Einfach programmieren lernen — nicht nur fur Kids

dpunkt.verlag







Jason Briggs

Python kinderleicht!

Einfach programmieren lernen = nicht nur fiir Kids

Ubersetzung aus dem Amerikanischen
von Volker Haxsen



Lektorat: Dr. Michael Barabas

Ubersetzung: Volker Haxsen, Heidelberg

Copy-Editing: Friederike Daenecke, Ziilpich

Herstellung: Birgit Bauerlein

lllustrationen: Miran Lipovaca

Umschlaggestaltung: Helmut Kraus, www.exclam.de

Druck und Bindung: M.P. Media-Print Informationstechnologie GmbH, 33100 Paderborn

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie;
detaillierte bibliografische Daten sind im Internet Uber http://dnb.d-nb.de abrufbar.

ISBN

Buch 978-3-86490-022-8
PDF 978-3-86491-332-7
ePub 978-3-86491-333-4

1. Auflage 2013

Translation Copyright fuir die deutschsprachige Ausgabe
© 2013 dpunkt.verlag GmbH

Ringstrae 19 B

69115 Heidelberg

Copyright der amerikanischen Originalausgabe

© 2013 by Jason R. Briggs

Titel der Originalausgabe: Python For Kids — A Playful Introduction To Programming

No Starch Press, Inc. - 38 Ringold Street, San Francisco, CA 94103 - http://www.nostarch.com/
ISBN 978-1-59327-407-8

Die vorliegende Publikation ist urheberrechtlich geschiitzt. Alle Rechte vorbehalten. Die Verwendung
der Texte und Abbildungen, auch auszugsweise, ist ohne die schriftliche Zustimmung des Verlags
urheberrechtswidrig und daher strafbar. Dies gilt insbesondere fiir die Vervielfiltigung, Ubersetzung
oder die Verwendung in elektronischen Systemen.

Es wird darauf hingewiesen, dass die im Buch verwendeten Soft- und Hardware-Bezeichnungen sowie
Markennamen und Produktbezeichnungen der jeweiligen Firmen im Allgemeinen warenzeichen-,
marken- oder patentrechtlichem Schutz unterliegen.

Alle Angaben und Programme in diesem Buch wurden mit groBter Sorgfalt kontrolliert. Weder Autor
noch Verlag kdnnen jedoch fiir Schaden haftbar gemacht werden, die in Zusammenhang mit der
Verwendung dieses Buches stehen.

543210



Vorwort

Jason R. Briggs ist seit dem Alter von acht Jahren Programmierer und hat als erste
Programmiersprache BASIC auf einem Radio Shack TRS-80 erlernt. Er hat als Ent-
wickler und Systemarchitekt professionell Software programmiert und als Autor
fir das Java Developers’s Journal gearbeitet. Seine Artikel sind in JavaWorld,
ONJava und ONLamp erschienen. Python kinderleicht ist sein erstes Buch.

Du kannst mit Jason iiber seine Homepage bitp://jasonbriggs.com/ oder per
E-Mail mail@jasonbriggs.com Kontakt aufnehmen.

Der 15-jahrige Josh Pollock ist frischgebackener Absolvent der The Nueva School
und jetzt neu auf der Lick-Wilmerding High School in San Francisco. Er fing im
Alter von neun Jahren mit dem Programmieren in Scratch an, begann in der
sechsten Klasse mit TI-BASIC, ging dann in der siebten Klasse zu Java und
Python uber und machte in der achten Klasse mit UnityScript weiter. Neben dem

Programmieren spielt er Trompete, entwickelt Computerspiele und unterrichtet
Leute in MINT-Fichern.

Maria Fernandez hat einen Masterabschluss in angewandter Linguistik und inte-
ressiert sich schon seit tiber 20 Jahren fiir Computer und Technik. Sie hat jungen
Flichtlingsfrauen im Global-Village-Projekt in Georgia (USA) Englisch beige-



vi

bracht, lebt zurzeit in Nord-Kalifornien und arbeitet fiir den ETS (Educational
Testing Service).

So ungefihr muss es sein, wenn man beim Empfang einer Ehrung die Biihne
betritt und dann feststellt, dass man die Liste der Personen zu Hause hat liegen
lassen, die man bei seiner Danksagung beriicksichtigen will: Man vergisst garan-
tiert jemanden, und die Musik setzt ganz schnell ein, um einen von der Biithne
herunterzukomplimentieren.

Deswegen kommt jetzt eine (zweifelsohne) unvollstindige Liste von Leuten,
denen ich zu tiefem Dank verpflichtet bin, da sie mir geholfen haben, das Buch so
gut werden zu lassen, wie es jetzt ist.

Ich mochte dem Team von No Starch danken, vor allem Bill Pollock, fiir seine
bei der Bearbeitung immer wieder gestellte Frage, was denn ein Kind von alldem
halten wiirde.

Wenn man schon sehr lange programmiert, vergisst man nur allzu leicht, wie
schwer diese Dinge fiir Anfianger sind, und Bill war eine wertvolle Hilfe, weil er
mich auf diese oft tibersehenen und iiberkomplizierten Passagen aufmerksam
machte. Mein Dank gilt auch Serena Yang, der exzellenten Produktionsmanage-
rin. Ich hoffe, dass sie sich nicht allzu sehr die Haare gerauft hat, als sie die rich-
tige Farbgebung des Codes auf iiber 300 Seiten iiberpriifen musste.

Ein grofses Dankeschon geht an Miran Lipovaca fir ihre iiberaus gelungenen
Ilustrationen. Sie sind viel mehr als nur gelungen. Nein ehrlich! Wenn ich das
gemacht hitte, konnte man von Gliick sagen, wenn man ab und zu eine hinge-
schmierte Figur erkennen konnte. Ist es ein Bar? Ist es ein Hund? Nein, warte
... soll das ein Baum sein?

Vielen Dank den Korrektoren! Ich muss mich dafiir entschuldigen, dass nicht
alle Vorschliage am Ende beriicksichtigt wurden. Wahrscheinlich hattet Thr recht,
und ich kann nur eine schlechte Charaktereigenschaft von mir dafiir verantwort-
lich machen, falls noch Fehler enthalten sind. Besonderer Dank geht an Josh fiir
einige wirklich tolle Vorschliage und Ideen. Mein Bedauern gilt Maria, weil sie
sich mit zum Teil uneinheitlich formatiertem Code herumschlagen musste.

Ich danke meiner Frau und meiner Tochter dafiir, dass sie sich mit einem
Mann und Vater abfinden mussten, der sich noch mehr als sonst hinter dem
Computerbildschirm versteckt hat.

Meiner Mutter danke ich fiir all die unermuidliche Aufmunterung tiber all die
Jahre.

Und zu guter Letzt danke ich meinem Vater dafir, dass er sich damals in den
1970er-Jahren einen Computer gekauft hat und es ertragen hat, dass ich diesen
genauso oft nutzen wollte wie er. Nichts von alledem wire ohne ihn moglich
gewesen.

Vorwort



O 0 N o0 U A~ W N

10

12
13

Inhaltsiibersicht

Einleitung

Nicht alle Schlangen schldngeln sich
Berechnungen und Variablen

Strings, Listen, Tupeln und Maps
Malen mit Turtles

Fragen mit if und else stellen

Schleifen drehen

Wiederverwertung Deines Codes mit Funktionen und Modulen
Wie man Klassen und Objekte benutzt
Pythons eingebaute Funktionen
Niitzliche Python-Module

Noch mehr Grafik mit turtle

Bessere Grafiken mit tkinter

19
27
43
51
63

85
101
19
135
153

vii



viii

Teil Il BOUNCE!

14 Der Anfang Deines ersten Spiels: BOUNCE!

15 Dein erstes Spiel vollenden: BOUNCE!

Teil 11l Herr Strichmann rennt zum Ausgang
16 Wir erstellen Grafiken fiir das Strichmé&annchenspiel
17 Entwicklung des Strichmédnnchenspiels

18 Herrn Strichmann erschaffen

19 Abschluss des Spiels mit Herrn Strichmann

20 Wie geht es jetzt weiter?

Anhang

Python-S$chliisselworter

Glossar

Index

Inhaltstibersicht

183
195

209

21
221
239
247
273

281

283
295
299



1.1
1.2
1.3
1.4
1.5
1.6

2.1
2.2

2.3
2.4
2.5

Inhaltsverzeichnis

Einleitung 1
Warum Python? ... ... . . 1
Wie man das Programmieren lernt . .......... ... ... ... .... 2
Wer dieses Buch lesensollte . ....... ... ... i, 2
Was in diesem Buch steht ......... ... ... ... ... . . . ..., 3
Die Websitezum Buch .. .. ... .. o 4
Viel Vergniigen! . .. ...ttt et e e 4
Nicht alle Schlangen schldngeln sich 7
Ein paar Bemerkungen zum Thema Sprache ................... 8
Python installieren .. ... ... .. . i 8
Python unter Windows 7 installieren .. .......... ... ... ... ... 9
Python in MacOSX installieren ........................... 11
Python in Ubuntu installieren ........... ... ... .. ... ..... 13
Wenn Du Python installiert hast ........................... 14
Deine Python-Programme sichern .......................... 15
WasDugelernthast ........ ... ... ... 17




3.2
3.3
3.4

4.2

4.3
4.4
4.5
4.6

5.2
5.3

Berechnungen und Variablen 19

Mit Pythonrechnen ......... ... ... ... ... . ... 19
OperatoreninPython . ...... ... ... .. 21
Die Rangfolge der Operationen ............ ..o viuiean... 21
Variablen sind wie Bezeichnungen .......................... 22
Variablenbenutzen . ........ . . i 24
Was Dugelernthast .......... i, 26
Strings, Listen, Tupeln und Maps 27
SIS .« e ettt et e 27
SEriNgS erzeugen . . ..o vttt ittt ettt et 28
Wie man Probleme mit Strings meistert ...................... 29
Werte in Strings einbetten .. .......cvtini ... 31
Strings multiplizieren . ......... ... .. ... 32
Listen konnen mehr als Strings .. ........... ... ... ... ... 34
Einer Liste Elemente hinzufiigen ........................... 36
Elemente aus einer Liste entfernen .......................... 36
Mit Listen rechnen ........ ..., 37
Tupeln ... e 39
Maps in Python weisen Dir nicht den Weg . ................... 39
WasDugelernthast ...... ... 42
Programmier-Puzzles .......... ... . ... i 42
#1: Lieblingssachen ......... .. ... . .. 42
#2: Kdmpferzdhlen ....... .. ... ... ... .. .. il 42
#3: Grifle! ..o 42
Malen mit Turtles 43
Wie man Pythons Modul turtle benutzt ...................... 43
Eine Leinwand erzeugen . ......... ...t 44
Die Schildkrote bewegen . ........ ... . i 45
Was Dugelernthast ...... .. ... ... 50
Programmier-Puzzles .......... ... .. .. ... . i 50
#1:EinRechteck ...... ... ... . i 50
#2: EinDreieck ...t 50
#3: Eine Kiste ohne Ecken . ....... ... .. ... i, 50

Inhaltsverzeichnis



6.2
6.3
6.4
6.5
6.6
6.7
6.8

7.1
7.2
7.3
7.4

8.2
8.3
8.4
8.5

Fragen mit if und else stellen 51

f-ANWEISUNZEN .« . v vttt ettt ettt et et et et 51
Ein Anweisungsblock enthilt mehrere Anweisungen ............ 52
Mit Bedingungen konnen wir Dinge vergleichen ............... 54
If-Then-Else-Anweisungen . ... ....covtitvnnennenenenenn.n. 56
if-und elif-Anweisungen .............. ... 57
Bedingungen kombinieren . ....... ... ... . L i LL, 58
Variablen ohne Wert—=None .. ..., 58
Der Unterschied zwischen Strings und Zahlen ................. 59
WasDugelernthast .........c .. 61
Programmier-Puzzles .. ...... .. .. . i 62
#1:Bist Dureich? ... ... ... . . . 62
#2:Kekse! ..ot 62
#3: Einfach die richtige Zahl ............ ... ... ... ... ..... 62
#4: Ich kann die Ninjas bezwingen ......................... 62
Schleifen drehen 63
Wie man for-Schleifen benutzt .. ............ ... ... ... ...... 63
Wo wir gerade von Schleifen sprechen... ..................... 70
WasDugelernthast ........ ... ... ... 73
Programmier-Puzzles . ........ ... i 73
#1: Die Hallo-Schleife .......... ... ... 73
#2: Gerade Zahlen ......... ... ... . . . 73
#3: Meine funf Lieblingszutaten ........................... 74
#4 Wie viel wiegst DuaufdemMond? ...................... 74
Wiederverwertung Deines Codes mit Funktionen und Modulen 75
Funktionen benutzen . ....... .. ... i, 76
Teile einer Funktion . .......... ... ... i, 76
Variablen und ihr Gultigkeitsbereich . ....................... 77
Einsatzvon Modulen . ........... it 80
WasDugelernthast ........ ... ... ... ... 82
Programmier-Puzzles . ....... ... .. . i 82
#1: Einfache Funktion fiir Dein Gewicht auf dem Mond . ........ 82
#2: Was wiegst Du auf dem Mond nach x Jahren? ............. 83
#3: Ein Programm fiir Dein Gewicht auf dem Mond .. .......... 83

Inhaltsverzeichnis



9.2
9.3

9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11

10
10.1

10.2

10.3
10.4

Wie man Klassen und Objekte benutzt 85

Dinge in Klassen aufteilen ............. ... ... c0iuiieon... 86
Kinderund Eltern . ... ... i i 87
Klassen Objekte hinzufiigen ............ ... ... ... ... ... 87
Funktionen von Klassen definieren .......................... 88
Klasseneigenschaften als Funktionen hinzufigen ............... 88
Wozu braucht man Klassen und Objekte? .................... 90
Objekte und Klassen bei Bildern .. .......................... 91
Weitere niitzliche Eigenschaften von Objekten und Klassen ... .... 93
Geerbte Funktionen . .......... ..ottt 94
Funktionen, die andere Funktionen aufrufen .................. 95
Ein Objekt initialisieren . ...........c..c0 it nnennnnn.. 96
Was Dugelernthast .......... . i 98
Programmier-Puzzles ........... ... ... .. . ... 98
#1: Der Giraffen-Schiebetanz . ............................. 98
#2: Schildkroten-Heugabel .......... ... ... ... ... .. ... .... 99
Pythons eingebaute Funktionen 101
Eingebaute Funktionen verwenden ......................... 101
Die abs-Funktion ........... ... it 102
Die boolesche Funktion ............... ..., 102
Die Funktion dir .. ... oot e 104
Die Funktioneval ..... ... it 106
Die Funktion eXec . .......ouiuiiitiitvntnnennneneenn. 107
Die Funktion float ............co ittt 107
Die Funktion int .. ... .ou ittt it it et eaenns 108
Die Funktionlen .. ..... ...ttt 109
Die Funktionen maxund min ......... ... .. o, 110
Die Funktion range . .. .o vvtit i ie et e it et e e 111
Die Funktion sum .. ....ovit ittt et 112
Umgang mit Dateien . . ... ..., 112
Erzeugen einer Test-Datei . ........... ... .. . oo, 113
Eine Datei in Python 6ffnen ........ ... ... ... ... ... . .. 115
In Dateien schreiben . .......... ... . ... ... 117
Was Dugelernthast ........ .. .. . i 117
Programmier-Puzzles ........... ... i 118
#1: Geheimnisvoller Code . ........ .. ... . i, 118
#2: Eine versteckte Botschaft ............................. 118
#3: Eine Datei kopieren . ..........c.ouiiiiiiiiin.. 118

Inhaltsverzeichnis



1
111
11.2

11.3

11.4

11.5

11.6
11.7
11.8

12

12.1
12.2
12.3
12.4

12.5
12.6
12.7
12.8

Niitzliche Python-Module 19

Mit dem Modul copy Kopien erstellen ..................... 120
Mit dem Modul keyword einen Uberblick iiber die

Schliisselworter erhalten . ... i 122
Wie man mit dem Modul random Zufallszahlen bekommt .. .. .. 123
Mit randint eine Zufallszahl bestimmen lassen ............... 123
Mit choice ein zufilliges Element aus einer Liste auswahlen .. ... 125
Mit shuffle eine Liste mischen .......... ... ... ... .. .. ... 125
Die Shell mit dem Modul syssteuern .. ..................... 126
Die Shell mit der Funktion exit verlassen .................... 126
In dem Objekt stdinlesen ........... ... i, 126
Mit dem Objekt stdout schreiben ......................... 127
Welche Python-Version benutze ich? . ...................... 128
Mit dem Modul time arbeiten .............. ... ... ..., 128
Mit asctime ein Datum umwandeln ........................ 129
Mit localtime Datum und Uhrzeit bekommen ................ 130
Mit sleep eine Pause machen . ............................ 131
Mit dem Modul pickle Informationen speichern .............. 131
WasDugelernthast ..........co i, 133
Programmier-Puzzles . .......... ... .. .. . .. 133
#1: Kopierte Autos ... vovvvit ittt 133
#2: Favoriteninpickle . . ... ... .. . 134
Noch mehr Grafik mit turtle 135
Fangen wir mit einem einfachen Quadratan ................. 135
Sterne zeichnen ...... ... ... .. . i 136
Ein Auto zeichnen ......... .. . . i, 140
Dingeeinfarben .. ...... ... ... . . . . 142
Eine Funktion zum Zeichnen eines ausgefiillten Kreises . ........ 143
Reines Schwarz und Weif§ erzeugen . ....................... 144
Eine Funktion zum Quadratezeichnen ...................... 145
Ausgefiillte Quadrate zeichnen ........................... 146
Ausgefiillte Sterne zeichnen ............. ... ... ... ... ... 148
WasDugelernthast ........ ... ... ... i, 150
Programmier-Puzzles . ......... ... i 150
#1: Ein Oktagon zeichnen . ......... ... ... i, 150
#2: Ein ausgefiilltes Oktagon zeichnen ..................... 151
#3: Noch eine Funktion zum Sterne Zeichnen ................ 151

Inhaltsverzeichnis



13

13.1
13.2
13.3
13.4
13.5

13.6
13.7
13.8
13.9
13.10
13.11
13.12
13.13
13.14

Teil 1l

14

14.1
14.2
14.3
14.4

14.5

Bessere Grafiken mit tkinter 153

Einen klickbaren Button erzeugen ......................... 154
Einsatz von benannten Parametern ......................... 156
Eine Leinwand zum Zeichnen erzeugen ..................... 157
Linien zeichnen ... ...t i 157
Kiastchen zeichnen ........ ... .. . ... 159
Ganz viele Rechtecke zeichnen ......... ... ... . ... ....... 161
Die Farbe bestimmen . ....... ... ...ttt 163
Bogen zeichnen . ... ... ... 166
Polygone zeichnen .......... ... ... . . i i, 169
Darstellung von Text ... v.vtitnt it inieenns 170
Bilder anzeigen . .......... ... i e 171
Eine einfache Animation erzeugen ..............cvvvvue.n.. 173
Ein Objekt auf etwas reagierenlassen .. ..................... 176
Weitere Anwendungen fiir die ID-Nummer .................. 178
WasDugelernthast ........ .. i, 179
Programmier-Puzzles .......... ... ... ... ... 180
#1: Fulle die Leinwand mit Dreiecken ...................... 180
#2: Das sich bewegende Dreieck .. ......................... 180
#3: Das sich bewegende Foto . ............................ 180

BOUNCE! 181
Der Anfang Deines ersten Spiels: BOUNCE! 183
Schlag den hiipfenden Ball ............................... 183
Erzeugen einer Spiele-Leinwand ......... ... .. ... ... ... ... 184
Erzeugender Ball-Klasse . . ..., 185
In Bewegung kommen ............ ... ..., 188
Den Ball in Bewegung setzen ............ccvuvuvnenennnen... 188
Den Ball springenlassen ...........c.ooiitiiininnnnne.n.. 190
Die Startposition des Balls andern ......................... 191
Was Dugelernthast .......... ot 193

xiv Inhaltsverzeichnis



15
151

15.2
15.3
15.4
15.5

Teil I

16

16.1
16.2
16.3

16.4

17
17.1
17.2

17.3
17.4

Dein erstes $Spiel vollenden: BOUNCE! 195

Einen Schlager hinzufigen ............. ... ... ... ... ...... 195
Den Schliger in Bewegung setzen .............c.c.ovuuennn... 197
Merken, dass der Ball auf den Schlager trifft ................. 199
Dem Spiel etwas Zufalligesgeben ......................... 202
WasDugelernthast .......... i, 205
Programmier-Puzzles . .......... ... ... ... . . 206
#1: Verzogere den Spielstart . ........... ..., 206
#2: Ein richtiges »Game Over« . ........ooiuvtinnenenn... 206
#3: Beschleunige den Ball ......... ... ... ... ... .. ... ... 207
#4: Zeichne den Punktestand auf ......................... 207
Herr Strichmann rennt zum Ausgang 209
Wir erstellen Grafiken fiir das Strichmé&nnchenspiel 21
Der Strichmannchen-Spielplan . ........................... 211
GIMP installieren ......... ..ot 212
Erzeugen der Spielelemente ............... ... ... ... ...... 214
Ein transparentes Bild erstellen ........................... 214
Herrn Strichmann zeichnen .............................. 215
Herr Strichmann rennt nach rechts ........................ 215
Herr Strichmann rennt nach links ......................... 216
Ebenen zeichnen ........ ... . . i i 217
Die Tur zeichnen ....... ...ttt 217
Den Hintergrund zeichnen .. .......... ... ... ... ..., 218
Transparenz . ... ... e 219
Was Dugelernthast ............ ... ... i, 220
Entwicklung des Strichménnchenspiels 221
Erzeugen der Spiel-Klasse ................ ..., 221
Den Fenstertitel bestimmen und die Leinwand erzeugen ........ 222
Abschluss der __init__-Funktion .......................... 223
Erzeugen der Hauptschleifen-Funktion ..................... 224
Erstellen der Klasse Koordinaten . ..............ovvvuun.... 226
ZusammenstofSe erkennen . ... ... .. e e 226
Sprites stofsen horizontal zusammen . ...................... 227
Sprites stofSen vertikal zusammen ................ ... .. ... 229
Alles zusammenfiigen: Unserer endgultiger Code
zur Erkennung von Zusammenstoflen .. .................... 229

Inhaltsverzeichnis

XV



xvi

17.5
17.6

17.7
17.8

18
18.1

18.2
18.3
18.4
18.5

19
19.1

19.2
19.3

194
19.5
19.6

Erzeugen der Sprite-Klasse ............. ... ... .. ..., 232

Die Ebenen hinzufiigen .......... ... ... i, 233
Ein Ebenen-Objekt hinzufiigen ... ....... ... ... ... ... .... 234
Einen ganzen Haufen Ebenen hinzufiigen .................... 235
WasDugelernthast ......... ... ... i, 236
Programmier-Puzzles ........... ... ... i 237
#1:Schachbrett ......... ... . . 237
#2: Zwei-Bilder-Schachbrett .. ............. ... ... ... ... ... 237
#3:Regalund Lampe . ...... ... 238
Herrn Strichmann erschaffen 239
Das Strichmiannchen initialisieren ... ........... ... ... 239
Die Strichmannchen-Bilder laden . ......................... 240
Variableneinrichten .......... ... .. . .t 241
Bindung andie Tasten ..............c0iitiirennennnnnnnn. 242
Das Strichmannchen nach links und rechts bewegen .. .......... 242
Das Strichmannchen springen lassen . ...................... 243
Was wir bis jetzt erreicht haben .. ......................... 244
Was Dugelernthast ......... ... i 245
Abschluss des Spiels mit Herrn Strichmann 247
Animation des Strichminnchens .. ......................... 247
Die Funktion animieren erstellen .......................... 248
Das Strichmannchen in Bewegung versetzen .. ................ 252
Testen unseres Strichmannchen-Sprites ... ................... 260
Die TUr! ..o e 261
Die Klasse TurSprite erzeugen . ..........oueieiueennnennnn 261
Die Tlirerkennen ... .......ouuuvutunnnninnnenennnn 262
Das Tiir-Objekt hinzufigen .......... ... ... i, 263
Das fertige Spiel . ... ..o 264
WasDugelernthast ......... ... i 270
Programmier-Puzzles ........... ... i 271
#1: »Duhast gewonnen!« . ............ ..., 271
#2: Animationder TUr . ...ttt 271
#3: Sich bewegende Ebenen ............... ... ... ... .. .... 271

Inhaltsverzeichnis



20 Wie geht es jetzt weiter? 273

20.1  Spiele- und Grafikprogrammierung . ....................... 273
20.2  PyGame ...ttt e 274
20.3 Programmiersprachen ............ ... .. .. ... . ... 275
Java . e 275
o+ i e e 276
G e e e 276
PHDP .. 277
Objective-C ..ot i  e 277
PERL .o e e e 278
Ruby .. 278
JavaScript ... 278
20.4  Abschlieffende Worte . ... .o vt e 279
Anhang 281
Python-S$chliisselworter 283
Glossar 295
Index 299

Inhaltsverzeichnis  xvii






Einleitung

Warum soll man das Programmieren erlernen?

Programmieren fordert die Kreativitit, das logische Denken und die Fahigkeit,
Probleme zu losen. Programmierer und Programmiererinnen haben die Moglich-
keit, etwas aus dem Nichts zu erschaffen. Mithilfe der Logik bringen sie Pro-
grammstrukturen in eine Form, sodass ein Computer damit funktioniert. Und
wenn die Dinge nicht ganz so gut funktionieren wie erwartet, konnen sie durch
die Fihigkeit zur Problemlosung herausfinden, was schiefgelaufen ist. Program-
mieren macht SpafS, ist manchmal schwierig (gelegentlich frustrierend), und die
Fahigkeiten, die man dabei erwirbt, konnen sowohl in der Schule als auch bei der
Arbeit niitzlich sein — selbst wenn Dein Berufsleben spater nichts mit Computern
zu tun haben sollte.
AufSerdem ist das Programmieren ein prima Zeitvertreib bei miesem Wetter.

Python ist eine leicht zu erlernende Programmiersprache, die fiir den Program-
mieranfinger einige niitzliche Eigenschaften hat. Der Code ist im Vergleich zu
anderen Programmiersprachen recht einfach zu lesen, und es gibt eine interaktive
Shell, in die man seine Programme eingeben und sehen kann, wie sie laufen.
Zusatzlich zu seiner einfachen Programmstruktur und seiner interaktiven Shell
hat Python einige Merkmale, die den Lernvorgang sehr bereichern und mit denen
Du einfache Animationen zum Erstellen Deiner eigenen Spiele zusammenbauen



kannst. Eines davon ist das Modul turtle, das von Turtle Graphics inspiriert
wurde (das in den 1960er-Jahren von der Programmiersprache Logo verwendet
wurde) und fiir Lernzwecke geschaffen wurde. Ein weiteres Modul ist tkinter,
mit dem man auf das Tk GUI Toolkit zugreifen kann, um damit ziemlich einfach
ein bisschen anspruchsvollere Grafiken und Animationen zu erstellen.

Wie bei allem, was man zum ersten Mal probiert, ist es am besten, mit den
Grundlagen anzufangen. Beginne daher mit den ersten Kapiteln, und blittere
nicht voller Ungeduld zu den Kapiteln weiter hinten. Niemand kann beim ersten
Mal, wenn er ein Musikinstrument in die Hand nimmt, im Sinfonieorchester mit-
spielen. Flugschiiler fliegen auch nicht, bevor sie die grundlegenden Steuerele-
mente verstanden haben, und Turner kriegen (normalerweise) beim ersten Ver-
such keinen Salto riickwarts hin. Wenn Du zu Anfang zu ungeduldig bist, haben
die grundlegenden Prinzipien keine Zeit, sich richtig in Deinem Kopf festzuset-
zen. Dir wird dann der Inhalt der Kapitel weiter hinten viel komplizierter vor-
kommen, als er in Wirklichkeit ist.

Waihrend Du dieses Buch durchliest, solltest Du jedes Beispiel selbst auspro-
bieren, um zu sehen, wie es funktioniert. Am Ende der meisten Kapitel gibt es auch
Programmier-Puzzles, die Du losen kannst. Sie werden Deine Programmierfahig-
keiten fordern. Denke immer daran: Je besser Du die Grundlagen verstanden hast,
desto leichter werden Dir die komplizierteren Konzepte spater vorkommen.

Wenn Dich etwas frustriert oder Dir zu schwierig vorkommt, hier ein paar
Ratschlage, die ich sehr hilfreich finde:

Teile das Problem in kleinere Teile auf. Versuche zu verstehen, was ein kleiner
Teil des Codes macht, oder denke nur an einen kleinen Teil einer komplexen
Stelle. (Konzentriere Dich lieber auf einen kleinen Teil des Codes, statt alles
auf einmal verstehen zu wollen.)

Wenn das alles nichts hilft, ist es manchmal am besten, wenn man es fiir eine
Weile einfach liegen lasst. Schlafe driiber, und mache an einem anderen Tag
weiter. Auf diese Weise losen sich viele Probleme von allein — besonders Pro-
grammierprobleme.

Dieses Buch ist fiir jeden geschrieben, der sich fiir das Programmieren interessiert,
ganz egal, ob man nun Kind oder Erwachsener ist, wenn man zum ersten Mal
programmiert. Wenn man lernen will, wie man seine eigene Software schreibt,
anstatt nur von anderen entwickelte Programme zu nutzen, ist Python kinder-
leicht ein toller Einstieg.

Einleitung



In den folgenden Kapiteln erfihrst Du, wie man Python installiert, die
Python-Shell startet, einfache Berechnungen anstellt, Text auf den Bildschirm
bekommt und Listen erstellt. Du lernst, wie man einfache Fallunterscheidungen
mit if-Anweisungen und for-Schleifen durchfiihrt. (Und natiirlich erfihrst Du,
was if-Anweisungen und for-Schleifen eigentlich sind!) Du erfihrst, wie man
Code mit Funktionen wiederverwendet. Du lernst die Grundlagen von Klassen
und Objekten kennen und bekommst Beschreibungen der vielen in Python einge-
bauten Funktionen und Module.

Es gibt Kapitel tber einfache und fortgeschrittene Turtle-Grafiken und tiber
die Benutzung des Moduls tkinter, um auf dem Computerbildschirm zu zeich-
nen. Am Ende vieler Kapitel gibt es Programmier-Puzzles mit unterschiedlichen
Schwierigkeitsgraden, die dabei helfen, das gerade Gelernte zu verfestigen. Sie
bieten Dir auch die Moglichkeit, selbst kleine Programme zu schreiben.

Wenn Du Dir die Grundlagen des Programmierens angeeignet hast, wirst Du
lernen, wie Du Deine eigenen Spiele schreiben kannst. Du wirst zwei grafische
Spiele entwickeln und etwas iiber Kollisionsdetektion, Events und diverse Anima-
tionstechniken erfahren.

Die meisten Beispiele in diesem Buch benutzen die IDLE-Shell (Integrated
DeveLopment Environment; integrierte Entwicklungsumgebung) von Python.
IDLE bietet Syntax-Markierung, eine Kopieren- und Einfiigen-Funktionalitit (so,
wie Du es von anderen Anwendungen kennst) und ein Editor-Fenster, in dem Du
Deinen Code fiur den spiteren Gebrauch speichern kannst. IDLE ist daher eine
Entwicklungsumgebung zum Experimentieren und hat auch ein bisschen was von
einem Text-Editor. Die Beispiele funktionieren genauso gut in der Standard-Kon-
sole und in einem ublichen Text-Editor, aber die Syntax-Markierung und die
benutzerfreundlichere Umgebung von IDLE helfen Dir, den Code schneller zu
verstehen. Deshalb wird im ersten Kapitel erklart, wie man IDLE einrichtet.

Hier ist ein kurzer Uberblick, was Dich in den einzelnen Kapiteln erwartet:

Kapitel 2 ist eine Einfithrung in das Programmieren. AufSerdem findest Du
Anleitungen zur ersten Installation von Python.

Kapitel 3 fiihrt einfache Berechnungen und Variablen ein.

Kapitel 4 erklart einige der grundlegenden Python-Elemente, wie etwa
Strings, Listen und Tupel.

Kapitel 5 bietet Dir einen Vorgeschmack auf das Modul turtle. Wir springen
dabei von den Grundlagen des Programmierens zum Bewegen einer Schild-
krote (engl. turtle, die aber hier die Form eines Pfeils hat) uber den Bild-
schirm.

Kapitel 6 behandelt die Varianten der Bedingungen und i f-Anweisungen, und
Kapitel 7 macht bei den for- und while-Schleifen weiter.

Was in diesem Buch steht



In Kapitel 8 beginnen wir mit der Benutzung und Erstellung von Funktionen,
und in Kapitel 9 geht es um Klassen und Objekte. Wir decken in diesen beiden
Kapiteln so viel von den grundsatzlichen Prinzipien der Programmiertechni-
ken ab, dass wir in den weiteren Kapiteln zur Spiele-Entwicklung iibergehen
konnen. Von dort an wird es ein bisschen komplizierter.

Kapitel 10 stellt die meisten der eingebauten Funktionen von Python vor, und
Kapitel 11 macht mit ein paar Modulen (die im Prinzip Behilter voller nitzli-
cher Funktionalitit sind) weiter, die automatisch mit Python installiert wur-
den.

Kapitel 12 kehrt zum turtle-Modul zuriick, da Du jetzt lernst, mit komplexe-
ren Formen umzugehen. Kapitel 13 geht zum Modul tkinter iiber — und
damit zu fortgeschritteneren grafischen Kreationen.

In den Kapiteln 14 und 15 programmieren wir unser erstes Spiel, » Bounce!«,
das auf dem Erlernten aus den vorigen Kapiteln aufbaut.

In den Kapiteln 16 bis 19 programmieren wir unser zweites Spiel: » Mr. Stick
— Man rennt zum Ausgang.« In den Spieleentwicklungs-Kapiteln kénnen die
Dinge aus dem Ruder laufen. Wenn nichts mehr geht, ladst Du den Code von
der Website zu diesem Buch (www.dpunkt.de/python) herunter und ver-
gleichst Deinen Code mit den funktionierenden Beispielen von dort.

Im Nachwort fassen wir das Gelernte mit einem Blick auf PyGame und
andere beliebte Programmiersprachen zusammen.

Zum Schluss sind im Anhang noch einmal alle Python-Schlisselworter genau
erklart, und im Glossar findest Du alle Definitionen der Programmierbegriffe,
die in diesem Buch verwendet werden.

Wenn Du meinst, dass Du wihrend des Lesens Hilfe brauchst, kannst Du die
Website www.dpunkt.de/python aufsuchen, wo Du Downloads fiir alle Beispiele
in diesem Buch und noch mehr Programmier-Puzzles findest. Du findest dort
auch die Losungen fiir alle Programmier-Puzzles in diesem Buch, falls Du nicht
mehr weiter weif$t oder Deine Programme tUberpriifen mochtest.

Vergiss beim Durcharbeiten dieses Buches nie, dass Programmieren Spafd machen
kann. Sieh es nicht als Arbeit an: Das Programmieren ist eine Moglichkeit, lustige
Spiele oder Anwendungen zu erzeugen, die Du mit Deinen Freunden oder ande-
ren teilen kannst.

Programmieren zu lernen ist ein tolles Training fiirs Gehirn, und die Ergeb-

nisse konnen sehr bereichernd sein. Aber vor allem gilt: Egal was Du tust, hab
Spaf$ dabei!

Einleitung



: ¥ ° 9 ° Q ‘. o ? @, ° % o L4 [ ] ° A .. o o ® oo ® o
LR O S I T IR ., . 4. . 9 ° .0 .,
. . o ® °e ° ... « o 60 P ® = o o © 0 e o® .. * 0, o 0° .
' o L) ’. e ® ' 8. . ..c e .‘ Qe S 'YX . 0 ®
') ‘o o, .o *e . P - 0 A R o & 0 @
e ""° @ ° % . g < 0 . @9°%g '’ 0° 0 Yey °° o o g °
‘@ [{] o .. - ~ « @ LIS ‘0 .o . 0 0 L PR Y e , 9 ‘.. °
° 9, o © ] e e @ ¢, = 0 ..‘. Qe o e @, 9 sa .‘. .. ‘
‘e *a ‘er o % 8 L. s 0o g 0, v « 8 0 °. .o .
. * e ® & °°, L ‘. [% . ® o« 8 .0 o ° : ..‘ I 9« o .
'0 ‘.. e® ¢ 40 ° = 0‘.- - .‘ '. e 9 g0 '..o ® o
K LAY R T > : .t 0 S8 g, et :
. o' -. . ° . .' ° e' > O’. .. 9 .l. - a. « &
°*° ., ¢ € g . L, e e 3 ... e 0 o c & 0 ° - o of ‘e
[ ] .. . .. ’ . [ ... ) ..‘
S I Progrclmmleren e
-0. o .. '. ¢ & 5 G
Py s o e Y no O ’. A 0 ‘o ® :
e 8 0 ‘0 o ., rne“ : e o® 09
0.‘ v @ O o ] .0. .' U .= e O °
0 o S " 9 [ I .. o o+ o0 .. - ... .. o '. ° = .‘..
. u.. S .o ‘eee @ , 80 - et T (e * e « o .". - o 0
I L B > o, - o0 o » co. °-° o o
U 0 o oo ®, . o - . . I L S 0‘ 6 o o * . ., o
- ‘ > i~ _‘, [ ) o o® o & °* .. * ° oo ° 9 5 . @ 0.. ®
I Y L L P R
®e ., @ o 0% 0 *.e® - % 20 ' © e , g. %% 0
“° o .. o o o o C .’- L ° ’ P .‘ ) ... .- ) 0 ’. .’ o0 > .
0 e o ° o @ % © on @ oC . e % o. gt ‘e 00 ° ¢
LA B S T T c 00 W %o 0 Tt g ve. et
Qe . o o® “ .. e°® e ° - | S ., °c @ o e o' nC I o '
M I I &0 ‘e S ove 0 . SRS :
RPN S [ o ° e o ° L] H ... . .O ‘e ¢ e "9, 0. . * .9
LI A I ® N8 ° s o 3 L < 0
.‘. poo ' ‘.' s .« o ° .. ) '. .. o ° s o .0 ... °®
- 9 o ‘. ° ... . o4 . I. « o ° ] ...0 ° P o 0 ,°°
: . o * ., - ° % 9 e 3 . ®e 0 .o , , ey o © .o ¢ o Q- [ ) \
e Ve o0 T Y I S T I S e c®e P . el
. 00 ‘s g0 o » . .‘ et . @ ... .....' ‘o o ° 3 . °
C ..' (X ) * v ° 2 . . O'. 0 Q 0- - '.. . () ° M I ¢ 0 ..
..... . e 0 @0 e oo o, . ceee A A Y
‘... % & ® e 0 @ " °° ' d A e ‘o ‘e ¢ . e e *
Q- ° .'. K [ o.' % o e @ O ) MY : e . o © e 0 . 9.
c0- it L e ¢ e & o o c 8 § o ' '..l‘ o0 LI
ce. o ., e ' " o - 0., .... [ T Lo e ¢ °0 . e g‘
v 0 € 4 v o g%, ¢ s - O . o ¢ * ' S, e






Nicht alle Schlangen schlangeln sich

Ein Computerprogramm ist eine Gruppe von Anweisungen, die einen Computer
dazu bringen, irgendetwas Bestimmtes zu machen. Es geht uns hier nicht um die
physischen Bestandteile eines Computers, also die Drahte, Mikrochips, Karten,
die Festplatte usw., sondern um die verborgenen Dinge, die auf dieser Hardware
laufen. Ein Computerprogramm, das ich meist einfach nur Programm nenne, ist
diese Gruppe von Befehlen, die der dummen Hardware sagt, was sie zu tun hat.
Die Software ist eine Sammlung von Computerprogrammen.

Ohne Computerprogramme wiirde fast jedes Gerit, das wir tiglich nutzen,
entweder gar nicht funktionieren oder wire weit weniger niitzlich. In der einen
oder anderen Form steuern Computerprogramme nicht nur Deinen Computer,
sondern auch Videospiele, Mobiltelefone und Navigationsgerite in Autos. Auch
bei weniger offensichtlichen Dingen wie Flachbild-Fernsehern und deren Fernbe-
dienungen sowie modernen Radios, DVD-Playern, Herden und einigen Kiihl-
schrinken tibernimmt eine Software die Steuerung. Sogar Automotoren, Ampeln,
die Straffenbeleuchtung, Zugsignale, elektronische Anzeigetafeln und Aufziige
werden von Programmen geregelt.

Programme sind ein bisschen wie Gedanken. Wenn Du keine Gedanken hit-
test, wiirdest Du wahrscheinlich nur auf dem Boden sitzen und auf Dein T-Shirt
sabbern. Dein Gedanke »Stehe auf!« ist eine Anweisung, die Deinem Korper sagt,
dass er aufstehen soll. Genauso sagen Computerprogramme dem Computer, was
er zu tun hat.



Wenn Du weifSt, wie man Computerprogramme schreibt, kannst Du allerlei
niitzliche Dinge anstellen. Sicherlich kannst Du dann nicht direkt Programme
schreiben, die Autos, Ampeln oder Deinen Kiihlschrank steuern, aber Du kannst
damit Webseiten erzeugen, Deine eigenen Spiele programmieren oder Dir ein Pro-
gramm schreiben, das Dir bei den Hausaufgaben hilft.

Wie wir Menschen auch benutzen Computer verschiedene Sprachen, um zu kom-
munizieren — nimlich Programmiersprachen. Eine Programmiersprache ist ein-
fach eine bestimmte Art, mit dem Computer zu reden — eine Art, Anweisungen zu
benutzen, die sowohl der Mensch als auch der Computer verstehen.

Es gibt Programmiersprachen, die nach Leuten benannt wurden (z.B. Ada
und Pascal), solche, die Abkiirzungen darstellen (z.B. BASIC und FORTRAN)
und sogar solche, die wie Python nach Fernsehsendungen benannt wurden.

Ja, die Programmiersprache Python wurde nach der Sendung Monty Python’s
Flying Circus benannt und nicht nach der Python-Schlange.

Achtung!

Monty Python’s Flying Circus war eine britische Comedy-Sendung, die in den 1970er-Jahren
das erste Mal ausgestrahlt wurde. Sie ist bis heute bei einigen sehr beliebt. Die Show
enthielt Sketche wie »The Ministry of Silly Walks«, »The Fish-Slapping Dance« und »The
Cheese Shop« (in dem Uberhaupt kein Kése verkauft wurde). Mittlerweile sind Monty
Python wohl durch ihre Spielfilme »Das Leben des Brian« und »Die Ritter der Kokosnuss«
bekannter.

Eine ganze Reihe von Eigenschaften der Programmiersprache Python machen sie
fir Anfanger besonders geeignet. Die wichtigste Eigenschaft ist, dass Du mit
Python ziemlich schnell einfache, aber wirkungsvolle Programme schreiben
kannst. Python verwendet nicht viele dieser komplizierten Zeichen, wie
geschweifte Klammern ({ }), Doppelkreuze (#) oder Dollarzeichen($), die andere
Programmiersprachen viel schwerer zu lesen machen und daher auf Anfinger
abschreckend wirken.

Die Installation von Python ist sehr unkompliziert. Wir gehen hier die Schritte der
Installation in Windows 7, MacOSX und Ubuntu durch. Beim Installieren von
Python legst Du Dir auch eine Verkniipfung zum Programm IDLE an. Das ist die
integrierte Entwicklungsumgebung, in der Du spater Deine Programme schreiben
kannst.

Nicht alle Schlangen schldngeln sich



Falls Python schon auf Deinem Computer installiert ist, kannst Du zu
Abschnitt 2.3, weiterblittern.

Python unter Windows 7 installieren

Um Python fur Microsoft Windows zu installieren, gehst Du mit Deinem Browser
auf htip:/fwww.python.org und ladst Dir den aktuellen Windows-Installer fiir
Python 3 herunter. Suche nach dem Abschnitt im Menii, der sich Quick Links
nennt:

Python Pragramming Language - Official Website

| #. Python Programming Language .. | + |
4 | ™ www.python.org
e e
Help OS X, and has been ported to the Java and
Package Index .NET virtual machines.
Quick Links (2.7.3)
& Doaimentatien Python is free to use, even for commercial
» Windows Installer products, because of its OSl-approved open
» Source Distribution source license.

Quick Links (3.3.0 .
: : ) New to Python or choosing between Python
» Documentation

2 and Python 3? Read Python 2 or Python

» Source Distribution 3.

Fythen Jobs The Python Software Foundation holds the

Python Merchandise intellectual property rights behind Python,

Python Wiki underwrites the PyCon conference, and
Achtung!

Welche Python-Version genau Du herunterladst, ist nicht entscheidend, solange vorne
eine 3 steht.

Nachdem Du den Windows-Installer heruntergeladen hast, machst Du einen
Doppelklick auf sein Icon und folgst dann den Anweisungen, um Python an sei-
nem voreingestellten Speicherort wie folgt zu installieren:

1. Waihle Install for all Users, und klicke unten auf Next.

Lasse den eingestellten Pfad so, wie er ist, notiere Dir aber den Namen des
Installationpfades (vermutlich C:\Python32 oder C:\Python33). Klicke auf
Next.

Am Ende dieses Vorgangs solltest Du einen Python-3-Eintrag in Deinem Start-
Ment haben:

Python installieren



10

|l Python3.3
[’:‘ IDLE (Python GUI) Gerate und Drucker

El Moedule Docs

[ Python (command line) Standardprogramme
@ Python Manuals

ﬁ Uninstall Python Hilfe und Support

1

Zuriick

; e — - —
l Programme/Dateien durchsuchen p] 'VHerunterfahrenilT

Als Nachstes machst Du Folgendes, um Dir eine Verknupfung auf dem Desktop
anzulegen:

1. Mache einen Rechtsklick auf Deinem Desktop, und wiahle im Kontextment
Neu P> Verkniipfung.

2. Im nun folgenden Dialogfenster, wo es heifSt Geben Sie den Speicherort des
Elementes ein (achte darauf, dass der Pfad der gleiche ist, den Du vorher no-
tiert hast) gibst Du Folgendes ein:

c:\Python32\Lib\idlelib\idle.pyw —-n

Das Dialogfenster sollte jetzt so aussehen:

T

@ . Verknapfung erstellen

Fr welche Elemente mdchten Sie eine Verknlipfung erstellen?

Mit diesem Assistenten kdnnen Sie Verknlpfungen mit lokalen oder vernetzten Programmen, Dateien,
Ordnern, Computern oder Internetadressen erstellen.

Geben Sie den Speicherort des Elements ein:

c\Python32\Lib\idlelib\idle.pyw —n| Durchsuchen...

Klicken Sie auf "Weiter", um den Vergang fortzusetzen.

[_ Weiter ][ Abbrechen ]

3. Klicke auf Weiter, um zum nichsten Dialogfenster zu gelangen.
4. Als Namen gibst Du IDLE ein und klickst auf Fertig stellen, um die Ver-
knupfung zu erstellen.

Jetzt kannst Du zu » Wenn Du Python installiert hast« auf Seite 10 weiterblattern.

Nicht alle Schlangen schléngeln sich



Python in MacO$ X installieren

Falls Du einen Mac benutzt, solltest Du bereits eine Version von Python vorfin-
den. Dabei handelt es sich aber wahrscheinlich um eine iltere Version. Um ganz
sicherzugehen, dass Du die aktuelle Version hast, gehst Du mit Deinem Browser
auf hitp:/fwww.python.org/getit/ und lidst Dir den aktuellen Installer fiir Mac
herunter.

Es gibt dort zwei verschiedene Installer. Welchen Du herunterladen solltest,
hiangt von der MacOSX-Version ab, die Du benutzt (um das herauszufinden,
klickst Du in der obersten Meniileiste auf das Apple-Symbol und gehst auf Uber
diesen Mac.) Wihle dann wie folgt den Installer:

Wenn Du eine MacOSX-Version zwischen 10.3 und 10.6 hast, ladst Du die
32-Bit-Version von Python 3 fiir i386/PPC herunter.

Wenn Du die MacOSX-Version 10.6 oder eine hohere hast, ladst Du die
64-Bit/32-Bit-Version von Python 3 fiir x86-64/i386 herunter.

Sobald Du die Datei heruntergeladen hast (sie wird das Suffix .dmg haben),
machst Du einen Doppelklick darauf. Danach siehst Du ein Fenster mit den
Inhalten dieser Datei.

faNnen |__| Python 3.3.0 )
® 4 Objekte, 11,3 MB verfugbar ——
s A e > s
Build.txt License.txt Python.mpkg ReadMe.txt

In diesem Fenster doppelklickst Du auf Python.mpkg und folgst dann den
Anweisungen beim Installieren der Software. Du wirst aufgefordert, Dein Admi-
nistrator-Kennwort einzugeben, bevor sich Python installiert. (Du hast kein
Administrator-Kennwort? Dann miissen es vielleicht Deine Eltern eingeben.)

Als Nichstes musst Du ein Skript zum Desktop hinzufiigen, um Pythons
IDLE-Anwendung zu starten:

1. Klicke auf das Spotlight-Icon, die kleine Lupe ganz oben rechts in der Ecke
des Bildschirms.

2. In die eingeblendete Zeile gibst Du Automator ein.

3. Klicke auf die Anwendung, die wie ein Roboter aussieht, sobald sie im
Menii auftaucht. Sie befindet sich entweder im Abschnitt Top-Treffer oder
unter Programme.

4. Sobald der Automator gedffnet ist, wihle die Vorlage Programm.

Python installieren

1n



Wahlen Sie eine Vorlage fiir Ihren Arbeitsablauf aus:

2k 2 ,

z _—

Arbeitsablauf Programm Dienst Ordneraktion
Plug-In fir iCal-Erinnerung Plug-In fur
Drucken Digitale Bilder

2
& Programm
<

Programme sind eigenstandige Arbeitsabldufe. Dateien und Ol%ner, die auf ein
Programm bewegt werden, werden als Eingabe fiir den Arbeitsablauf verwendet.

( Bestehenden Arbeitsablauf 6ffnen ... ) (schlieRen ) ( Auswihlen )

5. Klicke auf Auswahlen, um weiterzugehen.
6. In der Liste der Aktionen suchst Du nach Shell-Skript ausfiithren und be-
wegst es dann auf die leere Fliache rechts. Das sollte in etwa so aussehen:

®00 Ohne Titel (=)

[% (@) i"‘;‘,‘ ‘-.-.' ‘xé’,"

~— e e
Bibliothek ausblenden Medien Aufzeichnen = Schritt Stoppen Ausfilhren

T variablen (Q Name
w [l Bibtiothek W Schriften deaktivieren - Das Programm empfingt Dateien und Ordner als Eingabe
‘g Dateien & Ordner / Schriften des Tex...uments abfragen
£ Dienstprogramme | . Schriften in der 5...mlung It - A =
@ Filme . Schriften nach Schriftart filtern + [ Shell-Skript ausfiihren [x]
W& Fotos ¥ Schriftinformationen abfragen b —
@ Internet ¥ Schriftsammlung-Objekte filtern [sbinpash ¢}
{i Kalender ¥ Schriftsammlung-Objekte suchen Eingabe tbergeben: | An stdin :
| Kontakte i) st teien abfragen p—
B mail Shell-Skript ausfihren
@ Musik i:::i
=% PDFs &) spotlight
\_4 Schriften K Spotlight-Komm...Objekte festlegen
o Text @\ Spuren aktivieren oder deaktivieren ¥ Optionen  Besc 4
3 Andere . Status von Zeilen festiegen
(i Gréfte Relevanz @ Steuerspuren fur Filme erstellen [
Am haufi... verwendet | @@ Systemprofil
[ zuletzt hinzugefugt | B8 Text aus Artikeln abfragen %
{5 Text einer Webseite abfragen 3
B @ W= | = A

12 Nicht alle Schlangen schléngeln sich



8.
9.

Im Textfeld siehst Du das Wort cat. Markiere das Wort, und ersetze es durch
den folgenden Text (alles von open bis —n, und Du musst vielleicht den Pfad je
nach der Version von Python, die Du installiert hast, andern):

open -a "/Applications/Python 3.3/IDLE.app" --args -n

Gehe auf Datei P> Speichern, und gib IDLE als Dateinamen an.
Wahle im Speicherdialog als Ort den Schreibtisch, und klicke auf Sichern.

Jetzt kannst Du zu Seite 10, »Wenn Du Python installiert hast«, gehen und mit

Python loslegen.

Python in Ubuntu installieren

Python ist bei der Ubuntu-Distribution schon vorinstalliert, aber es konnte sich

dabei um eine altere Version handeln. Um Python 3 in Ubuntu 12.x zu installie-

ren, fithre folgende Schritte durch:

1.

Klicke in der Seitenleiste auf den Button fur das Ubuntu-Software-Center.
(Das ist das Icon, das wie eine orangefarbene Tasche aussieht — falls Du es
nicht siehst, kannst Du auch auf den Dash-Startseite-Button klicken und in
das Suchfeld Software eingeben.)

Gib im Suchfeld ganz oben rechts im Software-Center Python ein.

In der Liste der angebotenen Software wahlst Du die aktuelle Version von
IDLE, also in diesem Fall IDLE (using Python 3.3), aus.

Ubuntu Software-Center

Alle Anwendungen Nach Relevanz

A
e

]
~

P E D

95 Technische Datelen anzeigen

IDLE (verwendet Python-2.7) Wk ki (12)
Integrierte Entwicklungsumgebung Fir Python (verwendet Python-2.7)

IDLE (verwendet Python-3.3) * & & &4 (3)
Integrierte Entwicklungsumgebung Fir Python (verwendet Python-3.3)

Weitere Informationen Installieren

IDLE (verwendet Python-3.2) % ¥ o = (15)
Integrierte Entwicklungsumgebung Fur Python (benutzt spython-3.2«)

gifeffit
Interaktives Programm Fiir XAFS-Analyse

Python(v2.7) *kkkk (7)
Python-interpreter (v2.7)

Python (v3.2) % % %
Python Interpreter (v3.2)

Pauthan fua ) o s de ode e (1)

Python installieren

13



14

4. Klicke auf Installieren.

5. Um die Software zu installieren, gibst Du Dein Administrator-Passwort ein
und klickst dann auf Authentifizieren. (Du hast kein Administrator-Kenn-
wort? Dann missen es vielleicht Deine Eltern eingeben.)

Achtung!

Bei einigen Ubuntu-Versionen siehst Du vielleicht nur Python (v.3.3) im Hauptmeni (statt
IDLE). Dies kannst Du dann stattdessen installieren.

Jetzt, da Du die aktuelle Version von Python installiert hast, wollen wir es einmal
ausprobieren.

2.3 Wenn Du Python installiert hast

Jetzt solltest Du ein Icon auf Deinem Windows-
oder MacOSX-Schreibtisch respektive Desktop
haben, das mit IDLE beschriftet ist. Wenn Du
Ubuntu nutzt, solltest Du auf der Dash-Startseite
unter Anwendungen IDLE (using Python 3.3)
(oder eine spatere Version) finden.

Mache einen Doppelklick auf das Icon, oder
wihle die Menii-Option. Danach sollte dieses
Fenster erscheinen:

4 Python Shell
File Edit Shell Debug Options Windows Help

Python 3.3.0 (v3.3.0:bd2afb90ebf2, Sep 29 2012, 10:55:48) [MSC v.1600 32 bit (Intel)] on win ~|
3z

Type "copyright®, "credits™ or "license ()" for more information.

>

Dies ist die Python-Shell, die zur integrierten Enwicklungsumgebung von Python
gehort. Die drei GrofSer-als-Zeichen (>>>) nennt man den Prompt.

Lasst uns nun einige Befehle hinter dem Prompt eingeben. Wir fangen mit
diesem hier an:

>>> print("Hallo Welt!")

Nicht alle Schlangen schldngeln sich



Achte darauf, dass Du die beiden Anfithrungsstriche oben (" ") mit eingibst. Drii-
cke dann auf die ENTER-Taste auf Deiner Tastatur. Wenn Du den Befehl korrekt
eingegeben hast, solltest Du so etwas sehen:

>>> print("Hallo Welt!")
Hallo Welt!

>>>

Der Prompt sollte danach wieder erscheinen, damit Du
weifst, dass Python wieder bereit ist, weitere Befehle zu
empfangen.

Gliickwunsch! Du hast soeben Dein erstes Python-
Programm geschrieben. Das Wort print gehort zu der
Gruppe von Python-Befehlen, die man Funktionen nennt.
Die Funktion print gibt alles auf dem Bildschirm aus,
was zwischen den Anfiihrungsstrichen steht. Du hast also

dem Computer gesagt, dass er die Worte »Hallo Welt!«
anzeigen soll — eine Anweisung also, die Du genauso ver-
stehst wie auch der Computer.

Python-Programme wiren nicht sehr niitzlich, wenn man sie jedes Mal wieder
neu schreiben musste, wenn man sie benutzen mochte. AufSerdem misste man sie
auch noch ausdrucken, um eine Vorlage furs nachste Mal zu haben.

Natiirlich ist es kein Problem, kleine Programme neu zu schreiben, aber
grofle Programme, wie etwa eine Textverarbeitung, konnen Millionen von Pro-
grammzeilen enthalten. Wenn Du die ausdrucken wiirdest, hattest Du weit tiber
10.000 Seiten. Stell Dir nur einmal vor, Du willst diesen riesigen Papierstapel
nach Hause tragen. Da kannst Du nur hoffen, dass kein heftiger Windstof§ kommt.

Zum Glick kénnen wir unsere Programme fiir den spiteren Gebrauch spei-
chern. Um ein neues Programm zu speichern, 6ffne IDLE und gehe auf File p
New Window. Es offnet sich dann ein neues Fenster, das iiber der Meniileiste mit
*Untitled* (ohne Titel) bezeichnet ist.

Gib nun folgenden Code in das neue Shell-Fenster ein:
print("Hallo Welt!")

Jetzt gehst Du im Menii auf File P Save. Sobald Du aufgefordert wirst, einen
Dateinamen zu vergeben, gibst Du Hallo.py ein und speicherst die Datei auf Dei-
nem Desktop. Dann gehst Du in diesem neuen Fenster im Meni auf Run PRun
Module. Mit etwas Gliick lauft nun Dein gespeichertes Programm und sieht in
etwa so aus:

Deine Python-Programme sichern

15



-

74 Hallo.py - C:/Python33/Hallo.py =1 HOH | B3 74 Python Shell = |5 =S
Edit Format Run  Options Windows Help File Edit Shell Debug Options Windows Help

1 0 (v3.3.0:bdeafb90ebf2, Sep 295

it (Intel)] on

8" or "license()

print (" felt!®) —'

=] =

Ln: 2|/Col: 0 Ln:6 Col:d

Wenn Du nun das Shell-Fenster schlief$t, das mit
Hallo.py beschriftete Fenster aber offen lasst und
dort wieder auf Run P Run Module gehst, sollte
das Shell-Fenster wieder auftauchen. (Um die
Python-Shell wieder zu oOffnen, ohne dass das
Programm lduft, gehe auf Run P> Python Shell.)

Nach der Ausfithrung des Codes wirst Du ein
neues Icon auf Deinem Desktop finden, das
Hallo.py heifst. Wenn Du darauf doppelklickst, erscheint ganz kurz ein schwarzes
Fenster. Was ist da passiert?

Du siehst kurz die Python-Eingabeaufforderung (dhnlich wie die Shell). Sie
gibt »Hallo Welt!« aus und wird sofort wieder geschlossen. Dies wiirdest Du
sehen, wenn Du die Augen eines Superhelden hittest und im Fenster erkennen
konntest, was darin zu sehen ist:

B8 Eingabeaufforderung - python.exe =N |@
-

16 Nicht alle Schlangen schldngeln sich



Zusatzlich zu den Meniis kannst Du auch Tastaturkiirzel benutzen, um ein neues
Shell-Fenster zu erzeugen, eine Datei zu speichern und um ein Programm laufen
zu lassen:

Unter Windows und Ubuntu driickst Du Ctrl-N fiir ein neues Shell-Fenster,
Ctrl-S zum Speichern Deiner Datei nach dem Bearbeiten und F5, um Dein
Programm laufen zu lassen.

Unter MacOSX driickst Du -N fur ein neues Shell-Fenster, 3-S zum Spei-
chern Deiner Datei nach dem Bearbeiten und F5 (eventuell brauchst Du noch
die Taste fn dazu), um Dein Programm laufen zu lassen.

In diesem Kapitel sind wir ganz einfach mit dem Programm »Hallo Welt!« einge-
stiegen — dem Programm, mit dem fast jeder anfingt, wenn er das Programmieren
erlernt. Im nachsten Kapitel stellen wir mit der Python-Shell ein paar niitzlichere
Dinge an.

Was Du gelernt hast

17






Berechnungen und Variablen

Du hast Python installiert und weifdt, wie man die Python-Shell startet. Jetzt
kannst Du etwas damit machen. Wir fangen mit ein paar einfachen Berechnungen
an und wenden uns dann den Variablen zu. Variablen sind eine Moglichkeit,
Dinge in einem Computerprogramm zu speichern. Sie helfen uns dabei, niitzliche
Programme zu schreiben.

Wenn jemand Dich jemand nach dem Produkt einer Multiplikation (wie z.B.
8x3,57) fragt, wiirdest Du normalerweise zum Taschenrechner greifen oder es
auf dem Papier schriftlich ausrechnen. Du kannst aber auch die Python-Shell ver-
wenden, um die Berechnung durchzufiihren. Wir machen das jetzt einmal.

Starte die Python-Shell durch Doppelklick auf das IDLE-Icon oder, wenn Du
Ubuntu nutzt, auf das IDLE-Icon im Programme-Menii. Nach dem Prompt gibst
Du diese Gleichung ein:

>>> 8 * 3,57
28.56

Achtung: Wenn Du eine Multiplikation in Python eingibst, musst Du das Stern-
zeichen (*) statt eines Multiplikationszeichens (x) verwenden. Als Dezimaltrenn-
zeichen musst Du in Python den Punkt (.) nehmen, kein Komma (,).

Wie wire es, wenn wir jetzt eine Gleichung eingeben, die noch niitzlicher ist?

19



20

Stell Dir vor, Du findest beim Graben im Garten eine Tasche mit 20 Gold-
miinzen. Am nichsten Tag schleichst Du Dich in den Keller und steckst die Miin-
zen in die dampfgetriebene Kopiermaschine, die Dein GrofSvater erfunden hat
(glucklicherweise passen genau 20 Miinzen hinein). Du horst ein Rollen und
Stampfen, und nach ein paar Stunden kommen 10 weitere glinzende Goldmiin-
zen heraus.

Wie viele Goldmiinzen hittest Du in Deiner Schatzkiste, wenn Du das ein
Jahr lang jeden Tag machen wiirdest? Auf dem Papier gerechnet, konnte das so
aussehen:

10 x 365 = 3650
20 + 3650 =3670

Natiirlich konnte man diese Berechnungen mit einem Taschenrechner oder
schriftlich ganz einfach durchfiihren, aber in der Python-Shell geht das genauso
gut. Als Erstes multiplizieren wir die 10 Miinzen mit 365 Tagen eines Jahres und
bekommen 3650. Danach zdhlen wir unsere 20 Original-Miinzen dazu und
erhalten 3670.

>>> 10 * 365
3650
>>> 20 + 3650
3670

Was wire nun aber, wenn eine Elster Deine glinzenden Goldmiinzen in Deinem
Schlafzimmer entdecken wiirde und jede Woche hineingeflogen kime und dabei
jeweils drei Miinzen stehlen wiirde? Wie viele Miinzen hittest Du dann nach
einem Jahr? So sieht die Berechnung in der Shell aus:

>>> 3 * 52

156

>>> 3670 - 156
3514

Als Erstes multiplizieren wir 3 Miinzen mit der Anzahl der Wochen eines Jahres,
also 52. Das Ergebnis ist 156. Diese Zahl ziehen wir von unserer Gesamtanzahl
von Minzen nach einem Jahr (3670) ab. So haben wir 3514 Miinzen nach einem
Jahr.

Dies war ein sehr einfaches Programm. In diesem Buch wirst Du lernen, wie
man diese Konzepte beim Programmeschreiben immer weiter ausbaut und noch
nutzlichere Programme schreibt.

Berechnungen und Variablen



Operatoren in Python

In Python kann man Multiplikationen, Additionen, Subtraktionen und Divisionen
in der Shell durchfihren, aber auch andere mathematische Operationen, die wir
jetzt nicht besprechen. Die grundlegenden Symbole, die Python fiir mathematische
Operationen benutzt, heifSen Operatoren. Sie sind in Tabelle 3-1 aufgefithrt

Symbol Operation

+ Addition
Subtraktion

* Multiplikation

/ Division

Tab. 3-1 Grundlegende Operatoren in Python

Der Vorwirtsschrdgstrich (/) wird bei Divisionen verwen-
det, da er an den Bruchstrich erinnert. Wenn Du zum Bei-
spiel 100 Piraten und 20 grofSe Fisser hittest und wissen
mochtest, wie viele Piraten Du in ein Fass stecken miiss-
test, konntest Du 100 Piraten durch 20 Fisser teilen
(100+20) und 100/20 in die Shell eingeben. Der Vor-
wirtsschragstrich ist derjenige, der nach rechts fillt. (Du
findest ihn auf der Tastatur iiber der Ziffer 7.)

Die Rangfolge der Operationen

Um die Rangfolge von Operationen in einer Programmiersprache zu bestimmen,
benutzen wir Klammern. Als Operation bezeichnet man alles, was Operatoren
benutzt. Multiplikation und Division haben einen hoheren Rang als Addition
und Subtraktion, sie werden also als Erstes ausgefiihrt. Oder anders gesagt: Wenn
Du in Python eine Gleichung eingibst, werden die Multiplikationen und Divisio-
nen vor den Additionen und Subtraktionen ausgefiihrt.

Im folgenden Beispiel werden die Zahlen 30 und 20 zuerst multipliziert, und
zu dem Produkt wird dann die Zahl 5 addiert.

>>> 5 + 30 * 20
605

Diese Gleichung bedeutet: »Multipliziere 30 mit 20 und addiere zum Produkt 5
dazu.« Das Ergebnis ist 605. Die Reihenfolge der Operationen kénnen wir durch
Klammern um die ersten beiden Zahlen dandern, und zwar so:

>>> (5 + 30) * 20
700

Mit Python rechnen

21



22

Das Ergebnis dieser Gleichung ist jetzt 700 (und nicht mehr 605), da die Klam-
mern Python sagen, dass es zuerst die Operation innerhalb der Klammer ausfiih-
ren soll und erst danach die Operation auflerhalb der Klammer. Dieses Beispiel
sagt also: »Addiere 5 zu 30, und multipliziere die Summe mit 20.«

Klammern konnen auch verschachtelt werden. Das heifdt, dass Klammern
innerhalb von Klammern verwendet werden konnen, z.B. so:

>>> ((5 + 30) * 20) / 10
70.0

In diesem Fall berechnet Python erst, was innerhalb der innersten Klammern
steht, danach die Anweisung in den dufSeren Klammern und zum Schluss die
Division: »Addiere 5 zu 30, multipliziere die Summe mit 20, und teile das Pro-
dukt durch 10.« So lauft es ab:

5 addiert zu 30 ergibt 35.
35 mit 20 multipliziert, ergibt 700.
700 durch 10 dividiert, ergibt am Ende 70.

Ohne Klammern wire das Ergebnis ein klein wenig anders:

>>> 5 + 30 * 20 / 10
65.0

In diesem Fall wird 30 erst mit 20 multipliziert (ergibt 600) und 600 durch 10
geteilt (ergibt 60). Zum Schluss wird 5 addiert, und es kommt 65 dabei heraus.

Achtung!

Achte darauf, dass Multiplikation und Division immer vor Addition und Subtraktion durch-
gefiihrt werden (»Punktrechnung geht vor Strichrechnung«) - es sei denn, dass Klammern
die Rangfolge der Operationen regeln.

3.2 Variablen sind wie Bezeichnungen

Beim Programmieren steht das Wort Variable fur einen Platz, an dem Informatio-
nen wie Zahlen, Text, Listen von Zahlen und Text usw. gespeichert werden. Eine
andere Art, sich eine Variable vorzustellen, ist die, dass sie eine Bezeichnung fiir
etwas ist.

Um zum Beispiel eine Variable mit dem Namen fred zu erzeugen, nehmen wir
ein Gleichheitszeichen (=) und sagen Python, fiir welche Information die Variable
eine Bezeichnung sein soll. Hier erzeugen wir jetzt die Variable fred und sagen,
dass sie fur die Zahl 100 steht (was nicht heifst, dass eine andere Variable nicht
den gleichen Wert haben konnte):

>>> fred = 100

Berechnungen und Variablen



Um herauszufinden, fiir welchen Wert eine Variable steht, gibst Du in der Shell den
Befehl print und danach den Namen der Variable in Klammern ein, und zwar so:

>>> print(fred)
100

Wir konnen Python auch sagen, dass die Variable fred geindert werden soll,
sodass sie fiir etwas anderes steht. So zum Beispiel andert man fred in die Zahl 200:

>>> fred = 200
>>> print(fred)
200

In der ersten Zeile sagen wir, dass fred fiir die Zahl 200 steht. In der zweiten Zeile
fragen wir, fiir was fred steht, um uns die Anderung bestitigen zu lassen. Python
gibt das Ergebnis in der letzten Zeile aus.

Wir konnen auch mehr als eine Bezeichnung (mehr als eine Variable) fiir die
gleiche Sache verwenden:

>>> fred = 200
>>> john = fred
>>> print(john)
200

In diesem Beispiel sagen wir Python, dass wir den Namen (oder die Variable) john
benutzen wollen, um die gleiche Sache damit zu bezeichnen wie mit fred. Dazu
setzen wir einfach ein Gleichheitszeichen zwischen john und fred.

Natiirlich ist fred wahrscheinlich kein sehr guter Name fiir eine Variable, da
er kaum etwas daruber aussagt, wofiir die Variable gebraucht wird. Statt fred
nennen wir unsere Variable jetzt Anzahl der Miinzen:

>>> Anzahl_der Miinzen = 200
>>> print(Anzah1_der_Miinzen)
200

So ist klar, dass wir von 200 Miinzen reden.

Die Namen der Variablen konnen aus Buchstaben, Zahlen und dem Unter-
strich (_) bestehen, diirfen aber nicht mit einer Zahl beginnen. Man kann alles —
von einzelnen Buchstaben (wie a) bis zu langen Sitzen — als Variablennamen ver-
wenden.

Variablennamen durfen aber keine Leerzeichen enthalten. Benutze daher
einen Unterstrich, um Worter zu trennen.

Manchmal, wenn man etwas Schnelles macht, sind kurze Variablennamen
am besten. Der Name, fur den Du Dich entscheidest, sollte so aussagekriftig sein,
wie er gerade sein muss.

Jetzt, da Du weifSt, wie man Variablen erzeugt, schauen wir uns an, wie man
sie benutzt.

Variablen sind wie Bezeichnungen

23



24

Erinnerst Du Dich an die Gleichung, mit der wir herausgefunden haben, wie viele
Miinzen Du nach einem Jahr hast, wenn die komische Erfindung Deines Grofs-
vaters im Keller auf wundersame Weise neue Miinzen kopiert? Wir hatten diese
Rechnungen (nachdem die diebische Elster auftauchte):

>>> 20 + 10 * 365
3670

>>> 3 * 52

156

>>> 3670 - 156
3514

Wir konnen daraus eine einzige Programmzeile machen:

>>> 20 + 10 * 365 — 3 * 52
3514

Was wire, wenn wir aus den Zahlen Variablen machen wiirden? Versuche doch
einmal, Folgendes einzugeben:

>>> gefundene_Miinzen = 20
>>> kopierte_Miinzen = 10
>>> gestohlene Miinzen = 3

Diese Eingaben erzeugen die Variablen gefundene Miinzen, kopierte Minzen und
gestohlene_Miinzen.

Jetzt geben wir die Gleichung noch einmal so ein:

>>> gefundene_Miinzen + kopierte Minzen * 365 - gestohlene Miinzen * 52
3514

Wie Du siehst, ergibt dies das glei-
che Ergebnis. Was soll das Ganze
jetzt? Hier kommt die Magie der
Variablen ins Spiel. Was ware,
wenn Du eine Vogelscheuche vor
Deinem Fenster aufstellst, und die

Elster jedes Mal nur noch zwei statt
drei Minzen stiehlt? Wenn wir eine Variable einsetzen, konnen wir die Variable,
die fiir diese Zahl steht, einfach dndern, sodass sie sich iiberall, wo sie in der Glei-
chung steht, dndert. Wir konnen die Variable gestohlene Miinzen in 2 dndern, in-
dem wir Folgendes eingeben:

>>> gestohlene_Miinzen = 2

Berechnungen und Variablen



Wir konnen die Gleichung wie folgt kopieren und einfigen, um das Ergebnis zu
berechnen:

1. Waihle den Text, den Du kopieren mochtest, aus, indem Du mit der Maus
am Anfang der Zeile klickst und dann (halte die Maustaste weiter gedriickt)
bis zum Ende der Zeile ziehst. Danach sieht es aus wie hier:

4 *Python Shell* [ =]
File Edit Shell Debug Opticns Windows Help

[ Pychon 3.3.0 (v3.3.0:bdSafb90ebrf2, Sep 29 2012, 10:55:48) [MSC v.1600 32 bit (Intel)l _~|
on win32

| Type "copyright", "credits" or "license ()" for more information.

[ >>> gef.l"de"e Minzen = 20

>>> kopierte Mi
>>> gestohlene Minzen = 3

>>> gefundene Milnzen + kopierte Minzen * 365 - gestohlene Minzen * 52
3514

| >>> gestohlene Miinzen = 2

Ln:6|Col: 69

2. Halte die Ctrl-Taste gedriickt (wenn Du einen Mac benutzt, ist es die
38-Taste), und driicke gleichzeitig auf C um den ausgewihlten Text zu kopie-
ren. (Ab jetzt sage ich dazu nur noch Ctrl-C.)

3. Klicke auf die letzte Prompt-Zeile (nach gestohlene Minzen = 2).

4. Halte jetzt wieder die Ctrl-Taste gedriickt, und driicke gleichzeitig V, um den
ausgewihlten und kopierten Text einzufiigen. (Ab jetzt sage ich dazu nur
noch Ctrl-V.)

5. Driicke die Enter-Taste, um das neue Ergebnis zu sehen:

7k Python Shell [ ==
File Edit Shell Debug Opticns Windows Help

Python 3.3.0 (v3.3.0:bdSafb90ebf2, Sep 29 2012, 10:55:48) [MSC v.1600 32 bit (Intel)] J
on win32

Type "copyright™
>>> gefundene ]
>>> kopierte Min
>>> gestohlene M n
>>> cef;ﬂde“e Minzen + kopierte ’*I.."Ze“ * 365 = ces:oale'.e Minzen * 52
3514

>>> gestohlene Minzen = 2

>>> gefundene Miinzen + kopierte Miinzen * 365 - gestohlene Miinzen * 52
3566

>>> ]

"ecredics" or "license ()" for more information.

Ln: 11 Cok: 4

Ist das nicht viel einfacher, als die ganze Gleichung noch einmal einzugeben? Auf
jeden Fall!

Du kannst auch ausprobieren, andere Variablen zu dndern, und dann durch
Kopieren (Ctrl-C) und Einfiigen (Ctrl-V) der Berechnung schauen, wie sich die
Anderungen bemerkbar machen. Es kénnte ja sein, dass — wenn man zum richti-

Variablen benutzen



26

gen Zeitpunkt auf die Seitenteile der Erfindung Deines GrofSvaters haut — jedes
Mal 3 zusitzliche Miinzen ausgespuckt werden und Du auf diese Weise nach
einem Jahr 4661 Miinzen hast:

>>> kopierte_Minzen = 13
>>> gefundene_Miinzen + kopierte Minzen * 365 - gestohlene Miinzen * 52
4661

Es ist natirlich so, dass Variablen bei einer solch einfachen Gleichung immer
noch nur ein klein wenig niitzlich sind. Sie sind noch nicht so richtig niitzlich
geworden. Bis jetzt solltest Du Dir nur einfach merken, dass Variablen eine Mog-
lichkeit sind, Dinge zu bezeichnen, die man spiter wieder braucht.

In diesem Kapitel hast Du gelernt, wie man einfache Gleichungen mit Python-
Operatoren erstellt und wie man mit Klammern die Rangfolge von Operationen
bestimmt (die Reihenfolge, nach der Python die Teile der Gleichung berechnet).
Anschliefend haben wir Variablen erzeugt, um Werte zu bezeichnen, und diese
Variablen in unseren Berechnungen eingesetzt.

Berechnungen und Variablen



$trings, Listen, Tupeln und Maps

In Kapitel 3 haben wir ein paar einfache Berechnungen mit Python vorgenom-
men, und Du hast etwas tiber Variablen erfahren. In diesem Kapitel werden wir
mit einigen anderen Elementen von Python-Programmen arbeiten: Strings, Lis-
ten, Tupeln und Maps. Du wirst Strings benutzen, um Mitteilungen in Deinen
Programmen anzuzeigen (z.B. »Mache Dich bereit« und »Das Spiel ist aus« in
einem Spiel). Du wirst auch lernen, wie man mit Listen, Tupeln und Maps Samm-
lungen von Dingen speichert.

Unter Programmierern nennt man Text meist einen
String. Wenn man sich einen String (engl. fir »Zei-
chenfolge«) als Ansammlung von Buchstaben vor-
stellt, ergibt der Begriff einen Sinn. Alle Buchstaben,
Zahlen und Symbole konnten ein String sein, ebenso
Deine Adresse. Auch das erste Python-Programm, das
wir in Kapitel 2 geschrieben haben, hat einen String
benutzt: »Hallo Welt!«

27



28

Strings erzeugen

In Python erzeugt man einen String, indem man den Text in Anfithrungszeichen
setzt. Wir konnen zum Beispiel unsere ansonsten sinnlose Variable fred aus Kapi-
tel 3 nutzen, um damit einen String zu bezeichnen:

fred = "Warum haben Gorillas groBe Nasenldcher? Weil sie groBe Finger
haben!"

Um zu uiberpriifen, was die Variable fred enthilt, konnen wir print(fred) einge-
ben:

>>> print (fred)

Warum haben Gorillas groBe Nasenldcher? Weil sie groBe Finger haben!
Man kann auch vorne und hinten jeweils ein Apostroph setzen, um einen String
Zu erzeugen:

>>> fred = 'Was ist rot und rosig? Rote Rosen!!!'
>>> print(fred)
Was ist rot und rosig? Rote Rosen!!!

Wenn Du aber versuchst, mehr als eine Zeile Text mit Apostrophen oder Anfiih-
rungszeichen einzuschliefSen, oder mit dem einen Zeichen anfiangst und mit einem
anderen aufhorst, bekommst Du in der Python-Shell eine Fehlermeldung. Gib
zum Beispiel einmal folgende Zeile ein:

>>> fred = "Was ist Tauter als ein Dinosaurier?

Du wirst dann dieses Ergebnis bekommen:

SyntaxError: EOL while scanning string Titeral

Dies ist eine Fehlermeldung, die sich tiber die Syntax beschwert, weil Du nicht die
Regel beachtet hast, nach der ein String mit einem Apostroph oder mit Anfiih-
rungszeichen beendet werden muss.

Mit Syntax ist die Anordung und Reihenfolge von Wortern in einem Satz
oder — wie in diesem Fall — die Anordnung und Reihenfolge von Wortern und
Symbolen in einem Programm gemeint.

SyntaxError heifdt also,

dass Du etwas gemacht hast, was Python nicht erwartet hat, oder
dass Python etwas erwartet, was Du vergessen hast.

EOL steht fiir end-of-line (Ende der Zeile), was bedeutet, dass Python das Ende
der Zeile erreicht hat, ohne ein Anfiihrungszeichen fiir das Beenden des Strings zu
finden.

Damit Du mehr als eine Zeile Text in Deinem String verwenden kannst, ver-
wendest Du drei Apostrophe ('"') und driickst nach jeder Zeile die Enter-Taste:

Strings, Listen, Tupeln und Maps



>>> fred = '''Was ist lauter als ein Dinosaurier? Zwei Dinosaurier!'''

Jetzt lassen wir uns den Inhalt von fred anzeigen, um zu sehen, ob es funktioniert
hat:

>>> print(fred)
Was ist lauter als ein Dinosaurier?
Zwei Dinosaurier!

Wie man Probleme mit Strings meistert

Jetzt schaue Dir einmal dieses komische Beispiel fiir einen String an, der Python
zu einer Fehlermeldung bringt:

>>> komischer String = 'Er sagte: "Heute ist's kalt auf'm Ku'damm."'
SyntaxError: invalid syntax

In der ersten Zeile wollen wir einen String erzeugen (bezeichnet mit der Variable
komischer String), den wir zwischen zwei Apostrophe stellen. Aber im Satz ste-
cken auch Apostrophe in den Wortern ist's, auf'm und Ku'damm. Zusitzlich gibt
es noch Anfuhrungszeichen. Was fur ein Chaos!

Du darfst nicht vergessen, dass Python selbst nicht so schlau ist wie ein
Mensch. Python fasst Er sagte: "Heute ist als String auf, und danach kommen ein
paar Schriftzeichen, die es nicht erwartet. Sobald Python Anfithrungsstriche oder
Apostrophe sieht, erwartet es einen String, der nach dem ersten Anfithrungszei-
chen bzw. Apostroph beginnt und nach dem nichsten in dieser Zeile aufhort. In
diesem Beispiel fingt der String mit einem Apostroph vor dem Wort Er an, und
fiir Python ist der String nach dem Apostroph nach dem t in ist's zu Ende. IDLE
markiert die Stelle, ab der die Dinge nicht mehr stimmen:

é Python Shell ol = ‘

File Edit Shell Debug Options Windows Help

Python 3.3.0 (v3.3.0:bdSafb90ebf2, Sep 29 2012, 10:55:48) [MSC v.1600 32 bit (Intel)] j
on win32

Iype "copyright”,
33> knmisc?:e:‘_St i
SyntaxExror: inv

>>>

redits”™ or "license ()" for more information.
'Er sagte: "Heute ist g kale auf'm Ku'damm."'

Ln: 5/Col: 4

In der letzten Zeile teilt uns IDLE mit, welche Art von Fehler aufgetreten ist — in
diesem Fall ein Syntax-Fehler.

Wenn man statt der Apostrophe Anfithrungszeichen verwendet, gibt es
immer noch eine Fehlermeldung:

Strings



30

>>> komischer_String = "Er sagte: "Heute ist's kalt auf'm Ku'damm.""
SyntaxError: invalid syntax

Hier sieht Python nun einen String, der in Anfithrungszeichen eingeschlossen ist
und aus den Zeichen Er sagte: (und einem Leerzeichen) besteht. Alles, was
danach kommt (ab Heute), verursacht den Fehler:

Debug Options Windows Help
Python 3.3.0 (v3.3.0:bd8afb%90ebf2, Sep 29 2012, 10:55:48) ([MSC v.1600 32 bit (Intel)]
on win32
Type "copyright", "credits"™ or "license()" for more information.
>>> komischer String Er sagte: "Heute ist's kalt auf'm Ku'damm.™'

invalid 1cax
r sagte: m ist's kalt auf'm Ku'damm.*®®
1tax
>>>

Aus der Sicht von Python gehort das ganze Zeug, das danach kommt, nicht
dahin. Python sucht nach dem nichsten passenden Zeichen zur Markierung des
Strings (Anfithrungszeichen oder Apostroph) und weifS einfach nicht, was Du mit
all dem vorhast, was danach noch in derselben Zeile steht.

Der Ausweg besteht in der Markierung von
Strings, die iiber mehrere Zeilen gehen konnen.
Das sind die drei Apostrophe ('), die wir schon
kennengelernt haben. Mit ihnen konnen wir
Anfiihrungsstriche und Apostrophe innerhalb
unseres Strings verwenden, ohne dass es Fehler-

meldungen gibt. Solange wir in unserem String
keine drei Apostrophe verwenden, konnen wir ein
oder zwei Apostrophe und Anfiihrungszeichen
verwenden, wie es uns gefallt. Die fehlerfreie Ver-
sion unseres Strings sieht also so aus:

>>> komischer String = '''Er sagte: "Heute ist's kalt auf'm
Ku'damm.""'"!

Aber warte mal, da gibt es noch mehr. Wenn Du unbedingt statt der drei Apo-
strophe Deinen String in Apostrophe oder Anfithrungszeichen einschliefSen willst
und trotzdem darin Anfithrungszeichen und Apostrophe verwenden mdochtest,
kannst Du vor jedes Anfuhrungszeichen einen Riickwirtsschragstrich (\) setzen.
Dies nennt man Escaping. Es ist ein Verfahren, um Python zu sagen »Ja, ich weifs,
dass ich Anfithrungsstriche in meinem String habe, aber ich méchte, dass Du sie
ignorierst, bis Du die Anfiithrungsstriche am Ende siehst.«

Strings, Listen, Tupeln und Maps



Strings mit Escapes sind aber manchmal schwerer zu lesen, sodass es wahr-
scheinlich besser ist, mehrzeilige Strings zu verwenden. Trotzdem kann es ja ein-
mal sein, dass man Code-Schnipsel zu sehen bekommt, in denen diese Riick-
wirtsschragstriche enthalten sind. Dann ist es gut zu wissen, woflr sie da sind.

Hier sind ein paar Beispiele, an denen Du siehst, wie das Escaping funktioniert:

©® >>> Apostroph String =
'"Er sagte: "Heute ist\'s kalt auf\'m Ku\'damm."'
® >>> Anfiihrungszeichen String =
"Er sagte: \"Heute ist's kalt auf'm Ku'damm.\""
>>> print(Apostroph_String)
Er sagte: "Heute ist's kalt auf'm Ku'damm."
>>> print(Anfiihrungszeichen_String)
Er sagte: "Heute ist's kalt auf'm Ku'damm."

In der ersten Zeile @ haben wir einen String mit Apostrophen erzeugt und vor
jedem Apostroph innerhalb des Strings einen Riickwirtsschrigstrich gesetzt. In
der zweiten Zeile ® haben wir einen String mit Anfiihrungszeichen erzeugt und
den Rickwirtsschragstrich vor die Anfithrungszeichen innerhalb des Strings
gestellt. In den Zeilen danach haben wir uns die Inhalte der gerade erzeugten
Variablen ausgeben lassen. Wie Du siehst, kommen die Riickwartsschragstriche
in der Ausgabe nicht mehr vor.

Werte in Strings einbetten

Wenn Du eine Nachricht anzeigen lassen mochtest, die den Inhalt einer Variable
enthilt, kannst Du darin mit %s Werte einbetten. Das %s funktioniert wie eine
Markierung fiir einen Wert, den Du spiter noch hinzufiigst. Nehmen wir an,
Python soll bei einem Spiel die Anzahl der Punkte errechnen oder speichern, und
wir wollen diese Punkte dann in einem Satz wie »Ich habe _ Punkte erzielt«
einfiigen. Dazu konnen wir mit %s die Stelle fiir den Wert im Satz markieren und
Python dann diesen Wert ausgeben lassen:

>>> Mein_Score = 1000

>>> Nachricht = 'Ich habe %s Punkte erreicht'
>>> print(Nachricht % Mein_Score)

Ich habe 1000 Punkte erreicht

Hier haben wir die Variable Mein Score mit dem Wert 1000 erzeugt sowie die
Variable Nachricht mit einem String, der die Worte »Ich habe %s Punkte erreicht«
enthilt. Dabei dient %s als Platzhalter fur die Punktzahl.

In der nichsten Zeile rufen wir print (Nachricht) mit dem %-Zeichen auf, um
mit Python das %s gegen den in der Variable Mein_Score gespeicherten Wert auszu-
tauschen. Das Ergebnis beim Ausgeben dieser Nachricht ist Ich habe 1000 Punkte

Strings

31



32

erreicht. Fir diesen Wert hatte man eigentlich keine Variable benotigt. Wir hat-
ten das gleiche Ergebnis auch mit print (Nachricht % 1000) bekommen.

Wir konnen auch andere Werte fiir den %s-Platzhalter einschleusen, indem
wir andere Variablen benutzen, wie in diesem Beispiel hier:

>>> Witztext = '%s: eine Vorrichtung zum Auffinden von Mdbeln im
Dunklen'

>>> Korperteill = 'Knie'

>>> Korperteil2 = 'Schienbein'

>>> print(Witztext % Korperteill)

Knie: eine Vorrichtung zum Auffinden von Mobeln im Dunklen

>>> print(Witztext % Korperteil2)

Schienbein: eine Vorrichtung zum Auffinden von Mobeln im Dunklen

Hier haben wir drei Variablen erzeugt. Die erste, Witztext,
steht fiir den String mit dem Platzhalter %s. Die anderen
Variablen sind Kérperteill und Kérperteil2. Wir konnen die
Variable Witztext ausgeben und wieder den Operator % ver-
wenden, um ihn gegen den Inhalt der Variablen Korperteill
und Kérperteil2 auszutauschen und unterschiedliche Nach-
richten zu erzeugen.

Du kannst auch mehr als einen Platzhalter in einem
String verwenden:

>>> 7ahlen = 'Was sagte die Zahl %s zur Zahl %s? Schicker Giirtel!!'
>>> print(Zahlen % (0, 8))
Was sagte die Zahl 0 zur Zahl 87 Schicker Giirtel!!

Wenn Du mehr als einen Platzhalter verwendest, musst Du darauf achten, dass
Du die Austauschwerte, wie in diesem Beispiel, in Klammern setzt. Die Reihen-
folge der Werte ist dieselbe wie im String.

Strings multiplizieren

Wie viel ergibt 10 multipliziert mit 5? 50 natiirlich. Aber wie viel ergibt 10 multi-
pliziert mit a? Hier ist die Antwort von Python auf diese Frage:

>>> print(10 * 'a')

aaaaaaaaaa
Python-Programmierer machen sich dies zunutze, um Strings nach einer
bestimmten Anzahl von Leerzeichen auszurichten, wenn sie z.B. Nachrichten in
einer Shell anzeigen lassen wollen. Wie wire es, wenn wir einen Brief in der Shell
ausgeben? Wihle dazu File » New Window, und gib folgenden Code ein:

Strings, Listen, Tupeln und Maps



Leerzeichen = ' ' * 35
print('%s Hinten Raus 12' % Leerzeichen)
print('%s 11156 Ostschnarchheim' % Leerzeichen)

print()

print()

print('Sehr geehrte Damen und Herren,')

print()

print('ich muss Ihnen bedauerlicherweise mitteilen, dass bei meinem')

print('Toilettenhduschen einige Dachziegeln fehlen.')

pr1nt('Ich glaube, dass der Sturm sie Tetzte Nacht heruntergeweht
hat."')

print()

print('Mit freundlichen GriiBen,"')

print('Max Maus')

Sobald Du den Code in das Shell-Fenster eingegeben hast, gehst Du auf File p
Save As. Nenne Deinen Brief MeinBrief.py.

Achtung!

Von jetzt an gilt: Wenn Du Save As: irgendeinDateiname.py und dariiber eine Menge Code
siehst, musst Du auf File » New Window gehen, den Code in das erscheinende Fenster
eingeben und dann anschlieBend speichern, wie wir es in diesem Beispiel gemacht haben.

In der ersten Zeile dieses Beispiels haben wir die Variable Leerzeichen erzeugt, in
der wir das Leerzeichen mit 35 multipliziert haben. AnschliefSend haben wir diese
Variable in den nichsten zwei Zeilen verwendet, um den Text an der rechten Seite
in der Shell auszurichten.

Das Ergebnis der Anweisung print siehst Du unten:

— &

4 Python Shell fol-En =]
File Edit Shell Debug Options Windows Help
>>> ;l

Hinten Raus 12
11156 Ostschnarchheim

Sehr geehrte Damen und Herren,

ich muss Ihnen bedauerlicherweise mitteilen, dass bei meinem
Toilettenhduschen einige Dachziegeln fehlen.
Ich glaube, dass der Sturm sie letzte Nacht heruntergeweht hat.

Mit freundlichen Griifen,
Max Maus L]
>>> | -

Ln: 17Cok: 4

Strings

33



34

Wir konnen die Multiplikation von Strings nicht nur zum Ausrichten benutzen,
sondern konnen uns den Bildschirm mit lustigen Mitteilungen vollschreiben las-
sen. Probier einmal dieses Beispiel aus:

>>> print (1000 * 'Matsch ')

4.2 Listen konnen mehr als Strings

Spinnenbeine, Froschzeh, Molchauge, Fledermausfliigel,
Schneckenschleim und Schlangenhautschuppen sind auf
keiner alltaglichen Einkaufsliste (es sei denn, Du wirst
ein Zauberer), aber wir nutzen sie als unser erstes Bei-
spiel fiir die Unterschiede zwischen Strings und Listen.
Wir konnen diese Liste von Elementen mit einem String

wie diesem in der Variable Zaubererliste speichern:

>>> Zaubererliste = 'Spinnenbeine, Froschzeh, Molchauge,
Fledermausfliigel, Schneckenschleim, Schlangenhautschuppen'
>>> print(Zaubererliste)

Spinnenbeine, Froschzeh, Molchauge, Fledermausfliigel,
Schneckenschleim, Schlangenhautschuppen

Wir konnten aber ebenso eine Liste erzeugen, so eine Art magisches Python-
Objekt, das wir beeinflussen konnen. So sihen die Elemente als Liste geschrieben
aus:

>>> Zaubererliste = ['Spinnenbeine', 'Froschzeh', 'Molchauge’,
'Fledermausfliigel', 'Schneckenschleim', 'Schlangenhautschuppen']

>>> print(Zaubererliste)

['Spinnenbeine', 'Froschzeh', 'Molchauge', 'Fledermausfliigel’,

'Schnekkenschleim', 'Schlangenhautschuppen']

Eine Liste zu erzeugen erfordert etwas mehr Tippen als bei einem String, aber
man kann mit einer Liste mehr anfangen, da man sie beeinflussen kann. Wir
konnten zum Beispiel den dritten Posten der Zaubererliste (Molchauge) ausgeben
lassen, indem wir seine Position auf der Liste (die Indexposition) in eckige Klam-
mern ([ ]) setzen:

>>> print(Zaubererliste[2])
Molchauge

Hah? Ist das nicht der dritte Posten auf der Liste? Ja, aber die Liste beginnt mit
der Indexposition 0, sodass das erste Element die Position 0 hat, das zweite die
Position 1 und das dritte die Position 2. Das mag uns Menschen zwar wenig sinn-
voll erscheinen, den Computern dagegen schon.

Strings, Listen, Tupeln und Maps



Wir konnen ein Element einer Liste auch viel leichter dndern als in einem
String. Vielleicht brauchen wir ja anstelle des Molchauges eine Schlangenzunge.
So wiirden wir das mit unserer Liste machen:

>>> Zaubererliste[2] = 'Schlangenzunge'

>>> print(Zaubererliste)

['Spinnenbeine', 'Froschzeh', 'Schlangenzunge', 'Fledermausfliigel’,
'Schneckenschleim', 'Schlangenhautschuppen']

So haben wir das Element auf der Indexposition 2 von Molchauge in Schlangen-
zunge geidndert.

Eine andere Moglichkeit besteht darin, sich
eine Auswahl der Elemente auf der Liste anzei-
gen zu lassen. Das machen wir, indem wir einen
Doppelpunkt in eckige Klammern setzen. Im
nichsten Beispiel gibst Du Folgendes ein, um
Dir das dritte bis fiinfte Element der Liste
anzeigen zu lassen (alles vorziigliche Zutaten
fiir ein kostliches Sandwich):

>>> print(Zaubererliste[2:5])
['Schlangenzunge', 'Fledermausfliigel', 'Schneckenschleim']

[2:5] zu schreiben, ist wie zu sagen: » Zeige mir das Element der Indexpositionen 2
bis (aber nicht einschlieflich) 5 — oder, mit anderen Worten, die Elemente 2, 3
und 4.«

In Listen kann man alle moglichen Posten speichern, auch Zahlen:
>>> einige Zahlen = [1, 2, 5, 10, 20]
Sie konnen genauso gut Strings beinhalten:
>>> einige Strings = ['Wer', 'Wie', 'Wo', 'Warum']
Sie kénnen aber auch sowohl Zahlen als auch Strings enthalten:
>>> Zahlen und Strings = ['Wer', 'hatte', 6, 'Angst', 'vor', 7,
'weil', 7, 8, 9]

>>> print(Zahlen _und Strings)
['Wer', 'hatte', 6, 'Angst', 'vor', 7, 'weil', 7, 8, 9]

Und Listen kénnen sogar andere Listen speichern:

>>> Zahlen = [1, 2, 3, 4]

>>> Strings = ['Ich', 'stieB', 'meinen', 'Zeh', 'und', 'jetzt', 'tut',
'er', 'weh']

>>> MeinelListe = [Zahlen, Strings]

>>> print(MeineListe)

[[1, 2, 3, 4], ['Ich', 'stieB', 'meinen', 'Zeh', 'und', 'jetzt',

"tut', 'er', 'weh']]

Listen kdnnen mehr als Strings

35



36

Mit dieser Liste innerhalb einer Liste wurden drei Variablen erzeugt: Zahlen (mit
vier Zahlen darin), Strings (mit neun Strings) und MeinelListe, die Zahlen und
Strings enthilt. Die dritte Liste (MeineListe) enthalt nur zwei Elemente, da sie eine
Liste von Variablennamen ist und nicht den Inhalt der Variablen direkt enthilt.

Einer Liste Elemente hinzufiigen

Um einer Liste Elemente hinzuzufiigen, benutzen wir die Funktion append. Eine
Funktion ist ein Batzen Code, der Python sagt, dass es etwas Bestimmtes tun soll.
In diesem Fall fiigt append dem Ende einer Liste ein Element hinzu.

Um beispielsweise der Einkaufsliste des Zauberers Barenriilpser (ich bin mir
sicher, dass es so etwas gibt) hinzuzufiigen, machen wir Folgendes:

>>> Zaubererliste.append('Bdrenriilpser')

>>> print(Zaubererliste)

['Spinnenbeine', 'Froschzeh', 'Schlangenzunge', 'Fledermausfliigel’,
'Schneckenschleim', 'Schlangenhautschuppen', 'Barenriilpser']

Du kannst der Liste des Zauberers auf die gleiche Weise noch mehr magische Ele-
mente hinzufiigen:

>>> Zaubererliste.append('Alraune')
>>> Zaubererliste.append('Schierling')
>>> Zaubererliste.append('Sumpfgas")

Jetzt sieht die Zaubererliste so aus:

>>> print(Zaubererliste)

['Spinnenbeine', 'Froschzeh', 'Schlangenzunge', 'Fledermausfliigel’,
'Schneckenschleim', 'Schlangenhautschuppen', 'Bdrenriilpser',
'"Alraune', 'Schierling', 'Sumpfgas']

Jetzt kann man aus dieser Zutatenliste etwas wirklich Magisches brauen!

Elemente aus einer Liste entfernen

Um Elemente aus einer Liste zu entfernen, benutzt Du den Befehl de1 (Abkiirzung
fiir engl. delete, »16schen«). Um zum Beispiel das sechste Element von der Zau-
bererliste zu entfernen (die Schlangenhautschuppen), machst Du Folgendes:

>>> del Zaubererliste[5]

>>> print(Zaubererliste)

['Spinnenbeine', 'Froschzeh', 'Schlangenzunge', 'Fledermausfliigel’,
'Schneckenschleim', 'Bdrenriilpser', 'Alraune', 'Schierling',
'Sumpfgas']

Strings, Listen, Tupeln und Maps



Achtung!

Denke daran, dass die Positionen einer Liste bei null beginnen und dass Zauberer-
liste[5] sich in Wirklichkeit auf das sechste Element bezieht.

Und so entfernen wir die zuvor hinzugefiigten Elemente (Alraune, Schierling und
Sumpfgas) wieder von der Liste:

>>> del Zaubererliste[8]

>>> del Zaubererliste[7]

>>> del Zaubererliste[6]

>>> print(Zaubererliste)

['Spinnenbeine', 'Froschzeh', 'Schlangenzunge', 'Fledermausfliigel’,
'Schneckenschleim', 'Barenriilpser']

Mit Listen rechnen

Wir konnen Listen durch Addition zusammenfiigen. Genauso wie bei Zahlen
machen wir das mit einem Pluszeichen. Wir haben zum Beispiel zwei Listen,
Listel mit den Zahlen 1 bis 4 und Liste2 mit einigen Wortern. Mit dem Befehl
print und dem Pluszeichen konnen wir sie addieren:

>>> Listel = [1, 2, 3, 4]
>>> |iste2 = ['Ich', 'stolperte', 'und', 'fiel', 'zu', 'Boden']
>>> print(Listel + Liste2)
[1, 2, 3, 4, 'Ich', 'stolperte', 'und', 'fiel', 'zu', 'Boden']

Wir konnen auch zwei Listen zusammenzihlen und das Ergebnis zu einer dritten
Variable werden lassen:

>>> Listel = [1, 2, 3, 4]

>>> Liste2 = ['Ich', 'aB', 'Schokolade', 'und', 'wollte', 'mehr']
>>> Liste3 = Listel + Liste2

>>> print(Liste3)

[1, 2, 3, 4, 'Ich', 'aB', 'Schokolade', 'und', 'wollte', 'mehr']

Und wir konnen sogar eine Liste mit einer Zahl multiplizieren. Um zum Beispiel
Listel mit § zu multiplizieren, geben wir Listel * 5 ein.

>>> Listel = [1, 2]
>>> print(Listel * 5)
[1’ 2, ]" 2’ l’ 2’ ]" 2, ]" 2]

So wird Python gesagt, es solle Listel fiinfmal wiederholen, was dann 1, 2, 1, 2,
1,2,1,2,1, 2ergibt.

Listen kdnnen mehr als Strings

37



38

Divisionen (/) und Subtraktionen (—) dagegen fithren wie in diesen Beispielen
nur zu Fehlermeldungen:

>>> Listel / 20
Traceback (most recent call last):
File "<pyshell1#59>", Tine 1, in <module>
Listel / 20
TypeError: unsupported operand type(s) for /: 'lTist' and 'int'

>>> |istel - 20
Traceback (most recent call Tlast):
File "<pyshell#61>", Tine 1, in <module>
Listel - 20
TypeError: unsupported operand type(s) for -: 'list' and 'int'

Aber warum? Nun, Listen mit + verbinden und mit * zu wiederholen sind recht
einfache Operationen. Auch im realen Leben sind sie nachzuvollziehen. Wenn ich
Dir zwei Einkaufslisten in die Hand driicken und sagen wiirde » Addiere diese
zwei Listen«, wiirdest Du vielleicht alle Posten auf ein weiteres Blatt Papier in der
gleichen Reihenfolge bis zum Ende aufschreiben. Du kannst Dir auch sicher vor-
stellen, eine Liste aller Posten dreimal hintereinander auf ein Blatt zu schreiben.

Aber wie wiirdest Du eine Liste teilen? Stelle Dir einmal vor, Du wiirdest eine
Liste mit sechs Zahlen (1 bis 6) durch zwei teilen. Hier sind nur drei Moglichkei-
ten aufgezahlt:

[1, 2, 3] [4, 5, 6]
[1] [2, 3, 4, 5, 6]
[1, 2, 3, 4] [5, 6]

Soll man die Liste in der Mitte aufteilen, nach dem ersten
Posten oder rein zufillig eine Position wihlen und dort
teilen? Darauf gibt es eben keine einfache Antwort, und
wenn man Python auffordert, eine Liste zu teilen, weifS es
auch nicht, was es machen soll. Deshalb antwortet es mit
einer Fehlermeldung.

Das Gleiche gilt fur das Addieren von irgendetwas

anderem als einer Liste zu einer Liste. Das geht auch
nicht. Dies passiert zum Beispiel, wenn man zur Listel die Zahl 50 addiert:

>>> Listel + 50
Traceback (most recent call Tlast):
File "<pyshell#62>", Tine 1, in <module>
Listel + 50
TypeError: can only concatenate list (not "int") to Tist

Strings, Listen, Tupeln und Maps



Warum bekommen wir hier eine Fehlermeldung? Was heif$st denn das, 50 zu einer
Liste zu addieren? Heifst das 50 zu jedem Element? Was aber, wenn keines der
Elemente eine Zahl ist? Oder soll es bedeuten, dass man die Zahl 50 am Anfang
oder Ende der Liste dazuschreibt?

Beim Schreiben von Computerprogrammen sollten Befehle immer die glei-
chen Dinge machen, sobald man sie eingibt. Der dumme Computer kennt nur
Schwarz oder Weifs. Fordere ihn auf, eine komplizierte Entscheidung zu treffen,
und er wirft mit Fehlermeldungen um sich.

4.3 Tupeln

Ein Tupel ist eine Liste, die in Klammern gesetzt ist — so wie in diesem Beispiel:

>>> fibs = (0, 1, 1, 2, 3)
>>> print(fibs[3])
2

Hier definieren wir die Variable fibs als die Zahlen 0, 1, 1, 2 und 3. AnschliefSend
geben wir das Element mit der Indexposition 3 im Tupel mit print(fibs[3]) aus.

Der wesentliche Unterschied zwischen einem Tupel und einer Liste ist der,
dass man ein Tupel nicht dandern kann, sobald es erzeugt wurde. Wenn wir bei-
spielsweise den ersten Wert in dem Tupel fibs gegen die Zahl 4 austauschen wol-
len (so wie wir das mit den Werten in unserer Zaubererliste gemacht haben),
bekommen wir eine Fehlermeldung;:

>>> fibs[0] = 4
Traceback (most recent call last):
File "<pyshell#67>", Tine 1, in <module>
fibs[0] = 4
TypeError: 'tuple' object does not support item assignment

Warum sollten wir dann also iiberhaupt Tupel statt Listen verwenden? Haupt-
sachlich, weil es manchmal praktisch ist, wenn man etwas benutzt, bei dem man

davon ausgehen kann, dass es sich nicht dndert. Wenn Du ein Tupel mit zwei Ele-
menten darin erzeugst, wird es immer diese zwei Elemente in sich tragen.

4.4 Maps in Python weisen Dir nicht den Weg

Eine Map (engl. fur »Landkarte«, auch als dict, Abkiirzung fir Dictionary, engl.
fiir » Worterbuch«, bezeichnet) ist eine Sammlung von Dingen, wie etwa von Lis-
ten und Tupeln. Der Unterschied zwischen Maps und Listen oder Tupeln besteht
darin, dass jeder Posten in einer Map einen Schliissel (key) und einen dazugehori-
gen Wert (value) hat.

Tupeln

39



40

Sagen wir, wir hitten zum Beispiel eine Liste von Personen und deren Lieb-
lingssportarten. Wir konnten diese Informationen in eine Python-Liste schreiben,
in der auf den Namen der Person ihre liebste Sportart folgt:

>>> Lieblingssportarten = ['Ridiger Werner, Fusshall',
'Michael Tippler, Basketball',
'"Eduard Reichert, Radsport',
'Renate Kalmert, Volleyball',
"Elvira Schmidt, Badminton',
'"Frank Rohage, Schwimmen']

Wenn man nun nach Renate Kalmerts Lieblingssportart
fragen wirde, konntest Du die Liste durchsehen und die
Antwort Volleyball herausfinden. Wenn aber nun 100
(oder noch viel mehr) Leute auf der Liste stehen wiirden?

Nun, wenn wir die gleiche Information als Map spei-
chern, in der der Name der Person als Schlissel und ihr
Lieblingssport als Wert gespeichert ist, wiirde der Code
in Python so aussehen:

>>> Lieblingssportarten = {'Ridiger Werner' : 'Fusshall',
'Michael Tippler' : 'Basketball',
'"Eduard Reichert' : 'Radsport',
'Renate Kalmert' : 'Volleyball',
'"Elvira Schmidt' : 'Badminton',
'"Frank Rohage' : 'Schwimmen'}

Wir haben mit den Doppelpunkten jeden Schliissel von seinem Wert getrennt und
jeden Schlissel und Wert mit Apostrophen umgeben. Achte auch darauf, dass wir
die Elemente der Map in geschweifte Klammern ({}) und nicht in runde oder
eckige Klammern gesetzt haben.

Das Ergebnis davon ist eine Map (jeder Schlisssel fithrt zu einem bestimmten
Wert), wie in Tabelle 4-1 zu sehen ist.

Schlissel Wert
Rudiger Werner Fussball
Michael Tippler Basketball
Eduard Reichert Radsport
Renate Kalmert Volleyball
Elvira Schmidt Badminton
Frank Rohage Schwimmen
Tab. 4-1 Schlissel, die auf die Werte in einer Map mit Lieblingssportarten verweisen

Strings, Listen, Tupeln und Maps



Um jetzt die Lieblingssportart von Renate Kalmert herauszufinden, greifen wir
auf unsere Map Lieblingssportarten zu:

>>> print(Lieblingssportarten['Renate Kalmert'])
Volleyball

Die Anwort lautet Volleyball. Um einen Wert in der Map zu loschen, benutzen
wir ihren Schliissel. So etwa l6schen wir Elvira Schmidt:

>>> del Lieblingssportarten['Elvira Schmidt']

>>> print(Lieblingssportarten)

{'Renate Kalmert': 'Volleyball', 'Rudiger Werner': 'Fussball',
'"Eduard Reichert': 'Radsport', 'Michael Tippler': 'Basketball',
'Frank Rohage': 'Schwimmen'}

Um einen Wert in einer Map auszutauschen, benutzen wir auch seinen Schliissel:
>>> Lieblingssportarten['Ridiger Werner'] = 'Eishockey’
>>> print(Lieblingssportarten)
{'Renate Kalmert': 'Volleyball', 'Rudiger Werner': 'Eishockey',

'"Eduard Reichert': 'Radsport', 'Michael Tippler': 'Basketball',
'Frank Rohage': 'Schwimmen'}

Wir haben die Lieblingssportart Fussball durch den Schliissel Riidiger Werner
gegen Eishockey ausgetauscht.

Wie Du siehst, ist das Arbeiten mit Maps so dhnlich wie mit den Listen und
Tupeln, aufler der Tatsache, dass Du Maps nicht mit dem Operator Plus (+)

zusammenfiugen kannst. Wenn Du das probierst, bekommst Du eine Fehlermel-
dung:

>>> |ieblingssportarten = {'Ridiger Werner' : 'Eishockey',
'Michael Tippler' : 'Basketball',
'"Eduard Reichert' : 'Radsport',
'Renate Kalmert' : 'Volleyball',
'"Frank Rohage' : 'Schwimmen'}

>>> Lieblingsmuster = {'Maximilian Fleischer' : 'rosa Punkte',
'Johannes Bashagen' : 'orangefarbene Streifen',
'Susanne Lehmann' : 'lila Karos'}

>>> Lieblingssportarten + Lieblingsmuster
Traceback (most recent call Tast):
File "<pyshell#79>", Tline 1, in <module>
Lieblingssportarten + Lieblingsmuster
TypeError: unsupported operand type(s) for +: 'dict' and 'dict’

Maps zu verbinden, ergibt fiir Python keinen Sinn, sodass es wieder eine Fehler-
meldung ausgibt.

Maps in Python weisen Dir nicht den Weg

M1



42

4.5 Was Du gelernt hast

Ist diesem Kapitel hast Du gelernt, wie Python Strings zum Speichern von Text
verwendet und dass es Listen und Tupel zum Umgang mit mehreren Elementen
benutzt. Du hast gesehen, dass man die Elemente in Listen verdndern kann und
dass man eine Liste mit einer anderen verbinden kann, die Werte in einem Tupel
aber nicht. Du hast auch gelernt, wie man Maps zum Speichern von Werten
benutzt, die von Schliisseln identifiziert werden.

4.6 Programmier-Puzzles

Die folgenden paar Experimente kannst Du selber ausprobieren. Die Losungen
findest Du unter www.dpunkt.de/python.

#1: Lieblingssachen

Lege eine Liste Deiner Lieblingshobbies an, und gib der Liste den Variablenna-
men Hobbies. Dann machst Du dir eine Liste Deiner Lieblingsgerichte und nennst
die Variable Essen. Verbinde die beiden Listen, und nenne das Ergebnis Lieblings-
sachen. Am Ende gibst Du die Variable Lieblingssachen aus.

#2: Kadmpfer zdhlen

Wenn es drei Gebaude gibt, auf deren Dachern sich jeweils 25 Ninjas versteckt
halten, und es zwei Tunnel gibt, in denen sich jeweils 40 Samurai verkrochen
haben, wie viele Ninjas und Samurai treten dann insgesamt in die Schlacht? (Du
kannst dies mit einer einzigen Gleichung in der Python-Shell machen.)

#3: GriiBe!

Erzeuge zwei Variablen: eine, die fir Deinen Vornamen steht, und eine, die fiir
Deinen Nachnamen steht. Erzeuge jetzt einen String, und benutze Platzhalter, um
Deinen Namen mit der Nachricht auszugeben, die diese beiden Variablen ver-
wendet, etwa so: »Hallo, Benni Richter!«

Strings, Listen, Tupeln und Maps



Malen mit Turtles

In Python ist turtle (engl. fiir »Schildkréte«) so etwas Ahnliches wie im richtigen
Leben. Wir kennen die Schildkrote als ein Reptil, das sich sehr langsam fortbe-
wegt und sein Haus auf dem Riicken mitschleppt. In der Welt von Python ist
turtle ein kleiner, schwarzer Pfeil, der sich sehr langsam iiber den Monitor
bewegt. Wenn man allerdings bedenkt, dass die Python-turtle bei der Fortbewe-
gung auf dem Monitor eine Spur hinterldsst, denkt man viel weniger an eine
Schildkrote, sondern an eine Schnecke.

Mit turtle kann man sehr schon die Grundlagen der Computergrafik erler-
nen. Aus diesem Grund benutzen wir jetzt Python-turtle, um einige einfache For-
men und Linien zu zeichnen.

Ein Modul in Python ist eine Moglichkeit, wie
man niitzlichen Code fiir ein weiteres Pro-
gramm zur Verfugung stellen kann (neben
anderen Dingen kann ein Modul Funktionen
enthalten, die wir nutzen konnen). In Kapitel 8
wirst Du mehr iber Funktionen erfahren.
Python enthilt ein spezielles Modul, das sich
turtle nennt und mit dem man Bilder auf dem

43



44

Monitor zeichnen kann. Mit dem Modul turtle kann man lernen, wie man Vek-
torgrafiken erzeugt. Im Grunde ist das nichts weiter, als einfache Linien, Punkte
und Kurven zu zeichnen.

Lass uns einmal schauen, wie turtle funktioniert. Als Erstes starten wir die
Python-Shell, indem wir auf das Desktop-Icon klicken (wenn Du Ubuntu
benutzt, gehst Du auf IDLE in der Programmzeile). Als Nichstes sagst Du
Python, dass es das Modul turtle importieren soll:

>>> turtle

Das Importieren eines Moduls sagt Python, dass Du es benutzen mochtest.

Achtung!

Wenn Du Ubuntu benutzt und an dieser Stelle eine Fehlermeldung bekommst, musst Du
eventuell das Modul tkinter installieren. Dafiir musst Du das Ubuntu-Software-Center
offnen und im Suchfenster python--tk eingeben. Im Fenster sollte dann »Tkinter — Writing
Tk Applications with Python« erscheinen. Klicke auf Installieren, um das Package zu instal-
lieren.

Eine Leinwand erzeugen

Jetzt, wo wir das Modul turtle importiert haben, miissen wir als Erstes eine Lein-
wand erzeugen — einen leeren Platz, auf dem wir zeichnen konnen, so wie auf
einer Leinwand eines Malers. Dazu rufen wir im Modul turtle die Funktion Pen
auf, die automatisch fiir uns eine Leinwand erzeugt. Gib Folgendes in die Shell
ein:

>>> t = turtle.Pen()

Danach solltest Du ein leeres Fenster (die Leinwand) mit einem Pfeil in der Mitte
sehen, etwa so:

74 Python Shell SIE=) ]

i e L i 74 Python Turtle Graphics = e
Bython 3.3.0 (v3.3.0:bd8af -El-;[
tel)] on win32

Type "copyright", "credits
>>> I T turtle

>»> t = gurtle,.Pen|()

>»>

Malen mit Turtles



Der kleine Pfeil in der Mitte ist die Schildkrote, und ja, er sieht wirklich nicht wie
eine Schildkrote aus.

Wenn das Schildkroten-Fenster hinter dem Shell-Fenster erscheint, kann es
sein, dass es nicht richtig funktioniert. Sobald Du die Maus tiber das Schildkro-
ten-Fenster bewegst, taucht dann neben dem Mauszeiger ein Kringel auf:

o]

findows Help
90ebf2, Sep 29 2012, 10:55:48) [MSC v.1600 32 bit (In 4|

or "license()" for more information.

Dies kann mehrere Ursachen haben: Du hast die Shell nicht tiber das Icon auf
Deinem Desktop gestartet (wenn Du Windows oder Mac benutzt), sondern IDLE
(Python GUI) im Windows-Startmentu ausgewahlt oder IDLE nicht korrekt
installiert. Versuche, die Shell vom Icon auf dem Desktop aus neu zu starten.
Wenn dies nicht gelingt, probierst Du es mit der Python-Konsole anstelle der
Shell. Das geht so:

In Windows gehst Du auf Start P Alle Programme. Dort gehst Du in den
Ordner Python 3.3 und klickst auf Python (command line).

In MacOSX klickst Du auf das Spotlight-Icon ganz oben rechts auf dem
Monitor und gibst in das Suchfenster Terminal ein. Sobald das Fenster
erschienen ist, gibst Du dort python ein.

In Ubuntu 6ffnest Du das Terminal vom Programme-Menii aus und gibst dort
python ein.

Die Schildkrote bewegen

Du schickst der Schildkrote An-
weisungen, indem Du Funktio-
nen benutzt, die der Variable t
(die wir gerade erzeugt haben),

zur Verfligung stehen. Das geht
genau so wie mit der Funktion Pen im Modul turtle. Die Anweisung forward sagt
der Schildkrote, dass sie sich vorwarts bewegen soll. Damit die Schildkrote sich
50 Pixel vorwarts bewegt, gibst Du folgenden Befehl ein:

Wie man Pythons Modul turtle benutzt

45



46

>>> t,forward(50)

Das sollte in etwa so aussehen:

74 Python Turtle Graphics = @]

=

4] v

Die Schildkrote hat sich um 50 Pixel vorwirts bewegt. Ein Pixel ist ein einzelner
Punkt auf dem Monitor — das kleinste Element, das dargestellt werden kann.
Alles, was Du auf dem Computermonitor siehst, ist aus Pixeln zusammengesetzt.
Es sind kleine, quadratische Punktchen (eben Pixel). Wenn Du in die Leinwand
mit der Schildkrote reinzoomen konntest, wiirdest Du erkennen, dass die Spur
der Schildkrote nur ein Haufen Pixel ist. Sie ist nur einfache Computergrafik.

Pixel!

Jetzt sagen wir der Schildkrote, dass sie um 90 Grad nach links abbiegen soll. Wir
tun das mit folgendem Befehl:

>>> t,1eft(90)

Wenn Du noch nichts von Graden gehort hast, so musst Du Dir sie so vorstellen:
Du stehst in der Mitte eines Kreises.

Die Richtung, in die Du gerade schaust, ist 0 Grad.
Wenn Du Deinen linken Arm ausstreckst, sind das 90 Grad links.
Wenn Du Deinen rechten Arm ausstreckst, sind das 90 Grad rechts.

Malen mit Turtles



Du kannst die 90-Grad-Drehungen nach links oder rechts hier sehen:

Wenn Du von dort, wo Dein Arm jetzt nach rechts zeigt, im Kreis weiter nach
rechts gehst, liegen 180 Grad genau hinter Dir. 270 Grad sind dort, wo Dein lin-
ker Arm hinzeigt. 360 Grad sind dort, wo Du gestartet bist. Die Winkelgrade
gehen von 0 bis 360.

Die Gradzahlen eines vollen Kreises, in dem man sich rechts herum dreht,
sind hier in 45-Grad-Schritten gezeigt:

Wenn sich die Python-Schildkrote links herum dreht, schwenkt sie in eine neue
Richtung um (so, als ob Du Deinen Korper dorthin drehen wiirdest, wo Dein
Arm 90 Grad nach links zeigt).

Der Befehl t.1eft(90) richtet deshalb den Pfeil nach oben (da er ja nach
rechts zeigend gestartet ist):

P

74 Python Turtle Graphics (o[- ) ‘
=]
o [
=]
o 2]

Wie man Pythons Modul turtle benutzt

47



48

Achtung!

Wenn Du t.1eft (90) schreibst, ist das das Gleiche, als ob Du t.right (270) schreibst. Das
giltauch fir t.right (90), was dasselbe wie t.1eft (270) ist. Stelle Dir dazu einfach den

Kreis vor, und folge den Gradzahlen.

Jetzt werden wir ein Quadrat zeichnen. Gib zu den bereits eingegeben Zeilen fol-

genden Code ein:

>>>
>>>
>>>
>>>
>>>

>>>

Deine Schildkrote sollte ein Quadrat gezeichnet haben
tung zeigen wie am Anfang:

t
t
t
t
t
t

.forward(50)
.left(90)
.forward(50)
.Teft(90)
.forward(50)
.Teft(90)

und in die gleiche Rich-

7% Python Turtle Graphics

(o] o s

<

B

=
o

Um die Leinwand zu 16schen, gibt man reset ein. Dadurch wird die Leinwand

leer, und die Schildkrote befindet sich wieder an ihrer Startposition.

>>> t.reset()

Du kannst auch clear eingeben, was die Leinwand 16scht, die Schildkréte aber da

lasst, wo sie sich gerade befindet.

>>> t.clear()

Wir konnen die Schildkrote auch mit right nach rechts und mit backward riick-

wirts bewegen. Wir konnen mit dem Befehl up den Zeichenstift von der Lein-

Malen mit Turtles



wand nehmen (oder anders gesagt, der Schildkrote sagen, dass sie aufhoren soll
zu zeichnen).

Wir machen jetzt noch eine Zeichnung, um einige dieser Befehle anzuwen-
den. Dieses Mal lassen wir die Schildkrote zwei Linien malen. Gib dazu folgen-
den Code ein:

>>> t.reset()

>>> t.backward(100)
>>> t.up()

>>> t.right(90)

>>> t,forward(20)
>>> t.1eft(90)

>>> t.down ()

>>> t,forward(100)

Als Erstes loschen wir mit t.reset() die Leinwand
und setzen dadurch die Schildkrote auf ihre
Startposition. Als Nichstes lassen wir die Schild-

krote mit t.backward(100) 100 Pixel zuriicklaufen, und danach nehmen wir den
Stift der Schildkrote mit t.up() hoch und unterbrechen das Zeichnen.

Mit dem Befehl t.right(90) drehen wir die Schildkréte nach rechts, um sie
nach unten zeigen zu lassen, und mit t.forward(20) lassen wir sie 20 Pixel vor-
wirts gehen. Weil wir in der dritten Zeile den Befehl up verwendet haben, wird
gerade nichts gezeichnet. Wir drehen die Schildkrote wieder mit t.1eft(90) um
90 Grad, damit sie nach rechts schaut. Mit dem Befehl down sagen wir der Schild-
krote, dass sie den Stift wieder aufsetzen und zu malen beginnen soll. Zum
Schluss lassen wir sie mit t.forward(100) eine Linie geradeaus, also parallel zur
ersten Linie, zeichnen. Die beiden Linien, die wir gezeichnet haben, sehen am
Ende so aus:

74 Python Turtle Graphics El [of|=5cs .

Wie man Pythons Modul turtle benutzt

49



5.2 Was Du gelernt hast

In diesem Kapitel hast Du gelernt, wie man das Python-Modul turtle benutzt.
Wir haben mit den Befehlen Teft und right, forward und backward einige einfache
Linien gezeichnet. Du hast herausgefunden, wie man mit dem Befehl up das
Zeichnen beendet und mit down wieder anfingt. Du hast auch gelernt, dass sich
die Schildkréte anhand von Gradzahlen drehen ldsst.

5.3 Programmier-Puzzles

Versuche die folgenden Formen mit der Schildkrote zu zeichnen. Die Losungen
findest Du unter www.dpunkt.de/python.

#1: Ein Rechteck

Erzeuge mit der Funktion Pen des Moduls turtle eine neue Leinwand, und
zeichne dann ein Rechteck.

#2: Ein Dreieck

Erzeuge wieder eine Leinwand, und zeichne dieses Mal ein Dreieck. Schaue noch
einmal zuriick auf das Schema mit dem Kreis und den Gradzahlen (im Abschnitt
»Die Schildkrote bewegen« auf S. 45), und vergewissere Dich, in welche Rich-
tung Du die Schildkrote mit den Gradzahlen drehen musst.

#3: Eine Kiste ohne Ecken

Schreibe ein Programm, um diese vier Linien zu zeichnen (die Grofe ist nicht so
wichtig, nur die Form):

~

74 Python Turtle Graphics E@

50 Malen mit Turtles



Fragen mit if und else stellen

Beim Programmieren stellen wir oft Fragen, die man mit Ja oder Nein beantwor-
tet, und reagieren darauf, je nachdem, wie die Antwort lautete. Wir konnten zum
Beispiel fragen: »Bist Du dlter als 20?« Wenn die Antwort »ja« lautet, antworten
wir »Du bist zu alt!«

Solche Fragen nennt man Bedingungen, und wir kombinieren diese Bedin-
gungen und die Reaktionen darauf in sogenannten if-Anweisungen. Solche
Bedingungen konnen viel komplizierter aufgebaut sein als nur aus einer Frage. i f-
Anweisungen konnen mit mehreren Fragen und unterschiedlichen Reaktionen —
je nach Antwort auf die Frage — kombiniert werden.

In diesem Kapitel lernst Du, wie man mit if-Anweisungen Programme baut.

Eine if-Anweisung (if bedeutet im Englischen »falls«) kann in Python so

geschrieben werden:
>>> Alter = 13

>>> Alter > 20:
print('Du bist zu alt!"')

51



52

Eine if-Anweisung besteht aus dem if-
Schliisselwort, auf das eine Bedingung und
ein Doppelpunkt (:) folgen, so wie bei if
Alter > 20:. Die Zeilen, die nach dem Dop-
pelpunkt kommen, miissen in einem Block,
dem Anweisungsblock, stehen. Wenn die
Antwort auf die Frage »ja« lautet (oder

wabhr, wie wir Python-Programmierer sagen),
werden die Befehle in dem Anweisungsblock ausgefihrt. Lass uns jetzt schauen,
wie man Anweisungsblocke und Bedingungen schreibt.

Ein Anweisungsblock enthdlt mehrere Anweisungen

Ein Anweisungsblock ist eine Gruppe von Programmieranweisungen. Wenn zum
Beispiel die Bedingung if Alter > 20 wahr ist, mochtest Du vielleicht mehr tun
konnen, als nur die Meldung »Du bist zu alt!« auszugeben. Vielleicht mochtest
Du ein paar alternative Sitze anzeigen lassen:

>>> Alter = 25
>>> if Alter > 20:
print('Du bist zu alt!")
print('Was machst Du hier?')
print('Warum mdhst\'n Du nicht den Rasen oder sortierst Akten?')

Dieser Anweisungsblock besteht aus drei print-Anweisungen, die nur ausgefiihrt
werden, wenn die Bedingung Alter > 20 wahr ist. Damit die print-Befehle in IDLE
ausgefithrt werden, musst Du die Enter-Taste zweimal driicken: das erste Mal,
um den Block zu schliefSen (der Cursor steht dann im selben Block eine Zeile wei-
ter unten), und das zweite Mal, um den Code auszufiihren.

Jede der Zeilen dieses Blocks hat am Anfang vier Leerzeichen, wie Du im Ver-
gleich mit der Zeile aus der if-Anweisung dariiber erkennst. Lass uns noch einen
Blick auf den Code mit sichtbar gemachten Leerzeichen werfen

>>> Alter = 25
>>> if Alter > 20:
O000print('Du bist zu alt!')
O000print ('Was machst Du hier?')
O000print ("Warum mahst\'n Du nicht den Rasen oder sortierst Akten?')

In Python haben Leerriume (whitespaces) durch Tabulatoren (sie entstehen,
wenn Du die Tabulatorentaste driickst) oder Leerzeichen (wenn Du die
Leertaste driickst) eine Bedeutung. Code, der sich an gleicher Position befindet
(vom linken Rand aus gleich weit eingeriickt ist), wird in einem Anweisungsblock
gruppiert. Immer, wenn Du eine neue Zeile mit mehr Leerzeichen als in der vor-
herigen beginnst, fingst Du einen neuen Block an, der Teil desjenigen davor ist:

Fragen mit if und else stellen



Codezeile
Codezeile
Codezeile

Block 1

@
Codezeile Block 2
Codezeile
Codezeile

Codezeile Block 3

Codezeile
Codezeile

Codezeile
Codezeile

Wir gruppieren Anweisungen in Blocken, da sie zusammengehoren. Diese Anwei-
sungen mussen zusammen ausgefithrt werden.
Sobald Du die Einrtickungen dnderst, erzeugst Du dadurch neue Blocke. Das

folgende Beispiel zeigt drei verschiedene Blocke, die nur durch Anderung der Ein-
riickung einstanden sind:

Codezeile
Codezeile
Codezeile

Block 1

. Block 2
Codezeile

Codezeile
Codezeile

Codezeile
Codezeile
Codezeile

Codezeile Bock3

Codezeile
Codezeile

if-Anweisungen

53



54

Obwohl die Blocke 2 und 3 die gleiche Einrtickung haben, werden sie als unter-
schiedliche Blocke behandelt, da zwischen ihnen ein Block mit weniger Einrii-
ckung (weniger Leerzeichen, weiter links) steht.

Deshalb produziert ein Block mit vier Leerzeichen und einer nachsten Zeile
mit sechs Leerzeichen einen Einriickungsfehler (indentation error), wenn er durch
Python lduft, da Python davon ausgeht, dass alle Zeilen eines Blocks die gleiche
Einriickung haben. Wenn Du also einen Block mit vier Leerzeichen beginnst, soll-
test Du in diesem Block bis zum Ende vier Leerzeichen verwenden. Hier siehst
Du, was damit gemeint ist:

>>> Alter > 20:
0000print('Du bist zu alt!"')
000000print('Was machst Du hier?')

Die Leerzeichen habe ich sichtbar gemacht, damit Du die Unterschiede erkennst:
Die dritte Zeile hat hier sechs Leerzeichen statt der vier in der Zeile daruiber.
Wenn wir diesen Code ausfithren, markiert IDLE die Zeile, in der es ein Pro-
blem erkennt, mit einem roten Block und gibt eine erklarende SyntaxError-Mel-
dung;:
>>> Alter > 25:
print('Du bist zu alt!")
Mprint('Was machst Du hier?"')
SyntaxError: unexpected indent

Python hat an in der zweiten print-Zeile keine zwei zusitzlichen Leerzeichen
erwartet .

Achtung!

Mache Deine Einrtickungen immer einheitlich, damit Dein Code besser lesbar ist. Wenn Du
beginnst, ein Programm zu schreiben, und vier Leerzeichen vor den Anfang eines Anwei-
sungsblocks setzt, solltest Du das bei den anderen Blocken durchhalten. Achte auch dar-
auf, dass jede Zeile eines Blocks die gleiche Einrlickung hat.

Mit Bedingungen kénnen wir Dinge vergleichen

Eine Bedingung ist eine Programmanweisung, die Dinge vergleicht und uns sagt,
ob die Kriterien in diesem Vergleich wahr (True) sind und mit Ja beantwortet wer-
den oder ob sie falsch (False) sind und daher mit Nein beantwortet werden. Die
Bedingung Alter > 10 kann man so ausdriicken: »Ist der Wert der Variable Alter
grofSer als 102«

Eine andere Bedingung ist: Haarfarbe == '1i1a', was in anderen Worten heifSt:
»Ist der Wert der Variable Haarfarbe 1ila?«

Fragen mit if und else stellen



In Python benutzen wir Symbole (sogenannte Operatoren), um Bedingungen
wie »gleich«, »grofer als« und »weniger als« zu erzeugen. In Tabelle 6-1 sind ein
paar Symbole fiirr Bedingungen aufgelistet.

Symbol Bedeutung

== Ist gleich

1= Ungleich

> GroBer als

< Kleiner als

>= GroBer oder gleich
<= Kleiner oder gleich

Tab. 6-1 Symbole fiir Bedingungen

Wenn Du zum Beispiel 10 Jahre alt bist, wire die Bedingung Dein Alter == 10
wabhr (true); ansonsten kiame falsch (false) zuriick. Wenn Du 12 Jahre alt wirst,
wire die Bedingung Dein_Alter > 10 wahr (true).

Achtung!

Wenn Du eine Bedingung mit »ist gleich« formulierst, musst Du immer doppelte Gleich-
heitszeichen (==) verwenden.

Wir sollten noch ein paar Beispiele ausprobieren. Hier setzen wir unser Alter auf
10 und formulieren aufgrund einer Bedingung eine Anweisung, die »Du bist zu
alt fir meine Witze! « ausgibt, falls Alter grofler als 10 ist.

>>> Alter = 10
>>> if Alter > 10:
print('Du bist zu alt fiir meine Witze!')

Was passiert nun, wenn Du dies in IDLE eingibst und
(zweimal) die Enter-Taste driickst?

Nichts.

Da der Wert, der durch die Variable Alter gesetzt wurde,
nicht grofler als 10 war, hat Python den Anweisungs-
block mit dem Befehl print nicht ausgefihrt. Wenn wir
dagegen die Variable Alter auf 20 gesetzt hitten, wire die
Meldung ausgegeben worden.

Lass uns jetzt das vorige Beispiel dndern und die

Bedingung grofSer als (>=) einsetzen:

>>> Alter = 10
>>> if Alter >= 10:
print('Du bist zu alt fiir meine Witze!')

if-Anweisungen

55



56

Jetzt solltest Du die Meldung »Du bist zu alt fiir meine Witze!« auf dem Monitor
sehen, da der Werte der Variable Alter gleich 10 ist.

Als Nichstes probieren wir die Bedingung »ist gleich« (==) aus:
>>> Alter = 10
>>> if Alter == 10:
print('Was ist braun und klebrig und Tduft in der Wiste umher?
Ein Karamel!")

Jetzt sollte die Meldung »Was ist braun und klebrig und lduft in der Wiiste
umher? Ein Karamel!« auf dem Monitor erscheinen.

6.2 If-Then-Else-Anweisungen

Bei den if-Anweisungen konnen wir nicht nur etwas machen, wenn die Bedin-
gung zutrifft (wahr, True), sondern auch, wenn sie nicht zutrifft (falsch, False).

Der Trick besteht hier darin, eine if-then-else-Anweisung zu verwenden, die
im Prinzip sagt: » Wenn (if) etwas wahr (True) ist, dann (then) tue dies oder tue
sonst (else) das.«

Wenn Du die folgenden Codes in die Shell eingibst, setzt IDLE automatisch
Einrtickungen nach den if- und else-Anweisungen. Nachdem Du die print-
Befehle eingegeben hast, musst Du daher in IDLE mit der Riickschritt- oder Ent-
fernen-Taste nach dem letzten print-Befehl den Cursor an den Anfang der Zeile
(ganz links) setzen. Das ist die gleiche Position, in der die if-Anweisung wire,
wenn kein Prompt (>>>) da wire.

Wir erstellen jetzt eine solche if-then-else-Anweisung. Gib dazu Folgendes
in die Shell ein:

>>> print('Mdchtest Du einen schmutzigen Witz horen?')
Mochtest Du einen schmutzigen Witz horen?
>>> Alter = 12
>>> if Alter == 12:
print('Ein Schwein fiel in den Matsch!"')
else:
print('Psst. Geheim.')

Ein Schwein fiel in den Matsch!

Da wir die Variable auf 12 gesetzt haben und die
Bedingung fragt, ob das Alter gleich 12 ist, solltest
Du die erste print-Meldung auf dem Monitor sehen.
Jetzt dndern wir den Wert von Alter in eine andere
Zahl als 12:

Fragen mit if und else stellen



>>> print('Méchtest Du einen schmutzigen Witz horen?')
Méchtest Du einen schmutzigen Witz héren?
>>> Alter = 8
>>> if Alter == 12:
print('Ein Schwein fiel in den Matsch!')
else:
print('Psst. Geheim.")

Psst. Geheim.

Dieses Mal sollte die zweite print-Meldung kommen.

6.3 if- und elif~Anweisungen

Wir konnen eine if-Anweisung mit elif (einer Abkiirzung fir else-if) noch
mehr erweitern. Wir konnen zum Beispiel abfragen, ob eine Person 10, 11 oder
12 usw. Jahre alt ist, und unser Programm je nach ihrem Alter etwas Unterschied-
liches machen lassen. Diese Anweisungen unterscheiden sich von den if-then-
Anweisungen dadurch, dass es mehr als ein elif in derselben Anweisung geben
kann:

>>> Alter = 12

>>> if Alter == 10:
print("Wie nennt man einen Bumerang, der nicht zuriickkommt?")
print("Stock!")

© clif Alter == 11:
print("Was sagt die griine Traube zur blauen Traube?")
print("Du musst atmen! Atme endlich!")

elif Alter == 12:
print("Was sagt die 0 zur 87")
print("Hallo Jungs!")

elif Alter == 13:
print( "Wo wohnen Katzen?")
print("Im Mietzhaus.")

(1]
(2]

(L~

else:
print("H&h?")

Was sagt die O zur 87 Hallo Jungs!

In diesem Beispiel priift die Anweisung in
der zweiten Zeile @, ob der Wert der Varia-
ble Alter gleich 10 ist. Die print-Anweisung,
die dann in @ folgt, wird ausgefuhrt, wenn das Alter gleich 10 ist. Da wir jedoch
das Alter gleich 12 gesetzt haben, springt der Computer zur nichsten if-Anwei-
sung in © und pruft, ob der Wert von Alter gleich 11 ist. Da er es nicht ist, springt
der Computer zur nachsten if-Anweisung in @ und schaut, ob Alter gleich 12 ist.
Es ist 12, und deshalb fithrt der Computer den print-Befehl in © aus.

if- und elif-Anweisungen

57



58

6.4 Bedingungen kombinieren

Mit den Schliisselwortern and (und) und or (oder) kannst Du Bedingungen kom-
binieren und auf diese Weise kiirzeren und einfacheren Code schreiben. Hier ist
ein Beispiel fur or:

>>> if Alter == 10 or Alter == 11 or Alter == 12 or Alter == 13:
print('Was ergeben 13 + 49 + 84 + 155 + 977 Kopfschmerzen!')
else:
print('Hah?")
Sobald eine der Bedingungen in der ersten Zeile wahr ist (oder anders gesagt:
sobald Alter gleich 10, 11, 12 oder 13 ist), wird der Anweisungsblock in der
nachsten Zeile, der mit print beginnt, ausgefihrt.
Wenn die Bedingungen in der ersten Zeile alle falsch sind, springt der Com-
puter zu else, fithrt den Anweisungsblock darunter aus und zeigt Hih? an.
Um das Beispiel noch weiter zu kiirzen, konnten wir das Schliisselwort and in
Kombination mit den Operatoren GrofSer-oder-gleich (>=) und Kleiner-oder-
gleich (<=) verwenden.

>>> if Alter >= 10 and Alter <= 13:
print('Was ergeben 13 + 49 + 84 + 155 + 977 Kopfschmerzen!')
else:
print('Hdh?")
Wenn das Alter jetzt grofer oder gleich 10 und kleiner oder gleich 13 ist (in der
ersten Zeile wird das als if Alter >= 10 and Alter <= 13: ausgedriickt), wird der
Anweisungsblock in der nichsten Zeile, der mit print beginnt, ausgefithrt. Wenn
das Alter beispielsweise 12 betragt, wird Was ergeben
13 + 49 + 84 + 155 + 977 Kopfschmerzen! angezeigt, da
12 mebhr ist als 10, aber weniger als 13.

6.5 Variablen ohne Wert = None

Genau so, wie wir einer Variable Zahlen, Strings und
Listen zuordnen konnen, konnen wir ihr auch nichts
oder einen Leerwert zuordnen. In Python nennt man
diesen leeren Wert None, und er steht fiir die Abwesenheit eines Inhalts. Es ist wich-
tig zu wissen, dass der Wert None sich von dem Wert 0 unterscheidet, da er etwas
anderes bedeutet, als eine Zahl mit dem Wert 0. Der einzige Wert, den eine Varia-
ble hat, die den leeren Wert None erhalten hat, ist Nichts. Hier ein Beispiel:

>>> ein_Wert = None
>>> print(ein_Wert)
None

Fragen mit if und else stellen



Den Wert None einer Variablen zuzuordnen ist eine Moglichkeit, um eine Variable
in ihren leeren Ausgangszustand zu versetzen. Mit None kann man eine Variable
auch definieren, ohne ihr einen Wert zuzuweisen. Das kannst Du immer dann
machen, wenn Du die Variable spiter im Programm zwar noch brauchen wirst,
Deine Variablen aber schon am Anfang alle definieren mochtest. Programmierer
definieren ihre Variablen hiufig am Anfang eines Programms, da man die Namen
der Variablen dort leichter findet als mitten im Code.

Du kannst None auch in einer if-Anweisung abfragen, wie das folgende Bei-
spiel zeigt:

>>> ein_Wert = None

>>> if ein_Wert == None:

print('Die Variable ein Wert hat keinen Wert')

Die Variable ein _Wert hat keinen Wert

Das ist immer dann niitzlich, wenn man nur dann einen Wert fiir eine Variable
berechnen mochte, falls er nicht schon berechnet wurde.

6.6 Der Unterschied zwischen Strings und Zahlen

Benuizereingaben sind das, was eine Person mit der Tastatur eingibt — egal ob es
sich nun um einen Buchstaben, eine Pfeiltaste, die Enter-Taste oder sonst etwas
handelt. Benutzereingaben gelangen als Strings in Python. Das bedeutet: Wenn
Du mit der Tastatur die Zahl 10 eingibst, speichert Python die 10 als String in
einer Variable und nicht als Zahl.

Worin besteht nun aber der Unterschied zwischen der Zahl 10 und dem
String '10'? Fuir uns sehen sie beide gleich aus, nur dass Apostrophe um die eine
10 sind. Fiir den Computer sind sie aber grundverschieden.

Nehmen wir zum Beispiel einmal an, dass wir den Wert der Variable Alter
mit einer Zahl in einer if-Anweisung vergleichen wollen:

>>> if Alter == 10:
print('Wie spricht man am besten mit einem Monster?"')
print('Von so weit weg wie mdglich!")

Dann weisen wir der Variable Alter die Zahl 10 zu:

>>> Alter = 10

>>> if Alter == 10:
print('Wie spricht man am besten mit einem Monster?"')
print('Von so weit weg wie mdglich!")

Wie spricht man am besten mit einem Monster?
Von so weit weg wie méglich!

Wie Du siehst, wird jetzt die print-Anweisung ausgefiihrt.

Der Unterschied zwischen Strings und Zahlen

59



60

Jetzt schauen wir, was passiert, wenn man der Variable Alter den String '10'
(mit Apostrophen) zuweist:

>>> Alter = '10'
>>> if Alter == 10:
print('Wie spricht man am besten mit einem Monster?')
print('Von so weit weg wie mdglich!")
In diesem Fall wird der Code der print-Anweisung
nicht ausgefiihrt, da Python keine Zahl zwischen
den Apostrophen erkennt, sondern sie als String
ansieht.

Zum Gliick hat Python magische Funktionen,
mit denen man Strings in Zahlen und Zahlen in
Strings verwandeln kann. Mit int zum Beispiel
kannst Du den String '10" in eine Zahl umwandeln:

>>> Alter = '10'
>>> umgewandeltes Alter = int(Alter)

Die Variable umgewandeltes_Alter enthilt jetzt die Zahl 10.

Um eine Zahl in einen String umzuwandeln, benutzt Du str:

>>> Alter = 10
>>> umgewandeltes Alter = str(Alter)

In diesem Fall enthilt die Variable umgewandeltes Alter den String 10 statt der
Zahl 10.

Erinnerst Du Dich an die Anweisung if Alter == 10, die nichts ausgegeben
hat, solange die Variable auf den String (Alter = '10') gesetzt war? Wenn wir
zuvor die Variable umwandeln, bekommen wir ein ganz anderes Ergebnis:

>>> Alter = '10'

>>> ymgewandeltes Alter = int(Alter)

>>> if umgewandeltes Alter == 10:
print('Wie spricht man am besten mit einem Monster?')
print('Von so weit weg wie mdglich!")

Wie spricht man am besten mit einem Monster?
Von so weit weg wie méglich!

Aber Achtung: Sobald Du eine Zahl mit Dezimalpunkt eingibst, bekommst Du
eine Fehlermeldung, da die Funktion int einen ganzzahligen Wert (engl. integer)
erwartet.

Fragen mit if und else stellen



>>> Alter = '10.5'
>>> umgewandeltes Alter = int(Alter)
Traceback (most recent call Tast):
File "<pyshell#7>", line 1, in <module>
umgewandeltes Alter = int(Alter)
ValueError: invalid Titeral for int() with base 10: '10.5'

Mit dem ValueError sagt Python, dass der Wert, den Du ausprobiert hast, unge-
eignet ist. Damit es funktioniert, nimmst Du die Funktion float statt int. Die
Funktion float kann mit Zahlen umgehen, die nicht ganzzahlig sind.

>>> Alter = '10.5'

>>> umgewandeltes Alter = float(Alter)
>>> print(umgewandeltes Alter)

10.5

Python beschwert sich auch mit einem ValueError, wenn Du versuchst, einen
String umzuwandeln, der keine Zahlen als Ziffern enthilt:

>>> Alter = 'zehn'

>>> umgewandeltes Alter = int(Alter)

Traceback (most recent call last):
File "<pyshell#13>", Tine 1, in <module>
umgewandeltes Alter = int(Alter)

ValueError: invalid Titeral for int() with base 10: 'zehn'

6.7 Was Du gelernt hast

In diesem Kapitel hast Du gelernt, wie man mit if-Anweisungen arbeitet und
Anweisungsblocke erzeugt, die nur ausgefihrt werden, wenn eine bestimmte
Bedingung wahr ist. Du hast gesehen, wie man die if-Anweisungen mit elif
erweitert, sodass als Reaktion auf bestimmte Bedingungen unterschiedliche
Anweisungsblocke ausgefithrt werden. Du hast auch gesehen, dass man mit dem
Schliisselwort else Code ausfithren lassen kann, falls keine der Bedingungen
wabhr ist. Du hast gelernt, wie man mit den Schliisselwortern and und or Bedin-
gungen kombiniert und so priifen kann, ob Zahlen in einen bestimmten Bereich
fallen. Dann hast Du noch gesehen, wie man Strings und Zahlen mit int, str und
float ineinander umwandelt. Du hast auch erfahren, dass Nichts (None) in Python
eine Bedeutung hat und dass man damit Variablen in deren leeren Ausgangszu-
stand zurlickversetzen kann.

Was Du gelernt hast

61



62

6.8 Programmier-Puzzles

Versuche die folgenden Puzzles mit if-Anweisungen und Bedingungen zu l6sen.
Die Losungen finden sich unter www.dpunkt.de/python.

#1: Bist Du reich?

Was glaubst Du, macht der Code unten? Versuche die Antwort zu finden, ohne
dass Du ihn in die Shell eingibst, und iiberprife erst danach die Anwort.

>>> Geld = 2000
>>> if Geld > 1000:
print ('Ich bin reich!!")
else:
print('Ich bin nicht reich.")
print('Aber vielleicht spdter..")

#2: Kehse!

Erzeuge eine if-Anweisung, die priift, ob eine Anzahl von Keksen (in der Variable
Kekse) weniger als 100 oder mehr als 500 betrdgt. Dein Programm sollte die Mel-
dung »Zu wenige oder zu viele« ausgeben, falls die Bedingung wahr ist.

#3: Einfach die richtige Zahl

Erzeuge eine if-Anweisung, die priift, ob der in der Variable Geld enthaltene Wert
zwischen 100 und 500 oder zwischen 1000 und 5000 betragt.

#4: Ich kann die Ninjas bezwingen

Erzeuge eine if-Anweisung, die den String »Das sind zu viele« ausgibt, falls die
Variable Ninjas eine Zahl enthilt, die unter 50 liegt. »Es wird hart, aber ich kann
das schaffen« soll erscheinen, wenn die Zahl unter 30 liegt, und »Ich kann die
Ninjas bezwingen!« soll erscheinen, wenn die Zahl unter 10 liegt. Du kannst Dei-
nen Code so beginnen:

>>> Ninjas = 5

Fragen mit if und else stellen



Schleifen drehen

Nichts ist schlimmer, als dieselbe Sache dauernd wiederholen zu miissen. Nicht
ohne Grund zihlen manche Leute Schafe, wenn sie nicht einschlafen konnen. Das
hat nichts mit wundersamen Fihigkeiten dieser wolligen Vierbeiner zu tun. End-
loses Wiederholen ist einfach langweilig, sodass Du leichter in den Schlaf kommst,
da Du Dich dabei auf nichts Interessantes konzentrierst.

Programmierern macht es auch keinen Spafs, sich
dauernd zu wiederholen, solange sie nicht versuchen,
davon einzuschlafen. Zum Gliick kennen die meisten
Programmiersprachen etwas, das man for-Schleife nennt.
Eine Schleife wiederholt automatisch Sachen wie andere
Programmieranweisungen und Code-Blocke.

In diesem Kapitel werden wir uns for-Schleifen und
einen weiteren Schleifentyp anschauen, den Python bie-
tet: die while-Schleife.

Um Hallo in Python fiinfmal anzuzeigen, konntest Du Folgendes machen:

>>> print("Hallo")
Hallo
>>> print("Hallo")
Hallo

63



64

>>> print("Hallo")
Hallo
>>> print("Hallo")
Hallo
>>> print("Hallo")
Hallo

Das ist aber sehr aufwendig. Stattdessen kannst Du eine for-Schleife benutzen,
um das viele Tippen und die Wiederholungen zu reduzieren:

0 >>> X range(0, 5):
(2] print('Hallo")

Hallo

Hallo

Hallo

Hallo

Hallo

Mit der Funktion range in @ kann man eine Reihe von Zahlen erzeugen, die von
der ersten bis zur Zahl vor der letzten Zahl reicht. Das klingt jetzt vielleicht etwas
verwirrend. Lass uns einmal die Funktion range mit der Funktion 1ist kombinie-
ren, um genau zu sehen, wie das funktioniert. Die Funktion range erzeugt namlich
in Wirklichkeit keine Reihe von Zahlen, sondern gibt einen sogenannten Iterator
zurlck, ein bestimmtes Python-Objekt, das speziell fiir den Umgang mit Schleifen
geschaffen wurde. Wenn wir range also mit 1ist kombinieren, bekommen wir
eine Zahlenreihe:

>>> print(list(range(10, 20)))

[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
In diesem Fall einer for-Schleife sagt der Code in @ Python, dass es Folgendes tun
soll:

Beginne von 0 an zu zdhlen, und hore damit auf, bevor Du die S erreichst.
Bei jeder Zahl, die wir zdhlen, speichere den Wert in der Variable x.

Python fiithrt anschlieffend den Code-Block in @ aus. Achte darauf, dass es vier
zusitzliche Leerzeichen am Anfang der Zeile @ gibt (wenn man sie mit Zeile @
vergleicht). IDLE setzt diese Einrtickung fur Dich automatisch.

Wenn wir nach Eingabe der zweiten Zeile die Enter-Taste zweimal driicken,
zeigt Python fiinfmal hintereinander »Hallo« an.

Wir konnen auch das x in unserer print-Anweisung verwenden, um die Hal-
los zu zdhlen:

Schleifen drehen



>>> for x in range(0, 5):
print('Hallo %s' % x)

Hallo
Hallo
Hallo
Hallo
Hallo

B w N = o

Wenn wir die for-Schleife wieder herausnehmen, sieht unser Code in etwa so aus:

>>> x = (

>>> print('Hallo %s' % x)
Hallo 0

>>> x = 1

>>> print('Hallo %s' % x)
Hallo 1

>>> x = 2

>>> print('Hallo %s' % x)
Hallo 2

>>> x = 3

>>> print('Hallo %s' % x)
Hallo 3

>>> x = 4

>>> print('Hallo %s' % x)
Hallo 4

Der Einsatz einer Schleife hat uns also acht Zeilen zusitzlichen Code erspart.
Gute Programmierer haben es gar nicht gern, wenn sie Dinge mehr als einmal tun
miissen. Die for-Schleife ist also eine der beliebteren Anweisungen einer Program-
miersprache.

Du musst nicht unbedingt die Funktionen range und 1ist verwenden, wenn
Du for-Schleifen schreibst. Du kannst auch eine Liste verwenden, die Du bereits
erzeugt hast — zum Beispiel die Einkaufsliste aus Kapitel 4:

>>> 7aubererliste = ['Spinnenbeine', 'Froschzeh', 'Schlangenzunge',
'"Fledermausfliigel', 'Schneckenschleim', 'Barenriilpser']
>>> for i in Zaubererliste:
print(i)

Spinnenbeine
Froschzeh
Schlangenzunge
Fledermausfliigel
Schneckenschleim
Barenriilpser

Wie man for-Schleifen benutzt

65



66

Dieser Code sagt quasi: »Fiir jeden Posten in der Zaubererliste speicherst Du den
Wert in der Variable i und gibst dann den Inhalt der Variable aus.« Wenn wir

wieder die for-Schleife herausnehmen wiirden, miissten wir so etwas machen:

>>> Z7aubererliste = ['Spinnenbeine', 'Froschzeh', 'Schlangenzunge',

'Fledermausfliigel', 'Schneckenschleim', 'Barenriilpser']

>>> print(Zaubererliste[0])
Spinnenbeine

>>> print(Zaubererliste[1])
Froschzeh

>>> print(Zaubererliste[2])
Schlangenzunge

>>> print(Zaubererliste[3])
Fledermausfliigel

>>> print(Zaubererliste[4])
Schneckenschleim

>>> print(Zaubererliste[5])
Barenrilpser

Und schon wieder hat uns die Schleife viel Tipperei erspart.

Jetzt erzeugen wir noch eine Schleife. Gib folgenden Code in die Shell ein. Die

Einrtickungen im Code sollte sie automatisch fiir Dich machen.

©® >>> RiesigeflauschigeHose = ['Riesige', 'flauschige', 'Hose']
® >>> for i in RiesigeflauschigeHose:
(3] print(i)
(4] print(i)
(5
@ Riesige
Riesige

flauschige
flauschige
Hose
Hose

In der ersten Zeile @ erzeugen wir eine Liste aus 'Rie-
sige', 'flauschige' und 'Hose'. In der nichsten Zeile @
schleifen wir die Posten dieser Liste durch, wobei jeder
Posten der Variablen i zugewiesen wird. Wir geben die
Inhalte der Variablen in den nichsten zwei Zeilen (©
und @) aus. Durch Driicken der Enter-Taste in der

ndchsten Leerzeile ® wird Python mitgeteilt, dass der Block zu Ende ist. Der

Code lduft durch, und jedes Element der Liste wird zweimal angezeigt ©.

Denke daran, dass Du eine Fehlermeldung bekommst, wenn Du die falsche

Anzahl an Leerzeichen eingibst. Wenn Du im Code oben ein zusitzliches Leerzei-

Schleifen drehen



chen in Zeile @ eingeben wurdest, wiirde Python einen Einriickungsfehler anzei-
gen:

>>> RiesigeflauschigeHose = ['Riesige', 'flauschige', 'Hose']
>>> for i in RiesigeflauschigeHose:

print (i)

Hprint (i)

SyntaxError: unexpected indent

Wie Du in Kapitel 6 gelernt hast, erwartet Python, dass die Anzahl an Leerzei-
chen in einem Block einheitlich ist. Es spielt keine Rolle, wie viele Leerzeichen Du
eingibst, solange sie nur von Zeile zu Zeile immer gleich sind. (AufSerdem macht
es den Code fiir das menschliche Auge tibersichtlicher.)

Hier ist nun ein komplizierteres Beispiel einer for-Schleife mit zwei Anwei-
sungsblocken:

>>> RiesigeflauschigeHose = ['Riesige', 'flauschige', 'Hose']
>>> for i in RiesigeflauschigeHose:
print (i)
for j in RiesigeflauschigeHose:
print(j)

Woraus bestehen hier die Anweisungsblocke? Der erste Block ist die for-Schleife:

RiesigeflauschigeHose = ['Riesige', 'flauschige', 'Hose']
for i in RiesigeflauschigeHose:

print (i) # Diese Zeilen bilden
for j in RiesigeflauschigeHose: # den ERSTEN Block.
print(j) #

Der zweite Block besteht aus der print-Zeile in der zweiten for-Schleife:

©® RiesigeflauschigeHose = ['Riesige', 'flauschige', 'Hose']
for i in RiesigeflauschigeHose:
print (i)
for j in RiesigeflauschigeHose:
print(j) # Diese Zeile bildet auch
# noch den ZWEITEN Block.

(2]
(3]

Kannst Du erkennen, was dieses kleine Stiickchen Code tun wird?

Nachdem in © eine Liste namens RiesigeflauschigeHose erzeugt wurde, kon-
nen wir anhand der nichsten beiden Zeilen sagen, dass sie durch die ersten bei-
den Elemente der Liste wandern und jedes davon anzeigen. In @ allerdings wird
wieder eine Schleife durch die Liste gelegt, wobei dieses Mal der Wert der Varia-
ble j zugewiesen wird. In ® wird er dann wieder angezeigt. Der Code in @ und
© ist immer noch Teil der for-Schleife. Dies bedeutet, dass diese Anweisungen bei
jedem Element ausgefithrt werden, wihrend die for-Schleife die Liste durchgeht.

Wie man for-Schleifen benutzt

67



68

Wenn der Code also durchliuft, sollten wir Riesige gefolgt von Riesige, flau-
schige, Hose und dann flauschige gefolgt von Riesige, flauschige, Hose usw.
sehen.

Gib den Code in die Shell von Python ein, und sieh selbst:

>>> RiesigeflauschigeHose = ['Riesige', 'flauschige', 'Hose']
>>> i RiesigeflauschigeHose:
(1] print(i)
J RiesigeflauschigeHose:
(2] print(J)
¢ Riesige
Riesige
flauschige
Hose
¢ flauschige
Riesige
flauschige
Hose
¢ Hose
Riesige
flauschige
Hose

Python geht in die erste Schleife und gibt ein Element aus der Liste in® aus. Jetzt
geht es in die zweite Schleife und gibt alle Elemente der Liste in ® aus. Dann geht
weiter mit dem Befehl print (i), wodurch das nachste Element der Liste angezeigt
wird. Danach wird wieder die komplette Liste durch den Befehl print(j) ange-
zeigt. In der Ausgabe sind die vom Befehl print(i) erzeugten Zeilen mit ¢ mar-
kiert. Die unmarkierten Zeilen wurden vom Befehl print(j) erzeugt.

Wie wire es jetzt mit etwas Praktischerem als immer nur komischen Wor-
tern? Erinnerst Du Dich an die Berechnungen, mit denen wir in Kapitel 3 heraus-
gefunden haben, wie viele Goldmiinzen Du nach einem Jahr hittest, wenn Du mit
der verriickten Erfindung Deines Grofsvaters die Miinzen kopiert hittest? Es sah
so aus:

>>> 20 + 10 * 365 - 3 * 52

Dies steht fiir 20 gefundene Miinzen plus 10 ko-
pierte Minzen multipliziert mit 365 Tagen eines
Jahres minus 3 durch die Elster gestohlene Miin-
zen pro Woche.

Es konnte ganz niitzlich sein, wenn Du sehen
konntest, wie Dein Haufen Goldmiinzen jede
Woche grofler wird. Wir konnen das mit einer

Schleifen drehen



weiteren for-Schleife machen. Zuerst miissen wir aber den Wert der Variable
kopierte Minzen dndern, sodass er die Gesamtzahl aller Miinzen pro Woche dar-
stellt. Das sind 10 kopierte Miinzen pro Tag, bei 7 Tagen pro Woche, also betrigt
kopierte Minzen 70:

>>> gefundene_Miinzen = 20
>>> kopierte Minzen = 70
>>> gestohlene Miinzen = 3

Indem wir eine weitere Variable, Minzen genannt, einfithren und eine Schleife
benutzen, konnen wir sehen, wie unser Schatz jede Woche grofer wird:

>>> gefundene_Miinzen = 20

>>> kopierte_Minzen = 70

>>> gestohlene_Minzen = 3

>>> Miinzen = gefundene_Miinzen

>>> Woche range(1, 53):
Miinzen = Miinzen + kopierte_Miinzen - gestohlene_Miinzen
print('Woche %s = %s' % (Woche, Miinzen))

o000

In @ wird die Variable Minzen mit dem Wert der Variable gefundene Miinzen be-
setzt; dies ist unsere Ausgangszahl. In Zeile ® wird die for-Schleife aufgesetzt, die
durch die Befehle im Block fiihrt. (Der Block besteht aus den Zeilen ® und @.)
Jedes Mal, wenn die Schleife durchlaufen wird, wird die Variable Woche mit der
nichsten Zahl in der Reihe von 1 bis 52 beladen.

Die Zeile bei © ist etwas komplizierter. Im Prinzip wollen wir jede Woche die
Miinzen, die wir kopiert haben, hinzuzihlen und die Miinzen abziehen, die von
der Elster gestohlen werden. Du kannst Dir die Variable Miinzen als so etwas wie
eine Schatzkiste vorstellen. Jede Woche werden neue Miinzen in die Schatzkiste
gelegt. Was die Zeile also wirklich macht, ist: »Ersetze den Inhalt der Variable
Miinzen durch die Anzahl der momentan vorhandenen Miinzen, und zihle die
Miinzen dazu, die diese Woche entstanden sind.« Das Gleichheitszeichen (=)
macht Folgendes klar: »Rechne erst das Zeug auf der rechten Seite aus, speichere
es fiir spater, und benutze dafiir den Namen auf der linken Seite. «

Die Zeile in @ besteht aus einer print-Anweisung, die Platzhalter benutzt, die
die Wochennummer und die Gesamtzahl der Miinzen (in dieser Woche) auf dem
Monitor ausgibt. (Wenn das fur Dich keinen Sinn ergibt, liest Du am besten noch
einmal Abschnitt »Werte in Strings einbetten« auf S. 31 nach). Wenn Du das Pro-
gramm laufen ldsst, bekommst Du so etwas:

Wie man for-Schleifen benutzt

69



70

o

Sh

74 Python Shell
File Edit

ell Debug Options Windows Help

=

Woche
Woche
Woche
Woche
Woche
Woche
Woche
Woche
Woche
Woche
Woche
Woche
Woche
Woche
Woche
Woche
Woche

Whrhea

Beo~Sanewnp

11
12
:
14
ES
16
:
18

Python 3.3.0
}1 on win32
Type "copyright™, "credits™ or "license ()™ for more information.
>>> gefundene Minzen = 20

>>> kopierte Minzen = 70

>>> gestohlene Minzen = 3

>>> Minzen = gefundene Minzen

»>>» for Woche in range (1, 53):

Minzen
print ('W

87
154
221
288
355
422
489
556
623
630
=T
824
891
958
1025
1092
1155
122R

(v3.3.0:bd8afb%0ebf?, Sep 2% 2012, 10:55:48) [MSC v.1600 32 bit (Intel 4]

1 + kopierte Minzen - gestohlene Minzen
oche %3 = %3' % (Woche, Minzen)} )}

=]

[Ln:64[Col: 4

7.2 Wo wir gerade von Schleifen sprechen...

Die for-Schleifen sind nicht die einzige Sorte Schleifen, die Du in Python nutzen

kannst. Es gibt auch noch die while-Schleife. Die for-Schleife ist eine Schleife von

bestimmter Linge. Die while-Schleife nimmt man, wenn man vorher nicht weifs,

wann sie mit dem Durchschleifen aufhoren soll.

Stelle Dir dazu eine Treppe mit 20 Stufen vor. Die Treppe ist drinnen, und Du
weifst, dass Du 20 Stufen gut schaffst. So ist das bei einer for-Schleife.

>>> for Stufe in range(0, 20):
print(Stufe)

Jetzt stellst Du Dir eine Treppe vor, die einen Berg hinauffuhrt. Der Berg ist rich-

tig hoch, und vielleicht bist Du schon erschopft, bevor Du den Gipfel erreicht

hast; oder das Wetter wird schlecht und Du musst Deine Tour abbrechen. So ist

das bei einer while-Schleife.

Schleifen drehen




Stufe = 0
while Stufe < 10000:

print(Stufe)

if erschopft == True:
break

elif Schlechtwetter == True:
break

else:

Stufe = Stufe + 1

Wenn Du diesen Code eingibst und versuchst, 4 0 d b b "
ihn durchlaufen zu lassen, bekommst Du eine 4 ) b b
Fehlermeldung. Warum? Einfach, weil wir die é 4 6 0
Variablen erschopft und Schlechtwetter nicht 4 6

definiert haben. Auch wenn hier noch nicht
genug Code steht, um daraus ein funktionierendes Programm zu machen, kann
man doch sehen, wie eine while-Schleife funktioniert.

Wir beginnen mit der Erzeugung der Variable Stufe und sagen Stufe = 0. Als
Nichstes erzeugen wir eine while-Schleife, die priift, ob der Wert der Variable
Stufe weniger als 10000 betrigt (Stufe < 10000), was der Gesamtzahl der Stufen
bis zum Gipfel des Berges entspricht. Solange Stufe unter 10000 liegt, fihrt
Python den Rest des Codes aus.

Mit print (Stufe) zeigen wir den Wert der Variable an und priifen danach, ob
der Wert der Variable erschépft wahr (True) ist: if erschépft == True:. (True ist ein
sogenannter logischer Ausdruck, iiber den Du in Kapitel 9 mehr erfahren wirst.)
Wenn der Wert wahr (True) ist, benutzen wir das Schliisselwort break, um die
Schleife zu verlassen. Mit dem Schliisselwort break kann man sofort aus der
Schleife herausspringen (oder, anders gesagt, sie beenden). Das funktioniert
sowohl bei for- als auch bei while-Schleifen. In unserem Beispiel hat das zur
Folge, dass aus dem Block in die Zeile mit Stufe = Stufe + 1 gesprungen wird.

Die Zeile elif Schlechtwetter == True: priift, ob die Variable Schlechtwetter
auf True (wahr) gestellt ist. Falls ja, wird durch das Schlisselwort break die
Schleife verlassen. Falls weder erschépft noch Schlechtwetter wahr (True) sind,
geht es tiber else in die nichste Zeile, in der wir zur Variable Stufe 1 addieren,
und wir setzen die Schleife fort: Stufe = Stufe + 1.

Die Schritte in einer while-Schleife sind also folgende:

1. Priife die Bedingung.
2. Fiihre den Code im Block aus.
3. Wiederhole das Ganze.

Meistens werden while-Schleifen mit mehreren Bedingungen auf einmal erzeugt,
statt nur mit einer:

Wo wir gerade von Schleifen sprechen...

n



72

O >>>x =145

® >>>y =280

e >>> X < 50 y < 100:
XxX=x+1
y=y+1

print(x, y)

Hier erzeugen wir eine Variable x mit dem Wert 45 @ und eine Variable y mit dem
Wert 80 @. Die Schleife priift in ® zwei Bedingungen: ob x weniger als 50 und ob
y weniger als 100 betragt.

Solange beide Bedingungen wahr sind, werden die Zeilen danach ausgefiihrt,
und dabei wird zu beiden Werten der Variablen 1 addiert. Hier ist die Ausgabe
des Codes:

46 81
47 82
48 83
49 84
50 85

Kommst Du dahinter, wie das funktioniert?

Wir fangen bei der Variable x bei 45 und der Variable y bei 80 an zu zihlen
(durch das Addieren von 1 zu jeder Variable) und durchlaufen dabei die Schleife.
Die Schleife lduft so lange, wie x weniger als 50 und y weniger als 100 betragt.
Nachdem die Schleife finfmal durchlaufen wurde (und jedes Mal 1 zu jeder Vari-
able hinzugezdhlt wurde), erreicht der Wert von x 50. Nun ist die Bedingung
(x < 50) nicht mehr wahr, und Python weifs, dass es die Schleife beenden soll.

Die while-Schleifen benutzt man hiufig, um sogenannte halbunendliche
Schleifen zu erzeugen. Diese Schleifen konnten sich unendlich fortsetzen, tun dies
aber nur so lange, bis etwas im Code passiert, wodurch sie beendet werden. Hier
ein Beispiel:

True:
Jede Menge Code hier
Jede Menge Code hier

Jede Menge Code hier
irgendein_Wert == True:

Die Bedingung fiir die while-Schleife ist einfach wahr (True) und bleibt es immer,
sodass der Code im Block fiir immer durchlaufen wird (die Schleife liuft also
unendlich). Nur wenn die Variable irgendein_Wert wahr wird, bricht Python aus
der Schleife aus. Auf Seite 123 wirst Du in »Mit randint eine Zufallszahl bestim-
men lassen« noch ein besseres Beispiel kennenlernen. Warte aber lieber, bis Du
Kapitel 8 gelesen hast, bevor Du Dir das ansiehst.

Schleifen drehen



7.3 Was Du gelernt hast

In diesem Kapitel haben wir mit Schleifen sich wiederholende Aufgaben erledigt,
ohne dass wir sie dauernd wiederholen mussten. Wir haben Python gesagt, was
wir wiederholt haben wollten, indem wir es in Code-Blocke geschrieben haben,
die wir in die Schleifen gelegt haben. Wir haben zwei Arten von Schleifen benutzt:
die for-Schleifen und die while-Schleifen, die sich zwar ahneln, aber unterschied-
lich genutzt werden konnen. Wir haben auch das Keyword break benutzt, um
Schleifen zu beenden — also, um aus ihnen auszusteigen.

7.4 Programmier-Puzzles

Hier sind nun einige Beispiele fur Schleifen, die Du selbst ausprobieren kannst.
Die Losungen findest Du unter www.dpunkt.de/python.

#1: Die Hallo-$chleife

Was glaubst Du, macht der folgende Code? Uberlege zuerst selbst, was passiert,
und gib erst danach den Code in Python ein, um zu sehen, ob Du recht hattest.

>>> for x in range(0, 20):
print('Hallo %s' % x)
if x <9:

break

#2: Gerade Zahlen

Erzeuge eine Schleife, die gerade Zahlen ausgibt, bis sie Dein Alter erreicht. Sie
konnte zum Beispiel Folgendes ausgeben:

o BN

o

12
14

Was Du gelernt hast

73



74

#3: Meine fiinf Lieblingszutaten

Erzeuge eine Liste mit funf verschiedenen Sandwich-Zutaten wie den folgenden:

>>> Zutaten = ['Schnecken', 'Blutegel', 'Gorilla-Ohrenschmalz',
'Raupen-Augenbrauen', 'Hundertfii3ler-Zehen']

Jetzt erzeugst Du eine Schleife, die folgende Liste (mit den Zahlen dabei) ausgibt:

1 Schnecken

2 Blutegel

3 Gorilla-Ohrenschmalz
4 Raupen-Augenbrauen

5 HundertfiiBler-Zehen

#4 Wie viel wiegst Du auf dem Mond?

Wenn Du jetzt auf dem Mond stehen wurdest, wiirde Dein Gewicht dort nur
16,5 % von dem auf der Erde betragen. Du kannst es also berechnen, indem Du
Dein Gewicht auf der Erde mit 0,165 multiplizierst.

Wenn Du nun in den nichsten 15 Jahren jedes Jahr ein Kilo zunehmen wiir-
dest, wie hoch wire dann bei Deiner jahrlichen Mondreise Dein Gewicht dort?
Schreibe ein Programm mit einer for-Schleife, das Dein Gewicht auf dem Mond
fiir jedes der kommenden 15 Jahre ausgibt.

Schleifen drehen



Wiederverwertung Deines Codes mit
Funktionen und Modulen

Uberlege einmal, wie viel Zeug Du jeden Tag wegwirfst: Wasserflaschen, Getrin-
kedosen, Kartoffelchips-Tuten, Frischhaltefolie, Zeitungen, Zeitschriften etc.
Jetzt stelle Dir einmal vor, all dieser Mull wiirde auf einen groffen Haufen auf
Eurer Einfahrt gekippt, ohne dass Papier, Plastik und Dosen getrennt wiirden.

Natiirlich trennst Du Deinen Miill so gut wie mog-
lich, denn niemand méchte auf dem Weg zur Schule tiber
eine Millhalde klettern. Stattdessen werden Deine aus-
sortierten Glasflaschen zu neuen Glisern und Flaschen
eingeschmolzen, das Papier wird zu Recyclingpapier ein-
gestampft, und aus Plastik werden meist grofSere Plastik-
gegenstiande gefertigt. Die Dinge werden also wiederver-
wertet.

In der Welt des Programmierens ist Wiederverwer-
tung genauso wichtig. Naturlich erstickt Dein Programm
nicht unter einem Haufen Mill, aber wenn Du nicht eini-
ges von dem wiederverwertest, was Du schon geschrieben
hast, wiirdest Du Dir die Finger wund tippen. Die Wie-
derverwertung macht Deinen Code auch noch kiirzer und
leichter zu lesen.

Python bietet eine ganze Reihe von Moglichkeiten, Code wiederzuverwerten.
In diesem Kapitel erfihrst Du, wie das geht.

75



76

8.1 Funktionen benutzen

Eine Moglichkeit, um Code in Python wiederzuverwerten, hast Du schon gese-
hen: Im letzten Kapitel haben wir mit den Funktionen range und 1ist Python zih-
len lassen.

>>> Tist(range(0, 5))
[0, 1, 2, 3, 4]

Wenn Du weif$t, wie man zahlt, ist es nicht sehr schwer, eine Liste mit aufsteigen-
den Zahlen selbst einzugeben, aber je linger die Liste wird, umso mehr musst Du
tippen. Mit Funktionen jedoch, kannst Du ganz leicht eine Liste mit tausend Zah-
len erzeugen.

>>> Tist(range(0, 1000))
[o,1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16 .., 997, 998, 999]

Funktionen sind Einheiten von Code, die Python befehlen, etwas Bestimmtes zu
tun. Sie stellen also ein Verfahren dar, um Code wiederzuverwerten — und Du
kannst Funktionen in Deinen Programmen wieder und wieder benutzen.

Wenn Du kleine Programme schreibst, sind Funktionen schon sehr praktisch.
Sobald Du lange und kompliziertere Programme (wie etwa Spiele) schreibst, sind
Funktionen absolut notwendig (falls das Programm noch in diesem Jahrhundert
fertig werden soll).

Teile einer Funktion

Eine Funktion besteht aus drei Teilen: einem Namen, den Parametern und dem
Funktionskorper. Hier siehst Du ein Beispiel fiir eine einfache Funktion:

>>> def Testfunktion(MeinName):
print('Hallo %s' % MeinName)
Der Name der Funktion ist Testfunktion. Sie hat einen einzigen Parameter, Mein-
Name, und der Funktionskorper ist der Code-Block direkt im Anschluss an die
Zeile mit dem def (Abkurzung fur engl. define, »definiere«). Ein Parameter ist
eine Variable, die nur so lange existiert, wie die Funktion benutzt wird. Du
kannst eine Funktion laufen lassen, indem Du ihren Namen aufrufst und den
Wert des Parameters dahinter in Klammern setzt:

>>> Testfunktion('Marie')
Hallo Marie

Die Funktion kann zwei, drei oder jede andere Anzahl von Parametern haben
und nicht nur einen:

Wiederverwertung Deines Codes mit Funktionen und Modulen



>>> def Testfunktion(Vorname, Nachname):
print('Hallo %s %s ' % (Vorname, Nachname))

Die Werte fir diese beiden Parameter werden durch ein Komma getrennt:

>>> Testfunktion('Marie', 'Schmidt')
Hallo Marie Schmidt

Wir konnen auch zuerst einige Variablen erzeugen und dann die Funktion mit
ihnen aufrufen:

>>> Vorname = 'Julian'

>>> Nachname = 'Reichling'

>>> Testfunktion(Vorname, Nachname)
Hallo Julian Reichling

Eine Funktion wird oft mit einer return-Anweisung benutzt, um einen Wert
zuriickzugeben. Du konntest zum Beispiel eine Funktion schreiben, mit der Du
ausrechnen kannst, wie viel Geld Du gespart hast:

>>> def Erspartes(Taschengeld, Zeitung_austragen, Ausgaben):
return Taschengeld + Zeitung_austragen - Ausgaben

Diese Funktion nimmt drei Parameter auf. Sie zihlt die ersten beiden Parameter
zusammen (Taschengeld und Zeitung austragen) und zieht den letzten ab
(Ausgaben). Das Ergebnis wird zuriickgegeben und kann einer Variable zugewie-
sen werden (so wie wir andere Werte auch Variablen zuordnen) oder angezeigt
werden:

>>> print(Erspartes(10, 10, 5))
15

8.2 Variablen und ihr Giiltigkeitsbereich

Eine Variable, die in einem Funktionskorper steckt, kann nicht erneut verwendet
werden, wenn die Funktion durchgelaufen ist, da sie nur innerhalb der Funktion
existiert. In der Welt des Programmierens nennt man das einen Giiltigkeitsbe-
reich.

Lass uns dazu eine einfache Funktion betrachten, die ein paar Variablen
benutzt, aber keine Parameter besitzt:

©® >>> def Variablentest():
erste Variable = 10
zweite_Variable = 20
(2] return erste_Variable * zweite Variable

Variablen und ihr Giiltigkeitsbereich

77



78

Bei diesem Beispiel erzeugen wir in @ eine Funktion Variablentest, die zwei Vari-
ablen miteinander multipliziert (erste Variable und zweite Variable) und das
Ergebnis in @ zuriickgibt.

>>> print(Variablentest)
200

Wenn wir diese Funktion mit print aufrufen, bekommen wir das Ergebnis 200.
Wenn wir allerdings den Inhalt von erste Variable ausgeben wollen (oder auch
den von zweite Variable) und dies nicht innerhalb des Anweisungsblocks der
Funktion tun, bekommen wir eine Fehlermeldung:

>>> print(erste Variable)
Traceback (most recent call last):
File "<pyshell#145>", 1ine 1, in <module>
print(erste Variable)
NameError: name 'erste Variable' is not defined

Sobald dagegen eine Variable auflerhalb der Funktion definiert wird, hat sie einen
anderen Giiltigkeitsbereich. Lass uns zum Beispiel eine Variable definieren, bevor
wir unsere Funktion definieren, und dann versuchen, sie innerhalb der Funktion
zu verwenden:

O >>> weitere Variable = 100
>>> Variablentest2():
erste Variable = 10
zweite Variable = 20
e erste Variable * zweite Variable * weitere Variable

Obwohl in diesem Code die Variablen erste Variable und zweite_Variable nicht
auflerhalb der Funktion verwendet werden konnen, kann die Funktion
weitere Variable (die in @ aufSerhalb der Funktion erzeugt wurde) in @ inner-
halb von ihr benutzt werden.

Wenn diese Funktion aufgerufen wird, erhiltst Du folgendes Ergebnis:

>>> print(Variablentest2())
20000

Jetzt nimm einmal an, Du wolltest ein Raumschiff
bauen, und weil Du ein sparsamer Konstrukteur
bist, verwendest Du gebrauchte Konservendosen.
Du gehst davon aus, dass Du 2 Dosen pro Woche
plattdriicken kannst, um die gebogenen Winde
Deines Raumschiffs zu bauen. Du brauchst aber
ungefihr 500 Dosen, um den Rumpf fertigzustel-

len. Wir konnen uns leicht eine Funktion schreiben,

Wiederverwertung Deines Codes mit Funktionen und Modulen



die uns dabei hilft, herauszufinden, wie lange man zum Plidtten von 500 Dosen
brauchte, wenn man das 2-mal pro Woche macht.

Lass uns eine Funktion erzeugen, die zeigt, wie viele Dosen wir in jeder
Woche bis zu einer Dauer eines Jahres plattgedrickt haben. Unsere Funktion
nimmt die Anzahl der Dosen als Parameter:

>>> def Raumschiffbau(Dosen):
Dosen_gesamt = 0
for Woche in range(1l, 53):
Dosen_gesamt = Dosen_gesamt + Dosen
print('Woche %s = %s Dosen' % (Woche, Dosen gesamt))

In der ersten Zeile unserer Funktion erzeugen wir die Variable Dosen_gesamt und
setzen deren Wert auf 0. Danach erzeugen wir eine Schleife fur die Wochen eines
Jahres und fiigen die Anzahl der geplitteten Dosen pro Woche hinzu. Dieser
Anweisungsblock bildet den Inhalt unserer Funktion. Aber es gibt in dieser Funk-
tion noch einen weiteren Codeblock: die beiden letzten Zeilen, die den Block fur
die for-Schleife darstellen.

Jetzt versuchen wir, die Funktion in die Shell einzugeben, und rufen sie mit
verschiedenen Werten fur die Anzahl der Dosen auf:

>>> Raumschiffbau(2)
Woche 1 = 2 Dosen

Woche 2 = 4 Dosen
Woche 3 = 6 Dosen
Woche 4 = 8 Dosen
Woche 5 = 10 Dosen
Woche 6 = 12 Dosen
Woche 7 = 14 Dosen
Woche 8 = 16 Dosen
Woche 9 = 18 Dosen

Woche 10 = 20 Dosen
(setzt sich fort ..)

>>> Raumschiffbau(13)
Woche 1 = 13 Dosen

Woche 2 = 26 Dosen
Woche 3 = 39 Dosen
Woche 4 = 52 Dosen
Woche 5 = 65 Dosen

(setzt sich fort ..)

Diese Funktion kann mit unterschiedlichen Werten fiir die Anzahl der Dosen pro
Woche wiederverwertet werden. Das ist doch etwas effizienter, als jede for-
Schleife neu einzutippen, wenn man eine andere Zahl ausprobiert.

Funktionen lassen sich zu Modulen zusammenfassen, was Python so richtig
niitzlich macht (und nicht nur »so ein bisschen«).

Variablen und ihr Giiltigkeitsbereich

79



80

Mit Modulen fasst man Funktionen, Variab-

len und andere Dinge zu grofleren, leistungs-

fahigeren Programmen zusammen. Manche

Module sind in Python bereits enthalten,

andere wiederum kannst Du separat herun-

terladen. Du kannst Module finden, die Dir

dabei helfen, Spiele zu schreiben (so wie

tkinter, das eingebaut ist, oder PyGame, das

heruntergeladen werden muss), Module zur Bildbearbeitung (wie PIL, die Python

Imaging Library) oder Module zum Zeichnen von 3D-Grafiken (wie Panda3D).
Module kann man fiir alle moglichen niitzlichen Dinge verwenden. Wenn Du

zum Beispiel einen Simulator bauen willst und méochtest, dass die Spielewelt sich

realistisch dndert, kannst Du das aktuelle Datum und die Uhrzeit mit dem einge-

bauten Modul time berechnen:

>>> time

Hier wird der Befehl import verwendet, um Python zu sagen, dass wir das Modul
time verwenden mochten.

Danach konnen wir die in diesem Modul verfigbaren Funktionen aufrufen,
indem wir einen Punkt setzen. (Du erinnerst Dich, dass wir Funktionen wie diese
im Modul turtle verwendet haben, und zwar in Kapitel 5, etwa t.forward(50).)
Wir kénnten zum Beispiel die Funktion asctime im Modul time aufrufen:

>>> print(time.asctime())
Mon Jan 14 22:16:09 2013

Die Funktion asctime ist Teil des Moduls time und gibt das aktuelle Datum und
die Uhrzeit als String zuriick.
Jetzt stell Dir vor, Du wiirdest jemanden, der Dein
Programm benutzt, bitten wollen, einen Wert einzuge-
ben — zum Beispiel den Geburtstag oder das Alter. Du & /
kannst das bewerkstelligen, indem Du diese Bitte mit
einer print-Anweisung anzeigen ldsst, und das Modul
sys (Abkiirzung fiir System) nutzt, das Hilfsprogramme

enthilt, die mit dem Python-System selbst kommunizie-
ren. Als Erstes importieren wir dazu das Modul sys:

>>> Sys

Innerhalb des Moduls sys gibt es ein Objekt namens
stdin (standard imput), dass die ziemlich niitzliche /
Funktion readline enthilt. Die Funktion readline (engl.

Wiederverwertung Deines Codes mit Funktionen und Modulen



fir »lies Zeile«) macht genau das, was ihr Name sagt: Sie liest eine Zeile Text ein,
die uber die Tastatur eingegeben wird, bis man die Enter-Taste driickt. (Wie
Objekte funktionieren, kliaren wir in Kapitel 9). Um readline einmal zu testen,
gibst Du folgenden Code in die Shell ein:

>>> qmport sys
>>> print(sys.stdin.readline())

Wenn Du danach ein paar Worter eintippst und die Enter-Taste driickst, werden
die Worter in der Shell angezeigt. Jetzt denke noch einmal an den Code zuriick,
den wir in Kapitel 6 mit der if-Anweisung geschrieben haben:

>>> if Alter >= 10 and Alter <= 13:

print('Was ergeben 13 + 49 + 84 + 155 + 977 Kopfschmerzen!')
else:

print('H&h?")

Statt nun die Variable Alter zuvor zu erzeugen und ihr vor der if-Anweisung

einen Wert zuzuordnen, konnen wir jetzt jemanden den Wert (das Alter) eingeben
lassen. Dafiir machen wir aber erst aus dem Code eine Funktion:

>>> def Bloder Alterwitz(Alter):
if Alter >= 10 and Alter <= 13:
print('Was ergeben 13 + 49 + 84 + 155 + 977
Kopfschmerzen!')
else:
print('H&h?")

Jetzt kannst Du die Funktion aufrufen, indem Du ihren Namen eingibst, und

anschliefSend sagen, welche Zahl sie benutzen soll, indem Du die Zahl in Klam-
mern setzt. Klappt das?

>>> Bloder Alterwitz(9)

Hah?

>>> Bloder Alterwitz(10)

Was ergeben 13 + 49 + 84 + 155 + 97?7 Kopfschmerzen!

Es klappt! Jetzt lass uns die Funktion nach dem Alter einer Person fragen. (Du
kannst eine Funktion so oft dndern oder erweitern, wie Du willst.)

>>> def Bloder Alterwitz():
print('Wie alt bist Du?"')
Alter = int(sys.stdin.readline())
it Alter >= 10 and Alter <= 13:
print('Was ergeben 13 + 49 + 84 + 155 + 977
Kopfschmerzen!')

(V)

print('Héh?")

Einsatz von Modulen

81



82

Hast Du die Funktion int in @ erkannt, die aus dem String eine Zahl macht? Wir
haben diese Funktion mit eingebaut, weil readline() aus jeder Eingabe, die
jemand macht, einen String erzeugt. Wir brauchen nun aber eine Zahl, um die
Eingabe mit den Zahlen 10 und 13 in ® zu vergleichen. Um das jetzt selbst ein-
mal auszuprobieren, gibst Du die Funktion ohne irgendwelche Parameter ein;
und wenn die Frage Wie alt bist Du? erscheint, gibst Du eine Zahl ein:

>>> Bloder Alterwitz()

Wie alt bist Du?

10

Was ergeben 13 + 49 + 84 + 155 + 97?7 Kopfschmerzen!
>>> Bloder Alterwitz()

Wie alt bist Du?

15

Hah?

8.4 Was Du gelernt hast

In diesem Kapitel hast Du gesehen, wie man in Python wiederverwertbare Code-
Abschnitte mit Funktionen erstellt und wie man Funktionen verwendet, die von
Modulen bereitgestellt werden. Du hast gelernt, wie der Giiltigkeitsbereich von
Variablen bestimmt, ob sie innerhalb oder aufSerhalb einer Funktion liegen, und
wie man das Schlisselwort def benutzt. Du hast auch herausgefunden, wie man
Module importiert, damit Du ihren Inhalt verwenden kannst.

8.5 Programmier-Puzzles

Probiere einmal die folgenden Beispiele aus, um mit Deinen selbst erzeugten
Funktionen zu experimentieren. Die Losungen findest Du unter

www.dpunkt.de/python.

#1: Einfache Funktion fiir Dein Gewicht auf dem Mond

In einem der Puzzles zu Kapitel 7 hast Du eine for-
Schleife erzeugt, um Dein Gewicht auf dem Mond

Uber einen Zeitraum von 15 Jahren zu bestimmen. @ @
Diese for-Schleife kannst Du ganz einfach in eine JC_J\‘&\J
Funktion verwandeln. Versuche eine Funktion zu 4
erzeugen, die ein Startgewicht aufnimmt und das @

Gewicht jedes Jahr steigen lasst. Du konntest die neue
Funktion etwa mit diesem Code aufrufen:

>>> Mondgewicht (30, 0.25)

Wiederverwertung Deines Codes mit Funktionen und Modulen



#2: Was wiegst Du auf dem Mond nach x Jahren?

Nimm die Funktion, die Du eben erzeugt hast, und andere sie so, dass sie Dein
Gewicht uber verschiedene Zeitabschnitte (iiber 5 oder 20 Jahre) bestimmt.
Achte darauf, dass sie drei Argumente aufnimmt: das Startgewicht, die Gewichts-
zunahme innerhalb eines Jahres und die Gesamtzahl der Jahre:

>>> Mondgewicht (40, 0.25, 5)

#3: Ein Programm fiir Dein Gewicht auf dem Mond

Statt einer einfachen Funktion, bei der Du die Werte als Parameter weitergibst,
kannst Du ein Mini-Programm schreiben, das die Werte mit der Funktion
sys.stin.readline() abfragt. Danach kannst Du die Funktionen ohne Parameter
aufrufen:

>>> Mondgewicht ()

Die Funktion zeigt dann eine Mitteilung, die erst nach dem Startgewicht fragt,
nach dessen Eingabe nach der Gewichtszunahme in einem Jahr und abschliefSend
nach der Gesamtzahl der Jahre. Das sollte dann so aussehen:

Bitte gibt Dein momentanes Gewicht auf der Erde ein

45

Bitte gib die jahrliche Gewichtszunahme ein
0.4

Gib nun die Gesamtzahl der Jahre ein

12

Vergiss nicht, vor der Erzeugung Deiner Funktion das Modul sys zu importieren:

>>> import sys

Programmier-Puzzles

83






Wie man Klassen und Objekte benutzt

Was haben eine Giraffe und ein Biirgersteig gemeinsam? Beide sind Dinge, die
man im Deutschen als Substantive und in Python als Objekte bezeichnet.

Das Konzept von Objekten ist in der Computerwelt sehr wichtig. Mit Objek-
ten wird der Code in einem Programm strukturiert und Dinge in kleinere Stiicke
aufgeteilt, damit es leichter wird, kompliziertere Ideen zu verwirklichen. (In
Kapitel 5 haben wir schon mit einem Objekt gearbeitet, dem Schildkroten-Zei-
chenstift Pen).

Um wirklich zu verstehen, wie Objekte in Python funktionieren, miissen wir
einmal kurz tiber unterschiedliche Typen von Objekten nachdenken. Gehen wir
einmal von Giraffen und Biirgersteigen aus.

Eine Giraffe ist ein bestimmter Typ von Sdu-
getier, das wiederum einen Typ von Tier dar-
stellt. Eine Giraffe ist auch ein belebtes Objekt —
es lebt.

Jetzt denken wir einmal an einen Biirger-
steig. Aufler, dass er kein lebendiges Ding ist,
gibt es kaum etwas uber ihn zu sagen. Nennen
wir ihn ein unbelebtes Objekt (schliefSlich lebt
er nicht). Die Begriffe Sdugetier, Tier, belebt und
unbelebt sind alles Moglichkeiten, um Dinge zu
klassifizieren.

85



86

In Python werden Objekte durch sogenannte Klassen definiert. Wir kénnen uns
das so vorstellen, dass wir Objekte in Gruppen klassifizieren. Hier siehst Du ein
Baumdiagramm der Klassen, in die Giraffen und Biirgersteige aufgrund unserer
bisherigen Definitionen passen wiirden:

Dinge

Unbelebt Belebt
Blrgersteige Tiere
Saugetiere

Giraffen

Die Hauptklasse ist Dinge. Unter der Klasse Dinge haben wir die Klassen Belebt
und Unbelebt angelegt. Diese beiden werden weiter aufgeteilt. In der Klasse Unbe-
Tebt gibt es einfach nur noch die Biirgersteige. In der Klasse Belebt geht es aber
noch weiter: erst mit Tiere, dann mit Siugetiere und schliefSlich mit Giraffen.

Mit Klassen konnen wir Abschnitte des Python-Codes strukturieren. Alle
Dinge, die Pythons Modul turtle kann (also sich vorwirts, riickwirts, nach links
und rechts bewegen), sind Funktionen der Klasse Pen. Ein Objekt kann man sich
als Angehorigen einer Klasse vorstellen, und man kann so viele Objekte in eine
Klasse packen, wie man mochte — dazu folgt bald mehr.

Jetzt erzeugen wir den gleichen Satz von Klassen von oben nach unten, wie
wir ihn im Baumdiagramm oben sehen. Die Klassen definieren wir durch das
Schliisselwort class, hinter das wir den Klassennamen schreiben. Da Dinge die
allgemeinste Klasse darstellt, erzeugen wir sie als erste:

>>> Dinge:

Wir nennen die Klasse Dinge und verwenden die Anweisung pass, um Python
dadurch mitzuteilen, dass wir keine weiteren Informationen eingeben.

Als Nichstes fiigen wir die anderen Klassen hinzu und bauen einige Verbin-
dungen zwischen ihnen auf.

Wie man Klassen und Objekte benutzt



Kinder und Eltern

Sobald eine Klasse Teil einer anderen Klasse wird, ist sie ein Kind dieser Klasse,
die wiederum zur Elternklasse wird. Klassen konnen gleichzeitig sowohl Kinder-
als auch Elternklassen von anderen Klassen sein. In unserem Baumdiagramm ist
die Klasse iiber einer Klasse deren Elternklasse und die Klasse darunter ihr Kind.
Unbelebt und Belebt sind jeweils Kinder der Klasse Dinge, Dinge ist also deren
Elternklasse. Damit Python weifs, dass eine Klasse Kind einer anderen Klasse ist,
schreiben wir den Namen der Elternklasse in Klammern hinter den Namen der
neuen Klasse:

>>> class Unbelebt(Dinge):
pass

>>> class Belebt(Dinge):
pass

Hier haben wir zuerst eine Klasse namens Unbelebt erzeugt und Python mit dem
Code class Unbelebt(Dinge) mitgeteilt, dass deren Elternklasse Dinge ist. Als
Nichstes erzeugen wir die Klasse Belebt und sagen Python, dass ihre Elternklasse
ebenso Dinge ist, indem wir class Belebt (Dinge) schreiben.

Probieren wir jetzt das Gleiche mit der Klasse Biirgersteig. Wir erzeugen die
Klasse Biirgersteig mit der Elternklasse Unbelebt:

>>> class Biirgersteig(Unbelebt):
pass

Und die Klassen Tiere, Saugetiere und Giraffen konnen wir durch deren Eltern-
klassen ebenfalls strukturieren:

>>> class Tiere(Belebt):
pass

>>> class Sdugetiere(Tiere):
pass

>>> class Giraffen(Sdugetiere):
pass

9.2 Klassen Objekte hinzufiigen

Jetzt haben wir einen Haufen Klassen, aber wie wire es, wir konnten ein paar
Dinge in diese Klassen tun? Sagen wir einmal, wir hatten eine Giraffe, die Wie-
gand heifst. Wir selbst wissen zwar, dass Wiegand in die Klasse der Giraffen
gehort, aber wie sagen wir es dem Programm, dass es sich bei Wiegand um eine
einzelne Giraffe handelt? Einfach, indem wir Wiegand ein Objekt (manchmal

Klassen Objekte hinzufligen

87



wird auch der Begriff Instanz gebraucht) der Klasse Giraffen nennen. Um nun
Wiegand in Python »einzufiihren«, benutzen wir diese Programmzeile:

>>> wiegand = Giraffen()

Mit diesem Code sagst Du Python, dass es ein Objekt in der Klasse Giraffen anle-
gen soll und dieses Objekt der Variable wiegand zuweisen soll. Wie bei einer Funk-
tion stehen auch hier nach dem Klassennamen zwei Klammern. Spiter werden
wir in diesem Kapitel noch sehen, wie man Objekte erzeugt und dabei in den
Klammern Parameter verwendet.

Aber was macht jetzt das Objekt wiegand? Nun, im Moment eigentlich nichts.
Um etwas mit unseren Objekten anfangen zu konnen, miissen wir auch Funktio-
nen definieren, die mit den Objekten in dieser Klasse benutzt werden konnen.
Anstatt einfach nur das Schliisselwort pass direkt nach der Definition der Klasse
einzugeben, konnen wir der Klasse Funktionen hinzufiigen.

9.3 Funktionen von Klassen definieren

In Kapitel 8 haben wir die Funktionen eingefiihrt, mit denen wir Code wiederver-
wenden konnen. Wenn wir eine Funktion definieren, die zu einer Klasse gehort,
machen wir das genau so wie bei jeder anderen Funktion. Der einzige Unter-
schied besteht darin, dass wir sie unter der Klassendefinition einriicken. Hier ist
zum Beispiel eine Funktion, die #icht zu einer Klasse gehort:

>>> def Dies_ist_eine _normale Funktion():
print('Ich bin eine normale Funktion')

Und hier sind ein paar Funktionen, die zu einer Klasse gehoren:

>>> class DiesIstMeineKomischeKlasse:
def Dies_ist_eine_Klassenfunktion():
print('Ich bin eine Klassenfunktion')
def Dies_ist_auch_eine Klassenfunktion():
print('Ich bin auch eine Klassenfunktion. Siehste?')

Klasseneigenschaften als Funktionen hinzufiigen

Denke noch einmal an die Kinderklassen der Klasse Belebt, die wir auf Seite 87
definiert haben. Wir konnen jeder Klasse Eigenschaften zuweisen, die beschrei-
ben, was die Klasse ist und was sie tun kann. Eine solche Eigenschaft haben alle
Angehorigen dieser Klasse (und deren Kinder) gemeinsam.

Was haben zum Beispiel alle Tiere gemeinsam? Nun, da wire zunichst ein-
mal das Atmen. Sie bewegen sich auch noch und fressen. Wie ist das jetzt mit den
Saugetieren? Siugetiere erndhren ihre Nachkommen mit Milch. Und auch sie

Wie man Klassen und Objekte benutzt



atmen, bewegen sich und fressen. Von Giraffen wissen wir, dass sie Blatter hoch
oben von Baumen fressen und, wie alle Saugetiere, ihre Nachkommen mit Milch
erndhren, atmen, sich bewegen und fressen. Wenn wir alle diese Eigenschaften in
ein Baumdiagramm zeichnen, sieht das so aus:

Atmen
Tiere Bewegen sich
Fressen
Saugetiere Ernahren Nachkommen mit Milch
Giraffen Fressen Blatter von Baumen

Diese Eigenschaften kann man sich als Tatigkeiten oder Funktionen vorstellen —
Dinge, die ein Objekt einer Klasse tun kann.

Um einer Klasse eine Funktion zuzuweisen, verwenden wir das Schlisselwort
def. Die Klasse Tiere sieht demnach so aus:

>>> Tiere(Belebt):
atmen(self):

bewegen(self):

fressen(self):

In der ersten Zeile dieses Listings beschreiben wir die
Klasse wie schon zuvor. Anstatt nun aber in der nichsten
Zeile direkt das Schliisselwort pass zu verwenden, definie-
ren wir die Funktion atmen und geben ihr einen Parame-
ter: self. Mit dem Parameter self kann eine Funktion
innerhalb der Klasse eine andere in dieser Klasse (und

ihrer Elternklasse) aufrufen. Wir werden diesen Parame-
ter spater noch in Aktion sehen.

In der nachsten Zeile teilt das Schlusselwort pass Python mit, dass wir keine
weiteren Informationen zu der Funktion atmen liefern, da diese Funktion jetzt
noch nichts tun soll. Genauso fiigen wir die Funktionen bewegen und fressen
hinzu, da auch diese noch nichts machen. Wir werden die Klassen bald neu erstel-
len und ordentlichen Code in die Funktionen schreiben. Programme werden hau-
fig auf diese Weise entwickelt. Programmierer erzeugen oft Klassen, die nichts
tun, um zunichst herauszufinden, was die Klassen tun sollen, und fiigen die
Details der einzelnen Funktionen dann spiter ein.

Wir konnen den anderen beiden Klassen, Siugetiere und Giraffen, auch
Funktionen zuweisen. Jede Klasse wird dann die Eigenschaften (die Funktionen)

Funktionen von Klassen definieren 89



20

ihrer Elternklasse nutzen konnen. Das bedeutet, dass Du nicht eine komplizierte
Klasse erzeugen musst, sondern diejenigen Funktionen in die hochste Elternklasse
legst, fur die die Eigenschaften zutreffen sollen. (So kannst Du Deine Klassen ein-
facher machen, und sie sind dadurch leichter zu verstehen.)

>>> Saugetiere(Tiere):
erndhren_Nachkommen mit Milch(self):

>>> Giraffen(Sdugetiere):
fressen Bldtter von Baumen(self):

Jetzt haben wir unseren Klassen Funktionen hinzugefiigt, aber wofiir brauchen
wir denn eigentlich Klassen und Objekte, wenn man auch einfach so Funktionen
wie atme, bewegen und fressen schreiben kann?

Um diese Frage zu beantworten, kommt wieder unsere Giraffe Wiegand zum
Einsatz, die wir schon vorher als Objekt der Klasse Giraffen erzeugt haben:

>>> wiegand = Giraffen()

Da wiegand ein Objekt ist, konnen wir Funktionen aufrufen (oder ausfithren), die
zu seiner Klasse (der Klasse Giraffen) gehoren, und auch die Funktionen seiner
Elternklassen. Wir konnen die Funktionen auf ein Objekt anwenden, indem wir
den Operator Punkt und den Namen der Funktionen benutzen. Um Wiegand zu
sagen, dass er sich bewegen oder fressen soll, rufen wir die Funktionen folgender-
maflen auf:

>>> wiegand = Giraffen()
>>> wiegand.bewegen ()
>>> wiegand.fressen Bldtter von B&umen()

Nehmen wir an, Wiegand hitte einen Artgenossen zum Freund, Heribert. Wir
erzeugen ein anderes Giraffen-Objekt mit dem Namen heribert:

>>> heribert = Giraffen()

Weil wir Objekte und Klassen benutzen, konnen wir Python genau sagen, welche
Giraffe gemeint ist, wenn wir die Funktion bewegen auf sie anwenden. Wenn wir
beispielsweise mochten, dass Heribert sich bewegt und Wiegand stehen bleiben
soll, rufen wir die Funktion bewegen mit unserem Objekt heribert auf:

>>> heribert.bewegen ()

In diesem Fall wiirde sich nur Heribert bewegen.

Wie man Klassen und Objekte benutzt



Wir dndern jetzt die Klassen ein wenig, um das noch klarer zu machen. Wir
fiigen anstelle von pass jeder Funktion eine print-Anweisung hinzu:

>>> class Tiere(Belebt):
def atmen(self):
print('atmen')
def bewegen(self):
print('bewegen')
def fressen(self):
print('fressen')

>>> class Sdugetiere(Tiere):
def erndhren_Nachkommen mit Milch(self):
print('Nachkommen erndhren')

>>> class Giraffen(Sdugetiere):
def fressen Blatter von B&umen(self):
print('Bldtter fressen')

Wenn wir jetzt unsere Objekte wiegand und heribert erzeugen und auf sie Funk-
tionen anwenden, konnen wir sehen, dass etwas passiert:

>>> wiegand = Giraffen()

>>> heribert = Giraffen()

>>> wiegand.bewegen()

bewegen

>>> heribert.fressen Blatter von Bdumen()
Bldtter fressen

In den ersten beiden Zeilen erzeugen wir die Variablen
wiegand und heribert, die nun Objekte der Klasse
Giraffen sind. Als Nichstes rufen wir die Funktion
bewegen fiir wiegand auf, und Python gibt in der nichs-
ten Zeile bewegen aus. Auf die gleiche Weise rufen wir
fur heribert die Funktion fressen Bldtter von B&umen
auf, und Pyton zeigt Blatter fressen an. Wenn es echte
Giraffen und nicht nur Objekte in Python wiren,
wiirde die eine jetzt laufen und die andere fressen.

9.5 Objekte und Klassen bei Bildern

Wie wire es mit einem grafischen Ansatz bei Objekten und Klassen?

Lass uns dazu zum Modul turtle zuriickkehren, mit dem wir in Kapitel §
herumgespielt haben. Wenn wir turtle.Pen() eingeben, erzeugt Python ein
Objekt in der Klasse Pen, die wiederum im Modul turtle enthalten ist. Wir kon-
nen — genau wie bei den beiden Giraffen — zwei Schildkroten-Objekte erzeugen
(mit Namen Amanda und Kite):

Objekte und Klassen bei Bildern

91



92

>>> turtle
>>> amanda = turtle.Pen()
>>> kite = turtle.Pen()

Jedes Schildkroten-(turtle-)Objekt gehort jetzt der Klasse Pen an.

Jetzt werden die Objekte so richtig niitzlich. Dadurch, dass wir unsere Schild-
kroten-Objekte erzeugt haben und fiir jedes von ihnen Funktionen aufrufen kon-
nen, konnen sie unabhingig voneinander zeichnen. Probiere es aus:

>>> amanda.forward(50)
>>> amanda.right (90)
>>> amanda.forward(20)

Mit dieser Reihe von Anweisungen sagen wir Amanda, dass sie sich 50 Pixel vor-
wirts bewegen soll, dann um 90 Grad nach rechts abbiegen und sich anschlie-
Send 20 Pixel nach unten bewegen soll. Denk daran, dass sich die Schildkroten
immer nach rechts schauend in Bewegung setzen.

Jetzt ist Kate mit der Bewegung dran:

>>> kite.left(90)
>>> kite.forward(100)

Wir sagen Kite also, dass sie um 90 Grad nach links abbiegen und dann 100 Pixel
vorwirts gehen soll, sodass sie am Ende nach oben schaut.

Bis jetzt haben wir eine Linie mit Pfeilspitzen, die in zwei verschiedene Rich-
tungen zeigen, wobei jede Pfeilspitze fur ein unterschiedliches Schildkroten-
Objekt steht: Amanda zeigt nach unten, Kate nach oben.

74 Python Turtle Graphics [e]l= ][ =]

Jetzt tun wir noch eine dritte Schildkrote, Jakob, dazu und bewegen auch ihn,
ohne Kite und Amanda zu stéren:

Wie man Klassen und Objekte benutzt



>>> jakob = turtle.Pen()
>>> jakob.left(180)
>>> jakob.forward(80)

Als Erstes erzeugen wir wieder ein
Pen-Objekt namens jakob und drehen
es 180 Grad nach links. Dann bewe-
gen wir ihn 80 Pixel vorwirts. Mit

drei Schildkroten sieht unsere Zeich-
nung so aus:

~

74 Python Turtle Graphics |£»||_EI [_23_|

Beachte, dass jedes Mal, wenn wir turtle.Pen() aufrufen, um eine Schildkréte zu
erzeugen, ein neues, unabhangiges Objekt entsteht. Jedes dieser Objekte gehort
noch zu der Klasse Pen, sodass wir dieselben Funktionen auf jedes Objekt anwen-
den konnen. Weil wir jedoch Objekte verwenden, konnen wir jede Schildkrote
einzeln bewegen. Wie auch unsere unabhingigen Giraffen-Objekte (Wiegand und
Heribert) sind Amanda, Kite und Jakob unabhingige Schildkréten-Objekte.
Wenn wir ein neues Objekt mit dem einem Objektnamen erzeugen wirden, den
wir schon zuvor verwendet haben, verschwindet das alte Objekt nicht unbedingt.
Probiere es selbst aus: Erzeuge eine zweite Kate, und versuche, sie zu bewegen.

9.6 Weitere niitzliche Eigenschaften von Objekten und Klassen

Klassen und Objekte erleichtern das Zusammenfassen von Funktionen. Sie sind
auch sehr niitzlich, wenn wir ein Programm in kleineren Abschnitten angehen
wollen.

Stellen wir uns zum Beispiel eine richtig grofSe Software vor, so etwas wie eine
Textverarbeitung oder ein 3D-Computerspiel. Fiir die allermeisten Menschen ist
es einfach unmoglich, grofle Programme wie diese zu verstehen, da sie aus so viel

Weitere nitzliche Eigenschaften von Objekten und Klassen

93



94

Code bestehen. Aber sobald man diese Monsterprogramme in kleine Stiicke
unterteilt, kann man die Stiicke verstehen. Natiirlich nur, wenn man die Program-
miersprache versteht.

Wenn Du ein grofles Programm schreibst, hilft Dir die Unterteilung auch
dabei, Dir die Arbeit mit anderen Programmierern zu teilen. Die kompliziertesten
Programme, die Du benutzt (wie etwa Dein Webbrowser), wurden von vielen
Leuten oder ganzen Teams gemeinsam geschrieben, die jeweils an unterschied-
lichen Teilen gleichzeitig gearbeitet haben — und das auf der ganzen Welt verteilt.

Jetzt stell Dir einmal vor, wir wollten einige
unserer Klassen, die wir in diesem Kapitel erzeugt
haben (Tiere, Sdugetiere und Giraffen) erweitern.
Wir sind aber so beschiftigt, dass wir unsere
Freunde bitten, uns dabei zu helfen. Wir konnen
uns die Arbeit am Code so aufteilen, dass der eine
Freund an der Klasse Tiere, ein anderer an der
Klasse Sdugetiere und ein weiterer an der Klasse

Giraffen arbeitet.

9.7 Geerbte Funktionen

Denjenigen von Euch, die gut aufgepasst haben, ist vielleicht aufgefallen, dass der
Freund, der mit der Klasse Giraffen arbeitet, Gliick gehabt hat. Jede Funktion,
die die Leute fir die Klassen Tiere und Sdugetiere erzeugt haben, kann nimlich
auch von der Klasse Giraffen verwendet werden. Die Klasse Giraffen erbt also die
Funktionen der Klasse Siugetiere, die wiederum die Funktionen der Klasse Tiere
erbt. Anders gesagt: Wenn wir ein Giraffen-Objekt erzeugen, konnen wir sowohl
die Funktionen der Klasse Giraffen nutzen als auch die Funktionen, die in den
Klassen Siugetiere und Tiere definiert worden sind. Und wenn wir ein Sdugetier-
Objekt erzeugen, konnen wir genauso die Funktionen in der Siugetier-Klasse
sowie in deren Elternklasse Tiere verwenden.

Atmen
Tiere Bewegen sich

Fressen
«

. . 4
Saugetiere - === .0 auch diese

Funktionen verwenden

Obwohl Wiegand ein Objekt der Klasse Giraffen ist, konnen wir die Funktion
bewegen aufrufen, die wir in der Klasse Tiere definiert haben, da jede Funktion der
Elternklasse den Kinderklassen zur Verfugung steht:

>>> wiegand = Giraffen()

Wie man Klassen und Objekte benutzt



>>> wiegand.bewegen ()
bewegen

Es ist sogar so, dass alle Funktionen, die wir in den Klassen Tiere und Siugetiere
definiert haben, von unserem Objekt wiegand aufgerufen werden konnen, da die
Funktionen vererbt werden:

>>> wiegand = Giraffen()

>>> wiegand.atmen ()

atmen

>>> wiegand.fressen()

fressen

>>> wiegand.erndhrt_Nachkommen mit Milch()
Nachkommen erndhren

9.8 Funktionen, die andere Funktionen aufrufen

Wenn wir fur ein Objekt Funktionen aufrufen, schreiben wir dazu den Variablen-
namen des Objekts. Hier rufen wir zum Beispiel die Funktion bewegen fur die
Giraffe Wiegand auf:

>>> wiegand.bewegen()

Damit eine Funktion in der Klasse Giraffen die Funktion bewegen aufruft, wiirden
wir stattdessen den Parameter self einsetzen. Mit dem self-Parameter kann eine
Funktion in der Klasse eine andere aufrufen. Wenn wir zum Beispiel der Klasse
Giraffen die Funktion finde_Futter hinzuftigen, schreiben wir:

>>> class Giraffen(Sdugetiere):
def finde Futter(self):
self.bewegen()

print('Ich habe Futter gefunden!')
self.fressen()

Jetzt haben wir eine Funktion erzeugt, die zwei weitere Funktionen kombiniert.
Das wird beim Programmieren hiufig gemacht. Dabei schreibt man oft eine
Funktion, die etwas Niitzliches tut, um sie dann innerhalb einer anderen Funk-
tion verwenden zu konnen. (Wir machen das in Kapitel 14, wo wir noch kompli-
ziertere Funktionen erzeugen werden, um ein Spiel zu schreiben.)

Funktionen, die andere Funktionen aufrufen

95



Wir benutzen jetzt self, um der Klasse Giraffen einige Funktionen hinzuzufiigen:

>>> class Giraffen(Sdugetiere):

def finde Futter(self):
self.bewegen()
print('Ich habe Futter gefunden!')
self.fressen()

def fressen Blatter von Bédumen(self):
self.fressen()

def mach_ein_Tanzchen(self):
self.bewegen()
self.bewegen()
self.bewegen()
self.bewegen()

Wir benutzen die Funktionen fressen und bewegen der
Elternklasse Tiere, um fressen Bldtter von Biumen und
mach_ein Tadnzchen fiir die Klasse Giraffen zu definieren,
weil sie geerbte Funktionen sind. Dadurch, dass wir
Funktionen hinzufiigen, die auf diese Weise weitere Funk-
tionen aufrufen, konnen wir eine einzelne Funktion auf-
rufen, die mehr als nur eine Sache tun kann. Wenn wir
jetzt die Funktion mach_ein_Tdnzchen aufrufen, siehst Du,
was passiert — unsere Giraffe bewegt sich viermal (das

heifst, der Text »bewegen« wird viermal angezeigt):

>>> wiegand = Giraffen()

>>> wiegand.mach_ein_Tdnzchen()
bewegen

bewegen

bewegen

bewegen

9.9 Ein Objekt initialisieren

Manchmal wollen wir bei der Erstellung eines Objekts einige Werte (auch Attri-
bute genannt) fiir spater festlegen. Sobald wir ein Objekt initialisiert haben, ist es
bereit fiir den Einsatz.

Stell Dir zum Beispiel vor, Du willst die Anzahl der Fellflecken auf unseren
Giraffen-Objekten festlegen, wihrend diese Objekte erzeugt werden — wenn sie
also initialisiert werden. Dafiir erzeugen wir eine __init_ -Funktion (achte dar-
auf, dass es zwei Unterstrich-Zeichen auf jeder Seite gibt, also insgesamt vier).
Die init-Funktion ist eine besondere Art von Funktionen in Python-Klassen und

Wie man Klassen und Objekte benutzt



muss daher genau diesen Namen tragen. Mit der Funktion init legt man die
Attribute eines Objekts bei dessen Erzeugung fest. Python ruft dann diese Funk-
tion automatisch auf, sobald wir ein neues Objekt erzeugen. Und das geht so:

>>> Giraffen:
__init_ (self, Flecken):
self.Giraffenflecken = Flecken

Als Erstes definieren wir die Funktion init mit den beiden Parametern self und
Flecken: def __init_ (self, Flecken):. Wie bei den anderen Funktionen, die wir
in der Klasse definiert haben, braucht auch die init-Klasse self als ersten Para-
meter. Als Nichstes legen wir den Parameter Flecken als Variable eines Objekts
(also seines Attributs) namens Giraffenflecken mit dem Parameter self fest:
self.Giraffenflecken = Flecken. Du kannst Dir diese Zeile Code auch vorstellen
als: »Nimm den Wert des Parameters Flecken, und speichere ihn fur spater (mit
der Objekt-Variable Giraffenflecken.« Genauso, wie eine Funktion in einer
Klasse eine andere mit dem Parameter self aufrufen kann, kann man mit self
auch Parameter und Variablen in der Klasse aufrufen.

Wenn wir nun als Nichstes ein paar neue Giraffen-Objekte (Oswald und
Gertrud) erzeugen und deren Anzahl von Flecken anzeigen lassen wollen, siehst
Du die Initialisierungsfunktion in Aktion:

>>> oswald = Giraffen(100)

>>> gertrud = Giraffen(150)

>>> print(oswald.Giraffenflecken)
100

>>> print(gertrud.Giraffenflecken)
150

Als Erstes erzeugen wir ein Objekt in der Giraffen-Klasse mit dem Parameter-
Wert 100. Dadurch wird die __init__-Funktion aufgerufen und 100 als Wert fur
den Parameter Flecken festgelegt. Als Nichstes erzeugen wir noch ein Objekt in
der Klasse Giraffen, diesmal mit 150. Als Letztes geben wir die Objektvariable
Giraffenflecken fiir jedes der Giraffen-Objekte aus. Wir sehen, dass die Ergeb-
nisse 100 und 150 sind: Es hat also geklappt!

Achte aber auf folgenden Unterschied: Wenn man ein Objekt einer Klasse
erzeugt, wie etwa oben oswald, konnen wir uns auf dessen Variablen oder Funk-
tionen beziehen, indem wir den Punkt-Operator und den Namen der Variable oder
Funktion hinschreiben, die wir benutzen wollen (z.B. oswald.Giraffenpunkte).
Wenn wir dagegen Funktionen innerhalb einer Klasse erzeugen, beziehen wir uns
auf die gleichen Variablen (und andere Funktionen) mit dem Parameter self
(self.Giraffenpunkte).

Ein Objekt initialisieren

97



9.10 Was Du gelernt hast

In diesem Kapitel haben wir Klassen benutzt, um Kategorien von Dingen zu
erzeugen und haben Objekte (oder Instanzen) dieser Klassen erzeugt. Du hast
gelernt, wie die Kinder einer Klasse die Funktionen der Elternklasse erben und
dass zwei Objekte, obwohl sie den gleichen Namen haben, nicht unbedingt Klone
(also genau gleich) sein miissen. Ein Giraffen-Objekt zum Beispiel kann seine
eigene Anzahl von Flecken haben. Du hast auch gelernt, wie man Funktionen fiir
ein Objekt aufruft (oder ausfithren ldsst) und wie man Objektvariablen nutzt, um
Werte in diesen Objekten zu speichern. Am Ende haben wir den Parameter self
in Funktionen genutzt, um uns auf andere Funktionen und Variablen zu beziehen.
Dies sind grundlegende Konzepte in Python, denen Du immer wieder in diesem
Buch begegnen wirst.

9.11 Programmier-Puzzles

Den Sinn hinter einigen Konzepten in diesem Kapitel wirst Du immer besser ver-
stehen, je hiufiger Du sie anwendest. Probiere sie mit den folgenden Beispielen
aus, und uiberpriife die Antworten auf www.dpunkt.de/python.

#1: Der Giraffen-$chiebetanz

Fige der Klasse Giraffen Funktionen hinzu, um die linken und rechten Hufe der
Giraffe vorwiarts und ruckwirts zu bewegen. Eine Funktion zum Bewegen der
linken Hufe nach vorn kénnte so aussehen:

>>> def linke Hufe_ vor(self):
print('linke Hufe vor'")

Erstelle dann eine Funktion namens tanzen, um Wiegand das Tanzen beizubrin-
gen (die Funktion wird die vier Hufe-Funktionen aufrufen, die Du gerade erzeugt
hast). Nach dem Aufrufen dieser neuen Funktion ist das Ergebnis ein kleiner
Tanz:

>>> wiegand = Giraffen()
>>> wiegand.tanzen()
linke Hufe vor

linke Hufe zuriick
rechte Hufe vor

rechte Hufe zuriick
linke Hufe zuriick
rechte Hufe zuriick
rechte Hufe vor

linke Hufe zuriick

98 Wie man Klassen und Objekte benutzt



#2: Schildkréten-Heugabel

Erzeuge das folgende Bild einer Heugabel mit vier Schildkroten-Pen-Objekten (die
genaue Linge der Linien ist unwichtig). Denke daran, dass Du dazu erst das

Modul turtle importieren musst!

Programmier-Puzzles 99






Pythons eingebaute Funktionen

Mit Python installierst Du einen gut ausgestatteten Programmier-Werkzeugkas-
ten, in dem viele Funktionen und Module enthalten sind, die Du nutzen kannst.
Wie ein zuverldssiger Hammer oder Schraubenschliissel konnen Dir diese einge-
bauten Werkzeuge — in Wirklichkeit sind es natiirlich Einheiten von Code — das
Schreiben von Programmen sehr erleichtern.

Wie Du schon in Kapitel 8 gelernt hast, miissen Module importiert werden,
bevor Du sie benutzen kannst. Die in Python eingebauten Module miissen dage-
gen nicht erst importiert werden. Sie sind sofort verfiigbar, sobald die Python-
Shell startet. In diesem Kapitel schauen wir uns einige niitzliche eingebaute Funk-
tionen an und werden uns dann auf eine von ihnen konzentrieren: auf die Funk-
tion open, mit der Du Dateien 6ffnen kannst, um in ihnen zu lesen und zu schrei-
ben.

Wir werden uns jetzt 12 eingebaute Funktionen ansehen, die haufig von Python-
Programmierern verwendet werden. Ich werde beschreiben, was sie tun und wie
man sie benutzt. AnschliefSend zeige ich in Beispielen, wie sie uns in unseren Pro-

grammen helfen konnen.

101



102

Die abs-Funktion

Die Funktion abs gibt den Betrag einer Zahl zuriick. Der Betrag ist der Wert einer
Zahl ohne Vorzeichen. Der Betrag von 10 ist 10, und der Betrag von -10 ist eben-
falls 10.

Um die Funktion abs zu benutzen, rufst Du sie einfach mit einer Zahl oder
Variable als ihr Parameter auf:

>>> print(abs(10))
10

>>> print(abs(-10))
10

Mit der Funktion abs kannst Du so etwas wie die abso-
lute Bewegung einer Figur in einem Spiel berechnen,
egal, in welche Richtung sich diese Figur bewegt. Neh-
men wir zum Beispiel an, eine Figur bewegt sich drei
Schritte nach rechts (+3) und tritt dann zehn Schritte
nach links (-10). Wenn wir uns nicht um die Richtung
kimmern wurden, wiren die absoluten Werte dieser

Zahlen 3 und 10. Das kénntest Du zum Beispiel in
einem Brettspiel gebrauchen, bei dem Du zweimal wiirfelst und dann je nach
Gesamtpunktzahl die Figur eine Gesamtzahl an Schritten auf dem Brett machen
ldsst. Wenn wir jetzt die Anzahl der Schritte in einer Variablen speichern, kénnen
wir bestimmen, ob die Figur mit dem Code unten bewegt wird. Falls sich der
Spieler dazu entschlossen hat, sich zu bewegen (in diesem Fall wird nur die Mit-
teilung »Figur bewegt sich« angezeigt), soll eine Nachricht erscheinen:

>>> Schritte = -3
>>> if abs(Schritte) > 0:
print('Figur bewegt sich')

Hitten wir nicht die Funktion abs verwendet, wiirde die i f-Anweisung so aussehen:

>>> Schritte = -3
>>> if Schritte < 0 or Schritte > 0:
print('Figur bewegt sich')

Wie Du siehst, wird durch die Funktion abs die if-Anweisung ein wenig kiirzer
und verstindlicher.

Die boolesche Funktion

Der Name der Funktion bool steht fiir »boolesch«, also fiir eine logische Funk-
tion, mit der Programmierer einen Datentyp beschreiben, der einen von zwei
moglichen Werten annehmen kann — meist entweder wabr oder falsch.

Pythons eingebaute Funktionen



Die Funktion bool nimmt einen Parameter auf und gibt je nach dessen Wert
True (wahr) oder False (falsch) zuriick. Wenn man bool bei Zahlen benutzt, ergibt
0 False und alle anderen Zahlen ergeben True. So kann man bool mit einigen Zah-
len einsetzen:

>>> print(bool1(0))

False

>>> print(bool(1))

True

>>> print(bool1(1123.23))
True

>>> print(bool(-500))
True

Wenn Du bool fiir andere Werte, wie etwa Strings, einsetzt, gibt sie False zuriick,
falls der String keinen Wert enthilt (oder anders gesagt, das Schliisselwort None
oder einen leeren String). Ansonsten gibt sie True zuriick:

>>> print(bool(None))

False

>>> print(bool('a'))

True

>>> print(bool (" '))

True

>>> print(bool('Was macht ein Clown im Biiro? Faxen!'))
True

Die Funktion bool gibt False auch bei Listen, Tupeln und Maps zuriick, die keine
Werte enthalten, oder True, wenn doch Werte vorhanden sind:

>>> meine_komische Liste = []

>>> print(bool(meine_komische Liste))

False

>>> meine_komische Liste = ['k', 'o', 'm', 'i', 's', 'c¢', 'h']
>>> print(bool(meine_komische Liste))

True

Wozu ist die Funktion bool also gut? Du konntest sie zum Beispiel einsetzen,
wenn Du entscheiden lassen musst, ob ein Wert gesetzt wurde oder nicht. Wenn
wir etwa Leute, die unser Programm benutzen, bitten, ihr Geburtsjahr einzuge-
ben, dann konnte unsere if-Anweisung mit bool den eingegebenen Wert priifen:

>>> Jahr = input('Geburtsjahr: ')
Geburtsjahr:
>>> if not bool(Jahr.rstrip()):
print('Du sollst einen Wert bei Deinem Geburtsjahr eintragen')
Du sollst einen Wert bei Deinem Geburtsjahr eintragen

Eingebaute Funktionen verwenden

103



104

Die erste Zeile dieses Beispiels benutzt input,
um das zu speichern, was jemand mit der Tasta-
tur eingibt, wie etwa die Variable Jahr. Nach
dem Driicken der Enter-Taste (ohne noch etwas
einzutippen) wird der Wert der Enter-Taste in
der Variablen gespeichert. (In Kapitel 8 haben
wir dazu sys.stdin.readline() benutzt, was im
Grunde das Gleiche macht.)

In der folgenden Zeile uberpriift die if-
Anweisung den booleschen Wert der Variable
nach dem Einsatz der Funktion rstrip, die alle

Leerzeichen und Enter-Zeichen vom Ende des
Strings entfernt. Da der Benutzer in diesem Beispiel nichts eingegeben hat, gibt
die Funktion bool falsch (False) zuriick. Weil die i f-Anweisung das Schlusselwort
not benutzt, ist das wie zu sagen »tue dies, falls die Funktion nicht wahr zurtick-
gibt«, sodass der Code in der nichsten Zeile Du sol1st einen Wert bei Deinem
Geburtsjahr eintragen ausgibt.

Die Funktion dir

Die Funktion dir (Abkiirzung von directory, engl. fiir » Verzeichnis«) gibt Infor-
mationen iiber jeden Wert zuriick. Im Wesentlichen zeigt sie Dir die Funktionen,
die mit einem Wert benutzt werden konnen, in alphabetischer Reihenfolge an.

Wenn Du zum Beispiel alle Funktionen sehen willst, die fur einen Listenwert
zur Verfiigung stehen, gibst Du Folgendes ein:

>>> dir(['eine', 'kurze', 'Liste'])
[' add ', ' class_', ' contains_ ', ' delattr ',
' delitem_ ', ' dir ', ' doc_ ', ' eq ', ' format_ ', ' ge ',

__getattribute ', ' getitem ', ' gt ', ' hash_ ', ' dadd ‘',

'dimul_ ', ' dnit_ ', ' dter ', ' Te ', ' Tem ', ' 1t Y,
"mul ', ' ne ', ' new ', ' reduce ', ' reduce ex ',

" repr ', ' reversed ', ' ymul ', ' setattr ', ' setitem ',
' sizeof ', ' str_ ', ' subclasshook ', 'append', 'clear’,

'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove',
'reverse', 'sort']
Die Funktion dir funktioniert bei so gut wie allem, zum Beispiel bei Strings, Zah-
len, Funktionen, Modulen, Objekten und Klassen. Manchmal jedoch kann man
mit den zuriickgegebenen Funktionen nicht viel anfangen. Wenn Du zum Beispiel
dir fur die Zahl 1 aufrufst, werden jede Menge Sonderfunktionen angezeigt (sol-
che, die mit Unterstrichen anfangen und enden), die nur Python selbst verwendet

Pythons eingebaute Funktionen



und die uns nicht viel nitzen. (Du kannst die meisten von ihnen in der Regel igno-
rieren):

>>> dir(1)

[' abs ', ' add ', ' and ', ' bool ', ' ceil ', ' class_ ',
' _delattr_', ' dir_"', ' divmod_ ', ' doc_ ', ' eq_ "',

' float_ ', ' floor_ ', ' floordiv_', ' format ', ' ge ‘',

' _getattribute ', ' getnewargs ', ' gt ', ' hash_ ',

' dindex_ ', ' init_ "', ' dint_ ', ' dnvert_ ', ' le ',

' Tshift_ ', ' 1t ', ' mod_ ', ' mul_ ', ' ne ', ' neg ‘',
‘new_ ', ' or ', ' pos_ ', ' pow ', ' radd ', ' rand_ ',

' _rdivmod_ ', ' reduce ', ' reduce ex_ ', ' repr ',

' rfloordiv_ "', ' rlshift ', ' vmod ‘', ' vrmul_ "', ' ror ',

' round ', ' rpow_ ', ' rrshift_ ‘', ' rshift ', ' wrsub ‘',

' rtruediv_ ', ' rxor_ ', ' setattr ', ' sizeof ', ' str ',
' sub_ ', ' subclasshook ', ' truediv_ ', ' trunc_ ', ' xor_ ',

'bit_Tength', 'conjugate', 'denominator', 'from bytes', '1'ma§' , o
'numerator', 'real', 'to bytes']

Die Funktion dir kann auch sehr nutzlich sein, wenn Du eine Variable hast und

schnell herausfinden mochtest, was Du mit ihr tun kannst. Du kannst zum Bei-

spiel dir mit der Variablen Popcorn, die einen String-Wert enthilt, aufrufen und

Dir so alle Funktionen anzeigen lassen, die die Klasse string enthalt (alle Strings

gehoren zur Klasse string):

>>> Popcorn = 'Ich mag Popcorn!'

>>> dir(Popcorn)

[' add ', ' «class_', ' contains_ ', ' delattr ', ' dir ',
' doc_ ', ' eq ', ' format ', ' ge ', ' getattribute ',

' getitem ', ' getnewargs ', ' gt ', ' hash ', ' init_ ',
'iter ', ' le ', ' Ten ', 1t ', ' mod ', ' mul ',
'‘“ne_ ', ' mew ', ' reduce ', ' reduce ex ', ' repr ',

" rmod ', ' rmul_ ‘', ' setattr ', ' sizeof ', ' str ',

__subclasshook ', 'capitalize', 'casefold', 'center', 'count',
‘encode', 'endswith', 'expandtabs', 'find', 'format', 'format map',
"index', 'isalnum', 'isalpha', 'isdecimal', 'isdigit', 'isidentifier',
"isTower', 'isnumeric', 'isprintable', 'isspace', 'istitle’,
"isupper', 'join', 'Tjust', 'lower', 'Istrip', 'maketrans',
'partition', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition’,
"rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip',
'swapcase', 'title', 'translate', 'upper', 'zfill']

An dieser Stelle konntest Du jetzt mit help (engl. fiir »Hilfe«) eine kurze Beschrei-
bung der Funktionen in der Liste aufrufen. Hier siehst Du ein Beispiel fiir die
Funktion upper:

Eingebaute Funktionen verwenden

105



106

>>> help(Popcorn.upper)
Help on built-in function upper:

upper(...)
S.upper() -> str
Return a copy of S converted to uppercase.

Kommt Dir die zuriickgegebene Information verwirrend vor? Sehen wir sie uns
ndher an: Die Auslassungspunkte (..) bedeuten, dass upper eine eingebaute Funk-
tion der string-Klasse ist und dass sie keine Parameter aufnimmt. Der Pfeil (->) in
der nichsten Zeile bedeutet, dass diese Funktion einen String (str) zuriickgibt.
Die letzte Zeile liefert eine kurze Beschreibung, was die Funktion macht (upper
erzeugt eine Kopie des Strings in GrofSbuchstaben).

Die Funktion eval

Die Funktion eval (Abkiirzung fiir evalua-
tion, engl. fur »Auswertung«) nimmt als
Parameter einen String und fithrt ihn aus,
als wire es ein Python-Ausdruck. So wird
zum Beispiel durch eval('print("wow")"')
der Befehl print ("wow") ausgefiihrt.

Die Funktion eval funktioniert bei einfa-
chen Ausdriicken wie diesem hier:

>>> eval ('10*5"')
50

Ausdriicke, die tiber mehr als eine Zeile gehen (wie etwa if-Anweisungen), wer-
den nicht ausgewertet:

>>> eval ('''if True:
print("das funktioniert tberhaupt nicht")''")
Traceback (most recent call Tlast):
File "<pyshell#1>", line 2, in <module>
print("das funktioniert tberhaupt nicht")''")
File "<string>", Tine 1
if True:

A

SyntaxError: invalid syntax

Die Funktion eval wird hiufig genutzt, um Benutzereingaben in Python-Ausdrii-
cke umzuwandeln. Du konntest zum Beispiel ein einfaches Rechenprogramm
schreiben, das Aufgaben, die in Python eingegeben werden, liest und dann die
Antworten ausrechnet (auswertet).

Pythons eingebaute Funktionen



Da die Benutzereingaben immer als String eingelesen werden, muss Python
sie erst in Zahlen und Operatoren umwandeln, bevor es mit ihnen rechnen kann.
Die Funktion eval erleichtert diese Umwandlung:

>>> Deine_Aufgabe = input('Gib eine Rechenaufgabe ein: ')
Gib eine Rechenaufgabe ein: 12*52

>>> eval (Deine_Aufgabe)

624

In diesem Beispiel haben wir input benutzt, um einzulesen, was der Benutzer in
die Variable Deine_Aufgabe eingibt. In der nichsten Zeile geben wir den Ausdruck
12*52 ein (vielleicht Dein Alter mit der Anzahl der Wochen eines Jahres multipli-
ziert). Mit eval lassen wir die Aufgabe rechnen und das Ergebnis anschliefSend in
der letzten Zeile anzeigen.

Die Funktion exec

Die Funktion exec ist wie eval, nur dass Du sie in komplexeren Programmen
benutzen kannst. Der Unterschied zwischen ihnen besteht darin, dass eval einen
Wert zuriickgibt (etwas, das man in einer Variablen speichern kann) und exec das
nicht tut. Hier ist ein Beispiel:

>>> mein_kleines_Programm =
print('Sandwich')"'""

>>> exec(mein_kleines_Programm)
Schinken

Sandwich

print('Schinken')

In den ersten beiden Zeilen erzeugen wir eine Variable mit einem mehrzeiligen
String, der zwei print-Anweisungen enthilt und dann mit exec den String aus-
fithrt.

Mit exec kannst Du Mini-Programme ausfiihren, die Python aus Dateien ein-
liest — das sind dann Programme innerhalb eines Programms! Das ist vor allem
dann praktisch, wenn man lange, komplizierte Anwendungen schreibt. Du kénn-
test zum Beispiel ein Spiel »Roboter-Zweikampf« schreiben, in dem sich zwei
Roboter auf dem Monitor bewegen und versuchen, sich gegenseitig anzugreifen.
Die Spieler des Spiels wiirden dann ihre Befehle an die Roboter iiber kleine
Python-Programme geben. Roboter-Zweikampf wiirde diese Scripts einlesen und
sie mit exec laufen lassen.

Die Funktion float

Die Funktion float wandelt einen String oder eine Zahl in eine FliefSkommazahl
um, also in eine Zahl mit Dezimaltrennzeichen (auch reelle Zahl genannt). Die
Zahl 10 ist zum Beispiel eine ganze Zahl, aber 10.1 und 10.253 sind FlieSkom-

Eingebaute Funktionen verwenden

107



108

mazahlen. Normalerweise schreiben wir solche Zahlen, wie der Name schon sagt,
mit einem Komma (10, 1 und 10,253). Python versteht dieses Komma jedoch als
String, und deshalb musst Du statt des Kommas den Punkt verwenden.

Du kannst einen String in eine Flief3-
kommazahl umwandeln, indem Du float
aufrufst:

>>> float('12"')
12.0

Du kannst auch eine Nachkommastelle
in dem String verwenden:

>>> float('123.456789")
123.456789

Mit float kannst Du auch Werte, die in Dein Programm eingegeben werden, in
richtige Zahlen umwandeln. Dies ist besonders niitzlich, wenn Du einen Wert,
den ein Benutzer eingibt, mit anderen Werten vergleichen musst. Um zum Beispiel
zu priifen, ob das Alter der Person tiber einer bestimmten Zahl liegt, konnten wir
Folgendes machen:

>>> Dein_Alter = input('Gib Dein Alter ein: ')
Gib Dein Alter ein: 20
>>> Alter = float(Dein_Alter)
>>> if Alter > 13:
print('Du bist %s Jahre zu alt' % (Alter - 13))

Du bist 7.0 Jahre zu alt

Die Funktion int

Die Funktion int wandelt einen String oder eine Zahl in eine ganze Zahl (engl.
integer) um. Im Prinzip wird dabei alles nach dem Dezimaltrennzeichen wegge-
lassen. So wandelt man zum Beispiel eine Flieflkommazahl in eine Ganzzahl um:

>>> int(123.456)
123

Bei diesem Beispiel wird ein String in eine Ganzzahl umgewandelt:

>>> int('123")
123

Sobald Du aber versuchst, einen String mit einer FlieSkommazahl in eine ganze
Zahl umzuwandeln, bekommst Du eine Fehlermeldung:

Pythons eingebaute Funktionen



>>> int('123.456")
Traceback (most recent call Tast):
File "<pyshell#17>", line 1, in <module>
int('123.456")
ValueError: invalid Titeral for int() with base 10: '123.456'

Wie Du siehst, kommt eine ValueError-Fehlermeldung dabei heraus.

Die Funktion len

Die Funktion 1len gibt die
Linge eines Objekts oder die
Anzahl der Zeichen bei einem
String zuriick. Um zum Bei-
spiel die Lange von Dies ist ein Test-String zu ermitteln, tust Du Folgendes:

>>> Ten('Dies ist ein Test-String')
24

Wenn man diese Funktion bei einer Liste oder einem Tupel verwendet, gibt Ten
die Anzahl der Elemente darin zuruck:

>>> Kreaturenliste = ['Einhorn', 'Zyklop', 'Fee', 'Elfe', 'Drachen’,
‘Tro11']

>>> print(len(Kreaturenliste))

6

Wenn man sie bei einer Map verwendet, gibt 1en ebenfalls die Anzahl der Ele-
mente zuruck:

>>> Feindesliste = {'Batman' : 'Joker',
'Superman' : 'Lex Luthor',
'Spiderman' : 'Green Goblin'}

>>> print(len(Feindesliste))

3

Die Funktion Ten ist vor allem bei Schleifen niitzlich. Wenn wir zum Beispiel die
Indexposition der Elemente einer Liste anzeigen lassen wollen, machen wir das
s0:

>>> Frucht = ['Apfel', 'Banane', 'Mandarine', 'Birne']
©® >>> Linge = len(Frucht)
® >>> for x in range(0, Lange):
(3] print('Die Frucht an Position %s ist %s' % (x, Frucht[x]))

Die Frucht an Position 0 ist Apfel
Die Frucht an Position 1 ist Banane
Die Frucht an Position 2 ist Mandarine
Die Frucht an Position 3 ist Birne

Eingebaute Funktionen verwenden

109



110

Hier speichern wir die Lange der Liste in der Variable Linge in @ und verwenden
diese Variable dann in der Funktion range, um unsere Schleife in @ zu erzeugen.
Wenn wir dann in © durch jedes Element der Liste durchschleifen, geben wir fiir
jedes Element der Liste dessen Position und Wert aus. Du konntest bei einer Liste
von Strings mit der Funktion Ten auch einfach jedes zweite oder dritte Element
der Liste anzeigen lassen.

Die Funktionen max und min

Die Funktion max gibt das grofste Element einer Liste, eines Tupels oder eines
Strings zurtick. Hier tut sie das bei einer Liste von Zahlen:

>>> Zahlen = [5, 4, 10, 30, 22]
>>> print(max(Zahlen))
30

Bei einem String, der durch Kommata oder Leerzeichen getrennt ist, funktioniert
das auch:

>>> strings = 's,t,r,i,n,q,S,T,R,I,N,G'

>>> print(max(strings))

t
Wie dieses Beispiel zeigt, werden die Buchstaben nach ihrer alphabetischen Rei-
henfolge sortiert. Kleingeschriebene Buchstaben kommen nach den Grofsbuch-
staben, # ist demnach mehr als T (d.h. es kommt nach T).

Aber Du musst dazu nicht unbedingt Listen, Tupeln oder Strings nehmen. Du
kannst die Funktion max auch direkt aufrufen und die Elemente, die Du verglei-
chen mochtest, als Parameter in Klammern dahinter setzen:

>>> print(max(10, 300, 450, 50, 90))
450

Die Funktion min arbeitet genauso wie max, nur dass sie das kleinste Element einer

Liste, eines Tupels oder eines Strings zuriickgibt. Wenn wir wieder unsere Liste
mit Zahlen nehmen und min statt max einsetzen, passiert Folgendes:

>>> 7ahlen = [5, 4, 10, 30, 22]
>>> print(min(Zahlen))
4

Jetzt stell Dir vor, Du wiirdest ein Ratespiel mit vier Spielern spielen, bei dem
jeder eine Zahl schitzen soll, die unter Deiner Zahl liegt. Sobald nur einer der
Spieler eine Zahl dartiber schitzt, haben alle Spieler verloren. Wenn sie aber alle
eine niedrigere Zahl schitzen, haben sie gewonnen. Wir konnen mit max auch
schnell herausfinden, ob alle Schitzungen unter Deiner Zahl liegen:

Pythons eingebaute Funktionen



>>> rate_diese_Zahl = 61

>>> Spielerschdatzungen = [12, 15, 70, 45]

>>> if max(Spielerschdtzungen) > rate_diese Zahl:
print('Ups! Ihr habt alle verloren')

print('Ihr habt gewonnen')
Ups! Ihr habt alle verloren

In diesem Beispiel speichern wir die zu ratende Zahl in der Variable
rate_diese Zahl. Die Schitzungen der Mitspieler werden in der Liste Spieler-
schitzungen gespeichert. Die if-Anweisung vergleicht die hochste Schitzung mit
der Zahl in rate_diese Zahl, und sobald einer der Spiele eine Zahl dariiber
schitzt, zeigen wir die Mitteilung »Ups! Thr habt alle verloren« an.

Die Funktion range

& V_7
Die Funktion range wird, wie wir schon @) - Qa
o SN

d q

zuvor gesehen haben, hauptsichlich in

for-Schleifen verwendet, um einen Code-

abschnitt so oft wie gewiinscht durchlau-

fen zu lassen. Die ersten beiden Parame-

ter, die man range gibt, sind Start und

Stop. In dem zurtickliegenden Beispiel mit

der Funktion range hast Du diese beiden Parameter in einer Schleife mit der Funk-
tion Ten in Aktion gesehen.

Die Zahlen, die range erzeugt, beginnen mit der Zahl, die als erster Parameter
angegeben wird, und enden mit der Zahl, die als zweiter Parameter angegeben
wird. Hier siehst Du zum Beispiel, was passiert, wenn Du range die Zahlen zwi-
schen 0 und 5 erzeugen lasst:

>>> X range (0, 5):
print(x)

0

1

2

3

4

Die Funktion range gibt also ein bestimmtes Objekt, das man Iterator nennt,
zurick, das dann eine Aktion eine bestimmte Anzahl von Malen wiederholt. In
diesem Fall gibt sie bei jedem Aufruf die nichsthohere Zahl zurtck.

Du kannst einen Iterator in eine Liste umwandeln (mit der Funktion 1ist).
Wenn Du dann den zuriickgegebenen Wert nach dem Aufruf von range ausgibst,
werden Dir auch die Zahlen darin angezeigt:

Eingebaute Funktionen verwenden

m



12

>>> print(list(range(0, 5)))
[0, 1, 2, 3, 4]

Du kannst der Funktion range noch einen dritten Parameter hinzufiigen: step
(Schrittweite). Wenn der Wert fur step nicht mit angegeben wird, wird automa-
tisch die Zahl 1 verwendet. Was passiert nun, wenn wir die Zahl 2 als Schritt-
weite einfiigen? Hier ist das Ergebnis:

>>> zghle _in_Zweierschritten = Tist(range(0, 30, 2))
>>> print(zdhle_in_Zweierschritten)
[o, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28]

Die Zahlen in der Liste steigen immer um den Betrag von 2 an, und die Liste
endet bei 28, was 2 weniger als 30 ist. Du kannst auch negative Schrittweiten ver-
wenden:

>>> zghle_in_Zweierschritten abwdrts = 1ist(range(40, 10, -2))
>>> print(zdhle_in_Zweierschritten_abwarts)
[40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20, 18, 16, 14, 12]

Die Funktion sum

Die Funktion sum zahlt die Elemente einer Liste zusammen und gibt die Summe
zurtick. Hier siehst Du ein Beispiel:

>>> meine_Zahlenliste = list(range(0, 500, 50))
>>> print(meine_Zahlenliste)

[0, 50, 100, 150, 200, 250, 300, 350, 400, 450]
>>> print(sum(meine_Zahlenliste))

2250

In der ersten Zeile haben wir mit der Funktion range eine Liste von Zahlen zwi-
schen 0 und 500 bei einer Schrittweite von 50 erzeugt. Danach haben wir uns die
Liste mit print anzeigen lassen, um uns das Ergebnis anzuschauen. Zum Schluss
haben wir die Variable meine Zahlenliste mit print(sum(meine_Zahlenliste)) an
die Funktion sum weitergereicht, wodurch alle Elemente der Liste zusammenge-
zdhlt wurden und die Summe von 2250 dabei herauskam.

10.2 Umgang mit Dateien

Python-Dateien sind die gleichen, die Du von Deinem Computer kennst: Doku-
mente, Bilder, Musik, Spiele ... im Prinzip ist alles auf Deinem Computer in Form
von Dateien gespeichert.

Jetzt schauen wir uns an, wie wir in Python Dateien 6ffnen und mit ihnen
arbeiten, indem wir die eingebaute Funktion open benutzen. Aber zunachst mus-
sen wir eine neue Datei erzeugen, um mit ihr etwas herumspielen zu konnen.

Pythons eingebaute Funktionen



Erzeugen einer Test-Datei

Wir werden mit einer Textdatei experimentieren, die wir Test.txt nennen. Folge
den Anleitungsschritten fiir das Betriebssystem, das Du benutzt.

Eine neue Datei unter Windows erzeugen

Wenn Du Windows benutzt, fithre die folgenden Schritte aus, um die Datei Test.txt
zu erzeugen:

Gehe auf Start P> Alle P> Programme » Zubehor P Editor.

Gibt ein paar Zeilen in die leere Datei ein.

Gehe auf Datei P> Speichern.

Wenn das Dialogfenster erscheint, wiahlst Du das Laufwerk C: aus, indem
Du auf Computer klickst und dann auf Lokaler Datentrager (C:) einen Dop-
pelklick machst.

i e

Gib unten im Fenster bei Dateiname Test.txt ein.
6. Zum Schluss klickst Du auf den Button Speichern.

bt

=

| Speichern unter [
@-Qv‘ﬁ » Comp.. » Lokaler Datentrager (C:) » 'I"?H Lokaler Datentrager (C:) dure p|
Organisieren v Neuer Ordner 5 v @
3 Favoriten Benutzer
Bl Desktop PerfLogs
Downloads Programme
%l Zuletzt besucht Python33
TEMP_PARALLELS_TOOLS
= Biblictheken Windows

«d, Heimnetzgruppe

1™ Computer
€ Netzwerk
Dateiname: Testjbt -
Dateityp: [deateien (*.xt) v}
) Ordner ausblenden Codierung: | ANSI '] [ Speichern ] [ Abbrechen I

Umgang mit Dateien

13



Eine neue Datei unter MacOS X erzeugen

Wenn Du einen Mac benutzt, folge diesen Schritten, um die Datei Test.txt zu er-
zeugen:

1. Klicke auf das Icon Spotlight in der Meniileiste ganz oben auf dem Bild-
schirm.

2. Ein Suchfenster erscheint. Gib hier TextEdit ein.

TextEdit sollte darauthin in dem Bereich Programme erscheinen. Klicke da-

rauf, um den Editor zu offnen. (Du findest TextEdit auch im Ordner Pro-

gramme im Finder.)

(O8]

Gib ein paar Zeilen Text in die leere Datei ein.

Gehe auf Format P In reinen Text umwandeln.

Gehe auf Ablage P> Sichern.

Im Dialogfenster Sichern unter gibst Du Test.txt ein.

In der Liste Favoriten klickst Du auf Deinen Benutzernamen — oder den Na-
men dessen, dem der Computer gehort.

9. Zum Schluss klickst Du auf den Button Sichern.

® NN

Sichern unter: Test.txt S

(<« 7> [22/=m) [ & volker $ @ )

~ T UoKumente T

S aiees (] Downloads b

(E5] Dropbox @& Dropbox ;

[ schreibtisch @ Filme i [ ]

(@i Bilder (@ Library p

71¥ Programme @ Musik

[ Dokumente \ @ Offentlich >l

& Downloads + | [ restore gl b

¥ | [E) Schreibtisch Gl
Codierung fiir reinen Text: | Unicode (UTF-8) c ]
'z .txt verwenden, falls kein Suffix angegeben ist
[] Suffix aushlenden ( Neuer Ordner C Abbrechen ) ( Sichern )

4

114 Pythons eingebaute Funktionen



Eine neue Datei unter Ubuntu erzeugen

Wenn Du Ubuntu benutzt, folge diesen Schritten, um die Datei Test.txt zu erzeu-
gen:

1. Offne Deinen Editor, der normalerweise Textverarbeitung oder gedit heifit.
Falls Du ihn zuvor noch nicht benutzt hast, kannst Du nach ihm im Menu
Anwendungen suchen.

2. Gib ein paar Zeilen Text in den Editor ein.

Klicke auf den Button Speichern.

4. Gib in der Eingabezeile Name Test.txt als Dateinamen an. Unter In Ordner
speichern ist vielleicht schon Dein personlicher Ordner ausgewihlt. Falls
nicht, klickst Du links auf ihn in der Liste Orte. (Dein personlicher Ordner
ist mit dem Benutzernamen beschriftet, mit dem Du eingeloggt bist.)

5. Klicke auf den Button Speichern.

Speichern unter ...

[S8]

Name: Test.txt
InOrdner speichern: |+  |mivolkerhaxsen Ordner anlegen
Orte Name * GréRe Letzte Anderung
Q suchen K& Arbeitsfliche 13:47
@ Zuletzt verwendet| ([ Bilder 13:47
K& Desktop &3 Downloads 13:47
L Dateisystem & Musik 13:47
M Floppy Disk & Offentlich 13:47
I8 Dokumente B Videos 13:47
i Musik I Vorlagen 13:47
i@ Bilder | examples.desktop 8,4kB 13:40
i@ Videos
% Downloads
+ || = Alle Dateien v
Zeichenkodierung: | Derzeitige Standorteinstellungen (UTF-8) v | Zeilenende: | Unix/Linux v
Abbrechen Speichern

Eine Datei in Python 6ffnen

Pythons eingebaute Funktion open 6ffnet eine Datei in der Python-Shell und zeigt
deren Inhalt an. Wie Du der Funktion sagst, welche Datei sie 6ffnen soll, hangt
von Deinem Betriebssystem ab. Sieh Dir das Beispiel fiir eine Windows-Datei an,
oder lies die Mac- oder Ubuntu-spezifischen Abschnitte, falls Du eines dieser
Betriebssysteme benutzt.

Umgang mit Dateien

115



116

Eine Windows-Datei 6ffnen

Falls Du Windows benutzt, gib folgenden Code ein, um Test.txt zu 6ffnen:

>>> Testdatei = open('c:\\Test.txt")
>>> Text = Testdatei.read()

>>> print(Text)

Ein furchtsames Frdaulein aus Kassel
sah plotzlich im Raum eine Assel.

Da fiel es vor Schreck

sogleich in den Dreck.

Da haben wir nun den Schlamassel.

In der ersten Zeile benutzen wir open, was ein Datei-Objekt zuriickgibt, das Funk-
tionen zum Arbeiten mit Dateien enthilt. Der Parameter, den wir in der Funktion
open benutzen, ist ein String, der Python sagt, wo es die Datei findet. Falls Du
Windows benutzt, hast Du Test.txt auf der lokalen Festplatte C: gespeichert,
sodass Du den Speicherort Deiner Datei mit c:\\Text.txt angibst.

Die beiden Riickwartsschrigstriche im Windows-Dateinamen teilen Python
mit, dass die Riickwiartsschrigstriche nur fiir sich stehen und keine Befehle dar-
stellen. (Wie Du in Kapitel 4 gelernt hast, haben Riickwirtsschrigstriche eine
besondere Bedeutung in Python, vor allem in Strings.) Wir speichern das Datei-
Objekt in der Variablen Testdatei.

In der zweiten Zeile benutzen wir die Funktion read, die von dem Datei-
Objekt zur Verfiigung gestellt wird, um die Inhalte der Datei auszulesen und sie in
der Variable Text zu speichern. Wir geben die Variable in der letzten Zeile aus, um
die Inhalte der Datei anzuzeigen.

Eine MacOS X-Datei 6ffnen

Falls Du MacOSX benutzt, musst du in der ersten Zeile des Windows-Beispiels
einen anderen Pfad angeben, um Test.fxt zu 6ffnen. Verwende dabei den Benut-
zernamen, auf den Du beim Abspeichern der Textdatei geklickt hast, und fige ihn
in den String ein. Falls Dein Benutzername zum Beispiel susannesommer ist,
sollte der Parameter fiir open so aussehen:

>>> Testdatei = open('/Users/susannesommer/Test.txt")

Eine Ubuntu-Datei 6ffnen

Falls Du Ubuntu benutzt, musst Du in der ersten Zeile des Windows-Beispiels einen
anderen Pfad angeben, um Test.txt zu 6ffnen. Verwende dabei den Benutzerna-
men, auf den Du beim Abspeichern der Textdatei geklickt hast. Falls Dein Benut-
zername zum Beispiel maximilian ist, sollte der Parameter fiir open so aussehen:

>>> Testdatei = open('/home/maximilian/Test.txt")

Pythons eingebaute Funktionen



In Dateien schreiben

Das Datei-Objekt, das open zuriickgegeben hat, hat neben der Funktion read noch
weitere Funktionen. Durch einen zweiten Parameter, den String 'w', konnen wir
eine neue leere Datei erzeugen, wenn wir die Funktion aufrufen:

>>> Testdatei = open('c:\\MeineDatei.txt', 'w'")

Der Parameter 'w' teilt Python mit, dass wir in das Datei-Objekt schreiben wol-
len, statt aus thm zu lesen.

Wir konnen nun mit der Funktion write dieser neuen Datei Informationen
hinzufiigen:

>>> Testdatei = open('c:\\MeineDatei.txt', 'w')
>>> Testdatei.write('Dies ist meine Testdatei')

Zum Schluss miissen wir mit der Funktion close Python sagen, wann wir mit dem
Schreiben in die Datei fertig sind:

>>> Testdatei = open('c:\\MeineDatei.txt', 'w')

>>> Testdatei.write('Was ist grin und fdhrt hiipfend rauf und runter?
Eine Erbse im Fahrstuhl!')

>>> Testdatei.close()

Wenn Du jetzt diese Datei mit Deinem Editor 6ff-
nest, solltest Du sehen, dass sie den Text 'Was ist
griin und féhrt hiipfend rauf und runter? Eine Erbse
im Fahrstuhl!' enthidlt. Oder Du kannst Python
bitten, ihn Dir auszugeben:

>>> Testdatei = open("'
c:\\MeineDatei.txt")

>>> print(Testdatei.read())
Was ist griin und fdhrt hiipfend rauf und runter?
Eine Erbse im Fahrstuhl!

10.3 Was Du gelernt hast

In diesem Kapitel hast Du etwas iiber die eingebauten Funktionen von Python
gelernt, wie etwa float und int, mit denen man Dezimalzahlen in ganze Zahlen
verwandeln kann und umgekehrt. Du hast auch gesehen, wie man mit der Funk-
tion 1en Schleifen einfacher gestalten kann und wie man mit Python Dateien 6ff-
nen kann, um aus ihnen zu lesen und in sie zu schreiben.

Was Du gelernt hast

17



18

10.4 Programmier-Puzzles

Versuche Dich an den folgenden Beispielen, um mit einigen der in Python ein-
gebauten Funktionen zu experimentieren. Die Losungen findest Du unter
www.dpunkt.del/python.

#1: Geheimnisvoller Code

Was kommt dabei heraus, wenn man folgenden Code ausfiithren lasst? Rate
zuerst selbst, und lass den Code erst dann durchlaufen, um zu schauen, ob Du
recht hast.

>>> 3 = abs(10) + abs(-10)
>>> print(a)

>>> b = abs(-10) + -10
>>> print(b)

#2: Eine versteckte Botschaft

Versuche mit den Funktionen dir und help herauszufinden, wie man einen String
in einzelne Worter aufteilt, und schreibe dann ein kleines Programm, um jedes
zweite Wort in folgendem String anzeigen zu lassen. Beginne dabei mit dem ersten
Wort (Dies):

"Dies falls ist Du kein bist guter Tesen Weg dann um hat eine es
Nachricht falsch zu Inhalt verstecken"
#3: Eine Datei kopieren

Schreibe ein Python-Programm, um eine Datei zu kopieren. (Tipp: Die Datei, die
Du kopieren mochtest, musst Du erst 6ffnen. Dann musst Du sie einlesen und
anschliefend eine neue Datei erzeugen — die Kopie.) Priife, ob Dein Programm
funktioniert, indem Du den Inhalt der neuen Datei auf dem Monitor ausgibst.

Pythons eingebaute Funktionen



Niitzliche Python-Module

Wie Du in Kapitel 8 gelernt hast, besteht ein Python-Modul aus jeder erdenk-
lichen Kombination von Funktionen, Klassen und Variablen. Python setzt
Module ein, um Funktionen und Klassen zu gruppieren, damit sie leichter zu
benutzen sind. Das Modul turtle zum Beispiel, das wir in den vorigen Kapiteln
benutzt haben, gruppiert Funktionen und Klassen, mit denen man eine Leinwand
fir eine Schildkrote erzeugen kann, um auf dem Monitor zu zeichnen.

Wenn Du ein Modul in ein Programm importierst, kannst Du dessen gesam-
ten Inhalt nutzen. Als wir zum Beispiel in Kapitel 5 das Modul turtle importiert
haben, hatten wir Zugriff auf die Klasse Pen, mit der wir ein Objekt auf der Lein-
wand gezeichnet haben, das fiir die Schildkrote stand:

>>> turtle
>>> t = turtle.Pen()

Python enthilt jede Menge Module, um die verschiedensten Aufgaben zu erledi-
gen. In diesem Kapitel schauen wir uns einige der niitzlichsten Module an und
probieren einige ihrer Funktionen aus.

19



120

Das Modul copy enthilt Funktionen, mit denen man
Kopien von Objekten erzeugt. Normalerweise erzeugt
man beim Schreiben eines Programms neue Objekte.
Manchmal kann es aber niitzlich sein, eine Kopie ei-
nes Objekts zu erzeugen und diese dann zu benutzen,
um ein neues Objekt zu erzeugen. Das macht man
vor allen Dingen immer dann, wenn der Prozess der
Erzeugung eines Objekts mehrere Schritte erfordert.

Stell Dir zum Beispiel einmal vor, wir hitten eine
Klasse Tier mit einer Funktion _init_, die die Parameter Art, Anzahl_der Beine
und Farbe aufnimmt.

>>> class Tier:
__init_ (self, Art, Anzahl _der Beine, Farbe):
self.Art = Art
self.Anzahl_der Beine = Anzahl _der Beine
self.Farbe = Farbe

Wir konnten in der Klasse Tier ein neues Objekt erzeugen, indem wir folgenden
Code einsetzen. Lass uns ein pinkfarbenes Hippogreif mit sechs Beinen erzeugen,
das Harry heifst.

>>> Harry = Tier('Hippogreif', 6, 'pink')

Nehmen wir an, wir wollten eine ganze Herde von pinkfarbenen Hippogreifs mit
sechs Beinen haben. Wir konnten den Code von oben stindig wiederholen oder
die Funktion copy aus dem Modul copy dazu benutzen:

>>> copy

>>> Harry = Tier('Hippogreif', 6, 'pink")

>>> Harriet = copy.copy(Harry)

>>> print(Harry.Art)

Hippogreif

>>> print(Harriet.Art)

Hippogreif
In diesem Beispiel erzeugen wir ein Objekt und bezeichnen es mit der Variable
Harry. Dann erstellen wir eine Kopie des Objekts, die wir mit Harriet bezeichnen.
Es handelt sich dabei um komplett unterschiedliche Objekte, obwohl sie zur glei-
chen Art gehoren. In diesem Fall spart man sich nur etwas Tippen, aber sobald
die Objekte viel komplizierter werden, ist die Moglichkeit, kopieren zu konnen,
dufSerst nuitzlich.

Nitzliche Python-Module



Wir konnen auch eine Liste der Objekte Tier erzeugen und sie mit der Funk-
tion copy kopieren.

>>> Harry = Tier('Hippogreif', 6, 'pink")
>>> Carrie = Tier('Chimdre', 4, 'griine Punkte')
>>> Billy = Tier('Bogill', 0, 'gescheckt')

>>> meine Tiere = [Harry, Carrie, Billy]
>>> mehr_Tiere = copy.copy(meine Tiere)
>>> print(mehr _Tiere [0].Art)

Hippogreif

>>> print(mehr _Tiere [1].Art)

Chimdre

In den ersten drei Zeilen erzeugen wir drei Tier-
Objekte und speichern sie in Harry, Carrie und
Billy. In der vierten Zeile fiigen wir diese
Objekte der Liste meine Tiere hinzu. Und
danach benutzen wir copy, um eine neue Liste
namens mehr_Tiere zu erzeugen. Zum Schluss
zeigen wir die ersten beiden Objekte ([0] und
[1]) in der Liste mehr Tiere an und sehen nach, ob sie die gleichen wie in der Ori-
ginal-Liste sind: Hippogreif und Chimdre. Wir haben dadurch eine Kopie der Liste
erstellt, ohne die ganzen Objekte erneut erzeugen zu miissen.

Schau Dir aber an, was passiert, sobald wir die Art eines unserer Objekte in
Tiere in der Original-Liste meine Tiere dndern (Hippogreif zu Ghul). Python
andert dann auch die Art in mehr_Tiere.

>>> meine Tiere[0].Art = 'Ghul'
>>> print(meine_Tiere[0].Art)
Ghul

>>> print(mehr_Tiere[0].Art)
Ghul

Das ist ja merkwiirdig. Haben wir die Art nicht gerade nur in meine Tiere gedn-
dert? Warum wurde die Art in beiden Listen geidndert?

Die Art wurde gedndert, weil copy in Wirklichkeit eine flache Kopie angefer-
tigt. Dies bedeutet, dass keine Objekte innerhalb der Objekte, die wir kopiert
haben, kopiert werden. In diesem Fall hat Python das Hauptobjekt Liste kopiert,
nicht aber die einzelnen Objekte innerhalb der Liste. Somit haben wir am Ende
zwar eine neue Liste, die aber keine neuen Objekte enthilt — die Liste mehr Tiere
enthilt die gleichen drei Objekte wie meine Tiere.

Mit dem Modul copy Kopien erstellen

121



122

Wenn wir der ersten Liste (meine Tiere) ein neues Tier hinzufiigen, erscheint
es aus dem gleichen Grund nicht in der Kopie (mehr_Tiere). Zum Beweis ldasst Du
Dir die Lange jeder Liste nach Hinzufiigen jedes Tieres anzeigen:

>>> Sally = Tier('Sphinx', 4, 'Sand')
>>> meine_Tiere.append(Sally)

>>> print(len(meine_Tiere))

4

>>> print(len(mehr_Tiere))

3

Wie Du siehst, haben wir der ersten Liste, meine_Tiere, zwar ein neues Tier hinzu-
gefligt, es wird aber nicht zu der Kopie dieser Liste (mehr Tiere) hinzugefiigt.
Wenn wir die Funktion len benutzen und das Ergebnis anzeigen lassen, enthilt
die erste Liste vier Elemente und die zweite nur drei.

Eine weitere Funktion des Moduls copy, deepcopy (engl. fiir »tief kopieren«),
erzeugt tatsichlich Kopien simtlicher Objekte innerhalb des Objekts, das kopiert
wird. Wenn wir zum Kopieren von meine_Tiere die Funktion deepcopy verwenden,
bekommen wir eine neue vollstindige Liste mit Kopien aller ihrer Objekte. Die
Folge davon ist: Anderungen an unseren Tier-Originalobjekten haben keinen
Einfluss auf die Objekte in der neuen Liste. Hier siehst Du ein Beispiel:

>>> mehr_Tiere = copy.deepcopy(meine Tiere)
>>> meine_Tiere[0].Art = '"Wyrm'

>>> print(meine_Tiere[0].Art)

Wyrm

>>> print(mehr_Tiere[0].Art)

Ghul

Wenn wir die Art des ersten Objekts in der Originalliste von Ghul in Wyrm dndern,

andert sich die kopierte Liste nicht, wie wir sehen, wenn wir uns die Arten des
ersten Objekts der Liste anzeigen lassen.

11.2 Mit dem Modul keyword einen Uberblick iiber die
Schliisselworter erhalten

In Python ist jedes Wort, das Bestandteil der Sprache selbst ist, wie etwa if, else
und for, ein Schliisselwort. Das Modul keyword enthilt eine Funktion namens
iskeyword und eine Variable, die kwlist heifst. Die Funktion iskeyword gibt wahr
(true) zuriick, sobald ein String ein Python-Schliisselwort ist. Die Variable kwlist
gibt eine Liste samtlicher Python-Schliisselworter zuriick.

Nitzliche Python-Module



Im folgenden Code kannst Du sehen, dass die Funktion iskeyword true fur
den String if und false (falsch) fiir den String Oswald zuriickgibt. Wenn wir die
Inhalte der Variable anzeigen lassen, kannst du die komplette Liste aller Schlus-
selworter sehen. Dies ist sehr niitzlich, da Schlisselworter nicht immer gleich
bleiben. Zukiinftige Versionen (oder altere Versionen) von Python konnen abwei-
chende Schliisselworter enthalten.

>>> import keyword

>>> print(keyword.iskeyword('if'))

True

>>> print(keyword.iskeyword('Oswald'))

False

>>> print (keyword.kwlist)

['False', 'None', 'True', 'and', 'as', 'assert', 'break', 'class',
‘continue', 'def', 'del', 'elif', 'else', 'except', 'finally', 'for',
"from', 'global', 'if', 'import', 'in', 'is', 'lambda', 'nonlocal’,
'not', 'or', 'pass', 'raise', 'return', 'try', 'while', 'with',
'yield']

Fiir jedes der Schlisselworter findest Du eine Beschreibung im Anhang.

11.3 Wie man mit dem Modul random Zufallszahlen bekommt

Das Modul random enthilt eine Reihe von Funktionen, mit denen man Zufallszah-
len erzeugen kann. Das ist so, als wiirde man dem Computer sagen: »Ziehe eine
Zahl.« Die niitzlichsten Funktionen im Modul random sind randint, choice und
shuffle.

Mit randint eine Zufallszahl bestimmen lassen

Die Funktion randint zieht eine Zufallszahl innerhalb eines Zahlenbereichs —
sagen wir, zwischen 1 und 100, zwischen 100 und 1000 oder zwischen 1000 und
5000. Hier siehst Du ein Beispiel:

>>> import random
>>> print(random.randint(1, 100))

58

>>> print(random.randint (100, 1000))
861

>>> print(random.randint (1000, 5000))
3795

Wie man mit dem Modul random Zufallszahlen bekommt

123



124

Du kannst randit auch zu so etwas wie einem kleinen (und nervigen) Ratespiel
nutzen, indem Du eine while-Schleife einsetzt:

>>> random
>>> pnum = random.randint(1, 100)
>>> True:

print('Rate eine Zahl zwischen 1 und 100')

raten = input()

i = int(raten)

i == num:
print('Du hast richtig geraten')

i < num:
print('Rate eine hohere Zahl')
i > num:
print('Rate eine niedrigere Zahl')

®@ 00 6006000 e

Als Erstes importieren wir das Modul random und
weisen der Variablen num mit randint eine Zufalls-
zahl zwischen 1 und 100 zu. Wir erzeugen dann
eine while-Schleife in @, die unendlich lauft (oder
zumindest so lange, bis der Spieler die Zahl errit).

Als Nichstes zeigen wir eine Nachricht in @
an und benutzen input, um eine Benutzereingabe
zu bekommen, die wir in der Variable raten spei-
chern ©. Wir wandeln die Eingabe mit int in eine

Zahl um und speichern sie in @ in der Variablen i.
AnschliefSend vergleichen wir sie mit der in © zufillig ausgewahlten Zahl.

Falls die Eingabe und zufillig ausgewahlte Zahl gleich sind, zeigen wir die
Nachricht »Du hast richtig geraten« an und verlassen die Schleife in @. Falls die
Zahlen nicht tbereinstimmen, prifen wir, ob die Zahl, die der Spieler geraten
hat, hoher ist als die Zufallszahl @ oder niedriger ®, und zeigen ihm eine Nach-
richt mit einem entsprechenden Hinweis.

Dieser Code ist ein bisschen lang, sodass Du ihn vielleicht besser in ein neues
Shell-Fenster schreibst oder ein Text-Dokument erzeugst, es speicherst und
anschlieffend in IDLE laufen ldsst. Hier siehst Du eine kurze Erinnerung daran,
wie man ein abgespeichertes Programm offnet und ausfiihrt:

1. Starte IDLE, und gehe auf File » Open.
Arbeite Dich bis zu dem Verzeichnis durch, in dem Du die Datei gespeichert
hast, und klicke auf den Dateinamen, um sie auszuwihlen.

3. Klicke auf Open.

4. Nachdem sich das neue Fenster geoffnet hat, gehe auf Run » Run Module.

Nitzliche Python-Module



Hier sieht man, was passiert, wenn wir das Programm laufen lassen:

& )
74 Python Shell
File Edit Shell Debug Options Windows Help

Python 3.3.0 (v3.3.0:bd8afb%0ebf2, Sep 29 2012, 10:55:48) [MSC v.1600 32 b ;l
it (Intel)] on win32

Type "copyright", "credits" or "license()" for more information.
>>> RESTART

o>

Rate eine Zahl zwischen 1 und 100

50

Rate eine hdhere Zahl

Rate eine Zahl zwischen 1 und 100
60

Rate eine niedrigere Zahl

Rate eine Zahl zwischen 1 und 100
55

Rate eine niedrigere Zahl

Rate eine Zahl zwischen 1 und 100
54

Rate eine niedrigere Zahl

Rate eine Zahl zwischen 1 und 100
53

Du hast richtig geraten

>>> |

=]

Ln: 20[Col: 4

Mit choice ein zufdlliges Element aus einer Liste auswdhlen

Wenn Du statt einer Zufallszahl aus einem bestimmten Bereich ein zufilliges Ele-
ment einer Liste auswihlen lassen mochtest, kannst Du choice benutzen. Du
kannst Dir zum Beispiel von Python den Nachtisch auswihlen lassen.

>>> import random

>>> Nachtische = ['Eis', 'GOtterspeise', 'Pudding', 'Lebkuchen',
'Schokolade']

>>> print(random.choice(Nachtische))

Pudding

Es sieht so aus, als gibe es heute Pudding — keine schlechte Wahl.

Mit shuffle eine Liste mischen

Die Funktion shuffle mischt die Elemente einer Liste. Wenn Du gerade mit IDLE
arbeitest und das Modul random schon importiert und die Nachtisch-Liste aus
dem vorigen Beispiel schon erstellt hast, kannst Du gleich zum Befehl ran-
dom.shuffle vorgehen und folgenden Code eingeben:

Wie man mit dem Modul random Zufallszahlen bekommt

125



126

>>> import random
>>> Nachtische = ['Eis', 'Gotterspeise', 'Pudding', 'Lebkuchen',
'Schokolade']

>>> random.shuffle(Nachtische)

>>> print(Nachtische)

['Lebkuchen', 'Schokolade', 'Pudding', 'Gotterspeise', 'Eis']
Den Effekt des Durchmischens kannst Du sehen, wenn wir die Liste anzeigen —
die Reihenfolge ist jetzt komplett anders. Wenn wir ein Kartenspiel schreiben
wiirden, konntest Du diese Funktion benutzen, um eine Liste, die die Spielkarten
beinhaltet, zu mischen.

11.4 Die Shell mit dem Modul sys steuern

Das Modul sys enthilt Systemfunktionen, mit denen man die Python-Shell selbst
steuern kann. Hier schauen wir uns an, wie man die Funktion exit benutzt, was
man mit den Objekten stidin und stdout macht, und wir sehen uns die Variable
version an.

Die Shell mit der Funktion exit verlassen

Die Funktion exit ist eine der Moglichkeiten, um die Python-Shell oder -Konsole
zu beenden. Gib den folgenden Code ein, und Du wirst in einem Dialogfenster
gefragt, ob Du die Shell beenden mochtest. Klicke auf Yes, und die Shell schliefst
sich.

>>> qmport sys
>>> sys.exit()

Dies funktioniert jedoch nicht, falls Du eine modifizierte Version von IDLE
benutzt, die wir in Kapitel 2 aufgesetzt haben. Stattdessen bekommst Du eine
Fehlermeldung wie diese:

>>> qmport sys
>>> gys.exit()
Traceback (most recent call last):
File "<pyshell#13>", Tine 1, in <module>
sys.exit()
SystemExit

In dem Objekt stdin lesen

Das Objekt stdin (Abkiirzung fir standard input, engl. fiir »Standard-Eingabe«)
im Modul sys fordert den Benutzer auf, eine Information einzugeben, die in die
Shell eingelesen und vom Programm verwendet wird. Wie Du schon in Kapitel 8

Nitzliche Python-Module



gelernt hast, enthalt dieses Objekt eine Funktion readline, die eine Zeile Text ein-
liest, der auf der Tastatur eingegeben wurde, bis der Benutzer die Enter-Taste
driickt. Sie funktioniert wie die Funktion input, die wir im Zufallszahlen-Rate-
spiel weiter oben in diesem Kapitel benutzt haben. Gib zum Beispiel das Folgende
ein:

>>> import sys
>>> vy = sys.stdin.readline()
Wer zuletzt lacht, denkt am Tangsamsten

Python speichert nun den String Wer zuletzt lacht, denkt am langsamsten in die
Variable v. Um uns dies bestitigen zu lassen, geben wir die Inhalte von v aus:

>>> print(v)

Wer zuletzt Tacht, denkt am langsamsten
Einer der Unterschiede zwischen den Funktionen input und readline besteht
darin, dass man mit der Funktion readline die Anzahl der Zeichen festlegen
kann, die als Parameter gelesen werden. Zum Beispiel:

>>> y = sys.stdin.readline(17)

Wer zuletzt lacht, denkt am Tangsamsten
>>> print(v)

Wer zuletzt lacht

Mit dem Objekt stdout schreiben

Im Gegensatz zu stdin wird das Objekt stdout (Abkiirzung fur standard output,
engl. fur »Standard-Ausgabe«) verwendet, um Mitteilungen in die Shell (oder
Konsole) zu schreiben, anstatt sie einzulesen. In gewisser Hinsicht ist es das Glei-
che wie print; stdout ist aber ein Datei-Objekt. Es hat also die gleichen Funktio-
nen, die wir in Kapitel 10 verwendet haben, wie etwa write. Hier siehst Du ein
Beispiel:

>>> import sys

>>> sys.stdout.write("Welche drei Worte machen einen Hai gliicklich?

Mann iiber Bord!")
Welche drei Worte machen einen Hai gliicklich? Mann iber Bord!61

Wie Du siehst, gibt write die Anzahl der Zeichen zurick, die es geschrieben hat:
Am Ende der Mitteilung siehst Du die Zahl 61. Wir konnten diesen Wert in einer
Variable speichern, um im Verlauf festzuhalten, wie viele Zeichen auf den Moni-
tor geschrieben wurden.

Die Shell mit dem Modul sys steuern

127



128

Welche Python-Version benutze ich?

Die Variable version zeigt die Version von
Python an. Dies kann ganz niitzlich sein, um
sicherzustellen, dass man auf dem aktuellen
Stand ist. Manche Programmierer lassen gerne
Informationen anzeigen, wenn ihre Pro-

gramme gestartet werden. Du konntest zum
Beispiel in einem »Uber«-Fenster die Version von Python anzeigen lassen:

>>> import sys

>>> print(sys.version)

3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:55:48) [MSC v.1600 32 bit
(Intel)]

11.5 Mit dem Modul time arbeiten

Das Modul time von Python enthilt Funktionen zum Anzeigen der Zeit, aller-
dings nicht unbedingt so, wie Du es erwartest. Probiere einmal Folgendes aus:

>>> qmport time
>>> print(time.time())
1359450712.489086

Die Zahl, die nach dem Aufruf von time()
zuriickgegeben wird, ist die Anzahl von
Sekunden, die seit dem 1. Januar 1970 um
0:00 Uhr vergangen sind. Dieser Referenz-
punkt mag sehr ungewohnlich erscheinen,

hat aber seinen Sinn. Um zum Beispiel her-
auszufinden, wie lange Teile Deines Programms brauchen, um abzulaufen,
kannst Du die Zeit am Anfang und am Ende aufzeichnen und diese Werte
anschliefSend vergleichen. Probieren wir einmal aus, wie lange es dauert, alle
Zahlen zwischen 0 und 999 anzuzeigen. Zunichst erzeugen wir eine Funktion
wie diese:

>>> def ganz_viele Zahlen(max):
for x in range(0, max):
print(x)

Als Nichstes rufen wir die Funktion auf, wobei max auf 1000 gesetzt ist:
>>> ganz_viele Zahlen(1000)

Danach finden wir heraus, wie lange die Funktion braucht, indem wir unser Pro-
gramm mit dem Modul time abandern:

Nitzliche Python-Module



>>> def ganz_viele Zahlen(max):

(1] tl = time.time()
(2] for x in range(0, max):
print(x)
(3] t2 = time.time()
(4] print('Es hat %s Sekunden gebraucht' % (t2-t1)

Wenn wir das Programm wieder aufrufen, bekommen wir folgendes Ergebnis
(das von der Geschwindigkeit Deines Systems abhingt):

>>> ganz_viele_Zahlen(1000)
0

1
2
3

997
998
999
Es hat 50.159196853637695 Sekunden gebraucht.

So funktioniert das Ganze: Beim ersten Aufrufen der Funktion time() weisen wir
den zuriickgegebenen Werten der Variablen t1 eins zu ©. AnschliefSend gehen wir
in die Schleife und geben alle Zahlen in der dritten und vierten Zeile aus ®. Nach
der Schleife rufen wir wieder die Funktion time() auf und weisen den zuriickgege-
benen Wert der Variablen t2 zu ©. Da es mehrere Sekunden zum Durchlaufen der
Schleife dauert, ist der Wert t2 grofSer als t1, da bei ihm seit dem 1. Januar 1970
mehr Sekunden vergangen sind. Wenn man wie wir in @ tl von t2 abuzieht,
bekommt man die Anzahl von Sekunden, die es gedauert hat, um alle Zeilen aus-
zugeben.

Mit asctime ein Datum umwandeln

Die Funktion asctime nimmt ein Datum als Tupel auf und wandelt es in etwas
um, das lesbarer ist. (Erinnere dich daran, dass ein Tupel eine Liste von Elemen-
ten ist, die man nicht veriandern kann.) Wie Du in Kapitel 8 gesehen hast, zeigt
asctime das aktuelle Datum und die Uhrzeit in einer lesbaren Form an, wenn man
asctime ohne Parameter aufruft.

>>> import time
>>> print(time.asctime())
Tue Jan 29 10:53:18 2013

Mit dem Modul time arbeiten

129



Um asctime mit einem Parameter aufzurufen, erzeugen wir zunichst ein Tupel
mit Werten fur das Datum und die Uhrzeit. Hier zum Beispiel weisen wir das
Tupel der Variablen t zu:

>>> t = (2007, 5, 27, 10, 30, 48, 6, 0, 0)

Die Werte in dieser Sequenz sind Jahr, Monat, Tag, Stunden, Minuten, Sekunden,
Wochentag (0 steht fiir Montag, 1 ist Dienstag usw.) und die Angabe, ob gerade
Sommerzeit ist (0, wenn nicht; 1, wenn ja). Wenn wir asctime mit einem ahnli-
chen Tupel aufrufen, bekommen wir Folgendes:

>>> qmport time

>>> t = (2020, 2, 23, 10, 30, 48, 6, 0, 0)
>>> print(time.asctime(t))

Sun Feb 23 10:30:48 2020

Mit localtime Datum und Uhrzeit bekommen

Im Gegensatz zu asctime gibt die Funktion Tocaltime das aktuelle Datum und die
Uhrzeit als Objekt zuriick. Die Werte haben dabei ungefahr die gleiche Reihen-
folge wie bei asctime. Wenn Du das Objekt ausgibst, sichst Du den Namen der
Klasse und jeden Wert als tm _year, tm mon (fiir Monat), tm day (fiir Tag des
Monats), tm_hour und so weiter angezeigt.

>>> qmport time

>>> print(time.localtime())

time.struct time(tm year=2013, tm mon=1, tm mday=29, tm hour=11,
tm min=24, tm_sec=47, tm wday=1, tm yday=29, tm_isdst=0)

Um das aktuelle Jahr und den Monat anzeigen zu lassen, kannst Du deren Index-
Positionen verwenden (wie bei einem Tupel, das wir mit asctime benutzt haben).
Anhand unseres Beispiels wissen wir, dass das Jahr an erster Stelle steht (Position
0) und der Monat (month) an der zweiten (1). Daher verwenden wir Jahr = t[0]
und Monat = t[1] folgendermafSen:

>>> t = time.localtime()
>>> Jahr = t[0]

>>> Monat = t[1]

>>> print(Jahr)

2013

>>> print(Monat)

1

Wie Du siehst, haben wir den ersten Monat des Jahres 2013.

130  Nutzliche Python-Module



Mit sleep eine Pause machen

Die Funktion sleep ist ganz prak-
tisch, wenn Du Dein Programm ver-
zogern oder verlangsamen mochtest.
Um zum Beispiel jede Sekunde von 1
bis 61 anzeigen zu lassen, konnen

wir folgende Schleife verwenden:

>>> for x in range(1l, 61):
print(x)
Dieser Code gibt ganz schnell alle Zahlen zwischen 1 und 60 aus. Wir kénnen
Python aber auch sagen, dass es zwischen jeder print-Anweisung eine Sekunde
lang Pause machen soll:

>>> for x in range(l, 61):
print(x)
time.sleep(1)
Dadurch wird die Anzeige der nachsten Zahl verzogert. In Kapitel 13 werden wir
die Funktion sleep dazu verwenden, eine Animation etwas realistischer erschei-
nen zu lassen.

11.6 Mit dem Modul pickle Informationen speichern

Mit dem Modul pickle wandelt man Python-Objekte in
etwas um, das man in eine Datei schreiben und auch
leicht wieder auslesen kann. Das Modul pickle ist dann
ganz praktisch, wenn Du ein Spiel schreibst, bei dem Du
Informationen iiber den Spielestand speichern mdchtest.
Hier siehst Du zum Beispiel, wie man Gegenstidnde bei
einem Spiel hinzufiigt und speichert:

>>> Spieldaten = {
'Spielerposition' : 'N23 E45',
'"Hosentaschen': ['Schliissel', 'Taschenmesser', 'polierter Stein'],
'Rucksack' : ['Seil', 'Hammer', 'Apfel'],
'Geld' : 158.50

}

Hier erzeugen wir eine Python-Map, die in unserem imaginiren Spiel die Spielpo-
sition und eine Liste von Elementen in den Taschen und dem Rucksack des Spie-
lers enthalt sowie die Summe an Geld, die er bei sich tragt. Wir konnen diese Map

Mit dem Modul pickle Informationen speichern

131



132

in eine Datei speichern, indem wir die Datei zum Schreiben 6ffnen und dann die

Funktion dump von pickle aufrufen:

0 >>> pickle
® >>> Spieldaten = {
‘Spielerposition' : 'N23 E45',
'"Hosentaschen': ['Schlissel', 'Taschenmesser', 'polierter Stein'],
'Rucksack' : ['Seil', 'Hammer', 'Apfel'],
'Geld' : 158.50
}

© >>> speichere Datei = open('save.dat', 'wb')
O >>> pickle.dump(Spieldaten, speichere Datei)
© >>> speichere Datei.close()

Als Erstes importieren wir in @ das Modul pickle und erzeugen in @ eine Map
mit unseren Spielkarten. In ® 6ffnen wir die Datei save.dat mit dem Parameter wb,
der Python sagt, dass es die Datei im Bindrmodus schreiben soll (dazu musst Du
vielleicht das richtige Verzeichnis wie /Users/martinoswald, /homel/susanneb/ oder
C:\Users\JensIngrim ausgeben, wie wir das in Kapitel 10 gemacht haben). In @
benutzen wir dann dump, um die Map und die Datei-Variable als zwei Parameter
einzufiigen. Zum Schluss schliefSen wir die Datei in ©, da wir mit ihr fertig sind.

Achtung!

Einfache Textdateien enthalten nur Zeichen, die Menschen lesen kénnen. Bilder, Musik-
Dateien, Filme und pickle-Objekte in Python enthalten Informationen, die nicht immer
fir Menschen lesbar sind. Das sind die sogenannten Binardateien. Wenn Du die Datei
save.dat 6ffnen wiirdest, wiirdest Du sehen, dass sie nicht wie eine Textdatei aussieht, son-
dern wie eine wilde Mixtur aus normalem Text und Sonderzeichen.

| save - Editor =a| 5
Datei Bearbeiten Format Ansicht ?

€3q (X Geldq G&cd Xz Rucksackg.]Jqu(x:  Seilg:X-  Hammerq|X Apfelg-exs

Hosentaschenge]ga(X schlAk4sselq X  Taschenmessergxs polierter steingsexs

| spielerpositiongsXs N23 E45qu.

Die mit pickle behandelten Objekte, die wir mit der Funktion dump von pickle in
eine Datei geschrieben haben, konnen wir mit Toad riickgangig machen. Dabei
kehren wir den Prozess von pickle um: Wir nehmen die Informationen, die in die
Datei geschrieben wurden, auf und wandeln sie zuriick in die Werte um, die unser
Programm verwerten kann. Dieser Prozess funktioniert ahnlich wie bei der Funk-

tion dump:

>>> lade Datei = open('save.dat', 'rb')
>>> geladene_Spieldaten = pickle.load(lade Datei)
>>> lade Datei.close()

Nitzliche Python-Module



Als Erstes offnen wir die Datei und benutzen rb als Parameter, was fur »lies
Binardaten« (engl. read binary) steht. Wir reichen die Datei dann an load weiter
und setzen den zuriickgegebenen Wert in die Variable geladene Spieldaten. Zum
Schluss schlieflen wir die Datei wieder.

Um zu priifen, dass die gespeicherten Daten korrekt geladen wurden, lassen
wir die Variable ausgeben:

>>> print(geladene_Spieldaten)

{'Spielerposition': 'N23 E45', 'Hosentaschen': ['Schliissel’,
'Taschenmesser', 'polierter Stein'], 'Rucksack': ['Seil', 'Hammer',
"Apfel'], 'Geld': 158.5}

1.7 Was Du gelernt hast

In diesem Kapitel hast Du gelernt, wie Python-Module Funktionen, Klassen und
Variablen zusammenfassen und wie man diese Funktionen durch Importieren der
Module benutzt. Du hast gesehen, wie man Objekte kopiert, Zufallszahlen er-
zeugt und zufallsmifSig Listen von Objekten mischt. Aufserdem hast Du gelernt,
wie man in Python mit der Zeit arbeitet. Zu guter Letzt hast Du gelernt, wie man
mit pickle Informationen in einer Datei speichert und wieder daraus ladt.

11.8 Programmier-Puzzles

Probier die folgenden Sachen aus, um den Umgang mit Pythons Modulen zu
iiben. Uberpriife Deine Antworten unter www.dpunkt.de/python.

#1: Kopierte Autos

Was wird der folgende Code anzeigen?

>>> import copy
>>> class Auto:
pass

>>> Autol = Auto()

>>> Autol.Rdder = 4
>>> Auto2 = Autol

>>> Auto2.Rdder = 3
) >>> print(Autol.Rader)
stehth‘e‘?l‘[""“
Ewii“"”""ﬂﬁ >>> Auto3 = copy.copy(Autol)
>>> Auto3.Rdder = 6

>>> print(Autol.Rader)

[ \yas stenehier? —,

Was Du gelernt hast

133



#2: Favoriten in pickle

Erstelle eine Liste Deiner Lieblingsgegenstinde, und benutze pickle, um sie in
einer Datei namens Favoriten.dat zu speichern. Schliefle dann die Python-Shell,
offne sie wieder, und lass die Liste Deiner Lieblingsgegenstinde anzeigen, indem
Du die Datei ladst.

134 Nitzliche Python-Module



Noch mehr Grafik mit turtle

Lass uns einen weiteren Blick auf das Modul turtle werfen, mit dem wir in
Kapitel 5 begonnen haben. Wie Du in diesem Kapitel sehen wirst, kann Python mit
seinen Schildkroten viel mehr anstellen, als nur einfache schwarze Linien zu zeich-
nen. Du kannst damit beispielsweise kompliziertere geometrische Formen zeich-
nen, unterschiedliche Farben erzeugen und Deine Formen sogar mit Farben fiillen.

Wie man mit der Schildkrote einfache Formen zeichnet, wissen wir schon. Bevor
wir mit der Schildkrote zeichnen, miuissen wir das Modul turtle importieren und
das Objekt Pen erzeugen:

>>> turtle
>>> t = turtle.Pen()

Hier siehst Du noch einmal der Code, mit dem wir in Kapitel 5 ein Quadrat
erzeugt haben:

>>> t, forward(50)
>>> t,.1eft(90)
>>> t,forward(50)
>>> t,1eft(90)
>>> t,forward(50)
>>> t.1eft(90)
>>> t,forward(50)

135



136

In Kapitel 7 hast Du etwas tiber for-Schleifen erfahren. Aufgrund unserer neuen
Kenntnisse konnen wir diesen etwas umstindlichen Code fiir ein Quadrat mit
einer for-Schleife einfacher machen:

>>> t.reset()

>>> for x in range(l, 5):
t.forward(50)
t.left(90)

In der ersten Zeile sagen wir dem Pen-Objekt,
dass es sich zurucksetzen soll. Als Nachstes star-
ten wir eine for-Schleife, die mit dem Code
range(1l, 5) von 1 bis 4 zihlt. Danach bewegen
wir uns in den folgenden Zeilen bei jedem
Durchlauf der Schleife 50 Pixel vorwirts und
biegen 90° nach links ab. Weil wir die for-Schleife verwendet haben, ist dieser

Code also ein bisschen kiirzer als die vorherige Version — wenn man die reset-
Zeile weglasst, haben wir statt sechs nur noch drei Zeilen.

12.2 Sterne zeichnen

Mit nur einigen kleinen Anderungen unserer for-Schleife kénnen wir etwas Inter-
essanteres zeichnen. Gibt Folgendes ein:

>>> t.reset()

>>> for x in range(l, 9):
t.forward(100)
t.left(225)

Dieser Code produziert einen achtzackigen Stern:

4 Python Turtle Graphics [e®]=]

Noch mehr Grafik mit turtle



Der Code selbst ist dem, den wir beim Zeichnen des Quadrats verwendet haben,
sehr dhnlich, bis auf ein paar Ausnahmen:

Anstatt mit range(1, 5) die Schleife viermal zu durchlaufen, schleifen wir mit
range(1, 9) achtmal hindurch.

Anstatt uns um 50 Pixel vorwarts zu bewegen, nehmen wir 100 Pixel.
Anstatt uns um 90° zu drehen, drehen wir uns um 225° nach links.

Jetzt entwickeln wir unseren Stern noch ein bisschen weiter. Indem wir einen
175°-Winkel verwenden und 37-mal durchschleifen, konnen wir einen Stern mit
noch viel mehr Zacken malen:

>>> t.reset()

>>> for x in range(1l, 38):

t.forward(100)
t.left(175)

Hier ist das Ergebnis dieses Codes:

4 Python Turtle Graphics [=][@]=]

Wo wir gerade mit Sternen herumspielen: Hier ist der Code, um einen sich
schraubenden Stern zu produzieren:

>>> t.reset()

>>> for x in range(1l, 20):
t.forward(100)
t.left(95)

Indem wir den Drehwinkel dndern und die Anzahl der Schleifen reduzieren,
zeichnet die Schildkrote einen ganz anderen Stern:

Sterne zeichnen

137



138

P ~

74 Python Turtle Graphics [ @]=

Mit sehr ahnlichem Code konnen wir eine ganze Reihe unterschiedlicher Formen
erzeugen — von einem einfachen Quadrat bis zu einem sich schraubenden Stern.
Wie Du siehst, haben wir es durch die Verwendung von for-Schleifen viel einfa-
cher gemacht, diese Formen zu zeichnen. Ohne for-Schleifen hitte unser Code
viel mehr mithsames Tippen erfordert.

Lass uns jetzt mit einer if-Anweisung die Drehung der Schildkrote steuern
und eine weitere Stern-Variante zeichnen. In diesem Beispiel mochten wir, dass

die Schildkrote sich erst um einen Winkel und beim zweiten Mal um einen ande-
ren Winkel dreht.

>>> t,reset()
>>> for x in range(1, 19):
t.forward(100)
if x % 2==0:
t.left(175)
else:
t.left(225)

Hier erzeugen wir eine Schleife, die 18-mal
durchlaufen wird (range(1,19)) und der Schild-
krote sagt, dass sie sich 100 Pixel vorwirts be-
wegen soll (t.forward(100)). Das Neue hierbei
ist die if-Anweisung (if x % 2 ==:). Diese Anwei-
sung prift, ob die Variable x eine gerade Zahl

enthilt, indem sie den sogenannten Modulo-
Operator (Rest-Operator), also das % in dem Ausdruck x % 2 == 0, verwendet. Das
ist, als ob man sagen wiirde, »x mod 2« ist gleich 0.

Noch mehr Grafik mit turtle



Der Ausdruck x % 2 sagt im Grunde: »Wie grof$ ist der Rest, wenn man die
Zahl in der Variable x in zwei gleiche Hilften teilt? « Wenn wir beispielsweise die
Menge von fiunf Billen in zwei gleiche Teile teilen wollten, bekimen wir zwei
Gruppen mit je zwei Béllen (einer Gesamtmenge von vier Béllen) und einen Rest
von einem Ball, wie hier zu sehen ist:

/ Dies ist der Rest.

Wenn wir 13 Bille in zwei gleich groffe Gruppen teilen wollten, bekdmen wir
zwei Gruppen mit je sechs Billen und einem Ball als Rest:

/ Dies ist der Rest.

Wenn wir priifen, ob der Rest nach dem Teilen von x durch 2 gleich null ist, fra-
gen wir in Wirklichkeit, ob ohne Rest in zwei Teile geteilt werden kann. Auf diese
Weise kann man ganz elegant priifen, ob eine Variable eine gerade Zahl enthalt,
da gerade Zahlen immer restlos durch zwei geteilt werden konnen.

In der funften Zeile unseres Codes sagen wir der Schildkrote, dass sie um
175° nach links abbiegen soll (t.1eft (175)), falls x eine gerade Zahl ist (if X % 2
== 0:); anderenfalls (else) sagen wir ihr in der letzten Zeile, dass sie sich um 225°
drehen soll (t.1eft (225)).

Sterne zeichnen

139



140

Hier siehst Du das Ergebnis dieses Codes:

12.3

7% Python Turtle Graphics (=@ =1

Ein Auto zeichnen

Die Schildkrote kann mehr, als nur Sterne und einfache geometrische Formen zu

zeichnen. In unserem nichsten Beispiel malen wir ein ziemlich primitiv aussehen-

des Auto. Als Erstes zeichnen wir die Karosserie des Autos. Gehe also auf File P>

New Window, und gib in dem sich 6ffnenden Fenster den folgenden Code ein:

import turtle

= turtle.Pen()

t
t.color(1,0,0)
t.begin fill()
t.forward(100)
t.1eft(90)
t.forward(20)
t.1eft(90)
t.forward(20)
t.right(90)

t.
t
t
t
t
t
t
t
t
t

forward(20)

.left(90)
.forward(60)
.left(90)
.forward(20)
.right(90)
.forward(20)
.left(90)
.forward(20)
.end_fil1()

Noch mehr Grafik mit turtle



Als Nichstes kommt das erste Rad dran:

&+ &+ & &+ o o+

.color(0,0,0)
-up()
.forward(10)
.down()
.begin fi11()
.circle(10)
.end_fi11()

Zum Schluss zeichnen wir das zweite Rad:

&+ &+ & &+ &+ &+ &+ o o+

Gehe

.setheading(0)
-up()
.forward(90)
.right(90)
.forward(10)
.setheading(0)
.begin_fil1()
.down ()
.circle(10)
.end_fil1()

auf File P> Save As. Gib einen Dateinamen wie zum Beispiel Auto.py ein.

Gehe auf Run » Run Module, um den Code auszuprobieren. Und hier ist unser

Auto:

74 Python Turtle Graphics o |[@ =]

Vielleicht ist Dir aufgefallen, dass sich ein paar neue turtle-Funktionen in diesen

Code

eingeschlichen haben:

Mit color andert man die Farbe des Stifts.
Mit begin_ fi11 und end_fi11 fillt man Fliachen mit Farbe aus.
Mit circle kann man einen Kreis in einer bestimmten Grofde zeichnen.

Ein Auto zeichnen

141



142

Mit setheading kann man die Schildkrote in eine bestimmte Richtung schauen
lassen.

Schauen wir uns an, wie wir mit diesen Funktionen Farbe in unsere Zeichnungen
bringen konnen.

Die Funktion color nimmt drei Parameter auf. Der erste bestimmt den Rotanteil,
der zweite den Griinanteil und der dritte den Blauanteil. Um zum Beispiel das
helle Rot des Autos zu bekommen, haben wir color(1,0,0) benutzt und die
Schildkrote dadurch angewiesen, mit einem zu 100 % roten Stift zu zeichnen.

Dieses Farb-Rezept aus Rot, Griin und
Blau nennt man RGB.Auf Deinem Computer-
Bildschirm werden durch die Mischung die-
ser Primdrfarben auch alle anderen Farben
dargestellt. Das ist ein bisschen so, als wiir-
dest Du mit Deinem Tuschkasten aus blauer
und roter Farbe Violett oder aus Gelb und
Rot Orange mischen.

Obwohl wir beim Mischen der Farben
auf dem Computer-Monitor keine Farben aus dem Tuschkasten (sondern Licht)

verwenden, hilft vielleicht die Vorstellung, dass dieses RGB-Rezept wie aus drei
Farbeimern zusammengemischt wird: einem roten, einem grinen und einem
blauen. Jeder dieser Eimer ist voll, und dem vollen Eimer weisen wir den Wert
von 1 (oder 100 %) zu. Wir mischen dann die gesamte rote und griine Farbe in
einem Bottich zusammen, um Gelb zu erhalten (das wiren 1 und 1 von jedem
oder 100 % von jeder Farbe.

Kehren wir nun in die Welt des Codes zuriick. Um mit der Schildkréte einen
gelben Kreis zu zeichnen, wiirden wir je 100 % von der roten und der griinen
Farbe verwenden, aber kein Blau:

>>> t.color(1,1,0)
>>> t.begin fill()
>>> t.circle(50)
>>> t.end fill()

Die 1,1,0 in der ersten Zeile stehen fiir 100 % Rot, 100 % Griin und 0% Blau. In
der nichsten Zeile sagen wir der Schildkrote, dass sie die von ihr gemalten For-
men mit dieser RGB-Farbe (t.begin_fi11) ausmalen und dann damit einen Kreis
zeichnen soll (t.circle). In der letzten Zeile sagt end_fi11 der Schildkrote, dass sie
den Kreis mit der RGB-Farbe ausfillen soll.

Noch mehr Grafik mit turtle



Eine Funktion zum Zeichnen eines ausgefiillten Kreises

Um das Experimentieren mit verschiedenen Farben leichter zu machen, erzeugen
wir eine Funktion aus dem Code, mit dem wir einen ausgefiillten Kreis gezeichnet

haben.

>>> meinKreis(Rot, Griin, Blau):
t.color(Rot, Griin, Blau)
t.begin fil1()
t.circle(50)
t.end fil1()

Indem wir nur die griine Farbe verwenden, kénnen wir uns einen hellen griinen
Kreis zeichnen:

>>> meinKreis(0, 1, 0)

Oder wir konnen einen dunkleren griinen Kreis mit nur der Halfte der griinen
Farbe (0.5) zeichnen:

>>> meinKreis(0, 0.5, 0)
Um ein wenig mit den RGB-Farben auf Deinem Monitor zu spielen, versuche
zunichst einen Kreis mit vollem Rot und dann mit halber Intensitit (1 und 0.5)

zu zeichnen, danach einen voll blauen Kreis und zum Schluss einen mit 50 %
Blau:

>>> meinKreis(1l, 0, 0)
>>> meinKreis(0.5, 0, 0)
>>> meinKreis(0, 0, 1)
>>> meinKreis(0, 0, 0.5)

Achtung!

Wenn Du Deine Leinwand aufradumen mochtest, kannst Du mit t.reset() Deine alten
Zeichnungen entfernen. Denk daran, dass Du die Schildkrote auch ohne Linien zu zeich-
nen bewegen kannst, indem Du mit t.up() den Stift abhebst und ihn mit t.down () wie-
der absetzt.

Durch unterschiedliche Kombinationen von Rot, Griin und Blau kannst Du sehr
viele verschiedene Farben erzeugen, wie etwa Gold:

>>> meinKreis (0.9, 0.75, 0)

Oder ein helles Rosa:
>>> meinKreis(1l, 0.7, 0.75)

Dinge einférben

143



144

Und hier sind noch zwei verschiedene Orangetone:

>>> meinKreis(1l, 0.5, 0)
>>> meinKreis(0.9, 0.5, 0.15)

Mische Dir jetzt eigene Farben zusammen!

Reines Schwarz und WeiB erzeugen

Was geschieht, wenn man nachts alle Lampen
abschaltet? Alles wird schwarz. Genau das Gleiche
passiert mit den Farben auf dem Computer. Keine
Farben ohne Licht, also enthilt ein Kreis mit O fir
alle Primirfarben reines Schwarz:

>>> meinKreis(0, 0, 0)

Hier das Ergebnis:

7# Python Turtle Graphics o |-E

Das Gegenteil trifft zu, wenn Du alle drei Farben auf 100 % setzt. In diesem Fall
bekommst Du Weifs. Gib den folgenden Code ein, um den schwarzen Kreis weg-
zuwischen:

>>> meinKreis(1l, 1, 1)

Noch mehr Grafik mit turtle



Eine Funktion zum Quadratezeichnen

Du hast gesehen, dass wir Formen mit Farbe ausfiillen, indem wir der Schildkrote
mit begin fill sagen, dass sie damit anfangen soll, und mit der Funktion
end fill, dass jetzt Schluss ist. Jetzt machen wir noch ein paar weitere Experi-
mente mit Formen und Fiarben. Wir nehmen dazu die Funktion zum Quadrate-
zeichnen vom Anfang dieses Kapitels und bestimmen die Grofle des Quadrats
durch ihre Parameter.

>>> def meinQuadrat (GroBe):
for x in range(1, 5):
t.forward(GroBe)
t.1eft(90)

Teste Deine Funktion, indem Du sie mit einer Grofle von 50 aufrufst:

>>> meinQuadrat (50)

Das ergibt ein kleines Quadrat:

74 Python Turtle Graphics = | = | &= |

Jetzt probieren wir unsere Funktion mit unterschiedlichen Groflen aus. Der fol-
gende Code erzeugt funf aufeinanderfolgende Quadrate mit den Seitenlingen 25,
50, 75,100 und 125 Pixel:

>>> t.reset()

>>> meinQuadrat(25)
>>> meinQuadrat (50)
>>> meinQuadrat(75)
>>> meinQuadrat (100)
>>> meinQuadrat(125)

Dinge einférben

145



So sollten die Quadrate dann aussehen:

I

74 Python Turtle Graphics ===

12.5 Ausgefiillte Quadrate zeichnen

Um ausgefullte Quadrate zu zeichnen, mussen wir zunichst die Leinwand
zuriicksetzen, mit dem Auffiillen anfangen und dann wieder unsere Quadrat-
Funktion aufrufen:

>>> t.reset()
>>> t.begin fill()
>>> meinQuadrat (50)

Bis Du das Fiillen beendet hast, solltest Du ein leeres Quadrat sehen:

>>> t.end fill()

Danach sollte das Quadrat so aussehen:

I

74 Python Turtle Graphics ===

146 Noch mehr Grafik mit turtle



Lass uns jetzt diese Funktion so dndern, dass wir entweder ein ausgefilltes oder
ein leeres Quadrat zeichnen konnen. Dafiir brauchen wir einen weiteren Parame-
ter sowie etwas komplizierteren Code:

>>> meinQuadrat (GroBe, ausgefiillt):
ausgefiillt == True:
t.begin_fil1()

X range(1, 5):
t.forward(GroBe)
t.left(90)

ausgefiil1t == True:
t.end fil1()

In der ersten Zeile dindern wir unsere Funktion, damit sie zwei Parameter auf-
nimmt: GréBe und ausgefiil1t. Als Nichstes prifen wir, ob der Wert von ausge-
fi11t mit if ausgefiil1t == True auf wahr gesetzt ist. Falls er es ist, rufen wir
begin_fi11 auf, um der Schildkrote zu sagen, dass sie die gezeichnete Form ausfiil-
len soll. Danach durchlaufen wir die Schleife viermal (for x in range(0, 4)), um
die vier Seiten des Rechtecks (durch Bewegung vorwirts und nach links) zu zeich-
nen. Danach priifen wir mit if ausgefiil1t == True, ob ausgefiil1t wahr ist. Falls ja,
stellen wir das Ausfiillen mit t.end fi11 ab, und die Schildkrote fullt das Quadrat
mit Farbe aus.

Jetzt konnen wir mit dieser Zeile ein ausgefiilltes Quadrat zeichnen:
>>> meinQuadrat (50, True)

Oder wir zeichnen mit dieser Zeile ein unausgefiilltes Quadrat:

>>> meinQuadrat (150, False)

Nach diesen beiden Aufrufen der Funktion meinQuadrat bekommen wir folgendes
Bild, das ein bisschen wie ein quadratisches Auge aussieht:

4 Python Turtle Graphics o |[@2] =]

Ausgefiillte Quadrate zeichnen

147



148

Aber hier hort es noch lange nicht auf. Du kannst alle erdenklichen Formen
zeichnen und sie mit Farbe fiillen.

In unserem letzten Beispiel fiigen wir unserem Stern, den wir zuvor gezeichnet
haben, etwas Farbe hinzu. Der urspriingliche Code sah so aus:

>>> t . reset()

>>> X range(1, 19):
t.forward(100)
X % 2== 0:

t.1eft(175)

t.left(225)

Nun schreiben wir uns eine meinStern-Funktion. Wir werden die if-Anweisung
aus der meinStern-Funktion verwenden und den Parameter GroBe hinzufiigen.

>>> meinStern(GroBe, ausgefillt):
ausgefillt == True:
t.begin _fill()
X range(1, 19):
t.forward(GroBe)
x % 2 ==0:
t.left(175)

t.left(225)
ausgefillt ==
t.end fil1()

In den ersten beiden Zeilen dieser Funktion priifen wir, ob ausgefiil1t wahr ist,
und falls dem so ist, beginnen wir mit dem Ausfillen. In den letzten beiden Zeilen
priifen wir wieder, ob ausgefiil1t wahr ist, und horen gegebenenfalls mit dem
Ausfiillen auf. Wie schon bei der Funktion meinQuadrat setzen wir wieder die
Grofse des Sterns mit dem Parameter GréBe fest und greifen auf diesen Wert zu,
wenn wir t.forward aufrufen.

Wir legen jetzt die Farbe auf Gold fest (90 % Rot, 75 % Griin und 0 % Blau)
und rufen die Funktion wieder auf.

>>> t.color(0.9, 0.75, 0)
>>> meinStern(120, True)

Noch mehr Grafik mit turtle



Damit zeichnet die Schildkrote diesen ausgefiillten Stern:

74 Python Turtle Graphics [[&[e])[=]

Damit der Stern eine Umrandung bekommt, dnderst Du die Farbe in Schwarz
und zeichnest den Stern, ohne ihn auszufiillen, noch einmal:

>>> t.color(0, 0, 0)
>>> meinStern(120, False)

Der goldene Stern hat jetzt eine schwarze Umrandung:

74 Python Turtle Graphics [[&[e])[=]

Ausgefiillte Sterne zeichnen

149



150

In diesem Kapitel hast Du gelernt, wie man
mit dem Modul turtle ein paar grundlegende
geometrische Formen zeichnet und wie man
die Schildkrote mit for-Schleifen und der if-
Anweisung auf dem Monitor steuert. Wir
haben die Farbe des Stifts der Schildkrote
verandert und die von ihr gezeichneten For-
men ausgefiillt. Wir haben auch mit einigen

Funktionen den Code anderer Zeichnungen
wiederverwertet, um mit nur einem Aufruf einer Funktion ganz einfach Formen
mit unterschiedlichen Farben zu zeichnen.

Bei den folgenden Experimenten zeichnest Du Deine eigenen Formen mit der Schild-
krote. Die Losungen findest Du wie immer unter www.dpunkt.de/python.

#1: Ein Oktagon zeichnen

Wir haben in diesem Kapitel Sterne, Quadrate und Rechtecke gezeichnet. Wie
wire es, wenn wir jetzt eine Funktion erstellen, mit der wir eine achtseitige Form,
wie etwa ein Oktagon, zeichnen? (Hinweis: Versuche, die Schildkrote um 45° zu

drehen.)

74 Python Turtle Graphics o ||fE=T

Noch mehr Grafik mit turtle



#2: Ein ausgefiilltes Oktagon zeichnen

Jetzt, wo Du eine Funktion zum Zeichnen eines Oktagons hast, dndere sie so ab,
dass sie ein ausgefulltes Oktagon zeichnet. Versuche, ein Oktagon mit einer
Umrandung zu zeichnen, wie wir es bei dem Stern getan haben.

I

& Python Turtle Graphics ===

4

#3: Noch eine Funktion zum $terne Zeichnen

Erzeuge eine Funktion zum Zeichnen eines Sterns, die zwei Parameter aufnimmt:
die Grofe und die Anzahl der Zacken. Der Anfang der Funktion wird in etwa so
aussehen:

>>> def zeichne Stern(GréBe, Zacken):

Programmier-Puzzles 151






Bessere Grafiken mit tkinter

Das Problem beim Zeichnen mit einer Schildkrote besteht darin, dass ... Schild-
kroten ... wirklich ... langsam ... sind. Selbst wenn eine Schildkréte mit ihrer
Hochstgeschwindigkeit lauft, ist sie immer noch nicht sehr schnell. Was bei
Schildkroten kein Problem ist, ist bei Computergrafiken sehr wohl eins.
Computergrafiken, vor allem in Spielen,
miussen sehr schnell ablaufen. Wenn Du eine
Spielkonsole hast oder auf dem Computer
spielst, denk mal einen Moment lang tiber die
Grafiken nach, die Du auf dem Monitor
siehst. Zweidimensionale (2D) Grafiken sind
flach — die Figuren bewegen sich im Allgemei-

nen nur nach oben, unten, links oder rechts —
wie in vielen Nintendo DS-, PlayStation Portable- (PSP) oder Handyspielen. Bei
pseudo-dreidimensionalen (3D) Spielen — die fast 3D sind — sind die Bilder etwas
realistischer, aber die Figuren bewegen sich meist nur in Relation zu einer Ebene
(dies nennt man auch isometrische Grafiken). Und schliefSlich haben wir noch die
3D-Spiele, bei denen die Bilder auf dem Monitor gezeichnet werden, um die Rea-
litit nachzuahmen. Egal ob unsere Spiele nun 2D-, Pseudo-3D oder echte 3D-
Grafiken darstellen, sie haben doch eines gemeinsam: Sie miissen sich alle sehr
schnell auf den Computermonitor aufbauen.

Falls Du noch nie versucht hast, eine eigene Animation zu erstellen, probiere
einmal Folgendes aus:

153



154

1. Nimm einen Block Papier, und zeichne etwas in die untere Ecke (zum Bei-
spiel ein Strichmannchen).

2. In die Ecke der nichsten Seite malst Du das gleiche Strichminnchen, be-
wegst aber sein Bein ein wenig.

3. Auf die nichste Seite zeichnest Du das gleiche Strichmannchen, bewegst sein
Bein aber noch ein bisschen mehr.

4. Fige immer mehr Seiten hinzu, auf die Du jeweils ein verdndertes Strich-
mannchen in die Ecke zeichnest.

Wenn Du damit fertig bist, blatterst Du schnell durch die Seiten. Du siehst jetzt,
wie sich das Strichmannchen bewegt. Dies ist das Grundprinzip aller Animatio-
nen, seien sie nun Zeichentrickfilme im Fernsehen oder Spiele auf Deiner Konsole
oder auf Deinem Computer. Ein Bild wird dargestellt und nach einer kleinen
Anderung noch einmal dargestellt, damit die Illusion einer Bewegung entsteht.
Damit es so aussieht, als bewege sich das Bild, musst Du jedes Bild dieser Anima-
tion sehr schnell darstellen.

Python bietet verschiedene Moglichkeiten, um Grafiken zu erzeugen. Zusitz-
lich zum Modul turtle kannst Du externe Module (die separat installiert werden
miussen) ebenso verwenden wie das Modul tkinter, das schon zu Deiner Stan-
dard-Python-Installation gehoren sollte. Mit tkinter kann man vollstindige
Anwendungen, wie etwa einfache Textverarbeitungen, aber auch einfache Zeich-
nungen erstellen. In diesem Kapitel werden wir herausfinden, wie man mit tkin-
ter Grafiken erzeugt.

In unserem ersten Beispiel benutzen wir tkinter, um eine einfache Anwendung
mit einem Button zu erzeugen. Gib dazu diesen Code ein:

>>> tkinter *

>>> tk = Tk()

>>> btn = Button(tk, text = "Klick mich")
>>> btn.pack()

In der ersten Zeile importieren wir die Inhalte
des Moduls tkinter. Indem wir from module-name " “
import * schreiben, konnen wir die Inhalte eines

Moduls verwenden, ohne dessen Namen zu —
benutzen. Wenn wir dagegen (wie in den vorheri-

gen Beispielen) import turtle schreiben, missen wir den Modulnamen mit ein-
schlieflen, um an seine Inhalte zu kommen:

turtle
t = turtle.Pen()

Bessere Grafiken mit tkinter



Mit import * miissen wir nicht turtle.Pen aufrufen, wie wir es in den Kapiteln 5
und 12 getan haben. Beim Modul turtle ist das nicht so wichtig, aber wenn man
Module mit vielen Klassen und Funktionen verwendet, muss man sehr viel weni-
ger tippen.

from turtle import *
t = Pen()

In der ndchsten Zeile unseres Button-Beispiels erzeugen wir eine Variable, die ein
Objekt der Klasse tk mit tk = tk() enthilt, genau wie wir ein Pen-Objekt fur die
Schildkrote erzeugt haben. Das tk-Objekt erzeugt ein einfaches Fenster, in das wir
andere Dinge — wie etwa Buttons, Eingabezeilen oder eine Leinwand zum Bema-
len — einfiigen konnen. Es ist auch die Hauptklasse des Moduls tkinter: Ohne ein
Objekt der tk-Klasse wirst Du keine Grafik oder Animation erstellen konnen.

In der dritten Zeile erzeugen wir mit btn = Button einen Button und fihren die
Variable tk als ersten Parameter ein. "Klick mich" wird der Text, der durch tk,
text = "Klick mich" auf dem Button erscheint. Obwohl wir den Button dem Fens-
ter hinzugefiigt haben, wird er so lange nicht sichtbar sein, bis Du die Zeile
btn.pack() eingegeben hast, die dem Button sagt, dass er erscheinen soll. Dadurch
wird auch alles auf dem Monitor richtig ausgerichtet, falls sich noch andere But-
tons oder Objekte darauf befinden. Das Ergebnis sollte in etwa so aussehen:

7% t bl

Klick mich

Mit dem Klick mich-Button kann man noch nicht viel anfangen. Solange wir den
Code nicht ein wenig andern, kannst Du den ganzen Tag darauf herumklicken,
ohne dass etwas passiert. (Bitte schliefSe dazu zunichst das Fenster, das wir vor-
her erzeugt haben!)

Als Erstes erzeugen wir eine Funktion, die ein wenig Text anzeigt:
>>> def Hallo():
print('Hallo")
Anschlieffend dndern wir unser Beispiel oben, damit wir diese neue Funktion ein-
setzen konnen:

>>> from tkinter import *

>>> tk = Tk()

>>> btn = Button(tk, text = "Klick mich", command=Hallo)
>>> btn.pack()

Einen klickbaren Button erzeugen

155



156

Achte einmal darauf, dass wir nur eine ganz kleine Anderung im Code vorgenom-
men haben: Wir haben den Parameter command hinzugefiigt, der Python sagt, dass
es die Funktion Hallo aufrufen soll, sobald auf den Button geklickt wird.

Wenn Du jetzt auf den Button klickst, siehst Du, wie »Hallo« in die Shell
geschrieben wird. Das passiert jedes Mal, wenn Du auf den Button klickst.

Im folgenden Beispiel habe ich den Button sechsmal geklickt.

~

74 *Python Shell* o B X

File Edit Shell Debug Options Windows Help
Python 3.3.0 (v3.3.0:bd8afb%0ebf2, Sep 29 2012, 10:55:48) [MSC v.1600 32 bit (I:-.;l
tel)] on win32

Type "copyright", "credits" or "license()" for more information.

>>»> def Hallo():

print('Hallo') 76tk (o [

‘ Klick mich I ‘

>»> from tkinter import *
>»> tk = Tk()

>>> btn = Button(tk, text = "Klick mich"”, command=Hallo)
>>> btn.pack()

>>> Hallo

Hallo

Hallo

Hallo

Hallo

Hallo

Ln:11/Col: 4

Dies ist das erste Mal, dass wir in unseren Code-Beispielen unseren Parametern
einen Namen gegeben haben. Sehen wir uns das einmal genauer an, bevor wir mit
unseren Zeichnungen weitermachen.

13.2 Einsatz von benannten Parametern

Benannte Parameter sind wie normale Parameter. Allerdings miissen die Werte
fiir eine Funktion keine bestimmte Reihenfolge haben (der erste Wert fiir den ers-
ten Parameter, der zweite Wert fiir den zweiten Parameter usw.), sondern die
Werte werden benannt, sodass sie in beliebiger Reihenfolge eingesetzt werden
konnen.

Manchmal haben Funktionen eine ganze Menge Parameter, und wir mussen
nicht immer fur jeden Parameter einen Wert angeben. Mit benannten Parametern
konnen wir genau denjenigen Parametern Werte liefern, die sie auch benotigen.

Nehmen wir beispielsweise an, wir hatten eine Funktion namens Person, die
zwei Parameter aufnimmt: Breite und Héhe.

>>> def Person(Breite, Hohe):
print('Ich bin %s Meter breit und %s Meter groB' % (Breite, Hohe))

Bessere Grafiken mit tkinter



Ublicherweise rufen wir diese Funktion folgendermaflen auf:

>>> Person(2, 1)
Ich bin 2 Meter breit und 1 Meter groB

Mit benannten Parametern konnten wir diese Funktion aufrufen und den Para-
meternamen mit jedem Wert bestimmen:

>>> Person(Breite=2, Hohe=1)
Ich bin 2 Meter breit und 1 Meter groB3

Benannte Parameter werden besonders niitzlich, wenn wir mehr mit dem Modul
tkinter arbeiten.

13.3 Eine Leinwand zum Zeichnen erzeugen

Buttons sind zwar ganz nett, helfen uns aber nicht so richtig weiter, wenn wir auf
den Monitor Dinge zeichnen wollen. Wenn wir etwas Richtiges malen wollen,
brauchen wir eine andere Komponente: ein Leinwand-Objekt (canvas), das zur
Klasse Canvas gehort (und aus dem Modul tkinter stammt).

Um eine Leinwand zu erzeugen, miissen wir deren Breite (width) und Hohe
(height) Python in Pixeln mitteilen. Ansonsten dhnelt der Code dem fiir Buttons.
Hier siehst Du ein Beispiel:

>>> from tkinter import *
>>> tk = Tk()

>>> canvas = Canvas(tk, width=500, height=500)
>>> canvas.pack()

Wie schon beim Button-Beispiel erscheint, nach-
dem Du tk = Tk() eingegeben hast, ein Fenster. In
der letzten Zeile wird durch canvas.pack() die
Breite und Hohe der Leinwand auf jeweils 500
Pixel vergrofert, wie wir in der dritten Zeile fest-
gelegt haben. Wie schon bei dem Beispiel mit dem
Button sagt die Funktion pack der Leinwand, dass
sie sich an der richtigen Position innerhalb des

Fensters aufbauen soll. Solange diese Funktion
nicht aufgerufen wird, wird nichts verntinftig dargestellt.

13.4 Linien zeichnen

Um eine Linie auf die Leinwand zu zeichnen, benutzen wir Pixel-Koordinaten.
Mit Koordinaten wird die Position eines Pixels auf einer Fliche bestimmt. Auf
einer Leinwand von tkinter beschreiben die Koordinaten, an welcher Stelle von

Eine Leinwand zum Zeichnen erzeugen

157



158

links nach rechts und an welcher Stelle von oben nach unten das Pixel platziert
wird.

Da unsere Leinwand in unserem Beispiel 500 Pixel breit und 500 Pixel hoch
ist, sind die Koordinaten der unteren rechten Ecke (500,500). Um eine Linie wie
in dem folgenden Bild zu zeichnen, verwenden wir die Startkoordinate (0,0) und
die Zielkoordinate (500,500).

6 th o8] &

Die Koordinaten legen wir mit der Funktion create Tine fest:
>>> tkinter *
>>> tk = Tk()
>>> canvas = Canvas(tk, width=500, height=500)
>>> canvas.pack()

>>> canvas.create Tine(0, 0, 500, 500)
1

Die Funktion create_line gibt die Zahl 1 zuriick. Dabei handelt es sich um eine
sogenannte identifizierende Nummer, tiber die Du spiter noch mehr erfahren
wirst. Um das Gleiche im Modul turtle zu erzielen, hitten wir folgenden Code
gebraucht:

>>> turtle

>>> turtle.setup(width=500, height=500)
>>> t = turtle.Pen()

>>> t.up()

Bessere Grafiken mit tkinter



>>> t,goto(-250, 250)
>>> t.down ()
>>> t.goto(500, -500)

Der Code von tkinter stellt also schon eine Verbesserung dar: Er ist etwas kiirzer
und auch ein bisschen einfacher.

Jetzt schauen wir uns einige der verfiigbaren Funktionen im Objekt canvas
an, mit denen wir einige interessantere Zeichnungen machen konnen.

13.5 Kastchen zeichnen

Mit dem Modul turtle haben wir Kistchen
gemalt, indem wir uns vorwirts bewegt
haben, abgebogen sind, uns vorwiarts bewegt
haben, abgebogen sind und so weiter. Wir
waren auch in der Lage, ein rechteckiges oder

quadratisches Kastchen zu zeichnen, indem
wir uns unterschiedlich weit vorwirts bewegt haben.

Das Modul tkinter erleichtert es sehr, ein Quadrat oder Rechteck zu zeich-
nen. Alles, was Du dazu brauchst, sind die Koordinaten der Ecken. Hier ist ein
Beispiel (Du kannst die anderen Fenster jetzt schlieflen):

>>> from tkinter import *

>>> tk = Tk()

>>> canvas = Canvas(tk, width=400, height=400)
>>> canvas.pack()

>>> canvas.create_rectangle(10, 10, 50, 50)

Bei diesem Code verwenden wir tkinter, um eine Leinwand von 400 Pixeln Breite
und 400 Pixeln Hohe zu erzeugen und anschlieffend ein Quadrat in die obere
linke Ecke zu zeichnen:

(o tk =B =)

Kastchen zeichnen

159



160

Bei den Parametern, die wir in der letzten Zeile des Codes an canvas.create
rectangle Gibergeben, handelt es sich um die Koordinaten der oberen linken und
unteren rechten Ecke des Quadrats. Wir geben diese Koordinaten als Abstand
von der linken und der Oberseite der Leinwand an. In diesem Fall sind die ersten
beiden Koordinaten (die obere linke Ecke) 10 Pixel von der linken und 10 Pixel
von der Oberseite entfernt (die ersten beiden Zahlen: 10, 10). Die Ecke unten
rechts im Quadrat befindet sich 50 Pixel von der linken Seite der Leinwand und
50 von der Oberseite entfernt (das nichste Zahlenpaar: 50, 50).

Wir bezeichnen diese beiden Koordinatensitze mit x1, y1 und x2, y2. Um nun
ein Rechteck zu zeichnen, konnen wir einfach den Abstand der zweiten Ecke von
der linken Seite der Leinwand vergrofsern (indem wir den Wert des Parameters x2

erhohen):
>>> tkinter *
>>> tk = Tk()

>>> canvas = Canvas(tk, width=400, height=400)
>>> canvas.pack()
>>> canvas.create_rectangle(10, 10, 300, 50)

In diesem Beispiel sind die Koordinaten des Rechtecks, also dessen Position im
Fenster, oben links (10, 10) und unten rechts (300, 50). Als Ergebnis bekommen
wir ein Reckteck, das die gleiche Hohe wie unser Quadrat (50 Pixel) hat, aber
sehr viel breiter ist.

6 th o8] &

Indem wir den Abstand der zweiten Ecke von der oberen Kante der Leinwand
vergrofSern (also den Wert des Parameters y2 erhohen), konnen wir ein hochkan-
tiges Rechteck zeichnen:

>>> tkinter *

>>> tk = Tk()

>>> canvas = Canvas(tk, width=400, height=400)
>>> canvas.pack()

>>> canvas.create rectangle(10, 10, 50, 300)

Bessere Grafiken mit tkinter



Bei diesem Aufruf der Funktion create rectangle sagen wir im Prinzip Folgendes:

Gehe 10 Pixel seitlich tiber die Leinwand (von oben links).

Gehe 10 Pixel die Leinwand hinunter. Dies ist der Startpunkt des Rechtecks.
Zeichne das Rechteck 50 Pixel nach rechts.

Zeichne das Rechteck 300 Pixel nach unten.

Das Endergebnis sollte folgendermafSen aussehen:

4 th o | B =

Ganz viele Rechtecke zeichnen

Wie wire es, wenn wir Rechtecke unterschiedlicher GrofSe auf die Leinwand
brachten? Das ginge, indem wir das Modul random importieren und dann eine
Funktion erzeugen, die eine Zufallszahl fiir die Koordinaten der oberen linken
und unteren rechten Ecken verwendet.

Wir werden dabei eine Funktion benutzen, die aus dem Modul random stammt
und sich randrange nennt. Wenn wir dieser Funktion eine Zahl geben, gibt sie uns
eine zufillige Ganzzahl zwischen null und der Zahl zuriick, die wir ihr mitgege-
ben haben. Wenn wir zum Beispiel randrange(10) aufrufen, wirde sie eine Zahl
zwischen 0 und 9 zuriickgeben, und bei randrange (100) kidme eine Zahl zwischen
0 und 99 zuriick.

Hier siehst Du, wie man randrange in einer Funktion benutzt. Erzeuge ein
neues Fenster, indem Du auf File » New Window gehst und folgenden Code ein-
gibst:

Kastchen zeichnen

161



162

tkinter *
random

tk = Tk()
canvas = Canvas(tk, width=400, height=400)
canvas.pack()

random rectangle(width, height):

x1 = random.randrange(width)

yl = random.randrange(height)

x2 = x1 + random.randrange(width)

y2 = yl + random.randrange(height)

canvas.create_rectangle(xl, yl, x2, y2)

Als Erstes definieren wir unsere Funktion (def random rectangle), die zwei Para-
meter aufnimmt: Breite (width) und Hohe (height). Danach erzeugen wir mit der
Funktion randrange die Variablen fiir die obere linke Ecke des Rechteckes und
geben die Breite und die Hohe als Parameter mit x1 = random.randrange (width)
beziehungsweise y1 = random.randrange (height) weiter. Mit der zweiten Zeile die-
ser Funktion sagen wir also: »Erzeuge eine Variable x1, und setze ihren Wert
zufillig auf eine Zahl zwischen 0 und dem Wert des Parameters width.«

Die nichsten beiden Zeilen erzeugen Variablen fiir die Ecke unten rechts im
Rechteck. Sie berticksichtigen dabei die Koordinaten der oberen linken Ecke
(x1 bzw. y1) und fiigen diesen Werten eine Zufallszahl hinzu. Die dritte Zeile der
Funktion sagt also: »Erzeuge die Variable x2, indem Du dem Wert, den wir schon
fiir x1 berechnet haben, eine Zufallszahl hinzuftigst«.

Mit canvas.create rectangle benutzen wir schlussendlich die Variablen x1,
y1, x2 und y2, um das Rechteck auf die Leinwand zu zeichnen.

Um unsere Funktion random_rectangle auszuprobieren, geben wir die Breite
und Hohe der Leinwand an. Fiige dem bereits eingegebenen Code folgende Zeile
hinzu:

random_rectangle(400, 400)

Speichere den gerade eingegebenen Code (gehe auf File P> Save, und gib ihm einen
Dateinamen, wie zum Beispiel Zufallsrechtecke.py). Gehe dann auf Run P Run
Module. Sobald Du die Funktion bei der Arbeit gesehen hast, fille das ganze
Fenster mit Rechtecken, indem Du sie mittels einer Schleife random rectangle
mehrfach aufrufst. Probieren wir es einmal mit einer for-Schleife von 100 zufalli-
gen Rechtecken. Fuge den folgenden Code hinzu, speichere Deine Arbeit, und
lass das Programm noch einmal ablaufen:

X range (0, 100):
random_rectangle (400, 400)

Bessere Grafiken mit tkinter



Dieser Code produziert ein hiibsches Durcheinander, aber es sieht auch ein biss-

chen wie moderne Kunst aus:

(7% =8 ®

M i i

Die Farbe bestimmen

Selbstverstandlich wollen wir unseren Grafiken auch Farben geben. Lass uns
daher die Funktion random_rectangle dahingehend dndern, dass sie durch einen
zusdtzlichen Parameter (fill color) den Rechtecken Farben gibt. Gib diesen
Code in ein neues Fenster ein, und nenne die Datei beim Speichern Farbrecht-
ecke.py:

from tkinter import *

import random

tk = Tk()

canvas = Canvas(tk, width=400, height=400)
canvas.pack()

def random rectangle(width, height, fi11_color):
x1 = random.randrange(width)
yl = random.randrange(height)
x2 = random.randrange(x1l + random.randrange(width))
y2 = random.randrange(yl + random.randrange(height))
canvas.create_rectangle(xl, yl, x2, y2, fill=fill_color)

Die Funktion create rectangle nimmt den Parameter fill color auf, der die
Farbe beim Zeichnen der Rechtecke bestimmt.

Kastchen zeichnen 163



164

Wir konnen in eine solche Funktion auch
benannte Farben einfiigen (bei einer Leinwand von
400 Pixeln Breite und 400 Pixeln Hohe), um einen
Haufen unterschiedlich gefiarbter Rechtecke zu
erzeugen. Beim Ausprobieren dieses Beispiels moch-
test Du eventuell durch Kopieren und Einfiigen
etwas Tipparbeit sparen. Dazu wihlst Du den zu
kopierenden Text aus, drickst Ctrl-C, um ihn zu
kopieren, klickst in eine leere Zeile und driickst Ctrl-

V, um ihn einzufiigen. Fige diesen Code gleich unter
die Funktion in der Datei Farbrechtecke.py ein:

random_rectangle(400, 400, 'green')
random_rectangle(400, 400, 'red')
random_rectangle(400, 400, 'blue')
random_rectangle(400, 400, 'orange')
random_rectangle(400, 400, 'yellow')
random_rectangle(400, 400, 'pink')
random_rectangle(400, 400, 'purple')
random_rectangle(400, 400, 'violet')
random_rectangle(400, 400, 'magenta')
random_rectangle(400, 400, 'cyan')

Viele dieser benannten Farben stellen die Farben dar, wie Du sie erwartest, andere
wiederum produzieren Fehlermeldungen (je nachdem, ob du Windows, MacOSX
oder Linux benutzt).

Aber wie ist das mit einer selbst gewahlten Farbe, die nicht genau einer
benannten Farbe entspricht? Erinnere dich an Kapitel 12, wo wir die Farbe des
Stifts der Schildkrote durch Prozentanteile der Farben Rot, Griin und Blau
bestimmt haben. Den Anteil der Primarfarben (Rot, Griin und Blau) in einer
Farbmischung bei tkinter zu bestimmen, ist etwas komplizierter, aber wir werden
das gleich verstehen.

Als wir mit dem Modul turtle gearbeitet haben, haben wir mit 90 % Rot,
75 % Griin und ohne Blau die Goldfarbe erzeugt. In tkinter erzeugen wir die glei-
che Goldfarbe mit dieser Zeile:

random_rectangle(400, 400, '#ffdg800")

Das Doppelkreuz (#) vor dem Wert ffd800 sagt Python, dass wir eine Hexadezi-
malzabl liefern. Beim Schreiben von Programmen werden Zahlen hiufig hexade-
zimal dargestellt. Dabei wird statt wie bei Dezimalzahlen mit der Basis 10 (0-9)
die Basis 16 (0-9 und danach A-F) verwendet. Falls Du im Mathematikunter-
richt noch nichts von der Basis gehort hast, merke Dir dazu einfach nur, dass Du
eine normale Dezimalzahl durch einen Format-Platzhalter in einem String in eine

Bessere Grafiken mit tkinter



hexadezimale Zahl umwandeln kannst: %x (siche Abschnitt »Werte in Strings ein-
betten« auf S. 31). Um zum Beispiel die Dezimalzahl 15 in eine Hexadezimalzahl
umzuwandeln, kannst Du Folgendes schreiben:

>>> print('%x' % 15)

f
Um sicherzustellen, dass unsere Zahl mindestens zwei Stellen hat, konnen wir
den Format-Platzhalter leicht abwandeln:

>>> print('%02x' % 15)

of
Das Modul tkinter bietet eine ganz einfache Moglichkeit, einen hexadezimalen

Farbwert zu bekommen. Versuche, folgenden Code zu Farbrechtecke.py hinzuzu-
fiigen (Du kannst die anderen Aufrufe der Funktion random_rectangle entfernen):

from tkinter import *
colorchooser.askcolor()

Daraufhin wird Dir ein Farbauswahlfenster gezeigt:

Basic colors:
FEEC ...
BrEFEMEE.
HEETMEEENEN 1
EEFNNFEEEN
EEEEEEEN
0 0 0 ok Inn
Custom colorg:
EEEEEEEE e
EEEEEEEN
- ﬁat:lﬁ Green: lﬁ
Defing Custom Colore | Colarl5glid Lum:lﬁ Blue: lﬁ
0k I Cancel | Add to Cuztom Colors |

Sobald Du eine Farbe ausgewihlt hast und auf OK klickst, wird ein Tupel ange-

zeigt. Dieses Tupel enthilt ein weiteres Tupel, das drei Zahlen und einen String
enthalt:

>>> colorchooser.askcolor()
((235.91796875, 86.3359375, 153.59765625), '#eb5699')

Die drei Zahlen stehen fiir den Rot-, Griin- und Blau-Anteil. In tkinter werden
die Primarfarben einer Farbmischung durch eine Zahl zwischen 0 und 255 ange-

Kastchen zeichnen

165



166

geben (im Unterschied zu dem prozentualen Anteil in jeder Primarfarbe im
Modul turtle). Der String im Tupel enthilt die hexadezimalen Versionen dieser
drei Zahlen.

Du kannst den String-Wert entweder kopieren und einfiigen oder aber den
Tupel als Variable speichern und dann die Indexposition des Hexadezimalwertes
verwenden.

Lass uns jetzt die Funktion random rectangle verwenden, um zu sehen, wie
das funktioniert.

>>> ¢ = colorchooser.askcolor()
>>> random_rectangle(400, 400, c[1])

Hier ist das Ergebnis:

13.6 Bodgen zeichnen

Ein Bogen ist ein Segment eines v AN
Kreisumfangs oder einer anderen /
Kurve. Um sie jedoch in tkinter /

zu zeichnen, musst Du sie inner- 0

halb eines Rechtecks mit der

Funktion create_arc zeichnen:

canvas.create_arc(10, 10, 200, 100, extent=180, style=ARC)

Bessere Grafiken mit tkinter



% tk o[B8 &%

7N

Falls Du in der Zwischenzeit alle tkinter-Fenster geschlossen oder IDLE neu
gestartet hast, musst Du tkinter erneut importieren und die Leinwand mit diesem
Code wieder erzeugen:

>>> tkinter *

>>> tk = Tk()

>>> canvas = Canvas(tk, width=400, height=400)

>>> canvas.pack()

>>> canvas.create_arc(10, 10, 200, 100, extent=180, style=ARC)

Dieser Code platziert die obere linke Ecke des Rechtecks, in dem der Bogen ent-
halten ist, auf die Koordinaten (10, 10), also 10 Pixel zur Seite und 10 Pixel nach
unten, und die untere rechte Ecke auf die Koordinaten (200,100), also 200 Pixel
zur Seite und 100 Pixel nach unten. Mit dem nichsten Parameter, extent, wird
der Winkelgrad des Bogens festgelegt. Aus Kapitel 5 weifst Du noch, dass man
mit Graden die Strecke um einen Kreis misst. Hier siehst Du drei Beispiele fiir
Bogen, in denen wir uns 45°, 90° beziehungsweise 270° im Kreis bewegen:

3 N
90°

45°

Der folgende Code zeichnet unterschiedliche Bogen auf die Seite, sodass Du
beobachten kannst, was passiert, wenn wir unterschiedliche Gradzahlen mit der
Funktion create_arc verwenden.

Bogen zeichnen

167



>>> from tkinter import *

>>> tk = Tk()

>>> canvas = Canvas(tk, width=400, height=400)
>>> canvas.pack()

>>> canvas.create _arc(10, 10, 200, 80, extent=45, style=ARC)

i>> canvas.create_arc(10, 80, 200, 160, extent=90, style=ARC)
§>> canvas.create_arc(10, 160, 200, 240, extent=135, style=ARC)
i>> canvas.create_arc(10, 240, 200, 320, extent=180, style=ARC)
j>> canvas.create_arc(10, 320, 200, 400, extent=359, style=ARC)
5
—_—
Achtung!

Im letzten Kreis verwenden wir 359° statt 360°, da tkinter 360° als das Gleiche wie 0° ver-
steht und dann gar nichts zeichnen wiirde.

168 Bessere Grafiken mit tkinter



13.7 Polygone zeichnen

Als Polygone bezeichnet man Formen mit drei oder mehr Seiten. Es gibt gleich-
miflig geformte Polygone wie Dreicke, Quadrate, Rechtecke, Fiinfecke und Sie-
benecke und so weiter, aber auch unregelmafSig geformte mit ungleich langen
Kanten, viel mehr Kanten sowie vollig ungewohnliche Formen.

Wenn Du mit tkinter Polygone zeichnest, musst Du fiir jeden Punkt die
Koordinaten liefern. Hier steht, wie man ein Dreieck zeichnet:

from tkinter import *

tk = Tk()

canvas = Canvas(tk, width=400, height=400)

canvas.pack()

canvas.create_po]ygon(lo, 10, 100, 10, 100, 110, fill="",
outline="black")

In diesem Beispiel wird ein Dreieck gezeichnet, indem mit den x-und y-Koordina-
ten (10, 10) begonnen wird. Dann geht es seitlich auf (100, 10) und dann bis
(100,110). Hier ist das Ergebnis:

[ SN

Mit folgendem Code konnen wir ein unregelmifSiges Polygon (eine Form mit
ungleichmifSiigen Winkeln oder Seiten) erzeugen:

canvas.create_po]ygon(ZOO, 10, 240, 30, 120, 100, 140, 120, fili="",
outTine="black")

Dieses Polygon startet bei den Koordinaten (200, 10), bewegt sich dann zu (240,
30), dann zu (120,100) und schliefSlich zu (100,140). Die schwarze Linie zuriick
zur ersten Koordinate fiigt tkinter automatisch ein. Und hier ist das Ergebnis die-
ses Codes:

76 e (SiiEE =

Polygone zeichnen

169



170

13.8 Darstellung von Text

Neben dem Zeichnen von Formen kannst Du mit create_text auch auf der Lein-
wand schreiben. Diese Funktion benétigt nur die zwei Koordinaten (x- und y-
Positionen des Texts) und den Text, der angezeigt werden soll, als benannten
Parameter. Im folgenden Code erzeugen wir wie immer unsere Leinwand und
malen dann einen Satz, der sich auf den Koordinaten (150, 100) befindet. Spei-
chere diesen Code als Textz.py.

from tkinter import *

tk = Tk()

canvas = Canvas(tk, width=400, height=400)

canvas.pack()

canvas.create_text (150, 100, text='Der Waidmann Hubertus vom Rhein')

Die Funktion create_text nimmt aber noch weitere niitzliche Parameter auf, wie
etwa die Textfarbe. Im folgenden Code rufen wir die Funktion create_text mit
den Koordinaten (180,120) auf, den Text, den wir anzeigen wollen, und die
Farbe Rot.

canvas.create text(180, 120, text='erzdhlte gern Jdgerlatein:',

fill="red")
Du kannst auch den Font (die Schriftart des
angezeigten Textes) als » Tupel« angeben, das
den Font-Namen und die Grofle des Textes
enthilt. Das Tupel fiir den Zeichensatz Times
in der GrofSe 20 ist ('times', 20). Im folgen-
den Code zeigen wir den Text im Zeichensatz
Times in der Grofse 20 und im Zeichensatz
Courier in den GrofSen 22 und 12 an.

canvas.create_text(150, 150, text= ' "Ich such mit der Nase',
font=("'Times', 20))

canvas.create_text(220, 250, text= 'im Sand und im Grase',
font=('Courier', 22))

canvas.create_text(220, 300, text= 'nach Spuren vom Elch oder
Schwein." ', font=('Courier', 12))

Und hier ist nun das Ergebnis der Funktionen, die verschiedene Schriften und
unterschiedliche Groflen verwendet haben:

Bessere Grafiken mit tkinter



13.9 Bilder anzeigen

Der Waidmann Hubertus vem Rhein
erzahlte gern Jagerlatein:

"Ich such mit der Nase

im Sand und im Grase

nach Spuren vom Elch oder Schwein."

= &=

Um ein Bild auf der Leinwand darzustellen, lidst Du erst das Bild und benutzt
dann die Funktion create_image auf dem canvas-Objekt.

Alle Bilder, die Du ladst, miissen sich in einem Verzeichnis befinden, auf das
Python Zugriff hat. In diesem Beispiel legen wir unser Bild Tesz.gif in das Ver-
zeichnis C:\, also das Hauptverzeichnis unseres Laufwerks C:, aber Du kannst es

auch woanders ablegen.

' Organisieren v @ Offnen » Drucken Brennen

Neuer Ordner Ex O @
‘ - Favoriten Name T Anderungsdatum Typ GroBe
I Ml Desktop |\ Benutzer 27.10.2011 15:57 Dateiordner
| ). Downloads J. Perflogs 14.07.2009 04:37 Dateiordner
| B Zuletzt besucht '\ Programme 27.01.2013 21:28 Dateiordner
4. Python33 04.02.2013 10:37 Dateiordner
\+# Bibliotheken ). TEMP_PARALLELS_TOOLS 20.02.2012 10:58 Dateiordner
Ji Windows 31.12.2012 21:45 Dateiordner
o, Heimnetzgruppe 5] Test 040220131128 GIF-Bild 243K8
/% Computer
€ Netzwerk
- Test  Anderungsdatum: 04.02.2013 11:28 GroBe: 247 KB

GIF-Bild  Abmessungen: 1117 x 500

Erstelidatum: 04.02.201311:23

Bilder anzeigen

m



172

Wenn Du ein Mac- oder Linux-System benutzt, kannst Du das Bild in Dein
Home-Verzeichnis legen. Falls Du keine Dateien auf deinem Laufwerk C: spei-
chern kannst, kannst Du das Bild stattdessen auf Deinem Desktop ablegen.

Achtung!

Mit tkinter kannst Du nur GIF-Bilder laden, also Bild-Dateien, die mit dem Suffix .gif
enden. Du kannst zwar auch andere Bildformate, wie etwa PNG (. png) und JPG (,jpg) ver-
wenden, bendtigst dafiir allerdings ein anderes Modul, wie etwa die Python Imaging Lib-
rary (http://www.pythonware.com/products/pil/).

Das Bild Test.gif konnen wir folgendermafSen anzeigen:

tkinter *
tk = Tk()
canvas = Canvas(tk, width=1000, height=600)
canvas.pack()

mein Bild = PhotoImage(file='c:\\Test.gif")

canvas.create_image(0, 0, anchor=NW, image=mein Bild)
In den ersten Zeilen erzeugen wir wie immer die Leinwand. In der fiinften Zeile
wird das Bild in die Variable mein Bild geladen. Im Verzeichnis 'c:\\Test. gif'
erzeugen wir PhotoImage. Falls Du Dein Bild auf dem Desktop abgelegt hast, soll-
test Du PhotolImage in dem entsprechenden Verzeichnis erzeugen:

mein Bild = PhotoImage(file='c:\\Users\\Susanne
Sorglos\\Desktop\\Test.gif")

Sobald das Bild in die Variable geladen ist, zeigt canvas.create_image (0, 0,
anchor=NW, image=mein Bild) es mit der Funktion create image an. Die Koordina-
ten (0, 0) geben an, wo das Bild im Fenster dargestellt wird, und anchor=NW sagt
der Funktion, dass sie die obere linke Ecke (NW steht fiir zordwest) des Bildes als
Startpunkt beim Aufbau verwenden soll (ansonsten benutzt sie die Bildmitte als
Startpunkt). Der letzte genannte Parameter, images, zeigt auf die Variable fiir das
geladene Bild. Hier siehst Du das Ergebnis:

Bessere Grafiken mit tkinter



13.10 Eine einfache Animation erzeugen

Wir wissen jetzt, wie man statische Zeichnungen erzeugt — also Bilder, die sich
nicht bewegen. Wie funktioniert das nun mit den Animationen?

Animationen sind nicht gerade die Spezialitidt des Moduls tkinter, aber einfa-
che Sachen kannst Du damit machen. Mit diesem Code kénnen wir zum Beispiel
ein ausgefiilltes Dreieck iiber den Monitor bewegen (vergiss nicht, mit File »
New Window Deine Arbeit zu speichern und dann den Code mit Run P> Run
Module laufen zu lassen):

import time
from tkinter import *
tk = Tk()
canvas = Canvas(tk, width=400, height=200)
canvas.pack()
canvas.create polygon(10, 10, 10, 60, 50, 35)
for x in range(0, 60):
canvas.move(l, 5, 0)
tk.update()
time.sleep(0.05)

Wenn Du diesen Code ausfiihrst, bewegt sich ein Dreieck bis zum Ende seines
Wegs durch das Fenster:

Eine einfache Animation erzeugen

173



174

6 th El=E] = T

Wie funktioniert das? Wie schon zuvor haben wir mit den ersten drei Zeilen nach
dem Import von tkinter den grundsitzlichen Aufbau zur Darstellung einer Lein-

wand vorgenommen. In der vierten Zeile erzeugen wir mit dieser Funktion ein
Dreieck:

canvas.create_polygon(10, 10, 10, 60, 50, 35)

Achtung!

Wenn Du diese Zeile eingibst, wird auf dem Monitor eine Zahl ausgegeben. Dabei handelt
es sich um die identifizierende Nummer (kurz ID-Nummer) des Polygons. Wie wir im fol-
genden Beispiel sehen werden, kénnen wir uns spater damit auf diese Form beziehen.

Als Nichstes erzeugen wir eine einfache for-
Schleife, die von 0 bis 59 zihlt und mit for x in
range(0,60) : anfingt. Der Code-Block innerhalb
der Schleife bewegt das Dreieck iiber den Moni-
tor. Die Funktion canvas.move bewegt jedes
gezeichnete Objekt, indem sie Werte zu dessen x-
und y-Koordinaten hinzufiigt. Mit canvas.move(1,
5, 0) bewegen wir das Objekt mit der ID 1 (der
identifizierenden Nummer des Dreiecks) 5 Pixel

zur Seite und 0 Pixel nach unten. Um es wieder zuriick zu bewegen, konnten wir
die Funktion canvas.move(l, -5, 0) aufrufen.

Die Funktion tk.update() zwingt tkinter dazu, den Monitor zu aktualisieren
(also ihn erneut zu zeichnen). Ohne die Funktion update wiirde tkinter warten,
bis die Schleife beendet ist, bevor es das Dreieck bewegt. Das Dreieck wirde
dann, anstatt sich sanft tber die Leinwand zu bewegen, an die letzte Position
springen. Die letzte Zeile der Schleife, time sleep(0.05), sagt Python, dass es 0,05
Sekunden warten soll, bevor es weitermacht.

Um das Dreieck schrag tiber den Monitor wandern zu lassen, konnen wir den
Code durch move(l, 5, 5) abandern. Um das auszuprobieren, schliefst Du die

Bessere Grafiken mit tkinter



Leinwand und erzeugst eine neue Datei (File » New Window) mit dem folgenden

Code darin:

time
tkinter *

tk = Tk()
canvas = Canvas(tk, width=400, height=400)
canvas.pack()
canvas.create polygon(10, 10, 10, 60, 50, 35)

X range (0, 60):

canvas.move(l, 5, 5)

tk.update()

time.sleep(0.05)

Dieser Code unterscheidet sich von dem vorherigen in zwei Punkten:

Wir dndern die Hohe der Leinwand auf 400 anstelle von 200 durch canvas =
Canvas (tk, width=400, height=400).
Wir fiigen den x-und y-Koordinaten durch canvas.move(l, 5, 5) die 5 hinzu.

Wenn der Code gespeichert und durchgelaufen ist, ist dies die Position des Drei-
ecks am Ende der Schleife:

(76 w [[Sii= =

>

Um das Dreieck auf dem gleichen Weg zuriick zu seiner Startposition zu bewegen,
setzt Du -5, -5 ein (fiige diesen Code am Ende der Datei hinzu):

X range (0, 60):
canvas.move(l, -5, -5)
tk.update()
time.sleep(0.05)

Eine einfache Animation erzeugen

175



176

Durch Ereignis-Bindungen konnen wir das Dreieck reagieren lassen, wenn
jemand eine Taste driickt. Ereignisse (engl. events) sind Aktionen, die geschehen,
wihrend ein Programm lduft: Jemand bewegt die Maus, driickt eine Taste oder
schliefSst ein Fenster. Du kannst tkinter sagen, dass es nach solchen Ereignissen
Ausschau halten und als Reaktion darauf etwas tun soll.

Um mit Ereignissen umzugehen (Python zu sagen, dass es etwas tun soll,
sobald ein Ereignis eintritt), erzeugen wir als Erstes eine Funktion. Die Bindung
kommt in dem Moment zustande, in dem wir tkinter sagen, dass es eine
bestimmte Funktion mit einem bestimmten Ereignis verbinden soll. Diese Funk-
tion wird also als Reaktion auf dieses Ereignis automatisch von tkinter aufgeru-
fen.

Wenn wir zum Beispiel wollen, dass sich das Dreieck erst in Bewegung setzt,
nachdem wir die Enter-Taste gedriickt haben, konnen wir das mit dieser Funktion
definieren:

movetriangle(event):
canvas.move(l, 5, 0)

Die Funktion nimmt einen einzigen Parameter (event) auf, den tkinter benutzt,
um der Funktion Informationen iiber das Ereignis zu schicken. Mit der Funktion
bind_all sagen wir tkinter jetzt, dass diese Funktion fir ein bestimmtes Ereignis
auf der Leinwand benutzt werden soll. Der vollstindige Code sieht dann so aus:

tkinter *
tk = Tk()
canvas = Canvas(tk, width=400, height=400)
canvas.pack()
canvas.create _polygon(10, 10, 10, 60, 50, 35)
movetriangle(event):
canvas.move(l, 5, 0)
canvas.bind_all('<KeyPress-Return>', movetriangle)

Der erste Parameter in dieser Funktion
beschreibt das Ereignis, nach dem tkinter
Ausschau halten soll. In diesem Fall ist es
<KeyPress-Return>, also ein Druck auf die
Enter- oder die Return-Taste. Wir sagen
tkinter, dass die Funktion movetriangle

immer aufgerufen werden soll, sobald das
KeyPress-Ereignis auftritt. Fithre diesen
Code aus, klicke einmal mit der Maus auf die Leinwand, und driicke dann die
Enter-Taste auf Deiner Tastatur.

Bessere Grafiken mit tkinter



Wie ware es, wenn wir die Richtung des Dreiecks durch unterschiedliche Tas-
ten steuern wiirden, wie etwa mit den Pfeiltasten? Das geht ganz einfach. Wir
miissen die Funktion move.triangle nur folgendermaflen dndern:

movetriangle(event):
event.keysym == 'Up':
canvas.move(1l, 0, -3)
event.keysym == 'Down':
canvas.move(l, 0, 3)
event.keysym == 'lLeft':
canvas.move(1l, -3, 0)

canvas.move(l, 3, 0)

Das Ereignis-Objekt, das an movetriangle weitergereicht wird, enthilt mehrere
Variablen. Eine dieser Variablen heifst keysym (Abkiirzung fiir engl. key symbol,
also »Tasten-Symbol«) und ist ein String, der den Wert fiur die tatsichlich
gedriickte Taste enthalt. Die Zeile if event.keysym == 'Up': bedeutet: Wenn die
Variable keysym den String 'Up' (also »nach oben«) enthilt, sollen wir canvas.move
mit den Parametern (1, 0, -3) wie in der folgenden Zeile aufrufen. Falls keysym wie
in elif event.keysym == 'Down': (also »nach unten«) enthailt, rufen wir sie mit den
Parametern (1, 0, 3) auf usw.

Beachte, dass der erste Parameter die ID-Nummer der Form ist, die auf die
Leinwand gezeichnet wird. Der zweite Parameter ist der Wert, der zur x-Koor-
dinate (der horizontalen Koordinate) addiert werden muss; und der dritte Para-
meter ist der Wert, der zur y-Koordinate (also zur vertikalen Koordinate) hinzu-
gezihlt werden muss.

Danach sagen wir tkinter, dass die Funktion movetriangle dazu benutzt wer-
den sollte, die Ereignisse der vier verschiedenen Tasten (hoch, runter, links und
rechts) zu steuern. Im Folgenden siehst Du, wie der Code bis jetzt aussieht. Beim
Eingeben dieses Codes ist es viel praktischer, wenn Du Dir ein neues Shell-Fenster
Offnest, indem Du auf File P New Window gehst. Bevor Du den Code durchlau-
fen ldsst, gibst Du ihm einen sinnvollen Dateinamen, wie zum Beispiel
animiertes_Dreieck.py.

tkinter *
tk = Tk()
canvas = Canvas(tk, width=400, height=400)
canvas.pack()
canvas.create polygon(10, 10, 10, 60, 50, 35)
movetriangle(event):
event.keysym == 'Up':
canvas.move(l, 0, -3)
event.keysym == 'Down':
canvas.move(l, 0, 3)

o000

Ein Objekt auf etwas reagieren lassen

177



178

elif event.keysym == 'Left':
canvas.move(l, -3, 0)
else:
canvas.move(l, 3, 0)
canvas.bind_all('<KeyPress-Up>', movetriangle)
canvas.bind_all('<KeyPress-Down>', movetriangle)
canvas.bind_all('<KeyPress-Left>', movetriangle)
canvas.bind_all('<KeyPress-Right>', movetriangle)

@000

In der ersten Zeile der Funktion movetriangle uiberpriifen wir, ob die Variable key-
symin @ 'Up' enthdlt. Falls ja, bewegen wir das Dreieck mit der Funktion move
und den Parametern 1, 0, -3 in ® nach oben. Der erste Parameter ist die ID-Num-
mer fur das Dreieck; der zweite Parameter ist die Schrittweite nach rechts (wir
mochten uns nicht nach oben bewegen, deshalb ist der Wert 0), und der dritte
Parameter ist die Schrittweite nach unten (-3 Pixel).

Dann prifen wir, ob keysym in ® 'Down' enthilt. Falls ja, bewegen wir das
Dreieck in @ nach unten (um 3 Pixel). Zum Schluss priifen wir, ob der Wert in ©
'Left' ist, und falls dem so ist, bewegen wir das Dreieck nach links (-3 Pixel)®.
Falls keiner der Werte passt, bewegt das else in @ am Schluss das Dreieck in ©
nach rechts.

Das Dreieck sollte sich jetzt in die Richtung der entsprechenden Pfeiltaste
bewegen.

13.12 Weitere Anwendungen fiir die ID-Nummer

Immer wenn wir eine Funktion mit create auf der Leinwand verwenden (wie
etwa create_polygon oder create_rectangle), wird eine ID-Nummer zuriickgege-
ben. Diese ID-Nummer kann mit anderen canvas-Funktionen verwendet werden,
wie wir es zuvor mit der Funktion move getan haben:

>>> from tkinter import *

>>> tk = Tk()

>>> canvas = Canvas(tk, width=400, height=400)
>>> canvas.pack()

>>> canvas.create polygon(10, 10, 10, 60, 50, 35)
1

>>> canvas.move(l, 5, 0)

Das Problem an diesem Beispiel ist, dass create_polygon nicht in jedem Fall 1
zuriickgibt. Falls Du etwa zuvor andere Formen erzeugt hast, kann sie auch 2, 3
oder sogar 100 ausgeben (je nachdem, wie viele Formen Du davor erzeugt hast).
Wenn wir den Code so dndern, dass der Wert als Variable zurickkommt und
danach die Variable verwenden (anstatt auf die Nummer 1 zu verweisen), dann
funktioniert der Code immer, ganz egal welche Nummer zuriickgegeben wird:

Bessere Grafiken mit tkinter



>>> meinDreieck = canvas.create polygon(10, 10, 10, 60, 50, 35)
>>> canvas.move (meinDreieck, 5, 0)

Die Funktion move ermoglicht es uns, Objekte anhand ihrer ID-Nummer tiber den
Monitor zu bewegen. Aber es gibt noch weitere Leinwand-Funktionen, die etwas
andern konnen, das wir gezeichnet haben. Mit der Funktion der Leinwand item-
config kann man einige der Parameter einer Form, wie etwa die Full- und die
Umrissfarbe, indern:

>>> from tkinter import *

>>> tk = Tk()

>>> canvas = Canvas(tk, width=400, height=400)

>>> canvas.pack()

>>> meinDreieck = canvas.create_po]ygon(10, 10, 10, 60, 50, 35,

fill="red")
Wir konnen mit itemconfig dem Dreieck eine andere Farbe geben und die ID-
Nummer als ersten Parameter benutzen. Der folgende Code bedeutet: » Andere
die Fillfarbe des Objekts in diejenige, die in der ID-Nummer der Variablen mein-
Dreieck steht, also in Blau«.

>>> canvas.itemconfig(meinDreieck, fill= 'blue')

Wir konnen den Umriss des Dreiecks auch anders einfirben, indem wir die ID-
Nummer als ersten Parameter wihlen:

>>> canvas.itemconfig(meinDreieck, outline= 'red')

Spiter lernst Du, wie man weitere Anderun-
gen an einer Zeichnung vornimmt — Du
kannst sie zum Beispiel verschwinden lassen
und wieder sichtbar machen. Wenn wir
anfangen, im nichsten Kapitel Spiele zu
schreiben, wirst Du merken, wie niitzlich es
ist, eine Zeichnung, die schon auf dem Moni-
tor angezeigt wird, noch dndern zu konnen.

13.13 Was Du gelernt hast

In diesem Kapitel hast Du das Modul tkinter benutzt, um damit einfache geome-
trische Formen auf die Leinwand zu zeichnen, Bilder anzuzeigen und einfache
Animationen auszufiihren. Du hast gelernt, wie man mit Ereignis-Bindungen
Zeichnungen auf so etwas wie einen Tastendruck reagieren ldsst. Sobald wir an
der Programmierung eines Spiels arbeiten werden, wird das sehr niitzlich sein. Du
hast gelernt, dass die create-Funktion ID-Nummern zuriickgibt, womit man For-

Was Du gelernt hast

179



180

men verandern kann, nachdem sie schon gezeichnet worden sind. So kannst Du
die Formen beispielsweise auf dem Monitor verschieben oder ihre Farbe dndern.

13.14 Programmier-Puzzles

Probiere die folgenden Dinge aus, um mit dem Modul tkinter und einfachen Ani-
mationen zu spielen. Losungen findest Du unter www.dpunkt.de/python.

#1: Fiille die Leinwand mit Dreiecken

Schreibe ein Programm mit tkinter, um die Leinwand mit Dreiecken zu fillen.
Andere dann den Code, um stattdessen die Leinwand mit unterschiedlich gefirb-
ten (ausgefiillten) Dreiecken zu fullen.

#2: Das sich bewegende Dreieck

Andere den Code des sich bewegenden Dreiecks (siehe den Abschnitt 13.10) so,
dass es sich auf der Leinwand erst nach rechts, dann nach unten, dann nach links
und zum Schluss wieder nach oben auf seine Startposition bewegt.

#3: Das sich bewegende Foto

Versuche selbst, mit tkinter ein Foto auf der Leinwand darzustellen. Achte dar-
auf, dass es ein GIF-Bild ist! Kannst Du es dazu bringen, sich tiber die Leinwand
zu bewegen?

Bessere Grafiken mit tkinter



: ¥V ° o ° a ‘.. @, ° o%. o L4 ? ° - .. o o o oo 9 o
o © ..0 ° Q- e (] .. ‘, . ‘.' N -..' w-° > Py o . .. ('Y o
O A I L DI S
' o ‘e '. e ® ' 8. . ..0 e .‘ Qe S 'YX . 0 ®
Py ‘e o, 'o e .t °° - R A L t o & 0 e
o ° e g o ‘0. 5 .0.. . [ ] .0 0 ‘s U ...' ° * ey o® 'S ... .
PR I S I T T P A IO WIS BPR
ML S A P L A N P T A ) '
. .. ® e ‘e o % 08 - s 0o g '.o '. ‘e 8 T 0 °. .. (4
. « s ® a O O . . 0 . ... .. o.. .
.. ., .. ° ... S '0 “° .. .... ' L
¢ @ . 05 . o, e 0 @ 0. e 0 o :
o . - .'. o o - ¢
'-. ° @ ' ° e 0 o° ° ... °® ‘e Y u.
' o 4 .. s .0, as
BGUNCE'
R 4 ‘@ o 0 W 0 . ¢
Py s o ) .'. . 0 e .. o® O no O 9. - e °o° 02
eg B o0 ‘0 o o 5 4 e .. . ... 0 oo o.. e’ o 9 C 0 . . g9 X O
..‘ ) U 0 o ®°' v L, 0.9 9, - . ® .. o0 S e Le . .= ([ .'.
- “ o . PP L0 e o0 06 oo 'YX [ ,o'o‘ o« o, ..‘..
.-.. . ! .. ‘ree B, 00 s tet Tt g g * e | ‘s C.a*® 0
. C e a, - .'.' o . S o, ° ‘o’ S » 0. ¢ . o o
° *9 °° . .. ., o ® - e ® O. O - .i “ e (I Y o® O * 0 9 8
. ‘ - P -.0 [ ) . o® o o °¢ .. o ° o ..0 . @ ... [
o <00 ¢« o °. ’ e o . ‘e . , e ... . .' .0 L ° 4
®e -, @ o 0% ® ° e ® X % 0o ' o ®o ., g tsc e,
° o o ... e o ° °s “ e ' e °, ® o .. e . .. Y | . «
o e o ¢ o @ % © e * .. . e % o. . e ° '. P Y ) ®
e “ @ o ¢ o R 1 () O Y X J L Y A A ) 0 . e’
S. 0 . 0 ‘ece L. P o A, e 0ttt -y, . :
S . o A ..O .0 o0 . o0 * . S g O 4 .. s ® :
Oo o ° ., . o 0 g P . e e ... o .. 0 Q 0 ‘9, o . . ° e
.8 | . 0 o @® A& ° s o . ® . . g "' o « °
20 T g . L A TR I Y S I v 9,. o
o. ‘e o ..' 0.. - .. .‘. - : ' .... .. 9 '.. ...
. .« *° .. .- e ° . 80 0 e o, ‘e, a0 0 ( X4 0 :
e Ve 0 ¢ * e * L '8 Y %g et 0 - Ll
O ‘s g0 o U A Qe .0 B, ..'." ‘e = ° s o *
. ..‘ e U - . . . L .. . .‘ . ...‘ L | J ". - .... .-
o '., . e 0 @0 e o0 ¢, s e o0 e O 0° ¢ Qoo
.... ., [ .‘. P ce o, .. o o0 . ‘ot o. ¢ I . P e o ® e
Q- ° ... K [} o.' V °» e ®° e o  ° L%t . e e 0 . 9.
c 9. gt L * L 2K ¢ s °° e 8 4§ o, : '..l‘ o0 LI
ce. o ., e ' " o - 0., ..'. [ T Lo @ ¢ °0 . e g‘
T R R e N I TR R Y L Ce. e






Der Anfang Deines ersten $piels:
BOUNCE!

Bis jetzt haben wir uns mit den Grundlagen des Computer-Programmierens
befasst. Du hast gelernt, wie man mit Variablen Informationen speichert, mit if-
Anweisungen bedingten Code einsetzt und wie man mit for-Schleifen Code wie-
derholt. Du weif$t, wie man Funktionen erzeugt, um den Code wiederzuverwen-
den und wie man Klassen und Objekte einsetzt, um den Code in kleinere Einhei-
ten zu unterteilen, damit er leichter zu verstehen ist. Du hast gelernt, wie man mit
den Modulen turtle und tkinter Grafiken auf dem Monitor zeichnet. Jetzt bist
Du so weit, dieses Wissen bei Deinem ersten selbst geschriebenen Spiel einzuset-
zen.

Wir werden ein Spiel mit einem herumspringenden Ball und einem Schliger ent-
werfen. Der Ball wird uiiber den Bildschirm fliegen, und der Spieler wird ihn vom
Schlager abprallen lassen. Wenn der Ball die untere Kante des Bildschirms
berihrt, ist das Spiel zu Ende. Hier siehst Du eine Voransicht des fertigen Spiels:

183



184

74 Spiel SRS

Unser Spiel mag zwar sehr einfach erscheinen, aber der Code wird um einiges
kniffeliger, als alles, was wir bis jetzt geschrieben haben, da er eine Menge von
Dingen bewiltigen muss. Er muss zum Beispiel den Schliger und den Ball animie-
ren und erkennen, wann der Ball den Schliger oder die Winde beriihrt.

In diesem Kapitel beginnen wir mit der Entwicklung unseres Spiels, indem
wir eine Spielfliche und einen hiipfenden Ball hinzufiigen.

14.2 Erzeugen einer $piele-Leinwand

Fiir Dein neues Spiel legst Du als Erstes eine neue Datei in der Python-Shell an
(aber File » New Window). Dann importierst Du tkinter und erzeugst eine Lein-
wand, um darauf zu zeichnen:

from tkinter import *

import random

import time

tk = Tk()

tk.title("Spiel™)

tk.resizable(0, 0)

tk.wm attributes("-topmost", 1)

canvas = Canvas(tk, width=500, height=400, bd=0, highlightthickness=0)
canvas.pack()

tk.update()

Dies ist jetzt ein bisschen anders als bei den vorherigen Beispielen. Zu Anfang
importieren wir die Module time und random, um sie weiter hinten im Code einzu-

setzen.

Der Anfang Deines ersten Spiels: BOUNCE!



Mit tk.title("Spiel") verwenden wir die
Funktion title des Objekts tk, das wir mit tk =
Tk() benutzen, um dem Fenster einen Titel zu
geben. Um dem Fenster eine feste GrofSe zu
geben, verwenden wir resizable. Die Parameter
0, 0 bedeuten: »Die Grofe dieses Fensters kann
weder horizontal noch vertikal verindert wer-
den.« Als Niéchstes rufen wir wm_attributes auf,
damit tkinter das Fenster mit unserer Leinwand
vor alle anderen Fenster stellt ("-topmost").

Du siehst, dass wir bei der Erzeugung des
canvas-Objekts mit canvas = mehr benannte Para-
meter auflisten, als wir es bei den vorigen Bei-
spielen getan haben. Sowohl bd=0 als auch highlightthickness=0 sorgen beispiels-
weise dafiir, dass es keinen Rand auflen um die Leinwand gibt, damit unser
Spielfeld besser aussieht.

Die Zeile canvas.pack() sagt der Leinwand, dass sie ihre GrofSe anhand der
Parameter width und height in der vorherigen Zeile anpassen soll. Zum Schluss
wird tkinter durch tk.update() angewiesen, sich selbst fiir die Animation in unse-
rem Spiel zu initialisieren. Ohne diese letzte Zeile wiirde nichts wie erwartet
funktionieren.

Achte darauf, dass Du Deinen Code immer speicherst. Gib ihm beim ersten
Speichern einen sinnvollen Dateinamen, wie zum Beispiel Bounce.py.

14.3 Erzeugen der Ball-Klasse

Jetzt werden wir die Klasse fir den Ball erzeugen. Wir werden mit dem Code
beginnen, den wir brauchen, um den Ball auf der Leinwand zu zeichnen. Fol-
gende Schritte sind dazu notig:

Erzeuge eine Klasse namens Ball, die Parameter fiir die Leinwand sowie die
Farbe des Balls aufnimmt, den wir zeichnen werden.

Speichere die Leinwand als Objekt-Variable, da wir unseren Ball darauf zeich-
nen werden.

Zeichne einen ausgefiillten Kreis auf die Leinwand, und benutze den Wert des
Farbe-Parameters als Fullfarbe.

Speichere die ID-Nummer, die tkinter zuriickgibt, sobald es den Kreis (Oval)
zeichnet. Wir brauchen sie, um den Ball auf dem Bildschirm zu bewegen.
Bewege das Oval auf die Mitte der Leinwand.

Erzeugen der Ball-Klasse

185



186

Dieser Code sollte gleich nach den ersten beiden Zeilen in der Datei (nach import
time) hinzugefiigt werden:

from tkinter import *
import random
import time

class Ball:
def _init_ (self, canvas, color):
self.canvas = canvas
self.id = canvas.create oval(10, 10, 25, 25, fill=color)
self.canvas.move(self.id, 245, 100)

9000 Q

def draw(self):
pass

Als Erstes benennen wir unsere Klasse Ball in @. Danach erzeugen wir unsere Ini-
tialisierungsfunktion (wie in Kapitel 9 beschrieben), die die Parameter canvas und
color in @ aufnimmt. In © setzen wir die Objekt-Variable canvas auf den Wert
des Parameters canvas.

In O rufen wir die Funktion create_oval mit ihren fiinf Parametern auf: Das
sind die x- und y-Koordinaten fiir die Ecke oben links (10 und 10), die x- und
y-Koordinaten fir die Ecke unten rechts (25 und 25) und schliefSlich die Farbe
des Ovals.

Die Funktion create_oval gibt eine ID-Nummer fiir
die Figur zurick, die sie gezeichnet hat. Wir speichern
diese Nummer in der Objekt-Variablen id. In ® bewe-
gen wir das Oval in die Mitte der Leinwand (Position
245, 100). Die Leinwand weifS, was sie zu bewegen hat,
da wir die ID-Nummer dieser Figur (die Objekt-Variable
id) benutzt haben, um sie zu kennzeichnen.

In den letzten beiden Zeilen der Klasse Ball erzeugen
wir mit def draw(self) die Funktion draw, deren Funk-
tionskorper im Moment nur aus dem Schliisselwort pass
besteht. Wir fiigen dieser Funktion bald mehr hinzu.

Nachdem wir jetzt unsere Ball-Klasse erzeugt haben,
miissen wir aus dieser Klasse ein Objekt erzeugen. (Du

erinnerst Dich sicher, dass eine Klasse zwar beschreibt,
was sie tun kann, dass es aber das Objekt ist, das wirklich etwas tut). Um ein
rotes Ball-Objekt zu erzeugen, fiigst Du dem Ende des Programms folgenden
Code hinzu:

ball = Ball(canvas, 'red')

Der Anfang Deines ersten Spiels: BOUNCE!



Wenn Du dieses Programm jetzt mit Run » Run Module laufen lisst, erscheint
die Leinwand fir den Bruchteil einer Sekunde und verschwindet dann wieder.
Damit das Fenster sich nicht sofort wieder schliefdt, miissen wir eine Animations-
schleife hinzuftugen, die sogenannte Hauptschleife unseres Spiels.

Die Hauptschleife ist der zentrale Bestandteil eines Programms, der in der
Regel die meisten Dinge kontrolliert. Im Moment befiehlt unsere Hauptschleife
tkinter lediglich, das Bild neu aufzubauen. Diese Schleife lduft stindig durch
(zumindest so lange, bis wir das Fenster schliefSen). Sie weist tkinter fortlaufend
an, das Bild neu aufzubauen und dann fiir eine Hundertstelsekunde zu pausieren.
Diesen Code fugen wir am Ende unseres Programms an:

ball = Ball(canvas, 'red')

1:
tk.update_idletasks()
tk.update()
time.sleep(0.01)

Wenn Du nun diesen Code durchlaufen lisst, sollte der Ball ziemlich in der Mitte
der Leinwand erscheinen:

74 Spiel (= [IEE2 \

Erzeugen der Ball-Klasse

187



188

14.4 In Bewegung kommen

Eben haben wir die Ba11-Klasse einge-
richtet, und jetzt wird es Zeit, den Ball
zu animieren. Wir werden ihn dazu
bringen, sich zu bewegen, abzuprallen
und seine Richtung zu dndern.

Den Ball in Bewegung setzen

Damit sich der Ball bewegt, andern wir die Funktion draw wie folgt:
class Ball:
def _init_ (self, canvas, color):
self.canvas = canvas

self.id = canvas.create oval(10, 10, 25, 25, fill=color)
self.canvas.move(self.id, 245, 100)

def draw(self):
self.canvas.move(self.id, 0, -1)

Da __init__ den canvas-Parameter als Objekt-Variable canvas gespeichert hat,
benutzen wir diese Variable mit self.canvas und rufen die Funktion move auf der
Leinwand auf.

Wir reichen drei Parameter an move weiter: die id des Ovals und die Zahlen 0
und -1. Die O sagt, dass sich der Ball nicht horizontal bewegen soll, und die -1
bedeutet, dass er sich einen Pixel vertikal nach oben bewegen soll.

Wir nehmen diese kleine Anderung vor, weil es gut ist, Dinge zwischendurch
erst auszuprobieren. Stell Dir vor, wir wiirden den gesamten Code unseres Spiels
auf einmal schreiben und dann feststellen, dass er nicht funktioniert. Wie sollten
wir dann jemals herausfinden, warum er streikt?

Die nichste Anderung betrifft unsere Hauptschleife ganz unten in unserem
Programm. Im Block mit unserer while-Schleife (dies ist unsere Hauptschleife!)
fiigen wir den Aufruf der Funktion draw unseres Ball-Objekts hinzu:

while 1:
ball.draw()
tk.update_idletasks()
tk.update()
time.sleep(0.01)

Wenn Du diesen Code jetzt laufen lisst, sollte der Ball sich die Leinwand hinauf
bewegen und dann aus ihr verschwinden, da der Code tkinter dazu zwingt, den
Monitor schnell wieder aufzubauen — es sind die Befehle update idletasks und
update, die tkinter anweisen, sich zu beeilen und zu zeichnen, was auf der Lein-
wand ist.

Der Anfang Deines ersten Spiels: BOUNCE!



Der Befehl time.sleep ruft die Funktion sleep aus dem Modul time auf,
wodurch Python fiir eine Hundertstelsekunde (0.01) schlift. Dadurch wird dafiir
gesorgt, dass unser Programm nicht so schnell lduft, dass der Ball verschwindet,
bevor Du ihn tiberhaupt sehen konntest.

Die Schleife sagt also im Grunde: »Bewege den Ball ein bisschen, baue den
Bildschirm mit der neuen Position auf, warte ein bisschen, und fange dann von
vorne an. «

Achtung!

Wenn Du das Spiele-Fenster schlie8t, kann es sein, dass Du in der Shell Fehlermeldungen
siehst. Die tauchen auf, weil durch das SchlieBen des Fensters der Code aus der while-
Schleife ausbricht und Python sich dariiber beschwert.

Dein Spiel sollte bis jetzt folgendermafsen aussehen:

tkinter *
random
time

Ball:

__init_ (self, canvas, color):

self.canvas = canvas

self.id = canvas.create oval(10, 10, 25, 25, fill=color)
self.canvas.move(self.id, 245, 100)

draw(self):

self.canvas.move(self.id, 0, -1)

tk = Tk()

tk.title("Spiel™)

tk.resizable(0, 0)

tk.wm attributes("-topmost", 1)

canvas = Canvas(tk, width=500, height=400, bd=0, highlightthickness=0)
canvas.pack()

tk.update()

ball = Ball(canvas, 'red")

1:
ball.draw()
tk.update_idletasks()
tk.update()
time.sleep(0.01)

In Bewegung kommen

189



190

Den Ball springen lassen

Ein Ball, der einfach oben aus dem Bildschirm verschwindet, ist in einem Spiel
nicht sonderlich hilfreich. Wir sollten ihn deswegen zurtickspringen lassen. Als
Erstes speichern wir ein paar zusitzliche Objekt-Variablen in der Initialisierungs-
funktion der Bal1-Klasse:

def _init_ (self, canvas, color):
self.canvas = canvas
self.id = canvas.create oval(10, 10, 25, 25, fill=color)
self.canvas.move(self.id, 245, 100)

self.x = 0

self.y = -1

self.canvas_height = self.canvas.winfo_height()

Wir haben unserem Programm drei weitere Zeilen hinzugefiigt. Wir haben mit
self.x = 0 die Objekt-Variable x auf 0 gesetzt und dann mit self.y = -1 die Varia-
ble y auf -1 gesetzt. Zum Schluss haben wir die Objekt-Variable canvas_height
durch den Aufruf der canvas-Funktion winfo_height gesetzt. Diese Funktion gibt
die aktuelle Hohe der Leinwand zuriick. Als Nichstes dndern wir wieder die
Funktion draw:

def draw(self):

(1] self.canvas.move(self.id, self.x, self.y)
(2] pos = self.canvas.coords(self.id)
(3] if pos[1] <= 0:
self.y =1
(4] if pos[3] >= self.canvas_height:
self.y = -1

In ® indern wir den Aufruf der canvas-

Funktion move, indem wir ihr die Objekt-

Variablen x und y tibergeben. Als Nichstes

erzeugen wir in @ die Variable pos, indem

wir die canvas-Funktion coords aufrufen.

Diese Funktion gibt die aktuellen x- und y- /

Koordinaten von allem zuriick, was auf der / / /

Leinwand gezeichnet wird, solange Du die

ID-Nummern kennst. In diesem Fall weisen

wir coords die Objekt-Variable id zu, die die

ID-Nummer des Ovals enthilt. w
Die Funktion coords gibt die Koordina-

ten in Form einer Liste von vier Zahlen zurtick. Wenn wir uns die Ergebnisse des
Aufrufs dieser Funktion anzeigen lassen wollen, sehen wir so etwas:

Der Anfang Deines ersten Spiels: BOUNCE!



print(self.canvas.coords(self.id))
[255.0, 29.0, 270.0, 44.0]

Die ersten beiden Zahlen dieser Liste (255.0 und 29.0) enthalten die oberen lin-
ken Koordinaten des Ovals (x1 und y1); Die nichsten beiden (270.0 144.0) sind
die Koordinaten x2 und y2 unten rechts. Wir werden diese Werte in den nachsten
paar Zeilen des Codes verwenden.

In © sehen wir, ob die y1-Koordinate (das ist die obere Kante des Balls) weni-
ger oder gleich 0 ist. Falls ja, setzen wir die y-Objekt-Variable auf 1. Dadurch
sagen wir: »Sobald Du oben anstofSt, hore damit auf, 1 von der vertikalen Posi-
tion abzuziehen, und stoppe dadurch die Bewegung nach oben.«

In @ schen wir, ob die y2-Koordinate (das ist die untere Kante des Balls) gro-
Ber oder gleich der Variable canvas height ist. Falls sie es ist, setzen wir die
y-Objekt-Variable auf -1 zuruck.

Wenn Du diesen Code jetzt ausfiihrst, sollte der Ball auf der Leinwand so
lange auf und ab springen, bist Du das Fenster schliefSt.

Die Startposition des Balls éndern M‘

Einen Ball langsam auf- und abspringen zu lassen,

ist noch lange kein Spiel. Lass uns daher die Start-
position des Balls andern — den Winkel, in dem der W’
Ball wegfliegt, wenn das Spiel startet. Andere in der

=

Funktion _init_die Zeilen

g S

in Folgendes (achte darauf, dass Du die richtige Anzahl von Leerzeichen — hier

self.x
self.y

sind es acht — vor jeder Zeile hast):

(1) starts = [-3, -2, -1, 1, 2, 3]
(2] random.shuffle(starts)

(3] self.x = starts[0]

(4] self.y = -3

In @ erzeugen wir die Variable starts mit einer Liste von sechs Zahlen. Diese
Zahlen mischen wir in @, indem wir random.shuffle aufrufen. In © setzen wir
den Wert von x auf das erste Element dieser Liste, sodass x jede Zahl dieser Liste
sein kann (zwischen -3 und 3).

Wenn wir y in @ auf -3 setzen (um den Ball schneller zu machen), missen wir
noch ein paar weitere Anderungen vornehmen, damit der Ball nicht einfach aus
dem Fenster verschwindet. Fuige folgende Zeile am Ende der Funktion __init__
hinzu, damit die Breite der Leinwand in eine neue Objekt-Variable, canvas_width,
gespeichert wird:

In Bewegung kommen

191



self.canvas_width = self.canvas.winfo_width()

Wir verwenden diese neue Objekt-Variable in der Funktion draw, um zu sehen, ob
der Ball oben oder unten gegen die Leinwand gestofen ist:

pos[0] <= 0:

self.x = 3
pos[2] >= self.canvas_width:
self.x = -3

Da wir x auf 3 und -3 gesetzt haben, tun wir das Gleiche mit Y, damit sich der Ball
in alle Richtungen mit der gleichen Geschwindigkeit bewegt. Deine draw-Funk-
tion sollte jetzt folgendermafSen aussehen:

draw(self):
self.canvas.move(self.id, self.x, self.y)
pos = self.canvas.coords(self.id)

pos[1] <= 0:
self.y = 3
pos[3] >= self.canvas_height:
self.y = -3
pos[0] <= 0:
self.x = 3
pos[2] >= self.canvas width:
self.x = -3

Speichere das Programm und starte es. Der Ball sollte jetzt auf dem Bildschirm
herumspringen, ohne zu verschwinden. Das komplette Programm sieht nun so
aus:

tkinter *
random
time

Ball:
__init_ (self, canvas, color):
self.canvas = canvas
self.id = canvas.create oval(10, 10, 25, 25, fill=color)
self.canvas.move(self.id, 245, 100)
starts = [-3, -2, -1, 1, 2, 3]
random.shuffle(starts)
self.x = starts[0]
self.y = -3
self.canvas_height = self.canvas.winfo_height()
self.canvas_width = self.canvas.winfo _width()

192  Der Anfang Deines ersten Spiels: BOUNCE!



draw(self):
self.canvas.move(self.id, self.x, self.y)
pos = self.canvas.coords(self.id)

pos[1] <= O0:
self.y =1
pos[3] >= self.canvas_height:
self.y = -1
pos[0] <= O:
self.x = 3
pos[2] >= self.canvas_width:

self.x = -3

tk = Tk()

tk.title("Spiel")

tk.resizable(0, 0)

tk.wm_attributes("-topmost", 1)

canvas = Canvas(tk, width=500, height=400, bd=0, highlightthickness=0)
canvas.pack()

tk.update()

ball = Ball(canvas, 'red')

1:
ball.draw()
tk.update_idletasks()
tk.update()
time.sleep(0.01)

In diesem Kapitel haben wir mit dem Modul tkinter unser erstes Spiel geschrie-
ben. Wir haben eine Klasse fiir einen Ball erzeugt, den wir so animiert haben, dass
er sich tiber den Monitor bewegt. Wir haben durch Koordinaten gepriift, wann
der Ball die Winde der Leinwand beriihrt, damit wir ihn abprallen lassen kon-
nen. Im Modul random haben wir dazu noch die Funktion shuffle benutzt, damit
unser Ball nicht immer von der gleichen Position aus startet. Im nachsten Kapitel
werden wir das Spiel fertigstellen, indem wir einen Schldger hinzufiigen.

Was Du gelernt hast

193






Dein erstes Spiel vollenden:
BOUNCE!

Im vorigen Kapitel haben wir angefangen, unser erstes Spiel zu programmieren:
BOUNCE! Wir haben eine Leinwand erzeugt und unserem Spiel-Code einen hiip-
fenden Ball hinzugefiigt. Unser Ball wiirde jedoch bis in alle Ewigkeiten auf dem
Monitor herumhupfen (oder zumindest so lange, bist Du den Computer aus-
schaltest), was bei einem Spiel nicht sehr sinnvoll ist. Jetzt werden wir dem Spie-
ler einen Schliger geben, den er benutzen kann. Wir werden dem Spiel auch ein
gewisses Zufallselement geben, damit es ein bisschen schwieriger und spannender
zu spielen ist.

Ein hiipfender Ball macht nicht viel Spafs, wenn
man ihn nicht mit irgendetwas schlagen kann. Zeit
fiir einen richtigen Schlager!

Wir beginnen mit dem Hinzufiigen des folgen-
den Codes gleich hinter der Bal1-Klasse, um einen
Schlager zu erzeugen. Dazu fugst Du den Code in
eine neue Zeile unter der Funktion draw in der
Klasse Ball ein:

195



def draw(self):
self.canvas.move(self.id, self.x, self.y)
pos = self.canvas.coords(self.id)
if pos[1] <= 0:

self.y =1

if pos[3] >= self.canvas_height:
self.y = -1

if pos[0] <= 0:
self.x = 3

if pos[2] >= self.canvas width:
self.x = -3

class Schldger:
def _init_ (self, canvas, color):
self.canvas = canvas
self.id = canvas.create rectangle(0, 0, 100, 10, fill=color)
self.canvas.move(self.id, 200, 300)
def draw(self):
pass

Dieser hinzugefiigte Code ist fast exakt der gleiche wie bei der Bal1-Klasse, nur
dass wir create_rectangle (statt create oval) aufrufen und dass wir das Rechteck
(engl. rectangle) auf Position 200, 300 (200 Pixel zur Seite und 300 Pixel nach
unten) bewegen.

Als Nichstes erzeugst Du ganz unten in Deinem Listing in der Klasse Sch1édger
ein Objekt und dnderst dann die Hauptschleife, um die Funktion draw in Schlédger
aufzurufen:

schldger = Schldger(canvas, 'blue')
ball = Ball(canvas, 'red')

while 1:
ball.draw()
schldger.draw()
tk.update_idletasks()
tk.update()
time.sleep(0.01)

Wenn Du das Spiel jetzt laufen lisst, solltest Du einen springenden Ball und einen
rechteckigen Schlager sehen, der sich nicht bewegt:

196 Dein erstes Spiel vollenden: BOUNCE!



74 Spiel

o= X4

Den Schldger in Bewegung setzen

Um den Schlager
gen, werden wir

damit die linke und rechte Pfeiltaste mit neuen
Funktionen in der Schlidger-Klasse verbunden
wird. Wenn der Spieler die linke Pfeiltaste driickt,
wird die x-Variable auf -2 gesetzt (um sich nach
. Das Driicken der rechten Pfeil-
taste setzt die x-Variable auf 2 (fiir die Bewegung

links zu bewegen)

nach rechts).

nach links und rechts zu bewe-
Ereignis-Bindungen einsetzen,

Der erste Schritt besteht also darin, die x-Objekt-Variable der Funktion
__init__zu unserer Schliger-Klasse hinzuzufiigen. Dazu kommt noch eine Varia-
ble fiir die Breite der Leinwand (wie schon in der Bal1-Klasse):

def _ini
self.
self.
self.
self.
self.

t_ (self, canvas, color):

canvas = canvas

id = canvas.create rectangle(0, 0, 100, 10, fill=color)
canvas.move(self.id, 200, 300)

x =0

canvas_width = self.canvas.winfo_width()

Nun benotigen wir die Funktionen zum Wechsel der Richtungen zwischen links

(nach_Tinks) und rechts (nach_rechts). Diese fugen wir gleich hinter der Funktion

draw ein:

Einen Schldger hinzufiigen

197



198

def nach Tinks(self, evt):
self.x = -2

def nach_rechts(self, evt):
self.x = 2

Mit diesen beiden Programmzeilen verbinden wir unsere Funktionen zum Rich-
tungswechsel mit den passenden Tasten. Dazu nutzen wir die Funktion _init__in
dieser Klasse. Auf Seite 176 haben wir im Abschnitt »Ein Objekt auf etwas reagie-
ren lassen« Python eine Funktion aufrufen lassen, sobald eine Taste gedriickt
wurde. Jetzt verbinden wir die Funktion nach_Tlinks in unserer Schldger-Klasse mit
der linken Pfeiltaste mit dem Ereignisnamen '<KeyPress-Left>'. AnschliefSend ver-
binden wir die nach_rechts-Funktion mit der rechten Pfeiltaste mit dem Ereignis-
namen '<KeyPress-Right>'. Unsere Funktion _init__sieht jetzt folgendermaflen
aus:

def _init_ (self, canvas, color):
self.canvas = canvas
self.id = canvas.create rectangle(0, 0, 100, 10, fill=color)
self.canvas.move(self.id, 200, 300)
self.x =0
self.canvas_width = self.canvas.winfo width()
self.canvas.bind_all('<KeyPress-Left>', self.nach_links)
self.canvas.bind_al1('<KeyPress-Right>', self.nach rechts)

Die Funktion draw ist fiir die Schldger-Klasse so dhnlich wie die in der Ba11-Klasse:

def draw(self):
self.canvas.move(self.id, self.x, 0)
pos = self.canvas.coords(self.id)

if pos[0] <= 0:
self.x =0

elif pos[2] >= self.canvas_width:
self.x =0

Wir benutzen die move-Funktion der Leinwand, um den Schliger in Richtung der
x-Variablen mit self.canvas.move(self.id, self.x, 0) zu bewegen. Danach
bekommen wir die Koordinaten des Schligers, um mit dem Wert in pos zu sehen,
ob er die linke oder rechte Seite des Fensters beriihrt hat.

Anstatt wie ein Ball dann einfach abzuprallen, sollte der Schldger bei Kontakt
mit dem Fenster anhalten. Wenn die linke x-Koordinate (pos[0]) weniger oder
gleich 0 ist (<= 0) setzen wir die x-Variable mit self. x = 0 auf 0. Und wenn die
rechte x-Koordinate (pos[2]) grofser oder gleich der Breite der Leinwand ist
(>= self.canvas_width), dann setzen wir auch die x-Variable mit se1f.x = 0 auf 0.

Dein erstes Spiel vollenden: BOUNCE!



Achtung!

Wenn Du das Programm jetzt laufen ldsst, musst Du zuerst auf die Leinwand klicken, damit
das Spiel die Aktionen der linken und rechten Pfeiltaste erkennt. Durch das Klicken auf die
Leinwand weil} sie, dass sie reagieren muss, sobald jemand eine Taste auf der Tastatur
driickt.

15.2 Merken, dass der Ball auf den $chldger trifft

Zum jetzigen Zeitpunkt trifft der Ball nicht auf
den Schliger, sondern fliegt einfach durch ihn
hindurch. Der Ball muss wissen, dass er auf den
Schlager trifft, genau wie der Ball wissen muss,
dass er an die Wand prallt.

Wir hitten dieses Problem dadurch losen
konnen, dass wir der Funktion draw Code hinzu-
fuigen (an der Stelle, wo der Code nach Wanden
sucht). Aber es ist kliiger, solchen Code in eine
neue Funktion zu legen, damit die Dinge besser

unterteilt sind. Wenn wir zu viel Code an einer Stelle ansammeln (beispielsweise
in einer einzigen Funktion), wird der Code viel schwieriger zu verstehen. Lass uns
die notigen Anderungen vornehmen.

Als Erstes dndern wir die Funktion __init__ des Balls, sodass wir das Schli-
ger-Objekt als Parameter einfiihren konnen:

class Ball:
(1] def _init_ (self, canvas, color):
self.canvas = canvas
(2] self.Schldger = Schléger

self.id = canvas.create oval(10, 10, 25, 25, fill=color)
self.canvas.move(self.id, 245, 100)

starts = [-3, -2, -1, 1, 2, 3]

random.shuffle(starts)

self.x = starts[0]

self.y = -3

self.canvas_height = self.canvas.winfo_height()
self.canvas_width = self.canvas.winfo width()

In @ haben wir den Parameter von _init__so gedndert, dass er den Schldger mit
einschlieft. In ® haben wir dann den Schldger-Parameter der Objekt-Variablen
Schldger zugewiesen.

Nachdem wir das Schldger-Objekt gespeichert haben, miissen wir noch den
Code an der Stelle dindern, an der wir das Ba11-Objekt erzeugt haben. Diese Ande-
rung wird ganz unten im Programm vorgenommen, kurz vor der Hauptschleife:

Merken, dass der Ball auf den Schldger trifft

199



schldger = Schlédger(canvas, 'blue')
ball = Ball(canvas, Schldger, 'red')

while 1:
ball.draw()
schldger.draw()
tk.update_idletasks()
tk.update()
time.sleep(0.01)

Den Code, den wir brauchen, um zu sehen, ob der Ball den Schliger beriihrt hat,
ist ein wenig komplizierter, als der Code, den man braucht, um zu priifen, ob die
Winde berithrt wurden. Wir werden diese Funktion triff_schldger nennen und
sie der draw-Funktion in der Bal1-Klasse hinzufiigen, wo wir sehen, ob der Ball
den Boden des Fensters beruhrt hat:

def draw(self):
self.canvas.move(self.id, self.x, self.y)
pos = self.canvas.coords(self.id)
if pos[1] <= 0:

self.y =1

if pos[3] >= self.canvas_height:
self.y = -1

if self.triff _schldger(pos) == True:
self.y = -3

if pos[0] <= 0:
self.x = 3

if pos[2] >= self.canvas width:
self.x = -3

Wie Du im neu hinzugefugten Code erkennen kannst, dndern wir — falls
triff_schldger wahr (True) zuriickgibt — die Flugrichtung des Balls, indem wir die
y-Objekt-Variable mit self.y = -3 auf -3 setzen. Versuche jetzt aber noch nicht,
das Spiel laufen zu lassen, denn wir haben die Funktion triff schldger noch
nicht definiert! Das machen wir erst jetzt.

Fiige die Funktion triff_schldger genau vor die draw-Funktion ein:

def triff_schldger(self, pos):
schlédger pos = self.canvas.coords(self.schldger.id)
if pos[2] >= schldger pos[0] and pos[0] <= schldger pos[2]:
if pos[3] >= schldger pos[1] and pos[3] <= schlédger pos[3]:
return True
return False

oO0o0®0e

Als Erstes definieren wir in @ die Funktion mit dem Parameter pos. Diese Zeile
enthilt die aktuellen Koordinaten des Balls. In ® bekommen wir dann die Koor-
dinaten des Schldgers und speichern sie in der Variable pos.

200 Dein erstes Spiel vollenden: BOUNCE!



In © haben wir den ersten Teil unserer ersten if-then-Anweisung. Wir sagen
damit: »Wenn die rechte Seite neben dem Ball grofSer ist als die linke Seite neben
dem Schldger und die linke Seite neben dem Balls kleiner ist als die rechte Seite
neben dem Schliger...« Hier enthilt pos[2] die x-Koordinate fiir die Seite rechts
neben dem Ball. schldger pos[0] enthilt die x-Koordinate fiir die Seite links
neben dem Schlidger, und schldger pos[2] enthilt die x-Koordinate fir die Seite
rechts neben dem Schliger. Das folgende Diagramm zeigt, wie diese Koordinaten
aussehen, kurz bevor der Ball auf dem Schldger auftrifft.

A
. s

pos0] | [‘pps[z]
N |

1 1 N /l
ls‘t:hlégef,fpos[O]

\, /
N

Der Ball fillt in Richtung des Schldgers, aber in diesem Fall siehst Du, dass die
rechte Seite neben dem Ball (pos[2]) noch nicht die linke Seite des Schlagers

schlager_pos[2]

(schldger [0]) passiert hat.

In @ schauen wir nach, ob die Unterseite des Balls (pos[3]) sich zwischen der
Oberseite des Schlagers (sch1dger post[1]) und seiner Unterseite (sch14ger post[3])
befindet. Im nichsten Diagramm siehst Du, dass die Unterseite des Balls (pos[3])
noch auf die Oberseite des Schldgers (schldger pos[1]) auftreffen muss.

\\\\
\ pos[1]
. ’
\\ - 'I'
4
. | pos[3] yd
\\ 'I
N 'l
N\ s
\ ,,'
AN J
N 4
N 0 .
N\ schlager_posl[1]

schldger_pos|[3]

Aufgrund der aktuellen Position des Balls wiirde die Funktion triff_schldger
falsch zurtickgeben.

Merken, dass der Ball auf den Schldger trifft 201



202

Achtung!

Warum mussen wir wissen, ob die Unterseite des Balls sich zwischen der oberen und der
unteren Seite des Schldgers befindet? Warum schauen wir nicht einfach nach, ob die
Unterseite des Balls die Oberseite des Schldgers beriihrt hat? Einfach, weil jedes Mal, wenn
wir den Ball Uber die Leinwand bewegen, 3-Pixel-Spriinge gemacht werden. Wenn wir
lediglich nachgucken wirden, ob der Ball die Oberseite des Schldgers (pos[1]) erreicht
hat, kdnnten wir schon Uber diese Position hinaus gesprungen sein. In diesem Fall wiirde
der Ball weiterfliegen und ohne anzuhalten durch den Schldger gehen.

15.3 Dem Spiel etwas Zufdlliges geben

Jetzt ist es an der Zeit, aus unserem Programm mit
dem hiipfenden Ball und dem Schliger ein Spiel zu
machen. Spiele brauchen ein Element des Zufalls —
irgendetwas, damit der Spieler auch verlieren kann.
So, wie unser Spiel jetzt ist, wiirde der Ball unendlich
lange durch die Gegend hiipfen, also gibt es auch
nichts zu verlieren.

Wir werden unser Spiel dadurch abschliefSen,
dass wir Code hinzufiuigen, der das Spiel beendet, falls der Ball die Unterseite der
Leinwand beriihrt (mit anderen Worten: falls er auf den Boden fillt).

Als Erstes fligen wir die Objekt-Variable hit_bottom (engl. fiir »triff Boden«)
der Funktion __init__ ganz unten in der Ball-Klasse hinzu:

self.canvas_height = self.canvas.winfo_height()
self.canvas _width = self.canvas.winfo width()
self.hit_bottom = False

Danach dndern wir ganz unten im Programm die Hauptschleife:

while 1:
if ball.hit _bottom == False:
ball.draw()
schldger.draw()
tk.update_idletasks()
tk.update()
time.sleep(0.01)

Jetzt uiberpriift die Schleife standig hit bottom, um nachzuschauen, ob der Ball
den Boden des Fensters beriihrt hat. Wie Du in unserer if-Anweisung siehst,
sollte der Code stindig Ball und Schliger in Bewegung halten, solange der Ball
nicht den Boden beriihrt hat. Das Spiel ist beendet, sobald sich Ball und Schlager
nicht mehr bewegen. (Wenn wir sie nicht mehr animieren.)

Dein erstes Spiel vollenden: BOUNCE!



Die letzte Anderung betrifft die draw-Funktion der Ba11-Klasse:

def draw(self):

self.canvas.move(self.id, self.x, self.y)

pos = self.canvas.coords(self.id)

if pos[1] <= 0:
self.y = 3

if pos[3] >= self.canvas_height:
self.hit_bottom = True

if self.schldger(pos) == True:

self.y = -3

if pos[0] <= O:
self.x = 3

if pos[2] >= self.canvas width:
self.x = -3

Wir haben die if-Anweisung geandert, um zu priifen, ob der Ball den Boden
beriihrt hat (ob er héher oder gleich canvas_height ist). Falls ja, setzen wir in der
folgenden Zeile hit_bottom auf wahr, anstatt den Wert der y-Variable zu dndern,
da es nicht mehr notig ist, den Ball springen zu lassen, sobald er den Boden des
Fensters bertihrt hat.

Wenn Du das Spiel jetzt laufen ldsst und den Ball nicht mehr mit dem Schla-
ger erwischst, kommt alle Bewegung auf Deinem Bildschirm zum Stillstand, und
das Spiel ist beendet, sobald der Ball den Boden beriihrt hat:

74 Spiel (=a ]

Dem Spiel etwas Zufélliges geben 203



Dein Programm sollte wie das folgende Listing aussehen. Falls Du Probleme hast,
Dein Spiel ans Laufen zu bekommen, vergleiche es mit Deinen Eingaben:

tkinter *
random
time

Ball:
__init_ (self, canvas, schléger, color):
self.canvas = canvas
self.schldger = schldger
self.id = canvas.create oval(10, 10, 25, 25, fill=color)
self.canvas.move(self.id, 245, 100)
starts = [-3, -2, -1, 1, 2, 3]
random.shuffle(starts)
self.x = starts[0]
self.y = -3
self.canvas_height = self.canvas.winfo_height()
self.canvas_width = self.canvas.winfo_width()
self.hit_bottom = False

triff schlédger(self, pos):
schldger _pos = self.canvas.coords(self.schldger.id)

pos[2] >= schlédger_pos[0] pos[0] <= schléger pos[2]:
pos[3] >= schldger pos[1] pos[3] <= schléger pos[3]:
True
False
draw(self):

self.canvas.move(self.id, self.x, self.y)
pos = self.canvas.coords(self.id)

pos[1] <= 0:

self.y = 3

pos[3] >= self.canvas_height:

self.hit bottom = True

self.triff _schlager(pos) == True:

self.y = -3
pos[0] <= 0:
self.x = 3
pos[2] >= self.canvas width:
self.x = -3
Schldger:

__init_ (self, canvas, color):

self.canvas = canvas

self.id = canvas.create rectangle(0, 0, 100, 10, fill=color)
self.canvas.move(self.id, 200, 300)

self.x = 0

204  Dein erstes Spiel vollenden: BOUNCE!



self.canvas_width = self.canvas.winfo_width()
self.canvas.bind_all('<KeyPress-Left>', self.nach_1inks)
self.canvas.bind_all('<KeyPress-Right>', self.nach_rechts)

def draw(self):
self.canvas.move(self.id, self.x, 0)
pos = self.canvas.coords(self.id)
if pos[0] <= 0:

self.x =0
elif pos[2] >= self.canvas_width:
self.x =0
def nach_Tinks(self, evt):
self.x = -2
def nach_rechts(self, evt):
self.x = 2
tk = Tk()

tk.title("Spiel™)

tk.resizable(0, 0)

tk.wm attributes("-topmost", 1)

canvas = Canvas(tk, width=500, height=400, bd=0, highlightthickness=0)
canvas.pack()

tk.update()

schldger = Schldger(canvas, 'blue')
ball = Ball(canvas, schldger, 'red')

while 1:
if ball.hit_bottom == False:
ball.draw()
schlager.draw()
tk.update_idletasks()
tk.update()
time.sleep(0.01)

15.4 Was Du gelernt hast

In diesem Kapitel haben wir unser erstes
Spiel mit dem Modul tkinter abgeschlossen.
Wir haben fiir den Schliger, der in unserem
Spiel benutzt wird, Klassen erzeugt, und wir
haben mithilfe von Koordinaten gepriift, ob
der Ball den Schliger oder die Winde der Lein-
wand beriihrt. Wir haben Ereignisbindungen

benutzt, um die linke und rechte Pfeiltaste

Was Du gelernt hast

205



an die Bewegung des Schligers zu binden. Mit der Hauptschleife haben wir die
Funktion draw aufgerufen, um den Schliger zu animieren. Zum Schluss haben wir
unseren Code so gedndert, dass er ein Zufallselement bekam: Wenn ein Spieler
den Ball verpasst, ist das Spiel vorbei, sobald der Ball den Boden der Leinwand
beriihrt.

15.5 Programmier-Puzzles

Im Moment ist unser Spiel noch etwas einfach. Man kann noch jede Menge
andern, um ein professionelleres Spiel zu programmieren. Versuche es auf die fol-
genden Weisen interessanter zu machen, und tiberpriife Deine Antworten unter
www.dpunkt.delpython.

#1: Verzégere den Spielstart

Unser Spiel geht ein bisschen schnell los, und man muss auch noch auf die Lein-
wand klicken, damit es reagiert, wenn der Spieler auf die linke und rechte Pfeil-
taste der Tastatur driickt. Kannst Du beim Start des Spiels eine Verzogerung ein-
bauen, damit der Spieler genug Zeit hat, auf die Leinwand zu klicken? Oder —
noch besser — kannst Du eine Ereignisbindung an einen Mausklick hinzuftigen,
damit nur dadurch das Spiel gestartet wird?

Hinweis 1:

In der Schldger-Klasse hast Du bereits Ereignisbindungen verwendet. Dies
konnte ein guter Ausgangspunkt sein.

Hinweis 2:

Die Ereignisbindung fur die linke Maustaste ist der String '<Button-1>".

#2: Ein richtiges »Game Over«

Wenn das Spiel zu Ende ist, friert alles einfach ein, und das ist nicht sehr spieler-
freundlich. Versuche den Text » Game over« erscheinen zu lassen, wenn der Ball
den Boden des Fensters beriihrt. Du konntest die Funktion create_text verwen-
den, aber vielleicht findest Du auch den benannten Parameter state niitzlich (er
nimmt Werte wie normal und hidden [engl. fiir »verborgen«] an). Sieh Dir im
Abschnitt 13.12 itemconfig an. Als zusitzliche Herausforderung baust Du eine
Verzogerung ein, damit der Text nicht sofort erscheint.

206 Dein erstes Spiel vollenden: BOUNCE!



#3: Beschleunige den Ball

Falls Du Tennis spielst, weifdt Du, dass ein Ball, der auf Deinen Schliger trifft,
manchmal schneller wieder zuriickfliegt, als er gekommen ist — je nachdem, wie
hart Du schlagst. Der Ball in unserem Spiel bewegt sich immer in derselben
Geschwindigkeit, egal ob sich der Schlager bewegt oder nicht. Versuche, das Pro-
gramm so zu dndern, dass sich die Schlagergeschwindigkeit auf die Geschwindig-
keit des Balls auswirkt.

#4: Zeichne den Punktestand auf

Wie wire es mit einem Punktestand? Jedes Mal, wenn der Ball den Schliger
beriihrt, sollte der Punktestand steigen. Versuche, den Punktestand in der oberen
rechten Ecke der Leinwand anzuzeigen. Eventuell blatterst Du fur einen Tipp
noch einmal auf Seite 178 zum Abschnitt 13.12 zuriick und siehst Dir itemconfig
noch einmal an.

Programmier-Puzzles

207






.. ‘ '.O e
o o, - .
Herr Strlchmann =
o ° . o ® .
'} A : 00 @ . . ‘e
] ‘e o
R rennt zum Ausgang g
[y . ° 0"

o o ‘e % 00 0 0 s a0 8, .., o0 L ) .-‘o . .....‘.

. l. ° .. ‘e e . . s 0 - .... I o @9 * ‘e ° .. b e @ A o @0
T AT MR R AR LI S S ST PRI
. A 0° - .' ., * @, 0 O .o [ . .‘ L - o o - L Y 9 o

LY ‘ . Y ) ..o . . o ® PY 'Y e .. o ° O o . '} .6 ... ®

o ® .04 - 9. s 0 - a ~ L] ’ (' ... o .' ) - 0 o .

®e . @ o .v% @ *.e* S s o0 ° 0 ., 9. % 0,
“° o .' J * o o C ° 9 L4 ° ’ P .‘ 9 e ... .- ° . .. .. s . ‘
o e, e o @ % © e ° .. - Y .0 e . . % ° '. e°® ®
* v e g% 0 .0 0 ° c 0 B ®.q ® Y. g v, ‘e °
S . o 2o “ .. ‘e * ® LI - ® 0 o, @ o e o' oC . (]
LINT I Y o, ..l .o o® ., . 000 ... © o o X ) 0 s ® :
¢ o v L o* %0 o ¢ e ¢ .o ® . » o ‘e S v e 0, 0. ., e
ce® L. 00" ® A& s o .. L2 N . °
» 0, _ [ ”°. L -’ L S e - U
> i) O .' .. °* o4 L . L I 0 [ § °9 °® (% ) .o 0 ,°°
0 . o LIPS o . “ ¢ o 5 . e 0 .. L, ..' « ° - ° v ° 9 0 :
.. .' o ¢ - 0 PP L - . e e ‘... P [ ] .9, o 0. @
- - 0 .. - . .. O ..o [} ... ..n. .' | ] ° - L § PY [ ]

a0 e e -"'.’0. Te t te gt eet T et e

.'..0 . e 0 @ e e o0, O, . fe0® et 0o
.... S ® o, @ ° % & e . Cev e ¢ - C e e .
Q- ° ... & [} o.' % (S ..‘ - e o MY . °. . o © e o . 9.
o« @ . ¢ Y e O IS P ‘. [} P o0 ° ° 4 . 0 . ..... «° 0 .. '..

® o0 ° - Y ° o [ ) o ... .... . ..‘ .’ *o - (] ‘O 4. e g‘

.o [ e Py s o ”.- o, ® . - Y e o ¢ .p - "n > e °®* ®






Wir erstellen Grafiken fiir das
Strichmannchenspiel

Wenn man ein Spiel (oder jedes andere Programm) schreibt, ist es gut, sich einen
Plan zu machen. Dein Plan sollte beschreiben, worum es in Deinem Spiel geht,
und eine Beschreibung der Hauptelemente und -charaktere Deines Spiels enthal-
ten. Wenn es mit dem Programmieren losgeht, hilft Dir Deine Beschreibung, Dich
auf das zu konzentrieren, was Du entwickeln willst. Dein Spiel wird vielleicht
nicht immer genau wie die Originalbeschreibung werden — aber das macht nichts.

In diesem Kapitel beginnen wir mit der Entwicklung des lustigen Spiels » Herr
Strichmann rennt zum Ausgang«.

Hier ist die Beschreibung unseres neuen Spiels:

Geheimagent Herr Strichmann ist in der Hohle des Dr.
Harmlos gefangen, und Du méchtest ihm helfen, durch
den Ausgang im obersten Stockwerk zu entkommen.

Im Spiel gibt es ein Strichminnchen, das von links nach
rechts laufen und hochspringen kann. Auf jedem Stock-
werk gibt es Ebenen, auf die es springen muss.

Das Ziel des Spiels ist es, die Ausgangstiir zu erreichen,
bevor es zu spit ist und das Spiel beendet wird.

21



212

Anhand dieser Beschreibung wissen wir, dass wir mehrere Bilder brauchen — und
zwar Bilder von Herrn Strichmann, von den Ebenen und von der Tiir. Wir brau-
chen ganz offensichtlich Code, um all diese Dinge zusammenzubringen. Aber
bevor wir so weit sind, erstellen wir zunachst die Grafiken fiir unser Spiel, das wir
im nachsten Kapitel entwickeln werden.

Wie werden wir die Elemente in unserem Spiel zeichnen? Wir konnten Grafi-
ken wie die des springenden Balls und des Schligers aus dem vorigen Kapitel
benutzen. Die sind allerdings viel zu einfach fiir dieses Spiel. Stattdessen werden
wir uns Sprites erzeugen.

Als Sprites bezeichnet man die Dinge in einem Spiel — meistens Figuren. Spri-
tes werden normalerweise vorher erstellt (bevor das Programm lauft) und nicht
wie die Polygone im Programm selber, wie es bei unserem Bounce!-Spiel der Fall
war. Sowohl Herr Strichmann als auch die Ebenen werden aus Sprites bestehen.
Um diese Bilder zu erzeugen, musst Du ein Grafikprogramm installieren.

16.2 GIMP installieren

Es gibt zwar viele Grafikprogramme, fur unser Spiel brauchen wir jedoch eines,
das Transparenzen unterstiitzt. (Die Transparenz wird auch Alphakanal
genannt.) Durch die Transparenz kann ein Bild Teile enthalten, bei denen keine
Farben auf dem Bildschirm dargestellt werden. Wir bendtigen transparente
Anteile, denn wenn ein Bild bei der Bewegung tiber den Monitor iiber ein anderes
bewegt wird, mochten wir nicht, dass der Hintergrund des einen Bildes das
andere Uberdeckt. Bei diesem Bild zum Beispiel, steht das Schachbrettmuster im
Hintergrund fiir die transparente Region:

Pt LA B R pr e | )

.

Sera e

riartre s e

A A

& 1|

< (1] ]+

1l [per || sos[eJHintergrund 51 MB)

Wir erstellen Grafiken fiir das Strichmannchenspiel



Wenn wir jetzt also das gesamte Bild kopieren und es iiber einem anderen Bild
einfiigen, iberdeckt der Hintergrund nichts:

® “Roter Kreisxci-L0 (RGB-Farben, 2 Ebenen) 400400~ 6L | = =1 5% ||
Datei Bearbeiten Auswahl Angicht Bild Ebene Farben Werkzeuge Fil

R

1

Sl

oo
N B G o e e S

H seon o] Hintergrund 6,1 MB)

GIMP (bttp://www.gimp.org), ist ein kostenloses Bildbearbeitungsprogramm fur
Linux, MacOSX und Windows, das transparente Bilder unterstiitzt. Die Website
ist zwar leider auf Englisch, das Programm lisst sich jedoch auf Deutsch einstel-
len. Lade und installiere es wie folgt:

Wenn Du Windows benutzt, erkennt die GIMP-Website Dein Betriebssystem
und leitet Dich unter Downloads zur Installationsdatei.

Wenn Du Ubuntu benutzt, installierst Du GIMP, indem Du das Ubuntu-Soft-
ware Center Offnest und im Suchfenster GIMP eingibst. Sobald GIMP-Bild-
verarbeitung im Suchergebnis auftaucht, klickst Du einmal darauf und
anschliefSend auf den Button Install der GIMP-Bildbearbeitung.

Wenn Du MacOSX benutzt, erkennt die Website Dein Betriebssystem ebenso
wie bei Windows und fithrt Dich nach dem Button Download zur Auswahl
der richtigen Installationsdatei.

Als Nachstes solltest Du Dir fiir Dein Spiel einen Ordner anlegen. Dazu klickst
Du auf Deinem Desktop irgendwo, wo Platz ist, mit der rechten Maustaste und
gehst auf Neu P> Ordner (in Ubuntu heifSt es Neuen Ordner anlegen; in MacOSX
Neuer Ordner). Im darauf folgenden Dialogfenster gibst Du als Ordnernamen
Strichmann ein.

GIMP installieren

213



16.3 Erzeugen der Spieclelemente

Sobald Du Dein Grafikprogramm installiert hast, kannst Du mit dem Zeichnen
anfangen. Wir erstellen folgende Bilder als unsere Spielelemente:

Bilder eines Strichmannchens, das nach links und rechts laufen und springen
kann

Bilder einer Ebene in drei unterschiedlichen Groflen

Bilder einer Tiir: eine offen und eine geschlossen

Ein Bild fur den Spielhintergrund (weil ein einfacher weifSer oder grauer Hin-
tergrund ein langweiliges Spiel ergibt)

Bevor wir mit dem Zeichnen anfangen, mussen wir unsere Bilder mit transparen-
ten Hintergriinden vorbereiten.

Ein transparentes Bild erstellen

Um ein Bild mit Transparenz — einem Alphakanal - einzurichten, startest Du
GIMP und fiihrst folgende Schritte durch:

Gehe auf Datei P> Neu...

Im Dialogfenster gibst Du als Bildbreite 27 Pixel und als Bildhohe 30 Pixel ein.
Gehe auf Ebene P> Transparenz P> Alphakanal hinzufiigen.

Gehe auf Auswahl P> Alles.

Gehe auf Bearbeiten » Ausschneiden.

IS

Das Endergebnis sollte ein Bild sein, das aus einem Schachbrettmuster aus dunk-
lem und hellem Grau besteht, wie es hier (vergrofSert) zu sehen ist:

| | “tunbenannt]-30 (RGB-Farbe.. | = [E1 | 22|

Datei Bearbeiten Auswahl Ansicht Bild Eben
(3P N S (O T = T T T
1

-

e | 1l

_ m%H Hintergrund (28,...

Jetzt konnen wir anfangen, unseren Geheimagenten, Herrn Strichmann, zu erzeu-
gen.

214 Wirerstellen Grafiken fiir das Strichmédnnchenspiel



Herrn Strichmann zeichnen

Um das erste Strichmannchen-Bild zu zeichnen,
klickst Du auf das Pinsel-Werkzeug im GIMP-
Werkzeugkasten. AnschliefSend wahlst Du in der
Palette darunter die Pinsel-Palette (sie klappt sich
wie auf dem Bild rechts zur Seite auf). Aus der
Pinsel-Palette wahlst Du einen Pinsel aus, der wie
ein kleiner Punkt aussieht.

Wir werden drei unterschiedliche Bilder (auch
Frames genannt) von unserer Strichmannchenfi-
gur malen, um sie beim Laufen und Springen nach
rechts zu zeichnen. Diese Frames werden wir
benutzen, um Herrn Strichmann zu animieren,
wie wir es schon in Kapitel 13 getan haben.

Wenn Du diese Bilder stark vergrofSerst, konn-
ten sie in etwa so aussehen:

Deine Bilder miissen zwar nicht genauso aussehen, sie sollten aber ein Strich-
minnchen in drei unterschiedlichen Positionen der Bewegung zeigen. Denke

| Modus:| Normal

IDecld:rah

daran, dass jedes dieser Bilder 27 Pixel hoch und 30 Pixel breit ist.

Herr Strichmann rennt nach rechts

Als Erstes zeichnen wir eine Sequenz von Frames von Herrn Strichmann, wie er

nach rechts rennt. Das erste Bild erzeugst Du folgendermafen:

1. Zeichne das erste Bild (das linke Bild in der vorigen Illustration).

Gehe auf Datei P> Exportieren ...

3. Im Dialogfenster gibst Du als Dateinamen Figur-R1.gif ein. Klicke dann auf
den kleinen Button mit dem +-Zeichen, neben dem Dateityp: Nach Endung

steht.

4. In der Liste, die dann aufklappt, wahlst Du GIF-Bild aus.

5. Speichere die Datei im Strichmdnnchen-Ordner, den Du vorher erzeugt hast.

Erzeugen der Spielelemente

215



Fuhre die gleichen Schritte durch, um ein neues
27x30 Pixel grofSes Bild anzulegen, und zeichne den
nachsten Herrn Strichmann. Speichere dieses Bild
als Figur-R2.gif. Wiederhole diesen ganzen Ablauf
bis zum letzten Bild, das Du als Figur-R3.gif spei-
cherst.

Herr Strichmann rennt nach links

Um das Strichmannchen auch nach links laufen zu lassen, brauchen wir es nicht
erneut zu zeichnen. Stattdessen spiegeln wir mit GIMP unsere Frames von Herrn
Strichmann, der nach rechts liuft.

In GIMP 6ffnest Du die Bilder nacheinander und wihlst unter Werkzeuge P
Transformationen P Spiegeln. Wenn Du danach auf das Bild klickst, solltest Du
sehen, dass es gespiegelt wird. Speichere diese Bilder als Figur-1.1.gif, Figur-1.2.gif
und Figur-1.3.gif.

% *[Figur-Lt](importiert}-196.0 (Indizierte Farben, 1 Ebene) 27x30 .. | = | = |
Datei Bearbeiten Auswahl Ansicht Bild Ebene Farben Werkzeuge Filter
s o 130 1500 100 o 150 1300 0 1By g 020y g o 12500 0 130 036 W R

J

Jetzt haben wir sechs Bilder von Herrn Strichmann, brauchen aber noch Bilder

i

[exr || s Figur-1.gif G1.6 k8)

fiir die Ebenen und die Ausgangstiir.

216  Wirerstellen Grafiken fiir das Strichmédnnchenspiel



Ebenen zeichnen

Wir erstellen drei Ebenen in unterschiedlichen GrofSen:
100 Pixel breit und 10 Pixel hoch, 60 Pixel breit und
10 Pixel hoch sowie 30 Pixel und 10 Pixel hoch. Du
kannst diese Ebenen so zeichnen, wie Du mochtest,
musst allerdings darauf achten, dass ihre Hintergriinde
wie bei den Strichmdnnchen transparent sind.

So konnten diese drei Bilder der Ebenen vergrofsert
aussehen:

Genau wie die Bilder der Strichmannchen speicherst Du die Ebenen im Strich-
mdannchen-Ordner. Nenne die kleinste Ebene Ebenel.gif, die mittlere Ebene2.gif
und die grofSte Ebene3.gif.

Die Tiir zeichnen

Die GrofSe der Tur sollte der GrofSe von Herrn Strichmann entsprechen (27 Pixel
breit und 30 Pixel hoch). Wir benotigen zwei Bilder: eines mit der geschlossenen
Tiir und das andere mit der offenen Tiir. Die Turen (wieder vergrofiert) konnten
so aussehen:

Um diese Tiiren zu erstellen, machst Du Folgendes:

1. Klicke in die Box mit der Vordergrundfarbe (ganz unten im GIMP-Werk-
zeugkasten), um das Fenster Vordergrundfarbe dndern zu bekommen.
Wihle darin die gewtinschte Farbe fiir Deine Tur. Im Beispiel rechts wurde
Gelb gewihlt.

2. Wihle das Werkzeug Fiillen (das ist der Farbeimer im Werkzeugkasten), und
fille das Fenster mit der von Dir gewihlten Farbe.

Erzeugen der Spielelemente 217



218

(8]

Andere die Vordergrundfarbe in Schwarz.

4. Wiahle dann entweder das Stift- oder das Pin-
sel-Werkzeug (rechts neben dem Fiillen-Werk-
zeug), und male den schwarzen Umriss der Tiir
und den Turknauf.

5. Speichere die Bilder im Strichmdnnchen-Ord-

ner, und nenne sie Tzir1.gif und Tiir2.gif.

i

=

QR BNABX N,

hd
+

Den Hintergrund zeichnen

Das letzte Bild, das wir noch brauchen, ist der Hin-
tergrund. Dieses Bild machen wir 100 Pixel breit und
100 Pixel hoch. Es benotigt keinen transparenten
Hintergrund, da wir es mit einer einzigen Farbe aus-

QP >0

& RS PP

RPMND-
BNHeOL

filllen, die gewissermaflen die Hintergrund-Tapete

]

fiir alle anderen Elemente unseres Spiels darstellt.

Um den Hintergrund zu erstellen, gehst Du auf
Datei » Neu... und gibst als Bildgrofle 100 Pixel
Breite und 100 Pixel Hohe ein. Suche Dir fur die Tapete des Bosewichts eine aus-
reichend iible Farbe aus. Ich habe mich fiir ein dunkles Rosa entschieden.

Du kannst Deine Tapete noch mit Blumenstreifen oder Sternen ausschmii-
cken — was immer Du fiir dieses Spiel fiir passend haltst. Wenn Du beispielsweise
Sterne auf Deiner Tapete haben mochtest, wihlst Du eine andere Farbe aus,

m

e |
Q|
®
&3
V4
®

EROBH PO
NI LR

LN
£
&
&
s
&
L4

B

ll

er_] ~Hrmergunagtoss o

Wir erstellen Grafiken fiir das Strichmannchenspiel



nimmst das Stift-Werkzeug und zeichnest damit Deinen ersten Stern. Mit einem
der Auswahl-Werkzeuge (zum Beispiel der Rechteck-Auswahl) ziehst Du einen
Kasten um den Stern auf, kopierst ihn und fugst ihn an einer beliebigen Stelle auf
dem Bild ein (gehe dazu auf Bearbeiten P> Kopieren und dann auf Bearbeiten »
Einfiigen). Es sollte Dir moglich sein, das eingefiigte Bild auf dem Monitor zu
bewegen, wenn Du auf es klickst. Unten auf Seite 218 siehst Du ein Beispiel mit
einigen Sternen und der aktiven Rechteckauswahl im Werkzeugkasten.

Sobald Du mit Deiner Zeichnung zufrieden bist, speicherst Du das Bild als
Hintergrund.gif im Strichmann-Ordner.

Transparenz

Mit den nun erstellten Grafiken kannst Du selbst herausfinden, warum sie (mit
Ausnahme des Hintergrunds) Transparenz benotigen. Was wirde passieren,
wenn wir Herrn Strichmann vor unserer Hintergrundtapete platzieren wurden,
ohne dass er einen transparenten Hintergrund hitte? Hier ist die Antwort:

Der weifSe Hintergrund von Herrn Strichmann tiberdeckt Teile der Hintergrund-
tapete. Wenn wir dagegen unser transparentes Bild verwenden, bekommen wir
Folgendes:

Erzeugen der Spielelemente

219



Das Strichmannchen verdeckt nur so viel Platz auf der Hintergrundtapete, wie es
selbst einnimmt. Das sieht viel professioneller aus!

In diesem Kapitel hast Du gelernt, wie man einen
grundlegenden Plan fiir ein Spiel schreibt (in die-
sem Fall fur Herr Strichmann rennt zum Aus-
gang), und herausgefunden, wo man anfangt. Da
wir die grafischen Elemente benotigen, bevor wir
das Spiel machen konnen, haben wir mit einem
Grafikprogramm die einfachen Grafiken fiir
unser Spiel erzeugt. Dabei hast Du im Verlauf
gelernt, wie man die Hintergriinde dieser Bilder
transparent macht, damit sie nicht die anderen
Bilder auf dem Monitor tiberdecken. Im nichs-
ten Kapitel werden wir einige der Klassen fur
unser Spiel erstellen.

220  Wirerstellen Grafiken fiir das Strichmédnnchenspiel



Entwicklung des
Strichmannchenspiels

Im vorigen Kapitel haben wir die Bilder fur unser Spiel Herr Strichmann rennt
zum Ausgang erzeugt. Daher konnen wir jetzt mit der Entwicklung des Codes
beginnen. Die Beschreibung des Spiels aus dem vorigen Kapitel gibt uns eine
ungefihre Vorstellung davon, was wir benotigen: ein Strichmannchen, das ren-
nen und springen kann, und Ebenen, auf die es springen kann.

Wir brauchen Code, um das Strichminnchen und seine Bewegung auf dem
Monitor darzustellen und um die Plattformen anzuzeigen. Bevor wir jedoch
anfangen, diesen Code zu schreiben, missen wir eine Leinwand erzeugen, auf der
unser Hintergrundbild angezeigt wird.

Als Erstes erzeugen wir eine Klasse namens Spiel, die die Hauptsteuerung unseres
Programms tibernimmt. Die Spiel-Klasse wird eine __init__-Funktion zur Initia-
lisierung des Spiels enthalten sowie eine Funktion Hauptschleife, die fiir die Ani-

mation sorgt.

221



222

Im ersten Teil der __init_ -Funktion legen wir den Titel des Fensters fest und
erzeugen eine Leinwand. Wie Du siehst, dhnelt dieser Code dem, den wir fiir das
Spiel Bounce! in Kapitel 14 geschrieben haben. Offne Deinen Editor, gib den fol-
genden Code ein, und speichere die Datei als Strichmdnnchenspiel.py. Achte dar-
auf, dass Du sie im gleichen Verzeichnis speicherst, das wir in Kapitel 16 angelegt
haben (namens Strichmannchen).

tkinter *
random
time
Spiel:
_init_ (self):
self.tk = Tk()
self.tk.title("Herr Strichmann rennt zum Ausgang")
self.tk.resizable(0, 0)
self.tk.wm attributes("-topmost", 1)
self.canvas = Canvas(self.tk, width=500, height=500, \
highlightthickness=0)
self.canvas.pack()
self.tk.update()
self.canvas_height = 500
self.canvas_width = 500

In der ersten Hilfte dieses Programms (sie reicht von from tkinter import * bis
self.tk.wm_attributes) erzeugen wir das tk-Objekt und setzen den Titel des Fens-
ters mit self.tk.title auf ("Herr Strichmann rennt zum Ausgang"). Wir fixieren die
Fenstergrofde (damit man sie nicht mehr verandern kann), indem wir die Funk-
tion resizable aufrufen, und lassen mit der Funktion wm_attributes das Fenster
vor allen anderen Fenstern erscheinen.

Als Nichstes erzeugen wir mit der Zeile self.canvas = Canvas die Leinwand
und rufen die Funktionen pack und update des tk-Objekts auf. Zum Schluss erzeu-
gen wir fiir unsere Spiel-Klasse die Variablen height (Hohe) und width (Breite),
um Hoéhe und Breite der Leinwand zu speichern.

Achtung!

Der Ruickwartsschragstrich(\) in der Zeile self.canvas = Canvas wird nur zur Trennung der
langen Code-Zeile verwendet. Dies ist zwar nicht unbedingt erforderlich, aber ich habe ihn
zwecks besserer Lesbarkeit eingefligt, da die vollstandige Zeile nicht auf die Seite passt.

Entwicklung des Strichménnchenspiels



Abschluss der __init__-Funktion

Gib in der Datei Strichmdinnchenspiel.py jetzt den Rest der __init__-Funktion
ein. Dieser Code wird das Hintergrundbild laden und es dann auf der Leinwand
darstellen:

self.tk.update()
self.canvas_height = 500
self.canvas width = 500
self.bg = PhotoImage(file="Hintergrund.gif")
w = self.bg.width()
h = self.bg.height()
X range(0, 5):
y range(0, 5):
self.canvas.create image(x * w, y * h, \
image=self.bg, anchor="nw')
self.sprites = []
self.rennen = True

@ 9600 oe

In © erzeugen wir die Variable bg, die ein PhotoImage-Objekt enthilt — die Hinter-
grund-Bilddatei Hintergrund.gif, die wir in Kapitel 16 erzeugt haben. Als Nachs-
tes beginnen wir in ® mit dem Speichern der Breite und Hohe des Bildes in den
Variablen w und h. Die PhotoImage-Klassen-Funktionen width und height geben
nach dem Laden die GrofSe des Bildes zuriick.
Danach kommen zwei Schleifen innerhalb die-

ser Funktion. Was tun sie? Stell Dir vor, Du hittest
einen kleinen rechteckigen Stempel, ein Stempel-
kissen und ein grofles Stiick Papier. Wie wiirdest
Du damit das gesamte Blatt mit Farbe ausfillen? | .
Du konntest entweder einfach so lange wild N
(zufallsmifSig) herumstempeln, bis das ganze Blatt
ausgefullt ist. Das sihe dann ziemlich chaotisch
aus und wiirde auch eine ganze Weile dauern, aber
am Ende hittest Du das Blatt ausgefiillt. Oder Du
bestempelst in einer Spalte das Blatt von oben
nach unten, gehst wieder nach oben und stempelst

die nachste Spalte nach unten, wie rechts zu sehen ist.

Unser Stempel wird das Hintergrundbild sein, das wir im vorigen Kapitel
erstellt haben. Wir wissen, dass die Leinwand 500 Pixel breit und 500 Pixel hoch
ist und dass wir unser Hintergrundbild als Quadrat mit 100 Pixeln Kantenlange
angelegt haben. Daraus folgt, dass wir fiinf Spalten zur Seite und funf Spalten
nach unten brauchen, um das Fenster mit Bildern zu fillen. Mit der Schleife in ©®
berechnen wir die Anzahl der Spalten zur Seite und mit der Schleife in @ die
Anzahl der Reihen nach unten.

Den Fenstertitel bestimmen und die Leinwand erzeugen

223



224

In © multiplizieren wir die erste Schleifen-Variable x mit der Breite des Bildes
(x * w) und berechnen damit, wie weit wir seitlich zeichnen. Anschlieffend multi-
plizieren wir die zweite Schleifen-Variable y mit der Hohe des Bildes (x * h), um zu
berechnen, wie weit wir nach unten zeichnen. Wir verwenden dann die Funktion
create_image des Objekts aus canvas (self.canvas.create image), um das Bild mit
diesen Koordinaten auf dem Monitor zu zeichnen.

In @ und der folgenden Zeile erzeugen wir die beiden Variablen sprites, die
eine bis jetzt leere Liste beinhaltet, und rennen, die den booleschen Wert True ent-
hilt. Diese Variablen brauchen wir spater noch.

Erzeugen der Hauptschleifen-Funktion

Wir werden die Funktion Hauptschleife in der Spiel-Klasse zum Animieren unse-
res Spiels verwenden. Diese Funktion hat viel Ahnlichkeit mit der Hauptschleife
(oder Animationsschleife), die wir fir das Spiel Bounce! in Kapitel 14 erzeugt
haben. Hier ist sie:

for x in range(0, 5):
for y in range(0, 5):
self.canvas.create image(x * w, y * h, \
image=self.bg, anchor='nw')
self.sprites = []
self.rennen = True

Hauptschleife(self):
1:
self.rennen == True:
sprite self.sprites:

sprite.move()
self.tk.update_idletasks()
self.tk.update()
time.sleep(0.01)

9000 0Q

In @ erzeugen wir eine while-Schleife, die so lange
lauft, bis das Spiel-Fenster geschlossen wird. Als
Nichstes priifen wir in @, ob die Variable wahr
(True) ist. Falls ja, schleifen wir alle Sprites in der
Liste der sprites (self.sprites) in ® durch, indem
wir fur jedes Sprite in @ die Funktion move aufrufen.

(Naturlich miissen wir zunidchst Sprites erstellen;

daher macht dieser Code noch nichts, wenn Du das Programm jetzt laufen lisst.)
Die letzten drei Zeilen der Funktion, die in © beginnen, zwingen das tk-

Objekt dazu, das Monitorbild neu aufzubauen und einen Sekundenbruchteil lang

mit sleep zu pausieren, wie wir das schon beim Spiel Bounce! in Kapitel 14 getan

haben.

Entwicklung des Strichménnchenspiels



Damit Du den Code jetzt durchlaufen lassen kannst, fugst Du die folgenden
beiden Zeilen hinzu (beachte, dass diese beiden Zeilen keine Einriikkung benoti-
gen) und speicherst die Datei.

s = Spiel()
s.Hauptschleife()

Achtung!

Achte darauf, dass Du diesen Code ganz unten in Deine Spiel-Datei schreibst. Sorge auf3er-
dem dafir, dass Deine Bilder im selben Ordner wie die Python-Datei liegen. Falls Du den
Ordner Strichmdnnchen in Kapitel 16 angelegt und dort alle Deine Bilder gespeichert hast,
sollte die Python-Datei fiir dieses Spiel ebenfalls dort sein.

Dieser Code erzeugt ein Objekt der Spiel-Klasse und speichert sie als Variable s.
Anschlieflend rufen wir die Funktion Hauptschleife fiir das neue Objekt auf, um
das Spiel-Fenster zu zeichnen.

Sobald Du das Programm gespeichert hast, fithrst Du es in IDLE aus, indem
Du auf Run P Run Module gehst. Danach erscheint ein Fenster, das mit dem
Hintergrundbild ausgefiillt ist.

Jetzt haben wir einen hiibschen Hintergrund fiir unser Spiel sowie eine Anima-
tion-Schleife erzeugt, die uns die Sprites zeichnen wird (sobald wir sie erstellt

haben).

Den Fenstertitel bestimmen und die Leinwand erzeugen

225



226

17.3 Erstellen der Klasse Koordinaten

Jetzt erstellen wir die Klasse, in der wir die Position von etwas im Spielfenster
festlegen. Diese Klasse speichert die Koordinaten oben links (x1 und y1) und
unten rechts (x2 und y2) jeder Komponente unseres Spiels.

So wird beispielsweise die Position des Strichmannchens mit Koordinaten
bestimmt:

x1,y1
()

[
X2,Y2

Unsere neue Klasse werden wir Koordinaten nennen, und sie wird nur eine
__init__-Funktion enthalten, der wir die vier Parameter (x1, y1, x2, und y2) iiber-
geben. Hier ist der Code, den Du dafiir hinzufigen musst (lege ihn an den Anfang
der Datei Strichmdnnchenspiel.py):

class Koordinaten:
def _init_ (self, x1=0, yl=0, x2=0, y2=0):

self.xl = x1
self.yl = yl
self.x2 = x2
self.y2 = y2

Beachte, dass jeder Parameter als Objekt-Variable mit gleichem Namen (x1, y1,
x2, und y2) gespeichert wird. Wir werden bald Objekte dieser Klasse einsetzen.

17.4 ZusammenstoBe erkennen

Wir wissen jetzt, wie man die Position unserer Sprites speichert. Wir mussen aber
noch herausfinden, wie man feststellt, ob ein Sprite den anderen beriihrt hat —
wenn Herr Strichmann tiber den Bildschirm springt und dabei eine der Ebenen
beriithrt. Damit dieses Problem leichter zu l6sen ist, teilen wir es in zwei kleinere
Probleme auf: Wir detektieren (erkennen) die ZusammenstofSe in vertikaler Rich-
tung, und wir detektieren die ZusammenstofSe in horizontaler Richtung. Hinter-
her kombinieren wir diese kleineren Problemlésungen und konnen so leicht fest-
stellen, ob sich die Sprites in irgendeiner Richtung beriihren!

Entwicklung des Strichménnchenspiels



Sprites stoBen horizontal zusammen

Als Erstes erzeugen wir die Funktion innerhalb_x, um festzustellen, ob sich ein
Satz von x-Koordinaten (x1 und x2) mit einem anderen Satz von x-Koordinaten
(auch x1 und x2) iiberlappt. Dafiir gibt es mehrere Moglichkeiten. Hier ist ein ein-
faches Verfahren, das Du einfach unterhalb der Koordinaten-Klasse hinzufiigen
kannst:

class Koordinaten:
def _init_ (self, x1=0, yl1=0, x2=0, y2=0):

self.xl = x1
self.yl =yl
self.x2 = x2
self.y2 = y2

def innerhalb x(col, co02):

if col.xl > co2.x1 and col.xl < co2.x2:
return True

elif col.x2 > co2.x1 and col.x2 < co2.x2:
return True

elif co2.x1 > col.x1l and co2.x1 < col.x2:
return True

elif co2.x2 > col.x1l and co2.x2 < col.xl:
return True

else:
return False

@0 0 60000 e

Die Funktion innerhalb_x nimmt die beiden Parameter col und co2 auf, die beide
Objekte der Klasse Koordinaten sind. In @ prufen wir, ob die dufSerste linke Posi-
tion des ersten Koordinaten-Objekts (col.x1) zwischen der aufSersten linken Posi-
tion (co2. x1) und der dufSersten rechten Position (co2. x2) des zweiten Koordina-
ten-Objekts liegt. Wenn dem so ist, geben wir in @ True zurick.

Betrachten wir jetzt zwei Li-
nien mit tiberlappenden x-Koordi-
naten, um zu verstehen, wie das
Ganze funktioniert. Beide Linien

fangen bei x1 an und enden bei x2.

Die erste Linie in diesem Diagramm

X150 x2=100 (col) beginnt an der Pixel-Position 50
- (x1) und endet an Position 100 (x2).
x1=40 x2=150 Die zweite Linie (co2) startet an Posi-

tion 40 und endet bei 150. Weil in die-
sem Fall die x1-Position der ersten Linie zwischen der x1- und x2-Position der
zweiten Linie liegt, wire die if-Anweisung in dieser Funktion bei diesen beiden
Koordinaten-Siatzen wahr (True).

ZusammenstoBe erkennen

227



228

Mit dem elif in © priifen wir, ob die dufSerste rechte Position der ersten Linie
(col.x2) zwischen der dufSersten linken Position (co2.x1) und der dufSersten rech-
ten Position (co2.x2) der zweiten Linie liegt. Falls sie das tut, geben wir in @ True
(wahr) zuriick. Die beiden elif-Anweisungen in ® und ® machen fast das Glei-
che: Sie vergleichen die aufSersten linken und rechten Positionen der zweiten Linie
(co2) mit denen der ersten Linie (col).

Falls keine der if-Anweisungen passt, kommen wir in @ zu else und geben in
® False (falsch) zurick. Dies bedeutet im Prinzip: »Nein, die beiden Koordina-
ten-Objekte Giberlappen sich nicht horizontal. «

Schau Dir noch einmal das Diagramm an, das die erste und zweite Linie zeigt,
wenn Du ein Beispiel fiir die Arbeit dieser Funktion sehen willst: Die x1- und x2-
Positionen des ersten Koordinaten-Objekts sind 40 und 100, die x1- und x2-Posi-
tionen des zweiten Koordinaten-Objekts sind 50 und 150. Hier siehst Du, was
passiert, wenn wir die Funktion innerhalb_x aufrufen, die wir geschrieben haben:

>>> ¢l = Koordinaten(40, 40, 100, 100)
>>> c2 = Koordinaten(50, 50, 150, 150)
>>> print(innerhalb x(cl, c2))

True

Die Funktion gibt True zuriick. Was die Fahigkeit betrifft zu erkennen, ob ein
Sprite gegen einen anderen gestofSen ist, ist dies der erste Schritt. Sobald wir eine
Klasse fiir Herrn Strichmann und die Ebenen erzeugt haben, konnen wir sagen,
ob sich deren x-Koordinaten tiberlappt haben.

Es ist kein besonders guter Programmierstil, jede Menge if-oder elif-Anwei-
sungen zu haben, die den gleichen Wert zuriickgeben. Dieses Problem konnen wir
l6sen, indem wir die innerhalb_x-Funktion kiirzen. Dazu setzen wir jede ihrer
Bedingungen in Klammern und trennen sie durch das Schliisselwort or. Falls Du
also eine etwas schickere Funktion mit ein paar weniger Code-Zeilen haben
mochtest, kannst Du die Funktion folgendermafSen dndern:

innerhalb_x(col, co2):

(col.x1 > co2.x1 col.x1l < co2.x2) \
(col.x2 > co2.x1 col.x2 < co2.x2) \
(co2.x1 > col.x1 co2.x1 < col.x2) \
(co2.x2 > col.xl c02.x2 < col.x1):
True
False

Wie weiter oben schon erkldart wurde, benutzen wir einen Riickwirtsschrigstrich
(\), damit sich unsere if-Anweisung tiber mehrere Zeilen erstrecken darf. Ansons-
ten misste sie in einer sehr, sehr langen Zeile stehen.

Entwicklung des Strichménnchenspiels



Sprites stoBen vertikal zusammen

Wir mussen auch noch wissen, ob die Sprites in
vertikaler Richtung zusammenstoflen. Die Funk-
tion innerhalb_y ist der Funktion innerhalb x
sehr dhnlich. Um sie zu erzeugen, priifen wir, ob
sich die yl-Position der ersten Koordinate mit
den y1- und y2-Positionen der zweiten uberlappt
und umgekehrt. Dazu musst Du noch folgende
Funktion hinzufiigen (schreibe sie unter die
innerhalb_x-Funktion). Und dieses Mal schrei-

ben wir gleich die kiirzere Version des Codes

(anstelle der vielen if-Anweisungen):

def innerhalb_y(col, co2):
if (col.yl > co2.yl and col.yl < co2.y2) \
or (col.y2 > co2.yl and col.y2 < co2.y2) \
or (co2.yl > col.yl and co2.yl < col.y2) \
or (co2.y2 > col.yl and co2.y2 < col.yl):
return True
else:
return False

Alles zusammenfiigen:
Unserer endgiiltiger Code zur Erkennung von Zusammenstéfen

Sobald wir festgestellt haben, ob sich ein Satz unserer x-Koordinaten mit einem
anderen tiberlappt, und das Gleiche fiir die y-Koordinaten getan haben, konnen
wir Funktionen schreiben, mit denen wir feststellen, ob ein Sprite den anderen
beriihrt hat, und wenn ja, auf welcher Seite. Das machen wir mit den Funktionen
angestoBen_links, angestoBen rechts, angestoBen oben und angestoBen_unten.

Die Funktion »angestof3en_links«

Hier ist der Code fiir die Funktion angestoBen 1links, den Du unter die beiden
innerhalb-Funktionen schreibst, die wir gerade erzeugt haben:

© def angestoBen Tinks(col, co2):

(2] if innerhalb_y(col, co02):

(3] if col.xl <= co2.x2 and col.xl >= co2.x1l:
(4] return True

e return False

Diese Funktion sagt uns, ob die linke Seite (der x1-Wert) des ersten Koordinaten-
Objekts ein anderes Koordinaten-Objekt beriihrt hat.

ZusammenstoRe erkennen

229



230

Die Funktion nimmt zwei Parameter auf: col (das erste Koordinaten-Objekt)
und co2 (das zweite Koordinaten-Objekt). Wie Du in @ sehen kannst, priifen wir,
ob sich die beiden Koordinaten-Objekte vertikal tiberlappen, indem wir in @ die
innerhalb_y-Funktion einsetzen. SchliefSlich ist es sinnlos zu priifen, ob Herr
Strichmann eine Ebene beriihrt hat, wenn er weit tiber ihr schwebt:

x1,y1

X2,y2

Nicht innerhalb von 'y
x1,y1
| Ebene |
X2,y2

In © prifen wir, ob der Wert der dufSersten linken Posi-

tion des ersten Koordinaten-Objekts (co.x1) die x2-Posi-

tion des zweiten Koordinaten-Objekts (co2.x2) beriihrt /@
hat — das heifSt, ob sie weniger oder gleich der x2-Posi- 7/
tion ist. Wir prifen auch, ob sie nicht schon tiber die x1-

Position herausragt. Falls sie die Seite beriihrt hat, geben

wir in @ True (wahr) zurtuck. Falls keine der if-Anwei-

sungen zutrifft, geben wir in © False (falsch) zurtick.

Die Funktion »angestof3en_rechts«

Die Funktion angestoBen_rechts sieht fast genauso aus wie angestoBen_1inks:

angestoBen_links(col, co02):

(1] innerhalb_y(col, co2):

(2] col.x2 <= co2.x1 col.x2 >= co2.x2:
(3] True

(4] False

Wie schon bei der Funktion angestoBen_Tinks priifen wir in @ mit der Funktion
innerhalb_y, ob sich die y-Koordinaten tiberlappen. Anschlieflend tiberpriifen wir
in ®, ob der x2-Wert zwischen den x1- und x2-Positionen des zweiten Koordina-
ten-Objekts liegt, und geben (falls ja) in ® True zuriick. Ansonsten geben wir in @
False zuriick.

Entwicklung des Strichménnchenspiels



Die Funktion »angestof3en_oben«

Die Funktion angestoBen_oben dhnelt stark den beiden Funktionen, die wir gerade
hinzugefiigt haben.

angestoBen_oben(col, co2):

(1] innerhalb_x(col, co2):
(2] col.yl <= co2.y2 col.yl >= co2yl:
True
False

Diesmal besteht der Unterschied darin, dass wir mit der innerhalb_x-Funktion in
O priifen, ob sich die Koordinaten horizontal tiberlappen. Als Nichstes schauen
wir in @, ob die oberste Position der ersten Koordinate (col.yl) sich mit der y2-
Position der zweiten, nicht aber mit deren y1-Position uiberlappt. Falls sie es tut,
geben wir True zuriick (was bedeutet, dass die erste Koordinate die zweite beriihrt

hat).

Die Funktion »angestof3en_unten«

Dir war natirlich schon klar, dass eine dieser vier Funktionen ein wenig anders
sein wiirde, und sie ist es auch. Hier ist nun die Funktion angestoBen_unten:

angestoBen_unten(y, col, co2):
innerhalb_x(col, co2):
y_calc = col.y2 +y
y_calc >= co2.yl y _calc <= co2.y2:
True

90O®®Q

False

Diese Funktion nimmt einen weiteren Parameter y auf, einen Wert, den wir der y-
Position der ersten Koordinate hinzufiigen. In @ schauen wir, ob sich die Koordi-
naten horizontal tiberlappen (wie wir es schon bei angestoBen_oben getan haben).
Als Nichstes fiigen wir den Wert des y-Parameters zu der y2-Position der Koordi-
nate hinzu und speichern das Ergebnis in der Variable y calc in @. Falls in © der
neu berechnete Wert zwischen den yl- und y2-Werten der zweiten Koordinate
liegt, geben wir in @ True zuriick, da die Unterseite der Koordinate col die Ober-
seite der Koordinate co2 berithrt hat. Falls jedoch keine der if-Anweisungen
zutrifft, geben wir in © False zuriick.

Da Herr Strichmann von einer Ebene fallen konnte, benotigen wir einen wei-
teren y-Parameter. Im Gegensatz zu den anderen angestoBen-Funktionen miissen
wir testen konnen, ob er auf den Boden prallen wiirde, statt ob er es bereits getan
hat. Wenn er von einer Ebene herunterlaufen und weiter in der Luft schweben
wirde, wire unser Spiel ziemlich unrealistisch. Wahrend er also lduft, priifen wir
daher, ob er mit etwas links oder rechts zusammengestofSen ist. Wenn wir dage-

ZusammenstoBe erkennen

231



232

gen unter ihm priifen, schauen wir, ob er an die Ebene stofSt; falls nicht, muss er
herunterfallen!

Die Elternklasse fiir unsere Spiel-Elemente werden wir Sprite nennen. Diese
Klasse wird zwei Funktionen bereitstellen: move, um den Sprite zu bewegen, und
Koordinaten, um die aktuelle Position des Sprites auf dem Monitor zuriickzuge-
ben. Hier ist der Code fiir die Sprite-Klasse:

Sprite:
__init_ (self, spiel):
self.spiel = spiel
self.spielende = False
self.koordinaten = None
move(self):

koords (self):
self.koordinaten

©O000000e

Die in @ definierte __init__-Funktion der Sprite-Klasse nimmt einen einzigen
Parameter auf: spiel. Bei diesem Parameter handelt es sich um das Objekt spiel.
Dieses Objekt brauchen wir, damit jeder Sprite, den wir erzeugen, auf die Liste
der anderen Sprites im Spiel zugreifen kann. In @ speichern wir den Spiel-Para-
meter als Objekt-Variable.

In © speichern wir die Objekt-Variable spielende, die wir verwenden, um das
Ende des Spiels anzuzeigen (in dem Moment, wenn es auf False gesetzt wird). Die
letzte Objekt-Variable, koordinaten in @, wird auf Nichts (None) gesetzt.

Die in ® definierte Funktion move macht in dieser Elternklasse nichts, sodass
wir das Schliisselwort pass in @ in diesem Funktionskorper benutzen. Die Funk-
tion koords in @ gibt einfach in ® die Objekt-Variable koordinaten zuriick.

Unsere Sprite-Klasse hat also eine Funktion
move, die nichts macht, und eine Funktion koords,
die keine Koordinaten zuriickgibt. Das klingt
nicht gerade sinnvoll, oder? Wir wissen jedoch,
dass jede Klasse, die Sprite als Elternklasse hat,
immer die Funktionen move und koords enthalt.
Wenn wir also in der Hauptschleife des Spiels
durch die Liste der Sprites laufen, konnen wir die
Funktion move aufrufen, ohne Fehlermeldungen
zu produzieren. Warum? Weil jeder Sprite diese
Funktion enthalt.

Entwicklung des Strichménnchenspiels



Achtung!

Klassen mit Funktionen, die nicht sehr viel tun, kommen beim Programmieren haufig vor.
Sie sind in gewisser Hinsicht eine Art Absprache oder Vertrag, durch den sichergestellt ist,
dass alle Kinder einer Klasse die gleiche Funktionalitat aufweisen, auch wenn in einigen
Fallen die Funktionen der Kinderklassen nichts machen.

Jetzt kommen wir zu den Ebenen. Wir werden die Klasse fir unser Ebenenobjekt
EbenenSprite nennen, und sie wird eine Kinderklasse von Sprite sein. Die
__init__-Funktion dieser Klasse wird einen Spiel-Parameter (genau wie die
Elternklasse Sprite), ein Bild, x- und y-Positionen sowie die Breite und Hohe des
Bildes aufnehmen. Hier ist der Code fiir die Klasse EbenenSprite:

EbenenSprite(Sprite):
__init_ (self, spiel, photo_image, x, y, width, height):
Sprite.__init_ (self, spiel)
self.photo_image = photo_image
self.image = spiel.canvas.create _image(x, y, \
image=self.photo_image, anchor='nw')
self.koordinaten = Koordinaten(x, y, x + width, y + height)

@ 0000e

Wenn wir in @ die Klasse EbenenSprite definieren, geben wir ihr einen einzigen
Parameter: den Namen ihrer Elternklasse (Sprite). Die _init__-Funktion in @ hat
sieben Parameter: self, spiel, photo_image, x, y, width (Breite) und height (Hohe).

In ©® rufen wir die __init_-Funktion der Elternklasse
(Sprite) auf und benutzen self und spiel als Parameter-
Werte, weil die __init_ -Funktion der Sprite-Klasse aufler
dem Schliisselwort self nur einen Parameter aufnimmt:
spiel.

Wenn wir zu diesem Zeitpunkt ein EbenenSprite-Objekt
erzeugen wurden, hitte es alle Objekt-Variablen seiner
Elternklasse (spiel, spielende und koordinaten), weil wir die
__init__-Funktion in Sprite aufgerufen haben.

In @ speichern wir den Parameter photo_image als Objekt-
Variable, und in © benutzen wir die Variable canvas des

Objekts spiel, um das Bild mit create_image zu zeichnen.
Zum Schluss erstellen wir ein Koordinaten-Objekt mit den Parametern x und y
als seine beiden ersten Argumente. AnschliefSend fiigen wir noch die Parameter
width und height fiir die beiden Argumente in ® hinzu.
Obwohl die Variable koordinaten in der Elternklasse Sprite auf None gesetzt
ist, haben wir sie in unserer Kinderklasse EbenenSprite in ein echtes Koordinaten-

Die Ebenen hinzufiigen

233



234

Objekt umgewandelt, da sie den tatsachlichen Aufenthaltsort des Ebenen-Bildes
auf dem Monitor enthilt.

Ein Ebenen-Objekt hinzufiigen

Fiigen wir dem Spiel jetzt eine Ebene hinzu, um zu sehen, wie es aussieht. Andere
dazu die letzten beiden Zeilen der Spieldatei (Strichminnchenspiel.py) wie folgt:

O s = Spiel()

® Ebenel = EbenenSprite(s, PhotoImage(file="Ebenel.gif"), \
0, 480, 100, 10)

©® s.sprites.append(ebenel)

® s.Hauptschleife()

Wie Du siehst, wurden die Zeilen @ und @ nicht veridndert, aber in ® haben wir
ein Objekt in der Klasse EbenenSprite erzeugt und ihm die Variable unseres Spiels
(s) zusammen mit dem PhotoImage-Objekt (das unser erstes Ebenen-Bild
Ebenel.gif verwendet) tibergeben. Wir tibergeben ihm auch die Position, auf der
wir die Ebene zeichnen wollen (0 Pixel zur Seite und 480 Pixel nach unten, also
fast am Boden der Leinwand), sowie die Hohe und Breite unseres Bilds (100 Pixel
zur Seite und 10 Pixel hoch). In © fiigen wir diesen Sprite der Liste von Sprites in
unserem Objekt spiel hinzu.

Wenn Du das Spiel jetzt laufen lasst, solltest Du eine Ebene sehen, die unten
links im Fenster gezeichnet wird:

Entwicklung des Strichménnchenspiels



Einen ganzen Haufen Ebenen hinzufiigen

Jetzt fiigen wir einen ganzen Haufen von Ebenen hinzu. Jede Ebene wird unter-

schiedliche x- und y-Positionen haben, sodass sie iiber das ganze Fenster verteilt

werden. Hier ist der Code dazu:

s = Spiel()

Ebenel = EbenenSprite(s, PhotoImage(file="Ebenel.gif"), \
0, 480, 100, 10)

Ebene2 = EbenenSprite(s, PhotoImage(file="Ebenel.gif"), \
150, 440, 100, 10)

Ebene3 = EbenenSprite(s, PhotoImage(file="Ebenel.gif"), \
300, 400, 100, 10)

Ebene4 = EbenenSprite(s, PhotoImage(file="Ebenel.gif"), \
300, 160, 100, 10)

Ebene5
175,
Ebeneb

EbenenSprite(s, PhotoImage(file="Ebene2.gif"), \
350, 66, 10)
EbenenSprite(s, PhotoImage(file="Ebene2.gif"), \

50, 300, 66, 10)

Ebene7
170,
Ebene8

EbenenSprite(s, PhotoImage(file="Ebene2.gif"), \
120, 66, 10)
EbenenSprite(s, PhotoImage(file="Ebene2.gif"), \

45, 60, 66, 10)
Ebene9 = EbenenSprite(s, Photolmage(file="Ebene3.gif"), \
170, 250, 32, 10)

Ebenel0 =

EbenenSprite(s, PhotoImage(file="Ebene3.gif"), \

230, 200, 32, 10)

.sprites

nmv unu unu unu unu unu unu nu nu unu un

.sprites.
.sprites.
.sprites.
.sprites.
.sprites.
.append(Ebene6)
.sprites.
.sprites.
.sprites.
.sprites.
.Hauptschleife()

append(Ebenel)
append(Ebene?2)
append (Ebene3)
append(Ebene4)
append (Ebeneb)

append (Ebene7)
append (Ebene8)
append (Ebene9)
append (Ebenel0)

Wir erzeugen jede Menge EbenenSprite-Objekte und speichern sie als Variablen

Ebenel, Ebene2,

Ebene3 usw. bis zu Ebenel0. AnschliefSend fiigen wir jede Ebene der

Variable Sprites hinzu, die wir in unserer Spiel-Klasse erzeugt haben. Wenn Du

das Spiel jetzt laufen lisst, sollte es in etwa so aussehen:

Die Ebenen hinzufiigen

235



236

Wir haben die Grundlagen fiir unser Spiel gelegt! Jetzt konnen wir unsere Haupt-
figur, Herrn Strichmann, hinzufiigen.

17.7 Was Du gelernt hast

In diesem Kapitel hast Du die Spiel-Klasse erzeugt und wie eine Art Tapete den
Hintergrund auf den Monitor gezeichnet. Du hast gelernt, wie man mit den
Funktionen innerhalb_x und innerhalb_y bestimmt, ob sich eine horizontale oder
vertikale Position innerhalb zweier anderer horizontaler oder vertikaler Positio-
nen befindet. Diese Funktionen hast Du anschlieflend verwendet, um neue Funk-
tionen zu erstellen, mit denen man bestimmt, ob ein Koordinaten-Objekt mit
einem anderen zusammengestofSen ist. Diese Funktionen werden wir im niachsten
Kapitel verwenden, wenn wir Herrn Strichmann animieren und feststellen miis-
sen, ob er an eine Ebene gestoflen ist, wihrend er sich iiber die Leinwand bewegt
hat.

Wir haben ebenso die Elternklasse Sprite und deren erste Kinderklasse Ebe-
nenSprite erzeugt, mit der wir die Ebenen auf die Leinwand gezeichnet haben.

Entwicklung des Strichménnchenspiels



17.8 Programmier-Puzzles

In den folgenden Programmier-Puzzles kannst Du ein wenig mit dem Spielhinter-
grundbild experimentieren. Deine Losung kannst Du unter www.dpunkt.de/
python tiberpriifen.

#1: Schachbrett

Versuche, die Spiel-Klasse so zu dndern, dass das Hintergrundbild wie ein
Schachbrett gezeichnet wird:

#2: Zwei-Bilder-Schachbrett

Wenn Du herausgefunden hast, wie man den Schachbrett-Effekt erzeugt, versu-
che es mit zwei abwechselnden Bildern. Erstelle ein zweites Hintergrundbild (mit
Deinem Grafikprogramm), und dndere die Spiel-Klasse so, dass sie ein Schach-
brettmuster aus zwei sich abwechselnden Bildern (statt eines Bildes und dem lee-
ren Hintergrund) darstellt.

Programmier-Puzzles

237



238

#3: Regal und Lampe

Damit das Bild hiibscher aussieht, kannst Du andere Hintergrundbilder erstellen.
Erzeuge dazu eine Kopie des Hintergrundbildes, und zeichne darauf ein einfaches
Regal. Oder Du konntest einen Tisch mit einer Lampe oder ein Fenster dazu
zeichnen. Verteile die Bilder durch Andern der Spiel-Klasse auf dem Bildschirm,
sodass sie drei oder vier verschiedene Hintergrundbilder 1adt und anzeigt.

Entwicklung des Strichménnchenspiels



Herrn Strichmann erschaffen

In diesem Kapitel werden wir die Hauptfigur unseres Spiels Herr Strichmann
rennt zum Ausgang erschaffen. Da Herr Strichmann nach links und rechts laufen
und springen muss, anhalten soll, wenn er gegen eine Ebene lauft, und hinfallen
soll, wenn er tiber die Kante einer Ebene liuft, wird dies der komplizierteste
Code, den wir bis jetzt geschrieben haben. Um das Strichmannchen nach links
und rechts laufen zu lassen, werden wir mit Ereignisbindungen an die linke und
rechte Pfeiltaste arbeiten, und wir werden es durch Druck auf die Leertaste sprin-
gen lassen.

Die _init_ -Funktion unserer neuen Strichminnchen-Klasse hat viel Ahnlich-
keit mit den anderen Klassen, die wir bis jetzt erstellt haben. Wir geben unserer
neuen Klasse zunichst einen Namen: StrichFigurSprite. Wie schon bei den vor-
herigen Klassen hat auch diese eine Elternklasse: Sprite.

StrichFigurSprite:
__init_ (self, spiel):
Sprite. init_ (self, spiel)
Dieser Code sieht aus wie der Code, den wir in der EbenenSprite-Klasse in Kapitel
16 geschrieben haben, nur dass wir keine zusitzlichen Parameter verwenden
(aufler self und spiel). Dies liegt daran, dass wir im Gegensatz zur EbenenSprite-
Klasse nur ein einziges StrichFigurSprite-Objekt im Spiel einsetzen.

239



240

Die Strichmdnnchen-Bilder laden

Da wir eine Menge Ebenen-Objekte auf dem Moni-
tor haben, die jeweils unterschiedlich grofse Bilder
verwenden konnen, tibergeben wir das Ebenen-Bild
als Parameter der _ init_ -Funktion der Ebenen-
Sprites. (Das ist, als ob man sagen wiirde: »Ebe-
nen-Sprite, nimm dieses Bild, um Dich selbst auf
dem Monitor zu zeichnen.«) Da es aber nur ein ein-
ziges Strichminnchen auf dem Monitor gibt, ist es

nicht sinnvoll, das Bild aufSerhalb des Sprites zu
laden und es dann als Parameter zu tibergeben. Die Klasse StrichFigurSprite wird
daher ihre eigenen Bilder laden.

Die nidchsten paar Zeilen der __init_-Funktion tun genau das: Sie laden die
drei linken Bilder (die wir verwenden werden, um das Strichmannchen nach links
laufen zu lassen) und die drei rechten Bilder (um das Strichmannchen nach rechts
laufend zu animieren). Wir miissen die Bilder schon an dieser Stelle laden, weil sie
nicht erst immer dann geladen werden sollen, wenn das Strichmannchen auf dem
Monitor dargestellt werden soll (dies wiirde zu lange dauern und das Spiel sehr
verlangsamen).

class StrichFigurSprite:
def _init_ (self, spiel):
Sprite. _init_ (self, spiel)

o self.bilder Tinks = [
PhotoImage(file="Figur-L1.gif"),
PhotoImage(file="Figur-L2.gif"),
PhotoImage(file="Figur-L3.gif")

1
e self.bilder rechts = [
PhotoImage(ﬁ1e="F1‘gur_R1_g1-f..)’
PhotoImage(ﬁ1e="F1‘gur_R2_g1-f..)’
PhotoImage(ﬁ1e="F1‘gur_R3_g1-f..)
1
© self.bild = spiel.canvas.create_image(200, 470, \

image=self.bilder 1inks[0], anchor='nw')

Dieser Code ladt jedes der drei linken Bilder, mit denen wir das Strichmannchen
nach links laufen lassen, und die drei Bilder, mit denen wir die Animation des
Strichminnchens nach rechts vornehmen.

In @ und @ erzeugen wir die Objekt-Variablen bilder Tinks und bilder_
rechts. Beide enthalten eine Liste mit den PhotoImage-Objekten, die wir in
Kapitel 16 erzeugt haben und in denen das Strichmidnnchen nach links oder
rechts zeigt. Mit bilder Tinks[0] malen wir in © das erste Bild mit der Funktion
der Leinwand create_image an der Position (200, 470), wodurch das Strichmann-

Herrn Strichmann erschaffen



chen in der Mitte des Spielfensters und am Boden der Leinwand erscheint. Die
Funktion create_image gibt eine Zahl zurtick, die das Bild auf der Leinwand iden-
tifiziert. Wir speichern diese ID-Nummer fur spiter in der Objekt-Variablen
image.

Variablen einrichten

Im nichsten Teil der _init -Funktion werden weitere Variablen eingerichtet,
die wir spater im Code verwenden.

self.bilder rechts = [
PhotoImage(file="Figur-Rl.gif"),
PhotoImage(file="Figur-R2.gif"),
PhotoImage(file="Figur-R3.gif")

]

self.bild = spiel.canvas.create image(200, 470, \
image=self.bilder Tinks[0], anchor='nw")

self.x = -2

self.y = 0

self.aktuelles bild = 0

self.aktuelles_bild_plus = 1

self.springen_zdhler = 0

self.letzte zeit = time.time()

self.koordinaten = Koordinaten()

Q00O0B®O®e

In @ und ® speichern die Variablen x und y den Umfang der Koordinaten, den
die Strichminnchen horizontal (x1 und x2) und vertikal (y1 und y2) beim Bewegen
auf dem Monitor zurtcklegen.

Wie Du schon in Kapitel 14 gelernt hast, fligen wir zu den x- und y-Positionen
der Objekte Werte hinzu, um sie mit dem Modul tkinter iiber die Leinwand zu
bewegen. Indem wir x auf -2 und y auf 0 setzen, ziechen wir von der x-Position
spater 2 ab und fligen der vertikalen Position nichts hinzu, damit das Strichmann-
chen nach links rennt.

Achtung!

Denke daran, dass eine negative x-Zahl eine Bewegung nach links auf der Leinwand verur-
sacht und dass eine positive x-Zahl eine Bewegung nach rechts bedeutet. Eine negative y-
Zahl steht fiir eine Bewegung nach oben und eine positive y-Zahl fiir eine Bewegung nach
unten.

In ® erzeugen wir die Objekt-Variable aktuelles bild, um die Index-Position des
Bildes, wie es gerade auf dem Monitor angezeigt wird, zu speichern. Unsere Liste
von Bildern, die nach links zeigen (bilder_links), enthilt Figur-L1.gif, Figur-
L2.gif und Figur-13.gif. Diese haben die Index-Positionen 0, 1 und 2.

Das Strichmannchen initialisieren

241



242

In @ enthilt die Variable aktuelles bild plus die Zahl, die wir der in
aktuelles_bild gespeicherten Index-Position hinzuftigen, um die nichste Index-
Position zu erhalten. Wenn das Bild beispielsweise an Index-Position 0 angezeigt
wird, zdhlen wir 1 hinzu, um das nachste Bild an Index-Position 1 zu erhalten,
und zihlen wieder 1 hinzu, um das letzte Bild der Liste an Index-Position 2 zu
bekommen. (Wie man diese Variable zur Animation nutzt, wirst Du im nachsten
Kapitel sehen.)

Die Variable springen_zdhler in © ist ein Zahler, den wir verwenden, wih-
rend das Strichmannchen springt. Die Variable Tetzte zeit speichert den letzten
Zeitpunkt, an dem wir das Bild wihrend der Animation unseres Strichminn-
chens veridndert haben. Die aktuelle Zeit speichern wir mit der Funktion time aus
dem Modul time in @.

In @ setzen wir die Objekt-Variable koordinaten auf ein Objekt der Koordina-
ten-Klasse, und zwar ohne Initialisierungsparameter (x1, y1, x2 und y2 sind alle 0).
Im Gegensatz zu den Ebenen verindern sich die Koordinaten des Strichminn-
chens, sodass wir deren Werte spiter setzen.

Bindung an die Tasten

Im letzten Teil der _init_ -Funktion verbindet die Funktion bind eine Taste mit
dem Teil unseres Codes, der durchgefithrt werden soll, sobald die entsprechende
Taste gedrickt wird.

self.springen_zdhler = 0

self.letzte zeit = time.time()

self.koordinaten = Koordinaten()
game.canvas.bind_all('<KeyPress-Left>", self.nach_Tlinks)
game.canvas.bind_all('<KeyPress-Right>', self.nach_rechts)
game.canvas.bind_all('<space>', self.springen)

Wir verbinden '<KeyPress-Left>' mit der Funktion nach_Tlinks, '<KeyPress-Right>'
mit der Funktion nach_rechts und <space> mit der Funktion springen. Jetzt miis-
sen wir diese Funktionen erzeugen, damit sich das Strichmannchen bewegt.

18.2 Das Strichmdnnchen nach links und
rechts bewegen

Die Funktionen nach_links und nach_rechts sorgen
dafiir, dass das Strichmannchen nicht springt, und set-
zen den Wert der Objekt-Variablen x so, dass es sich
nach links oder rechts bewegt. (Falls unsere Figur
springt, wiirde unser Spiel es nicht ermoglichen, die
Richtung in der Luft zu dndern.)

Herrn Strichmann erschaffen



game.canvas.bind_all('<KeyPress-Left>', self.nach Tlinks)
game.canvas.bind all('<KeyPress-Right>', self.nach rechts)
game.canvas.bind all('<space>', self.springen)

(1] def nach_Tinks(self, evt):
(2] if self.y == 0:
(3] self.x = -2
(4] def nach_rechts(self, evt):
e if self.y == 0:
(6] self.x = 2

Sobald der Spieler die linke Pfeiltaste driickt, ruft Python die Funktion nach_links
auf und ubergibt ein Objekt, das als Parameter Informationen dariiber enthilt,
was der Spieler gemacht hat. So ein Objekt nennt man Ereignisobjekt, und wir
geben ihm den Parameter-Namen evt.

Achtung!

Das Ereignisobjekt ist fiir unsere Zwecke nicht wichtig, muss aber als Parameter unserer
Funktionen (in ® und @) enthalten sein, da Python es dort erwartet und ansonsten eine
Fehlermeldung ausgibt. Ein Ereignis-Objekt enthdlt normalerweise Dinge wie x- und y-
Positionen der Maus (Maus-Ereignis), Code, der fiir eine bestimmte Taste steht (Tastatur-
Ereignis), und andere Informationen. Bei diesem Spiel niitzt uns keine dieser Informatio-
nen etwas, sodass wir sie einfach ignorieren kénnen.

Um zu priifen, ob das Strichminnchen gerade springt, priifen wir in ® und © die
y-Objekt-Variable. Falls der Wert nicht 0 ist, springt das Strichmdnnchen. Wenn
in diesem Fall der Wert von y auf 0 steht, setzen wir x auf -2, um in ©® nach links
zu rennen, oder wir setzen ihn in ® auf 2, um nach rechts zu rennen. Mit den
Werten -1 oder 1 wiirde sich das Strichmannchen nicht schnell genug tber den
Monitor bewegen. (Sobald die Animation Deines Strichmannchens funktioniert,
versuche einmal diesen Wert zu andern, um den Unterschied zu sehen.)

18.3 Das Strichmdnnchen springen lassen

Die Funktion springen ist den Funktionen nach_Tinks und nach_rechts sehr dhnlich.

def nach rechts(self, evt):

if self.y == 0:
self.x = 2
def springen(self, evt):
(1] if self.y == 0:
(2] self.y = -4
(3] self.springen_zdhler = 0

Das Strichmdnnchen springen lassen

243



244

Diese Funktion nimmt den Parameter evt (das Ereig-
nis-Objekt) auf, den wir ignorieren konnen, da wir
keine weitere Informationen iiber das Ereignis beno-
tigen. Wenn diese Funktion aufgerufen wird, wissen
wir, dass die Leertaste gedriickt wurde.

Da wir mochten, dass unser Strichmiannchen nur
springt, falls es das gerade nicht tut, priifen wir in @,
ob y gleich 0 ist. Falls das Strichminnchen nicht
springt, setzen wir in @ y auf -4 (um es vertikal nach
oben zu bewegen) und setzen springen zdhler in ©

auf 0. Den springen zdhler benutzen wir, um sicher-
zustellen, dass das Strichmannchen nicht endlos springt. Stattdessen lassen wir es
eine bestimmte Anzahl Spriinge machen und lassen es dann so herunterkommen,
als ob die Schwerkraft es wieder herunterziehen wiirde. Den Code dafiir fiigen
wir im nichsten Kapitel hinzu.

Wir wollen uns zunichst einen Uberblick iiber die Definitionen der Klassen und
Funktionen verschaffen, die wir bis jetzt in unserem Spiel haben, und schauen,
wo sie sich in Deiner Datei befinden sollten.

Ganz oben in Deinem Programm sollten die import-Anweisungen stehen,
gefolgt von den Spiel- und Koordinaten-Klassen. Die Spiel-Klasse wird zur Erzeu-
gung eines Objekts verwendet, das als Hauptsteuerung Deines Spiels dient, und
die Objekte der Koordinaten-Klasse sind dazu da, die Positionen der Dinge in Dei-
nem Spiel zusammenzuhalten (wie etwa die Ebenen und Herrn Strichmann):

tkinter *
random
time

Spiel:

Koordinaten:

Als Nichstes sollten bei Dir die innerhalb-Funktionen kommen (die sagen, ob die
Koordinaten eines Sprites »innerhalb« des Bereichs eines anderen Sprites liegen).
Dann folgen die Elternklasse Sprite (die Elternklasse aller Sprites in unserem
Spiel), die Klasse EbenenSprite und der Anfang der StrichFigurSprite-Klasse. Die
Klasse EbenenSprite wurde zur Erzeugung von Ebenen-Objekten verwendet, iiber
die unser Strichminnchen springen soll, und wir haben ein Objekt der StrichFi-
gurSprite-Klasse erzeugt, das firr die Hauptfigur in unserem Spiel steht:

Herrn Strichmann erschaffen



innerhalb x(col, co2):
;ééerha1b_y(col, co2):
..éprite:

.‘ébenenSprite(Sprite):

StrichFigurSprite(Sprite):

Am Ende Deines Programms sollte der Code stehen, der alle bis jetzt erstellten
Objekte in Deinem Spiel erzeugt: das Spiel-Objekt an sich und die Ebenen. In der
letzten Zeile steht das, was wir die Hauptschleifen-Funktion (Hauptschleife) nen-
nen:

s = Spiel()
Ebenel = EbenenSprite(s, PhotoImage(file="Ebenel.gif"), \
0, 480, 100, 10)

s.sprites.append(ebenel)

s.Hauptschleife()

Falls Dein Code ein bisschen anders aussieht oder Du Schwierigkeiten hast, ihn
ans Laufen zu bringen, kannst Du zum Ende von Kapitel 19 vorblattern, wo Du
das vollstindige Listing des gesamten Spiels findest.

In diesem Kapitel haben wir mit der Arbeit an der Klasse fiir unser Strichmann-
chen begonnen. Wenn wir zu diesem Zeitpunkt ein Objekt dieser Klasse erzeugen
wiirden, wiirde es nicht viel tun, aufSer die Bilder zu laden, die es fiir die Anima-
tion des Strichmannchens bendétigt, und ein paar Objekt-Variablen fiir spiter ein-
zurichten.

Diese Klasse enthilt ein paar Funktionen zum Andern der Werte in diesen
Objekt-Variablen aufgrund von Tastatur-Ereignissen (wenn ein Spieler die linke
oder rechte Pfeiltaste oder Leertaste driickt). Im nachsten Kapitel werden wir
unser Spiel zu Ende programmieren. Wir werden die Funktionen zum Anzeigen
und Animieren des Strichminnchens in der StrichFigurSprite-Klasse schreiben
und Herrn Strichmann auf dem Monitor bewegen. Wir werden auch den Aus-
gang (die Tir) erzeugen, die er zu erreichen versucht.

Was Du gelernt hast

245






Abschluss des Spiels mit
Herrn Strichmann

In den letzten drei Kapiteln haben wir unser Spiel entwickelt: Herr Strichmann
rennt zum Ausgang. Wir haben zunichst die Grafiken erstellt und danach den
Code geschrieben, um das Hintergrundbild, die Ebenen und das Strichminnchen
hinzuzufigen. In diesem Kapitel unternehmen wir die letzten Schritte, um das
Strichmannchen zu animieren, und fiigen die Tir hinzu.

Das vollstindige Listing des Spiels findest Du am Ende
dieses Kapitels. Falls Du nicht mehr weiter weif$t oder Dir
beim Schreiben dieses Codes etwas unklar ist, vergleiche
Deinen Code mit dem Listing, um zu sehen, was Du falsch
gemacht hast.

\

Bis jetzt haben wir die grundlegende Klasse fiir unser Strich-

),
- /
mannchen erstellt, die Bilder geladen, die wir verwenden

werden, und Tasten mit einigen Funktionen verbunden. <

Wenn Du das Spiel jetzt jedoch laufen lasst, macht unser
Code nichts besonders Interessantes.

In den folgenden Abschnitten fiigen wir der Strich-
FigurSprite-Klasse, die wir in Kapitel 18 erzeugt haben, die

247



248

restlichen Funktionen hinzu: animieren, move und coords. Die Funktion animieren
wird die unterschiedlichen Strichminnchen-Bilder zeichnen; move wird festlegen,
wohin sich die Figur bewegen soll, und coords wird die aktuelle Position des
Strichminnchens zuriickgeben. (Anders als bei den Ebenen-Sprites miissen wir
die Position des Strichminnchens immer wieder neu berechnen, da es sich auf
dem Bildschirm umher bewegt.)

Die Funktion animieren erstellen

Als Erstes erstellen wir die Funktion animieren, die wir benétigen, um die Bewe-
gung zu erfassen und das Bild entsprechend zu andern.

Bewegung erfassen

Wir mochten nicht, dass das Strichmannchen-Bild sich in unserer Animation zu
schnell andert, da seine Bewegungen ansonsten nicht realistisch aussehen wiir-
den. Stell Dir dazu einfach ein Daumenkino vor, das Du auf die Ecken eines
Notizblocks gezeichnet hast — wenn Du die Seiten zu schnell blatterst, hast Du
eventuell nicht den vollen Effekt.

Die erste Halfte der Funktion animieren priift, ob das Strichmannchen nach
links oder rechts rennt. Sie benutzt die Variable 1etzte zeit, um zu entscheiden,
ob das aktuelle Bild verandert werden soll. Diese Variable wird uns dabei helfen,
die Geschwindigkeit unserer Animation zu steuern. Die Funktion schreiben wir
hinter die springen-Funktion, die wir in Kapitel 18 unserer StrichFigurSprite-
Klasse hinzugefugt haben.

def springen(self, evt):
if self.y == 0:
self.y = -4
self.springen_zdhler = 0

animieren(self):
self.x 1= 0 self.y == 0:

time.time() - self.letzte zeit > 0.1:
self.letzte zeit = time.time()
self.aktuelles bild += self.aktuelles bild plus

self.aktuelles_ bild >= 2:
self.aktuelles bild plus = -1

self.aktuelles_ bild <= 0:
self.aktuelles bild plus

©O000000e

1

Mit der if-Anweisung in @ priifen wir, ob x nicht 0 ist, um dadurch festzustellen,
ob sich das Strichmannchen bewegt (nach links oder rechts), und wir schauen, ob
y gleich 0 ist, um zu bestimmen, dass das Strichminnchen nicht springt. Falls
diese if-Anweisung wahr ist, miissen wir unser Strichmannchen animieren; wenn

Abschluss des Spiels mit Herrn Strichmann



nicht, steht es still und muss nicht animiert werden. Wenn sich das Strichminn-
chen nicht bewegt, fallen wir aus dieser Funktion heraus, und der restliche Code
dieses Listings wird ignoriert.

In ® berechnen wir die Zeit, die nach dem letzten Aufruf der Funktion ani-
mieren vergangen ist, indem wir den Wert der Variable letzte zeit von der aktu-
ellen Zeit mit time.time() abziehen. Diese Berechnung wird zur Entscheidung
benotigt, ob das nachste Bild in der Sequenz gezeichnet werden soll oder nicht.
Falls das Ergebnis grofler als eine Zehntelsekunde (0.1) ist, geht es mit dem Code-
block in © weiter. Die Variable Tetzte zeit setzen wir auf die aktuelle Zeit.
Dadurch setzen wir quasi die Stoppuhr zuriick auf null fiir den nichsten Bild-
wechsel.

In @ fiigen wir den Wert der Objekt-Variablen aktuelles bild plus der Vari-
ablen aktuelles_bild hinzu, die die Index-Position des aktuell angezeigten Bildes
speichert. Da wir in Kapitel 18 die Variable aktuelles_bild_plus in der _init_ -
Funktion des Strichmiannchens schon erzeugt haben, ist beim ersten Aufruf der
Funktion animieren der Wert der Variable schon auf 1 gesetzt.

In © priifen wir, ob der Wert der Index-Position in aktuelles bild grofSer
oder gleich 2 ist. Falls ja, andern wir den Wert von aktuelles_bild plus in @ auf
—1. Der Vorgang in @ ist dhnlich — sobald wir 0 erreichen, mussen wir mit dem
Zihlen von vorne anfangen, wie wir es in ® tun.

Achtung!

Falls Dir unklar ist, wie Du diesen Code einriicken sollst, hier ein Hinweis: Am Anfang von @
sind es 8 Leerzeichen, und vor ® sind es 20 Leerzeichen.

Damit Du besser verstehst, was in der Funktion bis jetzt passiert, stell Dir vor, Du
hittest auf dem Boden eine Reihe farbiger Bauklotze ausgelegt. Du bewegst Dei-
nen Finger von einem Bauklotz zum nichsten, und jeder Klotz, auf den Dein Fin-
ger zeigt (1, 2, 3, 4 usw.), hat eine Nummer (die Variable aktuelles bild). Die
Nummer des Platzes (Dein Finger zeigt immer auf einen einzigen Klotz) ist die
Zahl, die in der Variablen aktuelles_bild plus gespeichert wird. Wenn sich Dein
Finger die Reihe von Klotzen entlangbewegt, wird jedes Mal 1 hinzugezahlt. Und
wenn das Ende der Reihe erreicht ist und der Finger zuriickwandert, wird jedes
Mal 1 abgezogen (also -1 hinzugefiigt).

Der Code, den wir unserer animieren-Funktion hinzugefugt haben, fiihrt die-
sen Prozess durch, doch anstelle von farbigen Bauklotzen nimmt er die drei
Strichmannchenbilder fiir beide Richtungen, die in einer Liste gespeichert sind.
Die Index-Positionen dieser Bilder sind 0, 1 und 2. Sobald wir beim Animieren
des Strichminnchens das letzte Bild erreicht haben, fangen wir an, riickwirts zu

Animation des Strichmannchens

249



250

zahlen, und wenn wir wieder beim ersten Bild sind, miissen wir wieder vorwarts

zdhlen. Als Ergebnis bekommen wir den Eindruck einer rennenden Figur.

Im Folgenden wird gezeigt, wie wir uns durch die Liste der Bilder bewegen,

wobel wir die Index-Positionen in der animieren-Funktion berechnen.

Position 0 Position 1 Position 2 Position 1 Position 0 Position 1
Aufwartz Aufwartz Aufwartz Abwartz Abwartz Aufwartz
zahlend zahlend zahlend zahlend zéhlend zahlend

Das Bild @andern

In der niachsten Hilfte der Funktion animieren finden wir durch die berechnete

Index-Position das jeweils angezeigte Bild.

def animieren(self):
if self.x != 0 and self.y == 0:
if time.time() - self.letzte zeit > 0.1:
self.letzte zeit = time.time()
self.aktuelles bild += self.aktuelles bild plus

60 ©060 ©6 o600

if self.aktuelles bild >= 2:
self.aktuelles bild plus
if self.aktuelles bild <= 0:
self.aktuelles bild plus

if self.x < 0:

if self.y != 0:

self.spiel.canvas.
image=self.

else:

self.spiel.canvas.
image=self.

elif self.x > 0:
if self.y != 0:

self.spiel.canvas.
image=self.

else:

self.spiel.canvas.
image=self.

Abschluss des Spiels mit Herrn Strichmann

itemconfig(self.bild, \

-1

bilder_links[2])

itemconfig(self.bild, \

bilder_ links[self.aktuelles bild])

itemconfig(self.bild, \

bilder_rechts[2])

itemconfig(self.bild, \

bilder_rechts[self.aktuelles bild])



Wenn in @ x weniger als 0 betragt, bewegt sich das Strichmannchen nach links
und Python geht in den Code-Block von @ bis ©, wo gepriift wird, ob y ungleich
0 ist (was bedeutet, dass das Strichmannchen springt). Falls y ungleich 0 ist (das
Strichmannchen springt, bewegt sich also nach oben oder unten), benutzen wir
die Leinwand-Funktion item_config, um das letzte Bild in unserer Liste mit nach
links zeigenden Bildern in © (bilder 1links[2]) anzuzeigen. Da das Strichminn-
chen springt, zeigen wir es mit maximaler Schrittlinge, damit die Animation
etwas realistischer aussieht:

Wenn das Strichmannchen nicht im Sprung ist (wenn y also gleich 0 ist), benutzt
die e1se-Anweisung ab @ item config, um das Bild in dasjenige zu dndern, dessen
Indexposition der Variablen aktuelles bild im Code bei © entspricht.

In @ schauen wir, ob das Strichminnchen nach rechts rennt (x ist grofSer
als 0), und Python geht dann weiter in den Block von @ bis ®. Der Code ist dem
Code aus dem ersten Block sehr dhnlich und priift wieder, ob das Strichmannchen
springt. Falls es springt, stellt er das entsprechende Bild dar oder verwendet die
Bilder aus bilder_rechts.

Die Position des Strichmannchens erfassen

Da wir bestimmen miissen, wo sich das Strichmiannchen auf dem Monitor befin-
det (weil es sich umherbewegt), unterscheidet sich die Funktion coords von den
anderen Funktionen der Sprite-Klasse. Um zu erfassen, wo sich das Strichmann-
chen befindet, werden wir die Funktion coords der Leinwand verwenden und
dann deren Werte benutzen, um die Werte x1, y1 sowie x2 und y2 der Variablen
koordinaten zu setzen, die wir in der _ init_-Funktion am Anfang von
Kapitel 18 erzeugt haben. Hier siehst Du den Code, der hinter die animieren-
Funktion gestellt werden kann:

Animation des Strichmannchens

251



252

if self.x < 0:
if self.y = 0:
self.spiel.canvas.itemconfig(self.bild, \
image=self.bilder Tinks[2])
else:
self.spiel.canvas.itemconfig(self.bild, \
image=self.bilder links[self.aktuelles bild])
elif self.x > 0:
if self.y = 0:
self.spiel.canvas.itemconfig(self.bild, \
image=self.bilder rechts[2])
else:
self.spiel.canvas.itemconfig(self.bild, \
image=self.bilder rechts[self.aktuelles bild])

def coords(self):

(1] xy = self.spiel.canvas.coords(self.bild)
(2} self.koordinaten.x1 = xy[0]

(3] self.koordinaten.yl = xy[1]

(4] self.koordinaten.x2 = xy[0] + 27

(5

self.koordinaten.y2 = xy[1] + 30
return self.koordinaten

Als wir in Kapitel 17 die Spiel-Klasse angelegt haben, war eine der Objekt-Varia-
blen die Leinwand (canvas). In @ benutzen wir mit self.spiel.canvas.coords die
coords-Funktion dieser canvas-Variablen, um die x- und y-Positionen des aktuel-
len Bildes zurtickzugeben. Diese Funktion verwendet die Zahl, die in der Objekt-
Variablen bild gespeichert ist, d.h. die ID-Nummer des Bildes, das auf die Lein-
wand gezeichnet wird.

Die daraus resultierende Liste speichern wir in der Variablen xy, die nun zwei
Werte enthalt: die x-Position oben links, die in der Variablen x1 von koordinaten
in @ gespeichert wird, und die y-Position oben links als Variable y1 von koordina-
ten in ©. Da alle Strichmannchen-Bilder 27 Pixel breit und 30 Pixel hoch sind,
konnen wir bestimmen, wie die x2- und y2-Variablen sein sollten, indem wir die
Breite in @ und die Hohe in © zu den x- bzw. y-Zahlen addieren.

In der letzten Zeile der Funktion geben wir schliefSlich die Objekt-Variable
koordinaten zuruck.

Das Strichmé&nnchen in Bewegung versetzen

Die letzte Funktion der Strichfigur-Sprite-Klasse move ist dafiir zustindig, unsere
Spielfigur tatsichlich uiber den Monitor zu bewegen. Sie muss uns auch sagen
konnen, ob die Figur an etwas gestofSen ist.

Abschluss des Spiels mit Herrn Strichmann



Der Beginn der Funktion »move«

Hier siehst Du den Code fiir den ersten Teil der Funktion move — er folgt hinter
coords:

def coords(self):
xy = self.spiel.canvas.coords(self.image)
self.koordinaten.xl = xy[0]
self.koordinaten.yl = xy[1]
self.koordinaten.x2 = xy[0] + 27
self.koordinaten.y2 = xy[1] + 30
return self.koordinaten

def move(self):

self.animieren()

if self.y < 0:
self.springen_zdhler += 1
if self.springen_zdhler > 20:

self.y = 4

if self.y > 0:

self.springen zdhler -=1

Q00000 e

Der Teil in @ dieser Funktion ruft die Funktion animieren auf, die wir vorher in
diesem Kapitel erzeugt haben, und dndert falls notig das aktuell angezeigte Bild.
In @ schauen wir, ob der Wert von y kleiner als 0 ist. Falls ja, wissen wir, dass das
Strichminnchen springt, da ein negativer Wert es nach oben bewegen wiirde,
(Denk daran, dass 0 ganz oben auf der Leinwand ist und dass die Pixelposition
500 ganz unten liegt.)

In © zihlen wir zu springen_zdhler 1 hinzu, und in @ bzw. © sagen wir, dass
wir y auf 4 dndern, sobald springen_zadhler den Wert 20 erreicht hat, damit das
Strichmannchen wieder herunterkommt.

In @ priifen wir, ob der Wert von y grofSer als 0 ist (die Figur fillt herunter),
und falls er es ist, ziehen wir 1 von springen_zéhler ab @, da wir — nachdem wir
bis 20 aufwirts gezahlt haben — wieder riickwirts zidhlen miissen. (Hebe Deine
Hand langsam nach oben, wahrend Du bist 20 zihlst, und lass sie wieder sinken,
wihrend Du von 20 riickwirts zihlst. Dadurch bekommst Du ein Gefiihl dafur,
wie die Berechnung des Auf- und Abspringens der Figur funktioniert.)

In den nichsten paar Zeilen der Funktion move rufen wir die Funktion coords
auf, die uns sagt, wo sich unsere Figur auf dem Monitor befindet, und das Ergeb-
nis in der Variablen co speichert. AnschliefSend erzeugen wir die Variablen Tinks,
rechts, oben, unten und fallen. Diese werden wir alle im Rest dieser Funktion ver-
wenden.

Animation des Strichmannchens

253



254

STk op.
MOV NG

if self.y > 0:
self.springen_zdhler -=1

co = self.coords()

links = True

rechts = True

oben = True

unten = True

fallen = True

Beachte, dass alle Variablen auf den booleschen Wert wahr (True) gesetzt sind.
Wir werden sie als Indikatoren verwenden, um zu priifen, ob die Figur auf dem
Monitor an etwas gestofSen ist oder gerade fallt.

Hat das Strichmd@nnchen den Boden oder die Decke der Leinwand beriihrt?

Der nichste Abschnitt der Funktion move priift, ob unsere Figur den Boden oder
die Decke der Leinwand beruhrt hat. Hier ist der Code:

unten = True
fallen = True
self.y > 0 co.y2 >= self.spiel.canvas_height:
self.y =0
unten = False
self.y <0 co.yl <= 0:
self.y =0
oben = False

0000®Q

Wenn die Figur auf dem Monitor herunterfillt, ist y grofler als 0, und von daher
miissen wir priifen, ob sie nicht bereits den Boden der Leinwand erreicht hat
(ansonsten wiirde sie ja durch den Boden hindurchfallen). Deshalb schauen wir in
0, ob ihre y2-Position (die Unterseite des Strichminnchens) grofler oder gleich
der Variable canvas_height im Spiel-Objekt ist. Falls sie es ist, setzen wir den
Wert von y in @ auf 0, stoppen dadurch den Fall des Strichmannchens und setzen
die Variable unten in ® auf False, wodurch wir dem restlichen Code sagen, dass
er nicht langer schauen muss, ob das Strichmannchen den Boden beriihrt hat.

Abschluss des Spiels mit Herrn Strichmann



Der Prozess, mit dem wir feststellen, ob das Strichmiannchen die oberste
Kante des Monitors beriihrt hat, ist dem Prozess sehr dhnlich, mit dem wir pri-
fen, ob es den Boden erreicht hat. Dazu priifen wir in @, ob das Strichmadnnchen
springt (y ist kleiner als 0), und priifen dann, ob seine y1-Position kleiner oder
gleich 0 ist — ob es also oben an der Leinwand angestofSen ist. Falls beide Bedin-
gungen wahr sind, setzen wir y in © gleich 0, um die Bewegung zu stoppen. Wir
setzen in @ gleichzeitig die Variable oben auf True, um dem restlichen Code mit-
zuteilen, dass er nicht mehr priifen muss, ob das Strichmidnnchen oben angesto-
en ist.

Hat das Strichmdnnchen die Seite der Leinwand beriihrt?

Wir durchlaufen fast exakt den gleichen Prozess wie beim vorherigen Code, um
zu ermitteln, ob das Strichminnchen die linke oder rechte Seite der Leinwand
berihrt hat:

elif self.y < 0 and co.yl <= 0:
self.y =0
oben = False

o if self.x > 0 and co.x2 >= self.spiel.canvas_width:
(2] self.x = 0

(3] rechts = False

(4] elif self.x < 0 and co.x1l <= 0:

(5] self.x = 0

(6 links = False

Der Code in @ basiert auf der Erkenntnis, dass das Strichminnchen nach rechts
rennt, falls x grofer als 0 ist. Wir wissen auch, ob er schon vor die rechte Wand
gerannt ist, indem wir nachschauen, ob die x2-Position (co.x2) grofer oder gleich
der Breite der Leinwand ist, die in spiel.canvas_width gespeichert ist. Falls beide
Anweisungen wahr sind, setzen wir x gleich 0 (und beenden so das Rennen des
Strichmannchens) und setzen die Variable rechts in ® auf falsch.

Mit anderen Sprites zusammenstof8en

Sobald wir geprift haben, ob die Figur die Seiten des Spielfensters beriihrt hat,
mussen wir noch schauen, ob sie noch gegen etwas anderes gestofSen ist. Mit dem
folgenden Code schleifen wir durch die Liste von Sprite-Objekten, die im Objekt
spiel gespeichert sind, um zu priifen, ob das Strichminnchen irgendeines von
ihnen beriihrt hat.

Animation des Strichmannchens

255



256

elif self.x < 0 and co.x1 <= 0:
self.x =0
links = False
sprite self.spiel.sprites:
sprite == self:

sprite_co = sprite.coords()
oben self.y <0 angestoBen_oben(co, sprite co):
self.y = -self.y
oben = False

Q00000 e

In® laufen wir in einer Schleife durch die Liste der Sprites und weisen jedes Sprite
dabei der Variablen sprite zu. Der Code in ® besagt: Wenn der Sprite gleich self
ist (das ist, als ob man sagen wiirde »falls dieser Sprite das Gleiche ist wie ich«),
miissen wir nicht priifen, ob das Strichmiannchen irgendwo angestoflen ist, da es
sich nur selbst beriihrt hitte. Falls die Variable sprite gleich self ist, gehen wir
mit continue zum nachsten Sprite in der Liste.

Als Nachstes bekommen wir durch den Aufruf der Funktion coords in @ die
Koordinaten des neuen Sprites und speichern das Ergebnis in der Variablen
sprite_co. Anschlieffend tiberpriift der Code in © Folgendes:

Das Strichminnchen hat die Decke der Leinwand noch nicht beriithrt (die
Variable oben ist immer noch wahr).

Das Strichmannchen springt (der Wert von y ist kleiner als 0).

Die Oberseite des Strichminnchens ist mit einem Sprite in der Liste zusam-
mengestofSen (durch Verwendung der Funktion angestoBen oben, die wir in
Kapitel 17 erzeugt haben).

%
Bl

I/'\M

Falls alle diese Bedingungen wahr sind, mochten wir, dass der Sprite beginnt her-
unterzufallen, und so kehren wir den Wert von y in ® mit einem Minus (-) um.
Die Variable oben wird in @ auf False gesetzt, denn wenn die Strichfigur einmal
oben angestofSen ist, miissen wir nicht weiter auf Bertihrungen hin priifen.

Abschluss des Spiels mit Herrn Strichmann



Auftreffen mit der Unterseite

Der nichste Teil der Schleife prift, ob die Unterseite unserer Figur etwas berthrt

hat:

if oben and self.y < 0 and angestoBen oben(co, sprite co):
self.y = -self.y
oben = False

oben = False
unten = False

(1] unten self.y > 0 angestoBen_unten(self.y, \
co, sprite co):

(2] self.y = sprite co.yl - co.y2

(3) self.y < 0:

(4] self.y = 0

(5

(6]

In @ gibt es drei dhnliche Priifungen: ob die Variable unten noch gesetzt ist, ob die
Figur fillt (y ist grofer als 0) und ob die Unterseite unserer Figur den Sprite
beriithrt hat. Falls alle Prifungen wahr ergeben, ziehen wir den unteren y-Wert
(y2) des Strichminnchens vom oberen y-Wert des Sprites (y1) in ® ab. Kommt Dir
das etwas merkwiirdig vor? Schauen wir uns an, warum wir das so machen.

Stell Dir vor, unsere Spielfigur ist von einer Ebene heruntergefallen. Jedes
Mal, wenn die Funktion Hauptschleife lduft, bewegt sie sich 4 Pixel auf dem
Monitor nach unten und der Fufs des Strichminnchens ist 3 Pixel iiber einer
anderen Ebene. Nehmen wir an, die Unterseite des Strichmannchens (y2) befindet
sich an Position 57 und die Oberseite der Ebene (y1) an Position 60. In diesem
Fall wiirde die Funktion angestoBen unten True zuriickgeben, da ihr Code den
Wert von y (der 4 betrigt) zu der y2-Variablen des Strichminnchens hinzuzihlt,
was 61 ergibe.

Wir mochten jedoch nicht, dass Herr Strichmann mit dem Fallen aufhort,
sobald es so aussieht, als ob er eine Ebene oder den Boden des Spielfensters
beriihrt hat. Das wiirde namlich so aussehen, als wiirde er einen grofSen Sprung
von einer Stufe machen und mitten in der Luft knapp tiber dem Boden anhalten.
Das wire zwar ein hubsches Kunststiick, sieht aber in unserem Spiel nicht so gut
aus. Wenn wir stattdessen den y2-Wert (von 57) der Figur von dem y1-Wert (von
60) der Ebene abziehen, bekommen wir 3. Das ist der Betrag, um den das Strich-
mannchen fallen sollte, damit es ordentlich oben auf der Ebene landet.

In ® sorgen wir dafur, dass die Berechnung keine negative Zahl ergibt. Falls
sie es tut, setzen wir in @ y gleich 0. (Wenn wir die Zahl negativ lassen wiirden,
wiirde das Strichmannchen wieder nach oben fliegen, und das wollen wir in die-
sem Spiel nicht.)

Zum Schluss setzen wir oben in ® und unten in @ auf falsch und mussen so
nicht linger priifen, ob das Strichmdnnchen oben oder unten angestoflen oder
gegen einen anderen Sprite geprallt ist.

Animation des Strichmannchens

257



258

Wir machen noch eine weitere Priifung in Richtung unten, um zu sehen, ob

das Strichminnchen tiber die Kante einer Ebene gelaufen ist. Hier siehst Du den
Code fiir diese if-Anweisung:

if self.y < 0:
self.y = 0

unten = False

oben = False

if unten and fallen and self.y == 0 \

and co.y2 < self.spiel.canvas_height \
and angestoBen_unten(1l, co, sprite co):

fallen = False

Damit die Variable fallen auf False gesetzt wird, miissen funf Prifungen wahr
(True) ergeben:

Wir mussen immer noch prufen, ob unten auf True steht.
Wir miussen priifen, ob das Strichménnchen fallen sollte (fallen steht noch

Das Strichmiannchen fillt noch nicht (y ist 0).

Die Unterseite des Sprites hat noch nicht den Boden des Monitors beriihrt (ist
geringer als die Hohe der Leinwand).

Das Strichmdnnchen hat die Oberseite einer Ebene beriihrt (angestoBen _unten
gibt True zuriick).

AnschliefSend setzen wir die Variable fallen auf False.

Uberpriifung links und rechts

Wir haben gepriift, ob das Strichminnchen einen Sprite, den Boden oder die

Decke beriihrt hat. Nun miissen wir noch priifen, ob es die linke oder rechte Seite

beriihrt hat:

Q60000 0Q

if unten and fallen and self.y == 0 \
and co.y2 < self.spiel.canvas_height \
and angestoBen_unten(l, co, sprite co):
fallen = False
if Tinks and self.x < 0 and angestoBen Tlinks(co, sprite_co):
self.x = 0
links = False
if rechts and self.x > 0 and angestoBen_rechts(co, sprite_co):
self.x = 0
rechts = False

Abschluss des Spiels mit Herrn Strichmann



In © prufen wir, ob wir noch weiter
nach Berithrungen links Ausschau
halten sollten (1inks steht noch auf
True) und ob sich das Strichminn-
chen nach links bewegt (x ist weniger
als 0). Wir priifen mit der Funktion
angestoBen_1inks, ob das Strichminn-

chen mit einem Sprite zusammengestofSen ist. Falls diese Bedingungen alle wahr

sind, setzen wir in ® x auf 0 (damit das Strichminnchen aufhort zu rennen) und

setzen links in © auf False, damit wir nicht langer nach Berithrungen auf der lin-

ken Seite suchen miissen.

Wie in @ zu sehen ist, dhnelt der Code dem fiir Bertihrungen auf der rechten

Seite. Wir setzen in © x wieder auf O und rechts in ® auf False, damit wir nicht

mehr auf Zusammenstofle auf der rechten Seite hin priifen miissen. Nachdem wir

in alle vier Richtungen auf Berithrungen prifen konnen, sollte unsere for-Schleife

so aussehen:

elif self.x < 0 and co.xl <= 0:

self.x =0
links = False
sprite self.spiel.sprites:

sprite == self:

sprite_co = sprite.coords()

oben self.y <0

self.y = -self.y

oben = False

unten self.y >0
co, sprite_co):

angestoBen_oben(co, sprite co):

angestoBen_unten(self.y, \

self.y = sprite _co.yl - co.y2

self.y < 0:

self.y =0
unten = False
oben = False
unten fallen

self.y == 0\

co.y2 < self.spiel.canvas_height \
angestoBen_unten(l, co, sprite co):

fallen = False
Tinks self.x <0
self.x = 0

links = False
rechts self.x >0
self.x = 0

rechts = False

angestoBen_links(co, sprite co):

angestoBen_rechts(co, sprite co):

Animation des Strichmannchens

259



260

Jetzt miissen wir der Funktion move nur noch ein paar weitere Zeilen hinzufiigen:

if rechts and self.x > 0 and angestoBen_rechts(co, sprite co):

self.x =0
rechts = False
(1] if fallen and unten and self.y == 0 \
and co.y2 < self.spiel.canvas_height:
(2] self.y = 4
(3] self.spiel.canvas.move(self.bild, self.x, self.y)

In © prifen wir, ob die Variablen fallen und unten beide auf True stehen. Falls ja,
sind wir mit unserer Schleifen durch jeden Ebenen-Sprite in der Liste gelaufen,
ohne auf den Boden zu treffen.

Die letzte Prufung in dieser Zeile bestimmt, ob der Wert fiir die Unterseite
unserer Figur weniger als die Leinwandhohe betrigt — ob sie also iiber dem Boden
(der Leinwand) ist. Falls das Strichmiannchen an nichts gestofSen ist und sich tiber
dem Boden befindet, steht es in der Luft und sollte daher anfangen zu fallen (es ist
also uiber das Ende einer Ebene hinausgelaufen). Damit es tiber das Ende einer
jeden Ebene rennt, setzen wir in @ y gleich 4.

In ©® bewegen wir das Bild anhand der Werte, die wir in den Variablen x und
y gesetzt haben, iiber den Monitor. Die Tatsache, dass wir in einer Schleife durch
die Sprites gelaufen sind und dabei auf Berithrungen hin gepriift haben, kann
bedeuten, dass wir beide Variablen auf 0 gesetzt haben, da das Strichmannchen
sowohl die linke Wand als auch den Boden beriihrt hatte. In diesem Fall bewirkt
der Aufruf der Funktion move durch die Leinwand nichts.

Es kann auch sein, dass Herr Strichmann tiber das Ende einer Ebene gelaufen
ist. Falls das passiert, wird y auf 4 gesetzt und Herr Strichmann fillt nach unten.

Puh, das war eine lange Funktion!

19.2 Testen unseres Strichmdnnchen-$prites

Weiter oben haben wir die Klasse StrichFigurSprite erzeugt, und jetzt probieren
wir sie aus, indem wir die folgenden zwei Zeilen vor dem Aufruf der Funktion
Hauptschleife einfligen:

O sf = StrichFigurSprite(s)
® s.sprites.append(sf)
s.Hauptschleife()

In © erzeugen wir ein Strichfigur-Sprite-Objekt und setzen es gleich der Variablen
sf. Wie wir es schon bei den Ebenen getan haben, fugen wir in @ diese neue Vari-
able der Liste von Sprites im Spiel-Objekt hinzu.

Lass nun Dein Programm laufen. Du wirst sehen, dass Herr Strichmann ren-
nen, von Ebene zu Ebene springen und fallen kann!

Abschluss des Spiels mit Herrn Strichmann



19.3 Die Tiir!

Die einzige Sache, die bei unserem Spiel noch fehlt, ist die Ausgangstiir. Wir run-
den das Spiel ab, indem wir einen Sprite fiir die Tiir erstellen, Code zum Erkennen
der Tiir hinzufiigen und unserem Programm ein Tiir-Objekt geben.

Die Klasse TiirSprite erzeugen

Du hast es Dir sicher schon gedacht — wir muissen noch eine weitere Klasse erzeu-
gen: TirSprite. Hier ist der Anfang des Codes:

class TirSprite(Sprite):
def _init_ (self, spiel, photo_image, x, y, width, height):
Sprite.__init__(self, spiel)
self.photo_image = photo_image
self.bild = spiel.canvas.create_image(x, y, \
image=self.photo_image, anchor='nw')
self.koordinaten = Coords(x, y, x + (width / 2), y + height)
self.spielende = True

Q0 O0O00e

Die Tar!

261



262

Wie man in @ sieht, hat die Klasse TiirSprite Para-
meter fiir self, fiir ein spiel-Objekt, fir ein
photo_image-Objekt, fiir die x- und y-Koordinaten
und fiir die Breite (width) und Hohe (height) des
Bildes. In @ rufen wir wieder __init__ auf, wie wir
es schon bei unseren anderen Sprite-Klassen getan
haben.

In © speichern wir den Parameter photo_image
mit einer Objekt-Variablen mit dem gleichen
Namen ab, wie schon in EbenenSprite. Wir erzeu-

gen das angezeigte Bild mit der Funktion der Lein-
wand create_image und speichern die zuriickgegebene ID-Nummer dieser Funk-
tion in der Objekt-Variablen image in @.

In © setzen wir die Koordinaten des TiirSprite auf die x- und y-Parameter
(die zu den x1- und y1-Positionen der Tiir werden) und errechnen dann die x2-
und y2-Positionen. Die x2-Position erhalten wir durch die Addition der halben
Breite (die Variable width geteilt durch zwei) zum Parameter x. Wenn x beispiels-
weise 10 betragt (die x1-Koordinate also 10 ist) und die Breite 40 betrigt, wire
die x2-Koordinate 30 (10 plus die Hilfte von 40).

Warum machen wir nun diese kleine verwirrende Berechnung? Weil Herr
Strichmann hier vor der Tur anhalten soll — anders als bei den Ebenen, bei denen
wir mochten, dass Herr Strichmann aufhort zu rennen, sobald er gegen eine
Ebene stofst. (Es wiirde nicht gut aussehen, wenn Herr Strichmann an der Tir
aufhoren wiirde zu rennen.) Du wirst es sehen, wenn Du das Spiel spielst und es
bis zur Tiir schaffst.

Im Gegensatz zur x1-Position ist die y1-Position leichter zu berechnen. Wir
ziahlen nur den Wert der Variablen height zum y-Parameter hinzu, und das war's.

In @ setzen wir die Objekt-Variable spielende auf True. Dies bedeutet, dass
das Spiel enden soll, sobald das Strichmannchen die Tir erreicht.

Die Tiir erkennen

Jetzt miissen wir den Code der Funktion move in der StrichfigurSprite-Klasse
andern, der festlegt, was passiert, wenn das Strichmannchen links oder rechts an
einen Sprite stofSt. Hier ist die erste Anderung:

if links and self.x < 0 and angestoBen Tlinks(co, sprite co):
self.x =0
links = False
sprite.spielende:
self.spiel.rennen = False

Abschluss des Spiels mit Herrn Strichmann



Wir priifen, ob der Sprite, gegen den das Strichmannchen gestofSen ist, eine spiel-
ende-Variable hat, die auf True steht. Falls ja, setzen wir die Variable rennen auf
False, und alles kommt zum Stehen — wir haben das Spielende erreicht.

Die gleichen Zeilen fugen wir dem Code hinzu, der nach ZusammenstofSen
auf der rechten Seite schaut. Hier ist der Code:

if rechts and self.x > 0 and angestoBen rechts(co, sprite co):
self.x =0
rechts = False
if sprite.spielende:
self.spiel.rennen = False

Das Tiir-Objekt hinzufiigen

Das letzte Element, das wir dem Spiel-Code hinzufiigen, ist ein Objekt fiir die
Tir. Wir fugen es vor der Hauptschleife ein. Genau vor dem Strichmannchen-
Objekt erzeugen wir ein Tiir-Objekt und fiigen es der Liste von Sprites hinzu.
Hier ist der Code dazu:

Ebene7)
Ebene8)

.sprites.append
.sprites.append
.sprites.append(Ebene9)

.sprites.append(Ebenel0)

tir = TurSprite(s, PhotoImage(file="Tuerl.gif"), 45, 30, 40, 35)
s.sprites.append(tiir)

sf = StrichFigurSprite(s)

s.sprites.append(sf)

s.Hauptschleife()

P —

S
S
S
S

Mit der Variablen s fiir unser spiel-Objekt erzeugen wir ein Tiir-Objekt, auf das
ein PhotoImage folgt (das Turbild, das wir in Kapitel 16 erzeugt haben). Wir set-
zen die x- und y-Parameter auf 45 und 30, um die Tiir auf eine Ebene ganz oben
im Spielfeld zu setzen, und setzen Breite (width) und Hohe (height) auf 40 und 35.
Dann fiigen wir das Tiir-Objekt der Liste von Sprites hinzu, wie wir es mit den
anderen Sprites in unserem Spiel auch getan haben.

Das Ergebnis siehst Du, sobald Herr Strichmann die Tiir erreicht hat. Statt
neben der Tiir hort er direkt vor der Tiir auf zu rennen, wie es hier zu sehen ist:

Die Tur!

263



264

19.4 Das fertige Spiel

Das vollstindige Listing unseres Spiels enthilt etwas mehr als 200 Zeilen Code.
Im Folgenden siehst Du den gesamten Code des Spiels. Falls Du Schwierigkeiten
hast, Dein Spiel ans Laufen zu bringen, vergleichst Du jede Funktion (und jede
Klasse) mit diesem Listing und siehst nach, was Du verkehrt gemacht hast.

from tkinter import *
import random
import time

class Spiel:

def _init_ (self):
self.tk = Tk()
self.tk.title("Herr Strichmann rennt zum Ausgang")
self.tk.resizable(0, 0)
self.tk.wm attributes("-topmost", 1)
self.canvas = Canvas(self.tk, width=500, height=500, \

highlightthickness=0)

self.canvas.pack()
self.tk.update()
self.canvas_height = 500
self.canvas_width = 500
self.bg = PhotoImage(file="Hintergrund.gif")
w = self.bg.width()
h = self.bg.height()

Abschluss des Spiels mit Herrn Strichmann



for x in range(0, 5):
for y in range(0, 5):
self.canvas.create image(x * w, y * h, \
image=self.bg, anchor='nw')
self.sprites = []
self.rennen = True

def Hauptschleife(self):
while 1:
if self.rennen == True:
for sprite in self.sprites:
sprite.move()

self.tk.update_idletasks()
self.tk.update()
time.sleep(0.01)

class Koordinaten:
def _init_ (self, x1=0, yl1=0, x2=0, y2=0):

self.xl = x1
self.yl = yl
self.x2 = x2
self.y2 = y2

def innerhalb x(col, co2):
if (col.xl > co2.x1 and col.xl < co2.x2) \
or (col.x2 > co2.x1 and col.x2 < co2.x2) \
or (co2.x1 > col.xl and co2.x1 < col.x2) \
or (co2.x2 > col.xl and co2.x2 < col.x1):
return True
else:
return False

def innerhalb_y(col, co2):
if (col.yl > co2.yl and col.yl < co2.y2) \
or (col.y2 > co2.yl and col.y2 < co2.y2) \
or (co2.yl > col.yl and co2.yl < col.y2) \
or (co2.y2 > col.yl and co2.y2 < col.yl):
return True
else:
return False

def angestoBen Tinks(col, co2):
if innerhalb_y(col, co02):
if col.xl <= co2.x2 and col.xl >= co2.x1l:
return True
return False

Das fertige Spiel

265



def angestoBen rechts(col, co2):
if innerhalb_y(col, co2):
if col.x2 >= co2.x1 and col.x2 <= co2.x2:
return True
return False

def angestoBen oben(col, co2):
if innerhalb x(col, co2):
if col.yl <= co2.y2 and col.yl >= co2.yl:
return True
return False

def angestoBen unten(y, col, co2):
if innerhalb x(col, co02):
y_calc = col.y2 +y
if y calc >= co2.yl and y calc <= co2.y2:
return True
return False

class Sprite:

def _init_ (self, spiel):
self.spiel = spiel
self.spielende = False
self.koordinaten = None

def move(self):
pass

def coords(self):
return self.koordinaten

class EbenenSprite(Sprite):
def _init_ (self, spiel, photo image, x, y, width, height):
Sprite. _init_ (self, spiel)
self.photo_image = photo_image
self.bild = spiel.canvas.create image(x, y, \
image=self.photo_image, anchor='nw')
self.koordinaten = Koordinaten(x, y, x + width, y + height)

class StrichFigurSprite(Sprite):
def _init_ (self, spiel):

Sprite. _init_ (self, spiel)

self.bilder links = [
PhotoImage(file="Figur-L1.gif"),
PhotoImage(file="Figur-L2.gif"),
PhotoImage(file="Figur-L3.gif")

]

self.bilder_rechts = [
PhotoImage(file="Figur-R1.gif"),
PhotoImage(file="Figur-R2.gif"),
PhotoImage(file="Figur-R3.gif")

266  Abschluss des Spiels mit Herrn Strichmann



self.bild = spiel.canvas.create_image(200, 470, \
image=self.bilder 1inks[0], anchor='nw'")

self.x = -2

self.y = 0

self.aktuelles bild = 0

self.aktuelles bild plus =1

self.springen_zdhler = 0

self.letzte zeit = time.time()

self.koordinaten = Koordinaten()
spiel.canvas.bind_all('<KeyPress-Left>', self.nach_Tinks)
spiel.canvas.bind_all('<KeyPress-Right>', self.nach_rechts)
spiel.canvas.bind_all('<space>', self.springen)

nach Tinks(self, evt):

self.y == 0:
self.x = -2
nach_rechts(self, evt):
self.y == 0:
self.x = 2
springen(self, evt):
self.y == 0:
self.y = -4

self.springen_zdhler = 0

animieren(self):
self.x 1= 0 self.y == 0:

time.time() - self.letzte zeit > 0.1:

self.letzte zeit = time.time()

self.aktuelles bild += self.aktuelles bild plus
self.aktuelles bild >= 2:
self.aktuelles bild plus
self.aktuelles_bild <= 0:

-1

self.aktuelles bild plus =1
self.x < 0:
self.y 1= 0:

self.spiel.canvas.itemconfig(self.bild, \
image=self.bilder 1inks[2])

self.spiel.canvas.itemconfig(self.bild, \
image=self.bilder Tinks[self.aktuelles bild])
self.x > 0:
self.y 1= 0:
self.spiel.canvas.itemconfig(self.bild, \
image=self.bilder rechts[2])

self.spiel.canvas.itemconfig(self.bild, \
image=self.bilder rechts[self.aktuelles bild])

Das fertige Spiel 267



coords(self):

xy = list(self.spiel.canvas.coords(self.bild))

self.koordinaten.xl = xy[0]

self.koordinaten.yl = xy[1]

self.koordinaten.x2 = xy[0] + 27

self.koordinaten.y2 = xy[1] + 30
self.koordinaten

move (self):
self.animieren()
self.y < 0:
self.springen zdhler += 1
self.springen zdhler > 20:
self.y = 4
self.y > 0:
self.springen_zdhler -=1
co = self.coords()
links = True
rechts = True
oben = True
unten = True
fallen = True
self.y > 0 co.y2 >= self.spiel.canvas_height:
self.y = 0
unten = False
self.y <0 co.yl <= 0:
self.y =0
oben = False

self.x >0 co.x2 >= self.spiel.canvas_width:
self.x =0
rechts = False
self.x <0 co.x1l <= 0:
self.x = 0

links = False
sprite self.spiel.sprites:
sprite == self:

sprite_co = sprite.coords()
oben self.y <0 angestoBen_oben(co, sprite co):
self.y = -self.y
oben = False

unten self.y >0 angestoBen_unten(self.y, co, \
sprite _co):
self.y = sprite _co.yl - co.y2
self.y < 0:
self.y = 0

unten = False
oben = False

268  Abschluss des Spiels mit Herrn Strichmann



s =Sp
Ebenel
0,
Ebene2
15
Ebene3
30
Ebene4
30
Ebeneb
17
Ebeneb
50
Ebene7
17
Ebene8
45

unten fallen self.y ==
co.y2 < self.spiel.canvas_height \
angestoBen_unten(1, co, sprite co):
fallen = False

Tinks self.x <0 angestoBen_links(co, \
sprite_co):
self.x = 0

links = False
sprite.spielende:
self.spiel.rennen = False
rechts self.x >0 angestoBen_rechts(co, \
sprite co):
self.x = 0
rechts = False
sprite.spielende:
self.spiel.rennen = False
fallen unten self.y == 0\
co.y2 < self.spiel.canvas_height:
self.y = 4
self.spiel.canvas.move(self.bild, self.x, self.y)

TirSprite(Sprite):

__init_ (self, spiel, photo_image, x, y, width, height):

Sprite. _init_ (self, spiel)

self.photo_image = photo image

self.image = spiel.canvas.create_image(x, y, \
image=self.photo _image, anchor='nw')

self.koordinaten = Koordinaten(x, y, x + \
(width / 2), y + height)

self.spielende = True

iel()

= EbenenSprite(s, PhotoImage(file="Ebenel.gif"), \
480, 100, 10)

= EbenenSprite(s, PhotoImage(file="Ebenel.gif"), \
0, 440, 100, 10)

= EbenenSprite(s, PhotoImage(file="Ebenel.gif"), \
0, 400, 100, 10)

= EbenenSprite(s, PhotoImage(file="Ebenel.gif"), \
0, 160, 100, 10)
EbenenSprite(s, PhotoImage(file="Ebene2.gif"), \
5, 350, 66, 10)
EbenenSprite(s, PhotoImage(file="Ebene2.gif"), \
, 300, 66, 10)
EbenenSprite(s, PhotoImage(file="Ebene2.gif"), \
0, 120, 66, 10)
EbenenSprite(s, PhotoImage(file="Ebene2.gif"), \
, 60, 66, 10)

Das fertige Spiel

269



270

Ebene9 = EbenenSprite(s, PhotoImage(file="Ebene3.gif"), \
170, 250, 32, 10)

Ebenel0 = EbenenSprite(s, PhotoImage(file="Ebene3.gif"), \

230, 200, 32, 10)
.sprites.append(Ebenel)
.sprites.append(Ebene2)
.sprites.append(Ebene3)
.sprites.append(Ebened)
.sprites.append(Ebene5)
.sprites.append(Ebene6)
.sprites.append(Ebene7)
.sprites.append(Ebene8)
.sprites.append(Ebene9)
.sprites.append(Ebenel0)
Tiir = TiurSprite(s, PhotoImage(file="Tuerl.gif"), 45, 30, 40, 35)
s.sprites.append(Tiir)
sf = StrichFigurSprite(s)
s.sprites.append(sf)
s.Hauptschleife()

nw unu nu n nu nu n n n un

19.5 Was Du gelernt hast

In diesem Kapitel haben wir unser Spiel

Herr Strichmann rennt zum Ausgang
abgeschlossen. Wir haben eine Klasse
fiir unser animiertes Strichmannchen
erzeugt und Funktionen geschrieben,
mit denen wir es auf dem Bildschirm
bewegen und wihrenddessen animie-
ren. (Dazu lassen wie ein Bild in das
néichste iibergehen, um die Illusion von Bewegung zu erzeugen.) Wir haben eine
einfache Kollisionserkennung verwendet, um zu priifen, ob das Strichmdnnchen
die linke oder rechte Seite der Leinwand oder einen anderen Sprite (wie etwa eine
Ebene oder die Tiir) beriihrt hat. Einen solchen Kollisions-Code haben wir auch
hinzugefugt, um festzustellen, ob das Strichmannchen die Decke oder den Boden
beriihrt hat, und um dafiir zu sorgen, dass es ordentlich herunterfillt, sobald es
iiber die Kante einer Ebene hinausgelaufen ist. Wir haben dann noch Code hinzu-
gefiigt, durch den das Spiel beendet wird, sobald Herr Strichmann die Tir
erreicht hat.

Abschluss des Spiels mit Herrn Strichmann



19.6 Programmier-Puzzles

Wir konnen noch jede Menge Dinge tun, um das Spiel zu verbessern. Im Moment
ist es noch sehr einfach gehalten, und wir konnen Code hinzufiigen, damit es pro-
fessioneller aussieht und interessanter zu spielen ist. Versuche, die folgenden
Funktionalitaten hinzuzufigen, und tiberpriife Deinen Code unter
www.dpunkt.delpython.

#1: »Du hast gewonnen!«
Fiige den Text »Du hast gewonnen!« fiir den Fall
hinzu, dass das Strichmannchen die Tiir erreicht hat,
damit die Spieler sehen konnen, dass sie gewonnen 7@
haben. Du hast etwas Ahnliches schon mit dem Text (

Q

»Game over« in dem Spiel Bounce! gemacht, das wir in
Kapitel 15 abgeschlossen haben.

#2: Animation der Tiir

In Kapitel 16 haben wir fiir die Tuir zwei Bilder erstellt: ein Bild einer geschlosse-
nen Tir und ein Bild einer offenen Tiir. Sobald Herr Strichmann die Tiir erreicht,
soll das Bild der geschlossenen Tiir gegen das der offenen Tur ausgetauscht wer-
den, Herr Strichmann soll verschwinden, und anschlieffend soll wieder das Bild
der geschlossenen Tiir gezeigt werden. Dadurch entsteht der Eindruck, dass Herr
Strichmann hinausgeht und die Tiir hinter sich schlieft. Dies erreichst Du, indem
Du die TiirSprite-Klasse und die StrichfigurSprite-Klasse anderst.

#3: Sich bewegende Ebenen

Versuche, eine neue Klasse namens BeweglicheEbenenSprite hinzuzufigen. Diese
Ebene sollte sich seitlich hin und her bewegen, damit es schwieriger wird, Herrn
Strichmann die Tiir ganz oben erreichen zu lassen.

Programmier-Puzzles

27






Wie geht es jetzt weiter?

Auf Deiner Tour durch Python hast Du einige grundlegende Konzepte des Pro-
grammierens kennengelernt, sodass es Dir jetzt viel leichter fallen wird, Dich in
andere Programmiersprachen einzuarbeiten. Auch wenn Python dufSerst niitzlich
ist, ist eine einzige Sprache nicht immer das beste Werkzeug fur alle Aufgaben.
Scheue Dich daher nicht davor, andere Arten des Programmierens auszuprobie-
ren. Im Folgenden schauen wir uns einige Alternativen fiir die Spiele- und Grafik-
programmierung an und werfen dann einen kurzen Blick auf die gebrauchlichs-
ten Programmiersprachen.

Wenn Du mehr mit Spielen oder Grafikprogrammierung machen maochtest, hast
Du viele Moglichkeiten. Hier sind nur einige davon:

BlitzBasic (http://www.blitzbasic.com/), das eine besondere Version der Pro-
grammiersprache BASIC verwendet, die speziell zum Schreiben von Spielen
entwickelt wurde

Adobe Flash, eine Animations-Software, die fiir Browser entwickelt wurde
und ihre eigene Programmiersprache ActionScript verwendet
(bttp:/fwww.adobe.com/devnet/actionscript.btml)

Alice (bttp:/fwww.alice.org/), eine 3D-Entwicklungsumgebung

Scratch (bitp://scratch.mit.edu/), ein Tool zur Entwicklung von Spielen
Unity3D (http://unity3d.com/), noch ein Tool zur Spiele-Entwicklung

273



274

Wenn Du im Internet recherchierst, wirst Du jede Menge Quellen finden, die Dir
beim Einstieg in jedes dieser Tools helfen. Wenn Du dagegen mit Python weiter-
spielen mochtest, kannst Du PyGame verwenden — das Python-Modul, das fir
die Spiele-Entwicklung entworfen wurde. Lass uns diese Moglichkeit naher
beleuchten.

PyGame Reloaded (oder pygame2) ist die Version von PyGame, die mit Python 3
funktioniert (frithere Versionen funktionieren nur mit Python 2).

Mit PyGame ein Spiel zu schreiben ist etwas komplizierter als mit tkinter. In
Kapitel 13 haben wir in tkinter beispielsweise mit diesem Code ein Bild ange-
zeigt:

tkinter *
tk = Tk()
canvas = Canvas(tk, width=400, height=400)
canvas.pack()
myimage = PhotoImage(file='c:\\test.gif')
canvas.create_image(o, 0, anchor=NW, image=myimage)

Mit PyGame sieht der gleiche Code so aus (statt einer .gif-Datei ladt er eine .bmip-
Datei):

sys
time
pygame2
pygame2.sdl.constants as constants
pygame2.sdl.image as image
pygame2.sdl.video as video
video.init()
img = image.load bmp("c:\\test.bmp")
screen = video.set mode(img.width, img.height)
screen.fil1(pygame2.Color(255, 255, 255))
screen.blit(img, (0, 0))
screen.flip()
time.sleep(10)
video.quit()

©O000000e

Nach dem Import der pygame2-Module rufen wir die _init_ -Funktion des
PyGame-video-Moduls in @ auf, was ein wenig an das Erzeugen der Leinwand
im tkinter-Beispiel erinnert. Mit der Funktion Toad mode laden wir in @ ein BMP-
Bild, erzeugen mit der Funktion set mode ein screen-Objekt und iibergeben die
Breite und die Hohe des geladenen Bildes als Parameter in ©. In der nichsten
(optionalen) Zeile siubern wir den Bildschirm, indem wir ihn in @ mit Weif$ auf-

Wie geht es jetzt weiter?



fillen und mit der Funktion b1it des screen-Objekts das Bild in © darstellen. Die
Parameter fiir diese Funktion sind das img-Objekt und ein Tupel, das die Position
enthilt, an der wir das Bild darstellen wollen (0 Pixel zur Seite und 0 Pixel nach
unten).

PyGame verwendet einen Off-Screen-Puffer. Bei der Off-Screen-Technik wer-
den die Grafiken in einem unsichtbaren Bereich des Computerspeichers verarbei-
tet und anschliefSend vollstindig in den sichtbaren Bereich (auf Deinen Monitor)
kopiert. Durch das Off-Screen-Verfahren wird das Flimmern reduziert, das ent-
stehen kann, wenn viele Objekte auf einmal auf dem Monitor aufgebaut werden.
Das Kopieren aus dem Off-Screen-Puffer in die sichtbare Anzeige wird durch die
Funktion f1ip in ® durchgefiihrt.

AnschliefSend lassen wir unser Programm in @ fiir 10 Sekunden pausieren, da
das Fenster im Gegensatz zur tkinter-Leinwand sofort geschlossen wird, falls wir
es nicht daran hindern. Mit video.init raumen wir in ® auf, damit PyGame sich
ordentlich schliefSt. Es gibt noch sehr viel mehr tiber PyGame zu sagen, aber die-
ses Beispiel gibt Dir einen ersten Eindruck.

Falls Du an weiteren Programmiersprachen interessiert bist: Aktuell sind Java,
C/C++, C#, PHP, Objective-C, Perl, Ruby und JavaScript beliebt. Wir unterneh-
men einen kleinen Rundgang durch diese Sprachen und schauen uns an, wie
unser kleines »Hallo Welt«-Programm (wie die Python-Version, mit der wir in
Kapitel 2 angefangen haben) in jeder von ihnen aussieht. Keine dieser Sprachen
richtet sich jedoch an Programmieranfinger, und sie unterscheiden sich deutlich
von Python. Zu den angegebenen englischsprachigen Websites findest Du unter
www.dpunkt.de/python entsprechende Quellen in deutscher Sprache.

Java

Java (bttp:/lwww.oracle.com/ltechnetwork/javalindex.html) ist eine maflig kom-
plizierte Programmiersprache mit einer groffen mitgelieferten Bibliothek von
Modulen (packages genannt). Im Internet findet man jede Menge kostenlose
Dokumentationen. Java kannst Du auf den meisten Betriebssystemen einsetzen.
Java ist auch die Sprache, die auf Android-Mobiltelefonen verwendet wird.

Hier ein Beispiel fur Hallo Welt in Java:

public class Hallo Welt {
public static final void main(String[] args) {
System.out.printin("Hallo Welt");
}

Programmiersprachen

275



C/C++

C (bttp:/www.cprogramming.com/) und C++ (bttp:/www.stroustrup.com/C++.himl)
sind komplizierte Programmiersprachen, die unter allen Betriebssystemen ver-
wendet werden. Beide gibt es sowohl in freien als auch in kommerziellen Versio-
nen. Beide Sprachen (und das gilt fiir C++ vielleicht noch etwas mehr als fiir C)
sind schwer zu erlernen. Du wirst beispielsweise feststellen, dass Du einige Dinge
dort manuell kodieren musst, die Python direkt anbietet (wie etwa dem Compu-
ter zu sagen, dass er ein Teil des Speicherinhalts in einem Objekt speichern soll).
Viele der kommerziell erhiltlichen Spiele und Konsolen sind in der einen oder
anderen Form von C oder C++ programmiert. Hier ist ein Beispiel fur Hallo Welt

in C:

#include <stdio.h>
int main ()

{
printf ("Hallo Welt\n");

}

Ein Beispiel in C++ konnte folgendermafSen aussehen:

#include <iostream>
int main()

{
std::cout << "Hallo Welt\n";
return 0;

C#

C# (bttp://msdn.microsoft.com/de-delvcsharpl/aa336706.aspx), was »C sharp«
ausgesprochen wird, ist eine mafSig komplizierte Sprache fir Windows, die Java
sehr dhnelt. Sie ist ein bisschen leichter zu lernen als C und C++.

Hier siehst Du ein Beispiel fir Hallo Welt in C#:

public class Hallo

{

public static void Main()

{
System.Console.WriteLine("Hallo Welt");

}

276  Wie geht es jetzt weiter?



PHP

PHP (http://www.php.net) ist eine Programmiersprache fiir Webseiten. Dafiir
benotigst Du einen Webserver (Software, die Webseiten an den Browser liefert),
auf dem PHP installiert ist. Samtliche Software, die man dafiir benotigt, ist fiir
alle wesentlichen Betriebssysteme kostenlos erhiltlich. Um mit PHP arbeiten zu
konnen, musst Du HTML (eine einfache Sprache zum Aufbau von Webseiten)
erlernen. Eine kostenlose Anleitung findest Du unter htip://php.net/manual/de/
tutorial.php und eine fiir HTML unter http://www.w3schools.com/html/.

Eine HTML-Seite, die »Hallo Welt« anzeigt, konnte so aussehen:
<html>
<body>
<p>Hallo Welt</p>
</body>
</html>

Eine Seite in PHP, die das Gleiche macht, konnte so ausschauen:

<?php
echo "Hallo Welt\n";

7>

Objective-C

Objective-C (http://classroomm.com/objective-c/) ist der Programmiersprache C
sehr ahnlich (es handelt sich in der Tat um eine Erweiterung von C) und wird
hauptsichlich auf Apple-Computern verwendet. Es ist auch die Programmier-
sprache fir das iPhone und das iPad.

Hier siehst Du ein Beispiel von Hallo Welt in Objective-C:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[]) {
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
NSLog (@"Hallo Welt");

[pool drain];
return 0;

}

Programmiersprachen

277



278

PERL

Die Programmiersprache Perl (http://www.perl.org/) ist kostenlos fir alle wesent-
lichen Betriebssysteme verfiigbar. Sie wird meist bei der Entwicklung von Websei-
ten (ihnlich wie PHP) verwendet.

Hier ist ein Beispiel fur Hallo Welt in Perl:
print("Hello World\n");

Ruby

Ruby (bttp:/www.ruby-lang.org/de/) ist eine frei erhiltliche Programmiersprache
fiir alle wesentlichen Betriebssysteme. Sie wird meist bei der Erstellung von Web-
seiten, vor allem im Framework Ruby on Rails benutzt. (Ein Framework ist eine
Gruppe von Bibliotheken, die die Entwicklung bestimmter Arten von Anwendun-
gen unterstiitzt.)

Hier siehst Du ein Beispiel fiir Hallo Welt in Ruby:
puts "Hallo Welt"

Javascript

JavaScript (bitps://developer.mozilla.org/de/docs/JavaScript) ist eine Program-
miersprache, die normalerweise innerhalb von Webseiten verwendet wird, aber
auch immer mehr bei der Spieleprogrammierung eingesetzt wird. Die Syntax ist
im Prinzip die gleiche wie bei Java, man findet jedoch mit JavaScript leichter den
Einstieg. Eine einfache HTML-Seite, die ein JavaScript-Programm enthalt,
kannst Du mit einem Browser laufen lassen, ohne dass Du dazu eine Shell,
Befehlszeile oder sonst etwas benotigst. Einen guten Einstieg in JavaScript konn-
test Du in der Codeacademy unter http://www.codecademy.com finden.

Wie ein Hallo Welt-Beispiel in JavaScript aussieht, hingt davon ab, ob Du es
in einem Browser oder in einer Shell laufen ldsst. In einer Shell wiirde unser Bei-
spiel so aussehen:

print('Hello World');

In einem Browser konnte so aussehen:

<html>
<body>
<script type="text/javascript">
alert("Hallo Welt");
</script>
</body>
</html>

Wie geht es jetzt weiter?



20.4 AbschlieBende Worte

Egal ob Du nun bei Python bleibst oder eine andere Programmiersprache auspro-
bierst (und es gibt noch viel mehr als die Sprachen, die hier aufgelistet sind), die
Konzepte, die Du in diesem Buch entdeckt hast, sind tiberall niitzlich. Selbst falls
Du nicht mit dem Programmieren weitermachst: Wenn Du die grundsitzlichen
Ideen verstanden hast, hilft Dir das bei vielen anderen Téatigkeiten, egal ob in der
Schule oder spiter im Berufsleben.

Viel Glick und viel Spaf§ beim Programmieren!

AbschlieBende Worte

279












Python-$chliisselworter

In Python (und in den meisten anderen Programmiersprachen) sind Schliisselwor-
ter Begriffe mit besonderer Bedeutung. Sie werden als Teil der Programmierspra-
che selbst gebraucht und diirfen daher fur nichts anderes verwendet werden.
Wenn Du zum Beispiel versuchst, Schliisselworter als Variablen zu benutzen oder
sie sonst falsch verwendest, bekommst Du von der Python-Konsole merkwiirdige
(manchmal lustige, manchmal verwirrende) Fehlermeldungen.

Dieser Anhang beschreibt jedes der Python-Schliisselworter. Er soll Dir als
praktisches Nachschlagewerk beim weiteren Programmieren dienen.

and
Mit dem Schliisselwort and (und) werden zwei Ausdriicke innerhalb einer Anwei-
sung (wie z.B. in einer if-Anweisung) verbunden, um zu sagen, dass beide Aus-
driicke wahr sein miissen. Hier ein Beispiel:

Alter > 10 Alter < 20:

print('Vorsicht Teenager!!!")
Dieser Code bedeutet, dass der Wert der Variable Alter mehr als 10 und (and)
weniger als 20 betragen muss, damit die Mitteilung angezeigt wird.

as
Das Schlisselwort as kann man verwenden, um einem importierten Modul einen
anderen Namen zu geben. Stell Dir zum Beispiel vor, Du hittest ein Modul mit
einem sehr langen Namen:

283



284

Ich_bin_ein_Python-Modul_das_wenig_bringt
Es wire sehr nervig, diesen Modulnamen jedes Mal zu tippen, wenn man ihn
benutzen wollte:
import Ich_bin_ein_Python-Modul das_wenig_bringt
Ich_bin_ein_Python-Modul_das_wenig_bringt.mach_etwas()
Ich habe etwas gemacht das wenig bringt.
Ich_bin_ein_Python-Modul_das_wenig_bringt.mach_etwas_anderes()
Ich habe etwas anderes gemacht das wenig bringt!!
Stattdessen kannst Du dem Modul einen neuen und kiirzeren Namen beim
Importieren geben und dann einfach diesen neuen Namen verwenden (das ist ein
bisschen wie ein Spitzname):
import Ich_bin_ein_Python-Modul_das wenig_bringt as bringt nichts
bringt _nichts.mach_etwas()
Ich habe etwas gemacht das wenig bringt.

bringt nichts.mach _etwas anderes()
Ich habe etwas anderes gemacht das wenig bringt!!

assert
Mit dem Schliisselwort assert (engl. fiir »behaupten«) driickt man aus, dass ein
Stiick Code wahr sein muss. Man kann damit auch Fehler und Probleme im Code
in meistens anspruchsvolleren Programmen aufdecken (weshalb wir assert in
diesem Buch nicht verwendet haben). Hier ist eine einfache assert-Anweisung:

>>> meineZahl = 10

>>> agssert meineZahl < 5

Traceback (most recent call last):

File "<pyshell#6>", line 1, in <module>
assert meineZahl < 5

AssertionError
In diesem Beispiel behaupten wir, dass der Wert der Variablen meinezahl weniger
als 5 betragt. Da er es nicht ist, gibt Python eine Fehlermeldung aus (einen Asser-
tionError).

break
Das Schliisselwort break wird verwendet, um einen Code-Ablauf zu unterbre-
chen. Du kannst break innerhalb einer for-Schleife verwenden:
Alter = 10
for x in range(1, 100):
print('Zdhle %s' % x)
if x == Alter:
print('Zdhlen beendet")
break

Python-Schliisselworter



Da die Variable Alter hier auf 10 gesetzt ist, gibt der Code Folgendes aus:

Zdhle 1
Zdhle 2
Zdhle 3
Zdhle 4
Zdhle 5
Zdhle 6
Zdhle 7
Zdhle 8
Zdhle 9
Zdhle 10

Zdhlen beendet

Sobald der Wert der Variablen x 10 erreicht, zeigt der Code »Zihlen beendet« an
und steigt aus der Schleife aus.

class

Mit dem Schliisselwort class definiert man eine Art Objekt, wie etwa ein Fahr-
zeug, ein Tier oder eine Person. Klassen konnen eine Funktion namens __init__
haben, die alle Aufgaben erledigt, die das Objekt einer Klasse benotigt. Zum Bei-
spiel benotigt ein Objekt der Klasse Auto bei dessen Erzeugung die Variable Farbe:

class Auto:
def _init_ (self, Farbe):
self.Farbe = Farbe
autol = Auto('rot')
auto2 = Auto('blau')
print(autol.Farbe)
rot
print(auto2.Farbe)
blau

continue

Mit dem Schliisselwort continue kann man zum nichsten Element einer Schleife

»springen«, sodass der restliche Code eines Schleifen-Blocks nicht ausgefiihrt

wird. Im Gegensatz zu break springen wir allerdings nicht aus der Schleife heraus,

sondern machen mit dem nachsten Element weiter. Wenn wir beispielsweise eine

Liste von Elementen hitten und Elemente, die mit B anfangen, auslassen wollten,

konnten wir den folgenden Code benutzen:

© >>> meine Elemente = ['Apfel', 'Avocado', 'Banane', 'Birne',
'"Clementine', 'Cashew']

® >>> for Element in meine Elemente:

(3] if Element.startswith('b'):
(4] continue
e print(Element)

Python-Schlisselworter

285



286

Apfel

Avocado

Clementine

Cashew
In @ erstellen wir unsere Liste von Elementen und benutzen dann eine for-
Schleife, um durch unsere Elemente zu laufen und fiir jedes von ihnen in @ einen
Code-Block auszufiihren. Falls das Element in ® mit dem Buchstaben B beginnt,
machen wir in @ mit dem nichsten Element weiter (continue). Anderenfalls
geben wir in © das Element aus.

def

Mit dem Schliisselwort def wird eine Funktion definiert — zum Beispiel, um eine
Funktion zu erzeugen, die eine Anzahl von Jahren in die entsprechende Anzahl
von Minuten umwandelt:

>>> Minuten(Jahre):
Jahre * 365 * 24 * 60

>>> Minuten(10)
5256000

del

Durch das Schlisselwort del wird etwas entfernt. Wenn Du beispielsweise eine
Waunschliste fiir Deinen Geburtstag hast, es Dir mit einem dieser Dinge jedoch
anders tiberlegt hast, wiirdest Du wahrscheinlich eines aus der Liste streichen und
etwas anderes hineinschreiben:

ferngesteuertes Auto
neues Fahrrad

Roboreptile
In Python wiirde die Original-Liste folgendermafSen aussehen:

Was_ich _mochte = ['ferngesteuertes Auto', 'neues Fahrrad',
"Computerspiel']

Du konntest mit del und dem Index des entsprechenden Elements das Computer-
spiel entfernen. Anschlieffend konntest Du mit der Funktion append das neue Ele-
ment hinzufiigen:

del Was_ich _mdchte[2]

Was_ich _mdochte.append('Roboreptile')
AnschliefSend gibst Du die neue Liste aus:

print(Was_ich méchte)

['ferngesteuertes Auto', 'neues Fahrrad', 'Roboreptile']

Python-Schliisselworter



elif
Das Schliisselwort elif verwendet man als Bestandteil einer if-Anweisung. In der
Beschreibung des Schliisselworts if findest Du ein Beispiel.

else
Das Schliisselwort else verwendet man als Bestandteil einer if-Anweisung. In der
Beschreibung des Schliisselworts if findest Du ein Beispiel.

exept

Mit dem Schliisselwort exept deckt man Probleme im Code auf. Es wird meistens
in ziemlich komplizierten Programmen verwendet, und deshalb kommt es in die-
sem Buch nicht vor.

finally

Das Schliisselwort finally verwendet man, um sicherzustellen, dass ganz
bestimmter Code ausgefithrt wird, sobald ein Fehler auftritt (meistens um Unord-
nung, die ein Stiick Code hinterlassen hat, aufzuraumen). Dieses Schliisselwort
kommt in diesem Buch nicht vor, da es fiir fortgeschrittenes Programmieren vor-
gesehen ist.

for
Mit dem Schliisselwort for erzeugt man eine Code-Schleife, die eine bestimmte
Anzahl an Malen durchlaufen wird. Hier ein Beispiel:
X range(0, 5):

print('x ist %s' %x)
Diese for-Schleife fithrt den Code-Block (die print-Anweisung) fiinfmal aus, was
folgende Ausgabe ergibt:
ist 0
ist 1
ist 2
ist 3
ist 4

X X X X X

from

Wenn Du ein Modul importierst, kannst Du mit dem Schlisselwort from nur den-
jenigen Teil importieren, den Du bendétigst. Das Modul turtle, das wir in
Kapitel 5 vorgestellt haben, enthilt eine Klasse namens Pen, mit der wir ein Pen-
Objekt erzeugt haben (die Leinwand, auf der sich die Schildkrote bewegt). Hier
steht, wie wir das gesamte Modul turtle importieren und anschlieffend die Pen-
Klasse benutzen:

turtle
t = turtle.Pen()

Python-Schlisselworter

287



288

Du konntest auch ausschlieSlich die Pen-Klasse importieren und sie direkt ver-
wenden (ohne Dich iiberhaupt auf das Modul turtle zu beziehen):

from turtle import Pen

t = Pen()

Dies konntest Du tun, damit Du beim nichsten Mal, wenn Du ganz oben in das
Programm schaust, alle von Dir verwendeten Funktionen und Klassen sehen
kannst (das ist vor allem in grofleren Programmen niitzlich, in denen jede Menge
Module importiert werden). Wenn Du Dich allerdings dafur entscheidest, wirst
Du diejenigen Teile des Moduls, die Du nicht importiert hast, natiirlich auch
nicht nutzen kénnen. Das Modul time beispielsweise, hat die Funktionen Tocal-
time und gmtime. Wenn Du also nur Tocaltime importierst und dann versuchst,
gmtime zu verwenden, bekommst Du eine Fehlermeldung:

>>> from time import localtime

>>> print(localtime())

time.struct time(tm year=2013, tm mon=2, tm mday=27, tm_hour=10,

tm min=59, tm sec=58, tm wday=2, tm yday=58, tm_ isdst=0)

>>> print(gmtime())

Traceback (most recent call last):

File "<pyshel1#49>", line 1, in <module>
print(gmtime())

NameError: name 'gmtime' is not defined
Die Fehlermeldung name 'gmtime' is not defined bedeutet, dass Python nichts iiber
die Funktion gmtime weifs, da Du sie nicht importiert hast.

Wenn es ein paar Funktionen eines bestimmten Moduls gibt, die Du verwen-
den mochtest, Dich aber nicht auf sie mit den Modulnamen beziehen mochtest
(zum Beispiel time.localtime oder time.gmtime) kannst Du mit einem Asterisk (*)
alles aus dem Modul importieren:

>>> from time import *

>>> print(Tocaltime())

time.struct_time(tm year=2013, tm mon=2, tm mday=27, tm_hour=10,

tm min=59, tm_sec=58, tm_wday=2, tm yday=58, tm_ isdst=0)

>>> print(gmtime())

time.struct_time(tm year=2013, tm mon=2, tm mday=27, tm_hour=10,

tm min=6, tm_sec=58, tm wday=2, tm yday=58, tm isdst=0)

Auf diese Weise wird alles aus dem time-Modul importiert, und Du kannst Dich
auf die einzelnen Funktionen durch deren Namen beziehen.

global

Was Giiltigkeitsbereiche in Programmen sind, wird in Kapitel 8 erklart. Der Giil-
tigkeitsbereich bezieht sich auf die Sichtbarkeit einer Variablen. Falls eine Varia-
ble aufSerhalb einer Funktion definiert wird, ist sie normalerweise innerhalb der
Funktion sichtbar. Falls die Variable dagegen innerhalb einer Funktion definiert

Python-Schliisselworter



wird, kann sie aufSerhalb dieser Funktion nicht gesehen werden. Das Schlussel-
wort global macht eine Ausnahme von dieser Regel. Eine Variable, die als global
definiert wird, kann tiberall gesehen werden. Hier ist ein Beispiel:

>>> def test():

global a
a=1
b =2

Was glaubst Du, wird passieren, wenn Du print(a) aufrufst und anschliefSend
print(b), nachdem die Funktion test gelaufen ist? Beim ersten Mal wird es funk-
tionieren, am zweiten Mal gibt es eine Fehlermeldung:

>>> test()

>>> print(a)

1

>>> print(b)

Traceback (most recent call last):

File "<pyshell#62>", line 1, in <module>
print(b)

NameError: name 'b' is not defined
Die Variable a wurde innerhalb der Funktion auf global gesetzt und wurde
dadurch sichtbar, obwohl die Funktion schon abgeschlossen war. Dagegen ist b
immer noch nur innerhalb der Funktion sichtbar. (Du musst das global-Schliissel-
wort vor dem Setzen des Wertes Deiner Variable verwenden.)

if

Das Schliisselwort if wird verwendet, um eine Entscheidung tiber etwas zu tref-
fen. Es kann auch mit den Schliisselwortern else und elif (else if) benutzt wer-
den. Eine if-Anweisung funktioniert so, als ob man sagt: »Wenn etwas wahr ist,
fihre folgenden Vorgang durch.« Hier siehst Du ein Beispiel:

©® if Spielzeugpreis > 1000:

(2] print('Dieses Spielzeug ist zu teuer')

© clif Spielzeugpreis > 100:

(4] print('Dieses Spielzeug ist teuer')

O clse:

(6 print('Ich kann mir dieses Spielzeug leisten')

Diese if-Anweisung sagt in @ Folgendes: Wenn der Preis fiir ein Spielzeug tuiber
1000 € liegt, soll die Nachricht in ® angezeigt werden, dass es zu teuer ist. Falls
das Spielzeug in © uber 100 € kosten soll, wird die Nachricht in @ angezeigt, das
es teuer ist. Falls in © keine dieser Bedingungen wabhr ist, soll die Nachricht in ®
(»Ich kann mir dieses Spielzeug leisten«) angezeigt werden.

Python-Schlisselworter

289



290

import

Das Schlisselwort import wird verwendet, um Python zu sagen, dass es ein
Modul laden soll, damit man es verwenden kann. Im folgenden Beispiel sagt der
Code, dass Python das Modul sys benutzen soll:

import sys

in
Das Schlisselwort in wird in Ausdriicken verwendet, um nachzusehen, ob sich
ein Element innerhalb einer Sammlung von Elementen befindet. Befindet sich
zum Beispiel die Zahl 1 in einer Liste (einer Sammlung) von Zahlen?

>>> if 1 1in [1,2,3,4]:

print('Zahl befindet sich in der Liste')

Zahl befindet sich in der Liste
Hier steht, wie man herausfindet, ob sich der String 'Hose' in der Liste von
Bekleidungsstiicken befindet:

>>> Bekleidungsliste = ['kurze Hose', 'Unterwdsche', 'Boxershorts',

'Tange Unterhose', 'Schliipfer']
>>> if 'Hose' in Bekleidungsliste:
print('Hose ist auf der Liste')
else:

print('Hose ist nicht auf der Liste')
Hose ist nicht auf der Liste

is

Das Schlisselwort is ist ein bisschen wie der Operator (==), den man gebraucht,
um zu priifen, ob zwei Dinge gleich sind (zum Beispiel 10 == 10 ist wahr, und
10 == 11 ist falsch). Es gibt allerdings einen grundsatzlichen Unterschied zwischen
is und ==. Wenn Du zwei Dinge vergleichst, kann == wahr zuriickgeben, wogegen
is das eventuell nicht tut (selbst dann, wenn Du glaubst, dass die Dinge die glei-
chen sind). Dabei handelt es sich um ein fortgeschrittenes Programmierkonzept.
Wir bleiben in diesem Buch daher beim ==.

lambda

Mit dem Schliisselwort 1ambda erzeugt man anonyme oder auch Inline-Funktio-
nen. Dieses Schlusselwort wird in fortgeschritteneren Programmen benutzt, und
wir haben es in diesem Buch nicht behandelt.

not

Wenn etwas wahr ist, macht das Schliisselwort not es falsch. Wenn wir beispiels-
weise eine Variable x erzeugen und sie auf den Wert True setzen und anschliefSend
den Wert dieser Variablen mit not ausgeben, bekommen wir folgendes Ergebnis:

Python-Schliisselworter



>>> x = True

>>> print(not x)

False
Dies ergibt so lange keinen Sinn, bis Du das Schlisselwort in if-Anweisungen
benutzt. Um zum Beispiel herauszufinden, ob ein Element nicht in einer Liste ent-
halten ist, konnen wir so etwas schreiben:

>>> Bekleidungsliste = ['kurze Hose', 'Unterwdsche', 'Boxershorts',

'Tange Unterhose', 'Schlipfer']
>>> if 'Hose' not in Bekleidungsliste:

print('Du musst unbedingt eine Hose kaufen')
Du musst unbedingt eine Hose kaufen

or
Das or-Schliisselwort verwendet man beim Verbinden zweier Bedingungen in
einer Anweisung (wie z.B. in einer if-Anweisung), um auszudriicken, dass min-
destens eine der Bedingungen wahr sein sollte. Hier ist ein Beispiel:

if Dino == 'Tyrannosaurus' or Dino == 'Allosaurus':
print('Fleischfresser')
elif Dino == 'Ankylosaurus' or Dino == 'Apatosaurus':

print('Pflanzenfresser')
Wenn in diesem Fall die Variable Dino den Tyrannosaurus oder Allosaurus enthilt,
zeigt das Programm »Fleischfresser« an. Falls sie Ankylosaurus oder Apatosaurus
enthilt, gibt das Programm »Pflanzenfresser« aus.

pass
Manchmal méchtest Du bei der Entwicklung eines Programms nur kleine Teile
schreiben, um Dinge auszuprobieren. Das Problem dabei ist, dass Du keine if-
Anweisung haben kannst, ohne dazu den Code-Block zu haben, der ausgefiihrt
werden soll, falls der Ausdruck in der if-Anweisung wahr ist. Ebenso kannst Du
keine for-Schleife ohne den Code-Block haben, der in der Schleife ausgefiihrt
werden soll. Der folgende Code beispielweise funktioniert wunderbar:

>>> Alter = 15

>>> if Alter > 10:

print('dlter als 10')

dlter als 10
Falls Du aber den Code-Block der i f-Anweisung nicht ausfillst, wartet IDLE auf
den Code-Block und zeigt nach dem Driicken der Enter-Taste keinen Prompt:

>>> Alter = 15

>>> if Alter > 10:
In solchen Fillen kannst Du das pass-Schliisselwort anwenden, um eine Anwei-
sung zu schreiben, ohne dabei den Code-Block einzugeben, der dazugehort.

Python-Schlisselworter

291



Nehmen wir beispielsweise an, dass Du eine for-Schleife mit einer if-Anwei-
sung darin erzeugen mochtest. Vielleicht hast Du Dich noch nicht entschieden,
was Du in die if-Anweisung schreiben mochtest — eventuell verwendest Du die
print-Funktion, figst ein break oder sonst etwas ein. Wenn Du an dieser Stelle
pass verwendest, wird der Code trotzdem funktionieren (selbst wenn er noch
nicht genau das tut, was Du mochtest). Hier siehst Du wieder unsere if-Anwei-
sung, die diesmal das Schliisselwort pass enthilt:

>>> Alter = 15
>>> Alter > 10:

Der folgende Code zeigt eine weitere Verwendung des Schliisselwortes pass:

>>> X range(0, 7):
print('x ist %s' % x)
X ==

ist
ist
ist
ist
ist
ist
ist 6

Python pruft bei der Ausfihrung des Code-Blocks in der Schleife immer noch

X X X X X X X
Gl B W N = O

jedes Mal, ob die Variable x den Wert 4 enthilt, unternimmt jedoch nichts, sodass
es alle Zahlen im Bereich zwischen 0 und 7 ausgibt.

Spater kannst Du den Code im Block fur die if-Anweisung hinzufiigen,
indem Du das Schliisselwort pass durch etwas anderes, wie zum Beispiel break,
ersetzt:

>>> X range(1l, 7):

print('x ist %s' % x)
X ==

ist
ist
ist
ist
ist
ist 5

X X X X X X
B w N = o

Das Schlusselwort pass wird meistens verwendet, wenn man eine Funktion
erzeugt, den Code fiir die Funktion aber noch nicht schreiben mochte.

292  Python-Schlisselworter



raise

Das Schliisselwort raise kann man benutzen, damit es einen Fehler gibt. Das mag
zwar etwas merkwurdig klingen, bei der fortgeschrittenen Programmierung kann
das allerdings ziemlich niitzlich sein. (Wir verwenden dieses Schliisselwort in die-
sem Buch nicht.)

return
Mit dem Schliisselwort return wird ein Wert von einer Funktion zuriickgegeben.
Du konntest zum Beispiel eine Funktion erzeugen, um die Anzahl der Sekunden
zu berechnen, die Du bis zu Deinem letzten Geburtstag gelebt hast:
Alter_in_Sekunden(Alter_in_Jahren):
Alter_in Jahren * 365 * 24 * 60 * 60

Wenn Du diese Funktion aufrufst, kann der zuriickgegebene Wert einer anderen
Variablen zugewiesen oder angezeigt werden:

>>> Sekunden = Alter in_Sekunden(9)

>>> print(Sekunden)

283824000

>>> print(Alter_in_Sekunden(12))
378432000

try

Mit dem Schliisselwort try fangt ein Code-Block an, der mit den Schliisselwor-
tern exept und finally endet. Man verwendet diese try/exept/finally-Codeblo-
cke, um mit Fehlern in einem Programm umzugehen, sodass das Programm dem
Benutzer eine hilfreiche Meldung anzeigt statt eines unfreundlichen Python-Feh-
lers. Diese Schliisselworter werden in diesem Buch nicht verwendet.

while
Das Schliisselwort while ist ein bisschen wie for, nur dass eine for-Schleife durch
einen Bereich (von Zahlen) zahlt, eine while-Schleife aber so lange lauft, wie ein
Ausdruck wahr ist. Sei vorsichtig mit while-Schleifen: Falls der Ausdruck immer
wahr sein sollte, wird die Schleife nie enden (dies nennt man eine Endlosschleife).
Hier siehst Du ein Beispiel:

>>> x = 1

>>> x == 1:

print('Hallo")

Wenn Du diesen Code ausfiihrst, wird er unendlich laufen oder mindestens so
lange, bis Du die Python-Shell schlieSt oder Ctrl-C drickst, um die Schleife zu
unterbrechen. Der folgende Code wird dagegen neunmal »Hallo« anzeigen
(wobei er jedes Mal 1 zu der Variablen x addiert, bis x nicht mehr weniger als 10
betragt).

Python-Schlisselworter

293



>>> x = 1

>>> x < 10:
print('Hallo")
X =x+1
with

Das Schliisselwort with benutzt man mit einem Objekt, um einen Code-Block in
dhnlicher Weise wie mit den Schliisselwortern try und finally zu erzeugen. Die-
ses Schliisselwort wird in diesem Buch nicht verwendet.

yield

Das Schliusselwort yield ist ein bisschen wie return, nur dass man es mit einer
bestimmten Klasse von Objekten, den Generatoren, benutzt. Generatoren erzeu-
gen Werte spontan (sie erzeugen also Werte direkt auf Anfrage), sodass sich in
diesem Sinne auch die Funktion range wie ein Generator verhilt. Das Schliissel-
wort yield kommt in diesem Buch nicht zum Einsatz.

294  Python-Schlisselworter



Glossar

Manchmal ist es so, dass Dir beim Programmieren ein neuer Begriff begegnet, mit
dem Du nicht viel anfangen kannst. Solche Wissensliicken konnen einem beim
Vorankommen richtig im Wege stehen. Fiir dieses Problem gibt es aber eine ganz
einfache Losung.

Fiir solche Fille, bei denen Dich ein neues Wort oder ein Begriff aufhilt, habe
ich dieses Glossar erstellt. Darin findest Du Definitionen vieler Programmierbe-
griffe, die in diesem Buch verwendet werden. Schlag also einfach hier nach, wenn
Du auf ein Wort stof3t, das Du nicht verstehst.

Animation Das Verfahren zum Zeigen einer Reihe (Sequenz) von Bildern, die so
schnell wechseln, dass es aussieht, als ob sich etwas bewege.

aufrufen Den Code einer Funktion ausfithren. Wenn wir eine Funktion benut-
zen, sagen wir, dass wir sie »aufrufen«,

ausfithren Etwas Code (wie etwa ein Programm, einen kleinen Code-Abschnitt
oder eine Funktion) laufen lassen.

Bedingung Ein Ausdruck in einem Programm, der ein wenig wie eine Frage
klingt. Bedingungen priifen, ob etwas wahr oder falsch ist.

Block Eine Gruppe von Computer-Anweisungen innerhalb eines Programms.

Boolescher Wert Eine Art von Wert, der entweder wahr oder falsch ist. (In
Python sind das True oder False mit groflem »T« und »F«.)

295



296

Daten sind meist Informationen, die vom Computer gespeichert und bearbeitet
werden.

Dialog Ein Dialog ist tiblicherweise ein kleines Fenster in einer Anwendung, in
dem Informationen aus dem Kontext stehen (wie etwa eine Warnung, eine
Fehlermeldung oder die Aufforderung, etwas einzugeben). Wenn Du beispiels-
weise eine Datei 6ffnen mochtest, erscheint normalerweise der Datei-Dialog.

Dimensionen Im Zusammenhang mit der Grafikprogrammierung bedeuten
zweidimensional oder dreidimensional die Arten, wie Bilder auf dem Compu-
termonitor gezeigt werden. Zweidimensionale Grafiken (2D-Grafiken) sind
flache Bilder auf einem Monitor, die eine Breite und eine Hohe haben — wie in
den alten Zeichentrickfilmen, die Du aus dem Fernsehen kennst. Dreidimen-
sionale Grafiken (3D-Grafiken) sind Bilder auf dem Monitor, die eine Breite,
eine Hohe und den Anschein von Tiefe haben — die Art von Grafiken, denen
man in realistischeren Computerspielen begegnet.

einbetten Das Ersetzen von Werten innerhalb eines Strings. Die ersetzten Werte
nennt man manchmal auch Platzhalter.

Eltern Wenn man sich auf Klassen und Objekte bezieht, sind die Eltern die
Klasse, von der Funktionen und Variablen geerbt werden. Andersherum
gesagt, erbt eine Kinderklasse die Eigenschaften ihrer Elternklasse. Wenn es
nicht um Python geht, sind die Eltern diejenigen, die Dir sagen, dass Du Deine
Zihne putzen sollst, bevor Du abends zu Bett gehst.

Ereignis Etwas, das auftritt, wihrend das Programm lauft. Beispiele fur Ereig-
nisse sind das Bewegen der Maus, das Driicken einer Maustaste oder Tasta-
tureingaben.

Exception Auf Deutsch » Ausnahme«: Eine Art von Fehler, der bei der Ausfiih-
rung eines Programms auftreten kann.

Fehler Wenn etwas mit einem Programm oder Deinem Computer schieflauft, ist
dies ein Fehler. Wenn Du mit Python programmierst, kannst Du alle mogli-
chen Arten von Meldungen als Reaktion auf einen Fehler sehen. Wenn Du
Deinen Code nicht richtig eingibst, kannst Du zum Beispiel einen Einrii-
ckungsfehler (IndentationError) bekommen.

Frame Eine Folge von Bildern, aus denen eine Animation wird.

Funktion Ein Befehl in einer Computersprache, der meistens aus einer Samm-
lung von Anweisungen besteht, um eine bestimmte Aktion durchzufiihren.

Grad Eine MafSeinheit fiir Winkel.

Giiltigkeitsbereich Der Teil oder Abschnitt eines Programms, in dem eine Vari-
able »gesehen« (oder benutzt) werden kann. (Eine Variable innerhalb einer
Funktion ist mitunter aufSerhalb der Funktion nicht sichtbar.)

Glossar



hexadezimal Eine Art, Zahlen darzustellen, die vor allem bei der Programmie-
rung verwendet wird. Hexadezimale Zahlen haben als Basis 16, was bedeutet,
dass neben den Ziffern 0-9 auch noch die Buchstaben A, B, C, D, E oder F
benutzt werden.

horizontal Die Richtungen nach links und rechts auf dem Monitor (dargestellt
durch das x).

ID-Nummer Eine Zahl, die eindeutig etwas in einem Programm benennt. Im
Modul tkinter von Python nimmt man die ID-Nummer, um sich auf Formen
zu beziehen, die auf der Leinwand gezeichnet wurden.

Image Ein Bild auf dem Computermonitor.

Import In Python »importierst« Du ein Modul, um es in Deinem Programm zu
benutzen. Man konnte auch sagen, dass Du es »einbindest« oder »dazuschal-
test«, aber Python-Programmierer reden lieber vom »Importieren«.

initialisieren Wenn Du den Ausgangszustand eines Objekts einrichtest (also die
Variablen in einem Objekt bei dessen Erzeugung einrichtest), nennt der Python
Programmierer das »initialisieren«.

Installation Der Prozess, in dem Du Dateien einer Softwareanwendung auf
Deinen Computer kopierst, damit Du die Anwendung anschlieffend benutzen
kannst.

Instanz Die Instanz einer Klasse ist — anders gesagt — ein Objekt.

Kind Wenn es um Klassen geht, stellen wir uns die Beziehungen zwischen ver-
schiedenen Klassen wie die Beziehungen zwischen Eltern und Kindern vor.
Eine Kinderklasse erbt die Eigenschaften seiner Elternklasse.

Klasse Eine Beschreibung oder Definition einer Art von Ding. In der Welt des
Programmierens ist eine Klasse eine Sammlung von Funktionen und Variab-
len.

Klick Druck auf eine der Maustasten, um einen Button auf dem Monitor auszu-
wihlen, eine Mentioption aufzurufen usw.

Kollision Wenn in Computerspielen eine Figur an eine andere oder an ein
Objekt auf dem Monitor stofst.

Koordinaten Die Position eines Pixels auf dem Monitor. Die Positionen werden
meist als Anzahl der Pixel zur Seite (x) und nach unten (y) auf dem Monitor
beschrieben.

Leinwand Ein Bereich des Monitors, auf dem gezeichnet wird. Die Leinwand
(canvas) ist eine Klasse, die zum Modul tkinter gehort.

Modul Eine Gruppe von Funktionen und Variablen.

Null Das Nichtvorhandensein eines Wertes (in Python als None bezeichnet).

Glossar

297



298

Objekt Die bestimmte Instanz einer Klasse. Wenn Du ein Objekt einer Klasse
erzeugst, reserviert Python dafiir einen Teil Deines Computerspeichers, um
darin Informationen iiber ein Mitglied dieser Klasse zu speichern.

Operator Ein Element eines Computerprogramms, das man fiir mathematische
Berechnungen oder zum Vergleichen von Werten benutzt.

Parameter FEin Wert, den man beim Aufruf einer Funktion oder bei der Erzeu-
gung eines Objekts benutzt (wenn Python beispielsweise die Funktion __init__
aufruft). Parameter werden haufig auch als Argumente bezeichnet.

Pixel Ein einzelner Punkt auf Deinem Computermonitor — der kleinste Punkt,
den Dein Computer zeichnen kann.

Programm Eine Gruppe von Befehlen, die einem Computer sagen, was er zu
tun hat.

Schliisselwort Ein bestimmtes Wort, das von einer Programmiersprache ver-
wendet wird. Schliisselworter bezeichnet man auch als reservierte Worter,
was im Grunde bedeutet, dass man sie fur nichts anderes benutzen kann. (Du
kannst beispielsweise kein Schlisselwort als Variablennamen verwenden.)

Schleife Ein Befehl oder eine Gruppe von Befehlen, die wiederholt werden.

Shell Ein Zugang zum Programm auf Basis der Befehlseingabezeile. Wenn wir in
diesem Buch von der »Python-Shell« sprechen, meinen wir die Anwendung
IDLE.

Speicher Ein Teil Deines Computers, in dem vorubergehend Informationen
abgelegt werden.

Software Eine Sammlung von Computerprogrammen.
Sprite Eine Figur oder Objekt in einem Computerspiel.

String Eine Sammlung alphanumerischer Zeichen (Buchstaben, Zahlen, Satzzei-
chen und Leerzeichen).

Syntax Die Anordnung und Reihenfolge von Wortern in einem Programm.

Transparenz Der Bereich eines Bildes, der nicht angezeigt wird und daher nicht
tiberdeckt, was hinter ihm dargestellt wird.

Variable Etwas, in dem Du Werte speichern kannst. Du kannst Dir eine Varia-
ble wie ein Etikett vorstellen, das Du auf Informationen »klebst«, die im
Computerspeicher stehen. Variablen sind nicht dauerhaft an einen bestimm-
ten Wert gebunden — daher der Name »Variable«, der Wert kann sich also
andern.

vertikal Die Richtungen nach oben und unten auf dem Monitor (dargestellt

durch y).

Verzeichnis Der Ort, an dem eine Gruppe von Dateien auf der Festplatte Deines
Computers liegt.

Glossar



abs-Funktion 102
Additions-Operator (+) 21
Adobe Flash 273
Alice 273
Alphakanal 212, 214
Android-Mobiltelefone 275
and-Schliisselwort 58, 283
Animation 153, 173, 188

in »Herr Strichmann rennt zum

Ausgang« 215, 251

von Sprites 212
Anweisungsblock 54, 67
append-Funktion 36
as-Schlisselwort 283
AssertionError 284
assert-Schlusselwort 284
Aufrufen einer Funktion 76

Definition 295
Ausdricke 106, 139
Ausfihren von Programmen 16
Ausfihren, Definition 295
Ausgeben

Inhalt von Listen 34

Inhalt von Variablen 23

Ball 185

in Bewegung setzen 188
Richtungsinderung 191
springen lassen 190
BASIC 8
Bedingungen 54
and-Schlusselwort 58
Definition 295
kombinieren 58
Operatoren 55
or-Schliisselwort 58
Benutzereingaben 59
Bilder (Images)
anzeigen im Modul tkinter 171
Definition 297
GIF 172, 215
spiegeln, in GIMP 216
BlitzBasic 273
Boolescher Wert, Definition 295
boo1-Funktion 102
Bounce! (Spiel) 205
etwas Zufilliges geben 202
Leinwand 184
Schliager 199
break-Schlusselwort 72, 284

299



300

C (Programmiersprache) 276
class-Schliisselwort 86, 285
continue-Schlisselwort 285
copy-Modul 120

flache Kopie 121

tiefe Kopie 122
C# 276
C++ 276

Dateien
erzeugen 113
lesen aus 116, 117
offnen 115
schreiben in 117
Dateien anlegen
unter Mac OS X 114
unter Ubuntu Linux 115
unter Windows 113
Dateien 6ffnen
unter Mac OS X 116
unter Ubuntu 116
unter Windows 116
Datei-Objekt
close-Funktion 117

Dateien unter Mac OS X erzeugen 114

Dateien unter Mac OS X 6ffnen 116

Dateien unter Ubuntu Linux erzeugen

115
Dateien unter Ubuntu 6ffnen 116

Dateien unter Windows erzeugen 113

Dateien unter Windows 6ffnen 116

read-Funktion 117

write-Funktion 117
Daten

boolesche 102

Definition 296

FlieSkommazahlen 107

Ganzzahlen 60, 108

Strings 34

umwandeln 129
def-Schliisselwort 89, 286
del-Schliisselwort 36, 286
Dialog, Definition 296
dir-Funktion 104
Divisions-Operator 21

Index

Doppelpunkt (:)
in if-Anweisungen 51
in Listen 36
in Maps 39
dreidimensionale (3D) Grafiken 153

Eigenschaften von Klassen 88
Einbinden, Werte in Strings 31
Eingabeaufforderung 16
Eingaben einlesen 82
Eingebaute Funktionen 101

abs 102

bool 102

dir 104

eval 106

exec 107

float 61, 107, 108

int 60, 108

Ten 109

max 110

min 110

min 110

open 116

range 111, 112

sum 112
Einlesen von Objekten aus Dateien 132
Einriickungen

einheitliche Abstinde 54, 67

Fehler 54, 66

in IDLE 54, 64, 66
elif-Schlusselwort 57, 287
else-Schlusselwort 56, 287
Elternklassen 87
EOL (end-of-line) 28
Ereignis-Bindungen 176, 197
Ereignis-Objekte 242
Ersetzen von Werten aus Maps 41
Escaping Strings 30
eval-Funktion 106
exec-Funktion 107

Farben

mit dem Modul tkinter einstellen 142,

148, 163
mit der Funktion itemconfig dndern
179



Fehler

AssertionError 284

Definition 296

Einriickung 54, 66

SyntaxError 29, 30, 54, 67

SystemExit 126

TypeError 38, 41

ValueError 61, 109
finally-Schlisselwort 287
FlieSkommazahlen 107
float-Funktion 61, 107
Format-Platzhalter 31, 165
for-Schleifen 63

im Vergleich zu Code ohne Schleifen 65

und das Modul turtle 136

und die Funktion range 64

und Listen 65
for-Schliisselwort 287
Frames

Definition 296

in Animationen 296
from-Schliisselwort 287
Funktionen 15, 36, 76

append 36

aufrufen 76, 295

aufrufen mit verschiedenen Werten 79

Definition 296

list 64, 76

print 15

sleep 131

str 60

Teile einer Funktion 76
Funktionskorper 76

ganze Zahlen 107
Ganzzahlen 60, 108
GIF-Bilder 172, 215
GIMP 212
global-Schliisselwort 288
Grad 46
Definition 296
in Sternen 137
in Winkeln 167
Grafiken
dreidimensionale (3D) 153
isometrische 153
zweidimensionale (2D) 153
Giiltigkeitsbereich von Variablen 77

Hat das Strichminnchen den Boden oder
die Decke der Leinwand beriihrt?
in »Herr Strichmann rennt zum
Ausgang« 260
Hauptschleifen 187, 224
help-Funktion 105
Herr Strichmann rennt zum Ausgang
Ebenen hinzufigen 233
Ebenen zeichnen 217
Erzeugen von Sprites 232
Koordinaten-Klasse 226
Spiel-Klasse 221
Strichmannchen 239
Strichmannchen an Tasten binden 242
Strichmannchen animieren 247
Strichmédnnchen bewegen 242
Strichminnchen zeichnen 215
Strichmannchen-Bilder laden 240
TurSprite-Klasse 261
Zeichnen der Tir 217
Zeichnen des Hintergrunds 218
Zusammenstdfle erkennen 226
Hexadezimale Zahlen 164
Definition 297
Hinzufiigen von Elementen zu einer Liste
36
Hinzufiigen von Objekten zu Klassen 87
HTML 277

IDLE (integrierte Entwicklungsumgebung)
14

Einrichtung unter Mac OS X 11
Einrichtung unter Windows 9
Fehlermarkierung 54, 67
Kopieren und Einfiigen 25
starten 14

ID-Nummer 158, 174, 178
Definition 297

if-Anweisungen 51

if-Schliisselwort 289

Importieren von Modulen 44, 80

import-Schliisselwort 290

Indexpositionen in Listen 34

in-Schliisselwort 290

Index

301



302

Installation
Definition 297
Python 8
Python unter Mac OS X 11
Python unter Ubuntu 13
Python unter Windows 9
Instanzen 88
Definition 297
Integrierte Enwicklungsumgebung (IDLE)
14
int-Funktion 60, 108
Isometrische Grafiken 153
is-Schliisselwort 290
Iteratoren 64, 111

Java 275
JavaScript 278

keyword-Modul 122
Kinderklassen 87
Definition 297
Klammern () 22
bei Klassen und Objekten 88
zur Erzeugung von Tupeln 39
Klassen 86
Elternklassen 87
Funktionen definieren 88
Funktionen erben 94
Funktionen, die andere Funktionen
aufrufen 95
Kinderklassen 87, 297
mit dem Modul turtle beschrieben 92
Objekte hinzufiigen 87
Klassifizieren von Dingen mit Klassen und
Objekten 86
Klicken eines Buttons 297
Kollisionen, Definition 297
Kollisionserkennung 199, 232
in Bounce! 199
Koordinaten 157
Koordinaten-Klasse 226
Kopieren und Einftigen in IDLE 25

Index

1ambda-Schlisselwort 290
Leerzeichen 52
Leinwinde
mit dem turtle-Modul erzeugen 44
mit tkinter-Modul erzeugen 157
1en-Funktion 109
Linux Siehe Ubuntu Linux
Listen 34
Elemente hinzufiigen 36
Elemente 16schen 36
Indexpositionen 34
Inhalt ausgeben 34
kleinster Wert in 110
Lange von 109
Subgruppen von 35
Tippfehler 38
und die Funktion range 76
und for-Schleifen 65
von Zahlen erzeugen 76
zusammenfiigen 37
Listen von Zahlen anlegen 76
Loschen von Elementen
aus Listen 36
aus Maps 41

Mac O§ X
Dateien anlegen unter 114
Einrichten von IDLE unter 11
Installtion von Python unter 11
Offnen von Dateien unter 116
Pfade unter 116

Maps 39
Abfragen von Werten aus 41
Austauschen von Werten in 41
Lange von 109
Loschen von Werten aus 41
TypeError in 41

Mathematische Operationen
Addition 21
Division 21
Modulo 138
Multiplikation 19
Multiplikation von Strings 32
Multiplikation von Variablen 78
Subtraktion 21



max-Funktion 110
mehrzeilige Strings 30, 107
min-Funktion 110
Module 80
copy 120
Definition 297
dump-Funktion in pickle 132
flache Kopie 121
Importieren 44, 80
keyword 122
load-Funktion in pickle 132
pickle 131
tiefe Kopie 122
Modulo-Operator (%) 138
Monty Python’s Flying Circus 8
Multiplikation 19
von Strings 32
von Variablen 78

NameError 78, 288, 289
None 58
not-Schliisselwort 290
Null, Definition 297

Objective-C, Programmiersprache 277
Objekte 80, 86
aus Dateien lesen 132
Definition 298
identifizierende Nummer 178
in Datei speichern 132
Initialisierung 96
Klassen hinzufiigen 87
standard input 80
standard output 127
Objekte in Dateien schreiben 132
Operatoren 21
Definition 298
Modulo-~ (%) 138
Platzhalter (%) 31
Rangfolge 22
or-Schlasselwort 58, 291
OS X Siehe Mac OS X

Parameter 76
benannte 156
pass-Schliisselwort 86, 291
PERL, Programmiersprache 278
PHP, Programmiersprache 277
pickle-Modul 131
dump-Funktion 132
Toad-Funktion 132
Pixel 46
Definition 298
Platzhalter 31, 165
Programme
laufen lassen (run) 16
speichern 15
verzogern 131
Programmiersprachen 8, 275
fiir Mobiltelefonanwendungen 275,
277
fur Webentwicklung 277, 278
Prompt 14
Prozentzeichen (%)
als Modulo-Operator 138
als Platzhalter-Operator 31, 165
Punkt-Operator (.) 97
Pygame2 274
Python 8
Installation 8
Installation unter Linux Ubuntu 13
Installation unter Mac OS X 11
Installation unter Windows 9
Konsole 45
Programme speichern 15
Shell Siehe Shell
Python-Schlisselworter 294

raise-Schliisselwort 293
random-Modul 123
choice-Funktion 125
randint-Funktion 123
shuffle-Funktion 125, 191
Zufalls-Rechtecke erzeugen 161

Index

303



304

range-Funktion 111
bei 1ist-Funktion 76
in for-Schleifen 63, 65, 109
mit der 1ist-Funktion 76
Rechnen 19, 107
return-Schlisselwort 293
Ruby, Programmiersprache 278

Schliisselworter

and 283

as 283

assert 284

break 72, 284

class 285

continue 285

def 90, 286

del 36, 286

elif 287

else 287

exept 287

finally 287

for 287

from 287

global 288

if 289

import 290

in 290

is 290

Tambda 290

not 290

or 58, 291

pass 86, 291

raise 293

return 293

try 293

while 293

with 294

yield 294
Scratch 273
Shell 14

Ein neues Fenster 6ffnen 17
Sich schraubender Stern 137
sleep-Funktion 131
Software 7
Speichern von Programmen 15
Speicher, Definition 298
Sprites 212
standard input (stdin) 80

Index

standard output (stdout) 127
str-Funktion 60
Strings 27

Einbinden von Werten in 31, 165

Escaping 30
mehrzeilige 28, 107
Multiplizieren von 32
Syntax-Fehler in 29, 30
versus Zahlen 59

Subtraktion 21

sum-Funktion 112

Syntax 28

SyntaxError 29, 30, 54, 67

sys-Modul 80, 126
exit-Funktion 126
Objekt stdin 126
Objekt stdout 127
version-Funktion 128

SystemExit 126

time-Modul 80, 128
asctime-Funktion 129
Tocaltime-Funktion 130
sleep-Funktion 131
time-Funktion 129

tkinter-Modul 153
Animation 173, 188
askcolor-Funktion 165
Bilder anzeigen 171
Bogen zeichnen 166
Button erzeugen 154

Canvas-Objekt, coords-Funktion 190
Canvas-Objekt, winfo_height-Funk-

tion 190

Canvas-Objekt, winfo_width-Funktion

192
coords-Funktion 191
Ereignis-Bindung 176, 198
Kaistchen zeichnen 159, 196
keysum-Variable 177
Leinwand erzeugen 157
Linien zeichnen 157
move-Funktion 197
Ovale (Kreise) zeichnen 186
pack-Funktion 157, 184
Photolmage 172
Polygone zeichnen 169
Text anzeigen 170



tkinter-Modul (Fortsetzung)
tk-Objekt, title-Funktion 185
tk-Objekt, update_idletasks-Funktion
187
tk-Objekt, wm_attributes-Funktion 184
und Farben 163
und ID-Nummern 158, 174, 178
Transparenz in Bildern 212, 219
Definition 298
mit GIMP 213
try-Schliisselwort 293
Tupeln 39, 165, 170
turtle-Funktion
achtzackigen Stern zeichnen 136
ausgefiillte Quadrate zeichnen 146
ausgefiillte Sterne 148
ausgefullten Kreis zeichnen 143
color-Funktion 140
end_fill-Funktion 142
Kistchen zeichnen 135, 196
Leinwand erzeugen 44
Linien zeichnen 158
mit for-Schleifen 137
nach links drehen 46
nach rechts bewegen 49
Pen-Klasse 44
reset-Funktion 48
riuckwirts bewegen 49
sich schraubenden Stern zeichnen 137
TypeError 38, 39, 41
vorwirts bewegen 46
zweidimensionale (2D) Grafiken 153
turtle-Modul 43, 135
begin_fi11-Funktion 142
clear-Funktion 48

Ubuntu Linux
Dateien anlegen 115
Datein 6ffnen in 116
Dateipfade unter 116
Python installieren unter 14
Umwandeln
Daten 129
Zahlen aus Strings 60
Zahlen in Strings 60
Unity3D 273
Untergruppe einer Liste 35

ValueError 61, 109
Variablen
Ausgeben des Inhalts einer 23
erzeugen 22
Giiltigkeitsbereich von 77
verwenden 24
zuriicksetzen 59
Variablen erzeugen 22
Vererbung 94
Verlangsamen von Programmen 131
Verzeichnis, Definition 298

while-Schleifen 70
while-Schliisselwort 293
Windows
Dateien anlegen unter 113
Dateien 6ffnen unter 116
Dateipfade unter 116
IDLE einrichten unter 9
Python installieren unter 9
with-Schliisselwort 294

yield-Schliisselwort 294

Zahlen
Fliefkomma- 107
Ganzzahlen 60, 108
Strings umwandeln in 60
Umwandlung in Strings 60
und ValueError 61, 109
versus Strings 59
Zeichnen fur »Herr Strichmann rennt zum
Ausgang«
Ebenen 217
Herr Strichmann 215
Hintergrund 218
Tar 217
Zeichnen mit dem Modul tkinter 179
Bogen 166
Kistchen 159
Linien 157
Ovale (Kreise) 186
Polygone 169

Index

305



306

Zeichnen mit dem Modul turtle 149
achtzackiger Stern 136
ausgefiillte Sterne 148
ausgefillter Kreis 143
ausgefulltes Quadrat 145
Auto 140
Linie 157
Rechteck 196

Zurticksetzen von Variablen 59

Zusammenfiigen von Listen 37

: (Doppelpunkt)
in if-Anweisungen 52
in Listen 35
in Maps 40
. (Punkt-Operator) 97
() (Klammern)
bei Klassen und Objekten 88

Index

[] (eckige Klammern), zur Erzeugung von
Listen 34
{} (geschweifte Klammern), zur Erzeugung
von Maps 40
(Multiplikationsoperator) 19
/ (Divisions-Operator) 21
\ (Ruckwirtsschragstrich)
in Strings 31, 116
um Code-Zeilen zu trennen 222
% (Prozentzeichen)
als Modulo-Operator 138
als Platzhalter-Operator 31, 165
+ (Additions-Operator) 21
— (Subtraktions-Operator) 21

2D-Grafiken (zweidimensionale Grafiken)
153

3D-Grafiken (dreidimensionale Grafiken)
153



ne

Marijn Haverbeke

Die Kunst der
JavaScript-
Programmierung

Eine moderne Einfiihrung in die Sprache des Web

dpunkterlag

Lo

2012, 240 Seiten, Broschur
€ 24,90 (D)
ISBN 978-3-89864-787-8

»Als sehr aktive Person in der >Java-
Script-Szene« werde ich oft gefragt,
welches Buch jemand lesen soll, um
JavaScript zu lernen. (...) Ab jetzt ist
meine Antwort ganz klar: >Eloquent
JavaScript«. Das Buch erkldrt auf
elegante und mitreifiende Weise, wie
man »richtig< JavaScript programmiert.
Dabei ist das Buch fiir Leute ohne
Programmierkenntnisse geschrieben
und trotzdem auch fiir Programmier-
Veteranen geeignet. (...)

(Malte, amazon.de)

»A concise and balanced mix of
principles and pragmatics. | loved
the tutorial-style game-like program
development. This book rekindled my
earliest joys of programming. Plus,
JavaScript!«

(Brendan Eich, creator of JavaScript)

Marijn Haverbeke

Die Kunst der
JavaScript-
Programmierung

Eine moderne Einfiihrung
in die Sprache des Web

Das Buch ist eine Einflihrung in
JavaScript, die sich auf gute Program-
miertechniken konzentriert. Der Autor
lehrt den Leser, wie man die Eleganz
und Prazision von JavaScript nutzt,
um browserbasierte Anwendungen
zu schreiben.

Das Buch beginnt mit den Grund-
lagen der Programmierung — Varia-
blen, Kontrollstrukturen, Funktionen
und Datenstrukturen —, dann geht

es auf komplexere Themen ein, wie
die funktionale und objektorientierte
Programmierung, regulare Ausdriicke
und Browser-Events.

Unterstiitzt von verstandlichen Bei-

spielen wird der Leser rasch die Sprache
des Web flieRend »sprechen« kdnnen.

|-.| dpunkt.verlag

RingstraBBe 19 B - 69115 Heidelberg
fon 0 62 21/14 83 40

fax 0 62 21/14 83 99

e-mail hallo@dpunkt.de
http://www.dpunkt.de






Hanspeter Massenbdck

Java?

Eine Einfiihrung in das systematische Programmieren

dpunktuverlag

4., liberarbeitete und erweiterte
Auflage 2011, 348 Seiten, Broschur

€ 29,90 (D)
ISBN 978-3-89864-595-9

Stimmen zur Vorauflage:

»... stellt dieses Buch eine gute Einfiih-
rung und eine reichhaltige Fundgrube
fiir Lehre und Selbststudium dar.«

(Javamagazin 06/2003)

Hanspeter M6ssenbock

Sprechen Sie
Java?

Eine Einfiihrung in das
systematische Programmieren

4., liberarbeitete und erweiterte Auflage

Dieses Lehrbuch zeigt von Grund

auf, wie man Software systematisch
entwickelt. Es beschreibt Java in allen
wichtigen Einzelheiten und vermittelt
darlber hinaus allgemeine Program-
miertechniken: algorithmisches
Denken, systematischer Programment-
wurf, moderne Softwarekonzepte und
Programmierstil. Es fiihrt von einfa-
chen Anweisungen und Datentypen
Uber Objektorientierung und dynami-
sche Datenstrukturen hin zu Konzep-
ten wie Parallelitat oder Ausnahme-
behandlung. Der Umfang entspricht
einer 2-stiindigen einsemestrigen Vor-
lesung. Jedes Kapitel enthalt zahlreiche
Ubungsaufgaben. Auf der Website
zum Buch (http://ssw.jku.at/JavaBuch)
finden sich u.a. Lehrunterlagen und die
Musterlosungen.

Die 4. Auflage berticksichtigt die bereits

fiir Java 7 angekiindigten Neuerungen
der Sprache.

. dpunkt.verlag

RingstraBBe 19 B - 69115 Heidelberg
fon 0 62 21/14 83 40

fax 0 62 21/14 83 99

e-mail hallo@dpunkt.de
http://www.dpunkt.de






	Vorwort
	Über den Autor
	Über die Fachkorrektoren
	Danksagungen

	Inhaltsübersicht
	Inhaltsverzeichnis
	1 Einleitung
	1.1 Warum Python?
	1.2 Wie man das Programmieren lernt
	1.3 Wer dieses Buch lesen sollte
	1.4 Was in diesem Buch steht
	1.5 Die Website zum Buch
	1.6 Viel Vergnügen!

	Teil I�Programmieren lernen
	2 Nicht alle Schlangen schlängeln sich
	2.1 Ein paar Bemerkungen zum Thema Sprache
	2.2 Python installieren
	Python unter Windows 7 installieren
	Python in Mac OS X installieren
	Python in Ubuntu installieren

	2.3 Wenn Du Python installiert hast
	2.4 Deine Python-Programme sichern
	2.5 Was Du gelernt hast

	3 Berechnungen und Variablen
	3.1 Mit Python rechnen
	Operatoren in Python
	Die Rangfolge der Operationen

	3.2 Variablen sind wie Bezeichnungen
	3.3 Variablen benutzen
	3.4 Was Du gelernt hast

	4 Strings, Listen, Tupeln und Maps
	4.1 Strings
	Strings erzeugen
	Wie man Probleme mit Strings meistert
	Werte in Strings einbetten
	Strings multiplizieren

	4.2 Listen können mehr als Strings
	Einer Liste Elemente hinzufügen
	Elemente aus einer Liste entfernen
	Mit Listen rechnen

	4.3 Tupeln
	4.4 Maps in Python weisen Dir nicht den Weg
	4.5 Was Du gelernt hast
	4.6 Programmier-Puzzles
	# 1: Lieblingssachen
	# 2: Kämpfer zählen
	# 3: Grüße!


	5 Malen mit Turtles
	5.1 Wie man Pythons Modul turtle benutzt
	Eine Leinwand erzeugen
	Die Schildkröte bewegen

	5.2 Was Du gelernt hast
	5.3 Programmier-Puzzles
	# 1: Ein Rechteck
	# 2: Ein Dreieck
	# 3: Eine Kiste ohne Ecken


	6 Fragen mit if und else stellen
	6.1 if-Anweisungen
	Ein Anweisungsblock enthält mehrere Anweisungen
	Mit Bedingungen können wir Dinge vergleichen

	6.2 If-Then-Else-Anweisungen
	6.3 if- und elif-Anweisungen
	6.4 Bedingungen kombinieren
	6.5 Variablen ohne Wert – None
	6.6 Der Unterschied zwischen Strings und Zahlen
	6.7 Was Du gelernt hast
	6.8 Programmier-Puzzles
	# 1: Bist Du reich?
	# 2: Kekse!
	# 3: Einfach die richtige Zahl
	# 4: Ich kann die Ninjas bezwingen


	7 Schleifen drehen
	7.1 Wie man for-Schleifen benutzt
	7.2 Wo wir gerade von Schleifen sprechen…
	7.3 Was Du gelernt hast
	7.4 Programmier-Puzzles
	# 1: Die Hallo-Schleife
	# 2: Gerade Zahlen
	# 3: Meine fünf Lieblingszutaten
	# 4 Wie viel wiegst Du auf dem Mond?


	8 Wiederverwertung Deines Codes mit Funktionen und Modulen
	8.1 Funktionen benutzen
	Teile einer Funktion

	8.2 Variablen und ihr Gültigkeitsbereich
	8.3 Einsatz von Modulen
	8.4 Was Du gelernt hast
	8.5 Programmier-Puzzles
	# 1: Einfache Funktion für Dein Gewicht auf dem Mond
	# 2: Was wiegst Du auf dem Mond nach x Jahren?
	# 3: Ein Programm für Dein Gewicht auf dem Mond


	9 Wie man Klassen und Objekte benutzt
	9.1 Dinge in Klassen aufteilen
	Kinder und Eltern

	9.2 Klassen Objekte hinzufügen
	9.3 Funktionen von Klassen definieren
	Klasseneigenschaften als Funktionen hinzufügen

	9.4 Wozu braucht man Klassen und Objekte?
	9.5 Objekte und Klassen bei Bildern
	9.6 Weitere nützliche Eigenschaften von Objekten und Klassen
	9.7 Geerbte Funktionen
	9.8 Funktionen, die andere Funktionen aufrufen
	9.9 Ein Objekt initialisieren
	9.10 Was Du gelernt hast
	9.11 Programmier-Puzzles
	# 1: Der Giraffen-Schiebetanz
	# 2: Schildkröten-Heugabel


	10 Pythons eingebaute Funktionen
	10.1 Eingebaute Funktionen verwenden
	Die abs-Funktion
	Die boolesche Funktion
	Die Funktion dir
	Die Funktion eval
	Die Funktion exec
	Die Funktion float
	Die Funktion int
	Die Funktion len
	Die Funktionen max und min
	Die Funktion range
	Die Funktion sum

	10.2 Umgang mit Dateien
	Erzeugen einer Test-Datei
	Eine neue Datei unter Windows erzeugen
	Eine neue Datei unter Mac OS X erzeugen
	Eine neue Datei unter Ubuntu erzeugen

	Eine Datei in Python öffnen
	Eine Windows-Datei öffnen
	Eine Mac OS X-Datei öffnen
	Eine Ubuntu-Datei öffnen

	In Dateien schreiben

	10.3 Was Du gelernt hast
	10.4 Programmier-Puzzles
	# 1: Geheimnisvoller Code
	# 2: Eine versteckte Botschaft
	# 3: Eine Datei kopieren


	11 Nützliche Python-Module
	11.1 Mit dem Modul copy Kopien erstellen
	11.2 Mit dem Modul keyword einen Überblick über die Schlüsselwörter erhalten
	11.3 Wie man mit dem Modul random Zufallszahlen bekommt
	Mit randint eine Zufallszahl bestimmen lassen
	Mit choice ein zufälliges Element aus einer Liste auswählen
	Mit shuffle eine Liste mischen

	11.4 Die Shell mit dem Modul sys steuern
	Die Shell mit der Funktion exit verlassen
	In dem Objekt stdin lesen
	Mit dem Objekt stdout schreiben
	Welche Python-Version benutze ich?

	11.5 Mit dem Modul time arbeiten
	Mit asctime ein Datum umwandeln
	Mit localtime Datum und Uhrzeit bekommen
	Mit sleep eine Pause machen

	11.6 Mit dem Modul pickle Informationen speichern
	11.7 Was Du gelernt hast
	11.8 Programmier-Puzzles
	# 1: Kopierte Autos
	# 2: Favoriten in pickle


	12 Noch mehr Grafik mit turtle
	12.1 Fangen wir mit einem einfachen Quadrat an
	12.2 Sterne zeichnen
	12.3 Ein Auto zeichnen
	12.4 Dinge einfärben
	Eine Funktion zum Zeichnen eines ausgefüllten Kreises
	Reines Schwarz und Weiß erzeugen
	Eine Funktion zum Quadratezeichnen

	12.5 Ausgefüllte Quadrate zeichnen
	12.6 Ausgefüllte Sterne zeichnen
	12.7 Was Du gelernt hast
	12.8 Programmier-Puzzles
	# 1: Ein Oktagon zeichnen
	# 2: Ein ausgefülltes Oktagon zeichnen
	# 3: Noch eine Funktion zum Sterne Zeichnen


	13 Bessere Grafiken mit tkinter
	13.1 Einen klickbaren Button erzeugen
	13.2 Einsatz von benannten Parametern
	13.3 Eine Leinwand zum Zeichnen erzeugen
	13.4 Linien zeichnen
	13.5 Kästchen zeichnen
	Ganz viele Rechtecke zeichnen
	Die Farbe bestimmen

	13.6 Bögen zeichnen
	13.7 Polygone zeichnen
	13.8 Darstellung von Text
	13.9 Bilder anzeigen
	13.10 Eine einfache Animation erzeugen
	13.11 Ein Objekt auf etwas reagieren lassen
	13.12 Weitere Anwendungen für die ID-Nummer
	13.13 Was Du gelernt hast
	13.14 Programmier-Puzzles
	# 1: Fülle die Leinwand mit Dreiecken
	# 2: Das sich bewegende Dreieck
	# 3: Das sich bewegende Foto



	Teil II�BOUNCE!
	14 Der Anfang Deines ersten Spiels: BOUNCE!
	14.1 Schlag den hüpfenden Ball
	14.2 Erzeugen einer Spiele-Leinwand
	14.3 Erzeugen der Ball-Klasse
	14.4 In Bewegung kommen
	Den Ball in Bewegung setzen
	Den Ball springen lassen
	Die Startposition des Balls ändern

	14.5 Was Du gelernt hast

	15 Dein erstes Spiel vollenden: BOUNCE!
	15.1 Einen Schläger hinzufügen
	Den Schläger in Bewegung setzen

	15.2 Merken, dass der Ball auf den Schläger trifft
	15.3 Dem Spiel etwas Zufälliges geben
	15.4 Was Du gelernt hast
	15.5 Programmier-Puzzles
	# 1: Verzögere den Spielstart
	# 2: Ein richtiges »Game Over«
	# 3: Beschleunige den Ball
	# 4: Zeichne den Punktestand auf



	Teil III�Herr Strichmann rennt zum Ausgang
	16 Wir erstellen Grafiken für das Strichmännchenspiel
	16.1 Der Strichmännchen-Spielplan
	16.2 GIMP installieren
	16.3 Erzeugen der Spielelemente
	Ein transparentes Bild erstellen
	Herrn Strichmann zeichnen
	Herr Strichmann rennt nach rechts
	Herr Strichmann rennt nach links
	Ebenen zeichnen
	Die Tür zeichnen
	Den Hintergrund zeichnen
	Transparenz

	16.4 Was Du gelernt hast

	17 Entwicklung des Strichmännchenspiels
	17.1 Erzeugen der Spiel-Klasse
	17.2 Den Fenstertitel bestimmen und die Leinwand erzeugen
	Abschluss der __init__-Funktion
	Erzeugen der Hauptschleifen-Funktion

	17.3 Erstellen der Klasse Koordinaten
	17.4 Zusammenstöße erkennen
	Sprites stoßen horizontal zusammen
	Sprites stoßen vertikal zusammen
	Alles zusammenfügen: Unserer endgültiger Code zur Erkennung von Zusammenstößen
	Die Funktion »angestoßen_links«
	Die Funktion »angestoßen_rechts«
	Die Funktion »angestoßen_oben«
	Die Funktion »angestoßen_unten«


	17.5 Erzeugen der Sprite-Klasse
	17.6 Die Ebenen hinzufügen
	Ein Ebenen-Objekt hinzufügen
	Einen ganzen Haufen Ebenen hinzufügen

	17.7 Was Du gelernt hast
	17.8 Programmier-Puzzles
	# 1: Schachbrett
	# 2: Zwei-Bilder-Schachbrett
	# 3: Regal und Lampe


	18 Herrn Strichmann erschaffen
	18.1 Das Strichmännchen initialisieren
	Die Strichmännchen-Bilder laden
	Variablen einrichten
	Bindung an die Tasten

	18.2 Das Strichmännchen nach links und rechts bewegen
	18.3 Das Strichmännchen springen lassen
	18.4 Was wir bis jetzt erreicht haben
	18.5 Was Du gelernt hast

	19 Abschluss des Spiels mit Herrn Strichmann
	19.1 Animation des Strichmännchens
	Die Funktion animieren erstellen
	Bewegung erfassen
	Das Bild ändern
	Die Position des Strichmännchens erfassen

	Das Strichmännchen in Bewegung versetzen
	Der Beginn der Funktion »move«
	Hat das Strichmännchen den Boden oder die Decke der Leinwand berührt?
	Hat das Strichmännchen die Seite der Leinwand berührt?
	Mit anderen Sprites zusammenstoßen
	Auftreffen mit der Unterseite
	Überprüfung links und rechts


	19.2 Testen unseres Strichmännchen-Sprites
	19.3 Die Tür!
	Die Klasse TürSprite erzeugen
	Die Tür erkennen
	Das Tür-Objekt hinzufügen

	19.4 Das fertige Spiel
	19.5 Was Du gelernt hast
	19.6 Programmier-Puzzles
	# 1: »Du hast gewonnen!«
	# 2: Animation der Tür
	# 3: Sich bewegende Ebenen


	20 Wie geht es jetzt weiter?
	20.1 Spiele- und Grafikprogrammierung
	20.2 PyGame
	20.3 Programmiersprachen
	Java
	C/C++
	C#
	PHP
	Objective-C
	PERL
	Ruby
	JavaScript

	20.4 Abschließende Worte


	Anhang
	Python-Schlüsselwörter
	Glossar
	Index




