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Vorwort

Die grundlegenden Ziele, inhaltlichen Konzepte und didaktischen Ansprüche

des gesamten Lehrbuchs wurden bereits im Vorwort des ersten Bandes skiz-

ziert. Aus guten Gründen umfasst er neben den elektrotechnischen Grund-

begriffen die Grundlagen resistiver Schaltungen oder Gleichstromnetzwer-

ke mit den typischen Bauelementen Strom-, Spannungsquellen und Wider-

stand. Nicht zuletzt deshalb bleiben die mathematischen Anforderungen an

die Studienanfänger niedrig, gleichzeitig ist der praktische Nutzen des erlern-

ten Fachwissens erheblich. Konsequenterweise, im Vorwort dort schon an-

gedeutet, müssen dann elektromagnetische Felder den Inhalt dieses Bandes

bilden: Felderscheinungen, ihre Grundgesetze und die Fülle der Anwendun-

gen, eingeschlossen die auftretenden Kraftwirkungen und ihre Nutzung, also

die mechanisch-elektromagnetische Energiewandlung. 

Gerade der Feldbegriff erweckt aber bei vielen Studienanfängern das Unbeha-

gen von etwas Unvollstellbarem“. Die Überwindung dieser Schwelle verlangt

” 

deshalb eine betont physikalisch anschauliche und phänomenologisch orien-

tierte Einführung der Feldgrundlagen: soviel Verständnis wie möglich, so we-

nig mathematischer Hintergrund wie erforderlich. Dann liegt nahe, zunächst

grundlegende Feldbegriffe wie Skalar- und Vektorfeld, Feldlinien, Flussröhre, 

Quellenfeld (mit Ergiebigkeit und veranschaulichtem Gaußschem Satz) und

Wirbelfeld (mit Zirkulation und erläutertem Stokeschem Satz) an bekannten

Felderscheinungen des täglichen Lebens zu erläutern. Deutlich wird so der

Unterschied zwischen einer lokalen Feldbeschreibung, also im Raumpunkt

zur Definition typischer Feldgrößen und dem Übergang zur dreidimensiona-

len Feldverteilung mit der Einführung integraler Größen. So kann beispiels-

weise von den elektrischen und magnetischen Feldgrößen zu Ladung, Strom, 

Spannung und Fluss als gleichwertiger Beschreibungsform für ein Raumgebiet

übergegangen werden. Im Ergebnis treten dann zum bekannten Widerstand

als Synonym für Strömungsvorgänge in einem Raumgebiet die energiespei-

chernden Elemente Kondensator und Spule als neue Netzwerkelemente hinzu, 

verankert im elektromagnetischen Feld. Auf diese Weise lassen sich elektrische

und magnetische Feldbereiche bequem in das Netzwerkkonzept einbeziehen. 

Für diese zweistufige Behandlung genügen einfache mathematische Vorkennt-

nisse wie die elementare Vektoralgebra, Differenzial- und Integralrechnung. 

Die typischen Feldintegrale wurden im Anhang von Band 1 bereits zusam-

mengestellt, gelegentlich öffnet ein Ausblick auf die Vektoranalysis mit den

Operationen Gradient (grad) Divergenz (div) und Rotation (rot) an pas-

senden Stellen einen Zugang zur anspruchsvolleren, aber leistungsfähigeren

Differenzialform der Feldbeschreibung. 
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Vorwort

Aus didaktischen Gründen werden die mit gleichmäßig bewegten, ruhenden

und beschleunigten Ladungen verbunden Strömungs-, elektrostatischen und

magnetischen Felder zunächst getrennt betrachtet und dann in den Maxwell-

schen Gleichungen miteinander verkoppelt. Deren Grundgesetze sind Durch-

flutungssatz und Induktionsgesetz sowie verschiedene Nebenbedingungen. 

Der Übergang vom Gleichstromkreis zur zugehörigen Felddarstellung führt

direkt zum Strömungsfeld. Ausgehend vom Strom-Spannungsverhalten ei-

nes leitenden Volumens wird zunächst der Ursache-Wirkungs-Zusammenhang

durch Feldgrößen begründet, also der Widerstandsbegriff feldmäßig hinter-

legt. Im Strömungsfeld lassen sich Leitungsvorgänge in Festkörpern, Flüssig-

keiten und Gasen und ihre Anwendungen leicht einbeziehen. 

Das an ruhende Ladungen gebundene elektrostatische Feld mit den relevan-

ten Feldgrößen und Phänomenen führt in der Globalbetrachtung zu Span-

nung und Ladung und dem Kondensator als charakteristischem Netzwerk-

element. Dazu gehören aber nach Meinung der Autoren heute auch Be-

griffe wie nichtlineare Kapazität (Beispiel Halbleiterkapazitäten) und auch

zeitabhängige Kapazitäten. Gerade sie bilden mit ihrer energiewandelnden

Eigenschaft einen bequemen Zutritt zum Wandlerelement. Selbst das Kon-

zept des MOS-Feldeffekttransistors ist aus dieser Sicht nur ein feldgesteuertes, 

nichtlineares Strömungsfeld. 

Die gleichen Gedankengänge liegen der Einführung des magnetischen Feldes

und seiner Feldgrößen zugrunde, unterstützt durch Analogiebetrachtungen

zwischen elektrischen, magnetischen und Strömungsgrößen. Wichtige Ergeb-

nisse sind das Netzwerkelement Induktivität/Spule, der magnetische Kreis

als Verfahren zur Analyse geführter magnetischer Felder und die magne-

tische Kopplung zwischen stromdurchflossenen Leiterkreisen mit dem Trans-

formator als verbreitetem Bauelement. Für das Zusammenwirken der Felder

sind drei Tatsachen maßgebend: jede Ladung ist von einem elektrischen Feld

und Verschiebungsfluss umgeben, jede elektrische Feldänderung erzeugt ein

magnetisches Feld und jedes veränderliche magnetische Feld wird von einem

elektrischen Feld umwirbelt mit Durchflutungssatz und Induktionsgesetz als

gesetzmäßiger Grundlage und verankert im System der Maxwellschen Glei-

chungen. Sie werden ausführlich in Integralform interpretiert (und in der Dif-

ferenzialform angedeutet). Dann bestätigt der unterschiedliche Zeiteinfluss

rückblickend die getroffene Feldeinteilung. 

Ein weiterer Schwerpunkt dieses Bandes widmet sich den Haupteigenschaften

des elektromagnetischen Feldes: der Energiespeicher- und -transportfähigkeit

sowie Wandlung in andere Energieformen. Das elektromagnetische Feld ist

Träger elektromagnetischer Energie mit folgenden Vorteilen: leichter Trans-
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port, rasche Ausbreitung, Regelbarkeit, Wandel- und Speicherbarkeit. Weil

nur ihre Wirkungen auf die Umgebung mess- und nutzbar sind, basieren

diese Anwendungen auf einer Energiewandlung, denn der Energiebegriff ist

allen physikalischen Teilgebieten gemein. Welche Arten (Wärme, chemische, 

mechanische, Kernenergie, Wind- und Solarenergie) auch auftreten: alle wer-

den in elektrische umgesetzt und unterliegen ebenso dem Umkehrvorgang. 

So wandelt das Strömungsfeld elektrische Energie in Wärme und die in Fel-

dern auftretenden Kräfte (Coulomb- und Lorentz-Kraft) sind Ausdruck ge-

wandelter mechanischer Energie. Weil die Kraft aber das Volumen eines

Feldraumes ändern kann (z. B. Zusammendrücken beweglicher Kondensator-

platten, Änderung des magnetischen Kreises einer Spule), ändern sich solche

Energiespeicher zeitlich und spielen als zeitabhängige Netzwerkelemente eine

Schlüsselrolle bei der elektrisch-mechanischen Energiewandlung. 

Fundamental nutzen diese Energiewandlung Motoren in Rotations- und Li-

nearausführung, Generatoren und Elektromagnete. Sie bestimmen heute den

Alltag mit einem Massenmarkt für Kleinmotoren, aber auch die zu erwarten-

de Elektromobilität unterstreicht ihre weiter steigende Bedeutung. Jeder PC

enthält etliche Linear- und Rotationsmotoren, und im modernen Kraftfahr-

zeug verrichten viele Elektromotoren zuverlässig ihre Aufgaben. Angesichts

dieses Wandels sucht der Lernende schon in der Grundausbildung nach einem

Ansatz, der ihm rasch einen Überblick über typische Motorprinzipien vermit-

telt. Auch die immer weiter verbreitete Mechatronik als Zusammenführung

von Komponenten der Mechanik, Elektrotechnik/Elektronik und Informati-

onstechnik – und überhaupt die Mikrosystemtechnik – empfiehlt jedem auf-

geschlossenen Elektrotechniker einen Blick zur Mechanik. Eine Brücke da-

zu bilden elektrische Netzwerke mit ihren ausgereiften Methoden. Es liegt

nahe, deren Grundgedanken durch Analogiebetrachtungen auf andere physi-

kalische Teilgebiete auszudehnen und zum Begriff physikalischer Netzwerke

auszuformen. Gerade in der Elektrotechnik hat die Methode Tradition (ihr

Ursprung reicht ins Jahr 1944 zurück) und man findet sie heute in der Me-

chanik, der Wärmelehre, Akustik und Fluidik. Solche Analogien fördern nicht

nur das Verständnis, sondern schränken auch den Stoffumfang ein. Die Klam-

mer zwischen elektrischen und nichtelektrischen Teilgebieten bilden Wandler. 

Deshalb lässt sich die Kraftwirkung elektromagnetischer Felder auf Netzwerk-

elemente und deren zeitabhängiges Verhalten durch Wandler als verbinden-

de Klammer überzeugend modellieren. Da eine Energieform stets von zwei

Größen bestimmt wird, z.B. die mechanische von Kraft und Weg, die elektri-

sche von Spannung und Ladung, muss bei der Energiewandlung eine Größen-

zuordnung mittels der Analogie erfolgen; beispielsweise können sich Kraft

und Strom entsprechen. Analogien werden in Teilbereichen der Elektrotech-

nik schon lange erfolgreich eingesetzt. Es bot sich für die Aufnahme dieser

viii

Vorwort

Aspekte in ein Grundlagenlehrbuch an, den Rat ausgewiesener Fachkollegen

zu suchen. Zu besonderem Dank sind wir deshalb den Herren Prof. Dr.-Ing. 

habil. A. Lenk (TU Dresden), Prof. Dr.-Ing. habil. G. Pfeiffer (TU Dresden), 
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(TU Chemnitz) verpflichtet, nicht nur für die bereitwillige Diskussion dieses

Themas, sondern auch für manche Anregung. 

Die für das gesamte Lehrbuch bereits im Band 1 formulierten didaktischen

Zielsetzungen gelten auch uneingeschränkt für diesen Band, ebenso wie die

Studienmethodik und der angesprochene Leserkreis. 
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Bei der Bearbeitung des Manuskripts hat Herr Dr.-Ing. sc.techn. H.-G. Schulz

mit einer Reihe von Vorschlägen aus seiner langjährigen Tätigkeit als Lehren-
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Ihm gilt unser ganz persönlicher und herzlicher Dank. 
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1 Das elektrische Feld

Lernziel Nach der Durcharbeitung dieses Kapitels sollen beherrscht werden:

grundlegende Feldbegriffe der Skalar- und Vektorfelder, 

die Merkmale des elektrischen Feldes: Feldstärke, Potenzial und Spannung, Feld-

ursachen und Feldüberlagerung, 

das Strömungsfeld, Unterschied zwischen Strom und Stromdichte, 

Leitungsvorgänge in Strömungsfeldern (Leiter, Halbleiter, Elektrolyt), 

Aufbau und Wirkungsweise elektrochemischer Spannungsquellen, 

die Stromleitung im Vakuum und in Gasen mit typischen Anwendungen, 

die Begriffe Verschiebungsflussdichte und Verschiebungsfluss, 

dielektrische Feldgrößen und dielektrische Eigenschaften der Materie, 

das Influenzprinzip, 

das Feldverhalten an der Grenze verschiedener Dielektrika, 

der Kapazitätsbegriff und die Strom-Spannungsbeziehung des Kondensators, 

der Verschiebungsstrom, 

die Vorgänge an einer Metall-Isolatorgrenzschicht und ihre Anwendungen, 

der Feldeffekt und der MOS-Feldeffekttransistor als Modell eines nichtlinearen, 

feldgesteuerten Strömungsfeldes. 

Im ersten Band des Lehrwerkes diente das elektrische Feld zur Begründung

der Begriffe Spannung, Strom und Widerstand als Grundlage der Netzwerk-

analyse. Wir kehren jetzt zum Feld zurück: der Stromkreis ist zwar ein Mo-

dell des elektrischen Strömungsvorganges, er erfasst aber nicht die Breite

elektrischer Felderscheinungen und ihre Anwendungen. Deshalb vertiefen wir

Feldvorgänge in Leitern und in Nichtleitern und führen das Netzwerkelement

Kondensator ein. Weil eine Strömung stets von einem magnetischen Feld als

wichtigstem Merkmal umgeben ist, betrachten wir anschließend magnetische

Felder. Zu ihrer netzwerktechnischen Modellierung dient das Netzwerkele-

ment Spule (Induktivität). Kondensatoren und Spulen wirken in Netzwerken

nur bei zeitveränderlichen Strömen und Spannungen. Deshalb erfordern sie

erweiterte Netzwerkanalyseverfahren, wie sie in der Wechselstrom- und Im-

pulstechnik oder bei Schaltvorgängen auftreten und im dritten Band behan-

delt werden. 

1.1

1.1 Felder

Der Mensch nimmt elektromagnetische Felder durch seine Sinne nicht di-

rekt wahr, sondern nur indirekt über  physikalische Feldwirkungen: Kräfte auf

ruhende bzw. bewegte Ladungen (bzw. geladene Probekörper). Sie dienen

umgekehrt zur Begründung des elektrischen und magnetischen Feldes. 

St. Paul, R. Paul,  Grundlagen der Elektrotechnik und Elektronik 2

DOI 10.1007/978-3-642-24157-4, © Springer-Verlag Berlin Heidelberg 2012
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1.1.1 Feldbegriffe

Der Feldbegriff ist sehr verbreitet: es gibt beispielsweise das Schwerefeld der

Erde, das Strömungsfeld eines Flusses, ein Temperaturfeld im Raum und

elektrische und magnetische Felder1. 

So hat das Strömungsfeld eines Flusses, etwa durch schwimmende Papierschnit-

zel sichtbar gemacht, unendlich viele Bewegungsabläufe. Diese Teilchenbewegung

ist ein  r¨

 aumlicher Vorgang  und die Bahnkurven der Teilchen lassen sich als  Feld-

 linien  nachzeichnen. Beschrieben wird dieses Strömungsfeld durch die Feldgröße

 Geschwindigkeit v( x, y, z, t) als Funktion von Ort und Zeit. 

Ein Feld ist ein energieerfüllter Zustand eines Raumes, beschrieben durch

Feldgrößen. Die  Feldenergie  wird einmalig (Feldaufbau) oder ständig (Auf-

rechterhaltung) zugeführt. Das Feld selbst lässt sich durch seine Wirkungen

nachweisen und mit  Feldlinien  veranschaulichen. 

Eine  Feldgr¨

 oße  ist eine dem Raumpunkt gesetzmäßig zugeordnete physi-

kalische Größe zur Beschreibung eines physikalischen Raumzustandes. Die

Gesamtheit ihrer Werte im Raum heißt Feld“. 

” 

Ein Feld hat weitere Merkmale:

Die Feldgröße eines Punktes steht mit der  Nachbarschaft in Wechselwirkung:

ein Hindernis (z. B. ein eingesteckter Stab) verursacht im Strömungsfeld eine

Änderung der Strömungslinien. 

Im Feld

sitzt Energie“: sie tritt im Strömungsfeld als kinetische Energie der

” 

bewegten Teilchen auf, im Temperaturfeld als Wärmeenergie und in elektrischen

und magnetischen Feldern als elektrische und magnetische Feldenergie. Typisch

ist ihre  stetige Verteilung (Beispiel Schwerefeld). Abhängig von der Feldart hat

Energie verschiedene  Zustandsformen. 

Ein Feld wird stets durch zwei, über einen  Ursache-Wirkungs-Zusammenhang

verknüpfte  Feldgr¨

 oßen  beschrieben: im Strömungsfeld ist die Geschwindigkeit  v

(Wirkung) die Folge der Schwerkraft (Ursache). Im Temperaturfeld verursacht

ein Temperaturgefälle einen Wärmestrom“. Davon überzeugt man sich unmit-

” 

telbar am offenen Fenster eines geheizten Raumes. 

Eine  Feldgr¨

 oße ist stets f¨

 ur den Raumpunkt  definiert. Zur Gesamtbeschrei-

bung des Feldes eignen sich  integrale oder globale  Feldgrößen besser. So sind

im Strömungsfeld Geschwindigkeit und Druck lokale Größen, dagegen ist die

pro Zeiteinheit talwärts fließende Wassermenge eine  Integralgr¨

 oße. 

Feldeinteilung Felder können unterschiedlich betrachtet werden (Tab. 1.1), 

typische Kriterien sind der  Richtungseinfluss, die Orts- und Zeitabhängigkeit

und die  Feldursachen. Vor allem  Quellen-  und  Wirbelfeld  treten als typi-

sche Formen elektromagnetischer Felder auf. Nach ihrer Ortsabhängigkeit

1 Begriff und Konzept des Feldes gehen auf M. Faraday zurück. 
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Tab. 1.1. Merkmale von Skalar- und Vektorfeldern

Abb. 1.1.1. Merkmale elektromagnetischer Felder. Einteilung nach (a) Richtungsabhän-

gigkeit. (b) Feldverlauf. (c) Feldursache (Feldtyp)

gibt es  homogene  Felder mit  ortsunabh¨

 angigen  und  inhomogene  mit  orts-

 abh¨

 angigen  Feldgrößen. Mathematisch handelt es sich um skalare oder vek-

torielle Größen, dargestellt durch Flächen/Linien gleichen Wertes, beispiels-

weise als  ¨

 Aquipotenzialfl¨

 achen  oder  Feldlinienbilder. Beispiele zur Richtungs-

abhängigkeit, dem Feldverlauf und der Feldursache zeigt Abb. 1.1.1. 

1.  Skalare Feldgr¨

 oßen.  Jedem Raumpunkt ist eine skalare physikalische Größe

zugeordnet. So hat im Temperaturfeld (Abb. 1.1.1a) jeder Raumpunkt eine

bestimmte Temperatur. Durch Messung lassen sich Flächen mit konstanter

Temperatur (bzw. Linien), die Temperaturflächen“, bestimmen. Dann ent-

” 

stehen

im

Schnittbild

im

zweidimensionalen

Fall

Niveau“-Linien

” 

(Abb. 1.1.1b) gleicher Temperatur. Zweckmäßig unterscheiden sich benach-
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barte Niveauflächen um die gleiche Differenz der Feldgröße, hier Δ T  und es

entsteht das ausgewählte Feldbild“. Wichtigstes Skalarfeld der Elektrotech-

” 

nik ist das  Potenzialfeld  mit der potenziellen Energie als Grundlage (Kap. 1.5, 

Bd. 1). Wir vertiefen es in den folgenden Kapiteln. Weil die potenzielle Ener-

gie auch im Gravitationsfeld auftritt (s. Abb. 1.5.1, Bd. 1), hat dieses Feld

Höhenlinien“ gleicher potenzieller Energie. Sie entsprechen den Potenzial-

” 

linien im elektrischen Fall. Eine Masse  m  hat deshalb am höheren Ort eine

größere potenzielle Energie als an einem tieferen Ort. Solche Höhenlinien

prägen das Bild topographischer Karten (Abb. 1.1.2c). 

2.  Vektorielle Feldgr¨

 oßen.  Ein Vektorfeld liegt vor, wenn die physikalische

Feldgröße als Funktion des Ortes ein Vektor ist, also Betrag und Richtung

hat. Beispiele: Schwere- und Geschwindigkeitsfelder, das  Feldst¨

 arkefeld der

 elektrischen und magnetischen Feldst¨

 arke.  Das von einer Punktladung aus-

gehende elektrische Feld ist ein Vektorfeld (Abb. 1.1.3a). 

Ein Vektorfeld wird durch  Feldlinien 2 veranschaulicht, auch als  Kraft-  oder

 Wirkungslinien  bezeichnet. 

Feldlinien sind (ausgesuchte) Raumkurven, die den räumlichen Verlauf einer

Feldgröße veranschaulichen und ihren Vektor an jeder Stelle tangieren. Ihre

Dichte (Abstand) ist ein Maß für den Betrag der Feldgröße am gleichen Ort. 

Zur Konstruktion einer Feldlinie wird die Kraft  F  in einem Punkt  r =

 r( x, y, z) bestimmt, anschließend in einem Nachbarpunkt  r + d r  erneut ermittelt; und dieser Schritt wird fortlaufend wiederholt (Abb. 1.1.3b). Die

zurückgelegte Kurve ist die Feldlinie. Die Feldgröße  F  liegt tangential zu ihr. 

Aus dieser Konstruktion folgt eine wichtige Regel:

Feldlinien können sich nie überkreuzen. 

Sonst gäbe es in einem Punkt zwei Tangentenrichtungen, was dem Feld phy-

sikalisch widerspricht. 

Mathematisch liegt das Wegelement d r  der Feldlinie im Punkt P parallel zur Kraft

 F , deswegen verschwindet das Vektorprodukt

 F ×  d r = 0 ,  d. h.  F || d r. 

(1.1.1)

Für Vektoren in kartesischen Koordinaten

d r = d xe x + d ye y + d ze z , 

 F =  F x e x +  F y e y +  F z e z , 

lautet das Vektorprodukt

( F y d z − F z d y)  e x + ( F z d x − F x d z)  e y + ( F x d y − F y d x)  e z = 0 . 

2 Das Konzept der Feldlinien zur Darstellung von Vektorfeldern geht auf M. Faraday

zurück. 
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Abb. 1.1.2. Skalarfeld. (a) Schnitt durch ein Temperaturfeld um eine kugelsymmetrische

Wärmequelle. Flächen konstanter Temperatur werden von der Wärmestrahlung senkrecht

durchsetzt. (b) Schnitt durch das Temperaturfeld in einer bestimmten Höhe. Es gibt Linien

(= Niveaulinien) konstanter Temperatur. (c) Höhenlinien einer topographischen Karte

Abb. 1.1.3. Vektorfeld. (a) Kraft auf eine Probeladung in Umgebung einer Punktladung. 

(b) Feldlinie und ihre Konstruktion. (c) Darstellung des Betrages eines Vektors  F  durch die

Liniendichte (Dichte ausgewählter Feldlinien) oder Vektoren in Rasterpunkten. (d) Feld-

darstellung zwischen Punktladungen durch Feldlinien und als Vektorfeld

Daraus folgen die Gleichungen der Feldlinien durch Nullsetzen jeder Komponen-

te. Man gibt dazu z. B. d x  vor und berechnet d y, d z. Mit dem so bestimmten

Längenelement d r  folgt der Punkt  r + d r  auf der Feldlinie, für den das Verfahren wiederholt wird. 

Feldlinien sind als gedachte Linien ein Darstellungshilfsmittel eines Vek-

torfeldes. Sie haben keine physikalische Realität. Eine Feldlinie entsteht

durch linienhafte Verbindung der Anfangspunkte der Feldvektoren, des-

halb unterscheidet sich das Feldlinienbild vom zugehörigen Vektorfeld

(Abb. 1.1.3c). Typische Vektorfelder sind die elektrische Feldstärke, aus-

gehend von einer Punktladung, oder das Magnetfeld um einen stromdurch-

flossenen Draht. 

Im Feldlinienbild müssen Richtung und Betrag des Vektors erkennbar sein. 

Die Richtung wird durch einen Pfeil ausgedrückt, der Betrag durch seine
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Länge (Abb. 1.1.3c). Die Stärke des Feldes äußert sich durch die Dichte der

” 

Feldlinien“. Weil diese Darstellung bei dreidimensionalen Feldern versagt, 

werden dann besser Vektoren im Raum dargestellt. 

Weniger üblich ist die Felddarstellung durch Vektorpfeile. Dabei wird jedem Punkt  r

eines vorgegebenen Rasters der zugehörige Feldvektor angeheftet“. Der Pfeil weist

” 

in Richtung der Feldgröße, der Betrag bestimmt seine Länge. Abbildung 1.1.3d

zeigt eine Felddarstellung zweier entgegengesetzter Punktladungen mit Feldlinien-

und Vektorbild. 

Feldarten Es gibt zwei grundsätzliche Feldarten:

1. Quellenfelder:  Feldlinien mit Anfang und Ende. Der Anfangspunkt heißt

 Quelle, der Endpunkt  Senke (Name!). Solche Feldlinien treten z. B. zwischen

positiven und negativen Ladungen auf. 

In Quellenfeldern beginnen Feldlinien stets auf positiven Ladungen und en-

den auf negativen. 

Das verdeutlicht ein Ladungspaar (Abb. 1.1.3d). Die elektrische Feldstärke  E

in Abb. 1.1.3a war nach Kap. 1.3.3 (Bd. 1) für die Kraft des Feldes auf eine

Probeladung  q  eingeführt worden. Gesucht ist jetzt aber eine der Feldbe-

schreibung angepasste Größe für die  Feldursache, die Ladung  Q. Sie heißt

(nach Maxwell)  Verschiebungsflussdichte (auch  elektrische Erregung)  D  und

es gilt  D ∼ E. Man denkt sich zum Verständnis von  D  die Ladung  Q  im

Zentrum einer Hülle mit der Oberfläche  A = 4 πr 2 (Abb. 1.1.4a). Dann ent-

steht auf der Oberfläche die gleiche Ladung  Q  durch Influenz (Ladungs-

verschiebung) und die Verschiebungsdichte (Betrag) lautet  D =  Q/A =

 Q/(4 πr 2), begrifflich eine  Flächenladungsdichte. Das ist die in jedem Punkt

der Hüllfläche influenzierte Ladung pro Fläche. 

Die Verschiebungsflussdichte beschreibt die dem Raumpunkt zugeordnete

Ursache des elektrischen Feldes und ist eine der Felddarstellung angepasste

Form der elektrischen Ladung als Feldursache. 

Ein Maß für die Quellenstärke“ bildet die

” 

Quellendichte = Divergenz des Feldvektors . 

Gleichwertig gilt für eine gedachte Hüllfläche um den Quellenbereich

(Abb. 1.1.4a): Zahl der austretenden  −  Zahl der eintretenden Feldlinien  = 0

oder beschrieben durch die Quellenstärke“

” 





 D ·

Quellenstärke, 

d A =

   d V =  Q = 0 . 

(1.1.2)

Kennzeichen des Quellenfeldes

1.1
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Abb. 1.1.4. Quellenfeld. (a) Feld einer Punktladung und gleichwertige Beschreibung durch

die Verschiebungsflussdichte  D. (b) Verschiebungsflussdichte ausgehend von mehreren

Punktladungen. (c) Quellenfeld in integraler und differenzieller Angabe: Quellenstärke und

Quellendichte. (d) Feldbetrag der Teilladung d Q

Ein Quellenfeld wird durch zwei gleichwertige Darstellungen beschrieben:

Quellenstärke (integrale Form) oder Quellendichte (differenzielle Form). 

Abbildung 1.1.4b erläutert diese Begriffe: Ausgang ist eine Ladungsmenge

innerhalb einer (gedachten oder vorhandenen) Hülle mit angedeuteten Feld-

linien. Diese Ladung kann verstanden werden als Quellenstärke (auch gebildet

durch eine Raumladungsdichte  , die das Hüllvolumen ausfüllt (Abb. 1.1.4c)

oder das Hüllintegral der

Verschiebungsflussdichte“  D (hier zunächst als

” 

Synonym für die Wirkung der Ladung außerhalb der Hüllfläche). Für den

Raumpunkt ist die Quellendichte    maßgebend für die Divergenz des Feld-

vektors  D. Wir kommen darauf im Kap. 2.2 zurück. 

Die Ausgangsladung kann auch von einer Raumladungsverteilung ausgehen

(Abb. 1.1.4d), die Teilladung d Q  erzeugt dann im Punkt P den Feldbei-

trag d E  und das Gesamtfeld entsteht durch Integration. 

Die einfachste Feldquelle ist die Punktladung  Q (Abb. 1.1.5a) mit der Gegen-

ladung auf einer unendlich fernen Hülle. Deshalb entsteht ein  radialsymmetri-

 sches Feld. Das Feldmodell folgt unmittelbar aus dem Coulombschen Gesetz

(Gl. (1.3.5), Bd. 1), weil die Gegenladung keinen Beitrag zur Feldstärke im

Aufpunkt liefert. Dann erzeugt eine (positive) Punktladung im Punkt P mit

dem Ortsvektor  r  die elektrische Feldstärke

 F

 r

 E

 Q

 Q

Feldstärkefeld einer

=

=

=

 e r . 

(1.1.3)

 Q

4 πε 0 r 2

 r

4 πε 0 r 2

Punktladung

Sie zeigt in Richtung von  r  und ihr Betrag fällt mit 1 /r 2 (Abb. 1.1.5b, c). Auf einer Kugeloberfläche mit der Ladung im Zentrum ist die Feldstärke konstant. 
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Das Feldlinienbild entsteht durch Tangenten an die Feldstärkelinien. Eine

Vorzeichenumkehr der Ladung wechselt die Feldstärkerichtung. 

Eine Punktladung hat ein kugelsymmetrisches Feld. Die Feldlinien bilden

in beliebigen Ebenen durch die Ladung einen Strahlenstern bei gleichem

Verlauf für die Verschiebungsflussdichte ( D ∼ E). 

Betrachtet man das Ladungspaar (entgegengesetzte Ladungen, Abb. 1.1.3d), 

so haben Feldbilder von Quellenfeldern einige  typische Merkmale:

Bei verschwindender Gesamtladung münden alle von positiven Ladungen

ausgehenden Feldlinien auf negativen Ladungen. Es gibt keine Feldlinien

zur unendlich entfernten Hülle (Ausnahme: Feldlinien auf Symmetrieach-

sen durch die Ladungen). 

Eine Punktladung dominiert das Feld in ihrer unmittelbaren Umgebung

(Einfluss entfernter Ladungen vernachlässigbar). 

Bei mehreren nahe benachbarten Ladungen verhält sich das Feld in

großer Entfernung wie das einer Punktladung, die im Ladungsschwer-

punkt (mit dem gleichen Wert der Gesamtladung) angebracht ist. 

Lassen sich in der Ladungsverteilung Symmetrieebenen finden, so kann

dort oft auf die Feldrichtung geschlossen werden. 

Quellenfelder entstehen auch durch  Ladungsverteilungen  wie  Raumladung

(Gl. (1.3.3), Bd. 1),  Fl¨

 achenladung (auf Leiteroberflächen) und  Linienladung

(auf einem Draht mit vernachlässigbarem Durchmesser). In Kap. 2 vertiefen

wir diesen Aspekt und in Anhang A.2 (Bd. 1) den Divergenzbegriff. 

2. Wirbelfelder:  mit Feldlinien ohne Anfang und Ende, also  ohne  Quellen

und Senken. Felder mit in sich geschlossenen Feldlinien heißen  quellenfrei. Sol-

che Vektorfelder haben  Wirbel (Abb. 1.1.6a). Das sind Raumbereiche (linien-

oder rohrförmig), um die sich die Feldlinien zusammenziehen. Sie bilden eine

geschlossene Raumkurve, den  Wirbelfaden. Ein Maß für die Wirbelstärke des

Vektorfeldes ist die

Wirbeldichte = Rotation eines Vektors in einem Punkt . 

Deshalb gilt für eine gedachte Linie um den Wirbelbereich gleichwertig das

nicht verschwindende  Umlaufintegral, die  Wirbelst¨

 arke W s



 W s =

 H ·  d s = 0

Wirbelstärke (1.1.4)

längs der Kurve  s. Ein Feld  H, das der Bedingung Gl. (1.1.4) genügt, ist  nicht



 wirbelfrei. (Die Mathematik bezeichnet das Integral

 v ·  d s  als Zirkulation.)

1.1
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Abb. 1.1.5. Feldbilder der elektrischen Feldstärke und Verschiebungsflussdichte einer

Punktladung. (a) Quellenfeld in Vektordarstellung. (b) Betrag der elektrischen Feldstärke

 E( r). (c) Feldlinienbild in einer Schnittebene durch die Punktladung

Abb. 1.1.6. Wirbelfeld. (a) Wirbellinien eines Wirbelfeldes, integrale Darstellung. Zuord-

nung der  H-Feldlinie zur Wirbelursache  J (Stromdichte). Wirbelfaden und Zirkulation, 

integrale Darstellung. (b) Magnetisches Wirbelfeld um einen stromdurchflossenen Leiter. 

(c) Elektrisches Wirbelfeld im Induktionsgesetz

Beispiele sind das magnetische Wirbelfeld um einen stromdurchflossenen Leiter oder

das elektrische Wirbelfeld in der Umgebung eines zeitveränderlichen magnetischen

Feldes, im Induktionsgesetz. Abbildung 1.1.6b zeigt einen stromdurchflossenen Lei-

ter mit dem umwirbelnden Magnetfeld. Ein  Umlauf-  oder  Ringintegral  längs eines

geschlossenen Weges um den Strom kennzeichnet die Wirbelstärke. Die Feldlinien

von  H  sind in sich geschlossen. Wird der stromführende Querschnitt immer weiter

aufgelöst, was mit Einführung der  Stromdichte J (s. Kap. 1.3) gelingt, so lässt sich

die Wirbeldichte als Rotation der magnetischen Feldstärke angeben (Abb. 1.1.6a). 

Ein weiteres Beispiel eines Wirbelfeldes ist das zeitveränderliche Magnetfeld, das

von einem elektrischen Feld umwirbelt“ wird (Abb. 1.1.6c): dann sind die magne-

” 

tischen Feldlinien die Wirbelursache der in sich geschlossenen elektrischen Feldlinien

(die jetzt nicht auf Ladungen enden oder von ihnen ausgehen!). Ein derartiges elek-

trisches Feld hat besondere Eigenschaften: sein  Umlaufintegral verschwindet nicht. 

Es ist deshalb  nicht konservativ (s. Kap. 3.3). 

Beim Quellenfeld bestimmt das Hüllintegral die Quellenstärke und sie drückt aus, 

ob in einem Volumen ein Flussüberschuss oder -defizit auftritt. 
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Die gleiche Bedeutung hat das Umlaufintegral oder die  Zirkulation  für das Wirbel-

feld: es gilt festzustellen, ob sie verschieden von Null ist oder nicht. Verschwindet

das Umlaufintegral nicht, so gibt es geschlossene Feldlinien, (was für die elektrische

und magnetische Feldstärke  E  und  H  zutreffen kann). Deshalb heißt dieses Um-

laufintegral auch elektrische bzw. magnetische  Umlaufspannung. Sie kennzeichnet

wohl die Wirbelstärke der felderregenden Ursache, besagt aber nichts über lokale

Wirbelursachen (ebensowenig wie beim Quellenfeld der Hüllenfluss nichts über Ort

und Charakter der Quellen ausdrückt). 

Die lokale Wirbelursache wird durch die  Wirbeldichte  oder  Rotation  ausgedrückt:

man wählt einen Umlauf um eine immer kleiner werdende Fläche, bezieht den

Umlauf auf sie und nennt das Ergebnis Rotation (abgesehen vom Normalenvektor

der Fläche). Darauf basiert die entsprechende Rechenvorschrift (Anh. A.2, Bd. 1). 

Die Rotation ist ein Operator, der einen Vektor differenziert und wieder einen

Vektor ergibt. 

Feldgr¨

oßen, Koordinatensysteme Elektrische und magnetische Felder sind

Vektorfelder mit  koordinatenunabh¨

 angigen  Beziehungen zwischen den Feld-

größen. Beispielsweise ist das Newtonsche Gesetz:  F =  ma  unabhängig von

einer Koordinatenzuordnung. Die Komponenten vektorieller Feldgrößen, also

z. B.  F  x,  F  y und  F  z ( F =  F  x +  F  y +  F  z) hängen dagegen vom Koordinatensystem ab (s. Tab. 1.1). Zur Feldberechnung in geometrischen Anordnungen

wird deshalb ein  angepasstes, orthogonales  Koordinatensystem gewählt. In

 homogenen  Feldern verlaufen alle Feldlinien gerade und parallel. Dann reicht

in kartesischen Koordinaten eine Komponente aus. 

In inhomogenen Feldern, wie bei Punkt- und Linienladungen, treten kugel-

und rotationssymmetrische Größen mit nur einer Komponente in  r-Richtung

auf. Hier sind Kugel- oder Zylinderkoordinaten zweckmäßig. 

1.1.2 Merkmale elektrischer und magnetischer Felder

Elektrische Ladungen erzeugen im umgebenden Raum  elektrische und/oder

 magnetische Felder abh¨

 angig von ihrem Zustand:

1. das  elektrische Feld  entsteht durch die Kraftwirkung ruhender Ladungen. 

Sie setzt in leitenden Medien andere Ladungen in Bewegung ( Ladungstrans-

 port) und bewirkt in nichtleitenden Stoffen (Isolatoren) eine  Ladungsverschie-

 bung. Je nach Bewegungszustand (Tab. 1.2) gilt:

 Ruhende Ladungen  verursachen das  elektrostatische  Feld. Es ist als Quel-

lenfeld typisch für Nichtleiter, wird während einer bestimmten Zeit durch

Energiezufuhr aufgebaut und bleibt dann erhalten:  Energiespeicherf¨

 ahig-

 keit. 

1.1

Felder
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Tab. 1.2. Ladungszustand und elektromagnetische Felder

Besonders ausgeprägt ist das elektrostatische Feld, wenn sich Ladung auf

voneinander isolierten Leitern, einer  Kondensatoranordnung, sammelt. 

Das elektrostatische Feld ist mit dem  Kondensator  verknüpft. Er ver-

bindet dieses Feld in einem Raumbereich als Netzwerkelement mit dem

Stromkreis. 

 Bewegte  Ladungen im Leiter bilden das  elektrische Str¨

 omungsfeld. Es er-

fordert beständig Energiezufuhr, weil die Ladungsträger durch Zusam-

menstöße mit den Gitterbausteinen Bewegungsenergie abgeben. 

Das Strömungsfeld ist mit dem Netzwerkelement  Widerstand  verknüpft. 

Bildet das elektrische Feld im Nichtleiter ein Quellenfeld, so bleibt das elektri-

sche Strömungsfeld quellenfrei (s. u.). Beide sind zudem  wirbelfrei. Deswegen

 kann die Feldst¨

 arke als Feldursache auch durch das elektrische Potenzial aus-

 gedr¨

 uckt werden. 

2.  Das magnetische Feld  ist an den Strom, also  bewegte  Ladungen gebunden. 

Es äußert sich durch eine Kraftwirkung auf  andere bewegte  Ladungsträger, et-

wa in einem anderen  stromf¨

 uhrenden Leiter  oder auf magnetisierte“ Körper, 

” 

wie eine Magnetnadel. Die Kraftwirkung unterbleibt, wenn der Raum nur ru-

hende Ladungsträger enthält. Zur Beschreibung dieser neuen Kraftwirkung

wird das  magnetische Feld  eingeführt. Es bildet sich  um  die Ladungsströmung

und ist daher ein  Wirbelfeld (s. Abb. 1.1.6b). Wie beim elektrischen Feld

erfordert der Feldaufbau Energie, die Aufrechterhaltung aber beständigen

Stromfluss  als fundamentalen Unterschied zum elektrischen Feld. 

Das vom Strom erzeugte magnetische Feld in einem Raumbereich ist mit

dem Netzwerkelement  Spule  verknüpft. 
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Tab. 1.3. Felder und ihre beschreibenden Größen

Feldart

Elektrisches

Elektrisches Feld

Magnetisches

Str¨

omungsfeld

im Nichtleiter

Feld

 Feldbeschreibung

Ursache

Stromdichte  J

Verschiebungs-

magnetische

flussdichte  D

Feldstärke  H

Wirkung

elektrische

elektrische

magnetische

Feldstärke  E

Feldstärke  E

Flussdichte  B

Zusammenhang

 J =  κE

 D =  εE

 B =  μH

 Globalgr¨

 oßen







Strom, Fluss

 I =

 J ·

 D ·

 B ·

 A

d A

Ψ =  A

d A

Φ =  A

d A







Spannung

 U =

 E ·

 E ·

 H ·

 s

d s

 U =  s

d s

 V =  s

d s

 Netzwerkelement

 U =  RI

 U = Ψ /C

 V = Φ R m

Wird das magnetische Feld durch einen  zeitver¨

 anderlichen  Strom, also  be-

 schleunigte  Ladungsträger verursacht, entsteht ein  elektrisches Wirbelfeld  um

den Leiter, das im Leiter selbst oder in benachbarten Leitern ein elektrisches

Feld, das sog.  induzierte elektrische Feld  erzeugt.  Das ist der Inhalt des In-

 duktionsgesetzes (s. Abb. 1.1.6c). Die Felder treten dann nicht mehr einzeln, 

sondern  verkoppelt  auf: Elektrische Ladungen erzeugen ein elektrisches Feld, 

das Ladungen bewegt (elektrischer Stromfluss). Der Strom wird  stets  von

einem Magnetfeld umwirbelt, das wiederum eine Kraftwirkung auf bewegte

Ladungsträger zur Folge hat. Sie ist der Kern des Induktionsgesetzes und

wird selbst wieder durch ein elektrisches (Wirbel-) Feld beschrieben.  Damit

 stehen elektrisches und magnetisches Feld in Wechselwirkung. Sie bildet den

Inhalt der Maxwellschen Gleichungen (s. Kap. 3.5). 

Methodisch ist zunächst eine getrennte Feldbetrachtung vorteilhafter. Da-

bei hat das Strömungsfeld Priorität, einerseits als Grundlage des schon defi-

nierten Netzwerkelementes elektrischer Widerstand“, aber auch wegen der

” 

vielfältigen Strömungsvorgänge in Leitern, Flüssigkeiten und Gasen sowie ih-

ren Anwendungen. Der Übergang zum elektrostatischen Feld ist anschließend

leicht möglich, ebenso zum magnetischen Feld. 

Lokale, integrale Feldgr¨

oßen Felderscheinungen werden mit zwei Ansätzen

beschrieben (s. auch Tab. 1.3):

1. 

durch Feldgrößen im Raumpunkt, also  lokal. Allerdings gibt z. B. die

Kenntnis der Kraft  F  noch keine Auskunft darüber, ob und wie sie sich

am betreffenden Ort räumlich ändert. Die  r¨

 aumlichen ¨

 Anderungen von

1.2
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 Feldgr¨

 oßen  werden durch spezielle Rechenvorschriften, die sog.  Differen-

 zialoperatoren  wie Gradient, Divergenz und Rotation beschrieben und

der räumliche Verlauf durch Feldbilder veranschaulicht (die Abb. 1.1.3

und 1.1.4 deuteten das schon an). 

2. 

durch  Integration  der Feldgröße längs eines Weges oder über eine Fläche

zur Kennzeichnung der  Feldeigenschaften in der Gesamtheit. Dazu die-

nen die im Anhang A.2 (Bd. 1) erläuterten  Linien-  und  Flussintegrale. 



Beispielsweise ist die Arbeit  W =

 F ·  d s  das Linienintegral der Kraft. 

Durch Beschränkung auf parallele, zylinder- und rotationssymmetrische

Felder (in diesem Buch) lassen sich die Flächen- und Volumenintegrale

einfach lösen. Die so erhaltenen Integrale von Feldgrößen sind Skalare, 

deshalb spricht man von  integralen  oder  globalen Feldgr¨

 oßen. Zwei Merk-

male treten auf:

die  Feldmenge l¨

 angs eines Weges s  durch das Feld. Beispiele dafür

sind das Potenzial, die Spannung  U  und die Umlaufspannung, 

die  Menge der Feldlinien durch eine Fl¨

 ache A  quer zu den Feldlinien. 

Beispiele sind der elektrische Strom  I  und der dielektrische Fluss Ψ. 

Obwohl in beiden Fällen skalare Größen vorliegen, haben sie durch ihre Ver-

knüpfung mit einer vektoriellen Feldgröße über den Weg bzw. die Fläche

einen  physikalischen Richtungssinn (s. Anhang A.2, Bd. 1), also ein Vor-

zeichen. Tab. 1.3 stellt die Feld- und Globalgrößen der folgenden Abschnit-

te gegenüber. Hängt der Ursache-Wirkungszusammenhang der Feldgrößen

von den Stoffeigenschaften des Raumpunktes (z. B. Leiter, Nichtleiter) ab, 

so gilt ein entsprechender Zusammenhang auch für die Integralgrößen mit

den  Netzwerkelementen als Verkn¨

 upfungsgr¨

 oßen. So führte der Zusammen-

hang Strom-Spannung zum Begriff Widerstand“ abhängig von den Stoffei-

” 

genschaften (Leitfähigkeit) des Gebietes und seiner Geometrie. Die folgenden

Feldbetrachtungen erlauben, den Widerstandsbegriff über das Strömungsfeld

auf kompliziertere Leitergebilde zu erweitern sowie den Kondensator aus dem

elektrostatischen Feld und die Spule über das magnetische Feld als neue Netz-

werkelemente einzuführen. 

1.2

1.2 Elektrische Feldst¨

arke, Potenzial und Spannung

Im Bd. 1 wurde die elektrische Feldstärke aus der Kraftwirkung einer Ladung

auf eine andere Ladung erklärt. Die Spannung  U  als zugeordnete integrale

Größe erwies ihren praktischen Wert bei der Netzwerkanalyse. Jetzt vertiefen
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wir die Zusammenhänge zwischen Feldstärke, Potenzial und Spannung im

elektrischen Feld. 

1.2.1 Potenzial und Feldst¨

arke

Bei der Bewegung einer Ladung im elektrischen Feld vom Punkt A nach B

 gegen  die Kraftwirkung muss Energie von außen zugeführt, also  Arbeit W

aufgewendet werden. Dabei gilt Δ W =  F · Δ s  bei Verschiebung längs des

Wegstückes Δ s. Weil Bewegungs- und Kraftrichtung verschieden sein können, 

wirkt in Richtung des Weges von  P A nach  P B (Abb. 1.2.1a) nur noch die Kraft

 F   cos  α, was durch den Übergang zum vektoriellen Wegstück Δ s  mit der

Richtung von  P A nach  P B erfasst wird. Die Arbeit ist definiert als Produkt

aus der längs eines Weges wirkenden Kraft  F  und dem zurückgelegten Weg

Δ W =  F · Δ s =  QF · Δ s, also zwischen den Punkten A und B: n



Δ W AB =  Q

 Ei · Δ si. 

 i=1

Dabei wird der Gesamtweg (Abb. 1.2.1b) in  n  kleine gerade Abschnitte zer-

legt, in denen jeweils die Feldstärke  Ei  herrscht. Bei immer feinerer Unter-

teilung des Weges geht die Summation schließlich in ein Integral über eine

Wegstrecke, das  Linienintegral der Feldst¨

 arke, über (Bd. 1, Gl. (1.5.1)):

B



B



 W AB =

 F ·  d s =  Q

 E ·  d s

Arbeit, Linienintegral

A

A

der elektrischen

(1.2.1)

B



Feldstärke

=  Q

cos ∠( E,  d s) E  d s. 

A

Damit reduziert sich die Berechnung der Verschiebearbeit auf die Bestim-

mung des Wegintegrals der elektrischen Feldstärke zwischen einem Ausgangs-

punkt, dem Bezugspunkt  P A, und dem Feldpunkt  P B (Abb. 1.2.1b). Bewegt

sich die Ladung in Richtung der Feldkraft, so ist die Arbeit  W AB positiv

und wird dem Feld entzogen. Stehen Feldstärke und Verschiebungsrichtung

senkrecht zueinander, verschwindet der Energieaustausch, weil die Feldkom-

ponente in Richtung von Δ s  nicht vorhanden ist. Das Ergebnis Gl. (1.2.1)

war Grundlage der Spannungsdefinition Gl. (1.5.2), Bd. 1. 

Die symbolische Schreibweise Gl. (1.2.1) darf nicht darüber hinwegtäuschen, dass

zur praktischen Berechnung die Komponenten von  E (z. B. in kartesischen Koor-

dinaten) bekannt sein müssen. Sie können von den Koordinaten  x, y, z  abhängen. 

Dann zerfällt das Linienintegral in drei einfache Integrale. Die Integrationen mit

1.2
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Abb. 1.2.1. Arbeit im Kraftfeld. (a) Verschiebung einer Probeladung im elektrischen Feld

zwischen den Feldpunkten  P A,  P B. (b) Verschiebung im inhomogenen elektrischen Feld

auf beliebigem Weg, Zuordnung der potenziellen Energie. (c) Arbeit im Potenzialfeld längs

verschiedener Wege

d x =  e x d x  usw., sind über einen gegebenen Weg zwischen dem Anfangs- ( x A,  y A, z A) und Endpunkt ( x B,  y B,  z B) auszuführen. Bei der Berechnung versucht man

stets, das Wegelement d s  als Summe seiner Komponenten in Richtung von  E  und

senkrecht dazu aufzuspalten. Letztere liefert keinen Beitrag, da  E⊥ d s. 

Im allgemeinen gibt es beliebige Integrationswege zwischen A und B in

Gl. (1.2.1) und man sollte eine Wegabhängigkeit der bei der Verschiebung

aufzubringenden Energie erwarten. Es lässt sich aber zeigen, dass die auf

dem Weg 1 aufgenommene Energie (Abb. 1.2.1c) gleich der auf Weg 2 abge-

gebenen ist und damit unabhängig vom Weg bleibt. Dann gilt

 B



 A



 W 1 =  Q

 E ·  d s =  −Q

 E ·  d s =  −W 2 . 

A ,  Weg 1

B ,  Weg 2

In einem solchen Feld ergibt die Integration längs eines geschlossenen Weges



(von A nach B und nach A zurück, angedeutet durch das  Umlaufintegral

, 

s. Anh. A.2, Bd. 1)

 B



 B





 E ·

Umlaufintegral

d s −

 E ·  d s =

 E ·  d s = 0 . 

(1.2.2)

der Feldstärke

A, 

A, 

beliebiger

Weg 1

Weg 2

Weg

Im Feldstärkefeld der ruhenden Ladung verschwindet das Umlaufintegral

längs eines beliebigen Weges stets. Ein Feld mit dieser Eigenschaft heißt

 Potenzial-  oder  elektrostatisches Feld  und wird durch eine Skalarfunktion, 

das skalare Potenzial beschrieben. Es ist konservativ ganz analog zum Gra-

vitationsfeld. 

Ein konservatives Kraftfeld hat gleichwertig eines der folgenden Merkmale: Arbeit

unabhängig vom Weg, oder Arbeit verschwindet auf geschlossenem Weg, oder es
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Abb. 1.2.2. Feldstärke- und Potenzialfeld. (a) Potenzialbegriff. (b) Homogenes Feldstärke-

feld (eindimensional). (c) Feld einer Punktladung mit ortsabhängigem Feldstärke- und

Potenzialverlauf

existiert im Kraftfeld eine potenzielle Energie (und damit ein Potenzial) oder das

Feld ist wirbelfrei.3

Die  Voraussetzung  für die Einführung des Potenzials ist das verschwindende

Umlaufintegral, bzw. gleichberechtigt eine verschwindende Zirkulation des

Feldes  E, rot  E = 0 (s. Gl. (1.1.4)). Für die Globalgröße Spannung drückt sich diese Bedingung im Maschensatz aus. 

Ganz analog verlaufen die Vorgänge im Gravitationsfeld: Wird eine Masse  m (z. B. 

ein Stein) gehoben“, so muss Arbeit gegen das Schwerefeld geleistet werden und

” 

die potenzielle Energie der Masse erhöht sich. Fällt der Stein von A nach B, so

nimmt seine potenzielle Energie ab, gleichzeitig wächst seine kinetische Energie. 

So wie die potenzielle Energie des Ladungsträgers der Ladung proportional ist, ist

die des Steines der Masse  m  proportional. Weil die Ladung aber ein Vorzeichen

hat, die Masse jedoch nicht, kann ein elektrisches Feld abgeschirmt werden, das

Gravitationsfeld nicht! Auf die Analogie zum Gravitationsfeld war bereits im Bd. 1

Abb. 1.5.1 verwiesen worden. 

Potenzialbegriff Im Potenzialfeld hängt die zur Ladungsverschiebung notwen-

dige Arbeit  W AB  nur vom Anfangs- und Endpunkt (Ortsvektoren  r A,  r B) im Feld ab, nicht vom Weg (Gl. (1.2.2))

B



 W AB =  Q

 E ·  d s =  Q ( f( r B)  − f( r A))  . 

(1.2.3)

A

3 Damit gilt Gl. (1.2.2) nur für zeitunabhängige Felder; bei zeitveränderlichen Fel-

dern entsteht über das zeitveränderliche Magnetfeld durch das  Induktionsgesetz

ein elektrisches Wirbelfeld, dessen Umlaufintegral der Feldstärke  nicht  verschwin-

det. Das führt zu einer von Null verschiedenen Umlaufspannung im Gegensatz zu

Gl. (1.2.2)! 

1.2
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Deshalb kann sie durch eine skalare Funktion  f ( r) ausgedrückt werden,  ohne

 das Integral berechnen zu m¨

 ussen. Üblicherweise benutzt man den  negativen

Wert von  f ( r) und nennt ihn

 ϕ( r) =  −f ( r) . 

Potenzial  ϕ( r) des elektrischen Feldes (1.2.4)

Der Potenzialbegriff ist an die Bedingung des konservativen Feldes gebun-

den4. Die Arbeit Gl. (1.2.3) bleibt unverändert, wenn der Weg von A nach B

noch über einen dritten (beliebigen) Punkt 0 (mit dem Ortsvektor  r 0) führt

(A  →  0  →  B)

0



B



B



 W AB =  Q

 E ·  d s +  Q

 E ·  d s =  Q

 E ·  d s

(1.2.5)

A

0

A

=  Q ( f ( r 0)  − f ( r A) +  f ( r B)  − f ( r 0))  . 

Damit besteht ein Zusammenhang zwischen Potenzial  ϕ( r) und Feldstärke

 E( r) durch das Integral z. B. im Punkt A (B analog)5

 r

Potenzial im

0



A



 W A r

Punkt A

 ϕ( r

0

A) −ϕ( r 0)

 E·

 E·

=

d s =  −

d s =

 . 

(1.2.6)

 Q

gegenüber

Bezug

A

 r 0

Bezugspunkt  r 0

Das Potenzial  ϕ( r) eines Raumpunktes  P ( r) im elektrischen Feld ist das

Wegintegral der elektrischen Feldstärke  E( r) zwischen diesem Punkt und

einem beliebigen (aber festgelegten) Bezugspunkt bei beliebigem Integrati-

onsweg. Damit wird das Feld der ruhenden Ladung gleichwertig durch das

Feldstärke- oder das Potenzialfeld beschrieben. 

Es gibt die Arbeit an, die aufgewendet werden muss, um eine Probeladung

vom Bezugspunkt zum Punkt P( r) zu verschieben. Im Bezugspunkt wird

das Potenzial definitionsgemäß meist zu null gesetzt ( ϕ( r 0) = 0). Dann wird

das Potenzial eines Feldpunktes positiv [negativ], wenn dort die potenzielle

Energie einer positiven Ladung höher (positiver) [kleiner (negativer)] als im

Bezugspunkt ist (Abb. 1.2.2b). 

Das Potenzial nimmt in Richtung der Feldstärke ab oder: Der Feldstärke-

vektor weist von Orten höheren Potenzials zu solchen niedrigeren Potenzials. 

4 Korrekt müsste von elektrostatischem Potenzial gesprochen werden, der Begriff

elektrisches Potenzial oder Potenzial ist aber üblich. 

5 Der erste Term berücksichtigt das negative Vorzeichen, der zweite ordnet die Inte-

grationsgrenzen richtig zu. 
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Es erklärt sich auch das Minuszeichen in Gl. (1.2.4): diese Konvention stammt

aus den Anfängen der Elektrotechnik, damit Feldlinien vom höheren zum

niedrigeren Potenzialwert zeigen. 

Als Bezug dient meist ein Punkt im Unendlichen mit dem Potenzial null:

 ϕ( ∞) = 0. Dann geht Gl. (1.2.6) über in (s. Bd. 1, Gl. (1.5.3))

A



 W A

 W ( r)

 ϕ A =

=  −

 E· d s →

 ϕ ( r) =

 . 

(1.2.7)

 Q

 Q

 ∞

In einem Potenzialfeld besitzt eine Ladung  Q  im Punkt A eine bestimmte

potenzielle Energie  W A gegenüber einem Bezugspunkt. Sie ist proportional

der Ladung, die Proportionalitätskonstante heißt elektrostatisches Potenzial

oder kurz Potenzial  ϕ A. 

Das Potenzial hat, wie die elektrische Spannung, die SI-Einheit Volt. 

Hinweis Weil das elektrische Potenzial nur bis auf eine Konstante bestimmt ist, 

kommt ihm für sich gesehen  keine direkte physikalische Bedeutung  zu. Deshalb ist es

nicht mit der potenziellen Energie gleichzusetzen, was man aus Gl. (1.2.7) schließen

könnte. Physikalische Bedeutung erhalten erst Potenzial differenzen  und damit das

Vermögen, an einer Ladung Verschiebearbeit zu leisten. Gleichung (1.2.6) setzt

ein Quellenfeld voraus. Wären die Feldlinien nämlich geschlossen, so würde jeder

Umlauf im Integral Gl. (1.2.2) einen vom Weg abhängigen Beitrag liefern und es

wäre nicht null. Ein Feld mit diesen Eigenschaften ist später das Wirbelfeld. 

 Zusammengefasst  kennzeichnet das Potenzial  ϕ( r) ebenso wie die elektrische

Feldstärke  E  das elektrische Feld. Als skalare Feldgröße bringt es bei Feld-

berechnungen erhebliche Rechenvereinfachungen. Seine physikalische Bedeu-

tung erhält es aus der Bewegung einer Ladung  Q  vom Ort A (mit  W A) nach

Ort B (mit  W B), dabei muss die Arbeit (Gl. (1.2.5))

B



B



B



 W AB =

 F ·  d s =  Q

 E ·  d s =  −Q

d ϕ =  Q( ϕ A  − ϕ B) =  QU AB

A

A

A

geleistet werden. Das Potenzial ist damit eine  auf den Ort  bezogene skalare

Größe des elektrischen Feldes. Aus Gl. (1.2.7) folgt gleichwertig

B



 − d ϕ =  E ·  d s  und

 ϕ B =  ϕ A  −

 E ·  d s. 

(1.2.8)

A

Weisen Feldstärke und Weg in die gleiche Richtung, so sinkt das Potenzial

in Feldrichtung ab. 

1.2
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Beispiel 1.2.1 Homogenes Feld Für ein  homogenes  Feld mit  E = const folgt aus

Gl. (1.2.6)

 r



 r



 ϕ( r) =  ϕ( r 0)  −

 E· d s =  ϕ( r 0)  − E ·

d s =  ϕ( r 0)  − E · ( r − r 0)  . 

(1.2.9a)

 r 0

 r 0

In Abb. 1.2.2b herrsche die homogene Feldstärke  E =  E x e x (z. B. dadurch, dass zwei parallele, voneinander isolierte Leiterplatten mit den Ladungen  Q+ und  Q−

belegt werden). Dann gilt für den Potenzialverlauf über  x, wenn als Bezugspotenzial

 x B gewählt wird: x B



 x B



 ϕ( x) =  ϕ( x B) +

 E x e x  · e x d x =  ϕ( x B) +

 E x d x =  ϕ( x B) +  E x( x B  − x) . (1.2.9b)

 x

 x

Erwartungsgemäß sinkt das Potenzial in Feldrichtung. Auch bei anderem Bezugs-

punkt, z. B. Punkt  x A, bleibt der Abfall erhalten, die Kurve verschiebt sich nur

zum neuen Bezugspunkt. 

Zur  Punktladung Q (im Ursprung) mit dem Feldverlauf Gl. (1.1.3) (Abb. 1.1.5)

gehört der Potenzialverlauf

 r 0







 Q

 e r  · e rd r

 Q

1

 ϕ( r) =

+  ϕ( r 0) =

 −  1

+  ϕ( r 0) . 

(1.2.10)

4 πε 0

 r 2

4 πε 0

 r

 r 0

 r

Der Integrationsweg ist die  r-Achse. Das Potenzial im Aufpunkt sinkt umgekehrt

proportional zum Abstand vom Nullpunkt. Es bleibt auf einer Kugel vom Radius  r

konstant, sie ist eine Äquipotenzialfläche, ebenso die des Bezugspotenzials (Ra-

dius  r 0). Das Ergebnis vereinfacht sich bei verschwindendem Bezugspotenzial im

Unendlichen ( r 0  → ∞). Abbildung 1.2.2c zeigt das Feldbild (Radialfeld) sowie den

radialen Verlauf von Potenzial und Feldstärke. 

Feldbild des Potenzials Im elektrischen Feld gibt es viele Punkte mit gleichem

Potenzial. Sie alle bilden eine  ¨

 Aquipotenzialfl¨

 ache. Ihre Spuren (= Projektion)

in ebene Schnittflächen sind die  ¨

 Aquipotenziallinien (Abb. 1.2.3a). Mit der

Feldstärkeverteilung liegt durch Gl. (1.2.6) auch das Potenzialfeld (bis auf

eine von der Wahl des Bezugspunktes abhängige Konstante) fest. Ändert

sich der Bezugspunkt, so ändern sich alle Potenziale um diese Konstante. 

Das Feldbild selbst bleibt erhalten. 

Die Potenzialflächen sind Flächen konstanter potenzieller Energie  W , und

eine Energieänderung d W ∼  d ϕ  auf der Fläche muss zwangsläufig verschwin-

den. Das führt mit Gl. (1.2.6) auf die Bedingung

d W =  −Q ·  d ϕ =  Q ( E ·  d s) = 0 . 

(1.2.11)

Weil sich die potenzielle Energie bei Verschiebung einer Ladung auf einer

Potenzialfläche nicht ändert ( W = const), müssen Feldstärke  E  und Wegele-

ment d s  senkrecht zueinander stehen:
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Abb. 1.2.3. Potenzial- und Feldstärkeverlauf. (a) Räumliches Feldstärke- und Potenzial-

feld. Die Feldlinien stehen senkrecht (orthogonal) auf Potenzialflächen. (b) Räumliche Dar-

stellung eines homogenen Feldstärke- und Potenzialfeldes und flächenhafte Darstellung in

einer Schnittebene. (c) Quadratähnliche Figuren

Die Äquipotenzialflächen bzw. -linien des Potenzialfeldes und die Feldlinien

des  E-Feldes durchdringen einander stets senkrecht. Der Transport einer

Ladung längs einer Potenziallinie erfordert deshalb keine Energie. 

Abbildung 1.2.3b zeigt ein homogenes Feld mit ausgewählten Äquipotenzi-

alflächen (dreidimensional) und Äquipotenziallinien (zweidimensional). Die

elektrische Feldstärke zeigt in Richtung  maximaler Potenzialabnahme (s. u.). 

Deshalb wird der Feldraum bei der Darstellung durch ausgewählte Feldlinien

und Äquipotenzialflächen (benachbarte Potenzialflächen mit gleichem Poten-

zialunterschied Δ ϕ) in  quaderähnliche Volumina  aufgeteilt, bei zweidimensio-

naler Darstellung also in ein  Netz quadrat¨

 ahnlicher Figuren (Abb. 1.2.3c). 

Grundsätzlich bleibt der quadratähnliche Charakter zwischen ausgewählten

benachbarten Feldstärke- und Potenziallinien auch im inhomogenen Feld, et-

wa der Punktladung (Abb. 1.2.2c), erhalten, wenn das Feldbild nur genügend

fein unterteilt wird. Deshalb hat das elektrostatische Feld folgende  Merkmale:

Eine Äquipotenzialfläche (Potenzial  ϕ 0) bleibt erhalten, wenn man sie

durch eine auf gleichem Potenzial befindliche Elektrode (Folie) ersetzt. 

Die Oberfläche eines leitenden Körpers ist stets eine Äquipotenzialfläche. 

Würde sich im letzten Fall ein nichtkonstantes Potenzial einstellen, so müsste das

zu einer entsprechenden Feldstärke- und Ladungsverteilung im Leiter führen, also

eine Raumladungsverteilung entstehen. Sie baut sich aber in Leitern stets innerhalb

einer sehr kurzen  Relaxationszeit τ =  ε/κ  im ps-Bereich ab, anschließend ist der

Leiter feldfrei und das Potenzial seiner Oberfläche nimmt einen konstanten Wert an. 

Die senkrechte Zuordnung zwischen Potenzialfläche und auftreffender Feldstärke ist
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eine spezielle  Randbedingung  zwischen Leiter und Isolator, wir verallgemeinern sie

später für das Strömungs- und elektrostatische Feld. 

Feldst¨

arke und Potenzial Wir kennen die Bestimmung des Potenzials aus

einem gegebenen Feldstärkeverlauf und wenden uns jetzt der Umkehropera-

” 

tion“ zu: der Feldstärkebestimmung aus dem Potenzial. Für eine Koordina-

tenrichtung würde aus Gl. (1.2.8) folgen





 ϕ( x) =  −

 E x  · e x d x + const =  −

 E x d x + const

oder umgeschrieben

d ϕ( x) =  −E x bzw.  −  d ϕ( x) e x =  E x e x =  E x . 

(1.2.12)

d x

d x

Die Ableitung des Potenzials ist dem  Betrag  der Feldstärke proportional, die

 Richtung, in der die (negative) Ableitung zu bilden ist, stimmt mit der Feld-

richtung  E x überein. Das negative Vorzeichen deutet an, dass die Feldstärke

in Richtung der Potenzial abnahme (= Potenzialgefälle) wirkt. 

Allgemein ist die Ableitung in drei Richtungen zu bilden, für kartesische

Koordinaten also mit  ϕ =  ϕ( x, y, z)678

 E =  E x +  E y +  E z =  E x e x +  E y e y +  E z e z =  − grad  ϕ  mit grad  ϕ =  e ∂ϕ

 ∂ϕ

 ∂ϕ

x  ∂x +  e y  ∂y +  e z  ∂z , 

(1.2.13)

 E x =  − ∂ϕ

 ∂x , E y =  − ∂ϕ

 ∂y , E z =  − ∂ϕ

 ∂z . 

Die Rechenvorschrift Gl. (1.2.13) gibt die Potenzialänderung in der Umge-

bung eines Punktes in Richtung des größten Gefälles an. Sie heißt deswegen

die  Richtungsableitung. Im homogenen Feld Abb. 1.2.2b gilt  ϕ( x) =  − const  x. 

Dann beträgt die Feldstärke nach Gl. (1.2.13)

 E x =  −∂ϕe x = const  ex. 

 ∂x

Sie zeigt in  x-Richtung und steht senkrecht auf den Linien  ϕ = const.  E y- und  E zKomponenten fehlen. Der Potenzialanstieg  ∂ϕ/∂x  ist negativ, das Gefälle  −∂ϕ/∂x

also positiv. 

Zum Verständnis des Begriffs Gradient betrachten wir ein Potenzialfeld mit den

beiden Äquipotenzialflächen  ϕ =  ϕ 1 und  ϕ + d ϕ, auf denen die Punkte  P ( x, y, z) 6 Darstellungen in anderen Koordinaten sind gleichwertig. 

7 Hängt eine skalare Funktion von mehreren Variablen ab, so wird unterschieden

zwischen der partiellen Differenziation (wenn sich nur eine Variable ändert)  ∂ϕ( x,y,z)

 ∂x

und dem totalen Differenzial, wenn sich alle ändern d ϕ =  ∂ϕ

 ∂x  d x +  ∂ϕ

 ∂y  d y +  ∂ϕ

 ∂z  d z. 

8 Diese Operation wird in der Feldtheorie behandelt. 
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Abb. 1.2.4. Feldstärke und Gradient des Potenzials. (a) Potenzialfeld und zugehöriger

Gradient. (b) Äquipotenziallinien und Gradientenvektor. Feldstärke wirkt in Richtung des

größten Potenzialgefälles. (c) Beitrag einer Teilladung d Q  herrührend von einer Raumla-

dungsverteilung zur Berechnung von Feldstärke und Potenzial in einem Feldpunkt

und  P ( x+d x, y+d y, z+d z) liegen (Abb. 1.2.4a). Die Potenzialänderung d ϕ  beträgt

 ∂ϕ

 ∂ϕ

 ∂ϕ

d ϕ =

d x +

d y +

d z =  −E ·  d s

 ∂x

 ∂y

 ∂z





 ∂ϕ

 ∂ϕ

 ∂ϕ

=

 e x +

 e y +

 e z  · (d xe x + d ye y + d ze z)

 ∂x

 ∂y

 ∂z













d s

grad  ϕ

ausgedrückt als Produkt von Feldstärke und Wegelement nach Gl. (1.2.8) mit dem

Vektor d s  des Wegelementes. Damit ist die Potenzialänderung formal ein Skalarpro-

dukt des Vektors d s  mit dem Vektor aus den partiellen Ableitungen des Potenzials

in Richtung der drei Ortskoordinaten. Dieser Vektor heißt  Gradient  des Potenzials. 

Der Vergleich liefert  E =  −  grad  ϕ (s. Gl. (1.2.13)). 

Zwei Merkmale dieses Vektors sind wichtig:

Aus der Bewegung des Punktes  P 1 auf der Äquipotenzialfläche  ϕ 1 = const

(d ϕ = 0) folgt (grad  ϕ) · d s = 0, dann muss der Gradientenvektor senkrecht

auf der Potenzialfläche stehen. 

Zwischen beiden Punkten  P 2 und  P 1 beträgt die Potenzialänderung

d ϕ = (grad  ϕ)  ·  d s =  | grad  ϕ|  d s  cos  α

mit dem Winkel  α  zwischen dem Vektor grad  ϕ  und Wegelement d s. Da-

mit beträgt die Potenzialänderung (Betrag der Feldstärke)



d ϕ



=  | grad  ϕ|  cos  α →  d ϕ 


=  | grad  ϕ| . 

d s

d s 
max

Sie, und damit die Feldstärke, wird maximal, wenn der Weg d s  so gewählt

wird, dass der Winkel  α  null ist, also in die Richtung des Gradienten fällt und
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so senkrecht auf der Potenzialfläche steht (d s  parallel zum Normalenvektor

der Äquipotenzialfläche  n). 

Der Vektor grad  ϕ  drückt sowohl die Richtung als auch den Betrag der

maximalen Änderungsrate des skalaren Potenzialfeldes aus

 E

d ϕ

Zusammenhang

=

( −e n) =  −  d ϕ e n =  −  grad( ϕ) . 

(1.2.14)

d n

d n

Feldstärke-Potenzial

Der (negative) Gradient des Potenzials ist ein Vektor – die Feldstärke –

der die Richtung des steilsten Gefälles hat und dessen Betrag die in diese

Richtung (nicht in beliebiger!) gemessene Neigung angibt. Deshalb steht die

Feldstärke senkrecht auf einer Äquipotenzialfläche (Abb. 1.2.4a). Anschau-

lich: Feldstärke = Potenzialgefälle in Richtung größter Potenzialabnahme, 

d. h. bei gleichem Δ ϕ  längs der kürzesten Wegstrecke Δ s (Abb. 1.2.4b). 

Die Operationsvorschrift Gradient (grad) des Potenzials  ϕ“ ist die Um-

” 

” 

kehroperation“ zu Gl. (1.2.6). 

Im Feldbild besteht deshalb ein fester Zusammenhang zwischen Feldlinien (der

Feldstärke) und den Äquipotenzialflächen bzw. -linien: beide durchdringen einan-

der senkrecht. Deshalb kann aus einem Feldbild das andere konstruiert werden. So

folgt aus dem Potenzialfeld besonders einfach die Feldstärke:  Ex ≈ Δ ϕ/Δ x. Dabei

muss der Abstand Δ x  zwischen zwei Potenzialflächen klein genug sein, damit ein

annähernd homogenes Feld herrscht. Bei gleicher Potenzialdifferenz ist dann die

Feldstärke umgekehrt proportional zum Abstand Δ x. 

Mit der Operationsvorschrift

grad  ϕ“ liegt die Umkehroperation zu Gl. (1.2.6)

” 

zur Berechnung des Potenzials aus der Feldstärke vor. Dieser Vorteil wird bei

der Bestimmung der Feldstärke, verursacht von mehreren Quellen, ausgenutzt, 

weil dann nur Potenziale der einzelnen Quellen skalar überlagert werden müssen

(s. Kap. 1.2.2). Ferner besteht ein einfacher Zusammenhang zwischen Potenzial und

Spannungsänderung: d U AB =  − d( ϕ A  − ϕ B) oder kurz d U =  − d ϕ (s. Kap. 1.2.3). 

Hinweis In der Elektrotechnik erhält der Gradient nach Festlegung der Feldrichtung

vom höheren zum niederen Potenzial ein negatives Vorzeichen, das ist in anderen

Bereichen (z. B. der Kontinuumstheorie) nicht der Fall. 

Der Operator grad hat für sich gesehen keine physikalische Bedeutung, er

erhält sie erst durch die Anwendung auf eine physikalische Größe. Die Ope-

ration beschreibt stets einen Vektor, der sowohl den Betrag und die Rich-

” 

tung der maximalen räumlichen Änderungsrate einer skalaren Funktion“ aus-

drückt. So zeigt der Gradient in einem Potenzialgebirge (Abb. 1.2.4a) in

Richtung des größten Anstiegs, die Feldstärke also in Richtung des größten

Gefälles. Eine positive Ladung würde dann durch die Feldstärke das Poten-

” 

zialgefälle hinabrollen“. 
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Beispiel 1.2.2 Punktladung Im Feldbild einer positiven Punktladung  Q (mit weit

entfernter Gegenladung) gehen die Feldlinien radial von der Ladung aus

(Abb. 1.2.2c). Sie durchsetzen eine Kugelfläche 4 πr 2. Wird sie in  n  gleiche Teil-

flächen unterteilt und jeder eine Feldlinie zugeordnet ( →  ausgewählte Feldlinien), so

durchsetzt die gleiche Feldlinie mit wachsendem Radius eine immer größere Fläche. 

Folglich sinkt die Feldliniendichte (= Anzahl/Fläche) mit 1 /r 2 und ebenso der Be-

trag der Feldstärke, der der Liniendichte proportional ist:

 F

 E

 Q

const

=

=

 er =

 e r . 

(1.2.15a)

 q

4 πε 0 r 2

 r 2

In zweidimensionaler Darstellung (Abb. 1.2.4b) hat  E  die Komponenten  E x und  E y. 

Es ergibt aber weder die Ableitung  ∂ϕ/∂x  noch  ∂ϕ/∂y  das größte Gefälle, sondern

erst die Ableitung senkrecht zu den  ϕ-Linien, also in  r-Richtung. Deshalb ist mit

d s →  d r  zu schreiben

 E

const . 

r =  −  d ϕ e r =

 e r ,  da  ϕ =  −  const  . 

d r

 r 2

 r

Man erkennt in Abb. 1.2.4b, dass die Potenzialänderung entlang der Wegstre-

cken Δ x  und Δ y  zwischen den beiden auf die Ebene projizierten Potenziallinien

 ϕ  und  ϕ + Δ ϕ  kleiner ist als die Potenzialänderung entlang Δ r, also nicht die

größte Potenzialänderung Δ ϕ  längs des Weges Δ s  ergeben. Deshalb erfordert das

Gefälle noch eine Richtungsangabe. Die kürzeste Wegstrecke Δ s|

= Δ r  liegt in

min

der Richtung senkrecht zur Potenziallinie bzw. Potenzialfläche, also in  Normalen-

 richtung. 

Das von der Punktladung erzeugte Potenzialfeld folgt aus dem Feldstärkeverlauf

 r





 Q

1 


 ϕ( r) =  ϕ( r



0)  −

 E( r)  ·  d r =

 . 

(1.2.15b)

4 πε



0

 r ϕ( ∞)=0

 r 0

 r 0 →∞

Das Potenzial fällt umgekehrt proportional zum Radius ab, die Feldstärke mit dem

Radiusquadrat (Abb. 1.2.2c). Diese Lösung stellt, zusammen mit der zugehörigen

Feldstärke, eine  Aufbaufunktion  zur Berechnung von Feldverteilungen dar, die von

mehreren räumlich verteilten Ladungen herrührt, zumal statt der Punktladung auch

eine  Ladungsverteilung  zugrunde gelegt werden kann. In Abb. 1.2.4c wurde eine

Raumladungsverteilung mit dem Ladungselement   d V  angesetzt. Dabei bedeuten

die Koordinaten mit Strich die Lage des Ladungselementes und die laufende Ko-

ordinate  r  den Feldpunkt, an dem die Feldgröße bestimmt werden soll. Mit dem

Feldstärkeelement d E

  d V

d E =  e r 4 πε 0  |r − r|

können dann Feldstärke und Potenzial bestimmt werden





 E

1

 ( r) ( r − r) d V 

1

 ( r)d V 

( r) =

 , ϕ( r) =

4 πε 0

 |r − r| 3

4 πε 0

 |r − r| . 

(1.2.15c)

 V

 V
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Abb. 1.2.5. Feldüberlagerung. (a) Zu Feldstärke und Potenzial im Feldpunkt P tragen

Punktladungen und/oder Ladungsverteilungen bei. (b) Feldstärke im Feldpunkt P verur-

sacht von einer (positiven) Punktladung im Punkt P’ am Ort  r. (c) Überlagerung der

Feldstärken mehrerer Punktladungen. (d) Feldüberlagerung zweier positiver Punktladun-

gen auf der  x-Achse symmetrisch zum Ursprung

1.2.2 Potenzial¨

uberlagerung

Das von mehreren Ladungen in einem Aufpunkt verursachte elektrische Feld

(bei konstanter Permittivität  ε 0) kann auf zwei Wegen ermittelt werden:

direkt mit dem Coulombschen Gesetz oder indirekt mit dem Potenzial als

Zwischengröße: man bestimmt zunächst das Potenzial und daraus über Gl. 

(1.2.13) die Feldstärke. Beide Fälle bilden eine  Feld¨

 uberlagerung

 n



 n



 E =

 Eν, 

 ϕ =

 ϕν. 

(1.2.16a)

 ν=1

 ν=1

Dabei sind  Eν  und  ϕν  die elektrische Feldstärke bzw. das Potenzial der  ν-ten

Ladung am Aufpunkt. Diese Einzelbeiträge können nicht nur von Punktla-

dungen, sondern auch von Ladungsverteilungen stammen (Abb. 1.2.5a). 

Die Feldstärkeüberlagerung ist dabei wegen der vektoriellen Addition auf-

wendiger als die skalare Überlagerung der Potenziale. Den Ausgang bildet die

Einzelladung  Q  am Quellenpunkt P  (Abb. 1.2.5b), die im Feldpunkt P die

Feldstärke  E  erzeugt. Sie ergibt sich durch Koordinatenverschiebung um  r. 

Mehrere Ladungen (Abb. 1.2.5c) erzeugen am Aufpunkt P ein Gesamtfeld

additiv aus den Einzelfeldstärken. Die Richtungen entsprechen den Verbin-

dungsstrahlen von der betreffenden Ladung zum Feldpunkt (unter Vorzei-

chenbeachtung). Zur Berechnung führt man z. B. kartesische Koordinaten ein

und ermittelt die Einzelanteile von  E (aufwendig!). Beispiel 1.2.3 erläutert

das Verfahren. 

Einfacher wird die Feldberechnung über die Potenziale: man bestimmt das

Gesamtpotenzial  ϕ ges im Raumpunkt P (Bezugspunkt 0) durch (skalare)
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Addition der Einzelpotenziale

0



0

  n



 n



 ϕ ges =

 E ges  ·  d s =

 Eν ·  d s =

 ϕ P ν

(1.2.16b)

 ν=1

 ν=1

P

P

und bildet daraus die Gesamtfeldstärke

 E ges =  − d ϕ ges  e s

d s

durch Differenziation des Gesamtpotenzials nach den Ortskoordinaten. 

Das Gesamtpotenzial in einem Punkt ist die vorzeichenbehaftete Summe

der von den einzelnen Quellen verursachen Einzelpotenziale. 

Beispiel 1.2.3 Feld¨

uberlagerung Mehrere Punktladungen  ¨

 uberlagern  ihre Einzel-

felder zum Gesamtfeld. Wir betrachten Einzelladungen an verschiedenen Orten

(Abb. 1.2.5c). Eine Ladung  Q 1 am Ort  r 1 verursacht im Aufpunkt P (am Ort  r) die Feldstärke

 E

 Q 1

( r − r 1)

 Q 1

1 ( r) =

 e r1 . 

(1.2.17a)

4 πε

 |r − r

0  |r − r 1 | 2

1  | = 4 πε 0  |r − r 1 | 2

Dabei wurde der Einheitsvektor durch ( r −r 1) /|r −r 1 |  ersetzt. Sind  n  Punktladungen  Qi  im Raum verteilt je mit dem Ortsvektor  ri, dem Ortsvektor  r  im Aufpunkt und dem Abstand  r Q i =  |r − ri|  zwischen Punktladung und Aufpunkt, so ergibt

sich die Gesamtfeldstärke

 n



 E =

 E

( r−r

 i, Ei =

 Qi

 i)

 |r−r

 i

4 πε 0 |r−ri| 2

 i| , 

=1



(1.2.17b)

 r Q i =  |r − ri| =

( x − xi)2 + ( y − yi)2 + ( z − zi)2

durch Überlagerung der Einzelfeldstärken, hier in kartesischen Koordinaten. Bei-

spielsweise erzeugen zwei Punktladungen  Q 1 und  Q 2 (Abb. 1.2.5d) auf der  x-Achse im Abstand  ±a  eine Feldstärke im Punkt  P ( x, y) in der Ebene  z = 0. Ihre Berechnung erfordert zunächst die Abstände der Ladungen vom Aufpunkt P mit

 r 1 =  −ae x,  r 2 =  aex. Es ergeben sich die Abstandsvektoren  r Q1 =  r − r 1 =



( x +  a) e x +  ye y,  r Q2 =  r − r 2 = ( x − a) e x +  ye y mit  r Q1 / 2 =

( x ± a)2 +  y 2. 

Damit beträgt die Feldstärke





 E

1

 r Q1

 r Q2

( r) =

 Q 1

+  Q 2

 , 

4 πε 0

 r 3Q1

 r 3Q2



 (1.2.18)

1

 Q 1( x +  a)

 Q 2( x − a)

 Ex

=

+

 . 

4 πε 0

(( x +  a)2 +  y 2 +  z 2)3 / 2

(( x − a)2 +  y 2 +  z 2)3 / 2

Abbildung 1.2.6a, b zeigt die Feldstärkeverläufe für gleiche und entgegengesetzt

gleiche Ladungen: die Feldlinien gehen von der positiven Ladung aus und enden

auf der negativen. Lediglich Feldlinien auf der Verbindungsachse laufen zur unend-

lich fernen Hülle oder kommen von dort. Der Feldverlauf ist (abgesehen von der

Richtung) symmetrisch zur vertikalen und horizontalen Verbindungslinie. 
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Abb. 1.2.6. Feldüberlagerung. (a) Feldstärkelinien herrührend von zwei gleichen, anziehen-

den Punktladungen. (b) dto. von sich abstoßenden Ladungen. Es entsteht ein Staupunkt

Abb. 1.2.7. Feldüberlagerung. (a) Äquipotenziallinien herrührend von zwei gleichen, an-

ziehenden Punktladungen nach Abb. 1.2.6a. (b) dto. von sich abstoßenden Ladungen

Bei gleichen Ladungen (Abb. 1.2.6b) treffen die Feldlinien in der Mitte anschei-

nend aufeinander und biegen dann nach beiden Seiten senkrecht ab, es liegt ein

sog.  Staupunkt  vor. Befände sich dort eine Ladung, dann müsste die Feldkraft auf

sie gleichzeitig in verschiedene Richtungen weisen. Das ist nur möglich bei ver-

schwindender Feldstärke in diesem Punkt (man überzeugt sich durch Einsetzen der

Koordinaten  x =  y = 0, dass dort  E = 0 gilt). Auch hier trifft zu:  Feldlinien können

 sich nicht schneiden. 

Abbildung 1.2.7 zeigt die Potenzialfelder zu Abb. 1.2.6 in der Ebene  z = 0. Bei verschiedenen Ladungsvorzeichen (Abb. 1.2.7a) bilden die Äquipotenziallinien Krei-

se, die jeweils die Ladungen umschließen. In der Symmetrieebene S entsteht eine

Äquipotenziallinie mit dem Potenzial  ϕ = 0. 

Bei gleichen Ladungsvorzeichen (Abb. 1.2.7b) bilden die Äquipotenzialflächen in un-

mittelbarer Nähe der Ladungen Kugelflächen, zweidimensional also Kreise. Für sehr

große Abstände von den Ladungen entsteht wieder eine Kugelfläche wie die einer

Punktladung mit der Ladung 2 Q  im Koordinatenursprung. Bei einem bestimmten

Potenzial berühren sich beide Flächen (im Ursprung) als sog.  Doppelpunkt. Dort

verschwindet die Feldstärke (übereinstimmend mit Abb. 1.2.6b) auf der gesamten

Symmetrieebene S. 
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Das Beispiel löst man einfacher durch Potenzialüberlagerung. Das Potenzial

eines Aufpunktes herrührend von einer Punktladung  Q 1 am Ort  r 1 (mit den

Bezugswert 0 im Unendlichen) übernehmen wir von Gl. (1.2.15b)

 Q 1

 ϕ( r) = 4 πε 0  |r − r 1 |, 

(1.2.19)

es beträgt bei  n  Ladungen durch Überlagerung

 n

1



 Qi

 ϕ( r) = 4 πε 0

 |r − r

 i

 i| . 

(1.2.20)

=1

Für zwei Punktladungen nach Abb. 1.2.5d folgt

⎛

⎞

1

 Q 2

 ϕ( r) =

⎝

 Q 1



+ 

⎠  . (1.2.21)

4 πε 0

( x +  a)2 +  y 2 +  z 2

( x − a)2 +  y 2 +  z 2

Durch Gradientenbildung entsprechend Gl. (1.2.13) lassen sich die Feldstär-

kekomponenten Gl. (1.2.18) bestätigen, speziell für die Ebene  z = 0

 E

 ∂ϕ

 ∂ϕ

( x, y) =  −  grad  ϕ( x, y) =  −e

( x,y)

( x,y)

x

 ∂x

 − e y  ∂y







 

=

1

 Q x+ a +  Q x−a e

 Q y +  Q y

 e . 

4 πε 0

1  r 3

2

x +

1

2

y

Q1

 r 3Q2

 r 3Q1

 r 3Q2

Gäbe es in Abb. 1.2.5d eine weitere Ladung  Q 3 auf der  y-Achse im Abstand  b

vom Ursprung, so müsste in Gl. (1.2.21) noch das Potenzial





1

 Q 3

1

 Q 3

 ∂ϕ Q3

 ∂ϕ Q3

 ϕ Q3 =

=



 , E Q3 =  −

 e x +

 e y

4 πε 0  r Q3

4 πε 0

 x 2 + ( y − b)2

 ∂x

 ∂y

addiert werden. Die zugehörige Feldstärke ist durch Gradientenbildung leicht

zu bestimmen. Das Beispiel zeigt die Vorteile der Feldstärkeberechnung über

das Potenzial gegenüber der Direktbestimmung nach Gl. (1.2.17b). 

1.2.3 Potenzial und Spannung

Wesen Die elektrische Spannung wurde im Bd. 1 als bezogene Energiegröße

eingeführt:  U AB =  W AB /Q. Sie beschreibt den Energiebetrag  W AB, der bei

Durchlauf der Ladung  Q  durch die Spannung  U AB in der einen oder anderen

Umwandlungsrichtung umgesetzt wird. Das Potenzialfeld drückt diese Ener-

gie  W AB gleichwertig durch die Differenz der Potenziale  ϕ A und  ϕ B zwischen

den Punkten A und B aus. Deshalb ist die Spannung mit dem Linienintegral

der Feldstärke  E  längs des Weges von A nach B verknüpft (Bd. 1, Gl. (1.5.2))



 B



 W AB

 U AB =

=

 E ·  d s =

 E ·  d s. 

 Q

Weg A

 A

nach B
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Abb. 1.2.8. Feldstärke, Potenzial und Spannung. (a) Homogenes Feld (stromdurchflosse-

ner, homogener Leiter). (b) Potenzialfeld und Spannung. (c) Potenzial und Spannung an

einer 12 V Batterie mit verschiedenem Bezugspotenzial  ϕ B

Die elektrische Spannung zwischen zwei Punkten ist gleich dem Wegintegral

der elektrischen Feldstärke zwischen diesen Punkten und kennzeichnet die

auf die Ladung bezogene Arbeit, die das elektrische Feld an ihr längs dieses

Weges bewirkt. Sie ist, wie das Potenzial, eine skalare Größe und heißt

Integral- oder Globalgröße des elektrischen Feldes. 

Für das homogene elektrische Feld folgt

 B



 B



 W AB

 U AB =

=

 E ·  d s =  E ·

d s =  E · s =  Es  cos ∠ ( E, s)  . (1.2.22)

 Q

 A

 A

In Abb. 1.2.8 liegt  s  parallel zu  E ( s =  e x( x B −x A)). Wenn auch das Potenzial einem Feldpunkt zugeordnet ist, beschreibt die Spannung als Globalgröße die

Potenzial differenz zwischen  zwei Feldpunkten! Das verdeutlicht Abb. 1.2.8a. 

Die Feldstärke ist nach rechts gerichtet, das Potenzial fällt – unabhängig von

einem Bezugspunkt – ab und die Spannung als Potenzialdifferenz zwischen

Punkt A und dem laufenden Punkt  x  steigt. So gewinnt zur Feldbeschreibung

neben der Feldstärke  E( r) auch die Potenzialfunktion  ϕ( r) und die mit ihr assoziierte Spannung praktische Bedeutung. 

Während die rechte Seite von Gl. (1.2.22) die Spannung  U AB als spezifische, 

d. h. auf die Ladung bezogene Arbeit ausdrückt, die von A nach B geleis-

tet wird, hat die linke Seite messtechnische Bedeutung:  eine Spannung kann

 zwischen zwei Punkten mit dem Spannungsmesser direkt gemessen werden. 
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Obwohl im Potenzialfeld das Umlaufintegral der Feldstärke nach Gl. (1.2.2)

verschwindet (Grundlage des Maschensatzes), herrscht zwischen zwei Punk-

ten A, B mit den Potenzialen  ϕ A und  ϕ B auf diesem Umlauf die Spannung

 U AB. Weil das Potenzial einen Bezugspunkt (beispielsweise die Masse mit ei-

nem Potenzial Null  ϕ 0) verlangt, gilt für das skalare Potenzial des Punktes A

(gegenüber Bezugspunkt 0) verallgemeinert



0



 ϕ( A) =  U A0 +  ϕ(0) =

 E ·  d s +  ϕ(0) =

 E ·  d s +  ϕ(0) . (1.2.23)

Weg von

 A

A nach 0

Das Potenzial eines Punktes A ist gleich der Spannung  U A0 zwischen diesem

Punkt und einem gewählten, aber willkürlichen Bezugspunkt 0. Wegen der

Eindeutigkeit der Spannung  U A0 zwischen Auf- und Bezugspunkt ist ein

beliebiger Integrationsweg zwischen beiden Punkten möglich. 

Die Spannung  U AB bleibt damit unabhängig vom gewählten Potenzialbezugs-

punkt (Abb. 1.2.8b)

B



0



 B



0



0



 U AB =

 E ·  d s =  E ·  d s +  E ·  d s =  E ·  d s − E ·  d s =  ϕ A  − ϕ B . 

A

A

0

A

B

Insgesamt ist die Spannung:

eine  Integralgr¨

 oße des elektrischen Feldes, die eine globale Feldangabe

längs einer Wegstrecke erlaubt; 

die  Potenzialdifferenz zwischen zwei Feldpunkten  unabhängig vom Weg

dazwischen; 

ein Maß für die  Energie¨

 anderung  einer Ladung bei ihrer Verlagerung von

einem zu einem anderen Feldpunkt; 

eine skalare, messbare Größe ohne Raumrichtung, aber mit Vorzeichen

(und einer Vereinbarung/Richtungspfeil, wie sie zu interpretieren ist). 

Physikalischer Richtungssinn der Spannung An sich ist die Spannung eine

skalare Größe, die – abhängig vom Integrationsweg in oder gegen die Feld-

richtung – positive oder negative Werte annehmen kann. Sie hat deshalb einen

 physikalischen Richtungssinn, auf den bereits im Bd. 1 Anhang A2 verwiesen

wurde. Er ergibt sich aus der Richtung des Weges von A nach B (wenn  E

und d s  einen spitzen Winkel bilden), der Bewegungsrichtung positiver La-

dungsträger oder als Richtung vom höheren zum niederen Potenzial. 

Die elektrische Spannung  U AB ist positiv, wenn die Integration nach

Gl. (1.2.22) in Richtung der elektrischen Feldstärke erfolgt. 
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Der Richtungssinn erfordert die Angabe einer Bezugsrichtung als Richtungs-

pfeil oder der Punkte A, B als Index  U AB. Bei positiver Richtung ist  U AB

positiv, wenn  ϕ A  > ϕ B. Dann weist die Spannung  U AB vom höheren zum

niederen Potenzial. Im Doppelindex A, B gibt A den Betrachtungs-, B den

Bezugspunkt. Beispiele:

 ϕ A /  V  ϕ B /  V

 U AB /  V

 ϕ A /  V  ϕ B /  V

 U AB /  V

10

2

(10  −  2) =

8

 − 10

 − 20  − 10  − ( − 20) = 10

10

 − 2

(10  − ( − 2)) = 12

2

10

2  −  10 =  − 8

 − 10

 − 2

( − 10  − ( − 2)) =  − 8

Das Beispiel bedeutet in Worten: Bei Bezugspunkt B hat Punkt A das Po-

tenzial  ϕ A =  − 8 V gegen Punkt B oder A gegen B die Spannung von  − 8 V. 

Gegenüber einem beliebigen Bezugspunkt haben A und B die Potenziale

 ϕ A = 2 V,  ϕ B = 10 V). Abbildung 1.2.8c zeigt unterschiedliche Potenzial-

festlegungen am Beispiel einer 12 V-Autobatterie. Oft ist es zweckmäßig, den

Potenzialbezug  ϕ = 0 zu wählen (z. B. Minuspol an Masse). 

 Diskussion

1. 

Die Feldstärke zeigt stets in Richtung maximaler Potenzialabnahme. Demge-

genüber steigt die Spannung in Feldrichtung an (s. Abb. 1.2.8a). 

2. 

Die Spannung lässt sich nur zwischen zwei Punkten angegeben. Ein Feldpunkt

hat wohl ein Potenzial, aber keine Spannung. 

3. 

Oft wird statt  E =  − d ϕ/ d s  die Schreibweise  E = d U/ d s  bzw. d U/ d x  benutzt. Sie ist streng genommen  falsch:  die Feldstärke kann nur für einen Punkt

angegeben werden, die Spannung tritt dagegen zwischen zwei Punkten auf. Ei-

ne Ausnahme bildet lediglich das homogene Feld, wo  E  längs einer Feldlinie

konstant ist und damit überall der gleiche Potenzialgradient herrscht, mithin

 U ∼ x  gilt. 

1.3

1.3 Das station¨

are elektrische Str¨

omungsfeld

R¨

aumliche elektrische Str¨

omung Fließt ein Strom  I  als Folge eines zeitlich

konstanten elektrischen Feldes nicht durch einen linienhaften Leiter, son-

dern einen ausgedehnten Raum mit der Leitfähigkeit  κ, so liegt eine sta-

tionäre räumliche elektrische Strömung, kurz ein  elektrisches Str¨

 omungsfeld

vor. Sein charakteristisches Merkmal ist die  Stromdichte J (im Raumpunkt)

neben der elektrischen Feldstärke  E, die den Bewegungsvorgang der Ladungs-

träger unterhält. Strömungsfeld und elektrisches Feld sind über die Ladungs-

trägerströmung direkt verknüpft (Tab. 1.4). 
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Tab. 1.4. Felder und ihre beschreibenden Größen

Das Strömungsfeld schließt Stromtransportmechanismen in Festkörpern, 

Flüssigkeiten und Gasen ein, die meist zu einem nichtlinearen Zusammen-

hang  J( E) bzw.  I( U ) im Raumbereich führen, bekannter als  Kennlinie eines

 nichtlinearen Bauelementes  mit dem differenziellen Widerstand im Arbeits-

punkt (Kap. 2.5, Bd. 1). 

Sinkt die Leitfähigkeit  κ  des Raumgebildes, so entsteht im Grenzfall  κ →  0

schließlich ein  Nichtleiter, in dem (bei anliegender zeitlich konstanter Feld-

stärke) ein  elektrostatisches Feld  herrscht. Sein Merkmal sind  ruhende, gespei-

 cherte Ladungen  auf den Feldelektroden und bei zeitveränderlicher Feldstärke

ein  Verschiebungsstrom  durch das Dielektrikum (s. Kap. 2.7). Ladungsträger

fehlen im Nichtleiter, deshalb bildet er kein Strömungsfeld. Wegen der großen

Bedeutung betrachten wir zunächst das Strömungsfeld:
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 Str¨

 omungsfeld:  Zustand eines Raumes, in dem sich Ladungsträger (in Lei-

tern, Halbleitern, Flüssigkeiten oder im Vakuum) unter Einfluss eines elek-

trischen Feldes (oder anderer Antriebskräfte) gleichförmig bewegen. 

Praktische Problemstellungen mit Strömungsfeldern treten weitgefächert auf:

So verursachen eingegrabene Elektroden als Erde von Blitzableitern ausgedehn-

te Strömungsfelder, und es kann zu unerwünscht hohen Spannungen an der

Erdoberfläche kommen. 

Freibäder werden bei Gewitter gesperrt, weil sich bei Blitzeinschlag ein für Men-

schen lebensgefährliches Strömungsfeld ausbilden kann. 

Linienhafte Verbindungsleiter auf Leiterplatten zeigen Abweichungen von der

Standardwiderstandsbemessung, wenn die Leiterbahn abgewinkelt ist. 

Werden leitende Gebiete mit stark verschiedenen Querschnitten unmittelbar

aneinandergefügt, so stimmt der gemessene Ersatzwiderstand nicht mit dem

Wert überein, den das Modell des linienhaften Leiters für jeden Teilbereich

liefert. 

Der Widerstand ausgedehnter homogener Leiterschichten kann durch aufgesetz-

te Messspitzen bestimmt werden, was nach den Vorstellungen eines homogenen

Strömungsfeldes nicht nachvollziehbar ist. 

Das elektrische Schweißen nutzt die lokale Wärme in Strömungsfeldern. 

Die Elektrokardiografie misst räumliche Strömungsfelder im menschlichen Kör-

per u.a.m. 

1.3.1 Stromdichte, Strom, Kontinuit¨

atsgleichung

Im linienhaften Leiter verteilt sich die Trägerströmung gleichmäßig über den

Querschnitt. Ändert er sich aber zum  r¨

 aumlich ausgedehnten  Leiter, so treten

zwei Fragen auf (Abb. 1.3.1):

Wie verteilt sich der Strom über den Leiterquerschnitt, welche Größe

kennzeichnet diese Verteilung? 

Welcher Zusammenhang besteht zwischen Feldstärkefeld und Strömungs-

vorgang? 

Stromr¨

ohre, Stromdichte Wir denken uns den Gesamtstrom  I  durch ein Strö-

mungsfeld Abb. 1.3.1b in  m  gleiche Teilströme Δ I  unterteilt. Jeder fließt

durch ein Teilvolumen (Querschnitt Δ A) oder eine  Strom-  oder  Flussröhre. 

Ihre Spuren in der Zeichenebene sind die  Str¨

 omungslinien, deren Gesamtheit

bildet das  Str¨

 omungsfeld. 

Der Strom  I  ist an den verschiedenen Stellen unabhängig vom jeweiligen

Querschnitt gleich groß. 
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Abb. 1.3.1. Stationäres Strömungsfeld. (a) Gleichstromkreis mit stationärem, inhomo-

genem Strömungsfeld. (b) Herausgegriffener Leiterteil mit verschiedenem Querschnitt

und Stromröhre ( schraffiert) durchflossen vom Teilstrom Δ I = const und Stromdichte

 J = Δ I/Δ A. (c) Stromdichte im Volumen Δ V  und bewegte positive Ladung Δ Q =  Δ V . 

Sie ist nach der Zeit Δ t  um das Stück Δ s  nach rechts durch die Fläche Δ A n hindurchgetre-

ten. Negative Ladungsträger bewegen sich nach links. (d) Zerlegung der Durchtrittsfläche

in Teilflächen, Strom als Integral über die durchströmte Fläche

Die  Dichte der Str¨

 omungslinien (d. h. ihre Zahl je Querschnittsfläche) ändert

sich hingegen von Ort zu Ort: Großer Querschnitt  →  kleine Stromliniendichte, 

kleiner Querschnitt  →  große Stromliniendichte. Während hier noch die Quer-

schnittsfläche auftritt, führen wir jetzt die Stromdichte  J  ein, die unabhängig

von ihr ist. Wir legen dazu eine Fläche Δ A⊥  mit fester Orientierung in eine

Stromröhre (Abb. 1.3.1b). Im Zeitintervall Δ t  treten jene Träger durch sie, 

die sich im Prisma der Seitenlänge Δ s =  vΔ t  befinden9. Das Prisma hat das

Volumen Grundfläche mal Höhe“: Δ A

” 

n vΔ t = Δ AvΔ t  cos  α = Δ A · vΔ t. Es

enthält im Mittel Ladungsträger mit einer Dichte  n. So strömt je Zeitspanne

Δ t  die Ladung Δ Q =  qnΔ A · vΔ t  durch Δ A⊥  oder durch die Stromröhre der Teilstrom

Δ Q

 qnΔ A · vΔ t

Δ I =

=

=  qnΔ A · v =  v · Δ A =  J · Δ A. 

Δ t

Δ t

mit der Stromdichte

 J =  v. 

Konvektionsstromdichte (1.3.1)

9 An dieser Stelle wird beim Rückblick auf den Flussbegriff (Bd. 1, Anhang A.2)

deutlich, dass auch der Strom  I  eine Flussgröße sein muss. 
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Die Stromdichte  J  ist die charakteristische Vektorgröße des Strömungsfeldes

als Produkt aus Ladungsdichte    und (mittlerer) Geschwindigkeit  v  im

Raumpunkt. Sie kennzeichnet die Ladungsträgerströmung unabhängig von

der Bewegungsursache. 

Ihre Richtung stimmt mit der Bewegungsrichtung positiver Ladungsträger

(mit positiver Raumladungsdichte    Gl. (1.3.3), Bd. 1) überein (bei negati-

ver Raumladungsdichte haben  J  und  v  entgegengesetzte Richtungen). Den

 physikalischen Inhalt  der Stromdichte bestimmen die Leitungsvorgänge in

Leitern, Halbleitern, Flüssigkeiten und Gasen (s. Kap. 1.3.5). 

Die Stromdichte variiert in den einzelnen Feldpunkten. Die Gesamtheit aller

Stromdichtevektoren bildet das Strömungsfeld. Es wird durch Strömungsli-

nien als Feldlinien des  J-Feldes veranschaulicht (gewonnen wie die  E-Linien

(s. Abb. 1.1.3)). Deshalb stimmt die Richtung der Stromdichte mit der Rich-

tung der Tangente an die Strömungslinien überein. 

Strom und Stromdichte Fließt der Strom  I  durch einen Leiter mit verschiede-

nen Querschnitten (senkrecht zum Stromfluss, Abb. 1.3.1b), so ändert sich der

Strom pro Fläche oder die Stromdichte“  I/A: sie ist im Querschnitt  A

” 

1 ge-

ringer als im kleineren Querschnitt  A 2. Zur Darstellung des Zusammenhangs

Stromdichte  J  und Strom unterteilt man den Strom in Teilströme Δ I  und

den Gesamtquerschnitt in Flächenelemente Δ A  und ermittelt die Teilströme

durch die Flächenelemente senkrecht zu den Stromdichtelinien (Abb. 1.3.1c)

Δ I =  J · Δ A =  JΔ A  cos ∠( J, Δ A) =  JΔ A n. So folgt für den Betrag10

Δ I

d I

 J = lim

=

 . 

Δ A n → 0 Δ A n

d A n

Das Flächenelement d A n ist dabei senkrecht vom Strom d I  durchströmt. Da

der Gesamtstrom  I  aus der Summe  k  aller Teilströme Δ Ii  durch die Teil-

flächen Δ Ai  besteht

 k



 k



 I =

Δ Ii =

 J · Δ Ai, 

 i=1

 i=1

geht die Summation bei beliebig feiner Unterteilung der Gesamtfläche  A  in

eine Integration über (Abb. 1.3.1d). 







Zusammenhang

 I =

d I =

 J d A  cos  α =

 J ·  d A. 

(1.3.2)

Strom-Stromdichte

 A

 A

10 Bisweilen definiert man die Stromdichte durch den Quotienten  J = d I/ d A n. Da

sich ein Differenzial nach der Fläche (zweidimensional!) nicht bilden lässt, benutzen

wir diese Darstellung nicht zur Definition, sondern als Differenzquotient nur zur

Veranschaulichung. 
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Abb. 1.3.2. Strömungsvorgang und Stromkontinuität. (a) Inhomogenes Strömungsfeld im

kreisförmigen Leiter. (b) Stromkontinuität. Überall fließt der gleiche Strom, obwohl sich

die Ladungsträgergeschwindigkeiten unterscheiden

Im allgemeinen Fall ist die durchströmte Fläche im Winkel  α (bzgl. Flächen-

normale) gegen die Stromrichtung geneigt: d A n = d A  cos  α. 

Während der Strom  I  der Fluss (Flussintegral, Anhang A.2, Bd. 1) des

Stromdichtevektors  J  durch eine gegebene (oder gedachte) Fläche  A  ist und

damit ein Maß für die durch diesen Querschnitt transportierte Ladungsmen-

ge, kennzeichnet die Stromdichte die Richtung des Ladungstransportes und

die Größe der transportierten Ladung in jedem Raumpunkt. 

Der Strom hat (als Folge des Flussintegrals) einen physikalischen Richtungs-

sinn:  I  ist positiv, wenn

 J  und der Normalvektor von d A  einen spitzen Winkel bilden; 

positive Ladungsträger aus einer Fläche heraustreten (Abb. 1.3.1d). 

Dabei wird die räumliche Lage der Fläche  A  durch den Vektor  A  beschrieben, der

senkrecht auf ihr steht und in eine der beiden möglichen Richtungen weist. Der

Zählpfeil für den Strom  I  zeigt in die Richtung des Flächenvektors  A. 

So ist beispielsweise der Strom durch den  linienhaften Leiter (Draht)

(Abb. 1.3.2a) das Integral der Stromdichte  J über den Leiterquerschnitt. 

Bleibt sie konstant ( J = const), dann liegt ein  homogenes Strömungsfeld  vor

Strom und Stromdichte, 

 I =  J · A =  JA  cos ∠( J, A) =  JA⊥ =  J⊥A.  homogenes Strömungsfeld Im homogenen Strömungsfeld (z. B. langer, gerader Leiter mit konstantem

Querschnitt) ist die Stromdichte gleich dem Strom  I  dividiert durch die

Fläche  A n, die von der Strömung senkrecht durchsetzt wird. 
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Einheit und Gr¨

oßenordnung Die Einheit der Stromdichte ergibt sich zu

[ I]

A

[ J] =

= 1

 . 

[ A]

m2

Untereinheiten sind A /  mm2, auch µA / µm2 für die Mikroelektronik. 

Größenordnungsmäßig gelten:

Elektrogeräte, Motoren  J ≈ (3  . . .  8) A /  mm2, 

Halbleiterbauelemente  J ≈ (100  . . .  1000) A /  cm2 = (1  . . .  10) A /  mm2, 

Elektronenröhre (an Kathoden)  J ≈  10 A /  cm2 = 0 ,  1 A /  mm2, 

elektrische Freileitung  J ≈  1 A /  mm2 (aus wirtschaftlichen Gründen), 

isolierte Leiter (Cu mit guter Wärmeableitung, Werte für Al in Klammern)

Nennquerschnitt

Stromdichte Belastbarkeit

mm2

A/mm2

A

1

12,0

(-)

12

(-)

1,5

10,7

(-)

16

(-)

2,5

8,4

(6,4)

21

(16)

4

6,8

(5,3)

27

(21)

Die Stromdichte  J  kennzeichnet die Strombelastung eines Leiters. 

Physikalischer Inhalt der Stromdichte Ist die Stromdichte die Feldgröße zum

Stromfluss, so beschreibt ihr physikalischer Inhalt den Transportvorgang von

Ladungsträgern über Trägerdichte und Geschwindigkeit nach Gl. (1.3.1). Da-

bei bewegen sich die Träger z. B. durch Feldkraft mit einer mittleren Ge-

schwindigkeit  v, der Driftgeschwindigkeit:  J =  qpv =  v. Besteht der Strom

aus positiven und negativen Ladungen (Raumladungsdichten  + =  qp( >  0), 

 − = ( −qn) ( <  0), Geschwindigkeiten  v+,  v−) wie etwa bei Löchern und Elektronen in Halbleitern oder Ionen in Elektrolyten (Abb. 1.3.2b), so trägt

jede Ladungsträgerart zur Stromdichte bei

 J =  J+ +  J− =  + v+ +  −v− =  q ( pv+  − nv−) (1.3.3)

=  +( v+  − v−) |

 . 

+= −−

Stromdichte bei positiver und negativer Raumladungsdichte

Herrscht im Leiter die Feldstärke  E, so wirkt auf positive Ladungen die Feld-

kraft  F +  ∼ E ∼ v  in Richtung von  E (Abb. 1.3.2b). Deshalb stimmen Feld-, Kraft-, Geschwindigkeits- und Stromdichterichtung überein. Bei negativen Ladungen  Q− <  0 wirkt die Feldkraft  F − =  Q−E− =  −|Q−|E  und damit die Geschwindigkeit  v− ∼ F −  der Feldstärke entgegen. Die Stromdichte  J −  ist aber wegen

Gl. (1.3.1) der Geschwindigkeit  v−  entgegengesetzt gerichtet, wirkt also in Feld-

richtung! Wir finden diesen Sachverhalt später bei der Leitfähigkeit bestätigt. 
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Den Zusammenhang zwischen Ladungsträgerantrieb und Stromdichte behan-

deln wir wegen seiner Vielschichtigkeit im Kap. 1.3.5. Vorerst betrachten wir

einfache Strömungsfelder, weitere folgen im Kap. 1.3.3. 

Str¨

omungsgeschwindigkeit Beträgt die Stromdichte in einem Cu-Draht (Durch-

messer  d = 1 ,  5 mm)  J = 3 A /  mm2, so fließt der Strom  I =  JA =  Jr 2 π = 5 ,  3 A. 

Die Driftgeschwindigkeit  v, mit der sich Elektronen im Mittel im Draht bewegen, 

ergibt sich bei einer Trägerkonzentration von  n = 8 ,  6  ·  1019 mm − 3 nach Gl. (1.3.1)

zu  v =  J/( qn)  ≈  0 ,  22 mm /  s  ≈  0 ,  8 m /  h. Die Bewegungsgeschwindigkeit in Metallen ist außerordentlich klein! Trotzdem setzen sich Ladungsträger bei plötzlichem Anlegen einer Feldstärke praktisch sofort (genauer innerhalb der sog. Relaxationszeit

 τ R =  ε 0 /κ   1 ps) im ganzen Leiter in Bewegung. 

Str¨

omungsfeld In einem linienhaften, kreisförmigen Leiter (Strom  I, Ra-

dius  R) sei die Stromdichte  J  konstant. Dann gilt nach Gl. (1.3.2)  I =

 J 0 A =  J 0 πR 2 (Abb. 1.3.2a). Ändert sich dagegen die Stromdichte über

dem Leiterquerschnitt, z. B. gemäß  J( r) =  J 0( r 2 /R 2), so beträgt der Strom

  R

 I =

 J

0

0 ( r/R)22 πr  d r =  J 02 πR 2 / 4. Er hat sich gegenüber dem homogenen

Verlauf halbiert! 

Stromdichte Das Zusammenwirken von Strom, Stromdichte, Ladungsdich-

te, Geschwindigkeit und Stromkontinuität zeigt Abb. 1.3.2b. Im Stromkreis

herrscht Stromkontinuität, überall fließt gleicher Strom. Stromdichte  J, 

Raumladungsdichte    und Trägergeschwindigkeit  v  sind hingegen unterschied-

lich:

metallischer Leiter mit homogenem Querschnitt: konstantes  J, kleines  v, 

großes  , Elektronenbewegung entgegen der Feldrichtung, 

 p-Halbleiter (Stromfluss positiver Ladungsträger), 

Elektronenstrahl durch hohes elektrisches Feld.  J  hoch (kleiner Quer-

schnitt), homogen,  v  an der Anode hoch, 

Ionenleiter (homogener Querschnitt), Strom durch positive und negative

Ionen getragen, kleine Geschwindigkeit, 

Van de Graff-Generator, Anordnung zur Ladungstrennung durch Strom-

antrieb im Kreis, Stromdichte homogen, groß. 

Offen bleibt in diesem Beispiel der Übergang des Elektronenstromes an der Leiter-

zuführung (Draht) zum Halbleiter (positive Ladungsträger), analog beim Ionenlei-

ter. Wir wollen hier einfach davon ausgehen, dass dies physikalisch möglich ist und

die Stromkontinuität nicht beeinträchtigt. 

Str¨

omungslinien Das Strömungsfeld wird durch  Str¨

 omungslinien  veranschau-

licht:
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Abb. 1.3.3. Stromkontinuität. (a) Volumen  V  mit Stromzu- und -abfluss, ausgedrückt

durch das Kontinuitätsgesetz. (b) Hüllfläche im stationären Strömungsfeld: Gleichströme

fließen stetig durch die Umhüllung. (c) Hülle im Strömungsfeld, die an bestimmten Stellen

von Strömen durchstoßen wird. (d) Knotensatz in Netzwerken als Grenzfall von Abb. c

Strömungslinien sind die Spuren der Bewegung positiver Ladungsträger im

Strömungsfeld. 

Die Tangente an eine Strömungslinie in einem Punkt stimmt mit der Rich-

tung des Stromdichtevektors überein, das galt analog für Feldstärkelinien. 

Strömungslinien haben typische Merkmale:

Die Liniendichte ist ein Maß für die Stromstärke (wenn sie so gezeich-

net werden, dass zwischen benachbarten Strömungslinien immer gleiche

Teilströme fließen). 

Weil die Trägerbewegung in einem Punkt stets durch die Geschwindigkeit

gegeben ist, haben sie keine Schnittpunkte. 

Kontinuit¨

atsbedingung Eine fundamentale Eigenschaft des Strömungsfeldes

ist die  Stromkontinuit¨

 at. Im Kap. 1.4.1, Bd. 1 ergab sich die Kontinuitäts-

gleichung (1.4.5) als Folge der Stromkontinuität. Für ein abgeschlossenes Vo-

lumen galt dabei (abfließender Strom positiv angesetzt)

 I ab  − I zu =  I netto =  −  d Q netto

(1.3.4a)

d t
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mit  Q netto =  Q ab  − Q zu. Der Strom tritt nur durch die Flächen  A ab und

 A zu (Abb. 1.3.3a)11. Wird das Volumen  V  mit einer Hüllfläche umgeben und

führen die Ströme  I 1,  I 2 durch die Flächen  A 1 =  A ab,  A 2 =  A zu Ladungen nach außen ab, so gilt





 −  d ( Q 1 +  Q 2) =  I 1 +  I 2 =

 J 1  ·  d A 1 +

 J 2  ·  d A 2 . 

d t

 A 1

 A 2

Der äußere Stromkreis erzwingt  I 1 =  I ab und  I 2 =  −I zu und bedingt so

d Q 1 =  − d Q 2 , → Q 1 =  −Q 2  → Q ab =  Q zu . 

d t

d t

Die Ladung wird in beide Volumina (Abb. 1.3.3a) mit gleicher Änderungsge-

schwindigkeit d Q/ d t  zu- bzw. abgeführt. Verallgemeinert lautet dann die

Kontinuitätsbedingung (Naturgesetz, Folgerung aus dem Erhaltungssatz):







 − d Q netto =  −  d

  d V =

 J ab  ·  d A +

 J zu  ·  d A

d t

d t Volumen

 A ab

 A zu



(1.3.4b)

=

 J· d A. 

Kontinuitätsbedingung

Hülle  A

Da der zufließende Strom durch die Fläche  A zu eintritt, der abfließende durch

 A ab austritt, ergibt sich der Nettozu- oder -abfluss, also die Ladungsänderung

als Differenz aller ab- und zufließenden Stromanteile über die vorhandene

oder gedachte Oberfläche des Volumens. Für diese Rechenoperation dient der



Begriff  Oberfl¨

 achen-  oder  H¨

 ullenintegral A J· d A  der Stromdichte  J. Dabei

sind  J ab und d A  auf der Abflussseite gleich gerichtet, deshalb fließt  I ab po-

sitiv aus dem Volumen heraus. Auf der Zuflussseite hingegen haben  J  und

d A  entgegengesetzte Richtungen, was zu  −I zu führt. 

Die zeitliche Ladungsabnahme ( − d Q netto / d t) in einem Volumen mit der

Oberfläche  A  ist gleich dem Nettostromabfluss, also dem Hüllintegral über

alle Strömungslinien durch die Hüllfläche. 

Deshalb können Ladungen in einem abgeschlossenen Bereich weder entste-

hen noch verschwinden, ohne einen entsprechenden Leitungsstrom durch die

11 Gegenüber der Stromdefinition Gl. (1.4.5) (Bd. 1) unterscheidet sich die Bilanz-

gleichung (1.3.4a) durch das Vorzeichen: bei der Stromdefinition handelt es sich

um eine durch eine Fläche hindurchtretende Ladung, die in das Gebiet in Richtung

des Flächennormalenvektors  n  hineinfließt, in Gl. (1.3.4a) tritt dagegen der Strom

aus einem Volumen heraus. Bei der Stromdefinition wird üblicherweise nicht ange-

geben, von welcher Seite der Betrachter den Ladungsdurchtritt beobachtet: Fließt

der Strom auf ihn zu, so bemerkt er in der Umgebung eine Ladungszunahme, fließt

er weg, so stellt er Ladungsabnahme fest. 
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Hüllfläche. Im  station¨

 aren Str¨

 omungsfeld  gilt d Q netto / d t = 0 und damit statt

Gl. (1.3.4b)



Kontinuitätsbedingung, 

 J· d A =  I ges = 0 . 

stationäres Strömungsfeld, 

(1.3.5)

Hülle  A

Naturgesetz

Die Kontinuitätsbedingung des stationären Strömungsfeldes (in Integralform

für ein Volumen  V  mit der Oberfläche  A) heißt auch  Knotensatz des stati-

 on¨

 aren Str¨

 omungsfeldes (Abb. 1.3.3b). Über einen Raumteil kann nie mehr

Strom ein- als austreten. Deshalb gibt es keine Quellen und Gl. (1.3.5) be-

schreibt gleichwertig die  Quellenfreiheit des Str¨

 omungsfeldes. Es ist, wie das

elektrische Feld, ein Potenzialfeld. 

Im stationären Strömungsfeld bleibt die Nettoladung in einem beliebigen, 

von der materiellen oder gedachten Hüllfläche  A  umschlossenen Volumen

zeitlich konstant. Je Zeitspanne fließen gleich viele Ladungen ab wie zu, der

Strom wirkt wie eine inkompressible Flüssigkeit. 

Grundlage der Kontinuitätsbedingung ist die Ladungserhaltung. 

 Vertiefungen:

1. 

Kontinuit¨

atsbedingung und erster Kirchhoffscher Satz Wird die um-

hüllende Fläche in  n  Teilflächen mit Teilströmen entsprechend Abb. 1.3.3b

zerlegt, so ergibt sich der Knotensatz (auch für räumliche Leiter, Abb. 1.3.3c). 



 n





 n



 J·

Kirchhoffscher

d A =

 J· d A =

 Iν = 0 . 

(1.3.6)

Knotensatz

 ν=1

 ν=1

Hülle  A

Fläche  Aν

Die Knoten der Netzwerktheorie sind deshalb  ladungsneutral (Abb. 1.3.3d). 

Grundsätzlich gilt diese Knotenbedingung für eine beliebig geformte Hüllfläche. 

Beiträge zum Hüllenintegral liefern nur Teilflächen, durch die Ströme die Hülle

durchstoßen. Deshalb kann ein Knoten (Hülle) in der Netzwerktheorie ganze

Schaltungsteile einschließen. 

2. 

Differenzielle Form des Ladungserhaltungssatzes Durch Anwendung der

Kontinuitätsgleichung auf ein immer kleineres Gebiet (bzw. mit dem Integral-



satz von Gauß) mit  Q =

  d V









 v ·  d A =

div  v  d V →

 J ·  d A =  −  d

   d V

d t

Hüllfläche

Volumen

Hüllfläche

Volumen

folgt die  differenzielle  Form der Ladungserhaltung oder die  Kontinuit¨

 atsglei-

 chung

div  J =  − ∂ . 

Ladungserhaltungssatz, Differenzialform (1.3.7a)

 ∂t

Die Quellen der Stromdichte sind Gebiete mit zeitlich abnehmender Raumla-

dungsdichte. 

44

1. Das elektrische Feld

Tab. 1.5. Das elektrische Feld in Leitern und Nichtleitern

Für  ladungsneutrale  Strömungsfelder (  = 0  → ∂/∂t = 0) wird aus Gl. (1.3.7)



 J ·  d A = 0 bzw. div  J = 0 . 

(1.3.7b)

Hüllfläche

Nur dann ist die (Leitungs-) Stromdichte quellenfrei. Den Einfluss zeitveränder-

licher Ladung in Gl. (1.3.4b) betrachten wir in Kap. 2.7.2. 

1.3.2 Stromdichte und Feldst¨

arke

Einf¨

uhrung Bisher wurden Feldstärke und Stromdichte des Strömungsfeldes

(Tab. 1.5) weitgehend unabhängig voneinander betrachtet, beide hängen aber

über den Leitungsvorgang zusammen. Die Stromdichte  J  umfasst alle phy-

sikalischen Phänomene, durch die sich Ladungsträger in Flüssigkeiten, Fest-

körpern, ionisierten Gasen und das Vakuum bewegen. Die Folge ist oft ein

nichtlinearer Zusammenhang zwischen Stromdichte  J  und Feldstärke  E. 
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(Spezifische) Leitf¨

ahigkeit  κ  In Leitern beschleunigt das elektrische Feld die

Ladungsträger fortwährend. Dabei stoßen sie mit schwingenden Gitterato-

men zusammen und übertragen die aus dem Feld aufgenommene Bewegungs-

energie ganz oder teilweise auf die Gitteratome, regen diese zu verstärkten

Wärmeschwingungen an, werden abgebremst, anschließend erneut beschleu-

nigt usw. Insgesamt bewegen sich die Ladungsträger daher nur mit einer

 mittleren Geschwindigkeit, der  Driftgeschwindigkeit v ∼ E

 v+ =  μ+ E

bzw.  v− =  −μ−E

(1.3.8)

nach Maßgabe der  Beweglichkeit μ+ bzw.  μ− (positive, negative Ladungen). 

Sie beträgt für Elektronen in Metallen 10 bis 50 cm2 und Elektronen und

Vs

Löcher in Halbleitern 100 bis einige 1000 cm2 . Dieser Driftvorgang führt zum

Vs

Stromdichte-Feldstärkezusammenhang im Leiter

 J

 J

Ohmsches Gesetz

=  κE  bzw . 

 E =

=  J. 

(1.3.9)

 κ

des Strömungsfeldes

Die  Leitf¨

 ahigkeit κ (oder reziproke spezifische Widerstand  , Gl. (2.3.4), 

Bd. 1) wird durch die Beweglichkeiten und Trägerdichten bestimmt

(s. Gl. (1.3.3))

 J =  J+ +  J− = ( qp)  v+ + ( −qn)  v− = [( qp)  μ+ + ( −qn) ( −μ−)] E =  κE

mit12

Leitfähigkeit, 

 κ =  + μ+ +  −( −μ−) =  q ( pμ+ +  nμ−)  . 

(1.3.10)

Materialgröße

Im Strömungsfeld eines Leiters sind Stromdichte  J  und Feldstärke  E  ein-

ander proportional mit der Leitfähigkeit  κ. Ihr Reziprokwert   = 1 /κ  ist

der spezifische Widerstand. Die Leitfähigkeit steigt mit der Ladungsträger-

konzentration und ihrer Beweglichkeit. 

Der Wirkungs-Ursache-Zusammenhang  J ∼ E  heißt gleichwertig  Material-, 

 Driftgleichung  oder  Ohmsches Gesetz des Str¨

 omungsfeldes. Es ist die Grund-

lage des Ohmschen Gesetzes Gl. (2.3.2), Bd. 1. 

Zur Anwendung ist Gl. (1.3.10) aber an einschränkende Nebenbedingungen wie

Raumladungsfreiheit, linearer  v,  E-Zusammenhang und konstante Temperatur

geknüpft. Sie sind häufig nicht erfüllt und führen zu nichtlinearen  J,  E-Bezie-

hungen. 

Gleichung (1.3.10) erklärt die hohe Leitfähigkeit der Metalle (hohe Träger-

dichte) und die kleinere Leitfähigkeit der Halbleiter. Stoffe ohne freie La-

dungsträger (Isolatoren) haben keine Leitfähigkeit. Tabelle 1.6 enthält ei-

ne grobe Einteilung nach der Leitfähigkeit und typische Zahlenwerte. Bei-

12 Man beachte:    spez. Widerstand, aber  +,  −  Raumladungsdichten! 

46

1. Das elektrische Feld

Tab. 1.6. Leitfähigkeit wichtiger Materialien (S/m)

Isolatoren

 κ

schlechte Leiter

 κ

Leiter

 κ

Quarzglas

10 − 17

Erdreich

10 − 3

Ferrit

102

Hartgummi

10 − 15

Wasser

10 − 2

Silikon

103

Glas

10 − 12

menschl. Körper

0 ,  01  . . .  0 ,  5

Graphit

105

Bakelit

10 − 9

Halbleiter

0 ,  1  . . .  10

Eisen

106

dest. Wasser

10 − 4

Meerwasser

1  . . .  10

Kupfer

5 ,  7 · 107

spielsweise hat Leitungskupfer mit der Elektronenbeweglichkeit  μ = 4 ,  1  ·

10 − 3 m2 /( Vs) und der Trägerdichte  n = 8 ,  6  ·  1028 m − 3 nach Gl. (1.3.10)

einen spezifischen Widerstand   = 17 ,  7  ·  10 − 3Ω m. 

Die Leitfähigkeit hängt mehr oder weniger von der Temperatur ab, darauf

wurde bereits im Kap. 2.3.4, Bd. 1 hingewiesen. Zusätzlich können weitere

Parameter eingehen, z. B. 

auffallendes Licht (z. B. bei Selen, Halbleiter). Man nutzt den Effekt in

Fotoleitern. 

mechanischer Druck und Zug zur Messung mechanischer Größen durch

Dehnmessstreifen, 

als Magnetfeld (z. B. in Wismut, einige Halbleitermaterialien). Der Effekt, 

die  magnetische Widerstands¨

 anderung, dient zur Magnetfeldmessung. 

Bisher wurde die Leitfähigkeit als Materialgröße angesehen, die nicht von der Leiter-

geometrie abhängt. Dies gilt nicht mehr bei Abmessungen des Leiters  vergleichbar

 mit der freien Wegl¨

 ange der Elektronen. Dann steigt der spezifische Widerstand

durch Stoßvorgänge der Ladungsträger an der Leiteroberfläche und er wird von der

Schichtdicke abhängig. Man bezeichnet diese Erscheinung als  Size-(Abmessungs)-

 Effekt. Er tritt bei tiefen Temperaturen an dünnen Drähten oder Leiterfilmen auf. 

1.3.3 Das Str¨

omungsfeld im Raum und an Grenzfl¨

achen

Eine Standardaufgabe ist die Berechnung des Strömungsfeldes einer gegebe-

nen Zweipolanordnung. Man prägt dazu einen Probestrom“ ein, der Strom-

” 

dichte, Feldstärke und Potenzial hervorruft⎧⎪⎨Ersatzwiderstand

 I Probe  → J( r)  → E( r)  → ϕ( r)  → U ( r)  → ⎪ Feldverteilung

 . (1.3.11)

⎩ Leistungsverteilung
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Diese Methode ist für homogene, zylinder- und kugelsymmetrische Felder

besonders einfach. 

1.3.3.1 Str¨

omungsfelder wichtiger Leiteranordnungen

Solange Stromdichte  J  und Feldstärke  E  einander proportional sind, stimmen

beide Felder bis auf einen Maßstabsfaktor überein. Dann stehen die  J- bzw. 

 E-Linien senkrecht auf den Äquipotenzialflächen. 

Homogenes Str¨

omungsfeld Ein homogenes Strömungsfeld (Leiter mit  κ 1)

zwischen zwei parallelen Metallelektroden hat parallel zueinander verlaufen-

de ausgewählte Feldlinien der Feldgrößen mit gleichem Abstand und glei-

cher Richtung. Der eingeprägte Strom  I  erzeugt die Stromdichte  J =  I/A

und damit die Feldstärke  E =  J/κ. Dann gilt für Potenzial und Spannung

(Abb. 1.3.4)

 x 0



 ϕ( x)  − ϕ( x 0) =

 E  d x =  E( x 0  − x)

 x

 l



 U 0l =  ϕ(0)  − ϕ( l) =

 E  d x =  El. 

0

Würde diesem Strömungsfeld noch ein zweites gleicher Geometrie, aber größerer

Leitfähigkeit  κ 2 parallel“ geschaltet, so steigt bei gleicher Spannung (und damit

” 

gleicher Feldstärke) im besser leitenden Gebiet die Stromdichte (Abb. 1.3.4a). Um-

gekehrt bedeutet Reihenschaltung“ beider Strömungsfelder (Abb. 1.3.4b), dass bei

” 

eingeprägtem Strom (vorgegebene Größe) im besser leitenden Bereich die Feldstärke

absinkt, also weniger Feldlinien vorhanden sind und ein geringeres Potenzialgefälle

herrscht. 

Für einen Leiter gleicher Abmessungen, aber drei

reihengeschalteten“ Gebieten

” 

verschiedener Leitfähigkeiten  κ 1  > κ 2  > κ 3 würde dann gelten

 J

 J

 J

 E 1 =

 < E 2 =

 < E 3 =

 . 

 κ 1

 κ 2

 κ 3

Die Potenziale an den Zwischengrenzen lassen sich über die Stromdichte oder eine

angepasste Spannungsteilerregel“ ermitteln. 

” 

Obwohl das Strömungsfeld eines jeden Teilbereiches homogen ist, neigt man dazu, 

die Gesamtanordnung als inhomogenes Strömungsfeld wegen der unterschiedlichen

Feldstärken zu betrachten. 

Den grundsätzlichen Einfluss von Grenzflächen auf das Strömungsfeld untersuchen

wir in Kap. 1.3.3.2 genauer. 

Inhomogene Str¨

omungsfelder In inhomogenen Feldern verlaufen die Feldli-

nien entweder nicht mehr parallel oder es ändern sich lokal ihre Abstände
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Abb. 1.3.4. Grenzflächen zwischen parallel- und reihengeschalteten Strömungsfeldern un-

terschiedlicher Leitfähigkeit. (a) Parallelschaltung; im besser leitenden Medium herrscht

größere Stromdichte. (b) Reihenschaltung; im besser leitenden Medium herrscht geringere

Feldstärke. Die Grenzfläche ändert die Feldstärke (veränderte Liniendichte)

und/oder Richtungen. Dann ist die Berechnung schwieriger. Vereinfachungen

gibt es jedoch für  rotationssymmetrische  Felder, wie die kugel- oder zylinder-

symmetrischen Feldanordnungen. 

Kugelsymmetrisches Str¨

omungsfeld, Punktquelle

Befindet sich eine sehr kleine leitende Kugel (mit isoliert zugeführtem

Strom) in homogenem, leitendem Medium und ist die Gegenelektrode weit

entfernt (im Unendlichen), so liegt eine Punktquelle vor. 

Sie verteilt den Strom gleichmäßig in alle Richtungen (Abb. 1.3.5a). Deshalb

ist die Stromdichte  J  auf einer Kugelfläche mit dem Radius  r überall gleich

1.3
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Abb. 1.3.5. Inhomogenes Strömungsfeld. (a) Punktquelle im unendlich ausgedehnten Me-

dium, der isoliert der Strom  I  zu- und im Unendlichen abgeführt wird. (b) Kugelsymme-

trisches Strömungsfeld. (c) Halbkugelerder, Strömungsfeld und Potenzialverlauf längs der

Erdoberfläche

 J

 I

 I

 I

Stromdichte, 

( r) =

 e r =

 e r =

 r. 

(1.3.12a)

 A Kugel

4 πr 2

4 πr 3

kugelsymm. Feld

Dazu gehört die Lösung in kartesischen Koordinaten mit  r =  xe x +  ye y +  ze z

 J

 I · ( xe x +  ye y +  ze z)

( x, y, z) =

 . 

(1.3.12b)

4 π ( x 2 +  y 2 +  z 2)3 / 2

Aus der Stromdichte folgt die elektrische Feldstärke

 J

 E

( r)

 I

( r) =

=

 r. 

 κ

4 πκr 3

Für die Kugelfläche mit dem Radius  r  und einem Integrationsweg längs der

 J-Linie ergibt sich das Potenzial

 r



 r

 1

 ϕ( r) =  ϕ( r 0)  −

 E( r)  ·  d r =  ϕ( r 0)  − I

4 πκ

 r 2 d r

 r

(1.3.13a)

0

 r 0





 I

1

=  ϕ( r 0) +

 −  1  . 

4 πκ

 r

 r 0

Es vereinfacht sich für den Bezugswert  r 0  → ∞  und  ϕ( r 0) = 0

 I

 ϕ( r) =

oder

4 πκr

Potenzial, 

 I

(1.3.13b)

 ϕ( x, y, z) =



 .  kugelsymmetrisches Feld

4 πκ x 2 +  y 2 +  z 2

Die Äquipotenzialflächen sind für  r = const. Kugelflächen. Bei dreidimensio-

naler Darstellung des Potenzials und der Feldstärke über  r  entstehen trich-

” 
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terförmige“ Gebilde. Verschiebt sich die Einströmung  I  vom Ursprung weg

an die Stelle  r Q, so gilt für den neuen Potenzialverlauf ( r → r − r Q)

 I

 ϕ( r) = 4 πκ|r − r Q |

 I

(1.3.14)

 ϕ( x, y, z) =



 . 

4 πκ ( x − x Q)2 + ( y − y Q)2 + ( z − z Q)2

Die Spannung zwischen zwei Punkten beträgt

 r 2







 I

1

 Ur

=

 E( r)  ·  d r =

 −  1

1 ,r 2

 ϕ( r 1)  − ϕ( r 2) =

 . 

(1.3.15)

4 πκ

 r 1

 r 2

 r 1

Wird der Strom einer Elektrode (Radius  r 1) zugeführt und denkt man sich

eine umhüllende Kugel mit dem Radius  r 2 als Kugelelektrode, die den Strom

abführt, so herrscht zwischen beiden Kugeln die Spannung nach Gl. (1.3.15)

(Abb. 1.3.5b). Der zugehörige Widerstand (Kugelwiderstand) ergibt sich aus

der Spannung  Ur

dividiert durch

1 r 2

 I:







Widerstand

 Ur

1

1

1 


 R =

1 ,r 2 =

 −  1

 →  1



konzentr. 

(1.3.16)

 I

4 πκ

 r



1

 r 2

4 πκ r 1  r 2 →∞

Kugeln

mit dem Übergangswiderstand  einer  Kugel in den unendlichen Raum. 

Feldstärke- und Potenzialverlauf einer Punktquelle im Strömungsfeld (der

der Strom  I  zugeführt wird) stimmen mit den entsprechenden Verläufen

einer Ladung im Nichtleiter überein (s. Gl. (1.2.9b)), wenn der Term  I/κ

durch  Q/ε 0 ersetzt wird (und umgekehrt). 

Die Punktquelle mit dem Strom  I  und dem Potenzial nach Gl. (1.3.13b) hat

kugelsymmetrische Äquipotenzialflächen. Sie stellt eine Aufbaufunktion für

kugelsymmetrische Strömungsfelder dar (mit gleicher Bedeutung wie die

Punktladung im elektrostatischen Feld), bleibt aber ein mathematisches

Modell, da mit  r →  0 alle Feldgrößen ( E,  J, und  ϕ) gegen unendlich gehen. 

 Potenzial¨

 uberlagerung  Durch Überlagerung bekannter Strömungsfelder ent-

stehen neuartige Felder. So ergibt sich das Gesamtpotenzial eines Punktes P

durch Überlagerung der Einzelpotenziale, die von  n  Punktelektroden mit zu-

geführten Strömen entstehen (Abb. 1.3.6a)

 n



 n

1



 Iν

 ϕ ges( r) =

 ϕν ( r) = 4

 |r − r

 ν

 πκ

 ν | , 

=1

 ν=1

 n



 n



(1.3.17)

 E

1

 Iν ( r − rν)

( r) =

 Eν ( r) =

 . 

4

 ν

 πκ

 |r − r

=1

 ν=1

 ν | 3

1.3

Das stationäre elektrische Strömungsfeld

51

Abb. 1.3.6. Feldüberlagerung. (a) Einzelpotenziale in Raumpunkten durch zugeführte

Ströme zu Punktelektroden. (b) Verlauf bei zwei zufließenden Strömen  I 1 und  I 2. (c) Po-

tenzialüberlagerung und Verlauf längs der Verbindungslinie der beiden Quellen zu Abb. (b):

1) nur Einzelquelle  I 1 zufließend, 2) Strom  I 2 abfließend, 3) Strom  I 2 zufließend

Diese Ergebnisse wurden sinngemäß schon für das Ladungsfeld (Abb. 1.2.5d)

ermittelt (s. Gln. (1.2.17b) und (1.2.20)). 

Wir wenden das Ergebnis auf zwei Kugelquellen an (Abb. 1.3.6b), zunächst beide

mit zufließenden Strömen ( I 1 =  I 2 =  I). Es ergeben sich sinngemäß die Lösungen

Gl. (1.2.18) und (1.2.21) mit dem dort diskutierten Feldverlauf (Abb. 1.2.6). Fließt dagegen in einer Elektrode der Strom ( I 1 = + I) zu und von der anderen weg

( I 2 =  −I), so zeigt das Potenzial





 I

1

 ϕ ges =

 −  1

4 πκ

 r 1

 r 2

des Punktes P mit den Entfernungen  r 1,  r 2 von beiden Quellen für  r 1 =  r 2 eine Potenzialfläche  ϕ = 0 als Symmetrielinie zwischen beiden Quellen. Abbildung 1.3.6c

zeigt die zu beiden Fällen gehörenden Potenzialverläufe in einer Ebene  y = 0 längs

der  x-Achse als Sonderfall des Verlaufes Abb. 1.2.7. Anwenden lassen sich diese

Feldverteilungen etwa auf zwei Halbkugelerder in endlichem Abstand oder für einen, 

in begrenzter Tiefe vergrabenen Kugelerder. 

 Konzentrische Kugeln Überlagern lassen sich auch die Potenziale zweier kon-

zentrisch angeordneter Kugeln (Radien  r i bzw.  r a) mit den Potenzialen  ϕ 1

und  ϕ 2 (Abb. 1.3.5b). Der Innenkugel wird der Strom isoliert zu- und von

der Außenkugel abgeführt. Dann wirkt zwischen beiden Kugeln nur das Po-

tenzial von Kugel 1 (Gl. (1.3.13)) (Kugel 2 erzeugt dort kein Potenzialfeld). 

Im Außenraum gilt ebenfalls





 I

1

 ϕ ges =  ϕ 1 +  ϕ 2 =

 −  1 = 0 , 

4 πκ

 r

 r

weil sich beide Potenziale kompensieren. Zwischen beiden Elektroden herrscht

die Potenzialdifferenz (s. Gl. (1.3.15))





 I

1

 ϕ( r 1)  − ϕ( r 2) =  ϕ A  − ϕ B =

 −  1  . 

4 πκ

 r 1

 r 2
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Abb. 1.3.7. Linienquelle. (a) Zylindersymmetrische Anordnung mit Stromzufuhr am Innen-

und -abfuhr am Außenleiter. (b) Potenzialfeld zweier Linienquellen entgegengesetzter

Stromrichtungen, Doppelleitung. (c) Überlagerung der Potenzialfelder im Koaxialleiter mit

schwach leitendem Zwischenbereich

Beispiel 1.3.1 Halbkugelerder

Eine Halbkugel mit dem Radius  r 0 wird in das Erdreich eingesetzt, um einen Strom

zu verteilen (Abb. 1.3.5c). Es bilden sich halbkugelförmige Potenzialflächen, wenn

der Radius der Gegenelektrode unendlich weit entfernt liegt. Die Potenzialflächen

stoßen an die Oberfläche. Ein Mensch kann dann zwei Punkte mit einem Schritt

überbrücken. Die dabei auftretende  Schrittspannung  bildet sich zwischen dem Elek-

trodenrand und dem Erdreich längs einer Feldlinie, sie beträgt für  I = 100 A, 

1 /κ = 50 Ω m,  r 0 = 1 m und  s = 1 m









 I

1

100 A  ·  50 Ω m

1

 Us  max =

 −

1

=

 −  1

= 398 V! (1.3.18)

2 πκ

 r 0

 r 0 +  s

2 π

1 m

2 m

und wird hier lebensgefährlich. 

Zylindersymmetrische Str¨

omung, Linienquelle Befindet sich ein dünner, lan-

ger, gerader Leiter (mit isoliert zugeführtem Strom) in einem homogen lei-

tenden Medium und ist die Gegenelektrode weit entfernt (im Unendlichen), 

so liegt eine Linienquelle vor. Der Strom fließt radial vom Innen- zum (weit

entfernten) Außenleiter (Abb. 1.3.7a) (zylindersymmetrisches Problem). Für

die Berechnung muss in der Stromdichte statt der Kugel- die Mantelober-

fläche angesetzt werden. Das Feld ist eben, d. h. in Leiterrichtung konstant. 

Wird dem Innenzylinder der Strom  I  eingeprägt, so verlaufen die Strömungs-

linien radial von innen nach außen (Abb. 1.3.7b). Die Stromdichte auf dem

Innenzylinder beträgt

 J

 I

 I

 I

 I ( xe x +  ye y)

( r) =

 e r =

 e r =

 r =

 . 

(1.3.19)

 A Zyl

2 πlr

2 πlr 2

2 πl ( x 2 +  y 2)
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Die Feldstärke folgt aus der Stromdichte und damit ergibt sich das Potenzial

 r



 r

 d r

 ϕ( r) =  ϕ( r 0)  −

 E( r)  ·  d r =  ϕ( r 0)  − I

2 πlκ

 r

 r 0

 r 0

(1.3.20a)

 I

=  ϕ( r 0) +

ln  r 0

2 πlκ

 r . 

Das Potenzial im Abstand  r  der (unendlich) langen Linienquelle mit dem

Strom  I  je Längeneinheit  l  hängt logarithmisch vom Ort ab, der Bezugspunkt

 r 0 muss dabei in endlichem Abstand von der Leiterachse liegen (weil das In-

tegral sonst unendlich wird). Die Lösung eignet sich generell für Anordnun-

gen, deren Elektroden mit Äquipotenzialflächen des Feldes übereinstimmen. 

Zwischen zwei leitenden konzentrischen Zylindern mit den Radien  r 1 und  r 2

beträgt dann die Spannung





 I

 r 0

 r 0

 I

 r 2

 Ur

=

ln

 −  ln

=

ln

1 r 2

 ϕ( r 1)  − ϕ( r 2) =

 . 

(1.3.20b)

2 πlκ

 r 1

 r 2

2 πlκ

 r 1

Dazu gehört der Widerstand  R  zwischen Innen- und Außenzylinder

 Ur

1

 r 2

 R =

1 r 2 =

ln

 . 

Widerstand Zylinderfeld (1.3.20c)

 I

2 πlκ

 r 1

In der Abb. 1.3.7a weisen die Feldlinien strahlenförmig nach außen, die Po-

tenziallinien bilden konzentrische Kreise um den Innenleiter. 

Die Linienquelle mit dem Strom  I  und dem Potenzial nach Gl. (1.3.20a) hat

zylindersymmetrische Äquipotenzialflächen, die logarithmisch vom Radius

abhängen. Sie ist die Aufbaufunktion für zylindersymmetrische Strömungs-

felder (mit gleicher Bedeutung wie die Linienladung im elektrostatischen

Feld), bleibt aber ein mathematisches Modell, da mit  r →  0 alle Feldgrößen

( E,  J, und  ϕ) gegen unendlich gehen. 

 Potenzial¨

 uberlagerung  Aus der Linienquelle ergeben sich weitere Feldbilder

durch Potenzialüberlagerung, z. B. für die Doppelleitung aus (Abb. 1.3.7b)

 n



 rν

 ϕ =  −  1

 Iν  ln

 . 

(1.3.20d)

2 πκl ν

 rν

=1

0

Dazu wird einer Quelle der Strom  I  zu- und von der anderen der gleiche

Strom abgeführt. Dann folgt mit  I 1 = + I,  I 2 =  −I





 − 1

 r 1

 r 2

 ϕ ges =  ϕ 1 +  ϕ 2 =

 I 1 ln

+  I 2 ln

2 πlκ

 r 0

 r 0





(1.3.20e)

 −I

 r 1

 r 2

 I

 r 2

=

ln

 −  ln

=

ln

 . 

2 πlκ

 r 0

 r 0

2 πlκ

 r 1
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Auch hier liegen Punkte im gleichen Abstand  r 1 =  r 2 von den Quellen auf

einer Symmetrielinie  ϕ = 0. 

Das Feld zwischen zwei konzentrisch ineinander liegenden Zylinderleitern

lässt sich ebenso durch Überlagerung gewinnen (Abb. 1.3.7c). Fließt dem

inneren Zylinder der Strom  I 1 zu, so stellt sich das Strömungsfeld  J 1( r) ein. 

Der vom äußeren Zylinder abfließende Strom  I 2 bewirkt das Strömungsfeld

 J 2 (zum Zylinder hin gerichtet!). Bei Überlagerung bleibt nur noch das Feld

von  J 1( r) zwischen beiden Zylindern mit der Potenzialdifferenz





 −I

 r 1

 r 2

 I

 r 2

 ϕ( r 1)  − ϕ( r 2) =  ϕ A  − ϕ B =

ln

 −  ln

=

ln

 . (1.3.21)

2 πlκ

 r 0

 r 0

2 πlκ

 r 1

Das ist die zwischen Innen- und Außenleiter abfallende Spannung  U 12, unab-

hängig von Potenzialwerten: der zufließende Strom  I  erzeugt am Innenleiter

das Potenzial  ϕ 1 und am Außenleiter  ϕ 2. Es würde weiter abfallen, gäbe

es nicht vom Radius  r 2 an ein überlagertes (negatives) Potenzialfeld durch

den abfließenden Strom ( J  ist zum Zylinder hin gerichtet!). Auf dem Außen-

leiter kann sich aber nur ein Potenzial einstellen: beide Potenziale kompen-

sieren sich dort und im gesamten Außenraum wegen  I 1  − I 2 = 0 in jedem

Punkt. Dort gibt es kein Strömungsfeld. Das Potenzialfeld der Doppellei-

tung Abb. 1.3.7b hat noch eine interessante Eigenschaft: es hängt im Punkt



 P ( x, y) nach Gl. (1.3.20e) von den Radien  r 2 ,  1 =

( x ± d)2 +  y 2 ab. Die

Gleichung der Äquipotenzialflächen ergibt sich für  r 2 /r 1 = const. Das sind

Zylinderflächen, die in ebener Darstellung auf die sog.  Apollonischen Kreise

führen. 

Spiegelungsprinzip Bei manchen Elektrodenanordnungen verhilft das  Spiegelungs-

 prinzip  rasch zum Feldbild. So kann eine Anordnung Kugel- oder Zylinderelektrode –

leitendes Medium – ideale leitende Ebene (Kontaktebene) (Abb. 1.3.8a) beschrieben

werden, indem der Feldverlauf an der Kontaktfläche gespiegelt und die Polarität

der Elektrode vertauscht wird. Fließt der Strom der oberen Elektrode zu, so muss

er von der unteren abfließen. Die Anordnung Strom-Spiegelstrom hat dann vor der

Spiegelebene die gleiche Feldverteilung wie die Anordnung Strom-Leiterebene. So

wirken zwei symmetrische Elektroden, denen der gleiche Strom zugeführt wird, in

der Spiegelhälfte wie eine stromführende Elektrode über einer ideal isolierenden

Fläche und bei Vertauschung einer Elektrodenstromrichtung (Abb. 1.3.8b) wirkt

die Spiegelhälfte wie eine Elektrode über einer ideal leitenden Ebene. 

Das Verfahren lässt sich mit mehreren Linienquellen auf kompliziertere Ersatzelek-

trodenanordnungen erweitern. 

 Hinweis  Die bisherigen Potenzialberechnungen basierten auf Vorgabe einer Strö-

mung und daraus abgeleiteter Berechnung von  ϕ über  E. Durch Substitution der

Stromdichte  J =  κE  in der Kontinuitätsgleichung ((1.3.7), div  J = 0) und der Feldstärke  E =  −  grad  ϕ  lässt sich aber die sog.  Laplacesche Gleichung  div grad  ϕ = 0

(eindimensional in kartesischen Koordinaten d2 ϕ/ d x 2 = 0) finden, die das Potenzial
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Abb. 1.3.8. Spiegelungsprinzip. (a) Zwei symmetrische Linienquellen mit gleich zugeführ-

ten Strömen und ihr Ersatz durch eine Linienquelle über einer nichtleitenden Fläche. 

(b) Zwei symmetrische Linienquellen mit entgegengesetzt zugeführten Strömen und ihr

Ersatz durch eine Linienquelle über einer gut leitenden Fläche

aus gegebenen Potenzialwerten der Randelektroden des Feldes zu berechnen erlau-

ben. (Wir streifen diese Problematik beim elektrostatischen Feld (s. Gl. (2.5.7)). 

1.3.3.2 Bestimmung des Feldbildes

Feldbilder können verschiedenartig ermittelt werden. Neben der Berechnung

gibt es noch zwei praktische Methoden: die experimentelle Bestimmung mit

dem  elektrolytischen Trog  und die  grafische  Feldermittlung. 

Ein parallelebenes Stromdichtefeld entsteht in einem Flächenleiter konstanter

Dicke  d (z. B. wassergefüllte Schale mit bestimmter Leitfähigkeit) durch auf-

gesetzte metallische Elektroden. Das Modell muss maßstäblich sein. Statt des

Elektrolyten eignet sich auch Widerstandspapier“, auf das die Elektroden

” 

mit Leitsilber gezeichnet werden (Abb. 1.3.9a). 

Die Elektroden liegen an einer Spannung  U AB. Das Potenzial  ϕ( x, y) (bzw. die

Spannung) eines Punktes lässt sich entweder direkt mit einem hochohmigen

Spannungsmesser messen oder durch Nullabgleich in einer Brückenanordnung

bestimmen, wenn der elektrolytische Trog Teil einer Wheatstone-Brücke ist

(Abb. 2.4.7, Bd. 1, Anordnung zweckmäßig mit Tonfrequenz betreiben). So

misst man das Feld ausgewählter Potenziallinien. Es hat zwei Merkmale:

Elektroden sind Äquipotenzialflächen. 

Die isolierende Berandung (z. B. Rand des Troges) ist eine Strömungslinie, 

auf sie stoßen die Äquipotenzialflächen stets senkrecht. 

Die Feldstärke- bzw. Stromdichtevektoren stehen senkrecht auf den Äquipo-

tenziallinien. Für eine bestimmte Feldlinie muss man sich dann senkrecht zu
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Abb. 1.3.9. Elektrolytischer Trog. (a) Anordnung zur Aufnahme eines parallelebenen Po-

tenzialfeldes. (b) Komplementäres Potenzialfeld durch Austausch der Randbedingungen

(Elektroden)

den Potenziallinien bewegen (nicht immer einfach). Besser ist die Aufnahme

des  komplement¨

 aren Feldbildes:

Im komplementären Feldbild entspricht der Verlauf der Strömungslinien

dem Verlauf der Äquipotenziallinien im Ausgangsfeld und umgekehrt. 

Man erhält dieses Feldbild durch:

Austausch gut leitender Bereiche (Elektroden, neutrale Körper mit hoher

Leitfähigkeit) gegen nichtleitende Gebiete gleicher Geometrie; 

Ersatz nichtleitender Gebiete durch Medien hoher Leitfähigkeit; 

generellen Austausch schwach leitender Bereiche durch gut leitende im

Komplementärfeld (und umgekehrt). 

Im Potenzialfeld Abb. 1.3.9a nimmt eine Metallscheibe das Potenzial 4 V

an, sie bestimmt das Feldbild in ihrer Umgebung. In Abb. 1.3.9b entsteht

das Komplementärfeld durch Anbringen neuer Elektroden: dort, wo Me-

tallelektroden waren, wird ein isolierender Rand realisiert und der vorher

isolierende Rand wird als neue Elektrode gestaltet. Durch Ausmessen (wie

oben) ergibt sich das komplementäre Potenzialfeld. Bei radialsymmetrischen

Feldanordnungen muss das Ausgangsfeld zur Überführung in ein Komple-

mentärmodell u. U. in Teilgebiete längs einer Symmetrielinie unterteilt wer-

den. Diese Feldbestimmung eignet sich für komplizierte Feldgeometrien, An-

ordnungen mit mehreren Elektroden oder isolierte Leiterbereiche im Feld. 

Weil sie gut durchführbar ist, dient sie auch ersatzweise für andere Feldtypen:
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Abb. 1.3.10. Grafische Ermittlung der Feldlinien. (a) Stromröhre mit Volumenelement Δ G

im inhomogenen Feld. (b) Grafische Bestimmung der Feld- und Potenziallinien im ebenen

Feld

elektrostatische Felder, thermische Felder (mit den Elektroden als isothermen

Flächen) und wirbelfreie Magnetfelder. Alle haben als mathematischen Hin-

tergrund der sog.  Laplace-Gleichung. 

Grafische Ermittlung Dieses Verfahren eignet sich für ebene bzw. rotationssym-

metrische Felder und nutzt das Prinzip  quadrat¨

 ahnlicher Figuren. Dazu wird das

Strömungsfeld in  n  Stromröhren Δ I =  JΔ A =  κEΔ A =  κΔ ϕΔ A/Δ s  mit dem Querschnitt Δ A  und das Potenzialfeld in Potenzialunterschiede Δ ϕ =  EΔ s  unterteilt (Abb. 1.3.10a). Mit Δ A = Δ ad (Schichtdicke  d) beträgt der Leitwert Δ G  eines Kästchens

Δ I

Δ A

Δ a

Δ a

Δ G =

=  κ

=  κ · d

= const

 . 

(1.3.22)

Δ ϕ

Δ s

Δ s

Δ s

 F¨

 ur gleiche Δ I- und Δ ϕ-Werte entstehen wegen Δ a ∼ Δ s quadratähnliche Figuren. 

Zum Abstand Δ s  zweier Potenziallinien gehört immer die gleiche Potenzialdifferenz, 

zum Abstand Δ a  zweier Feldlinien der gleiche Teilstrom. Deshalb ist der Teilleitwert

Δ G = Δ I/Δ ϕ  eines jeden Kästchens“ mit einer Länge gleich der Schichtdicke für

” 

alle Kästchen gleich. Die Größe  κd  entspricht dem reziproken  Schichtwiderstand

(s. Gl. (2.3.6), Bd. 1). Praktisch wird wie folgt verfahren:

1. 

Beginn in homogenen Feld- und Potenzialbereichen (Elektroden), die das Feld

ursächlich bestimmen. Metallflächen sind stets Potenziallinien, Feldlinien ste-

hen darauf senkrecht. 

2. 

Die Äquipotenziallinien werden in inhomogenen Bereichen intuitiv fortgesetzt

und mit den Feldlinien nach dem Prinzip quadratähnlicher Figuren fortlaufend

korrigiert. Dabei erleichtern Hilfslinien die Bildung von Quadranten. 

Abbildung 1.3.10b zeigt ein so ermitteltes Feldbild einer abgewinkelten Leiterbahn. 

Innen herrscht hohe Feldstärke  ∼  Zusammendrängen der Potenziallinien. Beste-

chend ist die Schnelligkeit, mit der ein qualitatives Gesamtbild entsteht. 
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Abb. 1.3.11. Grenzfläche im stationären Strömungsfeld. (a) Stetigkeit der Normalkom-

ponenten der Stromdichte, Oberfläche  A  für das Oberflächenintegral. (b) Stetigkeit der

Tangentialkomponenten der Feldstärke, Umlaufweg für das Umlaufintegral. (c) Grenze ei-

nes leitenden Gebietes zum Nichtleiter und idealen Leiter

1.3.3.3 Verhalten an Grenzfl¨

achen

Eine Grenzfläche zwischen Gebieten unterschiedlicher Leitfähigkeit ändert

i. a. die Feldgrößen des Strömungsfeldes. So lautet die  formal mathematische

Schlussfolgerung, die  physikalischen Vorg¨

 ange an der Grenzfl¨

 ache auf Atom-

 ebene  sind dagegen komplizierter. Beispielsweise ist eine Grenzfläche zwi-

schen zwei unterschiedlich leitfähigen  p- und  n-Halbleitergebieten in erster

Linie kein mathematisches“ Grenzflächensystem, sondern ein  pn- ¨

 Ubergang

” 

 mit stark nichtlinearer Kennlinie. Wir vertiefen diese Problematik später. 

Das grundsätzliche Verhalten von Feldstärke und Flussdichtevektoren an ei-

ner Grenzfläche zeigt Abb. A.2.5, Bd. 1. Den Ausgang bildet die Stromdich-

te  J. Wir legen in die Grenzfläche einen Flachzylinder geringer Dicke  d, der

in beide Bereiche mit verschiedenen Leitfähigkeiten eintaucht (Abb. 1.3.11a). 

Nach Gl. (1.3.6) muss der Strom durch die Zylinderoberfläche verschwinden. 

Da der Zylindermantel bei geringer Dicke keinen Beitrag liefert und der Strom

durch das Flächenelement d A  beiderseits der Trennfläche übereinstimmt, gilt

mit  J n1  ·  d A 1 +  J n2  ·  d A 2 = 0 (und d A 1 =  − d A 2) J n1 =  J n2 .  Stetigkeit der Normalkomponente der Stromdichte (1.3.23a)

Die Normalkomponenten der Stromdichten verlaufen an Grenzflächen un-

terschiedlicher Leitfähigkeiten stetig. 

Deshalb ändern sich nach Gl. (1.3.9) die Normalkomponenten  E n1,  E n2 der

Feldstärken

 E n1

 κ 2

=

 . 

(1.3.23b)

 E n2

 κ 1

Analog verschwindet das Umlaufintegral der Feldstärke (Gl. (1.2.2)) mit

gleicher Zerlegung ( E =  E n +  E t) in Komponenten normal und tangenti-
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al zum Wegelement d s  bei einem geschlossenen Umlauf um den Aufpunkt





(Abb. 1.3.11b). Mit

 E 1  ·  d s 1 +  E 2  ·  d s 2 = 0 und d s 1 =  − d s 2 folgt

 −E t1d s 1 +  E t2d s 2 = 0 und wegen Betragsgleichheit der Längenelemente d s

lautet die  zweite Grenzbedingung

Stetigkeit der Tangentialkomponenten

 E t1 =  E t2 . 

(1.3.24a)

der Feldstärke

Die Tangentialkomponenten der Feldstärke verlaufen an Grenzflächen ver-

schiedener Leitfähigkeiten stetig. 

Zwangsläufig unterscheiden sich nach dem Ohmschen Gesetz des Strömungs-

feldes Gl. (1.3.9) die Tangentialkomponenten der Stromdichten

 J t1

 κ 1

=

 . 

(1.3.24b)

 J t2

 κ 2

Schlussfolgerungen:

1. 

An den Grenzflächen zwischen Gebieten verschiedener Leitfähigkeit sind die

Normalkomponenten der Stromdichte und Tangentialkomponenten der Feld-

stärke immer stetig. Der Strom tritt mit gleicher Stärke durch eine Grenzfläche. 

2. 

Die Normalkomponenten der Feldstärken verhalten sich beiderseits der Grenz-

fläche umgekehrt wie die Leitfähigkeiten (Gl. (1.3.23b)). Deshalb herrscht im

schlechter leitenden Medium eine höhere Feldstärke und die Grenzfläche bildet

eine  Quelle (Senke) von E-Linien. 

3. 

Die Tangentialkomponenten der Stromdichte verhalten sich wie die Leitfähig-

keiten (Gl. (1.3.24b)). Der Strom fließt im besser leitenden Medium mit grö-

ßerer Tangentialkomponente. 

Die bisherigen Beziehungen ergeben zusammengefasst:

tan  α 1

 E n2  E t1

 J t1  J n2

 κ 1

Brechungsgesetz im

=

=

=

 . 

(1.3.25)

tan  α 2

 E n1  E t2



 J t2  J n1



 κ 2

Strömungsfeld

1

1

Beim Stromübergang in ein besser leitendes Medium werden die Feldlinien

vom Einfallslot weggebrochen bzw. beim Übergang ins schlechter leitende

Medium zum Einfallslot hin gebrochen. 

Diese Aussage schließt zwei wichtige Sonderfälle ein:

An der Grenzfläche zum Nichtleiter verlaufen die Stromdichte und elek-

trische Feldstärke (wegen der im nichtleitenden Bereich verschwindenden

Stromdichte  J 2 (Abb. 1.3.11c)) im Leiter tangential:

Bedingung im Leiter (1) an Fläche

 J n1 |A =  E n1 |A = 0 . 

zum Nichtleiter
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An der Grenzfläche zum schwächer leitenden Gebiet treten Stromdich-

te und elektrische Feldstärke aus einem idealen Leiter (wegen der dort

verschwindenden Feldstärke  E 2) senkrecht aus:

Bedingung im Leiter (1) an Fläche

 J t1 |A =  E t1 |A = 0 . 

zum idealen Leiter

Dann bildet die Grenzfläche stets eine Äquipotenzialfläche. 

Beispiel 1.3.2 Strom durch Grenzfl¨

ache

Durch einen linienhaften Leiter mit einer um 45 ◦  geneigten Grenzfläche (s. 

Abb. 1.3.11a) wirkt vom Gebiet 1 ( κ 1) die Stromdichte  J =  J 1 =  J x. Gesucht ist die Feldstärke im Gebiet 2 ( κ 2). 

An der Grenzfläche treten Normal- und Tangentialkomponenten von  J 1 auf:  J n1 =

 √

 √

 J/  2,  J t1 =  J/  2. Die Stetigkeitsbedingung erfordert  J n2 =  J n1 und  J t2 =

 J t1 ( κ 2 /κ 1). Die Feldstärkekomponenten in Gebiet 2 betragen  E n2 =  J n2 /κ 2 =

 √

 √

 J/( κ 2 2),  E t2 =  J t2 /κ 2 =  J/( κ 1 2). Damit ergeben sich als  x- und  y-Komponenten der Feldstärke





1

1

 J

 E 2x =  E n2 cos  π/ 4 +  E t2 sin  π/ 4 =

+

 , 

 κ 2

 κ 1

2





1

 J

 E 2y =  −E n2 sin  π/ 4 +  E t2 cos  π/ 4 =

 −  1

 . 

 κ 2

 κ 1

2

Für  κ 1 =  κ 2 verschwindet die  y-Komponente wegen fehlender Grenzfläche und das

Leiterfeld wird homogen. 

Die Grenzfl¨

ache als physikalisches System* An jeder Grenzfläche laufen physi-

kalisch folgende Vorgänge ab:

Ladungsträger können ein Material unter Überwindung der Austrittsarbeit ver-

lassen (sie beträgt bei Metallen größenordnungsmäßig 4 eV, bei Isolatoren deut-

lich mehr). Eine Materialpaarung verursacht so eine  Kontaktspannung. 

Beiderseits der Grenzfläche entsteht eine schmale  Raumladungsschicht 13 als Fol-

ge des Trägerdichteunterschiedes. 

Im Zusammenwirken zwischen Raumladungszone, Kontaktspannung und evtl. 

Stromfluss durch die Raumladungszone kommt es dann zu einer linearen oder

nichtlinearen  J( E)-Beziehung und/oder einer nichtlinearen Kapazität. 

Wichtige Grenzflächensysteme sind:

Metall/Halbleiter als Ohmsche Kontakte, Schottky-, Hetero-Dioden oder  pn-

Übergänge, 

Halbleiter/Metall und Isolator als Kontaktsystem des MIS-Transistors, 

13 Im Zusammenhang mit Elektrolyten wird sie auch als Doppelschicht oder Sperr-

schicht bezeichnet. 
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Abb. 1.3.12. Physikalische Grenzfläche. (a) Grenzflächensystem mit zwei verschieden leit-

fähigen Bereichen. (b) Ersatz durch einen  pn- Übergang. (c) Modellierung durch einen

idealen  pn- Übergang und unterschiedlich leitfähige und kontaktierte Bereiche

Metall/Elektrode und Elektrolyt als Kontaktsystem in Batterien oder Ultra-

Caps, 

Metall und Vakuum als Kathodenanordnung in Elektronenröhren. 

Die Beispiele zeigen Eigenschaften, die mathematische Grenzflächensysteme  nicht

ausdrücken. So gilt im  p+ n- Übergang (Trägerdichten  p+  ≈  1019 cm − 3 und  n ≈

1016 cm − 3) die Stetigkeit der Stromdichtekomponenten  J np =  J nn (Abb. 1.3.12), aber die daraus hergeleitete Beziehung für die Normalkomponenten der Feldstärke

Gl. (1.3.23b) gilt nur dort, wo Trägertransport durch die Feldstärke (als Driftstrom)

erfolgt. In der Raumladungszone (und ihrem Einzugsbereich von einigen Diffusi-

” 

onslängen“) werden die Träger durch Diffusion (und nicht das elektrische Feld!)

transportiert. Dieses Gebiet ist Teil des  pn- Überganges. Im Modell wäre die Grenz-

fläche durch ein Diodenmodell und die beiden anschließenden Driftgebiete durch

normale Feldgebiete anzusetzen, in denen dann Gl. (1.3.23b) gilt. Auch die Metall-

Halbleiter-Kontakte zum Stromkreis sind nichtlineare Anordnungen, die aber in

guter Näherung durch ein Grenzflächensystem nach Abb. 1.3.11c ersetzt werden

können. Das mathematische Modell würde nur zwei verschieden leitende Gebiete

enthalten! Man modelliert die physikalischen Vorgänge in Grenzflächenbereichen

deshalb, je nach System, als idealen Kontakt (bei Ohmschen Verhalten), als ideale

Diode, als stark nichtlinearen Kondensator, eine Flächenladung oder eine Kontakt-

spannung (als ideale Spannungsquelle), um das mathematische Modell anzupassen. 

Wir kommen darauf beim Metall-Isolatorübergang zurück. 

1.3.4 Die Integralgr¨

oßen des Str¨

omungsfeldes

1.3.4.1 Widerstand

Ein Strömungsfeld hat zwischen zwei Elektroden einen Widerstand. Seine

Grundlage ist das Ohmsche Gesetz  J ∼ E. Als Widerstand  R AB zwischen

zwei Potenzialflächen A und B im Strömungsfeld (homogene Leitfähigkeit
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 κ = 1 /) definiert man den Quotient von Spannung  U AB und Strom  I  durch





die Querschnitte  A 1,  A 2 mit  I =  I|A =

 J ·  d A =  I|

=

 J ·  d A

1

 A 1

 A 2

 A 2

(Abb. 1.3.13a):





B

B

 U

 E ·

 J ·

AB

d s

1

d s

 R F Ohmscher

 R

A



A



AB =

=

 . 

(1.3.26a)

 I

 J ·  d A =  κ

 J ·  d A =  κ

Widerstand

A

A

Der Widerstand  R AB ersetzt das Strömungsfeld zwischen zwei ideal lei-

tenden Elektroden durch eine Strom-Spannungs-Beziehung zwischen den

zugehörigen Elektrodenpotenzialen und dem von der Strömung erfassten

Querschnitt. Er verzichtet auf Einzelheiten des Feldes. 

Der Faktor  R F hängt nur von der Feldgeometrie ab. Für den linienhaften

Leiter folgt dann die Bemessungsgleichung (Gl. (2.3.4), Bd. 1) (Abb. 1.3.13b)





B

 l

Widerstands-

1

 J ·  d s

1  J ·

d s

 l

 l

 R

A



0



AB =

=

=

 .  bemessungs-

(1.3.26b)

 κ

 J ·  d A =  κ J ·

d A

 κA

 A

A

A

gleichung

Widerstandsberechnung ¨

uber die Feldgr¨

oßen, L¨

osungsmethodik Kann aus der

Geometrie des Strömungsfeldes qualitativ auf die Stromverteilung geschlossen

werden, z. B. für rotations- und zylindersymmetrische Anordnungen, so ergibt

sich der Widerstand durch folgende Schritte (s. auch Gl. (1.3.11)):

1. 

Einspeisung eines Probestromes  I  bzw.  −I  in die Elektroden

Es entsteht das Strömungsfeld. Seine Abgrenzung zum umgebenden

Nichtleiter definiert die von den Strömungslinien durchsetzte Quer-

schnittsfläche. 

2. 

Berechnung der Stromdichte als Funktion des Ortes über Gl. (1.3.2)

Für rotationssymmetrische Felder ist dabei  J( r) A( r) an jeder Stelle

konstant. 

3. 

Bestimmung der Feldstärke  E (Gl. (1.3.9)), des Potenzials und der

Spannung  U AB (Gl. (1.2.22)) zwischen den Elektroden. 

4. 

Berechnung von  R AB =  U AB /I  nach Gl. (1.3.26a). 

Für einen Koaxialwiderstand (Abb. 1.3.7a) lautet diese Ablauffolge:  I →



 J

B

( r, I) :  J( r) =

 I

 E ·  d s :

2 πlr → E =  J ( r,I)

 κ

:  E( r) =

 I

2 πκlr → U AB =

A

 U AB =  I

 → R

. 

2 πκl  ln  r a

 r i

AB =  U AB

 I

=

1

2 πκl  ln  r a

 r i

Beispiele Aus den im Kap. 1.3.3.1 berechneten Strömungsfeldern folgen als Wi-

derstände:

 Widerstand zweier konzentrischer Kugeln (s. Gl. (1.3.16)):







 U



AB

1

1

1

 R



AB =

=

 −  1

=

 . 

(1.3.26c)

 I

4 πκ

 r



i

 r a

4 πκr i  r a →∞
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Abb. 1.3.13. Widerstandsbegriff und Strömungsfeld. (a) Ersatz eines Strömungsfeldes zwi-

schen zwei idealen Elektroden durch einen Widerstand. (b) Strömungsfeld im linienhaf-

ten Leiter und Ersatzwiderstand. (c) Teilwiderstand eines Stromröhrenabschnittes mit an-

nähernd homogenem Feld. Größere Feldgebiete entstehen durch Reihen-/ Parallelschaltung

solcher Elemente

Bei weit entfernter Gegenelektrode ( r a  → ∞) vereinfacht er sich zum  ¨

 Ubergangswi-

 derstand einer Kugelelektrode. Eine Kugel vom Radius  r i = 20 cm tief im feuchten

Erdreich (  ≈  100 Ω m) hat einen Übergangswiderstand  R AB  ≈  40 Ω. 

Erdverbindungen (zur Erdung elektrischer Geräte oder eines Blitzableiters) erfor-

dern großflächige Elektroden. 

 Widerstand ineinandergeschachtelter koaxialer Zylinder  Wir übernehmen aus obi-

gem Beispiel (s. auch Gl. (1.3.20c))

 U AB

1

 r a

 R AB =

=

ln

 . 

(1.3.26d)

 I

2 πκl

 r i

Diskussion

1. 

Das Ergebnis erhält man angelehnt an die Interpretation von Gl. (1.3.26a)

auch wie folgt: Wir gehen von einem Zylindermantel (Dicke Δ   , Radius  , 

Länge  l) mit der Fläche  A( ) = 2 πl  aus. Wegen Δ     ist das Strömungsfeld

annähernd homogen und es gilt: Δ R = Δ /( κA). Über diesem Teilwiderstand

entsteht die Potenzialdifferenz Δ ϕ (s. Abb. 1.3.13c). Der Gesamtwiderstand

ergibt sich durch Ineinanderstecken“ von Zylindern mit verschiedenen Radien, 

” 



also Summation aller Δ R  von  r

 r a

i bis  r a:  R AB =

 r Δ R. Im Grenzfall Δ  →  d 

i

entsteht daraus durch Integration die Lösung Gl. (1.3.26a). 

2. 

Wir zeigen jetzt, dass das Strömungsfeld für Δ  =  r a  − r i   , also einen

dünnen Zylinder mit großem Radius  etwa homogen  ist und deshalb die Bemes-

sungsgleichung des linienhaften Leiters gilt. Aus ln( r a /r i) folgt durch Umfor-

mung ( r i  → )





 r a

 r a  − r i +  r i

Δ 

ln

= ln

= ln

1 +

 ≈ Δ   wegen ln (1 +  x)  ≈ x|

 . 

 r

 x 1

i

 r i
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Deshalb gilt für die dünne Schale das Ergebnis

1

Δ 

Δ 

 R AB =

=

(1.3.27)

2 πκl 

 κA( )

für den homogenen Leiter der Länge Δ   mit dem Querschnitt  A( ). 

Widerstandsberechnung durch Zerlegung in Teilwiderst¨

ande Die Aufteilung

des Strömungsgebietes in Teilbereiche mit etwa homogenen Strömungsverhältnissen

wird jetzt verallgemeinert. Wir zerlegen dazu das Strömungsfeld in Gebiete:

aus Stromröhren (mit dem Teilströmen Δ Iν); 

Bereiche dazu senkrecht und durch Äquipotenzialflächen abgegrenzt, zwischen

denen die Spannung Δ Uν  herrscht (Abb. 1.3.13c). Ein solches Gebiet hat den

Teilwiderstand  Rν = Δ Uν /Δ Iν. Das Strömungsfeld besteht aus Teilwiderstän-

den, die in einer Stromröhre in Reihe liegen und zwischen zwei Potenzialflächen

parallel geschaltet sind. 

Der Gesamtwiderstand wird nach den Regeln der Reihen- und Parallelschaltung

berechnet. Im Teilwiderstand Δ Rν  herrscht ein etwa homogenes Strömungsfeld mit

Δ Rν = Δ sν/κΔ Aν . Der Widerstand einer Stromröhre ist die Reihenschaltung der

Teilwiderstände, bei immer kürzerer Länge Δ sν  wird daraus



Δ s

d s

d s

d R r = lim

=

 → R r =

(1.3.28)

Δ s→ 0  κΔ A

 κΔ A

 κΔ A

und die Addition geht in eine Integration über. Im letzten Schritt wird noch über

alle Flächenelemente summiert. Diese Beziehung kann verwendet werden, wenn sich

die Leitfähigkeit oder der Querschnitt in Integrationsrichtung (Stromflussrichtung)

ändert, sie versagt allerdings bei abrupten Änderungen. 

Beispiel 1.3.3 Bogenf¨

ormiger Leiter Die Methode der Teilwiderstände eignet sich

auch für bogenförmige Leiter. 

 Tangentiale Stromeinpr¨

 agung  Hier (Abb. 1.3.14a) verlaufen die Strömungslinien

tangential zum Mittelpunkt eines Kreisbogens (mit dem Winkel  α): der Strom ist

über den Querschnitt gleich verteilt und der Teilleitwert beträgt

 r a



 κ d A

 κd  d r

 κd  d r

 κd

 r a

d G =

=

 → G =

=

ln

 . 

(1.3.29)

 αr

 αr

 αr

 α

 r i

 r i

Das Gesamtergebnis entsteht durch Parallelschalten von Teilleitwerten d G (Quer-

schnitt  d d r, Länge  αr). Der Winkel beträgt entweder  α =  π/ 2 für den Viertelbogen oder  α =  π  für den Halbkreiswiderstand. 

Der Widerstand  R AB kann auch aus der Potenzialverteilung ermittelt werden. Die

Stromdichte im Bogen erzeugt Äquipotenzialflächen senkrecht dazu (Abb. 1.3.14a), 

sie hängen vom Winkel  α  ab. Wählt man die Potenzialflächen  ϕ(0) = 0 und

 ϕ( π/ 2) =  U AB, so gilt  ϕ( α) = 2 U AB  · α/π. (Diese Lösung folgt aus der Laplaceglei-
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Abb. 1.3.14. Inhomogene Widerstandsbahnen. (a) Widerstandsbogen mit tangentialer und

(b) radialer Stromeinprägung. (c) Weitere inhomogene Widerstandsbahnen. Angegeben ist

das Verhältnis  m =  R AB /R S zum Schichtwiderstand  R S

chung (s. Gl. (2.5.7)) in Zylinderkoordinaten, die sich auf d2 ϕ/ d α 2 = 0 vereinfacht.) Die Stromdichte beträgt

 J

1  ∂ϕ

2 κU AB

=  κE =  −eακ

=  −eα

 r ∂α

 πr

und daraus folgt der Strom  I über  J ( r) mit d A =  −eαd d r



 r a



2 κdU AB

d r

2 κdU AB

 r a

 I =

 J ·  d A =

=

ln

 . 

 π

 r

 π

 r i

 A

 r i

Das ergibt den obigen Widerstand. Die Aufgabe kann nicht mit Vorgabe des Stro-

mes gelöst werden, da die Stromverteilung  J( r) nicht bekannt ist. Das Ergebnis

erlaubt einen wichtigen Schluss:

Der Widerstand eines gekrümmten Leiters (Querschnitt  db, Länge  l =  αr  mit

 r a =  b +  r i =  r) ist nach Gl. (1.3.29) stets kleiner als der eines geraden Leiters mit gleichem Querschnitt und gleicher Länge. 

Das Verhältnis beträgt  x/  ln(1 +  x) mit  x =  b/r, es sinkt von 1 für  x = 0 ( r → ∞) auf Werte unter 1 mit abnehmendem Radius. 

 Radiale Stromeinpr¨

 agung  Jetzt sinkt die Stromdichte  J( r) nach außen ab: der Strom

durchsetzt Widerstandsscheiben d R  mit dem Querschnitt  αrd  und der Länge d r
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(Abb. 1.3.14b). Dann beträgt der Gesamtwiderstand



 r a



d r

1

 r a

 R =

d R =

=

ln

 . 

(1.3.30)

 καdr

 καd

 r i

 r i

Widerstandsbögen nach Abb. 1.3.14a treten oft in Leiterbahnen auf Platinen auf, 

auch der Leiterwinkel in Abb. 1.3.10b gehört dazu. Dann gibt man den Widerstand

 R AB als Teil des Schichtwiderstands  R S (Gl. (2.3.6), Bd. 1) an. Die abgewinkelte

Leiterbahn (Dicke  d) der mittleren Leiterlänge  l ≈  3 b  lässt den Gesamtwiderstand

 R AB = 3 R S erwarten, die genaue Analyse (Experiment oder Berechnung über die

konforme Abbildung) liefert  R AB = 2 ,  56 R S: die Feldinhomogenität an der inneren

Ecke senkt den Gesamtwiderstand. Er ist stets kleiner als der Addition von Wi-

” 

derstandsquadraten“ (homogenes Feld) entspricht. In Abb. 1.3.14c wurden weitere

Formen zusammengestellt. Für den Viertelbogen ergibt sich mit Gl. (1.3.29) und

 r i =  b/ 2,  r a = 3 b/ 2  → R AB =  πR S / 2 ln 3 = 1 ,  43 R S, dazu kommt noch ein homogenes Leitersegment  R S zur Bahnverlängerung mit insgesamt  R AB = 2 ,  43 R S (genau

2 ,  45 R S). Auch der Halbbogenwiderstand ist mit Rechteckaußenbegrenzung wegen

seines größeren Querschnitts geringfügig kleiner. 

Die Ergebnisse des Bildes eignen sich zur Bemessung von Leiterbahnen gedruckter

oder integrierter Schaltungen (s. Abb. 2.3.3b, Bd. 1). 

1.3.4.2 Widerstandsberechnung ¨

uber die Verlustleistung

Der Widerstand lässt sich auch über die im Strömungsfeld umgesetzte Ver-

lustleistung ermitteln. Man speist dazu z. B. einen Strom ein und ermittelt

der Reihe nach: Stromdichte, Feldstärke, Verlustleistungsdichte und schließ-

lich die Verlustleistung, die vom Widerstand abhängt:

 J 2

 I

 → J → E → p =  J · E =

 →

 κ



 P

(1.3.31)

V

 P V =

 p  d V =  I 2 R;  R =

 . 

 I 2

 V

Das Verfahren umgeht die Bestimmung der Spannung (und damit die Kennt-

nis der Potenzialflächen), verlagert das Problem aber auf das Volumen. 

1.3.4.3 Str¨

omungsfeld und Gleichstromkreis

Vom Strömungsfeld aus werden jetzt die Vereinfachungen deutlich, die die

Integralgrößen Strom, Spannung und Widerstand bringen (Abb. 1.3.15a):

statt eine Trägerströmung durch eine Antriebsquelle für einzelne Feldbe-

reiche zu untersuchen, erlauben die Integralgrößen zwischen ausgezeichne-

ten Stellen, z. B. den Schnittstellen A, B, C, D, die Angabe der Ströme  in

diesen Punkten und der Spannungen  zwischen  ihnen. Die Verzweigungsbe-

” 

reiche“ schrumpfen auf einfache Knoten. Der Widerstandsbegriff für einzel-

ne Strömungsstrecken“ macht das dahinter stehende Strömungsfeld uninte-

” 
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Abb. 1.3.15. Strömungsfeld und Grundstromkreis. (a) Energiemodell des Grundstromkrei-

ses. (b) Zuordnung von Strömungsfeldern. (c) Ersatzschaltung der Spannungsquelle

ressant. Die Widerstände sind durch linienhafte (widerstandslos gedachte)

Leiter verbunden. So werden die Bereiche des Strömungsfeldes durch ein

Netzwerk aus Bauelementen und Verbindungsleitungen ersetzt. 

Die Anwendung der Begriffe Spannung, Strom und Widerstand überführt

das stationäre Strömungsfeld in einen Gleichstromkreis. Dort haben sie die

gleiche Bedeutung, wie Feldstärke, Potenzial, Stromdichte und Leitfähigkeit

im Feld. 

Energieumsatz im Str¨

omungsfeld Wir verbinden jetzt das Energieverhalten

des Grundstromkreises (Abb. 1.3.15a) mit dem Strömungsfeld. Er umfasst

den Verbraucherwiderstand und die Spannungsquelle (innenwiderstandsfrei), 

letztere modelliert durch ein

aktives Strömungsfeld“ (Abb. 1.3.15c). Der

” 

Verbindung beider Elemente durch ideale Verbindungsleiter entspricht eine

jeweils gemeinsame Potenzialfläche. Auf ihr können Ladungen ohne Ener-

gieaufwand verschoben werden. Im

passiven Strömungsfeld“ wird die zu-

” 

geführte elektrische Energie in Wärmeenergie umgesetzt und die (positiven)

Ladungsträger bewegen sich in Feldrichtung (Spannungsabfall  U AB, Wider-

stand  R AB). Das zugehörige Feld  E  nehmen wir zunächst als gegeben an. 

Bewegt sich die Ladung  entgegen  der Feldrichtung, und das  muss  im akti-

ven Strömungsfeld erfolgen, so erhöht sich ihre potenzielle Energie um  W AB. 

Dazu ist Arbeit gegen das Feld zu leisten. Das erfordert  Energiezufuhr von

 außen, d. h. durch Umformung von nichtelektrischer in elektrische Energie. 

Für diese Energieerhöhung wurde die elektromotorische Kraft (EMK) oder

” 

Urspannung“ (Gl. (1.5.6), Bd. 1) eingeführt. 

Ein Strömungsfeld, das die potenzielle Energie einer (positiven) durchlau-

fenden Ladung erhöht, hat als Umformort nichtelektrischer in elektrische

Energie einige Besonderheiten:
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1. 

Ladungsbewegung ( ∼  Stromdichte  J)  entgegen  der wirkenden Kraft  F ∼

 E ( E: Feldstärke im rechten Strömungsfeld, Abb. 1.3.15a). 

2. 

Keine Proportionalität zwischen  J  und  E. 

3. 

Jede Energieumformung nichtelektrisch  →  elektrisch bewirkt eine An-

triebskraft  F  i auf Ladungen  Q. Ihr kann gleichwertig eine  eingeprägte, in-

nere oder  fiktive Feldst¨

 arke E i zugeordnet werden:  E i =  F  i /Q. Sie treibt

Ladungsträger (einer Sorte) an,  trennt  also Ladungsträgerpaare durch:

Grenzschichteffekte (direkte Energieumwandlung), 

elektrochemische Effekte (galvanische Elemente, Brennstoffzelle), 

elektromagnetische Induktion (Energiewandlung magnetisch  →  elek-

trisch, Kap. 2.3). 

4. 

Durch Ladungsträgertrennung ( → E i) entsteht  auch im stromlosen Zu-

 stand  ein elektrisches Feld  E  und damit eine rücktreibende Kraft  F  a =

 QE  auf die Ladungsträger, auch außerhalb der Anordnung. In der Quelle

versucht es, die Trägertrennung durch die zugeordnete Kraft  F  a rück-

gängig zu machen. Ohne Stromfluss stellt sich ein Gleichgewicht  F  i +

 F  a = 0 beider Kräfte oder  E i =  −E  ein. 

5. 

Die eingeprägte Feldstärke  E i kann nicht, wie  E, durch ein Potenzial be-

schrieben werden. Wir ordnen diesen Feldstärken über das Linienintegral

Spannungen zu:

 A



 B



 E BA

=

 E i  ·  d s, 

 E ·  d s =

 U AB . 



(1.3.32)

EMK

 B

 A

Spannungsabfall

Die Größe  E BA heißt  elektromotorische Kraft (abgek. EMK) oder  Ur-

 spannung (s. Gl. (1.5.6), Bd. 1). Sie kennzeichnet den  Bewegungsantrieb

 auf Ladungstr¨

 ager (bei geschlossenem Kreis) durch Erhöhung der poten-

ziellen Energie einer Ladung  Q  beim Durchlauf durch eine Spannungs-

quelle (Abb. 1.3.15c). Für Richtungsfestlegung und Schaltsymbol gilt

Elektro-

Spannungs-

motorische

 E BA =  E q =  −E AB =  U AB

(1.3.33a)

abfall. 

Kraft

So wird die Spannungsquelle dargestellt durch (Gl. (1.6.2), Bd. 1):

1. 

die elektromotorische Kraft  E =  E q (Urspannung) mit der Bezugspfeil-

richtung von  −  nach +. 

2. 

ihre  Leerlauf-  oder äußere Spannung  U AB als  Spannungsabfall zwischen

 den Klemmen. Das ist die  Quellenspannung U q (Bezugssinn nach

Abb. 1.3.15c), messbar als Leerlaufspannung. 
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Die beiden Darstellungen der Spannungsquelle führen auf zwei Formen des

Maschensatzes (s. Gl. (1.6.3), (1.6.4), Bd. 1). Wir verwenden, der Norm ent-

sprechend, die Quellenspannung. 

Nach den Vorgängen in der stromlosen Spannungsquelle betrachten wir ab-

schließend den stromdurchflossenen Grundstromkreis mit der Klemmenspan-

nung  U AB =  U q  − IR i, weil jetzt in der stromdurchflossenen Spannungsquelle

elektrisches ( E) und eingeprägtes Feld  E i auf die Ladungsträger wirken:

 E +  E i =  J/κ  Aktives, stromdurchflossenes Strömungsfeld (1.3.33b)

mit  E =  −E i im stromlosen Fall. Durch Integration längs des Weges B  →  A

(in Stromflussrichtung, Abb. 1.3.15a) über die Quelle folgt

A



A



A

  J

 E ·  d s +

 E i  ·  d s =  U BA +  E BA =

 ·  d s =  IR i

(1.3.33c)

 κ

B

B

B

oder mit  U AB =  −U BA schließlich  U AB =  E BA  − IR i =  E q  − IR i =  U q  − IR i. 

Leistungsumsatz im homogenen Str¨

omungsfeld Eine vom Strom  I  während

der Zeitspanne Δ t  geführte (positive) Ladung Δ Q  erfährt einen Zu-

wachs Δ W el an kinetischer Energie aus dem Feld nach Maßgabe der durch-

laufenen Potenzialdifferenz  ϕ A  − ϕ B: Δ W el = ( ϕ A  − ϕ B)Δ Q =  U AB IΔ t. Sie ist positiv, wenn sich die positive Ladung Δ Q  vom höheren ( ϕ A) zum niedrigeren Potenzial ( ϕ B) bewegt. Die geleistete Arbeit Δ W el pro Zeitspanne Δ t

heißt Leistung (s. Gl. (1.6.5), Bd. 1)

Δ W el

d W el

 p( t) = lim

=

=  U I. 

(1.3.34)

Δ t→ 0

Δ t

d t

Sie verteilt sich beim linienhaften Leiter gleichmäßig über das Volumen und

erwärmt ihn. Die  spezifische  Leistung oder die  (Verlust)leistungsdichte p, 

verstanden als Teilleistung Δ P , die im Volumenelement Δ V  umgesetzt wird, 

beträgt dann im homogenen Feld mit dem Leitervolumen  V =  lA

 P

 U I

 U

 p =

=

=

 · I =  E · J. 

(1.3.35)

 V

 Al

 l

 A

Die Leistungsdichte ist als Produkt von Feldstärke und Stromdichte dem

Raumpunkt des Strömungsfeldes zugeordnet. 

Wir vertiefen diesen Aspekt später für das inhomogene Strömungsfeld. 

Zusammenfassung Tabelle 1.7 fasst die Grundeigenschaften des stationären

Strömungsfeldes zusammen. Seine Feldgrößen  E,  J (Materialparameter  κ)

sind direkt mit den Globalgrößen  U ,  I  und  R  verkoppelt. Es ist ein Po-

tenzialfeld mit den Merkmalen Wirbelfreiheit (Netzwerkausdruck Maschen-
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Tab. 1.7. Grundbeziehungen des elektrischen Strömungsfeldes

Feldgr¨

oße

Stromdichte  J

Feldst¨

arke  E

Beziehung

(Eigenschaft)

(Eigenschaft)









 A J ·  d A = 0

 s E ·  d s = 0

 J =  κE

Verlustleistungsdichte

 p V =  J · E =  κ|E| 2 =  |J| 2 /κ



 B

Globalgrößen

 I =  A J ·  d A

 U AB =

 E ·  d s I =  G

A

AB U AB

B



 E ·  d s

Widerstand

 R

A



AB =

1

=

 G AB

 J ·  d A

A





Verlustleistung

 P V =

 p Vd V =  V J · E d V

satz) und Quellenfreiheit (Netzwerkausdruck Knotensatz). Die dem Feld zu-

geführte elektrische Leistung wird voll in Wärme umgesetzt und in der Netz-

werkdarstellung durch den Widerstand ausgedrückt. Die Grenzflächeneigen-

schaften [Stetigkeit der Normalkomponenten der Stromdichte (Flussgröße)

und der Tangentialkomponente der Feldstärke (Spannungsgröße)] finden ihre

Entsprechung im Verhalten des elektrostatischen und magnetischen Feldes. 

Eine praktische Folge ist die Feldfreiheit idealer Leiter mit der Oberfläche als

Potenzialfläche. 

1.3.5 Leitungsmechanismen im Str¨

omungsfeld

Einf¨

uhrung Zur Stromdichte  J  tragen im Strömungsfeld alle beweglichen La-

dungsträger bei:  Ionen  und  Elektronen  in  Fl¨

 ussigkeiten,  Gasen  und dem  Va-

 kuum  sowie Elektronen in  Festk¨

 orpern. 

Der Leitungsmechanismus wird bestimmt:

1. 

vom  Einfluss der bewegten Ladung  auf die im Raum eventuell vorhandene un-

bewegliche Ladung. Kompensieren sich beide, wie in Leitern, dann erfolgt der

Stromfluss  raumladungsfrei  und es gilt das Ohmsche Gesetz. Sonst überwiegt

eine  Raumladung  und es fließt ein  raumladungsbegrenzter Strom, typisch für die

Elektronenröhre. 

2. 

vom Materialeinfluss auf die

 mechanische“ Tr¨

 agerbewegung, etwa als Behin-

 ” 

derung durch  Zusammenst¨

 oße mit dem Gitter. Zwei Fälle sind charakteristisch:

(a) keine Behinderung (Vakuum, Gase). Dann beschleunigt das elektrische

Feld die Ladung  q  beständig. 
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(b)  starke Behinderung  in Festkörpern und Flüssigkeiten (Ionentransport, Rei-

bungsvorgänge), weil die Ladungsträger mit Gitteratomen zusammensto-

ßen oder Reibungsvorgänge erfahren. 

1.3.5.1 Leitungsvorg¨

ange in Leitern und Halbleitern

Festkörper unterteilt man nach der Leitfähigkeit in  Leiter (Metalle),  Halb-

 leiter  und  Isolatoren. Das Verhalten der Elektronen wird entweder mit dem

 Bindungs-  oder  Korpuskularmodell  oder  wellenmechanisch mit dem B¨

 ander-

 modell  beschrieben. Wir beschränken uns auf das erste, weil es zum ersten

Verständnis der Leitungsvorgänge ausreicht14. Danach haben die Atome im

Festkörper eine durch ihre Bindungskräfte verursachte feste Lage. Ist sie ge-

ordnet, so spricht man vom  Gitter. Durch Zufuhr ausreichender Energie, dazu

reicht die Zimmertemperatur bei Metallen, brechen Gitterbindungen auf und

es entstehen freie Elektronen. Ihre Bewegung folgt den Gesetzen der klassi-

schen Mechanik. 

Ladungstr¨

ager in Halbleitern  Einkristalline  Halbleiter sind:

 Silizium  für Halbleiterbauelemente, das Germanium verdrängte und

 Mischhalbleiter (GaAs, GaP,  . . . ) aus der 3. und 5. Gruppe des periodi-

schen Systems für optoelektronische Bauelemente. 

 Halbleiter  unterscheiden sich von Metallen u.a. durch:

eine geringere Leitfähigkeit, 

ihre starke Abhängigkeit von Verunreinigungen (Störstellen) und ener-

getischen Einwirkungen (Licht, Wärme), 

 L¨

 ocher  neben Elektronen als zweiter Trägerart, 

Generations- und Rekombinationsvorgänge. 

Silizium besitzt eine Diamantgitterstruktur, wobei jedes Atom vier gleich weit

entfernte Nachbarn hat. In diesem 4-wertigen Material gehören zu jeder kova-

lenten Bindung zwischen zwei Atomen ein Valenzelektron eines jeden Atoms. 

Bei tiefer Temperatur sind keine Bindungen aufgebrochen, es gibt keine freien

Elektronen und der Halbleiter verhält sich wie ein Isolator. Mit zunehmender

Temperatur geraten die Gitteratome in Wärmeschwingungen, und einzelne

14 Die leistungsfähigere Beschreibung mit dem Bändermodell hat ihre Berechtigung

z. B. bei Halbleiterbauelementen (und setzt zunächst den stromlosen Halbleiter vor-

aus). Für stromdurchflossene Halbleiter wird es rasch komplizierter, was Lehrbücher

oft übergehen. 
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Abb. 1.3.16. Leitungsvorgang in Halbleitern. (a) Eigenleitung in Silizium, Darstellung der

Atombindungen. (b) Störleitung ( n-Leitung): Elektronenabgabe durch Donatorstörstellen. 

Meist werden die Si-Bindungen nicht dargestellt. (c)  p-Leitung: Elektronenaufnahme durch

Akzeptorstörstellen

Bindungen brechen auf. Jedes dabei entstehende (frei bewegliche) Elektron

hinterlässt am alten Platz eine ungesättigte Bindung, ein  Loch  oder  Defekt-

 elektron, das unter Einbezug der Atomrumpfladung einfach positiv geladen ist

(Abb. 1.3.16a).  So kann das Verhalten des l¨

 uckenbehafteten Bindungssystems

 ph¨

 anomenologisch durch ein komplettes Bindungssystem ersetzt werden, das

 neben freien Elektronen auch L¨

 ocher hat.  Diese Elektronen-Loch-Paarbildung

steht im Gleichgewicht mit dem Umkehrprozess: freie Elektronen können eine

Fehlstelle bei Annäherung wieder auffüllen, also mit dem Loch  rekombinie-

 ren. Dadurch bildet sich im thermodynamischen Gleichgewicht als mittlere

Trägerdichte die  Eigenleitungsdichte  heraus

 n 0 =  p 0 =  n i . 

Eigenleitungsdichte (1.3.36)

Eigenleitung mit gleicher Elektronen- ( n 0) und Löcherdichte ( p 0) ist eine

spezifische Halbleitereigenschaft des ungestörten Kristallgitters. 

Bei Zimmertemperatur gelten als Richtwerte:

Si:  n i = 1 ,  6  ·  1010 cm − 3, GeQ:  n i = 2 ,  4  ·  1013 cm − 3, GaAs:  n i = 1 ,  3  ·  106 cm − 3. 

Sie hängt über den  Bandabstand W G oder die  Generationsenergie zum Auf-

 brechen einer Gitterbindung  von der Temperatur ab









 T

 W G( T − T 0)

 n 2 =

exp

i

 n 2i0

 . 

(1.3.37)

 T 0

 kT T 0

Der exponentielle Term dominiert und ist Ursache der starken Temperatur-

abhängigkeit vieler Kennwerte von Halbleiterbauelementen, z. B. des Dioden-

sättigungsstromes  I S (Gl. (2.3.14), Bd. 1). Typische Bandabstände betragen

Si:  W G = 1 ,  12 eV, Ge:  W G = 0 ,  67 eV, GaAs:  W G = 1 ,  43 eV. 
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Dotierte Halbleiter

Durch Einbau von Störstellen (Fremdatome) in das Kristallgitter lassen sich

Leitfähigkeit und Leitungstyp eines Halbleiters einseitig stark ändern. 

Es bewirkt der Zusatz:

 f¨

 unfwertiger  Dotierungsstoffe (P, As, Sb) eine Abgabe des fünften Valenz-

elektrons. So entsteht ein  freies Elektron  und der Halbleiter wird  n-leitend

(Abb. 1.3.16b). Entsprechende Störstellen heißen  Donatoren (Dichte  N +). 

D

 dreiwertiger  Dotierungsstoffe (B, Al, Ga) eine  Bindungsl¨

 ucke  im Halblei-

ter, die von freien Elektronen aufgefüllt werden kann. Solche Störstellen

heißen  Akzeptoren (Dichte  N −) und bewirken einen Überschuss an  L¨

 ochern

A

und der Halbleiter wird  p-leitend (Abb. 1.3.16c). 

Majorit¨

ats-, Minorit¨

atstr¨

ager Im thermodynamischen Gleichgewicht werden

die Trägerdichten im neutralen, homogen dotierten Halbleiter bestimmt durch

die  Ladungstr¨

 agerneutralit¨

 at

 n 0 +  N − =

Neutralit

A

 p 0 +  N +

D

ätsbedingung (1.3.38)

und das  Massenwirkungsgesetz

 n 0 p 0 =  n p0 p p0 =  n n0 p n0 =  n 2i . 

Massenwirkungsgesetz (1.3.39)

Unabhängig von der Störstellendichte ist das Produkt von Elektronen- und

Löcherdichte im thermodynamischen Gleichgewicht eine Materialkenngröße. 

Für einen  n-Typ Halbleiter ( N − = 0) gilt dann

A





1







2

 n



n0 =

 N +

+ 4 n 2 +  N +  ≈ N +

2

D

i

D

D  N D n i







 n 2

1







(1.3.40)

2

 p

i



n0

=

=

 N +

+ 4 n 2  − N +  ≈ n 2i

 . 

 n

D

i

D



n0

2

 N +

D  N D n i

Im  n-dotierten Halbleiter bestimmen die Donatoren  N +  

D

 n i die in

der Mehrzahl vorhandenen Träger, die  Majorit¨

 atstr¨

 agerdichte nn 0 (hier

Elektronen). Die in der Minderheit vorkommende Trägerdichte, die  Mino-

 rit¨

 atstr¨

 ager p n0, liegen über das Massenwirkungsgesetz fest. 

Das Verhältnis beider Dichten beträgt bei gängigen Dotierungen bis 1010(!). 

Im  p-dotierten Halbleitern bilden sinngemäß Akzeptoren  N − 

A

 n i die Majo-

ritätsträger. Die Funktion wichtiger Halbleiterbauelemente wie  pn- Übergang

und Bipolartransistor basiert auf Minoritätsträgern, Feldeffekttransistoren

dagegen auf Majoritätsträgern. 
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Tr¨

agertransport, Feld- und Diffusionsstrom Stromtransport entsteht im Halb-

leiter durch das elektrische Feld, durch räumliche Trägerdichteunterschiede

(Diffusionsstrom) oder lokal verschiedene Temperatur (Thermostrom, nicht

betrachtet). Für den Feldstrom übernehmen wir das Modell Gl. (1.3.3)ff. 

 J =  J p +  J n =  q( pv p  − nv n) =  q ( pμ p +  nμ n)  E =  κE. 

(1.3.41)

Feldstromdichte

Der Feldstrom (Driftstrom) hängt von der Trägerdichte und ihrer Beweg-

lichkeit ab, im Störhalbleiter hauptsächlich von Majoritätsträgern. 

Die Beweglichkeiten sind in Halbleitern deutlich größer als in Metallen. Für

Elektronen in Silizium gilt  μ n = 1350 cm2 (Vs) − 1 und für Löcher  μ p =

480 cm2 (Vs) − 1. Die Beweglichkeit sinkt nach hohen Feldstärken durch zu-

nehmende Streuung der Ladungsträger (Abb. 1.3.17a). Bei hohem Feld er-

reicht die Trägergeschwindigkeit deshalb die  thermische Grenzgeschwindigkeit

 v th  ≈  107 cm / s. 

Diffusionsstrom Eine gerichtete Bewegung erfolgt bei Teilchen, die einer ther-

mischen Wimmelbewegung (Ursache der Diffusion) unterliegen, auch durch

lokale  Tr¨

 agerdichteunterschiede. Sie versucht stets einen Ausgleich des Dichte-

unterschiedes. Dieser Vorgang wird als  Diffusion  bezeichnet. Er ist  nicht  an

geladene Teilchen gebunden und wirkt auch ohne elektrisches Feld. Orte mit

starken Trägerdichteunterschieden sind Grenzflächen (Vorgänge wie Osmo-

se, Lösungstension, Thermospannung) und die Halbleitergrenzflächensysteme

Metall-Halbleiter- und  pn- Übergang. 

In Abb. 1.3.17b weist das Konzentrationsgefälle  ∂N

 ∂x  in  x-Richtung und die

Teilchen (Löcher wie Elektronen) fließen entsprechend. Die Teilchendiffusi-

onsstromdichte ist positiv und versucht den Ausgleich der Konzentrationsun-

terschiede. Die Diffusionsstromdichte  geladener  Teilchen entsteht durch Mul-

tiplikation mit der jeweiligen Ladung





 ∂N

 ∂p

 J pxDiff = (+ q)  −D N

=  −qD p

 , 

 ∂x

 ∂x





Diffusionsstromdichte (1.3.42)

 ∂N

 ∂n

 J nxDiff = ( −q)  −D N

=  qD n

 . 

 ∂x

 ∂x

Ursache des Diffusionsstromes sind lokale Trägerdichteunterschiede. Der

Strom ist dem Dichtegefälle (Gradient) und der Diffusionskonstanten pro-

portional. 

Die Diffusionsstromdichte zeigt für Löcher in die Richtung der Teilchenstromdichte, 

während sie für Elektronen durch die negative Ladung vom Ort geringerer Kon-

zentration zum Ort höherer Konzentration gerichtet ist. Die Diffusionskonstanten
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Abb. 1.3.17. Feld- und Diffusionsstrom im Halbleiter. (a) Driftgeschwindigkeit der Löcher

und Elektronen in Silizium. (b) Diffusionsstrom für Elektronen und Löcher; man beachte

den Unterschied zwischen Trägerfluss und Stromdichte

 D p,  D n hängen über die  Einstein-Nernst-Townsend-Beziehung mit Temperatur-

spannung  U T und Beweglichkeit zusammen

 D p

 D n

 kT

=

=

=  U T = 26 mV |

 . 

(1.3.43)

 μ

 T =300 K

p

 μ n

 q

Gesamtstromdichte In Halbleitern erfolgen Drift- und Diffusionsbewegungen

meist gleichzeitig. Beide Vorgänge überlagern sich zur Gesamtstromdichte je

für Löcher und Elektronen

 J p =  qμ p pE − qD p grad  p, 

 J n =  qμ n nE +  qD n grad  n, 

Transportgleichung (1.3.44)

 J =  J p +  J n . 

 Gleichgewicht zwischen Feld- und Diffusionsstrom  Der Gesamtstrom (einer

Trägersorte) kann verschwinden (stromloser Zustand), wenn entweder beide

Stromkomponenten null sind oder sich  lokal kompensieren. 

Dabei verursacht die Diffusion ein lokales Abfließen von Ladungsträgern und der

vorher ladungsneutrale Zustand geht in eine Raumladungsverteilung über. Sie ist

Ursache einer Feldzone, die einen Feldstrom antreibt mit der Tendenz, den Diffusi-

onsstrom zu kompensieren. Das elektrische Feld bewirkt eine lokale Spannung (mit

der Tendenz, eine weitere Diffusion zu verhindern). 

Für einen  p-Halbleiter gilt bei verschwindender Löcherstromdichte  J px = 0

mit  E =  − d ϕ/ d x: 0 =  −qpμ pd ϕ/ d x − qD p d p/ d x  oder d ϕ

d p

=  − U T

d x

 p  d x

 p( x 2)



 p

Diffusionsspannung (1.3.45)

2

 U

d p

D

=  ϕ 1  − ϕ 2 =  U T

 p =  U T ln

 . 

 p( x

 p

1)

1
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Ein Trägergefälle verursacht im stromlosen Zustand zwischen zwei Bereichen

durch die Wechselwirkung von Diffusionsstrom, Raumladungsaufbau und

Feldstrom ein lokales Gleichgewicht (je für Elektronen und Löcher). Dabei

baut sich ein Potenzialunterschied auf, die  Diffusionsspannung. 

Typische Diffusionsspannungen betragen für Si  ≈  0 ,  7 V. Die zugehörige Feld-

stärke im Raumladungsbereich liegt bei einigen kV/cm. Beispielhaft entsteht

eine solche Diffusionsspannung später im  pn- Übergang. 

Kontinuit¨

at der Ladungstr¨

agerstr¨

omung, Kontinuit¨

atsgleichung* Die Kontinu-

itätsgleichung Gl. (1.3.7) erlaubt keinen Rückschluss auf das Verhalten einzelner

Ladungsträgergruppen. Wir formulieren sie deshalb für Elektronen und Löcher in

Halbleitern15

 ∂

 ∂ 



0 =

+ div  J =  q

 p − n +  N+  − N− + div ( J  n +  J  p)  . 

(1.3.46)

 ∂t

 ∂t

D

A

Zur Raumladungsdichte tragen Löcher, Elektronen und die Ladungen der (ortsfes-

ten) Störstellen bei. Trennt man Gl. (1.3.46) je in Löcher- und Elektronenanteile, 

so folgt für die jeweilige Bilanz









 − ∂

1

 p − N− −  1 div  J  p =  − ∂ n − N+ +

div  J n . 

(1.3.47)

 ∂t

A

 q

 ∂t

D

 q

Diese Bilanzen gelten für jede Trägersorte nur dann, wenn beide einer gemeinsamen

Funktion, der  ¨

 Uberschussrekombinationsrate R( r, t) entsprechen:





 − ∂ p − N− −  1 div  J p =  − ∂p −  1 div  J p =  R( r, t) =  R p  − G p

 ∂t

A

 q

 ∂t

 q





 − ∂

1

1

 n − N+ +

div  J  n =  − ∂n +

div  J  n =  R( r, t) =  R n  − G n . 

 ∂t

D

 q

 ∂t

 q

 ∂N+

 ∂N−

Dabei wurde

D

A

 ∂t =  ∂t = 0 angesetzt, weil sich die Störstellenzahl zeitlich

nicht ändert. Für eindimensionale Vorgänge werden daraus die  Kontinuit¨

 ats-

 gleichungen f¨

 ur L¨

 ocher und Elektronen

 ∂p

 ∂J p

=  −  1

+  G p  − R p , 

 ∂t

 q ∂x

Kontinuitätsgleichungen (1.3.48)

 ∂n

1  ∂J n

=

+  G n  − R n . 

 ∂t

 q ∂x

Die Kontinuitätsgleichung beschreibt die zeitliche Änderung  einer  Ladungs-

trägersorte im Volumen durch Rekombination, Generation sowie Zu- oder

Abfluss eines Stromes. 

Häufig dient als Modell der Überschussrekombination die  direkte Rekombi-

 nation (Anregung:  thermische Generation)

15 Wir wählen hier bewusst diese Form, weil die integrale Darstellung in Halbleitern

nur in Sonderfällen angewendet wird. 
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 p n( x)  − p n0

 R p  − G p =

 . 

Einfaches Rekombinationsmodell (1.3.49)

 τ p

Weicht die Minoritätsdichte  p n( x) (Löcherdichte im  n-Halbleiter) durch ei-

ne äußere Störung vom Gleichgewichtswert  p n0 ab, so baut sich die Dichte-

abweichung (am Ende ihrer Ursache) durch überwiegende Rekombination

nach Maßgabe der  Minorit¨

 atslebensdauer τ p ab. Ein analoger Vorgang gilt

für Elektronen in einem  p-Gebiet. 

Wir greifen darauf bei der zusammenfassenden Diskussion der Kontinuitäts-

gleichung zurück. 

Vergleich: Stromfluss in Halbleitern und Leitern

Der Stromfluss in Halbleitern (und Halbleiterbauelementen) erfolgt durch

gleichzeitiges Zusammenwirken von Transport-, Kontinuitäts- und Poisson-

scher Gleichung. 

Sie bestimmen den räumlichen und zeitlichen Verlauf der Elektronen- und

Löcherdichten und somit das Verhalten von Strom und Spannung an den

Klemmen. Unter bestimmen Bedingungen kann das Minoritäts- und Majo-

ritätsverhalten getrennt analysiert werden. 

Weil in Metallen kein Trägerdichtegefälle und (praktisch) auch keine Raumladungs-

zone möglich ist, entfällt die Poissonsche Gleichung, die Kontinuitätsgleichung wird

zur Knotengleichung und die Transportgleichung vereinfacht sich zum Ohmschen

Gesetz im Strömungsfeld. 

1.3.5.2 Stromleitung in Fl¨

ussigkeiten, elektrochemische Spannungsquellen

Einf¨

uhrung In Flüssigkeiten tragen Elektronen und  Ionen  zum Strom bei. Ne-

ben der Ladung wird auch  Materie  bewegt. Dabei kann sich die Flüssigkeit

zersetzen. Leitende Flüssigkeiten (und Schmelzen) bezeichnet man als  Elek-

 trolyt, den zugehörigen Leitungsmechanismus als  elektrolytische Leitung  und

den Gesamtvorgang (einschließlich stofflicher Veränderungen) als  Elektrolyse. 

Elektrolytische Zelle, elektrolytische Leitung Die Grundanordnung für die

Elektrolyse ist die  elektrolytische Zelle  aus zwei Elektroden, dem Elektrolyt

und einem Gefäß (Abb. 1.3.18). Sie dient zur Wandlung:

 elektrischer Energie in chemische (elektrolytische Stoffumwandlung, Gal-

vanotechnik, Aufladevorgang in Sekundärelementen); 

 chemischer Energie in elektrische (galvanisches Primärelement, Entla-

dung von Sekundärelementen). 
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Abb. 1.3.18. Elektrolytische Zelle. (a) Als Verbraucher elektrischer Energie, Beispiel Io-

nenbewegung in verdünnter Salzsäure. (b) Zur Erzeugung elektrischer Energie

Der Stromfluss hängt vom Elektrolyt und den Vorgängen an den Elektroden

ab. Das sind die  elektronenabgebende Kathode  und die  elektronensammelnde

 Anode. Beide können als Quellen oder Senken von Ionen wirken. Die (verein-

fachte) Ersatzschaltung einer Zelle ist die Reihenschaltung einer Spannungs-

quelle mit einem Widerstand. Quellenspannungen entstehen an den Elektro-

dengrenzflächen, der Widerstand modelliert hauptsächlich den Elektrolyt. 

Leitungsvorgang Elektrolyte umfassen Salze, Säuren und Basen. Reines Was-

ser ist ein schlechter, nur schwach dissoziierter Leiter, erst eine Salzzuga-

be erhöht die Leitfähigkeit. Bei Stromfluss durch eine wässrige Lösung (mit

Salzsäure) entstehen Gasblasen an den Elektroden: Chlorgas (Cl) an der An-

ode und Wasserstoff (H) an der Kathode. Durch die Wasserdipole wird die

Salzsäure in ihre Bestandteile (ein H+- und ein Cl −-Ion) aufgespalten, sie

dissoziiert. Dieser Vorgang erfolgt nicht primär durch das Feld, es bewegt

nur die Ionen: H+-Ionen wandern als Kationen zur Kathode und negative

Cl −-Ionen als Anionen zur Anode. Dort geben sie ihre Überschussladung ab

bzw. ergänzen ihre Mangelladung, werden damit zu Atomen oder Molekülen

und steigen als Gas auf. 

Der Stromtransport im Elektrolyten geschieht überwiegend durch beweg-

liche Ionen: Atome oder Moleküle, die als Ganzes elektrisch nicht neutral

sind und eine oder mehrere Ladungen tragen:

positive Ladung (Kationen): Wasserstoff, ionisierte Metalle (Kennzeichen +

(H+, Cu++)), 
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negative Ladung (Anionen): nichtmetallische Molekülgruppen (Kennzeichen  −

(Cl −, SO  −−

4

)). 

Ionen entstehen durch Elektronentransfer bei der Spaltung polarer Moleküle

(Dissoziation, z. B. H2O  →  OH − + H+). 

Anionen wandern im Feld zur Anode, Kationen zur Kathode. 

Bei Lösung von Salzen, Säuren oder Basen (z. B. in Wasser) dissoziieren die Ver-

bindungen in je ein Kation und ein Anion (z. B. H+ + Cl −, Cu++ + SO −−) mit

4

einer, zwei oder mehr positiven oder negativen Elementarladung. Dann gibt es in

der Lösung zerfallene und nichtzerfallene Moleküle, das Verhältnis ist der  Dissozia-

 tionsgrad. Er steigt mit der Temperatur und Konzentration. 

Stromdichte Die Stromdichte  J  im Elektrolyt hängt von der Ionendichte  n, 

ihrer Geschwindigkeit  v  und der Wertigkeit  z  der Ionen ab, es gilt gemäß

Gl. (1.3.3)

 J =  J+ +  J− =  z+ qn+ v+  − z−qn−v−. 

(1.3.50)

Die Geschwindigkeiten werden, wie bei Halbleitern, vom elektrischen Feld

und den lokalen Dichtegradienten (Diffusionsstrom) bestimmt. Bei Vernach-

lässigung der Diffusion erfolgt der Ionentransport als Driftstrom mit der

Leitfähigkeit

 κ =  zqn ( μ+ +  μ−) =  z qN A

 · n ( μ+ +  μ−)  . 

(1.3.51)

 N A

 F

Rechts wurde die Ionendichte  n  auf die  Avogadro-Konstante  N A = 6 ,  02  ·

1023 mol − 1 bezogen und die Faradaykonstante  F  benutzt (s. u.). 

Beispielsweise hat eine 0,2 molare Salzsäure bei Zimmertemperatur mit einer mitt-

leren Beweglichkeit  μ+ +  μ− = 50  ·  10 − 4 cm2/(Vs) mit  n = 0 ,  2 N A mol/Liter =

2  ·  10 − 4 N Amol/cm − 3 die Leitfähigkeit (Wertigkeiten  z+ =  z− = 1)

 κ = 2  ·  10 − 4mol  ·  cm − 3 96 ,  5  ·  103 As  ·  50  ·  10 − 4 cm2 = 9 ,  610 − 2(Ω cm) − 1 . 

mol

Vs

Die Leitfähigkeit liegt deutlich unter der von Metallen und der TK ist ne-

gativ, weil mit steigender Temperatur die Dissoziation zunimmt. 

Stofftransport, Faradaysches Gesetze Die Ionenleitung im Elektrolyt verur-

sacht einen  Stofftransport, da die transportierte Ladung an die gegenüber

Elektronen größere Ionenmasse gebunden ist. Kommen  N  Ionen (mit der

Wertigkeit  z) an der Elektrode an, so führen sie die Ladung  Q =  N zq, diese  N

Ionen haben die Masse  m =  N A r u. ( A r relative Atommasse,  u  atomare Mas-

seneinheit, 1 u = 1 ,  6606  ·  10 − 27 kg (1/12 der Masse des Kohlenstoffatoms)). 

Zusammenfassen beider Beziehungen ergibt
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 A r u

g

 m =  cQ =  cIt =

 It

 , 

 z ·  96470

As

 A

1. Faradaysches Gesetz (1.3.52)

r u  g

 c =

 . 

 zq  As

Die im Elektrolyt transportierte und an den Elektroden abgeschiedene

Masse eines Stoffes ist der Ladung  Q  proportional und damit bei kon-

stantem Strom der Dauer des Stromflusses. Das Abscheiden der Masse

 m =  A r /z g eines Stoffes aus einem Elektrolyten erfordert die Ladungs-

menge  Q = 96 ,  47  ·  103 As. 

Das  elektrochemische ¨

 Aquivalent c, eine Materialkonstante, gibt die Mas-

se des Stoffes an, die pro Coulomb transportierter Ladung an den Elek-

troden niedergeschlagen wird. Es enthält die relative Atommasse  A r, die

atomare Masseneinheit 1 u  und die Wertigkeit  z. Die Größe  F =  q/u =

1 ,  602  ·  10 − 19 As / 1 ,  66057  ·  10 − 27 kg = 96487 As ist die  Faradaykonstante (aus zwei Naturkonstanten). 

Eine bestimmte Menge gleicher Teilchen (Atome, Moleküle) wird als ein Mol be-

zeichnet. Das SI enthält für die Stoffmenge die Einheit 1 mol. Die Zahl der Teil-

chen eines Mols ist gleich der Zahl der Atome des Kohlenstoffisotops 12C mit der

gesamten Masse 12 g (ursprünglich Zahl der Wasserstoffatome mit der Gesamt-

masse 1 g). Zur Abscheidung von 1 mol einer einwertigen Substanz ist die La-

dungsmenge  F · 1 mol erforderlich. Deshalb wird die Faradaykonstante auch durch

 F = 96 ,  47103As/mol angegeben. 

Das erste Faradaysche Gesetz war früher die Grundlage der Definition der Einheit

der Stromstärke: 1 A ist die Stromstärke, die aus einer wässrigen Silbernitratlösung

(AgNO in H

3

2 O) in 1 s insgesamt 1,1180 g Silber niederschlägt. 

Das elektrochemische Äquivalent  c  Gl. (1.3.52) enthält die dimensionslose

Zahl  A r /zi, das  ¨

 Aquivalentgewicht (oder äquivalente molare Masse). Damit

folgt das  zweite Faradaysche  Gesetz

 m 1

 m 2

=

 . 

2. Faradaysches Gesetz (1.3.53)

 A r1 /z 1

 A r2 /z 2

Bei gleichem Ladungsfluss verhalten sich die abgeschiedenen Massen unter-

schiedlicher Stoffe wie ihre elektrochemischen Äquivalente, also ihre Atom-

massen dividiert durch die Wertigkeit der transportierten Ionen. 

Die Faradayschen Gesetze beschreiben den Zusammenhang zwischen elek-

trischer Energie und umgesetzten Stoffmengen an den Elektroden, sie bilden

die Grundlage der Metallabscheidung in galvanischen Zellen. 

Soll aus einem Nickelbad in  t = 1 h die Masse  m = 1 kg Nickel gewonnen werden

(Wertigkeit  z = 2, Atomgewicht  A r = 58 ,  6), so gehört dazu der Strom
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 m · z · F

1 kg  ·  2  ·  96 ,  5  ·  103 As

 I =

=

= 913 ,  6 A . 

 t · A

3600 s  ·  58 ,  6 g

Die vom Strom transportierten Stoffe geben an den Elektroden ihre Ladung

ab und können abhängig von Elektrolyt und Elektrode

an den Elektroden abgeschieden werden (Metalle an Kathode, Anionen

z. B. Sauerstoff an Anode); 

gasförmig an der Elektrode hochsteigen oder in Lösung gehen; 

mit der Elektrode oder dem Elektrolyt chemisch reagieren. 

Spannung an der Grenzschicht Beim Eintauchen einer Metallelektrode in eine

Flüssigkeit (Elektrolyt, ionenfreies Wasser) entsteht an der Oberfläche:

ein  L¨

 osungsdruck  mit der Tendenz, Ionen aus dem Metall in den Elektrolyt

zu drücken: Auflösen der Elektrode“, es lädt sich negativ auf, 

” 

ein  Abscheidungsdruck  mit der Tendenz, Ionen aus dem Elektrolyt ins

Metall zu pressen oder an der Oberfläche abzusetzen. Durch die positive

Ladung der Metallionen lädt sich die Elektrode positiv auf. 

Die Vorgänge wirken, bis sich an der Oberfläche im Wechselspiel zwischen

Lösungs- und Abscheidungsdruck ein elektrisches Feld aufgebaut hat, das

den Vorgang zum Stillstand bringt. 

Insgesamt entsteht an der Grenzfläche Metall-Elektrode-Elektrolyt eine

Raumladungszone (in der Elektrochemie als  Helmholtz-Doppelschicht  be-

zeichnet) mit einer Potenzialdifferenz. Ihre Richtung und Höhe hängen vom

Elektrodenmaterial, dem Elektrolyt und seiner Konzentration ab. 

Bei überwiegendem Abscheidungsdruck (Abb. 1.3.19a) lädt sich die Metall-

elektrode (z. B. Cu) positiv, vor ihr fällt die Cu-Ionenkonzentration ab und es

entsteht eine  negative Raumladung. Überwiegt der Lösungsdruck, so verlassen

mehr positive Ionen das Metall: es lädt sich negativ auf und die Ionendich-

te (z. B. Zn++ in verdünnter H2SO4-Lösung) fällt zum Elektrolyten hin ab

und bildet eine positive Raumladung. Stets verursacht der Ionendichteunter-

schied eine  Potenzialschwelle  an der Grenzfläche, wie auch im (stromlosen)

 pn- Übergang und gegenüber dem Elektrolyt erhöht oder erniedrigt sich das

Elektrodenpotenzial. Die Potenzialdifferenz Elektrode-Elektrolyt heißt  elek-

 trochemische Spannung U SK bzw.  U SA. Beim Ordnen der Metalle nach dieser

Spannung gegenüber der 1-molaren Metallionenlösung (Lösung des jeweils

zugehörigen Salzes) entsteht gegen eine Bezugselektrode im Elektrolyt (Nor-

mal-Wasserstoffelektrode: Platinelektrode, von H2 umspült) die  elektroche-

 mische Spannungsreihe der Metalle. 
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Abb. 1.3.19. Spannungsbildung zwischen Metallelektrode und Elektrolyt. (a) Überwiegen-

der osmotischer Druck lädt das Metall positiv gegen den Elektrolyt, Absinken der Cu++-

Ionenkonzentration zur Elektrode hin. (b) Dominierender Lösungsdruck lädt das Metall

negativ gegenüber dem Elektrolyt, Absinken der Zn++ Ionen-Dichte zum Elektrolyt hin

Tab. 1.8. Elektrolytische Spannungsreihe

Elektrode

Li/Li+

Na/Na+

Al/Al3+

Zn/Zn2+

Fe/Fe2+

Cd/Cd2+

 ϕ/  V

 − 3 ,  04

 − 2 ,  71

 − 1 ,  66

0,76

 − 0 ,  45

 − 0 ,  25

Elektrode

Pb/Pb2+

H2/2H+

CuCu2+

Ag/Ag+

Pt/Pt2+

Au/Au+

 ϕ/  V

 − 0 ,  13

0,00

+0,35

+0,80

+1,18

+1,69

Tabelle 1.8 gibt Auszugswerte typischer Standardspannungen. Metalle mit

negativem Potenzial werden als  unedel, solche mit höherem Potenzial als  edel

bezeichnet. Darum hat Li einen hohen Lösungsdruck, ist also sehr unedel und

leicht oxidierbar. 

Unedle Metalle (links von H2) lösen sich in verdünnter Säure unter Wasser-

stoffbildung auf. Hat eine elektrolytische Zelle zwei Elektroden mit verschie-

denen Standardpotenzialen, so entsteht als Differenz der elektrochemischen

Spannungen eine Quellenspannung. 

Beim Eintauchen einer Kupfer- und einer Zinkelektrode in eine saure Lösung ent-

steht die Spannung  U = 0 ,  34  − ( − 0 ,  76) = 1 ,  10 V16. 

Beim Verbinden beider Elektroden über einen Widerstand fließt Strom, im

Elektrolyt als Ionenfluss, im Verbindungsdraht als Elektronenfluss:

An der negativeren Elektrode gehen positive Ionen in den Elektrolyt, 

zurück bleiben Elektronen, die über den äußeren Draht zur Anode ge-

langen. 

Der positiven Elektrode werden positive Ionen zugeführt, die durch zu-

fließende Elektronen über den Draht kompensiert werden. 

16 Steckt man beispielsweise je einen Kupfer- und Aluminiumdraht in einen Apfel, 

so reicht die Spannung zum Betrieb eines (optimierten) Transistoroszillators zur

Erzeugung einer kleinen Wechselspannung aus. 
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Stromfluss im Elektrolyt verursacht Konzentrationsänderungen und/oder ei-

ne Wasserstoffbildung auf den Elektroden, die eine  Polarisationsspannung  in

der elektrolytischen Zelle erzeugen. 

 Polarisation: Abnahme der Spannung eines galvanischen Elementes durch

Aufbau sekundärer galvanischer Elemente an den Elektroden. Sie wirkt ener-

getisch wie eine  Gegenspannung  und muss verhindert werden (durch sog. 

 Depolarisatoren). 

Zersetzungsspannung Nach den Faradayschen Gesetzen erfordert die elektro-

lytische Zersetzung bestimmte Mindestladungsmengen. Dabei muss an der

elektrolytischen Zelle wenigstens eine Spannung größer als die  Zersetzungs-

 spannung U Z =  U SK  − U SA anliegen. Dann beträgt die erforderliche Energie

 W  zur Zersetzung des Elektrolyten an den Elektroden

 U Z m

 z i U Z mq

 z i U Z F

 W =  U Z Q =  U Z It =

=

=

 . 

(1.3.54)

 c

 A r u

 A r

Praktisch reichen einige Volt oberhalb der Zersetzungsspannung aus. 

Die Gewinnung von 1 Tonne Aluminium ( m = 1000 kg) im Schmelzfluss bei einer

Zersetzungsspannung  U Z = 5 V erfordert nach Gl. (1.3.54) die Energie

5 V  ·  1000 kg  ·  3  ·  1 ,  602  ·  10 − 19 As

 W =

= 0 ,  535  ·  1011 Ws = 14 ,  87  ·  MWh . 

27  ·  1 ,  66  ·  10 − 27 kg

Zusammen mit der Energie zur Aufheizung des Elektrolyten (s. u.) sind dann etwa

18  . . .  20 MWh pro Tonne bereitzustellen. 

Nutzung elektrochemischer Vorg¨

ange Elektrochemische Vorgänge dienen:

zum  Stofftransport (Transport und Abscheidung von Stoffen, z. T. mit chemi-

schen Reaktionen im Elektrolyten oder an den Elektroden, als Elektrolyse zur

Erzeugung von Metallen und Gasen aus Rohmaterialien); 

zur  Oberfl¨

 achenveredelung (Galvanik, Korrosionsschutz); 

zur  Erzeugung und Speicherung elektrischer Energie (Batterie, Akkumulator, 

Brennstoffzelle). 

1. 

Die  Elektrolyse  erlaubt Metallgewinnung durch  Schmelzflussanalyse  und das

Reinigen für Aluminium, Magnesium, u.a., aber auch Kupfer, Nickel. So ent-

steht Aluminium aus einer Schmelze von Aluminiumoxid (Al2O3) und Kryolith

(AlF3  ·  3NaF) bei 90 o (Heizung durch Widerstand des Elektrolyten bei Strom-

fluss) in einer Wanne mit Innenwänden aus Graphit als Kathode und Kohle-

elektroden als Anode. Das Aluminium scheidet sich am Wannenboden ab. 

Aus einer Rohkupferanode in einer wässrigen Lösung CuSO4 + H2SO4 +

H2O entsteht an der Kathode Elektrolytkupfer“ hoher Reinheit ( >  99,9%). 

” 

Es dient als Leitermaterial. Der Energieaufwand von etwa 200  . . .  250 kWh/t

Kupfer ist sehr hoch. 

Nichtmetalle wie Chlor, Fluor, Alkalilaugen u.a. Wasserstoff und Sauerstoff

werden durch  Elektrolyse (z. B. Wasserelektrolyse) gewonnen. Beispielsweise

liefert eine NaCl-Lösung im Elektrolyseverfahren zwischen einer Titan- und

Edelstahl-Elektrode Chlorgas. 
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2. 

Die  Galvanik  erzeugt metallische und nichtmetallische Schichten: Metallab-

scheidung an der Kathode als Verkupfern, Versilbern, Vernickeln, Verchromen

und Vergolden durch Abscheidung unedlerer Metalle. Dünnere Schichten (Di-

cke  <  50 µm) dienen zur Oberflächenverbesserung (Korrosionsverbesserung, 

Lötfähigkeit), dickere als  Galvanoplastik (Elektroformung) zur Herstellung ge-

nauer Abdrucke komplizierter Teile: Herstellung von Gieß- und Spritzformen

durch metallischen Überzug von Kunststoffen, Abscheidung von Kupferfolien

auf Leiterplatten. 

Beim  Eloxieren  werden Oxidschichten elektrolytisch an der Anode (Oxidschicht

auf Aluminium, Eloxalverfahren) erzeugt, auch  Passivschichten (Phosphat-

schichten) als Korrosionsschutz. Die  Elektrophorese (gerichtete Bewegung von

suspendierten geladenen Teilchen in nichtleitender Flüssigkeit unter Feldein-

fluss) bringt nichtmetallische Schichten auf. Sie dient auch zur Trocknung von

Gebäudewänden oder zur stromlosen Metallabscheidung bei der Leiterplatten-

herstellung. 

3. 

 Korrosion  ist die unerwünschte Zerstörung metallischer Oberflächen durch

elektrochemische Vorgänge17. Feuchtigkeit (Erdreich) oder der Kontakt zu Lau-

gen und Säuren wirkt dabei als Elektrolyt. Stromquelle sind meist Erdströme

elektrischer Anlagen (Stromleitung, Eisenbahnnetz). So bildet feuchte Luft (die

auch CO2 und SO2 enthält) in einer Verbindungsstelle zweier Metalle eine kurz-

geschlossene galvanische Zelle mit dem Metall des kleineren Standardpotenzi-

als als Anode. Es geht mit seinen Ionen in Lösung und wird zerstört. Auch

die Verbindung unterschiedlicher Metalle über feuchtes Erdreich wirkt als un-

erwünschtes Primärelement (Minuspol am unedleren Metall). Dadurch können

sich Leitungen (Gas, Wasser, Kabel) zersetzen.  Schutzmaßnahmen  gegen Kor-

rosion sind:

Verwendung von Metallen mit möglichst gleichen Standardpotenzialen; 

Überzug mit isolierenden Oberflächenschichten (Farbe, Oxidschicht), 

Aufbringen einer Schutzschicht aus unedlerem Metall (z. B. Zn auf Fe) oder

aus korrosionsbeständigem Material (Verchromen). Wird beispielsweise die

Zinkschicht an einer Stelle im Erdreich beschädigt, so entsteht ein über

die Erde kurzgeschlossenes galvanisches Element (aus Eisen und Zink). Da-

durch wandert Zink zum Eisen und schützt es durch Überzugsbildung. 

 Opferanoden:  Man verwendet ein Anodenmaterial mit geringerem Stan-

dardpotenzial (mit dem zu schützenden Gegenstand verbunden), um die

zur Korrosion führende Stromrichtung umzukehren. Mit der Zeit zersetzt

sich die Opferanode als letztes Glied der galvanischen Kette“. Das Verfah-

” 

ren wird bei Leitungen, Stahlbehältern, Brückenpfeilern und Schiffen als

Korrosionsschutz eingesetzt. 

Elektrochemische Spannungsquellen

Elektrochemische Spannungsquellen sind galvanische Zellen mit verschiede-

nen Elektroden in einem Elektrolyt (Flüssigkeit, auch eingedickt). 

Nach der elektrochemischen Reaktion gibt es:

17 lat. corrodere (lat.) zernagen, zerfressen
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 Prim¨

 arzellen  mit begrenzter Menge der Reaktionskomponenten, nach de-

ren Umsetzung das Element unbrauchbar wird (irreversibler Vorgang, 

nicht aufladbar); 

 Sekund¨

 arzellen (Akkumulatoren), die nach Entladung durch Zufuhr elek-

trischer Energie regeneriert werden (reversibler Vorgang). 

Prim¨

arzellen Diese Zellen haben als  Trockenzellen  typische Ausführungsformen:

 Kohle-Zink-Zelle (auch Leclanche-18 oder Trockenelement) mit einem Zinkbe-

cher als Kathode und einem Gemisch aus Braunstein (MnO2) und Kohlenstoff C

als Anode (Elektrolyt geleeartige Salmiak-Lösung (NH4Cl)). Die Leerlaufspan-

nung beträgt 1 ,  5  . . .  1 ,  6 V, die Energiedichte 120  . . .  150 mW /  cm3. Die Ladung liegt zwischen 30 mAh  . . .  10 Ah. Die Spannung sinkt durch Entladung bis auf

 U ≈  0 ,  75  . . .  0 ,  9 V. Günstig sind Entladungsphasen (kein Dauerbetrieb!), weil

eine gewisse Regeneration erfolgt. Da die Spannung bei Aufbrauchen des Zinks

schnell fällt, sollten verbrauchte Zellen entfernt werden. 

 Alkali-Mangan-Zelle (Alkaline Zelle) mit (sehr aggressivem) Kaliumhydroxid

(KOH) als Elektrolyt. Spannung etwa 1,5 V, Energiedichte bis 300 mWh/cm3, 

bis 3-fach höhere Speicherladung. 

 Silberoxid-Zink-Zelle (auch Quecksilberoxid-Zink-Zelle) mit Kalilauge als Elek-

trolyt, Zinkanode und einer Kathode aus gepresstem Silberoxidpulver. Span-

nung zwischen 1 ,  35  . . .  1 ,  55 V, Energiedichte 600 mWh/cm3. Aus Kostengründen

werden nur Knopfzellen hergestellt. 

 Lithium-Mangandioxid-Zellen  mit Lithiumanode (Kathodenmaterial unter-

schiedlich) mit Spannungen zwischen 1 ,  5  . . .  3 ,  8 V und Energiedichten bis

1 Wh/cm3. Durch hohe Lagerfähigkeit (10 Jahre) kommen sie in Herzschritt-

machern und Rechnern zum Einsatz. 

Sekund¨

arzellen Das sind zunächst  Bleiakkumulatoren  mit Dominanz in ener-

gieintensiven Anwendungen. Die Elektroden bilden gitterförmige Bleigerüste, 

eine mit schwammförmigem Blei ( −  Elektrode), die andere mit Bleidioxid

gefüllt, in 20  . . .  30%-iger Schwefelsäure. 

Beim  Laden  werden an der positiven (negativen) Elektrode zwei negative

Ladungen abgegeben (aufgenommen) und das Bleisulfat zu Bleidioxid (me-

tallischem Blei) reduziert. Es entsteht eine Zellenspannung von rd. 2 V. 

Entladen

Pb + PbSO

 −→

4 + 2H2SO4

 ←−  2PbSO4 + 2H2O + Energie . 

Laden

Beim  Entladen  bildet sich an beiden Elektroden Bleisulfat mit Verbrauch von

Schwefelsäure und Entstehung von H2O: Absinken der Dichte (Ladezustand

18 Georges Leclanché, 1839–1882
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kontrollierbar). Ab einer Zellenspannung von 2 ,  4 V setzt beim Laden Knallga-

sentwicklung ein (Explosionsgefahr), der Ladevorgang ist bei 2,6 V beendet. 

Die Entladespannung sollte nicht unter 1,7 V liegen (sonst Sulfatisierung der

Platten; dabei geht das beim Entladen fein verteilte PbSO4 nach Lagern in

kristallisiertes PbSO4 über, das nicht mehr reagiert, Akku wird unbrauchbar). 

Die auf das Gewicht bezogene Energie liegt bei rd. 50  . . .  100 Wh/kg19, der

Energiewirkungsgrad (Entladen/Aufladen) beträgt etwa 70  . . .  80%. Kleinere

Batterien arbeiten wartungsfrei: verschlossene Zellen, Säure gelatineartig ver-

dickt. Haupteinsatzgebiete: Starterbatterie im KFZ (bis 250 Ah), Verkehrs-

antriebe, kleine Boote/U-Boote, Notstromanlagen bis 10000 Ah, Akkus für

Handlampen u. a. m. Weitere Sekundärzellen sind:

 Nickel-Cadmium-Akkumulatoren 20 aus einer Nickel-Hydroxid Ni(OH)2-

Elektrode (positiv) und Cadmiumhydroxid Cd(OH)2 als negative Elek-

trode mit Kalilauge (KOH) als Elektrolyt (dient nur als Leiter, an der

Umwandlung nicht beteiligt). Beim  Laden  geht die positive Elektrode in

Nickelhydroxid NiOOH und die negative in reines Cd über

Entladen

Cd + 2 Ni(OH)

 −→  2Ni(OH) +Cd(OH)

3

 ←−

2

2 . 

Laden

Die Klemmenspannung liegt zwischen 1,35 V bis 1,2 V. 

NiCd Akkus haben gegenüber Blei-Akkus Vorteile: geringeres Gewicht, 

weitgehend konstante Spannung, große Lagerfähigkeit im ungeladenen

Zustand. Die Energiedichte liegt bei etwa 40  . . .  60 Wh/kg bzw. 100  . . . 

180 mWh/cm3. Sie werden als offene und geschlossene Zellen ausgeführt, 

im letzten Fall rekombinieren die beim Laden entstehenden Gase und der

wachsende Innendruck senkt die Rekombination. 

Nachteilig ist die Kapazitätsabnahme durch den

Memory-Effekt“: bei nicht

” 

vollständiger Entladung sinkt die Speicherfähigkeit. 

Einsatzfelder wie Blei-Akkus, aber sie vertragen robusteren Betrieb (Kurz-

schluss, Schnellladung). 

der  Nickel-Metallhybrid-Akkumulator (Nickel-Hybrid-, NiMh-Zelle) ver-

wendet als positive Elektrode Ni, als negative eine Wasserstoff-Speicher-

elektrode (Mischung aus Seltenerdemetallen wie Lanthan-Nickel- oder Ti-

tan-Nickel-Legierungen). Er nutzt die Wasserstoffspeicherung in Festkör-

pern aus. Die Zelle ist zur NiCd-Zelle kompatibel, verzichtet aber auf

das umweltbelastende Cadmium. Ihre Energiedichte übertrifft mit 180  . . . 

19 Zum Vergleich: die bei Verbrennung von Benzin freigesetzte Energie beträgt etwa

10  . . .  12  ·  103 Wh/kg! 

20 Diese Form geht auf Edison zurück, ursprünglich als Ni/Fe (Nickel-Stahl-Sammler)

bezeichnet. 
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Abb. 1.3.20. Entladevorgang. (a) Entladekennlinie einer NiMh-Zelle. (b) Vereinfachte Er-

satzschaltung zur Modellierung des Entladevorgangs

280 mWh/cm3 NiCd-Systeme deutlich. Der Einsatz erfolgt vorwiegend in

Geräten der Kommunikationstechnik. 

 Lithium-Ionen-Akkumulatoren  bestehen aus gitterstoffartig aufgebauten

Elektroden (z. B. Anode Graphit) mit eingelagerten Lithium-Ionen beim

Laden, der Elektrolyt enthält gelöste Lithium-Salze. Die Spannung liegt

zwischen 3 ,  5  . . .  4 ,  1 V. Energiedichte mit 200  . . .  400 mWh/cm3 höher als

bei NiMh-Zellen. 

Ersatzschaltung Kenngrößen einer Batterie sind Leerlaufspannung, die  U,  I  Kenn-

linie und die gespeicherte Energie. Abbildung 1.3.20 zeigt einen typischen Entlade-

verlauf: ab der Leerlaufspannung setzt ein anfangs starker, später geringerer Abfall

bis zur Entladespannung ein mit raschem Übergang nach Null. Die Kenngröße einer

Batterie ist ihre Kapazität“, aufgefasst:

” 

als  Ladung Q =  It, die im Verlauf der Zeit über den Strom

entnommen“

” 

werden kann. Für eine Bauform Monozelle (IEC Typ R20, USA Typ D) werden

angegeben: Zink-Kohle 7,3 Ah, Alkali-Mangan 18 Ah, Ni/Cd 4 Ah, NiMh 5 Ah. 

In der Kennlinie  U( Q) ist das die Ladung, die das Element bei Entladung mit

konstantem Strom vor Erreichen der Entladespannung abgibt21. 

als  Kapazit¨

 at C  definiert über  Q =  It =  CU → C =  Q/U. Das entspricht formal

der beim Kondensator verwendeten Festlegung, jedoch ohne gleiche Vorgänge:

Kapazität als Synonym für die gespeicherte Ladung. Beispielsweise hätte eine

Alkali-Mangan-R20-Zelle ( U = 1 ,  5 V) die Kapazität  C = 18 Ah/1 ,  5 V = 43 ,  2 kF

(1 Kilo Farad!), eine wiederaufladbare AAA-Mikrozelle ( Q = 0 ,  2 Ah,  U = 1 ,  2 V)

die Kapazität  C = 600 F. 

Mit dem Kapazitätsbegriff für die Energiespeicherung in der Batterie kann die Er-

satzschaltung des geladenen Kondensators als Batterieersatzschaltung mit Speicher-

21 Der Begriff Kapazität“ ist üblich, obwohl es sich um eine gespeicherte Ladung

” 

handelt! 
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Abb. 1.3.21. Brennstoffzelle

vermögen dienen (Abb. 1.3.20b), bestehend aus idealer Spannungsquelle  U q, dem

Kondensator mit der Speicherenergie, einem Innenwiderstand und einer Stromquel-

le  I v, die die Selbstentladung modelliert (man setzt etwa 5  . . .  20% Ladungsverlust

pro Monat an). Dann gilt für die Klemmenspannung  U

 t



 U =  U q  − U C  −  1

( I( t) +  I v) d t − R i I. 

 C  0

Sie sinkt über der Zeit durch Verbraucher- und Entladestrom ab. 

Brennstoffzelle Dieses Element nutzt die direkte Umwandlung von chemischer

Energie in elektrische und verkürzt den bei konventioneller Umformung über

die Verbrennung beschrittenen Weg: chemische Energie  →  Wärme  →  me-

chanische Energie  →  elektrische Energie, der beim Übergang von Wärme in

mechanische Energie durch den 2. Hauptsatz der Thermodynamik begrenzt

ist (und unter 40% Wirkungsgrad liegt). Ausgang ist die  Umkehrung der

 Elektrolyse von Wasser  in einer  Brennstoffzelle (Abb. 1.3.21). 

Energiewandlung erfolgt durch kontinuierliche, getrennte Zufuhr der Reak-

tionskomponenten Wasserstoff H2 und Sauerstoff O2 an die Elektroden, die

dort elektrochemisch umgesetzt werden und dabei Spannung erzeugen. Eine

elektrische Regeneration entfällt. 

Die Reaktionspartner ( Brennstoff  sowie  Oxidationsmittel, meist gasförmig)

vollziehen die Energiewandlung ohne Elektrodenänderung. Weil der Brenn-

stoff nachführbar ist, gibt es (theoretisch) keine Lebensdauerbegrenzung. Das

Prinzip der Brennstoffzelle ist alt.22

Bei der Elektrolyse von Wasser entsteht Knallgas und die Verbindungsener-

gie von H2 und 1 / 2O2 wird bei der Explosion (Temperatur etwa 3000 °C) als

Wärme freigesetzt. In der Brennstoffzelle erfolgt eine

kalte“ Verbrennung

” 

22 Chr. Friedrich Schönbein, deutsch-schweizer Chemiker, Sir William Grove 1811–

1896, er gab die Brennstoffzelle 1839 an, Schönbein 1838. 
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dosiert als elektrische Energieabgabe. Kernstück der Zelle sind zwei poröse

Elektroden (in saurem Elektrolyt, der nur H++-Ionen leitet), denen die Reak-

tionspartner H2 und O2 zugeführt werden. An den Elektroden laufen folgende

Reaktionen ab

Anode: 2H2  →  4H++4e −

Kathode: O2+4H++4e − →  2H2O. 

Die Wasserstoffelektrode ionisiert Wasserstoff katalytisch zu Wasserstoffio-

nen. Die Elektronen wandern über den Stromkreis zur Kathode, dort erfolgt

mit den transportierten Wasserstoffionen und dem vorhandenen Sauerstoff

die kalte Verbrennung. Dabei wird die Energie 286 kJ/mol frei und elektrisch

bereitgestellt. Neben der Ladungstrennung entsteht Wasser, das aus der Zelle

entfernt wird. Die elektrische Energie 1 kWh erfordert unter Normalbedin-

gungen 660 l Wasserstoff und 330 l Sauerstoff, dabei entstehen die Spannung

von 1,23 V und 0,5 l Wasser. 

Brennstoffzellen unterscheiden sich nach dem zugeführten Brennstoff (Wasserstoff, 

Methanol) und dem Elektrolyt. Wichtig sind:

 PEM-Brennstoffzelle (Polymer-Elektrolyt-Membran) aus einer ionendurchläs-

sigen Polymermembran (gasdicht, damit Wasserstoff und Sauerstoff nicht di-

rekt miteinander reagieren). Der an der Anode zugeführte Wasserstoff wird in

zwei Wasserstoffprotonen und zwei Elektronen aufgespalten. Die Protonen dif-

fundieren durch die Membran, die Elektronen fließen über den Stromkreis zur

Kathode. Die Sauerstoffionen an der Kathode (Sauerstoff, aus der Luft) re-

kombinieren mit Wasserstoff zu Wasser unter Wärmeentwicklung und Abgabe

elektrischer Energie. Der erforderliche Wasserstoff ist oft in einem Metallhybrid-

speicher gebunden. 

die  Direkt-Methanol-Brennstoffzelle (DMFC, fuel cell). Sie verwendet statt Was-

serstoff das leichter herstell- und handhabbare Methanol (aus Erdöl, Biomasse; 

flüssiger Energieträger). Es reagiert an der Anode mit Wasser, dabei entsteht

CO2 als Abgas. Als Elektrolyt dient eine Polymer-Elektrolyt-Membran. 

Brennstoffzellen werden intensiv entwickelt (auch als Hochtemperaturzellen) mit

Wirkungsgraden bis zu 70%. Für den Kleinleistungsbereich (Notebooks) sind sie

im Angebot. Einsatzfelder: Hausenergieversorgung, Verkehrstechnik (KFZ-Antrieb, 

Bootsantriebe, U-Boote schon seit langem), Kraftwerke, Versorgung von Raumfahr-

zeugen u.a. 

1.3.5.3 Stromleitung im Vakuum und Gasen

Nichtleiter haben keine freien Ladungsträger. Andererseits zeigen Elektro-

nenröhren, Bild- und Röntgenröhre, Elektronenmikroskop, Teilchenbeschleu-

niger, Glimmlampe, Leuchtstoffröhre oder Erscheinungen wie Funken und

Blitz, dass Stromfluss auftritt (beim Blitz höchst unerwünscht). Die Er-

klärung ist einfach:
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Es müssen Träger bereitgestellt werden. 

Das stromleitende Gebiet sollte wenig Gasmoleküle enthalten, damit be-

wegte Ladungsträger keine Zusammenstöße erfahren. Diese Bedingung

erfüllt ein Hochvakuum (10 − 10  . . .  10 − 6 bar). 

Grundlage eines  Elektronenstroms im Vakuum  ist die Emission von Elek-

tronen aus Metallen an der sog.  Kathode  durch Energiezufuhr. Dazu wird

einem Leitungselektron im Metall eine Energie von wenigstens der  Austritts-

 arbeit W A (etwa 4 eV) zugeführt.  Elektronenemission  erfolgt durch:

 Gl¨

 uhemission:  Erhitzen der  Gl¨

 uhkathode  auf 1200–2500 K. Dann reicht die

thermische Energie einiger Elektronen zum Verlassen des Metalls aus. 

 Fotoemission:  auftreffende Lichtquanten (kurzwellige elektromagnetische

Strahlung) setzen Elektronen frei, wenn

 hf > W A

Einstein-Gleichung (1.3.55)

gilt. Der Effekt ist als  Fotoeffekt  bekannt. 

Je nachdem, ob der Fotoeffekt zum Elektronenaustritt aus der bestrahlten Ober-

fläche führt oder nur Elektronen innerhalb eines Materials (wie bei Halbleitern)

freisetzt, spricht man vom  ¨

 außeren  oder  inneren  Fotoeffekt. 

Weitere Möglichkeiten sind die  Sekund¨

 arelektronemission (Elektronen treffen

mit hoher Energie auf Metalloberflächen und setzten weitere Elektronen frei)

und die  Feldemission  durch ein hohes elektrisches Feld ( >  109 V/m), wie es

an Drahtspitzen auftritt. Der Effekt, er ist nur wellenmechanisch zu inter-

pretieren, wird in elektronenoptischen Geräten (Feldelektronen-, Rastertun-

nelelektronenmikroskop) zur Vergrößerung atomarer Strukturen ausgenutzt

oder in der Elektronenstrahllithografie der Halbleitertechnik. 

Die verbreitetste Form des Elektronenaustritts ist die Glühkatode als Teil

der Elektronenröhre. Eine Spannung zwischen Anode und Kathode in einer

Hochvakuumröhre (Abb. 1.3.22) verursacht den Elektronenstrom  J K =  v =

 −qnv  zur Anode. Dabei steigt ihre kinetische Energie, gleichzeitig sinkt die

potenzielle Energie. Bei Erhalt der Gesamtenergie gilt zwischen zwei Stellen

 x 1 und  x 2 mit den potenziellen Energien  W 1,  W 2:

 v 2

 v 2

 m  1 +  W

2

1 =  m

+  W 2 oder

2

2





2 q

 v 2 =

 v 2 +

1

 U 12  ≈  600  U 12 / V km / s bei  v 1 = 0 , 

 m
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Abb. 1.3.22. Vakuumdiode. (a) Prinzipaufbau. (b) Transportvorgang und Schaltzeichen. 

(c) Strom-Spannungskennlinie mit typischen Bereichen

da ( W 1  − W 2) =  −qU 12 =  qU 21. Schon kleine Spannungen führen zu be-

trächtlicher Endgeschwindigkeit (z. B.  U 21 = 100 V  → v = 6000 km /  s,  U =

10 kV /  cm  → v = 6  ·  104 km /  s (!)). Im Unterschied zum Leiter, bei dem der

Trägertransport durch Streuvorgänge am Gitter mit  konstanter (mittlerer)

 Geschwindigkeit  erfolgt ( v ∼ E), wirkt im Hochvakuum  konstante Beschleu-

 nigung ( F =  mb =  qE) wegen fehlender Stoßpartner! 

Zur Berechnung der Kennlinie beachten wir:

den nichtlinearen Zusammenhang zwischen Stromdichte und Potenzial  ϕ( x)

 2 q

 J =  −( x) v( x) mit  v( x) =

 ϕ( x); 

 m

die transportierte (Raum)-Ladung und ihren Einfluss auf das Feld über die

Poissonsche Gleichung



d2 ϕ( x)

 J

 m

 k

=  −  d E( x) =  − ( x) =

= 


 . 

d x 2

d x

 ε 0

 ε 0

2 qϕ( x)

 ϕ( x)

Die vom Strom geführte Ladung macht die Feldstärke ortsabhängig und der sonst

erwartete lineare Potenzialverlauf  ϕ( x)  ∼ x  zwischen Kathode ( ϕ(0) = 0) und

Anode ( ϕ( d) =  U) gilt  nicht: wir setzen daher einen nichtlinearen Verlauf an

 

 



 

 x α

 U

 x α− 2

 J

 m

 x −α/ 2

 ϕ( x) =  U

 → α( α −  1)

=

 . 

 d

 d 2

 d

 ε 0

2 qU

 d

Soll der Ansatz die Poissonsche Gleichung erfüllen, muss die Ortsabhängigkeit bei-

derseits herausfallen, was für  α = 4 / 3 zutrifft. Dann folgt (Abb. 1.3.22c)



4 ε 0

2 q

 J =

 U 3 / 2

 → J =  K( U GK +  DU AK)3 / 2 . 

(1.3.56)

9 d 2

 m

Diese nichtlineare Kennlinie hat allerdings schon bei sehr kleiner Spannung einen

Anlaufstrom, weil die thermische Energie einiger Elektronen zum Anlauf gegen eine
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negative Anodenspannung ausreicht. Dann gilt eine exponentielle Kennlinie wie bei

der Diode. Andererseits begrenzt die Elektronenergiebigkeit der Kathode den Strom

nach hohen Werten. 

Die  Steuerung  des Stromes erfolgt durch ein  Gitter  G (feinmaschiges Draht-

netz) zwischen Kathode und Anode: die Diode wird zur  Triode. Eine negati-

ve Gitterspannung  U GK beeinflusst die Feldverteilung vor der Kathode, ohne

dass ein Gitterstrom erforderlich wäre:  leistungslose Steuerung. Damit erwei-

tert sich die Kennlinie auf die rechte Form der Gl. (1.3.56). Über den  Durch-

 griff D (einige %) hat die Anodenspannung noch Einfluss. Für die Triode mit

der nichtlinearen Abhängigkeit  I( U GK , U AK) ist eine Kleinsignalaussteuerung

möglich, die relevanten Kennwerte sind  Steilheit S  und  Innenwiderstand R i. 

Der Durchgriff  D  hängt über die Barkhausen-Beziehung23 von beiden ab. 

Dann lässt sich eine Kleinsignalersatzschaltung nach Tab. 2.13, Bd. 1 wählen. 

Die Feldwirkung auf Elektronen im Vakuum nutzen auch andere Einrichtun-

gen: Laufzeitröhren, Elektronenoptik, Teilchenbeschleuniger oder die Bild-

röhre mit elektrostatischer Ablenkung. 

Stromfluss in Gasen Gase leiten im Normalfall nicht. Stromfluss (Elektronen

und/oder Ionen) kann deshalb nur durch Trägergeneration, Elektronenemission

oder Ionenerzeugung erfolgen. Damit in einem gasgefüllten Glasgefäss mit Elektro-

den Strom fließt, müssen Ladungsträger durch Ionisierung erzeugt werden. Das er-

fordert energiereiche Strahlung (z. B. durch UV-Licht, Röntgen-, Höhenstrahlung). 

Unter natürlichen Bedingungen hat Luft etwa 102  . . .  103 Teilchen/cm3 und sie wirkt

als Isolator. Ein elektrisches Feld trennt Elektronen und positive Ionen und es fließt

Strom (Abb. 1.3.23a), die sog.  unselbstst¨

 andige  Entladung: Ladungsträger müssen

von außen erzeugt werden. Auch thermische Ionisation (Flamme!) eignet sich. An-

gewendet wird diese Entladung in der Ionisationskammer zur Strahlungsmessung. 

Der Übergang zur  selbstst¨

 andigen  Entladung erfolgt bei der  Durchschlagspannung

(Durchbruchsfeldstärke in Luft 30 kV/cm). Dann entstehen Ladungsträger durch

Elektronenstoß und Lawinenvervielfachung, also das  Feld selbst: Träger hoher kine-

tischer Energie stoßen mit anderen Teilchen zusammen, ionisieren diese und schaffen

so ein neues Trägerpaar. Diese lawinenartige Trägervermehrung heißt  Townsend-

 Entladung. Bei hinreichender Energie der auf die Kathode prallenden Ladungsträger

erfolgt dort die Sekundärelektronenemission und es entstehen noch mehr Ladungs-

träger. Deshalb sinkt die zum Erhalt des Stromes erforderliche Spannung weiter ab

und in der  I,  U-Kennlinie (Abb. 1.3.23b) entsteht ein fallender Bereich mit Glim-

mentladung (Glimmspannung 50  . . .  100 V, geringer Strom). Bei noch größerem

Strom setzt die  Bogenentladung  ein. Hohe Trägerkonzentration und Stromdichte

heizen das Trägergas stark auf (Temperaturen zwischen 3000  . . .  10000 K) und es

bildet sich ein  Plasma. Die Bogenentladung (Lichtbogen) zeigt starke Leuchter-

scheinungen und eine fallende Kennlinie. Sie erfordert Strombegrenzung: von drei

23 Die Beziehung  SR i D = 1 gab H. Barkhausen bereits 1919 an, sie ist für lineare

Zweitore leicht zu bestätigen. 
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Abb. 1.3.23. Strom-Spannungsverhalten einer Gasentladung. (a)  U,  I-Verhalten (doppelt

logarithmische Darstellung) einer Entladungsstrecke. (b) Kennlinie einer selbstständigen

Entladung mit Grundstromkreis. (c) Schaltung einer Leuchtstoffröhre

Arbeitspunkten (Abb. 1.3.23b) sind nur zwei stabil. Ohne Vorwiderstand führt der

große Strom zum Kurzschluss (bereits mit einer Glimmlampe ohne Vorwiderstand

möglich!). 

Anwendung findet der Stromfluss in Gasen:

in Glimmlampen, auch die Sprühentladung basiert darauf; 

als Lichtbogen vor Erfindung der Glühlampe zur Beleuchtung; 

als Bogenentladung zu Beleuchtungszwecken (Hg-Hochdrucklampe, Wolfram-

punktlampe, Leuchtröhre, UV-Strahlung (Solarium)); 

zum elektrischen Schweißen und Schneiden metallischer Werkstoffe. 

Bei der Leuchtstoffröhre (Abb. 1.3.23c) wird die UV-Strahlung, die in einer lang-

” 

gestreckten Glimmlampe“ durch Ionisierung von Hg entsteht, über Leuchtstoffe

an der Glaswand in sichtbares Licht gewandelt. Ihre Wahl beeinflusst die Far-

be (kaltes, warmes Licht). Beim Einschalten entsteht im Glimmstarter  G  eine

Glimmentladung. Der Strom ( ≈  10 mA) reicht noch nicht zum Aufheizen der Katho-

de  K (Glühelektrode) aus. Deshalb erwärmt die Glimmentladung im Glimmzünder

zunächst einen Bimetallschalter  S. Er schließt  G  kurz, erlaubt einen hohen Strom

( ≈  0 ,  5  . . .  1 A) im Glühkreis, und es kommt zur Elektronenemission. Mit geschlos-

senem Schalter  S  unterbleibt die Glimmentladung in  G (Abkühlen und Öffnen

des Schalters). Dabei entsteht an der Induktivität  L  ein Spannungsstoß und die

Leuchtröhre  L  zündet“: Einsetzen der Glimmentladung. Anschließend sinkt die

” 

Lampenspannung so ab, dass eine erneute Zündung von  G  unterbleibt. Im Entla-

dungsraum sorgen später die erzeugten Quecksilber-Ionen durch Aufprall auf die

Elektroden für Verstärkung der Elektronenemission. 

Die Induktivität  L  begrenzt auch den Strom, der Kondensator  C  verbessert den

Leistungsfaktor (s. Bd. 3). Beispielsweise verbraucht eine 1,2 m lange Leuchtstoff-

röhre bei  U = 230 V etwa 48 W Leistung. Leuchtröhren haben gegenüber Glüh-

lampen etwa die 3–5 fache Lichtausbeute bei gleicher Leistung. 
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Zusammenfassung Kapitel 1

1. 

Die Grundgleichungen des stationären elektrischen Feldes lauten in Inte-

gralform

⎧ 



⎪

⎨  J ·  d A = 0

 J =  κE

 E ·  d s = 0 , 

 A





⎪

⎩  D ·  d A =  Q =   d V D =  εE ( κ = 0) , s

 A

 V

ihnen ist gleichwertig die Differenzialform für den Raumpunkt

 div D =  ρ, D =  εE ( κ = 0)

rot  E = 0 , 

div  J = 0 , J =  κE ( κ = 0) . 

Stationär heißt dabei, dass alle Feldgrößen zeitunabhängig sind. Das

elektrische Feld lässt sich nach den bestimmenden Materialeigenschaf-

ten (Leiter:  κ   1,  ε r = 1; Dielektrika: (polarisierbare Materie)  κ 
  1, 

 ε r  >  1) in Strömungs- und elektrostatisches Feld unterteilen, die räumlich

homogen oder inhomogen sein können. Homogen bedeutet, dass überall

gleiche Feldgröße nach Betrag und Richtung herrscht. 

2. 

Das stationäre Strömungsfeld beschreibt die gerichtete Ladungsträgerbe-

wegung in Leitern oder leitfähigen Medien unter Feldeinfluss (auch ande-

rer Antriebsquellen, z. B. Diffusion). Seine Feldgrößen sind Feldstärke  E

und Stromdichte  J =  v. Als Transportart gibt es Leitungsstromdichte

(in Leitern) und Konvektionsstromdichte. Letztere unterliegt nicht dem

Ohmschen Gesetz und kennzeichnet den Stromfluss durch schlecht lei-

tende Medien (Flüssigkeiten, Gase, Vakuum). 

3. 

In Leitern ist die Stromdichte proportional zur elektrischen Feldstärke

nach Maßgabe der Leitfähigkeit:  J =  κE. Es gilt ein Ursache-Wirkungs-

zusammenhang: eingeprägte Feldstärke (durch Spannung am Feldraum)

bestimmt die Stromdichte und umgekehrt. Der Stromdichtebetrag ist die

pro Querschnitt und Zeit durch eine Äquipotenzialfläche transportierte

Ladung. 

4. 

Merkmale des stationären Strömungsfeldes sind:

die  Quellenfreiheit (Strömungslinien stets in sich geschlossen bzw. 

Stromfluss in geschlossenem Umlauf): Hüllintegral über eine geschlos-

sene Fläche verschwindet (1. Kirchhoffscher Satz, Knotensatz)



 J ·  d A = 0 bzw .  div  J = 0 , 

 A

 J  ist quellenfrei (Folge der Ladungserhaltung); 

die  Wirbelfreiheit: verschwindendes Wegintegral der elektrischen Feld-

stärke über einen geschlossenen Weg (2. Kirchhoffsches Gesetz, Ma-
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schensatz)



 E ·  d s = 0 bzw .  rot  E = 0 . 

 s

 E  ist wirbelfrei. 

5. 

Die Wirbelfreiheit bedingt im stationären Strömungsfeld ein Potenzial-

feld: Wegintegral über die elektrische Feldstärke gleich der Spannung (Po-

tenzialdifferenz) zwischen Anfang und Endes des Weges (wegunabhängig)

 B



 E ·  d s =  U AB =  ϕ A  − ϕ B bzw . E =  − grad  ϕ. 

 A

6. 

Das Potenzial ist eine absolute skalare Größe. 

7. 

Das Potenzialfeld wird beschrieben für:

 raumladungsfreie  Bereiche ( κ = const) durch die sog. Laplacesche

Gleichung (eindimensional, kartesische Koordinaten  ∂ 2 ϕ

 ∂x 2 = 0,  E =

 −∂ϕ

 ∂x e x), 

 Raumladungsbereiche ( κ = const) durch die Poissonsche Gleichung. 

Die Lösung erfordert die Potenziale (Spannungen) an den Rändern. 

8. 

Die elektrische Feldstärke steht stets senkrecht auf Linien oder Flächen

konstanten Potenzials. 

9. 

Zur Darstellung des Strömungsfeldes dienen Feldlinien (für  E,  J, die den

Vektor an jeder Stelle tangieren) und Äquipotenzialflächen und -linien

senkrecht dazu. 

10. Elementare Stromquellen“ des Strömungsfeldes sind:

” 

die  Punktquelle (isoliert zugeführter Strom), Potenzial und Strom-

dichte lauten

 I

 I

 ϕ =

 , 

 J =

 e r

4 πκr

4 πr 2

(Abstand  r  zwischen Quelle und Aufpunkt) und

die  Linienquelle (zweidimensionales Strömungsfeld mit dem Strom  I

pro Längeneinheit)

 r

 I

 ϕ =  − I  ln

 , J =

 e r . 

2 πκ

 r 0

2 πr

11. An der Grenzfläche unterschiedlich leitfähiger Gebiete verlaufen die Nor-

malkomponenten der Stromdichte und Tangentialkomponenten der Feld-

stärke stetig (GF: Grenzfläche)

 e n  · ( J 2  − J 1) |

= 0

= 0

GF

 , e n  × ( E 2  − E 1) | GF

 . 
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Deshalb steht die Stromdichte senkrecht auf einer leitenden Oberfläche

(idealer Leiter), sie ist zugleich Äquipotenzialfläche, und die Normalkom-

ponente der elektrischen Feldstärke verschwindet

 e n  · E|

= 0

GF

 . 

12. Im (passiven) Strömungsfeld wird die Leistungsdichte  E · J  in Wärme

umgesetzt, einem aktiven Strömungsfeld wird nichtelektrische Energie

zugeführt (Feldstärke  E i) und in elektrische Energie (Feldstärke  E) um-

gewandelt:  E +  E i =  J/κ. 

13. Zum Strömungsfeld gehören die Integralgrößen Strom  I, die Spannung

 U  und der Widerstand  R ( U =  RI) für ein Raumgebiet. 

14. Der Strom ist der Fluss der Stromdichte durch eine Fläche  A





 I =  A J ·  d A, also bei geschlossener Oberfläche  I =  A J ·  d A  gleich dem Nettofluss von  J  durch die Hülle nach außen (positiv gerichtet). 

15. Der Erhaltungssatz (Kontinuitätsgleichung, Satz der Ladungserhaltung)

d Q

 ∂

 i +

= 0 bzw .  div  J +

= 0

d t

 ∂t

vereinfacht sich für das stationäre Strömungsfeld (d Q/ d t = 0,  Q = const



bzw.  ∂/∂t = 0) auf  A J ·  d A = 0 die Bedingungen der Quellenfreiheit

(Stromkontinuität, Strom: in sich geschlossenes Band ohne Anfang und

Ende). Die positive Stromrichtung ist die Bewegungsrichtung positiver

Ladungsträger. 

16. Der Widerstand wird (doppeldeutig) verstanden aus dem Quotient von

Spannung und Strom zwischen zwei Potenzialflächen und dem Strom

durch die Anschlussfläche oder als Bauelement zwischen Anschlusspunk-

ten mit der Eigenschaft Widerstand. Es gibt eine Bemessungsgleichung. 

Je nach Leitungsvorgang und geometrischer Gestaltung kann der Wider-

stand linear, nichtlinear, zeitkonstant oder zeitabhängig sein. 

Selbstkontrolle Kapitel 1

1. 

Was versteht man unter einem Feld, welche Feldarten gibt es und wie

wird ein Feld veranschaulicht? Was bedeuten die Begriffe Vektor- und

Skalarfeld? 

2. 

Was bezeichnet man als Fluss eines Vektorfeldes? 

3. 

Wie lauten die Definitionen der Feldstärke, des Potenzials und der Span-

nung? Ist die Einheit der Feldstärke eine Basiseinheit? 

4. 

Welche Arbeit ist erforderlich, um eine Ladung + Q  im elektrostatischen

Feld von Punkt A nach B zu bringen? 

5. 

Welche Kraft übt eine Feldstärke  E  auf eine positive (negative) Ladung

 Q  aus? 
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6. 

Was ist ein homogenes Feld? Beschreiben Sie es! 

7. 

Man erläutere und skizziere für eine positive Punktladung das Feldstärke-

und Potenzialfeld (drei- und zweidimensional)! 

8. 

Warum ist das Potenzial eine zunächst unbestimmte Größe? 

9. 

Ein homogener Leiter sei stromdurchflossen, dadurch entsteht ein homo-

genes elektrisches Feld. Erläutern Sie Verlauf und Richtung der Feldstär-

ke, des Potenzials und der Spannung! 

  B

10. Warum ist das Linienintegral  A E ·  d s  zwischen zwei Punkten im stati-

onären elektrischen Feld unabhängig vom Weg? 

11. Welchen Wert hat das Umlaufintegral über die elektrische Feldstärke im

stationären elektrischen Feld? 

12. Was besagt der Begriff Richtungsableitung“ anschaulich? 

” 

13. Was besagt der Begriff Maschensatz“ im Potenzialfeld? 

” 

14. Jemand gibt die Spannung einer Batterie mit 6 Nm/As an. Hat er recht? 

15. Was versteht man unter der

Überlagerung des Potenzials“? 

” 

16. Wie kann die Potenzialverteilung in einem parallelebenen Feld bestimmt

werden, wie verlaufen Stromlinien und Äquipotenziallinien? 

17. Was ist ein Strömungsfeld, wo tritt es auf und wie wird es beschrie-

ben? 

18. Erläutern Sie die Begriffe Strom, Stromkreis, Quellenspannung, Span-

nungsabfall! Wie hängen sie mit dem Strömungsfeld zusammen? 

19. Was versteht man unter dem Begriff Stromdichte“? (Erläuterung, typi-

” 

sche Größenordnung in Leitern!)

20. Wie lautet die Kontinuitätsbedingung des stationären Strömungsfeldes? 

21. Wie lautet die Konvektionsstromdichte, wie hängen transportierte La-

dung und Stromdichte zusammen? 

22. Wie bewegen sich Ladungsträger (positive, negative), wenn an einem

homogen dotierten Halbleitergebiet eine Feldstärke  E  liegt? In welcher

Beziehung steht dazu die Stromrichtung? 

23. Erläutern Sie Stromflussrichtung, Trägerbewegungsrichtung und Strom-

dichte für unterschiedlich geladene Teilchen! 

24. Wie lautet das Ohmsche Gesetz für einen Raumpunkt? 

25. In einem Leiter herrschen in einem Punkt eine Feldstärke und Strom-

dichte. Was ist dabei Ursache, was Wirkung? 

26. Erläutern Sie, warum das Ohmsche Gesetz nur für Materialien gilt, in

denen sich Ladungsträger mit einer mittleren Driftgeschwindigkeit be-

wegen! Wie unterscheidet sich davon der Stromfluss in einer Vakuumdi-

ode? 

27. Wie verhalten sich Stromdichte und Feldstärke an der Grenzfläche zweier

Medien mit verschiedenem Leiter? (Beispiel: stromdurchflossener Draht –

umgebende Isolation.)
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28. Was sind globale Größen des elektrischen Strömungsfeldes: a) Leitfähig-

keit  κ, Stromstärke  I, b) Raumladungsdichte  , Potenzial  ϕ, c) Feldstärke

 E, Spannung  U , d) Stromdichte  J, Widerstand  R? 

29. Geben Sie eine Methodik an, nach der der Widerstand eines Feldraumes

(z. B. Koaxialleiter) bestimmt werden kann! 

30. Erläutern Sie den Leitungsvorgang in Metall, einem homogen dotierten

Halbleiter und einer Flüssigkeit! 

31. Was bedeutet in Halbleitern Eigen- und Störleitung? 

32. Welcher Unterschied besteht zwischen Feld- und Diffusionsstrom? Warum

gibt es im Metall keinen Diffusionsstrom? 

33. Wie entsteht in einem stromlosen  pn- Übergang eine Diffusionsspannung, 

die sich aber von außen mit einem Spannungsmesser nicht messen lässt? 

34. Wie unterscheidet sich der Stromfluss durch Flüssigkeiten vom Strom-

fluss in Metallen? 

35. Erläutern Sie das Funktionsprinzip einer Brennstoffzelle! Wie lange kann

sie Energie liefern? 

36. Unter welchen Bedingungen ist Stromfluss durch eine Elektrodenanord-

nung im Vakuum oder einem Gas möglich? 

37. Was versteht man unter einer selbstständigen Entladung? 

38. Warum darf eine Glimmlampe nur mit Vorwiderstand betrieben wer-

den? 
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2 Das elektrostatische Feld, 

elektrische Erscheinungen in

Nichtleitern

Lernziel Nach der Durcharbeitung des Kapitels sollte der Leser in der Lage sein, 

das Influenzprinzip zu erläutern, 

die Verschiebungsflussdichte und den Verschiebungsfluss zu erklären, 

die dielektrischen Eigenschaften der Materie zu beschreiben, 

die Feldgrößen des Dielektrikums anzugeben, 

das Feldverhalten zwischen verschiedenen Dielektrika zu beschreiben, 

die Vorgänge im Plattenkondensator und den Kapazitätsbegriff zu erklären, 

die Strom-Spannungs-Beziehung des Kondensators anzugeben, 

den Begriff Verschiebungsstrom zu erläutern. 

Einf¨

uhrung Geht im Strömungsfeld, an dem über zwei Elektroden eine Span-

nung  U  liegt (und damit im Feld eine Feldstärke  E  herrscht) die Leitfähigkeit

gegen Null, so verschwindet die Stromdichte: der Leiter wird zum  Nichtleiter

oder allgemeiner, zu einem  Dielektrikum. Sein Merkmal sind  fehlende beweg-

 liche Ladungen; es gibt vielmehr nur ruhende Ladungen auf den Elektroden-

platten. Sie sorgen im Dielektrikum für ein  elektrostatisches  oder  ruhendes

 elektrisches  Feld. Die Vermutung, dass es uninteressant sein könnte, wird

durch zwei Phänomene in Frage gestellt:

Bei Spannungsänderung fließt Strom durch die Elektrodenzuleitungen. 

Es gibt Informationsübertragung mit elektromagnetischen Wellen durch

” 

die Luft“, die mit einem einfachen Isolatormodell nicht erklärbar ist. 

Daher zeichnen sich folgende Problemkreise ab:

Feldursachen und spezifische Feldgrößen in Dielektrika, 

der Übergang vom Leiter zum Nichtleiter, 

die Verbindung zwischen einem räumlich ausgedehnten Dielektrikum und

dem Stromkreis erfasst durch das Netzwerkelement  Kondensator. 

2.1

2.1 Feldst¨

arke- und Potenzialfeld

Technisch wird ein Leiterkreis mit einem räumlich begrenzten Nichtleiter-

gebiet durch einen  Kondensator  verkoppelt“: eine Anordnung aus zwei gut

” 

leitenden flächenhaften Elektroden (A, B) umgeben vom Nichtleiter. Ein Bei-

St. Paul, R. Paul,  Grundlagen der Elektrotechnik und Elektronik 2
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Abb. 2.1.1. Kondensatorprinzip. (a) Plattenkondensator mit anliegender Gleichspannung. 

(b) Bei Änderung des Dielektrikums fließt trotz konstanter Plattenspannung Strom durch

die Zuleitung. (c) Bei geladenem Kondensator ( Q = const) ändert sich die Plattenspannung

bei Änderung des Dielektrikums

spiel ist der  Plattenkondensator  aus zwei ebenen, parallelen Platten

(Abb. 2.1.1a). Ladungen auf ihnen verursachen im Nichtleiter ein  elektro-

 statisches Feld. Der Nichtleiter ist entweder ein Vakuum (bzw. Luft), ein

Isolatormaterial oder ein Dielektrikum (Glas, Keramik). 

Wir betreiben den Plattenkondensator einmal bei anliegender Spannung  U =

const und dann bei aufgebrachter Ladung  ±Q = const (Ladungsvorgabe). 

 Im ersten Fall  entsteht ein homogenes Feld  E =  U/d unabhängig vom Medi-

 um zwischen den Platten. Die Spannung verursacht eine Ladungsanhäufung

auf den Platten und damit ein  noch unbekanntes Ladungsfeld im Dielektri-

 kum. Wir schlussfolgern dies aus einer  messbaren Ladungs¨

 anderung  bei Aus-

tausch des nichtleitenden Mediums (Luft, Dielektrikum) durch ein anderes

(z. B. Glas, Glimmer, Isolieröl) gleicher Abmessung (Abb. 2.1.1b). Beim Ein-

schieben einer Kunststoffplatte zeigt der Strommesser trotz konstanter (!)

Spannung  U  einen Strom  i( t) an. Folglich gilt für die Zeitspanne  t 1  . . . t  des



Einschiebens  Q( t) =  t i( t)d t +  Q( t

 t 1

1). Dabei wächst die Plattenladung, wie

in der Abbildung angedeutet. Der an konstanter Spannung  U q liegende Kon-

densator unterscheidet sich von einem spannungslosen durch die Ladungen

auf den Platten und eine  Wechselwirkung zwischen den Plattenladungen ¨

 uber

 das Dielektrikum. 

Wegen der Stromkontinuität ändern sich die positive und negative Ladung um

den gleichen Betrag. Deshalb  m¨

 ussen  beide Ladungen über eine gemeinsame

Größe verknüpft sein, für die der Begriff  Verschiebungs-  oder  Ladungsfluss Ψ

als  Gesamterscheinung  eingeführt wird. Im Raumpunkt gehört dazu später

die  Verschiebungsflussdichte D. 

2.1

Feldstärke- und Potenzialfeld

103

Bei gegebenem  Feldst¨

 arkefeld E (bzw. Spannungsquelle  U q)  als Ursache

folgt als  Wirkung:

die  Plattenladung Q  bzw. der Verschiebungsfluss Ψ als Gesamterschei-

nung oder

eine zugeordnete  Verschiebungsflussdichte D  in Raumpunkten des Di-

elektrikums. 

Stets ist die Plattenladung mit Dielektrikum größer als im Vakuum (Ergebnis

des Experiments). 

 Im zweiten Fall  wird die Bedingung  Q = const durch Entfernen der Span-

nungsquelle nach dem Aufladen“ erfüllt (Abb. 2.1.1c). Dann kann Ladung

” 

weder zu- noch abfließen. Ein Spannungsmesser (unendlich hoher Innenwi-

derstand zur Verhinderung des Ladungsabflusses)1 zeigt die Spannung  U =

const  · Q  an. Folglich wirkt im Nichtleiter ein  elektrisches Feld mit der Feld-

 st¨

 arke E. Die Ladung  Q ändert sich nicht, wenn der Zwischenraum durch

ein anderes Dielektrikum (z. B. Kunststoffplatte) ersetzt wird. Man bemerkt

jedoch eine  Spannungs¨

 anderung Δ U : die Spannung  sinkt  durch das Dielektri-

kum gegenüber dem Zustand ohne“. Betrachten wir die Ladung als  Ursache

” 

und das elektrische Feld bzw. die Plattenspannung als  Wirkung  der Erschei-

nung, so liegt ein analoger Vorgang zum Strömungsfeld vor: dort erzeugte

ein eingeprägter Strom eine von der Leitfähigkeit abhängige Spannung bzw. 

Feldstärke als Wirkung. 

Bei konstanter Ladung  Q ändert sich die Spannung  U (Feldstärke  E) bei

Veränderung des Dielektrikums, sie ist kleiner als im Vakuum. 

Dieses Verhalten erlaubt folgenden Schluss: So, wie das  Str¨

 omungsfeld  ge-

kennzeichnet wird durch die Feldgrößen Feldstärke  E, Stromdichte  J  und

die Materialeigenschaft Leitfähigkeit bzw. Spannung, Strom und Widerstand, 

muss sich das  Ladungs- oder elektrostatische Feld im Nichtleiter  beschreiben

lassen:

durch die Feldgrößen Feldstärke  E, Verschiebungsflussdichte  D  und eine

Materialgröße oder

als Gesamterscheinung durch Spannung, Verschiebungs- oder Ladungs-

fluss  Q = Ψ und die Verknüpfungsgröße Kapazität  C. 

Die Feldstärke ist durch die (Kraft)- Wirkung  auf eine Ladung definiert. Dann

muss die Verschiebungsflussdichte  D  ein Maß für die  Ursache (die Ladungen)

1 Das sind sog. Elektrometer, die die Kraftwirkung der Ladung zwischen beweglichen

Platten zur Spannungsmessung ausnutzen. 
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Tab. 2.1. Die Feldgrößen des elektrostatischen Feldes

des elektrischen Feldes sein. Dahinter steht die Idee, die elektrischen Eigen-

schaften eines (entfernten) geladenen Körpers der Ladung  Q an jedem Ort

darzustellen (was mit dem Influenzprinzip nachweisbar ist) (Tab. 2.1). 

Wir untersuchen zunächst die Verschiebungsflussdichte  D  und den zugehö-

rigen Verschiebungsfluss Ψ (als globale Größe); das Influenzprinzip vertiefen

wir im Kap. 2.6.1. 

Beziehung zum Str¨

omungsfeld Das in Abb. 2.1.1 skizzierte Verhalten des elektro-

statischen Feldes zeigt Analogien zum Strömungsfeld. Dort ist das Gebiet zwischen

den Elektroden leitend und hat die Eigenschaft Widerstand. Ein kontinuierlicher

Übergang zum Nichtleiter wäre z. B. durch Senkung der Leitfähigkeit  κ  auf Null

möglich, etwa beim Übergang von Salzwasser als Leiter zu reinem Wasser mit prak-

tisch verschwindender Leitfähigkeit, aber sehr guten dielektrischen Eigenschaften

( ε r = 80, s. folgendes Kapitel). Dem Verhalten in Abb. 2.1.1b entspräche der Fall, 

dass der Nichtleiter durch ein leitendes Volumen ausgetauscht wird. Dann ändert

sich der Strom (und die Stromdichte im Strömungsfeld). Im Falle der Abb. 2.1.1c

wird das Strömungsfeld zwischen den Platten mit einem Strom (Stromquelle  I q)

gespeist; jetzt bleibt  I  konstant und bei Einschieben des leitenden Materials ändern

sich Spannung und Feldstärke.  Str¨

 omungs- und elektrostatisches Feld haben bei Zu-

 ordnung analoger Gr¨

 oßen analoges Verhalten (s. Kap. 2.6). Eines zeigt der Ver-

gleich von Potenzial und Feldstärke in beiden Fällen:  Das elektrische Feld wird im

 Str¨

 omungs- wie elektrostatischen Feld durch Feldst¨

 arke und Potenzial beschrieben. 

 Unterschiedlich sind zu dieser Ursache nur die Wirkungen: dort Strom und Strom-

 dichte J , hier Verschiebungsfluss (Ladung) und Verschiebungsflussdichte D. 

2.2
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2.2

2.2 Verschiebungsflussdichte

Möglicherweise ist die Einführung der Verschiebungsflussdichte  D  noch nicht

einzusehen. Wir zeigen jetzt, dass Feldstärke  E  und  D grundsätzlich ver-

 schiedene Feldgr¨

 oßen  sind und erläutern die Doppelrolle, die Ladung in der

Feldbetrachtung hat:

Ladungen erzeugen in ihrer Umgebung ein  Ladungsfeld (Eigenfeld!), es ist

seine  Ursache  und heißt als Gesamtphänomen  Verschiebungsfluss Ψ . Er

 steht mit der Ladungsinfluenz in direktem Zusammenhang.  Dazu gehört

eine der Feldbeschreibung angepasste Größe, die  Verschiebungsflussdichte

 D. Der Zusammenhang zwischen  E  und  D  hängt vom Dielektrikum ab. 

Eine Ladung erfährt im elektrostatischen Feld eine  Kraft (Feldkraft):  Wir-

 kung  des elektrischen Feldes auf die Ladung. Sie dient als  Feldindikator. 

Das ist der Inhalt des Feldstärkebegriffes Gl. (1.3.8), Bd. 1. Kraftwirkung

und Feldstärke  h¨

 angen vom  Material ab. 

In dieser Doppelrolle  verursacht  eine Ladung ein elektrisches Feld und er-

fährt im elektrischen Feld eine  Kraftwirkung. 

Deshalb  m¨

 ussen  Feldstärke  E  und Verschiebungsflussdichte  D  verschiedenen

Charakter haben, was sich z. B. in unterschiedlichen Dimensionen ausdrückt:

[ D] = Ladung/Fläche, [ E] = Kraft/Ladung. 

Verschiebungsflussdichte  D Wir nutzen zur Begründung der Verschiebungs-

flussdichte das  Coulombsche Gesetz  Gl. (1.3.5), Bd. 1 zurück (Abb. 2.2.1a). 

Danach üben zwei ruhende Punktladungen  Q 1 und  Q 2 im Vakuum Kraftwir-

kungen aufeinander aus. In der Begründung der Feldstärke  E 2 (s. Gl. (1.3.7), 

Bd. 1) gingen wir davon aus, dass am Ort der Ladung  Q 2 die Kraft  |F  2 |  als

Folge von  Q 1 wirkt:

 F

 D

 E

2

1  Q 1

1

 Q 1

2( Q 1)

 e

 e ≡

   =

=

r

=

r

 . 

(2.2.1)

 Q 2



 ε 0 4 πr 2







 ε 0 4 πr 2

  

 ε 0

Feldstärke

Erregung

am Ort  Q

Ursache von

2

Definition

 E 2

Aus dem Experiment  Q = const (Abb. 2.1.1c) wissen wir, dass die Feldstärke

im Raum zwischen zwei Ladungen von den dielektrischen Eigenschaften des

Raumes, hier  ε 0, abhängt. Das Wesen der Felddarstellung besteht nun darin, 

das elektrische Feld  E 2 als Wirkung einer Ursachenfeldgröße“  D

” 

2( Q 1), der

 Verschiebungsflussdichte,  am gleichen Ort  zu erklären. 

Die Ladung  Q 1 ist von ihrem  Ladungsfeld“  umgeben. Denkt man sich um

 ” 

sie eine Hülle (Kugel von Radius  r), so fließt durch sie der gesamte Verschie-
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bungsfluss (Abb. 2.2.1b). Dann ist die elektrische Flussdichte der Hüllenfluss

bezogen auf die Hüllfläche

 D

 Q

 Q

Ladung

=

 e r mit  |D| =

=

 . 

(2.2.2)

4 πr 2

4 πr 2

Hüllfläche mit Radius  r

Die elektrische Flussdichte  D  kennzeichnet die Ursache (Ladungen) des Fel-

des im Raumpunkt: Vektor der Feldursache mit dem Betrag Flächenladung

 Q/Fläche. Ihre Richtung stimmt mit der der Feldstärke überein. 

Die Verschiebungsflussdichte  D  ist eine der Feldbeschreibung angepasste

Form für die Ladung, die am gleichen Ort ein elektrostatisches Feld  E  er-

zeugt, unabhängig von den dielektrischen Eigenschaften des Raumes. 

Anschaulich ist der Betrag der Flussdichte gleich der influenzierten  Fl¨

 a-

 chenladungsdichte σ (Ladung pro Flächeneinheit) auf einer ideal leitenden

Hüllfläche  A (Abb. 2.2.1b)

Δ Q

d Q

[ Q]

1As

 D =  σ = lim

=

 ,  mit [ σ] =

=

Δ A→ 0 Δ



 A

d A

[ A]

m2

(2.2.3)

 Q =

 σ( r)d A. 

 A

Dimension und Einheit von  D  und Feldstärke  E  sind verschieden! 

Damit gilt im Vakuum

 D =  ε 0 E. 

 D, E-Beziehung im Vakuum (2.2.4)

Die elektrische Feldkonstante  ε 0, auch absolute Dielektrizitätszahl genannt, 

1

As

pF

As

 ε 0 =

= 8 ,  85418  ·  10 − 12

= 8 ,  85418

 ≈  10 − 9

 μ 0 c 2

Vm

m

4

Vm

0

 π ·  9

Elektrische Feldkonstante, Naturkonstante

(2.2.5)

kann auf die Lichtgeschwindigkeit  c 0 = 299792458 m /  s  ≈  300000 km /  s im

freien Raum und die magnetische Feldkonstante  μ 0 = 4 π ·  10 − 7 H /  m =

1 ,  256 µH / m zurückgeführt werden. Es gilt  ε 0 μ 0 c 2 = 1. Die Zahlenwerte von μ 0 und  c 0 liegen im SI-System durch die Basiseinheiten Meter und Ampere

implizit fest. Wenn auch die Einführung von  D  für das Vakuum möglicher-

weise noch nicht überzeugt, so wird dies in dielektrischen Stoffen (s. Kap. 2.3)

um so verständlicher. 

Für den  Plattenkondensator  mit der Plattenfläche  A (Abb. 2.2.1c) beispiels-

weise ergibt sich im Vakuum  D =  Q/A. Der Betrag von  D  stimmt mit der

Flächenladungsdichte  σ  auf den Kondensatorplatten überein: Die Ladungen

2.2
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Abb. 2.2.1. Verschiebungsflussdichte  D. (a) Kennzeichnung eines Ladungsfeldes durch De-

finition von  D. (b) Verschiebungsflussdichte einer Punktladung. (c) Elektrische Flussdichte

im Plattenkondensator, Einführung der Flächenladungsdichte  σ  an der Leiteroberfläche

auf der Oberfläche bilden die Quelle oder Senke der  D-Linien, die senkrecht

auf den ladungstragenden Metalloberflächen stehen. Der Raum zwischen den

Kondensatorplatten ist vom Verschiebungsfluss Ψ ausgefüllt. 

Gaußsches Gesetz der Elektrostatik2 In Gl. (2.2.1) wurde die elektrische Er-

regung über die Punktladung eingeführt. Die Frage lautet aber: Wie hängen

Verschiebungsflussdichte  D  und erzeugende Ladung  Q  generell zusammen? 

Ausgang ist das Punktladungsmodell. Die  D-Linien treten senkrecht durch

die Oberfläche mit dem Flächenelement d A =  e rd A (s. Abb. 2.2.1b). Dann beträgt das Oberflächenintegral über die Verschiebungsflussdichte







 D ·

 Q

 Q

d A =

 e r  · e rd A =

d A =  Q

(2.2.6)

4 πr 2

4 πr 2

 A Kugel

 A Kugel

 A Kugel



mit der Kugeloberfläche

d A =  A

 A kugel

kugel = 4 πr 2. Gauß erkannte, dass die

Beziehung Gl. (2.2.6) für eine beliebige Hüllfläche gilt und auch Ladungsver-

teilungen einschließen kann und formulierte



Ψ =  Q|

=

 D ·  d A

Volumen

 A Hülle









=

 Qi +

  d V +

 σ d A +

 λ d l

 . 

(2.2.7)

 i

    V    A  

 L

  

Punkt-

Raum-

Flächen-

Linienladung







Elektrische Feldquellen

Gaußscher Satz (Naturgesetz)

2 Nicht zu verwechseln mit dem Gaußschen Satz der Feldtheorie. 
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Abb. 2.2.2. Gaußscher Satz: Ladungen als Quellen des Verschiebungsdichtefeldes, es ent-

steht der Verschiebungsfluss Ψ von  D. (a) Ersatz der Ladung  Q  durch eine Hülle, die

gleiche Ladung trägt. (b) Beitrag der Raumladungsdichte    zum Gaußschen Satz. (c) Ver-

schiebungsdichte verschwindet, wenn keine Nettoladung umfasst wird

Das Flächenintegral der elektrischen Verschiebungsflussdichte  D über ei-

ne beliebige (gedachte oder materielle) Hüllfläche ist gleich der von der

Hülle umschlossenen gesamten Ladung  Q. Sie ist gleichwertig der elektri-

sche Fluss Ψ als integrale Größe zu  D  und kann auch eine Ladungsverteilung

einschließen. Der Vektor des Flächenelementes zeigt aus der Hüllfläche. 

Der Gaußsche Satz enthält eine doppelte Aussage:

 Mathematisch  drückt das Hüllintegral den Fluss  Q = Ψ des Vektors  D  aus

(so wie der Strom  I  der Fluss des Vektors Stromdichte  J  im Strömungsfeld

ist). 

 Physikalisch  setzt sich die umschlossene Ladung  Q  als Verschiebungs-

fluss Ψ außerhalb der Hülle fort, beschreibt also den  Zustand des umgeben-

 den (nichtleitenden) Raumes  mit dem Merkmal Ladungsinfluenz. Deshalb

erhält der Hüllenfluss einerseits das Symbol  Q  der Ladung, der wesens-

gleiche Verschiebungsfluss aber das Symbol Ψ (s. Kap. 2.6.1). 

Beim Umschließen der Ladung  Q  von einer leitenden Hülle (Abb. 2.2.2a)

entsteht auf ihrer Oberfläche durch  Influenz  eine Ladung  Q i =  Q. Dieser

Vorgang ist auch so zu interpretieren, dass von der Ladung  Q  innerhalb

der Hülle ein Verschiebungsfluss durch den Nichtleiter zur Hülle (als Gegen-

elektrode) ausgeht, der auf der Oberfläche die gleiche Ladung influenziert. 

Deshalb stimmt der Gesamtfluss der elektrischen Flussdichte  D  durch eine

Hüllfläche mit der umschlossenen Gesamtladung  Q überein:

Das elektrostatische Feld ist nach dem Gaußschen Gesetz ein Quellenfeld

(Naturgesetz). Positive (negative) Ladungen sind seine Quellen (Senken). 

Es gibt neben dieser integralen Aussage noch eine Beschreibung für den

Raumpunkt (s. Kap. 2.5.1) unter Bezug auf die Divergenz. 

2.2
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Tab. 2.2. Verschiebungsflussdichte wichtiger Quellen mit der Ladung  Q

Feldbild

 D

Punktquelle

räumlich radial

 Q

=

 Q

 A Kugel( r)

4 πr 2

Linienquelle

eben radial

 Q

=

 Q

Zylinderfläche

 A Zylinder( r)

2 πrl

Ebene Fläche

homogen

 Q

 A Fläche

Nach Gl. (2.2.7) ist  D  nicht die Wirkung einer Ladung, sondern ihre der Feldbe-

schreibung angepasste andersartige Beschreibung dieser Ladung in einem Punkt. 

Man sagt also: Im Punkt A befindet sich die Ladung  Q  oder gleichwertig: Im Raum

existiert überall eine Verschiebungsflussdichte  D, die von A weggerichtet ist und

im Punkt P (Abstand  r  von A) den Betrag  Q/(4 πr 2) hat. Somit gibt  D  anschaulich durch Vergleich mit einer bekannten Ladung an, wieviel Ladung vorhanden

ist (Quantitätsgröße). Demgegenüber kennzeichnet die elektrische Feldstärke die

Stärke des elektrischen Feldes (gemessen durch seine Kraftwirkung auf eine La-

dung), ist also eine Intensitätsgröße. 

Der Gaußsche Satz erlaubt einige  fundamentale Aussagen:

1. 

Die umfasste Ladung kann eine Raum-, Flächen-, Linien- bzw. Punktladung

sein. Stets bildet das Hüllintegral die umschlossene Gesamtladung. Damit kehrt

es die Aussage des Coulombschen Gesetzes Gl. (1.3.5), Bd. 1 um, denn dort

wird aus gegebenen Ladungen das Feld hergeleitet. 

2. 

Die Ladung im Innern einer Hüllfläche verteilt sich auf ihrer Oberfläche (das

Innere der Hülle ist dann ladungsfrei): Ein Beobachter im Abstand erfährt nur

den Ladungsfluss, er kann nicht unterscheiden, ob er von der Ladung oder der

Hüllfläche/Oberflächenladung stammt (Abb. 2.2.2a). 

3. 

Im Raum um die Hüllfläche setzt sich die Ladung als  Verschiebungsfluss Ψ fort, 

er ist Ursache der Influenz. 

4. 

Als Hüllfläche sollten leicht berechenbare Formen gewählt werden (z. B. eignet

sich die Fläche  A 1 in Abb. 2.2.1b nicht, dagegen aber die Kugelfläche  A 2). 

Für symmetrische Felder (kugel- und zylinderförmige Anordnungen sowie un-

endlich ausgedehnte Platten) lässt sich die Verschiebungsflussdichte mit dem

Gaußschen Satz einfach berechnen (s. Tab. 2.2). 

In Gebieten  ohne  umschlossene (Netto-)Ladung (Abb. 2.2.2c) folgt aus Gl. 

(2.2.7) zwangsläufig



 D ·  d A = 0 .  Quellenfreiheit des elektrostatischen Feldes (2.2.8)

 A Hülle
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Abb. 2.2.3. Plattenkondensator und Gaußscher Satz. (a) Hüllfläche und umfasste Ladung

mit dem Verschiebungsfluss zwischen den Platten. (b) Flächenladung und Verschiebungs-

flussdichte einer Einzelplatte, positive Ladung. (c) Überlagerung zweier Flächenladungen

(herrührend von positiver und negativer Ladung) im Abstand  d

Abb. 2.2.4. Gaußscher Satz und Ladungsverteilungen. Das jeweilige differenzielle Element

trägt zur Teilladung d Q  bzw. zur Verschiebungsflussdichte d D  bei (a) Raumladungsver-

teilung. (b) Flächenladungsverteilung. (c) Linienladung

Dazu gehören Hüllflächen ohne umschlossene Ladung oder solche, in denen

sich positive und negative Ladungen aufheben. Dann treten ebenso viele  D-

Linien ein wie aus: innerhalb der Hüllfläche entstehen oder verschwinden

keine  D-Linien. 

Abbildung 2.2.3a zeigt den Gaußschen Satz am Plattenkondensator mit den

Plattenladungen  ±Q. Eine Hülle umfasst die Fläche zwischen den Platten und

dem restlichen Randbereich (bei homogenem Feld vernachlässigbar). Wegen

 D· d A =  Q  lässt sich  D  für eine Hüllfläche um eine Elektrode als FlächenA

ladung  σ = d Q/ d A  interpretieren, die auf einer kleinen Hüllfläche direkt an

der Elektrodenoberfläche herrscht:  σ =  D · e n =  Q/A. Im Raum zwischen

den Elektroden breitet sich der elektrische Fluss Ψ =  Q =  σA  aus. 
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Beispiel 2.2.1 Homogenes Feld Der Plattenkondensator Abb. 2.2.3a habe unend-

lich ausgedehnte (dünne) Platten. Trägt eine einzelne Platte die Ladung  Q, so hat

sie die Flächenladungsdichte  σ =  Q/A =  D  in der Ebene  x = 0 und es entsteht

auf beiden Seiten ein homogenes Feld (Abb. 2.2.3b). Die Verschiebungsflussdich-

te führt (wegen der unendlichen Plattenausdehnung in  y,  z-Richtung) nur eine  x-



Komponente. Zur Bestimmung wird das Oberflächenintegral

 D ·  d A (Gl. (2.2.6))

über eine quaderförmige Hüllfläche gebildet. Dann steht  D  senkrecht auf den Elek-

trodenfläche (d.h. parallel zu d A). Da die Seitenflächen wegen  D⊥ d A  keinen Beitrag zum Integral geben, bleibt für die Flächen rechts ( x =  x+  >  0) und links

( x =  x− <  0) der Flächenladung mit  D =  e x D x

 D x( x+) e x  · e x A +  D x( x−) e x  · ( −e x) A =  Q =  σA. 

Aus Symmetriegründen gilt  D x( x−) =  −D x( x+) =  −σ/ 2 und damit

 D x =  σe x / 2 , E x =  σe x / 2 ε 0 und  ϕ( x) =  ϕ(0)  − |x|σ/ 2 ε 0 . 

Die Flächenladung  σ  verursacht beiderseits der Elektrodenoberfläche die Fluss-

dichte  σ/ 2 und einen  D-Sprung (und ebenso  E), entsprechend einen Knick im

Potenzialverlauf. 

Wird der Elektrode bei  x = 0 mit der Flussdichte  D x  ≡ D x1 im (kleinen) Abstand

 d  eine zweite (gleich große) mit der Ladung  Q 2 =  −σ (Flussdichte  D x2 =  ∓e x σ/ 2) gegenübergestellt (Abb. 2.2.3c gültig für den Bereich  |x| > d), so überlagern sich

beide Felder: sie kompensieren außerhalb des Kondensatorbereiches  x <  0 und

 x > d  wegen  D ges =  D x1 +  D x2 = 0, im Kondensator (0  < x < d) entsteht dagegen mit  D =  D x1 +  D x2 =  e x σ  ein homogenes Feld. 

Ladungsverteilungen Die Wirkung von Ladungen im Raum hängt auch von ihrer

Verteilung ab, gekennzeichnet durch die  Ladungsdichte: Ladung bezogen auf ein

Volumen, eine Fläche, eine Linie oder einen Punkt (Punktladung). Abbildung 2.2.4

stellt die Verteilungen gegenüber:

1. 

Die  Raumladung  als stetige Verteilung über ein Volumen  V  mit der Raumla-

dungsdichte  ( r) (s. Gl.(1.3.3), Bd. 1). Sie tritt in der Stromdichte auf und als

Raumladung in Isolatoren und Halbleitern (Beispiel  pn- Übergang). 

2. 

Die  Fl¨

 achenladung σ  ist eine stetige Verteilung auf einem flächenhaften Träger

der Größe  A (s. Gl. (2.2.3)). Dabei befindet sich die Ladung an der Ober-

fläche eines Leiters mit vernachlässigbarer Dicke der Ladungsdichte. Real hat

die Ladung an der Oberfläche immer eine bestimmte Schichtdicke  δ  mit der

Raumladungsdichte  ( x, y, z). Ist bei einer ebenen Platte  A  die Schichtdicke in

 x-Richtung orientiert, so beträgt die Ladung der oberflächennahen Schicht

 





 Q =

 ( x, y, z) d x  d A =

 σ( y, z) d A  mit  σ( y, z) =

 ( x, y, z) d x. 

 A δ

 A

 δ

Dann verlangt die Definition der Flächenladungsdichte, dass beim Übergang

zur Dicke  δ →  0 die Raumladungsdichte über alle Grenzen wächst. So ent-

spricht dem mathematischen Begriff Flächenladung“ physikalisch die vernach-

” 

lässigte Schichtdicke des ladungserfüllten Raumes. Flächenladungen treten an

Metall- und Halbleiteroberflächen auf. Nimmt man eine Raumladungsdichte

  =  qn ≈  1 ,  6  ·  10 − 19 As  ·  1022 cm − 3 an, so müsste diese Ladung bei einer
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Verschiebungsflussdichte  D n = 26 ,  5  ·  10 − 10 As /  cm2, wie sie zur Durchbruchfeldstärke in Luft ( E = 30 kV /  cm) gehört, in einer Schichtdicke

 Q

 D n

26 ,  5  ·  10 − 10As  ·  cm3

Δ x =

=

=

= 16 ,  5  ·  10 − 7cm

 A

 

1 ,  6  ·  10 − 19  ·  1022cm2As

vorliegen. Das ist für makroskopische Betrachtungen vernachlässigbar. Bei Me-

tallen sitzen Ladungen als mathematisches Modell flächenhaft an der Ober-

fläche. 

Wird die raumladungserfüllte Schicht immer dünner (gilt aber  Δ x = Δ Q Δ x =

Δ V

Δ Q Δ x =  σ = const), so steigt die Verschiebungsflussdichte an, bis sie im

Δ AΔ x

Grenzfall der Flächenladung (Δ x →  0,   → ∞) springt. 

3. 

Die  Linienladungsdichte λ  ist die stetige Verteilung der Ladung  Q  auf einen

linienhaften Träger der Länge  l  und der Querabmessung Null (Abb. 2.2.4c)



Δ Q

d Q

[ Q]

As

 λ = lim

=

 ,  mit  Q =

 λ( r) d l, [ λ] =

= 1

 . 

(2.2.9)

Δ l→ 0 Δ l

d l

[ l]

m

 A

Sie wird verwendet, wenn die Querabmessung eines geladenen Leiters klein

gegen seine Längsabmessung ist, beispielsweise beim Draht. 

4. 

Die  Punktladung  ist die Ladung eines Trägers mit der Linearabmessung Null“. 

” 

Beispiel 2.2.2 Ladungsverteilungen Wir betrachten Beispiele zur Raum-, Flächen-

und Linienladungsverteilung nach Abb. 2.2.4. 

1. 

Eine unendlich lange  Linienladung (Abb. 2.2.5a) mit der Ladungsdichte  λ  längs

der  z-Achse ergibt im Punkt P auf einer zylinderförmigen Hüllfläche wegen

der Symmetrie eine senkrecht auf der Fläche stehende Verschiebungsflussdichte

 D =  De. Der Gaußsche Satz liefert für die Ladungsdichte der Länge  l  als

Gesamtladung



 λ

 λl =  Q =

 D ·  d A =  D

d A =  D 2 πrl

 → D =

 e

2 πr 

 A

 A



mit der Zylinderoberfläche

d A = 2 πrl  als Gaußscher Hülle (Beiträge der Zy-

linderstirnseiten verschwinden, da  D  keine  z-Komponente hat). 

2. 

Eine unendlich in der Ebene  z = 0 ausgebreitete  Flächenladungsdichte σ

(Abb. 2.2.5b) ergibt im Punkt P auf einer Gaußschen Hülle (quaderförmige

Anordnung) symmetrisch auf den beiden Stirnflächen eine Verschiebungsfluss-

dichte nur in  z-Richtung:  D =  D z e z. Der Gaußsche Satz liefert





⎛ 



⎞

 σ

d A =  σA =  Q =

 D ·  d A =  D ⎝

⎠

z

d A +

d A

=  D z( A +  A)

 A

 A

oben

unten

 σ

 D

 e

=

2

z

 − σ e . 

2

z

Die Seitenteile des Quaders geben keine Beiträge ( D  hat dort keine Kompo-

nente).  A  ist die Würfelstirnfläche. Die Verschiebungsflussdichte hat nach oben

und unten gleiche Anteile. 
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Abb. 2.2.5. Ladungsverteilungen. (a) Unendlich lange Linienladung (Ladungsdichte  λ) mit

Gaußscher Hüllfläche. (b) Unendlich ausgedehnte Flächenladung mit konstanter Flächenla-

dungsdichte  σ. (c) Kugel konstanter Raumladungsdichte mit Gaußscher Hüllfläche in und

außerhalb der Kugel. (d) Plattenkondensator mit konstanter Raumladung im Dielektrikum

3. 

Eine mit  konstanter Raumladungsdichte  gefüllte Kugel (Radius  a, Abb. 2.2.5c)

hat in einer Kugel vom Radius  r  die Ladung





 r



  4 πr 3

 Q =

  d V =  

d V =   4 π

 r 2d r =

 . 

3

 V

 V

0

Dazu gehört der Verschiebungsfluss





 r

Ψ =

 D ·  d A =  D r

d A =  D r4 πr 2  → D =

 e r (0  < r ≤ a)

3

 A

 A

gewonnen aus der Gleichsetzung von Ladung  Q  und Verschiebungsfluss Ψ. 

Außerhalb der Kugel ( r > a) umschließt die Gaußsche Hülle die ganze Ladung; 

sie beträgt jetzt  Q =   4 πa 3 / 3, während für den Fluss noch Ψ =  D r4 πr 2 gilt. 

Das führt zur Verschiebungsflussdichte

 D

 a 3

=

 e r . 

3 r 2

In der raumladungsgefüllten Kugel steigt sie proportional zum Radius  r  an, 

außerhalb fällt sie, wie bei der Punktladung, mit 1 /r 2 ab. 

4. 

 Konstante (positive) Raumladung im Plattenkondensator.  Ist die Raumladungs-

dichte zwischen den Platten eines Plattenkondensators konstant (Abb. 2.2.5d), 

so umschließt die Gaußsche Hülle jetzt einen Teil der Raumladung mit. Ihr
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Ladungsinhalt  Q( x) besteht aus der Ladung + Q  der linken Platte und einem

Zusatzanteil:





 Q( x) =  Q +

  d V =  Q +  Ax =  D

d A ≡ D( x) A. 

 V

 A

Dadurch hängt die Verschiebungsflussdichte  D( x) vom Ort ab (ebenso die

Feldstärke  E( x)  ∼ D( x)). Die Gesamtladung der Gegenelektrode beträgt folg-

lich  Q gegen =  Q +  Ad. Die ortsabhängige Feldstärke ( E ∼ x) bedingt ein

nichtlinear ortsabhängiges Potenzial: statt des linearen Verlaufs im Plattenkon-

densator entsteht jetzt ein quadratischer Verlauf über dem Ort (Abb. 2.2.5d). 

Beispiel 2.2.3 Fl¨

achenladungsdichte* Eine kreisrunde Scheibe (Abb. 2.2.6a) hat die

Flächenladungsdichte  σ. Gesucht ist die Verschiebungsflussdichte  D  im Abstand  h

über dem Scheibenzentrum. Bei sehr großem Radius ist die Verschiebungsflussdich-

te einer unendlich großen ebenen Scheibe zu erwarten (sie betrug gemäß Beispiel

2.2.2  D =  σ/ 2 nach einer Seite). Ein Kreisring vom Radius    und der Breite d 

hat die Fläche d A = 2 π d   und trägt die Ladung d Q =  σ d A. Er erzeugt am Ort P

einen Flussdichteanteil d D  in Richtung des Abstandsvektors  r  vom Ladungsele-

ment. Durch die Symmetrie der Anordnung kompensieren sich die Radialkompo-

nenten d D r der auf dem Ladungsring gegenüberliegenden Komponenten. Es ver-

bleibt lediglich eine Normalkomponente von  D:  D =  D n e n. Jedes Ladungselement erzeugt damit den Verschiebungsflussanteil (d A =   d  d ϕ)

 σ d A

 σ d ϕ d 

d D = d De r =

 e r =

 e r . 

4 πr 2

4 πr 2

Seine Normalkomponente beträgt d D n = sin  β d D =  h/r d D  mit dem Abstand  r =

  2 +  h 2. Die gesamte Flussdichte ergibt sich durch Integration über die Scheibe



 π

  R



 R





 R

 σh

  d 

 σh

  d 

 σh

 − 1



 D n =

d D n =

d ϕ =

=





4 π

 r 3

2

(  2 +  h 2)3 / 2

2

  2 +  h 2 


 A

0 0

0

0





 σ

=

1  −

1



 . 

2

1 + ( R/h)2

Das Integral wird mittels Tabelle (z. B. Bronstein-Semendjajew) gelöst. Für  R 
 h, 

also bei unendlich großer ebener Scheibe folgt  D n =  σ/ 2. Dann befindet sich der

Aufpunkt P im Abstand  h über der Scheibe und es liegt ein homogenes Feld vor

(unabhängig vom Abstand  h). 

 √

Für  R  h  hingegen wird mit der Reihenentwicklung 1 /  1 +  x ≈ (1  − x/ 2)

 





2

 R

 σ πR 2

 σA

 Q

 D

Fläche

n  ≈

 

=

=

=

 . 

2  ·  2

 h

(4 πh 2)

 A Kugel

 A Kugel

Dann schrumpft die ladungsbelegte Scheibe auf die Fläche  A Fläche =  πR 2. Sie hat

die Ladung  Q  und der Beobachtungspunkt liegt im Abstand  h  auf der Hüllfläche

 A Kugel. Das ist aber die Verschiebungsdichte einer Punktladung  Q  auf einer Kugel

vom Radius  h. Je nach Grenzfall lässt sich aus der ladungsbelegten Scheibe entweder

die Verschiebungsdichte der Flächenladung oder der Punktladung herleiten. 
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Abb. 2.2.6. Ladungsverteilungen. (a) Ebene Scheibe mit Flächenladungsdichte  σ. (b) Li-

nienladung begrenzter Länge

Beispiel 2.2.4 Linienladung begrenzter L¨

ange* Für die Berechnung der Verschie-

bungsflussdichte, die von einer Linienladung der Länge  l (in der  z-Achse, 

Abb. 2.2.6b) ausgeht, betrachten wir ein Ladungselement d Q  der Länge d z  am

Ort  z. Es erzeugt im Feldpunkt P die Verschiebungsdichte d D 1 (entsprechend

Abb. 2.2.4c). Ebenso bewirkt das symmetrisch bei  −z  gelagerte Element den Dich-

tebeitrag d D 2. Dabei heben sich die Feldkomponenten in  z-Richtung in der Ebene

 z = 0 auf und  D  hat nur einen radialen Anteil:

2  λ d z

 r



d D r =

(cos  α) e r ,  cos  α =

 ,  =

 r 2 +  z 2 . 

4 π  2

 

Die Integration längs der Linienladung führt auf

 l/ 2





 D

2

 λr d z

 λ

 l

 λ



r =

 e r =

 √

 e r  → D r =

 e r

 . 

4 π



( r 2 +  z 2)3 / 2

2 πr

4 r 2 +  l 2

2 πr

 l→∞

0

Für den unendlich langen Leiter ergibt sich die Lösung nach Beispiel 2.2.2. Umge-

kehrt folgt für  l  r  die des Punktladungsmodells. 

2.3

2.3 Verschiebungsflussdichte und Feldst¨

arke

Das elektrostatische Feld nutzt  zwei Grundeigenschaften  des Nichtleiters:  Iso-

 lationswirkung  zwischen spannungsführenden Leitern und  dielektrische Pola-

 risation. Wenn auch in Isolierstoffen freie Elektronen fehlen, so sind diese

doch an die Atome gebunden und ein elektrisches Feld verschiebt die Schwer-

punkte der positiven und negativen Ladung der Atome und Molekülbestand-

teile  gegenseitig. So entsteht ein Gegenfeld, es schwächt das ursprüngliche

Feld. Je nach Einsatzzweck nutzt man die Isolator- oder dielektrischen Ei-
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genschaften, letztere in Kondensatoren auch als ferroelektrische oder piezo-

elektrische Werkstoffe. 

Nicht leitende, aber trotzdem polarisierbare Stoffe werden als Dielektrikum“

” 

bezeichnet. Der Sprachgebrauch versteht darunter Gase, Flüssigkeiten oder

Festkörper mit sehr geringer Leitfähigkeit. 

Dielektrika sind Isolatoren mit ausgeprägtem Polarisationsverhalten. 

Wie zwischen Stromdichte  J  und Feldstärke  E  im Strömungsfeld gibt es einen

materialabhängigen Zusammenhang zwischen elektrischer Flussdichte  D  und

Feldstärke  E. Das Experiment Abb. 2.1.1 liefert für den auf konstanter La-

dung  Q  gehaltenen Kondensator die Bedingung  D = const ohne und mit

Dielektrikum (für die Beträge)

 E 1 |

 ε 0

 ε 0

1

 D =  ε

Diel . 

0 E 0

   =

 εE 1



= const ,  also

=

=

=

 <  1 . 

 E 0 | Vak . 

 ε

 ε r ε 0

 ε r

Vakuum

Dielektrikum

Damit lautet der  D,  E-Zusammenhang in isotropen (nicht richtungsabhän-

gigen) Materialien

 D =  εE =  ε r ε 0 E

Zusammenhang  D, E

(2.3.1)

im isotropen Dielektrikum

mit

 ε

=

 ε r

 ·

 ε 0

 . 

Permittivität, 

relative Permittivität

elektrische

(absolute DK)

(rel. DK)

Feldkonstante

Die Größe  ε =  εrε 0 heißt  Permittivität, auch Dielektrizitätskonstante (ab-

gekürzt DK) des Dielektrikums.  εr  ist die (dimensionslose) relative Permitti-

vität oder die relative Dielektrizitätskonstante. Die elektrische Feldkonstan-

te  ε 0 liegt als Naturkonstante durch Gl. (2.2.5) fest. 

Die relative Permittivität  ε r kennzeichnet das Verhältnis der elektrischen

Feldstärke im Vakuum zur Feldstärke im Dielektrikum bei gleicher elektri-

scher Flussdichte. 

Der Vergleich zum Strömungsfeld liegt nahe. Während dort die Leitfähigkeit  κ

des idealen Nichtleiters verschwindet (Tab. 2.3), gibt es keine Materialien mit

verschwindender Permittivität  ε = 0! Der kleinste Wert ist immer die Feld-

konstante  ε 0. Damit bedingt jede Feldstärke eine elektrische Flussdichte  D

oder

Feldstärke  E  und elektrische Flussdichte  D  sind untrennbar miteinander

verkoppelt:  D ≥ ε 0 E. 
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Tab. 2.3. Anschaulicher Vergleich zwischen Strömungs- und elektrostatischem Feld

Str¨

omungsfeld

Elektrostatisches Feld

 gemeinsam:  Feldstärke  E, wirbelfrei

Stromdichte  J

Verschiebungsflussdichte  D

 J =  κE

 D =  εE

Strom  I

Verschiebungsfluss Ψ

Leitwert  G

Kapazität  C

 Unterschiede

 κ: 10 − 17  . . .  108 A /  Vm

 ε: 10 − 11  . . .  10 − 6 As /  Vm

(25 Dekaden)

(5 Dekaden)

 Sonderfall: Nichtleiter (κ = 0 )

 kein Stoff hat ε = 0

Tab. 2.4. Permittivitätszahlen einiger Materialien bei Zimmertemperatur

 εr

 εr

 εr

Vakuum

1,0

Papier

1,5  . . .  3

Quarz

1,5

Luft

1,005

Porzellan

5  . . .  6

Halbleiter

10  . . .  20

Glas

5  . . .  12

Öl

2,3

Epsilan

 >  4000

Holz

2  . . .  7

Wasser (dest.)

80

Bariumtitanat

 >  1000

Deshalb verursachen  zeitliche Feld¨

 anderungen zwangsl¨

 aufig Ladungs¨

 anderun-

 gen  und so einen  Verschiebungsstrom (s. Kap. 2.7.2), wie er bei Wechselspan-

nungen in Form parasitärer Kapazitäten auftritt. 

Anschaulich ist die Permittivität  ε  ein Maß für die

Durchlässigkeit“ des

” 

Nichtleiters für  D-Linien (bei  E = const), genau so wie die Leitfähigkeit  κ

ein Maß für die Durchlässigkeit des Leiters für Strömungslinien war. 

Tabelle 2.4 enthält typische Werte. Isolatoren konzentrieren die Feldlinien

wegen  ε r  >  1 im Material. Auffällig ist die hohe Dielektrizitätskonstante von

Wasser, Halbleitern und Ferroelektrika. Manche Materialien (wie Halbleiter)

haben damit nicht nur Leitungs-, sondern auch gute dielektrische Eigenschaf-

ten! 

Polarisation Die Permittivität erfasst den Einfluss des Dielektrikums zwar

formal, erklärt aber die Feldabsenkung im Experiment nicht. Dazu muss die

Polarisation herangezogen werden. Dielektrika haben keine beweglichen La-

dungsträger, wohl aber ortsfest gebundene positive und negative Ladungen, 

die sich unter Krafteinwirkung (externes elektrisches Feld) gegeneinander ver-

schieben und damit zur Polarisation führen:
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Abb. 2.3.1. Polarisation. (a) Im Kondensator im Vakuum gelten bei fester Spannung  U  die

Feldgrößen  E 0 und  D 0 (Plattenladung  Q 0). (b) Dielektrikum erzwingt durch Polarisation zusätzliche Ladung auf den Platten ( → Q), Anstieg der Verschiebungsdichte  D > D 0. 

(c) Bei konstanter Plattenladung verursacht die Polarisation im Dielektrikum ein Zusatz-

feld  E P, das dem Plattenfeld entgegenwirkt: die Nettofeldstärke  E =  E 0  − E P sinkt Unter Polarisation versteht man eine gegenseitige Verschiebung elastisch gebundener positiver und negativer Ladungsschwerpunkte im (sonst neutra-

len) Dielektrikum unter Feldeinfluss, verbunden mit einem Eigenfeld. Als

Folge treten an gegenüberliegenden Oberflächen des Dielektrikums Ladun-

gen entgegengesetzten Vorzeichens in Richtung des externen Feldes auf. 

Im

Plattenkondensator

ohne

Dielektrikum

an

konstanter

Spannung

(Abb. 2.3.1a) stellen sich die Feldstärke  E =  E 0 und Verschiebungsfluss-

dichte  D =  ε 0 E  ein. Letztere steigt beim Einbringen eines Dielektrikums

durch die Polarisation  P (Abb. 2.3.1b)

 D =  ε 0 E

 +

 P



(2.3.2)

Vakuum

Einfluss d. Dielektrikums

und es fließen weitere Ladungen aus der Quelle (als Strom) zu den Platten. 

Die Feldstärke  E =  E 0 bleibt durch die Spannung erhalten. 

Die elektrische Polarisation  P  ist anschaulich eine elektrische Dipolmoment-

dichte. Gleichwertig wird die Zunahme der Verschiebungsflussdichte durch

die Permittivitätszahl  ε r ausgedrückt. 

Polarisation verursacht gebundene Polarisationsladungen“ (Dichte  σ

” 

p ) an

den Grenzflächen des Dielektrikums. Sie erzwingen eine größere Flächenla-

dungsdichte freier Ladungen ( σ =  σ f ) an der Plattenoberfläche und deshalb

steigt die Flussdichte  D. Damit sind negative Polarisationsladungen die Quel-

len, positive die Senken der  P -Linien. 

Tragen die Kondensatorplatten hingegen eine konstante Ladung (Verschie-

bungsflussdichte  D = const, Abb. 2.3.1c), so entsteht beim Einbringen des

Dielektrikums ein Zusatzfeld  E P ( P =  −ε 0 E P), das dem äußeren entgegenwirkt:  E =  E 0  − E P. Dann gehört der Feldteil  ε 0 E  zu den Ladungen
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Abb. 2.3.2. Polarisationsarten. (a) Verschiebung des Ladungsschwerpunktes im unpola-

ren Dielektrikum: Deformationspolarisation. (b) Gitterpolarisation. (c) Orientierungspo-

larisation durch Ausrichtung polarer Moleküle. (d) Nichtlineare  D( E)-Charakteristik mit

Hysterese eines ferroelektrischen Stoffes

auf der Elektrode, die durch die polarisierten Ladungen im Isolator nicht

kompensiert werden. Insgesamt sinkt die Feldstärke  E < E 0 und dement-

sprechend die Spannung  U < U 0 gegenüber dem Zustand ohne Dielektrikum

(s. Abb. 2.1.1c). 

Zwischen den Polarisationsladungen (Dichte  σ P) an der Oberfläche des Di-

elektrikums und Ladungen, die durch Influenz an Leiteroberflächen entste-

hen, besteht ein wesentlicher Unterschied: influenzierte Ladungen lassen sich

durch Trennung der Leiterteile (im elektrischen Feld) trennen, die Ladungen

im Dielektrikum aber nicht (es bleibt elektrisch stets neutral). Deshalb nennt

man die Ladungen an der Oberfläche des Dielektrikums auch  scheinbare La-

 dungen. Sie sind keine Oberflächenladungen, obwohl sie einen Teil der wahren

Ladungen (Dichte  σ f) auf den Elektroden binden. Nur sie verursachen den

Verschiebungsfluss. 

Meist sind Polarisation und Feldstärke einander proportional  P =  χ e ε 0 E, 

[ χ e] = 1 mit der (dimensionslosen)  elektrischen Suszeptibilität χ e:

 D =  ε 0 E +  P =  ε 0 E +  χ e ε 0 E = (1 +  χ e) ε 0 E =  ε r ε 0 E

(2.3.3)

mit  ε r = (1 +  χ e). 

Weil die Polarisation  P  direkt nicht messbar ist, wird das Dielektrikum durch-

weg über die Permittivität  ε r beschrieben. Der Polarisationsbegriff qualifiziert

die Kennzeichnung des Dielektrikums, etwa der Frequenzabhängigkeit, des

Verlust- und Temperatureinflusses oder eines nichtlinearen  D( E)-Zusammen-

hanges. 

120

2. Das elektrostatische Feld, elektrische Erscheinungen in Nichtleitern

Ursache der Polarisation ist die Verschiebung ortsfest gebundener Ladungsträger

unter Feldeinfluss. Dabei gibt es mehrere Mechanismen:

 Deformationspolarisation  durch Verschiebung der Elektronenhülle gegenüber

dem Atomkern oder Deformation von Molekülen (auch bekannt als Elektronen-

oder Ionenpolarisation, 

wie

für Glas, 

Porzellan

und Keramik

typisch, 

Abb. 2.3.2a); 

 Gitterpolarisation  durch Verschiebung verschieden geladener Bauteile des Kris-

tallgitters (Abb. 2.3.2b), 

 Orientierungspolarisation  durch Ausrichtung elektrischer Dipole (gebildet aus

polaren Molekülen Abb. 2.3.2c), wie sie bei Wasser, Kunststoffen und einigen

Keramiken vorkommen, 

 Grenzfl¨

 achenpolarisation (oder Raumladungspolarisation durch Ladungsträger

an Medien unterschiedlicher Leitfähigkeit) ist typisch für bestimmte Keramiken. 

Eine besondere Gruppe bilden die Ferroelektrika mit einer Polarisation auch oh-

ne äußeres Feld (analog zu Permanent-Magneten). Merkmale sind eine hohe Di-

elektrizitätszahl  ε r, ein nichtlinearer  D( E)-Zusammenhang und Hystereseverhalten

(Abb. 2.3.2d). Oberhalb einer kritischen Temperatur, der  ferroelektrischen Curie-

 Temperatur, gehen sie in polare Dielektrika über. Typische Ferroelektrika wie Bari-

umtitanat und bestimmte Kohlenwasserstoff-Polymere finden Anwendung z. B. als

Elektret-Mikrofon (arbeitet ohne äußere Spannung) und Filtermaterial zur Entstau-

bung, weil die an der Oberfläche auftretenden Ladungen Staubteilchen anziehen. 

2.4

2.4 Eigenschaften an Grenzfl¨

achen

An Grenzflächen wie Glas/Luft, Metall/Isolator u. a. ändern sich die dielek-

trischen Eigenschaften  sprunghaft  und damit auch die Feldgrößen. Wegen der

Analogie zwischen Strömungs- und elektrostatischem Feld (Tab. 2.3) können

dabei die Ergebnisse eines Grenzflächensystems unterschiedlich leitender Ge-

biete (Abb. 1.3.11) sinngemäß übernommen werden. In beiden Fällen bestim-

men die Quelleneigenschaften des Feldes (Gaußscher Satz) und seine Wirbel-

merkmale (verschwindendes Umlaufintegral der elektrischen Feldstärke) das

Brechungsverhalten der Feldlinien (s. auch Abb. A.2.5, Bd. 1). 

Grenzfl¨

ache zweier Dielektrika, quer geschichtetes Dielektrikum In Abb. 2.4.1

treffen die Feldlinien von einem dielektrisch besser leitenden“ Medium ( ε

” 

1)

unter dem Winkel  α 1 zur Flächennormalen auf ein Medium mit  ε 2  < ε 1 und

treten dort unter dem Winkel  α 2 aus. Die Grenzfläche selbst sei zunächst  la-



 dungsfrei. Dann folgt aus

 D ·  d A = 0 für eine differenziell kleine Hüllfläche

 A

nach dem gleichen Prinzip wie im Strömungsfeld (Gl. (1.3.23a))  D 1  ·  d A 1 +

 D 2  ·  d A 2 = 0. Weil die Tangentialkomponenten keinen Betrag liefern, bleibt

2.4
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Abb. 2.4.1. Feldgrößen an Grenzflächen. (a) Gaußsche Hüllfläche und Stetigkeit der Nor-

malkomponente  D n, es kann eine Flächenladungsdichte  σ  auftreten. (b) Umlaufintegral der

Feldstärke und Stetigkeit ihrer Tangentialkomponente. (c) Grenzfläche Leiter-Nichtleiter. 

Feldlinien treten senkrecht aus, Leiteroberfläche ist Äquipotenzialfläche. Normalkomponen-

te  D n und Flächenladungsdichte  σ  sind betragsgleich. (d) Dünne Leiterfolie im senkrecht

auftreffenden Verschiebungsdichtefeld

für die Normalkomponenten mit d A 1 =  − d A 2, d A 2 =  e nd A 2 und d A 1 =

d A 2 schließlich  D n1d A − D n2d A = 0 und damit

Stetigkeit der Normalkomponenten

 D n1 =  D n2 . 

(2.4.1a)

der Verschiebungsflussdichte

Ein analoges Ergebnis galt im Strömungsfeld für die Stromdichte. 

Die Normalkomponenten der Flussdichte sind bei ladungsfreier Grenzfläche

stetig. 

Als Folge entsteht ein  Sprung  in der Normalkomponente der Feldstärke

 ε r2 E n2 =  ε r1 E n1 , 

 E n2  =  E n1 . 

(2.4.1b)

Grenzflächen ohne Flächenladung sind Quellen (Sprungstellen) der Feld-

stärke  E. 

Im Material mit kleinerem  ε  ist die Feldstärke größer (größere Liniendichte), 

und die Grenzfläche bildet den Ausgangspunkt neuer Feldlinien. Diese Ver-

” 

drängung der Feldlinien“ ins Gebiet mit kleinerem  ε  kann kritisch sein, weil

dort die Durchbruchsgefahr steigt. 
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Grenzfl¨

ache mit Fl¨

achenladungen Herrscht an der Grenzfläche eine  Fl¨

 achenla-

 dungsdichte σ (Abb. 2.4.1a), so muss die Grenzflächenbedingung wegen der jetzt in

die Gaußsche Hüllfläche einzuschließenden Flächenladung





( D n2  − D n1) d A =  Q|

=

umfasst

 σ d A

 A

korrigiert werden in

Normalkomponenten der Verschiebungsflussdichte

 D n1  − D n2 =  σ

(2.4.2a)

bei Flächenladungen

oder vektoriell

 D n2  − D n1 =  σe n2 . 

(2.4.2b)

An einer dielektrischen Grenzfläche mit der Flächenladung  σ ändert sich der Be-

trag der Normalkomponente der elektrischen Flussdichte sprungartig um den Be-

trag der Flächenladungsdichte. 

Das gilt für beliebige Orientierung der Feldgrößen (von 1 nach 2 oder umgekehrt), 

wenn der Einheitsvektor  e n2 =  e n in den Raum 2 weist. Daraus folgen die Normal-

komponenten der Feldstärke

 E

 ε 1

 σ

n2 =

 E n1 +

 e n2 . 

(2.4.3)

 ε 2

 ε 2

Bei unterschiedlichen Permittivitäten und/oder einer Flächenladungsdichte springt

die Normalkomponente der Feldstärke an der Grenzfläche. 

Tangentialkomponenten, l¨

angsgeschichtetes Dielektrikum Die Bedingung für

die Tangentialkomponenten der Feldstärke folgt wie beim Strömungsfeld (Gl. 

(1.3.24)) aus der Bedingung der Wirbelfreiheit mit dem Ergebnis

 E t1 =  E t2 . 

Tangentialkomponenten der Feldstärke (2.4.4)

Die Tangentialkomponenten der Feldstärke sind an der Grenzfläche stetig. 

Sonst müsste eine Längsspannung entstehen, was physikalisch unmöglich ist. 

Für die Tangentialkomponenten der Flussdichte und Normalkomponenten

der Feldstärke gelten dann bei ladungsfreier Grenzfläche (Gl. (2.3.1))

 D t1

 E n2

tan  α 1

 ε 1

=

=

=

 .  Brechungsgesetz im Dielektrikum (2.4.5)

 D t2

 E n1

tan  α 2

 ε 2

Beim Übergang von einem dielektrischen Material  ε 1 ( ε 1  > ε 2) in eines mit

kleinerem  ε  werden die Feldvektoren  E  und  D  im dielektrisch dichteren

Material von der Flächennormalen weggebrochen, im Gebiet der kleineren

Permittivität zur Normalen hingebrochen. Deshalb treten die Feldlinien ( E, 

 D) aus Gebieten mit höherer Permittivität nahezu senkrecht aus. 
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Da der Fluss bei  σ = 0 nicht verschwinden kann, ist die Zahl der Flussdich-

telinien auf beiden Seiten gleich, verschieden sind nur die Winkel. Wegen der

geänderten Richtung ändern sich die Dichten. Die Feldlinien der Feldstärke

sind an der Grenzschicht unstetig, und so unterscheidet sich die Anzahl der

ein- und austretenden Linien. Ein analoges Ergebnis galt im Strömungsfeld

für Feldstärke und Stromdichte bezüglich der Leitfähigkeiten. Wir finden es

auch im magnetischen Feld in analoger Form. 

Grenzfl¨

ache Metall-Dielektrikum (Nichtleiter) Grenzt ein stromloser Leiter an

ein Dielektrikum (Abb. 2.4.1c), so ist seine Oberfläche immer eine Äquipoten-

zialfläche und das Leiterinnere bleibt feldfrei ( E,  D = 0). Dann stehen die

 E  und die  D-Linien senkrecht auf der Grenzfläche. Es gelten:

 Im Leiter verschwindende Feldst¨

 arke E = 0  (D = 0 ) sowie σ = 0 . 

 An der Leiteroberfl¨

 ache  gilt

 D

Grenzfläche

t =  εE t = 0 , D n =  εE n =  σe n . 

(2.4.6)

Leiter-Dielektrikum

Die Normale  e n weist zum Dielektrikum. 

Weil die tangentiale Feldstärke  E t stets verschwindet, ist die Leiterober-

fläche immer Potenzialfläche. Flächenladungen  σ  an der Grenzfläche sind

Quellen ( σ >  0) (bzw. Senken,  σ <  0) der Normalkomponenten  D n,  E n der Feldgrößen. Die Verschiebungsdichte  D n im Nichtleiter ist betragsgleich der

Flächenladungsdichte an der Leiteroberfläche. 

Einen Sonderfall bildet eine  d¨

 unne Metallfolie, auf die Verschiebungsdich-

telinien senkrecht auftreffen (Abb. 2.4.1d). Der Verschiebungsfluss links be-

dingt eine negative Flächenladungsdichte, wegen der Ladungsneutralität in

der Folie wird die gleiche entgegengesetzte Ladung auf der rechten Folienseite

influenziert, und sie verursacht die Verschiebungsdichte  D  nach rechts:

Metallfolie im

links :

 D| =  −

=

l

 σe n ,  rechts :

 D| r  σe n . 

elektrischen Feld

Deshalb ist  D  links zur Folie hin und rechts von ihr weg gerichtet: sie scheint

für  D-Linien nicht zu existieren. Die Erzeugung von Flächenladungen auf

Metalloberflächen ist Inhalt des  Influenzprinzips (s. u.). In Tab. 2.5 sind die

Grenzflächenbedingungen zusammengefasst. 

Beispiel 2.4.1 Fl¨

achenladungsdichte Eine Feldstärke  E = 1 kV /  m trifft auf eine

Leiteroberfläche. Dort erzeugt sie die Flächenladungsdichte  σ =  D n =  ε 0 E n = 8 ,  85 ·

10 − 12 F /  m  ·  1 kV /  m = 8 ,  8510 − 9 C /  m2 (negativ, Feldstärke trifft auf). Grenzt die
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Tab. 2.5. Grenzflächenbedingungen des elektrostatischen Feldes

Komponente

Randwerte

System

tangential

 E t1 =  E t2

Nichtleiter 1 / Nichtleiter 2

normal

 D n1 =  D n2

keine Flächenladung

 D n2  − D n1 =  σ

dto., mit Flächenladung

tangential

 E t1 =  E t2 = 0

Nichtleiter 2 / Leiter 1

 D n2 =  σ =  εE n2

mit Flächenladung

Leiteroberfläche an ein Dielektrikum ( ε r = 3), so entsteht bei gleicher auftreffender

Feldstärke  E n eine Feldstärke ( ε 2 E n2 =  ε 0 E n)  E n2 =  ε 0 E n /ε 2 = 333 V /  m. An der Isolator-Metall Grenzfläche bleibt die Flächendichte erhalten. 

Zusammengefasst

1. 

An einer ladungsfreien Grenzfläche verschiedener Dielektrika sind die

Normalkomponenten der Verschiebungsflussdichte und Tangentialkom-

ponenten der Feldstärke immer stetig. Der Ladungsfluss durch die Grenz-

fläche ist immer stetig.3

2. 

Eine Flächenladung an der Grenzfläche bedingt einen Sprung der Nor-

malkomponenten der Verschiebungsflussdichte um den Flächenladungs-

betrag. 

3. 

Die Normalkomponenten der Feldstärke sind beiderseits der Grenzfläche

umgekehrt proportional zu den Dielektrizitätskonstanten. Im Materi-

al mit kleinerem  ε  herrscht höhere Feldstärke.  Eine vom Ladungsfluss

 durchsetzte Grenzfl¨

 ache ist stets Quelle (Senke) von E-Linien. 

Ladungstr¨

ager/Leiter im elektrostatischen Feld An der Grenzfläche Leiter-

Isolator tritt  Ladungstr¨

 agerinfluenz  auf. Sie wird vielfältig genutzt. 

1. Influenzprinzip Wirkt auf die Oberfläche eines Leiters oder Halblei-

ters ein elektrisches Feld, so entsteht durch Kraftwirkung eine Ladungs-

verschiebung und im Gefolge eine oberflächennahe  Raumladungszone  bzw. 

 Fl¨

 achenladung  durch  Ladungstrennung. Dieser Vorgang heißt  Influenz 4. Des-

halb lassen sich bei Feldeinwirkung Ladungen auf Leitern trennen ohne Kon-

3 Das ist eine direkte Eigenschaft des Flussintegrals Anhang A.2, Bd. 1. 

4 Mitunter wird auch von elektrostatischer Induktion gesprochen. Wegen der Wesens-

verschiedenheit mit dem Induktionsvorgang im Magnetfeld sollte diese Bezeichnung

unbedingt vermieden werden. 
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Abb. 2.4.2. Influenzprinzip. (a) Elektrisches Feld mit ungeladen eingeschobenen Metall-

platten. (b) Bei Trennung der Metallplatten entsteht ein feldfreier Raum im Feld bzw. ein

Feld zwischen den Platten bei Entfernung aus dem Feld. (c) Influenzprinzip und Gaußsches

Gesetz: Ersatz der Äquipotenzialfläche durch eine Metalldoppelkugel mit der Ladung + Q, 

 −Q  bzw. der Flächenladungsdichte  σ. Die innere Kugel hat die Nettoladung Null. (d) Wan-

derwelle auf einer Leitung durch Änderung der influenzierten Ladung

takt des Leiters zu einer Spannungsquelle (die klassische Erklärung des In-

fluenzphänomens). 

So wird eine metallisierte Kugel an einem Seidenfaden von einem Glasstab

angezogen, wenn man ihn vorher mit einem Wolllappen reibt. Durch Influenz

entsteht auf der Kugeloberfläche die gleiche, aber entgegengesetzte Ladung

des Glasstabes, und es kommt zur Kraftwirkung. 

Wird ein leitender Gegenstand geringer Dicke (z. B. zwei dünne, sich be-

rührende Metallscheiben) in das Feld eines Plattenkondensators gebracht

(Abb. 2.4.2a), dann verschieben sich Ladungsträger an die Oberflächen, so

dass die Feldlinien auf positiven Ladungen beginnen und auf negativen enden:

 es entstehen Oberfl¨

 achenladungen mit Fl¨

 achendichte σ. Beim Auseinanderbe-

wegen der Platten bleibt ihre Ladung erhalten und der Zwischenraum feldfrei. 

Ursache der Ladungsverschiebung ist die Feldkraft. Diese Ladungstrennung

verursacht im Leiterinnern ein Gegenfeld  E i solcher Größe, dass das Gesamt-

feld  E +  E i verschwindet: Bei Entfernung beider Platten mit ihrer Ladung

aus dem Feld bleibt zwischen beiden das Influenzfeld bestehen (Abb. 2.4.2b). 
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Im elektrostatischen Feld sammeln sich Ladungsträger an den Leiterober-

flächen als Flächenladung. Dieser Vorgang heißt  Influenz. Das Leiterinnere

bleibt dabei feldfrei. 

Das Influenzprinzip folgt unmittelbar aus dem Gaußschen Satz Gl. (2.2.7). Wird im

Feld zweier Ladungen eine Potenzialfläche um die Ladung  Q  durch eine geometrisch

gleiche Metalldoppelfläche ersetzt, dann lädt sich ihre Innenseite durch Influenz ne-

gativ und die Oberfläche positiv (Abb. 2.4.2c). Alle von der positiven Ladung  Q

ausgehenden Verschiebungslinien enden innerhalb der Metallumhüllung, von ih-

rer Außenfläche geht die gleiche Anzahl wieder weg. Im Inneren der Metallkugel

kompensieren sich beide Ladungen, es ist feldfrei. Deshalb kann die ursprüngliche

Ladung ohne Störung des Feldes entfernt werden, und die Metallkugel trägt die

Ladung  Q. 

2. Abschirmung Soll das Feld an einem Punkt P verschwinden, so wird er

mit einer Metallhülle, einem  Faradayschen K¨

 afig, umgeben. An seiner Au-

ßenseite entsteht durch Influenz eine Flächenladung, und das Innere bleibt

feldfrei: Abschirmung des elektrischen (nicht magnetischen!) Feldes. Deshalb

wirkt ein Auto (Blechkarosserie) für die Insassen bei Gewitter als abschir-

mender Käfig. 

3. Wanderwellen auf Freileitung Eine Gewitterwolke influenziert auf isolier-

ten Leitungen (Abb. 2.4.2d) und der Erde die entsprechende Gegenladung. Entlädt

sich die Wolke durch Blitzschlag, so sind die Ladungen der Leitungen nicht mehr

gebunden und strömen nach beiden Richtungen als  Wanderwelle  auseinander. Da-

durch können Spannungsstöße entstehen, die hier in der Nähe liegende Leitungen

gefährden. Aus gleichem Grund meidet man bei Gewitter die Berührung ausge-

dehnter isolierter Metallgegenstände. 

4. Strom durch Influenz bewegter Ladungen Gelangt in einen ungeladenen

Plattenkondensator eine Ladung, so influenziert sie auf beiden Platten insgesamt

ihre Gegenladung. Bei Bewegung (z. B. durch ein Feld) zu einer Plattenseite ver-

schiebt sich das Verhältnis der influenzierten Ladungen. Ladungsänderungen be-

deuten Stromfluss im äußeren Kreis. Er wird als  Influenzstrom  bezeichnet. 

Bewegt sich im Plattenkondensator (mit der Spannung  U) ein (negatives) La-

dungspaket Δ Q  mit der Geschwindigkeit  v  von links nach rechts (Abb. 2.4.3a), 

so influenziert es die Ladungen Δ Q iK und Δ Q iA auf den Platten (Abb. 2.4.3b)

mit Δ Q iK + Δ Q iA = Δ Q, weil alle zu Δ Q  beitragenden Ladungen von der An-

ode oder Kathode ausgehen. Die Bewegung ändert das Verhältnis der Teilladun-

gen fortwährend. Deshalb müssen zur rechten Platte laufend positive Ladungen

fließen und von der linken abfließen:  die Ladungsbewegung im Nichtleiter verur-

 sacht durch Ladungsinfluenz auf den Platten im ¨

 außeren Kreis einen Leitungsstrom! 

Die Ladung Δ Q ändert das Feld im Kondensator. Nach dem Gaußschen Satz gilt

 E 1 =  D 1 /ε 0 =  −( Q Kap  − Δ Q iK) /ε 0 A,  und  E 2 =  D 2 /ε 0 =  −( Q Kap + Δ Q iA) /ε 0 A sowie  −U =  E 1 x +  E 2( d − x). Damit beträgt die influenzierte Ladung





 x( t)

Δ Q iA = Δ Q

 , 

Δ Q iK = Δ Q  1  − x( t)

 . 

 d

 d
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Abb. 2.4.3. Influenzwirkung durch bewegte Ladung. (a) Eine negative Ladungsfront Δ Q

bewegt sich mit konstanter Geschwindigkeit  v  durch ein Kondensatorfeld und influenziert

auf den Platten die Ladungen Δ Q iK, Δ Q iA, deren Aufteilung sich durch die Bewegung

ändert (b). (c) Ladungsausgleich über den äußeren Stromkreis als Stromimpuls

Bei konstanter Spannung (!) fließt im Außenkreis der Strom

dΔ Q iA( t)

Δ Q  d x( t)

Δ Qv

 i infl =

=

=

d t

 d

d t

 d

zur Anode. Während der Flugzeit  τ  des Ladungspaketes von K nach A erreicht die

rechte Platte insgesamt die Ladung

 τ



 τ



 d



Δ Q

d x

Δ Q

 i d t =

d t =

d x = Δ Q, 

 d

d t

 d

0

0

0

die über die Zuleitung A abfließt. So wirkt im Außenkreis während der Flugzeit ein

kontinuierlicher Strom, nicht nur im Moment des Auftreffens (Abb. 2.4.3c). 

Jede durch ein Dielektrikum transportierte Ladung erzeugt durch Influenz im Ver-

bindungsleiter einen Stromimpuls, dessen Zeitintegral gleich der transportierten

Ladung ist. Solche Vorgänge treten in elektronischen Bauelementen auf. 

5. Elektrostatische Generatoren Elektrostatische Generatoren beruhen auf der

Trennung von Ladungsträgern durch Influenz, aber auch Reibung oder Sprühent-

ladungen. Vor allem das Reibungsprinzip ist alt und trug viel zum Verständnis

der Elektrizität bei. Reibungselektrizität basiert auf der Trennung zweier Grenz-

flächen, die vorher beim Reiben in innigem Kontakt standen. Beim Van de Graaff-

Generator (s. Abb. 1.3.2b) sprüht eine Sprüheinrichtung (z. B. Hochspannungsquel-

le, 10 kV) geladene Teilchen auf ein umlaufendes Isolierband, das sich gegen die

Feldkraft bewegt. Die Ladungsträger werden im feldfreien Innern einer Spannungs-

elektrode (Hohlkugel) über eine Metalldrahtelektrode abgenommen und gelangen

so auf die Kugeloberfläche. Der auf dem Band transportierte Strom hängt von der

Geschwindigkeit  v, der Bandbreite  b  und Flächenladungsdichte  σ ≤  2 ε 0 E BR ab: I =  σvb ≤ vb · ε 0 E BR. Die Durchbruchfeldstärke der Luft begrenzt die erreichbare

Spannung, Werte im MV-Bereich sind üblich. Der Bandgenerator stellt eine (echte)

Konstantstromquelle mit dem Quellenstrom  I  dar (Größenordnung µA  . . .  mA). 
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2.5

2.5 Berechnung und Eigenschaften elektrostatischer

Felder

Einf¨

uhrung Das elektrostatische Feld wird durch ruhende Ladungen gekenn-

zeichnet, also die Bedingungen





 E· d s = 0 , 

 D·  d A =  Q  und  D =  εE. 

(2.5.1a)

Es assoziiert damit den  Vergleich zum Str¨

 omungsfeld (s. Tab. 2.3)





 E· d s = 0 , 

 J· d A = 0 und  J =  κE. 

(2.5.1b)

Weil beides Potenzialfelder sind, gelten die Verfahren zur Berechnung der

Strömungsfelder sinngemäß auch für elektrostatische Felder:

Ersetzt man im Strömungsfeld mit gut leitenden Elektroden den räumlichen

Leiter durch einen Nichtleiter, so bleibt die Feldstärke- und Potenzialver-

teilung (bei gleicher Elektrodenspannung) erhalten. 

Wurde im Strömungsfeld ein Probestrom  I  an einer Elektrode eingeprägt

und von der anderen weggeführt, so übernimmt diese Rolle hier eine Probe-

ladung + Q  auf einer Elektrode und die Gegenladung  −Q  im Raum bzw. der

Gegenelektrode. 

2.5.1 Feldberechnung

Wir stellen einige typische Felder zusammen, bei denen die Verschiebungs-

flussdichte  D  aus einer gegebenen Ladungsverteilung leicht bestimmt werden

kann. Ausgang ist der Ablauf



Ersatzkapazität

 Q Probe  → D( r)  → E( r)  → ϕ( r)  → U ( r)  →

Feldverteilung



 B



 Q

=

 D ·  d A, D =  εE, U AB =  ϕ A  − ϕ B =

 E ·  d s. 

(2.5.2)

 A

 A

Die Felder der Verschiebungsflussdichte  D  entsprechen denen der Strom-

dichte  J, wenn der Probestrom  I (Speisestrom der Elektroden) durch die

Ladung  ±Q  auf den Elektroden ersetzt wird (s. Gl. (1.3.11)). 

Eine Punktladung  Q  im Dielektrikum  ε  erzeugt ein radialsymmetrisches  D-

Feld (Abb. 2.5.1a). Im Gaußschen Satz Gl. (2.2.7) nutzen wir aus Symmetrie-
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Abb. 2.5.1. Feld einer Punktladung  Q ( >  0). (a) Anordnung mit Potenzial- und Feldstär-

kelinien. (b) Verlauf der Verschiebungsflussdichte und des Potenzials über dem Radius

gründen eine Kugeloberfläche vom Radius  r  mit der Punktladung im Mittel-

punkt. Da  |D|  jetzt auf der Kugeloberfläche konstant ist, gilt  Q =  D · A  und

mit  A = 4 πr 2 schließlich (Einheitsvektor  e r in  r-Richtung (s. Gl. (2.2.2)))

 Q

 Q

 Q

 Q

 D =

=

bzw . D =

 e r und  E =

 e r . 

 A

4 πr 2

4 πr 2

4 πεr 2

Zur Potenzialberechnung zwischen den Punkten A, B wählen wir den an die

Symmetrieeigenschaften angepassten Weg in radialer Richtung (mit  E|| d s). 

Es folgt mit d s = d r  und  E =  Q/(4 πεr 2)

 r B







 Q

d 

 Q

1

 ϕ( r) =  ϕ( r B) +

=  ϕ( r B) +

 −  1  . 

(2.5.3a)

4 πε

  2

4 πε

 r

 r B

 r

Das ist das  Potenzial  im Strömungsfeld (Gl. (1.3.13)), das dort aus der

Feldstärke  E( r) =  J( r) /κ  statt wie hier aus  E( r) =  D( r) /ε  bestimmt wurde. Für die Bezugswerte  r B  → ∞  und  ϕ( r B) = 0 wird schließlich

 ∞



 ∞



 ∞

 D



( )

 Q

 d

 Q  1

 ϕ( r) =

 E · e  d  =

 · e

=

(2.5.3b)

 ε

 d = 4 πε

  2

4 πε r

 r

 r

 r

bezogen auf den unendlich fernen Punkt. 

Das Potenzial des elektrostatischen Feldes ergibt sich aus dem des Strö-

mungsfeldes (für die gleiche Elektrodenanordnung), wenn  I/κ  durch  Q/ε

ersetzt wird. 

Damit können die Ergebnisse für rotations- und zylindersymmetrische Felder

auf das elektrostatische Feld übertragen werden. 
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Abb. 2.5.2. Spiegelprinzip. (a) Eine positive Punktladung über einer leitenden Ebene influ-

enziert dort negative Flächenladung. Ihr Feldbild entspricht dem eines Ladungspaares, mit

der unteren Ladung als Spiegelbild der oberen (Vorzeichenwechsel der Ladung). (b) Anwen-

dung des Spiegelprinzips auf Ladungsverteilungen. (c) Feldstärkeberechnung im Punkt P

mit dem Spiegelprinzip

Feldberechnungen treten auf bei:

Bestimmung der Feldstärke von Leiteranordnungen mit gegebener Spannung, 

Kapazitätsbestimmung von Leiteranordnungen. 

Sie werden einfach, wenn aus der Leitergeometrie qualitativ auf die Ladungsvertei-

lung geschlossen werden kann. Ist beispielsweise im Potenzialfeld Abb. 2.5.1 die La-

dung  Q  konzentrisch mit einer leitenden Hohlkugel (Radien  r 1,  r 2) nach Abb. 2.4.2c

umhüllt, so nimmt letztere das Potenzial  ϕ( r 1) an (Abb. 2.5.1b). In der Metallkugel

selbst verschwindet die Verschiebungsflussdichte. 

Spiegelverfahren Für kompliziertere Felder gibt es weitere Berechnungsverfahren, 

eines ist das schon beim Strömungsfeld erläuterte Spiegelverfahren (Abb. 2.5.2a):

Zwei Ladungen  Q 1 =  Q  und  Q 2 =  −Q (unterschiedliche Vorzeichen, gleiche Be-

träge) erzeugen eine ebene Niveaufläche ( ϕ = 0) symmetrisch zu ihrer räumlichen

Lage oder: wird eine Ladung  Q  an einer Ebene gespiegelt, so nimmt die Ebene

das Potenzial 0 an. 

Das Prinzip gilt sinngemäß auch für Ladungsverteilungen (Abb. 2.5.2b). 

Wir betrachten als Beispiel zwei Punktladungen je im Abstand  a über einer Sym-



metrieebene (Abb. 2.5.2c). In der Ebene  z = 0 ( r 1 =  r 2 =  r =

 x 2 +  y 2 +  a 2)

lautet die Feldstärke  E =  −  2 Qa

4 πεr 3  e z. Die Normalkomponente von  D  muss gleich

der Flächenladungsdichte  σ  an der Leiteroberfläche  z = 0 sein:  σ =  − 2 Qa/(4 πεr 3). 

Die gesamte, an der unendlich ausgedehnten Leiteroberfläche influenzierte Ladung

wird dann



 ∞



2 πρ d 

 Q|

=

 σ d A =  −  2 Qa

=  −Q

(2.5.3c)

OF

4 π

(  2 +  a 2)3 / 2

 A→∞

0

und ist gleich der negativen Ausgangsladung. Das begründet die Anwendbarkeit

des Spiegelprinzips. Zur Lösung des Integrals sei auf Beispiel 2.2.3 verwiesen. 
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2.5.2 Quellencharakter des elektrostatischen Feldes

Integrale Aussage Nach dem Gaußschen Gesetz Gl. (2.2.7) hängen Ladung  Q

und Flussdichte  D  durch eine Hüllfläche direkt zusammen, auch dann noch, 

wenn die Hülle schrumpft und schließlich nur noch eine Punktladung um-

schließt: Felderzeugende Ladungen  Q  sind Quelle und Senke des Flussdich-

tefeldes. Das elektrostatische Feld ist ein Quellenfeld (vgl. Abb. 2.2.1). Das

Gesetz bezieht sich auf die umschlossene Gesamtladung, es gibt keine Aus-

kunft über die  Ladungsverteilung. 

Aussage im Raumpunkt Vom Feldgesichtspunkt her interessiert eine gleich-

wertige Aussage für den Raumpunkt. Dazu denken wir die Ladung  Q  in

Teilladungen Δ Q  zerlegt, die jeweils das Volumen Δ V  einnehmen. Im Volu-

menelement herrsche die konstante Raumladungsdichte  . Dann enthält das

Volumen  V  die Ladung (Gl. (1.3.3), Bd. 1)





 Q =

   d V =

 A  d x. 

Volumen

Volumen

Das Volumenelement d V =  A d x  sei ein Quader (Fläche  A, Dicke d x), von

dem alle Flussdichtelinien nach rechts (Annahme homogenes Feld) austre-

ten sollen (Abb. 2.5.3a). Die entsprechende negative Ladung befinde sich

weit rechts. Nach dem Gaußschen Gesetz wird die rechte Oberfläche vom La-

dungsfluss Ψ =  Q =  D · A =  DA  durchsetzt. Bei  konstanter  Raumladungs-

dichte    entstehen längs der Strecke d x  insgesamt d D  neue Ladungslinien“

” 

(je Fläche), insgesamt ist also die Ladung im Volumen





d D

 ·A  d x =

 A  d x

=

 DA

 . 

(2.5.4)

d x





  

Ladungsfluss durch

räumlicher

Gesamtladung

rechte Oberfläche

Ladungszuwachs

im Volumen

Der Vergleich ergibt

d D x =  . 

(2.5.5a)

d x

Aus jeder

Ladungsscheibe“ (Inhalt: Δ Q =  AΔ D) entspringt nach rechts

” 

die gleiche Anzahl von Feldlinien neu und es wächst die Liniendichte“, eben

” 

die elektrische Flussdichte  D, nach rechts. Wegen der linear ansteigenden

Verschiebungsdichte ( ∼ E( x)) muss das Potenzial quadratisch über dem Ort

verlaufen. 

Raumladung bedingt im elektrischen Feld nichtlinearen Potenzialverlauf. 

Steigt dagegen die Raumladungsdichte    nach rechts (Abb. 2.5.3b) muss

d D/ d x  ebenfalls nach rechts anwachsen, sich also  D stärker ändern. Die Folge

ist eine noch stärkere Potenzialkrümmung. 
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Abb. 2.5.3. Verschiebungs- und Raumladungsdichte (eindimensional). (a) Verschiebungs-

flussdichte und Potenzial bei konstanter Raumladung. (b) wie (a), aber bei inhomogener, 

nach rechts wachsender Raumladungsdichte. (c) bei zwei, verschwindend schmalen und

unendlich großen Raumladungsschichten (gleichwertig einer Flächenladung). Im Zwischen-

gebiet entsteht konstante Verschiebungsdichte

Bei einem Sprung von  D  an der Oberfläche (Abb. 2.5.3c) wächst   über alle

Grenzen, und die Dicke der Raumladungsschicht schrumpft gegen Null. Das

ist aber Inhalt der Flächenladungsdichte“  σ (s. Gl. (2.2.3)). Wir erkennen:

” 

in  x-Richtung beschreibt Gl. (2.5.5a) (oder umgestellt)

 x



 x



 x



d D x =

   d x  bzw . D x( x) =  D x( x 0) +

   d x

(2.5.5b)

 x 0

 x 0

 x 0

den Zusammenhang zwischen der Änderung der Verschiebungsflussdichte und

Raumladung an jeder Stelle  x.  Nur außerhalb des Raumladungsgebietes ( =

0 ) ist D konstant. 

Wird im Abstand  d  eine zweite Flächenladung (mit entgegengesetztem Vor-

zeichen) hinzugefügt (Abb. 2.5.3c), so entsteht ein rechteckförmiger  D-Verlauf
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und eine Potenzialrampe mit dem Spannungsabfall  U =  Ed =  Dd/ε =  σd/ε. 

Die bisherigen Überlegungen, insbesondere Gl. (2.5.5a) lassen sich für alle

drei Koordinaten verallgemeinern zum  Gaußschen Gesetz  Gl. (2.2.7) für den

 Raumpunkt  oder in  Differenzialform 5:

 ∂D x

 ∂D y

 ∂D z

Gaußsches Gesetz

+

+

= div  D =  ( x, y, z) . 

(2.5.6)

 ∂x

 ∂y

 ∂z

im Raumpunkt

Links steht die räumliche Änderung der elektrischen Flussdichte (und so

auch die Feldstärke), rechts die Raumladungsdichte als Ursache der Fluss-

dichteänderung. 

Der Einfluss der Raumladungsdichte auf die Potenzialverteilung  ϕ( x) ergibt

sich (für eindimensionale Verhältnisse) mit  D x =  εE x und  E x =  − d ϕ/ d x

zu

 − d( εE x)

d2 ϕ( x)

=  ε

=  −( x) . 

(eindim.) Poisson-Gleichung (2.5.7)

d x

d x 2

Jede Raumladung    verursacht ein räumlich veränderliches, also inhomoge-

nes elektrisches Feld mit nichtlinearem Potenzialverlauf. 

Die Poisson-Gleichung ändert für Zylinder- und Kugelkoordinaten ihr Aussehen. 

Mit den Vektoroperationen Gradient und Divergenz gilt sie koordinatenunabhängig:

div grad  ϕ =  −/ε. 

Aus einem Potenzialverlauf lässt sich die Raumladungsverteilung über die Pois-

sonsche Gleichung durch Differenziation ermitteln. Meist liegt aber die Raum-

ladungsverteilung vor, und der Potenzialverlauf ist gesucht. Dann herrscht eine

Rückkopplung zwischen Feldverlauf und frei beweglicher Ladung: das Feld bestimmt

die Ladungsverteilung, und diese korrigiert rückwirkend den Feldverlauf. Raumla-

dungsbehaftete Vorgänge treten vielfältig auf:

beim Stromfluss durch hochohmige Gebiete, 

in physikalischen Grenzflächensystemen (s. Kap. 1.3.3.3, Abb. 1.3.12), 

an der Oberfläche von hochohmigen Leiterbereichen beim Auftreffen eines Feldes

als Raumladungszone“ auch in Bauelementen, z. B.  pn- Übergang, u. a. m. Als

” 

typisches Merkmal der Raumladung wird die  I,  U- oder die  Q,  U-Beziehung der

betreffenden Anordnung  nichtlinear, Beispiel Vakuumdiode, Abb. 1.3.21. 

Wir betrachten einige Beispiele:

a) Gegeben sei ein Gebiet konstanter Raumladungsdichte   = const. 

(Abb. 2.5.3a), das bei  x = 0 das Potenzial  ϕ(0) = 0 hat und an der Stel-

le  d ϕ( d) =  −U (dann liegt über der Raumladungszone die Spannung vom

5 Die Schreibweise div  D = 0 (gesprochen: Divergenz von  D, Ergiebigkeit) benutzt

die Differenzialvektoroperation div. 
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Abb. 2.5.4. Raumladungszone im  pn- Übergang. (a) Entstehung einer Raumladungsdop-

pelschicht zwischen  p- und  n-leitendem Bereich. (b) Raumladungs- und Feldstärkeverlauf. 

(c) Zugehöriger Potenzialverlauf. Die Potenzialschwelle wird aus dem stromlosen Zustand

ermittelt, sie bestimmt die Breite der Raumladungszone

Betrag  U ). Die Poissonsche Gleichung (2.5.7) ergibt nach doppelter Integra-

tion die Lösung

 ϕ( x) =  − ρx 2 +  c 1 x +  c 2 . 

(2.5.8)

2 ε

Die Integrationskonstanten  c 1,  c 2 werden durch  Randbedingungen  bestimmt:





2

es soll gelten  ϕ(0) = 0  → c 2 = 0 und  ϕ( d) =  −U → c 1 =  − x −U +  d

. 

 d

2 ε

Damit lautet die angepasste Lösung (Abb. 2.5.3a)

  



 ϕ( x) =  − x U +

 xd − x 2  . 

(2.5.9)

 d

2 ε

Die Feldstärke folgt aus  E =  − d ϕ/ d x. 

In einem Gebiet mit konstanter Raumladung steigt das Feld linear, und das

Potenzial verläuft quadratisch über dem Ort. 

b) Wird an die positive Raumladungsschicht noch eine negative angefügt, so

entsteht eine  Raumladungsdoppelschicht (Abb. 2.5.3c) und damit verbunden

eine  Potenzialschwelle. Sie ist Grundlage des  pn- Überganges in der Halblei-

terdiode. 

pn- ¨

Ubergang Kommen zwei  p- und  n-dotierte Halbleitergebiete in innigen Kon-

takt (Abb. 2.5.4a), so baut sich an der Übergangsfläche im Wechselspiel zwischen

Diffusions- und Feldbewegung eine Raumladungsdoppelschicht auf: (s. Entstehung

der Diffusionsspannung Gl. (1.3.45)). Durch Überschuss negativer Störstellen (Ak-

zeptoren) im  p-Gebiet entsteht eine negative Raumladung (Raumladungsdichte

  ≈ −qN , analog im

A

 n-Gebiet eine positive Raumladungsdichte). Die Folge sind

ein  inneres Feldst¨

 arkefeld  und eine Potenzialschwelle.  Jeder pn- ¨

 Ubergang bildet eine

 Raumladungszone.  Im Raumladungsbereich lautet die Poissonsche Gleichung



d2 ϕ( x)

 q

 N

=

A

für  −x p  ≤ x ≤  0  . 

(2.5.10a)

d x 2

 ε

 −N D für 0  ≤ x ≤ x n
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Einmalige Integration liefert die Feldstärke (Bedingung verschwindender Feldstärke

an den Grenzen  E( −x p) =  E( x n) = 0),  gleiche Flächenladung qN A x p =  qN D x n beiderseits der Grenzfläche und eine erneute Integration den Potenzialverlauf (mit

dem Bezugswert  ϕ( −x p) = 0)



 q

 x

 ϕ( x) =

 N

p + 2 x +  x 2 /x p für  −x p  ≤ x ≤  0

D x n

 . 

(2.5.10b)

2 ε

 x p + 2 x − x 2 /x n für 0  ≤ x ≤ x n

Es verläuft an der Stelle  x = 0 stetig. Der Wert  ϕ( x n) =  U D wird der Diffusions-

spannung Gl. (1.3.45) gleichgesetzt. Weiter lassen sich angeben:

die  Sperrschichtbreite W S (Breite der Raumladungszone)



2 ε( N

 √

A +  N D)

 W S =  x n +  x p =

 U D , 

(2.5.11a)

 q( N A N D)

die  Verarmungsladung Q SC (eines Raumladungsgebietes)



 N

 √

A N D

 Q SC =  A  2 εq

 U D . 

(2.5.11b)

( N A +  N D)

Sperrschichtbreite und Verarmungsladung hängen von der Spannung  U über der

Raumladungszone ab. Das ist im stromlosen Zustand die Diffusionsspannung  U D. 

Eine äußere Spannung vergrößert oder reduziert diese Potenzialschwelle je nach

Spannungsrichtung. Dadurch entstehen der richtungsabhängige Stromfluss und die

spannungsabhängige  Sperrschichtkapazit¨

 at (s. Kap. 2.7.4). 

Metall-Isolator-Grenzfl¨

ache Wird im Kondensator (Abb. 2.5.5a) die linke Metall-

elektrode gegen eine dicke, homogen dotierte  p-leitende Halbleiterschicht ausge-

tauscht, so entsteht ein  Metall-Isolator-Halbleiter  oder  MIS-Kondensator. Eine an-

liegende Spannung  U q erzeugt im Isolator ein elektrisches Feld (Größe  E ≈ U/d). 

Die zugehörigen Flussdichtelinien  D  beginnen auf der rechten Metallelektrode mit

der positiven Gesamtladung  Q+. Das Ladungsgleichgewicht erfordert eine betrags-

mäßig gleiche negative Ladung  Q−  im Oberflächenbereich des  p-Halbleiters mit

Löchern als  Majorit¨

 atstr¨

 ager  und einigen Elektronen als  Minorit¨

 atstr¨

 ager. 

Zum Aufbau einer negativen oberflächennahen Ladung  Q−:

müssen Löcher von der Oberfläche zurückgedrängt werden, so dass die ne-

gativen, ortsfesten Störstellen (Akzeptoren, Raumladungsdichte   =  −qN )

A

überwiegen (Abb. 2.5.5a) und

bei starkem Feld ggf. noch Elektronen, also Minoritätsträger, aus dem Halblei-

terinnern zur Oberfläche rücken. Sie bilden dort eine (bewegliche)  Inversionsla-

 dung Q i (Abb. 2.5.5b) (s. u.). 

Die ortsfeste Störstellenladung dehnt sich bis zu einer Tiefe  W =  x p aus. Erst

dann beginnt der  neutrale Halbleiterbereich. Die Tiefe  W  stellt sich so ein, dass

die Gesamtladung  Q−  ausreicht, der positiven Ladung  Q+ auf dem Metall das
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Abb. 2.5.5. Metall-Isolator-Halbleiter-Kapazität, Prinzip des Feldeffektes. (a) Ladungs-

trägerinfluenz an der Halbleiteroberfläche. Je nach Größe und Richtung der anliegenden

Spannung entsteht im Halbleiter eine von Ladungsträgern verarmte Oberflächenzone oder

(b) eine zusätzliche Inversionsschicht  Q i aus beweglichen Elektronen (Minoritätsträger). 

Bei Umkehr der Spannung reichert sich die Halbleiteroberfläche mit Löchern an

Gleichgewicht zu halten:



 |Q−| =

   d V =  V = ( qN A) AW =  |Q+ | =  DA. 

 V

Das ergibt für eine Isolatordicke  d i = 1 µm, eine Spannung  U = 1 V (Isolator-

feldstärke also  E =  U/d = 1 V / µm = 106 V /  m!) sowie eine Störstellendichte

 N A = 1016 cm − 3 und  ε r = 10 die Tiefe

 D

 εE

 εU

 W =

=

=

 qN A

 qN A

 qN A d i

10  ·  8 ,  85  ·  10 − 12 A  ·  s  ·  1 V

=

 ≈  5 ,  5  ·  10 − 6 cm . 

1 ,  6  ·  10 − 19 A s  ·  V m  ·  1 µm  ·  1016 cm − 3

Die geringe Störstellenkonzentration  N A (gegen Metall 7 Größenordnungen kleiner)

bestimmt die Ausdehnung der Raumladungszone. 
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Das Beispiel fasst mehrere, bisher einzeln erörterte Phänomene zusammen:

Im oberflächennahen Halbleiterbereich wird die Raumladungszone mit abneh-

mender Störstellendichte (abnehmende Leitfähigkeit) ausgeprägter. Sie ist Quel-

le/Senke der Feldlinien, doch enden sie nicht an der Oberfläche, sondern ver-

” 

sickern“ in der Raumladungszone, wie im Abb. 2.5.5b skizziert. 

Der oberflächennahe ortsabhängige Feldverlauf verursacht einen nichtlinearen

Spannungsabfall über der Raumladungszone (s. Gl. (2.5.10b)). 

Ihre Ausdehnung  W  wächst mit steigender Spannung  U, weil mehr Ladung

 Q  aufgebracht werden muss, was nur durch Verbreiterung möglich ist. Damit

hängt die Breite von der Spannung ab (sogar nichtlinear, Gl. (2.5.11b)). 

Bei hoher Spannung  U  tritt zur Verarmungsladung  qN A noch eine  Inversions-

 ladung Q i (Abb. 2.5.5b). 

Die oberflächennahe Raumladungszone verursacht eine (nichtlineare) Raumla-

dekapazität, die der Plattenkapazität  C i des Isolators in Reihe“ liegt. 

” 

Das Beispiel zeigt, dass sich hinter dem mathematischen Modell der Flächenladung

komplizierte physikalische Vorgänge verbergen können. 

2.5.3 MOS-Feldeffekttransistor

Wir betrachten als Beispiel für das Zusammenwirken von Strömungs- und

elektrostatischem Feld den  MOS-Feldeffekttransistor. Er ist das wichtigs-

te Bauelement integrierter Schaltungen. Sein Funktionsprinzip unterscheidet

sich grundlegend vom Bipolartransistor (Kap. 2.7.3, Bd. 1). 

Feldeffekt Ausgang ist ein  Metall-Isolator-Halbleiter-Kondensator  nach

Abb. 2.5.5b. Liegt an der Metallelektrode eine hohe positive Spannung, so

bildet sich (durch Influenz) an der  p-leitenden Halbleiteroberfläche eine  Inver-

 sionsschicht ( n-leitend) als dünner Film“ beweglicher Elektronen. Ihre La-

” 

dungsträgerdichte ( ∼  Leitfähigkeit) wächst mit der auftreffenden Feldstärke

und so der anliegenden Spannung:  die Steuerbarkeit der oberfl¨

 achennahen

 Leitf¨

 ahigkeit durch ein elektrisches Feld heißt Feldeffekt. Er ist die Grundlage

des MOS-Feldeffekttransistors. 

MOS-Feldeffekttransistor Dieser Transistor nutzt den  Feldeffekt als Steu-

 erprinzip eines Str¨

 omungsfeldes (flächenhaftes Feld sehr geringer Dicke) in

Form eines  stromf¨

 uhrenden Inversionskanals  in einer MOS-Anordnung

(Abb. 2.5.6). Das kanalförmige Strömungsfeld liegt zwischen zwei  Kontaktbe-

 reichen ( Drain  und  Source  D, S) an der Halbleiteroberfläche (Abb. 2.5.6b). 

Inversionskanal und Kontaktbereiche sind durch  Verarmungszonen (Raumla-

dungszonen nach dem Prinzip des gesperrten  pn- Überganges) vom restlichen

 p-Substrat“ getrennt. 

” 
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Abb. 2.5.6. MOS-Feldeffekttransistor. (a) Funktionsprinzip als gesteuertes nichtlineares

stationäres Strömungsfeld mit herausgegriffenem Kanalelement. (b) Querschnitt durch

einen  n-Kanal-MOSFET. (c) Ausgangskennlinienfeld mit der effektiven Steuerspannung

 U GS  − U TH als Parameter

Der Inversionskanal bildet mit seinen beiden Kontaktbereichen ein (nichtli-

neares) Strömungsfeld, dessen Leitfähigkeit durch den Feldeffekt (über die

Gateelektrode) gesteuert wird. So hängt der Strom zwischen den Elektroden

S, D auch von der Spannung zwischen Gateelektrode G und Strömungsfeld

ab. Die Anordnung heißt MOS-Feldeffekttransistor (Anschlüsse S, D, G)

mit dem MOS-Kondensator als Grundelement. 

Weil als Isolator standardmäßig SiO2 (Siliziumdioxid, Isolator I  →  Oxide O)

und als Halbleiter Silizium verwendet werden, spricht man verbreiteter vom

MOS-Kondensator (statt MIS-) und dem MOS-Feldeffekttransistor. 

Im Betrieb liegen am Transistor die Drain-Source-Spannung  U DS, die den

Drainstrom  I D durch den Inversionskanal verursacht und die Gate-Source-

Steuerspannung  U GS. Im  n-leitenden Inversionskanal (Dicke  x i) dieses  n-

Kanal-MOSFET herrscht eine Driftstromdichte  J D =  κ n E y, dazu gehört der

Drainstrom ( b  Kanalbreite)





 −I D =  I K =

 J y  ·  d A =

 κ( y) E y  ·  d A

 A

 A

 x i



 xi



=

( qμ n n( x, y))

 e

 ·





  E y  · b  d x

 y  · e y =  bμn q

 n( x, y)d x E y . (2.5.12a)

0

 κ( y)

d A

0







 −Qn= σ( y)
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Im Kanal wurde statt der Leitfähigkeit  κ n die Elektronendichte  n( x, y) ein-

geführt. Sie hängt vom Transversalfeld  E x ab, das die Inversion verursacht. 

Weil die Schichtdicke  x i des Inversionskanals schwierig zu ermitteln ist, wird

besser die Oberflächen- oder  Inversionsladungsdichte (mittlere Inversionsla-

dung pro Fläche) verwendet (entspricht  Q  in Abb. 2.5.5b)

i

 x i



 Q(

n  y) =  q

 n( x, y)d x =  σ( y) =  D i( y) =  ε i E i( y)

0

(2.5.12b)

 ε i

=

( U GS  − U TH  − ϕ( y))  . 

 d i

Steuerbeziehung MOSFET

Das ist die Verschiebungsflussdichte des Steuerfeldes mit  E i =  U i( y) /d i. Die

Isolatorspannung  U i( y) =  U GS  − ϕ( y) an der Stelle  y  bestimmt die Isolator-feldstärke  E i: sie hängt vom Spannungsabfall  ϕ( y) längs des Kanals ab. Die

 Schwellspannung U TH (Richtwert 1 V und deutlich darunter) berücksichtigt

eine Mindestfeldstärke  E i, ab der erst Inversion (aus verschiedenen Gründen)

einsetzt. Damit verbleibt als Drainstromgleichung nach beiderseitiger Multi-

plikation mit d y  und Integration über die Kanallänge  L  mit den Potenzial-

werten  ϕ(0) = 0 und  ϕ( L) =  U DS

 L



 U DS



 U DS



 ε i

 I Dd y =  −μ n b

 σ( y)d ϕ =  μ n b

( U GS  − U TH  − ϕ) d ϕ. 

 d i

0

0

0

Das ergibt schließlich die  Kennliniengleichung





Kennliniengleichung

 I D =  K ( U GS  − U TH)  U DS  − U  2

(2.5.12c)

DS / 2  . 

 n-Kanal-MOSFET

Abbildung 2.5.6c zeigt den Kennlinienverlauf. Für  U DS  < U GS  − U TH arbei-

tet der Transistor im linearen oder  Triodenbereich, bei sehr kleinen Span-

nungen  U DS als  spannungsgesteuerter Leitwert (Vernachlässigung des qua-

dratischen Terms in Gl. (2.5.12ac)). Ab  U DS  ≥ U GS  − U TH ist der maximale

Stromwert erreicht (Sättigung, Abschnürpunkt) und von da an bleibt der

Strom (im realen Modell) konstant, obwohl er nach der Kennliniengleichung

wieder abfällt. In diesem Punkt setzt  Kanalabschn¨

 urung  am Drainbereich ein:

das Isolatorfeld reicht nicht mehr zur Inversion der Halbleiteroberfläche aus. 

Merkmale des Transistors sind neben den Ausgangskennlinien  I D( U GS , U DS)

die daraus herleitbare  Transferkennlinie I D( U GS) (bei konstanter Span-

nung  U DS). Aus allen lassen sich wie beim Bipolartransistor, die Kleinsi-

gnalparameter gewinnen. 
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Der MOSFET hat gegenüber dem Bipolartransistor einige Vorteile:

Die Transistorkonstante  K  hängt von Verhältnis Kanalbreite  b  zu Kanallänge  L

ab und kann als Konstruktionsgröße zum  Schaltungsentwurf (Geometrieeinstel-

lung) dienen. Die kleinste Kanallänge beträgt gegenwärtig 22 nm (!). 

Der MOSFET ist wegen der Leitfähigkeitssteuerung ein  Majorit¨

 atstr¨

 agerbauele-

 ment (mit günstigen dynamischen Eigenschaften). 

Die Verarmungszone unter dem Transistor isoliert“ ihn vom Halbleitersubstrat, 

” 

ein Vorteil bei der Schaltungsintegration. 

Er eignet sich für Widerstands-, Kapazitäts- und Diodenfunktionen. 

Es gibt neben dem  n-Kanal-Transistor (mit  p-Halbleitersubstrat) auch  p-Kanal-

Transistoren (mit  n-Halbleitersubstrat), ein Vorteil für die sog.  komplement¨

 are

 Schaltungstechnik (CMOS-Technik). 

2.6

2.6 Die Integralgr¨

oßen des elektrostatischen Feldes

Kennzeichnen Feldstärke  E  und Verschiebungsflussdichte  D  das elektrosta-

tische Feld im  Raumpunkt, so gehören dazu für das Raumvolumen die in-

tegralen Größen  Verschiebungsfluss Ψ (verknüpft mit  D), die  Spannung U

(verknüpft mit  E) und die  Kapazität C  als Beziehung zwischen Ladung und

Spannung. 

2.6.1 Verschiebungsfluss

Wesen Wir kennen den Zusammenhang Verschiebungsflussdichte  D  und er-

zeugender Ladung (Gaußsches Gesetz Gl. (2.2.7)) sowie das Influenzprinzip. 

Welchen Hintergrund hat dieses Phänomen? 

Im Plattenkondensator (Abb. 2.6.1a) mit der Ladung  Q+ auf der linken Plat-

te denken wir uns in ausgewählte Äquipotenzialflächen mehrere dünne Me-

tallfolien so gelegt, dass keine Feldstörung auftritt. Auf jeder Folie wird nach

dem Influenzprinzip die Ladung  Q+ und  Q−  influenziert. Von links begin-

nend entsteht auf der ersten links die Ladung  Q−  und rechts  Q+. Sie wie-

derum influenziert auf der folgenden Folie links  Q−, rechts  Q+ usw. Dann

gilt:

 |Q+ | = Ψ1 =  |Q−| =  |Q+ |





 = Ψ2 =  |Q−| =  |Q+ |





 =  |Q−| . 

(2.6.1)

linke

rechte

Elektrode

Folie 1

Folie 2

Elektrode

Das Merkmal der Influenz,  Ladungen auf Probefolien zu verschieben, ist ei-

ne Eigenschaft des elektrostatischen Feldes. Deshalb wird ihr eine arteigene

physikalischen Größe, der  Verschiebungsfluss Ψ zugeschrieben. 
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Abb. 2.6.1. Influenzprinzip und Verschiebungsfluss. (a) Influenzprinzip. Die Ladungen  Q

erzeugen auf jeder Folie eine Flächenladung. (b) Der Verschiebungsfluss Ψ kennzeichnet

die Gesamtheit der Flusslinien des elektrostatischen Feldes. (c) Definition des Verschie-

bungsflusses

Jede Ladung steht über den Verschiebungsfluss mit ihrer Gegenladung in

Wechselwirkung. Er erfüllt den Raum um die Ladung und ist Merkmal des

Ladungsfeldes. 

Deshalb besteht sein Feld nach Abb. 2.6.1a aus durchgehenden, ausgewählten

Verschiebungsflusslinien oder

Ψ |

=

H

 Q

ülle

+ . 

Definitionsgleichung Verschiebungsfluss (2.6.2)

Sie beginnen bei positiven und enden auf negativen Ladungen (zugleich po-

sitiver Bezugssinn): das Verschiebungsfeld ist ein Quellenfeld.  Deshalb h¨

 angt

 der Verschiebungsfluss nicht vom Dielektrikum, sondern nur den erzeugenden

 Ladungen ab. 

Beispiele für den Verschiebungsfluss wurden bereits beim Gaußschen Satz

(Abb. 2.2.2), als Grenzflächenverhalten einer Metallfolie (Abb. 2.4.1d) oder

beim Influenzprinzip (Abb. 2.4.2) betrachtet. 

Verschiebungsflussdichte  D Der Verschiebungsfluss Ψ hängt mit der bereits

eingeführten Verschiebungsflussdichte  D  unmittelbar zusammen:

über das  H¨

 ullintegral  von  D, das den Gesamtfluss der Verschiebungsfluss-

dichte über eine geschlossene Fläche um eine Ladung  Q  erfasst und gleich

dieser Ladung ist (s. Gl. (2.2.7)), 

und der beliebigen Verschiebung der Hüllfläche im Raum (wenn sie nur

immer die gleiche Ladung  Q  umschließt (Abb. 2.6.1c)). Stets tritt durch

die (gedachte) Hülle der gleiche Verschiebungsfluss Ψ. Dann gilt
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Verschiebungsflussdichte  D, 

Ψ =

 D ·  d A =

 D ·  d A. 

(2.6.3)

Verschiebungsfluss Ψ

Hülle

Nach dem Gaußschen Gesetz ist der Verschiebungsfluss stets ein Hüllen-

fluss (der eine Ladung umfasst, daher die präzisere Bezeichnung Ψ | Hülle). 

Seine Grundlage muss dann immer ein über die Hüllfläche  A  geführtes

Integral sein (gekennzeichnet durch einen Zählpfeil in Richtung d A). We-

gen der Ladung als Ursache wird er immer als Hüllenfluss verstanden

(Abb. 2.6.1b, c). 

Die Definitionsgleichung des Verschiebungsflusses entspricht formal der des

Stromes  I (Gl. (1.3.3)), nur ist dort die Fläche  nicht geschlossen (sonst wäre

der Gesamtstrom Null, Knotensatz!). 

Wesentlich für den Umgang mit Gl. (2.6.3) sind drei Aspekte:

1. 

Der Verschiebungsfluss Ψ ist unabhängig vom Dielektrikum stets gleich der

umschlossenen Ladung. Das ist der Kern des Influenzprinzips. 

2. 

Die Hüllengeometrie kann beliebig gewählt werden. 

3. 

Die Relativlage der Ladung zur umschließenden Hülle ist beliebig. Das mag

überraschen, lässt sich aber nachweisen. 

2.6.2 Kapazit¨

at  C

Ein Kondensator besteht aus zwei gut leitenden Elektroden getrennt durch

ein Dielektrikum. Liegt die Spannung  U AB an, so gelangen die Ladungen  Q A

resp.  Q B auf die Elektroden und der Feldraum wird vom Verschiebungs-

fluss ausgefüllt. Bei raumladungsfrei angenommenem Isolator sind Verschie-

bungsfluss Ψ und Spannung  U AB einander proportional. Die Proportiona-

litätskonstante heißt  Kapazit¨

 at C AB

 Q AB =  C AB U AB . 

Kapazität (Definitionsgleichung) (2.6.4a)

Anschaulich:

Verschiebungsfluss zwischen den Ladungen  Q A,  Q B

 C AB =

 . 

Spannung zwischen den Äquipotenzialflächen A, B

Weil die Äquipotenzialflächen  A A,  A B stets Elektrodenoberflächen sind, gilt

allgemein bei inhomogenem Feld (Gl. (2.2.7)):
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Abb. 2.6.2. Kondensator. (a) Kapazitätsbegriff bei entgegengesetzt geladenen Leitern

im Nichtleiter. (b) Schaltzeichen. (c) Plattenkondensator und zugehöriges Potenzialfeld. 

(d) Zuordnung des homogenen Feldbereiches zum Kondensator







 D ·  d A

 ε

 E· d A 

 Q



AB

 C



AB =

=

=

 . 

(2.6.4b)

 U



AB

 B



 B





 E ·



d s

 E ·  d s  ε=const

 A

 A

Dabei umschließt das Hüllintegral die Elektrode A. 

Das Verhältnis der Ladung (auf einer Elektrode!) und der Spannung zwi-

schen den Elektroden heißt  Kapazit¨

 at. Sie kennzeichnet das Ladungsspei-

chervermögen der

Zweileiteranordnung“ und die Haupteigenschaft des

” 

 Bauelementes Kondensator  bzw. des Netzwerkelementes kapazitiver Zwei-

pol (Schaltzeichen Abb. 2.6.2b). 

Die Eigenschaft Kapazität6 lässt sich unterteilen in linear, nichtlinear, dif-

ferenziell, zeitabhängig usw. (s. Kap. 2.7.4). Bei nichtlinearem  D( E)- bzw. 

 Q( U )-Zusammenhang hängt die Kapazität von der Spannung ab:  nichtlineare

 Kapazit¨

 at. 

6 Leider wird die Eigenschaft Kapazität“ oft für das Bauelement Kondensator“ ver-

” 

” 

wendet. Es muss also richtig heißen: zwei Kondensatoren mit den Kapazitäten  C 1, 

 C 2 werden parallel geschaltet. Verbreitet spricht man aber von der Parallelschaltung

zweier Kapazitäten. 
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Kondensatoren unterscheiden sich, wie Widerstände, nach der Bau- und Kon-

struktionsform: Drehkondensator, Elektrolytkondensator u. a. m. 

Bei linearem  Q,  U -Zusammenhang (wie für den idealen Nichtleiter gültig)

hängt die Kapazität nur von den Materialeigenschaften des Dielektrikums

und der Elektrodengeometrie ab. Dann gibt es eine  Bemessungsgleichung. 

 Hinweis  Mitunter wird eine Kapazität auch für einen Leiter bezogen auf den unend-

lich fernen Raum angegeben, beispielsweise für eine frei im Raum hängende Kugel. 

Dann benutzt man die Definition  C A =  Q A /ϕ A mit  ϕ( ∞) = 0. 

Einheit und Gr¨

oßenordnungen Aus Gl. (2.6.4) folgt die Einheit

[ Q]

1A  ·  s

[ C] =

=

= 1F

(Farad) . 

[ U ]

V

Sie ist sehr groß, deshalb werden Untereinheiten verwendet: 1 µF = 10 − 6 F =

1 Mikrofarad, 1 nF = 10 − 9 F = 1 Nanofarad, 1 pF = 10 − 12 F = 1 Pikofarad. 

Gr¨

oßenvorstellung

Kapazität zweier konzentrischer

Metallkugeln in Luft

1 F

(Radius 30 km!, Abstand 10 cm)

Kapazität der Erde gegen das Weltall

 ≈  700 µF

Metallkugel ( r = 1 cm) in Luft gegen

ebene Elektrode (Abstand  >  1 m)

 ≈  1 ,  1 pF

Plattenkondensator (Luft)  A = 1 m2, 

Abstand  d = 1 mm

8,85 nF

Doppelleitung (Drahtradius 1 mm, 

Abstand 3 mm)

 ≈  50 pF je Meter Länge

Elektrolytkondensatoren

einige µF bis einige 1 mF

Kondensatoren der Rundfunktechnik

pF bis einige 1000 µF

Fotoblitzkondensator

0 ,  1  . . .  1 mF

Transistorkapazitäten

0 ,  1 pF  . . .  100 pF und mehr

Speicherzelle eines Gigabit Speichers

20 fF

Folienkondensatoren

100 pF  . . .  100 nF

Gold Caps, Superkapazitäten

10 mF  . . .  103 F(!)

Bemessungsgleichung Jede Kapazität hat eine Bemessungsgleichung. Wir be-

trachten zunächst den (engen) Plattenkondensator (Plattenabstand  d, Fläche

 A) mit homogenem Feld (Abb. 2.6.2c). Da der Verschiebungsfluss nur zwi-

schen den Platten homogen verläuft (Randfluss vernachlässigt), gilt







 Q A =

 D ·  d A =

 D ·  d A +

 D ·  d A =  εEA

Hülle

Plattenfläche

Randfläche







 ≈ 0
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und mit  U

 B

 d

AB =

 E ·  d s =

 E

 A

0

yd y =  E y d  schließlich

 Q AB

 ε r ε o A

Plattenkondensator, 

 C AB =

=

(2.6.5)

 U AB

 d

Bemessungsgleichung

(für große Linearabmessung der Fläche  A  gegen den Plattenabstand  d). 

Bezüglich der Einflussgrößen in der Bemessungsgleichung verhält sich der Platten-

kondensator analog zum Leitwert  G =  I/U =  κA/d  des linienhaften Leiters. 

Die Kapazität steigt mit:

wachsender Elektrodenfläche (große Fläche durch Metallfolienwickel), 

wachsendem  ε (Verwendung guter Dielektrika), 

sinkendem Plattenabstand  d. Eine untere Grenze setzt die Durchbruch-

feldstärke  E BR  ≈ U/d  des Isolators (Luft:  E BR  ≈  30 kV/cm, Feststoffiso-

latoren  E BR  ≈  500 kV/cm). 

Beispiel 2.6.1 Plattenkondensator Ein Plattenkondensator (Luft als Dielektrikum, 

Plattenfläche  A = 100 cm2, Plattenabstand  d = 1 mm) hat die Kapazität  C =

 ε 0 A/d = 885 ,  4 pF. Eine Spannung  U = 10 V ergibt die Speicherladung  Q =  CU =

885 ,  4 pF  ·  10 V = 8 ,  85 nC. Sie ist gering, umfasst aber immerhin  n =  Q/q = 5 ,  53  ·

1010 Elementarladungen. Auch dies bestätigt: die Bedeutung der Einzelladung tritt

angesichts der großen Anzahl beteiligter Ladungen zurück. 

L¨

osungsmethodik

Kapazit¨

atsberechnung“ Kann aus der Geometrie qualita-

” 

tiv auf die Feld- und Verschiebungsflussdichteverteilung geschlossen werden

(für rotations- und zylindersymmetrische Anordnungen zutreffend), so ergibt

sich eine Lösungsmethodik für die Kapazität analog zur Leitwertberechnung

Gl. (1.3.11):

1. 

Annahme eines Probeladungspaares  ±Q  auf den Elektroden. Dadurch

entsteht das Feld der Verschiebungsflussdichte. 

2. 

Berechnung der Verschiebungsflussdichte als Ortsfunktion mit Gl. (2.2.7). 

Für symmetrische Felder gilt dabei  D( ) A( ) =  Q  an jeder Stelle. 

3. 

Bestimmung der Feldstärke  E  Gl. (2.3.1) und Spannung  U AB Gl. (1.2.22)

zwischen den Elektroden in Abhängigkeit von der Ladung. 

4. 

Berechnung von  C AB =  Q AB/ U AB über Gl. (2.6.4). 

Beispielsweise folgt für einen Koaxialkondensator (Elektrodenradien  r i,  r a, 

Länge  l). 
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Tab. 2.6. Feld- und Globalgrößen des Strömungs- und elektrischen Feldes

Str¨

omungsfeld

Elektrostatisches Feld

Bemerkungen

 J,  E

 D,  E,  ϕ

Grundbeziehungen

 J =  κE

 D =  εE





 J ·  d A = 0, 

 D ·  d A =  Q

Nebenbedingung

 A

 A

 J  quellenfrei

(Quellenfeld außerhalb = 0)

div  J = 0, 

div  D =   (Quellengebiet)

Differenzialform

Δ ϕ = div grad  ϕ = 0

 ε  div grad  ϕ =  −



 U =

 E ·  d s

Globalform

 s





 I =

 J ·  d A

 Q = Ψ =

 D ·  d A

 A

 A

(Fluss von  J)

(Quellenfeld, Fluss von  D)





 E ·  d s

 J ·  d A

 R =  U =  s



=  A



 I

 C =  Q

 J ·

 U

d A

 E ·  d s

 A

 s

 RC =  ε/κ

 Q

 Q

 → Ψ  → D( r, Q) :  D( r) =

 e r  →

2 πlr

 D

 E

( r, Q)

 Q

=

:  E( r) =

 e r  → ϕ → U AB

 ε

2 πεlr

 B



 Q

 r a

 U AB

1

 r a

 U AB =

 E ·  d s =

ln

 →  1 =

=

ln

 . 

2 πεl

 r i

 C AB

 Q

2 πεl

 r i

 A

Tabelle 2.6 zeigt die Gegenüberstellung des Strömungs- und elektrostatischen

Feldes. Dabei ist die Feldberechnung mit den Feldgrößen leistungsfähiger, da

sie außer der Ladungsverteilung auch Potenzialrandwerte berücksichtigt. 

Zusammenschaltung von Kondensatoren Mehrere parallel oder in Reihe ge-

schaltete (lineare!) Einzelkondensatoren können wirkungsmäßig durch eine

(Ersatz)kapazität  C  ersetzt werden mit gleichem Ladungs-Spannungsverhal-

ten (Abb. 2.6.3). 

Parallelschaltung Hier liegen alle oberen bzw. unteren Kondensatorplatten

auf gleichem Potenzial (Abb. 2.6.3a), damit addieren sich die Einzelladungen

 Qν =  CνUν  der Kondensatoren zur Gesamtladung  Q ers und es gilt
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Abb. 2.6.3. Kondensatorzusammenschaltungen. (a) Ersatzschaltung parallelgeschalteter

Kondensatoren. (b) Ersatzschaltung reihengeschalteter Kondensatoren

 n



 n



 Q

 C

 Q

 ν

 ν U

 n



ers

 C

 ν=1

 ν=1

ers =

=

=

=

 C

 U

 U

 U

 ν . 

Parallelschaltung (2.6.6)

 ν=1

Die Gesamtkapazität  C ers parallel geschalteter Kondensatoren ist gleich der

Summe der Einzelkapazitäten. Grundlage: Addition der Teilladungen, glei-

che Spannung an jeder Kapazität. 

Die Ersatzkapazität ist stets größer als die größte Teilkapazität. Umgekehrt

verhalten sich die Teilladungen wie die Teilkapazitäten (vgl. analoges Ergeb-

nis bei der Stromteilung). 

Reihenschaltung Bei der Reihenschaltung durchsetzt der Verschiebungsfluss Ψ

(herrührend von der oberen Ladung  Q) mehrere Potenzialflächen (die sich um

die Teilspannungen  Uν  unterscheiden). So wird auf jeder von ihnen die gleiche

positive und negative Ladung influenziert (Abb. 2.6.3b) und der Fluss bleibt

zwischen allen Potenzialflächen erhalten ( Q 1 =  Q 2 =  Qν). Dann summieren

sich die Teilspannungen  Uν  und es gilt

 n



 n



 U

 Q

1

 U

 ν

 Cν

 n



ers

1

=

=  ν=1

=  ν=1

=

 . 

Reihenschaltung (2.6.7)

 C ers

 Q

 Q

 Q

 C

 ν=1

 ν

Die reziproke Gesamtkapazität  C ers reihengeschalteter Kondensatoren er-

gibt sich als Summe der Kehrwerte der Einzelkapazitäten. Grundlage: Ad-

dition der Teilspannungen bei Gleichheit der Ladung auf jeder Kapazität. 

Die Gesamtkapazität stets kleiner als die kleinste Teilkapazität. 
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Die Teilspannungen verhalten sich umgekehrt wie die zugehörigen Kapa-

zitäten (vgl. analoges Ergebnis bei der Spannungsteilung (s. Kap. 2.3.2, 

Bd. 1), wenn dort anstelle des Widerstandsbegriffes mit Leitwerten operiert

wird). Deshalb liegt bei gegebener Gesamtspannung  U  an der kleineren Ka-

pazität die größere Spannung. 

Das Ergebnis Gl. (2.6.7) setzt voraus, dass zusammengeschlossene Elektrodenflä-

chen der inneren Kapazitäten“ insgesamt eine verschwindende Ladung  Q

” 

+  − Q− =

0 haben, also keine Restladungen auf den Kondensatoren vorhanden sind. 

Die Reihenschaltung zweier Kondensatoren ergibt






 C



1  C 2

 C



ers =

 ≈ C 2 1  − C 2

 . 

(2.6.8)

 C



1 +  C 2

 C 1

 C 1 C 2

Ist der größere Kondensator um einen Faktor  p  größer als der kleinere ( C 1 =  pC 2), 

so verkleinert sich die Gesamtkapazität um (1 /p) %, z. B.  p = 20, Senkung um 5%. 

Spannungsteilerregel Eine Reihenschaltung linearer Kondensatoren teilt Spannun-

gen. So gilt für zwei Kondensatoren  C 1 und  C 2 mit  U 1 =  Q/C 1,  U 2 =  Q/C 2 und U =  U 1 +  U 2 die Spannungsteilerregel

 U 2

 C 1

 U 2

 C 1

=

und

=

 . 

(2.6.9)

 U 1

 C 2

 U

 C 1 +  C 2

Ganz entsprechend folgt aus der Parallelschaltung eine Ladungsteilerregel. Sie geht

für zeitveränderliche Ladungen in die Stromteilerregel über. 

Die Spannungsteilung gilt für Gleichspannungen. Ihre Anwendung setzt ideale Kon-

densatoren voraus, bei technischen spielt der oft parallel liegende Verlustleitwert

eine Rolle und modifiziert die Ergebnisse. 

Beispiel 2.6.2 Kondensatorreihenschaltung Zwei Kondensatoren (0 ,  1 µF, 4 ,  7 µF)

mit einer zulässigen Nennspannung 160 V sind reihengeschaltet. Wie hoch darf die

Gesamtspannung sein? 

Nach Gl. (2.6.9) liegt am kleineren Kondensator die größere Spannung, da  Q =

 Q 1 =  Q 2 =  C 1 U 1 =  C 2 U 2 gilt. Daraus folgt  U 2 =  U 1( C 1/C2) = 160 V(0 ,  1 / 4 ,  7)  ≈

3 ,  4 V; die Gesamtspannung darf  U =  U 1 +  U 2 = (160 + 3 ,  4) V = 163 V nicht überschreiten. 

Spannungsvervielfachung Zusammenschaltungen von Kondensatoren dienen oft

zur Spannungsvervielfachung: man schaltet zwei oder mehrere (gleiche) Kondensa-

toren zunächst parallel und lädt sie auf die Spannung  U. Jeder trägt die Ladung  Q, 

die Gesamtladung wird  nQ. Anschließend werden die geladenen Kondensatoren in

Reihe geschaltet. Dann führt die Anordnung nur die Ladung  Q, die Gesamtspan-

nung wächst aber auf  nU. Es gibt zahlreiche Varianten dieses Prinzips. 
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Abb. 2.6.4. Widerstands- und Kapazitätsberechnung einer Leiteranordnung gleicher Geo-

metrie im Strömungs- und elektrostatischen Feld

2.6.3 Analogie zwischen Str¨

omungs- und elektrostatischem Feld

Die Kapazität  C AB einer Leiteranordnung im Nichtleiter und der Widerstand

 R AB der gleichen Anordnung im Strömungsfeld7 gehorchen formal den glei-

chen Beziehungen (Gln. (2.6.4), (1.3.26a)). Beide enthalten die Flussgröße ( I, 

Ψ) zwischen und die Spannungsgröße  U AB über den Elektroden (Abb. 2.6.4). 

Da die Elemente nur von Geometrie und Materialeigenschaften abhängen8, 

gilt für ihr Produkt (s. auch Tab. 2.6). 



2





 D ·  d A E ·  d s

 E ·  d A

 A

 ε A

 ε

Relaxations-

 RC = 1



1

1



 J ·

=

=  τ R . 

(2.6.10)

d A  2



 E ·  d A =

 E ·

 κ

 κ

zeitkonstante

 A

d s

1

 A 1

1

Widerstand und Kapazität der gleichen geometrischen Anordnung hängen

im Strömungs- und elektrostatischen Feld direkt miteinander zusammen. 

Beispielsweise ergibt sich dann die Kapazität des Zylinderkondensators (Län-

ge  l, Radien  r i,  r a) aus dem Zylinderwiderstand  R AB (s. Gl. (1.3.26a)) ε

2 πεl

 C AB =

=

 . 

(2.6.11)

 κR AB

ln( r a /r i)

Der Quotient  ε/κ  hat aber tiefere Bedeutung für Materialien (z. B. Halblei-

ter), die Leitfähigkeit und Dielektrizitätskonstante besitzen (Realfall), denn

praktisch gibt es weder Leiter mit  ε r = 0 noch Nichtleiter mit  κ = 0. Dann

7 Wenn also die Zuführungselektroden des Strömungs- und elektrostatischen Feldes

Potenzialflächen sind. 

8 Gilt nur bei Raumladungsfreiheit. 
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wirken elektrostatisches und Strömungsfeld stets gemeinsam und der Quoti-

ent  ε/κ =  τ R heißt  Relaxationszeit. Sie kennzeichnet das Verhältnis von Ver-

schiebungsflussdichte zu Stromdichte in einem Feldpunkt und bestimmt die

Schnelligkeit“, mit der ein solches Feld auf eine Änderung (z. B. Einschalten

” 

einer Spannung) reagiert. Weitere Folgerungen ziehen wir im Kap. 2.7.2. 

2.6.4 Kapazit¨

at von Mehrleitersystemen, Teilkapazit¨

at*

Ein Mehrleitersystem enthält  n  gegenseitig isolierte Leiter, etwa als Freilei-

tung mit mehreren Leiterseilen. Dann erreicht der von einer Leitung (un-

ter Spannung) ausgehende elektrische Fluss nach dem Influenzprinzip auch

die anderen Leiter und die Masse (Erde). Dadurch werden dort die Ladun-

gen  Q 1  . . . Qn  influenziert und das Kapazitätskonzept der Zweileiteranord-

nung versagt. Die Influenz erzeugt auf den einzelnen Leitern die Potenziale

 ϕ 1  . . . ϕn. 

Abbildung 2.6.5a zeigt ein Dreileitersystem über einer leitenden Ebene mit

zugeordneten Potenzialen ( ϕ 4 = 0). Die Verschiebungslinien verknüpfen die

Teilleiter, deshalb zerfällt der Hüllenfluss der Ladung  Q 1 nach dem Gauß-

schen Satz in die Teilflüsse  Q 1 = Ψ12 + Ψ13 + Ψ14, letztere sind jeweils

der Spannung zwischen den Elektroden proportional, z. B. Ψ12 =  C 12 U 12 =



 C

 n

12( ϕ 1  − ϕ 2) usw. Das System ist elektrisch neutral (

 μ=1  Qμ = 0), wenn

die Elektroden durch Spannungsquellen aufgeladen wurden, also  ladungsneu-

 trale  Aufladung erfolgte. Dann ergibt sich die Ladung eines Knotens (s. u.)

durch Überlagerung der Potenziale aller Knoten nach Maßgabe der  Kapa-

 zit¨

 atskoeffizienten cik. 

 Q 1 =  c 11 ϕ 1 +  c 12 ϕ 2 +  c 13 ϕ 3 +  . . . 

= ( c 11 +  c 12 +  c 13 +  . . . ) ϕ 1 +  c 12( ϕ 2  − ϕ 1) +  c 13( ϕ 3  − ϕ 1) +  . . . 

 Q 2 =  c 21 ϕ 1 +  c 22 ϕ 2 +  c 23 ϕ 3 +  . . . 

=  c 21( ϕ 1  − ϕ 2) + ( c 22 +  c 21 +  c 23 +  . . . ) ϕ 2 +  c 23( ϕ 3  − ϕ 2) +  . . . 

(2.6.12)

 Q 3 =  c 31 ϕ 1 +  c 32 ϕ 2 +  c 33 ϕ 3 +  . . . 

=  c 31( ϕ 1  − ϕ 3) +  c 32( ϕ 2  − ϕ 3) + ( c 33 +  c 31 +  c 32 +  . . . ) ϕ 3 +  . . . 

... 

Die Gleichungen beschreiben den Zusammenhang zwischen Elektrodenladun-

gen und Elektrodenpotenzialen (dieses Gleichungssystem kann auch als Ma-

trixgleichung geschrieben werden) bis zum Knoten  n  mit der Ladung  Qn  mit

 n

 μ=1  Qμ = 0. Von den  n 2 Koeffizienten  cik  sind allerdings nur  n( n + 1) / 2

unabhängig, denn es gilt  cik =  |cki| (s. u.). Diese (negativen!) Koeffizienten

hängen nur von der Geometrie ab. Sie dürfen nicht mit den Kapazitäten in

der Ersatzschaltung mit mehreren Leitern verwechselt werden! 
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Abb. 2.6.5. Mehrleitersystem. (a) Mehrere geladene Leiter im elektrostatischen Feld. 

(b) Ersatznetzwerk mit Kapazitäten. (c) Doppelleitung über einer leitenden Ebene und

Ersatzschaltung

Wählt man als Potenzialbezug  ϕ = 0 die Erde, so lassen sich die Einzelpo-

tenziale auch als Knotenspannungen  Ui  verstehen und die Potenzialdifferenz

 ϕ 1  − ϕ 2 =  U 12 ist dann die Zweigspannung“ zwischen den Ladungsknoten 1

” 

und 2. Durch Erweitern und Umschreiben folgt so zusammengefasst

 Q 1 =  C 11 ϕ 1

+  C 12( ϕ 1  − ϕ 2) +  C 13( ϕ 1  − ϕ 3) +  . . . 

 Q 2 =  C 21( ϕ 2  − ϕ 1) +  C 22 ϕ 2

+  C 23( ϕ 2  − ϕ 3) +  . . . 

 Q

(2.6.13)

3

=  C 31( ϕ 3  − ϕ 1) +  C 32( ϕ 3  − ϕ 2) +  C 33 ϕ 3

+  . . . 

... 

 n



mit  Cii =  Ci 0 =

 cik ≥  0,  Cik =  −cik ≥  0 ( i =  k). 

 k=1

Jetzt treten als Koeffizienten die  Teil-  oder  Koppelkapazit¨

 aten Cik (mit  Cik =

 Cki) zwischen Ladungsknoten  i  und  k  sowie die  Eigenkapazität Cii =  Ci 0 als

Gesamtkapazität eines Knotens gegen Erde auf (bei Kurzschluss aller übrigen

Ladungsknoten mit Erde). 

Bei  n  isoliert zueinander angeordneten Leitern hängt die Ladung eines jeden

Leiters linear von allen Leiterpotenzialen ab. 

Bei  n  Leitern gibt es  n( n −  1) / 2 Teilkapazitäten und entsprechend viele Teil-

spannungen. Damit hat eine Dreileiteranordnung Abb. 2.6.5b mit ( n = 4)

insgesamt 6 Teilkapazitäten: drei zwischen den Leitern und drei von jedem

Leiter nach Erde. Zur Bestimmung von  C 11 =  C 10 werden Leiter 2 und 3

geerdet und die Ladung  Q 11 =  Q 10 bei vorgegebener Spannung  U 11 =  U 10 er-

mittelt. Für die Kapazität  C 12 sind Leiter 1 und 3 zu erden. Umgekehrt lassen

sich aus Gl. (2.6.13) auch die Elektrodenpotenziale bestimmen: man ordnet

einer Elektrode einen Potenzialwert zu, streicht eine der  n  Gleichungen und

löst die restlichen  n −  1 Gleichungen nach den entsprechenden Potenzialen. 

Teilkapazit¨

aten Die Schwierigkeit beim Übergang von geladenen Leitern zum

Netzwerk mit Knoten und Teilkapazitäten besteht darin, dass es in der Netz-
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werkbetrachtung die Ladung eines Knotens“ nicht gibt, denn Ladungen sit-

” 

zen auf Kondensatorplatten. Deshalb verteilt sich die Elektrodenladung  Qi

(Abb. 2.6.5b) auf die Platten der unmittelbar angeschlossenen Kondensa-

toren. Dann ergibt der Vergleich mit (2.6.12) die Zuordnung (2.6.13) mit

folgenden Unterschieden:

Vorzeichenumkehr bei den Nebendiagonalelementen (deshalb ist das Netz-

werk mit  C 12 =  C 21 stets reziprok), 

die Kapazität  Cii (als Diagonalelement) ist stets gleich der Summe aller

mit der  i-ten Elektrode verbundenen Teilkapazitäten. 

Ergebnisse dieser Art traten bereits beim Knotenspannungsverfahren auf. 

Berechnung der Teilkapazit¨

aten Die Teilkapazitäten hängen vom Dielektri-

kum sowie Lage und Form der Leiter ab. Praktisch interessiert die  Betriebs-

 kapazit¨

 at  als Kapazität zwischen zwei Leitern, die bei Anschluss einer Span-

nungsquelle auftritt. Sie hängt auch von den anderen Teilkapazitäten ab. So

beträgt beispielsweise die Betriebskapazität einer Doppelleitung (über Erde, 

Abb. 2.6.5c)  C B12 =  C 12 +  C 10 C 20 /( C 10 +  C 20), und eine Spannungsänderung Δ U 1 am Leiter 1 verursacht die Spannungsänderung Δ U 2 = Δ U 1 C 12 /

( C 12 +  C 20) am Leiter 2, beide sind kapazitiv miteinander verkoppelt“. Die

” 

Berechnung der Teilkapazitäten erfordert die Kenntnis des elektrostatischen

Feldes der Mehrleiteranordnung, also letztlich der Potenziale auf den Leitern

als Funktion der Leiterladungen am besten mit Hilfe der  Spiegelungsmethode. 

Beispiel 2.6.3 Doppelleitung Wir bestimmen die Teilkapazitäten einer Zweileiter-

anordnung über Erde (Abb. 2.6.5c) und ersetzen die Leitungsdrähte durch Linien-

quellen in den Leiterachsen. Durch entgegengesetzt geladene Spiegelladungen  Q 1, 

 Q 2 wird die Erdoberfläche berücksichtigt. Dann gilt für das Potenzial auf den Lei-

tern nach Gl. (2.5.3c) ( d 1 = 2 r 01,  d 2 = 2 r 02)
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Während die

Fußpunktkapazitäten“ etwa gleich groß sind und mit wachsenden

” 

Leiterabstand ansteigen, sinkt die Koppelkapazität mit dem Abstand  a  ab. 

2.7

2.7 Elektrisches Feld bei zeitver¨

anderlicher Spannung

2.7.1 Strom-Spannungs-Relation des Kondensators

Wird ein auf die Spannung  U AB =  U  geladener Kondensator von der Span-

nungsquelle getrennt, so kann die Ladung seiner Elektroden nicht abfließen:

 Er speichert die Ladung Q =  CU .  Diese Speicherwirkung wirft Fragen auf:

Wie gelangt Ladung auf die Elektroden (Aufladen), welcher Strom fließt? 

Die Antwort ist die  Strom-Spannungs-Relation des Kondensators. 

Was passiert im Dielektrikum bei Stromfluss? 

Weil im Dielektrikum freie Ladungsträger fehlen, kann sich die Kondensator-

ladung nach Abb. 2.7.1 nur durch  Zu- oder Abfluss von Ladungstr¨

 agern ¨

 uber

 die Zuleitungen ändern und damit als Konvektionsstrom  i k =  i C zusammen

mit der Kapazitätsfestlegung Gl. (2.6.4):9





Strom-

d Q 

d Q 

d ( Cu C)

d u C

Spannungs-

 i





k =

=

=

=  C|

 . 

(2.7.1)

d t 

d 

d

const

d

L

 t  P

 t

 t

beziehung

Kondensator



d Q  ist die Änderung der Plattenladung pro Zeiteinheit.10

d t  P

Strom fließt in den Zuleitungen des zeitunabhängigen Kondensators nur bei

Spannungsänderung. Deshalb wirkt der Kondensator nur in zeitveränderlich

erregten Netzwerken (sog. Wechselstromschaltungen, Schalt- und Impuls-

verhalten u. a.). 

Für einen gegebenen Spannungsverlauf  u C( t) (Abb. 2.7.1b) gilt: Der Konden-

satorstrom  i C( t) wächst mit zunehmender Spannungsänderung; er bleibt bei

zeitlinearem Verlauf (d u C / d t = const) konstant und verschwindet bei Gleich-

9 Für zeitabhängige Größen werden üblicherweise kleine Buchstaben benutzt, also

statt  I( t) jetzt  i( t) bzw. kurz  i  usw. Gleichgrößen erhalten weiterhin große Buchstaben. 

10 Im Gegensatz zum Kondensator mit linear zeitabhängigem  Q,  U-Zusammenhang, 

s. Kap. 2.7.4. 
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Abb. 2.7.1. Strom-Spannungs-Relation des (zeitunabhängigen) Kondensators. (a) Konden-

sator an Spannungs- oder Stromquelle. (b) Strom bei gegebenem Spannungsverlauf  u C( t). 

(c) Spannung bei gegebenem Stromverlauf  i C( t), Parameter: Anfangsspannung  u C(0)

spannung. Dieses Verhalten bestimmt den Einsatz des Kondensators in der

Schaltungstechnik:  er trennt“ Gleich- und Wechselstromkreise voneinander. 

 ” 

Richtungsvereinbarung Der Zufluss positiver Ladung auf eine Platte (positive

Stromrichtung  i C) erhöht ihre Ladung und damit ihr (positives) Potenzial

gegen die zweite Platte. Deshalb ist die Spannung  u C von der positiven zur

negativen Platte positiv gerichtet (Abb. 2.7.1a) und es gilt für Strom und

Spannung die Verbraucherzuordnung. 

Ladungs-Strom-Relation, Ged¨

achtniswirkung des Kondensators Bei gegebe-

nem Stromverlauf  i( t) =  i C( t) beträgt die Kondensatorspannung  u C( t) nach Gl. (2.7.1)





1

 u C( t) =

 i( t) d t + const bzw.  Q( t) =

 i( t) d t + const . 

 C

Sie bzw. die Ladung  Q  hängt über die Integrationskonstante von der gesam-

ten Vergangenheit (beginnend bei  t → −∞) ab, gespeichert als Ergebnis

zur Zeit  t =  − 0 in der  Kondensatoranfangsspannung u C( − 0) (oder  Anfangs-

 ladung Q( − 0)). Die aktuelle Kondensatorspannung besteht dann aus dem

Anfangswert (als Ergebnis der Vergangenheit, Zeitraum ( −∞, − 0)) und dem

Ladungszuwachs durch den Strom im Zeitbereich (+0 , t):

 t



 t



1

1

 u C( t) =

 i( t) d t =

 u C( − 0)

+

 i( t) d t

 C

  

 C

 −∞

Ergebnis

+0







Vergangenheit zur

Zeit  t =  − 0

Gegenwart

Spannungs-Strom-Beziehung, Kondensator

(2.7.2)
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 − 0



1

 u C( − 0) =

 i( t) d t = lim  u C |

 C

 t→− 0

 t<  0  . 

 −∞

Anfangswert Kondensatorspannung

(2.7.3)

Dabei wird ein ursprünglich ( t → −∞) ladungsfreier Kondensator voraus-

gesetzt:  Q( −∞) = 0  → u C( −∞) = 0, was sicher zutrifft. Entsprechend

Gl. (2.7.2) gilt für die  Kondensatorladung

 − 0



 t



 t



 Q C( t) =

 i( t) d t +

 i( t) d t =

 Q C( − 0)

   +

 i( t) d t. 

 −∞

+0

Anfangsladung

+0

Ladungs-Strom-Beziehung

(2.7.4)

Die Anfangsspannung (-ladung) drückt die Speicherung elektrostatischer

Feldenergie im Kondensator aus, die anschließende Ladungsänderung ist

gleich dem Zeitintegral des Stromes. 

Ohne bekannte Anfangsladung ist die Ladungs-(Spannungs-)-Strom-Relation

des Kondensators nicht eindeutig. Damit unterscheidet er sich im Strom-

Spannungsverhalten grundlegend vom Widerstand. 

Abbildung 2.7.1b, c zeigt Spannungsverläufe für gegebenen Stromverlauf bei



unterschiedlichen Anfangsspannungen  u

 t

C( − 0). Das Integral

 i( t)d t  hat

0

stets den gleichen Wert, nur die Ausgangspunkte unterscheiden sich. Je ra-

scher sich die Ladung ändert, umso höher ist die momentane Stromstärke. 

Stetigkeit der Anfangsladung

Energie kann sich nie sprunghaft ändern, sie ist zeitlich immer  stetig. 

Wir begründen diese Feststellung später. Deshalb gilt für den Kondensator

als Energiespeicher (wobei die Energie  W  mit der Kondensatorspannung  u C

verknüpft ist):

Die  Kondensatorladung Q C ist immer stetig. Sie besitzt nie Sprünge (darf

aber Knickstellen aufweisen). Der Kondensatorstrom  i C =  C d u C / d t  kann

hingegen springen, nämlich an Knickstellen der Kondensatorladung bzw. 

-spannung (Abb. 2.7.2). Stetigkeit in einem Punkt bedeutet, dass rechts- und

linksseitiger Grenzwert der Ladung in diesem Punkt übereinstimmen:

Stetigkeit der Kondensatorladung

 Q C( − 0) =  Q C(+0) . 

(2.7.5)

im Zeitpunkt  t = 0
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Abb. 2.7.2. Stetigkeit der Kondensatorspannung bei zeitunabhängiger Kapazität. 

(a) Knickstellen der Kondensatorspannung bedingen Stromsprünge. (b) Bei Vorgabe einer

Mischspannung aus Gleich- und Wechselanteil fließt nur Wechselstrom. (c) Zur Stetigkeit

der Kondensatorspannung. Ein angenommener Spannungssprung hätte einen unendlich ho-



hen Stromimpuls der Dauer Δ t → 0 zur Folge, dabei fließt eine endliche Ladung  Q =

 i d t

auf den Kondensator

Abb. 2.7.3. Kondensatorersatzschaltung und Anfangsenergie. (a) Kondensator mit An-

fangsenergie. (b) mit Anfangsenergie ersetzt durch einen ladungsfreien Kondensator und

eine Spannungsquelle  u C(0) sowie gleichwertige Darstellung

Die Stetigkeit der Kondensatorladung gilt allgemein, bei  zeitunabh¨

 angiger

Kapazität auch für die Kondensatorspannung  u C. 

Könnte die Kondensatorspannung springen“ (Abb. 2.7.2c), so müsste die

” 

damit verbundene sprunghafte Ladungsänderung durch einen Stromstoß

von unendlicher Stärke während der Zeitspanne Δ t →  0 transportiert

werden11. 

Anfangsbedingung. Ersatzschaltung* Die Kondensatorspannung Gl. (2.7.2)

kann nach dem Maschensatz als Reihenschaltung eines spannungs- bzw. ener-

giefreien Kondensators und einer idealen Spannungsquelle  u C( − 0) aufgefasst

werden mit der Ersatzschaltung (Abb. 2.7.3). Dabei gilt das  Verbraucher-

 pfeilsystem. Eine solche Ersatzschaltung bzw. die Anfangsbedingung ist für

 Schaltvorg¨

 ange  von Bedeutung (s. Bd. 3). 

11 Solche Fälle betrachten wir im Bd. 3 von der mathematischen Seite her genauer. 
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Abb. 2.7.4. Verschiebungsstrom. (a) Fortsetzung des Leitungsstromes als Verschiebungs-

strom  i V im Dielektrikum, beide sind von einem Magnetfeld umwirbelt. (b) Auflade- und

Speichervorgang. (c) Verschwindender Leitungs- und Verschiebungsstrom bei konstanter

Spannung: Speicherphase

Ein kapazitiver Zweipol zeigt ein Ladungs-Spannungs-Verhalten durch den

Nullpunkt oder nicht (Anfangsladung). Seine Ursache ist die Speicherung

elektrischer Feldenergie im Dielektrikum. Er ist das Netzwerkmodell für die

Verbindung von Stromkreis und elektrischem Feld im Nichtleiter. 

2.7.2 Verschiebungsstrom, Verschiebungsstromdichte, 

Kontinuit¨

atsgleichung

Offen blieb bisher, warum die Spannungsänderung einen Strom in den Kon-

densatorzuleitungen verursacht, obwohl Ladungsträgerbewegung im Nichtlei-

ter unmöglich ist. Wir betrachten dazu die Kondensatorumladung aus Sicht

der Plattenladungen:

Beim  Aufladen (Abb. 2.7.4a) wandern positive Ladungen12, angetrieben

durch die Spannung,  ¨

 uber den Stromkreis  zu einer Elektrode, auf der an-

deren sinkt ihre Zahl (gleichbedeutend mit einer Anhäufung negativer

Ladungen). So wächst die Ladung  Q  auf der linken Kondensatorplatte

und damit der Verschiebungsfluss Ψ gemäß seiner Definition Gl. (2.6.1). 

Es gilt d Q/ d t >  0 und so auch dΨ / d t >  0 im gesamten Nichtleiter. 

Bei konstanter Spannung ( U = const) bewegen sich keine Ladungen

(Abb. 2.7.4b) und mit  Q = const bleibt auch der Verschiebungsfluss im

Nichtleiter zeitlich konstant: Speicherphase (Abb. 2.7.4c). 

12 Wir nehmen hier an, dass in den Zuleitungen positive Ladungen fließen können. 
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Beim  Entladen (d u/ d t  negativ) fließen Ladungen von der positiven Platte

durch den Leiter ab: d Q/ d t <  0, deshalb gilt ebenso dΨ / d t <  0. 

Nach dem bisherigen Verständnis vom Strom als Fluss bewegter Ladun-

gen und seiner  Geschlossenheit im Kreis  scheint die unterbrochene Ladungs-

trägerbewegung durch den Nichtleiter widersprüchlich. Weil jedoch einerseits

der Strom im Leiterkreis mit der Ladungsänderung auf den Platten direkt

zusammenhängt und andererseits Plattenladung und Verschiebungsfluss Ψ

im Nichtleiter übereinstimmen, führen wir im Nichtleiter den  Verschiebungs-

 strom i V ein13:





Verschiebungs-

dΨ 

d Q 

 i





V

 =

=

=

 i K

strom

(2.7.6)

d t 

d 



Nichtleiter

 t  Platte

Nichtleiter

Zuleitung (Definition)

Der Verschiebungsstrom  i V im Nichtleiter ist die Fortsetzung des (Konvek-

tions-)Stromes  i K im Leiter:  i V =  i K. Er entsteht durch zeitliche Änderung

des Verschiebungsflusses Ψ, also Änderung der Plattenladung. Damit ist die

Stromkontinuität im Kreis erfüllt. 

Hauptkennzeichen eines Stromes ist das begleitende  Magnetfeld (s. Kap. 1.4.2, 

Bd. 1). Tatsächlich besitzen der Konvektionsstrom  i K im Leiter und sein

Fortsatz als Verschiebungsstrom  i V im Nichtleiter das gleiche Magnetfeld (in

Abb. 2.7.4a angedeutet). Mehr noch:  Da der Strom immer Ursache eines

 Magnetfeldes und das Magnetfeld im Dielektrikum experimentell nachweis-

 bar ist, muss folgerichtig der Verschiebungsstrom als Fortsetzung des Lei-

 tungsstromes im Dielektrikum gefordert werden.  Sein Richtungssinn liegt bei

dΨ  >  0 durch die Richtung von Ψ( D) fest. 

d t

Mit Nachdruck ist aber auf die  zeitlich verschiedenen Stufen  von Leitungs- und

Verschiebungsstrom zu verweisen:

Leitungsstrom  i K  ∼ u  tritt schon bei zeitlich konstanter Spannung auf. Im

Strömungsfeld ist deshalb die Zeitfunktion des Leitungsstromes stets ein Abbild

der Zeitfunktion der Spannung  i K( t)  ∼ u( t). 

Verschiebungsstrom  i V( t) gibt es im Nichtleiter  nur bei zeitveränderlicher  Span-

nung  u( t), er ist ein Abbild ihres Zeitdifferenzials. 

Verschiebungsstromdichte  JV So, wie der Verschiebungs strom  an den Ver-

schiebungs fluss  als Integralgröße des elektrostatischen Feldes gebunden war, 

13 Die Bezeichnungen Verschiebungsstrom erweckt den Eindruck, als ob Ladungen im

Nichtleiter verschoben werden. Dies ist nicht der Fall. 

2.7

Elektrisches Feld bei zeitveränderlicher Spannung

159

kann für den Raumpunkt eine zugeordnete Feldgröße, die  Verschiebungs-

 stromdichte J V, definiert werden14:



 i V =

 J V  ·  d A. 

Verschiebungsstromdichte  J V (2.7.7)

 A

Wie beim Zusammenhang zwischen Verschiebungsstrom  i V, Verschiebungs-

fluss- und Ladungsänderung lässt sich auch die Verschiebungsstromdichte  J V

auf die zeitliche Änderung der Verschiebungsdichte  D  zurückführen: Dazu

dienen der Verschiebungsstrom Gl. (2.7.6), Verschiebungsfluss Ψ und die Ver-

schiebungsflussdichte  D (Gl. (2.6.3))







dΨ

d

d D

 i V =

=

 D ·  d A =

 ·  d A =

 J V  ·  d A. 

d t

d t

d t

 A

 A

 A

Der Vergleich ergibt

 J

d D

V =

 .  Verschiebungsfluss- und Verschiebungsstromdichte (2.7.8)

d t

Jede zeitliche Änderung der Verschiebungsflussdichte wird im Nichtleiter

von einer Verschiebungsstromdichte  J V am gleichen Ort begleitet. Die Rich-

tung von  J V stimmt mit der von  D (bei zeitlicher Zunahme) überein. 

Mit dem Verschiebungsstrom (zeitveränderliche Größe) verliert der Begriff

elektrostatisches Feld streng genommen seine Bedeutung und besser wäre

die (nicht übliche) Bezeichnung  Verschiebungsstromfeld (s. auch Tab. 1.4). 

Abbildung 2.7.5a zeigt ein Schnittbild der Verschiebungsstromdichte  J V am

Plattenkondensator. Ein Verschiebungsstrom setzt zeitliche Ladungsände-

rung auf den Platten voraus und damit einen zeitveränderlichen Leitungs-

strom in den Zuleitungen. Im unteren Teil der Anordnung ist ein Strömungs-

feld (Leitfähigkeit  κ) parallelgeschaltet, dort fließt Leitungsstrom (ein Ver-

schiebungsstrom durch die elektrische Feldkonstante  ε 0 auch eines Leiters ist

vernachlässigt). Denken wir uns in einer Plattenanordnung parallelliegende

leitende und dielektrische Streifen abwechselnd vermischt“ (mit immer klei-

” 

ner werdendem Querschnitt), so beträgt die  Gesamtstromdichte J  im Raum-

punkt bei der Feldstärke  E

 J

d D

=  J K +  J V =  κE +





d t



 ε  d E

d E

Gesamtstromdichte (2.7.9)

=  κ E +

=  κ E +  τ R

 . 

 κ  d t

d t

14 Vgl. Zusammenhang zwischen Leitungsstrom  I K und Stromdichte  J, (Kap. 1.3.1). 
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Abb. 2.7.5. Verschiebungsstrom. (a) Parallelschaltung eines Nichtleiters und Strömungs-

feldes mit Ersatzschaltung aus parallelem Leitwert  G  und Kondensator  C. (b) Elektrisches

Feld im geschichteten, leitenden Dielektrikum bei Einschalten einer Spannung mit Ersatz-

schaltung der Anordnung. (c) Zeitverlauf der Flächenladungsdichte in der Grenzfläche

In einem Gebiet mit gleichzeitig Leiter- und Nichtleitereigenschaften (z. B. 

einem Halbleiter) setzt sich die Gesamtstromdichte aus Leitungs- und Ver-

schiebungsanteil zusammen, letzterer nur bei zeitveränderlichem Feld. 

Maxwell erkannte die magnetische Wirkung des Verschiebungsstromes aus logischen

Gründen, der experimentelle Nachweis erfolgte viel später. Legt man z. B. eine si-

nusförmige schwankende Feldstärke  E =  E 0 sin  ωt  zugrunde, so beträgt  J Vmax in

Luft bei  ω = 2 π ·  50 s − 1 und  E = 106 V /  m:  J Vmax = 2 ,  710 − 9 A /  mm2. Die Leitungsstromdichte in Metallen liegt bei einigen A/mm2. Dann ist das Verhältnis

Verschiebungs- zu Leitungsstromdichte mit 10 − 9 (!) extrem klein. Für eine 106 mal

größere Feldänderung, also  f = 50 MHz, wird das Verhältnis vergleichbarer. In der

Frühzeit des experimentellen Nachweises der Maxwellschen Theorie fehlten Einrich-

tungen für solche Frequenzen. Merklich wird der Einfluss des Verschiebungsstromes

in Halbleitermaterialien, die neben kleiner Leitfähigkeit  κ  auch eine relativ große

Dielektrizitätszahl  ε r haben. Dann bestimmt die Relaxationszeitkonstante  τ R =  ε/κ

mit, in welchem Maße der Verschiebungsstrom zusätzlich zum Leitungsstrom auf-

tritt. 

¨

Uberlagerung von Str¨

omungs- und elektrostatischem Feld, zeitliche Feld¨

ande-

rung* Die wechselseitige Beeinflussung von Strömungs- und Ladungsfeld wird be-

sonders augenscheinlich beim Zusammentreffen zweier Gebiete je mit den Leitfähig-

keiten  κ 1,  κ 2 und Permittivitäten  ε 1,  ε 2 an einer Grenzfläche parallel zu den Elektrodenoberflächen (mit der Ladungsdichte  σ) (Abb. 2.7.5b) in einem Feldraum zwi-

schen zwei unendlich gut leitenden Elektroden. Denkt man sich in die Grenzfläche

eine dünne, gut leitende Elektrode eingefügt, so lässt sich die Anordnung durch die

dargestellte  RC-Ersatzschaltung modellieren. 
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Beim Anschalten einer Gleichspannung wirken im ersten Moment nur die Kapa-

zitäten und bestimmen eine Spannungsteilung. Lange nach dem Einschalten legen

hingegen die Leitfähigkeiten (Widerstände) die Spannungsteilung fest. 

Gesucht sind die Feldbedingungen an der Grenzfläche. Ansatz ist die Kontinuitäts-

gleichung (1.3.4b ff.)





 ∂σ

 ∂σ

 J n2d A −

 J n1d A +

d A = 0

 → J n2  − J n1 +

= 0 , 

 ∂t

 ∂t

 A

 A

dabei wurde statt der Raumladungsdichte die Flächenladungsdichte angesetzt. Dar-

aus folgen stationär ( ∂σ/∂t = 0) die Grenzflächenbedingungen

 J n2 =  J n1 , κ 2 E n2 =  κ 1 E n1 , E t2 =  E t1 und tan  α 1 /  tan  α 2 =  κ 1 /κ 2

des Strömungsfeldes (Gl. (1.3.23 ff.)), also unabhängig von der Flächenladung  σ! 

Für das elektrostatische Feld folgt nach Gl. (2.4.2 ff.)

 D n2  − D n1 =  σ, E t2 =  E t2 und tan  α 1 /  tan  α 2 = ( ε 1 /ε 2) +  σ/ε 2 E n1 . 

Dabei wurde die Flächenladungsdichte im Brechungsgesetz berücksichtigt. Die Be-

ziehungen für die Brechungswinkel stimmen nur dann überein, wenn sich an der

Grenzfläche eine Flächenladung  σ  befindet, also

 κ 1

 ε 1

 σ

=

+

 →

 κ 2

 ε 2

 ε 2 E n1









(2.7.10)

 κ 1

 ε 2

 σ

=  ε 2 E n1

 − ε 1 =  J n1

 − ε 1 =  J n1 ( τ R2  − τ R1)

 κ 2

 ε 2

 κ 2

 κ 1

gilt. Die Flächenladung verschwindet im stationären Zustand nur bei übereinstim-

menden Relaxationszeitkonstanten, umgekehrt  erzwingen  verschiedene Zeitkonstan-

ten eine Flächenladungsdichte nach Gl. (2.7.10)! 

Für verschwindende Anfangsflächenladung  σ(0) = 0 bestimmen die Beziehungen

 d 1 E 1( t) +  d 2 E 2( t) =  U, −ε 1 E 1( t) +  ε 2 E 2( t) =  σ( t) und

 −κ 1 E 1( t) +  κ 2 E 2( t) + d σ( t) = 0

d t

den Zeitverlauf der Flächenladungsdichte. Nach Elimination der beiden Feldstärken

 E 1( t) = ( ε 2 U − d 2 σ( t)) /( d 1 ε 2 +  d 2 ε 1) und  E 2( t) = ( ε 1 U − d 1 σ( t)) /( d 1 ε 2 +  d 2 ε 1) ergibt sich die Differenzialgleichung

d σ( t)

 σ( t)

 ε 2 κ 1  − ε 1 κ 2

 d 1 ε 2 +  d 2 ε 1

+

=  U

mit  τ 12 =

 . 

d t

 τ 12

 d 1 ε 2 +  d 2 ε 1

 d 1 κ 2 +  d 2 κ 1

Ihre Lösung lautet







 ε 2 κ 1  − ε 1 κ 2

 σ( t) =  U

1  −  exp  − t

 d 1 ε 2 +  d 2 ε 1

 τ 12







(2.7.11)

=  J∞ ( τ R2  − τ R1) 1  −  exp  − t

 τ 12

mit den stationären Stromdichten  J∞ =  J 1 ∞ =  J 2 ∞ =  Uκ 1 κ 2 /( d 1 κ 1 +  d 2 κ 2). Die zugehörigen stationären elektrischen Feldstärken betragen:  E 1 ∞ =  Uκ 2 /( d 1 κ 1 +

 d 2 κ 2) und  E 2 ∞ =  U 1 /( d 1 κ 1 +  d 2 κ 2) und die stationäre Flächendichte ε 2 κ 1  − ε 1 κ 2

 σ( ∞) =  U

 . 

 d 1 κ 2 +  d 2 κ 1
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Der Zeitverlauf ist in Abb. 2.7.5c skizziert. Beginnend bei null baut sich die Flächen-

ladungsdichte stationär so auf, dass schließlich die Bedingung des Strömungsfeldes

gilt. Im Schaltzeitpunkt gilt das elektrostatische Feld mit  D n1 =  D n2, bei gleichen

Relaxationszeitkonstanten unabhängig von der Zeit! 

Im stationären Betrieb erzwingt die Quellenfreiheit der Stromdichte  J n1 =  J n2

an der Grenzfläche eine Flächenladungsdichte, die die Normalkomponenten der

Verschiebungsflussdichte festlegen. 

Bei  langsam zeitver¨

 anderlichem Feld  stimmt die Potenzialverteilung mit der des

elektrostatischen Feldes überein und die Stromlinien des zeitveränderlichen  E-Feldes

sind praktisch identisch mit den  D-Linien des elektrostatischen Feldes. Deshalb hat

auch das elektrostatische Feld große Bedeutung:

Die Gesetze des elektrostatischen Feld bleiben erhalten, wenn sich die Felder nur

zeitlich langsam ändern. 

R¨

uckblick. Kirchhoffscher Satz, Stromkontinuit¨

at, Ladungsbilanz Wir greifen

auf die Kontinuitätsgleichung in Integraldarstellung (Gl. (1.3.4b)) zurück und

formulieren sie mit Berücksichtigung des Verschiebungsstromes in Feldform. 

Ausgangspunkt ist die Gesamtstromdichte Gl. (2.7.9), deren Hüllintegral

stets verschwinden muss



 







 J ·

 ∂D

d

d A =

 J K +

 ·  d A =

 J K  ·  d A +

 D ·  d A = 0 . 

 ∂t

d t

 A

 A

 A





Dann folgt mit der Ladung

 D ·  d A =    d V =  Q 15





d Q

 ∂

Kontinuitätsgleichung, 

=

d V =  −

 J K  ·  d A. 

(2.7.12)

d t

 ∂t

Integralform

Die zeitliche Ladungszunahme in einer Hüllfläche ist gleich dem netto zu-

fließenden Konvektionsstrom. 

Dazu gehört mit dem Gaußschen Satz gleichwertig die  Differenzialform

 ∂

0 =

+ div  J K

Kontinuitätsgleichung, 

 ∂t

(2.7.13)

0 = div  J. 

erster Kirchhoffscher Satz

Die Gesamtstromdichte ist quellenfrei oder gleichwertig: die zeitliche Ände-

rung der Raumladungsdichte ist gleich der negativen Divergenz der Kon-

vektionsstromdichte. 

Das erlaubt einige Ergänzungen zur Kontinuitätsgleichung

1. 

Im Kap. 1.3.1 wurde aus der Kontinuitätsgleichung des stationären Strömungs-

feldes (1.3.4b ff.) (bei konstanter Ladung in einer Hülle) u. a. der erste Kirch-

hoffsche Satz begründet. Die Ladungsänderung eines Hüllvolumens als Bilanz

15 Gilt sinngemäß auch für andere Ladungsverteilungen. 
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Abb. 2.7.6. Bilanzgleichung. (a) Knotensatz (Bilanzgleichung für zeitkonstante Ströme, 

Ladungserhaltung im abgeschlossenen Volumen). (b) Ladungsänderung durch Differenz

von Zu- und Abfluss, gleichwertige Einführung des Verschiebungsstromes für die La-

dungsänderung. (c) Bilanzhülle ausgedrückt durch die Stromdichte. (d) Kontinuitätsglei-

chung für eine Trägersorte mit Einbezug von Rekombination und Generation

von Stromzu- und -abfluss durch die Hülle ist die  integrale Form des Satzes

 von der Erhaltung der Ladung (Gl. (2.7.12), Abb. 2.7.6a). Strom: Konvekti-

onsstrom. Der aus dem Volumen ausfließende Strom verursacht die zeitliche

Ladungsabnahme im Volumen. Gleichwertig: Ladungen können weder erzeugt

noch vernichtet werden. 

In diesem Satz tritt kein Verschiebungsstrom auf. Allerdings kann die La-

dungsänderung durch eine Verschiebungsflussänderung Gl. (2.7.6) ersetzt und

als  Verschiebungsstrom  durch die Hülle interpretiert werden (Abb. 2.7.6b). 

 Dann muss der Knotensatz f¨

 ur den Gesamtstrom gebildet werden

(in Diffe-

renzialform durch div  J = 0, Gl. (2.7.13)). Der Verschiebungsstrom durch die

Hülle lässt sich als Kapazität gegen die Umgebung modellieren. 

Der Netzwerkknoten kennt den Verschiebungsstrom  nicht, deshalb wird der

Knotensatz in seiner Standardform  auch f¨

 ur zeitver¨

 anderliche Str¨

 ome ange-

 wendet (und die Ladungsänderung vernachlässigt). Korrektur durch parasitäre

Knotenkapazität möglich. Abbildung 2.7.6c zeigt die Bilanzgleichung der Hülle

ausgedrückt durch Feldgrößen. 

2. 

Der Satz von der Erhaltung der Ladung in Differenzialform Gl. (2.7.13) gilt

auch bei zeitveränderlicher Raumladungsdichte oder Verschiebungsflussdich-

te  D:  Die Abnahme der Ladung in einem Punkt entspricht einem aus diesem

 Punkt herausfließendem Stromfaden. 

3. 

Die Bilanzgleichungen können für einzelne Ladungsträgergruppen (z. B. Elek-

tronen und Löcher) getrennt formuliert werden, dann ist ihre Wechselwirkung

(z. B. Rekombination) einzubeziehen (Abb. 2.7.6d). 

2.7.3 Kondensator im Stromkreis

Das Speichervermögen des Kondensators zeigt sich besonders bei einer  Struk-

 tur¨

 anderung  des Stromkreises, etwa durch Aus- oder Einschalten einer Netz-
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werkkomponente. Dann läuft ein  ¨

 Ubergangs-  oder  Ausgleichsvorgang  solange

ab, bis sich die Ströme und Spannungen dem neuen  eingeschwungenen Zu-

 stand  angepasst haben. 

Übergangsvorgänge haben fundamentale Bedeutung für die Elektrotechnik, wir be-

handeln sie ausführlich mit angepassten mathematischen Methoden in Bd. 3. Hier

interessiert das physikalische Verständnis zusammen mit den Begriffen  Anfangs-

 wert  und  Stetigkeit  der Kondensatorspannung. Ausgang ist ein Grundstromkreis

mit Schalter: beim Schließen zum Zeitpunkt  t →  0 sinkt sein Widerstand abrupt

von  R → ∞  auf  R →  0. Wird er geöffnet, so gilt das Umgekehrte. 

Aufladen Ein ladungsfreier Kondensator wird mit einer Gleichspannungsquel-

le (Innenwiderstand  R) aufgeladen (Abb. 2.7.7a). Nach Schließen des Schal-

ters zur Zeit  t = 0 fließt ein durch den Widerstand  R  begrenzter Strom, weil

der ladungslose Kondensator ( u C( − 0) = 0)  zunächst wie ein Kurzschluss

wirkt:  i(+0) =  U q /R. Der Ladestrom erhöht die Kondensatorspannung, der

Spannungsabfall  u R( t) =  U q  − u C( t) sinkt und damit der Strom  i( t). Dieser Ladevorgang währt, bis die Kondensatorspannung den Wert  U q erreicht hat. 

Der Vorgang umschließt drei Zeitbereiche: den  Ausgangszustand (vor dem

Schaltvorgang), den Ausgleichs- oder  ¨

 Ubergangsvorgang  und den  Endzustand. 

Im ersten Schritt formulieren wir die Kirchhoffschen Gleichungen  nach  Schlie-

ßen des Schalters: die Maschengleichung kombiniert mit den  u, i-Relationen

von Widerstand und Kondensator lautet

d u C( t)

 U q =  u R( t) +  u C( t) =  Ri( t) +  u C( t) =  RC

+  u C( t) . 

(2.7.14)

d t

Diese Bestimmungsgleichung für die Kondensatorspannung  u C( t) ist eine li-

neare inhomogene Differenzialgleichung erster Ordnung mit konstanten Ko-

effizienten. Inhomogen, weil links die von  u C unabhängige Größe  U q steht, 

und erster Ordnung bezieht sich auf  einen  Energiespeicher im Kreis16. 

Die Kondensatorspannung  u C kennzeichnet den Inhalt“ (Zustand) des

” 

Energiespeichers  C, deshalb ist sie seine  Zustandsgröße, die sich nie sprung-

haft ändert. 

Der nächste Schritt ist die  Festlegung des Anfangswertes  der gesuchten Größe, 

hier  u C. Es gilt für  t = 0  → u C( − 0) = 0, weil der Kondensator ladungslos

angesetzt wird. 

Der dritte und letzte Schritt umfasst die Lösung der Differenzialgleichung. 

16 Auch wenn andere Größen des Netzwerkes gesucht sind, muss zuerst die Differen-

zialgleichung (DGL) für die Zustandsgröße gelöst werden. 
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Abb. 2.7.7. Kondensator im Grundstromkreis. (a) Aufladevorgang, Einschalten einer

Gleichspannung (bzw. eines Gleichstromes, Ersatz der Anordnung links der Klemmen A, B

durch eine geschaltete Stromquelle). (b) Zeitverlauf von Kondensatorspannung und -strom. 

(c) Ausschaltvorgang eines auf die Spannung  U 0 geladenen Kondensators

Eine inhomogene DGL erster Ordnung mit konstanten Koeffizienten und konstanter

Erregung  F

d y

 −t

 τ

+  y( t) =  F

 → y( t) = ( y(0)  − F ) exp

+  F

d t

 τ

hat immer die rechts stehende Lösung (Nachweis durch Einsetzen). Die sog.  homo-

 gene  DGL mit  F = 0 lässt sich nach Umstellung durch Trennung der Variablen

integrieren





d u C

d u C

d t

=  −  d t

 →

=  −

 . 

 u C  − U q

 RC

 u C  − U q

 RC

Wird eine Integrationskonstante der Form ln  K  verwendet, so ergibt sich

1

ln ( K ( u C  − U q)) =  − t

 → u C( t) =  U q +

exp  − t . 

 RC

 K

 RC

Die rechte allgemeine Lösung muss noch durch die  Stetigkeitsbedingung u C( − 0) =

 u C(+0) und den  Anfangswert  für  t = 0:  u C( − 0) =  u C(+0) = 0 angepasst werden; Einsetzen des Anfangswertes in die allgemeine Lösung ergibt 1 /K =  U q und

damit





d u C( t)

 U q

 u C( t) =  U q 1  −  exp  − t

 , 

 → i( t) =  C

=

exp  − t . (2.7.15)

 RC

d t

 R

 RC

Der Strom klingt beim Einschalten eines ungeladenen Kondensators nach

einer Exponentialfunktion mit der Zeitkonstanten  τ =  RC  auf Null ab. 

Abbildung 2.7.7b zeigt die Verläufe von Kondensatorspannung und Strom. 

Nach Ablauf der Zeit  t =  τ =  RC  hat der Verlauf wegen 1  −  exp  − 1 =

0 ,  63 bereits 63% des Endwertes erreicht, nach  t = 2 τ  insgesamt 86% und

nach 5 τ  immerhin 99%. Die Kondensatorspannung steigt exponentiell nach

der  Halbwertzeit t H  ≈  0 ,  7 τ (Zeitkonstante  τ =  RC) den halben Wert der Differenz zwischen End- und Anfangswert. 
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Der Endwert der Kondensatorspannung ist (unabhängig vom Anfangswert)

nur durch die Quellenspannung gegeben! Ihre Anfangssteigung ergibt sich zu





d u





C( t) 

 U q

 U q

=

exp  − t 

=

 . 

(2.7.16)

d t





 t=0

 RC

 RC t=0

 τ

Mit diesem Anstieg würde sie den Endwert  U q nach der Zeit  τ  erreichen. 

Beim Aufladen des Kondensators durch eine Stromquelle (Laden mit Kon-

stantstrom) muss die Stromquelle im Zeitpunkt  t = 0 auf den Kondensator

umgeschaltet werden. Dann hat der Vorwiderstand  R  keine Wirkung und aus

der Kondensatorgleichung folgt

 t



 t



1

 I q

d u C( t) =

 i( t) d t → u C( t) =  u C(0) +

( t −  0)  . 

(2.7.17)

 C

    C

0

0

0

Beginnend vom Anfangswert steigt die Spannung bei Stromeinprägung li-

near mit der Zeit an. 

Leistungs-, Energieverh¨

altnisse Beim Aufladen wird dem Kondensator die

Leistung  p C( t)

 U  2 



 U  2

 p

q

 q

C( t) =  u C( t) i( t) =

 e− tτ − e−  2 tτ , 

 p R( t) =  Ri 2 =

 e−  2 tτ (2.7.18)

 R

 R

zum Aufbau des elektrischen Feldes zugeführt und dabei im Widerstand die

Leistung  p R( t) in Wärme umgesetzt. Die Gesamtleistung  p q =  p C +  p R lie-

fert die Quelle. Während des Aufladevorganges erhält der Kondensator die

Energie  W C

 ∞



 ∞



 U  2





 CU  2

 CU  2

 W

q

q

q

C =

 p C( t)d t =

 e− tτ − e−  2 tτ  d t =

 , W R =

(2.7.19)

 R

2

2

0

0

und speichert sie im Feld, die gleiche Energie  W C =  W R setzt der Widerstand

in Wärme um. 

Die von der Quelle beim Aufladen gelieferte Energie wird zur Hälfte als Feld-

energie im Kondensator gespeichert und die andere Hälfte im Widerstand

in Wärme umgesetzt, unabhängig von der Größe der Zeitkonstanten. 

Entladung Ist der Kondensator auf eine Spannung  U q aufgeladen und setzt

durch Schließen des Schalters (Abb. 2.7.7a) plötzlich der Entladevorgang ein, 

so folgt bei Umkehr der Stromrichtung aus

d u C( t)

 u C( t) =  u R( t) =  i( t) R  und  i( t) =  −C

d t

mit der durch den Widerstand erzwungenen Stromrichtung als Differenzial-

gleichung für die Kondensatorspannung

d u C( t)

 RC

+  u C( t) = 0 . 

(2.7.20)

d t
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Nach Trennung der Variablen ergibt die separate Integration





d u C

d t

=  −

 →  ln ( Ku C( t)) =  − t

 u C

 τ

 τ

die Lösung

1

 u C( t) =

exp  − t

 → u C( t) =  u R( t) =  i( t) R =  U q exp  − t . 

(2.7.21)

 K

 τ

 τ

Jetzt bestimmt der Anfangswert unmittelbar den Spannungs- und Stromver-

lauf (Abb. 2.7.7c). Während der Entladung wird die im Kondensator gespei-

cherte Feldenergie

 ∞



 ∞



 U  2

 CU  2

 W

q

q

R =

 p R( t) d t =

 e−  2 tτ  d t =

(2.7.22)

 R

2

0

0

vollständig im Widerstand in Wärme umgesetzt. 

Bei Kurzschluss eines geladenen Kondensators fließt nach Gl. (2.7.21) ein

Strom mit dem Anfangswert  U q /R (mit  R →  0), der beträchtlich sein und

zerstörend (Kraftwirkung auf die Kondensatorplatten, Explosionsgefahr!)

wirken kann. Deswegen dürfen geladene Kondensatoren nie kurzgeschlossen

werden. 

Die hier diskutierten Speicherverhältnisse beruhen auf der Energiespeicher-

fähigkeit des elektrostatischen Feldes. Sie lassen sich allgemeiner durch die

Feldgrößen ausdrücken (Tab. 2.7, 2.8). Wir vertiefen sie später (Kap. 4.1.3) im

Zusammenhang mit der Kraft, die geladene Kondensatorplatten aufeinander

ausüben. 

Spannungs- und Ladungsverteilung in RC-Schaltungen* In Stromkreisen mit

Widerständen, Kondensatoren und Quellen stellt sich nach Ablauf eines Schaltvor-

ganges eine stationäre Spannungs- und Stromverteilung ein, die z. B. die Anfangs-

werte der Kondensatoren für einen nachfolgenden Schaltvorgang bestimmt. Wie

ergibt sich diese stationäre Spannungsverteilung? 

Im  ersten Schritt  werden die Knotenspannungen derjenigen Knoten ermittelt, die

resistiv mit Quellen oder Massepunkten (direkt, indirekt) verbunden sind, zweck-

mäßig mit dem Knotenspannungsverfahren. Kondensatoren haben keinen Einfluss

und werden aus der Schaltung entfernt. 

Im  n¨

 achsten Schritt  bestimmt man die Knotenspannungen der rein kapazitiven“

” 

Knoten (ohne resistive Verbindung zu anderen Knoten). Dabei sind die Spannun-

gen resistiver Knoten Vorgabewerte (Spannungsquellen, deren Knotengleichungen

nicht aufzustellen sind).  F¨

 ur kapazitive Knoten verbleibt dann nur jeweils die La-



 dungsbilanz

 Q = 0,  um ausreichend viele Gleichungen zu erhalten. 
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Tab. 2.7. Größen und Zusammenhänge des elektrostatischen Feldes

Beispiel 2.7.1 Kondensatornetzwerk Das Kondensatornetzwerk (Abb. 2.7.8a) wird

an die Spannungsquelle  U q geschaltet. Gesucht sind die Knotenspannungen nach

dem Ladungsausgleich. 

Mit Anlegen der Spannungsquelle an Knoten K1 liegt seine Knotenspannung fest, 

deshalb entfällt das Aufstellen der Knotengleichung (Knotenspannung vorgegeben). 

Zu Knoten K2 gehört die Knotengleichung

d

d u 2

d

K2 :  i 2  − i 3  − i 4 = 0

 → C 2

( u 1  − u 2)  − C 3

 − C 4

( u 2  − u 3) = 0 . 

d t

d t

d t

Nach Integration zwischen  t = 0 und ausreichend langer Zeit  t 1 wird daraus

 Q K2 =  C 2 ( U 1  − U 2)  − C 3 U 2  − C 4 ( U 2  − U 3) 0

=  −C 2 U 1 + ( C 2 +  C 3 +  C 4)  U 2  − C 4 U 3 . 

Die untere Gleichung ist die Ladungsverteilung unter der Voraussetzung, dass Kno-

ten K2 keine Anfangsladung hat ( Q K2(0) = 0). In gleicher Weise verfahren wir für

Knoten K3, das Ergebnis lautet  −C 4 U 2 + ( C 4 +  C 5) U 3 = 0. Damit liefert das Ladungsgleichungssystem (mit  U 1 =  U q)



 







 C 2 +  C 3 +  C 4

 −C 4

 U 2

 C 1 U 1

 −

=

(2.7.23)

 C 4

 C 4 +  C 5

 U 3

0

nach Lösung die Spannungen  U 2,  U 3 als Funktion der Spannung  U 1 =  U q. 
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Tab. 2.8. Energiebeziehungen des elektrostatischen Feldes

Feldgr¨

oßen

Flussdichte  D

Feldst¨

arke  E

Beziehung

(Eigenschaft)

(Eigenschaft)

 D =  εE

	

 



 D ·  d A =  Q

 E ·  d s = 0

 A

 s

 D · E

 ε|E| 2

 |D| 2

Energiedichte

 w V =

=

=

2

2

2 ε



 B

Globalgrößen

Ψ =

 D ·  d A

 U

 E ·  d s Q =  C

 A

AB =

A

AB U AB



 D ·  d A

Kapazität

 C

 A

AB =

 Q =

 U AB

B



 E ·  d s

A





Feldenergie

 W =

 w d V =

 D · E  d V

 V

 V

2

Abb. 2.7.8. Ladungsausgleich im Kondensatornetzwerk. (a) Ladungsausgleich bei ange-

schalteter Spannung. (b) Einprägung einer Probeladung in das Netzwerk. (c) Beispiele von

Ladungsknoten K2:  Q 3+ +  Q 4+ =  Q 2 −, Knoten K3:  Q 5+ =  Q 4 −

Die Situation ändert sich, wenn dem Kondensatornetzwerk keine Spannung, sondern

eine (Probe-)ladung  Q Pr, etwa aus einem geladenen Kondensator am Knoten K1

zugeführt wird (Abb. 2.7.8b). Jetzt muss die Knotengleichung K1 aufgestellt werden

d u 1

d

 K 1 :  i Pr =  −  d Q Pr =  C 1

+  C 2

( u 1  − u 2)  →

d t

d t

d t

 −Q Pr

= ( C 1 +  C 2)  U 1  − C 2 U 2 . 

Die Gleichungen der Knoten K2 und K3 ändern sich nicht und alle drei Gleichungen

zusammengefasst führen auf

⎛

⎞ ⎛

⎞

⎛

⎞

( C 1 +  C 2)

 −C 2

0

 U 1

 −Q Pr

⎝

 −C

⎠ ⎝

⎠

⎝

⎠

2

( C 2 +  C 3 +  C 4)

 −C 4

 U 2

=

0

 . 

(2.7.24)

0

 −C 4

( C 4 +  C 5)

 U 3

0

Die drei Spannungen  U 1  . . . U 3 sind so als Funktion der Probeladung darstellbar. 

Ein Problem bleibt der Ladungsknoten“, den es in der Netzwerkvorstellung nicht

” 

gibt (Abb. 2.7.8c). Grundsätzlich ist er ladungsneutral und es gilt: Am Knoten-
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punkt stimmt die Summe der positiven Ladungen mit der der negativen überein. 

Denkt man sich um Knoten K2 durch die Dielektrika der angeschlossenen Konden-

satoren eine Hülle, muss die beim Aufladen des Kondensators  C 2 auf seiner Platte

befindliche positive Ladung ihr negatives Äquivalent auf den zugängigen Platten

der Kondensatoren  C 3 und  C 4 finden. Die Platten innerhalb der Hülle bleiben la-

dungsneutral. 

2.7.4 Allgemeine kapazitive Zweipole

Neben der bisher betrachteten linearen Ladungs-Spannungs-Beziehung im

elektrostatischen Feld gibt es zahlreiche Fälle, bei denen die Ladung  Q( u( t) , t)

nicht nur von der Spannung, sondern auch  direkt von der Zeit  abhängt und

zusätzlich  nichtlinear  ist. Deshalb kennt man, wie beim resistiven Zweipol, 

auch zeitveränderliche lineare und nichtlineare Kapazitäten (Tab. 2.9). 

Zeitabh¨

angiger linearer kapazitiver Zweipol Die  zeitabh¨

 angige lineare Ka-

 pazit¨

 at C( t) hat die Ladungsbeziehung  Q( t) =  C( t) u( t) mit dem Strom-Spannungs-Zusammenhang

 u, i-Relation, 

d Q

d( C( t) u( t))

d u

d C( t)

linear zeit-

 i( t) =

=

=  C( t)

+ u( t)

 . 

(2.7.25)

d t

d t

d t

d t

abhängige

Kapazität

Umgekehrt folgt bei vorgegebenem Strom  i( t) die Spannung gemäß  u( t) =

 Q( t) /C( t) zu



 Q( t)

1

 u( t) =

=

 i( t) d t + const

 C( t)

 C( t)

( C( t) darf nicht unter das Integralzeichen gesetzt werden!). 

Durch eine zeitabhängige Kapazität fließt auch bei anliegender Gleichspan-

nung ein Strom und bei konstanter Ladung  Q =  Cu ändert sich die Span-

nung. 

Dieses Verhalten unterscheidet sich grundlegend von der zeitunabhängigen

Kapazität und führt zu besonderen energetischen Merkmalen:  so bewirkt eine

 zeitabh¨

 angige Kapazit¨

 at den direkten Umsatz mechanischer Energie in elek-

 trische (und umgekehrt). 

Zeitveränderliche Kapazitäten lassen sich verschiedenartig realisieren, etwa durch

Drehung des Rotors eines Drehkondensators oder Veränderung des Plattenabstan-

des im Kondensator. Weitere Beispiele sind:

 kapazitive Geber, bei denen sich der Plattenabstand durch eine Messgröße zeit-

lich ändert. So erzeugt die Kapazität mit anliegender Gleichspannung ein der
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Tab. 2.9. Ursache-Wirkungs-Zusammenhang der Integralgrößen verschiedener Felder und

abgeleitete Netzwerkelemente dargestellt am Kondensator

Messgröße proportionales elektrisches Signal. Zu dieser Gruppe gehören der

Schwingkondensator und andere Sensorprinzipien; 

das  Kondensatormikrofon, bei dem auftreffende Schallwellen den Abstand der

Kondensatorplatten ändern. 

Beim Plattenkondensator kann wegen  C =  εA/d  eine zeitveränderliche Kapazität

durch Variation der Permittivität (Bewegung eines Materials mit  ε  zwischen den

Platten), der Fläche  A (Drehkondensator) oder des Plattenabstandes (z. B. durch

einen Piezoschwinger mit aufgesetzter Elektrode oder einen Wechselstrommagne-

ten) entstehen17. Weitere Realisierungsmöglichkeiten zeitvariabler Kapazitäten er-

hält man durch Zuschalten gesteuerter Quellen. So führt die Reihenschaltung einer

spannungsgesteuerten Spannungsquelle mit der Kondensatorspannung als Steuer-

spannung (Abb. 2.7.9a) zur Strom-Spannungs-Relation Gl. (2.7.26a), wenn sie von

der Gesamtspannung der Reihenschaltung gesteuert wird auf Gl. (2.7.26b) und bei

Einsatz einer stromgesteuerten Stromquelle parallel zum Kondensator (Kondensa-

17 Auch das Einschieben einer Kunststoffplatte in den Kondensator (Abb. 2.1.1) bei

konstanter Ladung gehorcht diesem Prinzip. Bei anliegender Gleichspannung ändert

sich der Kreisstrom bei Bewegung des Isolators. 
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Abb. 2.7.9. Zusammenschaltungen eines Kondensators mit gesteuerter Quelle. (a) Reihen-

geschaltete Spannungsquelle gesteuert durch die Kondensatorspannung. (b) Dto. gesteuert

durch die Gesamtspannung. (c) Parallelgeschaltete Stromquelle gesteuert vom Kondensa-

torstrom

torstrom als Steuerstrom) auf Gl. (2.7.26c)










d

 C( t) u( t)

d

 u( t)



 i =

=  C



(2.7.26a)

d t

1 +  A



u

d t

1 +  A u

 C=const

d

d

 i =

( C( t) u( t) (1  − A u)) =  C

( u( t) (1  − A u)) |

(2.7.26b)

d t

d t

 C=const



d

d u( t) 


 i = (1 +  A



i )

( C( t) u( t)) =  C(1 +  A i)

 . 

(2.7.26c)

d t

d t 
 C=const

Jetzt wächst die Kapazität multiplikativ. Dann lässt sich auch bei festem  C  durch

zeitabhängige Verstärkung (elektronisch realisierbar) eine zeitveränderliche Steuer-

wirkung erreichen. Das begründet die große Verbreitung kapazitiver Geberelemente. 

Messprinzipien mit zeitgesteuerter Kapazität sind meist empfindlicher als reine

Gleichstromverfahren, weil sie selektiv für die Änderungsfrequenz des Kondensa-

tors ausgelegt werden können. 

Nichtlineare zeitunabh¨

angige Kapazit¨

at Die  nichtlineare Kapazit¨

 at  hat eine

nichtlineare Ladungs-Spannungskennlinie  Q( u) durch den Ursprung. Eine

Spannung  u( t) =  U A + Δ U ( t) (Gleichspannung  U A mit überlagerter Spannungsänderung Δ U ( t),  |Δ U | 	 |U A |) verändert die Ladung um Δ Q( t)



d f 

 Q( t) =  Q



A + Δ Q( t) =  f ( U A + Δ U ( t)) =  f ( U A) +

 · Δ U( t) +  . . . 

d u  U A

im Arbeitspunkt  Q A. Die Ladungsänderung ergibt sich durch Taylor-Ent-

wicklung (bei Vernachlässigung höherer Glieder, die Bedingung der Kleinsig-

nalsteuerung). Die auftretende Ableitung



d Q 

Differenzielle Kapazität

 c



d =

 ≡ ∂Q

(2.7.27)

d u 

(Definitionsgleichung)

 U

 ∂u

A

2.7

Elektrisches Feld bei zeitveränderlicher Spannung

173

heißt  differenzielle, dynamische  oder  Kleinsignalkapazit¨

 at. Ihre Strom-Span-

nungsbeziehung folgt über die Kettenregel



d Q( t)

d Q



A

dΔ Q( t)

 ∂Q

dΔ U ( t)

 i =

=

+

=



 ·  dΔ U( t) =  c d

 . 

d t

d t



  

d t

 ∂u

d

d

 U

 t

 t

A

0

Der erste Term verschwindet wegen  Q A  ∼ U A = const. Mit  Q =  Q( u( t)) und gleichwertig  Q( u) =  C( u) u  gilt auch





d Q

d( C( u)  · u)

 ∂C

d u

 i =

=

=

 C +  u

 ·  d u ≡ c d

 . 

(2.7.28)

d t

d t

 ∂u

d t

d t

Die  Kleinsignalkapazit¨

 at  unterscheidet sich von der linearen Kapazität durch

die Änderung Δ C =  u  d C/ d u. Das ist die Tangente an die  Q,  U -Kennlinie im Arbeitspunkt bezüglich der Spannungsänderung Δ U  und eine lineare, zeitunabhängige Größe für Kleinsignalaussteuerung. 

Gegenüber der zeitvariablen Kapazität Gl. (2.7.25) sei nochmals der prin-

zipielle Unterschied hervorgehoben: die im Kleinsignalbetrieb ausgesteuerte

Kapazität ist linear zeitunabhängig, die zeitveränderliche Kapazität linear

zeitabhängig. Dies drückt sich besonders in den Energie- und Leistungsbe-

ziehungen aus (s. Kap. 4.3.1). 

Die Analyse von Schaltungen mit nichtlinearen Kapazitäten ist schwierig, 

deswegen hat ihre Kleinsignalbeschreibung große Bedeutung. 

Nichtlineare Kapazitäten sind wichtige Netzwerkelemente zur Modellierung des dy-

namischen Verhaltens elektronischer Bauelemente (Dioden, Transistoren, Varicaps

u. a.), aber auch für bestimmte Dielektrika (Elektrete, dort hängt  ε  vom Feld ab). 

So lassen sich beispielsweise darstellen:

die Sperrschichtkapazität  c s des  pn- Überganges durch



 −m

 c s  ≡ c d =  c s0 1  − u

 m ≈  0 ,  33  . . .  0 ,  5 . 

 U D

Die Größen  c s0 und die Diffusionsspannung  U D (etwa 0,8 V) sind Festwerte

(Abb. 2.7.10a, b). Ihre Ursache ist die spannungsabhängige Sperrschichtbrei-

te  W s, die mit wachsender Sperrspannung wächst. Der Ladungszuwachs Δ Q sc

zufolge Δ U  an den Grenzen kann als solcher auf fiktiven Kondensatorplatten

im Abstand  W s verstanden werden (Abb. 2.7.10c). Über die Sperrschichtbreite

hängt die Sperrschichtkapazität von der Spannung ab (Abb. 2.7.10d). 

die sog. Diffusionskapazität des  pn- Überganges bei Flusspolung  U >  0 mit  c d =

 c 0 exp  u/U T  ∼ i.  Sie hängt vom Strom  I (linear!) bzw. der Spannung (stark

nichtlinear) ab. 

Zeitabh¨

angiger nichtlinearer kapazitiver Zweipol Hier gilt nach Tab. 2.9

d Q( u( t) , t)

 ∂Q( u( t) , t)

 ∂Q( u( t) , t)

 i =

=

 ·  d u +

d t

 ∂u

d t

 ∂t
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Abb. 2.7.10. Sperrschichtkapazität des  pn- Überganges. (a), (b) Eine Sperrspannung ver-

breitert die Raumladungszone und erhöht die Ladung an den Randbereichen um Δ Q sc. 

(c) Kondensatormodell zweier Ladungsfronten im Abstand  W s( U ). (d) Spannungsab-

hängigkeit der Sperrschichtkapazität  c s (Kleinsignalkapazität) und Schaltzeichen

oder mit der differenziellen Kapazität Gl. (2.7.28)

d u( t)

 ∂C( t)

 i( t) =  c d( u)

+  u( t)

 . 

(2.7.29a)

d t

 ∂t

Gleichwertig gilt auch mit  Q =  Cu  und  C( u( t) , t):





d u

d C

 ∂C

 ∂C

 i =  C

+  u

=

 C +  u

 ·  d u +  u

(2.7.29b)

d t

d t

 ∂u

d t

 ∂t

mit d C =  ∂C ·  d u +  ∂C . Zum Strom tragen Kleinsignalkapazität und der

d t

 ∂u

d t

 ∂t

zeitvariable Teil bei. Der Operator  ∂/∂t  schreibt die partielle Ableitung nach

der Zeit  t  vor, während die Spannung als die andere Variable konstant zu

halten ist. 

Dieser Betriebsfall tritt beim sog.  parametrischen Betrieb  einer nichtlinearen Kapa-

zität auf. Dann liegen eine große Wechselspannung der Frequenz  f 1 und eine kleine
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der Frequenz  f 2 an. Für sie arbeitet die Kapazität im Kleinsignalbetrieb, für die ho-

he Spannung wie eine linear zeitgesteuerte Kapazität, die sich mit der Frequenz  f 1

ändert. 

Elektronische Kapazit¨

at  Physikalisches Merkmal  des Kondensators war der Ver-

schiebungsstrom als Ursache der Klemmenrelation  i ∼  d u/ d t. Hat umgekehrt ein

Zweipol die gleiche Klemmenrelation, aber  ohne die physikalischen Merkmale der

 Kapazit¨

 at, so wird er als  elektronische Kapazit¨

 at  bezeichnet. Sie ist in der Elektronik

verbreitet:

z. B. als  Diffusionskapazit¨

 at  in Halbleiterdioden und Transistoren (dort fehlt in

der Bemessungsgleichung die Permittivität!), 

zur  Erzeugung von Kapazit¨

 aten aus Induktivit¨

 aten  mit gesteuerten Quellen. 

Auch die Millerkapazität (s. Kap. 4.6, Bd. 1) gehört in diese Kategorie. Zugrunde

liegt zwar eine natürliche Kapazität, doch eine gesteuerte Quelle vergrößert

ihren Wert (was nach dem Grundmodell des Kondensators nicht möglich ist). 

Anwendungen In der Elektrotechnik spielen zeitabhängige und nichtlineare

Kapazitäten eine wichtige Rolle:

in Halbleiterbauelementen, 

als  ferroelektrische Kondensatoren  mit nichtlinearem Dielektrikum, 

als Ultra-Caps für extrem hohe Kapazitäten, 

als Grundlage parametrischer Verstärker und in der Messtechnik, 

in der Mess- und Sensortechnik als Geber, als Torsionsspiegel, elektrosta-

tischer Lautsprecher, Kondensatormikrofon u. a. m. 

2.7.5 Der Kondensator als Bauelement

Kondensatoren gibt es in unterschiedlichen  Bau-  und  Ausf¨

 uhrungsformen  mit

entsprechenden Schaltzeichen (Abb. 2.7.11):

Festkondensatoren (gepolt, ungepolt), 

veränderbare Kondensatoren (Trimmer, Drehkondensator), 

elektronische Kapazitäten (in elektronischen Bauelementen oder erzeugt

durch Schaltungen mit gesteuerten Quellen, streng keine Bauformen). 

Die Größe reicht von Bruchteilen eines pF (Elektronik) bis in den F-Bereich

(!) mit jeweils typischen Anwendungsfeldern. Die Kapazitätswerte werden, 

wie bei den Widerständen, in En-Reihen gestuft (Kap. 2.3.6, Bd. 1). Die

maximal zulässigen Spannungen liegen zwischen einigen Volt und kV für die

Energietechnik. Die Kondensatorkonstruktion bestimmt der Plattenkonden-

sator:
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Abb. 2.7.11. Kondensatorbauformen. (a) Scheibenkondensator. (b) Keramikkondensator, 

Röhrchenbauform. (c) Wickelkondensator. (d) Elektrolytkondensator. (e) Elektrolytkon-

densator in Knopfform. (f) Drehkondensator. (g) Schaltzeichen von Kondensatoren: stetig

veränderbar (g1), einstellbar (g2), nichtlinear (inhärent) (g3), gepolter Kondensator (g4)

Dielektrika mit hohem  ε-Wert ( →  Einsatz keramischer Dielektrika), 

große Fläche  A  durch mehrere Elektrodenschichten (Schichtkondensator), 

Aufwickeln oder Aufrauhen der Oberfläche (Elektrolytkondensatoren), 

geringe Isolatordicke durch dünne Folien (Schicht-, Wickelkondensator)

oder Oxidschichten (Aluminium oder Tantal-Elektrolytkondensator). 

 Festkondensatoren  Keramikfestkondensatoren in Scheibenform haben Kapa-

zitätswerte bis etwa 100 nF (geringe Eigeninduktivität, Abb. 2.7.11a). Grö-

ßere Kapazitätswerte erfordern Vielschichtkondensatoren aus mehreren me-

tallbelegten Keramikplättchen, zu einem Block gesintert. Die Dielektrizi-

tätswerte liegen zwischen 10 und 104(!). Keramikkondensatoren in Zylinder-

oder Röhrenform mit aufgebrannten oder geschichteten Metallbelägen

(Abb. 2.7.11b) dienen als Durchführungskondensatoren für Siebzwecke. 

Die klassische Bauform ist der  Wickelkondensator (Abb. 2.7.11c) aus einer

oder mehreren aufgewickelten Lagen von Isolier- und Metallfolien (Gehäuse

vergossen oder hermetisch abgeschlossen). 

Die Papierkondensatoren (mit paraffingetränktem Papier und dünnen Alu-

miniumfolien als Beläge) wurden durch den Metallpapier-(MP) Kondensa-

tor (Metallbelag als etwa 0,1 µm starke Schicht auf Papier gedampft) er-
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setzt. Beim Durchschlag verdampft das Metall und ein Kurzschluss zwischen

den Belägen unterbleibt. Bei metallbedampfter Kunststofffolie (Polypropy-

len, Styroflex, Polypropylen und Polyester) mit  ε-Werten zwischen 2,2 (Poly-

propylen) und 3,3 (Polyester) spricht man von MK-Kondensatoren. Günstig

sind die Spannungsfestigkeit und der geringe Verlustfaktor. Die Wickeltechnik

(Volumen!) begrenzt die Kapazität auf  C ≈  0 ,  5 µF. Kondensatoren für kleine

Betriebsspannung (einige 10 V) verwenden einen Lackfilm als Dielektrikum. 

Man erreicht Kapazitäten bis 10 µF. 

Große Kapazitäten werden durch  Elektrolytkondensatoren (Abb. 2.7.11d) rea-

lisiert. Hier wirkt das elektrische Feld zwischen einer Metallelektrode und

einem Elektrolyten. Als Dielektrikum dient eine dünne Oxidschicht auf dem

Metall mit hoher Kapazität/Volumen. Elektrolytkondensatoren arbeiten des-

halb grundsätzlich gepolt. 

Beim  Aluminium-Elektrolytkondensator  wird eine aufgerauhte Al-Folie (Flä-

chenvergrößerung) mit einem elektrolytgetränkten Papier versehen, gewickelt

und durch einen Formiergang elektrochemisch die Al-Oberfläche zu Al2O3

oxidiert ( ε r  ≈  8). Elektrolytkondensatoren haben einen Leckstrom“, bei

” 

falscher Polarität entsteht Kurzschluss! Kapazitätswerte bis 10000 µF bei

Spannungen von einigen 10 V sind üblich. 

Beim  Tantal-Elektrolytkondensator  wird die Anode als poröser Körper ge-

sintert und durch Oxidation eine Tantal-Pentoxid-Schicht (Ta205,  ε r  ≈  27)

erzeugt. Die Kapazität/Volumen ist höher als beim Aluminium-Elektrolyt-

kondensator.  Doppelschichtkondensatoren (herstellerabhängig auch als Gold

Caps, SuperCaps, UltraCaps, elektrochemische Kondensatoren genannt) nut-

zen die Grenzfläche zweier Materialien (Aktivkohle und Elektrolyt) zur Bil-

dung zweier in Reihe liegender Doppelschichten, von denen jede etwa eine

Spannung von 1  . . .  2 V aufnehmen kann (Abb. 2.7.11e). So (und durch Stape-

lung solcher Kondensatoren) werden Kapazitätswerte bis zu 200 F (!) erreicht

bei allerdings geringer Betriebsspannung. Weil diese Kondensatoren außer der

enormen Kapazität noch geringen Innenwiderstand haben (viel geringer als

der von Akkumulatoren!), erlauben sie große Entladeströme. Deshalb dienen

sie zur kurzfristigen Überbrückung einer ausfallenden Spannungsversorgung, 

zum Ausgleich von Belastungsspitzen und erobern sich zunehmend weitere

Einsatzfelder (bis zum Auto-Hybridantrieb). 

 Ver¨

 anderbare Kondensatoren  haben im  Drehkondensator (Abb. 2.7.11f) mit

Kunststofffolie oder Luft als Dielektrikum ihren historischen Vertreter: es

werden die beweglichen, parallel geschalteten Platten einer Elektrode (Ro-

tor) in die feststehende andere (Stator) hineingedreht“. Da sich die Fläche

” 

mit dem Drehwinkel ändert, lassen sich durch Formgebung der Platten (Halb-
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Abb. 2.7.12. Einsatzbereiche (Kapazität, Spannung) und typische Bauformen

kreis-, logarithmische, Form u. a.) bestimmte Kapazitätsverläufe erzielen. Die

Kapazität schwankt zwischen einigen pF (UKW-Drehkondensator) bis etwa

1000 pF. Früher war der Drehkondensator  das  Abstimmelement des Schwing-

kreises in jedem Rundfunkempfänger. Heute übernimmt diese Aufgabe die

 elektronisch abstimmbare  Sperrschichtkapazität eines  pn- Überganges, die

durch eine Gleichspannung verändert wird. 

Beim  Trimmer (mit silberbeschichteten keramischen Scheiben) sind Stator

und Rotor ebenfalls einstellbar. Die Kapazität liegt im pF-Bereich. 

Die unterschiedlichen Kondensatoren werden auch im Schaltzeichen unter-

schieden (Abb. 2.7.11g). 

Einsatzfelder Der Kondensator ist eines der wichtigsten Bauelemente der Elektro-

technik mit breiten Einsatzfeldern durch seine Grundeigenschaften: Ladungsspei-

cherung bei Gleichstromanwendungen und frequenzabhängige Impedanz bei Wech-

selstromanwendungen. Das bestimmt die Hauptanwendungen (Abb. 2.7.12):

Trennung von Gleich- und Wechselstromkreisen, Siebung und Glättung pulsie-

render Gleichspannungen in Netzteilen, Lautsprecherankopplungen, Entkopp-

lung von Leiterkreisen, 

in Zeitkreisen (Integrier-, Differenzierschaltungen), 

in der Leistungselektronik (Blindstromkompensation, z. B. für Leuchtstofflam-

pen, Entstörfilter), 

in der Informationstechnik z. B. bei Koppel- und Filterschaltungen, als Ab-

stimmelement, 

als Grundkonzept geschalteter Kondensatoren (dynamische MOS-Technik), als

Speicherelement der dynamischen Schaltungstechnik und dynamischer Informa-

tionsspeicher, 

zur Energiespeicherung (Batterieunterstützung), 
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in Schaltungen der Leistungselektronik zum Ausfiltern unerwünschter Oberwel-

len oder zum Stützen“ von Gleichspannungen bei Belastungsstößen, 

” 

Bereitstellung (oder Aufnahme) kurzzeitig hoher Ströme bei Kopierern und La-

sern u. a. m., 

zur Verhinderung von Spannungsspitzen an Halbleiterbauelementen. 

Zusammenfassung: Kapitel 2

1. 

Tabelle 2.7 enthält die Größen und Zusammenhänge des elektrostatischen

Feldes. Es beschreibt Phänomene ruhender Ladungen im Nichtleiter. Sei-

ne Grundlage sind die Kraftwirkung auf Ladungen (Coulombsches Ge-

setz, Grundlage der Definition von  E) und das Gaußsche Gesetz (Grund-

lage der Definition von  D): Ladungen als Quellen/Senken von Feldlinien, 

die von positiven Ladungen ausgehen und auf negativen enden. 

2. 

Ladung kann verteilt sein: Raum-, Flächen-, Linienladung. Das von ihr

ausgehende Feld  E  folgt durch Ersatz der Punktladung  Q  durch d Q =

  d V , d Q =  σ d A, d Q =  λ d l  und Integration über die betreffenden Gebiete:





 E

 σ



 λ

=

 e



n

 , E =

 e r

2 ε



Fläche

2 πε · r

Linie

jeweils für die unendlich ausgedehnte Fläche bzw. Linie. 

3. 

Die Verschiebungsflussdichte  D  ist proportional zur elektrischen Feld-

stärke nach Maßgabe der Permittivität  ε:  D =  εE. Deswegen herrscht

ein Ursache-Wirkungszusammenhang: eingeprägte Feldstärke (anliegen-

de Spannung am Feldraum) bestimmt die Verschiebungsflussdichte und

umgekehrt.  D  und  E  haben in isotropen Medien gleiche Richtung und

stehen senkrecht auf den zugehörigen Äquipotenzialflächen. 

4. 

Dielektrika sind polarisierbar (Ursache: atomare Dipolverteilung des Ma-

terials). Deshalb addiert sich zur Verschiebungsflussdichte die Polarisa-

tion, alternativ beschrieben durch die Permittivitätszahl  ε r. Polarisation

äußert sich als gebundene Oberflächenladung am Dielektrikum. 

5. 

Merkmale des elektrostatischen Feldes sind:

der  Quellencharakter





 D ·  d A =  Q =

  d V  bzw. div  D =  , 

 A

 V

wenn zur Ladung eine Raumladungsverteilung    gehört. Das Integral

über eine geschlossene Hülle ist gleich der innerhalb der Hülle einge-

schlossenen Ladung (bzw. div  D =    im Feldpunkt: die Quellendichte

von  D  ist gleich der Raumladungsdichte  , gilt sinngemäß auch für

andere Ladungsverteilungen). 
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die  Wirbelfreiheit (wie im Strömungsfeld). Deshalb gibt es ein Poten-

zialfeld. 

6. 

Grundbausteine der feldverursachenden Ladungen sind Punkt- und Li-

nienquelle (sowie Dipol, nicht betrachtet) als drei- und zweidimensionale

Elementarquellen mit den Potenzialen

 Q

 r

 ϕ =

 , ϕ =  − λ  ln

 . 

4 πε 0 r

2 πε 0

 r 0

7. 

Das Potenzial eines Gebietes ( ε = const) wird entweder aus der Ladungs-

verteilung bzw. Poisson- oder Laplacegleichung (bei Raumladungsfrei-

heit) in Verbindung mit Randwerten bestimmt. 

8. 

Bei symmetrischer Ladungsverteilung kann eine Gaußsche Hülle mit kon-

stanter Flussdichte ( D =  D n e n = const.) gefunden werden (einfache

Bestimmung von  D)



 Q|

 D

umfasst

n

d A =  Q|

bzw. 

umfasst

 D n =

 . 

 A

 A

9. 

An der Grenze unterschiedlicher dielektrischer Materialien stimmen bei

ladungsfreier Grenzfläche die Normalkomponenten der Verschiebungs-

flussdichte bzw. die Tangentialkomponenten der Feldstärke überein; bei

einer Flächenladungsdichte  σ  entspricht die Differenz der Flussdichten

beider Seiten der Flächenladungsdichte

 e n  · ( D 2  − D 1) |

=

= 0 oder

GF

 σ, e n  × ( E 2  − E 1) | GF

 D n2 =  D n1 +  σ. 

Dabei weist die Flächennormale  e n in Richtung des Stoffes mit Index 2. 

10. Eine ideale Leiteroberfläche hat die Randbedingungen

 E t = 0 , D n =  εE n =  σ  mit  E = 0 im Leiterinnern. 

Das Leiterinnere ist feldfrei. Durch Influenz stellt sich eine Oberflächen-

ladungsdichte  σ  gleich der Normalkomponente der Verschiebungsfluss-

dichte ein. Influenz: vorübergehende Ladungsverschiebung an einer Lei-

teroberfläche bei äußerer Feldeinwirkung. 

11. Den Feldgrößen  E  und  D  und der Materialeigenschaft  ε  des elektrosta-

tischen Feldes entsprechen im Raumbereich (Volumen  V , begrenzt durch

Oberfläche  A) die Globalgrößen Spannung  U , Verschiebungsfluss Ψ (La-

dung) und Kapazität  C. 



12. Der Verschiebungsfluss Ψ (Ladungsfluss) Ψ =

 D ·  d A  durch eine Flä-

 A

che umfasst nach dem Gaußschen Gesetz den von einer Ladungsver-

teilung ausgehenden Gesamtfluss (identisch mit der umschlossenen La-

dung). 
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13. Der Quotient von positiver Plattenladung und Spannung zwischen zwei

Elektroden heißt Kapazität der Anordnung (Kenngröße des elektrostati-

schen Feldes wie der Widerstand des Strömungsfeldes). 

14. Der Kapazitätsbegriff lässt sich auf mehrere geladene (gegenseitig isolier-

te) Körper erweitern. Zwischen den Leitern wirken Teilkapazitäten. Die

Ladung eines Leiters ist eine lineare Funktion aller Leiterpotenziale. 

15. Ein Zweipol mit der Eigenschaft Kapazität heißt Kondensator. Strom

fliesst nur bei zeitveränderlicher Klemmenspannung (oder verändlichem

Kapazitätswert). Er hat eine Funktionsrelation ( Q =  Cu), eine Strom-

Spannungs-Beziehung ( i = d( Cu) / d t) und die Haupteigenschaft der La-

dungsspeicherung. Es gibt lineare, nichtlineare zeitkonstante und zeitab-

hängige Kapazitäten. 

16. Die Haupteigenschaft des elektrostatischen Feldes ist die Speicherung

elektrischer Feldenergie  W e (allgemein)





1

1

 Qϕ

 Cu 2

 W e =

 E · D d V =

 ϕ d V =

=  Qϕ =

 . 

2

2

2

2

 V

 V

Die gespeicherte Energie hängt von der Ladungs- und Potenzialverteilung

ab. 

17. Strömungs- und elektrostatisches Feld können in einem Material (z. B. 

Halbleiter, Dielektrikum mit Verlusten) gemeinsam auftreten. 

18. Zwischen stationärem Strömungsfeld und elektrostatischem Feld beste-

hen Analogiebeziehungen (s. Tab. 2.6): Strömungsfeld  ϕ,  E,  J,  U ,  ,  κ, Elektrostatik:  ϕ,  E,  D,  Q,  ,  ε. Die Analogie basiert auf der Poissonschen bzw. Laplaceschen Gleichung. Deshalb sind Strömungs- und elektrostatisches Feld über die Feldstärke miteinander verknüpft (aber unabhängig

voneinander betrachtbar!). 

Selbstkontrolle: Kapitel 2

1. 

Welche Merkmale und Größen kennzeichnen das elektrostatische Feld, 

wie unterscheidet es sich vom Strömungsfeld? 

2. 

Warum hat das elektrische Feld keine geschlossenen Feldlinien? 

3. 

Was versteht man unter Verschiebungsflussdichte (Dimension, Unter-

schied zur Feldstärke)? Beschreibt sie Ladungsverschiebung? 

4. 

Skizzieren Sie das Feldstärke-, Verschiebungsflussdichte- und Potenzial-

feld einer Punktladung! 

5. 

Welcher Zusammenhang besteht zwischen Ladung und Flussdichte? Be-

stimmen Sie den Ladungsfluss, der von einer Punktladung im Abstand  r

ausgeht! 

6. 

Was versteht man unter einem Dielektrikum? 
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7. 

Wie unterscheidet sich die Verschiebungsflussdichte im Vakuum von der

im Nichtleiter? 

8. 

Was versteht man unter Polarisation? 

9. 

Was versteht man unter dem Influenzprinzip? 

10. Was bewirkt ein Faraday-Käfig? 

11. Geben Sie den Satz zur Erhaltung der Ladung an! Welche Interpretation

erlaubt er bei Ladungsänderung? 

12. Was versteht man unter dem Gaußschen Satz (Worte, mathematisch)? 

13. Erläutern Sie die Kontinuitätsgleichung in einer Hülle, die im Innern

verschiedene Ladungen (Verteilungen) enthält! Geben Sie die Erklärung

auch für den Raumpunkt. Wann geht sie in die Kirchhoffsche Knoten-

gleichung über? 

14. Wie lauten die Kontinuitätsgleichungen für eine Hülle, die im Innern

einen Halbleiter mit Elektronen und Löchern enthält? 

15. Was versteht man unter der Poissonschen Gleichung? 

16. Welche elektrischen Feldkomponenten sind an Grenzflächen stetig (kurze

Erklärung)? 

17. Erläutern Sie die Ladungsverhältnisse an der Halbleiteroberfläche des

Metall-Isolator-Halbleiterkondensators mit anliegender Gleichspannung

unterschiedlicher Richtung und Größe! Was ist der Feldeffekt? 

18. Erläutern Sie das Funktionsprinzip eines MOS-Feldeffekttransistors! Er-

läutern Sie die Ursache seiner nichtlinearen Strom-Spannungs-Beziehung! 

19. Nennen Sie die integralen Größen des elektrostatischen Feldes (kurze

Erklärung)! 

20. Erläutern Sie den Kapazitätsbegriff (Berechnungsgleichung, Strom-Span-

nungs-Relation)! 

21. Skizzieren Sie den Ladungstransport, der beim Verbinden eines Konden-

sators mit einer Spannungsquelle stattfindet! Wieso fließt in den Zulei-

tungen zeitweilig Strom? 

22. Was ändert sich, wenn in einen geladenen Plattenkondensator (mit La-

dung  Q) ein Isolierstoff eingebracht wird? 

23. Wie groß sind die Ersatzkapazitäten zweier gleicher Kondensatoren bei

Reihen- bzw. Parallelschaltung? Wie verhalten sich die Spannungen und

Ladungen in beiden Fällen? 

24. Wie lautet die Strom-Spannungs-Beziehung des Kondensators? Skizzie-

ren Sie den Stromverlauf für folgende Kondensatorspannungen: Sinus-, 

Dreieckspannung! 

25. Welche Folge hätte eine erzwungene sprunghafte Änderung der Konden-

satorspannung? Ist dieser Fall möglich? 
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26. Erläutern Sie den Aufladevorgang eines Kondensators beim Anlegen ei-

ner Spannungsquelle mit Innenwiderstand! Wodurch wird der zeitliche

Ablauf bestimmt? 

27. Welche Größe muss am Kondensator immer stetig sein (Begründung)? 

28. Nennen Sie Beispiele für nichtlineare Kapazitäten! 

29. Wie groß ist die im linearen Kondensator gespeicherte Energie? 
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Lernziel Nach der Durcharbeitung dieses Kapitels soll der Leser in der Lage sein

die grundsätzlichen Erscheinungen des Magnetfeldes zu erläutern, 

Grundbegriffe und Größen des magnetischen Feldes anzugeben, 

typische Feldbilder und den Unterschied zum elektrischen Feld zu erklären, 

die magnetische Flussdichte  B  zu erläutern, 

den Durchflutungssatz an Beispielen zu erläutern, 

das Gesetz von Biot-Savart auf einfache Leiteranordnungen anzuwenden, 

die Magnetisierungskurve zu erklären, 

das Verhalten der magnetischen Feldgrößen an Grenzflächen zu kennen, 

den magnetischen Kreis und sein Ersatzschaltbild anzugeben, 

den Dauermagneten und seinen Einsatz zu beschreiben, 

die Verkopplung zwischen magnetischem Fluss und Strom als Induktivität zu

verstehen und Selbst- und Gegeninduktion zu erklären, 

das Induktionsgesetz und seine Wirkungen zu erläutern, 

die Lenzsche Regel an Beispielen zu erklären, 

die induzierte Spannung in einfachen Anordnungen zu berechnen, 

die Strom-Spannungs-Beziehungen der Selbstinduktion und gekoppelter Spulen

anzugeben, 

das Grundprinzip des Transformators zu veranschaulichen. 

¨

Ubersicht Das elektrische Feld umfasste Erscheinungen bewegter und ru-

hender Ladungen. Stromfluss verursacht eine weitere Erscheinung: Kraftwir-

kungen auf eine Magnetnadel (Kompassprinzip), auf Eisenfeilspäne oder auf

einen zweiten Strom. Das sind völlig andere Phänomene, als sie das elektri-

sche Feld zeigt. Deshalb erfassen wir diesen neuartigen Raumzustand wieder

durch ein Feld, das  magnetische Feld. 

Dieses Vorgehen entspricht nicht nur ingenieurmäßigem Verständnis, sondern auch

dem klassischen physikalischen Bild. Erst später (s. Kap. 3.5) hinterfragen wir die

genauere Interpretation des magnetischen Feldes und werden erkennen, dass es kein

vom elektrischen Feld getrennter physikalischer Raumzustand ist, sondern durch

 relativistische Betrachtung  aus dem Coulombschen Gesetz hervorgeht. 

Das Magnetfeld bereitet aus mehreren Gründen größere Schwierigkeiten:

1. 

Das elektrostatische Feld ist an ruhende Ladungen gebunden, das Strömungs-

feld an bewegte. Im magnetischen Feld treten Wirbel auf. Ihnen haftet (z. B. 

Luftwirbeln) das Attribut einer  unerw¨

 unschten Erscheinung  an.  Wirbelvorg¨

 ange

 sind aber das gesetzm¨

 aßig Bestimmende des magnetischen Feldes. 

2. 

Es gibt Materialien mit eigenem Magnetfeld und Kraftwirkungen aufeinander

(oder auf andere Materialien wie Eisen u. a.), die Dauermagnete. Sie besitzen

 nicht trennbare Nord-  und  S¨

 udpole. Jede Teilung eines Magneten ergibt zwei

neue mit Nord- und Südpolen. Solche Dipole sind nicht auftrennbar: m. a. W. 

 fehlen magnetische Einzelladungen. Das ist der grundlegende Unterschied zur

Elektrostatik: elektrische Ladungen lassen sich trennen (und transportieren), 

St. Paul, R. Paul,  Grundlagen der Elektrotechnik und Elektronik 2

DOI 10.1007/978-3-642-24157-4, © Springer-Verlag Berlin Heidelberg 2012
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magnetische Dipole nicht.  Es gibt im Gegensatz zum Transport elektrischer

 Ladungstr¨

 ager keinen entsprechenden magnetischen Leitungsvorgang. 

3. 

Das Magnetfeld tritt nur (Dauermagnet zunächst ausgenommen) in Verbin-

dung mit  bewegten Ladungstr¨

 agern  auf, es begleitet“ sie. Dadurch ändert sich

” 

der umgebende Raumzustand und es entstehen  Kr¨

 afte  auf eine Magnetnadel

oder einen anderen stromführenden Leiter. Zu ihrer Beschreibung wird das

Magnetfeld eingeführt:

Das magnetische Feld umwirbelt elektrischen Strom: Durchflutungsgesetz. 

Zeitliche Magnetfeldänderungen verursachen ein elektrisches Wirbelfeld: In-

duktionsgesetz. Am gleichen Ort sind elektrisches und magnetisches Feld un-

trennbar miteinander verkoppelt. 

Wir behandeln diesen Vorgang ab Kap. 3.3. Deshalb liegt es nahe, zunächst das

stationäre Magnetfeld einzuführen und anschließend zeitveränderliche Magnetfelder

zu betrachten. 

3.1

3.1 Die vektoriellen Gr¨

oßen des magnetischen Feldes

Ein zeitlich konstantes Magnetfeld wird durch konstante Ströme oder Dau-

ermagnete erzeugt und durch zwei vektorielle Feldgrößen beschrieben:

seine Kraft wirkung  durch die  magnetische Flussdichte B (bisweilen auch

magnetische Induktion genannt). Sie entspricht der Definition nach der

elektrischen Feldstärke  E. 

seine  Ursache, der elektrische Strom, durch die  magnetische Feldst¨

 arke H. 

Sie entspricht der Definition nach der Verschiebungsflussdichte des elek-

trischen Feldes. 

Die magnetische Flussdichte  B  wird üblicherweise aus der experimentell be-

stimmbaren Kraft auf bewegte Ladungen im Magnetfeld über die  Lorentz-

 Kraft  begründet. Dort tritt die Flussdichte  B  auf. Sie kann von einem Dau-

ermagneten oder dem Magnetfeld eines Stromes stammen. 

3.1.1 Die magnetische Flussdichte

Qualitatives. Kraftwirkung des magnetischen Feldes Magnetische Erscheinun-

gen waren historisch eher bekannt als elektrische. Schon Thales von Milet1

1 Thales von Milet, griech. Philosoph, Mathematiker und Astronom (625–547

v. Chr.). 
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Abb. 3.1.1. Kraftwirkung des Magnetfeldes. (a) Erdmagnetfeld mit Definition von Nord-

und Südpol einer Magnetnadel. (b) Kraftwirkung des elektrischen Feldes auf einen La-

dungsdipol und des magnetischen Feldes auf eine Magnetnadel. (c) Ausgewählte Feldlinien

eines stabförmigen Dauermagneten. Liniendichte (Feldintensität) proportional der Einstell-

kraft auf die Nadel. (d) Stabmagneten mit anziehender oder abstoßender Kraftwirkung

wusste, dass bestimmte Eisenerze (Magneteisenstein, Magnetit), die nahe der

Stadt Magnesia (heute Ortaklar, Türkei) gefunden wurden, andere Eisenteile

anziehen oder abstoßen. Sie wurden Magnete genannt. 

Der (Dauer)-Magnet ist ein Körper, der Kräfte auf andere Magnete oder

magnetische Materialien (Eisenfeilspäne) ausübt. 

Die Kraftwirkung ist an den Enden des Magneten, den  Polen, am stärksten. 

Sie tritt auch in seiner Umgebung auf und dieser Raumzustand heißt  mag-

 netisches Feld. Ein in dieses Feld gebrachtes unmagnetisches Eisenstück wird

selbst magnetisch“. 

” 

Man wusste schon frühzeitig (China 1. Jahrhundert nach Chr., Europa 12. Jahr-

hundert), dass ein frei aufgehängter Magneteisenstein mit einem seiner Pole als

Südweiser“ (China) bzw. 

Nordweiser“ (Europa) Orientierungshilfe in der See-

” 

” 

fahrt gibt. Seine moderne Form ist die Magnetnadel im Kompass (Abb. 3.1.1a) mit

gekennzeichnetem Nordpol. Die Bezeichnungen Nord- und Südpol der Magnetna-

del werden auch bei anderen Magneten verwendet: der zum geografischen Nordpol

weisende Pol ist der Nordpol. 

Die Kraftwirkung wurde zunächst in Analogie zu den später erkannten elek-

trischen Ladungen  magnetischen Ladungen  zugeschrieben. Ein Magnet galt

als  Dipol (Doppelpol) magnetischer Ladungen (Abb. 3.1.1b). Konnten jedoch

positive und negative Ladungen eines elektrischen Dipols stets so getrennt

werden, dass am Ende je ein positiv oder negativ geladener Körper existierte, 

so brachte jede Teilung eines Stabmagneten zwei neue hervor (Abb. 3.1.1c). 

Dies führte zu der Vorstellung, dass ein Magnet aus dipolähnlichen Ele-

mentarmagneten besteht, die nicht weiter trennbar sind und deren Wirkun-

gen sich überlagern. Danach werden bei einer Magnetisierung die einzelnen

Elementardipole/-magnete so geordnet, dass sie in gleiche Richtung zeigen. 
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Abb. 3.1.2. Kraftwirkung des magnetischen Feldes. (a) Beeinflussung einer stromdurchflos-

senen Spule in Umgebung eines stromdurchflossenen Leiters. (b) Kraftwirkung zwischen

stromdurchflossenen Leitern: Anziehung (Abstoßung) bei Strömen gleicher (entgegenge-

setzter) Richtung. (c) Ablenkung eines Elektronenstrahles in einer Braunschen Röhre durch

ein magnetisches Feld. (d) Hall-Effekt im  p- und  n-Halbleiter

Ferner stellte man fest, dass sich geteilte Magneten entweder anziehen oder

abstoßen je nachdem, welche Enden gegenüberstehen (Abb. 3.1.1d):

Gleichnamige Pole stoßen einander ab, ungleichnamige ziehen sich an. 

Dieses Ergebnis zwang zum Schluss:

Es gibt keine magnetischen Einzelladungen. Das magnetische Feld ist quel-

lenfrei (Erfahrungssatz) und ein zum Ladungstransport im elektrischen

Feld gleichwertiger

Transportvorgang magnetischer Ladungen“ existiert

” 

nicht. 

Magnetfelder werden erzeugt durch:

 Dauermagnete.  Ihre magnetischen Eigenschaften basieren auf der Bewe-

gung der Elektronen um die Atomkerne des Magnetmaterials. 

 stromdurchflossene  und spulenförmig aufgewickelte  Leiter, sog.  Elektro-

 magnete. Stets sind bewegte Ladungsträger die Ursache eines Magnetfel-

des; selbst der Verschiebungsstrom hat ein Magnetfeld (es diente umge-

kehrt zu seinem Nachweis). 
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Magnetische Kraftwirkungen werden beispielsweise auch beobachtet (Abb. 3.1.2)

bei einer länglichen stromdurchflossenen und frei aufgehängten Spule in Nähe

eines stromdurchflossenen Leiters (Abb. 3.1.2a); 

zwischen zwei stromführenden Leitern (Abb. 3.1.2b, c) die sich anziehen (glei-

che) oder abstoßen (entgegengesetzte Stromrichtung). Ursache ist im ersten Fall

eine Feld schw¨

 achung, im zweiten eine Feld verst¨

 arkung  zwischen den Leitern. 

Durch Feldüberlagerung zweier stromdurchflossener Leiter lassen sich anziehen-

de bzw. abstoßende Kraftwirkungen erklären, die analytische Betrachtung er-

folgt später. Stets gilt aber:  In gleicher Richtung fließende Str¨

 ome ziehen sich

 an, entgegengesetzt fließende stoßen einander ab. 

zwischen einem Leiterstrom und einem Strom freier Ladungsträger, etwa dem

Elektronenstrom in einer Braunschen Röhre (Abb. 3.1.2c); 

durch einseitige Ablenkung von Ladungsträgern im stromdurchflossenen Lei-

ter bei senkrecht auftreffendem Magnetfeld (Abb. 3.1.2d). Der Vorgang ist als

 Hall-Effekt 2 bekannt. Durch Ablenkung der Ladungsträger quer zur Stromfluss-

richtung entsteht eine  Hall-Spannung  zwischen der äußeren Leiterberandung. 

Ihr Vorzeichen hängt von der Ladungsart der abgelenkten Träger ab. Ursache

der Hall-Spannung ist eine  Hall-Feldst¨

 arke E H als Äquivalent der Kraftwirkung

(s. Kap. 4.3.2). 

Weitere typische magnetische Kraftwirkungen drücken sich in der Ausrichtung

von Eisenfeilspänen um eine Stromschleife, in der Anziehung bzw. Abstoßung

zweier Dauermagnete und der anziehenden Wirkung einer stromdurchflossenen

Spule auf einen Eisenstab aus. 

Veranschaulichen lässt sich der Kraftlinienverlauf, wenn Eisenfeilspäne auf einem

Papierblatt in die Umgebung eines stromführenden Leiters oder Dauermagneten

gebracht werden. Das Magnetfeld magnetisiert die Teilchen. Sie reihen sich dann

in Richtung der Feldlinien aneinander. (Man lege dazu über einen Dauermagneten

ein Blatt Papier, streue Eisenfeilspäne darauf und bewege das Papier leicht: die

Eisenspäne stellen sich nach den Feldlinien ein). 

Magnetische Feldlinien Das Magnetfeld um einen stromdurchflossenen (ge-

radlinigen) Draht3 mit weit entferntem Rückleiter (Abb. 3.1.3a) kann über

die Kraft auf eine Magnetnadel nachgewiesen werden. Sie zeigt an jedem Ort

in Richtung des Feldvektors. Bei Bewegung beschreibt ihr Lagerungspunkt

eine Richtungslinie des Feldvektors oder  magnetische Feldlinie. Sie ist ein

konzentrischer Kreis in einer Ebene senkrecht zum Leiter. Ausgewählte Krei-

se unterscheiden sich durch ihre Einstellkraft“ auf die Nadel. Die Dichte der

” 

Feldlinien ist ein Maß für die Stärke des Feldes, sie nimmt nach außen ab

(Abb. 3.1.3b). 

2 Edwin Herbert Hall, amerikanischer Physiker 1855–1938. 

3 Die Magnetfeldwirkung des Stromes wurde von H. Chr. Oersted 1819/20 entdeckt. 
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Abb. 3.1.3. Magnetfeld eines geraden zylindrischen stromdurchflossenen Drahtes. (a) Die

Feldlinien sind konzentrische Kreise mit dem Draht im Mittelpunkt. (b) Feldintensität

und Abstand vom Stromleiter. (c) Zur Rechtsschraubenregel. (d) Die Rechte-Hand-Regel

verdeutlicht den Zusammenhang zwischen Strom- und Magnetfeldrichtung

Feldlinien sind, wie im elektrischen Feld, ein Hilfsmittel zur Feldbeschreibung (ohne

physikalische Realität), denn das Feld erfüllt den Raum kontinuierlich. 

Um die Achse eines langen geraden, stromdurchflossenen runden Leiters

bilden sich geschlossene magnetische Feldlinien als konzentrische Kreise. 

Rechtsschrauben-, Rechte-Hand-Regel Den Zusammenhang zwischen Strom-

richtung und Orientierung der magnetischen Feldlinien merkt man sich am

einfachsten mit der  Rechte-Hand-, Rechtsschrauben-  oder  Korkenzieher-Regel

(Abb. 3.1.3c, d): Zeigt der Daumen in Stromrichtung, so weisen die übrigen

Finger der rechten Hand in Feldlinienrichtung. 

Jeder elektrische Strom wird von seinem Magnetfeld in einer Rechtsschraube

umwirbelt. 

Zur Darstellung des Magnetfeldes in einer Ebene deutet man die Stromrichtung

durch einen  Punkt (ein Kreuz) an, wenn der Strom  zum Betrachter hin (von ihm

weg) fließt. Dies zeigt Abb. 3.1.3a an einer Schnittlinie. 

Die Gesamterscheinung

Strom und umgebendes Magnetfeld“ hat Ähn-

” 

lichkeit zum Wirbelbegriff im täglichen Leben mit zwei Bestandteilen

(Abb. 3.1.3a):

dem  Wirbelfeld (hier Gesamtheit aller magnetischen Feldlinien um den

Strom), gekennzeichnet durch die  Wirbelst¨

 arke; 

dem  Wirbelkern (auch Wirbelfaden, Wirbelseele). Das ist die  Feldlinie des

 Wirbels, also die Feldlinie des Stromes bzw. der Stromdichte. 

Deshalb gilt:

Das magnetische Feld ist ein Wirbelfeld. 
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Auch das tägliche Leben kennt den Wirbelbegriff, etwa als Wasserstrudel im ab-

fließenden Wasser einer Wanne am Abflussrohr. Dem Trichter“ dieser Erscheinung

” 

wird in der Feldlehre der Begriff

Wirbelfaden“ zugeordnet. (Man denke sich in

” 

die Trichtermitte einen Stab zur Veranschaulichung des Wirbelfadens gesteckt). 

Ein schwimmender Körper auf der Wasseroberfläche rotiert im Zuge seiner Fort-

bewegung um diesen Wirbelfaden. Deshalb besitzt die Geschwindigkeit des abflie-

ßenden Wassers einen Wirbel“. In der Feldlehre heißt diese Erscheinung Wirbel-

” 

” 

feld“. 

Insgesamt lässt sich schlussfolgern:

Magnetfeld = besonderer physikalischer Raumzustand kennzeichnet durch

Kraftwirkung auf bewegte Ladungsträger. Sie werden dadurch nicht nur

abgelenkt, sondern erzeugen auch ein eigenes Magnetfeld. 

Quantitatives, Flussdichte  B4 Wir begründen die beiden Feldgrößen des mag-

netischen Feldes. Eine wird (wie die Feldstärke  E  im elektrischen Feld) durch

die experimentell beobachtete Kraftwirkung ausgedrückt. Das ist die  mag-

 netische Flussdichte B. Die Beziehungen zwischen der (noch unbekannten)

magnetischen Flussdichte  B, der bewegten Ladung und der Kraft kann mit

verschiedenen Ansätzen gewonnen werden: direkt über die bewegte Ladung

(Abb. 3.1.4a, b), über den stromdurchflossenen Leiter im Magnetfeld oder

zwei stromdurchflossene Leiterstücke (nicht im Magnetfeld), die sog.  Stro-

 melemente (kurze Teilstücke von dünnen stromdurchflossenen Leitern). Hier

erzeugt ein Leiterstrom ein Magnetfeld, durch das der andere Leiter (mit

seinem Magnetfeld) eine Kraftwirkung erfährt (Abb. 3.1.4c). 

Wir betrachten die  Kraftwirkung auf eine mit der Geschwindigkeit v bewegte

 positive Ladung Q  im Magnetfeld. Das Experiment zeigt:

Die ausgeübte Kraft  F  steht stets senkrecht auf der Ebene, die durch die

Vektoren der Geschwindigkeit  v  und magnetischen Flussdichte  B  gebildet

wird (Abb. 3.1.4a). Eine Magnetnadel zeigt die Richtung der magnetischen

Feldlinien an: sie stimmt mit der Richtung der Magnetnadel (positiv vom

Süd- zum Nordpol) überein. 

4 Der Begriff magnetische Flussdichte  B (gem. DIN 1325) oder magnetische Induk-

tion ist üblich, entspricht aber nicht ihrem physikalischen Inhalt: da sie als Ur-

sache der Kraftwirkung angesehen wird, entspräche ihr besser der Begriff magne-

” 

tische Feldstärke“ analog zum elektrischen Feld. Aus historischen Gründen wird die

magnetische Feldgröße  H  als Feldstärke bezeichnet, ist also eine Quantitätsgröße

(s. Kap. 3.1.4). 
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Abb. 3.1.4. Magnetische Flussdichte  B. (a) Definition durch bewegte (positive) Ladung im

Magnetfeld. Kraft  F  als Kreuzprodukt von Geschwindigkeit  v  und Flussdichte  B  für positive Ladung + Q (Rechte-Hand-Regel) und negative Ladung ( −Q). (b) Kraftwirkung auf

einen stromdurchflossenen Leiter. (c) Kraftwirkung zwischen zwei parallel bewegten entge-

gengesetzten Ladungen, abstoßende Kraftwirkung zwischen zwei Stromelementen (unter-

schiedliche Stromrichtungen)

Die Intensität der Kraftwirkung hängt vom Betrag der Ladung  Q, der

Flussdichte  B  und der Geschwindigkeitskomponente senkrecht zu  B  ab:

 F =  QBv  sin ∠( B, v). Zusammen mit der Rechtszuordnung beträgt die

Kraft  F  bei Übergang zur Vektorprodukt-Schreibweise5

 F =  Q ( v × B)  . 

Lorentz-Kraft, Definitionsgleichung für  B (3.1.1)

Die magnetische Induktion  B  ist definiert als Kraft  F , die eine mit der

Geschwindigkeit  v  bewegte (positive) Ladung  Q  gemäß Gl. (3.1.1) im Mag-

netfeld erfährt. Sie heißt  Lorentz-  oder auch  elektrodynamische  Kraft. 

 v,  B  und  F  bilden ein Rechtssystem. Die magnetische Flussdichte  B  beschreibt so den Raumzustand, der sich durch Kraftwirkung auf bewegte La-

dungsträger äußert. Diese überträgt sich über die bewegte Ladung auch auf

Leiter. 

Im Gegensatz zur Definitionsgleichung der elektrischen Feldstärke ( E =  F /Q), die

sich nach  E  auflösen lässt, ist die explizite Auflösung nach der Flussdichte  B  nicht

möglich (was ihre Rolle als Definitionsgleichung aber nicht einschränkt). 

5 H.A. Lorentz, niederländischer Physiker, 1853–1928. 
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Die Kraftrichtung merkt sich leicht durch Interpretation der Rechte-Hand-

Regel als  uvw-Regel (Abb. 3.1.4a) (bei  Q >  0):

Ursache ( u)

Vermittlung ( v)

Wirkung ( w)

Geschwindigkeit  v

magnetische Flussdichte  B

Kraft  F

(bewegte Ladung, 

(Magnetfeld, 

(auf bewegte Ladung, 

Daumen)

Zeigefinger)

Mittelfinger)

Weil das Magnetfeld stets senkrecht zur Bewegungsrichtung  v  der Ladung  Q

wirkt, kann es keine Arbeit am Teilchen leisten (der Betrag der Geschwindig-

keit ändert sich nicht!). Es gilt  W =  F ·  d s =  F · v d t =  Q( v × B)  · v d t = 0

( F ⊥v) nach Gl. (3.1.1). 

Ein (statisches) Magnetfeld ändert die kinetische Energie geladener Teilchen

nicht. Sie werden nicht beschleunigt oder gebremst (wie im elektrischen

Feld), sondern ändern nur die Bewegungsrichtung. 

Eine negative Ladung ergibt bei sonst gleicher Geschwindigkeitsrichtung eine Kraft

in entgegengesetzter Richtung (Abb. 3.1.4a). 

Elektrische und magnetische Kräfte unterscheiden sich in wichtigen Punkten:

Die elektrische Kraft wirkt stets  in  Feldrichtung, die magnetische Kraft  senk-

 recht  zum Feld. 

Die elektrostatische Kraft (Coulomb-Kraft) wirkt auf geladene Teilchen (un-

abhängig, ob ruhend oder bewegt), die magnetische nur auf bewegte. 

Die elektrische Kraft wendet Energie zur Teilchenbewegung auf, die magnetische

Kraft verrichtet keine Arbeit bei Ablenkung eines Teilchens. 

Die Definition Gl. (3.1.1) besagt nichts über die Erzeugung der magnetischen

Flussdichte. Deshalb hat sie (wie die elektrische Feldstärke, Kap. 1.3.3. Bd. 1)

eine  Doppelrolle:

 Man definiert die magnetische Flussdichte durch die Kraftwirkung auf be-

 wegte Ladungen (bzw. Strom). 

 Bewegte Ladungen (Strom) erzeugen in ihrer Umgebung ein Kraftfeld und

 damit eine magnetische Flussdichte, die z. B. Kraftwirkungen auf andere

 bewegte Ladungen aus¨

 ubt. 

Dimension und Einheit Die Dimension der magnetischen Flussdichte  B  liegt

durch die bereits definierten Größen  F , Geschwindigkeit  v  und elektrische

Ladung  Q  fest:





Kraft

dim( B) = dim

 . 

Ladung  ·  Geschwindigkeit
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Die Einheit von  B  ist das Tesla6

1N

Ws

1

s

Vs

[B] =

= 1

= 1

= 1Tesla = 1 T . 

As  ·  m  ·  s − 1

m A  ·  s m

m2

Vormals wurde die (seit 1958 nicht mehr zugelassene) Einheit Gauß (G) be-

nutzt:

V s

V s

1 Gauß = 1 G = 10 − 8

= 10 − 4

= 10 − 4T . 

cm2

m2

Die magnetische Flussdichte erfordert keine weitere Grundgröße, da das Interna-

tionale Einheitensystem auf den Einheiten der Länge, Masse, Zeit und des Stromes

beruht (s. Anhang A.1, Bd. 1). Alle magnetischen Größen haben dadurch abgelei-

tete elektrische Einheiten. 

Gr¨

oßenvorstellung

Erdmagnetfeld

 B E  ≈  5  ·  10 − 5 T

(etwa 1 Gauß)

Umgebung einer Fernleitung

 B ≈  10 − 4 T

Luftspalt von Motoren, Transformatoren

 B ≈ (0 ,  5  . . .  1 ,  5) T

Luftspalt eines Lautsprechermagneten

 B ≈ (0 ,  1  . . .  1 ,  0) T

physikalischer Labormagnet

 B ≈ (10  . . .  100) T

stromdurchflossener Leiter ( I = 1 A) im Abstand  r = 1 m

 B ≈  0 ,  2 µT

gepulster Elektromagnet

 B ≈  100 T

menschl. Gehirnströme

 B ≈  10 − 15 T

menschl. Herzströme

 B ≈  10 − 8 T

Ein Strom  I = 1 A erzeugt im Abstand  r = 1 m eine Flussdichte  B = 0 ,  2 µT: bereits

in nächster Nähe stromführender Leitungen liegt sie damit deutlich unter der des

Erdmagnetfeldes (rd. 50 µT). 

Kraftwirkung auf stromdurchflossenen Leiter Zur Darstellung der Kraftwir-

kung auf stromdurchflossene Leiter empfiehlt sich eine andere Schreibweise

der Lorentz-Kraft Gl. (3.1.1) (Abb. 3.1.5a). Im Leiter bewegen sich Ladungs-

träger mit der Driftgeschwindigkeit  v  und der Stromdichte  J =  v (Raumladungsdichte  ). Dann befindet sich im Volumen d V =  A ·  d l  die Ladung d Q. 

Der Vektor d l  liegt in der Leiterachse in Richtung des Stromzählpfeils (d lv). 

Deshalb gilt

 J d V =   d V v = d Qv =  I d l, 

(3.1.2)

dabei wird das bewegte Ladungselement d Qv  durch das  Stromelement I d l

ersetzt. Darauf wirkt die Lorentz-Kraft (Abb. 3.1.5a). 

d F = d Q ( v × B) =  I (d l × B)  . 

Ampèresches Kraftgesetz (3.1.3)

6 Nikola Tesla, kroatischer Physiker und Ingenieur, 1856–1943. 
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Abb. 3.1.5. Leiter im Magnetfeld. (a) Stromdurchflossenes Leiterelement im homogenen

Magnetfeld. (b) dto. im inhomogenen Magnetfeld. (c) Leiterschleife im inhomogenen Mag-

netfeld. (d) Ersatz eines Leiterweges durch einen geraden orientierten Leiter. (e) Leiter-

schleife im homogenen Magnetfeld. (f) Kraftwirkung auf ein Leiterstück im homogenen

Magnetfeld

Ein vom Strom  I  durchflossenes Leiterelement d l (in Richtung des Stromes)

erfährt im Magnetfeld  B  die Kraftwirkung d F  oder anschaulich:

Magnetische Flussdichte = Kraft auf Stromelement . 

Stromelement

Auch hier gilt die Rechte-Hand-Regel nach Abb. 3.1.4a. 

Vertiefung* Im Kap. 1.3, Bd. 1 wurde aus der Coulomb-Kraft zwischen zwei ruhen-

den Ladungen die elektrische Feldstärke  E  hergeleitet. Bewegen sich beide mit den

Geschwindigkeiten  v 1,  v 2 parallel zueinander, so entsteht eine zusätzliche Kompo-

nente zur Coulomb-Kraft, die offenbar vom Magnetfeld stammt: die Lorentz-Kraft

(Abb. 3.1.4c). Dann bilden sich zwischen den bewegten Ladungen  Q 1,  Q 2 recht-

winklig zu den Leitern die Lorentz-Kräfte  F 1,  F 2 in der Verbindungsgeraden und

Gl. (3.1.3) geht in eine skalare Beziehung über. Wir greifen aus beiden Leitern

Elemente der Länge Δ s  L  im Abstand  r 12 heraus. Jedes wird von der Ladung

Δ Q =  IΔ t =  IΔ s/v  während der Zeit Δ t  durchflossen. Damit kann die mit  v 1 bewegte Teilladung Δ Q 1 über  I 1Δ s =  v 1Δ Q 1 und analog  I 2Δ s =  v 2Δ Q 2 durch das Stromelement  IΔ s  ausgedrückt werden. Das Experiment zeigt, dass die zwischen

den Stromelementen ausgeübte Kraft dem Betrag nach:

proportional dem Produkt der Ladungen und ihrer Geschwindigkeiten; 

umgekehrt proportional zum Quadrat ihrer Entfernung (Δ Q → Q) ist:  F ∼

(Δ Q 1 v 1) (Δ Q 2 v 2)  /r 212 sind bzw. nach Einführung einer Proportionalitätskon-
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stanten  k 1 (für Vakuum  k 1 =  μ 0 / 4 π)

(Δ Q 1 v 1) (Δ Q 2 v 2)

 F =  k 1

 . 

(3.1.4)

 r 212

Im elektrostatischen Feld wurde die Kraftwirkung zwischen zwei ruhenden Ladun-

gen zur Einführung der Feldgröße Feldstärke  E  benutzt. Wir übertragen diesen

Ansatz auf das  magnetische Feld  und formulieren den gleichen Sachverhalt durch

Feldgrößen für Ursache und Wirkung im Raumpunkt. Die bewegte Ladung  Q 2 ver-

setzt den umgebenden Raum in den Zustand

Kraftwirkung auf andere bewegte

” 

Ladungen“. Nach der Feldvorstellung verstehen wir die Wirkung





 μ 0 (Δ Q 2 v 2)

 F ( Q 1) = (Δ Q 1 v 1)  ·

= (Δ Q 1 v 1)  · ( B( Q 2 , v 2))

4 π

 r 2













magnetische

magnetische

Feldgröße  B

Feldgröße





(3.1.5)

1 (Δ Q 2 v 2)

= (Δ Q 1 v 1)  · μ 0  ·

4 π

 r 2







magnetische

Feldgröße  H

auf die Ladung Δ Q 1 so, als stamme sie von einer am Ort von Δ Q 1 vorhandenen

 Feldgr¨

 oße Flussdichte B  7, die von der bewegten Ladung Δ Q 2 verursacht wird. So

drückt Gl. (3.1.5) den Inhalt der Lorentz-Kraft Gl. (3.1.1) aus! 

Inhomogenes Magnetfeld Das Ampèresche Kraftgesetz gilt für den Raum-

punkt. Hat er den Ortsvektor  r (Abb. 3.1.5b), so ist genauer zu schreiben

d F =  I(d r×B( r)) mit ortsabhängigem Magnetfeld  B( r). Liegt in einem solchen Feld eine dünne, stromdurchflossene Leiterschleife der umfassten Linie

C (Abb. 3.1.5c), so erfährt sie zwischen den Punkten A, B die Kraft

 B





 F  AB =  I

(d r × B( r))

 → F =  I

(d r × B( r)) . 

(3.1.6)

 A

 C

Sie geht in das Ergebnis einer  geschlossenen  Leiterschleife rechts über:  Ein in-

 homogenes Magnetfeld ¨

 ubt eine Nettokraft auf eine stromdurchflossene Leiter-

7 In diesem Verständnis von  B  liegt eine historisch bedingte Inkonsequenz. Im elek-

trostatischen Feld bedeutet der gleichwertige Ausdruck  Q 2 / 4 πε 0 r 2 die elektrische

Feldstärke  E (materialabhängig, Wirkungsgröße), die Ursache ist die Verschie-

bungsflussdichte  D (materialunabhängig). Konsequenterweise müsste  B  als mag-

netische Feldstärke (materialabhängig) bezeichnet werden, definiert durch  B =

 F/( Qv). Historisch bedingt wird aber Induktion“ verwendet, weil mit  B  eine wei-

” 

tere Wirkung, die Spannungsinduktion, verknüpft ist. 
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 schleife aus.  Für  homogenes  Feld  B = const folgt daraus (Abb. 3.1.5e)



 F =  I

d r × B = 0 . 

 C

Die Gesamtkraft auf eine beliebige Stromschleife verschwindet im homoge-

nen Magnetfeld stets, weil die Vektorsumme über alle vektoriellen Wegele-

mente einer geschlossenen Kurve immer Null ergibt. 

An allen Stellen der Schleife greift die gleiche radial nach außen gerichtete

Kraft an, aus Symmetriegründen heben sich die Teilkräfte auf. 

Auf ein gerades Leiterstück zwischen den Punkten A, B wirkt dann nach

Gl. (3.1.6) die Kraft

 B



 F

Elektrodynamisches

AB =  I

(d l × B) =  I ( l × B)

Kraftgesetz, 

(3.1.7)

 A

gerades Leiterstück

=  ILB  sin ∠( l, B) . 

Dabei ist  l  ein von A nach B gerichteter Vektor. Das Integral hat den gleichen

Weg wie eine Gerade von A nach B. 

Jeder Strom (Konvektions-, Leiterstrom) erfährt im Magnetfeld (außer

für  J,  v  bzw.  l  B) eine Kraftwirkung senkrecht zur Magnetfeld- und lokalen Stromrichtung. 

Für den geraden Leiter im homogenen Magnetfeld ist die Kraft dem Strom  I, 

der Leiterlänge  l, dem Betrag  B  des Magnetfeldes und dem Sinus des zwi-

schen  l  und  B  eingeschlossenen Winkels proportional. Die Kraft  F  steht senkrecht auf der von den Vektoren  l  und  B  aufgespannten Ebene (Rechtsdreibein aus den Vektoren  l,  B  und  F , Abb. 3.1.5f). 

In den bisherigen Kraftbeziehungen berücksichtigt die (externe) Induktion  B  das

eigene Magnetfeld des Stromes nicht. In Wirklichkeit überlagern sich aber die In-

duktion und das Eigenfeld des stromdurchflossenen Leiters und in jedem Punkt

um den Leiter müssen beide Felder vektoriell addiert werden (Abb. 3.1.6). Dann

ist die Gesamtinduktion links vom Leiter größer als rechts von ihm und er wird

nach rechts ausgelenkt. Ursache dafür ist die (energetisch bedingte) Tendenz der

Feldlinien, sich zu verkürzen (s. u.). 

Abb. 3.1.6. Überlagerung eines homogenen Ma-

gnetfeldes  B 1 mit dem Eigenfeld  B 2 eines ge-

raden, stromdurchflossenen Leiters. Es entsteht

eine ablenkende Kraft nach rechts
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Lorentz-Kraft und elektrodynamisches Kraftgesetz sind die Grundlage der

 elektromechanischen Wechselwirkung  mit dem  Magnetfeld als Mittler. 

Haupteigenschaft des  B-Feldes: Quellenfreiheit Das Feldlinienbild etwa eines

Dauermagneten (Abb. 3.1.1c) zeigt die  Haupteigenschaft des magnetischen

 Feldes: geschlossene Feldlinien.  Damit ist auch die magnetische Flussdichte

 B  quellenfrei (galt analog im stationären Strömungsfeld für die Stromdichte

 J). Wir übernehmen die dort (Gl. (1.3.4b)) bereits erklärte Formulierung



 B ·

Quellenfreiheit der magnetischen

d A = 0 . 

Flussdichte  B

(3.1.8)

Hülle

Das Integral der Flussdichte  B über eine gedachte oder materielle geschlos-

sene Fläche verschwindet (unabhängig von den magnetischen Eigenschaften

des Materials). 

Die Quellenfreiheit der  B-Linien zeigt sich überall (Abb. 3.1.2): am gera-

den stromführenden Draht, am Drahtring, an einer Drahtspule. Immer sind

die  B-Linien in sich geschlossen, ohne Anfang und Ende und es gibt keine

magnetischen Einzelladungen. 

3.1.2 Die magnetische Feldst¨

arke

Definition Im Nichtleiter wurde das elektrische Feld durch die Feldstärke  E

als Intensitätsgröße für die Kraft wirkung  auf Ladungen und die elektrische

Flussdichte  D =  εE  als Quantitätsgröße und damit als Maß für die Ladungs-

menge als Ursache des besonderen Raumzustandes beschrieben (s. Kap. 2.3). 

Für das magnetische Feld verfahren wir ebenso: neben der Kraft wirkung  aus-

gedrückt durch die magnetische Flussdichte  B (Intensitätsgröße) fehlt noch

eine Quantitätsgröße für die Ursache dieses Raumzustandes. Sie wird als  mag-

 netische Feldst¨

 arke (oder  magnetische Erregung)  H  bezeichnet und verknüpft

das Magnetfeld mit der  bewegten Ladung  als Ursache:

Jeder Strom (Leitungs-, Verschiebungsstrom) erzeugt ein Magnetfeld. 

Magnetisierte Körper erzeugen ein Magnetfeld (erklärbar durch Ströme

im atomaren Bereich). 

Woher stammt die mit Gl. (3.1.1) eingeführte Flussdichte  B  eigentlich? Fest

steht nur das Magnetfeld als  das Kennzeichen eines elektrischen Stromes. 

Der Zusammenhang zwischen Strom  I (bzw. Stromdichte  J) und einer un-
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bekannten Feldgröße, die an gleicher Stelle die Flussdichte  B  als Wirkung

erzeugt, ist dagegen offen. Wir führen dazu die  magnetische Feldst¨

 arke H

ein. Ihre Definition muss zwei Merkmale einschließen:

die Bindung an die bewegte Ladung bzw. den Strom in jedem Raumpunkt

unabhängig von den Materialeigenschaften als  Ursache des magnetischen

 Feldes; 

 Wirkungsgr¨

 oße B  und  Ursachengröße H  sind über Materialeigenschaften

verknüpft. Das ist im Vakuum die  magnetische Feldkonstante μ 0. 

Erfüllt die Flussdichte  B  die Bindung an die bewegte Ladung nach Gl. (3.1.5), 

so muss die magnetische Feldstärke dann den Anteil  unabh¨

 angig vom umge-

 benden Medium  umfassen, also den von  μ 0 unabhängigen letzten Teil. Des-

wegen wird definiert

 B

 H =

 . 

Magnetische Feldstärke, Definitionsgleichung (3.1.9)

 μ 0

Im Vakuum sind magnetische Flussdichte  B  und magnetische Feldstärke  H

einander proportional, da sie das gleiche Magnetfeld beschreiben. 

Die magnetische Eigenschaft des Raumes wird durch die  Permeabilit¨

 at μ =

 μ r μ 0 bestimmt ( μ r relative Permeabilität, Permeabilitätszahl) mit der mag-

netischen Feldkonstanten  μ 0 als  Permeabilität des Vakuums

Magnetische

Vs

H

µH

1

 μ 0 = 4 π· 10 − 7

= 4 π· 10 − 7

= 1 ,  26

=

 .  Feld-

(3.1.10)

Am

m

m

 ε 0 c 20 konstante

Die  Permeabilit¨

 atszahl (oder relative Permeabilität)  μ r ( μ r = 1 im Vaku-

um) drückt das Verhältnis der Permeabilität eines Materials (Eisen, Luft)

gegenüber dem Vakuum aus. Für Luft gilt praktisch  μ r = 1. 

Die magnetische Feldstärke  H  ist die der  Ursache  des magnetischen Fel-

des zugeordnete Feldgröße, ihr physikalischer Inhalt die mit der Geschwin-

digkeit  v  bewegte Ladung  Q  bzw. der Stromfluss  I  unabhängig von den

Materialeigenschaften des Raumes. 

Nach Gl. (3.1.9) hängen Feldstärke  H  und Flussdichte  B  im Vakuum wohl direkt zusammen, doch haben sie  wesensverschiedene Eigenschaften und Einheiten (s. u.):

[ H] = A / m, [ B]= Kraft / Am = Vs / m2! 

An dieser Stelle mag die Notwendigkeit der zweiten magnetischen Feldgröße  H

für das Vakuum noch nicht einzusehen sein. Erst in  ferromagnetischen  Stoffen
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erhalten  B  und  H qualitativ verschiedene  Bedeutung. Für homogene isotrope

Stoffe gilt dann8:

 B

 H

Magnetische Feldstärke

=

 . 

(3.1.11)

 μ r μ 0

im magnetischen Material

Dimension und Einheit Die Dimension der magnetischen Feldstärke folgt aus

Gl. (3.1.9) zu











Spannung  ·  Zeit

Spannung  ·  Zeit

Strom

dim(H) = dim

= dim

 , 

Länge2

Strom  ·  Länge

Länge

ihre Einheit

[ I]

A

[ H] =

= 1

= 1 Henry . 

[ L]

m

Die Definition der magnetischen Feldstärke  H  ist zunächst mehr formaler

Natur, denn man erwartet eine  funktionelle Abh¨

 angigkeit vom Strom. Die

Antworten darauf sind:

der  Durchflutungssatz  mit  implizitem  Zusammenhang zwischen Strom und

magnetischer Feldstärke und gleichwertig

das  Biot-Savartsche Gesetz  mit  expliziter  Stromabhängigkeit Gl. (3.1.18). 

Beide Gesetzmäßigkeiten gehen auseinander hervor, wir betrachten zunächst

den Durchflutungssatz. 

Durchflutungssatz Unterschiedliche Experimente zeigen, dass die magnetische

Flussdichte  B  durch die im Raum fließenden Ströme und seine magnetischen





Eigenschaften bestimmt wird

 B · d s =

 H ·  d s =  I  oder allgemein

 C μ

 C



 n



 H ·  d s = ˚

 V =  I ges =

 Iν =  wI = Θ .  Durchflutungssatz (3.1.12)

 C

 ν=1

Dabei ist  I  der Strom durch die Fläche  A  mit der Umrandung C (Abb. 3.1.7a). 

In einem von Strömen durchflossenen Feld ist das Umlaufintegral (= Wegin-

tegral) der magnetischen Feldstärke  H  längs eines geschlossenen Weges C

8 In dieser Bezeichnung verbirgt sich wieder eine Inkonsequenz. Da sie das Feld er-

zeugt (Ursache), handelt es sich um eine Erregergröße. Der Name Feldstärke ist so

gesehen irreführend, entstand aber historisch. Wir halten deshalb an ihm fest. 
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Abb. 3.1.7. Durchflutungssatz. (a) Durchflutung einer Fläche  A, Zählpfeilrichtungen von

d A  und d s. (b) Durchflutung durch mehrere Ströme, ein Strom  I  kann die umfasste Fläche w-mal durchstoßen. (c) Durchflutungssatz in Integral- und Differenzialform. (d) Durchflutung für einen geraden Leiter konzentrisch umgeben von einem Eisenmantel. (e) Durchflu-

tungssatz beim geraden zylindrischen Leiter, unterschiedliche Umlaufwege. (f) Bestimmung

des Linienintegrals (s. Text). (g) Durchflutungssatz im magnetischen Kreis

gleich dem  umfassten  Strom: Summe aller vorzeichenbehafteten Ströme (=

Durchflutung), die vom Umlauf umfasst werden. 

Der Durchflutungssatz verkoppelt den Strom durch eine Berandung mit der

magnetischen Feldstärke um den Strom. 

 Wird kein Strom umfasst, so verschwindet das Umlaufintegral.  9

Links in Gl. (3.1.12) steht die (magnetische)  Umlaufspannung ˚

 V . Analog zum

elektrischen Feld, wo das Linienintegral der elektrischen Feldstärke zwischen

zwei Punkten als Spannung definiert wird, gibt es auch im magnetischen Feld

die  magnetische Spannung V (Formelzeichen  V , nicht zu verwechseln mit der

9 Bei zeitveränderlichem Feld tritt ein Verschiebungsstrom auf, s. Verallgemeinerung

des Durchflutungssatzes Gl. (3.1.17a). 
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Einheit [V] der elektrischen Spannung!)

P2



 V =

 H ·  d s

P1

als Linienintegral des magnetischen Feldstärke  H (s. u.). Für einen geschlos-

senen Weg heißt das Linienintegral  Rand-  oder  Umlaufspannung. Dabei ist

der Weg der Rand der umschlossenen Fläche (Abb. 3.1.7a). 

Die in Gl. (3.1.12) rechts auftretende, mit der Randkurve verkettete  Durch-

 flutung Θ gibt die  Gesamtst¨

 arke der Str¨

 ome an, die von der Randkurve um-

 fasst werden. Zählrichtung für Durchflutung und Umlaufrichtung bilden ei-

ne  Rechtsschraube (Ströme in entgegengesetzter Richtung negativ ansetzen). 

Bei mehreren Strömen (Abb. 3.1.7b) ist die Durchflutung die Stromsumme

Θ = Σ I. Durchströmt der gleiche Strom die Fläche  w-mal (wie bei einer

Spule mit  w-Windungen), so gilt Θ =  wI:

Das Umlaufintegral der magnetischen Feldstärke  H, die Umlaufspannung, 

ist gleich der mit der Randkurve verketteten Durchflutung Θ unabhängig

von den Eigenschaften des umgebendes Raumes. 

Der Durchflutungssatz10 verkettet einen Strom (Stromsumme, Stromvertei-

lung, Konvektions- bzw. Verschiebungsstrom) mit dem umgebenden Magnet-

feld: jeder Strom (im erweiterten Sinn) wird von einem Magnetfeld umwirbelt. 

Der Durchflutungssatz ist das erste Grundgesetz zur Berechnung der mag-

netischen Feldstärke  H  als Folge gegebener Ströme. 

Die  Haupteigenschaften  der magnetischen Feldstärke, nämlich  Wirbelfreiheit (wenn

keine Ströme umfasst werden) und ihren  Wirbelcharakter (bei umfassten Strömen)

vertiefen wir im Kap. 3.1.4. Der Wirbelcharakter des Magnetfeldes zeigt sich im

Durchflutungssatz in der sog.  Integralform (wie Gl. (3.1.12)) als Umlaufintegral, 

deutlicher aber in der  Differenzialform (Abb. 3.1.7c, s. u.). 

Die Durchflutung Θ wurde früher als  magnetomotorische Kraft (MMK) oder bei

Spulen als  Amp`

 erewindungszahl (hergeleitet aus  wI) bezeichnet. 

Einheit, Gr¨

oßenordnung Die  Einheit  der Durchflutung liegt durch die des

Stromes fest: [Θ] = [ I] = 1 A. Praktisch treten folgende Werte für Θ auf:

10 Der Durchflutungssatz stammt von Ampère, er wird deswegen als Ampèresches Ge-

setz bezeichnet, auch die Bezeichnung Oerstedsches Gesetz ist üblich. Andrè Marie

Ampère, französischer Physiker und Mathematiker, 1775–1836, Hans Chr. Oersted, 

dänischer Physiker, 1777–1851, entdeckte 1819/20 das Magnetfeld des elektrischen

Stromes. 
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A. 

Diskussion Wir betrachten das Durchflutungsgesetz näher:

1. 

Der Durchflutungssatz gilt unabhängig vom Medium. Darin liegt seine grund-

sätzliche Bedeutung. Im konzentrischen Eisenring (Abb. 3.1.7d) herrscht die

 gleiche magnetische Feldst¨

 arke wie am gleichen Ort ohne Ring. 

2. 

Es wirkt nur der umfasste Strom. Dies bedeutet aber nicht, dass Ströme au-

ßerhalb des Umlaufs das Feld nicht beeinflussen können. So bestimmt z. B. der

Strom  I 4 in Abb. 3.1.7b wohl den Feldverlauf der umfassten Ströme mit, nicht

aber den Wert des Umlaufintegrals. 

3. 

 Das Umlaufintegral l¨

 angs eines beliebigen Weges um den Strom ist gleich dem

 Umlaufintegral l¨

 angs einer Feldlinie um diesen Strom. So hängt der Wert des

Umlaufintegrals  nicht  davon ab, an welcher Stelle der Stromfaden hindurchtritt. 

Deshalb haben alle in Abb. 3.1.7e dargestellten Umlaufintegrale den gleichen

Wert







 H ·  d s =

 H ·  d s =

 H ·  d s =  I. 

1

2

3

4. 

In einem beliebigen Umlauf um einen geraden Leiter (Abb. 3.1.7f) hat das

Wegelement d s  drei Komponenten (parallel) zum Draht d s = d s + d sϕ + d s z. 

Im Produkt  H ·  d s  verschwinden erster und letzter Summand (Komponenten

 H ·  d s  bzw.  H ·  d s z je zueinander senkrecht). Nur der Teil  | d sϕ| =   d ϕ  führt auf

 H ·

 I

d sϕ =  |H|| d sϕ| =  H d ϕ =

d ϕ

(3.1.13)

2 π

und bei Integration auf Gl. (3.1.12). Die Feldlinien um einen geraden strom-

führenden Leiter sind aus Symmetriegründen konzentrische Kreise um die Lei-

terachse (s. auch Abb. 3.1.7e). 

5. 

Die Gültigkeit des Durchflutungssatzes unabhängig vom Medium darf nicht zu

falschen Schlüssen führen. Ein  magnetischer Kreis  mit Luftspalt (Abb. 3.1.7g)

und stromdurchflossener Windung hat die Durchflutung Θ =  wI (Kap. 3.2.3). 

Bei Annahme homogener Feldverhältnisse könnte man für die Feldstärke im

Eisenkreis und Luftspalt schlussfolgern  H Fe( l Fe +  l L) =  wI, wenn  l Fe und  l L

die zugehörigen Weglängen sind. Tatsächlich verursacht die Durchflutung aber

einen magnetischen Fluss (im Eisenkreis und Luftspalt) mit überall  gleicher

 Induktion B Fe =  B L. Wegen unterschiedlicher Permeabilitäten  μ Fe   μ L unterscheiden sich dann  H Fe und  H L und der Durchflutungssatz lautet:  H Fe l Fe +

 H L l L =  wI = Θ. Daraus folgen mit  H L   H Fe  unterschiedliche  magnetische Feldstärken in Luftspalt und Eisenkreis. 

6. 

Für die magnetische Feldstärke ist es gleichgültig, ob sie von einem Stromfaden

 I = 1 A oder von  w = 1000 Windungen erzeugt wird, die ein Strom  I = 10 − 3 A

durchfließt, stets entsteht der gleiche Wert. 
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Abb. 3.1.8. Durchflutungssatz am geraden, zylinderförmigen unendlich langen Leiter. 

(a) Leiteranordnung. (b) Magnetfeld in einer Ebene senkrecht zum Leiter. (c) Leiterver-

schiebung aus dem Ursprung mit Hilfskoordinaten

Obwohl der Durchflutungssatz allgemein gilt, gelingt die Berechnung der

Feldstärke  H  nur dann problemlos,  wenn es einen Integrationsweg gibt, auf

 dem H ganz oder stückweise konstant ist und damit Gl. (3.1.12)  nach H

 aufgel¨

 ost werden kann.  Dafür gibt es nur drei Fälle: langer  gerader Leiter, 

lange  Zylinderspule  und die  Ringspule. Der Durchflutungssatz erlaubt allge-

mein  nicht  die Bestimmung des Feldverlaufs im Raum, wie das Gesetz von

Biot-Savart (in Luft, s. Gl. (3.1.18)). 

Magnetische Kreise aus ferromagnetischem Material hingegen  konzentrieren

 den magnetischen Fluss im Eisenkreis (das ist ihre Aufgabe!). Dafür lässt sich

der Verlauf der magnetischen Feldstärke gut voraussagen und der Durchflu-

tungssatz anwenden (s. Pkt. 5 oben). 

Beispiel 3.1.1 Unendlich langer linienhafter Leiter Um einen stromführenden Lei-

ter unendlicher Länge (Abb. 3.1.8a) bildet sich ein parallelebenes magnetisches Feld

und die  H- resp.  B-Linien sind  konzentrische Kreise um die Leiterachse. Wegen

der Symmetrie des Problems wählen wir Zylinderkoordinaten (  =  r,  ϕ,  z), der

Strom  I  fließt in  z-Richtung. Auf einer ausgewählten Feldlinie (Radius  , Um-

fang 2 π) haben die Vektoren  H  und d s =   d ϕeϕ  immer gleiche Richtung und das Skalarprodukt  H ·  d s  geht in das Produkt der Beträge über. Weil der Betrag

von  H  längs einer Feldlinie konstant ist, kann er vor das Integral gezogen werden

(Abb. 3.1.7b)





2 π



Θ =

 H ·  d s =

 Hϕeϕ · eϕ d s =  Hϕ

  d ϕ =  Hϕ ·  2 π =  I. 

(3.1.14)

 C

Kreis

0



Das Umlaufintegral

d s  ist der Kreisumfang 2 π. Deshalb beträgt die Feldstärke

außerhalb eines  langen (dünnen) Leiters im Abstand  r  von seiner Achse (3.1.7b)

 H

 I

Magnetische Feldstärke eines geraden

 ϕ( r) =  Hϕ( r) eϕ =

 e

(3.1.15)

2 πr ϕ.  Stromfadens  I  im Abstand  r
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Um einen geraden stromdurchflossenen Leiter bilden die Linien konstan-

ter magnetischer Feldstärke konzentrische Kreise, deren Dichte (Betrag)

mit wachsendem Radius abnimmt. Ihre Richtung folgt aus der Rechte-

Hand-Regel. Das ist eine grundlegende Beziehung zur Beurteilung mag-

netischer Felder. Bei mehreren parallelen Leitern entsteht das Gesamtfeld

durch Überlagerung. 

Vertiefung. Vektorcharakter der magnetischen Feldst¨

arke Wegen der grundsätz-

lichen Bedeutung des Stromfadens vertiefen wir die Vektordarstellung. Gl. (3.1.15)

stellt einen Vektor  H  in Richtung  eϕ =  e z  × e r dar, also senkrecht auf der von

 e z und  e r aufgespannten Ebene. Wir kehren die Stromrichtung um. Das bedeu-

tet Vorzeichenwechsel der  z-Komponente ( I  weist in die  z-Richtung), also  H =

 H( −e z)  × e r =  −Heϕ (Abb. 3.1.8b). Zur Darstellung in kartesischen Koordinaten wird entweder der Einheitsvektor  eϕ  in seine Komponenten zerlegt oder durch die

Einheitsvektoren  e r und  e z dargestellt und geschickt erweitert. Im ersten Fall folgt

mit  −eϕ = sin  ϕe x  −  cos  ϕe y, 

 H

 I

 I ( ye x  − xe y)

( r, ϕ) =

(sin  ϕ e x  −  cos  ϕ e y)  → H( x, y) =

 . 

(3.1.16)

2 πr

2 π ( x 2 +  y 2)

Die Größen  ϕ  und  r  wurden durch  x  und  y  ausgedrückt gemäß

 y

 x



sin  ϕ( x, y) =

 , 

cos  ϕ( x, y) =

 , 

 r( x, y) =

 x 2 +  y 2 . 

 r

 r

Die Zerlegung des Einheitsvektors wird mit dem Kreuzprodukt  eϕ =  e z  × e r um-gangen

 H

 I

=

( −e z  × e r) =  −e z  × Ir e r =  −e z  × Ir

2 πr

2 πr 2

2 πr 2

 I ( ye x  − xe y)

=  −e z  × I ( xe x +  ye y) =

 . 

2 πr 2

2 π ( x 2 +  y 2)

Durch Erweitern mit dem Betrag  r  entfällt die Vektorzerlegung von  eϕ  und mit dem

Kreuzprodukt ( e z  × e x =  e y,  e y  × e z =  e x) kommt man zum gleichen Ergebnis. 

Bei Verschiebung des Leiters (Abb. 3.1.8c) erlauben Hilfskoordinaten  x,  y (parallel

zu den alten Achsen) die sinngemäße Anwendung der Ergebnisse: es beträgt die

Feldstärke im Punkt P ( x, y)

 H( x, y) =  −e z  × Ir =  −e z  × I ( r − r 0) 2 πr 2

2 π |r − r 0 | 2

=  −e z  × I (( x − x 0)  e x + ( y − y 0)  e y)





2 π ( x − x 0)2 + ( y − y 0)2

 I (( y − y 0)  e x  − ( x − x 0)  e y)

=



 . 

2 π ( x − x 0)2 + ( y − y 0)2

Dabei wurde der Hilfsradius  r =  r − r 0 verwendet. 
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Abb. 3.1.9. Verallgemeinerter Durchflutungssatz. (a) Jeder Strom (Leitungs-, Verschie-

bungsstrom) wird von einem Magnetfeld umwirbelt. (b) Differenzialform

Einschr¨

ankungen

Die

Lösung

Gl. 

(3.1.15)

gilt

unter

Einschränkungen

(s. Kap. 3.1.3):

nur für kreisförmige, unendlich dünne Leiter, eben  Stromf¨

 aden; ein anderer

Querschnitt (z. B. Rechteckleiter) erzeugt keine kreisförmigen Feldlinien; 

bei endlichem Leiterquerschnitt nur  außerhalb  des Leiters. Das Feld im Innern

muss für den jeweils umfassten Strom getrennt berechnet werden. 

bei unendlich langem Leiter. Begrenzte Leiterlänge (kurze Drahtstücke) erfor-

dert Korrektur (s. Beispiel 3.1.7). 

bei  gekr¨

 ummtem  Leiter gilt wohl das Durchflutungsgesetz, es kann aber nicht

zur Feldberechnung in einem Punkt ausgewertet werden. 

Das Beispiel zeigt die Anwendungsbeschränkungen des Durchflutungssatzes:

er erlaubt die Berechnung der magnetischen Feldstärke  nur bei bekanntem

 Feldverlauf H( r), wie in symmetrischen Anordnungen oder magnetischen

Kreisen, aber nicht bei allgemein gegebener Durchflutung. 

Beispiel 3.1.2 Feldst¨

arke und Flussdichte Fließt in einen Draht der Strom  I = 1 A, 

so beträgt die magnetische Feldstärke  H  im Abstand  r = 1 m,  H = 1 A /(2 π · 1 m) =

0 ,  16 A /  m. Dazu gehört die Flussdichte  B =  μ 0 H = 1 ,  256(µH / m)  ·  0 ,  16A / m  ≈

0 ,  2 µT. 

Verallgemeinerung des Durchflutungssatzes In räumlich ausgedehnten Strö-

mungsfeldern (Stromdichte  J K =  v) und in Nichtleitern (Verschiebungs-

stromdichte  J V =  ∂D/∂t) setzt sich die Gesamtstromdichte  J  unterschied-
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lich zusammen. Wir zerlegen daher die vom Umlauf eingeschlossene Fläche

in Flächenelemente d A  und schreiben statt Gl. (3.1.12)





 H ·  d s =

 J ·  d A

Durchflutungssatz, 

Randkurve  s

Fläche  A

 



erste Maxwellsche

(3.1.17a)

 ∂D

=

 v +

 ·  d A.  Gleichung

 ∂t

 A

Das Umlaufintegral der magnetischen Feldstärke längs des Weges  s  ist gleich

dem Flächenintegral der Stromdichte über die Fläche  A, die vom geschlos-

senen Weg  s  begrenzt wird. 

Die Zuordnung der Richtungen von d A (bzw.  I) und d s (bzw.  H) folgt der Rechtsschraubenregel (Abb. 3.1.9a). Zur Durchflutung tragen  alle  Stromarten

bei (Abb. 3.1.9a):

die von  bewegten Ladungen (Konvektionsstrom), z. B. Strom im Leiter, 

Diffusionsstrom, Ladungsströme im Vakuum u. a. Auch ein stationäres

Strömungsfeld hat ein magnetisches Feld. 

der  Verschiebungsstrom (bei zeitveränderlichem Feld). Sein Magnetfeld

wirkt nur bei schnellen Feldänderungen, sonst kann er gegen den Kon-

vektionsstrom vernachlässigt werden. Dann gilt der Durchflutungssatz

Gl. (3.1.12). 

Der verallgemeinerte Durchflutungssatz bildet zusammen mit dem Induk-

tionsgesetz (s. Kap. 3.3) die Grundlage für die Berechnung elektromagne-

tischer Felder. 

Der Durchflutungssatz bezog sich bisher auf die  Gesamtwirkung aller Str¨

 ome in-

 nerhalb einer umfassten Fl¨

 ache. Deshalb gibt es auch eine der Gl. (3.1.17a) ent-

sprechende  Aussage f¨

 ur den Raumpunkt über die Wirbeldichte oder  Rotation  der

Feldstärke  H:

rot  H =  J . 

Durchflutungssatz in Differenzialform (3.1.17b)

Die Wirbeldichte der magnetischen Feldstärke  H  ist gleich der Stromdichte  J. 

In Abb. 3.1.7c wurde dieses Ergebnis eingetragen. Mathematisch folgt es aus dem

sog. Stokesschen Satz (Umwandlung eines Oberflächenintegrals in ein Linienintegral

und umgekehrt)





Θ =

 H ·  d s =

rot  H ·  d A. 

Umlauf um Θ

Umlauffläche

Dieses Oberflächenintegral wird auch als  Wirbelfluss  bezeichnet. Man bildet dazu



die Umlaufintegrale

 H ·  d s über Flächenelemente d A. Im Grenzübergang d A →
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Abb. 3.1.10. Biot-Savartsches Gesetz. (a) Verkettung von Strom und magnetischem Feld, 

Beitrag eines Stromelementes  I d s  zum Feldanteil d H  im Punkt P. (b) Vereinfachte Darstellung für eine ausgewählte Feldlinie. (c) Ebene Leiteranordnung mit Magnetfeld. (d) Ver-

schiebungsstrom und magnetische Feldstärke im Punkt P, herrührend von einer mit der

Geschwindigkeit  v  bewegten Ladung d Q

0 lässt sich der Strom d I =  J ·  d A  durch die Stromdichte  J  ausdrücken und nach Division durch d A  folgt (im Sonderfall  J  und d A  parallel) die  Definition der Rotation (rot) der Vektoranalysis ( n  Normalenvektor von d A)

 H ·  d s

lim

= rot  H · n =  J · n. 

Δ A→ 0

Δ A

Die auf die Fläche bezogene Durchflutung ist gleich der Stromdichte durch sie. Zum

vollständigen Ergebnis gelangt man durch Betrachtung der Einzelkomponenten; die

Rechenvorschrift zur Auswertung der Rotation stellt die Vektoranalysis bereit. Der

Durchflutungssatz in Differentialform erlaubt eine weit leistungsfähigere Feldbe-

rechnung als die Integralform (Gegenstand der Feldtheorie). 

Gesetz von Biot-Savart Das Durchflutungsgesetz erlaubt in der integralen

Form nur in Sonderfällen die Berechnung von  H  bei gegebenem Strom. Das

Gesetz von Biot-Savart hat diese Beschränkungen nicht, es enthält vielmehr

die explizite Formulierung zwischen magnetischer Feldstärke und Strom bzw. 

Stromdichte. Obwohl aus dem Durchflutungssatz herleitbar, verzichten wir

zugunsten der anschaulichen Begründung. 

Wegen des stets geschlossenen Stromkreises lässt sich der Durchflutungssatz

(Magnetfeld umwirbelt Strom) auch umgekehrt auffassen: der Strom windet

sich um das  H-Feld (Abb. 3.1.10a). Interessiert dann die Feldstärke  H  in einem Raumpunkt P, die ein dünner stromführender Leiter der Form C erzeugt, so muss man den Durchflutungssatz nach der Feldstärke  H  auflösen“. 

” 

Das Ergebnis heißt  Biot-Savartsches Gesetz (Abb. 3.1.10b). Wir greifen dazu

aus dem stromdurchflossenen Leiter ein Element der Länge d s (d sv) heraus
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(Abb. 3.1.10a). Jedes Stromelement  I d s  ergibt einen Feldbeitrag

 I  d s × r

 I  d s × e r

d H =

=

(3.1.18a)

4 π

 r 3

4 π

 r 2

bei beliebig gekrümmtem Stromfaden. Weil diese Anteile im Raum unter-

schiedliche Richtung haben, sind sie vektoriell zu addieren. Die Richtung

von d H  weist nach der Rechte-Hand-Regel in die Zeichenebene. Weil ein ein-

zelnes Stromelement physikalisch nicht sinnvoll ist (Strom immer geschlossene

Erscheinung!), führt erst das Integral über den Stromkreis zum magnetischen

Feld  H  in P. Da der Abstand von P zum Stromelement  I d s  die Feldstärke

bestimmt, wählen wir eine einfachere Darstellung (Abb. 3.1.10b). Es gilt11,12





 H

 I

d s × r

=

d H =

bzw . 

4 π

 r 3

 L

 C



Gesetz von Biot-Savart (3.1.18b)

 I

sin ∠ ( r,  d s)

 H =

d s. 

4 π

 r 2

 C

Dabei ist C die Kontur des Leiterkreises. Verläuft er mit dem Aufpunkt P in

gleicher Ebene, so weisen alle Feldstärkeanteile in die Richtung senkrecht zu

dieser Ebene und die Gesamtfeldstärke lässt sich durch Integration ermitteln

(Abb. 3.1.10c). 

Die magnetische Feldstärke  H  in einem Punkt P außerhalb eines Strom-

kreises (dünner Leiter) ergibt sich durch Überlagerung (Linienintegral) der

Teilbeiträge d H  aller stromdurchflossenen Teillängen d s über den geschlos-

senen Stromkreis. 

Das Biot-Savartsche Gesetz drückt die magnetische Feldstärke im Raum-

punkt durch den Strom eines umgebenden Stromkreises aus, es kann auch

auf das räumliche Strömungsfeld erweitert werden. Seine Anwendung unter-

liegt  Einschr¨

 ankungen:

Es gilt in dieser Form nur außerhalb  d¨

 unner Stromleiter ( Stromf¨

 aden) und

die Integration muss längs einer geschlossene Kurve erfolgen (die auch im

Unendlichen schließen kann, wie etwa beim geraden Leiter). 

Gültig nur in Luft, ferromagnetische Bereiche in Leiternähe stören die

Feldverteilung und das Gesetz gilt nicht. 

11 Jean Baptiste Biot, französischer Physiker 1774–1862, Felix Savart, franz. Arzt und

Physiker, 1791–1841. Das Gesetz wurde 1820 von Biot angegeben und 1823 unab-

hängig davon durch Ampère formuliert. 

12 Gelegentlich auch als Ampèresche Formel bezeichnet. 
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Bei massiven Leitern (Strömungsfeld) muss die Stromdichte  J  verwendet



werden mit  I =

 J ·  d A

 A





 H

1

( J × r)

1

( J × r)

=

 ·  d A ·  d s =

 ·  d V. 

(3.1.18c)

4 π

 r 3



4 π

 r 3

 V

d V

 V

Die Integration erfolgt über alle stromdurchflossenen Volumenelemente. 

Die Anwendung des Biot-Savartschen Gesetzes ist i. a. aufwendig und sollte

folgendermaßen ablaufen:

Wahl der Geometrie und problemangepasster Koordinaten für Stromkreis, 

Längenelement d s  und Punkt P; 

Wahl des Leiterelementes d s  in Stromrichtung und des Ortsvektors  r, 

Ausdruck durch geometrische Größen; 

Bildung von d s × r, der Richtung von d H  und Berechnung des Linienin-

tegrals. 

Vertiefung: magnetische Feldst¨

arke und Verschiebungsstromdichte* Weil sich

im Leiter die Ladung  Q  mit der Geschwindigkeit  v  bewegt, kann das Stromelement

 I d s  auch gleichwertig durch  I d s =  v d Q  ausgedrückt werden. Eine differenzielle Ladung d Q  verursacht dann den Anteil d H  bzw.  Q  den Teil  H





d Q

d Q

d H =

 v × r =

( v × r)  . 

(3.1.19a)

4 πr 2

 r

4 πr 3

Das bestätigt die obige Aussage: die magnetische Feldstärke ist Ursache des mag-

netischen Feldes, ihr physikalischer Inhalt die mit der Geschwindigkeit  v  bewegte

Ladung (oder gleichwertig das Stromelement) unabhängig von den Materialeigen-

schaften des Raumes. Grundsätzlich verursacht jede Ladungsbewegung im Raum

einen Verschiebungsstrom mit seinem Magnetfeld. Bewegt sich eine positive La-

dung  Q  geradlinig mit konstanter Geschwindigkeit  v (mit  v  c) (Abb. 3.1.10d), so entsteht im Punkt P (Ortsvektor  r) die magnetische Feldstärke









 H

 Q

 Q

 Qv  sin  α

= ( v × D) =

 v × r =

( v × r)  , H = 



4 πr 2

 r

4 πr 3

 4 πr 2  (3.1.19b)

durch die von ihr ausgehende Verschiebungsflussdichte  D (Winkel  α  zwischen den

Vektoren  v  und  r). Sie fußt auf der Berechnung des Verschiebungsstromes der

bewegten Ladung über die Berandungsfläche (durch Punkt P). Er steht mit der

Verschiebungsflussdichte  D  auf der Kugelkappe und ihrer Fläche in Beziehung. 

Der zeitlich veränderliche Winkel  α( t) zwischen  r  und  v  durch die Ladungsbewegung führt schließlich auf Gl. (3.1.19b): Die Verschiebungsflussdichte  D  auf

der Kugelkappe beträgt  D =  e r Q/(4 πr 2). Daraus wird der Verschiebungsfluss



ΔΨ =

 D ·  d A =  DA

(1  −  cos  α) mit  A

 A

k =  Q

k = 2 πrh = 2 πr 2(1  −  cos  α). 

k

2

Aus dem Verschiebungsstrom Δ I V = d(ΔΨ) =  Q  sin  α  d α , der Geschwindigkeit

d t

2

d t

 v = d s  d α =

 b

d α  und der Flugstrecke  s =  a − s =  a − b  tan  α  folgt schließlich

d α  d t

sin2  α  d t

die Feldstärke im Punkt P:  H = Δ I V =  Qv  sin  α, (s. Gl. (3.1.19b)). 

2 πb

4 πr 2
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Zusammengefasst gibt es zur Berechnung der magnetischen Feldstärke um

stromführende Leiter:

das Durchflutungsgesetz für Sonderfälle, 

das Feld des geraden Leiters Gl. (3.1.15) als Grundmodell, 

das Biot-Savartsche Gesetz Gl. (3.1.18). 

Biot-Savartsches Gesetz und Durchflutungssatz beschreiben den gleichen phy-

sikalischen Zusammenhang zwischen Strom und begleitendem Magnetfeld

(wenn auch in verschiedener Abhängigkeit). Deshalb sind sie auseinander her-

leitbar. Der Durchflutungssatz beschränkt sich auf symmetrische Sonderfälle, 

das Biot-Savartsche Gesetz ist universeller einsetzbar, erfordert aber oft nu-

merische Auswertung. Liegen Leiter und Feldpunkt P wie in vielen techni-

schen Fällen in der gleichen Ebene, so vereinfacht sich die Anwendung von

Gl. (3.1.18). Wir betrachten dazu einige Beispiele. 

3.1.3 Berechnung der magnetischen Feldst¨

arke

Anwendung des Durchflutungssatzes Der Durchflutungssatz erlaubt  die Be-

 rechnung der Durchflutung Σ Iμ  bei bekanntem Feldverlauf  H( r) für Son-

derfälle wie:





konstante Feldstärke längs der Berandung  s:

 H ·  d s =  H ·  d s =  Hs, 

 Hs  vorausgesetzt; 



stückweise konstante Feldstärke

 H ·  d s =  H 1 s 1 +  H 2 s 2 +  . . . , ( Hs), 





bei gegebener Feldstärke  H  als Funktion von  s

 H ·  d s =  H( s)  ·  d s. 

In allen übrigen Fällen wird das Biot-Savartsche Gesetz benutzt. 

Magnetische Feldst¨

arke im Inneren eines langen, geraden kreisf¨

ormigen Lei-

ters In Gl. (3.1.15) musste das Magnetfeld im Leiterinnern nicht beachtet wer-

den: ein Stromfaden hat keinen Querschnitt. Bei endlichem Leiterquerschnitt

verteilt sich der Strom und ein Magnetfeld existiert auch im Leiterinnern (es

ist wegen der Zylindersymmetrie paralleleben, Abb. 3.1.11a). 

Für den Durchflutungssatz wirkt der jeweils von der Feldlinie umfasste Strom. 

Er beträgt bei konstanter Stromdichte  J =  I( ) /A( ) über die Fläche

 

 

 I( )

 A( )

   2

   2

=

=

 → I( ) =  I

 . 

 I

 A

 r a

 r a
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Abb. 3.1.11. Berechnung der magnetische Feldstärke. (a) Radiale Verteilung in und um

einen kreisförmigen Leiter (konstante Stromdichte). (b) Feldverlauf in einer stromdurch-

flossenen Koaxialleitung

Damit kann Gl. (3.1.15) übernommen werden und es gilt



 H

 I

 /r

( ) =

 e

a

(  ≤ r a)  . 

(3.1.20)

2 πr

 ϕ ·

a

 r a / (  ≥ r a)

Die Feldverläufe  H i( ) und  H a( ) im Leiter und Außenraum haben nur eine ϕ-Komponente (Abb. 3.1.11a). Die Feldstärke im Leiterinnern wächst proportional zum Radius, im Außenraum fällt sie mit 1 /  ab. An der Leiterober-

fläche   =  r a stimmen beide Lösungen überein: die  magnetische Feldst¨

 arke

 ist stetig (das begründen wir im Kap. 3.1.6). Zur Darstellung wählen wir den

Verlauf in einer Schnittebene (z. B. an der Stelle  ϕ = 0), für den Verlauf bei

 α = 180 ◦  kehrt sich das Vorzeichen von  H. 

Nach diesem Ansatz lässt sich das magnetische Feld auch im Koaxialkabel

und Rohren ermitteln. Der Feldverlauf außerhalb eines geraden Leiters wurde

bereits mit Gl. (3.1.15) diskutiert. 
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Beispiel 3.1.3 Magnetische Feldst¨

arke im Koaxialkabel Wir berechnen das Mag-

netfeld in einem Koaxialkabel (Abb. 3.1.11b) aus Innenleiter und konzentrischem

Außenleiter mit den Radien  r b,  r c. Im Innenleiter (Radius  r a) fließt der Strom hin, 

im Außenleiter zurück. Vorausgesetzt werden konstante Stromdichten. Das Mag-

netfeld ist zylindersymmetrisch und der Durchflutungssatz anwendbar. 

Es gibt vier Feldbereiche: im Leiterinnern, zwischen den Leitern, im Außenleiter

und außerhalb der Leitung. 

Im Innenleiter 0  ≤  ≤ r a beträgt der jeweils  umfasste Strom  durch die Quer-

schnittsfläche  π 2

  2

 I( ) =

 I

 r 2a

(Abb. 3.1.11b). Wir übernehmen das Ergebnis von Gl. (3.1.20) für die magne-

tische Feldstärke  H i ϕ

 H

 Ieϕ  2

 Ieϕ

i ϕ =

=

 

(  ≤ r a)

(1)

2 π r 2a

2 πr 2a

im Abstand    von der Mittelachse. Die magnetischen Feldlinien sind konzent-

rische Kreise und die Feldstärke  H i ϕ  steigt mit dem Radius bis zur Oberfläche

  =  r a an. 

Im  Zwischenraum ( r a  ≤  ≤ r b) wird nur der Strom des Innenleiters umfasst, 

also gilt nach Gl. (3.1.20)

 H

 Ieϕ

 ϕ =

( r a  ≤  ≤ r b)  . 

(2)

2 π

Im  Außenleiter ( r b  ≤  < r c) überlagern sich die vom Innen- und Außenleiter

herrührenden Felder (letzteres entgegenwirkend). Von ihm trägt nur der um-

fasste Strom  I( ) an der Stelle    bei

 I( )

 A( )

  2  − r 2

  2  − r 2

=

=

 b

 → H

 e

b  e

 I

 A

 r 2  −

 ϕ =  − I ( )  ϕ =  −

 I

 −

 ϕ

(3)

 c

 r 2

2

2

 b

 π

 π r 2c

 r 2b

mit der zugehörigen magnetischen (Teil-)Feldstärke rechts (Vorzeichenumkehr

wegen entgegengesetzter Stromrichtung!). Die Gesamtfeldstärke ergibt sich aus

der Überlagerung mit dem Feld des Innenleiters

 H

 I r 2  −

c

  2

 ϕ =  H 

 e

 ϕ +  H 

 ϕ = 2 π r 2  −

 ϕ. 

(4)

c

 r 2b

Sie fällt im Außenleiter steiler als im Innenraum und verschwindet am Außen-

rand   =  r c. Von dort an wird durch die entgegengesetzten Stromrichtungen

im Innen- und Außenleiter kein Nettostrom mehr umfasst und das magnetische

Feld verschwindet. Diese Tatsache nutzen technische Anwendungen: viele Ko-

axialleitungen können ohne gegenseitige Störungen parallel liegen. 

Beispiel 3.1.4 Lange Zylinderspule Zur Bestimmung der magnetischen Feldstärke

in einer langen, gleichmäßig mit dünnem Draht bewickelten Zylinderspule (Länge

 l, Durchmesser  d, eine solche Spule heißt auch  Solenoid) wählen wir als Integrati-
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Abb. 3.1.12. Feldberechnung, Durchflutungssatz. (a) Feld in langer Zylinderspule. (b) Feld

in kurzer Zylinderspule, Ausschnitt in Leiternähe. (c) Feld in einlagiger Ringspule

onsweg im Umlaufintegral Gl. (3.1.12) den in Abb. 3.1.12a angegebenen Weg  abcd. 

Dann folgt aus dem Durchflutungssatz

 b



 c



 d



 a



 b





 H i  ·  d s +

 H a  ·  d s +

 H a  ·  d s +

 H a  ·  d s ≈ H i  ·  d s =  H i l =

 Iν =  wI

 a

 a





  b



  c



  d





(1)

(2)

(3)

(4)

mit der Durchflutung  wI. Die Integrale (2)–(4) verschwinden wegen  H a   H i, denn

im Spuleninnern ( H i) ist die Feldstärke deutlich größer als im Außenraum ( H a). So

verbleibt nur Integral (1). Zusätzlich kann die Feldstärke  H i im Spuleninnern als

praktisch konstant gelten (Voraussetzung lange, dünne Spule!). Dann gilt  H i l =  wI

oder in Vektorschreibweise

 H

 wI

Magnetische Feldstärke

=  H z =  e z

 . 

(3.1.21)

 l

in langer Zylinderspule

Eine lange, dünne Zylinderspule hat eine definierte magnetische Feldstärke umge-

kehrt proportional zur Spulenlänge. Ihr Außenfeld ist gegen das Innenfeld prak-

tisch vernachlässigbar. 

Umgekehrt fächern die Feldlinien mit kürzer werdender Spule an den Enden immer

mehr auf und das Feldbild nähert sich dem eines Stabmagneten (Abb. 3.1.12b). Gilt

obige Voraussetzung nicht, so muss die Feldstärke über das Gesetz von Biot-Savart

bestimmt werden (s. Beispiel 3.1.8). 

Beispiel 3.1.5 Ringspule (Toroid) Spulen erzeugen durch die Windungszahl ho-

he magnetische Feldstärken. Eine  Ring-  oder  Toroidspule  ist ein gleichmäßig mit

dünnem Draht bewickelter Ringkern mit  w  Windungen. Stromfluss erzeugt im Spu-

leninnern ein ringförmiges magnetisches Feld (Abb. 3.1.12c). Deshalb wählen wir

als Umlaufweg einen Kreis mit dem Radius  . Umlaufsinn und Stromrichtung bil-
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den ein Rechtssystem. Der Umlauf umfasst die Stromsumme  Iw, das Wegelement

lautet d s =  eϕ d ϕ. Dann gilt nach dem Durchflutungssatz



2 π



 Hϕ ·  d s =

 eϕHϕ( )  · eϕ d ϕ = 2 πHϕ( ) =  wI = Θ

(3.1.22a)

Kreis

0

und daraus für die magnetische Feldstärke in der Ringspule

 H

 wI

Magnetische Feldstärke

 ϕ( ) =  eϕHϕ( ) =  eϕ

 . 

(3.1.22b)

2 π

in Ringspule

Sie sinkt in der Spule nach außen ab. Unterscheiden sich Innen- und Außenradi-

us ( r i,  r a) nicht wesentlich, so verschwindet die Abhängigkeit vom Kernradius (es

gilt dann  r a  ≈ ) und im Spuleninnern entsteht konstante Feldstärke. Das Ergeb-

nis Gl. (3.1.22b) entspricht einer Zylinderspule der mittleren Länge  l = 2 π. Mit

wachsendem Radius geht die Ringspule in eine lange Zylinderspule über. 

Feld¨

uberlagerung, Stromfaden Das magnetische Gesamtfeld mehrerer strom-

durchflossener Leiter entsteht durch Überlagerung. Ein Beispiel sind parallele

stromdurchflossene Leiter. Jeder erzeugt sein eigenes Magnetfeld und des-

wegen entsteht die magnetische Gesamtfeldstärke in einem Aufpunkt durch

 vektorielle  Addition der Einzelwirkungen. 

Wir wählen zwei unendlich lange parallele Drähte im Abstand  d, die vom

gleichen Strom  I  entweder gegen- oder gleichsinnig durchflossen sind. Abbil-

dung 3.1.13a zeigt die Feldlinien. Bei  gegensinnigen  Stromrichtungen

(Abb. 3.1.13a) addieren sich die Feldstärken zwischen beiden Leitern (au-

ßerhalb wirken sie einander entgegen). Die Feldstärke steht senkrecht auf der

Ebene zwischen den Leitern und es gilt mit  H 1 =  I ,  H

für einen

2 πr

2 =

 I

1

2 πr 2

Punkt P auf der  x-Achse





 I

1

1

 I

 d

 H =  H 1 +  H 2 =

+

=

 . 

(3.1.23a)

2 π

 r 1

 r 2

 π d 2  − x 2

Dabei sind  r 1 =  d +  x,  r 2 =  d − x, der Koordinatenursprung  x = 0 liegt in der Mitte der Verbindungslinie. Gegensinnige Stromrichtungen führen zu

kreisförmigen Feldlinien um beide Leiter (es bilden sich sog.  Apollonische

 Kreise). In der Symmetrieebene verlaufen die Feldlinien parallel zur Ebene. 

Das Feld hat ein Minimum bei  x = 0. Es weist in der Verbindungsebene in

positive  y-Richtung. 

Bei  gleichsinnigen  Stromrichtungen wirken die Felder zwischen den Leitern

einander entgegen (außerhalb in gleicher Richtung), jetzt gilt mit Beachtung

der Vorzeichen (Abb. 3.1.13b)





 I

1

 I

 x

 H =  H 1  − H 2 =

 −  1

=

 . 

(3.1.23b)

2 π

 r 1

 r 2

 π d 2  − x 2
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Abb. 3.1.13. Feldüberlagerung bei geraden, langen stromdurchflossenen Leitern. (a) Mag-

netische Feldstärke auf der Verbindungslinie zwischen zwei parallelen Leitern bei gleich

großen, entgegengesetzt gerichteten Strömen (Doppelleitung). (b) Verlauf bei gleichgerich-

teten Strömen. (c) Feldstärke im Punkt P zwischen den Leitern

In der Mitte zwischen den Leitern verschwindet die Feldstärke und im Feld-

linienbild umschließt ein Teil der Feldlinien beide Leiter, ein anderer nur die

Einzelleiter (im Bild nicht dargestellt). Die Feldlinien treffen senkrecht auf

die Symmetrieebene zwischen beiden Leitern. 

Analyse in Vektordarstellung Genauere Feldstärkeverläufe ergeben sich aus den

Feldkomponenten des Stromfadens in Vektordarstellung. Gesucht sind die Feldkom-

ponenten  H x und  H y im Punkt P( x, y) (Koordinatensystem Abb. 3.1.13c) in der

Ebene  z = 0. Wir nehmen beide Ströme in die Ebene hineinfließend an. Dann folgt
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für die Komponenten in  x- und  y-Richtung (s. Gl. (3.1.16))









1

 I 1

 I 2

 − 1  I 1

 I 2

 H x =

sin  α 1 +

sin  α 2  , H y =

cos  α 1 +

cos  α 2  . 

2 π

 r 1

 r 2

2 π

 r 1

 r 2

Die Leiteranordnung drückt sich in den Winkelbeziehungen

 y

 x +  d

 y

 x − d

sin  α 1 =

 , 

cos  α 1 =

 , 

sin  α 2 =

 , 

cos  α 2 =

 r 1

 r 1

 r 2

 r 2

aus. Das Ergebnis lautet für  gleichgerichtete, in die Ebene weisende Ströme  I 1,  I 2









1

 I 1 y

 I 2 y

 − 1  I 1( x +  d)

 I 2( x − d)

 H x =

+

 , H y =

+

 . 

2 π

 r 2

2

1

 r 22

 π

 r 21

 r 22

Mit den Radien zum Aufpunkt P:  r 1 =  r +  de x,  r 2 =  r − de x folgt

 



 H

1

 I 1

 I 2

( x, y) =

 y

+

 e x

2 π

( x +  d)2 +  y 2

( x − d)2 +  y 2



 

(3.1.23c)

 −

 I 1( x +  d)

 I 2( x − d)

+

 e y  . 

( x +  d)2 +  y 2

( x − d)2 +  y 2

Wir beschränken uns auf den Feldverlauf  H y( x) in der Ebene  y = 0 zwischen den

Leitern. Er beträgt bei  I =  I 1 =  I 2:

 I

 x

 I

 d

 H y( x,  0) =

(gleichsinnig) , H y( x,  0) =

(gegensinnig) . 

 π ( d 2  − x 2)

 π ( d 2  − x 2)

Fließt Strom  I 2 in die Ebene hinein und  I 1 heraus ( I =  I 2 =  −I 1), so gilt das rechte Ergebnis. 

Die Analyse kann auch durch Feldüberlagerung unter Umgehung der Winkelberech-

nung vom Leiter zum Aufpunkt erfolgen. Wir setzen an (wieder für Ströme  I 1,  I 2

in die Ebene hineinfließend, also entgegen der  z-Richtung)



 



 H( x, y) =  H 1 +  H 2 =  −e z  × I 1 r 1 +  −e z  × I 2 r 2  . 

2 πr 2

2

1

 πr 22

Mit den obigen Radiusvektoren  r 1,  r 2 ist eine direkte Auswertung (mit Ausführung

der Vektorprodukte) je nach Stromrichtung möglich. 

Anwendungsbeispiele zum Gesetz von Biot-Savart Das Gesetz (Gl. (3.1.18))

erlaubt die direkte Berechnung der magnetischen Feldstärke als Funktion des

Stromes bzw. der bewegten Ladung. 

Beispiel 3.1.6 Magnetische Feldst¨

arke. D¨

unner kreisf¨

ormiger Leiter Kreisrunde Lei-

terschleifen sind die Grundlage der Zylinderspule, denn ihr Gesamtfeld im Spulen-

innern entsteht durch Feldüberlagerung der längs einer Achse versetzten Schleifen. 

Obwohl die allgemeine Feldberechnung über den Kreisquerschnitt kompliziert und

nur numerisch möglich ist, gelingt eine geschlossene Auswertung für das Feld auf

der Achse mit dem Biot-Savartschen Gesetz. Wir wählen für Gl. (3.1.18b) Zylinder-

koordinaten d s =  eϕ d ϕ  und   =  e. Radius und Wegelement stehen senkrecht aufeinander (  ⊥  d s). Es gilt d s ×  =  e z  2d ϕ  und so (  ≡ R)
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Abb. 3.1.14. Magnetisches Feld einer Kreisschleife. (a) Anordnung und magnetische

Feldstärke im Zentrum (längs der  z-Achse). (b) Verlauf der Feldstärke längs der Kreisring-

achse und Felddarstellung in einer Ebene senkrecht zur Schleife durch ihren Mittelpunkt. 

(c) Feld in einer Helmholtz-Spule



2 π



 H

 I  d s × 

 I

 e z  2d ϕ

 I

 I

=

=

=

 e z =

 e z .  Leiterschleife (3.1.24)

4 π

  3

4 π

  3

2 

2 R

0

Im Zentrum einer Leiterschleife (Radius  R) herrscht eine magnetische Feldstärke

nur abhängig vom Strom und Radius und um den Faktor  π  größer als das Feld eines

geradlinigen Leiters (Gl. (3.1.15)) im gleichen Abstand. Wegen fehlender Zylinder-

symmetrie gelingt eine Lösung über den Durchflutungssatz hier nicht. 

Kreisring in der  x,  y-Ebene Zur Berechnung des magnetischen Feldes im Kreis-

ring auf der  z-Achse (Abb. 3.1.14a) betrachten wir das Leiterelement d s, das

vom Aufpunkt P die Strecke    entfernt ist mit   = ( R 2 +  z 2)1 / 2. Der Beitrag des Feldelementes d H  durch d s  beträgt (  =  e − Re r) I

 I d s

d H =

 | d s × | =

4 π 3

4 π( R 2 +  z 2)

und die Richtung von d H  steht senkrecht auf der von    und d s  aufge-

spannten Ebene. d H  hat die Komponenten d H r und d H z. Das auf der

gegenüberliegenden Seite des Leiterrings liegende Längenelement d s  sorgt

für die Addition der  z-Komponenten der Feldstärke, während sich ihre  -

Komponenten kompensieren (entgegengesetzte Richtungen). Deshalb wirkt

das magnetische Feld nur in der  z-Achse:

 I  cos  θ

d H =  e zd H  cos  θ =  e z

d s. 

(3.1.25a)

4 π( R 2 +  z 2)
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Für einen Punkt P(0 ,  0 , z) auf der Achse sind in Gl. (3.1.25a) alle Größen

konstant bis auf d s. Die Integration über einen Kreis vom Radius  R  ergibt

 e



 H

z I  cos  θ

 I  cos  θ 2 πR

 IR 2

( z) =

d s =  e z

=  e z

(3.1.25b)

4 π( R 2 +  z 2)

4 π( R 2 +  z 2)

3

2( R 2 +  z 2) 2

 √

mit cos  θ =  R/ R 2 +  z 2. Im Schleifenzentrum ( z = 0) bzw. weit entfernt

beträgt die magnetische Feldstärke übereinstimmend mit Gl. (3.1.24)

 H

 I

 IR 2

(0) =  e z

 , 

 H( z) =  e z

( |z|  R) . 

(3.1.25c)

2 R

2  |z| 3

Für weit entfernte Punkte sinkt die Feldstärke stark ab. Abbildung 3.1.14b

zeigt den Feldverlauf längs der  z-Achse und in einer Ebene senkrecht zur

Schleife. Das Feld verläuft ähnlich dem langer paralleler Leiter. Dort ist es

allerdings für jede Ebene senkrecht zur Leiterachse gleich, hier zeigt es Ro-

tationssymmetrie: für jeden Winkel gilt das gleiche Feldbild. 

Anwendung findet die Leiterschleife als  Helmholtz-Spulenpaar  zur Herstel-

lung eines bereichsweise konstanten Magnetfeldes. Zwei Spulen (Radius  R,  w

Windungen) stehen im Abstand  d  parallel. Dann beträgt die Feldstärke längs

der  z-Achse (durch Überlagerung) bei gleichen Strömen

⎛

⎞

 Iw ⎜

1

1

⎟

 H( z) =

⎝



+ 



⎠

 →

2 R



2 3 / 2



2 3 / 2

1 + 2 z+ d

1 + 2 z−d

(3.1.26)

2 R

2 R



 Iw  8 

 H(0) =



 . 

 R  53 / 2  z=0 ,R= d

Für  R =  d  entsteht zwischen beiden Spulen ein homogenes Feld, erkennt-

lich daran, dass die erste bis dritte Ableitung von  H  nach  z  an der Stelle

 z = 0 verschwindet. Das Feld selbst ist die Überlagerung der Felder zwei-

er Kreisspulen (Abb. 3.1.14c), aus praktischen Gründen meist durch zwei

kurze Zylinderspulen (höhere Windungszahl) ersetzt. Helmholtz-Spulen die-

nen zur Realisierung definierter Magnetfelder für Eichzwecke, etwa bei Hall-

Sensoren. 

Beispiel 3.1.7 Magnetfeld eines geraden Leiters begrenzter L¨

ange Der Durchflu-

tungssatz erlaubt eine einfache Berechnung des Magnetfeldes eines langen geraden

Leiters (Beispiel 3.1.1). Wir prüfen den Einfluss der Leiterlänge mit dem Biot-

Savartschen Gesetz. Abbildung 3.1.15 lässt Feldsymmetrie erkennen, deswegen wer-

den Zylinderkoordinaten verwendet. Es gibt keine Änderungen von  H  mit  z  oder  α. 

Deshalb legen wir den Punkt P2 in die Ebene  z = 0. Der Integrationsweg verläuft

auf der  z-Achse, dabei ändert sich der Abstand zwischen P1 und P2. Der zugehörige
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Abb. 3.1.15. Magnetfeld eines dün-

nen, geraden Leiters begrenzter Länge. 

(a) Anordnung, der Leiter erstreckt sich

zwischen  z 1 und  z 2. (b) Stromdurchflos-

sene quadratische Leiterschleife

Einheitsvektor  e r von  r  folgt mit  r =  e − ze z

 e

 e

  − e z z

r = 

 . 

  2 +  z 2

Die Richtung des Wegelementes d s  fällt mit der Stromrichtung  I  zusammen: d s =

d ze z. Damit lautet der Feldansatz

 I  d s × e

 I  d ze

d H =

 r =

 z × ( e − ze z)  . 

4 π

 r 2

4 π

(  2 +  z 2)3 / 2

Die Feldstärke folgt durch Integration über die Leiterlänge zwischen  z 1 und  z 2

 z 2



 z 2



 H

 I

d s × e

 I

d ze

=

 r =

 z × ( e − ze z)

4 π

 r 2

4 π

(  2 +  z 2)3 / 2

 z 1

 z 1

 z



2



 z 2

 I

  d ze

 I

 z



=

 ϕ
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  e

(3.1.27)

4 π

 ϕ

(  2 +  z 2)3 / 2

4 π

  2 +  z 2 

 z

 z

1

1





 I

 z 2

 I

=



 −

 z 1



 e

(sin  α 2  −  sin  α 1)  e

4 π

 ϕ =

 ϕ. 

  2 +  z 2

4 π

2

  2 +  z 21

Das letzte Ergebnis gilt für jeden geraden Leiter, er muss nicht auf der  z-Achse

liegen. Für den Leiter symmetrisch zum Ursprung ( z 1 =  −z 2) vereinfacht sich die

Lösung

 H

 I

 z 2

 I

 ϕ =



 e

(sin  α 2) e

2 π

 ϕ =

 ϕ. 

  2 +  z 2

2 π

2

Generell hängt die Feldstärke nicht von  z  oder  ϕ  ab, wohl aber vom Leiterabstand

in Beziehung zur Leiterlänge. Für lange Leiter ( |z 1 |,  |z 2 |  ) ergibt sich die mit

dem Durchflutungssatz gewonnene Lösung Gl. (3.1.15). 

Anwendung findet das Magnetfeld begrenzter gerader Leiterstücke zur Be-

rechnung eckiger Leiterschleifen, auch von Leiterpolygonen. So beträgt et-

wa die Gesamtfeldstärke im Zentrum eines Leitervierecks (Seitenlänge 2 a, 

 √

 √

Abb. 3.1.15b) mit sin  α 2 = 1 /  2:  H = 4 Hϕ = ( I  2) /aπ. Sie ist bei gleichem
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Abb. 3.1.16. Kurze Zylinderspule. (a) Spule aus Leiterkreisen. (b) Verlauf des axialen Mag-

netfeldes, Parameter  R/l. (c) Feldbild einer kurzen Spule mit Feldstreuung im Außenraum

 √

Strom geringfügig kleiner (Faktor

2 /π ≈  0 ,  45 gegen 0,5) als das Magnetfeld

einer Kreisschleife im Zentrum. 

Beispiel 3.1.8 Kurze Zylinderspule Die lange Zylinderspule Beispiel 3.1.4 ist ein

Sonderfall der Feldberechnung. Häufig liegen kurze Spulen“ mit weniger Windun-

” 

gen und stärkerer Feldinhomogenität vor. Wir berechnen das magnetische Feld auf

der Achse durch Überlagerung der Beiträge vieler kreisförmiger Leiterschleifen nach

Abb. 3.1.14a. 

Abbildung 3.1.16a zeigt den Spulenaufbau und die Zusammensetzung aus Leiter-

schleifen. Die Feldstärke auf der  z-Achse im Punkte P beträgt nach Gl. (3.1.25b)

 H

 IR 2

P =

 e z , 

2( z 2 +  R 2)3 / 2

herrührend von einer Windung bei  z = 0. Im nächsten Schritt wird diese Schleife

an die Stelle  z 1 verschoben (Punkt P liegt noch bei  z) und dort der Feldbeitrag

d H P berechnet. Hat die (gleichmäßig bewickelte) Spule (Länge  l)  w  Windungen, so

entfällt auf einen Leiterring der Breite d z 1 insgesamt der Teilstrom  I = ( w/l) I d z 1. 

Er bedingt den Teilbeitrag d H P in P nach dem Biot-Savartschen Gesetz

 R 2

 wI

d H P =

d z 1 e z . 

2(( z − z 1)2 +  R 2)3 / 2  l

Die Integration über die Spulenlänge  l  ergibt



 l/ 2







 H

 R 2

 wI

P( z) =

d H P =

d z 1 e z

2(( z − z 1)2 +  R 2)3 / 2

 l

 −l/ 2





 wI

 z +  l/ 2

=



 −

 z − l/ 2



 e z . 

2 l

 R 2 + ( z +  l/ 2)2

 R 2 + ( z − l/ 2)2



Das Ergebnis lautet mit cos  α 1 ,  2 = ( z ± l/ 2) / ( z ± l/ 2)2 +  R 2 (s. Abb. 3.1.16a)

gleichwertig

 H

 wI

P( z) =

(cos  α 1  −  cos  α 2)  e z mit  H P( z) =  H P( −z) . 

2 l
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Abhängig von der Lage des Punktes P ergeben sich unterschiedliche Situationen:

Im Spulenzentrum  z = 0 gilt



 H

 wI

 l



P( z) =



 e z  ≈ wI e z

 . 

2 l



 R 2 + ( l/ 2)2

 l

 l 2 R

Für  l   2 R  gilt die Näherung der langen Spule (Gl. (3.1.21)). Das gleiche Resul-

tat folgt für  R  ( l/ 2)  − |z|  bei jedem Wert  z (homogenes Feld in Achsennähe). 

Deshalb trifft das lange Spulenmodell schon innerhalb weniger Radien zu. 

An den Spulenenden  z =  ±( l/ 2) sinkt das Feld für die lange dünne Spule ge-

genüber dem Zentrum um die Hälfte (Abb. 3.1.16b)! Setzt man anschaulich

zwei gleiche Spulen hintereinander, so stellt sich in der Mitte wieder das obige

Zentrumsfeld ein. 

Außerhalb der Spule ( |z|  l/ 2) sinkt das Feld sehr rasch (Abb. 3.1.16b, c). 

Deshalb verschwinden  H  und damit auch die Induktion  B  im Außenraum fast

vollständig und in der Spule entsteht ein homogenes Feld. Das berechtigt, im

Durchflutungssatz



 l/ 2



 −l/ 2



 l/ 2



Θ =  wI =

 H ·  d s =

 H i( z)d z +

 H a( z)d s ≈

 H i( z)d z =  H i l

 L

 −l/ 2

 l/ 2

 −l/ 2

nur den Feldanteil  in  der Spule zu berücksichtigen, worauf bereits verwiesen

wurde. 

3.1.4 Haupteigenschaften des magnetischen Feldes

Wir stellen typische Unterschiede zwischen elektrostatischem und magne-

tischem Feld zusammen (Tab. 3.1): Das  elektrostatische Feld  war:

ein  Quellenfeld (Gl. (2.2.7, 2.3.1)), denn die Linien der Verschiebungsfluss-

dichte  D  beginnen und enden stets auf Ladungen: Ladungen als Quelle

und Senke der Verschiebungsflusslinien; 



 wirbelfrei, denn überall galt

 E ·  d s = 0 (Gl. (1.2.2)) und es konnte ein

skalares Potenzial  ϕ  definiert werden. 

Das stationäre (nur vom Gleichstrom herrührende)  Magnetfeld  ist:

 quellenfrei, denn es gibt keine magnetischen Ladungen und die  B-Linien

sind deshalb in sich geschlossen (Gl. (3.1.8)); 



ein  Wirbelfeld, weil

 H ·  d s nicht  verschwindet, sobald Strom umfasst

wird (Inhalt des Durchflutungssatzes). In stromfreien Gebieten ist das

Magnetfeld  wirbelfrei  und für diese Gebiete kann ein  skalares magnetisches

 Potenzial  vereinbart werden (Kap. 3.2.2). Wirbelfrei ist z. B. das Feld eines

Dauermagneten (s. Kap. 3.2.4). 
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Tab. 3.1. Elektrisches und magnetisches Feld. Feldgrößen und Feldeigenschaften

Feld

elektrostatisch

station¨

ar magnetisch

Ursachengröße

 D, [ D] = As

 H, [ H] = A

m2

m

(Quantitätsgröße, 

Elektrische Flussdichte, 

Magnetische Feldstärke, 

Quellen)

Verschiebungsflussdichte

magnetische Erregung

Wirkungsgröße

 E, [ E] = V

 B, [ B] = Vs

m

m2

(Intensitätsgröße, 

Elektrische Feldstärke

Magnetische Flussdichte

Kraftwirkung)

(Induktion)

Materialgleichung

 D =  εE

 B =  μH

Feldkonstante

 ε 0 = 8 .  854  ·  10 − 12 As

 μ

Vm

0 = 4 π ·  10 − 7 Vs

Am

Vakuum

Vakuum

 ε =  ε r ε 0 Material

 μ =  μ r μ 0, Material

⎧  I  Wirbelfeld





⎪

⎨

Wirbelmerkmale

 E ·  d s = 0

 H ·  d s =

0 wirbelfrei, 

⎪

wirbelfreies Feld

⎩

kein umfass-





ter Strom

Quellenmerkmale

 D ·  d A =  Q

 B ·  d A = 0

Quellenfeld

quellenfreies Feld

Aus der historischen Entwicklung haben sich Unschärfen bei den Begriffen gehalten. 

Im elektrostatischen Feld ist die elektrische  Feldst¨

 arke E  als  Intensitätsgröße über

die Kraft wirkung  auf die ruhende Ladung definiert (Dimension Kraft/Ladung), im

magnetischen Feld wird die Kraftwirkung auf die bewegte Ladung aber als mag-

netische Flussdichte  B (Dimension Kraft/(Ladung  ·  Geschwindigkeit)) bezeichnet. 

Konsequent wäre, in Analogie zum elektrischen Feld, die Beibehaltung des Begriffs

magnetische Feldstärke. 

Ursache ist im elektrischen Feld die Verschiebungs flussdichte D (Ladung/Fläche)

als  Quantit¨

 atsgr¨

 oße, dagegen im magnetischen Feld die magnetische Feldstärke  H

(Strom/Länge). Dieser Name irritiert, denn er drückt die Feld wirkung (z. B. Kraft-

wirkung) aus, die durch die magnetische Flussdichte  B  belegt ist. Die Bezeich-

nung magnetische Erregung“ für  H  versucht die Analogie zur elektrischen Erre-

” 

” 

gung“  D. Obwohl es vereinzelt Bemühungen gibt, diese historisch geprägten Be-

zeichnungen zu korrigieren, bleiben wir bei den bisherigen Begriffen; nicht zuletzt

schlägt auch das DIN-Normblatt 1325 die Begriffe magnetische Flussdichte resp. 

magnetische Induktion für  B  vor und es hält am Begriff magnetische Feldstärke  H

fest. 

3.1.5 Magnetische Flussdichte und Feldst¨

arke in Materialien

In Materie hing das elektrische Feld von Materieeigenschaften ab. Ganz ent-

sprechend beeinflussen Kreisströme und magnetische Momente die magne-

tischen Materialeigenschaften und damit das magnetische Feld in Materie. 
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Tab. 3.2. Magnetischen Eigenschaften von Stoffen

Magnetische Polarisation Da bewegte Ladungen Ursache des Magnetfeldes

sind, müssen auch die in der Materie vorhandenen Elektronen durch Kreis-

ströme zum Magnetfeld beitragen. Das ändert die magnetische Flussdichte

und es gilt der für Luft gültige Zusammenhang  B 
=  B 0 =  μ 0 H  nicht mehr. 

Diese Tatsache erfasst die  Materialgleichung des magnetischen Feldes  in ver-

schiedenen Formen

 B =  μ 0 H +  J =  μ 0( H +  M) =  μ 0 H +  χ m μ 0 H =  μ r μ 0 H =  μH. (3.1.28) (1)

(2)

(3)

(4)

Der Materialeinfluss wird durch Ergänzung der  magnetischen Polarisation J

oder der  Magnetisierung M  eingeschlossen13. 

Die magnetische Polarisation  J  erfasst den Materialeinfluss auf die magne-

tische Flussdichte gegenüber dem Vakuum und Gl. (3.1.28) ist die  Materi-

 albeziehung des magnetischen Feldes (so wie z. B. das räumliche Ohmsche

Gesetz  J =  κE  die Materialgleichung des Strömungsfeldes heißt). 

Der Ansatz lehnt sich an die elektrische Polarisation (s. Kap. 2.3): magnetische

Polarisation schwächt oder verstärkt die magnetische Feldstärke gegenüber dem

Vakuum betragsmäßig. Weil im Vakuum der Strom die Ursache der magnetischen

Flussdichte ist, lag es nahe (diese Vermutung sprach bereits Ampère aus), den Ma-

terieeinfluss auf  B mikroskopischen Ringströmen  zuzuschreiben, was heute quan-

tenmechanisch als bestätigt gilt. 

13 Leider haben magnetische Polarisierung  J (Dimension Vs/m2) und Stromdichte  J

(Dimension A/m2) das gleiche Formelzeichen. 
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Die magnetische Polarisation  J  lässt sich auf die (dimensionslose)  magne-

 tische Suszeptibilit¨

 at χ m zurückführen. Für magnetisch isotrope Materie gilt

 J = ( μ − μ 0) H =  μ 0( μ r  −  1) H =  χ m μ 0 H. 

(3.1.29)

Die  Magnetisierung M

 B

 J

 M =

 − H =

(3.1.30)

 μ 0

 μ 0

drückt die Absenkung der magnetischen Feldstärke im Material gegenüber

Vakuum aus. Sie wirkt bei Dauermagneten (auch ohne äußeres Feld) ständig. 

Polarisation und Magnetisierung beschreiben die Magnetisierungserscheinungen aus

hauptsächlich physikalischer Sicht, zur technischen Darstellung eignet sich die Per-

meabilitätszahl besser. Sie gibt bei isotropen Stoffen an, um wieviel ihre Permea-

bilität (z. B. Kupfer, Eisen, Gas) größer oder kleiner als  μ 0 ist. 

Zur Polarisation tragen mehrere Vorgänge bei. Deshalb unterteilt man Ma-

terialien nach den magnetischen Eigenschaften in (Tab. 3.2):

1. 

magnetisch neutrale Stoffe mit  μ r = 1 und Luft als typischem Vertreter, 

2. 

magnetisch nichtneutrale Stoffe mit inneren magnetischen Erregungen

durch das äußere Feld. Unterschieden wird zwischen:

 diamagnetischen  Stoffen ( μ r  <  1) mit negativer Suszeptibilität  χ m, 

 paramagnetischen  Stoffen ( μ r  >  1) mit positiver Suszeptibilität  χ m, 

 ferromagnetischen  Materialien mit  μ r    1 und  χ m    1. 

Diamagnetismus Diamagnetische Stoffe schwächen das Magnetfeld durch ein zu-

sätzliches magnetisches Moment der Elektronenhülle mit der Folge  μ r  <  1,  χ m  <  0. 

Der Einfluss kann praktisch vernachlässigt werden selbst in Stoffen mit starkem

Diamagnetismus (wie Wismut  μ r = 1  −  0 ,  1610 − 3; Kupfer  μ r = 1  −  10  ·  10 − 6). 

Supraleitende Materialien haben  χ m =  − 1, deshalb existiert im Inneren eines Su-

praleiters kein magnetischer Fluss. 

Paramagnetismus Paramagnetische Stoffe haben ein natürliches Dipolmoment. Die

Dipole sind durch die thermische Bewegung statistisch ungeordnet und der Stoff

wirkt nach außen unmagnetisch. Ein angelegtes Feld orientiert die Dipole in Feld-

richtung und die diamagnetische Wirkung wird überkompensiert: sie  verst¨

 arken

 geringf¨

 ugig das B-Feld. Beispiele sind z. B. Aluminium  μ r = 1 + 22  ·  10 − 6 und Pla-

tin  μ r = 1 + 330  ·  10 − 6. Ohne Feld kehren die Dipole in den ungeordneten Zustand

zurück. Wegen der Permeabilitätszahl von etwa 1 werden dia- und paramagneti-

sche Stoffe praktisch als nichtmagnetisch angesehen mit nur wenigen Anwendungen

(beispielsweise zur Messung des O2-Gehaltes in Gasgemischen, weil Sauerstoff stark

paramagnetisch ist, während die meisten Gase Diamagnetismus zeigen). 

Ferromagnetismus Hier haben die Atome ein natürliches Dipolmoment und

zusätzliche Kopplungen zwischen den Spins benachbarter Atome. Dadurch
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Abb. 3.1.17. Ferromagnetismus. (a) Weißsche Bezirke ohne und mit starkem Magnetfeld, 

Orientierungsausrichtung. (b) Hysterese- und Neukurve eines magnetischen Materials mit

Remanenz- und Koerzitivpunkten. (c) Hystereskurven magnetisch harter (1) und weicher

(2) Materialien. (d) Magnetisierungskennlinien typischer magnetischer Materialien

erfolgt eine spontane Ausrichtung in kleinen Bereichen, den  Weißschen Be-

 zirken 14. 

Die Dipolmomente sind zunächst statistisch verteilt und der Stoff erscheint mag-

netisch neutral. Zwischen den Bezirken liegen die  Blochw¨

 ande  als Grenzen

(Abb. 3.1.17a). An ihnen erfolgt ein allmählicher Übergang der Dipolorientierung

aus dem einen in den anderen Weißschen Bezirk. Mit steigender Temperatur sinkt

die spontane Magnetisierung und der Stoff verliert bei einer kritischen Tempera-

tur, der  Curie-Temperatur, (Eisen 760  ◦ C, Nickel 360 ◦ C) seine ferromagnetischen

Eigenschaften. 

Ein äußeres Magnetfeld verschiebt die Blochwände und es wachsen jene Weiß-

schen Bezirke, deren Orientierung am besten zur äußeren Feldrichtung passt. 

Dadurch ist der Effekt um Größenordnung stärker als bei paramagnetischen

Materialien. Die Wandverschiebung hängt vom Magnetfeld ab und schafft

eine nichtlineare Abhängigkeit  B =  f ( H). Sie ist bei geringer Feldstärke re-

versibel. Oberhalb einer kritischen Feldstärke löst sich die Blochwand und

14 Pierre-Ernest Weiß französischer Physiker, 1865–1940. 
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wandert solange, bis sie an einer Fehlstelle fixiert. Dann wird die Wandver-

schiebung irreversibel, bemerkbar als  Barkhausen-Spr¨

 unge. Typische ferro-

magnetische Stoffe sind Eisen, Kobalt, Nickel und Legierungen. 

Ferromagnetische Stoffe haben  drei typische Merkmale:

die verstärkende Wirkung des äußeren Feldes auf die innere Erregung, 

die zu hoher Permeabilität  μ r (bis 106) führt; 

die nichtlineare Abhängigkeit der Permeabilitätszahl von der Flussdichte

 μ r =  f ( B); 

den nicht eindeutigen Verlauf  B =  f ( H), der sich u. a. als  Restmagne-

 tismus  nach Abschalten des äußeren magnetischen Feldes zeigt. Darauf

basieren Dauermagnete. 

Aus praktischen Gründen unterteilt man magnetische Werkstoffe nur in  nicht-

 ferromagnetische  mit Merkmalen wie Luft ( μ r = 1,  B ∼ H) und  ferromagne-

 tische ( μ r    1, nichtlineare  B,  H-Beziehung, Hysterese). 

Magnetisierungskurve, Hysteresekurve Die Flussdichte  B über der magne-

tischen Feldstärke  H, die sog.  B,H-Kurve, hat für alle Ferromagnetika einen

typischen Verlauf (Abb. 3.1.17b):

1. 

 Neukurve  Ausgehend vom unmagnetischen Zustand entsteht mit wach-

sender magnetischer Erregung die Neukurve  AB. Dabei richten sich die

Elementarmagnete bereichsweise in  B-Richtung aus. Wegen ihrer be-

grenzten Zahl sinkt die Menge noch ausrichtbarer Elementarmagnete mit

steigendem magnetischem Feld. Sind alle ausgerichtet, so wächst  B  nur

noch proportional zu  H  wie im Vakuum. Das ist der  Sättigungsbereich

(Flussdichte  B ≈ (1 ,  5  . . .  2) T). 

Gesättigtes Ferromagnetikum besitzt schlechtes magnetisches

Leit-

” 

vermögen“. 

Im Wendepunkt P des  B,  H-Verlaufes (Abb. 3.1.17b) ist die  differen-

 zielle relative Permeabilit¨

 at μ r = d B/ d H  am größten. Sie beginnt mit

einer  Anfangspermeabilit¨

 at (Steigung der Neukurve im Ursprung), die

bei weichmagnetischen Materialien  ≈  105 betragen kann. 

2. 

 Hysteresekurve  Die Änderung der Lage der Elementarmagnete verursacht

Reibungsverluste“ durch molekulare Kräfte. Sie führen zur  Hysterese

” 

der  B,  H-Kurve.15

15 Die Hysterese wurde von Ch. P. Steinmetz 1892 entdeckt. Ch. P. Steinmetz, deutsch-

amerikanischer Ingenieur (1865–1923), er führte die komplexen Größen zur Lösung

von Wechselstromproblemen ein (s. Bd. 3). 
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Wurde ein Ferromagnetikum längs der Neukurve von  H = 0 auf + H max, 

+ B max magnetisiert, so durchfährt man beim  Entmagnetisieren (Richtungsum-

kehr von  H  und  B) und erneutem Aufmagnetisieren nicht mehr die Neukurve, 

sondern folgenden Verlauf:

(a) Bei Verringerung der Feldstärke von + H max auf  H = 0 sinkt  B  auf den

(positiven)  Remanenzwert B R. Das ist eine Restmagnetisierung, weil die

Mehrheit der umgeklappten Bereiche noch in der aufmagnetisierten Rich-

tung erhalten bleibt. 

(b) Ein äußeres Gegenfeld ( −H) senkt  B  weiter bis auf Null bei der  Koerzi-

 tivfeldst¨

 arke H C. Der Kurventeil CD ist die  Entmagnetisierungskennlinie. 

Das Gegenfeld baut die Remanzflussdichte durch immer neue Umklapp-

vorgänge schließlich ab und bei der Koerzitivfeldstärke heben sich die Ori-

entierungen auf. 

(c) Mit Absinken auf  −H max (Kurve DE) fällt  B  auf  −B max, dabei richten

sich die Dipole in entgegengesetzter Feldrichtung aus. 

(d) Bei erneuter Richtungsumkehr von  H (Aufmagnetisieren) schließlich

steigt  B  von  −B max wieder auf + B max an (Kurve EF - GB). Damit ist

die Hysteresekurve nach zweimaliger Feldumkehr geschlossen. 

Die Hysteresekurve ferromagnetischer Stoffe ist der Zusammenhang zwi-

schen Flussdichte  B  und Feldstärke  H  bei einem Magnetisierungszyklus. 

Markante Punkte sind:

die  Anfangspermeabilit¨

 at (Steigung in Ursprungsnähe); 

die  S¨

 attigungsflussdichte  mit Ausrichtung aller Weißsche Bezirke (in Ei-

sen bei etwa (1  . . .  2)T, bei Ferriten (0 ,  3  . . .  0 ,  5)T); 

die  Remanenzflussdichte B R als zurückbleibende Flussdichte nach dem

Aufmagnetisieren; 

die  Koerzitivfeldst¨

 arke H C, die nach dem Aufmagnetisieren zum Ver-

schwinden der Flussdichte erforderlich ist. 

Nach der Form der Hysteresekurve unterscheidet man (Abb. 3.1.17c):

 magnetisch weiche Werkstoffe  mit schmaler Hysteresekurve und geringer Koer-

zitivfeldstärke:  H C  ≈ (0 ,  01  . . .  30)A / cm,  B R  ≈ (0 ,  15  . . .  2)T. Merkmal ist die hohe Anfangspermeabilität. Typische Materialien sind Elektrobleche aus Fe-Si-Legierung für Eisenkreise (=  magnetische Kreise) von Transformatoren, elek-

trischen Maschinen, für Abschirmzwecke u. a. Vereinfachend wird die Hyste-

reseschleife durch einen  mittleren Verlauf  ersetzt, die  Magnetisierungs-  oder

 Kommutierungskurve (Abb. 3.1.17d) als geometrischer Ort aller Umkehrpunkte

 H max,  B max der Hysteresekurve im Feldstärkebereich  H = 0  . . . H max. 

 magnetisch harte Werkstoffe  mit breiter Hystereseschleife und großer Koerzitiv-

feldstärke:  H C  >  300A / cm,  B R  ≈ (0 ,  6  . . .  0 ,  8)T. Dazu gehören gehärtete Stähle und viele Legierungen wie die Al-Ni-Co-Vertreter, Verbindungen von seltenen

Erden und Kobalt u. a. Sie sind Grundlage der Dauermagnete (s. Kap. 3.2.4). 

Angestrebt wird ein großer Energieinhalt ( H · B)max im zweiten Quadranten

der  B,  H-Kurve. 
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Tab. 3.3. Weich- und hartmagnetische Werkstoffe

Werkstoff Zusammen-

 H C

 B R

 μ/ 103  H C B R

Anwendungen

setzung

A/m

T

AVs/m2

Eisen

 <  99,9% Fe

100 . . . 200

1,2

3  . . .  10  <  250

Labor

Dynamo-

0 ,  7  . . .  2 %

4  . . .  40

1,2

0,3

 <  65

Generatoren

blech

Si, Rest Fe

. . . 1,4 . . . 8

Transformatoren

Motoren

Trafoblech

4 ,  5 % Si, 

4 . . . 

1,2

0,3

 <  60

NF- Übertrager

Rest Fe

. . . 40

. . . 1,4 . . . 8

Mu-Metall

77 % Ni, 

1. . . 5

0,5

30

Abschrimung

5 % Cu, 

. . . 100

3 % Cr

Ferrit

Mn  . . .  Zn

0,01. . . 

0,5

0,3

HF- Übertrager

. . . 10

. . . 2

. . . 5

AlNiCo 160 12 % Al, 

50  ·  103

0,65

33  ·  103 Dauermagnet

24 % Ni, 

12 % Co, 

48 % Fe, 

Ferroxdur

BaO 6 Fe2O3

250  ·  103

0,33

20  ·  103 Speicher

 magnetisch halbharte Werkstoffe  mit rechteckförmiger  B,  H-Kurve bei hoher Re-

manenz (Kurve 3 in Abb. 3.1.17c). Einsatzgebiete: Relais. 

 Ferritwerkstoffe  sind Verbindungen vom Typ n(MeO)m(Fe2O3), dabei ist Me

das zweiwertige Ion eines Metalls. Sie können magnetisch weich bis hart aus-

geführt werden. 

weichmagnetische Ferrite haben eine hohe Anfangspermeabilität (100  . . . 

10 .  000), geringe Sättigungsinduktion (etwa 0,5 T im Vergleich zu Eisen). 

Einsatzbereiche sind Übertrager und Induktivitätskerne der HF-Technik, 

Impulsübertrager, Zeilentransformatoren, Magnetköpfe. 

hartmagnetische Ferrite mit hoher Koerzitivfeldstärke. Anwendungsgebiete:

Dauermagnete (kleine Gleichstrommaschinen, Lautsprecher, Zug- und Hal-

temagnete, magnetische Kupplungen). 

Ferrite mit rechteckförmiger Hysteresekurve dienten lange als Speichermag-

nete. Sie finden sich heute noch in Schaltnetzteilen. 

 S¨

 attigung.  Nach Erreichen einer bestimmten Flussdichte  B max ( ≈  1 ,  5  . . .  2 T) sind alle Elementarmagnete ausgerichtet und sie wächst nur noch proportional

zu  H  wie in Luft. Dieser Bereich spielt eine Rolle für die Bemessung magne-

tischer Kreise (s. Kap. 3.2.3), obwohl sie gerade deutlich unterhalb der Sättigung

betrieben werden müssen, um die Vorteile des Ferromagnetikums auszunutzen. 

Tabelle 3.3 enthält Richtwerte einiger ferromagnetischer Werkstoffe. 
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Abb. 3.1.18. Magnetische Feldgrößen an einer Grenzfläche. (a) Stetigkeit der Normalkom-

ponente der Flussdichte  B. (b) Stetigkeit der Tangentialkomponente der Feldstärke  H

(mit dem Sonderfall eines Flächenstromes  K). (c) Die Stetigkeit der Normalkomponente

der Flussdichte bedingt unterschiedliche Normalkomponenten der Feldstärke  H. (d) Bre-

chung der  H-Linien an der Grenzfläche Eisen-Luft bei verschiedenem Einfallswinkel

Hystereseverluste Die Ummagnetisierung ferromagnetischer Materialien erfordert

Arbeit. Sie drückt sich in der Fläche der Hysteresekurve aus, die die Dimension

einer spezifischen Arbeit hat: d W /d V . Weil diese Arbeit mit der Häufigkeit der

Ummagnetisierung (pro Zeiteinheit) steigt, ist sie vorrangig ein Problem der Wech-

selstromtechnik (s. Bd. 3)

3.1.6 Eigenschaften an Grenzfl¨

achen

Ein räumlich abgegrenztes ferromagnetisches Gebilde, wie der Eisenkreis, 

stößt immer gegen ein Nichtferromagnetikum (Luft): dann treffen an den

Oberflächen Stoffe unterschiedlicher Permeabilität  μ  sprunghaft aufeinander

(Abb. 3.1.18a) und es kommt zur  Brechung  magnetischer Feldlinien (s. auch

Abb. A.2.5, Bd. 1). Das Verhalten der Flussdichte  B  und Feldstärke  H  an

Grenzflächen beruht:

1. 

auf der  Quellenfreiheit der Flussdichte B. Analog zum stationären Strö-

mungsfeld folgt daraus die  Stetigkeit der Normalkomponenten  von  B:

Stetigkeit der Normalkomponenten

 B n1 =  B n2 . 

(3.1.31)

der magnetischen Flussdichte
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Das Ergebnis ergibt sich aus Gl. (3.1.5), wenn der magnetische Fluss

durch ein differenzielles Volumenelement (Flachzylinder verschwindender

Dicke) an der Grenzfläche untersucht wird. Die Flächennormalen der

Seitenfläche geben keinen Beitrag und mit  −B n1d A +  B n2d A = 0 folgt

obiges Ergebnis und daraus mit Gl. (3.1.11)

 H n1

 μ r2

Normalkomponenten der

=

 . 

(3.1.32)

 H n2

 μ r1

magnetischen Feldstärke

An der Grenzfläche zweier verschiedener magnetischer Materialien ist

die Normalkomponente der magnetischen Flussdichte  B  immer stetig, 

sie bildet jedoch für die Normalkomponenten der magnetischen Feld-

stärke  H  Quelle und Senke: die magnetische Feldstärke springt an der

Grenzfläche so, dass im Material mit kleinerer Permeabilität höhere

Feldstärke herrscht. 

Ein analoges Ergebnis galt für die Normalkomponenten der elektrischen Strom-

dichte  J  im Strömungsfeld (s. Kap. 1.3.3) und die Flussdichte  D  im elektrostatischen Feld. In Abb. 3.1.18c wurden die unterschiedlichen Normalkompo-

nenten der magnetischen Feldstärke angedeutet. 

2. 

auf der  Wirbelfreiheit der magnetischen Feldst¨

 arke  in Gebieten, die keine

Ströme umfassen. Im elektrostatischen Feld war die Feldstärke wirbel-



frei. Dies führte zu

 E ·  d s = 0 (Gl. (1.2.2)). Die analoge Beziehung

  H ·  d s = 0 gilt außerhalb umfasster Ströme. Für einen differenziel-

len geschlossenen Integrationsweg um die Grenzfläche (Abb. 3.1.18b) er-

gibt sich  H t1d s − H t2d s = 0 und schließlich in Analogie zum Ergebnis

 E t1 =  E t2 des elektrostatischen Feldes

Stetigkeit der Tangentialkomponenten

 H t1 =  H t2

(3.1.33)

der magnetischen Feldstärke

 B t1

 μ r1

Tangentialkomponenten der

=

 . 

(3.1.34)

 B t2

 μ r2

magnetischen Flussdichte

Voraussetzung für Gl. (3.1.33) ist, dass in der Grenzfläche keine Ströme fließen. 

Fließt dagegen an der Oberfläche ein  Fl¨

 achenstrom (Flächenstromdichte  K), 

so muss er durch sein Magnetfeld in der Stetigkeitsbedingung Gl. (3.1.33)

berücksichtigt werden (in Abb. 3.1.18b angedeutet). Die Verhältnisse ähneln

der Verschiebungsflussdichte an einer Grenzfläche im elektrischen Feld, wenn

diese eine Ladungsdichte  σ  trägt. Ein Flächenstrom wird realisiert durch  w-

nebeneinander liegende stromdurchflossene Windungen, seine Orientierung er-

gibt sich aus Stromfluss- und Windungsrichtung. 

An einer Grenzfläche zwischen Gebieten mit sprunghaft verschiede-

nen Permeabilitäten sind die Tangentialkomponenten der magnetischen
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Feldstärke  H  und Normalkomponenten der magnetischen Flussdichte  B

stetig. 

Während das  B-Feld durchgängig quellenfrei ist, stellt das  H-Feld an Stellen

mit veränderter Permeabilität ein Quellenfeld dar! Abbildung 3.1.18c zeigt

die Stetigkeit der Normalkomponenten der Induktion  B  im Eisenkreis mit

verschiedenen Materialien. An der Grenzfläche entstehen zusätzliche Feld-

stärkelinien im Material mit kleinerer Permeabilität. 

Schließlich gibt es auch ein  Brechungsgesetz  des magnetischen Feldes als Folge

der bisherigen Bedingungen wegen

 B t1

 H t1

 B t2

 H t2

tan  α 1 =

=

 , 

tan  α 2 =

=

 B n1

 H n1

 B n2

 H n2

tan  α 1

 B t1

 H n2

 μ r1

Brechungsgesetz des

=

=

=

 . 

(3.1.35)

tan  α 2

 B t2

 H n1

 μ r2

magnetischen Feldes

Feldlinien werden beim Übergang in ein Medium der kleineren Permeabilität

zur Normalen hin gebrochen. 

Weil die Tangens der Winkel zwischen  B  bzw.  H  und der Flächennormalen

proportional der Permeabilität sind, treten die Feldlinien aus hochpermea-

blen Stoffen praktisch rechtwinklig in Gebiete mit geringer Permeabilität:

treffen  H-Linien im Eisen ( μ 1   μ 2, Abb. 3.1.18d) schräg (im Winkel 0  < α 1  < π/ 2) auf die Grenzfläche, so treten sie wegen tan  α 2 = tan  α 1  ·( μ 2 /μ 1) =

tan  α 1  · (1 /μ Fe)  ≈  0 stets fast senkrecht in Luft aus, weil 1 /μ Fe  ≈  0 ist. In-folge  H t2 =  B t2 /μ 2 =  H t1 =  B t1 /μ 1 wird die Flussdichte  B t1 =  μ Fe B t2

 parallel  zur Grenzfläche verlaufender Feldlinien viel größer als in Luft:  Eisen

 f¨

 uhrt“ die magnetische Flussdichte, es

 zieht die B-Linien förmlich an“. 

 ” 

 ” 

Dieses Verhalten ähnelt dem von Strömungslinien in Materialien großer Leit-

fähigkeit. 

Die magnetische Flussdichte und Feldstärke stehen praktisch senkrecht auf

der Oberfläche magnetisch gut leitender Körper, umgekehrt ist die magne-

tische Feldstärke  H  in ihrem Innern sehr klein. 

Das ist der Grund für die Konzentration magnetischer Felder in magnetischen

Kreisen. Sie sorgt auch durch magnetische Abschirmung für nahezu feldfreie

Räume als Schutz empfindlicher Geräte gegen äußere Magnetfelder. 

Die Grenzfläche hochpermeables Material-Luft hat grundlegende Bedeutung

für die Funktion von Elektromagneten, Motoren und Generatoren. 

Die beiden Grundmerkmale dieser Grenzfläche, nämlich praktisch senk-

rechter Austritt der  B-Linien aus Eisen und die Führungseigenschaft par-

allel zur Grenzfläche für solche Linien (Feldlinienkonzentration) erlauben
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Abb. 3.1.19. Magnetfelder verschiedener Anordnungen. (a) Dauermagnet, Verlauf der

Flussdichte und (b) magnetischen Feldstärke innerhalb und außerhalb des Magneten. 

(c) Flussdichte in einer Spule mit ferromagnetischem Kern. (d) Zugehörige Verteilung der

magnetischen Feldstärke

Rückschlüsse auf den Feldverlauf in magnetischen Kreisen (etwa zur An-

wendung des Durchflutungssatzes). 

Die Merkmale schwächen sich allerdings ab, je mehr der magnetische Kreis

in die Sättigung gelangt. 

Beispiel 3.1.9 Stabmagnet Ein Stabmagnet (Abb. 3.1.19a) wird annähernd homo-

gen von  B-Linien durchsetzt. Sie bilden geschlossene Linien, treten am Nordpol“

” 

aus und am Südpol“ wieder ein. Die Feldlinien der Feldstärke  H  dagegen quellen

” 

im Innen- wie Außenraum aus dem Nordpol, enden am Südpol und haben im Dauer-

magnet entgegengesetzte Orientierung. Das ergibt sich aus dem Durchflutungssatz:



weil eine Erregung fehlt (Θ =  wI = 0), muss wegen

 H ·  d s = 0 das Linienintegral

des Außenraumes ein gleich großes im Innenraum kompensieren (Richtungsumkehr

von  H Fe). Das folgt auch übereinstimmend mit der Hysteresekurve (Abb. 3.1.17b). 

Dort liegt der Arbeitspunkt der Anordnung im 2. Quadranten des  B, H-Verlaufs, 

denn der Außenraum kann als Lastkennlinie des Dauermagneten aufgefasst wer-

den (Gerade im 2. Quadranten der  B, H-Kurve). Das wird beim Dauermagnetkreis

näher erläutert. 

Betrachtet man die Feldverläufe einer stromdurchflossenen Spule mit ferromagne-

tischem Kern (Abb. 3.1.19c), so fällt die Flusskonzentration durch den Kern auf. 

Bei gleicher magnetischer Erregung (Θ =  wI, materialunabhängig) herrscht die

Flussdichte  B =  μ r μ 0 H. Dieser größere magnetische Fluss tritt unverändert durch

die Endflächen in den Außenraum. Dann muss die magnetische Feldstärke in Luft

(Normalkomponente)  μ r mal größer sein als  H Fe im ferromagnetischen Kern und

die Grenzfläche wirkt als Quelle von  H-Linien (Abb. 3.1.19d).  Ein Eisenkern erhöht

 die Flussdichte in und außerhalb der Spule erheblich. 

Bringt man hingegen einen ferromagnetischen Stab neben eine Luftspule, so herrscht

in der Spule der gleiche Fluss, er wird aber im Ferromagnetikum gebündelt (Fluss-

linienverdichtung, höhere Induktion, Feldverzerrung). 
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3.2 Die Integralgr¨

oßen des magnetischen Feldes

Bei technischen Anwendungen interessiert meist nicht das magnetische Feld

im Raumpunkt, sondern nur das Verhalten integraler Größen:

der  magnetische Fluss Φ als die mit der Flussdichte  B  verknüpfte Größe, 

die  magnetische Spannung V (bzw. das magnetische Potenzial) gebunden

an die Feldstärke  H; 

der  magnetische Widerstand R m als Verknüpfungsgröße zwischen Fluss

Φ und magnetischer Spannung  V . Sie bilden die Grundlage des  magne-

 tischen Kreises. Er verhält sich in vielen Punkten analog zum Grund-

stromkreis. 

die  Induktivit¨

 at L  als  Verknüpfungsgröße zwischen magnetischem Fluss Φ

 und Strom I. Sie drückt die Wechselwirkung zwischen elektrischem und

magnetischem Kreis am Schaltelement aus und ist Umsatzstelle elektri-

scher Energie in magnetische und umgekehrt. 

Analog wurde beim elektrostatischen und Strömungsfeld mit der Einführung des

Verschiebungsflusses Ψ (mit der zugeordneten Verschiebungsflussdichte  D) und des

Stromes  I (mit der zugeordneten Stromdichte  J ) vorgegangen und die Schaltele-

mente Kondensator und Widerstand begründet. 

3.2.1 Magnetischer Fluss

Wesen Der magnetische Fluss Φ ist nach dem Begriff des Vektorflusses ei-

ne integrale Größe über eine bestimmte Fläche im Raum, also die Wirkung

aller durch diese Fläche tretenden Feldlinien der Flussdichte  B. Erfasst das

(vektorielle) Flächenelement d A (Abb. 3.2.1a) den Teilfluss dΦ =  B ·  d A, so beträgt der Gesamtfluss Φ durch eine (materielle oder gedachte) Fläche  A





Magnetischer Fluss, 

Φ =

 B ·  d A =

 B ·  d A  cos ∠ ( B,  d A)

(3.2.1)

Definition

 A

 A

oder für das  homogene Feld

Φ =  B · A. 

(3.2.2)

Gleichung (3.2.1) erinnert an die Stromdefinition im Strömungsfeld aus der

Stromdichte  J. Der Fluss wird am größten, wenn die Feldlinien der Fluss-

dichte  B  parallel zu d A  verlaufen. Wie dort lässt sich auch eine magnetische

Flussröhre mit dem Teilfluss ΔΦ und der Querschnittsfläche Δ A  definie-

ren. Abbildung 3.2.1b zeigt Flussröhren einer stromdurchflossenen Spule. Die
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Abb. 3.2.1. Magnetischer Fluss. (a) Definition. (b) Flussröhren im Magnetfeld einer strom-

durchflossenen Spule. (c) Fluss im homogenen Feld. (d) Magnetischer Leiter mit unter-

schiedlichen Querschnitten durchsetzt vom gleichen Fluss

Abb. 3.2.2. Quellenfreiheit des magnetischen Flusses. (a) Veranschaulichung. Die Sum-

me aller Beträge dΦ =  B ·  d A über eine beliebige Hülle verschwindet. (b) Magnetischer

Knotensatz als Folge der Quellenfreiheit. (c) Flussbegriff am geraden stromdurchflossenen

Leiter. (d) Stromführender Leiter und ausgewählte Flussröhren

Flussröhre entspricht in der ebenen Felddarstellung dem Abstand benachbar-

ter Feldlinien, auch im homogenen Feld (Abb. 3.2.1c). 

Zwangsläufig folgt für einen magnetischen Leiter mit Querschnittssprüngen

(Abb. 3.2.1d) Φ =  B 1 A 1 =  B 2 A 2, wenn die Flächen  Ai  senkrecht zu den Flussdichtelinien orientiert und die einzelnen Querschnitte hinreichend weit von den

Übergangsbereichen entfernt sind (und sich damit die Störungen nicht auswirken). 

Der  magnetischer Fluss Φ kennzeichnet die Gesamtwirkung der magne-

tischen Flussdichte  B über eine Fläche  A, also die Gesamtheit aller Feldli-

nien durch diese Fläche. 

Die Bezeichnung magnetischer Fluss“ hat unmittelbaren Bezug zum  Fl¨

 acheninte-

” 

 gral:  es handelt sich nach Anhang A2, Bd. 1 um den Fluss des Vektors  B“. Al-

” 

le Induktionslinien  B, die in Abb. 3.2.1a durch die Fläche  A  treten, bilden den magnetischen Fluss des Vektors  B. Beim Stabmagnet (Abb. 3.1.19a) beispielsweise

umfasst der Fluss das gesamte magnetische Feld und fließt außerhalb des Magneten

vom Nord- zum Südpol. 
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 Ursache des magnetischen Flusses  ist entweder ein Dauermagnet oder (meist)

ein Strom (Leitungs-, Verschiebungsstrom), den der Fluss als Gesamterschei-

nung umwirbelt. Deshalb heißt der vom Magnetfeld erfüllte Raum (in Analo-

gie zum elektrischen Stromkreis) generell  magnetischer Kreis (s. Kap. 3.2.3), 

besonders ausgeprägt bei Spulen mit ferromagnetischem Kern. 

Einheit Die Einheit des magnetischen Flusses lautet

Vs

[Φ] = [ B] [ A] = 1

m2 = 1 Vs = 1Wb (Weber) = 1 T  ·  m2 . 

m2

Größenordnungen der Flussdichte enthält Kap. 3.1.1. 

Richtungszuordnung Der magnetische Fluss hat als Skalargröße, genau wie

der Strom, wegen des Skalarproduktes Gl. (3.2.1) ein Vorzeichen und da-

mit eine physikalische Richtung (Richtungszuordnung durch Zählpfeil). Sie

stimmt mit der Flussdichte  B  positiv überein, wenn die Flächennormale von

d A  die gleiche Richtung hat oder mit  B  einen spitzen Winkel bildet oder

(Abb. 3.2.1a)

Die Flussrichtung Φ ist positiv (negativ), wenn die Flussdichte aus der be-

trachteten Fläche austritt (in die Fläche eintritt). 

Haupteigenschaft: Quellenfreiheit Aus der Quellenfreiheit der Flussdichte

(Gl. (3.1.8)) folgt:

Magnetische Flusslinien sind stets in sich geschlossen, unabhängig vom Ma-

terial. Deshalb ist der Fluss diejenige magnetische Erscheinung, die sich in

dem vom Magnetfeld erfassten Raum in jedem Gesamtquerschnitt mit glei-

cher Stärke ausbildet. Damit hat er einen  Stromcharakter in ¨

 ubertragenem

 Sinn, ist also ein in sich geschlossenes Band“ (s. Kap. 1.4.3, Bd. 1). 

” 

Wir greifen aus einem Flussdichtefeld  B  ein beliebiges, von einer gedachten

oder materiellen Hülle umgrenztes Volumen heraus (Abb. 3.2.2a, b), in das

ausgewählte Teilflüsse Φ ν über Teilflächen ein- und ausströmen. Dann folgt

aus dieser Grundeigenschaft









 B ·  d A =

 B ·  d A +

 B ·  d A +  . . . +

 B ·  d A

 A

 A 1

 A 2

 Aν

= Φ1 + Φ2 +  . . . + Φ ν = 0 . 

Fluss, der in ein Volumen eintritt, muss wieder aus ihm austreten:





Φ ν =   B ·  d A = 0 . 

Magnetischer Knotensatz (3.2.3)

 ν
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Die algebraische Summe aller magnetischen Flüsse durch eine materielle

oder gedachte geschlossene Hüllfläche verschwindet. 

Austretende Flüsse positiv, eintretende negativ gezählt oder umgekehrt. 

Das Ergebnis Gl. (3.2.3) heißt auch Satz vom Hüllenfluss oder Gaußsches Ge-

” 

setz des Magnetfeldes“ übereinstimmend mit dem Knotensatz im Strömungs-

feld. Es ist ist ein  Naturgesetz. 

Als Folge dieses Satzes hängt der Teil durch eine Fläche nur vom Verlauf ihrer

Randkurve, nicht der Flächengestalt ab (Abb. 3.2.2a), denn alle gleichsinnig

orientierten Flächen mit gleichem Rand werden vom gleichen magnetischen

Fluss durchsetzt. Das begründet, wie beim Strömungsfeld, die Einführung

der magnetischen Flussröhre ΔΦ (Abb. 3.2.1b, c). 

Zusammengefasst gilt:

Der magnetische Fluss Φ ist eine in sich geschlossene Erscheinung. Er

umwirbelt den elektrischen Strom (Rechtsschraube), kann durch Feldli-

nien dargestellt werden und umfasst ihre Gesamtheit. Er kennzeichnet

das Magnetfeld wie der (dielektrische) Fluss Ψ das Ladungsfeld im Nicht-

leiter. 

Die Φ-Linien sind in sich geschlossen (auch über das Unendliche) und es

gibt deshalb keine Quellen und Senken, also auch keine magnetischen La-

dungen. Dagegen beginnen und enden die Ψ-Linien des elektrostatischen

Feldes auf Ladungen. 

Der magnetische Fluss wird durch stromdurchflossene Leiter (allgemei-

ner bewegte Ladungen) oder Permanentmagnete erzeugt. 

Eine weitere Folge des Satzes vom Hüllenfluss ist die Stetigkeit der Normal-

komponenten der Flussdichte  B  an der Grenze unterschiedlicher Permeabi-

litäten (Gl. (3.1.31)), während die magnetische Feldstärke  H  Quellen für die

Normalkomponente hat. 

Es bleibt noch hervorzuheben, dass der Flussbegriff  nicht  etwa mit der Be-

wegung von Teilchen verbunden ist. Wie beim Verschiebungsfluss handelt es

sich physikalisch um die Beschreibung eines  Raumzustandes, mathematisch

um den Fluss eines Vektors. 

Beispiel 3.2.1 Fluss eines geraden Leiters Der Fluss durch eine Fläche  A = ( r 2 −r 1) l in einer Ebene mit der Mittellinie eines geraden Leiters (Abb. 3.2.2c) ergibt sich

folgendermaßen: Die  B-Linien sind, wie die  H-Linien, konzentrische Kreise um den

stromdurchflossenen Leiter und durchsetzen die Fläche  A  senkrecht. Dann haben
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Abb. 3.2.3. Beispiele zur Flussberechnung. (a) Lange Zylinderspule, Flussdichte längs der

Spulenachse. (b) Fluss im Zwischenraum einer Doppelleitung bei gegensinniger Stromrich-

tung. (c) Fluss in einer dicht bewickelten Ringspule

die Flächenvektoren d A  und  B  gleiche Richtung senkrecht zur Fläche  A. Mit der Feldstärke  H( ) Gl. (3.1.15) des geraden Leiters und damit  B( ) =  μ 0 H( ) wird





 r 2



 I

 Il

 r 2

Φ =

 B ·  d A =

 Beϕ · eϕ d A =

 μ 0

 l d  =  μ 0

ln

 . 

2 π

2 π

 r 1

 A

 A

 r 1

Die Flussdichte ist inhomogen, der Fluss selbst von der Flächengeometrie bestimmt. 

In Abb. 3.2.2c,d wurden die Flussröhren für ausgewählte Feldlinien angedeutet. 

Beispiel 3.2.2 Fluss in einer Zylinderspule Gesucht ist der Fluss in einer Zylinder-

spule (Länge  l, Durchmesser  d, Strom  I) (Abb. 3.2.3a) unter der Annahme, dass

er die Spule auf gesamter Länge mit gleicher Stärke durchsetzt (homogenes Feld). 

Die Feldstärke im Innern wurde bereits berechnet (Abb. 3.1.12a, Gl. (3.1.21)). Wir

übernehmen das Ergebnis. Für die  z-Achse (Spulenachse) beträgt dann die Induk-

tion  B z =  μ 0 H z und mit den Zahlenwerten Windungszahl  w = 200,  d = 1 cm, 

 l = 10 cm,  I = 1 A





 μ 0 wI d 2 π

Φ =

 B ·  d A =

 B zd A z = B z A z =

 l

4

 A

 A

Vs 200  ·  1 A  ·  1 cm2 π

= 1 ,  25  ·  10 − 6

= 19 ,  6  ·  10 − 8 Vs . 

Am

10 cm  ·  4

Das Außenfeld kann nach den Darlegungen zu Abb. 3.1.12 vernachlässigt wer-

den. Auch die genauere Feldberechung für die kurze Zylinderspule (Beispiel 3.1.8)

bestätigt den raschen Abfall des magnetischen Feldes außerhalb der Spule. Die Be-

rechnung der Flussverteilung im Außenraum ist dagegen kompliziert: zwar muss

der gesamte äußere Fluss nach Gl. (3.2.3) mit dem inneren Fluss übereinstimmen, 

aber eine lokale Ermittlung der Teilflüsse ΔΦ setzt die Kenntnis der räumlichen

Verteilung der Feldstärke  H  voraus. 
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Beispiel 3.2.3 Flussberechnung, inhomogenes Feld Gesucht ist der Fluss je Länge  l

in der Ebene zwischen einer Doppelleitung (Abb. 3.2.3b), die von entgegengesetzten

Strömen gleicher Stärke durchflossen wird. An der Stelle  x überlagern sich die

Feldstärken beider Leiter (s. Gl. (3.1.23),  I 1 =  I 2 =  I):

 I

 I

 H 1( I 1) =

 , 

 H 2( I 2) =

2 πx

2 π(2 d − x)

und damit auch die Flussdichten  B( I) 



 μ 0 I

1

1

 B( I) =  μ 0 ( H 1( I 1) +  H 2( I 2)) =

+

 . 

2 π

 x

2 d − x

Die Flussdichte hängt vom Ort  x  zwischen den Leitern ab, ist aber längs der Leiter

konstant. Ferner gilt  B
 d A  und damit für den Teilfluss dΦ( I) =  B( I)  ·  d A =

 B( I) l d x. Der Gesamtfluss zwischen den Grenzen  x =  r  und  x = 2 d − r  ergibt sich durch Integration



2 d−r

 



 μ 0 Il

1

1

 μ 0 lI

2 d − r

Φ( I) =

 B( I)  ·  d A =

+

d x =

ln

 . 

(3.2.4)

2 π

 x

2 d − x

 π

 r

 A

 r

Gebiete in den Leitern selbst sind ausgeschlossen. Da 2 d − r  die Breite der durch-

setzten Fläche ist, verdoppelt sich das Ergebnis gegenüber dem Einzelleiter des

Beispiels 3.2.1. 

Beispiel 3.2.4 Flussberechnung, Ringspule Im Beispiel 3.1.5 (mit Abb. 3.1.12c)

wird die magnetische Feldstärke in der Ringspule bestimmt mit dem Ergebnis Gl. 

(3.1.22b) für die Komponente  Hϕ( ). Weil sie in radialer Richtung sinkt

(Abb. 3.2.3c), liegt ein inhomogenes Feld vor und der Fluss ergibt sich aus Gl. 

(3.2.1)



 r a

  μ r μ 0 wId

 μ r μ 0 wId

 r a

Φ =

 B( )  ·  d A =

d  =

ln

 . 

2 π

2 π

 r i

A

 r i

Da sich  Bϕ( ) =  μ r μ 0 Hϕ( ) nur in  -Richtung ändert und die Richtungen von  B

und d A übereinstimmen, wird als Flächenelement d A =  d d   ein Streifen der Breite d   gewählt (Höhe  d). Durch die Spulenform (Ring, geschlossen) und den Eisenkreis

herrscht in der Ringspule hohe Induktion und damit großer Fluss. Er verschwindet

praktisch im Außenraum. In der Spule wird das Feld bei geringer Spulenbreite  r a −r i

annähernd homogen. 

3.2.2 Magnetische Spannung, magnetisches Potenzial

Magnetische Spannung So, wie das Potenzial die Berechnung elektrischer Fel-

der vereinfacht, liegt es nahe, die Berechnung der magnetischen Feldstärke

über das Biot-Savartsche Gesetz durch Einführung eines  magnetischen Po-

” 

242

3. Das magnetische Feld

Abb. 3.2.4. Magnetisches (skalares) Potenzial. (a) Magnetfeld, magnetisches Potenzial und

magnetische Spannung außerhalb eines stromführenden Leiters. (b) Magnetische Spannung

bestimmt auf verschiedenen Integrationswegen. (c) Berechnung der magnetischen Span-

nung außerhalb eines Linienleiters

 tenzials“ zu vereinfachen. Eine Zwischenstufe dazu ist die  magnetische Span-

 nung V AB als Linienintegral der magnetischen Feldstärke  H  16

 B



Magnetische Spannung, 

 V AB =

 H ·  d s =  ψ A  − ψ B . 

(3.2.5)

Definitionsgleichung

 A

Das Linienintegral der magnetischen Feldstärke  H  zwischen zwei Punkten

A und B heißt magnetische Spannung  V  zwischen diesen Punkten. Sie ist

gleich der Differenz der diesen Punkten zugeordneten (skalaren) magne-

tischen Potenziale  ψ. 

Diese Definition entspricht zwar der Spannungsfestlegung im elektrischen Feld, doch

hängt sie, im Gegensatz dazu, nicht nur von den Endpunkten des Integrationsweges, 

 sondern i. a. auch seinem Verlauf ab! 

Abbildung 3.2.4a zeigt die magnetische Feldstärke  H  eines geraden Leiters, 

die darauf senkrecht stehenden Flächen-/Linien gleichen  magnetischen Po-

 tenzials ψ  und die  magnetische Spannung V (als Spannungsabfall) zwischen

zwei Potenzialflächen. Man vergleiche dazu die formale Übereinstimmung mit



der elektrischen Spannung  U AB, hergeleitet aus der Bedingung

 E ·  d s = 0

eines Potenzialfeldes. Wir ordnen der magnetischen Spannung (wie der elek-

trischen) einen physikalischen  Richtungssinn  in Integrationsrichtung zu. 

Einheit Die Einheit der magnetischen Spannung ergibt sich aus

A

[ V ] = [ H] [ s] =

m = A bzw. Aw . 

m

Sie stimmt zwangsläufig mit Einheit der Durchflutung (Gl. (3.1.12)) überein. 

16 Das Symbol  V  dient leider auch zur Kennzeichnung der Dimension Volt oder der

im englischen Schrifttum üblichen Bezeichnung der (elektrischen) Spannung. 
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Beispiel 3.2.5 Magnetische Spannung Wir untersuchen den Einfluss des Integrati-

onsweges am magnetischen Feld des unendlich langen, vom Strom  I  durchflossenen

Drahtes (Abb. 3.2.4a). Die  H-Linien sind konzentrische Kreise um den Leiter mit

 H =  eϕI/ 2 π. Die Äquipotenziallinien  ψ = const des magnetischen Potenzials (s. u.) stehen senkrecht auf den  H-Linien, verlaufen also  radial (wie andersartig

sieht das elektrische Potenzial einer Punktladung aus (!), s. Abb. 1.2.2c). Die mag-

netische Spannung  V AB wird zwischen den Punkten A ≡  1 und B ≡  2 auf zwei Wegen

ermittelt (Abb. 3.2.4b):

im  Rechtssystem  um die Stromrichtung  I, z. B. längs des Weges  s a. Das sei eine

Feldlinie vom Radius   (Feldlinie a). Mit d s =  eϕ d ϕ  und  H( ) =  eϕI/ 2 π

gilt mit dem Bezugswinkel  ϕ A = 0 in A und  ϕ B =  ϕ

B



 ϕ

  Ie

 I

 V

 ϕ

AB1 =  ψ A1  − ψ B1 =

 H ·  d s =

 · e

 ϕ. 

(3.2.6)

2 π

 ϕ d ϕ = 2 π

A

0

Auch ein anderer Integrationsweg im Rechtssystem um  I (z. B.  s a1) führt zum

gleichen Ergebnis. Speziell gilt für  einen Umlauf ϕ = 0  . . .  2 π V AB1 =  Iϕ/ 2 π| 2 π

0

=  I. 

Im  Linkssystem  um die Stromrichtung  I  längs des Weges d s b =  −eϕ d ϕ  ergibt die Integration (wieder längs einer Feldlinie mit dem Radius   = const)

B



2 π−ϕ



( −I) e

 I

 V

 ϕ

AB2 =  ψ A2  − ψ B2 =

 H ·  d s =

 · e

 ϕ

2 π

 ϕ d ϕ =  −I + 2 π

A

0

oder

 V AB2 =  V AB1  − I =  I − I = 0! 

(3.2.8)

Auch andere Integrationswege (im Linkssystem!) führen zum gleichen Ergeb-

nis. 

Werden die auf beiden Integrationswegen ermittelten Spannungen  V AB1 und  V AB2

unter Beachtung ihrer Richtungen addiert, so gilt





 V =  V AB1  − V AB2 =

 H ·  d s =  I. 

(3.2.8b)

Die Summe verschwindet  nicht, wie vom elektrostatischen Feld her zu erwarten

wäre. Sie ist vielmehr gleich dem Strom  I  innerhalb des Umlaufs. Das Ergebnis  V AB

hängt vom Integrationsweg ab, weil die Voraussetzung eines Potenzials, nämlich

 H ·  d s = 0 nicht in allen Fällen erfüllt ist. 

Im elektrischen Feld sorgt die  Wirbelfreiheit (  E ·  d s = 0) für die Eindeutigkeit der Spannung als Potenzialdifferenz zwischen zwei Punkten. Das Magnetfeld ist

dagegen  nicht wirbelfrei, vielmehr gilt der Durchflutungssatz Gl. (3.1.12). Deshalb

ist die magnetische Spannung des geraden Leiters um ganze Vielfache des Leiter-

stromes mehrdeutig (und damit auch das magnetische Potenzial). Nur wenn keine

Leiter umfasst werden, ergibt sich unabhängig vom Integrationsweg stets die gleiche

magnetische Spannung. 
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Das Beispiel unterstreicht die  Besonderheiten  der magnetischen Spannung:

1. 

Sie ist nur in Gebieten  außerhalb  stromführender Leiter definiert und

hängt dann nicht vom Weg ab:

 B



 B



 B



 V AB =

 H ·  d s =

 H ·  d s =

 H ·  d s

 A



 A



 A



Weg a

Weg b

Weg c

oder 



 H ·  d s =

 Vν = 0 . 

(3.2.9)

Weg  s

 ν

Lokalisiert man Teilspannungen zwischen jeweils zwei Punkten des mag-

netischen Feldes, so ergibt der geschlossene Umlauf Null. Daher kann

Gl. (3.2.9) als  Maschensatz des magnetischen Spannungsabfalls  aufge-

fasst werden. 

2. 

Schließt der Integrationsweg bewegte Ladungen bzw. Ströme ein, so ist

das magnetische Potenzial (s. u.)  nicht eindeutig.  F¨

 ur einen geschlossenen

 Weg gilt der Durchflutungssatz (Gl. (3.1.12)). 

3. 

Der magnetischen Spannung fehlt im Gegensatz zur elektrischen Span-

nung (Energie je Ladung) die anschauliche physikalische Bedeutung. 

Deshalb dient sie nur als Rechengröße in Gebieten außerhalb umfasster

Ströme. 

Beispiel 3.2.6 Magnetische Spannung Außerhalb eines geraden stromdurchflosse-

nen Leiters liegen drei Punkte P i( xi, yi),  i = 1  . . .  3 (Abb. 3.2.4c). Gesucht ist die magnetische Spannung  Vik  zwischen den Punkten P1, P2 und P3 und das Umlaufintegral

 H ·  d s  längs des angegebenen Weges. Wie groß ist  V 12 für  I = 10 A und x 1 = 10 cm,  y 1 = 3 cm,  x 2 = 20 cm,  y 2 = 30 cm? 

Aus Gl. (3.2.5) folgt die magnetische Spannung zwischen zwei Punkten

P k



 ϕ



 I

 e

 V

 ϕ · eϕ

1 k =

 H ·  d s =

d ϕ, 

2 π

 

P1

0

also speziell mit  ϕi = arctan( yi/xi)

P2



P3



 I

 I

 I

 I

 V 12 =

d ϕ =

( ϕ 2  − ϕ 1)

 V 23 =

d ϕ =

( ϕ 3  − ϕ 2)

2 π

2 π

2 π

2 π

P1

P2

P1



 I

 I

 V 31 =

d ϕ =

( ϕ 1  − ϕ 3)

2 π

2 π

P3
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und damit für den Umlauf





 I

 V =  V 12 +  V 23 +  V 31 =

 H ·  d s =

( ϕ 2  − ϕ 1 +  ϕ 3  − ϕ 2 +  ϕ 1  − ϕ 3) = 0 . 

2 π

Er verschwindet, da der Weg keinen Strom umfasst. Zahlenmäßig ergibt sich mit

 ϕ 1 = arctan 3 / 10 = 16 ,  7o,  ϕ 2 = arctan 30 / 20 = 56o

10 A

 π

 V 12 =

(56o  −  16 ,  7o)

2 π

180 ◦ = 1 ,  09 A . 

Magnetische Spannung und Durchflutung Wir verbinden das eben erhaltene

Ergebnis mit dem Durchflutungssatz Gl. (3.1.12). Wird das Linienintegral

2

der magnetischen Spannung  V 12 =

 H ·  d s  für einen geschlossenen Weg

1

bestimmt, so heißt die zugehörige Spannung die  Ring-  oder besser  Randspan-

 nung (Symbol ˚

 V )



˚

 V m =

 H ·  d s, 

Magnetische Randspannung, Definition (3.2.10a)

weil der Integrationsweg Rand der umschlossenen Fläche ist. Ohne umschlos-

sene Ströme verschwindet ˚

 V m, sonst gilt der Durchflutungssatz



 n



˚

 V m =

 H ·  d s =

 Iν = Θ . 

(3.2.10b)

 ν=1

Die magnetische Randspannung ˚

 V m längs einer beliebigen Randkurve ist



gleich der mit dieser Randkurve verketteten Durchflutung Θ =

 ν Iν  oder

 magnetomotorischen Kraft (MMK). 

Wir erläutern das Ergebnis an einem ringförmigen Eisenkreis mit Luftspalt

und mittleren Weglängen erregt von der Durchflutung Θ. Die Richtungen von

 B  und  H  ergeben sich aus der Rechte-Hand-Regel. Der im Durchflutungssatz

vorgeschriebene Umlauf wird in Einzelabschnitte AB, BC, CD usw. unterteilt. 

So entstehen einzelne Linienintegrale, also magnetische Spannungen  V



 B



 C



 D



 H ·  d s =

 H ·  d s +

 H ·  d s +

 H ·  d s +  . . . = Θ

 A

 B

 C

oder  V AB +  V BC +  V CD +  V DE +  V EF +  V FA = Θ. Verallgemeinert ist das Ergebnis der  magnetische Maschensatz

 n



 m



 n+ m



 Vν =

Θ μ  bzw . 

 Vk = 0 .  Magnetischer Maschensatz (3.2.10c)

 ν=1

 μ=1

 k=1

Längs eines Umlaufs in einer Masche ist die (vorzeichenbehaftete) Summe

aller  magnetischen Spannungsabf¨

 alle Vν  gleich der Summe der Durchflu-

tungen Θ μ  in dieser Masche (als Ursache des Flussantriebes). 
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Abb. 3.2.5. Magnetische Spannung, Umlaufspannung. (a) Beispiel einer magnetischen Ma-

schengleichung. (b) Spannungen zwischen zwei Punkten ausgedrückt über den Durchflu-

tungssatz (Maschengleichung). (c) Magnetische Spannung und Durchflutung im magne-

tischen Kreis

Die magnetische Spannung  V  wirkt positiv in Richtung des positiven magne-

tischen Flusses, die Durchflutung Θ wie eine elektromotorische Kraft (strom-

antreibend im elektrischen Kreis). 

Das Ergebnis Gl. (3.2.10c) entspricht formal dem Maschensatz im elektrischen

Kreis, dargestellt durch Spannungsabfälle und elektromotorische Kraft. Sie wird

in Flussrichtung positiv angesetzt. Darauf basiert die Analogie des folgenden Ab-

schnittes. Schwierigkeiten bereitet die Tatsache, dass die MMK nicht an einer Stelle

im magnetischen Kreis lokalisiert werden kann (etwa wie die Quellenspannung im

elektrischen Kreis an einer Grenzfläche). Hier erzeugt die Spule den magnetischen

Fluss, deshalb wirkt die Antriebsursache räumlich verteilt um den umfassten Strom. 

Allein aus Zweckmäßigkeit wird der Richtungspfeil von Θ (als äußeres Zeichen der

MMK) am Spulenort angesetzt. 

Neben der Auffassung der Durchflutung Θ als MMK in der Schreibweise

Gl. (3.2.10c) links (Abb. 3.2.5a) kann sie auch als  magnetischer Spannungsab-

 fall (oder  Klemmenspannung V q = Θ) einer magnetischen Spannungsquelle“

” 

definiert werden (wie die Spannungsquelle im Grundstromkreis). Dann gilt

der Maschensatz Gl. (3.2.10c) in der rechten Form und als Ersatzschaltung

Abb. 3.2.5a). Wir verwenden  diese  Darstellung, obwohl die erste gleichfalls

sehr verbreitet ist (öfter als die entsprechende elektrische Ersatzschaltung). 

Abbildung 3.2.5c erläutert den magnetischen Maschensatz an einem Eisenring mit

zwei stromdurchflossenen Spulen ( I 1,  w 1 = 3,  I 2,  w 2 = 2). Eingetragen sind die

Richtungen von  B,  H  aufgrund der Stromrichtung und des Wicklungssinnes und

somit des magnetischen Flusses Φ und der magnetischen Spannungen (Spannungs-

abfälle)  Vν. Der Maschensatz führt auf





 Vν =  I 1 w 1  − I 2 w 2 = Θ1  − Θ2 bzw . 

 Vν + Θ2  − Θ1 = 0 . 

 ν

 ν
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Abb. 3.2.6. Magnetisches Potenzial. (a) Potenzial- und Feldstärkefeld außerhalb eines

stromführenden Gebietes. (b) Überlagerung des magnetischen Potenzials herrührend von

mehreren parallelen Linienquellen. (c) Zusammensetzung des magnetischen Potenzials aus

Wegstücken endlicher Länge

Diese Spannungen sind vorzeichenbehaftet und haben, wie die elektrische Spannung, 

einen Zählpfeil. 

Das Beispiel verdeutlicht auch den Wegeinfluss. Dazu werden Wege C1, C2 und C5

durch die Wicklungen gewählt, C3 und C4 liegen außerhalb. Die Spannung zwischen

zwei Punkten A, B auf dem Eisenring hängt vom Weg ab: Der Weg C1, C2 durch

Spule 1 ergibt  V (C1)  − V (C2) = 0, (kein Strom umfasst), die Wege C1 und C3

hingegen  V (C1)  − V (C3) =  w 1 I 1, dagegen C3 und C4 wieder Null (kein Strom

umfasst) und die Wege C1, C5:  V (C1)  − V (C5) =  w 1 I 1  − w 2 I 2. 

Skalares magnetisches Potenzial* Im (wirbelfreien) elektrischen Feld wurde der

elektrischen Feldstärke  E  im Punkt P das (skalare) Potenzial  ϕ P

0



 ϕ P =

 E ·  d s +  ϕ 0

(3.2.11)

P

zugeordnet. Es liegt nahe, auch der magnetischen Feldstärke  H  ein (skalares)  mag-

 netisches Potenzial ψ  formal zuzuschreiben:

 H =  −  d ψ n 0 =  −  d V n 0 =  −  grad  ψ. 

(3.2.12)

d n

d n

Es beträgt im Punkt P mit beliebig wählbaren Bezugspotenzial  ψ P

0



(skalares) magnetisches

 ψ P =

 H ·  d s +  ψ 0 . 

(3.2.13)

Potenzial im Punkt P

P

Die Einheit des magnetischen skalaren Potenzials lautet, wie die der magnetischen

Spannung, [ ψ] = 1 A. 

Im Gegensatz zum elektrostatischen Potenzial  ϕ P ist das magnetische skalare

Potenzial  ψ P physikalisch anschaulich nicht interpretierbar (wohl aber formal, 

s. Abb. 3.2.6a). 
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Seine Einführung setzt ein wirbelfreies Magnetfeld (also

 H ·  d s = 0) voraus. Es

unterscheidet sich in verschiedenen Punkten vom elektrischen Potenzial:

kein Energiebezug und deshalb nur Rechengröße, 

geeignet nur zur Beschreibung stromfreier Bereiche, 

für stromführende Bereiche wird ein  magnetisches Vektorpotenzial  eingeführt, 

wegen des Wirbelcharakters des magnetischen Felds kann eine Äquipotenzial-

fläche nicht von einer anderen umhüllt werden (Beispiel Kugel). 

Nach Gl. (3.2.12) steht die Feldstärke  H  immer senkrecht auf Flächen gleichen

magnetischen Potenzials. Deshalb sind die Äquipotenzialflächen eines geraden lan-

gen Leiters (mit  H-Linien als konzentrischen Zylindern) senkrecht dazu stehende

radiale Flächen (Abb. 3.2.4a) außerhalb des Leiters und dort hängt das Potenzial

nicht vom Weg (zu einem Bezugspotenzial) ab. 

Abbildung 3.2.4a zeigt einen Verlauf in einer Ebene senkrecht zum Leiter. Es gilt

( ϕ B =  ϕ,  ϕ A = 0)

 B



 ϕ B

  Ie

 I

 ψ

 ϕ

A  − ψ B =

 H ·  d s =

 · e

 ϕ. 

(3.2.14a)

2 πr

 ϕr d ϕ = 2 π

 A

 ϕ A

Das Potenzial wächst bei der Integration in Feldrichtung (von A nach B) im Uhr-

zeigersinn. Integriert man aber entgegen der Feldrichtung, so gilt mit d s =  −eϕr d ϕ

B



2 π−ϕ



( −I) e

 ψ

 ϕ

A

=  ψ B +

 H ·  d s =  ψ B +

 · e

2 πr

 ϕr d ϕ

(3.2.14b)

A

0

 I

=  −I +

 ϕ +  ψ B . 

2 π

Der Bezugspunkt  ψ B wird beliebig gewählt, z. B. auch zu  ψ B =  − I ϕ

2 π

B . Dann hängt

die Lösung

 ψ A =  − I ϕ A bzw . ψ A =  − I ϕ A  − I

2 π

2 π

vom Integrationsweg ab: im letzten Fall wurde der Strom eingeschlossen. 

Vorteile bringt das skalare magnetische Potenzial, wenn das Feld mehrerer Ströme

bestimmt werden soll. 

Beispiel 3.2.7 Potenzial¨

uberlagerung Wir berechnen die von parallelen Strömen

herrührende Feldstärke  H  im Punkt  P ( x, y) über das magnetische Potenzial

(Abb. 3.2.6b) in Luft. Ausgang ist das zugehörige Potenzial  ψ( x, y). Das Bezugspo-

tenzial liege bei  x → ∞ (vereinfacht die Winkeldarstellung der Ströme). Mit dem

Potenzial  ψν =  Iν / 2 πϕν  des einzelnen Stromes  Iν  lautet das Gesamtpotenzial



1 

 ψ =

 ψν =

 I

2 π

 ν ϕν

(3.2.15)

 ν

 ν
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mit

  ∂ϕ

  ∂ϕ

 H

 ν

 ν

x =  − ∂ψ =  −  1

 I

 , H y =  − ∂ψ =  −  1

 I

 . 

 ∂x

2 π

 ν ∂x

 ∂y

2 π

 ν ∂y

 ν

 ν

Die Komponenten der Gesamtfeldstärke  H =  e x H x +  e y H y können direkt berechnet werden, eine  z-Komponente tritt wegen der parallelen Ströme nicht auf. Sind

 xν,  yν ( ν = 1 ,  2 ,  3) die Koordinaten des Stromes  Iν, so betragen die partiellen Winkelableitungen

 ∂ϕν

sin  ϕ

 ∂ϕ

cos  ϕ

 y − y

=

 ν , 

 ν =

 ν

mit  ϕ

 ν . 

 ∂x

 r

 ν = arctan

 ν

 ∂y

 rν

 x − xν

Der Abstand  rν  des jeweiligen Stromes vom Beobachtungspunkt wird durch die

Koordinaten ausgedrückt. Bei Stromrichtungsumkehr kehrt sich das Vorzeichen. 

Werden die Abstände  r 1  . . . r 3 sehr groß gegenüber den Leiterabständen gewählt, 

so gilt  r 1  ≈ r 2  ≈ r 3  ≈ r  und  ϕ 1  ≈ ϕ 2  ≈ ϕ 2  ≈ ϕ, also H x  ≈ ( I 1 +  I 2 +  I 3) sin  ϕ, 

2 πr

 H y  ≈ ( I 1 +  I 2 +  I 3) cos  ϕ, 

(3.2.16)

2 πr



( I 1 +  I 2 +  I 3)

 H

=

 H 2x +  H 2y =

 . 

2 πr

In großer Entfernung von den Leitern entsteht ein Magnetfeld, dass von einem

Einzelleiter mit der Gesamtstromstärke aller Leiter stammt. 

Gegenüber der Feldüberlagerung vereinfacht sich hier der Weg über das magnetische

Potenzial als Zwischengröße. 

Ausblick* Wir vertiefen das Potenzialproblem. Im elektrischen Feld knüpfte das

elektrostatische Potenzial an die Wirbelfreiheit  E =  −  grad  ϕ (damit ist die dif-

” 

ferenzielle“ Bedingung der Wirbelfreiheit, nämlich rot  E = 0 stets erfüllt). Das

skalare magnetische Potenzial hat die gleiche Basis, setzt also Wirbelfreiheit des

Magnetfeldes an, wie sie nur  außerhalb umfasster Str¨

 ome  gilt. Magnetfelder  um

 Str¨

 ome  sind aber  Wirbelfelder. Deshalb muss der Potenzialbegriff erweitert werden. 

Grundlage des gesuchten neuen Potentials ist die für das Magnetfeld (auch in strom-

erfüllten Bereichen) gültige  Quellenfreiheit der Flussdichte B (Gl. (3.1.8)) oder

gleichwertig in Differentialform div  B = 0.  Mathematisch kann ein Vektorfeld B, 

 dessen Divergenz verschwindet, stets durch ein anderes Vektorfeld A m  ausgedr¨

 uckt

 werden, dessen Rotation ( rot  ) zu bilden ist:

 B

Magnetisches Vektorpotenzial, 

= rot  A m . 

(3.2.17)

Definitionsgleichung

Der Vektor  A m heißt vereinfacht (magnetisches)  Vektorpotenzial (Abb. 3.2.7a, b)17

Das Vektorpotenzial ist ein vektorielles  Hilfsfeld  zur Lösung der Grundglei-

chungen Durchflutungssatz (rot  B =  μ 0 J , Gl. (3.1.17b)) und Gaußscher Satz 17  A  hat neben der bisherigen Bedeutung als Flächenvektor jetzt auch die des magnetischen Vektorpotenzials, zur Verdeutlichung durch Index m. 
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Abb. 3.2.7. Vektorpotenzial. (a) Das Vektorpotenzial  A m als Wirbelfeld mit einer Wirbel-

dichte rot  A m =  B ( A m rechtswendig zu  B  zugeordnet). (b) Magnetische Feldlinien um einen Stromfaden. (c) Berechnung des magnetischen Vektorpotenzials eines Stromfadens. 

(d) Äquipotenziallinien des Vektor- und Skalarpotenzials

div  B = 0 (Gl. (3.1.8)) des stationären Magnetfeldes  ohne direkte physikalische

 Bedeutung. 

Die Definition (3.2.17) basiert auf  mathematischen Eigenschaften  des Vektors

 B, nicht physikalischen Merkmalen und legt nur die Wirbel (Rotation) von

 A m( r) fest, aus Zweckmäßigkeitsgründen wählt man noch div  A m = 0. (Das

Vektorpotenzial verlangt als Vektorfunktion eine Festlegung von rot und div). 

 A m hat die gleiche Einheit wie die magnetische Spannung  V (nämlich Wb/m), 

obwohl beides verschiedene Größen sind. Im Gegensatz zu  H  und  B  ist  A m nicht messbar. 

Das Symbol  A m geht auf DIN 1324/1 zurück (die verbreitete Verwendung von

 A  statt  A m schafft Verwechselungen). Der Vorschlag des Vektorpotenzials selbst

stammt von Maxwell. 

Grundsätzlich wählt man zur Definition von  A m die Flussdichte  B (wegen der

stets erfüllten Nebenbedingung div  B = 0). Die Feldstärke  H  erfüllt diese Be-

dingung an Materialgrenzen (Grenzflächenbedingung, unterschiedliche Normal-

komponenten  H n) nicht. Dann ist das Feldstärkefeld an der Grenzfläche nicht

quellenfrei und die Nebenbedingung verletzt. 

Die Vorschrift Rotation (rot) differenziert als Operator einen Vektor und er-

zeugt dabei einen neuen Vektor. Der Begriff wurde bereits in Gl. (3.1.17b) ff. 

erläutert, die Rechenvorschrift im jeweiligen Koordinatensystem steht in der

mathematischen Literatur. 

In Abb. 3.2.7a, b sind Durchflutungssatz (in Differenzialform) und Vektorpotenzi-

al gegenübergestellt. Im Durchflutungssatz ist die Stromdichte  J  die Wirbeldichte

und Wirbelursache des Magnetfeldes  H. Anschaulich erzeugt der Strömungsfaden

 J  ein Magnetfeld, das ihn umwirbelt.  Umgekehrt wird ein Raum mit verschwinden-

 der Rotation nicht von einem Strom durchflossen.  Ganz analog (Gl. (3.2.18)) bilden

die Wirbeldichten rot  A m des Vektorpotenzials die Flussdichtelinien  B  des magne-

tischen Feldes mit geschlossenen Feldlinien (Wirbeldichten von Wirbelfeldern sind

immer geschlossene Linien). Somit ist auch das Vektorpotenzial  A m ein Wirbelfeld. 

 Dabei steht  rot  A m  an jedem Punkt stets senkrecht auf dem Vektor A m . 
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Eine weitere Beziehung besteht zwischen Vektorpotenzial  A m und magnetischem

Fluss Φ über den Satz von  Stokes







Φ =

 B ·  d A =

(rot  A m)  ·  d A =

 A m  ·  d s. 

(3.2.18)

 A

 A

 C:  s  um  A

Danach ist die Wirbelstärke des Vektorpotenzials der magnetische Fluss Φ, die

Wirbeldichte  B  berechnet über Gl. (3.2.17). 

 Das Umlaufintegral des Vektorpotenzials ergibt den magnetischen Fluss, (das Um-

laufintegral der magnetischen Feldstärke ergab die Durchflutung resp. den Strom, 

Durchflutungssatz in Integralform)







Θ =

 H ·  d s =

rot  H ·  d A =

 J ·  d A. 

(3.2.19)

Umlauf  C

Fläche des

Fläche des

Umlaufs

Umlaufs

Dabei ist rot  H =  J  der Durchflutungssatz in Differenzialform (Abb. 3.2.7b):  das magnetische Feld hat an Stellen nicht verschwindender Stromdichte Wirbel. 

Offen ist noch die Beziehung zwischen Vektorpotenzial und Strom bzw. Stromdich-

te. Im elektrischen Feld ergibt die Poissonsche Gleichung die Beziehung zwischen

felderzeugenden Ladungen (als Ursache) und der räumlichen Potenzialverteilung

 ϕ( r) bzw. für die Punktladung das Coulombsche Gesetz. Analog gibt es auch ei-

ne  vektorielle Differentialgleichung  des Vektorpotenzials (Analogie rein mathemati-

scher Natur) für Wirbelfelder mit der Stromdichte als Feldquelle. Für einen Strom-

faden  I  der Länge d s  lautet das Vektorpotenzial (Abb. 3.2.7c) im Abstand  r − r 0

 b



 A

 μ 0 I

d s

m =

4 π

 |r − r 0 | . 

(3.2.20)

 a

 A m hat die Orientierung von d s  und auf einem Kreis mit dem Radius  r  ist sein

Betrag konstant (Abb. 3.2.7d). Die Linien des  skalaren  magnetischen Potenzials

stehen darauf senkrecht. 

Insgesamt verlangt das Vektorpotenzial folgende Anwendungsstrategie: Berechnung

von  A m aus der Stromverteilung, z. B. mit Gl. (3.2.20, einfacher Integrationsschritt)

und daraus der Flussdichte  B über Gl. (3.2.17, Differenzialoperation). Diese Folge

ist i. a. einfacher als die direkte Berechnung von  B  bzw.  B über das Biot-Savartsche

Gesetz (Integration über ein Kreuzprodukt zweier Vektoren). Das Gesetz selbst lässt

sich aus  B  und  A m mit den Gln. (3.2.17, 3.2.20) herleiten, wir verzichten darauf. 

Der magnetische Fluss Φ wird über Gl. (3.2.18) bestimmt. Zur Verdeutlichung

enthält Abb. 3.2.7d die Zuordnungen von  A m,  B  und der Umlauffläche für einen Flussteil ΔΦ. 

Wir haben diesen knappen Exkurs eingefügt, um eine Analyselösung auch für strom-

erfüllte Bereiche anzudeuten, für die das skalare magnetische Potential versagt. Das

Vektorpotenzial ist ein leistungsfähiges Werkzeug, dessen volle Anwendungsbreite

(bis hin zur Wellenausbreitung) erst die theoretische Elektrotechnik erschließt. 
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Beispiel 3.2.8 Vektorpotenzial eines geraden Leiters In Beispiel 3.1.7 wurde die

magnetische Feldstärke  H  eines geraden Leiters begrenzter Länge über das Biot-

Savartsche Gesetz berechnet (Abb. 3.1.15a). Wir wiederholen diesen Schritt jetzt

über das Vektorpotenzial (gleiche Anordnung, Länge  l = 2 L  symmetrisch zwischen

 z 1 =  −L  und  z 2 =  L). 

Ausgang ist Gl. (3.2.20) mit dem Abstandsvektor  r  vom Stromelement  I d ze z:  r =

 e − ze z nach Punkt P2. Dafür beträgt das Vektorpotenzial

 L













 A

 μ 0 Ie z

d z

 μ 0 I

 L +

  2 +  L 2

2 L

m =



=

ln



 e z  ≈ μ 0 I  ln

 e z . 

4 π

  2 +  z 2

4 π

 −L +   2 +  L 2

2 π

 

 −L

Es ist eine Lösung in der  x, y-Ebene ( z = 0). Die Näherung zum Schluss gilt für

 L    im Zähler- und Nennerterm der ln-Funktion. Das Potenzial zeigt, wie das

Stromelement, in  z-Richtung. 

Im nächsten Schritt ergibt sich die Flussdichte  B  nach Gl. (3.2.17) durch Rotati-

onsbildung (in Zylinderkoordinaten)





1

1

  e

 e 

 

 

 eϕ   z 

 B

 μ 0 IL

1

= rot  A

  ∂

 ∂

 ∂



m = 

=  − ∂A mz  eϕ =



 eϕ ≈ μ 0 I. eϕ. 

  ∂ ∂ϕ ∂z 

 ∂

2 π

2 π

0

0

 A



 L 2 +   2

mz

Die Näherung gilt für  L  . Das Ergebnis stimmt mit der Lösung nach Biot-Savart

überein. 

Im Beispiel liegt das  B-Feld in der  x, y-Ebene unabhängig von der  z-Koordinate, 

außerdem fließt der Strom in  z-Richtung. Dann kann umgekehrt aus dem Ergebnis

 B( ) (z. B. erhalten über den Durchflutungssatz für den geraden Leiter) auch das

Vektorpotenzial durch Integration ermittelt werden:

 B

 

=  − ∂A mz  e

 e

ln

 . 

 ∂

 ϕ ≈ μ 0 I

2 π ϕ → A mz =  − μ 0 I

2 π

  0

Dabei ist   0 eine Integrationskonstante. Wegen der Rotationssymmetrie ist die Vek-

torkomponente  A mz für alle Punkte auf einem Kreis mit dem Radius    gleich

(s. Abb. 3.2.7d, eingetragene Linien konstanten Vektorpotenzials  A m). Der Gra-

dient des Skalarpotenzials wird aus  B  bzw.  H  nach Gl. (3.2.12) gewonnen. Für zwei ausgewählte Vektorpotenziale (Radien  r 1 und  r 2) ergibt sich der Fluss nach

Gl. (3.2.18) als Differenz der Beträge des Vektorpotenzials



ΔΦ =

 A m  ·  d s = ( A z1 e z  · e z2 L − A z2 e z  · e z2 L) = ( A z1  − A z2) 2 L

 s





 r 1

 r 2

 μ 0 I 2 L

 r 2

=  − μ 0 I 2 L

ln

 −  ln

=

ln

 . 

2 π

 

 

2 π

 r 1

Dieses Ergebnis wurde bereits in Beispiel 3.2.1 ermittelt (mit  l = 2 L). Zum Fluss

tragen nur die Vektorpotenziale in  z-Richtung an den Stellen  r 1,  r 2 bei, nicht die

dazu senkrecht (also in  -Richtung) stehenden (Abb. 3.2.7d). 

 Damit sind die Linien gleichen Vektorpotenzials Feldlinien und begrenzen so Fluss-

 r¨

 ohren! 
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3.2.3 Magnetischer Kreis, Analogie zum elektrischen Kreis

Die meisten Anwendungen des Magnetfeldes beruhen auf der Flussführung

durch ferromagnetische Körper. Erst damit gewinnen magnetischer Fluss und

magnetische Spannung ihre eigentliche Bedeutung. Die Flusskonzentration

in ferromagnetischen Körpern ist eine Folge der Grenzflächeneigenschaften

(s. Kap. 3.1.6). Eine  senkrecht  auf eine ferromagnetische Platte auftreffen-

de magnetische Flussdichte bleibt erhalten ( B Fe =  B L, Abb. 3.2.8a) und

die zugeordnete magnetische Feldstärke  H Fe ist  μ r mal kleiner als in Luft

(Stetigkeit der Normalkomponenten der Flussdichte). Dagegen herrscht in

einer  parallel  zum Feld liegenden ferromagnetischen Platte überall gleiche

Feldstärke ( H Fe =  H L, Abb. 3.2.8b, Stetigkeit der Tangentialkomponenten der Feldstärke) und die Flussdichte erhöht sich auf den  μ r-fachen Wert. 

 Deshalb eignen sich hochpermeable K¨

 orper als Pfade f¨

 ur den magnetischen

 Fluss und umgekehrt erfordert ein bestimmter Fluss in diesem K¨

 orper eine

 viel geringere magnetische Spannung:  Idee des magnetischen Kreises. 

Ein magnetischer Kreis ist eine Anordnung aus einer Magnetfeldursache

(Erregerspule, Dauermagnet) und ferromagnetischen Gebieten, deren Geo-

metrie den magnetischen Fluss auf vorgegebenen Wegen führt. 

Seine Bestandteile sind außer der Erregung noch  Leiterbereiche  aus weich-

magnetischem Material (Joch-, Schenkel oder Polbereiche zur Flussführung)

und häufig ein  Luftspalt (Abb. 3.2.9a). Varianten (z. B. Abb. 3.2.10) haben

noch einen beweglichen  Anker. 

Magnetische Kreise sind als magnetischer Leiter“ die Grundlage vieler An-

” 

wendungen, die ihre Gestaltung bestimmen: innige Verkopplung von Spu-

len (Transformator), Vergrößerung der Spuleninduktivität, Erzeugung von

Kräften und Drehmomenten durch Luftspalte zur elektromechanischen Ener-

giewandlung (Elektromagnet, Motor, magnetische Lager), Erzeugung starker

Magnetfelder (Tomograph, Abklenksysteme) u. a. m. 

Abb. 3.2.8. Ferromagnetische Platte. 

(a) senkrecht und (b) parallel zum ho-

mogenen Magnetfeld
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Der magnetische Fluss im Kreis entsteht durch eine oder mehrere strom-

durchflossene  Erregerspulen, die ihn an bestimmten Stellen umfassen oder

eingefügte Dauermagnete. Weil dieses Verhalten an den Grundstromkreis er-

innert, ist die Einführung eines  magnetischen Widerstandes R m sinnvoll und

überhaupt die Suche nach  Analogien. Sie erleichtern das Verständnis magne-

tischer Kreise erheblich. Erinnert sei aber an ihre  Modellvoraussetzung:  mit

wachsender Tendenz zur magnetischen Sättigung  gehen die Feldunterschie-

 de nach Abb. 3.2.8  und damit die Netzwerkeigenschaften verloren und der

 magnetische Kreis wird hinf¨

 allig (an seine Stelle tritt die Beschreibung durch

räumlich ausgedehnte Felder). 

Magnetischer Widerstand Der magnetische Fluss Φ (analog zum Strom  I) und

der magnetische Spannungsabfall  V (analog zum Spannungsabfall  U ) legen

die Einführung eines  magnetischen Widerstandes R m (analog zum elektri-

schen Widerstand  R =  U/I) nahe:

 V

 R m =

 . 

Magnetischer Widerstand (Definitionsgleichung) (3.2.21)

Φ

Der magnetische Widerstand  R m zwischen zwei (magnetischen) Potenzi-

alflächen hängt für  μ = const nur vom Material und der Geometrie des

magnetischen Kreises ab. Er wächst mit zunehmender Länge und sinkt, 

wenn Permeabilität und/oder Querschnitt zunehmen. 

Als wichtige Voraussetzung beschränkt sich der Widerstandsbegriff auf kon-

stante Permeabilität  μ r, also eine  lineare B( H) -Beziehung. Das reicht zum

Verständnis des Kreises zunächst aus, später wird die nichtlineare  B,  H-

Kennlinie einbezogen. 

Der magnetische Widerstand wird auch als  Reluktanz  bezeichnet und hat als Kehr-

wert den  magnetischen Leitwert G m = Λ oder die Permeanz. Heißt die erste Be-

ziehung Gl. (3.2.21) auch Ohmsches“ oder Hopkinsches Gesetz des magnetischen

” 

Kreises, so ist die Reluktanz vor allem im Englischen verbreitet. 

Abbildung 3.2.9a zeigt die begriffliche Analogie zum elektrischen Widerstand. 

In beiden Fällen tritt der Spannungsabfall (in Richtung der Strömungsgröße  I

bzw. Φ) zwischen zwei Potenzialflächen auf. Für einen geschlossenen magne-

tischen Kreis mit der Erregung Θ gilt gleichwertig nach Gl. (3.2.21)

Θ

Φ = Θ  · Λ = Θ  · G m =

 . 

Hopkinsches Gesetz (3.2.22)

 R m

Danach ist der magnetische Fluss gleich der im magnetischen Kreis wirken-

den Durchflutung Θ multipliziert mit dem magnetischen Leitwert, gebildet
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Abb. 3.2.9. Analogie zwischen magnetischem und elektrischem Kreis. (a) Teil eines mag-

netischen Kreises ersetzt durch den magnetischen Widerstand  R m. (b) Unverzweigter mag-

netischer Kreis und elektrische Analogien. (c) Ersatzschaltung eines magnetischen Kreises

und analoge elektrische Ersatzschaltung mit Erregung als Spannungsabfall

aus dem reziproken magnetischen Gesamtwiderstand  R m des Kreises. Eine

typische Vereinfachung ist der  unverzweigte Kreis (Abb. 3.2.9a, b) mit ei-

nem Widerstand  R mFe für alle ferromagnetischen Gebiete und dem Luft-

spaltwiderstand  R mL. Damit assoziiert man im elektrischen Analogon den

Innen- und Außenwiderstand, weil auch im magnetischen Fall durchweg die

Verhältnisse im Luftspalt interessieren (großer magnetischer Spannungsabfall

über dem Eisenweg ist meist unerwünscht). 

Einheit Dimension und Einheit ergeben sich aus

 





 V

Strom

dim ( R m) = dim

= dim

Φ

Spannung  ·  Zeit

und

[ V ]

1A

1

A

[ R m] =

=

= 1

=

= 1 H − 1

(1Wb = 1V  ·  s)  . 

[Φ]

V  ·  s

Ω  ·  s

Wb

Der magnetische Leitwert verhält sich entsprechend

[Φ]

Wb

[ G m] = [Λ] =

= 1

= 1 H . 

[ V ]

A

Für inhomogene Felder wird die Berechnungsmethodik vom elektrischen Fall

übernommen:  B → Φ,  H → V ,  R m =  V/Φ. Dann ergibt sich der magnetische

Widerstand als Quotient von Spannungsabfall  V AB (zwischen zwei Ebenen

des magnetischen Potenzials  ψ  im Abstand d s) und dem Fluss Φ, der durch
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die zugehörige Querschnittsfläche  A  tritt:





B



 V

 H ·

AB

d s 

 R

A



mAB =

=



 →

Φ

 B ·  d A

 A

 μ=const

 l

 μA

 R m =

 , G m = Λ =

 . 

(3.2.23)

 μA

 l



Im  homogenen Magnetfeld  folgt daraus mit  V =

 H ·  d s =  H · l  und Φ =

 BA =  μHl  die  Bemessungsgleichung (im elektrischen Fall galt  R =  l/( κA)). 

Homogene Feldverhältnisse liegen, zumindest für Abschätzungen, durchweg

zugrunde. 

Der elektrischen Leitfähigkeit  κ  entspricht die magnetische Permeabilität  μ. 

Das Ohmsche Gesetz des magnetischen Kreises vereinfacht die Analyse dann, 

wenn er sich in Teilabschnitte mit leicht berechenbaren Teilwiderständen und

Teilflüssen unterteilen lässt, wie es auf elektrische Netzwerke mit Einzelwi-

derständen, ihren Zusammenschaltungen und überhaupt dem Maschen- und

Knotenbegriff zutrifft. 

Die Bildungsgesetze für Reihen- und Parallelschaltung magnetischer Wi-

derstände beruhen auf dem Maschensatz für magnetische Spannungsabfälle

und dem Knotensatz für verzweigte Flüsse. 

Analogie zwischen elektrischem und magnetischem Kreis Elektrische und

magnetische Größen verhalten sich, zumindest formal, analog zueinander. 

Deshalb kann aus der Netzwerkbeschreibung resistiver elektrischer Schaltun-

gen eine Ersatzschaltung des magnetischen Kreises entwickelt werden. Grund-

lage sind die in Tab. 3.4 zusammengestellten Beziehungen mit den Entspre-

chungen

Φ ˆ

= I, 

 V ˆ

= U, 

 R m ˆ

= R. 

Dabei ist für die Durchflutung (MMK) Θ =  wI  die vereinbarte Zählrichtung

zu beachten (Gl. (3.2.10c), Abb. 3.2.9c) (im Lehrbuch wird die Erregung

als magnetischer Spannungsabfall angesetzt). Für das magnetische Netzwerk

kommen Knoten- und Maschensatz sowie die (mag.) Spannungs-Fluss-Bezie-

hung des magnetischen Widerstandes hinzu





Φ ν = 0 , 

( Vμ − Θ α) = 0 resp. 

 ν

 μ,α







(3.2.24)

 Vμ =

Θ α =

 wIα, 

 Vν =  R m νΦ ν. 

 μ

 α

 α

Damit gelten die Analyseverfahren der linearen Gleichstromnetzwerke. 
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Tab. 3.4. Analogie zwischen elektrischen und magnetischen Netzwerken

Begriff

Elektrisches Feld

Magnetisches Feld

Quellenspannung

Elektromotorische Kraft

Magnetomotorische Kraft

EMK  E q

MMK Θ

Spannungsabfall

Quellenspannung  U q

Magnetische Quellenspannung

Θq (als Spannungsabfall)

Strom

elektrischer Strom

magnetischer Fluss



elektrischer Fluss



Φ =

 B ·  d A

 I =

 J ·  d A

Widerstand

elektrischer Widerstand

magnetischer Widerstand

 R =  l

 R

 κA

m =

 l

 μA

Ohmsches Gesetz, 

 R =  U

 R

 I

m =  V

Φ

Hopkinsches Gesetz





Maschensatz

 RI = 0

 RΦ = 0

Masche

Masche





Knotensatz

 I = 0

Φ = 0

Knoten

Knoten

So anschaulich die Analogie zum Verständnis magnetischer Kreise ist, so  wenig

 Nutzen hat sie zur L¨

 osung praktischer Aufgabenstellungen:

Die  B,  H-Beziehung ist stark nichtlinear. 

Die geometrische Modellierung der Widerstände ist oft ungenau (wenn die Geo-

metrie des Eisenkreises nicht auf einfache Körper rückführbar ist). 

Das einfache Modell erfasst keine  Streuung des magnetischen Flusses. Streu-

ung außerhalb des magnetischen Kreises tritt auf, weil es keine magnetischen

Nichtleiter gibt. Im Strömungsfeld fließen Ströme dagegen nur im Leiter. 

Die Erregerorte (Spulen) sind nicht konzentriert. 

Deshalb sind magnetische Kreise deutlich gröbere Modelle als Stromkreise. 

Analyse magnetischer Kreise Technische magnetische Kreise unterscheiden

sich gegenüber der Grundform in Abb. 3.2.9 hauptsächlich durch:

die unterschiedliche  Gestaltung des Luftspaltes, der auch variabel sein kann

wie bei Anordnungen mit beweglichem Anker (Abb. 3.2.10a) etwa für

Elektromagnete; 

 Streuvorg¨

 ange  des magnetischen Feldes in der Spule oder im Luftspalt

(wenn er sehr ausgeprägt ist); 

die  nichtlineare B, H-Beziehung  des Eisenkerns. 
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Diese Punkte müssen in zwei Problemstellungen berücksichtigt werden:

1. 

für eine gegebene Erregung Θ =  Iw  wird die Flussdichte  B  oder Feld-

stärke  H  an einer Stelle im magnetischen Kreis gesucht, 

2. 

an einer Stelle, meist dem Luftspalt, soll eine bestimmte Flussdichte herr-

schen. Welche Erregung  Iw  ist erforderlich? 

Die zugehörige  Berechnung  kann erfolgen:

mit der  Analogie (Tab. 3.4) durch Modellierung als magnetisches Netzwerk

mit dem magnetischen Knoten- und Maschensatz und der Φ,  V -Beziehung

einzelner Widerstandselemente (die nichtlinear sein können). Bei gegebe-

ner Durchflutung Θ =  wI  folgen die Feldgrößen dann aus

 wI

Φ

 B

 wI = Θ  → Φ =

 → B =

 → H =

 . 

(3.2.25a)

 R mges

 A⊥

 μ

Man unterteilt dazu den magnetischen Kreis in Abschnitte (konstante Per-

meabilität, konstanter Querschnitt), in denen  B  und  H  konstant sind und

berechnet die magnetischen Widerstände für mittlere Längen  l m. Über die

Maschengleichung folgt bei gegebener Durchflutung der Fluss (und so  B

und  H) oder bei gewünschtem Fluss die Durchflutung. 

über die Feldbeziehungen





 B ·

 B, H-Kennlinie der

d A = 0 , 

 H ·  d s =  I, 

(3.2.25b)

Einzelelemente

mit grafischen oder numerischen Verfahren bei nichtlinearem Eisenkreis. 

Die Analyse wird übersichtlich bei Unterteilung des magnetischen Kreises in

Bestandteile mit einfachen geometrischen Formen. Typische Fälle sind der

 unverzweigte  Eisenkreis ohne oder mit Luftspalt, der  verzweigte  Eisenkreis

ohne oder mit Luftspalt oder komplizierte Geometrien. Das gilt für Eisen-

kreise mit bestimmten Blechzuschnitten wie M-, U-, E-, Ring-, Topf- und

Bandkerne. Solche Kerne bilden die Basis für Transformatoren. Dafür reicht

eine einfache magnetische Ersatzschaltung. 

Kompliziertere Formen haben Gleichstrommaschinen (mit Ständer und Läufer), 

Drehspulmessgeräte mit Hufeisenmagnet und Polkern, Hebemagnete, Relais, Mag-

netköpfe von Audio- und Videorekordern, Magnetschwebebahnen u. a. m. Sie erfor-

dern meist numerische oder iterative Lösungen über Feldbetrachtungen. 
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Beispiel 3.2.9 Unverzweigter Eisenkreis mit Luftspalt Im Eisenkreis (mit kleinem

Luftspalt, Abb. 3.2.9a) erzeugt die stromdurchflossene Erregerwicklung die Durch-

flutung als Ursache des magnetischen Flusses Φ. Er durchsetzt den magnetischen

Kreis überall in gleicher Stärke. Die zugeordnete Flussdichte  B Fe =  B L erzeugt im

Eisenweg und Luftspalt die magnetischen Feldstärken  H Fe und  H L (Gl. (3.1.11)). 

Der Fluss verursacht magnetische Spannungsabfälle  Vi über Eisenkreis und Luft-

spalt. Nach dem Durchflutungssatz gilt







Θ =  wI =

 H ·  d s =

 H ·  d s +

 H ·  d s

(3.2.26a)

Eisenweg

Luftspalt

=  H Fe l Fe +  H L l L =  V Fe +  V L . 

Dabei wurde die magnetische Feldstärke in jedem Teilbereich als konstant angenom-

men. Die Längen  l Fe und  l L sind mittlere Längen. Wegen der Beziehung  H =  B/μ

mit  μ r    1 ist die magnetische  Feldstärke im Luftspalt μ r -mal größer als im Eisen. 

Gleichwertig gilt für die Durchflutung





 B

 B

Φ

 l Fe

 l L

Θ =  wI =  H Fe l Fe +  H L l L =

 l Fe +

 l L =

+

 μ rFe

 μ rL

 A

 μ rFe

 μ rL

(3.2.26b)

= Φ ( R mFe +  R mL) = Φ R mges . 

Die Ergebnisse entsprechen denen des Stromkreises. 

¨

Aquivalenter Luftweg Der magnetische Widerstand eines Eisenkreises (Län-

ge  l Fe) wächst mit der Länge und sinkt mit wachsender Permeabilität und

größerem Querschnitt. Bei Reihenschaltung einer Luftstrecke (Länge  l L) (glei-

cher Querschnitt  A) beträgt der Gesamtwiderstand (Abb. 3.2.10a)





 l Fe

 l L

1

 l Fe

 R mges =  R mFe +  R mL =

+

=

+  l L  . 

(3.2.27)

 μA

 μ 0 A

 μ 0 A

 μ r

Die Größe  l Fe /μ r ist der  äquivalente Luftweg. Ein magnetischer Widerstand

mit  l Fe und  μ r hat (bei gleichem Querschnitt  A) den gleichen magnetischen

Widerstand wie ein Luftwiderstand der Länge  l L. So ergibt sich für  μ r =

10000 und  l Fe = 1 m,  l Fe /μ r = 0 ,  1 mm =  l L. 

Ein Luftspalt vergrößert den Gesamtwiderstand eines magnetischen Kreises

außerordentlich. 

Übertrifft die Luftspaltlänge  l L die äquivalente Eisenweglänge  l Fe /μ r deutlich, 

so kann der magnetische Spannungsabfall im Eisenteil  vernachl¨

 assigt  werden:

Θ =  wI ≈ V L. Das entspricht dem Modell des  ideal magnetisierbaren Körpers

(s. u.). Luftspalte werden aus verschiedenen Gründen eingefügt:

 konstruktiv  bedingt zum Aufbau des Blechpaketes eines Transformators; 

zur  Linearisierung  des nichtlinearen  B, H-Verlaufs bei vormagnetisierten

Spulen; 
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Abb. 3.2.10. Realer magnetischer Kreis. (a) mit beweglichem Anker und Streueinflüssen. 

(b) Magnetische Ersatzschaltung. (c) Modellierung des Streueinflusses durch die Erreger-

spule. (d) Modellierung der Randverzerrung am Luftspalt

als  Nutzungsfreiraum, in dem sich z. B. ein Leiter bewegt. Hier dient er

als  Speicherort magnetischer Feldenergie  etwa beim Umsatz elektrisch-

magnetisch-mechanischer Energie wie im Motor. Ein Luftspalt kann auch

variabel sein wie im Elektromagnet (Abb. 3.2.10a). 

Streufluss, Querschnitts¨

anderung im Luftspalt Der magnetische Kreis konzen-

triert die Feldlinien praktisch vollständig im Eisen. Sinkt die Permeabilität, z. B. 

beim Eintreten in die Sättigung, so treten Feldlinien zunehmend aus dem Eisen-

kreis als  Streufluss  aus (Abb. 3.2.10a). Ein Luftspalt verschärft das Problem, weil

er für den magnetischen Kreis einen hochohmigen Abschnitt darstellt. Dann setzt

sich der Gesamtfluss Φges durch die Spule aus dem  Nutzfluss ΦL durch den Luft-

spalt und einen  Streufluss Φ σ  durch das sog.  Fenster des Eisenkreises  zusammen:

Φges = ΦL + Φ σ. Der  Streufaktor σ = Φ σ/ΦL als Verhältnis von Streu- zu Nutz-

fluss im Luftspalt hängt von der Geometrie des magnetischen Kreises und dem

Sättigungsgrad des Ferromagnetikums ab; Werte im unteren %-Bereich sind ty-

pisch. Um einen bestimmten Nutzfluss ΦL im Luftspalt aufzubringen, muss der

Gesamtfluss erhöht werden (Abb. 3.2.10b, c). 

Der Luftspalt verursacht ferner eine  Randverzerrung (Abb. 3.2.10d), weil die Fluss-

führung fehlt: er baucht etwas aus, mit wachsendem Luftspalt zunehmend. Dann

durchsetzt der Fluss in diesem Bereich eine größere Fläche, die Flussdichte sinkt. 

Streuflüsse lassen sich durch parasitäre Parallelwiderstände modellieren, wenn auch

ihr Flussverlauf nicht annähernd homogen ist. Für das obige Beispiel gilt ΦL =

Φges  − Φ σ = Φges (1  − σ) und die magnetische Umlaufspannung lautet jetzt statt

Gl. (3.2.26):

Θ =  wI =  V Fe +  V L = Φ ( R mFe +  R mL (1  − σ)) = Φ R mges . 

(3.2.28)

Der letzte Anteil entspricht einer Parallelschaltung des Luftspaltwiderstandes  R mL

mit dem magnetischen Widerstand  R m σ  des Nebenweges (Abb. 3.2.10c). Ähnlich
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Abb. 3.2.11. Nichtlinearer magnetischer Kreis. (a) Reihenschaltung zweier nichtlinearer

magnetischer Widerstände (Spannungsaddition). (b) Kennlinie des nichtlinearen magne-

tischen Kreises mit Luftspalt unterteilt in linearen magnetischen Zweipol (Erregung und

Luftspalt) und nichtlinearen magnetischen Außenwiderstand (Magnetisierungskennlinie). 

(c) Magnetische Ersatzschaltung. (d) Arbeitspunktbestimmung mit separater Luftspalt-

kennlinie

lässt sich die  Randverzerrung  am Luftspalt (Abb. 3.2.10d) beschreiben. Baucht die

vom magnetischen Fluss durchsetzte Fläche  A L im Luftspalt gegenüber der Fläche

 A Fe des Eisenquerschnittes um einen  Randfaktor σ r aus:  A L =  A Fe(1 +  σ r), so gilt bei Flusserhalt für die Flussdichten  B Fe =  B L(1 +  σ r). Über den Durchflutungssatz

 H Fe l Fe +  B L l L /μ 0 =  Iw  folgt die zugehörige Feldstärke  H Fe. 

Der Streufluss unterscheidet den magnetischen Kreis vom Stromkreis, der diesen

Effekt nicht kennt. 

Nichtlinearer Eisenkreis Magnetische Kreise mit konstanter Permeabilität ha-

ben  haupts¨

 achlich anschaulich-qualitative Bedeutung:  technische Eisenkreise nut-

zen stets die  nichtlineare B,  H- bzw. Φ,  I-Kennlinie und damit gilt die  Analogie zum

 nichtlinearen Grundstromkreis (s. Kap. 2.5, Bd. 1). Der magnetische Kreis besteht

jetzt aus dem:

 Eisenweg Φ =  f(Θ) =  f( V Fe) auf der Grundlage der nichtlinearen  B,  H-Kennlinie (Abb. 3.2.11a)

und dem  Luftweg Φ =  f( V L) herrührend vom magnetischen Widerstand des

Luftspaltes (Geradenkennlinie). 

In der  Gesamtkennlinie  der reihengeschalteten Widerstände von Eisenweg und Luft-

spalt (Abb. 3.2.11a)

Φ =  f(Θ) , Θ =  Iw =  V Fe(Φ) +  V L(Φ)

(3.2.29)

müssen die magnetischen Teilspannungen beim jeweiligen Flusswert addiert werden. 

Mit wachsender Luftspaltlänge (wachsendem  V L) verflacht sich die Φ,Θ-Kennlinie:

der gleiche Fluss erfordert deshalb größere Durchflutung. Besteht der ferromagne-

tische Kreis aus Teilen mit verschiedenen  B,  H-Kennlinien (und verschiedenen Ab-

messungen), so müssen abschnittsweise zunächst die zugehörigen  V (Φ)-Beziehungen
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bestimmt und diese dann zur Reihenschaltung Σ V (Φ) zusammengesetzt werden. 

Die Summe aller Spannungsabfälle ergibt die erforderliche magnetische Durchflu-

tung. 

Analog zum nichtlinearen Grundstromkreis kann die Gesamtanordnung aufgefasst

werden als  aktiver linearer magnetischer Zweipol  aus magnetischer Erregung Θ

und (linearem) Luftspaltwiderstand (Kennlinie Abb. 3.2.11b), der auf den nicht-

linearen Eisenkreis mit der Kennlinie Φ( V Fe) arbeitet, also als  nichtlinearer passi-

 ver magnetischer Zweipol. Der Schnittpunkt A beider Kennlinien ergibt den Fluss

im Luftspalt. Zur Übernahme des nichtlinearen Grundstromkreismodells (mit der

Kennlinie  U über  I  zur angegebenen Ersatzschaltung) sind anzusetzen (Θ =  wI =

 V Fe(Φ) +  V L(Φ), Gl. (3.2.26))

 V Fe = Θ  − Φ R mL

aktiver linearer Zweipol

nichtlineares Lastelement

(3.2.30)

 V Fe =  f− 1(Φ)

(inverse) Magnetisierungskennlinie. 

Dann ergibt sich die Kennlinie (Abb. 3.2.11b) mit dem Arbeitspunkt als Lösung. 

Die Vertauschung der Achsen führt zur üblichen Darstellung  U( I). Da zunehmender

Luftspalt die Kennlinie  V ges(Φ) nach Abb. 3.2.11a, b schert (Linearisierung des

Kreises), sinkt der Fluss und die erforderliche Durchflutung steigt. 

Das Verfahren eignet sich für folgende  Aufgabenstellungen:

Eine  gegebene Durchflutung Θ führt durch Variation von  R mL zum gewünschten

Fluss Φ. 

Ein  gew¨

 unschter Fluss  im Luftspalt bestimmt den Arbeitspunkt A auf der nicht-

linearen Eisenkennlinie. Dann muss die

Widerstandsgerade“ des Luftspaltes

” 

durch diesen Punkt gehen und ihre über die Luftspaltlänge einstellbare Steigung

bestimmt die gesuchte Durchflutung Θ auf der  V -Achse: Θ =  V Fe + ΦL R mL. 

Der Vorteil, den Luftspalt als Innenwiderstand des magnetisch aktiven Zweipols“

” 

zu betrachten (Ersatzschaltung Abb. 3.2.11c) wird jetzt deutlich: sein Einfluss

kann explizit untersucht werden und die nichtlineare Kennlinie  V Fe(Φ) bleibt davon

unberührt. Sehr praktisch wird die Darstellung bei separater Angabe der Luft-

spaltkennlinie im 2. Quadranten (Abb. 3.2.11d). Dann ist der Arbeitspunkt Θ =

 V Fe +  R mLΦ der Abstand beider Kurven bei einem bestimmten Fluss. 

Da die Magnetisierungskurve meist in der Form  B Fe =  f( H Fe) gegeben ist, emp-

fiehlt sich die Umschreibung der aktiven Zweipolkennlinie (Erregung und Luftwi-

derstand) auf Feldgrößen. Mit ΦL = ΦFe =  A L B L =  A Fe B Fe und  V Fe =  H Fe l Fe folgt

(Θ  − V Fe)

 μ 0

ΦL =

 → B L =

(Θ  − H Fe l Fe)

 R mL

 l L

als Geradenkennlinie mit den Achsenschnittpunkten

Θ

 μ 0Θ

 B L = 0 :  H Fe =

und

 H Fe = 0 :  B L =

 . 

 l Fe

 l L
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Abb. 3.2.12. Unverzweigter (a) und verzweigter (b) magnetischer Kreis

Beispiel 3.2.10 Magnetischer Kreis Für die Eisenkerne in Abb. 3.2.12a, b sind die

magnetischen Ersatzschaltungen und die Flüsse in den einzelnen Abschnitten ge-

sucht (Annahme  μ r = const,  μ =  μ r μ 0, kleiner Luftspalt). 

Für Abb. 3.2.12a ergeben sich folgende magnetische Widerstände mit den mittleren

Längen  b, a  und  b − l L:  R m1 =  b ,  R

,  R

,  R

. 

 μA

m2 =  R m4 =

 a

m3 =  b−l L

mL =

 l L

1

 μA 2

 μA 3

 μ 0 A 3

Durch Zusammenfassen entsteht die angegebene Ersatzschaltung. Der Fluss beträgt

Θ

 Iw

 μIw

Φ =

=

=

 . 

 R

 b

mges

 R m1 + 2 R m2 +  R m3 +  R mL

+ 2 a +  b−l L +  μ r l L

 A 1

 A 2

 A 3

 A 3

Zu Abb. 3.2.12b gehören die magnetischen Widerstände

2 a +  b

 b − l L

 l L

 R m1 =

=  R m3 , R m2 =

+

 μA

 μA

 μ 0 A

und die Flüsse:

Θ

 R m3

Φ1 =

 , Φ2 = Φ1

(Flussteilerregel) , 

 R m1 +  R m2  
 R m3

 R m2 +  R m3

Φ3 = Φ1  − Φ2 (Knotenregel) . 

Verzweigter magnetischer Kreis Neben dem unverzweigten Eisenkreis (typisch

für U-Kerne) gibt es noch die verbreiteten E-Kerne (Abb. 3.2.12b) mit Luft-

spalt und Erregerspule im Mittelschenkel. Der Fluss teilt sich im Eisenkreis in

zwei Flussanteile (wie der Strom im Stromkreis nach dem Knotenpunktsatz). 

Dadurch entstehen Maschen und es müssen zur Analyse der Verzweigungssatz

für den Fluss und der Maschensatz für die magnetischen Spannungen beach-

tet werden. Zur Berechnung werden Stromrichtungen angenommen und für

die Orientierung der Quellen die Rechtsschraubenregel angesetzt. Die Fluss-

richtungen sollten über die Rechte-Hand-Regel mit den Strömen verknüpft

sein. 

Beispiel 3.2.11 Verzweigter magnetischer Kreis Das Netzwerk in Abb. 3.2.13a hat

drei Zweige und zwei Knoten, es können zwei Maschen- und eine Knotengleichung

aufgestellt werden. Wegen seines geringen Umfangs reicht das  Zweigstromverfahren. 
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Abb. 3.2.13. Verzweigter magnetischer Kreis. (a) Anordnung. (b) Magnetische Ersatzschal-

tung

Die beiden magnetischen Maschensätze (es gibt drei Maschen, davon sind zwei

unabhängig) lauten

 H 1 l 1  − H 3 l 3 =  w 1 I 1 = Θ1

 H 2 l 2 +  H 3 l 3 =  w 2 I 2 = Θ2 . 

Die dritte Gleichung zur Bestimmung der Feldstärken  H 1  . . . H 3 liefert der magne-

tische Knotensatz: Φm1  −Φm2  −Φm3 = 0. Die Lösung des linearen Gleichungssystem

nach den Flüssen (mit Einbezug der entsprechenden magnetischen Widerstände)

bietet keine Besonderheiten. 

Das  Knotenspannungsverfahren  ergibt die Lösung für einen gewählten Bezugspunkt

der magnetischen Spannung unmittelbar: die Knotenspannung des Knotens A lautet

Φ

Θ

1

= (Θ1  − V mA)  G m1 , 

1  G m1  − Θ2 G m2

 V mA =

 → Φ2 = (Θ2 +  V mA)  G m2 , 

(3.2.31)

 G m1 +  G m2 +  G m3

Φ3 =  V mA G m3 . 

Je nach Wicklungssinn der Spulen kann der Fluss im Mittelschenkel entweder ver-

schwinden ( R m1Θ2 =  R m2Θ1) oder bei Umkehr des Windungssinnes (Ersatz des

Minus durch ein +) maximal werden. 

Konstruktiv wählt man beim E-Kernschnitt zur gleichmäßigen Eisenausnutzung die

Querschnittssumme beider Außenschenkel gleich der des Mittelschenkels. Dann las-

sen sich beide aktiven Zweige“ der magnetischen Ersatzschaltung zusammenfassen

” 

und der verzweigte Stromkreis geht in den Grundstromkreis über. 

Die Ergebnisse des linearen magnetischen Kreises haben wegen der Nichtlinea-

rität der  B,  H-Kurve nur orientierende Bedeutung: man überführt die Anordnung

zunächst mit Netzwerkmethoden in eine Zweipolersatzschaltung nach Abb. 3.2.11, 

die anschließend nichtlinear bemessen wird. Ein anderer Weg wäre z. B. eine  nicht-

 lineare  Knotenspannungsanalyse, die wegen der nichtlinearen Form Φ =  f(Θ)

möglich ist. 

Idealer magnetischer Kreis Wächst die Permeabilität des magnetischen Krei-

ses bis zum Grenzfall  μ r  → ∞, so verschwindet sein magnetischer Widerstand
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 R m. Dabei wird die erforderliche magnetische Erregung Θ =  wI  immer klei-

ner (und verschwindet schließlich ebenfalls), um einen bestimmten Fluss Φ

aufrecht zu erhalten. Im Grenzfall  R m = 0 folgt dann Φ = 0 / 0 (endlich). Da-

zu gehört im  B, H-Verlauf (s. Abb. 3.1.17b) eine Induktion  B (bis zu einem

Sättigungswert  B S) auf der  B-Achse (also bei  H = 0) und jeder  H-Feldlinie

im magnetischen Kreis ist die magnetische Spannung  V = 0 zugeordnet. Die-

ser  ideale magnetische Kreis  mit  R m = 0 hat Bedeutung bei einer Anordnung

mit zwei Erregerspulen wie dem Transformator. Dann ergibt das Umlaufge-

setz Θ =  w 1 I 1 +  w 2 I 2 = 0 eine Zwangsbeziehung für die Stromübersetzung

beider Spulen: der einer Spule zugeführte Strom erfordert zwangsläufig einen

Strom in der zweiten Spule:  Strom¨

 ubersetzungsprinzip  beim (idealen) Trans-

formator. Wir kommen darauf in Kap. 3.4.3 zurück. 

Zusammengefasst ergibt sich die L¨

osungsstrategie: Magnetischer Kreis“

” 

1. 

Man unterteilt den Kreis in Abschnitte (Schenkel) mit konstantem

Querschnitt und homogenem Materialgebiet. Dann sind die Feldgrößen

im betreffenden Querschnitt konstant. 



2. 

Für das Magnetfeld wird der Durchflutungssatz in der Form

 H ·  d s =



 Iw  oder

 Vν = Θ benutzt (Annahme mittlerer Schenkellängen  l m, 

Weg durch die Mitte der Schenkelquerschnitte). 

3. 

Die Analyse erfolgt mit den magnetischen Knoten- und Maschenglei-

chungen sowie der Verknüpfung  B =  μH  bzw.  R m =  V/Φ. 

4. 

Im letzten Schritt sollte eine zusammengefasste Ersatzschaltung auf

den nichtlinearen Grundstromkreis (nichtlinearer magnetischer Kreis)

übertragen und die lineare Lösung korrigiert werden. 

3.2.4 Dauermagnetkreis

Aufgabe eines magnetischen Kreises mit Dauermagnet ist die Erzeugung ei-

nes gewünschten Magnetfeldes in einem Luftspalt ohne stromdurchflossene

Spule. Während das magnetische Feld eines stabförmigen Dauermagneten

zwischen Nord- und Südpol (Abb. 3.1.19a) weit ausgreift, herrscht in einem

ringförmig geschlossenen Dauermagnet (Abb. 3.2.14a) die Remanenzfluss-

dichte  B R (Abb. 3.1.17b). Ein eingefügter Luftspalt (Abb. 3.2.14b) senkt

die Induktion etwas ab und es entstehen an den Übergängen zum Luftraum

die Nord- und Südpole. Abgesehen vom (nicht dargestellten) Streufluss bleibt

die Induktion bei schmalem Luftspalt erhalten ( B Fe =  B L). Die zugehörige

magnetische Feldstärke  H  folgt aus dem Durchflutungssatz: verschwindendes



Umlaufintegral

 H ·  d s = 0 (keine äußere Durchflutung, Θ =  wI = 0, An-

nahme homogener Felder) zu  H Fe l Fe +  H L l L = 0.  l Fe,  l L sind die Eisen- bzw. 
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Abb. 3.2.14. Dauermagnetkreis. (a) Feldbild eines geschlossenen Dauermagneten. (b) wie

a, aber mit Luftspalt, getrennt dargestellte  B- und  H-Verläufe. (c) Dauermagnetkreis aus Dauermagnet, weichmagnetischen Polschuhen und Luftspalt

Luftspaltlängen. Der Integrationsweg verläuft außerhalb des Dauermagneten

vom Nord- zum Südpol. Deswegen ist die magnetische Feldstärke im Dau-

ermagnet entgegen der Wegrichtung orientiert. Zwangsläufig kehrt sich die

Richtung der Feldstärke  H Fe im Eisenkreis (Vorzeichen!) und im Luftspalt

wächst  H L an ( H L   H Fe, Anzahl der Feldlinien steigt). 

Technische Dauermagnetkreise (Abb. 3.2.14c) enthalten (aus Kostengründen)

außer dem Dauermagneten noch die  Polschuhe  aus hochpermeablem weich-

magnetischem Material mit geringer Hysterese zur  Flussf¨

 uhrung  und den

Luftspalt zur Nutzung des Flusses. Ihre breite Anwendung führt zu unter-

schiedlichsten geometrischen Formen, wir verwenden ein einfaches Modell

nach Abb. 3.2.14c. 

Ein Dauermagnetkreis wird zunächst im zusammengebauten Zustand mit mag-

netischer Überbrückung des Luftspaltes (Einschieben eines hochpermeablen Zwi-

schenstücks) bis zur Sättigung aufmagnetisiert (Stromstoß über eine Hilfsspule, 

Durchflutungssatz). Nach Abschalten der Erregung verbleibt die Remanenzinduk-

tion  B R (mit  H = 0, Abb. 3.2.14a). Beim Öffnen des Luftspaltes sinkt  B  etwas ab: deshalb liegt der Arbeitspunkt  A  stets im 2. Quadranten der nichtlinearen  B,  H-

Kennlinie (sog. Entmagnetisierungskennlinie). 

Im Dauermagnetkreis wird der Eisenweg wegen der unterschiedlichen Ma-

terialien unterteilt in den Weg im Dauermagnet ( l Fe) und im Polschuh ( l P, 

magnetischer Spannungsabfall  V P). Dann gilt (bei fehlender Durchflutung)

für einen Umlauf (ausgedrückt durch die magnetischen Spannungen  V ):



 H ·  d s =  V Fe + 2 V P +  V L = 0  → H Fe l Fe =  −(2 H P l P +  H L l L) . (3.2.32) Das Weicheisenjoch darf sich nicht in der Sättigung befinden, damit der zugehörige magnetische Spannungsabfall  VP  klein gegen den am Luftspalt  V L

bleibt ( V P   V L). Werden die Spannungsabfälle von Polschuh und Luftspalt

zu  V   zusammengefasst

 L
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2 V P

2 H P l P

2 μ 0 B P l P

 V  =

1 +

=

1 +

=

1 +

 →

L

 V L

 V L

 V L

 V L

 H L l L

 μ P B L l L





2 A L l P

 l =

1 +

L

 l L

 , 

(3.2.33)

 μ rP A Fe l L

so lässt sich der im Polschuh durch eine scheinbar vergrößerte Luftspaltlänge

 l  einbeziehen. 

L

An den Polflächen verursachen die Grenzflächenbedingungen ( B nFe =  B nL)

unstetige Normalkomponenten der Feldstärken ( H Fe,  H L Gl. (3.1.32 ff.)): es

ändert sich ihre Feldlinienzahl. Aus Gl. (3.2.32) folgt

 H Fe

 l

 l A Fe

=  − l L  ≈ − l L

 → H

L

L

Fe =  − BL

=  − B Fe

 . 

(3.2.34)

 H L

 l Fe

 l Fe

 μ 0  l Fe

 μ 0  l Fe  A L

Zusammen mit der (gegebenen) Entmagnetisierungskennlinie  B Fe =  f ( H Fe)

und Gl. (3.2.32, 3.2.33) lassen sich so die drei Unbekannten  H Fe,  B Fe und  B L

bestimmen (die Abmessungen  A L,  l L,  A Fe,  l Fe werden als bekannt angenom-

men und für  l L /l L Schätzwerte gewählt). 

Hilfreich für Funktion und Bemessung eines Dauermagnetkreises ist das  nicht-

 lineare Grundstromkreismodell  mit nichtlinearem aktivem magnetischem

Zweipol (Magnetisierungskennlinie  B Fe =  f ( H Fe) im zweiten Quadranten

der Hysteresekurve) und dem Luftspalt als linearem

Lastelement“ nach

” 

Gl. (3.2.34). Dieser lineare  H Fe- B Fe-Zusammenhang wird als Arbeitsgera-

de in den zweiten Quadranten der Magnetisierungskennlinie  B Fe =  f ( H Fe)

eingetragen. So stellt sich der Arbeitspunkt AP (Abb. 3.2.15a) zwischen der

 Remanenzflussdichte (bei  magnetischem Kurzschluss, kein Luftspalt) und in

 N¨

 ahe der Koerzitivfeldst¨

 arke  bei großem Luftspalt ( Leerlauf) ein. Statt der

Feldgrößen können für die Kennliniendarstellung ebenso die Globalgrößen

verwendet werden, in Abb. 3.2.15a sind beide eingetragen (Feldgrößen in

eckigen Klammern):

Die Entmagnetisierungskennlinie Φ =  f ( V ) ist die Kennlinie eines (nicht-

linearen) aktiven magnetischen Zweipols mit den Kenngrößen Leerlauf-

MMK:  V C =  −H C l Fe, Kurzschlussfluss: Φk =  B R A (Querschnittsfläche  A). 

Der Luftspalt entspricht dem passiven magnetischen Zweipol ( R m =  V m /Φ)

und der Arbeitspunkt ist der Schnittpunkt beider Kennlinien. 

Bei Ersatz der nichtlinearen Kennlinie des aktiven magnetischen Zweipols

durch eine Gerade gilt für seinen Innenwiderstand

magnetische Leerlaufspannung

 −H C l Fe

 R mi =

=

 . 

(3.2.35)

magnetischer Kurzschlussfluss

 B R A Fe
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Abb. 3.2.15. Dauermagnetkreis. (a) Auf- und Entmagnetisierungskennlinie mit Arbeits-

punkt; zugehörige Kennlinien der nichtlinearen und linearen magnetischen Zweipole (Pol-

schuhe eingeschlossen), Ersatzschaltung. (b) Einfluss einer Luftspaltänderung. (c) Graphi-

sche Bestimmung des optimalen Arbeitspunktes

Damit stimmt der  linearisierte magnetische Grundkreis  mit dem linearen

Modell des Grundstromkreises formal überein! Deutlich wird sofort der Luft-

spalteinfluss:

Luftspaltvergrößerung senkt den Fluss; 

Querschnittsvergrößerung des Magnetkreises erhöht den Kurzschlussfluss

Φ  ∼ A (bei  l Fe = const). 

Der Fluss bzw. die Induktion im Luftspalt lässt sich mit der Ersatzschaltung

(Abb. 3.2.15a) ermitteln; wir legen der Einfachheit halber einen linearisierten

magnetischen Innenwiderstand nach Gl. (3.2.35) zugrunde. Dann gilt für den

Fluss Φ im Kreis

Θ

Φk

Φk

Φ =

=

=

 R mi +  R mL

1 +  R mL /R mi

1 +  l L B R /( l Fe μ 0 H C)

mit Φk = Θ =

 −H C l Fe

=  B

 R

R A Fe. Wegen Φ =  B L A Fe wird er durch

mi

 −H C l Fe /( B R A Fe)

Remanenz, Koerzitivfeldstärke und die Kreisabmessung bestimmt. Beispiels-

weise hat ein Dauermagnetkreis mit  B R = 1 T,  H C =  − 50 kA /  m, einer

Eisenweglänge  l Fe = 10 cm und einem Luftspalt  l L = 5 mm eine Induktion

 B L = 0 ,  76 T. Der Luftspalt senkt das Feld deutlich. 

Zum Aufmagnetisieren wird der Luftspalt durch ein eingefügtes Eisenstück

kurzgeschlossen“. Nach Magnetisierung (bis in die Sättigung) verbleibt bei

” 

abgeschalteter Erregung die Remanenz  B R (Abb. 3.2.15b). Anschließend wird

der magnetische Kurzschluss entfernt, dadurch sinkt der Fluss und es kommt

zum Arbeitspunkt AP1 (Schnittpunkt Lastgerade mit aktiver Kennlinie):

 Entmagnetisierung  gegenüber  B R. Eine weitere Luftspaltvergrößerung (Ex-
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tremfall: Zerlegen des magnetischen Kreises) führt zu AP2, die Entmagneti-

sierung schreitet fort. Beim Verkleinern des Luftspaltes auf seinen ursprüng-

lichen Wert gilt nicht mehr der Arbeitspunkt AP1, sondern AP3 (bedingt

durch die Hysterese des Eisenkreises):  die Entmagnetisierung wird so irrever-

 sibel. Arbeitspunkt AP3 hat ungünstigere magnetische Werte:  kleinere Fluss-

 dichte, geringere magnetische Feldst¨

 arke. 

Die Zerlegung eines Dauermagnetkreises (z. B. Ausbau des Läufers eines

Kleinmotors und Wiedereinbau) hat einen Flussdichteabfall im Luftspalt

zur Folge und sollte strickt vermieden werden (falls der Magnetkreis nicht

neu magnetisiert werden kann). 

Optimaler Arbeitspunkt Im Grundstromkreis sicherte die Anpassbedingung den

optimalen Betriebspunkt. Im magnetischen Kreis entspricht diesem Fall die  Bedin-

 gung f¨

 ur die gespeicherte Energie W mL im Luftspalt, die maximal werden muss:

 H L B L V L

 H L B L A L l L

 W mL =

=

 . 

(3.2.36)

2

2

Bei Vernachlässigung des Polschuheinflusses (große Permeabilität) beträgt  W mL

(ausgedrückt durch Größen des magnetischen Kreises mit Beachtung des umge-

kehrten Vorzeichens von  H Fe)

 A Fe B Fe A L l L

 W mL =  − l Fe  H Fe

=  −  1  H Fe B Fe A Fe l Fe =  −  1  H Fe B Fe V Fe

(3.2.37)

2 l L

 A L

2

2

mit dem Volumen  V Fe =  A Fe l Fe des Dauermagneten. 

Im optimalen Arbeitspunkt stimmt die magnetische Energie im Luftspalt mit

der im Dauermagnet gespeicherten Feldenergie überein. Sie wird (bei gegebenem

Volumen  V Fe) maximal für maximales  H Fe B Fe-Produkt. 

Dieses Produkt ist als Energie pro Volumen die sog.  Energiedichte. Der Maximal-

wert lässt sich (grafisch) durch Auftragen des Produktes  H Fe B Fe über der Ko-

ordinate  B Fe im Diagramm leicht finden (Abb. 3.2.15c). Dann liegt der optima-

le Betriebspunkt  H Feopt,  B Feopt fest. Das Volumen des Dauermagneten soll aus

Preisgründen klein sein. Es wird minimal bei größtmöglichem Produkt  BH  im Ar-

beitspunkt. Dieser Wert  HB max ergibt sich (angenähert) als Schnittpunkt auf der

Entmagnetisierungskennlinie mit einer Geraden durch den Punkt P( B R , −H C) und

dem Ursprung. Er sollte als Arbeitspunkt AP gewählt werden. Hier hat der Dauer-

magnet zugleich sein kleinstes Volumen  V Fe. Daraus lassen sich seine Abmessungen

 A Fe und  l Fe bestimmen. 

Dauermagnete bestehen aus hartmagnetischem Material, also mit großer Rema-

nenz  B R und Koerzitivkraft  H C und damit großem  B R H C-Produkt. Typische Ma-

terialien zeigt Tab. 3.3 nach Herstellerangabe, es sind hauptsächlich Al-Ni- und Al-

Ni-Co-Legierungen, oxidkeramische Dauermagnete und Seltenerdmetall-Werkstoffe. 

Dauermagnetkreise werden in der Elektrotechnik sehr umfangreich eingesetzt, wie

Tab. 3.5 zeigt. 
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Tab. 3.5. Anwendungsbeispiele von Dauermagneten

Aufgabe

Beispiele

Elektrisch-mechanische

Dynamo, Kleinmotoren, Lautsprecher, Mikro-

Energiewandlung

fon, Wirbelstrombremse, Haftmagnet

Kraft auf mag. weiche Materialien Relais, mag. Kupplung u. Lager, mag. Klemm-

platten, Trennen mag. Körper

Kraft auf Dauermagnet

Positioniersysteme, Kompass, Schrittmotor

Kraft auf Ladungsträger

Hall-Generator, Elektronenstrahlsysteme

Beispiel 3.2.12 Dauermagnetkreis Man zeige, dass die größte Flussdichte  B L im

Luftspalt eines Dauermagnetkreises bei quaderförmigem Dauermagnet dann auf-

tritt, wenn ( BH)Fe den größten Wert erreicht (homogenes Feld, Widerstand des Ei-

senkreises vernachlässigt). Wie groß ist  B L für  V Fe = 5 cm3,  A L = 1 cm,  l L = 1 mm, B Fe H Fe = 50  ·  103 Ws /  m3? 

Mit  A Fe =  V Fe/ l Fe ( V Fe Volumen) folgt 

 A Fe

 μ 0 V Fe

 B L =  B Fe

=  − B Fe V Fe H Fe =

 |H Fe B Fe |. 

(3.2.38)

 A L

 A L l L( B L /μ 0)

 A L l L

Aufgelöst nach  B L ergibt sich das rechte Ergebnis. Da  μ 0,  V Fe,  A L,  l L Konstanten sind, wird die Luftspaltinduktion am größten, wenn  H Fe B Fe am größten ist. Die

Zahlenwerte führen auf



1 ,  25  ·  10 − 6 Vs  ·  5 cm3

Ws

Vs

 B L =

50  ·  103

= 1 ,  76

 . 

1 cm2 A  ·  m  ·  0 ,  1 cm

m3

m2

3.2.5 Verkopplung zwischen magnetischem Fluss und Strom

Wir suchen jetzt den Zusammenhang zwischen magnetischem Fluss einer Lei-

teranordnung und erregendem Strom. Dafür werden als Kenngrößen die Be-

griffe  Induktivit¨

 at  und später  Gegeninduktivit¨

 at  eingeführt. Sie bilden, zusam-

men mit dem  Induktionsgesetz (Kap. 3.3), die Grundlage des  Schaltelementes

 Induktivit¨

 at (auch als Spule oder Drossel bezeichnet) für die Verkopplung von

Strom und Magnetfeld im Stromkreis: Φ( I). Die Haupteigenschaft der Induk-

tivität ist die Fähigkeit zur  Speicherung magnetischer Feldenergie (so wie der

Kondensator die Speicherung elektrischer Feldenergie als Merkmal hatte mit

der Ladungs-Spannungsbeziehung  Q( U )). 

Für den Zusammenhang zwischen magnetischem Fluss und Strom und damit

der Definition des Kennwertes (Selbst-)induktivität  L  genügt Gleichstrom  I

im Stromkreis aus Leiterschleife, Spannungsquelle und begrenzendem Wider-

stand  R (Abb. 3.2.16a). Die Strom-Spannungs-Beziehung der Induktivität

3.2

Die Integralgrößen des magnetischen Feldes

271

Abb. 3.2.16. Induktivität (Selbstinduktivität). (a) Anordnung, Strom  I  in der Schleife be-

wirkt Fluss Ψ( I) durch die Fläche  A  mit der Berandung  s. (b) Spulenformen: (b1) kurze

Radialspule, (b2) Zylinderspule, (b3) Ringkernspule mit magnetischem Kreis. (c) Schaltzei-

chen: (c1) Spule mit Eisenkern, (c2) Luftspule, (c3) veränderbare Spule (voll ausgezogene

Darstellungen veraltet)

entsteht allerdings erst durch Mitwirkung des Induktionsgesetzes und ver-

langt deshalb  zeitver¨

 anderliche Gr¨

 oßen u, i (kleine Symbole). 

3.2.5.1 Selbstinduktivit¨

at

Definition Der magnetische Fluss um einen stromdurchflossenen Leiter wird

besonders intensiv bei schleifen- oder spulenförmig aufgewickeltem Leiter

(Fläche  A, Abb. 3.2.16a, b):

Die Verkopplung magnetischer Fluss – elektrischer Strom führt zur Fluss-

kennlinie Φ = Φ( I) =  f ( I) einer Leiteranordnung abhängig von der Leiter-

form und den magnetischen Eigenschaften des umgebenden Raumes. 

Im Nichtferromagnetikum ist der Zusammenhang linear, im Ferromagneti-

kum durch die Magnetisierungskennlinie Φ =  f (Θ) mit  I ∼ Θ nicht. Meist

liegen  w-Leiterschleifen mit gleicher Fläche  A  radial oder zylinderförmig nahe

beieinander vor, durchflossen vom gleichen Strom  I (Abb. 3.2.16b). So trägt

jede Schleife mit dem Fluss Φ ν  anteilig zum gesamten oder  verketteten Fluss

(auch Induktions- oder Spulenfluss genannt) bei



Ψ( I) =

Φ ν( I) =  wΦ( I) . 

 ν

Das Verhältnis aus dem verketteten Fluss Ψ durch eine vom Strom um-

schlossene Fläche (Wirkung) zum Strom  I  in ihrer Berandung (Ursache)

heißt Induktivität  L  der Leiteranordnung

272

3. Das magnetische Feld



Ψ( I)

1

(Selbst-)Induktivität, 

=  L( I) =

 ·

 B ·  d A. 

(3.2.39)

 I

 I

Definitionsgleichung

Verkettete Fläche

aller Windungen

Sie ist Kennwert des  Bauelementes Spule 18, nämlich als Maß für die Eigen-

schaft, im stromdurchflossenen Zustand einen magnetischen Fluss durch ihren

Querschnitt zu erzeugen. 

Das Bauelement Spule oder Induktivität ist ein passiver Zweipol mit der

Eigenschaft Selbstinduktivität, der Energie in seinem Magnetfeld speichern

und wieder abgeben kann. 

Energieabgabe ist nur nach vorheriger Energieaufnahme möglich, im zeitli-

chen Mittel wird also keine Energie abgegeben. Daher trifft der Begriff passi-

ver Zweipol zu. Er hat neben dem Merkmal Induktivität, eine (geometrische)

Bauform und eine Strom-Spannungs-Beziehung19,20

d i( t)

 u( t) =  L

(3.2.40)

d t

bedingt durch das Zusammenwirken von zeitveränderlichem Strom, seinem

begleitenden Magnetfeld und dem Induktionsgesetz (Kap. 3.4). 

Spulen in Netzwerken werden durch das  Netzwerkelement Spule  modelliert

(mit Strom-Spannungs-Beziehung und Schaltzeichen), das sich vom  Bauele-

 ment  Spule durch bestimmte Idealisierungen unterscheidet (s. Kap. 3.4.1). 

Bei linearem Ψ,  I-Zusammenhang ( μ r = const) ist die Induktivität  L  wegen

Ψ  ∼ I  nur abhängig von den Materialeigenschaften und der Schleifengeome-

trie. Deshalb gibt es eine Bemessungsgleichung. 

Einheit Aus Gl. (3.2.39) folgen als Dimension und Einheit der Induktivität





dim( B)  ·  dim( A)

Spannung  ·  Zeit

dim( L) =

= dim

dim( I)

Strom

[Ψ]

1 Vs

[ L] =

=

= 1 H = 1 Henry . 

[ I]

A

18 Die Bezeichnung Induktivität entspricht dem Sprachgebrauch; tritt jedoch in ei-

ner Anordnung auch eine Gegeninduktivität auf, so sollte besser Selbstinduktivität

gewählt werden. 

19 Die Induktivität kennzeichnet wie die Kapazität eine Eigenschaft. Inkonsequenter-

weise wird sie häufig auch für den Gegenstand (die Spule) verwendet, der diese

Eigenschaft besitzt. 

20 Sie wird genauer  äußere  Induktivität genannt im Gegensatz zur inneren Induktivität

eines Leiters. 
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Abb. 3.2.17. Spulenformen. (a) Ein- und mehrlagige Luftspulen. (b) Ringkernspule mit

magnetischem Kreis (der Luftspalt enthalten kann). (c) Verbreitete Ferritkerne: E- und

P-Kernhälften. (d) Leiter mit umhüllendem Ferritring

Gr¨

oßenvorstellung Die Einheit Henry ist relativ groß, kommt aber vor. Ver-

breiteter sind Größen im Bereich nH bis mH:

Spulen mit Eisenkern

(1  . . .  100) H

Spulen der Rundfunktechnik

µH  . . .  mH

Spulen in Schwingkreisen

µH  . . .  H

Spulen für hohe Strombelastung

nH  . . . µH

Doppelleitung (Länge 25 m, 

50 µH/m

Drahtabstand 20 cm Drahtdurchmesser 2 mm)

Schaltzeichen sind in Abb. 3.2.16c dargestellt. Es gibt vielfältige Formen für

Spulen mit und ohne Eisenkern. 

Konstruktiv entsteht eine Spule durch Umwinden eines Spulenkörpers (runder oder

rechteckiger Querschnitt) mit einem Draht. Die Bauformen (Abb. 3.2.17) sind, im

Gegensatz zu Kondensatoren, nicht genormt. Die Hauptformen bilden Spulen mit

und ohne Kern. Die Kerne (Eisen, Ferrit) haben unterschiedliche Formen: für Ble-

che E-, U-, UI-, M- (Mantelkern), für Schnittbänder SU-, SM-Form und Ringe, für

Ferritringe die P- (pot, Topf), PM- (pot module) und RM- (rectangular module)

Form. Besonders wirtschaftlich ist die ETD-Form (economic transformator design)

mit rundem Mittelschenkel, konstantem Kernquerschnitt längs des Eisenweges und

großem Spulenfenster. Die Wicklungen werden als Zylinder (Solenoid), Ring (To-

roid) oder in Scheibenform ausgeführt. 

Eine sehr einfache, für sog.  St¨

 ordrosseln  verbreitete Lösung ist die Umhüllung eines

Leiters mit einem eng anliegenden Ferritmantel (Abb. 3.2.17d, s. Beispiel 3.2.17). 

Ferritkerne sind wegen ihrer geringen Verluste bei höheren Frequenzen bevorzugte
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Lösungen zur Induktivitätsrealisierung für solche Frequenzen. Die Kerne bestehen

aus gleichen Kernhälften (Abb. 3.2.17c), die im Innern einen Kunststoffkörper mit

der Wicklung umschließen. 

Die Spulenformen erklären sich durch unterschiedliche Einsatzgebiete:

Luft- und Ferritkernspulen in Filtern, Funkentstördrosseln und als Transforma-

torkerne für Hochfrequenzanwendungen und Schaltnetzteile; 

Spulen mit Eisenkern und Luftspalt für Speicherdrosseln und Transformatoren; 

Spulen mit Massiveisenkernen für Anwendungen mit geschalteten Gleichströ-

men: Relais, Hubmagneten, Elektromaschinen. 

Weil grundsätzlich jeder Strom von einem Magnetfeld umgeben ist, gibt es

neben der Spule (als Ort eines konzentrierten Magnetfeldes) noch  die jedem

 Leiter eigene innere Induktivit¨

 at. 

Sie ist zwar sehr klein (Größenordnung nH/cm), kann aber bei großen Stromände-

rungen durchaus nennenswerte Wirkungen in Schaltungen verursachen. 

Bemessungsgleichung Für beliebige Leiteranordnungen sind Bemessungsglei-

chungen schwierig aufzustellen. Wir beschränken uns auf einfache Fälle: lini-

enhafter magnetischer Kreis und Anordnungen, für die der Ψ,  I-Zusammen-

hang leicht ermittelt werden kann. Drei Berechnungsmethoden sind üblich:

über den magnetischen Kreis, 

über die sog. Neumannsche Gleichung für Leitergebilde, 

mit der magnetischen Feldenergie. 

1. 

 Induktivit¨

 atsberechnung ¨

 uber den magnetischen Kreis als Standardver-

 fahren  Abb. 3.2.17a zeigt eine Zylinderspule mit  w  Windungen. Nahezu

alle werden von den Feldlinien umfasst, lediglich am Rand umschlingen

sie nur einen Teil der Windungen. Man kann diesen Flussanteil dem Ge-

samtfluss zuordnen, dann spricht man von einer  Flussverkettung Ψ =  wΦ

und versteht darunter die Summe der Windungsflüsse. Vorstellungsmäßig

wird diesem Fluss eine Ersatzspule mit so engen Windungen zugeschrie-

ben, dass alle Feldlinien alle Windungen durchsetzen. 

Daneben gibt es noch den  Spulen-  oder  Windungsfluss Ψ (leider gleiches Sym-

bol), der die Windungszahl  w  in den (von allen Feldlinien beitragenden) Fluss

mit einbezieht: Ψ =  wΦ. 

Für eine Spule mit magnetischem Kreis, z. B. eine Ringkernspule

(Abb. 3.2.17b) lässt sich der magnetische Widerstand  R m leicht ange-

ben ( R m = Θ /Φ =  Iw/Φ). Umfassen alle  w  Windungen den gleichen

Fluss Φ, so gilt (bei  μ r = const) für die Induktivität

Ψ

 wΦ

 w 2Φ

 w 2

 L =

=

=

=

=  w 2 A L . 

(3.2.41)

 I

 I

Θ

 R m
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Die Selbstinduktivität einer Spule steigt mit dem Quadrat ihrer Win-

dungszahl. Sie hängt nur vom geometrischen Spulenaufbau und den mag-

netischen Materialparametern ab. Die Induktivitätsberechnung mit dem

magnetischen Widerstand bringt Vorteile beim magnetischen Kreis mit

Luftspalt (dann ist Gl. (3.2.27) zu verwenden). Dieser Ansatz gilt bei ge-

ringer Streuung des Magnetfeldes im Luftspalt. Durch Luftspaltänderung

lässt sich die Induktivität in gewissen Grenzen ändern. 

Im praktischen Gebrauch ist statt des magnetischen Widerstandes der  Indukti-

 vit¨

 atsfaktor A L (Herstellerangabe, Gl. (3.2.41)). Er schließt Kernmaterial, ggf. 

Luftspalt sowie die Kernbauform ein (lässt sich auch experimentell ermitteln)

und liegt im Bereich von nH  . . . μ H/Windung:

Ringspule mit Eisenkern

 R m  ≈  2 πr , 

 L ≈ w 2 μA

 μA

2 πr

Zylinderspule, Luft

 R m  ≈

 l

 , 

 L ≈ w 2 μ 0 A

 μ 0 A

 l





Eisenkreis mit Luftspalt

 R

 l Fe

m =

 l

+  l

 , 

 L ≈

 w 2 μ 0 A

 μ

L

0  A

 μ r

( l Fe /μ r)+ l L

Bei nichtlinearem  B,  H-Zusammenhang wird die Induktivität stromab-

hängig, Schlussfolgerungen dazu ziehen wir im Kap. 3.4.1.3. 

2. 

 Induktivit¨

 atsberechnung f¨

 ur linienhafte Leiter mit dem Biot-Savartschen

 Gesetz bzw. der Neumannschen Gleichung.  Für die Induktion  außerhalb



stromdurchflossener Gebiete folgt mit Ψ =

 B ·  d A  und  B =  μH  nach

dem Biot-Savartschen Gesetz Gl. (3.1.18):

 

Ψ

 μ

d s × r

 L =

=

d A. 

(3.2.42)

 I

4 π

 r 3

 A

Die Auswertung ist kompliziert und nur für einfache Leiteranordnungen

im Aufwand überschaubar21. 

Diese Beziehung wird feldtheoretisch verallgemeinert zur  Neumannschen Glei-

 chung  für die Berechnung der Gegeninduktivität  Mik  zwischen zwei linienförmi-

gen Leiterschleifen für ein Material mit konstanter Permeabilität (Abb. 3.2.18a)



 μ

d s

 M

 μ ·  d sν

 μν = 4 π

 |rμ − rν|. 

(3.2.43a)

 μ

 ν

Für die Selbstinduktivität folgt daraus (Abb. 3.2.18b)



Ψ

 μ

d s 1  ·  d s 2

 L =

=

 I

4 π

 |r 12 | . 

(3.2.43b)

 l 1  l 2

Die doppelte Integration wird zunächst von einem bestimmten Leiterelement

d s 1 aus über alle Linienelemente d s 2 begonnen und anschließend für alle Ele-

mente d s 1 durchgeführt. So lassen sich die Induktivitäten typischer Leiter-

anordnungen bestimmen, wie beispielsweise parallele Streifenleiter auf Leiter-

platten, Ringdrähte, Kreisringe und Zuleitungsinduktivitäten von Bauelemen-

21 Methoden dazu stellt die Feldtheorie bereit. 
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Abb. 3.2.18. Kopplung von Stromschleifen. (a) Veranschaulichung der Gegeninduktivität

 M 21 = Φ A 2( I 1) /I 1. (b) Berechnung der Induktivität durch Kopplung ineinander über-

gehender Stromschleifen

tegehäusen. Die Lösung von Gl. (3.2.43b) ist allerdings schon für einfache Lei-

tergebilde kompliziert. 

3. 

 Induktivit¨

 atsberechnung ¨

 uber die gespeicherte magnetische Energie  Das

Magnetfeld der Spule speichert die magnetische Energie  W m (Kap. 3.2.6)



1

 LI 2

Ψ I

( wI)2

 W m =

 H · B d V =

=

=

 . 

(3.2.44)

2

2

2

2 R m

 V

Daraus kann die Induktivität berechnet werden, wenn sich das Magnet-

feld entweder über seine Feldgrößen oder den magnetischen Kreis leicht

bestimmen lässt. Der Vorteil dieses Verfahrens ist, dass die Leiter end-

liche Ausdehnung haben können. Dann unterteilt sich die Induktivität

in die  ¨

 außere (außerhalb des Leiterkreises, für die bisherige Verfahren

gelten) und eine  innere im  Leiter. Sie wird durch die Energie mit erfasst. 

Beispiel 3.2.13 Ringkernspule Eine Ringkernspule mit rechteckigem Querschnitt

und  w  Windungen (Radien  r i,  r a, kein Luftspalt, Abb. 3.2.17b) hat nach dem Durchflutungssatz einen nur vom Radius abhängigen Verlauf der Flussdichte  B( r) =

 μIw/(2 πr). Zur Bestimmung des Flusses wählen wir ein Flächenelement d A =  b d r, dabei ist  B ·  d A =  B d A, weil  B  senkrecht auf der Querschnittsfläche steht. Dann folgt



 r a



 μbwI

d r

 μbwI

 r a

Φ =

 B d A =

=

ln

 . 

2 π

 r

2 π

 r i

 A

 r i

Mit dem magnetischen Widerstand  R m wird dann

 Iw

2 π

 μb

 r a

 R m =

=

 → L =

 w 2 ln

 . 

Φ

 μb  ln( r a /r i)

2 π

 r i

Die Lösung ergibt sich einfacher direkt aus dem Quotienten  L = Φ /I, denn beim

magnetischen Widerstand neigt man dazu, ihn über eine mittlere Eisenweglänge“

” 

zu ermitteln:  R m =  π( r a +  r i) /( μb( r a  − r i)) wegen  l m = 2 π( r a +  r i) / 2. 
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Hat die Ringkernspule einen (schmalen) Luftspalt, so kann sein magnetischer Wi-

derstand  R mL nach Gl. (3.2.27) berechnet und in  R m berücksichtigt werden. 

Beispiel 3.2.14 Zylinderspule, runder Querschnitt Bei einer langen, dünnen Zylin-

derspule (Länge  l,  w  Windungen) kann die magnetische Spannung im Außenraum

gegen die im Innenraum vernachlässigt werden (Beispiel 3.1.4). Dort sind  H  und



 B  etwa konstant und nach dem Durchflutungssatz gilt

 H d l =  H i l =  wI. Damit

ergibt sich der Fluss Φ =  B i A =  μ 0 wI · A/l  und die Induktivität

 w 2 μ 0

nH

 L =

 A

 → L =  w 2 μ 0 r 2

 ·  10002 (1 cm)2 = 3 ,  96 mH . 

 l

i  π = 4 π  cm

10 cm

Für  w = 1000,  l = 10 cm und  r i = 1 cm folgt das rechte Ergebnis. Die Induktivität

wächst mit dem Quadrat der Windungszahl. 

Beispiel 3.2.15 Induktivit¨

at eines Drahtringes Ein Drahtring (Durchmesser  d =

10 cm, Drahtradius  r 0 = 1 mm) hat die Induktivität

 μ 0 d

 d

nH

10 cm

 L =

ln

 → L = 4 π

 ·  10 cm ln

= 245 nH . 

2

2 r 0

cm

2  ·  1 mm

Die Berechnung ist schwierig, denn sie muss über das  Vektorpotenzial  erfolgen

(s. Kap. 3.2.2). 

Beispiel 3.2.16 Induktivit¨

at einer Doppelleitung Für die Doppelleitung wurde die

magnetische Feldstärke in Gl. (3.1.23) berechnet, ebenso der Fluss (Beispiel 3.2.3). 

Dabei waren die Bereiche zwischen den Leitern (äußerer Bereich) und in den Lei-

tern (innerer Bereich) zu unterscheiden. Beide liefern Anteile zum Induktionsfluss, 

deshalb besteht auch die Induktivität aus äußerem ( L a) und innerem ( L i) Anteil:

 L =  L a +  L i. 

Die  ¨

 außere  Induktivität ist mit dem äußeren Fluss Φa verbunden, aus Beispiel

3.2.3 übernehmen wir (s. auch Abb 3.2.3b) für die Ebene zwischen den Leitern

(Leiterradius  r)



2 d−r

 



Φa

1

 μ 0 l

1

1

 μ 0 l

2 d − r

 L a =

=

 B( I)d A =

+

d  =

ln

 I

 I

2 π

 

2 d − 

 π

 r

 r

 ≈ μ 0 l

2 d

ln

 . 

 π

 r

Die  innere  Induktivität berechnen wir entweder über die im Magnetfeld gespeicherte

Energie (s. später Beispiel 3.2.23) oder über den Teilfluss im Leiter. Dort fließt in

einem Zylinder (Länge  l, Dicke d ) der Teilfluss

 μ 0 Il

dΦi =  B i l d  =

d . 

2 πr 2

 I  ist der (gesamte) Leiterstrom. Eine magnetische Feldlinie an der Stelle    umfasst

aber nicht den Gesamtstrom  I, sondern nur der flächenproportionalen Teilstrom
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 I =  I( /r)2. Deshalb reduziert sich der Teilfluss dΦi auf dΦ  i

 

 μIl d    2

dΦ  i = dΦi( I/I) = dΦi( /r)2 =

 . 

2 πr 2

 r

Der gesamte Fluss Φ  i im Leiter lautet dann

 r

  μ 0 Il 3d  μ 0 Il

Φ  i =

=

=  I · L i . 

2 πr 4

8 π

0

Daraus ergibt sich die innere Induktivität (pro Länge)  L i = Φ  1 /( I · l) =  μ 0 / 8 π

unabhängig vom Leiterradius. Die längenbezogene Gesamtinduktivität beträgt





 L

2 L i +  L a

1

 d

=

 ≈ μ 0

+ ln

 , 

 l

 l

 π

4

 r

da beide Leiter zur inneren Induktivität beitragen. Für die äußere wurde die ange-

gebene Näherung benutzt. Mit wachsendem Leiterabstand steigt die Induktivität, 

sie sinkt mit zunehmendem Leiterradius. Die Induktivität ist an sich sehr klein, für

einen Leiterabstand von beispielsweise 2 d = 1 cm und einen Leiterradius  r = 1 mm

gilt etwa  L/l ≈  1 µH /  m. 

Beispiel 3.2.17 Ferritkern auf Leiterstab Ein Leiterstab wird zur Erhöhung der In-

duktivität mit einem Ferritröhrchen konzentrisch umgeben (Abb. 3.2.17d). Gesucht

ist die Induktivität. 

Um den Leiterstab entsteht die magnetische Feldstärke  H( ) =

 I/(2 π)

(s. Gl. (3.1.15)) unabhängig vom umgebenden Medium. Im konzentrisch umge-

benden Ferritzylinder ist die Flussdichte aber  μ r mal größer als in Luft. Deshalb

bestimmt dieser Flussanteil hauptsächlich die Induktivität



 r a







 μ r μ 0 I

 l d 

 μ r μ 0 Il

 r a  − r i

Φ =

 B( I)d A =

=

ln

1 +

 ≈ μ r μ 0 IA. 

2 π

 

2 π

 r i

2 πr i

 r i

Sie beträgt  L = Φ  ≈ μ r μ 0 A . Dabei wurde  r

 I

2 πr

a  − r i   r i verwendet und die

i

Querschnittsfläche  A  des Ferritringes (mit angenommen etwa homogenem Feld). 

Zahlenmäßig folgt für  μ r = 5000,  A = 10 mm2 und  r i = 3 mm die Induktivität

 L ≈  3 ,  33 µH. Sie steigt mit dem Querschnitt  A  und sinkendem Radius des Fer-

ritringes. 

3.2.5.2 Gegeninduktivit¨

at

Befinden sich im elektrischen Feld mehrere leitende Flächen, so entstehen

zwischen ihnen  Teilkapazit¨

 aten  und der Begriff Kondensator erweitert sich

zum kapazitiven Netzwerk (s. Kap. 2.6.4). In analoger Weise überlagern meh-

rere stromdurchflossene Leiter ihre Magnetfelder und es entsteht ein Netz-

werk aus  magnetisch miteinander verkoppelten Leitern, die über das Induk-

tionsgesetz Spannungen in den verschiedenen Leiterkreisen induzieren. Die-

se Verkopplungen werden durch die  Gegeninduktivit¨

 at  beschrieben: ein Teil

des magnetischen Flusses einer Leiterschleife durchsetzt eine andere Schleife
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Abb. 3.2.19. Magnetische Kopplung zweier Leiterschleifen. (a) Felddarstellung: bei Strom-

fluss durch Schleife 1 durchsetzen magnetische Feldlinien die Schleife 2 und umgekehrt. 

(b) Flussanteile durch die Leiterschleifen; der Quotient von Teilfluss durch die Nach-

barschleife zum Strom in der Erregerspule ist die Gegeninduktivität. (c) Schaltzeichen

für zwei gekoppelte Spulen

und induziert dort eine Spannung. Wir definieren Verkopplungen zwischen

magnetischen Flüssen und erregenden Strömen zunächst für Gleichströme. 

Das Strom-Spannungs-Verhalten der Selbst- und Gegeninduktion wird vom

Induktionsgesetz mitbestimmt und verlangt dann den Übergang auf zeit-

veränderliche Größen (s. Kap. 3.4.2). 

Definition Verursacht eine Leiterschleife 1 (Fläche  A 1, Strom  I 1) einen mag-

netischen Fluss und befindet sich in ihrer Umgebung eine zweite Schleife

(Fläche  A 2), so wird sie von einem Teil des magnetischen Flusses durch

 A 1 durchsetzt:  Beide Stromkreise sind ¨

 uber das magnetische Feld verkoppelt

(Abb. 3.2.19a). Es gilt deshalb ΨA2( I 1) = Ψ21( I 1) =  f ( I 1). Üblicherweise bilden die Leiterkreise Spulen (mit  w  Windungen) und man spricht auch von

gekoppelten Spulen. Ihr Magnetfeld stammt von den Strömen durch beide

Leiter. Allerdings ist ein Teil der Feldlinien jeweils nur mit einer Schleife

verkoppelt und ein anderer mit beiden. 

Zum Übergang von der Feld- zur Globaldarstellung führen wird die  Spu-

 lenfl¨

 usse ΨA1( I 1 , I 2) und ΨA2( I 1 , I 2) durch die Leiterschleifen ein. Sie set-

zen sich jeweils zusammen aus einem Anteil, der nur mit dem Strom des

betrachteten Leiters verbunden ist (und durch seine Selbstinduktivität be-

schrieben wird) und einem verkoppelnden Teil herrührend vom Strom der

Nachbarschleife. Die  Gegeninduktivit¨

 at M

22

21

einer Leiterschleife 2 (Raum-

22 Die Indizes kennzeichnen Wirkungs- und Ursachenort: Fluss durch Kreis 2

herrührend vom Strom im Kreis 1: Ψ21. 
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kurve 2) zur Leiterschleife 1 (Raumkurve 1) kennzeichnet den von Schleife 2

(Fläche  A 2) umfassten Fluss ΨA2( I 1) als Folge des Stromes  I 1:





Ψ





A2( I 1)

Ψ21( I 1)

 M





21 =

=

 I





1

 I

 I 1

2 =0

 I 2=0



Gegeninduktivität  M 21

 B

(3.2.45a)

2( I 1)  ·  d A

=

 . 

Definitionsgleichung

 I 1

 A 2

Je nachdem, ob der in Schleife 2 frei wählbare Flächenvektor d A 2 bezüglich

der Richtung von  B 2( I 1) positiv oder negativ angesetzt wird, erhält  M  einen

positiven oder negativen Wert. Wir vereinbaren:  M 21 ist positiv, wenn der

Flächenvektor d A 2 in Richtung von  B 2 zeigt. Analog gibt es eine Gegenin-

duktivität  M 12 der Schleife 1 nach Schleife 2





Ψ





A1( I 2)

Ψ12( I 2)

 M





12 =

=

 . 

(3.2.45b)

 I





2

 I

 I 2

1 =0

 I 1=0

Jetzt wird Schleife 2 vom Strom  I 2 erregt und in Schleife 1 (Fläche  A 1) der

Fluss ΨA1 bestimmt (Abb. 3.2.19b). Es gilt bei  linearer Induktivit¨

 at





Ψ





A1( I 2)

ΨA2( I 1)

 M





12 =

=

=  M 21 . 

Umkehrsatz (3.2.46)

 I





2

 I

 I 1

1 =0

 I 2=0

Im nichtlinearen magnetischen Medium hängt der Spulenfluss Ψ( I) nichtlinear vom

Spulenstrom  I  ab. Dann ist der Quotient Ψ( I) /I  und damit die Selbst- und Ge-

geninduktivität von Leiterschleifen eine Funktion der Schleifenströme und es  un-

 terscheiden  sich i. a.  M 12 und  M 21! 

Die Gegeninduktivität verkoppelt zwei (oder mehr) Stromkreise nur über

das Magnetfeld. Zwei magnetisch gekoppelte Leitergebilde haben im linea-

ren magnetischen Raum nur eine Gegeninduktivität  M (Umkehrsatz):

Induktionsfluss durch Induktionsspule

Gegeninduktivität  M =

Strom durch Erregerspule

Sie bildet keine wesensverschiedene neue Größe, sondern eine Induktivität

 zwischen zwei Stromkreisen. Gegeninduktivität ist:

 gew¨

 unscht  zur Flussverkopplung beider Kreise (Beispiel: Transformator, 

Motor); 

 unerw¨

 unscht  als nicht unterdrückbare Flussverkopplung (Beispiel: Ver-

kopplung parallellaufender Leitungen, Spulen in Verstärkereinrichtungen, 

Leiterbahnen auf einer Leiterplatte u. a. m.). Zur Senkung der Gegenin-

duktion dient das Verdrillen von Leitungen oder die Überkreuzung be-

stimmter Leitungsabschnitte. 
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Allgemeine Grundlage zur Berechnung der Gegeninduktivität zweier gekop-

pelter Leiterschleifen ist die  Neumannschen Beziehung  Gl. (3.2.43a) im Me-

dium konstanter Permeabilität. Wegen der Vertauschbarkeit der Integration

folgt daraus  M 21 =  M 12. Zur Auswertung wird dabei für jedes Wegelement

d s 1 der Reihe nach über alle d s 2 integriert (oder umgekehrt). Diese Berech-

nung sind i. a. schwierig. Vereinfachung bringt erst die Spulenkopplung durch

einen magnetischen Kreis (s. u.). 

Gekoppeltes Spulenpaar Fließt der Strom  I 1 durch die erregende Spule 1

(Abb. 3.2.19b, Spule 2 stromlos), so tritt nicht nur der Koppelfluss in Spule

2 auf, sondern auch ein Flussanteil in der erregenden Spule, erfasst durch die

 Selbstinduktion (s. Abb. 3.2.16a). Deshalb erzeugt der Strom  I 1

in Spule 1 den  Flussanteil Ψ11 =  L 1 I 1 und in Spule 2 den  Koppelfluss

Ψ21 =  M I 1. 

Wirkt umgekehrt nur der Strom  I 2 durch Spule 2 (in gleicher Richtung), so

verursacht er

in Spule 1 den  Koppelfluss Ψ12 =  M I 2 und in Spule 2 den  Flussteil Ψ22 =

 L 2 I 2 . 

Die Ströme durchfließen die Spulen jeweils in gleicher Richtung. Sie tre-

ten am Spulenanfang A ein. Die Gesamtflüsse ΨA1( I 1 , I 2) = Ψ1( I 1 , I 2) und

ΨA2( I 1 , I 2) = Ψ2( I 1 , I 2) in jeder Schleife entstehen durch Überlagerung

Spule 1: Ψ1 = Ψ11 + Ψ12 =  L 1 I 1 +  M I 2

=  L 1 I 1 +  L 12 I 2

FlusskennlinienΨ( I) (3.2.47)

Spule 2: Ψ2 = Ψ22 + Ψ21 =  L 2 I 2 +  M I 1 gekoppelter Spulen

=  L 2 I 2 +  L 21 I 1 . 

Der magnetische Fluss durch eine Spule wird bestimmt vom erregenden

Strom mit ihrer Selbstinduktion und einem Flussanteil herrührend von be-

nachbarten stromdurchflossenen Spulen mit ihren Gegeninduktivitäten. Für

zwei gekoppelte Spulen sind die Flussanteile den Spulenströmen  I 1,  I 2 pro-

portional, die Proportionalitätskonstanten heißen Selbst- und Gegeninduk-

tivität. 

Die Gegeninduktivität erhält als Induktivität  zwischen zwei Stromkreisen

 kein eigenes Schaltzeichen, sondern wird durch einen  Doppelpfeil zwischen

 den Spulenschaltzeichen  dargestellt (Abb. 3.2.19c). 

Als Netzwerkelement bilden zwei magnetisch verkoppelte Spulen ein um-

kehrbares Zweitor. Damit ist eine Gegeninduktivität physikalisch nie allein

realisierbar, sondern nur in Verbindung mit Induktivitäten. 
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Abb. 3.2.20. Gegensinnige Kopplung zweier Leiterschleifen. (a) Flusssubtraktion durch

Stromrichtungsumkehr. (b) dto. bei Windungsumkehr

Abb. 3.2.21. Gekoppelte Spulen. (a) Schaltzeichen bei unterschiedlicher Zuordnung von

Stromrichtung und Windungssinn. (b) Spulendarstellungen und Schaltzeichenzuordnung

für positive Gegeninduktivität. (c), (d) dto. für negative Gegeninduktivität durch Strom-

(c) oder Windungsumkehr (d)

Die Gegeninduktivität wird auch als  gegenseitige Induktivit¨

 at  benannt und statt  M

das Symbol  L 21 bzw.  L 12 verwendet, die Selbstinduktivität erhält die Symbole

 L 1 =  L 11,  L 2 =  L 22. In dieser Doppelindizierung bedeutet der erste Index den

Wirkungsort, der zweite die Ursache des Flusses. Diese Bezeichnung empfiehlt DIN

1304. Weil sie optisch die Gegeninduktivität nicht deutlich genug von der Selbstin-

duktivität unterscheidet, setzte sich die Festlegung bei einfachen Spulenanordnun-
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gen nicht durch. Wir bleiben bei der verbreiteten Bezeichnung  M  für die Gegenin-

duktivität und  L 1,  L 2 für die Selbstinduktivitäten. 

Vorzeichen der Gegeninduktivit¨

at, Punktkonvention Während die Selbstin-

duktivität stets positiv ist, kann die  Gegeninduktivit¨

 at M je nach Festlegung

 der positiven Stromrichtungen bzw. des Windungssinns der Leiterschleifen

 positiv oder negativ sein. 

In der Ausgangslage Abb. 3.2.19b (gleicher Windungssinn, Stromzufuhr in die

Schleifenanfänge) addieren sich jeweils erregender und eingekoppelter Fluss

in einer Schleife, es herrscht  Flussaddition  mit  positiver Gegeninduktivit¨

 at M

in Gl. (3.2.47). Dagegen  subtrahieren  sich beide Flussanteile (Abb. 3.2.20)

bei Umkehr der  Stromrichtung I 2 (Abb. 3.2.20a, Schleife 1 unverändert)

oder

Umkehr des  Windungssinns (Schleifendrehung von 180 ◦  um ihre Längs-

achse, Abb. 3.2.20b). Im ersten Fall ändert sich die Richtung des  B-

Vektors in Schleife 2, im zweiten die des Flächenvektors. Orientiert man

den Spulenfluss Ψ2 an der Richtung von Ψ22, so gilt im ersten Fall Ψ2 =

 −Ψ21 + Ψ22( I 2) ( I 2 mit geänderter Stromrichtung), im zweiten dagegen

Ψ2 =  −Ψ21  − Ψ22( −I 2) =  −Ψ21 + Ψ22( I 2) übereinstimmend mit dem

ersten Ergebnis. Jetzt herrscht die ursprüngliche Stromrichtung und das

Vorzeichen von Ψ22 resultiert vom umgekehrten Flächenvektor. 

Stromrichtungsumkehr ( I 2  → −I 2) bedingt in Gl. (3.2.47) negatives Vorzei-

chen von  M (in der zweiten Zeile wegen  −Ψ2 =  L 2( −I 2) +  M I 1 und damit

 negative Gegeninduktivit¨

 at). Die gleichzeitige Umkehr von Stromrichtung und

Windungssinn ergibt wieder positive Gegeninduktivität. Weil das Vorzeichen

von  M  von Windungssinn und Stromrichtungen abhängt (sinngemäß auch

bei vertauschten Rollen der Schleifen), dient zur Vereinfachung die  gleich-

und  gegensinnige Kopplung:

 positive Gegeninduktivit¨

 at M  für  gleichsinnige Kopplung (gleicher Win-

dungssinn und gleiche Einströmungen zu den Spulenanfängen), 

 negative Gegeninduktivit¨

 at M  für  gegensinnige Kopplung (gegengerichte-

ter Windungssinn bzw. unterschiedliche Einströmrichtungen zu den Spu-

lenanfängen). 

Zur einfachen Darstellung des Zusammenhangs zwischen dem Vorzeichen

von  M , der Stromrichtung und dem (im Schaltzeichen nicht darstellba-

ren)

Windungssinn

erhalten

die

Schleifenanfänge

 Punkte

zugeordnet

(Abb. 3.2.21a) mit Vereinbarung des Strom- und Flussverhaltens bezüglich

dieser Punkte:  Gleichsinnige Kopplung (Flussaddition) liegt vor, wenn
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die Flächenvektoren d A 2 in Richtung von  B 2( I 1) und d A 1 in Richtung von  B 1( I 2) (s. Abb. 3.2.19b) positiv angesetzt werden und daher

die Ströme in beiden Spulen auf die Spulenanfänge zufließen (oder von

ihnen wegfließen). Dann ist  M positiv, weil Fluss und Strom nach der

Rechtsschraubenregel orientiert sind. 

Mit Punkten an den Spulenanfängen (bzw. -enden) ist die Gegeninduktivität

 positiv, wenn die Str¨

 ome zu den Punkten fließen (Abb. 3.2.21b) ; 

 negativ, wenn ein Strom zum Spulenanfang/ende mit Punkt hin und der

 andere vom Punkt wegfließt (Abb. 3.2.21c,  d). 

In Abb. 3.2.21a wurden die Schaltzeichen mit zugehörigem Strombezugssinn

für beide Kopplungen dargestellt. 

Die Erkenntnisse für gekoppelte Stromschleifen gelten auch für Spulen mit mehre-

ren Windungen. Dann treten die Unterschiede bei rechts- und linkswendiger (rw, 

lw) Wicklung deutlicher zutage. Während die gleichsinnige Kopplung durch Strom-

eintritt in die Spulenanfänge (bei gleichem Windungssinn) mit der Punktzuord-

nung leicht zu erkennen ist, umfasst die Zuordnung der gegensinnigen Kopplung

einheitlich entweder die Stromumkehr  I 2 am Spulenanfang A oder linkswendigen

Windungssinn. Das ist ihr Vorteil. Deshalb genügen die umrahmten Schaltzeichen

in Abb. 3.2.21a für gekoppelte Spulen. Sie bilden die Grundlage des Transformators

(s. Kap. 3.4.2). 

Koppelfaktoren Gegen- und Selbstinduktivität sind über die Spulenanord-

nung und magnetischen Eigenschaften des gemeinsamen Raumgebietes ver-

knüpft. Ihr Zusammenhang ergibt sich aus der Flusskennlinie Ψ =  f ( I), wenn

jeweils der eine oder andere Strom gleich Null gesetzt wird. Für  I 2 = 0 durch-

setzt der vom Kreis 1 erzeugte Fluss Ψ1  ≡ Ψ11 auch den Kreis 2 mit dem

Anteil Ψ21 und es gilt mit Gl. (3.2.47)





Ψ 



1 

Ψ11

 L 1

1

Ψ2

Ψ22

 L 2

1

=

=

=

 , 



=

=

=

 . 

(3.2.48)
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Ψ
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12

 M

 k 2
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 I 1=0

Durchsetzt umgekehrt (bei  I 1 = 0) der vom zweiten Kreis erzeugte Fluss

Ψ2  ≡ Ψ22 anteilig mit Ψ12 auch den Kreis 1, so gilt das rechte Ergebnis. Die

Gegeninduktivität hängt davon ab, welcher Teil des Gesamtflusses die andere

Schleife erreicht. Das wird durch  Koppelfaktoren  ausgedrückt:

Der Kopplungsfaktor ist das Verhältnis des Koppelflusses zum Gesamtfluss

durch die erregende Schleife. 

Es gibt somit zwei  Kopplungsfaktoren k 1 und  k 2 mit



 M

 k =

 k 1 k 2 =  √

(0  ≤ k ≤  1)  . 

(3.2.49)

 L 1 L 2
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Die Gegeninduktivität  M  eines Spulenpaares ist stets kleiner als das geo-

metrische Mittel der Selbstinduktivitäten. Der Kopplungsfaktor  k  berechnet

sich aus der Geometrie der Flüsse. 

Grenzfälle sind:

 v¨

 ollige Entkopplung: verschwindende Gegeninduktivität  M (bzw.  k = 0) ent-

weder bei großem Abstand beider Spulen, magnetischer Abschirmung einer

Spule mit ferromagnetischer Hülle oder zueinander senkrecht stehenden Spu-

len auf gleicher Symmetrieachse. Auch durch  bifilare Wicklung  oder einfacher

die  Kreuzwicklung ( Überkreuzung paralleler Leiter in gleichen Abständen) kann

die Gegeninduktivität praktisch auf Null sinken. 

 totale oder feste Kopplung  mit  |k| = 1. Der Fluss durchsetzt beide Spulen voll-

ständig wie bei Verkopplung in einem  magnetischen Kreis. Werte  k ≤  0 ,  8 werden

als  lose Kopplung  bezeichnet. 

Größe und Vorzeichen der Gegeninduktivität hängen von der Relativlage

beider Spulen und der Flusszuordnung (Windungssinn, Stromrichtungen)

ab. Damit lassen sich u. a. variable Induktivitäten realisieren. 

Streufluss, Streufaktor Diese Begriffe drücken ebenso die Unvollkommenheit

der Kopplung aus: vom Gesamtfluss Ψ durch eine Spule erreicht nur der

 Koppel-  oder  Hauptfluss Ψk die zweite Spule, die Differenz Ψ σ = Ψ  − Ψk

zwischen Gesamt- und Koppelfluss ist der  Streufluss Ψ σ (Abb. 3.2.19b)

Streufluss: nur mit der Ursprungsspule verkettet, 

Koppelfluss: auch mit der jeweils anderen Spule verkettet. 

 Der Streufaktor σ ist das Verhältnis von Streu- zu Gesamtfluss einer Spule

 eines gekoppelten Spulenpaares, beispielsweise für Spule 1

Ψ

Ψ1  − Ψ21

Ψ

 σ

 σ 1

 σ 2

1 =

=

= 1  − k 1 , 

analog  σ 2 =

= 1  − k 2 . (3.2.50)

Ψ1

Ψ1

Ψ2

Grenzfälle sind:  σ = 0  → k = 1 (kein Streufluss, ideale Kopplung) und

 σ = 1  → k = 0: keine Verkopplung. Oft verzichtet man auf die Angabe von

 σ 1,  σ 2 und verwendet nur einen Mittelwert, den  Gesamtstreufaktor

 σ = 1  − k 2

(= 1  − k 1 k 2 = 1  − (1  − σ 1) (1  − σ 2)  ≈ σ 1 +  σ 2)  . (3.2.51) Die Gesamtstreuung ist für kleine Streuwerte  σ 1 ,  2 gleich der Summe der

Einzelstreuungen. 

Die Aufteilung in  Koppel-  und  Streufluss  drückt sich in zugeordneten Induktivitäten

aus: so besteht die  Selbstinduktivit¨

 at  einer Spule aus  Streu-  und  Gegen-  oder  Haupt-

 induktivit¨

 at (s. Kap. 3.4.3). Streu- und Nutzfluss werden nur augenfällig, wenn eine

Spule stromdurchflossen und die andere stromfrei ist, wie in der Abb. angenommen. 

Bei Stromfluss in beiden Spulen überlagern sich die Felder und die Unterteilung ist
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erschwert. Dann eignet sich die Strom-Spannungs-Beziehung gekoppelter Spulen

besser zur Erklärung der Streuung (s. Kap. 3.4.3). 

Berechnung der Gegeninduktivit¨

at Es werden im Prinzip die gleichen Ver-

fahren wie zur Ermittlung der Induktivität verwendet: Berechnung über den

Koppelfluss oder magnetischen Kreis

 w 1 w 2

 M =

 . 

(3.2.52)

 R m12

Hierbei ist  R m12 der magnetische Kopplungswiderstand beider Stromkreise. 

Weitere Möglichkeiten sind die Neumannsche Formel Gl. (3.2.43) (schwierig)

oder die Feldenergie des magnetischen Kreises. 

Beispiel 3.2.18 Transformator In Abb. 3.2.22 ist ein Transformator mit zwei Wick-

lungen als Beispiel eines gekoppelten Spulenpaares dargestellt. Spulen arbeiten mit

zeitveränderlichen Strömen. Die Eingangsspannungsquelle erzeugt einen Primär-

strom  i 1, den der Transformator an den Ausgangswiderstand  R L übersetzt. Er

 bestimmt  die Stromrichtung  i 2. Um die nach der Punktkonvention für gleichsinni-

ge Spulenkopplung (Abb. 3.2.21a) erforderliche Stromrichtung  i 2 (zum Punkt hin)

anwenden zu können, wurde sie und die zur Spule 2 gehörige Flussrichtung Φ2 in

Klammern eingetragen. 

Zur Analyse der magnetischen Ersatzschaltung genügt der Ersatz der Ströme durch

Gleichströme ( → I). Bei linearem magnetischem Kreis lassen sich die einzelnen

magnetischen Widerstände aus den Kernabmessungen nach Gl. (3.2.23) bestimmen. 

Die Erregungen wurden als Spannungsabfälle nach dem magnetischen Maschensatz

Gl. (3.2.10c) angesetzt. Die Flüsse ermitteln wir mit dem Überlagerungssatz für die

Erregungen Θ1 und Θ2:

Θ1

 w 1 I 1

Θ2

 w 2 I 2

Φ1 |

=

=

 , Φ

=

=

 I

2  |

2 =0

 R

 I 1=0

mI

 R mI

 R mII

 R mII

 R m3

Φ1

= Φ1 |

 − Φ 

Φ

 . 

 I

2  , 

Φ  2 =

2  |

2 =0

 R

 I 1=0

m1 +  R m3

Der letzte Flussanteil Φ  2 folgt aus der Flussteilerregel. Die ersten beiden Flüsse

führen zur primären und sekundären Selbstinduktivität  L 1,  L 2

Ψ1

 w 1Φ1

 w 2

 w 2

 L

1

2

1 =

=

=

 , L 2 =

 , 

 I 1

 I 1

 R mI

 R mII

 R mI =  R m1 +  R m2 
R m3 , R mII =  R m2 +  R m1 
R m3 . 

Die Gegeninduktivität  M 21 ergibt sich als Verhältnis des durch  R m2 fließenden

Teilflusses Ψ  1( I 1) zum verursachenden Strom  I 1 (s. Gl. (3.2.48))



Ψ 



1( I 1) |

Ψ1( I 1) |

Ψ 

 M

 I 2=0

 I 2=0

1 ( I 1) 

21

=

=

 I



1

 I 1

Ψ1( I 1)  I 2=0

Ψ1( I 1) |

Ψ21

 w 2

 R m3

=

 I 2=0

=

1  I 1

=  L 1 k 1 . 

 I 1

Ψ11

 R mI I 1  R m2 +  R m3
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Abb. 3.2.22. Transformator. (a) Betriebsschaltung, Kernanordnung mit Mittelschenkel. 

(b) Magnetische Ersatzschaltung. (c) Elektrische Ersatzschaltung

Ganz entsprechend erhält man die Gegeninduktivität  M 12 zu

 w

 R m3

 M

2

12 =

=  L 2 k 2 . 

 R mII  R m1 +  R m3

Die Kopplungsfaktoren drücken so das Verhältnis des Flusses durch die Nachbar-

spule zum Fluss durch die erregende Spule gemäß der Definition Gl. (3.2.48) aus. 

Weil die lineare Anordnung nur eine Gegeninduktivität hat ( M =  M 21 =  M 12, 

Umkehrsatz) folgt aus  M  2 =  M 12 M 21:

 √

 √

 w 1 w 2 R m3

 M =

 k 1 k 2  L 1 L 2 =

 , 

 R m1 ( R m2 +  R m3) +  R m2 R m3

 R m3

 k =  k 1 =  k 2 = 

 ≤  1 . 

( R m1 +  R m3) ( R m2 +  R m3)

Der Kopplungsfaktor  k <  1 entsteht durch den magnetischen Widerstand  R m3 des

Mittelschenkels, für  R m3  → ∞  folgt ideale Kopplung mit  k = 1. So veranschaulicht

 R m3 den Flussanteil, der beide Spulen nicht verkoppelt und auch als Weg für den

Streufluss der Spulen interpretiert werden kann. 

Die Kenntnis von  L 1,  L 2 und  M  legt die magnetische Ersatzschaltung fest und die

Elemente der elektrischen Ersatzschaltung Abb. 3.2.22c. Weil dort, wie Abb. a, der

Strom  i 2 vom Punkt weg fließt, liegt gegensinnige Kopplung mit  negativer Gegen-

 induktivit¨

 at  vor. Sie wird ausgedrückt entweder im Zahlenwert von  M  oder (besser)

im Vorzeichen, dann gilt für  M  stets der Betrag. Als Folge dieser Kopplung wir-

ken die beiden von den Erregungen ausgehenden Flüsse im Eisenkreis einander

 entgegen (s. Kap. 3.4.3). Eingefügte Widerstände  R 1,  R 2 erfassen Ohmsche Wicklungswiderstände, sie können zunächst entfallen. Weil die zu Abb. c gehörende

 u,  i-Beziehung des Transformators durch das Induktionsgesetz mitbestimmt wird, 

steht sie erst später als sog.  Transformatorgleichung (3.4.17) bereit. 

Der letzte Schritt berücksichtigt die Nichtlinearität des magnetischen Kreises (Ma-

gnetisierungskennlinie). Bei Handanalyse gestaltet sich die Bereitstellung eines dar-

auf basierenden nichtlinearen  u, i-Modells schwierig. Deshalb empfiehlt sich eine

 Simulationsl¨

 osung  mit nichtlinearem Transformatormodell, das für gegebene mag-

netische Verhältnisse in gängigen Schaltungssimulatoren, z. B. SPICE, bereitsteht. 

Beispiel 3.2.19 Gegeninduktivit¨

at, Zylinderspule Eine lange Zylinderspule (Länge

 l 1 Windungszahl  w 1, s. Abb. 3.2.23a) enthält eine zweite kurze Spule der Länge

 l 2, (Windungszahl  w 2) vom praktisch gleichen Querschnitt. Gesucht ist die Gegen-
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Abb. 3.2.23. Berechnung der Gegeninduktivität. (a) Lange Zylinderspule mit innenliegen-

der drehbarer kleinerer Spule. (b) Gerader Leiter konzentrisch umgeben von einer Ringspule

induktivität. Spule 1 (Querschnittsfläche  A) hat etwa den magnetischen Wider-

stand  R m =  l 1 /( μ 0 A) und damit die Selbstinduktivität  L 1 =  w 21 /R m. Die kurze Spule in ihr wird von der gleichen Flussdichte durchsetzt und hat den gleichen

magnetischen Widerstand, es gilt  L 2 =  w 22 /R m. Damit beträgt die Gegenindukti-

 √

vität  M =

 L 1 L 2 =  w 1 w 2 /R m. Sie folgt auch aus Feldbetrachtungen. Im Innern

der größeren Spule herrscht die homogene Flussdichte  B 1 = ( μ 0 w 1 I 1 /l 1) e z in  z-

Richtung. Dadurch erfährt die drehbare Spule den Flussanteil





 μ 0 w 1 I 1

 μ 0 w 1 I 1  πd 2

Φ

2

21 =

 B 1  ·  d A 2 =

cos  α d A =

cos  α, Ψ21 =  w 2Φ21 . 

 l 1

 l 1

4

 A 2

 A 2

Aus dem verketteten Fluss Ψ21 ergibt sich die Gegeninduktivität gemäß Definition

Ψ21

 μ 0 w 1 w 2 πd 2

 M =

=

2 cos  α. 

 I 1

4 l 1

Sie lässt sich über den Winkel stufenlos zwischen positiven und negativen Werten

einstellen mit einem Nulldurchgang bei  α =  π/ 2: beide Spulenachsen stehen senk-

recht zueinander (Entkopplung der Spulen). Gekoppelte Spulen dieser Art heißen

 Variometer. Die erzielbaren Induktivitäten sind aber relativ klein. 

Führt man die innere Spule als Drehrähmchen aus, das mit der Kreisfrequenz  ω

rotiert ( α( t) =  ωt), so kann die Gegeninduktivität  M ( t) als  zeitvariabel  verstanden werden. Abhängig vom Einstellwinkel ändert sich die an den Spulenklemmen induzierte Spannung nach Größe und Vorzeichen. Die Drehspule im Magnetfeld hat

größte Bedeutung für Generatoren (s. Kap. 3.3.3.2). 

Wäre umgekehrt Spule 2 stromdurchflossen und Spule 1 nicht, so würde die Berech-

nung der Gegeninduktivität wegen der kurzen Spule 2 schwieriger, ferner durchsetzt

nur ein Teil ihres Flusses (stark inhomogen) die äußere Spule. Nach dem Umkehrs-

atz Gl. (3.2.46)  m¨

 ussen  aber beide Gegeninduktivitäten übereinstimmen. 

Beispiel 3.2.20 Kopplung von geradem Leiter und Ringspule Um einen geraden

stromführenden Leiter (Abb. 3.2.23b) liegt eine konzentrische Ringspule ( w  Win-

dungen). Gesucht ist die Gegeninduktivität zwischen Leiter und Ringspule. 
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Abb. 3.2.24. Berechnung der Gegeninduktivität benachbarter Doppelleitungen. (a) Beitrag

des rechten bzw. (b) linken Leiters zum Fluss durch die Nachbarleitung 3, 4. (c) Verdrehung

der Leitungsebenen um einen Winkel. (d) Anordnung mit Leiterkreuzung

Wir betrachten den Leiter als Stromschleife, die im Unendlichen schließt. Der von

ihm durch die Ringspule angetriebene Fluss Ψ21 ist leicht zu berechnen (und damit

 M 21 = Ψ21 /I 1) dagegen  M 12 = Ψ12 /I 2 schwieriger, obwohl  M 12 =  M 21 gelten muss! Die Flussdichte um den Leiter (s. Gl. (3.1.20)) verursacht in der Ringspule

den Fluss



 d



 r a



 μI

 wμId

 r a

Ψ21 =  w

 B ·  d A =  w

 e

ln

 . 

2 π ϕ · eϕ d  d z =

2 π

 r i

 A

 z=0  = r i

Er bedingt die Gegeninduktivität  M 21 = Ψ21 /I =  wμd  ln( r

2 π

a /r i). Für die Zahlen-

werte  w = 100,  d = 10 cm und ln( r a /r i) = 10 ergibt sich  M 21  ≈  20 µH, ein recht geringer Wert. Zur Berechnung von  M 12 betrachtet man den geraden Leiter als Teil

einer im Unendlichen geschlossenen Schleife (Strom fließt stets in einer Schleife!), 

durch deren Fläche am Ort der Ringspule der zugehörige Fluss Φ12 =  μwId  ln( r

2 π

a /r i)

strömt. 

Misst man die in der Wicklung der Ringspule induzierte Spannung, so lässt sich

direkt auf den Strom schließen. Solche Anordnungen dienen als  Stromzange (mit

aufklappbarer Ringspule), die eine Unterbrechung des Stromkreises zur Zwischen-

schaltung eines Messinstruments vermeidet. 

Beispiel 3.2.21 Gegeninduktivit¨

at zweier paralleler Doppelleitungen Wir ermitteln

die Gegeninduktivität zweier langer paralleler Doppelleitungen (Abb. 3.2.24a). Da-

zu werden zunächst die Teilflüsse bestimmt, die von den Leitungen 1 und 2 (hin- und

rückfließender Strom  I 1, Leitung I) ausgehen und die effektive Fläche der strom-

losen Leitung II zwischen den Leitern 3, 4 durchsetzen. Der mit den Leitern 3, 4

verkettete Induktionsfluss ist gleich der Summe der Teilflüsse, die im Zwischenraum

3–4 durch den Strom  I 1 im Leiter 2 und  −I  im Leiter 1 verursacht werden. Lei-

ter 1 (Ursprung des Koordinatensystems) wird vom Magnetfeld in konzentrischen

Kreisen umschlungen, davon durchsetzt ein Teil die Leitung 2. Die magnetische

Feldstärke  H( ) verläuft um die Leiterachse 1. Der Fluss durch die Fläche  A  zwischen Leitern 3 und 4 ergibt sich am einfachsten, wenn sie in einen Anteil I parallel

zur  H-Linie zerlegt wird (dort ist  B ·  d A = 0) und einen Anteil II senkrecht zu den

 H-Linien (mit  B ·  d A =  B d A). Haben alle Leiter die Länge  L, so gilt d A =  L d 

290

3. Das magnetische Feld

(d A  ist entgegen der Richtung  eϕ  orientiert). Insgesamt beträgt der Flussbeitrag

des Leiters 1



 b



 b



( −I 1)

 μ 0 I 1 L

 d

 μ 0 I 1 L

 b

Φ21 ,  1 =

 B ·  d A =  μ 0

 eϕ

 · ( −e

=

=

ln

 . 

2 π

 ϕ)  L d 







2 π

 

2 π

 a

 A

 a 

 

d A

 a

 H

Dabei wurde die Stromrichtung in negativer  z-Richtung beachtet. Der Rückstrom

 I  durch Leiter 2 bewirkt zwischen den Leitern 3, 4 einen Fluss mit veränderten

Abständen  c,  d, seine umgekehrte Richtung kehrt das Vorzeichen. Dieser Anteil

Φ21 ,  2 lautet (Abb. 3.2.24b)

 d

Φ21 ,  2 =  − μ 0 I 1 L  ln  . 

2 π

 c

Der Gesamtfluss Φ21 durch Leitung II ist die Summe der Teilflüsse

 μ 0 IL

 bc

Φ21 = Φ21 ,  1 + Φ21 ,  2 =

ln

 . 

2 π

 ad

Er bestimmt die Gegeninduktivität

Φ21

 μ 0 L

 bc

 M =

=

ln

 . 

 I 1

2 π

 ad

Sie kann abhängig von den Leiterabständen positiv oder negativ sein und spe-

ziell für  b/a =  d/c  sogar verschwinden. Die Leiteranordnung nach Abb. 3.2.24c

ist eine besonders kompakte Ausführung: die Leitungsebenen stehen jeweils senk-

recht zueinander. Diese Form fand als sog. 

Sternvierer“ große Verbreitung. Bil-

” 

 √

den beide Leiterebenen einen Winkel  α, so gilt wegen  a =  d =  D

 √

1 + cos  α, 

2

 √





 b =  c =  D

 √

1  −  cos  α:  M =  μ 0 L  ln tan2( α/ 2) . Winkelabhängig kann  M  positiv 2

2 π

oder negativ sein, für  α = 90 ◦  entkoppeln beide Leitungen. 

Eine weitere Lösung vertauscht die Leitungen 1 und 2 oder 3 und 4 in regelmäßigen

 √

Abständen. Dann entsteht im ersten Fall ( b =  c =  D,  a =  d =  D  2) eine

 √

Gegeninduktivität  ∼  ln(1 / 2), im zweiten ( a =  d =  D,  b =  c =  D  2) die Induktivität  ∼  ln(2): beide unterscheiden sich im Vorzeichen. Dadurch heben sich

die in der Leitung induzierten Spannungen auf. Diese Maßnahme heißt Leitungs-

” 

kreuzung“ (Abb. 3.2.24d), sie reduziert durch Senken der Gegeninduktivität das

Übersprechen“ in Fernmeldeleitungen. 

” 

Denkbar ist auch in Abb. 3.2.24d eine Verschiebung der Leitung 1 (1, 2) parallel zur

Leitung 2 um das Stück  y. Dafür betragen die neuen Abstände  b 2 =  c 2 =  y 2 +  D 2, a 2 =  D 2 + ( D +  y)2,  d 2 =  D 2 + ( D − y)2. Abhängig von der Verschiebung  y ändert sich das Vorzeichen mit verschwindender Kopplung bei ( bc)2 = ( ad)2 für



 y =  D

3 / 2  ≈  1 ,  23 D. 

Die Ergebnisse der gekoppelten Doppelleitung sind auf lange schmale Leiterrähm-

chen übertragbar, da die Felder der kurzen Stirnseiten kaum beitragen. 

Mehrere gekoppelte Spulen Sind mehrere Spulen magnetisch verkoppelt, so

gibt es mehrere Gegeninduktivitäten. Dann gilt

 n



Induktionsfluss in Spule 1 bei

Ψ1 =  L 11 I 1 +

 M 1 νIν. 

(3.2.53)

 n  magnetisch gekoppelten Spulen

 ν=2

Aus Symmetriegründen setzt man häufig  M 1 ν =  L 1 ν. 
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Beispiel 3.2.22 Gekoppelte Spulen Sind drei Spulen miteinander verkoppelt, so gilt

bei Annahme linearer Induktivitäten

Ψ1 =  L 11 I 1 +  L 12 I 2 +  L 13 I 3 , M 12 =  L 12 =  L 21 =  M 21 , Ψ2 =  L 21 I 1 +  L 22 I 2 +  L 23 I 3 , M 13 =  L 13 =  L 31 =  M 31 , (3.2.54)

Ψ3 =  L 31 I 1 +  L 32 I 2 +  L 33 I 3 , M 32 =  L 32 =  L 23 =  M 23 . 

Es treten die Selbstinduktivitäten  L 11,  L 22,  L 33 sowie die Gegeninduktivitäten zwi-

schen jeweils benachbarten Spulen auf. Darstellungen dieser Art lassen sich bequem

als sog.  Induktivit¨

 atsmatrix  schreiben. 

3.2.6 Magnetische Energie in Spulen

So, wie das elektrostatische Feld elektrische Energie speichert, sitzt im Mag-

netfeld magnetische Energie. Sie kann ausgedrückt werden durch die Feld-

größen  H  und  B, die Globalgrößen Θ und Φ oder Selbst- und Gegeninduk-

tion. Wenn auch die Einzelheiten dazu erst im Kap. 4.1.4 vertieft werden, 

greifen wir hier etwas vor. 

Energie und Induktivit¨

at Eine (lineare) Induktivität  L  speichert die Energie

 W m (s. Gl. (3.2.44))

 L

 IΨ

( wI)2

 W m =

 I 2 =

=

 . 

(3.2.55)

2

2

2 R m

Die in einer stromführenden Spule gespeicherte magnetische Energie wächst

proportional zum Produkt aus Stromquadrat und Induktivität. 

Gespeichert wird die Energie in Spulen mit Eisenkreis hauptsächlich im Luftspalt

(der entsprechend groß sein sollte), denn es gilt

⎛

⎞





1

1 ⎜

⎟

 W m =

 H ·  d s ·

 B ·  d A = ⎝  V Fe +  V L ⎠  · Φ . 

(3.2.56)

2

2





 s

    A  

Φ R mFe

Φ R mL

 V Fe+ V L

Φ

Die Energiebeziehung Gl. (3.2.55) eignet sich umgekehrt zur Berechnung der

Selbstinduktivität räumlich ausgedehnter Leiteranordnungen, aber auch von

Massivleitern, wenn die Auswertung der Beziehung  L = Ψ /I  schwierig wird. 

Sie liefert auch die  innere Induktivit¨

 at. 

Beispiel 3.2.23 Innere Induktivit¨

at Die magnetische Feldstärke im Innern eines lan-

gen geraden Drahtes beträgt nach Gl. (3.1.20)  H( ) =

 

 I.  Ein Hohlzylinder vom

2 πr 2

0
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Radius  , der Dicke d   und Länge  l  innerhalb eines Leiters speichert die Energie

 μ 0 ( H( ))2

 μ 0 l

d W m =

2 πl d  =

 I 2  3d 

 →

2

4 πr 20

 r 0



 L i

 μ 0 l

 μ 0 l

 W m =

 I 2 =

 I 2

  3d  =

 I 2 . 

(3.2.57)

2

4 πr 2

16

0

 π

0

Daraus ergibt sich seine  innere Induktivit¨

 at L i (übereinstimmend mit Bsp. 3.2.16)

 μ 0 l

 L i =

 . 

Innere Induktivität eines Leiters (3.2.58)

8 π

Die innere Induktivität  L i eines Leiters hängt nicht von seinen Eigenschaften

(Drahtstärke) ab, sie beträgt etwa 0 ,  05 mH / km = 0 ,  5 nH / cm! 

Sie wirkt in der praktischen Schaltungstechnik bei großen Stromänderungen. So

erzeugt eine Stromänderung d i/ d t = 106 A /  s = 1 A / µs einen  induktiven Span-

 nungsabfall  von 0,5 mV am Leiter der Länge  L = 1 cm! 

Beispiel 3.2.24 Induktivit¨

at eines Koaxialkabels Im Koaxialkabel ist die magne-

tische Energie in drei Bereichen gespeichert: dem Innenleiter, dem isolierenden

Zwischenraum und im Außenleiter. Für die Energie des Innenleiters gilt das eben

ermittelte Ergebnis; die Energie im Zwischenraum  W mz kann aus dem magnetischen

Fluss berechnet werden, man erhält (Nachweis)  W mz =  L z I 2 / 2 mit der Induktivität

 L z =  μ 0 l  ln ( r

2 π

i /r 0) ( r i Innenradius des Außenleiters,  r 0 Außenradius des Innenlei-

ters). Die innere Induktivität des Außenleiters muss, wie beim Innenleiter, den

erfassten Strom anteilig berücksichtigen. Abschätzungen ergeben, dass die Induk-

tivität des Zwischengebietes den größten Beitrag liefert. Ein Kabel mit  r i = 2 mm

und  r 0 = 0 ,  3 mm hat eine Zwischeninduktivität pro Länge  L z = 379 nH /  m. 

3.3

3.3 Induktionsgesetz: Verkopplung magnetischer

und elektrischer Felder

3.3.1 Induktion als Gesamterscheinung

R¨

uckblick Bisher wurden zeitlich konstante elektrische und magnetische Fel-

der getrennt betrachtet. Bei Zeitabhängigkeiten  verkoppeln  sich beide Felder

als  neue Qualit¨

 at:

Nach dem Durchflutungssatz wird der Strom von einem zeitveränderlichen

Magnetfeld umwirbelt (Abb. 3.3.1a). 

Um  zeitliche  Magnetfluss ¨

 anderungen entsteht ein elektrisches Wirbelfeld. 

Die Erscheinung heißt  Induktion  und ist Inhalt des  Induktionsgesetzes

(Abb. 3.3.1b, c). 
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Abb. 3.3.1. Erzeugung von Wirbelfeldern. (a) Jeder Strom wird von einem Magnetfeld

umwirbelt (Durchflutungssatz), Angabe in Differenzial- und Integralform. (b), (c) Jede

zeitveränderliche Flussdichte wird von einem elektrischen Wirbelfeld umgeben (Indukti-

onsgesetz). Flusszu- oder -abnahme bestimmt die Feldrichtung

Faraday entdeckte 1831 23, dass

im geschlossenen Leiterkreis ein Strom fließt, wenn sich ein Magnet nähert; 

bei Bewegung der geschlossenen Leiterschleife im inhomogenen Magnetfeld ein

Strom auftritt; 

das Ein- oder Ausschalten des Stromes in einer Leiterschleife in einer benach-

barten Schleife einen kurzzeitigen Strom verursacht. Stromfluss setzt aber stets

eine  Spannung als Antriebsursache  voraus. 

Umfangreiche Experimente ergaben, dass jeder sich ändernde magnetische

Fluss von einem elektrischen Feld  E  umwirbelt wird. Umfasst eine Leiter-

schleife den zeitveränderlichen Fluss, so entsteht in ihr eine  induzierte Span-

 nung  oder  elektromagnetische Induktion. Es gilt

Netzwerkform







⎛

⎞





⎜

⎟

 e i =

 E i  ·  d s =  −  d ⎝

 B( t)  ·  d A⎠ =  − dΨ( t)  . 

d t

d t

(3.3.1a)

 A( t)







Integralform

Induktionsgesetz

Induktionsgesetz (Naturgesetz in allgemeiner Form, zweites Maxwellsches

Gesetz). Die elektrische Umlaufspannung ist gleich der Abnahme des rechts-

wendig umfassten magnetischen Flusses. 

23 nach rd. 10 jähriger Experimentierzeit! 
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Abb. 3.3.2. Induktionsvorgang. (a) Ruhinduktion: Stromänderung in einer Primärspule

induziert in der Koppelspule die Spannung  u 2 an ihren Klemmen. (b) Rechte- und Linke-

Hand-Regeln. (c) Ursache und Wirkungen der Ruheinduktion rückführbar auf eine indu-

zierte Feldstärke  E i. (d) Induktionsgesetz und Feldgrößen nach Gl. (3.3.1a), angedeutet ist eine Formänderung der Kontur C

Gleichwertige Bezeichnungen für die Spannung  e i sind  induzierte Urspannung, 

induzierte  elektromotorische Kraft  oder  elektrische Umlaufspannung.  24

Bei linkswendiger Zuordnung (Bezugssinn des Flusses oder der Spannung)

wechselt das Vorzeichen. 

Abbildung 3.3.2a zeigt den Induktionseffekt in einer Leiterschleife 2, die mit

einer Schleife 1 (gleicher Wicklungssinn) magnetisch gekoppelt ist (nach dem

Modell Abb. 3.2.19). Bei Stromerhöhung (Einschalten) steigt der Fluss in

beiden Schleifen (dΨ / d t >  0, Zunahme des Betrages von Ψ bzw.  B) und in

24 Die (historische) Form des Induktionsgesetzes ist die sog. EMK-Form: die induzierte

Spannung tritt als EMK auf (Formelzeichen  e i, auch  u ind). 
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Schleife 2 treibt die induzierte Feldstärke  E i2 einen induzierten Strom  i ind

 entgegen  der (positiv definierten) Stromrichtung  i 2 an. Deshalb wirkt der

von  i ind verursachte magnetische Fluss Ψ ∗ (ausgedr

i

ückt durch die magne-

tische Feldstärke  H∗  nach dem Durchflutungssatz) dem urspr

i

ünglichen Fluss

Ψ1, also  seiner Ursache,  entgegen.  Stromrichtung und Richtung der Fluss-

 zunahme  sind (dem Experiment nach)  linkswenig  zugeordnet (Linke-Hand-

Regel, Abb. 3.3.2b) und am eingefügten Widerstand  R  zwischen den Klem-

men 1, 2 entsteht ein (positiver) Spannungsabfall  u 12 =  i ind R. 

Wird die sekundäre Leiterschleife unterbrochen (offene Schleife,  R → ∞), 

dann lässt sich an den Klemmen 1, 2 ein  Spannungsabfall u 12 =  u qi = dΨ / d t

messen. Er ist der Flusszunahme proportional. 

Sinkt dagegen der Fluss ( Flussabnahme, dΨ / d t <  0, Abnahme des Betra-

ges von Ψ bzw.  B), etwa bei Abschalten des Primärstromes (Abb. 3.3.2a)

so wechselt der induzierte Strom in der sekundären Leiterschleife seine Rich-

tung und ebenso die induzierte Spannung bei offener Schleife:  Flussabnahme

 und Stromrichtung i ind sind  rechtswendig (Rechte-Hand-Regel) zugeordnet. 

Soweit der experimentelle Befund. 

Betrachtet man die Leiterschleife als  Grundstromkreis  für den induzierten

Strom  i ind, so kann er verursacht werden:

durch eine  induzierte Spannung e i (EMK mit dem modifizierten Ma-

schensatz Form 2 (Σ EMK = Σ Spannungsabfälle, Induktionsgesetz nach

Gl. (3.3.1a))  in Richtung von i ind (Linke-Hand-Regel), die der  Flussab-

 nahme  proportional ist (oder gleichwertig eine Quellenspannung  u Q =

 − dΨ / d t, nicht verwendet); 

durch eine  induzierte Quellenspannung u qi = dΨ / d t (Vorzeichenwechsel

im Induktionsgesetz) nach dem Modell des Erzeugerzweipols im Grund-

stromkreis):

 u qi und Flusszunahme sind  rechtswendig  zugeordnet

(Abb. 3.3.2b). Dann wird das Induktionsgesetz (3.3.1a) gleichwertig mit



dΨ

 u qi =

=  −

 E i  ·  d s =  −e i

(3.3.1b)

d t

 der induzierten Quellspannung u qi benutzt (Abb. 3.3.2a). 

Alle Formen sind in Lehrbüchern verbreitet, eine zusätzliche Schwierigkeit. 

Wir vertiefen diese Problematik in Kap. 3.3.2 und stellen dann die Rich-

tungszuordnungen von Flussänderung und induzierten Größen übersichtlich

zusammen (s. Abb. 3.3.5). 

In Abb. 3.3.2a mag (fälschlicherweise) der Eindruck entstehen, als ob Induktion

nur in Leiterschleife 2 auftritt. Tatsächlich findet aber auch in der Erregerschleife

1 eine Flussänderung mit induziertem Strom statt, erklärt durch eine antreiben-
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de Spannung  u qi bzw.  e i (im Bild angedeutet). Dann verlangt der Maschensatz

 u q =  u qi = dΨ1 / d t = d( Li 1) / d t =  L d i 1 / d t: die (Selbst-) Induktion in der Aus-gangsschleife 1 bestimmt die Strom-Spannungs-Beziehung an ihren Klemmen nach

Maßgabe ihrer Induktivität  L! Dazu wirken Durchflutungssatz (Erzeugung des zeit-

veränderlichen Magnetfeldes) und Induktionsgesetz  in der gleichen Leiterschlei-

 fe  zusammen. Deshalb wurde bei Einführung der Selbstinduktivität (Kap. 3.2.5)

noch auf ihre Strom-Spannungs-Beziehung verzichtet. Folgerichtig wird die Strom-

Spannungs-Beziehung gekoppelter Leiterschleifen Abb. 3.3.2a durch ihre Selbst-

und Gegeninduktivitäten bestimmt, denn auch das Magnetfeld des induzierten Stro-

mes in Schleife 2 koppelt z. T. nach Schleife 1 zurück verbunden mit der Gegenin-

duktivität  M 12. 

Praktisch erzeugt man einen zeitveränderlichen magnetischen Fluss z. B. im

magnetischen Kreis (Abb. 3.3.2c) durch eine Erregerwicklung oder eine Ände-

rung der magnetischen Eigenschaften ( Änderung des magnetischen Wider-

standes  R m, Luftspaltänderung). Spannungsinduktion erfolgt dann in einer

Leiterschleife, einem Leitergebilde (Strömungsfeld) oder bei hinlänglich

schneller Feldänderung auch als  Verschiebungsstrom im Nichtleiter. Man stellt

zusammenfassend fest:

Bei zeitlicher Änderung des  Induktionsflusses Ψ( t) durch eine von einem

Leiter oder gedachten Weg umschlossene Fläche tritt längs eines geschlos-

senen Weges eine induzierte Umlaufspannung  e i als Umlaufintegral einer

 induzierten Feldst¨

 arke E i auf. Sie ist Ursache des Stromantriebes längs des

geschlossenen Weges und gleich dem sog.  magnetischen Schwund − dΨ / d t. 

Beim umfassten Fluss kommt es (als Folge des Satzes vom magnetischen

Hüllenfluss) auf die Lage der von der Randkurve C umfassten Fläche an. Eine

Flussänderung entsteht nicht nur bei fester Berandung und zeitveränderlicher

Flussdichte  B( t), der  Ruheinduktion, sondern auch bei zeitlich konstanter

Flussdichte  B, wenn sich die  Berandung ändert (im Bild 3.3.2d angedeutet). 

Man spricht von  Bewegungsinduktion, der Standardform f¨

 ur bewegte Leiter. 

Verallgemeinerung der Induktionswirkung Beziehen sich induzierte Spannung

 e i und zeitveränderlicher Fluss zunächst auf das Induktionsgesetz in der Form

Gl. (3.3.1a)25,26,27 typisch für Netzwerke, so umfasst das  verallgemeinerte

 Gesetz  mehr. So, wie der Durchflutungssatz sowohl für einen Raumbereich

(Integralform) als auch im Raumpunkt (Differenzialform mit der Vektorope-

25 Das Induktionsgesetz ist ein Naturgesetz, deshalb erwartet man  e i = const  ·  dΨ / d t, weil zwei wesensverschiedene Größen, Spannung und magnetischer Fluss, verkoppelt

werden. Unlogischerweise ist die Konstante zu 1 gesetzt. Erst dadurch erhält der

Fluss die Dimension Spannung und Zeit. So mutet das Induktionsgesetz wie eine

Definitionsgleichung an und sein gesetzmäßiger Charakter tritt äußerlich nicht in

Erscheinung. Eine ähnliche Inkonsequenz steckt im Durchflutungsgesetz. 
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ration Rotation“, s. Abb. 3.3.1b, c) formuliert werden kann, gilt dies auch für

” 

das Induktionsgesetz: Der Wirbel (die Rotation) der elektrischen Feldstärke

 E  ist in jedem Raumpunkt gleich der Abnahme der Induktion  B  im gleichen

Punkt. Deshalb wird jeder zeitveränderliche Fluss von einem  elektrischen

 Wirbelfeld (Merkmal geschlossene Feldlinien) umgeben:

Bei zeitveränderlichen Feldgrößen ist das elektrische Feld nicht wirbelfrei! 

In dieser Form erfordert das Induktionsgesetz  keinen  Leiterkreis und gilt

auch in Nichtleitern (mit einem  induzierten Verschiebungsstrom, Abb. 3.3.2c). 

Maßgebend ist der magnetische Fluss, der eine Berandung durchsetzt

(Abb. 3.3.2d). Magnetischer Fluss, Kontur C und Flussdichte bilden ein

Rechtssystem: jeder zeitveränderliche magnetische Fluss, der eine Oberfläche

 A (berandet von einer Kontur C) durchdringt, erzeugt im Umlaufweg C eine

induzierte Spannung. Ihre Richtung folgt am sichersten über den induzierten

Strom aus der  Lenzschen Regel (s. u.). Wir beschränken uns im Lehrbuch auf

das Induktionsgesetz in Integralform Gl. (3.3.1a). 

Im Rückblick verursachten  ruhende  Ladungen ein (wirbelfreies) Quellenfeld:

 Gleichf¨

 ormig bewegte  Ladungen (Gleichstrom) waren Ursache des umwirbelnden

zeitkonstanten Magnetfeldes. 

 Beschleunigte  Ladungen (oder zeitliche Stromänderungen) induzieren in ihrer

Umgebung ein elektrisches Wirbelfeld. 

Deshalb gilt der Maschensatz streng nur in Netzwerken, mit zeitkonstan-

ten Magnetfeldern, also wenn Gleichströme fließen. Wechselströme erzeugen

in den Maschen zusätzliche induzierte Spannungen. Aus unterschiedlichen

Gründen (langsame Magnetfeldänderung, kleiner Flächenumfang der Ma-

schen) werden sie vernachlässigt. 

Richtungszuordnung, Lenzsche Regel Die Richtungszuordnung zwischen mag-

netischem Fluss, zeitlicher Flussänderung und induziertem Strom (Leitungs-

bzw. Verschiebungsstrom) bestimmt die  Lenzsche Regel  28,29. 

26 Das Induktionsgesetzt wurde 1831 gleichzeitig von M. Faraday und J. Henry ent-

deckt. Da er seine Erkenntnis jedoch nach Faraday veröffentlichte, gilt Faraday als

Entdecker. 

27 Faraday, ursprünglich Chemiker, baute aufgrund der Erkenntnisse Oersteds zu-

nächst einen Motor zum Nachweis der Wechselwirkung zwischen Magnetfeld und

Strom; 1831 bewegte er einen kurzgeschlossenen Leiter im Magnetfeld und bemerkte

Stromfluss: die Geburt des Generatorprinzips und Induktionsgesetzes. 

28 Heinrich Emil Lenz, deutsch russischer Physiker, Universität Petersburg 1804–1868. 

29 Auch hier gilt das Newtonsche Prinzip actio = reactio. 

298

3. Das magnetische Feld

Der in einer vorhandenen (oder gedachten) Leiterschleife induzierte Strom

fließt stets in solcher Richtung um die magnetische Flussänderung, dass

sein Magnetfeld der Flussänderung entgegenwirkt oder kurz: Die induzierte

Spannung verursacht im Leiterkreis einen Strom in solcher Richtung, dass

sein Magnetfeld seine Entstehungsursache schwächt. 

Steigt (sinkt) der Fluss, so hemmt der induzierte Strom diese Zunahme (Ab-

nahme). Bewegt sich die Leiterschleife im Magnetfeld ( Bewegungsinduktion

(s. u.)), dann wirkt auf den induzierten Strom eine Kraft, die die Leiterbewe-

gung bremst. 

Abbildung 3.3.3a verdeutlicht die Lenzsche Regel an einer Leiterschleife. 

Stromerhöhung bedingt nach dem Durchflutungssatz eine Flusszunahme. Sie

erzeugt eine induzierte Spannung ( e i bzw. Feldstärke  E i) in der gleichen

Schleife und so gerichtet, dass der von ihr angetriebene induzierte Strom  i ind

der ursächlichen Stromerhöhung  entgegenwirkt ( Tendenz zur Stromschw¨

 a-

 chung) und ebenso sein begleitendes Magnetfeld das ursächliche abbaut ( Ten-

 denz zur Feldschw¨

 achung). Fasst man den Schleifenwiderstand konzentriert

im Element  R  zusammen (Abb. 3.3.3b), so entsteht der Spannungsfall  u 12 =

 e i =  i ind R. Bei Strom- bzw. Flussabnahme (Abb. 3.3.3c) ändern sich die

Richtungen von  e i und  i ind. 

Wird die Leiterschleife an einer Stelle unterbrochen (z. B. am Ersatzwider-

stand  R), so verschwindet der induzierte Strom und es baut sich an den

offenen Klemmen (der messbare)  Spannungsabfall u 12 =  e i ( 
= 0) auf (Ma-

schensatz Σ u = Σ e). 

Nach der Lenzschen Regel müssen deshalb Fluss abnahme (dΦ / d t <  0)

und Richtung des induzierten Stromes  i ind gemäß der Rechte-Hand-Regel

zugeordnet sein (oder bei Flusszunahme nach der Linke-Hand-Regel)

(Abb. 3.3.3b, c). 

Anwendung Vorgabe Stromänderung  →  zugehörige Flussänderung (Durch-

flutungssatz)  →  Eintrag des induzierten Stromes  i ind in solcher Richtung, 

dass sein Magnetfeld der ursprünglichen Flussänderung entgegenwirkt  →

Zurückführung von  i ind auf eine induzierte Spannung  e i oder  u qi nach dem

Modell Grundstromkreis. 

Weil nach der Lenzschen Regel die Richtung des induzierten Stromes im Lei-

terkreis festliegt, ist zwangsläufig auch die  Richtung der stromantreibenden

 Ursache  in Gl. (3.3.1a), die  induzierte Spannung e i oder gleichwertig die  in-

 duzierte Feldst¨

 arke E i, gegeben. Eine  offene Schleife  lässt sich gedanklich

stets über einen Widerstand schließen. Dann bestimmt der induzierte Strom
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Abb. 3.3.3. Lenzsche Regel. (a) Zuordnung der in einer Leiterschleife induzierten Größen. 

(b) Induktionsgesetz und Lenzsche Regel bei Flusszunahme. (c) dto. bei Flussabnahme. 

(d) Lenzsche Regel in gekoppelten Spulen

die Richtung des Spannungsabfalls und ihm kann eine Spannungsgröße als

Ursache zugeordnet werden (s. u.). 

Die Lenzsche Regel ist ein sicherer Weg zur Richtungsangabe des induzierten

Stromes und Interpretation des Induktionsvorganges durch die Netzwerk-

größen Strom, Spannung (bzw. zugeordnete Feldgrößen). 

Hinweis Zwangsläufig erklärt die Lenzsche Regel auch das negative Vorzeichen

im Induktionsgesetz Gl. (3.3.1a) rechts durch die entgegengesetzte Richtung des

induzierten Stromes  i ind gegenüber der positiv festgelegten Ausgangsstromrich-

tung  i 2 (Abb. 3.3.2a). Lenz stellte allerdings nur eine abstoßende Kraftwirkung

(s. Abb. 3.1.2b) zwischen ursprünglichem und induziertem Strom fest, die Formu-

lierung der entgegengesetzten Stromrichtungen setzte sich später durch. Schließlich

zeigte Helmholtz (1847), dass die  Richtung des induzierten Stromes im Energie-

 satz begr¨

 undet  ist: die der Spulenanordnung eingangs zugeführte elektrische Ener-

gie bzw. Leistung  p 1 =  u 1 i 1 (Abb. 3.3.2a) muss ausgangs wieder als elektrische (unter Zwischenwandlung in magnetische Energie) bzw. Leistung  p 2 =  u 2 i 2 an den

Verbraucher abgegeben werden:  p 1 =  p 2 (Verluste vernachlässigt). 

Würde bei Flusszunahme dΨ / d t >  0 in Abb. 3.3.2a ein induzierter Strom in an-

genommener Richtung  i 2 durch sein Magnetfeld die ursprüngliche Flussänderung

noch unterstützen, so müsste die induzierte Spannung (bzw. der Strom) weiter

wachsen. Dann erzeugt die Anordnung nach einmaliger Flusserhöhung ohne weite-

re Energiezufuhr eine unbegrenzt wachsende Energie, was physikalisch unmöglich

ist. Deshalb kann der induzierte Strom nicht die Richtung  i 2 haben, sondern  muss

entgegengesetzt fließen. Darauf beruhen die  Transformatorgleichungen (3.4.17). 

300

3. Das magnetische Feld

Die Lenzsche Regel ist  kein Bestandteil  des Induktionsgesetzes, denn sie folgt erst

aus dem Zusammenwirken von Durchflutungssatz, Induktionsgesetz und Energieer-

haltungsprinzip, also  nur bei induziertem Strom. Das Induktionsgesetz gilt jedoch

auch bei leerlaufender Induktionsspule. 

Elektrische Umlaufspannung Grundlage der Induktionserscheinungen ist die

Lorentz-Kraft auf bewegte Ladungsträger in Form der  induzierten Feldst¨

 arke

 E i (s. Gl. (3.3.12)). Sie wurde formal im Induktionsgesetz Gl. (3.3.1a) eingeführt als Grundlage der Umlaufspannung  e i gleich dem Umlaufintegral von

 E i. Sie umwirbelt stets die Flussänderung unabhängig von einem Leiter-

kreis (Abb. 3.3.1b, c). In ihm erzeugt sie allerdings den induzierten Strom

 i ind in Richtung von  E i (Abb. 3.3.2a). Damit wirkt die Schleife als  Grund-

 stromkreis, dessen Strom durch eine EMK bzw. die induzierte Quellenspan-

nung  u qi angetrieben wird. Ihre Festlegung nach Größe und Richtung erfor-

dert ein Zählpfeilsystem zwischen Φ und  u qi, wir wählen ein Rechtssystem

(Abb. 3.3.3a). Die Flussrichtung resultiert aus den Richtungen von Flächen-

element d A  und festgelegter Umlaufrichtung d s. Bei  Flusszunahme  ist dΦ po-

sitiv (oder  − dΦ  negativ). In Folge fließt der induzierte Strom linkswenig zum

Fluss (Abb. 3.3.3b). Diese Stromrichtung verdeutlicht die  Leiterschleife als

 aktiven Zweipol: magnetische Energie wird zugeführt und als elektrische abge-

geben (Stromrichtung entgegen zu  u qi!), was sich in der Lenzschen Regel für

den Fluss und den vom Strom erzeugten Gegenfluss ( → B

” 

ind)“ ausdrückt. 

Durch Wahl von  u qi verschwindet längs der Leiterschleife (Widerstand  R S)

die algebraische Summe aller Spannungen und es gilt (mit  i =  i ind)



 −

dΨ

 u qi +

 i ind R = 0  → u qi =  i ind( R S +  R) , u 12 |

=

 i=0

 u qi =

 . (3.3.1c)

d t

Am (eingefügten) Widerstand  R  entsteht der Spannungsabfall  u 12 =  i ind R, 

also im Leerlauf  i ind = 0 die Leerlaufspannung  u 12 |i=0 =  u qi. 

Der Vorgang ist ebenso durch die induzierte Spannung  e i erklärbar:  −e i hat

die gleiche Richtung wie  u qi und folglich  e i die Richtung des Stromes  i ind

gemäß EMK-Modell. Bei  Flussabnahme (also  − dΨ / d t positiv  bzw. dΨ / d t ne-

 gativ, Abb. 3.3.3c) vertauschen  i ind und alle relevanten Größen ( u qi,  e i,  E i) ihre Richtung. Wir verwenden deshalb besser die Ersatzschaltung in EMK-Form



 e i

=

 i ind R → −  dΨ =  e

d t

i =  i ind( R S +  R) , 

(3.3.1d)

 u 21 |

=

=  −

 i=0

 e i =  −  dΨ

 u

d t

12 |i=0  . 

Nach Übergang zum Strom  i =  −i ind, beiderseitigem Vorzeichenwechsel und

 e i =  −u qi wird die Identität mit Gl. (3.3.1c) deutlich: Das Induktionsge-

setz liefert sowohl in der Schreibweise für  u qi als auch  e i gleiche Ergebnisse. 
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Wir nutzen sie später als  Netzwerkersatzschaltung des Induktionsvorganges

(s. Abb. 3.3.5). 

Die bisherige Leiterschleife entspricht der magnetisch gekoppelten Schlei-

fe 2 in Abb. 3.3.2a. Sie wirkt als aktiver Zweipol mit der Ersatzschaltung

Abb. 3.3.3b, c, der magnetische Energie in elektrische wandelt und an die

Widerstände  R,  R S abgibt. Dabei übernimmt  R  die Verbraucherrolle (passi-

ver Zweipol) und  R S ist der Innenwiderstand des aktiven Zweipols. 

Verständnisprobleme bereitet, dass die induzierte Spannung eine eingeprägte

und über die Leiterschleife verteilte (nicht lokalisierbare!) Größe ist, die auch

bei  Schleifenkurzschluss nicht verschwindet. Dann fließt bei verschwinden-

dem Schleifenwiderstand ein beliebig hoher Schleifenstrom (Voraussetzung

dΨ / d t  eingeprägt, sonst rückwirkende Änderung des erzeugenden Magnetfel-

des durch die Lenzsche Regel)30. 

Schließlich kann man die induzierte Spannung (unabhängig von der Aus-

drucksform) auch als  gesteuerte Gr¨

 oße  durch das externe Magnetfeld verste-

hen: eine Magnetfeldänderung (durch eine Ursache an anderem Ort, z. B. ei-

ner Erregerspule) verursacht eine Spannung im Leiterkreis. Dieser Ansatz

modelliert später die Flusskopplung zweier Spulen (Abb. 3.4.10). 

Formen des Induktionsgesetzes Das Induktionsgesetz hat drei gleichwertige

Formen, die

Integralform mit induzierter Feldstärke  E i; 

Netzwerkform mit induzierter Spannung  e i (EMK) oder induzierter Quel-

lenspannung  u qi (Spannungsquelle gekennzeichnet durch Spannungsab-

fall); 

Feldform (Differenzialform) für den Raumpunkt ( →  Feldtheorie)

rot  E i( r, t) =  − ∂B( r, t)  . 

(3.3.2)

 ∂t

Die Wirbeldichte der elektrischen Feldstärke (rot  E i) ist gleich der zeit-

lichen Flussdichteabnahme. 

Jedes zeitveränderliche Magnetfeld erzeugt in sich geschlossene elektrische Feld-

stärkelinien, beide Feldgrößen sind einander rechtswendig zugeordnet (resp.  E i und

+ ∂B/∂t  linkswendig, Abb. 3.3.1b). Die Erregergröße  −∂B/∂t  ist die Wirbelursache, das elektrische Feld  E i die  Wirbeldichte (Rotation).  Nur in Gebieten mit

 zeitkonstantem Magnetfeld ( −∂B/∂t = 0)  ist das elektrische Feld wirbelfrei. 

30 Deshalb darf ein Transformator auf der Sekundärseite (als Leiterschleife betrachtet)

nie kurzgeschlossen werden!. 
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In der Integralform des Induktionsgesetzes sind die rechten Seiten über den Zu-

sammenhang von magnetischem Fluss Φ und Flussdichte  B  identisch. Links tritt



die induzierte Spannung  e i als  Umlaufspannung e i =

 E i  ·  d s  auf. Weil sie der

zeitlichen Änderung des magnetischen Flusses entspricht, stellt sie ein Maß für die

Wirbelstärke des elektrischen Wirbelfeldes dar (so wie die Stromstärke ein Maß für

die Wirbelstärke des magnetischen Feldes ist). 

Zum prinzipiellen Verständnis des Induktionsgesetzes genügen die ersten bei-

den Darstellungsformen: die erste für die  Bewegungsinduktion, die zweite

zum Einfügen des Induktionsvorganges in  Netzwerke. Ihr praktischer Nut-

zen zeigt sich beim Transformator, bei der Spulenbeschreibung oder dem

Motor-Generatorprinzip. 

Ruhe-, Bewegungsinduktion Das Induktionsgesetz erfordert  keine Anwesen-

 heit einer Leiterschleife (deshalb geht es über das Modell einer Leiterschleife

hinaus) und enthält keine Voraussetzung zur  Ursache der Fluss¨

 anderung.  Das

erlaubt eine weitere Spezifizierung. 

Im magnetischen Feld  B  wirkt auf ein mit der Geschwindigkeit  v  beweg-

tes Teilchen der Ladung  Q  die  Lorentz-Kraft F =  Qv × B (Gl. (3.1.1)). 

Sie kann auch als Wirkung einer  induzierten Feldst¨

 arke E i interpretiert wer-

den, die das Teilchen in einem  bewegten Bezugssystem  erfährt:  E i =  v ×

 B. Diese Feldstärke entsteht ebenso in einem quer zum Magnetfeld beweg-

ten Leiterstück:  Bewegungsinduktion (Abb. 3.3.4a). Die induzierte Feldstärke

verschiebt bewegliche Ladungen zu den Leiterenden und dort entsteht ein

Überschuss (+ Q) bzw. Defizit ( −Q). Die Ladungstrennung baut ein entge-

gengesetztes  elektrostatisches  Feld  E Q (von + nach  −  gerichtet) auf mit ent-

gegengesetzter Kraftwirkung auf die Träger. Der Vorgang währt, bis sich

beide Feldstärken im Leiter kompensieren, also  E =  E i +  E Q = 0 gilt. 

Die Feldstärke  E i erzeugt längs des bewegten Leiters die Spannung (EMK)

2

 e i =

 E

1

i  ·  d s, also auch eine induzierte Quellenspannung (Abb. 3.3.4a):

Die im Magnetfeld bewegte Leiterschleife modelliert Bewegungsinduktion

durch eine ruhende Ersatzspannungsquelle. 

Wir betrachten eine Leiterschleife (Fläche  A( t)) aus zwei beweglichen Stirn-

leitern (1, 2) und festen Seitenleitern senkrecht durchsetzt von einem homoge-

nen Magnetfeld (Abb. 3.3.4b). Jeder bewegte Leiterabschnitt erfährt eine in-

duzierte Feldstärke  E i, die in der Schleife einen Strom verursacht (messbar als

Spannungsabfall am Widerstand  R  im ruhenden Längsleiter). Bei Bewegung

beider Leiterstäbe mit gleicher Geschwindigkeit heben sich die induzierten

Feldstärken auf (kein Stromfluss), bei unterschiedlichen Geschwindigkeiten

fließt ein Nettostrom in der einen oder anderen Richtung. Der von der varia-

blen Leiterschleife umfasste Induktionsfluss Ψ( t) =  B( t)  · A( t) hängt von der
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Abb. 3.3.4. Bewegungsinduktion. (a) Induzierte Feldstärke im bewegten Leiter durch die

Lorentz-Kraft. (b) Bewegte Leiterschleife im homogenen Magnetfeld und Ersatzschaltung. 

(c) Formänderung einer Leiterschleife durch bewegte Leiterteile. (d) Rückführung der

Bewegungs- auf Ruheinduktion

Flussdichte  B( t) und der von ihr durchsetzten Fläche  A( t) ab (Abb. 3.3.4d), im vorgenannten Fall ist  B  konstant. 

Eine Flussänderung kann erfolgen direkt durch Magnetfeldänderung (Strom-

änderung einer Erregerspule) bei  fester Leiterschleife  oder bei  zeitlich kon-

 stantem  Magnetfeld durch  Bewegung der Schleifenumrandung, entweder mit

Leiter 1 (Flächen-, Flussabnahme) oder Leiter 2 (Flusszunahme). Dazu wird

das Induktionsgesetz in eine Form für die veränderbare Fläche  A( t) gebracht

(Abb. 3.3.4c). 

Die zeitliche Differenziation in Gl. (3.3.1a) erfasst die totale Änderung des

Integrals, d. h. die während der Zeit d t  auftretende totale Flussänderung dΨ

d

 ∂

 ∂

dΨ =

 {B ·  d A}  d t =

 {B ·  d A}  d t +

 {B ·  d A}  d s

d t

 ∂t

 ∂s

 ∂

=

 {B ·  d A}  d t − ( v × B)  ·  d s d t. 

(3.3.3a)

 ∂t

Sie wird bestimmt von der (lokalen) Flussänderung durch  ∂B/∂t  bei fes-

ter Schleifenfläche (erster Teil) und der Flussänderung durch  Bewegung (Ge-

schwindigkeit  v) und  Deformation  der Schleife. Dieser Teil kann (ohne Be-

weis) auf die Verrückung d s =  v d t  der Schleife während der Zeit d t  zurückgeführt werden (zweiter Anteil). Dann lautet das Induktionsgesetz





 e i =

 E i  ·  d s =  −  d

 B ·  d A

d t

beliebiger

Fläche  A( t) von

Umlauf  s( t)

 s  berandet
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 ∂B

=  −

d A +

( v × B)  ·  d s

 ∂t

Fläche

 s  längs der

 A( t)

Windungen

⎛

⎞





=  − ∂ ⎝

 B ·  d A⎠ +

( v × B)  ·  d s

 ∂t

 A

 s





=  −

 ∂Ψ

+

( v × B)  ·  d s =  −  dΨ( t) 

 ∂t





d t

˙

 B,v

 s

Ruheind . 







Bewegungsinduktion

oder







 E



 ∂Ψ

i  ·  d s =  −  dΨ

=

+

( v × B)  ·  d s =  e i =  −u qi . 

(3.3.3b)

d t  ˙ B, v

 ∂t







Umlauf

 s( t)

Bewegungsind . 

Ausgang ist das Induktionsgesetz Gl. (3.3.1a) im ruhenden Bezugssystem (Größen

 E i,  B). Es gilt verallgemeinert auch für die Größen  E i =  E i +( v ×B) und  B =  B

eines  bewegten Bezugssystems (im sog. nichtrelativistischen Fall, also langsamer

Bewegung). Dabei unterscheiden sich aber ( ∂B/∂t)  
= ( ∂B/∂t)31, wie in der ersten

Zeile von Gl. (3.3.3b) geschrieben. Die totale Flussableitung rechts enthält den Fluss

zur Zeit  t + Δ t  durch die Fläche  A( t + Δ t) abzüglich des Teiles zur Zeit  t  durch die Fläche  A( t) in ihrer ursprünglichen Form und Lage (Abb. 3.3.4c)



⎛



⎞

dΦ

d

1

=

 B ·  d A = lim

⎝  B( t + Δ t)  ·  d A

⎠

2  −

 B( t)  ·  d A 1  . 

d t

d t

Δ t→ 0 Δ t

 A( t)

 A 2

 A 1

Bei der Durchführung tritt der Fluss durch die Mantelfläche d A 3 (Abb. 3.3.4c) auf. 

Nach einigen Zwischenbetrachtungen folgt schließlich das Ergebnis Gl. (3.3.3b).32

31 Im zeitkonstanten, inhomogenen Magnetfeld bemerkt ein ruhender Beobachter in

jedem Punkt  ∂B/∂t = 0, ein bewegter Beobachter durchläuft dagegen Punkte mit

verschiedenem  B  und erklärt das als zeitveränderliche Flussdichte  B. 

32 Nach Helmholtz beträgt die totale zeitliche Flussänderung durch eine geschlossene

Kurve, die ihre Lage und Form ändert



 



dΦ

d

 ∂B

=

 B ·  d A =

+  v ·  div  B −  rot ( v × B)  ·  d A

d t

d t

 ∂t

 A( t)





 ∂B

=

 ·  d A −

( v × B)  ·  d s. 

 ∂t

Dabei wurde die Quellenfreiheit der Flussdichte (div  B = 0) beachtet und der

Stokessche Satz einbezogen, der ein Flächenintegral des Vektorfeldes rot  U über

eine Fläche umrandet vom Weg  s  in ein Linienintegral des Vektorfeldes  U  längs

einer geschlossenen Kurve  s  umwandelt. Dieser Ansatz wird in der Feldlehre vertieft

und kann zum Grundverständnis des Induktionsgesetzes überlesen werden. 
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Die Integralform des Induktionsgesetzes (linker Teil von Gl. (3.3.3b)) ist nicht an

einen Leiter gebunden, ebenso enthält sie keine Aussage zur Ursache der zeitli-

chen Flussänderung und gilt deshalb auch für bewegte Systeme. Die Wandlung des

Umlaufintegrals der Feldstärke mit dem  Stokesschen Satz  in ein Flächenintegral

über eine beliebige, von der Kontur C berandeten Fläche und den gleichwertigen

Ausdruck des diese Fläche durchsetzenden magnetischen Flusses als Flächenintegral

der Induktion erlaubt die Unterteilung in  Ruheinduktion (bei feststehender Schleife)

und einen Anteil, der durch Schleifenbewegung und Formänderung als  Bewegungs-

 induktion  entsteht. Für die Leiterschleife kann das Umlaufintegral der elektrischen

Feldstärke schließlich als  induzierte Spannung  interpretiert werden. 

Das Induktionsgesetz (bei langsam bewegtem Körper) für die  induzierte

 EMK e i bzw.  induzierte Quellenspannung u qi =  −e i (Gl. (3.3.1a)) wird damit

gleichwertig ausgedrückt:

durch die  totale Zeitableitung des Gesamtflusses  unabhängig davon, wo-

durch die Änderung entsteht (Magnetfeldänderung oder Leiterbewegung). 

Deshalb überrascht nicht, dass beide Effekte trotz unterschiedlicher For-

mulierung in einer Gleichung verankert sind. 

durch  zeitliche Magnetfeld¨

 anderung (bei ruhender Schleife,  Ruheindukti-

 on) und  Bewegung  bzw.  Form¨

 anderung  einer geschlossenen Leiterschleife

( Bewegungsinduktion). Dabei tritt die Lorentz-Kraft (Gl. (3.1.1)) als  Ur-

 sache der induzierten Feldst¨

 arke E i auf. Die Zuordnung beider Indukti-

onsarten hängt vom Beobachterstandpunkt ab. 

durch ein  Umlaufintegral der induzierten Feldst¨

 arke E i bzw.  E. Die Dif-

i

ferentialform (Gl. (3.3.2)) betrachten wir nicht. 

Physikalischer Hintergrund des Induktionsgesetzes ist die  direkte Umwand-

 lung magnetischer in elektrische Energie: Inhalt der Ruheinduktion. Ändert

dabei die Leiterschleife ihre Form und/oder Lage (durch aufzuwendende me-

chanische Kräfte), dann wird  mechanische Energie ¨

 uber die magnetische in

 elektrische  als Folge des Prinzips der Energieerhaltung gewandelt. Bewe-

gungsinduktion: direkte elektromechanische Energiewandlung z. B. in Mo-

toren und Generatoren. 

Ruhe- und Bewegungsinduktion haben größte praktische Bedeutung:

1. 

Die  Ruhe-  oder  transformatorische  Induktion bei fester Fläche und zeit-

licher  Flussdichte¨

 anderung ∂B( t) /∂t, also  relativer Ruhe  zwischen Lei-

terkreis und Magnetfeld nutzt eine feststehende Spule (zur Flusserzeu-

gung) durchflossen vom zeitveränderlichen Strom Abb. 3.3.4a. Dieser

zeitveränderliche Fluss wirkt auf den festen Leiterkreis. 

2. 

Die  Bewegungsinduktion  basiert auf zeitlicher  Fl¨

 achen¨

 anderung  d A( t) / d t

entweder durch  Lage¨

 anderung  oder  Deformation  der Leiterschleife relativ
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zum Magnetfeld. Das typische Beispiel ist die  Bewegung eines Bezugs-

 systems (Drahtschleife oder Teile von ihr) im Magnetfeld. In Abb. 3.3.4b

ist dieser Fall skizziert: je nachdem, ob sich der linke (1) oder rechte

Leiter (2) nach rechts bewegt, nimmt die Leiterfläche ab oder zu.  Diese

 Fl¨

 achen¨

 anderung ist bei festem B der Flussänderung proportional. 

In Abb. 3.3.4a wurden die induzierte Feldstärke  E i und zugeordnete

Stromrichtung (bei Flussabnahme) eingetragen. Die Feldrichtung  E i folgt

aus dem Rechtsdreibein  E i =  v × B: bei Bewegung des linken Leiters

spannt sich  E i nur zwischen  A  und  B  auf, das Integral über die Lei-

terlänge (in Richtung d s) ergibt die Spannung  e i. Bei Bewegung des

rechten Leiters kehrt sich der Umlaufsinn (d s =  − d l) um. 

Die induzierte Spannung kann stets auf Ruhe- und/oder Bewegungsinduktion

zurückgeführt werden. Beides sind verschiedene Formen des gleichen Sachver-

haltes: Entstehung einer induzierten Umlaufspannung bei zeitlicher Änderung

des umfassten Flusses verankert in einem Naturgesetz. Deshalb muss immer

von Gl. (3.3.1a) ausgegangen werden, denn Ruhe- und Bewegungsinduktion

hängt u. a. davon ab, ob man sich im ruhenden oder bewegten Koordinaten-

system befindet, also auch davon,  wie  z. B. das Produkt  B( t)  · A( t) definiert ist (etwa bei räumlich konstantem  B  längs eines bewegten Leiters). Die Gesamterscheinung ist aber  unabh¨

 angig vom Bezugssystem, gilt also für ruhende

und bewegte Leiter. 

Im bewegten Teil der Leiterschleife Abb. 3.3.4b induziert das Induktionsgesetz

eine Spannung  e i. Deshalb kann sie durch eine  ruhende Ersatzschaltung  ersetzt

werden. Weil die induzierte Feldstärke nur im bewegten Leiterstab auftritt, also

in der Schleife lokalisierbar ist (im Gegensatz zur induzierten Spannung in einer

ruhenden Schleife), macht die Zuordnung von  e i als Integral der induzierten

Feldstärke  E i Sinn. Wir werden diese Aspekte im Kap. 3.3.3 vertiefen. 

Zusammengefasst entsteht in einer materiellen oder gedachten Leiterschleife

eine induzierte Spannung, wenn

Flächenelemente der Schleife von zeitveränderlicher Flussdichte durch-

setzt werden und/oder, 

sich Leiterteile im Magnetfeld bewegen. 

Induktionsgesetz und Durchflutungssatz bilden als grundlegende Gesetze der

Elektrotechnik die Basis

der Bauelemente Spule und Transformator; 

der großtechnischen elektro-mechanischen Energiewandlung (Generato-

ren, Motoren); 

elektromagnetischer Wellen und ihrer breiten Anwendung. 

Auch das tägliche Leben nutzt das Induktionsgesetz vielfältig (nutzbringend und

störend): elektrotechnische Geräte und Motoren, Einkopplung von Störspannungen
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in Leiterkreise (sog. Leiterschleifen), Störfelder von Netztransformatoren führen

zu Brummspannungen in Verstärkern über Leiterschleifen, Leitungssucher, elektro-

magnetische Felder der drahtlosen Kommunikationstechnik u. a. m. 

3.3.2 Ruheinduktion

Die Ruheinduktion ist deshalb von Bedeutung, weil sie auch  ohne  Leiter-

schleife durch den dielektrischen Strom wirkt, wie die Ausbreitung elektro-

magnetischer Wellen zeigt. Bewegungsinduktion erfordert hingegen sowohl

das (fremde)  B-Feld als auch eine Leiterschleife, damit der Begriff Relativ-

bewegung überhaupt Sinn macht. 

3.3.2.1 Induktionsgesetz f¨

ur Ruheinduktion

Eine Flusszunahme erfolgt in einer ruhenden Leiterschleife (Abb. 3.3.2b)

durch Bewegung eines Permanentmagneten, Verkleinerung des magnetischen

Widerstandes (Schließen des Luftspaltes im magnetischen Kreis) oder Strom-

erhöhung in der Erregerspule. Immer entsteht

ein  induzierter Strom i  im linienhaften geschlossenen Leiterkreis bzw. ein

Strömungsfeld im räumlichen Leiter; 

zwischen den Enden einer offenen Leiterschleife eine  Leerlaufspannung; 

bei genügend schneller Flussänderung dΦ / d t  ein  Verschiebungsstrom  im

Raum um das Magnetfeld. 

Alle Erscheinungen sind nur erklärbar, wenn der zeitveränderliche Fluss eine

elektrische Feldstärke  E i induziert“, die ihn räumlich umschließt. Ihr We-

” 

gintegral längs eines geschlossenen Weges ist die  induzierte Spannung e i. 

Bei der Ruheinduktion verursacht ein zeitveränderlicher Magnetfluss durch

eine gegenüber dem Magnetfeld ruhende Fläche, umfasst von einem ge-

dachten oder materiellen Weg (Leiterschleife), eine induzierte Umlaufspan-

nung (bzw. induzierten Strom) längs des umfassenden Weges. Magnet-

feldänderung und Umlaufspannung gehören untrennbar zusammen. 





  ∂B( t)

 e



i =

 E i  ·  d s =  − dΨ( t)

=  −

 ·  d A. 

(3.3.4)

d t  ˙ B,v=0

 ∂t

 A

Bei feststehender Leiterschleife kann die Reihenfolge von zeitlicher Differen-

ziation und räumlicher Integration in Gl. (3.3.4) vertauscht werden. 

Schwierigkeiten bereitet, dass die induzierte Spannung  in einem geschlossenen Weg

auftritt (besonders sichtbar beim dielektrischen Strom!) und nicht lokalisiert werden
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Abb. 3.3.5. Netzwerkmodell der Ruheinduktion. (a) Modell mit induzierter Spannung und

Quellenspannung bei Flussabnahme. (b) Modell bei Flusszunahme

kann. Auch die Leiterschleife ändert daran nichts, sie schließt die induzierte Span-

nung nicht etwa kurz! Physikalisch bestehen so Bedenken, die induzierte Spannung

 e i als konzentrierte Spannungsquelle im Leiterkreis anzusetzen. Wenn auch formal

möglich und verbreitet, ist aber  e i vielmehr als Ersatzgröße für  − dΨ / d t  definiert! 

Das Spannungsquellenmodell“ erleichtert das Verständnis des Induktionsgesetzes

” 

jedoch erheblich. 

Netzwerkmodell des Induktionsvorganges, Richtungszuordnung Weil Fluss-

dichte und induzierte Feldstärke im Induktionsgesetz Gl. (3.3.4) nicht di-

rekt mit Netzwerkgrößen assoziiert sind, empfiehlt sich ein  Netzwerkmodell

für die Ruheinduktion. Es erlaubt ihren ingenieurmässigen Einbezug in vie-

le Problemstellungen, beispielsweise basieren darauf die Strom-Spannungs-

Beziehungen der Selbst- und Gegeninduktion (s. Kap. 3.4). 

Grundlage ist eine ruhende Leiterschleife mit schmalem Luftspalt im zeit-

veränderlichen Magnetfeld  B( t) (Fläche  A, Abb. 3.3.5a) geschlossen über einen externen Widerstand  R. Die Schleife umfasst den Fluss Φ( t) =

 B( t) ·

 A

d A  mit den Orientierungen nach Abb. 3.3.3. Bei zeitlicher  Flussabnahme

(dΦ / d t  negativ) entsteht

1. 

bei  geschlossener  Leiterschleife nach der Lenzschen Regel ein induzierter

Strom (Richtung: Rechtsschraube mit  − dΦ / d t) durch Kraftwirkung auf
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positive Ladungsträger  in Kraftrichtung, also  in Richtung der induzierten

 Feldst¨

 arke E i mit dem Spannungsabfall  u BA am Widerstand  R. 

2. 

bei  offener  Schleife zwar kein Strom, aber die Kraftwirkung sorgt für

eine positive Ladungsanhäufung an der Kontaktfläche B, ein Ladungsde-

fizit (negative Ladung) bei A, also ebenfalls eine Spannung  u BA (gleiche

Richtung). Dieser Sachverhalt wird (übereinstimmend mit der Richtungs-

zuordnung von Spannungsquellen, Kap. 1.5.1, Bd. 1) beschrieben durch

die  induzierte Spannung e i (elektromotorische Kraft) nach Gl. (3.3.4) als

Ursache der Ladungstrennung (in Richtung der induzierten Feldstärke

 E i, Wegelemente d s  in gleicher Richtung). 

3. 

Bei zeitlicher Flusszunahme vertauschen sich die Richtungen von indu-

zierter Feldstärke  E i, Spannung  e i und induziertem Strom. 

Die Netzwerkmodelle mit induzierter Spannung  e i und induzierter Quel-

lenspannung  u qi übernehmen wir von Abb. 3.3.3 mit



 e i

=

 E i  ·  d s =  − dΨ( t) , 

d t

Induzierte Quellenspannung (3.3.5a)

dΨ( t)

 u qi =

(=  −e i) . 

d t

Induzierter Quellenspannung In der Netzwerkersatzschaltung stören die in-

duzierte Spannung  e i (EMK) und das aus der historischen Entwicklung des

Induktionsgesetzes stammende negative Vorzeichen. Die praktische Fragestel-

lung lautet eher: welche Netzwerkersatzschaltung beschreibt den Zusammen-

hang zwischen induziertem Strom und Flussänderung nach dem  Grundstrom-

 kreis in Spannungsquelle-Verbraucherdarstellung? Die Antwort ist die  indu-

 zierte Quellenspannung u qi in der Schreibweise  u qi = dΨ( t) / d t (Gl. (3.3.5a)

unten). Die zugehörige Ersatzschaltung Abb. 3.3.5b entspricht der  aktiven

 Zweipolform. 

Die in einer Leiterschleife induzierte Quellenspannung  u qi ist gleich der zeit-

lichen Zunahme des mit der Leiterschleife verketteten magnetischen Flusses

unabhängig von seiner Ursache. Der Zählpfeil von  u qi ist längs der Leiter-

schleife rechtswendig zum Zählpfeil der Flusszunahme orientiert, die Strom-

richtung linkswendig. 

Der induzierte Strom fließt so, dass sein Magnetfeld der Flussänderung entge-

genwirkt. Eingetragen sind die induzierte Feldstärke  E i, die induzierte Span-

nung  e i und die induzierte Quellenspannung  u qi =  u AB nach dem Grund-

stromkreismodell, Abb. 3.3.3a.  Diese Spannung wird an den Klemmen A, B

 gemessen! 
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Unabhängig von der Flussänderung wird die induzierte Spannung im Netz-

werkmodell formal durch eine (ideale) Spannungsquelle nach Gl. (3.3.5a) als

induzierte Spannung  e i (EMK) oder induzierte Quellenspannung  u qi ansetzt. 

 Der Einf¨

 ugeort ist willk¨

 urlich, weil sie als Umlaufspannung im gesamten Kreis

 entsteht und nicht an einer bestimmten Stelle.  Die Netzwerkersatzschaltung

mit der induzierten Quellenspannung  u qi für Flusszunahme ist vorzuziehen, 

denn sie nutzt den Grundstromkreis in Standardform. Je nach Flusszu- oder

-abnahme gelten folgende Richtungszuordnungen:

Zugeordnete Größe

Flusszunahme + dΦ

Flussabnahme  −  dΦ

d t

d t

Quellenspannung  u qi, 

Rechtsschraube

Linksschraube

magnetischer Fluss Φ

induzierter Strom  i, 

Linksschraube

Rechtsschraube

EMK  e i magnetischer Fluss Φ

Die Richtung der induzierten Spannung  e i stimmt immer mit der Stromrich-

tung überein. 

Die Netzwerkersatzschaltungen müssen in zwei Punkten erweitert werden:

dem Einbezug nichtmagnetischer Quellenspannungen“  u

” 

q (z. B. Gleichspan-

nungsquellen) und der Berücksichtigung des vom induzierten Strom selbst

erzeugten Magnetfeldes, das ebenfalls eine Induktion bewirken kann. 

Nichtmagnetische Quellenspannungen  u q werden als Spannungsabfälle in Gl. 

(3.3.1d) berücksichtigt (in Abb. 3.3.5b angedeutet). Es gilt

dΨ



=  u qi = ( −e i) =  i ind R −

 u q . 

(3.3.5b)

d t



 u AB

Der induzierte Strom entspricht dem Strom im Grundstromkreis ( i =  i ind). 

Die Flussabnahme kann in der Ersatzschaltung berücksichtigt werden ent-

weder durch negative Zahlenwerte in der bisherigen Form oder Richtungs-

umkehr der betreffenden Größen (verwendet). Dann gilt die Ersatzschaltung

Abb. 3.3.5a



 − dΨ =  e i =  i ind R −

 e i

d t



 n. 

(3.3.5c)

 u

 n

BA

Auch ist statt  e i die Spannung  −u qi zulässig. 

Die Netzwerkersatzschaltung Abb. 3.3.5b mit induzierter Quellenspannung

 u qi (als aktive Zweipolersatzschaltung) ist für die Anwendung des Induk-

tionsgesetzes auf Leitergebilde und Netzwerke sehr praxisnah und wird im

Buch weitgehend verwendet. 
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Abb. 3.3.6. Selbstinduktionseffekt im Netzwerkmodell der Ruheinduktion. (a) Selbstinduk-

tion und Lenzsche Regel in einer Leiterschleife. (b) Netzwerkersatzschaltung mit induzierter

Spannung. (c) dto. mit induzierter Quellenspannung. (d) Selbstinduktion der Leiterschleife

dargestellt als induktiver Spannungsabfall  u L am Schaltelement Induktivität  L

Das Netzwerkmodell kann auch die Induktion in der Leiterschleife selbst erfassen

( Selbstinduktion, s. Kap. 3.4.1), oder einen zusätzlichen Induktionsfluss von einer

anderen Leiterschleife nach Abb. 3.3.2a. Wir schließen dies zunächst aus und be-

trachten nur die Leiterschleife an einer zeitveränderlichen Spannung  u q( t) mit zeit-

lich ansteigendem Schleifenstrom (Abb. 3.3.6a). Er erzeugt neben dem Spannungs-

abfall an  R  einen anwachsenden magnetischen Fluss, der eine induzierte Spannung

 e i( t) und so einen gegengerichteten induzierten Strom  i ind (mit einer begleitenden

Feldänderung dΦ ∗) zur Folge hat. Im Bild sind der von  i ind herrührende Gegen-

” 

fluss“ Φ ∗  und der zugehörige induzierte Strom  i ind eingetragen, beide ihrer Ursache

entgegenwirkend. In der Netzwerkersatzschaltung Abb. 3.3.6b wird dazu die Sum-

me der Quellenspannungen auf eine Quelle reduziert und externe Flussänderungen

gestrichen. Es gilt

dΦ

d( Li)

d i

 u q =  R( i − i ind) =  iR − e i( i) =  iR +

=  iR +

=  iR +  L|

 . 

d t



d t

 i=const d t

 u qL= u L

Im nächsten Schritt ersetzt man den induzierten Strom  i ind durch die induzierte

Spannung  e i( t) =  i ind R. So tritt er in der Ersatzschaltung direkt nicht mehr auf. 

Gleichwertig kann auch die induktive  Quellenspannung u qL (Abb. 3.3.6c) verwendet

werden wegen  u qL = dΦ / d t = d( Li ind) / d t =  u L, die als Spannungsabfall  u L wirkt. 

Da die induzierte Spannung über den Fluss Φ( t) vom Schleifenstrom  i  abhängt, liegt

eine  stromgesteuerte Spannungsquelle  vor. Sie arbeitet als  selbstgesteuerte Quelle

und ist deshalb durch das Zweipolelement (Selbst)-Induktivität  L  ersetzbar. So

führt die Netzwerkersatzschaltung unmittelbar zur Ersatzschaltung einer (Selbst)-

Induktivität im Grundstromkreis! Ein zusätzlicher externer Fluss in der Schleife

wird nach Abb. 3.3.6b einbezogen. Ist beispielsweise die Leiterschleife identisch mit

Schleife 1 in Abb. 3.3.2a, so kann ein externer Fluss von Spule 2 stammen, falls sie

stromdurchflossen ist. 

Aus Sicht eines aktiven Zweipols bestimmt der induktive Spannungsabfall sei-

nen

induktiven Innenwiderstand“. Auf diesen Kreis kommen wir in Kap. 3.4.1

” 

zurück. 
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Abb. 3.3.7. Elektrisches Wirbelfeld. (a) Richtungszuordnung der induzierten Feldstärke. 



(b) Umlaufintegral

 E ·  d s  im Potenzialfeld (links) und Wirbelfeld (rechts). Induzierte

Spannung und umfasster zeitveränderlicher Fluss Φ( t). (c) Verschiedene Flussumfassungen

bei unveränderter Spulenlage. (d) Spulenfluss Ψ =  wΦ: Addition des umfassten Flusses

durch Reihenschaltung von  w  Einzelschleifen

Haupteigenschaft der induzierten Feldst¨

arke: Wirbelfeld Merkmal des Induk-

tionsgesetzes ist das  elektrische Wirbelfeld:

Jedes zeitveränderliche Magnetfeld ist von einem elektrischen Wirbelfeld  E i

umgeben, dessen Wirbel (= Wirbelstärke) die Änderungsgeschwindigkeit

dΦ / d t ( ∼  d B/ d t) der magnetischen Induktion bildet. 

Der Unterschied zum elektrostatischen Potenzialfeld zeigt sich u. a. darin, 

dass die  E i-Linien die zeitliche Magnetfeldänderung umwirbeln, während

sich dort Feldstärkelinien zwischen unterschiedlichen Ladungen aufspannen

(Abb. 3.3.7a, b). Im elektrischen Wirbelfeld:

hängt deshalb die Spannung zwischen zwei Punkten  vom tats¨

 achlichen

 Wegverlauf ab (und ist nicht mehr eindeutig fixiert s. Abb. 3.3.7c); 

existiert wegen des nicht verschwindenden Umlaufintegrals über die Feld-

stärke  kein elektrostatisches Potenzial; 

gilt der  Maschensatz nicht, wenn die Masche von nennenswerter magne-

tischer Flussänderung durchsetzt ist. Vielmehr gilt die Netzwerkersatz-

schaltung Abb. 3.3.5. Bei langsamer Flussänderung bleibt der Einfluss

des Wirbelfeldes vernachlässigbar. 

Wir betrachten zwei Beispiele:

1. 

 Spannungsmessung  auf zwei verschiedenen Wegen (Abb. 3.3.7c). Die linke An-

ordnung umfasst einen Fluss und ergibt eine Anzeige, rechts wird kein Fluss

umfasst und deswegen verschwindet die Spannung. Trotz unveränderter La-

ge der Leiterschleife bestimmt die Form des Gesamtweges die tatsächliche
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Flussänderung! Analoges zeigte sich beim Durchflutungssatz Gl. (3.1.12). Dort







galt

 H ·  d s =

 wI  oder

 H ·  d s = 0 je nachdem, ob Strom umfasst wurde

oder nicht. Grund:  Wirbelfeld  mit wegabhängigem Umlaufintegral. 

2. 

 Energiebeziehung. Ein Wirbelfeld wirkt auch energetisch anders auf eine be-

wegte (positive) Ladung (+  Q). Im Potenzialfeld bleibt die Energie längs eines



geschlossenen Weges konstant: Δ W =  Q E ·  d s = 0. Im  Wirbelfeld  jedoch

entzieht die Ladung dem magnetischen Feld Energie bei Bewegung auf einem

geschlossenen Umlauf längs der induzierten Feldstärke  E i



dΦ

Δ W =  Qe i =  Q

 E i  ·  d s =  − Q

 . 

(3.3.6a)

d t

Sie wird als elektrische Energie an den Stromkreis abgegeben. Umgekehrt führt

eine Ladungsbewegung  entgegen  der Richtung  E i (Antrieb durch eine äußere

Spannung) dem magnetischen Feld Energie zu:



dΦ

Δ W =  Q

( −Ei)  ·  d s = + Q

=  Qu. 

(3.3.6b)

d t

Der Energieaustausch zwischen elektrischem und magnetischem Feld ist

Grundlage vieler elektrotechnischer Bauteile (Motor, Transformator  . . . ). 



3. 

 Einfluss der Windungszahl.  Der Wert des Umlaufintegrals

 E i  ·  d s  erhöht sich

bei  w-fachem Durchlauf des Integrationsweges (Abb. 3.3.7d). Dazu werden  w

Leiterschleifen in Reihe“ geschaltet

” 

dΦ

dΨ

 u qiges =  w · u qi =  w

=

(Ψ =  wΦ)  . 

d t

d t

Der  Spulen-  oder  Windungsfluss Ψ ist eine praktische Größe bei Anwendung

des Induktionsgesetzes. Viele Umläufe um den gleichen Fluss (bei gleichem

Windungssinn) erhöhen die induzierte Spannung proportional. 

Physikalische Ursache der induzierten Feldst¨

arke  Ei Nach dem Induktionsge-

setz vermutet man die induzierte Spannung als lokalisierbare Spannungsquelle. 

Sie ist aber das Ergebnis einer Ladungsträgerverschiebung in der Schleife durch

 Kraftwirkung. Diese Kraft wird auf einen eigenen physikalischen Raumzustand

zurückgeführt, die  induzierte Feldst¨

 arke E i. Nur so versteht sich die Gleichwer-



tigkeit  e i =

 E i  ·  d s. Wir betrachten zum Verständnis der Feldstärke  E i einen ruhenden, mit einem schmalen Spalt zwischen A, B versehenen Leiterkreis durchsetzt von einem homogenen Magnetfeld (s. Abb. 3.3.5a). Wie im bewegten Leiter-

stab (Abb. 3.3.4a) kommt es durch das Wechselspiel von induzierter Feldstärke, 

Ladungsverschiebung durch die Lorentz-Kraft und Ladungstrennung in der Leiter-

schleife zur elektrostatischen Feldstärke  E Q bis zu einem Gleichgewicht mit positi-

ver und negativer Überschussladung bei A und B und verschwindendem Gesamtfeld

im Leiter:  E =  E Q +  E i = 0. Damit ist dem Wirbelfeld  E i ein elektrostatisches Feld ( E Q) an jeder Stelle im Leiter und Zwischenraum überlagert. An den Klemmen

A, B baut sich dabei die Leerlaufspannung  u BA auf ( R → ∞). Das Umlaufintegral

lautet







 B



 A



 E ·  d s =

 E Q  ·  d s +

 E i  ·  d s =

 E

  · d s +

 E ·  d s





     A, ( C 1)

 B, ( C

0

2 )

(3.3.7a)

0

 e i

= 0 +  u BA =  −u AB =  −  dΦ  . 

d t

314

3. Das magnetische Feld



Vom Umlaufintegral verschwindet der Teil

 E Q  ·  d s = 0, weil ein elektrostatisches

Feld vorliegt (Merkmal). So verbleibt das Umlaufintegral über  E i ersetzt durch die

induzierte Spannung  e i. Andererseits verschwindet die Gesamtfeldstärke im Leiter, 

also auf der Kontur C1. Übrig ist nur das Integral zwischen B und A längs des

Weges C2, nach Definition gleich der (messbaren) Leerlaufspannung  u BA. Auf diese

Weise folgt das Ergebnis  e i der Ruheinduktion Gl. (3.3.5a) bzw. nach Vorzeichen-

wechsel



 −

dΦ

 e i =  −

 Ei ·  d s =  u AB =  u qi =

 . 

(3.3.7b)

d t

Damit ist die Klemmenspannung  u AB die in Gl. (3.3.5a) eingeführte induzierte

Quellenspannung  u qi. Dieses Ergebnis wurde in Abb. 3.3.5b durch die vorgegebene

Stromrichtung (Lenzsche Regel) bestätigt. Die induzierte Quellenspannung  u qi ist, 

wie  e i, unabhängig von der Länge des Luftspaltes und bleibt deshalb auch  bei nicht

 vorhandenem Leiterring (das Induktionsgesetz setzt keinen voraus!) gültig. Dann

beschreibt die induzierte Feldstärke  E i die Induktionswirkung besser. 

3.3.2.2 Anwendungen der Ruheinduktion

Ruheinduktion wird vielfältig angewendet: sie bestimmt die Strom-Span-

nungs-Relation jeder Induktivität, wirkt in gekoppelten Spulen als  Transfor-

 matorprinzip (Kap. 3.4.3), ist Grundlage der  Spannungserzeugung in Elek-

 tromaschinen  oder der  Ausbreitung elektromagnetischer Wellen. Auch Wir-

belströme verursacht sie. Wir betrachten einige Beispiele. 

 Flussmessung.  Die Spannungsinduktion dient in einer Abtastspule (z. B. Ring-

kernspule um einen stromführenden Leiter) zur Flussmessung (Abb. 3.3.8a). 

Beim Einschalten des Flusses vom Wert 0 auf Φ während des Zeitraumes

0  . . . t  ergibt sich

Φ



 t



 t



dΦ =  −

 e id t,  d. h. Φ =  −

 e id t. 

(3.3.8)

0

0

0

Das  Spannungs-Zeit-Integral  beschreibt den Fluss als Integralfunktion des

Spannungsverlaufs und heißt  Spannungsstoß. Er hängt nur vom End- und

Anfangswert ab:

Jede Flussänderung ΔΦ erzeugt in der den Fluss umfassenden Leiterschleife

einem Spannungsstoß. 

Zur Flussmessung wird der zu messende Fluss durch eine Messspule erfasst, 

die gemessene Spannung einem elektronischen Integrator zugeführt und das

Ergebnis als Fluss abgelesen. 

Ein anderes Verfahren nutzt der Flussdichtemesser oder das  Teslameter  basierend

auf dem Hall-Effekt (s. Kap. 4.3.2). 
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Abb. 3.3.8. Strommessung. (a) Stromtransformator: Ruheinduktion in einer Ringspule um

einen stromdurchflossenen Leiter. (b) Messfehler durch Rahmenfunktion einer Messschleife

bei der Widerstandsmessung

Beispiel 3.3.1 Strommessung durch Ruheinduktion Ein gerader stromdurchflosse-

ner Leiter führt durch eine Ringspule (Rechteckquerschnitt,  w  Windungen, magne-

tischer Kreis, Abb. 3.3.8a). Die in ihr induzierte Spannung ist der Stromänderung

proportional. 

Nach dem Durchflutungssatz (Beispiel 3.1.1) hat der stromführende Leiter ein mag-

netisches Wirbelfeld der Feldstärke  Hϕ  auf einem Kreis vom Radius  :  Hϕ( , t) =

 i( t) /(2 π). In der Ringspule herrscht der Gesamtfluss (Beispiel 3.2.13)



 r a



 hμ r μ 0 i( t)

 r a

Φ( t) =

 B( , t)  ·  d A =

 hμ r μ 0 Hϕ( , t)d  =

ln

=  ki( t) . (3.3.9a)

2 π

 r i

 A

 r i

Er induziert die Spannung

dΦ( t)

d i( t)

 u L( t) =  −w

=  −wk

 . 

(3.3.9b)

d t

d t

Für die Zahlenwerte Stromanstieg d i/ d t = 10 A /  ms,  w = 100,  μ r = 1000,  h = 1 cm, r a = 10 cm,  r i =  r 1 = 5 cm ergibt sich  u L =  − 1 ,  38 V. Bei einer Luftspule wäre die Spannung 103 mal kleiner. 

Praktisch dient dieses Prinzip als Stromtransformator oder  Stromzange: man teilt

den magnetischen Kreis in zwei Hälften (eine trägt die Wicklung) und montiert sie

an eine Zange, die den Leiter umfasst. 

Beispiel 3.3.2 Spannungsmessung am Widerstand Ein Widerstand  R  sei vom zeit-

veränderlichen Strom  i( t) durchflossen (Abb. 3.3.8b). Über eine Messleitung wird

zwischen den Punkten A, B die Spannung  u AB gemessen in der Absicht, den Wi-

derstand zu bestimmen. Die Messleitungen bilden mit  R  eine Leiterschleife, in der

das Magnetfeld des Stromes  i( t) eine Spannung induziert und einen Messfehler

verursacht. 

Die Messschleife umfasst den Fluss Φ( t) =  ki( t). Es gilt nach dem Induktionsgesetz

dΦ( t)

 μ 0 i( t) b

 r a

 u qi =

mit Φ( t) =

ln

=  ki( t) . 

d t

2 π

 r i
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Zum Spannungsabfall  iR  in der Schleife erzeugt der Fluss Φ( t) zusätzlich den in-

duzierten Strom  i (Lenzsche Regel, im Bild angedeutet). Er fließt dem Messstrom

entgegen und wird von der induzierten Quellenspannung  u qi verursacht. Deshalb

beträgt die gemessene Spannung

d i

 u AB =  iR +  u qi =  iR +  k

 . 

(3.3.10)

d t

Wir schätzen den Fehler ab, beispielsweise für Wechselstrom (Kreisfrequenz  ω =

5000 s − 1): bei einer Spulenlänge  b = 0 ,  1 m und einem Faktor ln  r a /r i = 10 liegt der Ersatzwiderstand“  ωk  im Bereich von Milliohm: die Messschleife muss nur bei

” 

Messung sehr kleiner Widerstände beachtet werden. 

Beispiel 3.3.3 Induktion Ein ICE (Fahrdrahtspannung 15 kV, Frequenz 16 2/3 Hz, 

Strom etwa 6000 A (älterer vergleichbarer Werbehinweis der DB:

12000 PS und

” 

ein Fahrer“) erzeugt 3 m unter dem Fahrdraht (im Gepäcknetz) etwa eine Fluss-

dichte  B =  μ 0 H =  μ 0 I/(2 πr) = 1 ,  256( µH /  m  ·  6000 A /(2 π 3 m) = 0 ,  4 mT. Ein dort (richtig) positionierter Aktenkoffer (Fläche  A = 1000 cm2) versehen mit  w =

100 Windungen würde nach dem Induktionsgesetz in der Wicklung die Spannung

 U =  wωBA = 100  · (314 / 3) s − 1  ·  0 ,  4 mT  ·  1000 cm2 = 0 ,  418 V induzieren. Sie ist noch etwas höher, weil der Rückleiter (Schiene) mit gleichgerichteten Magnetfeld

die Induktion unterstützt. Die Anordnung nutzt das Transformatorprinzip. 

Beispiel 3.3.4 Ferritstab als Antenne In einer Sendeantenne (betrachtet als gera-

der stromdurchflossener Leiter) fließt ein sinusförmiger Antennenstrom ˆ i = 10 A

(Spitzenwert) der Frequenz  f = 10 MHz. In einer Entfernung von 100 km wird ein

Ferritstab mit Wickelspule (Windungszahl  w = 50, Durchmesser 1 cm, rel. Permea-

bilität  μ r = 100) auf den Sender ausgerichtet. Welche Spannung entsteht in der

Spule? 

Am Empfangsort herrscht nach dem Modell des geradlinigen Leiters (Beispiel 3.1.1)

êine Flussdichte (Spitzenwert) ˆ

 B =  μ

ˆ

 i

10 A

 r μ 0 H =  μrμ 0

= 100 · 1 ,  257 µH

 ≈  2 nT. 

2 πr

m 2 π· 105 m

Sie induziert in der Antennenspule bei der Kreisfrequenz  ω = 2 πf = 2 π ·  10 MHz =





62 ,  8 · 106 s − 1 die Spannung ˆ

 u =  wω ˆ

 B  A = 50 · 62 ,  8 · 106 s − 1 · 2 nT 1 cm2 π

= 0 ,  49 mV. 

4

Dieser geringe Wert erfordert eine Nachverstärkung im Empfänger. Generell sind

elektromagnetische Feldgrößen weitab vom Sender (100 km!) klein. 

Zum Vergleich: Ein Mobilfunksender hat etwa eine Sendeleistung von 10 W. Unter

der Annahme, dass seine Antenne auf den freien Raum mit einem Ersatzwiderstand

 Z = 377 Ω arbeitet, würde ein gerader Antennenleiter einen Strom von etwa 10 mA

führen. Im Abstand  r = 100 m herrscht dann etwa die gleiche Flussdichte wie oben. 

Bei einer Arbeitsfrequenz  f = 1 GHz würde unter sonst gleichen Bedingungen die

100 fache Spannung induziert. Senkt man den Durchmesser des Antennenstabes auf

1 / 10, also 1 mm, so ergibt sich die Größenordnung der obigen Spannung. Ergebnis:

selbst in Sendernähe bleiben die Feldwerte klein. 

Variabler magnetischer Widerstand Ruheinduktion entsteht gemäß Abb. 3.3.2c

auch durch Flussänderungen im magnetischen Kreis: nach seinem Ohmschen Ge-

” 
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Abb. 3.3.9. Beispiele zur Ruheinduktion. (a) Induktiver Signalgeber. (b) Prinzip des Ma-

gnetkopfes. (c) Flussänderung durch zeitveränderlichen magnetischen Kreis

setz“ (Φ = Θ /R m, Gl. 3.2.21)) wirkt jede magnetische Widerstandsänderung als

Flussänderung. So bewegt sich beim  induktiven Schalter (Drehzahlmesser, 

Abb. 3.3.9a) ein Permanentmagnet periodisch an einer Induktionsspule vorbei und

induziert dort Spannungsstöße, die auswertbar sind. 

Der  magnetische

 Wiedergabekopf

(Videorekorder, 

Tonbandgerät, 

Festplatten

Abb. 3.3.9b) ist ein magnetischer Kreis mit kleinem Luftspalt, an dem ein Träger

(Magnetband, Magnetplatte) mit dünner ferromagnetischer Schicht vorbeiläuft. Sie

enthält die Information als lokal unterschiedlich magnetisierte Gebiete. Beim Vor-

beigleiten am Luftspalt ändert sich der Widerstand des magnetischen Kreises. Die

Flussschwankungen induzieren in der Spule eine Spannung, die dem ursprünglichen

Signal proportional ist. Zur  Signalaufzeichnung  arbeitet die Anordnung umgekehrt. 

Ein Signalstrom durch die Spule erzeugt im vorbeilaufenden Magnetträger lokal

verschiedene Magnetisierungen. Ein Magnetkopf arbeitet so als  umkehrbarer  mag-

netisch-elektrischer Wandler zum Wiedergeben, Aufnehmen und Löschen (durch

eine HF-Spannung) von Informationen. Spannungsinduktion durch Änderung des

magnetischen Widerstandes findet sich abgewandelt im magnetischen Tonabneh-

mersystem von Plattenspielern, als Tonabnehmer für elektrische Saiteninstrumente

u. a. m. Stets muss ein magnetischer Grundfluss vorhanden sein, der verändert wird. 

Er stammt entweder von einer Erregerspule oder einem Dauermagnetkreis. 

Die Änderung des magnetischen Widerstandes von Spulen in Schwingkreisen (Zu-

sammenschaltung von Spule und Kondensator) verschiebt die Resonanzfrequenz. 

Nach diesem Prinzip arbeiten RFID-Systeme (Auslesen von Etiketten, Buchaus-

leihe, Ski-Pass u. a.), auch Verkehrsleitsysteme: vor Ampeln werden Spulen (Spu-

lenfläche einige m2, Induktivität einige 100 µH) als Teil eines Resonanzkreises in

die Straße eingelegt. Bei Überfahrt eines Autos ändert sich die Spuleninduktivität

(nichtmagnetische Verkehrsteilnehmer, wie Fußgänger, bleiben unerkannt). 

Das Auswertesignal eines Kreises mit zeitveränderlichem magnetischen Widerstand

wird über den Fluss gewonnen (Abb. 3.3.9c): eine Gleicherregung Θ =  Iw  erzeugt

den Fluss Φ( t) = Φ0 + ΔΦ( t) mit festem (Φ0) und zeitvariablem Anteil durch den

magnetischen Widerstand  R m( t) =  R m0 + Δ R m( t)





Θ

Φ( t) =

 ≈ Θ

1  − Δ R m( t)

 , 

 R m0 + Δ R m( t)

 R m0

  

 R m0

Φ0
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Abb. 3.3.10. Wirbelströme in Leitern durch Ruheinduktion. (a) Ersatz einer Leiterschleife

durch eine Kreisscheibe, Wirbelstrombildung. (b) Wirbelströme in lamellierten Eisenble-

chen einer Spule. (c) Transformatorkern aus einseitig isolierten Blechen

Δ l m( t)

ΔΦ( t)  ≈ −Φ0  · Δ R m( t) =  −Φ0

 . 

 R m0

 l m0

Er ist der zeitlichen relativen Längenänderung des magnetischen Kreises proportio-

nal. Der zeitveränderliche Fluss erzeugt in der Induktionsspule eine Spannung. Die

Längenänderung wird z. B. durch eine schmale Unterbrechung des magnetischen

Kreises erreicht, in die ein rotierender Eisenweg eingefügt ist. Dann schwankt die

Kreislänge  l( t) zwischen  l 1 =  l Fe +  l L und  l 2 =  l Fe +  l L /μ r. Dieses Modell unterliegt auch den vorhergehenden Beispielen. In Abb. b bewirken unterschiedlich magnetisierte Bereiche des vorbeilaufenden Magnetträgers die Luftspaltveränderung. 

Wirbelstr¨

ome Wirkt ein zeitabhängiges Magnetfeld auf einen kompakten Lei-

ter (oder bewegt sich ein leitender Körper relativ zum inhomogenen Magnet-

feld), so entsteht in ihm eine induzierte Feldstärke. Sie verursacht die  Kreis-

 oder Wirbelstr¨

 ome  mit der Tendenz, die Feldänderung (nach dem Lenzschen

Gesetz) zu verhindern. 

Effektvoll zeigt sich der Wirbelstromeffekt an einer pendelnden Metallplatte zwi-

schen den Polen eines Magneten. Mit Magnetfeld hört das Pendeln praktisch sofort

auf, da die entstehenden Wirbelströme der Bewegung entgegenwirken. 

Wirbelströme sind räumliche Ströme, die in Leitern durch zeitveränderliche

Magnetfelder nach dem Induktionsgesetz entstehen. 

Gute Leitermaterialien haben große Wirbelstromdichte und damit Verlustleistung. 

Sie muss bei ruhenden Leitern von der Quelle aufgebracht werden, die das Mag-

netfeld erzeugt oder bei bewegten Leitern vom Antrieb. Genutzt werden bei Wir-

belströmen die Wärmewirkung (Induktionsheizung, Hyperthermie) und ihr eigenes

Magnetfeld als Wirbelstrombremse, zu Antriebszwecken oder zum Anheben (Levi-

tation) von Lasten. 

1. 

 Wirbelstr¨

 ome in ruhenden Leitern.  Ersetzt man eine ruhende Leiterschleife im

zeitveränderlichen

Magnetfeld

durch

eine

(dünne)

leitende

Scheibe

(Abb. 3.3.10a), so wirkt sie wie ineinander gelegte Leiterringe, in denen Wir-

” 

belströme“ induziert werden. Die Verlustleistung entsteht durch Integration
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aller Teilleistungen, die die induzierte Spannung  e i in einem Leiterring (Leiter-

leitwert d G, Breite d   Querschnittsfläche d A =  d  d , Leitfähigkeit  κ,  B( t) =

 B 0 sin  ωt) erzeugt



 r



 P =

 e 2id G =

( A( ) B( t) ω)2  κd ·  d 

2 π

 G

0

 r



(3.3.11)

 ω 2 πκd |B( t) | 2

 ω 2 πr 4 κd |B 0 | 2

=

  3d  =

cos2( ωt) . 

2

8

0

Bei sinusförmigem Fluss  B( t) =  B 0 sin( ωt) ergibt sich dΦ / d t =  A ·  d B/ d t =

 ωAB 0 cos( ωt). Mit der Plattenfläche  A( ) =  π 2 und der induzierten Spannung

 e i =  − dΦ / d t  folgt für die Zahlenwerte  κ = 107 S /  m,  r = 10 cm,  f = 50 Hz, d = 1 mm und  B 0 = 0 ,  4 T eine Leistungsamplitude

1 

2

 P =

2 π ·  50 s − 1

 π (0 ,  1 m)4 (0 ,  4 T)2107 S m − 110 − 3 m = 6201 ,  2 W(!) . 

8

Sie ist beträchtlich: ihre Wirkung reicht von rascher Aufheizung bis hin zum

Schmelzen. 

Zur gleichen Wirbelstrombildung käme es auch im Eisenkern einer Spule aus

vollem Material. Eine Senkung der Verlustleistung erfordert möglichst hohen

Widerstand für die Wirbelstrombahnen. Maßnahmen sind:

 Bahnunterbrechung  durch isolierte Zwischenschichten. Dazu wird der Kern

aus 0 ,  1  . . .  0 ,  3 mm starken, einseitig isolierten (Lack, Papier) Eisenblechen

aufgebaut. Diese  lamellierten Eisenbleche  werden quer zu den Strombahnen

(Abb. 3.3.10b) angeordnet. Dann bilden sich (bedeutend kleinere) Wirbel-

ströme nur noch in den einzelnen Blechen. Deshalb besteht der Eisenkreis

eines Transformators (Abb. 3.3.10c) aus Eisenblechen. 

geringere Leitfähigkeit durch Legieren der Kernbleche mit Silizium (Zusatz

etwa 2  . . .  4%, solche Materialien heißen Dynamoblech); 

Verwendung von Ferriten (in Kunstharz eingebettetes Eisen- oder Eisen-

oxidpulver) mit hohem spezifischem Widerstand. 

2. 

 Wirbelstr¨

 ome treten auch in (relativ) bewegten Leitern  gegenüber homogenen

und inhomogenen Magnetfeldern auf, etwa dem Anker von Gleichstrommaschi-

nen. Hier gelten die gleichen Abhilfemaßnahmen. 

3. 

 Wirbelstr¨

 ome  werden genutzt:

zur  Induktionserw¨

 armung (Wirbelstromheizung, Hochfrequenzhärtung, Me-

dizin, Metallurgie). Im Induktionsofen bildet das Schmelzgut die (niederoh-

mige) Sekundärwindung eines Transformators (Abb. 3.3.11a). Da dΦ / d t ∼ i, 

muss die Flussänderung für gute Erwärmung möglichst groß sein (Anwen-

dung hoher Frequenzen). Auch die Hochfrequenzhärtung nutzt die ober-

flächennahe Erwärmung in Verbindung mit Stromverdrängung. Indukti-

onsöfen erobern zunehmend Haushalte (Induktionsherd) wegen ihres hö-

heren Wirkungsgrads. 

als  Wirbelstrombremse.  Bei Bewegung einer leitenden Scheibe durch ein lo-

kal begrenztes Magnetfeld entstehen Wirbelströme, deren Magnetfeld dem

ursprünglichen Magnetfeld entgegenwirkt und die Scheibe bremst (ohne

Magnetfeld keine Bremswirkung). In Abb. (3.3.11b) ist die Richtung der

Wirbelströme angegeben. Die Wirbelstromdichte  J ∼ ( v × B) erzeugt eine
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Abb. 3.3.11. Anwendung von Wirbelströmen. (a) Induktionserwärmung. (b) Bremswir-

kung bei Entfernung einer leitenden Platte aus dem Magnetfeld und Dämpfung einer

Pendelbewegung durch Wirbelströme. (c) Wirbelstrombremse: rotierende Leiterscheibe in

partiellem Magnetfeld. (d) Schwebemagnet, Hub einer leitenden Scheibe. (e) Linearmotor

und reibungsloser Transport. (f) Oberflächenkontrolle und Schichtdickenmessung

Kraft  F ∼ ( J × B)  ∼ ( v × B)  × B, die der Geschwindigkeit  v  entgegen, also bremsend wirkt: Verzögerung der Platte beim Eintauchen. Die Wirbelströme erwärmen die Leiterplatte und die dafür erforderliche Energie wird

ihrer Bewegungsenergie entzogen. Deshalb bremst eine im Magnetfeld pen-

delnde Metallscheibe bei Einschalten des Feldes sofort ab. Bei praktischen

Wirbelstrombremsen rotiert eine Metallscheibe in einem partiellen Mag-

netfeld (Abb. 3.3.11c). Die Bremswirkung sinkt mit der Geschwindigkeit  v! 

Für kleine Bremsleistungen im kWh-Bereich reicht ein Dauermagnet zur

Abbremsung, große Leistungen (Verkehrsfahrzeuge) erfordern Elektromag-

nete. Wirbelstrombremsen haben gegenüber mechanischen Bremsen viele

Vorteile (verschleißfrei, Energierückgewinnung). 

als  Schwebemagnet, Levitation. Auch ein Schwebemagnet (Abb. 3.3.11d)

über einer ideal leitenden Platte nutzt Wirbelströme. Im idealen Leiter

fließen einmal angeregte Wirbelströme, z. B. durch Bewegung eines Dauer-

magneten auf die Leiterplatte zu, beliebig lange. Sie erzeugen eine Kraft, 

die den Magnet über der Platte in der Schwebe hält. Das ist das Grundprin-

zip der Schwebebewegung eines Magneten über einer Metallplatte. Umge-

kehrt kann auch eine leitende Scheibe über einem Magneten schweben, auch

über einer stromdurchflossenen Spule: durch das zeitveränderliche Spulen-

feld entstehen in einer Scheibe Wirbelströme, deren Magnetfeld dem ur-

sprünglichen entgegenwirkt und die Scheibe anhebt. Das Schwebeprinzip

eignet sich für Transportaufgaben (z. B. Transport von Si-Scheiben in der

Halbleiterfertigung), aber auch für Magnetschwebebahnen. Dazu enthält

ein Transportschlitten mehrere Spulen (Abb. 3.3.11e), die nacheinander er-

regt werden. So entsteht ein magnetisches Wanderfeld. Es erzeugt in einer

unter dem Schlitten liegenden Schiene Wirbelströme, die den Schlitten an-

heben und die Schiene durch das wandernde Feld nach links zu bewegen
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Abb. 3.3.12. Strom- und Feldverdrängung. (a) Stromverdrängung im Leiter durch Wirbel-

ströme: Wechselstrom fließt praktisch nur bis zur Eindringtiefe. (b) Feldverdrängung im

magnetischen Leiter durch das magnetische Wirbelfeld zur Oberfläche hin

versuchen. Bei fester Schiene verschiebt sich umgekehrt der Schlitten nach

rechts. So entsteht reibungslose Linearbewegung. 

zur  Materialpr¨

 ufung. Bewegt man eine mit Konstantstrom versorgte Spu-

le auf einer leitenden Materialfläche (Abb. 3.3.11f), so stellt sich durch

Wirbelströme im Leiter eine bestimmte Spulenspannung ein. Sie bleibt un-

verändert, solange sich das Wirbelstromfeld nicht ändert. Ein Riss an der

Oberfläche ändert das Wirbelfeld und damit die Spulenspannung. Dieses

Prinzip dient zur Prüfung von Materialoberflächen. 

4. 

 Stromverdr¨

 angung, Feldverdr¨

 angung.  Die Verkopplung von elektrischem und

magnetischem Feld führt bei schnellen zeitlichen Änderungen zur  Strom-  und

 Feldverdr¨

 angung, dem  Skin-Effekt. Abbildung 3.3.12a zeigt einen stromdurch-

flossenen Leiter mit zunächst homogener Ausgangsstromdichte  J. Zeitliche

Stromänderungen bewirken Flussdichteänderungen um den jeweiligen Strom. 

Das Induktionsgesetz verursacht über die induzierte Feldstärke  E i Wirbel-

ströme, die dem ursprünglichen Strom (im Zentrum am stärksten) entgegen-

wirken. Im Außenraum unterstützen sie ihn und es  w¨

 achst die Stromdichte

 zur Leiteroberfl¨

 ache  hin:  Stromverdr¨

 angung, Haut- oder Skin-Effekt. Sie erhöht

den  Leiterwiderstand, mit steigender Frequenz zunehmend.  Bei hohen Frequen-

zen führt nur noch die äußerste Leiterschicht Strom und deswegen reicht ein

dünner, gut leitender Niederschlag (z. B. Silber) auf einem Isolator als Leiter. 

Deshalb werden Leiter in der UHF-Technik versilbert. 

Typisch für den Skin-Effekt ist die Eindringtiefe δ, in der hauptsächlich die

Stromleitung erfolgt. Sie beträgt etwa 5 µm bei 100 MHz, 2 µm bei 1 GHz und

0,5 µm bei 10 GHz. 

Ein analoger Vorgang läuft im magnetischen Leiter“ ab (Abb. 3.3.12b). Der

” 

zeitveränderliche Fluss wird vom induzierten Feldstärkefeld  E i umwirbelt. Da-

durch entsteht ein Stromwirbel  J  im massiven magnetischen Leiter (Eisen). 

Ein Magnetfeld schwächt das ursprüngliche Feld im achsennahen Bereich. Die-

se magnetische Randverdrängung“ äußert sich als zusätzliche  induktive Kom-

” 
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 ponente  des Leiterwiderstandes. Bekannter ist dieser Effekt als  magnetische

 Abschirmung  von Wechselfeldern in einem Metallblech. Im magnetischen Wech-

selfeld entstehen dort Wirbelströme, die dem erzeugenden Feld entgegenwirken

und das resultierende Feld sinkt innerhalb der Blechabschirmung. Die Schirm-

wirkung wächst mit der Leitfähigkeit, der Leiterstärke und Frequenz des Wech-

selfeldes. Sie ist für Netzfrequenz gering (Supraleiter schirmen dagegen auch

hier ideal ab). Bei tiefen Frequenzen wirkt magnetische Abschirmung mit hoch-

permeablem Material über die Brechungsgesetze magnetischer Feldlinien besser

(s. Kap. 3.1.3). 

3.3.3 Bewegungsinduktion

Die Bewegungsinduktion ist die zweite Form der Einwirkung eines Magnet-

feldes auf einen Leiterkreis. Sie nutzt die Kraftwirkung des Magnetfeldes auf

bewegte Leiter, dabei übernimmt das Magnetfeld eine Mittlerrolle bei der

Umformung elektrischer in mechanische Energie und umgekehrt. 

3.3.3.1 Induktionsgesetz f¨

ur Bewegungsinduktion

Grundbeziehung

Unter Bewegungsinduktion versteht man jedes elektrische Feld, das durch

Bewegung oder Veränderung eines vom magnetischen Feld durchsetzten Lei-

tergebildes induziert wird. 

Bewegung heißt dabei  Relativbewegung  zwischen Leiter und Magnetfeld33. 

Deshalb bleibt gleichgültig, ob sich Leiter, Feld oder beide mit unterschied-

lichen Geschwindigkeiten bewegen. Grundlage ist der bewegungsabhängige

Teil im Induktionsgesetz Gl. (3.3.3)



 u qi =  −e i =  −

( v × B)  ·  d s

Bewegungsinduktion (3.3.12)

 s

als Folge der Lorentzkraft. Sie verschiebt Ladungen und bewirkt so den in-

duzierten Strom im Leiterkreis. Formal wird die Lorentz-Kraft auf eine  indu-

 zierte elektrische Feldst¨

 arke E i =  v ×B  als Folge der Leiterschleifenänderung

im Magnetfeld zurückgeführt. 

Grundmodell, bewegter Leiter im Magnetfeld Bewegungsinduktion erfolgt, 

wenn sich eine geschlossene oder offene Leiterschleife oder Teile von ihr im

Magnetfeld bewegen und Gl. (3.3.12) erfüllt ist. Im einfachsten Fall verschiebt

33 Der Begriff Bewegung hängt vom Bezugssystem des Beobachters ab (s. u.). 
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Abb. 3.3.13. Bewegungsinduktion im homogenen Magnetfeld. (a) Leiteranordnung, zeitli-

che Abnahme der induktionsdurchsetzten Fläche. (b) zugehörige Netzwerkersatzschaltung. 

(c) dto. bei umgekehrter Bewegungsrichtung. (d) Leiterbewegung des gegenüberliegenden

Schleifenteils, zeitliche Zunahme der flussdurchsetzten Fläche

sich nur ein Leiterstab auf ruhenden Kontaktschienen (zur Abnahme der in-

duzierten Spannung oder Bildung eines Leiterkreises) (Abb. 3.3.13a). Das Ge-

samtphänomen induzierte Spannung“ lässt sich dann gleichwertig erklären:

” 

durch  Bewegungsinduktion  des bewegten Leiters (s. Abb. 3.3.4a); 

durch  Ruheinduktion, indem der bewegliche Leiter als Teil einer Leiter-

schleife betrachtet wird, deren vom Magnetfeld durchsetzte Fläche  A( t)

sich durch Leiterbewegung zeitlich ändert und damit bei konstanter In-

duktion auch der von der Schleife umfasste Fluss. Dann gilt Gl. (3.3.4) für

Ruheinduktion. Kenntnisse über Vorgänge im bewegten Leiter entfallen. 

In beiden Fällen treten die Spannungen  e i bzw.  u qi auf. 

Die Fläche der Leiterschleife aus beweglichem Leiterstab, Seitenleitern (Ab-

stand  l) und einem festen Querabschluss mit dem Widerstand  R  wird senk-

recht von der homogenen Flussdichte  B =  B z e z durchsetzt (Abb. 3.3.13a). 

Bewegt sich der Leiter mit konstanter Geschwindigkeit  v =  v x e x nach rechts, 

so wirkt auf seine Ladungsträger (Ladung  Q  positiv) die  Lorentz-Kraft F  m =

 Q( v × B) =  Q( v x e x  × B z e z) =  −Qv x B z e y in negativer  y-Richtung. Sie verschiebt positive Ladungen ans vordere Stabende (positive Überschussladung), 

am hinteren entsteht durch Ladungsdefizit eine negative Überschussladung. 

Die Ladungen verursachen im Stab und Außenraum ein  Ladungsfeld E Q =

 E y e y in Richtung von positiven zu negativen Ladungen und damit eine

Coulomb-Kraft  F  Q =  QE Q. Im stromlosen Zustand wirken netto keine

Kräfte auf die Ladungen

 F  m +  F  Q = 0  → F  m =  Q( v × B) =  −F  Q =  −QE Q  → E Q =  −( v × B) . 
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Die Lorentz-Kraft ist der Geschwindigkeit  v  proportional. Ein ruhender Be-

obachter sieht den bewegten Leiterstab und erklärt sie als Wirkung des Ma-

gnetfeldes. Für einen bewegten Beobachter (auf dem Stab) ruht der Leiter

relativ zu ihm ( v = 0). Deswegen schreibt er die Kraftwirkung nicht dem

Magnetfeld zu (wegen  F  m  ∼ v = 0), sondern erklärt sie als Folge des äußeren

Feldes  E Q bedingt durch eine  induzierte elektrische Feldstärke E i:

 E i =  v × B. 

Induzierte elektrische Feldstärke (3.3.13a)

Dann beträgt die Lorentz-Kraft gleichwertig

 F

Lorentz-Kraft auf

m =  Q( v × B) =  QE i . 

(3.3.13b)

Ladung im Magnetfeld

Auf eine mit der (Relativ-)Geschwindigkeit  v  zum Magnetfeld  B  bewegte

Ladung (z. B. im Leiter) wirkt die Lorentz-Kraft  F  m. Sie kann als Wirkung

einer induzierten Feldstärke  E i interpretiert werden.  v,  B  und  E i bilden ein Rechtssystem. Im stromlosen Zustand ist der bewegte Leiter feldfrei

( E Q +  E i =  E ges = 0, gegenseitiges Aufheben der Felder  E Q und  E i). 

Weil die Feldstärke  E i nur im bewegten Leiterteil wirkt, schrumpft das für

die induzierte Spannung maßgebende Umlaufintegral Gl. (3.3.12) auf ein Li-

nienintegral über den bewegten Leiter (Abb. 3.3.4a)

 B



 B



Bewegungsinduktion

 e i =

 E i  ·  d s = ( v × B)  ·  d s. 

(3.3.14a)

eines Leiters

 A

 A

Induktion  B  und Umlaufrichtung d s  bilden eine Rechtsschraube. Die in-

duzierte Spannung  e i wirkt positiv in Integrationsrichtung von  E i und ihr

Bezugssinn weist folglich von der negativen zur positiven Überschussladung. 

Bewegungsinduktion erfolgt nur in bewegten Teilen der Leiterschleife, sofern

 v  und  B  eine induzierte Feldstärke erlauben. 

In Abb. 3.3.13a ergibt sich die induzierte Spannung  e i durch Integration der

Feldstärke  E i von  A  nach  B, also in Umlaufrichtung (rechtswendig, vorgege-

ben durch d A  und den umfassten Fluss). Sie beträgt (mit d s = d y)

 B



 B



0



 e i =

 E i  ·  d s = ( v × B)  ·  d s = ( v x e x  × B z e z)  ·  d y

 A

 A

 l

(3.3.14b)

0



=

 v x B z( −e y)  · ( e yd y) =  v x B z l. 

 l
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Die Spannung  e i hat den Richtungspfeil von  E i und treibt den induzierten

Strom  i (bei geschlossener Schleife) in dargestellter Richtung (Abb. 3.3.13b)

an. Er verursacht den Spannungsabfall  u BA am Widerstand  R. Im Leerlauf

( i = 0,  R → ∞) gilt  u BA |i=0 =  e i wegen

 B



 B



 e i =

 E i  ·  d s =  − E Q  ·  d s =  −u AB =  u BA . 

 A

 A

Die direkte Berechnung der Spannung aus Gl. (3.3.13) führt mit  E Q =  E Q e y zum gleichen Ergebnis:

 A



 l



 l



 u BA =

 E Q  ·  d s =  −

( v × B)  ·  d y =  −

( v x e x  × B z e z)  ·e





yd y

 B

0

0

 −v x B z e y

 l



=

 v x B zd y =  v x B z l ≡ e i . 

0

Die Spannungen  e i und  u BA sind positiv ( u BA in Stromrichtung), die Span-

nung  u AB =  −u BA also negativ, weil dann B der Spannungsbezugspunkt

ist (übereinstimmend mit den Überschussladungen an den Leiterenden bei

Leerlauf). 

Bewegungsinduktion wird damit durch zwei Spannungen beschrieben:

die  induzierte Spannung e i nach Gl. (3.3.14b), resultierend aus der magne-

tischen Kraftwirkung und positiv in Integrationsrichtung von  E i wirkend

(Bezugssinn deshalb von minus nach plus); 

die  induzierte Quellenspannung u qi (=  −e i, Gl. (3.3.12))

 B



 B



 u qi =

 E Q  ·  d s =  u AB =  −

 E i  ·  d s =  −e i =  −u BA , 

 A

 A

herrührend aus dem Ladungsunterschied und gekennzeichnet durch die

(elektrostatische) Feldstärke  E Q. Sie ergibt sich bei Integration in Rich-

tung von  E Q. Im ersten Fall gilt der Maschensatz in der Form Σ EMK = Σ

Spannungsabfälle, im zweiten in der Schreibweise  −Σ u q + Σ iR = 0. 

Zusammenfasst: Der bewegte Leiterstab

ist so Ursache des induzierten Stromes im Leiterkreis; 

führt zwischen den Stabenden eine induzierte Spannung. Besonderheit: ein auf

dem Stab mit bewegter Spannungsmesser zeigt keinen Ausschlag (weil in seinen

Zuleitungen ebenfalls Ladungen verschoben werden und sich im Messkreis beide

Effekte kompensieren). Gleichwertig ist die Aussage, dass wegen der verschwin-

denden Gesamtfeldstärke  E  das Umlaufintegral im Leiterstab verschwindet. 
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hat zwischen seinen Enden ein Quellenfeld ( E Q), das auch zwischen den Leiter-

schienen auftritt und als Spannung  u AB am Widerstand  R  messbar ist; 

ist vom Induktionsvorgang her verschiedenartig zugängig: über die induzierte

Spannung  e i im Stab, mit der induzierten Quellenspannung  u qi (Spannungsab-

fall an  R) und schließlich nach der Ruheinduktion mit zeitveränderlichem Fluss

(Gl. (3.3.4)). 

Netzwerkersatzschaltung, induzierte Quellenspannung Die Leiterschleife wird

mit ihrem bewegten Teil durch die Netzwerkersatzschaltung Abb. 3.3.13b

modelliert. Dort entsteht die induzierte Spannung  e i =  u BA, messbar am

(ruhenden) Lastwiderstand  R  als  Spannungsabfall u BA bzw. Leerlaufspan-

nung. 

Weil die Richtung von  e i stets mit der induzierten Feldstärke  E i über-

einstimmt und diese durch das Rechtsdreibein  v,  B,  E i festliegt, ist die Richtung des induzierten Schleifenstromes eindeutig bestimmt. 

Ändert der Leiterstab die Bewegungsrichtung (also nach links, Abb. 3.3.13c), 

so wechseln die Richtungen der induzierten Spannung  e i und des Stromes. 

Die Richtungsumkehr verwendet entweder die bisherige Ersatzschaltung mit

Vorzeichenumkehr aller Ströme und Spannungen oder bedingt eine neue Er-

satzschaltung mit neu eingeführten Größen. 

Die Bewegungsinduktion der in Teilen bewegten Leiterschleife wirkt im

Netzwerkmodell als Grundstromkreis mit idealer Spannungsquelle: entwe-

der induzierte EMK  e i (Folge der magnetischen Kraftwirkung auf Ladungs-

träger) oder induzierte Quellenspannung  u qi (Folge des Ladungsfeldes  E Q). 

Bei  Stromfluss (über den Widerstand  R) fließen fortwährend Ladungen aus

dem bewegten Leiterstab ab und tragen nicht mehr zur Coulombschen Feld-

stärke  E Q bei: das Kräftegleichgewicht ist gestört und die induzierte Feldstär-

ke verursacht erneut eine Ladungstrennung. So werden abfließende Ladungen

nachgeliefert und das Kräftegleichgewicht im Leiterstab wiederhergestellt. 

Das erfordert eine  Antriebskraft  zur Leiterbewegung nach rechts (s.u.). Auch hier

gibt die Lenzsche Regel Orientierung: die Wirkung arbeitet der Ursache entgegen. 

Die Leiterbewegung nach rechts erfordert eine Antriebskraft  F  Antr, der im Leiter-

kreis induzierte Strom erzeugt aber im Leiter der Länge  l  eine Kraft  F =  I ( l × B) (Gl. (3.1.7)). Sie ist mit

 B



0



 l =

d s =

 e yd y =  −le y

 A

 l

( l =  x),  B =  B z e z in negative  x-Richtung orientiert, wirkt also der Antriebskraft entgegen. Steigender Leiterstrom erhöht diese

Bremskraft“ und die zugeführte

” 

mechanische Energie steigt. Wir kommen darauf im Anschnitt 3.3.3.2 zurück. 
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Induktionswirkung durch zeitver¨

anderlichen Fluss Bisher wurde die Induktions-

wirkung als Wechselspiel von Lorentz-Kraft und Ladungsfeld im bewegten Leiter

untersucht. Es liegt nahe, auch den zeitveränderlichen Fluss durch die Leiterschleife

zur Erklärung heranzuziehen. Er entsteht, wenn eine konstante Flussdichte  B  die

Schleifenfläche  A( t) bestimmt durch Länge  x =  b − vxt  in  x-Richtung und Breite  l  in  y-Richtung durchsetzt. Sie nimmt durch die Leiterbewegung zeitlich ab. Mit

dem Flächenelement d A = d x ×  d y = d x d y ( e x  × e y) = d x d ye z (orientiert in z-Richtung), einem Integrationsweg C (Umlaufrichtung), bestimmt durch die Orientierung des Flächenvektors und der Flussdichte  B  zeigt der Fluss aus der Ebene

heraus positiv (Rechtsschraubenregel)





 l



 b



Φ( t) =

 B ·  d A =

 B z e z  · e zd x d y =

 Bz d x d y =  Bzl ( b − vxt)  . 

 A

 A

 y=0  x= vt

Er fällt zeitlinear: dΦ / d t <  0 und induziert in der Schleife den Strom  i  wie bei der

Ruheinduktion. Die zugehörige Spannung beträgt





 e i =

 E i  ·  d s =  −  d

 B ·  d A =  −  dΦ( t)

d t

d t

 A

(3.3.15)

=  −  d ( B z l( b − v x t)) =  B z lv x . 

d t

Umlaufrichtung im beweglichen Leiter und induzierte Feldstärke  E i stimmen über-

ein, damit fließt auch der induzierte Strom in Umlaufrichtung, also der Kontur

C: rechtswendig zum abnehmenden Fluss oder gleichwertig von den am vorderen

Leiterende angereicherten positiven Ladungen in Richtung über den Leiterkreis zum

hinteren Ende. Auch hier bestätigt die Lenzsche Regel die Stromrichtung. 

Der induzierte Strom erzeugt einen Fluss Φ ∗ i, der der Flussänderung dΦ / d t  entge-

genwirkt (Abb. 3.3.13a,b). 

Die Induktion eines im Magnetfeld bewegten Leiters kann erklärt werden durch

eine in ihm induzierte Spannung (Bewegungsinduktion) oder als Ruheindukti-

on mit zeitlicher Flussänderung durch Flächenänderung der Leiterschleife. Für

beide Betrachtungsweisen stimmen die Ergebnisse in allen Einzelheiten überein. 

Zur praktischen Anwendung der Bewegungsinduktion empfiehlt sich deshalb ein

Netzwerkmodell mit Ersatz des bewegten Leiterteils durch eine (ruhende) Span-

nungsquelle. 

Vereinfachtes Induktionsgesetz Die totale zeitliche Flussänderung im Indukti-

onsgesetz Gl. (3.3.3) enthält Ruhe- und Bewegungsinduktion als Spezialfälle. 

Treten sie gleichzeitig auf, wird die Analyse aufwendiger. Für den verbreite-

ten Praxisfall homogener,  nur zeitver¨

 anderlicher Magnetfelder  und  Bewegung

der Leiterschleife ganz oder teilweise  nur in einer Ebene  beträgt der gesamte

magnetische Fluss Ψ( t) =  B( t) ·A( t). Dabei ist  A( t) die von der Leiterschleife begrenzte Fläche. Dann  vereinfacht  sich Gl. (3.3.3) zu

 −e i = dΨ( t) = d A( t) ·B( t) =  A( t)  ·  d B( t) +  B( t)  ·  d A( t) d t

d t

d t

d t

(3.3.16)

=  −e i | r + ( −e i | b) . 
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Abb. 3.3.14. Netzwerkersatzschaltung der Bewegungsinduktion. (a) Bewegter Leiter im

Magnetfeld als Strömungsfeld. (b) Ersatzschaltung durch einen ruhenden aktiven Netz-

werkzweig

Auch jetzt enthält die induzierte Spannung Ruhe- und Bewegungsinduktion

(erster bzw. zweiter Teil), setzt aber räumlich konstante Induktion voraus. 

Gerader Leiter Die Bewegungsinduktion Gl. (3.3.13) gilt auch für gekrümmte

Leiter in inhomogenen Magnetfeldern (Abb. 3.1.5), es müssen dann nur die

Vektorgrößen als Orts- und Zeitfunktionen angegeben werden. Für den be-

wegten  geraden Leiter  der Länge  l  vereinfacht sich die induzierte Spannung

Induktionsgesetz

 e i = ( v × B)  · l. 

(3.3.17a)

(Form für bewegten geraden Leiter)



Dabei ist die Leiterl

 B

änge  l  durch  l =

d s  gegeben mit d s = d l. Die indu-

 A

zierte Spannung wird maximal, wenn alle drei Vektoren zueinander senkrecht

stehen. Sie verschwindet, falls der Leiter in der von  B  und  v  aufgespannten

Ebene liegt (( v × B)  ⊥l) oder die Leiterbewegung durch  vB  in Richtung des Magnetfeldes erfolgt. 

Das Induktionsgesetz im bewegten geraden Leiter lässt sich für ein  bewegtes

 Str¨

 omungsfeld

zwischen

zwei

Potenzialflächen

A, 

B

verallgemeinern

(Abb. 3.3.14a), in dem durch Stromfluss lokal die Stromdichte  J  und Feldstär-

ke  E  herrschen. Dazu ist es über einen Stromkreis an eine äußere Spannungs-

quelle angeschlossen. Durch Bewegung des Strömungsgebildes im Magnetfeld

entsteht in ihm zusätzlich die induzierte Feldstärke  E i =  v × B  und es gilt

jetzt das (lokale)  Ohmsche Gesetz f¨

 ur bewegte Leiter

 J

Ohmsches Gesetz

=  κ( E +  E i) =  κ( E +  v × B) . 

(3.3.17b)

bewegter Leiter

Das Strömungsfeld des bewegten Leitergebildes wird bestimmt von der Feld-

stärke, herrührend vom Potentialfeld und der induzierten Feldstärke durch
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Bewegungsinduktion. Auch ohne äußeren Stromfluss ( J = 0) herrscht im

Leiterinnern ein elektrisches Feld, falls  v × B  von Null verschieden ist. 

Damit ist der Anschluss an das aktive Strömungsfeld in Kap 1.3 gegeben

und es kann durch das (ruhende) Netzwerkmodell Abb. 3.3.14b aus idealer

Spannungsquelle und reihengeschaltetem Widerstand  R  ersetzt werden. 

Weitere Sonderf¨

alle Wir ergänzen weitere Sonderfälle. Rotierende Leiterschleife, 

das Transformatorprinzip und der Energieumsatz werden später betrachtet. 

1. 

 Umkehr der Bewegungsrichtung  Bewegt sich der Leiter der Schleife in

Abb. 3.3.13a, b nach links (Richtungsumkehr der Geschwindigkeit), so ändern

sich die Vorzeichen der induzierten Größen. Vom Flussverhalten her wächst der

umfasste Fluss (übereinstimmend mit der Richtungszuordnung Abb. 3.3.5b). 

Das gleiche gilt bei Vertauschung von Widerstand  R  und bewegtem Leiter

(Abb. 3.3.13d), der sich dann nach rechts bewegen muss. 

2. 

 Bewegter Leiterstab, Magnetfeld zeitabh¨

 angig  Bewegt sich der Leiterstab vom

Anfangspunkt  x (bei  t = 0) aus mit konstanter Geschwindigkeit  v  in einem zeit-

veränderlichen Magnetfeld  B( t) =  e z B 0 cos  ωt (Abb. 3.3.15a), so treten gleichzeitig Ruhe- und Bewegungsinduktion auf und es gilt Gl. (3.3.3b). Den Bewe-

gungsanteil übernehmen wir von der bewegten Leiterschleife nach Gl. (3.3.14a)

 B



 B



0



 e ib =

 E i  ·  d s =

( v × B( t))  ·  d s =

( v x e x  × B z( t) e z)  ·  d y

 A

 A

 l

0



=

 v x B z( t) ( −e y)  · e yd y =  v x B z( t) l =  v x lB 0 cos  ωt =  u BA l

mit jetzt zeitveränderlicher Induktion. Für den Ruheanteil wird die Schleife als

feststehend betrachtet ( v = 0), man erhält



 x

  y= l



 ∂B

 ∂B

 e ir =  −

 ·  d A =  −

 e z  · e zd x d y =  ωxlB 0 sin  ωt. 

 ∂t

 ∂t

 A

 x=0  y=0

Die Gesamtspannung  e i =  e ir +  e ib überlagert sich aus beiden Teilen. 

3. 

 Ruhende Leiterschleife im zeitver¨

 anderlichen, inhomogenen Magnetfeld  In ei-

ner ruhenden Leiterschleife abgeschlossen mit einem Widerstand  R  soll ei-



ne zeitveränderliche inhomogene Flussdichte  B( t, x) =  e

 πx

z  B 0 sin  ωt ·  sin

 b

(Abb. 3.3.15b) herrschen. Im gewählten Koordinatensystem sind Flussände-

rung und Umlaufweg rechtswendig zugeordnet, es gilt deshalb für die induzierte

Spannung nach Gl. (3.3.4)

 a

  b



 b



 ∂B( x, t)

d( B 0 sin  ωt)

 πx

 e i =  −

 · e zd x d y =  −a

sin

d x

 ∂t

  

d t

 b

0

0

d A

0

=  −  2 abω B 0 cos  ωt. 

 π

Die eingetragene Richtung wird durch die Lenzsche Regel bestätigt: bei Fluss-

zunahme (z. B. im Zeitbereich  t = 0  . . . π/ 2) muss das Magnetfeld des induzier-
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Abb. 3.3.15. Bewegungsinduktion, Anwendungen. (a) Verformte Leiterschleife im zeitab-

hängigen homogenen Magnetfeld. (b) Ruhende Leiterschleife im zeitveränderlichen, inho-

mogenen Magnetfeld. (c) Bewegter Leiter im inhomogenen Magnetfeld. (d) Bewegung eines

Leiterrahmens durch ein lokal begrenztes homogenes Magnetfeld

ten Stromes der Zunahme entgegenwirken, damit ergibt sich die eingetragene

Stromrichtung  i ind übereinstimmend mit  −  dΦ =  e

d t

i. Während die zeitliche

Änderung die Induktion bestimmt, beeinflusst die lokale Inhomogenität nur

ihre Größe. 

4. 

 Bewegter Leiter im inhomogenen Magnetfeld  Ein senkrecht auf einen strom-

führenden Leiter gerichteter Leiterstab wird parallel zum Strom mit konstan-

ter Geschwindigkeit  v =  v 0 e z verschoben; gesucht ist die Spannung zwischen

seinen Enden (Abb. 3.3.15c). 

Der stromführende Leiter erzeugt ein inhomogenes Magnetfeld  B =  e μ 0 I

 ϕ

, das

2 πr

radial nach außen abfällt. Im bewegten Leiter entsteht Bewegungsinduktion mit

inhomogenem Magnetfeld längs des Leiters. Aus den Richtungen von  v  und  B

folgt zunächst die Richtung von  E i: positiver Ladungsüberschuss bei B. Die

induzierte Spannung  e i folgt aus

 B



 B



 rB

 



 μ 0 I

 e i =

 E i  ·  d r =

( v z  × Bϕ)  · e rd r =

 v 0 e z  × eϕ

 · e rd r

2 πr

 A

 A

 rA

 r B

 v 0 μ 0 I

 r A

=  − v 0 μ 0 I  ln

=

ln

2 π

 r A

2 π

 r B

mit  e z  × eϕ =  −e r und der eingetragenen Feldstärke  E i. Dies lässt sich bestätigen: denkt man sich den Leiterstab durch eine Leiterschleife ergänzt

(in der Abb. angedeutet), so veranlasst die Stabbewegung eine Flusszunahme. 

Das Magnetfeld des induzierten Stromes wirkt nach der Lenzschen Regel der

Flusszunahme entgegen, wodurch sich die Richtung von  E i bzw. der Spannung

 e i bestätigt. Praktisch ist diese Spannung wegen der geringen Flussdichte klein:

z. B.  I = 100 A,  r A = 10 cm,  r B = 40 cm,  v 0 = 5 m /  s  → e i = 140 µV. 

5. 

 Bewegte Leiter im inhomogenen Magnetfeld  Bewegen sich zwei Leiterstäbe auf

einer Schienenanordnung mit unterschiedlichen (gleich orientierten) Geschwin-

digkeiten  v 1,  v 2 in einem in Bewegungsrichtung inhomogenen Magnetfeld  B( x) (Anordnung sinngemäß zu Abb. 3.3.15a), so stellt sich im Leiterrahmen (an einem eingefügten Widerstand  R) die Spannung

 e i =  e i1  − e i2 =  lv 1 B( x 1)  − lv 2 B( x 2)
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ein, wenn sich die Leiterstäbe zum Beobachtungszeitpunkt an den Stellen  x 1

und  x 2 befinden. Grundlage für diesen Ansatz ist Gl. (3.3.14a). Der Strom

durch den Widerstand  R  beträgt  i =  e i /R. Das erlaubt einige Folgerungen:

Im  homogenen Magnetfeld ( B( x 1) =  B( x 2)) erfolgt Induktion lediglich bei

unterschiedlichen Geschwindigkeiten beider Leiter. Nur dann ändert sich

die von der Leiteranordnung umfasste Fläche zeitlich. 

Bei  inhomogenem Magnetfeld  entsteht auch für gleiche Geschwindigkeit bei-

der Stäbe (d. h. fester Abstand zueinander) Induktion. Gleichwertig kann

man die Leiteranordnung als bewegten Leiterrahmen betrachten. Orte be-

sonderer Inhomogenität sind lokale Begrenzungen des Magnetfeldes, in die

ein Leiterrahmen eintaucht (Abb. 3.3.15d). Taucht Leiter 2 des Rahmens ins

Magnetfeld ein, so wird in ihm die Spannung  e i induziert (Flusszunahme)

und es fließt ein Strom in angegebener Richtung. Er unterbleibt, wenn sich

der Rahmen voll im Magnetfeld bewegt. Bei Austritt des Rahmens aus dem

Magnetfeld erfährt nur Leiter 1 eine Spannungsinduktion (Flussabnahme)

und es fließt der induzierte Strom in entgegengesetzter Richtung solange, 

bis der Rahmen im feldfreien Raum liegt. 

3.3.3.2 Anwendungen der Bewegungsinduktion

Auch die Bewegungsinduktion hat viele Anwendungen, denn Induktionsge-

setz Gl. (3.3.17a) und Lorentz-Kraft sind die Grundlage der  mechanisch-

 elektrischen Energieumformung  mit dem Magnetfeld als Mittler:

Bewegungsinduktion



= ⇒

mechanische Energie

 ⇐

elektrische Energie

=



Lorentzkraft

Je nachdem, ob die mechanische Energie einem Leiterkreis in Translations-

oder Rotationsform zugeführt wird, verändert sich der umfasste Fluss durch

fortschreitende oder drehende Bewegung und es kommt zur  Spannungsinduk-

 tion. Bewegt sich umgekehrt ein stromdurchflossener Leiter im Magnetfeld, so

erfährt er eine  elektrodynamische Kraftwirkung. Generell bildet die Wandlung

mechanischer in elektrische Energie das  Generatorprinzip (Spannungsindukti-

on im bewegten Leiter), der Umkehrvorgang das  Motorprinzip (Kraftwirkung

auf einen stromdurchflossenen Leiter) (Abb. 3.3.16a). 

Die Energieumformung veranschaulicht Abb. 3.3.16b am translatorisch be-

wegten Leiter auf leitenden Schienen. Die Anordnung ist mit einem beweg-

lichen Leiter (und Widerstand bzw. Spannungsquelle) abgeschlossen. Die

Schleifenfläche“ wird senkrecht vom konstanten Magnetfeld durchsetzt. 

” 

 1. Leistungsumsatz mechanisch-elektrisch, Generatorwirkung  Wirkt auf den

beweglichen Leiter der Leiterschleife (abgeschlossen mit einem Widerstand
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Abb. 3.3.16. Kraftwirkung und Induktionsgesetz am bewegten Leiter im homogenen Mag-

netfeld. (a) Wandlung elektrischer Energie über das Magnetfeld in mechanische Energie

(und umgekehrt). (b) Generatorprinzip und Netzwerkersatzschaltung. (c) Motorprinzip

und Netzwerkersatzschaltung

 R  an den Klemmen 21) eine antreibende Kraft  F  Antr (Abb. 3.3.16b) und

führt ihn mit der Geschwindigkeit  v  nach rechts, so entsteht im Leiterstab

die Feldstärke  E i = ( v × B):  Zufuhr mechanischer Energie, Abgabe elektri-

 scher Energie (Generatorwirkung). Die aufzuwendende mechanische Leistung

beträgt

 P mech =  F  Antr  · v =  iBlv =  ie i =  P el =  iu 21 . 

(3.3.18a)

Die induzierte Spannung  e i verursacht den Strom  i  durch den Verbraucher-

widerstand  R. Er erzeugt nach der Lenzschen Regel eine bremsende Kraft

 F  geg =  F  Br =  i ( l × B) (Gl. (3.1.7)) (Motorwirkung), die der primär einwirkenden stets  entgegenwirkt: Gegenkraft (Bremskraft). Sie versucht, die Re-

lativgeschwindigkeit zwischen Leiter- und Magnetfeld zu mindern und muss

bei stationärer Bewegung von der Antriebskraft  F Antr überwunden werden
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( F Antr =  −F Br). So überträgt sich die mechanische Antriebsleistung als gleich

große elektrische Leistung  ie i in den Stromkreis und damit zum Verbrau-

cher. Dabei ist der Stromfluss augenfällig: im Leerlauf ( i = 0) erfolgt kein

Leistungsumsatz, weil die Bremskraft  F Br fehlt, die eine antreibende Kraft

überwinden muss. 

Der mechano-elektrische Energieumsatz erfordert die rücktreibende Kraft-

wirkung auf stromdurchflossene Leiter im Magnetfeld! 

Der in der Bremskraft auftretende Strom kann noch durch das Induktions-

gesetz ausgedrückt werden, man erhält

 F geg =  iBl =  vB 2 l 2 /R. 

(3.3.18b)

Sie ist proportional  v  und so eine ideale Bremskraft. Wegen der Proportiona-

lität zu  B 2 wächst sie mit steigendem Strom und abnehmendem Widerstand

 R. Sie lässt sich durch den Kreiswiderstand  R  einfach regeln. 

Jeder im Magnetfeld bewegte geschlossene Leiterkreis wird (bei Flussände-

rung) so gebremst, als bewege er sich in einem zähen Medium (Ergebnis der

Lenzschen Regel). 

 2. Leistungsumsatz elektrisch-mechanisch, Motorwirkung  Wird dem Leiter

ein Strom als Ursache eingeprägt (z. B. durch eine Spannungsquelle  u q =  u 21, 

Abb. 3.3.16c), so entsteht die antreibende Kraft  F  Antr =  i ( l × B). Sie bewegt ihn nach mechanischen Gesetzen mit der Geschwindigkeit  v  nach rechts:

 Zufuhr elektrischer Energie,  Abgabe mechanischer (Motorwirkung). Die Bewe-

gung induziert im Leiter rückwirkend die Feldstärke  E i (Generatorwirkung)

und die ihr zugeordnete Quellenspannung  e i =  u qi wirkt der anliegenden

Spannung entgegen:

Rückwirkung der mechanischen Eigenschaften des im Magnetfeld beweg-

ten Leiters auf den elektrischen Stromkreis. Motor- und Generatorwirkung

treten im bewegten Leiterteil stets gleichzeitig auf! 

Für den Stromkreis folgt (mit  u q =  u 21)



 u 21 =  iR +

( v × B)  ·  d s =  iR +  vBl =  iR +  u qi

(3.3.18c)

(bei  v⊥B,  B = const, geradem Leiter und eingefügtem Verlustwiderstand

 R). Mit dem Kreisstrom  i = ( u 21  − u qi) /R  wird die  elektrische Leistung

 P el =  u 21 i =  i 2 R +  ivBl =  i 2 R +  P mech

(3.3.18d)
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 zugef¨

 uhrt  und, abgesehen von der Verlustleistung  i 2 R, als  mechanische Leistung

 P mech =  F  Antr  · v =  iBlv =  iu qi =  P el

(3.3.18e)

 abgegeben. Gleichwertig wirkt die Anordnung wie ein  Stromkreis mit Gegen-

 ” 

 spannung u qi “. Deshalb kann der Gesamtstrom  i  auch verstanden werden als

Summe des durch  u 21 (bei  v = 0) eingeprägten Stromes und eines von  u qi

verursachten Gegenstromes. 

Zusammengefasst:

Ein im zeitlich konstanten Magnetfeld bewegter stromdurchflossener Lei-

ter wirkt als direkter Umformer mechanischer in elektrische Leistung (und

umgekehrt), weil Kraft- und Induktionswirkung gleichzeitig auftreten. Da-

bei hat die Kraftwirkung die Tendenz, die Relativgeschwindigkeit zwischen

Leiter und Magnetfeld zu senken. Das Magnetfeld vermittelt nur die Ener-

giewandlung, sein Energiezustand bleibt im stationären Fall erhalten. Je

nach Betriebsart arbeitet die gleiche Anordnung als Motor oder Generator. 

Technisch erfolgt die Energiewandlung mittels rotierender oder linear beweg-

ter Leiterschleifen im Magnetfeld. Wir betrachten zunächst die rotierende

Leiterschleife als verbreitetes Prinzip der Spannungserzeugung und vertiefen

anschließend die Generator-Motorwirkung der linear bewegten Leiterschleife. 

Die vielfältigen Anwendungen betrachten wir in Kap. 5. 

Rotierende Leiterschleife im homogenen, zeitkonstanten Magnetfeld, Gene-

ratorprinzip Rotierende Leiterschleifen im zeitkonstanten Magnetfeld sind  die

Methode zur kontinuierlichen Spannungserzeugung. Wir untersuchen sie über

Ruhe- und Bewegungsinduktion mit der zeitveränderlichen Schleifenfläche

(Gl. (3.3.16)) oder dem bewegten Leiter im magnetischen Feld (Gl. (3.3.17a)). 

Eine Antriebskraft dreht die Leiterschleife im homogenen Magnetfeld (Dreh-

achse senkrecht zum Magnetfeld) mit konstanter Drehgeschwindigkeit (Win-

kelgeschwindigkeit  ω) (Abb. 3.3.17a). Dabei ändert sich der Winkel  α( t) =  ωt zwischen Schleifennormaler  A  und Flussdichte  B  zeitproportional und der

von der Schleife umfasste Fluss zeitlich Φ( t) =  B ·A( t) =  BA  cos ∠ ( B, A( t)). 

Die Flussdichte  B =  B y e y wirkt in  y-Richtung. Dann erfasst die zeitveränderliche Spulenfläche  A( t) =  A x( t) +  A y( t) mit

 A( t) =  A [ e x cos( α( t) +  π/ 2) +  e y sin( α( t) +  π/ 2)]  → A y =  Ae y cos  a( t) den Fluss



Φ( t) =

 B ·  d A =  B y  · A =  B y A  cos  α( t) A

(3.3.19)

=  B y 2 Rl

cos  α( t) = ˆΦ cos  ωt. 

 A
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Abb. 3.3.17. Rotierende Schleife im homogenen Magnetfeld. (a) Relativlage der Spulen-

ebene und Flussdichte. (b) Erzeugung einer Wechselspannung durch Leiterschleife mit

Schleifringen. (c) Zeitverläufe von induzierter Spannung und Fluss. (d) Erzeugung einer

Gleichspannung durch einen Stromwender

Er induziert in der Leiterschleife die Spannung (Abb. 3.3.17b, c)

 e i( t) =  −u qi( t) =  −  dΦ( t) =  ω ˆ

Φ sin  ωt = ˆ

 u  sin  ωt. 

(3.3.20)

d t

Die Maximalwerte ˆ

 u, ˆ

Φ heißen  Scheitel-  oder  Spitzenwert, verbreitet auch

 Amplitude (gekennzeichnet durch ein Dach), die Werte Φ( t),  e i( t) und über-

haupt  u( t),  i( t) die  Momentanwerte, weil sie die Größe zum momentanen

Zeitpunkt angeben. 

Für die Berechnung der induzierten Spannung über die Bewegungsinduktion Gl. 

(3.3.17a) werden die Größen  v,  B  und d s  im gewählten Koordinatensystem ausgedrückt. Die Leiterstücke  cd  und  ba  in Abb. 3.3.17b erfüllen die Induktionsbedingung, 

die restlichen Leiterbereiche nicht, weil dort d s  und  v × B  jeweils senkrecht zueinander stehen. Dagegen haben diese Vektoren im Leiterabschnitt  cd  gleiche und in

 ba  entgegengesetzte Richtung und induzieren die Spannungen:

 d



 b



 −u qi =  e i =

( v × B)  ·  d s +

( v × B)  ·  d s. 

 c

 a
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Im Integral für die Leiterstrecke  cd  hat der Stab die Geschwindigkeit  v  mit den

Komponenten  v =  v x +  v y =  Rω ( −e x sin  α +  e y cos  α). Mit  B =  B y e y und d s =

 − d z  folgt

 d



 l



 e i

=

( v × B)  ·  d s =  Rω

( −e

2

x sin  α +  e y cos  α)  × e y B y  ·  d s

 c

0

 −l



=  Rω

( −e x  × e y) sin







 α · B y ez d z =  RωB y l  sin  α. 

0

 −e z

Der untere Leiter liefert wegen umgekehrter Integrationsrichtung d s  und umgekehr-

ter Geschwindigkeit  v  den gleichen Beitrag und die gesamte induzierte Spannung

verdoppelt sich mit  v =  Rω  auf (s. Gl. (3.3.20))

 −u qi( t) =  e i( t) = 2 RlωB y sin  α =  ωAB y sin  α =  ω ˆΦ sin  ωt = 2 Rlv  sin  ωt. 

Eine rotierende Leiterschleife liefert die gleiche Spannung wie die Ruheinduktion“

” 

mit harmonisch zeitveränderlichem Fluss. 

Der Winkel  α( t) für die Flächennormale hängt mit der Zeit über die  Winkel-

 geschwindigkeit ω (Kreisfrequenz) zusammen

überstrichener Winkel d α

d α

 v

2 π

 ω =

=

=

=

= 2 πf. 

(3.3.21)

Zeitspanne d t

d t

 R

 T

Die  Frequenz f  ist der Quotient aus der Zahl der Umdrehungen und der Zeit

für diese Anzahl,  T  nennt man die  Periodendauer ( f = 1 /T )34 35. 

Die induzierte Spannung einer mit konstanter Geschwindigkeit rotierenden

Drehschleife im homogenen Magnetfeld ändert sich sinusförmig mit der Zeit. 

Ihre Frequenz ist gleich der mechanischen Drehzahl, ihr Spitzenwert ˆ

 u =  ω ˆ

Φ

hängt vom Erregerfluss und der Drehzahl (Kreisfrequenz) ab. 

Abbildung 3.3.17c zeigt die Zeitverläufe der Wechselspannung  e i( t) =  u 12( t) und des Flusses Φ( t). 

Der zeitlich cos-förmig schwankende Fluss durch die Leiterschleife induziert

eine sinusförmige Spannung, die gegen seine Zeitfunktion um  π/ 2 verscho-

ben ist. 

In der Schleifenstellung mit größtem umfasstem Fluss ( α = 0,  t = 0) ver-

schwindet  e i. Bei  größter Flussänderung ( α =  π/ 2) hat  e i jeweils ein Maxi-

mum. Deshalb spricht man von einer  Phasenverschiebung ϕ  zwischen indu-

zierter Spannung und erregendem Fluss, mathematisch ausgedrückt durch

 e i( t) = ˆ

 e i sin ( ωt)  , 

Φ( t) = ˆ

Φ cos ( ωt) = ˆ

Φ sin ( ωt +  ϕ) mit  ϕ =  π/ 2 . 

34 Einheit 1 Hertz: 1 Hz = 1 Schwingung/Sekunde = 1 s − 1

35 Heinrich R. Hertz, deutscher Physiker 1857–1894. Er bestätigte 1886 die bereits

1865 von Maxwell vorhergesagten elektromagnetischen Wellen experimentell an der

TH Karlsruhe. 
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Der Phasenwinkel  ϕ =  π/ 2 besagt, dass der Fluss der Spannung um  π/ 2

vorauseilt: er erreicht seinen Maximalwert zuerst und die Spannung folgt um

den Winkel  π/ 2 später. 

Die induzierte Spannung steigt durch Reihenschaltung von  w  gleichen Leiter-

schleifen (zur Spule mit  w  Windungen), dann tritt in Gl. (3.3.20) noch die

Windungszahl  w  auf. Sie hängt ferner nur von der Leiterfläche  A  ab, nicht

ihrer Form. Deshalb induziert eine lange, schmale Schleife bei gleicher Fläche

die gleiche Spannung wie eine breite, kurze. 

Beispiel 3.3.5 Induktion Eine Leiterschleife mit  w = 100 Windungen dreht sich mit

der Winkelgeschwindigkeit  ω = 314 s − 1 im homogenen Magnetfeld der Flussdichte

 B = 1 T. Die Spulenfläche sei  A = 100 cm2. Dann beträgt die Spannung ˆ

 e i =

 wωBA = 100  ·  314 s − 1 1 Vs /  m2  · (0 ,  01) m2 = 314 V(!) (Spitzenwert). 

Die rotierende Leiterschleife im homogenen Magnetfeld ist die einfachste

Anordnung zur Erzeugung von Sinusspannung nicht zu hoher Frequenz

(Drehzahl, mechanische Belastung der Spule). Sie bildet die Grundlage des

Generators und begründet die Bedeutung der Sinusfunktion als Zeitfunkti-

on von Strömen und Spannungen in der Elektrotechnik und damit der sog. 

Wechselstromtechnik. 

Ein anderes Prinzip zur Erzeugung von Sinusspannungen (vornehmlich hoher Fre-

quenzen) nutzt die Anregung von Schwingungen in einem Resonanzkreis ( LCR-

Kreis) durch einen rückgekoppelten Verstärker zur Entdämpfung (Oszillatorprinzip

der Elektronik, s. Bd. 3). 

Stromabnahme Die induzierte Spannung gelangt durch feststehende Gleit-

kontakte nach außen. Es gibt zwei Lösungen:

1. 

Kontakt ständig mit dem gleichen Spulenende durch einen rotierenden

Schleifring und feststehende Bürste verbunden (Abb. 3.3.17b). Dann er-

zeugt die Drehbewegung eine Wechselspannung. 

2. 

Kontakt jeweils nur mit dem unter dem gleichen Magnetfeld befindli-

chen Leiter verbunden (also periodische Schalterwirkung durch Drehbe-

wegung,  Kommutator,  Stromwender, Abb. 3.3.17d). Die Spannungsum-

kehr entfällt und in der grafischen Darstellung wird eine Halbwelle der

Sinusfunktion nach oben geklappt“ (Betragsbildung). So entsteht eine

” 

 gleichgerichtete Wechselspannung  oder pulsierende Gleichspannung. 

Bei Abschluss des rotierenden Leiterkreises durch einen Widerstand fließt

Strom, seine Richtung folgt aus der Lenzschen Regel: für den rechten, nach
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oben bewegten Leiter (Abb. 3.3.17a) nimmt der umfasste Fluss ab. Weil

Flussabnahme und Stromrichtung eine Rechtsschraube bilden müssen, hat

der Strom die eingetragene Richtung übereinstimmend mit der induzierten

Feldstärke  E i = ( v × B) im Leiter. 

Aufbau eines Spannungsgenerators Die drehbare Leiterschleife im Magnetfeld

arbeitet als  Spannungsgenerator  oder  Dynamo  in unterschiedlichen Formen:

Magnetfeld durch  Permanentmagnet  erzeugt (kleine Leistungen, Tachometer, 

Fahrraddynamo); 

Magnetfeld erzeugt durch  elektromagnetische Erregung: dabei wird der Elektro-

magnet entweder aus einer externen Quelle gespeist ( Fremderregung) oder aus

dem Generator selbst (Eigenerregung). Besonders wirkungsvoll ist die  Selbster-

 regung  durch das  dynamoelektrische Prinzip (s. u.). 

Die  Relativbewegung  Leiterschleife und Magnetfeld kennt zwei Ausführungen:

 Fluss ruhend, Schleife rotierend: Außenpolmaschine (Abb. 3.3.18a). Das Mag-

netfeld wird im zylindrischen, feststehenden Eisenkreis, dem  Stator  oder  St¨

 ander

erzeugt und im Feld bewegt sich die Drehschleife auf einem rotierenden, zylin-

derförmigen Eisenkörper ( Anker,  Rotor, L¨

 aufer). 

 Schleife ruhend, Fluss rotierend: Innenpolmaschine (Abb. 3.3.18b). Ein mit der

Winkelgeschwindigkeit  ω  rotierender Permanentmagnet oder eine (oder mehre-

re) Erregerspule(n) ausgeführt als sog.  Polrad  erzeugen das Magnetfeld und fest-

stehende Induktionsspulen des Außengehäuses die Wechselspannung. Es können

mehrere Induktionsspulen angebracht sein. Bei drei räumlich um 120 ◦  verset-

zen Spulen lassen sich drei Wechselspannungen erzeugen, die zeitlich um 120 ◦

versetzt sind. Sie bilden die Grundlage des  Drehstromsystems (s. Bd. 3). 

Zur Flusserhöhung (hohe Spannungsinduktion) wird im magnetischen Kreis auch

der nicht von der Drehschleifenwicklung benötigte Raum mit Eisen gefüllt. So ent-

steht im Luftspalt ein radiales, homogenes Magnetfeld und die Geschwindigkeit  v

wirkt immer senkrecht zu  B. Konstante Drehzahl ergibt konstante Spannung gemäß

Gl. (3.3.20), solange sich die Schleife im Radialfeld bewegt (Spannung weicht aller-

dings von der Sinusform ab). 

Die Frequenz der erzeugten Spannung hängt (bei gleicher Drehzahl) von der Pol-

paaranzahl ab. Eine Frequenz von 50 Hz (Netzfrequenz) erfordert bei einem Polpaar

eine Umdrehungszahl  n = 50 s − 1, also 3000 Umdrehungen pro Minute. Niedriglau-

fende Generatoren (z. B. Windkraftgeneratoren) benötigen höhere Polzahl. 

Grundeigenschaften Abbildung 3.3.18c zeigt die Ersatzanordnung eines  fremd-

 erregten Spannungsgenerators. In ihm spielen zusammen:

das  Induktionsgesetz, es bestimmt die Generatorspannung als  1. Grund-

 gleichung  elektrischer Maschinen ( c 1 Maschinenkonstante) (Abb. 3.3.18d)
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Abb. 3.3.18. Generator. (a) Prinzipaufbau eines Gleichstromgenerators mit Außenpolen. 

(b) dto. mit Innenpolaufbau (Permanentmagnet). (c) Wirkprinzip eines fremderregten

Gleichstromgenerators. (d) Drehzahlkennlinie; Erregerkennlinie (ohne Last); Lastkennli-

nie (Kennlinie des aktiven Zweipols)

 u qi =  c 1 nΦ  ∼ ω · Φ . 

(3.3.22)

Bei Belastung sinkt die Spannung durch den  Drehschleifenwiderstand R

(nach dem Modell des Grundstromkreises)  u =  u qi  − iR. 

die  Magnetisierungskennlinie Φerr =  f ( I err) des Eisenkreises. Er bestimmt

die  Maschinenkennlinie

 u qi = const  · n|

bzw. 

 u

 . 

(3.3.23)

 I

qi =  f ( I err) |

err =const

 n=const

Sie führt zu nichtlinearem Zusammenhang zwischen induzierter Spannung

und Erregerstrom, streng gilt aber  u qi  ∼ n. 

der  Leistungsumsatz (ohne Verluste)

 P mech =  qωM =  P el =  u · i. 

(3.3.24)

Im Idealfall geht die durch Drehmoment  M  und Winkelgeschwindigkeit  ω

aufgebrachte mechanische Leistung  P mech voll als elektrische Leistung  P el

zum Verbraucher. Leerlauf ( i = 0) erfordert (theoretisch) kein Drehmoment. 

Bei Stromfluss entsteht durch die Leiterbewegung im Magnetfeld eine Kraft, 

die der Antriebskraft entgegenwirkt. Sie muss durch die aufzuwendende me-
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chanische Leistung überwunden werden. Dieser Vorgang lässt sich durch  ein

 elektrodynamisches Wandlermodell  erklären (Abb. 3.3.18c):

Entsteht in einer im Magnetfeld rotierenden Leiterschleife eine induzier-

te Spannung, so wirkt sie als umkehrbarer rotorischer elektrodynamischer

Wandler, dem mechanische Leistung (ausgedrückt durch Drehmoment  M

und Winkelgeschwindigkeit  ω) zugeführt und als elektrische Leistung ab-

geführt wird (Prinzip umkehrbar). 

Grundsätzlich kann der Generator auch als  Motor  arbeiten. Man legt dazu an

die Leiterschleife eine Spannung (etwas größer als die bewegungsinduzierte). 

Sie treibt einen Strom in entgegengesetzter Richtung an und es entsteht eine

Kraft  in Drehrichtung. Das lässt sich anhand des in Abb. 3.3.16b, c mit

aufgenommenen rotierenden Leiterschleifenmodells ebenso erklären wie für

die lineare Leiterschleife. 

Dynamoelektrisches Prinzip Gegenüber der Erzeugung des Magnetfelds durch

 Fremderregung  mit dem Generatorverhalten als  aktive Zweipolkennlinie

(Abb. 3.3.18d) war die auf W. von Siemens (1866) zurückgehende Idee der

 Selbsterregung  ein Meilenstein in der Generatorentwicklung36. 

Der Restmagnetismus im Eisen erzeugt bei Generatoranlauf (ohne äußere Er-

regung) eine (kleine) Quellenspannung  u qi. Sie treibt einen Erregerstrom  i err

an, der bei richtiger Polung das Magnetfeld verstärkt und so erneut die in-

duzierte Spannung erhöht usw.:  u qi  → i err  → Φerr  → u qi  ↑→ i err  ↑→ . . . 

Diese  Aufschaukelung durch R¨

 uckkopplung  der Erregung durch die wachsen-

de Größe von  u qi währt, bis sich durch die Nichtlinearität des Eisenkreises

ein Gleichgewichtszustand zwischen Energieabgabe und -erzeugung einstellt. 

Generatoren nach diesem Prinzip heißen Rückkopplungsgeneratoren oder in

der Energietechnik besser  eigen-  oder  selbsterregte Generatoren. 

Der Erregerstrom  i err kann durch zwei Rückkopplungsprinzipien erzeugt wer-

den:

1. 

 Reihenschluss-, Hauptschlussgenerator:  Die Erreger- und Generatorwick-

lung sind in Reihe geschaltet, Erregerstrom gleich dem Klemmstrom:

 Stromr¨

 uckkopplung (Abb. 3.3.19a). 

36 Werner von Siemens, deutscher Unternehmer, (1816–1892), 1847 Gründung einer

Telegrafenbauanstalt, einflussreicher Förderer der Physikalisch-Technischen Reichs-

anstalt (heute Physikalisch-Technische Bundesanstalt), beeinflusste maßgebend das

Deutsche Patentgesetz (1876). 
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Abb. 3.3.19. Selbsterregter Generator. (a) Reihenschlussgenerator, Ersatzschaltbild und

Lastkennlinie. (b) Nebenschlussgenerator, Ersatzschaltbild und Lastkennlinie

2. 

 Nebenschlussgenerator mit parallel geschalteter  Erreger- und Generator-

wicklung. Jetzt ist der Erregerstrom proportional der Klemmenspan-

nung:  Spannungsr¨

 uckkopplung (Abb. 3.3.19b). 

Die Strom-Spannungs-Kennlinien rückgekoppelter Generatoren unterschei-

den sich prinzipiell von üblichen aktiven Zweipol-Kennlinien. 

Beim  Reihenschlussgenerator  entspricht die Quellenspannung  u qi über  i err der Ma-

gnetisierungskennlinie mit der Remanenzspannung  u qR bei  i err

=

0 (vgl. 

Abb. 3.3.19a). Eingetragen ist weiter der Spannungsabfall durch den Erregerstrom. 

Solange er kleiner als die bei gleichem Strom erzeugte Quellenspannung  u qi ist, hat

die Spannung die Tendenz zur weiteren Stromerhöhung. Dabei wächst sie relativ

immer weniger und schließlich stimmen im Punkt P erzeugte Spannung  u qi und

Spannungsabfall  i err R i überein: die  Nichtlinearit¨

 at der u qi =  f( i err) -Kennlinie ist

 f¨

 ur einen stabilen Arbeitspunkt erforderlich! 

Weil die induzierte Spannung  u qi bei großem Erregerstrom nur noch schwach steigt, 

der Spannungsabfall  i err R i hingegen stromproportional wächst, hängt die Klem-

menspannung  u =  u qi  −i err R i =  f( i err)  − i err R i stark von der Last ab, oft durch ein Maximum geprägt. 

Beim  Nebenschlussgenerator (Abb. 3.3.19b) gilt hingegen  i err =  u/R err und

 u qi  − u

 f( u/R err)

 i =  i A  − i err =

 − u =

 − uG ges

 R i

 R err

 R i

also  i =  i K [ f( u)]  − u ( G i +  G err). Das ist die Stromquellenkennlinie eines aktiven Zweipols. 

Die Vertauschung der Strom- und Spannungsachsen (Abb. 3.3.19b) ergibt eine

Kennlinie  u =  f( i) mit folgender Besonderheit: Bei zu kleiner Klemmenspannung  u

(zu große Belastung) reicht der Erregerstrom nicht mehr, um die dazu notwen-

dige Quellenspannung  u qi zu erzeugen. Die Spannung bricht auf  u qR zusammen. 

Der dazugehörige  Kipppunkt K  bedeutet  Aussetzen der R¨

 uckkopplung. Er ist für

rückgekoppelte Anordnungen typisch. 
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Abb. 3.3.20. Lineargenerator und -motorprinzip. (a) Lineargenerator. (b) Linearmotor. 

(c) Ersatzschaltbild des translatorischen elektrodynamischen Wandlers. (d) Zusammenspiel

von Lineargenerator und -motor durch Bewegungsinduktion und Lorentz-Kraft

Lineargenerator, Linearmotor, Grundprinzip Die translatorisch bewegte Leiter-

schleife im Magnetfeld ist das Grundprinzip des  Lineargenerators, seine Um-

kehrung, die Bewegung eines Leiters durch den eingeprägten Strom, das Prin-

zip des  Linearmotors. Wir vertiefen dazu die zu Abb. 3.3.16b, c vorwegge-

nommenen Überlegungen. 

In Abb. 3.3.20a bewegt sich der Leiter mit der Geschwindigkeit  v  nach rechts

in  y-Richtung. Dabei induziert er die Spannung (Gl. (3.3.14a))  u BA =  e i =

 v x B z l. Der Strom im Leiterkreis (Lastwiderstand  R) verursacht eine  brem-

 sende Lorentz-Kraft F  m =  F  Br

 B



0



 F  Br =  F  m =  i

(d s × B) =  i

(d y × B)

 A

 l

(3.3.25)

0



=  i

(d ye y  × B z e z) =  −iBzde y . 

 l

Sie ist nach links, also der Antriebskraft  F  Antr entgegen gerichtet. Bei Bewe-

gung mit konstanter Geschwindigkeit stehen beide Kräfte im Gleichgewicht

 F m =  F Antr =  iBl =  vB 2 l 2 /R. 

Der Antrieb erfordert damit die mechanische Leistung  P =  F v = ( vBl)2  /R, 

die voll im Widerstand  R  umgesetzt wird:  P el =  Ri 2 = ( vBl)2  /R. 

Linearmotor Zum  Linearmotor  wird die Anordnung, wenn der Widerstand

in der Leiterschleife durch eine Spannungsquelle  u q so ersetzt wird, dass
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der Strom seine Richtung beibehält (Abb. 3.3.20b). Nach der Kraftgleichung

 F  Antr =  F  m erfährt der bewegliche Leiter eine Kraft in negativer  x-Richtung. 

Sie verleiht ihm die Geschwindigkeit  v (Rechte-Hand-Regel). Der Leiter wür-

de fortwährend beschleunigt, hätte er keine Bewegungsinduktion. Letztere

induziert einen Strom  i  entgegen dem eingeprägten Strom  i (Lenzsche Re-

gel). Dadurch stellt sich schließlich eine gleichförmige Bewegung ein. 

Die Kraft beschleunigt den Leiterstab, der Strom durch die induzierte Spannung

 u qi =  v x B z l  bremst. Der Leiterstrom folgt aus der Maschengleichung  u q  − u qi  −

 iR = 0 und führt schließlich zur tatsächlich einwirkenden Kraft

 u q  − u qi

 u q  − v x B z l

 F m =  iB z l =

 B z l =

 B z l. 

(3.3.26)

 R

 R

Sie ist beim Start ( v = 0) am größten und sinkt mit steigender Geschwindigkeit. 

Im reibungsfreien Fall geht sie für konstante Geschwindigkeit schließlich gegen Null, 

dazu gehört mit  u q  − v x B z l = 0 die Leerlaufgeschwindigkeit  v 0 =  u q /( B z l). Wird der Leiter gebremst (wie im Motorbetrieb), so gilt  v < v 0 und  u qi  < u. Dann gibt

er mechanische Leistung ab, die ihm elektrisch zugeführt werden muss. 

Das dynamische Verhalten des Stabes folgt aus der Bewegungsgleichung, es muss

gelten

d v

 u q  − vBl

 ma =  m

=  F m =

 Bl. 

(3.3.27)

d t

 R

Daraus lässt sich die Geschwindigkeit ermitteln. 

In Abb. 3.3.20b kehrt sich bei  Beibehalt der Stromrichtung  im beweglichen Leiter die

Bewegungsrichtung gegenüber dem Generatorantrieb um (Abb. 3.3.20a). Sollen da-

gegen Generator- und Motorbetrieb mit  gleicher Bewegungsrichtung  arbeiten (wie

in Abb. 3.3.16b, c), müssen sich die Stromrichtungen beider Betriebsarten unter-

scheiden. Im praktischen Einsatz arbeiten Linearmotoren im Vorwärts-Rückwärts-

Betrieb mit konstanter oder variabler Geschwindigkeit. 

 Hinweis:  Das Magnetfeld verursacht auf alle stromführenden Schleifenabschnitte

Kräfte, die von der mechanischen Befestigung aufzunehmen sind. Davon wird nur

der bewegliche Leiterteil als Linearmotor genutzt. 

Besonders eindrucksvoll veranschaulichen zwei in homogenen Magnetfeldern

aufgehängte und elektrisch mit einander verbundene Leiterschaukeln“ das

” 

Lineargenerator und -motorprinzip (Abb. 3.3.20d): bewegt man die linke

Schaukel nach rechts, so wird eine Spannung und damit ein Kreisstrom in-

duziert (Generatorwirkung), der auf die rechte Leiterschleife eine Lorentz-

Kraft  F  m ausübt und sie ebenso nach rechts auslenkt (Motorwirkung). 

Generator-Motorprinzip Wir fassen zusammen:

1. 

Die gleiche, im Magnetfeld befindliche translatorisch oder rotatorisch be-

wegliche Leiteranordnung (Stab oder Schleife) wirkt je nach  Betriebsmo-

 dus  als Generator oder Motor. 
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2. 

 Generatorprinzip  ist die Spannungsinduktion im bewegten Leiter,  Motor-

 prinzip  die Kraftwirkung auf einen stromdurchflossenen Leiter (Grund-

lagen: Induktionsgesetz und elektrodynamische Kraftwirkung). 

3. 

 Energiewandlung  erfolgt erst, wenn beim

 Generator  die Spannungsinduktion im Stromkreis wirkt,  Strom fließt

und so elektrische Leistung an einen Verbraucher abgegeben werden

kann (die als  mechanisches ¨

 Aquivalent  zuzuführen ist); 

 Motor  eine  Leiterbewegung  durch die Kraftwirkung einsetzt, sodass

mechanische Energie bzw. Leistung abgegeben wird (die als  elektri-

 sches ¨

 Aquivalent  zuzuführen ist). 

4. 

Durch  R¨

 uckwirkung:

der elektrischen Leistung  ¨

 uber den Strom  wirkt auf den Leiter im Ge-

nerator eine  r¨

 ucktreibende Kraft, die die Relativgeschwindigkeit zwi-

schen Leiter und Magnetfeld zu senken versucht (Rückwirkung des

elektrischen Zustandes des bewegten Leiters auf sein mechanisches

Verhalten). Dadurch entsteht ein Gleichgewicht zwischen zugeführter

mechanischer und abgegebener elektrischer Leistung. 

der mechanischen Leistung  ¨

 uber die Geschwindigkeit  bildet sich im

Leiter des Motors eine  induzierte Gegenspannung, die der anliegen-

den Spannung entgegenwirkt und den Gesamtstrom zu senken sucht

(Rückwirkung des mechanischen Zustandes des bewegten Leiters auf

sein elektrisches Verhalten). So entsteht ein Gleichgewicht zwischen

elektrischer und abgegebener mechanischer Leistung. 

5. 

Bei  gleicher Bewegungsrichtung  erfolgt der Übergang vom Generator-

zum Motorbetrieb (vice versa) durch  Stromrichtungsumkehr. 

6. 

Ein Leiterstab, der im Magnetfeld translatorisch oder rotorisch bewegt

wird, wirkt als  umkehrbarer elektrodynamischer Wandler. 

Barlowsches Rad, Unipolarmaschine Das Prinzip des im Magnetfeld translato-

risch

bewegten

Leiterstabes

ist

auf

einen

rotierenden

Leiter

übertragbar

(Abb. 3.3.21a). Ein Ende wird an einer Drehachse fixiert, zwischen ihr und dem

Leiterende tritt eine induzierte Spannung bei Rotation um die Achse und senkrecht

einwirkendem Magnetfeld auf. Die Richtung ergibt sich aus  E i =  v × B, hier radi-

al nach außen gerichtet. Das Prinzip bleibt bei Ersatz des Leiterstabes durch eine

Metallscheibe erhalten (Abb. 3.3.21b). Sie rotiert mit konstanter Winkelgeschwin-

digkeit  ω  im homogenen, konstanten Magnetfeld ( B = const,  B⊥v). Zwischen den Schleifkontakten auf Achse und Scheibenrand (Klemmen A, B) entsteht eine Spannung. Diese als  Unipolarmaschine  oder  Barlowsches Rad  bezeichnete Anordnung

wird mit Bewegungs- und Ruheinduktion erklärt. 

1. 

Die  Bewegungsinduktion  betrachtet sie

von außen“ als bewegten Leiter

” 

(Abb. 3.3.21c). Auf die Ladungsträger wirkt überall die radial zum Rand gerich-
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Abb. 3.3.21. Faraday-Scheibe zur Veranschaulichung der Bewegungs- und Ruheinduktion. 

(a), (b) ruhender Beobachter: Bewegungsinduktion. (c) Bewegter Beobachter (auf Schleife):

Ruheinduktion. (d) Induktion bei gegenläufig bewegten Leiterscheiben. (e) Wirbelströme

in einer bewegten Scheibe mit räumlich begrenztem Magnetfeld (Bremsscheibe). (f) Bewe-

gung des räumlich begrenzten Magnetfeldes verursacht Scheibenantrieb

tete Lorentz-Kraft  F ∼ E i. Sie verursacht zwischen Welle und Scheibenrand

eine induzierte Spannung  e i. Wir wählen als Integrationsweg die gestrichel-

te Linie. Dabei bewegt sich nur die Wegstrecke 34 mit der Geschwindigkeit

 v( ) =  ωreϕ, alle restlichen Wegteile befinden sich in Ruhe. Zwischen den

Punkten 4 und 5 verschwindet die induzierte Feldstärke ( v × B)  ·  d s = 0 und es verbleibt als induzierte Spannung



4



 −u BA =  e i =

 E i  ·  d s =

( v × B)  ·  d s

3

 r 0



 r 0



 ωB z r 2

=

( ωe

0

 ϕ × B z e z)  · e d  =  ωB z

 d =

 . 

2

0

0
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Die Feldstärke  E i ist so gerichtet, dass der äußere Rand für die eingetragene

Dreh- und Feldrichtung positiv geladen wird. Das bestimmt die Richtung der

induzierten Spannung  e i (Pluspol am Scheibenrand, Minuspol an der Welle)

und bei angeschlossenem Widerstand  R  die Richtung des induzierten Stromes

(Abb. 3.3.21c). Die Bewegungsinduktion gibt so über die Lorentz-Kraft eine

schlüssige physikalische Erklärung. 

2. 

Bei der  Ruheinduktion  besteht die Schwierigkeit zunächst im Auffinden einer

vom zeitveränderlichen Fluss durchsetzten Fläche. So könnte man annehmen, 

dass der Fluss immer zeitlich konstant ist und deshalb keinerlei Induktion er-

folgt, offenbar ein Fehler. Man kann aber auch einen Standpunkt (etwa Punkt 4)

auf dem Scheibenrand herausgreifen. Von ihm aus erscheint die Scheibe still-

stehend, der Schleifer mit den Klemmenzuleitungen rotiert mit der Winkelge-

schwindigkeit  ω  entgegen (deshalb gilt  ϕ =  −ωt). Folglich muss ein Teil des

Integrationsweges über die Scheibe mitbewegt werden Man beobachtet also die

in Abb. 3.3.21c2 eingetragene Schleife aus den Flächen  A 1 und  A 2. Während

der Fluss durch  A 2 konstant ist, ändert er sich durch  A 1 und in dieser Schleife

wird die Spannung Gl. (3.3.3)





 ωBr 2

 e

0

i =  −  dΦ =  −  d

 B ·  d A =  −B ·  d

d A =

 , 

d t

d t

d t

2

induziert, da d A 1 =  r 20 π  d ϕ =  − r 20 ω . Mit der zeitlichen Flächenänderung (po-d t

2 π  d t

2

sitiv,  A 1 wächst) ergibt sich schließlich das gleiche Ergebnis, trotz unterschied-

licher Betrachtungsweise, die vom Bezugssystem bestimmt sind. 

Trotz des richtigen Ergebnisses befriedigt die Erklärung mit der zeitveränderlichen

Fläche nicht wirklich, es liegt keine experimentell nachvollziehbare Ruheindukti-

on vor, wogegen die Bewegungsinduktion auf physikalisch ablaufenden Vorgängen

basiert. 

Zur Größenvorstellung: für  r 0 = 10 cm,  B = 1 T und  n = 3000 min − 1 stellt sich  e i  ≈

1 ,  57 V ein. Wenn auch die Gleichspannung gering ist, so wird sie doch ohne Strom-

wender erzeugt. Drehrichtungsumkehr ändert ihr Vorzeichen. Deshalb erzeugen zwei

zueinander entgegengesetzt rotierende Scheiben zwischen den Achsen die doppelte

Spannung mit dem Vorteil, dass der Schleifer am Außenrand entfällt (Abb. 3.3.21d). 

Ein Merkmal dieses Unipolargenerators ist der geringe Innenwiderstand. 

Die Anordnung arbeitet umgekehrt als  Motor (sog.  Barlowsches Rad), wenn an

die Klemmen  A,  B  eine Spannung gleicher Richtung angelegt wird und sich die

Stromrichtung umkehrt. 

Durchsetzt das Magnetfeld die Scheibe nur teilweise, so entsteht zwar auch eine

Spannung zwischen Achse und Rand, die restlichen, nicht im Magnetfeld befind-

liche Bereiche wirken aber als Belastung und insgesamt entstehen Wirbelströme

(Abb. 3.2.20e). Sie verursachen eine bremsende Gegenkraft  F  geg nach Gl. (3.3.25). 

Bewegt sich umgekehrt der Magnetfeldbereich (Abb. 3.3.21f), so üben die entste-

henden Wirbelströme eine Antriebskraft  F  Antr auf die Scheibe aus, sie läuft nach“

” 

und wirkt als  Triebscheibe. Dieses Prinzip nutzt der  Asynchronmotor (Kap. 5.2.3). 

Die Unipolarmaschine vermeidet Wirbelströme durch ein homogenes Magnetfeld

über der gesamten Scheibe. Dann ist die induzierte Spannung an jedem Randpunkt

gleich und tritt als ganzes nach Außen in Erscheinung. 
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Abb. 3.3.22. Beispiele zur Bewegungsinduktion. (a) Rotierendes Rohrstück mit radial ge-

richtetem Magnetfeld. (b) Radiales Magnetfeld erzeugt mit Dauermagneten. (c) Rohr mit

strömender leitender Flüssigkeit (Prinzip der elektromagnetischen Pumpe) bzw. gleich-

förmig bewegtes leitendes Band im homogenen Magnetfeld

Die Unipolarmaschine vermittelt in einfachster Weise das Grundprinzip der Bewe-

gungsinduktion. Weil das Induktionsgesetz im englischen Schrifttum als Faraday-

” 

law“ auftritt, wird sie dort als  Faraday-Scheibe (Faraday-disc) bezeichnet. 

Unipolarrohr Das Rechtsdreibein aus Geschwindigkeit, Flussdichte und induzier-

ter Feldstärke lässt sich verschiedenartig ausnutzen, ein Beispiel ist das  Unipolar-

 rohr (Abb. 3.3.22a). Tritt durch ein mit der Winkelgeschwindigkeit  ω  rotierendes

(dünnwandiges) leitendes Rohr ein radiales Magnetfeld  B( ), so entsteht zwischen

den Rohrenden eine Feldstärke  E i und damit Spannung zwischen den Schleifern

B, A. Weil  v  und  B( ) senkrecht aufeinander stehen, gilt

 u BA =  vB( ) l =  ωB( ) l = 2 πnr 0 B( r 0) l = Φ0 n unter Annahme ruhender Rohrabgriffe. Der Fluss Φ0 folgt aus der Flussdichte durch

die Rohrmantelfläche (2 πr 0 l).  n  ist die Umdrehungszahl pro Zeiteinheit. 

Das Ergebnis kann ebenso über die Ruheinduktion (mit einer gedachten Schleife

auf der Mantelfläche, im Bild angedeutet) gewonnen werden. Der Fluss durch eine

Fläche mit dem Öffnungswinkel  α  beträgt Φ( α) =  Blr 0 α  mit der Flussänderung

dΦ =  B

d α =  B

d t

 lr 0 d t

 lr 0 ω =  Blr 02 πn = Φ0 n. Die induzierte Spannung folgt zu

 u BA = dΦ / d t. Größenordnungsmäßig ergibt sich für  l = 10 cm,  r 0 = 5 cm,  B = 1 T

und  n = 50 s − 1 = 3000 min − 1 eine Spannung  u BA = 1 ,  57 V. In der praktischen Ausführung übernehmen die Lager des Rohrstückes die Schleiferaufgabe. 

Probleme bereitet die Erzeugung der radialen Flussdichte: ein stromdurchflossener

Draht als Längsachse scheidet aus, weil seine Feldlinien parallel zu den  v  Lini-

en verlaufen und damit keine Induktion erfolgt. Naheliegend ist die Nutzung der
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Feldaufwölbung am Pol eines Dauermagneten (Abb. 3.3.22b). Dann darf das Rohr

nur diesen Polbereich überdecken, damit der Fluss des Dauermagneten weitgehend

durch den Mantel tritt. Besser ist die antiparallele Anordnung zweier Magneten, die

das Feld auf einen schmalen Bereich zusammendrängen (Stirnverluste treten kaum

auf). Praktisch ist unbedeutend (nicht für die Berechnung!), dass in diesen Fällen

die Flussdichte von der Lage längs der Achse abhängt. 

Induktions-Durchflussmesser Eine leitende und mit der Geschwindigkeit  v  strö-

mende Flüssigkeit tritt durch ein Rohr (isolierte Berandung, Abb. 3.3.22c), auf

das ein Magnetfeld senkrecht trifft. Dann entsteht zwischen seitlich angebrachten

Elektroden eine induzierte Spannung  u BA =  e i =  Bvl ( l  Elektrodenabstand). Sie

erlaubt die Bestimmung der Fließgeschwindigkeit. So kann die Strömungsgeschwin-

digkeit eines Flusses unter Nutzung des Erdmagnetfeldes ermittelt werden (Richt-

wert: Flussbreite  l = 10 m, Strömungsgeschwindigkeit  v = 1 m /  s, Erdmagnetfeld

 B ≈  50 µT  → e i = 500 µV). 

Die Anordnung eignet sich auch als  elektromagnetische Pumpe. Dazu schickt man

durch beide Elektroden einen Strom  i (Rohr mit leitender Flüssigkeit). So wirkt auf

die Flüssigkeitsscheibe zwischen den Elektroden die Kraft  F  und damit ein Druck

 p =  F/A =  BIl/( al) =  BI/l. Er treibt die Flüssigkeit durch das Rohr. Zahlenmäßig ergibt sich für  i = 10 A,  B = 1 T,  a = 1 cm ein Druck  p = 102 Ws /  m2 = 10 − 3 bar, da 1 Ws /  m2 = 1 N /  m2 und 1 N /  cm2 = 0 ,  1 bar. Der Strom induziert die Spannung

 e i =  Bvl, im Beispiel für  v = 1 m /  s und  l = 10 cm somit  e i = 100 mV, die durch die anliegende Spannung überwunden werden muss. Dann beträgt die zugeführte

elektrische Leistung  p =  e i i = 1 W = 1 Nm /  s. Sie dient direkt als mechanische

Leistung zum Transport der Flüssigkeit (s. Gl. (3.3.18a)). 

Eine Anwendung des Durchflussmesserprinzips ist das  bewegte leitende Band. Jetzt

wird die Anordnung Abb. 3.3.22c als bewegtes Metallband verstanden mit Kontakt-

flächen A, B an den Stirnseiten und angeschlossenem Spannungsmesser. Senkrecht

zur Bandfläche wirkt ein homogenes Magnetfeld  B. Bei Bandbewegung (Geschwin-

digkeit  v, Bandbreite  l =  b) entsteht die Spannung





 u BA =  e i =

 E i  ·  d s =

( v × B)  ·  d s

 b



 b



=

( v x e x  × B y e y)  · e zd z =

( v x B y e z)  · e zd z =  v x B y b. 

0

0

Der Effekt tritt auch bei ruhendem Band und bewegter Messschleife (mit Instru-

ment) auf. Bei Kurzschluss der Klemmen  B,  A  entsteht als Folge der induzier-

ten Feldstärke  E i ein Strom und damit eine Kraftwirkung, die die Bandbewegung

hemmt (im Bild angedeutet). 

3.3.4 Vollst¨

andiges Induktionsgesetz, Zusammenfassung

Gesamterscheinung Im Induktionsgesetz wirken Magnetfeldänderungen und

magnetische Kraftwirkungen auf Ladungsträger zusammen. Kommt es dabei

zum Stromfluss (Induktion in einer Leiterschleife, Verschiebungsstrom), so er-
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folgt eine Rückwirkung über den Durchflutungssatz auf das magnetische Feld

(erfasst als Lenzsche Regel). Das vollständige Induktionsgesetz (Integralform, 

2. Maxwellsche Gleichung) lautet





 e i =  −  dΨ( t) =

 E i  ·  d s =  −  d

 B ·  d A

d t







d t

beliebiger

Fläche  A  von

Netzwerkform

Umlauf auf  s

 s  berandet







Integralform





 ∂B

= −

 ·  d A +

( v × B)  ·  d s

(3.3.1a)

 ∂t

verkettete

 s  längs der

Windungsfläche





Windungen







Ruheinduktion

Bewegungsinduktion

und hat gleichwertig eine Integral-, Netzwerk- und Differenzialform (nicht be-

trachtet). Spezielle Formulierungsaspekte sind  Induktionsart (Ruhe-, Bewe-

gungsinduktion), das zugehörige  Netzwerkmodell (Charakter der induzierten

Spannung) und das  Bezugssystem (ruhend, bewegt), (Gl. (3.3.3), (3.3.5a)). 

Ruheinduktion bedeutet Flussänderung in der Schleife in momentaner Form

(also an festem Ort), Bewegungsinduktion von der mit  v  bewegten Schlei-

fe (einschließend Form- und Lageänderung). Deshalb verlangt die zeitliche

Flussänderung den partiellen Differenzialquotienten, weil die Änderung am

momentanen Ort erfolgt. Für ruhende Schleifen sind beide identisch (dann

benutzt Ruheinduktion die gewöhnliche Ableitung). 

Ruheinduktion

Ruheinduktion erfolgt unabhängig von einer Leiterschleife. 

Zeitliche Magnetfeldänderung ausgedrückt durch induzierte Quellenspan-

nung  u qi = dΨ / d t (als Ersatzgröße für dΨ / d t  definiert) bzw. mit indu-

zierter Spannung (EMK)  e i. 

Sie äußert sich als  Wirbelfeld: in jedem Raumpunkt ist der Wirbel der

(induzierten) elektrischen Feldstärke gleich der (negativen) zeitlichen Än-

derung der Flussdichte oder gleichwertig: ein zeitlich veränderliches Mag-

netfeld wird stets von einem elektrischen Feld umwirbelt. 



Als Wirbelfeld gehorcht die induzierte Feldstärke  E i mit  e i =

 E i  ·  d s 
= 0

nicht den Gesetzen des elektrostatischen Feldes. 

Die induzierte Spannung  e i ist eine Umlaufspannung. Merkmal: wirkt auch

bei geschlossener Leiterschleife. Physikalischer Richtungssinn  e i: Antriebs-

richtung positiver Ladungsträger in Richtung von  E i. 

Die Entsprechung  −e i =  u qi erübrigt die Verwendung der induzierten

Spannung  e i im Induktionsgesetz, im Lehrbuch Angabe gleichwertig für

beide Formen (Gewährleistung des historischen Bezugs, einfacher Zugang

zu unterschiedlichen Lehrbuchdarstellungen). 
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Bewegungsinduktion

Relativbewegung zwischen Magnetfeld und Leiterfläche bzw. Teilen von

ihr führt zu induzierter Spannung im Leiterkreis, auch bei zeitlich kon-

stantem Magnetfeld. 

Ursache: Lorentz-Kraft  F  m =  Q ( v × B) =  QE i auf die bewegte Ladung  Q. Durch Ladungsverschiebung entsteht die induzierte Feldstärke

 E i, dem Charakter nach eine nichtelektrische Feldstärke“. 

” 

Bei geschlossener Leiterschleife Ursache des induzierten Stromes bzw. bei

offener Schleife Ursache der an der Schnittstelle entstehenden (und im

ruhenden System) messbaren induzierten Spannung. 

Bei Integration der induzierten Feldstärke  E i längs der Leiterschleife tra-

gen nur bewegte Schleifenteile (Weg  s) bei. 

Gleichwertig ist die induzierte Spannung im bewegten System durch die

zeitliche Änderung des Gesamtflusses bestimmbar (Schwierigkeit: pro-

blemgerechte Aufbereitung der zeitlichen Flussänderung). 

Ruhe- und Bewegungsinduktion  unterscheiden  sich bezüglich der Ener-

gieumsetzung: bei  Ruheinduktion  wird elektrische Energie aus magne-

tischer umgeformt, letztere ist im Magnetfeld der  Selbst-  oder  Gegenin-

 duktivit¨

 at  zwischengespeichert und wird aus einem primären elektrischen

Kreis zugeführt.  Bewegungsinduktion formt mechanische Energie in elek-

 trische um. Dabei wirkt der bewegte Leiter als Umformer mechanischer

in elektrische Energie (Generatorfunktion). Umgekehrt übt ein strom-

durchflossener Leiter im Magnetfeld eine Kraftwirkung aus und wirkt als

Umformstelle elektrischer in mechanische Energie (Motorfunktion). Stets

dient das Magnetfeld nur als Mittler und ändert sich im stationären Fall

nicht. 

Lenzsche Regel

Der in einem materiellen oder gedachten (Verschiebungsstrom!) Leiter-

kreis induzierte Strom wirkt mit seinem Magnetfeld der Änderung des

verursachenden Magnetfeldes stets entgegen. (Rückwirkung auf die ori-

ginäre Flussänderung im Induktionsgesetz über den Durchflutungssatz). 

Sie ist nicht Bestandteil des Induktionsgesetzes (es induziert eine Span-

nung und gilt auch bei offener Leiterschleife!), ihre Grundlage ist vielmehr

der Energiesatz (vgl. Abb. 3.3.2a). 

Sie erlaubt eine einfache Richtungszuordnung zwischen induziertem Strom, 

induzierter Spannung und Netzwerkmodell. Die induzierte Spannung  e i

bzw. Quellenspannung  u qi wird als ideale Spannungsquelle so in den Lei-

terkreis eingefügt, dass sie den induzierten Strom in der vorgegebenen

Richtung bewirkt. 
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Abb. 3.3.23. 

Galilei-Transformation. 

(a) Ruhendes und bewegtes Bezugs-

system. (b) Leiterschleife mit teilweise

bewegtem Bezugssystem

Feldgr¨

oßen und Bezugssystem Bisher wurden Induktionsvorgänge überwiegend

im ruhenden Bezugssystem diskutiert. Für manche Anwendungen ist aber die Dar-

stellung im bewegten Bezugssystem zweckmäßiger (beschränkt auf den nichtrelati-

vistischen Fall  v  c). Bewegt sich ein Bezugssystem Σ   mit der Geschwindigkeit

 v =  v z e z in der  z-Achse gegenüber einem ruhenden (Σ), so gelten die Koordina-tenbeziehungen (Abb. 3.3.23)

%

 x =  x, z =  z − vzt

 . 

Galilei-Transformation

 y =  y t =  t

Dadurch bilden sich die ruhenden Feldgrößen  E  und  B  in den Größen  E  und  B

des bewegten Systems ab

 E =  E, B =  B, E⊥ =  E⊥ +  v × B

( 
  parallel bzw.  ⊥  senkrecht

zur  z-Achse)

oder verallgemeinert  E =  E +  v × B. 

Wirken in einem ruhenden Bezugssystem an einem Ort die Feldgrößen  E  und  B, 

so bemerkt ein mit der Geschwindigkeit  v  bewegter Beobachter am gleichen Ort

die Feldgrößen  E  und  B. 

Das Induktionsgesetz Gl. (3.3.3) wird dann folgendermaßen interpretiert:

1. 

Ein Beobachter im ruhenden Bezugssystem ( E,  B) stellt eine Bewegung der

Leiterschleife und ein zeitveränderliches Magnetfeld fest. Er registriert beide

Anteile der Umlaufspannung nach Gl. (3.3.3):







 ∂B

 e i =

 E i  ·  d s =  −

 ·  d A +

( v × B)  ·  d s

 ∂t

beliebiger

verkettete

 s  längs der

Umlauf

Windungsfläche

Windungen



=

( E +  v × B)  ·  d s. 





Dabei ist

 E ·  d s =  − ∂B · d A  die Ruheinduktion. Wäre  B  zeitlich konstant, 

 ∂t

so würde er die Entstehung der induzierten Feldstärke als Folge der Lorentz-

Kraft  Q( v × B) auf die Ladungsträger im Leiter erklären. 

2. 

Einem Beobachter auf der Leiterschleife, also im bewegten Bezugssystem ( E, 

 B) erscheint die Schleife ruhend ( v = 0). Er führt die induzierte Spannung

auf ein zeitveränderliches Magnetfeld zurück und bemerkt die Spannung







 e i =

 E ·

 E ·

 B ·

i

d s =

d s =  −  d

d A. 

d t

beliebiger

Fläche von

Umlauf

 s  berandet
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Für ihn ist der Induktionsvorgang die Folge einer elektrischen Feldkraft  QE  auf

die Träger im elektrischen Wirbelfeld. Da die Transformation beide Ergebnisse

ineinander überführt, ist die Deutung der Kraftwirkung nur eine Frage des

Bezugssystems. 

Bisher unbeantwortet bleibt der Einfluss des Bezugssystems auf die Materialglei-

chungen  D =  εE  und  B =  μH  im Vakuum und Materie. Es lässt sich zeigen, dass unter Zugrundelegung der Galilei-Transformation (also für  v  c) gilt

 E =  E +  v × B, 

 B =  B − ( v × E) /c 2  ≈ B, 

 D =  D + ( v × H) /c 2 =  D +  εv × B, H =  H − v × D

(3.3.28)

Wirken in einem ruhenden Bezugssystem an einem Ort die Feldgrößen  H  und  D, 

so bemerkt ein mit der Geschwindigkeit  v  bewegter Beobachter am gleichen Ort

die Feldgrößen  H  und  D. 

Die Folge dieser Beziehungen ist, dass beispielsweise im Magnetfeld geeignet beweg-

te Kondensatorplatten eine Ladungsverschiebung erfahren, die sich als Änderung

der Kapazitätsbemessungsformel bemerkbar machen. 

Praktisch liegt meist ein Leitergebilde mit teilweise ruhenden und bewegten Teilen

vor (Abb. 3.3.23b), wie etwa bei der Leiterschleife nach Abb. 3.3.15. Dann gelten

für den ruhenden Teil die Feldgrößen  E,  B, für den bewegten dagegen  E  und  B

nach Gl. (3.3.28). 

3.4

3.4 Verkopplung elektrischer und magnetischer Gr¨

oßen

Wir lernten bisher:

1. 

Jeder Strom wird nach dem Durchflutungssatz Gl. (3.1.12) von einem

Magnetfeld umwirbelt:

 I → Θ  → Φ

Verkopplung elektrische  →  magnetische Größe a)

Der Zusammenhang Strom  →  magnetischer Fluss führte zum Indukti-

vitätsbegriff (Kap. 3.2.5). 

2. 

Zeitliche Flussänderungen verursachen nach dem Induktionsgesetz ein

elektrisches Wirbelfeld, ausgedrückt durch eine induzierte Spannung  e i

bzw. Quellenspannung  u qi (Gl. (3.3.1a))

dΨ( t)

Verkopplung zeitveränderliche magnetische

=  u qi =  −e i

d t

 →  elektrische Größe b). 

Damit erzeugt ein zeitveränderlicher Strom nach a) mit seinem Magnetfeld

induzierte Spannungen nach b) in materiellen oder gedachten Leiterschleifen, 
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Abb. 3.4.1. Selbst- und Gegeninduktion. (a) Funktionelle Zusammenhänge. (b) Prinzip der

Selbstinduktivität. (c) Selbstinduktivität als Bauelement: widerstandslose Zweipolleiteran-

ordnung mit selbst erzeugtem Magnetfeld ohne oder mit magnetischem Kreis. (d) Schalt-

zeichen (Strich bedeutet magnetischer Kreis). (e) Reihenschaltung von Selbstinduktivität

und Widerstand

wenn sie vom Magnetfeld durchsetzt werden. Diese wechselseitige Verkopp-

lung beider Felder beschreiben wir jetzt im Netzwerkmodell.  R¨

 aumlich  sind

diese Verkopplungen möglich als (Abb. 3.4.1a):

 Selbstinduktion:  die Stromänderung d i/ d t  induziert eine Spannung  im

 gleichen Leiterkreis; 

 Gegeninduktion:  die Stromänderung induziert eine Spannung in  benach-

 barten Leiterkreisen. Durch die magnetische Verkopplung der Leiterkrei-

se kann Gegeninduktion nie durch ein Zweipol-, sondern mindestens nur

durch ein  Zweitorelement  dargestellt werden. 

3.4.1 Selbstinduktion

In Kap. 3.2.5.1 wurde als Zusammenhang zwischen dem magnetischen Fluss

um eine Leiteranordnung und seinem erregenden Strom die Selbstindukti-

vität  L  definiert (Gl. (3.2.39)). Offen ist ihre Strom-Spannungs-Beziehung

und damit das Verhalten als  Netzwerkelement. 

3.4.1.1 Lineare Induktivit¨

at und ihre Eigenschaften

Strom-Spannungs-Relation Bisher wurde bei der Induktionswirkung nicht

nach der  Ursache der Magnetfeld¨

 anderung  gefragt. Ist es der ursächliche

Strom im  gleichen  Kreis, so spricht man von  Selbstinduktion. 
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Selbstinduktion ist die Verkettung des Stromes eines Leiterkreises mit sei-

nem Magnetfeld und dessen Rückwirkung auf ihn über das Induktionsgesetz. 

1. 

So induziert eine Stromänderung d i/ d t über die begleitende Flussände-

rung dΨ / d t  im gleichen Leiterkreis die Spannung  e i und es gilt mit der

Fluss-Stromzuordnung über die Selbstinduktivität Ψ( i) =  Li (bei linea-

rer Selbstinduktivität Gl. (3.2.39))

d i

 e i =  −  dΨ =  −L

d t

d t

als  induzierte Spannung. Sie ist auch darstellbar (Abb. 3.4.1b) durch die

induzierte Quellenspannung  u qi =  u L =  −e i als  induktiver Spannungsab-

 fall  in Richtung zu  i  an den Klemmen  A,  B  der Leiterschleife

dΨ

d ( Li)

d i

Strom-Spannungs-Relation

 u L =  u qi =

=

=  L

 . 

(3.4.1)

d t

d t

d t

der linearen Induktivität  L

2. 

Zur Stromzunahme d i/ d t  durch eine Induktivität muss ihre entgegen-

wirkende induzierte Spannung  e i überwunden werden. Das erfordert den

Spannungsabfall  u L. 

Der Spannungsabfall an der Induktivität ist proportional zur zeitlichen

Stromänderung (Strom und Spannung in Verbraucherrichtung). 

Er verschwindet bei Gleichstrom: Spulen dürfen nie an Gleichspannung be-

trieben werden, Überlastungsgefahr! 

Vertiefung Wie wirkt das Induktionsgesetz an der Strom-Spannungs-Beziehung

(3.4.1) mit? Der Leiterkreis ist über einen Widerstand  R  an die Spannungsquel-

le  u q angeschlossen (Abb. 3.4.1b). Der Strom verursacht ein magnetisches Feld, 

Stromänderungen (durch  u q( t)) induzieren dann im Leiterkreis eine Spannung  e i. 

Sie bedingt einen induzierten Strom  i ind entgegengerichtet zu  i, also gegen die Ur-

sache: bei Stromerhöhung wirkt sie dem Strom entgegen (Rolle einer Gegenspan-

nung) und bei Stromerniedrigung unterstützt sie ihn (Rolle einer Quellenspannung, 

Energiequelle). Der

Gegenstrom“  i

” 

ind wirkt der originären Feldänderung dΨ / d t

entgegen. Er erzeugt am Lastwiderstand (und damit an den Spulenklemmen) die

Spannung  u L. Die Ablauffolge Stromänderung Δ i →  Flussänderung ΔΨ  →  indu-

zierte Spannung  e i  →  induzierter Strom Δ i ind  →  Spannungsänderung Δ u L mit der Rückwirkung auf den Leiterkreis ist Inhalt der  Selbstinduktion, weil Induktions-und Durchflutungsgesetz in der gleichen Spule zusammenwirken. Dann gilt:

 e i =  −  dΨ( i) =  i( t) R − u q( t) , 

d t

oder

dΨ( i)

 u q( t) =  i( t) R − e i =  i( t) R +

d t



d ( Li)

d i 

(3.4.2)

=  i( t) R +

=  i( t) R +  L



=  u R +  u L . 

d t

d t  L=const
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Abb. 3.4.2. Netzwerkersatzschaltung der Selbstinduktivität. (a) Anordnung mit selbstin-

duzierter Quellenspannung oder (b) induktivem Spannungsabfall und Schaltelement  L. Ein

externes magnetisches Feld wird als induzierte Spannung  e ext zwischen den Hilfsklemmen

C, D erfasst

Der magnetische Fluss Ψ( i) entsteht durch den Leiterstrom  i. Ist die Induktivität

zeitlich konstant und stromunabhängig so gilt Ψ( i) =  L · i (Gl. (3.2.39)). Dann

verteilt sich die Quellenspannung  u q auf die Spannungsabfälle  u R über  R  und den

induktiven Spannungsabfall  u L über  L. Damit ist die Strom-Spannungs-Relation

der linearen Induktivität bestätigt (nichtlineare Induktivität s. Kap. 3.4.1.3). 

Die durch Stromänderung d i  induzierte Spannung  e i treibt einen induzierten

Strom im Kreis an mit der Tendenz, die Stromänderung zu schwächen, also den

Gesamtstrom zu erhalten. (Lenzsche Regel). Bei Stromerhöhung wirkt  e i dem

Strom entgegen und es wird elektrische Energie zum Aufbau des Magnetfeldes

verbraucht“. Bei Stromverringerung unterstützt  e

” 

i den Strom gleichsinnig: die

Spule gibt elektrische Energie durch Abbau des Magnetfeldes ab“. 

” 

Abbildung 3.4.1c,d zeigt Schaltzeichen (nach DIN und IEC) sowie die Strom-

Spannungs-Relation der linearen Selbstinduktivität, meist als  Induktivit¨

 at  be-

zeichnet, mit und ohne Eisenkern. Im letzten Fall ist die Anordnung nichtli-

near (s. u.). Als Netzwerkelement spricht man vom  induktiven Zweipol. 

Netzwerkersatzschaltung Abbildung 3.4.2 zeigt die Netzwerkersatzschaltun-

gen der Induktivität. Der durchweg vorhandene Leiterwiderstand wird üb-

licherweise als separater Widerstand  R  modelliert. Die Form mit  selbstin-

 duzierter  Spannung  e i drückt das Gegenwirken der Induktionsspannung auf

den Strom aus und assoziiert unmittelbar das Induktionsgesetz. Sie veran-

schaulicht das Verhalten von Generatoren und Motoren; man spricht auch

von ( induktiver)  Gegenspannung. Diese Netzwerkform wird verwendet, wenn

Vorgänge außerhalb des Stromkreises über ihren magnetischen Fluss (sog. 

 Fremdfluss, DIN 1323) einkoppeln. 

Die Form mit  induktiver Spannung (DIN 1323) oder besser  induktivem Span-

 nungsabfall (Abb. 3.4.2b) gilt für die Netzwerkanalyse. Das Induktionsgesetz

tritt  nicht explizit  zutage, wirkt allerdings drastisch beim Abschalten des

Stromes, s. u.). Die selbstinduzierte Quellenspannung kann sowohl als Span-

nungsquelle  e i oder  u qi =  −e i berücksichtigt werden. 
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Ged¨

achtniswirkung des Spulenstromes War der Kondensator  das  Speicher-

element für  elektrische Feldenergie  mit Gedächtniswirkung der Kondensator-

spannung, so ist die Induktivität das Speicherelement für  magnetische Feld-

 energie  mit Gedächtniswirkung des Spulenstromes (auf die Energiespeiche-

rung wird im Abschnitt 4.1.4 eingegangen). Das drückt sich in der Strom-

Spannungsbeziehung Gl. (3.4.1) der Induktivität aus

 t



 − 0



 t



1

1

1

 i( t) =

 u L( t)d t =

 u L( t)d t+

 u L( t)d t

 L

 L

 L

 −∞

 −∞

+0

 t



1

(3.4.3)

=  i L( − 0) +

 u L( t)d t

 L+0

Strom-Spannungs-Relation der linearen Induktivität

mit dem Anfangswert  i L( − 0) = lim  i L( t) des Spulenstromes. Analog gilt für

 t→− 0

den Induktionsfluss Ψ( i) =  L( i) i

 t



Ψ( t)



=

Ψ( − 0)

+

 u L( t)d t

 . 

(3.4.4)

Wirkung zur Zeit  t

Anfangswert

+0







Beitrag der Erregung  u L( t)

Bei erregender Spannung  u L( t) hängt der Strom  i( t) durch eine zeitunab-

hängige Induktivität  L  vom Zeitintegral der Spannung  u L ab, beginnend bei

 t =  −∞, also von der Vergangenheit (Zeitbereich  t =  −∞ . . .  0) an. Sie ist

im Anfangswert  i( − 0) gespeichert. Physikalisch drückt er die zur Zeit  t = 0

im Magnetfeld gespeicherte Energie aus. Das zukünftige Stromverhalten für

 t >  0 ergibt sich aus dem Anfangszustand  i( − 0) und dem Spannungsver-

lauf  u L( t) von diesem Zeitpunkt an. Im Anfangswert  i( − 0) symbolisiert die

 Ged¨

 achtniseigenschaft  der Induktivität (analog zum Kondensator, dort für

die Kondensatorspannung, Kap. 2.7). 

Der Strom zum Zeitpunkt  t  durch eine zeitunabhängige Induktivität ist

nur bei gegebenem Anfangswert  i( − 0) und Spannungsverlauf  u L( t) be-

stimmt. 

Der Anfangsfluss Ψ( − 0) kann dabei von einem bereits fließenden Gleichstrom

stammen oder im Eisenkreis durch Remanenz bedingt sein. 

Stetigkeit des Anfangsstromes, Ersatzschaltung Der Induktionsfluss Ψ einer

Induktivität springt aus energetischen Gründen nie (s. Gl. (3.4.4)), er verläuft

immer stetig (kann aber Knicke aufweisen):
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Stetigkeit des Induktionsflusses

Ψ(+0) = Ψ( − 0) . 

(3.4.5)

einer Selbstinduktivität

Daraus folgt bei zeitunabhängiger Induktivität mit  i(+0) =  i( − 0) die  Stetig-

 keit des Spulenstromes. 

Der Strom durch eine zeitunabhängige Induktivität ist immer stetig. Er

kann nie springen (wohl aber die Spannung!), sonst wäre eine unendlich

hohe Spannungsinduktion die Folge. 

Deshalb wirkt eine stromlose Spule im Einschaltmoment wie ein unendlich großer

Widerstand oder als Leitungsunterbrechung. Analog verhielt sich die Kondensa-

torspannung, die ebenfalls nicht springen konnte: ein Kondensator wirkt im ersten

Moment wie ein Kurzschluss. Könnte der Spulenstrom springen“, so hätte der da-

” 

mit verbundene Flusssprung“ nach dem Induktionsgesetz einen unendlich hohen

” 

Spannungsstoß während der Zeitspanne Δ t →  0 zur Folge (dieser Fall tritt bei

Stromunterbrechung in einer Spule näherungsweise auf!). 

Abbildung 3.4.3a zeigt Stromverläufe für gegebenen Spannungsverlauf  u L( t)

bei unterschiedlichem Anfangsstrom  i( − 0). Das Integral ist stets gleich, nur

die Ausgangspunkte unterscheiden sich. Mit zunehmender magnetischer

Fluss- bzw. Stromänderung steigt die Spannung. Abhängig vom Vorzeichen

der Änderung erfolgen Auf- und Abbau sowie die  Speicherung  magnetischer

Feldenergie (d i/ d t = 0, Abb. 3.4.3b, c), im letzteren Fall muss  beständig

 Strom fließen (die Permanentspeicherung durch Remanenz bzw. im Dauerma-

gneten ausgenommen) ganz im Unterschied zum elektrostatischen Feld, das

keine ständig anliegende Spannung erfordert. Dieses Verhalten wird beson-

ders bei anliegender Sinusspannung deutlich: Feldaufbau, Speicherung und

Feldabbau wiederholen sich in jeder Sinushalbwelle. 

Analog zum Kondensator (s. Abb. 2.7.3) kann auch die Strom-Spannungs-

Beziehung der Spule mit Anfangsenergie über den Knotensatz für die Strom-

komponenten (Gl. (3.4.3)) als Parallelschaltung einer energiefreien Indukti-

vität und einer Stromquelle  i( − 0) modelliert werden (Abb. 3.4.3d). 

Schließlich sind noch die Verhältnisse für einen angenommenen Stromsprung

skizziert (Abb. 3.4.3e): dann müsste die Spannung in unendlich kurzer Zeit

über alle Grenzen anwachsen, was physikalisch unmöglich ist. 

3.4.1.2 Induktivit¨

at im Stromkreis

Es gibt Spulen in unterschiedlichsten Bauformen (s. Kap. 3.2.4), meist mit

magnetischem Kreis (bzw. Eisen-, Ferritkern) für große Induktivitäten

(s. Abb. 3.4.1). 
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Abb. 3.4.3. Strom-Spannungsverhalten des Selbstinduktivität. (a) Stromverlauf und

Stromanfangswert bei gegebenem Spannungsverlauf. (b) Energiewechselspiel der Induk-

tivität. (c) dto. bei anliegender Sinusspannung. (d) Ersatzschaltung der Induktivität

mit Anfangsstrom  i(0). (e) Stetigkeit des Stromes: ein Stromsprung ist physikalisch un-

möglich

Abb. 3.4.4. Zusammenschaltung von Induktivitäten. (a) Reihen-, (b) Parallelschaltung. 

Voraussetzung: keine Ohmschen Widerstände, keine magnetischen Kopplungen

Die Induktivität ist die Haupteigenschaft des Bauelementes Spule. Neben

dieser

gewollten“ Induktivität hat jeder stromführende Leiter eine phy-

” 

sikalisch bedingte

Leiterinduktivität“ (so, wie zwischen zwei spannungs-

” 

führenden Leitern eine Leiterkapazität“ herrscht). Sie ist oft Ursache von

” 

Störeffekten, z. B. auf Leiterplatinen. 

Technische Spulen haben zusätzlich Wicklungsverluste. Sie werden vereinfacht als

konzentrierter Widerstand  R  modelliert mit der Ersatzschaltung nach Abb. 3.4.1e. 
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Zusammenschaltungen von Induktivit¨

aten Wir stellen die Bildungsgesetze

der Ersatzinduktivität bei Reihen- und Parallelschaltung von Einzelindukti-

vitäten zusammen (keine magnetische Kopplung37, Ohmsche Widerstände). 

1. 

 Reihenschaltung.  Alle Teilinduktivitäten  Lν  werden vom gleichen Strom

 i  durchflossen. Deshalb gilt nach dem Maschensatz (Abb. 3.4.4a)

 n



 n



d i

d i

 n



 u AB =  u ges =

 uν =

 Lν

=  L ers

 , → L ers =

 L

d t

d t

 ν . (3.4.6)

 ν=1

 ν=1

 ν=1

Bei der Reihenschaltung von  n magnetisch nicht verkoppelten  Induk-

tivitäten ist die Gesamtinduktivität die Summe der Einzelinduktivi-

täten. 

Physikalisch basiert das Ergebnis auf der Addition der vom gleichen

Strom an den verschiedenen Orten (der Induktivitäten) erzeugten  Teil-

 fl¨

 usse

 n



 n



Ψges =

Ψ ν =

 Lνi =  L ers i. 

 ν=1

 ν=1

2. 

 Parallelschaltung. Hier liegt an allen Induktivitäten gleiche Spannung

und es addieren sich die Teilströme (Knotensatz) (auch für die Zeitdiffe-

renziale)

d i

 n



 n



 n



 n



ges

d

d i

 u

 u

1

=

 i

 ν =

=

 →  1 =

 . (3.4.7)

d t

d t

 ν =

d t

 L

 L

 L

 L

 ν=1

 ν=1

 ν=1

 ν

ges

ers

 ν=1

 ν

Für gleiche Spannung  u  und der Strom-Spannungs-Relation (Gl. (3.4.1))

der Einzelinduktivitäten entsteht das rechte Ergebnis (Abb. 3.4.4b). 

Bei der Parallelschaltung von  n magnetisch nicht verkoppelten Induk-

 tivit¨

 aten  ist die reziproke Gesamtinduktivität gleich der Summe der

reziproken Einzelinduktivitäten. 

Dann dominiert die kleinste Induktivität die Gesamtinduktivität. 

 Hinweis:  Gl. (3.4.7) ist  nicht anwendbar auf reale Spulen mit Leitungswiderst¨

 anden, 

denn die Widerstände der Einzelspulen können nicht zu einem gemeinsamen Wi-

derstand zusammengefasst werden. 

Induktivit¨

at im Grundstromkreis Das Verhalten der Induktivität zeigt sich

im Grundstromkreis Abb. 3.4.5 am besten. Es können sowohl der  i( t)- als

37 Sie ist bei räumlich benachbarten Spulen nie auszuschließen, vgl. dann Kap. 3.2.5. 
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auch der  u( t)-Verlauf vorgegeben sein. Für  gegebenen Stromverlauf i( t) und

zeitunabhängige lineare Induktivität gilt (s. Abb. 3.4.5a)

d i( t)

d i( t)

 u( t) =  u R( t) +  u L( t) =  i( t) R +  L

 → u q( t) =  i( t)+  τ L

 . (3.4.8)

d t

 R

d t

Bei  dreieckf¨

 ormiger  Stromfunktion verursacht die  stromdifferenzierende Wir-

 kung  der Induktivität eine impulsförmig verlaufende Spulenspannung. Die

Spannung am Widerstand verläuft stromproportional und die Gesamtspan-

nung  u  entsteht durch Addition der Teilspannungen (Abb. 3.4.5b). 

Bei  gegebenem Spannungsverlauf u q( t) (Abb. 3.4.5c) ist der Strom  i( t) nicht unmittelbar zu ermitteln, denn er hängt auch von der Ableitung d i/ d t  ab. 

Gleichungen dieses Typs heißen  Differenzialgleichung. Sie ergab sich bereits

für die Kondensatorspannung (Gl. (2.7.14 ff.)) und wurde dort diskutiert. 

Deshalb genügt hier ein anschauliches Bild. 

Die Spannung  u q( t) =  u( t) soll sprunghaft ansteigen ( Einschalten einer

 Gleichspannung, Abb. 3.4.5c). Da sich der  Strom nicht sprunghaft ¨

 andern

kann und  i(0) = 0 gilt, folgt für  t = 0:  u(0) = 0 +  L(d i/ d t) und damit



d i 

 u(0)

 U q

=

=

 . 

d t  t=0

 L

 L

Im Einschaltmoment bestimmen Quellenspannung  U q und Induktivität  L

den Stromanstieg. 

Mit steigendem Strom wächst  u R =  iR  und zwangsläufig sinkt die Spulen-

spannung  u L  ∼  d i/ d t. Deshalb steigt der Strom zwar weiter, aber immer lang-

samer bis auf  i =  U q /R  für  t → ∞: horizontaler Verlauf der Stromkurve. Die

genaue Rechnung liefert als Lösung der Differenzialgleichung (Abb. 3.4.5d)

(durch Einsetzen in Gl. (3.4.8) nachweisen)





 U q

 −t

 i( t) =

1  −  exp

(3.4.9a)

 R

 τ L

mit

 L

 τ L =

 . 

Zeitkonstante des  RL-Kreises (3.4.9b)

 R

Charakteristisch für das Verhalten einer Induktivität im Grundstromkreis

ist die Zeitkonstante  τ L. Sie bestimmt im Zeitbereich  t  τ L weitgehend

das Gesamtverhalten. 

Im Lösungsverlauf hat der Strom für  t = 0 .  7 τ L wegen exp( − 0 ,  7)  ≈  0 ,  5 etwa die Hälfte seines Endwertes  U q /R  erreicht, nach weiteren 0 ,  7 τ L zusätzlich die

Hälfte des Restes (also (1 / 2 + 1 / 4) U q /R = 3 / 4 U q /R) usw. Deshalb heißt
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Abb. 3.4.5. Strom- und Spannungsverlauf der Reihenschaltung von Widerstand und Spule. 

(a) Einprägung eines dreieckförmigen Stromes, Zeitverlauf der Teilspannung  u R. (b) Drei-

eckförmige Gesamtspannung  u( t) mit sprungförmigen Änderungen. (c) Einschalten einer

Gleichspannung mit Widerstand und Induktivität. (d) Zeitverlauf von Strom  i( t) und Span-

nung  u L( t)

 t H  ≈  0 ,  7 τ L auch  Halbwertszeit  des Vorganges. Nach  t ≈ (3  . . .  5) τ L ist der Ausgleichsvorgang praktisch abgeklungen. 

Der allmähliche Stromanstieg ist die Folge des  u,  i-Verhaltens der Spule, sie

verleiht dem Strom Trägheitscharakter“. 

” 

Die Spannung  u L

d i( t)

 −t

 u L( t) =  L

=  U q exp

(3.4.9c)

d t

 τ L

beginnt mit  u L(+0) =  U q und sinkt mit wachsendem Spannungsabfall  iR  ab:

 u L( t) =  U q  − i( t) R. 

Ausschaltvorgang Wird eine stromdurchflossene Spule durch Umlegen des

Schalters (Abb. 3.4.5c) abgeschaltet und so der Stromkreis  abrupt ge¨

 offnet, 

so sollte man im Abschaltmoment d i/ d t → ∞  erwarten und damit  u L  → ∞. 

Das ist physikalisch unmöglich (Strom immer stetig, kann aus physikalischen

Gründen nach Gl. (3.4.5) nie springen!). Tatsächlich versucht der Strom wei-

terzufließen, er hat auch hier Trägheitscharakter“.  Die Spulenspannung u

” 

L

( ∼ induzierte Spannung e i) und damit auch die Spannung über dem offenen
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Abb. 3.4.6. Ausschaltvorgang im Grundstromkreis mit Widerstand und Induktivität. 

(a) Schaltung. (b) Zeitverläufe von Strom und Spannung. (c) Schaltung mit Freilauf-

diode D. (d) Bei Stromunterbrechung entsteht eine hohe Spannungsspitze über dem Schal-

ter; eine parallele Diode erlaubt Stromfluss

Schalter stellt sich vielmehr so ein, dass der Strom durch mögliche Neben-

wege (Schalter, Spule, Kapazität) kontinuierlich weiterfließen und allmählich

abnehmen kann. Beim Erzwingen einer hohen Stromänderung (z. B. Öffnen

des Schalters) entsteht eine hohe induzierte Spannung zwischen den Schal-

terkontakten, die zum Durchschlag der Luftstrecke (Funken) führen kann

und so einen weiteren, allmählich abnehmenden Stromfluss gewährleistet. 

Während die induzierte Spannung  e i beim Einschalten dem Strom entgegen-

wirkt (Abb. 3.4.2a), versucht sie seine Aufrechterhaltung beim Abschalten. 

Im Standardfall währt dieser unterbrochene Stromkreiszustand beim Umle-

gen des Schalters von Stellung Ein“ nach Aus“ (Abb. 3.4.6a) nur kurzzeitig, 

” 

” 

vielmehr wird der Stromkreis in der Schalterstellung Aus“ wieder geschlos-

” 

sen. Dann ist die Reihenschaltung von  R  und  L  kurzgeschlossen und es gilt

d i( t)

0 =  u R( t) +  u L( t) =  i( t) R +  L

(3.4.10)

d t

mit der Lösung

 −t

 i( t) =  i(+0) exp  τ L
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und daraus

d i( t)

 −t

 −t

 u L( t) =  L

=  − i(+0) exp

=  −U q exp

 . 

(3.4.11)

d t

 τ L

 τ L

 τ L

Dabei ist berücksichtigt, dass vor Beginn des Abschaltens der Gleichstrom

 i( − 0) =  i(+0) =  U q /R  durch die Spule geflossen ist. Abbildung 3.4.6b

zeigt die zugehörigen Strom- und Spannungsverläufe: der Strom hat die Ten-

denz zur Aufrechterhaltung (Trägheit) und klingt dabei ab, die Spannung  u L

springt auf den Wert  −U q und sinkt dann betragsmäßig ab. 

Spannungsspitzen über dem Schalter beim Abschalten einer gleichstrom-

durchflossenen Spule sind ein Charakteristikum des induktiven Grund-

stromkreises. 

Sie äußern sich durch:

Schaltfunken (Durchschlag) an mechanischen Schaltern, 

hohe elektrische Belastung (Spannungsdurchschlag) von Transistorschal-

tern, weil die in der Spule gespeicherte magnetische Energie voll in elek-

trische Energie an der Schaltstrecke umgesetzt wird. 

Abhilfe schaffen:

die Parallelschaltung einer Diode D (3.4.6c) zur Spule. Beim Einschalten

ist sie sperrgepolt und führt praktisch keinen Strom. Im Abschaltmoment

belastet die induzierte Spulenspannung die Diode in Flussrichtung und die

gesamte magnetische Energie wird über sie in Verlustenergie umgesetzt. 

Deswegen heißt sie  L¨

 osch-  oder  Freilaufdiode. 

die Parallelschaltung eines Kondensators zur Schaltstrecke, der die mag-

netische Energie der Spule übernimmt. Unter der Annahme, dass die in

der Spule gespeicherte Energie voll auf den Kondensator übergeht, lässt



sich die Kondensatoranfangsspannung ermitteln:  u C(0) =  i(0)  L/C. Ein

Widerstand in Reihe zu  C  begrenzt den Kondensatorstrom bei erneuter

Kontaktschliessung und verhindert einen Schaltfunken. 

Abschaltvorgänge treten häufig auf, weil viele Geräte Spulen enthalten: Re-

lais, Elektromagneten, Motoren, Transformatoren, Schaltnetzteile. Erschwe-

rend kommt hinzu, dass sich während eines Abschaltvorganges, wie beim

Elektromagneten, der magnetische Kreis und damit die Induktivität ändern

kann. 

Aus den vielfältigen Anwendungen des Schaltvorganges mit induktivem Stromkreis

greifen wir den sog.  Gleichspannungswandler  heraus, der eine gegebene Gleichspan-

nung in eine andere unterschiedlicher Größe wandelt unter Nutzung der Induktivität
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Abb. 3.4.7. Gleichstromsteller mit periodischem Schalter S. (a) Schaltung. (b) Zeitverläufe

der Spannungen und Ströme im eingeschwungenen Zustand

als Energiespeicher (Abb. 3.4.7). Der Schalter S ist ein schaltbares Halbleiterbau-

element, das über ein Steuersignal während der Zeiten  t e,  t a ein- und ausgeschaltet

werden kann. 

Im eingeschalteten Zustand  t e ist die Ausgangsspannung  u R gleich der Eingangs-

spannung  U q und der Strom  i  steigt linear an. An der Induktivität liegt die Dif-

ferenzspannung  u L =  u R  − ¯

 u R =  L d i R / d t. Bei abgeschaltetem Schalter ( t a) fließt

der Ausgangsstrom weiter und die (jetzt flussgepolte) Diode begrenzt ihn auf  i D, er

fällt dabei annähernd zeitlinear ab. Dann beträgt der Mittelwert der Gleichspan-

nung ¯

 u R =  U q t e /( t e +  t a) und kann durch Änderung der Schaltzeiten beeinflusst werden. Die im Bild dargestellten Zeitverläufe beziehen sich auf den Zeitbereich lange nach dem Anschalten des Gleichspannungswandlers, wenn Ausgleichsvorgänge

abgeklungen sind. Nach diesem Prinzip (und anderen) arbeiten zahlreiche Gleich-

spannungswandler (mit besserem Wirkungsgrad als Ohmsche Spannungsteiler), vor

allem auch zur Spannungserhöhung. 

3.4.1.3 Allgemeine induktive Zweipole, Spule als Netzwerkelement

Ein induktiver Zweipol hat ein Fluss-Strom-, (Ψ,  i)-Verhalten, bestimmt

durch die Speicherung magnetischer Feldenergie. Er ist das Netzwerkmo-

dell für die Verbindung von Stromkreis und Magnetfeld. 

Es gibt zeitunabhängige und zeitabhängige, lineare und nichtlineare induk-

tive Zweipole. Die Verhältnisse der Induktivität mit hysteresefreiem  B,  H-

Zusammenhang entsprechen denen des kapazitiven Zweipols (Tab. 2.9) bei

Vertauschung folgender Größen

Ladung  Q

 ⇔  Fluss Ψ

Strom

 ⇔  Spannung

Kapazität  C ⇔  Induktivität  L  Spannung  ⇔  Strom. 
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Damit lassen sich sinngemäß die gleichen Netzwerkelemente definieren wie

bei der Kapazität. Aus technischer Sicht kommen vor:

der  lineare, zeitunabh¨

 angige  Zweipol (Luftspule, mit Ferrit- und Eisenkern

bei erheblichem Luftspalt und vernachlässigbarer Nichtlinearität); 

der  nichtlineare, zeitunabh¨

 angige  induktive Zweipol als Spule mit Eisen-

kern bei großer Aussteuerung; 

der  nichtlinear zeitabh¨

 angige  induktive Zweipol mit zeitveränderlichem

Luftspalt (Elektromagnet, Relais); 

Realisierungen von Induktivitäten durch elektronische Schaltungen. 

Zeitabh¨

angiger linearer induktiver Zweipol Hängt die Induktivität von einer

unabhängigen Steuergröße ab, so liegt eine unabhängig gesteuerte lineare

Induktivität vor. Steuerparameter kann auch die Zeit  t  sein:  L( t). Zur Fluss-

beziehung Ψ( t) = Ψ( i( t) , t) gehört dann die Strom-Spannungs-Beziehung

dΨ( i, t)

d ( L · i)

 u( t) =

=

d t

d t

Linear, zeitabhängige (3.4.12)

d i

d L( t)

Induktivität

=  L( t)

+  i( t)

 . 

d t

d t

Umgekehrt folgt bei vorgegebener Spannung ( L( t) darf nicht unter dem In-

tegral stehen)



Ψ( t)

1

 i( t) =

=

 u( t)d t + const . 

(3.4.13)

 L( t)

 L( t)

Zeitveränderliche lineare Induktivitäten werden realisiert:

durch zeitliche Änderung der Leiterschleifenform, mechanische Variation

eines Luftspaltes im magnetischen Kreis als induktiver Wegeaufnehmer, 

oder induktive Geber verschiedenster Art; 

als dynamisches Mikrofon, bei dem eine Tauchspule durch auftreffende

Schallwellen unterschiedlich tief ins Magnetfeld eintaucht u. a. m. 

Zeitabh¨

angiger nichtlinearer induktiver Zweipol Dieser Fall beruht auf der

Flussabhängigkeit Ψ( i( t) , t) und führt zur Strom-Spannungs-Beziehung

dΨ( i( t) , t)

 ∂Ψ( i( t) , t)

 ∂Ψ( i( t) , t)

 u( t) =

=

 ·  d i +

d t

 ∂i

d t

 ∂t

oder mit Ψ =  Li  und  L =  L( i( t) , t)
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Abb. 3.4.8. Nichtlineare Induktivität. (a) Nichtlineare Flusskennlinie eines Eisenkreises

ohne und mit Luftspalt. (b) Nichtlineare Induktivität im Grundstromkreis. (c) Hysterese-

schleife, Spule mit Eisenkern bei eingeprägtem Strom mit abgeleitetem Fluss- und Span-

nungsverlauf





d i( t)

d L( i( t) , t)

 ∂L

d i( t)

 ∂L

 u( t) =  L( i( t) , t)

+  i( t)

=

 L +  i( t)

+  i( t)

d t

d t

 ∂i

d t

 ∂t

d i

 ∂L

=

 ld( i)

+

 i

 . 

(3.4.14)

d t



 ∂t



Kleinsignalanteil

Bewegungsanteil

Dabei wurde

d i

d L

d L

 ∂L

 ∂L

 u =  L

+  i

mit

=

 ·  d i +

d t

d t

d t

 ∂i

d t

 ∂t

verwendet. In Gl. (3.4.14) stammt der erste Anteil von der  Kleinsignalindukti-

 vit¨

 at, der zweite von der Formänderung der Induktivität etwa durch bewegte

Leiterteile. 

Induktivitäten mit ferromagnetischem Kreis (die sog.  Eisendrosseln) arbeiten durch

die nichtlineare Ψ( i)-Kennlinie in größerem Strombereich nichtlinear (Abb. 3.4.8a). 

Die differenzielle Induktivität ergibt sich als Steigung der Ψ( i)-Kennlinie. So ändert

beispielsweise die Gleichstromvormagnetisierung des Eisenkerns die dynamische In-

duktivität beträchtlich. Ein Luftspalt linearisiert allerdings die Ψ( i)-Kennlinie. Bei

Spulen ohne Vormagnetisierung (wie z. B. in Filtern) tritt nur die Kleinsignalin-

duktivität auf. 

Nichtlineare Induktivitäten werden umfangreich eingesetzt: in Schaltnetzteilen, als

Drosselspule zur Siebung von Gleichspannungen in Gleichrichterschaltungen, in

Elektromagneten (dort ändert sich die Induktivität durch die stromabhängige An-

kerstellung) und überhaupt in Elektromaschinen wegen der großen Stromdurch-

steuerung bis in die Eisensättigung. 

3.4

Verkopplung elektrischer und magnetischer Größen

367

Der Einbezug nichtlinearer Induktivitäten in die Netzwerkanalyse ist schwierig und

läuft auf numerische bzw. rechnergestützte Verfahren (auch Simulationsmethoden)

hinaus. Das Hauptproblem bildet die Modellierung der nichtlinearen Ψ( i)-Kennlinie

entweder durch Wertepaare (mit Approximationsansätzen) oder eine analytische

Darstellung. Typische Ansätze für die bilaterale, zeitinvariante und nichtlineare

(hysteresefreie) Induktivität sind

 i(Ψ) =  I 0 sinh(Ψ /Ψ0) (a) bzw . Ψ( i) = Ψ0 tanh( i/I 0) (b)  . 

Die Werte  I 0, Ψ0 gehören etwa zum Sättigungseintritt. Während die Funktion tanh

(nachteilig) für große Argumente gegen 1 strebt, steigt die Funktion sinh noch wei-

ter, wie es dem Verhalten der Eisenspule im Sättigungsbereich entspricht. Eine an

der Spule liegende harmonische Spannung  u q( t) = ˆ

 U q cos( ωt) verursacht dann si-

nusförmigen Flussverlauf. Für kleine Aussteuerung kann die Funktion sinh etwa

durch eine Gerade ersetzt werden und der Strom verläuft ebenfalls sinusförmig. 

Bei großer Aussteuerung verzerrt die Nichtlinearität den Strom. Das gilt umge-

kehrt auch bei sinusförmig eingeprägtem Strom und der Flussnäherung nach Gl.(b)

(Abb. 3.4.8b, a rechter Teil). Jetzt ist der Flussverlauf zwar sinusförmig, aber im

Bereich der Sättigung zusammengedrückt“ mit der Folge eines verzerrten Span-

” 

nungsverlaufs mit starker 3. Harmonischer. 

Grundsätzlich kann statt der Flussnäherung (b) auch die Umkehrfunktion gebildet

und eine Reihenentwicklung durchgeführt werden (das entspricht den Anfangsglie-

dern der Reihenentwicklung Gl.(a)). Als Ergebnis entsteht im Strom eine 3. Har-

monische bei Sinusspannungssteuerung. 

Ist die Flusskennlinie analytisch nicht darstellbar, so verschafft eine graphische

Lösung Einblick. Als Beispiel dient die Eisenspule mit Hystereseverhalten und ein-

geprägtem Dreieckstrom (Abb. 3.4.8c). Durch Spiegelung der Stromwerte an der

Hysteresekurve entsteht der Flussverlauf Ψ( t). Daraus lässt sich der Spannungs-

verlauf  u L( t) punktweise gewinnen: man greift einen Zeitpunkt  t  aus Ψ( t) heraus, 

bildet die Ableitung und hat damit  u L. Die Aufgabe wird mit dem (stets vorhan-

denen) Spulenwiderstand (Abb. 3.4.8b) analytisch unlösbar. Dann kommen rech-

nergestützte Verfahren oder Simulationswerkzeuge wie etwa SPICE zum Einsatz. 

Eine weitere Problemgruppe sind  zeitabh¨

 angige nichtlineare  Induktivitäten: Spulen

mit zeitlich variablem Eisenkern (meist durch Luftspaltänderung). Dazu gehören

neben Elektromagneten die rotierend oder translatorisch bewegten elektrischen Ma-

schinen, aber auch viele Sensorprinzipien. 

Die Verallgemeinerungen des Induktivitätsbegriffs gelten sinngemäß auch für die

Gegeninduktivität: deshalb gibt es zeitabhängige und nichtlineare Gegenindukti-

vitäten. So ist beispielsweise die Gegeninduktivität zwischen einer rotierenden Spule

im Magnetfeld einer größeren Luftspule (Beispiel 3.2.19) linear zeitabhängig ( M ( t)). 

Ganz entsprechend haben zwei durch einen magnetischen Kreis verkoppelte Spulen

eine zeitabhängige Gegeninduktivität, wenn sein magnetischer Widerstand zeitlich

etwa durch periodische Luftspaltänderung variiert. Eine nichtlineare Gegeninduk-

tivität liegt durch die Magnetisierungskennlinie des koppelnden Eisenkreises vor. 

Abhängig vom Strom ändert sich dann die Kopplung (und damit  M ) bis hin zu

einem deutlich kleineren Wert, wenn das Eisen in die Sättigung gerät. 
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Abb. 3.4.9. Bezugsrichtungen für Strom und Spannung bei gleich- und gegensinnig ge-

koppelten Spulen. (a) Gleichsinnige Kopplung, Flussaddition. (b) dto. bei gegensinniger

Kopplung, Flusssubtraktion. (c) Gleichsinnig gekoppelte Spulen im Transformatorbetrieb

3.4.2 Gegeninduktion

Strom-Spannungs-Beziehung Durch  Gegeninduktion  induziert der Strom ei-

nes Leiterkreises in benachbarten,  nicht galvanisch, aber magnetisch gekop-

 pelten  Leiterkreisen Ströme und umgekehrt (s. Kap. 3.2.5.2). Für zwei mag-

netisch gekoppelte Leiterkreise (Spulen) hängt dann der Gesamtfluss durch

die Leiterschleife 1 vom eigenen Strom und dem in der Nachbarschleife 2 ab

Ψ1 = Ψ1( i 1 , i 2), analoges gilt für Ψ2( i 1 , i 2) (Abb. 3.4.9, s. auch Abb. 3.2.19)

mit der jeweiligen Flussunterteilung auf beide Spulen und Überlagerung nach

Gl. (3.2.47). 

Für die Strom-Spannungs-Beziehung greifen wir auf das Induktionsgesetz in

Form des Spannungsabfalls Gl. (3.4.1) für jede Spule zurück: wir legen zwei

Spannungsquellen  u q1 =  u 1,  u q2 =  u 2 so an, dass die dort bezüglich der

Strom-Fluss-Richtungen eingetragenen Ströme erhalten bleiben (Abb. 3.4.9a)

(ideale, widerstandslose Spulen vorausgesetzt). Dann gilt (bei gleichsinniger

Stromrichtung, d. h.  Addition der Spulenfl¨

 usse  in jeder Spule) mit der  Fluss-

 kennlinie  Gl. (3.2.47) Ψ

38

1 = Ψ11( i 1) + Ψ12( i 2) und analog für Ψ2

bei bei-

derseitiger Verbraucherzählpfeilrichtung

38 Dabei ist vorausgesetzt, dass Flussänderungen nur durch Stromänderungen entste-

hen, nicht etwa durch Kopplungsvariation, Kernbewegung oder Luftspaltänderung. 
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dΨ1( i 1 , i 2)

d i 1( t)

d i 2( t)

 u 1( t)  ≡ u qi1 =

=  L 1

+  M

d t

d t

d t

dΨ2( i 1 , i 2)

d i 1( t)

d i 2( t)

 u

(3.4.15a)

2( t)  ≡ u qi2 =

=  M

+  L 2

 . 

d t

d t

d t

Strom-Spannungs-Relation gekoppelter linearer Spulen

Die Gegeninduktivität  M  ist positiv. 

Die in einer Spule 1 induzierte Spannung hängt ab von der Stromänderung

d i 1 des Stromes durch die gleiche Spule über ihre Selbstinduktivität und der

Stromänderung d i 2 in einer benachbarten, magnetisch verketteten Spule 2

über die Gegeninduktion (und umgekehrt). 

Die beiden Spulen können über- oder nebeneinander liegen, wichtig ist der

jeweilige Bezugssinn. Während bei Stromrichtungsvorgabe einer Schleife ihr

zugehöriger Fluss festliegt (Ψ11 rechtswendig mit  i 1 und Ψ22 rechtswendig mit

 i 2 verknüpft), ist der Fluss durch die andere bezüglich der Orientierung frei

wählbar. Deshalb war  Flussaddition  oder  -subtraktion  möglich (Abb. 3.2.20). 

Umkehr des Bezugssinnes hat Vorzeichenumkehr der zugehörigen Größe zur

Folge. Flusssubtraktion entsteht z. B. durch  Umkehr des Windungssinns  der

zweiten (Spule, Drehung um die Längsachse Abb. 3.4.9b). Dann ergibt das

Induktionsgesetz

d (Ψ11  − Ψ12)

d i 1( t)

d i 2( t)

 u 1( t) =

=  L 1

 − M

d t

d t

d t

(3.4.15b)

d (Ψ22  − Ψ21)

d i 2( t)

d i 1( t)

 u 2( t) =

=  L 2

 − M

d t

d t

d t

veränderte Vorzeichen in den Koppelgliedern:

Umkehr des Windungssinns der Sekundärspule ändert die sekundärseitige

Strom- und Spannungsrichtung. Die zugehörigen Strom-Spannungs-Bezie-

hungen stimmen mit dem Ausgangssystem Gl. (3.4.15a) überein, wenn das

Vorzeichen der Gegeninduktivität vertauscht wird. 

Bei Addition der magnetischen Flüsse addieren sich die zugehörigen indu-

zierten Spannungen der Selbstinduktivität und Gegeninduktivität, bei Sub-

traktion wirkt die Differenz zwischen Selbst- und Gegeninduktionsspannung. 

Bezüglich der sekundärseitigen Strom-Spannungs-Richtung gibt es noch den

Fall, dass (bei gleichem Windungssinn) der  Lastwiderstand eine sekund¨

 ar-

 seitige Stromumkehr erzwingt (Abb. 3.4.9c). Diesen sog.  Transformatorfall

betrachten wir später. 

Abbildung 3.4.10 zeigt Netzwerkersatzschaltungen zur Modellierung der Ge-

geninduktivität  M . Sie kann nach Gl (3.4.15a) realisiert werden als Netzwerk

aus den Elementen  L 1,  L 2 und  M , einem Schaltzeichen oder den Elementen
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Abb. 3.4.10. Ersatzschaltungen magnetisch gekoppelter Spulen. (a) Netzwerkersatzschal-

tung, gleichsinnige Kopplung, rechts als freie graphische Darstellung. (b) Netzwerkersatz-

schaltung mit stromgesteuerten Spannungsquellen (VPS). (c) wie (b), jedoch mit ausgangs-

seitiger Erzeugerpfeilrichtung (EPS). (d) Primärseitige Form mit eingekoppelter Spannung

durch externe Flussänderung

 L 1,  L 2 und  stromgesteuerten Spannungsquellen: die gegeninduktiven Span-

nungen entstehen jeweils durch vom Strom im anderen Stromkreis gesteuerte

Spannungsquellen (Quelle als Spannungsabfall). Zu Gl. (3.4.15b) gehört die

Netzwerkersatzschaltung Abb. 3.4.10c mit umgekehrten Richtungen der ge-

steuerten Spannungen. Gleichwertig lässt sich die induzierte Spannung auch

als Koppelfluss des zweiten Stromkreises modellieren, das ist bei Einkopp-

lungsproblemen vorteilhaft (s. Abb. 3.4.10d). 

Weil zwei magnetisch gekoppelte lineare Spulen stets ein umkehrbares Zwei-

tor bilden, gibt es weitere Formen zur Darstellung ihres Strom-Spannungs-

Verhaltens mit zugehörigen Ersatzschaltungen (s. Bd. 1, Kap 2.6.2). 

Technische Spulen haben immer Wicklungswiderstände. Sie werden durch

die konzentrierten Elemente  R 1 und  R 2 (in Abb. 3.4.10a angedeutet) be-

rücksichtigt. Wir ergänzen sie in Verbindung mit Gl. (3.4.15a) durch die

Spannungsabfälle  i 1 R 1 und  i 2 R 2:  u 1 =  i 1 R 1 +  u qi1,  u 2 =  i 2 R 2 +  u qi2. 

Bemerkung Die allgemeine Strom-Spannungs-Relation muss auch die explizite

Zeitabhängigkeit des Flusses beachten, z. B. durch geometrische Kopplungsände-

rungen: Ψ1 = Ψ1( i 1( t) , i 2( t) , t) (zweiter Fluss analog). Dann beträgt die eingangsseitig induzierte Quellenspannung  u qi1

dΨ1

 ∂Ψ1 d i 1

 ∂Ψ1 d i 2

 ∂Ψ1

 u qi1 =

=

+

+

 . 

(3.4.16)

d t

 ∂i 1 d t

 ∂i 2 d t

 ∂t

Der letzte Term betrifft Flussänderungen, die nicht von Strömen stammen: Geome-

trieänderung, Änderung des magnetischen Widerstandes u. a. Er ist für Sensoranwen-

dungen wichtig, verschwindet aber bei festen Leiteranordnungen. Die übrigen Terme

gehen bei linearem Fluss-Strom-Zusammenhang in die Koeffizienten  L,  M über. 

Punktkonvention Eine perspektivische Darstellung beider Spulen lässt  glei-

 chen subWindungssinn  erkennen (Abb. 3.4.11a): die Verbindung des oberen
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Abb. 3.4.11. Formen gekoppelter Spulen. (a) Gleichsinnige Wicklungen mit magnetischem

Kreis. (b) Zugehörige verbreitete Transformatorausführung und Ersatzschaltbild. (c) wie

(a) mit gegensinnigen Wicklungen. (d) Zugehörige Transformatorausführung und Ersatz-

schaltbild. (e) Bezugspfeile an gekoppelten Spulen und Wicklungssinn (positive Gegenin-

duktivität) (f) dto. für negative Gegeninduktivität

Spulenendes mit dem Anfang der unteren Spule ergibt eine neue Spule mit

gleichem Windungssinn, bei gegenläufigem Wicklungssinn der zweiten Spule

sind die Verhältnisse komplizierter. Weil die Flussüberlagerung sowohl vom

Windungssinn als auch der Stromrichtung abhängt, ist es für den praktischen

Umgang mit gekoppelten Spulen einfacher, Windungsanfang (oder -ende)

durch einen Punkt im Schaltbild zu markieren und das Strom-Spannungs-

und Koppelverhalten bezüglich der Stromrichtung zum Punkt als  Punktkon-

 vention (Kap. 3.2.5.2, Abb. 3.2.20) festzulegen:

Fließen beide Ströme zu den Punkten hin (oder weg), so haben die Flüsse

durch beide Spulen bei gleichem Windungssinn gleiche Richtung (Fluss-

addition,  L,  M >  0) und die selbst- und gegeninduzierten Spannungen

wirken additiv (gleiche Richtung). 
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Fließen beide Ströme zu den Punkten gegenläufig (einer zu, der ande-

re weg), so liegt (bei gleichem Windungssinn) Flusssubtraktion ( L >  0, 

 M <  0) vor und die Spannungen wirken subtraktiv. 

Das ist Grundlage der Gl. (3.4.15): Spannungsabfall vom Markierungspunkt

aus gesehen antragen, dann addieren bzw. subtrahieren sich die Gegeninduk-

tionsterme zur Klemmenspannung. 

Abbildung 3.4.11a, c zeigt gleich- bzw. gegensinnig gekoppelte Spulen mit

gleichem und unterschiedlichem Wicklungssinn und ihre verbreitete Transfor-

matoranordnung sowie die Schaltbilder (Abb. 3.4.11b, d). Abbildung 3.4.11e, f

fasst den Einfluss der Richtung und des Wicklungssinns (rechts- und links-

wendig) bezüglich des Vorzeichens von  M  zusammen, die zugehörigen Schalt-

zeichen enthält Abb. 3.4.11b, d. Die jeweiligen Strom-Spannungs-Beziehungen

sind durch Gl. (3.4.15ab) gegeben. Dabei gilt zusätzlich:

Ändert man die Strom-Spannungsrichtungen nur einer Spule, so ändert sich

das Vorzeichen des  M -Termes (bei sonst gleichem Wicklungssinn). 

Obwohl wir uns auf zwei gekoppelte Spule beschränken, ist das Punktsystem auch

auf mehrere gekoppelte Spulen erweiterbar. Zur Kennzeichnung der Kopplung be-

troffener Spulen werden  Kopplungspfeile  zwischen ihnen eingeführt, bei zwei Spulen

können sie entfallen (oder zur Hervorhebung der Kopplung dienen). 

Probleme bereitet beim Umgang mit gekoppelten Spulen oft die  Punktfeststellung:

Während der primärseitige Punkt unstrittig ist (z. B. Spulenanfang), wird se-

kundärseitig der Wicklungsanschluss mit einem Punkt markiert, zu dem der Strom

 i 2 positiv hinfließen müsste, damit Flussaddition eintritt (und Gl. (3.4.15a) gilt). 

Eine weitere Möglichkeit bietet Gl. (3.4.15a) unmittelbar: erfährt Spule 1 (am

Punkt) eine Stromerhöhung (Einschalten einer Gleichspannung  u 1), so entsteht in

Spule 2 ein Spannungsstoß: ein Spannungsmesser zeigt einen positiven Ausschlag

 u 2, wenn sein +-Pol am Punkt liegt. 

Schließlich kann man beide Spulen in Reihe schalten und einen Wechselstrom ein-

prägen. Die Gesamtinduktivität  L ges des Ersatzzweipols (Spannungsabfall zwischen

seinen Klemmen) ist nach Gl. (3.4.19) am kleinsten bei gegensinniger Flusskopp-

lung, m. a. W. sind beide Anschlusspunkte zugleich Wicklungsanfänge (bzw. -enden)

und erhalten die Punkte. 

Verbraucher-Erzeugerpfeilsystem Aus praktischen Gründen wählt man oft für

Spule 1 das Verbraucher-, für Spule 2 das  Erzeugerpfeilsystem (Abb. 3.4.9c)

mit umgekehrter Stromrichtung  i 2. Diese (natürliche) Stromrichtung wird

durch einen Lastwiderstand  R ( u 2 =  Ri 2) immer erzwungen. Als Folge ver-

tauschen sich die Vorzeichen  aller  mit  i 2 behafteter Terme in Gl. (3.4.15a) und

für Abb. 3.4.9a gilt unter Hinzunahme der Ohmschen Leitungswiderstände

 R 1,  R 2:
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Abb. 3.4.12. Ersatzinduktivität  L ers zusammengeschalteter gekoppelter Einzelindukti-

vitäten. (a) Reihenschaltung, gleichsinnige Kopplung. (b) Reihenschaltung, gegensinnige

Kopplung. (c) Parallelschaltung, gleichsinnige Kopplung. (d) Parallelschaltung, gegensin-

nige Kopplung

d i 1

d i 2

 u 1 =  L 1

 − M

+  i 1 R 1 Seite 1, Verbraucherseite

d t

d t

d i 1

d i 2

(3.4.17)

 u 2 =  M

 − L 2

 − i 2 R 2 Seite 2, Erzeugerseite . 

d t

d t

Transformatorgleichung

Das ist die Beschreibungsform des  Transformators (Name!, Kap. 3.4.3). 

Anwendungen und Beispiele Bei gekoppelten Spulen unterscheidet man die

Gegeninduktivität:

durch  ungewollte Verkopplung  benachbarter Spulen; 

mit  ver¨

 anderbarer Kopplung (Spulen relativ zueinander dreh- und/oder

schwenkbar), oft als  Variometer  bezeichnet; 

mit  fester Kopplung, meist über einen Eisenweg: den  Transformator. 

Die Gegeninduktivität beeinflusst auch die Reihen- und Parallelschaltung

zweier Spulen  L 1 und  L 2, deshalb müssen die Beziehungen zur Zusammen-

schaltung Gln. (3.4.6, 3.4.7) erweitert werden. 

Reihenschaltung Zwei (oder mehr) reihengeschaltete Induktivitäten sind stets

über ihr Magnetfeld verkoppelt. Je nach Schaltung addieren oder subtrahie-

ren sich die Teilflüsse in den Einzelinduktivitäten. Bei Zusammenschaltung
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mit  gleichem Wickelsinn (Abb. 3.4.12a) gilt Flussaddition (gleiche Richtung

der Teilflüsse, Ψ = Ψ1 + Ψ2), daran erkenntlich, dass der Strom auf den

Punkt zufließt und der Spannungsabfall dort ansetzt. Der Gesamtfluss be-

trägt nach Gl. (3.2.47) Ψges =  L 1 i 1 + 2 M i 1 +  L 2 i 1 (wegen  i 1 =  i 2 =  i), gleichwertig kann auch über Gl. (3.4.15a) die Gesamtspannung und daraus

die Gesamtinduktivität ermittelt werden:

d i

d i

d i

d i

d i

 u =  u 1 +  u 2 =  L 1

+  M

+  L 2

+  M

=  L ges

(3.4.18)

d t

d t

d t

d t

d t

mit  L ges =  L 1 +2 M + L 2. Bei  entgegengesetztem Wickelsinn  subtrahieren sich

die Teilflüsse Ψ1 und Ψ2 wegen  i =  i 1 =  −i 2 und  u =  u 1  − u 2 (Abb. 3.4.12b) dΨges

dΨ1

d i

 u =

=

 −  dΨ2 =  L ges

(3.4.19)

d t

d t

d t

d t

mit  L ges = Ψges =  L

 i

1  −  2 M +  L 2. Mit den Spulenflüssen Ψ1 =  L 1 i 1 +  M i 2 =

( L 1  − M )  i, Ψ2 =  L 2 i 2 +  M i 1 = ( M − L 2)  i  folgt schließlich die Gesamtinduktivität. Abhängig vom Wicklungssinn (Vorzeichen von  M ) ist die Gesam-

tinduktivität größer oder kleiner als die Summe der Einzelinduktivitäten:

 √

 L ges =  L 1 +  L 2  ±  2 M =  L 1 +  L 2  ±  2 k L 1 L 2 . 

(3.4.20)

Induktivität reihengeschalteter gekoppelter Spulen

Positives Vorzeichen gleicher, negatives entgegengesetzter Wicklungssinn. Gleiche

Induktivitäten  L 1 =  L 2 =  L  und  k =  ± 1 ergeben eine Gesamtinduktivität zwischen L max = 4 L ( k = +1) und  L min = 0, bei fester Kopplung  |k| = 1 beträgt sie

 √

 √ 
2

 L ges =

 L 1  ±

 L 2 . Mit den Einzelinduktivitäten  L 1 =  w 21 A L,  L 2 =  w 22 A L und

 √

 M =

 L 1 L 2 =  w 1 w 2 A L hat die Gesamtinduktivität bei fortlaufender Wicklung

 w =  w 1 +  w 2 die Induktivität  L ges = ( w 1 +  w 2)2 A L =  w 2ges A L. 

Reihengeschaltete Induktivitäten haben bei fester Kopplung eine Gesamtin-

duktivität, die sich als Summe der Teilwindungen der Einzelinduktivitäten

nach der Bemessungsformel Gl. (3.2.41) ergibt. 

Bei einer Kopplung  k =  − 1 spricht man von  bifilarer Wicklung. Das ist im Prinzip

eine Doppelleitung mit Stromhin- und -rückfluss und verschwindendem äußeren

Magnetfeld. Sie dient zur Herstellung induktionsarmer Widerstände. 

Verallgemeinerung Die Erweiterung auf  n  reihengeschaltete Spulen ist einfach: hat

Spule  kl  die Teilspannung

 n



 n

d i



 u

 l

 k =

 Lkl

 , k = 1  . . . n  mit  u =

 u

d t

 k, 

 il =  i, l = 1  . . . n, 

 l=1

 k=1

so ergibt sich die Gesamtinduktivität (bei gleichsinniger Kopplung) zu

 n

  n



 L =

 Lkl. 

(3.4.21a)

 k=1  l=1
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Zur besseren Übersicht schreiben wir die Ausgangsbeziehung in Matrixform

⎛

⎞

⎛

⎞

⎛

⎞

 u 1

 L 11  L 12  · · · L 1 n

 i 1

⎜

⎜  u ⎟

⎜

⎟

⎜

⎟

2

 L 21  L 22  · · · L 2 n

 i 2

⎜

⎟

⎜

⎟  ·  d ⎜ ⎟

⎝ . ⎟

⎜

⎟

⎜

⎟

. 

. 

. 

. 

. 

. 

. ⎠ = ⎝

.. 

.. 

. . 

.. ⎠ d t ⎝ .. ⎠  . 

(3.4.21b)

 un

 Ln 1  Ln 2  · · · Lnn

 in

Die Induktivitätsmatrix enthält in der Hauptdiagonalen die Selbstinduktivitäten, 

die übrigen Elemente sind Gegeninduktivitäten (mit  Lik =  Lki  im linearen Fall). 

Sie verschwinden bei fehlender magnetischer Kopplung und erhalten negative Vor-

zeichen bei gegensinniger Kopplung. Für zwei gekoppelte Induktivitäten wird  L 12 =

 L 21 =  M . 

Parallelschaltung Hier bestimmen gleiche Spannungen ( u =  u 1 =  u 2) und

der Knotensatz ( i =  i 1 +  i 2) das Gesamtverhalten (Abb. 3.4.12c). Aus Gl. 

(3.4.15a) folgt aufgelöst nach den Ableitungen der Ströme für gleichsinnige

Kopplung

d i 1

 M u 2  − L 2 u 1

d i 2

 M u 1  − L 1 u 2

=

 , 

=

 . 

d t

 M  2  − L 1 L 2

d t

 M  2  − L 1 L 2

Die Ersatzinduktivität ergibt sich über die gesamte Stromänderung

d i

d i 1

d i 2

( M − L 2)  u 1  − ( M − L 1)  u 2

 u

=

+

=

=

d t

d t

d t

 M  2  − L 1 L 2

 L ers

zu

 L 1 L 2  − M  2

 L 1 L 2(1  − k 2)

 L ers =

=

 √

 . 

 L 1 +  L 2  ∓  2 M

 L 1 +  L 2  ∓  2 k L 1 L 2

(3.4.22a)

Induktivität parallel geschalteter Einzelinduktivitäten

Auch sie unterscheidet sich von kopplungsfrei parallel geschalteten Indukti-

vitäten Gl. (3.4.7) mit den Grenzfällen:

gleicher Wickelsinn  k >  0, speziell bei gleicher Induktivität ( L 1 =  L 2 =

 L):  L ers = (1 +  k) L/2. Die Induktivität schwankt zwischen  L/ 2 ( k = 0) und  L ( k = 1) (totale Kopplung). 

entgegengesetzter Wicklungssinn ( k <  0). Gleiche Induktivitäten ergeben

 L ers = (1  − k) L/ 2, also eine kleinere Induktivität bis zu  L ers = 0 (feste

Kopplung,  k =  − 1). 

Spulen mit veränderlicher Kopplung haben je nach Schaltung eine verän-

derbare Induktivität zwischen  L min und  L max. Ihre große Verbreitung

zur Anfangszeit des Rundfunks ist Vergangenheit, da sich veränderbare

Induktivitäten heute durch beweglichen Kern oder elektronisch einfacher

erzeugen lassen. 
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Die Parallelschaltung  gegensinnig gekoppelter  Induktivitäten (Abb. 3.4.12d)

erfolgt nach gleichem Schema, im Ergebnis Gl. (3.4.22a) ändert sich nur das

Vorzeichen im Nenner des  M -Termes. 

Die Ergebnisse setzen widerstandslose Spulen voraus, bei Einbezug der Verlustwi-

derstände sind keine allgemeinen Lösungen möglich. 

Werden  n  ideale gekoppelte Spulen parallelgeschaltet, so berechnet man zunächst

die einzelnen Stromänderungen

 n

 n

d i





 k

d i

d i

=

 A

=

 k , u

d t

 klul, k = 1  . . . n  und d t

d t

 l =  u, 

 l = 1  . . . n, (3.4.22b)

 l=1

 k=1

addiert sie (vorzeichenabhängig je nach gleich- oder gegengerichteten Flüssen) und

erhält so die Ersatzinduktivität der Parallelschaltung

 n

 n

1

 

=

 A

 L

 kl. 

(3.4.22c)

 k=1  l=1

Die auftretenden Faktoren  Akl  sind die zur inversen Matrix von  Lkl  gehörenden

Elemente, denn in Gl. (3.4.22b) wird das lineare Gleichungssystem Gl. (3.4.21b)

invertiert. Damit diese Inversion möglich ist, bleibt ideale Kopplung ausgeschlossen. 

3.4.3 Transformator

Wirkprinzip Zwei (oder mehrere) magnetisch fest gekoppelte Spulen um einen

magnetischen Kreis heißen als Bauelement  Transformator. Seine Grundlage

ist die Ruheinduktion, weshalb diese Induktionsart auch  transformatorische

 Induktion  genannt wird. Der Transformator hat breite Anwendungsgebiete:

in der  Energietechnik  als Umspanner, Leistungs- oder Netztransformator zur

Spannungsunter- oder -übersetzung kleiner bis größter Leistungen.  Ziel: guter

 Umsatzwirkungsgrad der Leistungs¨

 ubersetzung; 

in der  Informations-  und  Messtechnik  als  ¨

 Ubertrager  oder  Wandler  zur Wi-

derstandstransformation bzw. Spannungs- oder Stromübersetzung. Ziel: gute

Transformationseigenschaften über großen Frequenzbereich; 

im  Hochfrequenzbereich  finden  HF-Transformatoren  vielfältige Anwendungen; 

als  Impuls¨

 ubertrager  in Schaltnetzteilen zur formgetreuen Transformation von

Impulsspannungen. Ziel: gute Übertragung der Impulsform. 

Wenn sich auch die Anforderungen stark unterscheiden, so nutzen alle Trans-

formatoren das gleiche Wirkprinzip.  Sie verarbeiten nur zeitver¨

 anderliche

 Gr¨

 oßen (Zerstörung bei Gleichstrom durch thermische Überlastung) und sind

deshalb ein  Bauelement  der  Wechselstromtechnik. In Bd. 3 wird es mit sei-

nen spezifischen Merkmalen genauer behandelt. Hier betrachten wir seine

grundsätzlichen Eigenschaften. 

Feste magnetische Kopplung entsteht durch räumlich enge Anordnung beider

Spulen, die sog.  Prim¨

 ar-  und  Sekund¨

 arwicklungen  auf einem gemeinsamen
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Abb. 3.4.13. Transformator. (a) Prinzip und Aufbau. (b) Schema des Energieflusses. 

(c) Schaltzeichen nach EN 60617 (Wegfall der Punkte bei allgemeinem Transformator, An-

gabe der Transformatorgrößen bedarfsweise). (d) Ersatzschaltung des magnetischen Kreises

hochpermeablen magnetischen Kreis, dem Eisenkern, (Abb. 3.4.13a). Des-

halb ist der Transformator als Netzwerkelement ein  Zweitor, mit mehreren

Sekundärwicklung oder Anzapfungen auch ein  Mehrtor. Über Jahrzehnte war

er das wichtigste Bauelement der Nachrichtentechnik. 

Seine Ausführungsformen unterscheiden sich u. a. in der Kernform (Ziel: hoch-

permeabler Kern, hohe Sättigungsinduktion, geringe Kernverluste durch Wirbel-

ströme und Hysterese) und dem magnetischen Material selbst. Statt einfacher Ker-

ne Abb. 3.4.13a werden durchweg Ring-, Schnitt- und Schenkelkerne (EE-, EI-, 

M-Kerne mit Wicklung auf dem Mittelschenkel) verwendet (s. Abb. 3.2.22). 

Basierend auf den Eigenschaften magnetisch fest gekoppelter Spulen ist der

Transformator ein Bauelement, das elektrische Energie aus einem Primär-

kreis über das Magnetfeld in elektrische Energie im Sekundärkreis überträgt

und dabei die Höhe der Ströme/Spannungen wandelt ( transformiert“). Sei-

” 

ne Grundlagen sind das Zusammenwirken des Durchflutungssatzes (im mag-

netischen Kreis), des Induktionsgesetzes (Ruheinduktion) und des Energie-

erhaltungssatzes. 

Vom Funktionsprinzip her tritt zur Strom-Spannungs-Beziehung gekoppel-

ter Spulen (Gl. (3.4.15a)) bzw. der Transformatorgleichung (3.4.17) noch als

 Zusatzbedingung  die  Verkn¨

 upfung von Strom i 2  und Spannung u 2  im Sekun-

 d¨

 arkreis ¨

 uber das Lastelement  hinzu, etwa ein Ohmscher Widerstand ( i 2 =

 u 2 /R).  Weil es die Stromrichtung i 2  und damit die Transformatorgleichungen

 erzwingt (Abb. 3.4.9c),  gilt zwangsl¨

 aufig prim¨

 arseitig das Verbraucher- und

 sekund¨

 arseitig das Erzeugerbezugssystem. 

Das unterstreicht die  Grundfunktion  des Transformators:  prim¨

 arseitig zu-

 gef¨

 uhrte elektrische Energie wird in magnetische ¨

 uberf¨

 uhrt (Durchflutungs-
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 satz) und diese sekund¨

 arseitig (Induktionsgesetz) als elektrische Energie an

 das Lastelement abgegeben (Abb. 3.4.13b).  Ein magnetischer Kreis, der ferro-

magnetische Kern, koppelt beide Spulen möglichst eng. Zum Verständnis der

Grundeigenschaften wählen wir folgende  Modellierungsstufen:

idealer Transformator, 

streuungsfreier oder streubehafteter, verlustloser Transformator. Verluste

treten hauptsächlich im Wechselstrombetrieb auf (s. Bd. 3). 

Idealer Transformator Abbildung 3.4.13a zeigt den Aufbau eines Transfor-

mators mit gleichsinnig gewickelten Spulen und magnetischem Kreis. Gemäß

Punktkonvention wählen wir zunächst die symmetrische Stromrichtung (Se-

kundärstrom  i  auf Punkt orientiert 3.4.13c)39. Dann gilt Gl. (3.4.15a) mit

2

 i 2  → i . In der Transformatorgleichung (3.4.17) fließt dann der Sekund

2

är-

strom durch Ersatz  i 2 =  −i 2 vom Punkt weg. 

Setzt man für den idealen Transformator das  Energieerhaltungsprinzip  an

(also weder elektrische noch magnetische Gesamtverluste), so folgt

 i 2

 p =  p 1 +  p =

= 0  →

=

= const

2

 u 1 i 1 +  u 2 i 2

 p 1 =  u 1 i 1 =  p 2 =  u 2 i 2  → u 1

 u 2

 i 1

und mit  p =  −

2

 p 2 das  konstante ¨

 Ubersetzungsverh¨

 altnis der Spannungen und

 Str¨

 ome (s. u.) als  Merkmal. Die Energieerhaltung begründet gleichzeitig die

ausgangsseitige Erzeugerpfeilrichtung  i 2 =  −i 2, und damit die bei der Induk-

tion erwähnte  Lenzsche Regel:  Eingangsstromzunahme bewirkt Flusszunahme, 

 induzierter Strom i 2  so gerichtet, dass Flussabnahme entsteht (Abb. 3.4.9c) . 

Der  ideale Transformator  benötigt einen unverzweigten magnetischen Grund-

kreis (s. Abb. 3.4.13a). Für ihn leiten sich  drei Forderungen  ab:

vernachlässigbare Wicklungswiderstände, keine anderen Verluste (Magne-

tisierungsverluste), 

vollständige magnetische Kopplung, keine Streuung. Dann tritt magne-

tischer Fluss nur im magnetischen Kreis auf und der von der Primärspule

erzeugte Fluss durchsetzt voll die Sekundärspule, 

verschwindender magnetischer Widerstand ( R m = 0, d. h. unendlich hohe

Permittivität des magnetischen Materials)40. 

Diese Forderungen sind physikalisch nicht realisierbare Grenzfälle, deshalb

kann die Erklärung eines idealen Transformators nicht über die physikalischen

39 Die Stromrichtung  i 2 dient in diesem Abschnitt zum besseren Verständnis. 

40 Damit sind die Eigeninduktivitäten  L 1,  L 2 unendlich groß, ebenso die Gegeninduk-

tivität. 
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Transformatorgesetze erfolgen. Die Herleitung seiner Eigenschaften wird an-

schaulicher, untersucht man zunächst das  quasiideale Verhalten  mit  endli-

 chem Widerstand  des magnetischen Kreises. Dann sind Selbst- ( L 1,  L 2) und

Gegeninduktivität ( M ) definiert und es gelten die Transformatorgleichungen

(3.4.17). Der ideale Transformator folgt daraus durch Grenzbetrachtungen. 

Versteht man den Transformator als abgeschlossenes System, so verschwindet

seine Gesamtleistung:

d W m( t) +  p 1( t) +  p

d t

2( t) = 0 . 

Deshalb muss neben der elektrischen Leistungsforderung auch die magnetische

Energieänderung d W m = ΘdΦ(Θ) gegen Null gehen. Da das Induktionsgesetz

eine Flussänderung ΔΦ  
= 0  erfordert (sonst kein Transformatorprinzip), muss

 die (Gesamt)-Durchflutung Θ verschwinden, praktisch also Θ  ≈  0 gelten. Der

Aufbau eines Flusses Φ = Θ /R m bei verschwindender magnetischer Durchflu-

tung erfordert aber einen magnetisch gut leitenden Kreis ( R m  →  0). 

Werden die Ströme  i 1 und  i symmetrisch

2

eingeprägt, so addieren sich im

magnetischen Kreis die Teildurchflutungen Θ1 =  i 1 w 1 und Θ2 =  i 2 w 2 zur

Gesamtdurchflutung (Abb. 3.4.13d)

Θ =  i 1 w 1 +  i 2 w 2 =  i 1 w 1  − i 2 w 2 = Θ1  − Θ2 . 

(3.4.23)

Die Durchflutungen Θ1 und Θ2 sind dabei Umsatzstellen elektrischer in mag-

netische Energie (und umgekehrt). 

Der vom Primärstrom  i 1 angetriebene magnetische Fluss induziert in der

Sekundärwicklung die Spannung  e i2. Sie treibt den Strom  i 2 durch die Last, 

der nach der Lenzschen Regel seiner Ursache entgegenwirkt (s. Abb. 3.4.9c). 

Er erzeugt deshalb Gegenamperewindungen“ Θ

” 

2 =  i 2 w 2 und gibt so (über

das Induktionsgesetz) magnetische Energie wieder als elektrische ab:

Primärseite

dΦ

dΦ

Sekundärseite

 u 1 i 1

 → Θ1

 → Θ2

 →

 u 2 i 2

 . 

d t

d t

magnetischer Kreis

Auf diese Weise erfolgt die Wandlung elektrische Primärenergie  →  magne-

tische Energie  →  elektrische Sekundärenergie und  der magnetische Kreis

 regelt das Zusammenspiel zwischen aufgenommener Prim¨

 arenergie und se-

 kund¨

 arseitig abgegebener elektrischer Energie.  Dieses Grundverhalten begrün-

det  vier Haupteigenschaften  des Transformators:

 1. Spannungs¨

 ubersetzung  Der magnetische Fluss ist in der Primär- und Se-

kundärwicklung mit den Flüssen Ψ1 =  w 1Φ und Ψ2 =  w 2Φ verkettet. Nach

dem Induktionsgesetz entstehen in den Wicklungen die Klemmenspannungen

dΨ1

dΦm

dΨ2

dΦm

 u 1 =

=  w 1

 , 

 u 2 =

=  w 2

 . 

d t

d t

d t

d t
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Daraus folgt die  Spannungs¨

 ubersetzung

 u 1

 w 1

=

=  ¨

 u. 

Spannungsübersetzung (3.4.24a)

 u 2

 w 2

Primär- und Sekundärspannung des idealen Transformators verhalten sich

in jedem Zeitpunkt (lastunabhängig) wie die Windungszahlen. Ihr Verhält-

nis heißt (Spannungs-)  ¨

 Ubersetzungsverh¨

 altnis ¨

 u  des idealen Übertragers, 

seine charakteristische Kenngröße. 

Mitunter wird dieses Übersetzungsverhältnis durch die Betriebsspannungen

angegeben (z. B.  ¨

 u = 230 V/24 V) oder (bei Übertragern) als gekürztes Verhält-

nis, z. B.  ¨

 u = 8 : 1. Abweichungen vom Windungszahlverhältnis zeigen nich-

tideale Transformatoren, dann gibt man  ¨

 u  als Spannungsverhältnis an. 

 2. Strom¨

 ubersetzung.  Die Transformationswirkung beruht auf dem Grundver-

halten des magnetischen Kreises Gl. (3.4.23); bei verschwindendem magne-

tischen Widerstand  R m ( →  0) würde bereits eine gegen null gehende magne-

tische Erregung Θ zur Stromübersetzung ausreichen:

Θ = 0 =  i 1 w 1 +  i 2 w 2  → i 1 w 1 =  −i 2 w 2 =  i 2 w 2

(gleichsinnig gewickelte Spulen). Da jeweils nur das  Produkt  von Strom und

Windungszahl  w  festliegt, kann es beliebig auf beide Faktoren verteilt werden:

 −i 1

 i 1

 w 2

1

=

=

=

 . 

Stromübersetzungsverhältnis (3.4.24b)

 i 2

 i 2

 w 1

 ¨

 u

In jedem Zeitpunkt verhalten sich Primär- und Sekundärstrom umgekehrt

wie das (konstruktiv festliegende) Windungszahlverhältnis. 

Das Ergebnis gilt für Flussaddition (gleichsinnige Kopplung, Ausgangsstrom  i 2), 

bei gegensinniger Kopplung (Flusssubtraktion, Ausgangsstrom  i 2) entfällt das Mi-

nuszeichen. Zur Transformatorgleichung gehört positive Stromübersetzung. 

Der magnetische Spannungsabfall Φ R m am  realen  Transformator verursacht

eine unerwünschte  Flussschw¨

 achung. Man erstrebt daher

Φ R m   Θ =  i 1 w 1 +  i 2 w 2 =  i 1 w 1  − i 2 w 2 , (3.4.25)

also  kleinen magnetischen Widerstand R m (hochpermeables Eisen, geringer

Luftspalt, großer Eisenquerschnitt) an. 

 3. Leistungen  Die Produktbildung der Gln. (3.4.24a, b) führt auf

 ¨

 u · u 2 ( −i

 p

2)

1 =  u 1 i 1 =

=  −u 2 i

 ¨

 u

2 =  u 2 i 2 =  p 2 . 

(3.4.26)

Leistungsübersetzung
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Der ideale Transformator überträgt elektrische Leistung verlustlos aus ei-

nem Stromkreis in einen anderen ohne galvanische Kopplung. 

Er arbeitet damit  nichtenergetisch, denn er verbraucht weder Energie  noch

 kann er Energie speichern. Deshalb nimmt er zu keinem Zeitpunkt Netto-

energie auf, sondern wirkt nur als  Energiedurchgangsstelle (Abb. 3.4.13b). 

Alle Eigenschaften sind  frequenzunabh¨

 angig. 

Am realen Transformator treten Verluste auf: Kupferverluste ( R 1,  R 2), Verluste

durch Ummagnetisierung des Eisenkernes, Wirbelstromverluste, Streuung. Deshalb

beträgt der praktische Wirkungsgrad  η =  p 2 /p 1 nur etwa 0 ,  95  . . .  0 ,  98. Dabei wachsen die Transformatorabmessungen mit steigender Leistung. Verluste erwärmen den

Transformator im Betrieb. 

Nach der Transformatorgleichung (3.4.17) hat sekundärseitiger Leerlauf  i 2 = 0

zwangsläufig  i 1 = 0 zur Folge. Am realen Transformator mit nicht verschwindendem

magnetischen Widerstand ( R m  
= 0) fließt in diesem Fall noch ein Leerlaufstrom

 i ie w 1  ≈ Φ R m = Θges, der hauptsächlich von der Hysterese des Eisenkerns stammt. 

 4. Widerstandstransformation  Ist sekundärseitig ein Lastwiderstand  R L an-

geschlossen, so gilt für den Eingangswiderstand  R e auf der Primärseite

 u 1

 ¨

 u · u 2  · ü

 R e =

=

=  ¨

 u 2  u 2

=  ¨

 u 2 R L . 

 i 1

( −i 2)

( −i 2)

(3.4.27)

Widerstandstransformation

Der ideale Transformator übersetzt Widerstände im Quadrat des Windungs-

zahlverhältnisses. 

Diese Eigenschaft dient zur Anpassung von Lastwiderständen an Quellen in

der Informationstechnik. Sie gilt auch für sekundärseitige angeschlossene In-

duktivitäten oder Kapazitäten. Primärseitig wird dann wirksam:  u 1 =  üu 2 =

 ¨

 uL(d i 2 / d t) =  ü 2 L(d i 1 / d t),  L =  ü 2 L, für  C  sinngemäß  C =  C/ü 2. 

 Zusammengefasst  hat der ideale Transformator folgende Eigenschaften:

Verlust- und streufreier, magnetischer Kreis von unendlich hoher Permeabi-

lität (verschwindender magnetischer Widerstand  R m). Damit sind die Eigen-

induktivitäten  L 1,  L 2 der Primär- und Sekundärwicklungen sowie die Gegen-

induktivität unendlich groß. Sein  einziger Kennwert  ist das Übersetzungsver-

hältnis  ¨

 u =  w 1 /w 2 der Windungszahlen, es bestimmt seine Hauptmerkmale

 u 1

 i 1

 i 1

 R e

 w 1

=  ±ü, 

=

=  ∓  1  , 

=  ¨

 u 2 , 

 p 1 =  p 2 , ü =

 . (3.4.28)

 u 2

 i

 −

2

 i 2

 ¨

 u

 R L

 w 2

Dabei gilt das positive (negative) Vorzeichen für gleichsinnige (gegensinnige)

Wicklungen. 
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Abb. 3.4.14. Idealer Transformator. (a) Schaltsymbol für gleich- und gegensinnige Kopp-

lung. (b) Gleichwertige Ersatzschaltungen durch gesteuerte Quellen. (c) Umrechnung der

Sekundärlast auf die Primärseite

Abb. 3.4.15. Ersatzschaltungen des verlustlosen Transformators. (a) T-Ersatzschaltung

mit stromgesteuerter Spannungsquelle. (b) Gleichwertige Π-Ersatzschaltung. (c) Galva-

nische Trennung beider Stromkreise durch zwischengeschalteten idealen Transformator

(aus- oder eingangsseitig). (d) Ersatzschaltung wie (c) mit einbezogenem Übersetzungs-

verhältnis. In der reduzierten Ersatzschaltung ist der ideale Transformator eliminiert

Der ideale Übertrager wird durch zwei algebraische Gleichungen mit einem

Kennwert  ¨

 u  gekennzeichnet. 

(Ein Paar gekoppelter Spulen erfordert zwei Differenzialgleichungen mit den

drei Parametern  L 1,  L 2 und  M !). Der ideale Übertrager ist ein  resistives

 Schaltelement, also  ohne Energiespeicherfunktion  und eignet sich auch für

Gleichgrößen. Dieser Grenzfall wird durch die physikalischen Transformator-

gesetze nicht erklärt und die Modellierung als Netzwerkelement erfolgt besser

mit  gesteuerten Quellen (Abb. 3.4.14b). Der wirkliche Transformator erfor-

dert stets eine endliche magnetische Erregung, wenn Induktion und damit

Spannungsübersetzung wirken soll. Dann  muss  in der Ersatzschaltung  we-

 nigstens ein induktives Schaltelement  auftreten. 
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Schaltsymbol Der ideale Übertrager dient als Netzwerkelement für Anpassungs-

und Entkopplungszwecke und hat deswegen ein  eigenes Schaltsymbol  aus  symboli-

 sierten Spulen (Striche im Unterschied zu Rechtecken für Spulen, Abb. 3.4.14a mit

Punkten für den Wicklungssinn). Die Striche sollen die bloße Übersetzungsfunktion

des idealen Transformators andeuten, denn er selbst hat keinen Widerstand“. Das

” 

Übersetzungsverhältnis  ¨

 u  steht unter dem Kernsymbol. Als  Netzwerkersatzschal-

 tung  eignet sich die Form mit gesteuerten Quellen (Bild 3.4.14b), nämlich der span-

nungsgesteuerten Spannungs- und stromgesteuerten Stromquelle besser. 

Abbildung 3.4.14c zeigt den idealen Transformator, hier im Grundstromkreis ver-

wendet. Weil sich der sekundäre Lastwiderstand  R L nach Gl. (3.4.28) auf die

Primärseite übersetzt, kann der ideale Übertrager aus dem Stromkreis entfernt

(Verlust der galvanischen Kreistrennung) und statt seiner Eingangsseite der Wi-

derstand  ¨

 u 2 R L eingefügt werden. 

Reduzierter Transformator Der normale Transformator hat gegenüber dem

idealen einen  endlichen magnetischen Widerstand R m und so endliche Induk-

tivitäten  L 1,  L 2 und definierte Gegeninduktivität  M . Damit gilt Gl. (3.4.15a)

bzw. die Transformatorgleichung (3.4.17). Zunächst werden die Spannungs-

und Stromübersetzungen überprüft. Die  Spannungs¨

 ubersetzung (gleichsinnige

Wicklung) beträgt bei ausgangsseitigem Leerlauf ( i 2 = 0)
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(3.4.29a)
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Sie stimmt  nur bei fester Kopplung ( k = 1) mit der Übersetzung des idealen

Transformators überein (die Induktivitäten stehen über Gl. (3.2.41) mit der

Windungszahl in Beziehung). 

Die  Strom¨

 ubersetzung  ergibt sich bei ausgangsseitigem Kurzschluss ( u 2 = 0)

zu





d i



1

d t

 L 2 

=  − L 2  → i 1 =  − L 2 =  −



=  − w 2  . 

(3.4.29b)

d i 2

 M

 i



2

 M

 L 1

 w 1

d t

 k=1

Sie gilt umso besser, je näher der Transformator am Kurzschluss arbeitet. 

Der Ausgangsgleichung (3.4.15a) zweier gekoppelter Spulen lässt sich (durch

Erweiterung) ein  Ersatzschaltbild  zuordnen. Wird der Term  M  d i 1 / d t  in der ersten Zeile ergänzt und wieder abgezogen (zweite Zeile analog), so folgt

die  klassische T-Ersatzschaltung (Abb. 3.4.15a) zunächst für symmetrische

Stromrichtungen





d i 1

d i

d i 1

d i 1

d i

 u

2

2

1 =  L 1

+  M

= ( L 1  − M )

+  M

+

d t

d t

d t

d t

d t





(3.4.30a)

d i 1

d i

d i

d i 1

d i

 u

2

2

2

2 =  M

+  L 2

= ( L 2  − M )

+  M

+

 . 

d t

d t

d t

d t

d t
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Die erste Zeile beschreibt die Teilspannungen über den Elementen  L 1  −

 M  und  M,  die zweite die entsprechenden Spannungsabfälle ausgangsseitig. 

Obwohl die  T -Ersatzschaltung das Klemmenverhalten des Transformators

gleichwertig wiedergibt ( Äquivalenzbedingung), hat sie einen völlig anderen

physikalischen Inhalt: die magnetische Kopplung ist dadurch verschwunden, 

dass die drei Spulen ( L 1  − M ,  L 2  − M  und  M ) als Schaltelemente nicht

mehr magnetisch verkoppelt sind:  zwei magnetisch gekoppelte Spulen lassen

 sich durch drei unverkoppelte Elemente ersetzen. Die Darstellung gilt auch

bei Ersatz des Stromes  i 2 durch  −i 2 (Richtungsvertauschung, Übergang zur

Transformatorgleichung (3.4.17)). Auf die gleiche Weise kann die invertierte

Strom-Spannungs-Beziehung aus Gl. (3.4.17) durch eine Π-Ersatzschaltung

(Abb. 3.4.15b) interpretiert werden, die aber kaum benutzt wird. 

In der  T -Ersatzschaltung Abb. 3.4.15a lässt sich die gesteuerte Spannungs-

quelle im Querzweig durch die Gegeninduktivität  M  ersetzen (Abb. 3.4.15c), 

sie verdeutlicht die magnetische Kopplung beider Stromkreise. Zwangsläufig

wird eine der Ersatzinduktivitäten  L 1  − M  oder  L 2  − M  für  ¨

 u 
= 0 ne-

gativ und damit physikalisch nicht unmittelbar realisierbar, auch fehlt die

Stromdifferenz  i 1  − i 2 in der Ausgangsschaltung. Wirklichkeitsfremd ist fer-

ner die galvanische Verbindung beider Stromkreise, die ein Transformator

gerade vermeidet. Diese Einschränkung kann durch Nach- oder Vorschalten

(Kettenschaltung!) eines idealen Transformators beseitigt werden. 

 T - und Π-Ersatzschaltung erlauben durch vor- bzw. nachgeschaltete idea-

le Übertrager insgesamt vier Transformatorgrundersatzschaltungen, dabei

dominiert die  T -Form mit nachgeschaltetem Übertrager (Abb. 3.4.15d). 

Am Eingang des idealen Übertragers treten die  reduzierten Sekund¨

 argr¨

 oßen

 u∗ =

=

2

 ¨

 uu 2 und  i∗ 2

 i 2 /ü  auf (Verwendung der Erzeugerpfeilrichtung). Die rest-

liche  T -Ersatzschaltung mit den Ausgangsgrößen  u∗ 2 und  i∗ 2 heißt  reduzierte

 T -Ersatzschaltung.  Ihre Elemente werden über die Transformatorgleichung

(3.4.17) (bzw. (3.4.30a) mit  i 2 =  −i 2) bestimmt: man ersetzt in Abb. 3.4.15a

 i 2,  u 2 durch  i∗ 2 und  u∗ 2 sowie  M  und  L 2 durch  M ∗ (=  üM ) und  L∗ 2 (=  ü 2 L 2). 

Das Ergebnis lautet

d i 1

d ( i 1  − i 2 /ü)

 u 1

= ( L 1  − üM )

+  ¨

 uM

d t

d t

d i 1

d( i 1  − i∗

=  L

2)

1 σ

+  L 1h

d t

d t

(3.4.30b)

d( i 2 /ü)

d( i 1  − i 2 /ü)

 ¨

 uu 2 =  −( ü 2 L 2  − üM )

+  ¨

 uM

d t

d t

d i∗

d( i 1  − i∗)

=  L

2

2

2 σ

+  L 1h

 . 

d t

d t
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Diese Beziehung ergibt wieder die Ausgangsform, wenn sie ausmultipliziert, 

nach Strömen geordnet und die zweite Gleichung durch  ¨

 u  dividiert wird. 

Dann bestätigen sich auch die Ergebnisse für  M ∗  und  L∗. In Gl. (3.4.30b)

2

und Abb. 3.4.15d treten auf:

die primäre und sekundäre  Streuinduktivit¨

 at

 L 1 σ =  L 1  − üM, 

 L 2 σ =  L 2  − M/ü, 

(3.4.31)

letztere wird auf die Primärseite umgerechnet:  L 2 σ =  ü 2 L 2 σ =  ü 2 L 2 −üM; die primäre Hauptinduktivität  L 1h =  üM . Die sekundäre Hauptinduktivität  L 2h =  M/ü  wird umgerechnet und steht in Gl. (3.4.30b) als Haupt-

induktivität  L =

2h

 ¨

 u 2 L 2h =  üM . Sie ist mit der primären Hauptinduk-

tivität  L 1h identisch, wird also in der Ersatzschaltung durch das gleiche

Schaltelement repräsentiert. In der reduzierten Ersatzschaltung sind die

Elemente eingetragen. 

Die reduzierte Ersatzschaltung bietet Verständnisvorteile: sie drückt die Ab-

weichungen des Transformators vom idealen Verhalten (durch Streuindukti-

vitäten und Querinduktivität (Hauptinduktivität)) aus, später werden noch

Verlustwiderstände einbezogen. Ferner haben ihre Elemente etwa die gleiche

Größenordnung. 

In der Kettenschaltung von Induktivitätszweitor und idealem Übertrager

besorgt letzterer die Transformation von Strom und Spannung und das In-

duktivitätszweitor modelliert die Abweichungen des realen Transformators

vom idealen. 

Obwohl die Ersatzschaltung Abb. 3.4.15d mit der Ausgangsform Abb. 3.4.15c

übereinstimmt (was besonders für  ¨

 u = 1 deutlich wird), stehen den drei

Elementen  L 1,  L 2 und  M  dort jetzt die vier Größen  Lσ 1,  Lσ 2,  L h und  ü gegenüber: deshalb kann über eine zur weiteren Vereinfachung frei verfügt

werden. Üblicherweise wählt man das Übersetzungsverhältnis und bestimmt

es so, dass keine negative Induktivität auftritt. Dafür muss

 L 1  − M ∗ ≥  0 , 

 M ∗ ≥  0 , L∗ −

2

 M ∗ ≥  0

(3.4.32)

gelten und folglich darf  ¨

 u  nur im Bereich ( M/L 2)  ≤ ü ≤ ( L 1 /M ) liegen. 

Sonderfälle ergeben sich, wenn  ¨

 u:

mit dem linken oder rechten Grenzwert übereinstimmt, dann  verschwindet

 ein L¨

 angsglied; 

so gewählt wird, dass  L 1  − M ∗ =  L∗ −

2

 M ∗  gilt: dafür wird die  T -

Ersatzschaltung  symmetrisch. 
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Streufaktor, Streufluss Aus praktischer Sicht ist der Einbezug des  Streufak-

 tors σ = (1  − k 2) mit 0  ≤ σ ≤  1 (Gl. (3.2.51)) in die Ersatzschaltungen

zweckmäßig. Dabei interessieren besonders die genannten Grenzfälle. Für



 ¨

 u =

 L 1 /L 2 =  w 1 /w 2 gilt

 w 2

 L

1

1  − M ∗ =

 − w 1  kw 1 w 2 =  L 1(1  − k)

 R m

 w 2 R m





(3.4.33a)

 w

2

1

 w 2

 σ

 L∗ −

2  − w 1

2

 M ∗ =

 kw 1 w 2 =  L 1(1  − k) =  L 1

 w 2

 R m

 w 2 R m

2

und beide Längsglieder stimmen überein ( symmetrische Schaltung). Verwen-

det wurde der Streufaktor  σ (in der Näherung für  k ≤  1, Abb. 3.4.16a). Im

Querzweig liegt das reduzierte Element  M ∗ =  kL 1. An der unteren Gren-



ze  ¨

 u =  M/L 2 =  k L 1 /L 2 verschwindet das rechte Längsglied mit der

Ersatzschaltung Abb. 3.4.16c. Ganz entsprechend führt die obere Grenze



 ¨

 u =  L 1 /M = (1 /k)  L 1 /L 2 zur Ersatzschaltung Abb. 3.4.16b mit eingangsseitig verschwindendem Längsglied. Die einfacheren Ersatzschaltungen eignen

sich besonders für Übertrager in Netzwerken. 

Reale Transformatoren haben Streuung, Abb. 3.4.17a veranschaulicht sie:

nicht alle Flusslinien, die von einer Wicklung ausgehen, erreichen die gekop-

pelte Spule. Das führte in Kap. 3.2.5.2 zur Unterscheidung zwischen Haupt-

fluss Φh und Streuflüssen Φ σ 1, Φ σ 2 der Einzelwicklungen. Mit dem Haupt-

fluss ist die Gegeninduktivität verknüpft, er vermittelt den Energiefluss von

der Primär- zur Sekundärseite. Mit dem Streufluss ist die Streuinduktivität

verkoppelt und mit dem Spulenfluss Φ1, Φ2 (als Summe aus Haupt- und

Streufluss einer Spule, z. B. Φ1 = Φ σ 1 + Φh) die Selbstinduktivität. 

Die Kopplung zwischen Primär- und Sekundärwicklung erfolgt beim streu-

behafteten Transformator nur durch den Hauptfluss. 

Das Transformatormodell berücksichtigt die Streuung entweder durch  Streu-

 faktoren σ (Gl. (3.2.50) je für Primär- und Sekundärwicklung) oder (gleich-

wertig) durch  Kopplungsfaktoren k 1,  k 2  <  1 (Gl. (3.2.49)). Zur globalen Be-wertung reichen  Koppelfaktor





Φ12Φ21

 M  2

 M

 M

 M

 k =

=

=  √

=  ¨

 u

=

(3.4.33b)

Φ1Φ2

 L 1 L 2

 L 1 L 2

 L 1

 ¨

 uL 2

bzw.  Streufaktor σ = 1  − k 2 aus. Für den  streufreien (oder gleichwertig

 fest verkoppelter) Transformator ( k = 1) verschwinden in den Ersatzschal-

tungen die Längselemente und es verbleibt nur noch die Querinduktivität



(Abb. 3.4.17b). Dazu gehört das Übersetzungsverhältnis  ¨

 u =

 L 1 /L 2 =

 w 1 /w 2. 
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Abb. 3.4.16. Ersatzschaltungen des verlustlosen Transformators. (a) Form mit symmetri-

scher reduzierter Ersatzschaltung. (b), (c) Vereinfachte Formen mit zwei Elementen durch

spezielle Wahl von  ¨

 u

Abb. 3.4.17. Streuung und Kopplung im Transformator. (a) Aufteilung des Flusses in

Haupt- und Streuflüsse. (b) Ersatzschaltung des verlust- und streufreien Transformators. 

(c) Zusammenhänge der Transformatorersatzschaltungen

Der streufreie Transformator belastet die Quelle nur mit seiner Induktivität, 

der übrige Teil  i 2 /ü  des Eingangsstromes wird an den Ausgang transfor-

miert. 

Zum idealen Transformator (nach Abb. 3.4.14a) wird die Anordnung erst, 

wenn die Induktivität  L 1 über alle Grenzen wächst (und damit kein Strom

durch sie fließt) oder gleichwertig ihr magnetischer Widerstand  R m verschwin-

det (erforderlich  μ r  → ∞). 

Für  σ ≈  0 spricht man von  fester Kopplung, für  |k|   1 von  lose gekoppeltem

Übertrager. 
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Verlustbehafteter Transformator Die bisherigen Transformatormodelle ver-

nachlässigen Verluste, die der reale Transformator hat (Abb. 3.4.17c): die

 Ohmschen Widerst¨

 ande  der Wicklungen in Reihe zu den Spulen  L 1,  L 2 sowie

die  Kern- oder Eisenverluste  durch ständige Ummagnetisierung der Hystere-

sekurve. Sie werden durch einen Widerstand parallel zur Hauptinduktivität

modelliert. Weil sich technische Transformatoren dem idealen Modell annä-

hern sollen, bildet umgekehrt der ideale Transformator mit seiner Ersatzschal-

tung die Ausgangsform, in die nichtideale Effekte durch Ergänzungselemente

einbezogen werden. 

Praktische Auslegung Zur Transformatorbemessung interessieren u. a. die Win-

dungszahlen für gegebene Spannungen und Kernabmessungen. Für einen Netztrans-

formator mit  u 1 = 230 V und  u 2 = 6 V wird zunächst als Übersetzungsverhältnis

 ¨

 u =  u 1 /u 2 =  w 1 /w 2 = 230 V / 6 V = 38 ,  3 bestimmt. Der Fluss Φ im Eisenkreis hängt wesentlich von der Primärspannung  u 1 ab; er beträgt bei cos-förmiger Spannung  u 1( t)



 u

ˆ

1( t)  →

 u 1( t)d t

 U 1

Φ( t) =

=

sin  ωt = ˆ

Φ sin  ωt. 

 w 1

 w 1

 w 1 ω

Sein Spitzenwert ˆ

Φ = ˆ

 U 1 /( w 1 ω)41 wird durch Primärspannung und Frequenz be-

stimmt. Technische Transformatoren arbeiten mit Flussdichten um 1 T (Grenze Ei-

sensättigung). Beim Eisenquerschnitt  A  und der Netzfrequenz  f =  ω/(2 π) = 50 Hz

benötigt man je Windung eine Spannung  U( w 1 = 1)

ˆ

 U

 √

 √

 √

1

1V  ·  s

1

V

 U =

=  ωΦm 2 =  ωB m A  2 = 6 ,  28 A ·  50

2

= 0 ,  044  · A

 w 1

cm2

s

cm2

also z. B. bei einem Kernquerschnitt  A = 10 cm2 etwa  U ≈  0 ,  44 V /w. Dann muss

die Primärseite  w 1 =  U 1 /U = 230 V / 0 ,  44 V /w = 522 Wd haben, die Sekundärseite w 2 =  U 2 /U = 6 V / 0 ,  44 V /w = 13 ,  6 Wd  ≈  14 Wd (Wd = Windungen). Ein kleinerer Kernquerschnitt senkt den Fluss und damit  U , dementsprechend steigt die

Windungszahl. Höhere Betriebsfrequenz erhöht die induzierte Spannung  U  und der

Kernquerschnitt kann abnehmen. 

Zusammenfassung Verlustlose Transformatoren (mit linearem magnetischen

Kreis) werden gekennzeichnet:

allgemein (d. h. streubehaftet) durch drei Kennwerte  L 1,  L 2 und  M ; 

bei Streufreiheit (d. h. ideale oder feste Kopplung) durch zwei Kennwerte

 √

 L 1,  L 2 oder Gegeninduktivität  M =

 L 1 L 2 (als Eingangsinduktivität)

und Übersetzungsverhältnis  ¨

 u; 

im Sonderfall des idealen Übertragers nur durch das Übersetzungsverhält-

nis  ¨

 u. 

 √

41 Für Φm ist der Spitzenwert ˆ

Φm =

2Φm anzusetzen. 
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Abb. 3.4.18. Anwendungsbeispiele des Transformatorprinzips. (a) Spartransformator. 

(b) Transformator mit zwei Sekundärwicklungen als Differenzialsensor mit beweglichem

magnetischen Kern. (c) Stromwandler. (d) Praktische Ausführung mit Öffnung bei S

(Stromzange) und eingefügtem Sensor (Hall- oder Feldplatte). (e) Digitaler Strommesser. 

(f) Sperrwandler zur Transformation einer Gleichspannungen. (g) Prinzip einer Zündspule

Die Stromrichtungen (eingangsseitig Verbraucher-, ausgangsseitig Erzeuger-

pfeilsystem) sind Folge der Energieerhaltung; sie finden Ausdruck in den

Transformatorgleichungen und werden beim Induktionsvorgang als Lenzsche

Regel interpretiert. 

Anwendungen Eingesetzt werden Transformatoren:

in der  Energietechnik. Die Energieübertragung über große Entfernungen erfor-

dert hohe Spannung (bis 750 kV) zur Senkung der Leitungsverluste. Anderer-

seits muss die Spannung beim Verbraucher wieder herabgesetzt werden, z. B. 

auf 230 V. Spezielle Transformatoren für den Netzbetrieb sind:

 Trenntransformatoren  zur galvanischen Trennung der Primär- und Sekun-

därseite aus Schutzforderungen; 

 Schutztransformatoren  zur Erzeugung von Kleinspannungen ( u = 6, 12, 24, 

42 V (Vorzugswerte)); 

 Regeltransformatoren  mit stufenlos einstellbarer Sekundärspannung; 

 Spartransformatoren, bei denen die Sekundärwicklung Teil der Primärwick-

lung ist (durchgehende Wicklung mit Anzapfung, Abb. 3.4.18a). Weicht die

Sekundärspannung nur gering (50 bis 150%) von der Primärspannung ab, so

kann ein Kern mit kleinerem Eisenquerschnitt und weniger Windungen für

die Sekundärspule verwendet werden als bei getrennter Ausführung beider

Wicklungen, weil im gemeinsamen Spulenteil nur die Stromdifferenz fließt. 
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In der  Informationstechnik  arbeiten Übertrager über einen großen Frequenzbe-

reich. Sie haben einen hochpermeablem Eisenkreis mit Luftspalt ( →  Linearisie-

rung der Φ,  I-Kennlinie) oder Ferritkern und sind kapazitätsarm gewickelt. 

Eine Sonderform ist der  Differenzial¨

 ubertrager  mit einer Mittelanzapfung der Se-

kundärwicklung (Abb. 3.4.18b). Dadurch entstehen zwei gleiche Ausgangsspannun-

gen mit einem Phasenunterschied von 180o. Sie werden z. B. für Messbrücken, aber

auch zur Zweiweggleichrichtung in Netzteilen benötigt. Mit beweglichem Eisenkern

arbeitet der Übertrager als  Differenzialsensor. Er besteht aus einer röhrenförmi-

gen Primärwicklung mit beweglichem Eisenkern und zwei darüber angebrachten

Sekundärwicklungen. Die Höhe der Sekundärspannungen hängt von der Kernstel-

lung ab. Es entsteht eine der Kernstellung proportionale Ausgangsspannung mit

großem Variationsbereich. Die Anordnung ist als LVDT-Sensor (Linear Variable

Differenzial Transformer) bekannt. 

 Messwandler (Abb. 3.4.18c) trennen ein Messinstrument galvanisch vom Messkreis

und passen hohe Spannungen oder Ströme an die Bereiche üblicher Instrumente an. 

Beim  Stabstromwandler  wird die hochstromführende Primärwicklung“ von einer

” 

aufklappbaren Ringspule umfasst (sog. Stromzange) (Abb. 3.4.18d, e). Die Anzeige

kann digital erfolgen. Zur  Transformation von Gleichspannungen  wird sie periodisch

unterbrochen, diese Impulsspannung einem Transformator zugeführt und seine Se-

kundärspannung wieder gleichgerichtet (oder nicht). Zu dieser Anwendungsgruppe

gehören die Zündanlage (Abb. 3.4.18f, g), der Funkeninduktor oder Schaltnetztei-

le. In Zündanlagen ist die Sekundärspannung so hoch, dass an der Zündkerze die

Durchbruchsfeldstärke der Luft ( ≈  30 kV/cm) erreicht wird und ein Überschlag

erfolgt. 

Transformatoren haben trotz vieler Vorteile auch Nachteile: Herstellungskosten, 

großes Volumen, nicht ideale Übertragungseigenschaften. Deshalb besteht in der

Informationstechnik die Tendenz, die Transformatorfunktion durch elektronische

Schaltungen zu ersetzen (oder mit kleineren Transformatoren auszukommen). Bei-

spiele sind Transistorschaltungen zur Widerstandsformation, Phasenumkehrschal-

tungen als Ersatz des Differenzialtransformators, Optokoppler zur galvanischen

Trennung zweier Stromkreise, Schaltnetzteile, betrieben bei hohen Frequenz u. a. m. 

3.5

3.5 R¨

uck- und Ausblick zum elektromagnetischen Feld

Die Gesetzmäßigkeiten des elektrostatischen, des Strömungs- und des mag-

netischen Feldes bilden (mit einigen Ergänzungen) das System der  Maxwell-

 schen Gleichungen. Es sind  Erfahrungss¨

 atze, die durch Experimente immer

wieder bestätigt werden. Dazu gehören (Tab. 3.6)

1. 

Das  Durchflutungsgesetz  beschreibt die Erzeugung magnetischer Felder

durch Ströme: Das Umlaufintegral der magnetischen Feldstärke längs ei-

ner Berandung  s  ist gleich dem von diesem Umlauf umfassten Strom

3.5
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Tab. 3.6. Maxwellsche Gleichungen

Bezeichnung

Integralform

Globalform

Differenzialform





Durchflutungssatz, 

 H ·  d s

 Iw = Θ

rot  H =  J +  ∂D

 ∂t

I. Maxwellsche Gl. 

 s

 



=

 J +  ∂D ·  d A

 ∂t

 A



Induktionsgesetz, 

 E ·  d s

 e i =  −  dΨ

rot E =  − ∂B

d t

 ∂t

II. Maxwellsche Gl. 

 s

 



=  −

 ∂B

 ·  d A

 ∂t

 A





Nebenbedingung:

 B ·  d A = 0

Φ ν = 0

div B = 0

Quellenfreiheit

 A

 ν

des mag. Feldes







Gaußsches Gesetz:

 D ·  d A

 Q =

Ψ

div  D =  ρ

Quellenfeld der

 A





=

Ladung

 ρ d V =

 Q

 V





Kontinuitätsgln.:

 J ·  d A

 −  d Q =

 I

d t

 ν

div J =  −  d ρ

d t

Ladungserhaltung

 A



 ν

=  −  d

 ρ d V

d tV





Energieerhaltung

 E · J d V +

 P + d W = 0

d t

 V



+

 J W  ·  d A+

Strahl . 



+  ∂

 w

 ∂t

emd V = 0

 V

(Konvektions- und/oder Verschiebungsstrom). Gleichwertig: Ein Strom-

faden (Konvektionsstrom  J =  v  und/oder Verschiebungsstrom  J V =

d D  als Folge eines zeitveränderlichen elektrischen Feldes) wird stets von

d t

einem Magnetfeld umwirbelt (Abb. 3.5.1a). 

2. 

Das  Induktionsgesetz  beschreibt die Erzeugung einer Umlaufspannung  e i

längs einer Berandung  s  durch zeitliche Abnahme des magnetischen Flus-

ses in der Berandung. Gleichwertig: jedes zeitveränderliche Magnetfeld

wird von einem elektrischen Feld  E i umwirbelt (Abb. 3.5.1b). 

Beide Gesetze werden ergänzt durch  Feldeigenschaften: Die Quelleneigen-

schaft des  D-Feldes (elektrische Ladung als Ursache von  D) und die Quel-

lenfreiheit der magnetischen Flussdichte  B (Tab. 3.6 und Abb. 3.5.1c, d). 

Beide Gleichungen sind  Nebenbedingungen  oder die III. und IV. Maxwellsche

Gleichung. 

Im Durchflutungssatz tritt die Gesamtstromdichte



 J

 ∂D

 ∂D

ges =  J +

=

 v d  +

(3.5.1)

 ∂t

 ∂t
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Abb. 3.5.1. Maxwellsche Gleichungen in Integralform (Formulierung und Veranschauli-

chung). (a) Durchflutungssatz. (b) Induktionsgesetz. (c) Quellenfreiheit der Flussdichte. 

(d) Quellenfeld einer Ladungsverteilung

aus Konvektions- und Verschiebungsstromdichte auf (wobei auch die Ver-

schiebungsstromdichte auf eine zeitliche Änderung der Raumladungsdichte

zurückgeführt werden kann). Dies führt zur  Kontinuit¨

 atsgleichung  Gl. (2.7.12)

(Tab. 3.6) als Bilanz











 ∂D

d

0 =

 J ges  ·  d A =

 J ·  d A +

 ·  d A =

 J ·  d A +

  d V (3.5.2)

 ∂t

d t





wegen

 D ·  d A =   d V =  Q. 

Zusätzlich verknüpfen die  Materialgleichungen  zugeordnete Größen des be-

treffenden Feldes:

 J =  κE

 D =  ε r ε 0 E

 B =  μ r μ 0 H . 

(3.5.3)

Strömungsfeld

elektrostatisches Feld

magnetisches Feld

Damit gibt es ausreichend viele Gleichungen zur Bestimmung der Feldgrößen:

elektrische Feldstärke  E

magnetische Feldstärke  H

Stromdichte  J

magnetische Flussdichte  B

Verschiebungsstromdichte  D. 

Die Maxwellschen Gleichungen beschreiben die  wechselseitige Verkopplung  der

Feldgrößen. Sie verursacht bei schnellen zeitveränderlichen Vorgängen zahlrei-

che Phänomene wie Stromverdrängung im Leiter, Ausbildung elektromagneti-

scher Wellen, Laufzeiterscheinungen in Ladungsträgerströmungen u. a. m. 
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In den Maxwellschen Gleichungen treten Linien-, Flächen- und Volumeninte-

grale (z. B. über geschlossene Wege und Flächen) auf (Abb. 3.5.1). Von dieser

Darstellung stammt der Zusatz  Maxwellsche Gleichungen in Integralform“. 

” 

Für die Ergebnisse der Integration wurden  Global-  oder  Integralgr¨

 oßen  ein-

geführt. Sie beschreiben das Verhalten einer Feldgröße längs eines Weges oder

über eine Fläche (Tab. 3.6, Spalte 2). 

Die Integralform ist anschaulich und eignet sich zum ersten Verständnis elektro-

magnetischer Felder. Typische Anwendungsfälle betreffen entweder eindimensionale

Felder oder solche mit Symmetrieeigenschaften. Die allgemeinere Feldbeschreibung

erfordert die Maxwellschen Gleichungen in  Differenzialform (Tab. 3.6, Spalte 3). 

Man erhält sie mit den Integralsätzen von  Gauß  und  Stokes.  In einem solchen (all-

gemeinen) Vektorfeld  F  sind dann Vektoroperationen wie grad  ϕ, div  F  und rot  F

in einem zu wählenden Koordinatensystem auszuführen (s. Anhang A.2, Bd. 1). 

Feldarten: Quellen- und Wirbelfeld Elektrisches und magnetisches Feld zeigen

in ihren mathematischen Beziehungen eine starke formale Analogie. Das ver-

einfacht die Berechnungsmethoden, doch darf der physikalische Unterschied

nicht übersehen werden:

elektrisches Feld

magnetisches Feld

elektromagnetisches Feld







 D· d A =  Q

 B· d A = 0

 B· d A = 0

Quellenfeld

Quellenfreiheit

Quellenfreiheit











 E· d s = 0

 H· d s =

 Iw

 E i · d s =  − ∂ B d A

 ∂t A

Wirbelfreiheit

Wirbelfeld

el. Wirbelfeld

 Quellenfeld: Fl¨

 achenintegral  eines Vektors über eine geschlossene Oberfläche

eines Volumens (Hüllintegral) verschwindet nicht. Bedingung der  Quellen-

 freiheit (eines Vektorfeldes  F ) ist deshalb:



 F · d A = 0 . 

(3.5.4)

 A

 Wirbelfeld: Linienintegral  eines Vektors längs eines geschlossenen Weges (Um-

laufintegral) verschwindet nicht. Bedingung der  Wirbelfreiheit  eines Vektor-

feldes  F :



 F · d s = 0 . 

(3.5.5)

 s

Danach ist das  elektrostatische Feld stets wirbelfrei (deshalb konnte ein Po-

tenzial definiert werden), das elektrische Feld hingegen kann im allgemeinen



Fall  Wirbel (Induktionsgesetz!) und  Quellen ( ε E ·  d A =  Q!) besitzen. 

Das magnetische Feld ist stets quellenfrei, weil es keine magnetischen Ladun-

gen gibt. Es ist aber ein  Wirbelfeld:  H-Linien umwirbeln“ den Strom (Durch-

” 

flutungssatz), ebenso umwirbeln im elektromagnetischen Feld nach dem In-

duktionsgesetz geschlossene  E-Linien den zeitveränderlichen Magnetfluss. 
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Abb. 3.5.2. Wegabhängigkeit des

Spannungsbegriffs im Wirbelfeld. 

(a) Magnetische Spannung. 

(b) Elektrische Spannung

Abb. 3.5.3. Wechselwirkung zwischen elektrischem und magnetischem Feld abhängig vom

Zeitverhalten der Feldgrößen

Merkmal eines Wirbelfeldes ist u. a., dass Spannung und Potenzial  mehrdeu-

 tig  sein können (Abb. 3.5.2). So ist das Wegintegral der magnetischen resp. 

elektrischen Spannung  V ab bzw.  u ab zwischen zwei Punkten a, b rechts oder

links um den Strom  i  bzw. den zeitveränderlichen Fluss Φ( t) unterschiedlich:

 V ab | 1  
=  V ab | 2 und ebenso  u ab | 1  
=  u ab | 2. Die Mehrdeutigkeit tritt besonders

bei vollen Umläufen zutage. Beispielsweise umschließt ein Umlauf, ausgehend

vom Punkt a, im elektrischen Wirbelfeld (Induktionsgesetz) den Fluss Φ. Hat

der Punkt a das Ausgangspotenzial 0, so beträgt das Potenzial des Punktes

nach einem Umlauf 0 +  u =  − dΦ / d t. Es steigt nach jedem weiteren Um-

lauf um  − dΦ / d t. Damit hat ein Punkt im Wirbelfeld im allgemeinen kein

eindeutiges Potenzial, wie dies für den wirbelfreien Fall typisch ist. 

Während für Quellenfelder das Hüllenintegral (Satz von Gauß) die Ergiebig-

” 

keit“ ausdrückt, übernimmt diese Rolle für Wirbelfelder das Umlaufintegral. 

Überall dort, wo Feldlinien in sich geschlossene Kurven bilden, hat das Um-

laufintegral einen von Null verschiedenen Wert. Beispiele sind die elektrische





(  E ·  d s) und magnetische (  H ·  d s) Umlaufspannung im Induktions- bzw. 

Durchflutungsgesetz. Sie beschreiben die Wirbelstärke der felderregenden Ur-

sache. 
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Feldeinteilung Das Zeitverhalten der Feldgrößen bestimmt, welche Teile der

Maxwellschen Gleichungen ein Problem bestimmen. Man kennt vier Katego-

rien (Abb. 3.5.3):

 1. Statische Felder (Elektro- und Magnetostatik). Kennzeichen: keine zeit-

liche Änderung ( ∂/∂t = 0), kein Stromfluss ( J =  v = 0), damit auch keine

Änderungen der statisch vorhandenen Energien:





 E ·  d s = 0 , 

 D ·  d A =  Q, D =  εE  Elektrostatisches Feld





(3.5.6)

 H ·  d s = 0 , 

 B ·  d A = 0 , B =  μH  Magnetostatisches Feld. 

Ursache des Feldes sind ruhende Ladungen und ruhende Magnete:

Beide Felder völlig entkoppelt (getrennt behandelbar). Beispiel: Feld einer

ruhenden Ladung, Dauermagnetkreis. 

Es erfolgt kein Energietransport, und die Aufrechterhaltung statischer

Felder erfordert keine Energie. 

 2. Station¨

 are Felder (stationäre Ströme (Gleichströme) und ruhende Ma-

gnete). Kennzeichen: keine zeitlichen Änderungen (  ∂ = 0), jedoch d Q =

 ∂t

d t

const =  I ( v 
= 0). Durch Gleichstrom erfolgt Energieumsatz. Die Beziehun-

gen Gl. (3.5.6) modifizieren sich durch





 H· d s =

 J· d A; 

 J =  v  resp . J =  κE. 

(3.5.7)

Elektrisches Strömungsfeld und magnetisches Feld (des Gleichstromes bzw. 

das ruhender Magneten) treten gleichzeitig auf,  aber kein Induktionsvorgang. 

Beide Felder erfordern zur Aufrechterhaltung Energiezufuhr, die durch die

Leiterwiderstände als Wärme abgeführt wird. 

 3. Zeitver¨

 anderliche Felder: alle Feldgrößen hängen von der Zeit ab: verän-

derliche magnetische Felder sind nach dem Induktionsgesetz Ursache elektri-

scher Wirbelfelder, veränderliche elektrische Felder erzeugen über den Ver-

schiebungsstrom magnetische Wirbelfelder. Deshalb treten beide Felder  ver-

 koppelt  auf und man spricht vom  elektromagnetischen Feld. Der Grad der

Verkopplung hängt u. a. von der Schnelligkeit der zeitlichen Änderung (Fre-

quenz) ab. Bei  quasistation¨

 aren  oder  langsam ver¨

 anderlichen Feldern  erfolgen

zeitliche Änderungen so langsam, dass das  Magnetfeld H der Verschiebungs-

 stromdichte (∂D/∂t) vernachlässigbar bleibt und damit auch sein Einfluss auf

 das Induktionsgesetz. Dann gibt es  keine Wellenausbreitung (über Zeit- und

Ortsabhängigkeit der Feldgrößen entkoppelt). Es gilt









 E ·  d s =  − ∂B  d A, 

 H ·  d s =  J· d A

 ∂t





 B ·

(3.5.8)

d A = 0 , 

 D ·  d A =  Q. 
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Tab. 3.7. Vergleich der elektrostatischen, Strömungs- und magnetischen Felder

Elektrostatisches Elektrisches

Station¨

ares

Feld

Str¨

omungsfeld

magnetisches

Feld

Ursachengröße

ruhende Ladung

bewegte Ladung

beschleunigte Ladung

(Quantitätsgröße)  D, 

[ D] = As

 J, 

[ J ] = A

 H, 

[ H] = A

m2

m2

m

elektrische Fluss-

elektrische

magnetische Feld-

dichte, Verschie-

Stromdichte

stärke, magnetische

bungsflussdichte

Erregung











Verknüpfung

 Q =

 D ·  d A I =

 J ·  d A

 I

 H ·  d s

A

 A

 ν =

 s

Feld-Globalgröße

Wirkungsgröße

 E, 

[ E] = V

 B, 

[ B] = Vs

m

m2

(Intensitätsgröße, 

elektrische Feldstärke

magnetische

Kraftwirkung)

Flussdichte

(Induktion)

Definitionsgleichung

 F =  QE

 F =  Q( v × B)





Verknüpfung

 U =

 E ·  d s

Φ =

 B ·  d A

 s

 A

Feld-Globalgröße











Feldeigenschaften

 D ·  d A =

 Q

 J ·  d A = 0

 H ·  d s =

 I

 A



 s

 ν

 ν

Ursachengröße

Gaußsches

bzw. 

 I

Durchflutungssatz

 ν

 ν = 0

Gesetz

1. Kirchhoffscher

Satz







Wirkungsgröße

 E ·  d s, 

 U

 B ·  d A

 ν

 ν

2. Kirchhoffscher Satz

magnetischer

Knoten

Feldmerkmale

wirbelfreies

wirbel- und

quellenfreies

Quellenfeld

quellenfrei

Wirbelfeld (geschlos-

(ruhende Ladung

( E-Feld hat zu-

sene Feldlinien,  H  hat

als Ursache der

sätzlich Quellen

zusätzlich Quellen an

 D-Linien)

an Inhomogeni-

Inhomogenitäten)

täten)

Elektrisches und magnetisches Feld sind durch das Induktions- und Durch-

flutungsgesetz verkettet. Ein typischer Anwendungsbereich ist die Wechsel-

stromtechnik: hier wird der Gleichstrom  I  durch den (niederfrequenten) Wech-

selstrom  i( t) ersetzt. 

 4. Nichtstation¨

 are  oder  schnell ver¨

 anderliche Felder  nutzen das volle System

der Maxwellschen Gleichungen und damit die Verkopplung der Orts- und

Zeitabhängigkeiten der Feldgrößen. Dann entstehen  elektromagnetische Wel-

 len, weil solche Felder grundsätzlich nicht ortsfest sind. Der Übergang von

Fall 3 nach 4 hängt hauptsächlich von der Wellenlänge  λ =  c/f = 2 πc/ω  im
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Tab. 3.8. Integralbeziehungen der elektrostatischen, Strömungs- und magnetischen Felder

und zugehöriger Netzwerkelemente

Elektrostatisches

Elektrisches

Station¨

ares

Feld

Str¨

omungsfeld magnetisches Feld

1. Flussgröße

Verschiebungsfluss Ψ Strom  I

Fluss Φ







Beziehung der

Ψ =  Q =

 D ·  d A I =

 J ·  d A

Φ =

 B ·  d A

 A

 A

 A

Feldgröße









Fluss durch

 D ·  d A =

 Q

 J ·  d A = 0

 B ·  d A = 0

eine Hülle



bzw. 

 I

 ν

 ν = 0

1. Kirch-

hoffscher Satz

2. Spannungsgröße

Spannung  U

magnetische

Spannung  V





2

2

Beziehung zur

 U 12 =

 E ·  d s

 V

 H ·  d s

1

12 =

1

Feldgröße







Spannungsgröße

 U

 E ·  d s = 0

 H ·  d s = Θ =

 ν

 ν = 0



längs eines

 I

 ν

 ν (= 0)

Umlaufs

2. Kirchhoffscher Satz

3. Beziehung zwi-

Kondensator

Widerstand

Spule

schen Fluss- und

 Q =  CU

 U =  RI

Ψ =  LI

Spannungsgröße

(Def. des Netz-

werkelementes)

Bemessungsglei-

 C =  εA

 R =  l

 L =  w 2 , 

 l

 κA

 R m

chung (homog. 

 R m =  l

 μA

Feld)

4. Strom-Span-

 i( t) = d u( t) , 

 u( t) =  Ri( t)

 u( t) =  L  d i( t) , 

d t

d t

nungsbeziehung

 u( t) =



 i( t) =



(NWE zeitunab-

1

 t i( t)d t +  u(0)

1

 t u( t)d t +  i(0)

 C

0

 L

0

hängig, linear)

Gegeninduktivität

 u 2 =  M  d i 1 , 

d t

 i 1( t) =



1

 t u

 M  0

2 d t + i 1(0)

Vergleich zu den vorhandenen Bauelementeabmessungen  d  bzw. Geometrie

der feldprägenden Anordnung im Stromkreis ab. Die quasistationäre Betrach-

tung (Fall 3) gilt für  d  λ (z. B.  f = 50 Hz,  λ = 6 · 103 km, bei  f = 100 MHz: λ = 3 m (UKW-Bereich),  f = 10 GHz:  λ = 3 cm (Satellitenbereich)). 

Formaler Vergleich Die bisher kennengelernten Gesetzmäßigkeiten bieten den

formalen Vergleich der Größen an (Tab. 3.7). Im elektrostatischen Feld und

398

3. Das magnetische Feld

stationären Strömungsfeld treten z. T. gleiche Größen ( E,  u) auf. Dies führt

beispielsweise

zur einfachen  R- und  C-Bestimmung durch Analogie

(s. Kap. 2.6.3). Problematischer ist das beim elektrischen und magnetischen

Feld, weil einem wirbelfreien Quellenfeld das quellenfreie Wirbelfeld gegen-

übersteht. 

Vergleicht man jedoch Ursache und Wirkung, stehen Linienintegrale den Flä-

chenintegralen und umgekehrt gegenüber, auch setzen sich die Proportiona-

litätsfaktoren der Vektoren z. B. nicht mehr gleichartig zusammen. Diese  natur-

 begr¨

 undeten  Abweichungen weisen deutlich auf die Unterschiede beider Felder

hin. In dieser Darstellung wird die Stromdichte  J  als Ursache des Strömungs-

feldes angesehen (hier mag ein gewisser Formalismus gelten), in den anderen

beiden Feldtypen resultiert die Ursache aus dem physikalischen Wirkungsme-

chanismus. In Tab. 3.8 sind die Globalgrößen der entsprechenden Felder zusam-

mengefasst einschließlich der darüber definierten Netzwerkelemente. 

Selbstkontrolle: Kapitel 3

1. 

Wie ist die magnetische Induktion definiert? 

2. 

Welche Induktion herrscht in und um einen stromdurchflossenen Draht? 

3. 

Welche Merkmale unterscheiden das stationäre Magnetfeld vom elektro-

statischen Feld? 

4. 

Kann das statische Magnetfeld die kinetische Energie eines geladenen

Teilchens ändern? (Erläuterung geben)

5. 

Wie wird die Richtung der magnetischen Feldstärke bestimmt, wenn die

Stromflussrichtung in einem Leiter bekannt ist? 

6. 

Welche Kraft übt ein Magnetfeld auf einen geraden, stromdurchflossenen

Leiter aus? 

7. 

Erläutern Sie die Kraftwirkung zwischen zwei geraden, stromdurchflos-

senen Leitern bei gleich- und gegengerichteten Strömen! 

8. 

Was versteht man unter der Lorentz-Kraft? 

9. 

Geben Sie den Zusammenhang zwischen der magnetischen Feldstärke

und der Flussdichte im Vakuum und im ferromagnetischen Material an! 

10. Nennen Sie die Feld- und Integralgrößen des magnetischen Feldes sowie

ihre Einheiten! 

11. Was besagt der Durchflutungssatz am Beispiel eines geraden, langen Lei-

ters? Wie kann die Richtung der Feldlinien bestimmt werden? 

12. Skizzieren Sie den Verlauf der Feldstärke zwischen zwei geraden Leitern

bei gleich- oder entgegengesetzt fließenden Strömen! 

13. Wie lässt sich die magnetische Feldstärke im Innern einer Zylinderspule

bestimmen? 
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14. Wie lautet das Gesetz von Biot-Savart? Welche Feldarten können damit

berechnet werden? 

15. Was versteht man unter dem magnetischen Fluss? Welcher Fluss beglei-

tet einen stromführenden Leiter (Länge  l) durch eine begrenzte Fläche

im Außenraum? 

16. Was versteht man unter folgenden Begriffen: Ferromagnetismus, Magne-

tisierungskennlinie, Hysteresekurve, Remanenz und Koerzitivkraft? 

17. Welche Bedingungen gelten für die Vektoren  H  und  B  an den Grenz-

flächen zweier verschiedener magnetischer Materialien? 

18. Ein Dauermagnet zeigt Magnetismus“. Was besagen in diesem Zusam-

” 

menhang die Begriffe Remanenz und Koerzitivkraft? In welchem Qua-

dranten liegt der Arbeitspunkt auf der Hysteresekurve eines Dauermag-

netkreises mit Luftspalt? 

19. Warum sollte ein magnetischer Kreis mit Dauermagnet nie zerlegt wer-

den? 

20. Was versteht man unter einem magnetischen Kreis, und welche Analogie

besteht zum elektrischen Stromkreis? 

21. Wie wirkt ein Luftspalt im magnetischen Kreis, wenn a) die Erregung b)

die Induktion im Eisen konstant bleiben soll? Wie kann die Flussdichte

im Luftspalt berechnet werden? 

22. Erläutern Sie die Ruheinduktion an einer feststehenden Leiterschleife. 

Welche Richtungszuordnung gilt zwischen der Flussänderung, der indu-

zierten Spannung (welche Formen gibt es?) und dem induzierten Strom? 

Wie kann die Stromrichtung sicher bestimmt werden? 

23. Zu welchem Feldtyp gehört das induzierte elektrische Feld? Was folgt

daraus für einen Umlauf, und wie unterscheidet es sich vom elektrosta-

tischen Feld? 

24. Was versteht man unter der induzierten elektrischen Feldstärke? 

25. Erläutern Sie die Lenzsche Regel und deren gesetzmäßigen Hintergrund! 

26. Bestimmen Sie die Spannung eines geraden Leiters, der sich im homoge-

nen Magnetfeld bewegt! (Wie muss er sich bewegen?)

27. Erläutern Sie die Selbst- und Gegeninduktion und die Definition von  L

und  M ! 

28. Was versteht man unter innerer und äußerer Induktivität? 

29. Warum werden Doppelleitungen verdrillt? 

30. Wie können  L  und  M  berechnet werden? (Beispiele erläutern). 

31. An eine ideale Spule werde plötzlich eine Gleichspannung gelegt. Wie

verläuft der Strom? (Erläuterungen durch Beispiele). 

32. Warum entsteht beim Abschalten eines Gleichstromkreises mit einer In-

duktivität ein Funke (Lichtbogen) über dem Schalter? 
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33. Geben Sie die Strom-Spannungs-Beziehung zweier gekoppelter Spulen

und eine einfache Ersatzschaltung an! 

34. Was besagen die Wicklungspunkte an gekoppelten Spulen? 

35. Formulieren sie die Transformatorgleichung und erläutern Sie die Rolle

des Lastwiderstandes! 

36. Nennen Sie Modellierungsstufen des Transformators (kurze Erläuterung, 

typische beschreibende Gleichungen)! 

37. Erläutern Sie den Begriff induktiver Zweipol! Was ist eine differenzielle

Induktivität? 

38. Wie entsteht der Wirbelstrom, und wie wirken dabei elektrische und mag-

netische Felder zusammen? Wie können Wirbelströme reduziert werden? 

39. Was versteht man unter Stromverdrängung“? 

” 

40. Wie lauten die Maxwellschen Gleichungen in integraler Form? Was bein-

halten sie? 
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4 Energie und Leistung

elektromagnetischer

Erscheinungen

Lernziel Nach der Durcharbeitung des Kapitels sollen beherrscht werden

die Begriffe Energie und Energieumformung sowie Leistungs- und Energiedichte, 

der Leistungsumsatz im Strömungsfeld, 

die Speicherenergie und Energiedichte im elektrostatischen und magnetischen

Feld, 

der Begriff Energieströmung als Folge des Energieerhaltungssatzes, 

die Energiestromdichte (Poyntingscher Vektor) und die anschauliche Erklärung, 

der Energietransport zwischen Quelle und Verbraucher mit dem elektromagne-

tischen Feld als Energieträger, 

die Kraftwirkung des elektrostatischen Feldes und ihre Anwendungen, 

die Kraftwirkung des magnetischen Feldes und ihre Anwendungen. 

Einf¨

uhrung Elektrotechnische Vorgänge sind nach den allgemeinen Energie-

merkmalen (s. Kap. 1.6, Bd. 1) auch energetische Prozesse, besonders sicht-

bar in der elektrischen Energietechnik. Ihre bequeme Transport- und Spei-

cherfähigkeit, aber auch die Wandelbarkeit in nichtelektrische Energieformen

ist die Basis vieler technischer Systeme:

1. 

Eine Primärenergie am Ort A wird  direkt (z. B. Solarenergie, Windkraft)

oder  indirekt (feste Brennstoffe, Strahlungsenergie, Kernkraftwerk) über

thermische und mechanische Energie (dampfbetriebener Kraftwerksge-

nerator) in elektrische Energie gewandelt. 

2. 

Verbrauch“ elektrischer Energie am Ort B durch Ausnutzung der ver-

” 

schiedenen Stromwirkungen: Wärme- und Kraftwirkung, chemische Vor-

gänge u. a. 

3. 

Eine Trennung der Orte A und B (Energieverbraucher verteilt über das

Land) erfordert einen  Energietransport  von A nach B. Chemische Energie

(z. B. Erdgas) erfolgt als Massentransport durch Rohrleitungen, Wärme

durch Fernheizleitungen u. a. Elektrische Energie wird durch Stromfluss

oder allgemeiner das  elektromagnetische Feld  transportiert. Das Energie-

verteilungsnetz scheint die Rolle des Stromes zu bestätigen, da elektro-

” 

magnetische Felder nur zur drahtlosen Übertragung von Wellen taugen“. 

Später wird sich zeigen, dass aber das elektromagnetische Feld Träger

des Energietransportes ist, eine verblüffende Feststellung. 

St. Paul, R. Paul,  Grundlagen der Elektrotechnik und Elektronik 2
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4.1

4.1 Energie und Leistung

Energietransport Elektrische Energie bestimmt weltweit das tägliche Leben. 

Das zeigt die breite Diskussion dieses Themas. Die Elektrotechnik hat dann

die Aufgabe

elektrische Energie (aus anderen Formen) zu gewinnen, zu speichern, zu

übertragen und an anderen Orten in nichtelektrische zurückzuwandeln. 

Beim Transportvorgang spricht man auch von  Energiefluss  oder  Ener-

 giestr¨

 omung  vom Erzeuger zum Verbraucher. Auch andere Gebiete, z. B. 

Akustik, Optik, Wärmetechnik kennen diesen Energiestrombegriff“. 

” 

elektrische Energie einer Form 1 in solche der Form 2 umzusetzen, etwa

Netzenergie mittels eines Fernsehsenders als elektromagnetische Strahlung

auszubreiten (zur Informationsübertragung). 

Energie tritt in verschiedenen Erscheinungsformen auf, denn alle Naturvor-

gänge sind Umwandlungen einer Form in eine andere. Tabelle 4.1 zeigt Bei-

spiele hierfür. In der Elektrotechnik dominieren die eingerahmten Felder. Ihre

spezifische Energieform ist die  elektromagnetische Energie  mit den Vorzügen:

übertragbar über große Entfernungen mit gutem Wirkungsgrad und Licht-

geschwindigkeit, 

verschiedenartige Umsetzbarkeit elektrisch-nichtelektrisch möglich, 

vielfältige Methoden zur Energiegewinnung, 

universell einsetzbar. 

So vollzieht ein Kohlekraftwerk die Wandlung Kohle (chemische Energie) – Dampf

(thermische Energie) – Turbinenantrieb (mechanische Energie) – Generator (elek-

trische Energie). Weil elektrische Energie in großen Mengen nicht direkt gespeichert

werden kann (abgesehen von sehr kleinen Mengen in Kondensator und Spule oder

indirekter Speicherung im Akkumulator und Pumpspeicherwerk), muss sie zwischen

den Erzeugungs- und Verbraucherorten ständig bereitgestellt und transportiert wer-

den - ein breites elektrotechnisches Aufgabenfeld. 

Umfassen die Wandlungseffekte aus Tab. 4.1 hauptsächlich die elektrische

Energieerzeugung, so ist die Anzahl bekannter Wandlungseffekte deutlich

größer (Tab. 4.2). Viele werden in direkten oder modulierenden“ Sensoren

” 

genutzt (Abb. 4.1.1a, b): im ersten Fall entsteht das Sensorsignal durch di-

rekte Energiewandlung (etwa als Spannung eines Thermokopplers aus dem

thermodynamischen System), oder durch Signalmodulation einer Hilfsquelle

(z. B. als Thermistor im Stromkreis). 
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Tab. 4.1. Energieformen und ihre Wandlung in elektrische Energie

406

4. Energie und Leistung elektromagnetischer Erscheinungen

ro

ion

-

se

h

yse

lat

e

u

e

ese

e

ol

rme

th

r

m

n

th

t

issoziat

the

isch

tion

n

isch

tion

k

sy

d

e

m

m

e

ak

to

to

e

ak

ndo

e

o

o

e

Chemisc

El

Akku

e

ch

R

F

F

Biosy

ch

R

e

n)

-

mp

he

e

n

z

dung

z

lla

p

rlasere

e

mc

ung

lat stoff a

-

oge

szen

ur¨

, 

t

r

n

am

e

h

r

lu

tb

w

reszen

orpïsch

ht

o

uc

ekt

uhl¨

h

o

m

min

luh¨

ic

p

ib

c

stk

e

L

Strahl

Gase

Le

S

Lase

LED

Tr

mineszenz

Gl

Li

Flu

Fe

ch

Lu

(G

)

n

me

ekt

tio

n

k

ar¨

ff

e

o

)

ne

ne

ae

h

-E

c

W

e

R

n

rpti

s-

ung

e

n

is

p

-, 

schi

schi

o

he

r

so

pump

tion

n

m

rstand

e

bs

ung

rmee

e

r

sc

am

m

ma

ma

isch

e

lti

ta

hl

ul

de

ul¨

e

o

ibung

rme

rbr

a¨

lte

lte

a

sorp

m

e

en

h

o

aäïch

oth

e

T

J

Wi

Gl

(P

Th

Re

W

K

K

L

Str

ab

ex

ch

(V

gehob

orv

he

er

c

ft

ck

h

s

t

et

-

ru

ch

ti

ra

smose

k

sd

tige

is

ta

z

n

o

Kraf

raft

o

n

e

e

ne

ich

a

r

tz-

ung

se

el

w

t

l

in

ch

tros

k

kta

tromagn

e

rieb

iometer

hl

e

k

e

lu

b

rb

sk

armek¨

schi

d

a

a

mo

sch

le

M

e

Kraft

El

Loren

Re

Elek

He

Tu

Get

W

ma

R

Str

Os

Mu

hni

ch

er

otec

h

ist

ktr

o-

e

-

le

h

etisc

e

n

n

an

t

g

c

h

a

r

z

ek

me

M

Du

flutungs-

sat

mec

magn

Eff

ungen, 

for

m

e

z

r

gi

t

t

for

r

es

he

m

c

-

r

lle

um

s

ekt

t

o

e

e

o

r

Ene

r

ti

ff

e

z

gi

t

lid

h

e

ch

rom

E

he

e

lat

t

ls

onsge

ta

tor

elemen

c

r

uk

t

u

ner

is

s

e

e

ti

l. 

is

e

lle

elle

isc

E

s

e

m

ugt

rt

h

ra

e

ri

z

n

h

ophon

mo

tros

r

o

m

on

elemen

z

r

a

te

ic

nnstoff

ze

k

e

c

k

ne

k

er

r

ndl

o

o

tte

t

t

la

le

a

lv

iez

o

o

o

lemen

ahl¨

le

a

Er

E

Gl

We

Induk

e

Ge

Mi

p

Th

the

W

Radi

ba

F

F

S

g

E

Akku

Bre

we

sg

h

h

h

Au

-

isc

isch

h

ie

n

isc

2. 

ar¨

ung

g

et

isc

trisc

a

m

4. 

m

t, 

hl

er

che

er

h

a

em

ab. 

Pri

en

Elek

Magn

M

Th

Lic

Str

Ch

T

4.1

Energie und Leistung

407

Abb. 4.1.1. Sensorprinzipien. (a) Sensor basierend auf Energiewandlung oder (b) Parame-

teränderung

Darüber hinaus werden Sensoren nicht nur nach der gewandelten Energie

(elektromagnetisch, thermisch, mechanisch) unterteilt, sondern auch dem phy-

sikalischen Prinzip (z. B. Hall-Effekt, magnetoresistiv, optoelektronisch, pie-

zoelektrisch  . . . ), der gemessenen Größe (Temperatur, Druck, Geschwindig-

keit, Farbe), der Kontaktart zum Messobjekt (direkt, kontaktlos), der Tech-

nologie (elektromechanisch, Halbleiterprinzip, faser-optisch  . . . ) u. a. 

Energiespeicherung Jedes physikalische System besitzt zu jedem Zeitpunkt

einen  Energieinhalt. Dann erfordert seine Änderung einen externen Energie-

austausch (Zufuhr, Abfuhr) beschrieben durch einen  Energiestrom. Der Satz

von der  Erhaltung der Energie (s. Kap. 1.6.1, Bd. 1) koppelt  jede ¨

 Anderung

 des Energieinhaltes eines Systems an Energiestr¨

 ome und so eine Wechsel-

 wirkung durch Energieaustausch mit anderen Systemen. Die Erhöhung der

Systemenergie durch Energiezustrom ist eng verknüpft mit seiner Fähigkeit

zur  Energiespeicherung. So speichert ein Kondensator zugeführte elektrische

Energie und gibt sie später wieder ab. Elektrische Energie kann aber eben-

so einen Motor mit Schwungmasse antreiben, als kinetische Energie in der

Schwungmasse gespeichert bleiben und schließlich durch Generatorwirkung

des Motors wieder als elektrische Energie rückgewonnen werden. Die Spei-

cherart hängt von der Energieform ab. 

Für elektrische Systeme sind generell elektrische und magnetische Felder

Träger elektromagnetischer Energie:  Energie als Zustandsgr¨

 oße, konzentriert

in Kondensator und Spule als Netzwerkelementen. Enthält ein System bei-

de, also  verschiedenartige  Energiespeicher, so kann fortwährend Energieaus-

tausch mit Schwingungen als Folge eintreten (im Bd. 3 betrachtet). 

Zunächst vertiefen wir die elektrische und magnetische Energie (Kap. 4.1)

und den Energieaustausch in elektrischen Anordnungen (Kap. 4.2), um dann

bei den Kraftwirkungen das technisch wichtige Feld der elektromechanischen

Energieumformung (Kap. 4.3) zu diskutieren. 
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4.1.1 Elektrische Energie, elektrische Leistung

Elektrische Energie Energie und Leistung haben gegenüber Strom und Span-

nung allgemeine Bedeutung. Neben verschiedenen Energieformen, (z. B. elek-

trische und magnetische Energie der Elektrotechnik, potenzielle und kineti-

sche Energie in der Mechanik u. a.) kann ein Energietransport sehr unter-

schiedlich erfolgen: als zu Tal rauschender Wasserstrom zum Antrieb eines

Mühlenrades, als Transport fester Brennstoffe, durch Ölleitungen oder auf

elektrischem Wege. 

Energie kennzeichnet das Vermögen zur Verrichtung von Arbeit und sie ver-

hält sich wie eine mengenartige, universell austauschbare Größe mit einem

Erhaltungssatz. 

Deshalb werden, abhängig von der Energieform, gleichwertige,  einander ¨

 aquivalente

 Energieeinheiten  benutzt: Wattsekunde (Ws) hauptsächlich für elektrische Arbeit, 

Joule (J) für Wärme und Newtonmeter (Nm) für mechanische Arbeit und es gilt

kg  ·  m2

1 Ws = 1 VAs = 1 Nm = 1 J = 1

Einheit der Energie . 

s2

Energie (und Leistung) gewährleisten über ihre mechanischen und thermodynami-

schen SI-Einheiten die Verknüpfung zu den elektrischen Größen. Früher wurden

noch Kalorie und Kilopondmeter verwendet (1 cal = 4 ,  186 Ws, 1 kpm = 9 ,  806 Ws). 

Eine gängige (SI-fremde) Einheit zur Angabe elektrischer Energie ist die Kilowatt-

stunde: 1 kWh = 3 ,  6 MWs. 

Die elektrische Energie war zunächst (Kap. 1.6.2, Bd. 1) eingeführt worden

als Energieform, gebunden an elektrische Größen (Strom, Spannung, Feld-

größen). Deshalb liegt nahe, Energie (und Leistung) für andere Energiefor-

men durch andere, nichtelektrische Größen auszudrücken (s. Kap. 6.1). 

So basierte die Spannung (Gl. (1.5.2), Bd. 1) auf der elektrischen Energie umge-

setzt bei einer tatsächlichen oder gedachten Ladungsbewegung. Beim Durchlauf der

Elementarladung  q  durch eine Spannung von 1 V wird die Arbeit von einem Elektro-

nenvolt leistet: 1 eV = 1 ,  60210 − 19 J = 1 ,  60210 − 19 Ws. Das ist in der Elektrophysik verbreitet. Die umgesetzte Energie hängt nur von der durchlaufenen Spannung ab, 

nicht Feldstärke oder Weg. 

Es liegt nahe, die Energie  W  zunächst für den Zweipol zu definieren: fließt

durch ihn die Ladung d Q( t) und fällt dabei die Spannung  u( t) ab, so wird die

elektrische Energie d W ( t) =  u( t)d Q( t) =  u( t) i( t)d t  in eine andere Energieform (Wärme, Feldenergie, mechanische Arbeit,  . . . ) während der Zeitspanne

Δ t  umgesetzt

4.1
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 t+Δ t



 t+Δ t



 t+Δ t



Δ W ( t) =

d W ( t) =

 u( t) i( t)d t =

 p( t)d t. 

 t

 t

 t

Elektrische Energieänderung am Zweipol, Definitionsgleichung

(4.1.1)

Wir diskutieren sie für die Netzwerkelemente  R,  C,  L  und die zugehörigen

Felder. Sichtbar wird schon:

Tritt in der Energiebeziehung explizit die Zeit auf, wie beim Strömungsfeld, 

so speichert das betreffende Feld keine Energie (im Gegensatz zum elektro-

statischen und magnetischen Feld). 

Grundsätzlich ist die Energiebeziehung Gl. (4.1.1) auf mehrpolige Netzwerke

erweiterbar (Beispiel gekoppelte Spulen, kapazitive Mehrleiteranordnungen, 

Zwei- und Mehrtore u. a.). 

Energiedichte Die Energie im Feld erfordert zur Beschreibung eine Größe für

den Raumpunkt, die  Energiedichte w



Δ W

d W

 W ( t)

=

 w( t)d V  mit  w = lim

=

 . 

Δ V → 0 Δ V

d V

(4.1.2)

Volumen  V

Energiedichte  w

Die Energiedichte  w  kennzeichnet den im Volumenelement Δ V  umgesetzten

oder gespeicherten Energieteil Δ W . 

Elektrische Leistung Das tägliche Leben versteht unter Leistung die pro Zeit-

spanne verrichtete Arbeit (Def. Gl. (1.6.5), Bd. 1). Deshalb ist die Leistung

 p( t) die zeitliche Energieänderung in jedem Zeitpunkt, also das Verhältnis

von geleisteter Arbeit Δ W el und dazu erforderlicher Zeitspanne Δ t

Δ W el

d W el( t)

 p( t) = lim

=

 .  Leistung (Definitionsgleichung) (4.1.3a)

Δ t→ 0

Δ t

d t

Am allgemeinen Zweipol beträgt damit die Leistung  p( t):

 t



d W ( t)

d

Leistung am

 p( t) =

=

 u( t) i( t)d t =  u( t) i( t) . 

(4.1.3b)

d t

d t

Zweipol

 t 0

Bei zeitveränderlichen Größen interessiert oft die  mittlere Leistung



1

 p( t) =

 p( t)d t

(4.1.4)

 T T

in einem bestimmten Zeitintervall  T (wichtig z. B. Wechselgrößen). 
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Abb. 4.1.2. Rollenwechsel

des Zweipols: aktiv/passiv

beim Verbraucher mit Ge-

genspannung

Abb. 4.1.3. Energie und Leistung am zeitveränderlichen Zweipol. (a) Zeitliche Zuordnung. 

(b) Leistung unterteilt nach typischen Anteilen

Weil  p( t) das Produkt der Strom- und Spannungswerte in einem Zeitpunkt ist, heißt

sie auch  Momentanleistung. Je nach Verbraucher- oder Erzeugerpfeilsystem ist Δ W

dann die im Zweipol während der Zeitspanne Δ t  umgesetzte ( p >  0) bzw. erzeugte

( p <  0) elektrische Energie. Typische Größenordnungen wurden in Kap. 1.6.3, Bd. 1

diskutiert. 

Deutlich wird die Energiewechselwirkung beim Zusammenspiel Batterie – Gleich-

strommotor (versehen mit einer Handkurbel, Abb. 4.1.2). Ohne Kurbelantrieb dreht

sich der Motor als Energieverbraucher, Kennlinie im rechten Bildteil. Die Span-

nungsquelle  U q1 treibt den Strom  I  an. Im laufenden Motor entsteht eine indu-

zierte Spannung, im Ersatzschaltbild durch  U q2 ausgedrückt. Ohne Handantrieb

ist  U q1  > U q2 ( ∼  Drehzahl  n) und es fließt der Kreisstrom  I = ( U q1  − U q2) /R ges. 

Mit Handdrehung (in gleicher Drehrichtung) wächst  U q2, schließlich ist  U q2 =  U q1

(kein Stromfluss, Kompensation) und bei noch schnellerer Drehung wird  U q2  > U q1:

Umkehr der Stromrichtung (linker Bildteil). Jetzt wirkt der Motor als Generator

(Energieumformung mechanisch  →  elektrisch), die bisherige Quelle als Verbrau-

” 

cher mit Gegenspannung  U q1“ und die Batterie ( U q1) wird geladen: Umsatz elektri-

scher Energie in chemische. Deshalb sind die Spannungsquellen Orte umkehrbarer

4.1
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Energieumformung. Die umgekehrte Stromrichtung  I  unterstreicht diesen Rollen-

tausch. 

Energie und Leistung hängen zusammen, deswegen ist Energie das  Leistungs-

 verm¨

 ogen  während einer Zeitspanne (Abb. 4.1.3a):

 t 0



 t 0+Δ t



 W ( t) =

 p( t)d t +

 p( t)d t =

 W ( t 0) +

Δ W (Δ t)

 . (4.1.5)

Anfangswert

Energie

 −∞

änderung

 t 0

Die Energie zur Zeit  t  hängt vom Anfangswert zur Zeit  t 0 (= Ergebnis

der Vergangenheit) und der Energieänderung Δ W  während der Zeitspanne

Δ t =  t − t 0 ab. 

Der Anfangswert äußert sich z. B. als Kondensatorspannung (Gl. (2.7.3)) bzw. 

Spulenstrom (Gl. (3.4.4)) oder allgemeiner Ladung resp. magnetischer Fluss

in entsprechenden Netzwerkelementen. 

Oft interessiert nur die Energieänderung Δ W ( t) (Anfangswert Null). Sie be-

trägt bei  zeitlich konstanter  Leistung  P : Δ W =  P Δ t  und wächst proportional zur Zeit. Deshalb heißt es im täglichen Leben

Leistung = Arbeit je Zeitspanne , 

 P = Δ W/Δ t, 

(4.1.6)

Energie = Leistung über eine bestimmte Zeit: Δ W =  P Δ t. 

Während die Energie bezüglich Beanspruchung und konstruktiver Abmes-

sungen eines Gerätes relativ wenig aussagt, ist die Leistung dagegen für

seine technische Auslegung wesentlich. Anschaulich dient die einem Zwei-

pol zugeführte elektrische Leistung  p el (Abb. 4.1.3b) zur Erhöhung seiner

Feldenergie (d W F / d t), wird als Wärmeleistung  p W an die Umgebung ab-

geführt oder in nichtelektrische Form (z. B. mechanische,  p mech) gewandelt, 

wie beim Elektromotor. 

Wir untersuchen den Energie- und Leistungsbegriff zunächst für das Strö-

mungsfeld, später auch die übrigen Felder. 

4.1.2 Str¨

omungsfeld

Leistungsdichte Im Strömungsfeld wird ständig Bewegungsenergie der La-

dungsträger in Wärme umgesetzt. Die zugehörige Leistungsdichte  p

(Gl. (1.3.33)) steht mit der Energiedichte  w( t) in Beziehung (Gl. (4.1.2))



d w

Leistungsdichte  p

 p( t) =

 p( t)d V  mit  p( t) =

 . 

(4.1.7)

d t

(Definitionsgleichung)

Volumen  V
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Abb. 4.1.4. Leistungsdichte  p  und Leistung  P  im stationären Strömungsfeld. (a) Inhomo-

genes Strömungsfeld. (b) Leistungsverhältnisse im Volumenelement d V

Die Integration der Leistungsdichte über ein Volumen ergibt die im Volumen

umgesetzte Leistung. 

Im Gegensatz zur Leistung (als räumlicher Mittelwert) kennzeichnet die Leis-

tungsdichte die im Raumpunkt umgesetzte Leistung, etwa in inhomogenen

Feldern, wo hohe Leistungsdichten an Orten hoher Feldstärke oder Strom-

dichte auftreten. Wir greifen dazu aus dem Feld ein Volumenelement d V =

d s ·  d A  heraus (Abb. 4.1.4) mit der umgesetzten Leistung Δ P = Δ U Δ I =

 E · Δ s · J · Δ A =  E · JΔ V . Dann beträgt die  Leistungsdichte p

Δ P

d P

 p = limΔ V → 0

=

=  E · v  d Q

Δ V

d V

d V

Leistungsdichte (4.1.8)

=  E · v =  E · J =  E 2 κ. 

Im Strömungsfeld ist die Leistungsdichte  p  durch das Skalarprodukt von

elektrischer Feldstärke  E  und Stromdichte  J  bestimmt. 

Sind Stromdichte  J  und Feldstärke  E  einander proportional, so wird die

Leistungsdichte von der Leitfähigkeit  κ  mitbestimmt. Die Gesamtleistung

beträgt dann







 P =

 J · E d V =  κ

 E 2d V =

( J ·  d A) ( E ·  d s) =  U AB I

Vol

Vol

 A s

Gesamtleistung, Strömungsfeld

(4.1.9)





und kann mit  I =

 J ·  d A,  U =  E ·  d s (weil  E  nicht von  A  und  J  nicht von  s  abhängen) gleich der umgesetzten Leistung im Widerstand  R AB des

Strömungsfeldes angegeben werden. 
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Das Strömungsfeld ist kein Energiespeicher, sondern wandelt ständig Ener-

gie in Wärme um. 

Anschaulich dient die umgesetzte Leistung zur Überwindung der Reibungskraft

bei der Ladungsträgerbewegung und wird irreversibel in

Reibungswärme“ um-

” 

gewandelt. Dagegen bleibt die in der Ladungsträgergeschwindigkeit gespeicherte

kinetische Energie vernachlässigbar. 

Hinweis Physik und Technik handhaben die Leistungsdichte unterschiedlich. Die

volumenbezogene Angabe (wie hier, Dimension W/m3) ist bei Energiewandlern

(Netzteile, Batterie, Brennstoffzelle, Motor) verbreitet. Im Gegensatz dazu nut-

zen Transport- und Flussvorgänge die flächenbezogene Definition (Einheit W/m2, 

Beispiele strahlungsgespeiste und erneuerbare Energiewandler; Richtwerte: Son-

ne 0,137 W/cm2, Elektronenstrahl 5  ·  108 W /  cm3, elektrische Bogenentladung 4  ·

103 W /  cm2, Schweißbrenner 1 · 103 W /  cm2, Laser 5 · 104 W /  cm2  . . .  5 · 1015 W /  cm2, Windkraft (Geschwindigkeit 9 m/s, frische Brise) 0,017 W/cm2). 

Beispiel 4.1.1 Verlustleistung Beim Blitzschlag (Zeitdauer 200 µs) fließt ein Strom

von  I = 20  ·  103 A durch einen Plasmakanal von 2 km Länge (Radius  r = 5 mm)

zur Erde (die Leitfähigkeit betrage 105 S/m, typisch für Plasmen). Im Blitz wird

umgesetzt

 l · I 2

(20  ·  103)2 A2  ·  2  ·  103 m

 P =  I 2 R =

=

= 1 ,  02  ·  1011 W , 

 κπr 2

105S / m  · π · (0 ,  005)2 m2

 P

1 ,  02  ·  1011 W

 p=

=

= 6 ,  5  ·  1011 W  . 

 πr 2 l

 π (0 ,  005)2 m22  ·  103 m

m3

Seine Feldstärke

 J

 I

20  ·  103A

kV

 E =

=

=

= 2 ,  54

 κ

 κπr 2

105S / m  · π(0 ,  005)2m2

m

liegt deutlich unter der Durchbruchfeldstärke in Luft (30 kV/cm), weil nach dem

Durchschlag die Spannung im Blitzkanal stark zusammenbricht. Bei einem mittle-

ren (täglichen) Leistungsverbrauch eines Industrielandes von etwa 1010  . . .  1011 W

(1 W = 1 J / s) würde die Blitzenergie nur für wenige Mikrosekunden zur Energie-

versorgung ausreichen. 

4.1.3 Elektrostatisches Feld

¨

Uberblick Wichtigstes Merkmal elektromagnetischer Felder ist ihre  F¨

 ahigkeit

zur  Energiespeicherung, ausgedrückt durch Feldgrößen oder globale Größen

in Kondensator und Spule. Führt man einem solchen Element elektrische

Energie zu, so wird ein Teil als Feldenergie gespeichert und ein anderer in eine

 nichtelektrische  Form (z. B. Wärmeleistung, mechanische durch Änderung des
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Feldvolumens) gewandelt. Es gilt die  allgemeine Energiebilanz

⎛

⎞ ⎛

⎞

Zunahme

⎛

⎞

elektrisch

abgef





ührte

⎜

⎜

⎟

elektrischer, 

abgef

⎝

⎟ ⎜

⎟ ⎜

⎟

ührte

zugeführte⎠ = ⎜

⎝

⎟ ⎝mechanische⎠+

 . 

magnetischer ⎠+

Wärmeenergie

Energie

Energie

Speicherenergie

(4.1.10a)

Weil sich die Wärmeenergie immer getrennt hinzufügen lässt, beschreibt

Gl. (4.1.10) die generelle Energiewandlung (Energiebilanz) eines elektrischen

Energiespeichers. Gleichwertig folgt über d W el = d W sp + d W mech mit der zu-

geführten  elektrischen  Energie d W el =  ui d t, der abgeführten  mechanischen

Energie d W mech =  F  d x  und der  Speicherenergie  d W sp die  Leistungsbeziehung



d W



el

d W sp( x( t) , t)

 ∂W sp( x( t) , t) d x

 ∂W sp( x( t) , t)

 p



el =  ui =

=

=

+

d t

d t

 ∂x

d t









 ∂t

 x

mech. Änderung

 ∂W sp( x( t) , t)

=  p mech +

 . 

(4.1.10b)

 ∂t







Feldanteil

Dabei wurde für die Speicherenergie  W sp( x( t),  t) neben der direkten Zeitab-

hängigkeit auch die indirekte über das variable  Speichervolumen (ausgedrückt

durch eine Ortskoordinate  x) berücksichtigt. Die Volumenänderung erfolgt

durch Krafteinwirkung und verursacht den Leistungsanteil  p mech =  F  d x. 

So wandelt zugeführte elektrische Energie über die Volumenänderung des

Speicherraumes in mechanische. 

Zeitabhängige Energiespeicherelemente (Kondensator, Spule) wandeln zu-

geführte elektrische Energie direkt in mechanische (Vorgang umkehrbar). 

Dann ist die elektrische Energie (VPS) gleich der Summe der Energiespei-

cherrate und der Rate, mit der mechanische Arbeit gegen die Umgebung

verrichtet wird. Dabei ändert sich die Charakteristik (Kennlinie) des Netz-

werkelementes. 

Der mechanische Beitrag ändert die  Form  des Speicherraumes (falls änderbar, 

z. B. durch bewegliche Kondensatorplatten). Bei fester Form verursacht er inne-

re Zwangskräfte und tritt äußerlich nicht auf (Term entfällt). Grundsätzlich kann

die elektrische Leistung auch über mehrere Tore zugeführt werden. 

Neben der Zeitabhängigkeit sind zusätzlich  nichtlineare  Ladungs-Spannungs-Bezie-

hungen  Q( u( t) , t) bzw. Fluss-Strom-Beziehungen Ψ( i( t) , t) möglich. Dann müssen Energiebetrachtungen auch solche Netzwerkelemente (Kap. 2.7.4, 3.4.1.3) enthalten. Ihre praktische Bedeutung ist groß. So kann beispielsweise ein Elektromotor mit

Feld- und Ankerspule als verkoppeltes Spulenpaar mit nichtlinearem, zeitveränder-

lichem magnetischen Kreis aufgefasst werden, weil die Kopplung durch Rotation
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ständig variiert. Elektrisch wirkt er als nichtlinearer zeitabhängiger Wandler (Spu-

le), der mechanische Leistung abgibt (Motor) oder bei umgekehrter Drehrichtung

(Antrieb, Generator) elektrische erzeugt. 

In diesem Abschnitt betrachten wir die Energiebeziehungen solcher Elemente, erst

später Energiewandlung (Kap. 4.2.3) und Kraftwirkung (Kap. 4.3) und als Ergebnis

(Kap. 6) schließlich die Netzwerkmodellierung der Energiewandlung. 

4.1.3.1 Energieverh¨

altnisse am zeitunabh¨

angigen Kondensator

Die im Kondensator gespeicherte dielektrische Energie  W d lässt sich gleich-

wertig angeben durch die Feldgrößen  D,  E  oder die integralen Größen  La-

 dung Q,  Spannung u  und  Kapazität C. Generell betrug die elektrische Energie

 W el =  Qu ∼ E · D (s. Gl. (1.6.2), Bd. 1). 

Kondensatorenergie  Das elektrostatische Feld ruhender Ladungen ist Tr¨

 ager

 der dielektrischen Energie und eine Zustandsgr¨

 oße 1 Das äußerte sich verschie-

denartig: als Fähigkeit zur Ladungsspeicherung auf Leitern, im Anfangswert

der Kondensatorspannung, in ihrer Stetigkeit oder beim Umladen eines Kon-

densators als Speicherenergie  W C (Gl. (2.7.3)). 

Wird zum Zeitpunkt  t = 0 eine Gleichspannung an einen Kondensator ge-

legt, so führt der Strom  i  Ladungen auf die Platten solange, bis Kondensa-

torspannung  u  und angelegte Spannung (nach Abtrennung) übereinstimmen. 

Die zugeführte elektrische Energie beträgt

 t



 Q



 u( t)



 W el( t) =

 u( t) i( t)d t =

 u( Q)d Q =  C

 u( t)d u

(4.1.11a)

 t 0

 Q 0

 u(0)

 C 



=

 u 2( t)  − u 2(0)

2

oder ohne Anfangsladung ( u(0) = 0)

 C

 Q( t) u( t)

 Q 2( t)

Speicherenergie des

 W C( t) =

 u 2( t) =

=

 . 

(4.1.11b)

2

2

2 C

Kondensators

Ein Kondensator speichert dielektrische Energie, sie wird bei Entladung

rückgewonnen. Ihr Sitz ist das elektrische Feld im Dielektrikum. Die Ener-

gie ergibt sich durch Integration der Kondensatorspannung  u( Q) über die

Kondensatorladung. Sie ist stets positiv und hängt nur vom momentanen

1 Wir vermeiden den Ausdruck elektrische Energie, er wird dem Term  ui d t  vorbe-

halten. Neben der dielektrischen Energie gibt es noch magnetische Energie. Sie

beschreibt das im Feld enthaltene Arbeitsvermögen. 
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Abb. 4.1.5. Ladung, Speicherenergie und Leistungsumsatz beim Kondensator. (a) La-

dungskennlinie und gespeicherte Energie des linearen Kondensators. (b) Zeitverläufe der

Quellenleistung  p q( t), der im Widerstand und in Feldenergie umgesetzten Leistungen  p R( t) und  p C( t). (c) Energie und Ko-Energie beim nichtlinearen Kondensator, Kennlinie  Q( u). 

(d) Kondensatorenergie und Ko-Energie

Zustand (Spannungs- bzw. Ladungswert) ab, nicht aber dem Zeitverlauf des

Stromes zur Erreichung dieses Zustandes. 

Daraus folgt umgekehrt: Überall dort, wo im Dielektrikum eine Feldstärke  E

herrscht, ist dielektrische Energie gespeichert. 

Abbildung 4.1.5a zeigt die Kondensatorenergie für  Q( u) =  Cu  als Merkmal

des  linearen zeitunabh¨

 angigen Kondensators (schraffierte Fläche). Das Dia-

gramm kann verstanden werden als Kennlinie einer idealen Spannungsquelle

 u =  U Q (mit der Fähigkeit beliebiger Ladungslieferung) und des Kondensa-

tors, der davon nur die Ladung  Q 0 =  Cu =  CU Q übernimmt (speichert). 

 Deshalb muss die restliche Ladungs-Spannungsfl¨

 ache nichtelektrischer  Natur

sein. Dazu betrachten wir den Kondensator im Grundstromkreis (Wider-

stand  R, Abb. 2.7.7) beim Einschalten der Spannungsquelle und die Zeit-

verläufe von Kondensatorspannung und -strom nach Gl. (2.7.15 ff.). Es gilt

mit  i =  C d u C / d t  und  U Q =  u R +  u C

 t 0



 t 0



 t 0



 t 0



 p q( t)d t =

 u q i( t)d t =

 p R( t)d t +

 p C( t)d t

0

0

0

0

(4.1.12)

 t 0



 Q 0



=

 Ri 2( t)d t +

 u C( t)d Q. 

0

0

Die von der Gleichspannungsquelle gelieferte elektrische Energie  W el =  W R +

 W C wird in Verlustenergie  W R im Widerstand und Speicherenergie  W C im

Kondensator umgesetzt. 

Beim Aufladen (s. Gl. (2.7.18)) sinkt die zugeführte Gesamtleistung exponentiell

mit der Zeit (Abb. 4.1.5b), die im Widerstand  R  umgesetzte (doppelte Abfallrate)
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deutlich schneller und die Kondensatorleistung hat ein Maximum bei der Zeit  t =  τ . 

Nach langer Zeit ist er auf die Spannung  U Q geladen und der Strom (und damit

die Leistung) verschwindet. 

Wir berechnen die im Widerstand in  W¨

 arme umgesetzte Energie  allgemeiner mit

 i = ( U Q  − u C) /R,  i = d Q/ d t:

 ∞



 ∞



 Q 0



d Q

 W R =

 i 2 R d t =

( U Q  − u C)

d t =

( U Q  − u C)d Q

d t

0

0

0

 Q

 U

 U

0



Q



Q



 CU  2

=  U

Q

Q Q 0  −

  

 u Cd Q =  W ∗

d =

 Q d u C =  C

 u Cd u C =

=  W d . 

2

 W

0

0

0

d + W ∗

d

  

 W d

 Sie stimmt beim linearen zeitunabh¨

 angigen Kondensator mit der gespeicherten (di-

 elektrischen) Energie ¨

 uberein. Nach dem Aufladen verschwindet der Strom und

damit auch die Leistung. Im gesamten Zeitraum wurde die Energie  W R umgesetzt

(darstellbar auch durch die Zeitverläufe von Strom und Spannung beim Einschalt-

vorgang und Einzelberechnung der Energien). Die Energie  W R =  W ∗

d wird als di-

elektrische  Ko-Energie  bezeichnet (s. u.) und  die Unterteilung der Ladungsfl¨

 achen

 in Abb. 4.1.5a  erh¨

 alt so anschauliche Bedeutung. 

Grundsätzlich kann die im Kondensator gespeicherte Energie auch aus dem

Entladevorgang über den Widerstand  R  ermittelt werden. Beide Energien

müssen nach dem Energiesatz übereinstimmen. Genau das besagt Abb. 4.1.5a. 

Nichtlinearer Kondensator Die nichtlineare (zeitunabhängige) Kapazität mit

 nichtlinearer Ladungskennlinie Q( u) (beziehungsweise der Umkehrung  u( Q), 

Abb. 4.1.5c) übernimmt beim Aufladen aus der Spannungsquelle im Zeitraum

 t 0  . . . t  die Energie  W d (genauer die Energiedifferenz zum Bezugspunkt  t 0)

 t



 t



 Q( t)



 W d( t 0 , t) =  W d( t)  − W d( t 0) =

 p( t)d t =

 u( t) i( t)d t =

 u( Q)d Q

 t 0

 t 0

 Q( t 0)

(4.1.13a)

auf und speichert sie. Da  Q( u) resp.  u( Q) nicht explizit von der Zeit abhängt, 

bestimmen nur Anfangs- und Endladung  Q( t 0),  Q( t) die Speicherladung. Bei

 ladungslosem Anfangszustand ( Q( t 0) = 0) stellt dann

 Q( t)



 U Q







 U Q



 ∂Q

 W d ( Q( t)) =  W d(0 , t) =

 u( Q)d Q =

 u

d u =

 uc d( u)d u

 ∂u

0

0

0

(4.1.13b)
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die im  nichtlinearen Kondensator  gespeicherte Energie dar. Sie entspricht der

schraffierten Fläche in Abb. 4.1.5c und unterscheidet sich durch die Nichtli-

nearität  Q( u) vom linearen Kondensator (Abb. 4.1.5a). 

Die Speicherenergie  W d kann auf verschiedenen Wegen ermittelt werden. Falls

zu  Q( u) die Umkehrbeziehung  u =  u( Q) existiert und außerdem  Q = 0  ↔

 u = 0 gilt, bildet das Integral links direkt den Energieinhalt  W d des nichtli-

nearen Kondensators. 

Eine  zweite  gleichwertige Schreibweise (Mitte in Gl. (4.1.13a, b)) verwendet die

 differenzielle Kapazit¨

 at c d( u) (Kap. 2.7.4) (Steigung der Ladungskennlinie im

Arbeitspunkt AP). Mit der Kapazitätsfunktion  c d( u) ist das Integral lösbar. 

Ein  dritter  Weg nutzt die ( die) elektrische Ko-Energie W ∗. 

d

Ko-Energie Die  verf¨

 ugbare elektrische Energie W Q =  Q 0 U Q der Quelle (Recht-

eckfläche Abb. 4.1.5a) 2

 W Q =  Q 0 U Q =  W d +  W ∗

d

mit allgemein  W d  =  W ∗

d

(4.1.14a)

zerfällt in  Kondensatorenergie W d =  W C Gl. (4.1.13a) und  Ko-Energie W ∗

d

 U Q



 W ∗

d =

 Q( u)d u. 

Dielektrische Ko-Energie (4.1.14b)

0

Die elektrische Ko-Energie ist definiert als Differenz zwischen der verfüg-

baren Generatorgesamtenergie  U Q Q 0 (umschreibendes Rechteck) und der

im (zeitunabhängigen) Kondensator gespeicherten Energie  W d, also als

Fläche zwischen der  u-Achse und der Ladungskurve  Q( u) oder gleichwertig:

Speicher- und Ko-Energie ergänzen sich unabhängig von der Ladungskenn-

linie (!) stets zur verfügbaren Gesamtenergie  U Q Q 0 der Spannungsquelle. 

Beide Teilenergien stimmen (nur!) bei linearer Kapazität überein (s. u.). 

Die Ko-Energie erlaubt zunächst als  Rechengr¨

 oße  die direkte Berechnung der

Kondensatorenergie  W d über die Ladungskennlinie  Q( u) Gl. (4.1.14a)

 U Q



 U Q



 U Q



 W d =  Q 0 U Q  − W ∗ =

d

(

d

 Q 0

 u −

 Q( u)d u =

 Q 0  − Q( u))d u. (4.1.15)

0

0

0

2 Aus dem Differential d( uQ) =  u d Q +  Q d u  folgt durch Integration

 U Q Q 0



 Q

 U

0



Q



d( uQ) =  U Q Q 0 =

 u d Q +

 Q d u =  W d +  W ∗

d  . 

0

0

0
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Abbildung 4.1.5d zeigt das Ergebnis. Statt die Kondensatorenergie  W d als

Integral über das Element d W d =  u d Q  zu berechnen, wird mit der Ko-

Energie d W ∗ =

= (

d

 Q d u  der senkrecht zu d W d stehende Streifen d W  d

 Q 0  −

 Q( u))d u  als Supplement gebildet und die Integration zwischen 0 und  U Q

durchgeführt. Das Ergebnis ist die Kondensatorenergie  W d. 

Für die Kondensatorcharakteristik  Q( u) wird die Kondensatorenergie

zweckmäßig über die zugehörige Ko-Energie berechnet. 

Beim  linearen  Kondensator ( Q( u) =  Cu) stimmen beide Teilenergien überein

(Dreieckflächen, Abb. 4.1.5a)

 Q



 Q 2

 W d =

 u( Q)d Q =

 , 

Energie linearer Kondensator (4.1.16a)

2 C

0

 u



 Cu 2

 W ∗ =

Ko-Energie linearer Kondensator

(4.1.16b)

d

 Q( u)d u =

2

0

mit gleicher Gesamtenergie  W Q wie im nichtlinearen Fall Gl. (4.1.14a)

 Q 2

 Cu 2

 W Q =  W d +  W ∗ =

+

=

d

 uQ =  Cu 2 . 

(4.1.16c)

2 C

2

Weil von der verfügbaren Quellenenergie  W Q stets nur der Teil  W d als elek-

trische Energie im Kondensator reversibel gespeichert wird, muss die Ko-

Energie zwangsläufig eine nichtelektrische Energieform (Wärme bei Umla-

den, mechanische Energie bei beweglichen Kondensatorplatten) ausdrücken. 

Das entspricht dem Einschaltverhalten des Kondensators Abb. 4.1.5a. Dort

wird ein Teil der zugeführten elektrischen Leistung als Wärmeleistung im Vor-

widerstand umgesetzt. Die Ko-Energie spielt bei der elektrisch-mechanischen

Wechselwirkung eines Kondensators mit beweglicher Platte eine tragende

Rolle. 

Zusammengefasst beträgt die im Kondensator gespeicherte Energie bei li-

nearer Kapazität  W d =  CU  2Q / 2, bei nichtlinearer Kapazität hängt sie von

der Ladungskurve  Q( uC) ab, aber nicht vom Vorwiderstand  R (linear oder

nichtlinear)! 

Kennliniendarstellung Das Spannungs-Ladungsverhalten des Kondensators an

idealer Spannungsquelle  U Q zeigt Abb. 4.1.6a. Die Quelle hat unendlich hohe

Kapazität (kann also unbegrenzt viel Ladung bereitstellen) und deshalb eine

Spannungs-Ladungs-Kennlinie  u( Q) ohne Steigung. Sie liefert die Energie

 W el =  U Q Q (Energieänderung d W el =  U Qd Q  wegen  U Q = const) und wirkt
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Abb. 4.1.6. Ladungs-Spannungs-Kennlinien. (a) Kennlinien  u( Q) der idealen Spannungs-

quelle und eines linearen / nichtlinearen Kondensators. (b) Energieänderung im linearen

zeitveränderlichen Kondensator. (c) Plattenkondensator mit beweglicher Platte unter ver-

schiedenen Betriebsbedingungen

als ideal  aktives  energiespeicherndes Element (aktiv wegen  U Q  >  0). So bietet

sie eine andere Beschreibung des bisher verwendeten Modells (angenähert

durch eine innenwiderstandslose Batterie). 

Der Kondensator ist dagegen ein ideal  passives  Element (Kennlinie durch

Nullpunkt, Steigung d u/ d Q >  0) und es gibt den Arbeitspunkt A beim Zu-

sammenschalten mit der Spannungsquelle. Seine gespeicherte Energie beträgt



 W

 Q 0

d =

 u( Q)d Q  mit d W

0

d =  u( Q)d Q (freie Fläche unterhalb der Kennlinie

 u C =  C− 1 Q  bzw.  u C( Q) in Abb. 4.1.6a). Die Ergänzung zum Rechteck  U Q Q 0

bildet die Ko-Energie  W ∗ (schraffiert im nichtlinearen Fall). 

d

Ändert sich die Kapazität z. B. durch Plattenabstandsänderung über eine

einwirkende Kraft (Abb. 4.1.6c), so gehören zu zwei Zeitpunkten  t 1,  t 2 ver-

schiedene Ladungskennlinien  Q 1 =  C 1( t 1) u 1 bzw.  Q 2 =  C 2( t 2) u 2 resp. die inversen Verläufe und so gespeicherte Energien. Die Differenz Δ W mech =

 W d( t 2)  − W d( t 1) =  W d2  − W d1 beider Speicherenergien  muss folglich mechanische Energie  sein (schraffierte Fläche  W d( t 2) −W d( t 1) = 1 / 2 U Q( Q 02  −Q 01) in Abb. 4.1.6b) oder allgemeiner

 Q 2



Δ W mech =

 u( Q)d Q. 

(4.1.17)

 Q 1

Die mit der zeitlichen Kapazitätsänderung verknüpfte Änderung der Spei-

cherenergie muss als mechanische Energie zur Kapazitätsänderung aufge-

bracht werden. 

Dabei mag die Nebenbedingung der Kapazitätsänderung (konstante Ladung

oder Spannung), wie in Abb. 4.1.6c angedeutet, im Moment unerheblich sein. 
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4.1.3.2 Energieverh¨

altnisse am zeitabh¨

angigen Kondensator

Energieumsatz im zeitabh¨

angig linearen Kondensator Technische Bedeutung

haben  zeitabh¨

 angige  Kondensatoren (Kap. 2.7.4) beispielsweise als  Senso-

 ren  oder in  parametrischen Verst¨

 arkern. Ihr Verständnis erfordert Energie-

betrachtungen, weil eine  Wechselwirkung zwischen dielektrischer und mecha-

 nischer Energie (Krafteinwirkung als Ursache des Zeiteinflusses) auftritt. 

Wird ein Plattenkondensator mit dünnem Dielektrikum (Isolierfolie, Dicke

 d) und beweglicher Elektrode durch eine Spannungsquelle geladen (und die

Quelle anschließend entfernt, Abb. 4.1.6c), so führt er die Ladung  Q. Die

geladenen Platten verursachen wechselseitig anziehende Kräfte und beide

werden an die Isolierfolie gepresst. Bei anschließendem Auseinanderziehen

durch eine äußere Kraft (Leistung von Arbeit am System, Zufuhr mecha-

nischer Energie)  ¨

 andern sich Kapazit¨

 at und Spannung  trotz Ladungserhalt:

 Q 2 =  C 2 u 2 =  Q 1 =  C 1 u 1 =  C( t) u( t) =  Q  und als Folge der Kapazitätsabnahme steigt die Spannung. Die gespeicherte Energie ändert sich



 Q 2 

 A

 W



d ( t) =

mit  C( t) =

 . 

(4.1.18a)

2 C( t)  Q=const

 εd( t)

Bleibt der Kondensator dagegen an der Spannungsquelle (konstante Span-

nung, Abb. 4.1.6c) und werden die Platten durch eine Kraft bewegt, so ändert

sich die Kondensatorladung und es fließt der Kondensatorstrom  i( t) nach

Gl. (2.7.25) verbunden mit  Energieaustausch zur Spannungsquelle. Die ge-

speicherte Ladung beträgt jetzt



 C( t) u 2 

 A

 W



d ( t) =

mit  C( t) =

 . 

(4.1.18b)

2

 u=const

 εd( t)

Im ersten Fall verschwindet die an den Kondensatorklemmen auftretende

elektrische Leistung  p el =  ui  nach Gl. (4.1.10b), im zweiten nicht. 

Allgemein (z. B. bei Spannungsquelle mit Innenwiderstand) ändern sich durch

Plattenbewegung Kondensatorstrom und -spannung. Liegt am Kondensator

die Spannung  u( t), so beträgt seine momentan gespeicherte Energie  W d( t) =

( C( t) u 2( t)) / 2 mit der Änderungsrate

d W d( t)

u. 

 u 2( t) d C( t)

=  C( t) u( t)

+

 . 

(4.1.19)

d t

d t

2

d t

Dabei wird die elektrische Leistung  p el zugeführt ( i = d ( C( t) u( t)))

d t

d u

d C( t)

d W d

 u 2( t) d C( t)

 p el =  u( t) i( t) =  C( t) u( t)

+  u 2( t)

=

+

d t

d t

d t

2

d t

d W d

=

+  p mech( t) . 

(4.1.20)

d t
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Die zugeführte elektrische Leistung erhöht die Speicherenergie und unterhält

mechanische Arbeit zur Plattenbewegung. 

Die lineare zeitveränderliche Kapazität kann auch durch die Geschwindigkeit

 v = d x/ d t  ausgedrückt werden, mit der sich die Kondensatorplatte bewegt. 

Für den Plattenkondensator  C( t) =  εA/d( t) (Plattenabstand  d( t)) gilt





d C

 ∂C  d d( t)

 d d( t)

=



=  − C( d) 

 . 

(4.1.21)

d t

 ∂d 

d



d

 t

 t

 d

 t

 t

Der Kondensator mit veränderlicher Geometrie (und anliegender Span-

nungsquelle) wirkt als elektro-mechanischer Energiewandler. 

Zur Beschreibung der Kraftwirkung eignet sich daher die Abhängigkeit der

Kapazität von einer zeitveränderlichen  Geometriekoordinate (hier Plattenab-

stand) besser (s. Kap. 4.3.1). 

Energieumsatz im zeitabh¨

angig nichtlinearen Kondensator Beim nichtlinear

zeitabhängigen Kondensator (Ladungskennlinie  Q( u( t) , t) bzw. der Umkeh-

rung  u( Q( t) , t), Abb. 4.1.6a) hängt die Ladung nichtlinear von der Spannung ab sowie implizit (über  u( t)) und explizit von der Zeit. Dazu gehört die zeitliche Ableitung



d Q ( u( t) , t)

 ∂Q  d u

 ∂Q 

=

+

  . 

d t

 ∂u  d t

 ∂t  u

Die Spannungsquelle liefert im Zeitraum 0  . . . t  die Energie

 t



 t



d Q( t)

 W el(0 , t) =

 u( t) i( t)d t =

 u( Q( t) , t) d t  d t

0

0

 t

  ∂

=  W d( Q( t) , t)  −







=  W d +  W mech . 

 ∂t W d( Q( t) t)d t

Speicherenergie

0







mechanische Energie

(4.1.22)

Die im Zeitraum 0  . . . t  zufließende elektrische Energie erhöht die Feldener-

gie (Speicherenergie  W d) eines nichtlinearen zeitabhängigen Kondensators

und ändert seine Netzwerkelementkennlinie durch aufgewendete mechani-

sche Energie (Kraftwirkung) oder zugeführte elektrische Energie (aus einer

Hilfsquelle, s. u.). 

Dient als untere Grenze nicht der Zeitpunkt  t = 0, sondern  t 0, so stellt die linke

Seite von Gl. (4.1.22) die elektrische Energiedifferenz gegen den Anfangszeitpunkt
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dar, rechts ist die Anfangsspeicherenergie  W d( Q( t 0),  t 0) abzuziehen und im Integral die untere Grenze  t 0 zu wählen. Das Resultat enthält Tab. 4.3. 

Das Ergebnis (4.1.22) kann auch als  Leistungsbilanz (Gl. (4.1.20)) formuliert werden:

d W

d W

d W

d W

 p

el

d

mech

d

el ( t) =

=

+

=

+  p mech( t) . 

(4.1.23)

d t

d t

d t

d t

Mit den Zuordnungen

d W el

d Q( t)

=  u ( Q( t) , t)  i( t) =  u ( Q( t) , t)

 , 

d t

d t

d W d ( Q( t) , t)

 ∂W  d Q

 ∂W

d Q( t)

 ∂W

=

d

+

d ( Q( t) , t) =  u ( Q( t) , t)

+

d ( Q( t) , t)

d t

 ∂Q  d t

 ∂t

d t

 ∂t

und der Ableitung des letzten Integrals in Gl. (4.1.22) sind linke und rechte Glei-

chungsseite identisch und man erhält die prinzipielle Energiebeziehung der nichtli-

nearen, zeitabhängigen Kapazität. Sie vereinfacht sich für die  linear zeitabh¨

 angige

 Kapazit¨

 at  mit  u( Q) =  Q/C( t) und

 Q

  Q d Q Q 2( t)

 ∂W

d C( t)

 W

d ( Q( t) , t)

d ( Q( t) , t) =

=

 , 

=  − Q 2( t)

 C( t)

2 C( t)

 ∂t

2 C 2( t)

d t

0

zu

 t



 t



 Q 2( t)

 Q 2( t) d C( t)

 C( t) u 2( t)

 u 2( t) d C( t)

 W el(0 , t) =

+

d t =

+

2 C( t)

2 C 2( t)

d t

2

2

d t

d t. 

0

0

(4.1.24)

Es lässt sich zeigen, dass beide Anteile in diesem speziellen Fall übereinstimmen. 

Parametrische Kapazit¨

at Oft schwankt eine zeitvariable Kapazität  C( t)  peri-

 odisch (z. B. Rotation eines Drehkondensators oder periodische Hin- und Her-

bewegung einer beweglichen Kondensatorplatte) um einen Ruhewert. Liegt

gleichzeitig eine Wechselspannung an, so erfolgt unter bestimmten Bedin-

gungen ein Energietransfer zwischen Spannungsquelle (Abb. 4.1.7a) und der

Steuerursache des Kondensators. Dazu möge der Plattenabstand  d( t) peri-

odisch mit einer  Pumpfrequenz f p gleich der doppelten Wechselspannungsfre-

quenz  f s ( f p = 2 f s) schwanken. Für die Kondensatorspannung gilt  u C( t) =

 Q/C( t)  ∼ Qd( t). Die Phasenlage zwischen Kondensatorspannung und Kon-

densatorschwingung wird so gewählt, dass bei Abstandszunahme zur Zeit  t 1

die Spannung wächst (Abb. 4.1.7b, Ladungserhaltung,  Q  konstant!) und bei

Spannungsnulldurchgang  t 2 Abstandsverringerung eintritt (dort ist  u C( t 2)

= 0 und die Spannung ändert sich nicht). Zum Zeitpunkt  t 3 steigt der Plat-

tenabstand wieder und die Spannung wächst erneut. Die Induktivität parallel

zum Kondensator (Anordnung wirkt als  Parallelschwingkreis, s. Bd. 3) ver-

hindert eine sprunghafte Ladungsänderung und die Gesamtenergie bleibt im

Zeitraum  t 1  . . . t 3 erhalten. Anschließend wächst sie erneut um einen Betrag
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Abb. 4.1.7. Energietransfer durch periodisch zeitgesteuerte Kapazität im Schwingkreis. 

(a) Grundschaltung und Zeitverlauf des Plattenabstandes und der Kapazität. (b) Anwach-

sen der Kondensatorspannung und -energie zu den Zeitpunkten  t 1,  t 3,  t 5  . . . (c) Schaukel als mechanisches parametrisches System

an usw. Deshalb gilt an den Sprungstellen Ladungserhaltung mit  Q( t 3 −) =

 C( t 3 −) u C( t 3 −) =  C 0 u C( t 3 −) und unmittelbar nach der Kapazitätsänderung: Q( t 3+) =  Q( t 3 −) =  C( t 3+) u C( t 3+) =  C 1 u C( t 3+). Daraus folgt eine Span-nungszunahme nach dem Schaltzeitpunkt  t 3

 u C( t 3+)

 C 0

=

 >  1 . 

(4.1.25)

 u C( t 3 −)

 C 1

Die Vorgänge wiederholen sich zu den Folgezeitpunkten  t 5,  t 7 usw. Die An-

regungsenergie stammt von der Schwingung mit der Pumpfrequenz  f p, weil

das Rückschalten des Kondensators im Spannungsnulldurchgang erfolgt. Die

Zunahme der Spannung bei eingehaltener Frequenzbedingung heißt  parame-

 trische Resonanz. 

Wird eine periodisch zeitveränderliche Kapazität mit doppelter Frequenz

so gegenüber einer anliegenden Wechselspannung (Frequenz  f s) gesteuert, 

dass Kapazitätsabnahme bei maximaler Spannung (und -zunahme im Null-

durchgang der Ladung) erfolgt, dann transportiert die Pumpgröße Energie

in die Schaltung und die Kondensatorspannung steigt im Mittel an (para-

meterisches Verstärkungsprinzip durch Energiepumpen). 

Die Frequenzbedingung  f p = 2 f s erfordert eine spezielle Phasenbedingung

zwischen Pump- und Steuersignal. Bei Verschiebung des Pumpsignals um

1800 (Kapazitätszunahme bei maximaler Signalspannung) erfolgt Spannungs-

abnahme. 
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Die Bedienung eines  mechanisch parametrischen Systems  erlernen Kinder bereits

auf der Schaukel (Abb. 4.1.7c): bei angestoßener Schaukel (betrachtet als Pendel)

wächst die Schaukelschwingung durch periodische Veränderung der Pendellänge

(Abstand zwischen Aufhängepunkt und Schwerpunkt des Kindes). Mit periodi-

schem Neigen und Aufrichten des Körpers (oder Kniebeugen und -strecken) wird

der Schwerpunkt im erdnächsten Punkt gehoben und in Umkehrlagen gesenkt (pro

Schwingungsperiode zweimal). Das wirkt wie eine periodische Änderung der Pen-

dellänge. Die Schwerpunktverlagerung

pumpt“ so mechanische Energie in das

” 

Schaukelsystem und die Schwingungsamplitude wächst. Erfolgt das Neigen und

Aufrichten des Körpers mit umgekehrter Phase, so dämpft die Schwingung rasch. 

Zeitveränderliche Kapazitäten (und Induktivitäten) entstehen durch Geome-

trieänderung (Plattenabstand, Luftspaltänderung im magnetischen Kreis), 

sie lassen sich aber ebenso (z. B. für Hochfrequenzanwendungen) mit  nicht-

 linearen, zeitunabh¨

 angigen Elementen C( u),  L( i) durch Aussteuerung mit

einer (großen) Pumpgröße der Frequenz  f p und überlagerter Kleinsignalsteu-

ergröße (Frequenz  f s) realisieren. 

Liegt z. B. an einer spannungsabhängigen Kapazität (Sperrschicht-, MOS-

Kapazität (Kap. 2.5.2), Charakteristik  C( u), Ladungsbeziehung  Q( u( t)) =

 f ( u)) eine Summenspannung  u( t) =  U 0 +  u p( t) +  u s( t) aus Gleichgröße  U 0

und Spannungen verschiedener Frequenzen  f p,  f s und Amplituden mit  |U p | 

 |U s |, so gilt für die Ladung bei Kleinsignalaussteuerung (s. Gl. (2.7.29))



d f 

 Q( u( t))  ≈ Q ( U



0 +  u p( t)) +

 u s( t)

(4.1.26)

d u  U 0+ u p( t)



mit  c( t) = d f 

oder für den  Kleinsignalzusammenhang  gilt

d u U 0+ u p( t)

Δ Q s ( u( t)) =  c( t) u s( t)  →

⎧

⎫

⎪

⎨ periodisch

⎪

⎬

Ladungsänderung =

 ×  Spannungs-

⎪ zeitveränderliche

 . 

⎩

⎪ änderung

Kleinsignalkapazit

⎭

ät

Die Großsignalsteuerung (mit  u p) ändert die differenzielle Kapazität  c( t)

ständig und deshalb wirkt sie für das Kleinsignal  u s als linear zeitabhängige

Kapazität! 

Im Kleinsignalbetrieb verhält sich eine nichtlineare (zeitunabhängige) span-

nungsgesteuerte Kapazität als linear zeitveränderliche Kapazität gesteuert

durch die Pumpspannung. 

Im parametrischen Betrieb (Frequenzbedingung  f p = 2 f s) übernimmt die

Pumpquelle die sonst mechanische Energiezufuhr zur Kapazitätsänderung

und statt der mechanischen wird die elektrische Pumpleistung ausgewiesen. 

Die Energiebilanz Gl. (4.1.10) bleibt im Prinzip erhalten, muss aber den

elektrischen Verhältnissen angepasst werden. 
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Anwendungen Das Speichervermögen des Kondensators wird vielfältig ge-

nutzt, wegen der begrenzten Energiedichte hauptsächlich dort, wo hohe Leis-

tung/ Strom nur kurzzeitig verfügbar sein muss: Blitzkondensator, Stütz-

kondensator zur Stützung von Gleichspannungen“ (wechselnde Batteriebe-

” 

lastung, Frequenzumrichter, IC-Versorgung, Blindleistungskompensation). 

 Zeitver¨

 anderliche Kapazit¨

 aten  hatten wegen der deutlich kleineren Energiedichte

des elektrostatischen Feldes gegenüber dem Magnetfeld lange Zeit nur geringe Ver-

breitung. Elektrostatische Spannungsmesser, Nadelelektrometer und Kondensator-

mikrofon sowie elektrostatischer Lautsprecher (s. Kap. 6.3.1) zählten zu den weni-

gen brauchbaren Energiewandlern, von der Influenzmaschine als historischem Gerät

abgesehen. Später brachten kapazitive  Sensorprinzipien  und vor allem der  para-

 metrische Verst¨

 arker  einen Aufschwung. Die Situation ändert sich allerdings im

 Mikrosensorbereich. Dort führen sinkende Elementabmessungen (µm-Bereich) zum

drastischen Anstieg der Energiedichte und die Kräfte reichen für elektrostatische

Mikromotoren, Beschleunigungsmesser, Torsionsspiegel u. a. aus. 

Beispiel 4.1.2 Gr¨

oßenordnung Ein Fotokondensator speichert nur vergleichsweise

kleine Energien, z. B.  C = 100 µF bei einer Ladespannung  U C = 2 kV,  W C =

 CU  2

C  / 2 = 200 Ws. Ein Akkumulator speichert deutlich mehr: Autobatterie  Q =

84 Ah,  U = 6 V  → W =  QU = 1 ,  81106 Ws. 

Hat der Kondensator Zylinderbauform (Höhe 20 cm, Durchmesser 5 cm, Volumen

196 cm3), so beträgt die mittlere Energie bezogen auf das Volumen  w e =  W/V =

1 ,  02 Ws /  cm3. Der Akkumulator (Abmessung 20 · 25 · 20 ·  cm3) besitzt demgegenüber die Energiedichte  w e =  W/V = 181 Ws /  cm3. Vergleichsweise hoch ist dagegen die

Energiedichte von Kraftstoffen mit etwa (40  . . .  50)  ·  103 Ws /  cm3! 

Beispiel 4.1.3 Speicherenergie Ein Plattenkondensator (Dielektrikum Luft) sei auf

die Spannung  u C geladen. Nach Entfernen der Spannungsquelle werde zwischen

die Platten Dielektrikum ( ε r) geschoben, das den Raum vollständig ausfüllt. Wie

ändert sich die gespeicherte Energie? 

Hat der Kondensator anfangs die Kapazität  C, so beträgt sie (nach Veränderung

des Dielektrikums)  ε r C. Die Ladung bleibt unverändert, aber es ändert sich die

Spannung auf  u C =  Q/C =  Q/ε r C =  u C /ε r. Die gespeicherte Energie beträgt jetzt  W  C =  C( u C)2 / 2 =  W C /ε r. Die Differenz beider Energien  W C  − W  C ( >  0) wird in mechanische Energie umgewandelt, da das Feld die Platte anzieht. 

4.1.3.3 Merkmale der dielektrischen Energie

Energiedichte Die Energieverteilung räumlicher Felder erfordert die Über-

führung der Energiebeziehung Gl. (4.1.10) in eine  Feldform. Wir greifen dazu

aus dem inhomogenen Feld einen kleinen Plattenkondensator mit annähernd
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Abb. 4.1.8. Energiedichte

 w d im elektrostatischen

Feld. (a) Herleitung im

inhomogenen Feld. 

(b)

Energiedichte

im

nichtlinearen und linea-

ren elektrostatischen Feld

homogenem Feld als Feldelement (Plattenabstand Δ s, Plattenfläche Δ A  mit

 u =  E · Δ s, d Q = Δ A ·  d D  und Δ V = Δ A · Δ s, Abb. 4.1.8a) heraus und erhalten für die Teilenergie d W d: d W d =  u d Q = Δ A · Δ s

   E ·  d D. Die Ge-

Δ V

samtenergie im Feldvolumen  V  beträgt mit Verwendung der  elektrostatischen

 D 0



 Energiedichte w d =

 E ·  d D

0

  D 0



 D 0





 W d =

 E ·  d D d V =  V

 E ·  d D =

 w dd V. 

(4.1.27)

 V

0

0

 V

Die Energiedichte ist in Abb. 4.1.8b für nichtlinearen  D( E) Verlauf darge-

stellt. Bei linearem  D,  E-Zusammenhang lässt sich das Integral leicht auswer-

ten und ergibt

Δ W d

d W d

 D · E

 εE 2

 D 2

 w d = lim

=

=

=

=

 . 

Δ V → 0 Δ V

d V

2

2

2 ε

Energiedichte, elektrostatisches Feld

(4.1.28)

Die Energiedichte  w d des elektrostatischen Feldes kennzeichnet seinen Ener-

gieinhalt im Raumpunkt gleichberechtigt getragen von Feldstärke und Ver-

schiebungsflussdichte. Überall dort, wo eine Feldstärke im Dielektrikum

herrscht, ist dielektrische Energie gespeichert. 

Bei  nichtlinearem Medium ε( E) muss der Verlauf  D( E) oder  E( D) gegeben sein (auch als dielektrische Hysteresekurve), um das Integral auszuwerten

(Abb. 4.1.8b). 

Umformung elektrische – dielektrische Energie Der Kondensator wandelt zu-

geführte elektrische Energie in dielektrische um (und umgekehrt):
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Tab. 4.4. Energie- und Leistungsbeziehungen in Feldern

Str¨

omungsfeld

Elektrostatisches

Magnetisches

Feld

Feld





Energieinhalt

 −

 W =  Cu d u

 W =  L d i

des Feldes

=  Cu 2

=  Li 2

2

2

 P = U I =  U 2  R

Wärmeleistung

 I

 −

 −

= I 2 R





d W =  E · D d V

d W =  H · B d V

Energiedichte

 −

d V

d V

=  E·D

=  H·B

2

2

d P = J · E

Leistungsdichte d V

 −

 −

= κE 2 =  J 2

 κ

Kraftwirkung

 F =  QE

 F = Q( v × B)

= i( s × B)

 f= F

Kraftdichte

 f =  F =  ε 1 −ε 2  E

 A

 A

2

1  · E 2

= 1  μ 2 −μ 1  B

2  μ

1  · B 2

1  μ 2

Zufuhr elektrischer Energie beim  Aufladen (Strom- und Spannungsrich-

tung übereinstimmend, Speicherung als dielektrische Energie im Feld):

Kondensator als  Verbraucher  elektrischer Energie, 

beim  Entladen  fließt die dielektrische Energie wieder als elektrische ab

(Entladestrom fließt der Spannung entgegen, Erzeugerpfeilsystem). 

Der Kondensator hat gegenüber dem Widerstand einen  grundverschiedenen

 Energieumsatz (Tab. 4.4): der Widerstand setzt elektrische Energie irreversi-

bel in Wärme um (einseitiger Energiedurchgang an die Umgebung). Die Ener-

giespeicherung im Kondensator ist dagegen  reversibel: gespeicherte Energie

kann zurückgewonnen werden. 

Im Kondensator ändert sich die Energie nur, wenn sich der Verschiebungsfluss, also

die Ladung,  ¨

 andert. Weil das elektrostatische Feld aber durch ruhende Ladungen

gekennzeichnet ist, bleibt die Energie vom Ende der Aufladung an (d Q/ d t = 0, 

 → i →  0) als  dielektrische Energie im Feld  gespeichert. Das drückt die Konden-

satorspannung  u C am Ende des Ladevorganges aus. Beim Entladen (d Q/ d t <  0, 

 i <  0) fließt die gespeicherte Energie voll in den elektrischen Kreis zurück. Ursache

des Stromantriebes ist die Kondensatorladespannung  u C. 

Haupteigenschaft der dielektrischen Energie: Stetigkeit Auf die Stetigkeit der

Kondensatorspannung bzw. -ladung hatten wir bereits verwiesen. Sie beruht

auf der Stetigkeit der dielektrischen Energie, die sich, wie jede Energie,  nie

 sprunghaft ändert (s. Abb. 4.1.3a). Sonst wäre sie ohne Zeitverzug von einem
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zum anderen Ort transportierbar. Das ist physikalisch unmöglich: Energie

verhält sich vielmehr wie eine träge Masse“. 

” 

Die Kondensatorenergie  W C =  W d =  Cu 2C / 2 ist aus physikalischen Gründen

(Trägheitscharakter der Energie) immer stetig. 

Eine sprungförmige Energieänderung  p = d W/ d t → ∞ (d u/ d t → ∞) würde ei-

ne augenblicklich unendlich hohe Leistung  p  erfordern, also einen unendlich großen

Strom  i C  ∼  d u/ d t. Dies ist physikalisch unmöglich. Zudem haben technische Schalt-

kreise stets endliche Widerstände. Dadurch entsteht das typische Leistungsverhal-

ten Abb. 4.1.5b im Grundstromkreis beim Einschalten eines Kondensators. 

Beispiel 4.1.4 Parallelschaltung geladener Kondensatoren Zwei Kondensatoren  C 1, 

 C 2 (Ladungen  Q 1,  Q 2) werden parallel geschaltet (ideale Verbindungsleitungen). 

Damit beträgt die Ausgangsenergie

 C 1 U  2

 C 2 U  2

 W

1

2

1 =

+

 . 

2

2

Nach dem Zusammenschalten beträgt die Gesamtkapazität  C ges =  C 1 +  C 2. Weil

die Ladung erhalten bleibt, hat die Ersatzanordnung  C ers die Gesamtladung  Q ges =

 Q 1 +  Q 2 =  C 1 U 1 +  C 2 U 2 und man erhält als Gesamtenergie der neuen Anordnung W 2 = ( Q 1+ Q 2)2 und Δ W =  −C 1 C 2( U 1 −U 2)2 . Die Energiedifferenz Δ W =  W

2( C

2  − W 1

1 + C 2 )

2( C 1+ C 2)

ist negativ (Energieabnahme). Der Energieverlust entsteht durch Abstrahlung ei-

nes elektromagnetischen Feldes. Beim Zusammenschalten gleicher Kondensatoren

(einer geladen, der andere ungeladen), halbiert sich die Energie bei der Parallel-

schaltung. 

Mit solchen oder ähnlichen Folgerungen zieht dieses Beispiel seit Jahren durch die

Lehrbücher. In Wirklichkeit verletzt es aber ein Grundaxiom:  (Ideale) Kondensa-

 toren mit unterschiedlicher Spannungen d¨

 urfen nicht parallel geschaltet werden (es

liegt im Grunde das Anschalten einer (idealen) Spannung an einen ungeladenen

Kondensator und damit eine Verletzung der Stetigkeitsbedingung der Spannung

vor). Überprüft man das Verhalten mit dem Energiesatz



	



	

 C





1 U  2

1

 C 2 U  2

 CU  2

 C 1 U  2

+

2



=



 → U 2 =

1 +  C 2 U  2

2

2

2



2



 C

vorh. 

nachh. 

und der Ladungserhaltung

 C 1 U 1 +  C 2 U 2

( C 1 U 1 +  C 2 U 2) |vorh. = ( CU) |

 , 

nachh . → U =

 C

so gibt es eine Lösung nur für  U 1 =  U 2 =  U . Der Fall  U 1  =  U 2 erlaubt keine widerstandsfreie Verbindung beider Kondensatoren: die Aufgabe verstößt gegen ein

Grundaxiom. 
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4.1.4 Magnetisches Feld

¨

Ubersicht

Das Magnetfeld von Dauermagneten, stromdurchflossenen Spulen oder

stromführenden Leitern ist Sitz der magnetischen Energie. Sie beschreibt

als Zustandsgröße das im magnetischen Feld gespeicherte Arbeitsvermögen. 

Das äußert sich verschiedenartig: im Anfangswert des Spulenstromes

(Gl. (3.4.3) ff.), in seiner Stetigkeitsforderung, beim Ein- und Ausschalten

einer Spule im Grundstromkreis (Abb. 3.4.3), als Speicherenergie  W L =  W m

oder durch Kraftwirkungen auf ferromagnetische Körper. 

Ein Feldaufbau erfordert Energie, die während des Abbaus wieder frei wird. 

So, wie die dielektrische Energie  W d im Kondensator durch die  Zustands-

 gr¨

 oßen  Ladung  Q  und Spannung  u  ausgedrückt werden konnte und es, ab-

hängig vom Zusammenhang zwischen beiden Größen, lineare, nichtlineare, 

zeitkonstante und zeitabhängige Kapazitäten gab, wird die in einer Spule ge-

speicherte magnetische Energie  W m durch die Zustandsgrößen  magnetischer

 Fluss Ψ3 und  Strom i  gebildet:  W m =  V Ψ =  iΨ  ∼ H · B. Dabei steht die magnetische Spannung  V  in Beziehung zur magnetischen Erregung Θ  ∼ i. 

Die Folge sind  lineare, nichtlineare, zeitkonstante  und  zeitabh¨

 angige Indukti-

 vit¨

 aten (Kap. 3.4.1.3). Die relevanten Energiebeziehungen (Tab. 4.4) können

sinngemäß vom Kondensator übernommen werden. 

Nichtlineare magnetische Kreise sind Grundlage von Elektromagneten, Mo-

toren/Generatoren. Deshalb haben die Energieverhältnisse in nichtlinearen

Spulen besondere Bedeutung. Nicht zuletzt ist der feste oder  zeitver¨

 anderliche

 Luftspalt  im  magnetischen Kreis das Transportvolumen, über das  mechani-

 sche Energie in magnetische  und schließlich durch das Induktionsgesetz in

elektrische umgesetzt wird (und umgekehrt). Dann führt man besser statt

der Zeitabhängigkeit  L( t) wie beim Kondensator nach Gl. (4.1.21) eine  Geo-

 metrievariable x des Luftraumes  im magnetischen Kreis ein und benutzt

den magnetischen Fluss Ψ( i, x) statt der Abhängigkeit Ψ( i, t). Die Ablei-

tung d x/ d t =  v  ist die Änderungsgeschwindigkeit des Transportraumes in

 x-Richtung, z. B. beim bewegten Leiterstab im Magnetfeld (Abb. 3.3.13). 

Damit interessiert auch der explizite Geometrieeinfluss in der magnetischen

Energie und Ko-Energie zur Analyse der Kraftwirkungen (Kap. 4.3.2). 

Magnetische Energie tritt in  zwei Formen  auf

in einer stromdurchflossenen  Luftspule  wird sie aufgebaut, bei konstantem

Strom gespeichert und bei Stromabschaltung wieder rückgewonnen, 

3 genauer  Verkettungsfluss
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in der Spule mit  ferromagnetischem Kreis  läuft der gleiche Vorgang ab, 

aber nach Abschaltung des Stromes bleibt Energie mehr oder weniger im

 Ferromagnetikum gespeichert (besonders in dauermagnetischem Material, 

Grenzfall Dauermagnet,  B,  H-Verhalten im 2. Quadranten der Hysterese-

schleife Abb. 3.2.15a). Wir legen für die Energieverhältnisse die zugehörige

Ersatzschaltung (Abb. 3.2.11c bzw. 3.2.15a) zugrunde. 

Auch die magnetische Energie wird gleichwertig durch  Globalgr¨

 oßen (Fluss

Ψ, Strom  i  bzw. magnetische Erregung Θ und Induktivität  L  bzw. Ψ( i)) oder

 Feldgr¨

 oßen B,  H  und  Magnetisierungskennlinie B( H) beschrieben. 

4.1.4.1 Energie und Ko-Energie des magnetischen Feldes

Spulenenergie Jeder stromdurchflossene Leiter hat ein Magnetfeld und des-

halb eine Induktivität  L. Konzentrierte Magnetfelder treten in Spulen auf, 

etwa einer Ringspule (Abb. 4.1.9a) mit praktisch homogenem Feld im Kern

und feldfreiem Außenraum. Die gespeicherte magnetische Energie  W m folgt

aus ihrer Strom-Spannungs-Relation Gl. (3.4.1). Eine anliegende Spannungs-

quelle  U Q =  u( t) liefert im Zeitabschnitt  t  die elektrische Energie

 t



 t



 i( t)



d i

 W el( t) =

 u( t) i( t)d t =  L

 i( t)

 i( t)d i

d t  d t =  L

(4.1.29a)

0

0

 i(0)

 L 



=

 i 2( t)  − i 2(0) =  W m( t) . 

2

Sie strömt ins Magnetfeld, stellt also die gespeicherte magnetische Energie

 W m dar. Ohne Anfangsstrom wird daraus (Tab. 4.3)

 L

Ψ( t) i( t)

Ψ2( t)

Magnetische Speicher-

 W m =

 i 2( t) =

=

 . 

(4.1.29b)

2

2

2 L

energie der Spule

Die in einer linearen Spule gespeicherte magnetische Energie hängt vom

durchfließenden Strom  i, ihrer Induktivität  L  und dem mit der Spule verket-

teten Fluss Ψ ab. Überall dort, wo eine magnetische Feldstärke  H  herrscht, 

ist magnetische Energie gespeichert. 

Das Ergebnis Gl. (4.1.29) erlaubt umgekehrt die Berechnung der Induktivität

einer Spule über die magnetische Feldenergie (neben der Definitionsbeziehung

Ψ =  Li). 

Die Fluss-Strom-Darstellung Ψ( i) (Abb. 4.1.9b) weist die magnetische Ener-

gie der linearen Spule als schraffierte Dreieckfläche aus. 
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Abb. 4.1.9. Spule als Speicherort magnetischer Energie. (a) Ringspule mit linear angenom-

menem magnetischen Kern, Grundschaltung und magnetische Energiedichte  w m im Volu-

menelement. (b) Magnetischer Fluss Ψ, Spulenstrom  i  und magnetische Energie bei linearer

Spule. (c) Leistung  p m( t) zum Aufbau der magnetischen Feldenergie (s. auch Abb. 3.4.5)

beim Einschalten der Spule. (d) Magnetische Energie  W m und Ko-Energie  W ∗

m im Fluss-

Strom-Diagramm bei nichtlinearem Verlauf Ψ( i)

In

der

Grundschaltung

Spannungsquelle, 

Widerstand

und

(ideale)

Spule

(Abb. 4.1.9a) wird die Quellenenergie  W el beim Einschalten in Verlustenergie  W R

im Widerstand und magnetische Feldenergie  W m der Spule umgesetzt. Der Ma-

gnetfeldaufbau erfolgt nur bei zeitveränderlichem Erregerstrom  i  und der dabei

entstehenden Spulenspannung  u. Stationär hängt  W m nur vom Stromendzustand

 I 0 ab. Das zeigen die Einschaltverläufe von Strom und Spannung (Abb. 3.4.5 und

4.1.9c). Die zum Aufbau der Feldenergie nötige Leistung  p m durchläuft ein Ma-

ximum und klingt stationär gegen null ab (Magnetfeld aufgebaut) verbunden mit

verschwindender Spulenspannung. Dann fällt die Quellenspannung voll am Wider-

stand  R  ab und die zugeführte elektrische Energie wird ausschließlich in Wärme

gewandelt (Leistung  p R). In der Energiebilanz

 t 0



 t 0



Ψ0



 W el =

 U Q i d t =

 i 2 R d t +

 i dΨ =  W R +  W m

0

0

0

hängt die Wärmeenergie  W R von der Stromflussdauer  t 0 ab und geht mit  t 0  → ∞

gegen unendlich. 

Magnetische Ko-Energie  W ∗

m Die im Arbeitspunkt Ψ0,  I 0 (Abb. 4.1.9b) ge-

speicherte magnetische Energie  W m Gl. (4.1.29) folgt auch aus der Fläche
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unter der Ψ,  i-Kurve und wird  magnetische Ko-Energie  genannt (analog zum

Kondensator, Abb. 4.1.5c):

 I 0



 W ∗

 m =

Ψ( i)d i. 

Magnetische Ko-Energie (4.1.30)

0

Die magnetische Ko-Energie ist die Differenz zwischen umschreibendem

Rechteck Ψ0 I 0 und magnetischer Energie  W m und ist zunächst eine Re-

chengröße. 

Sie verzichtet mit der Magnetisierungskennlinie Ψ( i) auf deren Inversion, wie

sie die Berechnung der magnetischen Energie erfordert.  Deshalb eignet sich

 die Ko-Energie besonders f¨

 ur nichtlineare Spulen (Rechenvorteile!) und solche

 mit mehreren elektrischen Toren. Dort ist die Umkehrfunktion  i(Ψ) nicht zu

bilden. Das bringt Vorteile bei der Kraftberechnung (s. Kap. 4.3.2). 

Definitionsgemäß hängen magnetische Energie und Ko-Energie zusammen

(Abb. 4.1.9d)

Ψ0



 I 0



 I 0Ψ0 =  W m +  W ∗ =

Ψ(

m

 i(Ψ)dΨ +

 i)d i. 

(4.1.31)

0

0

Sie unterscheiden sich bei  nichtlinearer  Magnetisierungskennlinie Ψ( i), dage-

gen  nicht  bei  linearer  Kennlinie Ψ =  Li

Ψ2

 LI 2

 I 0Ψ0

 W

0

0

m =  W ∗ =

=

=

m

 . 

(4.1.32)

2 L

2

2

Magnetische Energie und Ko-Energie stimmen bei linearer Magnetisierungs-

kennlinie (zeitunabhängige Induktivität) überein. 

Nichtlineare zeitunabh¨

angige Induktivit¨

at Bei nichtlinearem Strom-Fluss-Zusam-

menhang Ψ( i) ergibt sich die magnetische Energie mit  u = dΨ / d t (Induktionsge-

setz) aus der elektrischen Energie d W el =  ui d t =  i (dΨ / d t) d t =  i(Ψ)dΨ zu Ψ0



 I 0

 



 I 0



 ∂Ψ

 W m =

 i(Ψ)dΨ( i) =

 i

d i =

 il dd i

(4.1.33)

 ∂i

0

0

0

mit der differenziellen Induktivität  l d (Gl. (3.4.14)). Jetzt unterscheiden sich, analog

zur nichtlinearen Kapazität, die Teilflächen  W ∗

m und  W m beim Stromwert  i =  I 0. 

Die Berechnung der magnetischen Energie erfolgt analog zur nichtlinearen Kapa-

zität. 

Kennliniendarstellung Grundlage der Spulenenergie mit ferromagnetischem

Kern ist der magnetische Kreis (Abb. 4.1.10) aus magnetischer Spannungs-
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Abb. 4.1.10. Magnetischer Kreis einer Spule. (a) Ersatzschaltung, magnetische Last und

Fluss-Erregungskennlinie. (b) Einschaltvorgang einer Spule mit Strom- und Spannungs-

quelle

quelle (Erregung Θ  ∼ i =  I 0), ggf. einem magnetischen Innenwiderstand

und dem magnetischen Spulenwiderstand  R mL. Die ideale Quelle erzeugt

einen beliebigen magnetischen Fluss. Bei Anschluss des magnetischen Spu-

lenkreises (Kennlinie Ψ( i)) stellt sich der Fluss Ψ0 im Arbeitspunkt A ein. 

Dann entspricht die schraffierte Fläche der magnetischen Energie  W m, die

senkrecht schraffierte der  nichtmagnetischen (mechanische, thermische) Ko-

Energie  W ∗

m. Hätte die Spannungsquelle einen magnetischen nichtlinearen

Innenwiderstand  R mi( i), so würde sich der Arbeitspunkt nach A’ verschie-

ben: die magnetische Spulenenergie sinkt und ein Teil der von der Quelle

bereitgestellten Energie wird im Innenwiderstand verbraucht“. 

” 

Wir schalten im nächsten Schritt die Spule in den Stromkreis mit Quelle und

Innenwiderstand  R = 1 /G  und berechnen die in  R  umgesetzte Wärmeleistung

und ihre Beziehung zur Ko-Energie für lineare Verhältnisse. Ausgang ist die

Stromquellenersatzschaltung (Abb. 4.1.10b) mit angeschalteter idealer Spule. 

Im stationären Zustand fließt der Quellenstrom  I 0 durch die Induktivität. Die

im Widerstand  R  umgesetzte Leistung beträgt

 ∞



 ∞



 ∞



d i L

d i L

 W R =

 u( t) i( t)d t =  L

 i( t)d t =  L

( I 0  − i L) d t

d t

d t

0

0

0

 I 0



 I 0



=  L

( I 0  − i L) d i L =  LI 0 i L |I 0  −

 − LI 20 =

0

 L

 i Ld i L =  LI 20

 W ∗

m  . 



2



0

0

Ψ0 I 0

 W m

Sie stimmt bei linearer Spule mit der magnetischen Ko-Energie überein, was

bereits bei der entsprechenden Kondensatorschaltung (Abb. 4.1.5) festgestellt

wurde. Auch für die nichtlineare Induktivität lässt sich mit gleicher Schaltung

zeigen, dass die Ko-Energiefläche die im Widerstand umgesetzte Leistung

darstellt. Sie ergibt zusammen mit der magnetischen Energie die magnetische

Quellenenergie Ψ0 I 0. 
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Die Energie  W R für die Spannungsquellenersatzschaltung Abb. 4.1.10b beträgt

 ∞



 ∞



 ∞



 ∞



d i

 W R =

 u R i d t =

( U Q  − u L) i d t =  U Q

 i d t −

 L

 i d t

d t

0

0

0

0

 ∞



 I 0



 ∞



=  U Q

 i d t − L

 i d i =  U Q

 i d t − LI 20  . 

2

0

0

0

     

 W el

 W m

Jetzt trifft wohl die Energiebilanz zu, stationär wächst aber die im Widerstand

umgesetzte und von der Quelle gelieferte Energie mit der Zeit an und eine Bezie-

hung zur Ko-Energie macht Schwierigkeiten. Die Erhaltung des magnetischen Fel-

des erfordert ständigen Stromfluss, den die Spannungsquelle über den Widerstand

unterhält. Deswegen erfolgt dort permanent Leistungsumsatz. Die Stromquellen-

ersatzschaltung geht aber vom Quellenstrom aus, ohne seine Erzeugung energe-

tisch zu berücksichtigen (Hinweis: obwohl Spannungs- und Stromquellenersatzschal-

tungen äquivalent sind, unterscheiden sich beide im internen Leistungsumsatz, 

s. Abb. 2.2.6, Bd. 1). 

Bei der Kondensatorschaltung Abb. 4.1.5b verschwindet beim Aufladen schließlich

der Strom und damit die im Widerstand umgesetzte Leistung. Deshalb stimmen

(Ko-)Energie im Widerstand und dielektrische Energie überein. Analog verhält sich

die Induktivität bei Einschalten der Stromquelle (Abb. 4.1.10b). Stationär fließt der

Strom ausschließlich durch die Induktivität (Spannungsabfall Null) und deshalb

muss die vorher im Widerstand umgesetzte Wärme (Ko-Energie) mit der gespei-

cherten Energie in der Spule übereinstimmen. 

Im letzten Schritt kann die magnetische Erregung einer Spule auch durch

einen Dauermagnet erfolgen (Remanenz  B R entspricht dem Fluss Ψ0 und die

Erregung  I 0 der Koerzitivfeldstärke  H C, s. Abb. 3.2.15, Richtung der  H-Ach-

se vertauscht). Die magnetische Spannungsquelle hat im Idealfall eine Recht-

eckkennlinie, sonst eine nichtlineare vom Typ Abb. 4.1.10a. Die nichtlineare

magnetische Last wird wie oben eingetragen (Arbeitspunkte A bzw. A’). Da-

mit lassen sich die magnetische Energie und Ko-Energie angeben. 

4.1.4.2 Energieverh¨

altnisse der zeitabh¨

angigen Induktivit¨

at

Eine zeitabhängige Induktivität entsteht z. B. durch Änderung der Luftspalt-

länge im magnetischen Kreis wie im Modell Abb. 3.3.2. Periodische Luft-

wegänderungen sind typisch für Elektromaschinen, beispielsweise den Syn-

chrongenerator mit rotierendem Erregermagneten (Läufer, Abb. 4.1.11a). Er

durchsetzt die Ständerwicklung mit einem periodisch veränderlichen mag-

netischen Fluss. Die magnetische Ersatzschaltung (Abb. 4.1.11b) bildet die

Anordnung durch eine zeitunabhängige magnetische Erregung und den zeit-

veränderlichen magnetischen Widerstand  R m( t) nach. Im Leerlauf entsteht an

den Klemmen A, B eine induzierte Spannung, die sich bei Stromfluss auf den
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Abb. 4.1.11. Synchrongenerator mit rotierendem Erregermagneten. (a) Prinzipaufbau. 

(b) Zugehöriger zeitveränderlicher magnetischer Kreis. (c) Magnetische Ersatzschaltung

und Grundstromkreis mit zeitabhängiger Induktivität

Spannungsabfall über Wicklungsinduktivität  L( t) und Lastelement verteilt. 

Die Induktivität soll fürs erste cos-förmig um einen Ruhewert  L 0 schwanken

 L( t) =  L 0 + Δ L  cos 2 α( t) mit  α( t) =  ωt. Die Änderung Δ L  hängt von der konstruktiven Läuferauslegung ab. Im Leerlauf entsteht durch Läuferrotation

bei kleiner Änderung Δ L  L 0 eine sinusförmige Spannung. Dann gilt mit

der Strom-Spannungsbeziehung Gl. (3.4.10) der  zeitver¨

 anderlichen (linear an-

genommenen)  Induktivit¨

 at



d(Ψ( i, t)) 

d i( t)

d L( t)

 u



q( t) =

=  L( t)

+  i( t)

+  i( t) R

d t



d

d

 i=0

 t

 t





  
 

 u L

 u R

d i( t)

d i( t)

dΔ L( t)

=  L 0

+  i( t) R + Δ L( t)

+  i( t)

 . 

(4.1.34)

d t







d t

d t







Ruheteil

zeitvariabler Teil

Die sinusförmige Quellenspannung verursacht einen nur  ann¨

 ahernd  sinus-

förmigen Strom im Stromkreis (Abb. 4.1.11c), weil im zeitveränderlichen

Teil durch Strom und Induktivitätsänderung Schwankungsprodukte der Form

cos  ωt  sin 2 ωt  auftreten. Sie verursachen Komponenten der Frequenzen  ω  und

3 ω:  Entstehung neuen Frequenzen als Merkmal nichtlinearen Verhaltens! Die

Lösung von Gl. (4.1.34) erfordert deshalb einen Stromansatz als Fourierrei-

he mit Frequenzvergleich der einzelnen Frequenzkomponenten. Im Ergebnis

weicht auch die Klemmenspannung  iR =  u R von der Sinusform ab. 

Zeitabhängige Induktivitäten lassen sich ganz unterschiedlich realisieren, ei-

ne Möglichkeit ist auch die Steuerung des magnetischen Kreises durch eine

zweite stromdurchflossene Wicklung 3, 4 (Abb. 4.1.11b). 

Der Einfluss des variablen magnetischen Kreises auf die Induktivität spielt

eine dominante Rolle bei der Kraftwirkung (s. Kap. 4.3). 
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4.1.4.3 Merkmale der magnetischen Energie

Magnetische Energie und Feldgr¨

oßen, Energiedichte Die in der Ringspule

(Abb. 4.1.9a) gespeicherte Energie lässt sich gleichwertig durch Feldgrößen

darstellen. Dazu wird ein Volumenelement Δ V  herausgegriffen, sein Ener-

gieinhalt durch die Feldgrößen  B,  H  ausgedrückt und das Gesamtverhal-

ten durch Integration bestimmt. Im Teilvolumen Δ V = Δ A · Δ s  herrscht

annähernd homogenes Feld: längs der Länge Δ s  fällt die magnetische Span-

nung  VAB =  H( B)  · Δ s  ab, der Querschnitt Δ A  wird vom (Teil-)fluss ΔΨ = Δ B · Δ A  durchsetzt. Damit speichert das Volumen Δ V  die Teilenergie Δ W m =  V ABΔΨ =  H( B)  · Δ BΔ A · Δ s =  H( B)  · Δ BΔ V  und das Gesamtvolumen  V  die Gesamtenergie





 B max



Magnetische

 W m =

d W m =

 H( B)  ·  d B d V

(4.1.35)

Energie

Volumen

0

bei der maximalen Flussdichte  B max. Hängen Feldstärke und Flussdichte



nicht vom Ort ab, so erfolgt die Integration über das Volumen (

d V =  V )

 V



getrennt:  W

 B max

m =  V

 H( B)  ·  d B (Abb. 4.1.12a) und es gilt

0

 B max



Energiedichte, 

d W m

 W m

 w m =

=

 H( B)  ·  d B =

 .  nichtlinearer

(4.1.36a)

d V

 V

0

 H, B-Zusammenhang

Die Energiedichte  w m kennzeichnet als Integral der Feldstärke  H über die

magnetische Flussdichte  B  das spezifische Speichervermögen des magne-

tischen Feldes. 

Weil praktische ferromagnetische Kreise keinen (exakten) analytischen Zusammen-

hang für Feldstärke und Flussdichte haben, ist die Integration nur näherungsweise

möglich (grafisch, numerisch, über Hilfsfunktionen). 

Bei linearem  H,  B-Zusammenhang ( H =  B/μ) vereinfacht sich die Energie-

dichte (Abb. 4.1.9b)

 B max



d W m

 B

 H · B

 w m =

=

 ·  d B =

d V

 μ

2

Energiedichte, 

(4.1.36b)

0

( H ∼ B)

 μH 2

 B 2

=

=

 . 

2

2 μ

 Zahlenbeispiel.  Im Luftspalt eines Elektromagneten (homogenes Feld) herrscht etwa

die Flussdichte  B = 2 Vs /  m2, also die Energiedichte  w m =  B 2 / 2 μ o  ≈  1 ,  6 Ws /  cm3. 

Ein Plattenkondensator hat bei der Feldstärke  E = 30 kV /  cm (Durchschlags-
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Abb. 4.1.12. Energie und Energiedichte im magnetischen Feld. (a) Ferromagnetikum, 

nichtlinearer hysteresefreier  B,  H-Verlauf. (b) Ferromagnetikum: nichtlinearer  B,  H-Verlauf und Hysterese:  A 0 zugeführte,  A 1 abgeführte Energie (gültig für ersten Quadranten). 

(c) Fläche der Hystereseschleife entspricht der Verlustenergie  W Hyst =  V A Hyst bei einem

Magnetisierungsumlauf. Senkrechte Schraffur: dem Zweipol zugeführte Energie; waagrech-

te: rückgeführte Energie. (d) Hysteresekurven bei sinkender Feldstärke  H( t). (e) Hystere-

sekurve und sinusförmige Feldstärke  H( t)

feldstärke in Luft) die Energiedichte  w e =  ε 0 E 2 / 2  ≈  0 ,  4 · 10 − 4 Ws /  cm3. Sie liegt rd. 

4 Größenordnungen unter der des magnetischen Feldes, was die technische Bedeu-

tung dieser Felder erklärt. Eine (größere) Spule mit  L = 20 H,  i = 100 A speichert

die magnetische Energie  W m =  Li 2 / 2 = 105 Ws. 

Ein Kondensator der Kapazität  C = 1 F (!) speichert dagegen bei einer Ladespan-

nung  u = 10 V nur die dielektrische Energie  W d =  Cu 2 / 2 = 50 Ws. 

Das Magnetfeld speichert wesentliche höhere Energien als das dielektrische

Feld. 

 Diskussion.  Die Energiedichte d w m =  H( B)d B  ist gleich der schraffierten Fläche zwischen Induktionsachse und Magnetisierungskurve in Abb. 4.1.7b, die Energie-
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dichte  w m gleich dem Integral über d w m und damit gleich der schraffierten Fläche

mit der oberen Grenze  B max. Bei linearer  B,  H-Kennlinie beträgt die Energiedichte

beim  Aufmagnetisieren B auf = 0  . . . B max

 B max



 W m

 H max B max

=

 H d B =

 . 

 V

2

0

Sie wird beim  Entmagnetisieren B ab =  B max  . . .  0 (vertauschte Integrationsgrenzen)

rückgewonnen. Die Fläche, d.h. die bei der Auf- und Entmagnetisierung geleistete

Arbeit kann je nach Richtung von  H  und d B (gleich oder entgegengesetzt) positiv

oder negativ sein. Entspricht ein positiver Wert aufgenommener Energie, so ein

negativer der zurückgewonnenen. 

Bei  nichtlinearer B,  H-Kurve (Abb. 4.1.12b) wird:

beim  Aufmagnetisieren  längs der Neukurve (1) an das Ferromagnetikum die

 B

Energie  W

max

mauf =  V A 0 geliefert. Dabei ist  A 0  ≈

 H d B  die zur  B,  H-Kurve

0

gehörige senkrecht schraffierte Fläche, 

beim  Entmagnetisieren (Kurve (2)) die magnetische Energie  V A 1 entnommen

(d B <  0,  H >  0, waagerecht schraffiert) und die Energie  V A 2 zugeführt

(d B <  0,  H <  0, senkrecht schraffiert). Insgesamt liefert Entmagnetisierung

die Energie  W ment =  V ( A 1  − A 2) zurück, also  weniger  als beim Aufmagneti-

sieren ( ∼ A 0) zugeführt wurde. Die Differenz ist die Hysteresearbeit“ bedingt

” 

durch das Umklappen der Weißschen Bezirke. 

Beim vollen Durchlauf der Hysteresekurve (Abb. 4.1.12c, von Punkt A nach

+ B max, dann bis  −B max und zurück zu A (wie er in der Wechselstromtechnik

auftritt)), ist die Differenz zwischen zugeführter und rückgewonnener Energie

gleich der von der Hysteresekurve umschlossenen Fläche  W Hyst =  W auf  −





 W ent  ∼ ( A auf  − A ent) oder mit  A auf =

[ H( B auf )]d B,  A ent =

[ H( B ent)]d B

zusammengefasst:



Hysteresearbeit, 

 W Hyst =  V

 H ·  d B =  V A Hyst . 

(4.1.37)

einmaliger Umlauf

Hyst

Während nichtferromagnetische Stoffe die beim Aufmagnetisieren zugeführ-

te Energie beim Entmagnetisieren voll zurückführen, haben ferromagneti-

sche Stoffe einen Hystereseverlust proportional zur Schleifenfläche. 

Bei periodischem Umlauf mit der Frequenz  f ( f -maliges Ummagnetisieren je

Zeitspanne) entsteht die  Hystereseverlustleistung ( f = 1 /T )

 W Hyst

 P Hyst =  f W Hyst =

 . 

Hystereseverlustleistung (4.1.38)

 T

Ferromagnetische Materialien mit schlanker Hysteresekurve haben kleine

Hystereseverluste. 
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Der Hystereseverlust beschreibt die zum Umklappen der Weißschen Bezirke in fer-

romagnetischen Materialien zu leistende Arbeit (Abb. 3.1.17). Sie wird als Wärme

frei, also während eines Umlaufs dem elektromagnetischen Feld entzogen. Wegen

des irreversiblen Vorganges durchläuft man die Hystereseschleife immer gegen den

Uhrzeigersinn, nie umgekehrt. Abbildung 4.1.12d,e zeigt diesen Durchlauf bei si-

nusförmiger Feldstärke  H( t) mit der jeweiligen Zuordnung  B( t) zu verschiedenen

Zeitpunkten. Wird die Feldamplitude langsam zurückgenommen, so entmagneti-

siert das Ferromagnetikum, weil die Umkehrpunkte der  B,  H  Schleife stets auf der

Magnetisierungskurve  B( H) liegen (technisches Entmagnetisierungsverfahren). So

entsteht bei schrittweiser Senkung von  H( t) eine Familie von Hysteresekurven. 

Gr¨

oßenvorstellung Für Dynamoblech beträgt die Koerzitivfeldstärke etwa  H C  ≈

4  . . .  50 A /  m. Dann ergibt sich die volumenbezogene Hystereseverlustleistung für

eine typische Flussdichte  B = 1 T bei  f = 50 Hz unter Annahme einer Recht-

eckhysteresefläche  w Hyst = 2 H C2 B:  p Hyst =  P Hyst /  V =  W Hyst f /  V = 4 H C Bf =

(800  . . .  103) W /  m3 = 800  . . .  103 µW /  cm3, wenn die Koerzitivfeldstärke im gegebenen Rahmen variiert. 

Energieumformung elektrische – magnetische Energie Die Spule, genauer je-

der stromdurchflossene Leiter, ist ein Umformorgan elektrischer in magne-

tische Energie und umgekehrt:

beim  Feldaufbau  wird elektrische Energie  W el =  Li 2 / 2  zugeführt  und

als magnetische Energie  W m im Magnetfeld gespeichert. Die Spule ver-

” 

braucht“ dazu die Leistung. 

d W el

d i

 L  d( i 2)

 p el( t) =  u( t) i( t) =

=  Li

=

 ≡  d W m  . 

d t

d t

2

d t

d t

Deshalb lautet der Energieaufbau gleichwertig: die zur Überwindung der in-

duzierten Spannung erforderliche Leistung ist gleich der Änderung der magne-

tischen Energie d W m / d t. So wird deutlich, dass das Magnetfeld selbst keine

Arbeit verrichtet, sondern nur bei zeitlicher Änderung eine Spannung induziert, 

die an Ladungen Arbeit leistet. 

beim  Feldabbau  wird die gespeicherte Energie zurückgewonnen:  Strom-

 abnahme (d i/ d t <  0), Abgabe elektrischer Leistung: Spule als Erzeuger

elektrischer Energie (Leistungsgenerator durch die induzierte Spannung). 

Zwischenzeitlich (zeitlich konstanter Strom, d i/ d t = 0) nimmt die Spu-

le keine Leistung auf und die elektrische Energie bleibt im Magnetfeld

gespeichert.4

4 Es überrascht, dass zum Aufbau des Magnetfeldes Energie aufgewendet werden

muss, das Feld aber dann keine Arbeit leisten kann. Die Ursache liegt in der erfor-

derlichen zeitlichen Feldänderung während des Aufbaues, denn dabei erzeugt das

Induktionsgesetz ein elektrisches Feld, dass durch Verschieben von Ladungen Arbeit

verrichtet. 
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Abb. 4.1.13. Magnetischer Kreis mit Luftspalt. (a) Aufbau und magnetische Ersatzschal-

tung. (b)  B,  H-Kennlinie magnetischer Reluktanzen. (c) Ψ,  i-Kennlinie des magnetischen

Kreises bei konstantem Fluss im Luftspalt, gespeicherte Energie schraffiert. (d) Gleichwer-

tige Ψ,  i-Kennlinie mit konstanter Erregung Θ. (e) Magnetischer Kreis dargestellt durch

magnetische aktive (lineare) und passive (nichtlineare) Zweipole

Der Strom erzeugt Verluste im Spulenwiderstand, an der idealen Spule

fällt keine Spannung ab. 

Haupteigenschaft der magnetischen Energie: Stetigkeit Wie die dielektrische

Energie ist auch die magnetische Energie  W m (Gl. (4.1.15)) immer stetig. 

Dies drückt sich als  Stetigkeit des Spulenstromes i L (bzw. allgemeiner des

verketteten Flusses Ψ) aus, er kann nie springen. 

Energie im magnetischen Kreis mit Luftspalt Magnetische Kreise haben meist

einen Luftspalt  l Fe (Abb. 4.1.13). Dann speichert sich magnetische Energie

im ferromagnetischen Kreis und Luftspalt. und es gilt



 ⎡

⎤

1

1

 W

⎣

⎦

m =

 B · H d V =

 H ·  d s B ·  d A

2

2

 V

 A

 s

⎛

⎞





1

1 ⎜

⎟

=

 H ·  d s ·

 B ·  d A = ⎝  V Fe +  V L ⎠ Φ . 

(4.1.39a)

2

2





 s

 

 A

 

Φ R mFe

Φ R mL

 V Fe+ V L

Φ
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Bei gleichem Kreisquerschnitt,  B Fe =  B L und den Volumina  V Fe =  Al Fe, 

 V L =  Al L beträgt die magnetische Energie

1

 W m =

 Li 2 =  W mFe +  W mL

2

(4.1.39b)

1

 B Fe H Fe A

=

( B Fe H Fe V Fe +  B L H L V L) =

( l Fe +  μ r l L)  . 

2

2

Die hohe Luftspaltfeldstärke ( H L =  μ r H Fe) als Folge der Grenzflächenbedin-

gung ist Ursache der  deutlich gr¨

 oßeren Energiedichte  gegenüber dem ferro-

magnetischen Teil. 

Mit den Energiedichten  w mFe = ( B Fe H Fe) / 2 und  w mL = ( B Fe H L) / 2 für Ferromagnetikum und Luft gilt dann

 W m =  w mFe A( l Fe +  μ r l L) =  w mL A( l Fe /μ r +  l L) . 

(4.1.39c)

Die magnetische Energie verteilt sich im magnetischen Kreis proportional

zu den magnetischen Widerständen. Zur Konzentration im Luftspalt (für

große Kraftwirkung) sollte die reduzierte Eisenweglänge“  l∗ =  l

” 

Fe

Fe /μ  klein

gegen die Luftspaltlänge  l L sein (erfordert große Permeabilität des Ferro-

magnetikums). 

Spulen mit dieser Eigenschaft heißen  Speicherdrosseln, sie haben spezifische Ein-

satzbereiche. 

Der magnetische Kreis und seine Ersatzschaltung (Abb. 4.1.13a) erfordert

zunächst die Kennlinien Φ( V ) der  magnetischen Reluktanzen G m  ∼  1 /R m

(Abb. 4.1.13b) auf Grundlage der jeweiligen Feldgrößen  B( H). Im ferromag-

netischen Teil ist Sättigung angedeutet. Die Kennlinie folgt durch Additi-

on der magnetischen Spannungsabfälle  V Fe,  V L für einen gewählten Fluss

(Abb. 4.1.13c). Ergebnis ist die Gesamtkennlinie mit dem Arbeitspunkt A

bei der Erregung Θ. Die im Luftspalt gespeicherte Energie tritt als (schraf-

fierte) Differenz zwischen den Magnetisierungskurven ohne und mit Luftspalt

auf. 

Einfacher fasst man den (linearen) Luftspaltwiderstand als Innenwiderstand der

Erregerquelle auf (aktiver Zweipol) und den Eisenwiderstand als magnetische Last

(Abb. 4.1.13e). Der Arbeitspunkt A ist der Schnitt beider Kennlinien und die mag-

netischen Energien sind proportional zu den schraffierten Flächen. Ohne Luftspalt

gilt der Arbeitspunkt A’ bei höherem Fluss. Weil in dieser Darstellung die magne-

tische Erregung Θ bei Luftspaltänderung unverändert bleibt, geht daraus leicht die

Form Abb. 4.1.13d mit zwei (Gesamt-) Widerstandskennlinien ohne und mit Luft-

spalt hervor. Die Konsequenzen der Darstellungen mit konstantem Fluss Φ und

konstanter Erregung Θ vertiefen wir in Kap. 4.3. 
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Magnetisch gekoppelte Spulen Liegen an zwei (verlustfreien) gekoppelten

Spulen (Induktivitäten  L 1,  L 2, Gegeninduktivität  M , lineares magnetisches

Medium) mit der  u,  i-Beziehung Gl. (3.4.14) die Spannungen  u 1,  u 2, dann nehmen sie die Leistung (Verbraucherpfeilrichtung, s. Abb. 3.4.10)





d i 1

d i 2

d i 2

d i 1

 p =  i 1 u 1 +  i 2 u 2 =  L 1 i 1

+  L 2 i 2

 ± M i 1

+  i 2

d t

d t

d t

d t





d

 L 1

 L 2

d W el( t)

=

 i 2( t) +

 i 2( t)  ±  2 M i 1( t) i 2( t) =

 ≡  d W m( t)

d t

2 1

2 2

d t

d t

auf. Die zugeführte elektrische Energie baut die magnetische Energie  W m des

Spulenpaares auf (mit  i 1( t) =  I 1 und  i 2( t) =  I 2 im Endzustand)

Magnetische Energie

1 



 W m =

 L 1 I 2 +  L 2 I 2  ±  2 M I 1 I 2  >  0 . 

(gekoppeltes

(4.1.40)

2

1

2

Spulenpaar)

Die in zwei stromdurchflossenen gekoppelten Leiterkreisen (Ströme  I 1 , I 2)

gespeicherte magnetische Feldenergie hängt von den Einzelinduktivitäten

und der Kopplung beider Kreise ab. 

 √

 √

2

Bei  fester Spulenkopplung ( M  2 =  L 1 L 2) gilt  W m = 1

 L

 L

mit po-

2

1 I 1  ±

2  I 2

sitivem (negativem) Vorzeichen für gleichsinnige (gegensinnige) Kopplung. Fes-

te Kopplung entsteht beispielsweise bei kompakt übereinander liegenden dünnen

Wicklungslagen beider Spulen. 

Ändert sich die magnetische Gesamtenergie nicht (also d W m / d t = 0), so

verschwindet die zugeführte elektrische Gesamtleistung, d. h. die von einer

Spule aufgenommene Leistung wird von der anderen abgegeben. Dieses Prin-

zip nutzt der (verlustlose)  Transformator (Kap. 3.4.3). 

Magnetische Energie eines Mehrleitersystems Die Energie des Zweileitersys-

tems Gl. (4.1.40) ist Grundlage für die magnetische Energie eines  Mehrlei-

 tersystems. Mit der Schreibweise  M =  L 12 =  L 21 lautet Gl. (4.1.40)

2

2

1 



1 ! ! 

 W m =

 L 11 I 2

=

 L

2

1 + ( L 12 +  L 21) I 1 I 2 +  L 22 I  2

2

2

 ikIiIk . (4.1.41)

 i=1  k=1

Der symmetrische Aufbau hinsichtlich der Indizes  i  und  k  erlaubt einen

Übergang zum System mit  n  Leitern (2  → n) für jede Art von Induktivität

(Selbst- und Gegeninduktion). Die Koeffizienten  Lik ( i =  k) sind, kopplungs-

abhängig, positiv oder negativ. 

Bemerkung Bisher wurden elektrisches und magnetisches Feld entkoppelt von-

einander betrachtet (Ausnahme Induktionsgesetz im Zusammenwirken mit dem

Durchflutungssatz). Der allgemeine Fall ist aber Feldverkopplung. So entsteht bei-

spielsweise bei der Entladung eines (größeren) Kondensators über einen Kurz-
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schlussdraht durch den hohen Entladestrom gleichzeitig ein zeitveränderliches mag-

netisches Feld um den Draht, das wieder eine induzierte Feldstärke erzeugt usw.: es

breitet sich ein elektromagnetischer Wellenzug aus. Er wird mit einem in der Nähe

aufgestellten Rundfunkempfänger als Knackgeräusch wahrgenommen, obwohl zwi-

schen dem Kondensatorkreis und Empfänger keine galvanische Verbindung besteht! 

Die Feldverkopplung und ihre Folgen sind Inhalt der theoretischen Elektro-

technik. 

4.2

4.2 Energie¨

ubertragung, Energiewandlung

Der Grundstromkreis verfestigt den Eindruck, dass Energieübertragung zwi-

schen Quelle und Verbraucher durch Strom erfolgt und das elektromagne-

tische Feld keine Rolle spielt. Wir zeigen jetzt den  Feldraum  als  eigentlichen

 Tr¨

 ager des Energietransportes. Dann muss er durch eine Feldgröße, die  Ener-

 giestromdichte  oder den  Poynting-Vektor 5, beschrieben werden. Ausgang ist

der Energiesatz. Die Bedeutung des Poynting-Vektors wird allein schon da-

durch unterstrichen, dass in den Maxwellschen Gleichungen weder  Energie-

 terme  noch  Kr¨

 afte  auftreten. Erst die von Poynting eingeführte  Energiestrom-

 dichte  erlaubt den Ausdruck des  Energiesatzes  durch Feldgrößen. 

4.2.1 Energiestr¨

omung

Energiesatz Die Erhaltung der Gesamtenergie  W  eines abgeschlossenen Sys-

tems ist ein physikalisches Grundgesetz (s. Kap. 1.6.1, Bd. 1):

Energieerhaltungssatz

 W = const  →  d W = 0 . 

(4.2.1)

d t

(abgeschlossenes System)

Ist ein System dagegen nicht abgeschlossen, so folgt aus dem Energiesatz

" 

wegen d W ges / d t =

 ν Pν = 0 mit der Leistung  P  als Energieänderung pro

Zeiteinheit eine  Bilanzgleichung (Abb. 4.2.1a): Die Energieänderung ist gleich

der Bilanz zwischen Energiezu- und -abfuhr oder geschrieben für die Ener-

gieabnahme





 − d W

d W

=

  −  d W  =  P ab  − P zu =  I Wab  − I Wzu . 

(4.2.2)

d t

d t 

d 

ab

 t  zu

5 John Henry Poynting (1852–1914), sein Energiekonzept auf Grundlage der Feld-

größen wurde 1884 vorgeschlagen. 
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Abb. 4.2.1. Energieerhaltung und Energiestrom  I W. (a) Energieerhaltung im abgeschlos-

senen System (auch unterteilt in Teilsysteme) bzw. Änderung der Systemenergie durch

Leistungszu- und abfuhr. (b) Veranschaulichung des Energiestromes  I W. (c) Leistungsbi-

lanz am allgemeinen Zweipolnetzwerk. (d) Leistungsbilanz eines Hüllvolumens, das sich

durch Krafteinwirkung ändert

Gibt es im abgeschlossenen System weitere Teilsysteme (z. B. drei in

Abb. 4.2.1a), so folgt für die Energieänderung d W/ d t = d W 2 / d t  des mittleren Systems die Bilanz zwischen Energiezu- ( − d W 1 / d t = d W/ d t| ) und -ab-zu

fuhr (d W 3 / d t = d W/ d t| ). Die Größe

ab

 I W heißt  Energiestrom (Dimension:

Leistung). Wir untersuchen diese Bilanz für einen abgeschlossenen Feldraum

mit der Gesamtenergie aus elektrischer und magnetischer Feldenergie, dem

Energiezu- oder -abstrom bei zeitlicher Feldänderung und der an Ladungs-

trägern verrichteten Arbeit. 

Energieerhaltung nach Gl. (4.2.1) erfordert, dass jede Änderung der elekt-

romagnetischen Energie  W (im Volumen  V )

ihren Zu- bzw. Abfluss in oder aus dem Volumen bedingt und/oder

ihre Wandlung in eine andere, also nichtelektrische Form erfährt. 

Das begründet die Einführung des Energiestromes oder -flusses. 

4.2

Energieübertragung, Energiewandlung

447

1. Die  elektromagnetische Feldenergie W  ist durch die elektrische und mag-

netische Energiedichte  w d,  w m (Gln. (4.1.29), (4.1.36)) gegeben



 W ( t) =

( w d +  w m)d V =  W d +  W m . 

 V

2.  Zeitver¨

 anderliche Felder ändern die Energiedichte im Raum, durch Umver-

teilung kommt es zum  Energietransport. Er wird, ähnlich wie der Transport

von Masse oder Ladung, durch eine  Str¨

 omungsgr¨

 oße  beschrieben: die  Energie-

 stromdichte J W (Maßeinheit W/cm2). Zu ihr gehört, wie bei der Stromdichte

 J, eine zugeordnete Flussgröße durch eine Fläche  A, der  Energiestrom I W



 I W =

 J W  ·  d A. 

 I W Energiestrom (4.2.3)

 A

Speichert ein Volumen  V  die Energie  W , so kann sich diese nur als  Trans-

 portvorgang durch eine gedachte oder materielle Oberfl¨

 ache ¨

 andern: es muss

ein Energiestrom  I W durch die Hüllfläche fließen (Abb. 4.2.1b). 

Ein solcher Ansatz lag bereits dem Ladungs-Strom-Zusammenhang zugrunde

(s. Kap. 1.4.1 ff., Bd. 1). Auch für die Ladung galt ein Erhaltungssatz und aus

der zeitlichen Ladungsänderung wurde der Strom begründet. 

Man definiert den Energiestrom üblicherweise positiv, wenn er aus dem Vo-

lumen heraus fließt6. Dann gibt das System Energie ab und es gilt

 − d W

=

 I W

 . 

(4.2.4)

d t

 



Energieabnahme je Zeit, 

Nettoenergiestrom

abgeschlossenes System

nach außen

Nur Energietransport durch eine gedachte oder vorhandene Hüllfläche

ändert den Energieinhalt eines Volumens. 

3. Ein Feld kann Energie auf Ladungsträger übertragen (z. B. Beschleuni-

gung im elektrischen Feld). Dann leistet es an ihnen Arbeit und verrich-



tet die Leistung  P Teil, beispielsweise  P Teil =

 E · J d V (Gl. (4.1.9)) im

Strömungsfeld. 

Zusammengefasst lautet dann (Gl. (4.2.2)):

d W +  I W +  P Teil = 0

Energiebilanz

d t

6 Diese Zuordnung wird nicht einheitlich gehandhabt. 
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oder ausgeschrieben





d

( w d +  w m)d V +

 J W  ·  d A

+

 P Teil

= 0 . 

d tV

 A

Zunahme der

Energiestrom durch

Arbeit des Feldes

elektromagnetischen

Oberfläche

an Ladungsträgern

Gesamtenergie

Poyntingscher Satz

(4.2.5)

Diese  Energiebilanz  in  Integralform  für ein Volumen  V , der  Poyntingsche Satz, 

kann auch für den Raumpunkt angegeben werden (Gegenstand der Feldtheo-

rie). Anschaulich besagt Gl. (4.2.5) nach Umstellung und Übergang von der

Energiedichte zur Energie:



 −

 J

 ∂

W  ·  d A =

( W m +  W d) +  P W . 

(4.2.6)

 ∂t

 A

Die durch eine Hüllfläche im elektromagnetischen Feld eindringende Ener-

gieströmung ist gleich der Zunahme der in der Hülle gespeicherten elektro-

magnetischen Energie und der Arbeit (Leistung), die das Feld an Teilchen

verrichtet. 

Links in Gl. (4.2.6) steht der Energiefluss durch die Hülle um das Volu-

men  V . Er erhöht die Energie in der Hülle, führt aber auch die Leistung

nach, die volumenbezogen durch Ströme (als verbreitetste Teilchenarbeit)

aus dem Feld nach außen abgeführt wird, z. B. als Joulsche Wärme in Lei-

tern (es können auch andere Energieformen auftreten (s. u.)). Umstellen von

Gl. (4.2.6) nach der zeitlichen Energieabnahme ergibt sich die gleichwertige

Aussage:

Jede Abnahme der in einer Hülle gespeicherten elektromagnetischen Energie

verursacht einen Energiestrom (je Zeiteinheit) durch die Hülle nach außen

abzüglich der in der Hülle in eine andere Energieform (meist Wärme) um-

gewandelten Energie (pro Zeiteinheit, Leistung). 

Die Wärme wird nach außen abgestrahlt und muss als Feldenergie wieder

nachgeliefert werden. Deshalb bildet jeder verlustbehaftete Leiter eine  Senke

für die  elektromagnetische Energiestr¨

 omung. 

Wir betrachten die Energiebilanz Gl. (4.2.6) noch aus anderer Sicht. Energie kann

im Raum verteilt sein. Hat sie zu verschiedenen Zeiten unterschiedliche Vertei-

lung, so entsteht ein Energiefluss von einem Ort zum anderen. Die pro Zeit und

Flächeneinheit durch ein Flächenelement hindurchströmende Energie ist die  Ener-

 gieflussdichte J  W. Wird von einer Energie  W  im Volumen (gegebener Form) ein

Teil in eine andere Energieform gewandelt, so muss er (nach dem Energiesatz) noch

vorhanden sein: ist  g  der pro Zeit- und Volumeneinheit umgewandelte Energieanteil, 
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dann erfordert die Energiebilanz







 − ∂

 w d V =

 J W  ·  d A +

 g d V . 

 ∂t V

 A

 V

Die im Volumen  V

verlorengehende“ Energie (linke Seite) findet sich in zwei Antei-

” 

len: einem durch die Hüllfläche abströmenden  gleicher Energieform (erster Anteil)

und einem, der in eine  andere Energieform  gewandelt wird (zweiter Teil,  g  heißt

die Energieumwandlungsrate [Leistung pro Zeit]). Die zugehörige Energie (pro Zeit-

und Volumeneinheit) ist die an Teilchen geleistete Arbeit und äußert sich z. B. als

Stromwärme im Leiter u. a., in Gl. (4.2.6) als Teilchenarbeit  P W angesetzt. Die

Energiedichte  w  enthält das elektrische und magnetische Feld. 

Die bisherigen Betrachtungen lassen Fragen offen: was ist eine Energiestrom-

dichte und wie wird die an Teilchen verrichtete Arbeit durch bisher bekannte

Vorgänge ausgedrückt? 

Energiestromdichte Die  Energiestromdichte J W Gl. (4.2.3) heißt  Poynting-

 Vektor. Aus den Maxwellschen Gleichungen lässt sich dafür herleiten:7

 J W =  E × H. 

Energiestromdichte (Poynting-Vektor) (4.2.7)

Der Dimension nach









Spannung  ·  Strom

Energie

dim( J W) = dim( EH) = dim

= dim

Länge  ·  Länge

Fläche  ·  Zeit

wird  J W auch  Leistungsdichte,  Flächendichte der Leistungsströmung,  Inten-

 sit¨

 at  oder  Strahlungsvektor 8 genannt, die Einheit beträgt [ J  W] = [ E] [ H] =

1 V /  m  · (1 A /  m) = 1 W /  m2. 

Die Energiestromdichte  J W ist in jedem Raumpunkt eines elektromagne-

tischen Feldes gleich dem Vektorprodukt der dort herrschenden elektrischen

( E) und magnetischen ( H) Feldstärke. 

Sie kennzeichnet den Transport elektromagnetischer Feldenergie nach Größe

und Richtung durch die Oberfläche eines Volumens.  E,  H  und  J W bilden

ein Rechtssystem. 

7 Stromdichte  J  und Poynting-Vektor  J W haben das gleiche Symbol, zur Unterschei-

dung fügen wir den Index W an. 

8 Die Bezeichnung Leistung bzw. Leistungsdichte trifft den Sachverhalt besser als

Energieströmung, denn weder die Energie noch ihre volumenbezogenen Werte sind

Vektoren. Das Vektorprodukt aus elektrischer und magnetischer Feldstärke ist da-

gegen ein Vektor  J  W, aus dessen Quellendichte (Divergenz) die unterschiedlichen

elektromagnetischen Leistungsdichten und Umwandlungen (in Wärme) beschrieben

werden können. 
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Der  Energiestrom I W ist die zu  J W gehörende  Integralgröße (Gl. (4.2.3)). Er heißt wegen seiner Dimension üblicherweise  Leistung P





 P ≡ I W =

 J W  ·  d A =

( E × H)  ·  d A. 

(4.2.8)

 A

 A

Die Leistung  P ≡ I W ist der Fluss des Poynting-Vektors  J W. 

Wird in Gl. (4.2.6) statt der an Teilchen geleisteten Arbeit  P W eine zugeord-

nete  nichtelektrische  Energiedichte  w nel (für allgemeine Energiewandlung)

angesetzt, so folgt der  Poyntingsche Satz in Kompaktform





 − ∂

( w d

 J W  ·  d A. 

(4.2.9)

 ∂t

 ,  m +  w nel) d V =

 V

 A

Die zeitliche Abnahme der in einem Volumen enthaltenen Energie (elektro-

magnetische und nichtelektrische Form) ist gleich dem durch die Volumen-

oberfläche herausströmenden Energiestrom. 

Der Poynting-Vektor veranschaulicht die in der Zeiteinheit durch eine Fläche

 A  hindurchtretende Energie. Er erlaubt eine einfache Erklärung der Energie-

strömung im elektromagnetischen Feld. Folgerungen sind:

Elektrische Energie wird nicht durch den im Leiter fließenden Strom über-

tragen, sondern vom  elektromagnetischen Feld um den Leiter (also durch

die umgebende Luft oder Leiterisolation)! 

Ein Teil der Energie fließt aus dem Feld in den Leiter, erwärmt ihn und

stellt den  Energieverlust  dar (bisher als Ohmsche Verluste benannt). 

Das wird besonders deutlich für ein stationäres System, in dem nur Gleich-

ströme fließen. Dann verschwindet in Gl. (4.2.6) die Energieänderung und bei

der an Teilchen geleisteten Arbeit kann es sich nur um  Stromw¨

 armeverluste



handeln. So verbleibt mit der Verlustleistung  P W =

 J · E d V  des Strö-

 V

mungsfeldes





 − J W  ·  d A =

 J · E d V . 

 A

 V

Damit ist der Nettoleistungsfluss durch eine Hülle um einen stromführenden

Leiter ein Maß für Ohmsche Verluste im Leiter! 

Das wird am Koaxialkabel erläutert (Kap. 4.2.2). 
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Erweiterung, nichtelektrische Energieformen Wir bringen jetzt die Arbeit an

Teilchen in Gl. (4.2.6) in Beziehung zu bekannten Vorgängen und denken

die Hüllfläche über zwei Anschlussklemmen zugängig. So entsteht ein  all-

 gemeiner Zweipol, in dem Speicherung der elektromagnetischen Feldenergie, 

Teilchenarbeit und eine  Abstrahlung von Feldenergie  durch die Hülle erfolgen

soll (Abb. 4.2.1c). Aus Gl. (4.2.6) ergibt sich als Leistungsbilanz





 ∂

 ui =

( W d +  W m) +

( E · J − E i  · J) d V +

( E × H)d A . 

 ∂t





  V

 A

1





 





2 ,  3

4

Leistungsbilanz

(4.2.10)

Die dem Zweipol zugeführte momentane Leistung  p =  ui  unterhält zunächst

den  Energiezuwachs des elektromagnetischen Feldes  im Hüllvolumen  V (1). 

Bei der Arbeit  P W an Teilchen handelt es sich um die im  Strömungsfeld ( E, 

 J) im Volumen  V  umgesetzte  Wärmeleistung (Anteil 2 im zweiten Integral). 

Eingeschlossen ist auch elektrische Leistung, die das Netzwerk über ev. vor-

handene Ausgangsklemmen (Zweitor!) abgibt. 

Der Anteil 4 (mit dem Poynting-Vektor) kann als durch die Hülle austre-

tende  Strahlung  verstanden werden (Antennenwirkung der Zweipolgeometrie

bei hochfrequentem Feld, Strahlungsleistung einer Lichtquelle):  Leistung wird

 den Klemmen zugef¨

 uhrt und als elektromagnetische Welle abgestrahlt. 

Der Anteil 3 im zweiten Integral umfasst  Leistung nichtelektrischer  Natur

durch die Feldstärke  E i als  Ersatzgröße für nichtelektrische Kraftwirkungen

 auf Ladungstr¨

 ager (s. Kap. 1.3.5 und Gl. (1.3.33)). Die Ursachen können

elektrochemischer, mechanischer (Batterie im Netzwerk, Bewegungsinduk-

tion Gl. (3.3.13)) u. a. Natur sein. Haben  J  und  E i gleiche Richtung, so bleibt das Integral negativ: die nichtelektrische Feldstärke verrichtet Arbeit

und führt (je Zeiteinheit) Energie  in  die Hülle (Ausgleich von Wärmeverlust, 

Erhöhung der Feldenergie oder  Leistungsfluss nach außen (Zweipol wirkt als

Quelle!)). Haben  E i und  J  entgegengesetzte Richtungen, so wird das In-

tegral positiv und ein Teil der dem Zweipol zugeführten Leistung erzwingt

Stromfluss  gegen  die nichtelektrische Feldstärke. Dadurch wandelt elektri-

sche Energie an den Zweipolklemmen in nichtelektrische Formen (chemisch, 

mechanisch, z. B. Aufladen eines Akkumulators, Induktionsgesetz und Mo-

torwirkung). Besonders anschaulich wird der Vorzeichenwechsel von  E i bei

der Bewegungsinduktion durch Umkehr der Bewegungsrichtung eines Leiters

im Magnetfeld. 
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Einfache Netzwerke mit zeitunabhängigen Grundelementen  R,  L,  C  führen

nur die Leistungsanteile 1 und 2. 

Der Poyntingsche Satz in Form Gl. (4.2.10) erlaubt wichtige Aussagen zum Klem-

menleistungsverhalten bei Betrieb des Zweipols mit Wechselgrößen für die sog. 

 Wirk-  und  Blindleistung (s. Bd. 3). 

Energiewandlung Zur Leistungsbilanz Gl. (4.2.10) eines allgemeinen Zweipols

tragen zwei Energieformen bei: elektrische (links) sowie das zugehörige elekt-

romagnetische Feld rechts (Anteil 1) und  nichtelektrische  Formen (Anteile

2–4 rechts): irreversible Wärmeleistung des Strömungsfeldes (Anteil 2), Leis-

tungen, die über die Feldstärke  E i ins Strömungsfeld gelangen (z. B. chemi-

sche Energie einer Batterie) und die Strahlungsleistung (die wir nicht weiter

verfolgen). In Abb. 4.2.1c wurde die  Energiewandlung  zusammengefasst. 

Zur Leistungsbilanz Gl. (4.2.10) gehört eine  feste H¨

 ulle  und damit  fester

 Feldraum. Wird er durch eine  ¨

 außere Kraft deformiert, so entstehen  r¨

 aumliche

 Feldenergie¨

 anderungen  nach dem Ansatz Gl. (4.1.10). Sie beschreiben die

 direkte Wandlung elektrischer Feldenergie in mechanische (und umgekehrt)

und werden im Wandlungsmodell Abb. 4.2.1d als  Kraftwirkung  erfasst. Die

zugehörige Netzwerkinterpretation führt dann auf  zeitver¨

 anderliche Energie-

 speicher. Energie wird auch in  nichtelektrischer  Form gespeichert (Wärme-

kapazität, mechanisch durch Federwirkung, Trägheitsmoment  . . . ), wie im

Bilanzmodell Abb. 4.2.1d berücksichtigt. 

Zusammengefasst ergibt sich:

Der Poyntingsche Satz beschreibt die Wandlung elektrischer Energie (als

Leistungsbilanz) und der zugehörigen Feldenergien in andere nichtelek-

trische Formen. 

Der Poyntingvektor ist Träger der elektromagnetischen Energie und

maßgebend für den Leistungsfluss in jedem elektromagnetischen System. 

Er beschreibt Größe und Richtung des Energietransports im Feldpunkt. 

Der gerichtete Energietransport entsteht durch Verkopplung von elektri-

scher und magnetischer Energie. 

Elektromagnetische Energie wird nicht durch Leiter übertragen, sondern

im Raum um die Leiter (die nur eine Führungsfunktion haben, s. u.!). 

Vernachlässigt man in Gl. (4.2.10) den Strahlungsanteil (4), so verbleibt als

Leistungsbilanz (Gl. (4.2.11))

d W

 ui =  I W +

mit  W =  W d +  W m +  W S +  W nichtel

d t

 .. 

(4.2.11)
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Die dem Zweipol zugeführte elektrische Leistung unterhält den Energiefluss

 I W durch eine (gedachte) Hüllfläche und verursacht eine Änderung der Ener-

gie  W  in der Hülle (bestehend aus elektromagnetischer Feldenergie  W el,  W m, 

Wärmeenergie des Strömungsfeldes  W S und Wandlung in mechanische Ener-

gie  W nichtel . →  Auftreten von Kraftwirkungen). 

Im  station¨

 aren Fall (d W/ d t = 0) speist dann die dem Zweipol zugeführte

elektrische Leistung nur den Energiestrom  I W. Er kann, je nach Interpreta-

tion, beispielsweise beim Gleichstrommotor neben der Verlustleistung auch

die mechanisch abgegebene Leistung bei konstanter Drehzahl umfassen. 

4.2.2 Energietransport Quelle-Verbraucher

Leistung im Grundstromkreis Wir übertragen den Poyntingschen Satz

Gl. (4.2.5) auf den Grundstromkreis, aber als Feldbetrachtung mit der Ener-

giestromdichte  J w (Abb. 4.2.2a). Die Verbindung zum Verbraucher über-



nimmt eine widerstandslose Koaxialleitung und statt Spannung  U =  r a  E ·

 r i

#

d s  und Strom  I =

 H ·  d s  werden die Feldgrößen  E,  H  der Leitung ver-

wendet (Abb. 4.2.2a, b). Zwischen den Leitern wirkt die Feldstärke  E  und

um jeden Leiter das Magnetfeld  H. Dann ist die Leistungsdichte  E × H  am

oberen und unteren (!) Leiter zum Verbraucher hin orientiert. 

In Zylinderkoordinaten lauten die Größen

 Q

 Q

 r a

 U

 I

 E =

 , U =

ln

 → E r =

 e r  H

 e

 ε 2 πrl

 ε 2 πl

 r

 ϕ =

 ϕ. 

i

 r  ln( r a /r i)

2 πr

 Hϕ  und  E r stehen senkrecht aufeinander und ergeben den Poynting-Vektor

 J

 U

 U I

W =  E r  × H ϕ =

 · I ( e r  × e

 e z

 r  ln  r

 ϕ) =

a

2 πr

2 πr 2 ln  r a

 r i

 r i

Abb. 4.2.2. Energiestromdichte, Poynting-Vektor. (a) Grundstromkreis mit Feldgrößen

und Poynting-Vektor  J  W. (b) Poynting-Vektor in einer Koaxialleitung. (c) Leistungsfluss

in einer Doppelleitung bei eingefügter (ideal) leitender Ebene. (d) Energieströmung im

zylindrischen Leiter endlicher Leitfähigkeit
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in  z-Richtung. Er führt durch das Flächenelement d A = 2 πr d re z (Kreisring d A, Breite d r  und Umfang 2 πr) die Leistung



 r a



 U I

2 πr d r

 P =

 J W  ·  d A =

 e z  · e z =  UI. 

(4.2.12)

ln  r a

2 πr 2

 r

 A

i

 r i

Der Energiestrom fließt von der Quelle zum Verbraucher im Feldraum des

Koaxialkabels, also außerhalb der Leiter. 

Aus Sicht der Energiestromdichte ist das Dielektrikum zwischen Innen- und

Außenleiter sowohl Sitz gespeicherter Energie (ausgedrückt durch Kapazität

und Induktivität des Kabels) als auch Transportraum des Energiestromes. 

Innen- und Außenleiter haben nur die Aufgabe, den Energiestrom zu führen, 

ihn also zu zwingen, dem Leiter räumlich zu folgen! 

Das Ergebnis Gl. (4.2.12) auf beiden Seiten hat zwar gleiche Dimension, doch muss

es physikalisch verschieden gedeutet werden. Der Term links beschreibt den Energie-

transport durch das Feld, der Term rechts die  materiegebundene  Energieströmung:

Stromtransport durch Ladungsträger (Strom  I!). 

Bei  Umpolung der Spannungsquelle ändert sich die Richtung des Poynting-Vektors

und damit die  Energieflussrichtung nicht:  die Bewegungsrichtung der Ladungs-

träger bleibt ohne Einfluss auf den Energietransport. So erklärt sich, dass ein gleich-

gerichteter Energietransport auch durch Wechselstrom erfolgt. 

Abbildung 4.2.2a zeigt den Poynting-Vektor in ausgewählten Punkten: um die Span-

nungsquelle ist er nach außen gerichtet, in der Verbindungsleitung zum Verbraucher

hin und um das Lastelement nach innen. 

Wird in Schaltungsmitte eine große, gut leitende Ebene mit Löchern für die Durch-

leitungen angebracht (Abb. 4.2.2c), so erfolgt wegen  E = 0 in der Platte kein

Leistungsfluss. Nur in den Löchern ist die Feldstärke entsprechend groß und damit

auch der Poynting-Vektor. Er zwängt“ sich durch die Löcher. 

” 

Bei einer Wellenausbreitung entfällt der Leiter und der Energietransport erfolgt frei

durch den Raum beschrieben durch die Energiestromdichte. 

Verlustbehaftete Koaxialleitung Hat der Innenleiter einen Widerstand (Leitfä-

higkeit  κ), so entsteht ein Längsspannungsabfall und damit eine Tangentialfeld-

stärke  E t =  e z I/( κA L) ( A L Leiterquerschnitt) zusätzlich zur Normalfeldstärke (Abb. 4.2.2d). Mit der magnetischen Feldstärke  Hϕ =  eϕI/(2 πr i) an der Stelle  r i beträgt der Poynting-Vektor (mit  A L =  πr 2i)

 J

 I

 I

W = ( E t  × H ϕ) =

( e z  × eϕ) =  −

 I 2

 e r . 

 κA L 2 πr i

 κ 2 π 2 r 3i

Er zeigt auf der Leiteroberfläche  in den Leiter  und das Hüllintegral





 −

 −

 J

 I 2

 I 2 l

W  ·  d A =  −

 e r  · e r2 πr id l =

=  I 2 R

 κ 2 π 2 r 3

 κπr 2

i

i
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Abb. 4.2.3. Energieströmung im Kondensatorfeld während des Umladens. (a) Aufladung

bis zur Zeit  t 1. (b) Entladung im Zeitbereich  t 1  . . . t 2. (c) Zeitverläufe von Kondensatorspannung, Strom, Energie  W el sowie zu- oder abgeführter Leistung  p = d W el / d t

ergibt den Leistungsverlust in ihm. Die Tangentialkomponente  J Wt =  E n  × H

beschreibt wie oben die Energieströmung zum Verbraucher. Mit wachsendem Ab-

stand vom Leiter sinkt die transportierte Energiedichte, weil  E  und  H  abnehmen. 

Deshalb erfolgt der Energietransport in einem

Schlauch“ um den Leiter. Er ist

” 

Sitz (= gespeicherte Feldenergie) und Leiter“ der Energie! Im Leiter selbst erfolgt

” 

kein Energietransport zum Verbraucher, weil der Poynting-Vektor nur eine radiale, 

in den Leiter zeigende Komponente hat ( →  Leistungsdichte, Erwärmung): Energie

strömt aus dem elektromagnetischen Feld in den Leiter. 

Abbildung 4.2.2d zeigt die Energieströmung im Koaxialkabel. Die senkrecht auf der

Innenleiteroberfläche stehende elektrische Feldstärke verursacht die Tangentialkom-

ponente des Leistungsdichtevektors verantwortlich für den Energietransport. Seine

radiale Komponente entsteht durch die tangentiale Feldstärkekomponente (als Fol-

ge des Spannungsabfalls). Sie zeigt in den Leiter und erfasst die Leiterverluste. 

Kondensatorladung Energieströmungen treten auch beim Laden und Entladen ei-

nes Kondensators durch eine sinusförmige Spannung auf (Abb. 4.2.3). Während

der ersten Viertelperiode (Laden, Zeit 0  . . . t 1) strömt elektromagnetische Energie

zum Feldaufbau zwischen die Kondensatorplatten. Das zeigt die Zuordnung von  E, 

 H  und  J W. Während der Entladung (Zeit  t 1  . . . t 2) fließt die im Kondensatorfeld gespeicherte Energie zur Quelle zurück (Richtungsumkehr des Stromes und Magnetfeldes). Mit Spannungsumkehr nach  t 2 ändern sich die Richtungen von  E  und

so  J  W und die Ladung beginnt von Neuem. 

4.2.3 Energiewandlung

Die Wandlung elektrischer Energie in nichtelektrische Formen ist vielfältig

und wir verfolgen diese Vorgänge deshalb systematischer. Grundlage aller

Wandlungen ist der Energiesatz, entweder für ein geschlossenes System

Gl. (4.2.1) oder das offene als  Bilanzgleichung (4.2.2). 

Die Leistungsbilanz eines offenen Systems besagt, dass  zugef¨

 uhrte Leistung

einer Form einerseits die Energie (derselben Form!) in einem Hüllvolumen

erhöht und andererseits einen  Leistungsabfluss  aus dem Hüllvolumen un-
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Abb. 4.2.4. Leistungsbilanz und Energiewandlung. (a) Bilanzgleichung der zugeführten, 

gespeicherten und abgeführten Energieströme (Leistungen) am Zweitor mit Energie-

wandlung. (b) Elektrisch-thermische Energiewandlung am Widerstand  R  mit elektrisch-

thermischer Ersatzschaltung

terhält, der auch in anderer Energieform erfolgen kann:  damit ist Energie-

 wandlung prinzipiell eingeschlossen! Das zeigt etwa ein Netzwerk aus den

Grundelementen  R,  L,  C, angeordnet als Zweitor (Abb. 4.2.1c). Ihm wird die

elektrische Leistung  p 1 zugeführt und der Teil  p 2 =  p 2el davon ausgangsseitig

als elektrische Leistung abgeführt. Die Differenz speichern seine Energiespei-

cher als elektromagnetische Energie und ein anderer Teil wird in den Ohm-

schen Widerständen in Wärme (Wärmeleistung  p W =  p V Verlustleistung)

umgesetzt. Die Folge ist ein Wärmestrom durch die Hülle. Weitere nichtelek-

trische Leistungen  p 3 und Strahlungsleistung  p 4 werden nicht betrachtet. 

Die Ausgangsleistung wandelt sich, je nach Anschlussart, beispielsweise in

 Feldenergie ( C,  L-Abschluss),  Wärmeleistung (Ohmscher Abschluss) oder

 mechanische Leistung (Anschluss eines Motors), also in  nichtelektrische For-

 men, denn die Feldenergie könnte (bei Erweiterung der Hülle) auch mit

zur dortigen Feldenergie gerechnet werden. Dann lautet die Leistungsbilanz

(4.2.2) bei Wandlung zwischen zwei Energieformen verallgemeinert
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 ⇐⇒

d W 

 p|

=



+

+



1zu

 p|

 . (4.2.13)

d t 

Energiewandlung

Form 2 ab

d 

Form 1

 t  Form 2

Sie berücksichtigt Energiespeicherung auch für die gewandelte Form. Ab-

bildung 4.2.4a interpretiert die Leistungsbilanz. Wird dabei ausgangsseitig

elektrische Leistung wie beim Zweitor abgeführt, so steht in Gl. (4.2.13) links

die Nettosumme zwischen zu- und abgeführter Leistung. Wir betrachten drei

Beispiele. 

Die einem  Widerstand R  zugeführte elektrische Leistung wird in Wärme um-

gesetzt (Wärmefluss  p V an die Umgebung modelliert als thermische Strom-

quelle  i Q, die auf den Wärmewiderstand  R th arbeitet, Abb. 4.2.4b). Es stellt

sich seine Betriebstemperatur  T B (gegen die Umgebungstemperatur  T U) ein, 
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Abb. 4.2.5. Leistungsbilanz und Energiewandlung am Gleichstrommotor. (a) Modell

mit typischen Leistungsflüssen. (b) Energieumsatz und -wandlung in den Teilbereichen. 

(c) Ersatzschaltungen der Teilbereiche. (d) Elektrisch-mechanische Ersatzschaltung, Über-

führung des mechanischen Teilnetzwerkes in ein elektrisches

gleichzeitig erhitzt er sich wegen seiner Wärmekapazität  C th zeitverzögert. 

Die  elektrisch-thermische Energiewandlung  wird als thermische Ersatzschal-

tung modelliert. Zur Erklärung nach Gl. (4.2.13) müsste dem Ohmschen Wi-

derstand noch ein Kondensator  C  parallelgeschaltet werden, damit die elek-

trische Leistung zeitverzögert anwächst. Dieses Modell und die Temperatur-

abhängigkeit eines Widerstandes erklärt z. B. sein  nichtisothermes  Verhalten

(s. Bd. 1, Kap. 2.3.4, Gl. (2.3.22)). 

Energiewandlung tritt auch im  Poyntingschen Satz (Gl. (4.2.10)) auf: die Leis-

tungsanteile 2 und 3 beinhalten Wärmeabfuhr und weitere Energiewandlung über

die Feldstärke  E i als  nichtelektrische  Ursache. 

Die Energiewandlung kann mehrere Formen umfassen, wie etwa beim  Gleichstrom-

 motor (Abb. 4.2.5a). Ihm wird elektrische Leistung zugeführt und mechanische

(durch Drehmoment und Winkelgeschwindigkeit) abgeführt. Gleichzeitig speichert

seine Ankerinduktivität magnetische Energie und ebenso sitzt mechanische in sei-

nem Trägheitsmoment (er läuft beim Einschalten allmählich an und nach Abschal-

ten noch etwas weiter). Zusätzlich treten Wärmeverluste im Wicklungswiderstand

und mechanische durch Reibung (Lager, Bürsten) auf. Schließlich hängt die me-

chanisch abgegebene Leistung von der Last ab und die Wärmeleistung wird durch

Kühlmaßnahmen beeinflusst. 
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Der Wirkungsablauf Abb. 4.2.5b erfasst diese Verhältnisse nach Gl. (4.2.13). Klar

sind die elektrischen und mechanischen Teilgebiete mit  reversibler Wandlung (jeder

Gleichstrommotor kann als Generator arbeiten!). Die Energiewandlung zum thermi-

schen Teilbereich erfolgt  irreversibel (elektrisch-thermisch, mechanisch-thermisch). 

Auch Wärmeträgheit (Wärmekapazität) tritt auf: der Motor erwärmt sich nicht

sofort, sondern allmählich. 

Eine praktische Fragestellung ist dann z. B. die nach der elektrischen Leistung bei

gegebener Last und der Motorbetriebstemperatur. Das erfordert

beschreibende Gleichungen für jeden Energiebereich, also  elektrische, mechani-

 sche  und  thermische Ersatzschaltungen  und  Verkopplungsbeziehungen  zwischen

den Energieformen, 

die Lösung des Gesamtsystems nach den gesuchten Größen. 

Hilfreich sind dabei Modelle für die Teilgebiete, angelehnt an elektrische Netz-

werke, also die Schaffung  physikalischer Netzwerke  durch  Analogiebetrachtungen

(Kap. 6.1). Gelingt schließlich ihre

Umsetzung“ in rein elektrische, so kann das

” 

 Gesamtsystem allein auf dieser Ebene gel¨

 ost  werden. Dafür stehen neben ausgereif-

ten Methoden vor allem auch  Netzwerksimulatoren  bereit. 

Zum Gleichstrommotor gehören entsprechende Ersatzschaltungen (Abb. 4.2.5c). 

Die elektrische Seite (Ankerkreis, Induktivität  L) wird beschrieben durch

d i

 u =  iR +  L

+  u qi mit  u qi =  wBAω =  kω. 

(4.2.14a)

d t

Die induzierte Spannung  u qi übernehmen wir von der rotierenden Leiterschleife

( w  Windungen, Schleifenfläche  A). Mechanisch muss das antreibende Drehmoment

 M M (elektrodynamische Kraft auf die Leiterschleife)



d ω

 M M =  J

+  Dω +  c

 ω d t +  M L ,  mit  M M =  wAB · i =  k · i

(4.2.14b)

d t

das  Tr¨

 agheitsmoment J, die (Dreh-)  D¨

 ampfung D (Reibung, Verluste), die elas-

tische  Drehnachgiebigkeit c (Antriebswellenverdrehung, meist vernachlässigt) und

das  Lastmoment M L überwinden. Die rotatorische Bewegung vertauscht die Größen

Kraft  F  und Geschwindigkeit  v  der translatorischen Bewegung gegen Drehmoment

 M  und Winkelgeschwindigkeit  ω. Grundsätzlich lassen sich die Gleichungen nach

gesuchten Größen, z. B. Strom, Drehzahl und Eingangsleistung als Funktion der me-

chanischen Last lösen (lineares Gleichungssystem). Falls bei Hinzunahme der ther-

mischen Seite keine Rückwirkung (über Temperaturkoeffizienten der Bauelemente)

erfolgt, bleibt das System linear, bei Temperaturrückwirkung allerdings nicht. 

Wird z. B. im Drehmoment die Winkelgeschwindigkeit durch die Spannung  u qi er-

setzt ( ω =  u qi /k), so lautet die Drehmomentbeziehung gleichwertig nach Division

durch die  Leiterschleifenkonstante k







1

 J

 D

 c

 − 1

 i =  C  d u qi +  Gu qi +

 u qid t,  mit  C =

 , G =

 , L =

 . 

d t

 L

 k 2

 k 2

 k 2

(4.2.14c)
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Das ist ein elektrischer Netzwerkteil, gespeist vom Strom  i  mit dem Spannungs-

abfall  u qi (Abb. 4.2.5d). Durch die Ersatznetzwerkelemente  C,  G,  L (statt der mechanischen Größen  J,  D  und  c) geht das gemischt elektrisch-mechanische Netzwerk in ein rein elektrisches über und lässt sich mit gängigen Methoden nach den

Unbekannten  i  und  u qi lösen! 

Das Energiewandlungssystem Gleichstrommotor“ wird damit gleichwertig model-

” 

liert durch:

 elektrische und mechanische Teilnetzwerke  verbunden über ein  Energiewand-

 lerzweitor, hier vom Typ spannungsgesteuerte Spannungsquelle (eingangsseitig)

und stromgesteuerte Stromquelle (ausgangsseitig). Jede Quelle hat den  Wand-

 lungstyp elektrisch-nichtelektrisch (bzw. umgekehrt). Am Gesamtnetzwerk lie-

gen elektrische Größen eingangsseitig, mechanische ausgangsseitig (dort auch

die mechanische Last als Torbelastung). Das Wandlerzweitor wird nur durch

die  Transformationsvariable k =  wAB  der Leiterschleife (bei elektrodynami-

scher Kraftursache) bestimmt. 

ein  rein elektrisches Netzwerk  mit mechanischen Netzwerkelementen äquivalent

umgewandelt in elektrische. Das Wandlerzweitor entartet dann zum elektri-

schen Wandler und dient bei weiterer Umwandlung nur als  Leitungsverbindung

(idealer Wandler mit Spannungs- bzw. Stromübersetzungsverhältnis von 1). Die

äquivalenten mechanischen Größen  u qi( → ω) und  i ( → M M) treten am Ein- und

Ausgang gemischt auf. Die Wandlungseigenschaften sitzen in den transformier-

ten Netzwerkelementen und den zugeordneten elektrischen Variablen. 

Das Wandlerzweitor aus gesteuerten Quellen ist hier vom  Hybridtyp (Tab. 2.9, 

Kap. 2.6.4, Bd. 1), wir untersuchen es im Kap. 6.1 genauer. 

4.3

4.3 Umformung elektrischer in mechanische Energie

Einf¨

uhrung Das elektromagnetische Feld wurde über die Kraftwirkungen zwi-

schen ruhenden/bewegten Ladungen eingeführt, umgekehrt übt es Kräfte auf

Ladungsträger aus (Ladungsverschiebung im elektrischen Feld, Richtungs-

änderung im magnetischen Feld). Die Kraftwirkung beruht auf der rever-

siblen Energieumformung elektrischer in mechanische Energie. Ihre Berech-

nung erfolgt über das Prinzip der  virtuellen Verschiebung. Ferner können

Bereiche mit gespeicherter Feldenergie Arbeit an Ladungsträgern leisten, 

die sich durch Kraftwirkungen bemerkbar macht. Auch hier wird elektrische

Energie in mechanische gewandelt. 

Kräfte  auf  Ladungen übertragen sich auf Körper  mit  Ladungen und versu-

chen, sie zu bewegen (oder deformieren). Typisch sind dafür

Kräfte zwischen ruhenden oder bewegten Ladungen (Ströme), auch auf

oder durch Leiter, 
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Kräfte durch räumliche Änderung der Dielektrizitätskonstanten bzw. Per-

meabilität an Grenzflächen zweier Gebiete, 

Kräfte, die auftreten, wenn sich  ε  bzw.  μ  mit der Stoffdichte ändert sowie

Kräfte auf elektrische oder magnetische Dipole. Wir übergehen sie wegen

der geringen Bedeutung. 

Die Umformung elektrischer oder magnetischer Energie in mechanische und umge-

kehrt ist ein wichtiges Teilgebiet der Elektrotechnik, das neben seinen Grundlagen

(dieses Kapitel) vor allem technische Bedeutung für Motoren (Aktoren, Kap. 5)

und der Wandlungsmodellierung durch Analogiebetrachtungen (Kap. 6) hat. 

4.3.1 Kr¨

afte im elektrischen Feld

Fundamental wirkt das elektrostatische Feld durch seine  Kr¨

 afte  auf  alle  feld-

erregenden Ladungen, auch  Fl¨

 achen-  und  Raumladungsdichten ( σ,  ). Die

Folge sind Kräfte auf  geladene Leiter (Kondensatorplatten) und  Grenzfl¨

 achen

 zweier Dielektrika (Ort von Flächenladungen, Abb. 2.4.1) ausgedrückt durch



 F

Elektrostatische Kraft

=

 f d V, f =  E − E 2 grad  ε

(4.3.1a)

2

und Kraftdichte

 V

mit der  elektrostatischen Kraftdichte f . Analog zur Energie stellt man sich

auch die Kraft räumlich verteilt vor. Der erste Anteil beschreibt die  Coulomb-

 Kraft, der zweite Kraftwirkungen, die bei  r¨

 aumlicher Permittivit¨

 ats¨

 anderung

(einschließlich sprunghafter an Grenzflächen) entstehen. Die Gesamtkraft  F

auf ein Volumen  V  folgt durch Integration (Gl. (4.3.1a)). Weil die direkte

Kraftberechnung nach Gl. (4.3.1a) oft Probleme bereitet (Feldverlauf erfor-

derlich!), empfiehlt sich als Einführung eine  gleichwertige Berechnung mit

 dem Energiesatz  und dem Prinzip der  virtuellen Verr¨

 uckung. 

4.3.1.1 Kraftwirkung auf Ladungstr¨

ager

Eine Ladung  Q  erfährt im elektrischen Feld  E  die Kraft  F  gemäß







 F =  QE =  E d Q =  E d V =  f d V, Q

 V

 V



(4.3.1b)

 F =  σE ·  d A, 

 A

die auch durch Ladungsverteilungen entstehen kann ( f =  E  elektrostatische

Kraftdichte). Beispiele für Kraftwirkungen auf freie Ladungsträger sind das

 Coulombsches Gesetz (Gl. (1.3.5), Bd. 1), die  Umwandlung mechanischer in
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Abb. 4.3.1. 

Energieumwand-

lung elektrisch – mechanisch

durch

bewegte

Ladungen. 

(a)

Ladungsbewegung

gegen

das

Kondensatorfeld, 

Um-

wandlung kinetischer Energie

geladener Teilchen in elektri-

sche. (b) Situation für negative

Ladung. (c) Erhöhung der ki-

netischen Energie beweglicher

Ladungen im elektrischen Feld

 elektrische Energie  und ihre Umkehrung, wie sie bei der Bewegung freier

Ladungsträger im Vakuum auftritt. 

Ladungstr¨

agerbewegung, Bewegungsgleichung  Frei bewegliche Ladungstr¨

 ager

 (Elektronen, Ionen) werden im elektrischen Feld beschleunigt

 F

d v

=  m

=  QE. 

Bewegungsgleichung (4.3.2)

d t

Freie Bewegung erfordert zur Vermeidung von Stößen mit Gasteilchen ein

 Vakuum. Der Bewegungsablauf unterliegt wegen der Teilchenmasse  m  stets

mechanischen Gesetzen. Hilfreich ist dabei die Anwendung des  Energiesatzes

(s. u.). Wir betrachten zwei Beispiele. 

Wird in ein Kondensatorfeld (Feldstärke  E) eine (positive) Ladung  Q  mit der Ge-

schwindigkeit  v gegen  das Feld eingeschossen (Abb. 4.3.1), so leistet sie in der Zeit d t die Arbeit  F · d s =  F ·v d t =  QE ·v d t  gegen das Feld (negativ wegen gegensätzlicher Richtung von  E  und  v): die kinetische Energie des Teilchens sinkt. Die bewegte

Ladung influenziert im äußeren Stromkreis den Strom  i. Nach dem Energiesatz

gilt  ui  d t =  QE · v d t. Der auftretende negative Wert symbolisiert  Leistungsabgabe  des Kondensators: Gewinnung elektrischer Energie auf Kosten der kinetischen

Teilchenenergie. Bei Verbindung der Kondensatorplatten mit einem Widerstand  R

(Abb. 4.3.1b) fließt im Kreis ein Leitungsstrom. 

Die gleiche Situation liegt bei Einschuss einer negativen Ladung in entgegengesetz-

ter Richtung vor, also in Feldrichtung (Abb. 4.3.1b). Die auf die negative Elektrode

aufprallenden Elektronen fließen über den Widerstand ab. Der Strom fließt in die

eingetragene Richtung. 

Die Umwandlung mechanischer Energie in elektrische bei Bewegung einer Ladung

 gegen  ein Feld dient in elektronischen Bauelementen zur Erzeugung hochfrequenter

Schwingungen. 

Bewegt sich umgekehrt eine (positive) Ladung  Q  im Kondensator (im Vaku-

um an der Spannung  u)  in  Feldrichtung (Abb. 4.3.1c), so verrichtet die Span-

nungsquelle am Teilchen Arbeit, gibt also die Leistung  ui  ab. Jetzt wächst
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seine kinetische Energie  W kin =  mv 2 / 2 je Zeitspanne um  ui =  QE · v =





d  mv 2 / 2  / d t. Bei Bewegung von Punkt 1 nach 2 leistet das Feld die Arbeit

2



2



 W 12 =

 F ·  d s =

 QE ·  d s =  − Q ( ϕ 2  − ϕ 1) =  QU 12

1

1

2



2



d v

 m 



=

 m

 ·  d s =

 mv ·  d v =

 v 2  − v 2  , 

d t

2

2

1

1

1

also

 m 



 mv 2

 mv 2

 QU

1

2

12 =

 v 2  − v 2

oder  Qϕ 1 +

=  Qϕ 2 +

= const . 

2

2

1

2

2

Bewegt sich ein geladenes Teilchen vom Ort des Potenzials  ϕ 1 nach einem

Ort mit Potenzial  ϕ 2, so hängt die Änderung seiner kinetischen Energie nur

von der Potenzialdifferenz ab, nicht einem einwirkenden Magnetfeld. 

Der so gewonnene Energiesatz (Konstanz der Summe von potenzieller und

kinetischer Energie eines Teilchens) ergibt einen Zusammenhang zwischen

durchlaufener Spannung und Geschwindigkeit. Er ist Ausgang zur Bestim-

mung der Strom-Spannungs-Beziehung der Hochvakuumröhre. Im Hochva-

kuum erfährt die Ladung durch das Feld konstante Beschleunigung, wogegen

Ladungsträger in Leitern (durch Reibungsverluste mit dem Gitter) mit kon-

stanter Geschwindigkeit wandern. 

Beschleunigung (Bremsung) von Ladungsträgern im elektrischen Feld be-

deutet Umsatz elektrischer Energie in mechanische und umgekehrt. 

Im elektrischen Feld ist Energieaustausch zwischen Feld und Ladungs-

trägern möglich (und Grundlage vieler Anwendungen), im Magnetfeld nicht! 

Dieses Prinzip nutzen z. B. Elektronen-, Kathodenstrahl- und Röntgenröhren, 

elektronische Linsen, Beschleuniger. 

In der  Braunsche R¨

 ohre (Abb. 4.3.2) tritt aus der Kathode ein Elektronenstrahl

aus und erreicht in einem Loch in der Anode (Anodenspannung etwa 5  . . .  25 kV)

die Geschwindigkeit  v x. Anschließend gelangt er zwischen die Kondensatorablenk-

platten mit einem Feld  E y ( v x = const, da  E x = 0) senkrecht zu  v x. Die Feldkraft in  y-Richtung lenkt die Ladungsträger ab, dabei erhalten sie die Geschwindigkeit

 v y =  a y t =  qE y t/m (konstante Beschleunigung  a y =  F  y /m =  qE y /m). Zur Zeit t  beträgt die Ablenkung  y =

 vy d t =  ayt 2 / 2. Durch Eliminieren der Zeit aus dem

zurückgelegten Weg  x =  v x t  folgt die Ablenkung  y =  a y x 2 / 2 v 2x =  qE y x 2 / 2 mv 2x. Sie ist proportional der Ablenkspannung  u y  ∼ E y  ∼ y, die den Elektronenstrahl über

den Leuchtschirm führt. Dort regen die auftreffenden Elektronen einen Leuchtstoff

zum Leuchten an. Die Elektronenstrahlröhre bildete über Jahrzehnte das Grun-

delement des Oszilloskops. Ablenkung kann auch durch das Magnetfeld erfolgen

(s. Kap. 4.3.2.1). 

4.3

Umformung elektrischer in mechanische Energie

463

Abb. 4.3.2. Braunsche Röhre. (a) Prinzipaufbau, elektrostatische Ablenkung eines La-

dungsträgers bei Durchlauf eines homogenen elektrischen Feldes. (b) Feld- und Geschwin-

digkeitsverhältnisse zwischen den Ablenkplatten (positive Ladung, bei negativer Ladung

entgegengesetzte Ablenkung)

4.3.1.2 Kraft auf Grenzfl¨

achen

Kraftwirkungen entstehen auch an Grenzflächen zwischen Dielektrikum und

Leitern oder unterschiedlicher Dielektrika. Ursache sind anziehende (absto-

ßende) Kraftwirkungen ungleichnamiger (gleichnamiger) Ladungen. Prinzipi-

ell lässt sich hier die Kraft aus der Ladungsverteilung Gl. (4.3.1) ermitteln, oft

führt aber die Energiebilanz zwischen mechanischer, elektrischer und Feld-

energie nach dem  Prinzip der virtuellen (scheinbaren) Verr¨

 uckung  schneller

zum Ziel. Dabei wird das Feldvolumen  V =  As  um eine virtuelle Strecke

d s  verändert und die auftretende Energieänderung d W  bestimmt. Grund-

lage ist der Energiesatz entweder in Form konstanter Energie für ein abge-

schlossenes System oder für zwei gekoppelte Teilsysteme, wobei die Ener-

giezunahme im ersten System gleich der Energieabnahme im zweiten sein

muss. 

1. Kraft auf r¨

aumlich ausgedehnte Leiter, Plattenkondensator

Liegt ein Plattenkondensator mit beweglicher Elektrode (Abb. 4.3.3a) an

einer Spannungsquelle  u =  u q, (Plattenladung + Q,  −Q) so entsteht eine

Feldkraft  F . Sie verschiebt die bewegliche Elektrode um d x  nach unten und

leistet die mechanische Arbeit d W mech =  F  d x,  F =  F el. Als Reaktion spannt

sich eine Feder an der beweglichen Elektrode und führt zum Plattenabstand

 d−x. Es ändert sich die Kapazität  C  und damit die Feldenergie um d W d und

folglich die aus der Spannungsquelle zufließende Energie um d W u =  ui d t. 

Zu unterscheiden sind Kraft  F  auf die Kondensatorplatte herrührend vom elektri-

schen Feld und die (äußere) Reaktionskraft  F  r =  −F (beispielsweise der Feder), 

die mit der Kraft  F  das Gleichgewicht hält. 
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Abb. 4.3.3. Energieänderung und Kraftwirkung auf eine bewegliche Kondensatorelektrode. 

(a) Bedingung konstanter Ladung  Q (Schalter S nach Aufladen geöffnet) bzw. konstanter

Spannung  U q (Schalter geschlossen). (b) Zeitveränderlicher Kondensator aufgefasst als

elektrisch-mechanischer Wandler. (c) Unterschiedlich veränderbare Kondensatoren

Ein Plattenkondensator (Luft als Dielektrikum) mit beweglicher Elektrode

formt elektrische Energie in mechanische um und umgekehrt (s. u.). 

Dazu ist die Platte mit einer mechanischen Anordnung zur Weiterleitung

der Kraft verbunden. Weil geladene Platten immer  anziehende Kr¨

 afte  auf-

einander ausüben, muss die bewegliche Platte durch eine  elastische Bindung

(Feder, je nach Anordnung auf Zug oder Druck beansprucht) in einer Ruhe-

lage gehalten werden. 

Für die Anordnung (Quelle, Kondensator) als abgeschlossenes System gilt

" 

nach dem Energiesatz

d W = d W mech + d W d + d W F = 0. Für Spannungs-

quelle und Kondensator als gekoppelte Teilsysteme dagegen9

 ui d t

=

d W d

+

 F  ·  d s

 . 

(4.3.3a)

zugeführte

Erhöhung der

mechanische Arbeit

elektrische Energie

Feldenergie

verrichtet im System

9 Die Zuordnung der Energie  F  d x  und  F  d x  zum Energiesatz erfolgt leider nicht

einheitlich ( Lenk  2011,  Janscheck  2010), was zu gelegentlichen Unstimmigkeiten

führt. Die folgenden Ausführungen dienen zum anschaulichen Verständnis meist

auf Grundlage der Reaktionskraft  F , obwohl im physikalischen System die Cou-

lombkraft  F el bzw. Lorentz-/Reluktanzkraft  F m auftreten. 
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Das System verrichtet die Arbeit  F ·  d s =  F  d xe x  · e x =  F  d x  durch die Plattenbewegung. 

Zur Erklärung der mechanische Arbeit rechts in Gl. (4.3.3a) zusammen mit

dem Energiesatz Gl. (4.2.13) betrachten wir die Kraft  F =  F  el auf die Kondensatorplatte bei anliegender Spannung (Abb. 4.3.3a). Bei ihrer Verschie-

bung durch eine Kraft  F  um das Stück d x  wird dem System mechanische

Arbeit  F ·  d x zugeführt. Umgekehrt stellt dann  −F ·  d x  Arbeit dar, die das System  abgibt. Deshalb lautet die rechte Seite von Gl. (4.3.3a) gleichwertig

d W d +  F ·  d x →  d W d  − F ·  d x = d W d +  F  ·  d x. 

(4.3.3b)

Die anziehende Kraft  F =  F  el +  F  f kann neben der elektrostatischen Plat-tenkraft  F  el auch eine eingefügte  Federkraft  einschließen (s. u.). Zur Beseiti-

gung des negativen Vorzeichens in Gl. (4.3.3b) führen wir die  Reaktionskraft

 F  =  −F (vereinfacht  F  =  −F el) ein; dann ist  F  ·  d x  eine  aus dem System herausfließende Energie, also  abgegebene mechanische Energie (Abb. 4.3.3b). 

Wir ermitteln die Kraft  F  unter den Bedingungen konstanter Ladung  Q  und

konstanter Kondensatorspannung  u  zunächst aus dem  Energiesatz  Gl. (4.3.3)

und ergänzen die Ergebnisse später über die  Ko-Energie (Gl. (4.1.14)). 

a)  Q = const. Diese Bedingung ist erfüllt, wenn der Kondensator nach Auf-

laden auf die Spannung  u  von der Quelle getrennt wird (Schalter S offen, 

Abb. 4.3.3a, b):  Kondensator als abgeschlossenes System mit konstanter La-

 dung.  Dann verschwindet in Gl. (4.3.3) die linke Seite (keine zugeführte elek-

trische Energie) und es folgt



 F | ·  d x =

 d

 Q

 F  d xe x  · e x =  − d W d =  − ∂W d

 x

(4.3.4a)

 ∂x Q

oder mit der Kondensatorenergie  W d =  Q 2 /(2 C( x)) umgeformt (die Form

 W d =  C( x) u( x)2 / 2 ist nicht verwendbar, weil die Spannung  u( x) bei Plattenverschiebung variiert!)



 F |

d C

=  −  d W d   e

 e

 Q

x =  − ∂W d

x

d x 

d

Q

 ∂C

 x





 Q 2

d C

 Q 2 d C

 Q 2

=  − ∂

 e x = +

 e x =

 e x . 

(4.3.4b)

 ∂C

2 C

d x

2 C 2 d x

2 εA

Beim Plattenkondensator mit  C( x) =  εA/( d − x) gilt stets d C/ d x >  0: die Kondensatorplatten ziehen sich durch die Kraft zusammen. 

Die Kraft ist der Kapazitätszunahme proportional und immer so gerichtet, 

dass sie die Kapazität (durch Abstandsabnahme) zu vergrößern sucht. Sie
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wirkt stets senkrecht zur Plattenfläche und unabhängig von der Feldrichtung

wegen des Faktors  Q 2 immer anziehend. 

Für eine Kapazität  C( x) folgt die Kraft unmittelbar aus Gl. (4.3.4b). Das

rechte Ergebnis für den Plattenkondensator ist die vom Elektrodenabstand

unabhängige  Coulomb-Kraft. 

Anschaulich geht der Gewinn an mechanischer Energie (Gl. (4.3.4a)) zu Las-

ten der Feldenergie (Abnahme des Feldraumes):  Feldenergie wird in mecha-

 nische Energie gewandelt und die gespeicherte Energie W d  sinkt im Falle

 Q = const  durch Kapazitätserhöhung. 

Die Kraft nach Gl. (4.3.4b) wirkt  unabh¨

 angig von einer m¨

 oglichen  Platten-

verschiebung (kein Einfluss von d x  im Ergebnis), deshalb bezeichnet man den

Kraftansatz mit der Verschiebung d x  in der Energiebilanz Gl. (4.3.3) auch

als  Prinzip der virtuellen Verschiebung. 

b)  U = const. Bei geschlossenem Schalter S (Abb. 4.3.3a) wirkt die Span-

nungsquelle über ihre elektrische Energie  W el am Energieaustausch mit: bei

Plattenverschiebung (Kapazitätszunahme) liefert die Quelle Ladung und da-

mit Energie d W el =  u d Q =  u 2d C (wegen d Q =  u d C) nach und es  fließt ein Klemmenstrom i( t) (Gl. (2.7.25)). Dann lautet die Energiebilanz (4.3.3)

d W el =  u 2d C =  u 2  ∂C  d x = d W d +  F | ·  d x

(4.3.5a)

 ∂x

 u

oder umgestellt mit  W d =  u 2 C/ 2





 Cu 2

 u 2  ∂C

 F | ·  d

d

d

d

 u

 x =  u 2d C −  d W d =  u 2  ∂C x − ∂

 x =

 x (4.3.5b)

 ∂x

 ∂x

2

2  ∂x

bzw. mit Einbezug der Richtung



 F |

 u 2  ∂C

d W ∗

 εA

=

 e

d   · e

=  − u 2

 e

 u

x =

x

 → F |

x . 

(4.3.5c)

2  ∂x

d x 

 u

2 (

 u

 d − x)2

Dabei wurde die Ko-Energie  W ∗ =

d

 W d verwendet, die im linearen Fall mit

der Energie  W d übereinstimmt. Die anliegende Spannung  u  erzwingt während

der Kondensatoränderung  Energieaustausch  mit der Quelle. Im Gegensatz

zu oben  h¨

 angt die Kraft jetzt vom Plattenabstand ab (s. u.). Weiter dient die

von der Spannungsquelle  u = const aufgebrachte elektrische Energie d W el =

 ui d t =  u d Q =  u 2d C

d W el = d( uQ) =  u 2d C = d W d

  + d W ∗ d

 

Speich . 

Mech . 

 u 2  ∂C

 u 2  ∂C

 u 2  ∂C

=

d x +  F |  d x =

d x +

d x

(4.3.6)

2  ∂x

 u

2  ∂x

2  ∂x
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 je zur H¨

 alfte zur Leistung mechanischer Arbeit und Erh¨

 ohung der dielektri-

 schen Feldenergie. 

Zieht man umgekehrt die Kondensatorplatten durch eine externe Kraft  F  =

 −F  um  − d x  auseinander und führt damit mechanische Energie  zu, so sinkt

die Kapazität um d C, die Ladung um d Q  und die Feldenergie um d W d. Jetzt

wird die mechanische Energie d W mech =  u d Q/ 2 zusammen mit dem Teil

d W d =  u d Q/ 2, um den die Feldenergie sinkt,  an die Quelle abgegeben:

Ein Kondensator mit beweglicher Elektrode oder allgemeiner ein zeitab-

hängiger, mit Ladung oder Spannung beaufschlagter Kondensator voll-

zieht die direkte Wandlung mechanischer Energie in elektrische und um-

gekehrt. 

Wir vertiefen diesen Aspekt in Kap. 4.3.1.3, denn ein  ladungsfreier  bzw. 

 spannungsloser  Kondensator erfährt bei Plattenbewegung keinen Energieaus-

tausch! 

Die bisherigen Ergebnisse liefern als Gleichwertigkeiten:





 F |

d C

 Q 2 d C

=  −  d W d   · e

  · e

 · e

 Q

x =  − ∂W d

x =

x

d x 

d 

2

d

 Q

 ∂C

 x Q

 C 2  x





 u 2 d C

 ∂W ∗  d C 

d W ∗ 

=

 · e

d



d 

x =

 · e x =

 · e x =  F |

2 d x

 ∂C

d x 

d



 u . 

(4.3.7)

 u

 x u

Die Kraftwirkung wird allgemein ausgedrückt durch die Kapazitätsände-

rung oder in Sonderfällen über die Änderung der Feldenergie unter definier-

ter Nebenbedingung  Q  bzw.  U = const. Sie ist stets so orientiert, dass sie die

Kapazität wegen der Tendenz zum Längszug und Querdruck der Feldlinien

zu vergrößern sucht. 

Gleiche Kraft unter beiden Bedingungen war zu erwarten, denn sie kann nicht da-

von abhängen, ob Ladung oder Spannung konstant gehalten wird. Auch gilt die

Kapazitätsänderung generell, nicht nur für den Plattenkondensator. Deshalb kann

die Längskoordinate gegen eine allgemeine Koordinate ausgetauscht werden (Dreh-

winkel  α, dann geht die Kraft in ein Drehmoment d W mech =  M α d α über (Dreh-

kondensator!)). 

Die verschiedenen Nebenbedingungen in Gl. (4.3.7) beeinflussen das Gleichgewicht

der Anordnung:









 F 	

 Q 2

d W d

 εA

=  −  d W d  e 	 =

 e

= +

 e 	 =  − u 2

 e

 Q

x

x , 

 F 

x

x  . (4.3.8)

d x



 u



 Q

2 εA

d x

 u

2 ( d − x)2

Bei konstanter Ladung hängt die Kraft nicht vom Plattenabstand  x  ab, bei kon-

stanter Spannung ist sie umgekehrt proportional zu ( d − x)2. Dann ziehen sich die

Platten unter bestimmten Bedingungen selbst zusammen. 
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Die Kraftwirkung auf den elektrostatischen Feldraum wird zusammengefasst

berechnet

allgemein aus der Ableitung der Kapazität nach der in Richtung der

Kraft gewählten Längenkoordinate (Gl. (4.3.7), rechte Seite) unabhängig

von Nebenbedingungen oder

aus den Sonderfällen konstanter Ladung oder Spannung als Ablei-

tung der Feldenergie nach der in Richtung der Kraft gewählten

Längenkoordinate. 

Die Kraft ist stets so gerichtet, dass sie

die Kapazität vergrößert (den Feldraum also verkleinert) oder

speziell bei konstanter Ladung (konstanter Spannung) die Feldenergie

bei der virtuellen Verschiebung vergrößert (verkleinert). 

Den gleichen Sachverhalt zeigt das  Feldlinienverhalten: Bei Zunahme des Platten-

abstandes werden Feldlinien

gedehnt“ und die Feldenergie  w¨

 achst  durch Zufuhr

” 

mechanischer Energie. Nach dem Prinzip actio = reactio haben deshalb Feldlini-

en die Tendenz, sich zu verkürzen und dabei Kräfte zwischen den Trennflächen zu

erzeugen. Sie besitzen auch einen Querdruck und stoßen sich gegenseitig ab (Auf-

bauchen des Feldes). 

Zahlenbeispiel Zur Größenvorstellung ermitteln wir die Kraft auf geladene Platten

in Luft bei der Durchbruchfeldstärke ( E = 30 kV /  cm). Sie beträgt (mit  ε =  ε 0)

nach Gl. (4.3.5c)

 F

8 ,  85  ·  10 − 12 A  ·  s

=

 ·  9  ·  108 V2  ≈  4mN  . 

 A

2

V  ·  m

cm2

cm2

Wegen des geringen Wertes eignen sich elektrostatische Kraftwirkungen nicht zur

Erzeugung großer Kräfte. In der Mikrosystemtechnik treten deutlich größere Feld-

stärken auf und dort haben elektrostatische Kraftwirkungen größere Bedeutung. 

Einen Aufschluss der Energieverhältnisse liefert die  Q, u-Kennlinie, der die me-

chanische Arbeit  F  d x  entnommen werden kann. Wegen der Analogie zum Fluss-

Stromverlauf bei Spulen kommen wir dort auf diese Problematik zurück. 

Ver¨

anderlicher linearer Kondensator Generell erfordert die Energiewandlung

einen  Arbeitsraum  zwischen den Kondensatorelektroden. Er ändert sich me-

chanisch über die  Raumgeometrie Γ (Plattenabstand, -oberfläche) oder/und

seine  Beschaffenheit (Dielektrikum des Mediums  M ):  C =  C(Γ , M ). Dann

hängt die gespeicherte Feldenergie  W d(Γ , M ) von diesen Parametern ab und

die Energieänderung hat zwei Anteile

 ∂W d

 ∂W d

d W d =

dΓ +

d M

(4.3.9)

 ∂Γ

 ∂M
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bedingt durch Änderung der Raumgeometrie (bei festem Medium) und des

Mediums (bei fester Geometrie). Ein Plattenkondensator  C( ε, d, A) erlaubt

Kapazitätsänderung über alle drei Parameter (Abb. 4.3.3c)

 ∂C

 ∂C

 ∂C

 ∂C

d δ

d C =

d ε +

d A +

d δ, 

d C =

d δ =  − εA

 , 

(4.3.10)

 ∂ε

 ∂A

 ∂δ

 ∂δ

 δ δ

nämlich  ε (wie bei kapazitiven Füllstandsanzeigern), Fläche  A (Drehkonden-

sator) oder Plattenabstand. Das negative Vorzeichen verdeutlicht die Kapa-

zitätsabnahme bei Zunahme des Plattenabstandes  δ (zur Unterscheidung ge-

gen das Differential d gewählt). Bei linearer  Q,  u-Kennlinie beträgt die Ener-

gieänderung bei Kapazitätsvariation durch mechanischen Einfluss  α  generell



 u 2

 u 2 d C( α)

d W d( α) = d

 Q d u =

d C( α) =  F ( α)d α → F ( α) =

 . 

2

2

d α

Stets entsteht eine Kraftkomponente in Richtung der Parameteränderung. 

Energiewandlung Die Energiewandlung durch Bewegung einer Kondensator-

elektrode ist  umkehrbar. Werden die Platten durch externe Kraft ausein-

andergezogen, so wandelt sich im Fall  Q = const zugeführte mechanische

Energie direkt in elektrische um (Erhöhung der Feldenergie  W =  Q 2 / 2 C =

( Q 2 / 2 εA) x), bei konstanter Spannung wird die aufgewendete mechanische

Energie der Spannungsquelle zugeführt (Aufladen). 

Diese Wandlung lautet verkürzt: sinkt beim Kondensator mit konstanter Ladung

 Q  die Ursprungskapazität  C  beim Auseinanderziehen der Platten auf  C =  C/n

und betrug die vorher gespeicherte Energie  W C = ( Cu 2) / 2, so steigt die Spannung

 

bei der Plattenbewegung auf  u =  nu  und die Energie auf  W 

2

C = ( C  u

) / 2 =

( C/n)( nu)2 / 2 =  nW C. Die gespeicherte Energie hat sich  n-fach vergrößert. Die Differenz zum Ausgangswert muss als mechanische Arbeit zugeführt werden! 

Diese Wandlung zugeführter mechanischer Energie in elektrische findet An-

wendung historisch in der  Influenzmaschine, in moderner Form als  zeitabh¨

 an-

 gige Kapazit¨

 at. 

2. Mechanische Spannungen an Grenzfl¨

achen

Kraftwirkungen entstehen auch durch Ladungen an Leiteroberflächen sowie

an Grenzflächen unterschiedlicher Dielektrika. Das enthält die  Kraftdichte f

Gl. (4.3.1a)

im ersten Anteil bei Ersatz der Raumladungsdichte    durch eine  Flächen-

 ladungsdichte σ. Dann entsteht eine  Kraft pro Fläche (Beispiele Abb. 2.2.3, 

Verhalten der MOS-Kapazität Abb. 2.5.5 und des MOS-FET Abb. 2.5.6); 

im zweiten Anteil bei  sprunghaftem

Übergang der Permittivitäten

(Abb. 4.3.4a). Man betrachtet dazu die Grenzfläche als dünne Schicht mit
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Abb. 4.3.4. Kraft auf die Trennfläche verschiedener Dielektrika. (a) Stetiger Übergang

der Permittivität an einer Grenzfläche. (b) Ansatz für die am Volumenelement d V  bei

Elektrodenverschiebung geleistete mechanische Arbeit am Kondensator. (c) Definition der

Kraftdichte  f  A. (d) Längszug und Querdruck elektrischer Feldlinien (Wirkung Medium

1 ausgezogen, Medium 2 gestrichelt). (e) Kraftdichte bei quer- und längsgeschichtetem

Dielektrikum

stetiger  ε- Änderung und lässt anschließend die Schichtdicke gegen Null ge-

hen. Weil die Kraft in Gl. (4.3.1a) immer in Richtung  abnehmender  Per-

mittivität zeigt, dient sie als Normalenrichtung. An einer Leiteroberfläche

hin zum Dielektrikum liegt dieser Fall vor. Es gilt

 d



 d



d ε

Δ F =  − Δ A

 E 2 grad  ε d n =  − Δ A

 E 2

 n 12d n

2

2

d n

0

0

 ε 2



 ε 2

 



 D 2

=  − Δ A

 E 2d ε =  − Δ A

n +  E 2 d ε

(4.3.11)

2

2

 ε 2

t

 ε 1

 ε 1

und stetige Komponenten  D n und  E t an der Grenzfläche (s. Abb. 2.4.1)

ergeben schließlich das Ergebnis Gl. (4.3.14b) unten. 

Unabhängig davon lässt sich die  Kraft aus der Feldenergie  nach dem Prin-

zip der virtuellen Verschiebung ermitteln. 
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Wir berechnen jetzt die Kraft, herrührend von Flächenladungen für die  Leiter-

 Nichtleiter-Grenzfl¨

 ache  durch virtuelle Verrückung aus den  Feldgr¨

 oßen E,  D

(Abb. 4.3.4b) und greifen ein Volumenelement Δ V = Δ AΔ x  an der beweg-

lich gedachten Elektrode heraus. Auf seine Fläche Δ A  wirkt die Teilkraft

Δ F , sie verrückt das Element um Δ x  und ändert die Feldenergie um

 E · D

 E · D

 −Δ W d =  −

Δ V =

Δ A · Δ x =  F · Δ x. 

2

2

Wegen d W d + d W m = 0 und der Teilkraft

 E · D

 εE 2

 D 2

d F =

d A =

d A =

d A

(4.3.12a)

2

2

2 ε

lautet die  Gesamtkraft









 F

1

1

=

 f Ad A =

 εE 2d A =

( E · D)  n d A =

 w dd A (4.3.12b)

2

2

 A

 A

 A

 A

mit

 E · D

 f

d F

A =

=

 n. 

d A

2

Der Normalenvektor  n  zeigt von der Leiterfläche weg ins Dielektrikum. Im

inhomogenen Feld ergibt sich die Gesamtkraft durch Integration; bei homo-

genem Feld folgt daraus

 E · D

 F

 D 2

 ε|E| 2

=

 A =

 A =

 A.  Kraft auf Fläche  A  im homogenen Feld

2 ε

2

2

(4.3.13)

Die Kraft wirkt stets senkrecht von der Plattenfläche weg ins Dielektrikum

unabhängig von der Feldrichtung. 

Die (flächenbezogene)  Kraftdichte f  A (Abb. 4.3.4c) wird oft als  Flächen-

 spannungsvektor,  Maxwellsche  oder  mechanische Spannung  bezeichnet. Sie

ist gleich der Energiedichte  E · D/ 2. 

Die erreichbare Spannung ist klein, sie beträgt bei einer Durchbruchsfeldstärke von

 E = 30 kV /  cm nur  σ = 4 Nm /  cm2. Bei der Durchbruchsfeldstärke  E ≈  500 kV /  cm eines Isolators und  ε r = 20 steigt sie hingegen auf  σ =  εE 2 / 2 = 22 N /  cm2 an. 

Grenzfl¨

ache zweier Dielektrika Kraftwirkungen entstehen auch, wenn zwei

unterschiedliche Dielektrika flächenhaft aneinandertreffen. Dann resultiert die

mechanische Spannung immer aus der Differenz der beiden Kräfte, ist also

proportional zur Differenz der beiden Energiedichten und die  Kraft  beträgt
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nach Gl. (4.1.13a)





 F

1

( ε 1  − ε 2)

=

( E 1  · D 1  − E 2  · D 2) d A =

 E 1  · E 2d A

2

2

 A

 A

(4.3.14a)

( ε 1  − ε 2)

=

( E 2 +  E n1 E n2) A. 

2

t

Dabei herrscht im Medium 1 höhere Energiedichte  w d1( ε 1), im Medium 2

( w d2,  ε 2  < ε 1) kleinere und es entsteht eine Nettokraft von 1 nach 2, also ins

Gebiet mit kleinerer Dielektrizitätszahl. Die mittlere Form folgt aus der lin-

ken mit den Grenzflächenbedingungen (Normalkomponenten von  D  und Tan-

gentialkomponenten von  E  stetig, Abb. 2.4.1). Die letzte Form berücksichtigt

gleiche Tangentialkomponenten der Feldstärke und unterschiedliche Normal-

komponenten. 

Unabhängig von der Feldrichtung entsteht an der Grenzfläche immer ei-

ne Kraft vom Medium mit höherem  ε 1 (Zugbeanspruchung) zu dem mit

kleinerem  ε 2 (Druckbeanspruchung). Der Normalenvektor weist vom höher-

permittiven Medium weg. 

Gleichung (4.3.14a) ist Ergebnis folgender Umformung





 f

d F
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A =
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 ε 2 E 2  − ε 1 E 2 +  ε 1 E 2  − ε 2 E 2  n 12
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n2
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( ε 1  − ε 2)

 D 2

( ε 1  − ε 2)

=

 E 2

n

 n 12 =

 E 1  · E 2 n 12 . 

(4.3.14b)

2

t +  ε 1 ε 2

2

Die erste Schreibweise als Differenz zweier Kraftdichten erlaubt einen Rück-

schluss für die (Feldstärke-)  Feldlinien. Ist Medium  ε 1 (ausgezogene Kräfte, 

Abb. 4.3.4d) von Medium  ε 2 (gestrichelte Kräfte) umgeben, so überwiegt der

Längszug aus Medium 2 (wegen  ε 1  >ε 2 ) und der Querdruck aus Medium 1

oder

Feldlinien haben unabhängig von der Feldrichtung eine Tendenz zum Längs-

zug und Querdruck jeweils mit gleicher Kraftdichte  ED/ 2. 

Diese Eigenschaft (unabhängig von der Feldrichtung!) erlaubt rasche und anschau-

liche Erklärungen der Kraftwirkung auf Leiter und sprunghafte Materialinhomoge-

nitäten, sie gilt später auch im magnetischen Feld. 

Das Ergebnis Gl. (4.3.14a) vereinfacht sich für  l¨

 angs-  und  quergeschichtete

Dielektrika. 

a) Bei  quergeschichteten Dielektrika  stehen die Feldlinien senkrecht auf der

Grenzfläche und es gibt nur Normalkomponenten  D n,  E n ( E t = 0,  D n1 =

 D n2 =  D n, Abb. 4.3.4e). Dann beträgt die Längsspannung (für  ε 1  > ε 2)





d F

 D 2

1

 E n1 E n2

 f

n

A =  σ =

=

 −  1

=

( ε 1  − ε 2)  . 

(4.3.14c)

d A

2

 ε 1

 ε 2

2
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Das Ergebnis ergibt sich auch wie folgt: Die Verschiebung der Grenzfläche um

d s ändert die Feldenergie um d W =  w 1d V 1 +  w 2d V 2. Die  Energiedichten w n =

 D 2n /(2 ε) (Gl. (4.1.13a)) werden wegen  Q = const ( D n = const) nicht beeinflusst. 

Da die Volumenzunahme d V 1 =  A d s  gleich der Abnahme d V 2 =  −A d s  ist, gilt d W =  w 1 A d s − w 2 A d s = ( w 1  − w 2) A d s  und wegen  F || d s  mit  F =  − d W/ d s  das obige Ergebnis. Das Material mit kleinerem  ε  wird auf Druck, das mit größerem  ε

auf Zug beansprucht. Die Volumenabnahme im Bereich mit kleinerem  ε  entspricht

einer Kapazitätserhöhung durch die Kraftwirkung (s. o.). Anschaulich wirken an der

Grenzfläche zwei entgegenwirkende Kräfte  F  1 und  F  2. Im Material mit kleinerem

 ε  ist die (Netto)-Kraft (wegen der höheren Feldstärke) größer. 

b) Bei  l¨

 angsgeschichteten Dielektrika  verlaufen die Feldlinien parallel zur

Grenzfläche. 

Alle

Normalkomponenten

der

Feldgrößen

verschwinden

(Abb. 4.3.4e)





d F

 E 2

 D t1 D t2

1

 f

t

A =  σ =

=

( ε 1  − ε 2) =

 −  1  . 

(4.3.14d)

d A

2

2

 ε 2

 ε 1

Auch hier zeigt die mechanische Spannung an der Grenzfläche in den Raum

mit kleinerem  ε. Deshalb werden z. B. im Isolieröl (flüssiges Dielektrikum)

Luftblasen ( ε 0  < εöl) durch das Feld zusammengedrückt und im inhomogenen

Feld aus ihm herausgeschleudert. 

Grenzfl¨

ache Metall-Nichtleiter Im idealen Leiter (Medium 1) verschwindet

die Feldstärke  E ( E t,  E n = 0, er hat konstantes Potential) und an der

Leiteroberfläche sammelt sich die Flächenladungsdichte  σ =  D n. Das ver-

langt nach der Grenzflächenbedingung  E n =  D n /ε 1 =  σ/ε 1 den Ansatz einer

 unendlich großen Permittivit¨

 at ε 1  für den Leiterbereich:  ε 1  → ∞  in der bishe-

rigen Grenzflächenkraft Gl. (4.3.14a) zwischen zwei Isolatoren. Im Ergebnis

entsteht die Kraftdichte Gl. (4.3.12b) mit  D → D n. 

4.3.1.3 Wandlung elektrische-mechanische Energie

Energie, Kraftwirkung Nach Kap. 4.1.3.2 bewirkt der zeitveränderliche Kon-

densator eine Wechselwirkung zwischen elektrischer und mechanischer Leis-

tung Gl. (4.1.20), deren mechanischer Teil von der zeitlichen Kapazitätsän-

derung stammt



 u 2 d C

 u 2  ∂C  d x

 ∂W 

d

d x

 p



mech( t) =

=

=

 . 

(4.3.15)

2 d t

2  ∂x  d t

 ∂x  d

 u

 t

Bei der zeitveränderlichen Kapazität ändert sich der Plattenabstand mit der

Geschwindigkeit  v = d x/ d t (s. Abb. 4.1.7). Ursache der Energiewandlung

ist die Kraft auf die Begrenzung des Feldraumes und seine Änderung. Die

zugehörige Kapazitätsänderung (Modell Abb. 4.3.3a) verursacht trotz kon-
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Abb. 4.3.5. Kondensator als elektromechanischer Energiewandler. (a) Verlustloser Ener-

giewandler als Zweitor. (b) Übergang zwischen zwei Zuständen a und b und zurück in der

 Q,  u-Ebene des Kondensators auf unterschiedlichen Wegen. (c) Dielektrische Energie  W d

und Ko-Energie  W ∗  als Flächen in der  Q,  u-Ebene des nichtlinearen und linearen Energie-

d

wandlers

stanter Spannung  u =  U q einen Stromaustausch mit der Spannungsquelle:

drückt eine Kraft  F  die Kondensatorplatten zusammen, so bedingt die Ka-

pazitätszunahme Ladungszufluss d Q =  u d C  zur oberen Platte und einen

Strom d i  zum Kondensator. 

Zeitveränderliche Energiespeicher sind Wandlungsstellen elektrischer in me-

chanische Energie und umgekehrt. Dabei treten stets Kraftwirkungen auf. 

Ziel dieses Abschnittes sind die funktionellen Zusammenhänge zwischen den

elektrischen Variablen Spannung, Ladung und Strom sowie den mechanischen

Größen Kraft, Auslenkung und Geschwindigkeit als Grundlage einer Wand-

lerersatzschaltung (Kap. 6). Basis kann dabei sein

der  Energiesatz, dann treten die Energievariablen“ Spannung, Ladung, 

” 

Kraft und Auslenkung auf oder

die  Leistungsbilanz  mit den Leistungsvariablen“ Spannung, Strom, Kraft

” 

und Geschwindigkeit. 

In beiden Fällen wirkt die gespeicherte Energie bzw. ihre Ko-Energie als

Mittler. 

Ausgang ist die Energie im zeitvariablen Kondensator (Abb. 4.3.3a, b), ge-

sucht ist die Relation zur einwirkenden Kraft mit dem Energiesatz Gl. (4.3.3):

 Da dem Kondensator Energie auf unterschiedlichen Wegen und in zwei For-

 men (elektrisch, mechanisch) zugef¨

 uhrt werden kann, besteht die prinzipielle

 M¨

 oglichkeit der Energiezufuhr in einer und der Abfuhr in anderer Form. Da-

bei wird  verlustfreie Wandlung  angenommen. 

Eine Spannung  u =  u Q verringert den Plattenabstand  d − x  durch die Feld-

kraft  F el, eine (zur Veranschaulichung) isoliert eingefügte Feder mit der Fe-

4.3

Umformung elektrischer in mechanische Energie

475

derkraft  F f =  kx, (Federkonstante  k) drückt sich zusammen. Von außen stellt

man die Kraft  F =  F el +  F f in Richtung  x  fest. Die Kondensatorenergie  W d

hängt von  zwei Ver¨

 anderlichen  ab: der Plattenverschiebung  x  und der La-

dung  Q  oder Spannung  u über die  Q,  u-Kennlinie (linearer Kondensator). 

Wir betrachten die Abhängigkeit  W d( Q, x) über den Energiesatz mit der Zu-

ordnung d W el =  u d Q

d W el = d W d +  F  ·  d x = d W d +  F  d x →

(4.3.16a)

d W d = d W el  − F ( Q, x)d x =  u d Q − F ( Q, x)d x. 

Dazu gehört ein Energieübergang von Zustand a nach b (Abb. 4.3.5a)

 b



 Q b ,x b



 W db  − W da =

d W d =

( u( Q, x)d Q − F  d x) . 

(4.3.16b)

 a

 Q a ,x a

Beim  verlustlosen, umkehrbaren Wandler  muss nach Übergang vom Zustand

a nach b (wobei sich die Ladung  Q  abhängig von  x ändert) und auf anderem

Weg zurück nach a die gleiche Energie  W da wie vorher gespeichert sein, also

gelten



d W d = 0 . 

(4.3.16c)



Diese Forderung bedeutet  Wegunabh¨

 angigkeit  des Integrals

d W d. Dafür

muss Gl. (4.3.16a) ein  vollst¨

 andiges Differential  sein und deshalb lassen sich

Spannung  u  und Kraft  F  in den Formen  u =  u( Q, x) und  F  =  F ( Q, x) ausdrücken:  nur zwei der vier Variablen u, Q, F , x sind voneinander unabh¨

 angig. Wir wählen entsprechend Gl. (4.3.16b) zunächst  Ladung Q  und  Ort

 x  als unabhängige Variable. 

Die Wegunabhängigkeit der Energie Gl. (4.3.16c) bedeutet, dass sie eine  Zu-

 standsgr¨

 oße  ist, die nur von den  Zustandsvariablen Q,  x  abhängt. Nur dann

wird die Integration von Gl. (4.3.16a) wegunabhängig und es verbleibt als

 dielektrische Energie  des Kondensators

 Q



 W d( Q, x) =

 u( Q, x)d Q. 

(4.3.17)

0

Das Integral erfordert zur Auswertung den Zusammenhang  u =  u( Q, x). Er

ist für einfache Wandler meist problemlos anzugeben (s. u.). 

Zur  Bestimmung der Kraft  nutzen wir die Eigenschaften von d W d( Q, x) als

vollständiges Differenzial. Dafür muss gelten





 ∂W





d( Q, x)

 ∂W d( Q, x)

d W





d =

d Q +

d x. 

(4.3.18)

 ∂Q





 x

 ∂x

 Q
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Der Vergleich mit Gl. (4.3.16b) ergibt (Variable  Q  und  x  unabhängig vonein-

ander)





 ∂W





d( Q, x)

 u =

  , F ( Q, x) =  −∂W d( Q, x) =  F|

 ∂Q





 Q . 

(4.3.19)

 x

 ∂x

 Q

Das Ergebnis stimmt mit Gl. (4.3.7) überein. Es setzt die Kenntnis von

 W d( Q, x) und so der Beziehung  u( Q, x) zwischen Kondensatorspannung und

Ladung durch die Wahl von  Ladung Q  und Weg  x  als unabhängige Sys-

temvariable voraus. Dann liegt nahe, diese Einschränkung durch Wahl von

 Spannung u  und Weg  x  als neue Systemvariable zu umgehen und damit zur

 Ko-Energie  Gl. (4.1.14) überzuwechseln. 

Ko-Energie Der Energiesatz Gl. (4.3.16a) gilt wegen des vollständigen Diffe-

rentials d( Qu) =  Q d u +  u d Q  auch in der Form

d W ∗ = d (

d

 Qu − W d) =  Q d u +  F ( u, x)d x. 

(4.3.20)

Auch hier muss die rechte Seite ein vollständiges Differential sein. Dann wird

der linke Term unabhängig vom Weg in der  u, x-Ebene, stellt also eine  Zu-

 standsgr¨

 oße  dar, die  dielektrische Ko-Energie (Gl. (4.1.14))

 W ∗

d =  Q · u − W d

(4.3.21)

mit der Abhängigkeit  W ∗ =

(

d

 W ∗

d  u, x) und dem vollständigen Differential





 ∂W ∗( u, x) 

 ∂W ∗( u, x) 

d W ∗ =

d

 d

d

 d

d

 u +

 x. 

(4.3.22)

 ∂u





 x

 ∂x

 u

Der Vergleich mit dem Energiesatz (4.3.20) ergibt wegen der Unabhängigkeit

der Variablen  u  und  x  voneinander





 ∂W ∗( u, x) 

 ∂W ∗( u, x) 

 Q =

d

  , F ( u, x) = +

d

 =  F|

 . (4.3.23)

 ∂u





 u,W =

d

 W ∗

d

 x

 ∂x

 u

Die Kraft stimmt mit Gl. (4.3.5) überein, berechnet bei konstanter Spannung

über die Energie  W d, falls Energie  W d und Ko-Energie  W ∗  gleich sind (f

d

ür

lineare Kapazitäten wie hier zutreffend). Jetzt erfordert die Kraftberechnung

 Kenntnis der Ko-Energie W ∗  als Funktion von

d

 u  und  x. Sie ergibt sich (wie-

der durch schrittweise Integration zunächst längs des Weges und dann für

konstante Spannung  u) aus (Gl. (4.1.14)) zu

 u



 W ∗

d ( u, x) =

 Q( u, x)d u. 

(4.3.24)

0
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Die Kraft auf die Kondensatorplatten kann gleichwertig über die Energie

oder die zugehörige Ko-Energie ermittelt werden, der letzte Weg ist wegen

der verbreiteteren Ladungskurve  Q( u) einfacher. 

Energie und Ko-Energie lassen sich als Flächen in der  Q,  u  Darstellung deu-

ten, darauf wurde bereits bei der Kondensatorumladung (Abb. 4.1.5a, d) ver-

wiesen. Dort war die dielektrische Energie im Kondensator gespeichert, die

Ko-Energie entsprach der in Wärme (im Widerstand  R) umgesetzten Ener-

gie, also einer  nichtelektrischen  Form. Für den Energiewandler Abb. 4.3.3a

entspricht

die

Ko-Energie der

 umgewandelten

 mechanischen

 Energie

(Abb. 4.3.5b), sowohl für nichtlineare wie lineare  Q( u)-Beziehung. 

 Beim linearen Kondensator (Abh¨

 angigkeit Q( x) =  C( x) u( x) ) stimmen Ener-

 gie und Ko-Energie stets ¨

 uberein (s. Gl. (4.1.16)). Dann folgen mit Gl. (4.3.19)

für die  Systemvariablen Kraft, Spannung und Ladung

 Q



 Q



 W

 Q

d ( Q, x) =

 u d Q =

d Q =  Q 2  , 

 C( x)

2 C( x)

0

0



 F |

=  − ∂W d  =  Q 2 d C

(4.3.25a)

 Q

 , 

 ∂x

2

d

 Q

 C 2

 x



 u( Q, x)

=  ∂W d  =  Q

 ∂Q x

 C( x)

und analog mit der Ko-Energie Gl. (4.3.23)

 u



 u



 W ∗ (

d

 u, x) =

 Q d u =

 C( x) u ·  d u =  C( x) u 2  , 

2

0

0



 F |

=  ∂W ∗

d  =  u 2 d C

(4.3.25b)
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 ∂x

2 d

 u
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 Q( u, x)

=  ∂W ∗

d  =  C( x) u. 

 ∂u

 x

Das Zeitdifferenzial der Ladung
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 ∂Q  d x
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 ∂t

 ∂u  d

 d
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(4.3.25c)
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d t

 ∂x  d
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 t

 t

führt direkt zum  u,  i-Zusammenhang des zeitabhängigen Kondensators

(s. Gl. (2.7.25)). 

Die Kraftwirkung des elektrostatischen Wandlers für konstante Ladung oder

Spannung (Gl. (4.3.25)) bestätigt die Beziehungen Gl. (4.3.7). Die Berech-

nung nutzt jedoch beim Betrieb mit konstanter Ladung die dielektrische Ener-

gie  W d, für den spannungsbetriebenen die Ko-Energie  W ∗. 

d
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Abb. 4.3.6. Dielektrische Energie und Ko-Energie im elektrostatischen Energiewandler. 

(a) Abnahme der dielektrischen Energie bei Plattenabstandsänderung und konstanter La-

dung: Leistung mechanischer Arbeit. (b) Verhältnisse bei konstanter Spannung. Die Ka-

pazitätserhöhung erzwingt höhere Ladung: Stromzufuhr und Erhöhung der Feldenergie

Abb. 4.3.7. Kondensator mit beweglicher Elektrode als elektro-mechanischer Wandler. 

(a) Grundstruktur. (b) Feder-Masse-Dämpfer-System der Kondensatorelektrode. (c) Me-

chanische Ersatzschaltung und analoges elektrisches Netzwerk. (d) Modell der elektrisch-

mechanischen Wechselwirkung. (e) Elektrisch-mechanische Wandlerersatzschaltung

Bei  konstanter Ladung (Abb. 4.3.6a) zieht die Kraft die Platten auf den Ab-

stand  d − x (Abb. 4.3.3a) zusammen: Kapazitätszunahme ( C 2  > C 1)  →

Abnahme der Feldenergie  W d um Δ W d (Dreieckfläche 0ab)  → Änderung der
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Ko-Energie Δ W ∗ (mechanische Energie) um die quergestrichene Fl

d

äche: sie

entspricht der geleisteten mechanischen Arbeit. Dabei sinkt die Kondensa-

torspannung um d u. 

Bei  konstanter Spannung (Abb. 4.3.6b) zieht die Kraft die Platten eben-

falls zusammen, die Kapazitätserhöhung ( C 2  > C 1) verursacht Ladungszu-

nahme und Stromzufluss aus der Spannungsquelle. Diese liefert die Energie

Δ W el =  uΔ Q  entsprechend der grauen Rechteckfläche. Sie entspricht der

Dreiecksfläche Δ W d (b0c), herrührend von Erhöhung der Feldenergie und

der gleichen Dreieckfläche Δ W ∗ (0ab) der Ko-Energie als mechanischer Ar-

d

beit. Im Grenzfall verschwindender Änderungen stimmen die Flächen bei

konstanter Ladung oder Spannung überein: in beiden Fällen wird die gleiche

mechanische Arbeit verrichtet, wirkt m. a. W. die gleiche Kraft. 

Zusammengefasst:

Im Kondensator mit beweglicher Elektrode beaufschlagt mit Ladung

oder Spannung erfolgt elektro-mechanische Energiewandlung über den

Energiesatz. Variable sind dabei Ladung, Spannung, Kraft und Platten-

verschiebung. Die Kapazität wird als Definitionsgleichung verwendet. 

Die Energiewandlung lässt sich gleichwertig durch die Leistungsbilanz

mit den Variablen Spannung, Strom, Kraft und Geschwindigkeit formu-

lieren sowie der Strom-Spannungs-Beziehung des zeitabhängigen Kon-

densators. 

Von den vier Variablen  Q,  u,  x,  x  sind jeweils zwei unabhängig. Das

erlaubt eine Zweitordarstellung des energiewandelnden Kondensators

(s. Kap. 6.2). 

Mechanisch-elektrische Ersatzschaltung Wir ergänzen den Kondensator

(Abb. 4.3.7a) durch weitere mechanische Elemente: die  Masse m  der Elek-

trode, eine geschwindigkeitsproportionale  Reibung r =  c  sowie elastische

Elektrodenbindung mit einer  Feder (Federkonstante oder Steife  k = 1 /n, 

 n  Nachgiebigkeit). Letztere sei bei spannungslosem Kondensator (Platten-

abstand  d) entspannt. Auf die Platte kann neben der  elektrischen Kraft F el

noch eine  externe Kraft F ext einwirken. Die Beziehung zwischen Kräften und

Plattenverschiebung  x (bzw. der Geschwindigkeit  x = d x/ d t) wird durch

die Gesamtkraft  F  auf die Masse bestimmt, bestehend aus Feldkraft  F el, ex-

terner Kraft  F ex und gegenwirkend die Feder- und Dämpfungskraft. Auf die

Masse  m  wirkt die Nettokraft  F − kx − cv (mit  F f =  kx  und  F r =  cx). Sie beschleunigt die Masse mit der Beschleunigung  a:

Nettokraft auf Masse =  ma =  mx. 
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Zusammengefasst beschreibt dann (Abb. 4.3.7b)

" 

 F − kx − c  d x =  m  d2 x →

 F

d t

d t 2

mech +  F el  − F ext +  F  = 0 , 

" 

(4.3.26)

 F  =  −F el +  F ext  −

 F mech

als sog.  Feder-Masse-D¨

 ampfungs-System  mit Anwendung des Knotensatzes

für die Kräfte die Beziehung zwischen elektrischer und externer Kraft und

Plattenauslenkung  x  bzw. ihrer Bewegungsgeschwindigkeit  x  als Ausgangs-

größe, also das  mechanische Kondensatormodell.  F   ist die bereits verwendete

Reaktionskraft. 

Hilfreich für das weitere Vorgehen ist eine  Analogie zwischen elektrischen  und

 mechanischen Netzwerkelementen (hier für translatorische Bewegung). Setzt

man (willkürlich!) als  Analogon zum Strom i die Kraft F (und zur Spannung

 u  die Geschwindigkeit  v), so lauten die Zuordnungen (Vorgriff auf Kap. 6.1)

Masse

 − Kapazität

( m =  C)

Feder

 − Induktivität ( n = 1 /kL)

Reibung − Widerstand (1 /r =  R) . 

Folgerichtig gelten die Kirchhoffschen Gesetze: Knotensatz für die Ströme/

Kräfte, Maschensatz für die Spannungen/Geschwindigkeiten. Mit dieser Vor-

stellung gibt es zum mechanischen Netzwerk (Abb. 4.3.7c) das  analoge elek-

 trische. Es entspricht (bei Richtungsumkehr der Kraftquelle  F el) genau der

Ersatzschaltung des aktiven Zweipols in Stromquelledarstellung für die Re-

aktionskraft  F . 

Die elektrisch-mechanische Wechselwirkung am zeitveränderlichen Konden-

sator wird beschrieben durch (Abb. 4.3.7d)

die elektrisch erzeugte Kraft  F el auf die Kondensatorplatten (elektrisch-

mechanische Wirkung) und

umgekehrt die Kondensatoränderung als Folge der mechanischen Kraft-

einwirkung  F ext (einschließlich mechanischer Lastelemente) als mecha-

nisch-elektrische Rückwirkung. 

Je nachdem, ob die Kraft bei konstanter Ladung oder Spannung wirkt, gelten

für das elektrisch-mechanische Gesamtsystem folgende Beziehungen:

Konstante Spannung

Konstante Ladung

elektrische Seite

 i( u, x) =  C  d u +  u ∂C  d x u( Q, x) =  Q( x)

d t

 ∂ x d t

 C( x)





Kopplung  F el

 F | =



=



 u

 F ( u, x) =  ∂W∗ d

 F |

 F ( Q, x) =  − ∂W d

 ∂x

Q

 u

 ∂x

 Q

=  u 2 d C

=  Q 2

d C

2 d x

2 C( x)2 d x

" 

mechanische Seite

 F mech +  F el  − F ext +  F  = 0 . 

(4.3.27)
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Während bei konstanter Spannung die mechanische Rückwirkung explizit

über die Kapazitätsänderung in den elektrischen Kreis eingreift, erfolgt das im

zweiten über Ladung und Kapazität (Kondensator an idealer Stromquelle). 

Liegt der Kondensator über einen Widerstand an der Spannungsquelle, so

muss dieser Kreis über den Maschensatz berücksichtigt werden. 

Das Modell Abb. 4.3.7d interpretiert Gl. (4.3.27): eine Eingangsspannung lädt

den Kondensator, ändert ihn (d C/ d x = 0) und dabei entsteht die Kraft  F el

auf die Platten. Sie arbeitet auf das mechanische Netzwerk und korrigie-

rend stellt sich die Plattenabstandsänderung  x  bzw. die Geschwindigkeit

 x = d x/ d t  ein. Die damit verbundene Kapazitätsvariation ändert den Ein-

gangsstrom. Deshalb kann der Eingangszweig auch verstanden werden als

Festkondensator, dem eine gesteuerte Stromquelle parallel liegt (im Bild an-

gedeutet). Das legt nahe, den zeitveränderlichen Kondensator darzustellen

als Festkondensator am Eingang eines  Wandlerzweitors  mit  zwei gesteuerten

 Quellen (elektrische Eingangsgrößen  u,  i, mechanische Ausgangsgrößen  F ,  v

bzw.  x) und dem angeschlossenen mechanischen Netzwerk Abb. 4.3.7e. Wirkt

ausgangsseitig keine zusätzliche externe Kraft, das ist der Regelfall ( F ext = 0), 

dann gilt für die Ausgangsseite des Wandlers

! 

! 

 F  =  −F el  −

 F mech =  F  −

el

 F mech , 

wie im Bild eingetragen, übereinstimmend mit der Stromquellenersatzschal-

tung des aktiven Zweipols (mit Erzeugerpfeildarstellung, s. Bd. 1, Abb. 2.2.4). 

Die an den Zweitorklemmen auftretende Reaktionskraft  F   kann z. B. eine

äußere Last bewegen. Im Leerlauf ( F  = 0) arbeitet dann die Feldkraft (als

Reaktionskraft  F  =

je nach Eingangsbeschaltung, Spannungs- oder

el

 F  u,  F  Q

" 

Stromquelle) auf die mechanischen Elemente  F  =

el

 F mech und stellt den

Arbeitspunkt (Auslenkung  x) ein. Es ist Vereinbarung, ob die mechanische

Last (besonders die Feder) mit zum Wandlerzweitor gezählt wird oder nicht, 

wir werden sie später als Last betrachten. 

Der Ersatz des zeitgesteuerten Kondensators durch einen Festkondensator, 

ein Wandlerzweitor mit zwei elektrisch/nichtelektrisch gesteuerten Quellen

und ein angeschlossenes mechanisches Netzwerk (feste Elemente) ist Mo-

dellgrundlage der Wechselwirkung zwischen Energie und Kraft am Energie-

speicher. 

Dieses Modell nutzt die Leitwert-Zweitorersatzschaltung (Tab. 2.9, Bd. 1)

mit zwei gesteuerten Stromquellen. Es ist nichtlinear ( F ∼ u 2!). 

Zum Funktionsverständnis reicht aber eine  Modelllinearisierung  um einen

gewählten Arbeitspunkt aus, also eine  Kleinsignalbetrachtung. Wir beschrän-

ken uns hier auf den  Arbeitspunkt, Kleinsignalanalyse und eine Vertiefung der

Wandlereigenschaften sind Inhalt von Kap. 6. 
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Abb. 4.3.8. Kraftverhal-

ten

des

Kondensators. 

(a) Kräfte bei konstanter

Elektrodenladung. 

(b)

Schnapp-Effekt

bei

konstanter

Elektroden-

spannung

Arbeitspunktbestimmung, Schnappeffekt Die obere Kondensatorplatte liegt

im Arbeitspunkt (bei beaufschlagter Ladung oder Spannung) in einer Ruhe-

stellung  x 0 und Gl. (4.3.26) vereinfacht sich (durch Wegfall aller zeitlichen

" 

Ableitungen und ohne äußere Zusatzkraft) mit

 F mech =  kx  auf die

Arbeitspunktbedingung  kx 0 =  |F el | 0  . 

(4.3.28)

Bei  konstanter Ladung  ist die elektrische (Coulomb-)Kraft nach Gl. (4.3.25)

 abstandsunabh¨

 angig (sie wird nur über die Ladung aus der Stromquelle ge-

steuert) und es gibt einen stabilen Arbeitspunkt  x 0 (Abb. 4.3.8a). Bei Elek-

trodenverschiebung aus der Gleichgewichtslage  x 0 zu Werten nach rechts

steigt die rückstellende Federkraft, während die Elektrodenkraft konstant

bleibt: die Elektrode wird nach  x 0 zurückgezogen. Zu kleine Rückstellkraft

(kleine Federkonstante  k 2) liefert im Bewegungsbereich 0  < x < d  keinen

Schnittpunkt. Dann bewegt sich die Elektrode bis zur Gegenelektrode und

beim Berühren erfolgt Ladungsausgleich (mit verschwindender Elektroden-

kraft). Anschließend drückt die Feder die bewegliche Elektrode in die Aus-

gangslage  x = 0 zurück. 

Bei anliegender Konstantspannung  w¨

 achst die Feldkraft mit sinkendem Plat-

 tenabstand (Abb. 4.3.8b), die Federkraft hingegen nur linear. Der Lösungsan-

satz lautet jetzt nach Gl. (4.3.28)

 u 2 d C( x)

 u 2 εA

 k 1 x =  F el =

=

 . 

2

d x

2( d − x)2

Bemessungsabhängig gibt es bis zu drei Schnittpunkte: bei kleiner Spannung

 u  einen außerhalb des Bewegungsbereiches  x < d, einen  stabilen kleinen  Wert

 x 0 und einen instabilen Wert  x 1. Im stabilen Punkt wächst die Feldkraft über

dem Ort schwächer als die Federkraft: bei Auslenkung nach rechts überwiegt

letztere und drückt die Platte in die Ruhestellung  x 0 zurück, weil gilt





 ∂F 



el 

 ∂F f

 < 

  . 

Bedingung für stabilen Arbeitspunkt (4.3.29)

 ∂x 



 x

 ∂x

0

 x 0
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Im Punkt  x 01 hingegen gilt die umgekehrte Relation. Bei Zunahme von  x

(Plattenzusammenziehung) überwiegt die Feldkraftänderung: die Platte wird

weiter gezogen und der Punkt ist instabil. 

Mit steigender Spannung (bei gleichem  k 1) wandern beide Arbeitspunkte

aufeinander zu und münden schließlich im Tangenten-Punkt mit übereinstim-

menden Kraftänderungen. Ausgeführt liefert diese Bedingung als Lösung den

Wert  x 0m =  d/ 3 mit der zugehörigen  Schnappspannung (Pull in-Spannung)

$ 

2 d  3  k 1

 U p =

 . 

(4.3.30)

3

 εA

Der Schnapp-Punkt ist bereits instabil, weil jede Störung Instabilität nach

sich zieht. 

Der mit konstanter Spannung betriebene Kondensator arbeitet nur im Aus-

steuerbereich  x < d/ 3 stabil. 

Umgekehrt überwiegt bei Verletzung (zu kleine Federsteifigkeit  k) die Ände-

rung der Feldkraft und die bewegliche Platte wird ungebremst zur Gegenelek-

trode gezogen. Zur Vermeidung des Schnapp-Effektes muss folglich gelten

 x 0  < d/ 3 , 

 U < U p . 

stabiler Arbeitsbereich

Eine Zusatzkraft  F ext ändert sowohl den Arbeitspunkt als auch das Schnapp-

Verhalten. 

Der Schnapp-Effekt ist ein prinzipielles Problem spannungsbeaufschlagter

elektrostatischer Wandler (begründet in der Coulomb-Anziehung gegenpo-

liger Ladungen). 

4.3.1.4 Beispiele und Anwendungen

Elektrostatische Kräfte bestimmen zahlreiche Phänomene:

1. 

Eine ungeladene Metallkugel erfährt im inhomogenen Feld (Abb. 4.3.9a) durch

Influenz eine Ladungsverschiebung. Die unterschiedlichen Feldstärken auf bei-

den Kugelseiten verschieben sie zur Seite mit der größeren (Netto-) Feldstärke, 

sie wird  ins Feld gezogen. 

2. 

Die Kraft zwischen beweglichen Elektroden nutzen  elektrostatische Voltmeter

(Abb. 4.3.9b). Man überträgt die spannungsabhängige Plattenbewegung auf

einen Zeiger, dessen Ausschlag dem Quadrat der Spannung proportional ist. 

Solche Spannungsmesser erfordern nur Ladung (im Gegensatz zu stromdurch-

flossenen Drehspulinstrumenten). Sie sind in der Hochspannungstechnik üblich. 

3. 

Die Wechselwirkung zwischen Feld und bewegter Kondensatorplatte nutzen

Kondensatorlautsprecher und -mikrophon (Abb. 4.3.9c). Im ersten Fall liegt am

Kondensator eine Gleichspannung mit überlagertem Informationssignal und es

entsteht eine Plattenauslenkung proportional dem Wechselsignal. Beim  Kon-

 densatormikrofon  erzeugt der Schalldruck eine Plattenabstandsänderung. Eine
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Abb. 4.3.9. Anwendung elektrostatischer Kräfte. (a) Anziehung einer ungeladenen Me-

tallkugel ins Gebiet größerer Feldstärke ( F ∼ E 2). (b) Elektrostatisches Voltmeter. 

(c) Kondensatorlautsprecher, Kondensatormikrofon. (d) Staubfilter zur Entfernung von

Schwebeteilchen aus Gasen mit negativ geladener Sprühelektrode. (e) Elektrostatisches

Sprühverfahren. (f) Xerographieverfahren; positive Beladung einer fotoempfindlichen

Schicht, nach Belichtung werden Ladungen belichteter Bereiche neutralisiert, negativ ge-

ladene Tonerteilchen haften auf den dunklen positiv geladenen Bereichen. (g) Prinzip des

Tintenstrahldruckers. (h) Ionenstrahlsystem zur Materialbearbeitung. (i) Herstellung von

Schmiergelpapier durch Anziehen und Niederschlag negativ geladener Sandteilchen zur

positiv geladen (und geleimten) Papierschicht unter der oberen Elektrode

Gleichspannung  U q bewirkt einen Strom  i( t) im Kreis, dessen Spannungsab-

fall am Widerstand  R (hochohmig) verstärkt wird. Vorteilhaft ist die geringe

Masse der bewegten Elektrode, die die Verarbeitung hoher Frequenzen erlaubt. 

4. 

Eine Kraft auf isolierende Teilchen (z. B. Staub) tritt beim

 Bespr¨

 uhen mit

” 

 Ladungen“ auf. Dann wirkt auf sie eine Feldkraft. Das nutzen unterschiedlichste

Einrichtungen:

Beim  Staubfilter (Abb. 4.3.9d) gelangen Rauchgase in einen Feldraum mit

einer Linienelektrode an hoher Gleichspannung, sodass zunächst eine Ioni-

sierung erfolgt. Anschließend schlagen sich die Teilchen an der Gegenelek-

trode nieder und werden entfernt. Vereinfacht wirkt dieses Prinzip auf der
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Oberfläche eines (Röhren-) Fernsehschirmes: Staubteilchen werden durch

Influenz geladen und schlagen auf der Bildröhre nieder. 

 Elektrostatische Spr¨

 uheinrichtung (Abb. 4.3.9e). Zwischen einer Sprühpisto-

le für flüssige Medien“ (Lack, Kunststoffpulver) und der zu besprühenden

” 

Fläche liegt ein Feld (Sprühpistole negativ geladen). Dann übertragen aus-

tretende Teilchen Ladung, werden zur Fläche hin (z. B. Fahrradrahmen)

beschleunigt und schlagen dort nieder. Vorteilhaft sind der geringe Materi-

alverlust und gleichmäßiger Auftrag. 

Ladungsniederschlag ist das Prinzip  elektrostatischer Drucker (Xerox-Ver-

fahren, Xerographie: gr. trocken schreiben“) und von  Laser-Druckern. Eine

” 

lichtempfindliche Trommel (Abb. 4.3.9f) wird mit Ladungen besprüht und

lädt sich unbelichtet auf. Anschließend erfolgt die Belichtung des Fotolei-

ters nach einem optischen Abbild (Vorlage). Es entsteht ein latentes Bild

als ladungsfreier Bereich (er wird leitend und neutralisiert die aufgesprühte

Ladung). Anschließend führt man einen Toner heran, der an unbelichteten

oder belichteten (verfahrensabhängig) Stellen elektrostatisch haften bleibt. 

Der Übertrag des Tonerbildes auf Papier erfolgt durch eine weitere La-

dungsquelle. Anschließend wird er thermisch fixiert. 

Der Laserdrucker arbeitet ähnlich, nur stammt die zu druckende Informa-

tion aus dem Rechner. Er steuert einen Laserstrahl über Polygonspiegel

zeilenweise zur Belichtung der Fototrommel. 

Auch der  Tintenstrahldrucker (Abb. 4.3.9g) nutzen die Feldkraft. Ein Tin-

tenstrahl verlässt unter hohem Druck mit einer Geschwindigkeit von 20

 . . .  25 m/s tröpfchenweise eine Düse (Tröpfchenbildung durch Piezoschwin-

ger). Im Zerfallszeitpunkt werden die Tröpfchen signalabhängig durch eine

Ladeelektrode beladen. Anschließend durchlaufen sie ein elektrostatisches

Ablenksystem, gelangen auf Papier und schreiben eine Punktfolge. 

Elektrostatische Kräfte wirken auch auf Ionen, ausgenutzt zur Ionenstrahl-

bearbeitung von Materialien (Abb. 4.3.9h). Ein Ionenstrahl (reduziert durch

ein Linsensystem auf einen Durchmesser unter 0 ,  1 µm) wird durch eine ne-

gative Beschleunigungselektrode (hohe Spannung) beschleunigt und trifft

auf ein Werkstück (Materialabtragung, Reinigung, Ionenimplantation). Das

Linsensystem erlaubt durch Ablenkung eine selektive Bearbeitung. 

Die Kraft auf geladene Teilchen findet auch ungewöhnliche Anwendung, et-

wa zur Herstellung von Sandpapier (Abb. 4.3.9i). Unter der oberen Platte

eines großflächigen Kondensators läuft beleimtes Papier und an der unte-

ren Platte ein Trägerband mit Aluminiumoxidpulver (Teilchen negativ gela-

den). Die Feldkraft zieht die Teilchen zur Papieroberfläche. Dort bestimmen

Bandgeschwindigkeit und Feldstärke die Auftragdicke der Pulverschicht. 

4.3.2 Kr¨

afte im magnetischen Feld

Ursächlich diente die auf bewegte Ladungen im Magnetfeld ausgeübte Kraft

zur Definition der Flussdichte  B (Lorentz-Kraft, Gl. (3.1.1)), auch die Kraft-

wirkung zwischen bewegten Ladungen (Gl. (3.1.7)) eignet sich dazu (was die

Definition der Stromstärkeeinheit beweist). 
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Jetzt werden umgekehrt  Kraftwirkungen auf bewegte Ladungen  im magne-

tischen Feld ermittelt:  Lorentz-Kraft, elektrodynamische Kraft  auf strom-

durchflossene Leiter, die  Grenzfl¨

 achenkraft  zwischen unterschiedlichen Ferro-

magnetika und Luft (über die  virtuelle Verschiebung  des magnetischen Ener-

gieraumes) und schließlich die Kraftwirkung auf  magnetische Dipole. Solche

Kräfte sind gegenüber elektrostatischen wegen der höheren Energiedichte sehr

intensiv und bilden deshalb die Grundlage der  elektromagnetischen Energie-

 wandlung, auf der Elektromagnete, Motoren und Generatoren basieren. 

Auch im magnetischen Feld stellt man sich die Kraftwirkung  r¨

 aumlich  verteilt

vor und beschreibt sie durch die  (magnetische) Kraftdichte f



 F

Magnetische

=

 f d V, f =   ( v × E)  − H 2 grad  μ

(4.3.31)

2

Kraftdichte

 V

mit der Kraft  F  als zugehörigem Raumintegral. Der erste Anteil erfasst

Kräfte auf bewegte Ladungsträger und elektrische Strömungen, also  Lorentz-

und  elektrodynamische Kraft  und berücksichtigt so auch das Eigenmagnetfeld. 

Der zweite beschreibt Kraftwirkungen durch  r¨

 aumliche Permeabilit¨

 ats¨

 ande-

 rung (einschließlich der an Grenzflächen). Grenzflächen sind aber Merkmal

magnetischer Kreise, deshalb heißt dieser Anteil häufig  Reluktanzkraft. Wir

kommen darauf in Kap. 4.3.2.3 zurück. 

4.3.2.1 Kraft auf bewegte Ladungen

Grundlage Auf eine im Magnetfeld (Flussdichte  B) mit der Geschwindigkeit  v

bewegte Ladung  q (positiv) wirkt die Lorentz-Kraft (s. Gl. (3.1.1) ff.)

 F =  q( v × B) . 

Das Rechtssystem  v,  B  und  F  bestimmt ihre wichtigste Eigenschaft: die



Kraft  F  senkrecht zum Wegelement d s =  v d t  leistet wegen

 F ·  d s = 0 an

der Ladung keine Arbeit. Bewegte Ladungen erfahren im Magnetfeld stets

nur eine Richtungs-, aber keine Geschwindigkeitsänderung. So durchläuft eine

senkrecht zum (homogenen) Magnetfeld  B  eingeschossene Ladung ( v⊥B)

einen Kreisbogen als Bahnkurve in der Zeichenebene (Abb. 4.3.10a). Eine

negative Ladung ändert die Ablenkrichtung. 

Eine bewegte Ladung erfährt im Magnetfeld durch die Lorentz-Kraft stets

nur eine Richtungsänderung der Geschwindigkeit, keine Betragsänderung

und damit Energieaufnahme. 

Dies ist der prinzipielle Unterschied zur Kraftwirkung im elektrischen Feld: sie wirkt

in Richtung von  E  geschwindigkeitserhöhend und leistet an der Ladung Arbeit. 
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Abb. 4.3.10. Magnetische Kraftwirkung auf bewegte Ladungen. (a) Lorentz-Kraft, Kreis-

bahn einer positiven (negativen) Ladung im homogenen Feld bei senkrechtem Einschuss. 

(b) Schraubenförmige Bewegung bei nichtsenkrechtem Einschuss ins homogene Magnet-

feld. (c) Zykloidenbahn eines positiven Ladungsträgers im konstanten elektrischen und

magnetischen Feld

Bei  beliebigem Einschusswinkel  zwischen  v  und  B  entsteht als Bahnkurve

eine Schraubenlinie (Abb. 4.3.10b). Für ihre Kreisbewegung ist ( v⊥B), für

die fortschreitende Bewegung ( v  B) senkrecht und parallel zur Magnet-

feldrichtung maßgebend. Hat die Ladung  q  die Geschwindigkeit  v =  v⊥ +  v

und  B  nur die Komponente  −B z, so wirkt die Lorentz-Kraft  F =  q( v ×

 B) =  −qv⊥Bze r radial zur Mitte einer Kreisbahn durch die senkrechte Ge-

schwindigkeitskomponente  v⊥. Sie wird in jedem Punkt durch die Zentrifu-

galkraft  mv 2 ⊥/R  kompensiert ( R  Krümmungsradius des Kreises). Aus dem

Kräftegleichgewicht folgen Bahnradius und Umlaufzeit:

 mv 2

 mv⊥

 l

2 πR

2 πm

2 π

 qv

 ⊥

 ⊥B =

 → R =

 , 

 T =

=

=

=

 . 

(4.3.32)

 R

 q · B

 v

 v⊥

 q · B

 ω z

Die Geschwindigkeitskomponente  v  parallel zum Magnetfeld formt die kreis-

förmige Teilchenbewegung zur Helix mit der Ganghöhe  h  während der Um-

laufzeit  T

 

2 πm 



 h =  v 

 

  T =

 v . 

 q · B

Zahlenmäßig gilt z. B. für Elektronen ( v-Richtung entgegengesetzt!) mit  |q| = 1 .  6  ·

10 − 19 As,  m o = 9 ,  11  ·  10 − 35 W  ·  s3 /  cm2 (Ruhemasse) und  B = 1 T = 1 Vs m − 2 eine Kreisfrequenz  ω z =  qB/m  von 1,76  · 1011 s − 1. 

Bewegung im elektrischen und magnetischen Feld Bei einer Ladungsbewe-

gung im elektrischen und magnetischen Feld wirken gleichzeitig Coulomb-

und Lorentz-Kraft

 F =  q ( E + ( v × B))  . 

Im zeitveränderlichen Magnetfeld entstehen  beide  Felder, denn das elektri-

sche Wirbelfeld des Induktionsgesetzes bewegt generell Ladungen. Deshalb

 beschleunigt ein zeitver¨

 anderliches Magnetfeld ruhende Ladungen. Wirbel-

ströme sind dafür ein Beispiel. 
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Stehen zeitlich konstante elektrische und magnetische Feldstärken (Fluss-

dichte) in  y- und  z-Richtung senkrecht aufeinander (Abb. 4.3.10c) und liegt

eine ruhende positive Ladung  q  zur Zeit  t = 0 im Koordinatenursprung, 

so entsteht durch die Feldkräfte eine Zykloide als Bahnkurve. Das ist die

Überlagerung einer Kreisbewegung in der  x,  y-Ebene mit einer Linearbewe-

gung in  x-Richtung. Die Kreisbewegung erfolgt mit der Winkelgeschwindig-

keit Gl. (4.3.32). 

Magnetische Kraftwirkungen auf bewegte Ladungsträger finden breite An-

wendung: Ablenkung von Elektronen in Kathodenstrahlröhren, in magne-

tischen Linsen, Führung von Ladungsträgern auf bestimmten Bahnen (Zyklo-

tron, Betatron, Magnetron), Ladungstrennung durch den Hall-Effekt, mag-

netohydrodynamischer Generator u. a. m. 

Anwendungsbeispiele

Magnetische Strahlablenkung Die kreisförmige Bewegung der Ladungsträger im

homogenen magnetischen Feld (Länge  l) dient zur magnetischen Ablenkung

(Abb. 4.3.11a) eines Elektronenstrahls, der aus einem Kathoden-Anodensystem (be-

schleunigt durch die Spannung  U 0) austritt und mit der Geschwindigkeit  v 0 in den

magnetischen Ablenkbereich eintritt. Für kleine Ablenkungen gilt mit Gl. (4.3.17)



 |q| B

 |q|

magnetische Ablenkung

tan  α =

=

 Bl, 

 mv

2 mU 0

(4.3.33)

 U p Bl

elektrische Ablenkung

tan  α =

 . 

2 dU 0

Im magnetischen Feld hängt die Ablenkung linear von  B  und so vom Strom  i

ab (außerdem von der spezifischen Ladung  |q|/m), im elektrischen Feld linear von

Abb. 4.3.11. Anwendungen der Lorentz-Kraft. (a) Elektronenablenkung im homogenen

Magnetfeld. (b) Prinzip des Zyklotrons. (c) Prinzip eines Geschwindigkeitsfilters
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der Ablenkspannung  U p (Plattenabstand  d). Während die elektrische Ablenkung

umgekehrt proportional zur Beschleunigungsspannung  U 0 ist, hängt sie im mag-

 √

netischen Feld von 1 / U 0 ab. Wegen der größeren Ablenkung nutzen Fernseh-

bildröhren magnetische Ablenkung (kürzere Baulänge). Die  x- und  y-Ablenkung

übernehmen zwei um 90o versetzte Elektromagnete. Heute ersetzen Flachbildschir-

me die Bildröhre. 

Zyklotron Das Zyklotron beschleunigt geladene Teilchen auf hohe Energie ( ≈  10

bis 100 MeV) für Kernreaktionen. Das würde bei elektrischer Beschleunigung ei-

ne sehr hohe Spannung erfordern. Sie wird im Zyklotron dadurch erzeugt, dass

das Teilchen eine kleine Spannung mehrfach durchläuft. Zwischen zwei Metallelek-

troden (Abb. 4.3.11b) liegt ein elektrisches Beschleunigungsfeld, senkrecht dazu

ein konstantes Magnetfeld. Ein eintretendes Teilchen wird vom  E-Feld zwischen

den Metallelektroden beschleunigt (unter der Elektrode nicht) und vom Magnet-

feld kreisförmig abgelenkt. Nach halber Umlaufzeit erreicht es den Spalt erneut

und wird durch das (inzwischen umgepolte)  E-Feld wieder beschleunigt. Erneut

lenkt das Magnetfeld halbkreisförmig ab, nur mit größerem Radius. So entsteht

eine Spirale als Bahnkurve. Insgesamt erfährt das Teilchen bei  n  Umläufen 2 n  Be-

schleunigungen. Beispielsweise ergibt eine Elektrodenspannung  U = 104 V nach 50

Umläufen eine Beschleunigungsspannung von 2 · 50 · 104 V = 106 V. An der Peripherie

werden die hochbeschleunigten Teilchen elektrisch ausgekoppelt. Das  Synchrotron

modifiziert dieses Prinzip: man hält den Bahnradius  R  konstant und erhöht Ar-

beitsfrequenz  ω (Gl. (4.3.31)) und Magnetfeld  B  gleichzeitig zeitlinear. Nach diesem

Prinzip arbeitet der Teilchenbeschleuniger CERN (Durchmesser 175 m, Laufweg ei-

nes Teilchens etwa 80 km!). 

 Massen- und Geschwindigkeitstrenner  Der Zusammenhang zwischen Radius und

Masse Gl. (4.3.31) erlaubt eine Teilchentrennung mit verschiedener Masse oder Ge-

schwindigkeit (Abb. 4.3.11c). Dazu treten Teilchen in einen Plattenkondensator

(mit elektrischem Feld  E) und senkrechtem Magnetfeld  B  mit der Geschwindig-

keit  v. Sie erfahren die Gesamtkraft Gl. (4.3.32). Ohne Kraft ( F = 0) fliegen sie geradlinig durch die Platten und treten am Ende durch eine Öffnung aus; das gilt

für die Bedingung  E =  −v 0  × B  oder  v 0 =  E/B. Teilchen mit kleinerer Geschwindigkeit werden nach oben und solche mit größerer nach unten abgelenkt (und von

Auffangelektroden abgeführt). So arbeitet die Anordnung als  Geschwindigkeitsfilter. 

Zur  Massentrennung  laufen die austretenden Teilchen durch ein weiteres Magnet-

feld  B, das sie auf eine Kreisbahn mit dem Radius  R  zwingt. Die Teilchenmasse

folgt aus  m = ( qRBB) /E. Teilchen verschiedener Masse haben unterschiedliche

Bahnradien, die in einer Registriereinrichtung ausgemessen werden. Massenspek-

trometer haben große Verbreitung für unterschiedlichste Aufgaben bis hin zur Um-

weltmesstechnik. 

Hall-Effekt, Lorentz-Kraft auf Ladungstr¨

ager in Leitern Das Ohmsche Ge-

setz vernachlässigt das Magnetfeld des Stromes, auch Fremdfelder. Nur dann

haben Stromdichte  J  und Feldstärke  E  gleiche Richtung. Ein Magnetfeld

senkrecht zur Stromrichtung ( J ∼ v) verursacht jedoch eine Lorentz-Kraft

und lenkt die Ladungsträger ab (Abb. 4.3.12a und 3.1.2d): Stromdichte  J
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Abb. 4.3.12. Hall-Effekt. (a) Ablenkung bewegter positiver Ladungsträger im  p-Halbleiter

durch die Lorentz-Kraft. Zwischen den Leiterseiten entsteht eine Feldstärke. (b) Strömungs-

feld im langen und kurzen  p-Halbleiterplättchen (sog. Hall- und Feldplattengeometrie). 

(c) Schaltzeichen und Kennlinie eines Hallgenerators

und elektrische Feldstärke  E  verlaufen nicht mehr parallel zueinander und es

treten auf:

der  Hall-Effekt 10 als Feldstärke resp. Spannung  quer  zur Stromrichtung; 

eine  Widerstandserh¨

 ohung, besser bekannt als  Magnetowiderstand. 

Wir verfolgen beide Effekte im  p-Halbleiter, durch den Ladungsträger mit

der Stromdichte  J  bzw. Geschwindigkeit  v  strömen (Ersetzung  κ p v =  μ p J)

 J =  v =  κ p F /q =  κ p [ E + ( v × B)] =  κ p E +  μ p( J × B) . 

(4.3.34)

Die Feldkraft berücksichtigt Coulomb- und Lorentz-Anteile. Magnetowider-

stand und Hall-Effekt basieren auf zwei unterschiedlichen Lösungsansätzen

dieses Zusammenhanges:

 Magnetowiderstand:  man löst die Gleichung in der Form  E =  f ( J, B) und erhält  E =  ( B) J . Dann hängt der spezifische Widerstand  ( B) vom Magnetfeld ab, bekannter als  magnetische Widerstandsvergr¨

 oßerung  oder

 Magnetowiderstand. 

 Hall-Effekt: man zerlegt die Feldstärke  E =  E +  E⊥  in Komponenten parallel und senkrecht zu  J. Mit der Annahme, dass die Stromdichte  J =

 J  nur eine Längskomponente hat, folgen aus Gl. (4.3.34) die Beziehungen

 J =  κ p E||

Ohmsches Gesetz, (4.3.35a)

0 =  κ p E⊥ +  μ p( J × B) . 

Hall-Effekt

10 Edwin Herbert Hall, amerik. Physiker 1855-1938, Effekt entdeckt 1879. 
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Der Hall-Effekt erzeugt eine zu  J  und  B  senkrechte (Hall-) Feldstärke  E⊥. 

Dadurch verlaufen  J  und  E  nicht mehr parallel zueinander. Die Größe

 R H =  μ p /κ p = 1 /( qp) heißt Hall-Konstante, hier für  p-Halbleiter. 

Die Feldstärke  E⊥  ist eine Coulomb-Feldstärke, der Term  E i = ( v × B) entspricht der induzierten Feldstärke bei der Bewegungsinduktion. Dort wurde der

Leiter mit der Geschwindigkeit  v  im Magnetfeld bewegt (und  E i erzeugt), beim

Hall-Effekt sorgt der Strom  i  für die Geschwindigkeit  v (im festen Leiter) und es

entsteht  E i. 

Die  Hall-Feldst¨

 arke E H bestimmen wir für einen linienhaften rechteckförmi-

gen  p-Leiter (Abb. 4.3.12a) (Dicke  a, Breite  d) mit der Stromdichte  J =  J y in  y-Richtung und dem Magnetfeld  B =  B z in  z-Richtung zu

 E H =  E⊥ =  −( v × B) =  −μ p ( J × B) κ p

(4.3.35b)

 ≡ −R H( J y  × B z) =  −R H J y B z e x . 

Sie weist in negative  x-Richtung. Deshalb sitzen positive Ladungsträger am

rechten Leiterrand im Überschuss, am linken entsteht ein Defizit, also ein

Überschuss negativer Ladungen. Diese Ladungstrennung hält an, bis das ent-

stehende Feld  E⊥  die induzierte Feldstärke  E i =  v × B (Lorentz-Kraft) kompensiert (s. Gl. (4.3.35a)). Die  Hall-Spannung U H ist anschaulich das

Integral der Hall-Feldstärke  E H =  E⊥ über die Leiterbreite

 B



 U AB =

 E⊥ · e xd x =  −R H J y B z a =  −IB z =  −U H =  −U BA , →

 aqp

 A

 A



 U

 IB

H

=  U BA =

 E⊥ · e xd x =  IB z =  R

Hall-Spannung

 aqp

H  a

(4.3.36)

 B

 R H = 1  . 

Hall-Konstante

 qp

Dabei wurde Leerlauf zwischen den Elektroden A, B vorausgesetzt und die

Stromdichte  J y =  I/( ad) berücksichtigt. 

Für negative Ladungsträger ( n-Halbleiter, metallische Leiter) kehrt das Vorzeichen

der Hallkonstante um ( R H =  −μ n /( |q| nμ n) =  − 1 /( |q| n)). Damit erlaubt die Hall-Spannung Rückschluss auf die dominierende Ladungsträgerart (verwendet zur Lei-

tungstypbestimmung bei Halbleitern). 

Die relevanten Feldgrößen im  n-Halbleiter wurden bereits in Abb. 3.1.2 einge-

tragen. Typisch für den Hall-Effekt sind die von der (Längs-)Feldstärkerich-

tung abweichenden Strömungslinien, wie das Strömungsfeld Abb. 4.3.12b ei-

nes  p-Halbleiterplättchens zeigt. 

Die Hall-Spannung  U H wächst mit sinkender Trägerkonzentration, steigen-

dem Magnetfeld und sinkender Plättchendicke. Halbleiter (mit geringer Trä-
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gerkonzentration) haben gegenüber Metallen große Hall-Spannungen, z. B. 

 B = 1 Vs /  m2,  a = 1 mm,  p ≈  1016 cm − 3,  I = 1 A,  U H  ≈  0 ,  6 V. Die Hall-Spannungen üblicher Halbleitermaterialien (meist A3B5 Halbleiter wie

InAs, InSb, InAsP) liegen in der Größenordnung von 100  . . .  200 mV/T. 

Auch Silizium hat noch eine ausreichende Hall-Konstante von etwa  R H  ≈

2 · 10 − 4 m3/(As), für Leiter nur  R H  ≈ − 0 ,  5  ·  10 − 10 m3 /( As) wegen der um rd. 6 Größenordnungen höheren Trägerdichte. Für die gegebenen Zahlenwerte würde sich eine Hall-Spannung von 0,6 µV einstellen! Deshalb spielt der

Hall-Effekt in Leitern praktisch keine Rolle.11

Die

Proportionalität

der

Hall-Spannung

zu

Strom

und

Flussdichte

(Abb. 4.3.12c) gilt in gewissen Grenzen, sie drückt sich auch im Schaltzeichen

aus. 

Streng gilt die Hall-Spannung Gl. (4.3.36) nur für das unendlich lange Rechteck-

strömungsfeld. Dann neigen sich die Äquipotenziallinien unter Magnetfeldeinfluss

besonders im mittleren Teil (Abb. 4.3.12b) und das Feldstärkeverhältnis  E y /E x

entspricht über den arctan dem  Hallwinkel Θ (Metalle unter einem Grad, Halblei-

ter deutlich mehr). Die Strömungslinien verlaufen in diesem Bereich etwa parallel

zu den Seitenkanten. Das ist die Geometrie des  Hall-Spannungsgebers. Im kurzen

Strömungsfeld hingegen können sich nur noch Strömungslinien ausbilden, die um

den Hallwinkel gedreht sind und die Äquipotenziallinien verlaufen weitgehend par-

allel zu den Kontakten: die so verlängerte Strombahn eignet sich deshalb für  Feld-

 platten (s. u.). Die Verlängerung des Stromweges und die Größe der Hall-Spannung

sind reziprok zueinander. Bei langer Struktur homogenisiert sich der Potenzialver-

lauf in Kontaktnähe, deshalb neigen sich dort die Strömungslinien stärker. 

Anordnungen nach Abb. 4.3.12a werden als  Hallelemente,  Hallsonden (bei vergos-

senem Halbleiterplättchen) oder  Hallgeneratoren (Halbleiterplättchen mit Magnet)

bezeichnet. Sie dienen zur Magnetfeldmessung, als magnetfeldgesteuerte Bauele-

mente (Signalabgabe =  f ( B)), zur Multiplikation ( U H  ∼ I · B( I)), zum kontaktlosen Schalten (Vorbeiführung eines Dauermagneten am Hallelement in Tastaturen), 

als Endlagenschalter u. a. m. Verbreitet nutzt man Hallsonden wegen ihrer geringen

Abmessungen zur Magnetfeldmessung in Luftspalten oder zur  unterbrechungsfreien

 Strommessung.  Der zu messende Strom wird mit einem magnetischen Kreis (auf-

klappbarer Ringkern) umgeben, in dessen Luftspalt sich ein Hallsensor befindet. 

Die Auswertung der Hall-Spannung erfolgt digital (s. Abb. 3.4.18). 

Die zum Betrieb eines Hallsensors erforderlichen Hilfselemente (Vorverstärker für

die Hall-Spannung, Stromquelle für den Strom, evtl. Schwellwertschalter) werden

gewöhnlich kombiniert als Hall-Schaltkreis“ angeboten. 

” 

Magnetische Widerstands¨

anderung, Feldplatte Die Lorentz-Kraft lenkt La-

dungsträger im Leiter ab und verlängert dadurch ihre Strombahn. Das äußert

11 Interessanterweise wurde der Hall-Effekt aber an Goldplättchen entdeckt! 
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Abb. 4.3.13. 

Feldplatte. 

(a) Verlauf der Strombah-

nen bei Magnetfeldeinwir-

kung. 

(b)

Widerstands-

verlauf und Schaltzeichen

sich als  Widerstandszunahme:  Magnetowiderstand. Angenähert gilt für  R( B)





 R( B) =  R(0) 1 +  kB 2  . 

(4.3.37)

Diese Beziehung lässt sich (etwas anspruchsvoll) aus Gl. (4.3.35a) herleiten

(Abb. 4.3.13a). Zu Gl. (4.3.37) gehört der Widerstandsverlauf Abb. 4.3.13b mit dem Schaltzeichen des magnetfeldabhängigen Widerstandes. 

Die Magnetfeldabhängigkeit ist bei großer Strombahnverlängerung ausgeprägt. Da-

zu werden in den Halbleiter kleine, metallisch gut leitende Einschlüsse eingelagert

(NiSb-Nadeln senkrecht zur Verbindungslinie der Kontaktbereiche). Ohne Mag-

netfeld sind die Strombahnen am kürzesten zwischen den Kontaktbereichen. Sie

verlängern sich durch die magnetfeldabhängige Ablenkung. 

Magnetfeldabhängige Widerstände (auch  Feldplatten  genannt) dienen zur Messung

von Magnetfeldern, als stufenlos einstellbare kontaktfreie Widerstände und kontakt-

lose prellfreie Taster. Das Widerstandsverhältnis gängiger Elemente ändert sich bei

einer Flussdichte  B = 1 T um das 10-fache. 

4.3.2.2 Kraft auf stromdurchflossene Leiter im Magnetfeld

Elektrodynamische Kraft Sehr ausgeprägt wirkt die Lorentz-Kraft auf strom-

durchflossene Leiter im Magnetfeld oder als  elektrodynamische Kraft  veran-

kert im  Amp`

 ereschen Kraftgesetz (s. Gl. (3.1.3) ff. und Abb. 3.1.5). An-

schaulich überlagern sich das Feld des stromführenden Leiters mit einem

bereits vorhandenen Feld  B  etwa eines Dauermagneten (Abb. 3.1.6): links

vom Leiter in gleicher Richtung, rechts davon gegensinnig und damit feld-

schwächend. Da auch magnetische Feldlinien die Tendenz zum Querdruck

(Linienverkürzung) haben, erfährt der stromdurchflossene Leiter eine Kraft  F

nach rechts oder:

Im inhomogenen Magnetfeld weist die Kraft  F  wegen der Verkürzungsten-

denz der Feldlinien stets in Richtung des schwächeren Magnetfeldes. 

So erklärt sich auch die Anzugswirkung beweglicher Teile beim Elektromagneten, 

das Auseinanderdrücken stromdurchflossener Drähte bei unterschiedlichen Strom-

richtungen (Abb. 3.1.2b) u. a. m. 
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Abb. 4.3.14. Elektrodynamisches Kraftgesetz. (a) Kraft auf ein Stromelement  I d s =  v d Q

(Lorentz-Kraft) und ein Leiterstück, Richtungszuordnung. (b) Krafterzeugung mit strom-

durchflossener drehbarer Rechteckspule im homogenen Magnetfeld. (c) Elektrodynamische

Krafterzeugung durch translatorisch bewegliche Rechteckspule im homogenen Magnetfeld. 

(d) Tauchspule im magnetischen Feld eines Luftspaltes als elektrodynamischer Wandler

Quantitativ beträgt die Kraft durch Anwendung der Lorentz-Kraft auf ein

Stromelement (Kap. 3.1)



 F =

 I(d r × B) . 

Elektrodynamisches Kraftgesetz (4.3.38a)

 l

Dabei ist d r  in Richtung von  v (bzw. Stromdichte  J), also des Zählpfeiles von  i  gerichtet angenommen worden (Abb. 4.3.14a). Die Richtung von  F

folgt aus der Rechte-Hand-Regel für d r,  B,  F . 

Ein Magnetfeld übt auf einen stromdurchflossenen Leiter eine Kraft  F  senk-

recht zur Ebene (d r,  B) aus. Dabei wird durch Verschiebung des Leiters

mechanische Arbeit verrichtet. 

Das elektrodynamische Kraftgesetz beschreibt Kraftwirkungen auf und zwi-

schen beliebig geformten stromdurchflossenen Leitern. Es wurde bereits in

Kap. 3.1.1 diskutiert, wir greifen hier den  geraden Leiter  im  homogenen



 Magnetfeld ( B = const) heraus. Dann geht das Integral

d r =  l  in die

 l

Leiterlänge  l über (s. Abb. 3.1.5f)

 F =  i( l × B)

Betrag :  F =  ilB  sin ∠( l, B) . 

(4.3.38b)
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Gleichermaßen gilt  uvw-Merkregel (Kap. 3.1.1), nur muss dort  Q · v  durch

 i · l  ersetzt werden. 

Die Kraft ist proportional der Stromstärke und Flussdichte. Sie wird ma-

ximal, wenn  l  und  B  senkrecht aufeinander stehen. Leiter parallel zu  B

erfahren keine Kraftwirkung. 

Elektrodynamische Kraftdichte ∗  Das elektrodynamische Kraftgesetz Gl. (4.3.33a)

steht in direkter Beziehung zur Kraftdichte  f  Gl. (4.3.31). Man wählt den Strom

Δ i ≈  d i  einer Stromröhre und drückt ihn durch die Stromdichte  J  aus: d i =  J ·  d A ( J  und d A  gleiche Richtung): d F = d i( v×B) =  J · d A(d s×B) = d A· d s( J ×B) =

( J × B)d V . Die Gesamtkraft ergibt sich durch Integration über das Volumen  V . 

Die Kraftdichte erfasst z. B. das Eigenmagnetfeld eines stromführenden Leiters mit. 

Im kreisrunden Querschnitt wirkt sie immer nach innen. So entsteht eine Druck-

kraft senkrecht zur Leiterachse und der Strom ist bestrebt, einen möglichst klei-

nen Querschnitt einzunehmen:  Einschn¨

 urung  oder  Pinch-Effekt. Die Kraft versucht

stets, den Energieinhalt des Feldes zu erhöhen ( L-Erhöhung  → R m-Verkleinerung). 

In Leitern beobachtet man den Einschnüreffekt wegen der Festigkeit nicht direkt, 

wohl aber im Strom freier Ladungsträger (z. B. Strom durch ein hoch erhitztes Gas

(Plasma)). Dort können so große Kräfte entstehen, dass sich das Plasma auf viele

Millionen Grad aufheizt (ein solcher Vorgang läuft im Blitz ab). 

Magnetfeldgestaltung Bei gegebener Flussdichte  B  in Gl. (4.3.38) (Dauer-

magnetkreis, magnetischer Kreis mit Luftspalt und Erregerwicklung) erfährt

der stromdurchflossene Leiter entweder eine  lineare  oder  drehende  Bewegung, 

ist aber immer Teil einer Leiterschleife (Abb. 4.3.14b, c). Der  Luftspalt  als

 Bewegungsraum  hat feste Abmessungen. Stets wirkt die Kraft nur auf jene

Teile der Leiterschleife, die die Kraftgleichung erfüllen. Wird bei linearer Be-

wegung nur die  x-Richtung zugelassen, so tritt nur Kraft  F 2 auf, denkbare

Kräfte  F 1,  F 3 heben sich auf. Der Fluss durch die Leiterschleife setzt sich aus

dem externen eintauchenden Flächenanteil und dem Teil zusammen, den der

Schleifenstrom  i  selbst erzeugt (er wird durch ihre Induktivität beschrieben). 

In der Kraft dominiert der externe Teil. Dann folgt:

Die Kraft wirkt unabhängig von der Leiterverschiebung  x  und ist proportio-

nal zum Strom, ihre Richtung liegt durch die Stromrichtung gemäß Rechts-

dreibein fest. 

Kraftwirkung entsteht bei linearer Bewegung nur, wenn sich entweder ein

Teil der Schleife im homogenen Magnetfeld befindet oder die gesamte Schlei-

fe im inhomogenen Feld. Ist die Stromschleife im Bewegungsraum  drehbar

gelagert (Abb. 4.3.14b) und wirkt das Magnetfeld senkrecht zur Drehachse, 

so erfahren nur die Leiterstücke parallel zur Achse eine Kraft (Bildung eines

Kräftepaares) und es entsteht ein Drehmoment (s. u.). 
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Abb. 4.3.15. Drehbare Stromschleife im homogenen Magnetfeld. (a) Stromschleife im Mag-

netfeld und Querschnitt. (b) Winkelabhängigkeit des Drehmoments ohne und mit Strom-

umkehr. (c) Zusammenhang zwischen Kraft, Drehmoment, Geschwindigkeit und Winkel-

geschwindigkeit

Die gängige Ausführung des linear bewegten Leiters ist die  Tauchspulenan-

 ordnung (Abb. 4.3.14d). Eine Spule mit  w  Windungen bewegt sich in Rich-

tung ihrer Achse im ringförmigen Luftspalt eines Dauermagnetsystems. Die

Kraft wirkt in Achsenrichtung abhängig von der Stromrichtung:

 F x =  B · w 2 πr · i, 

(4.3.39a)

aber unabhängig von der Auslenkung. In der zugehörigen Strom-Spannungs-

Beziehung

d x

d i

 u =  B · w 2 πr

+  L

(4.3.39b)

d t

d t

stammt der erste Anteil von der  Bewegungsinduktion (im Magnetfeld be-

findet sich die Leiterlänge  l =  w 2 πr) und der Leiter bewegt sich mit der

Geschwindigkeit  v = d x/ d t. Der letzte Anteil kommt von der Spulenindukti-

vität, angenommen fürs erste unabhängig von der Lage  x. 

Wirkt das Magnetfeld senkrecht zur Achse der Drehschleife, so erfahren nur

die Leiterstücke parallel zur Achse eine Kraft  F  mit dem Hebelarm im Ab-

stand  r  vom Drehpunkt. Dabei entsteht das Drehmoment (Abb. 4.3.15a) (pro

Leiter)

 M =  r × F =  i ( r × ( l × B)) =  i (( r × l)  × B) (4.3.40)

durch die Kraft  F =  i( l × B). 

Das von der Schleife ausgeübte Drehmoment  M  ist das Vektorprodukt von

Kraft  F  und Hebelarm  r. 
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Zufolge der Rechtszuordnung von  l  und  B  weist die Kraft am rechten Leiter

nach oben, am linken nach unten und es entsteht das  Drehmoment

 M =  i (2 r × ( l × B)) =  i ((2 r × l)  × B) =  i ( A × B) Drehmoment der Stromschleife

(4.3.41a)

entgegen dem Uhrzeigersinn. Der Flächenvektor  A  der Rahmenfläche  A = 2 rl

wird bei  w-Spulenwindungen durch  wA  ersetzt

 M =  wi( A × B) ,  Betrag:  M =  wi · A · B  sin ∠( A, B) . 

(4.3.41b)

Das Drehmoment sucht die Stromschleife stets so zu stellen, dass die Spu-

lenebene senkrecht zur Richtung von  B  liegt. 

Das Drehmoment  M = 2 F t r  entsteht durch die Tangentialkomponente  F t =

 F  sin  α (sin  α = sin ∠( A, B)) der Kraft  F , die senkrecht auf  l  und  B  steht (Abb. 4.3.15a). Der Vektor  M  zeigt in Achsrichtung. 

Diskussion Wegen  M ∼  sin  α ändert sich das Drehmoment stellungsabhängig

(Abb. 4.3.15b) und die Schleife strebt für eine gegebene Stromrichtung eine sta-

bile Ruhelage an, hier  α = 0. Zwangsweise Schleifendrehung auf  α =  π  schafft

labiles Gleichgewicht. Ein labiler Zustand entsteht auch bei  Stromumkehr  im sta-

bilen Zustand  α = 0 durch Richtungsumkehr der Kräfte. Zwar gilt noch  M = 0, 

aber jede kleine Lageänderung schafft  M = 0 und die auftretende Tangentialkraft  F t

vergrößert die Änderung. Deshalb dreht sich die Schleife aus einem labilen Gleichge-

wicht um 1800 in einen neuen stabilen Zustand. Dabei durchläuft das Drehmoment

für  α =  π/ 2 bzw.  α = 3 π/ 2 Maxima wegen  F =  F t (übereinstimmende Spulenebene und Magnetfeldrichtung). 

Eine ständige Drehbewegung erfordert deshalb nach jeder halben Umdrehung ei-

ne Stromumkehr durch Umpolung. Das besorgt der  Kommutator (Abb. 4.3.16a). 

Weil das Drehmoment über  α  im homogenen Magnetfeld sinusförmig verläuft, sorgt

ein radiales (homogenes) Magnetfeld mit  α = 90o = const stets für maximales

Drehmoment. Deshalb wird die Schleife im Motor auf einen Eisenkern (den  Anker)

gewickelt. 

Die Drehrichtung der Spule folgt entweder aus Gl. (4.3.41b) oder der Anschauung:

ungleichnamige Pole von äußerem Magnetfeld und Stromschleife ziehen sich an, 

Stromrichtung und Nordpol liegen durch die Rechtsschraube fest. 

Drehmoment und Leistung Dreht sich die Spule mit der Winkelgeschwindig-

keit  ω  und hat sie das Drehmoment  M , so erzeugt sie die  Leistung P =  F · v

mit  v =  ω × r ( ω  Vektor der Winkelgeschwindigkeit in Richtung der Drehachse Abb. 4.3.15c)

 P = ( ω × r)  · F =  ω( r × F ) =  ω · M = 2 πnM. 

(4.3.42)

498

4. Energie und Leistung elektromagnetischer Erscheinungen

Abb. 4.3.16. Anwendungen magnetischer Kräfte. (a) Drehspulinstrument. (b) Dynamome-

ter. (c) Magnetomechanische Verformung eines Metallrohres

Wirkt die Kraft  F  senkrecht zu Hebelarm und Drehachse (stehen also  r,  l

und  B  senkrecht zueinander), so vereinfacht sich die Leistung mit  ω = 2 πn

(Umdrehungszahl  n) zum rechten Ergebnis. 

Die drehbare Leiterschleife im homogenen Magnetfeld mit dem Leiterstab

als Grundelement ist die Basis rotatorischer Energiewandler (Motor, Gene-

rator) und deshalb von grundsätzlicher Bedeutung. 

Sie basiert auf der elektrodynamischen Kraft im Wechselspiel mit Bewegungs-

induktion im Leiter. Erst dadurch entsteht der  elektrisch-mechanische Leis-

 tungsumsatz, denn die Lorentz-Kraft auf die Ladung allein (Gl. (3.1.1)) ändert

nur die Bewegungsrichtung, nicht die Teilchenenergie. 

Zahlenbeispiel Eine Drehspule mit  w = 100 Windungen, Fläche  A = 1 m2 Fluss-

dichte  B = 1 T entwickelt bei einem Strom  i = 10 A das Drehmoment  M =  iAwB =

10 A  ·  1 m2  ·  100  ·  1 T = 103 Ws = 103 Nm. Zur Umdrehungszahl  n = 1000 min − 1

gehört die Leistung

2 π ·  1000

 P =  ωM = 2 π ·  1000min − 1103Ws =

 ·  103 Ws = 0 ,  104 MW . 

60

s

Sie ist beträchtlich und hauptsächlich durch die Rahmenfläche verursacht. Für

 i = 1 A und die Spulenfläche 1 cm2 sinkt die Leistung auf 1,04 W (Daten eines

Minimotors). 

Leistungsumsatz elektrisch  ↔ mechanisch Das Zusammenspiel von Kraft-

wirkung am stromdurchflossenen Leiter und Induktionsgesetz am bewegten

Leiter verursacht beim

Leiter im Magnetfeld“  antreibende  und  bremsende

” 

Kräfte: Motor- und Generatorprinzip. 

Je nach Ausführung gibt es die  drehbare Leiterschleife  oder den  linear beweg-

 ten Leiterrahmen. Beide nutzen zur elektrisch-mechanischen Energiewand-

lung das gleiche  Funktionsprinzip (s. Kap. 3.3.3.2, Abb. 3.3.16). Ihm entneh-

men wir:
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a)  Elektrisch-mechanische Wandlung, antreibende Kraft, Motorwirkung:

Fließt im beweglichen Leiter Strom (durch Spannungsquelle  u q bedingt), so

entsteht eine antreibende elektrodynamische Kraft  F Antr. Sie bewegt den Lei-

ter, die zugeführte elektrische Energie wird in mechanische gewandelt und an

die mechanische Last abgegeben. Dabei stellt sich (lastabhängig) die Ge-

schwindigkeit  v  bzw. Drehzahl ein:  Motorwirkung. Die Leiterbewegung indu-

ziert umgekehrt eine Feldstärke und die ihr zugeordnete Quellenspannung  u qi

wirkt der äußeren Spannung entgegen (Generatorwirkung, Rückwirkung des

lastabhängig bewegten Leiters auf den Stromkreis):

 

Rückwirkung elektrischer Kreis

 

 u

(4.3.43a)

q

 −→

 i

 −→

 F Antr

 −→

 v

 −→

 u qi

 i=( u q −u qi) /R

 F Antr= iBl

mechan .  Last

 u qi= vBl

Stets sind Motor- und Generatorwirkung in der gleichen Stromschleife ver-

knüpft. 

b)  Mechanisch-elektrische Wandlung, bremsende Kraft, Generatorwirkung:

Wirkt auf die Leiterschleife primär eine antreibende Kraft  F Antr, die sie mit

der Geschwindigkeit  v  bewegt, so entsteht in ihr eine induzierte Feldstärke

bzw. Spannung  u qi: Zufuhr mechanischer, Abgabe elektrischer Energie:  Ge-

 neratorwirkung. Im angeschlossenen Stromkreis fließt ein Strom abhängig von

der elektrischen Last. Er verursacht eine elektrodynamische Kraft  F geg auf

die Schleife (Motorwirkung), die der primär einwirkenden stets entgegenwirkt

(Lenzsche Regel): Gegenkraft mit der Tendenz, die Relativgeschwindigkeit  v

zu senken

 

Rückwirkung mechanischer Kreis

 

 F

(4.3.43b)

Antr

 −→

 v

 −→

 u qi

 −→

 i

 −→

 F geg

 F Antr −F geg →v

 u qi= vBl

i=uqiR

 F geg= iBl

Jeder im inhomogenen Magnetfeld bewegte geschlossene Leiterkreis wird so

gebremst, als bewege er sich in einem zähen Medium. 

Mechanisch-elektrische Ersatzschaltung Ausgang der Modellierung ist das  Li-

 nearmotorprinzip (Abb. 3.3.16 bzw. 3.3.20). Dort verursacht eine im konstanten

Magnetfeld  B 0 bewegte, stromdurchflossene Leiterschleife (Abb. 4.3.14c) eine Kraft

(elektrodynamische Kraftgleichung (4.3.38)), gleichzeitig wird im bewegten Leiter-

teil (Geschwindigkeit  v, Zusammenhang Kraft-Geschwindigkeit lastabhängig) eine



geschwindigkeitsproportionale Spannung  e i =

 E

 l

i  ·  d l,  E i = ( v × B) induziert. 

Das Eigenmagnetfeld der Leiterschleife hängt nur vom Strom  i  ab (weitgehend un-

abhängig von der Spulenlage). Wir beachten es als  Spuleninduktivit¨

 at L =  w 2 /R m

(ihr magnetischer Widerstand  R m umfasst hauptsächlich die feste Luftspaltlänge). 

Dann beträgt der Gesamtfluss durch den Leiterrahmen

Ψ( i, x) = ( wB 0 l) x +  Li =  k m x +  Li, 

 k m =  wB 0 l → B 0 l

(4.3.44a)
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bzw. umgestellt

1

 i(Ψ , x) =  − k m  x +

Ψ . 

(4.3.44b)

 L

 L

Die  Kraftkonstante k m wird bestimmt durch die Anzahl  w  der im Magnetfeld be-

wegten Leiterstäbe (Windungszahl der Schleife), ihre Länge  l  und das Magnetfeld. 

Seitliche Schleifenteile tragen nicht bei. Unter Weglassen der Anzahl  w  soll dann

künftig  l  die Gesamtlänge des im Magnetfeld bewegten Leiters bedeuten. Denkt

man sich die bewegte Leiterschleife vereinfacht als Leiterstab auf festen Schienen

(s. z. B. Abb. 3.3.15b), so bewegt die elektrodynamische Kraft den Stab mit der

Geschwindigkeit  v  in negativer  x-Richtung  F =  i( l × B) =  i( −le y  × Be z) =

 −e x i · l · B  für das Koordinatensystem in Abb. 4.3.14c. Dann bestätigen sich

 E i = ( v × B) = ( − ˙ xe x  × Be z) = ˙ xBe y und die induzierte Spannung  e i =





 E

 −l E

 l

i  ·  d l =

0

i  · ( −e y)d y = ˙

 xBl. 

Die Kraft folgt gleichwertig auch aus der magnetischen Energie  W m bzw. Ko-

Energie  W ∗

m. Sie ist gemäß Abb. 4.3.14c so gerichtet, dass die vom Fluss durchsetzte

Fläche sinkt. Ko-Energie und Energie betragen (Gl. (4.1.30))

 i



 W ∗

m ( i, x)

=

Ψ( i, x)d i =  k m x · i +  i 2 L

2

(4.3.44c)

0

 W m (Ψ , x) =  i · Ψ  − W ∗

m ( i, x) =

1

2 L (Ψ  − k m x)2

dabei folgt  W m am einfachsten aus der Ergänzung zu  W ∗

m (Gl. (4.1.31)). 

Damit lautet die  elektrodynamische Energiewandlung  der Leiterschleife insgesamt

Ladungs-Strom-Darstellung

Fluss-Spannungs-Darstellung





 ∂W ∗

 u( i, x) =

d

m

elektrische Seite :

d t

 ∂i

 i(Ψ , x) = 1

 L Ψ  − k m

 L x

=  L  d i

d x

d t +  k m d t





 F (Ψ , x) |

=  − ∂W m 	

 ∂W ∗ 	

Ψ

 ∂x

Ψ

Kopplung  F

 m

m :

 F ( i, x) | =

=  k

Q

 ∂x

m  · i

 Q

=  k m

 L Ψ  − k 2m

 L x



mechanische Seite :

 F mech +  F m  − F ext +  F  = 0 . 

(4.3.44d)

Die Stromform (links) beschreibt die wechselseitige elektrisch-mechanische Ver-

kopplung: der Eingangsstrom erzeugt ausgangsseitig eine elektrodynamische Kraft

(dargestellt als stromgesteuerte Stromquelle), die Leitergeschwindigkeit verursacht

über das Induktionsgesetz eingangsseitig eine (gesteuerte) Spannung  k md x/ d t (me-

chanisch-elektrische Rückwirkung) in Reihe zum Spannungsabfall über der Spule

 L. Die mechanische Seite gehorcht mit ihren Elementen einer eigenen Beziehung. 

Aus Konsistenzgründen wurde speziell für die spätere Wandlerbeschreibung wie im

elektrischen Fall die  Reaktionskraft F  (mit  F  +  F m = 0) eingeführt. Dann wir-

ken  v  und  F   in Kettenpfeilrichtung zu  u, i  am Wandlerzweitor, dagegen  v  und die

magnetische Kraft  F m in symmetrischer Richtung. Für die Wandlerausgangsseite





gilt noch  F  =  −F m  −

 F mech =  F  −

m

 F mech. Damit kann die Ausgangssei-

te des magnetischen Wandlers sinngemäß vom elektrischen Wandler (Abb. 4.3.7e)

übernommen werden. 
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Der Energieumsatz elektrisch  ↔  mechanisch des linear (analog rotatorisch) beweg-

ten Leiters im Magnetfeld wird damit durch zwei gesteuerte Quellen modelliert, 

die Grundlage des späteren  Wandlerzweitors  im  elektrisch-mechanischen Netzwerk

(Kap. 6), wie beim Gleichstrommotor (Abb. 4.2.5) gezeigt wurde. 

Gängige Praxis der vielfältigen Anwendungen magnetischer Kräfte ist allerdings

die Verwendung der  magnetischen Kraft F m, meist als Kraft  F =  F  m benannt. 

Deswegen wurde die Reaktionskraft  F  =  −F m in Abb. 4.3.14 nicht eingetragen. 

Kraftwirkung zwischen parallelen Str¨

omen Quantitativ fließt der Strom  i 2 im

Magnetfeld des Stromes  i 1. Er erzeugt im Abstand  a  die Flussdichte

 B 1 =  μ 0 H 1 =  −μ 0 i 1  e y

2 πa

senkrecht zur  z,  x-Ebene, in der die Stromleiter  i 1,  i 2 liegen. Die Folge ist

eine Kraft  F  21 auf Leiter 2. Sie beträgt für ein Stück der Länge  l 2



%

&

 F

 μ 0 i 1

21 =  i 2 ( l 2  × B 1) =  i 2

 le z  ×

 e y

=  − μ 0 i 1 i 2 l e x . 

(4.3.45a)

2 πa

2 πa

Die vektorielle Leiterlänge  l 2 =  le z ist in Stromrichtung  i 2 orientiert. Analog übt Leiter 2 auf die Länge  l 1 =  le z des Leiters 1 die Kraft  F  12



%

&

 F

 μ 0 i 1 i 2 l

12 =  i 1 ( l 1  × B 2) =  i 1

 le z  × − μ 0 i 2  e y

=

 e x

(4.3.45b)

2 πa

2 πa

mit entgegengesetzter Richtung aus:  beide Leiter ziehen sich gegenseitig an. 

Bei ungleichen Stromrichtungen stoßen sich die Leiter ab, der Betrag der

Kraft ist gleich (Darstellung Abb. 4.3.17a rechts). 

Zwei parallele Ströme  i 1,  i 2 (Abstand  a, Länge  l) üben wechselseitig die

Kraft (Betrag)

 i 1 i 2 l

Kraftwirkung paralleler

 F =  i 2 B 1 l =  μ 0

(4.3.45c)

2 πa

Ströme im Abstand  a

aus (Richtung Abb. 4.3.17a). 

Gr¨

oßenvorstellung Für die Einheit Ampère der Stromstärke  i  wurde festgelegt:

Zwei lange, dünne parallele Drähte (Abstand  r = 1 m) üben bei gegensinnigen

Strömen  i 1 =  i 2 =  i = 1 A die Kraft  F = 2  ·  10 − 7 N pro Länge  l = 1 m aufeinander aus. Daraus folgt für  μ 0

2 πrF

2 π ·  1m  ·  2  ·  10 − 7N

 μ 0 =

=

= 4 π 10 − 7 N = 4 π 10 − 7 V  ·  s  . 

(4.3.45d)

 li 1 i 2

1m  ·  1A  ·  1A

A2

A  ·  m

Die Definition der Stromstärkeeinheit mit Bezug auf die Kraftwirkung fußt letztlich

auf dem Zahlenwert der Feldkonstante  μ 0 (Naturkonstante, Gl. (3.1.10)). Magne-

tische und elektrische Feldkonstante  μ 0,  ε 0 hängen über die Ausbreitungsgeschwin-

digkeit  c  elektromagnetischer Wellen im Vakuum (Lichtgeschwindigkeit) zusammen:

 c 2 μ 0 ε 0 = 1. Über die Festlegung von  μ 0 durch die Definition der Stromstärke und

die Bestimmung / Messung von  c  ist damit  ε 0 bestimmt. 
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Abb. 4.3.17. Kraftwirkung zwischen Strömen. (a) Zwei gleichsinnig stromdurchflossene

parallele Leiter ziehen sich an, Gegenströme stoßen ab. (b) Vergrößerung einer Stromschlei-

fe durch das Eigenmagnetfeld (Induktivitätszunahme). (c) Schleifendeformation durch

Kraftwirkung eines homogenen Fremdfeldes. (d) Schleifendeformation und -bewegung

durch Kraftwirkung im inhomogenen Fremdfeld. (e) Lichtbogenlöschung am Hörnerab-

leiter. (f) Einschnüreffekt im Stromfaden. (g) Kraftwirkung zwischen zwei Leiterkreisen

Für  i =  i 1 =  i 2 = 100 A,  r = 10 cm (Luft) entsteht bei  l = 1 m die Kraft  F = 0 ,  02 N

( ≈  2p). Sie ist klein, kann aber wegen des quadratischen Einflusses von  i  bei größeren

Strömen ( i >  104 A, Kurzschlussströme in Elektrizitätswerken, Stromstärke im

Blitz) außerordentlich anwachsen. Für  i = 104 A ergibt sich im obigen Beispiel

die 104-fache Kraft:  F = 200 N. 

Große Ströme (Kurzschlussströme, Entladestrom des Kondensators) können

beträchtliche Kräfte erzeugen und erfordern Vorsichtsmaßnahmen. 

Folgerungen:

1. 

 Aufweitung eines Stromkreises. Das Eigenmagnetfeld eines Leiterkreises

(Abb. 4.3.17b) zeigt für jedes Leiterelement d l  in die Zeichenebene und es ent-

steht eine nach außen gerichtete Kraft: Tendenz zur Vergrößerung des strom-

durchflossenen Kreises,  Kraftwirkung in Richtung einer Induktivit¨

 atserh¨

 ohung. 

2. 

 L¨

 oschbogenableiter.  Die Stromkreisausdehnung wird im Löschbogen- oder Hör-

nerableiter (Abb. 4.3.17e) genutzt. Ein durch Überschlag entstandener Licht-

bogen zwischen gebogenen Elektroden erfährt eine Kraft nach oben, weil die

Stromdichte und damit das Magnetfeld am unteren Rand größer als weiter

oben ist. Dadurch überwiegt unten die ablenkende Kraft und treibt den Licht-

bogenstrom in die Höhe, bis er abbricht. Solche Ableiter sind auf Elektroschie-

nenfahrzeugen verbreitet. 
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3. 

Die Tendenz zum Zusammenziehen gleichgerichteter Ströme ist der eigentliche

Grund dafür, dass ein Strom freier Ladungsträger (z. B. in Elektronenröhre) als

Stromfaden im freien Raum erhalten bleibt und nicht zerfließt (Abb. 4.3.17f). 

4. 

Die Kraftwirkung eines Fremdfeldes versucht die Schleife (richtungsabhängig)

auszuweiten oder zusammenzudrücken (Abb. 4.3.17d), das Eigenfeld weitet sie

stets aus, doch eine translatorische Nettobewegung unterbleibt. Im  inhomoge-

 nen Feld  entsteht dagegen eine  Nettokraft  und die Schleife wird bewegt. Bilden

 i( J),  B  und  F  ein Rechtsdreibein, so verschiebt sich die  Schleife zum größeren Magnetfeld hin (Abb. 4.3.17c). 

5. 

Zusammenziehende Kräfte entstehen auch zwischen den einzelnen Windungen

einer (locker gewickelten) Spule, sie  verk¨

 urzt  sich bei Stromfluss (s. Kap 4.3.2.3). 

Auf die Windungen wirkt insgesamt eine axiale Druckkraft, außerdem versucht

die radiale Zugkraft sie zu dehnen. Solche (beträchtlichen!) Kräfte können bei

Kurzschluss eines Transformators auftreten. 

Beispiel 4.3.1 Kraftwirkung auf eine Stromschleife im inhomogenen Magnetfeld Ei-

ne rechteckige, vom Strom  i 2 durchflossene Leiterschleife II befinde sich parallel

zu einem unendlichen langen geraden stromführenden Leiter I (Strom  i 1 Leiter-

kreis im Unendlichen geschlossen) und damit in seinem inhomogenen Magnetfeld

(Abb. 4.3.17g). Gesucht ist die Gesamtkraft auf Schleife II



 F  II =  F  1 +  F  2 +  F  3 +  F  4 =  i 2

d l 2  × B 1

bestehend aus den Teilkräften nach Abb. 4.3.17g. Die Kraft  F  1 auf Leiterstück 1

beträgt (mit der dort herrschenden Flussdichte  B 1 =  μ 0 i 1  e

2 π

 ϕ)

0



 b



 F  1 =  i 2

d l 2  × B 1 =  i 2

d ze z  × μ 0 i 1  eϕ =  − μ 0 i 1 i 2 b e

2 π
 0

2 π
 0

0

und ist zum Leiter I gerichtet, wirkt also anziehend. Entsprechend berechnet sich

die Kraft  F  3 der rechten Schleifenseite:



0



 F

 μ 0 i 1 i 2 b

3 =  i 2

d l 2  × B 1 =  i 2

d ze z  ×

 μ 0 i 1

 eϕ =

 e. 

2 π( 
 0 +  a)

2 π( 
 0 +  a)

 b

Nach rechts gerichtet wirkt sie abstoßend. Die Kräfte  F  2 und  F  4 sind parallel zum

Strom  i 1 gerichtet und heben sich gegenseitig auf. Damit verbleibt als Gesamtkraft

auf die Schleife





 F

1

II =  F  1 +  F  3 =  − μ 0 i 1 i 2 b

 −

1

 e. 

2 π

 
 0

 
 0 +  a

Sie wirkt insgesamt anziehend und würde die Schleife zum Leiter I hin bewegen, weil

 F 1  > F 3. Die Teilkräfte selbst versuchen, die Schleife auszuweiten (s. Abb. 4.3.17g). 

Wechselt die Richtung eines Stromes ( i 1 oder  i 2, so entsteht eine abstoßende Kraft-

wirkung auf die Schleife. 

Schwieriger ist die Berechnung der von Leiterschleife II verursachten Kraft  F  I auf

Leiter I. Dazu muss die Flussdichte  B II (herrührend von Leiterkreis II mit  i 2)

an der Stelle d l 1 für das dort befindliche Stromelement  i 1d l 1 berechnet werden. 
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Der Leiterkreis II besteht aus geraden Leiterstücken, für die zugehörige Feldbei-

träge nach Gl. (3.1.27) ermittelt werden. Anschließend sind die Kraftbeiträge aller

Elemente d l 1 des Leiters I zur Gesamtkraft  F  I zu addieren. Das Ergebnis lautet

 F  I =  F  II (Rechnung sehr aufwändig!). Die gleichwertige Kraftberechnung durch

virtuelle Verschiebung erfolgt im Kap. 4.3.2.3. 

Anwendungen der Kraftwirkung Antreibende Kräfte erzeugen  translatorische

und  rotatorische  Bewegungen, ebenso werden bremsende Kraftwirkungen viel-

fältig ausgenutzt. Die Anwendung in Motoren fassen wir in Kap. 5 zusammen. 

Dynamischer Lautsprecher, dynamisches Mikrophon Im Luftspalt eines Topf-

magneten wirkt ein radiales Magnetfeld (z. B. Innenzapfen N-Pol, äußerer Kreis

S-Pol, Abb. 4.3.14d). Dort bewegt sich eine mit einer Membran starr verbundene

Schwingspule. Bei Stromfluss (Strom mit akustischer Information) bewegt sich die

Membran entsprechend  F ∼ i  im Rhythmus der Information. Diese Anordnung

ist heute der Standardlautsprechertyp. Trifft umgekehrt eine Schallwelle auf die

Membran, so induziert die Leiterschleife eine entsprechende Spannung: dynamisches

Mikrophon. Die Anordnung wirkt (umkehrbar) als Lautsprecher oder Mikrophon. 

Das gleiche Prinzip nutzt der  Schwingtisch  zur Prüfung von Geräten. Statt der

Membran nimmt eine Schwingplatte das zu prüfende Gerät auf. Durch Betrieb

der Schwingspule mit Strömen unterschiedlicher Intensität und Frequenz wird die

Gerätefestigkeit untersucht. 

Drehspulinstrument Im Luftspalt eines Permanentmagneten (homogenes Radial-

feld) befindet sich eine drehbar gelagerte Spule (Abb. 4.3.16a). Der Strom erzeugt

ein Drehmoment  M antr =  iBA w (Spulenfläche  A w =  wA). Eine Spiralfeder auf der

Drehachse (rücktreibendes Moment  M ges =  cα,  α  Winkelausschlag) kompensiert

es. Gleiche Momente ergeben mit

 α = const  · i · B

Drehspulinstrument

einen stromproportionalen Ausschlag (lineare Skalenteilung). Deshalb ist das Dreh-

spulinstrument ein Gleichstrommesssystem. Es findet Anwendung zur Gleichstrom-

und -spannungsmessung mit Vorwiderstand  R v. Mechanisch arbeitet es als ge-

dämpftes Masse-Feder-System mit kleiner Eigenfrequenz (unter 1 Hz). Das  elek-

 trodynamische Messwerk  ist ein Drehspulmesswerk, mit Ersatz des Permanentmag-

neten durch eine stromdurchflossene Spule (Abb. 4.3.16b). Mit den Strömen durch

Erreger- ( i 1) und Messwerkspule ( i 2) beträgt der Ausschlag  α

 α = const1  · i 2 B = const2  · i 2  · i 1

abhängig vom Produkt der Ströme mit folgenden Schaltungsmöglichkeiten:

Spulen reihengeschaltet  i 1 =  i 2 =  i:  α ∼ i 2, Gleich- und Wechselstromanzeige

mit quadratischer Skala; 

Spulen unabhängig versorgt ( i 1,  i 2 =  u 2 /R):  α = const  · iu =  P  Leistungsanzei-ge, Wattmeter. 
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Dynamometer und Drehspulmesswerke sind sehr verbreitet, werden aber zuneh-

mend durch Digitalinstrumente verdrängt. 

Anwendungen bremsender Kr¨

afte Die  Wirbelstrombremsung  ist ein Beispiel für

bremsende Kraftwirkungen (Abb. 3.3.21e). Dort stand der Magnet fest und eine

Metallscheibe bewegte sich im Magnetfeld. Ruht umgekehrt die Scheibe und bewegt

sich der Magnet, so ziehen Wirbelströme die Scheibe hinterher. Das nutzt der  Ener-

 giez¨

 ahler  zur Messung der Wechselstrom(wirk)leistung über eine bestimmte Zeit. 

Er besteht aus einer Al-Scheibe, die durch zwei Flüsse ( ∼  zu Strom und Spannung)

angetrieben wird. Die Scheibe läuft zwischen den Polen eines Dauermagneten. Die

dadurch erzeugten Wirbelströme bremsen sie. Dann ist die Drehzahl  n ∼ u · i  cos  ϕ. 

 t

 t

Die Zahl der Umläufe

 n d t ∼

 p d t  zeigt die durchgeflossene Energie an. 

0

0

Umgekehrt arbeitet das  Wirbelstromtachometer. Ein Dauermagnet dreht sich pro-

portional zur Drehzahl. In einem umgebenden Aluminiumzylinder entsteht durch

Induktion ein Drehmoment, kompensiert durch eine rückstellende Spiralfeder. Sein

Ausschlag entspricht der Geschwindigkeit. Dieses Prinzip der Triebscheibe liegt

auch dem  Asynchronmotor  zugrunde (s. Kap. 5. )

Zur  Motorbremsung  wird der Anker eines laufenden Gleichstrommotors (bei ein-

geschalteter Erregung) von der Spannung abgeschaltet und an einen Widerstand

gelegt. Er wirkt durch seine Trägheit zunächst als Generator. Der Strom durch

den Widerstand  R  bremst den Anker und Bewegungsenergie wird in Wärme um-

gewandelt. Ausgenutzt wird die Motorbremsung“ z. B. in Drehspulinstrumenten

” 

mit kleiner Rückstellkraft. Bei Kurzschluss ihrer Anschlussklemmen induzieren Zei-

gerbewegungen (z. B. durch Erschütterung) in der Drehspule eine Spannung und

damit im Kreis einen hohen Strom, der eine bremsende Kraft bewirkt. 

Materialverformung Kraftwirkungen auf induzierte Ströme ändern Metallhohlkör-

per durch  magnetomechanische  Verformung (Abb. 4.3.16c). Man bringt dazu den

zu verformenden Metallzylinder ins Innere einer Spule. Ein steiler Stromimpuls

(hohes d i/ d t) induziert im Metallkörper einen Strom entgegengesetzter Richtung. 

Er verursacht Kräfte von außen nach innen, die den Zylinder im Spulenbereich

eindrücken (bzw. ausbeulen, wenn er sich außen befindet). Das Verfahren erlaubt

bei hohen Stromsteilheiten Umformgeschwindigkeiten von mehreren 1000 m/s. Steil

ansteigende Ströme entstehen z. B. durch eine Kondensatorentladung. 

4.3.2.3 Kraft auf Grenzfl¨

achen

Die Kraftdichte Gl. (4.3.31) erfasst auch Kräfte auf magnetisierte Mate-

rialien, speziell als  Grenzfl¨

 achenkr¨

 afte  zwischen Gebieten unterschiedlicher

Permeabilität wie im  magnetischen Kreis (Kap. 3.2.3). Lokale Permeabi-

litätsunterschiede lassen sich für eine Gebietsgrenze nach dem Modell  ver-

 schiedener Dielektrika  Gl. (4.3.12) erfassen (s. u.). 

Ursächlich bedingen Ladungsbewegungen in der Mikrostruktur die Grenz-

flächenkraft, ein zu ihrer Bestimmung indiskutabler Weg. Deshalb nutzt die

Kraftberechnung entweder  magnetische Feldgr¨

 oßen,  bei gegebenem Ψ,  i-Ver-

506

4. Energie und Leistung elektromagnetischer Erscheinungen

lauf die  Induktivit¨

 at  der Anordnung oder die im Feld gespeicherte  magnetische

 Energie  nach dem Prinzip der  virtuellen Verschiebung. 

Magnetische Kreise, wie sie vielfältig bei  rotierender (Motor, Generator) oder

 translatorischer  Bewegung (Elektromagnet, Linearmotor u. a.) vorkommen, 

haben zur Nutzung der Grenzflächenkraft grundsätzlich einen  Luftspalt als

 Arbeitsraum. Er ändert sich durch die Kraftwirkung und damit auch der

magnetische Widerstand. Deshalb spricht man von  Reluktanzkraft  oder ei-

nem  Reluktanzwandler, wenn dieses Arbeitsprinzip die Energiewandlung be-

stimmt. Der typische Reluktanzwandler für translatorische Bewegung ist der

 Elektromagnet (Abb. 3.2.10). 

Elektromagneten sind elektro-mechanische Energiewandler, die zugeführte

elektrische Energie in magnetischer Energie als Zwischenform speichern und

anschließend in mechanische Energie wandeln unter Ablauf einer (kleinen)

Translationsbewegung. 

Der Elektromagnet (Ausführungsformen Kap. 5.1) besteht aus einem Eisen-

kreis (mit Wicklung), beweglichem Anker und veränderbarem Luftspalt. Sei-

ne Funktion folgt aus den Eigenschaften der Feldlinien (Tendenz zum Längs-

zug und Querdruck) oder der Energiebilanz. 

Beispiele für den Längszug sind das Anziehen eines Eisenstückes  an  oder  in  eine

stromdurchflossene Spule (Verkürzung des Feldlinienweges), das Zusammenziehen

zweier stromdurchflossener Leiter (gleiche Richtung), das Abstoßen zweier im Mag-

netfeld befindlicher (gleicher) Eisenkörper (Konzentration der Feldlinien in beiden

Körpern, Tendenz, sich zu entfernen (Querdruck)) und schließlich stoßen sich par-

allele Ströme unterschiedlicher Richtung ab. 

Allen Fällen gemeinsam ist die Tendenz zur  Verkleinerung des magnetischen

 Widerstandes  bzw. einer  Induktivit¨

 atsvergr¨

 oßerung. Dabei ändert sich die ge-

speicherte magnetische Energie  W m im Eisenkreis und Luftspalt: Kraftwir-

kung und Energieänderung hängen zusammen. Erinnert sei an die Konzentra-

tion der magnetischen Energie praktisch nur im Luftspalt des magnetischen

Kreises (s. Gl. (4.1.39b)). 

1. Kraft auf r¨

aumlich ausgedehnte magnetische Leiter

Im gleichstromerregeten Elektromagneten mit beweglichem Anker, also va-

riablem Luftspalt (Abb. 4.3.18a) verringert sich durch die Kraftwirkung bei

Einschalten der Erregung der Luftspalt:

der Anker zieht an“. Eine Feder

” 

kompensiert die Kraftwirkung. Dabei wird mechanische Arbeit  W mech ge-

leistet. Gleichzeitig wächst die Induktivität (weil der magnetische Gesamt-

widerstand durch den kleineren Luftspalt sinkt). Die virtuelle Verschiebung

des Ankers im Zeitintervall d t ändert den mit der Erregerspule verketteten

Fluss um dΨ und die im magnetischen Feld gespeicherte Energie um d W m, 

gleichzeitig die Quellenenergie um d W el. 
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Abb. 4.3.18. Beispiele zur Kraftwirkung. Verkürzungstendenz der Feldlinien verursacht

Kräfte. (a) Luftspaltverringerung im beweglichen magnetischen Kreis mit stromdurchflos-

sener Spule. (b) Einzug eines ferromagnetischen Kerns in eine stromdurchflossene Luft-

spule (Induktivitätserhöhung), Kraftwirkung zurückgeführt auf Induktivitätserhöhung. 

Die mechanische Energie  W mech entspricht der schraffierten Fläche zwischen beiden Ψ,  i-

Kennlinien. (c) Zusammenziehung einer locker gewickelten Luftspule bei Stromfluss

Ausgang ist analog zum Kondensator die Energiebilanz

 ui d t

=

d W m

+

d W mech

= d W m +  F  ·  d s. 

(4.3.46a)

zugeführte

Erhöhung der

mechanische

elektrische

Feldenergie

Arbeit verrichtet

Energie

vom System

Zur Systemarbeit  F  ·  d s =  F  d xe x  · e x =  F  d x  tragen die auf den Anker wirkende  magnetische  Kraft  F m, evtl. eine externe Kraft  F ext und mechanische Kräfte bei, die durch Ankerfeder und -masse entstehen, analog zum

mechanischen Kondensatormodell (Abb. 4.3.7). Vorerst beschränken wir  F 

als  Reaktionskraft (wie beim Kondensator, Gl. (4.3.3)) auf die magnetische

Kraft:  F  +  F m = 0. Mit  u = dΨ / d t = d( Li) / d t  und der Spulenenergie d W m =  i dΨ / 2 wird daraus

 i dΨ = d W m +  F  d x ≡ i dΨ +  F  d x. 

(4.3.46b)

2
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Im Vergleich zum Kondensator mit der Energie  W d =  C( x) u 2 / 2 und der La-

dung  Q( u, x) treten jetzt der magnetische Fluss Ψ( x, i) und die magnetische

Energie der Spule ausgedrückt durch die Induktivität auf

 L( x) i 2

Ψ2

 W m =

=

 , Ψ( i, x) =  L( x)  · i, 

2

2 L( x)

(4.3.47)

 w 2

 μ 0 Aw 2

 L( x) =

=

 ≈ μ 0 Aw 2  . 

 R m

( x +  l Fe /μ r)

 x

In der Induktivität wurde der äquivalente Eisenweg vernachlässigt und li-

neare Permeabilität angenommen. Spulenenergie  W m( i, x) und magnetischer

Fluss Ψ( i, x) hängen von den unabhängigen Variablen Luftspalt  x  und Strom

 i  ab; ihre Änderungen betragen deshalb

 ∂W m

 ∂W m

 ∂Ψ

 ∂Ψ

d W m =

d x +

d i, 

dΨ =

d x +

d i. 

(4.3.48)

 ∂x

 ∂i

 ∂x

 ∂i

Rückeinsetzen in Gl. (4.3.46b) (und Nullsetzen des Termes d i/ d x) führt auf

die Kraft





 ∂Ψ( i, x)

 ∂Ψ( i, x)

d i

 F  =  − ∂W m( i, x) +  i

+

 i

 − ∂W m( i, x)

 . (4.3.49)

 ∂x

 ∂x

 ∂x

 ∂i





 d x

0

Die auf den Anker wirkende Kraft entsteht durch virtuelle Verschiebung

längs der Strecke d x. Dazu tragen Änderungen der magnetischen Energie

und der mit der Stromquelle ausgetauschten elektrischen Energie bei. 

Wir werten das Ergebnis, analog zum Verhalten des Kondensators, für die

Sonderfälle konstanter Fluss Ψ und konstanter Strom  i  aus. Anschließend

ergänzen wir es durch die  magnetische Ko-Energie W ∗ (Gl. (4.1.30)), was

m

wegen der nichtlinearen Ψ( i)-Abhängigkeit im ferromagnetischen Kreis vor-

teilhaft ist. 

 Konstanter Fluss (dΨ = 0) erfordert ein Nachregeln der Stromquelle während

der Zeit d t  so, dass diese Bedingung (trotz Induktivitätsänderung) erfüllt ist. 

Dann folgt aus Gl. (4.3.46a)  F  ·  d xe x + d W m = 0 oder





 F |

d L

Ψ2 d L

=  −  d W m   e

  e

 e

Ψ

x =  − ∂W m

x =

x . 

(4.3.50)

d x 

d 

2

d

Ψ

 ∂L

 x Ψ

 L 2  x

Dabei wurden Ψ =  L · i = const, die magnetischen Energie Gl. (4.3.47) und

' 

(

die Ableitung  ∂W m /∂L =  ∂/∂L Ψ2 / 2 L =  −Ψ2 / 2 L 2 verwendet. 

Die Kraft wirkt in  x-Richtung (d L/ d t >  0, Abb. 4.3.18b), der Anker wird

vom Magneten angezogen und die Induktivität wächst von  L 1 (mit Luft-
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spalt) auf  L 2 (ohne Luftspalt): mechanische Arbeit wird durch Abnahme

magnetischer Energie gewonnen. Sie ist im Verlauf Ψ über  i  proportional der

Differenz  A 1 der Flächen  A OAC und  A OBC und entspricht der mechanisch

gewonnenen Energie d W mech =  F  d x =  − d W m. 

Durch Verkleinerung des Luftspaltes sinkt die gespeicherte magnetische

Energie bei konstant gehaltenem magnetischen Fluss. 

Bei  konstantem Strom (d i = 0, Anschluss einer  Stromquelle i = const) ist das

System nicht mehr abgeschlossen und es gilt Gl. (4.3.46a). Jetzt verursacht

die Luftspaltänderung eine Induktivitäts- (d L) und damit Flussänderung. 

Als Folge ändern sich über das Induktionsgesetz die Klemmenspannung  u

und die elektrische Energie: d W el =  ui d t =  i d( Li) =  i 2d L. Dabei wurde die Strom-Spannungsrelation der Induktivität benutzt. Aus dem Energiesatz

d W el = d W m | + d

 i

 W mech folgt (analog zum Kondensator)

d W mech =  F  ·  d s = d W el  −  d W m |i

 i 2

(4.3.51)

=  i 2d L −  1  i 2d L =

d L = +d W m |

2

2

 i. 

Die vom Generator gelieferte elektrische Energie wird je zur Hälfte in Feld-

und mechanische Energie gewandelt. 

Anschaulich ist die mechanisch gewonnene Energie d W mech proportional der

Differenz aus zugeführter elektrischer Energie d W el (Rechteck AA’C’C  ∼

 A 2 +  A 4) und magnetischer Nettoenergie d W m (Dreiecke 0A’C’-0AC  ∼ ( A 3 +

 A 4) −( A 3+ A 1) (Abb. 4.3.18b). Daraus folgt als die Kraft  F |  bei konstantem i

Strom  i





 F |

d W ∗

 ∂W ∗  d L

 i 2 d L

Ψ2 d L

=

m   · e

m

 =

 · e

 · e

 i

x =

x =

x

d x 

d 

2 d

2

d

 i

 ∂L

 x i

 x

 L 2  x





d L 



=  − ∂W m

  · e



x =  −  d W m

 · e x =  F |

 ∂L

d x 

d



Ψ  . 

(4.3.52)

Ψ

 x Ψ

Streng genommen muss in den ersten Termen die Ko-Energie  W ∗

m stehen, bei

linearer Induktivität (nur dann!) stimmen beide überein ( W m =  W ∗

m) aber

auch die Kräfte. Rechts steht die Kraft bei konstantem Fluss. Es gilt:

Die Reluktanzkraft im magnetischen Kreis wirkt wegen des quadrati-

schen Einflusses von Strom  i  bzw. magnetischem Fluss Ψ stets anziehend

(unidirektional). 

Sie ist proportional der Induktivitätszunahme (Abnahme des magne-

tischen Widerstandes)

und deshalb stets so gerichtet, dass die Induktivität wächst. 
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Abb. 4.3.19. Nichtlinearer magnetischer Kreis. (a) Elektromagnet und Geometrieeinfluss

(Flächen-, Abstandsänderung des Luftspaltes d a). (b) Auswirkung des Luftspaltes auf die

Ψ,  i-Kennlinie, Angabe der magnetischen Energie  W m und Ko-Energie  W ∗

m. Veranschau-

lichung der umgesetzten mechanischen Energie  W m bei konstantem Strom. (c) dto. bei

konstantem Fluss

Die Kraftberechnung über die Energie wird einfach, weil sich die mechanisch

umsetzbare Energie praktisch im Luftspalt konzentriert und direkt als Kenn-

linienänderung des magnetischen Kreises zutage tritt. 

Die Kraftwirkung auf den magnetischen Feldraum kann berechnet werden

allgemein aus der Ableitung der Induktivität nach der in Richtung der

Kraft liegenden Längenkoordinate (Mitte in Gl. (4.3.52)) unabhängig

von Nebenbedingungen, 

für die Sonderfälle konstanten Stromes oder Flusses aus der Ableitung

der Feldenergie nach der in Kraftrichtung gewählten Längenkoordinate. 

Die Induktivitätsänderung zufolge Kraftwirkung entsteht nach Gl. (4.3.52) durch

Längen- bzw. Flächenänderung ihres magnetischen Widerstandes (Abb. 4.3.19a):

Verkürzung der Spulenlänge (Zusammenziehen der Spule, Verkürzung des Win-

dungsabstandes bei weit gewickelter Spule,  L ∼  1 /l) (Abb. 4.3.18c); 

abnehmender magnetischer Widerstand: Vergrößerung des vom Fluss durchsetz-

ten Querschnitts, z. B. Ausweitung der Stromschleife im homogenen Magnetfeld; 
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durch Einzug eines Eisenstückes in die Spule (Abnahme des magnetischen Wi-

derstandes) (Abb. 4.3.18b). 

Auch bei konstantem Strom lässt sich die von der Kraft geleistete mecha-

nische Arbeit  F  d x  der Ψ,  i-Kennlinie entnehmen (Abb. 4.3.18). Die Kraft

vergrößert die Induktivität, dadurch steigt der Fluss Ψ bei gleichem Strom  i. 

Die magnetomechanische Energieumformung bedingt allgemein eine Kennli-

nienänderung Ψ (Θ)  ∼ Ψ ( i) des magnetischen Kreises. Die Fläche zwischen

beiden Kennlinien (mit/ohne Luftspalt) ist ein Maß für die geleistete me-

chanische Arbeit. 

Vom Netzwerkelement her gesehen wird die Induktivität durch die Kraftwirkung

zeitveränderlich  L( t) (linear oder nichtlinear, je nach Zusammenhang Ψ( i)). Ent-

sprechendes galt beim Kondensator  C( t). 

Kraft, Energie und Ko-Energie ∗  Die Kraftbeziehungen Gl. (4.3.52) beruhen auf

linearem Ψ,  i-Verhalten. Dann stimmen magnetische Energie und Ko-Energie über-

ein. Bei  nichtlinearem Ψ,  i-Verlauf (Abb. 4.3.19b) muss von Gl. (4.1.30), (4.1.31)

ausgegangen werden. Bedeutet d a  eine allgemeine denkbare  Deformation  des mag-

netischen Kreises, so ändern sich seine magnetische Energie  W m(Ψ , a) und die

Ko-Energie  W ∗

m( i, a). Beide folgen aus dem Ansatz  i dΨ

= d W m +  F  ·  d a =

d(Ψ i)  −  d W ∗

m +  F  ·  d a

d W m =  i dΨ  − F  ·  d a, 

d W ∗

m

= Ψd i +  F  ·  d a

(4.3.53)

 W m

=  f (Ψ , a) , 

 W ∗

m

=  g( i, a) . 

Die Kräfte finden sich aus den relevanten Energieänderungen
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 ∂W ∗
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d a, 
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d i +

d a

 ∂Ψ 	
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 ∂a

 ∂i
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durch Vergleich









 F 	

 ∂W ∗

=  − ∂W m(Ψ , a) 	  e



m( i, a) 	

a =  F 

=

 e a =  F . 

(4.3.54)

Ψ

 ∂a



 i

 ∂a



Ψ

 i

In einer verformbaren magnetischen Anordnung hängt die Ψ,  i-Kennlinie von der

Verformung ab. Die magnetische Kraft kann aus der negativen Ableitung der

magnetischen Energie bei konstantem Fluss oder der Ableitung der Ko-Energie bei

konstantem Strom nach der virtuellen Bewegungsvariablen  a  berechnet werden. 

Im magnetischen Kreis sinken verketteter Fluss und Ko-Energie bei Luftspaltzu-

nahme (Abb. 4.3.19b). Bei konstantem Strom ( Übergang A’A) sinkt der Verket-

tungsfluss (Abnahme der Ko-Energie) bzw. steigt der Strom und damit die mag-

netische Energie (bei konstantem Verkettungsfluss Abb. 4.3.19c, Übergang BA). 

Trotz nichtlinearer Kennlinie Ψ( i) stimmen die inhaltlichen Aussagen mit dem li-

nearen Fall Abb. 4.3.18b überein. Das gilt auch für die Kraft Gl. (4.3.54), nur fehlt

gegenüber dem linearen Ergebnis Gl. (4.3.52) die Verbindung zur lokalen Indukti-

vitätsänderung. 
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Reluktanzkraft und mechanisches System Reale Elektromagneten (Abb. 4.3.18)

haben eine  Ankermasse m, ggf. geschwindigkeitsproportionale  Ankerreibung  und ei-

ne elastische Ankerbindung durch eine  Feder (Federkonstante  k = 1 /n,  n  Nachgie-

bigkeit). Letztere sei bei stromloser Spule (Luftspaltabstand  d) entspannt. Auf den

Anker kann außer der feldbedingten  magnetischen Kraft F m noch eine externe Kraft

 F ext einwirken (analog zum Verhalten beim Kondensator Abb. 4.3.7a). Die Bezie-

hung zwischen den Kräften und der Ankerverschiebung  x (bzw. der zugehörigen

Geschwindigkeit  x) wird dann durch das  Feder-Masse-D¨

 ampfungs-System



 F − kx − c  d x

 →

 F

d t =  m  d2 x

d t 2

mech +  F m  − F ext +  F  = 0





(4.3.55)

 F  =  −F m +  F ext  −

 F mech =  F  m +  F ext  −

 F mech

erfasst. Auf das System wirken magnetische und externe Kraft sowie Ankeraus-

lenkung  x  bzw. stellt sich die Bewegungsgeschwindigkeit  x  ein (vgl. Abb. 4.3.7b). 

Gl. (4.3.55) beschreibt die  mechanische Seite des Elektromagneten. Von der elektri-

schen Seite wirken (Gl. (4.3.53))

Ladung-Strom-Darstellung Fluss-Spannungs-Darstellung





elektrische Seite :  u( i, x) =

 ∂





 ∂t ( W ∗

m)

 i(Ψ , x) =  ∂W m

= Ψ( x)

 x

 ∂Ψ

 x

 L( x)

=  L( x) d i

d x

d t +  i ∂L

 ∂x  d t



 ∂W ∗ 	



Kopplung  F

m

 ∂L



m :

 F ( i, x) |i =  ∂x 	 =  i 2

=  − ∂W m

 i

2  ∂x

 F (Ψ , x) |Ψ

 ∂x

Ψ

=

Ψ2

 ∂L

2 L( x)2  ∂x



mechanische Seite :

 F mech +  F m  − F ext +  F  = 0 bzw. 



(4.3.56)

 F  =  F  −

m

 F mech +  F ext . 

Je nachdem, ob die Kraftwirkung bei konstantem Strom oder magnetischem Fluss

erfolgt, wird das elektrisch-mechanische Gesamtsystem durch die linken oder rech-

ten Beziehungen beschrieben. Die Energierelationen gelten allgemein, (also auch für

nichtlinearen Ψ( i)-Zusammenhang), rechts davon stehen die für lineare Beziehung

zwischen magnetischem Fluss und Strom: Ψ( x) =  L( x) i. 

Die elektrisch-mechanische Wechselwirkung der zeitveränderlichen Induktivität

(mittels Reluktanzänderung) wird beschrieben durch (Abb. 4.3.19a)

die magnetische Kraft  F m auf den Anker (elektrisch-mechanische Wirkung), 

umgekehrt durch die Luftspaltänderung als Folge der mechanischen Gesamt-

kraft (einschließlich mechanischer Lastelemente) als mechanisch-elektrische

Rückwirkung. Sie verursacht an den Klemmen eine induzierte Spannung. 

Während bei konstantem Strom die mechanische Last explizit über die Indukti-

vitätsänderung auf den elektrischen Kreis rückwirkt, erfolgt das im zweiten über

Fluss und Induktivität (an der Induktivität wirkt eine Spannungsquelle). Sinn-

gemäß gelten die gleichen Verhältnisse, wie sie bereits bei der Kapazität auftra-

ten (Gl. (4.3.27) und Abb. 4.3.7d, e, Ersatzschaltung). Die nach außen wirken-

de Reaktionskraft  F   besteht aus der magnetischen Reaktionskraft  F  m =  F  i,  F Ψ

(Gl. (4.3.56)) abzüglich innerer mechanischer Kräfte (Ankermasse, Rückstellfeder, 

Reibung, externe Kraft zu Null gesetzt). Das drückt die Ersatzschaltung

Abb. 4.3.20a aus. 
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Abb. 4.3.20. Elektromagnet als elektro-mechanischer Wandler. (a) Wandlermodell mit

nichtlinearem magnetischen Kreis, zusätzlicher mechanischer Last und externer Kraft. 

(b) Wandlerersatzschaltung mit linearem magnetischen Kreis

Liegt der Elektromagnet über einen Widerstand an einer Spannungsquelle und ist

keine externe mechanische Last angeschlossen ( F  = 0), so muss der Widerstand

über den Maschensatz berücksichtigt werden:

 i



 ∂Ψ( i, x) d i

 ∂Ψ( i, x) d x

 ∂



 u Q =  iR +

+

 , 

Ψ( i, x)d i =

 F mech . (4.3.57)

 ∂i

   d t

 ∂x

d t







 ∂x

0

 l







d

mech − el

el − mech

Verwendet wurde dabei die nichtlineare Beziehung Ψ( i) des ferromagnetischen Krei-



ses und die Energiebeziehung d W ∗

m( i, x) = Ψ( i, x)d i,  W ∗

m =

d W ∗

m. Der ferromag-

netische Kreis ist Bestandteil der Ersatzschaltung, erst bei linearem Fluss-Strom

entfällt er. Allgemein tritt statt der Induktivität die  Kleinsignalinduktivit¨

 at l d auf. 

In der magnetischen Kraft rechts wird der Stromeinfluss deutlich. Für linearen Zu-

sammenhang Ψ  ∼ i  gelten die Beziehungen Gl. (4.3.56). Die (komplizierte!) Lösung

von Gl. (4.3.57) beschreibt das Einschaltverhalten des Elektromagneten (zeitlicher

Stromverlauf, Kraft-Weg-Kennlinie, Flussaufbau). 

Das Gesamtsystem Gl. (4.3.56) lässt sich mit dem Modell Abb. 4.3.20a erklären: ei-

ne Eingangsspannung baut das magnetische Spulenfeld auf, ändert sie (d L/ d x = 0)

und dabei entsteht die Kraft  F m auf den Anker und das mechanische Netzwerk

wirkt korrigierend auf Luftspaltänderung  x  bzw. Geschwindigkeit  v = d x/ d t =  x. 

Die damit verbundene Induktivitätsänderung verändert die Eingangsspannung: der

Eingangszweig kann daher auch verstanden werden als Festinduktivität, der eine

mechanisch gesteuerte Spannungsquelle reihengeschaltet ist (Abb. 4.3.20b). Dann

liegt es nahe, die zeitveränderliche Induktivität darzustellen als Festinduktivität

am Eingang eines  Wandlerzweitors  mit  zwei gesteuerten Quellen (elektrische Ein-

gangsgrößen  u,  i, mechanische Ausgangsgrößen  F ,  v  bzw.  x) abgeschlossen mit

einem mechanischen Netzwerk. 
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Der Ersatz der zeitgesteuerten Induktivität (bei Reluktanzänderung) durch eine

Festinduktivität, ein Wandlerzweitor mit zwei elektrisch/ nichtelektrisch gesteu-

erten Quellen und ein angeschlossenes mechanisches Netzwerk (feste Elemente)

ist Modellgrundlage der Wechselwirkung zwischen Energie und Kraft am Ener-

giespeicher Induktivität. 

Dieses Modell (nichtlinear,  F ∼ i 2, Ψ( i) nichtlinear) nutzt strukturell die  Hybrider-

 satzschaltung  eines Zweitors (Tab. 2.9, Bd. 1). Es muss bei Bedarf noch durch die

Ersatzschaltung des magnetischen Kreises ergänzt werden. 

Zu seinem prinzipiellen Verständnis reicht -wie beim Kondensator- eine Linearisie-

rung um einen Arbeitspunkt. Wir vertiefen dies in Kap. 6.1 und 6.2. 

Beispiel 4.3.2 Kraftwirkungen Aus der Induktivität einer Leiteranordnung kann die

Kraft auch über die Energie durch virtuelle Verschiebung bestimmt werden. 

Zwei parallele stromdurchflossene Leiter (Abb. 4.3.17a, Abstand  a = 2 d) haben

die (äußere) Induktivität  L (pro Länge) (s. Beispiel 3.2.16)  L =  μ 0



 π  ln  ar ,  →

 ∂W ∗ 	

 F =

m

d L

 ∂x 	 =  i 2

 i

2

d x =  μ 0 i 2

2 πa . Als virtuelle Bewegung wurde eine Abstandszunahme

der Leiter angesetzt. Das Ergebnis stimmt mit der elektrodynamischen Kraftbe-

rechnung (Gl. (4.3.39a)) überein. 

Eine lange einlagige stromdurchflossene Zylinderspule (Beispiel 3.2.23, Durchmes-

ser  D, Länge  l) erfährt eine Längs- und Radialkraft. Ihre Induktivität beträgt

 L =  w 2 μ 0 πD 2 / 4 l. Die Radialkraft  F R auf die Gesamtspule folgt aus



 ∂W ∗ 	

 i 2 d L

 w 2 i 2 μ 0 πD

 F =

 m 	 =

 → F R =

 ∂x 	 i

2 d x

4 l

mit  x =  D. Die Kraft  F l in Längsrichtung folgt mit  x =  l  zu

 F l =  − w 2 i 2 μ 0 πD 2  . 

8 l 2

Das negative Vorzeichen bedeutet Zusammenziehen (Induktivitätszunahme): die

Kraft wirkt einer Längsdehnung entgegen. 

Die aus der Zylinderspule abgeschätzte radiale Kraft pro Windung ist allerdings

ungenau, weil die lange Zylinderspule Näherungen unterliegt, die für die Einzelwin-

dung nicht gelten. Die Induktivität einer kreisförmigen Windung (Leiterradius  r)

beträgt genauer









 μ 0 D

4 D

 μ 0 i 2

4 D

 μ 0 i 2

4 D

 L =

ln

 −  2

 → F R =

ln

 −  1 =

ln

 . 

2

 r

2

 r

2

 re

Bei hohen Strömen (z. B. Windungskurzschluss am Transformator) sind erhebliche

Kräfte möglich. 

Kraft auf gekoppelte Stromkreise Kräfte treten auch zwischen stromdurch-

flossenen Leiterkreisen mit oder ohne verkoppelndem magnetischen Kreis auf. 

Parallele stromdurchflossene Leiter können verstanden werden als gekoppelte

Spulen, die im Unendlichen schließen. 
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Abb. 4.3.21. Kräfte zwischen Strömen. (a) System von Leiterschleifen. (b) Zwei parallele

Leiterschleifen. (c) Kraft zwischen zwei Elementen von Linienleitern. (d) Kraft zwischen

parallelen Leiterelementen

Wir betrachten die Energie Gl. (4.3.46) stromdurchflossener Schleifen

(Abb. 4.3.21a). Wird eine Schleife im Zeitraum d t  virtuell um die Strecke d x

in  x-Richtung verschoben, so lautet die Energiebilanz des Schleifensystems

 n

! 

 n

! 

 ukik d t =

 ik dΨ k = d W m +  F  d

x  x. 

 k=1

 k=1

Links steht die von den Quellen beim Verschieben aufzuwendende elektrische

Energie. Jede ideale Spule erzeugt durch Bewegungsinduktion eine induzierte

Spannung  e i gleich der anliegenden ( uk d t = dΨ k), damit ist die Flussrela-

tion gegeben. Rechts tritt die Änderung der magnetischen Feldenergie auf

sowie die beim Verschieben geleistete mechanische Arbeit. Da die Verschie-

bung außer in  x-Richtung auch in andere Richtungen erfolgen kann, wird das

Wegelement d s  angesetzt und es verbleibt für die mechanische Arbeit

 n

! 

 F  ·  d s = d W el  −  d W m =

 ik dΨ k −  d W m . 

(4.3.58a)

 k=1

Die Kraftberechnung unterscheidet (wie bisher) zwei Sonderfälle:

bei  konstanter Flussverkettung (Ψ k = const ,  dΨ k = 0), d.h. 

 F  ·  d s =  − d W m , → F  =  −  grad  W m |

(4.3.58b)

Ψ k

wird die Kraftwirkung aus der Magnetfeldenergie unterhalten und die vom

Feld geleistete mechanische Arbeit ist gleich seiner Energieabnahme. 

Bleiben dagegen die Ströme in den Leiterschleifen konstant ( ik = const), 

so müssen sich die Verkettungsflüsse ändern, die Spannungsquellen also

Arbeit leisten. Dann beträgt die magnetische Energieänderung





1  n

! 



1  n

! 

d W m = d

 i

 =

 i

2

 kΨ k



2

 k dΨ k

 k=1

 ik

 k=1
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und die Energiebilanz lautet

 n

! 

 n

! 

 n

! 

 F  ·

1

d s =

 ik dΨ k −  1

 i

 i

(4.3.59a)

2

 k dΨ k = 2

 k dΨ k = +d W m |ik

 k=1

 k=1

 k=1

oder

 F  ·  d s = +d W m , → F  = + grad W m |i . 

(4.3.59b)

 k

 Auch hier teilt sich die von den Spannungsquellen geleistete Arbeit je zur

 H¨

 alfte auf mechanische Arbeit und Energie des Magnetfeldes  oder: die

vom Feld geleistete mechanische Arbeit ist gleich dem Zuwachs an mag-

netischer Feldenergie. Das entspricht dem Ergebnis Gl. (4.3.52) der Ein-

zelanordnung verallgemeinert für ein Leitersystem. 

Beispielsweise speichern zwei Leiterschleifen mit Induktivitäten  L 1,  L 2

und Gegeninduktivität  M  die magnetische Energie (Gl. (4.1.40))

1 



 W m =

 i 2

 . 

2

1 L 1 + 2 i 1 i 2 M +  i 2

2 L 2

Werden beide Leiterschleifen um das Wegstück d x  gegeneinander ver-

schoben (Abb. 4.3.21b), so hängt die entstehende Kraft (bei konstanten

Strömen)

 F 

d W m

d M

=

 e x =  i 1 i 2

 e x

(4.3.59c)

d x

d x

nur von der räumlichen Änderung der Gegeninduktivität ab, da die Ei-

geninduktivitäten der Schleifen abstandsunabhängig sind. 

Die Kraft auf die Schleifen versucht die Gegeninduktivität bei gleichen

Stromrichtungen stets zu vergrößern. 

Beispiel 4.3.3 Kraft und Gegeninduktivit¨

at In Gl. (4.3.45) und Abb. 4.3.17g wurde

die Kraft zwischen stromdurchflossenem Leiter und einem Leiterrahmen ermittelt. 

Wir kontrollieren das Ergebnis über die Kraftwirkung beim Verändern der Gegen-

induktivität. Leiter 1 erzeugt in der Leiterschleife 2 einen Koppelfluss



  0+ a



 μ 0 i 1 b

d 


 μ 0 i 1 b

 
 0 +  a

 μ 0 b

 
 0 +  a

Ψ21 =  M i 1 =

 B ·  d A =

=

ln

 , M =

ln

 . 

2 π

 


2 π

 
 0

2 π

 
 0

 A

  0

Dazu gehört nach Gl. (4.3.59) die Kraft  F





d M

1

 F  =  i 1 i 2

=  − i 1 i 2 μ 0 b

 −

1

 . 

d 


2 π

 
 0

 
 0 +  a
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Beispiel 4.3.4 Kraft zwischen Linienleitern Die Kraftberechnung zwischen zwei Lei-

terschleifen kann auch über das Biot-Savartsche Gesetz (Gl. (3.1.18)) erfolgen. 

Abb. 4.3.21c zeigt die Anordnung. Das Stromelement  i 1d s  der ersten Schleife erzeugt an der Stelle d l  der zweiten Schleife die Flussdichte

 i 1 μ 0 d s × r

d B =

 . 

4 π

 r 3

Dann entsteht dort am Stromelement  i 2d l  die Lorentz-Teilkraft

 μ 0 i 1 i 2 d l × (d s × r)

d2 F =  i 2(d l ×  d B) =

 . 

4 π

 r 3

Insgesamt verursacht der Stromkreis  i 1 am Element d l  des zweiten Kreises den

Kraftanteil d F 

 

 μ 0 i 1 i 2

d l × (d s × r)

 μ 0 i 1 i 2

d l × (d s × r)

d F =

 → F =

4 π

 r 3

4 π

 r 3

 s

 s

 l

und auf die gesamte Schleife die Kraft  F . Die Auswertung ist umständlich, wie

die folgende Berechnung für zwei parallele Leiter mit unterschiedlichen Stromrich-

tungen zeigt. Mit einem Rechtskoordinatensystem und einem Abstandsvektor  r

zwischen beiden Wegelementen (Abb. 4.3.21d) ausgedrückt durch Winkel  α  und

Leiterabstand  a  wird mit d s × r =  −e zd s · r  sin( π/ 2 +  α) =  −e zd s · a, d l =  − d le y zunächst

 μ 0 i 1 i 2 d l ·  d s  cos3  α

d2 F =  e x

 →

4 π

 a 2

 ∞



 π/ 2



 μ 0 i 1 i 2

 μ 0 i 1 i 2d l

d F =  e x

d l ·  d s  cos3  α =  e x

cos  α d α. 

4 πa 2

4 πa

 −∞

 −π/ 2

Dabei wurden substituiert  s =  r  sin  α =  a  tan  α , d s =  a d α/(cos 2 α). Die Integration ergibt als Kraft pro Länge

 F 

d F

 μ 0 i 1 i 2

=

=  e x

 . 

d l

2 πa

Die Kraftberechnung über die elektrodynamische Kraft auf parallele Linienleiter

ist erheblich einfacher, allerdings erlaubt das vorliegende Ergebnis den Einbezug

endlicher Leiterlänge. 

2. Mechanische Spannungen an Grenzfl¨

achen

Oft konzentrieren sich Kräfte in ausgedehnten magnetischen Leitern auf sol-

che an  Grenzfl¨

 achen. Sie werden, analog zu elektrostatischen Kräften, ermit-

telt entweder nach Gl. (4.3.26) aus der räumlichen Veränderung der Permea-

bilität oder den unterschiedlichen Energiedichten  w m beiderseits der Grenz-

fläche (Abb. 4.3.22b):
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Abb. 4.3.22. Kraft an Grenzflächen. (a) Kraft (Mechanische Spannung, Kraft je Fläche)

zwischen Medien unterschiedlicher Permeabilität; Kraftrichtung stets senkrecht zur Grenz-

fläche (für  µ 1  > µ 2 von Gebiet 1 nach 2) orientiert. (b) Kraft an quergeschichteten magne-

tischen Medien (Trennfläche senkrecht zu Feldlinien). (c) dto. an längsgeschichteten Medi-

en (Tendenz der Kraft zur Ausfüllung des gesamten Volumens mit einem Medium höherer

Permeabilität). (d) Feldlinienverdichtung im magnetischen Material durch Kraftwirkung

senkrecht zur Grenzfläche zum Medium mit kleinerem  µ  hin, Reluktanzkraft bei räumlich

versetzten Eisenpolen





 

 B · H 

 B · H 

 f

Δ F





A =  σ 12 =

=

 −

 n 12

Δ A

2



2



1

2





(4.3.60a)

( μ 1  − μ 2)

1

1

 f A =

 H 1  · H 2 =

 −  1 ( B 1  · B 2)  . 

2

2

 μ 2

 μ 1

Der Index bedeutet Kraftrichtung vom Medium 1 nach 2. 

Die Gesamtkraft ist das Integral über die Grenzfläche (s. Gl. (4.3.12)). Die

Kraftdichte lässt sich mit den Stetigkeitsbedingungen Abb. 3.1.18 für die

Normal- und Tangentialkomponenten von Flussdichte und magnetischer Feld-

stärke ( B n1 =  B n2 =  B n,  H t1 =  H t2 =  H t) weiter vereinfachen

1

 f 12 =

( H t ( B t1  − B t2) +  B n ( H n2  − H n1))

2

(4.3.60b)

1





=

( μ 1  − μ 2)  H n1 H n2 +  H 2  . 

2

t

Die mechanische Spannung an der Grenzfläche verschiedener Permeabi-

litäten ist unabhängig vom Feldverlauf stets senkrecht zum Gebiet mit klei-

nerer Permeabilität gerichtet. 

Das wurde in Abb. 4.3.22a angedeutet. Zwei Sonderfälle haben praktische

Bedeutung

a)  Grenzfl¨

 ache senkrecht zur Feldrichtung. Hier (Abb. 4.3.22b) verschwinden

die Tangentialkomponenten  H t und die Normalkomponenten der Flussdichte

stimmen überein. Dadurch vereinfacht sich Gl. (4.3.60a) zu





Δ F

1

 B 2

1

 f

n

12 =

=

( μ 1  − μ 2)  H n1 H n2 =

 −  1  . 

(4.3.60c)

Δ A

2

2

 μ 2

 μ 1
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Die mechanische Spannung an der Grenzfläche quergeschichteter Medien

ist eine Normalspannung und gleich der Differenz der Energiedichten beider

Medien. Sie zeigt stets ins Gebiet mit kleinerem  μ, also in den Luftraum. 

Das ist der typische Fall für den Eisen-Luft- Übergang im magnetischen Kreis

(Abb. 4.3.22b). Sein Luftvolumen“ wird auf Druck, der Eisenkreis auf Zug

” 

beansprucht. 

b)  Grenzfl¨

 ache parallel zur Feldrichtung. Jetzt verschwinden die Normalkom-

ponenten  H n1 =  H n2 = 0 (Bild 4.3.18c) und die Tangentialkomponenten  H t

stimmen überein:

1

1

 f 12 =

( μ 1  − μ 2)  H 2

( B t1  − B t2)  H t . 

(4.3.60d)

2

t = 2

An der Grenzfläche zweier längsgeschichteter Medien entsteht eine Normal-

spannung. Sie weist in den Raum mit kleinerem  μ, also von Eisen nach

Luft. 

Für Eisen-Luft gilt damit ( μ 1 =  μ r μ 0,  μ 2 =  μ 0,  B n =  B L =  B Fe)





( μ r  −  1)

 B 2

 f

t1

12 =

 B 2 +

 ≈ B 2n  . 

(4.3.61)

2 μ

n

r μ 0

 μ r

2 μ 0

Das Ergebnis bestätigt die Kraft, mit der die ferromagnetische Fläche zur

nichtferromagnetischen gezogen wird

 B · H

 B L H L

Φ2

 B 2

Kraft im

 F =

 A =

 A =

L

=

L  A. 

(4.3.62)

2

2

2 μ 0 A

2 μ 0

magnetischen Feld

Die Kraft hängt gleichberechtigt von Feldstärke  H  und Flussdichte  B  im

Medium mit der kleineren Permeabilität ab. Sie wirkt wegen  F ∼ B 2 un-

abhängig von der Flussrichtung stets anziehend! 

Deshalb werden Eisenkörper im stationären Magnetfeld  nie abgestoßen. Die-

se als Maxwellsche Zugkraft“ bekannte Beziehung erlaubt die Kraftberech-

” 

nung bei homogenem Magnetfeld über die Fläche  A  mit der  zugeschnittenen

 Gr¨

 oßengleichung

 

 F

2

 ≈ B

A  . 

(4.3.63)

N

T

cm2

Eine Flussdichte  B = 1 T erzeugt auf einer Fläche  A = 1 cm2 die beträchtliche

Kraft  F = 40 N, ein Hubmagnet der Querschnittsfläche  A = 1000 cm2 (mit

Durchmesser  D ≈  35 cm) die Hubkraft von 40 kN entsprechend einer Last

von 40 kN/9,81 (m/ s2) = 4 ,  05 Tonnen! Der Fluss wird entweder mit einem

Dauer- oder Elektromagnet realisiert. Ist der magnetische Widerstand des

zugehörigen magnetischen Kreises nur vom Luftspalt (Länge  l L) bestimmt, 
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so erfordert eine Induktion  B = 1 T die Erregung Θ =  l L B/μ 0  ≈  800 A bei

 l L = 1 mm. 

Auch im Magnetfeld gilt die schon beim elektrostatischen Feld erwähnte

Feldlinieneigenschaft zum Längszug und Querdruck. Deshalb wirkt die

Kraft immer senkrecht zur Trennfläche zum Medium kleinerer Permeabi-

lität hin unabhängig vom Feldlinienverlauf (s. Abb. 4.3.22d)

Diese Verkürzungstendenz resultiert als  Reluktanzkraft  zwischen räumlich

versetzten magnetischen Gebieten. 

Beispiel 4.3.5 Tauchanker In einer stromdurchflossenen langen, dünnen Spule

( l 	 d) wird ein federnd aufgehängter Eisenkern eingezogen, gesucht ist die Kraft

auf seine untere Fläche (Abb. 4.3.19a). 

Ohne Eisenkern herrscht in der Spule die magnetische Feldstärke  H = Θ /l, weil es

außerhalb der Spule keinen Beitrag zur Umlaufspannung gibt. Wäre der Kern ganz

eingezogen, so würde innerhalb der Spule fast keine magnetische Spannung abfallen, 

dagegen voll im Außenraum ( H i  ≈  0). Dann ist die Feldberechung schwierig. Nimmt

dagegen der Tauchanker nur den überwiegenden Teil des Innenraumes ein, so könnte

für die Feldstärke im verbleibenden Luftbereich etwa gelten  H = Θ /x. Dann beträgt

die Flussdichte an der Stirnseite des Tauchankers  B =  μ 0Θ /x  und es entsteht nach

Gl. (4.3.38) die Zugspannung

 F

 μ 0Θ2

 μ 0 ( i · w)2

 σ =

=

=

 . 

 A

2 x 2

2 x 2

Für  x →  0 wächst sie nicht über alle Grenzen, weil sich dann das Feld zunehmend

auf den Außenbereich verlagert und die Feldstärke im Spuleninnern gegen Null

geht. Die Zahlenwerte  i = 1 A,  w = 100,  l = 20 cm,  d = 0 ,  5 l = 10 cm ergeben σ = 0 ,  625 N /  m2. 

Beispiel 4.3.6 Zugkraft eines Elektromagneten Bei einem Elektromagneten (erregt

durch eine Spule  i,  w, Abb. 4.3.19a) mit Luftspalt  x  wird die Kraft auf den Anker über die Induktivitätsänderung bestimmt. Ausgang ist Gl. (4.3.52) und die Induktivität  L =  w 2 /R m( x)





 l Fe

2 x

1

 l Fe

 R m( x) =  R mFe +  R mL =

+

=

+ 2 x

 . 
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 μ 0 A
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Mit der Ableitung
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=
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folgt als Kraft pro Fläche
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Abb. 4.3.23. Anwendung magnetischer Kraftwirkungen. (a) Elektromagnet als Relais

mit betätigten Kontakten. (b) Gepolte Kraftwirkung durch Vormagnetisierung. Kraftver-

lauf und Prinzip des magnetischen Schallwandlers (Kopfhörer). (c) Dreheiseninstrument. 

(d) Abstoßende Kraftwirkung (Dauermagnet, stromdurchflossene Leiterschleife). (e) Prin-

zip der Magnetschwebebahn. (f) Hubmagnet

Die Kraft sinkt mit wachsendem Luftspalt, für magnetisch gut leitendes Eisen

( x 	 l Fe /μ r) geht daraus die Flächenspannung hervor. Umgekehrt bestimmt ver-

schwindender Luftspalt einen Grenzwert, der nur vom Eisen abhängt. 

Anwendungen Die Kraftwirkung des Magnetfeldes wird vielfältig genutzt, An-

wendungen des elektrodynamischen Kraftgesetzes waren bereits genannt worden

(s. Kap. 4.3.2.2). Hier ergänzen wir Beispiele zur Grenzflächenkraft:

1. 

In  Elektromagneten  und  Relais  betätigt ein Anker gleichzeitig Kontakte

(Abb. 4.3.23a) wegen  F ∼ i 2 unabhängig von der Stromrichtung. Beim  pola-

 risierten Relais  hingegen erfolgt die Ankerbewegung abhängig von der Strom-

richtung. Dazu wird der Eisenkreis durch einen Dauermagnet vormagnetisiert:

zum Fluss durch den Spulenstrom (Steuerfluss ΦSt) tritt noch der Fluss des

Dauermagneten (Dauerfluss Φv). Je nach Stromrichtung addieren oder subtra-

hieren sich beide Flussanteile. Bei geeigneter Kreisauslegung schlägt der Anker

nach der einen oder anderen Richtung aus. 

Eine besondere Relaisschaltung ist der Selbstunterbrecher“: der Relaisstrom

” 

wird über einen Schaltkontakt geführt, der im abgeschalteten Zustand geschlos-
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sen und beim Einschalten des Stromes durch die Ankerbewegung unterbricht. 

Dann fällt der Anker nach dem ersten Anziehen wieder zurück und es ent-

steht eine Pendelbewegung (sog.  Wagnerscher Hammer, oft für konventionelle

Klingeln verwendet). 

2. 

 Vormagnetisierungsprinzip.  Der quadratische Zusammenhang zwischen Kraft

und Fluss bzw. Strom stört, wenn linearer Zusammenhang erforderlich ist wie

bei  Schallwandlern (dynamisches Mikrophon, Lautsprecher). Bei sinusförmi-

gem Strom durch die Schwingspule würde ein Ton der doppelten Frequenz

entstehen (Abb. 4.3.23b):  F ∼ Φ2( t)  ∼ (sin  ωt)2  ∼ (1  −  cos 2 ωt). Eine Vormagnetisierung mit dem Fluss Φ0 reduziert die Störung für Φ0  	 ˆ

Φ:  F ∼



2

Φ

ˆ

0 + ˆ

Φ sin  ωt

 ≈ Φ20 + 2Φ0Φ sin  ωt.  Diese Arbeitspunkteinstellung durch ei-

ne Gleichgröße“ mit Überlagerung einer linearen Signalgröße entspricht einer

” 

Kleinsignalaussteuerung“. 

” 

3. 

 Dreheisenmesswerk. Eine stromdurchflossene Spule enthält zwei Eisenplätt-

chen: ein feststehendes und ein bewegliches mit Zeiger und Spiralfeder. Bei

Stromfluss werden beide Plättchen gleichsinnig magnetisiert und voneinander

abgestoßen. Die Kraftwirkung ist proportional  i 2 und der Zeigerausschlag un-

abhängig von der Stromrichtung: Messung von Wechselstrom. 

4. 

Die abstoßende Wirkung gegeneinander arbeitender Magnete im Dreheisen-

messwerk gilt auch für Dauermagnete mit gegenüberstehenden gleichen Polen

sowie

stromdurchflossene

Spulen

bei

gegensinnigen

Stromrichtungen

(Abb. 4.3.23d). 

5. 

Abstoßende magnetische Kräfte nutzt man auch in der  Magnetschwebebahn

(Abb. 4.3.23e) sowohl für Hubmagneten als auch zur seitlichen Führung. Die

Hubmagneten erzeugen gleichzeitig ein fortschreitendes Wanderfeld (Prinzip

Linearmotor) zur reibungslosen Vorwärtsbewegung des Fahrzeuges. 

6. 

Der  Hubmagnet (Abb. 4.3.23f) ist ein halboffener magnetischer Kreis geschlos-

sen durch die ferromagnetische Last (Eisenteile, Späne). Dieses Prinzip nutzen

auch magnetische Spannplatten und Kupplungen. 

4.3.2.4 Kraft auf magnetische Dipole

Es gibt keine magnetische (Einzel-)Ladungen, wohl aber existieren magne-

tische Dipole: jeder Magnet (Stabmagnet, auch die stromdurchflossene Spu-

le) bildet einen  Dipol mit Nord- und S¨

 udpol  sowie einem Polabstand etwas

kleiner als die Stablänge (s. Abb. 3.1.1, 3.1.2a). Sein Merkmal ist die  mag-

 netische Polst¨

 arke  als derjenige Fluss Φ, der in die Pole ein- bzw. austritt. 

Herrscht vor dem Einbringen des Dipols am Ort die magnetische Feldstärke

 H (bzw. Flussdichte  B), so übt das Magnetfeld die Kraft

 F = Φ H

(4.3.64)

aus. Die Kräfte auf beide Polbereiche des Dipols sind gegeneinander gerichtet

(Abb. 4.3.24a). 

Gleichnamige Pole stoßen einander ab, ungleichnamige ziehen an. 

4.3

Umformung elektrischer in mechanische Energie

523

Abb. 4.3.24. Magnetischer Dipol. (a) Kraftwirkung auf einen magnetischen Dipol der Po-

larität  ±Φ im Magnetfeld  B. (b) Definition des Dipolmoments am Dauermagnet. (c) Di-

polmoment einer stromdurchflossenen Spule

Deshalb entsteht ein  Drehmoment M , 

 M =  m m  × H, 

(4.3.65)

das auf ein  magnetisches Moment m m zurückgeführt werden kann. Es beträgt

für den Stabmagnet der Länge  l  und Polstärke Φ (Abb. 4.3.24b)

 m m =  lΦ . 

Magnetisches Moment (4.3.66)

Das magnetische Moment ist ein vom Süd- zum Nordpol gerichteter Vektor. 

Sein Betrag folgt aus dem einwirkenden Drehmoment und der magnetischen

Feldstärke bzw. dem Polabstand und herrschenden magnetischen Fluss. 

Eine stromdurchflossene lange Zylinderspule verhält sich (bezogen auf die

Wirkung nach außen) ebenso wie ein Stabmagnet gleicher Polstärke und

Länge. Deshalb besitzt jede Stromschleife ein magnetisches Moment. Nach

Gl. (4.3.41) erfährt sie (Flächenvektor  A) das Drehmoment  M =  iwA × B

und hat damit das magnetische Moment (Abb. 4.3.24c)

 m m =  μ 0 iwA. 

Magnetisches Moment, Stromschleife (4.3.67)

Das magnetische Moment einer stromdurchflossenen Schleife ist ein Vek-

tor parallel zu ihrem Flächenvektor. Flächennormale und Stromumlaufsinn

bilden ein Rechtssystem. 

Das magnetische Moment findet Anwendung hauptsächlich zur Feldberech-

nung sowie zur Erklärung magnetischer Materieeigenschaften. Beispielsweise

wird das gesamte Magnetfeld einer Kreisschleife (Abb. 3.1.13a, nicht darge-

stellte magnetische Potenziallinien bilden Kreise senkrecht auf den  H-Linien)

durch elliptische Integrale dargestellt. Für Punkte mit großem Abstand  r  ge-

gen den Schleifendurchmesser 2 d  kann es aber über das magnetische Moment

relativ einfach berechnet werden. 
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Zusammenfassung: Kapitel 4

1. 

Das Strömungsfeld beschreibt die gleichförmige Ladungsbewegung in lei-

tenden Medien und ihre Wirkungen. Feldgrößen sind Stromdichte, Feld-

stärke und die  J,  E-Beziehungen bzw. die Globalgrößen Strom, Spannung

und Widerstand eines abgegrenzten Feldvolumens. Das Strömungsfeld

setzt elektrische Energie nach Maßgabe der Leistungsdichte  p =  J · E



mit  P =

 J · E d V  in Wärme um und verrichtet beständig die Arbeit



(Energie)  W =

 P ( t)d t  durch Überwindung der Reibungskräfte bei der

 t

Ladungsträgerbewegung. 

2. 

Das elektrostatische Feld (Feld ruhender Ladungen) speichert als wich-

tigstes Merkmal dielektrische Energie, ausgedrückt durch die Energie-

dichte  w d (Energieinhalt im Raumpunkt)

 t



 Q





 Cu 2

 D · E

 W =

 u( t)  i( t)d t

  =

 u( t) d Q

 =

=

 w dd V , w d =

 . 

2

2

0

d Q

0

 C d u

 V

Dazu tragen Feldstärke und Verschiebungsflussdichte gleichberechtigt bei

bzw. die Zustandsgrößen Spannung, Verschiebungsfluss/ Ladung und Ka-

pazität mit dem Netzwerkelement Kondensator für ein begrenztes Feld-

volumen (mit unterschiedlichen dielektrischen Eigenschaften gegenüber

der Umgebung). 

3. 

Sitz der dielektrischen Energie ist der vom Feld erfüllte Raum. Er nimmt

elektrische Energie auf, speichert sie im Dielektrikum und gibt sie beim

Entladen als elektrische Energie wieder ab. 

4. 

Liegt am Kondensator eine Spannungsquelle  u Q (Ladung  Q), so liefert

sie beim Aufladen stets  zwei verschiedene  Teilmengen, die gespeicherte

Kondensatorenergie  W d und die Ko-Energie  W ∗

d

 Q 0



 u Q



 u Q Q 0 =  W d +  W ∗

d =

 u( Q)d Q +

 Q( u)d u. 

0

0

Beide ergänzen sich unabhängig von der Form der Ladungskennlinie zur

verfügbaren Gesamtenergie  u Q Q  der anliegenden Quelle. Sie stimmen

(nur!) bei linearer Kennlinie  Q ∼ u überein. 

5. 

Ein nichtlinearer Kondensator mit der Kennlinie  u( Q) speichert die Ener-

gie  W d, ein linearer  W d =  Cu 2 / 2. 

6. 

Die Ko-Energie  W ∗  ist die Differenz zwischen der verf

d

ügbaren (Gesamt-

energie  u Q Q  des Generators und der Kondensatorspeicherenergie  W d. Sie

erlaubt die einfache Berechnung der Kondensatorenergie

 u Q



 u Q



 u Q



 W d =  Q 0 u Q  − W ∗ =

d

(

 d

 Q 0

 u −

 Q( u)d u =

 Q 0  − Q( u))d u

0

0

0

bei (meist) gegebener Ladungskennlinie  Q( u). 
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7. 

Das elektrostatische Feld übt  Kraftwirkung  auf Ladungen aus (Coulomb-

Kraft, Feldstärkedefinition). Weil jede im Raum befindliche Ladung zum

Feld beiträgt, erzeugt es umgekehrt Kräfte auf alle felderregenden La-

dungen (Einzelladungen, Flächen- und Raumladungsdichten). Dadurch

entstehen Kräfte auf geladene Leiter (Kondensatorplatten) und Grenz-

flächen zweier Dielektrika (Maxwell-Kraft, dort sitzen Flächenladungen). 

Das elektrische Feld erlaubt Energieaustausch zwischen Ladungsträgern

und dem Feld, das Magnetfeld nicht! 

8. 

Unabhängig von der Feldrichtung wirkt die Kraft immer vom Medium

mit höherem  ε 1 (Zugbeanspruchung) zu dem mit kleinerem  ε 2 (Druckbe-

anspruchung). Der Normalenvektor weist vom höherpermittiven Medium

weg. So haben Feldlinien unabhängig von der Feldrichtung eine Tendenz

zum Längszug und Querdruck (jeweils mit gleicher Kraftdichte  ED/ 2

entsprechend der Energiedichte  w d). Das erlaubt rasche Erklärungen der

Kraftwirkung auf Leiter und sprunghafte Materialinhomogenitäten; sie

gilt auch im magnetischen Feld. 

9. 

Die Kräfte werden berechnet

über die Ladungs-Feldbeziehung (Modell der Kraft auf Punktladung, 

Coulombsches Gesetz), 

für Grenzflächen durch virtuelle Verschiebung (lokale Änderung di-

elektrischer Energie, Grundlage der Energiebilanz zwischen elektri-

scher, mechanischer und Feldenergie)





 F |

d C

 Q 2 d C

=  −  d W d   · e

  · e

 · e

 Q

x =  − ∂W d

x =

x

d x 

d 

2

d

 Q

 ∂C

 x Q

 C 2  x





 u 2 d C

 ∂W





d d C

d W d

=

 · e





x =

=

 · e x =  F |

2 d x

 ∂C  d x 

d



 u . 

 u

 x u

Die Kraft in Richtung der Koordinate  x  folgt

als Ableitung der Energie nach der Koordinate bei konstanter Ladung

oder Spannung, oder allgemeiner, 

aus der Kapazitätsänderung nach dieser Koordinate. 

10. Die Kraft ist der Kapazitätsänderung proportional und immer so ge-

richtet, dass sie die Kapazität (durch Abstandsabnahme) zu vergrößern

sucht. Sie wirkt stets senkrecht zur Plattenfläche und, unabhängig von

der Feldrichtung, immer anziehend, also unidirektional. 

11. Das Magnetfeld von Dauermagneten, stromdurchflossenen Spulen oder

Leitern (also bewegten Ladungen) ist Sitz der magnetischen Energie. Sie

beschreibt als Zustandsgröße das in diesem Feld gespeicherte Arbeits-

vermögen. 
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12. Das magnetische Feld (Feld beschleunigter Ladungen) speichert als wich-

tigstes Merkmal magnetische Energie ausgedrückt durch die Energiedich-

te  w m (Energieinhalt im Raumpunkt)

 t



Ψ





 Li 2

 B · H

 W m =

 i( t)  u( t)d t

 ≡

  =

 i( t) dΨ

 =

 w md V , w m =

 . 

2

2

0

dΨ

0

 L d i

 V

Dazu tragen magnetische Feldstärke  H  und Flussdichte  B  gleichberech-

tigt bei. Dies gilt auch für Strom, Verkettungsfluss Ψ und Induktivität

mit dem Netzwerkelement Spule für ein begrenztes Feldvolumen (unter-

schiedliche magnetische Eigenschaften gegenüber der Umgebung). 

13. Sitz der magnetischen Energie ist der vom magnetischen Feld erfüllte

Raum, konzentriert im Netzwerkelement Spule (Induktivität). Sie nimmt

elektrische Energie auf, speichert sie als magnetische Energie und gibt sie

beim Entladen wieder als elektrische Energie ab. 

14. Liegt an der Spule eine Stromquelle  i Q, (Fluss Ψ), so liefert sie beim

Aufbau des Magnetfeldes stets  zwei verschiedene  Teilmengen, die gespei-

cherte Spulenenergie  W m und die Ko-Energie  W ∗

m

Ψ0



 i Q



 i QΨ0 =  W m +  W ∗ =

Ψ(

m

 i(Ψ)dΨ +

 i)d i. 

0

0

15. Eine nichtlineare Spule mit der Kennlinie  i(Ψ) speichert die Energie  W m. 

Sie unterscheidet sich durch die nichtlineare Strom-Fluss-Beziehung von

der linearen Spule (Ψ =  Li) mit  W m =  Li 2 / 2. 

16. Die Ko-Energie erlaubt die einfache Berechnung der Spulenenergie

 i Q



 i Q



 i Q



 W m = Ψ0 i Q  − W ∗

 m = Ψ0

d i −

Ψ( i)d i =

(Ψ0  − Ψ( i))d i

0

0

0

bei (meist) gegebener Flusskennlinie Ψ( i). 

17. Im magnetischen Kreis vergrößert sich (bei gleichem Induktionsfluss) die

gespeicherte Energie durch einen Luftspalt erheblich; er speichert die

meiste Energie. 

18. Beim magnetischen Feld dient die Kraftwirkung zwischen bewegten La-

dungen zur Definition der Flussdichte  B. Umgekehrt wirken bei gege-

bener Flussdichte  B, also im Magnetfeld, Kräfte auf bewegte Ladungen

( Lorentz-Kraft  und elektrodynamische Kraft auf stromdurchflossene Lei-

ter) sowie die Grenzflächenkraft auf die Systeme Luft-Ferromagnetikum

bzw. zwischen zwei unterschiedlichen Ferromagnetika. Kraftwirkung er-

fahren auch magnetische Dipole. 

19. Kraftwirkung im Magnetfeld entsteht

als Lorentz-Kraft auf bewegte Ladungen  F =  Q · ( v × B), 
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auf den stromdurchflossenen Leiter  F =  I · ( l × B) und zwischen

parallelen Strömen (gleiche Richtung anziehend, entgegengesetzt ab-

stoßend), 

als Grenzflächenkraft mit der Kraft  f  pro Fläche

 μH 2

 f =

Ferromagnetikum-Luft

2

bzw. 

( μ 1  − μ 2) H 1  · H 2

 f =

Grenzfläche . 

2

20. Die Kraft auf Ladungen, stromführende Leiter, wird entweder direkt oder

mit dem Prinzip der virtuellen Verrückung berechnet über die Änderung





des magnetischen Systems  F  =  − ∂W m(Ψ ,x)  =  ∂W∗ (

m  i,x)  =  i 2 d L( x) . 

 ∂x

2

d

Ψ

 ∂x

 i

 x

Würde sich ein Körper durch Kraftwirkung ein Stück d x  virtuell verschie-

ben, so müsste dazu von der Kraft mechanische Arbeit geleistet werden:

d W mech =  F  d x. In beiden Fällen entsteht die gleiche Kraft, für lineare

Induktivität Ψ =  L( x) i  gilt das rechte Ergebnis. 

Die Berechnung über die virtuelle Verschiebung eignet sich besonders für

Grenzflächen, an denen die Kraft angreift. Grundlage ist die Energiebi-

lanz zwischen elektrischer, mechanischer und magnetischer Feldenergie. 

21. Treten elektrische und magnetische Felder in einem System gleichzei-

tig auf (fließen also Ströme und sind dadurch beide Felder verkoppelt), 

so entsteht ein Energietransport (Leistungsübertragung von einer Quel-

le zum Verbraucher) gekennzeichnet durch den Leistungstransport, oder

Poyntingvektor  J W =  E ×H. Er ist Träger elektromagnetischer Energie, 

kennzeichnet Größe und Richtung des Energietransports im Feldpunkt

und bestimmt so den Leistungsfluss in jedem elektromagnetischen Sys-

tem. Der zugehörige Poyntingsche Satz folgt aus Induktions- und Durch-

flutungsgesetz (Global- oder Differenzialform). Er beschreibt die Wand-

lung (als Leistungsbilanz) elektrischer Energie und der zugehörigen Feld-

energien in andere nichtelektrische Formen feldgemäß. 

22. Die durch eine Hüllfläche im elektromagnetischen Feld eintretende Ener-

gieströmung ist gleich der Zunahme der in der Hülle gespeicherten elek-

tromagnetischen Energie und der Arbeit (Leistung), die das Feld an Teil-

chen verrichtet. Wird statt der an Teilchen geleisteten Arbeit  P W ei-

ne zugeordnete nichtelektrische Energiedichte  w nel (als allgemeine Ener-

giewandlung) angesetzt, so lautet der Poyntingsche Satz in Kompakt-

form





 − ∂

( w d

 J W  ·  d A. 

 ∂t

 ,  m +  w nel) d V =

 V

 A
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Anschaulich ist die Gesamtleistung, die aus einer Hülle heraustritt, gleich

der Abnahme elektromagnetischer Feldenergie und dem Energieverlust

durch Arbeit an Teilchen (Wärmeverlust). 

23. Betrachtet man das Hüllvolumen als Tor eines Zweipols, so unterhält

nach dem Poyntingschen Satz die zugeführte momentane Leistung  p =  ui

den Energiezuwachs des elektromagnetischen Feldes im Hüllvolumen  V , 

die Arbeit an Teilchen im Strömungsfeld ( E,  J) im Volumen  V (um-

gesetzte Wärmeleistung) und Leistung nichtelektrischer Natur durch die

Feldstärke  E i als Ersatzgröße für nichtelektrische Kraftwirkungen auf

Ladungsträger. (Beispiel elektrochemische, mechanische Ursachen, Bat-

terie, Bewegungsinduktion). 

24. Eine einfache Form des Poyntingschen Satzes ist die Leistungsbilanz ei-

nes offenen Systems. Danach muss zugeführte Leistung einer Form die

Energie (derselben Form!) in einem Hüllvolumen erhöhen und anderer-

seits einen Leistungsabfluss aus der Hülle unterhalten, auch in einer an-

deren Energieform: das schließt Energiewandlung prinzipiell ein. Dann

lautet die Leistungsbilanz bei Energiewandlung zwischen zwei Energie-

formen





d W 



d W 

 p|

=



+

+



1 zu

 p|

 . 

d t 

Energieumwandlung

Form 2 ab

d 

Form 1

 t  Form 2

Hier ist Energiespeicherung auch für die gewandelte Form berücksichtigt. 

25. Können die im elektromagnetischen Feld auftretenden Kräfte den Feld-

raum ändern (z. B. bewegliche Kondensatorplatten, veränderbarer mag-

netischer Kreis durch Luftspalt u. a.), so werden die zugehörigen energie-

speichernden Netzwerkelemente zeitabhängig:  C( t),  L( t). Sie sind durch

ihre Kraftwirkung Wandlungsstellen von elektrischer in mechanische Ener-

gie und umgekehrt. (Bei festen Platten führt die Kraft im geladenen

Kondensator zu Druck auf das Dielektrikum.)

26. Die Kraft auf die Begrenzung des Feldraumes kann sowohl über die Ener-

gie als auch die Ko-Energie ermittelt werden; der letzte Weg ist bei ge-

gebenen Verläufen  Q( u),Ψ( i) einfacher. 

Die zugeführte elektrische Energie ist gleich der Summe der Energiespei-

cherrate und der Rate, mit der mechanische Arbeit gegen die Umge-

bung verrichtet wird. Dabei ändert sich die Charakteristik (Kennlinie)

des Netzwerkelementes. 

27. Im Kondensator mit beweglicher Elektrode (allgemeiner veränderbarer

Geometrie) erfolgt elektro-mechanische Energiewandlung über den  Ener-

 giesatz. Variable sind dabei Ladung, Spannung, Kraft, Plattenverschie-

bung (Geometrievariable  x) und die Kapazität als Definitionsgleichung. 
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28. Die Energiewandlung kann durch die  Leistungsbilanz  mit den Variablen

Strom, Spannung, Kraft und Geschwindigkeit  x  gleichwertig formuliert

werden unter Zuhilfenahme der Strom-Spannungs-Beziehung des zeitab-

hängigen Kondensators. 

29. Von den vier beschreibenden Variablen sind zwei unabhängig. Das er-

laubt den Ersatz des zeitveränderlichen Kondensators durch ein Wand-

lerzweitor. Zweckmäßig werden elektrische und mechanische Größen je

einem Tor zugeordnet. 

30. Der sinngemäß gleiche Ablauf gilt für die zeitabhängige Spule mit den

Variablen Fluss, Strom, Kraft und Geometrievariable  x  bzw. Spannung, 

Strom, Kraft und Geschwindigkeit  x  sowie der Spannungs-Strom-Be-

ziehung der zeitabhängigen Induktivität. 

Selbstkontrolle: Kapitel 4

1. 

Wie sind Leistung und Energie am Verbraucherzweipol definiert? 

2. 

Wie groß sind Energie und Energiedichte im geladenen Kondensator, 

einer stromdurchflossenen Spule und im Widerstand  R? Welcher prinzi-

pielle Unterschied besteht im letzten Fall? 

3. 

Begründen Sie physikalisch, welche Größen in der Spule bzw. dem Kon-

densator stetig sein müssen! 

4. 

Was drückt der Begriff Energiestrom anschaulich aus? Besteht ein Ver-

gleich mit dem elektrischen Strom? 

5. 

Veranschaulichen Sie den Begriff der Energiestromdichte (Poyntingscher

Vektor) am Beispiel einer Spannungsquelle, die über eine Doppelleitung

mit einem Verbraucherwiderstand verbunden ist! 

6. 

Was verbirgt sich hinter dem Begriff der Ko-Energie? 

7. 

Welche Kraftwirkungen treten im elektrischen Feld grundsätzlich auf? 

Nennen Sie Beispiele! 

8. 

Mit welcher Kraft ziehen sich zwei parallele Platten (Spannung  U =

100 V, Dielektrikum Luft, Abstand  d = 1 cm, Fläche  A = 30 cm2) an? 

9. 

Warum wird eine dielektrische Platte in einen geladenen, im Luftraum

befindlichen Plattenkondensator hineingezogen? 

10. Welche Kraftwirkungen treten im magnetischen Feld grundsätzlich auf? 

11. Was versteht man unter a) Lorentz-Kraft b) elektrodynamischem Kraft-

gesetz? 

12. Überträgt das elektrische oder magnetische Feld Energie auf Ladungs-

träger? Begründen Sie Ihre Antwort! 

13. Unter welcher Bedingung ist in einem Halbleiter (positive und negative

Ladungsträger) keine Hall-Spannung zu erwarten? 
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14. Welche Kraftwirkung tritt zwischen zwei parallelen Drähten (Abstand

 a, Länge 1) im Vakuum auf, wenn beide (gleich große) Ströme in einer

Richtung bzw. entgegengesetzt führen? 

15. Welche Kräfte treten an magnetischen Grenzflächen auf (Beispiele)? 

16. Warum muss der Lautsprecher eine Vormagnetisierung haben? 

17. Warum zeigt ein Drehspulinstrument keine Wechselspannung an? 

Kapitel 5
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5 Elektromechanische Aktoren

Lernziel Nach der Durcharbeitung des Kapitels sollte der Leser in der Lage sein, 

die Wandlung elektromagnetischer Energie in mechanische Energieformen und

umgekehrt zu erläutern, 

das Grundprinzip des Motors und Generators zu beschreiben, 

die wesentlichen Motorarten mit ihren Eigenschaften und Besonderheiten anzu-

geben. 

Ein Aktor wandelt ein eingangsseitiges (elektrisches) Stellsignal geringer Leis-

tung in eine nichtelektrische Ausgangsgröße (Druck, Drehmoment, Kraft,  . . . )

höherer Leistung um. Er ist das Bindeglied zwischen der Informationsverar-

beitung und dem Materie- oder Energiestrom eines Prozesses. Seine Bestand-

teile sind (Abb. 5.0.1):

ein  Signalumformer, der die Stellgröße in eine Steuergröße des Energie-

wandlers umformt. Er wirkt als Energiesteller“, meist mit Hilfsenergie

” 

betrieben. In elektrischen Aktoren besorgen diese Aufgabe Relais und

Halbleiterschalter. 

der  Stellantrieb (Hubmagnet, Elektromotor). Er setzt die gesteuerte Hilfs-

energie in die gewünschte ausgangsseitige Rotations- oder Translations-

Abb. 5.0.1. Aufbau eines

Aktors

Tab. 5.1. Einteilung wichtiger Aktoren

Elektromechanische

Fluidische

Sonderaktoren

Aktoren

Aktoren

thermo-

Elektromotor

pneumatisch

mechanisch

(rotierend, linear)

(Hydraulikzylinder)

(Thermo-

Gleichstrom-

hydraulisch (Radial-, 

Bimetall)

Asynchron-

Axialkolbenmotor)

Dehnstoff

Schritt-

Memorymetall

Synchron-

ferroelektrisch

Elektromagnet

magnetostriktiv

piezoelektrisch
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energie um. So bilden Aktoren wichtige Komponenten von Mediensyste-

men. Sie werden meist nach der Hilfsenergie unterteilt (Tab. 5.1). 

Dieser Abschnitt behandelt technische Aspekte der Stellglieder mit magne-

tischen Kraftwirkungen. Weil aber die Energieumformung elektrisch – nicht-

elektrisch grundlegende Bedeutung für die Elektrotechnik hat, vertiefen wir

sie zusammen mit Analogie- und Modellierungsaspekten im Kap. 6. 

5.1

5.1 Elektromagnet

Elektromagnete erzeugen als einfache Antriebe (Schalter, Relais, Stellantrie-

be) Kräfte und kleine translatorische oder rotatorische Bewegungen. Je nach

Gestaltung des magnetischen Kreises (U-, E-Form, Flachankermagnet, Topf-

magnet (Tauchanker), Abb. 5.1.1) und der Bewegungsart des Ankers  linear

(Zug- und Hubmagnete) oder  drehend (Drehmagnete) gibt es vielfältige For-

men für Antriebs-, Steuer-, Arbeitsschaltungen oder Bremsvorgänge. Nach

der Funktion werden  Stellmagnete (Zug-, Hub- Schaltmagnete, Kurzhubele-

” 

ment“),  Haltemagnete (als Spannmagnete ohne Anker) und  krafterzeugende

Magnete für Kupplungen und Bremsen unterschieden. Ihr typisches Merkmal

ist die  Kraft-Weg-  bzw.  Strom-Weg-Kennlinie; angestrebt wird proportionaler

Zusammenhang und hohe Kraft in den Endlagen. 

Der Elektromagnet nutzt die Kraftwirkung an der Grenzfläche Eisen-Luft

(Kap. 4.3.2.3). Beim Tauschanker (Abb. 5.1.1b) als Beispiel hängt die Mag-

netkraft hauptsächlich vom Luftspalt  l L ab





 l

 − 2

 F

( iw)2 μ

( iw)2 μ

=

0 A

Fe +  l

=

0 A

(5.1.1)

2

 μ

L

r

2( l eff)2

mit  l L =  l ( l  Ruheluftspaltlänge,  x  Hub). Bei kleinem Luftspalt wirkt der

äquivalente Luftspalt  l Fe /μ r des Eisens (mit Hysterese). Deshalb reicht bei

angezogenem Anker ein geringer Haltestrom. Die Kraft-Weg-Kennlinie hat

daher prinzipbedingt (Abb. 5.1.1b) einen Anfangsbereich mit bestimmen-

dem Luftspaltwiderstand ( F m  ∼ i 2), einen Linearbereich ( F m  ∼ i) und einen

Sättigungsbereich (Magnetkreissättigung). Das begrenzt den Stellbereich auf

10  . . .  20 mm. Insgesamt hängt die Kraft-Weg-Kennlinie (Abb. 5.1.1c) stark

von der Form des Ankergegenpols ab. Ausgehend vom Flachanker mit fallen-

der Kennlinie sorgt ein stärker eintauchendes Feld als Tauchanker in einem

bestimmten Hubbereich für konstante Kraft. 

Während die primär krafterzeugenden Elektromagnete als Hub-, Spann- und

Stellmagnete in unterschiedlichsten Formen breit eingesetzt werden, sind
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Abb. 5.1.1. Elektromagnet für translatorische Bewegung. (a) Bauformen: Topfmagnet mit

Tauchanker, U- bzw. E-Magnet mit Flachanker. (b) Magnetkraft-Kennlinien über dem

Weg bzw. Strom. (c) Einfluss der Anker-Gegenpolgestaltung und Kraft-Weg-Verlauf

Schaltmagnete mit dem Relais als bekanntester Form stark zurückgegangen:

die Schalteraufgabe übernehmen Halbleiterbauelemente viel vorteilhafter. 

5.2

5.2 Elektromotor

Die klassischen elektromechanischen Aktoren sind Elektromotoren1. Man un-

terteilt sie nach der:

mechatronischen Funktion in Rotations- und Linearmotoren, 

Stromart in Gleich-, Wechsel- und Drehstrommotoren. Jede Gruppe hat

weitere Einteilungsmerkmale (s. u.). 

Elektromotoren bilden die Masse elektromagnetischer Antriebe. Sie verbrauchen

mehr als die Hälfte der weltweit erzeugten Elektroenergie. Ihre Leistung reicht vom

µW-Bereich des Uhrantriebs über Mikrostrukturmotoren bis in den Bereich von

1Die Erfindung des Elektromotors geht auf H. Jacob (deutscher Ing. 1801–1874)

im Jahre 1834 zurück, oft wird auch J. Kraroge (1823–89) genannt, der 1869 ein

elektromotorisches Kraftrad“ angab. Barlow hatte allerdings bereits 1822 das nach

” 

ihm benannte Rad (s. Kap. 3.3.3.2) vorgeführt. 
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Tab. 5.2. Einteilung der Elektromotoren

Motortyp

Wicklung

Wicklungsart, -ort Betriebsstrom

DC

Ein- und Ausgang

Anker

Rotor

AC (Wicklung)

magnetische

Feld

Stator

DC (an Bürsten)

Erregung

Synchron

Ein- und Ausgang

Anker

Stator

AC

magnetische

Feld

Rotor

DC

Erregung

Asynchron

Eingang

Primär

Stator

AC

(Induktion)

Ausgang

Sekundär

Rotor

AC

mehreren 100 MW für Großmotoren. Gängige Zwischenstufen sind Kleinstmotoren

bis 100 W und Kleinmotoren bis 1  . . .  2 kW. Heute verfügt jeder mitteleuropäische

Haushalt im Durchschnitt über 10  . . .  20 Elektromotoren, jeder PKW dürfte 10 und

mehr Elektromotoren enthalten. Stark gewachsen ist die Gruppe der Linearmotoren

(s. Kap. 5.2.6) vor allem in der Informationstechnik. Festplatten, Drucker, Scanner, 

Fax-Geräte wären ohne sie unmöglich. 

Grundsätzlich nutzen Elektromotoren oder allgemeiner  elektrische Maschinen

(mit Einschluss der Generatoren) die anziehend/ abstoßende Funktion zweier

Magnetfelder: ein feststehendes und ein bewegliches (meist rotierend) oder

 Stator  und  Rotor. Nach der Art der Felderzeugung gibt es drei Hauptgruppen

(Tab. 5.2) von Elektromaschinen:

 Gleichstrommaschinen  mit Gleichströmen in Stator- und Rotorwicklung, 

 Synchronmaschinen  mit Gleichstrom in einer und Wechselstrom der an-

deren Wicklung, 

 Induktions-  oder verbreiteter  Asynchronmaschinen  mit Wechselströmen

in beiden Wicklungen. 

Alle nutzen das  gleiche Wirkprinzip:

magnetisch anziehende oder abstoßende Kräfte im Rotor-/Stator bewir-

ken ein mechanisches Drehmoment (elektrodynamische Kraftgesetz), 

Bewegungsinduktion erzeugt in der bewegten Wicklung einen Strom, 

der zusammen mit der Lenzschen Regel und dem elektrodynami-

schen Kraftgesetz den Energieumsatz elektrisch-mechanisch vermittelt

(s. Abb. 3.3.16). 

Diese Zuordnung (Tab. 5.2) erlaubt eine noch feinere Unterteilung z. B. nach

Aufbau und Schaltung (Tab. 5.3). 
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5.2.1 Gleichstrommotor

Der Gleichstrommotor nutzt das Drehmoment einer im konstanten Mag-

netfeld rotierenden Leiterschleife mit Stromwendeeinrichtung (Kommutator)

zur Stromzufuhr, also das umgekehrte Prinzip des Gleichstromgenerators

(Kap. 3.3.3.2) und insbesondere den gleichen Aufbau (Abb. 3.3.18). 

Grundelemente des Motors sind ein ruhender Ständer mit der Ständer-

wicklung zur Erzeugung des Magnetfeldes, der rotierende Läufer (Anker)

mit der Ankerwicklung (Leiterschleife) und der Stromwender. 

Der Ständer bildet den Elektromagnet (gleichstromdurchflossene Erreger-

wicklung) mit weitgehend geschlossenem magnetischen Kreis. Für kleine Leis-

tungen, etwa batteriebetriebene Kleinstmotoren (KFZ-Technik, Scheibenwi-

scher, Gebläse, Stellmotoren, Feinwerktechnik, Servomotoren) wird er als

Dauermagnetkreis (meist Ferrit) ausgelegt. 

Der (zylindrische) Anker ist Teil des magnetischen Kreises und trägt Wick-

lung und Stromwender. Zur Erhöhung des wirksamen Momentes dienen meh-

rere, in kleinen Winkelschritten versetzte Leiterschleifen mit entsprechend

unterteiltem Kommutator. Er wirkt als mechanischer Schalter, der den An-

kerstrom so auf die Spulen verteilt, dass die Stromrichtung in einem Polbe-

reich übereinstimmt und nur von Pol zu Pol wechselt. 

Grundgleichungen Das Motorverhalten wird bestimmt durch:

1. 

 Drehmomenten-Gleichung  Auf die Leiterschleife ( w-Windungen) wirkt

die Kraft  F =  wI A Bl  durch den Ankerstrom  I A =  i  und erzeugt das

Moment ( A  Schleifenfläche, radiales Magnetfeld) Gl. (4.3.41)

 M

Drehmomentgleichung, 

=  wI A BA =  I AΦerr c 1

(5.2.1)

erste Grundgleichung

(Abb. 5.2.1a). Die Konstante  c 1 enthält Ausführungsgrößen des Motors

(Polpaarzahl, Art und Ausführung der Wicklung). 

Beim Gleichstrommotor wächst das Drehmoment streng proportional

zu Ankerstrom und Fluss. Über ihn geht der Erregerstrom  I err ein. 

2. 

 Drehzahlgleichung  Für die Ankerspannung gilt (mit der Gegenspannung

 U qi und dem Ankerwiderstand  R A)

 U A =  U qi +  I A R A =  vBlw +  I A R A , U qi =  vBlw =  c 2  · n · B. (5.2.2a) Sie stimmt mit der des angetriebenen Leiters beim Linearmotor überein

(Abb. 5.2.2a). Der rotierende Motor hat statt der Bahnverschiebung die

Drehzahl  n. Dabei gilt
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Abb. 5.2.1. Gleichstrommotor, Betriebsverhalten. (a) Drehzahl-Drehmoment-Kennlinie

und weitere Betriebsverläufe. (b) Motor-Generatorbetrieb in Vierquadrantendarstellung

bei Fremderregung

Motorbetrieb:

 U A  > U qi ( I A  >  0) , 

Generatorbetrieb:  U A  < U qi ( I A  <  0) . 

(5.2.2b)

Während im Generatorbetrieb die Ankerspannung  U A stets unter der indu-

zierten Spannung  U qi liegen muss, gilt im Motorbetrieb der umgekehrte Fall:

die Ankerspannung muss die induzierte Spannung übertreffen. Aufgelöst nach

der Drehzahl folgt aus Gl. (5.2.2a) die  Drehzahl-Drehmoment Kennlinie  des

Gleichstrommotors





 U

 U

 RM

 M

 n = A  − I A R A

A  −( M +  M r) R A

 . 

 c

=

=  n 0  −

=  n 0 1  −

2Φ

 c 2Φ



 c 1 c 2Φ2

 c 1 c 2Φ2

 M H

 n 0

Drehzahlgleichung, zweite Grundgleichung

(5.2.3a)

Normalerweise wird der Ankerspannungsabfall  I A R A   U A vernachlässigt. 

Ohne Last ( M = 0) stellt sich die  ideale Leerlaufdrehzahl n ≈ U

0

qi /B  ein. 

 Reibungskr¨

 afte (Bürsten, Lager) verursachen allerdings ein  Reibungsverlust-

 moment M r und es fließt ein  Leerlaufstrom I 0:  M r =  c 1Φ I 0. Weil er nicht

zum Lastmoment Gl. (5.2.1) beiträgt, sinkt dieses auf  M =  c 1Φ( I − I 0). Das

Reibungsmoment  M r senkt die  Leerlaufdrehzahl n 0 gegenüber dem Idealwert

 n (in Gl. (5.2.3a) Mitte ber

0

ücksichtigt)

 RM

 n

r

0 =  n −

 . 

0

 c

Leerlaufdrehzahl (5.2.3b)

1 c 2Φ2

Der Motor läuft so schnell, dass die induzierte Gegenspannung etwa mit der

Ankerspannung (= anliegende Spannung) übereinstimmt, daher  n ∼ U A und
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 n ∼  1 /B (Abb. 5.2.1a). Die Drehzahl sinkt mit wachsender Belastung durch

den stärker eingehenden Spannungsabfall  I A R A. Da im Einschaltmoment

( n = 0) noch keine Gegenspannung  U qi wirkt, fließt ein großer Anfangs-

oder Haltestrom  I H. Dazu gehört das  Haltemoment M H (aus Gl. (5.2.3a))

mit dem  Haltestrom I H

 n

 n 2 c

 c

 U 2

 M

0 c 1 c 2Φ2

0 1 c 2Φ2

1 U  2

H +  M r =

 R

=

 Rn

=

0

 c 2 n 0 R = 2 πn 0 R =  c 1Φ I H . (5.2.3c)

Es wurde in Abb. 5.2.1a für eine gewählte Drehzahlkennlinie angedeutet. 

Stets gilt  M H   M r. Die Konstanten  c 1,  c 2 stehen im Verhältnis  c 1 /c 2 =

1 / 2 π. 

 P el =  I A U A =  I A U qi +  I 2  R

A

A =  P mech +  P Wärme . 

(5.2.4)

Hierbei ist  P mech =  I A Bv =  F v =  ωM  die erzeugte  mechanische Leistung. 





 M

 P mech

=  ωM = 2 πnM = 2 πn 0 M  1  − M H

(5.2.5)

 U 2

 P

2 πn 0 M H

A

mech |

=

=

 . 

max

4

4 R

Sie verschwindet im Stillstand ( n = 0) und Leerlauf ( M = 0) und erreicht ihr

Maximum beim halben Haltemoment  M max =  M H / 2, also halber Leerlauf-

drehzahl  n 0. Da der Motor im Stillstand die elektrische Leistung  P el =  U  2  /R

A

aufnimmt, wird  maximal ein Viertel dieser Leistung mechanisch an die Last

 abgegeben. Durch den Leerlaufstrom  I 0 sinkt dieser Teil auf





 U 2

 I

2

 P

A

0

mech |

=

1  −

 . 

max

4 R

 I H

Abb. 5.2.1a zeigt den Verlauf. Die elektrische Leistung steigt über den Strom

proportional zum Drehmoment. 

Wegen  P mech  ≤ P el beträgt der Wirkungsgrad (dritte Grundgleichung)

 P

 U

 U

 η

mechanische Nutzleistung

=

mech

qi I A

qi  ≤

 P

=

=

=

1 . 

el

elektrische Gesamtleistung

 U A I A

 U A

Wirkungsgrad

(5.2.6a)

Er lautet ausgedrückt mit  Betriebsgr¨

 oßen







 P

 I

 I

 η

2 πnM

2 πn

=

mech

0 M ( M H  − M )

0

 . 

 P

=

=

1  −

1  −

(5.2.6b)

el

 UI =

 UI · M H

 I

 I H

Dabei wurden verwendet  n 0 /M H =  R/c 1 c 2Φ2 nach Gl. (5.2.3a), die Drehmomente  M H  −M =  c 1Φ( I H  −I),  M =  c 1Φ( I −I 0) und die Haltestrombeziehung U A /R =  I H. Der Wirkungsgrad durchläuft über dem Drehmoment ein Opti-
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 √

 √

mum  M opt =

 M H M r (bzw. der zugehörige Strom  I opt =  I 0 I H) von





2

 M

 η|

=

1  −

r

 . 

(5.2.6c)

max

 M H

Bei maximaler mechanischer Leistung  M =  MH/ 2 fällt der Wirkungsgrad

immer unter 50% und der größere Teil der aufgenommenen elektrischen

Leistung erwärmt die Wicklung. 

Deshalb betreibt man Gleichstrommotoren mit konstantem Erregerfeld bei

maximalem Wirkungsgrad, also deutlich unterhalb des Maximums abgegebe-

ner mechanischer Leistung. In Abb. 5.2.1a ist gleichzeitig der explizite Ein-

fluss des Reibungsmomentes dargestellt. Während der Wirkungsgrad ohne

Reibung linear mit der Last fällt, schmiegt sich der Verlauf mit Reibung an

diese Kurve an und zeigt ein ausgeprägtes Optimum. Man erreicht Werte

über 90%, bei großen Motoren eher als bei kleineren. 

Motor-, Generatorbetrieb Die Betriebsarten des fremderregten Gleichstrommo-

tors lassen sich als Vierquadrantendarstellung der Drehzahl-Drehmomentkurve  n =

 f( M) mit dem  Motorbetrieb im ersten Quadranten  als Bezug (alle Größen positiv

gezählt, Rechtslauf) übersichtlich darstellen (Abb. 5.2.1b). Die Vorzeichen von An-

kerspannung, -strom und Magnetfeld liegen durch  n ∼ U A /Φ und  M ∼ I AΦ in den

jeweiligen Quadranten fest. Wird der Motor bei gleicher Drehrichtung zusätzlich

angetrieben (Vorzeichenumkehr des Momentes), so arbeitet er als  Generator: Rich-

tungsumkehr des Ankerstromes, er wirkt bremsend (Betriebsbereich im 2. Qua-

drant). Die  Drehrichtungsumkehr  im Motorbetrieb erfolgt durch Spannungsum-

kehr (verbunden mit Stromrichtungsumkehr) oder Umpolung des magnetischen

Feldes. Dann liegt der Betriebsbereich im 3. Quadrant. Die Drehzahl-Drehmoment-

Kennlinie entspricht der von Abb. 5.2.1a mit der Leerlaufdrehzahl  n 0. Sie kann

nach Gl. (5.2.3) über die Ankerspannung ( →  Ankerstellbereich) oder durch Feld-

schwächung eingestellt werden. In diesem

Feldstellbereich“ erhöht abnehmender

” 

Fluss Φ die Drehzahl. Für Φ  →  0 (Gl. (5.2.3a)) wird sie nur durch Reibung be-

grenzt: Durchgehen des Motors“. Die Drehzahlkennlinie fällt auch hier mit stei-

” 

gender Last ab, allerdings (wegen Φ2 im Nenner von Gl. (5.2.3a)) stärker als im

Ankerstellbereich. 

Motorarten Das Betriebsverhalten des Gleichstrommotors wird entscheidend

von der Anschlussart der Erregerwicklung in Beziehung zum Anker bestimmt:

Beim  fremderregten  Gleichstrommotor entsteht das Feld durch eine Zu-

satzspannung (Abb. 5.2.2a). So entspricht er weitgehend dem Motor mit

Permanentmagnet und zeigt Nebenschlussverhalten. 

Beim  Nebenschlussmotor (Abb. 5.2.2b) liegen Anker- und Feldwicklung

parallel, Ankerstrom und Lastmoment wachsen proportional (Gl. (5.2.1))

und die Drehzahl fällt mit wachsendem Moment nach Gl. (5.2.1) schwach
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Abb. 5.2.2. Schaltungen des Gleichstrommotors. (a) Motor mit Fremderregung. (b) Ne-

benschlussmotor. (c) Reihenschlussmotor. (d) Drehmoment-Drehzahl-Kennlinien verschie-

dener Gleichstrommotoren: Nebenschlussverhalten (Gleichstrom-, Elektronik-, Asynchron-

motor); Hauptstromverhalten (Gleichstromreihenschluss-, Universalmotor); Synchronver-

halten (Synchron-, Hysterese-, Reluktanzmotor)

ab ( →  starres Drehzahlverhalten, unabhängig von der Last). Nachteilig

bleibt das geringe Anzugsmoment. Die Anwendungsbereiche liegen dort, 

wo konstante Drehzahl erforderlich ist. Sie wird über die Betriebsspan-

nung oder den Fluss verändert (wegen  n ∼ U A /Φ steigt die Drehzahl mit

sinkendem Fluss). Die Drehrichtung ändert sich bei Umkehr der Anker-

oder Feldspannung. 

Beim  Haupt-  oder  Reihenschlussmotor (Abb. 5.2.2c) liegen Anker- und

Erregung in Reihe. Dadurch wächst der Strom weniger als linear mit dem

Lastmoment wegen  M ∼ Φ I  und Φ = Φ( I). Dann folgt mit etwa  M ∼ I 2

 √

bzw.  I ∼

 M  das Hauptmerkmal dieses Motors: der starke  Drehzahlabfall

 mit wachsender Last (als  Reihenschlussverhalten  bezeichnet, Motor passt

sich der Last an). Bei konstanter Spannung gilt nach Gl. (5.2.3a) etwa

 √

 n ≈ U A /cI ∼ U/ M  für Φ  ∼ I. Der Reihenschlussmotor hat größtes

Anzugsdrehmoment und größte Leerlaufdrehzahl. Bei geringer Last be-

steht die Gefahr des Durchdrehens“. Deshalb wird er eingesetzt, wenn

” 

Leerlauf unmöglich ist (KFZ-Anlasser, Kranmotor, Bahn- und Fahrzeu-

gantrieb, Roboterantriebe u. a. m.). 

Die Drehzahlregelung erfolgt über die Spannung. Die Drehrichtungsum-

kehr verlangt die Umkehr nur einer Feldrichtung (meist Erregerfeld). Ei-

ne  Spannungsumkehr ¨

 andert die Drehrichtung nicht, weil sich gleichzei-

tig beide Feldrichtungen ändern. Deshalb dienen solche Motoren auch als

 Einphasenwechselstrom-  oder  Universalmotoren. 

Der  Doppelschlussmotor (Abb. 5.2.2c) kombiniert die vorgenannten Ty-

pen: eine fremderregte Wicklung besorgt die Haupterregung, eine zusätz-

liche Reihenschlusswicklung erhöht die Erregung bei wachsender Last und

arbeitet einer Drehzahlerhöhung durch die Ankerrückwirkung entgegen. 
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Abb. 5.2.3. Drehzahlregelung am Gleichstrommotor. (a) Regelung durch Ankervorwi-

derstand. (b) Feldschwächung durch Anzapfung der Erregerwicklung und zugehörige

Drehzahl-Drehmoment-Kennlinie. (c) Prinzip der Widerstandsbremsung

Dadurch wirken Laständerungen schwächer auf die Drehzahl als beim Rei-

henschlussmotor. Ein Durchgehen“ wird durch die festliegende Leerlauf-

” 

drehzahl (Nebenschlussverhalten) verhindert. 

Abbildung 5.2.2d stellt die Drehmoment-Drehzahlkennlinien der Motoren zu-

sammen. Gemeinsam ist ihnen:

Beim Gleichstrommotor können Drehzahl und Drehmoment durch Steue-

rung leicht der Anforderung angepasst werden. 

Die Drehzahl lässt sich nach Gl. (5.2.3a) über den Ankerkreiswiderstand  R A (Zu-

satzwiderstand), den Erregerfluss Φ (Erregerstrom) und die Ankerspannung  U A

beeinflussen. Jeder Ankervorwiderstand (Abb. 5.2.3a) senkt sie. Er dient gleichzei-

tig als Anlasswiderstand zur Strombegrenzung. 

Durch

Feldschwächung

(z. B. 

Variation

der

Windungszahl

mit

Anzapfung

(Abb. 5.2.3b)) ist eine Drehzahlerhöhung möglich. Die Herabsetzung der Anker-

spannung erlaubt eine stufenlose Absenkung der Drehzahl. Über entsprechende

Schaltungen lassen sich Gleichstrommotoren bequem steuern. 

Motorbremsung Wird der Anker eines laufenden Motors (bei eingeschalteter

Erregung) von der Spannung getrennt und an einen Widerstand  R  gelegt, 

so wirkt er durch seine Trägheit als Generator (Abb. 5.2.3c) und der Strom

bremst den Anker: Umwandlung von Bewegungsenergie in Wärme. Wirksa-

mer als diese  Widerstandsbremsung  arbeitet die  Gegenstrombremsung: Um-

kehr der Stromrichtung durch Umpolen des Ankers (Momentumkehr!). Dabei

begrenzt ein Bremswiderstand den Strom. Diese intensive Bremsart wirkt bis

zum Stillstand. Eine Schutzschaltung verhindert ein Anlaufen des umgepol-

ten Motors. 
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5.2.2 Elektronikmotor

Beim Elektronikmotor2, auch als  kollektorloser Gleichstrommotor, elektro-

nisch kommutierter oder bürstenloser Permanentmagnetmotor bezeichnet, 

werden die Ankerwicklungen in den Ständer verlagert (bis zu vier Wicklungen

sind üblich) und der Läufer ist ein Dauermagnet (meist aufgeklebte Magnete

hoher Remanenz). Abhängig von der Läuferstellung werden die Ankerspu-

len der Reihe nach so fortgeschaltet, dass ein rotierendes Drehmoment auf

den Läufer wirkt. So bleibt das Wirkprinzip des Gleichstrommotors erhalten

(Abb. 5.2.4a). 

Der Elektronikmotor ist ein Synchronmotor mit Permanentmagnet und

elektronischer Kommutierung. 

Im Gleichstrommotor sorgt die Kommutierung für räumlich feste Zuordnung

von Ständer- und Ankerfeld. Maximales Drehmoment entsteht, wenn Erreger-

feld und die Normale der Ankerspule einen Winkel von 90 ◦  bilden. Beim Elek-

tronikmotor ändert sich hingegen durch die Permanenterregung des Läufers

die Richtung des Läuferfeldes ständig mit der Drehzahl. Deshalb hat die elek-

tronische Kommutierung sicherzustellen, dass unabhängig vom Läuferwinkel

ein fester räumlicher Winkel von  π/ 2 (bei einem Pol bzw.  π/(2 p) bei  p  Polen)

vorliegt. Dazu muss das Ständerfeld durch Fortschalten der Ständerspulen

abhängig von der Läuferstellung mit der Drehzahl rotieren. Das erfordert:

die Erfassung der Polradlage (Läufer) z. B. durch Hallelemente auf dem

Ständer oder optische Positionserkennung; 

die Errechnung des resultierenden Ständerstromvektors aus Polradlage

und Sollwert des Drehmoments; 

die Umsetzung dieses Ständerstromvektors in zeitvariable Erregerströme. 

Das besorgt eine Elektronik, oft auch die Drehzahlregelung. 

Abbildung 5.2.4a zeigt einen Elektronikmotor mit Dauermagnetrotor und

drei Ständerwicklungen (dreiphasiger Motor). Läuferlagesensoren auf dem

Ständer signalisieren die Rotorlage und steuern die Umschalter A - C (Steu-

erschaltung als Schaltkreis ausgeführt). Für eine bestimmte Sensorstellung

liegen die zugehörigen Schalter je einer in der oberen und der unteren Stel-

lung (Abb. 5.2.4b). Dann fließt der Strom stets durch zwei Wicklungen (drit-

te stromlos). Die Wechselwirkung mit dem rotierenden Permanentmagne-

ten erzeugt ein Drehmoment. Die Rotorlage wird durch drei, um 120 ◦  ver-

2Die Begriffsverwendung ist nicht einheitlich: Man versteht oft unter Elektronikmo-

toren sowohl den ständerkommutierten Gleichstrommotor (wie hier) als auch den

Schrittmotor. 
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Abb. 5.2.4. Bürstenloser Dauermagnet-Gleichstromantrieb. (a) Aufbau und Wirkprinzip, 

vereinfachte Darstellung. (b) Schaltungsanordnung der Ständerspulen

setzte Hallelemente auf dem Ständer erfasst. In einer Ausgangslage des Ro-

tors möge Sensor C ein Ausgangsignal senden und die Schalter A+ und B −

schließen. Bei Rotordrehung um 60 ◦  geben die Sensoren B und C Signale

und schließen die Schalter A+ und C −; so wird das vorher von den Spulen

A und B erzeugte resultierende Magnetfeld um 60 ◦  weitergeschaltet. Insge-

samt entsteht schließlich ein  rotierendes Magnetfeld  durch die Ständerspulen, 

das den Rotormagnet

mitnimmt“. Je nach seiner Gestaltung erfolgt die

” 

Ständerspulenerregung rechteck- oder sinusförmig. 

Funktionell arbeiten Elektronikmotoren nach dem Prinzip eines dreiphasig perma-

nenterregten Synchronmotors (s. Kap. 5.2.3), sie unterscheiden sich aber durch die

Wicklungsansteuerung: zeitlich nacheinander geschaltete Spulen erzeugen ein sog. 

 Drehfeld, dem ein Permanentmagnet nachläuft“. Die elektronische Kommutierung

” 

erfolgt meist mit Hallelementen  sensorgesteuert  durch Lageerkennung der Rotor-

stellung. Üblich ist auch die  sensorlose  Kommutierung. Weil eine der drei Spulen

im Schaltablauf stets stromlos bleibt, kann die in ihr induzierte Spannung (rotor-

stellungsabhängig) zur Auswertung dienen. 

Elektronikmotoren haben trotz des Aufwandes viele Vorteile, weil sie die

guten Drehzahl-Regeleigenschaften des Gleichstrommotors mit der konstruk-

tiven Robustheit von Mehrphasenmotoren (Asynchronmotor, s. u.) kombi-

nieren. Weitere Merkmale sind geringe Verlustleistung, Wartungsfreiheit, ge-

ringe Massenträgheit, ruhiger Lauf, höherer Wirkungsgrad und Wegfall der

Funkenbildung (EMV-Störung, Explosionsgefahr). Ihr Betriebsverhalten ent-

spricht weitgehend dem Nebenschlussmotor. 

Der Elektronikaufwand hängt vom Einsatzzweck ab: er ist hoch für Werkzeugma-

schinen und Roboterantriebe, sinkt aber bei Anwendungen in der Geräte-, Phono-, 

Video- und Datentechnik: Disketten-, Festplatten-, CD-ROM-, DVD-, CD-, Ton-

bandantriebe, Analysen- und Medizintechnik (Förder-, Pumpen-, Rührwerke), Mo-

546

5. Elektromechanische Aktoren

Abb. 5.2.5. Drehstromsystem. (a) Prinzip eines Drehstromgenerators und Zeitdiagramm

der drei Sinusspannungen. (b) Erzeugung von drei um 120 ◦  phasenverschobenen Wechsel-

spannungen. (c) Dreieck- bzw. Sternschaltung der Teilspannungen eines Drehstromsystems

toren für die Luft- und Klimatechnik und den Modellbau. Hier hat er den Gleich-

strommotor verdrängt. Der Leistungsbereich reicht bis zu einigen 100 W, der Dreh-

zahlbereich bis etwa 40.000 U/min bei Wirkungsgraden bis 90%. 

5.2.3 Drehfeldmotor

Drehfeld, Drehstrom3 Ein Drehfeld entsteht außer durch ein rotierendes Pol-

rad auch  ohne mechanische Bewegung  als Magnetfeld in räumlich winkelver-

setzten Leiterspulen, die von betragsgleichen, zeitversetzten Strömen durch-

flossen werden. Verbreitet sind drei um 120 ◦  räumlich versetzte Spulen, durch-

flossen von je um 120 ◦  phasenverschobenen Strömen. Dadurch läuft in Spu-

lenmitte ein resultierendes Magnetfeld konstanter Stärke mit der Frequenz

des Stromes um. 

Drei gleiche, um jeweils 120o  r¨

 aumlich  versetzte rotierende Schleifen im homogenen

Magnetfeld (Abb. 5.2.5a) erzeugen drei Spannungen  u 1( t)  . . . u 3( t), die wegen der Spulenversetzung um je 120 ◦  bzw. 2 π/3  zeitlich  verschoben sind









 u 1( t) =  U 0 sin( ωt) , u 2( t) =  U 0 sin  ωt −  2 π , u 3( t) =  U 0 sin  ωt −  4 π . (5.2.7) 3

3

Bei ihrer Reihenschaltung verschwindet die Spannungssumme zu jedem Zeitpunkt:

 u 1( t) +  u 2( t) +  u 3( t) = 0. Eine solche Zusammenschaltung von Spannungen gleicher Frequenz und Amplitude, aber unterschiedlicher Phasenlage bildet ein  Dreiphasen-3Entwickelt 1888 von G. Ferrarris (1841–1897). Ital. Elektrotechniker, Gründer der

ersten ital. Ingenieurschule. 
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Abb. 5.2.6. Drehfeld. (a) Spulenanordnung und Zeitverläufe der Spulenströme zur Er-

zeugung des Drehfeldes. (b) Feldmodell der stromdurchflossenen Spule. (c) Vereinfach-

te Darstellung der räumlichen Feldkomponenten zu festem Zeitpunkt. (d) Resultierender

Flussdichtevektor zu verschiedenen Zeitpunkten

oder  Drehstromsystem. Solche Spannungen entstehen außer durch rotierende Leiter-

schleifen im homogenen Magnetfeld auch in feststehenden Spulen auf einem  Stator

oder  St¨

 ander, in dem ein Magnet (Polrad) rotiert (Abb. 5.2.5b), also ein  Magnetfeld

 r¨

 aumlich uml¨

 auft:  Drehfeld. Die Anordnung bildet einen  Synchrongenerator. 

Beispielsweise können die Einzelspannungen auch  sternf¨

 ormig  zusammengeschaltet

werden (Abb. 5.2.5c), stets verschwindet ihre Umlaufsumme zu jedem Zeitpunkt. 

Deshalb genügen  drei Leitungen  1  . . .  3 zur  Fortleitung des Stromes  zum Verbrau-

cher und nicht sechs, die für Einzelspannungen erforderlich wären. Darin liegt die

Bedeutung des Drehstromes. 

Fließen umgekehrt durch drei gleiche feststehende, räumlich um je 120 ◦  versetz-

te Stromschleifen 1  . . .  3 (Abb. 5.2.6a) die Ströme  i 1( t)  . . . i 3( t) mit Zeitverläufen analog zu Gl. (5.2.7), die selbst  zeitlich  je um 120 ◦  zueinander phasenverschoben

sind, so entsteht im Spuleninnern ein  Drehfeld. Jeder Spulenstrom erzeugt eine ent-

sprechende Flussdichte, also  i 1( t) die Flussdichte  B 1( x, y, z, t) (Abb. 5.2.6b) usw. 

Stehen die Spulen senkrecht zur Zeichenebene ( z-Richtung) und sind sie hinrei-

chend lang, so hat das Feld nur  x, y-Komponenten. Wir nehmen zur Vereinfachung

homogenes Feld in jeder Spule an. Dann führt Spule 1 zu einem bestimmten Be-

trachtungszeitpunkt die Flussdichte  B 1( x, y, t) =  e y B 1( t) =  e y B 0 sin  ωt  nur mit y-Komponente. Spule 2 ist räumlich um 120 ◦  gedreht, außerdem durchfließt sie

der zeitlich um 120 ◦  phasenverschobene Strom  i 2( t). Damit betragen die restlichen

Flussdichten (Abb. 5.2.6c)

 B 2( x, y, t) = ( e x cos 7 π/ 6 +  e y sin 7 π/ 6)  B 2( t)



 √



=

 −e x 3 / 2  − e y / 2  B 0 sin ( ωt −  2 π/ 3)

 B

(5.2.8)

3( x, y, t) = ( e x cos 11 π/ 6 +  e y sin 11 π/ 6)  B 3( t)

  √



=

 e x 3 / 2  − e y / 2  B 0 sin ( ωt −  4 π/ 3)  , 
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denn zur Flussdichte  B 3( t) in Spule 3 gehört der Strom  i 3. Das Drehfeld  B( x, y, t) besteht aus allen Teilkomponenten, das sind

 √

 B

3

 x =  −

 B

 √  2

0 [sin( ωt −  2 π/ 3)  −  sin( ωt −  4 π/ 3)]

=

3  B

 B

2

0 [2 cos  ωt  sin 2 π/ 3] = 32 0 cos  ωt

und

 By =  B 0 sin  ωt − B 0 / 2 sin( ωt −  2 π/ 3)  − B 0 / 2 sin( ωt −  4 π/ 3)





=  B 0 sin  ωt −  12 [sin( ωt −  2 π/ 3) + sin( ωt −  4 π/ 3)]

=  B 0  { sin  ωt −  sin  ωt  cos( − 2 π/ 3) } = 3  B

2

0 sin  ωt

oder zusammengefasst als  Drehfelddarstellung

 B( x, y, t) =  B 1( x, y, t) +  B 2( x, y, t) +  B 3( x, y, t)

= 3 B 0

2 ( e x cos  ωt +  e y sin  ωt) =  B x( t) +  B y( t) . 

(5.2.9)

Die etwas mühevolle Auswertung (Additionstheorem) ergibt eine Gesamtflussdichte



 B =

 B 2x +  B 2y = 3 B 0 / 2 mit konstantem Betrag und zeitabhängigem Winkel

zwischen der resultierenden Flussdichte und der  x-Achse mit tan  α( t) =  B y /B x =

sin  ωt/  cos  ωt = tan  ωt. 

Die Flussdichte des Drehfeldes ist ein Vektor von konstantem Betrag, der mit kon-

stanter Winkelgeschwindigkeit gegenläufig zum Uhrzeigersinn umläuft (die zeitlich

fortschreitende Drehbewegung drückt sich im Klammerterm von Gl. (5.2.9) aus). 

Die Drehrichtung bleibt bei Änderung aller Stromrichtungen erhalten. 

Für ausgewählte Zeitpunkte zeigt Abb. 5.2.6d die räumliche Lage des Flussdich-

tevektors. Zur Zeit  t = 0 verschwindet  B 1 und der resultierende Vektor zeigt in

 x-Richtung, zur Zeit  ωt =  π/ 2 weist  B 1 in die  y-Richtung und für  ωt =  π  verschwindet  B 1 wieder, aber die Vorzeichen von  B 2 und  B 3 ändern sich. Auch die folgende Erklärung gilt: zum Zeitpunkt  ωt 1 =  π/ 2 führt Spule 1 maximalen

Strom und bestimmt den Flussdichtevektor, zur Zeit  ωt 2 =  π/ 2 + 2 π/ 3 führt Spu-

le 2 maximalen Strom und der Flussdichtevektor hat sich nach  B 2 weitergedreht

usw. 

Ein (Drehstrom-) Drehfeld ist ein resultierendes, mit der Frequenz des Stromes

umlaufendes Magnetfeld in der Mitte dreier räumlich um 120 ◦  gegeneinander ver-

setzter Stromschleifen, die von drei, um 120 ◦  zeitverschobenen Strömen gleicher

Amplitude und Frequenz durchflossen werden. Das Drehfeld ist die Grundlage

robuster Elektromaschinen (Asynchronmotor, Synchronmotor  . . . ). 

Eine Magnetnadel im Zentrum eines Drehfeldes rotiert dann ebenfalls: Prinzip eines

einfachen  Drehstrommotors. Beim Generator entsteht das Drehfeld durch Rotation

eines Magneten in einer Dreiphasenwicklung. So arbeitet das Drehfeldsystem mit

feststehenden Spulen (Stator) und beweglichem Polrad (Rotor) je nach Betriebs-

richtung als Generator oder Motor. Der Rotorausführung nach unterscheidet man

 Synchronmotoren (mit Permanentmagnet oder Erregerwicklung) von  Asynchron-

 motoren  mit einer Leiterschleife“. 

” 

Asynchronmotor Das von Ständerwicklungen verursachte Drehfeld induziert

in ruhenden oder allgemeiner  nicht synchron mit ihm umlaufenden  Leiter-

schleifen Spannungen nach dem Transformatorprinzip. Deshalb entsteht in
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Abb. 5.2.7. Drehstrom-Asynchronmotor. (a) Aufbau aus Ständer und Rotor. (b) Rotor

ausgeführt als Käfigläufer. (c) Drehmoment-Drehzahl-Verlauf

einer als Rotor ausgeführten (geschlossenen) Leiterschleife ein Strom.  Er zieht

 die Schleife als Folge der Lenzschen Regel dem Drehfeld nach. Ein solcher

Induktionsmotor“ ist daher einfach aufgebaut. Er wird als  Asynchronmo-

” 

 tor  bezeichnet und besteht (Abb. 5.2.7a) aus einem Ständer mit drei Wick-

lungen (Drehstromwicklung) und dem Läufer ausgeführt als  symmetrische

 Drehstromwicklung  mit  Schleifringen  oder als Kurzschlusswicklung, dem sog. 

 K¨

 afigl¨

 aufer. Das Drehfeld induziert in der Läuferwicklung Strom. Die Kraft-

wirkung des magnetischen Feldes auf stromdurchflossene Leiter erzeugt ein

Drehmoment und damit eine Rotorbewegung in Richtung des Drehfeldes:  der

 Rotor l¨

 auft dem Drehfeld nach. 

Voraussetzung zur Induktion im Rotor ist, dass seine Winkelgeschwindig-

keit  kleiner  als die des Drehfeldes bleibt: er läuft asynchron“ zum Drehfeld

” 

(mit seiner synchronen Drehzahl  n s). Die relative Drehzahldifferenz zwischen

Drehfeld (Drehzahl  n s) und Läufer (lastabhängige Drehzahl  n) ist der  Schlupf





 n

 s = 1  −

 → n

 n

=  n s(1  − s) . 

(5.2.10)

s

Ein Drehmoment entsteht beim Asynchronmotor nur, wenn die Rotordreh-

zahl unterhalb der Statorfrequenz liegt, also bei Schlupf. 

Die synchrone Drehzahl  n s ist beim Motor mit einem Polpaar gleich der

Netzfrequenz: 50 Hz  →  50 / s = 3000 U / min (Abb. 5.2.7b). 

Die Anordnung entspricht einem mit der Drehstromfrequenz umlaufenden

Stabmagnet mit Nord- und Südpol, also einem Polpaar ( p = 1). Drei Ständer-

wicklungen zusammengedrängt auf den halben Ständerumfang bedeuten eine

Wiederholung des Drehfeldes nach 1800 (gleichbedeutend mit Erhöhung der

Polpaarzahl auf  p = 2, vierpoliger Motor) und eine Halbierung der Dreh-

feldwinkelgeschwindigkeit. Verallgemeinert beträgt die synchrone Drehzahl-
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frequenz deshalb





 n

60 f

3000

1

s =

 . 

 p =  p

min

Die synchrone Drehzahl des Asynchronmotors liegt durch Netzfrequenz und

die konstruktiv bestimmte Polpaarzahl fest und ist kaum abhängig von der

Last (s. u.). 

Für Netzfrequenz sind typisch 3000 min − 1, 1500 min − 1, 1000 min − 1 usw. Im

 Drehzahlverhalten  gibt es folgende Situationen:

 Rotorstillstand (Anlaufen,  n = 0,  s = 1), es fließt maximaler Strom in der

Läuferwicklung, der das Anlaufdrehmoment bestimmt; 

 Motorbetrieb (0  < n < n s bzw. 0  < s <  1): der Läufer bewegt sich in

Drehfeldrichtung, der Motor nimmt elektrische Leistung auf und gibt me-

chanische ab. Reibungsverluste erfordern immer einen Schlupf und des-

wegen läuft der Motor  stets asynchron ( n < n s, Name Asynchronmo-

tor!). 

 Synchronbetrieb ( n =  n s,  s = 0), Läuferantrieb und Drehfeld stimmen

überein; 

 Generatorbetrieb ( n > n s,  s <  0) bei Antrieb des Läufers in Drehfeldrich-

tung mit einem Moment gegen die Drehfeldrichtung. Es wird mechanische

Leistung aufgenommen und elektrische Leistung abgeführt; 

 Gegenbremsbetrieb ( n <  0,  s >  1): Bewegung des Läufers in Gegenrichtung

zum Drehfeld, dem Motor wird mechanische Leistung über den Läufer und

elektrische Leistung vom Netz zugeführt. Beim Schlupf  s = 2 dreht sich

der Motor mit der Nenndrehzahl gegen das Drehfeld. 

Aufbaumäßig hat der sog.  Kurzschlussl¨

 aufer  eine

Wicklung“ in Käfigform: Lei-

” 

terstäbe, die an den Stirnseiten alle verbunden (wirken wie kurzgeschlossene Leiter-

schleifen) und in einen weichmagnetischen Körper eingebettet sind (Abb. 5.2.7b). 

Bürsten entfallen. Dieser einfache Aufbau macht den Asynchronmotor sehr zu-

verlässig, im Leistungsbereich oberhalb von 1 kW bestreitet er 80–85% der An-

wendungen. 

Als Synchronmotor mit Schleifringläufer trägt der Läufer eine Drehstromwicklung, 

deren Enden zu drei Schleifringen geführt ist. Über Bürsten wird der Läuferkreis

durch äußere Widerstände geschlossen. So ist Drehzahlsteuerung und Steuerung des

Anfahrens möglich. Nach Hochlauf werden die Schleifringe miteinander verbunden

und er arbeitet wie ein Käfigläufer. 

Drehmoment, Betriebskennlinie Das Betriebsverhalten des Asynchronmotors

wird durch die Induktion als Folge der Relativbewegung von Drehfeld und

Rotor, dem Rotorwiderstand und das Drehmoment abhängig von Rotorstrom
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und Drehfeldinduktion bestimmt. Die wichtigste Motorkennlinie ist der Ver-

lauf des Drehmomentes über der Drehzahl. Ausgehend von der synchronen

Drehzahl sinkt sie bei Belastung und das Drehmoment steigt (der Motor zeigt

etwa Nebenschlussverhalten) bis zum  Kippmoment M K mit dem zugehörigen

Kippschlupf  s K. Danach fällt das Drehmoment rasch. Ausgedrückt über den

Schlupf  s  gibt es ein maximales Moment, das  Kippmoment M K, beim  Kipp-

 schlupf s K (Abb. 5.2.7c). Angenähert gilt

 M

2

 . 

 M =

(5.2.11)

K

 s K /s +  s/s K

Für  s = 1 tritt Stillstand ein (verbunden mit dem Stillstandsmoment  M st). 

Da im Betrieb das  Nenndrehmoment M N interessiert, gilt für kleinere Asyn-

chronmotoren (unter 1 kW Leistung) etwa  M K /M N  ≈  2  . . .  3 ,  6 bei  s K /s N  ≈

3  . . .  6 und  M St /M N  ≈  1 ,  5  . . .  2 ,  6. Der Nennschlupf liegt zwischen 1 ,  5  . . .  10%, letzter Wert für kleine Motoren. In das Betriebsdiagramm kann auch die

mechanische Lastkennlinie eingetragen werden (Abb. 5.2.7c). Dabei erfor-

dert stabiler Betrieb nur einen Schnittpunkt mit der Motorkennlinie (was bei

großer Last fraglich sein kann). 

Das Drehmoment hat für Asynchronmotoren einen typischen Verlauf mit

Kippmoment und Kippschlupf. Unterhalb des Nenndrehmomentes  M N sind

 M  und  n  etwa proportional. 

Anlassen, Drehzahlbeeinflussung Der Anlassstrom kann beträchtlich sein und

bis zum 8-fachen Nennstrom betragen.  Anlaufwiderst¨

 ande  senken beim Schleifring-

läufer im Läuferkreis die Stromspitze und sichern allmähliches Hochlaufen. Asyn-

chronmotoren mit Kurzschlussläufer verwenden bei größeren Leistungen ( >  5 kW)

die  Stern-Dreieck-Umschaltung:  der Ständer arbeitet zunächst in Sternschaltung

 √

(dann liegt an einem Wicklungsstrang nur die 1 /  3-fache Netzspannung) und nach

Anlauf wird auf Dreieck umgeschaltet. Praktische Bedeutung hat die  Drehzahlsteue-

 rung. Infrage kommen (neben Vergrößerung des Schlupfes durch Vorwiderstände bei

Schleifringläufern oder Absenken der Ständerspannung):

die  Polzahlumschaltung  am Ständer (durch Wicklungsumschaltung bzw. ge-

trennte Ständerwicklungen verschiedener Polzahl), oft eingesetzt bei Haushalt-

anwendungen; 

die kontinuierliche  Frequenzregelung  der Ständerspannung ( n ∼ f). Dadurch

ändert sich die Motordrehzahl. Das erfordert eine  Umrichterschaltung, die die

Netzfrequenz in eine Spannung mit einstellbarer Frequenz umsetzt, die heute

übliche Drehzahlregelung. Sie hat den drehzahlgeregelten fremderregten Gleich-

strommotor als klassischen drehzahlsteuerbaren Antrieb weitgehend abgelöst. 

Asynchronmotoren können auch  einphasig, d. h. als  Wechselstrommotoren

ausgeführt werden (s. Kap. 5.2.4). 
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Drehstromsynchronmaschine

Synchronmaschinen kombinieren als Drehfeldanordnungen ein vom Dreh-

bzw. Wechselstrom durchflossenes Leitersystem mit einem zeitkonstanten

Magnetfeld (Permanent-, Erregerwicklung), die sich beide relativ zueinan-

der synchron bewegen. Deshalb wird die Drehzahl durch die Frequenz der

Wechselspannung und die Polpaarzahl bestimmt. 

Der Aufbau einer  Drehstromsynchronmaschine  entspricht Abb. 5.2.5b, beste-

hend aus einer Dreiphasenwicklung und einem rotierenden Permanentmagne-

ten (bei kleiner Leistung) oder einem gleichstromerregten rotierenden Polrad

als Läufer (auch Ständer mit einer oder mehreren Wechsel- oder Drehstrom-

wicklungen). Je nach Betrieb wirkt die Anordnung:

als  Synchron-Generator, wenn das Polrad rotiert und in der Ständerwick-

lung verkettete Spannungen induziert werden; 

als  Drehstrom-Synchronmotor, wenn die anliegende Spannung ein Dreh-

feld erzeugt und der Rotor (im Leerlauf) dem Drehfeld im Stator positi-

onsmäßig synchron folgt. 

Der Ständer eines Drehstromgenerators entspricht dem des Asynchronmo-

tors. Ferner gibt es die Innenpolmaschine mit festem Ständer und innenlie-

gendem Polrad (für größere Leistungen) oder die Außenpolmaschine, wenn

der Ständer das Magnetfeld erzeugt und die Drehstromwicklung auf dem

Läufer sitzt. 

Synchrongeneratoren arbeiten:

in Kraftwerken bis zu größten Leistungen (bis 2000 MVA), 

im mittleren Leistungsbereich (Schiffsgenerator, dieselelektrische Antriebe), 

im Kleinleistungsbereich (Lichtmaschine, Schienenfahrzeuge, Fahrraddynamo). 

Die induzierte Spannung ist dem Produkt  nΦ von Drehzahl  n  und Erregerfluss

streng proportional. Den einfachsten Synchrongenerator stellt die im zeitkonstanten

Magnetfeld rotierende Leiterschleife zur Erzeugung einer Wechselspannung dar. 

 Drehstromsynchronmotor, Wirkungsweise  Bei Anschalten einer Synchronma-

schine an das Drehstromnetz kann das mit der Synchrondrehzahl umlau-

fende Drehfeld den massenbehafteten Läufer nicht sofort auf diese Drehzahl

beschleunigen. Er muss durch  Anlaufhilfe  zunächst in Nähe dieser Drehzahl

gebracht werden. Erst nach Einschalten des Polfeldes kommt er durch Selbst-

” 

synchronisierung“ exakt auf diese Drehzahl. Hilfsmaßnahmen sind:

ein Anwurfmotor“ (bei größeren Einheiten), der nach erfolgter Synchro-

” 

nisierung mit dem Netz abgeschaltet wird; 
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Abb. 5.2.8. Synchronmaschine. (a) Drehzahl-Drehmoment-Kennlinie. (b) Drehmoment-

Kennlinien über dem Lastwinkel. (c) Einphasen-Synchronmaschine mit Permanentmagnet

als Läufer

für kleinere Synchronmotoren eine zusätzliche Anlasswicklung, mit der sie

zunächst als Kurzschlussläufer anlaufen. Sie wird nach der Synchronisie-

rung wirkungslos. Bei kleinen Motoren reicht oft ein Handanwurf“: der

” 

Motor wird entsprechend der Winkelgeschwindigkeit des Feldes in Dre-

hung versetzt, die er anschließend fortsetzt. 

Die Inbetriebnahme einer Synchronmaschine erfordert zunächst eine Syn-

chronisierung beider Drehfelder, also Rotordrehzahl und Ständerdrehfeld, 

durch Hilfsmaßnahmen. 

Abbildung 5.2.8a zeigt die Drehzahl-Drehmoment-Kennlinie nach Anlauf und

Synchronisation des Motors. Bei Leerlauf stehen den Rotorpolen die ge-

gennamigen des Ständerdrehfeldes gegenüber und der Rotor läuft mit der

synchronen Drehzahl: das Ständerfeld zieht ihn mit“. Bei Belastung verschie-

” 

ben sich die Rotorpole gegenüber den Ständerpolen. So entsteht eine Tan-

gentialkraft zwischen Ständer und Rotor und ein Drehmoment (Abb. 5.2.8b). 

Deshalb unterscheiden sich die Polachsen von Läufer und Drehfeld um einen

 Last-  oder  Polradwinkel ϕ, der mit wachsendem Lastmoment  M  wächst. Er

verschwindet bei idealem Leerlauf (keine Verluste): Läufer- und Feldachsen

fallen zusammen. Weil die Polachse maximal senkrecht zur Feldachse liegen

kann, erreicht der Lastwinkel maximal 90 ◦. Hier steht der Läufer allerdings

in einer labilen Lage und fällt außer Tritt“: er bleibt stehen. 

” 

Im  Generatorbetrieb  hingegen bleibt das Ständerdrehfeld (die Wirkung) hin-

ter dem rotierenden Läufer (der Ursache) zurück, deshalb wechselt das Vor-

zeichen des Lastwinkels. 

Synchronmotoren haben eine last- und spannungsunabhängige Drehzahl. 

Die Last beeinflusst nur den Winkel zwischen Ständer- und Rotorfeldachsen. 
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Oberhalb eines zu großen antreibenden oder bremsenden Drehmoments fällt

die Synchronmaschine außer Tritt. 

Die einfachste Synchronmaschine (Wechselstromsynchronmaschine) ist der

magnetische Kreis mit einer Wicklung, unterbrochen durch einen rotierenden

Permanentmagneten (Abb. 5.2.8c). 

Dem Synchronmotor eng verwandt ist der bürstenlose Gleichstrommotor

(s. Kap. 5.2.2). Er hat gleichen Aufbau, unterscheidet sich aber durch die

Art der Wicklungsansteuerung. 

Im  Motorbetrieb  arbeiten Synchronmaschinen:

als Großmotoren dort, wo es auf konstante Drehzahl ankommt (Schiffsantriebe, 

Förderanlagen, Zementmühlen, Walzstraßen  . . . ); 

im mittleren Bereich als Stellmotoren; 

vielfältig im Kleinleistungsbereich (Uhren, Stellantriebe, Zähler). 

Der Einsatz von Synchronmotoren stieg erst durch die Drehstromerzeugung

variabler Frequenz und Amplitude (Anlaufsteuerung) mit Frequenzumrich-

tern. Dann kommen ihre Vorteile (Wegfall des Kommutators, lastunabhän-

gige Drehzahl, kompakterer Aufbau als Asynchronmotoren) voll zur Geltung. 

5.2.4 Wechselstrom-, Universalmotor

Der Bedarf an Wechselstrommotoren in Haushalt, Gewerbe und Industrie

ist groß, besonders im Leistungsbereich unter 1  . . .  2 kW mit netzfrequenz-

unabhängiger Drehzahl zwischen 1000 und 20.000 U/min. Für größere Leis-

tungen, beispielsweise Lokomotivantriebe mit 16 2 oder 50 Hz Betriebsfre-

3

quenz, werden umrichtergespeiste Drehstrommotoren eingesetzt. Vom bishe-

rigen Motorspektrum bieten sich für den Wechselstrombetrieb an:

der  Universalmotor übernommen vom Gleichstrommotor, 

der  Asynchronmotor  mit Hilfskondensator oder Universalmotor mit Hilfs-

wicklung (Spaltpol-, Kondensatormotoren), 

der Einphasensynchronmotor. 

Universalmotoren Sie sind dem Aufbau nach zweipolige Gleichstromreihen-

oder -nebenschlussmotoren. Weil bei Vertauschung ihrer Anschlüsse die Dreh-

richtung erhalten bleibt, arbeiten sie grundsätzlich auch mit Wechselspan-

nung. Praktisch durchgesetzt hat sich nur der Reihenschlussmotor, er wird

als Universalmotor verstanden. 
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Abb. 5.2.9. 

Universalmotor. 

(a) Zeitverlauf von Strom und

Drehmoment. 

(b)

Einfluss

der

Versorgungsspannung

auf

die

Drehzahl-Drehmoment-Kennlinie

Beim Nebenschlussmotor erzwingt die hohe Induktivität der Feldwicklung eine zu

große Phasenverschiebung zwischen Feld- und Ankerstrom und das Drehmoment

sinkt stark ab. Der Reihenschlussmotor hat diesen Phasenunterschied nicht. 

Universalmotoren sind Gleichstrommotoren (meist vom Reihenschlusstyp), 

die mit Gleich- und Wechselstrom betrieben werden. 

Sie werden immer 2-polig ausgeführt, berücksichtigen im Aufbau des mag-

netischen Kreises mögliche Wirbelströme (lamellierte Bleche) und reduzieren

die starke Funkenbildung am Kommutator (ständige Stromunterbrechung)

als Quelle hochfrequenter Störungen durch Entstörkondensatoren. 

Betriebsweise Die Reihenschaltung von Anker und Feld führt phasengleichen

Wechselstrom  i( t) = ˆ

 I  sin  ωt (drehmomentbildend). Dabei entsteht in der

Erregerwicklung ein stromproportionaler Wechselfluss Φ( t). Er induziert im

Anker (Drehzahl  n) die Spannung  u qi( t) =  c ˆ

Φ2 πn ·  sin  ωt. Mit der Ankerleis-

tung  p( t) =  u qi i( t) entsteht das Drehmoment (Abb. 5.2.9a)

 p

 cˆ

 M

( t)

Φ ˆ

 I

( t) =

(1  −  cos 2 ωt) =  M

2 πn =  c ˆ

Φ ˆ

 I  sin2  ωt = 2

max (1  −  cos 2 ωt)  . 

Das Drehmoment  M ( t) pendelt mit doppelter Netzfrequenz um den (nutz-

baren) arithmetischen Mittelwert. 

Das verursacht zusätzliche Geräusche und mechanische Schwingungen. 

Die Drehzahl-Drehmoment-Kennlinie entspricht etwa der des Gleichstrom-

 √

motors  n ∼  1 / M . Auch hier besteht die Gefahr des Durchgehens“ bei

” 

Entlastung. Die Drehzahlsteuerung erfolgt auf gleiche Weise wie beim Gleich-

strommotor (Abb. 5.2.9b), nämlich Feldschwächung (Anzapfen der Erreger-

wicklung) bzw. Spannungsabsenkung durch vorgeschaltete elektronische Reg-

ler. Im Wechselstrombetrieb ist das maximale Drehmoment bei gleicher Dreh-

zahl (durch spezifische Wechselstromverluste) meist geringfügig kleiner als im

Gleichstrombetrieb. 
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Abb. 5.2.10. Wechselstromasynchronmotor. (a) Steinmetz-Schaltung. (b) Kondensatormo-

tor. (c) Spaltpolmotor für kleine Leistung

Universalmotoren haben wegen des großen Anlaufmomentes ein breites An-

wendungsfeld (Haushaltgeräte, Elektrowerkzeuge, u. a.). 

Ein weiteres Wechselstrommotorprinzip stammt vom Asynchronmotor. Er läuft bei

Ausfall einer Phase ( Übergang zu zwei- oder einphasigem Anschluss) mit reduzier-

ter Leistung zwar weiter, kann aber nach Stillstand nicht eigenständig anlaufen. 

Dann verhält er sich wie ein sekundärseitig kurzgeschlossener Transformator. Erst

durch Anwurf bewegt er sich weiter. Dabei entsteht durch die induzierten Läufer-

ströme ein Drehfeld in Drehrichtung und der Motor arbeitet als Einphasenmotor. 

Ein eigenständiger Anlauf kann durch zusätzliche Schaltelemente oder konstruktive

Änderungen (z. B. Hilfswicklung) erreicht werden. Die einfache Lösung nach Stein-

metz (s. Bd. 3, Abb. 5.2.10a) führt die dritte Phase über eine große Kapazität an

eine der beiden anderen Phasen. Dadurch hat der Spulenstrom nur eine Phasenver-

schiebung von etwa 90 ◦ (statt 120o) und der Motor zeigt brauchbares Anlauf- und

Betriebsverhalten. Daran lehnt der  Kondensatormotor  an (Abb. 5.2.10b) mit nur

zwei, um 90 ◦  räumlich versetzten Wicklungen (Haupt- und Hilfswicklung) auf dem

Ständer. Durch letztere fließt ein zeitlich um etwa 90 ◦  verschobener Strom. Wir

betrachten zwei verbreitete Lösungen: den Kondensator- und den Spaltpolmotor. 

Beim  Kondensatormotor  werden zwei räumlich senkrechte Wechselfelder addiert, 

die zeitlich um 90 ◦  phasenverschoben sind. So entsteht bei Amplitudengleichheit ein

Drehfeld. Nach Anlauf wird die Hilfswicklung abgeschaltet. Die Kondensatorgröße

bestimmt das Anlaufmoment; man kann z. B. mit großem Kondensator anfahren

und nach dem Hochlaufen auf einen kleineren umschalten. Solche Motoren sind

im Leistungsbereich bis 2000 W in Haushaltgeräten weit verbreitet (Kühlschrank, 

Waschmaschine, Pumpen, Lüfter). 

Eine andere Spezialform des Einphasen-Asynchronmotors ist der  Spaltpolmotor

(Abb. 5.2.10c). Seine Polschuhe sind in zwei Bereiche unterteilt: die Hauptwick-

lung und die (kleinere) Kurzschlusswindung. In ihr induziert das Wechselfeld einen

Strom, der den Flussanteil durch die Hilfswicklung um 90 ◦  gegen den Fluss der

Hauptwicklung ΦH verschiebt. Diese räumlich-zeitlich versetzten Flüsse addieren

sich zu einem Drehfeld in Drehrichtung Haupt- zu Spaltpol (konstruktiv bestimmte
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Drehrichtung). Solche Motoren sind durch ihren einfachen Aufbau die wirtschaft-

lichsten Wechselstrommotoren im Leistungsbereich unter 300 W (Pumpen, Lüfter). 

Neben dem Asynchronmotor mit Hilfsmaßnahmen wird auch der  Einphasen-

oder  Wechselstrom-Synchronmotor  mit Permanenterregung (Abb. 5.2.8c) im

Kleinleistungsbereich eingesetzt. Er braucht zum

Tritt fassen“ eine An-

” 

laufhilfe, beispielsweise eine um 90 ◦  versetzte Hilfswicklung (Zweiphasen-

Synchronmotor). Sie definiert die Drehrichtung im Gegensatz zum Einpha-

senmotor, der je nach Anwurf in beiden Richtungen anlaufen kann. Das

entfällt beim Betrieb mit Frequenzumrichter, der die Frequenz kontinuier-

lich von Null auf Netzfrequenz steuert. 

Die Einsatzgebiete des Wechselstromsynchronmotors liegen dort, wo konstan-

te Drehzahl und einfache Bauweise gefordert sind: Uhren-, Stell-, Pumpen-, 

Ventilantriebe u. a. 

5.2.5 Schrittmotor

Unterschiedlichste Positionierungsaufgaben erfordern schrittweise steuerbare

Bewegungen, vorgegeben in digitalisierter Form. Die Lösung ist der Schritt-

motor mit  schrittweiser  Bewegung der Motorwelle um definierte Winkel-

schritte durch ein impulsartig weitergeschaltetes Statormagnetfeld. 

Schrittmotoren sind elektromechanische Energiewandler mit digitaler Infor-

mationsaufbereitung, die eine schrittweise Rotations- oder Linearbewegung

in bestimmten Winkelschritten nach einem Steuerprogramm durchführen. 

Zum Motorantrieb (Abb. 5.2.11a) gehört ein  Steuerger¨

 at (Logik zur Erzeu-

gung der Impulsfolge, Leistungselektronik-Stellglied), das Steuerimpulse (als

zyklische Folge oder Programm) erzeugt und der eigentliche  Schrittmotor

als elektrisch-mechanischer Schrittumsetzer. Die Steuerimpulse bewegen den

Läufer definiert um dem Winkel  ϕ =  nα  mit dem Motorschrittwinkel  α. 

Abb. 5.2.11. Schrittmotor. (a) Steuerprinzip. (b) Reluktanzschrittmotor. (c) Permanent-

magnetschrittmotor
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Aufbau Schrittmotoren werden als Reluktanz-, Hybrid- oder Permanentmag-

netmotor ausgeführt.  Reluktanzmotoren  haben als Merkmal ausgeprägte Pole

oder Nuten im Läufer bzw. Ständer (Abb. 5.2.11b). Dadurch ändert sich bei

Drehbewegung der magnetische Widerstand (Reluktanz). Die Feldkraft dreht

den Anker stets auf minimalen magnetischen Widerstand. Praktisch rotiert

ein Rotor mit ausgeprägten Polen aus weichmagnetischem Material in einem

Ständer mit mehreren Magnetspulen. Die Drehbewegung entsteht durch An-

ziehen des nächsten Rotorpolzahnes bei Einschalten der Folgespule. 

Der  Permanentmagnetschrittmotor (Abb. 5.2.11c) hat einen spulentragenden

Stator aus Weicheisen. Durch zyklisches Fortschalten der Statorspulen wird

der Rotor schrittweise durch die magnetische Kraft nachgezogen. 

Der  Hybridschrittmotor, heute am meisten verwendet, kombiniert beide Bau-

formen: der Dauermagnet trägt zusätzlich noch einen gezahnten Weicheisen-

kranz. Die Läuferbauform bestimmt den Schrittmotortyp. 

Der  Reluktanzschrittmotor  hat im einfachsten Fall zwei Steuerwicklungen

auf einem vierpoligen Ständer und einen Läufer mit ausgeprägten Polen. 

Bei zyklischer Erregung der Steuerwicklung durch Steuerimpulse stellt sich

der Polrotor jeweils auf minimalen magnetischen Kreiswiderstand ein. Durch

Erregung der Folgewicklung dreht das Polrad einen Schritt weiter. So wird

bei jedem Stromimpuls ein genau definierter Winkelschritt ausgeführt. Zwei-

und mehrphasige Motoren mit  m = 2  . . .  5 Wicklungssträngen und 2 p  Polen

führen zum minimalen Schrittwinkel  α = 360 ◦/(2 pm) von wenigen Grad. Er-

reicht werden bis zu 200 Schritte pro Umdrehung, im sog.  Mikroschrittbereich

auch deutlich mehr. 

Der Schrittmotor entspricht nach Aufbau und Funktion einem Synchronmo-

tor, dessen Rotor durch ein rotierend-schrittweise gesteuertes Ständerfeld

um einen Schrittwinkel weiterdreht und der Vorgang zyklisch fortläuft. 

Schrittmotoren arbeiten im Voll- oder Halbschrittbetrieb. Im ersten Fall er-

hält nur eine Statorwicklungen den Stromimpuls und der Läufer stellt sich auf

sie ein. Im Halbschrittbetrieb werden abwechselnd ein oder zwei benachbarte

Wicklungen eingeschaltet. Dann wechselt der Läufer direkt auf den zugehö-

rigen Ständerpol und anschließend auf eine Mittelstellung. So bewegt er sich

nur um den halben Schrittwinkel. 

Schrittmotoren haben keine Sensoren zur Erkennung der Rotorposition. Des-

halb muss die Schrittsteuerung sehr genau ablaufen, außerdem kann der Rotor

bei zu großer Last dem Drehfeld nicht mehr nachfolgen. 

Die Anwendungen sind vielfältig: Positionierantriebe (Werkzeugmaschinen, Rege-

lungstechnik, Sensoren, Programmgeber, Belegleser, Ventilverstellung), Einstellauf-
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gaben (Spiegel, Scheinwerfer, Sitze). Man findet sie weiter in Robotern, Handha-

bungsgeräten, Positioniertischen, in der Leiterplattenbestückung, auch in der Infor-

mationstechnik: Drucker, Plotter, Schreibmaschinen, Diskettenlaufwerke, Scanner, 

Festplatten-, CD-ROM-Laufwerke. In der Fototechnik dienen sie zu Projektoran-

trieb und Kamerablendensteuerung. Auch analoge Quarzuhren verwenden Schritt-

motoren (Leistungsbereich  <  10 µW). Sie werden auch als Linearantrieb ausgeführt. 

5.2.6 Linearmotor

Neben rotatorischen Bewegungen gibt es zahlreiche Anforderungen mit  li-

 nearen  Bewegungen. Abgesehen von der Wandlung durch aufgabenspezifi-

sche Rotations-Translations-Umformer (Zahnräder, Spindeln, Hebel, Kur-

beln) mit ihren Nachteilen (bewegte Massen, Positionierprobleme) bieten

 Lineardirektantriebe 4 eine Alternative. Ihre Grundlage ist die elektrodyna-

mische Kraftwirkung (stromdurchflossener Leiter im Magnetfeld), oft unter-

stützt durch die Reluktanzkraft zufolge bewegungsbedingter Änderung des

magnetischen Kreises. 

Linearantriebe bieten mehrere Vorteile: großflächige, berührungslose Kraft-

übertragung auf das Transportmedium, Wegfall mechanischer Übertragungs-

elemente. Nachteilig ist die problemspezifische Ausführung für den jeweiligen

Fall, deshalb gibt es keine Motorbaureihen. 

Beispiele von Linearantrieben sind die bewegte Leiterschleife im Magnetfeld

(Abb. 3.3.13), der dynamische Lautsprecher (Abb. 4.3.14a, aus Motorsicht ein

Tauchspulmotor“) und der Elektromagnet mit kleinem Bewegungsspielraum. 

” 

Prinzip Der Linearmotor entsteht aus dem Rotationsmotor mit Ständer und

Läufer unbegrenzt wirksamer Länge durch

Abrollen in der Ebene“

” 

(Abb. 5.2.12a): die unbegrenzte Rotationsbewegung wird zur begrenzten

Translationsbewegung. Zur Verlängerung der Fahrstrecke wird so entweder

der Stator ( →  Langstator) oder der Läufer ( →  Kurzstator) verlängert. Da-

bei gelangt die Antriebsenergie auf den bewegten Teil (aufwendiger), beim

Langstatormotor auf den feststehenden. Genutzt werden die Lorentz-Kraft

(meist), aber auch die Grenzflächenkraft (s. Kap. 4.3.2.3). Weitere Unter-

scheidungsmerkmale des Linearmotors sind neben dem Funktionsprinzip die

Art des bewegten Systems (Spule, Erreger- oder Dauermagnet), Magnetfeld-

gestaltung, die Luftspaltausführung (mechanisch fest eingestellt oder durch

Magnetkraft fixiert) u. a. m. Abb. 5.2.12b zeigt eine Anordnung mit beweg-

ter Spule und feststehendem Permanentmagneten, Abb. 5.2.12c eine mit be-

weglichem Magnet. Derartige Bauprinzipien sind variantenreich, vor allem

4Von C. Wheatstone 1858 erfunden. 
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Abb. 5.2.12. Linearmotor. (a) Ableitung des Linearmotors aus dem Rotationsmotor. 

(b) Linearmotor mit bewegter Spule in Zylinder- oder Kastenform und feststehendem Per-

manentmagnet. (c) dto. mit bewegtem Magnet und fester Spule. (d) Prinzipformen mit

unterschiedlichen Rotor-/Statorlängen. (e) Kammform

bezüglich der relativen Länge von Rotor und Stator (Abb. 5.2.12d). Ne-

ben der Spulenform Abb. 5.2.12b,c gibt es auch kammförmige Anordnungen

(Abb. 5.2.12e). 

Im Betriebsverhalten hat der Linearmotor folgerichtig statt der Drehmoment-

Drehzahl-Kennlinie die  Kraft-Geschwindigkeits-  oder  Kraft-Weg-Kennlinie. 

Weitere Besonderheiten sind:

die Start-Stop und Umsteuer-Vorgänge bei jeder Bewegung, 

der begrenzte Hub und die stärkeren mechanischen (dynamischen) Ge-

genkräfte (Massenbewegung, Lastkraft  . . . ). 

Wegen des direkten Bezugs zum Rotationsmotor gelten alle bekannten Mo-

torprinzipien auch für den Linearmotor. 

Verbreite Linearmotoren sind Asynchronmotoren mit Kurzschlussläufer, per-

manenterregte Synchronmotoren, Gleichstrom- und geschaltete Reluktanz-

motoren (Gerätebau). Wir greifen einige Beispiele heraus. 

Elektrodynamischer Linearmotor Dem Gleichstrommotor entspricht der  elek-

 trodynamische Linearmotor. Auch hier bewegt sich ein gleichstromdurchflos-

sener Leiter im zeitkonstanten Magnetfeld allerdings nicht auf einer Kreis-

bahn, sondern linear. In seiner praktischen Ausführung (Tab. 5.4) gibt es

große Vielfalt durch die bewegten Teile, ihre Abmessungen, die Spulengestal-

tung und den räumlichen Magnetfeldbereich. Je nach Erregerfeldgestaltung
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Tab. 5.4. Übersicht Linearmotoren

Abb. 5.2.13. 

Linearmotor. 

(a)

Gleichpolmotor

mit

mechanischer

Kommutierung. 

(b) Wechselpolmotor

existieren Gleich- und Wechselpolausführungen. Während sich beim Gleich-

strommotor der gleiche Leiter abwechselnd durch das Magnetfeld eines Nord-

und Südpols bewegt, macht beim Linearmotor auch eine Bewegung nur im

gleichen Polfeld Sinn:  Gleichpolmotor. 

Der  Gleichpolmotor ohne Kommutierung  nutzt das dynamische Lautspre-

cherprinzip mit bewegter Zylinderspule (auch Kasten- oder Flachspule). Sie

erlaubt einen  Schwenkantrieb, etwa zur Kopfpositionierung in Festplatten-

laufwerken oder beim CD-Player. 

Ein  Gleichpolmotor mit B¨

 urstenkommutierung  entsteht (Abb. 5.2.13a), wenn

die im Erregerkreis bewegliche Ankerspule über Schleifkontakte a–c zugängig

ist. Dann kann der Ankerstrom so fließen, so dass sein Magnetfeld in Rich-

tung oder entgegengesetzt zum Erregerfeld wirkt: Ankerbewegung nach links

oder rechts. Je nach der Schaltung von Erregung und Anker (Neben-, Rei-

henschluss) stellt sich ein  v,  F -Verhalten analog zur Drehzahl-Drehmoment-

Kennlinie des Gleichstrommotor ein. 
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Größere Bewegungslängen erfordern  Wechselpolfelder  mit alternierender Fol-

ge magnetischer Teilbereiche (Abb. 5.2.13b). So durchsetzt der Fluss jeweils

nur den Nachbarabschnitt und zieht die Ankerspule nach. Durch Aneinander-

reihung zweier Spulen und Stromkommutierung (meist elektronisch) bewegt

sich dann die Ankerspule fortlaufend. Das Erregerfeld kann ebenso durch

Spulen entstehen. 

Ein weiterer Vorteil des Linearantriebs ist die Erweiterbarkeit auf mehrere

Koordinaten ( x, y- oder  x, y, φ-Koordinaten) ohne mechanische Zwischenlö-

sungen, wie sie Positionieraufgaben (Messtechnik u. a.) erfordern. 

Asynchronlinearmotor Breite Anwendung finden  drehstrombetriebene Linear-

 motoren  in Synchron- und Asynchronausführung mit Kurz- und Langständer. 

Beide entstehen durch Aufschneiden und Abwickeln“ der entsprechenden ro-

” 

tierenden Maschinen. 

Beim Aufrollen eines aufgeschnittenen Stators des Asynchronmotors (Primär-

teil mit Ständerwicklung, Abb. 5.2.14) entsteht ein kammförmiger  Erreger-

oder  Induktorkamm  mit der eingelegten 3-phasigen Wicklung (die sich längs

des Bewegungsweges beständig wiederholen muss). In ihm mutiert das Dreh-

feld zum  transversal bewegten Feld, einem  Wanderfeld B( x,  t). Es breitet sich

über den Induktor mit der Synchrongeschwindigkeit  v s (typ. 1  . . .  15 m/s)

aus und durchläuft während einer Periode die Länge 2 τ p (doppelte Poltei-

lung  τ p):  v s = 2 τ p f . Die Rolle des Kurzschlussläufers beim Asynchronmotor

übernimmt eine ebene, gut leitende Metallplatte, die  Reaktionsschiene (Schie-

ne, Läufer, Sekundärteil). In diesem Läufer“ entsteht ein Induktionsfeld mit

” 

Wirbelströmen. Ihre Wechselwirkung mit dem Magnetfeld erzeugt eine Kraft

in Richtung des Wanderfeldes und es kommt zur Translation: das Wanderfeld

zieht den Läufer mit. Die Kraft hängt wie beim Asynchronmotor vom Schlupf

ab. Die Relativgeschwindigkeit  v  zwischen Sekundär- und Primärteil

 v =  v s(1  − s) , v s = 2 fτ p

wird durch Wanderfeldgeschwindigkeit  v s, Schlupf  s  und die Polteilung  τ p

bestimmt. Die größte Kraftwirkung entsteht bei Stillstand ( v = 0). Weil

der Luftspalt konstruktiv größer als beim Drehfeldmotor sein muss, hat der

Linearmotor einen größeren Schlupf. 

Oft wird der magnetische Kreis durch einen magnetischen Rückschluss über

dem Läufer oder einen gespiegelten oder Doppelinduktor verbessert. 

Der Bauform nach gibt es den  Langst¨

 andermotor  mit dem Induktor verteilt

über die Bewegungslänge (Verkehrszwecke, Transrapid, Achterbahnen) und

den  Kurzst¨

 andermotor  entweder mit fester Läuferschiene und bewegtem In-

duktor oder umgekehrt. 
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Abb. 5.2.14. Asynchronlinearmotor. Aufbau und Funktionsprinzip

Beim Transrapid liegt die Drehstromwicklung längs der Trasse (in Abschnitte

unterteilt) und die Fahrgastkabine sitzt auf dem Läufer. Seine Wicklung wird, 

wie bei der Synchronmaschine, mit Gleichstrom erregt. Man gewinnt ihn

durch induktive Kopplung aus Oberwellen des Ständerfeldes. So entfallen

Schleifer zur Gleichstromübertragung. 

Voraussetzung für den Betrieb von Linearmotoren ist eine  frequenzregelbare

 Drehstromversorgung  zum Anfahren und Abbremsen. 

Charakteristisch ist ein  s,  F -Verlauf mit dem typischen Kipppunkt des Asyn-

chronmotors (Abb. 5.2.14), denn analoge Größen sind Schubkraft  F  und

Drehmoment  M , Geschwindigkeit  v  und Drehzahl  n. Die Kraft-Geschwindig-

keitskennlinie des Linearmotors beginnt mit hohem Einschaltwert und sinkt

mit der Last (stärker als beim Asynchronmotor) ab. 

Linearmotoren haben breite Einsatzgebiete:

Werkzeugmaschinen, Hochgeschwindigkeits- und Maschinenschlitten, 

Automatisierungstechnik: Förder- und Verkettungsanlagen, Transport- und Be-

stückungssysteme, Drucktechnik, Prüfautomaten, Hebeeinrichtungen, 

Gerätetechnik: Positionierantriebe (Messsonden, Schreibstifte in Plottern), Tex-

tilmaschinen, Drucker, Textverarbeitungsmaschinen, Festplatten-, CD-ROM-

Laufwerke, Scanner, Objektivsteuerung, 

Maschinenbau: Laserbearbeitung, Bondeinrichtung, Leiterplattenbearbeitung, 

Bearbeitungsmaschinen, 

Robotertechnik: sphärische Motoren für mehrdimensionale Bearbeitung, 

Verkehrstechnik: Hochgeschwindigkeitssysteme. Man verlegt entweder den Se-

kundärteil (Reaktionsschiene) im Boden und verlagert den Primärteil ins Fahr-

zeug oder versieht die ganze Transportstrecke mit einer Wicklung, wobei nur der

Teil unter Spannung stehen muss, über dem sich das Fahrzeug (Läufer) gerade

befindet (Transrapid-Prinzip). 
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Zusammenfassung: Kapitel 5

1. 

Typische elektromechanische Aktoren sind Elektromagnet und Elektro-

motor zur Erzeugung translatorischer oder rotatorischer Bewegung durch

Wandlung elektrischer in mechanische Leistung mit einem zeitveränder-

lichen Magnetfeld als Mittler. Grundlage: Dreh-/ fortschreitende Bewe-

gung durch Kräfte (anziehend, abstoßend) zwischen zwei Magnetfeldern

(eines fest, eines beweglich oder beide zueinander in Relativbewegung). 

Wenigstens ein Feld wird durch Strom (Lorentz- oder Reluktanzkraft im

magnetischen Kreis) erzeugt. Der feststehende Magnetfeldbereich ist der

Stator, der bewegliche der Rotor/Anker. 

2. 

In jedem Motor wirken gesetzmäßig zusammen: die strombedingte Kraft-

wirkung (Bewegungsursache), die bei der Leiterbewegung induzierte Ge-

genspannung (mit Gegenstrom nach der Lenzschen Regel im Versor-

gungskreis, der die Bewegung zu hemmen sucht) und die Überwindung

der Gegenspannung durch die anliegende Spannung. So wird elektrische

Leistung in mechanische ( p mech =  F v  bzw.  p mech =  Mω) umgesetzt. 

3. 

Der Leistungsumsatz erfolgt über die Änderung der magnetischen Ener-

gie  W m (Folge: Induktionswirkung):  p el =  p mech + d W m

d t . Die magnetische

Energie variiert durch Veränderung des Luftspaltvolumens (Arbeitsraum

des Energieumsatzes, Änderung erforderlich) als dominierender Speicher-

ort der magnetischen Energie. 

4. 

Nach Art der Magnetfelderzeugung gibt es drei Motorgruppen: Gleich-

strom-, Synchron- und Induktions- oder Asynchronmotoren. 

5. 

Der Gleichstrommotor besteht aus einem feststehenden konstanten Mag-

netfeld (Dauermagnet, Erregerspule, Stator) und mindestens einer be-

weglichen Leiterschleife (Anker) versehen mit dem Kommutator/Um-

schalter. Prinzip: bewegliche (meist drehbare) Leiterschleife im Magnet-

feld. Je nach Schaltung von Erregerspule und Anker gibt es Haupt- und

Nebenschlussmotor als wichtigste Formen. 

6. 

Weil sich beim Hauptschlussmotor im Betrieb mit Wechselspannung die

Polung von Erreger- und Ankerfeld gleichzeitig ändert, arbeitet er auch

mit Wechselstrom (Universalmotor). 

7. 

Grundlage des Synchronmotors ist ein Drehfeld. Es entsteht durch drei

räumlich um 120 ◦  kreisförmig angeordnete Spulen, versehen mit drei zeit-

lich um 120 ◦  versetzten gleichen Strömen. Das Drehfeld zieht einen mittig

drehbar angeordneten Magnet (Rotor) mit, er läuft ihm synchron nach. 

So stimmt seine Drehzahl mit der des Drehfeldes überein. Deshalb läuft

ein solcher Motor bei fester Netzfrequenz nicht an (Anwurf erforderlich). 

Erst variable Frequenzsteuerung erlaubt Selbstanlauf. 

8. 

Beim Induktions- oder Asynchronmotor bewegt sich ein Läufer (Rotor

aus kurzgeschlossenen Leiterschleifen) im Drehfeld. Durch Induktion ent-
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steht in ihm ein Kurzschlussstrom und so ein Magnetfeld, das dem Dreh-

feld entgegen gerichtet ist. Resultierend wirkt ein Drehmoment auf den

Rotor, er läuft nach. Damit sich das resultierende Magnetfeld ändert (und

damit Induktion fortbesteht), muss er sich geringfügig langsamer drehen. 

So entsteht ein Schlupf; er ist für die Energieübertragung unerlässlich. 

9. 

Die Grundprinzipien rotierender Motoren sind voll auf Linearmotoren

übertragbar. 

Selbstkontrolle: Kapitel 5

1. 

Was ist das Grundprinzip eines Motors? 

2. 

Welche Grundgleichungen bestimmen das Verhalten eines Motors? 

3. 

Welche Typen von Elektromotoren gibt es? 

4. 

Geben Sie die Grundgleichungen eines Gleichstrommotors an! 

5. 

Wie funktioniert die Motorbremsung? 

6. 

Erläutern Sie das Drehmoment, das eine stromdurchflossene Spule

( w  Windungen, Strom  I, Spulenfläche  A) im homogenen Magnetfeld

(Flussdichte  B) erfährt! Wie kann daraus ein Motor hergestellt werden? 

7. 

Erläutern Sie das Prinzip der Wirbelstrombremsung durch elektrotech-

nische Gesetze! 

8. 

Was bedeutet der Begriff der Kommutierung? 

9. 

Was ist ein Drehfeld? 

10. Was ist der Schlupf? 

11. Wie lautet der Zusammenhang zwischen Drehmoment und Drehzahlfre-

quenz beim Asynchronmotor? 

12. Wie funktioniert ein Synchronmotor? 

13. Wie hängt die Drehzahl des Synchronmotors von der Last ab? 

14. Erläutern Sie den Aufbau eines Linearmotors! 
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6 Analogien zwischen

elektrischen und

nichtelektrischen Systemen

Lernziel Nach Durcharbeit des Kapitels sollte der Leser in der Lage sein

den Netzwerkbegriff auf nichtelektrische Systeme zu erweitern

verschiedene Zuordnungen von elektrischen zu nichtelektrischen Größen anzu-

geben, 

für ein nichtelektrisches System ein elektrisches Ersatzschaltbild herzuleiten, 

Verbraucher und Energiespeicher in verschiedenen physikalischen Systemen zu

charakterisieren, 

das Prinzip des Wandlers zu erklären, 

die Beschreibung von Wandlern mit Bezug zur Zweitortheorie zu diskutieren, 

den Energietransport in Wandlern zu beschreiben, 

Kontinuitäts- und Kompatibilitätsgleichungen aufzustellen. 

Energiewandlung wird in der Elektrotechnik breit genutzt: jeder Widerstand

erwärmt sich, chemische Vorgänge sind die Grundlage der Batterien, eine

Glühlampe erzeugt Strahlungsenergie, ein Generator formt mechanische in

elektrische Energie um u. a. Dieses Kapitel beschreibt die Modellierung der

Energiewandlung. Ziel ist dabei, ein System aus Komponenten unterschied-

licher physikalischer Teilgebiete durch  Analogiebetrachtung  als erweitertes

Netzwerk nach einheitlichen Gesichtspunkten zu beschreiben. 

6.1

6.1 Physikalische Netzwerke

Einf¨

uhrung Die Analyse elektrischer Netzwerke beruht auf physikalischen

Grundgesetzen und ausgereiften mathematischen Methoden. Deshalb emp-

fiehlt sich die Übertragung dieser Methodik auch auf andere Teilgebiete der

Physik durch  Analogien. 

Physikalisch-mathematische Analogien modellieren das Systemverhalten

physikalischer Teildisziplinen nach elektrotechnischen Systemgesichtspunk-

ten, beschreiben also nichtelektrische Systeme und ihre Komponenten durch

elektrische Systeme und Modellelemente. 

Eine Analogie überträgt Kenntnisse eines Gebietes auf ein anderes (Beispiel: An-

wendung des Stromkreismodells auf den magnetischen Kreis). Analogien wurden

auch für thermische, mechanische und strömungstechnische (Pneumatik, Hydraulik, 

Akustik) Probleme entwickelt. Selbst zwischen elektrischen Stromkreisen und Fel-

St. Paul, R. Paul,  Grundlagen der Elektrotechnik und Elektronik 2
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dern existieren Analogiemodelle. Ihre Grundlage sind ineinander überführbare ma-

thematische Beschreibungen, ähnliche oder gleichartige physikalische Grundprin-

zipien (z. B. Bilanzgleichungen) sowie strukturelle Ähnlichkeiten im Systemaufbau

und Verhalten. So liegt nahe, elektrische Netzwerke zu  physikalischen Netzwerken

zu erweitern. 

Beispiel 6.1.1 Masse-Feder-D¨

ampfer-System In einem Masse-Feder-Dämpfer-Sys-

tem (z. B. Abb. 4.3.7b) wirken alle Kräfte auf die Masse (also einen Punkt) und

addieren sich zu Null. Dann gilt

 m¨

 x +  b ˙

 x +  kx =  F. 

Zum Auffinden einer analogen elektrischen Schaltung setzen wir zunächst  Kr¨

 afte

 mit Str¨

 omen  und  Geschwindigkeiten mit Spannungen  gleich. Dann addieren sich die

Ströme in einem Knoten zu Null



 u

1

˙

Ψ

Ψ

 C ˙

 u

Q

Q +

+

 u

+

=  i

 R

 L

Qd t =  i Q

 → C ¨

Ψ +  R L

Q , 

rechts gleichwertig mit Einführung des magnetischen Flusses ( ˙

Ψ =  u Q) statt der

Spannung  u Q =  u. Die Schaltungsstruktur Abb. 4.3.7c entspricht genau der me-

chanischen Form: verknüpft sind Kapazität und Masse, Dämpfung und inverser

Widerstand sowie Federkonstante und inverse Induktivität. Der Quellenstrom ent-

spricht der anregenden Kraft. 

Alternativ können auch  Kraft und Spannung  sowie  Geschwindigkeit und Strom  zu-

geordnet werden; dann müssen sich Spannungen analog zu den Strömen zu Null

addieren und folglich sind die Elemente in einer Masche anzuordnen. Dafür gilt



1

 Q

 L˙ i Q +  Ri Q +

 i

=  i

 C

Qd t =  i Q

 → L ¨

 Q +  R ˙

 Q +  C

Q , 



rechts wurde die Gleichung mit der Ladung  Q =

 i d t  formuliert. Auch sie ent-

spricht strukturell dem mechanischen Modell, allerdings korrespondieren Induk-

tivität und Masse, Widerstand und Dämpfung sowie Federkonstante und inverse

Kapazität und die Quellenspannung mit der anregenden Kraft. 

Je nach Zuordnung der Größen und Grundelemente sind zwei Analogien möglich. 

Die Kraft-Strom-Analogie hat den Vorteil, dass die Struktur des mechanischen Sys-

tems elektrisch erhalten bleibt: Parallel- bleibt Parallelschaltung usw. und es gelten

die Kirchhoffschen Regeln: Kräfte/Ströme in einem Knoten und Relativgeschwin-

digkeiten und Spannungen einer Masche heben sich auf. Dagegen treffen die Kirch-

hoffschen Regeln nicht zu, wenn Kraft und Spannung zugeordnet werden. 

6.1.1 Verallgemeinerte Netzwerke

Technische Systeme transportieren bzw. wandeln Materie, Energie und/oder

Information. Wir beschränken uns auf die Energie. 

In energiewandelnden physikalischen Systemen mit konzentrierten Parame-

tern, verstanden als  physikalisches Netzwerk, haben  Energiestr¨

 ome (Dimensi-

6.1
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Abb. 6.1.1. Energievariable und ihre Darstellungen. (a) Verallgemeinerte Energiegrößen. 

(b) Zusammenhang zwischen Energie- und Leistungsvariablen in elektrischen Speicherele-

menten, Veranschaulichung der Energie und Ko-Energie

on Leistung pro Fläche, Gl. (4.2.3)) und zugehörige Leistungs- und Energiebi-

lanzen grundlegende Bedeutung. Die Leistung wird stets durch die  Leistungs-

 variablen Strom und Spannung  bestimmt. Bei einer  Energiespeicherung  oder

 -wandlung  z. B. über zeitveränderliche Energiespeicherelemente bestimmen

dagegen  Energievariable  wie  Ladung Q  und  Spannung u  am Kondensator bzw. 

 Verkettungsfluss Ψ und  Strom i  an der Induktivität das Verhalten. Da Energie

und Leistung zusammenhängen (Gl. (4.1.1)), gehört zum Erhaltungssatz eine

 Bilanzgleichung. Energie ist aber ein allgemeiner Begriff und deswegen erfor-

dert die Übertragung des Netzwerkkonzeptes auf andere physikalische Teilge-

biete  verallgemeinerte Energie- und Leistungsvariablen. Man führt dazu ein:

 P -Variable: Zustandsgröße in einem Raumpunkt (P lat. per- durch); 

 T -Variable: Zustandsgröße zwischen zwei Raumpunkten (T lat. trans- über). 

Für das Teilgebiet Elektrotechnik gilt beispielsweise:



 P -Variable: Ladung  Q =

 i d t, auch  Stromstoß, (verallgemeinert  Auslen-

 kung x, [ Netzwerkanalogie: Impuls p]); 



 T -Variable: Verkettungsfluss Ψ =

 u d t, auch  Spannungsstoß (verallge-

meinert  Impuls p [ Netzwerkanalogie: Auslenkung x]). 

Die Zustandsgrößen Ladung  Q  und Fluss Ψ (Abb. 6.1.1a) kennzeichnen die

Speichereigenschaften des elektrischen und magnetischen Feldes (Energie  W d, 
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 W m). Jede Variable lässt sich als  Quantitäts- ( q) (Mengen-) bzw.  Inten-

 sit¨

 atsgr¨

 oße i  ausdrücken:

d q( t)

d q

dΨ( t)

d q

d Q( t)

 i( t) =

:  i

T  → u( t) =

:  i

P  → i( t) =

 . 

d t

T =

d t

d t

P =

d t

d t

Die  Leistung  oder der  Energiefluss  ist das  Produkt beider Intensit¨

 atsgr¨

 oßen

 als Folge des ¨

 Ubergangs zum Netzwerk  mit Knoten und Maschen:

 p =  i T  · i P

 →

 p =  i · u =  e · f. 

Physikalische Systeme haben stets zwei  Leistungsvariablen:

Potenzialdifferenz  e( t), engl. effort“ als Differenz zwischen zwei Punk-

” 

ten (verallgemeinert elektrische Spannung, Kraft [Netzwerkanalogie: Ge-

schwindigkeit  v]), 

Flussgröße, Strom  f ( t) engl. flow“ als Fluss durch eine Klemme (ver-

” 

allgemeinert elektr. Strom, Geschwindigkeit [Netzwerkanalogie: Kraft].)

Tabelle 6.1 enthält diese Zuordnungen. Nach ihrer messtechnischen Erfass-

barkeit und räumlichen Ausdehnung heißen sie auch  Quer-  und  Durchgr¨

 oßen:

eine Quergröße misst man  zwischen  zwei Klemmen (deshalb 2-Punkt-Größe), 

 Durchgr¨

 oßen  werden  an einer  Klemme gemessen. Ihre Zuordnung zu physi-

kalischen Teilgebieten erfolgt nach  Zweckm¨

 aßigkeit. Während manche Teil-

gebiete nur  eine Zuordnung  verwenden (Elektrotechnik:  e :=  u  Spannung, 

 f :=  i  Strom), verwenden  mechanische  Systeme  beide Zuordnungen:  e :=  F

Kraft,  f :=  v  Geschwindigkeit oder auch  f :=  F  Kraft,  e :=  v  Geschwindigkeit und es gibt je nach Zuordnung von Kraft und Geschwindigkeit zu Strom

und Spannung  zwei Analogien. Soll dabei die  Netzwerkstruktur  erhalten blei-

ben (Parallelschaltung bleibt Parallelschaltung usw.) so erfüllt nur die schon

erwähnte Zuordnung

Strom  i =  f :=  F  Kraft und Spannung  u =  e :=  v  Geschwindigkeit

diese Bedingung (in Tab 6.1 berücksichtigt). 

Bei Verwendung der Quer-Durch-Darstellung als Leistungsvariable  e,  f  und

der Zuordnung Strom  i =  f :=  F  Kraft und Spannung  u =  e :=  v  Geschwindigkeit enthalten die Knoten- und Umlaufgleichungen die gleichen Variablen

und elektrische und mechanische Netzwerke unterliegen gleichen Gesetzen. 

Diese Festlegung heißt  Netzwerk-  oder  inverse Analogie (NWA). 

 P - und  T -Variable hängen über die jeweiligen Quantitäts- und Intensitäts-

größen durch Differentiation bzw. Integration zusammen
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 t



 Q =  q P( t) =

 f ( τ )d τ → i = d Q

d t =  f = d q P

d t

0 t

Ψ =  q T( t) =

 e( τ )d τ → u = dΨ

d t =  e = d q T

d t . 

0

 Q, Ψ bzw.  q P,  q T bilden  zwei konjugierte Energievariable, links für das elektri-

sche System, rechts als  verallgemeinerter Impuls  bzw.  verallgemeinerte Aus-

 lenkung (zutreffend für die nicht netzwerkorientierte Analogie). Beide Ana-

logien unterscheiden sich durch Vertauschung der konjugierten Leistungsva-

riablen  ef (Leistung bleibt erhalten, es ändert sich nur die Zuordnung der

Ko-Energie. 

In physikalischen Netzwerken treten  P - und  T -Variable stets gemeinsam auf

und die  verallgemeinerte Leistung  ist das Produkt ihrer Intensitätsgrößen

 p( t)

= d W

d t = Differenzgröße  e( t)  ·  Flussgröße  f ( t)  →

 t



(6.1.1)

 W ( t) =

 e( τ ) f ( τ )d τ

0

mit der Energie als Zeitintegral der Leistung. Die  Energie¨

 anderung  eines

Energiespeichers beträgt d W ( t) =  p( t)d t =  f ( t) e( t)d t. Übertragen auf das elektrische und magnetische Feld ( W d,  W m) lauten dann die Änderungen der

jeweiligen Speicherenergie d W d, d W m

d W P =  i Td q P :  →  el. Feld d W d =  u d Q

(6.1.2)

d W T =  i Pd q T :  →  mag. Feld d W m =  i dΨ . 

Stets bestimmt die Quantitätsgröße  q  die Speicherart:  T - oder  P -Speicher. 

Abb. 6.1.1b enthält die Energie- und Leistungsvariablen der elektrischen

Energiespeicher einschließlich der Ko-Energie-Funktionen. Sie lauten verall-

gemeinert auch für physikalische Netzwerke

 q P



 Q



 W pot( q P) =

 e( q P)d q P  ≡ W d( Q) =

 u( Q)d Q

0

0

 e



 U



 W ∗

pot( e)

=

 q P( e)d e

 ≡ W ∗(

d  u)

=

 Q( u)d u, 

0

0

 q

(6.1.3)

T



Ψ



 W kin( q T) =

 f ( q T)d q T  ≡ W m(Ψ) =

 i(Ψ)dΨ

0

0

 f



 I



 W ∗ (

(

Ψ(

kin  f )

=

 q T( f )d f

 ≡ W ∗ m  i) =

 i)d i. 

0

0

Eine Sonderrolle spielen thermodynamische Systeme. Dort ist der Wärmestrom

zugleich Energiestrom und es existiert nur einen Potenzialspeicher, kein Stromspei-
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cher. Deshalb gibt es keine Leistung als Produkt von Fluss- und Potenzialgröße. 

Werden solche Systeme aber durch absolute Temperatur und den sog.  Entropie-

 strom S  als zeitliche Ableitung der Entropie  S  beschrieben, so existiert auch eine

Produktdarstellung für die Leistung. 

Physikalische Netzwerke überführen physikalische Eingangsgrößen (etwa ei-

ner Quelle) in entsprechende Ausgangsgrößen ggf. mit Energiewandlung. Des-

halb werden sie am einfachsten durch ein  Zweitormodell  beschrieben, ange-

passt an den jeweiligen Energiefluss. Statt der elektrischen Torgrößen Span-

nung (Potentialdifferenz) und Strom treten jetzt (unabhängig von der Ener-

gieart)  Differenzgr¨

 oßen e( t) und  Flussgrößen f ( t) auf (s. u.). Beim linearen

System gelten dann die Zweitorbeziehungen für die Differenz- und Fluss-

größen nach Kap. 2.6 (Bd. 1) ebenso wie Mehrtorerweiterungen (Kap. 3.6). 

So, wie elektrische Systeme aus unterschiedlichen Netzwerkelementen beste-

hen, gilt dies auch für physikalische Netzwerke. Angelehnt an elektrische Netz-

werke gibt es folgende elementare  Modellelemente:

 Quellen  mit einer Größenabgabe aus einem Vorrat (Spannungs-, Strom-

quellen, mechanische Energie aus einem Reservoire, Wasserbecken, ther-

mische Energie/Sonnenenergie u. a.). Wie im elektrischen Fall ist im  f, e-

Diagramm einer idealen Quelle eine Größe stets unabhängig und als Kenn-

linie tritt eine vertikale oder horizontale Linie auf (Kap. 2.2.1, Bd. 1). 

 Speicher.  Weil sich die Größen  f  und  e  wechselseitig bedingen und wahl-

weise beide als Eingangsgröße wirken können, gibt es Differenz- und Fluss-

speicher. So hängt die gespeicherte Energie bei Potential (Quergrößen-)

Speichern nur vom Potenzial ab, im zweiten Fall vom Fluss. Ihnen entspre-

chen Kondensator und Spule, im mechanischen die Feder (als Potenzial-

speicher) und die bewegte Masse als Stromspeicher. Bei Wärmespeichern

existieren nur Potenzialspeicher. 

 ¨

 Ubertrager  erlauben eine Eingangs-Ausgangskopplung (Getriebe, Trans-

formator, Hebelübersetzung, Wärmeübertrager) und transformieren Ein-

gangs-Ausgangsgrößen in einem bestimmten Verhältnis. 

 Wandler überführen Größen einer physikalischen Disziplin in eine ande-

re. Beispiele sind Generator, Elektromotor, Elektromagnet, die Solarzelle

oder der von einem Widerstand ausgehende Wärmestrom. 

 Senken  modellieren den Verlauf der Eingangsgröße als irreversiblen Ener-

giefluss nur in einer Richtung: elektrischer Widerstand, Dämpfung, Rei-

bung und der Wärmewiderstand. 

Tabelle 6.2 enthält Beispiele dieser Modellelemente. Die Beziehungen zwi-

schen Fluss- und Differenzgrößen liegen, wie bei Netzwerkelementen, durch
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Tab. 6.2. Beispiele unterschiedlicher Modellelemente

Energieform Quelle

Speicher

¨

Ubertrager

Wandler

Senke

Elektrisch

Batterie

Kondensator Leitung

Piezoaktor

Widerstand

- elektrostat. 

Sender

Induktivität Transformator Elektromotor Wirbel-

- elektromag. 

Generator

strom

Mechanisch

Wasserstau

Feder

Hebel

Zylinder-

Reibung

- potenziell

Windenergie bewegte

Gelenk

kolben

- kinetisch

Masse

Getriebe

Strömung

Fluidstrom

Tragflügel

Thermisch

Solarenergie Wärme-

Wärmeleitung Peltier-

Tempera-

Erdwärme

speicher

Wärme-

element

tursenke

Verbrennung

strahlung

Seebeck

die jeweilige Modellgleichung fest. Abbildung 6.1.2 stellt grundlegende Struk-

turelemente zusammen. 

Die Modellelemente verallgemeinern das elektrische Netzwerk zum  physika-

 lischen Netzwerk.  Jetzt treten statt der Ströme in den Verbindungspunkten

 Flussgr¨

 oßen (z. B. die Kraft in der Mechanik, Volumenstrom in der Fluidik)

auf und zwischen den Klemmen  Differenzgr¨

 oßen (z. B. Verschiebung oder

Geschwindigkeiten in der Mechanik, Temperaturunterschiede in thermischen

Systemen, Druckunterschiede in der Fluidik). Für physikalische Vorgänge mit

zwei Netzwerkvariablen  e  und  f  lassen sich folgende zweipoligen Netzwerk-

elemente und Grundbeziehungen definieren

d fi

d em

 en =  γnfn

(a)  ei =  αi

(b)  fm =  βm

(c)

d t

d t





 ei = 0 (d)

 fj = 0 . (e)

Umlauf

Knoten

 f, e  Fluss-, Differenzvariable

(6.1.4)

Das sind Proportionalität ohne Energiespeicherung (entspr. dem Ohmschen

Widerstand (a)), Energiespeicherung über die Flussgröße  f ((b), Indukti-

vität) und Energiespeicherung über die Differenzgröße  e ((c), Kapazität). 

Die Proportionalitätsfaktoren  α,  β,  γ  in Gl. (6.1.4) sind als Elementparameter entweder konstant (linear zeitunabhängige Netzwerkelemente, Regelfall), zeitabhängig

und/oder nichtlinear. Dann gelten die Aufgabenstellungen elektrischer Netzwerke

wie Arbeitspunkteinstellung, Kleinsignalsteuerung usw. sinngemäß. 

Die Netzwerkelemente in Abb. 6.1.2 werden, gebietsabhängig, nicht einheitlich be-

nannt, insbesondere beim Widerstands-(Impedanz-)Begriff:

Differenzgröße  e

 u

Flussgröße  f

 F

=

 , 

=

 → M . 

Flussgröße  f

 i

Differenzgröße  e

 v

 ω
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Abb. 6.1.2. Zweipolelemente verschiedener Disziplinen

Im ersten Fall trifft der Impedanz-/Widerstandsbegriff (Kehrwert Admittanz) elek-

trischer Netzwerke zu. In mechanischen Netzwerken hingegen heißt die umgekehrte

Festlegung Impedanz/Widerstand und der Kehrwert Admittanz. 

Mit angeführt sind in Gl. (6.1.4) die den Kirchhoffschen Gleichungen entspre-

chenden Knoten- und Umlaufbeziehungen im physikalischen Netzwerk. 

Ein wichtiges Netzwerkelement ist der Transformator (Kap. 3.4.3) oder allge-

meiner das  Koppelzweitor. Es modelliert einen Leistungsfluss zwischen zwei

gekoppelten Flusskreisen über seine Ein- und Ausgangstore. Abhängig von

den Übertragungsmerkmalen kann die Anordnung auch als  Gyrator  wirken. 

Gehören die Torgrößen verschiedenen physikalischen Teilgebieten an, z. B. 

elektrisch auf Seite 1 mit den Variablen  e 1,  f 1 und nichtelektrisch auf Seite 2

mit  e 2,  f 2, so liegt ein  elektrisch-nichtelektrisches Zweitor oder Wandlerzwei-

 tor  vor. 
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6.1.2 Wandlerelemente

Wandler Wandler formen Energie (oder Signale) einer physikalischen Art in

eine andere um, reversibel oder nichtreversibel. Hier interessieren nur solche, 

die nichtelektrische Energie in elektrische und umgekehrt wandeln und zwar

ohne Hilfsenergie. Beispiele sind die Wandlung mechanischer, thermischer, 

chemischer, Strahlungsenergie u. a. in elektrische oder umgekehrt. 

Als Netzwerkelement hat ein Wandler je zwei Ein- und Ausgangsgrößen, bei-

spielsweise im elektrisch-mechanischen Fall die elektrischen Eingangsgrößen

 u,  i  und die mechanischen Ausgangsgrößen Kraft  F  und Geschwindigkeit  v

(Abb. 6.1.3a). Aus technischer Sicht werden Wandler auch  Aktoren  oder  Sen-

 soren  genannt:

Der Aktor ist ein Wandler elektrischer in nichtelektrische, vorzugsweise elek-

tromechanische Energie, der Sensor hingegen ein Wandler, der aus einer

allgemeinen physikalischen oder chemischen Größe ein elektrisches Signal

erzeugt. 

Eine Unterteilung der Sensoren erfolgt z. B. nach der zu messenden physikalischen

oder chemischen Größe, dem Messprinzip, Fertigungsverfahren oder Umsetzverfah-

ren (direkt oder indirekt). Das erklärt die Vielfalt der Sensorprinzipien. 

Energie-, Leistungswandler Grundlage der Wandler ist der Energiesatz oder

die darauf basierende Leistungsbilanz Gl. (4.2.12), die für Netzwerke geeig-

netere Form. 

Abb. 6.1.3. Energie- und Leistungswandlung. (a) Allgemeiner elektrisch-mechanischer

Wandler. (b) Idealer Leistungswandler. (c) Realer Energie- oder Leistungswandler. 

(d) Idealer elektrisch-mechanischer Energiewandler
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Beim Energiewandler wird die Eingangsleistung teilweise in gleicher Ener-

gieform zwischengespeichert und der Rest in anderer Form abgegeben. 

Damit ist die gespeicherte Energie stets eine Zustandsfunktion der zu- und

abgeführten Energie. Wir beschränken uns auf  elektrisch-mechanische  Wand-

ler basierend auf Kraftwirkung im elektrostatischen und magnetischen Feld. 

Die Gruppe  piezoelektrischer  Wandler unterbleibt aus Platzgründen. 

Ein Leistungswandler liegt vor, wenn eine Eingangsleistung ohne Zwischen-

speicherung (d W/ d t = 0) in eine Ausgangsleistung anderer Form übergeht. 

Beispiele sind der ideale Transformator, aber auch der  Tellegensche Satz

(Gl. (4.7.1), Bd. 1) für Gleichstromnetzwerke: die Summe der dem Netzwerk

zugeführten nichtelektrischen Batterieleistung ist gleich der vom gesamten

Netzwerk in Wärme überführten Leistung. 

Ein idealer Wandler liegt vor, wenn die Summe der zugeführten augenblick-

lichen Leistung  p 1( t) =  u 1( t) i 1( t) der Form 1 und die zuströmende  p 2( t) =

 u 2( t) i 2( t) der Form 2 auf der anderen Seite zu jedem Zeitpunkt verschwindet

(Abb. 6.1.3b)

 p 1( t) +  p 2( t) = 0 symm. Richtung,  p 1( t) =  p 2( t) Kettenrichtung (6.1.5) m. a. W. bei Benutzung der  Kettenstromrichtung  die eingangs zufließende Au-genblicksleistung voll ausgangsseitig abgegeben wird:  p (

(

2  t) =  u 2( t) i 2  t) =

 −p 2( t) =  u 2( t)( −i 2( t)) wegen  i (

2  t) =  −i 2( t). Ein solcher Wandler ist  pas-

 siv: er enthält keine Energiequelle und überträgt Energie in beiden Richtun-

gen. Erscheint die am elektrischen Tor eingespeiste Leistung zusätzlich  un-

 ver¨

 andert  am anderen als mechanische Leistung, so erfolgt die Leistungsüber-

tragung  verlustfrei. Das gilt für die Grundzweitore idealer  ¨

 Ubertrager (Trans-

formator) und  Gyrator. 

Der allgemeine Wandler besitzt Verluste. Sie lassen sich durch eine ent-

sprechende Anordnung aus Zweitoren modellieren (Abb. 6.1.3c). Auch oh-

ne Verluste hat ein Wandler Speichereigenschaften und als Kernstück einen

 idealen (speicherfreien) Energie- oder besser Leistungswandler. Er umfasst

beispielsweise beim mechanisch gesteuerten Kondensator diesen selbst (als

Energiespeicher) und Elemente zur Modellierung der Leistungswandlung: ge-

steuerte Quellen oder einen Transformator bzw. Gyrator mit entsprechen-

dem Übersetzungs- bzw. Gyrationsverhalten. Oft erhält der ideale Leistungs-

wandler den Index W an den Differenz- und Flussgrößen zur Hervorhebung

(Abb. 6.1.3c). Insgesamt wird der allgemeine elektrisch-mechanische Energie-
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Abb. 6.1.4. Wandlerzweitor. (a) Ideale Wandler vom Transformator- und Gyratortyp. 

(b) Idealer Transformator und Gyrator modelliert durch gesteuerte Quellen. (c) Wand-

lerbeispiele: mechanisches Getriebe, Zahnrad-Zahnstange. (d) Idealer Gleichstrommotor

als Wandler; Transformatortyp mit Leistungsvariablen  e =  M ,  f =  ω  bzw. Gyratortyp bei Vertauschung der Leistungsvariablen  f =  M ,  e =  ω

wandler durch ein Zweitor nach Abb. 6.1.3d repräsentiert mit ausgangsseitig

 symmetrischer ( F ,  v) oder  Kettenpfeilrichtung ( F ,  v). 

¨

Ubertrager-Gyrator Wandler lassen sich durch ideale Übertrager oder Gyratoren

und zusätzliche Netzwerkelemente nachbilden. Beide sind durch folgende Kettenma-

trizen ( A) (mit Kettenrichtung für den Ausgangsstrom, s. Tab. 2.5 und Abb. 2.6.4

Bd. 1) definiert (s. Abb. 6.1.4a)









 e 1

 e

=  A

2

 f

 

1

 f 2









 A

 X− 1

0

0

 Y

Tr =

 , A

(6.1.6)

0

 X

Gyr =

 Y − 1 0









 

 A

 X− 1

0

0

 −Y

Tr =

 , A

 . 

0

 −X

Gyr =

 Y − 1

0
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Die Kettenmatrizen  A  in eckigen Klammern verlangen  symmetrische  Strom- bzw. 

Flussrichtungen  f . Beide Torseiten gehören zu verschiedenen physikalischen Diszi-

plinen (elektrisch und mechanisch). Merkmale der Kettenmatrix  A  sind:

Wert der Determinante entweder det  A =  − 1 oder det  A = 1, 

entweder beide Diagonal- oder beide Nebendiagonalelemente ungleich Null. 

Der erste Fall ist der  ideale Transformator (det  A =  − 1 bzw. det  A = 1 Kettenrichtung), der zweite der  ideale Gyrator. 

Der Transformator verknüpft je die Differenz- ( e) oder Flussgrößen ( f ) beider Tor-

seiten, der Gyrator die Flussgröße einer Seite mit der Differenzgröße der anderen

(und umgekehrt). 

Bekanntermaßen übersetzt der Transformator eine Eingangsspannung in eine Aus-

gangsspannung, der Gyrator die Eingangs spannung  in einen Ausgangs strom  und

umgekehrt. Beim Transformator drückt der Wandlerkoeffizient  A 11 das Überset-

zungsverhältnis  ¨

 u  gleichartiger Größen ( e 1,  e 2) bzw. ( f 1,  f 2) aus. Beim Gyrator

enthält die Wandlerkonstante  Y =  r ( r Gyrationswiderstand) unterschiedliche Leis-

tungsgrößen ( e 1,  f 2), ( e 2,  f 1) verschiedener Tore. Der ideale Übertrager wird durch gesteuerte Strom-Spannungsquellenpaare modelliert (Abb. 6.1.4b), der Gyrator nur

durch gesteuerte Strom- oder Spannungsquellen. Die quellenbasierte Ersatzschal-

tung des idealen Transformators wurde bereits in Abb. 3.4.14 eingeführt nur mit

umgekehrt vereinbarten Stromrichtungen  i 2,  i 2 (damit in der Transformtorgleichung

(3.4.17) nicht der Strom  i 2 auftritt). Wir halten für den Wandlerabschnitt die jet-

zige Vereinbarung (Kettenpfeilrichtung: Kettenparameter und Ausgangsstrom  i 2

bzw.  f  2 mit Strich) bei. Dann gelten die Zuordnungen

 e 1

 

 f

=  A

1 =  A

 e

11 =  ¨

 u = 1 /X, 

22 =  ¨

 u− 1 =  X. 

2

 f  2

Abb. 6.1.4c zeigt mechanische Beispiele mit Transformatoreigenschaften: das Ge-

triebe und den Zahnrad-Zahnstangenantrieb. 

Es wurde bereits auf die doppeldeutige  e,  f -Zuordnung bei mechanischen Netzwer-

ken verwiesen. Dann darf nicht überraschen, wenn der gleiche physikalische Wand-

ler wie etwa ein idealer Gleichstrommotor je nach Variablenzuordnung durch einen

transformatorischen

oder

gyratorischen

Wandler

modelliert

werden

kann

(Abb. 6.1.4d)! 

Bei Einführung des Transformators/Gyrators in ein Ersatzwerk aus verschiedenar-

tigen Systemteilen kann es vorkommen, dass Größen einer Seite in Integral- oder

Differenzialgrößen der anderen übertragen werden. Üblich ist (bei Beschränkung

auf ein lineares Netzwerk), die Zuordnung durch die  Laplace-Transformierte  des

Ausgangsintegrals oder -differenzials darzustellen mit einer  komplexen Wandler-

” 

 konstante“ als Ergebnis. Auch Kopplungszuordnungen am Übertrager (Vorzeichen!)

sind nicht immer einfach zu überschauen. In solchen Fällen werden Transformator

/Gyrator besser durch  gesteuerte Quellen  ersetzt, die im Bedarfsfall von integralen

oder differenzialen Größen gesteuert werden (Abb. 6.1.4b). Sie sind entweder vom

UU- bzw. II-Typ (Transformator) oder UI- bzw. IU-Typ (Gyrator). Die Grundla-

ge bilden verlustfreie Zweitore in Hybrid-, inverser Hybrid-, Leitwert- und Wider-
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Abb. 6.1.5. Elektromechanische Energiewandlung. (a) Elektrische Energie und Ko-Energie

im verformbaren Kondensator mit eingetragenen Änderungen der Ko-Energie. (b) Magne-

tische Energie und Ko-Energie in der verformbaren Induktivität

standsdarstellung (s. Tab. 2.9, Bd. 1). Quellen erlauben nicht nur eine einfache-

re Netzwerkanalyse, sondern auch einfachere Netzwerksimulation, zumal sie leicht

nichtlinear modellierbar sind. 

Wandlermodell Wandlermodelle basieren auf dem jeweiligen  beschreibenden

 Gleichungssystem  zusammengefasst für elektrostatische (Gl. (4.3.27)), elek-

trodynamische (Gl. (4.3.44d)) und elektromagnetische Wandler (Gl. (4.3.56)). 

Wichtige Sonderfälle sind die  Kleinsignalmodelle, gewonnen entweder aus

einem

 Funktionsansatz

(Kap. 

6.2), 

den

 Großsignalersatzschaltungen

(Abb. 4.3.7, 4.3.20) oder allgemeiner den jeweiligen  Kraft-Energie-Beziehun-

gen. 

Verallgemeinerte Kleinsignalmodelle ∗  Wir systematisieren die Ergebnisse von

Kap. 4 zur Gewinnung von Kleinsignalmodellen und ihrer Modellparameter. 

Das ist notwendig, weil die bisher betrachteten linearen dielektrischen und

magnetischen Energiespeicher gleiche Energie- und Ko-Energiefunktionen ha-

ben und dadurch die Unterschiede weniger deutlich hervortreten. In

Abb. 6.1.5 wurden die Energieverhältnisse, die auftretenden elektrischen und

magnetischen Kräfte und die zugehörigen Reaktionskräfte für den elektrosta-

tischen und magnetischen (Reluktanz-)Wandler zusammenfassend gegenüber-

gestellt. 

Ausgang der Kleinsignalbetrachtung ist der Energiesatz d W Feld = d W el  −

d W mech = d W el +  F  d x = d W el  − F  d x (Abb. 6.1.6a). Im elektrischen Zweitor liegt der Ausgangstrom durch die Verbraucher- ( i) oder Erzeugerpfeilrichtung ( i) fest. Entsprechend verfahren wir für die ausgangsseitige Kraftrich-

tung (Netzwerkanalogie Kraft-Strom). Dann fließt die Leistung  F  d x in  das

System hinein, also  F  d x aus dem System heraus (Leistungsabgabe). Die Ket-

tenpfeilzuordnung zwischen mechanischen und elektrischen Größen schließt

unmittelbar an die bisherige Richtungszuordnung der Reaktionskraft  F  (ent-
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Abb. 6.1.6. Elektrische und magnetische elektromechanische Wandler mit Zuordnung der

Energie-/Ko-Energie und zugehöriger Funktionsbeziehungen. Wichtige Wandler sind her-

vorgehoben

spricht Strom  i ) an. Die sich ergebende Kleinsignalbeschreibung l

2

ässt sich

leicht in die symmetrische Stromzuordnung (s. Abb. 2.6.4, Bd. 1) über-

führen. 

Die Feldenergie bestimmt der Wandlertyp: dielektrische ( W d,  W ∗) bzw. mag-

d

netische ( W m,  W ∗ ) Energie bzw. Ko-Energie haben dann die Energieans

m

ätze

(4.3.16a, 4.3.20, 4.3.53)

. 

d W

. 

d =  u d Q − F  d x =  f 1( Q, x) , . d W m =  i dΨ  − F  d x =  f 3(Ψ , x) (a)

. 

d W ∗ =

.. d

d

 Q d u +  F  d x =  f 2( u, x) , 

 W ∗

m = Ψd i +  F  d x =  f 4( i, x)

(b)

(6.1.7)

mit  F  d x =  −F  d x. Die Energiefunktion am verformbaren Kondensator

(Abb. 6.1.5a) ist entweder in  Ladungs- ( Q) oder  Spannungsform ( u = ˙

Ψ bzw. 

 PSI-Form) darstellbar (erste und zweite Zeile linker Teil) und sinngemäß die

magnetische Energie der verformbaren Induktivität (z. B. durch Änderung

des magnetischen Kreises, Abb. 6.1.5b) in  Fluss- (PSI- bzw.  Strom-  oder

 Q- Form ( i = ˙

 Q) (rechter Teil in Gl. (6.1.7)). Die Zuordnungen wurden in

Abb. 6.1.6 übersichtsartig dargestellt. 
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Jeder Wandler hat vom Strukturaufbau (Abb. 6.1.3) her einen elektrischen

Eingang (veränderbarer Kondensator oder Induktivität), einen mechanischen

Ausgang (ggf. mit erforderlicher elastischer Federbindung und anhängender

mechanischer Last) und das eigentliche (ideale) Wandlerzweitor. Das wurde

in Abb. 4.3.7, 4.3.20 für die beiden veränderlichen Energiespeicherelemen-

te erläutert. Entsprechend der Energie bzw. Ko-Energie-Darstellung eines

Wandlers gibt es dann zwei gleichwertige Beschreibungsmodelle, die  Leitwert-

und  Hybridform  mit dem idealen Wandlerkern aus zwei gesteuerten Quellen. 

Sie folgen unmittelbar aus der Zweitorbeschreibung (s. Tab. 2.9, Bd. 1). 

Wir betrachten zunächst den elektrischen Wandler mit der Energiefunktion

 W d( Q, x) am Beispiel des Kondensators mit beweglicher Elektrode (s. Abb. 

4.3.3, 4.3.7). Seine Energie ist stets als vollständiges Differenzial d W d gemäß

Gl. (6.1.7a, b) darstellbar. Deshalb gilt gleichwertig Gl. (4.3.45) und man

erhält durch Vergleich mit dem Energiesatz für die Ladung  Q  und Kraft  F  u

(s. Gl. (4.3.25)) und analog für den magnetischen Wandler Gl. (4.3.56)

 . 



 u ( Q, x) =  ∂W d

. 



 ∂Q 

.  i (Ψ , x) =  ∂W m

 x

 ∂Ψ  x



. 



(6.1.8a)

 −



 F  =  ∂W d 

..  −

=  ∂W m 

Q

 ∂x

 , 

 F 

 Q

Ψ

 ∂x Ψ





 ∂W ∗ 

. 

 ∂W ∗ 

 Q =

d

. 

m

 ∂u 

. Ψ =



 x

 ∂i

 x





(6.1.8b)

 ∂W ∗ 

. 

 ∂W ∗ 

 F  =

d 

.. 

=

m 

u

 ∂x

 F 

 . 

 u

i

 ∂x i

Die Auswertung erfordert die Energieform  W d( Q, x). Ladung und Kraft kön-

nen auch aus der Ko-Energie  W ∗(

d  u, x) gewonnen werden (Gl. (6.1.8b)). 

Bei Einführung der Energie und Ko-Energie wurde auf die Wegunabhängig-

keit verwiesen. Notwendig und hinreichend dafür ist Übereinstimmung der

gemischten 2. Ableitungen von  W d oder gleichwertig geschrieben als sog.  In-

 tegrabilit¨

 atsbedingung (6.1.7)





 ∂ 2 W



d

 ∂ 2 W

 ∂F  

 ∂Q

 ∂F 

=

d  → ∂u =  −

Q 

 , 

=

u 

 ∂x∂Q

 ∂Q∂x

 ∂x

 ∂Q 

 ∂x

 ∂u 

 Q,W

Ψ ,W ∗

 d

 d





 ∂ 2 W





m

 ∂ 2 W

 ∂Ψ

 ∂F 

=

m  → ∂i =  − ∂F Ψ 

 , 

=

i 

(6.1.9)

 ∂x∂Ψ

 ∂Ψ ∂x

 ∂x

 ∂Ψ 



Ψ ,W

 ∂x

 ∂i

 m

 Q,W ∗ . 

 m

Physikalisch bedeutet sie  Energieerhalt, später in der Zweitorinterpretation

 Umkehrbarkeit  des idealen Wandlers. Entsprechende Formen gelten für die

Ko-Energie  W ∗  bzw. 

nach Gl. (6.1.5b), sie wurden jeweils an zweiter

d

 W ∗

m

Stelle erwähnt (Vorzeichenumkehr!). 

Damit lauten die  Grundgleichungen des elektrostatischen Wandlers  basierend

auf den Energiebeziehungen Gl. (6.1.5)
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 ∂W ∗ 

 ∂W ∗ 

d

 ∂W ∗ 

 F | =

d 

d 

d 

u

 F ( u, x) u =

 , Q =

 , i = ˙

 Q =

 ∂x 





 u

 ∂u x

d t

 ∂u x

Spannungs- oder PSI-Form

(6.1.10a)





 ∂W 

 F | =



d 

Q

 F ( Q, x)Q =  − ∂W d

 , u =

 . 

 ∂x 



 Q

 ∂Q x

Strom- oder Q-Form

(6.1.10b)

Die erste Zeile enthält die Kraft, ausgedrückt durch die Änderung der dielek-

trischen Ko-Energie und die zufließende Ladung bzw. den Klemmenstrom

als Funktion von Spannung  u  und Ort  x. Die zweite Zeile drückt die Kraft

über die Feldenergieänderung und die Eingangsspannung durch Ladung (bzw. 

Strom) und Ort  x  aus. 

Die Energiefunktion des dielektrischen Feldes wird dargestellt durch die

dielektrische Ko-Energie  W ∗(

d  u, x) in verallgemeinerten Spannungs- oder

PSI-Koordinaten ( u = ˙

Ψ) als Basis der Leitwertersatzschaltung; 

dielektrische Energie  W d( Q, x) in verallgemeinerten Strom-(Ladungs-)

oder  Q-Koordinaten als Grundlage der Hybridersatzschaltung. 

Die Ergebnisse sind in Abb. 6.1.6 zusammengefasst. Wenn nämlich die Kraft

 F ( u, x) (entsprechend dem Ausgangsstrom  i 2) nur von Eingangsspannung

 u =  u 1 und Ausgangsvariable  x  bzw.  v =  x (entsprechend der Spannung  u 2) abhängt, so ist dies offensichtlich die ausgangsseitige Leitwertform der Zweitorersatzschaltung. 

Analog lauten die  Grundgleichungen des magnetischen Wandlers (Gl. 

(4.3.44), (4.3.56))





 F | =





Ψ

 F (Ψ , x)Ψ =  − ∂W m

 ∂x

 , i =  ∂W m

Ψ

 ∂Ψ  x

Spannungs- oder PSI-Form







 

 ∂W ∗ 

 ∂W ∗ 

 ∂W ∗ 

(6.1.11)

 F |

m

m

m

 i =  F ( i, x) i =

 ∂x   , Ψ =

  , u = ˙Ψ = d



 . 

 i

 ∂i

 x

d t

 ∂i

 x

Strom- oder  Q-Form

Beim  linearen Wandler  vereinfachen sich die Energiebeziehungen zu



 Q 2

 C( x) u 2 

 W



d( Q, x) =

 , W ∗( u, x) =

2 C( x)

d

2

 u= ˙Ψ



Ψ2

 L( x) i 2 

 W



m(Ψ , x) =

 , W ∗ ( i, x) =

 . 

2 L( x)

m

2

 i= ˙ Q
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Dazu gehören die  Grundgleichungen  des  linearen elektrostatischen Wand-

 lers



 ∂W ∗ 

 F 

 ∂C

d 

( x)

u =

 ∂x

=  u 2

 u

2

 ∂x

 i = ˙

 Q =  C( x) d u

d x

d t +  u ∂C( x)

 ∂x

d t =  C( x) d u

d t +  u  d C( x)

d t

Spannungs- oder PSI-Form





 F |

 ∂C( x)

 Q =  − ∂W d

 ∂x 

=

 Q 2

 ∂x , u =

 Q

 C

 Strom- oder Q-Form

Q

2[ C( x)]2

( x)  x

(6.1.12)

und ebenso die  Grundgleichungen  des  linearen magnetischen Wandlers





 F | =  − ∂W

 ∂L

m 

=

Ψ2

( x)



Ψ

 ∂x Ψ

2[ L( x)]2

 ∂x , i =

Ψ

 L( x)  x

Spannungs- oder PSI-Form



 ∂W ∗ 

 F |

 ∂L

m

( x)

 i =

 ∂x  =  i 2

 i

2

 ∂x

 u = ˙Ψ =  L( x) di

d x

d t +  i ∂L( x)

 ∂x  d t =  L( x) d i

d t +  i  d L( x)

d t

 . 

Strom- oder Q-Form

(6.1.13)

Obwohl lineare  Ladungs-Spannungs-  bzw.  Fluss-Strom- Beziehungen für Kon-

densator und Induktivität zugrunde liegen, entstehen  nichtlineare Kraftbezie-

 hungen  und Gl. (6.1.12), (6.1.13) bilden die Grundlage entsprechender  nichtlinearer Modelle. 

Für viele Anwendungen reicht die  Linearisierung  um einen  Arbeitspunkt  AP

als Punkt ruhender Bewegung (d x/ d t = 0) bzw. nur anliegender Gleichgrößen

( i = const  → Q = 0, sinngemäß konstante Spannung  u = const  → Ψ  =

0) aus. Dafür bietet die Grundgleichung (6.1.12) des  kapazitiven Wandlers

zwei Darstellungen: die  Spannungsform, in der Kraft und Strom nur von den

Variablen Spannung  u  und Ort  x  abhängen (Gl. (6.1.10a)) und die  Stromform

(Gl. (6.1.10b)) mit der Abhängigkeit von Ladung  Q  und Ort  x

 F u =  F u( u, x);  i =  I( u, x)

Spannungs-PSI-Variable

(6.1.14)

 F Q =  F Q( Q, x);  u =  U( Q, x) . 

Strom-Q-Variable

Abbildung 6.1.6 enthält diese Zuordnungen für den kapazitiven Wandler und

rechts für den magnetischen Wandler. Bei Kleinsignalentwicklung ergeben

diese Abhängigkeiten beispielsweise beim kapazitiven Wandler die  gleichbe-

 rechtigten Kleinsignal-Zweitorbeziehungen:
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Spannungs-PSI-Variable, Leitwertform









Δ i =  ∂I 





 ∂I 

 ∂u x Δ u +  ∂I

 ∂x u Δ x ≡ ∂I

 ∂u x Δ u + 1 s ∂x u Δ v









 ∂F  

 ∂F  



 ∂F  

Δ F u =

 u

 u

 u

 ∂u  Δ u +

 Δ x ≡ ∂Fu  Δ u + 1

 Δ v

 x

 ∂x u

 ∂u x

 s ∂x u

(6.1.15)

Strom-Q-Variable, Hybridform









Δ u =  ∂U



 ∂U

 ∂U 

 ∂Q  Δ Q +  ∂U

 Δ i + 1

 x

 ∂x i Δ x ≡  1 s ∂Q x

 s ∂x i Δ v









 ∂F  

 ∂F  

 ∂F  

 ∂F  

Δ F  =

Q  Δ

Q  Δ

Q  Δ

Q  Δ

Q

 ∂Q

 Q +

 x ≡  1

 i + 1

 v. 

 x

 ∂x i

 s ∂Q x

 s ∂x i

Die jeweils linke Form ergibt sich aus den bisherigen Ableitungen; die rechte





erlaubt mit den Zuordnungen  x =

 v d t → Δ x = Δ v/s  und  i =

 Q d t →

Δ i = Δ Q/s  die Übergänge von Weg- bzw. Ladungsvariablen auf Geschwin-

digkeits- und Stromvariable unter Nutzung der Laplace-Transformation

(s. Bd. 3). Die Variable 1 /s  ist als Symbol einer Integrationsoperation quali-

tativ zu verstehen (Schreibweise nicht ganz korrekt). 

Der Übergang vom bisherigen  physikalischen Systemmodell  zur Netzwerkdar-

stellung (6.1.15) erfordert eine  Zuordnung zwischen elektrischen und mecha-

 nischen Gr¨

 oßen: wir wählen wieder die  Netzwerkanalogie  und ordnen  Strom

 und Kraft (also Flussgröße  f =  i  und Kraft  F ) einander zu, dann sind  Aus-

 lenkung x  bzw.  Geschwindigkeit v =  x  der  Spannung bzw. Differenzgröße e

 proportional. Weil als Zweitorausgang die mechanische Seite gewählt wurde

(Abb. 6.1.6), entspricht Δ F   dem Ausgangsstrom Δ i (Erzeuger-, Ketten-

2

pfeilrichtung) und Δ i 1 dem Eingangsstrom. Dann stellt der obere Teil von

Gl. (6.1.15) die  Leitwertform, der untere die  Hybridform (Kap. 2.6.1, Bd. 1)

des Zweitors dar mit  symmetrischer  bzw.  Kettelpfeil-Betriebsrichtung









Δ i

Δ u

=  Y

Spannungs-PSI-Variable

Δ F u

Δ v









(6.1.16a)

Δ u

Δ i

=  H

Strom-Q-Variable

Δ F Q

Δ v









Δ i

Δ u

=  Y 

Spannungs-PSI-Variable

Δ F 

Δ

u

 v









(6.1.16b)

Δ u

Δ i

=  H

Strom-Q-Variable . 

Δ F 

Δ

Q

 v

Beide Formen sind jeweils ineinander überführbar (Tab. 2.6, Bd. 1). Eini-

ge Zweitorkoeffizienten  unterscheiden sich in den Vorzeichen:  y 21 =  −y 21, 
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 y 22 =  −y , 

, 

. Durch Termumordnung kann auch die

22  h 21 =  −h 21  h 22 =  −h 22

mechanische Seite als Zweitoreingang gewählt werden. 

Die Zweitorkoeffizienten Gl. (6.1.16) haben unabhängig von den Wandlergleichun-

gen folgende  Merkmale:

Die Koeffizienten  y 21,  y 12 bzw.  h 21,  h 12 formulieren die  elektro-mechanischen

 Kopplungen, also die  Wandlereigenschaften:  y 21,  h 21 beschreibt die Krafterzeu-

gung als Folge elektrischer Größen. 

 y 12,  h 12 drückt elektrische Größen aus, die durch mechanische Kraft entstehen. 

Für die Arbeitsrichtung elektrisch-mechanisch beschreibt  y 21 die gewünschte

Wandlung,  y 12 hingegen eine (oft unerwünschte)  R¨

 uckwirkung (s. u.). 

Beim rückwirkungsfreien Wandler verschwindet  y 12 (ebenso  h 12). 

Die Parameter  y 11 bzw.  h 11 sind die (elektrische)  Admittanz  bzw.  Impedanz  bei

mechanischem Kurzschluss (festgebremst), also das  elektrische Zweipolelement

(hier Kapazität, sonst Induktivität) am  Wandlereingang. 

Die Parameter  y 22,  h 22 beschreiben den  mechanischen Zusammenhang  zwischen

Kraft und Elektrodenbewegung am  Wandlerausgang, generell ausgedrückt durch

den Begriff  Steifigkeit,  mechanische Impedanz/Admittanz (Begriff nicht einheit-

lich verwendet). 

Die Wandlereigenschaften des Zweitores werden allgemein durch gesteuerte Quel-

len und in Sonderfällen durch ideale Übertrager und Gyratoren modelliert

(s. Abb. 4.3.7, 4.3.20). 

Kleinsignalparameter magnetischer Wandler Die Kleinsignaldarstellung des

elektrostatischen Wandlers Gl. (6.1.15) lässt sich leicht auf den magnetischen

Wandler übertragen, wenn auf Grundlage der magnetischen Energie- bzw. 

Ko-Energiedarstellung (Abb. 6.1.6) zunächst die gegenseitigen Abhängigkei-

ten als Ordnungsschema zusammengestellt werden (in Klammern steht die

jeweilige Energieform):

Spannungs-PSI-Variable

Strom-Q-Variable

kapaz. ( W ∗)

indukt. (

)

d

 W m)

kapaz. ( W d)

indukt. ( W ∗

m

 I( u, x)

 I(Ψ , x)

 U ( Q, x)

 U ( i, x)

 F  (

(Ψ

(

(

u  u, x)

 F Ψ

 , x)

 F  Q  Q, x)

 F  i  i, x)

Leitwert-Matrix

Hybrid-Matrix

Die Kleinsignaldarstellung wird nach Gl. (6.1.15) gewonnen, die Parameter

sind für die jeweilige Struktur zu bestimmen. Auch die Umkehrbedingun-

gen gelten sinngemäß. In Kap. 6.2 erläutern wir die Ergebnisse für typische

Wandler. 
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Abb. 6.1.7. Funktionselemente im physikalischen Netzwerk. (a) Kontinuitäts- (Knoten-)

und Kompatibilitäts- (Umlauf-) Gleichung im physikalischen Netzwerk. (b) Zweipol- und

Mehrtorelemente. (c) Reihen- und Parallelschaltung physikalischer Zweipole

Vorteile der Wandlern¨

aherung Das Kleinsignalwandlermodell bietet Vorzüge:

Einfluss der elektrischen Quelle (Strom-, Spannung) leicht überschaubar, 

mechanische Last bequem einzubeziehen, 

Wandlermodell transparent aufgebaut. 

6.1.3 Analyseverfahren

Zusammenschaltungen Durch Zusammenschalten elementarer Strukturele-

mente entstehen komplexere Systeme. Verbindungsstellen (Abb. 6.1.7a) wir-

ken als  Knoten  und die Verbindungen zwischen zwei Knoten bilden einen

 Zweig. Ausgehend von der Zusammenschaltung elektrischer Elemente basie-

rend auf Knoten- und Umlauf- (Maschen-) Gleichung lassen sich verallgemei-

nerte Bilanzgleichungen für technische Systeme aufstellen, die  Kontinuit¨

 ats-

und  Kompatibilit¨

 atsgleichungen (Abb. 6.1.7b). 

Je nachdem, mit welcher elektrischen Größe  f  und  e  gleichgesetzt werden, 

(nach dem Dualitätsprinzip ist die Wahl frei), müssen die physikalischen For-

derungen mit beiden Regeln überprüft werden. Die Knotengleichung ergibt

sich beispielsweise für mechanische Systeme aus der Impulsbilanz bei ver-

schwindender Masse (Prinzip von d’Alembert) und bei thermischen Systemen

aus einer Wärmestrombilanz. 
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Die Umlaufgleichung resultiert aus der Bedingung, dass die Potenziale längs

eines geschlossenen Umlaufs aus Gründen der Kompatibilität verschwinden. 

Kompatibilität erfordert bei mechanischen Systemen, dass die Geschwindig-

keit (oder ihr Integral, der Weg) die Umlaufbedingung erfüllt. 

Elektrische, magnetische und thermische Systeme erfüllen die üblichen Um-

laufbedingungen. 

Dann gelten zusammengefasst für das physikalische Netzwerk mit Fluss- und

Differenzgrößen ( f ,  e) als Variablen folgende Bedingungen

Erhaltungssatz für  Flussgr¨

 oßen (Schnittgesetz, Knotensatz)

 n



 n



 n



 fi = 0  →

 ii = 0

 Fi = 0

(6.1.17a)

 i=1

 i=1

 i=1

Erhaltungssatz für  Differenzgr¨

 oßen (Umlaufgesetz, Maschensatz)

 m



 m



 m



 ei = 0  →

 ui = 0

 vi = 0

(6.1.17b)

 i=1

 i=1

 i=1

Netzwerkelementbeziehungen:

 f =  f ( e) bzw.  e =  e( f ) . 

(6.1.17c)

Diese  verallgemeinerten Kirchhoffschen S¨

 atze  fundieren die Analyse mecha-

nischer Netzwerke (Abb. 6.1.7a). Folgerichtig gelten auch die Gesetze der

Zusammenschaltung von Toren (Abb. 6.1.7b) sowie der Reihen- und Paral-

lelschaltung physikalischer Zweipolelemente (Abb. 6.1.7c). Bei Vertauschung

der Zuordnung, also Wahl der Netzwerkanalogie  u =  F  und  i =  v  ergäben

sich die dualen Relationen (dann entspricht die Masse einer Induktivität und

die Feder einer Kapazität). Tabelle 6.3 fasst die Kontinuitäts- und Kompati-

bilitätsgleichungen für verschiedene physikalische Teilgebiete zusammen. 

6.2

6.2 Mechanisch-elektrische Systeme

6.2.1 Modelle mechanischer Systeme

Mechanische Systeme sind räumlich ausgedehnt. Die Anwendung des Netz-

werkbegriffs erfordert daher  Beschr¨

 ankungen  wie die Reduktion des dreidi-

mensionalen Raumes auf eine Dimension, d. h. Ersatz der Vektoren für Kraft

 F , Weg  r, Geschwindigkeit  v  und Beschleunigung  a  durch Skalare  F ,  r,  v, a ( F  und  v  mit beiden Vorzeichen):

Definition mechanischer Modellelemente, 

geschwindigkeitsproportionale Reibung  r  bei kleinen Geschwindigkeiten:

 F =  −rv
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Tab. 6.3. Knoten- und Umlaufgleichungen in verschiedenen physikalischen Teilgebieten

Teilgebiet

Kontinuitätsgleichung Kompatibilitätsgleichung





Elektrik

 I = 0 Knotensatz

 U = 0 Maschensatz





Magnetik

Φ = 0 Flussbilanz

Θ = 0 Durchflutungs-

kompatibilität





Mechanik

 F = 0 Kräftebilanz

 v = 0 kinematische

translatorisch

Gleichung





Mechanik

 M = 0 Momentensatz

 ω = 0 kinematische

rotatorisch

Gleichung





Thermodynamik

 Q = 0 Wärmestrom-

 T = 0 Temperatur-

bilanz

kompatibilität





Fluidik

 V  = 0 Volumenstrom-

 p = 0 Druck-

bilanz

kompatibilität

Tab. 6.4. Mechanische Netzwerkanalogie, Größenzuordnung

Induktivität

Feder (Nachgiebigkeit  n = 1 /k, Federsteifigkeit  k, 

Drehnachgiebigkeit  n R), 

Kapazität

Masse (Masse  m, Trägheitsmoment Θ  ≡ J), 

Widerstand  R

(Reibungsadmittanz 1 /r, Drehreibungsadmittanz 1 /r R)

Massenbeschleunigung gemäß  F =  m d v/ d t, 

Federwirkung im Bereich des Hookschen Gesetzes  F =  k · x. 

Grundlage der Modellierung ist die Analogie nach Tab. 6.4, die den Variablen

Kraft und Geschwindigkeit (bzw. Drehmoment und Winkelgeschwindigkeit)

die elektrischen Größen  i  und  u  zuordnet:

 Durch-Variable (Flussvariable)

 ∧

 ∧

 ∧

 f =  i (Strom) =  F (Kraft) =  M (Drehmoment) , 

 Quervariable (als Differenz zweier skalarer Größen zwischen den End-

 ∧

 ∧

 ∧

punkten eines Elementes,  e =  u (Spannung) =  v (Geschwindigkeit) =

 ω (Winkelgeschwindigkeit), 

Diese Zuordnung bestimmt die mechanischen Grundelemente (Abb. 6.1.2):

Verfügbar sind Elemente mit Trägheits-, Speicher und Widerstandseigen-

schaften, letztere zur Modellierung von Verlusten. Abbildung 6.1.2 zeigt ihre
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typischen Schaltzeichen, im Bereich der Mechanik aber nicht einheitlich ge-

nutzt. Als Grundmodelle haben sie lineare mathematische Struktur und ein-

heitlich einen proportionalen, integralen oder differenziellen Zusammenhang

zwischen den verallgemeinerten Quer- ( e) und Flussgrößen ( f ). Es gibt sie

für translatorische wie rotatorische Systeme. Wie im elektrischen Fall kennt

man auch nichtlineare und zeitabhängige Modelle. 

Grundelemente mechanischer Systeme Mechanische Systeme bestehen aus

 Masseelementen (Punktmasse, starre Körper),  Verbindungselementen (Feder, 

Dämpfer, Stäbe, Riemen) und  Maschinenelementen (Getriebe, Hebel, Lager, 

Zylinder mit Kolben). Lager stellen sicher, dass sich Verbindungspunkte nur

eindimensional bewegen. Der erste Schritte zur Anwendung mechanisch-elek-

trischer Analogien ist die Modellbildung der wichtigsten Elemente (Aufstel-

lung von Ersatzschaltbildern und zugeordnete Grundgleichungen). Anschlie-

ßend führen die Netzwerkgleichungen meist auf ein System von Differenzial-

gleichungen. Im letzten Schritt erfolgt ihre Lösung. 

Konsistenz Der Vorteil der Analyse mechanischer Netzwerke durch Analogiean-

wendung ist nicht nur die Nutzung von Netzwerkanalyseverfahren, sondern auch die

Anwendung von Schaltungssimulatoren und, bei elektrisch-mechanischen Wandler-

netzwerken, die einheitliche Betrachtung auf  einer Ebene, meist der elektrischen

(Methoden dort am besten entwickelt). Zur quantitativen Lösungen und Konsis-

tenz der Einheiten empfiehlt sich die Einführung von Proportionalitätsfaktoren in

den Netzwerkvariabeln (und zwangsläufig den Komponenten). Setzt man  u =  a 1 v, 

 i =  F/a 2 und  u =  a 3 ω,  i =  M/a 4 so ergeben sich als Modellelemente m

 C =

 , L =  a

 a

1 a 2 n, R =  a 1 a 2 /r

und

1 a 2

(6.2.1)

Θ

 C =

 , L =  a

 a

3 a 4 n R , R =  a 3 a 4 /r R . 

3 a 4

Die ersten Werte gelten für translatorische, die letzten für rotatorische Systeme. 

Die Faktoren  a 1,  a 2 und  a 3,  a 4 werden frei gewählt, für die Anwendung von Netz-

werkanalyseprogrammen empfehlen sich Zehnerpotenzen. Beim Ansatz  a 1 =  a 2

bzw.  a 3 =  a 4 entsteht die (meist verwendete) leistungsgleiche Abbildung. Beispiels-

weise können gelten  a 1 = 103 Vs /  cm und entsprechend  a 2 = 103 N /  A. 

Die Analyse mechanischer Netzwerke vereinfacht sich, wenn das mechani-

sche Netzwerk über ein Wandlerzweitor mit einem elektrischen zusammen-

wirkt. 

Abbildung 6.2.1 zeigt einen Gleichstrommotor (als Wandler), der aus einem elek-

trischen Netzwerk (Batterie) gespeist wird und auf der mechanischen Seite über

ein Getriebe (wirkt als Übertrager) auf eine mechanische Last, beispielsweise eine

Schleifscheibe mit Masse und Reibungskoeffizient, arbeitet. Ziel ist, alle mechani-

schen Elemente über den Wandler auf die elektrische Seite zu transformieren“ und

” 
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Abb. 6.2.1. Gleichstrommotor als elektrisch-mechanisches System. (a) Motoranordnung

mit Last. (b) Elektromechanische Modellierung

mit (elektrischen) Ersatzgrößen der mechanischen Elemente die elektrische Analyse

durchführen. 

Der Gleichstrommotor wird durch das elektrodynamische Wandlermodell in

Abb. 4.2.5c erfasst. Abgesehen vom Getriebe entsteht so das elektrische Ersatz-

netzwerk Abb. 4.2.5d. 

Die wichtigsten Wandlertypen sind die  elektrostatisch-mechanischen  sowie

die  elektrodynamisch-  und  elektromagnetisch-mechanischen  mit den Grund-

beziehungen Gl. (4.3.27), (4.3.44d) und (4.3.56) und  Ersatzschaltungen Abb. 4.3.7, 4.3.20. 

Die natürlichen Ersatzanordnungen der elektrostatischen und elektromag-

netischen Wandler sind die  Leitwert-  und  Hybridformen, basierend auf der

jeweiligen Ko-Energie (in Abb. 6.1.6 hervorgehoben). In der  Leitwertform

des elektrischen Wandlers (Abb. 6.2.2) muss dann das ideale Wandlerzweitor

vom  Gyratortyp  sein (Tab. 2.9, Bd. 1) und in der Hybridform des  elektro-

 magnetischen  Wandlers vom  ¨

 Ubertragertyp. Beim elektrostatischen Wandler

liegt die Kapazität eingangsseitig  parallel  zum Gyrator und ein mechanischer

Leitwert (entspr.  −y 22 =  y 22) ausgangsseitig parallel; beim elektromagne-

tischen Wandler liegt die Induktivität eingangs  in Reihe  zum Übertrager und

ausgangsseitig der mechanische Leitwert (entspr.  −h 22 =  h 22) parallel. Das

Kleinsignalverhalten dieser Grundmodelle vertiefen wir durch weitere Überle-

gungen. 

6.2.2 Elektrostatisch-mechanische Wandler

Der Grundtyp des elektrostatisch-mechanischen Wandlers ist der Plattenkon-

densator mit beweglicher Elektrode. Er wird betrieben mit Spannungs- oder

Stromquelle (Abbn. 4.3.3, 4.3.7), also konstanter Spannung oder Ladung. Die

dabei entstehende Feldkraft  F el zieht die Platten zusammen und drückt ei-

ne zur Veranschaulichung isoliert eingefügte Feder, die auch als mechanische
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Last angesehen werden darf (aus Stabilitätsgründen kann sie sogar erfor-

derlich sein, s. Gl. (4.3.28)). Abbildung 6.2.2a, b enthält das Wandlermodell

Abb. 4.3.7d mit Beschränkung auf die Feder als mechanisches Zusatzelement. 

Die ausgangsseitige  Wandlerkraft F  =

=  −

W

 F  el

 F el ist die Reaktionskraft auf

die Coulombkraft auf die Kondensatorplatten, sie wirkt als gesteuerte Strom-

quelle und hängt von der Eingangssteuerung ( F  , 

) ab. 

Q  F 

u

Ein darauf aufbauendes  Kleinsignalmodell  kann entweder die Feder im Leiter-

wert  y 22 bzw.  h 22 additiv einschließen ( y 22 =  y 22W + 1 /n) oder vom  mechanisch unbeschalteten  Kondensator ausgehen (gleichbedeutend mit  n → ∞), 

ein Kleinsignalmodell ableiten und dem so gewonnenen (linearen) Wand-

lerzweitor die Feder als  mechanische Last  hinzufügen. Dieser Weg wird be-

schritten. 

Kleinsignalmodell Ausgang sind die Wandlergleichungen (6.1.12) in  Span-

 nungs-Form (also für gegebene Spannung  u)

d u

 ∂C( x)

 i( u, x)

=  C( x)

+  u

 v

d t

 ∂x 



(6.2.2)

 u 2  ∂C( x)

 u 2  ∂

 εA

 u 2  C( x)2

 F  u( u, x) =

=

=

 . 

2

 ∂x

2  ∂x

 d − x

2

 εA

Oben steht die  i,  u-Relation des  zeitgesteuerten Kondensators (s. Gl. (2.7.25)), 

nur wurde d C/ d t  durch d C

d x

d t =  ∂C

 ∂x  d t =  ∂C

 ∂x v  ersetzt. Sie ist linear und wird

für Kleinsignalgrößen übernommen

d(Δ u)

 ∂C( x) d(Δ x)

 ∂C( x)

Δ i =  C( x)

+  u

=  sC( x) Δ u +  su

Δ x. (6.2.3a)

d t

 ∂x

d t

  

 ∂x

  

 y

11

 y

12

Das ist die Eingangsstromänderung ausgedrückt durch Spannungs- und Plat-

tenabstandsänderung. 

Die Kraftänderung Δ( F  ) als Folge der Änderungen Δ

u

 u, Δ x  beträgt









 ∂F  

 ∂F 



 ∂C( x)

 u 2  ∂C 2( x)

Δ F  =

u

 Δ

u  Δ

Δ

Δ

u

 u +

 x =  u

 u +

 x. 

 ∂u





 x

 ∂x

 u

 ∂x

  

2

 ∂x 2







 y

 y

21

22

(6.2.3b)

Typische Parameter sind (neben der festgebremsten“ Kapazität  C, bei Δ x =

” 

0) der  Spannungssteuerfaktor K U und die  Spannungssteifigkeit k U oder  rezi-

 proke Kurzschlussnachgiebigkeit  1 /n k =  k U im Arbeitspunkt









 ∂F  

 ∂C( x)

 ∂F  

 u 2  ∂ 2 C( x)

 K

u



u



U =

=  u

 , 

 k

=

 . 

(6.2.4)

 ∂u



U =



 x

 ∂x

 ∂x

 u

2

 ∂x 2
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Abb. 6.2.2. Elektrostatischer Wandler. (a) Plattenkondensator mit variablem Plattenab-

stand als Wandler. (b) Großsignalersatzschaltung. (c) Kleinsignalersatzschaltung in Leit-

wertform mit gyratorischem Kopplungszweitor. (d) Kleinsignal-Ersatzschaltung in Hybrid-

form ( Übertrager hat imaginäres Übersetzungsverhältnis)

Die vollständige Netzwerkanalogie (Geschwindigkeit entspricht Spannung)

erfordert den Übergang von der Abstandsänderung Δ x  zur Geschwindig-



keitsänderung: Δ x =

Δ v d t → Δ x = Δ v/s, was symbolisch durch Ver-

wendung der Laplace-Transformierten  s = j ω (s. Bd. 3, Schreibweise nicht

korrekt) erfolgt. Dann ergibt sich das Kleinsignalmodell des zeitgesteuer-

ten Kondensators für die Spannungs-Form als  Leitwertdarstellung (gültig für

Kettenstrom-/Kraftrichtung, Abb. 6.2.2c):

















Δ i

 y

Δ u

 y

Δ u

=

11  y

12

=

11  y 12

 , 

Δ F 

 y 21  y 22

Δ x

 y 21  y 22

Δ v





(6.2.5)

 Y 

 sC K

=

U

 . 

 K

 −k U

U

 s

Folgerichtig erwartet man für die Strom-Form des Gl. (6.1.5) mit der Dar-

stellung von Kraft und Spannung als Funktion von Ladung  Q  und Platten-

abstandsänderung  x  eine  Kleinsignal-Hybriddarstellung. Ihre erste Zeile, die

Spannung  u( Q, x), kann entweder durch Taylorentwicklung im Arbeitspunkt

oder aus der Stromdarstellung (erste Zeile der Leitwertform mittels Umstel-
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len) gewonnen werden. Ergebnis ist die erste Zeile der Hybridmatrix





1

 ∂C( x)

Δ u =  h 11Δ i +  h 12Δ x =

Δ i d t −

 Q

Δ v d t

 C

 C 2( x)  ∂x

1

 ∂C( x)

=

Δ i −

 Q

Δ v. 

(6.2.6a)

 sC



 sC 2( x)  ∂x







 h 11

 h 12

Dabei wurden statt der Ladungs- und Abstandsänderungen Δ Q, Δ x  Strom



und Geschwindigkeit  v  verwendet (Δ Q =

Δ i d t → Δ Q = Δ i/s). 

In der zweiten Zeile steht die Kraftänderung (Stromänderung im elektrischen

Fall) als Funktion der Ladungs- (Strom-) und Abstandsänderung:









 ∂F 



 ∂F 



Δ F 

Q



Q



Q =

Δ Q +

Δ x

 ∂Q



 ∂x



 x

Q








 

 u

 ∂C( x) 

 u 2  ∂ 2 C( x)

 ∂C( x)  2

=

 Δ i +

 −  2



Δ v. 

 sC( x)

 ∂x 









2

 ∂x 2

 C( x)

 ∂x







 h 21

 h 22

(6.2.6b)

Zusammengefasst lautet dann die  Hybridmatrixform

















Δ u

 h

Δ Q

 h

Δ i

=

11  h

12

=

11  h 12

Δ F 

 h 21  h 22

Δ x

 h

Δ v

21  h 22





(6.2.7)

1

 H =

 sC − K I

 s

 K

 . 

I

 s

 −k I s

Typische Kennwerte sind (neben der festgebremsten Kapazität  C  bei Δ x = 0)

der  Ladungssteuerfaktor K I (verbreitet auch als  Reziprozitätsparameter T 0

bezeichnet,  K I =  T 0) und die  Stromsteifigkeit k I oder die  reziproke Leer-

 laufnachgiebigkeit  1 /n L =  k I





 ∂F 



 K

Q

 ∂C( x)

I =

 ∂Q

 =

 Q

 x

[ C( x)]2

 ∂x









 


 ∂F 



2

(6.2.8a)

 k

Q

1  ∂ 2 C( x)

 ∂C( x)

I

=

 ∂x

 =  Q 2

 −  1

 . 

 Q

[ C( x)]2

2

 ∂x 2

 C( x)

 ∂x

Die  Gleichwertigkeit  von Leitwert- und Hybridform (Parameterumrechnung

Tab. 2.6, Bd. 1,  y 22 =  h 22  − h 21 h 12 /h 11 und  h 21 =  y 21 /y 11) führt zu den Parameterbeziehungen

 k U =  k I  − C · K 2I , 

 K U =  C · K I , 

 k I =  k U +  K 2U /C. 

(6.2.8b)
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Die Ergebnisse offenbaren:

1. 

Die Parameter  h 11,  y 11 sowie  h 22,  y 22 sind durch die  Eingangskapazität

und  Steifigkeit k =1/n ( Nachgiebigkeit n, s. u.) gegeben. Die Frequenz

 s ∼ ω  im Nenner deutet auf Energiespeicher hin! Sie modellieren die  elek-

 trische  bzw.  mechanische Speicherf¨

 ahigkeit  des Wandlers. Die Unterschie-

de der Koeffizienten  y 22,  h 22 als mechanische  Kurzschluss-  bzw.  Leer-

 laufleitwerte  stammen von der elektrischen Eingangsbelastung (Quelle

arbeitet in Spannungs- oder Stromeinprägung). 

2. 

Die Größe  K U =  CK I  ∼ u d C/ d x (in den Nebendiagonalparametern  y 21, 

 h 12) beschreibt die elektromechanische Wandlung. Sie ist  an räumliche

 Kapazit¨

 ats¨

 anderung und eine Gleichspannung (bzw. Plattenladung Q 0 , 

 Arbeitspunkt) gebunden. 

3. 

Der Wandler hat  Gyratoreigenschaften ( h 12 =  −h 21 bzw.  y 12 =  y 21). 

4. 

Ersatzschaltungsmäßig wird der ideale Wandler durch die Nebendiago-

nalparameter gekennzeichnet und mit gesteuerten Quellen modelliert

(s. Abb. 6.2.2c, d, auch Tab. 2.9 Bd. 1). Die Leitwertersatzschaltung

Abb. 6.2.2c) nutzt  spannungsgesteuerte Stromquellen  und das Wand-

lerzweitor ist damit vom  Gyratortyp (Abb. 6.1.4a) mit reellem Gyra-

tionswiderstand  r, die Hybridersatzschaltung Abb. 6.2.2d hingegen hat

 spannungsgesteuerte Spannungs-  und  stromgesteuerte Stromquellen. Des-

wegen ist das Wandlerzweitor vom  ¨

 Ubertragertyp (Abb. 6.1.4a). Sein

Übersetzungsverhältnis  ¨

 u =  A 11 =  −y 22 /y 21 =  −k U /( sK U) (Abb. 6.1.4a

und Gl. (6.2.5)) muss allerdings durch die Frequenz  s = j ω imaginär  sein. 

Die Leitwertform mit idealem Wandlerzweitor vom Gyratortyp ist die natür-

liche Ersatzschaltung elektrischer Wandler bei Nutzung der elektromecha-

nischen Netzwerkanalogie (Kraft entspricht Strom). 

Für den  Plattenkondensator C( x) =  εA/( d − x) folgen mit den Ableitungen

d C/ d x =  C( x) =  εA/( d − x)2 =  C 2( x) /εA,  C( x) = 2 εA/( d − x)3 =

2 C 3( x) /( εA)2 die Zweitorparameter

 u [ C( x)]2

 Q

 u 2 [ C( x)]3

 y =

=

=

0

=

12

 y 21

 , y

 εA

( d − x

22

0)

 s( εA)2

(6.2.9)

 Q( x)

 h 21 =  −h 12 =

 , h

 sεA

22 = 0 . 

Die Größe  Q 0 /( d − x 0)  ≈ Q 0 /d =  C 0 U/d  spielt als  Wandlerkonstante  eine zentrale Rolle, aus dem allgemeinen Ansatz geht hervor









1

 ∂F  

 ∂F  

 ∂C

 Q

 C · u

=  C · T

 =

 =  u

=

0 =

0 (6.2.10)

 Y

0 =  C

 ∂Q 



 x

 ∂u

 x

 ∂x

 d

 d
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und die Leitwertdarstellung Gl. (6.2.5) lautet gleichwertig

Δ v

Δ i

=  y Δ

Δ

+

11

 u +  y 12  v =  sCΔ u

  

 Y



Δ i C

Δ i W

Δ u

Δ F  =  y

 − Δ v

(6.2.11)

21Δ u +  y 22Δ v =

 Y



 sn K



Δ F  W

Δ F n

1

1

1

=

+

 , n

 n

C =  −Y  2 C

K

 n l

 n C

mit den Beziehungen

1

 K

1

1

=  K

U =  CT

 , k

 , 

 Y

I =

 C

0 , 

 k U =  n

I =

K

 n L





1

 − 1

1

1

1

1

=

=  −CK 2

=

=

+

 n

 I , −y 22

C

 Y  2 C

 sn K

 s

 n L

 n C

und der Ersatzschaltung Abb. 6.2.2c. Auf beiden Seiten des idealen Wand-

lerzweitores mit übereinstimmenden Kopplungskoeffizienten liegen die elek-

trische bzw. mechanische Last. 

Die zugeführte elektrische Energie wird teilweise im Kondensator gespeichert, 

der Rest wandelt in mechanische Arbeit als ausgangsseitige Kraft und Ge-

schwindigkeit. So arbeitet der Wandler als (reziproker)  Aktor: Änderungen

der mechanischen Last führen zu eingangsseitigen Strom-Spannungs- Ände-

rungen. 

Die Abbildungseigenschaften des idealen elektrisch-nichtelektrischen Wandlerzwei-

tors ( Übertrager, Gyrator) zeigt Abb. 6.2.3. Danach wird ein (mechanischer) Ab-

schlusswiderstand  Z m =  v/( −F ) beim idealen Übertrager gemäß (symmetrische

Richtungen  i,  F )

 u

 ¨

 uv

 Z

1

e =

=

=  ¨

 u 2

 v

=  ¨

 u 2 Z

 i

m

(6.2.12a)

1

( − 1 /¨

 u) (+ F )

( −F )

 i

 gv

 Y

1

e =

=

=  g 2

 v

=  g 2 Z

 u

m

(6.2.12b)

1

 − 1 /g(+ F )

( −F )

als Widerstand  Z e =  ¨

 u 2 Z m an den Eingang transformiert, beim Gyrator (Fall b)

mit dem Gyrationsleitwert  g  dagegen als übersetzter Leitwert  Y e =  g 2 Z m! Ein ima-

ginäres Übersetzungsverhältnis ( ¨

 u ∼ s ∼  j ω, typisch für die Wechselstromtechnik)

würde das Vorzeichen am Eingang drehen. 

Abbildung 6.2.4a fasst die Leitwertersatzschaltung des elektrostatischen

Wandlers mit den vereinbarten Kenngrößen in einer verbreiteten Form zu-

sammen. Seine Energiespeicherfähigkeit drückt sich in der Kapazität und

der mechanischen Nachgiebigkeit aus. Der eingeschlossene ideale Wandler

überführt die elektrische Eingangsleistung voll in ausgangsseitig abgegebene

mechanische. Aus seiner Kettenbeschreibung  u 1 =  A 12 i 2,  i 1 =  A 21 u 2 (und
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Abb. 6.2.3. Transformationseigenschaften eines elektrisch-nichtelektrischen Zweitores. 

(a) Idealer Übertrager. (b) Gyrator

Abb. 6.2.4. Kleinsignal-Ersatzschaltungen elektrischer (a) und magnetischer (b) Wandler

 A =

= 0) folgt sofort die Ausgangsleistung:

) =

22

 A 11

 u 2 i 2 =  u 1 i 1 /( A 12 A 21

 u 1 i 1 mit  A

= 1 als Gyratorbedingung. 

12 A 21

Zusammengefasst:

Die Ersatzschaltung des linearisierten elektrostatischen Wandlers enthält

drei Teile: eingangsseitig den (festgebremsten) Kondensator, den eigentli-

chen Wandler ( Übertragungszweitor vom Gyratortyp), der Potenzialgröße

( u w , v) in Flussgrößen ( i W , F ) umsetzt und ausgangsseitig das mechanische

Netzwerk. 

Wandler im Netzwerk Im Betrieb liegt der Wandler eingangsseitig an ei-

nem aktiven elektrischen Netzwerk, ausgangsseitig ist ein mechanisches an-

geschlossen, das auch mechanische Erregerquellen haben kann. In der Leit-

wertdarstellung ersetzt man die äußeren Netzwerke durch aktive Zweipole
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in Stromquellendarstellung und ihre Ersatzinnenleitwerte  Y iers,  Y aers werden

zu den Wandlerkoeffizienten  y 11,  y 22 (bzw.  y , 

) addiert (Parallelschal-

11

 y 22

tung der Zweitore, s. Kap. 2.6.6, Bd. 1). So lässt sich auch die  Bindungs-

 feder  mit der Kraftbeziehung  F =  kx  bzw.  F =  kv/s (Laplace-Variable  s) berücksichtigen: man addiert ihren Leitwert  y =  k/s = 1 /( ns) zum Wandleranteil  y 22 bzw.  h 22. Der mechanische Parameter  h 22 verschwindet beim

Plattenkondensatorwandler (s. Gl. (6.2.9)) und es verbleibt nur die Feder-

konstante als (induktiver) Leitwert. 

Die  Kurzschlusskraft ∼ y 22 =  h 22  − ( h 12 h 21) /h 11 hat dagegen auch bei verschwindendem  h 22 noch einen Kraftanteil durch die Kapazität  C. Folglich be-

trägt der zugeordnete Leitwert allgemein:  y 22 = (1 /n L s) + [ −( h 12 h 21) /h 11] =

(1 /n L s) + 1 /n C s = 1 /n K s  mit der Nachgiebigkeit  n L des eingangsseitig leer-laufenden Wandlers,  n C der  elektronischen Nachgiebigkeit“ und der  Kurz-

” 

 schlussnachgiebigkeit n K. Damit hängt die ausgangsseitige Steifigkeit auch

vom Eingangskreis ab (Strom-, Spannungssteuerung). Auf diese Weise lassen

sich weitere mechanische Elemente einbeziehen, z. B. die Elektrodenmasse des

Kondensators. 

Je nach Signalquellenauslegung arbeitet der Wandler zwischen Spannungs-

und Stromsteuerung mit unterschiedlichem Ausgangsverhalten. Im einfachen

Modell (Kap. 4) wurde dafür die Kraftwirkung bei konstanter Spannung bzw. 

Ladung untersucht mit gleichem Ergebnis. Die Erklärung ist einfach: beim

rückwirkungsfreien Wandler ( y 12 =  h 12 = 0 wie dort stillschweigend vor-

ausgesetzt) stimmen beide Kräfte auch in der Ersatzschaltung Abb. 6.2.2

überein. 

Netzwerktransformation Die gemischte Wandlerersatzschaltung kann durch

Umrechnung der mechanischen oder elektrischen Komponenten in eine rein

elektrische oder mechanische Form (seltener) überführt werden. Dabei trans-

formiert der Gyrator den Widerstand einer Vierpolseite in einen Leitwert auf

der anderen (so wird eine Reihenschaltung zur Parallelschaltung und umge-

kehrt) (Gl. (6.2.12), Abb. 6.2.3). Deshalb wirkt eine Feder auf der mechani-

schen Seite als Kapazität auf der Eingangsseite und eine Masse als Indukti-

vität. Für den elektrischen Wandler gelten damit die Transformationsbezie-

hungen

mechanisch  →  elektrisch

 C nm =  n/Y  2 , L m =  mY  2 , R r =  rY  2 , 

(6.2.13)

elektrisch  →  mechanisch

 n C =  CY  2 , m L =  L/Y  2 , r R =  R/Y  2 . 
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Der elektromechanische Wandler ist umkehrbar: arbeitet er bei gegebenen

mechanischen Größen als Sensor, so ändert sich bei Zufuhr elektrischer Ener-

gie die Kraft und Geschwindigkeit und er wirkt als Aktor. Dabei wird ein

Teil der eingebrachten Energie im Kondensator gespeichert und der Rest

in mechanische Energie gewandelt und abgegeben. Abbildung 6.2.4 stellt die

Wandlereigenschaften der elektrischen und magnetischen Wandler gegenüber. 

Die Beziehungen rechts für magnetische Wandler (Kap. 6.2.3) lassen eine ge-

wisse Dualität erkennen. 

Nichtlinearer Ansatz ∗  Die Modellierung der elektrisch-mechanischen Kopplung er-

folgte

unter

Kleinsignalbedingungen, 

das

genauere

Modell

ist

nichtlinear

(Abb. 4.3.7). Ausgang sind die Kräfte auf die bewegliche Elektrode (Gl. (4.3.27)). Es

herrscht Kräftegleichgewicht zwischen Feldkraft  F el (nichtlinear von  Q  bzw.  u  ab-

hängig), der mechanischen Kraft  F mech und einer externen Kraft  F ext:  F mech + F el =

 F ext. Die mechanische Kraft  F mech umfasst die Massenträgheit  m(d2 s/ d t 2), Reibungsverluste ( r d x/ d t) und den Federeinfluss  cs =  s/n. Dann gilt als erste Bilanzgleichung





 Q 2

d2 x

d x

 x

 F ext( Q, x) =  F el +  F mech =

+

 m

+  r

+

 . 

(6.2.14a)

2 ε 0 A

d t 2

d t

 n

Die zweite Gleichung folgt aus der elektrischen Seite: liegt zwischen Spannungs-

quelle und Kondensator noch ein Längswiderstand  R, so gilt

d Q

 Q

 Q

 Q( d − x)

 R

+

=  u

=  u( Q, x) =

 . 

(6.2.14b)

d t

 C

q mit  C

 ε 0 A

Beide Gleichungen zusammen beschreiben das verkoppelte mechanisch-elektrische

Verhalten. Die Lösung erfordert rechnergestützte numerische Verfahren oder ei-

ne sog.  Blocksimulation (z. B. mit MATLAB/Simulink), wenn zur Gleichung ein

Blockschaltbild existiert. Die Linearisierung im Arbeitspunkt erlaubt schließlich

eine Lösung mit den vorgestellten Modellen. 

Das elektrostatische Wandlermodell wurde auf rein translatorische Bewegungen be-

schränkt (rotatorische sind selten). In dieser Form ist es die Grundlage für Konden-

satormikrophon, elektrostatischen Lautsprecher, piezoelektrische Geber und Auf-

nehmer und zahlreiche Sensor- und Aktoranwendungen der  Mikrosystemtechnik. 

Weitere Wandlerausf¨

uhrungen Neben Wandlern mit  variablem  Elektrodenab-

stand und der typischen Kapazitätskurve  C( x)  ∼  1 /( d − x) gibt es auch Formen

für longitudinale Elektrodenbewegung bei  festem  Abstand oder solche mit  verdreh-

 ter  Elektrode. Dabei wird die Elektrodenfläche oder die Überdeckungsfläche des

Dielektrikums variiert bzw. der Plattenabstand ortsabhängig verändert. Im ersten

Fall (Abb. 6.2.5a) führt die Kapazität

 εA

 εA

 C( x) =

( b +  x)  →  d C( x) =

(6.2.15a)

 d

d x

 d

durch die lineare Plattenverschiebung zu konstanter Kapazitätsänderung und damit

 konstanter elektrostatischer Kraft F el =  u 2 εA/(2 d). Eine Folge ist z. B. der Weg-

fall des Schnapp-Effektes. Kapazitäten mit einseitig drehbar gelagerter Elektrode

(Abb. 6.2.5b) modellieren etwa eine Biegeelektrode mit inhomogenem Feldverlauf. 
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Abb. 6.2.5. Grundtypen elek-

trostatischer Wandler mit ver-

änderbarem Kondensator. 

(a) Variable Elektrodenfläche. 

(b) Verdrehbare Elektrode. 

(c) Fingerstruktur

Die Kapazität beträgt







 εa

 b  tan  ϕ



 C( ϕ) =

ln

+ 1

 ≈

 εA



 . 

(6.2.15b)

tan  ϕ

 d

 d − bϕ/ 2  ϕ 1

Sehr verbreitet sind  Kammstrukturen (Abb. 6.2.5c) wegen der großen Kräfte als

Folge der mechanischen Reihenschaltung der beweglichen Elektroden. Sie greifen

fingerartig ineinander und können sich transversal und longitudinal bewegen. Das

erlaubt vielfältige Anwendungen. 

Während die Energiedichte elektrischer Felder bei makroskopischen Abmessungen

wegen der Durchbruchsfeldstärke von ca. 104 V/mm bei etwa 400 Ws/m3 und damit

deutlich unter der magnetischer Felder liegt, steigt sie nach dem Paschen-Gesetz

bei Wegstrecken im µm-Bereich bis auf 106 V/mm an. Dann ist der Energiegehalt

mit Magnetfeldern vergleichbar und  elektrostatische Mikroaktoren  gewinnen an Be-

deutung. Ergebnisse sind Mikroventile, Druckerköpfe, Mikromotoren und -getriebe, 

mikrooptische Strukturen u. a. m. 

6.2.3 Magnetisch-mechanische Wandler

Die typischen magnetischen Wandler arbeiten elektromagnetisch (Elektro-

magnet) mit variabler Reluktanz oder elektrodynamisch (bewegter Leiterstab

im Magnetfeld). Im ersten Fall wirkt die nichtlineare magnetische Kraft im

Luftspalt des magnetischen Kreises, im zweiten die Lorentz-Kraft auf den im

Magnetfeld bewegten Leiter. 

6.2.3.1 Elektromagnetische Wandler

Abbildung 6.2.6a zeigt den  elektromagnetischen  Wandler mit beweglichem

Anker, gehalten durch eine Feder. Ausgang ist die nichtlineare magnetische

Kraft  F m (wie oben die nichtlineare elektrische Feldkraft) auf den beweglichen
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Abb. 6.2.6. Elektromagnetischer Wandler (Reluktanzprinzip). (a) Aufbau mit beweglichem

Anker im Magnetkreis. (b) Wandler mit eingestelltem Arbeitspunkt (Gleichstrom, Dauer-

magnet) und Kleinsignalaussteuerung (c) wie (b), jedoch mit variabler Fläche (Tauchan-

kerprinzip)

Anker. Er überträgt die Kraftwirkung und bewegt sich je nach Ausführung

senkrecht zu den Polschuhflächen ( variabler  Luftspalt wie hier) oder bei ge-

schlossenem magnetischen Kreis in einem  konstanten  Luftspalt bei veränder-

licher Polfläche (sog.  Tauchankerprinzip  Abb. 6.2.7c). In beiden Fällen hängt

die den magnetischen Fluss bestimmende Induktivität + L( l) vom Luftspalt  l

ab. 

Grundlage des Elektromagneten ist die unipolar wirkende  Reluktanzkraft

Gl. (4.3.52) mit ihrer quadratischen Strom- bzw. Flussabhängigkeit. Des-

wegen erfordert ein stabiler Arbeitspunkt (wie beim spannungsbeaufschlag-

ten Plattenkondensator) eine  elastische Bindung  durch eine Feder (Feder-

konstante  k). Der Spulenstrom  i ( w  Windungen) erzeugt im magnetischen

Kreis den Fluss Φ und es stellt sich ein Gleichgewicht zwischen anziehender

magnetischer Kraft und Federkraft ein. Ohne Grundfluss hat der Luftspalt

die Breite  l, mit Grundfluss Φ0 (bzw. dem zugehörigen Strom  i 0) den etwas

kleineren Grundabstand  x 0, verbunden mit der magnetischen Feldkraft  F m









 B 2 A

Φ2

 μ

 i · w  2

1

 i · L  2

 F

0 A

m =

=

=

=

(6.2.16)

2 μ 0

2 μ 0 A

2

 l

2 μ 0 A

 w

604

6. Analogien zwischen elektrischen und nichtelektrischen Systemen

für Φ = Φ0 und  x =  x 0. Sie ist gleich der mechanischen Kraft  F mech =  kx 0. 

Der Grundfluss kann auch von einem Dauermagneten stammen, bei Wandlern

meist der Regelfall. 

Der elektromagnetische Wandler nutzt die Reluktanzkraft und Fluss-Strom-

beziehung Ψ( i) als Zusammenhang zwischen Energie- und Leistungsvaria-

blen Ψ,  i. Sie wurden in Gl. (4.3.56) bzw. (6.1.13) angegeben. Wie beim ka-

pazitiven Wandler gibt es zwei gleichwertige Beschreibungsformen, die  Fluss-

 Spannungs-Form, in der Kraft und Strom nur vom Fluss- und Ort abhängen

und die  Ladungs-Strom-Form  mit der Abhängigkeit der Kraft und Spannung

von Strom und Ort

 F  u =  F  u(Ψ , x);  i = I(Ψ , x)

Fluss-Spannungs-Variable

 F  =

Q

 F  Q( i, x);  u = U( i, x)

Ladungs-Strom-Variable . 

Ausgeschrieben ergibt sich (Gl. (4.3.56))

Ladung-Strom-Darstellung

Fluss-Spannungs-Darstellung





elektrische Seite  u =  ∂





 ∂t ( W ∗

 m)  x

 i( x) =  ∂W m

 ∂Ψ  x = Ψ( x)

 L( x)

=  L( x) d i

d x

d t +  i ∂L

 ∂x  d t



 ∂W ∗ 



Kopplung  F

m



m

 F ( i, x) |i =

 ∂x 

 F (Ψ , x) |

=  − ∂W m

 i

Ψ

 ∂x Ψ

=  i 2  ∂L

=

Ψ2

 ∂L

2  ∂x

2 L( x)2  ∂x . 

(6.2.17)

Je nachdem, ob die Kraftwirkung bei konstantem Strom oder magnetischem

Fluss erfolgt, wird das Gesamtsystem durch die linke oder rechte Seite be-

schrieben. Die Energiebeziehungen gelten allgemein (auch für nichtlinearen

Ψ( i)-Zusammenhang), unten stehen die Ergebnisse für  lineare  Fluss-Strom-

Beziehung Ψ( x) =  L( x) i. 

Erwartungsgemäß tritt in der Stromdarstellung die  zeitvariable Induktivit¨

 at

 L( x( t)) auf (s. Gl. (3.4.10)) wie analog beim kapazitiven Wandler die zeitab-

hängige Kapazität. Überhaupt besteht zu diesem Wandler eine Dualität fol-

gender Größen

dΨ

d Q

Ψ   Q, 

 u =

  i =

 , 

 L   C, 

(6.2.18)

d t

d t

was das Verständnis in manchen Punkten erleichtert. Ziel ist zunächst, wie

dort, ein Kleinsignalmodell im Arbeitspunkt. 

Das Grundmodell des Reluktanzwandlers nach Gl. (4.3.56) zeigt Abb. 6.2.6b. 

Dabei sind, analog zum Kondensatormodell (Abb. 4.3.7), in die mechanische
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Last Ankermasse, Reibung und die Rückholfeder (evtl. auch eine externe

Kraft) eingeschlossen. Zum Modell gehört nach dem linken Gleichungssys-

tem eine  Hybridersatzschaltung, weil die Eingangsspannung die Reihenschal-

tung von induktivem Spannungsabfall und einer Rückwirkungsspannung ist. 

Wirkt als mechanische Last nur eine Rückholfeder, so vereinfacht sich die

Ersatzschaltung zu Abb. 6.2.6c. Die rechte Seite in Gl. (4.3.56) führt zur

Ersatzschaltung in Leitwertform (s. u.). 

Arbeitspunkt, Schnappeffekt Im Arbeitspunkt befindet sich der Anker (bei einge-

stelltem Strom oder Fluss) in Ruhe und die Reluktanzkraft steht mit der Federkraft

im Gleichgewicht (es wirke keine äußere Zusatzkraft ein). Dann gilt die

Arbeitspunktbedingung  kx 0 = ( F m)  . 

(6.2.19)

0

Bei konstantem Fluss ist die Reluktanzkraft  abstandsunabh¨

 angig  und es gibt einen

stabilen Arbeitspunkt  x 0. Mit Ankerverschiebung aus der Gleichgewichtslage  x 0

steigt die rückstellende Federkraft, während die Reluktanzkraft  F m konstant bleibt

und der Anker nach  x 0 zurückgezogen wird. 

Bei  eingepr¨

 agtem Strom  wächst die Reluktanzkraft mit sinkendem Ankerabstand, 

die Federkraft hingegen nur linear. Dann lautet der Lösungsansatz Gl. (6.2.19)

 i 2 d L( x)

 i 2 w 2 μA

 k 1 x =  F m =

=

 . 

2

d x

2( d − x)2

Das stimmt sinngemäß mit dem Verhalten des spannungsbeaufschlagten Platten-

kondensators überein (Gl. (4.3.28), Abb. 4.3.8). Dann gibt es einen Bereich  x 0m =

 d/ 3 mit dem zugehörigen  Schnappstrom (Pull in-Strom)

 

2 d

3

 k

 I

1

p =

 , 

(6.2.20)

3

 w 2 μA

in dem der konstantstrombetriebene Elektromagnet einen stabilen Arbeitspunkt

hat. 

Er arbeitet nur im Aussteuerbereich  x < d/ 3 stabil. 

Zur Vermeidung des Schnapp-Effektes muss folglich gelten

 x 0  < d/ 3 , 

 I < I p . 

stabiler Arbeitsbereich

Eine Zusatzkraft  F ext ändert sowohl Arbeitspunkt wie Schnapp-Verhalten. 

Kleinsignalmodell Grundlage des Kleinsignalmodells im Arbeitspunkt ist der

sinngemäß auf den magnetischen Wandler übertragene Ansatz Gl. (6.1.15)

mit der Leitwert- und Hybriddarstellung nach Gl. (6.1.16). 

Die  Leitwertform  mit der Spannungs- und Orts- bzw. Geschwindigkeitsände-

rung als unabhängige Variable folgt analog zu Gl. (6.2.5) aus der Fluss-Span-

nungsdarstellung (6.1.16). Das Ergebnis lautet bei  Kettenpfeilstrom-Kraft-
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 Richtung
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(6.2.21)

1

 Y 

=

 sL − KΨ

 s

 K

 . 

Ψ

 s

 −kΨ s

Typische Parameter sind (neben der festgebremsten Induktivität  L (Δ x = 0))

Ψ

 ∂L( x)

Flusssteuerfaktor

 KΨ =  L 2( x)  ∂x







Ψ2

1  ∂ 2 L( x)

 ∂L( x) 2

Spannungssteifigkeit  kΨ =

 −  1

 . 

 L 2( x)

2

 ∂x 2

 L( x)

 ∂x

(6.2.22)

Entsprechend folgt aus der  Ladungs-Strom-Darstellung  Gl. (4.3.56) die  Hy-

 bridmatrix  der  zeitgesteuerten Induktivit¨

 at
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11  h 12

Δ F 
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(6.2.23)

 H

 sL K

=

I

 K I  − k I s

mit Strom- und Ortsänderung als unabhängigen Variablen und den Erset-

zungen

Stromsteuerfaktor  K I =  i ∂L( x)

 ∂x

(6.2.24)

Stromsteifigkeit

 k

 ∂ 2 L( x)

I =  i 2

2

 ∂x 2  . 

Zur vollständigen Netzwerkanalogie (Geschwindigkeit entspricht Spannung)

übernehmen wir Abstandsänderung Δ x  und Geschwindigkeitsänderung mit



dem Frequenzeinfluss (Δ x =

Δ v d t → Δ x = Δ v/s) vom Kondensator. 

Die  Gleichwertigkeit  von Leitwert- und Hybridform (Parameterumrechnung

Tab. 2.6, Bd. 1) führt (mit  y 22 =  h 22  − h 21 h 12 /h 11 und  h 21 =  y 21 /y 11) auf die Parameterbeziehungen

 k I =  kΨ  − L · K 2Ψ , 

 K I =  L · KΨ , 

 kΨ =  k I +  K 2I /L. 

(6.2.25)

Analog zum elektrostatischen Wandler erkennt man:

Die Parameter  h 11,  y 11 sowie  h 22,  y 22 sind durch  Wandlerinduktivität  und  Steifigkeit k = 1 /n ( Nachgiebigkeit n (s. u.)) bestimmt. Die Frequenz  s = j ω  im
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Nenner deutet auf Energiespeicher hin! Sie modellieren seine  elektrische  bzw. 

 mechanische Energiespeicherf¨

 ahigkeit. 

Die Unterschiede der Koeffizienten  y 22,  h 22 als mechanische  Kurzschluss-  bzw. 

 Leerlaufleitwerte  stammen von der elektrischen Eingangsbeschaltung. 

Die Größen  K I =  LKΨ  ∼  d L/ d x  drücken die eigentliche elektromechanische

Wandlung aus. 

 Wegen h 12 =  −h 21  bzw. y 12 =  y 21  arbeitet der Wandler umkehrbar (was seine

 Definition voraussetzte). 

 Energiewandlung ist an r¨

 aumliche Induktivit¨

 ats¨

 anderung und Stromfluss (bzw. 

 Verkettungsfluss Ψ0 , Arbeitspunkt) gebunden. 

Auch hier kann die Wandlereigenschaft durch gesteuerte Quellen nachgebildet

werden. 

Bei  linearer Induktivit¨

 at

 w 2

 w 2 μA

 L( x)

=

=

 R m

( l∗Fe +  d − x)

(6.2.26)

 ∂L( x)

 w 2 μA

 L 2( x)

=

=

 ≈ w 2 μA

 ∂x

( l∗Fe +  d − x)2

 w 2 μA

( d − x)2

folgen schließlich mit  L( x) = 2 w 2 μA/( d−x)3 = 2 L( x)3 /( w 2 μA 2) die Größen Stromsteuerfaktor K I,  Stromsteifigkeit k I und  Flusssteuerfaktor KΨ







 w 2 μA 

 i · L( x) 

Ψ( x) 

Ψ( x
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0)

I =  i



=



=



=

 ≈ Ψ0

( d − x)2 

( d − x)

( d − x)

( d − x 0)

 d

AP

AP

AP

 kΨ = 0 , k I =  LK 2Ψ . 

(6.2.27)

Damit sind Leitwert- und Hybridparameter bestimmt. 

Der Stromsteuerfaktor  K I  ≈ Ψ0 /( d−x 0)  ≈ Ψ0 /d =  L 0 i/d  spielt als  Wandlerkonstante (s. u.) eine zentrale Rolle:  ohne Gleichstrom i =  I bzw. Grundfluss

Ψ0  (auch durch Dauermagnet!) erfolgt keine Wandlung!  Interessanterweise

verschwindet hier der  mechanische Kurzschlussleitwert y 22 (ohne Federan-

teil) bzw. die Spannungssteifigkeit ( y 22,  ∼ kΨ). Dagegen enthält der  mecha-

 nische Leerlaufleitwert h 22 die Federnachgiebigkeit (trägt als äußere Last ad-

ditiv zu  h 22 bzw.  y 22 bei) und eine durch das Magnetfeld erzeugte Steifigkeit

( k I =  LK 2 ). 

Ψ

Die Ersatzschaltung des verlustfreien elektromagnetischen Wandlers besteht

aus der eingangsseitig reihengeschalteten (festen) Induktivität, einem nach-

geschalteten transformatorischen Wandler und einer mechanischen Last. 
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Abb. 6.2.7. Ersatzschaltungen des elektromagnetischen Wandlers. (a) Leitwertform. 

(b) Hybridform, angedeutet ist zusätzliche mechanische Last. (c) Elektromagnetischer

Wandler mit weiteren mechanischen Elementen und elektrische Analogschaltung: alle me-

chanischen Elemente sind auf die elektrische Seite transformiert. (d) Ersatzanordnung des

transformierten Netzwerkes

Ersatzschaltungen Abbildung 6.2.7 zeigt beide Kleinsignalersatzschaltungen. 

Zur Leitwertmatrix Gl. (6.2.21) gehört Abb. 6.2.7a mit gyratorischer Ver-

knüpfung der elektrisch-mechanischen Größen. Die gyratorische Grundla-

ge folgt aus den spannungsgesteuerten Stromquellen des Wandlerzweitores

(s. Abb. 6.1.3b). Beide Steuerfaktoren sind frequenzabhängig (und imaginär)

und so auch die Wandlungskonstante Y . Deshalb wird diese Ersatzschaltung

für magnetische Wandler kaum benutzt. 

Der Übergang zur  Hybridersatzschaltung (Abb. 6.2.7b) verkoppelt dagegen

elektrische und mechanische Größen  frequenzunabh¨

 angig  und erlaubt den Ein-

satz des idealen Übertragers (Abb. 6.1.3b) mit  ¨

 Ubersetzungsverh¨

 altnis X
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 ∂L( x)

Ψ 

1

Stromsteuerfaktor  K

0 

I =  i

=

=

 . 

 ∂x

 d lin .  Modell

 X

reziproke Wandlerkonstante

(6.2.28)

Ausgehend von Gl. (6.2.23) stellt sich der Eingangskreis als Reihenschaltung

von (fester) Induktivität und  gesteuerter Spannungsquelle  dar, entsprechend

der Ersatzschaltung einer linear zeitgesteuerten Induktivität. Ausgangsseitig

liegen die Nachgiebigkeiten der Feder und des magnetisch erzeugten Anteils

parallel, das sind Feder- ( −h 22 = 1 /sn) und Wandleranteil ( −h 22 =  k I =

( kΨ  − L · K 2 )

ist die Folge der im Magnetfeld gespeicherten

Ψ  /s. Der Teil  LK  2

Ψ

Energie, denn ein stromloser Eingang (Δ i = 0) verhindert den Ausgleich

der Feldenergie bei Ankerverschiebung. Der Übertrager transformiert eine

Nachgiebigkeit (entspr. Induktivität!) in eine  eingangsseitige Induktivit¨

 at L =

 n/X 2. 

Die natürliche Ersatzschaltung des elektromagnetischen Wandlers ist die

Hybridform mit idealem Übertrager als Wandlerzweitor (bei Wahl der Netz-

werkanalogie). Er bildet die mechanische Seite schaltungstreu in ein struk-

turgleiches elektrisches Netzwerk ab und umgekehrt. 

Transformationsbeziehungen Das Übertragerverhalten Abb. 6.2.7b bestimmt

die elektrisch-mechanischen Transformationseigenschaften: mechanische Grö-

ßen transformieren in elektrische und umgekehrt (einschließlich der Kräfte

und Geschwindigkeiten als Ströme und Spannungen), Abb. 6.2.7c zeigt den

Vorgang. Es gelten folgende Regeln

mechanisch  →  elektrisch

mechanisch  ←  elektrisch

 m

 n

1

 C

1

 C m =

 , L

 , R

 , m

 , n

 . 

 X 2

n =  X 2

r =  rX 2

C =  X 2

I =  LX  2 , r R =  RX 2

(6.2.29)

Gegenüber dem elektrischen Wandler hat der elektromagnetische  Transfor-

 matoreigenschaften: ein Widerstand einer Seite wird in einen Widerstand

auf der anderen (nach Maßgabe des Übersetzungsverhältnisses) abgebildet

und eine Ausgangsreihenschaltung von Widerständen in eine Eingangsrei-

henschaltung von Widerständen usw. 

Den dualen Eigenschaften des elektrostatischen Wandlers ist zuzuschreiben, dass

der magnetische Wandler eine Masse in eine eingangsseitige Kapazität, der elektro-

statische in eine Induktivität wandelt. 
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Wandler mit konstantem Luftspalt Bewegt sich der Anker eines elektromag-

netischen Wandlers  parallel  zu den Polstirnflächen (Abb. 6.2.8a), so durch-

setzt der magnetische Fluss hauptsächlich den bereits vom Anker ausgefüllten

ferromagnetischen Bereich. Die durchsetzte Fläche ist proportional der Ein-

tauchtiefe. Physikalisch wird der Anker dabei in den Luftspalt gezogen. Bei

Annahme eines etwa homogen bleibenden Feldes ändert sich die Induktivität

gemäß

 w 2 μA( x)

 x

 L

 L( x) =

=  L

 , → ∂L( x) =

max =  L. 

(6.2.30a)

 l∗ + 2Δ

max

Fe

 l

 d

 ∂x

 d

Dazu gehört eine Wandlerreaktionskraft in Spannungs-Fluss- bzw. Strom-

Ladungs-Darstellung:

Ψ2

 Li 2

 F  m(Ψ , x) =

 , F 

 . 

(6.2.30b)

2 Lx 2

m( i, x) =

2

Ein gegebener Strom  I 0 als Arbeitspunkt erlaubt jede stabile Ankerlage  x =

 x 0, bei eingestelltem Fluss gibt es u. U. ein Stabilitätsproblem. 

Der Kraft- und Induktivitätsansatz erlaubt sofort die Berechnung der Klein-

signalparameter. Für die  Hybridform  Gl. (6.2.23) lauten die zugehörigen Ko-

effizienten (Abb. 6.2.8b)

 ∂L( x)

Stromsteuerfaktor  K I =  i

=  i · L

 ∂x

(6.2.31a)

 i 2  ∂ 2 L( x)

Stromsteifigkeit

 k I =

= 0

2

 ∂x 2

und entsprechend für die weniger wichtige Leitwertform nach Gl. (6.2.21)

Ψ

 ∂L( x)

Ψ

Flusssteuerfaktor

 KΨ =

=

 L 2( x)  ∂x

 Lx 2

(6.2.31b)

Spannungssteifigkeit  kΨ =  − Ψ2  . 

2 Lx 3

Die Induktivität hat den festgebremsten Ruhewert. Überraschend ist die

Spannungssteifigkeit hier negativ, wodurch die Gesamtsteifigkeit abnimmt. 

Das Ergebnis lässt sich mit dem Kleinsignalmodell Abb. 6.2.8c einfach er-

klären: bei elektrischem Kurzschluss am Eingang tritt auf der mechanischen

Ausgangsseite der mechanische Leitwert  F/v =  y 22 =  −y

=

22

 kΨ /s ∼

( Bl)2 /L  auf. Wirkt Kraft zur Leiterbewegung ein, entsteht über das Indukti-

onsgesetz eine Bremskraft, die der eingeprägten Kraft entgegenwirkt. Der Ef-

fekt

wurde

bereits

beim

Leistungsumsatz

im

Generator

diskutiert

(Abb. 3.3.16). Läuft der Eingang hingegen leer (Ausgangsleitwert  −h = 0), 

22

so unterbleibt die Rückwirkung und es muss keine Kraft aufgewendet werden. 

6.2

Mechanisch-elektrische Systeme

611

Abb. 6.2.8. Elektromagnetischer Wandler mit Ankerbewegung parallel zu den Polstirn-

flächen, konstanter Luftspalt. (a) Aufbau. (b) Großsignal-Ersatzschaltung, Hybridform. 

(c) Kleinsignal-Ersatzschaltung

Nichtlineares Model ∗  Im realen Betrieb, etwa dem Ein- und Abschalten eines

Elektromagneten, wirkt das volle nichtlineare Modell. Es besteht (Abb. 6.2.9) aus

dem elektrischen und magnetischen Kreis und der Kraftwirkung auf das mechani-

sche System. Bei linearem magnetischen Kreis (verketteter Fluss Ψ( x, i)) wird von

folgenden Grundgleichungen ausgegangen (s. Gl. (4.3.57))

Θ = Φ( R mFe +  R mL) . 

  I

Die magnetische Kraftwirkung folgt aus  F  m = d W m

Ψ( x, i)d i. Mit dem

d x

= d

d x

0

Ansatz Ψ( x, i) =  i·L( x) für die luftspaltabhängige Induktivität  L( x) wird schließlich d i

 ∂L( x) d x

 i 2  ∂L( x)

d2 x

d x

 x

 u q =  iR +  L( x)

+  i

 , 

=  m

+  r

+

 . 

(6.2.32)

d t

 ∂x

d t

2

 ∂x

d t 2

d t

 n

Die unterstrichenen Terme verkoppeln elektrische und mechanische Größen. Der

unterstrichene Teil links ist die induzierte Spannung durch die Ankerbewegung im

elektrischen Kreis. Das Modell lässt sich durch Einbau einer nichtlinearen Magne-

tisierungskennlinie verbessern. 

Beim  Einschalten (Anlegen einer Spannung  U q) ruht zunächst der Anker noch und

es gilt für den Luftspalt  l =  l L, d. h.  x = 0. Der Strom steigt mit der Zeitkon-

stanten  τ 0 =  L( l L) /R, bestimmt durch die Induktivität  L( l L) mit vollem Luftspalt (Abb. 6.2.9b). Bei ausreichendem Strom (Zeitpunkt  t 1) beginnt die Ankerbewegung (Zeitbereich  t 1  . . . t 2) und induziert eine Gegenspannung verbunden mit einem

Stromabfall. Mit angezogenem Anker (ab  t 2,  l L = 0) steigt die Induktivität auf  L(0)

und der weitere Stromanstieg erfolgt mit größerer Zeitkonstante  τ 2 =  L(0) /R  bis

zum Erreichen des stationären Wertes. Beim Abschalten sinkt der Strom sofort ab, 

der Anker ruht noch im Zeitbereich  t 3  . . . t 4 und erst danach fällt auch er ab. 

Anwendungen Elektromagnetische Wandler werden seit Jahrzehnten vielfältig

genutzt: als (historisches) Tonabnehmerprinzip für Plattenspieler, als Kopf-

hörer, Autohupe, Signalhörner, Geschwindigkeitsaufnehmer, elektromagne-

tische Schwingförderer, elektromagnetische Stellantriebe, Reluktanzprinzip

in linearen und rotatorischen Elektromaschinen u. a. m. 
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Abb. 6.2.9. Nichtlinearer Elektromagnet. (a) Modell. (b) Betriebsstrom und Ankerbewe-

gung beim Einschalten

6.2.3.2 Elektrodynamischer Wandler

Die Grundlagen des elektrodynamischen Wandlers bilden die  Lorentz-Kraft

 F m =  iBl  auf den stromdurchflossenen Leiter im Magnetfeld nach Gl. (3.1.3)

und die bei Bewegung in ihm induzierte elektrische Feldstärke bzw. Indukti-

onsspannung  u qi =  Blv (Gl. (3.3.11 ff.)). 

Der elektrodynamische Wandler verknüpft elektrische und mechanische

Größen gesetzmäßig linear miteinander. 

Das unterscheidet ihn prinzipiell vom elektromagnetischen Wandler: dort

hängt die Reluktanzkraft nichtlinear vom Strom ab, hier linear und so be-

stimmt die Stromrichtung auch die Kraftrichtung gemäß Rechtsdreibein aus

 i( l),  B  und  F . Das erforderliche, meist homogen angenommene Magnetfeld stammt entweder einem Dauer- oder Erregermagneten. Das strombedingte

(eigene) Magnetfeld des Leiters bzw. der Schleife wird als  Schleifenindukti-

 vit¨

 at  berücksichtigt. 

Wandlergrundlage ist der bewegte Leiterstab im Magnetfeld als translato-

risch bewegte Leiterschleife (Abb. 4.3.14b) beispielsweise als  Tauchspulen-

 prinzip (Abb. 6.2.10a) oder rotierende Schleife ( Drehwandler  Abb. 4.3.14c), Motor-/Generatorprinzip). Der zugehörige Leistungsumsatz elektrisch  ↔  mechanisch basierte auf der Verknüpfung von Kraftwirkung, Leiterbewegung

und induzierter Spannung (s. Kap. 3.3.3.2). 

Das Wandlermodell kann von bereits bekannten Prinzipien übernommen wer-

den: der Leiterschleife mit induzierter Spannung durch ein Fremdfeld
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Abb. 6.2.10. Elektrodynamischer Wandler. (a) Tauschspule als elektrodynamischer Wand-

ler, Aufbau. (b) Großsignal-Modell der elektrischen und mechanischen Wandlerseiten; 

Leiterschleife für translatorische Bewegung

(Abb. 3.4.2b), dem bewegten Leiterstab ergänzt durch die mechanische Seite

(Abb. 3.3.16) oder dem Generator-Motorprinzip (Abb. 3.3.20). Wir gehen

jedoch vom Energieansatz Gl. (4.3.44d) aus, streifen aber kurz den ersten

Fall. 

Ausgang ist ein elektrodynamisches Antriebssystem (Abb. 6.2.10a) aus einer

Spule (Masse  m, Drahtlänge  l), die sich im Magnetfeld  B 0 eines Topfmagne-

ten bewegt. Eine Feder ( n) hält sie in einer Ruhelage. Stromfluss durch die

Spule erzeugt Kräfte in axialer Richtung. Maßgebend für die Wandlerglei-

chungen sind das Kräftegleichgewicht auf der mechanischen Seite und die bei

Leiterbewegung entstehende induzierte Spannung





1

d v

 F  =  F  −

m

 F mech =  B · l · i −

 v d t +  m

 n

d t

mechanische Seite

(6.2.33a)

 u i  ≡ u =  B · l · v, 

elektrische Seite

(6.2.33b)

also eine Beziehung der Form  F  =  f 1( v, i) und  u =  f 2( v, i). Mit der Spuleninduktivität  L (und Verlustwiderstand  R) folgt







1

 F  +  m ˙ v +  rv +

 v d t =  F 

 n

m =  B · l · i





(6.2.34)

d i

 u − iR +  L

=  u

d t

W =  B · l · v. 
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In dieser Form wird der elektrodynamische Wandler, wie der elektromagne-

tische, modelliert durch einen  verlustfreien transformatorischen Wandler

 u W =  v/X, 

 i =  X · F  m , X = 1 /( B · l) . 

(6.2.35)

Ihm liegen eingangsseitig die (festgebremste) Induktivität  L  in Reihe und

ausgangsseitig die mechanischen Ersatzelemente Masse, Reibung und Nach-

giebigkeit  n L (bestimmt bei eingangsseitigem Leerlauf) parallel. Das Er-

satzschaltbild stimmt mit dem des elektromagnetischen Wandlers überein

(Abb. 6.2.8b), es ändert sich nur die Transformationskonstante gegenüber

Gl. (6.2.28). Jetzt hängt der Kopplungsfaktor  X = 1 /( B · l) von Magnetfeld

und Leiterlänge ab. So gelten die Transformationsbeziehungen Gl. (6.2.29)

auch für den elektrodynamischen Wandler. 

Energieansatz Das Wandlermodell ergibt sich wegen der linearen Zusammenhänge

auch aus der elektrodynamischen Energiewandlung Gl. (4.3.44d) in beiden Darstel-

lungen als Leitwert- und Hybridformen. 

Die  Leitwertform  mit unabhängigen Spannungs- und Orts- bzw. Geschwindigkeits-

variablen folgt aus der Fluss-Spannungs-Form mit dem Ergebnis für  Kettenstrom-

 Kraft-Richtung am Wandlerzweitor
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=

11  y 12
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 y 21  y 22
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(6.2.36)
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Typische Parameter sind (neben der festgebremsten“ Induktivität  L  bei konstan-

” 

tem  x)

 Bl

( Bl)2

Flusssteuerfaktor  KΨ =

 , 

Spannungssteifigkeit  k

 . 

(6.2.37)

 L

Ψ =

 L

Ganz entsprechend folgt aus der  Ladungs-Strom-Darstellung  die Hybridmatrixform

zunächst mit Strom und Ort als unabhängigen Variablen. Zur vollen Netzwerkanalo-

gie (Geschwindigkeit entspricht Spannung) übernehmen wir für die Änderungen von



Abstand und Geschwindigkeit den Frequenzeinfluss (Δ x =

Δ v d t → Δ x = Δ v/s, 

 s = j ω) und erhalten
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=

11  h 12

 F 

 h 21  h 22
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(6.2.38)

 H

 sL

 K

 sL Bl

=

I

=

 K I  − k I

 s

 Bl

0

mit der Ersatzschaltung Abb. 6.2.10b) und den Ersetzungen

1

Stromsteuerfaktor  K I =  Bl =

 , 

Stromsteifigkeit  k

 X

I = 0 . 

(6.2.39)
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Die  Gleichwertigkeit  beider Formen (Parameterumrechnung Tab. 2.6, Bd. 1) ergibt

die Parameterbeziehungen (wegen  y 22 =  h 22  − h 21 h 12 /h 11 und  h 21 =  y 21 /y 11) k I =  kΨ  − L · K 2Ψ , 

 K I =  L · KΨ , 

 kΨ =  k I +  K 2I /L. 

(6.2.40)

Zum elektromagnetischen Wandler (Abb. 6.2.6) gibt es Entsprechungen und Un-

terschiede:

Der mechanisch leerlaufend angenommene Wandler wird ausgangsseitig durch

die  Steifigkeit k = 1 /n ( Nachgiebigkeit n (s. u.)) belastet (Zusatzbeitrag zu  y 22

bzw.  h 22). Weil die Kraft  F ∼ i  nicht von der Auslenkung  x  abhängt, verschwin-

det  h 22 ( k I = 0). 

Die Unterschiede der Koeffizienten  y 22,  h 22 als mechanische  Kurzschluss-  bzw. 

 Leerlaufleitwerte  stammen von der elektrischen Eingangsbeschaltung. 

Die Parameter  h 11,  y 11 weisen auf die  Wandlerinduktivität  als Ort der Energie-

speicherung hin. Das Magnetfeld  B  wird zwar zur Energiewandlung benötigt, 

ist aber an der Energiespeicherung nicht beteiligt. 

Die Größe  K I =  Bl  drückt als Leiterlänge  l  und Flussdichte  B  in der Lorentz-

Kraft die eigentliche elektromechanische Wandlung aus. 

Wegen  h 12 =  h 21 bzw.  y 12 =  −y 21 arbeitet der Wandler umkehrbar (was seine

Definition voraussetzte). 

 Energiewandlung ist an den bewegten stromdurchflossenen Leiter im Magnetfeld

 B gebunden. 

Rotierende Wandler Das Wandlersystem elektrisch-mechanisch/rotatorisch

lässt sich durch ein translatorisches System mit nachgeschaltetem mecha-

nischen Wandler translatorisch-rotatorisch modellieren oder einfacher durch

rotatorische Netzwerkelemente“:  Drehfeder,  Drehreibung  und  Drehmasse. 

” 

Statt Kraft und Geschwindigkeit treten dann Drehmoment  M  und Winkel-

geschwindigkeit  ω  auf und es gibt eine Analogie zwischen elektrischem und

rotatorischem Netzwerk. Die quantitative Zuordnung sichern Faktoren zwi-

schen den elektrischen und mechanischen Variablen entsprechend Gl. (6.2.2). 

Ausgang ist der  Gleichstrommotor, betrachtet als  elektrodynamischer Dreh-

 wandler (Abb. 6.2.11a). Die rotierende Leiterschleife (Fläche  A = 2 rl) erzeugt

das Drehmoment  M = 2 rF = 2 rlBi =  ABi  und induziert die Spannung

 u i = 2 Blv = 2 rlBω =  ABω. Dadurch wird die Leistung  uii =  ui − Ri 2 =

 ABiω =  M ω  abgegeben und es gilt  M =  i/Xϕ  mit  AB = 1 /Xϕ  als reziproker Wandlerkonstante  Xϕ. Im mechanischen Moment des Rotors dominiert

meist das Massenträgheitsmoment  M =  J ˙ ω ≡ Θ ˙ ω. Dann folgt aus der Span-

nungsbilanz

d ω

1

d i

1

=

 i, 

=  − R i −

1

 ω +

 u. 

(6.2.41)

d t

 J · Xϕ

d t

 L

 L · Xϕ

 L
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Abb. 6.2.11. Elektrodynamischer Drehwandler. (a) Drehspule im homogenen Magnetfeld. 

(b) Drehschleife auf Eisenanker im Radialfeld. (c) Großsignal-Ersatzschaltung, Hybrid-

form

Das mathematische Modell des rotierenden Motors entspricht dem trans-

latorischen System, wenn die Größen ( F, v, X, m) dort durch die Größen

( M, ω, Xϕ, J) ausgetauscht werden (Abb. 6.2.11c), also  X ( ∼  1 /( B · l)) gegen  Xϕ = 1 /(2 r · l · B). 

Der grundsätzliche Einfluss von  B  und  l  bleibt erhalten. Im Ersatzschalt-

bild lassen sich auf der mechanischen Seite weitere Elemente (Drehreibung, 

Drehnachgiebigkeit, externe Last als Lastmoment) hinzufügen. 

Für den Gleichstrommotor (fremderregt) schreibt man Gl. (6.2.41) um

d i

 u

=  u R +  u L +  u i =  Ri +  L

+  c

d t

MΦ ω, 

(6.2.42)

d ω

 M =  M L +  θ

=  c

d t

MΦ i, 

und ersetzt die Transformationskonstante 1 /Xϕ =  AB 0 =  c MΦ durch die

Maschinenkonstante  c M und den Erregerfluss Φ. Die erste Gleichung enthält

die induzierte Spannung (verkoppelt mit der mechanischen Seite), die zwei-

te beschreibt das mechanische Teilsystem (Drehimpulssatz) verkoppelt mit

der elektrischen Seite. Das Drehmoment  M  muss Ankerträgheit und die

zusätzliche Last ( M L) überwinden. So stellt das Modell den Bezug zu den

Motorgrundgleichungen her. 

Neben der Beschreibung eines  elektrodynamischen Drehwandlers  durch

Gl. (6.2.42) eignet sich dazu auch der energiebasierte Ansatz Gl. (6.2.36) ff. 
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Die im homogenen Magnetfeld drehbare Leiterschleife (Abb. 6.2.11a) wird

gemäß Gl. (4.3.44d) durchsetzt vom Fluss ( ϕ = 90 ◦ − α)

Ψ( i, ϕ) = ( wBA)  ·  sin  ϕ +  L · i =  K I  ·  sin  ϕ +  L · i. 

(6.2.43)

Dazu gehören die  Wandlergleichungen (in Ladungs-Strom-Variablen)

d ϕ

d i

 u( i, ϕ) = ( wBA)  ·  cos  ϕ

+  L

 , 

 M ( i, ϕ) = ( wBA)  ·  cos  ϕ · i. (6.2.44a)

d t

d t

Sie führen zur  Hybriddarstellung  Gl. (6.2.38) mit den Kenngrößen

Stromsteuerfaktor  K I = ( wBA)  ·  cos  ϕ

(6.2.44b)

Stromsteifigkeit

 k I =  −( wBA)  · I ·  sin  ϕ

bestimmt durch Gleichstrom  I  und dem Drehwinkel  ϕ  der Spulennorma-

len. Zum Winkel  ϕ = 0 gehört maximales Drehmoment. Der Relativwinkel

∠( A, B) = 90 ◦  des radialen Magnetfelds sichert diese Bedingung immer. 

Dann wird der für die Wandlung maßgebende  Stromsteuerfaktor K I maximal

und die Stromsteifigkeit  k I ( ∼ h ) verschwindet(!). Zur Wandlerbeschrei-

22

bung gehört die Ersatzschaltung Abb. 6.2.11c, angepasst an das rotatorische

System. Das gilt auch für die mechanische Belastung (Drehfeder, Drehmasse, 

Drehreibung). Dann stimmt die Wandlerbeschreibung mit dem in Kap. 4.2

aus der Anschauung entwickelten Modell des Gleichstrommotors Abb. 4.2.5

überein. 

Je nach Lastart kann das Lastmoment  M L drehzahlunabhängig (Aufzug, 

Kran), drehzahlproportional, überproportional (elektrische Bremsen, Lüfter, 

Werkzeugmaschinen, Pumpen) sein oder bei konstanter Leistung mit steigen-

der Drehzahl abfallen. 

Anwendungen Elektromagnetische Wandler finden wegen ihrer linearen Ver-

knüpfung von elektrischen und mechanischen Größen seit langem breite (z. T. 

historische) Anwendung für translatorische und rotatorische Sensor- und Ak-

toraufgaben: dynamische Mikrofone, elektrodynamische Tonabnehmer, Ge-

schwindigkeitssensoren u. a. Verbreitete Aktoren sind Schwingtische, elektro-

dynamische Lautsprecher und vor allem die Rotations- und Linearmotoren

verschiedenartigster Ausführung. 
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6.3

6.3 Thermisch-elektrische Systeme

¨

Ubersicht Die Wechselwirkung elektrische – Wärmeenergie tritt unterschied-

lich auf:

1. Die  Umwandlung elektrische → Wärmeenergie (Stromwärme) erfolgt im

stromdurchflossenen Leiter. Solche Wärme kann:

 unerw¨

 unscht  sein, weil die Temperatur eines Bauelementes oder einer elek-

trischen Einrichtung gegenüber der Umgebungstemperatur  T U steigt, u. U. 

bis zur thermischen Zerstörung. Wärmeabfuhr und Kühlung begrenzen die

Betriebstemperatur; 

 erw¨

 unscht  sein: Erzeugung von Nutzwärme aus elektrischer Energie in

gewünschtem Umfang an gewolltem Ort: elektrische Heiz- und Koch-

geräte, industrielle Verwertung (Schmelzöfen, elektrisches Schweißen  . . . ). 

2. Direkte  Umwandlung W¨

 arme → elektrische Energie  z. B. durch den Peltier-

und Thermoeffekt. Im Leiter bzw. Halbleiter entstehen bei Erwärmung eines

Leiterendes Ladungsverschiebungen, die ein inneres elektrisches Feld und so

eine  Thermospannung  verursachen. Anwendungen: Messtechnik, Stromver-

sorgung von Geräten kleiner Leistung. 

Das Zusammenspiel zwischen elektrotechnischer Anordnung (Gerät, Bau-

element usw.), zugeführter elektrischer Leistung, Wärmeumsatz und Wär-

meabgabe an die Umgebung wird vorteilhaft über eine Analogie der elek-

trischen und thermischen Vorgänge beschrieben. 

6.3.1 Elektrische Energie, W¨

arme

Die wichtigste Zustandsgröße im Zusammenspiel zwischen elektrischer Ener-

gie und Wärmeenergie ist die  Temperatur 1, entweder als Absolutwert  T (bei

physikalischen) oder Celsiustemperatur  ϑ (bei technischen Systemen)2,3

 T /K =  ϑ/◦C + 273 ,  2 , 

weil der absolute Nullpunkt bei 0 K =  − 273 ,  2  ◦ C liegt. Sie ergibt sich stets

aus der Bilanzgleichung der Wärmezu- und -abfuhr. Oft interessiert nicht die

1In technischen Systemen die Betriebstemperatur. 

2A. Celsius, schwed. Physiker. Lord Kelvin (William Thomson), engl. Physiker 1824-

1907. 

3Temperaturdifferenzen werden stets in Kelvin angegeben. 
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Tab. 6.5. Thermische Kennwerte typischer Materialien bei  T = 300 K

Material

Wärmeleitfähigkeit spezifische Wärme

 κ W (W/mK)

 c (Ws/kgK) 103

Gold

310

0,15

Aluminium

220

0,92

Kupfer

380

0,38

Eisen

25

0,48

Germanium

60

0,31

Silizium

150

0,70

Wasser

0,58

4,2

Isolieröl

0,15

1,9

Keramik

30

0,90

Luft

0,03

1,0

absolute Temperatur  T , sondern nur die  Differenz zu einer Bezugstemperatur, 

gewöhnlich der  Umgebungstemperatur T U: Δ T =  T ( t)  − T U. 

W¨

armebilanz Wird einem Körper der Masse  m  und spezifischen Wärme  c

eine Wärmemenge zugeführt, so wächst seine Temperatur um Δ T  gegenüber

einem Bezugswert. Dabei fließt im Zeitintervall Δ t  der Wärmestrom (Ener-

giestrom) oder die  W¨

 armeleistung p

4

W

d W

d T

Wärmeleistung zur Erwärmung

 p

th

W =

=  mc

 . 

(6.3.1)

d t

d t

eines Körpers der Masse  m

Die spezifische Wärme  c  hat für elektrotechnisch genutzte Materialien ty-

pische Werte (Tab. 6.5). Es ist die Wärmemenge zur Erwärmung von 1 g

des Materials um 1 K. Statt des Produktes  m · c =  C th wird meist die

 W¨

 armekapazit¨

 at C th des betreffenden Körpers verwendet (s. u.). 

Beispielsweise erfordert die Erwärmung eines Liter Wassers von  T 1 = 20 ◦ C auf

 T 2 = 100 ◦ C in der Zeit Δ t = 10 min die Wärmeleistung

Δ T

( T

Ws  ·  103g(100  −  20)K

 p

2  − T 1)

W  ≈ mc

=  mc

= 4 ,  18

= 0 ,  55 kW . 

Δ t

Δ t

g  ·  K  ·  10  ·  60 s

Dabei darf keine Energie an die Umgebung abgegeben werden, sonst ist höhere

Leistung erforderlich oder die Temperatur  T 2 = 100 ◦ C wird nicht erreicht (s. u.). 

4In der Physik wird  W th  ≡ Q  als Wärmemenge oder Wärme bezeichnet. 
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Wir betrachten einen Widerstand mit umgesetzter elektrischer Leistung. Eine

Zunahme der im Massekörper gespeicherten Wärmemenge erfolgt nur, wenn

die zugeführte Wärmeleistung (elektrische Leistung) gegen die abgeführte

Wärmeleistung an die Umgebung überwiegt:





d W 

d W 

d T

 p

th 

th 

el =

+

=  mc

+  p

d t 

d



d

W | Abfuhr . 

Zufuhr

 t

Abfuhr

 t

Bilanz elektrische-Wärmeleistung

(6.3.2)

Links steht die elektrisch zugeführte Wärmeenergie  W el (pro Zeit), rechts

die Erhöhung der Wärmemenge  W th und die Abgabe als Wärmestrom. Die

elektrische Leistung folgt aus der Klemmenbeziehung des Widerstandes. Ab-

bildung 6.3.1 veranschaulicht die Bilanz Gl. (6.3.2). 

Die einem Schaltelement (gedacht als Körper innerhalb einer Hüllfläche)

netto zugeführte elektrische Leistung  p el ist gleich der Summe der als Wär-

mestrom an die Umgebung abgegebenen Wärmeleistung  p Wab und der vom

Element gespeicherten Wärmeleistung  p W. Dabei stellt sich die Betriebs-

temperatur  T =  T i ein. 

Die Nettoleistung wird hervorgehoben, weil ein Bauelement/Gerät neben

der aufgenommenen elektrischen Leistung auch Nutzleistung  p Nutz  abgege-

 ben  kann (z. B. ein Motor). Dann steht links in Gl. (6.3.2)  p el  − p Nutz, die rechte Seite bleibt unverändert. 

Gleichung (6.3.2) enthält die Erwärmung (d T / d t >  0) bei überwiegender zugeführ-

ter Leistung, die Abkühlung (d T / d t <  0) bei überwiegender Wärmeabfuhr und den

stationären Fall (d T / d t = 0) mit zeitlich konstanter Temperatur  P el =  P W |T

. 

=const

Die Bilanzgleichung (6.3.2) ist analog aufgebaut zu anderen Bilanzgleichun-

gen, z. B. für Ladung und Strom (s. Gl. (1.4.5), Bd. 1). Deshalb liegt eine

 thermisch-elektrische Analogie  nahe:

Wärmestrom  p W und elektrischer Strom  i  sind zueinander analoge Strö-

mungsgrößen. 

Als Folge dieser Analogie gibt es dann einen  thermischen Knotensatz

  pμ = 0 . 

Thermischer Knotensatz

(6.3.3)

 μ

Die Leistungsanteile sind (wie Ströme) vorzeichenbehaftet anzusetzen. 

Mit der Wärmekapazität  C th des betreffenden Körpers kann die Bilanzglei-

chung (6.3.2) nach Abb. 6.3.1b auch so verstanden werden, dass seine Tempe-

raturänderung von der Nettodifferenz zwischen zu- und abströmendem Wär-
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Abb. 6.3.1. Thermische Leistungsbilanz. (a) Wärmeumsatz im resistiven Bauelement. 

(b) Bilanzgleichungen für Wärmemenge  W th und elektrische Ladung  Q  in einer Hülle

und ihre Darstellung als Stromknoten“

” 

mestrom gemäß seiner Wärmekapazität bestimmt wird. Ganz analog verhält

sich im elektrischen Netzwerk ein Stromknoten5. Deshalb kann die Wärme-

bilanzgleichung (6.3.2) der Hülle auch als  Knoten  eines  thermischen Netz-

 werkes  verstanden werden, dem die Temperatur  T  bzw.  ϑ  zugeordnet ist. 

Zum Knoten gehört die Bilanzgleichung (6.3.3) (Abb. 6.3.1b). Im elektrischen

Netzwerk führt die Differenz von Zu- und Abstrom zur Ladungsänderung

oder, wegen  Q =  Cu, zu einer Spannungs- bzw. einer Potenzialänderung. 

Liegt ein Potenzialwert als Bezug fest, so kann dem Knoten das variable

Potenzial  ϕ  zugeordnet werden. Zudem gilt

d Q

d u

d Q

 i =

=  C

mit  C =

 . 

d t

d t

d U

Da auch das Temperaturfeld, wie das Potenzialfeld, ein Skalarfeld ist, liegt

es nahe,  Temperatur T und Potenzial ϕ  als weitere analoge Größen aufzu-

fassen und damit auch Temperaturdifferenz Δ T =  T 2  − T 1 und Spannung  u

(Potenzialdifferenz  ϕ 2  − ϕ 1). Deshalb trifft auch für ein Temperaturfeld zu:

Die algebraische Summe der Temperaturdifferenzen längs eines geschlosse-

nen Weges im Raum verschwindet. 

 Δ Tμ = 0 . 

Thermischer Maschensatz (6.3.4)

 μ

Für die Temperaturdifferenzen gelten die gleichen Zählrichtungen wie für

Spannungen im Netzwerk und damit zusammengefasst:

5Aufgefasst als Inhalt einer Hüllfläche mit der Ladung  Q. 
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Abb. 6.3.2. Wärmeübertragung, thermischer Widerstand. (a) Wärmeleitung. Ein konstan-

tes Temperaturgefälle  − d T/ d x  erzeugt eine proportionale Wärmeströmung  p WL beschrieben durch den Wärmewiderstand  R thL durch Leitung. (b) Wärmeübergang durch Kon-

vektion und Temperaturverlauf. (c) Wärmeübergang durch Wärmestrahlung

Die  Differenzgr¨

 oßen Temperaturdifferenz Δ T  und  Potentialdifferenz u =  ϕ 2  −

 ϕ 1 sowie die  Strömungsgrößen Wärmestrom p  und  elektrischer Strom i  ver-

halten sich wie zueinander  analoge Gr¨

 oßen. 

Als Folge ist eine Anordnung, die einen Wärmestrom in ein thermisches Netz-

werk einspeist, durch eine (ideale)  Stromquelle  zu modellieren. Die Erzeu-

gung einer Temperaturdifferenz unabhängig vom abgegebenen Wärmestrom

besorgt eine (ideale)  Spannungsquelle. Damit sind auch thermische Netzwer-

ke Bestandteil  verallgemeinerter physikalischer Netzwerke  und es gibt den

Wärmestrom als  Fluss-  und die Temperatur als  Differenzgr¨

 oße. 

Grundbeziehungen des W¨

armetransports Der Wärmetransport in Festkör-

pern, Flüssigkeiten und Gasen erfolgt durch  W¨

 armeleitung,  Konvektion  und

 W¨

 armestrahlung  und erlaubt eine weitere Unterteilung des Wärmestromes

 p ab (Abb. 6.3.2). 

a)  W¨

 armeleitung  heißt der Wärmestrom im Körper, der durch Weitergabe der

Wärmeenergie von Molekül zu Molekül in Richtung eines Temperaturgefälles

erfolgt (Abb. 6.3.2a). Der  W¨

 armestrom i W  ≡ p WL (Dimension Leistung,  W th
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transportierte Wärmemenge, Index L durch Leitung) ist proportional der von

ihm durchsetzten Fläche und dem Temperaturgefälle, also der Temperatur-

abnahme Δ T  je Länge Δ x  bei eindimensionaler Betrachtung

d W

d T

Wärmestrom, 

 i

th

W =  p WL =

=  −κ

 . 

(6.3.5)

d t

W A  d x

linienhafte Wärmeleitung

Die  W¨

 armeleitf¨

 ahigkeit κW  oder  Wärmeleitzahl (s. u.) ist eine Materialgröße

und Gl. (6.3.5) das  Fouriersches Gesetz der W¨

 armeleitung (im Eindimensio-

nalen). Antreibende Kraft des Wärmestromes ist ein Temperaturgefälle so, 

wie ein Potenzialgefälle den elektrischen Strom durch den Leiter verursacht. 

Ein konstantes Temperaturgefälle (bei homogener Wärmeströmung) längs

der Strecke  l  ergibt nach Gl. (6.3.5) die Temperaturdifferenz

 p WL l =  κ W A( T 1  − T 2) , T 1  > T 2 , T 1  − T 2 = Δ T. 

Der Vergleich mit dem Strömungsfeld (Wärmestrom  p W Strömungsgröße, 

Temperaturdifferenz Δ T  Potentialdifferenz, Spannungsgröße) legt die Ein-

führung des  W¨

 arme-  oder  thermischen Widerstandes (durch Leitung) nahe





Δ T

 U

Wärmewiderstand

 R thL =

 R =

(6.3.6a)

 p WL

 I

(Definitionsgleichung)

mit der Einheit [ R th] = [Δ T ]  / [ p W] = 1 K / 1 W. Der linienhafte Wärmeleiter hat die Bemessungsgleichung

 l

 R th =

 . 

Wärmewiderstand lininenhafter Leiter (6.3.6b)

 κ W A

Der Wärmewiderstand verhält sich analog zum elektrischen Widerstand: er

wächst mit der Länge des Wärmeleiters, sinkt mit wachsender Wärmeleit-

fähigkeit und steigendem Querschnitt. Zahlenwerte der Wärmeleitfähigkeit

und spezifischen Wärme enthält Tab. 6.5. 

Die Wärmeleitfähigkeit  κ W fester Stoffe wird z. T. vom Wärmetransport durch Lei-

tungselektronen und Kopplung der Gitteratome getragen. Daher haben Metalle mit

guter Leitfähigkeit  κ  auch gute Wärmeleitfähigkeit  κ W und es gilt das Wiedemann-

Franz-Lorentzsche-Gesetz  κ W = const  · κ  in einem bestimmten Temperaturbereich. 

Schlechte Wärmeleiter sind Glas (Wärmedämmung), Gase, Luft (Wärmeisolation, 

Kleidung, Stoffe). Die Größe  R thL  ·A = 1 /κ W wird außerhalb der Elektrotechnik als

 W¨

 armed¨

 ammung  bezeichnet. So hat eine Schicht Glaswolle der Dicke  d = 1 cm die

gleiche Wärmedämmung wie ein kompaktes Aluminiumgebilde der Dicke  d = 35 m! 

Dies unterstreicht, wie wichtig Wärmeleitung, aber auch Wärmeisolation sein kann. 

Die Wärmeleitfähigkeit von Flüssigkeiten und Gasen liegt um Größenordnungen

unter der von Metallen und spielt nur selten eine Rolle. 
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b)  Konvektion (Wärmeströmung) bindet den Wärmestrom an einen Massen-

strom (strömende Flüssigkeiten, bewegtes Gas). Grenzt an die Oberfläche

(Fläche  A K, Kontaktfläche, Abb. 6.3.2b) einer Wärmequelle ein bewegtes

flüssiges oder gasförmiges Medium, so nehmen dessen Moleküle die Wärme

von der Oberfläche auf und führen sie ab. Die Massenströmung kann:

 selbst¨

 andig  erfolgen (als Folge von Dichteunterschieden durch unterschied-

liche Temperatur), dann spricht man von  Eigenkonvektion; 

 erzwungen  werden (Wasserumlauf, Luftströmung):  Fremdkonvektion, er-

zwungene Konvektion (Beispiele: Wärmetransport durch Heißdampf und

Wasser in Rohrleitungen, der Wind, die Luftbewegung u. a. m.). Der ab-

geführte Wärmestrom  p WK bei Konvektion

Abgeführte Wärmeleistung

 P WK =  α K A K( T O  − T U)

(6.3.7a)

bei Konvektion

ist proportional der Kontaktfläche des festen Körpers und dem Unterschied

zwischen Oberflächen- ( T O) und Umgebungstemperatur ( T U) (in genügendem

Abstand von der Quelle). Die  W¨

 arme¨

 ubergangszahl α K

 α K  ≈ (0 ,  5  . . .  3)  ·  10 − 3 W / cm2  ·  K Eigenkonvektion

 ≈  10 − 2 W / cm2  ·  K

Luftstrom,  v = 10 m / s

 ≈  10 − 1 W / cm2  ·  K

Wasserkühlung,  v ≈  0 ,  01 m / s

hängt von der Oberfläche, der Strömungsgeschwindigkeit und dem Medium

ab. Analog zum thermischen Widerstand Gl. (6.3.6a) lässt sich ein  W¨

 ar-

 me¨

 ubergangswiderstand R thü für die Wirksamkeit von Kühlkörpern definie-

ren

 l

 R thü =

 . 

(6.3.7b)

 α K A K

Wärmeabfuhr durch Konvektion ist an einen Massentransport (Gas, Flüs-

sigkeit) gebunden und wird durch die Wärmeübergangszahl  α K gekenn-

zeichnet. 

c) Bei der  W¨

 armestrahlung  folgt der Energieaustausch durch Emission und

Absorption elektromagnetischer Wellen (die einzige Wärmeabgabe für Körper

im Vakuum, z. B. Anodensystemen von Elektronenröhren). Nach dem Stefan-

Boltzmannschen-Gesetz sendet ein (schwarzer) Körper der Oberfläche  A  und

absoluten Temperatur  T  die Strahlungsleistung

 p S =  σAT  4

abgestrahlte Leistung des schwarzen

(6.3.8)

Körpers ( T  in  K)
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aus (Abb. 6.3.2c). Die Strahlungskonstante  σ  beträgt beim schwarzen Körper

 σ = 5 ,  7  ·  10 − 12 W /  cm2  ·  K4. Der bekannteste Wärmestrahlung ist die Sonne mit einer Energiestromdichte  J W = d P W / d A = 1 ,  36 kW /  m2. Andere Beispiele sind: Infrarotstrahler (Sonnendach, Ofenschirm), in gewisser Weise

auch die Glühlampe. 

Die Sonne führt einer Fläche von 1 km2 die Strahlungsleistung  p W = 106  · 1 ,  36 kW =

1 ,  36 GW(!) zu. Wird diese Leistung z. B. durch Anwendung von Solarzellen (Um-

formeinrichtung Licht - elektrische Energie auf Halbleiterbasis) mit einem Wir-

kungsgrad von 10% in elektrische Energie umgeformt, so ist eine bedeutende um-

weltfreundliche Energiereserve verfügbar. 

Bei einer Strahlertemperatur nur wenig über der Bezugstemperatur gilt die

Näherung  T  4  ≈

0

 T  4 + 4

(

U

 T  3

U  T 0  − T U) (wegen (1 +  x) n ≈  1 +  nx,  x 	  1) und es

wird die abgeführte Leistung durch Strahlung

 p S  ≈  4 σAT  3

U ( T 0  − T U) =  α St A ( T 0  − T U)  . 

(6.3.9)

Der Wärmeübergangskoeffizient  α St beträgt für Raumtemperatur ( T U =

293 K) etwa 6 W/m2 K. Gute Wärmeabfuhr durch Strahlung haben schwarze, 

rauhe Oberflächen. 

Wärmeabfuhr durch Strahlung erfolgt erst bei hoher Strahlertemperatur. 

Praktisch werden alle Arten der Wärmeübertragung durch einen Wärme-

widerstand erfasst, der bei Bedarf weiter spezifizierbar ist. 

W¨

armekapazit¨

at Die in Gl. (6.3.1) eingeführte Wärmekapazität

d W

 C

th

th =  mc =  V ·  · c =

Wärmekapazität (6.3.10)

d T

(Angabe in Ws/K) ist definiert als Quotient von gespeicherter Wärmeenergie

Δ W th und damit verbundener Temperaturänderung Δ T . Sie ist ein Maß für

die Geschwindigkeit, mit der sich die Temperatur eines Körpers ändern kann, 

sichert die Stetigkeit der Temperatur eines Körpers und hängt von der spe-

zifischen Wärmekapazität  c  des Materials und seiner Masse (volumenpro-

portional!) ab (Tab. 6.5). Auffällig sind die hohen Werte schlecht leitender

Materialien und die geringen Werte guter Wärmeleiter wie Metalle. 

Wärmewiderstand  R th und Wärmekapazität  C th eines Volumens bilden zu-

sammen die  thermische Zeitkonstante τ th =  R th C th. Sie ist stark abhängig

vom aufgeheizten Volumen und der Wärmeleitfähigkeit (s. u.). 
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6.3.2 Elektrisch-thermische Analogie

Analogie Der Wärmestrom mit seinen Anteilen Leitung, Konvektion und

Strahlung (bei geringen Temperaturunterschieden) ist der Temperaturdiffe-

renz zwischen Betriebs- und Umgebungs- bzw. Oberflächentemperatur pro-

portional. Analog war im Strömungsfeld der Strom proportional der Poten-

zialdifferenz. Deshalb gibt es weitgehende Analogien zum Strömungsfeld so-

weit sie die Bildungsgesetze zugeordneter Größen betreffen (Abb. 6.3.3). Dem

elektrischen Widerstand entspricht der Wärmewiderstand, dem Strom  i  der

Wärmestrom  p W (Dimension der Leistung!), der Kapazität  C  die Wärme-

oder thermische Kapazität  C th usw. Nach dem Ersatzschaltbild Abb. 6.3.2

kann man sich den Wärmetransport und die sich einstellende Temperatur-

differenz zwischen zwei Punkten vorstellen als fließt der Wärmestrom  p W

durch den Wärmewiderstand  R th und erzeugt an ihm den Temperaturun-

terschied Δ T . Der nichtlinear von der Temperatur abhängige Strahlungs-

Abb. 6.3.3. Analogie zwischen thermischen und elektrischen Größen und Netzwerk-

elementen
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Abb. 6.3.4. Thermische Ersatzschaltung. (a) Anordnung mit Wärmequelle, Wärmewider-

stand und Wärmekapazität nach Gl. (6.3.11). (b) Aufteilung des Wärmewiderstandes nach

Wärmeleitung und Konvektion. (c) Lastminderungskurve, zulässige Leistung über der Um-

gebungstemperatur

anteil wird durch einen nichtlinearen Wärmewiderstand erfasst, wenn das

linearisierte Modell nicht ausreicht. Abbildung 6.3.3 stellt thermische und

elektrische Netzwerkelemente gegenüber. Thermische Induktivitäten gibt es

nicht. 

W¨

armebilanzgleichung und Ersatzschaltung Die Analogie erlaubt die Inter-

pretation der Wärmebilanzgleichung durch eine  thermische Ersatzschaltung

nach dem Modell einer  RC-Schaltung. Die Temperaturdifferenz entspricht

der Spannung. Charakteristische Temperaturen sind dabei:

die  Betriebstemperatur T i eines Bauelementes / Gerätes (einschließlich

eines Höchstwertes  T imax, der nicht überschritten werden darf); 

eventuell seine Oberflächentemperatur  T O und die Umgebungstempera-

tur  T U. Ihre Wahl als Bezugswert entspricht der Vorstellung, dass die

Wärmekapazität der Umgebung unendlich groß ist und sich somit  T U

nicht ändert. 

So kann die Wärmebilanz Gl. (6.3.2) direkt als thermische Ersatzschaltung

interpretiert werden (Abb. 6.3.4a):

d(Δ T )

( T

( T

 p

i  − T O)

O  − T U)

el =  p th +  p W =  C th

+

+

+  p

 . (6.3.11)

d t

 R

Strahl

th

 R th







 p W
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Links steht die elektrische Leistung, rechts die Erhöhung der Wärmemenge

des Körpers je Zeitspanne und der Energiestrom an die Umgebung. Diese

(nichtlineare) Bilanzgleichung für die Betriebstemperatur  T i des Bauelemen-

tes wird bei vernachlässigbarer Wärmestrahlung linear, dann gilt die abge-

gebene thermische Ersatzschaltung Abb. 6.3.4a:

Die elektrisch zugeführte und in Joulesche Wärme umgesetzte Energie er-

höht die Wärmemenge des Körpers und die Temperatur Δ T , die ihrerseits

einen Wärmestrom an die Umgebung verursacht. 

Streng genommen sind die Temperaturen in Abb. 6.3.4a zunächst mit dem absolu-

ten Nullpunkt  T = 0 einzuführen (so ist die Wärmekapazität definiert, sie erfordert

keinen zweiten Anschlusspunkt!). Aus Analogie zur elektrischen Kapazität wird ihr

ein zweiter Anschluss (mit  T = 0) zugeordnet. Praktische Gesichtspunkte sprechen

für die  zeitkonstant  angenommene  Umgebungstemperatur T U als Bezug (entspre-

chend unendlicher Wärmekapazität der Umgebung). Sie kann ebenso als ideale

Spannungsquelle modelliert werden, dann entfällt  C th ∞. 

Die thermische Ersatzschaltung erlaubt eine einfache Beschreibung und

Analyse der thermischen Verhältnisse. Beispielsweise hat ein Bauelement bei

Konvektionskühlung (Kühlblech der Oberfläche  A K) die Ersatzschaltung

Abb. 6.3.4b). Der thermische Widerstand ist die Reihenschaltung aus dem

des Bauelementes und dem Konvektionswiderstand der Kühlfläche mit der

Oberflächentemperatur  T O. 

Maximal zul¨

assige Verlustleistung Viele Bauelemente arbeiten nur bis zu ei-

ner maximalen Betriebstemperatur  T i max zuverlässig. Dann interessiert um-

gekehrt, welche Leistung bei gegebener Umgebungstemperatur und Wärme-

widerstand noch zulässig ist. Generell gilt (im stationären Zustand)

 T

 T

 T

imax  − T UN

imax  − T Umax

i =  T U +  R th p el und  R th =

=

 . 

(6.3.12a)

 p elN

 p elmax

Die Betriebstemperatur steigt mit der umgesetzten Leistung und/oder dem

Wärmewiderstand sowie der Umgebungstemperatur. Zur Vermeidung von

Überlastung muss die zugeführte Leistung mit steigender Umgebungstempe-

ratur sinken. Das folgt aus der Darstellung Abb. 6.3.4c von Gl. (6.3.12a) als

sog.  Lastminderungskurve

 p el =  p elmax( T imax  − T U) /( T imax  − T Umax) . 

(6.3.12b)

Bei gegebener maximaler Betriebstemperatur  T imax senkt zunehmender

Wärmewiderstand die maximal zulässige Verlustleistung  p elmax . 
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Abb. 6.3.5. Nichtstationäres thermisches Verhalten. (a) Einschalten einer Leistung  p el am

Bauelement, thermische Ersatzschaltung. (b) Ersatzschaltung bei überwiegendem Wärme-

fluss in die Wärmekapazität bei Erwärmungsbeginn und dominierendem Wärmeabfluss

nach außen bei Erwärmungsende. (c) Thermische Ersatzschaltung eines Halbleiterbauele-

mentes mit unterschiedlichen thermischen Zeitkonstanten. (d) Wärmerohr

Beispiel 6.3.1 Zeitverlauf der Temperatur bei zeitbegrenzter elektrischer Energiezu-

fuhr Wir betrachten ein elektrisches Bauelement, etwa einen Ohmschen Widerstand

(mit dem thermischen Widerstand  R th und der Wärmekapazität  C th), an das zur

Zeit  t = 0 eine konstante elektrische Leistung  p el =  IU  angelegt wird. Für  t <  0 bestand Temperaturgleichgewicht mit der Umgebung (Δ T = 0, d. h.  p W = 0). Dann

gilt für die Ersatzschaltung Abb. 6.3.5a die Bilanzgleichung (6.3.11) (für  t >  0) dΔ T

Δ T

 P el =  C th

+

 . 

(6.3.13)

d t

 R th

Δ T =  T i  − T U heißt als Differenz der Betriebs- und der Umgebungstemperatur

 T U auch  ¨

 Ubertemperatur. Die Lösung der Bilanzgleichung mit dem Anfangswert

Δ T = 0 zur Zeit  t = 0 (die Temperatur eines Körpers kann nie springen) lautet6









 −t

 −t

Δ T ( t) =  p el  · R th 1  −  exp

bzw . T

1  −  exp

 . (6.3.14a)

 τ

i( t) =  T U +  p el R th

th

 τ th

Zu Beginn der Erwärmung ( t = 0, Abb. 6.3.5a,b) unterscheidet sich die Körpertem-

peratur noch nicht von der Umgebungstemperatur (Δ T = 0). Dann verschwindet

der Wärmestrom an die Umgebung ( p W = Δ T /R th = 0) und der Temperaturan-

stieg beträgt



dΔ T 

 p



el =  C th

 . 

Temperaturanstieg zu Beginn der Erwärmung (6.3.14b)

d t 0

6Man überzeuge sich durch Einsetzen der Lösung in die Differenzialgleichung von

ihrer Richtigkeit. 
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Die elektrische Leistung dient zunächst nur zur Erwärmung und die Temperatur

wächst zeitproportional um so schneller, je größer die zugeführte Leistung und je

kleiner die Wärmekapazität ist (gestrichelte Gerade im Bild). Durch den Tempera-

turanstieg setzt ein Wärmestrom an die Umgebung ein und in Gl. (6.3.13) wächst

der zweite Summand rechts. So, wie die Wärmeabfuhr Δ T /R th zunimmt, muss we-

gen  p el = const der erste Summand und damit dΔ T / d t  sinken. Das verlangsamt

den Temperaturanstieg. Das Erwärmungsende ist für dΔ T / d t| End  ≈  0 erreicht:

 p el  ≈ p W. Alle zugeführte elektrische Leistung wird als Wärmestrom an die Umge-

bung abgeführt und es stellt sich die (stationäre) Übertemperatur ein

 p

Δ T

el

¨ =  R

 . 

Ü

th p el =

Ubertemperatur am Ende des Aufheizens (6.3.15)

 α K A K

Die Endtemperatur wächst mit zugeführter Leistung und dem Wärmewi-

derstand! 

Sie wird um so eher erreicht, je

größer die eingespeiste Wärmeleistung (= zugeführte elektrische Leistung); 

kleiner die  thermische Zeitkonstante τ th =  R th C th (Wärmekapazität!) ist. Das

stimmt mit der Erfahrung überein, die man beispielsweise mit Tauchsiedern

verschiedener Heizleistung“ bei unterschiedlichem Wasservolumina macht. 

” 

Während die thermische Zeitkonstante bei elektrischen Geräten und Bauelementen

im Bereich von Sekunden bis zu vielen Minuten (und Stunden, Motoren) liegt, ha-

ben Halbleiterbauelemente und Strukturen der Mikrosystemtechnik Zeitkonstanten

im  μ s bis ms-Bereich. Dann beeinflussen thermische Übergangsvorgänge u. U. das

Signalverhalten. 

Thermische Ersatzschaltungen können kompliziert sein, das Beispiel eines Halblei-

terbauelementes zeigt Abb. 6.3.5c. Die Teilwiderstände kennzeichnen (von innen

nach außen) den Chipbereich, das Bauelementegehäuse, eine Isolierscheibe und den

Kühlkörper als Wärmesenke. Durch die verschiedenen Abmessungen und Materiali-

en unterscheiden sich die Wärmekapazitäten stark und so die Wärmezeitkonstanten:

sie steigen von innen nach außen beträchtlich. Im Gefolge stellt sich dann an-

fangs ein sehr rascher Übergangsvorgang ein, der um so träger wird, je weiter der

Wärmestrom zum Kühlkörper hin vordringt. Die Zeit, nach der die Endtemperatur

erreicht ist, bestimmt die größte Zeitkonstante. 

Thermische Netzwerke Die thermisch-elektrische Analogie erlaubt den Er-

satz u. U. komplizierter Wärmeleitungsvorgänge durch ein Netzwerkmodell

und seine Lösung mit den Verfahren der Netzwerkanalyse. Das thermische

Netzwerk besteht aus Quellen, Wärmewiderständen und -kapazitäten. Sei-

ne Entwicklung beginnt mit Festlegung der Punkte (Netzwerkknoten), deren

Temperatur bestimmt werden soll. Die gebietsweise erzeugten Wärmeleis-

tungen werden in den zugehörigen Knoten als thermische Quellen“ angesetzt

” 

und die wärmeleitenden Gebiete zwischen den Knoten durch Wärmewider-

stände und -kapazitäten erfasst. Aufzustellen sind:
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die  Leistungsbilanzgleichungen (thermische Knotengleichungen). Danach

muss die Summe der einem Knoten zugeführten Leistung (Wärmequelle), 

der abgeführten Leistung (Wärmesenke an die Umgebung) und gespei-

cherten Energie (im Knoten, Bauelement, Kühlkörper) verschwinden. 

die  Umlaufgleichungen  für die Temperaturen (thermischer Maschensatz). 

Längs eines geschlossenen Weges verschwindet die Summe der Tempera-

turdifferenzen. 

die Leistungs- und Temperaturgleichungen für die Wärmeströme, m. a. W. 

die Beziehungen für die  thermischen Netzwerkelemente. 

Im thermischen Netzwerk wird zwischen  Leistungsquellen (Wärme-, Verlust-

leistung) und  Temperaturquellen (Umgebungstemperatur) unterschieden. Als

Wärmeleistungsquellen wirken stromdurchflossene Leiter, Bereiche mit Wir-

belstrom- und Hystereseverlusten und Übergangswiderstände. Temperatur-

quellen werden im Netzwerk an die Knoten geschaltet, für die Temperaturen

vorgegeben sind (etwa die Umgebungstemperatur). 

Stationäres Verhalten (mit zeitkonstanten Temperaturen) entspricht dem

Verhalten resistiver Netzwerke, bei zeitabhängigen Temperaturen kommen

die Wärmekapazitäten ins Spiel. 

Während sich makroskopische Anordnungen meist durch eine Wärmequelle

mit einfachem thermischen Netzwerk modellieren lassen, treten thermische

Netzwerke beispielsweise bei integrierten Schaltungen auf. Auf dem Chip ist

jedes Bauelement eine Wärmequelle und die lokale Temperatur hängt von

allen Quellen und dem zugehörigen  RC-Netzwerk ab. In solchen Fälle be-

schreibt man Wärmeprobleme besser in Feldform. 

6.3.3 Anwendungen des W¨

armeumsatzes

Die Anwendungen elektrisch-thermischer Wechselwirkungen sind vielfältig, 

wir greifen einige Beispiele heraus. 

K¨

uhlung und Nutzw¨

arme Bei der konstruktiven Gestaltung elektrischer Gerä-

te und Bauelemente spielen Wärmeableitungsmaßnahmen (Gl. (6.3.15)) eine

entscheidende Rolle. Ziel ist ein geringer thermischer Widerstand:

große Gehäuseoberfläche  A (zusätzliche Metallkühlfahnen und Kühlrippen); 

 Erh¨

 ohung der Konvektion  durch einen Luftstrom (Ventilator beim Motor, um-

laufendes Wasser oder Öl), dazu zählen auch Wärmeröhren“ (heat pipes), in

” 

denen die Verdampfungswärme einer Kühlflüssigkeit dem zu kühlenden Bau-

teil Wärme entzieht. Der Dampf gelangt durch Konvektion zum kälteren Ende

(Abb. 6.3.5d), kondensiert dort und gibt die Wärme wieder ab. Das Kondensat
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diffundiert durch Kapillarwirkung zurück zum heißeren Ende, verdampft erneut

usw. Obwohl dieser Wärmetransport nur geringe Temperaturunterschiede erfor-

dert, ist er sehr effizient: Wärmerohre leiten die Wärme etwa tausendfach besser

als Cu-Leiter gleicher Abmessung. 

Materialien mit hoher Wärmeleitfähigkeit (Metall, Magnesium, Berylliumoxid); 

Erhöhung der Abstrahlung: schwarze rauhe Oberfläche. 

 Nutzw¨

 arme  Der Einsatz elektrischer Energie zur Wärmeerzeugung ist ei-

ne Wirtschaftlichkeitsfrage. So kostet 1 kWh elektrischer Energie durchweg

rd. 20 ct. Die Wärmeerzeugung durch Kohleverbrennung ist günstiger: bei-

spielsweise liefert 1 kg Braunkohle (etwa zwei Brikett) (Heizwert  H ≈

4000 kcal/kg = 16 ,  72  ·  103 kW  ·  s /  kg) die Wärmemenge  W =  mH = 1 kg  ·

4000 kcal/kg = 16 ,  72  ·  103 kW  ·  s = 4 ,  65 kWh. Bei einem Kohlepreis von

20 ct/kg kostet die kWh etwa 4,3 ct. Deshalb wird die elektrische Wärmeer-

zeugung beschränkt auf Fälle, wo ihre Vorteile (sofortige Betriebsbereitschaft, 

Regelbarkeit, Umweltfreundlichkeit) überwiegen. 

Verbreitete Wärmeerzeuger sind: Tauchsieder, Kochplatte, Radiator, Grill, Bügel-

eisen, Lötkolben u. a. m. mit Anschlussleistungen von einigen 100 W (Lötkolben ab

5 W) bis 2 kW. Die Wärmequelle dieser Geräte ist meist ein stromdurchflossener

Widerstandsdraht mit hohem spezifischem Widerstand (z. B. Chromnickel, Tantal

 ρ 20  ≈  1 ,  22 Ω mm2 /  m mit Betriebstemperatur bei 1200  ◦ C) auf einen Isolierkörper in gutem Wärmekontakt zur erwärmenden Stelle, etwa dem Boden eines Bügeleisens. 

Verbreitet dienen auch  Wirbelstr¨

 ome  zur Erwärmung. 

Eine weitere Anwendungsgruppe nutzt die Wärmeausdehnung von Körpern bei

Stromfluss: der historische Hitzdrahtstrommesser ( Übertrag der Längenänderung

eines erwärmten Drahtes auf ein Anzeigewerk, Ausschlag  α ∼ P ∼ I 2); modern

Bimetallstreifen, die sich durch unterschiedliche Ausdehnungskoeffizienten zweier

Metalle bei Temperaturerhöhung strecken“ und einen Schalterkontakt öffnen, wie

” 

in Sicherungsautomaten. 

Thermische R¨

uckkopplung, thermische Stabilit¨

at Die Aufheizung eines Bau-

elementes durch die zugeführte elektrische Leistung beeinflusst rückwirkend die-

se Leistung, wenn das Bauelement temperaturabhängige Klemmeneigenschaften

hat. Beispielsweise steigt der Widerstand bei positivem Temperaturkoeffizienten

mit steigender Temperatur, also steigender elektrischer Leistung und es entsteht

eine nichtlineare Kennlinie: die strombedingte Erwärmung wirkt über den Tem-

peraturkoeffizient auf die Kennlinie zurück. Das ist das Prinzip der  thermischen

 R¨

 uckkopplung. 

Zur ihrer Modellierung dient eine thermische Ersatzschaltung nach Abb. 6.3.6a

mit temperaturgesteuerter Strom- oder Spannungsquelle. Sie repräsentiert die im

elektrischen Bauelement umgesetzte, von der Temperatur  T i abhängige Verlustleis-

tung. Letztere hängt auch von der Schaltung um das Bauelement ab. Im Zusam-

menwirken zwischen Schaltung, der Leistung im Bauelement und der thermischen

Seite (Wärmeabfuhr) stellt sich als Lösung eine Temperatur  T i ein, die gleichzeitig
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Abb. 6.3.6. Thermische Stabilität. (a) Graphische Darstellung des Stabilitätsverhaltens. 

(b) Selbstgeheizter Widerstand an einer Stromquelle, thermische Ersatzschaltung. (c) dto. 

mit Spannungsquelle

die thermische Beziehung Gl. (6.3.11) (Geradengl. in Abb. 6.3.6a) und die Kenn-

linie  p V( T i) erfüllen muss. Einige Verläufe sind angedeutet:

Verlauf 1 ebenso wie Verlauf 2 (keine thermische Rückkopplung,  p V nicht von

 T i abhängig) hat bei sinkender Verlustleistung trotz steigender Temperatur  T i

nur  einen  Schnittpunkt; 

Verlauf 3 hat  zwei  Schnittpunkte A und B





d p



d p 

 A :

W 

 > 

V 

stabil

d T 



i

d T

Abfuhr

i Zufuhr





(6.3.16a)

d p



d p 

 B :

W 

 < 

V 

 in stabil . 

d T 



i

d T

Abfuhr

i Zufuhr

Im Arbeitspunkt B verursacht eine Temperaturerhöhung eine kleinere Wärme-

abfuhr als die Zufuhr und das Bauelement heizt weiter auf. 

der Schnittpunkt C auf Kurve 1 bleibt wegen unterschiedlicher Vorzeichen der

Ableitungen  thermisch stets stabil. Deshalb ist (auch ohne Kenntnis des ther-

mischen Widerstandes) anzustreben

d p V  ≤  0 . 

Bedingung der thermischen Strukturstabilität (6.3.16b)

d T i

Eine Schaltung, in der die im Bauelement umgesetzte Verlustleistung mit stei-

gender Temperatur  T i abnimmt, arbeitet thermisch stets stabil. 

Liegt beispielsweise ein temperaturabhängiger Widerstand  R =  R 0(1 +  α( T i  − T U)) mit positivem TK (Metallschichtwiderstand, s. Kap. 2.3.4, Bd 1) an einer  Stromquelle, so gilt die elektrisch-thermische Ersatzschaltung Abb. 6.3.6b mit der Gleichung

( T i  − T U = Δ T )

dΔ T

 R

 C

th C th

th

=  − Δ T +  I 2 R

 . 

(6.3.17a)

d t

 R

0(1 +  αΔ T ) , 

 τ I =

th

1  − αR 0 R th I 2
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Analog gehört zur  spannungsgespeisten  Schaltung (Abb. 6.3.6c)

dΔ T

 U  2

 R

 C

th C th

th

=  − Δ T +

 , 

 τ

 . 

(6.3.17b)

d t

 R

U =

th

 R 0(1 +  αΔ T )

1 +  αR th U 2 /R 0

Dabei wurde 1   αΔ T  genähert. Beide Fälle haben die stationären Werte

 R

 R

 T

0 R th I  2

th U  2 /R 0

I( ∞) =

bzw.  T

 . 

(6.3.17c)

1  − αR

U( ∞) =

0 R th I  2

1 +  αR th U 2 /R 0

Mit Stromspeisung ist die Schaltung thermisch instabil: die Temperatur wächst

bei großem Strom über alle Grenzen und eine Zuleitung würde schmelzen. Die

spannungsgespeiste Anordnung bleibt dagegen thermisch stets stabil. 

Thermische Stabilität hängt vom Temperaturkoeffizienten und der Betriebsschal-

tung des Bauelementes ab. Zur thermischen Selbstzerstörung neigen besonders Bau-

elemente mit großem Temperaturkoeffizienten (Halbleiterbauelemente). Thermische

Rückkopplung trägt auch zur nichtlinearen Kennlinie der Heiß- und Kaltleiterele-

mente bei (s. Kap. 2.3.6, Bd. 1). 

Prinzip der halben Speisespannung Wir prüfen, ob im Grundstromkreis ein

temperaturabhängiger Widerstand  R( T i) (bei temperaturunabhängigem In-

nenwiderstand  R i) immer thermisch stabil arbeitet kann. Im Grundstrom-

kreis (Abb. 6.3.6c) setzt der Lastwiderstand  R( T i) die Verlustleistung

 U  2

 p

Q R( T i)

V =  U I = ( R i +  R( T i))2

um. Ihre temperaturbedingte Änderung beträgt

d p V  ∼

d R( T

 U  2 ( R( T

i)  . 

(6.3.18)

d T

Q

i) +  R i) ( R i  − R( T i))

i

d T i

Es gilt d p V / d T i  <  0 und damit thermische Strukturstabilität nur, wenn

bei positivem (negativem) d R/ d T i zutrifft  R > R i ( R < R i), also mehr

(weniger) als die halbe Speisespannung  U Q am Außenwiderstand abfällt. 

Das bestätigt die eben getroffene Aussage für den spannungsgespeisten Wi-

derstand mit positivem TK. Ein analoges Ergebnis gilt für die Stromquellen-

darstellung. Das Prinzip der halben Speisespannung ist in der Schaltungs-

technik verbreitet. 

Seebeck-, Peltier-Effekt Zur Wärmewirkung gehören nicht nur Joulsche Wär-

me und die Temperaturabhängigkeit elektrischer Parameter, sondern auch

die  direkte Energieumwandlung  durch  Seebeck-  und  Peltier-Effekt. An einem

erwärmten Leiterende haben Ladungsträger größere thermische Geschwin-

digkeit als am kalten. Deshalb fließen sie durch  W¨

 armediffusion  zum kalten

Ende (Abb. 6.3.7a), häufen sich dort an und erzeugen durch einen Mangel

am heißen Ende ein elektrisches Feld  E th. Es hält die Wärmediffusion im

6.3

Thermisch-elektrische Systeme

635

Gleichgewicht und ist Ursache der  Thermospannung U th (als Spannungsab-

fall angesetzt)

d U

 U

th

th =  ε thΔ T =

Δ T. 

Thermospannung (6.3.19a)

d T

Sie ist dem Temperaturunterschied Δ T  proportional nach Maßgabe der  dif-

 ferenziellen Thermospannung ε th (materialabhängig, angegeben in V/K). 

Durch Erwärmung (Abkühlung) einer Verbindungsstelle zweier leitender

Gebiete (in einer geschlossenen Schleife) entsteht eine Quellenspannung:

Thermo- oder Seebeck-Effekt. 

Im Kreis mit Leitern aus gleichem Material kompensieren sich beide Ther-

mospannungen ( U th1 =  U th2, Abb. 6.3.7b), bei unterschiedlichen Leitern

verbleibt dagegen eine  relative  differenzielle Thermospannung  ε th12 oder der

 Seebeck-Effekt

 T 1



 T 1



 U th =  U th1  − U th2 =

( ε th1  − ε th2)d T =

 ε th12d T

(6.3.19b)

 T 2

 T 2

=  ε th12Δ( T 1  − T 2) . 

Er liegt bei Metallpaarungen im Bereich 10 − 5 − 10 − 4 V /  K, bei Halbleitern um

etwa zwei Größenordnungen darüber. Zusätzlich lässt sich die unterschiedli-

che Richtung der Thermospannung zwischen  p- und  n-Leiter als  Thermopaar

ausnutzen (Abb. 6.3.7c): im  p-Halbleiter diffundieren positive Ladungen von

der heißen Stelle weg, im  n-Halbleiter wandern negative Ladungen ab. So

addieren sich beide Thermospannungen, weil eine von ihnen stets negativ ist. 

Beide Thermoelemente liegen so elektrisch in Reihe und thermisch parallel. 

Thermoelemente (Materialien Fe-Konstantan, Ni-CrNi, Pt-PtRh) dienen zur Tem-

peraturbestimmung, solche aus Halbleitern (SbBi-SeTe, auch Standardhalbleiter)

zusätzlich zur Erzeugung kleiner Spannungen (z. B. als Nanothermogeneratoren in

elektronischen Armbanduhren zum Nachladen der Batterie aus der Körperwärme

u. a. m.), aber auch zur transportablen Energieversorgung. Störend wirken die Joule-

sche Stromwärme und die Wärmeleitfähigkeit des Leiters. Deshalb sollte die Leit-

fähigkeit groß und die Wärmeleitfähigkeit klein sein, also die  Effektivit¨

 at Z =

 ε 2

 ·

th12

 κ el /κ W möglichst hoch. Sie hängt nur vom Material ab. 

Im Thermoelement erwärmt sich bei Stromfluss (Abb. 6.3.7d) eine Kontakt-

stelle und die andere kühlt. Stromumkehr vertauscht die erwärmte bzw. 

gekühlte Kontaktstelle. Dieser von  Peltier  erkannte Effekt ist ein  W¨

 arme-

 transport  von einer kalten zu einer warmen Kontaktfläche durch elektrischen
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Abb. 6.3.7. Direkte Umwandlung Wärme - elektrische Energie. (a) Entstehung einer

Gleichgewichtsfeldstärke  E th durch Wärmediffusion (Seebeck-Effekt). (b) Seebeck-Effekt

im Stromkreis aus unterschiedlichen Metallen. (c) Seebeck-Effekt am  pn- Übergang: Additi-

on der Seebeck-Spannungen. (d) Peltier-Effekt. Bei Stromfluss entsteht an der Übergangs-

stelle zwischen zwei Materialien eine Wärmeströmung vom Übergang weg (Wärmeabgabe, 

Aufheizen der Umgebung) oder zu ihm hin (Wärmeaufnahme, Abkühlung der Umgebung)

Strom. Es gilt für die umgesetzte Leistung

d W

 p =

th =  ±Π I +  RI 2 . 

(6.3.20)

d t

Der  Peltierkoeffizient Π liegt in der Größenordnung von 10 − 2  . . .  10 − 4 V. Der

Thermostrom fließt durch die entstehende Temperaturänderung dem durch-

fließenden Strom entgegen, deshalb senkt die im Widerstand  R  umgesetzte

Wärmeleistung den Effekt. Peltier- und Seebeckkoeffizient hängen zusammen, 

in linearer Näherung gilt

dΠ

d ε

=  ε

th  . 

(6.3.21)

d T

th +  T  d T

Daraus folgt für konstanten Seebeck-Effekt  ε th12: Π =  ε thΔ T . 

Die an der kalten Seite des Peltierelementes abgeführte Kälteleistung  P th vermin-

dert sich durch Stromverlustleistung in den Halbleitergebieten und die Wärmeab-

leitung durch den thermischen Leitwert  G th:

 p th = Π I − I 2 R/ 2  − G th( T H  − T K) . 

(6.3.22)
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Steigende Temperaturdifferenz zwischen heißem und kaltem Ende senkt die Kälte-

leistung. Über dem Strom hat sie ein Maximum

Π2

Π

 p thmax =

 − G

 . 

(6.3.23)

2 R

thΔ T, 

 I max =  R

Zum Kühlbetrieb muss die Peltierleistung die Verluste durch Joulesche Wärme und

Wärmeleitung übertreffen (rechte Seite der Gl. (6.3.22) positiv). Der Kühlbetrieb

endet bei verschwindender Kälteleistung  p th, also für die Temperaturdifferenz







 RthΠ2 

Δ T



max =  R th Π  · I − RI  2

 → Δ T max =

 . 

(6.3.24)

2 R

 I=Π /R

Mit Bi2Te3 als Standardmaterial für Peltierelemente bei Raumtemperatur erreicht

man Kälteleistungen von einigen 10 W bei Temperaturdifferenzen von einigen 10 K. 

Nachteilig sind geringe Betriebsspannung (wenige Volt) und hohe Betriebsströme

(1  . . .  100 A). Durch Kaskadierung (Reihen-Parallelschaltung) mehrerer Peltierele-

mente erreicht man Temperaturdifferenzen bis in den Bereich von 100 K und höhere

Kühlleistungen. 

Der Peltier-Effekt wird für kleinere Kühlaufgaben eingesetzt: kleinvolumige Kühl-

batterie (wenige Liter aus Wirtschaftlichkeitsgründen) für Medizin und Biologie, 

Thermostate, Kühlfallen, Kühlung von Bauelementen zur Herabsetzung des Rau-

schens u. a. m. Im Temperaturbereich bis 600 K verwendet man PbTe- bzw. SiGe-

Legierungen, letztere in der Raumfahrt zur Energieversorgung bis zu Temperaturen

von 1200 K. 

Zusammenfassung: Kapitel 6

1. 

Räumliche Felder lassen sich durch zugeordnete Netzwerkmodelle für

Feldbereiche zwischen bestimmten Systempunkten, den Knoten, und Er-

satz der Feldgrößen durch integrale Größen in elektrische Netzwerke

überführen. Statt der Feldgleichungen werden Bauelementebeziehungen

zwischen Knoten und Kirchhoffsche Sätze (als Bilanz- und Kontinuitäts-

gleichung) genutzt. Variable sind dabei Ströme durch Knoten und Span-

nungen zwischen Knoten. 

2. 

Dieser Grundgedanke eignet sich auch für andere physikalische Teilge-

biete (Mechanik, Thermodynamik, Akustik) und erweitert elektrische zu

physikalischen Netzwerken. Die Variablen sind dann allgemeiner Fluss-

und Differenz- oder Potenzialgrößen. Erhalten bleiben die Kontinuitäts-

beziehungen (Knotensatz bzw. Sätze von der Erhaltung der Ladung und

Masse), der Energiesatz (entsprechend dem Maschensatz) und gleichwer-

tige Ansätze für Netzwerkelemente (es gibt Widerstände, Energiespei-

cher, Quellen, Übertrager und Wandler), die zeitunabhängig, zeitabhän-

gig, linear oder nichtlinear sein können. 

3. 

Die Zuordnung zwischen elektrischen und nichtelektrischen Differenz-

und Flussgrößen bestimmt die gewählte Analogie. Verbreitet ist die Form
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6. Analogien zwischen elektrischen und nichtelektrischen Systemen

Kraft-Strom (und damit Geschwindigkeit und Spannung, in der Mecha-

tronik auch die umgekehrte Form). 

4. 

Herausragende Bedeutung haben elektrisch-mechanische Wandler wie

elektrostatische, elektromagnetische und elektrodynamische Wandler. 

5. 

Die Wandlung wird gleichwertig beschrieben durch den Energiesatz oder

die Leistungsbilanz, im letzteren Fall mit zeitveränderlichen Energiespei-

cherelementen ( C,  L). 

6. 

Beim elektrostatischen Wandler sind von den Systemvariablen Ladung, 

Spannung, Kraft und Verschiebung bzw. Spannung, Strom, Kraft und

Geschwindigkeit jeweils zwei unabhängig, was eine Formulierung  F ( u, x); 

 i( u, x) erlaubt und die Wandlerersatzschaltung in Leitwertform mit zeit-

variabler Eingangskapazität und ausgangsseitig nichtlinearer Kraftquelle

begründet. Der Eingang lässt sich durch eine Festkapazität mit paralleler

ausgangsgesteuerter Stromquelle ersetzen. Im Kleinsignalfall wird daraus

eine Zweitorleitwertform mit gesteuerten Quellen von Gyratortyp. 

7. 

Zum magnetischen Reluktanzwandler (Grundlage veränderlicher magne-

tischer Kreis) mit den bestimmenden Beziehungen  F ( i, x),  u( i, x) gehört

eine Wandlerersatzschaltung vom Hybridtyp mit zeitabhängiger Induk-

tivität am Eingang (ersetzt durch Reihenschaltung von Festinduktivität

und gesteuerter Spannungsquelle) sowie nichtlinearer Ausgangsstrom-

quelle. Sie geht im Kleinsignalfall in eine Hybridschaltung über, deren

Wandlerkern sich durch einen idealen Übertrager nachbilden lässt. Die-

ser Wandlertyp bildet die Grundlage für Elektromagnet und Relais. 

8. 

Den gleichen Grundtyp hat auch der elektrodynamische Wandler (be-

wegte Leiterschleife), nur ist dort die ausgangsseitige Kraftquelle linear

(ebenso wie die rückwirkende Spannung im Eingangskreis), was seine

Bedeutung unterstreicht. Er ist die Basis rotatorischer/translatorischer

Energiewandler (Motor, Generator). Seine Grundlage ist die elektrody-

namische Kraft im Wechselspiel mit der Bewegungsinduktion im Leiter. 

Selbstkontrolle: Kapitel 6

1. 

Was ist ein verallgemeinertes Netzwerk? 

2. 

Mit welchen Größen werden verallgemeinerte Netzwerke beschrieben? 

3. 

Wie sind Energie, Ko-Energie und Leistung für verallgemeinerte Netz-

werke definiert? 

4. 

Welche Netzwerkelemente lassen sich mit Fluss- und Differenzgrößen de-

finieren? Nennen Sie dazu Beispiele verschiedener mechanischer Systeme! 

5. 

Was ist ein Wandler? 

6. 

Geben Sie die Grundgleichungen eines elektrostatischen bzw. magne-

tischen Wandlers an! 

7. 

Wie lauten die verallgemeinerten Maschen- und Knotensätze? 
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8. 

Welche Möglichkeiten der Verschaltung von Bauelementen physikalischer

Netzwerke gibt es? 

9. 

Geben Sie ein Beispiel eines elektrostatisch-mechanischen Wandlers an! 

10. Geben Sie ein Beispiel eines magnetisch-mechanischen Wandlers an! 

11. Beschreiben Sie den Schnappeffekt. 

12. Welche Arten des Wärmetransports gibt es? 

13. Wie ist der Wärmewiderstand definiert? 

14. Geben Sie die Netzwerkelemente eines thermischen Ersatznetzwerkes an! 

15. Beschreiben Sie den Seebeck-Effekt! 
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A.1 Verzeichnis der wichtigsten Symbole

Symbol Bezeichnung

 A

Fläche, Querschnitt

 a

Beschleunigung

 B

magnetische Flussdichte

 B R

Remanenzinduktion

 C

Kapazität

 C th

Wärmekapazität

 c

spezifische Wärme

 D

Verschiebungsflussdichte

 d

Durchmesser

 E

elektrische Feldstärke

 E i

induzierte Feldstärke

 E q

elektromotorische Kraft, Urspannung

 e

Elementarladung

 F

Kraft

 f

Frequenz

 G

Leitwert

 G m

magnetischer Leitwert

 g

differentieller Leitwert

 H

magnetische Feldstärke

 H C

Koerzitivfeldstärke

 h

Höhe

 I

Stromstärke

 I q

Quellenstromstärke

 i v

Verschiebungsstrom

 I W

Energiestrom

 i

zeitveränderlicher Strom, allgemein

 J

1) Stromdichte

2) magnetische Polarisation

 J K

Konvektionsstromdichte

 J V

Verschiebungsstromdichte

 J W

Energiestromdichte, Poynting-Vektor

 L

Induktivität
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Symbol Bezeichnung

 L i

innere Induktivität

 L ik

Gegeninduktivität Leiter  i,  k

 L s

Streuinduktivität

 l

Länge, Strecke

 k

1) Boltzmann-Konstante

2) Kopplungsfaktor

 M

Drehmoment

 M

Gegeninduktivität

 m

Masse

 n

1) Zählindex

2) Betrag des Normalenvektors

 P

Leistung

 P V

Verlustleistung

 P W

Wärmestrom

 p

Momentanleistung

 p

Leistungsdichte

 p V

Verlustleistungsdichte

 Q

Ladung, Elektrizitätsmenge

 q

Elementarladung, allgemein

 R

Widerstand

 R a

Außenwiderstand

 R i

Innenwiderstand

 R m

magnetischer Widerstand

 R th

Wärmewiderstand

 r

differentieller Widerstand

 r

Ortsvektor

 S

Transferleitwert, Steilheit

 T

1) Periodendauer

2) Temperatur

 t

Zeit

 t H

Halbwertzeit

 U

Spannung

 U H

Hall-Spannung

 u

Spannung, zeitabhängig

 ü

Übersetzungsverhältnis

 v

Spannungsübertragungsfaktor

 W

Arbeit, Energie

 W d

dielektrische Energie

 W ∗

dielektrische Ko-Energie

d

 W el

elektrische Energie
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Symbol Bezeichnung

 W hyst

Hysteresearbeit

 W m

magnetische Energie

 W ∗

m

magnetische Ko-Energie

 w

1) Energiedichte

2) Windungszahl

 w m

magnetische Energiedichte

 X

Wandlerkonstante

 Y

Wandlerkonstante

 Z m

Transferimpedanz

 z

Wertigkeit eines Ions

 α

1) linearer Temperaturkoeffizient

2) Winkel

 α k

Wärmeübergangszahl

 β

quadratischer Temperaturkoeffizient

Δ

Differenz

 δ

Luftspaltlänge

 ε

Permittivität

 ε r

relative Permittivität

 ε 0

elektrische Feldkonstante

 η

Wirkungsgrad

Θ

elektrische Durchflutung

 ϑ

Celsius-Temperatur (in  ◦ C)

 κ

elektrische Leitfähigkeit

 κ W

Wärmeleitfähigkeit

 λ

magnetischer Leitwert

 μ

1) Beweglichkeit

2) Permeabilität

3) Steuerfaktor

 μ r

relative Permeabilität

 μ 0

magnetische Feldkonstante

 


1) Länge, Radius

2) spezifischer Widerstand

3) Raumladungsdichte

 σ

1) Flächenladungsdichte

2) Strahlungskonstante

 σ mech

mechanische Spannung

 τ

Zeitkonstante

Φ

magnetischer Fluss

 ϕ

1) elektrisches Potenzial

2) Nullphasenwinkel
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Symbol Bezeichnung

 χ

Suszeptibilität

Ψ

1) elektrischer Fluss

2) magnetischer verketteter Fluss

 ω

1) Winkelgeschwindigkeit

2) Kreisfrequenz
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Durchflutung

213

Arbeit
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Durchflutungssatz
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Asynchronlinearmotor

562

Differenzialform
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Asynchronmaschine

536

Verallgemeinerung

208

Asynchronmotor

548

Durchgröße

573

Durchvariable

591

B

E

Bandabstand

72

Barlowsches Rad

344

Eigenleitungsdichte

72

Beweglichkeit

45

Eindringtiefe

321

Bewegungsinduktion

302, 322, 350

Eisenkreis

259

Anwendungen

331

nichtlinearer
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Bleiakkumulator

85

Elektrolyse

83

Brechungsgesetz

59, 122, 234

Elektrolyt

78

Brennstoffzelle

88

Elektrolytkondensator
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D

Elektromotor

535

Einteilung

536

Dauermagnet

190

Elektronenemission

90

Dauermagnetkreis

265

Elektronikmotor

544

Diamagnetismus

227

Energie

Dielektrikum

116

elektrische

408

längsgeschichtetes

473

Kondensator

415

quergeschichtetes

472

magnetische

291, 431, 438

Dielektrizitätskonstante

116

nichtlinearer Kondensator

417

Dielektrizitätszahl
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Stetigkeit

429, 442

Differenzgröße

590

Energiebilanz

414

Diffusionskapazität

175

Energiedichte

409

Diffusionsstrom

74

elektrostatische

427

Dipol

Energieerhaltungssatz

445

Kraft

522

Energiestrom

446

Divergenz

8

Energiestromdichte

447, 449

Donator

73

Energieumformung

406

Doppelleitung

277

Energiewandler

578
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Energiewandlung

452, 455

Feldstärke

23

elektrodynamische

500

elektrische

115

Ersatzschaltung

induzierte elektrische

324

elektrische

458

magnetische

200

mechanisch-elektrische

479

Umlaufintegral

17

mechanische

458

Feldstärkefeld

101

thermische

458, 627

Feldstrom

74

Feldstromdichte

74

F

Feldüberlagerung

27

Feldverdrängung

321

Faraday

293, 297

Feldwirkungen

Feld

physikalische

3

elektrisches

12

Ferritkern

278

elektrostatisches

12

Ferritwerkstoff

231

Grenzflächen und elektrisches

120

Ferromagnetismus

227

Grenzflächen und magnetisches

232

Festkondensator

176

Grenzflächen und Strömungs-

58

Flächenladung

10, 111

homogenes

5, 21, 111

Flächenladungsdichte

107

inhomogenes

5

Flächenspannungsvektor

471

kugelsymmetrisches

10

Fluss

magnetisches

12, 187

magnetischer

236

quasistationäres

395

verketteter

271

schnell veränderliches

396

zeitveränderlicher

327

stationäres

395

Flussdichte

statisches

395

magnetische
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zeitveränderliches

395

Flussgröße

590

Feldarten

8

Flussröhre

35

Feldeffekt
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Flusssteuerfaktor
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Feldeffekttransistor
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Flussverkettung

515

Feldemission

90

Fotoeffekt

90

Feldenergie

4

Fremderregung

340

Felder

14

Feldgröße

4

G

globale

4

integrale

4, 14

Galvanik

84

lokale

14

Gegeninduktion

368

skalare

5

Gegeninduktivität

278

vektorielle

6

Doppelleitung

289

Feldkonstante

Zylinderspule

287

elektrische

106

Generator

Feldlinien

4, 6

elektrostatischer

127

magnetische

192

Generatorprinzip

331, 499

Feldlinienbild

5

Gesamtstromdichte

159

Feldmerkmale

5

Gesetz

Feldplatte

492

Biot-Savartsches

210

Index
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Faradaysches

79

innere

291

Gaußsches

107, 133

Koaxialkabel

292

Hopkinsches

254

lineare

353

Ohmsches

45

Zusammenschaltung

359

Glühkatode

90

Induktivitätsberechnung

274

Gleichstromkreis

66

Influenz

108, 123, 126

Gleichstrommaschine

536

Influenzprinzip

124

Gleichstrommotor

538

Intensitätsgröße

573

Motorarten

541

Inversionskanal

137

Gleichung

Inversionsladung

137

Poissonsche

133

Gradient

24

K

Grenzfläche

Flächenladung an

122

Käfig

Kraft

463

Faradayscher

126

Metall-Isolator

135

Kapazität

142

Grenzflächenkraft

505

differenzielle

173, 418

Grundstromkreis

elektronische

175

Leistung

453

Energiebeziehungen

424

Gyrator

577, 580

nichtlineare

172

parametrische

423

H

Kapazitätskoffizient

150

Kathode

90

Halbleiter

Kleinsignalkapazität

173

Leitungsvorgänge

71

Knotensatz

Halbwertzeit

165

magnetischer

238

Hall-Effekt

191, 489

thermischer

620

Hall-Feldstärke

191, 491

Ko-Energie

418, 476, 511

Hall-Konstante

491

magnetische

433

Hall-Spannung

191, 491

Koaxialkabel

215

Hauptschlussgenerator

340

Koaxialkondensator

145

Helmholtz-Spule

220

Koaxialleitung

Henry

297

verlustbehaftete

454

Hysteresearbeit

440

Koerzitivfeldstärke

230

Hysteresekurve

229, 440

Kommutator

497

Hystereseverluste

232

Kondensator

13, 143, 146, 153

Hystereseverlustleistung

440

Anfangswert

154

aufladen

164

I

Bemessungsgleichung

144

nichtlinearer

172

Induktionsgesetz

292, 301

Parallelschaltung

146

Induktivität

Reihenschaltung

147

Anfangsstrom

356

Stetigkeitsbedingung

165

Ausschaltvorgang

361

Kondensatormikrofon

171

Energiebeziehungen

424

Kondensatormotor

556
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Kontinuitätsbedingung

41

Leiterschleife

Kontinuitätsgleichung
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rotierende

334

Konvektion

624

Leitfähigkeit

45

Konvektionsstromdichte

36

Linearmotor

342, 559

Koppelfaktor

284, 386

elektrodynamischer

560

Koppelfluss

281

Linienintegral

16

Kopplung

Linienladung

10, 112

feste

387

Linienquelle

52

Korrosion

84

Lorentz-Kraft

194

Kraft

Luftspalt

259

elektrodynamische

493

Energie

442

elektromotorische

67

Luftweg

elektrostatische

460, 483

äquivalenter

259

induzierte elektromotorische

294

magnetomotorische

245

M

Kraftdichte

460, 471

elektrodynamische

495

Magnetfeld

elektrostatische

460

inhomogenes

198

magnetische

486

Magnetisierung

227

Kraftgesetz

Magnetisierungskurve

229

Ampèresches

196, 493

Magnetowiderstand

490

Kraftwirkung

Majoritätsträger

73

magnetische

199, 487

Maschensatz

Kreis

thermischer

621

idealer magnetischer

264

Massenwirkungsgesetz

73

magnetischer
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Mehrleitersystem

150

magnetischer, Energie

442

magnetische Energie

444

Kurzschlussläufer
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Mikrophon

Kurzschlussnachgiebigkeit

594

dynamisches

504

Minoritätsträger

73

L

Momentanleistung

410

MOS-Feldeffekttransistor
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Ladungserhaltungssatz

43

Motor

Ladungsverteilung
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Grundgleichungen

538
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Motorbremsung
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504

Motorprinzip

331, 499

Leistung

elektrische
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N
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409

Leistungsdichte
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Nebenschlussgenerator

341

Leistungsvariable

573

Nebenschlussmotor

541

Leistungsvermögen

411

Netzwerk
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578

physikalisches

569

Leiter

verallgemeinertes

570

linienhafter

206

Netzwerktransformation
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Neukurve

229

Raumladung

10, 111

Neutralitätsbedingung

73

Raumladungsdichte

39

Raumladungszone

134

O

Reaktionskraft
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