

Jason Briggs

Python kinderleicht!

Einfach programmieren lernen – nicht nur für Kids

Übersetzung aus dem Amerikanischen
von Volker Haxsen

Lektorat: Dr. Michael Barabas
Übersetzung: Volker Haxsen, Heidelberg

Copy-Editing: Friederike Daenecke, Zülpich
Herstellung: Birgit Bäuerlein
Illustrationen: Miran Lipovača
Umschlaggestaltung: Helmut Kraus, www.exclam.de
Druck und Bindung: M.P. Media-Print Informationstechnologie GmbH, 33100 Paderborn

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie;
detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

ISBN
Buch 978-3-86490-022-8
PDF 978-3-86491-332-7
ePub 978-3-86491-333-4

1. Auflage 2013
Translation Copyright für die deutschsprachige Ausgabe
© 2013 dpunkt.verlag GmbH
Ringstraße 19 B
69115 Heidelberg

Copyright der amerikanischen Originalausgabe
© 2013 by Jason R. Briggs
Titel der Originalausgabe: Python For Kids – A Playful Introduction To Programming
No Starch Press, Inc. · 38 Ringold Street, San Francisco, CA 94103 · http://www.nostarch.com/
ISBN 978-1-59327-407-8

Die vorliegende Publikation ist urheberrechtlich geschützt. Alle Rechte vorbehalten. Die Verwendung
der Texte und Abbildungen, auch auszugsweise, ist ohne die schriftliche Zustimmung des Verlags
urheberrechtswidrig und daher strafbar. Dies gilt insbesondere für die Vervielfältigung, Übersetzung
oder die Verwendung in elektronischen Systemen.
Es wird darauf hingewiesen, dass die im Buch verwendeten Soft- und Hardware-Bezeichnungen sowie
Markennamen und Produktbezeichnungen der jeweiligen Firmen im Allgemeinen warenzeichen-,
marken- oder patentrechtlichem Schutz unterliegen.
Alle Angaben und Programme in diesem Buch wurden mit größter Sorgfalt kontrolliert. Weder Autor
noch Verlag können jedoch für Schäden haftbar gemacht werden, die in Zusammenhang mit der
Verwendung dieses Buches stehen.

5 4 3 2 1 0

Vorwort
Über den Autor

Jason R. Briggs ist seit dem Alter von acht Jahren Programmierer und hat als erste
Programmiersprache BASIC auf einem Radio Shack TRS-80 erlernt. Er hat als Ent-
wickler und Systemarchitekt professionell Software programmiert und als Autor
für das Java Developers’s Journal gearbeitet. Seine Artikel sind in JavaWorld,
ONJava und ONLamp erschienen. Python kinderleicht ist sein erstes Buch.

Du kannst mit Jason über seine Homepage http://jasonbriggs.com/ oder per
E-Mail mail@jasonbriggs.com Kontakt aufnehmen.

Über die Fachkorrektoren

Der 15-jährige Josh Pollock ist frischgebackener Absolvent der The Nueva School
und jetzt neu auf der Lick-Wilmerding High School in San Francisco. Er fing im
Alter von neun Jahren mit dem Programmieren in Scratch an, begann in der
sechsten Klasse mit TI-BASIC, ging dann in der siebten Klasse zu Java und
Python über und machte in der achten Klasse mit UnityScript weiter. Neben dem
Programmieren spielt er Trompete, entwickelt Computerspiele und unterrichtet
Leute in MINT-Fächern.

Maria Fernandez hat einen Masterabschluss in angewandter Linguistik und inte-
ressiert sich schon seit über 20 Jahren für Computer und Technik. Sie hat jungen
Flüchtlingsfrauen im Global-Village-Projekt in Georgia (USA) Englisch beige-
v

vi
bracht, lebt zurzeit in Nord-Kalifornien und arbeitet für den ETS (Educational
Testing Service).

Danksagungen

So ungefähr muss es sein, wenn man beim Empfang einer Ehrung die Bühne
betritt und dann feststellt, dass man die Liste der Personen zu Hause hat liegen
lassen, die man bei seiner Danksagung berücksichtigen will: Man vergisst garan-
tiert jemanden, und die Musik setzt ganz schnell ein, um einen von der Bühne
herunterzukomplimentieren.

Deswegen kommt jetzt eine (zweifelsohne) unvollständige Liste von Leuten,
denen ich zu tiefem Dank verpflichtet bin, da sie mir geholfen haben, das Buch so
gut werden zu lassen, wie es jetzt ist.

Ich möchte dem Team von No Starch danken, vor allem Bill Pollock, für seine
bei der Bearbeitung immer wieder gestellte Frage, was denn ein Kind von alldem
halten würde.

Wenn man schon sehr lange programmiert, vergisst man nur allzu leicht, wie
schwer diese Dinge für Anfänger sind, und Bill war eine wertvolle Hilfe, weil er
mich auf diese oft übersehenen und überkomplizierten Passagen aufmerksam
machte. Mein Dank gilt auch Serena Yang, der exzellenten Produktionsmanage-
rin. Ich hoffe, dass sie sich nicht allzu sehr die Haare gerauft hat, als sie die rich-
tige Farbgebung des Codes auf über 300 Seiten überprüfen musste.

Ein großes Dankeschön geht an Miran Lipovaca für ihre überaus gelungenen
Illustrationen. Sie sind viel mehr als nur gelungen. Nein ehrlich! Wenn ich das
gemacht hätte, könnte man von Glück sagen, wenn man ab und zu eine hinge-
schmierte Figur erkennen könnte. Ist es ein Bär? Ist es ein Hund? Nein, warte
… soll das ein Baum sein?

Vielen Dank den Korrektoren! Ich muss mich dafür entschuldigen, dass nicht
alle Vorschläge am Ende berücksichtigt wurden. Wahrscheinlich hattet Ihr recht,
und ich kann nur eine schlechte Charaktereigenschaft von mir dafür verantwort-
lich machen, falls noch Fehler enthalten sind. Besonderer Dank geht an Josh für
einige wirklich tolle Vorschläge und Ideen. Mein Bedauern gilt Maria, weil sie
sich mit zum Teil uneinheitlich formatiertem Code herumschlagen musste.

Ich danke meiner Frau und meiner Tochter dafür, dass sie sich mit einem
Mann und Vater abfinden mussten, der sich noch mehr als sonst hinter dem
Computerbildschirm versteckt hat.

Meiner Mutter danke ich für all die unermüdliche Aufmunterung über all die
Jahre.

Und zu guter Letzt danke ich meinem Vater dafür, dass er sich damals in den
1970er-Jahren einen Computer gekauft hat und es ertragen hat, dass ich diesen
genauso oft nutzen wollte wie er. Nichts von alledem wäre ohne ihn möglich
gewesen.
Vorwort

Inhaltsübersicht
1 Einleitung 1

Teil I Programmieren lernen 5

2 Nicht alle Schlangen schlängeln sich 7

3 Berechnungen und Variablen 19

4 Strings, Listen, Tupeln und Maps 27

5 Malen mit Turtles 43

6 Fragen mit if und else stellen 51

7 Schleifen drehen 63

8 Wiederverwertung Deines Codes mit Funktionen und Modulen 75

9 Wie man Klassen und Objekte benutzt 85

10 Pythons eingebaute Funktionen 101

11 Nützliche Python-Module 119

12 Noch mehr Grafik mit turtle 135

13 Bessere Grafiken mit tkinter 153
vii

viii
Teil II BOUNCE! 181

14 Der Anfang Deines ersten Spiels: BOUNCE! 183

15 Dein erstes Spiel vollenden: BOUNCE! 195

Teil III Herr Strichmann rennt zum Ausgang 209

16 Wir erstellen Grafiken für das Strichmännchenspiel 211

17 Entwicklung des Strichmännchenspiels 221

18 Herrn Strichmann erschaffen 239

19 Abschluss des Spiels mit Herrn Strichmann 247

20 Wie geht es jetzt weiter? 273

Anhang 281

Python-Schlüsselwörter 283

Glossar 295

Index 299
Inhaltsübersicht

Inhaltsverzeichnis
1 Einleitung 1

1.1 Warum Python? . 1

1.2 Wie man das Programmieren lernt . 2

1.3 Wer dieses Buch lesen sollte . 2

1.4 Was in diesem Buch steht . 3

1.5 Die Website zum Buch . 4

1.6 Viel Vergnügen! . 4

Teil I Programmieren lernen 5

2 Nicht alle Schlangen schlängeln sich 7

2.1 Ein paar Bemerkungen zum Thema Sprache 8

2.2 Python installieren . 8

Python unter Windows 7 installieren . 9
Python in MacOSX installieren . 11
Python in Ubuntu installieren . 13

2.3 Wenn Du Python installiert hast . 14

2.4 Deine Python-Programme sichern . 15

2.5 Was Du gelernt hast . 17
ix

x

3 Berechnungen und Variablen 19

3.1 Mit Python rechnen . 19

Operatoren in Python . 21
Die Rangfolge der Operationen . 21

3.2 Variablen sind wie Bezeichnungen . 22

3.3 Variablen benutzen . 24

3.4 Was Du gelernt hast . 26

4 Strings, Listen, Tupeln und Maps 27

4.1 Strings . 27

Strings erzeugen . 28
Wie man Probleme mit Strings meistert . 29
Werte in Strings einbetten . 31
Strings multiplizieren . 32

4.2 Listen können mehr als Strings . 34

Einer Liste Elemente hinzufügen . 36
Elemente aus einer Liste entfernen . 36
Mit Listen rechnen . 37

4.3 Tupeln . 39

4.4 Maps in Python weisen Dir nicht den Weg . 39

4.5 Was Du gelernt hast . 42

4.6 Programmier-Puzzles . 42

#1: Lieblingssachen . 42
#2: Kämpfer zählen . 42
#3: Grüße! . 42

5 Malen mit Turtles 43

5.1 Wie man Pythons Modul turtle benutzt . 43

Eine Leinwand erzeugen . 44
Die Schildkröte bewegen . 45

5.2 Was Du gelernt hast . 50

5.3 Programmier-Puzzles . 50

#1: Ein Rechteck . 50
#2: Ein Dreieck . 50
#3: Eine Kiste ohne Ecken . 50
Inhaltsverzeichnis

6 Fragen mit if und else stellen 51

6.1 if-Anweisungen . 51

Ein Anweisungsblock enthält mehrere Anweisungen 52
Mit Bedingungen können wir Dinge vergleichen 54

6.2 If-Then-Else-Anweisungen . 56

6.3 if- und elif-Anweisungen . 57

6.4 Bedingungen kombinieren . 58

6.5 Variablen ohne Wert – None . 58

6.6 Der Unterschied zwischen Strings und Zahlen 59

6.7 Was Du gelernt hast . 61

6.8 Programmier-Puzzles . 62

#1: Bist Du reich? . 62
#2: Kekse! . 62
#3: Einfach die richtige Zahl . 62
#4: Ich kann die Ninjas bezwingen . 62

7 Schleifen drehen 63

7.1 Wie man for-Schleifen benutzt . 63

7.2 Wo wir gerade von Schleifen sprechen… . 70

7.3 Was Du gelernt hast . 73

7.4 Programmier-Puzzles . 73

#1: Die Hallo-Schleife . 73
#2: Gerade Zahlen . 73
#3: Meine fünf Lieblingszutaten . 74
#4 Wie viel wiegst Du auf dem Mond? . 74

8 Wiederverwertung Deines Codes mit Funktionen und Modulen 75

8.1 Funktionen benutzen . 76

Teile einer Funktion . 76

8.2 Variablen und ihr Gültigkeitsbereich . 77

8.3 Einsatz von Modulen . 80

8.4 Was Du gelernt hast . 82

8.5 Programmier-Puzzles . 82

#1: Einfache Funktion für Dein Gewicht auf dem Mond 82
#2: Was wiegst Du auf dem Mond nach x Jahren? 83
#3: Ein Programm für Dein Gewicht auf dem Mond 83
Inhaltsverzeichnis xi

xii
9 Wie man Klassen und Objekte benutzt 85

9.1 Dinge in Klassen aufteilen . 86

Kinder und Eltern . 87

9.2 Klassen Objekte hinzufügen . 87

9.3 Funktionen von Klassen definieren . 88

Klasseneigenschaften als Funktionen hinzufügen 88

9.4 Wozu braucht man Klassen und Objekte? . 90

9.5 Objekte und Klassen bei Bildern . 91

9.6 Weitere nützliche Eigenschaften von Objekten und Klassen 93

9.7 Geerbte Funktionen . 94

9.8 Funktionen, die andere Funktionen aufrufen 95

9.9 Ein Objekt initialisieren . 96

9.10 Was Du gelernt hast . 98

9.11 Programmier-Puzzles . 98

#1: Der Giraffen-Schiebetanz . 98
#2: Schildkröten-Heugabel . 99

10 Pythons eingebaute Funktionen 101

10.1 Eingebaute Funktionen verwenden . 101

Die abs-Funktion . 102
Die boolesche Funktion . 102
Die Funktion dir . 104
Die Funktion eval . 106
Die Funktion exec . 107
Die Funktion float . 107
Die Funktion int . 108
Die Funktion len . 109
Die Funktionen max und min . 110
Die Funktion range . 111
Die Funktion sum . 112

10.2 Umgang mit Dateien . 112

Erzeugen einer Test-Datei . 113
Eine Datei in Python öffnen . 115
In Dateien schreiben . 117

10.3 Was Du gelernt hast . 117

10.4 Programmier-Puzzles . 118

#1: Geheimnisvoller Code . 118
#2: Eine versteckte Botschaft . 118
#3: Eine Datei kopieren . 118
Inhaltsverzeichnis

11 Nützliche Python-Module 119

11.1 Mit dem Modul copy Kopien erstellen . 120

11.2 Mit dem Modul keyword einen Überblick über die
Schlüsselwörter erhalten . 122

11.3 Wie man mit dem Modul random Zufallszahlen bekommt 123

Mit randint eine Zufallszahl bestimmen lassen 123
Mit choice ein zufälliges Element aus einer Liste auswählen 125
Mit shuffle eine Liste mischen . 125

11.4 Die Shell mit dem Modul sys steuern . 126

Die Shell mit der Funktion exit verlassen . 126
In dem Objekt stdin lesen . 126
Mit dem Objekt stdout schreiben . 127
Welche Python-Version benutze ich? . 128

11.5 Mit dem Modul time arbeiten . 128

Mit asctime ein Datum umwandeln . 129
Mit localtime Datum und Uhrzeit bekommen 130
Mit sleep eine Pause machen . 131

11.6 Mit dem Modul pickle Informationen speichern 131

11.7 Was Du gelernt hast . 133

11.8 Programmier-Puzzles . 133

#1: Kopierte Autos . 133
#2: Favoriten in pickle . 134

12 Noch mehr Grafik mit turtle 135

12.1 Fangen wir mit einem einfachen Quadrat an 135

12.2 Sterne zeichnen . 136

12.3 Ein Auto zeichnen . 140

12.4 Dinge einfärben . 142

Eine Funktion zum Zeichnen eines ausgefüllten Kreises 143
Reines Schwarz und Weiß erzeugen . 144
Eine Funktion zum Quadratezeichnen . 145

12.5 Ausgefüllte Quadrate zeichnen . 146

12.6 Ausgefüllte Sterne zeichnen . 148

12.7 Was Du gelernt hast . 150

12.8 Programmier-Puzzles . 150

#1: Ein Oktagon zeichnen . 150
#2: Ein ausgefülltes Oktagon zeichnen . 151
#3: Noch eine Funktion zum Sterne Zeichnen 151
Inhaltsverzeichnis xiii

xiv
13 Bessere Grafiken mit tkinter 153

13.1 Einen klickbaren Button erzeugen . 154

13.2 Einsatz von benannten Parametern . 156

13.3 Eine Leinwand zum Zeichnen erzeugen . 157

13.4 Linien zeichnen . 157

13.5 Kästchen zeichnen . 159

Ganz viele Rechtecke zeichnen . 161
Die Farbe bestimmen . 163

13.6 Bögen zeichnen . 166

13.7 Polygone zeichnen . 169

13.8 Darstellung von Text . 170

13.9 Bilder anzeigen . 171

13.10 Eine einfache Animation erzeugen . 173

13.11 Ein Objekt auf etwas reagieren lassen . 176

13.12 Weitere Anwendungen für die ID-Nummer 178

13.13 Was Du gelernt hast . 179

13.14 Programmier-Puzzles . 180

#1: Fülle die Leinwand mit Dreiecken . 180
#2: Das sich bewegende Dreieck . 180
#3: Das sich bewegende Foto . 180

Teil II BOUNCE! 181

14 Der Anfang Deines ersten Spiels: BOUNCE! 183

14.1 Schlag den hüpfenden Ball . 183

14.2 Erzeugen einer Spiele-Leinwand . 184

14.3 Erzeugen der Ball-Klasse . 185

14.4 In Bewegung kommen . 188

Den Ball in Bewegung setzen . 188
Den Ball springen lassen . 190
Die Startposition des Balls ändern . 191

14.5 Was Du gelernt hast . 193
Inhaltsverzeichnis

15 Dein erstes Spiel vollenden: BOUNCE! 195

15.1 Einen Schläger hinzufügen . 195

Den Schläger in Bewegung setzen . 197

15.2 Merken, dass der Ball auf den Schläger trifft 199

15.3 Dem Spiel etwas Zufälliges geben . 202

15.4 Was Du gelernt hast . 205

15.5 Programmier-Puzzles . 206

#1: Verzögere den Spielstart . 206
#2: Ein richtiges »Game Over« . 206
#3: Beschleunige den Ball . 207
#4: Zeichne den Punktestand auf . 207

Teil III Herr Strichmann rennt zum Ausgang 209

16 Wir erstellen Grafiken für das Strichmännchenspiel 211

16.1 Der Strichmännchen-Spielplan . 211

16.2 GIMP installieren . 212

16.3 Erzeugen der Spielelemente . 214

Ein transparentes Bild erstellen . 214
Herrn Strichmann zeichnen . 215
Herr Strichmann rennt nach rechts . 215
Herr Strichmann rennt nach links . 216
 Ebenen zeichnen . 217
Die Tür zeichnen . 217
Den Hintergrund zeichnen . 218
Transparenz . 219

16.4 Was Du gelernt hast . 220

17 Entwicklung des Strichmännchenspiels 221

17.1 Erzeugen der Spiel-Klasse . 221

17.2 Den Fenstertitel bestimmen und die Leinwand erzeugen 222

Abschluss der __init__-Funktion . 223
Erzeugen der Hauptschleifen-Funktion . 224

17.3 Erstellen der Klasse Koordinaten . 226

17.4 Zusammenstöße erkennen . 226

Sprites stoßen horizontal zusammen . 227
Sprites stoßen vertikal zusammen . 229
Alles zusammenfügen: Unserer endgültiger Code
zur Erkennung von Zusammenstößen . 229
Inhaltsverzeichnis xv

xvi
17.5 Erzeugen der Sprite-Klasse . 232

17.6 Die Ebenen hinzufügen . 233

Ein Ebenen-Objekt hinzufügen . 234
Einen ganzen Haufen Ebenen hinzufügen . 235

17.7 Was Du gelernt hast . 236

17.8 Programmier-Puzzles . 237

#1: Schachbrett . 237
#2: Zwei-Bilder-Schachbrett . 237
#3: Regal und Lampe . 238

18 Herrn Strichmann erschaffen 239

18.1 Das Strichmännchen initialisieren . 239

Die Strichmännchen-Bilder laden . 240
Variablen einrichten . 241
Bindung an die Tasten . 242

18.2 Das Strichmännchen nach links und rechts bewegen 242

18.3 Das Strichmännchen springen lassen . 243

18.4 Was wir bis jetzt erreicht haben . 244

18.5 Was Du gelernt hast . 245

19 Abschluss des Spiels mit Herrn Strichmann 247

19.1 Animation des Strichmännchens . 247

Die Funktion animieren erstellen . 248
Das Strichmännchen in Bewegung versetzen 252

19.2 Testen unseres Strichmännchen-Sprites . 260

19.3 Die Tür! . 261

Die Klasse TürSprite erzeugen . 261
Die Tür erkennen . 262
Das Tür-Objekt hinzufügen . 263

19.4 Das fertige Spiel . 264

19.5 Was Du gelernt hast . 270

19.6 Programmier-Puzzles . 271

#1: »Du hast gewonnen!« . 271
#2: Animation der Tür . 271
#3: Sich bewegende Ebenen . 271
Inhaltsverzeichnis

20 Wie geht es jetzt weiter? 273

20.1 Spiele- und Grafikprogrammierung . 273

20.2 PyGame . 274

20.3 Programmiersprachen . 275

Java . 275
C/C++ . 276
C# . 276
PHP . 277
Objective-C . 277
PERL . 278
Ruby . 278
JavaScript . 278

20.4 Abschließende Worte . 279

Anhang 281

Python-Schlüsselwörter 283

Glossar 295

Index 299
Inhaltsverzeichnis xvii

xviii
 Inhaltsverzeichnis

1
Einleitung
Warum soll man das Programmieren erlernen?

Programmieren fördert die Kreativität, das logische Denken und die Fähigkeit,
Probleme zu lösen. Programmierer und Programmiererinnen haben die Möglich-
keit, etwas aus dem Nichts zu erschaffen. Mithilfe der Logik bringen sie Pro-
grammstrukturen in eine Form, sodass ein Computer damit funktioniert. Und
wenn die Dinge nicht ganz so gut funktionieren wie erwartet, können sie durch
die Fähigkeit zur Problemlösung herausfinden, was schiefgelaufen ist. Program-
mieren macht Spaß, ist manchmal schwierig (gelegentlich frustrierend), und die
Fähigkeiten, die man dabei erwirbt, können sowohl in der Schule als auch bei der
Arbeit nützlich sein – selbst wenn Dein Berufsleben später nichts mit Computern
zu tun haben sollte.

Außerdem ist das Programmieren ein prima Zeitvertreib bei miesem Wetter.

1.1 Warum Python?

Python ist eine leicht zu erlernende Programmiersprache, die für den Program-
mieranfänger einige nützliche Eigenschaften hat. Der Code ist im Vergleich zu
anderen Programmiersprachen recht einfach zu lesen, und es gibt eine interaktive
Shell, in die man seine Programme eingeben und sehen kann, wie sie laufen.
Zusätzlich zu seiner einfachen Programmstruktur und seiner interaktiven Shell
hat Python einige Merkmale, die den Lernvorgang sehr bereichern und mit denen
Du einfache Animationen zum Erstellen Deiner eigenen Spiele zusammenbauen
1

2

kannst. Eines davon ist das Modul turtle, das von Turtle Graphics inspiriert
wurde (das in den 1960er-Jahren von der Programmiersprache Logo verwendet
wurde) und für Lernzwecke geschaffen wurde. Ein weiteres Modul ist tkinter,
mit dem man auf das Tk GUI Toolkit zugreifen kann, um damit ziemlich einfach
ein bisschen anspruchsvollere Grafiken und Animationen zu erstellen.

1.2 Wie man das Programmieren lernt

Wie bei allem, was man zum ersten Mal probiert, ist es am besten, mit den
Grundlagen anzufangen. Beginne daher mit den ersten Kapiteln, und blättere
nicht voller Ungeduld zu den Kapiteln weiter hinten. Niemand kann beim ersten
Mal, wenn er ein Musikinstrument in die Hand nimmt, im Sinfonieorchester mit-
spielen. Flugschüler fliegen auch nicht, bevor sie die grundlegenden Steuerele-
mente verstanden haben, und Turner kriegen (normalerweise) beim ersten Ver-
such keinen Salto rückwärts hin. Wenn Du zu Anfang zu ungeduldig bist, haben
die grundlegenden Prinzipien keine Zeit, sich richtig in Deinem Kopf festzuset-
zen. Dir wird dann der Inhalt der Kapitel weiter hinten viel komplizierter vor-
kommen, als er in Wirklichkeit ist.

Während Du dieses Buch durchliest, solltest Du jedes Beispiel selbst auspro-
bieren, um zu sehen, wie es funktioniert. Am Ende der meisten Kapitel gibt es auch
Programmier-Puzzles, die Du lösen kannst. Sie werden Deine Programmierfähig-
keiten fördern. Denke immer daran: Je besser Du die Grundlagen verstanden hast,
desto leichter werden Dir die komplizierteren Konzepte später vorkommen.

Wenn Dich etwas frustriert oder Dir zu schwierig vorkommt, hier ein paar
Ratschläge, die ich sehr hilfreich finde:

■ Teile das Problem in kleinere Teile auf. Versuche zu verstehen, was ein kleiner
Teil des Codes macht, oder denke nur an einen kleinen Teil einer komplexen
Stelle. (Konzentriere Dich lieber auf einen kleinen Teil des Codes, statt alles
auf einmal verstehen zu wollen.)

■ Wenn das alles nichts hilft, ist es manchmal am besten, wenn man es für eine
Weile einfach liegen lässt. Schlafe drüber, und mache an einem anderen Tag
weiter. Auf diese Weise lösen sich viele Probleme von allein – besonders Pro-
grammierprobleme.

1.3 Wer dieses Buch lesen sollte

Dieses Buch ist für jeden geschrieben, der sich für das Programmieren interessiert,
ganz egal, ob man nun Kind oder Erwachsener ist, wenn man zum ersten Mal
programmiert. Wenn man lernen will, wie man seine eigene Software schreibt,
anstatt nur von anderen entwickelte Programme zu nutzen, ist Python kinder-
leicht ein toller Einstieg.
Einleitung

In den folgenden Kapiteln erfährst Du, wie man Python installiert, die
Python-Shell startet, einfache Berechnungen anstellt, Text auf den Bildschirm
bekommt und Listen erstellt. Du lernst, wie man einfache Fallunterscheidungen
mit if-Anweisungen und for-Schleifen durchführt. (Und natürlich erfährst Du,
was if-Anweisungen und for-Schleifen eigentlich sind!) Du erfährst, wie man
Code mit Funktionen wiederverwendet. Du lernst die Grundlagen von Klassen
und Objekten kennen und bekommst Beschreibungen der vielen in Python einge-
bauten Funktionen und Module.

Es gibt Kapitel über einfache und fortgeschrittene Turtle-Grafiken und über
die Benutzung des Moduls tkinter, um auf dem Computerbildschirm zu zeich-
nen. Am Ende vieler Kapitel gibt es Programmier-Puzzles mit unterschiedlichen
Schwierigkeitsgraden, die dabei helfen, das gerade Gelernte zu verfestigen. Sie
bieten Dir auch die Möglichkeit, selbst kleine Programme zu schreiben.

Wenn Du Dir die Grundlagen des Programmierens angeeignet hast, wirst Du
lernen, wie Du Deine eigenen Spiele schreiben kannst. Du wirst zwei grafische
Spiele entwickeln und etwas über Kollisionsdetektion, Events und diverse Anima-
tionstechniken erfahren.

Die meisten Beispiele in diesem Buch benutzen die IDLE-Shell (Integrated
DeveLopment Environment; integrierte Entwicklungsumgebung) von Python.
IDLE bietet Syntax-Markierung, eine Kopieren- und Einfügen-Funktionalität (so,
wie Du es von anderen Anwendungen kennst) und ein Editor-Fenster, in dem Du
Deinen Code für den späteren Gebrauch speichern kannst. IDLE ist daher eine
Entwicklungsumgebung zum Experimentieren und hat auch ein bisschen was von
einem Text-Editor. Die Beispiele funktionieren genauso gut in der Standard-Kon-
sole und in einem üblichen Text-Editor, aber die Syntax-Markierung und die
benutzerfreundlichere Umgebung von IDLE helfen Dir, den Code schneller zu
verstehen. Deshalb wird im ersten Kapitel erklärt, wie man IDLE einrichtet.

1.4 Was in diesem Buch steht

Hier ist ein kurzer Überblick, was Dich in den einzelnen Kapiteln erwartet:

■ Kapitel 2 ist eine Einführung in das Programmieren. Außerdem findest Du
Anleitungen zur ersten Installation von Python.

■ Kapitel 3 führt einfache Berechnungen und Variablen ein.
■ Kapitel 4 erklärt einige der grundlegenden Python-Elemente, wie etwa

Strings, Listen und Tupel.
■ Kapitel 5 bietet Dir einen Vorgeschmack auf das Modul turtle. Wir springen

dabei von den Grundlagen des Programmierens zum Bewegen einer Schild-
kröte (engl. turtle, die aber hier die Form eines Pfeils hat) über den Bild-
schirm.

■ Kapitel 6 behandelt die Varianten der Bedingungen und if-Anweisungen, und
Kapitel 7 macht bei den for- und while-Schleifen weiter.
Was in diesem Buch steht 3

4

■ In Kapitel 8 beginnen wir mit der Benutzung und Erstellung von Funktionen,
und in Kapitel 9 geht es um Klassen und Objekte. Wir decken in diesen beiden
Kapiteln so viel von den grundsätzlichen Prinzipien der Programmiertechni-
ken ab, dass wir in den weiteren Kapiteln zur Spiele-Entwicklung übergehen
können. Von dort an wird es ein bisschen komplizierter.

■ Kapitel 10 stellt die meisten der eingebauten Funktionen von Python vor, und
Kapitel 11 macht mit ein paar Modulen (die im Prinzip Behälter voller nützli-
cher Funktionalität sind) weiter, die automatisch mit Python installiert wur-
den.

■ Kapitel 12 kehrt zum turtle-Modul zurück, da Du jetzt lernst, mit komplexe-
ren Formen umzugehen. Kapitel 13 geht zum Modul tkinter über – und
damit zu fortgeschritteneren grafischen Kreationen.

■ In den Kapiteln 14 und 15 programmieren wir unser erstes Spiel, »Bounce!«,
das auf dem Erlernten aus den vorigen Kapiteln aufbaut.

■ In den Kapiteln 16 bis 19 programmieren wir unser zweites Spiel: »Mr. Stick
– Man rennt zum Ausgang.« In den Spieleentwicklungs-Kapiteln können die
Dinge aus dem Ruder laufen. Wenn nichts mehr geht, lädst Du den Code von
der Website zu diesem Buch (www.dpunkt.de/python) herunter und ver-
gleichst Deinen Code mit den funktionierenden Beispielen von dort.

■ Im Nachwort fassen wir das Gelernte mit einem Blick auf PyGame und
andere beliebte Programmiersprachen zusammen.

■ Zum Schluss sind im Anhang noch einmal alle Python-Schlüsselwörter genau
erklärt, und im Glossar findest Du alle Definitionen der Programmierbegriffe,
die in diesem Buch verwendet werden.

1.5 Die Website zum Buch

Wenn Du meinst, dass Du während des Lesens Hilfe brauchst, kannst Du die
Website www.dpunkt.de/python aufsuchen, wo Du Downloads für alle Beispiele
in diesem Buch und noch mehr Programmier-Puzzles findest. Du findest dort
auch die Lösungen für alle Programmier-Puzzles in diesem Buch, falls Du nicht
mehr weiter weißt oder Deine Programme überprüfen möchtest.

1.6 Viel Vergnügen!

Vergiss beim Durcharbeiten dieses Buches nie, dass Programmieren Spaß machen
kann. Sieh es nicht als Arbeit an: Das Programmieren ist eine Möglichkeit, lustige
Spiele oder Anwendungen zu erzeugen, die Du mit Deinen Freunden oder ande-
ren teilen kannst.

Programmieren zu lernen ist ein tolles Training fürs Gehirn, und die Ergeb-
nisse können sehr bereichernd sein. Aber vor allem gilt: Egal was Du tust, hab
Spaß dabei!
Einleitung

Teil I
Programmieren

lernen
5

6

2
Nicht alle Schlangen schlängeln sich
Ein Computerprogramm ist eine Gruppe von Anweisungen, die einen Computer
dazu bringen, irgendetwas Bestimmtes zu machen. Es geht uns hier nicht um die
physischen Bestandteile eines Computers, also die Drähte, Mikrochips, Karten,
die Festplatte usw., sondern um die verborgenen Dinge, die auf dieser Hardware
laufen. Ein Computerprogramm, das ich meist einfach nur Programm nenne, ist
diese Gruppe von Befehlen, die der dummen Hardware sagt, was sie zu tun hat.
Die Software ist eine Sammlung von Computerprogrammen.

Ohne Computerprogramme würde fast jedes Gerät, das wir täglich nutzen,
entweder gar nicht funktionieren oder wäre weit weniger nützlich. In der einen
oder anderen Form steuern Computerprogramme nicht nur Deinen Computer,
sondern auch Videospiele, Mobiltelefone und Navigationsgeräte in Autos. Auch
bei weniger offensichtlichen Dingen wie Flachbild-Fernsehern und deren Fernbe-
dienungen sowie modernen Radios, DVD-Playern, Herden und einigen Kühl-
schränken übernimmt eine Software die Steuerung. Sogar Automotoren, Ampeln,
die Straßenbeleuchtung, Zugsignale, elektronische Anzeigetafeln und Aufzüge
werden von Programmen geregelt.

Programme sind ein bisschen wie Gedanken. Wenn Du keine Gedanken hät-
test, würdest Du wahrscheinlich nur auf dem Boden sitzen und auf Dein T-Shirt
sabbern. Dein Gedanke »Stehe auf!« ist eine Anweisung, die Deinem Körper sagt,
dass er aufstehen soll. Genauso sagen Computerprogramme dem Computer, was
er zu tun hat.
7

8

Wenn Du weißt, wie man Computerprogramme schreibt, kannst Du allerlei
nützliche Dinge anstellen. Sicherlich kannst Du dann nicht direkt Programme
schreiben, die Autos, Ampeln oder Deinen Kühlschrank steuern, aber Du kannst
damit Webseiten erzeugen, Deine eigenen Spiele programmieren oder Dir ein Pro-
gramm schreiben, das Dir bei den Hausaufgaben hilft.

2.1 Ein paar Bemerkungen zum Thema Sprache

Wie wir Menschen auch benutzen Computer verschiedene Sprachen, um zu kom-
munizieren – nämlich Programmiersprachen. Eine Programmiersprache ist ein-
fach eine bestimmte Art, mit dem Computer zu reden – eine Art, Anweisungen zu
benutzen, die sowohl der Mensch als auch der Computer verstehen.

Es gibt Programmiersprachen, die nach Leuten benannt wurden (z.B. Ada
und Pascal), solche, die Abkürzungen darstellen (z.B. BASIC und FORTRAN)
und sogar solche, die wie Python nach Fernsehsendungen benannt wurden.

Ja, die Programmiersprache Python wurde nach der Sendung Monty Python’s
Flying Circus benannt und nicht nach der Python-Schlange.

Eine ganze Reihe von Eigenschaften der Programmiersprache Python machen sie
für Anfänger besonders geeignet. Die wichtigste Eigenschaft ist, dass Du mit
Python ziemlich schnell einfache, aber wirkungsvolle Programme schreiben
kannst. Python verwendet nicht viele dieser komplizierten Zeichen, wie
geschweifte Klammern ({ }), Doppelkreuze (#) oder Dollarzeichen($), die andere
Programmiersprachen viel schwerer zu lesen machen und daher auf Anfänger
abschreckend wirken.

2.2 Python installieren

Die Installation von Python ist sehr unkompliziert. Wir gehen hier die Schritte der
Installation in Windows 7, MacOSX und Ubuntu durch. Beim Installieren von
Python legst Du Dir auch eine Verknüpfung zum Programm IDLE an. Das ist die
integrierte Entwicklungsumgebung, in der Du später Deine Programme schreiben
kannst.

Achtung!

Monty Python’s Flying Circus war eine britische Comedy-Sendung, die in den 1970er-Jahren
das erste Mal ausgestrahlt wurde. Sie ist bis heute bei einigen sehr beliebt. Die Show
enthielt Sketche wie »The Ministry of Silly Walks«, »The Fish­Slapping Dance« und »The
Cheese Shop« (in dem überhaupt kein Käse verkauft wurde). Mittlerweile sind Monty
Python wohl durch ihre Spielfilme »Das Leben des Brian« und »Die Ritter der Kokosnuss«
bekannter.
Nicht alle Schlangen schlängeln sich

Falls Python schon auf Deinem Computer installiert ist, kannst Du zu
Abschnitt 2.3, weiterblättern.

Python unter Windows 7 installieren

Um Python für Microsoft Windows zu installieren, gehst Du mit Deinem Browser
auf http://www.python.org und lädst Dir den aktuellen Windows-Installer für
Python 3 herunter. Suche nach dem Abschnitt im Menü, der sich Quick Links
nennt:

Nachdem Du den Windows-Installer heruntergeladen hast, machst Du einen
Doppelklick auf sein Icon und folgst dann den Anweisungen, um Python an sei-
nem voreingestellten Speicherort wie folgt zu installieren:

1. Wähle Install for all Users, und klicke unten auf Next.
2. Lasse den eingestellten Pfad so, wie er ist, notiere Dir aber den Namen des

Installationpfades (vermutlich C:\Python32 oder C:\Python33). Klicke auf
Next.

Am Ende dieses Vorgangs solltest Du einen Python-3-Eintrag in Deinem Start-
Menü haben:

Achtung!

Welche Python-Version genau Du herunterlädst, ist nicht entscheidend, solange vorne
eine 3 steht.
Python installieren 9

10
Als Nächstes machst Du Folgendes, um Dir eine Verknüpfung auf dem Desktop
anzulegen:

1. Mache einen Rechtsklick auf Deinem Desktop, und wähle im Kontextmenü
Neu Verknüpfung.

2. Im nun folgenden Dialogfenster, wo es heißt Geben Sie den Speicherort des
Elementes ein (achte darauf, dass der Pfad der gleiche ist, den Du vorher no-
tiert hast) gibst Du Folgendes ein:

c:\Python32\Lib\idlelib\idle.pyw –n

Das Dialogfenster sollte jetzt so aussehen:

3. Klicke auf Weiter, um zum nächsten Dialogfenster zu gelangen.
4. Als Namen gibst Du IDLE ein und klickst auf Fertig stellen, um die Ver-

knüpfung zu erstellen.

Jetzt kannst Du zu »Wenn Du Python installiert hast« auf Seite 10 weiterblättern.
Nicht alle Schlangen schlängeln sich

Python in MacOSX installieren

Falls Du einen Mac benutzt, solltest Du bereits eine Version von Python vorfin-
den. Dabei handelt es sich aber wahrscheinlich um eine ältere Version. Um ganz
sicherzugehen, dass Du die aktuelle Version hast, gehst Du mit Deinem Browser
auf http://www.python.org/getit/ und lädst Dir den aktuellen Installer für Mac
herunter.

Es gibt dort zwei verschiedene Installer. Welchen Du herunterladen solltest,
hängt von der MacOSX-Version ab, die Du benutzt (um das herauszufinden,
klickst Du in der obersten Menüleiste auf das Apple-Symbol und gehst auf Über
diesen Mac.) Wähle dann wie folgt den Installer:

■ Wenn Du eine MacOSX-Version zwischen 10.3 und 10.6 hast, lädst Du die
32-Bit-Version von Python 3 für i386/PPC herunter.

■ Wenn Du die MacOSX-Version 10.6 oder eine höhere hast, lädst Du die
64-Bit/32-Bit-Version von Python 3 für x86-64/i386 herunter.

Sobald Du die Datei heruntergeladen hast (sie wird das Suffix .dmg haben),
machst Du einen Doppelklick darauf. Danach siehst Du ein Fenster mit den
Inhalten dieser Datei.

In diesem Fenster doppelklickst Du auf Python.mpkg und folgst dann den
Anweisungen beim Installieren der Software. Du wirst aufgefordert, Dein Admi-
nistrator-Kennwort einzugeben, bevor sich Python installiert. (Du hast kein
Administrator-Kennwort? Dann müssen es vielleicht Deine Eltern eingeben.)

Als Nächstes musst Du ein Skript zum Desktop hinzufügen, um Pythons
IDLE-Anwendung zu starten:

1. Klicke auf das Spotlight-Icon, die kleine Lupe ganz oben rechts in der Ecke
des Bildschirms.

2. In die eingeblendete Zeile gibst Du Automator ein.
3. Klicke auf die Anwendung, die wie ein Roboter aussieht, sobald sie im

Menü auftaucht. Sie befindet sich entweder im Abschnitt Top-Treffer oder
unter Programme.

4. Sobald der Automator geöffnet ist, wähle die Vorlage Programm.
Python installieren 11

12
5. Klicke auf Auswählen, um weiterzugehen.
6. In der Liste der Aktionen suchst Du nach Shell-Skript ausführen und be-

wegst es dann auf die leere Fläche rechts. Das sollte in etwa so aussehen:
Nicht alle Schlangen schlängeln sich

7. Im Textfeld siehst Du das Wort cat. Markiere das Wort, und ersetze es durch
den folgenden Text (alles von open bis –n, und Du musst vielleicht den Pfad je
nach der Version von Python, die Du installiert hast, ändern):

open -a "/Applications/Python 3.3/IDLE.app“ --args -n

8. Gehe auf Datei Speichern, und gib IDLE als Dateinamen an.
9. Wähle im Speicherdialog als Ort den Schreibtisch, und klicke auf Sichern.

Jetzt kannst Du zu Seite 10, »Wenn Du Python installiert hast«, gehen und mit
Python loslegen.

Python in Ubuntu installieren

Python ist bei der Ubuntu-Distribution schon vorinstalliert, aber es könnte sich
dabei um eine ältere Version handeln. Um Python 3 in Ubuntu 12.x zu installie-
ren, führe folgende Schritte durch:

1. Klicke in der Seitenleiste auf den Button für das Ubuntu-Software-Center.
(Das ist das Icon, das wie eine orangefarbene Tasche aussieht – falls Du es
nicht siehst, kannst Du auch auf den Dash-Startseite-Button klicken und in
das Suchfeld Software eingeben.)

2. Gib im Suchfeld ganz oben rechts im Software-Center Python ein.
3. In der Liste der angebotenen Software wählst Du die aktuelle Version von

IDLE, also in diesem Fall IDLE (using Python 3.3), aus.
Python installieren 13

14
4. Klicke auf Installieren.
5. Um die Software zu installieren, gibst Du Dein Administrator-Passwort ein

und klickst dann auf Authentifizieren. (Du hast kein Administrator-Kenn-
wort? Dann müssen es vielleicht Deine Eltern eingeben.)

Jetzt, da Du die aktuelle Version von Python installiert hast, wollen wir es einmal
ausprobieren.

2.3 Wenn Du Python installiert hast

Jetzt solltest Du ein Icon auf Deinem Windows-
oder MacOSX-Schreibtisch respektive Desktop
haben, das mit IDLE beschriftet ist. Wenn Du
Ubuntu nutzt, solltest Du auf der Dash-Startseite
unter Anwendungen IDLE (using Python 3.3)
(oder eine spätere Version) finden.

Mache einen Doppelklick auf das Icon, oder
wähle die Menü-Option. Danach sollte dieses
Fenster erscheinen:

Dies ist die Python-Shell, die zur integrierten Enwicklungsumgebung von Python
gehört. Die drei Größer-als-Zeichen (>>>) nennt man den Prompt.

Lasst uns nun einige Befehle hinter dem Prompt eingeben. Wir fangen mit
diesem hier an:

>>> print("Hallo Welt!")

Achtung!

Bei einigen Ubuntu-Versionen siehst Du vielleicht nur Python (v.3.3) im Hauptmenü (statt
IDLE). Dies kannst Du dann stattdessen installieren.
Nicht alle Schlangen schlängeln sich

Achte darauf, dass Du die beiden Anführungsstriche oben (" ") mit eingibst. Drü-
cke dann auf die ENTER-Taste auf Deiner Tastatur. Wenn Du den Befehl korrekt
eingegeben hast, solltest Du so etwas sehen:

>>> print("Hallo Welt!")
Hallo Welt!
>>>

Der Prompt sollte danach wieder erscheinen, damit Du
weißt, dass Python wieder bereit ist, weitere Befehle zu
empfangen.

Glückwunsch! Du hast soeben Dein erstes Python-
Programm geschrieben. Das Wort print gehört zu der
Gruppe von Python-Befehlen, die man Funktionen nennt.
Die Funktion print gibt alles auf dem Bildschirm aus,
was zwischen den Anführungsstrichen steht. Du hast also
dem Computer gesagt, dass er die Worte »Hallo Welt!«
anzeigen soll – eine Anweisung also, die Du genauso ver-
stehst wie auch der Computer.

2.4 Deine Python-Programme sichern

Python-Programme wären nicht sehr nützlich, wenn man sie jedes Mal wieder
neu schreiben müsste, wenn man sie benutzen möchte. Außerdem müsste man sie
auch noch ausdrucken, um eine Vorlage fürs nächste Mal zu haben.

Natürlich ist es kein Problem, kleine Programme neu zu schreiben, aber
große Programme, wie etwa eine Textverarbeitung, können Millionen von Pro-
grammzeilen enthalten. Wenn Du die ausdrucken würdest, hättest Du weit über
10.000 Seiten. Stell Dir nur einmal vor, Du willst diesen riesigen Papierstapel
nach Hause tragen. Da kannst Du nur hoffen, dass kein heftiger Windstoß kommt.

Zum Glück können wir unsere Programme für den späteren Gebrauch spei-
chern. Um ein neues Programm zu speichern, öffne IDLE und gehe auf File
New Window. Es öffnet sich dann ein neues Fenster, das über der Menüleiste mit
Untitled (ohne Titel) bezeichnet ist.

Gib nun folgenden Code in das neue Shell-Fenster ein:

print("Hallo Welt!")

Jetzt gehst Du im Menü auf File Save. Sobald Du aufgefordert wirst, einen
Dateinamen zu vergeben, gibst Du Hallo.py ein und speicherst die Datei auf Dei-
nem Desktop. Dann gehst Du in diesem neuen Fenster im Menü auf Run Run
Module. Mit etwas Glück läuft nun Dein gespeichertes Programm und sieht in
etwa so aus:
Deine Python-Programme sichern 15

16
Wenn Du nun das Shell-Fenster schließt, das mit
Hallo.py beschriftete Fenster aber offen lässt und
dort wieder auf Run Run Module gehst, sollte
das Shell-Fenster wieder auftauchen. (Um die
Python-Shell wieder zu öffnen, ohne dass das
Programm läuft, gehe auf Run Python Shell.)

Nach der Ausführung des Codes wirst Du ein
neues Icon auf Deinem Desktop finden, das
Hallo.py heißt. Wenn Du darauf doppelklickst, erscheint ganz kurz ein schwarzes
Fenster. Was ist da passiert?

Du siehst kurz die Python-Eingabeaufforderung (ähnlich wie die Shell). Sie
gibt »Hallo Welt!« aus und wird sofort wieder geschlossen. Dies würdest Du
sehen, wenn Du die Augen eines Superhelden hättest und im Fenster erkennen
könntest, was darin zu sehen ist:
Nicht alle Schlangen schlängeln sich

Zusätzlich zu den Menüs kannst Du auch Tastaturkürzel benutzen, um ein neues
Shell-Fenster zu erzeugen, eine Datei zu speichern und um ein Programm laufen
zu lassen:

■ Unter Windows und Ubuntu drückst Du Ctrl-N für ein neues Shell-Fenster,
Ctrl-S zum Speichern Deiner Datei nach dem Bearbeiten und F5, um Dein
Programm laufen zu lassen.

■ Unter MacOSX drückst Du -N für ein neues Shell-Fenster, -S zum Spei-
chern Deiner Datei nach dem Bearbeiten und F5 (eventuell brauchst Du noch
die Taste fn dazu), um Dein Programm laufen zu lassen.

2.5 Was Du gelernt hast

In diesem Kapitel sind wir ganz einfach mit dem Programm »Hallo Welt!« einge-
stiegen – dem Programm, mit dem fast jeder anfängt, wenn er das Programmieren
erlernt. Im nächsten Kapitel stellen wir mit der Python-Shell ein paar nützlichere
Dinge an.
Was Du gelernt hast 17

18
 Nicht alle Schlangen schlängeln sich

3
Berechnungen und Variablen
Du hast Python installiert und weißt, wie man die Python-Shell startet. Jetzt
kannst Du etwas damit machen. Wir fangen mit ein paar einfachen Berechnungen
an und wenden uns dann den Variablen zu. Variablen sind eine Möglichkeit,
Dinge in einem Computerprogramm zu speichern. Sie helfen uns dabei, nützliche
Programme zu schreiben.

3.1 Mit Python rechnen

Wenn jemand Dich jemand nach dem Produkt einer Multiplikation (wie z.B.
8×3,57) fragt, würdest Du normalerweise zum Taschenrechner greifen oder es
auf dem Papier schriftlich ausrechnen. Du kannst aber auch die Python-Shell ver-
wenden, um die Berechnung durchzuführen. Wir machen das jetzt einmal.

Starte die Python-Shell durch Doppelklick auf das IDLE-Icon oder, wenn Du
Ubuntu nutzt, auf das IDLE-Icon im Programme-Menü. Nach dem Prompt gibst
Du diese Gleichung ein:

>>> 8 * 3.57
28.56

Achtung: Wenn Du eine Multiplikation in Python eingibst, musst Du das Stern-
zeichen (*) statt eines Multiplikationszeichens (x) verwenden. Als Dezimaltrenn-
zeichen musst Du in Python den Punkt (.) nehmen, kein Komma (,).

Wie wäre es, wenn wir jetzt eine Gleichung eingeben, die noch nützlicher ist?
19

20
Stell Dir vor, Du findest beim Graben im Garten eine Tasche mit 20 Gold-
münzen. Am nächsten Tag schleichst Du Dich in den Keller und steckst die Mün-
zen in die dampfgetriebene Kopiermaschine, die Dein Großvater erfunden hat
(glücklicherweise passen genau 20 Münzen hinein). Du hörst ein Rollen und
Stampfen, und nach ein paar Stunden kommen 10 weitere glänzende Goldmün-
zen heraus.

Wie viele Goldmünzen hättest Du in Deiner Schatzkiste, wenn Du das ein
Jahr lang jeden Tag machen würdest? Auf dem Papier gerechnet, könnte das so
aussehen:

10 × 365 = 3650
20 + 3650 = 3670

Natürlich könnte man diese Berechnungen mit einem Taschenrechner oder
schriftlich ganz einfach durchführen, aber in der Python-Shell geht das genauso
gut. Als Erstes multiplizieren wir die 10 Münzen mit 365 Tagen eines Jahres und
bekommen 3650. Danach zählen wir unsere 20 Original-Münzen dazu und
erhalten 3670.

>>> 10 * 365
3650
>>> 20 + 3650
3670

Was wäre nun aber, wenn eine Elster Deine glänzenden Goldmünzen in Deinem
Schlafzimmer entdecken würde und jede Woche hineingeflogen käme und dabei
jeweils drei Münzen stehlen würde? Wie viele Münzen hättest Du dann nach
einem Jahr? So sieht die Berechnung in der Shell aus:

>>> 3 * 52
156
>>> 3670 - 156
3514

Als Erstes multiplizieren wir 3 Münzen mit der Anzahl der Wochen eines Jahres,
also 52. Das Ergebnis ist 156. Diese Zahl ziehen wir von unserer Gesamtanzahl
von Münzen nach einem Jahr (3670) ab. So haben wir 3514 Münzen nach einem
Jahr.

Dies war ein sehr einfaches Programm. In diesem Buch wirst Du lernen, wie
man diese Konzepte beim Programmeschreiben immer weiter ausbaut und noch
nützlichere Programme schreibt.
Berechnungen und Variablen

Operatoren in Python

In Python kann man Multiplikationen, Additionen, Subtraktionen und Divisionen
in der Shell durchführen, aber auch andere mathematische Operationen, die wir
jetzt nicht besprechen. Die grundlegenden Symbole, die Python für mathematische
Operationen benutzt, heißen Operatoren. Sie sind in Tabelle 3–1 aufgeführt

Tab. 3–1 Grundlegende Operatoren in Python

Der Vorwärtsschrägstrich (/) wird bei Divisionen verwen-
det, da er an den Bruchstrich erinnert. Wenn Du zum Bei-
spiel 100 Piraten und 20 große Fässer hättest und wissen
möchtest, wie viele Piraten Du in ein Fass stecken müss-
test, könntest Du 100 Piraten durch 20 Fässer teilen
(100÷20) und 100/20 in die Shell eingeben. Der Vor-
wärtsschrägstrich ist derjenige, der nach rechts fällt. (Du
findest ihn auf der Tastatur über der Ziffer 7.)

Die Rangfolge der Operationen

Um die Rangfolge von Operationen in einer Programmiersprache zu bestimmen,
benutzen wir Klammern. Als Operation bezeichnet man alles, was Operatoren
benutzt. Multiplikation und Division haben einen höheren Rang als Addition
und Subtraktion, sie werden also als Erstes ausgeführt. Oder anders gesagt: Wenn
Du in Python eine Gleichung eingibst, werden die Multiplikationen und Divisio-
nen vor den Additionen und Subtraktionen ausgeführt.

Im folgenden Beispiel werden die Zahlen 30 und 20 zuerst multipliziert, und
zu dem Produkt wird dann die Zahl 5 addiert.

>>> 5 + 30 * 20
605

Diese Gleichung bedeutet: »Multipliziere 30 mit 20 und addiere zum Produkt 5
dazu.« Das Ergebnis ist 605. Die Reihenfolge der Operationen können wir durch
Klammern um die ersten beiden Zahlen ändern, und zwar so:

>>> (5 + 30) * 20
700

Symbol Operation

+ Addition

- Subtraktion

* Multiplikation

/ Division
Mit Python rechnen 21

22
Das Ergebnis dieser Gleichung ist jetzt 700 (und nicht mehr 605), da die Klam-
mern Python sagen, dass es zuerst die Operation innerhalb der Klammer ausfüh-
ren soll und erst danach die Operation außerhalb der Klammer. Dieses Beispiel
sagt also: »Addiere 5 zu 30, und multipliziere die Summe mit 20.«

Klammern können auch verschachtelt werden. Das heißt, dass Klammern
innerhalb von Klammern verwendet werden können, z.B. so:

>>> ((5 + 30) * 20) / 10
70.0

In diesem Fall berechnet Python erst, was innerhalb der innersten Klammern
steht, danach die Anweisung in den äußeren Klammern und zum Schluss die
Division: »Addiere 5 zu 30, multipliziere die Summe mit 20, und teile das Pro-
dukt durch 10.« So läuft es ab:

■ 5 addiert zu 30 ergibt 35.
■ 35 mit 20 multipliziert, ergibt 700.
■ 700 durch 10 dividiert, ergibt am Ende 70.

Ohne Klammern wäre das Ergebnis ein klein wenig anders:

>>> 5 + 30 * 20 / 10
65.0

In diesem Fall wird 30 erst mit 20 multipliziert (ergibt 600) und 600 durch 10
geteilt (ergibt 60). Zum Schluss wird 5 addiert, und es kommt 65 dabei heraus.

3.2 Variablen sind wie Bezeichnungen

Beim Programmieren steht das Wort Variable für einen Platz, an dem Informatio-
nen wie Zahlen, Text, Listen von Zahlen und Text usw. gespeichert werden. Eine
andere Art, sich eine Variable vorzustellen, ist die, dass sie eine Bezeichnung für
etwas ist.

Um zum Beispiel eine Variable mit dem Namen fred zu erzeugen, nehmen wir
ein Gleichheitszeichen (=) und sagen Python, für welche Information die Variable
eine Bezeichnung sein soll. Hier erzeugen wir jetzt die Variable fred und sagen,
dass sie für die Zahl 100 steht (was nicht heißt, dass eine andere Variable nicht
den gleichen Wert haben könnte):

>>> fred = 100

Achtung!

Achte darauf, dass Multiplikation und Division immer vor Addition und Subtraktion durch-
geführt werden (»Punktrechnung geht vor Strichrechnung«) – es sei denn, dass Klammern
die Rangfolge der Operationen regeln.
Berechnungen und Variablen

Um herauszufinden, für welchen Wert eine Variable steht, gibst Du in der Shell den
Befehl print und danach den Namen der Variable in Klammern ein, und zwar so:

>>> print(fred)
100

Wir können Python auch sagen, dass die Variable fred geändert werden soll,
sodass sie für etwas anderes steht. So zum Beispiel ändert man fred in die Zahl 200:

>>> fred = 200
>>> print(fred)
200

In der ersten Zeile sagen wir, dass fred für die Zahl 200 steht. In der zweiten Zeile
fragen wir, für was fred steht, um uns die Änderung bestätigen zu lassen. Python
gibt das Ergebnis in der letzten Zeile aus.

Wir können auch mehr als eine Bezeichnung (mehr als eine Variable) für die
gleiche Sache verwenden:

>>> fred = 200
>>> john = fred
>>> print(john)
200

In diesem Beispiel sagen wir Python, dass wir den Namen (oder die Variable) john
benutzen wollen, um die gleiche Sache damit zu bezeichnen wie mit fred. Dazu
setzen wir einfach ein Gleichheitszeichen zwischen john und fred.

Natürlich ist fred wahrscheinlich kein sehr guter Name für eine Variable, da
er kaum etwas darüber aussagt, wofür die Variable gebraucht wird. Statt fred
nennen wir unsere Variable jetzt Anzahl_der_Münzen:

>>> Anzahl_der_Münzen = 200
>>> print(Anzahl_der_Münzen)
200

So ist klar, dass wir von 200 Münzen reden.
Die Namen der Variablen können aus Buchstaben, Zahlen und dem Unter-

strich (_) bestehen, dürfen aber nicht mit einer Zahl beginnen. Man kann alles –
von einzelnen Buchstaben (wie a) bis zu langen Sätzen – als Variablennamen ver-
wenden.

Variablennamen dürfen aber keine Leerzeichen enthalten. Benutze daher
einen Unterstrich, um Wörter zu trennen.

Manchmal, wenn man etwas Schnelles macht, sind kurze Variablennamen
am besten. Der Name, für den Du Dich entscheidest, sollte so aussagekräftig sein,
wie er gerade sein muss.

Jetzt, da Du weißt, wie man Variablen erzeugt, schauen wir uns an, wie man
sie benutzt.
Variablen sind wie Bezeichnungen 23

24
3.3 Variablen benutzen

Erinnerst Du Dich an die Gleichung, mit der wir herausgefunden haben, wie viele
Münzen Du nach einem Jahr hast, wenn die komische Erfindung Deines Groß-
vaters im Keller auf wundersame Weise neue Münzen kopiert? Wir hatten diese
Rechnungen (nachdem die diebische Elster auftauchte):

>>> 20 + 10 * 365
3670
>>> 3 * 52
156
>>> 3670 - 156
3514

Wir können daraus eine einzige Programmzeile machen:

>>> 20 + 10 * 365 – 3 * 52
3514

Was wäre, wenn wir aus den Zahlen Variablen machen würden? Versuche doch
einmal, Folgendes einzugeben:

>>> gefundene_Münzen = 20
>>> kopierte_Münzen = 10
>>> gestohlene_Münzen = 3

Diese Eingaben erzeugen die Variablen gefundene_Münzen, kopierte_Münzen und
gestohlene_Münzen.

Jetzt geben wir die Gleichung noch einmal so ein:

>>> gefundene_Münzen + kopierte_Münzen * 365 - gestohlene Münzen * 52
3514

Wie Du siehst, ergibt dies das glei-
che Ergebnis. Was soll das Ganze
jetzt? Hier kommt die Magie der
Variablen ins Spiel. Was wäre,
wenn Du eine Vogelscheuche vor
Deinem Fenster aufstellst, und die
Elster jedes Mal nur noch zwei statt
drei Münzen stiehlt? Wenn wir eine Variable einsetzen, können wir die Variable,
die für diese Zahl steht, einfach ändern, sodass sie sich überall, wo sie in der Glei-
chung steht, ändert. Wir können die Variable gestohlene_Münzen in 2 ändern, in-
dem wir Folgendes eingeben:

>>> gestohlene_Münzen = 2
Berechnungen und Variablen

Wir können die Gleichung wie folgt kopieren und einfügen, um das Ergebnis zu
berechnen:

1. Wähle den Text, den Du kopieren möchtest, aus, indem Du mit der Maus
am Anfang der Zeile klickst und dann (halte die Maustaste weiter gedrückt)
bis zum Ende der Zeile ziehst. Danach sieht es aus wie hier:

2. Halte die Ctrl-Taste gedrückt (wenn Du einen Mac benutzt, ist es die
-Taste), und drücke gleichzeitig auf C um den ausgewählten Text zu kopie-

ren. (Ab jetzt sage ich dazu nur noch Ctrl-C.)
3. Klicke auf die letzte Prompt-Zeile (nach gestohlene_Münzen = 2).
4. Halte jetzt wieder die Ctrl-Taste gedrückt, und drücke gleichzeitig V, um den

ausgewählten und kopierten Text einzufügen. (Ab jetzt sage ich dazu nur
noch Ctrl-V.)

5. Drücke die Enter-Taste, um das neue Ergebnis zu sehen:

Ist das nicht viel einfacher, als die ganze Gleichung noch einmal einzugeben? Auf
jeden Fall!

Du kannst auch ausprobieren, andere Variablen zu ändern, und dann durch
Kopieren (Ctrl-C) und Einfügen (Ctrl-V) der Berechnung schauen, wie sich die
Änderungen bemerkbar machen. Es könnte ja sein, dass – wenn man zum richti-
Variablen benutzen 25

26
gen Zeitpunkt auf die Seitenteile der Erfindung Deines Großvaters haut – jedes
Mal 3 zusätzliche Münzen ausgespuckt werden und Du auf diese Weise nach
einem Jahr 4661 Münzen hast:

>>> kopierte_Münzen = 13
>>> gefundene_Münzen + kopierte_Münzen * 365 - gestohlene_Münzen * 52
4661

Es ist natürlich so, dass Variablen bei einer solch einfachen Gleichung immer
noch nur ein klein wenig nützlich sind. Sie sind noch nicht so richtig nützlich
geworden. Bis jetzt solltest Du Dir nur einfach merken, dass Variablen eine Mög-
lichkeit sind, Dinge zu bezeichnen, die man später wieder braucht.

3.4 Was Du gelernt hast

In diesem Kapitel hast Du gelernt, wie man einfache Gleichungen mit Python-
Operatoren erstellt und wie man mit Klammern die Rangfolge von Operationen
bestimmt (die Reihenfolge, nach der Python die Teile der Gleichung berechnet).
Anschließend haben wir Variablen erzeugt, um Werte zu bezeichnen, und diese
Variablen in unseren Berechnungen eingesetzt.
Berechnungen und Variablen

4
Strings, Listen, Tupeln und Maps
In Kapitel 3 haben wir ein paar einfache Berechnungen mit Python vorgenom-
men, und Du hast etwas über Variablen erfahren. In diesem Kapitel werden wir
mit einigen anderen Elementen von Python-Programmen arbeiten: Strings, Lis-
ten, Tupeln und Maps. Du wirst Strings benutzen, um Mitteilungen in Deinen
Programmen anzuzeigen (z.B. »Mache Dich bereit« und »Das Spiel ist aus« in
einem Spiel). Du wirst auch lernen, wie man mit Listen, Tupeln und Maps Samm-
lungen von Dingen speichert.

4.1 Strings

Unter Programmierern nennt man Text meist einen
String. Wenn man sich einen String (engl. für »Zei-
chenfolge«) als Ansammlung von Buchstaben vor-
stellt, ergibt der Begriff einen Sinn. Alle Buchstaben,
Zahlen und Symbole könnten ein String sein, ebenso
Deine Adresse. Auch das erste Python-Programm, das
wir in Kapitel 2 geschrieben haben, hat einen String
benutzt: »Hallo Welt!«
27

28
Strings erzeugen

In Python erzeugt man einen String, indem man den Text in Anführungszeichen
setzt. Wir können zum Beispiel unsere ansonsten sinnlose Variable fred aus Kapi-
tel 3 nutzen, um damit einen String zu bezeichnen:

fred = "Warum haben Gorillas große Nasenlöcher? Weil sie große Finger
haben!"

Um zu überprüfen, was die Variable fred enthält, können wir print(fred) einge-
ben:

>>> print (fred)
Warum haben Gorillas große Nasenlöcher? Weil sie große Finger haben!

Man kann auch vorne und hinten jeweils ein Apostroph setzen, um einen String
zu erzeugen:

>>> fred = 'Was ist rot und rosig? Rote Rosen!!!'
>>> print(fred)
Was ist rot und rosig? Rote Rosen!!!

Wenn Du aber versuchst, mehr als eine Zeile Text mit Apostrophen oder Anfüh-
rungszeichen einzuschließen, oder mit dem einen Zeichen anfängst und mit einem
anderen aufhörst, bekommst Du in der Python-Shell eine Fehlermeldung. Gib
zum Beispiel einmal folgende Zeile ein:

>>> fred = "Was ist lauter als ein Dinosaurier?

Du wirst dann dieses Ergebnis bekommen:

SyntaxError: EOL while scanning string literal

Dies ist eine Fehlermeldung, die sich über die Syntax beschwert, weil Du nicht die
Regel beachtet hast, nach der ein String mit einem Apostroph oder mit Anfüh-
rungszeichen beendet werden muss.

Mit Syntax ist die Anordung und Reihenfolge von Wörtern in einem Satz
oder – wie in diesem Fall – die Anordnung und Reihenfolge von Wörtern und
Symbolen in einem Programm gemeint.

SyntaxError heißt also,

■ dass Du etwas gemacht hast, was Python nicht erwartet hat, oder
■ dass Python etwas erwartet, was Du vergessen hast.

EOL steht für end-of-line (Ende der Zeile), was bedeutet, dass Python das Ende
der Zeile erreicht hat, ohne ein Anführungszeichen für das Beenden des Strings zu
finden.

Damit Du mehr als eine Zeile Text in Deinem String verwenden kannst, ver-
wendest Du drei Apostrophe (''') und drückst nach jeder Zeile die Enter-Taste:
Strings, Listen, Tupeln und Maps

>>> fred = '''Was ist lauter als ein Dinosaurier? Zwei Dinosaurier!'''

Jetzt lassen wir uns den Inhalt von fred anzeigen, um zu sehen, ob es funktioniert
hat:

>>> print(fred)
Was ist lauter als ein Dinosaurier?
Zwei Dinosaurier!

Wie man Probleme mit Strings meistert

Jetzt schaue Dir einmal dieses komische Beispiel für einen String an, der Python
zu einer Fehlermeldung bringt:

>>> komischer_String = 'Er sagte: "Heute ist's kalt auf'm Ku'damm."'
SyntaxError: invalid syntax

In der ersten Zeile wollen wir einen String erzeugen (bezeichnet mit der Variable
komischer_String), den wir zwischen zwei Apostrophe stellen. Aber im Satz ste-
cken auch Apostrophe in den Wörtern ist's, auf'm und Ku'damm. Zusätzlich gibt
es noch Anführungszeichen. Was für ein Chaos!

Du darfst nicht vergessen, dass Python selbst nicht so schlau ist wie ein
Mensch. Python fasst Er sagte: "Heute ist als String auf, und danach kommen ein
paar Schriftzeichen, die es nicht erwartet. Sobald Python Anführungsstriche oder
Apostrophe sieht, erwartet es einen String, der nach dem ersten Anführungszei-
chen bzw. Apostroph beginnt und nach dem nächsten in dieser Zeile aufhört. In
diesem Beispiel fängt der String mit einem Apostroph vor dem Wort Er an, und
für Python ist der String nach dem Apostroph nach dem t in ist's zu Ende. IDLE
markiert die Stelle, ab der die Dinge nicht mehr stimmen:

In der letzten Zeile teilt uns IDLE mit, welche Art von Fehler aufgetreten ist – in
diesem Fall ein Syntax-Fehler.

Wenn man statt der Apostrophe Anführungszeichen verwendet, gibt es
immer noch eine Fehlermeldung:
Strings 29

30
>>> komischer_String = "Er sagte: "Heute ist's kalt auf'm Ku'damm.""
SyntaxError: invalid syntax

Hier sieht Python nun einen String, der in Anführungszeichen eingeschlossen ist
und aus den Zeichen Er sagte: (und einem Leerzeichen) besteht. Alles, was
danach kommt (ab Heute), verursacht den Fehler:

Aus der Sicht von Python gehört das ganze Zeug, das danach kommt, nicht
dahin. Python sucht nach dem nächsten passenden Zeichen zur Markierung des
Strings (Anführungszeichen oder Apostroph) und weiß einfach nicht, was Du mit
all dem vorhast, was danach noch in derselben Zeile steht.

Der Ausweg besteht in der Markierung von
Strings, die über mehrere Zeilen gehen können.
Das sind die drei Apostrophe ('''), die wir schon
kennengelernt haben. Mit ihnen können wir
Anführungsstriche und Apostrophe innerhalb
unseres Strings verwenden, ohne dass es Fehler-
meldungen gibt. Solange wir in unserem String
keine drei Apostrophe verwenden, können wir ein
oder zwei Apostrophe und Anführungszeichen
verwenden, wie es uns gefällt. Die fehlerfreie Ver-
sion unseres Strings sieht also so aus:

>>> komischer_String = '''Er sagte: "Heute ist's kalt auf'm
Ku'damm."'''

Aber warte mal, da gibt es noch mehr. Wenn Du unbedingt statt der drei Apo-
strophe Deinen String in Apostrophe oder Anführungszeichen einschließen willst
und trotzdem darin Anführungszeichen und Apostrophe verwenden möchtest,
kannst Du vor jedes Anführungszeichen einen Rückwärtsschrägstrich (\) setzen.
Dies nennt man Escaping. Es ist ein Verfahren, um Python zu sagen »Ja, ich weiß,
dass ich Anführungsstriche in meinem String habe, aber ich möchte, dass Du sie
ignorierst, bis Du die Anführungsstriche am Ende siehst.«
Strings, Listen, Tupeln und Maps

Strings mit Escapes sind aber manchmal schwerer zu lesen, sodass es wahr-
scheinlich besser ist, mehrzeilige Strings zu verwenden. Trotzdem kann es ja ein-
mal sein, dass man Code-Schnipsel zu sehen bekommt, in denen diese Rück-
wärtsschrägstriche enthalten sind. Dann ist es gut zu wissen, wofür sie da sind.

Hier sind ein paar Beispiele, an denen Du siehst, wie das Escaping funktioniert:

>>> Apostroph_String =
'Er sagte: "Heute ist\'s kalt auf\'m Ku\'damm."'

>>> Anführungszeichen_String =
"Er sagte: \"Heute ist's kalt auf'm Ku'damm.\""

>>> print(Apostroph_String)
Er sagte: "Heute ist's kalt auf'm Ku'damm."
>>> print(Anführungszeichen_String)
Er sagte: "Heute ist's kalt auf'm Ku'damm."

In der ersten Zeile haben wir einen String mit Apostrophen erzeugt und vor
jedem Apostroph innerhalb des Strings einen Rückwärtsschrägstrich gesetzt. In
der zweiten Zeile haben wir einen String mit Anführungszeichen erzeugt und
den Rückwärtsschrägstrich vor die Anführungszeichen innerhalb des Strings
gestellt. In den Zeilen danach haben wir uns die Inhalte der gerade erzeugten
Variablen ausgeben lassen. Wie Du siehst, kommen die Rückwärtsschrägstriche
in der Ausgabe nicht mehr vor.

Werte in Strings einbetten

Wenn Du eine Nachricht anzeigen lassen möchtest, die den Inhalt einer Variable
enthält, kannst Du darin mit %s Werte einbetten. Das %s funktioniert wie eine
Markierung für einen Wert, den Du später noch hinzufügst. Nehmen wir an,
Python soll bei einem Spiel die Anzahl der Punkte errechnen oder speichern, und
wir wollen diese Punkte dann in einem Satz wie »Ich habe ____ Punkte erzielt«
einfügen. Dazu können wir mit %s die Stelle für den Wert im Satz markieren und
Python dann diesen Wert ausgeben lassen:

>>> Mein_Score = 1000
>>> Nachricht = 'Ich habe %s Punkte erreicht'
>>> print(Nachricht % Mein_Score)
Ich habe 1000 Punkte erreicht

Hier haben wir die Variable Mein_Score mit dem Wert 1000 erzeugt sowie die
Variable Nachricht mit einem String, der die Worte »Ich habe %s Punkte erreicht«
enthält. Dabei dient %s als Platzhalter für die Punktzahl.

In der nächsten Zeile rufen wir print(Nachricht) mit dem %-Zeichen auf, um
mit Python das %s gegen den in der Variable Mein_Score gespeicherten Wert auszu-
tauschen. Das Ergebnis beim Ausgeben dieser Nachricht ist Ich habe 1000 Punkte
Strings 31

32
erreicht. Für diesen Wert hätte man eigentlich keine Variable benötigt. Wir hät-
ten das gleiche Ergebnis auch mit print(Nachricht % 1000) bekommen.

Wir können auch andere Werte für den %s-Platzhalter einschleusen, indem
wir andere Variablen benutzen, wie in diesem Beispiel hier:

>>> Witztext = '%s: eine Vorrichtung zum Auffinden von Möbeln im
Dunklen'

>>> Körperteil1 = 'Knie'
>>> Körperteil2 = 'Schienbein'
>>> print(Witztext % Körperteil1)
Knie: eine Vorrichtung zum Auffinden von Möbeln im Dunklen
>>> print(Witztext % Körperteil2)
Schienbein: eine Vorrichtung zum Auffinden von Möbeln im Dunklen

Hier haben wir drei Variablen erzeugt. Die erste, Witztext,
steht für den String mit dem Platzhalter %s. Die anderen
Variablen sind Körperteil1 und Körperteil2. Wir können die
Variable Witztext ausgeben und wieder den Operator % ver-
wenden, um ihn gegen den Inhalt der Variablen Körperteil1
und Körperteil2 auszutauschen und unterschiedliche Nach-
richten zu erzeugen.

Du kannst auch mehr als einen Platzhalter in einem
String verwenden:

>>> Zahlen = 'Was sagte die Zahl %s zur Zahl %s? Schicker Gürtel!!'
>>> print(Zahlen % (0, 8))
Was sagte die Zahl 0 zur Zahl 8? Schicker Gürtel!!

Wenn Du mehr als einen Platzhalter verwendest, musst Du darauf achten, dass
Du die Austauschwerte, wie in diesem Beispiel, in Klammern setzt. Die Reihen-
folge der Werte ist dieselbe wie im String.

Strings multiplizieren

Wie viel ergibt 10 multipliziert mit 5? 50 natürlich. Aber wie viel ergibt 10 multi-
pliziert mit a? Hier ist die Antwort von Python auf diese Frage:

>>> print(10 * 'a')
aaaaaaaaaa

Python-Programmierer machen sich dies zunutze, um Strings nach einer
bestimmten Anzahl von Leerzeichen auszurichten, wenn sie z.B. Nachrichten in
einer Shell anzeigen lassen wollen. Wie wäre es, wenn wir einen Brief in der Shell
ausgeben? Wähle dazu File New Window, und gib folgenden Code ein:
Strings, Listen, Tupeln und Maps

Leerzeichen = ' ' * 35
print('%s Hinten Raus 12' % Leerzeichen)
print('%s 11156 Ostschnarchheim' % Leerzeichen)
print()
print()
print('Sehr geehrte Damen und Herren,')
print()
print('ich muss Ihnen bedauerlicherweise mitteilen, dass bei meinem')
print('Toilettenhäuschen einige Dachziegeln fehlen.')
print('Ich glaube, dass der Sturm sie letzte Nacht heruntergeweht
hat.')
print()
print('Mit freundlichen Grüßen,')
print('Max Maus')

Sobald Du den Code in das Shell-Fenster eingegeben hast, gehst Du auf File
Save As. Nenne Deinen Brief MeinBrief.py.

In der ersten Zeile dieses Beispiels haben wir die Variable Leerzeichen erzeugt, in
der wir das Leerzeichen mit 35 multipliziert haben. Anschließend haben wir diese
Variable in den nächsten zwei Zeilen verwendet, um den Text an der rechten Seite
in der Shell auszurichten.

Das Ergebnis der Anweisung print siehst Du unten:

Achtung!

Von jetzt an gilt: Wenn Du Save As: irgendeinDateiname.py und darüber eine Menge Code
siehst, musst Du auf File New Window gehen, den Code in das erscheinende Fenster
eingeben und dann anschließend speichern, wie wir es in diesem Beispiel gemacht haben.
Strings 33

34
Wir können die Multiplikation von Strings nicht nur zum Ausrichten benutzen,
sondern können uns den Bildschirm mit lustigen Mitteilungen vollschreiben las-
sen. Probier einmal dieses Beispiel aus:

>>> print(1000 * 'Matsch ')

4.2 Listen können mehr als Strings

Spinnenbeine, Froschzeh, Molchauge, Fledermausflügel,
Schneckenschleim und Schlangenhautschuppen sind auf
keiner alltäglichen Einkaufsliste (es sei denn, Du wärst
ein Zauberer), aber wir nutzen sie als unser erstes Bei-
spiel für die Unterschiede zwischen Strings und Listen.
Wir können diese Liste von Elementen mit einem String
wie diesem in der Variable Zaubererliste speichern:

>>> Zaubererliste = 'Spinnenbeine, Froschzeh, Molchauge,
Fledermausflügel, Schneckenschleim, Schlangenhautschuppen'
>>> print(Zaubererliste)
Spinnenbeine, Froschzeh, Molchauge, Fledermausflügel,
Schneckenschleim, Schlangenhautschuppen

Wir könnten aber ebenso eine Liste erzeugen, so eine Art magisches Python-
Objekt, das wir beeinflussen können. So sähen die Elemente als Liste geschrieben
aus:

>>> Zaubererliste = ['Spinnenbeine', 'Froschzeh', 'Molchauge',
'Fledermausflügel', 'Schneckenschleim', 'Schlangenhautschuppen']

>>> print(Zaubererliste)
['Spinnenbeine', 'Froschzeh', 'Molchauge', 'Fledermausflügel',
'Schnekkenschleim', 'Schlangenhautschuppen']

Eine Liste zu erzeugen erfordert etwas mehr Tippen als bei einem String, aber
man kann mit einer Liste mehr anfangen, da man sie beeinflussen kann. Wir
könnten zum Beispiel den dritten Posten der Zaubererliste (Molchauge) ausgeben
lassen, indem wir seine Position auf der Liste (die Indexposition) in eckige Klam-
mern ([]) setzen:

>>> print(Zaubererliste[2])
Molchauge

Häh? Ist das nicht der dritte Posten auf der Liste? Ja, aber die Liste beginnt mit
der Indexposition 0, sodass das erste Element die Position 0 hat, das zweite die
Position 1 und das dritte die Position 2. Das mag uns Menschen zwar wenig sinn-
voll erscheinen, den Computern dagegen schon.
Strings, Listen, Tupeln und Maps

Wir können ein Element einer Liste auch viel leichter ändern als in einem
String. Vielleicht brauchen wir ja anstelle des Molchauges eine Schlangenzunge.
So würden wir das mit unserer Liste machen:

>>> Zaubererliste[2] = 'Schlangenzunge'
>>> print(Zaubererliste)
['Spinnenbeine', 'Froschzeh', 'Schlangenzunge', 'Fledermausflügel',
'Schneckenschleim', 'Schlangenhautschuppen']

So haben wir das Element auf der Indexposition 2 von Molchauge in Schlangen-
zunge geändert.

Eine andere Möglichkeit besteht darin, sich
eine Auswahl der Elemente auf der Liste anzei-
gen zu lassen. Das machen wir, indem wir einen
Doppelpunkt in eckige Klammern setzen. Im
nächsten Beispiel gibst Du Folgendes ein, um
Dir das dritte bis fünfte Element der Liste
anzeigen zu lassen (alles vorzügliche Zutaten
für ein köstliches Sandwich):

>>> print(Zaubererliste[2:5])
['Schlangenzunge', 'Fledermausflügel', 'Schneckenschleim']

[2:5] zu schreiben, ist wie zu sagen: »Zeige mir das Element der Indexpositionen 2
bis (aber nicht einschließlich) 5 – oder, mit anderen Worten, die Elemente 2, 3
und 4.«

In Listen kann man alle möglichen Posten speichern, auch Zahlen:

>>> einige_Zahlen = [1, 2, 5, 10, 20]

Sie können genauso gut Strings beinhalten:

>>> einige_Strings = ['Wer', 'Wie', 'Wo', 'Warum']

Sie können aber auch sowohl Zahlen als auch Strings enthalten:

>>> Zahlen_und_Strings = ['Wer', 'hatte', 6, 'Angst', 'vor', 7,
'weil', 7, 8, 9]

>>> print(Zahlen_und_Strings)
['Wer', 'hatte', 6, 'Angst', 'vor', 7, 'weil', 7, 8, 9]

Und Listen können sogar andere Listen speichern:

>>> Zahlen = [1, 2, 3, 4]
>>> Strings = ['Ich', 'stieß', 'meinen', 'Zeh', 'und', 'jetzt', 'tut',

'er', 'weh']
>>> MeineListe = [Zahlen, Strings]
>>> print(MeineListe)
[[1, 2, 3, 4], ['Ich', 'stieß', 'meinen', 'Zeh', 'und', 'jetzt',
'tut', 'er', 'weh']]
Listen können mehr als Strings 35

36
Mit dieser Liste innerhalb einer Liste wurden drei Variablen erzeugt: Zahlen (mit
vier Zahlen darin), Strings (mit neun Strings) und MeineListe, die Zahlen und
Strings enthält. Die dritte Liste (MeineListe) enthält nur zwei Elemente, da sie eine
Liste von Variablennamen ist und nicht den Inhalt der Variablen direkt enthält.

Einer Liste Elemente hinzufügen

Um einer Liste Elemente hinzuzufügen, benutzen wir die Funktion append. Eine
Funktion ist ein Batzen Code, der Python sagt, dass es etwas Bestimmtes tun soll.
In diesem Fall fügt append dem Ende einer Liste ein Element hinzu.

Um beispielsweise der Einkaufsliste des Zauberers Bärenrülpser (ich bin mir
sicher, dass es so etwas gibt) hinzuzufügen, machen wir Folgendes:

>>> Zaubererliste.append('Bärenrülpser')
>>> print(Zaubererliste)
['Spinnenbeine', 'Froschzeh', 'Schlangenzunge', 'Fledermausflügel',
'Schneckenschleim', 'Schlangenhautschuppen', 'Bärenrülpser']

Du kannst der Liste des Zauberers auf die gleiche Weise noch mehr magische Ele-
mente hinzufügen:

>>> Zaubererliste.append('Alraune')
>>> Zaubererliste.append('Schierling')
>>> Zaubererliste.append('Sumpfgas')

Jetzt sieht die Zaubererliste so aus:

>>> print(Zaubererliste)
['Spinnenbeine', 'Froschzeh', 'Schlangenzunge', 'Fledermausflügel',
'Schneckenschleim', 'Schlangenhautschuppen', 'Bärenrülpser',
'Alraune', 'Schierling', 'Sumpfgas']

Jetzt kann man aus dieser Zutatenliste etwas wirklich Magisches brauen!

Elemente aus einer Liste entfernen

Um Elemente aus einer Liste zu entfernen, benutzt Du den Befehl del (Abkürzung
für engl. delete, »löschen«). Um zum Beispiel das sechste Element von der Zau-
bererliste zu entfernen (die Schlangenhautschuppen), machst Du Folgendes:

>>> del Zaubererliste[5]
>>> print(Zaubererliste)
['Spinnenbeine', 'Froschzeh', 'Schlangenzunge', 'Fledermausflügel',
'Schneckenschleim', 'Bärenrülpser', 'Alraune', 'Schierling',
'Sumpfgas']
Strings, Listen, Tupeln und Maps

Und so entfernen wir die zuvor hinzugefügten Elemente (Alraune, Schierling und
Sumpfgas) wieder von der Liste:

>>> del Zaubererliste[8]
>>> del Zaubererliste[7]
>>> del Zaubererliste[6]
>>> print(Zaubererliste)
['Spinnenbeine', 'Froschzeh', 'Schlangenzunge', 'Fledermausflügel',
'Schneckenschleim', 'Bärenrülpser']

Mit Listen rechnen

Wir können Listen durch Addition zusammenfügen. Genauso wie bei Zahlen
machen wir das mit einem Pluszeichen. Wir haben zum Beispiel zwei Listen,
Liste1 mit den Zahlen 1 bis 4 und Liste2 mit einigen Wörtern. Mit dem Befehl
print und dem Pluszeichen können wir sie addieren:

>>> Liste1 = [1, 2, 3, 4]
>>> Liste2 = ['Ich', 'stolperte', 'und', 'fiel', 'zu', 'Boden']
>>> print(Liste1 + Liste2)
[1, 2, 3, 4, 'Ich', 'stolperte', 'und', 'fiel', 'zu', 'Boden']

Wir können auch zwei Listen zusammenzählen und das Ergebnis zu einer dritten
Variable werden lassen:

>>> Liste1 = [1, 2, 3, 4]
>>> Liste2 = ['Ich', 'aß', 'Schokolade', 'und', 'wollte', 'mehr']
>>> Liste3 = Liste1 + Liste2
>>> print(Liste3)
[1, 2, 3, 4, 'Ich', 'aß', 'Schokolade', 'und', 'wollte', 'mehr']

Und wir können sogar eine Liste mit einer Zahl multiplizieren. Um zum Beispiel
Liste1 mit 5 zu multiplizieren, geben wir Liste1 * 5 ein.

>>> Liste1 = [1, 2]
>>> print(Liste1 * 5)
[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]

So wird Python gesagt, es solle Liste1 fünfmal wiederholen, was dann 1, 2, 1, 2,
1, 2, 1, 2, 1, 2 ergibt.

Achtung!

Denke daran, dass die Positionen einer Liste bei null beginnen und dass Zauberer-
liste[5] sich in Wirklichkeit auf das sechste Element bezieht.
Listen können mehr als Strings 37

38
Divisionen (/) und Subtraktionen (−) dagegen führen wie in diesen Beispielen
nur zu Fehlermeldungen:

>>> Liste1 / 20
Traceback (most recent call last):
 File "<pyshell#59>", line 1, in <module>
 Liste1 / 20
TypeError: unsupported operand type(s) for /: 'list' and 'int'

>>> Liste1 - 20
Traceback (most recent call last):
 File "<pyshell#61>", line 1, in <module>
 Liste1 - 20
TypeError: unsupported operand type(s) for -: 'list' and 'int'

Aber warum? Nun, Listen mit + verbinden und mit * zu wiederholen sind recht
einfache Operationen. Auch im realen Leben sind sie nachzuvollziehen. Wenn ich
Dir zwei Einkaufslisten in die Hand drücken und sagen würde »Addiere diese
zwei Listen«, würdest Du vielleicht alle Posten auf ein weiteres Blatt Papier in der
gleichen Reihenfolge bis zum Ende aufschreiben. Du kannst Dir auch sicher vor-
stellen, eine Liste aller Posten dreimal hintereinander auf ein Blatt zu schreiben.

Aber wie würdest Du eine Liste teilen? Stelle Dir einmal vor, Du würdest eine
Liste mit sechs Zahlen (1 bis 6) durch zwei teilen. Hier sind nur drei Möglichkei-
ten aufgezählt:

[1, 2, 3] [4, 5, 6]
[1] [2, 3, 4, 5, 6]
[1, 2, 3, 4] [5, 6]

Soll man die Liste in der Mitte aufteilen, nach dem ersten
Posten oder rein zufällig eine Position wählen und dort
teilen? Darauf gibt es eben keine einfache Antwort, und
wenn man Python auffordert, eine Liste zu teilen, weiß es
auch nicht, was es machen soll. Deshalb antwortet es mit
einer Fehlermeldung.

Das Gleiche gilt für das Addieren von irgendetwas
anderem als einer Liste zu einer Liste. Das geht auch
nicht. Dies passiert zum Beispiel, wenn man zur Liste1 die Zahl 50 addiert:

>>> Liste1 + 50
Traceback (most recent call last):
 File "<pyshell#62>", line 1, in <module>
 Liste1 + 50
TypeError: can only concatenate list (not "int") to list
Strings, Listen, Tupeln und Maps

Warum bekommen wir hier eine Fehlermeldung? Was heißt denn das, 50 zu einer
Liste zu addieren? Heißt das 50 zu jedem Element? Was aber, wenn keines der
Elemente eine Zahl ist? Oder soll es bedeuten, dass man die Zahl 50 am Anfang
oder Ende der Liste dazuschreibt?

Beim Schreiben von Computerprogrammen sollten Befehle immer die glei-
chen Dinge machen, sobald man sie eingibt. Der dumme Computer kennt nur
Schwarz oder Weiß. Fordere ihn auf, eine komplizierte Entscheidung zu treffen,
und er wirft mit Fehlermeldungen um sich.

4.3 Tupeln

Ein Tupel ist eine Liste, die in Klammern gesetzt ist – so wie in diesem Beispiel:

>>> fibs = (0, 1, 1, 2, 3)
>>> print(fibs[3])
2

Hier definieren wir die Variable fibs als die Zahlen 0, 1, 1, 2 und 3. Anschließend
geben wir das Element mit der Indexposition 3 im Tupel mit print(fibs[3]) aus.

Der wesentliche Unterschied zwischen einem Tupel und einer Liste ist der,
dass man ein Tupel nicht ändern kann, sobald es erzeugt wurde. Wenn wir bei-
spielsweise den ersten Wert in dem Tupel fibs gegen die Zahl 4 austauschen wol-
len (so wie wir das mit den Werten in unserer Zaubererliste gemacht haben),
bekommen wir eine Fehlermeldung:

>>> fibs[0] = 4
Traceback (most recent call last):
 File "<pyshell#67>", line 1, in <module>
 fibs[0] = 4
TypeError: 'tuple' object does not support item assignment

Warum sollten wir dann also überhaupt Tupel statt Listen verwenden? Haupt-
sächlich, weil es manchmal praktisch ist, wenn man etwas benutzt, bei dem man
davon ausgehen kann, dass es sich nicht ändert. Wenn Du ein Tupel mit zwei Ele-
menten darin erzeugst, wird es immer diese zwei Elemente in sich tragen.

4.4 Maps in Python weisen Dir nicht den Weg

Eine Map (engl. für »Landkarte«, auch als dict, Abkürzung für Dictionary, engl.
für »Wörterbuch«, bezeichnet) ist eine Sammlung von Dingen, wie etwa von Lis-
ten und Tupeln. Der Unterschied zwischen Maps und Listen oder Tupeln besteht
darin, dass jeder Posten in einer Map einen Schlüssel (key) und einen dazugehöri-
gen Wert (value) hat.
Tupeln 39

40
Sagen wir, wir hätten zum Beispiel eine Liste von Personen und deren Lieb-
lingssportarten. Wir könnten diese Informationen in eine Python-Liste schreiben,
in der auf den Namen der Person ihre liebste Sportart folgt:

>>> Lieblingssportarten = ['Rüdiger Werner, Fussball',
'Michael Tippler, Basketball',
'Eduard Reichert, Radsport',
'Renate Kalmert, Volleyball',
'Elvira Schmidt, Badminton',
'Frank Rohage, Schwimmen']

Wenn man nun nach Renate Kalmerts Lieblingssportart
fragen würde, könntest Du die Liste durchsehen und die
Antwort Volleyball herausfinden. Wenn aber nun 100
(oder noch viel mehr) Leute auf der Liste stehen würden?

Nun, wenn wir die gleiche Information als Map spei-
chern, in der der Name der Person als Schlüssel und ihr
Lieblingssport als Wert gespeichert ist, würde der Code
in Python so aussehen:

>>> Lieblingssportarten = {'Rüdiger Werner' : 'Fussball',
'Michael Tippler' : 'Basketball',
'Eduard Reichert' : 'Radsport',
'Renate Kalmert' : 'Volleyball',
'Elvira Schmidt' : 'Badminton',
'Frank Rohage' : 'Schwimmen'}

Wir haben mit den Doppelpunkten jeden Schlüssel von seinem Wert getrennt und
jeden Schlüssel und Wert mit Apostrophen umgeben. Achte auch darauf, dass wir
die Elemente der Map in geschweifte Klammern ({}) und nicht in runde oder
eckige Klammern gesetzt haben.

Das Ergebnis davon ist eine Map (jeder Schlüssel führt zu einem bestimmten
Wert), wie in Tabelle 4–1 zu sehen ist.

Tab. 4–1 Schlüssel, die auf die Werte in einer Map mit Lieblingssportarten verweisen

Schlüssel Wert

Rüdiger Werner Fussball

Michael Tippler Basketball

Eduard Reichert Radsport

Renate Kalmert Volleyball

Elvira Schmidt Badminton

Frank Rohage Schwimmen
Strings, Listen, Tupeln und Maps

Um jetzt die Lieblingssportart von Renate Kalmert herauszufinden, greifen wir
auf unsere Map Lieblingssportarten zu:

>>> print(Lieblingssportarten['Renate Kalmert'])
Volleyball

Die Anwort lautet Volleyball. Um einen Wert in der Map zu löschen, benutzen
wir ihren Schlüssel. So etwa löschen wir Elvira Schmidt:

>>> del Lieblingssportarten['Elvira Schmidt']
>>> print(Lieblingssportarten)
{'Renate Kalmert': 'Volleyball', 'Rüdiger Werner': 'Fussball',
'Eduard Reichert': 'Radsport', 'Michael Tippler': 'Basketball',
'Frank Rohage': 'Schwimmen'}

Um einen Wert in einer Map auszutauschen, benutzen wir auch seinen Schlüssel:

>>> Lieblingssportarten['Rüdiger Werner'] = 'Eishockey'
>>> print(Lieblingssportarten)
{'Renate Kalmert': 'Volleyball', 'Rüdiger Werner': 'Eishockey',
'Eduard Reichert': 'Radsport', 'Michael Tippler': 'Basketball',
'Frank Rohage': 'Schwimmen'}

Wir haben die Lieblingssportart Fussball durch den Schlüssel Rüdiger Werner
gegen Eishockey ausgetauscht.

Wie Du siehst, ist das Arbeiten mit Maps so ähnlich wie mit den Listen und
Tupeln, außer der Tatsache, dass Du Maps nicht mit dem Operator Plus (+)
zusammenfügen kannst. Wenn Du das probierst, bekommst Du eine Fehlermel-
dung:

>>> Lieblingssportarten = {'Rüdiger Werner' : 'Eishockey',
'Michael Tippler' : 'Basketball',
'Eduard Reichert' : 'Radsport',
'Renate Kalmert' : 'Volleyball',
'Frank Rohage' : 'Schwimmen'}

>>> Lieblingsmuster = {'Maximilian Fleischer' : 'rosa Punkte',
'Johannes Bashagen' : 'orangefarbene Streifen',
'Susanne Lehmann' : 'lila Karos'}

>>> Lieblingssportarten + Lieblingsmuster
Traceback (most recent call last):
 File "<pyshell#79>", line 1, in <module>
 Lieblingssportarten + Lieblingsmuster
TypeError: unsupported operand type(s) for +: 'dict' and 'dict'

Maps zu verbinden, ergibt für Python keinen Sinn, sodass es wieder eine Fehler-
meldung ausgibt.
Maps in Python weisen Dir nicht den Weg 41

42
4.5 Was Du gelernt hast

Ist diesem Kapitel hast Du gelernt, wie Python Strings zum Speichern von Text
verwendet und dass es Listen und Tupel zum Umgang mit mehreren Elementen
benutzt. Du hast gesehen, dass man die Elemente in Listen verändern kann und
dass man eine Liste mit einer anderen verbinden kann, die Werte in einem Tupel
aber nicht. Du hast auch gelernt, wie man Maps zum Speichern von Werten
benutzt, die von Schlüsseln identifiziert werden.

4.6 Programmier-Puzzles

Die folgenden paar Experimente kannst Du selber ausprobieren. Die Lösungen
findest Du unter www.dpunkt.de/python.

#1: Lieblingssachen

Lege eine Liste Deiner Lieblingshobbies an, und gib der Liste den Variablenna-
men Hobbies. Dann machst Du dir eine Liste Deiner Lieblingsgerichte und nennst
die Variable Essen. Verbinde die beiden Listen, und nenne das Ergebnis Lieblings-
sachen. Am Ende gibst Du die Variable Lieblingssachen aus.

#2: Kämpfer zählen

Wenn es drei Gebäude gibt, auf deren Dächern sich jeweils 25 Ninjas versteckt
halten, und es zwei Tunnel gibt, in denen sich jeweils 40 Samurai verkrochen
haben, wie viele Ninjas und Samurai treten dann insgesamt in die Schlacht? (Du
kannst dies mit einer einzigen Gleichung in der Python-Shell machen.)

#3: Grüße!

Erzeuge zwei Variablen: eine, die für Deinen Vornamen steht, und eine, die für
Deinen Nachnamen steht. Erzeuge jetzt einen String, und benutze Platzhalter, um
Deinen Namen mit der Nachricht auszugeben, die diese beiden Variablen ver-
wendet, etwa so: »Hallo, Benni Richter!«
Strings, Listen, Tupeln und Maps

5
Malen mit Turtles
In Python ist turtle (engl. für »Schildkröte«) so etwas Ähnliches wie im richtigen
Leben. Wir kennen die Schildkröte als ein Reptil, das sich sehr langsam fortbe-
wegt und sein Haus auf dem Rücken mitschleppt. In der Welt von Python ist
turtle ein kleiner, schwarzer Pfeil, der sich sehr langsam über den Monitor
bewegt. Wenn man allerdings bedenkt, dass die Python-turtle bei der Fortbewe-
gung auf dem Monitor eine Spur hinterlässt, denkt man viel weniger an eine
Schildkröte, sondern an eine Schnecke.

Mit turtle kann man sehr schön die Grundlagen der Computergrafik erler-
nen. Aus diesem Grund benutzen wir jetzt Python-turtle, um einige einfache For-
men und Linien zu zeichnen.

5.1 Wie man Pythons Modul turtle benutzt

Ein Modul in Python ist eine Möglichkeit, wie
man nützlichen Code für ein weiteres Pro-
gramm zur Verfügung stellen kann (neben
anderen Dingen kann ein Modul Funktionen
enthalten, die wir nutzen können). In Kapitel 8
wirst Du mehr über Funktionen erfahren.
Python enthält ein spezielles Modul, das sich
turtle nennt und mit dem man Bilder auf dem
43

44
Monitor zeichnen kann. Mit dem Modul turtle kann man lernen, wie man Vek-
torgrafiken erzeugt. Im Grunde ist das nichts weiter, als einfache Linien, Punkte
und Kurven zu zeichnen.

Lass uns einmal schauen, wie turtle funktioniert. Als Erstes starten wir die
Python-Shell, indem wir auf das Desktop-Icon klicken (wenn Du Ubuntu
benutzt, gehst Du auf IDLE in der Programmzeile). Als Nächstes sagst Du
Python, dass es das Modul turtle importieren soll:

>>> import turtle

Das Importieren eines Moduls sagt Python, dass Du es benutzen möchtest.

Eine Leinwand erzeugen

Jetzt, wo wir das Modul turtle importiert haben, müssen wir als Erstes eine Lein-
wand erzeugen – einen leeren Platz, auf dem wir zeichnen können, so wie auf
einer Leinwand eines Malers. Dazu rufen wir im Modul turtle die Funktion Pen
auf, die automatisch für uns eine Leinwand erzeugt. Gib Folgendes in die Shell
ein:

>>> t = turtle.Pen()

Danach solltest Du ein leeres Fenster (die Leinwand) mit einem Pfeil in der Mitte
sehen, etwa so:

Achtung!

Wenn Du Ubuntu benutzt und an dieser Stelle eine Fehlermeldung bekommst, musst Du
eventuell das Modul tkinter installieren. Dafür musst Du das Ubuntu-Software-Center
öffnen und im Suchfenster python--tk eingeben. Im Fenster sollte dann »Tkinter – Writing
Tk Applications with Python« erscheinen. Klicke auf Installieren, um das Package zu instal-
lieren.
Malen mit Turtles

Der kleine Pfeil in der Mitte ist die Schildkröte, und ja, er sieht wirklich nicht wie
eine Schildkröte aus.

Wenn das Schildkröten-Fenster hinter dem Shell-Fenster erscheint, kann es
sein, dass es nicht richtig funktioniert. Sobald Du die Maus über das Schildkrö-
ten-Fenster bewegst, taucht dann neben dem Mauszeiger ein Kringel auf:

Dies kann mehrere Ursachen haben: Du hast die Shell nicht über das Icon auf
Deinem Desktop gestartet (wenn Du Windows oder Mac benutzt), sondern IDLE
(Python GUI) im Windows-Startmenü ausgewählt oder IDLE nicht korrekt
installiert. Versuche, die Shell vom Icon auf dem Desktop aus neu zu starten.
Wenn dies nicht gelingt, probierst Du es mit der Python-Konsole anstelle der
Shell. Das geht so:

■ In Windows gehst Du auf Start Alle Programme. Dort gehst Du in den
Ordner Python 3.3 und klickst auf Python (command line).

■ In MacOSX klickst Du auf das Spotlight-Icon ganz oben rechts auf dem
Monitor und gibst in das Suchfenster Terminal ein. Sobald das Fenster
erschienen ist, gibst Du dort python ein.

■ In Ubuntu öffnest Du das Terminal vom Programme-Menü aus und gibst dort
python ein.

Die Schildkröte bewegen

Du schickst der Schildkröte An-
weisungen, indem Du Funktio-
nen benutzt, die der Variable t
(die wir gerade erzeugt haben),
zur Verfügung stehen. Das geht
genau so wie mit der Funktion Pen im Modul turtle. Die Anweisung forward sagt
der Schildkröte, dass sie sich vorwärts bewegen soll. Damit die Schildkröte sich
50 Pixel vorwärts bewegt, gibst Du folgenden Befehl ein:
Wie man Pythons Modul turtle benutzt 45

46
>>> t.forward(50)

Das sollte in etwa so aussehen:

Die Schildkröte hat sich um 50 Pixel vorwärts bewegt. Ein Pixel ist ein einzelner
Punkt auf dem Monitor – das kleinste Element, das dargestellt werden kann.
Alles, was Du auf dem Computermonitor siehst, ist aus Pixeln zusammengesetzt.
Es sind kleine, quadratische Pünktchen (eben Pixel). Wenn Du in die Leinwand
mit der Schildkröte reinzoomen könntest, würdest Du erkennen, dass die Spur
der Schildkröte nur ein Haufen Pixel ist. Sie ist nur einfache Computergrafik.

Jetzt sagen wir der Schildkröte, dass sie um 90 Grad nach links abbiegen soll. Wir
tun das mit folgendem Befehl:

>>> t.left(90)

Wenn Du noch nichts von Graden gehört hast, so musst Du Dir sie so vorstellen:
Du stehst in der Mitte eines Kreises.

■ Die Richtung, in die Du gerade schaust, ist 0 Grad.
■ Wenn Du Deinen linken Arm ausstreckst, sind das 90 Grad links.
■ Wenn Du Deinen rechten Arm ausstreckst, sind das 90 Grad rechts.
Malen mit Turtles

Du kannst die 90-Grad-Drehungen nach links oder rechts hier sehen:

Wenn Du von dort, wo Dein Arm jetzt nach rechts zeigt, im Kreis weiter nach
rechts gehst, liegen 180 Grad genau hinter Dir. 270 Grad sind dort, wo Dein lin-
ker Arm hinzeigt. 360 Grad sind dort, wo Du gestartet bist. Die Winkelgrade
gehen von 0 bis 360.

Die Gradzahlen eines vollen Kreises, in dem man sich rechts herum dreht,
sind hier in 45-Grad-Schritten gezeigt:

Wenn sich die Python-Schildkröte links herum dreht, schwenkt sie in eine neue
Richtung um (so, als ob Du Deinen Körper dorthin drehen würdest, wo Dein
Arm 90 Grad nach links zeigt).

Der Befehl t.left(90) richtet deshalb den Pfeil nach oben (da er ja nach
rechts zeigend gestartet ist):
Wie man Pythons Modul turtle benutzt 47

48
Jetzt werden wir ein Quadrat zeichnen. Gib zu den bereits eingegeben Zeilen fol-
genden Code ein:

>>> t.forward(50)
>>> t.left(90)
>>> t.forward(50)
>>> t.left(90)
>>> t.forward(50)
>>> t.left(90)

Deine Schildkröte sollte ein Quadrat gezeichnet haben und in die gleiche Rich-
tung zeigen wie am Anfang:

Um die Leinwand zu löschen, gibt man reset ein. Dadurch wird die Leinwand
leer, und die Schildkröte befindet sich wieder an ihrer Startposition.

>>> t.reset()

Du kannst auch clear eingeben, was die Leinwand löscht, die Schildkröte aber da
lässt, wo sie sich gerade befindet.

>>> t.clear()

Wir können die Schildkröte auch mit right nach rechts und mit backward rück-
wärts bewegen. Wir können mit dem Befehl up den Zeichenstift von der Lein-

Achtung!

Wenn Du t.left(90) schreibst, ist das das Gleiche, als ob Du t.right(270) schreibst. Das
gilt auch für t.right(90), was dasselbe wie t.left(270) ist. Stelle Dir dazu einfach den
Kreis vor, und folge den Gradzahlen.
Malen mit Turtles

wand nehmen (oder anders gesagt, der Schildkröte sagen, dass sie aufhören soll
zu zeichnen).

Wir machen jetzt noch eine Zeichnung, um einige dieser Befehle anzuwen-
den. Dieses Mal lassen wir die Schildkröte zwei Linien malen. Gib dazu folgen-
den Code ein:

>>> t.reset()
>>> t.backward(100)
>>> t.up()
>>> t.right(90)
>>> t.forward(20)
>>> t.left(90)
>>> t.down()
>>> t.forward(100)

Als Erstes löschen wir mit t.reset() die Leinwand
und setzen dadurch die Schildkröte auf ihre
Startposition. Als Nächstes lassen wir die Schild-
kröte mit t.backward(100) 100 Pixel zurücklaufen, und danach nehmen wir den
Stift der Schildkröte mit t.up() hoch und unterbrechen das Zeichnen.

Mit dem Befehl t.right(90) drehen wir die Schildkröte nach rechts, um sie
nach unten zeigen zu lassen, und mit t.forward(20) lassen wir sie 20 Pixel vor-
wärts gehen. Weil wir in der dritten Zeile den Befehl up verwendet haben, wird
gerade nichts gezeichnet. Wir drehen die Schildkröte wieder mit t.left(90) um
90 Grad, damit sie nach rechts schaut. Mit dem Befehl down sagen wir der Schild-
kröte, dass sie den Stift wieder aufsetzen und zu malen beginnen soll. Zum
Schluss lassen wir sie mit t.forward(100) eine Linie geradeaus, also parallel zur
ersten Linie, zeichnen. Die beiden Linien, die wir gezeichnet haben, sehen am
Ende so aus:
Wie man Pythons Modul turtle benutzt 49

50
5.2 Was Du gelernt hast

In diesem Kapitel hast Du gelernt, wie man das Python-Modul turtle benutzt.
Wir haben mit den Befehlen left und right, forward und backward einige einfache
Linien gezeichnet. Du hast herausgefunden, wie man mit dem Befehl up das
Zeichnen beendet und mit down wieder anfängt. Du hast auch gelernt, dass sich
die Schildkröte anhand von Gradzahlen drehen lässt.

5.3 Programmier-Puzzles

Versuche die folgenden Formen mit der Schildkröte zu zeichnen. Die Lösungen
findest Du unter www.dpunkt.de/python.

#1: Ein Rechteck

Erzeuge mit der Funktion Pen des Moduls turtle eine neue Leinwand, und
zeichne dann ein Rechteck.

#2: Ein Dreieck

Erzeuge wieder eine Leinwand, und zeichne dieses Mal ein Dreieck. Schaue noch
einmal zurück auf das Schema mit dem Kreis und den Gradzahlen (im Abschnitt
»Die Schildkröte bewegen« auf S. 45), und vergewissere Dich, in welche Rich-
tung Du die Schildkröte mit den Gradzahlen drehen musst.

#3: Eine Kiste ohne Ecken

Schreibe ein Programm, um diese vier Linien zu zeichnen (die Größe ist nicht so
wichtig, nur die Form):
Malen mit Turtles

6
Fragen mit if und else stellen
Beim Programmieren stellen wir oft Fragen, die man mit Ja oder Nein beantwor-
tet, und reagieren darauf, je nachdem, wie die Antwort lautete. Wir könnten zum
Beispiel fragen: »Bist Du älter als 20?« Wenn die Antwort »ja« lautet, antworten
wir »Du bist zu alt!«

Solche Fragen nennt man Bedingungen, und wir kombinieren diese Bedin-
gungen und die Reaktionen darauf in sogenannten if-Anweisungen. Solche
Bedingungen können viel komplizierter aufgebaut sein als nur aus einer Frage. if-
Anweisungen können mit mehreren Fragen und unterschiedlichen Reaktionen –
je nach Antwort auf die Frage – kombiniert werden.

In diesem Kapitel lernst Du, wie man mit if-Anweisungen Programme baut.

6.1 if-Anweisungen

Eine if-Anweisung (if bedeutet im Englischen »falls«) kann in Python so
geschrieben werden:

>>> Alter = 13
>>> if Alter > 20:

print('Du bist zu alt!')
51

52
Eine if-Anweisung besteht aus dem if-
Schlüsselwort, auf das eine Bedingung und
ein Doppelpunkt (:) folgen, so wie bei if
Alter > 20:. Die Zeilen, die nach dem Dop-
pelpunkt kommen, müssen in einem Block,
dem Anweisungsblock, stehen. Wenn die
Antwort auf die Frage »ja« lautet (oder
wahr, wie wir Python-Programmierer sagen),
werden die Befehle in dem Anweisungsblock ausgeführt. Lass uns jetzt schauen,
wie man Anweisungsblöcke und Bedingungen schreibt.

Ein Anweisungsblock enthält mehrere Anweisungen

Ein Anweisungsblock ist eine Gruppe von Programmieranweisungen. Wenn zum
Beispiel die Bedingung if Alter > 20 wahr ist, möchtest Du vielleicht mehr tun
können, als nur die Meldung »Du bist zu alt!« auszugeben. Vielleicht möchtest
Du ein paar alternative Sätze anzeigen lassen:

>>> Alter = 25
>>> if Alter > 20:

print('Du bist zu alt!')
print('Was machst Du hier?')
print('Warum mähst\'n Du nicht den Rasen oder sortierst Akten?')

Dieser Anweisungsblock besteht aus drei print-Anweisungen, die nur ausgeführt
werden, wenn die Bedingung Alter > 20 wahr ist. Damit die print-Befehle in IDLE
ausgeführt werden, musst Du die Enter-Taste zweimal drücken: das erste Mal,
um den Block zu schließen (der Cursor steht dann im selben Block eine Zeile wei-
ter unten), und das zweite Mal, um den Code auszuführen.

Jede der Zeilen dieses Blocks hat am Anfang vier Leerzeichen, wie Du im Ver-
gleich mit der Zeile aus der if-Anweisung darüber erkennst. Lass uns noch einen
Blick auf den Code mit sichtbar gemachten Leerzeichen werfen

>>> Alter = 25
>>> if Alter > 20:

print('Du bist zu alt!')
print('Was machst Du hier?')
print('Warum mähst\'n Du nicht den Rasen oder sortierst Akten?')

In Python haben Leerräume (whitespaces) durch Tabulatoren (sie entstehen,
wenn Du die Tabulatorentaste (Æ) drückst) oder Leerzeichen (wenn Du die
Leertaste drückst) eine Bedeutung. Code, der sich an gleicher Position befindet
(vom linken Rand aus gleich weit eingerückt ist), wird in einem Anweisungsblock
gruppiert. Immer, wenn Du eine neue Zeile mit mehr Leerzeichen als in der vor-
herigen beginnst, fängst Du einen neuen Block an, der Teil desjenigen davor ist:
Fragen mit if und else stellen

Wir gruppieren Anweisungen in Blöcken, da sie zusammengehören. Diese Anwei-
sungen müssen zusammen ausgeführt werden.

Sobald Du die Einrückungen änderst, erzeugst Du dadurch neue Blöcke. Das
folgende Beispiel zeigt drei verschiedene Blöcke, die nur durch Änderung der Ein-
rückung einstanden sind:
if-Anweisungen 53

54
Obwohl die Blöcke 2 und 3 die gleiche Einrückung haben, werden sie als unter-
schiedliche Blöcke behandelt, da zwischen ihnen ein Block mit weniger Einrü-
ckung (weniger Leerzeichen, weiter links) steht.

Deshalb produziert ein Block mit vier Leerzeichen und einer nächsten Zeile
mit sechs Leerzeichen einen Einrückungsfehler (indentation error), wenn er durch
Python läuft, da Python davon ausgeht, dass alle Zeilen eines Blocks die gleiche
Einrückung haben. Wenn Du also einen Block mit vier Leerzeichen beginnst, soll-
test Du in diesem Block bis zum Ende vier Leerzeichen verwenden. Hier siehst
Du, was damit gemeint ist:

>>> if Alter > 20:
print('Du bist zu alt!')

print('Was machst Du hier?')

Die Leerzeichen habe ich sichtbar gemacht, damit Du die Unterschiede erkennst:
Die dritte Zeile hat hier sechs Leerzeichen statt der vier in der Zeile darüber.

Wenn wir diesen Code ausführen, markiert IDLE die Zeile, in der es ein Pro-
blem erkennt, mit einem roten Block und gibt eine erklärende SyntaxError-Mel-
dung:

>>> if Alter > 25:
print('Du bist zu alt!')
■print('Was machst Du hier?')

SyntaxError: unexpected indent

Python hat an in der zweiten print-Zeile keine zwei zusätzlichen Leerzeichen
erwartet .

Mit Bedingungen können wir Dinge vergleichen

Eine Bedingung ist eine Programmanweisung, die Dinge vergleicht und uns sagt,
ob die Kriterien in diesem Vergleich wahr (True) sind und mit Ja beantwortet wer-
den oder ob sie falsch (False) sind und daher mit Nein beantwortet werden. Die
Bedingung Alter > 10 kann man so ausdrücken: »Ist der Wert der Variable Alter
größer als 10?«

Eine andere Bedingung ist: Haarfarbe == 'lila', was in anderen Worten heißt:
»Ist der Wert der Variable Haarfarbe lila?«

Achtung!

Mache Deine Einrückungen immer einheitlich, damit Dein Code besser lesbar ist. Wenn Du
beginnst, ein Programm zu schreiben, und vier Leerzeichen vor den Anfang eines Anwei-
sungsblocks setzt, solltest Du das bei den anderen Blöcken durchhalten. Achte auch dar-
auf, dass jede Zeile eines Blocks die gleiche Einrückung hat.
Fragen mit if und else stellen

In Python benutzen wir Symbole (sogenannte Operatoren), um Bedingungen
wie »gleich«, »größer als« und »weniger als« zu erzeugen. In Tabelle 6–1 sind ein
paar Symbole für Bedingungen aufgelistet.

Tab. 6–1 Symbole für Bedingungen

Wenn Du zum Beispiel 10 Jahre alt bist, wäre die Bedingung Dein_Alter == 10
wahr (true); ansonsten käme falsch (false) zurück. Wenn Du 12 Jahre alt wärst,
wäre die Bedingung Dein_Alter > 10 wahr (true).

Wir sollten noch ein paar Beispiele ausprobieren. Hier setzen wir unser Alter auf
10 und formulieren aufgrund einer Bedingung eine Anweisung, die »Du bist zu
alt für meine Witze!« ausgibt, falls Alter größer als 10 ist.

>>> Alter = 10
>>> if Alter > 10:

print('Du bist zu alt für meine Witze!')

Was passiert nun, wenn Du dies in IDLE eingibst und
(zweimal) die Enter-Taste drückst?

Nichts.

Da der Wert, der durch die Variable Alter gesetzt wurde,
nicht größer als 10 war, hat Python den Anweisungs-
block mit dem Befehl print nicht ausgeführt. Wenn wir
dagegen die Variable Alter auf 20 gesetzt hätten, wäre die
Meldung ausgegeben worden.

Lass uns jetzt das vorige Beispiel ändern und die
Bedingung größer als (>=) einsetzen:

>>> Alter = 10
>>> if Alter >= 10:

print('Du bist zu alt für meine Witze!')

Symbol Bedeutung

== Ist gleich

!= Ungleich

> Größer als

< Kleiner als

>= Größer oder gleich

<= Kleiner oder gleich

Achtung!

Wenn Du eine Bedingung mit »ist gleich« formulierst, musst Du immer doppelte Gleich-
heitszeichen (==) verwenden.
if-Anweisungen 55

56
Jetzt solltest Du die Meldung »Du bist zu alt für meine Witze!« auf dem Monitor
sehen, da der Werte der Variable Alter gleich 10 ist.

Als Nächstes probieren wir die Bedingung »ist gleich« (==) aus:

>>> Alter = 10
>>> if Alter == 10:

print('Was ist braun und klebrig und läuft in der Wüste umher?
Ein Karamel!')

Jetzt sollte die Meldung »Was ist braun und klebrig und läuft in der Wüste
umher? Ein Karamel!« auf dem Monitor erscheinen.

6.2 If-Then-Else-Anweisungen

Bei den if-Anweisungen können wir nicht nur etwas machen, wenn die Bedin-
gung zutrifft (wahr, True), sondern auch, wenn sie nicht zutrifft (falsch, False).

Der Trick besteht hier darin, eine if-then-else-Anweisung zu verwenden, die
im Prinzip sagt: »Wenn (if) etwas wahr (True) ist, dann (then) tue dies oder tue
sonst (else) das.«

Wenn Du die folgenden Codes in die Shell eingibst, setzt IDLE automatisch
Einrückungen nach den if- und else-Anweisungen. Nachdem Du die print-
Befehle eingegeben hast, musst Du daher in IDLE mit der Rückschritt- oder Ent-
fernen-Taste nach dem letzten print-Befehl den Cursor an den Anfang der Zeile
(ganz links) setzen. Das ist die gleiche Position, in der die if-Anweisung wäre,
wenn kein Prompt (>>>) da wäre.

Wir erstellen jetzt eine solche if-then-else-Anweisung. Gib dazu Folgendes
in die Shell ein:

>>> print('Möchtest Du einen schmutzigen Witz hören?')
Möchtest Du einen schmutzigen Witz hören?
>>> Alter = 12
>>> if Alter == 12:

print('Ein Schwein fiel in den Matsch!')
else:

print('Psst. Geheim.')

Ein Schwein fiel in den Matsch!

Da wir die Variable auf 12 gesetzt haben und die
Bedingung fragt, ob das Alter gleich 12 ist, solltest
Du die erste print-Meldung auf dem Monitor sehen.
Jetzt ändern wir den Wert von Alter in eine andere
Zahl als 12:
Fragen mit if und else stellen

>>> print('Möchtest Du einen schmutzigen Witz hören?')
Möchtest Du einen schmutzigen Witz hören?
>>> Alter = 8
>>> if Alter == 12:

print('Ein Schwein fiel in den Matsch!')
else:

print('Psst. Geheim.')

Psst. Geheim.

Dieses Mal sollte die zweite print-Meldung kommen.

6.3 if- und elif-Anweisungen

Wir können eine if-Anweisung mit elif (einer Abkürzung für else-if) noch
mehr erweitern. Wir können zum Beispiel abfragen, ob eine Person 10, 11 oder
12 usw. Jahre alt ist, und unser Programm je nach ihrem Alter etwas Unterschied-
liches machen lassen. Diese Anweisungen unterscheiden sich von den if-then-
Anweisungen dadurch, dass es mehr als ein elif in derselben Anweisung geben
kann:

>>> Alter = 12
>>> if Alter == 10:

print("Wie nennt man einen Bumerang, der nicht zurückkommt?")
print("Stock!")

elif Alter == 11:
print("Was sagt die grüne Traube zur blauen Traube?")
print("Du musst atmen! Atme endlich!")

❹ elif Alter == 12:
print("Was sagt die 0 zur 8?")
print("Hallo Jungs!")

elif Alter == 13:
print("Wo wohnen Katzen?")
print("Im Mietzhaus.")

else:
print("Häh?")

Was sagt die 0 zur 8? Hallo Jungs!

In diesem Beispiel prüft die Anweisung in
der zweiten Zeile , ob der Wert der Varia-
ble Alter gleich 10 ist. Die print-Anweisung,
die dann in folgt, wird ausgeführt, wenn das Alter gleich 10 ist. Da wir jedoch
das Alter gleich 12 gesetzt haben, springt der Computer zur nächsten if-Anwei-
sung in und prüft, ob der Wert von Alter gleich 11 ist. Da er es nicht ist, springt
der Computer zur nächsten if-Anweisung in ❹ und schaut, ob Alter gleich 12 ist.
Es ist 12, und deshalb führt der Computer den print-Befehl in aus.
if- und elif-Anweisungen 57

58
6.4 Bedingungen kombinieren

Mit den Schlüsselwörtern and (und) und or (oder) kannst Du Bedingungen kom-
binieren und auf diese Weise kürzeren und einfacheren Code schreiben. Hier ist
ein Beispiel für or:

>>> if Alter == 10 or Alter == 11 or Alter == 12 or Alter == 13:
print('Was ergeben 13 + 49 + 84 + 155 + 97? Kopfschmerzen!')

else:
print('Häh?')

Sobald eine der Bedingungen in der ersten Zeile wahr ist (oder anders gesagt:
sobald Alter gleich 10, 11, 12 oder 13 ist), wird der Anweisungsblock in der
nächsten Zeile, der mit print beginnt, ausgeführt.

Wenn die Bedingungen in der ersten Zeile alle falsch sind, springt der Com-
puter zu else, führt den Anweisungsblock darunter aus und zeigt Häh? an.

Um das Beispiel noch weiter zu kürzen, könnten wir das Schlüsselwort and in
Kombination mit den Operatoren Größer-oder-gleich (>=) und Kleiner-oder-
gleich (<=) verwenden.

>>> if Alter >= 10 and Alter <= 13:
print('Was ergeben 13 + 49 + 84 + 155 + 97? Kopfschmerzen!')

else:
print('Häh?')

Wenn das Alter jetzt größer oder gleich 10 und kleiner oder gleich 13 ist (in der
ersten Zeile wird das als if Alter >= 10 and Alter <= 13: ausgedrückt), wird der
Anweisungsblock in der nächsten Zeile, der mit print beginnt, ausgeführt. Wenn
das Alter beispielsweise 12 beträgt, wird Was ergeben
13 + 49 + 84 + 155 + 97? Kopfschmerzen! angezeigt, da
12 mehr ist als 10, aber weniger als 13.

6.5 Variablen ohne Wert – None

Genau so, wie wir einer Variable Zahlen, Strings und
Listen zuordnen können, können wir ihr auch nichts
oder einen Leerwert zuordnen. In Python nennt man
diesen leeren Wert None, und er steht für die Abwesenheit eines Inhalts. Es ist wich-
tig zu wissen, dass der Wert None sich von dem Wert 0 unterscheidet, da er etwas
anderes bedeutet, als eine Zahl mit dem Wert 0. Der einzige Wert, den eine Varia-
ble hat, die den leeren Wert None erhalten hat, ist Nichts. Hier ein Beispiel:

>>> ein_Wert = None
>>> print(ein_Wert)
None
Fragen mit if und else stellen

Den Wert None einer Variablen zuzuordnen ist eine Möglichkeit, um eine Variable
in ihren leeren Ausgangszustand zu versetzen. Mit None kann man eine Variable
auch definieren, ohne ihr einen Wert zuzuweisen. Das kannst Du immer dann
machen, wenn Du die Variable später im Programm zwar noch brauchen wirst,
Deine Variablen aber schon am Anfang alle definieren möchtest. Programmierer
definieren ihre Variablen häufig am Anfang eines Programms, da man die Namen
der Variablen dort leichter findet als mitten im Code.

Du kannst None auch in einer if-Anweisung abfragen, wie das folgende Bei-
spiel zeigt:

>>> ein_Wert = None
>>> if ein_Wert == None:

print('Die Variable ein_Wert hat keinen Wert')

Die Variable ein_Wert hat keinen Wert

Das ist immer dann nützlich, wenn man nur dann einen Wert für eine Variable
berechnen möchte, falls er nicht schon berechnet wurde.

6.6 Der Unterschied zwischen Strings und Zahlen

Benutzereingaben sind das, was eine Person mit der Tastatur eingibt – egal ob es
sich nun um einen Buchstaben, eine Pfeiltaste, die Enter-Taste oder sonst etwas
handelt. Benutzereingaben gelangen als Strings in Python. Das bedeutet: Wenn
Du mit der Tastatur die Zahl 10 eingibst, speichert Python die 10 als String in
einer Variable und nicht als Zahl.

Worin besteht nun aber der Unterschied zwischen der Zahl 10 und dem
String '10'? Für uns sehen sie beide gleich aus, nur dass Apostrophe um die eine
10 sind. Für den Computer sind sie aber grundverschieden.

Nehmen wir zum Beispiel einmal an, dass wir den Wert der Variable Alter
mit einer Zahl in einer if-Anweisung vergleichen wollen:

>>> if Alter == 10:
print('Wie spricht man am besten mit einem Monster?')
print('Von so weit weg wie möglich!')

Dann weisen wir der Variable Alter die Zahl 10 zu:

>>> Alter = 10
>>> if Alter == 10:

print('Wie spricht man am besten mit einem Monster?')
print('Von so weit weg wie möglich!')

Wie spricht man am besten mit einem Monster?
Von so weit weg wie möglich!

Wie Du siehst, wird jetzt die print-Anweisung ausgeführt.
Der Unterschied zwischen Strings und Zahlen 59

60
Jetzt schauen wir, was passiert, wenn man der Variable Alter den String '10'
(mit Apostrophen) zuweist:

>>> Alter = '10'
>>> if Alter == 10:

print('Wie spricht man am besten mit einem Monster?')
print('Von so weit weg wie möglich!')

In diesem Fall wird der Code der print-Anweisung
nicht ausgeführt, da Python keine Zahl zwischen
den Apostrophen erkennt, sondern sie als String
ansieht.

Zum Glück hat Python magische Funktionen,
mit denen man Strings in Zahlen und Zahlen in
Strings verwandeln kann. Mit int zum Beispiel
kannst Du den String '10' in eine Zahl umwandeln:

>>> Alter = '10'
>>> umgewandeltes_Alter = int(Alter)

Die Variable umgewandeltes_Alter enthält jetzt die Zahl 10.

Um eine Zahl in einen String umzuwandeln, benutzt Du str:

>>> Alter = 10
>>> umgewandeltes_Alter = str(Alter)

In diesem Fall enthält die Variable umgewandeltes_Alter den String 10 statt der
Zahl 10.

Erinnerst Du Dich an die Anweisung if Alter == 10, die nichts ausgegeben
hat, solange die Variable auf den String (Alter = '10') gesetzt war? Wenn wir
zuvor die Variable umwandeln, bekommen wir ein ganz anderes Ergebnis:

>>> Alter = '10'
>>> umgewandeltes_Alter = int(Alter)
>>> if umgewandeltes_Alter == 10:

print('Wie spricht man am besten mit einem Monster?')
print('Von so weit weg wie möglich!')

Wie spricht man am besten mit einem Monster?
Von so weit weg wie möglich!

Aber Achtung: Sobald Du eine Zahl mit Dezimalpunkt eingibst, bekommst Du
eine Fehlermeldung, da die Funktion int einen ganzzahligen Wert (engl. integer)
erwartet.
Fragen mit if und else stellen

>>> Alter = '10.5'
>>> umgewandeltes_Alter = int(Alter)
Traceback (most recent call last):

File "<pyshell#7>", line 1, in <module>
umgewandeltes_Alter = int(Alter)

ValueError: invalid literal for int() with base 10: '10.5'

Mit dem ValueError sagt Python, dass der Wert, den Du ausprobiert hast, unge-
eignet ist. Damit es funktioniert, nimmst Du die Funktion float statt int. Die
Funktion float kann mit Zahlen umgehen, die nicht ganzzahlig sind.

>>> Alter = '10.5'
>>> umgewandeltes_Alter = float(Alter)
>>> print(umgewandeltes_Alter)
10.5

Python beschwert sich auch mit einem ValueError, wenn Du versuchst, einen
String umzuwandeln, der keine Zahlen als Ziffern enthält:

>>> Alter = 'zehn'
>>> umgewandeltes_Alter = int(Alter)
Traceback (most recent call last):

File "<pyshell#13>", line 1, in <module>
umgewandeltes_Alter = int(Alter)

ValueError: invalid literal for int() with base 10: 'zehn'

6.7 Was Du gelernt hast

In diesem Kapitel hast Du gelernt, wie man mit if-Anweisungen arbeitet und
Anweisungsblöcke erzeugt, die nur ausgeführt werden, wenn eine bestimmte
Bedingung wahr ist. Du hast gesehen, wie man die if-Anweisungen mit elif
erweitert, sodass als Reaktion auf bestimmte Bedingungen unterschiedliche
Anweisungsblöcke ausgeführt werden. Du hast auch gesehen, dass man mit dem
Schlüsselwort else Code ausführen lassen kann, falls keine der Bedingungen
wahr ist. Du hast gelernt, wie man mit den Schlüsselwörtern and und or Bedin-
gungen kombiniert und so prüfen kann, ob Zahlen in einen bestimmten Bereich
fallen. Dann hast Du noch gesehen, wie man Strings und Zahlen mit int, str und
float ineinander umwandelt. Du hast auch erfahren, dass Nichts (None) in Python
eine Bedeutung hat und dass man damit Variablen in deren leeren Ausgangszu-
stand zurückversetzen kann.
Was Du gelernt hast 61

62
6.8 Programmier-Puzzles

Versuche die folgenden Puzzles mit if-Anweisungen und Bedingungen zu lösen.
Die Lösungen finden sich unter www.dpunkt.de/python.

#1: Bist Du reich?

Was glaubst Du, macht der Code unten? Versuche die Antwort zu finden, ohne
dass Du ihn in die Shell eingibst, und überprüfe erst danach die Anwort.

>>> Geld = 2000
>>> if Geld > 1000:

print ('Ich bin reich!!')
else:

print('Ich bin nicht reich.')
print('Aber vielleicht später…')

#2: Kekse!

Erzeuge eine if-Anweisung, die prüft, ob eine Anzahl von Keksen (in der Variable
Kekse) weniger als 100 oder mehr als 500 beträgt. Dein Programm sollte die Mel-
dung »Zu wenige oder zu viele« ausgeben, falls die Bedingung wahr ist.

#3: Einfach die richtige Zahl

Erzeuge eine if-Anweisung, die prüft, ob der in der Variable Geld enthaltene Wert
zwischen 100 und 500 oder zwischen 1000 und 5000 beträgt.

#4: Ich kann die Ninjas bezwingen

Erzeuge eine if-Anweisung, die den String »Das sind zu viele« ausgibt, falls die
Variable Ninjas eine Zahl enthält, die unter 50 liegt. »Es wird hart, aber ich kann
das schaffen« soll erscheinen, wenn die Zahl unter 30 liegt, und »Ich kann die
Ninjas bezwingen!« soll erscheinen, wenn die Zahl unter 10 liegt. Du kannst Dei-
nen Code so beginnen:

>>> Ninjas = 5
Fragen mit if und else stellen

7
Schleifen drehen
Nichts ist schlimmer, als dieselbe Sache dauernd wiederholen zu müssen. Nicht
ohne Grund zählen manche Leute Schafe, wenn sie nicht einschlafen können. Das
hat nichts mit wundersamen Fähigkeiten dieser wolligen Vierbeiner zu tun. End-
loses Wiederholen ist einfach langweilig, sodass Du leichter in den Schlaf kommst,
da Du Dich dabei auf nichts Interessantes konzentrierst.

Programmierern macht es auch keinen Spaß, sich
dauernd zu wiederholen, solange sie nicht versuchen,
davon einzuschlafen. Zum Glück kennen die meisten
Programmiersprachen etwas, das man for-Schleife nennt.
Eine Schleife wiederholt automatisch Sachen wie andere
Programmieranweisungen und Code-Blöcke.

In diesem Kapitel werden wir uns for-Schleifen und
einen weiteren Schleifentyp anschauen, den Python bie-
tet: die while-Schleife.

7.1 Wie man for-Schleifen benutzt

Um Hallo in Python fünfmal anzuzeigen, könntest Du Folgendes machen:

>>> print("Hallo")
Hallo
>>> print("Hallo")
Hallo
63

64
>>> print("Hallo")
Hallo
>>> print("Hallo")
Hallo
>>> print("Hallo")
Hallo

Das ist aber sehr aufwendig. Stattdessen kannst Du eine for-Schleife benutzen,
um das viele Tippen und die Wiederholungen zu reduzieren:

>>> for x in range(0, 5):
print('Hallo')

Hallo
Hallo
Hallo
Hallo
Hallo

Mit der Funktion range in kann man eine Reihe von Zahlen erzeugen, die von
der ersten bis zur Zahl vor der letzten Zahl reicht. Das klingt jetzt vielleicht etwas
verwirrend. Lass uns einmal die Funktion range mit der Funktion list kombinie-
ren, um genau zu sehen, wie das funktioniert. Die Funktion range erzeugt nämlich
in Wirklichkeit keine Reihe von Zahlen, sondern gibt einen sogenannten Iterator
zurück, ein bestimmtes Python-Objekt, das speziell für den Umgang mit Schleifen
geschaffen wurde. Wenn wir range also mit list kombinieren, bekommen wir
eine Zahlenreihe:

>>> print(list(range(10, 20)))
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

In diesem Fall einer for-Schleife sagt der Code in Python, dass es Folgendes tun
soll:

■ Beginne von 0 an zu zählen, und höre damit auf, bevor Du die 5 erreichst.
■ Bei jeder Zahl, die wir zählen, speichere den Wert in der Variable x.

Python führt anschließend den Code-Block in aus. Achte darauf, dass es vier
zusätzliche Leerzeichen am Anfang der Zeile gibt (wenn man sie mit Zeile
vergleicht). IDLE setzt diese Einrückung für Dich automatisch.

Wenn wir nach Eingabe der zweiten Zeile die Enter-Taste zweimal drücken,
zeigt Python fünfmal hintereinander »Hallo« an.

Wir können auch das x in unserer print-Anweisung verwenden, um die Hal-
los zu zählen:
Schleifen drehen

>>> for x in range(0, 5):
print('Hallo %s' % x)

Hallo 0
Hallo 1
Hallo 2
Hallo 3
Hallo 4

Wenn wir die for-Schleife wieder herausnehmen, sieht unser Code in etwa so aus:

>>> x = 0
>>> print('Hallo %s' % x)
Hallo 0
>>> x = 1
>>> print('Hallo %s' % x)
Hallo 1
>>> x = 2
>>> print('Hallo %s' % x)
Hallo 2
>>> x = 3
>>> print('Hallo %s' % x)
Hallo 3
>>> x = 4
>>> print('Hallo %s' % x)
Hallo 4

Der Einsatz einer Schleife hat uns also acht Zeilen zusätzlichen Code erspart.
Gute Programmierer haben es gar nicht gern, wenn sie Dinge mehr als einmal tun
müssen. Die for-Schleife ist also eine der beliebteren Anweisungen einer Program-
miersprache.

Du musst nicht unbedingt die Funktionen range und list verwenden, wenn
Du for-Schleifen schreibst. Du kannst auch eine Liste verwenden, die Du bereits
erzeugt hast – zum Beispiel die Einkaufsliste aus Kapitel 4:

>>> Zaubererliste = ['Spinnenbeine', 'Froschzeh', 'Schlangenzunge',
'Fledermausflügel', 'Schneckenschleim', 'Bärenrülpser']

>>> for i in Zaubererliste:
print(i)

Spinnenbeine
Froschzeh
Schlangenzunge
Fledermausflügel
Schneckenschleim
Bärenrülpser
Wie man for-Schleifen benutzt 65

66
Dieser Code sagt quasi: »Für jeden Posten in der Zaubererliste speicherst Du den
Wert in der Variable i und gibst dann den Inhalt der Variable aus.« Wenn wir
wieder die for-Schleife herausnehmen würden, müssten wir so etwas machen:

>>> Zaubererliste = ['Spinnenbeine', 'Froschzeh', 'Schlangenzunge',
'Fledermausflügel', 'Schneckenschleim', 'Bärenrülpser']

>>> print(Zaubererliste[0])
Spinnenbeine
>>> print(Zaubererliste[1])
Froschzeh
>>> print(Zaubererliste[2])
Schlangenzunge
>>> print(Zaubererliste[3])
Fledermausflügel
>>> print(Zaubererliste[4])
Schneckenschleim
>>> print(Zaubererliste[5])
Bärenrülpser

Und schon wieder hat uns die Schleife viel Tipperei erspart.
Jetzt erzeugen wir noch eine Schleife. Gib folgenden Code in die Shell ein. Die

Einrückungen im Code sollte sie automatisch für Dich machen.

>>> RiesigeflauschigeHose = ['Riesige', 'flauschige', 'Hose']
>>> for i in RiesigeflauschigeHose:

print(i)
print(i)

Riesige
Riesige
flauschige
flauschige
Hose
Hose

In der ersten Zeile erzeugen wir eine Liste aus 'Rie-
sige', 'flauschige' und 'Hose'. In der nächsten Zeile
schleifen wir die Posten dieser Liste durch, wobei jeder
Posten der Variablen i zugewiesen wird. Wir geben die
Inhalte der Variablen in den nächsten zwei Zeilen (
und) aus. Durch Drücken der Enter-Taste in der
nächsten Leerzeile wird Python mitgeteilt, dass der Block zu Ende ist. Der
Code läuft durch, und jedes Element der Liste wird zweimal angezeigt .

Denke daran, dass Du eine Fehlermeldung bekommst, wenn Du die falsche
Anzahl an Leerzeichen eingibst. Wenn Du im Code oben ein zusätzliches Leerzei-
Schleifen drehen

chen in Zeile eingeben würdest, würde Python einen Einrückungsfehler anzei-
gen:

>>> RiesigeflauschigeHose = ['Riesige', 'flauschige', 'Hose']
>>> for i in RiesigeflauschigeHose:

print(i)
■print(i)

SyntaxError: unexpected indent

Wie Du in Kapitel 6 gelernt hast, erwartet Python, dass die Anzahl an Leerzei-
chen in einem Block einheitlich ist. Es spielt keine Rolle, wie viele Leerzeichen Du
eingibst, solange sie nur von Zeile zu Zeile immer gleich sind. (Außerdem macht
es den Code für das menschliche Auge übersichtlicher.)

Hier ist nun ein komplizierteres Beispiel einer for-Schleife mit zwei Anwei-
sungsblöcken:

>>> RiesigeflauschigeHose = ['Riesige', 'flauschige', 'Hose']
>>> for i in RiesigeflauschigeHose:

print(i)
for j in RiesigeflauschigeHose:

print(j)

Woraus bestehen hier die Anweisungsblöcke? Der erste Block ist die for-Schleife:

RiesigeflauschigeHose = ['Riesige', 'flauschige', 'Hose']
for i in RiesigeflauschigeHose:

print(i) # Diese Zeilen bilden
for j in RiesigeflauschigeHose: # den ERSTEN Block.

print(j) #

Der zweite Block besteht aus der print-Zeile in der zweiten for-Schleife:

RiesigeflauschigeHose = ['Riesige', 'flauschige', 'Hose']
for i in RiesigeflauschigeHose:

print(i)
for j in RiesigeflauschigeHose:

print(j) # Diese Zeile bildet auch
noch den ZWEITEN Block.

Kannst Du erkennen, was dieses kleine Stückchen Code tun wird?
Nachdem in eine Liste namens RiesigeflauschigeHose erzeugt wurde, kön-

nen wir anhand der nächsten beiden Zeilen sagen, dass sie durch die ersten bei-
den Elemente der Liste wandern und jedes davon anzeigen. In allerdings wird
wieder eine Schleife durch die Liste gelegt, wobei dieses Mal der Wert der Varia-
ble j zugewiesen wird. In wird er dann wieder angezeigt. Der Code in und

 ist immer noch Teil der for-Schleife. Dies bedeutet, dass diese Anweisungen bei
jedem Element ausgeführt werden, während die for-Schleife die Liste durchgeht.
Wie man for-Schleifen benutzt 67

68
Wenn der Code also durchläuft, sollten wir Riesige gefolgt von Riesige, flau-
schige, Hose und dann flauschige gefolgt von Riesige, flauschige, Hose usw.
sehen.

Gib den Code in die Shell von Python ein, und sieh selbst:

>>> RiesigeflauschigeHose = ['Riesige', 'flauschige', 'Hose']
>>> for i in RiesigeflauschigeHose:

print(i)
for j in RiesigeflauschigeHose:

print(j)

◈ Riesige
Riesige
flauschige
Hose

◈ flauschige
Riesige
flauschige
Hose

◈ Hose
Riesige
flauschige
Hose

Python geht in die erste Schleife und gibt ein Element aus der Liste in aus. Jetzt
geht es in die zweite Schleife und gibt alle Elemente der Liste in aus. Dann geht
weiter mit dem Befehl print(i), wodurch das nächste Element der Liste angezeigt
wird. Danach wird wieder die komplette Liste durch den Befehl print(j) ange-
zeigt. In der Ausgabe sind die vom Befehl print(i) erzeugten Zeilen mit ◈ mar-
kiert. Die unmarkierten Zeilen wurden vom Befehl print(j) erzeugt.

Wie wäre es jetzt mit etwas Praktischerem als immer nur komischen Wör-
tern? Erinnerst Du Dich an die Berechnungen, mit denen wir in Kapitel 3 heraus-
gefunden haben, wie viele Goldmünzen Du nach einem Jahr hättest, wenn Du mit
der verrückten Erfindung Deines Großvaters die Münzen kopiert hättest? Es sah
so aus:

>>> 20 + 10 * 365 - 3 * 52

Dies steht für 20 gefundene Münzen plus 10 ko-
pierte Münzen multipliziert mit 365 Tagen eines
Jahres minus 3 durch die Elster gestohlene Mün-
zen pro Woche.

Es könnte ganz nützlich sein, wenn Du sehen
könntest, wie Dein Haufen Goldmünzen jede
Woche größer wird. Wir können das mit einer
Schleifen drehen

weiteren for-Schleife machen. Zuerst müssen wir aber den Wert der Variable
kopierte_Münzen ändern, sodass er die Gesamtzahl aller Münzen pro Woche dar-
stellt. Das sind 10 kopierte Münzen pro Tag, bei 7 Tagen pro Woche, also beträgt
kopierte_Münzen 70:

>>> gefundene_Münzen = 20
>>> kopierte_Münzen = 70
>>> gestohlene_Münzen = 3

Indem wir eine weitere Variable, Münzen genannt, einführen und eine Schleife
benutzen, können wir sehen, wie unser Schatz jede Woche größer wird:

>>> gefundene_Münzen = 20
>>> kopierte_Münzen = 70
>>> gestohlene_Münzen = 3
>>> Münzen = gefundene_Münzen
>>> for Woche in range(1, 53):

Münzen = Münzen + kopierte_Münzen - gestohlene_Münzen
print('Woche %s = %s' % (Woche, Münzen))

In wird die Variable Münzen mit dem Wert der Variable gefundene_Münzen be-
setzt; dies ist unsere Ausgangszahl. In Zeile wird die for-Schleife aufgesetzt, die
durch die Befehle im Block führt. (Der Block besteht aus den Zeilen und .)
Jedes Mal, wenn die Schleife durchlaufen wird, wird die Variable Woche mit der
nächsten Zahl in der Reihe von 1 bis 52 beladen.

Die Zeile bei ist etwas komplizierter. Im Prinzip wollen wir jede Woche die
Münzen, die wir kopiert haben, hinzuzählen und die Münzen abziehen, die von
der Elster gestohlen werden. Du kannst Dir die Variable Münzen als so etwas wie
eine Schatzkiste vorstellen. Jede Woche werden neue Münzen in die Schatzkiste
gelegt. Was die Zeile also wirklich macht, ist: »Ersetze den Inhalt der Variable
Münzen durch die Anzahl der momentan vorhandenen Münzen, und zähle die
Münzen dazu, die diese Woche entstanden sind.« Das Gleichheitszeichen (=)
macht Folgendes klar: »Rechne erst das Zeug auf der rechten Seite aus, speichere
es für später, und benutze dafür den Namen auf der linken Seite.«

Die Zeile in besteht aus einer print-Anweisung, die Platzhalter benutzt, die
die Wochennummer und die Gesamtzahl der Münzen (in dieser Woche) auf dem
Monitor ausgibt. (Wenn das für Dich keinen Sinn ergibt, liest Du am besten noch
einmal Abschnitt »Werte in Strings einbetten« auf S. 31 nach). Wenn Du das Pro-
gramm laufen lässt, bekommst Du so etwas:
Wie man for-Schleifen benutzt 69

70
7.2 Wo wir gerade von Schleifen sprechen…

Die for-Schleifen sind nicht die einzige Sorte Schleifen, die Du in Python nutzen
kannst. Es gibt auch noch die while-Schleife. Die for-Schleife ist eine Schleife von
bestimmter Länge. Die while-Schleife nimmt man, wenn man vorher nicht weiß,
wann sie mit dem Durchschleifen aufhören soll.

Stelle Dir dazu eine Treppe mit 20 Stufen vor. Die Treppe ist drinnen, und Du
weißt, dass Du 20 Stufen gut schaffst. So ist das bei einer for-Schleife.

>>> for Stufe in range(0, 20):
print(Stufe)

Jetzt stellst Du Dir eine Treppe vor, die einen Berg hinaufführt. Der Berg ist rich-
tig hoch, und vielleicht bist Du schon erschöpft, bevor Du den Gipfel erreicht
hast; oder das Wetter wird schlecht und Du musst Deine Tour abbrechen. So ist
das bei einer while-Schleife.
Schleifen drehen

Stufe = 0
while Stufe < 10000:

print(Stufe)
if erschöpft == True:

break
elif Schlechtwetter == True:

break
else:

Stufe = Stufe + 1

Wenn Du diesen Code eingibst und versuchst,
ihn durchlaufen zu lassen, bekommst Du eine
Fehlermeldung. Warum? Einfach, weil wir die
Variablen erschöpft und Schlechtwetter nicht
definiert haben. Auch wenn hier noch nicht
genug Code steht, um daraus ein funktionierendes Programm zu machen, kann
man doch sehen, wie eine while-Schleife funktioniert.

Wir beginnen mit der Erzeugung der Variable Stufe und sagen Stufe = 0. Als
Nächstes erzeugen wir eine while-Schleife, die prüft, ob der Wert der Variable
Stufe weniger als 10000 beträgt (Stufe < 10000), was der Gesamtzahl der Stufen
bis zum Gipfel des Berges entspricht. Solange Stufe unter 10000 liegt, führt
Python den Rest des Codes aus.

Mit print(Stufe) zeigen wir den Wert der Variable an und prüfen danach, ob
der Wert der Variable erschöpft wahr (True) ist: if erschöpft == True:. (True ist ein
sogenannter logischer Ausdruck, über den Du in Kapitel 9 mehr erfahren wirst.)
Wenn der Wert wahr (True) ist, benutzen wir das Schlüsselwort break, um die
Schleife zu verlassen. Mit dem Schlüsselwort break kann man sofort aus der
Schleife herausspringen (oder, anders gesagt, sie beenden). Das funktioniert
sowohl bei for- als auch bei while-Schleifen. In unserem Beispiel hat das zur
Folge, dass aus dem Block in die Zeile mit Stufe = Stufe + 1 gesprungen wird.

Die Zeile elif Schlechtwetter == True: prüft, ob die Variable Schlechtwetter
auf True (wahr) gestellt ist. Falls ja, wird durch das Schlüsselwort break die
Schleife verlassen. Falls weder erschöpft noch Schlechtwetter wahr (True) sind,
geht es über else in die nächste Zeile, in der wir zur Variable Stufe 1 addieren,
und wir setzen die Schleife fort: Stufe = Stufe + 1.

Die Schritte in einer while-Schleife sind also folgende:

1. Prüfe die Bedingung.
2. Führe den Code im Block aus.
3. Wiederhole das Ganze.

Meistens werden while-Schleifen mit mehreren Bedingungen auf einmal erzeugt,
statt nur mit einer:
Wo wir gerade von Schleifen sprechen… 71

72
>>> x = 45
>>> y = 80
>>> while x < 50 and y < 100:

x = x + 1
y = y + 1
print(x, y)

Hier erzeugen wir eine Variable x mit dem Wert 45 und eine Variable y mit dem
Wert 80 . Die Schleife prüft in zwei Bedingungen: ob x weniger als 50 und ob
y weniger als 100 beträgt.

Solange beide Bedingungen wahr sind, werden die Zeilen danach ausgeführt,
und dabei wird zu beiden Werten der Variablen 1 addiert. Hier ist die Ausgabe
des Codes:

46 81
47 82
48 83
49 84
50 85

Kommst Du dahinter, wie das funktioniert?
Wir fangen bei der Variable x bei 45 und der Variable y bei 80 an zu zählen

(durch das Addieren von 1 zu jeder Variable) und durchlaufen dabei die Schleife.
Die Schleife läuft so lange, wie x weniger als 50 und y weniger als 100 beträgt.
Nachdem die Schleife fünfmal durchlaufen wurde (und jedes Mal 1 zu jeder Vari-
able hinzugezählt wurde), erreicht der Wert von x 50. Nun ist die Bedingung
(x < 50) nicht mehr wahr, und Python weiß, dass es die Schleife beenden soll.

Die while-Schleifen benutzt man häufig, um sogenannte halbunendliche
Schleifen zu erzeugen. Diese Schleifen könnten sich unendlich fortsetzen, tun dies
aber nur so lange, bis etwas im Code passiert, wodurch sie beendet werden. Hier
ein Beispiel:

while True:
Jede Menge Code hier
Jede Menge Code hier
Jede Menge Code hier
if irgendein_Wert == True:

break

Die Bedingung für die while-Schleife ist einfach wahr (True) und bleibt es immer,
sodass der Code im Block für immer durchlaufen wird (die Schleife läuft also
unendlich). Nur wenn die Variable irgendein_Wert wahr wird, bricht Python aus
der Schleife aus. Auf Seite 123 wirst Du in »Mit randint eine Zufallszahl bestim-
men lassen« noch ein besseres Beispiel kennenlernen. Warte aber lieber, bis Du
Kapitel 8 gelesen hast, bevor Du Dir das ansiehst.
Schleifen drehen

7.3 Was Du gelernt hast

In diesem Kapitel haben wir mit Schleifen sich wiederholende Aufgaben erledigt,
ohne dass wir sie dauernd wiederholen mussten. Wir haben Python gesagt, was
wir wiederholt haben wollten, indem wir es in Code-Blöcke geschrieben haben,
die wir in die Schleifen gelegt haben. Wir haben zwei Arten von Schleifen benutzt:
die for-Schleifen und die while-Schleifen, die sich zwar ähneln, aber unterschied-
lich genutzt werden können. Wir haben auch das Keyword break benutzt, um
Schleifen zu beenden – also, um aus ihnen auszusteigen.

7.4 Programmier-Puzzles

Hier sind nun einige Beispiele für Schleifen, die Du selbst ausprobieren kannst.
Die Lösungen findest Du unter www.dpunkt.de/python.

#1: Die Hallo-Schleife

Was glaubst Du, macht der folgende Code? Überlege zuerst selbst, was passiert,
und gib erst danach den Code in Python ein, um zu sehen, ob Du recht hattest.

>>> for x in range(0, 20):
print('Hallo %s' % x)
if x < 9:

break

#2: Gerade Zahlen

Erzeuge eine Schleife, die gerade Zahlen ausgibt, bis sie Dein Alter erreicht. Sie
könnte zum Beispiel Folgendes ausgeben:

2
4
6
8
10
12
14
Was Du gelernt hast 73

74
#3: Meine fünf Lieblingszutaten

Erzeuge eine Liste mit fünf verschiedenen Sandwich-Zutaten wie den folgenden:

>>> Zutaten = ['Schnecken', 'Blutegel', 'Gorilla-Ohrenschmalz‘,
'Raupen-Augenbrauen', 'Hundertfüßler-Zehen']

Jetzt erzeugst Du eine Schleife, die folgende Liste (mit den Zahlen dabei) ausgibt:

1 Schnecken
2 Blutegel
3 Gorilla-Ohrenschmalz
4 Raupen-Augenbrauen
5 Hundertfüßler-Zehen

#4 Wie viel wiegst Du auf dem Mond?

Wenn Du jetzt auf dem Mond stehen würdest, würde Dein Gewicht dort nur
16,5% von dem auf der Erde betragen. Du kannst es also berechnen, indem Du
Dein Gewicht auf der Erde mit 0,165 multiplizierst.

Wenn Du nun in den nächsten 15 Jahren jedes Jahr ein Kilo zunehmen wür-
dest, wie hoch wäre dann bei Deiner jährlichen Mondreise Dein Gewicht dort?
Schreibe ein Programm mit einer for-Schleife, das Dein Gewicht auf dem Mond
für jedes der kommenden 15 Jahre ausgibt.
Schleifen drehen

8
Wiederverwertung Deines Codes mit

Funktionen und Modulen
Überlege einmal, wie viel Zeug Du jeden Tag wegwirfst: Wasserflaschen, Geträn-
kedosen, Kartoffelchips-Tüten, Frischhaltefolie, Zeitungen, Zeitschriften etc.
Jetzt stelle Dir einmal vor, all dieser Müll würde auf einen großen Haufen auf
Eurer Einfahrt gekippt, ohne dass Papier, Plastik und Dosen getrennt würden.

Natürlich trennst Du Deinen Müll so gut wie mög-
lich, denn niemand möchte auf dem Weg zur Schule über
eine Müllhalde klettern. Stattdessen werden Deine aus-
sortierten Glasflaschen zu neuen Gläsern und Flaschen
eingeschmolzen, das Papier wird zu Recyclingpapier ein-
gestampft, und aus Plastik werden meist größere Plastik-
gegenstände gefertigt. Die Dinge werden also wiederver-
wertet.

In der Welt des Programmierens ist Wiederverwer-
tung genauso wichtig. Natürlich erstickt Dein Programm
nicht unter einem Haufen Müll, aber wenn Du nicht eini-
ges von dem wiederverwertest, was Du schon geschrieben
hast, würdest Du Dir die Finger wund tippen. Die Wie-
derverwertung macht Deinen Code auch noch kürzer und
leichter zu lesen.

Python bietet eine ganze Reihe von Möglichkeiten, Code wiederzuverwerten.
In diesem Kapitel erfährst Du, wie das geht.
75

76
8.1 Funktionen benutzen

Eine Möglichkeit, um Code in Python wiederzuverwerten, hast Du schon gese-
hen: Im letzten Kapitel haben wir mit den Funktionen range und list Python zäh-
len lassen.

>>> list(range(0, 5))
[0, 1, 2, 3, 4]

Wenn Du weißt, wie man zählt, ist es nicht sehr schwer, eine Liste mit aufsteigen-
den Zahlen selbst einzugeben, aber je länger die Liste wird, umso mehr musst Du
tippen. Mit Funktionen jedoch, kannst Du ganz leicht eine Liste mit tausend Zah-
len erzeugen.

>>> list(range(0, 1000))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 …, 997, 998, 999]

Funktionen sind Einheiten von Code, die Python befehlen, etwas Bestimmtes zu
tun. Sie stellen also ein Verfahren dar, um Code wiederzuverwerten – und Du
kannst Funktionen in Deinen Programmen wieder und wieder benutzen.

Wenn Du kleine Programme schreibst, sind Funktionen schon sehr praktisch.
Sobald Du lange und kompliziertere Programme (wie etwa Spiele) schreibst, sind
Funktionen absolut notwendig (falls das Programm noch in diesem Jahrhundert
fertig werden soll).

Teile einer Funktion

Eine Funktion besteht aus drei Teilen: einem Namen, den Parametern und dem
Funktionskörper. Hier siehst Du ein Beispiel für eine einfache Funktion:

>>> def Testfunktion(MeinName):
print('Hallo %s' % MeinName)

Der Name der Funktion ist Testfunktion. Sie hat einen einzigen Parameter, Mein-
Name, und der Funktionskörper ist der Code-Block direkt im Anschluss an die
Zeile mit dem def (Abkürzung für engl. define, »definiere«). Ein Parameter ist
eine Variable, die nur so lange existiert, wie die Funktion benutzt wird. Du
kannst eine Funktion laufen lassen, indem Du ihren Namen aufrufst und den
Wert des Parameters dahinter in Klammern setzt:

>>> Testfunktion('Marie')
Hallo Marie

Die Funktion kann zwei, drei oder jede andere Anzahl von Parametern haben
und nicht nur einen:
Wiederverwertung Deines Codes mit Funktionen und Modulen

>>> def Testfunktion(Vorname, Nachname):
print('Hallo %s %s ' % (Vorname, Nachname))

Die Werte für diese beiden Parameter werden durch ein Komma getrennt:

>>> Testfunktion('Marie', 'Schmidt')
Hallo Marie Schmidt

Wir können auch zuerst einige Variablen erzeugen und dann die Funktion mit
ihnen aufrufen:

>>> Vorname = 'Julian'
>>> Nachname = 'Reichling'
>>> Testfunktion(Vorname, Nachname)
Hallo Julian Reichling

Eine Funktion wird oft mit einer return-Anweisung benutzt, um einen Wert
zurückzugeben. Du könntest zum Beispiel eine Funktion schreiben, mit der Du
ausrechnen kannst, wie viel Geld Du gespart hast:

>>> def Erspartes(Taschengeld, Zeitung_austragen, Ausgaben):
return Taschengeld + Zeitung_austragen - Ausgaben

Diese Funktion nimmt drei Parameter auf. Sie zählt die ersten beiden Parameter
zusammen (Taschengeld und Zeitung_austragen) und zieht den letzten ab
(Ausgaben). Das Ergebnis wird zurückgegeben und kann einer Variable zugewie-
sen werden (so wie wir andere Werte auch Variablen zuordnen) oder angezeigt
werden:

>>> print(Erspartes(10, 10, 5))
15

8.2 Variablen und ihr Gültigkeitsbereich

Eine Variable, die in einem Funktionskörper steckt, kann nicht erneut verwendet
werden, wenn die Funktion durchgelaufen ist, da sie nur innerhalb der Funktion
existiert. In der Welt des Programmierens nennt man das einen Gültigkeitsbe-
reich.

Lass uns dazu eine einfache Funktion betrachten, die ein paar Variablen
benutzt, aber keine Parameter besitzt:

>>> def Variablentest():
erste_Variable = 10
zweite_Variable = 20
return erste_Variable * zweite_Variable
Variablen und ihr Gültigkeitsbereich 77

78
Bei diesem Beispiel erzeugen wir in eine Funktion Variablentest, die zwei Vari-
ablen miteinander multipliziert (erste_Variable und zweite_Variable) und das
Ergebnis in zurückgibt.

>>> print(Variablentest)
200

Wenn wir diese Funktion mit print aufrufen, bekommen wir das Ergebnis 200.
Wenn wir allerdings den Inhalt von erste_Variable ausgeben wollen (oder auch
den von zweite_Variable) und dies nicht innerhalb des Anweisungsblocks der
Funktion tun, bekommen wir eine Fehlermeldung:

>>> print(erste_Variable)
Traceback (most recent call last):
 File "<pyshell#145>", line 1, in <module>
 print(erste_Variable)
NameError: name 'erste_Variable' is not defined

Sobald dagegen eine Variable außerhalb der Funktion definiert wird, hat sie einen
anderen Gültigkeitsbereich. Lass uns zum Beispiel eine Variable definieren, bevor
wir unsere Funktion definieren, und dann versuchen, sie innerhalb der Funktion
zu verwenden:

>>> weitere_Variable = 100
>>> def Variablentest2():

erste_Variable = 10
zweite_Variable = 20
return erste_Variable * zweite_Variable * weitere_Variable

Obwohl in diesem Code die Variablen erste_Variable und zweite_Variable nicht
außerhalb der Funktion verwendet werden können, kann die Funktion
weitere_Variable (die in außerhalb der Funktion erzeugt wurde) in inner-
halb von ihr benutzt werden.

Wenn diese Funktion aufgerufen wird, erhältst Du folgendes Ergebnis:

>>> print(Variablentest2())
20000

Jetzt nimm einmal an, Du wolltest ein Raumschiff
bauen, und weil Du ein sparsamer Konstrukteur
bist, verwendest Du gebrauchte Konservendosen.
Du gehst davon aus, dass Du 2 Dosen pro Woche
plattdrücken kannst, um die gebogenen Wände
Deines Raumschiffs zu bauen. Du brauchst aber
ungefähr 500 Dosen, um den Rumpf fertigzustel-
len. Wir können uns leicht eine Funktion schreiben,
Wiederverwertung Deines Codes mit Funktionen und Modulen

die uns dabei hilft, herauszufinden, wie lange man zum Plätten von 500 Dosen
bräuchte, wenn man das 2-mal pro Woche macht.

Lass uns eine Funktion erzeugen, die zeigt, wie viele Dosen wir in jeder
Woche bis zu einer Dauer eines Jahres plattgedrückt haben. Unsere Funktion
nimmt die Anzahl der Dosen als Parameter:

>>> def Raumschiffbau(Dosen):
Dosen_gesamt = 0
for Woche in range(1, 53):

Dosen_gesamt = Dosen_gesamt + Dosen
print('Woche %s = %s Dosen' % (Woche, Dosen_gesamt))

In der ersten Zeile unserer Funktion erzeugen wir die Variable Dosen_gesamt und
setzen deren Wert auf 0. Danach erzeugen wir eine Schleife für die Wochen eines
Jahres und fügen die Anzahl der geplätteten Dosen pro Woche hinzu. Dieser
Anweisungsblock bildet den Inhalt unserer Funktion. Aber es gibt in dieser Funk-
tion noch einen weiteren Codeblock: die beiden letzten Zeilen, die den Block für
die for-Schleife darstellen.

Jetzt versuchen wir, die Funktion in die Shell einzugeben, und rufen sie mit
verschiedenen Werten für die Anzahl der Dosen auf:

>>> Raumschiffbau(2)
Woche 1 = 2 Dosen
Woche 2 = 4 Dosen
Woche 3 = 6 Dosen
Woche 4 = 8 Dosen
Woche 5 = 10 Dosen
Woche 6 = 12 Dosen
Woche 7 = 14 Dosen
Woche 8 = 16 Dosen
Woche 9 = 18 Dosen
Woche 10 = 20 Dosen
(setzt sich fort …)

>>> Raumschiffbau(13)
Woche 1 = 13 Dosen
Woche 2 = 26 Dosen
Woche 3 = 39 Dosen
Woche 4 = 52 Dosen
Woche 5 = 65 Dosen
(setzt sich fort …)

Diese Funktion kann mit unterschiedlichen Werten für die Anzahl der Dosen pro
Woche wiederverwertet werden. Das ist doch etwas effizienter, als jede for-
Schleife neu einzutippen, wenn man eine andere Zahl ausprobiert.

Funktionen lassen sich zu Modulen zusammenfassen, was Python so richtig
nützlich macht (und nicht nur »so ein bisschen«).
Variablen und ihr Gültigkeitsbereich 79

80
8.3 Einsatz von Modulen

Mit Modulen fasst man Funktionen, Variab-
len und andere Dinge zu größeren, leistungs-
fähigeren Programmen zusammen. Manche
Module sind in Python bereits enthalten,
andere wiederum kannst Du separat herun-
terladen. Du kannst Module finden, die Dir
dabei helfen, Spiele zu schreiben (so wie
tkinter, das eingebaut ist, oder PyGame, das
heruntergeladen werden muss), Module zur Bildbearbeitung (wie PIL, die Python
Imaging Library) oder Module zum Zeichnen von 3D-Grafiken (wie Panda3D).

Module kann man für alle möglichen nützlichen Dinge verwenden. Wenn Du
zum Beispiel einen Simulator bauen willst und möchtest, dass die Spielewelt sich
realistisch ändert, kannst Du das aktuelle Datum und die Uhrzeit mit dem einge-
bauten Modul time berechnen:

>>> import time

Hier wird der Befehl import verwendet, um Python zu sagen, dass wir das Modul
time verwenden möchten.

Danach können wir die in diesem Modul verfügbaren Funktionen aufrufen,
indem wir einen Punkt setzen. (Du erinnerst Dich, dass wir Funktionen wie diese
im Modul turtle verwendet haben, und zwar in Kapitel 5, etwa t.forward(50).)
Wir könnten zum Beispiel die Funktion asctime im Modul time aufrufen:

>>> print(time.asctime())
Mon Jan 14 22:16:09 2013

Die Funktion asctime ist Teil des Moduls time und gibt das aktuelle Datum und
die Uhrzeit als String zurück.

Jetzt stell Dir vor, Du würdest jemanden, der Dein
Programm benutzt, bitten wollen, einen Wert einzuge-
ben – zum Beispiel den Geburtstag oder das Alter. Du
kannst das bewerkstelligen, indem Du diese Bitte mit
einer print-Anweisung anzeigen lässt, und das Modul
sys (Abkürzung für System) nutzt, das Hilfsprogramme
enthält, die mit dem Python-System selbst kommunizie-
ren. Als Erstes importieren wir dazu das Modul sys:

>>> import sys

Innerhalb des Moduls sys gibt es ein Objekt namens
stdin (standard input), dass die ziemlich nützliche
Funktion readline enthält. Die Funktion readline (engl.
Wiederverwertung Deines Codes mit Funktionen und Modulen

für »lies Zeile«) macht genau das, was ihr Name sagt: Sie liest eine Zeile Text ein,
die über die Tastatur eingegeben wird, bis man die Enter-Taste drückt. (Wie
Objekte funktionieren, klären wir in Kapitel 9). Um readline einmal zu testen,
gibst Du folgenden Code in die Shell ein:

>>> import sys
>>> print(sys.stdin.readline())

Wenn Du danach ein paar Wörter eintippst und die Enter-Taste drückst, werden
die Wörter in der Shell angezeigt. Jetzt denke noch einmal an den Code zurück,
den wir in Kapitel 6 mit der if-Anweisung geschrieben haben:

>>> if Alter >= 10 and Alter <= 13:
print('Was ergeben 13 + 49 + 84 + 155 + 97? Kopfschmerzen!')

else:
print('Häh?')

Statt nun die Variable Alter zuvor zu erzeugen und ihr vor der if-Anweisung
einen Wert zuzuordnen, können wir jetzt jemanden den Wert (das Alter) eingeben
lassen. Dafür machen wir aber erst aus dem Code eine Funktion:

>>> def Blöder_Alterwitz(Alter):
if Alter >= 10 and Alter <= 13:

print('Was ergeben 13 + 49 + 84 + 155 + 97?
Kopfschmerzen!')

else:
print('Häh?')

Jetzt kannst Du die Funktion aufrufen, indem Du ihren Namen eingibst, und
anschließend sagen, welche Zahl sie benutzen soll, indem Du die Zahl in Klam-
mern setzt. Klappt das?

>>> Blöder_Alterwitz(9)
Häh?
>>> Blöder_Alterwitz(10)
Was ergeben 13 + 49 + 84 + 155 + 97? Kopfschmerzen!

Es klappt! Jetzt lass uns die Funktion nach dem Alter einer Person fragen. (Du
kannst eine Funktion so oft ändern oder erweitern, wie Du willst.)

>>> def Blöder_Alterwitz():
print('Wie alt bist Du?')
Alter = int(sys.stdin.readline())
if Alter >= 10 and Alter <= 13:

print('Was ergeben 13 + 49 + 84 + 155 + 97?
Kopfschmerzen!')

else:
print('Häh?')
Einsatz von Modulen 81

82
Hast Du die Funktion int in erkannt, die aus dem String eine Zahl macht? Wir
haben diese Funktion mit eingebaut, weil readline() aus jeder Eingabe, die
jemand macht, einen String erzeugt. Wir brauchen nun aber eine Zahl, um die
Eingabe mit den Zahlen 10 und 13 in zu vergleichen. Um das jetzt selbst ein-
mal auszuprobieren, gibst Du die Funktion ohne irgendwelche Parameter ein;
und wenn die Frage Wie alt bist Du? erscheint, gibst Du eine Zahl ein:

>>> Blöder_Alterwitz()
Wie alt bist Du?
10
Was ergeben 13 + 49 + 84 + 155 + 97? Kopfschmerzen!
>>> Blöder_Alterwitz()
Wie alt bist Du?
15
Häh?

8.4 Was Du gelernt hast

In diesem Kapitel hast Du gesehen, wie man in Python wiederverwertbare Code-
Abschnitte mit Funktionen erstellt und wie man Funktionen verwendet, die von
Modulen bereitgestellt werden. Du hast gelernt, wie der Gültigkeitsbereich von
Variablen bestimmt, ob sie innerhalb oder außerhalb einer Funktion liegen, und
wie man das Schlüsselwort def benutzt. Du hast auch herausgefunden, wie man
Module importiert, damit Du ihren Inhalt verwenden kannst.

8.5 Programmier-Puzzles

Probiere einmal die folgenden Beispiele aus, um mit Deinen selbst erzeugten
Funktionen zu experimentieren. Die Lösungen findest Du unter

www.dpunkt.de/python.

#1: Einfache Funktion für Dein Gewicht auf dem Mond

In einem der Puzzles zu Kapitel 7 hast Du eine for-
Schleife erzeugt, um Dein Gewicht auf dem Mond
über einen Zeitraum von 15 Jahren zu bestimmen.
Diese for-Schleife kannst Du ganz einfach in eine
Funktion verwandeln. Versuche eine Funktion zu
erzeugen, die ein Startgewicht aufnimmt und das
Gewicht jedes Jahr steigen lässt. Du könntest die neue
Funktion etwa mit diesem Code aufrufen:

>>> Mondgewicht(30, 0.25)
Wiederverwertung Deines Codes mit Funktionen und Modulen

#2: Was wiegst Du auf dem Mond nach x Jahren?

Nimm die Funktion, die Du eben erzeugt hast, und ändere sie so, dass sie Dein
Gewicht über verschiedene Zeitabschnitte (über 5 oder 20 Jahre) bestimmt.
Achte darauf, dass sie drei Argumente aufnimmt: das Startgewicht, die Gewichts-
zunahme innerhalb eines Jahres und die Gesamtzahl der Jahre:

>>> Mondgewicht(40, 0.25, 5)

#3: Ein Programm für Dein Gewicht auf dem Mond

Statt einer einfachen Funktion, bei der Du die Werte als Parameter weitergibst,
kannst Du ein Mini-Programm schreiben, das die Werte mit der Funktion
sys.stin.readline() abfragt. Danach kannst Du die Funktionen ohne Parameter
aufrufen:

>>> Mondgewicht()

Die Funktion zeigt dann eine Mitteilung, die erst nach dem Startgewicht fragt,
nach dessen Eingabe nach der Gewichtszunahme in einem Jahr und abschließend
nach der Gesamtzahl der Jahre. Das sollte dann so aussehen:

Bitte gibt Dein momentanes Gewicht auf der Erde ein
45
Bitte gib die jährliche Gewichtszunahme ein
0.4
Gib nun die Gesamtzahl der Jahre ein
12

Vergiss nicht, vor der Erzeugung Deiner Funktion das Modul sys zu importieren:

>>> import sys
Programmier-Puzzles 83

84
 Wiederverwertung Deines Codes mit Funktionen und Modulen

9
Wie man Klassen und Objekte benutzt
Was haben eine Giraffe und ein Bürgersteig gemeinsam? Beide sind Dinge, die
man im Deutschen als Substantive und in Python als Objekte bezeichnet.

Das Konzept von Objekten ist in der Computerwelt sehr wichtig. Mit Objek-
ten wird der Code in einem Programm strukturiert und Dinge in kleinere Stücke
aufgeteilt, damit es leichter wird, kompliziertere Ideen zu verwirklichen. (In
Kapitel 5 haben wir schon mit einem Objekt gearbeitet, dem Schildkröten-Zei-
chenstift Pen).

Um wirklich zu verstehen, wie Objekte in Python funktionieren, müssen wir
einmal kurz über unterschiedliche Typen von Objekten nachdenken. Gehen wir
einmal von Giraffen und Bürgersteigen aus.

Eine Giraffe ist ein bestimmter Typ von Säu-
getier, das wiederum einen Typ von Tier dar-
stellt. Eine Giraffe ist auch ein belebtes Objekt –
es lebt.

Jetzt denken wir einmal an einen Bürger-
steig. Außer, dass er kein lebendiges Ding ist,
gibt es kaum etwas über ihn zu sagen. Nennen
wir ihn ein unbelebtes Objekt (schließlich lebt
er nicht). Die Begriffe Säugetier, Tier, belebt und
unbelebt sind alles Möglichkeiten, um Dinge zu
klassifizieren.
85

86
9.1 Dinge in Klassen aufteilen

In Python werden Objekte durch sogenannte Klassen definiert. Wir können uns
das so vorstellen, dass wir Objekte in Gruppen klassifizieren. Hier siehst Du ein
Baumdiagramm der Klassen, in die Giraffen und Bürgersteige aufgrund unserer
bisherigen Definitionen passen würden:

Die Hauptklasse ist Dinge. Unter der Klasse Dinge haben wir die Klassen Belebt
und Unbelebt angelegt. Diese beiden werden weiter aufgeteilt. In der Klasse Unbe-
lebt gibt es einfach nur noch die Bürgersteige. In der Klasse Belebt geht es aber
noch weiter: erst mit Tiere, dann mit Säugetiere und schließlich mit Giraffen.

Mit Klassen können wir Abschnitte des Python-Codes strukturieren. Alle
Dinge, die Pythons Modul turtle kann (also sich vorwärts, rückwärts, nach links
und rechts bewegen), sind Funktionen der Klasse Pen. Ein Objekt kann man sich
als Angehörigen einer Klasse vorstellen, und man kann so viele Objekte in eine
Klasse packen, wie man möchte – dazu folgt bald mehr.

Jetzt erzeugen wir den gleichen Satz von Klassen von oben nach unten, wie
wir ihn im Baumdiagramm oben sehen. Die Klassen definieren wir durch das
Schlüsselwort class, hinter das wir den Klassennamen schreiben. Da Dinge die
allgemeinste Klasse darstellt, erzeugen wir sie als erste:

>>> class Dinge:
pass

Wir nennen die Klasse Dinge und verwenden die Anweisung pass, um Python
dadurch mitzuteilen, dass wir keine weiteren Informationen eingeben.

Als Nächstes fügen wir die anderen Klassen hinzu und bauen einige Verbin-
dungen zwischen ihnen auf.

Dinge

Unbelebt

Bürgersteige

Belebt

Tiere

Säugetiere

Giraffen
Wie man Klassen und Objekte benutzt

Kinder und Eltern

Sobald eine Klasse Teil einer anderen Klasse wird, ist sie ein Kind dieser Klasse,
die wiederum zur Elternklasse wird. Klassen können gleichzeitig sowohl Kinder-
als auch Elternklassen von anderen Klassen sein. In unserem Baumdiagramm ist
die Klasse über einer Klasse deren Elternklasse und die Klasse darunter ihr Kind.
Unbelebt und Belebt sind jeweils Kinder der Klasse Dinge, Dinge ist also deren
Elternklasse. Damit Python weiß, dass eine Klasse Kind einer anderen Klasse ist,
schreiben wir den Namen der Elternklasse in Klammern hinter den Namen der
neuen Klasse:

>>> class Unbelebt(Dinge):
pass

>>> class Belebt(Dinge):
pass

Hier haben wir zuerst eine Klasse namens Unbelebt erzeugt und Python mit dem
Code class Unbelebt(Dinge) mitgeteilt, dass deren Elternklasse Dinge ist. Als
Nächstes erzeugen wir die Klasse Belebt und sagen Python, dass ihre Elternklasse
ebenso Dinge ist, indem wir class Belebt(Dinge) schreiben.

Probieren wir jetzt das Gleiche mit der Klasse Bürgersteig. Wir erzeugen die
Klasse Bürgersteig mit der Elternklasse Unbelebt:

>>> class Bürgersteig(Unbelebt):
pass

Und die Klassen Tiere, Säugetiere und Giraffen können wir durch deren Eltern-
klassen ebenfalls strukturieren:

>>> class Tiere(Belebt):
pass

>>> class Säugetiere(Tiere):
pass

>>> class Giraffen(Säugetiere):
pass

9.2 Klassen Objekte hinzufügen

Jetzt haben wir einen Haufen Klassen, aber wie wäre es, wir könnten ein paar
Dinge in diese Klassen tun? Sagen wir einmal, wir hätten eine Giraffe, die Wie-
gand heißt. Wir selbst wissen zwar, dass Wiegand in die Klasse der Giraffen
gehört, aber wie sagen wir es dem Programm, dass es sich bei Wiegand um eine
einzelne Giraffe handelt? Einfach, indem wir Wiegand ein Objekt (manchmal
Klassen Objekte hinzufügen 87

88
wird auch der Begriff Instanz gebraucht) der Klasse Giraffen nennen. Um nun
Wiegand in Python »einzuführen«, benutzen wir diese Programmzeile:

>>> wiegand = Giraffen()

Mit diesem Code sagst Du Python, dass es ein Objekt in der Klasse Giraffen anle-
gen soll und dieses Objekt der Variable wiegand zuweisen soll. Wie bei einer Funk-
tion stehen auch hier nach dem Klassennamen zwei Klammern. Später werden
wir in diesem Kapitel noch sehen, wie man Objekte erzeugt und dabei in den
Klammern Parameter verwendet.

Aber was macht jetzt das Objekt wiegand? Nun, im Moment eigentlich nichts.
Um etwas mit unseren Objekten anfangen zu können, müssen wir auch Funktio-
nen definieren, die mit den Objekten in dieser Klasse benutzt werden können.
Anstatt einfach nur das Schlüsselwort pass direkt nach der Definition der Klasse
einzugeben, können wir der Klasse Funktionen hinzufügen.

9.3 Funktionen von Klassen definieren

In Kapitel 8 haben wir die Funktionen eingeführt, mit denen wir Code wiederver-
wenden können. Wenn wir eine Funktion definieren, die zu einer Klasse gehört,
machen wir das genau so wie bei jeder anderen Funktion. Der einzige Unter-
schied besteht darin, dass wir sie unter der Klassendefinition einrücken. Hier ist
zum Beispiel eine Funktion, die nicht zu einer Klasse gehört:

>>> def Dies_ist_eine_normale_Funktion():
print('Ich bin eine normale Funktion')

Und hier sind ein paar Funktionen, die zu einer Klasse gehören:

>>> class DiesIstMeineKomischeKlasse:
def Dies_ist_eine_Klassenfunktion():

print('Ich bin eine Klassenfunktion')
def Dies_ist_auch_eine_Klassenfunktion():

print('Ich bin auch eine Klassenfunktion. Siehste?')

Klasseneigenschaften als Funktionen hinzufügen

Denke noch einmal an die Kinderklassen der Klasse Belebt, die wir auf Seite 87
definiert haben. Wir können jeder Klasse Eigenschaften zuweisen, die beschrei-
ben, was die Klasse ist und was sie tun kann. Eine solche Eigenschaft haben alle
Angehörigen dieser Klasse (und deren Kinder) gemeinsam.

Was haben zum Beispiel alle Tiere gemeinsam? Nun, da wäre zunächst ein-
mal das Atmen. Sie bewegen sich auch noch und fressen. Wie ist das jetzt mit den
Säugetieren? Säugetiere ernähren ihre Nachkommen mit Milch. Und auch sie
Wie man Klassen und Objekte benutzt

atmen, bewegen sich und fressen. Von Giraffen wissen wir, dass sie Blätter hoch
oben von Bäumen fressen und, wie alle Säugetiere, ihre Nachkommen mit Milch
ernähren, atmen, sich bewegen und fressen. Wenn wir alle diese Eigenschaften in
ein Baumdiagramm zeichnen, sieht das so aus:

Diese Eigenschaften kann man sich als Tätigkeiten oder Funktionen vorstellen –
Dinge, die ein Objekt einer Klasse tun kann.

Um einer Klasse eine Funktion zuzuweisen, verwenden wir das Schlüsselwort
def. Die Klasse Tiere sieht demnach so aus:

>>> class Tiere(Belebt):
def atmen(self):

pass
def bewegen(self):

pass
def fressen(self):

pass

In der ersten Zeile dieses Listings beschreiben wir die
Klasse wie schon zuvor. Anstatt nun aber in der nächsten
Zeile direkt das Schlüsselwort pass zu verwenden, definie-
ren wir die Funktion atmen und geben ihr einen Parame-
ter: self. Mit dem Parameter self kann eine Funktion
innerhalb der Klasse eine andere in dieser Klasse (und
ihrer Elternklasse) aufrufen. Wir werden diesen Parame-
ter später noch in Aktion sehen.

In der nächsten Zeile teilt das Schlüsselwort pass Python mit, dass wir keine
weiteren Informationen zu der Funktion atmen liefern, da diese Funktion jetzt
noch nichts tun soll. Genauso fügen wir die Funktionen bewegen und fressen
hinzu, da auch diese noch nichts machen. Wir werden die Klassen bald neu erstel-
len und ordentlichen Code in die Funktionen schreiben. Programme werden häu-
fig auf diese Weise entwickelt. Programmierer erzeugen oft Klassen, die nichts
tun, um zunächst herauszufinden, was die Klassen tun sollen, und fügen die
Details der einzelnen Funktionen dann später ein.

Wir können den anderen beiden Klassen, Säugetiere und Giraffen, auch
Funktionen zuweisen. Jede Klasse wird dann die Eigenschaften (die Funktionen)

Tiere
Atmen

Bewegen sich

Fressen

Ernähren Nachkommen mit Milch

Fressen Blätter von Bäumen

Säugetiere

Giraffen
Funktionen von Klassen definieren 89

90
ihrer Elternklasse nutzen können. Das bedeutet, dass Du nicht eine komplizierte
Klasse erzeugen musst, sondern diejenigen Funktionen in die höchste Elternklasse
legst, für die die Eigenschaften zutreffen sollen. (So kannst Du Deine Klassen ein-
facher machen, und sie sind dadurch leichter zu verstehen.)

>>> class Säugetiere(Tiere):
def ernähren_Nachkommen_mit_Milch(self):

pass

>>> class Giraffen(Säugetiere):
def fressen_Blätter_von_Bäumen(self):

pass

9.4 Wozu braucht man Klassen und Objekte?

Jetzt haben wir unseren Klassen Funktionen hinzugefügt, aber wofür brauchen
wir denn eigentlich Klassen und Objekte, wenn man auch einfach so Funktionen
wie atme, bewegen und fressen schreiben kann?

Um diese Frage zu beantworten, kommt wieder unsere Giraffe Wiegand zum
Einsatz, die wir schon vorher als Objekt der Klasse Giraffen erzeugt haben:

>>> wiegand = Giraffen()

Da wiegand ein Objekt ist, können wir Funktionen aufrufen (oder ausführen), die
zu seiner Klasse (der Klasse Giraffen) gehören, und auch die Funktionen seiner
Elternklassen. Wir können die Funktionen auf ein Objekt anwenden, indem wir
den Operator Punkt und den Namen der Funktionen benutzen. Um Wiegand zu
sagen, dass er sich bewegen oder fressen soll, rufen wir die Funktionen folgender-
maßen auf:

>>> wiegand = Giraffen()
>>> wiegand.bewegen()
>>> wiegand.fressen_Blätter_von_Bäumen()

Nehmen wir an, Wiegand hätte einen Artgenossen zum Freund, Heribert. Wir
erzeugen ein anderes Giraffen-Objekt mit dem Namen heribert:

>>> heribert = Giraffen()

Weil wir Objekte und Klassen benutzen, können wir Python genau sagen, welche
Giraffe gemeint ist, wenn wir die Funktion bewegen auf sie anwenden. Wenn wir
beispielsweise möchten, dass Heribert sich bewegt und Wiegand stehen bleiben
soll, rufen wir die Funktion bewegen mit unserem Objekt heribert auf:

>>> heribert.bewegen()

In diesem Fall würde sich nur Heribert bewegen.
Wie man Klassen und Objekte benutzt

Wir ändern jetzt die Klassen ein wenig, um das noch klarer zu machen. Wir
fügen anstelle von pass jeder Funktion eine print-Anweisung hinzu:

>>> class Tiere(Belebt):
def atmen(self):

print('atmen')
def bewegen(self):

print('bewegen')
def fressen(self):

print('fressen')

>>> class Säugetiere(Tiere):
def ernähren_Nachkommen_mit_Milch(self):

print('Nachkommen ernähren')

>>> class Giraffen(Säugetiere):
def fressen_Blätter_von_Bäumen(self):

print('Blätter fressen')

Wenn wir jetzt unsere Objekte wiegand und heribert erzeugen und auf sie Funk-
tionen anwenden, können wir sehen, dass etwas passiert:

>>> wiegand = Giraffen()
>>> heribert = Giraffen()
>>> wiegand.bewegen()
bewegen
>>> heribert.fressen_Blätter_von_Bäumen()
Blätter fressen

In den ersten beiden Zeilen erzeugen wir die Variablen
wiegand und heribert, die nun Objekte der Klasse
Giraffen sind. Als Nächstes rufen wir die Funktion
bewegen für wiegand auf, und Python gibt in der nächs-
ten Zeile bewegen aus. Auf die gleiche Weise rufen wir
für heribert die Funktion fressen_Blätter_von_Bäumen
auf, und Pyton zeigt Blätter fressen an. Wenn es echte
Giraffen und nicht nur Objekte in Python wären,
würde die eine jetzt laufen und die andere fressen.

9.5 Objekte und Klassen bei Bildern

Wie wäre es mit einem grafischen Ansatz bei Objekten und Klassen?
Lass uns dazu zum Modul turtle zurückkehren, mit dem wir in Kapitel 5

herumgespielt haben. Wenn wir turtle.Pen() eingeben, erzeugt Python ein
Objekt in der Klasse Pen, die wiederum im Modul turtle enthalten ist. Wir kön-
nen – genau wie bei den beiden Giraffen – zwei Schildkröten-Objekte erzeugen
(mit Namen Amanda und Käte):
Objekte und Klassen bei Bildern 91

92
>>> import turtle
>>> amanda = turtle.Pen()
>>> käte = turtle.Pen()

Jedes Schildkröten-(turtle-)Objekt gehört jetzt der Klasse Pen an.
Jetzt werden die Objekte so richtig nützlich. Dadurch, dass wir unsere Schild-

kröten-Objekte erzeugt haben und für jedes von ihnen Funktionen aufrufen kön-
nen, können sie unabhängig voneinander zeichnen. Probiere es aus:

>>> amanda.forward(50)
>>> amanda.right(90)
>>> amanda.forward(20)

Mit dieser Reihe von Anweisungen sagen wir Amanda, dass sie sich 50 Pixel vor-
wärts bewegen soll, dann um 90 Grad nach rechts abbiegen und sich anschlie-
ßend 20 Pixel nach unten bewegen soll. Denk daran, dass sich die Schildkröten
immer nach rechts schauend in Bewegung setzen.

Jetzt ist Käte mit der Bewegung dran:

>>> käte.left(90)
>>> käte.forward(100)

Wir sagen Käte also, dass sie um 90 Grad nach links abbiegen und dann 100 Pixel
vorwärts gehen soll, sodass sie am Ende nach oben schaut.

Bis jetzt haben wir eine Linie mit Pfeilspitzen, die in zwei verschiedene Rich-
tungen zeigen, wobei jede Pfeilspitze für ein unterschiedliches Schildkröten-
Objekt steht: Amanda zeigt nach unten, Käte nach oben.

Jetzt tun wir noch eine dritte Schildkröte, Jakob, dazu und bewegen auch ihn,
ohne Käte und Amanda zu stören:
Wie man Klassen und Objekte benutzt

>>> jakob = turtle.Pen()
>>> jakob.left(180)
>>> jakob.forward(80)

Als Erstes erzeugen wir wieder ein
Pen-Objekt namens jakob und drehen
es 180 Grad nach links. Dann bewe-
gen wir ihn 80 Pixel vorwärts. Mit
drei Schildkröten sieht unsere Zeich-
nung so aus:

Beachte, dass jedes Mal, wenn wir turtle.Pen() aufrufen, um eine Schildkröte zu
erzeugen, ein neues, unabhängiges Objekt entsteht. Jedes dieser Objekte gehört
noch zu der Klasse Pen, sodass wir dieselben Funktionen auf jedes Objekt anwen-
den können. Weil wir jedoch Objekte verwenden, können wir jede Schildkröte
einzeln bewegen. Wie auch unsere unabhängigen Giraffen-Objekte (Wiegand und
Heribert) sind Amanda, Käte und Jakob unabhängige Schildkröten-Objekte.
Wenn wir ein neues Objekt mit dem einem Objektnamen erzeugen würden, den
wir schon zuvor verwendet haben, verschwindet das alte Objekt nicht unbedingt.
Probiere es selbst aus: Erzeuge eine zweite Käte, und versuche, sie zu bewegen.

9.6 Weitere nützliche Eigenschaften von Objekten und Klassen

Klassen und Objekte erleichtern das Zusammenfassen von Funktionen. Sie sind
auch sehr nützlich, wenn wir ein Programm in kleineren Abschnitten angehen
wollen.

Stellen wir uns zum Beispiel eine richtig große Software vor, so etwas wie eine
Textverarbeitung oder ein 3D-Computerspiel. Für die allermeisten Menschen ist
es einfach unmöglich, große Programme wie diese zu verstehen, da sie aus so viel
Weitere nützliche Eigenschaften von Objekten und Klassen 93

94
Code bestehen. Aber sobald man diese Monsterprogramme in kleine Stücke
unterteilt, kann man die Stücke verstehen. Natürlich nur, wenn man die Program-
miersprache versteht.

Wenn Du ein großes Programm schreibst, hilft Dir die Unterteilung auch
dabei, Dir die Arbeit mit anderen Programmierern zu teilen. Die kompliziertesten
Programme, die Du benutzt (wie etwa Dein Webbrowser), wurden von vielen
Leuten oder ganzen Teams gemeinsam geschrieben, die jeweils an unterschied-
lichen Teilen gleichzeitig gearbeitet haben – und das auf der ganzen Welt verteilt.

Jetzt stell Dir einmal vor, wir wollten einige
unserer Klassen, die wir in diesem Kapitel erzeugt
haben (Tiere, Säugetiere und Giraffen) erweitern.
Wir sind aber so beschäftigt, dass wir unsere
Freunde bitten, uns dabei zu helfen. Wir können
uns die Arbeit am Code so aufteilen, dass der eine
Freund an der Klasse Tiere, ein anderer an der
Klasse Säugetiere und ein weiterer an der Klasse
Giraffen arbeitet.

9.7 Geerbte Funktionen

Denjenigen von Euch, die gut aufgepasst haben, ist vielleicht aufgefallen, dass der
Freund, der mit der Klasse Giraffen arbeitet, Glück gehabt hat. Jede Funktion,
die die Leute für die Klassen Tiere und Säugetiere erzeugt haben, kann nämlich
auch von der Klasse Giraffen verwendet werden. Die Klasse Giraffen erbt also die
Funktionen der Klasse Säugetiere, die wiederum die Funktionen der Klasse Tiere
erbt. Anders gesagt: Wenn wir ein Giraffen-Objekt erzeugen, können wir sowohl
die Funktionen der Klasse Giraffen nutzen als auch die Funktionen, die in den
Klassen Säugetiere und Tiere definiert worden sind. Und wenn wir ein Säugetier-
Objekt erzeugen, können wir genauso die Funktionen in der Säugetier-Klasse
sowie in deren Elternklasse Tiere verwenden.

Obwohl Wiegand ein Objekt der Klasse Giraffen ist, können wir die Funktion
bewegen aufrufen, die wir in der Klasse Tiere definiert haben, da jede Funktion der
Elternklasse den Kinderklassen zur Verfügung steht:

>>> wiegand = Giraffen()

Tiere
Atmen

Bewegen sich

Fressen

Ich kann auch diese
Funktionen verwenden

Säugetiere
Wie man Klassen und Objekte benutzt

>>> wiegand.bewegen()
bewegen

Es ist sogar so, dass alle Funktionen, die wir in den Klassen Tiere und Säugetiere
definiert haben, von unserem Objekt wiegand aufgerufen werden können, da die
Funktionen vererbt werden:

>>> wiegand = Giraffen()
>>> wiegand.atmen()
atmen
>>> wiegand.fressen()
fressen
>>> wiegand.ernährt_Nachkommen_mit_Milch()
Nachkommen ernähren

9.8 Funktionen, die andere Funktionen aufrufen

Wenn wir für ein Objekt Funktionen aufrufen, schreiben wir dazu den Variablen-
namen des Objekts. Hier rufen wir zum Beispiel die Funktion bewegen für die
Giraffe Wiegand auf:

>>> wiegand.bewegen()

Damit eine Funktion in der Klasse Giraffen die Funktion bewegen aufruft, würden
wir stattdessen den Parameter self einsetzen. Mit dem self-Parameter kann eine
Funktion in der Klasse eine andere aufrufen. Wenn wir zum Beispiel der Klasse
Giraffen die Funktion finde_Futter hinzufügen, schreiben wir:

>>> class Giraffen(Säugetiere):
def finde_Futter(self):

self.bewegen()
print('Ich habe Futter gefunden!')
self.fressen()

Jetzt haben wir eine Funktion erzeugt, die zwei weitere Funktionen kombiniert.
Das wird beim Programmieren häufig gemacht. Dabei schreibt man oft eine
Funktion, die etwas Nützliches tut, um sie dann innerhalb einer anderen Funk-
tion verwenden zu können. (Wir machen das in Kapitel 14, wo wir noch kompli-
ziertere Funktionen erzeugen werden, um ein Spiel zu schreiben.)
Funktionen, die andere Funktionen aufrufen 95

96
Wir benutzen jetzt self, um der Klasse Giraffen einige Funktionen hinzuzufügen:

>>> class Giraffen(Säugetiere):
def finde_Futter(self):

self.bewegen()
print('Ich habe Futter gefunden!')
self.fressen()

def fressen_Blätter_von_Bäumen(self):
self.fressen()

def mach_ein_Tänzchen(self):
self.bewegen()
self.bewegen()
self.bewegen()
self.bewegen()

Wir benutzen die Funktionen fressen und bewegen der
Elternklasse Tiere, um fressen_Blätter_von_Bäumen und
mach_ein_Tänzchen für die Klasse Giraffen zu definieren,
weil sie geerbte Funktionen sind. Dadurch, dass wir
Funktionen hinzufügen, die auf diese Weise weitere Funk-
tionen aufrufen, können wir eine einzelne Funktion auf-
rufen, die mehr als nur eine Sache tun kann. Wenn wir
jetzt die Funktion mach_ein_Tänzchen aufrufen, siehst Du,
was passiert – unsere Giraffe bewegt sich viermal (das
heißt, der Text »bewegen« wird viermal angezeigt):

>>> wiegand = Giraffen()
>>> wiegand.mach_ein_Tänzchen()
bewegen
bewegen
bewegen
bewegen

9.9 Ein Objekt initialisieren

Manchmal wollen wir bei der Erstellung eines Objekts einige Werte (auch Attri-
bute genannt) für später festlegen. Sobald wir ein Objekt initialisiert haben, ist es
bereit für den Einsatz.

Stell Dir zum Beispiel vor, Du willst die Anzahl der Fellflecken auf unseren
Giraffen-Objekten festlegen, während diese Objekte erzeugt werden – wenn sie
also initialisiert werden. Dafür erzeugen wir eine __init__-Funktion (achte dar-
auf, dass es zwei Unterstrich-Zeichen auf jeder Seite gibt, also insgesamt vier).
Die init-Funktion ist eine besondere Art von Funktionen in Python-Klassen und
Wie man Klassen und Objekte benutzt

muss daher genau diesen Namen tragen. Mit der Funktion init legt man die
Attribute eines Objekts bei dessen Erzeugung fest. Python ruft dann diese Funk-
tion automatisch auf, sobald wir ein neues Objekt erzeugen. Und das geht so:

>>> class Giraffen:
def __init__(self, Flecken):

self.Giraffenflecken = Flecken

Als Erstes definieren wir die Funktion init mit den beiden Parametern self und
Flecken: def __init__(self, Flecken):. Wie bei den anderen Funktionen, die wir
in der Klasse definiert haben, braucht auch die init-Klasse self als ersten Para-
meter. Als Nächstes legen wir den Parameter Flecken als Variable eines Objekts
(also seines Attributs) namens Giraffenflecken mit dem Parameter self fest:
self.Giraffenflecken = Flecken. Du kannst Dir diese Zeile Code auch vorstellen
als: »Nimm den Wert des Parameters Flecken, und speichere ihn für später (mit
der Objekt-Variable Giraffenflecken.« Genauso, wie eine Funktion in einer
Klasse eine andere mit dem Parameter self aufrufen kann, kann man mit self
auch Parameter und Variablen in der Klasse aufrufen.

Wenn wir nun als Nächstes ein paar neue Giraffen-Objekte (Oswald und
Gertrud) erzeugen und deren Anzahl von Flecken anzeigen lassen wollen, siehst
Du die Initialisierungsfunktion in Aktion:

>>> oswald = Giraffen(100)
>>> gertrud = Giraffen(150)
>>> print(oswald.Giraffenflecken)
100
>>> print(gertrud.Giraffenflecken)
150

Als Erstes erzeugen wir ein Objekt in der Giraffen-Klasse mit dem Parameter-
Wert 100. Dadurch wird die __init__-Funktion aufgerufen und 100 als Wert für
den Parameter Flecken festgelegt. Als Nächstes erzeugen wir noch ein Objekt in
der Klasse Giraffen, diesmal mit 150. Als Letztes geben wir die Objektvariable
Giraffenflecken für jedes der Giraffen-Objekte aus. Wir sehen, dass die Ergeb-
nisse 100 und 150 sind: Es hat also geklappt!

Achte aber auf folgenden Unterschied: Wenn man ein Objekt einer Klasse
erzeugt, wie etwa oben oswald, können wir uns auf dessen Variablen oder Funk-
tionen beziehen, indem wir den Punkt-Operator und den Namen der Variable oder
Funktion hinschreiben, die wir benutzen wollen (z.B. oswald.Giraffenpunkte).
Wenn wir dagegen Funktionen innerhalb einer Klasse erzeugen, beziehen wir uns
auf die gleichen Variablen (und andere Funktionen) mit dem Parameter self
(self.Giraffenpunkte).
Ein Objekt initialisieren 97

98
9.10 Was Du gelernt hast

In diesem Kapitel haben wir Klassen benutzt, um Kategorien von Dingen zu
erzeugen und haben Objekte (oder Instanzen) dieser Klassen erzeugt. Du hast
gelernt, wie die Kinder einer Klasse die Funktionen der Elternklasse erben und
dass zwei Objekte, obwohl sie den gleichen Namen haben, nicht unbedingt Klone
(also genau gleich) sein müssen. Ein Giraffen-Objekt zum Beispiel kann seine
eigene Anzahl von Flecken haben. Du hast auch gelernt, wie man Funktionen für
ein Objekt aufruft (oder ausführen lässt) und wie man Objektvariablen nutzt, um
Werte in diesen Objekten zu speichern. Am Ende haben wir den Parameter self
in Funktionen genutzt, um uns auf andere Funktionen und Variablen zu beziehen.
Dies sind grundlegende Konzepte in Python, denen Du immer wieder in diesem
Buch begegnen wirst.

9.11 Programmier-Puzzles

Den Sinn hinter einigen Konzepten in diesem Kapitel wirst Du immer besser ver-
stehen, je häufiger Du sie anwendest. Probiere sie mit den folgenden Beispielen
aus, und überprüfe die Antworten auf www.dpunkt.de/python.

#1: Der Giraffen-Schiebetanz

Füge der Klasse Giraffen Funktionen hinzu, um die linken und rechten Hufe der
Giraffe vorwärts und rückwärts zu bewegen. Eine Funktion zum Bewegen der
linken Hufe nach vorn könnte so aussehen:

>>> def linke_Hufe_vor(self):
print('linke Hufe vor')

Erstelle dann eine Funktion namens tanzen, um Wiegand das Tanzen beizubrin-
gen (die Funktion wird die vier Hufe-Funktionen aufrufen, die Du gerade erzeugt
hast). Nach dem Aufrufen dieser neuen Funktion ist das Ergebnis ein kleiner
Tanz:

>>> wiegand = Giraffen()
>>> wiegand.tanzen()
linke Hufe vor
linke Hufe zurück
rechte Hufe vor
rechte Hufe zurück
linke Hufe zurück
rechte Hufe zurück
rechte Hufe vor
linke Hufe zurück
Wie man Klassen und Objekte benutzt

#2: Schildkröten-Heugabel

Erzeuge das folgende Bild einer Heugabel mit vier Schildkröten-Pen-Objekten (die
genaue Länge der Linien ist unwichtig). Denke daran, dass Du dazu erst das
Modul turtle importieren musst!
Programmier-Puzzles 99

100
 Wie man Klassen und Objekte benutzt

10
Pythons eingebaute Funktionen
Mit Python installierst Du einen gut ausgestatteten Programmier-Werkzeugkas-
ten, in dem viele Funktionen und Module enthalten sind, die Du nutzen kannst.
Wie ein zuverlässiger Hammer oder Schraubenschlüssel können Dir diese einge-
bauten Werkzeuge – in Wirklichkeit sind es natürlich Einheiten von Code – das
Schreiben von Programmen sehr erleichtern.

Wie Du schon in Kapitel 8 gelernt hast, müssen Module importiert werden,
bevor Du sie benutzen kannst. Die in Python eingebauten Module müssen dage-
gen nicht erst importiert werden. Sie sind sofort verfügbar, sobald die Python-
Shell startet. In diesem Kapitel schauen wir uns einige nützliche eingebaute Funk-
tionen an und werden uns dann auf eine von ihnen konzentrieren: auf die Funk-
tion open, mit der Du Dateien öffnen kannst, um in ihnen zu lesen und zu schrei-
ben.

10.1 Eingebaute Funktionen verwenden

Wir werden uns jetzt 12 eingebaute Funktionen ansehen, die häufig von Python-
Programmierern verwendet werden. Ich werde beschreiben, was sie tun und wie
man sie benutzt. Anschließend zeige ich in Beispielen, wie sie uns in unseren Pro-
grammen helfen können.
101

102
Die abs-Funktion

Die Funktion abs gibt den Betrag einer Zahl zurück. Der Betrag ist der Wert einer
Zahl ohne Vorzeichen. Der Betrag von 10 ist 10, und der Betrag von -10 ist eben-
falls 10.

Um die Funktion abs zu benutzen, rufst Du sie einfach mit einer Zahl oder
Variable als ihr Parameter auf:

>>> print(abs(10))
10
>>> print(abs(-10))
10

Mit der Funktion abs kannst Du so etwas wie die abso-
lute Bewegung einer Figur in einem Spiel berechnen,
egal, in welche Richtung sich diese Figur bewegt. Neh-
men wir zum Beispiel an, eine Figur bewegt sich drei
Schritte nach rechts (+3) und tritt dann zehn Schritte
nach links (-10). Wenn wir uns nicht um die Richtung
kümmern würden, wären die absoluten Werte dieser
Zahlen 3 und 10. Das könntest Du zum Beispiel in
einem Brettspiel gebrauchen, bei dem Du zweimal würfelst und dann je nach
Gesamtpunktzahl die Figur eine Gesamtzahl an Schritten auf dem Brett machen
lässt. Wenn wir jetzt die Anzahl der Schritte in einer Variablen speichern, können
wir bestimmen, ob die Figur mit dem Code unten bewegt wird. Falls sich der
Spieler dazu entschlossen hat, sich zu bewegen (in diesem Fall wird nur die Mit-
teilung »Figur bewegt sich« angezeigt), soll eine Nachricht erscheinen:

>>> Schritte = -3
>>> if abs(Schritte) > 0:

print('Figur bewegt sich')

Hätten wir nicht die Funktion abs verwendet, würde die if-Anweisung so aussehen:

>>> Schritte = -3
>>> if Schritte < 0 or Schritte > 0:

print('Figur bewegt sich')

Wie Du siehst, wird durch die Funktion abs die if-Anweisung ein wenig kürzer
und verständlicher.

Die boolesche Funktion

Der Name der Funktion bool steht für »boolesch«, also für eine logische Funk-
tion, mit der Programmierer einen Datentyp beschreiben, der einen von zwei
möglichen Werten annehmen kann – meist entweder wahr oder falsch.
Pythons eingebaute Funktionen

Die Funktion bool nimmt einen Parameter auf und gibt je nach dessen Wert
True (wahr) oder False (falsch) zurück. Wenn man bool bei Zahlen benutzt, ergibt
0 False und alle anderen Zahlen ergeben True. So kann man bool mit einigen Zah-
len einsetzen:

>>> print(bool(0))
False
>>> print(bool(1))
True
>>> print(bool(1123.23))
True
>>> print(bool(-500))
True

Wenn Du bool für andere Werte, wie etwa Strings, einsetzt, gibt sie False zurück,
falls der String keinen Wert enthält (oder anders gesagt, das Schlüsselwort None
oder einen leeren String). Ansonsten gibt sie True zurück:

>>> print(bool(None))
False
>>> print(bool('a'))
True
>>> print(bool(' '))
True
>>> print(bool('Was macht ein Clown im Büro? Faxen!'))
True

Die Funktion bool gibt False auch bei Listen, Tupeln und Maps zurück, die keine
Werte enthalten, oder True, wenn doch Werte vorhanden sind:

>>> meine_komische_Liste = []
>>> print(bool(meine_komische_Liste))
False
>>> meine_komische_Liste = ['k', 'o', 'm', 'i', 's', 'c', 'h']
>>> print(bool(meine_komische_Liste))
True

Wozu ist die Funktion bool also gut? Du könntest sie zum Beispiel einsetzen,
wenn Du entscheiden lassen musst, ob ein Wert gesetzt wurde oder nicht. Wenn
wir etwa Leute, die unser Programm benutzen, bitten, ihr Geburtsjahr einzuge-
ben, dann könnte unsere if-Anweisung mit bool den eingegebenen Wert prüfen:

>>> Jahr = input('Geburtsjahr: ')
Geburtsjahr:
>>> if not bool(Jahr.rstrip()):

print('Du sollst einen Wert bei Deinem Geburtsjahr eintragen')
Du sollst einen Wert bei Deinem Geburtsjahr eintragen
Eingebaute Funktionen verwenden 103

104
Die erste Zeile dieses Beispiels benutzt input,
um das zu speichern, was jemand mit der Tasta-
tur eingibt, wie etwa die Variable Jahr. Nach
dem Drücken der Enter-Taste (ohne noch etwas
einzutippen) wird der Wert der Enter-Taste in
der Variablen gespeichert. (In Kapitel 8 haben
wir dazu sys.stdin.readline() benutzt, was im
Grunde das Gleiche macht.)

In der folgenden Zeile überprüft die if-
Anweisung den booleschen Wert der Variable
nach dem Einsatz der Funktion rstrip, die alle
Leerzeichen und Enter-Zeichen vom Ende des
Strings entfernt. Da der Benutzer in diesem Beispiel nichts eingegeben hat, gibt
die Funktion bool falsch (False) zurück. Weil die if-Anweisung das Schlüsselwort
not benutzt, ist das wie zu sagen »tue dies, falls die Funktion nicht wahr zurück-
gibt«, sodass der Code in der nächsten Zeile Du sollst einen Wert bei Deinem
Geburtsjahr eintragen ausgibt.

Die Funktion dir

Die Funktion dir (Abkürzung von directory, engl. für »Verzeichnis«) gibt Infor-
mationen über jeden Wert zurück. Im Wesentlichen zeigt sie Dir die Funktionen,
die mit einem Wert benutzt werden können, in alphabetischer Reihenfolge an.

Wenn Du zum Beispiel alle Funktionen sehen willst, die für einen Listenwert
zur Verfügung stehen, gibst Du Folgendes ein:

>>> dir(['eine', 'kurze', 'Liste'])
['__add__', '__class__', '__contains__', '__delattr__',
'__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__',
'__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__',
'__imul__', '__init__', '__iter__', '__le__', '__len__', '__lt__',
'__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__',
'__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__',
'__sizeof__', '__str__', '__subclasshook__', 'append', 'clear',
'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove',
'reverse', 'sort']

Die Funktion dir funktioniert bei so gut wie allem, zum Beispiel bei Strings, Zah-
len, Funktionen, Modulen, Objekten und Klassen. Manchmal jedoch kann man
mit den zurückgegebenen Funktionen nicht viel anfangen. Wenn Du zum Beispiel
dir für die Zahl 1 aufrufst, werden jede Menge Sonderfunktionen angezeigt (sol-
che, die mit Unterstrichen anfangen und enden), die nur Python selbst verwendet
Pythons eingebaute Funktionen

und die uns nicht viel nützen. (Du kannst die meisten von ihnen in der Regel igno-
rieren):

>>> dir(1)
['__abs__', '__add__', '__and__', '__bool__', '__ceil__', '__class__',
'__delattr__', '__dir__', '__divmod__', '__doc__', '__eq__',
'__float__', '__floor__', '__floordiv__', '__format__', '__ge__',
'__getattribute__', '__getnewargs__', '__gt__', '__hash__',
'__index__', '__init__', '__int__', '__invert__', '__le__',
'__lshift__', '__lt__', '__mod__', '__mul__', '__ne__', '__neg__',
'__new__', '__or__', '__pos__', '__pow__', '__radd__', '__rand__',
'__rdivmod__', '__reduce__', '__reduce_ex__', '__repr__',
'__rfloordiv__', '__rlshift__', '__rmod__', '__rmul__', '__ror__',
'__round__', '__rpow__', '__rrshift__', '__rshift__', '__rsub__',
'__rtruediv__', '__rxor__', '__setattr__', '__sizeof__', '__str__',
'__sub__', '__subclasshook__', '__truediv__', '__trunc__', '__xor__',
'bit_length', 'conjugate', 'denominator', 'from_bytes', 'imag',
'numerator', 'real', 'to_bytes']

Die Funktion dir kann auch sehr nützlich sein, wenn Du eine Variable hast und
schnell herausfinden möchtest, was Du mit ihr tun kannst. Du kannst zum Bei-
spiel dir mit der Variablen Popcorn, die einen String-Wert enthält, aufrufen und
Dir so alle Funktionen anzeigen lassen, die die Klasse string enthält (alle Strings
gehören zur Klasse string):

>>> Popcorn = 'Ich mag Popcorn!'
>>> dir(Popcorn)
['__add__', '__class__', '__contains__', '__delattr__', '__dir__',
'__doc__', '__eq__', '__format__', '__ge__', '__getattribute__',
'__getitem__', '__getnewargs__', '__gt__', '__hash__', '__init__',
'__iter__', '__le__', '__len__', '__lt__', '__mod__', '__mul__',
'__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__',
'__rmod__', '__rmul__', '__setattr__', '__sizeof__', '__str__',
'__subclasshook__', 'capitalize', 'casefold', 'center', 'count',
'encode', 'endswith', 'expandtabs', 'find', 'format', 'format_map',
'index', 'isalnum', 'isalpha', 'isdecimal', 'isdigit', 'isidentifier',
'islower', 'isnumeric', 'isprintable', 'isspace', 'istitle',
'isupper', 'join', 'ljust', 'lower', 'lstrip', 'maketrans',
'partition', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition',
'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip',
'swapcase', 'title', 'translate', 'upper', 'zfill']

An dieser Stelle könntest Du jetzt mit help (engl. für »Hilfe«) eine kurze Beschrei-
bung der Funktionen in der Liste aufrufen. Hier siehst Du ein Beispiel für die
Funktion upper:
Eingebaute Funktionen verwenden 105

106
>>> help(Popcorn.upper)
Help on built-in function upper:

upper(...)
S.upper() -> str
Return a copy of S converted to uppercase.

Kommt Dir die zurückgegebene Information verwirrend vor? Sehen wir sie uns
näher an: Die Auslassungspunkte (…) bedeuten, dass upper eine eingebaute Funk-
tion der string-Klasse ist und dass sie keine Parameter aufnimmt. Der Pfeil (->) in
der nächsten Zeile bedeutet, dass diese Funktion einen String (str) zurückgibt.
Die letzte Zeile liefert eine kurze Beschreibung, was die Funktion macht (upper
erzeugt eine Kopie des Strings in Großbuchstaben).

Die Funktion eval

Die Funktion eval (Abkürzung für evalua-
tion, engl. für »Auswertung«) nimmt als
Parameter einen String und führt ihn aus,
als wäre es ein Python-Ausdruck. So wird
zum Beispiel durch eval('print("wow")')

der Befehl print("wow") ausgeführt.

Die Funktion eval funktioniert bei einfa-
chen Ausdrücken wie diesem hier:

>>> eval('10*5')
50

Ausdrücke, die über mehr als eine Zeile gehen (wie etwa if-Anweisungen), wer-
den nicht ausgewertet:

>>> eval('''if True:
print("das funktioniert überhaupt nicht")''')

Traceback (most recent call last):
 File "<pyshell#1>", line 2, in <module>
 print("das funktioniert überhaupt nicht")''')
 File "<string>", line 1
 if True:
 ^
SyntaxError: invalid syntax

Die Funktion eval wird häufig genutzt, um Benutzereingaben in Python-Ausdrü-
cke umzuwandeln. Du könntest zum Beispiel ein einfaches Rechenprogramm
schreiben, das Aufgaben, die in Python eingegeben werden, liest und dann die
Antworten ausrechnet (auswertet).
Pythons eingebaute Funktionen

Da die Benutzereingaben immer als String eingelesen werden, muss Python
sie erst in Zahlen und Operatoren umwandeln, bevor es mit ihnen rechnen kann.
Die Funktion eval erleichtert diese Umwandlung:

>>> Deine_Aufgabe = input('Gib eine Rechenaufgabe ein: ')
Gib eine Rechenaufgabe ein: 12*52
>>> eval(Deine_Aufgabe)
624

In diesem Beispiel haben wir input benutzt, um einzulesen, was der Benutzer in
die Variable Deine_Aufgabe eingibt. In der nächsten Zeile geben wir den Ausdruck
12*52 ein (vielleicht Dein Alter mit der Anzahl der Wochen eines Jahres multipli-
ziert). Mit eval lassen wir die Aufgabe rechnen und das Ergebnis anschließend in
der letzten Zeile anzeigen.

Die Funktion exec

Die Funktion exec ist wie eval, nur dass Du sie in komplexeren Programmen
benutzen kannst. Der Unterschied zwischen ihnen besteht darin, dass eval einen
Wert zurückgibt (etwas, das man in einer Variablen speichern kann) und exec das
nicht tut. Hier ist ein Beispiel:

>>> mein_kleines_Programm = '''print('Schinken')
print('Sandwich')'''
>>> exec(mein_kleines_Programm)
Schinken
Sandwich

In den ersten beiden Zeilen erzeugen wir eine Variable mit einem mehrzeiligen
String, der zwei print-Anweisungen enthält und dann mit exec den String aus-
führt.

Mit exec kannst Du Mini-Programme ausführen, die Python aus Dateien ein-
liest – das sind dann Programme innerhalb eines Programms! Das ist vor allem
dann praktisch, wenn man lange, komplizierte Anwendungen schreibt. Du könn-
test zum Beispiel ein Spiel »Roboter-Zweikampf« schreiben, in dem sich zwei
Roboter auf dem Monitor bewegen und versuchen, sich gegenseitig anzugreifen.
Die Spieler des Spiels würden dann ihre Befehle an die Roboter über kleine
Python-Programme geben. Roboter-Zweikampf würde diese Scripts einlesen und
sie mit exec laufen lassen.

Die Funktion float

Die Funktion float wandelt einen String oder eine Zahl in eine Fließkommazahl
um, also in eine Zahl mit Dezimaltrennzeichen (auch reelle Zahl genannt). Die
Zahl 10 ist zum Beispiel eine ganze Zahl, aber 10.1 und 10.253 sind Fließkom-
Eingebaute Funktionen verwenden 107

108
mazahlen. Normalerweise schreiben wir solche Zahlen, wie der Name schon sagt,
mit einem Komma (10, 1 und 10,253). Python versteht dieses Komma jedoch als
String, und deshalb musst Du statt des Kommas den Punkt verwenden.

Du kannst einen String in eine Fließ-
kommazahl umwandeln, indem Du float
aufrufst:

>>> float('12')
12.0

Du kannst auch eine Nachkommastelle
in dem String verwenden:

>>> float('123.456789')
123.456789

Mit float kannst Du auch Werte, die in Dein Programm eingegeben werden, in
richtige Zahlen umwandeln. Dies ist besonders nützlich, wenn Du einen Wert,
den ein Benutzer eingibt, mit anderen Werten vergleichen musst. Um zum Beispiel
zu prüfen, ob das Alter der Person über einer bestimmten Zahl liegt, könnten wir
Folgendes machen:

>>> Dein_Alter = input('Gib Dein Alter ein: ')
Gib Dein Alter ein: 20
>>> Alter = float(Dein_Alter)
>>> if Alter > 13:

print('Du bist %s Jahre zu alt' % (Alter - 13))

Du bist 7.0 Jahre zu alt

Die Funktion int

Die Funktion int wandelt einen String oder eine Zahl in eine ganze Zahl (engl.
integer) um. Im Prinzip wird dabei alles nach dem Dezimaltrennzeichen wegge-
lassen. So wandelt man zum Beispiel eine Fließkommazahl in eine Ganzzahl um:

>>> int(123.456)
123

Bei diesem Beispiel wird ein String in eine Ganzzahl umgewandelt:

>>> int('123')
123

Sobald Du aber versuchst, einen String mit einer Fließkommazahl in eine ganze
Zahl umzuwandeln, bekommst Du eine Fehlermeldung:
Pythons eingebaute Funktionen

>>> int('123.456')
Traceback (most recent call last):
 File "<pyshell#17>", line 1, in <module>
 int('123.456')
ValueError: invalid literal for int() with base 10: '123.456'

Wie Du siehst, kommt eine ValueError-Fehlermeldung dabei heraus.

Die Funktion len

Die Funktion len gibt die
Länge eines Objekts oder die
Anzahl der Zeichen bei einem
String zurück. Um zum Bei-
spiel die Länge von Dies ist ein Test-String zu ermitteln, tust Du Folgendes:

>>> len('Dies ist ein Test-String')
24

Wenn man diese Funktion bei einer Liste oder einem Tupel verwendet, gibt len
die Anzahl der Elemente darin zurück:

>>> Kreaturenliste = ['Einhorn', 'Zyklop', 'Fee', 'Elfe', 'Drachen',
'Troll']

>>> print(len(Kreaturenliste))
6

Wenn man sie bei einer Map verwendet, gibt len ebenfalls die Anzahl der Ele-
mente zurück:

>>> Feindesliste = {'Batman' : 'Joker',
'Superman' : 'Lex Luthor',
'Spiderman' : 'Green Goblin'}

>>> print(len(Feindesliste))
3

Die Funktion len ist vor allem bei Schleifen nützlich. Wenn wir zum Beispiel die
Indexposition der Elemente einer Liste anzeigen lassen wollen, machen wir das
so:

>>> Frucht = ['Apfel', 'Banane', 'Mandarine', 'Birne']
>>> Länge = len(Frucht)
>>> for x in range(0, Länge):

print('Die Frucht an Position %s ist %s' % (x, Frucht[x]))

Die Frucht an Position 0 ist Apfel
Die Frucht an Position 1 ist Banane
Die Frucht an Position 2 ist Mandarine
Die Frucht an Position 3 ist Birne
Eingebaute Funktionen verwenden 109

110
Hier speichern wir die Länge der Liste in der Variable Länge in und verwenden
diese Variable dann in der Funktion range, um unsere Schleife in zu erzeugen.
Wenn wir dann in durch jedes Element der Liste durchschleifen, geben wir für
jedes Element der Liste dessen Position und Wert aus. Du könntest bei einer Liste
von Strings mit der Funktion len auch einfach jedes zweite oder dritte Element
der Liste anzeigen lassen.

Die Funktionen max und min

Die Funktion max gibt das größte Element einer Liste, eines Tupels oder eines
Strings zurück. Hier tut sie das bei einer Liste von Zahlen:

>>> Zahlen = [5, 4, 10, 30, 22]
>>> print(max(Zahlen))
30

Bei einem String, der durch Kommata oder Leerzeichen getrennt ist, funktioniert
das auch:

>>> strings = 's,t,r,i,n,g,S,T,R,I,N,G'
>>> print(max(strings))
t

Wie dieses Beispiel zeigt, werden die Buchstaben nach ihrer alphabetischen Rei-
henfolge sortiert. Kleingeschriebene Buchstaben kommen nach den Großbuch-
staben, t ist demnach mehr als T (d.h. es kommt nach T).

Aber Du musst dazu nicht unbedingt Listen, Tupeln oder Strings nehmen. Du
kannst die Funktion max auch direkt aufrufen und die Elemente, die Du verglei-
chen möchtest, als Parameter in Klammern dahinter setzen:

>>> print(max(10, 300, 450, 50, 90))
450

Die Funktion min arbeitet genauso wie max, nur dass sie das kleinste Element einer
Liste, eines Tupels oder eines Strings zurückgibt. Wenn wir wieder unsere Liste
mit Zahlen nehmen und min statt max einsetzen, passiert Folgendes:

>>> Zahlen = [5, 4, 10, 30, 22]
>>> print(min(Zahlen))
4

Jetzt stell Dir vor, Du würdest ein Ratespiel mit vier Spielern spielen, bei dem
jeder eine Zahl schätzen soll, die unter Deiner Zahl liegt. Sobald nur einer der
Spieler eine Zahl darüber schätzt, haben alle Spieler verloren. Wenn sie aber alle
eine niedrigere Zahl schätzen, haben sie gewonnen. Wir können mit max auch
schnell herausfinden, ob alle Schätzungen unter Deiner Zahl liegen:
Pythons eingebaute Funktionen

>>> rate_diese_Zahl = 61
>>> Spielerschätzungen = [12, 15, 70, 45]
>>> if max(Spielerschätzungen) > rate_diese_Zahl:

print('Ups! Ihr habt alle verloren')
else:

print('Ihr habt gewonnen')

Ups! Ihr habt alle verloren

In diesem Beispiel speichern wir die zu ratende Zahl in der Variable
rate_diese_Zahl. Die Schätzungen der Mitspieler werden in der Liste Spieler-
schätzungen gespeichert. Die if-Anweisung vergleicht die höchste Schätzung mit
der Zahl in rate_diese_Zahl, und sobald einer der Spiele eine Zahl darüber
schätzt, zeigen wir die Mitteilung »Ups! Ihr habt alle verloren« an.

Die Funktion range

Die Funktion range wird, wie wir schon
zuvor gesehen haben, hauptsächlich in
for-Schleifen verwendet, um einen Code-
abschnitt so oft wie gewünscht durchlau-
fen zu lassen. Die ersten beiden Parame-
ter, die man range gibt, sind Start und
Stop. In dem zurückliegenden Beispiel mit
der Funktion range hast Du diese beiden Parameter in einer Schleife mit der Funk-
tion len in Aktion gesehen.

Die Zahlen, die range erzeugt, beginnen mit der Zahl, die als erster Parameter
angegeben wird, und enden mit der Zahl, die als zweiter Parameter angegeben
wird. Hier siehst Du zum Beispiel, was passiert, wenn Du range die Zahlen zwi-
schen 0 und 5 erzeugen lässt:

>>> for x in range(0, 5):
print(x)

0
1
2
3
4

Die Funktion range gibt also ein bestimmtes Objekt, das man Iterator nennt,
zurück, das dann eine Aktion eine bestimmte Anzahl von Malen wiederholt. In
diesem Fall gibt sie bei jedem Aufruf die nächsthöhere Zahl zurück.

Du kannst einen Iterator in eine Liste umwandeln (mit der Funktion list).
Wenn Du dann den zurückgegebenen Wert nach dem Aufruf von range ausgibst,
werden Dir auch die Zahlen darin angezeigt:
Eingebaute Funktionen verwenden 111

112
>>> print(list(range(0, 5)))
[0, 1, 2, 3, 4]

Du kannst der Funktion range noch einen dritten Parameter hinzufügen: step
(Schrittweite). Wenn der Wert für step nicht mit angegeben wird, wird automa-
tisch die Zahl 1 verwendet. Was passiert nun, wenn wir die Zahl 2 als Schritt-
weite einfügen? Hier ist das Ergebnis:

>>> zähle_in_Zweierschritten = list(range(0, 30, 2))
>>> print(zähle_in_Zweierschritten)
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28]

Die Zahlen in der Liste steigen immer um den Betrag von 2 an, und die Liste
endet bei 28, was 2 weniger als 30 ist. Du kannst auch negative Schrittweiten ver-
wenden:

>>> zähle_in_Zweierschritten_abwärts = list(range(40, 10, -2))
>>> print(zähle_in_Zweierschritten_abwärts)
[40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20, 18, 16, 14, 12]

Die Funktion sum

Die Funktion sum zählt die Elemente einer Liste zusammen und gibt die Summe
zurück. Hier siehst Du ein Beispiel:

>>> meine_Zahlenliste = list(range(0, 500, 50))
>>> print(meine_Zahlenliste)
[0, 50, 100, 150, 200, 250, 300, 350, 400, 450]
>>> print(sum(meine_Zahlenliste))
2250

In der ersten Zeile haben wir mit der Funktion range eine Liste von Zahlen zwi-
schen 0 und 500 bei einer Schrittweite von 50 erzeugt. Danach haben wir uns die
Liste mit print anzeigen lassen, um uns das Ergebnis anzuschauen. Zum Schluss
haben wir die Variable meine_Zahlenliste mit print(sum(meine_Zahlenliste)) an
die Funktion sum weitergereicht, wodurch alle Elemente der Liste zusammenge-
zählt wurden und die Summe von 2250 dabei herauskam.

10.2 Umgang mit Dateien

Python-Dateien sind die gleichen, die Du von Deinem Computer kennst: Doku-
mente, Bilder, Musik, Spiele … im Prinzip ist alles auf Deinem Computer in Form
von Dateien gespeichert.

Jetzt schauen wir uns an, wie wir in Python Dateien öffnen und mit ihnen
arbeiten, indem wir die eingebaute Funktion open benutzen. Aber zunächst müs-
sen wir eine neue Datei erzeugen, um mit ihr etwas herumspielen zu können.
Pythons eingebaute Funktionen

Erzeugen einer Test-Datei

Wir werden mit einer Textdatei experimentieren, die wir Test.txt nennen. Folge
den Anleitungsschritten für das Betriebssystem, das Du benutzt.

Eine neue Datei unter Windows erzeugen

Wenn Du Windows benutzt, führe die folgenden Schritte aus, um die Datei Test.txt
zu erzeugen:

1. Gehe auf Start Alle Programme Zubehör Editor.
2. Gibt ein paar Zeilen in die leere Datei ein.
3. Gehe auf Datei Speichern.
4. Wenn das Dialogfenster erscheint, wählst Du das Laufwerk C: aus, indem

Du auf Computer klickst und dann auf Lokaler Datenträger (C:) einen Dop-
pelklick machst.

5. Gib unten im Fenster bei Dateiname Test.txt ein.
6. Zum Schluss klickst Du auf den Button Speichern.
Umgang mit Dateien 113

114
Eine neue Datei unter MacOS X erzeugen

Wenn Du einen Mac benutzt, folge diesen Schritten, um die Datei Test.txt zu er-
zeugen:

1. Klicke auf das Icon Spotlight in der Menüleiste ganz oben auf dem Bild-
schirm.

2. Ein Suchfenster erscheint. Gib hier TextEdit ein.
3. TextEdit sollte daraufhin in dem Bereich Programme erscheinen. Klicke da-

rauf, um den Editor zu öffnen. (Du findest TextEdit auch im Ordner Pro-
gramme im Finder.)

4. Gib ein paar Zeilen Text in die leere Datei ein.
5. Gehe auf Format In reinen Text umwandeln.
6. Gehe auf Ablage Sichern.
7. Im Dialogfenster Sichern unter gibst Du Test.txt ein.
8. In der Liste Favoriten klickst Du auf Deinen Benutzernamen – oder den Na-

men dessen, dem der Computer gehört.
9. Zum Schluss klickst Du auf den Button Sichern.
Pythons eingebaute Funktionen

Eine neue Datei unter Ubuntu erzeugen

Wenn Du Ubuntu benutzt, folge diesen Schritten, um die Datei Test.txt zu erzeu-
gen:

1. Öffne Deinen Editor, der normalerweise Textverarbeitung oder gedit heißt.
Falls Du ihn zuvor noch nicht benutzt hast, kannst Du nach ihm im Menü
Anwendungen suchen.

2. Gib ein paar Zeilen Text in den Editor ein.
3. Klicke auf den Button Speichern.
4. Gib in der Eingabezeile Name Test.txt als Dateinamen an. Unter In Ordner

speichern ist vielleicht schon Dein persönlicher Ordner ausgewählt. Falls
nicht, klickst Du links auf ihn in der Liste Orte. (Dein persönlicher Ordner
ist mit dem Benutzernamen beschriftet, mit dem Du eingeloggt bist.)

5. Klicke auf den Button Speichern.

Eine Datei in Python öffnen

Pythons eingebaute Funktion open öffnet eine Datei in der Python-Shell und zeigt
deren Inhalt an. Wie Du der Funktion sagst, welche Datei sie öffnen soll, hängt
von Deinem Betriebssystem ab. Sieh Dir das Beispiel für eine Windows-Datei an,
oder lies die Mac- oder Ubuntu-spezifischen Abschnitte, falls Du eines dieser
Betriebssysteme benutzt.
Umgang mit Dateien 115

116
Eine Windows-Datei öffnen

Falls Du Windows benutzt, gib folgenden Code ein, um Test.txt zu öffnen:

>>> Testdatei = open('c:\\Test.txt')
>>> Text = Testdatei.read()
>>> print(Text)
Ein furchtsames Fräulein aus Kassel
sah plötzlich im Raum eine Assel.
Da fiel es vor Schreck
sogleich in den Dreck.
Da haben wir nun den Schlamassel.

In der ersten Zeile benutzen wir open, was ein Datei-Objekt zurückgibt, das Funk-
tionen zum Arbeiten mit Dateien enthält. Der Parameter, den wir in der Funktion
open benutzen, ist ein String, der Python sagt, wo es die Datei findet. Falls Du
Windows benutzt, hast Du Test.txt auf der lokalen Festplatte C: gespeichert,
sodass Du den Speicherort Deiner Datei mit c:\\Text.txt angibst.

Die beiden Rückwärtsschrägstriche im Windows-Dateinamen teilen Python
mit, dass die Rückwärtsschrägstriche nur für sich stehen und keine Befehle dar-
stellen. (Wie Du in Kapitel 4 gelernt hast, haben Rückwärtsschrägstriche eine
besondere Bedeutung in Python, vor allem in Strings.) Wir speichern das Datei-
Objekt in der Variablen Testdatei.

In der zweiten Zeile benutzen wir die Funktion read, die von dem Datei-
Objekt zur Verfügung gestellt wird, um die Inhalte der Datei auszulesen und sie in
der Variable Text zu speichern. Wir geben die Variable in der letzten Zeile aus, um
die Inhalte der Datei anzuzeigen.

Eine MacOSX-Datei öffnen

Falls Du MacOSX benutzt, musst du in der ersten Zeile des Windows-Beispiels
einen anderen Pfad angeben, um Test.txt zu öffnen. Verwende dabei den Benut-
zernamen, auf den Du beim Abspeichern der Textdatei geklickt hast, und füge ihn
in den String ein. Falls Dein Benutzername zum Beispiel susannesommer ist,
sollte der Parameter für open so aussehen:

>>> Testdatei = open('/Users/susannesommer/Test.txt')

Eine Ubuntu-Datei öffnen

Falls Du Ubuntu benutzt, musst Du in der ersten Zeile des Windows-Beispiels einen
anderen Pfad angeben, um Test.txt zu öffnen. Verwende dabei den Benutzerna-
men, auf den Du beim Abspeichern der Textdatei geklickt hast. Falls Dein Benut-
zername zum Beispiel maximilian ist, sollte der Parameter für open so aussehen:

>>> Testdatei = open('/home/maximilian/Test.txt')
Pythons eingebaute Funktionen

In Dateien schreiben

Das Datei-Objekt, das open zurückgegeben hat, hat neben der Funktion read noch
weitere Funktionen. Durch einen zweiten Parameter, den String 'w', können wir
eine neue leere Datei erzeugen, wenn wir die Funktion aufrufen:

>>> Testdatei = open('c:\\MeineDatei.txt', 'w')

Der Parameter 'w' teilt Python mit, dass wir in das Datei-Objekt schreiben wol-
len, statt aus ihm zu lesen.

Wir können nun mit der Funktion write dieser neuen Datei Informationen
hinzufügen:

>>> Testdatei = open('c:\\MeineDatei.txt', 'w')
>>> Testdatei.write('Dies ist meine Testdatei')

Zum Schluss müssen wir mit der Funktion close Python sagen, wann wir mit dem
Schreiben in die Datei fertig sind:

>>> Testdatei = open('c:\\MeineDatei.txt', 'w')
>>> Testdatei.write('Was ist grün und fährt hüpfend rauf und runter?

Eine Erbse im Fahrstuhl!')
>>> Testdatei.close()

Wenn Du jetzt diese Datei mit Deinem Editor öff-
nest, solltest Du sehen, dass sie den Text 'Was ist
grün und fährt hüpfend rauf und runter? Eine Erbse
im Fahrstuhl!' enthält. Oder Du kannst Python
bitten, ihn Dir auszugeben:

>>> Testdatei = open('
c:\\MeineDatei.txt')
>>> print(Testdatei.read())
Was ist grün und fährt hüpfend rauf und runter?
Eine Erbse im Fahrstuhl!

10.3 Was Du gelernt hast

In diesem Kapitel hast Du etwas über die eingebauten Funktionen von Python
gelernt, wie etwa float und int, mit denen man Dezimalzahlen in ganze Zahlen
verwandeln kann und umgekehrt. Du hast auch gesehen, wie man mit der Funk-
tion len Schleifen einfacher gestalten kann und wie man mit Python Dateien öff-
nen kann, um aus ihnen zu lesen und in sie zu schreiben.
Was Du gelernt hast 117

118
10.4 Programmier-Puzzles

Versuche Dich an den folgenden Beispielen, um mit einigen der in Python ein-
gebauten Funktionen zu experimentieren. Die Lösungen findest Du unter
www.dpunkt.de/python.

#1: Geheimnisvoller Code

Was kommt dabei heraus, wenn man folgenden Code ausführen lässt? Rate
zuerst selbst, und lass den Code erst dann durchlaufen, um zu schauen, ob Du
recht hast.

>>> a = abs(10) + abs(-10)
>>> print(a)
>>> b = abs(-10) + -10
>>> print(b)

#2: Eine versteckte Botschaft

Versuche mit den Funktionen dir und help herauszufinden, wie man einen String
in einzelne Wörter aufteilt, und schreibe dann ein kleines Programm, um jedes
zweite Wort in folgendem String anzeigen zu lassen. Beginne dabei mit dem ersten
Wort (Dies):

"Dies falls ist Du kein bist guter lesen Weg dann um hat eine es
Nachricht falsch zu Inhalt verstecken"

#3: Eine Datei kopieren

Schreibe ein Python-Programm, um eine Datei zu kopieren. (Tipp: Die Datei, die
Du kopieren möchtest, musst Du erst öffnen. Dann musst Du sie einlesen und
anschließend eine neue Datei erzeugen – die Kopie.) Prüfe, ob Dein Programm
funktioniert, indem Du den Inhalt der neuen Datei auf dem Monitor ausgibst.
Pythons eingebaute Funktionen

11
Nützliche Python-Module
Wie Du in Kapitel 8 gelernt hast, besteht ein Python-Modul aus jeder erdenk-
lichen Kombination von Funktionen, Klassen und Variablen. Python setzt
Module ein, um Funktionen und Klassen zu gruppieren, damit sie leichter zu
benutzen sind. Das Modul turtle zum Beispiel, das wir in den vorigen Kapiteln
benutzt haben, gruppiert Funktionen und Klassen, mit denen man eine Leinwand
für eine Schildkröte erzeugen kann, um auf dem Monitor zu zeichnen.

Wenn Du ein Modul in ein Programm importierst, kannst Du dessen gesam-
ten Inhalt nutzen. Als wir zum Beispiel in Kapitel 5 das Modul turtle importiert
haben, hatten wir Zugriff auf die Klasse Pen, mit der wir ein Objekt auf der Lein-
wand gezeichnet haben, das für die Schildkröte stand:

>>> import turtle
>>> t = turtle.Pen()

Python enthält jede Menge Module, um die verschiedensten Aufgaben zu erledi-
gen. In diesem Kapitel schauen wir uns einige der nützlichsten Module an und
probieren einige ihrer Funktionen aus.
119

120
11.1 Mit dem Modul copy Kopien erstellen

Das Modul copy enthält Funktionen, mit denen man
Kopien von Objekten erzeugt. Normalerweise erzeugt
man beim Schreiben eines Programms neue Objekte.
Manchmal kann es aber nützlich sein, eine Kopie ei-
nes Objekts zu erzeugen und diese dann zu benutzen,
um ein neues Objekt zu erzeugen. Das macht man
vor allen Dingen immer dann, wenn der Prozess der
Erzeugung eines Objekts mehrere Schritte erfordert.

Stell Dir zum Beispiel einmal vor, wir hätten eine
Klasse Tier mit einer Funktion __init__, die die Parameter Art, Anzahl_der_Beine
und Farbe aufnimmt.

>>> class Tier:
def __init__(self, Art, Anzahl_der_Beine, Farbe):

self.Art = Art
self.Anzahl_der_Beine = Anzahl_der_Beine
self.Farbe = Farbe

Wir könnten in der Klasse Tier ein neues Objekt erzeugen, indem wir folgenden
Code einsetzen. Lass uns ein pinkfarbenes Hippogreif mit sechs Beinen erzeugen,
das Harry heißt.

>>> Harry = Tier('Hippogreif', 6, 'pink')

Nehmen wir an, wir wollten eine ganze Herde von pinkfarbenen Hippogreifs mit
sechs Beinen haben. Wir könnten den Code von oben ständig wiederholen oder
die Funktion copy aus dem Modul copy dazu benutzen:

>>> import copy
>>> Harry = Tier('Hippogreif', 6, 'pink')
>>> Harriet = copy.copy(Harry)
>>> print(Harry.Art)
Hippogreif
>>> print(Harriet.Art)
Hippogreif

In diesem Beispiel erzeugen wir ein Objekt und bezeichnen es mit der Variable
Harry. Dann erstellen wir eine Kopie des Objekts, die wir mit Harriet bezeichnen.
Es handelt sich dabei um komplett unterschiedliche Objekte, obwohl sie zur glei-
chen Art gehören. In diesem Fall spart man sich nur etwas Tippen, aber sobald
die Objekte viel komplizierter werden, ist die Möglichkeit, kopieren zu können,
äußerst nützlich.
Nützliche Python-Module

Wir können auch eine Liste der Objekte Tier erzeugen und sie mit der Funk-
tion copy kopieren.

>>> Harry = Tier('Hippogreif', 6, 'pink')
>>> Carrie = Tier('Chimäre', 4, 'grüne Punkte')
>>> Billy = Tier('Bogill', 0, 'gescheckt')
>>> meine_Tiere = [Harry, Carrie, Billy]
>>> mehr_Tiere = copy.copy(meine_Tiere)
>>> print(mehr_Tiere [0].Art)
Hippogreif
>>> print(mehr_Tiere [1].Art)
Chimäre

In den ersten drei Zeilen erzeugen wir drei Tier-
Objekte und speichern sie in Harry, Carrie und
Billy. In der vierten Zeile fügen wir diese
Objekte der Liste meine_Tiere hinzu. Und
danach benutzen wir copy, um eine neue Liste
namens mehr_Tiere zu erzeugen. Zum Schluss
zeigen wir die ersten beiden Objekte ([0] und
[1]) in der Liste mehr_Tiere an und sehen nach, ob sie die gleichen wie in der Ori-
ginal-Liste sind: Hippogreif und Chimäre. Wir haben dadurch eine Kopie der Liste
erstellt, ohne die ganzen Objekte erneut erzeugen zu müssen.

Schau Dir aber an, was passiert, sobald wir die Art eines unserer Objekte in
Tiere in der Original-Liste meine_Tiere ändern (Hippogreif zu Ghul). Python
ändert dann auch die Art in mehr_Tiere.

>>> meine_Tiere[0].Art = 'Ghul'
>>> print(meine_Tiere[0].Art)
Ghul
>>> print(mehr_Tiere[0].Art)
Ghul

Das ist ja merkwürdig. Haben wir die Art nicht gerade nur in meine_Tiere geän-
dert? Warum wurde die Art in beiden Listen geändert?

Die Art wurde geändert, weil copy in Wirklichkeit eine flache Kopie angefer-
tigt. Dies bedeutet, dass keine Objekte innerhalb der Objekte, die wir kopiert
haben, kopiert werden. In diesem Fall hat Python das Hauptobjekt Liste kopiert,
nicht aber die einzelnen Objekte innerhalb der Liste. Somit haben wir am Ende
zwar eine neue Liste, die aber keine neuen Objekte enthält – die Liste mehr_Tiere
enthält die gleichen drei Objekte wie meine_Tiere.
Mit dem Modul copy Kopien erstellen 121

122
Wenn wir der ersten Liste (meine_Tiere) ein neues Tier hinzufügen, erscheint
es aus dem gleichen Grund nicht in der Kopie (mehr_Tiere). Zum Beweis lässt Du
Dir die Länge jeder Liste nach Hinzufügen jedes Tieres anzeigen:

>>> Sally = Tier('Sphinx', 4, 'Sand')
>>> meine_Tiere.append(Sally)
>>> print(len(meine_Tiere))
4
>>> print(len(mehr_Tiere))
3

Wie Du siehst, haben wir der ersten Liste, meine_Tiere, zwar ein neues Tier hinzu-
gefügt, es wird aber nicht zu der Kopie dieser Liste (mehr_Tiere) hinzugefügt.
Wenn wir die Funktion len benutzen und das Ergebnis anzeigen lassen, enthält
die erste Liste vier Elemente und die zweite nur drei.

Eine weitere Funktion des Moduls copy, deepcopy (engl. für »tief kopieren«),
erzeugt tatsächlich Kopien sämtlicher Objekte innerhalb des Objekts, das kopiert
wird. Wenn wir zum Kopieren von meine_Tiere die Funktion deepcopy verwenden,
bekommen wir eine neue vollständige Liste mit Kopien aller ihrer Objekte. Die
Folge davon ist: Änderungen an unseren Tier-Originalobjekten haben keinen
Einfluss auf die Objekte in der neuen Liste. Hier siehst Du ein Beispiel:

>>> mehr_Tiere = copy.deepcopy(meine_Tiere)
>>> meine_Tiere[0].Art = 'Wyrm'
>>> print(meine_Tiere[0].Art)
Wyrm
>>> print(mehr_Tiere[0].Art)
Ghul

Wenn wir die Art des ersten Objekts in der Originalliste von Ghul in Wyrm ändern,
ändert sich die kopierte Liste nicht, wie wir sehen, wenn wir uns die Arten des
ersten Objekts der Liste anzeigen lassen.

11.2 Mit dem Modul keyword einen Überblick über die
Schlüsselwörter erhalten

In Python ist jedes Wort, das Bestandteil der Sprache selbst ist, wie etwa if, else
und for, ein Schlüsselwort. Das Modul keyword enthält eine Funktion namens
iskeyword und eine Variable, die kwlist heißt. Die Funktion iskeyword gibt wahr
(true) zurück, sobald ein String ein Python-Schlüsselwort ist. Die Variable kwlist
gibt eine Liste sämtlicher Python-Schlüsselwörter zurück.
Nützliche Python-Module

Im folgenden Code kannst Du sehen, dass die Funktion iskeyword true für
den String if und false (falsch) für den String Oswald zurückgibt. Wenn wir die
Inhalte der Variable anzeigen lassen, kannst du die komplette Liste aller Schlüs-
selwörter sehen. Dies ist sehr nützlich, da Schlüsselwörter nicht immer gleich
bleiben. Zukünftige Versionen (oder ältere Versionen) von Python können abwei-
chende Schlüsselwörter enthalten.

>>> import keyword
>>> print(keyword.iskeyword('if'))
True
>>> print(keyword.iskeyword('Oswald'))
False
>>> print(keyword.kwlist)
['False', 'None', 'True', 'and', 'as', 'assert', 'break', 'class',
'continue', 'def', 'del', 'elif', 'else', 'except', 'finally', 'for',
'from', 'global', 'if', 'import', 'in', 'is', 'lambda', 'nonlocal',
'not', 'or', 'pass', 'raise', 'return', 'try', 'while', 'with',
'yield']

Für jedes der Schlüsselwörter findest Du eine Beschreibung im Anhang.

11.3 Wie man mit dem Modul random Zufallszahlen bekommt

Das Modul random enthält eine Reihe von Funktionen, mit denen man Zufallszah-
len erzeugen kann. Das ist so, als würde man dem Computer sagen: »Ziehe eine
Zahl.« Die nützlichsten Funktionen im Modul random sind randint, choice und
shuffle.

Mit randint eine Zufallszahl bestimmen lassen

Die Funktion randint zieht eine Zufallszahl innerhalb eines Zahlenbereichs –
sagen wir, zwischen 1 und 100, zwischen 100 und 1000 oder zwischen 1000 und
5000. Hier siehst Du ein Beispiel:

>>> import random
>>> print(random.randint(1, 100))
58
>>> print(random.randint(100, 1000))
861
>>> print(random.randint(1000, 5000))
3795
Wie man mit dem Modul random Zufallszahlen bekommt 123

124
Du kannst randit auch zu so etwas wie einem kleinen (und nervigen) Ratespiel
nutzen, indem Du eine while-Schleife einsetzt:

>>> import random
>>> num = random.randint(1, 100)
>>> while True:

print('Rate eine Zahl zwischen 1 und 100')
raten = input()
i = int(raten)
if i == num:

print('Du hast richtig geraten')
break

elif i < num:
print('Rate eine höhere Zahl')

elif i > num:
print('Rate eine niedrigere Zahl')

Als Erstes importieren wir das Modul random und
weisen der Variablen num mit randint eine Zufalls-
zahl zwischen 1 und 100 zu. Wir erzeugen dann
eine while-Schleife in , die unendlich läuft (oder
zumindest so lange, bis der Spieler die Zahl errät).

Als Nächstes zeigen wir eine Nachricht in
an und benutzen input, um eine Benutzereingabe
zu bekommen, die wir in der Variable raten spei-
chern . Wir wandeln die Eingabe mit int in eine
Zahl um und speichern sie in in der Variablen i.
Anschließend vergleichen wir sie mit der in zufällig ausgewählten Zahl.

Falls die Eingabe und zufällig ausgewählte Zahl gleich sind, zeigen wir die
Nachricht »Du hast richtig geraten« an und verlassen die Schleife in . Falls die
Zahlen nicht übereinstimmen, prüfen wir, ob die Zahl, die der Spieler geraten
hat, höher ist als die Zufallszahl oder niedriger , und zeigen ihm eine Nach-
richt mit einem entsprechenden Hinweis.

Dieser Code ist ein bisschen lang, sodass Du ihn vielleicht besser in ein neues
Shell-Fenster schreibst oder ein Text-Dokument erzeugst, es speicherst und
anschließend in IDLE laufen lässt. Hier siehst Du eine kurze Erinnerung daran,
wie man ein abgespeichertes Programm öffnet und ausführt:

1. Starte IDLE, und gehe auf File Open.
2. Arbeite Dich bis zu dem Verzeichnis durch, in dem Du die Datei gespeichert

hast, und klicke auf den Dateinamen, um sie auszuwählen.
3. Klicke auf Open.
4. Nachdem sich das neue Fenster geöffnet hat, gehe auf Run Run Module.
Nützliche Python-Module

Hier sieht man, was passiert, wenn wir das Programm laufen lassen:

Mit choice ein zufälliges Element aus einer Liste auswählen

Wenn Du statt einer Zufallszahl aus einem bestimmten Bereich ein zufälliges Ele-
ment einer Liste auswählen lassen möchtest, kannst Du choice benutzen. Du
kannst Dir zum Beispiel von Python den Nachtisch auswählen lassen.

>>> import random
>>> Nachtische = ['Eis', 'Götterspeise', 'Pudding', 'Lebkuchen',

'Schokolade']
>>> print(random.choice(Nachtische))
Pudding

Es sieht so aus, als gäbe es heute Pudding – keine schlechte Wahl.

Mit shuffle eine Liste mischen

Die Funktion shuffle mischt die Elemente einer Liste. Wenn Du gerade mit IDLE
arbeitest und das Modul random schon importiert und die Nachtisch-Liste aus
dem vorigen Beispiel schon erstellt hast, kannst Du gleich zum Befehl ran-
dom.shuffle vorgehen und folgenden Code eingeben:
Wie man mit dem Modul random Zufallszahlen bekommt 125

126
>>> import random
>>> Nachtische = ['Eis', 'Götterspeise', 'Pudding', 'Lebkuchen',

'Schokolade']
>>> random.shuffle(Nachtische)
>>> print(Nachtische)
['Lebkuchen', 'Schokolade', 'Pudding', 'Götterspeise', 'Eis']

Den Effekt des Durchmischens kannst Du sehen, wenn wir die Liste anzeigen –
die Reihenfolge ist jetzt komplett anders. Wenn wir ein Kartenspiel schreiben
würden, könntest Du diese Funktion benutzen, um eine Liste, die die Spielkarten
beinhaltet, zu mischen.

11.4 Die Shell mit dem Modul sys steuern

Das Modul sys enthält Systemfunktionen, mit denen man die Python-Shell selbst
steuern kann. Hier schauen wir uns an, wie man die Funktion exit benutzt, was
man mit den Objekten stidin und stdout macht, und wir sehen uns die Variable
version an.

Die Shell mit der Funktion exit verlassen

Die Funktion exit ist eine der Möglichkeiten, um die Python-Shell oder -Konsole
zu beenden. Gib den folgenden Code ein, und Du wirst in einem Dialogfenster
gefragt, ob Du die Shell beenden möchtest. Klicke auf Yes, und die Shell schließt
sich.

>>> import sys
>>> sys.exit()

Dies funktioniert jedoch nicht, falls Du eine modifizierte Version von IDLE
benutzt, die wir in Kapitel 2 aufgesetzt haben. Stattdessen bekommst Du eine
Fehlermeldung wie diese:

>>> import sys
>>> sys.exit()
Traceback (most recent call last):
 File "<pyshell#13>", line 1, in <module>
 sys.exit()
SystemExit

In dem Objekt stdin lesen

Das Objekt stdin (Abkürzung für standard input, engl. für »Standard-Eingabe«)
im Modul sys fordert den Benutzer auf, eine Information einzugeben, die in die
Shell eingelesen und vom Programm verwendet wird. Wie Du schon in Kapitel 8
Nützliche Python-Module

gelernt hast, enthält dieses Objekt eine Funktion readline, die eine Zeile Text ein-
liest, der auf der Tastatur eingegeben wurde, bis der Benutzer die Enter-Taste
drückt. Sie funktioniert wie die Funktion input, die wir im Zufallszahlen-Rate-
spiel weiter oben in diesem Kapitel benutzt haben. Gib zum Beispiel das Folgende
ein:

>>> import sys
>>> v = sys.stdin.readline()
Wer zuletzt lacht, denkt am langsamsten

Python speichert nun den String Wer zuletzt lacht, denkt am langsamsten in die
Variable v. Um uns dies bestätigen zu lassen, geben wir die Inhalte von v aus:

>>> print(v)
Wer zuletzt lacht, denkt am langsamsten

Einer der Unterschiede zwischen den Funktionen input und readline besteht
darin, dass man mit der Funktion readline die Anzahl der Zeichen festlegen
kann, die als Parameter gelesen werden. Zum Beispiel:

>>> v = sys.stdin.readline(17)
Wer zuletzt lacht, denkt am langsamsten
>>> print(v)
Wer zuletzt lacht

Mit dem Objekt stdout schreiben

Im Gegensatz zu stdin wird das Objekt stdout (Abkürzung für standard output,
engl. für »Standard-Ausgabe«) verwendet, um Mitteilungen in die Shell (oder
Konsole) zu schreiben, anstatt sie einzulesen. In gewisser Hinsicht ist es das Glei-
che wie print; stdout ist aber ein Datei-Objekt. Es hat also die gleichen Funktio-
nen, die wir in Kapitel 10 verwendet haben, wie etwa write. Hier siehst Du ein
Beispiel:

>>> import sys
>>> sys.stdout.write("Welche drei Worte machen einen Hai glücklich?

Mann über Bord!")
Welche drei Worte machen einen Hai glücklich? Mann über Bord!61

Wie Du siehst, gibt write die Anzahl der Zeichen zurück, die es geschrieben hat:
Am Ende der Mitteilung siehst Du die Zahl 61. Wir könnten diesen Wert in einer
Variable speichern, um im Verlauf festzuhalten, wie viele Zeichen auf den Moni-
tor geschrieben wurden.
Die Shell mit dem Modul sys steuern 127

128
Welche Python-Version benutze ich?

Die Variable version zeigt die Version von
Python an. Dies kann ganz nützlich sein, um
sicherzustellen, dass man auf dem aktuellen
Stand ist. Manche Programmierer lassen gerne
Informationen anzeigen, wenn ihre Pro-
gramme gestartet werden. Du könntest zum
Beispiel in einem »Über«-Fenster die Version von Python anzeigen lassen:

>>> import sys
>>> print(sys.version)
3.3.0 (v3.3.0:bd8afb90ebf2, Sep 29 2012, 10:55:48) [MSC v.1600 32 bit
(Intel)]

11.5 Mit dem Modul time arbeiten

Das Modul time von Python enthält Funktionen zum Anzeigen der Zeit, aller-
dings nicht unbedingt so, wie Du es erwartest. Probiere einmal Folgendes aus:

>>> import time
>>> print(time.time())
1359450712.489086

Die Zahl, die nach dem Aufruf von time()
zurückgegeben wird, ist die Anzahl von
Sekunden, die seit dem 1. Januar 1970 um
0:00 Uhr vergangen sind. Dieser Referenz-
punkt mag sehr ungewöhnlich erscheinen,
hat aber seinen Sinn. Um zum Beispiel her-
auszufinden, wie lange Teile Deines Programms brauchen, um abzulaufen,
kannst Du die Zeit am Anfang und am Ende aufzeichnen und diese Werte
anschließend vergleichen. Probieren wir einmal aus, wie lange es dauert, alle
Zahlen zwischen 0 und 999 anzuzeigen. Zunächst erzeugen wir eine Funktion
wie diese:

>>> def ganz_viele_Zahlen(max):
for x in range(0, max):

print(x)

Als Nächstes rufen wir die Funktion auf, wobei max auf 1000 gesetzt ist:

>>> ganz_viele_Zahlen(1000)

Danach finden wir heraus, wie lange die Funktion braucht, indem wir unser Pro-
gramm mit dem Modul time abändern:
Nützliche Python-Module

>>> def ganz_viele_Zahlen(max):
t1 = time.time()
for x in range(0, max):
 print(x)
t2 = time.time()
print('Es hat %s Sekunden gebraucht' % (t2-t1)

Wenn wir das Programm wieder aufrufen, bekommen wir folgendes Ergebnis
(das von der Geschwindigkeit Deines Systems abhängt):

>>> ganz_viele_Zahlen(1000)
0
1
2
3
.
.
.
997
998
999
Es hat 50.159196853637695 Sekunden gebraucht.

So funktioniert das Ganze: Beim ersten Aufrufen der Funktion time() weisen wir
den zurückgegebenen Werten der Variablen t1 eins zu . Anschließend gehen wir
in die Schleife und geben alle Zahlen in der dritten und vierten Zeile aus . Nach
der Schleife rufen wir wieder die Funktion time() auf und weisen den zurückgege-
benen Wert der Variablen t2 zu . Da es mehrere Sekunden zum Durchlaufen der
Schleife dauert, ist der Wert t2 größer als t1, da bei ihm seit dem 1. Januar 1970
mehr Sekunden vergangen sind. Wenn man wie wir in t1 von t2 abzieht,
bekommt man die Anzahl von Sekunden, die es gedauert hat, um alle Zeilen aus-
zugeben.

Mit asctime ein Datum umwandeln

Die Funktion asctime nimmt ein Datum als Tupel auf und wandelt es in etwas
um, das lesbarer ist. (Erinnere dich daran, dass ein Tupel eine Liste von Elemen-
ten ist, die man nicht verändern kann.) Wie Du in Kapitel 8 gesehen hast, zeigt
asctime das aktuelle Datum und die Uhrzeit in einer lesbaren Form an, wenn man
asctime ohne Parameter aufruft.

>>> import time
>>> print(time.asctime())
Tue Jan 29 10:53:18 2013
Mit dem Modul time arbeiten 129

130
Um asctime mit einem Parameter aufzurufen, erzeugen wir zunächst ein Tupel
mit Werten für das Datum und die Uhrzeit. Hier zum Beispiel weisen wir das
Tupel der Variablen t zu:

>>> t = (2007, 5, 27, 10, 30, 48, 6, 0, 0)

Die Werte in dieser Sequenz sind Jahr, Monat, Tag, Stunden, Minuten, Sekunden,
Wochentag (0 steht für Montag, 1 ist Dienstag usw.) und die Angabe, ob gerade
Sommerzeit ist (0, wenn nicht; 1, wenn ja). Wenn wir asctime mit einem ähnli-
chen Tupel aufrufen, bekommen wir Folgendes:

>>> import time
>>> t = (2020, 2, 23, 10, 30, 48, 6, 0, 0)
>>> print(time.asctime(t))
Sun Feb 23 10:30:48 2020

Mit localtime Datum und Uhrzeit bekommen

Im Gegensatz zu asctime gibt die Funktion localtime das aktuelle Datum und die
Uhrzeit als Objekt zurück. Die Werte haben dabei ungefähr die gleiche Reihen-
folge wie bei asctime. Wenn Du das Objekt ausgibst, siehst Du den Namen der
Klasse und jeden Wert als tm_year, tm_mon (für Monat), tm_day (für Tag des
Monats), tm_hour und so weiter angezeigt.

>>> import time
>>> print(time.localtime())
time.struct_time(tm_year=2013, tm_mon=1, tm_mday=29, tm_hour=11,
tm_min=24, tm_sec=47, tm_wday=1, tm_yday=29, tm_isdst=0)

Um das aktuelle Jahr und den Monat anzeigen zu lassen, kannst Du deren Index-
Positionen verwenden (wie bei einem Tupel, das wir mit asctime benutzt haben).
Anhand unseres Beispiels wissen wir, dass das Jahr an erster Stelle steht (Position
0) und der Monat (month) an der zweiten (1). Daher verwenden wir Jahr = t[0]
und Monat = t[1] folgendermaßen:

>>> t = time.localtime()
>>> Jahr = t[0]
>>> Monat = t[1]
>>> print(Jahr)
2013
>>> print(Monat)
1

Wie Du siehst, haben wir den ersten Monat des Jahres 2013.
Nützliche Python-Module

Mit sleep eine Pause machen

Die Funktion sleep ist ganz prak-
tisch, wenn Du Dein Programm ver-
zögern oder verlangsamen möchtest.
Um zum Beispiel jede Sekunde von 1
bis 61 anzeigen zu lassen, können
wir folgende Schleife verwenden:

>>> for x in range(1, 61):
print(x)

Dieser Code gibt ganz schnell alle Zahlen zwischen 1 und 60 aus. Wir können
Python aber auch sagen, dass es zwischen jeder print-Anweisung eine Sekunde
lang Pause machen soll:

>>> for x in range(1, 61):
print(x)
time.sleep(1)

Dadurch wird die Anzeige der nächsten Zahl verzögert. In Kapitel 13 werden wir
die Funktion sleep dazu verwenden, eine Animation etwas realistischer erschei-
nen zu lassen.

11.6 Mit dem Modul pickle Informationen speichern

Mit dem Modul pickle wandelt man Python-Objekte in
etwas um, das man in eine Datei schreiben und auch
leicht wieder auslesen kann. Das Modul pickle ist dann
ganz praktisch, wenn Du ein Spiel schreibst, bei dem Du
Informationen über den Spielestand speichern möchtest.
Hier siehst Du zum Beispiel, wie man Gegenstände bei
einem Spiel hinzufügt und speichert:

>>> Spieldaten = {
'Spielerposition' : 'N23 E45',
'Hosentaschen': ['Schlüssel', 'Taschenmesser', 'polierter Stein'],
'Rucksack' : ['Seil', 'Hammer', 'Apfel'],
'Geld' : 158.50

}

Hier erzeugen wir eine Python-Map, die in unserem imaginären Spiel die Spielpo-
sition und eine Liste von Elementen in den Taschen und dem Rucksack des Spie-
lers enthält sowie die Summe an Geld, die er bei sich trägt. Wir können diese Map
Mit dem Modul pickle Informationen speichern 131

132
in eine Datei speichern, indem wir die Datei zum Schreiben öffnen und dann die
Funktion dump von pickle aufrufen:

>>> import pickle
>>> Spieldaten = {

'Spielerposition' : 'N23 E45',
'Hosentaschen': ['Schlüssel', 'Taschenmesser', 'polierter Stein'],
'Rucksack' : ['Seil', 'Hammer', 'Apfel'],
'Geld' : 158.50
}

>>> speichere_Datei = open('save.dat', 'wb')
>>> pickle.dump(Spieldaten, speichere_Datei)
>>> speichere_Datei.close()

Als Erstes importieren wir in das Modul pickle und erzeugen in eine Map
mit unseren Spielkarten. In öffnen wir die Datei save.dat mit dem Parameter wb,
der Python sagt, dass es die Datei im Binärmodus schreiben soll (dazu musst Du
vielleicht das richtige Verzeichnis wie /Users/martinoswald, /home/susanneb/ oder
C:\\Users\JensIngrim ausgeben, wie wir das in Kapitel 10 gemacht haben). In
benutzen wir dann dump, um die Map und die Datei-Variable als zwei Parameter
einzufügen. Zum Schluss schließen wir die Datei in , da wir mit ihr fertig sind.

Die mit pickle behandelten Objekte, die wir mit der Funktion dump von pickle in
eine Datei geschrieben haben, können wir mit load rückgängig machen. Dabei
kehren wir den Prozess von pickle um: Wir nehmen die Informationen, die in die
Datei geschrieben wurden, auf und wandeln sie zurück in die Werte um, die unser
Programm verwerten kann. Dieser Prozess funktioniert ähnlich wie bei der Funk-
tion dump:

>>> lade_Datei = open('save.dat', 'rb')
>>> geladene_Spieldaten = pickle.load(lade_Datei)
>>> lade_Datei.close()

Achtung!

Einfache Textdateien enthalten nur Zeichen, die Menschen lesen können. Bilder, Musik-
Dateien, Filme und pickle-Objekte in Python enthalten Informationen, die nicht immer
für Menschen lesbar sind. Das sind die sogenannten Binärdateien. Wenn Du die Datei
save.dat öffnen würdest, würdest Du sehen, dass sie nicht wie eine Textdatei aussieht, son-
dern wie eine wilde Mixtur aus normalem Text und Sonderzeichen.
Nützliche Python-Module

Als Erstes öffnen wir die Datei und benutzen rb als Parameter, was für »lies
Binärdaten« (engl. read binary) steht. Wir reichen die Datei dann an load weiter
und setzen den zurückgegebenen Wert in die Variable geladene_Spieldaten. Zum
Schluss schließen wir die Datei wieder.

Um zu prüfen, dass die gespeicherten Daten korrekt geladen wurden, lassen
wir die Variable ausgeben:

>>> print(geladene_Spieldaten)
{'Spielerposition': 'N23 E45', 'Hosentaschen': ['Schlüssel',
'Taschenmesser', 'polierter Stein'], 'Rucksack': ['Seil', 'Hammer',
'Apfel'], 'Geld': 158.5}

11.7 Was Du gelernt hast

In diesem Kapitel hast Du gelernt, wie Python-Module Funktionen, Klassen und
Variablen zusammenfassen und wie man diese Funktionen durch Importieren der
Module benutzt. Du hast gesehen, wie man Objekte kopiert, Zufallszahlen er-
zeugt und zufallsmäßig Listen von Objekten mischt. Außerdem hast Du gelernt,
wie man in Python mit der Zeit arbeitet. Zu guter Letzt hast Du gelernt, wie man
mit pickle Informationen in einer Datei speichert und wieder daraus lädt.

11.8 Programmier-Puzzles

Probier die folgenden Sachen aus, um den Umgang mit Pythons Modulen zu
üben. Überprüfe Deine Antworten unter www.dpunkt.de/python.

#1: Kopierte Autos

Was wird der folgende Code anzeigen?

>>> import copy
>>> class Auto:

pass

>>> Auto1 = Auto()
>>> Auto1.Räder = 4
>>> Auto2 = Auto1
>>> Auto2.Räder = 3
>>> print(Auto1.Räder)

>>> Auto3 = copy.copy(Auto1)
>>> Auto3.Räder = 6
>>> print(Auto1.Räder)
Was Du gelernt hast 133

134
#2: Favoriten in pickle

Erstelle eine Liste Deiner Lieblingsgegenstände, und benutze pickle, um sie in
einer Datei namens Favoriten.dat zu speichern. Schließe dann die Python-Shell,
öffne sie wieder, und lass die Liste Deiner Lieblingsgegenstände anzeigen, indem
Du die Datei lädst.
Nützliche Python-Module

12
Noch mehr Grafik mit turtle
Lass uns einen weiteren Blick auf das Modul turtle werfen, mit dem wir in
Kapitel 5 begonnen haben. Wie Du in diesem Kapitel sehen wirst, kann Python mit
seinen Schildkröten viel mehr anstellen, als nur einfache schwarze Linien zu zeich-
nen. Du kannst damit beispielsweise kompliziertere geometrische Formen zeich-
nen, unterschiedliche Farben erzeugen und Deine Formen sogar mit Farben füllen.

12.1 Fangen wir mit einem einfachen Quadrat an

Wie man mit der Schildkröte einfache Formen zeichnet, wissen wir schon. Bevor
wir mit der Schildkröte zeichnen, müssen wir das Modul turtle importieren und
das Objekt Pen erzeugen:

>>> import turtle
>>> t = turtle.Pen()

Hier siehst Du noch einmal der Code, mit dem wir in Kapitel 5 ein Quadrat
erzeugt haben:

>>> t.forward(50)
>>> t.left(90)
>>> t.forward(50)
>>> t.left(90)
>>> t.forward(50)
>>> t.left(90)
>>> t.forward(50)
135

136
In Kapitel 7 hast Du etwas über for-Schleifen erfahren. Aufgrund unserer neuen
Kenntnisse können wir diesen etwas umständlichen Code für ein Quadrat mit
einer for-Schleife einfacher machen:

>>> t.reset()
>>> for x in range(1, 5):

t.forward(50)
t.left(90)

In der ersten Zeile sagen wir dem Pen-Objekt,
dass es sich zurücksetzen soll. Als Nächstes star-
ten wir eine for-Schleife, die mit dem Code
range(1, 5) von 1 bis 4 zählt. Danach bewegen
wir uns in den folgenden Zeilen bei jedem
Durchlauf der Schleife 50 Pixel vorwärts und
biegen 90° nach links ab. Weil wir die for-Schleife verwendet haben, ist dieser
Code also ein bisschen kürzer als die vorherige Version – wenn man die reset-
Zeile weglässt, haben wir statt sechs nur noch drei Zeilen.

12.2 Sterne zeichnen

Mit nur einigen kleinen Änderungen unserer for-Schleife können wir etwas Inter-
essanteres zeichnen. Gibt Folgendes ein:

>>> t.reset()
>>> for x in range(1, 9):

t.forward(100)
t.left(225)

Dieser Code produziert einen achtzackigen Stern:
Noch mehr Grafik mit turtle

Der Code selbst ist dem, den wir beim Zeichnen des Quadrats verwendet haben,
sehr ähnlich, bis auf ein paar Ausnahmen:

■ Anstatt mit range(1, 5) die Schleife viermal zu durchlaufen, schleifen wir mit
range(1, 9) achtmal hindurch.

■ Anstatt uns um 50 Pixel vorwärts zu bewegen, nehmen wir 100 Pixel.
■ Anstatt uns um 90° zu drehen, drehen wir uns um 225° nach links.

Jetzt entwickeln wir unseren Stern noch ein bisschen weiter. Indem wir einen
175°-Winkel verwenden und 37-mal durchschleifen, können wir einen Stern mit
noch viel mehr Zacken malen:

>>> t.reset()
>>> for x in range(1, 38):

t.forward(100)
t.left(175)

Hier ist das Ergebnis dieses Codes:

Wo wir gerade mit Sternen herumspielen: Hier ist der Code, um einen sich
schraubenden Stern zu produzieren:

>>> t.reset()
>>> for x in range(1, 20):

t.forward(100)
t.left(95)

Indem wir den Drehwinkel ändern und die Anzahl der Schleifen reduzieren,
zeichnet die Schildkröte einen ganz anderen Stern:
Sterne zeichnen 137

138
Mit sehr ähnlichem Code können wir eine ganze Reihe unterschiedlicher Formen
erzeugen – von einem einfachen Quadrat bis zu einem sich schraubenden Stern.
Wie Du siehst, haben wir es durch die Verwendung von for-Schleifen viel einfa-
cher gemacht, diese Formen zu zeichnen. Ohne for-Schleifen hätte unser Code
viel mehr mühsames Tippen erfordert.

Lass uns jetzt mit einer if-Anweisung die Drehung der Schildkröte steuern
und eine weitere Stern-Variante zeichnen. In diesem Beispiel möchten wir, dass
die Schildkröte sich erst um einen Winkel und beim zweiten Mal um einen ande-
ren Winkel dreht.

>>> t.reset()
>>> for x in range(1, 19):

t.forward(100)
if x % 2== 0:

t.left(175)
else:

t.left(225)

Hier erzeugen wir eine Schleife, die 18-mal
durchlaufen wird (range(1,19)) und der Schild-
kröte sagt, dass sie sich 100 Pixel vorwärts be-
wegen soll (t.forward(100)). Das Neue hierbei
ist die if-Anweisung (if x % 2 ==:). Diese Anwei-
sung prüft, ob die Variable x eine gerade Zahl
enthält, indem sie den sogenannten Modulo-
Operator (Rest-Operator), also das % in dem Ausdruck x % 2 == 0, verwendet. Das
ist, als ob man sagen würde, »x mod 2« ist gleich 0.
Noch mehr Grafik mit turtle

Der Ausdruck x % 2 sagt im Grunde: »Wie groß ist der Rest, wenn man die
Zahl in der Variable x in zwei gleiche Hälften teilt?« Wenn wir beispielsweise die
Menge von fünf Bällen in zwei gleiche Teile teilen wollten, bekämen wir zwei
Gruppen mit je zwei Bällen (einer Gesamtmenge von vier Bällen) und einen Rest
von einem Ball, wie hier zu sehen ist:

Wenn wir 13 Bälle in zwei gleich große Gruppen teilen wollten, bekämen wir
zwei Gruppen mit je sechs Bällen und einem Ball als Rest:

Wenn wir prüfen, ob der Rest nach dem Teilen von x durch 2 gleich null ist, fra-
gen wir in Wirklichkeit, ob ohne Rest in zwei Teile geteilt werden kann. Auf diese
Weise kann man ganz elegant prüfen, ob eine Variable eine gerade Zahl enthält,
da gerade Zahlen immer restlos durch zwei geteilt werden können.

In der fünften Zeile unseres Codes sagen wir der Schildkröte, dass sie um
175° nach links abbiegen soll (t.left (175)), falls x eine gerade Zahl ist (if X % 2
== 0:); anderenfalls (else) sagen wir ihr in der letzten Zeile, dass sie sich um 225°
drehen soll (t.left (225)).

5 2 2

Dies ist der Rest.

13 6 6

Dies ist der Rest.
Sterne zeichnen 139

140
Hier siehst Du das Ergebnis dieses Codes:

12.3 Ein Auto zeichnen

Die Schildkröte kann mehr, als nur Sterne und einfache geometrische Formen zu
zeichnen. In unserem nächsten Beispiel malen wir ein ziemlich primitiv aussehen-
des Auto. Als Erstes zeichnen wir die Karosserie des Autos. Gehe also auf File
New Window, und gib in dem sich öffnenden Fenster den folgenden Code ein:

import turtle
t = turtle.Pen()
t.color(1,0,0)
t.begin_fill()
t.forward(100)
t.left(90)
t.forward(20)
t.left(90)
t.forward(20)
t.right(90)
t.forward(20)
t.left(90)
t.forward(60)
t.left(90)
t.forward(20)
t.right(90)
t.forward(20)
t.left(90)
t.forward(20)
t.end_fill()
Noch mehr Grafik mit turtle

Als Nächstes kommt das erste Rad dran:

t.color(0,0,0)
t.up()
t.forward(10)
t.down()
t.begin_fill()
t.circle(10)
t.end_fill()

Zum Schluss zeichnen wir das zweite Rad:

t.setheading(0)
t.up()
t.forward(90)
t.right(90)
t.forward(10)
t.setheading(0)
t.begin_fill()
t.down()
t.circle(10)
t.end_fill()

Gehe auf File Save As. Gib einen Dateinamen wie zum Beispiel Auto.py ein.
Gehe auf Run Run Module, um den Code auszuprobieren. Und hier ist unser
Auto:

Vielleicht ist Dir aufgefallen, dass sich ein paar neue turtle-Funktionen in diesen
Code eingeschlichen haben:

■ Mit color ändert man die Farbe des Stifts.
■ Mit begin_ fill und end_fill füllt man Flächen mit Farbe aus.
■ Mit circle kann man einen Kreis in einer bestimmten Größe zeichnen.
Ein Auto zeichnen 141

142
■ Mit setheading kann man die Schildkröte in eine bestimmte Richtung schauen
lassen.

Schauen wir uns an, wie wir mit diesen Funktionen Farbe in unsere Zeichnungen
bringen können.

12.4 Dinge einfärben

Die Funktion color nimmt drei Parameter auf. Der erste bestimmt den Rotanteil,
der zweite den Grünanteil und der dritte den Blauanteil. Um zum Beispiel das
helle Rot des Autos zu bekommen, haben wir color(1,0,0) benutzt und die
Schildkröte dadurch angewiesen, mit einem zu 100% roten Stift zu zeichnen.

Dieses Farb-Rezept aus Rot, Grün und
Blau nennt man RGB.Auf Deinem Computer-
Bildschirm werden durch die Mischung die-
ser Primärfarben auch alle anderen Farben
dargestellt. Das ist ein bisschen so, als wür-
dest Du mit Deinem Tuschkasten aus blauer
und roter Farbe Violett oder aus Gelb und
Rot Orange mischen.

Obwohl wir beim Mischen der Farben
auf dem Computer-Monitor keine Farben aus dem Tuschkasten (sondern Licht)
verwenden, hilft vielleicht die Vorstellung, dass dieses RGB-Rezept wie aus drei
Farbeimern zusammengemischt wird: einem roten, einem grünen und einem
blauen. Jeder dieser Eimer ist voll, und dem vollen Eimer weisen wir den Wert
von 1 (oder 100%) zu. Wir mischen dann die gesamte rote und grüne Farbe in
einem Bottich zusammen, um Gelb zu erhalten (das wären 1 und 1 von jedem
oder 100% von jeder Farbe.

Kehren wir nun in die Welt des Codes zurück. Um mit der Schildkröte einen
gelben Kreis zu zeichnen, würden wir je 100% von der roten und der grünen
Farbe verwenden, aber kein Blau:

>>> t.color(1,1,0)
>>> t.begin_fill()
>>> t.circle(50)
>>> t.end_fill()

Die 1,1,0 in der ersten Zeile stehen für 100% Rot, 100% Grün und 0% Blau. In
der nächsten Zeile sagen wir der Schildkröte, dass sie die von ihr gemalten For-
men mit dieser RGB-Farbe (t.begin_fill) ausmalen und dann damit einen Kreis
zeichnen soll (t.circle). In der letzten Zeile sagt end_fill der Schildkröte, dass sie
den Kreis mit der RGB-Farbe ausfüllen soll.
Noch mehr Grafik mit turtle

Eine Funktion zum Zeichnen eines ausgefüllten Kreises

Um das Experimentieren mit verschiedenen Farben leichter zu machen, erzeugen
wir eine Funktion aus dem Code, mit dem wir einen ausgefüllten Kreis gezeichnet
haben.

>>> def meinKreis(Rot, Grün, Blau):
t.color(Rot, Grün, Blau)
t.begin_fill()
t.circle(50)
t.end_fill()

Indem wir nur die grüne Farbe verwenden, können wir uns einen hellen grünen
Kreis zeichnen:

>>> meinKreis(0, 1, 0)

Oder wir können einen dunkleren grünen Kreis mit nur der Hälfte der grünen
Farbe (0.5) zeichnen:

>>> meinKreis(0, 0.5, 0)

Um ein wenig mit den RGB-Farben auf Deinem Monitor zu spielen, versuche
zunächst einen Kreis mit vollem Rot und dann mit halber Intensität (1 und 0.5)
zu zeichnen, danach einen voll blauen Kreis und zum Schluss einen mit 50%
Blau:

>>> meinKreis(1, 0, 0)
>>> meinKreis(0.5, 0, 0)
>>> meinKreis(0, 0, 1)
>>> meinKreis(0, 0, 0.5)

Durch unterschiedliche Kombinationen von Rot, Grün und Blau kannst Du sehr
viele verschiedene Farben erzeugen, wie etwa Gold:

>>> meinKreis(0.9, 0.75, 0)

Oder ein helles Rosa:

>>> meinKreis(1, 0.7, 0.75)

Achtung!

Wenn Du Deine Leinwand aufräumen möchtest, kannst Du mit t.reset() Deine alten
Zeichnungen entfernen. Denk daran, dass Du die Schildkröte auch ohne Linien zu zeich-
nen bewegen kannst, indem Du mit t.up() den Stift abhebst und ihn mit t.down() wie-
der absetzt.
Dinge einfärben 143

144
Und hier sind noch zwei verschiedene Orangetöne:

>>> meinKreis(1, 0.5, 0)
>>> meinKreis(0.9, 0.5, 0.15)

Mische Dir jetzt eigene Farben zusammen!

Reines Schwarz und Weiß erzeugen

Was geschieht, wenn man nachts alle Lampen
abschaltet? Alles wird schwarz. Genau das Gleiche
passiert mit den Farben auf dem Computer. Keine
Farben ohne Licht, also enthält ein Kreis mit 0 für
alle Primärfarben reines Schwarz:

>>> meinKreis(0, 0, 0)

Hier das Ergebnis:

Das Gegenteil trifft zu, wenn Du alle drei Farben auf 100% setzt. In diesem Fall
bekommst Du Weiß. Gib den folgenden Code ein, um den schwarzen Kreis weg-
zuwischen:

>>> meinKreis(1, 1, 1)
Noch mehr Grafik mit turtle

Eine Funktion zum Quadratezeichnen

Du hast gesehen, dass wir Formen mit Farbe ausfüllen, indem wir der Schildkröte
mit begin_fill sagen, dass sie damit anfangen soll, und mit der Funktion
end_fill, dass jetzt Schluss ist. Jetzt machen wir noch ein paar weitere Experi-
mente mit Formen und Färben. Wir nehmen dazu die Funktion zum Quadrate-
zeichnen vom Anfang dieses Kapitels und bestimmen die Größe des Quadrats
durch ihre Parameter.

>>> def meinQuadrat(Größe):
for x in range(1, 5):

t.forward(Größe)
t.left(90)

Teste Deine Funktion, indem Du sie mit einer Größe von 50 aufrufst:

>>> meinQuadrat(50)

Das ergibt ein kleines Quadrat:

Jetzt probieren wir unsere Funktion mit unterschiedlichen Größen aus. Der fol-
gende Code erzeugt fünf aufeinanderfolgende Quadrate mit den Seitenlängen 25,
50, 75, 100 und 125 Pixel:

>>> t.reset()
>>> meinQuadrat(25)
>>> meinQuadrat(50)
>>> meinQuadrat(75)
>>> meinQuadrat(100)
>>> meinQuadrat(125)
Dinge einfärben 145

146
So sollten die Quadrate dann aussehen:

12.5 Ausgefüllte Quadrate zeichnen

Um ausgefüllte Quadrate zu zeichnen, müssen wir zunächst die Leinwand
zurücksetzen, mit dem Auffüllen anfangen und dann wieder unsere Quadrat-
Funktion aufrufen:

>>> t.reset()
>>> t.begin_fill()
>>> meinQuadrat(50)

Bis Du das Füllen beendet hast, solltest Du ein leeres Quadrat sehen:

>>> t.end_fill()

Danach sollte das Quadrat so aussehen:
Noch mehr Grafik mit turtle

Lass uns jetzt diese Funktion so ändern, dass wir entweder ein ausgefülltes oder
ein leeres Quadrat zeichnen können. Dafür brauchen wir einen weiteren Parame-
ter sowie etwas komplizierteren Code:

>>> def meinQuadrat(Größe, ausgefüllt):
if ausgefüllt == True:

t.begin_fill()
for x in range(1, 5):

t.forward(Größe)
t.left(90)

if ausgefüllt == True:
t.end_fill()

In der ersten Zeile ändern wir unsere Funktion, damit sie zwei Parameter auf-
nimmt: Größe und ausgefüllt. Als Nächstes prüfen wir, ob der Wert von ausge-
füllt mit if ausgefüllt == True auf wahr gesetzt ist. Falls er es ist, rufen wir
begin_fill auf, um der Schildkröte zu sagen, dass sie die gezeichnete Form ausfül-
len soll. Danach durchlaufen wir die Schleife viermal (for x in range(0, 4)), um
die vier Seiten des Rechtecks (durch Bewegung vorwärts und nach links) zu zeich-
nen. Danach prüfen wir mit if ausgefüllt == True, ob ausgefüllt wahr ist. Falls ja,
stellen wir das Ausfüllen mit t.end_fill ab, und die Schildkröte füllt das Quadrat
mit Farbe aus.

Jetzt können wir mit dieser Zeile ein ausgefülltes Quadrat zeichnen:

>>> meinQuadrat(50, True)

Oder wir zeichnen mit dieser Zeile ein unausgefülltes Quadrat:

>>> meinQuadrat(150, False)

Nach diesen beiden Aufrufen der Funktion meinQuadrat bekommen wir folgendes
Bild, das ein bisschen wie ein quadratisches Auge aussieht:
Ausgefüllte Quadrate zeichnen 147

148
Aber hier hört es noch lange nicht auf. Du kannst alle erdenklichen Formen
zeichnen und sie mit Farbe füllen.

12.6 Ausgefüllte Sterne zeichnen

In unserem letzten Beispiel fügen wir unserem Stern, den wir zuvor gezeichnet
haben, etwas Farbe hinzu. Der ursprüngliche Code sah so aus:

>>> t.reset()
>>> for x in range(1, 19):

t.forward(100)
if x % 2== 0:

t.left(175)
else:

t.left(225)

Nun schreiben wir uns eine meinStern-Funktion. Wir werden die if-Anweisung
aus der meinStern-Funktion verwenden und den Parameter Größe hinzufügen.

>>> def meinStern(Größe, ausgefüllt):
if ausgefüllt == True:

t.begin_fill()
for x in range(1, 19):

t.forward(Größe)
if x % 2 == 0:

t.left(175)
else:

t.left(225)
if ausgefüllt == True:

t.end_fill()

In den ersten beiden Zeilen dieser Funktion prüfen wir, ob ausgefüllt wahr ist,
und falls dem so ist, beginnen wir mit dem Ausfüllen. In den letzten beiden Zeilen
prüfen wir wieder, ob ausgefüllt wahr ist, und hören gegebenenfalls mit dem
Ausfüllen auf. Wie schon bei der Funktion meinQuadrat setzen wir wieder die
Größe des Sterns mit dem Parameter Größe fest und greifen auf diesen Wert zu,
wenn wir t.forward aufrufen.

Wir legen jetzt die Farbe auf Gold fest (90% Rot, 75% Grün und 0% Blau)
und rufen die Funktion wieder auf.

>>> t.color(0.9, 0.75, 0)
>>> meinStern(120, True)
Noch mehr Grafik mit turtle

Damit zeichnet die Schildkröte diesen ausgefüllten Stern:

Damit der Stern eine Umrandung bekommt, änderst Du die Farbe in Schwarz
und zeichnest den Stern, ohne ihn auszufüllen, noch einmal:

>>> t.color(0, 0, 0)
>>> meinStern(120, False)

Der goldene Stern hat jetzt eine schwarze Umrandung:
Ausgefüllte Sterne zeichnen 149

150
12.7 Was Du gelernt hast

In diesem Kapitel hast Du gelernt, wie man
mit dem Modul turtle ein paar grundlegende
geometrische Formen zeichnet und wie man
die Schildkröte mit for-Schleifen und der if-
Anweisung auf dem Monitor steuert. Wir
haben die Farbe des Stifts der Schildkröte
verändert und die von ihr gezeichneten For-
men ausgefüllt. Wir haben auch mit einigen
Funktionen den Code anderer Zeichnungen
wiederverwertet, um mit nur einem Aufruf einer Funktion ganz einfach Formen
mit unterschiedlichen Farben zu zeichnen.

12.8 Programmier-Puzzles

Bei den folgenden Experimenten zeichnest Du Deine eigenen Formen mit der Schild-
kröte. Die Lösungen findest Du wie immer unter www.dpunkt.de/python.

#1: Ein Oktagon zeichnen

Wir haben in diesem Kapitel Sterne, Quadrate und Rechtecke gezeichnet. Wie
wäre es, wenn wir jetzt eine Funktion erstellen, mit der wir eine achtseitige Form,
wie etwa ein Oktagon, zeichnen? (Hinweis: Versuche, die Schildkröte um 45° zu
drehen.)
Noch mehr Grafik mit turtle

#2: Ein ausgefülltes Oktagon zeichnen

Jetzt, wo Du eine Funktion zum Zeichnen eines Oktagons hast, ändere sie so ab,
dass sie ein ausgefülltes Oktagon zeichnet. Versuche, ein Oktagon mit einer
Umrandung zu zeichnen, wie wir es bei dem Stern getan haben.

#3: Noch eine Funktion zum Sterne Zeichnen

Erzeuge eine Funktion zum Zeichnen eines Sterns, die zwei Parameter aufnimmt:
die Größe und die Anzahl der Zacken. Der Anfang der Funktion wird in etwa so
aussehen:

>>> def zeichne_Stern(Größe, Zacken):
Programmier-Puzzles 151

152
 Noch mehr Grafik mit turtle

13
Bessere Grafiken mit tkinter
Das Problem beim Zeichnen mit einer Schildkröte besteht darin, dass … Schild-
kröten … wirklich … langsam … sind. Selbst wenn eine Schildkröte mit ihrer
Höchstgeschwindigkeit läuft, ist sie immer noch nicht sehr schnell. Was bei
Schildkröten kein Problem ist, ist bei Computergrafiken sehr wohl eins.

Computergrafiken, vor allem in Spielen,
müssen sehr schnell ablaufen. Wenn Du eine
Spielkonsole hast oder auf dem Computer
spielst, denk mal einen Moment lang über die
Grafiken nach, die Du auf dem Monitor
siehst. Zweidimensionale (2D) Grafiken sind
flach – die Figuren bewegen sich im Allgemei-
nen nur nach oben, unten, links oder rechts –
wie in vielen Nintendo DS-, PlayStation Portable- (PSP) oder Handyspielen. Bei
pseudo-dreidimensionalen (3D) Spielen – die fast 3D sind – sind die Bilder etwas
realistischer, aber die Figuren bewegen sich meist nur in Relation zu einer Ebene
(dies nennt man auch isometrische Grafiken). Und schließlich haben wir noch die
3D-Spiele, bei denen die Bilder auf dem Monitor gezeichnet werden, um die Rea-
lität nachzuahmen. Egal ob unsere Spiele nun 2D-, Pseudo-3D oder echte 3D-
Grafiken darstellen, sie haben doch eines gemeinsam: Sie müssen sich alle sehr
schnell auf den Computermonitor aufbauen.

Falls Du noch nie versucht hast, eine eigene Animation zu erstellen, probiere
einmal Folgendes aus:
153

154
1. Nimm einen Block Papier, und zeichne etwas in die untere Ecke (zum Bei-
spiel ein Strichmännchen).

2. In die Ecke der nächsten Seite malst Du das gleiche Strichmännchen, be-
wegst aber sein Bein ein wenig.

3. Auf die nächste Seite zeichnest Du das gleiche Strichmännchen, bewegst sein
Bein aber noch ein bisschen mehr.

4. Füge immer mehr Seiten hinzu, auf die Du jeweils ein verändertes Strich-
männchen in die Ecke zeichnest.

Wenn Du damit fertig bist, blätterst Du schnell durch die Seiten. Du siehst jetzt,
wie sich das Strichmännchen bewegt. Dies ist das Grundprinzip aller Animatio-
nen, seien sie nun Zeichentrickfilme im Fernsehen oder Spiele auf Deiner Konsole
oder auf Deinem Computer. Ein Bild wird dargestellt und nach einer kleinen
Änderung noch einmal dargestellt, damit die Illusion einer Bewegung entsteht.
Damit es so aussieht, als bewege sich das Bild, musst Du jedes Bild dieser Anima-
tion sehr schnell darstellen.

Python bietet verschiedene Möglichkeiten, um Grafiken zu erzeugen. Zusätz-
lich zum Modul turtle kannst Du externe Module (die separat installiert werden
müssen) ebenso verwenden wie das Modul tkinter, das schon zu Deiner Stan-
dard-Python-Installation gehören sollte. Mit tkinter kann man vollständige
Anwendungen, wie etwa einfache Textverarbeitungen, aber auch einfache Zeich-
nungen erstellen. In diesem Kapitel werden wir herausfinden, wie man mit tkin-
ter Grafiken erzeugt.

13.1 Einen klickbaren Button erzeugen

In unserem ersten Beispiel benutzen wir tkinter, um eine einfache Anwendung
mit einem Button zu erzeugen. Gib dazu diesen Code ein:

>>> from tkinter import *
>>> tk = Tk()
>>> btn = Button(tk, text = "Klick mich")
>>> btn.pack()

In der ersten Zeile importieren wir die Inhalte
des Moduls tkinter. Indem wir from module-name
import * schreiben, können wir die Inhalte eines
Moduls verwenden, ohne dessen Namen zu
benutzen. Wenn wir dagegen (wie in den vorheri-
gen Beispielen) import turtle schreiben, müssen wir den Modulnamen mit ein-
schließen, um an seine Inhalte zu kommen:

import turtle
t = turtle.Pen()
Bessere Grafiken mit tkinter

Mit import * müssen wir nicht turtle.Pen aufrufen, wie wir es in den Kapiteln 5
und 12 getan haben. Beim Modul turtle ist das nicht so wichtig, aber wenn man
Module mit vielen Klassen und Funktionen verwendet, muss man sehr viel weni-
ger tippen.

from turtle import *
t = Pen()

In der nächsten Zeile unseres Button-Beispiels erzeugen wir eine Variable, die ein
Objekt der Klasse tk mit tk = tk() enthält, genau wie wir ein Pen-Objekt für die
Schildkröte erzeugt haben. Das tk-Objekt erzeugt ein einfaches Fenster, in das wir
andere Dinge – wie etwa Buttons, Eingabezeilen oder eine Leinwand zum Bema-
len – einfügen können. Es ist auch die Hauptklasse des Moduls tkinter: Ohne ein
Objekt der tk-Klasse wirst Du keine Grafik oder Animation erstellen können.

In der dritten Zeile erzeugen wir mit btn = Button einen Button und führen die
Variable tk als ersten Parameter ein. "Klick mich" wird der Text, der durch tk,
text = "Klick mich" auf dem Button erscheint. Obwohl wir den Button dem Fens-
ter hinzugefügt haben, wird er so lange nicht sichtbar sein, bis Du die Zeile
btn.pack() eingegeben hast, die dem Button sagt, dass er erscheinen soll. Dadurch
wird auch alles auf dem Monitor richtig ausgerichtet, falls sich noch andere But-
tons oder Objekte darauf befinden. Das Ergebnis sollte in etwa so aussehen:

Mit dem Klick mich-Button kann man noch nicht viel anfangen. Solange wir den
Code nicht ein wenig ändern, kannst Du den ganzen Tag darauf herumklicken,
ohne dass etwas passiert. (Bitte schließe dazu zunächst das Fenster, das wir vor-
her erzeugt haben!)

Als Erstes erzeugen wir eine Funktion, die ein wenig Text anzeigt:

>>> def Hallo():
print('Hallo')

Anschließend ändern wir unser Beispiel oben, damit wir diese neue Funktion ein-
setzen können:

>>> from tkinter import *
>>> tk = Tk()
>>> btn = Button(tk, text = "Klick mich", command=Hallo)
>>> btn.pack()
Einen klickbaren Button erzeugen 155

156
Achte einmal darauf, dass wir nur eine ganz kleine Änderung im Code vorgenom-
men haben: Wir haben den Parameter command hinzugefügt, der Python sagt, dass
es die Funktion Hallo aufrufen soll, sobald auf den Button geklickt wird.

Wenn Du jetzt auf den Button klickst, siehst Du, wie »Hallo« in die Shell
geschrieben wird. Das passiert jedes Mal, wenn Du auf den Button klickst.

Im folgenden Beispiel habe ich den Button sechsmal geklickt.

Dies ist das erste Mal, dass wir in unseren Code-Beispielen unseren Parametern
einen Namen gegeben haben. Sehen wir uns das einmal genauer an, bevor wir mit
unseren Zeichnungen weitermachen.

13.2 Einsatz von benannten Parametern

Benannte Parameter sind wie normale Parameter. Allerdings müssen die Werte
für eine Funktion keine bestimmte Reihenfolge haben (der erste Wert für den ers-
ten Parameter, der zweite Wert für den zweiten Parameter usw.), sondern die
Werte werden benannt, sodass sie in beliebiger Reihenfolge eingesetzt werden
können.

Manchmal haben Funktionen eine ganze Menge Parameter, und wir müssen
nicht immer für jeden Parameter einen Wert angeben. Mit benannten Parametern
können wir genau denjenigen Parametern Werte liefern, die sie auch benötigen.

Nehmen wir beispielsweise an, wir hätten eine Funktion namens Person, die
zwei Parameter aufnimmt: Breite und Höhe.

>>> def Person(Breite, Höhe):
print('Ich bin %s Meter breit und %s Meter groß' % (Breite, Höhe))
Bessere Grafiken mit tkinter

Üblicherweise rufen wir diese Funktion folgendermaßen auf:

>>> Person(2, 1)
Ich bin 2 Meter breit und 1 Meter groß

Mit benannten Parametern konnten wir diese Funktion aufrufen und den Para-
meternamen mit jedem Wert bestimmen:

>>> Person(Breite=2, Höhe=1)
Ich bin 2 Meter breit und 1 Meter groß

Benannte Parameter werden besonders nützlich, wenn wir mehr mit dem Modul
tkinter arbeiten.

13.3 Eine Leinwand zum Zeichnen erzeugen

Buttons sind zwar ganz nett, helfen uns aber nicht so richtig weiter, wenn wir auf
den Monitor Dinge zeichnen wollen. Wenn wir etwas Richtiges malen wollen,
brauchen wir eine andere Komponente: ein Leinwand-Objekt (canvas), das zur
Klasse Canvas gehört (und aus dem Modul tkinter stammt).

Um eine Leinwand zu erzeugen, müssen wir deren Breite (width) und Höhe
(height) Python in Pixeln mitteilen. Ansonsten ähnelt der Code dem für Buttons.
Hier siehst Du ein Beispiel:

>>> from tkinter import *
>>> tk = Tk()
>>> canvas = Canvas(tk, width=500, height=500)
>>> canvas.pack()

Wie schon beim Button-Beispiel erscheint, nach-
dem Du tk = Tk() eingegeben hast, ein Fenster. In
der letzten Zeile wird durch canvas.pack() die
Breite und Höhe der Leinwand auf jeweils 500
Pixel vergrößert, wie wir in der dritten Zeile fest-
gelegt haben. Wie schon bei dem Beispiel mit dem
Button sagt die Funktion pack der Leinwand, dass
sie sich an der richtigen Position innerhalb des
Fensters aufbauen soll. Solange diese Funktion
nicht aufgerufen wird, wird nichts vernünftig dargestellt.

13.4 Linien zeichnen

Um eine Linie auf die Leinwand zu zeichnen, benutzen wir Pixel-Koordinaten.
Mit Koordinaten wird die Position eines Pixels auf einer Fläche bestimmt. Auf
einer Leinwand von tkinter beschreiben die Koordinaten, an welcher Stelle von
Eine Leinwand zum Zeichnen erzeugen 157

158
links nach rechts und an welcher Stelle von oben nach unten das Pixel platziert
wird.

Da unsere Leinwand in unserem Beispiel 500 Pixel breit und 500 Pixel hoch
ist, sind die Koordinaten der unteren rechten Ecke (500,500). Um eine Linie wie
in dem folgenden Bild zu zeichnen, verwenden wir die Startkoordinate (0,0) und
die Zielkoordinate (500,500).

Die Koordinaten legen wir mit der Funktion create_line fest:

>>> from tkinter import *
>>> tk = Tk()
>>> canvas = Canvas(tk, width=500, height=500)
>>> canvas.pack()
>>> canvas.create_line(0, 0, 500, 500)
1

Die Funktion create_line gibt die Zahl 1 zurück. Dabei handelt es sich um eine
sogenannte identifizierende Nummer, über die Du später noch mehr erfahren
wirst. Um das Gleiche im Modul turtle zu erzielen, hätten wir folgenden Code
gebraucht:

>>> import turtle
>>> turtle.setup(width=500, height=500)
>>> t = turtle.Pen()
>>> t.up()
Bessere Grafiken mit tkinter

>>> t.goto(-250, 250)
>>> t.down()
>>> t.goto(500, -500)

Der Code von tkinter stellt also schon eine Verbesserung dar: Er ist etwas kürzer
und auch ein bisschen einfacher.

Jetzt schauen wir uns einige der verfügbaren Funktionen im Objekt canvas
an, mit denen wir einige interessantere Zeichnungen machen können.

13.5 Kästchen zeichnen

Mit dem Modul turtle haben wir Kästchen
gemalt, indem wir uns vorwärts bewegt
haben, abgebogen sind, uns vorwärts bewegt
haben, abgebogen sind und so weiter. Wir
waren auch in der Lage, ein rechteckiges oder
quadratisches Kästchen zu zeichnen, indem
wir uns unterschiedlich weit vorwärts bewegt haben.

Das Modul tkinter erleichtert es sehr, ein Quadrat oder Rechteck zu zeich-
nen. Alles, was Du dazu brauchst, sind die Koordinaten der Ecken. Hier ist ein
Beispiel (Du kannst die anderen Fenster jetzt schließen):

>>> from tkinter import *
>>> tk = Tk()
>>> canvas = Canvas(tk, width=400, height=400)
>>> canvas.pack()
>>> canvas.create_rectangle(10, 10, 50, 50)

Bei diesem Code verwenden wir tkinter, um eine Leinwand von 400 Pixeln Breite
und 400 Pixeln Höhe zu erzeugen und anschließend ein Quadrat in die obere
linke Ecke zu zeichnen:
Kästchen zeichnen 159

160
Bei den Parametern, die wir in der letzten Zeile des Codes an canvas.create_
rectangle übergeben, handelt es sich um die Koordinaten der oberen linken und
unteren rechten Ecke des Quadrats. Wir geben diese Koordinaten als Abstand
von der linken und der Oberseite der Leinwand an. In diesem Fall sind die ersten
beiden Koordinaten (die obere linke Ecke) 10 Pixel von der linken und 10 Pixel
von der Oberseite entfernt (die ersten beiden Zahlen: 10, 10). Die Ecke unten
rechts im Quadrat befindet sich 50 Pixel von der linken Seite der Leinwand und
50 von der Oberseite entfernt (das nächste Zahlenpaar: 50, 50).

Wir bezeichnen diese beiden Koordinatensätze mit x1, y1 und x2, y2. Um nun
ein Rechteck zu zeichnen, können wir einfach den Abstand der zweiten Ecke von
der linken Seite der Leinwand vergrößern (indem wir den Wert des Parameters x2
erhöhen):

>>> from tkinter import *
>>> tk = Tk()
>>> canvas = Canvas(tk, width=400, height=400)
>>> canvas.pack()
>>> canvas.create_rectangle(10, 10, 300, 50)

In diesem Beispiel sind die Koordinaten des Rechtecks, also dessen Position im
Fenster, oben links (10, 10) und unten rechts (300, 50). Als Ergebnis bekommen
wir ein Reckteck, das die gleiche Höhe wie unser Quadrat (50 Pixel) hat, aber
sehr viel breiter ist.

Indem wir den Abstand der zweiten Ecke von der oberen Kante der Leinwand
vergrößern (also den Wert des Parameters y2 erhöhen), können wir ein hochkan-
tiges Rechteck zeichnen:

>>> from tkinter import *
>>> tk = Tk()
>>> canvas = Canvas(tk, width=400, height=400)
>>> canvas.pack()
>>> canvas.create_rectangle(10, 10, 50, 300)
Bessere Grafiken mit tkinter

Bei diesem Aufruf der Funktion create_rectangle sagen wir im Prinzip Folgendes:

■ Gehe 10 Pixel seitlich über die Leinwand (von oben links).
■ Gehe 10 Pixel die Leinwand hinunter. Dies ist der Startpunkt des Rechtecks.
■ Zeichne das Rechteck 50 Pixel nach rechts.
■ Zeichne das Rechteck 300 Pixel nach unten.

Das Endergebnis sollte folgendermaßen aussehen:

Ganz viele Rechtecke zeichnen

Wie wäre es, wenn wir Rechtecke unterschiedlicher Größe auf die Leinwand
brächten? Das ginge, indem wir das Modul random importieren und dann eine
Funktion erzeugen, die eine Zufallszahl für die Koordinaten der oberen linken
und unteren rechten Ecken verwendet.

Wir werden dabei eine Funktion benutzen, die aus dem Modul random stammt
und sich randrange nennt. Wenn wir dieser Funktion eine Zahl geben, gibt sie uns
eine zufällige Ganzzahl zwischen null und der Zahl zurück, die wir ihr mitgege-
ben haben. Wenn wir zum Beispiel randrange(10) aufrufen, würde sie eine Zahl
zwischen 0 und 9 zurückgeben, und bei randrange(100) käme eine Zahl zwischen
0 und 99 zurück.

Hier siehst Du, wie man randrange in einer Funktion benutzt. Erzeuge ein
neues Fenster, indem Du auf File New Window gehst und folgenden Code ein-
gibst:
Kästchen zeichnen 161

162
from tkinter import *
import random
tk = Tk()
canvas = Canvas(tk, width=400, height=400)
canvas.pack()
def random_rectangle(width, height):

x1 = random.randrange(width)
y1 = random.randrange(height)
x2 = x1 + random.randrange(width)
y2 = y1 + random.randrange(height)
canvas.create_rectangle(x1, y1, x2, y2)

Als Erstes definieren wir unsere Funktion (def random_rectangle), die zwei Para-
meter aufnimmt: Breite (width) und Höhe (height). Danach erzeugen wir mit der
Funktion randrange die Variablen für die obere linke Ecke des Rechteckes und
geben die Breite und die Höhe als Parameter mit x1 = random.randrange(width)
beziehungsweise y1 = random.randrange(height) weiter. Mit der zweiten Zeile die-
ser Funktion sagen wir also: »Erzeuge eine Variable x1, und setze ihren Wert
zufällig auf eine Zahl zwischen 0 und dem Wert des Parameters width.«

Die nächsten beiden Zeilen erzeugen Variablen für die Ecke unten rechts im
Rechteck. Sie berücksichtigen dabei die Koordinaten der oberen linken Ecke
(x1 bzw. y1) und fügen diesen Werten eine Zufallszahl hinzu. Die dritte Zeile der
Funktion sagt also: »Erzeuge die Variable x2, indem Du dem Wert, den wir schon
für x1 berechnet haben, eine Zufallszahl hinzufügst«.

Mit canvas.create_rectangle benutzen wir schlussendlich die Variablen x1,
y1, x2 und y2, um das Rechteck auf die Leinwand zu zeichnen.

Um unsere Funktion random_rectangle auszuprobieren, geben wir die Breite
und Höhe der Leinwand an. Füge dem bereits eingegebenen Code folgende Zeile
hinzu:

random_rectangle(400, 400)

Speichere den gerade eingegebenen Code (gehe auf File Save, und gib ihm einen
Dateinamen, wie zum Beispiel Zufallsrechtecke.py). Gehe dann auf Run Run
Module. Sobald Du die Funktion bei der Arbeit gesehen hast, fülle das ganze
Fenster mit Rechtecken, indem Du sie mittels einer Schleife random_rectangle
mehrfach aufrufst. Probieren wir es einmal mit einer for-Schleife von 100 zufälli-
gen Rechtecken. Füge den folgenden Code hinzu, speichere Deine Arbeit, und
lass das Programm noch einmal ablaufen:

for x in range(0, 100):
random_rectangle(400, 400)
Bessere Grafiken mit tkinter

Dieser Code produziert ein hübsches Durcheinander, aber es sieht auch ein biss-
chen wie moderne Kunst aus:

Die Farbe bestimmen

Selbstverständlich wollen wir unseren Grafiken auch Farben geben. Lass uns
daher die Funktion random_rectangle dahingehend ändern, dass sie durch einen
zusätzlichen Parameter (fill_color) den Rechtecken Farben gibt. Gib diesen
Code in ein neues Fenster ein, und nenne die Datei beim Speichern Farbrecht-
ecke.py:

from tkinter import *
import random
tk = Tk()
canvas = Canvas(tk, width=400, height=400)
canvas.pack()

def random_rectangle(width, height, fill_color):
x1 = random.randrange(width)
y1 = random.randrange(height)
x2 = random.randrange(x1 + random.randrange(width))
y2 = random.randrange(y1 + random.randrange(height))
canvas.create_rectangle(x1, y1, x2, y2, fill=fill_color)

Die Funktion create_rectangle nimmt den Parameter fill_color auf, der die
Farbe beim Zeichnen der Rechtecke bestimmt.
Kästchen zeichnen 163

164
Wir können in eine solche Funktion auch
benannte Farben einfügen (bei einer Leinwand von
400 Pixeln Breite und 400 Pixeln Höhe), um einen
Haufen unterschiedlich gefärbter Rechtecke zu
erzeugen. Beim Ausprobieren dieses Beispiels möch-
test Du eventuell durch Kopieren und Einfügen
etwas Tipparbeit sparen. Dazu wählst Du den zu
kopierenden Text aus, drückst Ctrl-C, um ihn zu
kopieren, klickst in eine leere Zeile und drückst Ctrl-
V, um ihn einzufügen. Füge diesen Code gleich unter
die Funktion in der Datei Farbrechtecke.py ein:

random_rectangle(400, 400, 'green')
random_rectangle(400, 400, 'red')
random_rectangle(400, 400, 'blue')
random_rectangle(400, 400, 'orange')
random_rectangle(400, 400, 'yellow')
random_rectangle(400, 400, 'pink')
random_rectangle(400, 400, 'purple')
random_rectangle(400, 400, 'violet')
random_rectangle(400, 400, 'magenta')
random_rectangle(400, 400, 'cyan')

Viele dieser benannten Farben stellen die Farben dar, wie Du sie erwartest, andere
wiederum produzieren Fehlermeldungen (je nachdem, ob du Windows, MacOSX
oder Linux benutzt).

Aber wie ist das mit einer selbst gewählten Farbe, die nicht genau einer
benannten Farbe entspricht? Erinnere dich an Kapitel 12, wo wir die Farbe des
Stifts der Schildkröte durch Prozentanteile der Farben Rot, Grün und Blau
bestimmt haben. Den Anteil der Primärfarben (Rot, Grün und Blau) in einer
Farbmischung bei tkinter zu bestimmen, ist etwas komplizierter, aber wir werden
das gleich verstehen.

Als wir mit dem Modul turtle gearbeitet haben, haben wir mit 90% Rot,
75% Grün und ohne Blau die Goldfarbe erzeugt. In tkinter erzeugen wir die glei-
che Goldfarbe mit dieser Zeile:

random_rectangle(400, 400, '#ffd800')

Das Doppelkreuz (#) vor dem Wert ffd800 sagt Python, dass wir eine Hexadezi-
malzahl liefern. Beim Schreiben von Programmen werden Zahlen häufig hexade-
zimal dargestellt. Dabei wird statt wie bei Dezimalzahlen mit der Basis 10 (0–9)
die Basis 16 (0–9 und danach A–F) verwendet. Falls Du im Mathematikunter-
richt noch nichts von der Basis gehört hast, merke Dir dazu einfach nur, dass Du
eine normale Dezimalzahl durch einen Format-Platzhalter in einem String in eine
Bessere Grafiken mit tkinter

hexadezimale Zahl umwandeln kannst: %x (siehe Abschnitt »Werte in Strings ein-
betten« auf S. 31). Um zum Beispiel die Dezimalzahl 15 in eine Hexadezimalzahl
umzuwandeln, kannst Du Folgendes schreiben:

>>> print('%x' % 15)
f

Um sicherzustellen, dass unsere Zahl mindestens zwei Stellen hat, können wir
den Format-Platzhalter leicht abwandeln:

>>> print('%02x' % 15)
0f

Das Modul tkinter bietet eine ganz einfache Möglichkeit, einen hexadezimalen
Farbwert zu bekommen. Versuche, folgenden Code zu Farbrechtecke.py hinzuzu-
fügen (Du kannst die anderen Aufrufe der Funktion random_rectangle entfernen):

from tkinter import *
colorchooser.askcolor()

Daraufhin wird Dir ein Farbauswahlfenster gezeigt:

Sobald Du eine Farbe ausgewählt hast und auf OK klickst, wird ein Tupel ange-
zeigt. Dieses Tupel enthält ein weiteres Tupel, das drei Zahlen und einen String
enthält:

>>> colorchooser.askcolor()
((235.91796875, 86.3359375, 153.59765625), '#eb5699')

Die drei Zahlen stehen für den Rot-, Grün- und Blau-Anteil. In tkinter werden
die Primärfarben einer Farbmischung durch eine Zahl zwischen 0 und 255 ange-
Kästchen zeichnen 165

166
geben (im Unterschied zu dem prozentualen Anteil in jeder Primärfarbe im
Modul turtle). Der String im Tupel enthält die hexadezimalen Versionen dieser
drei Zahlen.

Du kannst den String-Wert entweder kopieren und einfügen oder aber den
Tupel als Variable speichern und dann die Indexposition des Hexadezimalwertes
verwenden.

Lass uns jetzt die Funktion random_rectangle verwenden, um zu sehen, wie
das funktioniert.

>>> c = colorchooser.askcolor()
>>> random_rectangle(400, 400, c[1])

Hier ist das Ergebnis:

13.6 Bögen zeichnen

Ein Bogen ist ein Segment eines
Kreisumfangs oder einer anderen
Kurve. Um sie jedoch in tkinter
zu zeichnen, musst Du sie inner-
halb eines Rechtecks mit der
Funktion create_arc zeichnen:

canvas.create_arc(10, 10, 200, 100, extent=180, style=ARC)
Bessere Grafiken mit tkinter

Falls Du in der Zwischenzeit alle tkinter-Fenster geschlossen oder IDLE neu
gestartet hast, musst Du tkinter erneut importieren und die Leinwand mit diesem
Code wieder erzeugen:

>>> from tkinter import *
>>> tk = Tk()
>>> canvas = Canvas(tk, width=400, height=400)
>>> canvas.pack()
>>> canvas.create_arc(10, 10, 200, 100, extent=180, style=ARC)

Dieser Code platziert die obere linke Ecke des Rechtecks, in dem der Bogen ent-
halten ist, auf die Koordinaten (10, 10), also 10 Pixel zur Seite und 10 Pixel nach
unten, und die untere rechte Ecke auf die Koordinaten (200,100), also 200 Pixel
zur Seite und 100 Pixel nach unten. Mit dem nächsten Parameter, extent, wird
der Winkelgrad des Bogens festgelegt. Aus Kapitel 5 weißt Du noch, dass man
mit Graden die Strecke um einen Kreis misst. Hier siehst Du drei Beispiele für
Bögen, in denen wir uns 45°, 90° beziehungsweise 270° im Kreis bewegen:

Der folgende Code zeichnet unterschiedliche Bögen auf die Seite, sodass Du
beobachten kannst, was passiert, wenn wir unterschiedliche Gradzahlen mit der
Funktion create_arc verwenden.

45° 90°
270°
Bögen zeichnen 167

168
>>> from tkinter import *
>>> tk = Tk()
>>> canvas = Canvas(tk, width=400, height=400)
>>> canvas.pack()

>>> canvas.create_arc(10, 10, 200, 80, extent=45, style=ARC)
1
>>> canvas.create_arc(10, 80, 200, 160, extent=90, style=ARC)
2
>>> canvas.create_arc(10, 160, 200, 240, extent=135, style=ARC)
3
>>> canvas.create_arc(10, 240, 200, 320, extent=180, style=ARC)
4
>>> canvas.create_arc(10, 320, 200, 400, extent=359, style=ARC)
5

Achtung!

Im letzten Kreis verwenden wir 359° statt 360°, da tkinter 360° als das Gleiche wie 0° ver-
steht und dann gar nichts zeichnen würde.
Bessere Grafiken mit tkinter

13.7 Polygone zeichnen

Als Polygone bezeichnet man Formen mit drei oder mehr Seiten. Es gibt gleich-
mäßig geformte Polygone wie Dreicke, Quadrate, Rechtecke, Fünfecke und Sie-
benecke und so weiter, aber auch unregelmäßig geformte mit ungleich langen
Kanten, viel mehr Kanten sowie völlig ungewöhnliche Formen.

Wenn Du mit tkinter Polygone zeichnest, musst Du für jeden Punkt die
Koordinaten liefern. Hier steht, wie man ein Dreieck zeichnet:

from tkinter import *
tk = Tk()
canvas = Canvas(tk, width=400, height=400)
canvas.pack()
canvas.create_polygon(10, 10, 100, 10, 100, 110, fill="",
outline="black")

In diesem Beispiel wird ein Dreieck gezeichnet, indem mit den x-und y-Koordina-
ten (10, 10) begonnen wird. Dann geht es seitlich auf (100, 10) und dann bis
(100,110). Hier ist das Ergebnis:

Mit folgendem Code können wir ein unregelmäßiges Polygon (eine Form mit
ungleichmäßigen Winkeln oder Seiten) erzeugen:

canvas.create_polygon(200, 10, 240, 30, 120, 100, 140, 120, fill="",
outline="black")

Dieses Polygon startet bei den Koordinaten (200, 10), bewegt sich dann zu (240,
30), dann zu (120,100) und schließlich zu (100,140). Die schwarze Linie zurück
zur ersten Koordinate fügt tkinter automatisch ein. Und hier ist das Ergebnis die-
ses Codes:
Polygone zeichnen 169

170
13.8 Darstellung von Text

Neben dem Zeichnen von Formen kannst Du mit create_text auch auf der Lein-
wand schreiben. Diese Funktion benötigt nur die zwei Koordinaten (x- und y-
Positionen des Texts) und den Text, der angezeigt werden soll, als benannten
Parameter. Im folgenden Code erzeugen wir wie immer unsere Leinwand und
malen dann einen Satz, der sich auf den Koordinaten (150, 100) befindet. Spei-
chere diesen Code als Text.py.

from tkinter import *
tk = Tk()
canvas = Canvas(tk, width=400, height=400)
canvas.pack()
canvas.create_text(150, 100, text='Der Waidmann Hubertus vom Rhein')

Die Funktion create_text nimmt aber noch weitere nützliche Parameter auf, wie
etwa die Textfarbe. Im folgenden Code rufen wir die Funktion create_text mit
den Koordinaten (180,120) auf, den Text, den wir anzeigen wollen, und die
Farbe Rot.

canvas.create_text(180, 120, text='erzählte gern Jägerlatein:',
fill='red')

Du kannst auch den Font (die Schriftart des
angezeigten Textes) als »Tupel« angeben, das
den Font-Namen und die Größe des Textes
enthält. Das Tupel für den Zeichensatz Times
in der Größe 20 ist ('times', 20). Im folgen-
den Code zeigen wir den Text im Zeichensatz
Times in der Größe 20 und im Zeichensatz
Courier in den Größen 22 und 12 an.

canvas.create_text(150, 150, text= ' "Ich such mit der Nase',
font=('Times', 20))
canvas.create_text(220, 250, text= 'im Sand und im Grase',
font=('Courier', 22))
canvas.create_text(220, 300, text= 'nach Spuren vom Elch oder
Schwein." ', font=('Courier', 12))

Und hier ist nun das Ergebnis der Funktionen, die verschiedene Schriften und
unterschiedliche Größen verwendet haben:
Bessere Grafiken mit tkinter

13.9 Bilder anzeigen

Um ein Bild auf der Leinwand darzustellen, lädst Du erst das Bild und benutzt
dann die Funktion create_image auf dem canvas-Objekt.

Alle Bilder, die Du lädst, müssen sich in einem Verzeichnis befinden, auf das
Python Zugriff hat. In diesem Beispiel legen wir unser Bild Test.gif in das Ver-
zeichnis C:\, also das Hauptverzeichnis unseres Laufwerks C:, aber Du kannst es
auch woanders ablegen.
Bilder anzeigen 171

172
Wenn Du ein Mac- oder Linux-System benutzt, kannst Du das Bild in Dein
Home-Verzeichnis legen. Falls Du keine Dateien auf deinem Laufwerk C: spei-
chern kannst, kannst Du das Bild stattdessen auf Deinem Desktop ablegen.

Das Bild Test.gif können wir folgendermaßen anzeigen:

from tkinter import *
tk = Tk()
canvas = Canvas(tk, width=1000, height=600)
canvas.pack()
mein_Bild = PhotoImage(file='c:\\Test.gif')
canvas.create_image(0, 0, anchor=NW, image=mein_Bild)

In den ersten Zeilen erzeugen wir wie immer die Leinwand. In der fünften Zeile
wird das Bild in die Variable mein_Bild geladen. Im Verzeichnis 'c:\\Test. gif'
erzeugen wir PhotoImage. Falls Du Dein Bild auf dem Desktop abgelegt hast, soll-
test Du PhotoImage in dem entsprechenden Verzeichnis erzeugen:

mein_Bild = PhotoImage(file='c:\\Users\\Susanne
Sorglos\\Desktop\\Test.gif')

Sobald das Bild in die Variable geladen ist, zeigt canvas.create_image (0, 0,
anchor=NW, image=mein_Bild) es mit der Funktion create_image an. Die Koordina-
ten (0, 0) geben an, wo das Bild im Fenster dargestellt wird, und anchor=NW sagt
der Funktion, dass sie die obere linke Ecke (NW steht für nordwest) des Bildes als
Startpunkt beim Aufbau verwenden soll (ansonsten benutzt sie die Bildmitte als
Startpunkt). Der letzte genannte Parameter, images, zeigt auf die Variable für das
geladene Bild. Hier siehst Du das Ergebnis:

Achtung!

Mit tkinter kannst Du nur GIF-Bilder laden, also Bild-Dateien, die mit dem Suffix .gif
enden. Du kannst zwar auch andere Bildformate, wie etwa PNG (. png) und JPG (.jpg) ver-
wenden, benötigst dafür allerdings ein anderes Modul, wie etwa die Python Imaging Lib-
rary (http://www.pythonware.com/products/pil/).
Bessere Grafiken mit tkinter

13.10 Eine einfache Animation erzeugen

Wir wissen jetzt, wie man statische Zeichnungen erzeugt – also Bilder, die sich
nicht bewegen. Wie funktioniert das nun mit den Animationen?

Animationen sind nicht gerade die Spezialität des Moduls tkinter, aber einfa-
che Sachen kannst Du damit machen. Mit diesem Code können wir zum Beispiel
ein ausgefülltes Dreieck über den Monitor bewegen (vergiss nicht, mit File
New Window Deine Arbeit zu speichern und dann den Code mit Run Run
Module laufen zu lassen):

import time
from tkinter import *
tk = Tk()
canvas = Canvas(tk, width=400, height=200)
canvas.pack()
canvas.create_polygon(10, 10, 10, 60, 50, 35)
for x in range(0, 60):

canvas.move(1, 5, 0)
tk.update()
time.sleep(0.05)

Wenn Du diesen Code ausführst, bewegt sich ein Dreieck bis zum Ende seines
Wegs durch das Fenster:
Eine einfache Animation erzeugen 173

174
Wie funktioniert das? Wie schon zuvor haben wir mit den ersten drei Zeilen nach
dem Import von tkinter den grundsätzlichen Aufbau zur Darstellung einer Lein-
wand vorgenommen. In der vierten Zeile erzeugen wir mit dieser Funktion ein
Dreieck:

canvas.create_polygon(10, 10, 10, 60, 50, 35)

Als Nächstes erzeugen wir eine einfache for-
Schleife, die von 0 bis 59 zählt und mit for x in
range(0,60): anfängt. Der Code-Block innerhalb
der Schleife bewegt das Dreieck über den Moni-
tor. Die Funktion canvas.move bewegt jedes
gezeichnete Objekt, indem sie Werte zu dessen x-
und y-Koordinaten hinzufügt. Mit canvas.move(1,
5, 0) bewegen wir das Objekt mit der ID 1 (der
identifizierenden Nummer des Dreiecks) 5 Pixel
zur Seite und 0 Pixel nach unten. Um es wieder zurück zu bewegen, könnten wir
die Funktion canvas.move(1, -5, 0) aufrufen.

Die Funktion tk.update() zwingt tkinter dazu, den Monitor zu aktualisieren
(also ihn erneut zu zeichnen). Ohne die Funktion update würde tkinter warten,
bis die Schleife beendet ist, bevor es das Dreieck bewegt. Das Dreieck würde
dann, anstatt sich sanft über die Leinwand zu bewegen, an die letzte Position
springen. Die letzte Zeile der Schleife, time sleep(0.05), sagt Python, dass es 0,05
Sekunden warten soll, bevor es weitermacht.

Um das Dreieck schräg über den Monitor wandern zu lassen, können wir den
Code durch move(1, 5, 5) abändern. Um das auszuprobieren, schließt Du die

Achtung!

Wenn Du diese Zeile eingibst, wird auf dem Monitor eine Zahl ausgegeben. Dabei handelt
es sich um die identifizierende Nummer (kurz ID-Nummer) des Polygons. Wie wir im fol-
genden Beispiel sehen werden, können wir uns später damit auf diese Form beziehen.
Bessere Grafiken mit tkinter

Leinwand und erzeugst eine neue Datei (File New Window) mit dem folgenden
Code darin:

import time
from tkinter import *
tk = Tk()
canvas = Canvas(tk, width=400, height=400)
canvas.pack()
canvas.create_polygon(10, 10, 10, 60, 50, 35)
for x in range(0, 60):

canvas.move(1, 5, 5)
tk.update()
time.sleep(0.05)

Dieser Code unterscheidet sich von dem vorherigen in zwei Punkten:

■ Wir ändern die Höhe der Leinwand auf 400 anstelle von 200 durch canvas =
Canvas(tk, width=400, height=400).

■ Wir fügen den x-und y-Koordinaten durch canvas.move(1, 5, 5) die 5 hinzu.

Wenn der Code gespeichert und durchgelaufen ist, ist dies die Position des Drei-
ecks am Ende der Schleife:

Um das Dreieck auf dem gleichen Weg zurück zu seiner Startposition zu bewegen,
setzt Du -5, -5 ein (füge diesen Code am Ende der Datei hinzu):

for x in range(0, 60):
canvas.move(1, -5, -5)
tk.update()
time.sleep(0.05)
Eine einfache Animation erzeugen 175

176
13.11 Ein Objekt auf etwas reagieren lassen

Durch Ereignis-Bindungen können wir das Dreieck reagieren lassen, wenn
jemand eine Taste drückt. Ereignisse (engl. events) sind Aktionen, die geschehen,
während ein Programm läuft: Jemand bewegt die Maus, drückt eine Taste oder
schließt ein Fenster. Du kannst tkinter sagen, dass es nach solchen Ereignissen
Ausschau halten und als Reaktion darauf etwas tun soll.

Um mit Ereignissen umzugehen (Python zu sagen, dass es etwas tun soll,
sobald ein Ereignis eintritt), erzeugen wir als Erstes eine Funktion. Die Bindung
kommt in dem Moment zustande, in dem wir tkinter sagen, dass es eine
bestimmte Funktion mit einem bestimmten Ereignis verbinden soll. Diese Funk-
tion wird also als Reaktion auf dieses Ereignis automatisch von tkinter aufgeru-
fen.

Wenn wir zum Beispiel wollen, dass sich das Dreieck erst in Bewegung setzt,
nachdem wir die Enter-Taste gedrückt haben, können wir das mit dieser Funktion
definieren:

def movetriangle(event):
canvas.move(1, 5, 0)

Die Funktion nimmt einen einzigen Parameter (event) auf, den tkinter benutzt,
um der Funktion Informationen über das Ereignis zu schicken. Mit der Funktion
bind_all sagen wir tkinter jetzt, dass diese Funktion für ein bestimmtes Ereignis
auf der Leinwand benutzt werden soll. Der vollständige Code sieht dann so aus:

from tkinter import *
tk = Tk()
canvas = Canvas(tk, width=400, height=400)
canvas.pack()
canvas.create_polygon(10, 10, 10, 60, 50, 35)
def movetriangle(event):

canvas.move(1, 5, 0)
canvas.bind_all('<KeyPress-Return>', movetriangle)

Der erste Parameter in dieser Funktion
beschreibt das Ereignis, nach dem tkinter
Ausschau halten soll. In diesem Fall ist es
<KeyPress-Return>, also ein Druck auf die
Enter- oder die Return-Taste. Wir sagen
tkinter, dass die Funktion movetriangle

immer aufgerufen werden soll, sobald das
KeyPress-Ereignis auftritt. Führe diesen
Code aus, klicke einmal mit der Maus auf die Leinwand, und drücke dann die
Enter-Taste auf Deiner Tastatur.
Bessere Grafiken mit tkinter

Wie wäre es, wenn wir die Richtung des Dreiecks durch unterschiedliche Tas-
ten steuern würden, wie etwa mit den Pfeiltasten? Das geht ganz einfach. Wir
müssen die Funktion move.triangle nur folgendermaßen ändern:

def movetriangle(event):
if event.keysym == 'Up':

canvas.move(1, 0, -3)
elif event.keysym == 'Down':

canvas.move(1, 0, 3)
elif event.keysym == 'Left':

canvas.move(1, -3, 0)
else:

canvas.move(1, 3, 0)

Das Ereignis-Objekt, das an movetriangle weitergereicht wird, enthält mehrere
Variablen. Eine dieser Variablen heißt keysym (Abkürzung für engl. key symbol,
also »Tasten-Symbol«) und ist ein String, der den Wert für die tatsächlich
gedrückte Taste enthält. Die Zeile if event.keysym == 'Up': bedeutet: Wenn die
Variable keysym den String 'Up' (also »nach oben«) enthält, sollen wir canvas.move
mit den Parametern (1, 0, -3) wie in der folgenden Zeile aufrufen. Falls keysym wie
in elif event.keysym == 'Down': (also »nach unten«) enthält, rufen wir sie mit den
Parametern (1, 0, 3) auf usw.

Beachte, dass der erste Parameter die ID-Nummer der Form ist, die auf die
Leinwand gezeichnet wird. Der zweite Parameter ist der Wert, der zur x-Koor-
dinate (der horizontalen Koordinate) addiert werden muss; und der dritte Para-
meter ist der Wert, der zur y-Koordinate (also zur vertikalen Koordinate) hinzu-
gezählt werden muss.

Danach sagen wir tkinter, dass die Funktion movetriangle dazu benutzt wer-
den sollte, die Ereignisse der vier verschiedenen Tasten (hoch, runter, links und
rechts) zu steuern. Im Folgenden siehst Du, wie der Code bis jetzt aussieht. Beim
Eingeben dieses Codes ist es viel praktischer, wenn Du Dir ein neues Shell-Fenster
öffnest, indem Du auf File New Window gehst. Bevor Du den Code durchlau-
fen lässt, gibst Du ihm einen sinnvollen Dateinamen, wie zum Beispiel
animiertes_Dreieck.py.

from tkinter import *
tk = Tk()
canvas = Canvas(tk, width=400, height=400)
canvas.pack()
canvas.create_polygon(10, 10, 10, 60, 50, 35)
def movetriangle(event):

if event.keysym == 'Up':
canvas.move(1, 0, -3)

elif event.keysym == 'Down':
canvas.move(1, 0, 3)
Ein Objekt auf etwas reagieren lassen 177

178
elif event.keysym == 'Left':
canvas.move(1, -3, 0)

else:
canvas.move(1, 3, 0)

canvas.bind_all('<KeyPress-Up>', movetriangle)
canvas.bind_all('<KeyPress-Down>', movetriangle)
canvas.bind_all('<KeyPress-Left>', movetriangle)
canvas.bind_all('<KeyPress-Right>', movetriangle)

In der ersten Zeile der Funktion movetriangle überprüfen wir, ob die Variable key-
sym in 'Up' enthält. Falls ja, bewegen wir das Dreieck mit der Funktion move
und den Parametern 1, 0, -3 in nach oben. Der erste Parameter ist die ID-Num-
mer für das Dreieck; der zweite Parameter ist die Schrittweite nach rechts (wir
möchten uns nicht nach oben bewegen, deshalb ist der Wert 0), und der dritte
Parameter ist die Schrittweite nach unten (-3 Pixel).

Dann prüfen wir, ob keysym in 'Down' enthält. Falls ja, bewegen wir das
Dreieck in nach unten (um 3 Pixel). Zum Schluss prüfen wir, ob der Wert in
'Left' ist, und falls dem so ist, bewegen wir das Dreieck nach links (-3 Pixel) .
Falls keiner der Werte passt, bewegt das else in am Schluss das Dreieck in
nach rechts.

Das Dreieck sollte sich jetzt in die Richtung der entsprechenden Pfeiltaste
bewegen.

13.12 Weitere Anwendungen für die ID-Nummer

Immer wenn wir eine Funktion mit create_ auf der Leinwand verwenden (wie
etwa create_polygon oder create_rectangle), wird eine ID-Nummer zurückgege-
ben. Diese ID-Nummer kann mit anderen canvas-Funktionen verwendet werden,
wie wir es zuvor mit der Funktion move getan haben:

>>> from tkinter import *
>>> tk = Tk()
>>> canvas = Canvas(tk, width=400, height=400)
>>> canvas.pack()
>>> canvas.create_polygon(10, 10, 10, 60, 50, 35)
1
>>> canvas.move(1, 5, 0)

Das Problem an diesem Beispiel ist, dass create_polygon nicht in jedem Fall 1
zurückgibt. Falls Du etwa zuvor andere Formen erzeugt hast, kann sie auch 2, 3
oder sogar 100 ausgeben (je nachdem, wie viele Formen Du davor erzeugt hast).
Wenn wir den Code so ändern, dass der Wert als Variable zurückkommt und
danach die Variable verwenden (anstatt auf die Nummer 1 zu verweisen), dann
funktioniert der Code immer, ganz egal welche Nummer zurückgegeben wird:
Bessere Grafiken mit tkinter

>>> meinDreieck = canvas.create_polygon(10, 10, 10, 60, 50, 35)
>>> canvas.move(meinDreieck, 5, 0)

Die Funktion move ermöglicht es uns, Objekte anhand ihrer ID-Nummer über den
Monitor zu bewegen. Aber es gibt noch weitere Leinwand-Funktionen, die etwas
ändern können, das wir gezeichnet haben. Mit der Funktion der Leinwand item-
config kann man einige der Parameter einer Form, wie etwa die Füll- und die
Umrissfarbe, ändern:

>>> from tkinter import *
>>> tk = Tk()
>>> canvas = Canvas(tk, width=400, height=400)
>>> canvas.pack()
>>> meinDreieck = canvas.create_polygon(10, 10, 10, 60, 50, 35,
fill='red')

Wir können mit itemconfig dem Dreieck eine andere Farbe geben und die ID-
Nummer als ersten Parameter benutzen. Der folgende Code bedeutet: »Ändere
die Füllfarbe des Objekts in diejenige, die in der ID-Nummer der Variablen mein-
Dreieck steht, also in Blau«.

>>> canvas.itemconfig(meinDreieck, fill= 'blue')

Wir können den Umriss des Dreiecks auch anders einfärben, indem wir die ID-
Nummer als ersten Parameter wählen:

>>> canvas.itemconfig(meinDreieck, outline= 'red')

Später lernst Du, wie man weitere Änderun-
gen an einer Zeichnung vornimmt – Du
kannst sie zum Beispiel verschwinden lassen
und wieder sichtbar machen. Wenn wir
anfangen, im nächsten Kapitel Spiele zu
schreiben, wirst Du merken, wie nützlich es
ist, eine Zeichnung, die schon auf dem Moni-
tor angezeigt wird, noch ändern zu können.

13.13 Was Du gelernt hast

In diesem Kapitel hast Du das Modul tkinter benutzt, um damit einfache geome-
trische Formen auf die Leinwand zu zeichnen, Bilder anzuzeigen und einfache
Animationen auszuführen. Du hast gelernt, wie man mit Ereignis-Bindungen
Zeichnungen auf so etwas wie einen Tastendruck reagieren lässt. Sobald wir an
der Programmierung eines Spiels arbeiten werden, wird das sehr nützlich sein. Du
hast gelernt, dass die create-Funktion ID-Nummern zurückgibt, womit man For-
Was Du gelernt hast 179

180
men verändern kann, nachdem sie schon gezeichnet worden sind. So kannst Du
die Formen beispielsweise auf dem Monitor verschieben oder ihre Farbe ändern.

13.14 Programmier-Puzzles

Probiere die folgenden Dinge aus, um mit dem Modul tkinter und einfachen Ani-
mationen zu spielen. Lösungen findest Du unter www.dpunkt.de/python.

#1: Fülle die Leinwand mit Dreiecken

Schreibe ein Programm mit tkinter, um die Leinwand mit Dreiecken zu füllen.
Ändere dann den Code, um stattdessen die Leinwand mit unterschiedlich gefärb-
ten (ausgefüllten) Dreiecken zu füllen.

#2: Das sich bewegende Dreieck

Ändere den Code des sich bewegenden Dreiecks (siehe den Abschnitt 13.10) so,
dass es sich auf der Leinwand erst nach rechts, dann nach unten, dann nach links
und zum Schluss wieder nach oben auf seine Startposition bewegt.

#3: Das sich bewegende Foto

Versuche selbst, mit tkinter ein Foto auf der Leinwand darzustellen. Achte dar-
auf, dass es ein GIF-Bild ist! Kannst Du es dazu bringen, sich über die Leinwand
zu bewegen?
Bessere Grafiken mit tkinter

Teil II
BOUNCE!
181

182

14
Der Anfang Deines ersten Spiels:

BOUNCE!
Bis jetzt haben wir uns mit den Grundlagen des Computer-Programmierens
befasst. Du hast gelernt, wie man mit Variablen Informationen speichert, mit if-
Anweisungen bedingten Code einsetzt und wie man mit for-Schleifen Code wie-
derholt. Du weißt, wie man Funktionen erzeugt, um den Code wiederzuverwen-
den und wie man Klassen und Objekte einsetzt, um den Code in kleinere Einhei-
ten zu unterteilen, damit er leichter zu verstehen ist. Du hast gelernt, wie man mit
den Modulen turtle und tkinter Grafiken auf dem Monitor zeichnet. Jetzt bist
Du so weit, dieses Wissen bei Deinem ersten selbst geschriebenen Spiel einzuset-
zen.

14.1 Schlag den hüpfenden Ball

Wir werden ein Spiel mit einem herumspringenden Ball und einem Schläger ent-
werfen. Der Ball wird über den Bildschirm fliegen, und der Spieler wird ihn vom
Schläger abprallen lassen. Wenn der Ball die untere Kante des Bildschirms
berührt, ist das Spiel zu Ende. Hier siehst Du eine Voransicht des fertigen Spiels:
183

184
Unser Spiel mag zwar sehr einfach erscheinen, aber der Code wird um einiges
kniffeliger, als alles, was wir bis jetzt geschrieben haben, da er eine Menge von
Dingen bewältigen muss. Er muss zum Beispiel den Schläger und den Ball animie-
ren und erkennen, wann der Ball den Schläger oder die Wände berührt.

In diesem Kapitel beginnen wir mit der Entwicklung unseres Spiels, indem
wir eine Spielfläche und einen hüpfenden Ball hinzufügen.

14.2 Erzeugen einer Spiele-Leinwand

Für Dein neues Spiel legst Du als Erstes eine neue Datei in der Python-Shell an
(über File New Window). Dann importierst Du tkinter und erzeugst eine Lein-
wand, um darauf zu zeichnen:

from tkinter import *
import random
import time
tk = Tk()
tk.title("Spiel")
tk.resizable(0, 0)
tk.wm_attributes("-topmost", 1)
canvas = Canvas(tk, width=500, height=400, bd=0, highlightthickness=0)
canvas.pack()
tk.update()

Dies ist jetzt ein bisschen anders als bei den vorherigen Beispielen. Zu Anfang
importieren wir die Module time und random, um sie weiter hinten im Code einzu-
setzen.
Der Anfang Deines ersten Spiels: BOUNCE!

Mit tk.title("Spiel") verwenden wir die
Funktion title des Objekts tk, das wir mit tk =
Tk() benutzen, um dem Fenster einen Titel zu
geben. Um dem Fenster eine feste Größe zu
geben, verwenden wir resizable. Die Parameter
0, 0 bedeuten: »Die Größe dieses Fensters kann
weder horizontal noch vertikal verändert wer-
den.« Als Nächstes rufen wir wm_attributes auf,
damit tkinter das Fenster mit unserer Leinwand
vor alle anderen Fenster stellt ("-topmost").

Du siehst, dass wir bei der Erzeugung des
canvas-Objekts mit canvas = mehr benannte Para-
meter auflisten, als wir es bei den vorigen Bei-
spielen getan haben. Sowohl bd=0 als auch highlightthickness=0 sorgen beispiels-
weise dafür, dass es keinen Rand außen um die Leinwand gibt, damit unser
Spielfeld besser aussieht.

Die Zeile canvas.pack() sagt der Leinwand, dass sie ihre Größe anhand der
Parameter width und height in der vorherigen Zeile anpassen soll. Zum Schluss
wird tkinter durch tk.update() angewiesen, sich selbst für die Animation in unse-
rem Spiel zu initialisieren. Ohne diese letzte Zeile würde nichts wie erwartet
funktionieren.

Achte darauf, dass Du Deinen Code immer speicherst. Gib ihm beim ersten
Speichern einen sinnvollen Dateinamen, wie zum Beispiel Bounce.py.

14.3 Erzeugen der Ball-Klasse

Jetzt werden wir die Klasse für den Ball erzeugen. Wir werden mit dem Code
beginnen, den wir brauchen, um den Ball auf der Leinwand zu zeichnen. Fol-
gende Schritte sind dazu nötig:

■ Erzeuge eine Klasse namens Ball, die Parameter für die Leinwand sowie die
Farbe des Balls aufnimmt, den wir zeichnen werden.

■ Speichere die Leinwand als Objekt-Variable, da wir unseren Ball darauf zeich-
nen werden.

■ Zeichne einen ausgefüllten Kreis auf die Leinwand, und benutze den Wert des
Farbe-Parameters als Füllfarbe.

■ Speichere die ID-Nummer, die tkinter zurückgibt, sobald es den Kreis (Oval)
zeichnet. Wir brauchen sie, um den Ball auf dem Bildschirm zu bewegen.

■ Bewege das Oval auf die Mitte der Leinwand.
Erzeugen der Ball-Klasse 185

186
Dieser Code sollte gleich nach den ersten beiden Zeilen in der Datei (nach import
time) hinzugefügt werden:

from tkinter import *
import random
import time

class Ball:
def __init__(self, canvas, color):

self.canvas = canvas
self.id = canvas.create_oval(10, 10, 25, 25, fill=color)
self.canvas.move(self.id, 245, 100)

def draw(self):
pass

Als Erstes benennen wir unsere Klasse Ball in . Danach erzeugen wir unsere Ini-
tialisierungsfunktion (wie in Kapitel 9 beschrieben), die die Parameter canvas und
color in aufnimmt. In setzen wir die Objekt-Variable canvas auf den Wert
des Parameters canvas.

In rufen wir die Funktion create_oval mit ihren fünf Parametern auf: Das
sind die x- und y-Koordinaten für die Ecke oben links (10 und 10), die x- und
y-Koordinaten für die Ecke unten rechts (25 und 25) und schließlich die Farbe
des Ovals.

Die Funktion create_oval gibt eine ID-Nummer für
die Figur zurück, die sie gezeichnet hat. Wir speichern
diese Nummer in der Objekt-Variablen id. In bewe-
gen wir das Oval in die Mitte der Leinwand (Position
245, 100). Die Leinwand weiß, was sie zu bewegen hat,
da wir die ID-Nummer dieser Figur (die Objekt-Variable
id) benutzt haben, um sie zu kennzeichnen.

In den letzten beiden Zeilen der Klasse Ball erzeugen
wir mit def draw(self) die Funktion draw, deren Funk-
tionskörper im Moment nur aus dem Schlüsselwort pass
besteht. Wir fügen dieser Funktion bald mehr hinzu.

Nachdem wir jetzt unsere Ball-Klasse erzeugt haben,
müssen wir aus dieser Klasse ein Objekt erzeugen. (Du
erinnerst Dich sicher, dass eine Klasse zwar beschreibt,
was sie tun kann, dass es aber das Objekt ist, das wirklich etwas tut). Um ein
rotes Ball-Objekt zu erzeugen, fügst Du dem Ende des Programms folgenden
Code hinzu:

ball = Ball(canvas, 'red')
Der Anfang Deines ersten Spiels: BOUNCE!

Wenn Du dieses Programm jetzt mit Run Run Module laufen lässt, erscheint
die Leinwand für den Bruchteil einer Sekunde und verschwindet dann wieder.
Damit das Fenster sich nicht sofort wieder schließt, müssen wir eine Animations-
schleife hinzufügen, die sogenannte Hauptschleife unseres Spiels.

Die Hauptschleife ist der zentrale Bestandteil eines Programms, der in der
Regel die meisten Dinge kontrolliert. Im Moment befiehlt unsere Hauptschleife
tkinter lediglich, das Bild neu aufzubauen. Diese Schleife läuft ständig durch
(zumindest so lange, bis wir das Fenster schließen). Sie weist tkinter fortlaufend
an, das Bild neu aufzubauen und dann für eine Hundertstelsekunde zu pausieren.
Diesen Code fügen wir am Ende unseres Programms an:

ball = Ball(canvas, 'red')

while 1:
tk.update_idletasks()
tk.update()
time.sleep(0.01)

Wenn Du nun diesen Code durchlaufen lässt, sollte der Ball ziemlich in der Mitte
der Leinwand erscheinen:
Erzeugen der Ball-Klasse 187

188
14.4 In Bewegung kommen

Eben haben wir die Ball-Klasse einge-
richtet, und jetzt wird es Zeit, den Ball
zu animieren. Wir werden ihn dazu
bringen, sich zu bewegen, abzuprallen
und seine Richtung zu ändern.

Den Ball in Bewegung setzen

Damit sich der Ball bewegt, ändern wir die Funktion draw wie folgt:

class Ball:
def __init__(self, canvas, color):

self.canvas = canvas
self.id = canvas.create_oval(10, 10, 25, 25, fill=color)
self.canvas.move(self.id, 245, 100)

def draw(self):
self.canvas.move(self.id, 0, -1)

Da __init__ den canvas-Parameter als Objekt-Variable canvas gespeichert hat,
benutzen wir diese Variable mit self.canvas und rufen die Funktion move auf der
Leinwand auf.

Wir reichen drei Parameter an move weiter: die id des Ovals und die Zahlen 0
und -1. Die 0 sagt, dass sich der Ball nicht horizontal bewegen soll, und die -1
bedeutet, dass er sich einen Pixel vertikal nach oben bewegen soll.

Wir nehmen diese kleine Änderung vor, weil es gut ist, Dinge zwischendurch
erst auszuprobieren. Stell Dir vor, wir würden den gesamten Code unseres Spiels
auf einmal schreiben und dann feststellen, dass er nicht funktioniert. Wie sollten
wir dann jemals herausfinden, warum er streikt?

Die nächste Änderung betrifft unsere Hauptschleife ganz unten in unserem
Programm. Im Block mit unserer while-Schleife (dies ist unsere Hauptschleife!)
fügen wir den Aufruf der Funktion draw unseres Ball-Objekts hinzu:

while 1:
ball.draw()
tk.update_idletasks()
tk.update()
time.sleep(0.01)

Wenn Du diesen Code jetzt laufen lässt, sollte der Ball sich die Leinwand hinauf
bewegen und dann aus ihr verschwinden, da der Code tkinter dazu zwingt, den
Monitor schnell wieder aufzubauen – es sind die Befehle update_idletasks und
update, die tkinter anweisen, sich zu beeilen und zu zeichnen, was auf der Lein-
wand ist.
Der Anfang Deines ersten Spiels: BOUNCE!

Der Befehl time.sleep ruft die Funktion sleep aus dem Modul time auf,
wodurch Python für eine Hundertstelsekunde (0.01) schläft. Dadurch wird dafür
gesorgt, dass unser Programm nicht so schnell läuft, dass der Ball verschwindet,
bevor Du ihn überhaupt sehen konntest.

Die Schleife sagt also im Grunde: »Bewege den Ball ein bisschen, baue den
Bildschirm mit der neuen Position auf, warte ein bisschen, und fange dann von
vorne an.«

Dein Spiel sollte bis jetzt folgendermaßen aussehen:

from tkinter import *
import random
import time

class Ball:
def __init__(self, canvas, color):

self.canvas = canvas
self.id = canvas.create_oval(10, 10, 25, 25, fill=color)
self.canvas.move(self.id, 245, 100)

def draw(self):
self.canvas.move(self.id, 0, -1)

tk = Tk()
tk.title("Spiel")
tk.resizable(0, 0)
tk.wm_attributes("-topmost", 1)
canvas = Canvas(tk, width=500, height=400, bd=0, highlightthickness=0)
canvas.pack()
tk.update()

ball = Ball(canvas, 'red')

while 1:
ball.draw()
tk.update_idletasks()
tk.update()
time.sleep(0.01)

Achtung!

Wenn Du das Spiele-Fenster schließt, kann es sein, dass Du in der Shell Fehlermeldungen
siehst. Die tauchen auf, weil durch das Schließen des Fensters der Code aus der while-
Schleife ausbricht und Python sich darüber beschwert.
In Bewegung kommen 189

190
Den Ball springen lassen

Ein Ball, der einfach oben aus dem Bildschirm verschwindet, ist in einem Spiel
nicht sonderlich hilfreich. Wir sollten ihn deswegen zurückspringen lassen. Als
Erstes speichern wir ein paar zusätzliche Objekt-Variablen in der Initialisierungs-
funktion der Ball-Klasse:

def __init__(self, canvas, color):
self.canvas = canvas
self.id = canvas.create_oval(10, 10, 25, 25, fill=color)
self.canvas.move(self.id, 245, 100)

self.x = 0
self.y = -1
self.canvas_height = self.canvas.winfo_height()

Wir haben unserem Programm drei weitere Zeilen hinzugefügt. Wir haben mit
self.x = 0 die Objekt-Variable x auf 0 gesetzt und dann mit self.y = -1 die Varia-
ble y auf -1 gesetzt. Zum Schluss haben wir die Objekt-Variable canvas_height
durch den Aufruf der canvas-Funktion winfo_height gesetzt. Diese Funktion gibt
die aktuelle Höhe der Leinwand zurück. Als Nächstes ändern wir wieder die
Funktion draw:

def draw(self):
self.canvas.move(self.id, self.x, self.y)
pos = self.canvas.coords(self.id)
if pos[1] <= 0:

self.y = 1
if pos[3] >= self.canvas_height:

self.y = -1

In ändern wir den Aufruf der canvas-
Funktion move, indem wir ihr die Objekt-
Variablen x und y übergeben. Als Nächstes
erzeugen wir in die Variable pos, indem
wir die canvas-Funktion coords aufrufen.
Diese Funktion gibt die aktuellen x- und y-
Koordinaten von allem zurück, was auf der
Leinwand gezeichnet wird, solange Du die
ID-Nummern kennst. In diesem Fall weisen
wir coords die Objekt-Variable id zu, die die
ID-Nummer des Ovals enthält.

Die Funktion coords gibt die Koordina-
ten in Form einer Liste von vier Zahlen zurück. Wenn wir uns die Ergebnisse des
Aufrufs dieser Funktion anzeigen lassen wollen, sehen wir so etwas:
Der Anfang Deines ersten Spiels: BOUNCE!

print(self.canvas.coords(self.id))
[255.0, 29.0, 270.0, 44.0]

Die ersten beiden Zahlen dieser Liste (255.0 und 29.0) enthalten die oberen lin-
ken Koordinaten des Ovals (x1 und y1); Die nächsten beiden (270.0 144.0) sind
die Koordinaten x2 und y2 unten rechts. Wir werden diese Werte in den nächsten
paar Zeilen des Codes verwenden.

In sehen wir, ob die y1-Koordinate (das ist die obere Kante des Balls) weni-
ger oder gleich 0 ist. Falls ja, setzen wir die y-Objekt-Variable auf 1. Dadurch
sagen wir: »Sobald Du oben anstößt, höre damit auf, 1 von der vertikalen Posi-
tion abzuziehen, und stoppe dadurch die Bewegung nach oben.«

In sehen wir, ob die y2-Koordinate (das ist die untere Kante des Balls) grö-
ßer oder gleich der Variable canvas_height ist. Falls sie es ist, setzen wir die
y-Objekt-Variable auf -1 zurück.

Wenn Du diesen Code jetzt ausführst, sollte der Ball auf der Leinwand so
lange auf und ab springen, bist Du das Fenster schließt.

Die Startposition des Balls ändern

Einen Ball langsam auf- und abspringen zu lassen,
ist noch lange kein Spiel. Lass uns daher die Start-
position des Balls ändern – den Winkel, in dem der
Ball wegfliegt, wenn das Spiel startet. Ändere in der
Funktion __init__ die Zeilen

self.x = 0
self.y = -1

in Folgendes (achte darauf, dass Du die richtige Anzahl von Leerzeichen – hier
sind es acht – vor jeder Zeile hast):

starts = [-3, -2, -1, 1, 2, 3]
random.shuffle(starts)
self.x = starts[0]
self.y = -3

In erzeugen wir die Variable starts mit einer Liste von sechs Zahlen. Diese
Zahlen mischen wir in , indem wir random.shuffle aufrufen. In setzen wir
den Wert von x auf das erste Element dieser Liste, sodass x jede Zahl dieser Liste
sein kann (zwischen -3 und 3).

Wenn wir y in auf -3 setzen (um den Ball schneller zu machen), müssen wir
noch ein paar weitere Änderungen vornehmen, damit der Ball nicht einfach aus
dem Fenster verschwindet. Füge folgende Zeile am Ende der Funktion __init__
hinzu, damit die Breite der Leinwand in eine neue Objekt-Variable, canvas_width,
gespeichert wird:
In Bewegung kommen 191

192
self.canvas_width = self.canvas.winfo_width()

Wir verwenden diese neue Objekt-Variable in der Funktion draw, um zu sehen, ob
der Ball oben oder unten gegen die Leinwand gestoßen ist:

if pos[0] <= 0:
self.x = 3

if pos[2] >= self.canvas_width:
self.x = -3

Da wir x auf 3 und -3 gesetzt haben, tun wir das Gleiche mit Y, damit sich der Ball
in alle Richtungen mit der gleichen Geschwindigkeit bewegt. Deine draw-Funk-
tion sollte jetzt folgendermaßen aussehen:

def draw(self):
self.canvas.move(self.id, self.x, self.y)
pos = self.canvas.coords(self.id)
if pos[1] <= 0:

self.y = 3
if pos[3] >= self.canvas_height:

self.y = -3
if pos[0] <= 0:

self.x = 3
if pos[2] >= self.canvas_width:

self.x = -3

Speichere das Programm und starte es. Der Ball sollte jetzt auf dem Bildschirm
herumspringen, ohne zu verschwinden. Das komplette Programm sieht nun so
aus:

from tkinter import *
import random
import time

class Ball:
def __init__(self, canvas, color):

self.canvas = canvas
self.id = canvas.create_oval(10, 10, 25, 25, fill=color)
self.canvas.move(self.id, 245, 100)
starts = [-3, -2, -1, 1, 2, 3]
random.shuffle(starts)
self.x = starts[0]
self.y = -3
self.canvas_height = self.canvas.winfo_height()
self.canvas_width = self.canvas.winfo_width()
Der Anfang Deines ersten Spiels: BOUNCE!

def draw(self):
self.canvas.move(self.id, self.x, self.y)
pos = self.canvas.coords(self.id)
if pos[1] <= 0:

self.y = 1
if pos[3] >= self.canvas_height:

self.y = -1
if pos[0] <= 0:

self.x = 3
if pos[2] >= self.canvas_width:

self.x = -3

tk = Tk()
tk.title("Spiel")
tk.resizable(0, 0)
tk.wm_attributes("-topmost", 1)
canvas = Canvas(tk, width=500, height=400, bd=0, highlightthickness=0)
canvas.pack()
tk.update()

ball = Ball(canvas, 'red')

while 1:
ball.draw()
tk.update_idletasks()
tk.update()
time.sleep(0.01)

14.5 Was Du gelernt hast

In diesem Kapitel haben wir mit dem Modul tkinter unser erstes Spiel geschrie-
ben. Wir haben eine Klasse für einen Ball erzeugt, den wir so animiert haben, dass
er sich über den Monitor bewegt. Wir haben durch Koordinaten geprüft, wann
der Ball die Wände der Leinwand berührt, damit wir ihn abprallen lassen kön-
nen. Im Modul random haben wir dazu noch die Funktion shuffle benutzt, damit
unser Ball nicht immer von der gleichen Position aus startet. Im nächsten Kapitel
werden wir das Spiel fertigstellen, indem wir einen Schläger hinzufügen.
Was Du gelernt hast 193

194
 Der Anfang Deines ersten Spiels: BOUNCE!

15
Dein erstes Spiel vollenden:

BOUNCE!
Im vorigen Kapitel haben wir angefangen, unser erstes Spiel zu programmieren:
BOUNCE! Wir haben eine Leinwand erzeugt und unserem Spiel-Code einen hüp-
fenden Ball hinzugefügt. Unser Ball würde jedoch bis in alle Ewigkeiten auf dem
Monitor herumhüpfen (oder zumindest so lange, bist Du den Computer aus-
schaltest), was bei einem Spiel nicht sehr sinnvoll ist. Jetzt werden wir dem Spie-
ler einen Schläger geben, den er benutzen kann. Wir werden dem Spiel auch ein
gewisses Zufallselement geben, damit es ein bisschen schwieriger und spannender
zu spielen ist.

15.1 Einen Schläger hinzufügen

Ein hüpfender Ball macht nicht viel Spaß, wenn
man ihn nicht mit irgendetwas schlagen kann. Zeit
für einen richtigen Schläger!

Wir beginnen mit dem Hinzufügen des folgen-
den Codes gleich hinter der Ball-Klasse, um einen
Schläger zu erzeugen. Dazu fügst Du den Code in
eine neue Zeile unter der Funktion draw in der
Klasse Ball ein:
195

196
def draw(self):
self.canvas.move(self.id, self.x, self.y)
pos = self.canvas.coords(self.id)
if pos[1] <= 0:

self.y = 1
if pos[3] >= self.canvas_height:

self.y = -1
if pos[0] <= 0:

self.x = 3
if pos[2] >= self.canvas_width:

self.x = -3

class Schläger:
def __init__(self, canvas, color):

self.canvas = canvas
self.id = canvas.create_rectangle(0, 0, 100, 10, fill=color)
self.canvas.move(self.id, 200, 300)

def draw(self):
pass

Dieser hinzugefügte Code ist fast exakt der gleiche wie bei der Ball-Klasse, nur
dass wir create_rectangle (statt create_oval) aufrufen und dass wir das Rechteck
(engl. rectangle) auf Position 200, 300 (200 Pixel zur Seite und 300 Pixel nach
unten) bewegen.

Als Nächstes erzeugst Du ganz unten in Deinem Listing in der Klasse Schläger
ein Objekt und änderst dann die Hauptschleife, um die Funktion draw in Schläger
aufzurufen:

schläger = Schläger(canvas, 'blue')
ball = Ball(canvas, 'red')

while 1:
ball.draw()
schläger.draw()
tk.update_idletasks()
tk.update()
time.sleep(0.01)

Wenn Du das Spiel jetzt laufen lässt, solltest Du einen springenden Ball und einen
rechteckigen Schläger sehen, der sich nicht bewegt:
Dein erstes Spiel vollenden: BOUNCE!

Den Schläger in Bewegung setzen

Um den Schläger nach links und rechts zu bewe-
gen, werden wir Ereignis-Bindungen einsetzen,
damit die linke und rechte Pfeiltaste mit neuen
Funktionen in der Schläger-Klasse verbunden
wird. Wenn der Spieler die linke Pfeiltaste drückt,
wird die x-Variable auf -2 gesetzt (um sich nach
links zu bewegen). Das Drücken der rechten Pfeil-
taste setzt die x-Variable auf 2 (für die Bewegung
nach rechts).

Der erste Schritt besteht also darin, die x-Objekt-Variable der Funktion
__init__ zu unserer Schläger-Klasse hinzuzufügen. Dazu kommt noch eine Varia-
ble für die Breite der Leinwand (wie schon in der Ball-Klasse):

def __init__(self, canvas, color):
self.canvas = canvas
self.id = canvas.create_rectangle(0, 0, 100, 10, fill=color)
self.canvas.move(self.id, 200, 300)
self.x = 0
self.canvas_width = self.canvas.winfo_width()

Nun benötigen wir die Funktionen zum Wechsel der Richtungen zwischen links
(nach_links) und rechts (nach_rechts). Diese fügen wir gleich hinter der Funktion
draw ein:
Einen Schläger hinzufügen 197

198
def nach_links(self, evt):
self.x = -2

def nach_rechts(self, evt):
self.x = 2

Mit diesen beiden Programmzeilen verbinden wir unsere Funktionen zum Rich-
tungswechsel mit den passenden Tasten. Dazu nutzen wir die Funktion __init__ in
dieser Klasse. Auf Seite 176 haben wir im Abschnitt »Ein Objekt auf etwas reagie-
ren lassen« Python eine Funktion aufrufen lassen, sobald eine Taste gedrückt
wurde. Jetzt verbinden wir die Funktion nach_links in unserer Schläger-Klasse mit
der linken Pfeiltaste mit dem Ereignisnamen '<KeyPress-Left>'. Anschließend ver-
binden wir die nach_rechts-Funktion mit der rechten Pfeiltaste mit dem Ereignis-
namen '<KeyPress-Right>'. Unsere Funktion __init__ sieht jetzt folgendermaßen
aus:

def __init__(self, canvas, color):
self.canvas = canvas
self.id = canvas.create_rectangle(0, 0, 100, 10, fill=color)
self.canvas.move(self.id, 200, 300)
self.x = 0
self.canvas_width = self.canvas.winfo_width()
self.canvas.bind_all('<KeyPress-Left>', self.nach_links)
self.canvas.bind_all('<KeyPress-Right>', self.nach_rechts)

Die Funktion draw ist für die Schläger-Klasse so ähnlich wie die in der Ball-Klasse:

def draw(self):
self.canvas.move(self.id, self.x, 0)
pos = self.canvas.coords(self.id)
if pos[0] <= 0:

self.x = 0
elif pos[2] >= self.canvas_width:

self.x = 0

Wir benutzen die move-Funktion der Leinwand, um den Schläger in Richtung der
x-Variablen mit self.canvas.move(self.id, self.x, 0) zu bewegen. Danach
bekommen wir die Koordinaten des Schlägers, um mit dem Wert in pos zu sehen,
ob er die linke oder rechte Seite des Fensters berührt hat.

Anstatt wie ein Ball dann einfach abzuprallen, sollte der Schläger bei Kontakt
mit dem Fenster anhalten. Wenn die linke x-Koordinate (pos[0]) weniger oder
gleich 0 ist (<= 0) setzen wir die x-Variable mit self. x = 0 auf 0. Und wenn die
rechte x-Koordinate (pos[2]) größer oder gleich der Breite der Leinwand ist
(>= self.canvas_width), dann setzen wir auch die x-Variable mit self.x = 0 auf 0.
Dein erstes Spiel vollenden: BOUNCE!

15.2 Merken, dass der Ball auf den Schläger trifft

Zum jetzigen Zeitpunkt trifft der Ball nicht auf
den Schläger, sondern fliegt einfach durch ihn
hindurch. Der Ball muss wissen, dass er auf den
Schläger trifft, genau wie der Ball wissen muss,
dass er an die Wand prallt.

Wir hätten dieses Problem dadurch lösen
können, dass wir der Funktion draw Code hinzu-
fügen (an der Stelle, wo der Code nach Wänden
sucht). Aber es ist klüger, solchen Code in eine
neue Funktion zu legen, damit die Dinge besser
unterteilt sind. Wenn wir zu viel Code an einer Stelle ansammeln (beispielsweise
in einer einzigen Funktion), wird der Code viel schwieriger zu verstehen. Lass uns
die nötigen Änderungen vornehmen.

Als Erstes ändern wir die Funktion __init__ des Balls, sodass wir das Schlä-
ger-Objekt als Parameter einführen können:

class Ball:
def __init__(self, canvas, color):

self.canvas = canvas
self.Schläger = Schläger
self.id = canvas.create_oval(10, 10, 25, 25, fill=color)
self.canvas.move(self.id, 245, 100)
starts = [-3, -2, -1, 1, 2, 3]
random.shuffle(starts)
self.x = starts[0]
self.y = -3
self.canvas_height = self.canvas.winfo_height()
self.canvas_width = self.canvas.winfo_width()

In haben wir den Parameter von __init__ so geändert, dass er den Schläger mit
einschließt. In haben wir dann den Schläger-Parameter der Objekt-Variablen
Schläger zugewiesen.

Nachdem wir das Schläger-Objekt gespeichert haben, müssen wir noch den
Code an der Stelle ändern, an der wir das Ball-Objekt erzeugt haben. Diese Ände-
rung wird ganz unten im Programm vorgenommen, kurz vor der Hauptschleife:

Achtung!

Wenn Du das Programm jetzt laufen lässt, musst Du zuerst auf die Leinwand klicken, damit
das Spiel die Aktionen der linken und rechten Pfeiltaste erkennt. Durch das Klicken auf die
Leinwand weiß sie, dass sie reagieren muss, sobald jemand eine Taste auf der Tastatur
drückt.
Merken, dass der Ball auf den Schläger trifft 199

200
schläger = Schläger(canvas, 'blue')
ball = Ball(canvas, Schläger, 'red')

while 1:
ball.draw()
schläger.draw()
tk.update_idletasks()
tk.update()
time.sleep(0.01)

Den Code, den wir brauchen, um zu sehen, ob der Ball den Schläger berührt hat,
ist ein wenig komplizierter, als der Code, den man braucht, um zu prüfen, ob die
Wände berührt wurden. Wir werden diese Funktion triff_schläger nennen und
sie der draw-Funktion in der Ball-Klasse hinzufügen, wo wir sehen, ob der Ball
den Boden des Fensters berührt hat:

def draw(self):
self.canvas.move(self.id, self.x, self.y)
pos = self.canvas.coords(self.id)
if pos[1] <= 0:

self.y = 1
if pos[3] >= self.canvas_height:

self.y = -1
if self.triff_schläger(pos) == True:

self.y = -3
if pos[0] <= 0:

self.x = 3
if pos[2] >= self.canvas_width:

self.x = -3

Wie Du im neu hinzugefügten Code erkennen kannst, ändern wir – falls
triff_schläger wahr (True) zurückgibt – die Flugrichtung des Balls, indem wir die
y-Objekt-Variable mit self.y = -3 auf -3 setzen. Versuche jetzt aber noch nicht,
das Spiel laufen zu lassen, denn wir haben die Funktion triff_schläger noch
nicht definiert! Das machen wir erst jetzt.

Füge die Funktion triff_schläger genau vor die draw-Funktion ein:

def triff_schläger(self, pos):
schläger_pos = self.canvas.coords(self.schläger.id)
if pos[2] >= schläger_pos[0] and pos[0] <= schläger_pos[2]:

if pos[3] >= schläger_pos[1] and pos[3] <= schläger_pos[3]:
return True

return False

Als Erstes definieren wir in die Funktion mit dem Parameter pos. Diese Zeile
enthält die aktuellen Koordinaten des Balls. In bekommen wir dann die Koor-
dinaten des Schlägers und speichern sie in der Variable pos.
Dein erstes Spiel vollenden: BOUNCE!

In haben wir den ersten Teil unserer ersten if-then-Anweisung. Wir sagen
damit: »Wenn die rechte Seite neben dem Ball größer ist als die linke Seite neben
dem Schläger und die linke Seite neben dem Balls kleiner ist als die rechte Seite
neben dem Schläger…« Hier enthält pos[2] die x-Koordinate für die Seite rechts
neben dem Ball. schläger_pos[0] enthält die x-Koordinate für die Seite links
neben dem Schläger, und schläger_pos[2] enthält die x-Koordinate für die Seite
rechts neben dem Schläger. Das folgende Diagramm zeigt, wie diese Koordinaten
aussehen, kurz bevor der Ball auf dem Schläger auftrifft.

Der Ball fällt in Richtung des Schlägers, aber in diesem Fall siehst Du, dass die
rechte Seite neben dem Ball (pos[2]) noch nicht die linke Seite des Schlägers
(schläger_[0]) passiert hat.

In schauen wir nach, ob die Unterseite des Balls (pos[3]) sich zwischen der
Oberseite des Schlägers (schläger_post[1]) und seiner Unterseite (schläger_post[3])
befindet. Im nächsten Diagramm siehst Du, dass die Unterseite des Balls (pos[3])
noch auf die Oberseite des Schlägers (schläger_pos[1]) auftreffen muss.

Aufgrund der aktuellen Position des Balls würde die Funktion triff_schläger
falsch zurückgeben.

pos[0] pos[2]

schläger_pos[0]
schläger_pos[2]

pos[1]

pos[3]

schläger_pos[3]

schläger_pos[1]
Merken, dass der Ball auf den Schläger trifft 201

202
15.3 Dem Spiel etwas Zufälliges geben

Jetzt ist es an der Zeit, aus unserem Programm mit
dem hüpfenden Ball und dem Schläger ein Spiel zu
machen. Spiele brauchen ein Element des Zufalls –
irgendetwas, damit der Spieler auch verlieren kann.
So, wie unser Spiel jetzt ist, würde der Ball unendlich
lange durch die Gegend hüpfen, also gibt es auch
nichts zu verlieren.

Wir werden unser Spiel dadurch abschließen,
dass wir Code hinzufügen, der das Spiel beendet, falls der Ball die Unterseite der
Leinwand berührt (mit anderen Worten: falls er auf den Boden fällt).

Als Erstes fügen wir die Objekt-Variable hit_bottom (engl. für »triff Boden«)
der Funktion __init__ ganz unten in der Ball-Klasse hinzu:

self.canvas_height = self.canvas.winfo_height()
self.canvas_width = self.canvas.winfo_width()
self.hit_bottom = False

Danach ändern wir ganz unten im Programm die Hauptschleife:

while 1:
if ball.hit_bottom == False:

ball.draw()
schläger.draw()

tk.update_idletasks()
tk.update()
time.sleep(0.01)

Jetzt überprüft die Schleife ständig hit_bottom, um nachzuschauen, ob der Ball
den Boden des Fensters berührt hat. Wie Du in unserer if-Anweisung siehst,
sollte der Code ständig Ball und Schläger in Bewegung halten, solange der Ball
nicht den Boden berührt hat. Das Spiel ist beendet, sobald sich Ball und Schläger
nicht mehr bewegen. (Wenn wir sie nicht mehr animieren.)

Achtung!

Warum müssen wir wissen, ob die Unterseite des Balls sich zwischen der oberen und der
unteren Seite des Schlägers befindet? Warum schauen wir nicht einfach nach, ob die
Unterseite des Balls die Oberseite des Schlägers berührt hat? Einfach, weil jedes Mal, wenn
wir den Ball über die Leinwand bewegen, 3-Pixel-Sprünge gemacht werden. Wenn wir
lediglich nachgucken würden, ob der Ball die Oberseite des Schlägers (pos[1]) erreicht
hat, könnten wir schon über diese Position hinaus gesprungen sein. In diesem Fall würde
der Ball weiterfliegen und ohne anzuhalten durch den Schläger gehen.
Dein erstes Spiel vollenden: BOUNCE!

Die letzte Änderung betrifft die draw-Funktion der Ball-Klasse:

def draw(self):
self.canvas.move(self.id, self.x, self.y)
pos = self.canvas.coords(self.id)
if pos[1] <= 0:

self.y = 3
if pos[3] >= self.canvas_height:

self.hit_bottom = True
if self.schläger(pos) == True:

self.y = -3
if pos[0] <= 0:

self.x = 3
if pos[2] >= self.canvas_width:

self.x = -3

Wir haben die if-Anweisung geändert, um zu prüfen, ob der Ball den Boden
berührt hat (ob er höher oder gleich canvas_height ist). Falls ja, setzen wir in der
folgenden Zeile hit_bottom auf wahr, anstatt den Wert der y-Variable zu ändern,
da es nicht mehr nötig ist, den Ball springen zu lassen, sobald er den Boden des
Fensters berührt hat.

Wenn Du das Spiel jetzt laufen lässt und den Ball nicht mehr mit dem Schlä-
ger erwischst, kommt alle Bewegung auf Deinem Bildschirm zum Stillstand, und
das Spiel ist beendet, sobald der Ball den Boden berührt hat:
Dem Spiel etwas Zufälliges geben 203

204
Dein Programm sollte wie das folgende Listing aussehen. Falls Du Probleme hast,
Dein Spiel ans Laufen zu bekommen, vergleiche es mit Deinen Eingaben:

from tkinter import *
import random
import time

class Ball:
def __init__(self, canvas, schläger, color):

self.canvas = canvas
self.schläger = schläger
self.id = canvas.create_oval(10, 10, 25, 25, fill=color)
self.canvas.move(self.id, 245, 100)
starts = [-3, -2, -1, 1, 2, 3]
random.shuffle(starts)
self.x = starts[0]
self.y = -3
self.canvas_height = self.canvas.winfo_height()
self.canvas_width = self.canvas.winfo_width()
self.hit_bottom = False

def triff_schläger(self, pos):
schläger_pos = self.canvas.coords(self.schläger.id)
if pos[2] >= schläger_pos[0] and pos[0] <= schläger_pos[2]:

if pos[3] >= schläger_pos[1] and pos[3] <= schläger_pos[3]:
return True

return False

def draw(self):
self.canvas.move(self.id, self.x, self.y)
pos = self.canvas.coords(self.id)
if pos[1] <= 0:

self.y = 3
if pos[3] >= self.canvas_height:

self.hit_bottom = True
if self.triff_schläger(pos) == True:

self.y = -3
if pos[0] <= 0:

self.x = 3
if pos[2] >= self.canvas_width:

self.x = -3

class Schläger:
def __init__(self, canvas, color):

self.canvas = canvas
self.id = canvas.create_rectangle(0, 0, 100, 10, fill=color)
self.canvas.move(self.id, 200, 300)
self.x = 0
Dein erstes Spiel vollenden: BOUNCE!

self.canvas_width = self.canvas.winfo_width()
self.canvas.bind_all('<KeyPress-Left>', self.nach_links)
self.canvas.bind_all('<KeyPress-Right>', self.nach_rechts)

def draw(self):
self.canvas.move(self.id, self.x, 0)
pos = self.canvas.coords(self.id)
if pos[0] <= 0:

self.x = 0
elif pos[2] >= self.canvas_width:

self.x = 0

def nach_links(self, evt):
self.x = -2

def nach_rechts(self, evt):
self.x = 2

tk = Tk()
tk.title("Spiel")
tk.resizable(0, 0)
tk.wm_attributes("-topmost", 1)
canvas = Canvas(tk, width=500, height=400, bd=0, highlightthickness=0)
canvas.pack()
tk.update()

schläger = Schläger(canvas, 'blue')
ball = Ball(canvas, schläger, 'red')

while 1:
if ball.hit_bottom == False:

ball.draw()
schläger.draw()

tk.update_idletasks()
tk.update()
time.sleep(0.01)

15.4 Was Du gelernt hast

In diesem Kapitel haben wir unser erstes
Spiel mit dem Modul tkinter abgeschlossen.
Wir haben für den Schläger, der in unserem
Spiel benutzt wird, Klassen erzeugt, und wir
haben mithilfe von Koordinaten geprüft, ob
der Ball den Schläger oder die Wände der Lein-
wand berührt. Wir haben Ereignisbindungen
benutzt, um die linke und rechte Pfeiltaste
Was Du gelernt hast 205

206
an die Bewegung des Schlägers zu binden. Mit der Hauptschleife haben wir die
Funktion draw aufgerufen, um den Schläger zu animieren. Zum Schluss haben wir
unseren Code so geändert, dass er ein Zufallselement bekam: Wenn ein Spieler
den Ball verpasst, ist das Spiel vorbei, sobald der Ball den Boden der Leinwand
berührt.

15.5 Programmier-Puzzles

Im Moment ist unser Spiel noch etwas einfach. Man kann noch jede Menge
ändern, um ein professionelleres Spiel zu programmieren. Versuche es auf die fol-
genden Weisen interessanter zu machen, und überprüfe Deine Antworten unter
www.dpunkt.de/python.

#1: Verzögere den Spielstart

Unser Spiel geht ein bisschen schnell los, und man muss auch noch auf die Lein-
wand klicken, damit es reagiert, wenn der Spieler auf die linke und rechte Pfeil-
taste der Tastatur drückt. Kannst Du beim Start des Spiels eine Verzögerung ein-
bauen, damit der Spieler genug Zeit hat, auf die Leinwand zu klicken? Oder –
noch besser – kannst Du eine Ereignisbindung an einen Mausklick hinzufügen,
damit nur dadurch das Spiel gestartet wird?

■ Hinweis 1:
In der Schläger-Klasse hast Du bereits Ereignisbindungen verwendet. Dies
könnte ein guter Ausgangspunkt sein.

■ Hinweis 2:
Die Ereignisbindung für die linke Maustaste ist der String '<Button-1>'.

#2: Ein richtiges »Game Over«

Wenn das Spiel zu Ende ist, friert alles einfach ein, und das ist nicht sehr spieler-
freundlich. Versuche den Text »Game over« erscheinen zu lassen, wenn der Ball
den Boden des Fensters berührt. Du könntest die Funktion create_text verwen-
den, aber vielleicht findest Du auch den benannten Parameter state nützlich (er
nimmt Werte wie normal und hidden [engl. für »verborgen«] an). Sieh Dir im
Abschnitt 13.12 itemconfig an. Als zusätzliche Herausforderung baust Du eine
Verzögerung ein, damit der Text nicht sofort erscheint.
Dein erstes Spiel vollenden: BOUNCE!

#3: Beschleunige den Ball

Falls Du Tennis spielst, weißt Du, dass ein Ball, der auf Deinen Schläger trifft,
manchmal schneller wieder zurückfliegt, als er gekommen ist – je nachdem, wie
hart Du schlägst. Der Ball in unserem Spiel bewegt sich immer in derselben
Geschwindigkeit, egal ob sich der Schläger bewegt oder nicht. Versuche, das Pro-
gramm so zu ändern, dass sich die Schlägergeschwindigkeit auf die Geschwindig-
keit des Balls auswirkt.

#4: Zeichne den Punktestand auf

Wie wäre es mit einem Punktestand? Jedes Mal, wenn der Ball den Schläger
berührt, sollte der Punktestand steigen. Versuche, den Punktestand in der oberen
rechten Ecke der Leinwand anzuzeigen. Eventuell blätterst Du für einen Tipp
noch einmal auf Seite 178 zum Abschnitt 13.12 zurück und siehst Dir itemconfig
noch einmal an.
Programmier-Puzzles 207

208
 Dein erstes Spiel vollenden: BOUNCE!

Teil III
Herr Strichmann

rennt zum Ausgang
209

210

16
Wir erstellen Grafiken für das

Strichmännchenspiel
Wenn man ein Spiel (oder jedes andere Programm) schreibt, ist es gut, sich einen
Plan zu machen. Dein Plan sollte beschreiben, worum es in Deinem Spiel geht,
und eine Beschreibung der Hauptelemente und -charaktere Deines Spiels enthal-
ten. Wenn es mit dem Programmieren losgeht, hilft Dir Deine Beschreibung, Dich
auf das zu konzentrieren, was Du entwickeln willst. Dein Spiel wird vielleicht
nicht immer genau wie die Originalbeschreibung werden – aber das macht nichts.

In diesem Kapitel beginnen wir mit der Entwicklung des lustigen Spiels »Herr
Strichmann rennt zum Ausgang«.

16.1 Der Strichmännchen-Spielplan

Hier ist die Beschreibung unseres neuen Spiels:

■ Geheimagent Herr Strichmann ist in der Höhle des Dr.
Harmlos gefangen, und Du möchtest ihm helfen, durch
den Ausgang im obersten Stockwerk zu entkommen.

■ Im Spiel gibt es ein Strichmännchen, das von links nach
rechts laufen und hochspringen kann. Auf jedem Stock-
werk gibt es Ebenen, auf die es springen muss.

■ Das Ziel des Spiels ist es, die Ausgangstür zu erreichen,
bevor es zu spät ist und das Spiel beendet wird.
211

212
Anhand dieser Beschreibung wissen wir, dass wir mehrere Bilder brauchen – und
zwar Bilder von Herrn Strichmann, von den Ebenen und von der Tür. Wir brau-
chen ganz offensichtlich Code, um all diese Dinge zusammenzubringen. Aber
bevor wir so weit sind, erstellen wir zunächst die Grafiken für unser Spiel, das wir
im nächsten Kapitel entwickeln werden.

Wie werden wir die Elemente in unserem Spiel zeichnen? Wir könnten Grafi-
ken wie die des springenden Balls und des Schlägers aus dem vorigen Kapitel
benutzen. Die sind allerdings viel zu einfach für dieses Spiel. Stattdessen werden
wir uns Sprites erzeugen.

Als Sprites bezeichnet man die Dinge in einem Spiel – meistens Figuren. Spri-
tes werden normalerweise vorher erstellt (bevor das Programm läuft) und nicht
wie die Polygone im Programm selber, wie es bei unserem Bounce!-Spiel der Fall
war. Sowohl Herr Strichmann als auch die Ebenen werden aus Sprites bestehen.
Um diese Bilder zu erzeugen, musst Du ein Grafikprogramm installieren.

16.2 GIMP installieren

Es gibt zwar viele Grafikprogramme, für unser Spiel brauchen wir jedoch eines,
das Transparenzen unterstützt. (Die Transparenz wird auch Alphakanal
genannt.) Durch die Transparenz kann ein Bild Teile enthalten, bei denen keine
Farben auf dem Bildschirm dargestellt werden. Wir benötigen transparente
Anteile, denn wenn ein Bild bei der Bewegung über den Monitor über ein anderes
bewegt wird, möchten wir nicht, dass der Hintergrund des einen Bildes das
andere überdeckt. Bei diesem Bild zum Beispiel, steht das Schachbrettmuster im
Hintergrund für die transparente Region:
Wir erstellen Grafiken für das Strichmännchenspiel

Wenn wir jetzt also das gesamte Bild kopieren und es über einem anderen Bild
einfügen, überdeckt der Hintergrund nichts:

GIMP (http://www.gimp.org), ist ein kostenloses Bildbearbeitungsprogramm für
Linux, MacOSX und Windows, das transparente Bilder unterstützt. Die Website
ist zwar leider auf Englisch, das Programm lässt sich jedoch auf Deutsch einstel-
len. Lade und installiere es wie folgt:

■ Wenn Du Windows benutzt, erkennt die GIMP-Website Dein Betriebssystem
und leitet Dich unter Downloads zur Installationsdatei.

■ Wenn Du Ubuntu benutzt, installierst Du GIMP, indem Du das Ubuntu-Soft-
ware Center öffnest und im Suchfenster GIMP eingibst. Sobald GIMP-Bild-
verarbeitung im Suchergebnis auftaucht, klickst Du einmal darauf und
anschließend auf den Button Install der GIMP-Bildbearbeitung.

■ Wenn Du MacOSX benutzt, erkennt die Website Dein Betriebssystem ebenso
wie bei Windows und führt Dich nach dem Button Download zur Auswahl
der richtigen Installationsdatei.

Als Nächstes solltest Du Dir für Dein Spiel einen Ordner anlegen. Dazu klickst
Du auf Deinem Desktop irgendwo, wo Platz ist, mit der rechten Maustaste und
gehst auf Neu Ordner (in Ubuntu heißt es Neuen Ordner anlegen; in MacOSX
Neuer Ordner). Im darauf folgenden Dialogfenster gibst Du als Ordnernamen
Strichmann ein.
GIMP installieren 213

214
16.3 Erzeugen der Spielelemente

Sobald Du Dein Grafikprogramm installiert hast, kannst Du mit dem Zeichnen
anfangen. Wir erstellen folgende Bilder als unsere Spielelemente:

■ Bilder eines Strichmännchens, das nach links und rechts laufen und springen
kann

■ Bilder einer Ebene in drei unterschiedlichen Größen
■ Bilder einer Tür: eine offen und eine geschlossen
■ Ein Bild für den Spielhintergrund (weil ein einfacher weißer oder grauer Hin-

tergrund ein langweiliges Spiel ergibt)

Bevor wir mit dem Zeichnen anfangen, müssen wir unsere Bilder mit transparen-
ten Hintergründen vorbereiten.

Ein transparentes Bild erstellen

Um ein Bild mit Transparenz – einem Alphakanal – einzurichten, startest Du
GIMP und führst folgende Schritte durch:

1. Gehe auf Datei Neu…
2. Im Dialogfenster gibst Du als Bildbreite 27 Pixel und als Bildhöhe 30 Pixel ein.
3. Gehe auf Ebene Transparenz Alphakanal hinzufügen.
4. Gehe auf Auswahl Alles.
5. Gehe auf Bearbeiten Ausschneiden.

 Das Endergebnis sollte ein Bild sein, das aus einem Schachbrettmuster aus dunk-
lem und hellem Grau besteht, wie es hier (vergrößert) zu sehen ist:

Jetzt können wir anfangen, unseren Geheimagenten, Herrn Strichmann, zu erzeu-
gen.
Wir erstellen Grafiken für das Strichmännchenspiel

Herrn Strichmann zeichnen

Um das erste Strichmännchen-Bild zu zeichnen,
klickst Du auf das Pinsel-Werkzeug im GIMP-
Werkzeugkasten. Anschließend wählst Du in der
Palette darunter die Pinsel-Palette (sie klappt sich
wie auf dem Bild rechts zur Seite auf). Aus der
Pinsel-Palette wählst Du einen Pinsel aus, der wie
ein kleiner Punkt aussieht.

Wir werden drei unterschiedliche Bilder (auch
Frames genannt) von unserer Strichmännchenfi-
gur malen, um sie beim Laufen und Springen nach
rechts zu zeichnen. Diese Frames werden wir
benutzen, um Herrn Strichmann zu animieren,
wie wir es schon in Kapitel 13 getan haben.

Wenn Du diese Bilder stark vergrößerst, könn-
ten sie in etwa so aussehen:

Deine Bilder müssen zwar nicht genauso aussehen, sie sollten aber ein Strich-
männchen in drei unterschiedlichen Positionen der Bewegung zeigen. Denke
daran, dass jedes dieser Bilder 27 Pixel hoch und 30 Pixel breit ist.

Herr Strichmann rennt nach rechts

Als Erstes zeichnen wir eine Sequenz von Frames von Herrn Strichmann, wie er
nach rechts rennt. Das erste Bild erzeugst Du folgendermaßen:

1. Zeichne das erste Bild (das linke Bild in der vorigen Illustration).
2. Gehe auf Datei Exportieren …
3. Im Dialogfenster gibst Du als Dateinamen Figur-R1.gif ein. Klicke dann auf

den kleinen Button mit dem +-Zeichen, neben dem Dateityp: Nach Endung
steht.

4. In der Liste, die dann aufklappt, wählst Du GIF-Bild aus.
5. Speichere die Datei im Strichmännchen-Ordner, den Du vorher erzeugt hast.
Erzeugen der Spielelemente 215

216
Führe die gleichen Schritte durch, um ein neues
27×30 Pixel großes Bild anzulegen, und zeichne den
nächsten Herrn Strichmann. Speichere dieses Bild
als Figur-R2.gif. Wiederhole diesen ganzen Ablauf
bis zum letzten Bild, das Du als Figur-R3.gif spei-
cherst.

Herr Strichmann rennt nach links

Um das Strichmännchen auch nach links laufen zu lassen, brauchen wir es nicht
erneut zu zeichnen. Stattdessen spiegeln wir mit GIMP unsere Frames von Herrn
Strichmann, der nach rechts läuft.

In GIMP öffnest Du die Bilder nacheinander und wählst unter Werkzeuge
Transformationen Spiegeln. Wenn Du danach auf das Bild klickst, solltest Du
sehen, dass es gespiegelt wird. Speichere diese Bilder als Figur-L1.gif, Figur-L2.gif
und Figur-L3.gif.

Jetzt haben wir sechs Bilder von Herrn Strichmann, brauchen aber noch Bilder
für die Ebenen und die Ausgangstür.
Wir erstellen Grafiken für das Strichmännchenspiel

 Ebenen zeichnen

Wir erstellen drei Ebenen in unterschiedlichen Größen:
100 Pixel breit und 10 Pixel hoch, 60 Pixel breit und
10 Pixel hoch sowie 30 Pixel und 10 Pixel hoch. Du
kannst diese Ebenen so zeichnen, wie Du möchtest,
musst allerdings darauf achten, dass ihre Hintergründe
wie bei den Strichmännchen transparent sind.

So könnten diese drei Bilder der Ebenen vergrößert
aussehen:

Genau wie die Bilder der Strichmännchen speicherst Du die Ebenen im Strich-
männchen-Ordner. Nenne die kleinste Ebene Ebene1.gif, die mittlere Ebene2.gif
und die größte Ebene3.gif.

Die Tür zeichnen

Die Größe der Tür sollte der Größe von Herrn Strichmann entsprechen (27 Pixel
breit und 30 Pixel hoch). Wir benötigen zwei Bilder: eines mit der geschlossenen
Tür und das andere mit der offenen Tür. Die Türen (wieder vergrößert) könnten
so aussehen:

Um diese Türen zu erstellen, machst Du Folgendes:

1. Klicke in die Box mit der Vordergrundfarbe (ganz unten im GIMP-Werk-
zeugkasten), um das Fenster Vordergrundfarbe ändern zu bekommen.
Wähle darin die gewünschte Farbe für Deine Tür. Im Beispiel rechts wurde
Gelb gewählt.

2. Wähle das Werkzeug Füllen (das ist der Farbeimer im Werkzeugkasten), und
fülle das Fenster mit der von Dir gewählten Farbe.
Erzeugen der Spielelemente 217

218
3. Ändere die Vordergrundfarbe in Schwarz.
4. Wähle dann entweder das Stift- oder das Pin-

sel-Werkzeug (rechts neben dem Füllen-Werk-
zeug), und male den schwarzen Umriss der Tür
und den Türknauf.

5. Speichere die Bilder im Strichmännchen-Ord-
ner, und nenne sie Tür1.gif und Tür2.gif.

Den Hintergrund zeichnen

Das letzte Bild, das wir noch brauchen, ist der Hin-
tergrund. Dieses Bild machen wir 100 Pixel breit und
100 Pixel hoch. Es benötigt keinen transparenten
Hintergrund, da wir es mit einer einzigen Farbe aus-
füllen, die gewissermaßen die Hintergrund-Tapete
für alle anderen Elemente unseres Spiels darstellt.

Um den Hintergrund zu erstellen, gehst Du auf
Datei Neu… und gibst als Bildgröße 100 Pixel
Breite und 100 Pixel Höhe ein. Suche Dir für die Tapete des Bösewichts eine aus-
reichend üble Farbe aus. Ich habe mich für ein dunkles Rosa entschieden.

Du kannst Deine Tapete noch mit Blumenstreifen oder Sternen ausschmü-
cken – was immer Du für dieses Spiel für passend hältst. Wenn Du beispielsweise
Sterne auf Deiner Tapete haben möchtest, wählst Du eine andere Farbe aus,
Wir erstellen Grafiken für das Strichmännchenspiel

nimmst das Stift-Werkzeug und zeichnest damit Deinen ersten Stern. Mit einem
der Auswahl-Werkzeuge (zum Beispiel der Rechteck-Auswahl) ziehst Du einen
Kasten um den Stern auf, kopierst ihn und fügst ihn an einer beliebigen Stelle auf
dem Bild ein (gehe dazu auf Bearbeiten Kopieren und dann auf Bearbeiten
Einfügen). Es sollte Dir möglich sein, das eingefügte Bild auf dem Monitor zu
bewegen, wenn Du auf es klickst. Unten auf Seite 218 siehst Du ein Beispiel mit
einigen Sternen und der aktiven Rechteckauswahl im Werkzeugkasten.

Sobald Du mit Deiner Zeichnung zufrieden bist, speicherst Du das Bild als
Hintergrund.gif im Strichmann-Ordner.

Transparenz

Mit den nun erstellten Grafiken kannst Du selbst herausfinden, warum sie (mit
Ausnahme des Hintergrunds) Transparenz benötigen. Was würde passieren,
wenn wir Herrn Strichmann vor unserer Hintergrundtapete platzieren würden,
ohne dass er einen transparenten Hintergrund hätte? Hier ist die Antwort:

Der weiße Hintergrund von Herrn Strichmann überdeckt Teile der Hintergrund-
tapete. Wenn wir dagegen unser transparentes Bild verwenden, bekommen wir
Folgendes:
Erzeugen der Spielelemente 219

220
Das Strichmännchen verdeckt nur so viel Platz auf der Hintergrundtapete, wie es
selbst einnimmt. Das sieht viel professioneller aus!

16.4 Was Du gelernt hast

In diesem Kapitel hast Du gelernt, wie man einen
grundlegenden Plan für ein Spiel schreibt (in die-
sem Fall für Herr Strichmann rennt zum Aus-
gang), und herausgefunden, wo man anfängt. Da
wir die grafischen Elemente benötigen, bevor wir
das Spiel machen können, haben wir mit einem
Grafikprogramm die einfachen Grafiken für
unser Spiel erzeugt. Dabei hast Du im Verlauf
gelernt, wie man die Hintergründe dieser Bilder
transparent macht, damit sie nicht die anderen
Bilder auf dem Monitor überdecken. Im nächs-
ten Kapitel werden wir einige der Klassen für
unser Spiel erstellen.
Wir erstellen Grafiken für das Strichmännchenspiel

17
Entwicklung des

Strichmännchenspiels
Im vorigen Kapitel haben wir die Bilder für unser Spiel Herr Strichmann rennt
zum Ausgang erzeugt. Daher können wir jetzt mit der Entwicklung des Codes
beginnen. Die Beschreibung des Spiels aus dem vorigen Kapitel gibt uns eine
ungefähre Vorstellung davon, was wir benötigen: ein Strichmännchen, das ren-
nen und springen kann, und Ebenen, auf die es springen kann.

Wir brauchen Code, um das Strichmännchen und seine Bewegung auf dem
Monitor darzustellen und um die Plattformen anzuzeigen. Bevor wir jedoch
anfangen, diesen Code zu schreiben, müssen wir eine Leinwand erzeugen, auf der
unser Hintergrundbild angezeigt wird.

17.1 Erzeugen der Spiel-Klasse

Als Erstes erzeugen wir eine Klasse namens Spiel, die die Hauptsteuerung unseres
Programms übernimmt. Die Spiel-Klasse wird eine __init__-Funktion zur Initia-
lisierung des Spiels enthalten sowie eine Funktion Hauptschleife, die für die Ani-
mation sorgt.
221

222
17.2 Den Fenstertitel bestimmen und die Leinwand erzeugen

Im ersten Teil der __init__-Funktion legen wir den Titel des Fensters fest und
erzeugen eine Leinwand. Wie Du siehst, ähnelt dieser Code dem, den wir für das
Spiel Bounce! in Kapitel 14 geschrieben haben. Öffne Deinen Editor, gib den fol-
genden Code ein, und speichere die Datei als Strichmännchenspiel.py. Achte dar-
auf, dass Du sie im gleichen Verzeichnis speicherst, das wir in Kapitel 16 angelegt
haben (namens Strichmännchen).

from tkinter import *
import random
import time
class Spiel:

def __init__(self):
self.tk = Tk()
self.tk.title("Herr Strichmann rennt zum Ausgang")
self.tk.resizable(0, 0)
self.tk.wm_attributes("-topmost", 1)
self.canvas = Canvas(self.tk, width=500, height=500, \

highlightthickness=0)
self.canvas.pack()
self.tk.update()
self.canvas_height = 500
self.canvas_width = 500

In der ersten Hälfte dieses Programms (sie reicht von from tkinter import * bis
self.tk.wm_attributes) erzeugen wir das tk-Objekt und setzen den Titel des Fens-
ters mit self.tk.title auf ("Herr Strichmann rennt zum Ausgang"). Wir fixieren die
Fenstergröße (damit man sie nicht mehr verändern kann), indem wir die Funk-
tion resizable aufrufen, und lassen mit der Funktion wm_attributes das Fenster
vor allen anderen Fenstern erscheinen.

Als Nächstes erzeugen wir mit der Zeile self.canvas = Canvas die Leinwand
und rufen die Funktionen pack und update des tk-Objekts auf. Zum Schluss erzeu-
gen wir für unsere Spiel-Klasse die Variablen height (Höhe) und width (Breite),
um Höhe und Breite der Leinwand zu speichern.

Achtung!

Der Rückwärtsschrägstrich(\) in der Zeile self.canvas = Canvas wird nur zur Trennung der
langen Code-Zeile verwendet. Dies ist zwar nicht unbedingt erforderlich, aber ich habe ihn
zwecks besserer Lesbarkeit eingefügt, da die vollständige Zeile nicht auf die Seite passt.
Entwicklung des Strichmännchenspiels

Abschluss der __init__-Funktion

Gib in der Datei Strichmännchenspiel.py jetzt den Rest der __init__-Funktion
ein. Dieser Code wird das Hintergrundbild laden und es dann auf der Leinwand
darstellen:

self.tk.update()
self.canvas_height = 500
self.canvas_width = 500

self.bg = PhotoImage(file="Hintergrund.gif")
w = self.bg.width()
h = self.bg.height()
for x in range(0, 5):

for y in range(0, 5):
self.canvas.create_image(x * w, y * h, \

image=self.bg, anchor='nw')
self.sprites = []
self.rennen = True

In erzeugen wir die Variable bg, die ein PhotoImage-Objekt enthält – die Hinter-
grund-Bilddatei Hintergrund.gif, die wir in Kapitel 16 erzeugt haben. Als Nächs-
tes beginnen wir in mit dem Speichern der Breite und Höhe des Bildes in den
Variablen w und h. Die PhotoImage-Klassen-Funktionen width und height geben
nach dem Laden die Größe des Bildes zurück.

Danach kommen zwei Schleifen innerhalb die-
ser Funktion. Was tun sie? Stell Dir vor, Du hättest
einen kleinen rechteckigen Stempel, ein Stempel-
kissen und ein großes Stück Papier. Wie würdest
Du damit das gesamte Blatt mit Farbe ausfüllen?
Du könntest entweder einfach so lange wild
(zufallsmäßig) herumstempeln, bis das ganze Blatt
ausgefüllt ist. Das sähe dann ziemlich chaotisch
aus und würde auch eine ganze Weile dauern, aber
am Ende hättest Du das Blatt ausgefüllt. Oder Du
bestempelst in einer Spalte das Blatt von oben
nach unten, gehst wieder nach oben und stempelst
die nächste Spalte nach unten, wie rechts zu sehen ist.

Unser Stempel wird das Hintergrundbild sein, das wir im vorigen Kapitel
erstellt haben. Wir wissen, dass die Leinwand 500 Pixel breit und 500 Pixel hoch
ist und dass wir unser Hintergrundbild als Quadrat mit 100 Pixeln Kantenlänge
angelegt haben. Daraus folgt, dass wir fünf Spalten zur Seite und fünf Spalten
nach unten brauchen, um das Fenster mit Bildern zu füllen. Mit der Schleife in
berechnen wir die Anzahl der Spalten zur Seite und mit der Schleife in die
Anzahl der Reihen nach unten.
Den Fenstertitel bestimmen und die Leinwand erzeugen 223

224
In multiplizieren wir die erste Schleifen-Variable x mit der Breite des Bildes
(x * w) und berechnen damit, wie weit wir seitlich zeichnen. Anschließend multi-
plizieren wir die zweite Schleifen-Variable y mit der Höhe des Bildes (x * h), um zu
berechnen, wie weit wir nach unten zeichnen. Wir verwenden dann die Funktion
create_image des Objekts aus canvas (self.canvas.create_image), um das Bild mit
diesen Koordinaten auf dem Monitor zu zeichnen.

In und der folgenden Zeile erzeugen wir die beiden Variablen sprites, die
eine bis jetzt leere Liste beinhaltet, und rennen, die den booleschen Wert True ent-
hält. Diese Variablen brauchen wir später noch.

Erzeugen der Hauptschleifen-Funktion

Wir werden die Funktion Hauptschleife in der Spiel-Klasse zum Animieren unse-
res Spiels verwenden. Diese Funktion hat viel Ähnlichkeit mit der Hauptschleife
(oder Animationsschleife), die wir für das Spiel Bounce! in Kapitel 14 erzeugt
haben. Hier ist sie:

for x in range(0, 5):
for y in range(0, 5):

self.canvas.create_image(x * w, y * h, \
image=self.bg, anchor='nw')

self.sprites = []
self.rennen = True

def Hauptschleife(self):
while 1:

if self.rennen == True:
for sprite in self.sprites:

sprite.move()
self.tk.update_idletasks()
self.tk.update()
time.sleep(0.01)

In erzeugen wir eine while-Schleife, die so lange
läuft, bis das Spiel-Fenster geschlossen wird. Als
Nächstes prüfen wir in , ob die Variable wahr
(True) ist. Falls ja, schleifen wir alle Sprites in der
Liste der sprites (self.sprites) in durch, indem
wir für jedes Sprite in die Funktion move aufrufen.
(Natürlich müssen wir zunächst Sprites erstellen;
daher macht dieser Code noch nichts, wenn Du das Programm jetzt laufen lässt.)

Die letzten drei Zeilen der Funktion, die in beginnen, zwingen das tk-
Objekt dazu, das Monitorbild neu aufzubauen und einen Sekundenbruchteil lang
mit sleep zu pausieren, wie wir das schon beim Spiel Bounce! in Kapitel 14 getan
haben.
Entwicklung des Strichmännchenspiels

Damit Du den Code jetzt durchlaufen lassen kannst, fügst Du die folgenden
beiden Zeilen hinzu (beachte, dass diese beiden Zeilen keine Einrükkung benöti-
gen) und speicherst die Datei.

s = Spiel()
s.Hauptschleife()

Dieser Code erzeugt ein Objekt der Spiel-Klasse und speichert sie als Variable s.
Anschließend rufen wir die Funktion Hauptschleife für das neue Objekt auf, um
das Spiel-Fenster zu zeichnen.

Sobald Du das Programm gespeichert hast, führst Du es in IDLE aus, indem
Du auf Run Run Module gehst. Danach erscheint ein Fenster, das mit dem
Hintergrundbild ausgefüllt ist.

Jetzt haben wir einen hübschen Hintergrund für unser Spiel sowie eine Anima-
tion-Schleife erzeugt, die uns die Sprites zeichnen wird (sobald wir sie erstellt
haben).

Achtung!

Achte darauf, dass Du diesen Code ganz unten in Deine Spiel-Datei schreibst. Sorge außer-
dem dafür, dass Deine Bilder im selben Ordner wie die Python-Datei liegen. Falls Du den
Ordner Strichmännchen in Kapitel 16 angelegt und dort alle Deine Bilder gespeichert hast,
sollte die Python-Datei für dieses Spiel ebenfalls dort sein.
Den Fenstertitel bestimmen und die Leinwand erzeugen 225

226
17.3 Erstellen der Klasse Koordinaten

Jetzt erstellen wir die Klasse, in der wir die Position von etwas im Spielfenster
festlegen. Diese Klasse speichert die Koordinaten oben links (x1 und y1) und
unten rechts (x2 und y2) jeder Komponente unseres Spiels.

So wird beispielsweise die Position des Strichmännchens mit Koordinaten
bestimmt:

Unsere neue Klasse werden wir Koordinaten nennen, und sie wird nur eine
__init__-Funktion enthalten, der wir die vier Parameter (x1, y1, x2, und y2) über-
geben. Hier ist der Code, den Du dafür hinzufügen musst (lege ihn an den Anfang
der Datei Strichmännchenspiel.py):

class Koordinaten:
def __init__(self, x1=0, y1=0, x2=0, y2=0):

self.x1 = x1
self.y1 = y1
self.x2 = x2
self.y2 = y2

Beachte, dass jeder Parameter als Objekt-Variable mit gleichem Namen (x1, y1,
x2, und y2) gespeichert wird. Wir werden bald Objekte dieser Klasse einsetzen.

17.4 Zusammenstöße erkennen

Wir wissen jetzt, wie man die Position unserer Sprites speichert. Wir müssen aber
noch herausfinden, wie man feststellt, ob ein Sprite den anderen berührt hat –
wenn Herr Strichmann über den Bildschirm springt und dabei eine der Ebenen
berührt. Damit dieses Problem leichter zu lösen ist, teilen wir es in zwei kleinere
Probleme auf: Wir detektieren (erkennen) die Zusammenstöße in vertikaler Rich-
tung, und wir detektieren die Zusammenstöße in horizontaler Richtung. Hinter-
her kombinieren wir diese kleineren Problemlösungen und können so leicht fest-
stellen, ob sich die Sprites in irgendeiner Richtung berühren!

x1,y1

x2,y2
Entwicklung des Strichmännchenspiels

Sprites stoßen horizontal zusammen

Als Erstes erzeugen wir die Funktion innerhalb_x, um festzustellen, ob sich ein
Satz von x-Koordinaten (x1 und x2) mit einem anderen Satz von x-Koordinaten
(auch x1 und x2) überlappt. Dafür gibt es mehrere Möglichkeiten. Hier ist ein ein-
faches Verfahren, das Du einfach unterhalb der Koordinaten-Klasse hinzufügen
kannst:

class Koordinaten:
def __init__(self, x1=0, y1=0, x2=0, y2=0):

self.x1 = x1
self.y1 = y1
self.x2 = x2
self.y2 = y2

def innerhalb_x(co1, co2):
if co1.x1 > co2.x1 and co1.x1 < co2.x2:

return True
elif co1.x2 > co2.x1 and co1.x2 < co2.x2:

return True
elif co2.x1 > co1.x1 and co2.x1 < co1.x2:

return True
elif co2.x2 > co1.x1 and co2.x2 < co1.x1:

return True
else:

return False

Die Funktion innerhalb_x nimmt die beiden Parameter co1 und co2 auf, die beide
Objekte der Klasse Koordinaten sind. In prüfen wir, ob die äußerste linke Posi-
tion des ersten Koordinaten-Objekts (co1.x1) zwischen der äußersten linken Posi-
tion (co2. x1) und der äußersten rechten Position (co2. x2) des zweiten Koordina-
ten-Objekts liegt. Wenn dem so ist, geben wir in True zurück.

Betrachten wir jetzt zwei Li-
nien mit überlappenden x-Koordi-
naten, um zu verstehen, wie das
Ganze funktioniert. Beide Linien
fangen bei x1 an und enden bei x2.

Die erste Linie in diesem Diagramm
(co1) beginnt an der Pixel-Position 50
(x1) und endet an Position 100 (x2).
Die zweite Linie (co2) startet an Posi-
tion 40 und endet bei 150. Weil in die-

sem Fall die x1-Position der ersten Linie zwischen der x1- und x2-Position der
zweiten Linie liegt, wäre die if-Anweisung in dieser Funktion bei diesen beiden
Koordinaten-Sätzen wahr (True).

x1=50 x2=100

x2=150x1=40
Zusammenstöße erkennen 227

228
Mit dem elif in prüfen wir, ob die äußerste rechte Position der ersten Linie
(co1.x2) zwischen der äußersten linken Position (co2.x1) und der äußersten rech-
ten Position (co2.x2) der zweiten Linie liegt. Falls sie das tut, geben wir in True
(wahr) zurück. Die beiden elif-Anweisungen in und machen fast das Glei-
che: Sie vergleichen die äußersten linken und rechten Positionen der zweiten Linie
(co2) mit denen der ersten Linie (co1).

Falls keine der if-Anweisungen passt, kommen wir in zu else und geben in
 False (falsch) zurück. Dies bedeutet im Prinzip: »Nein, die beiden Koordina-

ten-Objekte überlappen sich nicht horizontal.«
Schau Dir noch einmal das Diagramm an, das die erste und zweite Linie zeigt,

wenn Du ein Beispiel für die Arbeit dieser Funktion sehen willst: Die x1- und x2-
Positionen des ersten Koordinaten-Objekts sind 40 und 100, die x1- und x2-Posi-
tionen des zweiten Koordinaten-Objekts sind 50 und 150. Hier siehst Du, was
passiert, wenn wir die Funktion innerhalb_x aufrufen, die wir geschrieben haben:

>>> c1 = Koordinaten(40, 40, 100, 100)
>>> c2 = Koordinaten(50, 50, 150, 150)
>>> print(innerhalb_x(c1, c2))
True

Die Funktion gibt True zurück. Was die Fähigkeit betrifft zu erkennen, ob ein
Sprite gegen einen anderen gestoßen ist, ist dies der erste Schritt. Sobald wir eine
Klasse für Herrn Strichmann und die Ebenen erzeugt haben, können wir sagen,
ob sich deren x-Koordinaten überlappt haben.

Es ist kein besonders guter Programmierstil, jede Menge if-oder elif-Anwei-
sungen zu haben, die den gleichen Wert zurückgeben. Dieses Problem können wir
lösen, indem wir die innerhalb_x-Funktion kürzen. Dazu setzen wir jede ihrer
Bedingungen in Klammern und trennen sie durch das Schlüsselwort or. Falls Du
also eine etwas schickere Funktion mit ein paar weniger Code-Zeilen haben
möchtest, kannst Du die Funktion folgendermaßen ändern:

def innerhalb_x(co1, co2):
if (co1.x1 > co2.x1 and co1.x1 < co2.x2) \

or (co1.x2 > co2.x1 and co1.x2 < co2.x2) \
or (co2.x1 > co1.x1 and co2.x1 < co1.x2) \
or (co2.x2 > co1.x1 and co2.x2 < co1.x1):

return True
else:

return False

Wie weiter oben schon erklärt wurde, benutzen wir einen Rückwärtsschrägstrich
(\), damit sich unsere if-Anweisung über mehrere Zeilen erstrecken darf. Ansons-
ten müsste sie in einer sehr, sehr langen Zeile stehen.
Entwicklung des Strichmännchenspiels

Sprites stoßen vertikal zusammen

Wir müssen auch noch wissen, ob die Sprites in
vertikaler Richtung zusammenstoßen. Die Funk-
tion innerhalb_y ist der Funktion innerhalb_x
sehr ähnlich. Um sie zu erzeugen, prüfen wir, ob
sich die y1-Position der ersten Koordinate mit
den y1- und y2-Positionen der zweiten überlappt
und umgekehrt. Dazu musst Du noch folgende
Funktion hinzufügen (schreibe sie unter die
innerhalb_x-Funktion). Und dieses Mal schrei-
ben wir gleich die kürzere Version des Codes
(anstelle der vielen if-Anweisungen):

def innerhalb_y(co1, co2):
if (co1.y1 > co2.y1 and co1.y1 < co2.y2) \

or (co1.y2 > co2.y1 and co1.y2 < co2.y2) \
or (co2.y1 > co1.y1 and co2.y1 < co1.y2) \
or (co2.y2 > co1.y1 and co2.y2 < co1.y1):

return True
else:

return False

Alles zusammenfügen:
Unserer endgültiger Code zur Erkennung von Zusammenstößen

Sobald wir festgestellt haben, ob sich ein Satz unserer x-Koordinaten mit einem
anderen überlappt, und das Gleiche für die y-Koordinaten getan haben, können
wir Funktionen schreiben, mit denen wir feststellen, ob ein Sprite den anderen
berührt hat, und wenn ja, auf welcher Seite. Das machen wir mit den Funktionen
angestoßen_links, angestoßen_rechts, angestoßen_oben und angestoßen_unten.

Die Funktion »angestoßen_links«

Hier ist der Code für die Funktion angestoßen_links, den Du unter die beiden
innerhalb-Funktionen schreibst, die wir gerade erzeugt haben:

def angestoßen_links(co1, co2):
if innerhalb_y(co1, co2):

if co1.x1 <= co2.x2 and co1.x1 >= co2.x1:
return True

return False

Diese Funktion sagt uns, ob die linke Seite (der x1-Wert) des ersten Koordinaten-
Objekts ein anderes Koordinaten-Objekt berührt hat.
Zusammenstöße erkennen 229

230
Die Funktion nimmt zwei Parameter auf: co1 (das erste Koordinaten-Objekt)
und co2 (das zweite Koordinaten-Objekt). Wie Du in sehen kannst, prüfen wir,
ob sich die beiden Koordinaten-Objekte vertikal überlappen, indem wir in die
innerhalb_y-Funktion einsetzen. Schließlich ist es sinnlos zu prüfen, ob Herr
Strichmann eine Ebene berührt hat, wenn er weit über ihr schwebt:

In prüfen wir, ob der Wert der äußersten linken Posi-
tion des ersten Koordinaten-Objekts (co.x1) die x2-Posi-
tion des zweiten Koordinaten-Objekts (co2.x2) berührt
hat – das heißt, ob sie weniger oder gleich der x2-Posi-
tion ist. Wir prüfen auch, ob sie nicht schon über die x1-
Position herausragt. Falls sie die Seite berührt hat, geben
wir in True (wahr) zurück. Falls keine der if-Anwei-
sungen zutrifft, geben wir in False (falsch) zurück.

Die Funktion »angestoßen_rechts«

Die Funktion angestoßen_rechts sieht fast genauso aus wie angestoßen_links:

def angestoßen_links(co1, co2):
if innerhalb_y(co1, co2):

if co1.x2 <= co2.x1 and co1.x2 >= co2.x2:
return True

return False

Wie schon bei der Funktion angestoßen_links prüfen wir in mit der Funktion
innerhalb_y, ob sich die y-Koordinaten überlappen. Anschließend überprüfen wir
in , ob der x2-Wert zwischen den x1- und x2-Positionen des zweiten Koordina-
ten-Objekts liegt, und geben (falls ja) in True zurück. Ansonsten geben wir in
False zurück.

Nicht innerhalb von y

Ebene

x2, y2

x1, y1

x1, y1

x2, y2
Entwicklung des Strichmännchenspiels

Die Funktion »angestoßen_oben«

Die Funktion angestoßen_oben ähnelt stark den beiden Funktionen, die wir gerade
hinzugefügt haben.

def angestoßen_oben(co1, co2):
if innerhalb_x(co1, co2):

if co1.y1 <= co2.y2 and co1.y1 >= co2y1:
return True

return False

Diesmal besteht der Unterschied darin, dass wir mit der innerhalb_x-Funktion in
 prüfen, ob sich die Koordinaten horizontal überlappen. Als Nächstes schauen

wir in , ob die oberste Position der ersten Koordinate (co1.y1) sich mit der y2-
Position der zweiten, nicht aber mit deren y1-Position überlappt. Falls sie es tut,
geben wir True zurück (was bedeutet, dass die erste Koordinate die zweite berührt
hat).

Die Funktion »angestoßen_unten«

Dir war natürlich schon klar, dass eine dieser vier Funktionen ein wenig anders
sein würde, und sie ist es auch. Hier ist nun die Funktion angestoßen_unten:

def angestoßen_unten(y, co1, co2):
if innerhalb_x(co1, co2):

y_calc = co1.y2 + y
if y_calc >= co2.y1 and y_calc <= co2.y2:

return True
return False

Diese Funktion nimmt einen weiteren Parameter y auf, einen Wert, den wir der y-
Position der ersten Koordinate hinzufügen. In schauen wir, ob sich die Koordi-
naten horizontal überlappen (wie wir es schon bei angestoßen_oben getan haben).
Als Nächstes fügen wir den Wert des y-Parameters zu der y2-Position der Koordi-
nate hinzu und speichern das Ergebnis in der Variable y_calc in . Falls in der
neu berechnete Wert zwischen den y1- und y2-Werten der zweiten Koordinate
liegt, geben wir in True zurück, da die Unterseite der Koordinate co1 die Ober-
seite der Koordinate co2 berührt hat. Falls jedoch keine der if-Anweisungen
zutrifft, geben wir in False zurück.

Da Herr Strichmann von einer Ebene fallen könnte, benötigen wir einen wei-
teren y-Parameter. Im Gegensatz zu den anderen angestoßen-Funktionen müssen
wir testen können, ob er auf den Boden prallen würde, statt ob er es bereits getan
hat. Wenn er von einer Ebene herunterlaufen und weiter in der Luft schweben
würde, wäre unser Spiel ziemlich unrealistisch. Während er also läuft, prüfen wir
daher, ob er mit etwas links oder rechts zusammengestoßen ist. Wenn wir dage-
Zusammenstöße erkennen 231

232
gen unter ihm prüfen, schauen wir, ob er an die Ebene stößt; falls nicht, muss er
herunterfallen!

17.5 Erzeugen der Sprite-Klasse

Die Elternklasse für unsere Spiel-Elemente werden wir Sprite nennen. Diese
Klasse wird zwei Funktionen bereitstellen: move, um den Sprite zu bewegen, und
Koordinaten, um die aktuelle Position des Sprites auf dem Monitor zurückzuge-
ben. Hier ist der Code für die Sprite-Klasse:

class Sprite:
def __init__(self, spiel):

self.spiel = spiel
self.spielende = False
self.koordinaten = None

def move(self):
pass

def koords(self):
return self.koordinaten

Die in definierte __init__-Funktion der Sprite-Klasse nimmt einen einzigen
Parameter auf: spiel. Bei diesem Parameter handelt es sich um das Objekt spiel.
Dieses Objekt brauchen wir, damit jeder Sprite, den wir erzeugen, auf die Liste
der anderen Sprites im Spiel zugreifen kann. In speichern wir den Spiel-Para-
meter als Objekt-Variable.

In speichern wir die Objekt-Variable spielende, die wir verwenden, um das
Ende des Spiels anzuzeigen (in dem Moment, wenn es auf False gesetzt wird). Die
letzte Objekt-Variable, koordinaten in , wird auf Nichts (None) gesetzt.

Die in definierte Funktion move macht in dieser Elternklasse nichts, sodass
wir das Schlüsselwort pass in in diesem Funktionskörper benutzen. Die Funk-
tion koords in gibt einfach in die Objekt-Variable koordinaten zurück.

Unsere Sprite-Klasse hat also eine Funktion
move, die nichts macht, und eine Funktion koords,
die keine Koordinaten zurückgibt. Das klingt
nicht gerade sinnvoll, oder? Wir wissen jedoch,
dass jede Klasse, die Sprite als Elternklasse hat,
immer die Funktionen move und koords enthält.
Wenn wir also in der Hauptschleife des Spiels
durch die Liste der Sprites laufen, können wir die
Funktion move aufrufen, ohne Fehlermeldungen
zu produzieren. Warum? Weil jeder Sprite diese
Funktion enthält.
Entwicklung des Strichmännchenspiels

17.6 Die Ebenen hinzufügen

Jetzt kommen wir zu den Ebenen. Wir werden die Klasse für unser Ebenenobjekt
EbenenSprite nennen, und sie wird eine Kinderklasse von Sprite sein. Die
__init__-Funktion dieser Klasse wird einen Spiel-Parameter (genau wie die
Elternklasse Sprite), ein Bild, x- und y-Positionen sowie die Breite und Höhe des
Bildes aufnehmen. Hier ist der Code für die Klasse EbenenSprite:

class EbenenSprite(Sprite):
def __init__(self, spiel, photo_image, x, y, width, height):

Sprite.__init__(self, spiel)
self.photo_image = photo_image
self.image = spiel.canvas.create_image(x, y, \

image=self.photo_image, anchor='nw')
self.koordinaten = Koordinaten(x, y, x + width, y + height)

Wenn wir in die Klasse EbenenSprite definieren, geben wir ihr einen einzigen
Parameter: den Namen ihrer Elternklasse (Sprite). Die __init__-Funktion in hat
sieben Parameter: self, spiel, photo_image, x, y, width (Breite) und height (Höhe).

In rufen wir die __init__-Funktion der Elternklasse
(Sprite) auf und benutzen self und spiel als Parameter-
Werte, weil die __init__-Funktion der Sprite-Klasse außer
dem Schlüsselwort self nur einen Parameter aufnimmt:
spiel.

Wenn wir zu diesem Zeitpunkt ein EbenenSprite-Objekt
erzeugen würden, hätte es alle Objekt-Variablen seiner
Elternklasse (spiel, spielende und koordinaten), weil wir die
__init__-Funktion in Sprite aufgerufen haben.

In speichern wir den Parameter photo_image als Objekt-
Variable, und in benutzen wir die Variable canvas des
Objekts spiel, um das Bild mit create_image zu zeichnen.

Zum Schluss erstellen wir ein Koordinaten-Objekt mit den Parametern x und y
als seine beiden ersten Argumente. Anschließend fügen wir noch die Parameter
width und height für die beiden Argumente in hinzu.

Obwohl die Variable koordinaten in der Elternklasse Sprite auf None gesetzt
ist, haben wir sie in unserer Kinderklasse EbenenSprite in ein echtes Koordinaten-

Achtung!

Klassen mit Funktionen, die nicht sehr viel tun, kommen beim Programmieren häufig vor.
Sie sind in gewisser Hinsicht eine Art Absprache oder Vertrag, durch den sichergestellt ist,
dass alle Kinder einer Klasse die gleiche Funktionalität aufweisen, auch wenn in einigen
Fällen die Funktionen der Kinderklassen nichts machen.
Die Ebenen hinzufügen 233

234
Objekt umgewandelt, da sie den tatsächlichen Aufenthaltsort des Ebenen-Bildes
auf dem Monitor enthält.

Ein Ebenen-Objekt hinzufügen

Fügen wir dem Spiel jetzt eine Ebene hinzu, um zu sehen, wie es aussieht. Ändere
dazu die letzten beiden Zeilen der Spieldatei (Strichmännchenspiel.py) wie folgt:

s = Spiel()
Ebene1 = EbenenSprite(s, PhotoImage(file="Ebene1.gif"), \

0, 480, 100, 10)
s.sprites.append(ebene1)
s.Hauptschleife()

Wie Du siehst, wurden die Zeilen und nicht verändert, aber in haben wir
ein Objekt in der Klasse EbenenSprite erzeugt und ihm die Variable unseres Spiels
(s) zusammen mit dem PhotoImage-Objekt (das unser erstes Ebenen-Bild
Ebene1.gif verwendet) übergeben. Wir übergeben ihm auch die Position, auf der
wir die Ebene zeichnen wollen (0 Pixel zur Seite und 480 Pixel nach unten, also
fast am Boden der Leinwand), sowie die Höhe und Breite unseres Bilds (100 Pixel
zur Seite und 10 Pixel hoch). In fügen wir diesen Sprite der Liste von Sprites in
unserem Objekt spiel hinzu.

Wenn Du das Spiel jetzt laufen lässt, solltest Du eine Ebene sehen, die unten
links im Fenster gezeichnet wird:
Entwicklung des Strichmännchenspiels

Einen ganzen Haufen Ebenen hinzufügen

Jetzt fügen wir einen ganzen Haufen von Ebenen hinzu. Jede Ebene wird unter-
schiedliche x- und y-Positionen haben, sodass sie über das ganze Fenster verteilt
werden. Hier ist der Code dazu:

s = Spiel()
Ebene1 = EbenenSprite(s, PhotoImage(file="Ebene1.gif"), \

0, 480, 100, 10)
Ebene2 = EbenenSprite(s, PhotoImage(file="Ebene1.gif"), \

150, 440, 100, 10)
Ebene3 = EbenenSprite(s, PhotoImage(file="Ebene1.gif"), \

300, 400, 100, 10)
Ebene4 = EbenenSprite(s, PhotoImage(file="Ebene1.gif"), \

300, 160, 100, 10)
Ebene5 = EbenenSprite(s, PhotoImage(file="Ebene2.gif"), \

175, 350, 66, 10)
Ebene6 = EbenenSprite(s, PhotoImage(file="Ebene2.gif"), \

50, 300, 66, 10)
Ebene7 = EbenenSprite(s, PhotoImage(file="Ebene2.gif"), \

170, 120, 66, 10)
Ebene8 = EbenenSprite(s, PhotoImage(file="Ebene2.gif"), \

45, 60, 66, 10)
Ebene9 = EbenenSprite(s, PhotoImage(file="Ebene3.gif"), \

170, 250, 32, 10)
Ebene10 = EbenenSprite(s, PhotoImage(file="Ebene3.gif"), \

230, 200, 32, 10)
s.sprites.append(Ebene1)
s.sprites.append(Ebene2)
s.sprites.append(Ebene3)
s.sprites.append(Ebene4)
s.sprites.append(Ebene5)
s.sprites.append(Ebene6)
s.sprites.append(Ebene7)
s.sprites.append(Ebene8)
s.sprites.append(Ebene9)
s.sprites.append(Ebene10)
s.Hauptschleife()

Wir erzeugen jede Menge EbenenSprite-Objekte und speichern sie als Variablen
Ebene1, Ebene2, Ebene3 usw. bis zu Ebene10. Anschließend fügen wir jede Ebene der
Variable Sprites hinzu, die wir in unserer Spiel-Klasse erzeugt haben. Wenn Du
das Spiel jetzt laufen lässt, sollte es in etwa so aussehen:
Die Ebenen hinzufügen 235

236
Wir haben die Grundlagen für unser Spiel gelegt! Jetzt können wir unsere Haupt-
figur, Herrn Strichmann, hinzufügen.

17.7 Was Du gelernt hast

In diesem Kapitel hast Du die Spiel-Klasse erzeugt und wie eine Art Tapete den
Hintergrund auf den Monitor gezeichnet. Du hast gelernt, wie man mit den
Funktionen innerhalb_x und innerhalb_y bestimmt, ob sich eine horizontale oder
vertikale Position innerhalb zweier anderer horizontaler oder vertikaler Positio-
nen befindet. Diese Funktionen hast Du anschließend verwendet, um neue Funk-
tionen zu erstellen, mit denen man bestimmt, ob ein Koordinaten-Objekt mit
einem anderen zusammengestoßen ist. Diese Funktionen werden wir im nächsten
Kapitel verwenden, wenn wir Herrn Strichmann animieren und feststellen müs-
sen, ob er an eine Ebene gestoßen ist, während er sich über die Leinwand bewegt
hat.

Wir haben ebenso die Elternklasse Sprite und deren erste Kinderklasse Ebe-
nenSprite erzeugt, mit der wir die Ebenen auf die Leinwand gezeichnet haben.
Entwicklung des Strichmännchenspiels

17.8 Programmier-Puzzles

In den folgenden Programmier-Puzzles kannst Du ein wenig mit dem Spielhinter-
grundbild experimentieren. Deine Lösung kannst Du unter www.dpunkt.de/
python überprüfen.

#1: Schachbrett

Versuche, die Spiel-Klasse so zu ändern, dass das Hintergrundbild wie ein
Schachbrett gezeichnet wird:

#2: Zwei-Bilder-Schachbrett

Wenn Du herausgefunden hast, wie man den Schachbrett-Effekt erzeugt, versu-
che es mit zwei abwechselnden Bildern. Erstelle ein zweites Hintergrundbild (mit
Deinem Grafikprogramm), und ändere die Spiel-Klasse so, dass sie ein Schach-
brettmuster aus zwei sich abwechselnden Bildern (statt eines Bildes und dem lee-
ren Hintergrund) darstellt.
Programmier-Puzzles 237

238
#3: Regal und Lampe

Damit das Bild hübscher aussieht, kannst Du andere Hintergrundbilder erstellen.
Erzeuge dazu eine Kopie des Hintergrundbildes, und zeichne darauf ein einfaches
Regal. Oder Du könntest einen Tisch mit einer Lampe oder ein Fenster dazu
zeichnen. Verteile die Bilder durch Ändern der Spiel-Klasse auf dem Bildschirm,
sodass sie drei oder vier verschiedene Hintergrundbilder lädt und anzeigt.
Entwicklung des Strichmännchenspiels

18
Herrn Strichmann erschaffen
In diesem Kapitel werden wir die Hauptfigur unseres Spiels Herr Strichmann
rennt zum Ausgang erschaffen. Da Herr Strichmann nach links und rechts laufen
und springen muss, anhalten soll, wenn er gegen eine Ebene läuft, und hinfallen
soll, wenn er über die Kante einer Ebene läuft, wird dies der komplizierteste
Code, den wir bis jetzt geschrieben haben. Um das Strichmännchen nach links
und rechts laufen zu lassen, werden wir mit Ereignisbindungen an die linke und
rechte Pfeiltaste arbeiten, und wir werden es durch Druck auf die Leertaste sprin-
gen lassen.

18.1 Das Strichmännchen initialisieren

Die __init__-Funktion unserer neuen Strichmännchen-Klasse hat viel Ähnlich-
keit mit den anderen Klassen, die wir bis jetzt erstellt haben. Wir geben unserer
neuen Klasse zunächst einen Namen: StrichFigurSprite. Wie schon bei den vor-
herigen Klassen hat auch diese eine Elternklasse: Sprite.

class StrichFigurSprite:
def __init__(self, spiel):

Sprite.__init__(self, spiel)

Dieser Code sieht aus wie der Code, den wir in der EbenenSprite-Klasse in Kapitel
16 geschrieben haben, nur dass wir keine zusätzlichen Parameter verwenden
(außer self und spiel). Dies liegt daran, dass wir im Gegensatz zur EbenenSprite-
Klasse nur ein einziges StrichFigurSprite-Objekt im Spiel einsetzen.
239

240
Die Strichmännchen-Bilder laden

Da wir eine Menge Ebenen-Objekte auf dem Moni-
tor haben, die jeweils unterschiedlich große Bilder
verwenden können, übergeben wir das Ebenen-Bild
als Parameter der __init__-Funktion der Ebenen-
Sprites. (Das ist, als ob man sagen würde: »Ebe-
nen-Sprite, nimm dieses Bild, um Dich selbst auf
dem Monitor zu zeichnen.«) Da es aber nur ein ein-
ziges Strichmännchen auf dem Monitor gibt, ist es
nicht sinnvoll, das Bild außerhalb des Sprites zu
laden und es dann als Parameter zu übergeben. Die Klasse StrichFigurSprite wird
daher ihre eigenen Bilder laden.

Die nächsten paar Zeilen der __init__-Funktion tun genau das: Sie laden die
drei linken Bilder (die wir verwenden werden, um das Strichmännchen nach links
laufen zu lassen) und die drei rechten Bilder (um das Strichmännchen nach rechts
laufend zu animieren). Wir müssen die Bilder schon an dieser Stelle laden, weil sie
nicht erst immer dann geladen werden sollen, wenn das Strichmännchen auf dem
Monitor dargestellt werden soll (dies würde zu lange dauern und das Spiel sehr
verlangsamen).

class StrichFigurSprite:
def __init__(self, spiel):

Sprite.__init__(self, spiel)
self.bilder_links = [

PhotoImage(file="Figur-L1.gif"),
PhotoImage(file="Figur-L2.gif"),
PhotoImage(file="Figur-L3.gif")

]
self.bilder_rechts = [

PhotoImage(file="Figur-R1.gif"),
PhotoImage(file="Figur-R2.gif"),
PhotoImage(file="Figur-R3.gif")

]
self.bild = spiel.canvas.create_image(200, 470, \

image=self.bilder_links[0], anchor='nw')

Dieser Code lädt jedes der drei linken Bilder, mit denen wir das Strichmännchen
nach links laufen lassen, und die drei Bilder, mit denen wir die Animation des
Strichmännchens nach rechts vornehmen.

In und erzeugen wir die Objekt-Variablen bilder_links und bilder_
rechts. Beide enthalten eine Liste mit den PhotoImage-Objekten, die wir in
Kapitel 16 erzeugt haben und in denen das Strichmännchen nach links oder
rechts zeigt. Mit bilder_links[0] malen wir in das erste Bild mit der Funktion
der Leinwand create_image an der Position (200, 470), wodurch das Strichmänn-
Herrn Strichmann erschaffen

chen in der Mitte des Spielfensters und am Boden der Leinwand erscheint. Die
Funktion create_image gibt eine Zahl zurück, die das Bild auf der Leinwand iden-
tifiziert. Wir speichern diese ID-Nummer für später in der Objekt-Variablen
image.

Variablen einrichten

Im nächsten Teil der __init__-Funktion werden weitere Variablen eingerichtet,
die wir später im Code verwenden.

self.bilder_rechts = [
PhotoImage(file="Figur-R1.gif"),
PhotoImage(file="Figur-R2.gif"),
PhotoImage(file="Figur-R3.gif")

]
self.bild = spiel.canvas.create_image(200, 470, \

image=self.bilder_links[0], anchor='nw')
self.x = -2
self.y = 0
self.aktuelles_bild = 0
self.aktuelles_bild_plus = 1
self.springen_zähler = 0
self.letzte_zeit = time.time()
self.koordinaten = Koordinaten()

In und speichern die Variablen x und y den Umfang der Koordinaten, den
die Strichmännchen horizontal (x1 und x2) und vertikal (y1 und y2) beim Bewegen
auf dem Monitor zurücklegen.

Wie Du schon in Kapitel 14 gelernt hast, fügen wir zu den x- und y-Positionen
der Objekte Werte hinzu, um sie mit dem Modul tkinter über die Leinwand zu
bewegen. Indem wir x auf -2 und y auf 0 setzen, ziehen wir von der x-Position
später 2 ab und fügen der vertikalen Position nichts hinzu, damit das Strichmänn-
chen nach links rennt.

In erzeugen wir die Objekt-Variable aktuelles_bild, um die Index-Position des
Bildes, wie es gerade auf dem Monitor angezeigt wird, zu speichern. Unsere Liste
von Bildern, die nach links zeigen (bilder_links), enthält Figur-L1.gif, Figur-
L2.gif und Figur-L3.gif. Diese haben die Index-Positionen 0, 1 und 2.

Achtung!

Denke daran, dass eine negative x-Zahl eine Bewegung nach links auf der Leinwand verur-
sacht und dass eine positive x-Zahl eine Bewegung nach rechts bedeutet. Eine negative y-
Zahl steht für eine Bewegung nach oben und eine positive y-Zahl für eine Bewegung nach
unten.
Das Strichmännchen initialisieren 241

242
In enthält die Variable aktuelles_bild_plus die Zahl, die wir der in
aktuelles_bild gespeicherten Index-Position hinzufügen, um die nächste Index-
Position zu erhalten. Wenn das Bild beispielsweise an Index-Position 0 angezeigt
wird, zählen wir 1 hinzu, um das nächste Bild an Index-Position 1 zu erhalten,
und zählen wieder 1 hinzu, um das letzte Bild der Liste an Index-Position 2 zu
bekommen. (Wie man diese Variable zur Animation nutzt, wirst Du im nächsten
Kapitel sehen.)

Die Variable springen_zähler in ist ein Zähler, den wir verwenden, wäh-
rend das Strichmännchen springt. Die Variable letzte_zeit speichert den letzten
Zeitpunkt, an dem wir das Bild während der Animation unseres Strichmänn-
chens verändert haben. Die aktuelle Zeit speichern wir mit der Funktion time aus
dem Modul time in .

In setzen wir die Objekt-Variable koordinaten auf ein Objekt der Koordina-
ten-Klasse, und zwar ohne Initialisierungsparameter (x1, y1, x2 und y2 sind alle 0).
Im Gegensatz zu den Ebenen verändern sich die Koordinaten des Strichmänn-
chens, sodass wir deren Werte später setzen.

Bindung an die Tasten

Im letzten Teil der __init__-Funktion verbindet die Funktion bind eine Taste mit
dem Teil unseres Codes, der durchgeführt werden soll, sobald die entsprechende
Taste gedrückt wird.

self.springen_zähler = 0
self.letzte_zeit = time.time()
self.koordinaten = Koordinaten()
game.canvas.bind_all('<KeyPress-Left>', self.nach_links)
game.canvas.bind_all('<KeyPress-Right>', self.nach_rechts)
game.canvas.bind_all('<space>', self.springen)

Wir verbinden '<KeyPress-Left>' mit der Funktion nach_links, '<KeyPress-Right>'
mit der Funktion nach_rechts und <space> mit der Funktion springen. Jetzt müs-
sen wir diese Funktionen erzeugen, damit sich das Strichmännchen bewegt.

18.2 Das Strichmännchen nach links und
rechts bewegen

Die Funktionen nach_links und nach_rechts sorgen
dafür, dass das Strichmännchen nicht springt, und set-
zen den Wert der Objekt-Variablen x so, dass es sich
nach links oder rechts bewegt. (Falls unsere Figur
springt, würde unser Spiel es nicht ermöglichen, die
Richtung in der Luft zu ändern.)
Herrn Strichmann erschaffen

game.canvas.bind_all('<KeyPress-Left>', self.nach_links)
game.canvas.bind_all('<KeyPress-Right>', self.nach_rechts)
game.canvas.bind_all('<space>', self.springen)

def nach_links(self, evt):
if self.y == 0:

self.x = -2

def nach_rechts(self, evt):
if self.y == 0:

self.x = 2

Sobald der Spieler die linke Pfeiltaste drückt, ruft Python die Funktion nach_links
auf und übergibt ein Objekt, das als Parameter Informationen darüber enthält,
was der Spieler gemacht hat. So ein Objekt nennt man Ereignisobjekt, und wir
geben ihm den Parameter-Namen evt.

Um zu prüfen, ob das Strichmännchen gerade springt, prüfen wir in und die
y-Objekt-Variable. Falls der Wert nicht 0 ist, springt das Strichmännchen. Wenn
in diesem Fall der Wert von y auf 0 steht, setzen wir x auf -2, um in nach links
zu rennen, oder wir setzen ihn in auf 2, um nach rechts zu rennen. Mit den
Werten -1 oder 1 würde sich das Strichmännchen nicht schnell genug über den
Monitor bewegen. (Sobald die Animation Deines Strichmännchens funktioniert,
versuche einmal diesen Wert zu ändern, um den Unterschied zu sehen.)

18.3 Das Strichmännchen springen lassen

Die Funktion springen ist den Funktionen nach_links und nach_rechts sehr ähnlich.

def nach_rechts(self, evt):
if self.y == 0:

self.x = 2

def springen(self, evt):
if self.y == 0:

self.y = -4
self.springen_zähler = 0

Achtung!

Das Ereignisobjekt ist für unsere Zwecke nicht wichtig, muss aber als Parameter unserer
Funktionen (in und) enthalten sein, da Python es dort erwartet und ansonsten eine
Fehlermeldung ausgibt. Ein Ereignis-Objekt enthält normalerweise Dinge wie x- und y-
Positionen der Maus (Maus-Ereignis), Code, der für eine bestimmte Taste steht (Tastatur-
Ereignis), und andere Informationen. Bei diesem Spiel nützt uns keine dieser Informatio-
nen etwas, sodass wir sie einfach ignorieren können.
Das Strichmännchen springen lassen 243

244
Diese Funktion nimmt den Parameter evt (das Ereig-
nis-Objekt) auf, den wir ignorieren können, da wir
keine weitere Informationen über das Ereignis benö-
tigen. Wenn diese Funktion aufgerufen wird, wissen
wir, dass die Leertaste gedrückt wurde.

Da wir möchten, dass unser Strichmännchen nur
springt, falls es das gerade nicht tut, prüfen wir in ,
ob y gleich 0 ist. Falls das Strichmännchen nicht
springt, setzen wir in y auf -4 (um es vertikal nach
oben zu bewegen) und setzen springen_zähler in
auf 0. Den springen_zähler benutzen wir, um sicher-
zustellen, dass das Strichmännchen nicht endlos springt. Stattdessen lassen wir es
eine bestimmte Anzahl Sprünge machen und lassen es dann so herunterkommen,
als ob die Schwerkraft es wieder herunterziehen würde. Den Code dafür fügen
wir im nächsten Kapitel hinzu.

18.4 Was wir bis jetzt erreicht haben

Wir wollen uns zunächst einen Überblick über die Definitionen der Klassen und
Funktionen verschaffen, die wir bis jetzt in unserem Spiel haben, und schauen,
wo sie sich in Deiner Datei befinden sollten.

Ganz oben in Deinem Programm sollten die import-Anweisungen stehen,
gefolgt von den Spiel- und Koordinaten-Klassen. Die Spiel-Klasse wird zur Erzeu-
gung eines Objekts verwendet, das als Hauptsteuerung Deines Spiels dient, und
die Objekte der Koordinaten-Klasse sind dazu da, die Positionen der Dinge in Dei-
nem Spiel zusammenzuhalten (wie etwa die Ebenen und Herrn Strichmann):

from tkinter import *
import random
import time
class Spiel:

...
class Koordinaten:

...

Als Nächstes sollten bei Dir die innerhalb-Funktionen kommen (die sagen, ob die
Koordinaten eines Sprites »innerhalb« des Bereichs eines anderen Sprites liegen).
Dann folgen die Elternklasse Sprite (die Elternklasse aller Sprites in unserem
Spiel), die Klasse EbenenSprite und der Anfang der StrichFigurSprite-Klasse. Die
Klasse EbenenSprite wurde zur Erzeugung von Ebenen-Objekten verwendet, über
die unser Strichmännchen springen soll, und wir haben ein Objekt der StrichFi-
gurSprite-Klasse erzeugt, das für die Hauptfigur in unserem Spiel steht:
Herrn Strichmann erschaffen

def innerhalb_x(co1, co2):
...

def innerhalb_y(co1, co2):
...

class Sprite:
...

class EbenenSprite(Sprite):
...

class StrichFigurSprite(Sprite):
...

Am Ende Deines Programms sollte der Code stehen, der alle bis jetzt erstellten
Objekte in Deinem Spiel erzeugt: das Spiel-Objekt an sich und die Ebenen. In der
letzten Zeile steht das, was wir die Hauptschleifen-Funktion (Hauptschleife) nen-
nen:

s = Spiel()
Ebene1 = EbenenSprite(s, PhotoImage(file="Ebene1.gif"), \

0, 480, 100, 10)
...
s.sprites.append(ebene1)
...
s.Hauptschleife()

Falls Dein Code ein bisschen anders aussieht oder Du Schwierigkeiten hast, ihn
ans Laufen zu bringen, kannst Du zum Ende von Kapitel 19 vorblättern, wo Du
das vollständige Listing des gesamten Spiels findest.

18.5 Was Du gelernt hast

In diesem Kapitel haben wir mit der Arbeit an der Klasse für unser Strichmänn-
chen begonnen. Wenn wir zu diesem Zeitpunkt ein Objekt dieser Klasse erzeugen
würden, würde es nicht viel tun, außer die Bilder zu laden, die es für die Anima-
tion des Strichmännchens benötigt, und ein paar Objekt-Variablen für später ein-
zurichten.

Diese Klasse enthält ein paar Funktionen zum Ändern der Werte in diesen
Objekt-Variablen aufgrund von Tastatur-Ereignissen (wenn ein Spieler die linke
oder rechte Pfeiltaste oder Leertaste drückt). Im nächsten Kapitel werden wir
unser Spiel zu Ende programmieren. Wir werden die Funktionen zum Anzeigen
und Animieren des Strichmännchens in der StrichFigurSprite-Klasse schreiben
und Herrn Strichmann auf dem Monitor bewegen. Wir werden auch den Aus-
gang (die Tür) erzeugen, die er zu erreichen versucht.
Was Du gelernt hast 245

246
 Herrn Strichmann erschaffen

19
Abschluss des Spiels mit

Herrn Strichmann
In den letzten drei Kapiteln haben wir unser Spiel entwickelt: Herr Strichmann
rennt zum Ausgang. Wir haben zunächst die Grafiken erstellt und danach den
Code geschrieben, um das Hintergrundbild, die Ebenen und das Strichmännchen
hinzuzufügen. In diesem Kapitel unternehmen wir die letzten Schritte, um das
Strichmännchen zu animieren, und fügen die Tür hinzu.

Das vollständige Listing des Spiels findest Du am Ende
dieses Kapitels. Falls Du nicht mehr weiter weißt oder Dir
beim Schreiben dieses Codes etwas unklar ist, vergleiche
Deinen Code mit dem Listing, um zu sehen, was Du falsch
gemacht hast.

19.1 Animation des Strichmännchens

Bis jetzt haben wir die grundlegende Klasse für unser Strich-
männchen erstellt, die Bilder geladen, die wir verwenden
werden, und Tasten mit einigen Funktionen verbunden.
Wenn Du das Spiel jetzt jedoch laufen lässt, macht unser
Code nichts besonders Interessantes.

In den folgenden Abschnitten fügen wir der Strich-
FigurSprite-Klasse, die wir in Kapitel 18 erzeugt haben, die
247

248
restlichen Funktionen hinzu: animieren, move und coords. Die Funktion animieren
wird die unterschiedlichen Strichmännchen-Bilder zeichnen; move wird festlegen,
wohin sich die Figur bewegen soll, und coords wird die aktuelle Position des
Strichmännchens zurückgeben. (Anders als bei den Ebenen-Sprites müssen wir
die Position des Strichmännchens immer wieder neu berechnen, da es sich auf
dem Bildschirm umher bewegt.)

Die Funktion animieren erstellen

Als Erstes erstellen wir die Funktion animieren, die wir benötigen, um die Bewe-
gung zu erfassen und das Bild entsprechend zu ändern.

Bewegung erfassen

Wir möchten nicht, dass das Strichmännchen-Bild sich in unserer Animation zu
schnell ändert, da seine Bewegungen ansonsten nicht realistisch aussehen wür-
den. Stell Dir dazu einfach ein Daumenkino vor, das Du auf die Ecken eines
Notizblocks gezeichnet hast – wenn Du die Seiten zu schnell blätterst, hast Du
eventuell nicht den vollen Effekt.

Die erste Hälfte der Funktion animieren prüft, ob das Strichmännchen nach
links oder rechts rennt. Sie benutzt die Variable letzte_zeit, um zu entscheiden,
ob das aktuelle Bild verändert werden soll. Diese Variable wird uns dabei helfen,
die Geschwindigkeit unserer Animation zu steuern. Die Funktion schreiben wir
hinter die springen-Funktion, die wir in Kapitel 18 unserer StrichFigurSprite-
Klasse hinzugefügt haben.

def springen(self, evt):
if self.y == 0:

self.y = -4
self.springen_zähler = 0

def animieren(self):
if self.x != 0 and self.y == 0:

if time.time() - self.letzte_zeit > 0.1:
self.letzte_zeit = time.time()
self.aktuelles_bild += self.aktuelles_bild_plus

if self.aktuelles__bild >= 2:
self.aktuelles_bild_plus = -1

if self.aktuelles__bild <= 0:
self.aktuelles_bild_plus = 1

Mit der if-Anweisung in prüfen wir, ob x nicht 0 ist, um dadurch festzustellen,
ob sich das Strichmännchen bewegt (nach links oder rechts), und wir schauen, ob
y gleich 0 ist, um zu bestimmen, dass das Strichmännchen nicht springt. Falls
diese if-Anweisung wahr ist, müssen wir unser Strichmännchen animieren; wenn
Abschluss des Spiels mit Herrn Strichmann

nicht, steht es still und muss nicht animiert werden. Wenn sich das Strichmänn-
chen nicht bewegt, fallen wir aus dieser Funktion heraus, und der restliche Code
dieses Listings wird ignoriert.

In berechnen wir die Zeit, die nach dem letzten Aufruf der Funktion ani-
mieren vergangen ist, indem wir den Wert der Variable letzte_zeit von der aktu-
ellen Zeit mit time.time() abziehen. Diese Berechnung wird zur Entscheidung
benötigt, ob das nächste Bild in der Sequenz gezeichnet werden soll oder nicht.
Falls das Ergebnis größer als eine Zehntelsekunde (0.1) ist, geht es mit dem Code-
block in weiter. Die Variable letzte_zeit setzen wir auf die aktuelle Zeit.
Dadurch setzen wir quasi die Stoppuhr zurück auf null für den nächsten Bild-
wechsel.

In fügen wir den Wert der Objekt-Variablen aktuelles_bild_plus der Vari-
ablen aktuelles_bild hinzu, die die Index-Position des aktuell angezeigten Bildes
speichert. Da wir in Kapitel 18 die Variable aktuelles_bild_plus in der __init__-
Funktion des Strichmännchens schon erzeugt haben, ist beim ersten Aufruf der
Funktion animieren der Wert der Variable schon auf 1 gesetzt.

In prüfen wir, ob der Wert der Index-Position in aktuelles_bild größer
oder gleich 2 ist. Falls ja, ändern wir den Wert von aktuelles_bild_plus in auf
−1. Der Vorgang in ist ähnlich – sobald wir 0 erreichen, müssen wir mit dem
Zählen von vorne anfangen, wie wir es in tun.

Damit Du besser verstehst, was in der Funktion bis jetzt passiert, stell Dir vor, Du
hättest auf dem Boden eine Reihe farbiger Bauklötze ausgelegt. Du bewegst Dei-
nen Finger von einem Bauklotz zum nächsten, und jeder Klotz, auf den Dein Fin-
ger zeigt (1, 2, 3, 4 usw.), hat eine Nummer (die Variable aktuelles_bild). Die
Nummer des Platzes (Dein Finger zeigt immer auf einen einzigen Klotz) ist die
Zahl, die in der Variablen aktuelles_ bild_plus gespeichert wird. Wenn sich Dein
Finger die Reihe von Klötzen entlangbewegt, wird jedes Mal 1 hinzugezählt. Und
wenn das Ende der Reihe erreicht ist und der Finger zurückwandert, wird jedes
Mal 1 abgezogen (also -1 hinzugefügt).

Der Code, den wir unserer animieren-Funktion hinzugefügt haben, führt die-
sen Prozess durch, doch anstelle von farbigen Bauklötzen nimmt er die drei
Strichmännchenbilder für beide Richtungen, die in einer Liste gespeichert sind.
Die Index-Positionen dieser Bilder sind 0, 1 und 2. Sobald wir beim Animieren
des Strichmännchens das letzte Bild erreicht haben, fangen wir an, rückwärts zu

Achtung!

Falls Dir unklar ist, wie Du diesen Code einrücken sollst, hier ein Hinweis: Am Anfang von
sind es 8 Leerzeichen, und vor sind es 20 Leerzeichen.
Animation des Strichmännchens 249

250
zählen, und wenn wir wieder beim ersten Bild sind, müssen wir wieder vorwärts
zählen. Als Ergebnis bekommen wir den Eindruck einer rennenden Figur.

Im Folgenden wird gezeigt, wie wir uns durch die Liste der Bilder bewegen,
wobei wir die Index-Positionen in der animieren-Funktion berechnen.

Das Bild ändern

In der nächsten Hälfte der Funktion animieren finden wir durch die berechnete
Index-Position das jeweils angezeigte Bild.

def animieren(self):
if self.x != 0 and self.y == 0:

if time.time() - self.letzte_zeit > 0.1:
self.letzte_zeit = time.time()
self.aktuelles_bild += self.aktuelles_bild_plus
if self.aktuelles__bild >= 2:

self.aktuelles_bild_plus = -1
if self.aktuelles__bild <= 0:

self.aktuelles_bild_plus = 1
if self.x < 0:

if self.y != 0:
self.spiel.canvas.itemconfig(self.bild, \

image=self.bilder_links[2])
else:

self.spiel.canvas.itemconfig(self.bild, \
image=self.bilder_links[self.aktuelles_bild])

elif self.x > 0:
if self.y != 0:

self.spiel.canvas.itemconfig(self.bild, \
image=self.bilder_rechts[2])

else:
self.spiel.canvas.itemconfig(self.bild, \

image=self.bilder_rechts[self.aktuelles_bild])

Position 0 Position 1 Position 2 Position 1 Position 0 Position 1

Aufwärtz
zählend

Aufwärtz
zählend

Aufwärtz
zählend

Abwärtz
zählend

Abwärtz
zählend

Aufwärtz
zählend
Abschluss des Spiels mit Herrn Strichmann

Wenn in x weniger als 0 beträgt, bewegt sich das Strichmännchen nach links
und Python geht in den Code-Block von bis , wo geprüft wird, ob y ungleich
0 ist (was bedeutet, dass das Strichmännchen springt). Falls y ungleich 0 ist (das
Strichmännchen springt, bewegt sich also nach oben oder unten), benutzen wir
die Leinwand-Funktion item_config, um das letzte Bild in unserer Liste mit nach
links zeigenden Bildern in (bilder_links[2]) anzuzeigen. Da das Strichmänn-
chen springt, zeigen wir es mit maximaler Schrittlänge, damit die Animation
etwas realistischer aussieht:

Wenn das Strichmännchen nicht im Sprung ist (wenn y also gleich 0 ist), benutzt
die else-Anweisung ab item_config, um das Bild in dasjenige zu ändern, dessen
Indexposition der Variablen aktuelles_bild im Code bei entspricht.

In schauen wir, ob das Strichmännchen nach rechts rennt (x ist größer
als 0), und Python geht dann weiter in den Block von bis . Der Code ist dem
Code aus dem ersten Block sehr ähnlich und prüft wieder, ob das Strichmännchen
springt. Falls es springt, stellt er das entsprechende Bild dar oder verwendet die
Bilder aus bilder_rechts.

Die Position des Strichmännchens erfassen

Da wir bestimmen müssen, wo sich das Strichmännchen auf dem Monitor befin-
det (weil es sich umherbewegt), unterscheidet sich die Funktion coords von den
anderen Funktionen der Sprite-Klasse. Um zu erfassen, wo sich das Strichmänn-
chen befindet, werden wir die Funktion coords der Leinwand verwenden und
dann deren Werte benutzen, um die Werte x1, y1 sowie x2 und y2 der Variablen
koordinaten zu setzen, die wir in der __init__-Funktion am Anfang von
Kapitel 18 erzeugt haben. Hier siehst Du den Code, der hinter die animieren-
Funktion gestellt werden kann:
Animation des Strichmännchens 251

252
if self.x < 0:
if self.y != 0:

self.spiel.canvas.itemconfig(self.bild, \
image=self.bilder_links[2])

else:
self.spiel.canvas.itemconfig(self.bild, \

image=self.bilder_links[self.aktuelles_bild])
elif self.x > 0:

if self.y != 0:
self.spiel.canvas.itemconfig(self.bild, \

image=self.bilder_rechts[2])
else:

self.spiel.canvas.itemconfig(self.bild, \
image=self.bilder_rechts[self.aktuelles_bild])

def coords(self):
xy = self.spiel.canvas.coords(self.bild)
self.koordinaten.x1 = xy[0]
self.koordinaten.y1 = xy[1]
self.koordinaten.x2 = xy[0] + 27
self.koordinaten.y2 = xy[1] + 30
return self.koordinaten

Als wir in Kapitel 17 die Spiel-Klasse angelegt haben, war eine der Objekt-Varia-
blen die Leinwand (canvas). In benutzen wir mit self.spiel.canvas.coords die
coords-Funktion dieser canvas-Variablen, um die x- und y-Positionen des aktuel-
len Bildes zurückzugeben. Diese Funktion verwendet die Zahl, die in der Objekt-
Variablen bild gespeichert ist, d.h. die ID-Nummer des Bildes, das auf die Lein-
wand gezeichnet wird.

Die daraus resultierende Liste speichern wir in der Variablen xy, die nun zwei
Werte enthält: die x-Position oben links, die in der Variablen x1 von koordinaten
in gespeichert wird, und die y-Position oben links als Variable y1 von koordina-
ten in . Da alle Strichmännchen-Bilder 27 Pixel breit und 30 Pixel hoch sind,
können wir bestimmen, wie die x2- und y2-Variablen sein sollten, indem wir die
Breite in und die Höhe in zu den x- bzw. y-Zahlen addieren.

In der letzten Zeile der Funktion geben wir schließlich die Objekt-Variable
koordinaten zurück.

Das Strichmännchen in Bewegung versetzen

Die letzte Funktion der Strichfigur-Sprite-Klasse move ist dafür zuständig, unsere
Spielfigur tatsächlich über den Monitor zu bewegen. Sie muss uns auch sagen
können, ob die Figur an etwas gestoßen ist.
Abschluss des Spiels mit Herrn Strichmann

Der Beginn der Funktion »move«

Hier siehst Du den Code für den ersten Teil der Funktion move – er folgt hinter
coords:

def coords(self):
xy = self.spiel.canvas.coords(self.image)
self.koordinaten.x1 = xy[0]
self.koordinaten.y1 = xy[1]
self.koordinaten.x2 = xy[0] + 27
self.koordinaten.y2 = xy[1] + 30
return self.koordinaten

def move(self):
self.animieren()
if self.y < 0:

self.springen_zähler += 1
if self.springen_zähler > 20:

self.y = 4
if self.y > 0:

self.springen_zähler -= 1

Der Teil in dieser Funktion ruft die Funktion animieren auf, die wir vorher in
diesem Kapitel erzeugt haben, und ändert falls nötig das aktuell angezeigte Bild.
In schauen wir, ob der Wert von y kleiner als 0 ist. Falls ja, wissen wir, dass das
Strichmännchen springt, da ein negativer Wert es nach oben bewegen würde,
(Denk daran, dass 0 ganz oben auf der Leinwand ist und dass die Pixelposition
500 ganz unten liegt.)

In zählen wir zu springen_zähler 1 hinzu, und in bzw. sagen wir, dass
wir y auf 4 ändern, sobald springen_zähler den Wert 20 erreicht hat, damit das
Strichmännchen wieder herunterkommt.

In prüfen wir, ob der Wert von y größer als 0 ist (die Figur fällt herunter),
und falls er es ist, ziehen wir 1 von springen_zähler ab , da wir – nachdem wir
bis 20 aufwärts gezählt haben – wieder rückwärts zählen müssen. (Hebe Deine
Hand langsam nach oben, während Du bist 20 zählst, und lass sie wieder sinken,
während Du von 20 rückwärts zählst. Dadurch bekommst Du ein Gefühl dafür,
wie die Berechnung des Auf- und Abspringens der Figur funktioniert.)

In den nächsten paar Zeilen der Funktion move rufen wir die Funktion coords
auf, die uns sagt, wo sich unsere Figur auf dem Monitor befindet, und das Ergeb-
nis in der Variablen co speichert. Anschließend erzeugen wir die Variablen links,
rechts, oben, unten und fallen. Diese werden wir alle im Rest dieser Funktion ver-
wenden.
Animation des Strichmännchens 253

254
if self.y > 0:
self.springen_zähler -= 1

co = self.coords()
links = True
rechts = True
oben = True
unten = True
fallen = True

Beachte, dass alle Variablen auf den booleschen Wert wahr (True) gesetzt sind.
Wir werden sie als Indikatoren verwenden, um zu prüfen, ob die Figur auf dem
Monitor an etwas gestoßen ist oder gerade fällt.

Hat das Strichmännchen den Boden oder die Decke der Leinwand berührt?

Der nächste Abschnitt der Funktion move prüft, ob unsere Figur den Boden oder
die Decke der Leinwand berührt hat. Hier ist der Code:

unten = True
fallen = True
if self.y > 0 and co.y2 >= self.spiel.canvas_height:

self.y = 0
unten = False

elif self.y < 0 and co.y1 <= 0:
self.y = 0
oben = False

Wenn die Figur auf dem Monitor herunterfällt, ist y größer als 0, und von daher
müssen wir prüfen, ob sie nicht bereits den Boden der Leinwand erreicht hat
(ansonsten würde sie ja durch den Boden hindurchfallen). Deshalb schauen wir in

, ob ihre y2-Position (die Unterseite des Strichmännchens) größer oder gleich
der Variable canvas_height im Spiel-Objekt ist. Falls sie es ist, setzen wir den
Wert von y in auf 0, stoppen dadurch den Fall des Strichmännchens und setzen
die Variable unten in auf False, wodurch wir dem restlichen Code sagen, dass
er nicht länger schauen muss, ob das Strichmännchen den Boden berührt hat.
Abschluss des Spiels mit Herrn Strichmann

Der Prozess, mit dem wir feststellen, ob das Strichmännchen die oberste
Kante des Monitors berührt hat, ist dem Prozess sehr ähnlich, mit dem wir prü-
fen, ob es den Boden erreicht hat. Dazu prüfen wir in , ob das Strichmännchen
springt (y ist kleiner als 0), und prüfen dann, ob seine y1-Position kleiner oder
gleich 0 ist – ob es also oben an der Leinwand angestoßen ist. Falls beide Bedin-
gungen wahr sind, setzen wir y in gleich 0, um die Bewegung zu stoppen. Wir
setzen in gleichzeitig die Variable oben auf True, um dem restlichen Code mit-
zuteilen, dass er nicht mehr prüfen muss, ob das Strichmännchen oben angesto-
ßen ist.

Hat das Strichmännchen die Seite der Leinwand berührt?

Wir durchlaufen fast exakt den gleichen Prozess wie beim vorherigen Code, um
zu ermitteln, ob das Strichmännchen die linke oder rechte Seite der Leinwand
berührt hat:

elif self.y < 0 and co.y1 <= 0:
self.y = 0
oben = False

if self.x > 0 and co.x2 >= self.spiel.canvas_width:
self.x = 0
rechts = False

elif self.x < 0 and co.x1 <= 0:
self.x = 0
links = False

Der Code in basiert auf der Erkenntnis, dass das Strichmännchen nach rechts
rennt, falls x größer als 0 ist. Wir wissen auch, ob er schon vor die rechte Wand
gerannt ist, indem wir nachschauen, ob die x2-Position (co.x2) größer oder gleich
der Breite der Leinwand ist, die in spiel.canvas_width gespeichert ist. Falls beide
Anweisungen wahr sind, setzen wir x gleich 0 (und beenden so das Rennen des
Strichmännchens) und setzen die Variable rechts in auf falsch.

Mit anderen Sprites zusammenstoßen

Sobald wir geprüft haben, ob die Figur die Seiten des Spielfensters berührt hat,
müssen wir noch schauen, ob sie noch gegen etwas anderes gestoßen ist. Mit dem
folgenden Code schleifen wir durch die Liste von Sprite-Objekten, die im Objekt
spiel gespeichert sind, um zu prüfen, ob das Strichmännchen irgendeines von
ihnen berührt hat.
Animation des Strichmännchens 255

256
elif self.x < 0 and co.x1 <= 0:
self.x = 0
links = False

for sprite in self.spiel.sprites:
if sprite == self:

continue
sprite_co = sprite.coords()
if oben and self.y < 0 and angestoßen_oben(co, sprite_co):

self.y = -self.y
oben = False

In laufen wir in einer Schleife durch die Liste der Sprites und weisen jedes Sprite
dabei der Variablen sprite zu. Der Code in besagt: Wenn der Sprite gleich self
ist (das ist, als ob man sagen würde »falls dieser Sprite das Gleiche ist wie ich«),
müssen wir nicht prüfen, ob das Strichmännchen irgendwo angestoßen ist, da es
sich nur selbst berührt hätte. Falls die Variable sprite gleich self ist, gehen wir
mit continue zum nächsten Sprite in der Liste.

Als Nächstes bekommen wir durch den Aufruf der Funktion coords in die
Koordinaten des neuen Sprites und speichern das Ergebnis in der Variablen
sprite_co. Anschließend überprüft der Code in Folgendes:

■ Das Strichmännchen hat die Decke der Leinwand noch nicht berührt (die
Variable oben ist immer noch wahr).

■ Das Strichmännchen springt (der Wert von y ist kleiner als 0).
■ Die Oberseite des Strichmännchens ist mit einem Sprite in der Liste zusam-

mengestoßen (durch Verwendung der Funktion angestoßen_oben, die wir in
Kapitel 17 erzeugt haben).

Falls alle diese Bedingungen wahr sind, möchten wir, dass der Sprite beginnt her-
unterzufallen, und so kehren wir den Wert von y in mit einem Minus (-) um.
Die Variable oben wird in auf False gesetzt, denn wenn die Strichfigur einmal
oben angestoßen ist, müssen wir nicht weiter auf Berührungen hin prüfen.
Abschluss des Spiels mit Herrn Strichmann

Auftreffen mit der Unterseite

Der nächste Teil der Schleife prüft, ob die Unterseite unserer Figur etwas berührt
hat:

if oben and self.y < 0 and angestoßen_oben(co, sprite_co):
self.y = -self.y
oben = False

if unten and self.y > 0 and angestoßen_unten(self.y, \
co, sprite_co):

self.y = sprite_co.y1 - co.y2
if self.y < 0:

self.y = 0
oben = False
unten = False

In gibt es drei ähnliche Prüfungen: ob die Variable unten noch gesetzt ist, ob die
Figur fällt (y ist größer als 0) und ob die Unterseite unserer Figur den Sprite
berührt hat. Falls alle Prüfungen wahr ergeben, ziehen wir den unteren y-Wert
(y2) des Strichmännchens vom oberen y-Wert des Sprites (y1) in ab. Kommt Dir
das etwas merkwürdig vor? Schauen wir uns an, warum wir das so machen.

Stell Dir vor, unsere Spielfigur ist von einer Ebene heruntergefallen. Jedes
Mal, wenn die Funktion Hauptschleife läuft, bewegt sie sich 4 Pixel auf dem
Monitor nach unten und der Fuß des Strichmännchens ist 3 Pixel über einer
anderen Ebene. Nehmen wir an, die Unterseite des Strichmännchens (y2) befindet
sich an Position 57 und die Oberseite der Ebene (y1) an Position 60. In diesem
Fall würde die Funktion angestoßen_unten True zurückgeben, da ihr Code den
Wert von y (der 4 beträgt) zu der y2-Variablen des Strichmännchens hinzuzählt,
was 61 ergäbe.

Wir möchten jedoch nicht, dass Herr Strichmann mit dem Fallen aufhört,
sobald es so aussieht, als ob er eine Ebene oder den Boden des Spielfensters
berührt hat. Das würde nämlich so aussehen, als würde er einen großen Sprung
von einer Stufe machen und mitten in der Luft knapp über dem Boden anhalten.
Das wäre zwar ein hübsches Kunststück, sieht aber in unserem Spiel nicht so gut
aus. Wenn wir stattdessen den y2-Wert (von 57) der Figur von dem y1-Wert (von
60) der Ebene abziehen, bekommen wir 3. Das ist der Betrag, um den das Strich-
männchen fallen sollte, damit es ordentlich oben auf der Ebene landet.

In sorgen wir dafür, dass die Berechnung keine negative Zahl ergibt. Falls
sie es tut, setzen wir in y gleich 0. (Wenn wir die Zahl negativ lassen würden,
würde das Strichmännchen wieder nach oben fliegen, und das wollen wir in die-
sem Spiel nicht.)

Zum Schluss setzen wir oben in und unten in auf falsch und müssen so
nicht länger prüfen, ob das Strichmännchen oben oder unten angestoßen oder
gegen einen anderen Sprite geprallt ist.
Animation des Strichmännchens 257

258
Wir machen noch eine weitere Prüfung in Richtung unten, um zu sehen, ob
das Strichmännchen über die Kante einer Ebene gelaufen ist. Hier siehst Du den
Code für diese if-Anweisung:

if self.y < 0:
self.y = 0

unten = False
oben = False

if unten and fallen and self.y == 0 \
and co.y2 < self.spiel.canvas_height \
and angestoßen_unten(1, co, sprite_co):

fallen = False

Damit die Variable fallen auf False gesetzt wird, müssen fünf Prüfungen wahr
(True) ergeben:

■ Wir müssen immer noch prüfen, ob unten auf True steht.
■ Wir müssen prüfen, ob das Strichmännchen fallen sollte (fallen steht noch

auf True).
■ Das Strichmännchen fällt noch nicht (y ist 0).
■ Die Unterseite des Sprites hat noch nicht den Boden des Monitors berührt (ist

geringer als die Höhe der Leinwand).
■ Das Strichmännchen hat die Oberseite einer Ebene berührt (angestoßen_unten

gibt True zurück).

Anschließend setzen wir die Variable fallen auf False.

Überprüfung links und rechts

Wir haben geprüft, ob das Strichmännchen einen Sprite, den Boden oder die
Decke berührt hat. Nun müssen wir noch prüfen, ob es die linke oder rechte Seite
berührt hat:

if unten and fallen and self.y == 0 \
and co.y2 < self.spiel.canvas_height \
and angestoßen_unten(1, co, sprite_co):

fallen = False
if links and self.x < 0 and angestoßen_links(co, sprite_co):

self.x = 0
links = False

if rechts and self.x > 0 and angestoßen_rechts(co, sprite_co):
self.x = 0
rechts = False
Abschluss des Spiels mit Herrn Strichmann

In prüfen wir, ob wir noch weiter
nach Berührungen links Ausschau
halten sollten (links steht noch auf
True) und ob sich das Strichmänn-
chen nach links bewegt (x ist weniger
als 0). Wir prüfen mit der Funktion
angestoßen_links, ob das Strichmänn-
chen mit einem Sprite zusammengestoßen ist. Falls diese Bedingungen alle wahr
sind, setzen wir in x auf 0 (damit das Strichmännchen aufhört zu rennen) und
setzen links in auf False, damit wir nicht länger nach Berührungen auf der lin-
ken Seite suchen müssen.

Wie in zu sehen ist, ähnelt der Code dem für Berührungen auf der rechten
Seite. Wir setzen in x wieder auf 0 und rechts in auf False, damit wir nicht
mehr auf Zusammenstöße auf der rechten Seite hin prüfen müssen. Nachdem wir
in alle vier Richtungen auf Berührungen prüfen können, sollte unsere for-Schleife
so aussehen:

elif self.x < 0 and co.x1 <= 0:
self.x = 0
links = False

for sprite in self.spiel.sprites:
if sprite == self:

continue
sprite_co = sprite.coords()
if oben and self.y < 0 and angestoßen_oben(co, sprite_co):

self.y = -self.y
oben = False

if unten and self.y > 0 and angestoßen_unten(self.y, \
co, sprite_co):

self.y = sprite_co.y1 - co.y2
if self.y < 0:

self.y = 0
unten = False
oben = False

if unten and fallen and self.y == 0 \
and co.y2 < self.spiel.canvas_height \
and angestoßen_unten(1, co, sprite_co):

fallen = False
if links and self.x < 0 and angestoßen_links(co, sprite_co):

self.x = 0
links = False

if rechts and self.x > 0 and angestoßen_rechts(co, sprite_co):
self.x = 0
rechts = False
Animation des Strichmännchens 259

260
Jetzt müssen wir der Funktion move nur noch ein paar weitere Zeilen hinzufügen:

if rechts and self.x > 0 and angestoßen_rechts(co, sprite_co):
self.x = 0
rechts = False

if fallen and unten and self.y == 0 \
and co.y2 < self.spiel.canvas_height:

self.y = 4
self.spiel.canvas.move(self.bild, self.x, self.y)

In prüfen wir, ob die Variablen fallen und unten beide auf True stehen. Falls ja,
sind wir mit unserer Schleifen durch jeden Ebenen-Sprite in der Liste gelaufen,
ohne auf den Boden zu treffen.

Die letzte Prüfung in dieser Zeile bestimmt, ob der Wert für die Unterseite
unserer Figur weniger als die Leinwandhöhe beträgt – ob sie also über dem Boden
(der Leinwand) ist. Falls das Strichmännchen an nichts gestoßen ist und sich über
dem Boden befindet, steht es in der Luft und sollte daher anfangen zu fallen (es ist
also über das Ende einer Ebene hinausgelaufen). Damit es über das Ende einer
jeden Ebene rennt, setzen wir in y gleich 4.

In bewegen wir das Bild anhand der Werte, die wir in den Variablen x und
y gesetzt haben, über den Monitor. Die Tatsache, dass wir in einer Schleife durch
die Sprites gelaufen sind und dabei auf Berührungen hin geprüft haben, kann
bedeuten, dass wir beide Variablen auf 0 gesetzt haben, da das Strichmännchen
sowohl die linke Wand als auch den Boden berührt hatte. In diesem Fall bewirkt
der Aufruf der Funktion move durch die Leinwand nichts.

Es kann auch sein, dass Herr Strichmann über das Ende einer Ebene gelaufen
ist. Falls das passiert, wird y auf 4 gesetzt und Herr Strichmann fällt nach unten.

Puh, das war eine lange Funktion!

19.2 Testen unseres Strichmännchen-Sprites

Weiter oben haben wir die Klasse StrichFigurSprite erzeugt, und jetzt probieren
wir sie aus, indem wir die folgenden zwei Zeilen vor dem Aufruf der Funktion
Hauptschleife einfügen:

sf = StrichFigurSprite(s)
s.sprites.append(sf)
s.Hauptschleife()

In erzeugen wir ein Strichfigur-Sprite-Objekt und setzen es gleich der Variablen
sf. Wie wir es schon bei den Ebenen getan haben, fügen wir in diese neue Vari-
able der Liste von Sprites im Spiel-Objekt hinzu.

Lass nun Dein Programm laufen. Du wirst sehen, dass Herr Strichmann ren-
nen, von Ebene zu Ebene springen und fallen kann!
Abschluss des Spiels mit Herrn Strichmann

19.3 Die Tür!

Die einzige Sache, die bei unserem Spiel noch fehlt, ist die Ausgangstür. Wir run-
den das Spiel ab, indem wir einen Sprite für die Tür erstellen, Code zum Erkennen
der Tür hinzufügen und unserem Programm ein Tür-Objekt geben.

Die Klasse TürSprite erzeugen

Du hast es Dir sicher schon gedacht – wir müssen noch eine weitere Klasse erzeu-
gen: TürSprite. Hier ist der Anfang des Codes:

class TürSprite(Sprite):
def __init__(self, spiel, photo_image, x, y, width, height):

Sprite.__init__(self, spiel)
self.photo_image = photo_image
self.bild = spiel.canvas.create_image(x, y, \

image=self.photo_image, anchor='nw')
self.koordinaten = Coords(x, y, x + (width / 2), y + height)
self.spielende = True
Die Tür! 261

262
Wie man in sieht, hat die Klasse TürSprite Para-
meter für self, für ein spiel-Objekt, für ein
photo_image-Objekt, für die x- und y-Koordinaten
und für die Breite (width) und Höhe (height) des
Bildes. In rufen wir wieder __init__ auf, wie wir
es schon bei unseren anderen Sprite-Klassen getan
haben.

In speichern wir den Parameter photo_image
mit einer Objekt-Variablen mit dem gleichen
Namen ab, wie schon in EbenenSprite. Wir erzeu-
gen das angezeigte Bild mit der Funktion der Lein-
wand create_image und speichern die zurückgegebene ID-Nummer dieser Funk-
tion in der Objekt-Variablen image in .

In setzen wir die Koordinaten des TürSprite auf die x- und y-Parameter
(die zu den x1- und y1-Positionen der Tür werden) und errechnen dann die x2-
und y2-Positionen. Die x2-Position erhalten wir durch die Addition der halben
Breite (die Variable width geteilt durch zwei) zum Parameter x. Wenn x beispiels-
weise 10 beträgt (die x1-Koordinate also 10 ist) und die Breite 40 beträgt, wäre
die x2-Koordinate 30 (10 plus die Hälfte von 40).

Warum machen wir nun diese kleine verwirrende Berechnung? Weil Herr
Strichmann hier vor der Tür anhalten soll – anders als bei den Ebenen, bei denen
wir möchten, dass Herr Strichmann aufhört zu rennen, sobald er gegen eine
Ebene stößt. (Es würde nicht gut aussehen, wenn Herr Strichmann an der Tür
aufhören würde zu rennen.) Du wirst es sehen, wenn Du das Spiel spielst und es
bis zur Tür schaffst.

Im Gegensatz zur x1-Position ist die y1-Position leichter zu berechnen. Wir
zählen nur den Wert der Variablen height zum y-Parameter hinzu, und das war's.

In setzen wir die Objekt-Variable spielende auf True. Dies bedeutet, dass
das Spiel enden soll, sobald das Strichmännchen die Tür erreicht.

Die Tür erkennen

Jetzt müssen wir den Code der Funktion move in der StrichfigurSprite-Klasse
ändern, der festlegt, was passiert, wenn das Strichmännchen links oder rechts an
einen Sprite stößt. Hier ist die erste Änderung:

if links and self.x < 0 and angestoßen_links(co, sprite_co):
self.x = 0
links = False
if sprite.spielende:

self.spiel.rennen = False
Abschluss des Spiels mit Herrn Strichmann

Wir prüfen, ob der Sprite, gegen den das Strichmännchen gestoßen ist, eine spiel-
ende-Variable hat, die auf True steht. Falls ja, setzen wir die Variable rennen auf
False, und alles kommt zum Stehen – wir haben das Spielende erreicht.

Die gleichen Zeilen fügen wir dem Code hinzu, der nach Zusammenstößen
auf der rechten Seite schaut. Hier ist der Code:

if rechts and self.x > 0 and angestoßen_rechts(co, sprite_co):
self.x = 0
rechts = False
if sprite.spielende:

self.spiel.rennen = False

Das Tür-Objekt hinzufügen

Das letzte Element, das wir dem Spiel-Code hinzufügen, ist ein Objekt für die
Tür. Wir fügen es vor der Hauptschleife ein. Genau vor dem Strichmännchen-
Objekt erzeugen wir ein Tür-Objekt und fügen es der Liste von Sprites hinzu.
Hier ist der Code dazu:

s.sprites.append(Ebene7)
s.sprites.append(Ebene8)
s.sprites.append(Ebene9)
s.sprites.append(Ebene10)
tür = TürSprite(s, PhotoImage(file="Tuer1.gif"), 45, 30, 40, 35)
s.sprites.append(tür)
sf = StrichFigurSprite(s)
s.sprites.append(sf)
s.Hauptschleife()

Mit der Variablen s für unser spiel-Objekt erzeugen wir ein Tür-Objekt, auf das
ein PhotoImage folgt (das Türbild, das wir in Kapitel 16 erzeugt haben). Wir set-
zen die x- und y-Parameter auf 45 und 30, um die Tür auf eine Ebene ganz oben
im Spielfeld zu setzen, und setzen Breite (width) und Höhe (height) auf 40 und 35.
Dann fügen wir das Tür-Objekt der Liste von Sprites hinzu, wie wir es mit den
anderen Sprites in unserem Spiel auch getan haben.

Das Ergebnis siehst Du, sobald Herr Strichmann die Tür erreicht hat. Statt
neben der Tür hört er direkt vor der Tür auf zu rennen, wie es hier zu sehen ist:
Die Tür! 263

264
19.4 Das fertige Spiel

Das vollständige Listing unseres Spiels enthält etwas mehr als 200 Zeilen Code.
Im Folgenden siehst Du den gesamten Code des Spiels. Falls Du Schwierigkeiten
hast, Dein Spiel ans Laufen zu bringen, vergleichst Du jede Funktion (und jede
Klasse) mit diesem Listing und siehst nach, was Du verkehrt gemacht hast.

from tkinter import *
import random
import time

class Spiel:
def __init__(self):

self.tk = Tk()
self.tk.title("Herr Strichmann rennt zum Ausgang")
self.tk.resizable(0, 0)
self.tk.wm_attributes("-topmost", 1)
self.canvas = Canvas(self.tk, width=500, height=500, \

highlightthickness=0)
self.canvas.pack()
self.tk.update()
self.canvas_height = 500
self.canvas_width = 500
self.bg = PhotoImage(file="Hintergrund.gif")
w = self.bg.width()
h = self.bg.height()
Abschluss des Spiels mit Herrn Strichmann

for x in range(0, 5):
for y in range(0, 5):

self.canvas.create_image(x * w, y * h, \
image=self.bg, anchor='nw')

self.sprites = []
self.rennen = True

def Hauptschleife(self):
while 1:

if self.rennen == True:
for sprite in self.sprites:

sprite.move()
self.tk.update_idletasks()
self.tk.update()
time.sleep(0.01)

class Koordinaten:
def __init__(self, x1=0, y1=0, x2=0, y2=0):

self.x1 = x1
self.y1 = y1
self.x2 = x2
self.y2 = y2

def innerhalb_x(co1, co2):
if (co1.x1 > co2.x1 and co1.x1 < co2.x2) \

or (co1.x2 > co2.x1 and co1.x2 < co2.x2) \
or (co2.x1 > co1.x1 and co2.x1 < co1.x2) \
or (co2.x2 > co1.x1 and co2.x2 < co1.x1):

return True
else:

return False

def innerhalb_y(co1, co2):
if (co1.y1 > co2.y1 and co1.y1 < co2.y2) \

or (co1.y2 > co2.y1 and co1.y2 < co2.y2) \
or (co2.y1 > co1.y1 and co2.y1 < co1.y2) \
or (co2.y2 > co1.y1 and co2.y2 < co1.y1):

return True
else:

return False

def angestoßen_links(co1, co2):
if innerhalb_y(co1, co2):

if co1.x1 <= co2.x2 and co1.x1 >= co2.x1:
return True

return False
Das fertige Spiel 265

266
def angestoßen_rechts(co1, co2):
if innerhalb_y(co1, co2):

if co1.x2 >= co2.x1 and co1.x2 <= co2.x2:
return True

return False

def angestoßen_oben(co1, co2):
if innerhalb_x(co1, co2):

if co1.y1 <= co2.y2 and co1.y1 >= co2.y1:
return True

return False

def angestoßen_unten(y, co1, co2):
if innerhalb_x(co1, co2):

y_calc = co1.y2 + y
if y_calc >= co2.y1 and y_calc <= co2.y2:

return True
return False

class Sprite:
def __init__(self, spiel):

self.spiel = spiel
self.spielende = False
self.koordinaten = None

def move(self):
pass

def coords(self):
return self.koordinaten

class EbenenSprite(Sprite):
def __init__(self, spiel, photo_image, x, y, width, height):

Sprite.__init__(self, spiel)
self.photo_image = photo_image
self.bild = spiel.canvas.create_image(x, y, \

image=self.photo_image, anchor='nw')
self.koordinaten = Koordinaten(x, y, x + width, y + height)

class StrichFigurSprite(Sprite):
def __init__(self, spiel):

Sprite.__init__(self, spiel)
self.bilder_links = [

PhotoImage(file="Figur-L1.gif"),
PhotoImage(file="Figur-L2.gif"),
PhotoImage(file="Figur-L3.gif")

]
self.bilder_rechts = [

PhotoImage(file="Figur-R1.gif"),
PhotoImage(file="Figur-R2.gif"),
PhotoImage(file="Figur-R3.gif")

]

Abschluss des Spiels mit Herrn Strichmann

self.bild = spiel.canvas.create_image(200, 470, \
image=self.bilder_links[0], anchor='nw')

self.x = -2
self.y = 0
self.aktuelles_bild = 0
self.aktuelles_bild_plus = 1
self.springen_zähler = 0
self.letzte_zeit = time.time()
self.koordinaten = Koordinaten()
spiel.canvas.bind_all('<KeyPress-Left>', self.nach_links)
spiel.canvas.bind_all('<KeyPress-Right>', self.nach_rechts)
spiel.canvas.bind_all('<space>', self.springen)

def nach_links(self, evt):
if self.y == 0:

self.x = -2

def nach_rechts(self, evt):
if self.y == 0:

self.x = 2

def springen(self, evt):
if self.y == 0:

self.y = -4
self.springen_zähler = 0

def animieren(self):
if self.x != 0 and self.y == 0:

if time.time() - self.letzte_zeit > 0.1:
self.letzte_zeit = time.time()
self.aktuelles_bild += self.aktuelles_bild_plus
if self.aktuelles_bild >= 2:

self.aktuelles_bild_plus = -1
if self.aktuelles_bild <= 0:

self.aktuelles_bild_plus = 1
if self.x < 0:

if self.y != 0:
self.spiel.canvas.itemconfig(self.bild, \

image=self.bilder_links[2])
else:

self.spiel.canvas.itemconfig(self.bild, \
image=self.bilder_links[self.aktuelles_bild])

elif self.x > 0:
if self.y != 0:

self.spiel.canvas.itemconfig(self.bild, \
image=self.bilder_rechts[2])

else:
self.spiel.canvas.itemconfig(self.bild, \

image=self.bilder_rechts[self.aktuelles_bild])
Das fertige Spiel 267

268
def coords(self):
xy = list(self.spiel.canvas.coords(self.bild))
self.koordinaten.x1 = xy[0]
self.koordinaten.y1 = xy[1]
self.koordinaten.x2 = xy[0] + 27
self.koordinaten.y2 = xy[1] + 30
return self.koordinaten

def move(self):
self.animieren()
if self.y < 0:

self.springen_zähler += 1
if self.springen_zähler > 20:

self.y = 4
if self.y > 0:

self.springen_zähler -= 1
co = self.coords()
links = True
rechts = True
oben = True
unten = True
fallen = True
if self.y > 0 and co.y2 >= self.spiel.canvas_height:

self.y = 0
unten = False

elif self.y < 0 and co.y1 <= 0:
self.y = 0
oben = False

if self.x > 0 and co.x2 >= self.spiel.canvas_width:
self.x = 0
rechts = False

elif self.x < 0 and co.x1 <= 0:
self.x = 0
links = False

for sprite in self.spiel.sprites:
if sprite == self:

continue
sprite_co = sprite.coords()
if oben and self.y < 0 and angestoßen_oben(co, sprite_co):

self.y = -self.y
oben = False

if unten and self.y > 0 and angestoßen_unten(self.y, co, \
sprite_co):

self.y = sprite_co.y1 - co.y2
if self.y < 0:

self.y = 0
unten = False
oben = False
Abschluss des Spiels mit Herrn Strichmann

if unten and fallen and self.y == 0
and co.y2 < self.spiel.canvas_height \
and angestoßen_unten(1, co, sprite_co):

fallen = False
if links and self.x < 0 and angestoßen_links(co, \

sprite_co):
self.x = 0
links = False
if sprite.spielende:

self.spiel.rennen = False
if rechts and self.x > 0 and angestoßen_rechts(co, \

sprite_co):
self.x = 0
rechts = False
if sprite.spielende:

self.spiel.rennen = False
if fallen and unten and self.y == 0 \

and co.y2 < self.spiel.canvas_height:
self.y = 4

self.spiel.canvas.move(self.bild, self.x, self.y)

class TürSprite(Sprite):
def __init__(self, spiel, photo_image, x, y, width, height):

Sprite.__init__(self, spiel)
self.photo_image = photo_image
self.image = spiel.canvas.create_image(x, y, \

image=self.photo_image, anchor='nw')
self.koordinaten = Koordinaten(x, y, x + \

(width / 2), y + height)
self.spielende = True

s = Spiel()
Ebene1 = EbenenSprite(s, PhotoImage(file="Ebene1.gif"), \

0, 480, 100, 10)
Ebene2 = EbenenSprite(s, PhotoImage(file="Ebene1.gif"), \

150, 440, 100, 10)
Ebene3 = EbenenSprite(s, PhotoImage(file="Ebene1.gif"), \

300, 400, 100, 10)
Ebene4 = EbenenSprite(s, PhotoImage(file="Ebene1.gif"), \

300, 160, 100, 10)
Ebene5 = EbenenSprite(s, PhotoImage(file="Ebene2.gif"), \

175, 350, 66, 10)
Ebene6 = EbenenSprite(s, PhotoImage(file="Ebene2.gif"), \

50, 300, 66, 10)
Ebene7 = EbenenSprite(s, PhotoImage(file="Ebene2.gif"), \

170, 120, 66, 10)
Ebene8 = EbenenSprite(s, PhotoImage(file="Ebene2.gif"), \

45, 60, 66, 10)
Das fertige Spiel 269

270
Ebene9 = EbenenSprite(s, PhotoImage(file="Ebene3.gif"), \
170, 250, 32, 10)

Ebene10 = EbenenSprite(s, PhotoImage(file="Ebene3.gif"), \
230, 200, 32, 10)

s.sprites.append(Ebene1)
s.sprites.append(Ebene2)
s.sprites.append(Ebene3)
s.sprites.append(Ebene4)
s.sprites.append(Ebene5)
s.sprites.append(Ebene6)
s.sprites.append(Ebene7)
s.sprites.append(Ebene8)
s.sprites.append(Ebene9)
s.sprites.append(Ebene10)
Tür = TürSprite(s, PhotoImage(file="Tuer1.gif"), 45, 30, 40, 35)
s.sprites.append(Tür)
sf = StrichFigurSprite(s)
s.sprites.append(sf)
s.Hauptschleife()

19.5 Was Du gelernt hast

In diesem Kapitel haben wir unser Spiel
Herr Strichmann rennt zum Ausgang
abgeschlossen. Wir haben eine Klasse
für unser animiertes Strichmännchen
erzeugt und Funktionen geschrieben,
mit denen wir es auf dem Bildschirm
bewegen und währenddessen animie-
ren. (Dazu lassen wie ein Bild in das
nächste übergehen, um die Illusion von Bewegung zu erzeugen.) Wir haben eine
einfache Kollisionserkennung verwendet, um zu prüfen, ob das Strichmännchen
die linke oder rechte Seite der Leinwand oder einen anderen Sprite (wie etwa eine
Ebene oder die Tür) berührt hat. Einen solchen Kollisions-Code haben wir auch
hinzugefügt, um festzustellen, ob das Strichmännchen die Decke oder den Boden
berührt hat, und um dafür zu sorgen, dass es ordentlich herunterfällt, sobald es
über die Kante einer Ebene hinausgelaufen ist. Wir haben dann noch Code hinzu-
gefügt, durch den das Spiel beendet wird, sobald Herr Strichmann die Tür
erreicht hat.
Abschluss des Spiels mit Herrn Strichmann

19.6 Programmier-Puzzles

Wir können noch jede Menge Dinge tun, um das Spiel zu verbessern. Im Moment
ist es noch sehr einfach gehalten, und wir können Code hinzufügen, damit es pro-
fessioneller aussieht und interessanter zu spielen ist. Versuche, die folgenden
Funktionalitäten hinzuzufügen, und überprüfe Deinen Code unter
www.dpunkt.de/python.

#1: »Du hast gewonnen!«

Füge den Text »Du hast gewonnen!« für den Fall
hinzu, dass das Strichmännchen die Tür erreicht hat,
damit die Spieler sehen können, dass sie gewonnen
haben. Du hast etwas Ähnliches schon mit dem Text
»Game over« in dem Spiel Bounce! gemacht, das wir in
Kapitel 15 abgeschlossen haben.

#2: Animation der Tür

In Kapitel 16 haben wir für die Tür zwei Bilder erstellt: ein Bild einer geschlosse-
nen Tür und ein Bild einer offenen Tür. Sobald Herr Strichmann die Tür erreicht,
soll das Bild der geschlossenen Tür gegen das der offenen Tür ausgetauscht wer-
den, Herr Strichmann soll verschwinden, und anschließend soll wieder das Bild
der geschlossenen Tür gezeigt werden. Dadurch entsteht der Eindruck, dass Herr
Strichmann hinausgeht und die Tür hinter sich schließt. Dies erreichst Du, indem
Du die TürSprite-Klasse und die StrichfigurSprite-Klasse änderst.

#3: Sich bewegende Ebenen

Versuche, eine neue Klasse namens BeweglicheEbenenSprite hinzuzufügen. Diese
Ebene sollte sich seitlich hin und her bewegen, damit es schwieriger wird, Herrn
Strichmann die Tür ganz oben erreichen zu lassen.
Programmier-Puzzles 271

272
 Abschluss des Spiels mit Herrn Strichmann

20
Wie geht es jetzt weiter?
Auf Deiner Tour durch Python hast Du einige grundlegende Konzepte des Pro-
grammierens kennengelernt, sodass es Dir jetzt viel leichter fallen wird, Dich in
andere Programmiersprachen einzuarbeiten. Auch wenn Python äußerst nützlich
ist, ist eine einzige Sprache nicht immer das beste Werkzeug für alle Aufgaben.
Scheue Dich daher nicht davor, andere Arten des Programmierens auszuprobie-
ren. Im Folgenden schauen wir uns einige Alternativen für die Spiele- und Grafik-
programmierung an und werfen dann einen kurzen Blick auf die gebräuchlichs-
ten Programmiersprachen.

20.1 Spiele- und Grafikprogrammierung

Wenn Du mehr mit Spielen oder Grafikprogrammierung machen möchtest, hast
Du viele Möglichkeiten. Hier sind nur einige davon:

■ BlitzBasic (http://www.blitzbasic.com/), das eine besondere Version der Pro-
grammiersprache BASIC verwendet, die speziell zum Schreiben von Spielen
entwickelt wurde

■ Adobe Flash, eine Animations-Software, die für Browser entwickelt wurde
und ihre eigene Programmiersprache ActionScript verwendet
(http://www.adobe.com/devnet/actionscript.html)

■ Alice (http://www.alice.org/), eine 3D-Entwicklungsumgebung
■ Scratch (http://scratch.mit.edu/), ein Tool zur Entwicklung von Spielen
■ Unity3D (http://unity3d.com/), noch ein Tool zur Spiele-Entwicklung
273

274
Wenn Du im Internet recherchierst, wirst Du jede Menge Quellen finden, die Dir
beim Einstieg in jedes dieser Tools helfen. Wenn Du dagegen mit Python weiter-
spielen möchtest, kannst Du PyGame verwenden – das Python-Modul, das für
die Spiele-Entwicklung entworfen wurde. Lass uns diese Möglichkeit näher
beleuchten.

20.2 PyGame

PyGame Reloaded (oder pygame2) ist die Version von PyGame, die mit Python 3
funktioniert (frühere Versionen funktionieren nur mit Python 2).

Mit PyGame ein Spiel zu schreiben ist etwas komplizierter als mit tkinter. In
Kapitel 13 haben wir in tkinter beispielsweise mit diesem Code ein Bild ange-
zeigt:

from tkinter import *
tk = Tk()
canvas = Canvas(tk, width=400, height=400)
canvas.pack()
myimage = PhotoImage(file='c:\\test.gif')
canvas.create_image(0, 0, anchor=NW, image=myimage)

Mit PyGame sieht der gleiche Code so aus (statt einer .gif-Datei lädt er eine .bmp-
Datei):

import sys
import time
import pygame2
import pygame2.sdl.constants as constants
import pygame2.sdl.image as image
import pygame2.sdl.video as video
video.init()
img = image.load_bmp("c:\\test.bmp")
screen = video.set_mode(img.width, img.height)
screen.fill(pygame2.Color(255, 255, 255))
screen.blit(img, (0, 0))
screen.flip()
time.sleep(10)
video.quit()

Nach dem Import der pygame2-Module rufen wir die __init__-Funktion des
PyGame-video-Moduls in auf, was ein wenig an das Erzeugen der Leinwand
im tkinter-Beispiel erinnert. Mit der Funktion load_mode laden wir in ein BMP-
Bild, erzeugen mit der Funktion set_mode ein screen-Objekt und übergeben die
Breite und die Höhe des geladenen Bildes als Parameter in . In der nächsten
(optionalen) Zeile säubern wir den Bildschirm, indem wir ihn in mit Weiß auf-
Wie geht es jetzt weiter?

füllen und mit der Funktion blit des screen-Objekts das Bild in darstellen. Die
Parameter für diese Funktion sind das img-Objekt und ein Tupel, das die Position
enthält, an der wir das Bild darstellen wollen (0 Pixel zur Seite und 0 Pixel nach
unten).

PyGame verwendet einen Off-Screen-Puffer. Bei der Off-Screen-Technik wer-
den die Grafiken in einem unsichtbaren Bereich des Computerspeichers verarbei-
tet und anschließend vollständig in den sichtbaren Bereich (auf Deinen Monitor)
kopiert. Durch das Off-Screen-Verfahren wird das Flimmern reduziert, das ent-
stehen kann, wenn viele Objekte auf einmal auf dem Monitor aufgebaut werden.
Das Kopieren aus dem Off-Screen-Puffer in die sichtbare Anzeige wird durch die
Funktion flip in durchgeführt.

Anschließend lassen wir unser Programm in für 10 Sekunden pausieren, da
das Fenster im Gegensatz zur tkinter-Leinwand sofort geschlossen wird, falls wir
es nicht daran hindern. Mit video.init räumen wir in auf, damit PyGame sich
ordentlich schließt. Es gibt noch sehr viel mehr über PyGame zu sagen, aber die-
ses Beispiel gibt Dir einen ersten Eindruck.

20.3 Programmiersprachen

Falls Du an weiteren Programmiersprachen interessiert bist: Aktuell sind Java,
C/C++, C#, PHP, Objective-C, Perl, Ruby und JavaScript beliebt. Wir unterneh-
men einen kleinen Rundgang durch diese Sprachen und schauen uns an, wie
unser kleines »Hallo Welt«-Programm (wie die Python-Version, mit der wir in
Kapitel 2 angefangen haben) in jeder von ihnen aussieht. Keine dieser Sprachen
richtet sich jedoch an Programmieranfänger, und sie unterscheiden sich deutlich
von Python. Zu den angegebenen englischsprachigen Websites findest Du unter
www.dpunkt.de/python entsprechende Quellen in deutscher Sprache.

Java

Java (http://www.oracle.com/technetwork/java/index.html) ist eine mäßig kom-
plizierte Programmiersprache mit einer großen mitgelieferten Bibliothek von
Modulen (packages genannt). Im Internet findet man jede Menge kostenlose
Dokumentationen. Java kannst Du auf den meisten Betriebssystemen einsetzen.
Java ist auch die Sprache, die auf Android-Mobiltelefonen verwendet wird.

Hier ein Beispiel für Hallo Welt in Java:

public class Hallo Welt {
public static final void main(String[] args) {

System.out.println("Hallo Welt");
}

}

Programmiersprachen 275

276
C/C++

C (http://www.cprogramming.com/) und C++ (http://www.stroustrup.com/C++.html)
sind komplizierte Programmiersprachen, die unter allen Betriebssystemen ver-
wendet werden. Beide gibt es sowohl in freien als auch in kommerziellen Versio-
nen. Beide Sprachen (und das gilt für C++ vielleicht noch etwas mehr als für C)
sind schwer zu erlernen. Du wirst beispielsweise feststellen, dass Du einige Dinge
dort manuell kodieren musst, die Python direkt anbietet (wie etwa dem Compu-
ter zu sagen, dass er ein Teil des Speicherinhalts in einem Objekt speichern soll).
Viele der kommerziell erhältlichen Spiele und Konsolen sind in der einen oder
anderen Form von C oder C++ programmiert. Hier ist ein Beispiel für Hallo Welt
in C:

#include <stdio.h>
int main ()
{

printf ("Hallo Welt\n");
}

Ein Beispiel in C++ könnte folgendermaßen aussehen:

#include <iostream>
int main()
{

std::cout << "Hallo Welt\n";
return 0;

}

C#

C# (http://msdn.microsoft.com/de-de/vcsharp/aa336706.aspx), was »C sharp«
ausgesprochen wird, ist eine mäßig komplizierte Sprache für Windows, die Java
sehr ähnelt. Sie ist ein bisschen leichter zu lernen als C und C++.

Hier siehst Du ein Beispiel für Hallo Welt in C#:

public class Hallo
{

public static void Main()
{

System.Console.WriteLine("Hallo Welt");
}

}

Wie geht es jetzt weiter?

PHP

PHP (http://www.php.net) ist eine Programmiersprache für Webseiten. Dafür
benötigst Du einen Webserver (Software, die Webseiten an den Browser liefert),
auf dem PHP installiert ist. Sämtliche Software, die man dafür benötigt, ist für
alle wesentlichen Betriebssysteme kostenlos erhältlich. Um mit PHP arbeiten zu
können, musst Du HTML (eine einfache Sprache zum Aufbau von Webseiten)
erlernen. Eine kostenlose Anleitung findest Du unter http://php.net/manual/de/
tutorial.php und eine für HTML unter http://www.w3schools.com/html/.

Eine HTML-Seite, die »Hallo Welt« anzeigt, könnte so aussehen:

<html>
<body>

<p>Hallo Welt</p>
</body>

</html>

Eine Seite in PHP, die das Gleiche macht, könnte so ausschauen:

<?php
echo "Hallo Welt\n";
?>

Objective-C

Objective-C (http://classroomm.com/objective-c/) ist der Programmiersprache C
sehr ähnlich (es handelt sich in der Tat um eine Erweiterung von C) und wird
hauptsächlich auf Apple-Computern verwendet. Es ist auch die Programmier-
sprache für das iPhone und das iPad.

Hier siehst Du ein Beispiel von Hallo Welt in Objective-C:

#import <Foundation/Foundation.h>
int main (int argc, const char * argv[]) {

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
NSLog (@"Hallo Welt");

[pool drain];
return 0;
}

Programmiersprachen 277

278
PERL

Die Programmiersprache Perl (http://www.perl.org/) ist kostenlos für alle wesent-
lichen Betriebssysteme verfügbar. Sie wird meist bei der Entwicklung von Websei-
ten (ähnlich wie PHP) verwendet.

Hier ist ein Beispiel für Hallo Welt in Perl:

print("Hello World\n");

Ruby

Ruby (http://www.ruby-lang.org/de/) ist eine frei erhältliche Programmiersprache
für alle wesentlichen Betriebssysteme. Sie wird meist bei der Erstellung von Web-
seiten, vor allem im Framework Ruby on Rails benutzt. (Ein Framework ist eine
Gruppe von Bibliotheken, die die Entwicklung bestimmter Arten von Anwendun-
gen unterstützt.)

Hier siehst Du ein Beispiel für Hallo Welt in Ruby:

puts "Hallo Welt"

JavaScript

JavaScript (https://developer.mozilla.org/de/docs/JavaScript) ist eine Program-
miersprache, die normalerweise innerhalb von Webseiten verwendet wird, aber
auch immer mehr bei der Spieleprogrammierung eingesetzt wird. Die Syntax ist
im Prinzip die gleiche wie bei Java, man findet jedoch mit JavaScript leichter den
Einstieg. Eine einfache HTML-Seite, die ein JavaScript-Programm enthält,
kannst Du mit einem Browser laufen lassen, ohne dass Du dazu eine Shell,
Befehlszeile oder sonst etwas benötigst. Einen guten Einstieg in JavaScript könn-
test Du in der Codeacademy unter http://www.codecademy.com finden.

Wie ein Hallo Welt-Beispiel in JavaScript aussieht, hängt davon ab, ob Du es
in einem Browser oder in einer Shell laufen lässt. In einer Shell würde unser Bei-
spiel so aussehen:

print('Hello World');

In einem Browser könnte so aussehen:

<html>
<body>

<script type="text/javascript">
alert("Hallo Welt");

</script>
</body>

</html>
Wie geht es jetzt weiter?

20.4 Abschließende Worte

Egal ob Du nun bei Python bleibst oder eine andere Programmiersprache auspro-
bierst (und es gibt noch viel mehr als die Sprachen, die hier aufgelistet sind), die
Konzepte, die Du in diesem Buch entdeckt hast, sind überall nützlich. Selbst falls
Du nicht mit dem Programmieren weitermachst: Wenn Du die grundsätzlichen
Ideen verstanden hast, hilft Dir das bei vielen anderen Tätigkeiten, egal ob in der
Schule oder später im Berufsleben.

Viel Glück und viel Spaß beim Programmieren!
Abschließende Worte 279

280
 Wie geht es jetzt weiter?

Anhang
281

282

Python-Schlüsselwörter
In Python (und in den meisten anderen Programmiersprachen) sind Schlüsselwör-
ter Begriffe mit besonderer Bedeutung. Sie werden als Teil der Programmierspra-
che selbst gebraucht und dürfen daher für nichts anderes verwendet werden.
Wenn Du zum Beispiel versuchst, Schlüsselwörter als Variablen zu benutzen oder
sie sonst falsch verwendest, bekommst Du von der Python-Konsole merkwürdige
(manchmal lustige, manchmal verwirrende) Fehlermeldungen.

Dieser Anhang beschreibt jedes der Python-Schlüsselwörter. Er soll Dir als
praktisches Nachschlagewerk beim weiteren Programmieren dienen.

and

Mit dem Schlüsselwort and (und) werden zwei Ausdrücke innerhalb einer Anwei-
sung (wie z.Β. in einer if-Anweisung) verbunden, um zu sagen, dass beide Aus-
drücke wahr sein müssen. Hier ein Beispiel:

if Alter > 10 and Alter < 20:
print('Vorsicht Teenager!!!')

Dieser Code bedeutet, dass der Wert der Variable Alter mehr als 10 und (and)
weniger als 20 betragen muss, damit die Mitteilung angezeigt wird.

as

Das Schlüsselwort as kann man verwenden, um einem importierten Modul einen
anderen Namen zu geben. Stell Dir zum Beispiel vor, Du hättest ein Modul mit
einem sehr langen Namen:
283

284
Ich_bin_ein_Python-Modul_das_wenig_bringt

Es wäre sehr nervig, diesen Modulnamen jedes Mal zu tippen, wenn man ihn
benutzen wollte:

import Ich_bin_ein_Python-Modul_das_wenig_bringt
Ich_bin_ein_Python-Modul_das_wenig_bringt.mach_etwas()
Ich habe etwas gemacht das wenig bringt.
Ich_bin_ein_Python-Modul_das_wenig_bringt.mach_etwas_anderes()
Ich habe etwas anderes gemacht das wenig bringt!!

Stattdessen kannst Du dem Modul einen neuen und kürzeren Namen beim
Importieren geben und dann einfach diesen neuen Namen verwenden (das ist ein
bisschen wie ein Spitzname):

import Ich_bin_ein_Python-Modul_das_wenig_bringt as bringt_nichts
bringt_nichts.mach_etwas()
Ich habe etwas gemacht das wenig bringt.
bringt_nichts.mach_etwas_anderes()
Ich habe etwas anderes gemacht das wenig bringt!!

assert

Mit dem Schlüsselwort assert (engl. für »behaupten«) drückt man aus, dass ein
Stück Code wahr sein muss. Man kann damit auch Fehler und Probleme im Code
in meistens anspruchsvolleren Programmen aufdecken (weshalb wir assert in
diesem Buch nicht verwendet haben). Hier ist eine einfache assert-Anweisung:

>>> meineZahl = 10
>>> assert meineZahl < 5
Traceback (most recent call last):
 File "<pyshell#6>", line 1, in <module>
 assert meineZahl < 5
AssertionError

In diesem Beispiel behaupten wir, dass der Wert der Variablen meineZahl weniger
als 5 beträgt. Da er es nicht ist, gibt Python eine Fehlermeldung aus (einen Asser-
tionError).

break

Das Schlüsselwort break wird verwendet, um einen Code-Ablauf zu unterbre-
chen. Du kannst break innerhalb einer for-Schleife verwenden:

Alter = 10
for x in range(1, 100):

print('Zähle %s' % x)
if x == Alter:

print('Zählen beendet')
break
Python-Schlüsselwörter

Da die Variable Alter hier auf 10 gesetzt ist, gibt der Code Folgendes aus:

Zähle 1
Zähle 2
Zähle 3
Zähle 4
Zähle 5
Zähle 6
Zähle 7
Zähle 8
Zähle 9
Zähle 10
Zählen beendet

Sobald der Wert der Variablen x 10 erreicht, zeigt der Code »Zählen beendet« an
und steigt aus der Schleife aus.

class

Mit dem Schlüsselwort class definiert man eine Art Objekt, wie etwa ein Fahr-
zeug, ein Tier oder eine Person. Klassen können eine Funktion namens __init__
haben, die alle Aufgaben erledigt, die das Objekt einer Klasse benötigt. Zum Bei-
spiel benötigt ein Objekt der Klasse Auto bei dessen Erzeugung die Variable Farbe:

class Auto:
def __init__(self, Farbe):

self.Farbe = Farbe

auto1 = Auto('rot')
auto2 = Auto('blau')
print(auto1.Farbe)
rot
print(auto2.Farbe)
blau

continue

Mit dem Schlüsselwort continue kann man zum nächsten Element einer Schleife
»springen«, sodass der restliche Code eines Schleifen-Blocks nicht ausgeführt
wird. Im Gegensatz zu break springen wir allerdings nicht aus der Schleife heraus,
sondern machen mit dem nächsten Element weiter. Wenn wir beispielsweise eine
Liste von Elementen hätten und Elemente, die mit B anfangen, auslassen wollten,
könnten wir den folgenden Code benutzen:

>>> meine_Elemente = ['Apfel', 'Avocado', 'Banane', 'Birne',
'Clementine', 'Cashew']

>>> for Element in meine_Elemente:
if Element.startswith('b'):

continue
print(Element)
Python-Schlüsselwörter 285

286
Apfel
Avocado
Clementine
Cashew

In erstellen wir unsere Liste von Elementen und benutzen dann eine for-
Schleife, um durch unsere Elemente zu laufen und für jedes von ihnen in einen
Code-Block auszuführen. Falls das Element in mit dem Buchstaben B beginnt,
machen wir in mit dem nächsten Element weiter (continue). Anderenfalls
geben wir in das Element aus.

def

Mit dem Schlüsselwort def wird eine Funktion definiert – zum Beispiel, um eine
Funktion zu erzeugen, die eine Anzahl von Jahren in die entsprechende Anzahl
von Minuten umwandelt:

>>> def Minuten(Jahre):
return Jahre * 365 * 24 * 60

>>> Minuten(10)
5256000

del

Durch das Schlüsselwort del wird etwas entfernt. Wenn Du beispielsweise eine
Wunschliste für Deinen Geburtstag hast, es Dir mit einem dieser Dinge jedoch
anders überlegt hast, würdest Du wahrscheinlich eines aus der Liste streichen und
etwas anderes hineinschreiben:

ferngesteuertes Auto
neues Fahrrad
Computerspiel
Roboreptile

In Python würde die Original-Liste folgendermaßen aussehen:

Was_ich_möchte = ['ferngesteuertes Auto', 'neues Fahrrad',
'Computerspiel']

Du könntest mit del und dem Index des entsprechenden Elements das Computer-
spiel entfernen. Anschließend könntest Du mit der Funktion append das neue Ele-
ment hinzufügen:

del Was_ich_möchte[2]
Was_ich_möchte.append('Roboreptile')

Anschließend gibst Du die neue Liste aus:

print(Was_ich_möchte)
['ferngesteuertes Auto', 'neues Fahrrad', 'Roboreptile']
Python-Schlüsselwörter

elif

Das Schlüsselwort elif verwendet man als Bestandteil einer if-Anweisung. In der
Beschreibung des Schlüsselworts if findest Du ein Beispiel.

else

Das Schlüsselwort else verwendet man als Bestandteil einer if-Anweisung. In der
Beschreibung des Schlüsselworts if findest Du ein Beispiel.

exept

Mit dem Schlüsselwort exept deckt man Probleme im Code auf. Es wird meistens
in ziemlich komplizierten Programmen verwendet, und deshalb kommt es in die-
sem Buch nicht vor.

finally

Das Schlüsselwort finally verwendet man, um sicherzustellen, dass ganz
bestimmter Code ausgeführt wird, sobald ein Fehler auftritt (meistens um Unord-
nung, die ein Stück Code hinterlassen hat, aufzuräumen). Dieses Schlüsselwort
kommt in diesem Buch nicht vor, da es für fortgeschrittenes Programmieren vor-
gesehen ist.

for

Mit dem Schlüsselwort for erzeugt man eine Code-Schleife, die eine bestimmte
Anzahl an Malen durchlaufen wird. Hier ein Beispiel:

for x in range(0, 5):
print('x ist %s' %x)

Diese for-Schleife führt den Code-Block (die print-Anweisung) fünfmal aus, was
folgende Ausgabe ergibt:

x ist 0
x ist 1
x ist 2
x ist 3
x ist 4

from

Wenn Du ein Modul importierst, kannst Du mit dem Schlüsselwort from nur den-
jenigen Teil importieren, den Du benötigst. Das Modul turtle, das wir in
Kapitel 5 vorgestellt haben, enthält eine Klasse namens Pen, mit der wir ein Pen-
Objekt erzeugt haben (die Leinwand, auf der sich die Schildkröte bewegt). Hier
steht, wie wir das gesamte Modul turtle importieren und anschließend die Pen-
Klasse benutzen:

import turtle
t = turtle.Pen()
Python-Schlüsselwörter 287

288
Du könntest auch ausschließlich die Pen-Klasse importieren und sie direkt ver-
wenden (ohne Dich überhaupt auf das Modul turtle zu beziehen):

from turtle import Pen
t = Pen()

Dies könntest Du tun, damit Du beim nächsten Mal, wenn Du ganz oben in das
Programm schaust, alle von Dir verwendeten Funktionen und Klassen sehen
kannst (das ist vor allem in größeren Programmen nützlich, in denen jede Menge
Module importiert werden). Wenn Du Dich allerdings dafür entscheidest, wirst
Du diejenigen Teile des Moduls, die Du nicht importiert hast, natürlich auch
nicht nutzen können. Das Modul time beispielsweise, hat die Funktionen local-
time und gmtime. Wenn Du also nur localtime importierst und dann versuchst,
gmtime zu verwenden, bekommst Du eine Fehlermeldung:

>>> from time import localtime
>>> print(localtime())
time.struct_time(tm_year=2013, tm_mon=2, tm_mday=27, tm_hour=10,
tm_min=59, tm_sec=58, tm_wday=2, tm_yday=58, tm_isdst=0)
>>> print(gmtime())
Traceback (most recent call last):
 File "<pyshell#49>", line 1, in <module>
 print(gmtime())
NameError: name 'gmtime' is not defined

Die Fehlermeldung name 'gmtime' is not defined bedeutet, dass Python nichts über
die Funktion gmtime weiß, da Du sie nicht importiert hast.

Wenn es ein paar Funktionen eines bestimmten Moduls gibt, die Du verwen-
den möchtest, Dich aber nicht auf sie mit den Modulnamen beziehen möchtest
(zum Beispiel time.localtime oder time.gmtime) kannst Du mit einem Asterisk (*)
alles aus dem Modul importieren:

>>> from time import *
>>> print(localtime())
time.struct_time(tm_year=2013, tm_mon=2, tm_mday=27, tm_hour=10,
tm_min=59, tm_sec=58, tm_wday=2, tm_yday=58, tm_isdst=0)
>>> print(gmtime())
time.struct_time(tm_year=2013, tm_mon=2, tm_mday=27, tm_hour=10,
tm_min=6, tm_sec=58, tm_wday=2, tm_yday=58, tm_isdst=0)

Auf diese Weise wird alles aus dem time-Modul importiert, und Du kannst Dich
auf die einzelnen Funktionen durch deren Namen beziehen.

global

Was Gültigkeitsbereiche in Programmen sind, wird in Kapitel 8 erklärt. Der Gül-
tigkeitsbereich bezieht sich auf die Sichtbarkeit einer Variablen. Falls eine Varia-
ble außerhalb einer Funktion definiert wird, ist sie normalerweise innerhalb der
Funktion sichtbar. Falls die Variable dagegen innerhalb einer Funktion definiert
Python-Schlüsselwörter

wird, kann sie außerhalb dieser Funktion nicht gesehen werden. Das Schlüssel-
wort global macht eine Ausnahme von dieser Regel. Eine Variable, die als global
definiert wird, kann überall gesehen werden. Hier ist ein Beispiel:

>>> def test():
global a
a = 1
b = 2

Was glaubst Du, wird passieren, wenn Du print(a) aufrufst und anschließend
print(b), nachdem die Funktion test gelaufen ist? Beim ersten Mal wird es funk-
tionieren, am zweiten Mal gibt es eine Fehlermeldung:

>>> test()
>>> print(a)
1
>>> print(b)
Traceback (most recent call last):
 File "<pyshell#62>", line 1, in <module>
 print(b)
NameError: name 'b' is not defined

Die Variable a wurde innerhalb der Funktion auf global gesetzt und wurde
dadurch sichtbar, obwohl die Funktion schon abgeschlossen war. Dagegen ist b
immer noch nur innerhalb der Funktion sichtbar. (Du musst das global-Schlüssel-
wort vor dem Setzen des Wertes Deiner Variable verwenden.)

if

Das Schlüsselwort if wird verwendet, um eine Entscheidung über etwas zu tref-
fen. Es kann auch mit den Schlüsselwörtern else und elif (else if) benutzt wer-
den. Eine if-Anweisung funktioniert so, als ob man sagt: »Wenn etwas wahr ist,
führe folgenden Vorgang durch.« Hier siehst Du ein Beispiel:

if Spielzeugpreis > 1000:
print('Dieses Spielzeug ist zu teuer')

elif Spielzeugpreis > 100:
print('Dieses Spielzeug ist teuer')

else:
print('Ich kann mir dieses Spielzeug leisten')

Diese if-Anweisung sagt in Folgendes: Wenn der Preis für ein Spielzeug über
1000 € liegt, soll die Nachricht in angezeigt werden, dass es zu teuer ist. Falls
das Spielzeug in über 100 € kosten soll, wird die Nachricht in angezeigt, das
es teuer ist. Falls in keine dieser Bedingungen wahr ist, soll die Nachricht in
(»Ich kann mir dieses Spielzeug leisten«) angezeigt werden.
Python-Schlüsselwörter 289

290
import

Das Schlüsselwort import wird verwendet, um Python zu sagen, dass es ein
Modul laden soll, damit man es verwenden kann. Im folgenden Beispiel sagt der
Code, dass Python das Modul sys benutzen soll:

import sys

in

Das Schlüsselwort in wird in Ausdrücken verwendet, um nachzusehen, ob sich
ein Element innerhalb einer Sammlung von Elementen befindet. Befindet sich
zum Beispiel die Zahl 1 in einer Liste (einer Sammlung) von Zahlen?

>>> if 1 in [1,2,3,4]:
print('Zahl befindet sich in der Liste')

Zahl befindet sich in der Liste

Hier steht, wie man herausfindet, ob sich der String 'Hose' in der Liste von
Bekleidungsstücken befindet:

>>> Bekleidungsliste = ['kurze Hose', 'Unterwäsche', 'Boxershorts',
'lange Unterhose', 'Schlüpfer']

>>> if 'Hose' in Bekleidungsliste:
print('Hose ist auf der Liste')

else:
print('Hose ist nicht auf der Liste')

Hose ist nicht auf der Liste

is

Das Schlüsselwort is ist ein bisschen wie der Operator (==), den man gebraucht,
um zu prüfen, ob zwei Dinge gleich sind (zum Beispiel 10 == 10 ist wahr, und
10 == 11 ist falsch). Es gibt allerdings einen grundsätzlichen Unterschied zwischen
is und ==. Wenn Du zwei Dinge vergleichst, kann == wahr zurückgeben, wogegen
is das eventuell nicht tut (selbst dann, wenn Du glaubst, dass die Dinge die glei-
chen sind). Dabei handelt es sich um ein fortgeschrittenes Programmierkonzept.
Wir bleiben in diesem Buch daher beim ==.

lambda

Mit dem Schlüsselwort lambda erzeugt man anonyme oder auch Inline-Funktio-
nen. Dieses Schlüsselwort wird in fortgeschritteneren Programmen benutzt, und
wir haben es in diesem Buch nicht behandelt.

not

Wenn etwas wahr ist, macht das Schlüsselwort not es falsch. Wenn wir beispiels-
weise eine Variable x erzeugen und sie auf den Wert True setzen und anschließend
den Wert dieser Variablen mit not ausgeben, bekommen wir folgendes Ergebnis:
Python-Schlüsselwörter

>>> x = True
>>> print(not x)
False

Dies ergibt so lange keinen Sinn, bis Du das Schlüsselwort in if-Anweisungen
benutzt. Um zum Beispiel herauszufinden, ob ein Element nicht in einer Liste ent-
halten ist, können wir so etwas schreiben:

>>> Bekleidungsliste = ['kurze Hose', 'Unterwäsche', 'Boxershorts',
'lange Unterhose', 'Schlüpfer']

>>> if 'Hose' not in Bekleidungsliste:
print('Du musst unbedingt eine Hose kaufen')

Du musst unbedingt eine Hose kaufen

or

Das or-Schlüsselwort verwendet man beim Verbinden zweier Bedingungen in
einer Anweisung (wie z.B. in einer if-Anweisung), um auszudrücken, dass min-
destens eine der Bedingungen wahr sein sollte. Hier ist ein Beispiel:

if Dino == 'Tyrannosaurus' or Dino == 'Allosaurus':
print('Fleischfresser')

elif Dino == 'Ankylosaurus' or Dino == 'Apatosaurus':
print('Pflanzenfresser')

Wenn in diesem Fall die Variable Dino den Tyrannosaurus oder Allosaurus enthält,
zeigt das Programm »Fleischfresser« an. Falls sie Ankylosaurus oder Apatosaurus
enthält, gibt das Programm »Pflanzenfresser« aus.

pass

Manchmal möchtest Du bei der Entwicklung eines Programms nur kleine Teile
schreiben, um Dinge auszuprobieren. Das Problem dabei ist, dass Du keine if-
Anweisung haben kannst, ohne dazu den Code-Block zu haben, der ausgeführt
werden soll, falls der Ausdruck in der if-Anweisung wahr ist. Ebenso kannst Du
keine for-Schleife ohne den Code-Block haben, der in der Schleife ausgeführt
werden soll. Der folgende Code beispielweise funktioniert wunderbar:

>>> Alter = 15
>>> if Alter > 10:

print('älter als 10')
älter als 10

Falls Du aber den Code-Block der if-Anweisung nicht ausfüllst, wartet IDLE auf
den Code-Block und zeigt nach dem Drücken der Enter-Taste keinen Prompt:

>>> Alter = 15
>>> if Alter > 10:

In solchen Fällen kannst Du das pass-Schlüsselwort anwenden, um eine Anwei-
sung zu schreiben, ohne dabei den Code-Block einzugeben, der dazugehört.
Python-Schlüsselwörter 291

292
Nehmen wir beispielsweise an, dass Du eine for-Schleife mit einer if-Anwei-
sung darin erzeugen möchtest. Vielleicht hast Du Dich noch nicht entschieden,
was Du in die if-Anweisung schreiben möchtest – eventuell verwendest Du die
print-Funktion, fügst ein break oder sonst etwas ein. Wenn Du an dieser Stelle
pass verwendest, wird der Code trotzdem funktionieren (selbst wenn er noch
nicht genau das tut, was Du möchtest). Hier siehst Du wieder unsere if-Anwei-
sung, die diesmal das Schlüsselwort pass enthält:

>>> Alter = 15
>>> if Alter > 10:

pass

Der folgende Code zeigt eine weitere Verwendung des Schlüsselwortes pass:

>>> for x in range(0, 7):
print('x ist %s' % x)
if x == 4:

pass

x ist 0
x ist 1
x ist 2
x ist 3
x ist 4
x ist 5
x ist 6

Python prüft bei der Ausführung des Code-Blocks in der Schleife immer noch
jedes Mal, ob die Variable x den Wert 4 enthält, unternimmt jedoch nichts, sodass
es alle Zahlen im Bereich zwischen 0 und 7 ausgibt.

Später kannst Du den Code im Block für die if-Anweisung hinzufügen,
indem Du das Schlüsselwort pass durch etwas anderes, wie zum Beispiel break,
ersetzt:

>>> for x in range(1, 7):
print('x ist %s' % x)
if x == 5:

break

x ist 0
x ist 1
x ist 2
x ist 3
x ist 4
x ist 5

Das Schlüsselwort pass wird meistens verwendet, wenn man eine Funktion
erzeugt, den Code für die Funktion aber noch nicht schreiben möchte.
Python-Schlüsselwörter

raise

Das Schlüsselwort raise kann man benutzen, damit es einen Fehler gibt. Das mag
zwar etwas merkwürdig klingen, bei der fortgeschrittenen Programmierung kann
das allerdings ziemlich nützlich sein. (Wir verwenden dieses Schlüsselwort in die-
sem Buch nicht.)

return

Mit dem Schlüsselwort return wird ein Wert von einer Funktion zurückgegeben.
Du könntest zum Beispiel eine Funktion erzeugen, um die Anzahl der Sekunden
zu berechnen, die Du bis zu Deinem letzten Geburtstag gelebt hast:

def Alter_in_Sekunden(Alter_in_Jahren):
return Alter_in_Jahren * 365 * 24 * 60 * 60

Wenn Du diese Funktion aufrufst, kann der zurückgegebene Wert einer anderen
Variablen zugewiesen oder angezeigt werden:

>>> Sekunden = Alter_in_Sekunden(9)
>>> print(Sekunden)
283824000
>>> print(Alter_in_Sekunden(12))
378432000

try

Mit dem Schlüsselwort try fängt ein Code-Block an, der mit den Schlüsselwör-
tern exept und finally endet. Man verwendet diese try/exept/finally-Codeblö-
cke, um mit Fehlern in einem Programm umzugehen, sodass das Programm dem
Benutzer eine hilfreiche Meldung anzeigt statt eines unfreundlichen Python-Feh-
lers. Diese Schlüsselwörter werden in diesem Buch nicht verwendet.

while

Das Schlüsselwort while ist ein bisschen wie for, nur dass eine for-Schleife durch
einen Bereich (von Zahlen) zählt, eine while-Schleife aber so lange läuft, wie ein
Ausdruck wahr ist. Sei vorsichtig mit while-Schleifen: Falls der Ausdruck immer
wahr sein sollte, wird die Schleife nie enden (dies nennt man eine Endlosschleife).
Hier siehst Du ein Beispiel:

>>> x = 1
>>> while x == 1:

print('Hallo')

Wenn Du diesen Code ausführst, wird er unendlich laufen oder mindestens so
lange, bis Du die Python-Shell schließt oder Ctrl-C drückst, um die Schleife zu
unterbrechen. Der folgende Code wird dagegen neunmal »Hallo« anzeigen
(wobei er jedes Mal 1 zu der Variablen x addiert, bis x nicht mehr weniger als 10
beträgt).
Python-Schlüsselwörter 293

294
>>> x = 1
>>> while x < 10:

print('Hallo')
x = x + 1

with

Das Schlüsselwort with benutzt man mit einem Objekt, um einen Code-Block in
ähnlicher Weise wie mit den Schlüsselwörtern try und finally zu erzeugen. Die-
ses Schlüsselwort wird in diesem Buch nicht verwendet.

yield

Das Schlüsselwort yield ist ein bisschen wie return, nur dass man es mit einer
bestimmten Klasse von Objekten, den Generatoren, benutzt. Generatoren erzeu-
gen Werte spontan (sie erzeugen also Werte direkt auf Anfrage), sodass sich in
diesem Sinne auch die Funktion range wie ein Generator verhält. Das Schlüssel-
wort yield kommt in diesem Buch nicht zum Einsatz.
Python-Schlüsselwörter

Glossar
Manchmal ist es so, dass Dir beim Programmieren ein neuer Begriff begegnet, mit
dem Du nicht viel anfangen kannst. Solche Wissenslücken können einem beim
Vorankommen richtig im Wege stehen. Für dieses Problem gibt es aber eine ganz
einfache Lösung.

Für solche Fälle, bei denen Dich ein neues Wort oder ein Begriff aufhält, habe
ich dieses Glossar erstellt. Darin findest Du Definitionen vieler Programmierbe-
griffe, die in diesem Buch verwendet werden. Schlag also einfach hier nach, wenn
Du auf ein Wort stößt, das Du nicht verstehst.

Animation Das Verfahren zum Zeigen einer Reihe (Sequenz) von Bildern, die so
schnell wechseln, dass es aussieht, als ob sich etwas bewege.

aufrufen Den Code einer Funktion ausführen. Wenn wir eine Funktion benut-
zen, sagen wir, dass wir sie »aufrufen«.

ausführen Etwas Code (wie etwa ein Programm, einen kleinen Code-Abschnitt
oder eine Funktion) laufen lassen.

Bedingung Ein Ausdruck in einem Programm, der ein wenig wie eine Frage
klingt. Bedingungen prüfen, ob etwas wahr oder falsch ist.

Block Eine Gruppe von Computer-Anweisungen innerhalb eines Programms.

Boolescher Wert Eine Art von Wert, der entweder wahr oder falsch ist. (In
Python sind das True oder False mit großem »T« und »F«.)
295

296
Daten sind meist Informationen, die vom Computer gespeichert und bearbeitet
werden.

Dialog Ein Dialog ist üblicherweise ein kleines Fenster in einer Anwendung, in
dem Informationen aus dem Kontext stehen (wie etwa eine Warnung, eine
Fehlermeldung oder die Aufforderung, etwas einzugeben). Wenn Du beispiels-
weise eine Datei öffnen möchtest, erscheint normalerweise der Datei-Dialog.

Dimensionen Im Zusammenhang mit der Grafikprogrammierung bedeuten
zweidimensional oder dreidimensional die Arten, wie Bilder auf dem Compu-
termonitor gezeigt werden. Zweidimensionale Grafiken (2D-Grafiken) sind
flache Bilder auf einem Monitor, die eine Breite und eine Höhe haben – wie in
den alten Zeichentrickfilmen, die Du aus dem Fernsehen kennst. Dreidimen-
sionale Grafiken (3D-Grafiken) sind Bilder auf dem Monitor, die eine Breite,
eine Höhe und den Anschein von Tiefe haben – die Art von Grafiken, denen
man in realistischeren Computerspielen begegnet.

einbetten Das Ersetzen von Werten innerhalb eines Strings. Die ersetzten Werte
nennt man manchmal auch Platzhalter.

Eltern Wenn man sich auf Klassen und Objekte bezieht, sind die Eltern die
Klasse, von der Funktionen und Variablen geerbt werden. Andersherum
gesagt, erbt eine Kinderklasse die Eigenschaften ihrer Elternklasse. Wenn es
nicht um Python geht, sind die Eltern diejenigen, die Dir sagen, dass Du Deine
Zähne putzen sollst, bevor Du abends zu Bett gehst.

Ereignis Etwas, das auftritt, während das Programm läuft. Beispiele für Ereig-
nisse sind das Bewegen der Maus, das Drücken einer Maustaste oder Tasta-
tureingaben.

Exception Auf Deutsch »Ausnahme«: Eine Art von Fehler, der bei der Ausfüh-
rung eines Programms auftreten kann.

Fehler Wenn etwas mit einem Programm oder Deinem Computer schiefläuft, ist
dies ein Fehler. Wenn Du mit Python programmierst, kannst Du alle mögli-
chen Arten von Meldungen als Reaktion auf einen Fehler sehen. Wenn Du
Deinen Code nicht richtig eingibst, kannst Du zum Beispiel einen Einrü-
ckungsfehler (IndentationError) bekommen.

Frame Eine Folge von Bildern, aus denen eine Animation wird.

Funktion Ein Befehl in einer Computersprache, der meistens aus einer Samm-
lung von Anweisungen besteht, um eine bestimmte Aktion durchzuführen.

Grad Eine Maßeinheit für Winkel.

Gültigkeitsbereich Der Teil oder Abschnitt eines Programms, in dem eine Vari-
able »gesehen« (oder benutzt) werden kann. (Eine Variable innerhalb einer
Funktion ist mitunter außerhalb der Funktion nicht sichtbar.)
Glossar

hexadezimal Eine Art, Zahlen darzustellen, die vor allem bei der Programmie-
rung verwendet wird. Hexadezimale Zahlen haben als Basis 16, was bedeutet,
dass neben den Ziffern 0–9 auch noch die Buchstaben A, B, C, D, E oder F
benutzt werden.

horizontal Die Richtungen nach links und rechts auf dem Monitor (dargestellt
durch das x).

ID-Nummer Eine Zahl, die eindeutig etwas in einem Programm benennt. Im
Modul tkinter von Python nimmt man die ID-Nummer, um sich auf Formen
zu beziehen, die auf der Leinwand gezeichnet wurden.

Image Ein Bild auf dem Computermonitor.

Import In Python »importierst« Du ein Modul, um es in Deinem Programm zu
benutzen. Man könnte auch sagen, dass Du es »einbindest« oder »dazuschal-
test«, aber Python-Programmierer reden lieber vom »Importieren«.

initialisieren Wenn Du den Ausgangszustand eines Objekts einrichtest (also die
Variablen in einem Objekt bei dessen Erzeugung einrichtest), nennt der Python
Programmierer das »initialisieren«.

Installation Der Prozess, in dem Du Dateien einer Softwareanwendung auf
Deinen Computer kopierst, damit Du die Anwendung anschließend benutzen
kannst.

Instanz Die Instanz einer Klasse ist – anders gesagt – ein Objekt.

Kind Wenn es um Klassen geht, stellen wir uns die Beziehungen zwischen ver-
schiedenen Klassen wie die Beziehungen zwischen Eltern und Kindern vor.
Eine Kinderklasse erbt die Eigenschaften seiner Elternklasse.

Klasse Eine Beschreibung oder Definition einer Art von Ding. In der Welt des
Programmierens ist eine Klasse eine Sammlung von Funktionen und Variab-
len.

Klick Druck auf eine der Maustasten, um einen Button auf dem Monitor auszu-
wählen, eine Menüoption aufzurufen usw.

Kollision Wenn in Computerspielen eine Figur an eine andere oder an ein
Objekt auf dem Monitor stößt.

Koordinaten Die Position eines Pixels auf dem Monitor. Die Positionen werden
meist als Anzahl der Pixel zur Seite (x) und nach unten (y) auf dem Monitor
beschrieben.

Leinwand Ein Bereich des Monitors, auf dem gezeichnet wird. Die Leinwand
(canvas) ist eine Klasse, die zum Modul tkinter gehört.

Modul Eine Gruppe von Funktionen und Variablen.

Null Das Nichtvorhandensein eines Wertes (in Python als None bezeichnet).
Glossar 297

298
Objekt Die bestimmte Instanz einer Klasse. Wenn Du ein Objekt einer Klasse
erzeugst, reserviert Python dafür einen Teil Deines Computerspeichers, um
darin Informationen über ein Mitglied dieser Klasse zu speichern.

Operator Ein Element eines Computerprogramms, das man für mathematische
Berechnungen oder zum Vergleichen von Werten benutzt.

Parameter Ein Wert, den man beim Aufruf einer Funktion oder bei der Erzeu-
gung eines Objekts benutzt (wenn Python beispielsweise die Funktion __init__
aufruft). Parameter werden häufig auch als Argumente bezeichnet.

Pixel Ein einzelner Punkt auf Deinem Computermonitor – der kleinste Punkt,
den Dein Computer zeichnen kann.

Programm Eine Gruppe von Befehlen, die einem Computer sagen, was er zu
tun hat.

Schlüsselwort Ein bestimmtes Wort, das von einer Programmiersprache ver-
wendet wird. Schlüsselwörter bezeichnet man auch als reservierte Wörter,
was im Grunde bedeutet, dass man sie für nichts anderes benutzen kann. (Du
kannst beispielsweise kein Schlüsselwort als Variablennamen verwenden.)

Schleife Ein Befehl oder eine Gruppe von Befehlen, die wiederholt werden.

Shell Ein Zugang zum Programm auf Basis der Befehlseingabezeile. Wenn wir in
diesem Buch von der »Python-Shell« sprechen, meinen wir die Anwendung
IDLE.

Speicher Ein Teil Deines Computers, in dem vorübergehend Informationen
abgelegt werden.

Software Eine Sammlung von Computerprogrammen.

Sprite Eine Figur oder Objekt in einem Computerspiel.

String Eine Sammlung alphanumerischer Zeichen (Buchstaben, Zahlen, Satzzei-
chen und Leerzeichen).

Syntax Die Anordnung und Reihenfolge von Wörtern in einem Programm.

Transparenz Der Bereich eines Bildes, der nicht angezeigt wird und daher nicht
überdeckt, was hinter ihm dargestellt wird.

Variable Etwas, in dem Du Werte speichern kannst. Du kannst Dir eine Varia-
ble wie ein Etikett vorstellen, das Du auf Informationen »klebst«, die im
Computerspeicher stehen. Variablen sind nicht dauerhaft an einen bestimm-
ten Wert gebunden – daher der Name »Variable«, der Wert kann sich also
ändern.

vertikal Die Richtungen nach oben und unten auf dem Monitor (dargestellt
durch y).

Verzeichnis Der Ort, an dem eine Gruppe von Dateien auf der Festplatte Deines
Computers liegt.
Glossar

Index
A

abs-Funktion 102
Additions-Operator (+) 21
Adobe Flash 273
Alice 273
Alphakanal 212, 214
Android-Mobiltelefone 275
and-Schlüsselwort 58, 283
Animation 153, 173, 188

in »Herr Strichmann rennt zum
Ausgang« 215, 251

von Sprites 212
Anweisungsblock 54, 67
append-Funktion 36
as-Schlüsselwort 283
AssertionError 284
assert-Schlüsselwort 284
Aufrufen einer Funktion 76

Definition 295
Ausdrücke 106, 139
Ausführen von Programmen 16
Ausführen, Definition 295
Ausgeben

Inhalt von Listen 34
Inhalt von Variablen 23

B

Ball 185
in Bewegung setzen 188
Richtungsänderung 191
springen lassen 190

BASIC 8
Bedingungen 54

and-Schlüsselwort 58
Definition 295
kombinieren 58
Operatoren 55
or-Schlüsselwort 58

Benutzereingaben 59
Bilder (Images)

anzeigen im Modul tkinter 171
Definition 297
GIF 172, 215
spiegeln, in GIMP 216

BlitzBasic 273
Boolescher Wert, Definition 295
bool-Funktion 102
Bounce! (Spiel) 205

etwas Zufälliges geben 202
Leinwand 184
Schläger 199

break-Schlüsselwort 72, 284
299

300
C

C (Programmiersprache) 276
class-Schlüsselwort 86, 285
continue-Schlüsselwort 285
copy-Modul 120

flache Kopie 121
tiefe Kopie 122

C# 276
C++ 276

D

Dateien
erzeugen 113
lesen aus 116, 117
öffnen 115
schreiben in 117

Dateien anlegen
unter Mac OS X 114
unter Ubuntu Linux 115
unter Windows 113

Dateien öffnen
unter Mac OS X 116
unter Ubuntu 116
unter Windows 116

Datei-Objekt
close-Funktion 117
Dateien unter Mac OS X erzeugen 114
Dateien unter Mac OS X öffnen 116
Dateien unter Ubuntu Linux erzeugen

115
Dateien unter Ubuntu öffnen 116
Dateien unter Windows erzeugen 113
Dateien unter Windows öffnen 116
read-Funktion 117
write-Funktion 117

Daten
boolesche 102
Definition 296
Fließkommazahlen 107
Ganzzahlen 60, 108
Strings 34
umwandeln 129

def-Schlüsselwort 89, 286
del-Schlüsselwort 36, 286
Dialog, Definition 296
dir-Funktion 104
Divisions-Operator 21

Doppelpunkt (:)
in if-Anweisungen 51
in Listen 36
in Maps 39

dreidimensionale (3D) Grafiken 153

E

Eigenschaften von Klassen 88
Einbinden, Werte in Strings 31
Eingabeaufforderung 16
Eingaben einlesen 82
Eingebaute Funktionen 101

abs 102
bool 102
dir 104
eval 106
exec 107
float 61, 107, 108
int 60, 108
len 109
max 110
min 110
min 110
open 116
range 111, 112
sum 112

Einlesen von Objekten aus Dateien 132
Einrückungen

einheitliche Abstände 54, 67
Fehler 54, 66
in IDLE 54, 64, 66

elif-Schlüsselwort 57, 287
else-Schlüsselwort 56, 287
Elternklassen 87
EOL (end-of-line) 28
Ereignis-Bindungen 176, 197
Ereignis-Objekte 242
Ersetzen von Werten aus Maps 41
Escaping Strings 30
eval-Funktion 106
exec-Funktion 107

F

Farben
mit dem Modul tkinter einstellen 142,

148, 163
mit der Funktion itemconfig ändern

179
Index

Fehler
AssertionError 284
Definition 296
Einrückung 54, 66
SyntaxError 29, 30, 54, 67
SystemExit 126
TypeError 38, 41
ValueError 61, 109

finally-Schlüsselwort 287
Fließkommazahlen 107
float-Funktion 61, 107
Format-Platzhalter 31, 165
for-Schleifen 63

im Vergleich zu Code ohne Schleifen 65
und das Modul turtle 136
und die Funktion range 64
und Listen 65

for-Schlüsselwort 287
Frames

Definition 296
in Animationen 296

from-Schlüsselwort 287
Funktionen 15, 36, 76

append 36
aufrufen 76, 295
aufrufen mit verschiedenen Werten 79
Definition 296
list 64, 76
print 15
sleep 131
str 60
Teile einer Funktion 76

Funktionskörper 76

G

ganze Zahlen 107
Ganzzahlen 60, 108
GIF-Bilder 172, 215
GIMP 212
global-Schlüsselwort 288
Grad 46

Definition 296
in Sternen 137
in Winkeln 167

Grafiken
dreidimensionale (3D) 153
isometrische 153
zweidimensionale (2D) 153

Gültigkeitsbereich von Variablen 77

H

Hat das Strichmännchen den Boden oder
die Decke der Leinwand berührt?

in »Herr Strichmann rennt zum
Ausgang« 260

Hauptschleifen 187, 224
help-Funktion 105
Herr Strichmann rennt zum Ausgang

Ebenen hinzufügen 233
Ebenen zeichnen 217
Erzeugen von Sprites 232
Koordinaten-Klasse 226
Spiel-Klasse 221
Strichmännchen 239
Strichmännchen an Tasten binden 242
Strichmännchen animieren 247
Strichmännchen bewegen 242
Strichmännchen zeichnen 215
Strichmännchen-Bilder laden 240
TürSprite-Klasse 261
Zeichnen der Tür 217
Zeichnen des Hintergrunds 218
Zusammenstöße erkennen 226

Hexadezimale Zahlen 164
Definition 297

Hinzufügen von Elementen zu einer Liste
36

Hinzufügen von Objekten zu Klassen 87
HTML 277

I

IDLE (integrierte Entwicklungsumgebung)
14

Einrichtung unter Mac OS X 11
Einrichtung unter Windows 9
Fehlermarkierung 54, 67
Kopieren und Einfügen 25
starten 14

ID-Nummer 158, 174, 178
Definition 297

if-Anweisungen 51
if-Schlüsselwort 289
Importieren von Modulen 44, 80
import-Schlüsselwort 290
Indexpositionen in Listen 34
in-Schlüsselwort 290
Index 301

302
Installation
Definition 297
Python 8
Python unter Mac OS X 11
Python unter Ubuntu 13
Python unter Windows 9

Instanzen 88
Definition 297

Integrierte Enwicklungsumgebung (IDLE)
14

int-Funktion 60, 108
Isometrische Grafiken 153
is-Schlüsselwort 290
Iteratoren 64, 111

J

Java 275
JavaScript 278

K

keyword-Modul 122
Kinderklassen 87

Definition 297
Klammern () 22

bei Klassen und Objekten 88
zur Erzeugung von Tupeln 39

Klassen 86
Elternklassen 87
Funktionen definieren 88
Funktionen erben 94
Funktionen, die andere Funktionen

aufrufen 95
Kinderklassen 87, 297
mit dem Modul turtle beschrieben 92
Objekte hinzufügen 87

Klassifizieren von Dingen mit Klassen und
Objekten 86

Klicken eines Buttons 297
Kollisionen, Definition 297
Kollisionserkennung 199, 232

in Bounce! 199
Koordinaten 157
Koordinaten-Klasse 226
Kopieren und Einfügen in IDLE 25

L

lambda-Schlüsselwort 290
Leerzeichen 52
Leinwände

mit dem turtle-Modul erzeugen 44
mit tkinter-Modul erzeugen 157

len-Funktion 109
Linux Siehe Ubuntu Linux
Listen 34

Elemente hinzufügen 36
Elemente löschen 36
Indexpositionen 34
Inhalt ausgeben 34
kleinster Wert in 110
Länge von 109
Subgruppen von 35
Tippfehler 38
und die Funktion range 76
und for-Schleifen 65
von Zahlen erzeugen 76
zusammenfügen 37

Listen von Zahlen anlegen 76
Löschen von Elementen

aus Listen 36
aus Maps 41

M

Mac OS X
Dateien anlegen unter 114
Einrichten von IDLE unter 11
Installtion von Python unter 11
Öffnen von Dateien unter 116
Pfade unter 116

Maps 39
Abfragen von Werten aus 41
Austauschen von Werten in 41
Länge von 109
Löschen von Werten aus 41
TypeError in 41

Mathematische Operationen
Addition 21
Division 21
Modulo 138
Multiplikation 19
Multiplikation von Strings 32
Multiplikation von Variablen 78
Subtraktion 21
Index

max-Funktion 110
mehrzeilige Strings 30, 107
min-Funktion 110
Module 80

copy 120
Definition 297
dump-Funktion in pickle 132
flache Kopie 121
Importieren 44, 80
keyword 122
load-Funktion in pickle 132
pickle 131
tiefe Kopie 122

Modulo-Operator (%) 138
Monty Python’s Flying Circus 8
Multiplikation 19

von Strings 32
von Variablen 78

N

NameError 78, 288, 289
None 58
not-Schlüsselwort 290
Null, Definition 297

O

Objective-C, Programmiersprache 277
Objekte 80, 86

aus Dateien lesen 132
Definition 298
identifizierende Nummer 178
in Datei speichern 132
Initialisierung 96
Klassen hinzufügen 87
standard input 80
standard output 127

Objekte in Dateien schreiben 132
Operatoren 21

Definition 298
Modulo-~ (%) 138
Platzhalter (%) 31
Rangfolge 22

or-Schlüsselwort 58, 291
OS X Siehe Mac OS X

P

Parameter 76
benannte 156

pass-Schlüsselwort 86, 291
PERL, Programmiersprache 278
PHP, Programmiersprache 277
pickle-Modul 131

dump-Funktion 132
load-Funktion 132

Pixel 46
Definition 298

Platzhalter 31, 165
Programme

laufen lassen (run) 16
speichern 15
verzögern 131

Programmiersprachen 8, 275
für Mobiltelefonanwendungen 275,

277
für Webentwicklung 277, 278

Prompt 14
Prozentzeichen (%)

als Modulo-Operator 138
als Platzhalter-Operator 31, 165

Punkt-Operator (.) 97
Pygame2 274
Python 8

Installation 8
Installation unter Linux Ubuntu 13
Installation unter Mac OS X 11
Installation unter Windows 9
Konsole 45
Programme speichern 15
Shell Siehe Shell

Python-Schlüsselwörter 294

R

raise-Schlüsselwort 293
random-Modul 123

choice-Funktion 125
randint-Funktion 123
shuffle-Funktion 125, 191
Zufalls-Rechtecke erzeugen 161
Index 303

304
range-Funktion 111
bei list-Funktion 76
in for-Schleifen 63, 65, 109
mit der list-Funktion 76

Rechnen 19, 107
return-Schlüsselwort 293
Ruby, Programmiersprache 278

S

Schlüsselwörter
and 283
as 283
assert 284
break 72, 284
class 285
continue 285
def 90, 286
del 36, 286
elif 287
else 287
exept 287
finally 287
for 287
from 287
global 288
if 289
import 290
in 290
is 290
lambda 290
not 290
or 58, 291
pass 86, 291
raise 293
return 293
try 293
while 293
with 294
yield 294

Scratch 273
Shell 14

Ein neues Fenster öffnen 17
Sich schraubender Stern 137
sleep-Funktion 131
Software 7
Speichern von Programmen 15
Speicher, Definition 298
Sprites 212
standard input (stdin) 80

standard output (stdout) 127
str-Funktion 60
Strings 27

Einbinden von Werten in 31, 165
Escaping 30
mehrzeilige 28, 107
Multiplizieren von 32
Syntax-Fehler in 29, 30
versus Zahlen 59

Subtraktion 21
sum-Funktion 112
Syntax 28
SyntaxError 29, 30, 54, 67
sys-Modul 80, 126

exit-Funktion 126
Objekt stdin 126
Objekt stdout 127
version-Funktion 128

SystemExit 126

T

time-Modul 80, 128
asctime-Funktion 129
localtime-Funktion 130
sleep-Funktion 131
time-Funktion 129

tkinter-Modul 153
Animation 173, 188
askcolor-Funktion 165
Bilder anzeigen 171
Bögen zeichnen 166
Button erzeugen 154
Canvas-Objekt, coords-Funktion 190
Canvas-Objekt, winfo_height-Funk-

tion 190
Canvas-Objekt, winfo_width-Funktion

192
coords-Funktion 191
Ereignis-Bindung 176, 198
Kästchen zeichnen 159, 196
keysum-Variable 177
Leinwand erzeugen 157
Linien zeichnen 157
move-Funktion 197
Ovale (Kreise) zeichnen 186
pack-Funktion 157, 184
PhotoImage 172
Polygone zeichnen 169
Text anzeigen 170
Index

tkinter-Modul (Fortsetzung)

tk-Objekt, title-Funktion 185
tk-Objekt, update_idletasks-Funktion

187
tk-Objekt, wm_attributes-Funktion 184
und Farben 163
und ID-Nummern 158, 174, 178

Transparenz in Bildern 212, 219
Definition 298
mit GIMP 213

try-Schlüsselwort 293
Tupeln 39, 165, 170
turtle-Funktion

achtzackigen Stern zeichnen 136
ausgefüllte Quadrate zeichnen 146
ausgefüllte Sterne 148
ausgefüllten Kreis zeichnen 143
color-Funktion 140
end_fill-Funktion 142
Kästchen zeichnen 135, 196
Leinwand erzeugen 44
Linien zeichnen 158
mit for-Schleifen 137
nach links drehen 46
nach rechts bewegen 49
Pen-Klasse 44
reset-Funktion 48
rückwärts bewegen 49
sich schraubenden Stern zeichnen 137
TypeError 38, 39, 41
vorwärts bewegen 46
zweidimensionale (2D) Grafiken 153

turtle-Modul 43, 135
begin_fill-Funktion 142
clear-Funktion 48

U

Ubuntu Linux
Dateien anlegen 115
Datein öffnen in 116
Dateipfade unter 116
Python installieren unter 14

Umwandeln
Daten 129
Zahlen aus Strings 60
Zahlen in Strings 60

Unity3D 273
Untergruppe einer Liste 35

V

ValueError 61, 109
Variablen

Ausgeben des Inhalts einer 23
erzeugen 22
Gültigkeitsbereich von 77
verwenden 24
zurücksetzen 59

Variablen erzeugen 22
Vererbung 94
Verlangsamen von Programmen 131
Verzeichnis, Definition 298

W

while-Schleifen 70
while-Schlüsselwort 293
Windows

Dateien anlegen unter 113
Dateien öffnen unter 116
Dateipfade unter 116
IDLE einrichten unter 9
Python installieren unter 9

with-Schlüsselwort 294

Y

yield-Schlüsselwort 294

Z

Zahlen
Fließkomma- 107
Ganzzahlen 60, 108
Strings umwandeln in 60
Umwandlung in Strings 60
und ValueError 61, 109
versus Strings 59

Zeichnen für »Herr Strichmann rennt zum
Ausgang«

Ebenen 217
Herr Strichmann 215
Hintergrund 218
Tür 217

Zeichnen mit dem Modul tkinter 179
Bögen 166
Kästchen 159
Linien 157
Ovale (Kreise) 186
Polygone 169
Index 305

306
Zeichnen mit dem Modul turtle 149
achtzackiger Stern 136
ausgefüllte Sterne 148
ausgefüllter Kreis 143
ausgefülltes Quadrat 145
Auto 140
Linie 157
Rechteck 196

Zurücksetzen von Variablen 59
Zusammenfügen von Listen 37

Sonderzeichen

: (Doppelpunkt)
in if-Anweisungen 52
in Listen 35
in Maps 40

. (Punkt-Operator) 97
() (Klammern)

bei Klassen und Objekten 88

[] (eckige Klammern), zur Erzeugung von
Listen 34

{} (geschweifte Klammern), zur Erzeugung
von Maps 40

* (Multiplikationsoperator) 19
/ (Divisions-Operator) 21
\ (Rückwärtsschrägstrich)

in Strings 31, 116
um Code-Zeilen zu trennen 222

% (Prozentzeichen)
als Modulo-Operator 138
als Platzhalter-Operator 31, 165

+ (Additions-Operator) 21
− (Subtraktions-Operator) 21

Ziffern

2D-Grafiken (zweidimensionale Grafiken)
153

3D-Grafiken (dreidimensionale Grafiken)
153
Index

Marijn Haverbeke

Die Kunst der
JavaScript-
Programmierung
Eine moderne Einführung
in die Sprache des Web
Das Buch ist eine Einführung in
JavaScript, die sich auf gute Program-
miertechniken konzentriert. Der Autor
lehrt den Leser, wie man die Eleganz
und Präzision von JavaScript nutzt,
um browserbasierte Anwendungen
zu schreiben.
Das Buch beginnt mit den Grund-
lagen der Programmierung – Varia-
blen, Kontrollstrukturen, Funktionen
und Datenstrukturen –, dann geht
es auf komplexere Themen ein, wie
die funktionale und objektorientierte
 Programmierung, reguläre Ausdrücke
und Browser-Events.
Unterstützt von verständlichen Bei-
spielen wird der Leser rasch die Sprache
des Web fl ießend »sprechen« können.

Ringstraße 19 B · 69115 Heidelberg
fon 0 62 21/14 83 40
fax 0 62 21/14 83 99
e-mail hallo@dpunkt.de
http://www.dpunkt.de

»Als sehr aktive Person in der ›Java-
Script-Szene‹ werde ich oft gefragt,
welches Buch jemand lesen soll, um
JavaScript zu lernen. (...) Ab jetzt ist
meine Antwort ganz klar: ›Eloquent
 JavaScript‹. Das Buch erklärt auf
elegante und mitreißende Weise, wie
man ›richtig‹ JavaScript programmiert.
Dabei ist das Buch für Leute ohne
Programmierkenntnisse geschrieben
und trotzdem auch für Programmier-
Veteranen geeignet. (...)
(Malte, amazon.de)
»A concise and balanced mix of
principles and pragmatics. I loved
the tutorial-style game-like program
development. This book rekindled my
earliest joys of programming. Plus,
JavaScript!«
(Brendan Eich, creator of JavaScript)

2012, 240 Seiten, Broschur
€ 24,90 (D)
ISBN 978-3-89864-787-8

Hanspeter Mössenböck

Sprechen Sie
Java?
Eine Einführung in das
 systematische Programmieren
4., überarbeitete und erweiterte Auflage
Dieses Lehrbuch zeigt von Grund
auf, wie man Software systematisch
entwickelt. Es beschreibt Java in allen
wichtigen Einzelheiten und vermittelt
darüber hinaus allgemeine Program-
miertechniken: algorithmisches
Denken, systematischer Programment-
wurf, moderne Softwarekonzepte und
Programmierstil. Es führt von einfa-
chen Anweisungen und Datentypen
über Objektorientierung und dynami-
sche Datenstrukturen hin zu Konzep-
ten wie Parallelität oder Ausnahme-
behandlung. Der Umfang entspricht
einer 2-stündigen einsemestrigen Vor-
lesung. Jedes Kapitel enthält zahlreiche
Übungsaufgaben. Auf der Website
zum Buch (http://ssw.jku.at/JavaBuch)
finden sich u.a. Lehrunterlagen und die
Musterlösungen.
Die 4. Auflage berücksichtigt die bereits
für Java 7 angekündigten Neuerungen
der Sprache.

Ringstraße 19 B · 69115 Heidelberg
fon 0 62 21/14 83 40
fax 0 62 21/14 83 99
e-mail hallo@dpunkt.de
http://www.dpunkt.de

Stimmen zur Vorauflage:
»... stellt dieses Buch eine gute Einfüh-
rung und eine reichhaltige Fundgrube
für Lehre und Selbststudium dar.«
(Javamagazin 06/2003)

4., überarbeitete und erweiterte
Auflage 2011, 348 Seiten, Broschur
€ 29,90 (D)
ISBN 978-3-89864-595-9

	Vorwort
	Über den Autor
	Über die Fachkorrektoren
	Danksagungen

	Inhaltsübersicht
	Inhaltsverzeichnis
	1 Einleitung
	1.1 Warum Python?
	1.2 Wie man das Programmieren lernt
	1.3 Wer dieses Buch lesen sollte
	1.4 Was in diesem Buch steht
	1.5 Die Website zum Buch
	1.6 Viel Vergnügen!

	Teil I�Programmieren lernen
	2 Nicht alle Schlangen schlängeln sich
	2.1 Ein paar Bemerkungen zum Thema Sprache
	2.2 Python installieren
	Python unter Windows 7 installieren
	Python in Mac OS X installieren
	Python in Ubuntu installieren

	2.3 Wenn Du Python installiert hast
	2.4 Deine Python-Programme sichern
	2.5 Was Du gelernt hast

	3 Berechnungen und Variablen
	3.1 Mit Python rechnen
	Operatoren in Python
	Die Rangfolge der Operationen

	3.2 Variablen sind wie Bezeichnungen
	3.3 Variablen benutzen
	3.4 Was Du gelernt hast

	4 Strings, Listen, Tupeln und Maps
	4.1 Strings
	Strings erzeugen
	Wie man Probleme mit Strings meistert
	Werte in Strings einbetten
	Strings multiplizieren

	4.2 Listen können mehr als Strings
	Einer Liste Elemente hinzufügen
	Elemente aus einer Liste entfernen
	Mit Listen rechnen

	4.3 Tupeln
	4.4 Maps in Python weisen Dir nicht den Weg
	4.5 Was Du gelernt hast
	4.6 Programmier-Puzzles
	# 1: Lieblingssachen
	# 2: Kämpfer zählen
	# 3: Grüße!

	5 Malen mit Turtles
	5.1 Wie man Pythons Modul turtle benutzt
	Eine Leinwand erzeugen
	Die Schildkröte bewegen

	5.2 Was Du gelernt hast
	5.3 Programmier-Puzzles
	# 1: Ein Rechteck
	# 2: Ein Dreieck
	# 3: Eine Kiste ohne Ecken

	6 Fragen mit if und else stellen
	6.1 if-Anweisungen
	Ein Anweisungsblock enthält mehrere Anweisungen
	Mit Bedingungen können wir Dinge vergleichen

	6.2 If-Then-Else-Anweisungen
	6.3 if- und elif-Anweisungen
	6.4 Bedingungen kombinieren
	6.5 Variablen ohne Wert – None
	6.6 Der Unterschied zwischen Strings und Zahlen
	6.7 Was Du gelernt hast
	6.8 Programmier-Puzzles
	# 1: Bist Du reich?
	# 2: Kekse!
	# 3: Einfach die richtige Zahl
	# 4: Ich kann die Ninjas bezwingen

	7 Schleifen drehen
	7.1 Wie man for-Schleifen benutzt
	7.2 Wo wir gerade von Schleifen sprechen…
	7.3 Was Du gelernt hast
	7.4 Programmier-Puzzles
	# 1: Die Hallo-Schleife
	# 2: Gerade Zahlen
	# 3: Meine fünf Lieblingszutaten
	# 4 Wie viel wiegst Du auf dem Mond?

	8 Wiederverwertung Deines Codes mit Funktionen und Modulen
	8.1 Funktionen benutzen
	Teile einer Funktion

	8.2 Variablen und ihr Gültigkeitsbereich
	8.3 Einsatz von Modulen
	8.4 Was Du gelernt hast
	8.5 Programmier-Puzzles
	# 1: Einfache Funktion für Dein Gewicht auf dem Mond
	# 2: Was wiegst Du auf dem Mond nach x Jahren?
	# 3: Ein Programm für Dein Gewicht auf dem Mond

	9 Wie man Klassen und Objekte benutzt
	9.1 Dinge in Klassen aufteilen
	Kinder und Eltern

	9.2 Klassen Objekte hinzufügen
	9.3 Funktionen von Klassen definieren
	Klasseneigenschaften als Funktionen hinzufügen

	9.4 Wozu braucht man Klassen und Objekte?
	9.5 Objekte und Klassen bei Bildern
	9.6 Weitere nützliche Eigenschaften von Objekten und Klassen
	9.7 Geerbte Funktionen
	9.8 Funktionen, die andere Funktionen aufrufen
	9.9 Ein Objekt initialisieren
	9.10 Was Du gelernt hast
	9.11 Programmier-Puzzles
	# 1: Der Giraffen-Schiebetanz
	# 2: Schildkröten-Heugabel

	10 Pythons eingebaute Funktionen
	10.1 Eingebaute Funktionen verwenden
	Die abs-Funktion
	Die boolesche Funktion
	Die Funktion dir
	Die Funktion eval
	Die Funktion exec
	Die Funktion float
	Die Funktion int
	Die Funktion len
	Die Funktionen max und min
	Die Funktion range
	Die Funktion sum

	10.2 Umgang mit Dateien
	Erzeugen einer Test-Datei
	Eine neue Datei unter Windows erzeugen
	Eine neue Datei unter Mac OS X erzeugen
	Eine neue Datei unter Ubuntu erzeugen

	Eine Datei in Python öffnen
	Eine Windows-Datei öffnen
	Eine Mac OS X-Datei öffnen
	Eine Ubuntu-Datei öffnen

	In Dateien schreiben

	10.3 Was Du gelernt hast
	10.4 Programmier-Puzzles
	# 1: Geheimnisvoller Code
	# 2: Eine versteckte Botschaft
	# 3: Eine Datei kopieren

	11 Nützliche Python-Module
	11.1 Mit dem Modul copy Kopien erstellen
	11.2 Mit dem Modul keyword einen Überblick über die Schlüsselwörter erhalten
	11.3 Wie man mit dem Modul random Zufallszahlen bekommt
	Mit randint eine Zufallszahl bestimmen lassen
	Mit choice ein zufälliges Element aus einer Liste auswählen
	Mit shuffle eine Liste mischen

	11.4 Die Shell mit dem Modul sys steuern
	Die Shell mit der Funktion exit verlassen
	In dem Objekt stdin lesen
	Mit dem Objekt stdout schreiben
	Welche Python-Version benutze ich?

	11.5 Mit dem Modul time arbeiten
	Mit asctime ein Datum umwandeln
	Mit localtime Datum und Uhrzeit bekommen
	Mit sleep eine Pause machen

	11.6 Mit dem Modul pickle Informationen speichern
	11.7 Was Du gelernt hast
	11.8 Programmier-Puzzles
	# 1: Kopierte Autos
	# 2: Favoriten in pickle

	12 Noch mehr Grafik mit turtle
	12.1 Fangen wir mit einem einfachen Quadrat an
	12.2 Sterne zeichnen
	12.3 Ein Auto zeichnen
	12.4 Dinge einfärben
	Eine Funktion zum Zeichnen eines ausgefüllten Kreises
	Reines Schwarz und Weiß erzeugen
	Eine Funktion zum Quadratezeichnen

	12.5 Ausgefüllte Quadrate zeichnen
	12.6 Ausgefüllte Sterne zeichnen
	12.7 Was Du gelernt hast
	12.8 Programmier-Puzzles
	# 1: Ein Oktagon zeichnen
	# 2: Ein ausgefülltes Oktagon zeichnen
	# 3: Noch eine Funktion zum Sterne Zeichnen

	13 Bessere Grafiken mit tkinter
	13.1 Einen klickbaren Button erzeugen
	13.2 Einsatz von benannten Parametern
	13.3 Eine Leinwand zum Zeichnen erzeugen
	13.4 Linien zeichnen
	13.5 Kästchen zeichnen
	Ganz viele Rechtecke zeichnen
	Die Farbe bestimmen

	13.6 Bögen zeichnen
	13.7 Polygone zeichnen
	13.8 Darstellung von Text
	13.9 Bilder anzeigen
	13.10 Eine einfache Animation erzeugen
	13.11 Ein Objekt auf etwas reagieren lassen
	13.12 Weitere Anwendungen für die ID-Nummer
	13.13 Was Du gelernt hast
	13.14 Programmier-Puzzles
	# 1: Fülle die Leinwand mit Dreiecken
	# 2: Das sich bewegende Dreieck
	# 3: Das sich bewegende Foto

	Teil II�BOUNCE!
	14 Der Anfang Deines ersten Spiels: BOUNCE!
	14.1 Schlag den hüpfenden Ball
	14.2 Erzeugen einer Spiele-Leinwand
	14.3 Erzeugen der Ball-Klasse
	14.4 In Bewegung kommen
	Den Ball in Bewegung setzen
	Den Ball springen lassen
	Die Startposition des Balls ändern

	14.5 Was Du gelernt hast

	15 Dein erstes Spiel vollenden: BOUNCE!
	15.1 Einen Schläger hinzufügen
	Den Schläger in Bewegung setzen

	15.2 Merken, dass der Ball auf den Schläger trifft
	15.3 Dem Spiel etwas Zufälliges geben
	15.4 Was Du gelernt hast
	15.5 Programmier-Puzzles
	# 1: Verzögere den Spielstart
	# 2: Ein richtiges »Game Over«
	# 3: Beschleunige den Ball
	# 4: Zeichne den Punktestand auf

	Teil III�Herr Strichmann rennt zum Ausgang
	16 Wir erstellen Grafiken für das Strichmännchenspiel
	16.1 Der Strichmännchen-Spielplan
	16.2 GIMP installieren
	16.3 Erzeugen der Spielelemente
	Ein transparentes Bild erstellen
	Herrn Strichmann zeichnen
	Herr Strichmann rennt nach rechts
	Herr Strichmann rennt nach links
	Ebenen zeichnen
	Die Tür zeichnen
	Den Hintergrund zeichnen
	Transparenz

	16.4 Was Du gelernt hast

	17 Entwicklung des Strichmännchenspiels
	17.1 Erzeugen der Spiel-Klasse
	17.2 Den Fenstertitel bestimmen und die Leinwand erzeugen
	Abschluss der __init__-Funktion
	Erzeugen der Hauptschleifen-Funktion

	17.3 Erstellen der Klasse Koordinaten
	17.4 Zusammenstöße erkennen
	Sprites stoßen horizontal zusammen
	Sprites stoßen vertikal zusammen
	Alles zusammenfügen: Unserer endgültiger Code zur Erkennung von Zusammenstößen
	Die Funktion »angestoßen_links«
	Die Funktion »angestoßen_rechts«
	Die Funktion »angestoßen_oben«
	Die Funktion »angestoßen_unten«

	17.5 Erzeugen der Sprite-Klasse
	17.6 Die Ebenen hinzufügen
	Ein Ebenen-Objekt hinzufügen
	Einen ganzen Haufen Ebenen hinzufügen

	17.7 Was Du gelernt hast
	17.8 Programmier-Puzzles
	# 1: Schachbrett
	# 2: Zwei-Bilder-Schachbrett
	# 3: Regal und Lampe

	18 Herrn Strichmann erschaffen
	18.1 Das Strichmännchen initialisieren
	Die Strichmännchen-Bilder laden
	Variablen einrichten
	Bindung an die Tasten

	18.2 Das Strichmännchen nach links und rechts bewegen
	18.3 Das Strichmännchen springen lassen
	18.4 Was wir bis jetzt erreicht haben
	18.5 Was Du gelernt hast

	19 Abschluss des Spiels mit Herrn Strichmann
	19.1 Animation des Strichmännchens
	Die Funktion animieren erstellen
	Bewegung erfassen
	Das Bild ändern
	Die Position des Strichmännchens erfassen

	Das Strichmännchen in Bewegung versetzen
	Der Beginn der Funktion »move«
	Hat das Strichmännchen den Boden oder die Decke der Leinwand berührt?
	Hat das Strichmännchen die Seite der Leinwand berührt?
	Mit anderen Sprites zusammenstoßen
	Auftreffen mit der Unterseite
	Überprüfung links und rechts

	19.2 Testen unseres Strichmännchen-Sprites
	19.3 Die Tür!
	Die Klasse TürSprite erzeugen
	Die Tür erkennen
	Das Tür-Objekt hinzufügen

	19.4 Das fertige Spiel
	19.5 Was Du gelernt hast
	19.6 Programmier-Puzzles
	# 1: »Du hast gewonnen!«
	# 2: Animation der Tür
	# 3: Sich bewegende Ebenen

	20 Wie geht es jetzt weiter?
	20.1 Spiele- und Grafikprogrammierung
	20.2 PyGame
	20.3 Programmiersprachen
	Java
	C/C++
	C#
	PHP
	Objective-C
	PERL
	Ruby
	JavaScript

	20.4 Abschließende Worte

	Anhang
	Python-Schlüsselwörter
	Glossar
	Index

