

Eine Klassifizierung von Lambda‐Ausdrücken

Java teilt Lambda‐Ausdrücke in ungefähr 45 verschiedene Kategorien ein. Tabelle 12.2 listet ein paar davon auf.

	Name

	Beschreibung

	Beispiel

	Function

	Nimmt einen Parameter entgegen; liefert ein Ergebnis eines beliebigen Typs

	(sale) ‐> sale

	Predicate

	Nimmt einen Parameter entgegen; liefert einen boolean‐Wert

	(sale) ‐> sale.item

	BinaryOperator

	Nimmt zwei Parameter desselben Typs entgegen; liefert ein Ergebnis desselben Typs

	(price1, price2) ‐> price1 + price2

	Consumer

	Nimmt einen Parameter entgegen; liefert kein Ergebnis

	(sale) ‐> System.out.println(sale.price)

Tabelle 12.2: Lambda‐Ausdrücke

[image:]Die Kategorien in Tabelle 12.2 schließen sich gegenseitig nicht aus. So ist zum Beispiel jedes Predicate auch eine Function. (Jedes Predicate nimmt einen Parameter entgegen und gibt ein Ergebnis zurück. Dieses Ergebnis ist zufällig ein Wert vom Typ boolean.)

Streams und Lambda‐Ausdrücke verwenden

Java enthält wirklich gute Methoden, die Streams und Lambda‐Ausdrücke optimal nutzen. Sie können mit Streams und Lambda‐Ausdrücken eine Fertigungsstraße herstellen, die die Verkaufsprobleme dieses Kapitels elegant löst. Die neue Lösung verwendet, anders als der Code in Listing 12.4, funktionale Programmierung.

Die Fertigungsstraße besteht aus mehreren Methoden. Jede Methode übernimmt Daten, bearbeitet diese Daten irgendwie und übergibt die Ergebnisse der Bearbeitung an die nächste Methode in der Reihe. Abbildung 12.9 stellt die Fertigungsstraße für das Verkaufsproblem dieses Kapitels dar.

[image:]Abbildung 12.9: Eine Fertigungsstraße der funktionalen Programmierung

In Abbildung 12.9 stellt jedes Kästchen einen Satz Rohmaterialien dar, die entlang einer Fertigungsstraße umgewandelt werden. Jeder Pfeil entspricht einer Methode.

So siebt zum Beispiel der Übergang vom zweiten zum dritten Kästchen eine Methode (die Methode filter) Verkäufe von Objekten heraus, die keine DVDs sind. Stellen Sie sich hier jemanden vor, der zwischen dem zweiten und dem dritten Kästchen steht und Bücher und CDs aus der Fertigungsstraße entnimmt und einfach auf den Boden fallen lässt.

Bei dem Parameter der Methode filter handelt es sich um ein Predicate – einen Lambda‐Ausdruck mit einem boolean Ergebnis (siehe Tabelle 12.2 und Tabelle 12.3). Die Methode filter filtert in Abbildung 12.9 Elemente heraus, die den true/false‐Test des Lambda‐Ausdrucks nicht bestehen.

	Methode

	Mitglied von

	Parameter

	Typ des Ergebnisses

	Wert des Ergebnisses

	stream

	Collection (zum Beispiel ein ArrayList‐Objekt)

	(keiner)

	Stream

	Ein Stream, der die Elemente einer Sammlung ausgibt

	filter

	Stream

	Predicate

	Stream

	Ein neuer Stream, der Werte enthält, für die der Lambda‐Ausdruck true zurückgibt

	map

	Stream

	Function

	Stream

	Ein neuer Stream, der das Ergebnis dessen enthält, was die Anwendung eines Lambda‐Ausdrucks auf den eingehenden Stream als Ergebnis liefert

	reduce

	Stream

	BinaryOperator

	Der Typ, den der BinaryOperator verwendet

	Das Ergebnis einer Kombination aller Werte eines eingehenden Streams

Tabelle 12.3: Einige Methoden der funktionalen Programmierung

[image:]Um die Wörter in der dritten Spalte von Tabelle 12.3 (Predicate, Function und BinaryOperator) besser zu verstehen, lesen Sie im obigen Abschnitt Eine Klassifizierung von Lambda‐Ausdrücken nach.

In Abbildung 12.9 entnimmt eine Methode (die Methode map) dem einzelnen Verkauf (sale) zwischen dem dritten und dem vierten Kästchen den Preis (price). Von diesem Punkt an enthält die Fertigungsstraße nur noch price‐Werte.

Um genau zu sein, muss es eigentlich heißen, dass Javas Methode map eine Function wie

(sale) ‐> sale.getPrice()

verwendet und auf jeden Wert in einem Stream anwendet (siehe Tabelle 12.2 und Tabelle 12.3). Die Methode map nimmt sich also in Abbildung 12.9 einen eingehenden Stream aus sale‐Objekten und erstellt einen abgehenden Stream aus price‐Werten.

In Abbildung 12.9 summiert eine Methode (die Methode reduce) beim Übergang vom vierten zum fünften Kästchen die Preise der DVD‐Verkäufe. Javas Methode reduce verfügt über zwei Parameter:

[image: image] Der erste Parameter ist ein Initialisierungswert.

In Abbildung 12.9 beträgt der Initialisierungswert 0.0.

[image: image] Der zweite Parameter ist ein BinaryOperator (siehe Tabelle 12.2 und Tabelle 12.3).

In Abbildung 12.9 lautet der BinaryOperator der Methode reduce

(price1, price2) ‐> price1 + price2

Die Methode reduce verwendet ihren BinaryOperator, um die Werte im ankommenden Stream zu kombinieren. Der Initialisierungswert dient der gesamten Operation als Startpunkt. In Abbildung 12.9 führt die Methode reduce zwei Additionen durch (siehe Abbildung 12.10).

[image:]Abbildung 12.10: Die Methode addiert zwei Werte eines ankommenden Streams.

Stellen Sie sich zum Vergleich vor, dass Sie mit dem Stream die Methode

reduce(10.0, (value1, value2) ‐> value1 * value2)

aufrufen, wobei der Stream unter anderem die Werte 3.0, 2.0 und 5.0 enthält. Abbildung 12.11 stellt die daraus resultierende Aktion dar.

[image:]Abbildung 12.11: Die Methode multipliziert Werte eines ankommenden Streams.

[image:]Vielleicht haben Sie schon von Googles Programmiermodell MapReduce gehört. Die Ähnlichkeit zwischen dem Namen des Programmiermodells und den Namen der Java‐Methoden map und reduce ist kein Zufall.

Wenn Sie die Fertigungsstraße aus Abbildung 12.9 als Ganzes betrachten, summiert sie die Preise von verkauften DVDs. Listing 12.5 enthält ein vollständiges Programm, das die Streams und Lambda‐Ausdrücke aus Abbildung 12.9 verwendet.

import java.text.NumberFormat;

import java.util.ArrayList;

public class TallySales {

 public static void main(String[] args) {

 ArrayList<Sale> sales = new ArrayList<>();

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 fillTheList(sales);

 double total = sales.stream()

 .filter((sale) ‐> sale.getItem().equals("DVD"))

 .map((sale) ‐> sale.getPrice())

 .reduce(0.0, (price1, price2) ‐> price1 + price2);

 System.out.println(currency.format(total));

 }

 static void fillTheList(ArrayList<Sale> sales) {

 sales.add(new Sale("DVD", 15.00));

 sales.add(new Sale("Book", 12.00));

 sales.add(new Sale("DVD", 21.00));

 sales.add(new Sale("CD", 5.25));

 }

}

Listing 12.5: Den funktionalen »Way of Life« leben

[image:]Für den Code in Listing 12.5 brauchen Sie Java 8 oder höher. Wenn Ihre IDE für eine frühere Java‐Version eingerichtet ist, müssen Sie die IDE‐Einstellungen entsprechend einstellen oder sogar eine neuere Java‐Version herunterladen.

Bei dem in Listing 12.5 fett gedruckten Code handelt es sich um einen großen Java‐Zuweisungsbefehl. Die rechte Seite des Befehls besteht aus einer Folge von Methodenaufrufen. Jeder Methodenaufruf gibt ein Objekt zurück und jedes dieser Objekte ist das Element vor dem Punkt des nächsten Methodenaufrufs. Und genau so bauen Sie die Fertigungsstraße auf.

So verweist zum Beispiel zu Beginn des fett gedruckten Codes der Name sale auf ein ArrayList‐Objekt. Jedes ArrayList‐Objekt verfügt über eine stream‐Methode. In Listing 12.5 ist sales.stream() ein Aufruf der Methode stream des ArrayList‐Objekts.

Die Methode stream gibt eine Instanz der Java‐Klasse Stream zurück. (Welch eine Überraschung!) Auf diese Weise verweist sales.stream auf ein Stream‐Objekt (siehe Abbildung 12.12).

[image:]Abbildung 12.12: Funktionalen Code von innen nach außen lesen

Jedes Stream‐Objekt verfügt über eine Methode filter. Damit ist

sales.stream().filter ((sale) ‐> sale.getItem().equals("DVD"))

ein Aufruf der Methode filter des Objekts Stream (siehe Abbildung 12.12).

Dieses Muster setzt sich fort. Die Methode map des Objekts Stream gibt ebenfalls ein Objekt Stream zurück – ein Objekt, das Preise enthält (siehe Abbildung 12.13). Sie wenden nun auf diesen Stream aus Preisen die Methode reduce an, die einen double‐Wert ausgibt – die Summe der DVD‐Verkäufe (siehe Abbildung 12.14).

[image:]Abbildung 12.13: Den Preis jeder DVD erhalten

[image:]Abbildung 12.14: Den Gesamtpreis für alle DVD‐Verkäufe ermitteln

Warum sich Sorgen machen?

Die Kette der Methodenaufrufe in Listing 12.5 erledigt alles, was auch die Schleife in Listing 12.4 macht. Aber der Code in Abbildung 12.14 verwendet Konzepte aus der funktionalen Programmierung. Was ist denn dann das Besondere? Sind Sie mit Listing 12.5 besser dran als mit Listing 12.4?

Sie sind es. In den vergangenen Jahren ging der Trend beim Design von Chips zu den Multicore‐Prozessoren. Ein Prozessor, der über mehrere Kerne verfügt, ist in der Lage, mehrere Befehle gleichzeitig auszuführen. Dies beschleunigt die Programmausführung um den Faktor 2, 4, 8 oder noch mehr. Programme laufen viel schneller, wenn Sie die Arbeit auf mehrere Kerne verteilen. Aber wie machen Sie so etwas?

Sie können den imperativen Code in Listing 12.4 modifizieren. So sind Sie zum Beispiel in der Lage, durch den Einbau weniger Funktionen Schleifendurchgänge an mehrere Kerne zu übergeben. So etwas führt aber meistens zu einem Code, der ziemlich chaotisch ist. Damit der Code sauber arbeitet, müssen Sie die Schleifendurchgänge in allen Einzelheiten verwalten und dabei sorgfältig darauf achten, dass das Endergebnis auch richtig ist.

Im Gegensatz dazu lässt sich funktionaler Code leicht anpassen. Um Multicore‐Prozessoren nutzen zu können, ändern Sie in Listing 12.5 nur ein einziges Wort!

sales.parallelStream()

 .filter((sale) ‐> sale.getItem().equals("DVD"))

 .map((sale) ‐> sale.getPrice())

 .reduce(0.0, (price1, price2) ‐> price1 + price2);

In Listing 12.5 erzeugt der Methodenaufruf stream() einen seriellen Stream. Bei einem seriellen Stream verarbeitet Java jeweils einen Verkauf gleichzeitig. Ein Aufruf von parallelStream() erzeugt einen etwas anderen Stream: einen parallelen Stream. Mit einem parallelen Stream teilt Java die Arbeit auf die Kerne des Prozessors im Computer auf (oder ordnet sie abhängig von der jeweiligen Rechenleistung zu). Wenn Sie 4 Millionen Verkäufe und vier Kerne haben, verarbeitet jeder Kern 1 Million Verkäufe.

Jeder Kern arbeitet unabhängig von den anderen Kernen und jeder Kern übergibt seine Ergebnisse an eine letzte reduce‐Methode. Diese Methode fasst die Ergebnisse der Kerne in einem abschließenden Zähler zusammen. Im bestmöglichen Szenario wird die Arbeit in einem Viertel der Zeit erledigt, die bei einem gewöhnlichen seriellen Stream erforderlich wäre.

[image:]Übersehen Sie im vorigen Absatz auf keinen Fall die Formulierung im bestmöglichen Szenario. Eine parallele Verarbeitung kann keine Zaubertricks. Und manchmal ist sie kontraproduktiv. Angenommen, Sie haben nur 20 Verkäufe zu verarbeiten. Die Zeit, die es dauert, die Aufgabe in Gruppen von je 5 Verkäufen zu unterteilen, ist sehr viel länger als die Zeit, die Sie mit dem Einsatz aller vier Kerne einsparen. Und es gibt Aufgaben, die überhaupt nicht für eine parallele Verarbeitung geeignet sind. Stellen Sie sich vor, der Preis eines Artikels ist von der Anzahl der verkauften Artikel abhängig. In diesem Fall können Sie die Aufgabe nicht auf vier unabhängig voneinander arbeitende Kerne aufteilen. Wenn Sie es versuchen, muss jeder Kern wissen, was die anderen Kerne gerade machen. Damit verlieren Sie den Vorteil, den vier Threads bei der Ausführung erbringen würden.

Keine Variablen? Kein Problem!

Bedenken Sie noch einmal die Probleme, auf die ich zu Beginn des Abschnitts Funktionale Programmierung hinweise. Mehrere Clients versuchen gleichzeitig, Oracles Aktienkurs zu aktualisieren, oder zwei Besucher versuchen gleichzeitig, auf einer Website dasselbe Objekt zu kaufen. Die Quelle des Problems sind die gemeinsam genutzten Daten. Wie viele Clients teilen sich den Zugriff auf Oracles Aktienkurs? Wie viele Kunden teilen sich den Zugriff auf die Schaltfläche Kaufen einer Webseite? Wie viele Kerne Ihres Prozessors können den Wert derselben Variablen ändern? Wenn Sie das Problem der gemeinsamen Datennutzung gelöst haben, sind Sie auch das Problem der Multicore‐Verarbeitung los.

Bei der imperativen Programmierung ist eine Variable ein Ort, an dem Befehle ihre Werte miteinander teilen. Besteht nun eine Möglichkeit, dass Sie in Ihrem Code auf den Einsatz von Variablen verzichten können?

Vergleichen Sie die Schleife in Listing 12.4 mit dem Code der funktionalen Programmierung in Listing 12.5. In Listing 12.4 wird die Variable total von allen Schleifeniterationen geteilt. Da jeder Schleifendurchlauf den Wert von total ändern kann, dürfen Sie auf keinen Fall jeden Schleifendurchlauf einem anderen Prozessorkern zuweisen. Falls Sie so etwas doch machen, riskieren Sie es, dass zwei Kerne total gleichzeitig aktualisieren. (Dieses Risiko besteht, weil aufgrund der gleichzeitigen Aktualisierung keiner der Kerne seine Aufgabe fehlerfrei ausführt!) Nun kennt der Code der funktionalen Programmierung (in Listing 12.5) keine Variable total. Hier spielt also ein laufendes total keine Rolle. Stattdessen summiert in Listing 12.5 die Methode reduce Werte, die aus einem Stream stammen. Dieser ankommende Stream entstammt dem Aufruf der vorherigen Methode (der Methode map), weshalb dieser Stream keinen Namen hat. Das ist doch gut so, oder? Sie benötigen keine Variable, um einen Stream aus Werten zu speichern.

Bei der imperativen Programmierung ist eine Variable ein Ort, an dem Befehle ihre Werte teilen. Die funktionale Programmierung vermeidet Variablen. Wenn Sie also funktional programmieren, müssen Sie sich nicht so viel um geteilte Daten kümmern. Viele Probleme, die mit Multicore‐Prozessoren zusammenhängen, lösen sich in Luft auf. Ihr Code kann die Vorteile mehrerer Kerne nutzen. Wenn Sie den Code schreiben, müssen Sie sich nicht um Daten kümmern, die unter den Kernen aufgeteilt werden. Damit stehen Sie vor einer eleganten Lösung eines der zentralen Probleme des Computerwesens.

Methodenreferenzen

Werfen Sie einen kritischen Blick auf den letzen Lambda‐Ausdruck in Listing 12.5:

(price1, price2) ‐> price1 + price2)

Dieser Ausdruck erledigt, grob ausgedrückt, dieselbe Arbeit wie eine sum‐Methode. (Sie finden im Abschnitt Lambda‐Ausdrücke die Deklaration einer solchen Methode sum.) Wenn Sie vor der Wahl stehen, entweder eine dreizeilige sum‐Methode oder einen einzeiligen Lambda‐Ausdruck einzugeben, entscheiden Sie sich wohl für den Lambda‐Ausdruck. Was ist aber, wenn es eine dritte Alternative gäbe? Statt eine eigene Methode sum zu schreiben, können Sie auf eine vorhandene Methode sum zugreifen. Und dies wäre dann auch der schnellste und sicherste Weg, den es einzuschlagen gilt.

Wie es das Schicksal so will, gibt es in Java die Klasse Double. Diese Klasse enthält eine statische Methode sum. Sie müssen also keine eigene Methode sum erstellen. Wenn Sie den Code

double i = 5.0, j = 7.0;

System.out.println(Double.sum(i, j));

ausführen, zeigt der Computer 12.0 an. Anstatt in Listing 12.5 den Lambda‐Ausdruck price1 + price2 zu schreiben, können Sie eine Methodenreferenz erstellen – einen Ausdruck, der auf eine vorhandene Methode verweist.

sales.stream()

 .filter((sale) ‐> sale.getItem().equals("DVD"))

 .map((sale) ‐> sale.getPrice())

 .reduce(0.0, Double :: sum);

Der Ausdruck Double::sum verweist auf die Methode sum, die zu Javas Klasse Double gehört. Wenn Sie die Methodenreferenz Double::sum verwenden, erreichen Sie dasselbe wie mit dem letzten Lambda‐Ausdruck in Listing 12.5. Alles gut.

Weitere Informationen über statische Methoden finden Sie in Kapitel 10.

[image:]Sie können natürlich genau die Programme schreiben, von denen Sie immer schon geträumt haben. Wenn Ihnen aber keine Übung zur funktionalen Programmierung einfällt, habe ich hier ein paar Vorschläge für Sie:

[image: image] Jeder Mitarbeiter hat einen Namen und eine Leistungsbewertung. Bestimmen Sie die Summe aller Boni, die Sie zahlen, wenn Sie jedem Mitarbeiter mit einer Bewertung von 3 oder besser 100 Euro Bonus zahlen.

[image: image] Jedes Rezept hat einen Namen, eine Liste Zutaten (einige davon mit Fleischprodukten) und eine geschätzte Zubereitungsdauer. Bestimmen Sie die geschätzte Durchschnittszeit, wie lange es dauert, eines der vegetarischen Rezepte zuzubereiten.

351-382

Kapitel 13

Gut aussehen, wenn sich die Dinge unerwartet ändern

In diesem Kapitel

Sich von falschen Eingaben erholen und aus anderen üblen Situationen retten

Den Code (mehr oder weniger) absturzsicher machen

Eigene Exception‐Klassen definieren

Am 9. September 1945: Eine Motte fliegt in ein Relais des Harvard‐Computers Mark II und vermasselt alles. Dies ist der erste echte Bug eines Computers, der dokumentiert wurde.

19. April 1957: Herbert Bright, Leiter des Zentrums für Datenverarbeitung bei Westinghouse in Pittsburgh, erhält per Post einen nicht gekennzeichneten Satz Lochkarten (was Sie heutzutage mit einer unbeschrifteten CD‐ROM vergleichen können). Mr. Bright geht davon aus, dass dieser Stapel vom FORTRAN‐Entwicklungsteam kommt. (FORTRAN war die erste Programmiersprache für Computer.) Er hat seit Jahren auf diese Software gewartet. (Damals gab es noch kein Herunterladen aus dem Internet.)

Mr. Bright schreibt ein kleines FORTRAN‐Programm und versucht, es auf seinem IBM 704 zu kompilieren. (Der IBM 704 steht in seinem eigenen, extra für ihn gebauten, fast 200 Quadratmeter großen Raum. Er hat Vakuumröhren und keine Transistoren und verfügt über den Wahnsinnsarbeitsspeicher von 32 K. Das Betriebssystem muss von Bändern geladen werden, bevor ein Programm ausgeführt werden kann. Eine ganz normale Programmausführung dauert zwischen zwei und vier Stunden.) Nach der üblichen Wartezeit liefert Brights Versuch, ein FORTRAN‐Programm zu kompilieren, nur eine Fehlermeldung, denn in einer Anweisung fehlt ein Komma. Bright korrigiert seinen Fehler und das Programm funktioniert wunderbar.

22. Juli 1962: Mariner I, die als erste US‐Raumsonde einen anderen Planeten erreichen soll, wird vier Minuten nach dem Start zerstört, weil sie außer Kontrolle gerät. Das Verhalten der Raumsonde wird mit einem fehlenden Strich (vergleichbar einem Bindestrich) in der Formel für die Geschwindigkeit der Rakete erklärt.

Zur selben Zeit wird in der Software der NASA zur Berechnung von Umlaufbahnen der falsche Befehl DO 10 I=1.10 gefunden. (Es hätte DO 10 I=1,10 heißen müssen.) In moderner Schreibweise ist das so, als wenn Sie do10i = 1.10 statt for (int i=1; i<=10; i++) schreiben. Die Änderung von einem Komma zu einem Punkt macht aus einer Schleife einen Zuweisungsbefehl.

1. Januar 2000: Das Jahr‐2000‐Problem treibt in der modernen Welt sein Unwesen.

Mit Ausnahmen umgehen

Sie machen Inventur. Das heißt Zählen – Teil für Teil, Karton für Karton – und Aufschreiben der Zahlen auf großen Papierbögen, in kleinen Handhelds oder mit der Tastatur des Computers direkt in die entsprechenden Formulare. Ein wichtiger Teil dieses Projekts ist die Eingabe der Anzahl an Kartons, die sich im Regal »Die großen staubigen Kartons, die seit Bestehen des Unternehmens nicht geöffnet worden sind« befinden. Und auch Sie brechen die Jahrzehnte alte Gewohnheit nicht und entscheiden, keinen dieser Kartons aufzumachen. Sie legen einfach fest, dass jeder Karton 3,25 Euro wert ist.

Listing 13.1 zeigt die Software, die dieses Stückchen der Inventur übernimmt. Die Software weist eine Schwachstelle auf, die Abbildung 13.1 darstellt. Wenn der Benutzer eine Ganzzahl eingibt, ist alles in Ordnung. Wenn der Benutzer aber etwas anderes (wie zum Beispiel die Zahl 3,5) eingibt, stürzt das Programm ab. Natürlich kann dagegen etwas unternommen werden. Ein Computer ist dumm, aber er ist nicht so dumm, dass er vollständig versagt, wenn ein Benutzer einen falschen Wert eingibt.

import static java.lang.System.out;

import java.util.Scanner;

import java.text.NumberFormat;

public class InventoryA {

 public static void main(String args[]) {

 final double boxPrice = 3.25;

 Scanner keyboard = new Scanner(System.in);

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 out.print("Wie viele Kartons haben wir? ");

 String numBoxesIn = keyboard.next();

 int numBoxes = Integer.parseInt(numBoxesIn);

 out.print("Ihr Wert beträgt ");

 out.println(currency.format(numBoxes * boxPrice));

 keyboard.close();

 }

}

Listing 13.1: Kartons zählen

[image:]Abbildung 13.1: Drei Ausführungen von Listing 13.1

Der Schlüssel zum Beheben eines Programmfehlers liegt im Untersuchen der Meldung, die erscheint, wenn das Programm abstürzt. Die Meldung des Inventurprogramms lautet java.lang.NumberFormatException. Dies bedeutet, dass es im API‐Paket java.lang eine Klasse mit dem Namen NumberFormatException gibt. Irgendwie hat der Aufruf von Integer.parseInt diese Klasse aus ihrem Versteck geholt.

[image:]Sie finden in Kapitel 11 eine kurze Beschreibung der Methode Integer.parseInt.

Nun, das hier geschieht: Die Programmiersprache Java kennt einen Mechanismus, der Exception Handling oder auf Deutsch Ausnahmebehandlung heißt. Mit der Ausnahmebehandlung ist ein Programm in der Lage, die Dinge zu entdecken, die schieflaufen, und zu reagieren, indem ein ganz neues Objekt erstellt wird. In der offiziellen Terminologie sagt man in solch einem Fall, dass das Programm eine Ausnahme wirft. Das neue Objekt, das eine Instanz der Klasse Exception ist, wird so lange wie eine heiße Kartoffel von einem Teil des Codes an einen anderen Teil weitergegeben, bis sich ein Teil des Codes entscheidet, die Ausnahme zu fangen. Wenn die Ausnahme gefangen worden ist, führt das Programm einen Wiederherstellungscode aus, beerdigt die Ausnahme und macht so mit dem nächsten normalen Befehl weiter, als wenn nichts gewesen wäre. Abbildung 13.2 stellt diesen Vorgang grafisch dar.

[image:]Abbildung 13.2: Eine Ausnahme werfen, weitergeben und fangen

Die ganze Sache wird mithilfe einiger Java‐Schlüsselwörter erledigt. Bei diesen Schlüsselwörtern handelt es sich um:

[image: image] throw: (deutsch werfen) Erstellt ein neues Ausnahmeobjekt.

[image: image] throws: Gibt den Schwarzen Peter von einer Methode an den Code weiter, der die Methode aufgerufen hat.

[image: image] try: Hierzu gehört Code, der das Potenzial besitzt, ein neues Ausnahmeobjekt zu erstellen. Im Allgemeinen enthält der Code in einer try‐Klausel Aufrufe von Methoden, deren Code eine oder mehrere Ausnahmen erstellen können.

[image: image] catch: Kümmert sich um die Ausnahme, beerdigt sie und macht mit dem Programmablauf weiter.

Damit kennen Sie die Wahrheit. Die Methode Integer.parseInt kann aufgrund einer Ereigniskette wie der in Abbildung 13.2 eine NumberFormatException werfen. Wenn Sie Integer.parseInt aufrufen, wird diese NumberFormatException an Sie übergeben.

[image:]Die Dokumentation der Java‐API für die Methode parseInt besagt in freier Übersetzung: »Throws: NumberFormatException – wenn der String keinen Integer‐Wert enthält, der geparst werden kann.« Es lohnt sich wirklich, ab und zu einen Blick in diese Dokumentation zu werfen.

Wenn Sie sich selbst zu den Helden zählen, sollten Sie die Ausnahme fangen, damit der restliche Code mit seiner normalen Arbeit weitermachen kann. Listing 13.2 zeigt, wie eine Ausnahme gefangen werden kann.

import static java.lang.System.out;

import java.util.Scanner;

import java.text.NumberFormat;

public class InventoryB {

 public static void main(String args[]) {

 final double boxPrice = 3.25;

 Scanner keyboard = new Scanner(System.in);

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 out.print("Wie viele Kartons haben wir? ");

 String numBoxesIn = keyboard.next();

 try {

 int numBoxes = Integer.parseInt(numBoxesIn);

 out.print("Ihr Wert beträgt ");

 out.println(

 currency.format(numBoxes * boxPrice));

 } catch (NumberFormatException e) {

 out.println("Das ist keine Zahl.");

 }

 keyboard.close();

 }

}

Listing 13.2: Ein Held zählt Kartons.

[image:]Abbildung 13.3: Drei Ausführungen des Codes in Listing 13.2

Abbildung 13.3 gibt das Ergebnis von drei Ausführungen des Codes in Listing 13.2 wieder. Wenn ein irregeleiteter Benutzer drei statt 3 eingibt, bleibt das Programm ruhig und zeigt einfach Das ist keine Zahl. an. Der Trick besteht darin, den Aufruf von Integer.parseInt in einer try‐Klausel unterzubringen. Wenn Sie dies machen, achtet der Computer auf Ausnahmen, wenn ein Befehl in der try‐Klausel ausgeführt wird. Wenn dann eine Ausnahme geworfen wird, springt der Computer aus der try‐Klausel heraus in die darunter liegende catch‐Klausel. In Listing 13.2 ist dies die Klausel catch (NumberFormatException e). Er führt nun den println‐Befehl in der Klausel aus und macht dann mit der normalen Verarbeitung weiter. (Wenn es in Listing 13.2 im Anschluss an die catch‐Klausel Befehle gäbe, würde der Computer sie ausführen.)

[image:]Eine vollständiges try‐catch‐Gruppe – eine try‐Klausel, eine catch‐Klausel und was Sie sonst noch haben – wird try‐Befehl genannt. Um den Schwerpunkt besser hervorzuheben, bezeichne ich so etwas gerne als try‐catch‐Befehl.

Der Parameter einer »catch«‐Klausel

Werfen Sie in Listing 13.2 einen Blick auf die catch‐Klausel und beachten Sie ganz besonders die Wörter (NumberFormatException e). Dies sieht wie die Parameterliste einer Methode aus. Tatsächlich hat jede catch‐Klausel etwas von einer Methode mit einer eigenen Parameterliste an sich. Diese Parameterliste enthält immer den Namen eines Ausnahmetyps und einen Parameter.

Ich mache in Listing 13.2 nichts mit dem Parameter e der catch‐Klausel, was aber problemlos möglich wäre. Denken Sie daran, dass die Ausnahme, die geworfen wird, ein Objekt ist – eine Instanz der Klasse NumberFormatException. Wenn eine Ausnahme gefangen wird, sorgt der Computer dafür, dass der Parameter der Klausel catch auf dieses Ausnahmeobjekt verweist. Oder anders ausgedrückt, der Name e speichert Informationen über die Ausnahme. Um daraus Nutzen zu ziehen, können Sie einige der Methoden des Ausnahmeobjekts aufrufen, wie zum Beispiel:

} catch (NumberFormatException e) {

 out.println("Message: ***" + e.getMessage() + "***");

 e.printStackTrace();

}

[image:]Abbildung 13.4: Die Methoden eines Ausnahmeobjekts aufrufen

Mit dieser neuen catch‐Klausel könnte eine Ausführung des Inventurprogramms wie das aussehen, was Abbildung 13.4 zeigt. Wenn Sie getMessage aufrufen, gelangen Sie an Einzelheiten der Ausnahme. (In Abbildung 13.4 lautet ein solches Detail Nachricht: ***For input string: "drei"***). Wenn Sie printStackTrace aufrufen, erhalten Sie weitere Informationen, zu denen insbesondere die Ausgabe der Methoden gehört, die zu dem Zeitpunkt liefen, als die Ausnahme geworfen wurde. (In Abbildung 13.4 enthält die Anzeige Integer.parseInt und die Methode main.) Sowohl getMessage als auch printStackTrace liefern Informationen, die Ihnen helfen sollen, die Quelle der Probleme zu finden, die das Programm hat.

[image:]Wenn Sie Aufrufe von System.out.println mit Aufrufen von printStackTrace kombinieren, ist die Reihenfolge, in der Java die Informationen anzeigt, nicht vorhersehbar. So kann zum Beispiel in Abbildung 13.4 der Text Nachricht: ***For input string: "drei"*** vor oder hinter dem Stacktrace (wie die reine Java‐Fehlermeldung genannt wird) angezeigt werden. Wenn die Reihenfolge dieser Ausgabe wichtig ist, ändern Sie out.println("Message: ***" in System.err.println("Message: ***".

Ausnahmetypen

Was kann heute sonst noch schiefgehen? Gibt es noch weitere Arten von Ausnahmen – Dinge, die nicht der Klasse NumberFormatException entstammen? Aber sicher doch, dort draußen warten noch viele Arten von Ausnahmen auf Sie. Sie können sogar eigene Ausnahmen erstellen. Sie wollen das ausprobieren? Schauen Sie sich die Listings 13.3 und 13.4 an.

@SuppressWarnings("serial")

class OutOfRangeException extends Exception {

}

Listing 13.3: Stellen Sie Ihre eigene Ausnahme her.

import static java.lang.System.out;

import java.util.Scanner;

import java.text.NumberFormat;

public class InventoryC {

 public static void main(String args[]) {

 final double boxPrice = 3.25;

 Scanner keyboard = new Scanner(System.in);

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 out.print("Wie viele Kartons haben wir? ");

 String numBoxesIn = keyboard.next();

 try {

 int numBoxes = Integer.parseInt(numBoxesIn);

 if (numBoxes < 0) {

 throw new OutOfRangeException();

 }

 out.print("Ihr Wert beträgt ");

 out.println(currency.format(numBoxes * boxPrice));

 } catch (NumberFormatException e) {

 out.println("Das ist keine Zahl.");

 } catch (OutOfRangeException e) {

 out.print(numBoxesIn);

 out.println("? Das ist unmöglich!");

 }

 keyboard.close();

 }

}

Listing 13.4: Die benutzerdefinierte Ausnahme verwenden

Die Codes in den Listings 13.3 und 13.4 beheben ein Problem, das in Abbildung 13.3 aufgetaucht ist. Betrachten Sie den letzten Durchlauf in Abbildung 13.3. Der Benutzer notiert, dass im Regal ‐25 Kartons liegen, und der Computer nimmt diesen Wert, ohne zu zögern, als gegeben an. Die Wahrheit ist, dass Sie ein Schwarzes Loch (oder ein anderes außergewöhnliches Phänomen des Star‐Trek‐Zeitalters) benötigen, um in irgendeinem Regal eine negative Anzahl von Kartons zu lagern. Deshalb sollte das Programm angehalten werden, wenn ein Benutzer negative Zahlen eingibt – und das ist genau das, was der Code in Listing 13.4 bewirkt. Abbildung 13.5 zeigt die entsprechende Reaktion des Computers.

[image:]Abbildung 13.5: Der Code aus den Listings 13.3 und 13.4 wird dreimal ausgeführt.

Der Code in Listing 13.3 deklariert eine neue Ausnahmeklasse – OutOfRangeException. Häufig macht es Sinn, eine negative Zahl einzugeben, weshalb OutOfRangeException kein Bestandteil der Java‐API ist. Natürlich sollten negative Zahlen im Inventurprogramm als Anomalie gekennzeichnet werden.

In Listing 13.3 gewinnt die Klasse OutOfRangeException den Preis für das kleinste abgeschlossene Stückchen Code in diesem Buch. Der Code der Klasse besteht nur aus einer Deklarationszeile und einem leeren Paar Klammern. Nur der Ausdruck extends Exception ist für die Funktionsfähigkeit zuständig. Da es sich bei der Klasse OutOfRangeException um eine Unterklasse der Java‐API‐Klasse Exception handelt, kann jede ihrer Instanzen geworfen werden.

In Listing 13.4 wird eine neue Instanz von OutOfRangeException geworfen. Wenn dies geschieht, fängt die Klausel catch (OutOfRangeException e) die Instanz. Die Klausel gibt die Eingabe des Benutzers wieder und zeigt die Meldung Das ist unmöglich! an.

Der Text @SuppressWarnings("serial") in Listing 13.3 ist eine Annotation. Mehr über Annotations finden Sie in Kapitel 8. In Kapitel 9 stehen ein paar Worte zur Annotation SuppressWarnings.

[image:]Wenn Sie Eclipse einsetzen, kann es sein, dass Sie in Listing 13.4 neben der Zeile new OutOfRangeException() einen gelben Warnhinweis zu sehen bekommen. Wenn Sie den Mauszeiger über diesen Warnhinweis schieben, teilt Ihnen Eclipse mit: »Resource leak: 'keyboard' is not closed at this location.« Damit weist die IDE noch einmal ausdrücklich darauf hin, dass keyboard nicht geschlossen worden ist. Eclipse ist wirklich kleinlich, wenn es darum geht, dafür zu sorgen, dass Ihr Code gegebenenfalls den Befehl keyboard.close()auch ausführen kann. (Ja, unter Umständen kann der Aufruf der OutOfRangeException bewirken, dass das Programm die Anweisung keyboard.close() überspringt. Aber nein, wenn Sie den Code in Listing 13.4 ausführen, kann das nicht passieren.) Meiner Meinung nach können Sie diese Warnung gefahrlos ignorieren.

Wer fängt die Ausnahme ein?

Werfen Sie noch einmal einen Blick auf Listing 13.4. Beachten Sie, dass eine einzelne try‐Klausel von mehreren catch‐Klauseln begleitet werden kann. Wenn eine Ausnahme innerhalb einer try‐Klausel geworfen wird, beginnt der Computer damit, die begleitende Liste mit den catch‐Klauseln abzuarbeiten. Dabei beginnt er mit der catch‐Klausel, die der try‐Klausel unmittelbar folgt, und arbeitet dann den Text des Programms ab.

Bei jeder catch‐Klausel fragt sich der Computer selbst: »Ist die Ausnahme, die gerade geworfen worden ist, eine Instanz der Klasse, die Bestandteil der Parameterliste der aktuellen Klausel ist?«

[image: image] Falls nein, übergeht der Computer diese catch‐Klausel und macht mit der nächsten catch‐Klausel weiter.

[image: image] Falls ja, führt der Computer die catch‐Klausel aus und überspringt alle anderen catch‐Klauseln, die zur try‐Klausel gehören. Der Computer macht weiter und führt die Befehle aus, die dem gesamten try‐catch‐Befehl folgen.

Für konkrete Beispiele zu diesem Thema siehe die Listings 13.5 und 13.6.

@SuppressWarnings("serial")

class NumberTooLargeException extends OutOfRangeException {

}

Listing 13.5: Noch ein Beispiel

import static java.lang.System.out;

import java.util.Scanner;

import java.text.NumberFormat;

public class InventoryD {

 public static void main(String args[]) {

 final double boxPrice = 3.25;

 Scanner keyboard = new Scanner(System.in);

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 out.print("Wie viele Kartons haben wir? ");

 String numBoxesIn = keyboard.next();

 try {

 int numBoxes = Integer.parseInt(numBoxesIn);

 if (numBoxes < 0) {

 throw new OutOfRangeException();

 }

 if (numBoxes > 1000) {

 throw new NumberTooLargeException();

 }

 out.print("Ihr Wert beträgt ");

 out.println(currency.format(numBoxes * boxPrice));

 }

 catch (NumberFormatException e) {

 out.println("Das ist keine Zahl.");

 }

 catch (OutOfRangeException e) {

 out.print(numBoxesIn);

 out.println("? Das ist unmöglich!");

 }

 catch (Exception e) {

 out.print("Irgendetwas ist nicht in Ordnung, ");

 out.print("und ich weiß nicht, ");

 out.println("was die Ursache ist.");

 }

 out.println("Damit ist die Sache erledigt.");

 keyboard.close();

 }

}

Listing 13.6: Wer bekommt den Schwarzen Peter?

Damit Sie den Code aus den Listings 13.5 und 13.6 ausführen können, benötigen Sie eine weitere Java‐Programmdatei, die Klasse OutOfRangeException aus Listing 13.3.

Listing 13.6 spricht ein Szenario an, bei dem im Lager nur begrenzt Platz vorhanden ist. Sie können maximal 1.000 Kartons unterbringen, und ab und zu fragt das Programm nach, wie viele Kartons es im Lager gibt. Wenn dann jemand irrtümlich 100000 eingibt, überprüft das Programm die Lage und verwirft alles, was größer als 1.000 ist.

Listing 13.6 achtet auf eine NumberTooLargeException, aber damit das Leben nicht zu langweilig wird, enthält Listing 13.6 für diese Ausnahme keine catch‐Klausel. Trotzdem funktioniert alles prächtig. Das ist möglich, weil NumberTooLargeException als Unterklasse von OutOfRangeException deklariert ist und Listing 13.6 eine catch‐Klausel für die OutOfRangeException besitzt.

Da NumberTooLargeException eine Unterklasse von OutOfRangeException ist, handelt es sich bei NumberTooLargeException nur um eine besondere Form von OutOfRangeException. Also beginnt der Computer in Listing 13.6 damit, eine Klausel zu suchen, um eine NumberTooLargeException zu fangen. Wenn der Computer über die catch‐Klausel der OutOfRangeException stolpert, hat er etwas Passendes gefunden und führt die Befehle in dieser catch‐Klausel aus.

Um diese Geschichte nicht immer wieder aufs Neue erzählen zu müssen, führe ich eine neue Terminologie ein. Ich sage, dass die catch‐Klausel OutOfRangeException mit Parameter zur NumberTooLargeException passt, die geworfen wird. Ich nenne eine solche catch‐Klausel eine passende catch‐Klausel.

Die folgende Auflistung beschreibt verschiedene Dinge, die ein Benutzer machen könnte, und wie der Computer darauf reagiert. Wenn Sie sich diese Liste vornehmen, sollten Sie immer wieder einen Blick auf Abbildung 13.6 werfen, die vier Ausführungen des Programms zeigt.

[image:]Abbildung 13.6: Der Code in Listing 13.6 wurde viermal ausgeführt.

[image: image] Der Benutzer gibt eine normale Ganzzahl wie die Zahl 3 ein. Alle Befehle in der try‐Klausel werden ausgeführt. Dann lässt der Computer alle catch‐Klauseln aus und beschäftigt sich mit dem Code, der unmittelbar auf die letzte catch‐Klausel folgt (siehe Abbildung 13.7).

[image:]Abbildung 13.7: Es wird keine Ausnahme geworfen.

[image: image] Der Benutzer gibt etwas ein, das keine Ganzzahl ist (zum Beispiel das Wort viele). Der Computer wirft eine NumberFormatException und überspringt die restlichen Befehle in der try‐Klausel. Der Computer führt die Befehle in der ersten catch‐Klausel aus – der Klausel, deren Parameter vom Typ NumberFormatException ist. Dann überspringt der Computer die restlichen catch‐Klauseln und führt den Code aus, der unmittelbar auf die catch‐Klauseln folgt (siehe Abbildung 13.8).

[image: image] Der Benutzer gibt eine negative Zahl wie ‐25 ein. Der Code wirft eine OutOfRangeException. Der Computer übergeht die restlichen Befehle in der try‐Klausel. Er übergeht sogar die Befehle in der ersten catch‐Klausel. (Schließlich ist eine OutOfRangeException keine Form der NumberFormatException. Die catch‐Klausel mit dem Parameter NumberFormatException passt nicht zu dieser OutOfRangeException.) Der Computer führt die Befehle in der zweiten catch‐Klausel aus – der Klausel, deren Parameter vom Typ OutOfRangeException ist. Dann übergeht der Computer die dritte catch‐Klausel und führt den Code aus, der unmittelbar auf die catch‐Klauseln folgt (siehe Abbildung 13.9).

[image:]Abbildung 13.8: Eine wird geworfen.

[image:]Abbildung 13.9: Es wird eine geworfen.

[image: image] Der Benutzer gibt einen unrealistisch großen Wert wie die Zahl 1001 ein. Der Code wirft eine NumberTooLargeException. Der Computer überspringt die restlichen Befehle in der try‐Klausel und die Befehle in der ersten catch‐Klausel. (Schließlich ist eine NumberTooLargeException keine Form der NumberFormatException.)

Aber die NumberTooLargeException ist, wie es der Code in Listing 13.5 beschreibt, eine Unterklasse der Klasse OutOfRangeException. Wenn der Computer die catch‐Klausel erreicht, stellt er fest, dass die NumberTooLargeException eine Art von OutOfRangeException ist. Er führt die Befehle in der catch‐Klausel aus – der Klausel, die einen Parameter vom Typ OutOfRangeException enthält. Beide Ausnahmen passen also zusammen.

Der Computer führt nun die Befehle innerhalb der zweiten catch‐Klausel aus. Dann überspringt er die dritte catch‐Klausel und führt den Code aus, der unmittelbar auf alle catch‐Klauseln folgt (siehe Abbildung 13.10).

[image:]Abbildung 13.10: Eine ausführen

[image: image] Es geschieht etwas relativ Unvorhersehbares. (Ich weiß nicht, was.) Bei meinem unstillbaren Drang herumzuspielen, habe ich mir die try‐Klausel in Listing 13.6 genommen und einen Befehl hinzugefügt, der eine IOException wirft. Dafür gibt es eigentlich keinen Grund – ich wollte einfach sehen, was dann passiert.

Als der Code eine IOException warf, übersprang der Computer die restlichen Befehle in der try‐Klausel und die ersten beiden catch‐Klauseln. Wenn der Computer die dritte catch‐Klausel erreicht, ist er der Meinung, dass eine IOException eine Art von Exception ist. Er findet also eine passende catch‐Klausel – eine Klausel mit einem Parameter vom Typ Exception – und führt die darin enthaltenen Befehle aus. Danach macht er mit dem Code weiter, der allen catch‐Klauseln unmittelbar folgt (siehe Abbildung 13.11).

[image:]Abbildung 13.11: Es wird eine geworfen.

Wenn der Computer nach passenden catch‐Klauseln sucht, klinkt er sich in die oberste Klausel ein, die der folgenden Beschreibung entspricht:

[image: image] Der Parametertyp der Klausel ist mit dem Typ der Ausnahme identisch, die geworfen worden ist.

[image: image] Der Parametertyp der Klausel ist eine Superklasse des Typs der Ausnahme.

Wenn es weiter unten in der Liste der catch‐Klauseln eine bessere Übereinstimmung geben sollte, haben Sie Pech gehabt. Stellen Sie sich vor, dass Sie dem Code in Listing 13.6 eine catch‐Klausel mit einem Parameter vom Typ NumberTooLargeException hinzugefügt haben. Stellen Sie sich weiter vor, dass Sie die neue catch‐Klausel hinter der Klausel mit dem Parametertyp OutOfRangeException platziert haben. Da die NumberTooLargeException eine Unterklasse der Klasse OutOfRangeException ist, wird der Code in Ihrer neuen NumberTooLargeException‐Klausel niemals ausgeführt. So ist nun mal das Leben!

Zwei oder mehr Ausnahmen gleichzeitig auffangen

Seit Java 7 können Sie in einer einfachen catch‐Klausel mehr als eine Art von Ausnahmen fangen. So möchten Sie zum Beispiel in einem Inventurprogramm nicht zwischen dem Werfen einer NumberFormatException und Ihrer eigenen OutOfRangeException unterscheiden. In diesem Fall können Sie einen Teil von Listing 13.6 wie folgt neu schreiben:

try {

 int numBoxes = Integer.parseInt(numBoxesIn);

 if (numBoxes < 0) {

 throw new OutOfRangeException();

 }

 if (numBoxes > 1000) {

 throw new NumberTooLargeException();

 }

 out.print("Ihr Wert beträgt ");

 out.println(currency.format(numBoxes * boxPrice));

}

catch (NumberFormatException | OutOfRangeException e) {

 out.print(numBoxesIn);

 out.println("? Das ist unmöglich!");

}

catch (Exception e) {

 out.print("Irgendetwas ist nicht in Ordnung, ");

 out.print("und ich weiß nicht, ");

 out.println("was die Ursache ist.");

}

Das Pipe‐Symbol (|) weist Java an, entweder eine NumberFormatException oder eine OutOfRangeException zu fangen. Wenn Sie eine Ausnahme werfen, die von einem dieser beiden Typen ist, zeigt das Programm den Wert von numBoxesIn an, dem der Text ? Das ist unmöglich! folgt. Wenn Sie eine Ausnahme werfen, die weder eine NumberFormatException noch eine OutOfRangeException ist, springt das Programm zur letzten catch‐Klausel und zeigt Irgendetwas ist nicht in Ordnung, und ich weiß nicht … an.

Alle Bedenken in den Wind schlagen

Gehören Sie zu den Zwangsneurotikern? Möchten Sie jede nur denkbare Ausnahme fangen, bevor sie möglicherweise Ihr Programm zum Absturz bringt? Dann aufgepasst! Java verhindert, dass Sie paranoid werden. Sie können keine Ausnahme fangen, die keine Chance hat, geworfen zu werden.

Schauen Sie sich den folgenden Code an. Er enthält in einer try‐Klausel eine völlig unschuldige Anweisung i++. Schön und gut. Aber dann täuscht die catch‐Klausel des Codes vor, eine IOException zu fangen.

// Schlechter Code!

try {

 i++;

} catch (IOException e) {

 e.printStackTrace();

}

Wen versucht diese catch‐Klausel zu beeindrucken? Eine Anweisung wie i++ sorgt weder für eine Eingabe noch für eine Ausgabe. Der Code in der try‐Klausel ist möglicherweise noch nicht einmal in der Lage, eine IOException zu werfen. Also meldet sich der Compiler bei Ihnen und sagt: »Hallo, catch‐Klausel. Wach auf. Komm von deinem hohen Ross herunter.« Aber wollen wir genauer sein. Der Rüffel des Compilers lautet in Wirklichkeit:

exception java.io.IOException is never thrown in body of corresponding try statement

Sie werden damit darüber informiert, dass im Körper der entsprechenden catch‐Klausel niemals eine IOException geworfen wird.

Etwas Sinnvolles tun

Bisher hat noch jedes Beispiel in diesem Kapitel eine Ausnahme gefangen, eine Nachricht wie Falsche Eingabe ausgegeben und sich dann sauber beendet. Wäre es da nicht ganz nett, einmal ein Programm zu Gesicht zu bekommen, das weitermacht, nachdem eine Ausnahme gefangen wurde? Listing 13.7 enthält in einer Schleife einen try‐catch‐Befehl. Die Schleife läuft so lange, bis der Benutzer etwas Sinnvolles eingibt.

import static java.lang.System.out;

import java.util.Scanner;

import java.text.NumberFormat;

public class InventoryLoop {

 public static void main(String args[]) {

 final double boxPrice = 3.25;

 boolean gotGoodInput = false;

 Scanner keyboard = new Scanner(System.in);

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 do {

 out.print("Wie viele Kartons haben wir? ");

 String numBoxesIn = keyboard.next();

 try {

 int numBoxes = Integer.parseInt(numBoxesIn);

 out.print("Das ist keine Zahl ");

 out.println(currency.format(numBoxes * boxPrice));

 gotGoodInput = true;

 } catch (NumberFormatException e) {

 out.println();

 out.println("Das ist keine Zahl.");

 }

 } while (!gotGoodInput);

 out.println("Damit ist die Sache erledigt.");

 keyboard.close();

 }

}

Listing 13.7: Weitermachen!

Abbildung 13.12 zeigt, wie es aussieht, wenn der Code aus Listing 13.7 ausgeführt wird. Bei den ersten drei Versuchen gibt der Benutzer alles, aber keine gültige Zahl ein. Erst der vierte Versuch ist erfolgreich. Der Benutzer gibt 3 ein, und der Computer verlässt die Schleife.

[image:]Abbildung 13.12: Der Code aus Listing 13.7 wird ausgeführt.

Unsere Freunde, die guten Ausnahmen

Es geht das Gerücht, dass Java‐Ausnahmen ihren Ursprung immer in unerwünschten Fehlersituationen haben. Obwohl viel Wahres an diesem Gerücht ist, ist es nicht ganz richtig. Gelegentlich kommt es auch zu geplanten Ausnahmen. Nehmen Sie zum Beispiel die Entdeckung, dass eine Datei zu Ende ist. Der folgende Code kopiert eine Datei:

try {

 while (true) {

 dataOut.writeByte(dataIn.readByte());

 }

} catch (EOFException e) {

 numFilesCopied = 1;

}

Um Bytes von dataIn nach dataOut zu kopieren, begeben Sie sich einfach in eine while‐Schleife. Diese Schleife scheint aufgrund ihrer true‐Bedingung unendlich zu laufen. Aber irgendwann erreichen Sie das Ende der dataIn‐Datei. (Ein solches Ende wird als EOF – für End of File oder Ende der Datei – bezeichnet.) In diesem Fall wirft die Methode readByte eine EOFException (eine End‐of‐File‐Ausnahme). Das Werfen dieser Ausnahme sorgt dafür, dass der Computer die try‐Klausel und die while‐Schleife verlässt. Danach können Sie in der catch‐Klausel das machen, was Sie wollen, und die normale Verarbeitung fortsetzen.

[image:]Probieren Sie, die folgenden Codieraufgaben zu lösen:

[image: image] Fügen Sie try‐catch‐Anweisungen hinzu, um zu verhindern, dass der folgende Code abstürzt:

import java.util.Scanner;

public class Main {

 public static void main(String[] args) {

 Scanner keyboard = new Scanner(System.in);

 String[] words = new String[5];

 int i = 0;

 do {

 words[i] = keyboard.next();

 } while (!words[i++].equals("Beenden"));

 for (int j = 0; j < 5; j++) {

 System.out.println(words[j].length());

 }

 keyboard.close();

 }

}

[image: image] In Listing 13.6 sind der Preis für jeden Karton und die Anzahl der zu großen Kartons feststehende Werte. Verbessern Sie den Code so, dass der Benutzer diese beiden Werte eingeben kann. Denken Sie daran, dass einige Werte dafür nicht sinnvoll sind. Beispielsweise kann eine negative Anzahl Kartons nie zu viele Kartons darstellen. Verwenden Sie try‐catch‐Anweisungen, um ungeeignete Benutzereingaben zu verarbeiten.

Eine Ausnahme verarbeiten oder den Schwarzen Peter weitergeben

Sie glauben also, dass Sie Java kennen? Sie sagen, dass Sie es schon bis Kapitel 13 geschafft haben? Ich bin beeindruckt. Sie müssen richtig hart gearbeitet haben.

Was halten Sie davon, einmal eine Pause einzulegen? Ein kurzes Nickerchen kann Wunder wirken. Was halten Sie von zehn Sekunden? Oder ist das zu lang? Machen Sie fünf Sekunden daraus.

Listing 13.8 enthält ein Programm, das seine Ausführung fünf Sekunden lang unterbrechen soll. Das Problem dabei ist, dass das Programm in Listing 13.8 nicht ganz richtig ist. Schauen Sie sich das Listing eine Minute lang an, und dann erkläre ich Ihnen, was am Programm falsch ist.

/*

 * Dieser Code wird nicht kompiliert.

 */

import static java.lang.System.out;

public class NoSleepForTheWeary {

 public static void main(String args[]) {

 out.print("Entschuldigen Sie mich bitte ‐ ");

 out.println("fünf Sekunden Pause...");

 takeANap();

 out.println("Ah, das war erfrischend.");

 }

 static void takeANap() {

 Thread.sleep(5000);

 }

}

Listing 13.8: Ein fehlerhaftes Programm

Die Strategie in Listing 13.8 ist nicht übel. Der Plan sieht so aus, dass die Methode sleep aufgerufen wird, die Bestandteil der Java‐API ist. Die Methode sleep gehört zur API‐Klasse Thread. Wenn Sie diese Methode aufrufen, repräsentiert die Zahl, die Sie als Dauer der Pause eingeben, Millisekunden. Thread.sleep(5000) bedeutet somit, dass das Programm fünf Sekunden lang pausiert.

Das Problem besteht darin, dass der Code in der Methode sleep eine Ausnahme werfen kann. Bei dieser Art von Ausnahme handelt es sich um eine Instanz der Klasse InterruptedException. Wenn Sie versuchen, den Code in Listing 13.8 zu kompilieren, erhalten Sie eine Meldung wie diese hier:

unreported exception java.lang.InterruptedException;

must be caught or declared to be thrown

Diese Meldung sollte eigentlich (lesbar gemacht und übersetzt) so aussehen:

Nicht verarbeitete Ausnahme vom Typ InterruptedException

Ob so oder so, auf jeden Fall gilt, dass diese Meldung nicht willkommen ist.

[image:]Damit Sie verstehen, was Ausnahmen im Allgemeinen sind, müssen Sie nicht genau wissen, was eine InterruptedException ist. Es reicht, wenn Sie wissen, dass der Aufruf von Thread.sleep eines dieser InterruptedException‐Objekte wirft. Wenn Sie aber wirklich daran interessiert sind: Eine InterruptedException wird geworfen, wenn Code den Schlaf eines anderen Codes unterbricht (to interrupt bedeutet auf Deutsch unterbrechen). Stellen Sie sich vor, dass Sie zwei Codestücke haben, die gleichzeitig laufen. Eines dieser Codestücke ruft die Methode Thread.sleep auf. Wenn nun das zweite Codestück die Methode interrupt aufruft, sorgt es dafür, dass die Methode Thread.sleep eine Vollbremsung hinlegen muss. Die Methode Thread.sleep reagiert, indem sie eine InterruptedException wirft.

Die Programmiersprache Java kennt zwei Arten von Ausnahmen. Sie werden geprüfte und ungeprüfte Ausnahmen genannt:

[image: image] Dass möglicherweise eine geprüfte Ausnahme geworfen wird, muss im Code bestätigt werden.

[image: image] Dass möglicherweise eine ungeprüfte Ausnahme geworfen wird, muss im Code nicht bestätigt werden.

Eine InterruptedException ist einer von Javas geprüften Ausnahmetypen. Wenn Sie eine Methode aufrufen, die das Potenzial besitzt, eine InterruptedException zu werfen, müssen Sie diese Ausnahme im Code bestätigen.

Was meine ich wohl damit, dass eine Ausnahme im Code bestätigt wird?

// Der Autor möchte der InterruptedException danken,

// ohne die dieser Code nicht hätte geschrieben werden

// können.

Das ist es aber nicht, was im Code bestätigt bedeutet. Mit dem Bestätigen einer Ausnahme im Code ist eines dieser beiden Dinge gemeint:

[image: image] Die Befehle (einschließlich ihrer Methodenaufrufe), die die Ausnahme werfen können, befinden sich innerhalb einer try‐Klausel. Diese try‐Klausel verfügt über eine catch‐Klausel mit einem passenden Ausnahmetyp in ihrer Parameterliste.

[image: image] Die Befehle (einschließlich ihrer Methodenaufrufe), die die Ausnahme werfen können, befinden sich innerhalb einer Methode, die in ihrem Kopf über eine throws‐Klausel verfügt. Diese Klausel enthält einen passenden Ausnahmetyp.

Wenn Sie die Wortwahl in diesen beiden Punkten irritieren sollte, machen Sie sich nichts daraus. Die nächsten beiden Listings bringen Licht ins Dunkel.

In Listing 13.9 befindet sich der Methodenaufruf, der eine InterruptedException werfen kann, in einer try‐Klausel. Diese Klausel verfügt über eine catch‐Klausel mit dem Ausnahmetyp InterruptedException.

import static java.lang.System.out;

public class GoodNightsSleepA {

 public static void main(String args[]) {

 out.print("Entschuldigen Sie mich bitte – ");

 out.println("fünf Sekunden Pause...");

 takeANap();

 out.println("Ah, das war erfrischend.");

 }

 static void takeANap() {

 try {

 Thread.sleep(5000);

 } catch (InterruptedException e) {

 out.println("Hallo, wer hat mich aufgeweckt?");

 }

 }

}

Listing 13.9: Bestätigung mit einem try‐catch‐Befehl

Normalerweise ist es an dieser Stelle meine Aufgabe, Sie darüber zu informieren, dass eine Ausführung von Listing SoUndSo in Abbildung XYZ gezeigt wird. Hier gibt es nun aber in Abbildung 13.13 das Problem, dass es nicht nur darum geht, dem Code in Listing 13.9 gerecht zu werden. Wenn Sie das Programm in diesem Listing ausführen, zeigt der Computer Entschuldigen Sie mich bitte – fünf Sekunden Pause an, unterbricht seine Arbeit für fünf Sekunden und gibt dann Ah, das war erfrischend aus. Der Code funktioniert, weil sich der Aufruf der Methode sleep, der eine InterruptedException werfen kann, innerhalb einer try‐Klausel befindet. Diese Klausel enthält eine catch‐Klausel, deren Ausnahme vom Typ InterruptedException ist.

[image:]Abbildung 13.13: Vor der Zeile mit gibt es eine Pause von fünf Sekunden.

So viel zum Bestätigen einer Ausnahme mit einem try‐catch‐Befehl. Es gibt aber noch einen anderen Weg, um eine Ausnahme zu bestätigen. Listing 13.10 stellt diesen Weg vor.

import static java.lang.System.out;

public class GoodNightsSleepB {

 public static void main(String args[]) {

 out.print("Entschuldigen Sie mich bitte – ");

 out.println("fünf Sekunden Pause...");

 try {

 takeANap();

 } catch (InterruptedException e) {

 out.println("Hallo, wer hat mich aufgeweckt?");

 }

 out.println("Ah, das war erfrischend.");

 }

 static void takeANap() throws InterruptedException {

 Thread.sleep(5000);

 }

}

Listing 13.10: Durch Werfen bestätigen

Wenn Sie sehen möchten, was eine Ausführung dieses Codes ausgibt, verweise ich auf Abbildung 13.13. Denken Sie nur daran, dass der Computer vor der Ausgabe von Ah, das war erfrischend eine Pause von fünf Sekunden einlegt.

Der entscheidende Teil von Listing 13.10 steht im Kopf der Methode takeANap. Dieser Kopf endet mit throws InterruptedException. Indem die Methode takeANap ankündigt, dass sie eine InterruptedException wirft, gibt sie den Schwarzen Peter weiter. Was die throws‐Klausel wirklich sagt, ist: »Ich erkenne, dass eine Anweisung in dieser Methode die Möglichkeit besitzt, eine InterruptedException zu werfen, aber ich bestätige die Ausnahme nicht in einem try‐catch‐Befehl. Java‐Compiler, sei mir deswegen nicht böse. Ich verfüge nicht über einen try‐catch‐Befehl. Ich übergebe die Verantwortung für die Bestätigung der Ausnahme an die Methode main (die Methode, die die Methode takeANap aufgerufen hat).«

Und wirklich, der Aufruf von takeANap befindet sich innerhalb einer try‐Klausel. Diese Klausel verfügt über eine catch‐Klausel mit einem Parametertyp InterruptedException. Damit ist alles in Ordnung. Die Methode takeANap übergibt die Verantwortung an die Methode main, die diese Verantwortung mithilfe eines entsprechenden try‐catch‐Befehls akzeptiert. Jeder ist glücklich, sogar der Java‐Compiler.

Damit Sie die Klausel throws besser verstehen, sollten Sie sich ein Volleyballspiel vorstellen, bei dem der Volleyball eine Ausnahme ist. Wenn ein Spieler des gegnerischen Teams serviert, wirft dieser Spieler die Ausnahme. Der Ball überquert das Netz und kommt zu Ihnen. Wenn Sie den Ball über das Netz zurückspielen, fangen Sie die Ausnahme. Aber wenn Sie den Ball an einen Mitspieler weiterleiten, verwenden Sie die Klausel throws. Sie sagen damit: »Hier, Mitspieler, das ist jetzt deine Ausnahme. Kümmere dich darum.«

[image:]Ein Befehl in einer Methode kann eine Ausnahme werfen, zu der es keine passende catch‐Klausel gibt. Hierzu gehören auch Situationen, in denen sich der Befehl, der die Ausnahme wirft, noch nicht einmal im try‐Block befindet. In diesem Fall verlässt das Programm die Methode, die den fehlerhaften Code enthält, und die Ausführung springt zu dem ersten Code zurück, der die Methode aufgerufen hat.

[image:]Eine Methode kann in ihrer throws‐Klausel mehr als eine Ausnahme benennen. Verwenden Sie Kommata so, wie es das folgende Beispiel zeigt, um die Namen der Ausnahmetypen voneinander zu trennen:

throws InterruptedException, IOException, ArithmeticException

Die Java‐API kennt Hunderte von Ausnahmetypen. Einige davon sind Unterklassen der Klasse RuntimeException. Alles, was eine Unterklasse (oder eine Unter‐Unterklasse oder eine Unter‐Unter‐Unterklasse und so weiter) ist, ist ungeprüft. Jede Ausnahme, die kein Abkömmling von RuntimeException ist, ist geprüft. Zu den ungeprüften Ausnahmen gehören Dinge, die ein Computer nur schwer vorhersehen kann, wie die NumberFormatException (unter anderem aus den Listings 13.2 und 13.4), die ArithmeticException, die IndexOutOfBoundsException, die berüchtigte NullPointerException und viele andere mehr. Wenn Sie Java‐Code schreiben, ist dieser anfällig für Ausnahmen, aber das Einbinden dieses Codes in try‐Klauseln (oder das Weitergeben des Schwarzen Peters über throws‐Klauseln) ist ausschließlich Ihre Aufgabe.

Außerdem enthält die Java‐API auch ein gerüttelt Maß an geprüften Ausnahmen. Der Computer kann Ausnahmen dieser Art leicht entdecken. Aus diesem Grund besteht Java darauf, dass bei diesen Ausnahmen jeder Befehl, der möglicherweise Ausnahmen werfen könnte, mit einem try‐Befehl oder einer throws‐Klausel bestätigt wird. Zu den geprüften Java‐Ausnahmen gehören die InterruptedException (Listings 13.9 und 13.10), die IOException, die SQLException und eine Menge anderer interessanter Ausnahmen.

[image:]Probieren Sie die folgenden kleinen Änderungen aus:

[image: image] Der folgende Code wird nicht kompiliert, weil er eine nicht bestätigte FileNotFoundException enthält:

// SCHLECHTER CODE:

import java.io.File;

import java.util.Scanner;

public class Main {

 public static void main(String[] args) {

 Scanner diskScanner = new Scanner(new File("numbers.txt"));

 int[] numerators = new int[5];

 int[] denominators = new int[5];

 int i = 0;

 while (diskScanner.hasNextInt()) {

 numerators[i] = diskScanner.nextInt();

 denominators[i] = diskScanner.nextInt();

 i++;

 }

 for (int j = 0; j < numerators.length; j++) {

 System.out.println(numerators[j] / denominators[j]);

 }

 diskScanner.close();

 }

}

Korrigieren Sie die unbestätigte FileNotFoundException, sodass der Code kompiliert wird. Beachten Sie, dass bei einem Programmlauf abhängig von den Werten in der Datei numbers.txt andere Ausnahmen aufgeworfen werden können. Fügen Sie eine oder mehrere weitere try‐catch‐Anweisungen hinzu, um Meldungen über diese Ausnahmen anzuzeigen, ohne dass das Programm abstürzt.

[image: image] Fügen Sie try‐catch‐Anweisungen oder throws‐Klauseln (oder eine Mischung daraus) hinzu, um den folgenden defekten Code zu reparieren:

// SCHLECHTER CODE:

import java.io.DataInputStream;

import java.io.DataOutputStream;

import java.io.EOFException;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileOutputStream;

public class Main {

 public static void main(String[] args) {

 File fileIn = new File("input");

 FileInputStream fileInStrm = new FileInputStream(fileIn);

 DataInputStream dataInStrm = new DataInputStream(fileInStrm);

 File fileOut = new File("output");

 FileOutputStream fileOutStrm = new FileOutputStream(fileOut);

 DataOutputStream dataOutStrm = new DataOutputStream(fileOutStrm);

 int numFilesCopied = 0;

 try {

 while (true) {

 dataOutStrm.writeByte(dataInStrm.readByte());

 }

 } catch (EOFException e) {

 numFilesCopied = 1;

 }

 }

}

Wenn Sie es geschafft haben, dass der Code kompiliert wird, erstellen Sie die Datei input und führen den Code aus, um festzustellen, ob er die Datei output erzeugt.

Die Aufgabe mit der Klausel »finally« abschließen

Es war einmal vor langer Zeit, da hatte ich gerade meinen Führerschein gemacht. Ich war unterwegs zum Haus eines Freundes und war mit den Gedanken irgendwo, als plötzlich aus dem Nichts heraus ein Wagen auftauchte und in meine Beifahrertür krachte. So etwas nennt sich dann BeiRoterAmpelFahrenException.

Auf jeden Fall waren beide Autos noch fahrbereit, und wir befanden uns mitten auf einer Kreuzung. Um ein Verkehrschaos zu vermeiden, fuhren wir beide an den Straßenrand. Ich kramte nach meinem Führerschein und öffnete die Tür, um mein Fahrzeug zu verlassen.

Das war dann der Augenblick, als es zum zweiten Unfall kam. Als ich den Wagen verließ, kam ein Linienbus vorbei, erwischte mich und schleuderte mich mehrmals gegen mein Auto. So etwas nennt sich dann DaFreutSichEinAnwaltException.

Glücklicherweise endete alles gut. Ich war zwar verletzt, aber nicht ernsthaft. Meine Eltern bezahlten den Schaden am anderen Auto, weshalb ich keine finanziellen Konsequenzen zu tragen hatte. (Ich konnte die finanziellen Lasten umgehen, indem ich die BeiRoterAmpelFahrenException in meiner throws‐Klausel unterbrachte.)

Dieser Unfall hilft dabei zu erklären, warum ich auf eine bestimmte Weise über den Umgang mit Ausnahmen denke. Insbesondere frage ich mich: »Was geschieht, wenn es zu einer zweiten Ausnahme kommt, während der Computer noch mit einer ersten Ausnahme zu kämpfen hat?« Schließlich sind auch die Anweisungen in einer catch‐Klausel nicht vor Schwierigkeiten gefeit.

Die Antwort auf diese Frage ist alles andere als einfach. Für den Anfang können Sie in einer catch‐Klausel eine try‐Anweisung unterbringen. Dies schützt Sie vor unerwarteten, möglicherweise sogar fatalen Vorfällen, zu denen es während der Ausführung der catch‐Klausel kommen kann. Aber wenn Sie erst einmal anfangen, sich über kaskadierende Ausnahmen Gedanken zu machen, öffnen Sie eine Büchse der Pandora. Es gibt unendlich viele Szenarien, und alles kann sehr schnell sehr kompliziert werden.

Eine Sache, die nicht zu schwierig ist, können Sie auf jeden Fall erledigen: eine finally‐Klausel erstellen. Eine solche Klausel steht – wie die catch‐Klausel – hinter einer try‐Klausel. Der Unterschied zur catch‐Klausel besteht darin, dass die Befehle in der finally‐Klausel unabhängig davon ausgeführt werden, ob eine Ausnahme geworfen wird oder nicht. (Finally bedeutet auf Deutsch letztendlich, zum Schluss.) Listing 13.11 enthält ein Beispiel.

import static java.lang.System.out;

public class DemoFinally {

 public static void main(String args[]) {

 try {

 doSomething();

 } catch (Exception e) {

 out.println("Ausnahme in main gefangen.");

 }

 }

 static void doSomething() {

 try {

 out.println(0 / 0);

 } catch (Exception e) {

 out.println("Ausnahme in doSomething gefangen.");

 out.println(0 / 0);

 } finally {

 out.println("Ich werde ausgegeben.");

 }

 out.println("Ich werde nicht ausgegeben.");

 }

}

Listing 13.11: Hin und her springen

Wenn ich normalerweise über eine try‐Anweisung nachdenke, vergesse ich auch den Computer nicht, der sich von einer unangenehmen Situation erholt. Diese Erholung erhält ihren Platz innerhalb einer catch‐Klausel. Danach macht der Computer mit den Befehlen weiter, die im Anschluss an die try‐Anweisung kommen. Wenn aber während der Ausführung der catch‐Klausel irgendetwas schiefgeht, kann dieses Bild sehr schnell anders aussehen.

Abbildung 13.14 stellt grafisch dar, was das Programm in Listing 13.11 liefert. Als Erstes wird die Methode doSomething aufgerufen. Dann bereitet diese dumme Methode Schwierigkeiten. Sie dividiert durch 0, was in keiner Programmiersprache zulässig ist. Diese verrückte Aktion der Methode doSomething wirft eine ArithmeticException, die von der catch‐Klausel des Befehls gefangen wird.

[image:]Abbildung 13.14: Der Code in Listing 13.11 wurde ausgeführt.

Die zwielichtige Methode doSomething dividiert in der catch‐Klausel noch einmal 0 durch 0. Dieses Mal befindet sich der Befehl, der für diese Division zuständig ist, nicht in einer schützenden try‐Klausel. Das geht in Ordnung, weil ArithmeticException ungeprüft ist. (Es handelt sich um eine der Unterklassen von RuntimeException. Außerdem muss ArithmeticException auch nicht in einer try‐ oder throws‐Klausel bestätigt werden. Einzelheiten zu diesem Thema finden Sie im vorherigen Abschnitt.)

Ob geprüft oder ungeprüft, das Werfen einer weiteren ArithmeticException bringt die Steuerung dazu, aus der Methode doSomething herauszuspringen. Aber bevor der Computer diese Methode verlässt, führt er den letzten Willen des try‐Befehls aus: die Anweisungen in der Klausel finally. Aus diesem Grund lesen Sie in Abbildung 13.14 Ich werde ausgegeben.

Interessanterweise sehen Sie in Abbildung 13.14 die Wörter Ich werde nicht ausgegeben nicht. Da die Ausführung der catch‐Klausel eine eigene, nicht gefangene Ausnahme wirft, geht der Computer niemals weiter als bis zur try‐catch‐finally‐Anweisung.

Der Computer begibt sich wieder zurück zur Methode main, und zwar an die Stelle, an der er diese Methode verlassen hat. Dort sorgt das Missgeschick mit der ArithmeticException der Methode doSomething dafür, dass die Programmausführung in eine catch‐Klausel springt. Der Computer gibt Ausnahme in main gefangen aus, und dieser schreckliche Albtraum einer Programmausführung wird beendet.

[image:]Am Ende des Abschnitts Eine Ausnahme verarbeiten oder den Schwarzen Peter weitergeben haben Sie eine Ausnahmeverarbeitung für ein Programm geschrieben, das eine Datei kopiert. Möglicherweise erhalten Sie Warnungen, die Ihnen mitteilen, dass Sie vergessen haben, dataInStrm und dataOutStrm zu schließen. Korrigieren Sie dies, indem Sie in den finally‐Klauseln Aufrufe von dataInStrm.close() und dataOutStrm.close() hinzufügen.

Ein »try«‐Befehl mit Ressourcen

Stellen Sie sich ein Programm vor, das Eingaben aus zwei verschiedenen Dateien oder von einem Scanner und aus einer Datei auf der Festplatte erhält. Um sicherzustellen, dass Sie danach auch alles wieder sauber bereinigen, bringen Sie in einer finally‐Klausel Aufrufe der Methode close unter (siehe Listing 13.12).

import java.io.File;

import java.io.IOException;

import java.util.Scanner;

public class Main {

 public static void main(String args[]) {

 Scanner scan1 = null;

 Scanner scan2 = null;

 try {

 scan1 = new Scanner(new File("File1.txt"));

 scan2 = new Scanner(new File("File2.txt"));

 // Etwas Sinnvolles tun

 } catch (IOException e) {

 // Oops!

 } finally {

 scan1.close();

 scan2.close();

 System.out.println("Fertig!");

 }

 }

}

Listing 13.12: Zwei Dateien verwenden

In der Theorie führt der Computer scan1.close() und scan2.close() immer unabhängig davon aus, was während der Ausführung der try‐Klausel schiefgeht. Aber wollen wir doch realistisch sein. Ein anderer Programmierer könnte den Code ändern und scan1 mitten in der try‐Klausel schließen:

try {

 scan1 = new Scanner(new File("File1.txt"));

 scan2 = new Scanner(new File("File2.txt"));

 // Etwas Sinnvolles tun, aber auch ...

 scan1.close();

 scan1 = null;

} catch (IOException e) {

 // Oops!

} finally {

 scan1.close();

 scan2.close();

 System.out.println("Fertig!");

}

Jetzt sitzen Sie in einer echten Klemme. Der Wert von scan1 ist in der Klausel finally null. Der Aufruf von scan1.close() schlägt fehl, was das Programm veranlasst, eine NullPointerException zu werfen und seine Ausführung zu beenden, bevor der Aufruf von scan2.close() erreicht wird. Im allerschlechtesten Fall wird scan2 nicht geschlossen, was wiederum File2.txt sperrt, wodurch kein anderes Programm diese Datei nutzen kann.

Wenn ein Programm mehrere Ressourcen (viele Dateien, eine Datenbank und eine Datei oder was Ihnen sonst noch vorschwebt) verwendet, wird der Aufbau von try‐Befehlen richtig kompliziert. Sie können try‐Befehle innerhalb von catch‐Klauseln und in allen möglichen verrückten Kombinationen anlegen. Glücklicherweise kennt Java einen sehr guten Weg, um das Problem zu lösen. Sie können ab Java 7 einen try‐mit‐Ressourcen‐Befehl erstellen. Listing 13.13 zeigt Ihnen, wie das geht.

import java.io.File;

import java.io.IOException;

import java.util.Scanner;

public class NewMain {

 public static void main(String args[]) {

 try (Scanner scan1 = new Scanner(new File("File1.txt"));

 Scanner scan2 = new Scanner(new File("File2.txt"))) {

 // Etwas Sinnvolles tun

 } catch (IOException e) {

 // Oops!

 }

 System.out.println("Fertig!");

 }

}

Listing 13.13: Dafür sorgen, dass Ressourcen geschlossen werden

In Listing 13.13 stehen die Deklarationen von scan1 und scan2 in Klammern hinter dem Wort try. Diese in Klammern gesetzten Deklarationen weisen Java an, scan1 und scan2 automatisch zu schließen, wenn die Befehle in der try‐Klausel ausgeführt worden sind. Sie können in den Klammern einer try‐Anweisung mehrere Ressourcen deklarieren. In diesem Fall schließt Java alle Ressourcen automatisch, wenn die Befehle in der try‐Klausel ausgeführt worden sind. Wenn Sie wollen, können Sie auch catch‐Klauseln und eine finally‐Klausel hinzufügen. Sie dürfen dabei auf alle möglichen Ressourcen zugreifen (Dateien, Datenbanken, Serververbindungen und so weiter), und Sie können in aller Gemütsruhe zusehen, wie Java die Verbindungen automatisch bedient.

Ist das Leben nicht schön?

[image:]Am Ende des Abschnitts Eine Ausnahme verarbeiten oder den Schwarzen Peter weitergeben haben Sie eine Ausnahmeverarbeitung für ein Programm geschrieben, das eine Datei kopiert. Möglicherweise erhalten Sie Warnungen, die Ihnen mitteilen, dass Sie vergessen haben, dataInStrm und dataOutStrm zu schließen. Im späteren Abschnitt Die Aufgabe mit der Klausel »finally« abschließen haben Sie diese Warnungen aus der Welt geschaffen, indem Sie in die finally‐Klauseln Aufrufe von dataInStrm.close() und dataOutStrm.close() eingefügt haben. Statt Aufrufe der close‐Methode hinzuzufügen, korrigieren Sie das Problem mit einem try‐Befehl mit Ressourcen.

383-408

Kapitel 14

Programmteile gemeinsam nutzen

In diesem Kapitel

Namen vor anderen Klassen verbergen

Namen für andere Klassen offenlegen

Das Programm so einstellen, dass es den richtigen Mittelweg findet

Eine Unterhaltung über private Felder und Methoden (die auch Thema dieses Kapitels sind) … »Sie können deine E‐Mails lesen«, meint einer meiner Freunde. Ein anderer stimmte dem zu: »Sie kennen jede einzelne Website, die du besuchst. Sie wissen, welche Produkte du kaufst, wie dein Abendessen aussieht, was du anziehst und was du denkst. Sie kennen sogar deine tiefsten und dunkelsten Geheimnisse. Ich wäre überhaupt nicht überrascht, wenn Sie wüssten, wann du sterben wirst.«

Eine dritte Stimme ertönt: »Wir sind an dem Punkt angelangt, an dem du dir nicht einmal mehr die Nase putzen kannst, ohne dass das jemand aufzeichnet. Vor ein paar Wochen habe ich eine Website besucht, und die Seite wünschte mir alles Gute zum Geburtstag. Woher wussten die, dass ich das war, und wieso haben die an meinen Geburtstag gedacht?«

»Jungs«, sagte die erste Person, »ich habe eine Erkennungsmarke an meinem Auto, mit der ich alle Mautstellen passieren kann. Sie sendet die Mautstelle, die ich gerade passiere, und belastet automatisch meine Kreditkarte. Einmal im Monat erhalte ich eine Abrechnung, die mir zeigt, wo ich gewesen bin und wann das war. Ich bin erstaunt, dass auf der Liste nicht steht, wen ich besucht und was ich dort getan habe.«

Ich denke nach und sage mir: »Das ist alles Quatsch. Ich persönlich fühle mich geschmeichelt, wenn mein Arbeitgeber, die Regierung oder ein großes Unternehmen so sehr an mich denkt, dass sie meine ganzen Bewegungen aufzeichnen. Mir fällt es normalerweise schon schwer genug, die Aufmerksamkeit von Leuten auf mich zu lenken, wenn ich das möchte. Und die meisten Stellen, die meine Einkaufs‐ und Lesegewohnheiten protokollieren, sind noch nicht einmal in der Lage, meinen Namen richtig zu schreiben, wenn sie mir Junk‐Mails senden. ›Dies ist eine persönliche Nachricht für Mr. Larry Burg. Ist Mr. Burg zu Hause?‹ Leute ausspähen ist so was von langweilig. Ich kann die Schlagzeile auf der Titelseite von The Times direkt vor mir sehen: ›Der Autor von Java für Dummies trägt sein Unterhemd falsch herum!‹ Toll!«

So denke ich für ein paar Sekunden und sage dann: »Sie sind hinter uns her. Kameras! Das ist der nächste Schritt – überall Kameras.«

Zugriffsmodifizierer

Wenn Sie Java für Dummies bis hierher gelesen haben, ist Ihnen vielleicht eines klar geworden: Die objektorientierte Programmierung ist ganz groß im Verbergen von Einzelheiten. Programmierer, die Code schreiben, sollen auf keinen Fall am Code anderer Programmierer herumbasteln. Das hat nicht nur etwas mit Sicherheit und Geheimhaltung zu tun, sondern auch mit Modularität. Wenn Sie Einzelheiten verbergen, verhindert dies, dass anderer Code an Ihrem komplexen Programm herumschraubt. Ihr Code liegt in eigenständigen, verwaltbaren Einheiten vor. Sie beschränken Komplexität auf ein Minimum. Sie machen weniger Fehler. Sie sparen Geld. Sie helfen dabei, den Weltfrieden aufrechtzuerhalten.

In anderen Kapiteln gibt es viele Beispiele, die zeigen, wie private Felder verwendet werden. Wenn ein Feld privat (private) deklariert wird, ist es für alles verborgen, was von außen kommt. Dieses Verbergen erweitert unter anderem die Modularität und minimiert die Komplexität.

Irgendwo in den Seiten dieses Buches verstecken sich auch Beispiele von Dingen, die öffentlich (public) deklariert werden. Von einem Feld, das öffentlich deklariert wird, ist alles so bekannt, wie das bei einer in der Öffentlichkeit stehenden Person der Fall ist. Sicherlich wissen viele Menschen, welche Zahnpasta Elvis benutzt hat, und jeder Programmierer kann selbst dann auf ein öffentliches Feld verweisen, wenn es nicht Elvis heißt.

In Java werden Wörter wie public Zugriffsmodifizierer genannt. Sicherlich haben Sie schon Felder und Methoden gesehen, die in ihren Deklarationen keinen Zugriffsmodifizierer enthielten. Von einem Feld oder einer Methode dieser Art wird gesagt, dass sie über einen Standardzugriff verfügen. Viele Beispiele in diesem Buch verwenden den Standardzugriff, ohne dies an die große Glocke zu hängen. In einigen Kapiteln geht das auch so in Ordnung, aber nicht in diesem hier. Ich beschreibe in diesem Kapitel die zentralen Bestandteile des Standardzugriffs.

Außerdem lernen Sie einen weiteren Zugriffsmodifizierer kennen, der bisher in keinem Beispiel verwendet worden ist. (Zumindest erinnere ich mich nicht daran.) Es handelt sich dabei um den Zugriffsmodifizierer protected. Ja, dieses Kapitel behandelt auch die weniger erfreulichen Dinge, die sich hinter einem geschützten (was protected auf Deutsch bedeutet) Zugriff verbergen.

Klassen, Zugriff und Multipart‐Programmierung

Bei all diesen Begriffen kann man sich leicht in der Terminologie verheddern, weshalb wir uns noch einmal um ein paar Grundlagen kümmern müssen. (Die meisten Begriffe, die Sie benötigen, stammen aus Kapitel 10, aber es lohnt sich, zu Beginn dieses Kapitels noch einmal einen Blick darauf zu werfen.) Hier kommt zunächst ein täuschend gut gemachtes Codestückchen.

class MyClass {

 // ein Feld (ein Mitglied):

 int myField;

 // eine Methode (ein weiteres Mitglied):

 void myMethod() {

 // eine methodenlokale Variable (KEIN Mitglied):

 int myOtherField;

 }

}

Die Kommentare in diesem Code sagen Ihnen, worum es geht. Hier gibt es zwei Arten von Variablen: Felder und methodenlokale Variablen. Dieses Kapitel handelt nicht von methodenlokalen Variablen. Es kümmert sich um Methoden und Felder.

Es ist ziemlich lästig, immer mit dem Ausdruck »Methoden und Felder« arbeiten zu müssen. Deshalb ist es einfacher, beide Begriffe unter einer Bezeichnung zusammenzufassen. Diese Bezeichnung lautet Mitglieder einer Klasse.

Mitglied oder Klassen

An dieser Stelle müssen Sie auf eine wichtige Unterscheidung achten. Denken Sie an das Java‐Schlüsselwort public. Wie Sie vielleicht von früheren Kapiteln her wissen, können Sie es vor ein Mitglied setzen. Sie können

public static void main(String args[]) {

oder

public amountInAccount = 50.22;

schreiben

Diese Art, das Schlüsselwort public zu verwenden, ist wohl kaum eine Überraschung. Was Sie aber vielleicht noch nicht wissen, ist, dass Sie das Schlüsselwort public auch vor eine Klasse setzen können. So können Sie zum Beispiel schreiben:

public class Drawing {

 // Hier steht Ihr Code

}

Das Java‐Schlüsselwort public hat zwei sich leicht unterscheidende Bedeutungen – eine für Mitglieder und eine andere für Klassen. Der größte Teil dieses Kapitels handelt von der Bedeutung, die public (und andere Schlüsselwörter) für Mitglieder haben. Nur der letzte Teil dieses Kapitels (mit der Überschrift

Zugriffsmodifizierer für Mitglieder

Dieses Kapitel handelt von Mitgliedern. Dies bedeutet aber nicht, dass Sie Java‐Klassen ignorieren können. Mitglied oder nicht, der Ort, an dem alle Aktionen stattfinden, ist immer noch die Java‐Klasse. Jedes Feld wird in einer bestimmten Klasse deklariert, gehört zu dieser Klasse und ist ein Mitglied dieser Klasse. Dasselbe gilt für Methoden. Jede Methode wird in einer bestimmten Klasse deklariert, gehört zu dieser Klasse und ist ein Mitglied dieser Klasse. Sind Sie in der Lage, den Namen eines bestimmten Mitglieds an einer beliebigen Stelle in Ihrem Code zu verwenden? Um mit der Beantwortung dieser Frage zu beginnen, prüfen Sie zunächst, ob sich diese Stelle innerhalb oder außerhalb der Klasse des Mitglieds befindet:

[image: image] Wenn das Mitglied privat ist, kann nur Code direkt auf den Namen des Mitglieds verweisen, der sich innerhalb der Klasse des Mitglieds befindet.

class SomeClass {

 private int myField = 10;

}

class SomeOtherClass {

 public static void main(String args[]) {

 SomeClass someObject = new SomeClass();

 //Dies hier funktioniert nicht:

 System.out.println(someObject.myField);

 }

}

[image: image] Wenn das Mitglied öffentlich ist, kann jeder Code, der innerhalb derselben Java Virtual Machine ausgeführt wird, direkt auf den Namen verweisen.

class SomeClass {

 public int myField = 10;

}

class SomeOtherClass {

 public static void main(String args[]) {

 SomeClass someObject = new SomeClass();

 //Dies funktioniert:

 System.out.println(someObject.myField);

 }

}

Abbildung 14.1, Abbildung 14.2 und Abbildung 14.3 erläutern die Ideen auf eine etwas andere Weise.

[image:]Abbildung 14.1: Mehrere Klassen und ihre Unterklassen

[image:]Abbildung 14.2: Der Codebereich, in dem ein öffentliches Feld oder eine öffentliche Methode verwendet werden kann (schattiert)

[image:]Abbildung 14.3: Der Codebereich, in dem ein privates Feld oder eine private Methode verwendet werden kann (schattiert)

[image:]Wenn Sie sich die Beispiele in diesem Abschnitt ansehen, gelangen Sie möglicherweise zu einem völlig falschen Schluss. Vielleicht haben Sie ja den folgenden Gedankengang: In dem Beispiel mit private int myField funktioniert der Code nicht. Aber in dem Beispiel mit public int myField funktioniert der Code. Wenn mein Code also funktionieren soll, sollte ich meine Felder als public deklarieren und vermeiden, sie als private zu deklarieren. Lieber Leser! Das stimmt nicht!

Öffentliche Felder sind einfach zu verwenden, aber noch einfacher zu missbrauchen. Am besten entwerfen Sie Ihren Code so, dass der Zugriff auf jedes Feld so restriktiv wie möglich ist. Wenn ein Feld nicht unbedingt public sein muss, versuchen Sie, es als private zu deklarieren. Wenn die Werte des Felds von anderen Klassen gelesen oder verändert werden müssen, stellen Sie öffentliche Getter‐ und Setter‐Methoden bereit. Mehr dazu im nächsten Abschnitt …

[image:]In einem der Beispiele dieses Abschnitts können Sie nicht someObject.myField schreiben, weil die Variable myField in SomeClass als private deklariert ist. Korrigieren Sie dies mithilfe von Getter‐ und Setter‐Methoden und ändern Sie die someObject.myField‐Referenz entsprechend ab.

Eine Zeichnung auf einem Frame platzieren

Damit die Sache mit dem Zugriffsmodifizierer klarer wird, brauchen Sie noch ein oder zwei Beispiele. Im ersten Beispiel dieses Kapitels ist so gut wie alles öffentlich. Bei einem öffentlichen Zugriff müssen Sie sich keine Gedanken darüber machen, wer was nutzen kann.

Der Code dieses ersten Beispiels besteht aus mehreren Teilen. Der erste Teil, der sich in Listing 14.1 befindet, zeigt einen ArtFrame an. Auf der Oberfläche dieses Frames befindet sich ein Drawing (deutsch Zeichnung). Wenn sich alle Teile an Ort und Stelle befinden, zeigt der Code in Listing 14.1 ein Fenster wie das in Abbildung 14.4 an.

import com.burdbrain.drawings.Drawing;

import com.burdbrain.frames.ArtFrame;

class ShowFrame {

 public static void main(String args[]) {

 ArtFrame artFrame = new ArtFrame(new Drawing());

 artFrame.setSize(200, 100);

 artFrame.setVisible(true);

 }

}

Listing 14.1: Einen Frame anzeigen

[image:]Abbildung 14.4: Ein

Der Code in Listing 14.1 erstellt eine neue Instanz von ArtFrame. Sie könnten vermuten, dass ArtFrame eine Unterklasse einer Java‐Klasse Frame sei, was auch richtig ist. In Kapitel 9 steht, dass Java‐Frames standardmäßig unsichtbar sind. Deshalb rufen Sie in Listing 14.1 die Methode setVisible auf, um die Instanz von ArtFrame sichtbar werden zu lassen.

Beachten Sie nun, dass Listing 14.1 mit zwei import‐Deklarationen beginnt. Die erste dieser beiden Deklarationen erlaubt es Ihnen, den Namen Drawing aus dem Paket com.burdbrain.drawings in seiner Kurzform zu verwenden. Aufgrund der zweiten import‐Deklaration sind Sie in der Lage, den Namen ArtFrame aus dem Paket com.burdbrain.frames in seiner Kurzform zu verwenden.

[image:]Sie finden in Kapitel 4 Informationen zu import‐Deklarationen.

Wenn Sie detektivisch veranlagt sind, fragen Sie sich vielleicht: »Er muss noch mehr Code geschrieben haben (Code, den ich hier nicht sehe) und diesen Code in Paketen untergebracht haben, die er com.burdbrain.drawings und com.burdbrain.frames genannt hat.« Und Sie haben recht. Damit Listing 14.1 funktioniert, erstelle ich etwas, das Drawing (deutsch Zeichnung) genannt wird. Meine Drawings bringe ich dann im Paket com.burdbrain.drawings unter. Außerdem benötige ich eine Klasse ArtFrame, die ich, wie alle diese Klassen, im Paket com.burdbrain.frames ablege.

Was ist nun ein Drawing wirklich? Wenn Sie so daran interessiert sind, das in Erfahrung zu bringen, schauen Sie sich Listing 14.2 an.

package com.burdbrain.drawings;

import java.awt.Graphics;

public class Drawing {

 public int x = 40, y = 40, width = 40, height = 40;

 public void paint(Graphics g) {

 g.drawOval(x, y, width, height);

 }

}

Listing 14.2: Die Klasse Drawing

Der Code für die Klasse Drawing ist ziemlich schlank. Er enthält ein paar int‐Felder und die Methode paint. Das ist alles. Wenn ich eine Klasse dieser Art erstelle, versuche ich, sie schlank zu halten. Hier einige Anmerkungen zur Klasse Drawing:

[image: image] Oben im Code steht eine Paketdeklaration. Siehe da! Ich habe dafür gesorgt, dass meine Klasse Drawing zu einem Paket gehört – dem Paket com.burdbrain.drawings. Ich habe den Namen dieses Pakets nicht an den Haaren herbeigezogen. Die Konventionen (die von denen erlassen worden sind, die Java entwickelt haben) sagen, dass Sie den Namen eines Pakets mit dem umgekehrten Namen Ihrer Domäne beginnen. Deshalb habe ich burdbrain.com umgekehrt und zu com.burdbrain gemacht. Dann fügen Sie einen oder mehrere beschreibende Bezeichnungen hinzu, die durch Punkte voneinander getrennt werden. Ich habe drawings hinzugefügt, weil ich vorhabe, in diesem Paket meine Zeichnungen (englisch Drawings) abzulegen.

[image: image] Die Klasse Drawing ist öffentlich. Eine öffentliche Klasse kann von außen angegriffen werden. Deshalb vermeide ich es in der Regel, das Schlüsselwort public vor eine Klasse zu setzen. Aber in Listing 14.1 bin ich gezwungen, meine Klasse Drawing öffentlich zu deklarieren. Wenn ich das nicht mache, sind Klassen, die sich nicht im Paket com.burdbrain befinden, nicht in der Lage, die schönen Dinge aus Listing 14.2 zu nutzen. Gerade die Zeile

ArtFrame artFrame = new ArtFrame(new Drawing());

ist in Listing 14.1 ohne die öffentliche Klasse Drawing nicht legal.

[image:]Weitere Informationen über öffentliche und nicht öffentliche Klassen finden Sie im Abschnitt Zugriffsmodifizierer für Java‐Klassen später in diesem Kapitel.

[image: image] Der Code enthält eine Methode paint. Diese Methode verwendet einen Standardtrick, um etwas auf dem Bildschirm erscheinen zu lasen. Der Parameter g in Listing 14.2 wird Grafikpuffer genannt. Damit etwas erscheint, müssen Sie nur noch in diesem Grafikpuffer zeichnen, der dann auf dem Bildschirm des Computers ausgegeben wird.

Hier ein paar Einzelheiten zu diesem Thema: In Listing 14.2 enthält die Methode paint einen Parameter g. Dieser Parameter verweist auf eine Instanz der Klasse java.awt.Graphics. Da eine Instanz von Graphics als Puffer dient, werden die Dinge, die Sie in diesem Puffer platzieren, letztendlich auf dem Bildschirm angezeigt. Dieser Puffer kennt, wie alle Instanzen der Klasse java.awt.Graphics, mehrere Methoden – von denen eine drawOval ist. Wenn Sie diese Methode aufrufen, geben Sie eine Anfangsposition an (x Pixel vom linken Rand des Frames und y Pixel vom oberen Rand des Frames). Außerdem legen Sie die Gesamtgröße der Zeichnung fest, indem Sie in den Parametern width (Breite) und height (Höhe) Pixelwerte hinterlegen. Der Aufruf der Methode drawOval bringt im Graphics‐Puffer ein kleines rundes Ding unter. Dann werden der Graphics‐Puffer, das runde Ding und was sonst noch vorhanden ist, auf dem Bildschirm angezeigt.

Die Verzeichnisstruktur

Der Code in Listing 14.2 gehört zum Paket com.burdbrain.drawings. Wenn Sie eine Klasse in ein Paket legen, müssen Sie eine Verzeichnisstruktur erstellen, die den Namen des Pakets widerspiegelt.

Um Code unterzubringen, der zum Paket com.burdbrain.drawings gehören soll, benötigen Sie drei Verzeichnisse: ein Verzeichnis com, ein Unterverzeichnis von com mit dem Namen burdbrain und ein Unterverzeichnis von burdbrain mit dem Namen drawings. Abbildung 14.5 zeigt die gesamte Verzeichnisstruktur.

[image:]Abbildung 14.5: Die Dateien und Verzeichnisse Ihres Projekts

An den richtigen Stellen nach Dateien suchen

Sie versuchen, das Programm in Listing 14.1 zu kompilieren. Der Java‐Compiler kämpft sich durch den Code und stolpert über fehlende Teile. Da ist zunächst einmal das Ding mit dem Namen ArtFrame. Und die Sache mit Drawing. Listing 14.1 definiert eine Klasse, die ShowFrame und nicht ArtFrame oder Drawing heißt. Wo soll sich nun der Compiler Informationen über ArtFrame und Drawing herholen?

Dieses Problem kann richtiggehend entmutigen. Sollte der Computer Ihre gesamte Festplatte nach Dateien wie ArtFrame.java oder Drawing.class absuchen müssen? Wie groß ist Ihre neue Festplatte? 400 GB? 750 GB? 6.000.000 GB? Und wie sieht das mit Verweisen auf Dateien aus, die sich auf Netzwerklaufwerken befinden? Das Suchgebiet könnte unendlich groß werden. Und was ist, wenn der Compiler schließlich alle offenen Punkte abgearbeitet hat? Dann versuchen Sie, Ihren Code ablaufen zu lassen, und die Java Virtual Machine (JVM) beginnt mit der Suche. (Informationen über die Java Virtual Machine stehen in Kapitel 2.)

Um dieses Problem in den Griff zu bekommen, definiert Java etwas, das sich CLASSPATH nennt. Es gibt Programmierer, die solch einen CLASSPATH jedes Mal neu vorgeben, wenn sie ein Java‐Programm ausführen. Andere legen eine systemweite CLASSPATH‐Variable an. (Wenn Sie sich mit der Variablen PATH auf Windows‐ und Unix‐Computern auskennen, wissen Sie vielleicht auch schon, wie so etwas geht.) Auf jeden Fall benötigen der Compiler und die JVM eine Liste mit den Orten, an denen sie nach Code Ausschau halten können. Ohne eine solche Liste schauen diese Java‐Werkzeuge nämlich nirgendwo nach und finden Klassen wie ArtFrame oder Drawing nicht. Sie erhalten dann eine Nachricht mit einem Kann‐ich‐nicht‐finden‐Symbol oder eine NoClassDefFoundError‐Meldung und Ihr Glück ist vorbei.

[image:]Wenn sich Ihr Code nicht in dem entsprechenden Verzeichnis befindet, erhalten Sie einen mehr als unerfreulichen NoClassDefFoundError. Glauben Sie mir, es macht niemals Spaß, diesen Fehler zu Gesicht zu bekommen. Wenn Sie diesen Fehler sehen, gibt es keine Hinweise darauf, wo die fehlende Klasse sein könnte oder wo der Compiler sie erwartet. Wenn Sie ruhig bleiben, schaffen Sie es, die nötigen Informationen selbstständig zusammenzusuchen, aber wenn Sie in Panik geraten, stochern Sie stundenlang im Nebel herum. Als erfahrener Java‐Programmierer erinnere ich mich an viele Blessuren, die dieser NoClassDefFoundError zu verantworten hat.

Einen Frame erstellen

Die ersten drei Listings dieses Kapitels entwickeln ein Beispiel, das aus mehreren Teilen besteht. Dieser Abschnitt hier kümmert sich um das letzte dieser drei Teile. Es ist für das Verständnis von Zugriffsmodifizierern, dem zentralen Thema dieses Kapitels, nicht von entscheidender Bedeutung. Wenn Sie also keine Lust haben, sich mit den Erklärungen zu Listing 14.3 abzugeben, überspringen Sie diesen Abschnitt einfach. Ansonsten sollten Sie weiterlesen, wenn Sie mehr über die Java‐Klasse Swing in Erfahrung bringen wollen.

package com.burdbrain.frames;

import java.awt.Graphics;

import javax.swing.JFrame;

import com.burdbrain.drawings.Drawing;

public class ArtFrame extends JFrame {

 private static final long serialVersionUID = 1L;

 Drawing;

 public ArtFrame(Drawing drawing) {

 this.drawing = drawing;

 setTitle("Moderne Kunst");

 setDefaultCloseOperation(EXIT_ON_CLOSE);

 }

 public void paint(Graphics g) {

 drawing.paint(g);

 }

}

Listing 14.3: Die Klasse ArtFrame

Listing 14.3 verfügt über alle Einzelheiten, die Sie benötigen, um eine Zeichnung in einem Java‐Frame zu platzieren. Der Code verwendet mehrere Namen aus der Java‐API. Ich erkläre die meisten dieser Namen in den Kapiteln 9 und 10.

In Listing 14.3 gibt es nur einen einzigen neuen Namen: paint. Die Methode verweist auf eine andere paint‐Methode, die zum Objekt Drawing gehört. Das Objekt ArtFrame erstellt auf dem Bildschirm Ihres Computers ein schwebendes Fenster. Was in diesem Fenster gezeichnet wird, hängt davon ab, welches Drawing‐Objekt an den Konstruktor von ArtFrame übergeben wird.

Wenn Sie sich noch einmal mit den Listings 14.1 bis 14.3 beschäftigen, fällt Ihnen vielleicht etwas Eigenartiges auf. Die Methode paint aus Listing 14.3 scheint niemals aufgerufen zu werden. Nun, in vielen Fällen, die mit dem Erzeugen von Fenstern (in Java Frames genannt) zu tun haben, deklarieren Sie eine Methode paint, die dann einfach nur ruhig im Code vor sich hin schlummert. Wenn dann das Programm ausgeführt wird, ruft der Computer diese Methode paint automatisch auf.

Das ist die Geschichte der javax.swing.JFrame‐Objekte. In Listing 14.3 wird die Methode paint des Frames im Hintergrund aufgerufen. Dann ruft die Methode paint des Frames die Methode paint des Drawing‐Objekts auf, die dann ein Oval auf dem Frame zeichnet. Und das ist dann das, was Sie in Abbildung 14.4 sehen.

[image:]Öffnen Sie im Explorer Ihres Computers den Projektordner 14‐01 für dieses Buch. Suchen Sie nach den Dateien ShowFrame.java, Drawing.java und ArtFrame.java. Sehen Sie sich an, wie diese Java‐Dateien innerhalb von ein paar verschiedenen Ordnern verschachtelt sind.

Sich vom ursprünglichen Code absetzen

Burd Brain Consulting hat Ihnen zwei Dateien verkauft: Drawing.class und ArtFrame.class. Sie sind nicht in der Lage, den Code in diesen beiden Dateien zu sehen. Ihnen bleibt also nichts anderes übrig, als mit dem klarzukommen, was in diesen beiden Dateien geschieht. Sie möchten nun aber unbedingt Einfluss darauf nehmen, wie das Oval in Abbildung 14.4 aussieht – es soll ein wenig größer werden. Zu diesem Zweck erstellen Sie eine Unterklasse der Klasse Drawing – die Klasse DrawingWide – und bauen sie in Listing 14.4 ein.

import java.awt.Graphics;

import com.burdbrain.drawings.Drawing;

public class DrawingWide extends Drawing {

 int width = 100, height = 30;

 public void paint(Graphics g) {

 g.drawOval(x, y, width, height);

 }

}

Listing 14.4: Eine Unterklasse der Klasse Drawing

Um den Code aus Listing 14.4 verwenden zu können, müssen Sie eine Zeile in Listing 14.1 ändern. Machen Sie sie zu

ArtFrame artFrame = new ArtFrame(new DrawingWide());

Außerdem können Sie in Listing 14.1 die import‐Deklaration com.burdbrain.drawings.Drawing entfernen, weil sie nicht mehr benötigt wird.

Listing 14.4 definiert eine Unterklasse der Klasse Drawing. Sie überschreiben in dieser Unterklasse die ursprünglichen Felder width und height und die ursprüngliche Methode paint. Abbildung 14.6 zeigt den Frame, den Sie nun erhalten.

[image:]Abbildung 14.6: Ein anderer

Vielleicht fällt Ihnen im Vorübergehen auf, dass der Code in Listing 14.4 nicht mit einer Paketdeklaration beginnt. Dies bedeutet, dass Ihre gesamte Dateisammlung aus den folgenden drei Paketen stammt:

[image: image] Dem Paket com.burdbrain.drawings. In diesem Paket befindet sich die ursprüngliche Klasse Drawing aus Listing 14.2.

[image: image] Dem Paket com.burdbrain.frames. Aus diesem Paket stammt die Klasse ArtFrame.

[image: image] Einem immer vorhandenen, unbenannten Paket. Wenn Sie in Java eine Datei ohne eine Paketdeklaration beginnen, landet der gesamte Code in einem großen unbenannten Paket. Die Listings 14.1 und 14.4 befinden sich in demselben unbenannten Paket. Letztendlich ist es so, dass die meisten Listings aus den ersten 12 Kapiteln dieses Buches in Javas unbenanntem Paket liegen.

Zum jetzigen Zeitpunkt enthält Ihr Projekt zwei »zeichnende« Klassen – die ursprüngliche Klasse Drawing und die neue Klasse DrawingWide. So ähnlich diese beiden Klassen auch sein mögen, so befinden sie sich doch in zwei verschiedenen Paketen. Das sollte eigentlich niemanden überraschen. Die Klasse Drawing, die von Ihren Freunden bei Burd Brain Consulting entwickelt worden ist, befindet sich in einem Paket, dessen Name mit com.burdbrain beginnt. Da Sie DrawingWide selbst erstellt haben, hat diese Klasse nichts im Paket com.burdbrain zu suchen.

Es wäre sehr gescheit, DrawingWide in einem Ihrer Pakete, zum Beispiel in de.meinedomäne.zeichnungen, unterzubringen, aber für den Anfang reicht das unbenannte Paket aus.

Auf jeden Fall wird Ihre Klasse DrawingWide kompiliert und kann – wie geplant – ausgeführt werden.

Standardzugriff

Wenn Sie den Text bis hierhin in seiner vorgegebenen Reihenfolge gelesen haben, wissen Sie, dass das letzte Beispiel sehr glücklich endet. Der Code in Listing 14.4 funktioniert wunderbar. Aber halt! Was wäre, wenn … Ich drehe in diesem Kapitel die Zeit ein wenig zurück und zeige Ihnen, was geschehen wäre, wenn Sie im Code von Listing 14.2 ein Wort vergessen hätten.

Der Umgang mit verschiedenen Versionen eines Programms kann schwindelerregend sein. Aus diesem Grund beginne ich diese Diskussion mit einer Beschreibung dessen, was Sie haben. Als Erstes besitzen Sie eine Klasse Drawing. Die Felder dieser Klasse werden als öffentliche Felder mit Standardzugriff deklariert. Die Klasse Drawing befindet sich im Paket com.burdbrain.drawings (siehe Listing 14.5).

package com.burdbrain.drawings;

import java.awt.Graphics;

public class Drawing {

 int x = 40, y = 40, width = 40, height = 40;

 public void paint(Graphics g) {

 g.drawOval(x, y, width, height);

 }

}

Listing 14.5: Felder mit Standardzugriff

Als Zweites haben Sie die Unterklasse DrawingWide (die, damit es für Sie bequemer ist) in Listing 14.6: kopiert.

import com.burdbrain.drawings.*;

import java.awt.Graphics;

public class DrawingWide extends Drawing {

 int width = 100, height = 30;

 public void paint(Graphics g) {

 g.drawOval(x, y, width, height);

 }

}

Listing 14.6: Der fehlgeschlagene Versuch, eine Unterklasse zu erstellen

Das Problem ist, dass das ganze Ding scheitert. Der Code in Listing 14.6 wird nicht kompiliert. Sie erhalten stattdessen diese Fehlermeldung:

x is not public in com.burdbrain.drawings.Drawing;

cannot be accessed from outside package

y is not public in com.burdbrain.drawings.Drawing;

cannot be accessed from outside package

Sie besagt, dass sowohl x als auch y nicht öffentlich deklariert wurde und damit ein Zugriff von außerhalb des Pakets nicht möglich ist.

Der Code lässt sich nicht kompilieren, weil auf Felder mit einem Standardzugriff nicht direkt von außerhalb ihres Pakets verwiesen werden kann. Dies gilt sogar für eine Unterklasse der Klasse, in der sich diese Felder befinden. Dasselbe gilt für Methoden, die nur über einen Standardzugriff verfügen.

[image:]Die Felder und Methoden einer Klasse werden als Mitglieder der Klasse bezeichnet. Die Zugriffsregeln – Standard und anderweitig – gelten für alle Mitglieder von Klassen.

[image:]Die Zugriffsregeln, die ich in diesem Kapitel beschreibe, gelten nicht für methodenlokale Variablen. Auf eine methodenlokale Variable kann nur innerhalb ihrer Methode zugegriffen werden.

[image:]Methodenlokale Variablen sind in Kapitel 10 beschrieben.

In Java ist der Standardzugriff auf ein Mitglied einer Klasse ein paketweiter Zugriff. Sie können auf ein Mitglied, das ohne das Wort public, private oder protected deklariert wird, nur innerhalb des Paketes zugreifen, zu dem die Klasse gehört. Abbildung 14.7 und Abbildung 14.8 verdeutlichen dies.

[image:]Abbildung 14.7: Auf Unterklassen zugeschnittene Pakete

[image:]Abbildung 14.8: Der Codebereich, in dem ein Standardfeld oder eine Standardmethode verwendet werden kann.

[image:]Die Namen von Paketen mit allen ihren Punkten und Unterbestandteilen können irreführend sein. Wenn Sie beispielsweise ein Programm schreiben, das auf Schaltflächenklicks reagiert, importieren Sie normalerweise Klassen aus zwei separaten Paketen. In einer Zeile verwenden Sie beispielsweise import java.awt.*;, in einer andere Zeile import java.awt.event.*;. Wenn Sie alle diese Klassen aus dem Paket java.awt importieren, werden nicht automatisch Klassen aus dem Paket java.awt.event importiert.

Wieder ins Paket zurückkrabbeln

Eigentlich liebe ich es, Post zu bekommen. Im schlimmsten Fall handelt es sich um Junk‐Mail, die ich sofort in den Papierkorb schmeiße. Am liebsten habe ich Dinge, mit denen ich etwas anfangen kann, wie ein neues Spielzeug oder etwas, das jemand nur für mich gebastelt hat.

Heute ist mein Glückstag. Irgendjemand von Burd Brain Consulting hat mir eine Unterklasse der Klasse Drawing geschickt. Dabei handelt es sich im Prinzip um denselben Code wie in Listing 14.6. Der einzige Unterschied ist, dass sich diese neue Klasse DrawingWideBB im Paket com.burdbrain.drawings befindet. Listing 14.7 stellt diesen Code dar. Damit ich diesen Code auch ausführen kann, muss ich in Listing 14.1 eine Zeile ändern:

ArtFrame artFrame = new ArtFrame(new DrawingWideBB());

package com.burdbrain.drawings;

import java.awt.Graphics;

public class DrawingWideBB extends Drawing {

 int width = 100, height = 30;

 public void paint(Graphics g) {

 g.drawOval(x, y, width, height);

 }

}

Listing 14.7: Jawohl, das ist eine Unterklasse.

Wenn Sie Listing 14.7 in Verbindung mit der Klasse Drawing in Listing 14.5 ausführen, funktioniert alles richtig gut. Warum das so ist? Drawing und DrawingWideBB befinden sich in demselben Paket. Schauen Sie sich noch einmal Abbildung 14.8 an und achten Sie auf den schattierten Bereich, der ein ganzes Paket umfasst. Der Code in der Klasse DrawingWideBB hat alle Rechte, um die Felder x und y zu nutzen, die mit Standardzugriff in der Klasse Drawing definiert worden sind.

[image:]Wenn Sie in Listing 14.7 die Klasse DrawingWideBB verwenden wollen, müssen Sie in Listing 14.1 eine Änderung vornehmen. Passen Sie die erste import‐Deklaration so an, dass sie import com.burdbrain.drawings.DrawingWideBB; lautet. Ändern Sie auch den Aufruf des Konstruktors des Objekts ArtFrame in new ArtFrame(new DrawingWideBB()).

[image:]Dieser Abschnitt erklärt den Standardzugriff, den ich für die meisten Beispiele in diesem Buch verwende. Ich verwende hauptsächlich den Standardzugriff, weil es dabei nicht auf die Worte public oder private ankommt. Auf diese Weise haben Sie einfach weniger Text in vielen Beispielen.

Im realen Leben verwenden Programmierer ungern einen Standardzugriff. Beim Standardzugriff können alle anderen Klassen in Ihrem Paket die Werte Ihrer Felder lesen und ändern. Andere Programmierer können dann beispielsweise tageInDiesemMonat auf 32 oder kapitelInDiesemBuch auf ‐7 setzen.

Am besten verwenden Sie nur dann den Standardzugriff, wenn ein solcher Zugriff unabdingbar ist. Wenn andere Klassen die Werte Ihrer Felder lesen oder ändern sollen, ist es jedoch in den meisten Fällen besser, einen privaten Zugriff zu verwenden und öffentliche Getter‐ und Setter‐Methoden bereitzustellen.

Geschützter Zugriff

Als ich Java kennenlernte, glaubte ich, dass der Begriff geschützt so etwas wie sicher oder »Dieses Feld ist geschützt. Es muss schwer sein, darauf zuzugreifen.« bedeutet. Diese Vermutung stellte sich als falsch heraus. In Java ist ein Mitglied, das geschützt (protected) ist, weniger verborgen, weniger sicher und in mehr Klassen zu verwenden, als wenn es über einen Standardzugriff erreichbar wäre. Mit anderen Worten, ein geschützter Zugriff erlaubt mehr als der Standardzugriff. Für mich ist diese Terminologie irreführend. Aber so ist es nun mal.

Unterklassen, die sich nicht im selben Paket befinden

Stellen Sie sich einen geschützten Zugriff so vor: Sie beginnen mit einem Feld, für das der Standardzugriff gilt (ein Feld, dem in der Deklaration das Wort public, private oder protected fehlt). Auf dieses Feld kann nur innerhalb des Pakets zugegriffen werden, zu dem es gehört. Fügen Sie nun an den Anfang der Deklaration dieses Feldes das Wort protected hinzu. Plötzlich können auch Klassen außerhalb des Pakets dieses Feldes darauf zugreifen. Sie sind nun in der Lage, aus einer Unterklasse heraus (der Klasse, zu der das Feld gehört) auf das Feld zu verweisen. Ein solcher Verweis ist auch aus Unter‐Unterklassen, Unter‐Unter‐Unterklassen und so weiter heraus möglich. Hier können Sie jeden Abkömmling der Deklarationsklasse des Feldes verwenden. Die Listings 14.8 und 14.9 enthalten ein entsprechendes Beispiel.

package com.burdbrain.drawings;

import java.awt.Graphics;

public class Drawing {

 protected int x = 40, y = 40, width = 40, height = 40;

 public void paint(Graphics g) {

 g.drawOval(x, y, width, height);

 }

}

Listing 14.8: Geschützte Felder

import java.awt.Graphics;

import com.burdbrain.drawings.Drawing;

public class DrawingWide extends Drawing {

 int width = 100, height = 30;

 public void paint(Graphics g) {

 g.drawOval(x, y, width, height);

 }

}

Listing 14.9: Die Unterklasse der Blauen Lagune, Teil II

Listing 14.8 definiert die Klasse Drawing. Listing 14.9 definiert DrawingWide, eine Unterklasse der Klasse Drawing.

In der Klasse Drawing sind die Felder x, y, width und height geschützt. Die Klasse DrawingWide verfügt über ihre eigenen Felder width und height, verweist aber auf die Felder x und y, die in der Elternklasse Drawing definiert werden. Dies bereitet selbst dann keine Probleme, wenn sich DrawingWide nicht in demselben Paket wie die Klasse Drawing befindet. (Die Klasse Drawing ist im Paket com.burdbrain.drawings enthalten; die Klasse DrawingWide gehört zum großen unbenannten Java‐Paket.) Der Zugriff funktioniert, weil die Felder x und y in der Klasse Drawing geschützt sind.

Vergleichen Sie Abbildung 14.8 mit Abbildung 14.9. Beachten Sie die zusätzliche Schattierung in Abbildung 14.9. Eine Unterklasse kann selbst dann auf ein geschütztes Mitglied einer Klasse zugreifen, wenn die Unterklasse zu einem anderen Paket gehört.

[image:]Abbildung 14.9: Der Codebereich, in dem ein geschütztes Feld oder eine geschützte Methode verwendet werden kann (schattiert).

[image:]Arbeiten Sie in einem Team von Programmierern? Verwenden Personen, die nicht zu Ihrem Team gehören, eigene Paketnamen? In diesem Fall legen sie Unterklassen der von Ihnen definierten Klassen an, wenn sie Ihren Code verwenden wollen. Das ist dann der Moment, an dem der geschützte Zugriff ins Spiel kommt. Verwenden Sie den geschützten Zugriff, wenn Sie wollen, dass auch andere Personen die Felder Ihres Codes direkt (von außerhalb) referenzieren können.

[image:]Für die Mitglieder einer Klasse ist der private Zugriff der restriktivste, dann kommt der Standardzugriff, dann der geschützte Zugriff und schließlich der öffentliche Zugriff.

Klassen, die keine Unterklassen sind (sich aber im selben Paket befinden)

Diese Leute von Burd Brain Consulting senden Ihnen ein Stück Software nach dem anderen zu. Dieses Mal erhalten Sie eine Alternative zur Klasse ShowFrame – der Klasse in Listing 14.1. Diese neue Klasse ShowFrameWideBB gibt ein breiteres Oval wieder, ohne eine Unterklasse der alten Klasse Drawing zu erstellen. Stattdessen legt der neue ShowFrameWideBB‐Code eine Instanz von Drawing an und ändert den Wert der Felder width und height der Instanz. Listing 14.10 stellt den entsprechenden Code dar.

package com.burdbrain.drawings;

import com.burdbrain.frames.ArtFrame;

class ShowFrameWideBB {

 public static void main(String args[]) {

 Drawing drawing = new Drawing();

 drawing.width = 100;

 drawing.height = 30;

 ArtFrame artFrame = new ArtFrame(drawing);

 artFrame.setSize(200, 100);

 artFrame.setVisible(true);

 }

}

Listing 14.10: Ein breiteres Oval zeichnen

Die Klasse ShowFrameWideBB aus Listing 14.10 befindet sich in demselben Paket wie die Klasse Drawing (im Paket com.burdbrain.drawings). Aber ShowFrameWideBB ist keine Unterklasse der Klasse Drawing.

Stellen Sie sich nun vor, dass Sie die Klasse ShowFrameWideBB zusammen mit der Klasse Drawing aus Listing 14.8 kompilieren – der Klasse, die die geschützten Felder enthält. Was geschieht dann? Alles läuft glatt ab, weil ein geschütztes Mitglied an zwei (nicht zusammenhängenden) Stellen zur Verfügung steht. Schauen Sie sich noch einmal Abbildung 14.9 an. Ein geschütztes Mitglied steht nicht nur Unterklassen außerhalb des Pakets zur Verfügung, sondern grundsätzlich auch dem Code innerhalb des Pakets des Mitglieds (und zwar unabhängig davon, ob es sich bei diesem Code um eine Unterklasse handelt oder nicht).

[image:]Listing 14.10 enthält eine Methode main, die sich innerhalb einer Klasse befindet, die wiederum Bestandteil eines Pakets (com.burdbrain.drawings) ist. Bei den meisten Entwicklungsumgebungen müssen Sie sich keine Gedanken machen, wenn Sie eine Methode main ausführen wollen, die aus einem benannten Paket stammt. Wenn Sie aber Programme aus der Befehlszeile heraus ablaufen lassen wollen, müssen Sie in der Regel einen vollqualifizierten Klassennamen eingeben. Um zum Beispiel den Code in Listing 14.10 auszuführen, müssen Sie java com.burdbrain.drawings.ShowFrameWideBB schreiben.

[image:]Hinter dem geschützten Zugriff verbirgt sich weitaus mehr, als ich in diesem Abschnitt beschreibe. Die Java Language Specification (https://docs.oracle.com/javase/specs) geht spitzfindig auf Code ein, der mit der Implementierung eines Objekts zu tun hat. Wenn Sie als Neuling herausfinden wollen, wie in Java programmiert wird, machen Sie sich über diesen Punkt keine Gedanken. Kümmern Sie sich um so etwas erst, wenn Sie viele Java‐Programme geschrieben haben. Wenn Sie dann über Fehlermeldungen stolpern, die besagen, dass eine Variable über einen geschützten Zugriff verfügt (variable has protected access), ist immer noch Zeit genug, sich darüber Gedanken zu machen. Wobei es sich dann aber doch lohnt, in der Java Language Specification einen Blick auf den Abschnitt über den geschützten Zugriff zu werfen.

[image:]Informationen über die Java Language Specification finden Sie in Kapitel 3.

[image:]Hier einige Dinge, die Sie ausprobieren können:

[image: image] In Listing 14.2 zeichne ich einen Kreis in einen Frame. Um den Kreis grün auszufüllen, verwenden Sie die Methoden setColor und fillOval der Klasse Graphics, etwa wie folgt:

g.setColor(Color.GREEN)

g.fillOval(x, y, width, height);

Werte wie Color.GREEN gehören zur Klasse Color im Paket java.awt.

Erstellen Sie einen Frame, der eine Ampel mit grünem, gelbem und rotem Licht zeigt.

[image: image] Ein Buch hat einen Titel (einen String) und einen Autor (eine Instanz der Klasse Autor). Ein Autor hat einen Namen (einen String) und eine ArrayList mit Buch‐Instanzen. Eine separate Klasse enthält eine Methode main, die mehrere Bücher und mehrere Autoren anlegt. Außerdem zeigt die Methode main Informationen über die Bücher und die Autoren an.

Legen Sie jede Klasse in ihrem eigenen Paket ab. Wenn möglich, deklarieren Sie Ihre Felder als private und stellen Sie öffentliche Getter‐ und Setter‐Methoden bereit.

[image: image] Ein Stück hat einen Namen (einen String) und einen Interpreten (eine Instanz der Klasse Interpret). Jede Interpret‐Instanz hat einen Namen (einen String) und eine ArrayList mit Stücken.

Die Klassen Lied und Album sind Unterklassen der Klasse Stück. Jede Lied‐Instanz hat ein Genre (einen Wert aus einem enum Genre). Die Werte von Genre sind ROCK, POP, BLUES und KLASSISCH. Jede Album‐Instanz hat eine ArrayList mit Liedern.

Eine Playlist schließlich hat eine ArrayList mit Stücken.

Erstellen Sie diese Klassen. Konstruieren Sie in einer separaten Klasse Instanzen jeder Klasse und zeigen Sie Informationen über diese Instanzen auf dem Bildschirm an.

[image: image] Die folgenden vier Klassen befinden sich in vier verschiedenen .java‐Dateien. Stellen Sie fest (ohne diese Klassen in den Editor einer IDE einzugeben), welche Anweisungen Fehlermeldungen in der IDE verursachen. Bestimmen Sie für jede dieser Anweisungen mindestens eine Änderung der Zugriffsberechtigung, mit der die Fehlermeldung wegfallen würde:

// DIESER CODE WIRD NICHT KOMPILIERT:

package com.allmycode.things;

import com.allyourcode.stuff.Stuff;

import com.allyourcode.stuff.morestuff.MoreStuff;

public class Things {

 protected int i = 0;

 private int j = 0;

 int k = 0;

 public static void main(String[] args) {

 Stuff stuff = new Stuff();

 System.out.println(stuff.i);

 MoreStuff moreStuff = new MoreStuff();

 System.out.println(moreStuff.i);

 }

}

package com.allyourcode.stuff;

import com.allyourcode.stuff.morestuff.MoreStuff;

public class Stuff {

 protected int i = 0;

 void aMethod() {

 new MoreStuff().myMethod();

 }

}

package com.allyourcode.stuff.morestuff;

import com.allmycode.things.Things;

public class MoreStuff extends Things {

 protected void myMethod() {

 System.out.println(i);

 }

}

package com.allmycode.things;

public class MoreThings extends Things {

 public void anotherMethod() {

 System.out.println(i);

 System.out.println(j);

 System.out.println(k);

 }

}

Zugriffsmodifizierer für Java‐Klassen

Vielleicht verunsichern Sie die Dinge ein wenig, die Sie über Zugriffsmodifizierer für Mitglieder lesen. Schließlich ist in Java der Zugriff ein kompliziertes Thema mit vielen Drehungen und Wendungen. Aber die Unsicherheit sollte nun vorbei sein. Wenn Sie das Epos über Felder und Methoden mit der Geschichte über den Zugriff auf Klassen vergleichen, ist die Geschichte doch viel einfacher gestrickt als das Epos.

Eine Klasse kann entweder öffentlich oder nicht öffentlich sein. Wenn Sie etwas wie

public class Drawing

sehen, erblicken Sie die Deklaration einer öffentlichen Klasse. Demgegenüber bezeichnet

class ShowFrame

eine Klasse, deren Deklaration nicht öffentlich ist.

Öffentliche Klassen

Wenn eine Klasse öffentlich ist, können Sie von überall in Ihrem Code auf sie verweisen. Natürlich geht es aber auch dabei nicht ganz ohne Einschränkungen ab. Sie müssen allen Regeln gehorchen, die im Abschnitt Die Verzeichnisstruktur dieses Kapitels stehen. Außerdem müssen Sie sauber auf eine Klasse verweisen, die sich in einem Paket befindet. Sie können zum Beispiel in Listing 14.1

import com.burdbrain.drawings.Drawing;

import com.burdbrain.frames.ArtFrame;

...

ArtFrame artFrame = new ArtFrame(new Drawing());

schreiben, oder Sie lassen die import‐Deklarationen weg und schreiben

com.burdbrain.frames.ArtFrame artFrame =

 new com.burdbrain.frames.ArtFrame(new com.burdbrain.drawings.Drawing());

Aber unabhängig davon, wie Sie vorgehen, muss der Code in beiden Fällen bestätigen, dass sich die Klassen ArtFrame und Drawing in benannten Paketen befinden.

Nicht öffentliche Klassen

Wenn eine Klasse nicht öffentlich ist, können Sie auf sie nur aus Code heraus verweisen, der sich im Paket der Klasse befindet.

Ich habe das ausprobiert. Zuerst bin ich zu Listing 14.2 zurückgegangen und habe das Wort public gelöscht. Ich habe aus public class Drawing wieder das gute alte class Drawing gemacht:

package com.burdbrain.drawings;

import java.awt.Graphics;

class Drawing {

 public int x = 40, y = 40, width = 40, height = 40;

 public void paint(Graphics g) {

 g.drawOval(x, y, width, height);

 }

}

Dann habe ich den Code in Listing 14.7 kompiliert.

Alles lief prima ab, weil Listing 14.7 die folgenden Zeilen enthält:

package com.burdbrain.drawings;

public class DrawingWideBB extends Drawing

Da sich beide Codestücke in demselben Paket com.burdbrain.drawings befinden, war der Rückgriff auf die nicht öffentliche Klasse Drawing von der Klasse DrawingWideBB aus überhaupt kein Problem.

Aber dann versuchte ich, den Code in Listing 14.3 zu kompilieren. Dieser Code beginnt mit

package com.burdbrain.frames;

Dieser Code befindet sich nicht im Paket com.burdbrain.drawings. Wenn der Computer in Listing 14.3 die Zeile

Drawing drawing;

erreicht, fährt er im wahrsten Sinne des Wortes vor die Wand und gibt diese Meldung aus:

com.burdbrain.drawings.Drawing is not public in com.burdbrain.drawings;

cannot be accessed from outside package

Diese Meldung besagt, dass von außen nicht auf das Paket zugegriffen werden kann, weil es nicht öffentlich ist.

[image:]Die Dinge sind niemals so einfach, wie es auf den ersten Blick aussieht. Die Regeln, die ich in diesem Abschnitt beschreibe, gelten für so gut wie jede Klasse in diesem Buch. Aber Java kennt noch ganz tolle Sachen, wie zum Beispiel innere Klassen, die ganz anderen Regeln folgen. Glücklicherweise haben die Programme eines Programmierneulings in der Regel wenig mit inneren Klassen zu tun. In diesem Buch kommen sie eigentlich nur in Kapitel 15 vor (und ein paar verkleiden sich als enum‐Typen). Aus diesem Grund können Sie für den Augenblick sehr glücklich mit den Regeln leben, die ich in diesem Abschnitt beschreibe.

409-426

Kapitel 15
Referenztypen
In diesem Kapitel
Eine Java‐Schnittstelle schreiben und benutzen
Mit abstrakten Klassen arbeiten

In früheren Kapiteln haben wir uns mit Dingen beschäftigt, die Vollzeitmitarbeiter und Teilzeitmitarbeiter gemeinsam haben. Dafür kann beispielsweise die Klasse Mitarbeiter durch die Klassen VollzeitMitarbeiter und TeilzeitMitarbeiter erweitert werden. Das ist ganz nett, wenn man ein kleines Unternehmen hat, aber womöglich haben Sie überhaupt kein Unternehmen. Stattdessen könnten wir uns auch beispielsweise mit der Verwaltung unserer Haustiere beschäftigen.
In diesem Kapitel geht es also um Haustiere und andere brennend interessante Themen.

Typen in Java
In Kapitel 4 wurde erklärt, dass Java die folgenden Typen hat:

[image: image] Java hat acht primitive Typen.

Die vier, die Sie am häufigsten verwenden, sind int, double, boolean und char.
[image: image] Das Java API hat Tausende von Referenztypen. Und wenn Sie ein Programm in Java schreiben, definieren Sie neue Referenztypen.

Der String‐Typ von Java ist ein Referenztyp. String‐Typen sind beispielsweise Scanner, JFrame, ArrayList und File. Mein DummiesFrame ist ebenfalls ein Referenztyp. In Kapitel 7 haben Sie eigene Referenztypen angelegt, Mitarbeiter, VollzeitMitarbeiter und TeilzeitMitarbeiter. Ihr erstes Programm, Sie werden Java lieben!, enthält eine main‐Methode innerhalb einer Klasse, und diese Klasse ist ein Referenztyp. Vielleicht haben Sie es noch nicht erkannt, aber jedes Array gehört zu einem Referenztyp.
In Java gibt es überall Referenztypen. Bisher waren in diesem Buch Klassen und Arrays die einzigen Referenztypen, die Sie gesehen haben. Java unterstützt jedoch auch noch andere Referenztypen, und in diesem Kapitel werden Sie erfahren, welche Möglichkeiten Sie damit haben.

Die Java‐Schnittstelle
Stellen Sie sich eine Klasse (z. B. Mitarbeiter) und eine Unterklasse (z. B. VollzeitMitarbeiter) vor. Die Beziehung zwischen einer Klasse und ihrer Unterklasse ist eine Vererbung. In vielen Familien erben Kinder Dinge von ihren Eltern. Und in Kapitel 8 erbt der VollzeitMitarbeiter die Felder name und funktion von der Klasse Mitarbeiter. So funktioniert das Ganze.
Denken Sie jetzt an die Beziehung zwischen einem Verleger und einem Autor. Der Verleger sagt »Wenn Sie diesen Vertrag unterzeichnen, erklären Sie sich verpflichtet, mir am 9. Januar ein fertiges Manuskript zu liefern.« Trotz aller Entschuldigungen, die der Autor vor diesem Termin vorbringen kann (und glauben Sie mir, es gibt zahlreiche solcher Entschuldigungen), ist die Beziehung zwischen dem Verleger und dem Autor eine Verpflichtung. Der Autor stimmt zu, eine bestimmte Verantwortung zu übernehmen, und um ein Autor zu sein, muss er diese Verantwortlichkeiten erfüllen.
Jetzt denken Sie an Barry Burd. An wen? Barry Burd – der Kerl, der Java für Dummies und verschiedene andere Dummies‐Bücher (alle bei Wiley‐VCH erschienen) geschrieben hat. Er ist Hochschulprofessor und Autor. Angenommen, wir wollen diese Situation in einem Java‐Programm abbilden. Java unterstützt jedoch keine Mehrfachvererbung. Sie können Barry nicht gleichzeitig die Klasse Professor und die Klasse Author erweitern lassen.
Glücklicherweise hat Java Schnittstellen (auch als Interfaces bezeichnet). Der Code für die Erstellung einer Schnittstelle sieht ganz ähnlich aus wie der Code für die Erstellung einer Klasse:
public interface MeinSchnittstellenName {
// blah, blah, blah
}
Eine Schnittstelle ist einer Klasse ganz ähnlich, aber dennoch anders. (Wie es häufig der Fall ist. Eine Kuh ist einem Planeten ganz ähnlich, aber dennoch anders. Kühe muhen, Planeten hängen im Weltall.)
Wenn Sie das Wort Schnittstelle lesen, können Sie sich jedoch zunächst einmal eine Klasse vorstellen. Dann können Sie weiterdenken:

[image: image] Eine Klasse kann nur eine übergeordnete Klasse erweitern, aber eine Klasse kann viele Schnittstellen implementieren.
[image: image] Eine übergeordnete Klasse ist irgendetwas, was eine Klasse erbt. Aber eine Schnittstelle ist irgendetwas, das eine implementierende Klasse verpflichtend bereitstellen muss.
Und was ist nun mit dem armen Barry? Er kann eine Instanz einer Klasse Person sein, mit allen Feldern, die jede Person hat – name, adresse, alter, grösse, gewicht usw. Er kann jedoch auch eine oder mehrere Schnittstellen implementieren:

[image: image] Barry implementiert eine Professor‐Schnittstelle, deshalb muss er die Methoden teachStudents, adviseStudents und gradePapers haben.
[image: image] Und weil er eine Author‐Schnittstelle implementiert, muss er die Methoden writeChapters, reviewChapters, answerEmail usw. haben.
Zwei Schnittstellen
Stellen Sie sich vor, wir haben zweierlei Arten Daten: eine Spalte mit Zahlen aus einem Array und eine Tabelle (mit Zeilen und Spalten) aus einer Datei von der Festplatte. Was könnten diese beiden Dinge gemeinsam haben?
Ich weiß nicht, wie es Ihnen geht, aber ich will natürlich beide Arten Daten anzeigen. Ich könnte also Code schreiben, um einen Vertrag festzulegen. Der Vertrag besagt »Wer diesen Vertrag unterzeichnet, erklärt sich verpflichtet, eine display‐Methode zu haben«. In Listing 15.1 deklariere ich eine Displayable‐Schnittstelle.
public interface Displayable {

 public void display();

}

Listing 15.1: Vorsicht! Eine Schnittstelle!

Warten Sie einen Moment! Die Deklaration der display‐Methode in Listing 15.1 hat einen Header, aber keinen Rumpf. Es gibt keine geschweiften Klammern hinter display() – nur ein einsames Semikolon.
Diese Frage beantwortet der Code in Listing 15.1 selbst. Könnte der Code im Listing sprechen, würde er sagen:
Als Schnittstelle hat meine display‐Methode einen Header, aber keinen Rumpf. Eine Klasse, die vorgibt, mich (die Displayable‐Schnittstelle) zu implementieren, muss (direkt oder indirekt) einen Rumpf für die display‐Methode bereitstellen. Das bedeutet, eine Klasse, die behauptet, Displayable zu implementieren, muss auf die eine oder andere Weise ihren eigenen Code der folgenden Art bereitstellen:
public void display() {
 // Hier stehen verschiedene Anweisungen
}
Um mich (die Schnittstelle in Listing 15.1) zu implementieren, muss die display‐Methode des neuen Codes keine Parameter entgegennehmen und nichts zurückgeben (auch als void bezeichnet).

Die Displayable‐Schnittstelle ist vergleichbar mit einem Vertrag. Die Displayable‐Schnittstelle teilt Ihnen nicht mit, was eine implementierende Klasse bereits hat. Stattdessen teilt Ihnen die Displayable‐Schnittstelle mit, was eine implementierende Klasse in ihrem eigenen Code deklarieren muss.
Neben der Anzeige von Zahlen und Tabellen will ich vielleicht auch beide Arten von Daten zusammenfassen. Wie fasst man eine Spalte mit Zahlen zusammen? Ich weiß es nicht. Vielleicht will man alle Zahlen anzeigen. Und wie fasst man eine Tabelle zusammen? Vielleicht will man die Spaltenüberschriften der Tabelle anzeigen. Wie genau Sie die Daten zusammenfassen, ist mir egal. Ich will nur, dass Sie irgendeine Methode besitzen, die Daten zusammenzufassen.
Ich schreibe also Code mit einem zweiten Java‐Vertrag. Der zweite Vertrag besagt »Wer diesen Vertrag unterzeichnet, verpflichtet sich, eine summarize‐Methode bereitzustellen«. In Listing 15.2 deklariere ich eine Summarizable‐Schnittstelle.
public interface Summarizable {

 public String summarize();

}

Listing 15.2: Eine weitere Schnittstelle

Eine Klasse, die vorgibt, die Summarizable‐Schnittstelle zu implementieren, muss auf irgendeine Weise eine Implementierung einer summarize‐Methode bereitstellen – eine Methode ohne Parameter, die einen String‐Wert zurückgibt.
[image:]In der Deklaration einer Schnittstelle hat eine bestimmte Methode möglicherweise keinen eigenen Rumpf. Eine Methode ohne Rumpf wird als abstrakte Methode bezeichnet.

Schnittstellen implementieren
Listing 15.3 implementiert die Schnittstellen Displayable und Summarizable und stellt Rümpfe für die Methoden display und summarize bereit.
public class ColumnOfNumbers implements Displayable, Summarizable {
 double numbers[];

 public ColumnOfNumbers(double[] numbers) {
 this.numbers = numbers;
 }

 @Override
 public void display() {
 for (double d : numbers) {
 System.out.println(d);
 }
 }

 @Override
 public String summarize() {
 double total = 0.0;
 for (double d : numbers) {
 total += d;
 }
 return Double.toString(total);
 }
}

Listing 15.3: Implementierung von zwei Schnittstellen

[image:]Wenn Sie eine Schnittstelle implementieren, stellen Sie Rümpfe für die abstrakten Methoden der Schnittstelle bereit.
Der Java‐Compiler nimmt die Verwendung des Schlüsselworts implements richtig ernst. Wenn Sie eine der beiden Methodendeklarationen aus Listing 15.3 löschen, ohne die implements‐Klausel zu entfernen, gibt Ihr IDE‐Editor beängstigende Fehlermeldungen aus. Java erwartet von Ihnen, dass Sie den Vertrag einhalten, den das Schlüsselwort implements kennzeichnet. Wenn Sie den Vertrag nicht einhalten, kompiliert Java Ihren Code nicht. So einfach ist das.
[image:]Sie können sich die Fehlermeldungen von Java zunutze machen. Geben Sie Code mit der Klausel implements Displayable, Summarizable ein. Aufgrund der implements‐Klausel zeigt der Editor einen Fehler an und listet die Namen der Methoden auf, die Sie deklariert hätten sollen, aber nicht deklariert haben. Im Beispiel für diesen Abschnitt sind diese Methodennamen display und summarize. Nach ein paar weiteren Mausklicks generiert die IDE die Methoden display und summarize einfach für Sie.
Listing 15.4 enthält eine weitere Klasse, die die Schnittstellen Displayable und Summarizable implementiert.
import java.io.File;
import java.io.FileNotFoundException;
import java.util.ArrayList;
import java.util.Scanner;

public class Table implements Displayable, Summarizable {
 Scanner diskFile;
 ArrayList<String> lines = new ArrayList<>;();

 public Table(String fileName) {
 try {
 diskFile = new Scanner(new File(fileName));
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 }
 while (diskFile.hasNextLine()) {
 lines.add(diskFile.nextLine());
 }
 }

 @Override
 public void display() {
 for (String line : lines) {
 System.out.println(line);
 }
 }

 @Override
 public String summarize() {
 return lines.get(0);
 }
}

Listing 15.4: Eine weitere Klasse implementiert die Schnittstellen

Beachten Sie, dass in den Listings 15.3 und 15.4 mehrfach die Annotation @Override verwendet wird. Kapitel 8 hat die Verwendung der Annotation @Override eingeführt. Normalerweise verwenden Sie @Override, um den Ersatz einer Methode zu signalisieren, die bereits in einer Oberklasse deklariert wurde. Ab Java 6 können Sie @Override aber auch verwenden, um die Implementierung einer Schnittstellenmethode zu signalisieren. Genau das mache ich in den Listings 15.3 und 15.4.

Setzen wir die Teile zusammen!
Der Code in Listing 15.5 verwendet all die Dinge aus den Listings 15.1 bis 15.4.
public class Main {

 public static void main(String[] args) {
 double numbers[] = { 21.7, 68.3, 5.5 };
 ColumnOfNumbers column = new ColumnOfNumbers(numbers);

 displayMe(column);
 summarizeMe(column);

 Table table = new Table("MyTable.txt");

 displayMe(table);
 summarizeMe(table);
 }

 static void displayMe(Displayable displayable) {
 displayable.display();
 System.out.println();
 }

 static void summarizeMe(Summarizable summarizable) {
 System.out.println(summarizable.summarize());
 System.out.println();
 }
}

Listing 15.5: Machen Sie das meiste aus Ihren Schnittstellen!

Unter Verwendung der in Datei MyTable.txt aus Abbildung 15.1 erzeugt Listing 15.5 die in Abbildung 15.2 gezeigte Ausgabe.
[image:]Abbildung 15.1: Die Datei
[image:]Abbildung 15.2: Ausführung des Codes in Listing 15.5
Konzentrieren Sie sich jetzt auf die displayMe‐Methode in Listing 15.5. Welche Art Parameter nimmt die displayMe‐Methode entgegen? Ist es eine ColumnOfNumbers? Nein. Ist es eine Table? Nein.
Die displayMe‐Methode weiß nichts über ColumnOfNumbers‐Instanzen oder Table‐Instanzen. Die displayMe‐Methode kennt nur die Dinge, die Displayable implementieren. Und das teilt die Parameterliste der displayMe‐Methode mit. Wenn Sie der displayMe‐Methode etwas übergeben, was die Displayable‐Schnittstelle implementiert, weiß die displayMe‐Methode, was zu tun ist. Die displayMe‐Methode kann die display‐Methode des Parameters aufrufen, weil dieses Parameterobjekt garantiert eine display‐Methode hat.
Dasselbe gilt für die summarizeMe‐Methode in Listing 15.5. Woher wissen Sie, dass Sie im Rumpf der summarizeMe‐Methode summarizable.summarize() aufrufen können? Dieser Aufruf ist möglich, weil summarizable eine summarize()‐Methode haben muss. Die Regeln der Java‐Schnittstellen garantieren das.
Das macht die Leistung der Java‐Schnittstellen aus.
Zweierlei Methodenarten
In einer Schnittstellendeklaration wird eine Methode ohne Rumpf als abstrakte Methode bezeichnet. Wenn Sie mit Java 8 oder höher arbeiten, können Sie auch Methoden mit Rümpfen in einer Schnittstellendeklaration verwenden. Eine Methode mit Rumpf wird als Standardmethode bezeichnet. Im Code einer Schnittstelle beginnt jede Standardmethodendeklaration mit dem Schlüsselwort default.
public interface MyInterface {

 void method1();

 default void method2() {
 System.out.println("Hallo!");
 }
}
In MyInterface ist method1 eine abstrakte Methode, method2 ist eine Standardmethode. Wenn Sie eine Klasse erstellen, die MyInterface implementiert, wie beispielsweise
class MyClass implements MyInterface
muss Ihre neu deklarierte MyClass ihre eigene method1 deklarieren und einen Rumpf für method1 bereitstellen. Optional kann Ihre MyClass ihre eigene method2 deklarieren. Wenn MyClass nicht ihre eigene method2 deklariert, erbt MyClasse einen method2‐Rumpf von MyInterface.

[image:]In diesem Abschnitt implementieren die Klassen ColumnOfNumbers und Table die Schnittstellen Displayable und Summarizable. Wie wäre es mit einer Deletable‐Schnittstelle? Jede Klasse, die die Deletable‐Schnittstelle implementiert, muss eine eigene delete‐Methode haben.
Erstellen Sie die Klasse DeletableColumnOfNumbers – eine Unterklasse der Klasse ColumnOfNumbers. Neben all den Dingen, die ColumnOfNumbers macht, implementiert die Klasse DeletableColumnOfNumbers auch die Deletable‐Schnittstelle. Wenn Sie eine Zahlenspalte mit delete löschen, setzen Sie die Werte aller ihrer Einträge auf 0.0.
Erstellen Sie die Klasse DeletableTable – eine Unterklasse der Klasse Table. Neben allen Dingen, die Table macht, implementiert die Klasse DeletableTable auch die Deletable‐Schnittstelle. Wenn Sie eine Tabelle mit delete löschen, entfernen Sie alle Zeilen bis auf die erste (die Tabellenüberschrift). (Hinweis: Wenn Sie die remove‐Methode einer Liste lines aufrufen, beginnend bei der Zeile 1 bis zur Zeile lines.size(), werden Sie mit den Ergebnissen nicht zufrieden sein. Ein Aufruf der remove‐Methode ändert die Liste sofort und kann Ihre Schleife zunichtemachen.)

Abstrakte Klassen
Gibt es irgendetwas, was für alle Tiere gleichermaßen gilt? Hm, bei der Vielfalt des Lebens auf der Erde ist das schwierig:

[image: image] Dschelada‐Affen sind reine Bodenbewohner. Zum Schlafen ziehen sie sich in Felsspalten oder enge Schluchten zurück.
[image: image] Pompeij‐Würmer leben in Unterwasserröhren. Die Temperatur am Kopf des Wurms beträgt 22 Grad Celsius. Am anderen Ende des Wurms beträgt die Wassertemperatur normalerweise 80 Grad Celsius. Er braucht keine warmen Socken.
[image: image] Eine Seescheide verbringt einen Teil ihres Lebens als Tier. Irgendwann in ihrem Leben heftet sich die Seescheide unlösbar an einen Felsen und verdaut dann ihr eigenes Gehirn, womit sie letztlich zur Pflanze wird.
Angesichts dieser biologischen Vielfalt auf unserem Planeten kann ich höchstens sagen,für jedes Tier gilt, dass es ein bestimmtes Gewicht hat (gemessen in Kilogramm), und dass jedes Tier ein bestimmtes Geräusch macht (oder nicht). Listing 15.6 fasst dies zusammen.
public class Animal {

 double weight;
 String sound;

 public Animal(double weight, String sound) {
 this.weight = weight;
 this.sound = sound;
 }
}

Listing 15.6: Was ein Programmierer über Tiere weiß

Während ich den Code für die Klasse Animal getippt habe, musste ich mehrere Tippfehler korrigieren. Diese Fehler stammten nicht von mir – meine Katze spazierte über meine Tastatur. Damit komme ich zum Thema Haustiere.
Ein Haustier ist ein Tier. Jedes Haustier hat einen Namen – Fina, Samy oder Duchesse. Und für jedes Haustier gibt es eine routinemäßige Pflegeanleitung.
Die Pflegeanleitung unterscheidet sich natürlich zwischen verschiedenen Haustieren. Hätte ich einen Hund, müsste ich mit ihm spazieren gehen. Mit der Katze brauche ich das gar nicht erst zu versuchen. Ich lasse unsere Katze nicht einmal aus dem Haus. Wenn ich also meine Klasse HousePet definiere, muss ich relativ unpräzise sein, was die Pflegeanleitungen betrifft. In Java heißt eine relativ unpräzise Klasse abstrakte Klasse. Listing 15.7 zeigt ein Beispiel.
public abstract class HousePet extends Animal {
 String name;

 public HousePet(String name, double weight, String sound) {
 super(weight, sound);
 this.name = name;
 }

 abstract public void howToCareFor();

 public void about() {
 System.out.print(name + " wiegt " + weight + " pounds");
 System.out.print(sound != null ? (" und macht '" + sound + "'") : "");
 System.out.println(".");
 }
}

Listing 15.7: Was es heißt, ein Haustier zu sein

In der ersten Zeile von Listing 15.7 teilt das Schlüsselwort abstract Java mit, dass HousePet eine abstrakte Klasse ist. Aus diesem Grund kann HousePet eine abstrakte Methode haben. In Listing 15.7 ist howToCareFor eine abstrakte Methode. Eine abstrakte Methode hat einen Header, aber keinen Rumpf. In der Deklaration einer abstrakten Methode gibt es keine geschweiften Klammern – nur ein Semikolon, wo eigentlich geschweifte Klammern stehen sollten.
Was passiert, wenn Sie versuchen, die howToCareFor‐Methode auszuführen? Eigentlich können Sie die howToCareFor‐Methode in Listing 15.7 überhaupt nicht ausführen. Sie können nicht einmal eine Instanz der in Listing 15.7 deklarierten abstrakten Klasse erzeugen. Der folgende Code funktioniert nicht:
// SEHR SCHLECHTER CODE:
HousePet myPet = new HousePet("Boop", 12.0, "Miau");
Eine abstrakte Klasse ist allein nicht lebensfähig. Um eine abstrakte Klasse verwenden zu können, müssen Sie eine ganz normale (nicht abstrakte) Klasse erstellen, die die abstrakte Klasse erweitert. In der normalen Klasse haben alle Methoden Rümpfe. Es funktioniert also alles.
[image:]Bevor Sie Listing 15.7 verlassen, achten Sie auf den Aufruf super(weight, sound). Wie in Kapitel 9 löst das Schlüsselwort super einen Aufruf des Konstruktors der Oberklasse aus. In Listing 15.7 bewirkt der Aufruf super(weight, sound) einen Aufruf des Konstruktors Animal(double weight, String sound) aus Listing 15.6. Der Konstruktor weist den Feldern weight und sound des neuen Objekts Werte zu.
Haustierpflege
Hier ein Zitat aus dem Buch Java für Dummies aus der letzten Auflage:
Um eine abstrakte Klasse verwenden zu können, müssen Sie eine ganz normale (nicht abstrakte) Klasse erstellen, die die abstrakte Klasse erweitert.

Um also die Klasse HousePet in Listing 15.7 verwenden zu können, müssen Sie eine Klasse erstellen, die die Klasse HousePet erweitert. Der Code in Listing 15.8 erweitert die abstrakte Klasse HousePet und stellt einen Rumpf für die Methode howToCareFor bereit.
public class Dog extends HousePet {
 int walksPerDay;

 public Dog(String name, double weight, int walksPerDay) {
 super(name, weight, "Wuff");
 this.walksPerDay = walksPerDay;
 }

 @Override
 public void howToCareFor() {
 System.out.print("Gassigehen " + name);
 System.out.println(" " + walksPerDay + " täglich.");
 }
}

Listing 15.8: Ein Hundeleben

Neben einem Namen, einem Gewicht und einer Geräuschausgabe muss jeder Hund auch täglich mehrfach spazieren gehen. Aufgrund des Rumpfs der Methode howToCareFor wissen Sie jetzt auch, was es bedeutet, sich um einen Hund zu kümmern: Sie müssen mit dem Hund eine bestimmte Anzahl mal spazieren gehen. Gut, dass die Methode howToCareFor in der Klasse HousePet abstrakt ist. Mit einem anderen Haustier müssen Sie nicht unbedingt spazieren gehen.
Betrachten Sie beispielsweise eine Hauskatze. Die »Pflege« einer Katze bedeutet, sie einfach nicht übermäßig zu stören. Katzen haben andere Eigenschaften – die für Hunde nicht gelten. Beispielsweise sind einige Katzen Freigänger, andere nicht. Für eine Hauskatze können Sie walksPerDay auf 0 setzen, aber das sieht aus, als würden Sie schummeln. Stattdessen kann jede Katze einen booleschen Wert erhalten, der angibt, ob die Katze Freigänger ist oder nicht. Listing 15.9 zeigt diesen Code.
public class Cat extends HousePet {
 boolean isOutdoor;

 public Cat(String name, double weight, boolean isOutdoor) {
 super(name, weight, "Miau");
 this.isOutdoor = isOutdoor;
 }

 @Override
 public void howToCareFor() {
 System.out.println(
 isOutdoor ? "Let " : "Keinesfalls " + name + " rauslassen.");
 }
}

Listing 15.9: Ein Katzenleben

Die Klassen Dog und Cat sind Unterklassen der Klasse HousePet. Und aufgrund der abstrakten Methodendeklaration in Listing 15.7 müssen sowohl Dog als auch Cat howToCareFor‐Methoden haben. Die howToCareFor‐Methoden in den beiden Klassen unterscheiden sich jedoch maßgeblich. Eine Methode verwendet das Feld walksPerDay, die andere Methode verwendet das Feld isOutdoor. Und weil die howToCareFor‐Methode der Klasse HousePet abstrakt ist, gibt es kein Standardverhalten. Die Klassen Dog und Cat implementieren also entweder ihre eigenen howToCareFor‐Methoden, oder sie können nicht in Anspruch nehmen, HousePet zu erweitern.
[image:]Dieser Abschnitt beschreibt ein pedantisches Detail, das Sie ignorieren können, wenn Ihnen gerade nicht danach ist. Die Klassen Dog und Cat müssen die Methode howToCareFor implementieren, weil sie nicht abstrakt sind. Wären die Klassen Dog und Cat abstrakt (d. h. wären sie abstrakte Klassen, die die abstrakte Klasse HousePet erweitert), müssten die Klassen Dog und Cat die howToCareFor‐Methode nicht implementieren. Die Klassen Dog und Cat könnten die Implementierungsarbeit auf ihre eigenen Unterklassen abwälzen. Dazu muss eine abstrakte Klasse, die eine Schnittstelle implementiert, keine Rümpfe für alle abstrakten Methoden der Schnittstelle bereitstellen. Abstrakte Klassen können den Vorteil vieler kleiner Schlupflöcher genießen. Um diese Schlupflöcher nutzen zu können, müssen Sie jedoch einige recht exotische Programme erstellen. In diesem Kapitel habe ich das Ganze vereinfacht und schreibe deshalb, dass (a) eine Klasse, die eine abstrakte Klasse erweitert, Rümpfe für die abstrakten Methoden der abstrakten Klasse bereitstellen muss, und (b) eine Klasse, die eine Schnittstelle implementiert, Rümpfe für die abstrakten Methoden dieser Schnittstelle bereitstellen muss. Das ist nicht ganz korrekt, aber gut genug für den Moment.
Wenn Sie in einer sehr kleinen Wohnung leben, haben Sie möglicherweise nicht genügend Platz für einen Hund oder eine Katze. Dann ist Listing 15.10 etwas für Sie.
public class Fish extends HousePet {

 public Fish(String name, double weight) {
 super(name, weight, null);
 }

 @Override
 public void howToCareFor() {
 System.out.println("Füttern " + name + " täglich.");
 }
}

Listing 15.10: Es könnte auch ein Fisch sein

Ich könnte mehr und mehr Unterklassen der Klasse HousePet erstellen. Vor vielen Jahren hatte unsere Tochter weiße Mäuse. Sich um die Mäuse zu kümmern, bedeutete, die Katze von ihnen fernzuhalten.
In Java vermehren sich die Unterklassen wie die Kaninchen.

Und jetzt alle zusammen
Sie sind nicht fertig, bevor Sie Ihren Code nicht getestet haben. Die meisten Programme müssen Stunden, Tage und manchmal sogar Monate getestet werden. Für das Beispiel in diesem Kapitel führe ich nur einen Test durch. Sie finden ihn in Listing 15.11.
public class Main {

 public static void main(String[] args) {
 Dog dog1 = new Dog("Fido", 54.7, 3);

 Dog dog2 = new Dog("Rover", 15.2, 2);

 Cat cat1 = new Cat("Felix", 10.0, false);

 Fish fish1 = new Fish("Bubbles", 0.1);

 dog1.howToCareFor();
 dog2.howToCareFor();
 cat1.howToCareFor();
 fish1.howToCareFor();

 dog1.about();
 dog2.about();
 cat1.about();
 fish1.about();
 }
}

Listing 15.11: Die Klassenmenagerie

Abbildung 15.3 zeigt die Ausgabe, die Sie bei der Ausführung des Codes in Listing 15.11 erhalten.
[image:]Abbildung 15.3: Spielen Sie nicht mit dem Pompej‐Wurm!
Sie sehen, dass der Code in Listing 15.11 viele verschiedene Versionen der howToCareFor‐Methode nahtlos und mühelos aufruft. Bei den Aufrufen dog1.howToCareFor() und dog2.howToCareFor() führt Java die Methode in Listing 15.8 aus. Beim Aufruf cat1.howToCareFor() führt Java die Methode in Listing 15.9 aus. Und beim Aufruf von fish1.howToCareFor() führt Java die Methode in Listing 15.10 aus – wie bei einer riesigen if‐Anweisung, ohne jedoch den Code für die if‐Anweisung schreiben zu müssen. Wenn Sie eine neue Klasse für eine weiße Maus hinzufügen, müssen Sie nicht eine riesige if‐Anweisung anpassen. Weil es überhaupt keine if‐Anweisung gibt, die angepasst werden müsste.
Beachten Sie auch, wie die about‐Methode in der abstrakten Klasse HousePet das Objekt berücksichtigt, von dem sie aufgerufen wurde. Wenn Sie beispielsweise in Listing 15.11 dog1.about() aufrufen, weiß die nicht spezifische about‐Methode der Klasse HousePet, dass das Geräusch von dog1 Wuff ist. Alles aufs Beste geregelt.
[image:]Mögen Sie abstrakte Kunst? Mit abstrakten Klassen können Sie abstrakte Kunst schaffen!

[image: image] Erstellen Sie eine abstrakte Klasse namens Shape. Die Klasse Shape hat das Feld size (des Typs int) und eine abstrakte Methode show. Erweitern Sie die abstrakte Klasse Shape mit zwei weiteren Klassen: einer Klasse Square und einer Klasse Triangle. In den Rümpfen der Klassen Square und Triangle legen Sie den Code ab, der eine textbasierte Darstellung der betreffenden Form erzeugt. Ein Quadrat der Größe 5 sieht beispielsweise wie folgt aus:
‐‐‐‐‐‐‐‐
| |
| |
| |
‐‐‐‐‐‐‐‐

Ein Dreieck der Größe 2 sieht wie folgt aus:
 /\
 / \
 ‐‐‐‐
[image: image] Als spezielle Herausforderung erstellen Sie eine abstrakte Klasse Shape mit einer abstrakten Methode paint. Die Klasse Shape besitzt die Felder size, color und isFilled. Das Feld size ist vom Typ int, das Feld color ist vom Typ java.awt.Color, und das Feld isFilled hat den Typ boolean. Erweitern Sie die abstrakte Klasse Shape mit zwei weiteren Klassen: einer Klasse Square und einer Klasse Circle. In den Rümpfen der paint‐Methoden der Klassen Square und Circle platzieren Sie Code, der die betreffende Form in einen Java‐JFrame zeichnet.

Entspannen Sie sich! Sie sehen nicht doppelt!
Wenn Sie die Abschnitte über Schnittstellen und abstrakte Methoden in diesem Kapitel gelesen haben, brummt Ihnen vielleicht jetzt noch der Kopf. Sowohl Schnittstellen, als auch abstrakte Klassen haben abstrakte Methoden. Aber in beiden Referenztypen spielen abstrakte Methoden leicht unterschiedliche Rollen. Wie können Sie das Ganze noch überblicken?
Merken Sie sich als Erstes, dass man die objektorientierte Programmierung nur mit sehr viel Übung erlernen kann. Wenn Sie dieses Kapitel gelesen haben und verwirrt sind, dann ist das kein schlechtes Zeichen. Es bedeutet lediglich, dass Sie genug verstanden haben, um zu erkennen, wie kompliziert das Ganze ist. Je mehr Code Sie schreiben, desto besser werden Sie sich mit Klassen, Schnittstellen und all den anderen Konzepten auskennen.
Als Nächstes sehen Sie sich die Unterschiede bei der Deklaration abstrakter Methoden an. Tabelle 15.1 zeigt einen Überblick.
Sowohl Schnittstellen, als auch abstrakte Klassen haben abstrakte Methoden. Sie fragen sich vielleicht jetzt, wie Sie zwischen der Deklaration einer Schnittstelle und einer abstrakten Klasse unterscheiden sollen. Fragen Sie drei Programmierer, wie sich Schnittstellen und abstrakte Klassen voneinander unterscheiden. Sie werden fünf (sic!) verschiedene Antworten erhalten.
Schnittstellen und abstrakte Klassen sind sich sehr ähnlich, und die neuen Funktionen in Java 8 haben dafür gesorgt, dass sie sich noch ähnlicher sind als in früheren Java‐Versionen. Bei der grundlegenden Idee geht es jedoch um die Beziehungen zwischen Dingen.
		In einer gewöhnlichen (nicht abstrakten) Klasse
	In einer Schnittstelle
	In einer abstrakten Klasse

	Sind abstrakte Methoden erlaubt?
	Nein
	Ja
	Ja

	Kann eine Methodendeklaration das Schlüsselwort abstract enthalten?
	Nein
	Ja
	Ja

	Kann eine Methodendeklaration das Schlüsselwort default enthalten (d. h. »nicht abstrakt«)?
	Nein
	Ja
	Nein

	Ohne die Schlüsselwörter abstract und default ist eine Methode:
	Nicht abstrakt
	Abstrakt
	Nicht abstrakt

Tabelle 15.1: Abstrakte Methoden verwenden – oder nicht.

[image: image] Die Erweiterung einer Unterklasse stellt eine Ist‐ein‐Beziehung dar.

Denken Sie an die Beziehungen im früheren Abschnitt Abstrakte Klassen dieses Kapitels. Ein Haustier ist ein Tier. Ein Hund ist ein Haustier. Eine Katze ist ein Haustier. Ein Fisch ist ein Haustier.
[image: image] Die Implementierung einer Schnittstelle stellt eine Kann‐machen‐Beziehung dar.

Denken Sie an die Beziehungen im früheren Abschnitt Die Java‐Schnittstelle dieses Kapitels. Die erste Zeile in Listing 15.3 enthält implements Displayable. Mit diesen Worten verspricht der Code, dass jedes ColumnOfNumbers‐Objekt dargestellt werden kann. Später im selben Listing wird das Versprechen erfüllt, indem eine display‐Methode deklariert wird.

Denken Sie an die Beziehungen im früheren Abschnitt Die Java‐Schnittstelle dieses Kapitels. Eine Spalte Zahlen kann nicht immer zusammengefasst werden. In Listing 15.3 versprechen Sie jedoch, dass die ColumnOfNumbers‐Objekte zusammengefasst werden können, und Sie erfüllen das Versprechen, indem Sie eine summarize‐Methode deklarieren.
Wenn Sie eine greifbarere Beschreibung des Unterschieds zwischen einer Schnittstelle und einer abstrakten Klasse wünschen, überlegen Sie Folgendes: Eine Klasse kann viele Schnittstellen implementieren, aber eine Klasse kann nur eine andere Klasse erweitern, selbst wenn es sich bei dieser Klasse um eine abstrakte Klasse handelt. Nachdem Sie also
public class Dog extends HousePet
deklariert haben, können Sie Dog nicht eine Friend‐Klasse erweitern lassen. Sie können jedoch dafür sorgen, dass Dog eine Befriendable‐Schnittstelle implementiert. Und dann können Sie dafür sorgen, dass dieselbe Dog‐Klasse eine Trainable‐Schnittstelle implementiert. (Ich habe es übrigens versucht, für meine Cat‐Klasse eine Trainable‐Schnittstelle zu implementieren, was allerdings aus irgendwelchen Gründen nie funktioniert hat.)
Und wenn Sie einen noch greifbareren Unterschied zwischen einer Schnittstelle und einer abstrakten Klasse hören wollen, habe ich einen für Sie: Eine Schnittstelle kann keine nicht statischen, nicht finalen Felder enthalten. Wäre beispielsweise die Klasse HousePet in Listing 15.7 eine Schnittstelle, könnte sie kein name‐Feld haben. Das wäre einfach nicht zulässig.
Das war's. Schnittstellen und abstrakte Klassen unterscheiden sich voneinander. Als Neuling sollten Sie sich nicht zu viele Gedanken über den Unterschied machen. Lesen Sie einfach so viel Code, wie Sie können, und lassen Sie sich von abstrakten Methoden nicht abschrecken. Mehr ist dazu nicht zu sagen.

427-444

Kapitel 16
Auf Tastatureingaben und Mausklicks reagieren
In diesem Kapitel
Code erstellen, der mit Mausklicks (und ähnlichen Ereignissen) umgehen kann
Reagieren, wenn der Benutzer eine Taste drückt oder ein Element einer Dropdown‐Liste auswählt
Klassen in anderen Klassen ablegen

Ich kaufte meine erste Maus in den späten 1980er‐Jahren. Ich bezahlte 100 Dollar, und da ich die Maus nicht wirklich benötigte, habe ich vorher meine Frau um Erlaubnis gefragt. (Damals lief auf meinem Computer eine kombinierte Text/Windows‐Umgebung. Alles, was ich mit einer Maus machen konnte, ließ sich auch ganz einfach über die Taste [image: [Alt]] erledigen.)
Jetzt haben wir das 21. Jahrhundert. Die letzten zehn Mäuse habe ich umsonst bekommen. Normale Mäuse fallen mir irgendwie in den Schoß. Ein paar exotische Mäuse habe ich im Computerladen gekauft. Eine kostete 10 Dollar, und es gab sie zusammen mit einem 10‐Dollar‐Gutschein.

Machen Sie weiter … Klicken Sie auf diese Schaltfläche
Ich habe in früheren Kapiteln Fenster erstellt, die eigentlich nicht viel tun. Ein ganz normales Fenster zeigt zwar Informationen an, verfügt aber nicht über interaktive Elemente. Jetzt ist es an der Zeit, dies zu ändern. Das erste Beispiel dieses Kapitels ist ein Fenster, das eine Schaltfläche enthält. Wenn der Benutzer diese Schaltfläche anklickt, geschieht etwas. Listing 16.1 zeigt den entsprechenden Code, und die Methode main, die diesen Code aufruft, befindet sich in Listing 16.2.
import java.awt.FlowLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.util.Random;

import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JTextField;

class GameFrame extends JFrame implements ActionListener {
 private static final long serialVersionUID = 1L;

 int randomNumber = new Random().nextInt(10) + 1;
 int numGuesses = 0;

 JTextField textField = new JTextField(5);
 JButton button = new JButton("Raten Sie");
 JLabel label = new JLabel(numGuesses + " Versuche");

 public GameFrame() {
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setLayout(new FlowLayout());
 add(textField);
 add(button);
 add(label);
 button.addActionListener(this);
 pack();
 setVisible(true);
 }

 @Override
 public void actionPerformed(ActionEvent e) {
 String textFieldText = textField.getText();

 if (Integer.parseInt(textFieldText)==randomNumber) {
 button.setEnabled(false);
 textField.setText(textField.getText() + " Ja!");
 textField.setEnabled(false);
 } else {
 textField.setText("");
 textField.requestFocus();
 }

 numGuesses++;
 String guessWord =
 (numGuesses == 1) ? " Versuch" : " Versuche";
 label.setText(numGuesses + guessWord);
 }
}

Listing 16.1: Ein Ratespiel

class ShowGameFrame {

 public static void main(String args[]) {
 new GameFrame();
 }
}

Listing 16.2: Das Ratespiel starten

Abbildung 16.1 und Abbildung 16.2 spiegeln Schnappschüsse wider, die die Ausführung des Beispielprogramms dieses Kapitels zeigen. Der Benutzer spielt in einem Fenster ein Ratespiel. Das Programm wählt im Hintergrund eine geheime Zahl (von 1 bis 10) aus. Dann zeigt das Programm ein Textfeld und eine Schaltfläche an. Der Benutzer gibt in das Textfeld eine Zahl ein und klickt auf die Schaltfläche. Nun passiert eines von zwei Dingen:

[image: image] Wenn die Zahl, die der Benutzer eingegeben hat, nicht mit der geheimen Zahl übereinstimmt, zeigt der Computer die Anzahl der bisherigen Rateversuche an, und der Benutzer kann erneut raten.
[image: image] Wenn die Zahl, die der Benutzer eingegeben hat, mit der geheimen Zahl übereinstimmt, wird im Textfeld die richtige Zahl und Ja! angezeigt. Damit ist das Spiel vorbei, und sowohl das Textfeld als auch die Schaltfläche werden deaktiviert. Beide Komponenten werden ausgegraut und reagieren weder auf Tastatureingaben noch auf Mausaktionen.
[image:]Abbildung 16.1: Falsch geraten
[image:]Abbildung 16.2: Endlich richtig geraten!
Der Code in Listing 16.1, der den Frame, die Schaltfläche und das Textfeld erstellt, ist nichts Weltbewegendes. Ich habe in den Kapiteln 9 und 10 ähnliche Dinge getan. Die Klasse JTextField ist neu, aber ein Textfeld unterscheidet sich nicht großartig von einer Schaltfläche oder einem Label. Die Klasse JTextField ist wie so viele andere Komponenten im Paket javax.swing definiert. Wenn Sie eine neue JTextField‐Instanz anlegen, können Sie festlegen, wie viele Spalten das Feld erhalten soll. Ich erstelle in Listing 16.1 ein Textfeld, das fünf Spalten breit ist.
[image:]Außerdem verwendet dieses Listing einen nicht alltäglichen Operator, um sowohl für die Einzahl (Versuch) als auch die Mehrzahl (Versuche) gewappnet zu sein. Wenn Sie nicht sicher wissen, wie Sie mit dem Fragezeichen und dem Doppelpunkt umgehen müssen, werfen Sie einen Blick in Kapitel 11.
Ereignisse und Ereignisbehandlung
Das wirklich Neue in Listing 16.1 ist, wie damit umgegangen wird, wenn der Benutzer die Schaltfläche anklickt. Wenn Sie mit einer grafischen Oberfläche für Benutzer (GUI – für Graphical User Interface) arbeiten, wird alles, was ein Benutzer macht (zum Beispiel das Drücken einer Taste, das Bewegen der Maus, das Klicken mit der Maus oder was sonst noch ansteht), als Ereignis bezeichnet. Den Code, der auf das Drücken, Bewegen oder Klicken des Benutzers reagiert, nennt man Ereignisbehandlung.
[image:]Interface hat im Deutschen mehrere Bedeutungen. Es kann sowohl Oberfläche als auch Schnittstelle heißen. Und dann gibt es noch das Java‐Objekt Interface, das niemals übersetzt wird. Achten Sie also darauf, in welchem Zusammenhang Sie Interface lesen.
Listing 16.1 hat an drei Stellen mit dem Ereignis »Anklicken einer Schaltfläche« zu tun:

[image: image] Der obere Teil der Deklaration der Klasse GameFrame besagt, dass diese Klasse ActionListener implementiert.

Durch die Ankündigung, dass er die ActionListener‐Schnittstelle implementiert, erklärt der Code in Listing 16.1, dass er die abstrakte Methode actionPerformed der Schnittstelle berücksichtigt. Das bedeutet, er deklariert eine actionPerformed‐Methode mit geschweiften Klammern, einem Rumpf und möglicherweise verschiedenen auszuführenden Anweisungen.
[image: image] Natürlich hat der Code für die GameFrame‐Klasse eine actionPerformed‐Methode, und diese actionPerformed‐Methode hat einen Rumpf.
[image: image] Der Code der Klasse GameFrame schließlich fügt dies der Liste der ActionListener der Schaltfläche hinzu.

Java ruft die actionPerformed‐Methode dieses Codes auf, wenn der Benutzer auf die Schaltfläche klickt. Hurra!
Diese drei Maßnahmen sorgen letztendlich dafür, dass die Klasse GameFrame in der Lage ist, auf Klickereignisse der Schaltfläche zu reagieren.
[image:]Weitere Informationen über Schnittstellen in Java finden Sie in Kapitel 15.
[image:]Sie erfahren eine Menge über den Code in Listing 16.1, wenn Sie bestimmte Anweisungen entfernen und die Ergebnisse beobachten. Sehen Sie sich für die vorgeschlagenen Änderungen an, ob Ihre IDE eine Fehlermeldung anzeigt. Ist dies nicht der Fall, versuchen Sie, das Programm auszuführen. Wenn Sie sich die Ergebnisse angesehen haben, fügen Sie den entfernten Code wieder ein und sehen sich die nächste Änderung an:

[image: image] Entfernen Sie die gesamte Deklaration der Methode actionPerformed – Header und den ganzen Rest.
[image: image] Entfernen Sie den Aufruf von setVisible(true).
[image: image] Entfernen Sie den Aufruf von pack().
[image: image] Entfernen Sie den Aufruf von button.addActionListener().

Threads
Hier ein wohlgehütetes Geheimnis: Java‐Programme sind multithreaded. Dies bedeutet, dass mehrere Komponenten gleichzeitig ablaufen, wenn Sie ein Java‐Programm ausführen. Der Computer führt den Code aus, den Sie geschrieben haben, und er führt gleichzeitig noch anderen Code aus (Code, den Sie nicht geschrieben haben und den Sie auch nicht sehen). Während sich der Computer um die Befehle Ihrer Methode main kümmert, nimmt er sich eine Auszeit, schaut sich ein wenig um und führt Befehle anderer, unsichtbarer Methoden aus. Bei den meisten einfachen Java‐Programmen handelt es sich bei diesen Java‐Methoden um solche, die Teil der Java Virtual Machine (JVM) sind.
So gibt es zum Beispiel in Java einen Thread für die Ereignisbehandlung. Während Ihr Code ausgeführt wird, läuft der Code des Ereignisbehandlungsthreads im Hintergrund. Er achtet auf Mausklicks und unternimmt im Falle eines Klickens die entsprechenden Aktionen. Abbildung 16.3 zeigt, wie das vonstattengeht.
[image:]Abbildung 16.3: Zwei Java‐Threads
Wenn der Benutzer die Schaltfläche anklickt, fragt der für die Ereignisbehandlung zuständige Thread: »Okay, die Schaltfläche ist angeklickt worden. Was soll ich nun tun?« Die Antwort lautet: »Rufe actionPerformed‐Methoden auf.« Das ist so, als wenn der Thread Code wie diesen hier zur Verfügung hätte:
if (buttonJustGotClicked()) {
 object1.actionPerformed(infoAboutTheClick);
 object2.actionPerformed(infoAboutTheClick);
 object3.actionPerformed(infoAboutTheClick);
}
Klar, dass jede Antwort wieder zu einer Frage führt. In unserem Fall lautet die Anschlussfrage: »Wo findet der für die Ereignisbehandlung zuständige Thread actionPerformed‐Methoden, die er aufrufen kann?« Und dann gibt es da noch die Frage: »Was ist, wenn Sie gar nicht wollen, dass der Thread die entsprechenden Methoden aufruft, die sich irgendwo im Code herumtreiben?«
Das ist der Moment, an dem die Methode addActionListener ins Spiel kommt. In Listing 16.1 weist der Aufruf
button.addActionListener(this);
den für die Ereignisbehandlung zuständigen Thread an, die Methode actionPerformed des Codes auf die Liste mit den Methoden zu setzen, die aufgerufen werden sollen, und die Methode actionPerformed jedes Mal aufzurufen, wenn die Schaltfläche angeklickt wird.
Nun wissen Sie, wie das abläuft. Damit der Computer eine actionPerformed‐Methode aufruft, registrieren Sie die Methode für den Java‐Thread, der für die Ereignisbehandlung zuständig ist. Sie erledigen dies, indem Sie addActionListener aufrufen. Diese Methode gehört zu dem Objekt, auf dessen Angeklicktwerden (und andere Ereignisse) Sie warten. In Listing 16.1 warten Sie darauf, dass das Objekt button angeklickt wird, also gehört die Methode addActionListener zu diesem Objekt.

Das Schlüsselwort »this«
In den Kapiteln 9 und 10 gewährt Ihnen der Code in einer Methode über das Schlüsselwort this Zugriff auf Instanzvariablen. Da taucht die berechtigte Frage auf, was this nun wirklich bedeutet. Vergleichen Sie dieses Schlüsselwort mit dem deutschen Ausdruck »Ihr Name«.

Ich, (Ihr Name), erkläre hiermit feierlich, dass ich mein Amt als Schöffe …
Der Ausdruck »Ihr Name« ist ein Platzhalter. Er ist ein Leerraum, in den eine Person ihren Namen einsetzen muss.

Ich, Paula Glück, erkläre hiermit …
Ich, Gerd Johns, erkläre hiermit …
Stellen Sie sich das Versprechen (Ich … erkläre hiermit feierlich, dass ich mein Amt …) als ein Stück Code in einer Java‐Klasse vor. In diesem Code lautet der Ausdruck für den Platzhalter »Ihr Name«. Immer wenn eine Instanz der Klasse (eine Person) den Code ausführt (das Versprechen abgibt), ersetzt die Instanz den Platzhalter »Ihr Name« durch ihren eigenen Namen.
Das Schlüsselwort this arbeitet auf die gleiche Weise. Es befindet sich in dem Code, der die Klasse GameFrame definiert. Immer wenn eine Instanz von GameFrame aufgebaut wird, ruft die Instanz addActionListener(this) auf. In diesem Aufruf steht das Schlüsselwort this für die Instanz selbst.
button.addActionListener(dieseInstanzVonGameFrame);
Dadurch, dass die GameFrame‐Instanz button.addActionListener(this) aufruft, sagt sie: »Füge der Liste mit den Methoden, die aufgerufen werden, wenn die Schaltfläche angeklickt wird, meine Methode actionPerformed hinzu.« Da die GameFrame‐Instanz über eine Methode actionPerformed verfügt, weil die Klasse GameFrame das ActionListener‐Interface implementiert, passt alles wunderbar zusammen.
[image:]Beschreiben Sie mit Ihren Worten die Verwendungszwecke des Schlüsselworts this im folgenden Code:
public class Main {

 public static void main(String[] args) {
 new IntegerHolder(42).displayMyN();
 new IntegerHolder(7).displayMyN();
 }
}

class IntegerHolder {
 private int n;
 IntegerHolder(int n) {
 this.n = n;
 }

 void displayMyN() {
 Displayer.display(this);
 }

 public int getN() {
 return n;
 }
}

class Displayer {

 public static void display(IntegerHolder holder) {
 System.out.println(holder.getN());
 }
}

Das Innere der Methode »actionPerformed«
Die Methode actionPerformed verwendet in Listing 16.1 einige Tricks der Java‐API, die die folgende Liste kurz zusammenfasst:

[image: image] Jede Instanz von JTextField (und JLabel) hat ihre eigenen Getter‐ und Setter‐Methoden, zu denen auch getText und setText gehören. Der Aufruf von getText schnappt sich alle Zeichen, die es in der Komponente gibt. In Listing 16.1 entnimmt der umsichtige Einsatz von getText und setText dem Textfeld eine Zahl, die entweder durch nichts (dem leeren String "") oder durch die Zahl und das Wort Ja! ersetzt wird.
[image: image] Jede Komponente im Paket javax.swing (JTextField, JButton oder was es sonst noch gibt) verfügt über eine Methode setEnabled. Wenn Sie setEnabled(false) aufrufen, wird die Komponente ausgegraut, wird zu einem deaktivierten Objekt und ist nicht länger in der Lage, Klickereignisse der Schaltfläche zu empfangen.
[image: image] Jede Komponente im Paket javax.swing verfügt über eine Methode requestFocus. Wenn Sie requestFocus aufrufen, ist die Komponente in der Lage, wieder Eingaben des Benutzers anzunehmen. So besagt zum Beispiel in Listing 16.1 der Aufruf von textField.requestFocus(), dass selbst dann ein Cursor in das Textfeld gesetzt werden kann, wenn der Benutzer die Schaltfläche gerade erst angeklickt hat. Dies soll dem Benutzer die Möglichkeit geben, einen neuen Rateversuch zu starten.
[image:]Sie können einen Test durchführen, um sicherzustellen, dass es sich bei dem Objekt, auf das von der Variablen für die Schaltfläche aus verwiesen wird, auch wirklich um das Ding handelt, das angeklickt worden ist. Schreiben Sie einfach if (e.getSource() == button). Wenn Ihr Code zwei Schaltflächen mit den Namen button1 und button2 enthält, können Sie herausfinden, welche Schaltfläche angeklickt worden ist. Schreiben Sie if (e.getSource() == button1) und if (e.getSource() == button2).

Die serialVersionUID
Kapitel 9 stellt die Annotation SuppressWarnings vor, die verhindert, dass Sie es mit etwas zu tun bekommen, das serialVersionUID genannt wird. Bei einer serialVersionUID handelt es sich um eine Zahl, die Java hilft, Versionskonflikte zu vermeiden, wenn Sie ein Objekt von einem Ort an einen anderen senden. Sie können zum Beispiel den Status Ihres JFrame‐Objekts an den Bildschirm eines anderen Computers senden. Der andere Computer ist dann in der Lage, die Versionsnummer des Frames zu überprüfen, damit nicht plötzlich irgendwelche komischen Dinge stattfinden.
Ich gehe in Kapitel 9 nur am Rande auf serialVersionUID ein, indem ich Java anweise, Warnungen über fehlende Versionsnummern zu ignorieren. Dies ändert sich aber in Listing 16.1. Mein JFrame‐Objekt erhält eine richtige serialVersionUID. Da es sich hier um meine erste Version von GameFrame handelt, bekommt das Spiel die Versionsnummer 1. (Tatsächlich hat dieses GameFrame die Nummer 1L erhalten (was den long‐Wert 1 bedeutet; siehe Kapitel 4.)
Die Frage ist nun, wann Sie sich damit abplagen müssen, die serialVersionUID zu ändern. Wenn die Version mit der Nummer 1 in Ordnung ist, ist dann Version 2 besser? Die Antwort ist ein wenig kompliziert, aber generell gilt, dass Sie die serialVersionUID erst neu vergeben, wenn Sie inkompatible Änderungen am Code der Klasse vorgenommen haben. Unter »inkompatible Änderungen« verstehe ich Änderungen, die es dem Code des empfangenden Computers unmöglich machen, mit den neu erstellten Objekten umzugehen.
[image:]Wenn Sie mehr über die serialVersionUID und darüber wissen wollen, was eine inkompatible Änderung am Code ausmacht, besuchen Sie die englischsprachige Website docs.oracle.com/javase/8/docs/platform/serialization/spec/version.html.)
Jede der großen Java‐IDEs unterstützt visuelle Tools, die Ihnen helfen, eine GUI‐Oberfläche zu entwerfen:

[image: image] Eclipse verwendet WindowBuilder: http://www.eclipse.org/windowbuilder
[image: image] IntelliJ IDEA verwendet GUI Designer: http://www.jetbrains.com/help/idea/2016.3/gui-designer-basics.html
[image: image] NetBeans verwendet GUI Builder: http://netbeans.org/kb/docs/java/quickstart‐gui.html
Mit jedem dieser Tools können Sie aus einer Palette Komponenten auf einen Frame ziehen. (Zu diesen Komponenten gehören Schaltflächen, Textfelder und andere Nettigkeiten.) Sie können dann mit Ihrer Maus die einzelnen Komponenten verschieben und ihre Größen ändern. Während Sie den Frame grafisch gestalten, erstellt Eclipse automatisch den Code des Frames. Zu jeder Komponente auf dem Frame gehört ein kleines tabellarisches Arbeitsblatt mit ihren Eigenschaften. Sie können zum Beispiel den Text auf der Oberfläche einer Schaltfläche ändern, indem Sie auf ihrem Arbeitsblatt den Eintrag unter Text ändern. Wenn Sie mit der rechten Maustaste auf ein Bild einer Komponente klicken oder dort ein [image: [Strg]]‐Klicken ausführen, erhalten Sie die Möglichkeit, zur Methode actionPerformed der Komponente zu springen. In dieser Methode fügen Sie Java‐Code wie button.setText("Du hast mich angeklickt!") hinzu. Ein Werkzeug wie WindowBuilder sorgt dafür, dass das Entwerfen von GUIs schneller, natürlicher und intuitiver vonstattengeht.
[image:]Dieses Kapitel beschreibt Funktionen des Java‐Frameworks Swing. Swing ist seit 1998 Javas primäres Framework für die Entwicklung von GUI‐Anwendungen. Gegen Ende 2011 fügte Oracle dem Java‐Kern ein neues Framework hinzu – JavaFX. JavaFX stellt einen reichhaltigeren Satz an Komponenten zur Verfügung als Swing. Wenn es um einfache Anwendungen geht, ist JavaFX häufig zu kompliziert in der Anwendung. Wenn Sie daran interessiert sind, mehr über JavaFX zu erfahren, besuchen Sie die Website von Oracle zu diesem Thema unter http://docs.oracle.com/javafx/2/get_started/jfxpub‐get_started.htm.
[image:]Erstellen Sie unter Verwendung der in diesem Kapitel gezeigten Techniken ein Programm, das einen Frame mit drei Komponenten anzeigt: einem Textfeld (JTextField), einer Schaltfläche (JButton) und einer Beschriftung (JLabel). Der Benutzer gibt Text in das Textfeld ein. Klickt der Benutzer anschließend auf die Schaltfläche, kopiert das Programm den Text aus dem Textfeld in die Beschriftung.

Auf andere Dinge als auf das Anklicken von Schaltflächen reagieren
Wenn Sie wissen, wie Sie auf eine Ereignisart reagieren müssen, sollten Sie keine Schwierigkeiten haben, auch mit anderen Ereignissen umgehen zu können. Die Listings 16.3 und 16.4 zeigen ein Fenster an, das amerikanische Dollar in britische Pfund umrechnet. Der Code in diesen Listings reagiert auf viele Ereignisse. Abbildung 16.4, Abbildung 16.5 und Abbildung 16.6 zeigen, wie der Code arbeitet.
import java.awt.Color;
import java.awt.FlowLayout;
import java.awt.event.ItemEvent;
import java.awt.event.ItemListener;
import java.awt.event.KeyEvent;
import java.awt.event.KeyListener;
import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;
import java.text.NumberFormat;
import java.util.Locale;

import javax.swing.JComboBox;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JTextField;

class MoneyFrame extends JFrame implements
 KeyListener, ItemListener, MouseListener {
 private static final long serialVersionUID = 1L;

 JLabel fromCurrencyLabel = new JLabel(" ");
 JTextField textField = new JTextField(5);
 JLabel label = new JLabel(" ");
 JComboBox<String> combo = new JComboBox();
 NumberFormat currencyUS = NumberFormat.getCurrencyInstance();
 NumberFormat currencyUK = NumberFormat.getCurrencyInstance(Locale.UK);

 public MoneyFrame() {
 setLayout(new FlowLayout());

 add(fromCurrencyLabel);
 add(textField);
 combo.addItem("US in UK");
 combo.addItem("UK in US");
 add(label);
 add(combo);

 textField.addKeyListener(this);
 combo.addItemListener(this);
 label.addMouseListener(this);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 setSize(300, 100);
 setVisible(true);
 }

 void setTextOnLabel() {
 String amountString = "";
 String fromCurrency = "";

 try {
 double amount = Double.parseDouble(textField.getText());

 if(combo.getSelectedItem().equals("US in UK"))
 {
 amountString = " = " + currencyUK.format(amount * 0.61214);
 fromCurrency = "$";
 }

 if(combo.getSelectedItem().equals("UK in US"))
 {
 amountString = " = " + currencyUS.format(amount * 1.63361);
 fromCurrency = "\u00A3";
 }

 } catch (NumberFormatException e) {
 }

 label.setText(amountString);
 fromCurrencyLabel.setText(fromCurrency);
 }

 @Override
 public void keyReleased(KeyEvent k) {
 setTextOnLabel();
 }

 @Override
 public void keyPressed(KeyEvent k) {
 }

 @Override
 public void keyTyped(KeyEvent k) {
 }

 @Override
 public void itemStateChanged(ItemEvent i) {
 setTextOnLabel();
 }

 @Override
 public void mouseEntered(MouseEvent m) {
 label.setForeground(Color.red);
 }

 @Override
 public void mouseExited(MouseEvent m) {
 label.setForeground(Color.black);
 }

 @Override
 public void mouseClicked(MouseEvent m) {
 }

 @Override
 public void mousePressed(MouseEvent m) {
 }

 @Override
 public void mouseReleased(MouseEvent m) {
 }
}

Listing 16.3: Den Währungsrechner anzeigen

public class ShowMoneyFrame {

 public static void main(String args[]) {
 new MoneyFrame();
 }
}

Listing 16.4: Den Code in Listing 16.3 aufrufen

[image:]Abbildung 16.4: Währung umrechnen – Dollar in Pfund
[image:]Abbildung 16.5: Das Listenfeld verwenden
[image:]Abbildung 16.6: Währung umrechnen – Pfund in Dollar
Gut, Listing 16.3 ist recht lang geworden, aber sein Code lässt sich gut zusammenfassen:
class MoneyFrame extends JFrame implements
 KeyListener, ItemListener, MouseListener {
 Variablendeklarationen
 Konstruktor für die Klasse MoneyFrame
 Deklaration einer Methode setTextOnLabel
 Benötigte Methoden, weil die Klasse drei Instanzen implementiert
}
Der Konstruktor fügt in Listing 16.3 dem Fenster MoneyFrame die folgenden vier Komponenten hinzu:

[image: image] Ein Label: In Abbildung 16.4 zeigt das Label ein Dollarzeichen an.
[image: image] Ein Textfeld: In Abbildung 16.4 gibt der Benutzer 54 in das Textfeld ein.
[image: image] Ein weiteres Label: In Abbildung 16.4 zeigt das zweite Label £33.06 an.
[image: image] Ein Kombinationsfeld: In Abbildung 16.4 zeigt das Kombinationsfeld US in UK an. In Abbildung 16.5 wählt der Benutzer im Feld ein Element aus. In Abbildung 16.6 ist UK in US gewählt worden. (Ein Kombinationsfeld wird auch Combobox genannt.)
[image:]In Java kann eine JComboBox (häufig auch als Dropdown‐Liste bezeichnet) Elemente beliebiger Art anzeigen. In Listing 16.3 erzeugt die Deklaration
JComboBox<String> combo = new JComboBox<>();
eine JComboBox, deren Einträge vom Typ String sind. Das scheint vernünftig zu sein, aber wenn Ihre Anwendung eine Klasse Person hat, kann es sein, dass Sie JComboBox<Person> peopleBox deklarieren müssen. In dieser Situation muss Java wissen, wie die einzelnen Person‐Objekte in der Dropdown‐Liste angezeigt werden sollen. (Das ist kein größeres Problem. Java findet heraus, wie es eine Person anzeigen soll, indem es nach einer toString()‐Methode in der Person‐Klasse sucht.)
Der MoneyFrame implementiert drei Interfaces: KeyListener, ItemListener und MouseListener. Da drei Interfaces implementiert werden, kann der Code auf drei verschiedene Ereignisarten achten. Ich behandele die Interfaces und die Ereignisse in der folgenden Liste:

[image: image] KeyListener: Eine Klasse, die das Interface KeyListener implementiert, muss über die drei Methoden keyReleased, keyPressed und keyTyped verfügen. Wenn Sie Ihren Finger von einer Taste abheben, ruft der für die Ereignisbehandlung zuständige Thread keyReleased auf.

In Listing 16.3 ruft die Methode keyReleased die Methode setTextOnLabel auf. Meine Methode setTextOnLabel prüft nach, was aktuell im Kombinationsfeld ausgewählt worden ist. Wenn der Benutzer die Option US in UK wählt, rechnet die Methode setTextOnLabel US‐Dollar in englische Pfund um. Wenn der Benutzer die Option UK in US wählt, rechnet die Methode setTextOnLabel Pfund in Dollar um.
[image:]Ich verwende in der Methode setTextOnLabel den String "\u00A3". Bei dieser ungewöhnlichen Zeichenfolge handelt es sich um das englische Währungssymbol Pfund. (Das u steht in \u00A3 für Unicode – einem internationalen Standard für die Darstellung von Zeichen aus dem weltweiten Alphabet.). Sie finden in Javas API‐Dokumentation zur Klasse Locale mehr zu diesem Thema (https://docs.oracle.com/javase/8/docs/api/java/util/Locale.html).
[image: image] ItemListener: Eine Klasse, die das Interface ItemListener implementiert, muss über die Methode itemStateChanged verfügen. Wenn Sie in einem Kombinationsfeld ein Element auswählen, ruft der für die Ereignisbehandlung zuständige Thread itemStateChanged auf.

Wenn der Benutzer im Kombinationsfeld US in UK oder UK in US wählt, ruft in Listing 16.3 der für die Ereignisbehandlung zuständige Thread die Methode itemStateChanged auf. Im Gegenzug ruft die Methode itemStateChanged dann setTextOnLabel auf und so weiter.
[image: image] MouseListener: Eine Klasse, die das Interface MouseListener implementiert, muss über die Methoden mouseEntered, mouseExited, mouseClicked, mousePressed und mouseReleased verfügen. Die Implementierung von MouseListener unterscheidet sich von der Implementierung von ActionListener. Wenn Sie ActionListener so implementieren, wie es Listing 16.1 vormacht, reagiert der für die Ereignisbehandlung zuständige Thread nur auf Mausklicks. Aber durch MouseListener ist der Thread in der Lage, auch darauf zu reagieren, wenn der Benutzer die Maus drückt, loslässt oder bewegt und so weiter.

In Listing 16.3 werden die Methoden mouseEntered und mouseExited aufgerufen, wenn Sie die Maus auf das Label oder davon wegbewegen. Woher wissen Sie, dass das Label in diese Aktion eingebunden wird? Schauen Sie sich einmal den Code im Konstruktor MoneyFrame an. Dort wird nämlich die Methode addMouseListener der Variablen label aufgerufen.

Werfen Sie in Listing 16.3 auch einen Blick auf die Methoden mouseEntered und mouseExited. Wenn eine dieser beiden Methoden aufgerufen wird, macht der Computer weiter und ruft setForeground auf. Diese Methode ändert die Farbe des Labeltextes.

Ist das moderne Leben nicht wunderbar? In der Java‐API gibt es sogar eine Klasse Color (deutsch Farbe) mit Namen wie Color.red und Color.black.
Listing 16.3 enthält mehrere Methoden, die nicht wirklich verwendet werden. Wenn Sie beispielsweise MouseListener implementieren, muss Ihr Code eine eigene Methode mouseReleased enthalten. Sie benötigen diese Methode nicht, weil Sie irgendetwas machen wollen, wenn der Benutzer die Taste(n) seiner Maus loslässt, sondern weil Sie dem Java‐Compiler etwas versprochen haben und dieses Versprechen halten müssen.
[image:]In einem der vorherigen Abschnitte haben Sie ein Programm erstellt, das Text aus einem Textfeld in eine Beschriftung kopiert, wenn der Benutzer auf eine Schaltfläche klickt. Ändern Sie das Programm so ab, dass der Benutzer nicht auf eine Schaltfläche klicken muss. Das Programm aktualisiert automatisch den Text der Beschriftung, wenn der Benutzer den Inhalt des Textfelds ändert.

Innere Klassen erstellen
Hier kommen tolle Neuigkeiten! Sie können eine Klasse in einer anderen Klasse definieren. Für den Benutzer verhält sich Listing 16.5 so wie Listing 16.1, aber in Listing 16.5 gibt es in der Klasse GameFrame eine Klasse mit dem Namen MyActionListener.
import java.awt.FlowLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.util.Random;

import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JTextField;

class GameFrame extends JFrame {
 private static final long serialVersionUID = 1L;

 int randomNumber = new Random().nextInt(10) + 1;
 int numGuesses = 0;

 JTextField textField = new JTextField(5);
 JButton button = new JButton("Raten Sie");
 JLabel label = new JLabel(numGuesses + " Versuche");

 public GameFrame() {
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setLayout(new FlowLayout());
 add(textField);
 add(button);
 add(label);
 button.addActionListener(new MyActionListener());
 pack();
 setVisible(true);
 }

 class MyActionListener implements ActionListener {

 @Override
 public void actionPerformed(ActionEvent e) {
 String textFieldText = textField.getText();

 if (Integer.parseInt(textFieldText) == randomNumber) {
 button.setEnabled(false);
 textField.setText(textField.getText() + " Ja!");
 textField.setEnabled(false);
 } else {
 textField.setText("");
 textField.requestFocus();
 }

 numGuesses++;
 String guessWord = (numGuesses == 1) ? " Versuch" : " Versuche";
 label.setText(numGuesses + guessWord);
 }
 }
}

Listing 16.5: Eine Klasse in einer Klasse

Die Klasse MyActionListener ist in Listing 16.5 eine innere Klasse. Eine innere Klasse ähnelt in vielen Dingen einer beliebigen anderen Klasse. Aber Sie sind in der Lage, im Code einer inneren Klasse auf die Felder der einschließenden Klasse zu verweisen. So verwenden zum Beispiel mehrere Befehle innerhalb von MyActionListener den Namen textField, und textField wird in der einschließenden Klasse GameFrame definiert.
Beachten Sie, dass der Code in Listing 16.5 die Klasse MyActionListener nur einmal verwendet (für einen Aufruf von button.addActionListener). Deshalb frage ich, ob Sie wirklich einen Namen für etwas benötigen, das nur einmal verwendet wird? Das ist natürlich nicht der Fall. Sie können die gesamte Definition der inneren Klasse im Aufruf von button.addActionListener ersetzen. Wenn Sie das machen, erhalten Sie eine anonyme innere Klasse. Listing 16.6 zeigt Ihnen, wie so etwas gemacht wird.
import java.awt.FlowLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.util.Random;

import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JTextField;

class GameFrame extends JFrame {
 private static final long serialVersionUID = 1L;

 int randomNumber = new Random().nextInt(10) + 1;
 int numGuesses = 0;

 JTextField textField = new JTextField(5);
 JButton button = new JButton("Raten Sie");
 JLabel label = new JLabel(numGuesses + " Versuche");

 public GameFrame() {
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setLayout(new FlowLayout());
 add(textField);
 add(button);
 add(label);

 button.addActionListener(new ActionListener() {

 @Override
 public void actionPerformed(ActionEvent e) {
 String textFieldText = textField.getText();

 if (Integer.parseInt(textFieldText) == randomNumber) {
 button.setEnabled(false);
 textField.setText(textField.getText() + " Ja!");
 textField.setEnabled(false);
 } else {
 textField.setText("");
 textField.requestFocus();
 }

 numGuesses++;
 String guessWord =
 (numGuesses == 1) ? " Versuch" : " Versuche";
 label.setText(numGuesses + guessWord);
 }
 });
 pack();
 setVisible(true);
 }
}

Listing 16.6: Eine Klasse ohne Namen (innerhalb einer Klasse mit Namen)

Innere Klassen eignen sich gut für Ereignisbehandlungen wie die Methode actionPerformed in den Beispielen dieses Kapitels. Die meisten Probleme bereiten bei anonymen inneren Klassen die Anführungszeichen, die geschweiften Klammern und die Einrückungen – Sie dürfen sie nicht aus den Augen verlieren. Deswegen lautet mein bescheidener Rat, dass Sie für den Anfang Code ohne innere Klassen schreiben – Code wie den in Listing 16.1. Wenn Sie sich später mit normalen Java‐Klassen langweilen, probieren Sie es aus, einige dieser Klassen in innere Klassen umzuwandeln.
[image:]In einem der vorherigen Abschnitte haben Sie ein Programm erstellt, das Text aus einem Textfeld in eine Beschriftung kopiert, wenn der Benutzer auf eine Schaltfläche klickt. Ändern Sie den Code so ab, dass er eine innere Klasse verwendet. Und wenn Sie wirklich ehrgeizig sind, ändern Sie den Code so ab, dass er eine anonyme innere Klasse verwendet.

445-454

Kapitel 17

Mit Java Datenbankverbindungen aufbauen und nutzen

In diesem Kapitel

Mit einer Datenbank verbinden

Werte in eine Datenbank einfügen

Eine Datenbank abfragen

Immer wenn ich professionelle Java‐Programmierer unterrichte, höre ich die gleiche Forderung: »Wir brauchen keine atemberaubenden Layouts und keine blinkenden Schaltflächen. Wir müssen auf Datenbanken zugreifen. Zeigen Sie uns einfach, wie wir ein Programm schreiben können, das sich mit Datenbanken unterhält.«

Deswegen kommt sie hier – Javas Datenbankverbindung.

Die Klassen der Java Database Connectivity (JDBC) sorgen dafür, dass problemlos auf die üblichen Datenbankverwaltungssysteme zugegriffen werden kann. Besorgen Sie sich für das von Ihnen favorisierte System einen Treiber, passen Sie in den Beispielen dieses Kapitels eine Zeile an, und der Code sollte problemlos laufen.

Eine Datenbank und eine Tabelle erstellen

Die Kernstücke von JDBC befinden sich in zwei Paketen: java.sql und javax.sql, die beide Bestandteil der Java‐API sind. Die Beispiele dieses Kapitels, von denen Listing 17.1 das erste ist, verwenden die Klassen in java.sql.

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.sql.Statement;

public class CreateTable {

 public static void main(String args[]) {

 final String CONNECTION = "jdbc:derby:AccountDatabase;create=true";

 try (Connection conn = DriverManager.getConnection(CONNECTION);

 Statement statement = conn.createStatement()) {

 statement.executeUpdate("create table ACCOUNTS " +

 " (NAME VARCHAR(32) NOT NULL PRIMARY KEY, " +

 " ADDRESS VARCHAR(32), " +

 " BALANCE FLOAT)");

 System.out.println("ACCOUNTS table created.");

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

}

Listing 17.1: Eine Datenbank und eine Tabelle erstellen und Daten einfügen

Die Ausführung der Beispiele in diesem Kapitel ist etwas komplizierter als die Beispiele in den anderen Kapiteln. Um mit einer Datenbank zu kommunizieren, brauchen Sie eine zwischengeschaltete Software, einen sogenannten Datenbanktreiber. Datenbanktreiber gibt es in allen Formen und Größen,und viele davon sind relativ teuer. Listing 17.1 zeigt einen kleinen, kostenlosen Treiber: den Derby JDBC‐Treiber. Der Code für den Derby JDBC‐Treiber ist in der Klasse Embedded Driver enthalten (einer Java‐Klasse). Diese Klasse befindet sich im Paket org.apache.derby.jdbc.

Bei der Installation von Java 9 erhalten Sie dieses org.apache.derby.jdbc‐Paket nicht. Sie brauchen eine separate Datei namens derby.jar, die Sie unter http://db.apache.org/derby/derby_downloads.html herunterladen können.

Und auch nachdem Sie derby.jar heruntergeladen haben, weiß Ihre IDE möglicherweise nicht, wo auf der Festplatte Ihres Computers Sie die Datei abgelegt haben. Normalerweise reicht es nicht aus, derby.jar in einem bekannten Ordner abzulegen. Stattdessen müssen Sie Eclipse, IntelliJ IDEA oder NetBeans genau mitteilen, wo es Ihre derby.jar‐Datei findet. Und dazu gehen Sie wie folgt vor:

[image: image] Eclipse: Wählen Sie Project | Properties. Wählen Sie in dem daraufhin angezeigten Dialogfeld Java Build Path und gehen Sie auf die Registerkarte Libraries. Klicken Sie auf die Schaltfläche Add External JARs und gehen Sie dann zur derby.jar‐Datei auf der Festplatte Ihres Computers.

[image: image] IntelliJ IDEA: Wählen Sie File | Project Structure. In dem daraufhin angezeigten Dialogfeld wählen Sie Libraries. Klicken Sie auf das Plussymbol (+) und wählen Sie in dem angezeigten Dropdown‐Feld Java. Navigieren Sie jetzt zur derby.jar‐Datei auf der Festplatte Ihres Computes.

[image: image] NetBeans: Wählen Sie File | Project Properties. In dem daraufhin angezeigten Dialogfeld wählen Sie Libraries und gehen auf die Registerkarte Run. Klicken Sie auf die Schaltfläche Add JAR/Folder und navigieren Sie zur derby.jar‐Datei auf der Festplatte Ihres Computers.

Was passiert bei der Codeausführung?

Während einer erfolgreichen Ausführung des Codes in Listing 17.1 sehen Sie die Meldung ACCOUNTS table created. Das ist alles. Der Code erzeugt keine weitere sichtbare Ausgabe, weil ein Großteil der Ausgabe in eine Datenbank geht.

Wenn Sie ein wenig herumsuchen, finden Sie direkte Hinweise auf die Existenz einer neuen Datenbank. Gehen Sie im Explorer in den Projektordner für den Code in Listing 17.1. (Wenn Sie den Code von der Website zum Buch heruntergeladen haben, sehen Sie sich den Projektordner 17‐01 Ihrer IDE an.) In diesem Ordner finden Sie den brandneuen Unterordner AccountDatabase. Hier ist die neu angelegte Datenbank abgelegt.

Leider sehen Sie nicht, was sich in der Datenbank befindet. Dafür brauchen Sie ein paar weitere Programme. Lesen Sie weiter!

SQL‐Befehle verwenden

Das Herz von Listing 17.1 bildet der Aufruf von executeUpdate. Dieser Aufruf enthält einen String – einen normalen, in doppelten Anführungszeichen stehenden Java‐String. Damit der Code lesbar bleibt, habe ich den String in seine vier Bestandteile zerlegt, die durch Pluszeichen (Javas Verknüpfungsoperator) separiert werden.

Wenn Sie sich mit SQL (Structured Query Language) auskennen, sagen Ihnen die Strings in den Aufrufen von executeUpdate etwas. Im anderen Fall verweise ich auf SQL für Dummies von Allen G. Taylor. Auf jeden Fall sollten Sie davon ausgehen, dass Sie in diesem Kapitel vergeblich nach Erklärungen für create table aus Listing 17.1 suchen, weil dieser Befehl nichts mit Java zu tun hatn. Aus der Sicht Javas handelt es sich dabei um eine Zeichenfolge, mit der die Methode executeUpdate gefüttert wird. Dieser String, der in SQL geschrieben ist, legt eine neue Datenbanktabelle mit drei Spalten (für den Namen, die Adresse und den Kontostand eines Kunden) an. Wenn Sie ein Java‐Datenbankprogramm schreiben, sind Aktionen wie die gerade beschriebenen Ihr tägliches Brot. Sie schreiben ganz normale SQL‐Befehle und umgeben diese Befehle mit Aufrufen von Java‐Methoden.

Und wessen Datenbank ist es dann überhaupt?

Es gibt Datenbanken in allen Formen und Größen von vielen verschiedenen Anbietern. 2017 sind die wichtigsten Datenbankanbieter Oracle, Microsoft, IBM und SAP. Es gibt auch ein paar beliebte Open Source‐Datenbanken, wie beispielsweise PostgresSQL und MySqL von Oracle. Der Code in Listing 17.1 (und in den anderen Listings dieses Kapitels) verwendet eine Open Source‐Datenank von der Apache Software Foundation, auch als Apache Derby bezeichnet.

Wenn Sie nicht Apache Derby verwenden wollen, ersetzen Sie den CONNECTION‐String in den Beispielen zu diesem Kapitel. Welchen String Sie stattdessen dafür einsetzen, ist von Ihrer Datenbank‐Software und anderen Faktoren abhängig. Lesen Sie in der Dokumentation Ihres Datenbankanbieters nach.

Datenbanktreiber sind ein bisschen wie Menschen: einige von ihnen sind relativ alt, andere dagegen jünger. Im Januar 2017 liegt JDBC in der neuesten Version 4.2 vor. Ein »relativ alter« JDBC‐Datenbanktreiber wurde für eine Version von JDBC vor Version 4.0 erstellt (etwa im Dezember 2006). Wenn Ihr Datenbanktreiber die JDBC 4.0‐Standards nicht erfüllt, müssen Sie jedem der Beispiele dieses Kapitels ein paar zusätzliche Anweisungen hinzufügen, nämlich:

final public String DRIVER = "com.datenbankanbietername.datenbankmarkenname.vielleichtnochandereszeug";

try {

 Class.forName(DRIVER).newInstance();

} catch (InstantiationException |

 IllegalAccessException |

 ClassNotFoundException e) {

 e.printStackTrace();

}

Lesen Sie auch hierfür in der Dokumentation Ihres Datenbankanbieters nach.

Verbinden und trennen

Der Code in Listing 17.1 hat neben den Aufrufen der Methode executeUpdate auch noch sehr viel mit Kopieren und Einfügen zu tun. Hier ein Überblick über das, was die einzelnen Teile des Codes machen:

[image: image] DriverManager.getConnection: Richtet eine Sitzung mit einer bestimmten Datenbank ein.

Die Methode getConnection ist Bestandteil der Java‐Klasse DriverManager. In Listing 17.1 erstellt der Aufruf von getConnection eine AccountDatabase und öffnet eine Verbindung zu dieser Datenbank. Natürlich könnte die Datenbank AccountDatabase bereits vorhanden sein, bevor Sie den Code in Listing 17.1 ausführen. In diesem Fall zeigt der String ;create=true im CONNECTION‐String keine Wirkung.

Beachten Sie im CONNECTION‐String die Doppelpunkte. Der Code gibt der Datenbank AccountDatabase nicht einfach nur ihren Namen, er informiert die Klasse DriverManager auch darüber, welche Protokolle für eine Verbindung mit der Datenbank verwendet werden sollen. Der Code jdbc:derby: – der dieselbe Aufgabe wie http: bei einer Webadresse erfüllt – weist den Computer an, das Protokoll jdbc zu verwenden, um mit dem Protokoll derby zu reden, das wiederum direkt mit Ihrer Datenbank AccountDatabase spricht.

[image: image] conn.createStatement: Erstellt einen Befehl.

Das hört sich komisch an, aber Sie erstellen in der Java Database Connectivity ein einzelnes statement‐Objekt. Nachdem Sie dies getan haben, können Sie das Objekt beliebig oft für viele verschiedene SQL‐Strings verwenden, um viele verschiedene Befehle an die Datenbank zu übermitteln. Deshalb können Sie die Methode statement.executeUpdate erst aufrufen, nachdem Sie ein geeignetes statement‐Objekt erstellt haben, was der Aufruf von conn.createStatement macht.

[image: image] try‐mit‐Ressourcen: Gibt Ressourcen frei – komme, was da wolle!

Jede Verbindung und jeder Datenbankbefehl kostet Systemressourcen. Wenn Sie mit Ihrer Arbeit fertig sind, sollten Sie diese Ressourcen wieder freigeben.

Javas try‐Befehl mit Ressourcen in Listing 17.1 schließt im Anschluss an die Ausführung eines Blocks automatisch die Ressourcen und gibt sie wieder frei. Darüber hinaus kümmert sich diese Form des try‐Befehls um den ganzen Kleinkram, der mit fehlgeschlagenen Versuchen zusammenhängt, Ausnahmen zu fangen.

[image:]Ich gehe in Kapitel 13 ausführlicher auf try‐catch‐Befehle und auf try‐Befehle mit Ressourcen ein.

Daten in der Tabelle ablegen

Wie jede andere tabellarische Konfiguration besteht auch eine Datenbanktabelle aus Spalten und Zeilen. Wenn Sie den Code in Listing 17.1 ausführen, erhalten Sie eine leere Tabelle. Die Tabelle hat drei Spalten (NAME, ADDRESS und BALANCE), aber keine Zeilen. Um der Tabelle Zeilen hinzuzufügen, führen Sie den Code in Listing 17.2 aus.

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.sql.Statement;

public class AddData {

 public static void main(String args[]) {

 final String CONNECTION = "jdbc:derby:AccountDatabase";

 try (Connection conn = DriverManager.getConnection(CONNECTION);

 Statement statement = conn.createStatement()) {

 statement.executeUpdate("insert into ACCOUNTS values " +

 " ('Barry Burd', '222 Cyber Lane', 24.02) ");

 statement.executeUpdate("insert into ACCOUNTS values " +

 " ('Joe Dow', '111 Luddite Street', 55.63)");

 System.out.println("Rows added.");

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

}

Listing 17.2: Daten einfügen

Listing 17.2 verwendet dieselbe Strategie wie der Code in Listing 17.1: Es erstellt Java‐Strings mit SQL‐Befehlen und macht diese Strings zu Argumenten der executeUpdate‐Methode von Java. In Listing 17.2 füge ich zwei Zeilen in die Tabelle ACCOUNTS ein, eine für mich und eine für Joe Dow. (Joe, ich hoffe, du weißt das zu schätzen!).

[image:]Für bestmögliche Ergebnisse fügen Sie alle Listings aus diesem Kapitel in dasselbe Projekt ein. Auf diese Weise müssen Sie der Datei derby.jar nicht mehr als ein Projekt hinzufügen. Sie können außerdem davon ausgehen, dass der Ordner AccountDatabase für alle vier Codelistings dieses Kapitels zur Verfügung steht. Wenn Sie die Beispiele für Eclipse, IntelliJ IDEA oder NetBeans von der Website zu diesem Buch herunterladen, finden Sie den gesamten Code aus diesem Kapitel im Projekt 17‐01.

Daten abfragen

Was wollen Sie mit einer Datenbank anfangen, wenn sie Ihnen keine Daten liefert? Sie fragen in diesem Abschnitt die Datenbank ab, die Sie in den vorhergehenden Abschnitten erstellt haben. Listing 17.3 enthält den Code für eine solche Datenbankabfrage.

import static java.lang.System.out;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Statement;

import java.text.NumberFormat;

public class GetData {

 public static void main(String args[]) {

 NumberFormat currency = NumberFormat.getCurrencyInstance();

 final String CONNECTION = "jdbc:derby:AccountDatabase";

 try (Connection conn = DriverManager.getConnection(CONNECTION);

 Statement statement = conn.createStatement();

 ResultSet resultset = statement.executeQuery("select * from ACCOUNTS"))

 {

 while (resultset.next()) {

 out.print(resultset.getString("NAME"));

 out.print(", ");

 out.print(resultset.getString("ADDRESS"));

 out.print(" ");

 out.println(currency.format(resultset.getFloat("BALANCE")));

 }

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

}

Listing 17.3: Eine Datenbankabfrage

[image:]Um eine andere Datenbank als Apache Derby zu verwenden, ändern Sie den Wert von CONNECTION in allen Beispielen dieses Kapitels.

Wenn Sie den Code in Listing 17.3 ausführen, erhalten Sie das in Abbildung 17.1 gezeigte Ergebnis. Der Code fragt die Datenbank ab, geht schrittweise durch deren Zeilen und gibt jede gefundene Zeile auf dem Bildschirm aus.

[image:]Abbildung 17.1: Von der Datenbank Daten erhalten

Listing 17.3 ruft executeQuery auf und übergibt dem Aufruf einen SQL‐Befehl. Dieser Befehl holt sich alle Daten, die es in der Tabelle ACCOUNTS (der Tabelle, die Sie in Listing 17.1 anlegen) gibt.

Der Aufruf von executeQuery liefert etwas zurück, das vom Typ java.sql.ResultSet ist. (Das ist einer der Unterschiede zwischen executeUpdate und executeQuery. executeQuery gibt eine Ergebnismenge – ein Resultset – zurück, was executeUpdate nicht macht.) Die Ergebnismenge sieht wie eine Datenbanktabelle aus, die aus Zeilen und Spalten besteht. In diesem Beispiel enthält jede Zeile die Daten eines Kontos mit einem Namen, einer Adresse und einem Saldo.

Nachdem Sie executeQuery aufgerufen und Ihre Ergebnismenge erhalten haben, können Sie diese zeilenweise durchlaufen. Sie starten zu diesem Zweck eine kleine Schleife und testen zu Beginn jedes Durchlaufs die Bedingung resultset.next(). Dabei macht der Aufruf von resultset.next() jedes Mal Folgendes:

[image: image] Wenn eine weitere Zeile existiert, bringt er Sie zur nächsten Zeile der Ergebnismenge (dem nächsten Konto).

[image: image] Er informiert Sie darüber, dass eine weitere Zeile vorhanden ist, indem er einen boolean‐Wert – true oder false – zurückgibt.

Wenn die Bedingung resultset.next() wahr ist, enthält die Ergebnismenge noch eine Zeile. Der Computer begibt sich zu dieser Zeile, und Sie marschieren zügig in den Körper der Schleife, um die Daten dieser Zeile auszulesen. Wenn aber resultset.next() falsch ist, gibt es in der Ergebnismenge keine weiteren Zeilen mehr. Sie verlassen die Schleife und beginnen damit, alles wieder zu schließen.

Stellen Sie sich nun vor, dass der Computer auf eine Zeile der Ergebnismenge zeigt und Sie sich noch in der Schleife aus Listing 17.3 befinden. Sie erhalten von der Ergebnismenge die Daten der Zeile, indem Sie die Methoden getString und getFloat aufrufen. Sie haben in Listing 17.1 die Tabelle ACCOUNTS mit den Spalten NAME, ADDRESSE und BALANCE eingerichtet. In Listing 17.2 holen Sie sich aus diesen Spalten Daten, indem Sie Ihre Methode getDieseOderEineAndereDatenart aufrufen und diesen Methoden die echten Spaltennamen übergeben. Nachdem Sie die Daten erhalten haben, zeigen Sie sie auf dem Bildschirm des Computers an.

[image:]Jede Instanz von ResultSet kennt in Java mehrere Methoden vom Typ getDieseOderEineAndereDatenart. Sie können – abhängig von Datentyp einer Spalte – Methoden wie getArray, getBigDecimal, getBlob, getInt, getObject, getTimestamp und so weiter aufrufen.

Daten zerstören

Es ist tatsächlich so. Am Ende wird alles gut. Damit meine ich zum einen das Ende dieses Buchs, zum anderen die Informationen über die AccountDatabase in diesem Kapitel.

Um die in Listing 17.1 erstellte Datenbanktabelle wieder loszuwerden, führen Sie den Code in Listing 17.4 aus.

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.sql.Statement;

public class DropTable {

 public static void main(String[] args) {

 final String CONNECTION = "jdbc:derby:AccountDatabase";

 try (Connection conn = DriverManager.getConnection(CONNECTION);

 Statement statement = conn.createStatement()) {

 statement.executeUpdate("drop table ACCOUNTS");

 System.out.println("ACCOUNTS table dropped.");

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

}

Listing 17.4: Tschüss, Datenbanktabelle!

Mit der Ausführung dieses Codes räumen Sie wieder auf. Ihre AccountDatabase enthält keine ACCOUNTS‐Tabelle mehr. Sie können also sofort wieder Listing 17.1 (vielleicht mit der einen oder anderen Änderung) ausführen.

Datenbanken sind für die unterschiedlichsten Zwecke zu gebrauchen. Sicher haben auch Sie einen Verwendungszweck.

[image:]Und natürlich habe ich auch in diesem Kapitel noch ein paar Dinge, die Sie ausprobieren können:

[image: image] Führen Sie den Code in Listing 17.3 noch einmal aus. Jetzt verwenden Sie den folgenden String im executeQuery‐Aufruf:

"select * from ACCOUNTS where BALANCE > 30"

[image: image] Führen Sie das Programm AddData (aus Listing 17.2) zweimal hintereinander aus, ohne den Programmcode zu ändern. Welche Fehlermeldung wird angezeigt? Warum?

[image: image] Erstellen Sie eine Tabelle mit drei Spalten: für einen Artikel, einen Preis und einen Steuersatz. Speichern Sie Daten in mehreren Zeilen der Tabelle.

Rufen Sie die Daten aus der Tabelle ab und zeigen Sie eine Ausgabezeile für jede Zeile in der Tabelle an. Jede Ausgabezeile enthält den Artikelnamen, gefolgt von dem Preis einschließlich der Steuer. Ist der Preis eines Artikels beispielsweise 10 € und der Steuersatz beträgt 0,05 (d. h. 5 Prozent), enthält die Ausgabezeile für den Artikel die Zahl 10.50 €.

Zeigen Sie in der letzten Ausgabezeile des Programms die Summe aller Artikelpreise einschließlich Steuer an.

455-456

Teil V

Der Top‐Ten‐Teil

[image:]
[image:]

Besuchen Sie uns auf http://www.facebook.de/fuerdummies!

In diesem Teil …

[image: image] Vermeiden Sie allgemein übliche Fehler.

[image: image] Erkunden Sie die besten Ressourcen für Java im Web.

457-462

Kapitel 18
Zehn Wege, um Fehler zu vermeiden
In diesem Kapitel
Ihre Schreibweise und die Wertevergleiche überprüfen
Auf das Durchfallen achten
Methoden, Listeners und Konstruktoren dort unterbringen, wo sie hingehören
Statische und nicht statische Verweise verwenden
Andere schreckliche Fehler vermeiden

Die einzigen Menschen, die niemals Fehler machen, sind diejenigen, die nichts tun. Das sagte einmal einer meiner Dozenten am College. Leider erinnere ich mich nicht mehr an seinen Namen und kann ihm nicht mehr meine Anerkennung zollen. Das ist mein Fehler.

Großbuchstaben dorthin setzen, wo sie hingehören
Java ist eine Sprache, die Groß‐/Kleinschreibung beachtet. Sie müssen deshalb genau darauf achten, was Sie mit den einzelnen Buchstaben des Alphabets machen. Hier ein paar Details, die Sie sich merken sollten, wenn Sie Java‐Programme schreiben:

[image: image] Java‐Schlüsselwörter werden kleingeschrieben. So darf zum Beispiel in einem Java‐Befehl das Wort if weder If noch IF sein.
[image: image] Wenn Sie Namen aus der Java‐API verwenden, muss Ihre Schreibweise mit der in der API genau übereinstimmen.
[image: image] Außerdem müssen Sie dafür sorgen, dass Namen, die Sie selbst erfinden, im gesamten Programm auf ein und dieselbe Weise geschrieben werden. Wenn Sie eine Variable meinKonto deklarieren, können Sie nicht als MeinKonto, meinkonto oder Meinkonto darauf verweisen. Wenn Sie den Namen einer Variablen auf zwei verschiedene Arten schreiben, geht Java davon aus, dass Sie auf zwei verschiedene Variablen verweisen.
Kapitel 3 enthält mehr Informationen zur Groß‐/Kleinschrift unter Java.

Aus einer »switch«‐Anweisung aussteigen
Wenn Sie nicht aus einer switch‐Anweisung aussteigen, fallen Sie durch. Wenn zum Beispiel verse den Wert von 3 hat, gibt der folgende Code alle drei Zeilen aus – Last refrain, He's a pain und Has no brain.
switch (verse) {
case 3:
 out.print("Last refrain, ");
 out.println("last refrain,");
case 2:
 out.print("He's a pain, ");
 out.println("he's a pain,");
case 1:
 out.print("Has no brain, ");
 out.println("has no brain,");
}
Kapitel 5 enthält die ganze Geschichte.

Werte mit einem doppelten Gleichheitszeichen vergleichen
Wenn Sie zwei Werte miteinander vergleichen, verwenden Sie ein doppeltes Gleichheitszeichen. Die Zeile
if (inputNumber == randomNumber)
ist richtig, aber die Zeile
if (inputNumber = randomNumber)
ist falsch. Warum das so ist, können Sie in allen Einzelheiten in Kapitel 5 nachlesen.

Einer GUI Komponenten hinzufügen
Hier ein Konstruktor für einen Java‐Frame:
public SimpleFrame() {
 JButton button = new JButton("Danke ...");
 setTitle("... Katie Mohr und Paul Levesque");
 setLayout(new FlowLayout());
 add(button);
 button.addActionListener(this);
 setSize(300, 100);
 setVisible(true);
}
Was auch immer Sie machen, vergessen Sie auf keinen Fall den Aufruf der Methode add. Ohne diesen Aufruf können Sie zwar hart an einer Schaltfläche arbeiten, die dann aber niemals auf Ihrem Frame erscheint. Kapitel 9 enthält eine Einführung in Themen dieser Art.

Listeners für Ereignisbehandlungen hinzufügen
Schauen Sie sich noch einmal den Code des vorherigen Abschnitts an, in dem ein SimpleFrame entworfen wird. Wenn Sie den Aufruf von addActionListener vergessen, geschieht nichts, wenn Sie auf die Schaltfläche klicken. Es bringt auch nichts, die Schaltfläche ein zweites Mal noch stärker anzuklicken. Kapitel 16 enthält einen Überblick über Listeners.

Die benötigten Konstruktoren definieren
Wenn Sie einen Konstruktor mit Parametern wie
public Temperature(double number)
definieren, erstellt der Computer keinen parameterlosen Standardkonstruktor mehr. Sie können also
Temperature raumTemp = new Temperature();
erst dann wieder aufrufen, wenn Sie explizit Ihren eigenen Konstruktor Temperature erstellt haben. Alle Einzelheiten hierzu finden Sie in Kapitel 9.

Nicht statische Verweise reparieren
Wenn Sie versuchen, den folgenden Code zu kompilieren, erhalten Sie eine Fehlermeldung:
class WillNotWork {
 String greeting = "Hallo";

 public static void main(String args[]) {
 System.out.println(greeting);
 }
}
Zu dieser Fehlermeldung kommt es, weil main statisch, greeting aber nicht statisch ist. Kapitel 10 enthält die vollständige Anleitung, wie Sie dieses Problem finden und beheben können.

Sich in den Grenzen eines Arrays aufhalten
Wenn Sie ein Array für zehn Komponenten definieren, erhalten diese Komponenten Indexe von 0 bis 9. Oder anders ausgedrückt: Wenn Sie
int guests[] = new int[10];
deklarieren, können Sie auf die Komponenten des Arrays guests verweisen, indem Sie guests[0], guests[1] und so weiter bis guests[9] schreiben. Sie dürfen guests[10] nicht verwenden, weil das Array guests keine Komponente mit dem Index 10 enthält.
Kapitel 11 enthält den neuesten Klatsch über Arrays.

»NullPointers« vorhersehen
Die Beispiele in diesem Buch sind nicht für eine NullPointerException anfällig, aber Sie stoßen bei der alltäglichen Java‐Programmierung ständig auf diese Ausnahme. Es kommt zu einer NullPointerException, wenn Sie eine Methode aufrufen, die zwar ein Objekt zurückgeben soll, dies aber nicht macht. Hier ein einfaches Beispiel:
import static java.lang.System.out;
import java.io.File;

class ListMyFiles {

 public static void main(String args[]) {
 File myFile = new File("/Users");
 String dir[] = myFile.list();

 for (String fileName : dir) {
 out.println(fileName);
 }
 }
}
Dieses Programm zeigt eine Liste aller Dateien an, die sich im Verzeichnis Users befinden.
Aber was geschieht, wenn Sie \\windows in etwas anderes ändern – in etwas, das keinen Namen eines Verzeichnisses darstellt?
File myFile = new File("&*%$!!");
Dann gibt der Aufruf von new File den Wert null zurück (was in Java nichts bedeutet), wodurch die Variable myFile nichts enthält. Weiter hinten im Code verweist die Variable dir dann auf nichts, und der Versuch, die dir‐Werte in einer Schleife zu durchlaufen, schlägt vollständig fehl. Dies beschert Ihnen eine tolle NullPointerException, und das Programm bricht mit lautem Getöse um Sie herum zusammen.
Um diese Art von Schwierigkeiten zu vermeiden, schauen Sie in der Dokumentation der Java‐API nach. Wenn Sie eine Methode aufrufen könnten, die null zurückgeben könnte, erweitern Sie Ihr Programm um Code für eine Ausnahmebehandlung.
Kapitel 13 erzählt die Geschichte über die Ausnahmebehandlung. Tipps darüber, wie Sie die API‐Dokumentation lesen sollten, enthält Kapitel 3.

Java bei der Suche nach seinen Dateien helfen
Sie kompilieren Java‐Code und denken an nichts Böses, als der Computer einen NoClassDefFoundError anzeigt. Hier könnte zwar alles Mögliche schiefgelaufen sein, aber die Wahrscheinlichkeit ist hoch, dass der Computer eine Java‐Datei nicht findet. Um dieses Problem zu beheben, müssen Sie Ordnung ins Durcheinander bringen.

[image: image] Alle Java‐Dateien, deren Namen in Ihrem Code verwendet werden, müssen sich im Projektordner befinden.
[image: image] Wenn Sie benannte Pakete verwenden, muss Ihr Projektverzeichnis die dementsprechend benannten Unterverzeichnisse enthalten.
[image: image] Falls Sie Code von der Befehlszeile Ihres Computers aus ausführen, muss Ihr Classpath sauber eingerichtet sein.
[image:]Detailliertere Hilfen zu diesem Thema finden Sie in Kapitel 14.

463-464

Kapitel 19

Zehn Websites für Java

In diesem Kapitel

Die Websites (auch des Autors) zu diesem Buch

Ressourcen bei Oracle finden

Kein Wunder, dass das Web so beliebt ist. Es ist nicht nur nützlich, es macht auch Spaß. Dieses Kapitel beweist dies, indem es zehn nützliche und amüsante Websites aufführt. Jede dieser Sites enthält Ressourcen, die Ihnen dabei helfen, Java effektiver nutzen zu können. Und soweit ich weiß, verwendet keine dieser Sites AdWare, Popups oder andere unerfreuliche Sachen.

Und tun Sie sich selbst einen Gefallen. Nehmen Sie Ihre Lieblingssuchmaschine und stöbern Sie im Web nach deutschsprachigen Sites zu Java. Sie werden überrascht sein, wie viele es davon gibt.

Die Websites zu diesem Buch

Alle Beispiele dieses Buches können Sie unter www.wiley‐vch.de/publish/dt/books/ISBN3‐527‐71364‐6 herunterladen.

Wenn Sie auf zusätzliche technische Informationen und/oder die Originaldaten der Beispiele zugreifen möchten, besuchen Sie die englischsprachige Website des Autors unter www.allmycode.com/JavaForDummies.

Aus erster Hand

Oracles offizielle Website für Java ist http://www.oracle.com/technetwork/java.

Nutzen Sie auch die offizielle Java API Dokumentation unter http://docs.oracle.com/javase/8/docs/api.

Endbenutzer der Java‐Technologie sollten www.java.com (deutschsprachig) besuchen.

Programmierer und Entwickler, die daran interessiert sind, sich mit der Java‐Technologie auseinanderzusetzen, gehen zu https://community.oracle.com/community/java.

News, Berichte und Beispielcode

Artikel von Experten finden Sie bei InfoQ unter www.infoq.com.

Für Diskussionen mit vielen (auch sehr cleveren) Leuten besuchen Sie JavaRanch unter www.javaranch.com.

Es gibt nicht nur Englisches

Die Java User Group Deutschland finden Sie unter www.java.de.

Jedermanns Lieblingssite

Es ist wahr – diese beiden Sites sind nicht ausschließlich Java gewidmet. Aber keine Liste für Computerfreaks wäre ohne Slashdot und SourceForge vollständig.

Slashdots Slogan lautet: »News for nerds, stuff that matter.« Das sagt eigentlich alles. Besuchen Sie http://slashdot.org.

Die SourceForge‐Fundgrube (unter http://sourceforge.net) beherbergt mehr als 200.000 kostenlose Open‐Source‐Projekte. Ein Besuch lohnt sich!

Stichwortverzeichnis

 

%s 1

<> 1

@Override 1, 2

@SuppressWarnings 1

A

actionPerformed 1

Anführungszeichen

 - doppelte 1

 - einfache 1

Annotation 1, 2

 - SuppressWarnings 1

Anweisung 1

API 1

Application Programming Interface 1

args[] 1

Argument 1

 - Befehlszeile 1

Array 1, 2

 - ArrayList 1

 - deklarieren 1

 - Element 1

 - erstellen 1

 - for‐Schleife 1

 - Index 1

 - Initialisierer 1

 - Komponente 1

 - Länge 1

 - Objekte 1

 - suchen 1

 - Werte speichern 1

ASCII 1

Ausdruck 1

Ausnahme 1

 - bestätigen 1

 - erstellen 1

 - Exception Handling 1

 - fangen 1

 - geprüfte 1, 2

 - Schlüsselwörter 1

 - Typen 1

 - ungeprüfte 1, 2

 - werfen 1

Ausnahmebehandlung 1

Autoboxing 1

B

Bedingung 1

Befehl 1

 - verschachtelter 1

 - Zuweisungsbefehl 1

Befehlszeile 1

Befehlszeilenargument

 - verwenden 1

Bezeichner 1, 2

Bit 1

Block 1

 - Variablendeklaration 1

break 1

Bytecode 1, 2

C

catch 1

 - multi‐catch 1

 - passende Klausel 1

 - Verarbeitung 1

CLASSPATH 1

Code 1

 - auskommentieren 1

 - einfügen 1

 - einrücken 1

 - kopieren 1

Codenamen 1

Combobox 1

Compiler 1, 2, 3

D

Datei

 - auslesen 1

 - kopieren 1

 - schließen 1

 - schreiben in 1

 - suchen 1

 - Verbindung beenden 1

Dateibehandlung 1

Daten

 - einfügen 1

 - speichern in Datei 1

Datenbank

 - abfragen 1

 - erstellen 1

Datenbanktreiber 1

Datentyp 1

DecimalFormat 1

default 1

Deklaration 1

 - Variable 1

Derby JDBC 1

derby.jar 1

Dezimalzeichen 1, 2

Dialogfeld

 - anzeigen 1

 - Zahleneingabe 1

Division 1

do 1, 2

Dokumentation 1

Dropdown‐Liste 1

DummiesFrame 1

Durchfallen 1

E

Eclipse 1

EE 1

Elternklasse 1

Enterprise Edition 1

Entwicklungsumgebung, integrierte 1

Entwicklungsversion 1

enum 1

EOF 1

Ereignis 1

Ereignisbehandlung 1, 2

Ergebnis zurückgeben 1

Escape‐Folge 1

Exception 1, 2

extends 1

F

Fakultät 1

Feld 1, 2

 - geschütztes 1

 - sperren 1

Fenster 1

 - Schaltfläche 1

final 1

Formatierungsstring 1

Frame 1

 - erstellen 1

 - Größe 1

 - Zeichnung 1

G

Ganzzahl 1

 - auslesen 1

 - speichern 1

Generics 1

Getter 1

Gleichheitszeichen, doppeltes 1

Grafikpuffer 1

Graphical User Interface 1

Graphische Benutzeroberfläche 1

GUI 1, 2, 3

 - Komponenten hinzufügen 1

GUI Builder 1

GUI Designer 1

GUI‐Klasse 1

GUI‐Oberfläche 1

GUI‐Programm 1

H

Hüllklasse 1

I

IDE 1, 2, 3

if 1, 2

Import 1

 - Deklaration 1, 2

Initialisierer

 - Array 1

 - statischer 1

Initialisierung 1

Instanz 1

Instanzvariable 1

Integer 1

Integrated Development Environment 1

IntelliJ IDEA 1

Interfaces 1

Interpreter 1

Iteration 1

Iterator 1

J

Java

 - Grammatik 1

 - Historie 1

Java Development Kit 1, 2

Java Runtime Environment 1

Java SE JDK 1

Java Virtual Machine 1, 2

java.sql 1

javadoc

 - Programm 1

 - Webseiten erstellen 1

Javadoc‐Kommentar 1

JavaFX 1

javax.sql 1

JButton 1

JComboBox 1

JDK 1, 2

JLabel 1

JRE 1

JShell 1

JUnit 1

JVM 1

K

Kindklasse 1

Klammer 1

 - geschweifte 1, 2

Klasse 1, 2

 - abstrakte 1

 - anonyme innere 1

 - BigDecimal 1

 - definieren 1, 2, 3

 - Double 1

 - Elternklasse 1, 2

 - erweitern 1

 - Haus 1

 - innere 1

 - Instanz 1

 - Kindklasse 1, 2

 - nicht öffentliche 1

 - Oberklasse 1

 - öffentliche 1, 2

 - public 1

 - Sammelklasse 1, 2

 - Superklasse 1

 - Swing 1

 - übergeordnete 1

 - Unterklasse 1, 2

 - Zugriffsmodifizierer 1

Klausel

 - catch, Parameter 1

 - finally 1

 - throws 1

Kombinationsfeld 1

Kommentar 1

 - Javadoc 1

Konstruktor 1, 2, 3

 - definieren 1

 - deklarieren 1

 - Standardkonstruktor 1

 - Unterklassen 1

 - Vererbung 1

L

Lambda‐Ausdruck 1

 - Klassifizierung 1

 - verwenden 1

 - zwei Parameter 1

Layout

 - FlowLayout 1

 - GridLayout 1

Listener 1

 - ItemListener 1

 - KeyListener 1

 - MouseListener 1

Literal 1

M

MapReduce 1

Methode 1

 - abstrakte 1

 - add 1, 2

 - aufrufen, statische 1

 - Character.toUpperCase 1

 - close 1

 - definieren 1

 - delete 1

 - display 1

 - equals 1

 - Ergebnis zurückgeben 1

 - exists 1

 - Fabrikmethode 1

 - Factory Method 1

 - Get 1

 - hasNext 1

 - main 1

 - Objekt zurückgeben 1

 - Parameterliste 1

 - printf 1

 - remove 1

 - Set 1

 - setDefaultCloseOperation 1

 - setLayout 1

 - setSize 1

 - setTitle 1

 - setVisible 1

 - sleep 1

 - Standard 1

 - sum 1

 - überschreiben 1

 - Wert empfangen 1

 - Wert senden 1

 - Wert übergeben 1

 - Wert zurückgeben 1

 - Zugriffsmethoden 1

Methodenaufruf 1

 - Klassenname 1

 - platzieren 1

Methodendeklaration 1

Methodenkörper 1

Methodenkopf 1

Methodenreferenz 1

Minuszeichen 1

Mitglied 1

 - geschütztes 1

 - Zugriffsmodifizierer 1

Multicoreprozessor 1

 - nutzen 1

Multiplikation 1

Multithreaded 1

N

Nachkommastelle 1

Name, vollqualifizierter 1

NetBeans 1

next 1

nextBoolean 1

nextDouble 1

nextInt 1

NoClassDefFoundError 1

null 1

NullPointerException 1

O

Oberklasse 1

Objekt 1

 - Array 1

 - erstellen 1

 - Felder verwenden 1

 - vergleichen 1

 - zurückgeben 1

Objektorientierte Programmierung 1

 - Terminologie

Operator 1

 - Bedingungsoperator 1

 - Dekrement 1

 - Diamantoperator 1

 - Inkrement 1

 - logische 1

 - Postdekrement 1

 - Prädekrement 1

 - Präinkrement 1

 - Rest‐Operator 1

 - Vergleichsoperatoren 1

 - Zuweisungsoperatoren 1

Oval zeichnen 1

P

pack 1

Paket 1

 - Namensgebung 1

 - unbenanntes 1

Paketdeklaration 1

Parameter übergeben 1

Parameterliste 1, 2, 3

Pluszeichen 1

Portierbarkeit 1

Postinkrement 1

PrintStream 1

private 1

Produktversion 1

Programm 1

 - Ausführung anhalten 1

 - Gliederung 1

 - mehrere Ressourcen 1

 - textbasiertes 1

Programmiersprache 1

Programmierung

 - funktionale 1

 - imperative 1

 - objektorientierte 1, 2

Q

Quellcode 1

R

Referenz übergeben 1

Referenzieren 1

Referenztyp 1, 2, 3

Regel erzwingen 1

Ressource, mehrere 1

return 1, 2

Rückgabetyp 1

Rückgabewert 1

S

Sammelklasse 1

Schaltfläche 1

Schleife

 - do 1

 - for 1

 - while 1

 - zählende 1

Schleifendurchlauf 1

Schlüsselwort 1, 2

Schnittstellen 1

SDK 1

SE 1

Seiteneffekt 1

Semikolon 1

serialVersionUID 1

Setter 1

Software 1

Software Development Kit 1

SQL 1

 - Befehle verwenden 1

Stacktrace 1

 - printStackTrace 1

Standard‐Edition 1

Standardadressen 1

Standardkonstruktor 1

Standardmethode 1

Standardzugriff 1

static 1, 2

Stream 1

 - verwenden 1

String 1, 2

 - in switch‐Befehlen 1

 - umwandeln in int‐Wert 1

 - vergleichen 1

Suchen 1

super 1

Superklasse 1

Swing 1

switch 1, 2

 - enum 1

T

Tabelle erstellen 1

Tastatureingabe 1

Text

 - anzeigen 1

 - zeilenweise lesen 1

Textbasiert 1

Texteingabe auslesen 1

Textfeld 1

this 1, 2, 3

Thread 1

try 1

 - mit Ressourcen 1

Typ 1, 2

 - generischer 1, 2

 - primitiver 1

U

Überschreiben 1

Unicode 1, 2

Unterklasse 1

 - definieren 1

 - erstellen 1

 - Konstruktoren 1

 - verwenden 1

V

Variable 1

 - deklarieren 1

 - initialisieren 1, 2

 - Instanzvariable 1, 2

 - Klassenvariable 1

 - methodenlokale 1

 - Nachkommastellen 1

 - platzieren 1

 - Terminologie 1

 - Typ 1, 2

 - Wert 1

Variablendeklaration 1, 2

 - kombinieren 1

Variablenname 1

Variablentyp

 - BigDecimal 1

 - boolean 1

 - char 1

 - Datentyp 1

 - double 1

 - float 1

 - ganzzahlige Typen 1

 - int 1

 - JFrame 1

 - primitiver 1

 - Referenztyp 1

 - String 1

Vererbung 1

 - Konstruktor 1

Verzeichnisname 1

Verzeichnisstruktur 1

void 1

W

Währungsbetrag anzeigen 1

Wert 1

 - speichern in Array 1

 - übergeben 1, 2

 - vergleichen 1

 - zurückgeben 1

while 1

WindowBuilder 1

Wrapper‐Klasse 1

Z

Zahl

 - formatieren 1, 2

 - runden 1

Zeichen auslesen 1

Zeichenkodierung 1

Zeichnung 1

Zufallszahl 1

Zugriff

 - geschützter 1

 - Standardzugriff 1

Zugriffsmethode 1, 2, 3

 - Regeln erzwingen 1

Zugriffsmodifizierer 1

 - Klasse 1

 - Mitglieder 1

Stichwortverzeichnis

 

%s 1

<> 1

@Override 1, 2

@SuppressWarnings 1

A

actionPerformed 1

Anführungszeichen

 - doppelte 1

 - einfache 1

Annotation 1, 2

 - SuppressWarnings 1

Anweisung 1

API 1

Application Programming Interface 1

args[] 1

Argument 1

 - Befehlszeile 1

Array 1, 2

 - ArrayList 1

 - deklarieren 1

 - Element 1

 - erstellen 1

 - for‐Schleife 1

 - Index 1

 - Initialisierer 1

 - Komponente 1

 - Länge 1

 - Objekte 1

 - suchen 1

 - Werte speichern 1

ASCII 1

Ausdruck 1

Ausnahme 1

 - bestätigen 1

 - erstellen 1

 - Exception Handling 1

 - fangen 1

 - geprüfte 1, 2

 - Schlüsselwörter 1

 - Typen 1

 - ungeprüfte 1, 2

 - werfen 1

Ausnahmebehandlung 1

Autoboxing 1

B

Bedingung 1

Befehl 1

 - verschachtelter 1

 - Zuweisungsbefehl 1

Befehlszeile 1

Befehlszeilenargument

 - verwenden 1

Bezeichner 1, 2

Bit 1

Block 1

 - Variablendeklaration 1

break 1

Bytecode 1, 2

C

catch 1

 - multi‐catch 1

 - passende Klausel 1

 - Verarbeitung 1

CLASSPATH 1

Code 1

 - auskommentieren 1

 - einfügen 1

 - einrücken 1

 - kopieren 1

Codenamen 1

Combobox 1

Compiler 1, 2, 3

D

Datei

 - auslesen 1

 - kopieren 1

 - schließen 1

 - schreiben in 1

 - suchen 1

 - Verbindung beenden 1

Dateibehandlung 1

Daten

 - einfügen 1

 - speichern in Datei 1

Datenbank

 - abfragen 1

 - erstellen 1

Datenbanktreiber 1

Datentyp 1

DecimalFormat 1

default 1

Deklaration 1

 - Variable 1

Derby JDBC 1

derby.jar 1

Dezimalzeichen 1, 2

Dialogfeld

 - anzeigen 1

 - Zahleneingabe 1

Division 1

do 1, 2

Dokumentation 1

Dropdown‐Liste 1

DummiesFrame 1

Durchfallen 1

E

Eclipse 1

EE 1

Elternklasse 1

Enterprise Edition 1

Entwicklungsumgebung, integrierte 1

Entwicklungsversion 1

enum 1

EOF 1

Ereignis 1

Ereignisbehandlung 1, 2

Ergebnis zurückgeben 1

Escape‐Folge 1

Exception 1, 2

extends 1

F

Fakultät 1

Feld 1, 2

 - geschütztes 1

 - sperren 1

Fenster 1

 - Schaltfläche 1

final 1

Formatierungsstring 1

Frame 1

 - erstellen 1

 - Größe 1

 - Zeichnung 1

G

Ganzzahl 1

 - auslesen 1

 - speichern 1

Generics 1

Getter 1

Gleichheitszeichen, doppeltes 1

Grafikpuffer 1

Graphical User Interface 1

Graphische Benutzeroberfläche 1

GUI 1, 2, 3

 - Komponenten hinzufügen 1

GUI Builder 1

GUI Designer 1

GUI‐Klasse 1

GUI‐Oberfläche 1

GUI‐Programm 1

H

Hüllklasse 1

I

IDE 1, 2, 3

if 1, 2

Import 1

 - Deklaration 1, 2

Initialisierer

 - Array 1

 - statischer 1

Initialisierung 1

Instanz 1

Instanzvariable 1

Integer 1

Integrated Development Environment 1

IntelliJ IDEA 1

Interfaces 1

Interpreter 1

Iteration 1

Iterator 1

J

Java

 - Grammatik 1

 - Historie 1

Java Development Kit 1, 2

Java Runtime Environment 1

Java SE JDK 1

Java Virtual Machine 1, 2

java.sql 1

javadoc

 - Programm 1

 - Webseiten erstellen 1

Javadoc‐Kommentar 1

JavaFX 1

javax.sql 1

JButton 1

JComboBox 1

JDK 1, 2

JLabel 1

JRE 1

JShell 1

JUnit 1

JVM 1

K

Kindklasse 1

Klammer 1

 - geschweifte 1, 2

Klasse 1, 2

 - abstrakte 1

 - anonyme innere 1

 - BigDecimal 1

 - definieren 1, 2, 3

 - Double 1

 - Elternklasse 1, 2

 - erweitern 1

 - Haus 1

 - innere 1

 - Instanz 1

 - Kindklasse 1, 2

 - nicht öffentliche 1

 - Oberklasse 1

 - öffentliche 1, 2

 - public 1

 - Sammelklasse 1, 2

 - Superklasse 1

 - Swing 1

 - übergeordnete 1

 - Unterklasse 1, 2

 - Zugriffsmodifizierer 1

Klausel

 - catch, Parameter 1

 - finally 1

 - throws 1

Kombinationsfeld 1

Kommentar 1

 - Javadoc 1

Konstruktor 1, 2, 3

 - definieren 1

 - deklarieren 1

 - Standardkonstruktor 1

 - Unterklassen 1

 - Vererbung 1

L

Lambda‐Ausdruck 1

 - Klassifizierung 1

 - verwenden 1

 - zwei Parameter 1

Layout

 - FlowLayout 1

 - GridLayout 1

Listener 1

 - ItemListener 1

 - KeyListener 1

 - MouseListener 1

Literal 1

M

MapReduce 1

Methode 1

 - abstrakte 1

 - add 1, 2

 - aufrufen, statische 1

 - Character.toUpperCase 1

 - close 1

 - definieren 1

 - delete 1

 - display 1

 - equals 1

 - Ergebnis zurückgeben 1

 - exists 1

 - Fabrikmethode 1

 - Factory Method 1

 - Get 1

 - hasNext 1

 - main 1

 - Objekt zurückgeben 1

 - Parameterliste 1

 - printf 1

 - remove 1

 - Set 1

 - setDefaultCloseOperation 1

 - setLayout 1

 - setSize 1

 - setTitle 1

 - setVisible 1

 - sleep 1

 - Standard 1

 - sum 1

 - überschreiben 1

 - Wert empfangen 1

 - Wert senden 1

 - Wert übergeben 1

 - Wert zurückgeben 1

 - Zugriffsmethoden 1

Methodenaufruf 1

 - Klassenname 1

 - platzieren 1

Methodendeklaration 1

Methodenkörper 1

Methodenkopf 1

Methodenreferenz 1

Minuszeichen 1

Mitglied 1

 - geschütztes 1

 - Zugriffsmodifizierer 1

Multicoreprozessor 1

 - nutzen 1

Multiplikation 1

Multithreaded 1

N

Nachkommastelle 1

Name, vollqualifizierter 1

NetBeans 1

next 1

nextBoolean 1

nextDouble 1

nextInt 1

NoClassDefFoundError 1

null 1

NullPointerException 1

O

Oberklasse 1

Objekt 1

 - Array 1

 - erstellen 1

 - Felder verwenden 1

 - vergleichen 1

 - zurückgeben 1

Objektorientierte Programmierung 1

 - Terminologie

Operator 1

 - Bedingungsoperator 1

 - Dekrement 1

 - Diamantoperator 1

 - Inkrement 1

 - logische 1

 - Postdekrement 1

 - Prädekrement 1

 - Präinkrement 1

 - Rest‐Operator 1

 - Vergleichsoperatoren 1

 - Zuweisungsoperatoren 1

Oval zeichnen 1

P

pack 1

Paket 1

 - Namensgebung 1

 - unbenanntes 1

Paketdeklaration 1

Parameter übergeben 1

Parameterliste 1, 2, 3

Pluszeichen 1

Portierbarkeit 1

Postinkrement 1

PrintStream 1

private 1

Produktversion 1

Programm 1

 - Ausführung anhalten 1

 - Gliederung 1

 - mehrere Ressourcen 1

 - textbasiertes 1

Programmiersprache 1

Programmierung

 - funktionale 1

 - imperative 1

 - objektorientierte 1, 2

Q

Quellcode 1

R

Referenz übergeben 1

Referenzieren 1

Referenztyp 1, 2, 3

Regel erzwingen 1

Ressource, mehrere 1

return 1, 2

Rückgabetyp 1

Rückgabewert 1

S

Sammelklasse 1

Schaltfläche 1

Schleife

 - do 1

 - for 1

 - while 1

 - zählende 1

Schleifendurchlauf 1

Schlüsselwort 1, 2

Schnittstellen 1

SDK 1

SE 1

Seiteneffekt 1

Semikolon 1

serialVersionUID 1

Setter 1

Software 1

Software Development Kit 1

SQL 1

 - Befehle verwenden 1

Stacktrace 1

 - printStackTrace 1

Standard‐Edition 1

Standardadressen 1

Standardkonstruktor 1

Standardmethode 1

Standardzugriff 1

static 1, 2

Stream 1

 - verwenden 1

String 1, 2

 - in switch‐Befehlen 1

 - umwandeln in int‐Wert 1

 - vergleichen 1

Suchen 1

super 1

Superklasse 1

Swing 1

switch 1, 2

 - enum 1

T

Tabelle erstellen 1

Tastatureingabe 1

Text

 - anzeigen 1

 - zeilenweise lesen 1

Textbasiert 1

Texteingabe auslesen 1

Textfeld 1

this 1, 2, 3

Thread 1

try 1

 - mit Ressourcen 1

Typ 1, 2

 - generischer 1, 2

 - primitiver 1

U

Überschreiben 1

Unicode 1, 2

Unterklasse 1

 - definieren 1

 - erstellen 1

 - Konstruktoren 1

 - verwenden 1

V

Variable 1

 - deklarieren 1

 - initialisieren 1, 2

 - Instanzvariable 1, 2

 - Klassenvariable 1

 - methodenlokale 1

 - Nachkommastellen 1

 - platzieren 1

 - Terminologie 1

 - Typ 1, 2

 - Wert 1

Variablendeklaration 1, 2

 - kombinieren 1

Variablenname 1

Variablentyp

 - BigDecimal 1

 - boolean 1

 - char 1

 - Datentyp 1

 - double 1

 - float 1

 - ganzzahlige Typen 1

 - int 1

 - JFrame 1

 - primitiver 1

 - Referenztyp 1

 - String 1

Vererbung 1

 - Konstruktor 1

Verzeichnisname 1

Verzeichnisstruktur 1

void 1

W

Währungsbetrag anzeigen 1

Wert 1

 - speichern in Array 1

 - übergeben 1, 2

 - vergleichen 1

 - zurückgeben 1

while 1

WindowBuilder 1

Wrapper‐Klasse 1

Z

Zahl

 - formatieren 1, 2

 - runden 1

Zeichen auslesen 1

Zeichenkodierung 1

Zeichnung 1

Zufallszahl 1

Zugriff

 - geschützter 1

 - Standardzugriff 1

Zugriffsmethode 1, 2, 3

 - Regeln erzwingen 1

Zugriffsmodifizierer 1

 - Klasse 1

 - Mitglieder 1

WILEY END USER LICENSE AGREEMENT

Besuchen Sie www.wiley.com/go/eula, um Wiley's E-Book-EULA einzusehen.

OEBPS/Images/c8f001.jpg
Eine Instanzder Eine zweite Instanz der ~ Eine dritte Instanz der
Mitarbeiter-Klasse Mitarbeiter-Klasse Mitarbeiter-Klasse

name [Barry name [Harriet name [You

funktion[Vorstand]| | funktion [Manager] | | funktion [Aufsichtsrat]

Mitarbeiter

Gehaltsabrechnun

eintla einta eintla

OEBPS/Images/c8f002.jpg
Zahlen Sie an Barry Burd (Vorstand) ***5.000,00 Euro
Zahlen Sie an Harriet Ritter (Manager) ***7.000,00 Euro
Zahlen Sie an Thr Name (Aufsichtsrat) ***10.000,00 Euro

OEBPS/Images/c8f003.jpg
Barry Burd
Vorstand
5000,00
Harriet Ritter
Manager
7000,00

Ihr Name
Aufsichtsrat
%oooo,oo

OEBPS/Images/c8f004.jpg
Barry Burd
Vorstand

5000, 00 [CineBreak]

nextDouble () nextLine ()

Harriet Ritter [[neBreak]

PR e o

OEBPS/Images/c7f017.jpg
LXK] Viele GriRe!

IhrVomame ~ Barry

Hallo Barry!

OEBPS/Images/c7f018.jpg
LX) Addiermaschine

Erste Zahl a2

ZweiteZahl 13

55

OEBPS/Images/c7f019.jpg
eo0e Ratespiel

Zahl von 1 bis 10 7

Sie haben gewonnen!

OEBPS/Images/c7f020.jpg
® O ® Kontostandanzeige

Name Barry Burd
Adresse 222 Cyberspace Lane
saldo 24.02

Barry Burd (222 Cyberspace Lane) besitzt $24.02

{

cover.jpeg
\%

va

diimmies

Neue Funktionen und

Werkzeuge von Java 9
kennenlernen
Klassen und Objekte erzeugen
und wiederverwenden
Ausnahmen und Ereignisse
verarbeiten konnen

Barry Burd

OEBPS/Images/c8f005.jpg
Mitarbeiter

VollzeitMitarbeiter

TeilzeitMitarbeiter

OEBPS/Images/c8f006.jpg
Zahlen Sie an Barry Burd (Vorstand) ***4.500,00 Euro

Zahlen Sie an Steve Surace (Fahrer) **%75,30 Euro

OEBPS/Images/c7f010.jpg
2f EU\n"

—L Zeilenvorschub
L—— Leerzeichen und Wahrung anzeigen

‘Wenigstens vier Stellen, davon zwei Nachkomma-
stellen, fur die Anzeige einer Zahl verwenden.

Die Zahl ist der zweite Parameter
(der Wert von mcincZinscn).

Der Computer zeigtan: 1,20 EU

OEBPS/Images/c7f011.jpg
2f EU\n"

—L Zeilenvorschub
L—— Leerzeichen und Wahrung anzeigen

‘Wenigstens funf Stellen, davon zwei Nachkomma-
stellen, fur die Anzeige einer Zahl verwenden.

Weil meineZinsen nur vier Stellen belegt,
wird eine zusétzliche Leerstelle
(hier angedeutet) angezeigt.

Der Computer zeigt an: .1,20 EU

OEBPS/Images/c7f012.jpg
— Zeilenvorschub
Leerzeichen und Wahrung anzeigen

Die benétigte Anzahl von Stellen auswahlen,
um die Zahl mit zwei Nachkommastellen
anzuzeigen

Der Computer zeigtan: 1,20 EU

OEBPS/Images/c7f013.jpg
2f EU\n"

—L Zeilenvorschub
L—— Leerzeichen und Wahrung anzeigen

Wenigstens drei Stellen, davon zwei Nachkomma-
stellen, fur die Anzeige einer Zahl verwenden.

Drei Stellen reichen nicht aus. Deshalb verwendet
der Computer vier Stellen

Der Computer zeigtan: 1,20 EU

OEBPS/Images/c7f007.jpg
public class Konto

{

71 Befenle

public duble getZinsen(dousle zinssatz)
it
return saldoszinsSatz/10.00;

class Nutzkonto

{

public static void main(String args(])
«
Konto meinkonto;
Konto ihrkonto; 2

meinkanto = new Konto();
ihrkonto = new Konto();

meinkontq name = “Barry Burd";
meinkontd adresse = "222 Cyberspace Lane"
meinkontd saldo = 24.02;

ihrKontoname = "Jane Q. Public";
ihrKonto adresse = "111 Consumer Street" |
ihrkontosaldo = 55.63;

out.prind("Die Zinsen auf dem ");
out.prin{(reinkonto.name) ;
out.print("-Konto betragen *);

t(neinkonto. etz
IA(™ Euro T,
outprigfin();

double ifrzinsSatz = 7.00;
Gouble iffrezinsen;

out.prini("Die Zinsen auf
out_prind(inrkonto nane);
out _prind(*~Konto betragen

ihreZinsen
ihrkonto

5

out.prind(inrezinsen)
outprintin(* Euro.");

OEBPS/Images/c7f008.jpg
double getZinsen(double zinsSatz)

i
returncgaldo * zinsSatz / 100.00;
}
Konto

NutzKonto

out.println(meinKontacgetzinsen(5.90));

OEBPS/Images/c7f009.jpg
1,20 €U
1,20 EU
1,20 EU
1,20 EU
1,20 €U 3,89 EU

OEBPS/Images/c7f014.jpg
2f KU2.2E sU"

L

Den Wert des dritten Parameters (ihrcsinscn)
mit zwei Nachkommastellen anzeigen

Leerzsichen und Wahrung anzeigen

Leerzsichen und Wahrung anzeigen

Den Wert des zweiten Parameters (=
mit zwei Nachkommastellen anzeigen

ezinsen)

Der Computer zeigtan: 1,2C &1

OEBPS/Images/c7f015.jpg
LXK] Viele GriRe!

Thr Vorname.

Senden

OEBPS/Images/c7f016.jpg
eoce Viele GriRe!
Ihr Vorname Barry

Senden

OEBPS/Images/c4f003.jpg
“Addiere 1000000.00 zu dem Wert,
der sich bereits in der Variablen

saldo befindet

saldo - saldo + 1000000.00;

.. und weise die Summe
(1000050.22) der Variablen
saldo zu.”

OEBPS/Images/c4f002.jpg
“Weise den Wert 50.22 ..

saldo = 50.22;

. der Variablen
saldo zu."

OEBPS/Images/Erinnerung.jpg

OEBPS/Images/c4f001.jpg
Vor der Ausfiihrung von
saldo = saldo + 1000000

saldo

50.22

! Nach der Ausfiihrung von

00, | saldo = saldo + 1000000.00;

saldo

22
1000050, 22

OEBPS/Images/c3f008.jpg

OEBPS/Images/cultural_wisdom_icon_yellow.jpg

OEBPS/Images/c4f004.jpg

OEBPS/Images/c9f004.jpg
f SimpleFrame java 5

Camport. sava. ave Fiomagouc
impart. Savex. sving. JFcane

mpart Javax. sving. dbuttons

public class Simplerzane extends JFrane (-

Sorazabl cass Simplefame does not
oftypelong

‘e (new spuccon ("Fanic)) ;
secsize (300, 100)
setVisible(teue)

OEBPS/Images/c8g002.gif

OEBPS/Images/c8g003.gif

OEBPS/Images/c9f001.jpg
70,00 Grad FAHRENHEIT
32,00 Grad FAHRENHEIT
0,00 Grad CELSIUS
2,73 Grad KELVIN

OEBPS/Images/c9f002.jpg
class Temeperature {

private double Gumbe
private TempScale scale;

public Temperature(double dumber) {
=Gumbes;

scale = TempScale. FAHRENHEIT;

OEBPS/Images/c8f008.jpg
Mitarbeiter

VollzeitMitarbeiter

TeilzeitMitarbeiter

UeberstundenTeilzeit

OEBPS/Images/c8f009.jpg
Mitarbeiter nane.

(Listing 8.1) funktion
bezahleGehalt

TeilzeitMitarbeiter stundensatz

(Listing 8.5) berechneZahlung

UeberstundenTeilzeit porochnezaniung

(Listing 8.7)

OEBPS/Images/c8f010.jpg
Zahlen Sie an Barry Burd (Vorstand) ***4.500,00 Euro

Zahlen Sie an Chris Apelian (Autor) **¥376,50 Euro
Zahlen Sie an Steve Surace (Fahrer) **%451,80 Euro

OEBPS/Images/c8g001.gif

OEBPS/Images/c8f007.jpg
berechne Zahlung zahle Gehalt

Keine Parameter double
Keine Parameter double

OEBPS/Images/c9f003.jpg
Nicht auf die Schaltflache kiickenti =] £

Panik

OEBPS/Images/c16f005.jpg
CEEE (ol
s[s4 =£33.06 |USin UK |~

[Usin UK
Jukin s

OEBPS/Images/c4f015.jpg
import static java.lang.System.out;
public class postIncrementDemo {
public static void main(String args(]) {
int numberOfBunnies = 27;

number0fBunnies++;
out.print1n(nunberOfBunnies) ;
out.println(number0fBunnies++);
out.print1n(nunberOfBunnies);

numberOfBunnies
wird 28
28 wird angezeigt

28 wird angezeigt,
und dann wird
numberOfBunnies

29

29 wird angezeigt

OEBPS/Images/c16f004.jpg
CEEE (ol

5\541 =£33.06 |US in UK

OEBPS/Images/c4f016.jpg
© Consale 2 &
<temminated> Postincr

OEBPS/Images/c16f003.jpg
Der fir die Ereignisbehandiung

Tt
Der Thread Ihres Codes I die Ereignychehar

setLayout(new FlowLayout());
add(textField);

add(button);

addlabel);

Hat der Benutzer geklickt?
Hat der Benutzer geklickt?

button.addActionListener(this);
pack();
setVisibleltrue);

Hat der Benutzer geklickt?
Ja? Dann rufe ich die Methode
actionPer forned auf.

OEBPS/Images/c4f017.jpg
&l Problems @ Javadoc [Declaration 'El Console &

<terminated> UseAssignmentOperators [Java Appication] C:\P
28

33

86

172

165

100

/]

OEBPS/Images/c16f002.jpg
T -lolx|

Raten Sie | 8 Versuche

OEBPS/Images/c4g001.gif

OEBPS/Images/c16g002.gif

OEBPS/Images/c16g001.gif

OEBPS/Images/c16f006.jpg
T (DX

£[54 =88,21¢€ |UKinUS | v

OEBPS/Images/c5f002.jpg
Ist inputNumber
gleich randomNunber?

Sie gewinnen. Sie verlieren.

Die Zufallszahl lautete.

OEBPS/Images/c5f003.jpg
Geben Sie eine ganze Zahl zwischen 1 und 1@ ein: 5
Das war ein sehr guter Versuch :-)

Die Zufallszahl war 8.

Denke, dass Sie gespielt haben.

Geben Sie eine ganze Zahl zwischen 1 und 10 ein: 2
e,

sie gewinnen.

Danke, dass Sie gespielt haben.

OEBPS/Images/c2f002.jpg
Sie schreiben Code

Sie kompileren|
den Code

Sie andern
den Code

Sie testen
den Code

\

OEBPS/Images/c4g002.gif

OEBPS/Images/c2f001.jpg
Java Virtual
Machines

ﬁ' 4/

Bytecode

OEBPS/Images/c4g003.gif

OEBPS/Images/c1f001.jpg
Oberklasse = Elternklasse

Haus-Kiasse

Unterklasse = Kindklasse

Die Haus-Klasse ist
die Oberklasse der Drei-Schlafzimmer-Haus-Klasse,
die Elternklasse der Drel
die Oberklasse der Vier-Schlafzimmer-Haus Klasse,
die Elternklasse der Vier-Schlafzimmer-Haus-Klasse.

chlafzimmer-Haus-Klasse,

Unterklasse = Kindklasse

Drei-Schlafzimmer-
Haus Klasse

Vier-Schlafzimmer-
Haus Klasse

Die Drei-Schlafzimmer-Haus-Klasse
erveitert die Haus-Klasse,
erbt die Funktionen der Haus-Klasse,
st eine Unterkiosse der HausKlasse,
st ein Kind der Haus Klasse,

Die Vier-Schlafzimmer-Haus-Klasse
enweitert die Haus-Klasse,
erbt die Funktionen der Haus-Klasse,
ist eine Unterklasse der Haus-Klasse,
ist ein Kind der Haus-Klasse,

OEBPS/Images/c4g004.gif

OEBPS/Images/c17f001.jpg
Barry Burd, 222 Cyber Lane 24,02 €
Joe Dow, 111 Luddite Street 55,63 €

OEBPS/Images/c5f001.jpg
Geben Sie eine ganze Zahl zwischen 1 und 10 ein: 5
sie verlieren.

Die Zufallszahl war 8.

Denke, dass Sie gespielt haben.

Geben Sie eine ganze Zahl zwischen 1 und 10 ein: 2
e,

sie gewinnen.

Danke, dass Sie gespielt haben.

OEBPS/Images/c2f006.jpg
Vo ot v s i e O
LHER BE e T 656

OEBPS/Images/c2f005.jpg
Fie € Souce Reactr fligre Sewch it Fum Wndow Help

o-eE-Eee
Biglem e
8 Pocage i 7

$-0-Q- @G- ST~

PRvEE @)

LY .

=0 @t & =0

o oz
& itz
@
FpT—
0 Dilosjnn
Ryt by L5515)

public class oisplayer (

public static vold maiaGtring ars()) (
Systen.out printin(Sie wirden o Heben
3

)

| c-i@elvixal9|g
T e

© comect ity B
‘ot toyourtsk and Al ol

OEBPS/Images/c4f005.jpg
& Console 2

<terminated> Miionaire [Jm Appsamon] C:\Program Fies\Ja
Sie haben € 1000050.22 auf Ihrem Konto.

OEBPS/Images/c2f004.jpg
Datei_Bearbeiten Format Ansicht 7
class pislpayer {

ubTic static void main(string args
e St printin e Rerdén Jata Tieben

B Administrator Eingabeaufforderung

< ° rETETTT
Du Sex i s

R i - ae
~ W aops A
B esturs Bibli. pronennace s+
b =
i plugins Name

| U resdme =00
U0 Java for Dummies Displayerjava
Ui alteDaten Vorauflage Java
U pama
i Tetesava
B dateien jova_update

OEBPS/Images/c4f006.jpg
&l Problems @ Javadoc & Console 33
<terminated> Elevatoritter [Java Appication] C:\Program Fies\J
Es passen 9 Personen in den Fahrstuhl.

Declarat

OEBPS/Images/c2f003.jpg
Sie schreiben

IDer Computer kompiliert
auf Ihre Anweisung hin
den Quellcode
(und erzeugt Bytecode)

'

Sie andern den
Java-Quelicode

Der Computer fuhrt
den Bytecode auf Ihre
Anweisung hin aus

OEBPS/Images/c4f007.jpg
jshell> double saldo
saldo ==

jshell> saldo =
Saldo —=» 50.22

jshell> saldo
Saldo ==> 1000050.22

jshell> int weightOfAPerson, elevatorkeightLinit
weight0faPerson ==> 0
elevatorueightLinit ==> 0

jshell> weight0fAPerson = 150;
weight0fAPerson ==> 150

jshell> elevatorkeightLinit = 148

elevatorueightLinit ==> 1400

jshell> elevatorheightLinit / weightOfAPerson
8- 9

jshell> s8 + 1
59 - 10

jshell> 42 + 7
510 == 49

jshell> I

OEBPS/Images/c3f002.jpg
Das gesamte Programm

public class Displayer {

public static void main(String args[]) {
System.out.println("Sie werden Java lieben!");

¥

Die Klasse Displayer

OEBPS/Images/c3f001.jpg
& Console 2

<terminated> Displayer [Java Appication] C:\Program Fies\la
Sie werden Java lieben!

OEBPS/Images/c3f003.jpg
Der Kopf der Methode main

class Displayer {

public static void main(String args[])

{
System.out.printIn("Sie werden Java lieben!™) ;‘
3
Die Methode main Der Korper der Methode main
(auch DeKlaration der

Methode main genannt)

OEBPS/Images/c4f012.jpg
i Problems @

avadoc [Declaration & Console &2
<terminated> MakeChange [Java Appication] C:\Program Fies
Sie wechseln 248 $-Cents in

9 Quarters

2 Dimes

© Nickels

3 Cents

OEBPS/Images/c4f013.jpg
import static java.lang.System.out;

public class prelncrementDemo {
public static void main(String args[]) {

number0fBunnies.
wird 28

int numberOfBunnies = 27;
28 wird angezeigt

++numberOfBunnies; — unherdfsontes.
intl 81 3 g
out .printIn(nunber0fBunnies); e

out.println(++nunberOfBunnies);

out.println(numberOfBunnies);
} 29 wird erneut

1 angezeigt

OEBPS/Images/c4f014.jpg
© Console 13\ B |
aeminated> Prence

OEBPS/Images/c3f007.jpg
Rysten.out.
@ printin("sie
verden Java &

OEBPS/Images/c4f008.jpg

OEBPS/Images/c3f006.jpg
1. DieDisplayer-Klasse
A. Die nain-Methode
1."Sie werden Java lieben!" anzeigen

N

Lpublic class Displayer
A.public static void main(String args[])
1.Systen.out .printin("Sie werden Java lieben!")

N

public class Displayer
public static void main(String args[])

System.out.printin(*Sie werden Java lieber

OEBPS/Images/c4f009.jpg
& Console 2
<terminated> ElevatorFitter2 [Java Appication] C:\Program Fi
True oder False?

Es gehen alle zehn
Brickenchicker-Zehnlinge

in den Fahrstuhl:

false

¥

OEBPS/Images/c3f005.jpg
1€0110100011101011000 ..

Der Computer rull die Methode main aulomatisch aul.

class Displayer {
public static void main(String args(])
{
J

Systen.out @rint1nX"Sic werden Java lieben!

Ein Befehl in der Methode main ruft die
Methode System_out.printin auf
public void println(String s)
" ensureOpen();
Irgendwo in der Zextout.urite(s);
Java-API .. LexLOuL. FlushBuffer()

OEBPS/Images/c4f010.jpg
Leerer Frame E

OEBPS/Images/c3f004.jpg
class Displayer {
public static void main(String args[])

{

System.out.println("Sie werden Java lieben!"

}

Ein Befehl (ein Aufruf der Methode System.out.printin)

OEBPS/Images/c4f011.jpg
Die JFrane-Klasse

myFrane

Ein Objekt
(eine Instanz der
JFrane-Klasse)

Ein weiteres Objekt
(eine weitere Instanz der
JFrane-Klasse)

OEBPS/Images/c13f009.jpg
try {
— // Eine neue OutOfRangeException werfen

catch (NumberFormatException e) {
out.println("Das ist keine Zahl."):;

)

catch (OutOfRangeException e) {
L out.print(numBoxesIn) ;
out.println("? Das ist unméglich!");

}

catch (Exception e) (
out.print ("Irgendetwas ist nicht ")
out.print("in Ordnung, ");
out.print("und ich weiB nicht, ");
out.println("was die Ursache ist.");

}

out.println("'Damit ist die Sache erledigt."):;

OEBPS/Images/c6f005.jpg
Den Beweis 18schen? (j/n) n
Entschuldigung. War nur eine Frage.

Den Beweis 1dschen?
Den Beweis G/m) 3

Den Beweis (G/n)

Den Beweis ldschen? (j/n) j
Okay, die Datei wird geldscht...

Die Datei ist geldscht worden.

(G/m) k

OEBPS/Images/c13f008.jpg
try (

— // Eine neue NumberFormatException werfen

catch (NumberFormatException e) {
L____, out.println("Das ist keine Zahl."):;

)

catch (OutOfRangeException e) {
out.print (numBoxesIn) ;
out.println("? Das ist unméglich!");

}

catch (Exception e) (
out.print ("Irgendetwas ist nicht ")
out.print("in Ordnung, ");
out.print("und ich weiB nicht, ");
out.println("was die Ursache ist.");

}

L out.println('Damit ist die Sache erledigt.");

OEBPS/Images/c6f006.jpg
> Datei loschen?

}

L war die Antwort
nein Y. Y.j) norN? ja

Je nach Antwort Datei
loschen oder nicht I8schen.

OEBPS/Images/c13f007.jpg
try {
// Normale Verarbeitung (keine Ausnahme werfen)

catch (NumberFormatException e) (
out.println("Das ist keine zahl.");
}

catch (OutofRangeException e) {
out.print (numBoxesIn) ;
out.println("? Das ist unméglich!"

}

catch (Exception e) (
out.print('Irgendetwas ist nicht)
out.print('in ordmung,);
out.print("und ich weif nicht, ")
out.println('was die Ursache ist."):

}

L out.println('Damit ist die Sache erledigt.”);

OEBPS/Images/c7f001.jpg
Eine Instanz der Konto-Klasse

Eine weitere Instanz der Konto-Klasse

name
adresse

saldo

Barry

name Jane

[222 Cyberspace Lane]

adresse [111 Consumer Street

[24.02]

saldo [55.63

OEBPS/Images/c13f006.jpg
Wie viele Kartons haben wir? 3
Ihr Wert betrigt 9,75 €
Damit ist die Sache erledigt.

uie viele Kartons haben wir? viele
Das ist keine Zahl.
Damit ist die Sache erledigt.

Wie viele Kartons haben wir? -25
-25? Das ist unméglich!
Damit ist die Sache erledigt.

uie viele Kartons haben wir? 1001
1001? Das ist unmdglich!
Damit ist die Sache erledigt.

OEBPS/Images/c7f002.jpg
Nach Ausfihrung von
Konto ihrkonto;

Nach Ausfiihrung von
ihrkonto = new Konto();

ihrkonto ihrkonto

name

adresse

saldo

OEBPS/Images/c13f013.jpg
Entschuldigen Sie mich bitte - fiinf Sekunden Pause...
Ah, das war erfrischend.

OEBPS/Images/c13f012.jpg
Wie
Das
Wie
Das
Wie
Das
Wie
Ihr

viele Kartons haben

ist keine Zahl.
viele Kartons haben

ist keine Zahl.
viele Kartons haben

ist keine Zahl.
viele Kartons haben
Wert betrégt 9,75 €

wir? 3,5

wir? drei

wir? viele

wir? 3

Damit ist die Sache erledigt.|

OEBPS/Images/c13f011.jpg
try {
—— // Eine neue IOException werfen

catch (NumberFormatException e) {
out.println('Das ist keine zZahl.");
b

catch (OutOfRangeException) {
out.print (nunBoxesIn) ;
out.println("? Das ist unmdglich!");

+

catch (Exception e) {

—— out.print("Irgendetwas ist nicht ")
out.print ("in Ordmung, “);
out.print ("und ich weif nicht, ");
out.println("was die Ursache ist.");

¥

L out.println("Damit ist die Sache erledigt.”);

OEBPS/Images/c6f003.jpg
hat den
hat den
hat den
hat den
hat den
hat den
hat den
hat den
hat den
hat den

Wert
Wert
Wert
Wert
Wert
Wert
Wert
Wert
Wert
Wert

OEBPS/Images/c13f010.jpg
try {
— // Eine NumberTooLargeException werfen

catch (NumberFormatException e) {
out.println("Das ist keine Zahl."):;

)

catch (OutOfRangeException e) {
L out.print(numBoxesIn) ;
out.println("? Das ist unméglich!");

}

catch (Exception e) (
out.print ("Irgendetwas ist nicht ")
out.print("in Ordnung, ");
out.print("und ich weiB nicht, ");
out.println("was die Ursache ist.");

}

out.println("'Damit ist die Sache erledigt."):;

OEBPS/Images/c6f004.jpg
count auf 1 setzen

|

Istcount. kleiner oder gleich 107

ja

count hatden Wert... | nein
count um 1 erhéhen

Fertig

OEBPS/Images/c13f014.jpg
Ausnahme in doSomething gefangen.
Ich werde ausgegeben.
Ausnahme in main gefangen.

OEBPS/Images/c14f002.jpg
class1

class2
extends class!

class3
extends class2

[classB { classY
1~ extends classa | extonds classx
‘public field |

classC.
extends classB

OEBPS/Images/c7f003.jpg
Barry Burd (222 Cyberspace Lane) besitzt € 24.02
Jane Q. Public (111 Consumer Street) besitzt € 55.63

OEBPS/Images/c14f001.jpg
class1

class2
extends class1

class3
extends class2

I classA 1 i classX

4

1 classC 1 i classZ
I extends classB extends classY

OEBPS/Images/c7f004.jpg
Barry Burd (222 Cyberspace Lane) besitzt € 24.02 plus € 1.2009999999999998 Zinsen
Jane Q. Public (111 Consumer Street) besitzt € 55.63 plus € 3.8941000000000003 Zinsen

OEBPS/Images/c7f005.jpg
Eine Instanz der Konto-Klasse ~ Eine weitere Instanz der Konto-Klasse

nane [Barry nane
adresse [222 Cyberspace Lane adresse [111 Consumer Stree
saldo [24.02 saldo [55.63

Konto

NutzKonto

meinkonto ihrkonto

OEBPS/Images/c7f006.jpg
public double getzinsen (double

Goesed
5
/ 100.00;

return saldo

NutzKonto

system

OEBPS/Images/c14f006.jpg

OEBPS/Images/c5f005.jpg
CEDNENTT x [CEPEEE

B 3| AT
] kel] [e

ETE— T T

o) preens = o[@ e
oK 3 DX,

OEBPS/Images/c14f005.jpg
Das Verzeichnis, das den
Code des Projeks enthalt

ShowFrane (Listing 14.1)in
einem unbenannten Paket

burdbrain

drawings frames

Drawing (Listing 142)im fctFrane (Usting 14.3)im
Paket con. burdbrain. drawings Paket com.burdorain. franss

OEBPS/Images/c5f006.jpg
Benutzername: jupp
Unbekannter Benutzer

Benutzername: bburd
Kennwort: jupp
Falsches Kennwort

Benutzername: bburd
Kennwort: swordfish
sie erhalten Zugang.

OEBPS/Images/c14f004.jpg
O

OEBPS/Images/c5f007.jpg
Ist username
gleich "bburd"?

ja

Unbekannter

Benutzer Ist password
gleich "swordfish"?

Falsches Sie erhalten
Passwort Zugang

OEBPS/Images/c14f003.jpg
class]

class2
‘extends class1

class3
‘extends class2

i classC.

extends classB

| | classY
extends classX

classZ

OEBPS/Images/c5f008.jpg
Welcher Vers? 2
That's because he is a pain.
Ohhhhhhhh....

Welcher Vers? 3
"Cause this is the last refrain.
©Ohhhhhhhh

OEBPS/Images/c15f001.jpg
Name ID
Barry 01
Carol @2
Myrna @3

Kontostand
19.51
1ee.35
1e.07

OEBPS/Images/c14f009.jpg
Legende:

|

i Ein anderes Paket

OEBPS/Images/c14f008.jpg
Legende:

Ein anderes Paket

T ces
1 eondsclassy
I

OEBPS/Images/c14f007.jpg
Legende:

Ein Paket

o8 TelssY
et classA £ atonds classx.

Ein anderes Paket

Gassd sz

Telasst.
xtonds closs2

1 exonds classB

bomoos

OEBPS/Images/c5f004.jpg
Wie lautet das Kennwort? rubbeldubbel
Sie haben >>rubbeldubbel<< eingegeben.

Das Wort, das Sie eingegeben haben,
wurde nicht an derselben Stelle gespeichert
wie das echte Kennwort.
Das macht aber nichts.

Das lort, das Sie eingegeben haben
stimmt nicht mit dem echten Kennwort berein.
Sie erhalten leider keinen Zugang zu

unserem tollen System.

OEBPS/Images/c6f002.jpg
Willkommen beim Ratespiel
Geben Sie eine Zahl von 1 bis 10 ein:
inputNumber vom Benutzer anfordern
nunGuesses um 1 erhéhen

|

[—> inputhumber und randoNunber vergleichen

Sie sind Sie sind
verschieden. gleich.

Versuchen Sie es noch einmal...

Geben Sie eine Zahl von 1 bis 10 ein:
inputNumber vom Benutzer anfordern
numGuesses um 1 erhGhen

.

Sie gewinnen nach nunGuesses Versuchen.

OEBPS/Images/c16f001.jpg
T -lolx|

k Raten Sio_| 2 Versuche

OEBPS/Images/c5f009.jpg
Welcher verse ist dies?

Has no Isa Last Neuer
brain pain refrain Versuch

Ohhhhhhhh...

OEBPS/Images/c15f003.jpg
Gassigehen Fido 3 x tdglich.
Gassigehen Rover 2 x tdglich.
Keinesfalls Felix rauslassen.

Fittern Bubbles t&glich.

Fido wiegt 54.7 Pfund und sagt 'Wuff'.
Rover wiegt 15.2 Pfund und sagt 'Wuff'.
Felix wiegt 10.8 Pfund und sagt 'Miau’.
Bubbles wiegt ©.1 Pfund.

OEBPS/Images/c5f010.jpg
Welcher Vers? 1

Has no brain, has no brain,
In the rain, in the rain.
Ohhhhhhhh

uelcher Vers? 2
He's a pain, he's a pain,
Has no brain, has no brain,
In the rain, in the rain.
Ohhhhhhhh. . .

Welcher Vers? 3

Last refrain, last refrain,
He's a pain, he's a pain,
Has no brain, has no brain,
In the rain, in the rain.
Ohhhhhhhh. ..

Welcher Vers? &
In the rain, in the rain.
Ohhhhhhhh

OEBPS/Images/c15f002.jpg
5.5

Name ID
Barry 01
Carol 02
Myrna @3

Name ID

Kontostand
19 .50
100.35
l1e.07

Kontostand

OEBPS/Images/c5f011.jpg
Welcher Vers (eins, zwei oder drei)? drei
‘Cause this is the last refrain.
Ohhhhhhhh...

Welcher Vers (eins, zwei oder drei)? sechs
Dieser Vers existiert nicht. Versuchen Sie es bitte noch einmal.
Ohhhhhhhh...

OEBPS/Images/c6f001.jpg
FRHHEAHHAHEK

Willkommen beim Ratespiel
e ——

Geben Sie eine ganze Zahl zwischen

Versuchen Sie es erneut ...
Geben Sie eine ganze Zahl zwischen

Versuchen Sie es erneut ...
Geben Sie eine ganze Zahl zwischen

Versuchen Sie es erneut ...
Geben Sie eine ganze Zahl zwischen

Versuchen Sie es erneut
Geben Sie eine ganze Zahl zwischen

Versuchen Sie es erneut ...
Geben Sie eine ganze Zahl zwischen
Sie gewinnen nach 6 Versuchen.

1

1

1

1

: 4

1

und

und

und

und

und

und

10

10

10

10

10

10

ein:

ein:

ein:

ein:

ein:

ein:

10

OEBPS/Images/c12f001.jpg
Barry Burd

Harriet Ritter

Weelie J. Katz

Harry "The Crazyman" Spoonswagler
Filicia "Fishy" Katz

Mia, Just "Mia"

Jeremy Flooflong Jones

I. M. D'Arthur

Hugh R. DaReader

OEBPS/Images/c11f014.jpg

OEBPS/Images/c11f013.jpg
&3 Administrator: Command Prompt

£\>java MakeRandorMunsFile MyNunberedFile.cxt §
\>type MyNumberedPile. txt

OEBPS/Images/c12f005.jpg
Funkiionale
Programmierung
[

OEBPS/Images/c12f004.jpg
Es passt nicht alles problemlos, deshalb... ird es »gewaltsame in einen Prozessorkern gepresst.

4 4
[T (T[T

OEBPS/Images/c12f003.jpg
Imperative
Programmierung

OEBPS/Images/c12f002.jpg
Harriet Ritter

Weelie J. Katz

Jim Newton

Harry "The Crazyman” Spoonswagler
Filicia "Fi
Mia, Just "Mia"
Jeremy Flooflong Jones
I. M. D'Arthur

Hugh R. DaReader

OEBPS/Images/c12f008.jpg
(D zwei Werte aus einem Stream verwenden.
Die Variablen pricel und price2
temporér auf diese Werte verweisen lassen,

(pricel, price2)

-> pricel + price2

@ pie summe der beiden

Werte bestimmen,

OEBPS/Images/c12f007.jpg
®
Nehmen Sie ein Ohjekt, das aus einem Stream
stamm(. Sorgen Sic dafiir, dass dic Variable sale
temporiit auf das Objelt verweist.

|

1
(sale) -> sale.getItem().equals|("DVD")
e s B

-

Beachten Sie das Feld item.

[©]
Ist es true oder false, dass das Feld
itemvon Sale gleich "DVD" ist?

OEBPS/Images/c12f006.jpg
Jedes Tell passt genau n einen Kern.

OEBPS/Images/c12f012.jpg
sales.stream(). filter((sale) -> sale.get.Iten().equals("DVD"))

.

Einesammiung |
(eineArrayList) |

et

Ein Stream

L

!

Ein Stream (bei dem alle Verkaufe entfernt worden sind, die keine DVD-Verkaufe sind)

OEBPS/Images/c12f011.jpg

OEBPS/Images/c12f010.jpg
36.00

15.00

T

0.0 15.00 21.00

OEBPS/Images/c12f009.jpg
s | @
e, 539

Aus der Sammlung
sales

.. erhalten Sie einen 7 T2lon)

Siream o, s

®

Y
und noch einen o, 15,00 >

5

Stream [O]

TR —

¥.

und dann einen 1500
Stream aus e
double-Werten

(peice, priced - prioet + peioen)))

und schiielich
einen einzelnen
double-Wert,

OEBPS/Images/c13f002.jpg
oid mecnodl () (
oy (

) catch (Bxeoption o) (

)

‘methoaz();

o1d sathod2 () throws Exception (
method3 () -

void mechod () throws Exception (

methoad () ;
)

throw new Exception();
)

Void mothodd () throws Exception (

OEBPS/Images/c13f001.jpg
Wie viele Kartons haben wir? 3
Thr Uert betragt 9,75 €

wie vicle Kartons haben wir? 3,5
Exception in thread "main” java.lang.unberZormatException: For input string: 3,5
at java.lang. \umber=ormatExcopTion. forTnputstring(Unknown Source)
at java.lang.Inzcger.parscInt(Unknawn Source)
at java.lang.Inzcger.parscInt(Unknawn Source)

at InventoryA.rain(Inventoryh. java:15)

die viele Kartons hahen wir? drei
ception in thread "main” java.lang.Numher! ormatlxcenTion: lor input string: “drei”
at java.lang. lumher| ormatlxcep=ion_for|nputString(linknown Source)
at java.lang. Inmeger.parse nt(Unknawn Soiurce)
at java.lang. Inzeger.parse nt(Unknawn Soirce)
at InventoryA_rain(Inventorys. java:1)

OEBPS/Images/c12f014.jpg
sales.strean() . Filter{(sale) > sale.iten.oquals(*DVD')).mp ((sale) > sale.price) .reduce (0.0,

f

ein Stream mit Preisen

f

ein Gesamtpreis

OEBPS/Images/c12f013.jpg
sales.strean(). filter((sale) -> sale.gstlten().equals("DVD")).nap((sale) -5 sale.getPrice())

f

Ein Stream (bei dem alle Verkaufe entfernt worden sind, die keine DVD-Verkaufe sind)

f

Ein Stream aus Preisen

OEBPS/Images/c13f004.jpg
Wie viele Kartons haben wir? crei
Meldung: ***For input string: “dre:
java.lang. NunberFormatExcepticn: For input string: "drei®

at java.lang.NumberFormatException. forInputString(Unknown Source)

at java.lang. Integer.parse.nt(Unknown Source)

at java.lang. Integer. parscInt(Unknown Source)

at InventoryB.main(InventoryB.iava:17)

worx

OEBPS/Images/c13f003.jpg
Wie
Ihr

Wie
Das

Wie
Ihr

viele Kartons haben wir? 3
Wert betrégt 9,75 €

viele Kartons haben wir? drei
ist keine Zahl.

viele Kartons haben wir? -25
Wert betrégt -81,25 €

OEBPS/Images/c13f005.jpg
Wie
Ihr

Wie
Das

Wie

viele Kartons haben
Wert betrégt 9,75 €

viele Kartons haben
ist keine Zahl.

viele Kartons haben

-25? Das ist unmoglich!

wir? 3

wir? drei

wir? -25

OEBPS/Images/c10f007.jpg
main wird ausgefiihrt:
Roter Planet

visitPA wird ausgefiihrt:
Janines Heimatstadt
Roter Planet

OEBPS/Images/c10f011.jpg
main

smackoverARpop

2202

birth

cityPop
2382~
2233

OEBPS/Images/c10f010.jpg
EnglishSpeakingWor1d2

mars (Instanzvariable)
Roter Planet

visitldaho

atonicCity
{methodenlokale Variablef
Bevolkerung: 25

VisitNewlersey

OEBPS/Images/c10f009.jpg
visitID wird ausgefiihrt:
Roter Planet
Einwohner: 25

VvisitN] wird ausgefiihrt:
Roter Planet

OEBPS/Images/c10f008.jpg
EnglishSpeakingWor1d

mars (Instanzvariable)
Roter Planet

visitPennsylvania

mars (methodenlokale Variable)

Janines Heimatort

GetGoing W

=

OEBPS/Images/c11f001.jpg
Eine Komponente
mit dem Index 6
und dem Wert 4

}

Der Wert 4
@3 o]z
5 % 8 t

Der Index 6

OEBPS/Images/c10f014.jpg
main

smackoverAR

population

2233

OEBPS/Images/c10f013.jpg
snackoverAR @\

population

232

aoBirtn

aCity

myCity @/

population

2233

OEBPS/Images/c10f012.jpg
§——(Eine Instanz der
City-Klasse)

stackoverAR \

population

225
2233

OEBPS/Images/c11f002.jpg
int quests[];

guests = new int[10];

quests

OEBPS/Images/c11f004.jpg
Gaste

Zimmer

dYNONdYMmON

SHNmMmSInON®O

OEBPS/Images/c11f003.jpg
1420214902

OEBPS/Images/Warnung.jpg

OEBPS/Images/c11f008.jpg
60.00{ 60.00{60.00|60.00 |80.00|

| QS|

OEBPS/Images/c11f007.jpg
Gt 3
14252143102

1]
= Console 23

teminated: FindVacancy [Java Application] CAFrogram
Leider ist kein Zimmer frei.

OEBPS/Images/c11f006.jpg
1425214302

B Console 52

Findacancy [1ava Appication] C:\ProgrammetJavaljis7\bin
Wie viele Gaeste in Zimmer 82 10

OEBPS/Images/c11f005.jpg
1420214302

& Console 32

terminated: FindVacancy [Java Applcation] CProgram
Wie viele Gaeste in Zimmer 32 5

OEBPS/Images/c11f012.jpg
inistrator: Command Prompt

T T—
fsio werden sava Lichent
o

OEBPS/Images/c11f011.jpg
Roo roons]; roons = new Roon(10];

OO PP OSSO S S

PO
i SIS IELS LS
“8=—o|o|o|o|o|o|o|o|e|e
A 6
PSR p——_— foons [0] = resdRoon(rocetist)
SR PD PO DS RPN OO
FEESETSSESLS SESSES TS SLSE
&= ?ooooooaoemg“s—v olofo|e|o|o|e|o|e
3
i
oo
o

OEBPS/Images/c11f010.jpg
Zimmer Gaste Preis Raucher?

0 1 60,00 € ja
1 4 60,00 € ja
2 2 60,00 € nein
3 0 60,00 € nein
4 2 80,00 € ja
5 1 80,00 € nein
6 4 80,00 € nein
7 3 80,00 € nein
8 0 100,00 € 3dl
9 2 100,00 € nein

OEBPS/Images/c11f009.jpg
60,00
true

60,00
true

60,00
false

60,00
false

80,00
true

80,00
false

80,00
false

80,00
false

100,00
true

100,00
false

OEBPS/Images/tip.jpg

OEBPS/Images/Titelblatt.jpg
Barry Burd

Java
diimmies

7. Auflage

Ubersetzung aus dem Amerikanischen
von Judith Muhr und Jutta Schmidt

‘WILEY
WILEY-VCH Verlag GmbH & Co. KGaA

OEBPS/Images/Techniker.jpg

OEBPS/Images/tick.png

OEBPS/Images/p5uf001.jpg
SEE—
web
Extras

%)

OEBPS/Images/c10f006.jpg
[o nankees Y = 1]

Barry Burd 01
Harriet Ritter 1200
Weelie J. Katz 030
Harry "The Crazyman” Spoonswagler 124
Filicia "Fishy" Katz 075
Mia, Just "Mia” an
Jeremy Flooflong Jones 102
1M, D'Arthur 001
Hugh R. DaReader 212

Schlagdurchschnitt des Teams: 106

OEBPS/Images/p3uf001.jpg
KLASSE: TTER
OBJEKT: HUND
ATTRIBUT: BRAUN
METHODE: PIPI!

OEBPS/Images/c10f005.jpg
playerCount
totalOfAverages
Die PlayerPlus-Klasse | decformat
findTeamAverage
findTeamAveragesring

> s> stond Clastard Clstam> (st Qs> Clastar> Clostars
Sary Nariet Wedle Hamy Fhy M Jeemy LM, Hugh
Tor Gt e o o e oo on
Konstruktor Konstruktor Konstruktor Kanstruktor Konstruktor Konstruktor Konstruktor Konstruktor kanstruktar
getame geiame gethame . getName getame getame _ getName . gethame . getName
VIR ol S S VI I s S
AT AT RIS SAVIVIE AT RIS RV RV A

OEBPS/Images/p4uf001.jpg
DU, COMPUTER=
HABEN WIR NOCH SOLCHE
SCHRAVBEN AUF LAGER=

OEBPS/Images/p5f001.jpg
W
Der
Top-Ten-

Teil y

OEBPS/Images/c10f002.jpg
Barry Burd

,101

fiarriet Ritter

Weelie J. Katz

,03

fiarry "The Crazyman" Spoonswagler

" Katz

,075
Mia, Just "mia"

Jeremy Flooflong Jones
i. M. D'Arthur

fugh R. DaReader
12

I3

OEBPS/Images/c10f001.jpg
Barry Burd 01
Harriet Ritter 1200
Weelie J. Katz 030
Harry “The Crazyman” Spoonswagler 124
Filicia "Fishy" Katz 075
Mia, Just "Mia” an
Jeremy Flooflong Jones 102
1M, D'Arthur 001

Hugh R. DaReader 212

OEBPS/Images/on_the_web_icon_yellow.jpg

OEBPS/Images/c10f004.jpg

OEBPS/Images/p1uf001.jpg
DAS NICHT. ICH HAB
IHM LEDIGLICH EIN BUCH
UBER PROGRAMMIERUNG

GE/(¥

OEBPS/Images/c10f003.jpg
Die Player-Klasse

Costans> Clnstans> Cnstan2> Cnstanz> Cnstanz> Clnstans> Clnstanz> Cnstanz

Tnstanz
Bary Hamiet Weele Hary Fishy Mia Jeremy LM Hugh
101 200 030 124 075 a1 102 001 212

Konstruktor Kanstruktar Konstruktor Kenstruktor Konstruktor Kanstruktor Konstruktor Konstruktor Konstruktor
getName getName getName getName

getName getName getName getName getName
BetAv getAv getAv getv get\ getAv getAv gethv gethv
EOUASIr gEIAVSIr geTAVSIT getAVSIT EetAVStr

etAVSIr gethvStr getAvStr getAustr

OEBPS/Images/p2uf001.jpg
JA, ICH WEISS - EIN
RIESIGER BUG. JETZT TU MAL
NICHT S0, ALS WORDEST DU

NUR FEHLERFRET
PROGRAMMIEREN.

OEBPS/Images/f2uf001.gif

OEBPS/Images/aufgabe.jpg

js/kobo.js
var gPosition = 0;
var gProgress = 0;
var gCurrentPage = 0;
var gPageCount = 0;
var gClientHeight = null;

const kMaxFont = 0;

function getPosition()
{
	return gPosition;
}

function getProgress()
{
	return gProgress;
}

function getPageCount()
{
	return gPageCount;
}

function getCurrentPage()
{
	return gCurrentPage;
}

/**
 * Setup the columns and calculate the total page count;
 */

function setupBookColumns()
{
	var body = document.getElementsByTagName('body')[0].style;
	body.marginLeft = 0;
	body.marginRight = 0;
	body.marginTop = 0;
	body.marginBottom = 0;
	
 var bc = document.getElementById('book-columns').style;
 bc.width = (window.innerWidth * 2) + 'px !important';
	bc.height = (window.innerHeight-kMaxFont) + 'px !important';
 bc.marginTop = '0px !important';
 bc.webkitColumnWidth = window.innerWidth + 'px !important';
 bc.webkitColumnGap = '0px';
	bc.overflow = 'visible';

	gCurrentPage = 1;
	gProgress = gPosition = 0;
	
	var bi = document.getElementById('book-inner').style;
	bi.marginLeft = '0px';
	bi.marginRight = '0px';
	bi.padding = '0';

	gPageCount = document.body.scrollWidth / window.innerWidth;

	// Adjust the page count to 1 in case the initial bool-columns.clientHeight is less than the height of the screen. We only do this once.2

	if (gClientHeight < (window.innerHeight-kMaxFont)) {
		gPageCount = 1;
	}
}

/**
 * Columnize the document and move to the first page. The position and progress are reset/initialized
 * to 0. This should be the initial pagination request when the document is initially shown.
 */

function paginate()
{	
	// Get the height of the page. We do this only once. In setupBookColumns we compare this
	// value to the height of the window and then decide wether to force the page count to one.
	
	if (gClientHeight == undefined) {
		gClientHeight = document.getElementById('book-columns').clientHeight;
	}
	
	setupBookColumns();
}

/**
 * Paginate the document again and maintain the current progress. This needs to be used when
 * the content view changes size. For example because of orientation changes. The page count
 * and current page are recalculated based on the current progress.
 */

function paginateAndMaintainProgress()
{
	var savedProgress = gProgress;
	setupBookColumns();
	goProgress(savedProgress);
}

/**
 * Update the progress based on the current page and page count. The progress is calculated
 * based on the top left position of the page. So the first page is 0% and the last page is
 * always below 1.0.
 */

function updateProgress()
{
	gProgress = (gCurrentPage - 1.0) / gPageCount;
}

/**
 * Move a page back if possible. The position, progress and page count are updated accordingly.
 */

function goBack()
{
	if (gCurrentPage > 1)
	{
		gCurrentPage--;
		gPosition -= window.innerWidth;
		window.scrollTo(gPosition, 0);
		updateProgress();
	}
}

/**
 * Move a page forward if possible. The position, progress and page count are updated accordingly.
 */

function goForward()
{
	if (gCurrentPage < gPageCount)
	{
		gCurrentPage++;
		gPosition += window.innerWidth;
		window.scrollTo(gPosition, 0);
		updateProgress();
	}
}

/**
 * Move directly to a page. Remember that there are no real page numbers in a reflowed
 * EPUB document. Use this only in the context of the current document.
 */

function goPage(pageNumber)
{
	if (pageNumber > 0 && pageNumber <= gPageCount)
	{
		gCurrentPage = pageNumber;
		gPosition = (gCurrentPage - 1) * window.innerWidth;
		window.scrollTo(gPosition, 0);
		updateProgress();
	}
}

/**
 * Go the the page with respect to progress. Assume everything has been setup.
 */

function goProgress(progress)
{
	progress += 0.0001;
	
	var progressPerPage = 1.0 / gPageCount;
	var newPage = 0;
	
	for (var page = 0; page < gPageCount; page++) {
		var low = page * progressPerPage;
		var high = low + progressPerPage;
		if (progress >= low && progress < high) {
			newPage = page;
			break;
		}
	}
		
	gCurrentPage = newPage + 1;
	gPosition = (gCurrentPage - 1) * window.innerWidth;
	window.scrollTo(gPosition, 0);
	updateProgress();		
}

//Set font family
function setFontFamily(newFont) {
	document.body.style.fontFamily = newFont + " !important";
	paginateAndMaintainProgress();
}

//Sets font size to a relative size
function setFontSize(toSize) {
	document.getElementById('book-inner').style.fontSize = toSize + "em !important";
	paginateAndMaintainProgress();
}

//Sets line height relative to font size
function setLineHeight(toHeight) {
	document.getElementById('book-inner').style.lineHeight = toHeight + "em !important";
	paginateAndMaintainProgress();
}

//Enables night reading mode
function enableNightReading() {
	document.body.style.backgroundColor = "#000000";
	var theDiv = document.getElementById('book-inner');
	theDiv.style.color = "#ffffff";
	
	var anchorTags;
	anchorTags = theDiv.getElementsByTagName('a');
	
	for (var i = 0; i < anchorTags.length; i++) {
		anchorTags[i].style.color = "#ffffff";
	}
}

