

Programmieren lernen mit Python

Allen B. Downey

Stefan Fröhlich

Vorwort

Die seltsame Geschichte dieses Buchs

Im Januar 1999 bereitete ich mich als Dozent auf einen Einführungskurs für Java-

Programmierung vor. Ich hatte den Kurs bereits dreimal gehalten, und so langsam

frustrierte er mich. Die Durchfallquote in den Kursen war zu hoch, und selbst bei

den erfolgreichen Studenten waren die Leistungen immer noch schwach.

Eines der Probleme bestand meiner Meinung nach in den Büchern: Sie waren zu

dick, enthielten zu viele unnötige Einzelheiten über Java und zu wenige

Informationen darüber, wie man programmiert. Und sie litten alle unter dem

Falltüreffekt: Die Bücher fingen einfach an, steigerten sich allmählich, und

irgendwo um Kapitel 5 herum kam dann der Einbruch. Die Studenten erhielten zu

schnell zu viel neues Material und verbrachten den Rest des Semesters damit, die

Einzelteile zusammenzusetzen.

Zwei Wochen vor dem ersten Kurstag entschied ich mich, ein eigenes Buch zu

schreiben. Meine Ziele waren:

So kurz wie möglich: Es ist einfacher, 10 statt 50 Seiten zu lesen.

Bewusste Wortwahl: Ich habe versucht, den Fachjargon zu minimieren und jeden

Begriff bei der erstmaligen Verwendung zu definieren.

Langsame Steigerung: Um Falltüren zu vermeiden, habe ich die schwierigen

Themen in eine Reihe kleinerer Schritte aufgeteilt.

Fokus auf der Programmierung, nicht der Programmiersprache: Ich habe den

kleinstmöglichen nützlichen Ausschnitt aus Java erklärt und den Rest

weggelassen.

Aus einer Laune heraus wählte ich als Titel How to Think Like a Computer Scientist

(Wie Sie wie ein Informatiker denken).

Meine erste Fassung war holprig, aber funktionierte. Beim Lesen verstanden die

Studenten genug, damit ich mich in der Unterrichtszeit auf die schwierigen und

interessanten Themen konzentrieren konnte – und die Studenten Zeit zum Üben

hatten.

Schließlich veröffentlichte ich das Buch unter der GNU Free Documentation

License, nach der die Nutzer das Buch kopieren, ändern und verteilen dürfen.

Und dann kam der spannende Teil: Jeff Elkner, ein Highschool-Lehrer in Virginia,

nahm mein Buch und übersetzte es in Python. Er schickte mir eine Ausgabe seiner

Übertragung, und ich machte die ungewöhnliche Erfahrung, Python zu lernen, indem

ich mein eigenes Buch las. Unter dem Namen »Green Tea Press« veröffentlichte ich

die erste Python-Version im Jahr 2001.

2003 begann ich dann, am Olin College zu unterrichten, und gab auch zum ersten Mal Kurse in Python. Der Unterschied zu den Java-Kursen war offensichtlich: Die

Studenten hatten weniger zu kämpfen, lernten mehr, arbeiteten an interessanteren

Projekten und hatten insgesamt eine Menge mehr Spaß.

In den vergangenen neun Jahren habe ich das Buch weiterentwickelt, Fehler

beseitigt, die Beispiele verbessert und zusätzliches Material eingefügt, vor allem

neue Übungen.

Das Ergebnis ist das vorliegende Buch mit dem etwas weniger bombastischen Titel

 Programmieren lernen mit Python. Unter anderem hat sich Folgendes geändert:

Am Ende jedes Kapitels habe ich einen Abschnitt zum Thema Debugging

eingefügt. Diese Abschnitte enthalten allgemeine Techniken zum Aufspüren und

Vermeiden von Bugs sowie Warnungen vor entsprechenden Stolpersteinen in

Python.

Ich habe zusätzliche Übungen eingefügt – von kurzen Verständnistests bis hin zu

grundlegenden Projekten. Und für die meisten habe ich Lösungen geschrieben.

Außerdem gibt es Fallstudien – längere Beispiele mit Übungen, Lösungen und

Erläuterungen. Einige davon basieren auf Swampy, einer Reihe von Python-

Programmen, die ich für meine Kurse geschrieben habe. Swampy, Codebeispiele

und einige Lösungen finden Sie unter http://thinkpython.com.

Die Darstellung von Entwicklungsplänen und grundlegenden Entwurfsmustern

habe ich erweitert.

Ich habe Anhänge zum Thema Debugging, Analyse von Algorithmen und UML-

Diagrammen mit Lumpy eingefügt.

Ich hoffe, dass Ihnen die Arbeit mit diesem Buch Spaß macht und es Ihnen dabei

hilft, zu lernen, wie Sie wie ein Informatiker programmieren und vielleicht auch ein

bisschen so denken.

– Allen B. Downey

Needham, MA

Typografische Konventionen

In diesem Buch werden die folgenden typografischen Konventionen verwendet:

 Kursivschrift

Wird für URLs, E-Mail-Adressen, Dateinamen, Dateiendungen, Pfadnamen und

Verzeichnisse verwendet.

Fettschrift

Wird zum Hervorheben genutzt und um die erste Verwendung eines Begriffs zu

kennzeichnen.

Nichtproportionalschrift

Wird für Befehle oder anderen Text, den Sie wortwörtlich eingeben müssen, sowie

für Befehlsausgaben verwendet.

Nutzung der Codebeispiele

Die Beispiele und die Lösungen zu den Übungen in diesem Buch stehen zum

Download zur Verfügung. Sie finden sie auf unserer Verlagswebsite:

http://examples.oreilly.de/german_examples/thinkpythonger

Dieses Buch soll Ihnen bei der Arbeit helfen. Es ist grundsätzlich erlaubt, den Code

dieses Buches in Ihren Programmen und der Dokumentation zu verwenden. Hierfür

ist es nicht notwendig, uns um Erlaubnis zu fragen, es sei denn, es handelt sich um

eine größere Menge Code. So ist es beim Schreiben eines Programms, das einige

Codeschnipsel dieses Buches verwendet, nicht nötig, sich mit uns in Verbindung zu

setzen; beim Verkauf oder Vertrieb einer CD-ROM mit Beispielen aus O’Reilly-

Büchern dagegen schon. Das Beantworten einer Frage durch Zitieren von

Beispielcode erfordert keine Erlaubnis. Verwenden Sie einen erheblichen Teil des

Beispielcodes aus diesem Buch in Ihrer Dokumentation, ist jedoch unsere Erlaubnis

nötig.

Eine Quellenangabe ist zwar erwünscht, aber nicht unbedingt notwendig. Hierzu

gehört in der Regel die Erwähnung von Titel, Autor, Verlag und ISBN. Zum

Beispiel: » Programmierung lernen mit Python von Allen B. Downey (O’Reilly).

Copyright 2012 Allen B. Downey, 978-3-86899-946-4«.

Falls Sie nicht sicher sind, ob die Nutzung der Codebeispiele über die hier erteilte

Genehmigung hinausgeht, nehmen Sie bitte unter der Adresse

permissions@oreilly.com Kontakt mit uns auf.

Danksagungen

Herzlichen Dank an Jeff Elkner, der mein Java-Buch in Python übersetzt, dieses

Projekt auf den Weg gebracht und mich mit dem vertraut gemacht hat, was sich als

meine Lieblingssprache entpuppen sollte.

Vielen Dank auch an Chris Meyers für mehrere Abschnitte in How to Think Like a

 Computer Scientist.

Danke an die Free Software Foundation für die Entwicklung der GNU Free

Documentation License, die mir die Zusammenarbeit mit Jeff und Chris erleichtert

hat, sowie Creative Commons für die Lizenz, die ich jetzt nutze.

Vielen Dank außerdem an die Lektoren bei Lulu, die an How to Think Like a

 Computer Scientist gearbeitet haben.

Mein herzlicher Dank gilt außerdem allen Studenten, die mit früheren Versionen dieses Buchs gearbeitet haben, sowie allen Beitragenden (siehe unten) für ihre

Korrekturen und Vorschläge.

Liste der Beitragenden

Über 100 Leser mit scharfen Augen und scharfem Verstand haben mir in den

vergangenen Jahren Vorschläge und Korrekturen geschickt. Ihre Beiträge und ihr

Enthusiasmus für dieses Projekt waren eine große Hilfe für mich. Falls Sie einen

Vorschlag oder eine Korrektur haben, schicken Sie bitte eine E-Mail an

 feedback@thinkpython.com. Wenn ich aufgrund Ihrer Anregung eine Änderung

mache, nehme ich Sie in die Liste der Beitragenden auf (es sei denn, Sie möchten

das nicht).

Wenn Sie dabei einen Teil des entsprechenden fehlerhaften Satzes angeben,

erleichtert mir das die Suche ungemein. Die Seitenzahl des entsprechenden

Abschnitts ist natürlich auch in Ordnung, macht es mir aber nicht ganz so leicht.

Vielen Dank!

Lloyd Hugh Allen hat eine Korrektur für Abschnitt 8.4 geschickt.

Yvon Boulianne hat mir eine Korrektur für einen semantischen Fehler in Kapitel 5 gesendet.

Fred Bremmer hat eine Korrektur für Abschnitt 2.1 geschickt.

Jonah Cohen hat die Perl-Skripten für die Konvertierung der LaTeX-Quelle dieses Buchs in wunderschönem HTML geschrieben.

Michael Conlon hat eine grammatikalische Korrektur für Kapitel 2 und stilistische Verbesserungen für Kapitel 1 geschickt sowie die Diskussion über die technischen Aspekte von Interpretern gestartet.

Benoit Girard hat die Korrektur für einen lustigen Fehler in Abschnitt 5.6 geschickt.

Courtney Gleason und Katherine Smith haben horsebet.py geschrieben, das als Fallstudie in einer früheren Version des Buchs verwendet wurde. Das Programm finden Sie auf der Website.

Lee Harr hat mehr Korrekturen geschickt, als wir hier abdrucken können, und sollte eigentlich als einer der wichtigsten Korrektoren des Texts genannt werden.

James Kaylin ist ein Student, der mit dem Text arbeitet. Er hat zahlreiche Korrekturen geschickt.

David Kershaw hat die fehlerhafte Funktion zweimal_cat in Abschnitt 3.10 korrigiert.

Eddie Lam hat zahlreiche Korrekturen für die Kapitel 1, 2 und 3 eingeschickt. Außerdem hat er das Makefile so angepasst, dass es bei der ersten Ausführung einen Index erstellt, und uns so bei der Einrichtung eines Versionsschemas geholfen.

Man-Yong Lee hat eine Korrektur für den Beispielcode in Abschnitt 2.4 eingesendet.

David Mayo hat darauf hingewiesen, dass das Wort »unbewusst« in Kapitel 1 in »unterbewusst« geändert werden muss.

Chris McAloon hat mehrere Korrekturen für die Abschnitte 3.9 und 3.10 eingeschickt.

Matthew J. Moelter macht schon seit Langem viele Korrekturen und Vorschläge für dieses Buch.

Simon Dicon Montford hat eine fehlende Funktionsdefinition und mehrere Tippfehler in Kapitel 3

aufgespürt. Außerdem hat er Fehler in der Funktion inkrement in Kapitel 13 gefunden.

John Ouzts hat die Definition von »Rückgabewert« in Kapitel 3 korrigiert.

Kevin Parks hat wertvolle Kommentare und Vorschläge dazu eingesendet, wie die Verteilung des Buchs verbessert werden kann.

David Pool hat einen Tippfehler im Glossar in Kapitel 1 sowie ermunternde Worte geschickt.

Michael Schmitt hat eine Korrektur für das Kapitel über Dateien und Ausnahmen geschickt.

Paul Sleigh hat einen Fehler in Kapitel 7 und einen Bug in Jonah Cohens Perl-Skript gefunden, das aus LaTeX HTML erzeugt.

Craig T. Snydal testet den Text in einem Kurs an der Drew University. Er hat mehrere wertvolle Vorschläge und Korrekturen geliefert.

Ian Thomas und seine Studenten verwenden den Text in einem Programmierkurs. Sie sind die ersten, die die Kapitel in der letzten Hälfte des Buchs testen, und haben zahlreiche Korrekturen und Vorschläge gemacht.

Keith Verheyden hat eine Korrektur für Kapitel 3 eingeschickt.

Peter Winstanley hat uns auf einen langjährigen Fehler in unserem Latein in Kapitel 3 hingewiesen.

Chris Wrobel hat Korrekturen am Code im Kapitel über die Dateiein- und -ausgabe und die

entsprechenden Ausnahmen vorgenommen.

Moshe Zadka hat unbezahlbare Beiträge zu diesem Projekt geleistet. Zusätzlich zum ersten Entwurf für das Kapitel über Dictionaries hat er uns in den Anfängen dieses Buchs kontinuierlich beraten.

Christoph Zwerschke hat mehrere Korrekturen und pädagogische Vorschläge eingeschickt und uns den Unterschied zwischen »das Gleiche« und »dasselbe« erklärt.

James Mayer hat uns eine ganze Menge an Rechtschreib- und typografischen Fehlern geschickt, darunter zwei in der Liste der Beitragenden.

Hayden McAfee hat eine potenziell verwirrende Inkonsistenz zwischen zwei Beispielen entdeckt.

Angel Arnal ist Teil eines internationalen Teams von Übersetzern, das an der spanischen Version des Texts arbeitet. Er hat außerdem mehrere Fehler in der englischen Version gefunden.

Tauhidul Hoque und Lex Berezhny haben die Illustrationen in Kapitel 1 angefertigt und viele andere Illustrationen verbessert.

Dr. Michele Alzetta hat einen Fehler in Kapitel 8 aufgespürt sowie einige interessante pädagogische Kommentare und Vorschläge zu Fibonacci und Old Maid eingebracht.

Andy Mitchell hat einen Tippfehler in Kapitel 1 und ein fehlerhaftes Beispiel in Kapitel 2 aufgespürt.

Kalin Harvey hat eine Berichtigung in Kapitel 7 vorgeschlagen und einige Tippfehler entdeckt.

Christopher P. Smith hat mehrere Tippfehler gefunden und uns bei der Aktualisierung für das Buch auf Python 2.2 geholfen.

David Hutchins hat einen Tippfehler im Vorwort entdeckt.

Gregor Lingl unterrichtet Python an einer Universität in Wien. Er arbeitet an einer deutschen Übersetzung des Buchs und hat einige schlimme Fehler in Kapitel 5 aufgespürt.

Julie Peters hat einen Tippfehler im Vorwort gefunden.

Florin Oprina hat eine Verbesserung für makeZeit, eine Korrektur für printZeit und einen hübschen Tippfehler gefunden.

D. J. Webre hat eine Klarstellung in Kapitel 3 vorgeschlagen.

Ken hat eine Handvoll Fehler in den Kapiteln 8, 9 und 11 gefunden.

Ivo Wever hat einen Tippfehler in Kapitel 5 gefunden und eine Klarstellung für Kapitel 3 vorgeschlagen.

Curtis Yanko hat eine Klarstellung für Kapitel 2 vorgeschlagen.

Ben Logan hat eine Reihe von Tippfehlern und Problemen bei der Übersetzung des Buchs in HTML

eingeschickt.

Jason Armstrong hat das fehlende Wort in Kapitel 2 gefunden.

Louis Cordier hat eine Stelle in Kapitel 16 gefunden, an der der Code nicht mit dem Text übereingestimmt hat.

Brian Cain hat mehrere Klarstellungen für die Kapitel 2 und 3 vorgeschlagen.

Rob Black hat eine Menge Korrekturen eingeschickt, darunter einige Änderungen für Python 2.2.

Jean-Philippe Rey von der Ecole Centrale Paris hat eine Reihe von Patches eingeschickt, darunter einige Aktualisierungen für Python 2.2 und andere scharfsinnige Verbesserungen.

Jason Mader von der George Washington University hat eine Reihe nützlicher Vorschläge und Korrekturen gemacht.

Jan Gundtofte-Bruun hat uns darauf hingewiesen, dass »ei Fehler« ein Fehler ist.

Abel David und Alexis Dinno haben uns daran erinnert, dass der Plural von »Matrix« ja »Matrizen« heißt und nicht »Matrixen«. Diesen Fehler gab es schon seit Jahren im Buch, und plötzlich haben zwei Leser mit den gleichen Initialen den Fehler am selben Tag gemeldet. Seltsam, oder?

Charles Thayer hat uns ermutigt, die Semikola am Ende einiger Anweisungen zu entfernen und die Verwendung von »Argument« und »Parameter« klarzustellen.

Roger Sperberg hat uns auf eine verdrehte Logik in Kapitel 3 hingewiesen.

Sam Bull hat uns auf einen verwirrenden Absatz in Kapitel 2 aufmerksam gemacht.

Andrew Cheung hat uns auf zwei Fälle von »is not defined« hingewiesen.

C. Corey Capel hat das fehlende Wort im dritten Theorem des Debuggings sowie einen Tippfehler in Kapitel 4 gefunden.

Alessandra hat uns dabei geholfen, eine Turtle-Verwirrung zu beseitigen.

Wim Champagne hat einen Dreher in einem Dictionary entdeckt.

Douglas Wright hat ein Problem bei der Division ohne Rest in bogen gefunden.

Jared Spindor hat einigen Ballast am Ende eines Satzes gefunden.

Lin Peiheng hat eine Reihe äußerst hilfreicher Vorschläge eingeschickt.

Ray Hagtvedt hat zwei Fehler und einen nicht ganz so falschen Fehler eingeschickt.

Torsten Hübsch hat uns auf eine Inkonsistenz in Swampy aufmerksam gemacht.

Inga Petuhhov hat ein Beispiel in Kapitel 14 korrigiert.

Arne Babenhauserheide hat mehrere hilfreiche Korrekturen eingeschickt.

Mark E. Casida hat ein Talent dafür, Wortwiederholungen aufzuspüren.

Scott Tyler hat ein fehlendes A eingefügt und eine ganze Menge Korrekturen eingeschickt.

Gordon Shephard hat mehrere Korrekturen eingeschickt, alle in separaten E-Mails.

Andrew Turner hat einen Fehler in Kapitel 8 gefunden.

Adam Hobart hat ein Problem bei der Division ohne Rest in bogen entdeckt.

Daryl Hammond und Sarah Zimmerman haben darauf hingewiesen, dass ich math.pi ins Spiel gebracht

habe. Und Zim hat einen Tippfehler gefunden.

George Sass hat einen Bug im Debugging-Abschnitt gefunden.

Brian Bingham hat Listing 11.10 vorgeschlagen.

Leah Engelbert-Fenton hat darauf hingewiesen, dass ich tuple entgegen meinem eigenen Rat als Variablennamen verwendet habe, und hat eine Menge Tippfehler sowie ein »is not defined« gefunden.

Joe Funke hat einen Tippfehler gefunden.

Chao-chao Chen hat eine Inkonsistenz im Fibonacci-Beispiel entdeckt.

Jeff Paine kennt den Unterschied zwischen »space« und »spam«.

Lubos Pintes hat einen Tippfehler eingeschickt.

Gregg Lind und Abigail Heithoff haben Listing 14.4 vorgeschlagen.

Max Hailperin hat eine Reihe von Korrekturen und Vorschlägen eingeschickt. Max ist einer der Autoren der außergewöhnlichen Concrete Abstractions: An Introduction to Computer Science Using Scheme, die Sie vielleicht lesen möchten, wenn Sie mit diesem Buch fertig sind.

Chotipat Pornavalai hat einen Fehler in einer Fehlermeldung gefunden.

Stanislaw Antol hat eine Liste mit äußerst hilfreichen Vorschlägen eingeschickt.

Eric Pashman hat eine Reihe von Korrekturen für die Kapitel 4 bis 11 eingeschickt.

Miguel Azevedo hat einige Tippfehler gefunden.

Jianhua Liu hat eine lange Liste mit Korrekturen geschickt.

Nick König hat ein fehlendes Wort gefunden.

Martin Zuther hat eine lange Liste mit Vorschlägen geschickt.

Adam Zimmerman hat eine Inkonsistenz in meiner Instanz von »instance« und viele andere Fehler gefunden.

Ratnakar Tiwari hat eine Fußnote zur Erklärung von degenerierten Dreiecken vorgeschlagen.

Anurag Goel hat eine andere Lösung für ist_alphabetisch vorgeschlagen, zusätzliche Korrekturen eingeschickt und weiß, wie man Jane Austen buchstabiert.

Kelli Kratzer hat einen Tippfehler gefunden.

Mark Griffiths hat auf ein verwirrendes Beispiel in Kapitel 3 hingewiesen.

Roydan Ongie hat einen Fehler in meiner Newton-Methode gefunden.

Patryk Wolowiec hat mir bei einem Problem mit der HTML-Version geholfen.

Mark Chonofsky hat mich auf ein neues Schlüsselwort in Python 3 hingewiesen.

Russell Coleman hat mir bei der Geometrie geholfen.

Wei Huang hat mehrere Tippfehler gefunden.

Karen Barber hat den ältesten Tippfehler im Buch gefunden.

Nam Nguyen hat einen Tippfehler gefunden und mich darauf hingewiesen, dass ich das Decorator-Muster verwendet, aber nicht namentlich genannt habe.

Stéphane Morin hat mehrere Korrekturen und Vorschläge geschickt.

Paul Stoop hat einen Tippfehler in verwendet_nur korrigiert.

Eric Bronner hat auf eine Verwirrung in der Diskussion der Reihenfolge von Operationen hingewiesen.

Alexandros Gezerlis hat einen neuen Standard für die Anzahl und Qualität von eingesendeten Vorschlägen gesetzt. Wir sind zutiefst dankbar dafür!

Gray Thomas kann rechts und links unterscheiden.

Giovanni Escobar Sosa hat eine lange Liste mit Korrekturen und Vorschlägen eingeschickt.

Alix Etienne hat eine der URLs korrigiert.

Kuang He hat einen Tippfehler gefunden.

Daniel Neilson hat einen Fehler in der Reihenfolge der Operationen korrigiert.

Will McGinnis hat darauf hingewiesen, dass polylinie an zwei Stellen unterschiedlich definiert wurde.

Swarup Sahoo hat ein fehlendes Semikolon entdeckt.

Frank Hecker hat auf eine zu wenig spezifizierte Übung sowie einige fehlerhaften Links hingewiesen.

Animesh B. hat mir dabei geholfen, ein verwirrendes Beispiel gerade zu rücken.

Martin Caspersen hat zwei Abrundungsfehler gefunden.

Gregor Ulm hat mehrere Korrekturen und Vorschläge geschickt.

Kapitel 1. Programme entwickeln

Das Ziel dieses Buchs besteht darin, Ihnen beizubringen, wie Sie wie ein

Informatiker denken. Diese Denkweise kombiniert einige der besten Eigenschaften

aus Mathematik, Ingenieurswesen und Naturwissenschaft. Wie Mathematiker

verwenden Informatiker formale Sprachen, um Ideen symbolisch darzustellen

(genauer gesagt, Berechnungen). Ähnlich wie Ingenieure entwerfen Informatiker

Dinge, setzen Komponenten zu Systemen zusammen und suchen einen Kompromiss

aus mehreren Alternativen aus. Und wie Wissenschaftler beobachten sie komplexe

Systeme, entwickeln Hypothesen und testen Prognosen.

Die allerwichtigste Fähigkeit eines Informatikers besteht darin, Probleme zu lösen.

Mit Problemlösung ist die Fähigkeit gemeint, Probleme zu formulieren, kreativ über

Lösungen nachzudenken und eine Lösung klar und präzise auszudrücken. Dabei zeigt

sich, dass programmieren zu lernen eine ausgezeichnete Gelegenheit ist, Ihre

Problemlösungsfähigkeiten zu trainieren. Deshalb heißt dieses Kapitel auch

»Programme entwickeln«.

Auf einer Ebene werden Sie das Programmieren lernen – was an sich schon eine

nützliche Fähigkeit ist. Auf einer anderen Ebene werden Sie die Programmierung als

Mittel zum Zweck kennenlernen. Und im weiteren Verlauf dieses Buchs wird dieser

Zweck immer klarer werden.

Die Programmiersprache Python

Die Programmiersprache, die Sie lernen werden, heißt »Python«. Python ist ein

Beispiel für eine höhere Programmiersprache. Andere höhere

Programmiersprachen, von denen Sie vielleicht bereits gehört haben, sind C, C++,

Perl und Java.

Niedere Programmiersprachen gibt es ebenfalls, die manchmal auch als

»Maschinensprachen« oder »Assembler-Sprachen« bezeichnet werden. Vereinfacht

ausgedrückt, können Computer nur Programme ausführen, die in niederen

Programmiersprachen geschrieben wurden. Entsprechend müssen Programme, die in

einer höheren Programmiersprache geschrieben wurden, verarbeitet werden, bevor

Sie sie ausführen können. Diese zusätzliche Verarbeitung braucht ein bisschen Zeit,

was ein kleiner Nachteil höherer Programmiersprachen ist.

Die Vorteile sind aber enorm. Zum einen ist es wesentlich einfacher, mit einer

höheren Sprache zu programmieren. In einer höheren Sprache geschriebene

Programme lassen sich schneller schreiben, sind kürzer und einfacher zu lesen und

sind mit größerer Wahrscheinlichkeit richtig. Außerdem sind höhere

Programmiersprachen portierbar, d. h., Sie können mit nur wenigen oder gar keinen Änderungen auf verschiedenen Arten von Computern ausgeführt werden. Mit

niederen Programmiersprachen geschriebene Programme können nur auf eine Art

von Computern ausgeführt werden und müssen für andere Computertypen neu

geschrieben werden.

Aufgrund dieser Vorteile werden beinahe alle Programme in höheren

Programmiersprachen geschrieben. Niedere Programmiersprachen werden nur für

einige wenige spezielle Anwendungen verwendet.

Für die Verarbeitung von höheren Programmiersprachen in niedere

Programmiersprachen sind zwei Arten von Programmen erforderlich: Interpreter

oder Compiler. Ein Interpreter liest ein in einer höheren Programmiersprache

geschriebenes Programm und führt es aus – macht also das, was das Programm sagt.

Der Interpreter führt das Programm dabei Stück für Stück aus, liest immer wieder

Zeilen und führt die entsprechenden Berechnungen durch. Abbildung 1.1 zeigt die Ausführung mit einem Interpreter.

 Abbildung 1.1 Der Interpreter führt das Programm Stück für Stück aus, liest immer wieder Zeilen und führt die entsprechenden Berechnungen durch.

Ein Compiler liest das gesamte Programm ein und übersetzt es vollständig, bevor es

ausgeführt werden kann. In diesem Zusammenhang bezeichnet man das Programm

in der höheren Programmiersprache als Quellcode und das übersetzte Programm als

Objektcode bzw. ausführbare Datei. Ist ein Programm einmal kompiliert, können Sie es immer wieder ohne vorherige Übersetzung ausführen.

 Abbildung 1.2 Ein Compiler übersetzt Quellcode in Objektcode, der von einem Executor ausgeführt werden kann.

Python wird als interpretierte Sprache bezeichnet, weil Python-Programme von

einem Interpreter ausgeführt werden. Es gibt zwei Möglichkeiten, den Interpreter zu

verwenden: im interaktiven Modus und im Skriptmodus. Im interaktiven Modus tippen Sie Python-Programme ein, und der Interpreter zeigt das Ergebnis an:

>>> 1 + 1

2

>>> ist die Eingabeaufforderung, mit der der Interpreter Ihnen signalisiert, dass er bereit ist. Wenn Sie 1 + 1 eingeben, antwortet der Interpreter mit 2.

Alternativ können Sie Code in einer Datei speichern und mit dem Interpreter den Inhalt der Datei ausführen, die man als Skript bezeichnet. Der Konvention

entsprechend enden die Namen von Python-Skripten mit py.

Um das Skript auszuführen, müssen Sie dem Interpreter den Namen der Datei

nennen. Wenn Ihr Skript den Namen dinsdale.py hat und Sie in einem UNIX-

Terminalfenster arbeiten, geben Sie python dinsdale.py ein. In anderen

Entwicklungsumgebungen kann die Ausführung von Skripten unterschiedlich

aussehen. Anleitungen für die jeweilige Umgebung finden Sie auf der Python-

Website unter http://python.org.

Der interaktive Modus ist eine bequeme Möglichkeit, kleinere Codeteile

auszuprobieren, weil Sie sie eintippen und sofort ausführen können. Sobald es aber

um mehr als nur ein paar Zeilen geht, sollten Sie Ihren Code als Skript abspeichern,

damit Sie ihn anpassen und auch künftig ausführen können.

Was ist ein Programm?

Ein Programm ist eine Folge von Anweisungen, die bestimmen, wie eine

Berechnung durchgeführt wird. Eine solche Berechnung kann etwas Mathematisches

sein, wie etwa die Lösung eines Gleichungssystems oder die Bestimmung der

Wurzeln eines Polynoms. Es kann sich aber auch um eine symbolische Berechnung

handeln, wenn Sie beispielsweise Text in einem Dokument suchen und ersetzen oder

ein Programm kompilieren (seltsam, oder?).

Die Details sehen natürlich in jeder Programmiersprache anders aus, aber einige

grundlegende Anweisungen gibt es in so ziemlich jeder Sprache:

Eingabe:

Daten von der Tastatur, einer Datei oder einem Gerät abrufen.

Ausgabe:

Daten auf dem Bildschirm anzeigen oder an eine Datei bzw. ein Gerät senden.

Mathematische Anweisungen:

Grundlegende mathematische Berechnungen wie etwa Addition und

Multiplikation ausführen.

Bedingte Ausführung:

Bestimmte Bedingungen prüfen und den entsprechenden Code ausführen.

Wiederholung:

Aktionen wiederholt ausführen, meistens in einer bestimmten Variation.

Ob Sie es glauben oder nicht: Das ist auch schon so ziemlich alles. Jedes Programm,

das Sie jemals benutzt haben – unabhängig davon, wie kompliziert es ist – besteht aus solchen Anweisungen. Insofern können Sie sich die Programmierung als den

Vorgang vorstellen, komplizierte Aufgaben in immer kleinere Teilaufgaben zu

zerlegen, bis diese einfach genug sind, um sie durch eine dieser grundlegenden

Anweisungen zu erledigen.

Das mag im Moment ein bisschen vage klingen, wir kommen aber auf dieses Thema

zurück, wenn wir über Algorithmen sprechen.

Was ist Debugging?

Beim Programmieren können sich immer mal wieder Fehler einschleichen. Aus

irgendwelchen skurrilen Gründen werden solche Fehler als Bugs bezeichnet. Und der Vorgang, sie aufzuspüren, heißt Debugging.

In einem Programm finden Sie drei Arten von Fehlern: Syntaxfehler, Laufzeitfehler

und semantische Fehler. Es lohnt sich, zwischen diesen drei Arten zu unterscheiden,

um sie schneller aufzuspüren.

Syntaxfehler

Python kann ein Programm nur ausführen, wenn die Syntax korrekt ist. Ansonsten

zeigt der Interpreter eine Fehlermeldung. Mit Syntax sind die Struktur eines

Programms und die Regeln für diese Struktur gemeint. Beispielsweise müssen

Klammern immer in passenden Paaren vorkommen. (1 + 2) ist korrekt, 8) ist

dagegen ein Syntaxfehler.

Englischsprachige Leser können die meisten Syntaxfehler tolerieren – deshalb

können sie auch die Gedichte von E. E. Cummings lesen, ohne Fehlermeldungen

auszuspucken. Python ist da nicht so nachsichtig. Wenn es auch nur einen einzigen

Syntaxfehler irgendwo in Ihrem Programm gibt, zeigt Python eine Fehlermeldung.

Die Ausführung wird abgebrochen, und Sie können Ihr Programm nicht ausführen.

Während der ersten paar Wochen Ihrer Karriere als Programmierer werden Sie

vermutlich eine Menge Zeit damit verbringen, Syntaxfehler aufzuspüren. Mit

zunehmender Erfahrung werden Sie immer weniger Fehler machen und diese auch

schneller finden.

Laufzeitfehler

Die zweite Art von Fehlern heißt Laufzeitfehler. Laufzeitfehler heißen so, weil sie erst sichtbar werden, nachdem die Ausführung des Programms begonnen hat. Solche

Fehler werden auch als Ausnahmen bezeichnet, weil etwas Ungewöhnliches (und

Unerfreuliches) passiert ist.

Laufzeitfehler sind in den einfachen Programmen, die Sie in den ersten paar

Kapiteln zu Gesicht bekommen, eher selten. Insofern kann es ein bisschen dauern, bis Sie auf einen stoßen.

Semantische Fehler

Der dritte Fehlertyp ist der semantische Fehler. Wenn Ihr Programm einen

semantischen Fehler enthält, wird es insofern erfolgreich ausgeführt, als der

Computer keinerlei Fehlermeldungen zeigt. Allerdings macht das Programm nicht

das, was Sie möchten.

Das Problem dabei ist, dass Sie nicht das Programm geschrieben haben, das Sie

schreiben wollten. Die Bedeutung des Programms (seine Semantik) ist falsch. Es

kann ziemlich verzwickt werden, semantische Fehler aufzuspüren: Sie müssen sich

von hinten nach vorne durcharbeiten, sich die Ausgabe des Programms ansehen und

so herauszufinden versuchen, was es eigentlich macht.

Experimentelles Debugging

Eine der wichtigsten Fähigkeiten, die Sie sich aneignen werden, ist das Debugging.

Auch wenn es frustrierend sein kann, so ist Debugging dennoch eine der intellektuell

anspruchsvollsten, forderndsten und interessantesten Beschäftigungen bei der

Programmierung.

In mancherlei Hinsicht ist Debugging wie Detektivarbeit. Sie erhalten Hinweise und

müssen daraus ableiten, welche Vorgänge und Ereignisse zu den konkreten

Ergebnissen geführt haben.

Debugging ist wie eine Experimentalwissenschaft. Sobald Sie eine Vorstellung

davon haben, was schiefläuft, können Sie Ihr Programm ändern und es noch mal

versuchen. Falls Ihre Hypothese korrekt war, können Sie das Ergebnis der Änderung

vorhersagen und sind einem funktionierenden Programm einen Schritt näher

gekommen. War Ihre Hypothese dagegen falsch, müssen Sie sich eine neue

überlegen. Oder wie es Sherlock Holmes ausgedrückt hat: »Wenn man das

Unmögliche ausschließt, ist das Verbleibende die Wahrheit, egal wie

unwahrscheinlich es ist.« (A. Conan Doyle, Das Zeichen der Vier)

Für manche Menschen sind Programmieren und Debugging ein und dasselbe:

Programmieren ist der Prozess, ein Programm so lange schrittweise zu debuggen, bis

es das tut, was Sie möchten. Sie fangen also mit einem Programm an, das

irgendetwas tut. Dann nehmen Sie kleine Änderungen vor und debuggen diese

sofort, damit Sie immer ein funktionierendes Programm haben.

Linux ist beispielsweise ein Betriebssystem, das aus Tausenden von Zeilen Code

besteht. Seinen Anfang fand es aber als ganz einfaches Programm, mit dem Linus

Torvalds den 80386-Chip von Intel 80386 erkunden wollte. Larry Greenfield meint

dazu: »Eines von Linus’ ersten Projekten war ein Programm, das abwechselnd AAAA und BBBB ausgeben konnte. Daraus entwickelte sich später Linux.« (Larry

Greenfield, The Linux Users’ Guide).

In den folgenden Kapiteln erfahren Sie mehr zum Debugging und zu anderen

Programmiertechniken.

Formale und natürliche Sprachen

Natürliche Sprachen sind jene Sprachen, die Menschen sprechen, wie etwa

Deutsch, Englisch, Spanisch und Französisch. Diese Sprachen wurden nicht von

Menschen entworfen (obwohl wir Menschen versuchen, eine gewisse Ordnung

reinzubringen), sondern haben sich natürlich entwickelt.

Formale Sprachen sind dagegen Sprachen, die von Menschen für bestimmte

Anwendungen entworfen wurden. So ist beispielsweise die Notation der

Mathematiker eine formale Sprache, die besonders gut dafür geeignet ist, die

Beziehungen zwischen Zahlen und Symbolen darzustellen. Chemiker verwenden

eine formale Sprache, um die chemische Struktur von Molekülen abzubilden. Und

natürlich das Wichtigste:

Programmiersprachen sind formale Sprachen, die entwickelt wurden, um Berechnungen

auszudrücken.

Formale Sprachen haben eher strenge Syntaxregeln. Beispielsweise ist 3 + 3 = 6 ein

syntaktisch korrekter mathematischer Ausdruck, 3+ = 3$6 dagegen nicht. H 2 O ist eine syntaktisch korrekte chemische Formel, 2 Zz dagegen nicht.

Es gibt zweierlei Syntaxregeln: Die einen regeln Tokens und die anderen die

Struktur. Tokens sind die grundlegenden Elemente einer Sprache, wie etwa Wörter,

Zahlen oder chemische Elemente. Eines der Probleme an 3+ = 3$6 besteht darin,

dass $ kein zulässiges Token in der Mathematik ist (zumindest nach meinem

Kenntnisstand nicht). Auf ähnliche Weise ist 2 Zz als chemische Formel nicht

zulässig, weil es kein Element mit der Abkürzung Zz gibt.

Die zweite Art von Syntaxfehlern bezieht sich auf die Struktur einer Anweisung,

also auf die Art und Weise, in der Tokens arrangiert sind. Die Anweisung 3+ = 3 ist

nicht zulässig, weil + und = zwar legale Tokens sind, aber nicht unmittelbar hintereinanderstehen dürfen. Auf ähnliche Weise kommt in einer chemischen

Formel der Index nach dem Elementnamen, nicht davor.

Schreiben Sie einen wohlstrukturierten deutschen Satz, der ungültige Tokens enthält.

Schreiben Sie anschließend einen anderen Satz mit zulässigen Tokens, aber einer

ungültigen Struktur.

 Listing 1.1

Wenn Sie einen deutschen Satz oder eine Anweisung in einer formalen Sprache lesen, müssen Sie die Struktur dieses Satzes erfassen (obwohl das in einer

natürlichen Sprache natürlich unterbewusst geschieht). Diesen Vorgang nennt man

Parsen.

Hören Sie beispielsweise den Satz: »Der Groschen ist gefallen!«, erkennen Sie, dass

»Der Groschen« das Subjekt und »gefallen« das Prädikat ist. Sobald Sie den Satz

geparst haben, können Sie erfassen, was er bedeutet, bzw. die Semantik des Satzes

erkennen. Vorausgesetzt, Sie wissen, was ein Groschen ist und was es bedeutet,

wenn er fällt, verstehen Sie die Bedeutung des Satzes.

Obwohl formale und natürliche Sprachen viele Merkmale gemeinsam haben –

Token, Struktur und Semantik –, gibt es jedoch auch einige Unterschiede:

Mehrdeutigkeit:

Natürliche Sprachen sind voller Mehrdeutigkeiten, mit denen wir Menschen

anhand von Kontext und anderen Informationen gut umgehen können. In formalen

Sprachen gibt es fast keine oder überhaupt keine Mehrdeutigkeiten. Insofern hat

jede Anweisung unabhängig vom Kontext genau eine Bedeutung.

Redundanz:

Um die Mehrdeutigkeiten wieder wettzumachen und die Gefahr von

Missverständnissen zu minimieren, gibt es eine Menge Redundanzen in

natürlichen Sprachen. Dadurch sind sie oft sehr wortreich. Formale Sprachen

dagegen sind weniger redundant und prägnanter.

Sprichwörtlichkeit:

Natürliche Sprachen sind voller Idiome und Metaphern. Bei dem Ausspruch »Der

Groschen ist gefallen!« gibt es wahrscheinlich weder einen Groschen, noch fällt

etwas herunter (dieses Idiom bedeutet einfach, dass jemand nach längerer

Verwirrung endlich etwas verstanden hat). Formale Sprachen dagegen bedeuten

exakt das, was sie ausdrücken.

Menschen, die mit einer natürlichen Sprache aufwachsen (also jeder), haben oft

Schwierigkeiten, sich an formale Sprachen zu gewöhnen. In gewisser Weise ist der

Unterschied zwischen einer formalen und einer natürlichen Sprache wie der

Unterschied zwischen Poesie und Prosa:

Poesie:

Wörter werden sowohl aufgrund ihres Klangs als auch ihrer Bedeutung eingesetzt,

und das Gedicht insgesamt zielt auf einen Effekt oder eine emotionale Reaktion

ab. Mehrdeutigkeiten sind nicht nur häufig, sondern oftmals beabsichtigt.

Prosa:

Die wörtliche Bedeutung der Wörter ist wichtiger, die Struktur trägt zusätzlich zur Bedeutung bei. Prosa ist für eine Analyse zugänglicher als Poesie, aber trotzdem

oft mehrdeutig.

Programme:

Die Bedeutung eines Computerprogramms ist eindeutig und wortwörtlich. Sie

kann durch Analyse der Tokens und der Struktur vollständig erfasst werden.

Hier einige Vorschläge für das Lesen von Programmen (und anderen formalen

Sprachen): Erstens sollten Sie nicht vergessen, dass formale Sprachen wesentlich

dichter als natürliche Sprachen sind und es daher länger dauert, sie zu lesen.

Außerdem spielt die Struktur eine entscheidende Rolle. Deshalb ist es üblicherweise

keine sonderlich gute Idee, von oben nach unten und links nach rechts zu lesen.

Stattdessen sollten Sie lernen, das Programm in Ihrem Kopf zu »parsen«, wobei Sie

die Tokens erkennen und die Struktur interpretieren. Und letztendlich kommt es auf

die Details an. Kleinere Rechtschreib- und Interpunktionsfehler, mit denen Sie in

natürlichen Sprachen durchkommen, können in einer formalen Sprache einen großen

Unterschied machen.

Das erste Programm

Traditionell heißt das erste Programm, das Sie in einer neuen Sprache schreiben,

»Hallo, Welt!« – weil es einfach nur die Worte »Hallo, Welt!« ausgibt. In Python

sieht das folgendermaßen aus:

print 'Hallo, Welt!'

Das ist ein Beispiel für eine print-Anweisung, die in Wahrheit natürlich nichts

»druckt«. Sie zeigt den Wert einfach auf dem Bildschirm an. In diesem Fall lautet

das Ergebnis

Hallo, Welt!

Die Apostrophe in der Programmanweisung kennzeichnen den Anfang und das Ende

des anzuzeigenden Texts und erscheinen nicht im Ergebnis.

In Python 3 ist die Syntax für die Ausgabe geringfügig anders:

print('Hallo, Welt!')

Die Klammern zeigen an, dass print eine Funktion ist. Wir werden auf Funktionen

im Kapitel 3 zu sprechen kommen.

Im Rest des Buchs werde ich die erste Version der print-Anweisung verwenden.

Sollten Sie mit Python 3 arbeiten, müssen Sie das entsprechend übersetzen.

Ansonsten gibt es aber nur sehr wenige Unterschiede, über die Sie sich Gedanken

machen müssen.

Debugging

Es empfiehlt sich, beim Lesen dieses Buchs vor einem Computer zu sitzen. Dann

können Sie die Beispiele gleich ausprobieren. Die meisten Beispiele können Sie im

interaktiven Modus ausführen. Wenn Sie den Code dagegen in ein Skript schreiben,

ist es einfacher, die verschiedenen Variationen auszuprobieren.

Bei jedem Experiment mit einer neuen Funktion sollten Sie versuchen, Fehler zu

machen. Was passiert beispielsweise bei »Hallo, Welt!«, wenn Sie einen der

Apostrophe weglassen? Oder wenn Sie beide weglassen? Was passiert, wenn Sie

print falsch schreiben?

Durch solche Experimente können Sie sich besser an das erinnern, was Sie gerade

gelesen haben. Außerdem hilft es beim Debugging, weil Sie sich mit der Bedeutung

der jeweiligen Fehlermeldung vertraut machen. Besser, Sie machen jetzt absichtlich

Fehler als später aus Versehen.

Beim Programmieren und speziell auch beim Debugging können starke Emotionen

hochkommen. Wenn Sie mit einem besonders schwierigen Bug zu kämpfen haben,

kann es sein, dass Sie verärgert, mutlos oder peinlich berührt sind.

Es gibt handfeste Beweise dafür, dass Menschen so auf Computer reagieren, als

hätten sie es mit Menschen zu tun. Wenn der Computer korrekt arbeitet, sehen wir

ihn als Kollegen. Verhält er sich aber stur oder unhöflich, reagieren wir auf ihn

genau so wie auf sture oder unhöfliche Menschen (Reeves und Nass, The Media

 Equation: How People Treat Computers, Television und New Media Like Real

 People and Places).

Wenn Sie auf solche Reaktionen vorbereitet sind, können Sie vielleicht besser damit

umgehen. Eine mögliche Strategie besteht darin, sich den Computer als einen

Angestellten mit bestimmten Stärken vorzustellen – wie etwa Geschwindigkeit und

Präzision – sowie bestimmten Schwächen – beispielsweise mangelnde Empathie und

die Unfähigkeit, das große Ganze zu erkennen.

Ihre Aufgabe besteht darin, ein guter Manager zu sein: Möglichkeiten zu finden, die

Stärken zu nutzen und die Schwächen abzumildern. Und Wege zu finden, Ihre

Gefühle für die Lösung des Problems zu nutzen, ohne sich von Ihren Reaktionen

davon abhalten zu lassen, effektiv zu arbeiten.

Debugging zu lernen, kann frustrierend sein. Es ist aber auch für viele anderen

Aktivitäten über das Programmieren hinaus eine wertvolle Fähigkeit. Am Ende jedes

Kapitels gibt es deshalb einen Debugging-Abschnitt wie diesen mit Gedanken zum

Thema Debugging. Ich hoffe, Sie können etwas damit anfangen!

Glossar

Problemlösung:

Vorgang, ein Problem zu formulieren, eine Lösung zu finden und diese

auszudrücken.

Höhere Programmiersprache:

Programmiersprache wie Python, die so entwickelt wurde, dass sie für Menschen

einfach zu lesen und zu schreiben ist.

Niedere Programmiersprache:

Programmiersprache, die dafür entwickelt wurde, dass sie für einen Computer

einfach auszuführen ist. Wird auch als »Maschinensprache« oder »Assembler-

Sprache« bezeichnet.

Portierbarkeit:

Eigenschaft eines Programms, dass es auf mehr als auf eine Art von Computer

ausgeführt werden kann.

Interpretieren:

Ausführung eines Programms in einer höheren Programmiersprache durch

zeilenweises Übersetzen.

Kompilieren:

Vollständige Übersetzung eines in einer höheren Programmiersprache

geschriebenen Programms in eine niedere Programmiersprache zur späteren

Ausführung.

Quellcode:

Programm in einer höheren Programmiersprache vor der Kompilierung.

Objektcode:

Ausgabe des Compilers nach der Übersetzung des Programms.

Ausführbares Programm:

Anderer Name für den ausführbaren Objektcode.

Eingabeaufforderung:

Zeichen, die der Interpreter anzeigt, um darauf hinzuweisen, dass er für

Benutzereingaben bereit ist.

Skript:

In einer Datei gespeichertes Programm (üblicherweise eines, das interpretiert

wird).

Interaktiver Modus:

Nutzung des Python-Interpreters, indem Sie Befehle und Ausdrücke in der

Eingabeaufforderung eingeben.

Skriptmodus:

Verwendung des Python-Interpreters, um die Anweisungen in einer Skriptdatei zu

lesen und auszuführen.

Programm:

Folge von Anweisungen, die eine Berechnung beschreiben.

Algorithmus:

Allgemeiner Ansatz für die Lösung einer Kategorie von Problemen.

Bug:

Fehler in einem Programm.

Debugging:

Vorgang, alle drei Arten von Programmfehlern (Bugs) aufzuspüren und zu

beseitigen.

Syntax:

Struktur eines Programms.

Syntaxfehler:

Fehler in einem Programm, der es unmöglich macht, das Programm zu parsen

(und entsprechend zu interpretieren).

Ausnahme:

Ein Fehler, der während der Ausführung eines Programms auftritt.

Semantik:

Bedeutung eines Programms.

Semantischer Fehler:

Fehler in einem Programm, der dazu führt, dass das Programm etwas anderes

macht, als der Programmierer erreichen wollte.

Natürliche Sprache:

Jede gesprochene Sprache, die sich natürlich entwickelt hat.

Formale Sprache:

Jede Sprache, die von Menschen für bestimmte Zwecke entwickelt wurde, wie

etwa für die Darstellung mathematischer Ideen oder das Schreiben von

Computerprogrammen. Alle Programmiersprachen sind formale Sprachen.

Token:

Grundlegendes Element der syntaktischen Struktur eines Programms, Äquivalent

eines Worts in einer natürlichen Sprache.

Parsen:

Untersuchung und Analyse der syntaktischen Struktur eines Programms.

print-Anweisung:

Befehl, der den Python-Interpreter anweist, einen Wert auf dem Bildschirm

auszugeben.

Übungen

Navigieren Sie mit einem Browser auf die offizielle Python-Website

http://python.org. Diese Seite enthält Informationen über Python und Links zu Seiten über Python und gibt Ihnen die Möglichkeit, die Python-Dokumentation zu

durchsuchen. Diese Website gibt es derzeit nur auf Englisch. Eine deutsche

Übersetzung der Python-Dokumentation von Guido van Rossum (dem Autor von

Python) finden Sie unter http://python.net/~gherman/publications/tut-de/online/tut/.

 Listing 1.2

Starten Sie den Python-Interpreter und tippen Sie help() ein, um das Online-

Hilfedienstprogramm zu starten. Oder tippen Sie help('print') ein, um Informationen

zur print-Anweisung zu erhalten.

Wenn das nicht funktioniert, müssen Sie unter Umständen eine zusätzliche Python-

Dokumentation installieren oder eine Umgebungsvariable festlegen. Die Details

hängen vom jeweiligen Betriebssystem und der Python-Version ab.

 Listing 1.3

Starten Sie den Python-Interpreter und verwenden Sie ihn als Rechner. Die Syntax

für mathematische Operationen in Python entspricht fast vollständig der

standardmäßigen mathematischen Schreibweise. Die Symbole + und - stehen für

Addition und Subtraktion, wie Sie diese bereits kennen. Das Symbol für Division ist

/ und das Symbol für die Multiplikation *.

Wenn Sie 10 Kilometer in 43 Minuten und 30 Sekunden laufen, wie ist dann Ihre

Durchschnittszeit pro Kilometer? Wie hoch ist Ihre Geschwindigkeit in Meilen pro

Stunde? (Tipp: Eine Meile entspricht 1,61 Kilometern.)

 Listing 1.4

Kapitel 2. Variablen, Ausdrücke und Anweisungen

Werte und Typen

Ein Wert ist eines jener grundlegenden Dinge, mit denen ein Programm arbeitet –

wie etwa ein Buchstabe oder eine Zahl. Die Werte, denen wir bisher begegnet sind,

lauten 1, 2 und 'Hallo, Welt!'.

Diese Werte gehören verschiedenen Typen an: 2 ist ein Integer (eine ganze Zahl), und 'Hallo, Welt!' ist ein String, eine Folge von Zeichen. Sie (und der Interpreter) erkennen Strings daran, dass sie in Apostrophe eingefasst werden.

Falls Sie sich nicht sicher sind, zu welchem Typ ein Wert gehört, kann Ihnen der

Interpreter das verraten:

>>> type('Hallo, Welt!')

<type 'str'>

>>> type(17)

<type 'int'>

Es wird Sie nicht überraschen, dass Strings zum Typ str und Integer zum Typ int

gehören. Dass Zahlen mit einen Dezimalpunkt zum Typ float gehören, ist da schon

weniger überraschend. Der Name dieses Typs kommt daher, dass Dezimalbrüche als

Fließkommazahlen (engl. floating-point) dargestellt werden.

>>> type(3.2)

<type 'float'>

Was ist mit Werten wie '17' und '3.2'? Sie sehen aus wie Zahlen, stehen aber in

Apostrophen, genau wie Strings.

>>> type('17')

<type 'str'>

>>> type('3.2')

<type 'str'>

Es sind Strings.

Wenn Sie große Zahlen eintippen, können Sie der Versuchung vielleicht nicht

widerstehen, einen Punkt als Tausendertrennzeichen sowie ein Komma für die

Dezimalstellen einzugeben, z. B. 1.000,00. In Python ist das zwar keine Zahl, aber

trotzdem zulässig:

>>> 1.000,00

(1.0, 0)

Das ist natürlich etwas völlig anderes als das, was wir erwartet haben! Python

interpretiert 1.000,00 als kommaseparierte Folge von Zahlen. Dies ist also unser

erstes Beispiel für einen semantischen Fehler: Der Code wird ohne Fehlermeldung

ausgeführt, macht aber nicht das »Richtige«.

Variablen

Eine der leistungsfähigsten Funktionen einer Programmiersprache ist die Fähigkeit,

mit Variablen zu arbeiten. Ein Variablenname ist dabei ein Name, der sich auf einen Wert bezieht.

Durch die Zuweisung wird eine neue Variable erstellt, und ihr wird ein Wert

zugewiesen:

>>> meldung = 'Und jetzt etwas ganz anderes'

>>> n = 17

>>> pi = 3.1415926535897932

In diesem Beispiel erfolgen drei Zuweisungen. In der ersten wird einer neuen

Variablen mit dem Namen meldung ein String zugewiesen. In der zweiten wird der

Integer 17 an n übergeben. Und in der dritten wird der (ungefähre) Wert von

der

Variablen pi zugewiesen.

Eine gebräuchliche Form, Variablen auf Papier darzustellen, besteht darin, den

Namen aufzuschreiben und mit einem Pfeil auf den Wert der Variablen zu zeigen.

Eine solche Darstellung bezeichnet man als Zustandsdiagramm, weil darin der

Zustand der jeweiligen Variablen dargestellt wird (quasi die »Gemütsverfassung«

der Variablen). Abbildung 2.1 zeigt das Ergebnis des vorherigen Beispiels.

 Abbildung 2.1 Zustandsdiagramm

Der Typ der Variablen richtet sich dabei nach dem Typ des Werts, auf den sie sich

bezieht.

>>> type(meldung)

<type 'str'>

>>> type(n)

<type 'int'>

>>> type(pi)

<type 'float'>

Wenn Sie einen Integer mit einer führenden Null eingeben, erhalten Sie einen

merkwürdigen Fehler:

>>> plz = 02492

^

SyntaxError: invalid token

Andere Zahlen scheinen zu funktionieren, aber die Ergebnisse sind eher seltsam:

>>> plz = 02132

>>> plz

1114

Können Sie erkennen, was hier geschieht? Tipp: Geben Sie die Werte 01, 010, 0100

und 01000 ein.

 Listing 2.1

Variablennamen und Schlüsselwörter

Üblicherweise wählen Programmierer für ihre Variablen aussagekräftige Namen –

damit zu erkennen ist, wofür die Variable verwendet wird.

Variablennamen können beliebig lang sein und dürfen sowohl Buchstaben als auch

Zahlen enthalten, müssen aber mit einem Buchstaben beginnen. Es ist auch zulässig,

Großbuchstaben zu verwenden, allerdings ist es besser, Variablennamen mit einem

Kleinbuchstaben beginnen zu lassen (warum das so ist, werden Sie später erfahren).

Der Unterstrich _ darf ebenfalls in Variablennamen vorkommen. Er wird häufig für

Namen verwendet, die aus mehreren Buchstaben bestehen, zum Beispiel

mein_name oder geschwindigkeit_einer_unbeladenen_schwalbe.

Wenn Sie einer Variablen einen nicht zulässigen Namen geben, erhalten Sie einen

Syntaxfehler:

>>> 76posaunen = 'Große Parade'

SyntaxError: invalid syntax

>>> mehr@ = 1000000

SyntaxError: invalid syntax

>>> else = 'Fortschrittliche Theoretische Zymologie'

SyntaxError: invalid syntax

76posaunen ist nicht zulässig, weil der Name nicht mit einem Buchstaben beginnt.

mehr@ ist nicht zulässig, weil das Zeichen @ für Variablennamen nicht zulässig

ist. Aber was stimmt mit else nicht?

Wie Sie feststellen werden, ist else eines der reservierten Schlüsselwörter von

Python. Der Interpreter verwendet Schlüsselwörter, um die Struktur des Programms

zu erkennen. Deshalb dürfen Sie sie nicht als Variablennamen verwenden.

In Python 2 gibt es 31 Schlüsselwörter:

and del from not while

as elif global or with

assert else if pass yield

break except import print

class exec in raise

continue finally is return

def for lambda try

In Python 3 ist exec kein Schlüsselwort mehr, dafür aber nonlocal.

Vielleicht sollten Sie diese Liste immer zur Hand haben. Wenn der Interpreter sich über einen Ihrer Variablennamen beschwert und Sie partout nicht wissen, warum,

sehen Sie einfach auf der Liste nach.

Operatoren und Operanden

Operatoren sind spezielle Symbole, die Berechnungen darstellen, wie etwa

Addition und Multiplikation. Die Werte, auf die der Operator angewendet wird,

nennt man Operanden.

Die Operatoren +, -, *, / und ** stehen für Addition, Subtraktion, Multiplikation,

Division und Potenzen:

20+32 stunde-1 stunde*60+minute minute/60 5**2 (5+9)*(15-7)

In einigen anderen Sprachen wird ^ für den Exponenten verwendet, aber in Python

steht dieses Zeichen für den bitweisen Operator XOR. Ich werde in diesem Buch

nicht auf bitweise Operatoren eingehen, aber unter

http://wiki.python.org/moin/BitwiseOperators können Sie alles darüber nachlesen.

In Python 2 macht der Divisionsoperator unter Umständen nicht das, was Sie

erwarten:

>>> minute = 59

>>> minute/60

0

Der Wert von minute ist 59, und in der konventionellen Arithmetik ergibt 59

dividiert durch 60 den Wert 0,98333 – nicht 0. Der Grund für diese Diskrepanz liegt

darin, dass Python eine Division ohne Rest durchführt. Wenn beide Operanden

ganze Zahlen sind, erhalten Sie als Ergebnis ebenfalls eine ganze Zahl. Die Stellen

nach dem Komma werden einfach abgeschnitten. In unserem Beispiel wird das

Ergebnis also auf null abgerundet.

In Python 3 ist das Ergebnis dieser Division eine Fließkommazahl vom Typ float.

Für die Division ohne Rest kommt der neue Operator // zum Einsatz.

Wenn beide Operanden eine Fließkommazahl sind, führt Python eine

Fließkommadivision durch, und das Ergebnis ist ein float:

>>> minute/60.0

0.98333333333333328

Ausdrücke und Anweisungen

Ein Ausdruck kann eine Kombination aus Werten, Variablen und Operatoren sein.

Ein einzelner Wert stellt ebenso einen Ausdruck dar, genauso wie eine Variable.

Insofern sind alle folgenden Ausdrücke zulässig (unter der Voraussetzung, dass der

Variablen x ein Wert zugewiesen wurde):

17

x

x + 17

Eine Anweisung ist ein Codeteil, den der Python-Interpreter ausführen kann. Wir

kennen bisher zwei Arten von Anweisungen: print und Zuweisungen.

Technisch gesehen, ist ein Ausdruck ebenfalls eine Anweisung. Aber wahrscheinlich

ist es einfacher, sich die beiden als zwei verschiedene Dinge vorzustellen. Der

wichtigste Unterschied ist, dass ein Ausdruck einen Wert hat, eine Anweisung

dagegen nicht.

Interaktiver Modus und Skriptmodus

Einer der Vorzüge bei der Arbeit mit einer interpretierten Sprache besteht darin,

dass Sie kleine Codeteile im interaktiven Modus testen können, bevor Sie sie in ein

Skript schreiben. Es gibt allerdings Unterschiede zwischen dem interaktiven Modus

und dem Skriptmodus, die teilweise verwirrend sein können.

Wenn Sie Python beispielsweise als Rechner verwenden, könnten Sie Folgendes

eingeben:

>>> meilen = 26.2

>>> meilen * 1.61

42.182

In der ersten Zeile wird meilen ein Wert zugewiesen, was aber keinen sichtbaren

Effekt hat. Die zweite Zeile ist ein Ausdruck, deshalb wertet der Interpreter ihn aus

und zeigt das Ergebnis an. Dabei finden wir heraus, dass ein Marathon ungefähr 42

Kilometer lang ist.

Wenn Sie aber denselben Code in ein Skript eingeben und ausführen, erhalten Sie

überhaupt keine Ausgabe. Im Skriptmodus hat ein Ausdruck allein keinen sichtbaren

Effekt. Python wertet den Auszug aus, zeigt den Wert aber nicht an, es sei denn, Sie

weisen den Interpreter dazu an:

meilen = 26.2

print meilen * 1.61

Im ersten Moment kann dieses Verhalten verwirrend sein.

Ein Skript enthält üblicherweise eine Folge von Anweisungen. Wenn es mehr als

eine Anweisung gibt, erscheinen die Ergebnisse nacheinander in der Reihenfolge der

Anweisungen.

Das Skript

print 1

x = 2

print x

erzeugt beispielsweise die folgende Ausgabe:

1

2

Für die Zuweisungsanweisung wird dabei nichts ausgegeben.

Tippen Sie die folgenden Anweisungen in den Python-Interpreter, um

herauszufinden, was sie machen:

5

x = 5

x + 1

Schreiben Sie nun dieselben Anweisungen in ein Skript und führen Sie es aus.

Welche Ausgabe erhalten Sie? Machen Sie anschließend aus jedem Ausdruck eine

print-Anweisung und führen Sie das Skript erneut aus.

 Listing 2.2

Rangfolge von Operatoren

Wenn in einem Ausdruck mehr als ein Operator vorkommt, richtet sich die

Reihenfolge der Auswertung nach der Rangordnung. Bei mathematischen

Operatoren folgt Python den mathematischen Konventionen. Fast jeder kennt die

Eselsbrücke »Punkt vor Strich«. Allerdings sind auch Klammern und Exponenten zu

berücksichtigen:

Klammern haben den höchsten Rang. Dadurch können Sie erzwingen, dass ein

Ausdruck in der gewünschten Reihenfolge ausgewertet wird. Da Ausdrücke in

Klammern zuerst ausgewertet werden, ergibt 2 * (3-1) den Wert 4, und (1+1)**

(5-2) ergibt 8. Außerdem ist ein Ausdruck mit Klammern einfacher lesbar, selbst

wenn sich dadurch das Ergebnis nicht ändert.

Exponenten haben den nächsthöheren Rang, daher ergibt 2**1+1 den Wert 3 und

nicht 4. Und 3*1**3 ergibt 3, nicht 27.

Multiplikation und Division haben denselben Rang, der wiederum höher ist als

der von Addition und Subtraktion (die ebenfalls denselben Rang haben).

Entsprechend ergibt 2*3-1 den Wert 5, nicht 4. Und 6+4/2 ergibt 8, nicht 5.

Operatoren desselben Rangs werden von links nach rechts interpretiert (mit

Ausnahme von Exponenten). Im Ausdruck grad / 2 * pi wird also zuerst die

Division durchgeführt, anschließend wird das Ergebnis mit pi multipliziert. Eine

Division durch 2

erreichen Sie entweder durch Klammern oder indem Sie grad / 2 / pi schreiben.

Ich verwende nicht allzu viel Energie darauf, mir die Regeln für die Rangfolge

anderer Operatoren zu merken. Wenn ich die Reihenfolge nicht am Ausdruck

erkennen kann, veranschauliche ich sie einfach durch entsprechende Klammern.

String-Operationen

Im Allgemeinen können Sie keine mathematischen Operationen mit Strings

durchführen, selbst wenn diese wie Zahlen aussehen. Die folgenden Ausdrücke sind

daher nicht zulässig:

'2'-'1' 'eier'/'leicht' 'drittel'*'Ein Zauberspruch'

Der Operator + funktioniert mit Strings, macht aber nicht das, was Sie sich vielleicht

vorstellen: Sie führen damit eine Konkatenation durch, d. h., die Strings werden

aneinander angehängt. Ein Beispiel:

erster = 'donner'

zweiter = 'gurgler'

print erster + zweiter

Die Ausgabe dieses Programms lautet donnergurgler.

Der Operator * funktioniert ebenfalls mit Strings: Er wiederholt den angegebenen

String. So ergibt 'Spam'*3 beispielsweise 'SpamSpamSpam'. Wenn einer der

Operanden ein String ist, muss der andere ein Integer sein.

Diese Verwendung von + und * ergibt auch in der Analogie zur Addition und

Multiplikation Sinn. Genau wie 4*3 dasselbe ist wie 4+4+4, erwarten wir, dass

'Spam'*3 dasselbe ist wie 'Spam'+'Spam'+'Spam'. Und das ist es auch.

Andererseits gibt es einen signifikanten Unterschied zwischen der Konkatenation

bzw. Wiederholung von Strings einerseits und Addition und Multiplikation

andererseits. Fällt Ihnen eine Eigenschaft der Addition ein, die die Konkatenation

von Strings nicht hat?

Kommentare

Wenn Programme größer und komplizierter werden, sind sie oft auch

unübersichtlich. Formale Sprachen haben eine hohe Dichte, daher ist es oft

schwierig, einem Codeteil anzusehen, was er macht und warum.

Aus diesem Grund ist es am besten, Ihre Programme mit Notizen zu versehen, die in

einer natürlichen Sprache erklären, was das Programm macht. Solche Notizen nennt

man Kommentare. Sie beginnen mit dem Symbol #:

 # Berechnen, wie viel Prozent der aktuellen Stunde abgelaufen sind

prozentsatz = (minute * 100) / 60

In diesem Fall steht der Kommentar in einer eigenen Zeile. Sie können aber auch

Kommentare ans Zeilenende schreiben:

prozentsatz = (minute * 100) / 60 # Prozentsatz der aktuellen Stunde

Alles vom # bis zum Zeilenende wird ignoriert und hat keine Auswirkung auf das

Programm.

Kommentare sind besonders dann nützlich, wenn Sie damit Details zum Code

erläutern, die nicht offensichtlich sind. Normalerweise können Sie davon ausgehen,

dass der Leser erkennt, was der Code macht. Es ist wesentlich sinnvoller, zu

erklären, warum Sie das entsprechend gelöst haben.

Dieser Kommentar ist redundant und daher sinnlos:

v = 5 # v den Wert 5 zuweisen

Der folgende Kommentar enthält dagegen nützliche Informationen, die nicht im

Code stehen:

v = 5 # Geschwindigkeit in Metern pro Sekunde

Aussagekräftige Variablennamen können den Bedarf an Kommentaren minimieren.

Durch lange Namen sind komplizierte Ausdrücke aber schwierig zu lesen. Sie

müssen also einen Kompromiss finden.

Debugging

Die Syntaxfehler, die Sie bis jetzt am ehesten machen können, sind unzulässige

Variablennamen, wie etwa else und yield (Schlüsselwörter) oder komischer~job

und US$, die unzulässige Zeichen enthalten.

Wenn Sie ein Leerzeichen in einen Variablennamen einbauen, glaubt Python, es

handele sich um zwei Operanden ohne einen Operator:

>>> schlechter Name = 5

SyntaxError: invalid syntax

Bei Syntaxfehlern sind die Fehlermeldungen oft keine große Hilfe. Die häufigsten

Fehlermeldungen lauten SyntaxError: invalid syntax und SyntaxError: invalid

token – und beide sind nicht sonderlich informativ.

Der Laufzeitfehler, den Sie wohl am häufigsten machen werden, lautet »is not

defined«. Dieser Fehler tritt auf, wenn Sie eine Variable verwenden möchten, bevor

Sie ihr einen Wert zugewiesen haben. Das kann beispielsweise passieren, wenn Sie

einen Variablennamen falsch schreiben:

>>> kapital = 327.68

>>> zinsen = kapitel * zinssatz

NameError: name 'kapitel' is not defined

Bei Variablennamen wird zwischen Groß- und Kleinschreibung unterschieden.

LaTeX ist also nicht dasselbe wie latex.

Semantische Fehler machen Sie zum jetzigen Zeitpunkt am wahrscheinlichsten bei

der Reihenfolge von Berechnungen. Wenn Sie beispielsweise

auswerten

möchten, würden Sie vielleicht Folgendes schreiben:

>>> 1.0 / 2.0 * pi

Allerdings wird die Division zuerst durchgeführt, deshalb erhalten Sie

/ 2. Das ist

aber etwas völlig anderes! Python kann nicht wissen, was Sie eigentlich schreiben

wollten. In diesem Fall erhalten Sie also keine Fehlermeldung, sondern lediglich

eine falsche Antwort.

Glossar

Wert:

Grundlegende Dateneinheit, die ein Programm verarbeitet, beispielsweise eine

Zahl oder ein String.

Typ:

Kategorie von Werten. Die Typen, die wir bisher kennengelernt haben, sind

Integer (type int), Fließkommazahlen (type float) und Strings (type str).

Integer:

Typ für die Darstellung ganzer Zahlen.

Fließkommazahlen:

Typ für die Abbildung von Zahlen mit Nachkommastellen.

String:

Typ für die Darstellung von Zeichenfolgen.

Variable:

Name, der sich auf einen Wert bezieht.

Anweisung:

Codeabschnitt, der einen Befehl oder Vorgang beschreibt. Bisher haben wir

Zuweisungen und print-Anweisungen kennengelernt.

Zuweisung:

Anweisung, die einer Variablen einen Wert zuweist.

Zustandsdiagramm:

Grafische Darstellung einer Reihe von Variablen und ihrer entsprechenden Werte.

Schlüsselwort:

Reserviertes Wort, das der Compiler verwendet, um ein Programm zu parsen.

Schlüsselwörter wie beispielsweise if, def und while dürfen Sie nicht als

Variablennamen wählen.

Operator:

Spezielles Symbol, das einfache Berechnungen wie Addition, Multiplikation oder

die Konkatenation von Strings darstellt.

Operand:

Einer der Werte, auf die ein Operator angewendet wird.

Division ohne Rest:

Berechnung, bei der zwei Zahlen dividiert und die Nachkommastellen

abgeschnitten werden.

Ausdruck:

Kombination aus Variablen, Operatoren und Werten, die sich zu einem einzigen

Wert auswerten lassen.

Auswerten:

Vorgang, bei dem ein Ausdruck vereinfacht wird, indem einzelne Berechnungen

durchgeführt werden, um einen einzigen Wert zu erhalten.

Regeln für die Rangfolge:

Regeln für die Reihenfolge, in der Ausdrücke ausgewertet werden, die mehrere

Operatoren und Operanden enthalten.

Konkatenation:

Direktes Aneinanderhängen zweier Operanden.

Kommentar:

Informationen im Programmcode, die sich an andere Programmierer richten (oder

jeden anderen Leser des Quellcodes) und sich nicht auf die Ausführung des

Programms auswirken.

Übungen

Angenommen, wir führen die folgenden Zuweisungsanweisungen aus:

breite = 17

hoehe = 12.0

trennzeichen = '.'

Schreiben Sie für jeden der folgenden Ausdrücke Wert und Typ (des Werts des

Ausdrucks) auf:

1. breite/2

2. breite/2.0

3. hoehe/3

4. 1 + 2 * 5

5. trennzeichen * 5

Überprüfen Sie Ihre Antworten mit dem Python-Interpreter.

 Listing 2.3

Üben Sie sich im Gebrauch des Python-Interpreters als Rechner:

1. Der Rauminhalt einer Kugel mit Radius r ist

. Wie groß

ist der Raum innerhalb einer Kugel mit dem Radius 5? Tipp: 392,7 ist falsch!

2. Angenommen, der Verkaufspreis für ein Buch beträgt 24,95 Euro. Buchhändler

erhalten einen Rabatt von 40 Prozent. Die Versandkosten betragen 3 Euro für

das erste und 75 Cent für jedes weitere Buch. Was ist der Händlergesamtpreis

für 60 Bücher?

3. Wenn ich um 6:52 Uhr das Haus verlasse, einen Kilometer bei langsamem

Tempo laufe (5:07 pro km) und drei Kilometer etwas schneller laufe (4:28 pro

km), um wie viel Uhr komme ich dann zum Frühstück nach Hause?

 Listing 2.4

Kapitel 3. Funktionen

Funktionsaufrufe

Im Kontext eines Programms ist eine Funktion eine benannte Folge von

Anweisungen, die eine Berechnung durchführen. Wenn Sie eine Funktion definieren,

geben Sie einen Namen und die entsprechenden Anweisungen vor. Später können Sie

dann diese Funktion über ihren Namen »aufrufen«. Wir haben bereits ein Beispiel

für einen Funktionsaufruf gesehen:

>>> type(32)

<type 'int'>

Der Name der Funktion ist type. Den Ausdruck in Klammern nennt man das

Argument der Funktion. Das Ergebnis der Funktion ist in diesem Fall der Typ des

übergebenen Arguments.

Man spricht üblicherweise davon, dass eine Funktion ein Argument »erwartet« und

ein Ergebnis »zurückliefert«. Das Ergebnis bezeichnet man auch als Rückgabewert.

Funktionen zur Typkonvertierung

Python stellt integrierte Funktionen zur Verfügung, die Werte eines Typs in einen

anderen konvertieren. Die Funktion int nimmt beispielsweise einen beliebigen Wert

entgegen und konvertiert ihn falls möglich in einen Integer. Ansonsten beschwert sie

sich:

>>> int('32')

32

>>> int('Hallo')

ValueError: invalid literal for int(): Hallo

int kann Fließkommazahlen in Integer konvertieren, rundet aber nicht ab. Die

Dezimalstellen werden einfach abgeschnitten:

>>> int(3.99999)

3

>>> int(-2.3)

-2

float konvertiert Integer und Strings in Fließkommazahlen:

>>> float(32)

32.0

>>> float('3.14159')

3.14159

Und str konvertiert das übergebene Argument in einen String:

>>> str(32)

'32'

>>> str(3.14159)

'3.14159'

Mathematische Funktionen

Python enthält ein mathematisches Modul, das die meisten bekannten

mathematischen Funktionen bereitstellt. Ein Modul ist eine Datei, die eine

Sammlung zusammengehöriger Funktionen enthält.

Bevor wir ein Modul verwenden können, müssen wir es importieren:

>>> import math

Diese Anweisung legt ein Modulobjekt mit dem Namen math an. Wenn Sie print

mit dem Modulobjekt aufrufen, erhalten Sie Informationen darüber:

>>> print math

<module 'math' (built-in)>

Das Modulobjekt enthält die im Modul definierten Funktionen und Variablen. Um

auf eine dieser Funktionen zuzugreifen, müssen Sie den Namen des Moduls sowie

den Namen der Funktion mit einem Punkt voneinander getrennt eingeben. Dieses

Format nennt man Punktschreibweise.

>>> verhaeltnis = signalleistung / rauschleistung

>>> dezibel = 10 * math.log10(verhaeltnis)

>>> radiant = 0.7

>>> hoehe = math.sin(radiant)

Im ersten Beispiel wird mit log10 ein Signal-Rausch-Verhältnis in Dezibel

berechnet (vorausgesetzt, signalstaerke und rauschpegel sind definiert). Das math-

Modul stellt auch log zur Verfügung, mit dem Sie Logarithmen zur Basis e

berechnen können.

Im zweiten Beispiel wird der Sinus von radiant berechnet. Der Name der Variablen

ist ein Hinweis darauf, dass sin und andere trigonometrische Funktionen (cos, tan

usw.) Argumente in Radiant erwarten. Für die Konvertierung von Grad in Radiant

dividieren Sie durch 360 und multiplizieren mit 2

:

>>> grad = 45

>>> radiant = grad / 360.0 * 2 * math.pi

>>> math.sin(radiant)

0.707106781187

Der Ausdruck math.pi ruft die Variable pi aus dem math-Modul ab. Der Wert dieser

Variablen ist eine Annäherung an

auf etwa

15 Stellen genau.

Falls Sie sich mit Trigonometrie auskennen, können Sie die vorhergehenden Ergebnisse überprüfen, indem Sie sie mit der Quadratwurzel von 2 dividiert durch 2

vergleichen:

>>> math.sqrt(2) / 2.0

0.707106781187

Komposition

Bisher haben wir die Elemente eines Programms isoliert betrachtet – Variablen,

Ausdrücke und Anweisungen –, ohne darüber zu sprechen, wie Sie sie miteinander

kombinieren können.

Eine der nützlichsten Funktionen von Programmiersprachen besteht darin, dass Sie

kleine Bausteine miteinander kombinieren können. Beispielsweise kann das

Argument einer Funktion jeder beliebige Ausdruck sein, einschließlich

aritmethischer Operatoren:

x = math.sin(grad / 360.0 * 2 * math.pi)

Und Sie können sogar Funktionsaufrufe übergeben:

x = math.exp(math.log(x+1))

Fast überall, wo Sie einen Wert angeben können, dürfen Sie auch einen beliebigen

Ausdruck übergeben. Es gibt allerdings eine Ausnahme: Die linke Seite einer

Zuweisung muss sein Variablenname sein. Jeder andere Ausdruck auf der linken

Seite erzeugt einen Syntaxfehler (später werden wir auch für diese Regel

Ausnahmen kennenlernen).

>>> minuten = stunden * 60 # richtig

>>> stunden * 60 = minuten # falsch!

SyntaxError: can't assign to operator

Neue Funktionen erstellen

Wir haben bislang nur jene Funktionen verwendet, die in Python enthalten sind. Es

ist aber auch möglich, neue Funktionen hinzuzufügen. Eine Funktionsdefinition

gibt den Namen einer neuen Funktion sowie die Reihe von Anweisungen an, die

beim Aufruf der Funktion ausgeführt werden sollen.

Hier ein Beispiel:

def zeige_text():

print "Veronika, der Lenz ist da."

print "Die Mädchen singen trallala."

def ist ein Schlüsselwort, das eine Funktionsdefinition kennzeichnet. Der Name

dieser Funktion lautet zeige_text. Die Regeln für Funktionsnamen sind die gleichen

wie für Variablennamen: Buchstaben, Zahlen und einige Interpunktionszeichen sind

zulässig, aber das erste Zeichen darf keine Zahl sein. Außerdem dürfen Sie kein Schlüsselwort als Funktionsnamen wählen. Und Sie sollten vermeiden, für eine

Funktion und eine Variable denselben Namen zu verwenden.

Die leeren Klammern nach dem Namen zeigen an, dass diese Funktion keine

Argumente erwartet.

Die erste Zeile der Funktionsdefinition bezeichnet man als Header, den Rest als

Body. Der Header muss mit einem Doppelpunkt enden, und der Body muss

eingerückt sein. Per Konvention muss der Body immer um vier Leerzeichen

eingerückt sein (siehe „Debugging“). Der Body kann eine beliebige Anzahl von Anweisungen enthalten.

Die Strings der print-Anweisungen sind in doppelte Anführungszeichen

eingeschlossen. Einfache und doppelte Anführungszeichen bedeuten ein und

dasselbe. Die meisten verwenden einfache Anführungszeichen außer in Fällen wie

diesem, in dem einfache Anführungszeichen (Apostrophe) im String selbst

erscheinen.

Wenn Sie eine Funktionsdefinition im interaktiven Modus eingeben, gibt der

Interpreter Auslassungszeichen (...) aus, um Sie darauf hinzuweisen, dass die

Definition noch nicht vollständig ist:

>>> def zeige_text():

... print "Veronika, der Lenz ist da."

... print "Die Mädchen singen trallala."

...

Zum Abschließen der Funktion müssen Sie eine Leerzeile eingeben (in einem Skript

ist das natürlich nicht erforderlich).

Durch die Definition der Funktion wird eine Variable desselben Namens angelegt.

>>> print zeige_text

<function zeige_text at 0xb7e99e9c>

>>> type(zeige_text)

<type 'function'>

Der Wert von zeige_text ist ein Funktionsobjekt vom Typ 'function'.

Die Syntax für den Aufruf einer neuen Funktion ist dieselbe wie für integrierte

Funktionen:

>>> zeige_text()

Veronika, der Lenz ist da.

Die Mädchen singen trallala.

Sobald Sie eine Funktion definiert haben, können Sie sie auch innerhalb anderer

Funktionen verwenden. Beispielsweise könnten wir eine Funktion mit dem Namen

wiederhole_refrain schreiben, die den Refrain wiederholt.

def wiederhole_refrain():

zeige_text()

zeige_text()

Dann rufen wir wiederhole_refrain auf:

>>> wiederhole_refrain()

Veronika, der Lenz ist da.

Die Mädchen singen trallala.

Veronika, der Lenz ist da.

Die Mädchen singen trallala.

Aber so geht das Lied natürlich nicht wirklich.

Definition und Verwendung

Wenn wir alle Codeteile aus dem vorherigen Abschnitt zusammenstellen, sieht das

Programm folgendermaßen aus:

def zeige_text():

print "Veronika, der Lenz ist da."

print "Die Mädchen singen trallala."

def wiederhole_refrain():

zeige_text()

zeige_text()

wiederhole_refrain()

Dieses Programm enthält zwei Funktionsdefinitionen: zeige_text und

wiederhole_refrain. Funktionsdefinitionen werden genau so wie andere

Anweisungen ausgeführt, als Ergebnis werden aber Funktionsobjekte angelegt. Die

Anweisungen innerhalb der Funktion werden erst dann ausgeführt, wenn die

Funktion aufgerufen wird. Die Funktionsdefinition selbst erzeugt keinerlei Ausgabe.

Wie Sie sich sicher denken können, müssen Sie eine Funktion erst erstellen, bevor

Sie sie ausführen können. Anders ausgedrückt: Die Funktionsdefinition muss vor

dem ersten Aufruf ausgeführt werden.

Verschieben Sie die letzte Zeile dieses Programms ganz nach oben, sodass der

Funktionsaufruf vor den Definitionen erfolgt. Starten Sie das Programm und schauen

Sie, welche Fehlermeldung Sie erhalten.

 Listing 3.1

Verschieben Sie den Funktionsaufruf wieder zurück nach unten und verschieben Sie

die Definition von zeige_text hinter die Definition von wiederhole_refrain. Was

passiert, wenn Sie das Programm ausführen?

 Listing 3.2

Programmablauf

Um sicherzustellen, dass eine Funktion vor der ersten Verwendung definiert wird,

müssen Sie wissen, in welcher Reihenfolge Anweisungen ausgeführt werden. Das

wird als Programmablauf bezeichnet.

Die Ausführung eines Programms beginnt immer mit der ersten Anweisung. Die

Anweisungen werden nacheinander von oben nach unten ausgeführt.

Funktionsdefinitionen ändern den Ablauf eines Programms nicht. Die Anweisungen

innerhalb der Funktion werden erst ausgeführt, wenn die Funktion tatsächlich

aufgerufen wird.

Ein Funktionsaufruf ist wie eine Umleitung im Programmablauf: Anstatt die

Ausführung mit der nächsten Anweisung fortzusetzen, springt das Programm in den

Body der Funktion, führt dort alle Anweisungen aus, springt zurück und macht an

der Stelle weiter, an der die Funktion aufgerufen wurde.

Das klingt ziemlich einfach. Bis Sie sich daran erinnern, dass eine Funktion auch

eine andere aufrufen kann. Unter Umständen muss das Programm mitten in der

einen Funktion Anweisungen einer anderen Funktion ausführen. Und während diese

neue Funktion ausgeführt wird, muss das Programm vielleicht sogar noch eine

weitere Funktion ausführen!

Glücklicherweise kann sich Python sehr gut merken, wo es gerade ist. Jedes Mal,

wenn eine Funktion abgeschlossen ist, macht das Programm an der Stelle in der

anderen Funktion weiter, in der der Funktionsaufruf stand. Wenn das Ende des

Programms erreicht ist, wird die Ausführung beendet.

Und was ist die Moral dieser Geschichte? Wenn Sie ein Programm lesen, sollten Sie

nicht von oben nach unten lesen. Manchmal ergibt es mehr Sinn, wenn Sie dem

Ablauf der Programmausführung folgen.

Parameter und Argumente

Wie wir gesehen haben, erfordern einige integrierte Funktionen Argumente. Wenn

Sie beispielsweise math.sin aufrufen, übergeben Sie eine Zahl als Argument.

Manche Funktionen erwarten auch mehr als ein Argument: math.pow erwartet zwei

– die Basis und den Exponenten.

Innerhalb der Funktion werden die Argumente entsprechenden Variablen

zugewiesen, den Parametern. Hier sehen Sie ein Beispiel für eine

benutzerdefinierte Funktion, die ein Argument erwartet:

def print_zweimal(peter):

print peter

print peter

Diese Funktion weist das Argument einem Parameter mit dem Namen peter zu.

Wenn sie aufgerufen wird, gibt sie den Wert des Parameters zweimal aus.

Die Funktion arbeitet mit jedem beliebigen Wert, der ausgegeben werden kann.

>>> print_zweimal('Spam')

Spam

Spam

>>> print_zweimal(17)

17

17

>>> print_zweimal(math.pi)

3.14159265359

3.14159265359

Die Kompositionsregeln für integrierte Funktionen gelten ebenso für

benutzerdefinierte Funktionen. Wir können also beliebige Ausdrücke als Argumente

für print_zweimal übergeben.

>>> print_zweimal('Spam '*4)

Spam Spam Spam Spam

Spam Spam Spam Spam

>>> print_zweimal(math.cos(math.pi))

-1.0

-1.0

Das Argument wird ausgewertet, bevor die Funktion aufgerufen wird. In diesem

Beispiel werden die Ausdrücke 'Spam '*4 und math.cos(math.pi) also jeweils nur

einmal ausgewertet.

Auch eine Variable können Sie als Argument übergeben:

>>> michael = 'Eric, the half a bee.'

>>> print_zweimal(michael)

Eric, the half a bee.

Eric, the half a bee.

Der Name der Variablen, die wir als Argument übergeben (michael), hat nichts mit

dem Namen des Parameters (peter) zu tun. Es spielt keine Rolle, wie dieser Wert

»zu Hause«, also in der aufrufenden Funktion, heißt. In print_zweimal, nennen wir

sie alle peter.

Variablen und Parameter sind lokal

Wenn Sie eine Variable innerhalb einer Funktion erstellen, ist sie lokal. Das

bedeutet, dass sie nur innerhalb dieser Funktion existiert. Ein Beispiel:

def zweimal_cat(teil1, teil2):

cat = teil1 + teil2

print_zweimal(cat)

Diese Funktion erwartet zwei Argumente, konkateniert sie und gibt das Ergebnis

zweimal aus. Hier ein Beispiel für die Verwendung der Funktion:

>>> zeile1 = 'Bing tiddle '

>>> zeile2 = 'tiddle bang.'

>>> zweimal_cat(zeile1, zeile2)

Bing tiddle tiddle bang.

Bing tiddle tiddle bang.

Sobald die Ausführung von zweimal_cat abgeschlossen ist, wird die Variable cat

zerstört. Wenn wir versuchen, sie auszugeben, erhalten wir eine Ausnahme:

>>> print cat

NameError: name 'cat' is not defined

Parameter sind ebenfalls lokal. Außerhalb von print_zweimal gibt es also keine

Variable mit dem Namen peter.

Stapeldiagramme

Damit Sie den Überblick darüber behalten, welche Variablen Sie wo verwenden

können, empfiehlt es sich manchmal, ein Stapeldiagramm zu zeichnen. Genau wie

Zustandsdiagramme zeigen Stapeldiagramme den Wert aller Variablen, aber

zusätzlich die Funktion, zu der die jeweilige Variable gehört.

Jede Funktion wird durch einen Frame dargestellt. Ein Frame ist einfach ein Kasten, der die Parameter und Variablen einer Funktion enthält und neben dem der Name

einer Funktion steht. Das Stapeldiagramm für das vorhergehende Beispiel sehen Sie

in Abbildung 3.1.

 Abbildung 3.1 Stapeldiagramm

Die Frames werden in einem Stapel angeordnet, in dem zu erkennen ist, welche

Funktion welche aufruft. In diesem Beispiel wird print_zweimal von zweimal_cat

aufgerufen, und zweimal_cat wird aufgerufen von __main__ – das ist ein spezieller

Name für den obersten Frame (in unserem Stapeldiagramm heißt er <module>).

Wenn Sie eine Variable außerhalb von Funktionen erstellen, gehört sie zum Frame

__main__.

Jeder Parameter bezieht sich auf denselben Wert wie das entsprechende Argument.

Also hat teil1 denselben Wert wie zeile1, teil2 denselben Wert wie zeile2, und peter hat denselben Wert wie cat.

Wenn innerhalb eines Funktionsaufrufs ein Fehler auftritt, gibt Python den Namen

der Funktion aus sowie den Namen der Funktion, die die Funktion aufgerufen hat,

und den Namen der Funktion, die wiederum diese Funktion aufgerufen hat – bis hin

zu __main__.

Wenn Sie beispielsweise versuchen, auf cat innerhalb von print_zweimal

zuzugreifen, erhalten Sie einen NameError:

Traceback (innermost last):

File "test.py", line 13, in __main__

zweimal_cat(zeile1, zeile2)

File "test.py", line 5, in zweimal_cat

print_zweimal(katze)

File "test.py", line 9, in print_zweimal

print cat

NameError: name 'cat' is not defined

Diese Liste von Funktionen heißt Traceback. Darin können Sie erkennen, in welcher Programmdatei und in welcher Zeile der Fehler aufgetreten ist, und welche

Funktionen zu diesem Zeitpunkt ausgeführt wurden. Außerdem wird die Codezeile

angezeigt, die den Fehler verursacht hat.

Die Reihenfolge der Funktionen im Traceback ist die gleiche wie die Reihenfolge

der Frames im Stapeldiagramm: Die Funktion, die gerade ausgeführt wird, steht

ganz unten.

Funktionen mit und ohne Rückgabewert

Einige Funktionen, die wir verwenden, beispielsweise die mathematischen

Funktionen, liefern Ergebnisse. Mangels eines besseren Namens nenne ich sie

Funktionen mit Rückgabewert. Andere Funktionen, wie z. B. print_zweimal,

führen zwar eine Aktion aus, liefern aber keinen Wert zurück. Solche Funktionen

nennen wir Funktionen ohne Rückgabewert.

Rufen Sie eine Funktion auf, die einen Rückgabewert liefert, möchten Sie fast

immer etwas mit dem Ergebnis tun – es beispielsweise einer Variablen zuweisen

oder als Teil eines Ausdrucks verwenden:

x = math.cos(radiant)

golden = (math.sqrt(5) + 1) / 2

Wenn Sie im interaktiven Modus eine Funktion aufrufen, die einen Rückgabewert

liefert, zeigt Python das Ergebnis an:

>>> math.sqrt(5)

2.2360679774997898

Wenn Sie dagegen in einem Skript eine Funktion, die einen Rückgabewert liefert, einfach nur aufrufen, geht der Rückgabewert für immer verloren!

math.sqrt(5)

Dieses Skript berechnet die Quadratwurzel vom 5. Nachdem es aber das Ergebnis

weder speichert noch anzeigt, ist das nicht sonderlich nützlich.

Funktionen ohne Rückgabewert zeigen unter Umständen etwas auf dem Bildschirm

an oder haben irgendeinen anderen Effekt, liefern aber keinen Wert zurück. Wenn

Sie versuchen, ein solches Ergebnis einer Variablen zuzuweisen, erhalten Sie den

speziellen Wert None.

>>> ergebnis = print_zweimal('Bing')

Bing

Bing

>>> print ergebnis

None

Der Wert None ist nicht dasselbe wie der String 'None'. Es handelt sich um einen

besonderen Wert mit einem eigenen Typ:

>>> print type(None)

<type 'NoneType'>

Alle Funktionen, die wir bisher geschrieben haben, sind Funktionen ohne

Rückgabewert. Aber bereits wenige Kapitel weiter werden wir damit beginnen,

Funktionen zu schreiben, die einen Rückgabewert liefern!

Warum Funktionen?

Es mag nicht ganz offensichtlich sein, warum es sich lohnen könnte, ein Programm

in Funktionen aufzuteilen. Aber es gibt tatsächlich einige Gründe dafür:

Eine eigene Funktion gibt Ihnen die Möglichkeit, eine Gruppe von Anweisungen

unter einem Namen zusammenzufassen, wodurch Ihr Programm einfacher zu

lesen und zu debuggen ist.

Funktionen können Programme kürzer machen, indem Codewiederholungen

entfallen. Und wollen Sie später etwas ändern, müssen Sie das nur an einer Stelle

tun.

Durch die Aufteilung eines langen Programms in Funktionen können Sie die

verschiedenen Teile einzeln debuggen und dann zu einem funktionierenden

Ganzen zusammensetzen.

Gut durchdachte Funktionen können häufig in mehreren Programmen nützlich

sein. Sie programmieren und debuggen nur einmal, können den Code aber immer

wieder verwenden.

Import mit from

Python bietet zwei Möglichkeiten, Module zu importieren. Eine davon kennen wir bereits:

>>> import math

>>> print math

<module 'math' (built-in)>

>>> print math.pi

3.14159265359

Wenn Sie math importieren, erhalten Sie ein Modulobjekt mit dem Namen math.

Das Modulobjekt enthält Konstanten wie pi sowie Funktionen wie etwa sin und exp.

Aber wenn Sie versuchen, auf pi direkt zuzugreifen, erhalten Sie einen Fehler:

>>> print pi

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'pi' is not defined

Alternativ können Sie auch folgendermaßen ein Objekt aus einem Modul

importieren:

>>> from math import pi

Nun können Sie direkt auf pi zugreifen, auch ohne die Punktschreibweise:

>>> print pi

3.14159265359

Oder Sie importieren alles aus dem Modul mit dem Asterisk-Operator:

>>> from math import *

>>> cos(pi)

-1.0

Wenn Sie alles aus dem mathematischen Modul importieren, können Sie Ihren Code

dadurch prägnanter schreiben. Allerdings kann es dann auch zu Konflikten zwischen

den in den verschiedenen Modulen definierten Namen oder zwischen einem Namen

aus einem Modul und einer Ihrer Variablen kommen.

Debugging

Wenn Sie Ihre Skripten mit einem Texteditor schreiben, kann es Probleme mit

Leerzeichen und Tabs geben. Die beste Möglichkeit, diese Probleme zu vermeiden,

besteht darin, nur Leerzeichen zu verwenden (und keine Tabs). Die meisten

Texteditoren kennen Python und machen das bereits standardmäßig. Manche tun das

aber leider nicht.

Tabs und Leerzeichen sind üblicherweise unsichtbar, was das Debugging erschwert.

Am besten suchen Sie nach einem Editor, der die Einrückung für Sie übernimmt.

Vergessen Sie außerdem nicht, Ihr Programm zu speichern, bevor Sie es ausführen.

Manche Entwicklungsumgebungen tun das automatisch, andere nicht. In diesem Fall

ist das Programm, das Sie im Editor sehen, nicht dasselbe wie das Programm, das Sie ausführen.

Debugging kann eine Menge Zeit in Anspruch nehmen, wenn Sie immer wieder

dasselbe falsche Programm ausführen!

Vergewissern Sie sich, dass der Code, den Sie sehen, auch der Code ist, den Sie

ausführen. Sollten Sie sich nicht sicher sein, schreiben Sie beispielsweise print

'Hallo' an den Anfang des Programms und führen es erneut aus. Wenn Sie kein Hallo

sehen, wissen Sie, dass Sie nicht das richtige Programm ausführen.

Glossar

Funktion:

Benannte Folge von Anweisungen, die Aktionen vornehmen. Funktionen können

Argumente erwarten und/oder ein Ergebnis zurückliefern, müssen das aber nicht.

Funktionsdefinition:

Anweisung, die eine neue Funktion erstellt und den Namen sowie Parameter und

die auszuführenden Anweisungen angibt.

Funktionsobjekt:

Von der Funktionsdefinition angelegter Wert. Der Name der Funktion ist eine

Variable, die sich auf ein Funktionsobjekt bezieht.

Header:

Die erste Zeile einer Funktionsdefinition.

Body:

Folge von Anweisungen innerhalb einer Funktionsdefinition.

Parameter:

Name, der innerhalb einer Funktion verwendet wird, um auf einen als Argument

übergebenen Wert zu verweisen.

Funktionsaufruf:

Anweisung, die eine Funktion ausführt. Sie besteht aus dem Funktionsnamen

gefolgt von einer Argumentenliste.

Argument:

Wert, der an eine Funktion beim Funktionsaufruf übergeben wird. Dieser Wert

wird innerhalb der Funktion dem entsprechenden Parameter zugewiesen.

Lokale Variable:

Innerhalb einer Funktion definierte Variable. Eine lokale Variable kann nur

innerhalb der entsprechenden Funktion verwendet werden.

Rückgabewert:

Ergebnis einer Funktion. Wenn der Funktionsaufruf als Ausdruck verwendet wird,

ist der Rückgabewert der Wert des Ausdrucks.

Funktion mit Rückgabewert:

Funktion, die einen Wert zurückgibt.

Funktion ohne Rückgabewert:

Funktion, die keinen Wert zurückgibt.

Modul:

Datei, die eine Sammlung zusammengehöriger Funktionen und andere

Definitionen enthält.

import-Anweisung:

Anweisung, die eine Moduldatei einliest und ein Modulobjekt erstellt.

Modulobjekt:

Wert, der durch eine import-Anweisung erstellt wird und den Zugriff auf die in

einem Modul definierten Werte ermöglicht.

Punktschreibweise:

Syntax für den Aufruf einer Funktion in einem anderen Modul, bei der der

Modulname gefolgt von einem Punkt und dem Funktionsnamen angegeben wird.

Programmablauf:

Reihenfolge, in der die Anweisungen in einem Programm ausgeführt werden.

Stapeldiagramm:

Grafische Darstellung eines Stapels von Funktionen sowie der zugehörigen

Variablen und Werte, auf die sie sich beziehen.

Frame:

Kasten in einem Stapeldiagramm, der einen Funktionsaufruf darstellt. Er enthält

die lokalen Variablen und Parameter der Funktion.

Traceback:

Liste der ausgeführten Funktionen, die angezeigt wird, wenn eine Ausnahme

auftritt.

Übungen

Python bietet eine integrierte Funktion mit dem Namen len, die die Länge eines

Strings zurückliefert. Der Wert von len('Allen') ist also 5.

Schreiben Sie eine Funktion mit dem Namen rechts_ausrichten, die einen String

mit dem Namen s als Parameter entgegennimmt und den String mit so vielen

vorangestellten Leerzeichen ausgibt, dass sich der letzte Buchstabe des Strings in

Spalte 70 der Anzeige befindet.

>>> rechts_ausrichten('Allen')

Allen

 Listing 3.3

Ein Funktionsobjekt ist ein Wert, den Sie einer Variablen zuweisen oder als

Argument übergeben können. Beispielsweise ist mach_zwei eine Funktion, die ein

Funktionsobjekt als Argument erwartet und dieses zweimal aufruft:

def mach_zwei(f):

f()

f()

Hier ein Beispiel, in dem mach_zwei dazu verwendet wird, eine Funktion mit dem

Namen print_spam zweimal aufzurufen.

def print_spam():

print 'spam'

mach_zwei(print_spam)

1. Tippen Sie dieses Beispiel in ein Skript ein und testen Sie es.

2. Ändern Sie mach_zwei so, dass die Funktion zwei Argumente erwartet – ein

Funktionsobjekt und einen Wert. Die Funktion soll zweimal mit dem Wert als

Argument aufgerufen werden.

3. Schreiben Sie eine einfachere Version von print_spam mit dem Namen

print_zweimal, die einen String als Parameter entgegennimmt und diesen

zweimal ausgibt.

4. Nutzen Sie die geänderte Version von mach_zwei, um print_zweimal zweimal

aufzurufen, wobei 'spam' als Argument übergeben wird.

5. Definieren Sie eine neue Funktion mit dem Namen mach_vier, die ein

Funktionsobjekt und einen Wert entgegennimmt, anschließend diese Funktion

viermal aufruft und dabei den Wert als Parameter übergibt. Der Body dieser

Funktion soll nur zwei Anweisungen enthalten, nicht vier.

Lösung: mach_vier.py.

 Listing 3.4

Für diese Übung benötigen Sie nur die Anweisungen und Funktionen, die wir bisher

kennengelernt haben.

1. Schreiben Sie eine Funktion, die ein Raster wie das folgende zeichnet:

+ - - - - + - - - - +

| | |

| | |

| | |

| | |

+ - - - - + - - - - +

| | |

| | |

| | |

| | |

+ - - - - + - - - - +

Tipp: Für die Ausgabe mehr als eines Werts in einer Zeile können Sie eine

kommaseparierte Sequenz angeben:

print '+', '-'

Wenn die Sequenz mit einem Komma endet, schließt Python die Zeile nicht ab,

und der nächste Wert wird auf derselben Zeile ausgegeben.

print '+',

print '-'

Die Ausgabe dieser Anweisung lautet '+ -'.

Eine einzelne print-Anweisung beendet die aktuelle Zeile und wechselt zur

nächsten.

2. Schreiben Sie eine Funktion, die ein ähnliches Raster mit vier Zeilen und vier

Spalten zeichnet.

Lösung: raster.py. Hinweis: Diese Übung basiert auf einer Übung aus Oualline,

 Practical C Programming, Third Edition, O’Reilly Media, 1997.

 Listing 3.5

Kapitel 4. Fallstudie: Gestaltung von Schnittstellen

TurtleWorld

Begleitend zu diesem Buch habe ich ein Paket mit dem Namen Swampy

geschrieben. Die entsprechende Datei aus den Codebeispielen heißt

http://thinkpython.com/swampy. Befolgen Sie einfach die Anweisungen, um Swampy auf Ihrem System zu installieren.

Ein Paket ist eine Sammlung von Modulen. Eines der Module in Swampy ist

TurtleWorld. Dieses Modul stellt eine Reihe von Funktionen zur Verfügung, mit

denen Sie Linien zeichnen können, indem Sie Schildkröten über den Bildschirm

bewegen.

Sobald Swampy als Paket auf Ihrem System installiert ist, können Sie TurtleWorld

folgendermaßen importieren:

from swampy.TurtleWorld import *

Wenn Sie die Swampy-Module heruntergeladen, aber nicht als Paket installiert

haben, können Sie entweder in dem entsprechenden Verzeichnis mit den Swampy-

Dateien arbeiten oder dieses Verzeichnis dem Suchpfad von Python hinzufügen.

Anschließend können Sie TurtleWorld so importieren:

from TurtleWorld import *

Die Einzelheiten des Installationsvorgangs sowie die Details zum Festlegen des

Suchpfads von Python hängen von Ihrem System ab. Statt dazu Näheres an dieser

Stelle zu erläutern, werde ich versuchen, die Informationen für verschiedene

Systeme unter http://thinkpython.com/swampy aktuell zu halten.

Erstellen Sie eine Datei mit dem Namen meinpolygon.py und tippen Sie den

folgenden Code ein:

from swampy.TurtleWorld import *

welt = TurtleWorld()

tim = Turtle()

print tim

wait_for_user()

In der ersten Zeile wird alles aus dem Modul TurtleWorld des Pakets swampy

importiert.

In den folgenden Zeilen wird eine TurtleWorld erstellt und der Variablen welt

zugewiesen. Außerdem weisen wir der Variablen tim eine neue Schildkröte zu. Wenn

Sie tim ausgeben, erhalten Sie in etwa Folgendes:

<TurtleWorld.Turtle instance at 0xb7bfbf4c>

Das bedeutet, dass sich tim auf eine Instanz einer Schildkröte (»Turtle«) in TurtleWorld bezieht. In diesem Kontext bedeutet »Instanz«, dass es sich um das

Mitglied einer Gruppe handelt. Diese Turtle ist eine der möglichen Turtles.

wait_for_user weist TurtleWorld an, darauf zu warten, dass der Benutzer etwas

macht. In diesem Fall kann der Benutzer allerdings nicht mehr tun, als das Fenster

zu schließen.

TurtleWorld bietet mehrere Funktionen zum Steuern der Schildkröte: fd und bk für

vorwärts und rückwärts sowie lt und rt für links und rechts. Außerdem hält jede

Schildkröte einen Stift, der sich entweder oben oder unten befindet. Wenn sich der

Stift unten befindet, zeichnet die Schildkröte eine Spur, wenn sie sich bewegt. Die

Funktionen pu und pd stehen für »pen up« (Stift oben) und »pen down« (Stift unten).

Fügen Sie diese Zeilen in das Programm ein, um einen rechten Winkel zu zeichnen

(nachdem Sie tim erstellt haben und bevor Sie wait_for_user aufrufen):

fd(tim, 100)

lt(tim)

fd(tim, 100)

Die erste Zeile weist tim an, 100 Schritte vorwärts zu machen. Die zweite Zeile lässt

ihn links abbiegen.

Wenn Sie dieses Programm ausführen, müsste sich tim zuerst nach Osten und dann

nach Norden bewegen und dabei zwei Linienabschnitte zurücklassen.

Ändern Sie nun das Programm so, dass es ein Quadrat zeichnet. Lassen Sie nicht

locker, bis es funktioniert!

Einfache Wiederholung

Höchstwahrscheinlich haben Sie ungefähr Folgendes geschrieben (mit Ausnahme

des Codes, der die TurtleWorld erstellt und auf den Benutzer wartet):

fd(tim, 100)

lt(tim)

fd(tim, 100)

lt(tim)

fd(tim, 100)

lt(tim)

fd(tim, 100)

Prägnanter können wir dasselbe mit einer for-Anweisung erreichen. Fügen Sie die

folgenden Zeilen in meinpolygon.py ein und führen Sie das Skript erneut aus:

for i in range(4):

print 'Hallo!'

Nun sollten Sie in etwa Folgendes sehen:

Hallo!

Hallo!

Hallo!

Hallo!

Das ist die einfachste Einsatzmöglichkeit einer for-Anweisung. Mehr dazu erfahren

Sie später. Das sollte aber bereits ausreichen, damit Sie Ihr Programm zum Zeichnen

des Quadrats neu schreiben können. Bleiben Sie so lange dran, bis es funktioniert!

Hier sehen Sie eine for-Anweisung, die ein Quadrat zeichnet:

for i in range(4):

fd(tim, 100)

lt(tim)

Die Syntax einer for-Anweisung ist einer Funktionsdefinition recht ähnlich. Sie hat

einen Header, der mit einem Doppelpunkt endet, sowie einen eingerückten Body.

Auch hier kann der Body wieder eine beliebige Anzahl von Anweisungen enthalten.

Eine for-Anweisung wird manchmal auch als Schleife bezeichnet, weil das

Programm den Body in einer Schleife durchläuft. In diesem Fall wird der Body

viermal ausgeführt.

Diese Version unterscheidet sich genau genommen ein klein wenig von dem

bisherigen Code, weil sich die Schildkröte nach der letzten Seite des Quadrats noch

einmal zusätzlich dreht. Diese Drehung braucht ein wenig mehr Zeit, vereinfacht

aber den Code, wenn wir bei jedem Durchlauf durch die Schleife immer dasselbe

tun. Außerdem landet die Schildkröte so auch wieder in der ursprünglichen Position

und zeigt in die Ausgangsrichtung.

Übungen

Es folgt eine Reihe von Übungen mit TurtleWorld. Sie sollen natürlich Spaß

machen, haben aber auch einen Sinn. Denken Sie darüber nach, welcher Sinn das

jeweils sein könnte, während Sie an den Übungen arbeiten.

Die folgenden Abschnitte enthalten auch Lösungen für die Übungen. Blättern Sie

aber nicht vor, bevor Sie damit fertig sind (oder es wenigstens versucht haben).

1. Schreiben Sie eine Funktion mit dem Namen quadrat, die eine Schildkröte als

Parameter t erwartet. Die Funktion soll diese Schildkröte verwenden, um ein

Quadrat zu zeichnen.

Schreiben Sie eine Funktion, die tim als Argument an quadrat übergibt, und

führen Sie das Programm erneut aus.

2. Fügen Sie einen zusätzlichen Parameter mit dem Namen laenge in quadrat

ein. Ändern Sie den Body so, dass die Kantenlänge durch laenge bestimmt

wird, und ändern Sie den Funktionsaufruf so, dass ein zweites Argument

übergeben wird. Führen Sie das Programm erneut aus. Testen Sie es mit

verschiedenen Werten für laenge.

3. Die Funktionen lt und rt biegen jeweils in einem Winkel von 90 Grad ab. Sie

können aber auch ein zweites Argument übergeben, das den Winkel in Grad

angibt. Beispielsweise lässt lt(tim, 45) unseren tim im 45-Grad-Winkel nach

links drehen.

Machen Sie eine Kopie von quadrat und ändern Sie den Namen in polygon.

Fügen Sie einen zusätzlichen Parameter n ein und ändern Sie den Body so, dass

ein gleichseitiges Polygon mit n Seiten gezeichnet wird. Tipp: Die

Außenwinkel eines gleichseitigen n-seitigen Polygons betragen 360/n Grad.

4. Schreiben Sie eine Funktion mit dem Namen kreis, die eine Schildkröte t und

einen Radius r als Parameter erwartet und einen ungefähren Kreis zeichnet,

indem sie polygon mit einer entsprechenden Länge und Anzahl von Seiten

aufruft. Testen Sie die Funktion mit mehreren Werten für r.

Tipp: Ermitteln Sie den Umfang des Kreises und vergewissern Sie sich, dass

laenge * n = umfang.

Noch ein Tipp: Wenn tim Ihnen zu langsam ist, können Sie das ändern, indem

Sie tim.delay anpassen. Dadurch legen Sie die Zeit zwischen den einzelnen

Bewegungen in Sekunden fest. Mit tim.delay = 0.01 wird er die Beine in die

Hände nehmen müssen.

5. Schreiben Sie eine allgemeinere Version von kreis mit dem Namen bogen, die

einen zusätzlichen Parameter winkel erwartet, mit dem Sie festlegen können,

welcher Teil eines Kreises gezeichnet werden soll. winkel wird in Grad

angegeben, sodass bei winkel=360 ein vollständiger Kreis gezeichnet wird.

Datenkapselung

In der ersten Übung sollten Sie den Code zum Zeichnen des Quadrats in eine

Funktionsdefinition schreiben und anschließend die Funktion aufrufen, wobei Sie die

Schildkröte als Parameter übergeben. Hier eine mögliche Lösung:

def quadrat(t):

for i in range(4):

fd(t, 100)

lt(t)

quadrat(tim)

Die Anweisungen ganz innen – fd und lt – wurden zweimal eingerückt, um zu

kennzeichnen, dass sie innerhalb der for-Schleife stehen, die sich wiederum

innerhalb der Funktionsdefinition befindet. Die nächste Zeile quadrat(tim) ist

wieder linksbündig, wodurch sowohl das Ende der for-Schleife als auch der

Funktionsdefinition gekennzeichnet wird.

Innerhalb der Funktion bezieht sich t auf dieselbe Schildkröte wie tim, entsprechend hat lt(t) denselben Effekt wie lt(tim). Aber warum rufen wir dann nicht den

Parameter tim auf?

Weil t auf diese Weise eine beliebige Schildkröte sein kann, nicht nur tim. So

können Sie auch eine zweite Schildkröte erstellen und als Argument an quadrat

übergeben:

rudi = Turtle()

quadrat(rudi)

Wenn Sie eine Codezeile in eine Funktion auslagern, nennt man das

Datenkapselung. Einer der Vorteile der Datenkapselung besteht darin, dass der

entsprechende Codeteil einen Namen erhält, was gleichzeitig auch der

Dokumentation des Codes dient. Und wenn Sie einen bestimmten Code mehrmals

verwenden möchten, ist es wesentlich einfacher, eine Funktion mehrfach aufzurufen,

als deren Body mehrmals zu kopieren und einzufügen.

Generalisierung

Der nächste Schritt besteht darin, quadrat um den Parameter laenge zu erweitern.

Hier eine mögliche Lösung:

def quadrat(t, laenge):

for i in range(4):

fd(t, laenge)

lt(t)

quadrat(tim, 100)

Die Erweiterung einer Funktion um einen Parameter nennt man Generalisierung,

weil dadurch die Funktion verallgemeinert wird. In der vorherigen Version hatte das

Quadrat immer dieselbe Größe. In dieser Version kann es eine beliebige Größe

haben.

Der nächste Schritt ist ebenfalls eine Generalisierung. Anstatt Quadrate zu zeichnen,

kann polygon regelmäßige Polygone mit einer beliebigen Anzahl von Seiten

zeichnen. Hier eine mögliche Lösung:

def polygon(t, n, laenge):

winkel = 360.0 / n

for i in range(n):

fd(t, laenge)

lt(t, winkel)

polygon(tim, 7, 70)

Dadurch wird ein siebenseitiges Polygon mit einer Seitenlänge von 70 gezeichnet.

Wenn Sie mehr als ein numerisches Argument übergeben, kann es leicht passieren,

dass Sie vergessen, was die einzelnen Argumente bedeuten und in welcher

Reihenfolge Sie sie angeben müssen.

Es ist daher zulässig – und manchmal auch durchaus hilfreich –, die Namen der

Parameter in der Argumentenliste mit anzugeben:

polygon(tim, n=7, laenge=70)

Solche Argumente bezeichnet man als Schlüsselwortargumente, weil sie die

Parameternamen als »Schlüsselwörter« mit angeben (nicht zu verwechseln mit

Python-Schlüsselwörtern wie while und def).

Durch diese Syntax ist das Programm besser lesbar. Außerdem veranschaulicht

dieses Beispiel, wie Argumente und Parameter funktionieren: Wenn Sie eine

Funktion aufrufen, werden die übergebenen Argumente den entsprechenden

Parametern zugewiesen.

Gestaltung von Schnittstellen

Im nächsten Schritt zeichnen Sie einen kreis mit dem Radius r als Parameter. Hier

sehen Sie eine einfache Lösung, die mit polygon ein fünfzigseitiges Polygon

zeichnet:

def kreis(t, r):

umfang = 2 * math.pi * r

n = 50

laenge = umfang / n

polygon(t, n, laenge)

In der ersten Zeile wird der Umfang des Kreises mit Radius r über die Formel 2

 r berechnet.

Da wir math.pi verwenden, müssen wir math importieren. Der Konvention nach

müssen import-Anweisungen am Anfang des Skripts stehen.

n ist die Anzahl der Liniensegmente für die Annäherung an den Kreis. laenge ist die

Länge der einzelnen Linien. Entsprechend zeichnet polygon ein fünfzigseitiges

Polygon als Annäherung an einen Kreis mit Radius r.

Eine Begrenzung dieser Lösung liegt darin, dass n eine Konstante ist. Für sehr große

Kreise sind die Liniensegmente zu lang, und bei sehr kleinen Kreisen verschwenden

wir Zeit, indem wir sehr kleine Kreissegmente zeichnen. Eine mögliche Lösung

besteht darin, die Funktion zu generalisieren und n als Parameter

entgegenzunehmen. Dadurch hätten die Benutzer (wer auch immer kreis aufruft)

mehr Kontrolle, aber die Schnittstelle wäre dadurch weniger übersichtlich.

Die Schnittstelle einer Funktion fasst zusammen, wie sie verwendet wird: Wie

heißen die Parameter? Was macht die Funktion? Und was ist der Rückgabewert?

Eine Schnittstelle ist dann übersichtlich, wenn sie »so einfach wie möglich, aber

nicht einfacher ist« (Einstein).

In diesem Beispiel gehört r zur Schnittstelle, weil es den zu zeichnenden Kreis bestimmt. n ist dagegen nicht ganz zutreffend, weil es sich mehr auf die Einzelheiten

dazu bezieht, wie der Kreis gezeichnet werden soll.

Statt die Schnittstelle unübersichtlicher zu machen, wählen wir für n besser einen

Wert, der vom umfang abhängt:

def kreis(t, r):

umfang = 2 * math.pi * r

n = int(umfang / 3) + 1

laenge = umfang / n

polygon(t, n, laenge)

Nun entspricht die Anzahl der Segmente (ungefähr) umfang / 3, wodurch die Länge

jedes Segments (ungefähr) 3 beträgt. Das ist klein genug, damit der Kreis hübsch

aussieht, und genug, um Kreise beliebiger Größe effizient und angemessen zu

zeichnen.

Refactoring

Als ich kreis geschrieben habe, konnte ich polygon wiederverwenden, weil ein

Polygon mit beliebig vielen Seiten eine gute Annäherung an einen Kreis ist. Aber

bogen ist nicht ganz so kooperativ. Wir können weder polygon noch kreis

verwenden, um einen Bogen zu zeichnen.

Eine Alternative besteht darin, mit einer Kopie von polygon zu beginnen und sie in

einen bogen umzuwandeln. Das Ergebnis könnte folgendermaßen aussehen:

def bogen(t, r, winkel):

bogen_laenge = 2 * math.pi * r * winkel / 360

n = int(bogen_laenge / 3) + 1

schritt_laenge = bogen_laenge / n

schritt_winkel = float(winkel) / n

for i in range(n):

fd(t, schritt_laenge)

lt(t, schritt_winkel)

Die zweite Hälfte dieser Funktion sieht wie polygon aus, aber wir können polygon

nicht verwenden, ohne die Schnittstelle zu ändern. Wir könnten zwar polygon so

verallgemeinern, dass die Funktion einen Winkel als drittes Argument erwartet.

Aber dann wäre polygon kein passender Name mehr! Verwenden wir lieber die

allgemeinere Funktion polylinie:

def polylinie(t, n, laenge, winkel):

for i in range(n):

fd(t, laenge)

lt(t, winkel)

Nun können wir polygon und bogen so umschreiben, dass sie polylinie verwenden:

def polygon(t, n, laenge):

winkel = 360.0 / n

polylinie(t, n, laenge, winkel)

def bogen(t, r, winkel):

bogen_laenge = 2 * math.pi * r * winkel / 360

n = int(bogen_laenge / 3) + 1

schritt_laenge = bogen_laenge / n

schritt_winkel = float(winkel) / n

polylinie(t, n, schritt_laenge, schritt_winkel)

Zum Abschluss können wir kreis noch so umschreiben, dass die Funktion bogen

verwendet wird:

def kreis(t, r):

bogen(t, r, 360)

Den Vorgang, ein Programm neu zu arrangieren, um Funktionsschnittstellen zu

verbessern und die Wiederverwendung von Code zu erleichtern, nennt man

Refactoring. In diesem Fall haben wir festgestellt, dass bogen und polygon

ähnlichen Code enthalten haben, deshalb haben wir ihn in die Funktion polylinie

»ausgeklammert«.

Wenn wir entsprechend vorausgeplant hätten, hätten wir vielleicht zuerst polylinie

geschrieben und uns das Refactoring gespart. Aber oft wissen Sie am Anfang eines

Projekts nicht genug, um alle Schnittstellen entsprechend zu entwerfen. Sobald Sie

mit dem Code angefangen haben, verstehen Sie die Probleme besser. Manchmal ist

Refactoring ein Zeichen dafür, dass Sie etwas gelernt haben.

Entwicklungsplan

Ein Entwicklungsplan ist ein Verfahren zum Schreiben von Programmen. Die

beiden Ansätze, die wir in dieser Fallstudie herangezogen haben, waren

»Datenkapselung« und »Generalisierung«. Die Schritte dieses Verfahrens lauten:

1. Beginnen Sie mit einem kleinen Programm ohne Funktionsdefinitionen.

2. Sobald das Programm funktioniert, kapseln Sie es in eine Funktion und geben

ihr einen Namen.

3. Generalisieren Sie die Funktion durch entsprechende Parameter.

4. Wiederholen Sie die Schritte 1 bis 3, bis Sie eine Reihe entsprechender

Funktionen haben. Kopieren Sie den funktionierenden Code und fügen Sie in

ein, um sich das erneute Tippen (und das erneute Debugging) zu ersparen.

5. Suchen Sie nach Möglichkeiten, das Programm durch Refactoring zu

verbessern. Wenn Sie beispielsweise an mehreren Stellen ähnlichen Code

verwenden, sollten Sie darüber nachdenken, diesen in eine entsprechende

allgemeinere Funktion auszulagern.

Dieses Verfahren hat auch Nachteile (Alternativen dazu sehen wir uns später an),

kann aber sehr nützlich sein, wenn Sie nicht von vornherein wissen, wie Sie das Programm in Funktionen aufteilen können. Bei diesem Ansatz gestalten Sie das

Programm immer wieder um, während Sie daran arbeiten.

Docstring

Ein Docstring ist ein String am Anfang einer Funktion, der die Schnittstelle erklärt (»doc« steht dabei für Dokumentation). Hier ein Beispiel:

def polylinie(t, n, laenge, winkel):

 """Zeichnet n Liniensegmente.

 t: Turtle-Objekt

 n: Anzahl der Liniensegmente

 laenge: Länge der einzelnen Segmente

 winkel: Winkel zwischen den Segmenten in Grad

 """

for i in range(n):

fd(t, laenge)

lt(t, winkel)

Dieser Docstring steht in drei Anführungszeichen hintereinander. So etwas

bezeichnet man auch als mehrzeiligen String, weil er mehr als eine Zeile umfassen

kann.

Das ist kurz und knapp, enthält aber die wesentlichen Informationen für jemanden,

der diese Funktion verwenden möchte. Der Docstring erklärt exakt, was die Funktion

macht (ohne auf Einzelheiten einzugehen), welche Auswirkungen die jeweiligen

Parameter auf das Verhalten der Funktion haben und welcher Typ jeweils erwartet

wird (falls das nicht offensichtlich ist).

Diese Art der Dokumentation ist ein wichtiger Teil der Gestaltung von

Schnittstellen. Eine gut durchdachte Schnittstelle sollte einfach zu erklären sein.

Sollten Sie Schwierigkeiten haben, eine Ihrer Funktionen zu beschreiben, könnte das

ein Hinweis darauf sein, dass die Schnittstelle verbesserungsbedürftig ist.

Debugging

Eine Schnittstelle ist wie ein Vertrag zwischen einer Funktion und dem Aufrufenden.

Der Aufrufende stimmt zu, bestimmte Parameter zur Verfügung zu stellen, und die

Funktion willigt ein, eine bestimmte Aufgabe zu erfüllen.

polylinie benötigt beispielsweise vier Argumente: t muss eine Turtle sein, n ist die

Anzahl der Liniensegmente und muss daher ein Integer sein. laenge muss eine

positive Zahl sein, und winkel muss eine Zahl sein, die sich in Grad auswerten lässt.

Diese Anforderungen nennt man Vorbedingungen, weil sie erfüllt sein müssen,

bevor die Funktion mit der Ausführung beginnen kann.

Die Bedingungen gegen Ende der Funktion heißen entsprechend Nachbedingungen.

Zu den Nachbedingungen gehören der gewünschte Effekt der Funktion

(beispielsweise das Zeichnen von Liniensegmenten) sowie jegliche Nebeneffekte

(Bewegungen der Schildkröte oder andere Änderungen in der jeweiligen Welt).

Vorbedingungen unterliegen der Verantwortung des Aufrufenden. Falls der

Aufrufende eine (korrekt dokumentierte!) Vorbedingung nicht erfüllt und deshalb

die Funktion nicht korrekt arbeitet, liegt der Fehler beim Aufrufenden, nicht bei der

Funktion.

Glossar

Instanz:

Mitglied einer Gruppe. Die TurtleWorld in diesem Kapitel ist Mitglied einer

Gruppe von TurtleWorlds.

Schleife:

Teil eines Programms, der wiederholt ausgeführt wird.

Datenkapselung:

Vorgang, eine Folge von Anweisungen in eine Funktionsdefinition umzuwandeln.

Generalisierung:

Verfahren, etwas unnötig Spezifisches (etwa eine Zahl) durch etwas

Allgemeineres (etwa eine Variable oder einen Parameter) zu ersetzen.

Schlüsselwortargument:

Argument, das den Namen des Parameters als »Schlüsselwort« enthält.

Schnittstelle:

Beschreibung, wie eine Funktion zu verwenden ist, einschließlich der Namen und

Beschreibungen der Argumente sowie des Rückgabewerts.

Refactoring:

Vorgang, die Funktionsschnittstellen und andere Qualitäten eines Programms zu

verbessern.

Entwicklungsplan:

Verfahren zum Schreiben von Programmen.

Docstring:

String in einer Funktionsdefinition, der die Schnittstelle der Funktion

dokumentiert.

Vorbedingung:

Bedingung, die vom Aufrufenden erfüllt werden muss, bevor eine Funktion

ausgeführt werden kann.

Nachbedingung:

Anforderung, die von einer Funktion erfüllt werden muss, bevor sie beendet wird.

Übungen

Den Code für dieses Kapitel finden Sie in der Beispieldatei polygon.py.

1. Schreiben Sie entsprechende Docstrings für polygon, bogen und kreis.

2. Zeichnen Sie ein Stapeldiagramm, das den Zustand des Programms bei der

Ausführung von kreis(tim, radius) darstellt. Die Berechnungen können Sie

entweder von Hand durchführen oder entsprechende print-Anweisungen in den

Code einfügen.

3. Die Version von bogen im „Refactoring“ ist nicht allzu genau, weil die lineare Annäherung an einen Kreis niemals einen echten Kreis ergibt. Als Konsequenz

davon landet die Schildkröte einige Einheiten von der korrekten Position

entfernt. Meine Lösung zeigt eine Möglichkeit, den Effekt dieser Abweichung

zu reduzieren. Lesen Sie den Code und schauen Sie, ob er für Sie Sinn ergibt.

Wenn Sie ein Diagramm zeichnen, finden Sie vielleicht heraus, wie er

funktioniert.

 Listing 4.1

 Abbildung 4.1 Turtle-Blumen.

Schreiben Sie eine halbwegs allgemeine Sammlung von Funktionen, die Blumen wie

die in Abbildung 4.1 zeichnen können.

Lösung: blumen.py, benötigt polygon.py.

 Listing 4.2

 Abbildung 4.2 Turtle-Kuchen.

Schreiben Sie eine angemessen allgemeine Sammlung von Funktionen, die Formen

wie die in Abbildung 4.2 zeichnen kann.

Lösung: kuchen.py.

 Listing 4.3

Die Buchstaben des Alphabets können aus einer überschaubaren Anzahl

grundlegender Elemente aufgebaut werden, wie etwa vertikalen und horizontalen

Linien sowie einigen Kurven. Gestalten Sie eine Schrift, die mit einer minimalen

Anzahl grundlegender Elemente gezeichnet werden kann, und schreiben Sie die

Funktionen, die die Buchstaben des Alphabets zeichnen.

Schreiben Sie jeweils eine Funktion für jeden Buchstaben mit den Namen

zeichne_a, zeichne_b usw. und legen Sie die Funktionen in einer Datei mit dem

Namen buchstaben.py ab. Die Datei schreibmaschine.py enthält eine

»Schildkrötenschreibmaschine«, mit der Sie Ihre Funktionen testen können.

Lösung: buchstaben.py, benötigt außerdem polygon.py.

 Listing 4.4

Informieren Sie sich über Spiralen unter http://de.wikipedia.org/wiki/Spirale.

Schreiben Sie dann ein Programm, das eine archimedische Spirale zeichnet (oder

einen der anderen Typen).

Lösung: spirale.py.

 Listing 4.5

Kapitel 5. Bedingungen und Rekursion

Modulus-Operator

Der Modulus-Operator arbeitet mit ganzen Zahlen und gibt den Rest zurück, der

übrig bleibt, wenn der erste Operand durch den zweiten dividiert wird. In Python

wird für den Modulus-Operator das Prozentzeichen verwendet (%). Die Syntax ist

dieselbe wie für andere Operatoren:

>>> quotient = 7 / 3

>>> print quotient

2

>>> rest = 7 % 3

>>> print rest

1

7 dividiert durch 3 ist 2, Rest 1.

Der Modulus-Operator ist überraschend nützlich. Damit können Sie beispielsweise

ermitteln, ob eine Zahl durch eine andere teilbar ist – wenn x % y gleich 0 ist, dann

ist x durch y teilbar.

Außerdem können Sie damit die ganz rechts stehenden Ziffern einer Zahl

extrahieren. So liefert z. B. x % 10 die ganz rechts stehende Stelle von x (im

Dezimalsystem). Analog dazu liefert x % 100 die letzten beiden Stellen.

Boolesche Ausdrücke

Ein Boolescher Ausdruck ist ein Ausdruck, der entweder wahr oder falsch ist. In

den folgenden Beispielen wird der Operator == verwendet, der zwei Operanden

vergleicht. Wenn diese gleich sind, liefert er den Wert True zurück, ansonsten den

Wert False:

>>> 5 == 5

True

>>> 5 == 6

False

True und False sind spezielle Werte vom Typ bool. Es sind keine Strings:

>>> type(True)

<type 'bool'>

>>> type(False)

<type 'bool'>

Der Operator == ist ein relationaler Operator. Die anderen lauten:

x != y # x ist ungleich y

x > y # x ist größer als y

x < y # x ist kleiner als y

x >= y # x ist größer gleich y

 x <= y # x ist kleiner gleich y

Auch wenn Ihnen diese Berechnungen wahrscheinlich bekannt vorkommen, so

unterscheiden sich die Python-Symbole von den mathematischen Symbolen. Ein

häufig vorkommender Fehler besteht in der Verwendung eines einfachen

Gleichheitszeichens (=) statt des doppelten Gleichheitszeichens (==). Denken Sie

daran: = ist ein Zuweisungsoperator, == ist ein relationaler Operator. =< und =>

gibt es nicht als Operatoren.

Logische Operatoren

Es gibt drei logische Operatoren: and, or und not. Die semantische Bedeutung

dieser Operatoren ist der wörtlichen Bedeutung recht ähnlich. Beispielsweise ist x >

0 and x < 10 nur wahr, wenn x größer als 0 und kleiner als 10 ist.

n%2 == 0 or n%3 == 0 ist wahr, wenn eine der beiden Bedingungen zutrifft –

wenn die Zahl also entweder durch 2 oder 3 teilbar ist.

Der not-Operator negiert einen Booleschen Ausdruck. not (x > y) ist also wahr,

wenn x > y falsch ist – also nur dann, wenn x kleiner gleich y.

Streng genommen sollten die Operanden von logischen Operatoren Boolesche

Ausdrücke sein. Aber Python ist nicht sehr streng. Jegliche Zahl ungleich null wird

als »wahr« interpretiert.

>>> 17 and True

True

Diese Flexibilität kann nützlich sein, es gibt aber auch einige Feinheiten, die

verwirrend sind. Solche Fälle sollten Sie vermeiden (es sei denn, Sie wissen, was Sie

tun).

Bedingte Ausführung

Damit wir sinnvolle Programme schreiben können, brauchen wir fast immer die

Möglichkeit, Bedingungen zu überprüfen und das Verhalten des Programms

entsprechend zu ändern. Bedingte Anweisungen geben uns genau diese Möglichkeit.

Die einfachste Form ist die if-Anweisung:

if x > 0:

print 'x ist positiv'

Den Booleschen Ausdruck nach if nennt man eine Bedingung. Wenn sie zutrifft,

wird die eingerückte Anweisung ausgeführt. Falls nicht, passiert nichts.

if-Anweisungen haben die gleiche Struktur wie Funktionsdefinitionen: ein Header

gefolgt von einem eingerückten Body. Solche Anweisungen nennt man

Verbundanweisung.

Es gibt keine Begrenzung für die Anzahl der Anweisungen im Body. Aber er muss mindestens eine enthalten. Manchmal ist es nützlich, einen Body ohne Anweisungen

zu haben (normalerweise als Platzhalter für Code, den Sie noch nicht geschrieben

haben). In diesem Fall können Sie die pass-Anweisung verwenden, die einfach

nichts tut:

if x < 0:

pass # Wir müssen uns um negative Werte kümmern!

Alternativer Programmablauf

Eine zweite Form der if-Anweisung ist der alternative Programmablauf, bei dem

es zwei Möglichkeiten gibt und die Bedingung darüber entscheidet, welche davon

ausgeführt wird. Die Syntax sieht folgendermaßen aus:

if x%2 == 0:

print 'x ist gerade'

else:

print 'x ist ungerade'

Wenn der Rest bei der Division von x geteilt durch 2 gleich 0 ist, wissen wir, dass x

gerade ist, und das Programm zeigt eine entsprechende Meldung an. Trifft die

Bedingungen nicht zu, werden die alternativen Anweisungen ausgeführt. Nachdem

die Bedingung wahr oder falsch sein muss, wird genau eine der beiden Alternativen

ausgeführt. Diese Alternativen bezeichnet man als Verzweigungen, weil sie Zweige

im Programmablauf darstellen.

Verkettete Bedingungen

Manchmal gibt es mehr als zwei Möglichkeiten, und wir brauchen entsprechend

mehr als zwei Verzweigungen. Eine Möglichkeit, eine solche Berechnung

auszudrücken, bieten verkettete Bedingungen:

if x < y:

print 'x ist kleiner als y'

elif x > y:

print 'x ist größer als y'

else:

print 'x und y sind gleich'

elif ist eine Abkürzung für »else if«. Auch hier wird wieder genau eine Verzweigung

ausgeführt. Es gibt keine Begrenzung für die Anzahl der elif-Anweisungen. Wenn es

eine else-Klausel gibt, muss sie am Ende stehen. Aber es muss keine geben.

if auswahl == 'a':

zeichne_a()

elif auswahl == 'b':

zeichne_b()

elif auswahl == 'c':

zeichne_c()

Die Bedingungen werden nacheinander überprüft. Wenn die erste falsch ist, wird die nächste überprüft usw. Trifft eine der Bedingungen zu, wird die entsprechende

Verzweigung ausgeführt und die Anweisung beendet. Selbst wenn mehr als eine

Bedingung wahr ist, wird nur die erste entsprechende Verzweigung ausgeführt.

Verschachtelte Bedingungen

Bedingungen können auch ineinander verschachtelt werden. Wir hätten die

dreiteilige Entscheidung aus dem vorherigen Beispiel auch folgendermaßen

ausdrücken können:

if x == y:

print 'x und y sind gleich'

else:

if x < y:

print 'x ist kleiner als y'

else:

print 'x ist größer als y'

Die äußere Bedingung enthält zwei Verzweigungen. Die erste Verzweigung enthält

eine einfache Anweisung, die zweite eine weitere if-Anweisung, die ihrerseits zwei

Verzweigungen hat. Diese beiden Verzweigungen sind jeweils einfache

Anweisungen, hätten aber auch eine bedingte Anweisung sein können.

Obwohl die Struktur der Anweisungen durch die Einrückung erkennbar ist, sind

verschachtelte Bedingungen häufig nicht schnell zu überblicken. Daher sollten Sie sie wenn möglich vermeiden.

Logische Operatoren bieten häufig eine Möglichkeit, verschachtelte Bedingungen zu

vereinfachen. Beispielsweise können wir den folgenden Code auch in einer einzigen

Bedingung schreiben:

if 0 < x:

if x < 10:

print 'x ist eine positive einstellige Zahl.'

Die print-Anweisung wird nur ausgeführt, wenn beide Bedingungen erfüllt sind.

Entsprechend können wir dasselbe Ergebnis auch mit dem and-Operator erreichen:

if 0 < x and x < 10:

print 'x ist eine positive einstellige Zahl.'

Rekursion

Eine Funktion darf eine andere aufrufen. Es ist sogar zulässig, dass sich eine

Funktion selbst aufruft. Ihnen mag auf den ersten Blick zwar nicht klar sein, wozu

das gut sein soll, wie Sie aber sehen werden, kann das eines der magischsten Dinge

sein, die ein Programm tun kann. Sehen Sie sich beispielsweise die folgende

Funktion an:

def countdown(n):

if n <= 0:

print 'Bumm!'

else:

print n

countdown(n-1)

Wenn n gleich 0 oder negativ, wird das Wort »Bumm!« ausgegeben. Ansonsten wird

n ausgegeben, eine Funktion mit dem Namen countdown wird aufgerufen – das ist

dieselbe Funktion – und n-1 als Argument übergeben.

Was passiert, wenn wir die Funktion folgendermaßen aufrufen?

>>> countdown(3)

Die Ausführung von countdown beginnt mit n=3. Da n größer ist als 0, gibt die

Funktion 3 aus und ruft sich selbst auf ...

Die Ausführung von countdown beginnt mit n=2. Da n größer ist als 0, gibt die Funktion 2 aus und ruft sich selbst auf ...

Die Ausführung von countdown beginnt mit n=1. Da n größer ist als 0, gibt die Funktion 1 aus und ruft sich selbst auf ...

Die Ausführung von countdown beginnt mit n=0. Da n nicht größer als 0 ist, gibt die Funktion

»Bumm!« aus und kehrt zurück.

Der countdown für n=1 kehrt zurück.

Der countdown für n=2 kehrt zurück.

Der countdown für n=3 kehrt zurück.

Und dann befinden Sie sich wieder in __main__. Also sieht die Ausgabe insgesamt

so aus:

3

2

1

Bumm!

Eine Funktion, die sich selbst aufruft, nennt man rekursiv, den Vorgang nennt man Rekursion.

Als weiteres Beispiel können wir eine Funktion schreiben, die einen String n Mal

ausgibt.

def print_n(s, n):

if n <= 0:

return

print s

print_n(s, n-1)

Wenn n <= 0, beendet die return-Anweisung die Funktion. Der Programmablauf

kehrt sofort zurück zum Aufrufenden, und die verbleibenden Zeilen der Funktion

werden nicht ausgeführt.

Die restliche Funktion ist ähnlich wie countdown: Wenn n größer als 0 ist, wird s

angezeigt, und die Funktion ruft sich selbst auf, um s weitere n-1 Male anzuzeigen.

Die Anzahl der ausgegebenen Zeilen ist 1 + (n - 1), also gleich n.

Für einfache Beispiele wie dieses ist es vermutlich einfacher, eine for-Schleife zu

verwenden. Aber wir werden später noch Beispiele sehen, die mit einer for-Schleife

nur sehr schwer zu schreiben sind, mit Rekursion jedoch umso einfacher. Insofern

können wir damit gar nicht früh genug anfangen!

Stapeldiagramme für rekursive Funktionen

In „Stapeldiagramme“ haben wir den Zustand des Programms während eines Funktionsaufrufs mit einem Stapeldiagramm dargestellt. Mit derselben Art von

Diagramm kann man auch eine rekursive Funktion interpretieren.

Bei jedem Funktionsaufruf erstellt Python einen neuen Funktionsnamen, der die

lokalen Variablen und Parameter der Funktion enthält. Für eine rekursive Funktion

kann es auch mehr als einen Rahmen auf dem Stapel zur selben Zeit geben.

Abbildung 5.1 zeigt ein Stapeldiagramm für countdown mit n = 3.

 Abbildung 5.1 Stapeldiagramm.

Wie üblich befindet sich ganz oben im Stapel der Frame für __main__. Er ist leer,

weil wir in __main__ noch keine Variablen erstellt oder Argumente übergeben

haben.

In den vier Rahmen für countdown hat der Parameter n jeweils unterschiedliche

Werte. Den untersten Teil des Stapels, wenn n=0, nennt man den Basisfall. Er macht keinen rekursiven Aufruf, daher gibt es keine weiteren Kästen.

Zeichnen Sie ein Stapeldiagramm für print_n mit s = 'Hallo' und n=2.

 Listing 5.1

Schreiben Sie eine Funktion mit dem Namen mach_n, die ein Funktionsobjekt und

die Zahl n als Argumente entgegennimmt und die angegebene Funktion n Mal aufruft.

 Listing 5.2

Endlose Rekursion

Wenn eine Rekursion niemals einen Basisfall erreicht, setzen sich die rekursiven

Aufrufe endlos fort, und das Programm wird nie beendet. Diesen Fall bezeichnet

man als endlose Rekursion – im Allgemeinen keine so gute Idee. Dies ist ein

minimales Programm mit einer endlosen Rekursion:

def rekursiere():

rekursiere()

In den meisten Programmierumgebungen läuft ein Programm mit einer endlosen

Rekursion nicht wirklich für immer. Wenn die maximale Rekursionstiefe erreicht

ist, gibt Python eine Fehlermeldung aus:

File "<stdin>", line 2, in rekursiere

File "<stdin>", line 2, in rekursiere

File "<stdin>", line 2, in rekursiere

.

.

.

File "<stdin>", line 2, in rekursiere

RuntimeError: Maximum recursion depth exceeded

Dieser Traceback ist ein bisschen größer als der, den wir im vorherigen Kapitel

gesehen haben. Wenn dieser Fehler auftritt, befinden sich 1.000 rekursiere-Frames

auf dem Stapel!

Tastatureingaben

Die Programme, die wir bisher geschrieben haben, sind insofern ein bisschen

unhöflich, als sie nicht auf Benutzereingaben reagieren und immer dasselbe tun.

Python 2 bietet eine integrierte Funktion mit dem Namen raw_input, die Eingaben

über die Tastatur abruft. In Python 3 heißt sie input. Wenn Sie diese Funktion

aufrufen, stoppt das Programm und wartet darauf, dass der Benutzer etwas eingibt.

Wenn der Benutzer die Eingabetaste drückt, wird das Programm weiter ausgeführt,

und raw_input liefert die Benutzereingabe als String.

>>> eingabe = raw_input()

Worauf warten Sie?

>>> print eingabe

Worauf warten Sie?

Bevor Sie auf die Benutzereingabe warten, sollten Sie den Benutzer auch wissen

lassen, was er eingeben soll. raw_input nimmt eine Eingabeaufforderung als

Argument entgegen:

>>> name = raw_input('Wie...heißen Sie?\n')

Wie...heißen Sie?

Arthur, König der Briten!

>>> print name

Arthur, König der Briten!

Die Zeichenfolge \n am Ende der Eingabeaufforderung ist ein Zeilenvorschub – ein

Sonderzeichen, das einen Zeilenumbruch erzeugt. So erscheint die Benutzereingabe

unterhalb der Eingabeaufforderung.

Wenn Sie erwarten, dass der Benutzer einen Integer eingibt, können Sie versuchen,

den Rückgabewert in int zu konvertieren:

>>> eingabeaufforderung = 'Wie hoch... ist die Fluggeschwindigkeit einer unbeladenen Schwalbe?\n'

>>> geschwindigkeit = raw_input(eingabeaufforderung)

Wie hoch... ist die Fluggeschwindigkeit einer unbeladenen Schwalbe?

17

>>> int(geschwindigkeit)

17

Gibt der Benutzer allerdings etwas anderes als einen String von Ziffern ein, erhalten

Sie einen Fehler:

>>> geschwindigkeit = raw_input(eingabeaufforderung)

Wie hoch... ist die Fluggeschwindigkeit einer unbeladenen Schwalbe?

Meinen Sie eine afrikanische oder eine europäische Schwalbe?

>>> int(geschwindigkeit)

ValueError: invalid literal for int()

Wir werden später darauf zu sprechen kommen, wie Sie am besten mit diesen Fehler

umgehen.

Debugging

Der Traceback, den Python anzeigt, wenn ein Fehler auftritt, enthält eine Menge

Informationen – eigentlich fast schon zu viele, insbesondere, wenn sich viele Frames

auf dem Stapel befinden. Die nützlichsten Teile sind normalerweise:

die Art von Fehler und

wo der Fehler aufgetreten ist.

Syntaxfehler sind normalerweise einfach zu finden, aber es gibt einige Fallen.

Leerraum kann beispielsweise ein tückisches Problem sein, weil Leerzeichen und

Tabs unsichtbar sind und wir sie üblicherweise ignorieren.

>>> x = 5

>>> y = 6

File "<stdin>", line 1

y = 6

^

SyntaxError: invalid syntax

In diesem Beispiel besteht das Problem darin, dass die zweite Zeile um ein

Leerzeichen eingerückt ist. Die Fehlermeldung zeigt aber auf y, was in diesem Fall

irreführend ist. Im Allgemeinen kennzeichnen Fehlermeldungen die Stelle, an der

das Problem entdeckt wurde. Der eigentliche Fehler kann aber auch früher im Code

entstanden sein, manchmal in einer der vorhergehenden Zeilen.

Dasselbe gilt für Laufzeitfehler.

Angenommen, Sie versuchen, ein Signal-Rausch-Verhältnis in Dezibel zu

berechnen. Die Formel lautet

. In

Python könnten Sie ungefähr Folgendes schreiben:

import math

signalleistung = 9

rauschleistung = 10

verhaeltnis = signalleistung / rauschleistung

dezibel = 10 * math.log10(verhaeltnis)

print dezibel

In Python 2 erhalten Sie aber eine Fehlermeldung.

Traceback (most recent call last):

File "snr.py", line 5, in ?

dezibel = 10 * math.log10(verhaeltnis)

OverflowError: math range error

Die Fehlermeldung deutet auf einen Fehler in Zeile 5 hin. Aber an dieser Stelle ist

nichts verkehrt. Um den wirklichen Fehler zu finden, erweist es sich als nützlich,

den Wert von verhaeltnis auszugeben, der in Wahrheit 0 ist. Das Problem liegt

eigentlich in Zeile 4, weil bei der Division von zwei Integern die Nachkommastellen

ignoriert werden. Die Lösung besteht darin, Signalleistung und Rauschleistung als

Fließkommawerte anzugeben.

Üblicherweise zeigen Ihnen die Fehlermeldungen, wo das Problem erkannt wurde.

Das ist aber oft nicht die Stelle, an der es verursacht wurde.

In Python 3 macht dieses Beispiel keine Schwierigkeiten. Der Divisionsoperator

führt auch mit ganzzahligen Operanden eine Fließkommadivision durch.

Glossar

Modulus-Operator:

Operator (%), der mit Integer-Werten funktioniert und den Rest zurückliefert, der

bei der Division des einen Operanden durch den anderen zurückbleibt.

Boolescher Ausdruck:

Ausdruck, dessen Wert entweder True oder False ist.

Relationale Operatoren:

Operatoren, die zwei Operanden vergleichen: ==, !=, >, <, >= und <=.

Logische Operatoren:

Operatoren, die Boolesche Ausdrücke kombinieren: and, or und not.

Bedingte Anweisung:

Anweisung, die den Programmablauf in Abhängigkeit von einer Bedingung

steuert.

Bedingung:

Boolescher Ausdruck in einer bedingten Anweisung, der darüber entscheidet,

welche Verzweigung ausgeführt wird.

Verbundanweisung:

Anweisungen, die aus einem Header und einem Body besteht. Der Header endet

mit einem Doppelpunkt (:). Der Body ist relativ zum Header eingerückt.

Verzweigung:

Einer der alternativen Codeblöcke in einer bedingten Anweisung.

Verkettete Bedingung:

Bedingte Anweisung mit einer Reihe von alternativen Verzweigungen.

Verschachtelte Bedingung:

Bedingte Anweisung, die in einer Verzweigung einer anderen bedingten

Anweisung steht.

Rekursion:

Aufruf derselben Funktion, die gerade ausgeführt wird.

Basisfall:

Bedingte Verzweigung in einer rekursiven Funktion, die keinen rekursiven Aufruf

macht.

Endlose Rekursion:

Rekursion, für die es entweder keinen Basisfall gibt oder die diesen nie erreicht.

Eine endlose Rekursion erzeugt nach einer gewissen Zeit einen Laufzeitfehler.

Übungen

Der »Große Fermatsche Satz« besagt, dass es keine ganzen Zahlen a, b und c gibt, für die gilt:

 a n + b n = c n

für Werte von n größer als 2.

1. Schreiben Sie eine Funktion beweis_fermat, die vier Parameter

entgegennimmt – a, b, c und n – und überprüft, ob Fermats Theorem einer

Prüfung standhält. Wenn n größer ist als 2 und sich herausstellt, dass

 a n + b n = c n

soll das Programm ausgeben: »Heiliger Strohsack, Fermat hatte nicht recht!«,

ansonsten soll es ausgeben: »Nein, das funktioniert nicht.«

2. Schreiben Sie eine Funktion, die den Benutzer auffordert, Werte für a, b, c und

n einzugeben, diese in Integer konvertiert und beweis_fermat verwendet, um

herauszufinden, ob sie gegen Fermats Theorem verstoßen.

 Listing 5.3

Wenn Sie drei Stöckchen bekommen, ist es nicht garantiert, dass Sie damit ein

Dreieck bilden können. Wenn beispielsweise eines der Stöckchen eine Länge von 25

Zentimetern hat und die anderen beiden jeweils nur einen Zentimeter lang sind, gibt

es keine Möglichkeit, dass sich die beiden kurzen Stöckchen in der Mitte berühren.

Es gibt einen einfachen Test, um herauszufinden, ob es mit den drei gegebenen

Seitenlängen möglich ist, ein Dreieck zu bilden:

Ist eine der drei Seitenlängen größer als die Summe der anderen beiden, können Sie damit kein Dreieck aufbauen. (Wenn die Summe zweier Seitenlängen gleich der dritten ist, ergibt sich ein sogenanntes

»degeneriertes« Dreieck.)

1. Schreiben Sie eine Funktion mit dem Namen ist_dreieck, die drei Integer als

Argumente entgegennimmt und mit »Ja« oder »Nein« auf die Frage antwortet,

ob Sie mit den entsprechenden Seitenlängen ein Dreieck bilden können.

2. Schreiben Sie eine Funktion, die den Benutzer zur Eingabe dreier Seitenlängen

auffordert, diese in Integer konvertiert und anschließend mit ist_dreieck

überprüft, ob sich damit ein Dreieck bilden lässt.

 Listing 5.4

Die folgende Übung verwendet TurtleWorld aus Kapitel 4:

Lesen Sie die folgende Funktion und versuchen Sie, herauszufinden, was sie macht.

Führen Sie sie anschließend aus (siehe die Beispiele in Kapitel 4).

def zeichne(t, laenge, n):

if n == 0:

return

winkel = 50

fd(t, laenge*n)

lt(t, winkel)

zeichne(t, laenge, n-1)

rt(t, 2*winkel)

zeichne(t, laenge, n-1)

lt(t, winkel)

bk(t, laenge*n)

 Listing 5.5

Die Koch-Kurve ist ein Fraktal, das ungefähr wie die Kurve in Abbildung 5.2

aussieht. Damit Sie eine Koch-Kurve mit der Länge x zeichnen können, müssen Sie

Folgendes tun:

1. Zeichnen Sie eine Koch-Kurve mit der Länge x/3.

2. Machen Sie eine Drehung nach links um 60 Grad.

3. Zeichnen Sie eine Koch-Kurve mit der Länge x/3.

4. Machen Sie eine Drehung nach rechts um 120 Grad.

5. Zeichnen Sie eine Koch-Kurve mit der Länge x/3.

6. Machen Sie eine Drehung nach links um 60 Grad.

7. Zeichnen Sie eine Koch-Kurve mit der Länge x/3.

 Abbildung 5.2 Koch-Kurve

Es gibt eine Ausnahme für den Fall, dass x kleiner als 3 ist: In diesem Fall zeichnen Sie einfach eine gerade Linie mit der Länge x.

1. Schreiben Sie eine Funktion mit dem Namen koch, die eine Schildkröte und

eine Länge als Parameter erwartet, um mit der Schildkröte eine Koch-Kurve

mit der angegebenen Länge zu zeichnen.

2. Schreiben Sie eine Funktion mit dem Namen schneeflocke, die mithilfe dreier

Koch-Kurven den Umriss einer Schneeflocke zeichnet.

Lösung: koch.py.

3. Es gibt mehrere Möglichkeiten, eine Koch-Kurve zu verallgemeinern. Schauen

Sie sich die Beispiele unter http://de.wikipedia.org/wiki/Koch-Kurve an und implementieren Sie Ihren Favoriten.

 Listing 5.6

Kapitel 6. Funktionen mit Rückgabewert

Rückgabewerte

Einige der integrierten Funktionen, die wir bisher verwendet haben – beispielsweise

die mathematischen Funktionen –, liefern ein Ergebnis. Der Aufruf der Funktion

erzeugt einen Wert, den wir üblicherweise einer Variablen zuweisen oder als Teil

eines Ausdrucks verwenden.

e = math.exp(1.0)

hoehe = radius * math.sin(radiant)

Die Funktionen, die wir bisher geschrieben haben, liefern dagegen kein Ergebnis. Sie

geben entweder etwas aus oder bewegen Schildkröten, aber ihr Rückgabewert ist

None.

In diesem Kapitel schreiben wir (endlich) Funktionen mit Rückgabewert. Das erste

Beispiel ist die Funktion flaeche, die die Fläche eines Kreises mit dem angegebenen

Radius zurückgibt:

def flaeche(radius):

temp = math.pi * radius**2

return temp

Die return-Anweisung haben wir bereits gesehen, aber in einer Funktion mit

Rückgabewert umfasst die return-Anweisung auch einen Ausdruck. Eine solche

Anweisung bedeutet: »Kehre sofort aus dieser Funktion zurück und verwende den

folgenden Ausdruck als Rückgabewert.« Der Ausdruck kann beliebig kompliziert

sein. Also können wir diese Funktion auch kürzer schreiben:

def flaeche(radius):

return math.pi * radius**2

Andererseits erleichtern temporäre Variablen wie beispielsweise temp das

Debugging.

Manchmal ist es nützlich, mehrere return-Anweisungen zu schreiben – jede in einer

anderen Verzweigung einer Bedingung:

def absoluter_wert(x):

if x < 0:

return -x

else:

return x

Da diese return-Anweisungen für alternative Bedingungen gelten, wird nur eine

ausgeführt.

Sobald eine return-Anweisung ausgeführt wird, endet die Funktion, ohne

nachfolgende Anweisungen auszuführen. Code, der nach einer return-Anweisung

steht oder an einer anderen Stelle, die der Programmablauf niemals erreichen kann,

nennt man Dead Code (»toten Code«).

In einer Funktion mit Rückgabewert sollte sichergestellt werden, dass bei jedem

möglichen Ablauf durch das Programm eine return-Anweisung erreicht wird:

def absoluter_wert(x):

if x < 0:

return -x

if x > 0:

return x

Diese Funktion ist insofern nicht korrekt, als für x gleich 0 keine der beiden

Bedingungen zutrifft und die Funktion endet, ohne auf eine return-Anweisung zu

treffen. Wenn der Programmablauf das Ende einer Funktion erreicht, ist der

Rückgabewert None – etwas völlig anderes als der absolute Wert von 0.

>>> print absoluter_wert(0)

None

Python bietet übrigens eine Funktion mit dem Namen abs, die den absoluten Wert

berechnet.

Schreiben Sie eine Funktion vergleiche, die 1 zurückliefert, falls x > y, 0, wenn x

== y, und -1, wenn x < y.

 Listing 6.1

Inkrementelle Entwicklung

Wenn Sie größere Funktionen schreiben, verbringen Sie unter Umständen auch mehr

Zeit mit dem Debugging.

Bei der Entwicklung komplizierterer Programme können Sie ein Vorgehensmodell

mit dem Namen inkrementelle Entwicklung ausprobieren. Ziel der inkrementellen

Entwicklung ist es, langwierige Debugging-Sitzungen zu vermeiden, indem Sie

immer nur kleine Codeteile hinzufügen und sofort testen.

Angenommen, Sie möchten die Entfernung zwischen den beiden Punkten (x 1, y 1) und (x 2, y 2) berechnen. Nach dem Satz des Pythagoras ist die Entfernung: In einem ersten Schritt sollten Sie sich überlegen, wie eine solche Funktion

entfernung in Python aussehen könnte. Anders ausgedrückt: Was sind die

Eingabewerte (Parameter), und was sind die Ausgabewerte (Rückgabewerte)?

In diesem Fall sind die Eingabewerte zwei Punkte, die sich durch vier Zahlen

ausdrücken lassen. Der Rückgabewert ist die Entfernung, die wiederum ein

Fließkommawert ist.

Und schon können Sie einen Entwurf für die Funktion schreiben:

def entfernung(x1, y1, x2, y2):

return 0.0

Ganz offensichtlich berechnet diese Version noch keine Entfernung, sondern liefert

immer 0.0 zurück. Aber sie ist syntaktisch korrekt und lässt sich ausführen. Das

bedeutet, dass Sie sie testen können, bevor Sie sie komplizierter machen.

Rufen Sie die neue Funktion zum Testen mit Beispielargumenten auf:

>>> entfernung(1, 2, 4, 6)

0.0

Ich habe diese Werte gewählt, damit die horizontale Entfernung 3 und die vertikale

Entfernung 4 beträgt. Auf diese Weise ist das Ergebnis 5 (die Hypotenuse eines

Dreiecks mit den Seitenlängen 3, 4 und 5). Beim Testen einer Funktion ist es immer

hilfreich, die richtige Antwort zu kennen.

Zu diesem Zeitpunkt haben wir bestätigt, dass die Funktion syntaktisch korrekt ist.

Insofern können wir damit beginnen, zusätzlichen Code zum Body hinzuzufügen.

Ein sinnvoller nächster Schritt könnte sein, die Differenzen x 2 – x 1 und y 2 – y 1 zu berechnen. In einem weiteren Schritt können wir diese Werte in temporären

Variablen speichern und ausgeben.

def entfernung(x1, y1, x2, y2):

dx = x2 - x1

dy = y2 - y1

print 'dx ist', dx

print 'dy ist', dy

return 0.0

Wenn die Funktion korrekt funktioniert, sollte sie 'dx ist 3' und 'dy ist 4' ausgeben.

Ist das der Fall, wissen wir, dass die Funktion die richtigen Argumente erhält und die

erste Berechnung korrekt durchführt. Andernfalls müssen wir nur einige wenige

Zeilen überprüfen.

Als Nächstes berechnen wir die Summe der Quadrate von dx und dy:

def entfernung(x1, y1, x2, y2):

dx = x2 - x1

dy = y2 - y1

quadratsumme = dx**2 + dy**2

print 'Quadratsumme ist: ', quadratsumme

return 0.0

Auch in diesem Stadium würden Sie das Programm erneut ausführen und die

Ausgabe überprüfen (das Ergebnis sollte 25 lauten). In einem letzten Schritt können

Sie mit math.sqrt das Ergebnis berechnen und zurückgeben:

def entfernung(x1, y1, x2, y2):

dx = x2 - x1

 dy = y2 - y1

quadratsumme = dx**2 + dy**2

ergebnis = math.sqrt(quadratsumme)

return ergebnis

Funktioniert das korrekt, sind Sie fertig. Falls nicht, könnten Sie den Wert von

ergebnis vor der return-Anweisung ausgeben.

Die endgültige Version der Funktion gibt bei ihrer Ausführung nichts aus, sie liefert

lediglich einen Wert zurück. Die print-Anweisungen waren nur für das Debugging

sinnvoll. Sobald die Funktion arbeitet, sollten Sie sie entfernen. Solchen Code

bezeichnet man als Scaffolding (vom englischen Begriff »scaffold« = Gerüst), weil er nützlich beim Schreiben des Programms, aber nicht Bestandteil der endgültigen

Version ist.

Wenn Sie mit dem Programmieren beginnen, sollten Sie immer nur eine oder zwei

Zeilen Code auf einmal hinzufügen. Mit zunehmender Erfahrung werden Sie dann

wahrscheinlich immer größere Codeblöcke schreiben und debuggen können. So oder

so kann Ihnen die inkrementelle Entwicklung eine Menge Debugging-Zeit sparen.

Die wichtigsten Aspekte dieses Verfahrens sind:

1. Beginnen Sie mit einem funktionierenden Programm und machen Sie

schrittweise kleine Änderungen. Falls ein Fehler auftritt, haben Sie auf diese

Weise immer eine relativ klare Vorstellung davon, an welcher Stelle er auftritt.

2. Verwenden Sie temporäre Variablen, um Zwischenwerte zu speichern, damit

Sie sie anzeigen und überprüfen können.

3. Sobald das Programm funktioniert, sollten Sie den Scaffolding-Code entfernen

und mehrere Anweisungen zu Verbundanweisungen zusammenfassen, solange

das Programm dadurch nicht schwerer lesbar wird.

Nutzen Sie die inkrementelle Herangehensweise, um eine Funktion mit dem Namen

hypotenuse zu schreiben, die die beiden Katheten eines rechtwinkligen Dreiecks als

Argument entgegennimmt und die Länge der Hypotenuse zurückliefert. Zeichnen Sie

dabei jedes Stadium des Entwicklungsprozesses auf.

 Listing 6.2

Funktionskomposition

Wie Sie mittlerweile vermuten, können Sie eine Funktion aus einer anderen heraus

aufrufen. Diese Möglichkeit nennt man Funktionskomposition.

Als Beispiel schreiben wir eine Funktion, die zwei Punkte erwartet – den

Mittelpunkt eines Kreises und einen Punkt auf dem Umfang – und die Kreisfläche

berechnet.

Angenommen, der Kreismittelpunkt steht in den Variablen xk und yk und der Punkt

auf der Kreislinie in den Variablen xp und yp. In einem ersten Schritt bestimmen wir den Radius des Kreises, also die Entfernung zwischen den beiden Punkten. Wir

haben bereits eine Funktion geschrieben, die das macht: entfernung.

radius = entfernung(xk, yk, xp, yp)

In einem nächsten Schritt bestimmen wir die Fläche eines Kreises mit diesem

Radius. Auch diese Funktion haben wir schon geschrieben:

ergebnis = flaeche(radius)

Wenn wir diese Schritte in einer Funktion verkapseln, erhalten wir Folgendes:

def kreis_flaeche(xk, yk, xp, yp):

radius = entfernung(xk, yk, xp, yp)

ergebnis = flaeche(radius)

return ergebnis

Die temporären Variablen radius und ergebnis sind für Entwicklung und Debugging

nützlich. Sobald das Programm funktioniert, können wir es aber kürzer schreiben,

indem wir die beiden Funktionsaufrufe kombinieren:

def kreis_flaeche(xk, yk, xp, yp):

return flaeche(entfernung(xk, yk, xp, yp))

Boolesche Funktionen

Funktionen können Boolesche Werte zurückliefern. Das ist oft nützlich, um

komplizierte Tests in Funktionen zu verpacken. Ein Beispiel:

def ist_teilbar(x, y):

if x % y == 0:

return True

else:

return False

Üblicherweise gibt man Booleschen Funktionen Namen, die wie Ja/Nein-Fragen

klingen. ist_teilbar liefert entweder True oder False, um anzugeben, ob x durch y

teilbar ist.

Beispiel:

>>> ist_teilbar(6, 4)

False

>>> ist_teilbar(6, 3)

True

Das Ergebnis des Operators == ist ebenfalls ein Boolescher Wert. Also können wir

die Funktion kürzer schreiben, indem wir diesen Wert direkt zurückgeben:

def ist_teilbar(x, y):

return x % y == 0

Boolesche Werte werden häufig in bedingten Anweisungen verwendet:

if ist_teilbar(x, y):

print 'x ist teilbar durch y'

Es mag verführerisch erscheinen, beispielsweise Folgendes zu schreiben:

if ist_teilbar(x, y) == True:

print 'x ist teilbar durch y'

Aber der zusätzliche Vergleich ist überflüssig.

Schreiben Sie die Funktion liegt_zwischen(x, y, z), die True zurückliefert, wenn

 x ≤ y ≤ z, und ansonsten False zurückgibt.

 Listing 6.3

Mehr Rekursion

Wir haben uns bisher nur mit einem kleinen Ausschnitt aus Python beschäftigt. Aber

es dürfte Sie interessieren, dass dieser Ausschnitt bereits eine vollständige

Programmiersprache ist. Das bedeutet, dass sich alles, was berechnet werden kann,

in dieser Sprache ausdrücken lässt. Jedes Programm, das jemals geschrieben wurde,

könnte mit den Sprachfunktionen, die Sie bisher kennengelernt haben, geschrieben

werden (natürlich brauchen Sie noch ein paar Befehle für Geräte wie Tastatur, Maus,

Festplatten usw. – aber das ist auch alles).

Der Beweis dieser Behauptung ist nicht trivial und wurde zuerst von Alan Turing

angetreten, einem der ersten Informatiker überhaupt (einige würden wahrscheinlich

darauf bestehen, dass er Mathematiker war, aber viele frühe Informatiker haben als

Mathematiker angefangen). Entsprechend spricht man von der »Turing-

Vollständigkeit«. Für eine abschließende (und zutreffende) Diskussion der Turing-

Vollständigkeit empfehle ich Ihnen Michael Sipsers Buch Introduction to the Theory

 of Computation.

Um Ihnen einen Eindruck davon zu vermitteln, was Sie alles mit den Werkzeugen

machen können, die Sie bisher kennengelernt haben, werden wir einige rekursiv

definierte mathematische Funktionen auswerten. Eine rekursive Definition ist

insofern einer Zirkeldefinition ähnlich, als die Definition eine Referenz auf den

Gegenstand der Definition enthält. Eine echte Zirkeldefinition ist allerdings nicht

sehr nützlich:

Vorpal:

Adjektiv, das eine Person oder eine Sache beschreibt, die vorpal ist.

Würden Sie diese Definition in einem Wörterbuch lesen, wären Sie genervt. Wenn

Sie andererseits die Definition der Fakultätsfunktion nachschlagen, die mit dem

Symbol ! ausgedrückt wird, lesen Sie Folgendes:

0! = 1 n! = n(n – 1) !

Die Definition besagt, dass die Fakultät von 0 gleich 1 ist und die Fakultät jedes anderen Werts n gleich n multipliziert mit der Fakultät von n-1 ist.

Entsprechend ist 3! gleich 3 mal 2! , was 2 mal 1! ist, was wiederum gleich 1 mal 0!

ist. Zusammengefasst, ist also 3! gleich 3 mal 2 mal 1 mal 1 und damit 6.

Wenn es möglich ist, eine rekursive Definition von etwas zu schreiben, können Sie

üblicherweise auch ein Python-Programm schreiben, um diese auszuwerten. Der

erste Schritt besteht darin, zu entscheiden, welche Parameter Sie benötigen. In

diesem Fall sollte klar sein, dass fakultaet einen Integer benötigt:

def fakultaet(n):

Wenn das Argument gleich 0 ist, müssen wir lediglich 1 zurückgeben:

def fakultaet(n):

if n == 0:

return 1

Der interessantere Teil sind allerdings die anderen Fälle. Dann müssen wir einen

rekursiven Aufruf vornehmen, um die Fakultät von n-1 zu berechnen und

anschließend mit n zu multiplizieren:

def fakultaet(n):

if n == 0:

return 1

else:

rekursion = fakultaet(n-1)

ergebnis = n * rekursion

return ergebnis

Der Ablauf dieses Programms ähnelt dem Ablauf von countdown in „Rekursion“.

Wenn wir fakultaet mit dem Wert 3 aufrufen, passiert Folgendes:

Da 3 nicht gleich 0 ist, nehmen wir die zweite Verzweigung und berechnen die

Fakultät von n-1 ...

Da 2 nicht gleich 0 ist, nehmen wir die zweite Verzweigung und berechnen die Fakultät von n-1 ...

Da 1 nicht gleich 0 ist, nehmen wir die zweite Verzweigung und berechnen die Fakultät von n-1 ...

Da 0 gleich 0 ist, nehmen wir die erste Verzweigung und geben ohne weitere rekursive Aufrufe den Wert 1 zurück.

Der Rückgabewert (1) wird multipliziert mit n, das ergibt 1, und das Ergebnis wird zurückgeliefert.

Der Rückgabewert (1) wird multipliziert mit n, das ergibt 2, und das Ergebnis wird zurückgeliefert.

Der Rückgabewert (2) wird multipliziert mit n, das ergibt 3. Das Ergebnis 6 ist der Rückgabewert des Funktionsaufrufs, der den ganzen Vorgang angestoßen hat.

Abbildung 6.1 zeigt das Stapeldiagramm für die Abfolge der Funktionsaufrufe.

 Abbildung 6.1 Stapeldiagramm

Wie dargestellt, werden die Rückgabewerte im Stapel weiter nach oben gereicht. In

jedem Frame entspricht der Rückgabewert dem Wert von ergebnis, was wiederum

das Produkt von n und rekursion ist.

Im letzten Frame gibt es die lokalen Variablen rekursion und ergebnis nicht, weil

die Verzweigung, in der sie erstellt werden, nicht ausgeführt wird.

Vertrauensvorschuss

Eine Möglichkeit, Programme zu lesen, besteht darin, dem Programmablauf zu

folgen. Das kann aber schnell in ein Labyrinth ausarten. Die Alternative ist das, was

ich als »Vertrauensvorschuss« bezeichne. Wenn Sie einen Funktionsaufruf

erreichen, folgen Sie nicht dem Programmablauf, sondern gehen davon aus, dass die Funktion korrekt arbeitet und das richtige Ergebnis liefert.

Unterm Strich geben Sie bereits diesen Vertrauensvorschuss, wenn Sie integrierte

Funktionen verwenden. Wenn Sie math.cos oder math.exp aufrufen, untersuchen

Sie nicht den Body dieser Funktionen. Sie gehen einfach davon aus, dass sie

funktionieren, weil sie von guten Programmierern geschrieben wurden.

Genauso ist es beim Aufruf Ihrer eigenen Funktionen. Im Kapitel „Boolesche

Funktionen“ haben wir beispielsweise eine Funktion mit dem Namen ist_teilbar geschrieben, die ermittelt, ob eine Zahl durch eine andere teilbar ist. Sobald wir uns

davon überzeugt haben, dass diese Funktion korrekt ist – indem wir den Code

untersuchen und testen –, können wir diese Funktion verwenden, ohne erneut einen

Blick auf den Body zu werfen.

Dasselbe gilt für rekursive Programme. Anstatt dem Programmablauf zu folgen,

sollten Sie einfach davon ausgehen, dass der rekursive Aufruf funktioniert (das

richtige Ergebnis liefert), und sich dann fragen: »Angenommen, ich kann die

Fakultät von n-1 berechnen, kann ich dann die Fakultät von n berechnen?« In diesem Fall ist es klar, dass Sie das können: indem Sie sie mit n multiplizieren.

Natürlich ist es eigenartig, davon auszugehen, dass eine Funktion korrekt

funktioniert, wenn Sie sie noch gar nicht fertig geschrieben haben. Aber deshalb

nenne ich das ja auch den Vertrauensvorschuss!

Noch ein Beispiel

Neben der fakultaet ist das häufigste Beispiel für eine rekursiv definierte

mathematische Funktion die fibonacci-Folge, die so definiert ist (siehe

http://en.wikipedia.org/wiki/Fibonacci_number): Übersetzt in Python, sieht das folgendermaßen aus:

def fibonacci (n):

if n == 0:

return 0

elif n == 1:

return 1

else:

return fibonacci(n-1) + fibonacci(n-2)

Wenn Sie in diesem Beispiel versuchen, dem Programmablauf zu folgen, wird Ihr

Kopf rauchen – selbst bei kleinen Werten für n. Aber wenn Sie mit dem

Vertrauensvorschuss davon ausgehen, dass die beiden rekursiven Aufrufe korrekt

funktionieren, ist es offensichtlich, dass Sie durch Addition der beiden Werte das

richtige Ergebnis erhalten.

Typprüfung

Was passiert, wenn wir fakultaet aufrufen und 1.5 als Argument übergeben?

>>> fakultaet(1.5)

RuntimeError: Maximum recursion depth exceeded

Das sieht nach einer endlosen Rekursion aus. Wie kann das sein? Es gibt doch den

Basisfall n == 0. Aber wenn n kein Integer ist, können wir den Basisfall verpassen

und endlos rekursieren.

Im ersten rekursiven Aufruf ist n gleich 0.5. Und im nächsten -0.5. Von da an wird

der Wert immer kleiner (immer negativer), aber niemals 0.

Wir haben zwei Möglichkeiten: Wir können versuchen, die Funktion fakultaet so zu

generalisieren, dass sie auch mit Fließkommazahlen arbeitet, oder in fakultaet den

Typ des Arguments überprüfen. Die erste Variante nennt man Gammafunktion, die

ein bisschen über den Rahmen dieses Buchs hinausgeht. Also entscheiden wir uns

für die zweite Variante.

Mit der integrierten Funktion isinstance können wir den Typ des Arguments

überprüfen. Wenn wir schon dabei sind, können wir gleich sicherstellen, dass das

Argument positiv ist:

def fakultaet (n):

if not isinstance(n, int):

print 'Fakultät ist nur für ganze Zahlen definiert.'

return None

elif n < 0:

print 'Fakultät ist nicht für negative ganze Zahlen definiert.'

return None

elif n == 0:

return 1

else:

return n * fakultaet(n-1)

Der erste Basisfall kümmert sich um Argumente, die keine Integer sind. Der zweite

fängt negative Integer auf. In beiden Fällen gibt das Programm eine Fehlermeldung

aus und liefert den Wert None, um zu zeigen, dass etwas schiefgelaufen ist:

>>> fakultaet('fred')

Fakultät ist nur für ganze Zahlen definiert.

None

>>> fakultaet(-2)

Fakultät ist nicht für negative ganze Zahlen definiert.

None

Wenn wir beide Prüfungen bestehen, wissen wir, dass n positiv oder gleich null ist.

So können wir sicherstellen, dass die Rekursion zu Ende läuft.

Dieses Programm zeigt ein Muster, das man manchmal als Wächter bezeichnet. Die

ersten beiden Bedingungen fungieren als Wächter und schützen den nachfolgenden

Code vor Werten, die einen Fehler verursachen könnten. Der Wächter gibt uns die

Möglichkeit, die Richtigkeit des Codes zu beweisen.

Im „Inverse Suche“ werden wir eine flexiblere Möglichkeit kennenlernen, Fehlermeldungen auszugeben: indem wir eine Ausnahme auslösen.

Debugging

Wenn Sie größere Programme in kleinere Funktionen zerlegen, entstehen dadurch

natürliche Haltepunkte fürs Debugging. Arbeitet eine Funktion nicht korrekt, können

Sie drei Möglichkeiten in Betracht ziehen:

Irgendetwas stimmt mit den Argumenten nicht, die die Funktion erhält: Eine

Vorbedingung wird nicht erfüllt.

Irgendetwas mit der Funktion stimmt nicht: Eine Nachbedingung wird nicht

erfüllt.

Es stimmt etwas mit dem Rückgabewert oder mit der Art und Weise nicht, in der er verwendet wird.

Um die erste Möglichkeit auszuschließen, können Sie am Anfang der Funktion eine

print-Anweisung einfügen und die Werte der Parameter (sowie eventuell die

entsprechenden Typen) anzeigen. Oder Sie schreiben Code, der die Vorbedingungen

explizit prüft.

Sehen die Parameter korrekt aus, fügen Sie vor jeder return-Anweisung eine print-

Anweisung ein, die den Rückgabewert anzeigt. Prüfen Sie das Ergebnis wenn

möglich von Hand. Sie können auch die Funktion mit Werten aufrufen, mit denen

sich das Ergebnis einfach überprüfen lässt (siehe „Inkrementelle Entwicklung“).

Wenn die Funktion korrekt zu arbeiten scheint, sehen Sie sich den Funktionsaufruf

an, um sicherzustellen, dass der Rückgabewert korrekt verwendet wird (bzw.

überhaupt verwendet wird!).

print-Anweisungen am Anfang und am Ende einer Funktion können helfen, den

Programmablauf sichtbar zu machen. Hier sehen Sie beispielsweise eine Version

von fakultaet mit solchen print-Anweisungen:

def fakultaet(n):

space = ' ' * (4 * n)

print space, 'Fakultät', n

if n == 0:

print space, 'Rückgabewert 1'

return 1

else:

rekursion = fakultaet(n-1)

ergebnis = n * rekursion

print space, 'Rückgabewert', ergebnis

return ergebnis

space ist eine Folge von Leerzeichen, die die Bildschirmausgabe entsprechend

einrückt. Hier sehen Sie das Ergebnis von fakultaet(5) :

Fakultät 5

Fakultät 4

Fakultät 3

Fakultät 2

Fakultät 1

Fakultät 0

Rückgabewert 1

Rückgabewert 1

Rückgabewert 2

Rückgabewert 6

Rückgabewert 24

Rückgabewert 120

Sollte der Programmablauf für Sie verwirrend sein, können solche Ausgaben sehr

nützlich sein. Es dauert seine Zeit, effizientes Scaffolding zu entwickeln, aber es

kann Ihnen eine Menge Debugging ersparen.

Glossar

Temporäre Variable:

Variable zum Speichern eines Zwischenwerts in komplexen Berechnungen.

Dead Code:

Teil eines Programms, der nie ausgeführt werden kann, häufig weil er nach einer

return-Anweisung steht.

None:

Spezieller Wert, den Funktionen zurückgeben, die keine return-Anweisung oder

eine return-Anweisung ohne Argument enthalten.

Inkrementelle Entwicklung:

Verfahren zur Programmentwicklung, bei dem der Debugging-Aufwand minimiert

wird, indem immer nur eine kleine Menge Code hinzugefügt und getestet wird.

Scaffolding:

Code, der während der Programmentwicklung verwendet wird, aber nicht Teil der

finalen Version ist.

Wächter:

Programmiermuster, bei dem mit bedingten Anweisungen Umstände überprüft

und behandelt werden, die einen Fehler verursachen könnten.

Übungen

Zeichnen Sie ein Stapeldiagramm für das folgende Programm. Was gibt das

Programm aus? Lösung: stapeldiagramm.py.

def b(z):

prod = a(z, z)

print z, prod

return prod

def a(x, y):

x = x + 1

return x * y

def c(x, y, z):

summe = x + y + z

quadrat = b(summe)**2

return quadrat

x = 1

y = x + 1

print c(x, y+3, x+y)

 Listing 6.4

Die Ackermannfunktion A(m, n) ist folgendermaßen definiert:

Siehe http://de.wikipedia.org/wiki/Ackermannfunktion. Schreiben Sie eine Funktion mit dem Namen ack, die die Ackermannfunktion auswertet. Verwenden Sie Ihre

Funktion, um ack(3, 4) auszuwerten, was als Ergebnis 125 liefern sollte. Was

geschieht bei größeren Werten für m und n? Lösung: ackermann.py.

 Listing 6.5

Ein Palindrom ist ein Wort, das vorwärts und rückwärts gleich buchstabiert wird,

beispielsweise »Anna« oder »Rentner«. Rekursiv betrachtet ist ein Wort dann ein

Palindrom, wenn die ersten und letzten Buchstaben identisch sind und die Mitte

ebenfalls ein Palindrom ist.

Die folgenden Funktionen erwarten einen String als Argument und liefern die ersten,

letzten und mittleren Buchstaben zurück:

def erster(wort):

return wort[0]

def letzter(wort):

return wort[-1]

def mitte(wort):

return wort[1:-1]

Wie das genau funktioniert, sehen wir uns später im Kapitel 8 an.

1. Tippen Sie diese Funktionen in eine Datei mit dem Namen palindrom.py und

testen Sie sie. Was passiert, wenn Sie mitte mit einem String aufrufen, der aus

nur zwei Buchstaben besteht? Aus einem Buchstaben? Was ist mit einem

Leerstring, der als '' geschrieben wird und keine Buchstaben enthält?

2. Schreiben Sie eine Funktion mit dem Namen ist_palindrom, die einen String

als Argument erwartet und True zurückgibt, wenn dieser ein Palindrom ist, und

ansonsten False zurückgibt. Wie Sie sich erinnern werden, können Sie mit der

integrierten Funktion len die Länge eines Strings überprüfen.

Lösung: palindrom_loesung.py.

 Listing 6.6

Die Zahl a ist eine Potenz von b, wenn sie durch b teilbar ist und a/b eine Potenz von b ist. Schreiben Sie eine Funktion mit dem Namen ist_potenz, die die Parameter a und b entgegennimmt und True zurückliefert, wenn a eine Potenz von b ist. Tipp:

Denken Sie an den Basisfall.

 Listing 6.7

Der größte gemeinsame Teiler (ggT) von a und b ist die größte Zahl, durch die beide Zahlen ohne Rest dividiert werden können.

Eine Möglichkeit, den ggT zweier Zahlen zu bestimmen, ist der euklidische

Algorithmus, der auf folgender Beobachtung basiert: Wenn r der Rest bei der

Division von a durch b ist, gilt: gcd(a, b) = gcd(b, r). Als Basisfall können wir gcd(a, 0) = a verwenden.

Schreiben Sie die Funktion ggt, die die Parameter a und b entgegennimmt und den

größten gemeinsamen Teiler zurückliefert. Falls Sie Hilfe brauchen:

http://de.wikipedia.org/wiki/Größter_gemeinsamer_Teiler.

Hinweis: Diese Übung basiert auf einem Beispiel aus Struktur und Interpretation

 von Computerprogrammen: Eine Informatik-Einführung von Abelson und Sussman.

 Listing 6.8

Kapitel 7. Iteration

Mehrfache Zuweisungen

Wie Ihnen vielleicht aufgefallen ist, können Sie einer Variablen mehr als einmal

einen Wert zuweisen. Bei einer erneuten Zuweisung verweist eine vorhandene

Variable auf einen neuen Wert (und nicht mehr auf den alten Wert).

peter = 5

print peter,

peter = 7

print peter

Die Ausgabe dieses Programms lautet 5 7, weil peter bei der ersten Ausgabe den

Wert 5 und bei der zweiten den Wert 7 hat. Das Komma am Ende der ersten print-

Anweisung unterdrückt den Zeilenvorschub, weshalb beide Ausgaben in derselben

Zeile stehen.

Abbildung 7.1 zeigt, wie mehrfache Zuweisungen in einem Zustandsdiagramm aussehen.

Bei mehrfachen Zuweisungen ist es besonders wichtig, zwischen einer Zuweisung

und einem Gleichheitsausdruck zu unterscheiden. Weil in Python für die Zuweisung

das Gleichheitszeichen (=) verwendet wird, ist die Versuchung groß, eine

Anweisung wie a = b als Gleichheitsausdruck zu interpretieren. Das stimmt aber

nicht!

Zum einen ist der Gleichheitsausdruck im Gegensatz zur Zuweisung eine

symmetrische Beziehung. In der Mathematik gilt beispielsweise: wenn a = 7, dann

 7 = a. In Python ist dagegen die Zuweisung a = 7 zulässig, 7 = a dagegen nicht.

Außerdem ist in der Mathematik ein Gleichheitsausdruck wahr oder falsch – und das

für immer. Wenn jetzt a=b gilt, dann ist a immer gleich b. In Python kann eine Zuweisung zwei Variablen gleichsetzen, sie müssen aber nicht gleich bleiben:

a = 5

b = a # a und b sind jetzt gleich

a = 3 # a und b sind nicht mehr gleich

Die dritte Zeile ändert den Wert von a, aber nicht den Wert von b. Entsprechend

sind die beiden Variablen nicht mehr gleich.

Obwohl mehrfache Zuweisungen häufig nützlich sind, sollten Sie dabei Vorsicht

walten lassen. Wenn sich die Werte von Variablen häufig ändern, kann der Code

dadurch schwierig zu lesen und zu debuggen sein.

 Abbildung 7.1 Zustandsdiagramm

Variablen aktualisieren

Eine der gebräuchlichsten Formen von mehrfachen Zuweisungen ist die

Aktualisierung, bei der der neue Wert der Variablen in Abhängigkeit vom alten

Wert geändert wird.

x = x+1

Das bedeutet: »Nimm den aktuellen Wert von x, addiere 1 dazu und aktualisiere x

mit dem neuen Wert.«

Wenn Sie versuchen, eine Variable zu aktualisieren, die nicht existiert, erhalten Sie

einen Fehler. Das liegt daran, dass Python die rechte Seite auswertet, bevor x ein

Wert zugewiesen wird:

>>> x = x+1

NameError: name 'x' is not defined

Bevor Sie eine Variable aktualisieren können, müssen Sie sie initialisieren. Das

geschieht üblicherweise durch eine einfache Zuweisung:

>>> x = 0

>>> x = x+1

Wenn Sie eine Variable aktualisieren, indem Sie den Wert um 1 erhöhen, bezeichnet

man das als Inkrement. Die Subtraktion um 1 heißt Dekrement.

Die while-Anweisung

Computer werden häufig dazu verwendet, Aufgaben, die sich wiederholen, zu

automatisieren. Im Gegensatz zum Menschen sind Computer sehr gut darin,

identische oder ähnliche Aufgaben zu wiederholen, ohne dabei Fehler zu machen.

Wir haben zwei Programme kennengelernt, in denen Wiederholungen durch

Rekursion erfolgen – countdown und print_n. Das bezeichnet man auch als

Iteration. Weil die Iteration so häufig vorkommt, bietet Python gleich mehrere

Sprachfunktionen, die diesen Vorgang erleichtern. Eine davon ist die for-Anweisung,

die wir in „Einfache Wiederholung“ kennengelernt haben. Darauf kommen wir später noch zurück.

Eine weitere ist die while-Anweisung. Hier sehen Sie eine Version von countdown

mit der while-Anweisung:

def countdown(n):

while n > 0:

print n

n = n-1

print 'Bumm!'

Wenn Sie »while« durch »während« ersetzen, lässt sich die while-Anweisung leicht ins Deutsche übersetzen: »Während n größer als 0, gib den Wert von n aus und

reduziere den Wert von n um 1. Wenn du 0 erreichst, gib das Wort Bumm! aus.«

Etwas förmlicher ausgedrückt, sieht der Ablauf einer while-Anweisung so aus:

1. Werte die Bedingung aus, die entweder True oder False ergibt.

2. Wenn die Bedingung falsch ist, verlasse die while-Anweisung und setze das

Programm mit der nächsten Anweisung fort.

3. Wenn die Bedingung zutrifft, führe den Body aus und kehre zurück zu Schritt

1.

Einen solchen Programmablauf nennt man Schleife, weil vom dritten Schritt aus

eine weitere Schleife gedreht wird.

Im Body der Schleife sollte sich der Wert einer oder mehrerer Variablen so ändern,

dass die Bedingung irgendwann nicht mehr erfüllt ist und die Schleife beendet wird.

Ansonsten wird die Schleife für immer wiederholt. Das bezeichnet man dann als

Endlosschleife. Ein Running Gag für englischsprachige Informatiker ist die

standardmäßige Anleitung auf Shampoos: »Lather, rinse, repeat« (Einseifen,

ausspülen, wiederholen) – ein Beispiel für eine Endlosschleife im Alltag.

Im Fall von countdown können wir beweisen, dass die Schleife beendet werden

wird: Denn wir wissen, dass der Wert von n endlich ist und bei jedem

Schleifendurchlauf kleiner wird. Somit muss n irgendwann 0 erreichen. In anderen

Fällen ist das nicht so einfach zu sagen:

def sequenz(n):

while n != 1:

print n,

if n%2 == 0: # n ist gerade

n = n/2

else: # n ist ungerade

n = n*3+1

Die Bedingung für diese Schleife lautet n != 1, die Schleife wird also ausgeführt, bis

n gleich 1 ist, wodurch die Bedingung nicht mehr zutrifft.

Bei jedem Schleifendurchgang gibt das Programm den Wert von n aus und prüft, ob

dieser Wert eine gerade Zahl ist. Wenn ja, wird n durch 2 dividiert. Falls n ungerade

ist, wird der Wert durch n*3+1 ersetzt. Ist das an sequenz übergebene Argument

beispielsweise gleich 3, ergibt sich daraus die Folge 3, 10, 5, 16, 8, 4, 2, 1.

Da der Wert von n manchmal erhöht und manchmal verkleinert wird, gibt es keinen

offensichtlichen Beweis dafür, dass n jemals 1 erreicht und das Programm

entsprechend beendet wird. Für konkrete Beispielwerte von n können wir das

Programmende beweisen. So ist der Wert von n für alle Werte, die eine Potenz von 2

sind, immer eine gerade Zahl, bis die Schleife 1 erreicht. Das vorherige Beispiel

endet mit einer solchen Folge, die mit 16 beginnt.

Die schwierige Frage dabei ist, ob wir beweisen können, dass dieses Programm für

alle positiven Werte von n beendet wird. Bisher hat es noch niemand geschafft, dies

oder das Gegenteil zu beweisen! (Siehe http://de.wikipedia.org/wiki/Collatz-

Problem.)

Schreiben Sie die Funktion print_n aus dem „Rekursion“ so um, dass die Iteration durch eine Schleife erfolgt.

 Listing 7.1

break

Es gibt Situationen, in denen Sie nicht wissen, dass es an der Zeit ist, eine Schleife

zu beenden, bis Sie schon halb durch den Body sind. In diesem Fall können Sie die

Schleife mit der break-Anweisung verlassen.

Angenommen, Sie möchten Benutzereingaben entgegennehmen, bis fertig

eingegeben wird. Dann könnten Sie Folgendes schreiben:

while True:

zeile = raw_input('> ')

if zeile == 'fertig':

break

print zeile

print 'Fertig!'

Die Bedingung dieser Schleife ist True und damit also immer erfüllt. Deshalb wird

die Schleife durchlaufen, bis die break-Anweisung erreicht ist.

Bei jedem Durchlauf wird der Benutzer mit einer spitzen Klammer zur Eingabe

aufgefordert. Gibt der Benutzer fertig ein, wird die Schleife mit der break-

Anweisung verlassen. Ansonsten gibt das Programm einfach das aus, was der

Benutzer eingetippt hat, und führt die Schleife erneut aus. Hier ein

Beispieldurchlauf:

> nicht fertig

nicht fertig

> fertig

Fertig!

Diese Form der while-Schleife ist relativ gebräuchlich, weil Sie so die Bedingung an

einer beliebigen Stelle der Schleife (nicht nur ganz oben) überprüfen können. Auf

diese Weise können Sie die Stoppbedingung explizit formulieren (»Beenden, wenn

dies oder jenes passiert«) statt im Umkehrschluss (»Ausführen, bis dies oder jenes

passiert«).

Quadratwurzeln

Quadratwurzeln

Schleifen werden in Programmen oft dazu verwendet, numerische Ergebnisse

dadurch zu berechnen, dass von einer ungefähren Antwort ausgegangen wird, die

dann schrittweise optimiert wird.

Das Newton-Verfahren ist beispielsweise eine Möglichkeit zur Berechnung von

Quadratwurzeln. Angenommen, Sie möchten die Quadratwurzel von a wissen. Wenn

Sie mit einer beliebigen Schätzung x beginnen, können Sie mit der folgenden Formel eine bessere Schätzung berechnen:

Ist beispielsweise a gleich 4 und x gleich 3:

>>> a = 4.0

>>> x = 3.0

>>> y = (x + a/x) / 2

>>> print y

2.16666666667

Dieses Ergebnis kommt der korrekten Antwort schon relativ nahe (= 2). Wenn wir

denselben Vorgang mit der neuen Schätzung beginnen, kommen wir dem Ergebnis

noch näher:

>>> x = y

>>> y = (x + a/x) / 2

>>> print y

2.00641025641

Nach einigen weiteren Aktualisierungen ist die Schätzung beinahe korrekt:

>>> x = y

>>> y = (x + a/x) / 2

>>> print y

2.00001024003

>>> x = y

>>> y = (x + a/x) / 2

>>> print y

2.00000000003

Üblicherweise wissen wir im Voraus nicht, wie viele Schritte erforderlich sind, um

die richtige Antwort zu erhalten. Aber wir wissen, wenn es so weit ist: weil sich

dann die Schätzung nicht mehr ändert:

>>> x = y

>>> y = (x + a/x) / 2

>>> print y

2.0

>>> x = y

>>> y = (x + a/x) / 2

>>> print y

2.0

Sobald y == x, können wir aufhören. Hier sehen Sie eine Schleife, die mit der

anfänglichen Schätzung x beginnt und diesen Wert immer weiter verbessert, bis er

sich nicht mehr ändert:

while True:

print x

y = (x + a/x) / 2

if y == x:

break

x = y

Für die meisten Werte von a funktioniert das wunderbar. Allerdings ist es immer

etwas riskant, die Gleichheit beim Typ float zu überprüfen. Fließkommawerte sind

stets nur annähernd gleich: Die meisten rationalen Zahlen, wie etwa 1/3, und die meisten irrationalen Zahlen, beispielsweise , können mit dem Typ float nicht

genau abgebildet werden

Anstatt zu überprüfen, ob x und y exakt gleich sind, ist es sinnvoll, mit der

integrierten Funktion abs den absoluten Wert bzw. den Betrag der Differenz zu

bestimmen:

if abs(y-x) < epsilon:

break

Wobei epsilon einen Wert wie beispielsweise 0.0000001 hat, der definiert, wie

nahe »nahe genug dran« ist.

Verpacken Sie diese Schleife in eine Funktion mit dem Namen quadrat_wurzel, die

den Parameter a entgegennimmt, einen akzeptablen Wert für x wählt und eine

Schätzung der Quadratwurzel von a zurückgibt.

 Listing 7.2

Algorithmen

Die Newton-Methode ist ein Beispiel für einen Algorithmus: ein mechanisches

Verfahren zur Lösung einer Kategorie von Problemen (in diesem Fall für die

Berechnung von Quadratwurzeln).

Es ist nicht einfach, einen Algorithmus zu definieren. Manchmal ist es hilfreich, mit

etwas zu beginnen, das kein Algorithmus ist. Als Sie gelernt haben, einstellige

Zahlen miteinander zu multiplizieren, haben Sie wahrscheinlich die

Multiplikationstabelle auswendig gelernt. Unterm Strich haben Sie 100

Einzellösungen auswendig gelernt. Diese Art Wissen ist nicht algorithmisch.

Aber wenn Sie »faul« waren, haben Sie wahrscheinlich mit ein paar Tricks geschummelt. Um beispielsweise das Produkt von n und 9 zu berechnen, können Sie

 n-1 als erste Stelle und 10-n als zweite Stelle schreiben. Dieser Trick ist eine allgemeine Lösung für die Multiplikation aller einstelligen Zahlen mit 9. Und das ist

ein Algorithmus!

Auf ähnliche Weise sind auch die Methoden Algorithmen, die Sie für die Addition

mit Übertrag, die Subtraktion mit dem Ergänzungsverfahren sowie die schriftliche

Division gelernt haben. Ein Merkmal von Algorithmen besteht darin, dass dafür

keinerlei Intelligenz erforderlich ist. Es sind mechanische Verfahren, in denen jeder

Schritt nach dem anderen einer Reihe einfacher Regeln folgt.

Meiner Meinung nach ist es peinlich, dass Menschen in der Schule so viel Zeit damit

verbringen, Algorithmen durchzudeklinieren, die buchstäblich keinerlei Intelligenz

erfordern.

Andererseits ist die Entwicklung von Algorithmen sehr interessant, intellektuell

anspruchsvoll und ein zentraler Teil dessen, was wir Programmieren nennen.

Einige der Dinge, die Menschen ganz natürlich, ohne jede Schwierigkeit oder

gedankliche Anstrengung tun, sind am schwierigsten als Algorithmus auszudrücken.

Das Verständnis der natürlichen Sprache ist ein gutes Beispiel dafür. Wir alle

verwenden sie, aber bis jetzt war noch niemand in der Lage, auszudrücken, wie wir das tun, zumindest nicht in Form eines Algorithmus.

Debugging

Wenn Sie damit beginnen, größere Programme zu schreiben, verbringen Sie

vermutlich auch mehr Zeit mit dem Debugging. Mehr Code bedeutet auch mehr

Möglichkeiten, Fehler zu machen, und mehr Stellen, an denen sich Bugs verstecken

können.

Eine Möglichkeit, die Debugging-Zeit zu minimieren, ist das »Debugging durch

Bisektion«. Wenn Ihr Programm beispielsweise 100 Zeilen hat und Sie jede einzeln

überprüfen, sind dafür 100 Schritte erforderlich.

Stattdessen können Sie versuchen, das Problem zu »halbieren«. Suchen Sie in der

Mitte des Programms oder irgendwo in der Nähe nach einem Zwischenwert, den Sie

überprüfen können. Fügen Sie eine print-Anweisung (oder etwas anderes, mit dem

Sie das Ergebnis überprüfen können) ein und führen Sie das Programm aus.

Wenn das Ergebnis in der Mitte falsch ist, muss es ein Problem in der ersten Hälfte

des Programms geben. Ist das Ergebnis korrekt, befindet sich das Problem in der

zweiten Hälfte.

Jedes Mal, wenn Sie so vorgehen, müssen Sie lediglich halb so viele Zeilen

durchsuchen. Nach sechs Schritten (deutlich weniger als 100) kommen Sie lediglich auf ein oder zwei Zeilen Code, zumindest in der Theorie.

In der Praxis ist es nicht immer ganz klar, wo die »Mitte des Programms« liegt.

Entsprechend ist es auch nicht immer möglich, diese zu überprüfen. Es hat keinen

Sinn, Zeilen abzuzählen, um die exakte Mitte zu bestimmen. Überlegen Sie sich

stattdessen lieber Stellen in Ihrem Programm, an denen es zu Fehlern kommen

könnte und an denen eine Überprüfung einfach ist. Wählen Sie dann eine Stelle, an

der Ihrer Meinung nach die Wahrscheinlichkeit ungefähr gleich hoch ist, dass der

Fehler davor oder danach liegt.

Glossar

Mehrfache Zuweisung:

Mehr als eine Zuweisung für dieselbe Variable während der Ausführung eines

Programms.

Aktualisierung:

Zuweisung, bei der der neue Wert einer Variablen vom alten Wert abhängt.

Initialisierung:

Zuweisung, bei der einer Variablen ein Anfangswert zugewiesen wird, die später

aktualisiert wird.

Inkrement:

Aktualisierung, bei der der Wert einer Variablen (meistens um 1) erhöht wird.

Dekrement:

Aktualisierung, bei der der Wert einer Variablen verringert wird.

Iteration:

Wiederholte Ausführung einer Reihe von Anweisungen – entweder mit einem

rekursiven Funktionsaufruf oder einer Schleife.

Endlosschleife:

Schleife mit einer Abbruchbedingung, die niemals erfüllt wird.

Übungen

Um den Quadratwurzel-Algorithmus in diesem Kapitel zu testen, könnten Sie ihn

mit math.sqrt vergleichen. Schreiben Sie eine Funktion mit dem Namen

test_quadrat_wurzel, die eine Tabelle wie die folgende ausgibt:

1.0 1.0 1.0 0.0

2.0 1.41421356237 1.41421356237 2.22044604925e-16

3.0 1.73205080757 1.73205080757 0.0

4.0 2.0 2.0 0.0

5.0 2.2360679775 2.2360679775 0.0

6.0 2.44948974278 2.44948974278 0.0

7.0 2.64575131106 2.64575131106 0.0

8.0 2.82842712475 2.82842712475 4.4408920985e-16

9.0 3.0 3.0 0.0

In der ersten Spalte steht eine Zahl a. Die zweite Spalte zeigt die Quadratwurzel von a, die mit der Funktion aus „Quadratwurzeln“ berechnet wird. In der dritten Spalte steht die Quadratwurzel berechnet mit math.sqrt. Und in der vierten Spalte steht der

absolute Wert der Differenz zwischen den beiden Annäherungen.

 Listing 7.3

Die integrierte Funktion eval erwartet einen String und wertet ihn mit dem Python-

Interpreter aus. Ein Beispiel:

>>> eval('1 + 2 * 3')

7

>>> import math

>>> eval('math.sqrt(5)')

2.2360679774997898

>>> eval('type(math.pi)')

<type 'float'>

Schreiben Sie eine Funktion mit dem Namen eval_Schleife, die den Benutzer

iterativ zur Eingabe auffordert, die Eingaben mit eval auswertet und das Ergebnis

ausgibt.

Die Schleife soll so lange fortgesetzt werden, bis der Benutzer 'fertig' eingibt.

 Listing 7.4

Der Mathematiker Srinivasa Ramanujan hat eine unendliche Folge gefunden, mit der

eine numerische Annäherung an

generiert

werden kann:

Schreiben Sie eine Funktion mit dem Namen schaetzung_pi, die anhand dieser

Formel einen Näherungswert von

berechnet

und zurückgibt. Verwenden Sie dabei eine while-Schleife, um die Terme der Summe

zu berechnen, bis der letzte Term kleiner als 1e-15 ist (die Python-Schreibweise für

10–15). Sie können das Ergebnis auch überprüfen, indem Sie es mit math.pi

vergleichen.

Lösung: pi.py.

 Listing 7.5

Kapitel 8. Strings

Ein String ist eine Folge

Ein String ist eine Folge von Zeichen. Auf die einzelnen Zeichen können Sie mit

dem Klammer-Operator zugreifen:

>>> frucht = 'banane'

>>> zeichen = frucht[1]

Die zweite Anweisung wählt ein Zeichen aus frucht und weist es zeichen zu.

Den Ausdruck in eckigen Klammern nennt man Index. Der Index gibt an, welches

Zeichen Sie aus der Folge auslesen möchten (quasi wie ein Name).

Aber unter Umständen erhalten Sie nicht das, was Sie erwarten:

>>> print zeichen

a

Für die meisten Menschen ist das erste Zeichen von 'banane' ein b, nicht a. Aber für

Informatiker ist der Index ein Versatz in Bezug auf den Anfang des Strings, und der

Versatz für das erste Zeichen ist 0.

>>> zeichen = frucht[0]

>>> print zeichen

b

Entsprechend ist b das 0. (das »nullte«) Zeichen von 'banane', a das erste und n das

zweite Zeichen.

Sie können beliebige Ausdrücke als Index verwenden, einschließlich Variablen und

Operatoren. Aber der Indexwert muss ein Integer sein. Ansonsten erhalten Sie:

>>> zeichen = frucht[1.5]

TypeError: string indices must be integers

len

len ist eine integrierte Funktion, die die Anzahl Zeichen in einem String

zurückliefert:

>>> frucht = 'banane'

>>> len(frucht)

6

Wenn Sie das letzte Zeichen eines Strings abrufen möchten, könnten Sie in

Versuchung geraten, Folgendes zu probieren:

>>> laenge = len(frucht)

>>> letzter = frucht[laenge]

IndexError: string Index out of range

Der Grund für den IndexError liegt darin, dass es in 'banane' kein Zeichen mit dem Index 6 gibt. Da wir bei null beginnen zu zählen, haben die Zeichen die Nummern 0

bis 5. Um das letzte Zeichen zu erhalten, müssen Sie 1 von laenge abziehen:

>>> letzter = frucht[laenge-1]

>>> print letzter

e

Alternativ können Sie negative Indizes verwenden. In diesem Fall wird vom Ende

des Strings rückwärts gezählt. Der Ausdruck frucht[-1] liefert das letzte Zeichen,

frucht[-2] das zweitletzte usw.

Traversierung mit einer Schleife

Bei vielen Berechnungen geht es darum, einen String Zeichen für Zeichen zu

verarbeiten. Häufig werden Sie dabei am Anfang des Strings beginnen, dann jedes

Zeichen einzeln auswählen, etwas damit machen und diesen Vorgang bis zum Ende

fortsetzen. Dieses Verarbeitungsmuster nennt man Traversierung. Eine

Möglichkeit, eine Traversierung umzusetzen, ist die while-Schleife:

Index = 0

while Index < len(frucht):

zeichen = frucht[index]

print zeichen

Index = Index + 1

Diese Schleife durchläuft den String und zeigt jedes Zeichen in einer eigenen Zeile

an. Die Schleifenbedingung lautet Index < len(frucht). Ist also Index gleich der

Länge des Strings, ist die Bedingung falsch, und der Body der Schleife wird nicht

mehr ausgeführt. Als letztes Zeichen wird auf das Zeichen mit dem Index

len(frucht)-1 zugegriffen, was auch das letzte Zeichen im String ist.

Schreiben Sie eine Funktion, die einen String als Argument erwartet und die Zeichen

rückwärts anzeigt – eines pro Zeile.

 Listing 8.1

Sie können einen String aber auch mit einer for-Schleife durchlaufen:

for zeichen in frucht:

print zeichen

Bei jedem Schleifendurchlauf wird das jeweils nächste Zeichen der Variablen

zeichen zugewiesen. Die Schleife wird durchlaufen, bis keine Zeichen mehr übrig

sind.

Das folgende Beispiel zeigt, wie Sie mit Konkatenation (String-Addition) und einer

for-Schleife eine alphabetische Folge erzeugen können. In Robert McCloskeys Buch

 Make Way for Ducklings gibt es Entchen mit den Namen Jack, Kack, Lack, Mack,

Nack, Ouack, Pack und Quack. Die folgende Schleife gibt diese Namen in

alphabetischer Reihenfolge aus:

praefixe = 'JKLMNOPQ'

suffix = 'ack'

for zeichen in praefixe:

print zeichen + suffix

Und so sieht die Ausgabe aus:

Jack

Kack

Lack

Mack

Nack

Oack

Pack

Qack

Natürlich ist das nicht ganz richtig, weil »Ouack« und »Quack« falsch geschrieben

sind.

Ändern Sie das Programm, um diesen Fehler zu beheben.

 Listing 8.2

String-Teile

Segmente eines Strings nennt man Slice. Die Auswahl eines Slice ist der Auswahl

eines einzelnen Zeichens recht ähnlich:

>>> s = 'Monty Python'

>>> print s[0:5]

Monty

>>> print s[6:12]

Python

Der Operator [n:m] gibt den Teil des Strings vom »n-ten« bis zum »m-ten« Zeichen

zurück, einschließlich des ersten, aber ausschließlich des letzten Zeichens. Dieses

Verhalten ist zwar nicht besonders intuitiv, aber vielleicht hilft es Ihnen, sich

vorzustellen, dass die Indizes zwischen die Zeichen zeigen, wie in Abbildung 8.1 zu sehen.

 Abbildung 8.1 Slice-Indizes

Wenn Sie den ersten Index (vor dem Doppelpunkt) weglassen, beginnt das Slice am

Anfang des Strings. Lassen Sie den zweiten Index weg, reicht das Slice bis zum Ende des Strings:

>>> frucht = 'banane'

>>> frucht[:3]

'ban'

>>> frucht[3:]

'ane'

Ist der erste Index größer oder gleich dem zweiten Index, erhalten Sie als Ergebnis

einen Leerstring, der durch zwei Apostrophe gekennzeichnet wird:

>>> frucht = 'banane'

>>> frucht[3:3]

''

Ein Leerstring enthält keine Zeichen und hat die Länge 0. Abgesehen davon, verhält

er sich genau wie jeder andere String.

Angenommen, frucht ist ein String. Was bedeutet frucht[:]?

 Listing 8.3

Strings sind unveränderbar

Die Versuchung ist groß, den []-Operator auf der linken Seite einer Zuweisung zu

verwenden, um ein Zeichen in einem String zu verändern. Ein Beispiel:

>>> gruss = 'Hallo, Welt!'

>>> gruss[0] = 'J'

TypeError: objekt does not support item assignment

Das objekt in diesem Fall ist der String, und das item ist das Zeichen, das Sie

zuweisen möchten. Für den Moment ist ein Objekt dasselbe wie ein Wert. Aber wir

werden diese Definition später verfeinern. Ein Element (item) ist einer der Werte in einer Sequenz.

Zu diesem Fehler kommt es, weil Strings unveränderlich sind. Sie können also

einen vorhandenen String nicht verändern. Aber Sie können einen neuen String

erstellen, der eine Variation des Originals ist:

>>> gruss = 'Hallo, Welt!'

>>> neuer_gruss = 'J' + greeting[1:]

>>> print neuer_gruss

Jallo, Welt!

Dieses Beispiel konkateniert ein neues erstes Zeichen mit einem Teil von gruss. Auf

den ursprünglichen String hat das keinerlei Auswirkungen.

Suchen

Was macht die folgende Funktion?

def suche(wort, zeichen):

index = 0

while index < len(wort):

if wort[index] == zeichen:

return index

index = index + 1

return -1

In gewisser Weise ist suche das Gegenteil des []-Operators. Statt einen Index

entgegenzunehmen und das entsprechende Zeichen zu extrahieren, erwartet diese

Funktion ein Zeichen und findet den Index, an dem dieses Zeichen erscheint. Wird

das Zeichen nicht gefunden, liefert die Funktion den Wert -1.

Dies ist das erste Beispiel, in dem wir einer return-Anweisung innerhalb einer

Schleife begegnen. Wenn wort[index] == zeichen ist, verlässt die Funktion die

Schleife und kehrt sofort zurück.

Kommt das Zeichen nicht in dem String vor, verlässt das Programm die Schleife

normal und liefert den Wert -1.

Dieses Verarbeitungsmuster – das Durchlaufen einer Sequenz und das Verlassen der

Schleife, wenn wir gefunden haben, was wir suchen – nennt man eine Suche.

Passen Sie suche so an, dass die Funktion einen dritten Parameter erwartet – den

Index, ab dem die Suche in wort beginnen soll.

 Listing 8.4

Schleifen und Zähler

Das folgende Programm zählt, wie oft das Zeichen a in einem String vorkommt:

wort = 'banane'

anzahl = 0

for zeichen in wort:

if zeichen == 'a':

anzahl = anzahl + 1

print anzahl

Dieses Programm demonstriert ein weiteres Verarbeitungsmuster, einen

sogenannten Zähler. Die Variable anzahl wird mit dem Wert 0 initialisiert und dann jedes Mal um 1 erhöht, wenn ein a gefunden wurde. Beim Verlassen der Schleife

enthält anzahl das Ergebnis, also die Gesamtzahl der a.

Verpacken Sie diesen Code in eine Funktion mit dem Namen anzahl und

generalisieren Sie sie so, dass sie den String und das Zeichen als Argumente

erwartet.

 Listing 8.5

Schreiben Sie die Funktion so um, dass der String nicht durchlaufen wird, sondern

die Version von suche aus dem vorherigen Abschnitt mit drei Parametern zum Einsatz kommt.

 Listing 8.6

String-Methoden

Eine Methode ist einer Funktion sehr ähnlich – sie erwartet Argumente und liefert einen Wert zurück –, aber die Syntax ist unterschiedlich. Die Methode upper nimmt

beispielsweise einen String und liefert einen neuen String mit denselben Zeichen als

Großbuchstaben zurück:

Statt der Funktionssyntax upper(wort) kommt hier die Methodensyntax

wort.upper() zum Einsatz.

>>> wort = 'banane'

>>> neues_wort = wort.upper()

>>> print neues_wort

BANANE

Bei dieser Form der Punktschreibweise wird der Name der Methode upper und der

Name des Strings angegeben, auf den die Methode angewendet werden soll: wort.

Die leeren Klammern zeigen an, dass diese Methode keine Argumente erwartet.

Auch eine Methode wird aufgerufen. In diesem Fall rufen wir die Methode upper

von wort auf.

Wie sich herausstellt, gibt es auch eine String-Methode find, die der Funktion

erstaunlich ähnlich ist, die wir geschrieben haben:

>>> wort = 'banane'

>>> index = wort.find('a')

>>> print index

1

In diesem Beispiel können wir die Methode find von wort aufrufen und das gesuchte

Zeichen als Parameter übergeben.

Die find-Methode ist allgemeiner gehalten als unsere Funktion: Sie kann auch

Teilstrings suchen, nicht nur einzelne Zeichen:

>>> wort.find('na')

2

Als zweites Argument können wir optional den Startindex angeben:

>>> wort.find('na', 3)

-1

Und als drittes Argument können wir den Index angeben, ab dem die Suche beendet

werden soll:

>>> name = 'tim'

>>> name.find('t', 1, 2)

-1

Diese Suche schlägt fehl, weil t nicht im Indexbereich von 1 bis 2 (exklusive 2)

vorkommt.

Es gibt eine String-Methode mit dem Namen count, die der Funktion aus der

vorherigen Übung ähnelt. Lesen Sie die Dokumentation dieser Methode und

schreiben Sie einen Aufruf, der die Anzahl der a in 'banane' ermittelt.

 Listing 8.7

Lesen Sie die Dokumentation der String-Methoden unter

http://docs.python.org/lib/string-methods.html. Vielleicht möchten Sie ja mit einigen der Methoden experimentieren, um herauszufinden, wie sie funktionieren.

strip und replace sind besonders nützlich.

In der Dokumentation wird eine Syntax verwendet, die vielleicht verwirrend sein

kann. Beispielsweise kennzeichnen die eckigen Klammern in find(sub[, start[,

end]]) optionale Argumente. Entsprechend ist das Argument sub erforderlich, aber

start ist optional. Und selbst wenn Sie start angeben, ist end optional.

 Listing 8.8

Der in-Operator

Das Wort in ist ein Boolescher Operator, der zwei Strings erwartet und True

zurückliefert, wenn der erste als Teilstring im zweiten vorkommt:

>>> 'a' in 'banane'

True

>>> 'samen' in 'banane'

False

Die folgende Funktion gibt beispielsweise alle Zeichen aus wort1 aus, die ebenfalls

in wort2 vorkommen:

def in_beiden(wort1, wort2):

for zeichen in wort1:

if zeichen in wort2:

print zeichen

Mit gut gewählten Variablennamen liest sich Python manchmal fast wie Deutsch.

Diese Schleife könnten Sie auch folgendermaßen lesen: »Für (jedes) zeichen in (dem

ersten) wort, wenn das zeichen im (zweiten) wort vorkommt, drucke (das) zeichen«.

Das kommt dabei heraus, wenn Sie einen Apfel mit einer Orange vergleichen:

>>> in_beiden('apfel', 'orange')

a

e

String-Vergleich

Der relationale Operator funktioniert auch mit Strings. Dadurch können Sie

ermitteln, ob zwei Strings gleich sind:

if wort == 'banane':

print 'Alles klar, Bananen.'

Andere relationale Operatoren können sich als nützlich erweisen, um Wörter

alphabetisch zu sortieren:

if wort < 'banane':

print 'Ihr Wort' + wort + ' kommt im Alphabet vor banane.'

elif wort > 'banane':

print 'Ihr Wort' + wort + ' kommt im Alphabet nach banane.'

else:

print 'Alles klar, Bananen.'

Python geht mit Groß- und Kleinbuchstaben nicht genau so um wie wir Menschen.

Alle Großbuchstaben kommen vor den Kleinbuchstaben:

Ihr Wort Pinienkern kommt vor banane.

Eine gebräuchliche Möglichkeit, dieses Problem zu lösen, besteht darin, die Strings

vor dem Vergleich in ein Standardformat zu konvertieren – etwa in Kleinbuchstaben.

Daran sollten Sie unbedingt denken, wenn Sie sich gegen einen mit Pinienkernen

bewaffneten Mann verteidigen müssen.

Debugging

Wenn Sie einen Index verwenden, um die Werte in einer Folge zu durchlaufen, kann

es verzwickt sein, den Anfang und das Ende der Schleife richtig hinzubekommen.

Hier sehen Sie eine Funktion, die zwei Wörter vergleichen und True zurückliefern

soll, wenn ein Wort die Umkehrung des anderen ist. Leider enthält sie zwei Fehler:

def ist_umkehrung(wort1, wort2):

if len(wort1) != len(wort2):

return False

i = 0

j = len(wort2)

while j > 0:

if wort1[i] != wort2[j]:

return False

i = i+1

j = j-1

return True

Die erste if-Anweisung überprüft, ob die beiden Wörter die gleiche Länge haben.

Falls nicht, können wir sofort False zurückliefern. Im Rest der Funktion können wir

davon ausgehen, dass die Wörter die gleiche Länge haben. Das ist ein Beispiel für ein Wächter-Muster aus „Typprüfung“.

i und j sind Indizes: i durchläuft wort1 vorwärts, während j wort2 rückwärts

durchläuft. Falls wir zwei Zeichen finden, die nicht übereinstimmen, können wir

sofort False zurückgeben. Stimmen nach dem Durchlaufen der gesamten Schleife

alle Zeichen überein, geben wir True zurück.

Wenn wir diese Funktion mit den Wörtern »gras« und »sarg« testen, erwarten wir

den Rückgabewert True. Stattdessen erhalten wir einen IndexError:

>>> ist_umkehrung('gras', 'sarg')

...

File "umkehrung.py", zeile 15, in ist_umkehrung

if wort1[i] != wort2[j]:

IndexError: string Index out of range

Beim Debugging eines solchen Fehlers gebe ich in einem ersten Schritt die

Indexwerte unmittelbar vor der fehlerhaften Zeile aus:

while j > 0:

print i, j # hier ausgeben

if wort1[i] != wort2[j]:

return False

i = i+1

j = j-1

Wenn ich das Programm jetzt ausführe, erhalte ich weitere Informationen:

>>> ist_umkehrung('gras', 'sarg')

0 4

...

IndexError: string Index out of range

Beim ersten Schleifendurchlauf ist j gleich 4, was außerhalb des Wertebereichs für

den String 'gras' liegt. Der Index für das letzte Zeichen ist 3. Entsprechend sollte der Anfangswert für j gleich len(wort2)-1 sein.

Wenn ich diesen Fehler behebe und das Programm erneut ausführe, erhalte ich:

>>> ist_umkehrung('gras', 'sarg')

0 3

1 2

2 1

True

Diesmal erhalten wir die korrekte Antwort, aber es sieht so aus, als wäre die Schleife

nur dreimal ausgeführt worden. Das ist verdächtig. Um eine bessere Vorstellung

davon zu bekommen, was hier geschieht, zeichnen wir ein Zustandsdiagramm. Den

Frame für ist_umkehrung bei der ersten Iteration sehen Sie in Abbildung 8.2.

 Abbildung 8.2 Zustandsdiagramm

Ich habe die Variablen im Frame entsprechend angeordnet und mit gepunkteten

Linien angedeutet, dass sich die Werte von i und j jeweils auf Zeichen in wort1 und

wort2 beziehen.

Gehen Sie das Programm von diesem Diagramm ausgehend auf Papier durch.

Ändern Sie die Werte von i und j für jede Iteration. Finden Sie den zweiten Fehler in

dieser Funktion und beheben Sie ihn.

 Listing 8.9

Glossar

Objekt:

Etwas, auf das sich eine Variable beziehen kann. Für den Moment können Sie

»Objekt« und »Wert« als Synonym verwenden.

Sequenz:

Geordnete Reihe. Eine Reihe von Werten, die jeweils einem ganzzahligen Index

zugeordnet sind.

Element:

Einer der Werte in einer Sequenz.

Index:

Ganzzahliger Wert, über den ein Element aus einer Sequenz ausgewählt wird,

beispielsweise ein Zeichen in einem String.

Slice:

Teil eines Strings, der über einen Indexbereich definiert wird.

Leerstring:

String, der keine Zeichen enthält und die Länge 0 hat, wird durch zwei Apostrophe

dargestellt.

Unveränderlichkeit:

Eigenschaft einer Sequenz, deren Elemente nicht zugewiesen werden können.

Traversieren:

Iteration über die Elemente einer Sequenz, bei der für jedes Element ähnliche Operationen vorgenommen werden.

Suche:

Muster einer Traversierung, die endet, wenn das Gesuchte gefunden wurde.

Zähler:

Variable, mit der etwas gezählt wird und die üblicherweise mit 0 initialisiert und

dann erhöht wird.

Methode:

Funktion, die einem Objekt zugeordnet ist und üblicherweise mit der

Punktschreibweise aufgerufen wird.

Aufruf:

Anweisung, mit der eine Methode aufgerufen wird.

Übungen

Ein String-Slice kann einen dritten Index entgegennehmen, der die »Schrittgröße«

angibt. Das ist die Anzahl der Leerschritte zwischen den aufeinanderfolgenden

Zeichen. Eine Schrittgröße von 2 bedeutet jedes zweite Zeichen, 3 steht für jedes

dritte usw.

>>> frucht = 'banane'

>>> frucht[0:5:2]

'bnn'

Eine Schrittgröße von -1 durchläuft das Wort rückwärts. Das Slice [::-1] erzeugt

einen umgekehrten String.

Schreiben Sie mit diesem Idiom eine einzeilige Version der Funktion ist_palindrom

aus Listing 6.6.

 Listing 8.10

Die folgenden Funktionen sollen alle überprüfen, ob ein String Kleinbuchstaben

enthält. Einige davon sind allerdings falsch. Beschreiben Sie für jede Funktion, was

sie in Wirklichkeit tut (vorausgesetzt, der Parameter ist ein String).

def kleine_buchstaben1(s):

for c in s:

if c.islower():

return True

else:

return False

def kleine_buchstaben2(s):

for c in s:

if 'c'.islower():

 return 'True'

else:

return 'False'

def kleine_buchstaben3(s):

for c in s:

flag = c.islower()

return flag

def kleine_buchstaben4(s):

flag = False

for c in s:

flag = flag or c.islower()

return flag

def kleine_buchstaben5(s):

for c in s:

if not c.islower():

return False

return True

 Listing 8.11

ROT13 ist eine schwache Form der Verschlüsselung, bei der jedes Zeichen eines

Worts um 13 Buchstaben im Alphabet verschoben wird. »A« um drei Zeichen

verschoben wird zu »D«, »Z« um eins verschoben wird zu »A«.

Schreiben Sie eine Funktion mit dem Namen rotiere_zeichen, die einen String und

einen Integer als Parameter erwartet und als Rückgabewert einen neuen String

liefert, in dem die Zeichen des ursprünglichen Strings um die angegebene Anzahl

Zeichen »rotiert« sind.

Beispielsweise ergibt »loch« um 6 Zeichen verschoben »ruin«.

Dafür können Sie die integrierten Funktionen ord – die ein Zeichen in einen

numerischen Code konvertiert – und chr – die numerische Codes in Zeichen

verwandelt – verwenden.

Im Internet werden beispielsweise potenziell anstößige Witze manchmal mit ROT13

verschlüsselt. Sollten Sie nicht so leicht aus der Ruhe zu bringen sein, können Sie ja

einige suchen und dekodieren. Lösung: rotiere_wort.py.

 Listing 8.12

Kapitel 9. Fallstudie: Wortspiele

Wortlisten einlesen

Für die Übungen in diesem Kapitel brauchen wir eine Liste deutscher Wörter. Es

gibt jede Menge Wortlisten im Internet, aber für unsere Zwecke ist wohl jene Liste

am besten geeignet, die Grady Ward zusammengestellt und unter Public Domain im

Rahmen des Moby Lexicon Project zur Verfügung gestellt hat (siehe

http://wikipedia.org/wiki/Moby_Project). Die Liste enthält 159.809 Wörter, die in Kreuzworträtseln und anderen Wortspielen verwendbar sind (die deutschen

Sonderzeichen wurden deshalb durch »ae«, »oe«, »ue« und »ss« ersetzt). In der

Moby-Sammlung in fünf Sprachen heißt diese Liste mlang.tar.Z (unter

http://icon.shef.ac.uk/Moby/). Sie können aber auch direkt die deutsche Fassung wortliste.txt aus den Codebeispielen verwenden.

Diese Datei ist eine reine Textdatei, Sie können sie also mit einem beliebigen

Texteditor öffnen – aber auch von Python aus einlesen. Die integrierte Funktion

open erwartet einen Dateinamen als Parameter und liefert ein Dateiobjekt zurück,

mit dem Sie die Datei einlesen können.

>>> fin = open('wortliste.txt')

>>> print fin

<open file 'wortliste.txt', mode 'r' at 0xb7f4b380>

fin ist ein gebräuchlicher Name für ein Dateiobjekt, das zum Einlesen verwendet

wird. Der Modus 'r' gibt an, dass diese Datei zum Lesen geöffnet wird (im Gegensatz

zu'w' zum Schreiben).

Das Dateiobjekt bietet mehrere Methoden zum Lesen, unter anderem auch readline

– eine Methode, die Zeichen aus einer Datei einliest, bis ein Zeilenvorschub erreicht

ist und das Ergebnis als String zurückliefert:

>>> fin.readline()

'Aale\n'

Das erste Wort aus wortliste.txt lautet »Aale«. Die Zeichenfolge \r\n steht für zwei Whitespace-Zeichen, einen Wagenrücklauf und einen Zeilenvorschub, die dieses

Wort vom nächsten trennen.

Das Dateiobjekt merkt sich, an welcher Stelle es sich in der Datei befindet. Wenn

Sie readline erneut aufrufen, erhalten Sie das nächste Wort:

>>> fin.readline()

'Aalen\n'

Das nächste Wort lautet »Aalen«. Falls Sie der Whitespace stört, können wir ihn mit

der Methode strip loswerden:

>>> zeile = fin.readline()

>>> wort = zeile.strip()

>>> print wort

Aals

Sie können ein Dateiobjekt auch als Teil einer for-Schleife verwenden. Das folgende

Programm liest wortliste.txt ein und gibt jedes Wort in einer eigenen Zeile aus: fin = open('wortliste.txt')

for zeile in fin:

wort = zeile.strip()

print wort

Schreiben Sie ein Programm, das wortliste.txt einliest und nur Wörter mit mehr als 20 Zeichen ausgibt (ohne Whitespace).

 Listing 9.1

Übungen

Es gibt Lösungen für die Übungen aus dem nächsten Abschnitt. Versuchen Sie erst

mal selbst, die Übungen zu bewältigen, bevor Sie die Lösungen lesen.

Im Jahr 1939 veröffentlichte Ernest Vincent Wright eine Novelle mit dem Titel

 Gadsby, die aus 50.100 Wörtern besteht, von denen kein einziges ein »e« enthält.

Das ist durchaus eine Leistung, da »e« im Englischen wie auch im Deutschen der am

häufigsten vorkommende Buchstabe ist.

Tatsächlich ist das am Anfang auch mühsam. Doch mit Übung und Sorgfalt wird das

schon, jedoch gibt das nicht sofort auch Sinn ...

In Ordnung, ich gebe auf.

Schreiben Sie eine Funktion mit dem Namen hat_kein_e, die True zurückliefert,

wenn das angegebene Wort kein »e« enthält.

Ändern Sie Ihr Programm aus dem vorherigen Abschnitt dahin gehend, dass es nur

Wörter ausgibt, die kein »e« enthalten, und berechnen Sie den Prozentsatz dieser

Wörter in der Liste.

 Listing 9.2

Schreiben Sie eine Funktion mit dem Namen vermeiden, die ein Wort und einen

String mit verbotenen Zeichen erwartet und True zurückliefert, wenn das Wort

keines der verbotenen Zeichen enthält.

Ändern Sie anschließend das Programm so, dass es den Benutzer zur Eingabe eines

Strings mit verbotenen Zeichen auffordert und die Anzahl der Wörter ausgibt, die

keines dieser Zeichen enthalten. Können Sie eine Kombination von aus fünf

verbotenen Zeichen finden, die die kleinstmögliche Anzahl Wörter ausschließt?

 Listing 9.3

Schreiben Sie eine Funktion mit dem Namen verwendet_nur, die ein Wort und eine

Folge von Buchstaben erwartet und True zurückliefert, wenn das Wort nur aus

Zeichen aus der Liste besteht. Können Sie einen Satz bilden, der nur aus den Zeichen

acefhlo aufgebaut ist? Auch einen anderen als »Hoe alfalfa?«

 Listing 9.4

Schreiben Sie eine Funktion mit dem Namen verwendet_alle, die ein Wort und

einen String mit erforderlichen Zeichen erwartet und True zurückliefert, wenn in

dem Wort alle angegebenen Zeichen vorkommen. Wie viele Wörter gibt es, die alle

Vokale aeiou enthalten? Was ist mit aeiouy?

 Listing 9.5

Schreiben Sie eine Funktion mit dem Namen ist_alphabetisch, die True

zurückliefert, wenn alle Zeichen in einem Wort in alphabetischer Reihenfolge

vorkommen (die Zeichen dürfen auch doppelt sein). Wie viele solcher

alphabetischen Wörter gibt es?

 Listing 9.6

Suchen

Alle Übungen aus dem vorherigen Abschnitt haben etwas gemeinsam: Sie können

mit dem Suchmuster aus „Suchen“ gelöst werden. Das einfachste Beispiel: def hat_kein_e(wort):

for zeichen in wort:

if zeichen == 'e':

return False

return True

Die for-Schleife durchläuft die Zeichen in wort. Wenn wir das Zeichen »e« finden,

können wir sofort False zurückliefern. Ansonsten machen wir mit dem nächsten

Zeichen weiter. Wenn wir die Schleife ganz durchlaufen, bedeutet das, dass wir kein

»e« gefunden haben, und liefern True zurück.

vermeiden ist eine allgemeinere Version von hat_kein_e, hat aber dieselbe

Struktur:

def vermeiden(wort, verboten):

for zeichen in wort:

if zeichen in verboten:

return False

return True

Wir können False zurückliefern, sobald wir ein verbotenes Zeichen finden.

Erreichen wir das Ende der Schleife, geben wir True zurück.

verwendet_nur ist ähnlich, lediglich die Bedingung ist umgekehrt:

def verwendet_nur(wort, zulässig):

for zeichen in wort:

if zeichen not in zulässig:

return False

return True

Statt einer Liste mit verbotenen Zeichen haben wir hier eine Liste mit zulässigen

Zeichen. Wenn wir in wort ein Zeichen finden, das nicht in zulässig enthalten ist,

liefern wir False zurück.

verwendet_alle ist ebenfalls ähnlich. Allerdings sind die Rollen des Worts und des

Strings mit den erforderlichen Zeichen vertauscht:

def verwendet_alle(wort, erforderlich):

for zeichen in erforderlich:

if zeichen not in wort:

return False

return True

Anstatt die Zeichen in wort zu durchlaufen, geht die Schleife die erforderlichen

Zeichen durch. Wenn eines der erforderlichen Zeichen nicht im Wort vorkommt,

wird False zurückgeliefert.

Falls Sie wirklich wie ein Informatiker denken, ist Ihnen aufgefallen, dass

verwendet_alle eine Instanz eines zuvor gelösten Problems ist, und haben

geschrieben:

def verwendet_alle(wort, erforderlich):

return verwendet_nur(erforderlich, wort)

Dies ist ein Beispiel für eine Programmentwicklungsmethode namens

Problemerkennung. Das bedeutet, dass Sie das Problem, an dem Sie gerade

arbeiten, als Instanz eines bereits gelösten Problems erkennen und entsprechend eine

zuvor entwickelte Lösung darauf anwenden.

Schleifen mit Indizes

Ich habe die Funktionen im vorherigen Abschnitt mit for-Schleifen geschrieben,

weil ich nur die Zeichen in den Strings gebraucht habe. Mit den Indizes hatte ich

nichts zu tun.

Für ist_alphabetisch müssen wir aber benachbarte Zeichen vergleichen, was mit

einer for-Schleife ziemlich verzwickt ist:

def ist_alphabetisch(wort):

vorheriges = wort[0]

for c in wort:

if c < vorheriges:

 return False

vorheriges = c

return True

Eine Alternative ist die Rekursion:

def ist_alphabetisch(wort):

if len(wort) <= 1:

return True

if wort[0] > wort[1]:

return False

return ist_alphabetisch(wort[1:])

Eine weitere Möglichkeit besteht in der Verwendung einer while-Schleife:

def ist_alphabetisch(wort):

i = 0

while i < len(wort)-1:

if wort[i+1] < wort[i]:

return False

i = i+1

return True

Die Schleife beginnt mit i=0 und endet bei i=len(wort)-1. Bei jedem

Schleifendurchlauf wird das i-te Zeichen (quasi das aktuelle Zeichen) mit dem i+1-

ten Zeichen (dem nächsten) verglichen.

Wenn das nächste Zeichen kleiner als das aktuelle ist (also im Alphabet weiter vorne

erscheint), haben wir eine Unterbrechung in der alphabetischen Folge erkannt und

liefern den Rückgabewert False.

Wenn wir das Ende der Schleife erreichen, ohne einen Fehler entdeckt zu haben, hat

das Wort den Test bestanden. Damit Sie sich davon überzeugen können, dass die

Schleife korrekt beendet wird, untersuchen Sie ein Beispiel wie 'beginn'. Die Länge

des Worts ist 6, beim letzten Schleifendurchlauf ist i gleich 4, das entspricht dem

Index des vorletzten Zeichens. Bei der letzten Iteration wird das vorletzte Zeichen

mit dem letzten Zeichen verglichen – das ist genau das, was wir wollen.

Hier kommt eine Version von ist_palindrom (siehe Listing 6.6), die mit zwei Indizes arbeitet. Einer beginnt am Anfang und zählt aufwärts. Der andere beginnt am Ende

des Strings und zählt abwärts.

def ist_palindrom(wort):

i = 0

j = len(wort)-1

while i<j:

if wort[i] != wort[j]:

return False

i = i+1

j = j-1

return True

Sollte Ihnen aufgefallen sein, dass dies eine Instanz eines bereits gelösten Problems ist, können Sie aber auch schreiben:

def ist_palindrom(wort):

return ist_umkehrung(wort, wort)

Natürlich vorausgesetzt, Sie haben Listing 8.9 gelöst.

Debugging

Es ist knifflig, Programme zu testen. Die Funktionen in diesem Kapitel sind relativ

einfach zu überprüfen, weil Sie die Ergebnisse auch von Hand bestätigen können.

Trotzdem ist es schwierig bis unmöglich, Wörter zu finden, mit denen Sie alle

möglichen Fehler testen können.

Beispielsweise gibt es in hat_kein_e zwei offensichtliche Fälle zu prüfen: Wörter

mit einem »e« sollen den Wert False liefern. Alle anderen Wörter sollen True

ergeben. Da haben Sie keinerlei Schwierigkeiten, sich je eines zu überlegen.

In jedem der beiden Fälle gibt es aber auch einige weniger offensichtliche

Unterfälle. Bei den Wörtern mit einem »e« sollten Sie auch Wörter mit einem »e«

am Anfang, am Ende und irgendwo in der Mitte testen. Außerdem sollten Sie lange

Wörter, kurze Wörter und sehr kurze Wörter testen – wie etwa einen Leerstring. Der

Leerstring ist ein Beispiel für einen Sonderfall, einen der absolut nicht

offensichtlichen Fälle, hinter denen sich oft Fehler verstecken können.

Zusätzlich zu solchen Testfällen können Sie Ihr Programm auch mit einer Wortliste,

wie z. B. wortliste.txt, testen. Indem Sie die Ausgabe untersuchen, können Sie unter Umständen Fehler aufspüren. Aber Vorsicht: Eventuell finden Sie nur eine

bestimmte Art von Fehlern (wie etwa Wörter, die nicht in der Ausgabe erscheinen

sollten, aber trotzdem auftauchen), eine andere Art von Fehlern dagegen nicht (wie

etwa Wörter, die im Ergebnis auftauchen sollten, aber trotzdem nicht erscheinen).

Üblicherweise können Tests Ihnen dabei helfen, Fehler zu finden. Aber es ist nicht

einfach, eine gute Sammlung von Testfällen zu generieren. Und selbst dann können

Sie nicht sicher sein, dass Ihr Programm wirklich korrekt arbeitet.

So hat es ein legendärer Informatiker auf den Punkt gebracht:

Durch Testen kann man stets nur die Anwesenheit, nie aber die Abwesenheit von Fehlern beweisen.

— Edsger W. Dijkstra

Glossar

Dateiobjekt:

Wert, der eine geöffnete Datei abbildet.

Problemerkennung:

Lösung eines Problems, indem Sie es als Instanz eines zuvor gelösten Problems

ausdrücken.

Sonderfall:

Testfall, der entweder atypisch oder nicht offensichtlich ist (und mit geringerer

Wahrscheinlichkeit korrekt behandelt wird).

Übungen

Diese Übung basiert auf einem Rätsel aus der amerikanischen Radiosendung Car

 Talk:

»Neulich bin ich auf der Autobahn gefahren und habe einen Blick auf meinen Kilometerzähler geworfen.

Wie die meisten Kilometerzähler zeigte er sechs Ziffern in Meilen. Wenn ich also beispielsweise 300.000

Meilen mit meinem Auto gefahren bin, zeigt der Tacho 3-0-0-0-0-0.

Was ich an diesem Tag gesehen habe, fand ich sehr interessant: Mir fiel auf, dass die letzten vier Stellen ein Palindrom waren, vorwärts und rückwärts also identisch zu lesen waren. Ein Beispiel für ein Palindrom wäre etwa 5-4-4-5. Mein Kilometerzähler hätte also beispielsweise 3-1-5-4-4-5 zeigen können.

Eine Meile später waren die letzten fünf Stellen ein Palindrom – wie zum Beispiel 3-6-5-4-5-6. Eine weitere Meile später waren die mittleren vier der sechs Zahlen ein Palindrom. Und halten Sie sich fest: Eine Meile später waren alle sechs Ziffern ein Palindrom!

Die Frage lautet nun: »Was zeigte mein Kilometerzähler, als ich zum ersten Mal darauf geschaut hatte?«

Schreiben Sie ein Python-Programm, das alle sechsstelligen Zahlen testet und die

Zahlen ausgibt, die diesen Vorgaben entsprechen. Lösung: cartalk1.py.

 Listing 9.7

Hier kommt noch ein Car Talk-Rätsel, das Sie mit einer Suche lösen können:

»Kürzlich hat mich meine Mutter besucht, und wir haben festgestellt, dass die beiden Ziffern meines Alters genau den umgekehrten Ziffern ihres Alters entsprechen. Wäre sie beispielsweise 73, wäre ich 37.

Wir haben uns gefragt, wie oft das wohl in unser beider Leben vorkommt. Aber wir haben uns dann über andere Themen unterhalten und deshalb nie eine Antwort auf diese Frage gefunden.

Als ich nach Hause kam, bin ich darauf gekommen, dass die Zahlen unseres Alters bereits sechsmal austauschbar waren. Außerdem bin ich zu dem Ergebnis gekommen, dass es mit ein bisschen Glück in ein paar Jahren wieder so weit ist. Und mit ganz viel Glück könnten wir es noch einmal danach schaffen.

Damit wären es insgesamt achtmal. Und nun die Frage: Wie alt bin ich jetzt?«

Schreiben Sie ein Python-Programm, das die Lösung für dieses Rätsel sucht. Tipp:

Vielleicht stellt sich ja die String-Methode zfill als nützlich heraus.

Lösung: cartalk2.py.

 Listing 9.8

Kapitel 10. Listen

Eine Liste ist eine Sequenz

Genau wie ein String ist eine Liste eine Folge von Werten. In einem String sind

diese Werte Zeichen. In einer Liste können die Werte beliebigen Typs sein. Die

Werte in einer Liste bezeichnet man als Elemente.

Es gibt mehrere Möglichkeiten, eine neue Liste anzulegen. Die einfachste besteht

darin, die Elemente in eckige Klammern zu schreiben ([und]):

[10, 20, 30, 40]

['crunchy frog', 'ram bladder', 'lark vomit']

Das erste Beispiel ist eine Liste mit vier Integer-Werten. Das zweite ist eine Liste

mit drei Strings (kennen Sie den Sketch von Monty Python?). Die Elemente einer

Liste müssen aber nicht vom selben Typ sein. Die folgende Liste enthält einen

String, eine Fließkommazahl, einen Integer und – genau! – eine weitere Liste:

['spam', 2.0, 5, [10, 20]]

Eine Liste innerhalb einer anderen Liste nennt man verschachtelt.

Eine Liste, die keine Elemente enthält, bezeichnet man als leere Liste. Leere Listen

können Sie mit leeren eckigen Klammern erstellen: [].

Wie Sie sich schon gedacht haben, können Sie Listenwerte auch Variablen zuweisen:

>>> kaesesorten = ['Cheddar', 'Edamer', 'Gouda']

>>> zahlen = [17, 123]

>>> leer = []

>>> print kaesesorten, zahlen, leer

['Cheddar', 'Edamer', 'Gouda'] [17, 123] []

Listen können geändert werden

Die Syntax für den Zugriff auf die Elemente einer Liste ist dieselbe wie für den

Zugriff auf die Zeichen eines Strings: der Klammer-Operator. Der Ausdruck

innerhalb der Klammern ist der Index. Denken Sie daran, dass der Index immer mit

0 beginnt:

>>> print kaesesorten[0]

Cheddar

Im Gegensatz zu Strings sind Listen veränderbar. Wenn der Klammer-Operator auf

der linken Seite einer Zuweisung erscheint, repräsentiert er das Listenelement, dem

der Wert zugewiesen wird.

>>> zahlen = [17, 123]

>>> zahlen[1] = 5

>>> print zahlen

[17, 5]

Das 1-te Element von zahlen, das einmal 123 war, ist jetzt 5.

Eine Liste können Sie sich als Beziehung zwischen Indizes und Elementen

vorstellen. Diese Beziehung nennt man Mapping. Jedem Index ist eines der

Elemente zugeordnet. Abbildung 10.1 zeigt das Zustandsdiagramm für

kaesesorten, zahlen und leer:

 Abbildung 10.1 Zustandsdiagramm

Listen werden durch Kästen mit dem Wort »Liste« und den Elementen darin

dargestellt. kaesesorten bezieht sich auf eine Liste mit drei Elementen mit den

Indizes 0, 1 und 2. zahlen enthält zwei Elemente. Das Diagramm zeigt, dass dem

zweiten Element statt dem ursprünglichen Wert 123 der Wert 5 zugewiesen wurde.

leer bezieht sich auf eine Liste ohne Elemente.

Indizes für Listen funktionieren genauso wie Indizes für Strings:

Ein beliebiger ganzzahliger Ausdruck kann als Index verwendet werden.

Wenn Sie versuchen, ein Element zu lesen oder zu schreiben, das nicht existiert,

erhalten Sie einen IndexError.

Hat ein Index einen negativen Wert, wird dieser rückwärts vom Ende der Liste

gezählt.

Der in-Operator funktioniert auch mit Listen:

>>> kaesesorten = ['Cheddar', 'Edamer', 'Gouda']

>>> 'Edamer' in kaesesorten

True

>>> 'Brie' in kaesesorten

False

Listen durchlaufen

Der gebräuchlichste Weg, die Elemente einer Liste zu durchlaufen, ist eine for-

Schleife. Die Syntax ist die gleiche wie für Strings:

for kaese in kaesesorten:

print kaese

Das funktioniert wunderbar, solange Sie die Elemente der Liste nur lesen möchten.

Wenn Sie aber die Elemente schreiben oder aktualisieren möchten, brauchen Sie den

jeweiligen Index. Häufig werden dazu die Funktionen range und len kombiniert:

for i in range(len(zahlen)):

zahlen[i] = zahlen[i] * 2

Diese Schleife durchläuft die Liste und aktualisiert jedes Element. len liefert die

Anzahl der Elemente in der Liste. range liefert eine Liste der Indizes von 0 bis n-1,

wobei n gleich der Länge der Liste ist. Bei jedem Schleifendurchlauf enthält i den

Index des nächsten Elements. Die Zuweisungsanweisung im Body verwendet

wiederum i dazu, den alten Wert des Elements zu lesen und den neuen Wert

zuzuweisen.

Bei einer for-Schleife für eine leere Liste wird der Body niemals ausgeführt:

for x in []:

print 'Dazu wird es nie kommen.'

Obwohl eine Liste auch eine andere Liste enthalten kann, zählt die verschachtelte

Liste als ein einziges Element. Die Länge dieser Liste ist vier:

['spam', 1, ['Brie', 'Roquefort', 'Pol le Veq'], [1, 2, 3]]

Operationen mit Listen

Der Operator + konkateniert Listen:

>>> a = [1, 2, 3]

>>> b = [4, 5, 6]

>>> c = a + b

>>> print c

[1, 2, 3, 4, 5, 6]

Analog wiederholt der Operator * eine Liste n-mal:

>>> [0] * 4

[0, 0, 0, 0]

>>> [1, 2, 3] * 3

[1, 2, 3, 1, 2, 3, 1, 2, 3]

Im ersten Beispiel wird [0] viermal wiederholt. Im zweiten Beispiel wird die Liste

[1, 2, 3] dreimal wiederholt.

Listen-Slices

Listen-Slices

Der Slice-Operator funktioniert auch mit Listen:

>>> t = ['a', 'b', 'c', 'd', 'e', 'f']

>>> t[1:3]

['b', 'c']

>>> t[:4]

['a', 'b', 'c', 'd']

>>> t[3:]

['d', 'e', 'f']

Wenn Sie den ersten Index weglassen, beginnt das Slice am Anfang. Wenn Sie den

zweiten weglassen, geht das Slice bis zum Ende. Wenn Sie beide Indizes weglassen,

ist das Slice eine Kopie der gesamten Liste.

>>> t[:]

['a', 'b', 'c', 'd', 'e', 'f']

Nachdem Listen verändert werden können, ist es häufig besser, eine Kopie

anzufertigen, bevor Sie entsprechende Operationen durchführen.

Mit einem Slice-Operator auf der linken Seite einer Zuweisung können Sie mehrere

Elemente auf einmal aktualisieren:

>>> t = ['a', 'b', 'c', 'd', 'e', 'f']

>>> t[1:3] = ['x', 'y']

>>> print t

['a', 'x', 'y', 'd', 'e', 'f']

Methoden für Listen

Python bietet Methoden für die Verarbeitung von Listen. Beispielsweise hängt

append ein neues Element am Ende einer Liste an:

>>> t = ['a', 'b', 'c']

>>> t.append('d')

>>> print t

['a', 'b', 'c', 'd']

extend erwartet eine Liste als Argument und hängt alle Elemente an eine andere

Liste an:

>>> t1 = ['a', 'b', 'c']

>>> t2 = ['d', 'e']

>>> t1.extend(t2)

>>> print t1

['a', 'b', 'c', 'd', 'e']

In diesem Beispiel bleibt t2 unverändert.

sort sortiert die Elemente einer Liste von unten nach oben:

>>> t = ['d', 'c', 'e', 'b', 'a']

>>> t.sort()

>>> print t

['a', 'b', 'c', 'd', 'e']

Keine der Methoden für Listen hat einen Rückgabewert. Sie verändern die Liste und

liefern None. Falls Sie versehentlich t = t.sort() schreiben, werden Sie vom

Ergebnis enttäuscht sein.

Map, Filter und Reduktion

Um alle Zahlen in einer Liste zu addieren, können Sie eine Schleife wie die folgende

verwenden:

def addiere_alle(t):

summe = 0

for x in t:

summe += x

return summe

summe wird mit dem Wert 0 initialisiert. Bei jedem Schleifendurchgang liest x ein

Element aus der Liste aus. Der Operator += bietet eine Kurzschreibweise, um die

Variable zu aktualisieren. Die folgende erweiterte Zuweisung

summe += x

ist identisch mit:

summe = summe + x

Während die Schleife ausgeführt wird, sammelt summe die Summe der Elemente.

Eine Variable, die auf diese Weise verwendet wird, bezeichnet man manchmal auch

als Akkumulator.

Die Summierung aller Elemente einer Liste ist eine so häufig benötigte Aufgabe,

dass Python dafür die integrierte Funktion sum zur Verfügung stellt:

>>> t = [1, 2, 3]

>>> sum(t)

6

Operationen wie diese, bei der eine Sequenz von Elementen zu einem einzigen Wert

zusammengefasst werden, bezeichnet man manchmal als Reduktion.

Schreiben Sie eine Funktion mit dem Namen verschachtelte_summe, die eine

verschachtelte Liste von Integer-Werten erwartet und die Elemente aller

verschachtelten Listen summiert.

 Listing 10.1

Manchmal möchten Sie eine Liste durchlaufen, während Sie eine andere aufbauen.

Die folgende Funktion nimmt beispielsweise eine Liste von Strings entgegen und

liefert eine neue Liste zurück, die diese Strings als Großbuchstaben enthält:

def alles_gross(t):

 res = []

for s in t:

res.append(s.capitalize())

return res

res wird mit einer leeren Liste initialisiert. Bei jedem Schleifendurchgang hängen

wir das nächste Element am Ende an. Insofern ist res ebenfalls eine Art

Akkumulator.

Vorgänge wie alles_gross werden manchmal als Map bezeichnet, weil sie eine

Funktion (in diesem Fall die Methode capitalize) mit jeden Element einer Folge

verknüpfen.

Verwenden Sie alles_gross, um eine Funktion mit dem Namen

verschachtelt_gross zu schreiben, die eine verschachtelte Liste von Strings

entgegennimmt und eine neue verschachtelte Liste liefert, in der alle Strings in

Großbuchstaben enthalten sind.

 Listing 10.2

Eine weitere typische Aufgabe besteht darin, nur bestimmte Elemente einer Liste

auszuwählen und diese als Teilliste zurückzuliefern. Die folgende Funktion erwartet

beispielsweise eine Liste von Strings und liefert eine Liste als Rückgabewert, die nur

die Strings enthält, die aus Großbuchstaben bestehen:

def nur_grosse(t):

res = []

for s in t:

if s.isupper():

res.append(s)

return res

isupper ist eine String-Methode, die True zurückliefert, wenn der String nur

Großbuchstaben enthält.

Eine Funktion wie nur_grosse bezeichnet man als Filter, weil sie nur bestimmte

Elemente auswählt und die anderen ausfiltert.

Die meisten typischen Operationen mit Listen lassen sich als Kombination aus Map,

Filter und Reduktion umsetzen. Und da diese Aufgaben so gebräuchlich sind, bietet

Python Sprachfunktionen, um diese zu unterstützen. Dazu gehört die integrierte

Funktion map sowie ein Operator mit dem Namen »Listen-Abstraktion«

Schreiben Sie eine Funktion, die eine Liste von Zahlen erwartet und die kumulative

Summe zurückliefert. Der Rückgabewert soll eine neue Liste sein, in der das i-te Element gleich der Summe der ersten i+1 Elemente aus der ursprünglichen Liste ist.

Die kumulative Summe von [1, 2, 3] ist beispielsweise [1, 3, 6].

 Listing 10.3

Elemente löschen

Es gibt mehrere Möglichkeiten, Elemente aus einer Liste zu löschen. Wenn Sie den

Index des gewünschten Elements kennen, können Sie die Methode pop verwenden:

>>> t = ['a', 'b', 'c']

>>> x = t.pop(1)

>>> print t

['a', 'c']

>>> print x

b

pop ändert die Liste und liefert das gelöschte Element zurück. Wenn Sie keinen

Index angeben, wird das letzte Element gelöscht und zurückgegeben.

Brauchen Sie den gelöschten Wert nicht, können Sie den del-Operator verwenden:

>>> t = ['a', 'b', 'c']

>>> del t[1]

>>> print t

['a', 'c']

Wenn Sie das Element kennen, das Sie entfernen möchten (aber nicht den Index),

können Sie remove verwenden:

>>> t = ['a', 'b', 'c']

>>> t.remove('b')

>>> print t

['a', 'c']

Der Rückgabewert von remove ist None.

Möchten Sie mehr als ein Element löschen, können Sie del mit einem Slice-Index

verwenden:

>>> t = ['a', 'b', 'c', 'd', 'e', 'f']

>>> del t[1:5]

>>> print t

['a', 'f']

Wie gehabt, wählt das Slice alle Elemente bis zum ersten Index, aber nicht

einschließlich des zweiten.

Schreiben Sie eine Funktion mit dem Namen mitte, die eine Liste als Argument

erwartet und eine neue Liste zurückgibt, die alle Elemente bis auf das erste und das

letzte enthält. mitte([1,2,3,4]) sollte also den Rückgabewert [2,3] liefern.

 Listing 10.4

Schreiben Sie eine Funktion mit dem Namen schnipp, die eine Liste erwartet, die

das erste und das letzte Element entfernt und den Rückgabewert None liefert.

 Listing 10.5

Listen und Strings

Ein String ist eine Sequenz von Zeichen, eine Liste ist eine Sequenz von Werten.

Aber eine Liste mit Zeichen ist nicht dasselbe wie ein String. Wenn Sie einen String

in eine Liste von Zeichen konvertieren möchten, können Sie das mit list tun:

>>> s = 'spam'

>>> t = list(s)

>>> print t

['s', 'p', 'a', 'm']

Da list der Name einer integrierten Funktion ist, sollten Sie ihn nicht als

Variablennamen verwenden. Auch l sollten Sie vermeiden, weil es fast wie eine 1

aussieht. Deshalb verwende ich hier t.

Die Funktion list zerlegt einen String in einzelne Zeichen. Wenn Sie dagegen einen

String in einzelne Wörter aufteilen möchten, verwenden Sie dazu die split-Methode:

>>> s = 'Sehnsucht nach den Fjorden'

>>> t = s.split()

>>> print t

['Sehnsucht', 'nach', 'den', 'Fjorden']

Mit einem optionalen Argument für das Trennzeichen können Sie angeben, welches

Zeichen als Begrenzung für die einzelnen Wörter dienen soll. Im folgenden Beispiel

wird ein Bindestrich als Trennzeichen verwendet:

>>> s = 'spam-spam-spam'

>>> trennzeichen = '-'

>>> s.split(trennzeichen)

['spam', 'spam', 'spam']

join ist das Gegenteil von split. Diese Methode erwartet eine Liste von Strings und

konkateniert die einzelnen Elemente. join ist eine String-Methode. Sie nehmen das

gewünschte Trennzeichen als String, rufen für diesen String die Methode auf und

übergeben die Liste als Parameter:

>>> t = ['Sehnsucht', 'nach', 'den', 'Fjorden']

>>> trennzeichen = ' '

>>> trennzeichen.join(t)

'Sehnsucht nach den Fjorden'

In diesem Fall ist das Trennzeichen ein Leerzeichen, deshalb schreibt join

Leerzeichen zwischen die einzelnen Wörter. Wenn Sie die Elemente ohne

Zwischenraum zusammenfügen möchten, können Sie den Leerstring '' als

Trennzeichen angeben.

Objekte und Werte

Angenommen, wir führen die folgenden Zuweisungen aus:

a = 'banane'

b = 'banane'

Dann wissen wir, dass sich sowohl a als auch b auf einen String beziehen. Aber wir

wissen nicht, ob sie sich auf denselben String beziehen. Es gibt zwei mögliche

Zustände, die Sie in Abbildung 10.2 sehen.

 Abbildung 10.2 Zustandsdiagramm

Im ersten Fall beziehen sich a und b auf zwei unterschiedliche Objekte, die

denselben Wert haben. Im zweiten Fall beziehen sie sich auf dasselbe Objekt.

Wenn Sie überprüfen möchten, ob sich zwei Variablen auf dasselbe Objekt beziehen,

können Sie dafür den is-Operator verwenden:

>>> a = 'banane'

>>> b = 'banane'

>>> a is b

True

In diesem Fall hat Python nur ein String-Objekt angelegt, und sowohl a als auch b

beziehen sich darauf.

Wenn Sie dagegen zwei Listen erstellen, erhalten Sie zwei Objekte:

>>> a = [1, 2, 3]

>>> b = [1, 2, 3]

>>> a is b

False

Entsprechend sieht das Zustandsdiagramm das wie in Abbildung 10.3 aus: Abbildung 10.3 Zustandsdiagramm

In diesem Fall können wir sagen, dass die beiden Listen gleich sind, weil sie die gleichen Elemente enthalten. Sie sind aber nicht identisch, weil sie nicht dasselbe Objekt sind. Wenn zwei Objekte identisch sind, sind sie auch gleich. Andererseits

sind zwei Objekte nicht notwendigerweise identisch, wenn sie gleich sind.

Bis jetzt haben wir die Wörter »Objekt« und »Wert« als Synonyme verwendet.

Genau genommen ist es aber richtiger, wenn man sagt, dass ein Objekt einen Wert

hat. Wenn Sie [1,2,3] eingeben, erhalten Sie ein Listen-Objekt, dessen Wert eine

Folge von ganzen Zahlen ist. Enthält eine andere Liste die gleichen Elemente,

können wir sagen, dass sie den gleichen Wert hat, es sich aber nicht um dasselbe

Objekt handelt.

Aliasing

Wenn a auf ein Objekt verweist und Sie b = a zuweisen, verweisen beide Variablen

auf dasselbe Objekt:

>>> a = [1, 2, 3]

>>> b = a

>>> b is a

True

Das entsprechende Zustandsdiagramm sieht dann wie das in Abbildung 10.4 aus.

 Abbildung 10.4 Zustandsdiagramm

Die Zuordnung einer Variablen zu einem Objekt nennt man Referenz. In diesem

Beispiel gibt es zwei Referenzen auf dasselbe Objekt.

Ein Objekt, für das mehr als eine Referenz existiert, hat mehr als einen Namen,

quasi einen Alias. Deswegen spricht man in diesem Fall von Aliasing.

Falls das Objekt veränderbar ist, für das ein Alias existiert, wirken sich Änderungen,

die an einem Alias vorgenommen werden, auch auf den anderen aus:

>>> b[0] = 17

>>> print a

[17, 2, 3]

Dieses Verhalten kann zwar nützlich sein, aber auch zu Fehlern führen.

Üblicherweise ist es sicherer, das Aliasing von veränderbaren Objekten zu

vermeiden.

Bei unveränderbaren Objekten wie etwa Strings stellt das Aliasing kein sonderliches

Problem dar:

a = 'banane'

b = 'banane'

Es kommt fast nie darauf an, ob sich a und b auf denselben String beziehen oder

nicht.

Listen als Argument

Wenn Sie eine Liste an eine Funktion übergeben, erhält die Funktion eine Referenz

auf die Liste. Verändert die Funktion eine als Parameter übergebene Liste, sind diese

Änderungen auch für den Aufrufenden sichtbar. Im folgenden Beispiel löscht

loesche_ersten das erste Element aus einer Liste:

def loesche_ersten(t):

del t[0]

So wird die Funktion verwendet:

>>> buchstaben = ['a', 'b', 'c']

>>> loesche_ersten(buchstaben)

>>> print buchstaben

['b', 'c']

In diesem Fall sind der Parameter t und die Variable buchstaben Aliase für dasselbe

Objekt. Das zugehörige Stapeldiagramm sehen Sie in Abbildung 10.5.

 Abbildung 10.5 Stapeldiagramm

Da die Liste von zwei Frames gemeinsam genutzt wird, habe ich sie daneben

dargestellt.

Es ist wichtig, zwischen Operationen zu unterscheiden, die Listen verändern, und

solchen, die neue Listen erstellen. Die Methode append verändert beispielsweise

eine Liste. Der Operator + erstellt dagegen eine neue Liste:

>>> t1 = [1, 2]

>>> t2 = t1.append(3)

>>> print t1

[1, 2, 3]

>>> print t2

None

>>> t3 = t1 + [4]

>>> print t3

[1, 2, 3, 4]

Dieser Unterschied ist insbesondere dann wichtig, wenn Sie Funktionen schreiben,

die Listen verändern sollen. Die folgende Funktion löscht beispielsweise nicht das

erste Element einer Liste:

def falsche_loesche_erstes(t):

t = t[1:] # FALSCH!

Der Slice-Operator erstellt eine neue Liste, und durch die Zuweisung verweist t zwar

darauf, aber all das hat keinerlei Auswirkungen auf die Liste, die als Argument

übergeben wurde.

Eine Alternative besteht darin, eine Funktion zu schreiben, die eine neue Liste

erstellt und diese zurückgibt. Die folgende Funktion rest liefert beispielsweise alle Elemente einer Liste bis auf das erste als Rückgabewert:

def rest(t):

return t[1:]

Diese Funktion verändert an der ursprünglichen Liste nichts. Deshalb wird sie

folgendermaßen verwendet:

>>> buchstaben = ['a', 'b', 'c']

>>> rest = rest(buchstaben)

>>> print rest

['b', 'c']

Debugging

Der unvorsichtige Einsatz von Listen (und anderen veränderbaren Objekten) kann zu

vielen Stunden Debugging führen. Im Folgenden stelle ich Ihnen einige häufige

Stolperfallen vor und erkläre, wie Sie sie vermeiden können:

1. Denken Sie daran, dass die meisten Listenmethoden das Argument verändern

und None zurückliefern. Das ist das genaue Gegenteil der String-Methoden,

die einen neuen String zurückliefern und das Original unberührt lassen.

Wenn Sie daran gewöhnt sind, Stringcode wie den folgenden zu schreiben:

wort = wort.strip()

... ist die Versuchung groß, Code wie den folgenden mit Listen zu schreiben:

t = t.sort() # FALSCH!

Da sort den Wert None zurückliefert, werden die nächsten Operationen mit t

höchstwahrscheinlich fehlschlagen.

Bevor Sie mit Methoden und Operatoren für Listen arbeiten, sollten Sie die

Dokumentation aufmerksam lesen und diese im interaktiven Modus testen. Die

Methoden und Operatoren, die Listen mit anderen Sequenzen (wie Strings)

gemeinsam haben, finden Sie unter http://docs.python.org/lib/typesseq.html.

Die Methoden und Operatoren, die nur für veränderbare Sequenzen gelten, sind

unter http://docs.python.org/lib/typesseq-mutable.html dokumentiert.

2. Suchen Sie sich eine Syntaxvariante aus und bleiben Sie dabei.

Eines der Probleme mit Listen besteht darin, dass es zu viele Möglichkeiten

gibt, die verschiedenen Operationen vorzunehmen. Um ein Element aus einer

Liste zu entfernen, können Sie beispielsweise mit pop, remove, del oder sogar

einer Slice-Zuweisung arbeiten.

Elemente hinzufügen können Sie entweder mit der append-Methode oder dem

Operator +. Angenommen, t ist eine Liste und x ein Listenelement. Dann sind

die folgenden Anweisungen richtig:

t.append(x)

t = t + [x]

Und diese sind falsch:

t.append([x]) # FALSCH!

t = t.append(x) # FALSCH!

t + [x] # FALSCH!

t = t + x # FALSCH!

Probieren Sie jedes dieser Beispiele im interaktiven Modus aus und

vergewissern Sie sich, dass Sie sie auch verstehen. Beachten Sie, dass nur die

letzte Anweisung einen Laufzeitfehler erzeugt. Die anderen drei sind zulässig,

tun aber nicht das Richtige.

3. Erstellen Sie Kopien, um Aliase zu vermeiden.

Wenn Sie eine Methode wie sort verwenden möchten, die das Argument

verändert, Sie aber die ursprüngliche Liste ebenfalls behalten möchten, können

Sie einfach eine Kopie machen:

orig = t[:]

t.sort()

In diesem Beispiel könnten Sie auch die integrierte Funktion sorted nutzen,

die eine neue sortierte Liste zurückliefert und das Original in Ruhe lässt.

Glossar

Liste:

Eine Folge von Werten.

Element:

Einer der Werte in einer Liste (oder einer anderen Sequenz).

Index:

Integer-Wert, der ein Element in einer Liste kennzeichnet.

Verschachtelte Liste:

Liste, die Element einer anderen Liste ist.

Traversierung von Listen:

Sequenzieller Zugriff auf alle Elemente einer Liste.

Mapping:

Beziehung, bei der jedes Element einer Menge einem Element einer anderen Menge entspricht. Listen sind beispielsweise ein Mapping von Indizes auf

Elemente.

Akkumulator:

Variable, die in einer Schleife verwendet wird, um ein Ergebnis zu addieren oder

zu akkumulieren.

Erweiterte Zuweisung:

Anweisung, die den Wert einer Variablen mit einem Operator wie z. B. +=

aktualisiert.

Reduktion:

Verarbeitungsmuster, bei dem eine Sequenz durchlaufen wird und die Elemente

zu einem einzigen Ergebnis akkumuliert werden.

Map:

Verarbeitungsmuster, das eine Folge durchläuft und mit jedem Element eine

Operation durchführt.

Filter:

Verarbeitungsmuster, bei dem eine Liste durchlaufen wird und alle Elemente

ausgewählt werden, die ein bestimmtes Kriterium erfüllen.

Objekt:

Etwas, auf das sich eine Variable beziehen kann. Ein Objekt hat einen Typ und

einen Wert.

Gleichheit:

Denselben Wert haben.

Identität:

Bezug auf dasselbe Objekt (woraus sich auch Gleichheit ergibt).

Referenz:

Verknüpfung zwischen einer Variablen und ihrem Wert.

Aliasing:

Von Aliasing spricht man, wenn sich zwei oder mehr Variablen auf dasselbe

Objekt beziehen.

Trennzeichen:

Zeichen oder Zeichenfolge, die kennzeichnet, an welcher Stelle ein String geteilt

werden soll.

Übungen

Schreiben Sie eine Funktion mit dem Namen ist_sortiert, die eine Liste als

Parameter erwartet und True zurückliefert, wenn die Liste aufsteigend sortiert ist,

und ansonsten den Wert False zurückgibt. Sie können davon ausgehen (als

Vorbedingung), dass die Elemente der Liste mit den relationalen Operatoren <, >

usw. vergleichbar sind.

Beispielsweise sollte ist_sortiert([1,2,2]) den Wert True und ist_sortiert(['b','a'])

das Ergebnis False liefern.

 Listing 10.6

Zwei Wörter werden dann als Anagramm bezeichnet, wenn Sie die Buchstaben des

einen Worts so umstellen können, dass Sie das andere Wort erhalten. Schreiben Sie

eine Funktion mit dem Namen ist_anagramm, die zwei Strings erwartet und True

liefert, wenn es sich um Anagramme handelt.

 Listing 10.7

Das Geburtstagsparadoxon:

1. Schreiben Sie eine Funktion mit dem Namen hat_duplikate, die eine Liste

erwartet und True zurückliefert, wenn eines der Elemente mehr als einmal

darin enthalten ist. Die ursprüngliche Liste soll dabei nicht verändert werden.

2. 23 Studenten sitzen in einem Hörsaal. Wie hoch ist die Wahrscheinlichkeit,

dass zwei davon am selben Tag Geburtstag haben? Diese Wahrscheinlichkeit

können Sie schätzen, indem Sie 23 zufällige Geburtstage generieren und auf

Übereinstimmungen prüfen. Tipp: Zufallsgeburtstage können Sie mit der

Funktion randint aus dem Modul random erzeugen.

Mehr zu diesem Thema erfahren Sie unter

http://de.wikipedia.org/wiki/Geburtstagsparadoxon. Und die Lösung finden Sie unter geburtstag.py.

 Listing 10.8

Schreiben Sie eine Funktion mit dem Namen entferne_duplikate, die eine Liste als

Parameter erwartet und eine Liste zurückliefert, die nur die eindeutigen Elemente

aus dem Original enthält. Tipp: Sie brauchen nicht in der gleichen Reihenfolge

vorzukommen.

 Listing 10.9

Schreiben Sie eine Funktion, die die Datei wortliste.txt ausliest und eine Liste mit einem Element pro Wort erstellt. Schreiben Sie zwei Versionen dieser Funktion,

eine mit der append-Methode und eine nach dem Muster t = t + [x]. Welche Version dauert länger? Warum?

Tipp: Verwenden Sie das Modul time, um die verstrichene Zeit zu messen. Lösung:

 wortliste_erstellen.py.

 Listing 10.10

Um herauszufinden, ob sich ein bestimmtes Wort in der Liste befindet, könnten Sie

den in-Operator verwenden. Aber das wäre zu langsam, weil dabei alle Wörter

durchsucht werden.

Da sich die Wörter in alphabetischer Reihenfolge befinden, können wir das Ganze

etwas beschleunigen – und zwar mit einem Verfahren, das man Bisektion nennt

(auch »binäre Suche« genannt). Das funktioniert ähnlich wie das Nachschlagen eines

Worts im Wörterbuch: Sie fangen in der Mitte an und sehen nach, ob das gesuchte

Wort vor oder nach dem Wort in der Mitte kommt. Davon abhängig suchen Sie in

der ersten oder in der zweiten Hälfte.

In beide Richtungen halbieren Sie erneut den Suchraum. Wenn eine Wortliste

113.809 Wörter enthält, sind nur etwa 17 Schritte erforderlich, um das Wort zu

finden oder herauszufinden, dass es nicht in der Liste enthalten ist.

Schreiben Sie eine Funktion mit dem Namen bisektion, die eine sortierte Liste sowie

einen Zielwert erwartet und den Index des Werts in der Liste liefert, falls dieser in

der Liste vorkommt, oder ansonsten None zurückgibt.

Oder Sie lesen die Dokumentation für das Modul bisect und verwenden das Modul.

Lösung: bisektion.py.

 Listing 10.11

Zwei Wörter sind ein »umgekehrtes Paar«, wenn beide Wörter jeweils die

Umkehrung des anderen sind. Schreiben Sie ein Programm, das alle umgekehrten

Paare in der Wortliste findet. Lösung: umgekehrtes_paar.py.

 Listing 10.12

Zwei Wörter sind »verschränkt«, wenn sich daraus ein neues Wort bilden lässt,

indem man abwechselnd Buchstaben aus den beiden Wörtern nach dem

Reißverschlussverfahren aneinanderreiht. Beispielsweise ergibt sich aus einer

Verschränkung von »Zeug« und »ihn« das Wort »Ziehung«. Lösung:

 verschraenkte_woerter.py. Hinweis: Diese Übung wurde angeregt durch ein Beispiel von http://puzzlers.org.

1. Schreiben Sie ein Programm, das alle Wortpaare auflistet, die sich

verschränken lassen. Tipp: Zählen Sie nicht alle Paare auf!

2. Können Sie Wörter finden, die sich dreifach verschränken lassen? Bei denen sich also aus jedem dritten Zeichen aus dem ersten, zweiten und dritten Wort

ein neues bilden lässt? Beispiel: »Sie«, »irr« und »bin« ergeben »Sibiriern«.

 Listing 10.13

Kapitel 11. Dictionaries

Ein Dictionary ist wie eine Liste, aber generischer. In einer Liste müssen die Indizes Integer-Werte sein, in einem Dictionary können Sie dagegen (fast) alle Datentypen

als Index verwenden.

Ein Dictionary können Sie sich als Mapping zwischen einer Reihe von Indizes

(Schlüssel genannt) und einer Reihe von Werten vorstellen. Die Verknüpfung eines

Schlüssels mit einem Wert bezeichnet man als Schlüssel/Wert-Paar oder

manchmal als Element.

Als Beispiel erstellen wir ein Dictionary in Form eines echten Wörterbuchs, das

deutsche Wörter mit spanischen Wörtern verknüpft. Entsprechend sind sowohl die

Schlüssel als auch die Werte Strings.

Die Funktion dict erstellt ein neues Dictionary ohne Elemente. Da dict der Name

einer integrierten Funktion ist, sollten Sie dieses Wort nicht als Variablennamen

verwenden.

>>> de2es = dict()

>>> print de2es

{}

Die geschweiften Klammern {} stehen für ein leeres Dictionary. Um dem

Wörterbuch Elemente hinzuzufügen, verwenden Sie eckige Klammern:

>>> de2es['eins'] = 'uno'

Diese Zeile erzeugt ein Element, das dem Schlüssel 'eins' den Wert 'uno' zuweist.

Wenn wir das Dictionary jetzt noch mal ausgeben, sehen wir ein Schlüssel/Wert-

Paar, bei dem Schlüssel und Wert mit einem Doppelpunkt voneinander getrennt

dargestellt werden:

>>> print de2es

{'eins': 'uno'}

Dieses Ausgabeformat ist gleichzeitig auch ein Eingabeformat. Mit der folgenden

Zeile können Sie beispielsweise ein neues Wörterbuch mit drei Elementen erstellen:

>>> de2es = {'eins': 'uno', 'zwei': 'dos', 'drei': 'tres'}

Wenn Sie anschließend de2es ausgeben, werden Sie überrascht sein:

>>> print de2es

{'eins': 'uno', 'drei': 'tres', 'zwei': 'dos'}

Die Reihenfolge der Schlüssel/Wert-Paare ist nicht dieselbe. Wenn Sie dasselbe

Beispiel auf Ihrem Computer eintippen, erhalten Sie vielleicht sogar noch ein

anderes Ergebnis. Die Reihenfolge der Elemente in einem Dictionary ist nicht

vorhersehbar.

Das ist aber kein Problem, weil die Elemente eines Dictionary ja nicht mit Integer-Indizes indiziert werden. Stattdessen rufen Sie die Werte über den entsprechenden

Schlüssel ab:

>>> print de2es['zwei']

'dos'

Der Schlüssel 'zwei' ist immer dem Wert 'dos' zugeordnet, daher spielt die

Reihenfolge der Elemente auch keine Rolle.

Sollte der Schlüssel nicht im Dictionary enthalten sein, erhalten Sie eine Ausnahme:

>>> print de2es['vier']

KeyError: 'vier'

Die Funktion len gibt es auch für Dictionaries. Sie liefert die Anzahl der

Schlüssel/Wert-Paare:

>>> len(de2es)

3

Der in-Operator funktioniert ebenfalls mit Dictionaries. Er teilt Ihnen mit, ob etwas

als Schlüssel im Dictionary vorkommt (nicht als Wert).

>>> 'eins' in de2es

True

>>> 'uno' in de2es

False

Um festzustellen, ob ein Wert im Dictionary enthalten ist, können Sie die Methode

values verwenden, die alle Werte als Liste zurückliefert. Anschließend können Sie

den in-Operator nutzen:

>>> werte = de2es.values()

>>> 'uno' in werte

True

Der in-Operator verwendet unterschiedliche Algorithmen für Listen und

Dictionaries. Für Listen verwendet er einen Suchalgorithmus, wie in „Suchen“

beschrieben. Wenn die Liste länger wird, verlängert sich damit auch die Suchzeit

direkt proportional. Für Dictionaries verwendet Python einen Algorithmus mit dem

Namen Hashtabelle, der eine bemerkenswerte Eigenschaft hat: Der in-Operator

braucht immer ungefähr gleich lang, unabhängig davon, wie viele Elemente sich in

einem Dictionary befinden. Ich werde jetzt nicht erklären, wie das möglich ist. Mehr

dazu können Sie unter http://de.wikipedia.org/wiki/Hashtabelle erfahren.

Schreiben Sie eine Funktion, die die Wörter aus wortliste.txt einliest und als

Schlüssel in einem Dictionary speichert. Die jeweiligen Werte spielen keine Rolle.

Anschließend können Sie mit dem in-Operator schnell feststellen, ob sich ein

bestimmter String im Dictionary befindet.

Wenn Sie die Übung aus Listing 10.11 gemacht haben, können Sie die Geschwindigkeit dieser Implementierung mit dem in-Operator für Listen und der

Bisektionssuche vergleichen.

 Listing 11.1

Dictionary als Menge von Zählern

Angenommen, Sie haben einen String und möchten zählen, wie oft jedes Zeichen

darin vorkommt. Dafür gibt es mehrere Möglichkeiten:

1. Sie könnten 26 Variablen erstellen, für jeden Buchstaben des Alphabets eine.

Anschließend könnten Sie den String durchlaufen und für jeden Buchstaben

den entsprechenden Zähler erhöhen, vermutlich mit einer verketteten

Bedingung.

2. Sie könnten eine Liste mit 26 Elementen erstellen. Anschließend konvertieren

Sie jeden Buchstaben in eine Zahl (mit der integrierten Funktion ord),

verwenden diese Zahl als Index für die Liste und erhöhen den entsprechenden

Zähler.

3. Oder Sie erstellen ein Dictionary mit den Buchstaben als Schlüssel und dem

jeweiligen Zähler als entsprechenden Wert. Wenn Sie einen Buchstaben zum

ersten Mal finden, fügen Sie ein entsprechendes Element dem Dictionary

hinzu. Bei jedem weiteren Mal erhöhen Sie einfach den Wert des vorhandenen

Elements.

Jede dieser Varianten führt dieselbe Berechnung durch. Aber in jeden Fall wird die

Berechnung auf unterschiedliche Weise implementiert.

Eine Implementierung ist ein bestimmter Lösungsansatz für eine Berechnung.

Manche Implementierungen sind besser geeignet als andere. Die Implementierung

mit dem Dictionary hat beispielsweise den Vorteil, dass wir uns, da wir nicht von

vornherein wissen, welche Zeichen in dem String vorkommen, entsprechend nur um

die Zeichen kümmern müssen, die auch tatsächlich darin enthalten sind.

Der entsprechende Code könnte folgendermaßen aussehen:

def histogramm(s):

d = dict()

for c in s:

if c not in d:

d[c] = 1

else:

d[c] += 1

return d

Der Name der Funktion lautet histogramm. Das ist ein statistischer Begriff für eine Menge von Zählern (oder Häufigkeiten).

In der ersten Zeile der Funktion wird ein leeres Dictionary angelegt. Die for-Schleife durchläuft den String. Bei jedem Schleifendurchlauf erstellen wir für jedes Zeichen

c, das sich nicht im Dictionary befindet, ein neues Element mit dem Schlüssel c und

dem Anfangswert 1 (schließlich haben wir das Zeichen bisher nur einmal gefunden).

Wenn c sich bereits im Dictionary befindet, erhöhen wir d[c].

Und so funktioniert es:

>>> h = histogramm('brontosaurus')

>>> print h

{'a': 1, 'b': 1, 'o': 2, 'n': 1, 's': 2, 'r': 2, 'u': 2, 't': 1}

Das Programm zeigt uns, dass die Buchstaben 'a' und 'b' einmal, 'o' zweimal usw.

vorkommen.

Dictionaries stellen eine Methode mit dem Namen get zur Verfügung, die einen

Schlüssel und einen Standardwert erwartet. Wenn der Schlüssel im Dictionary

vorkommt, liefert get den entsprechenden Wert. Ansonsten erhalten Sie den

Standardwert zurück. Ein Beispiel:

>>> h = histogramm('a')

>>> print h

{'a': 1}

>>> h.get('a', 0)

1

>>> h.get('b', 0)

0

Schreiben Sie eine kürzere Fassung von histogramm mit der Methode get . Damit

sollten Sie in der Lage sein, die if-Anweisung zu eliminieren.

 Listing 11.2

Schleifen und Dictionaries

Wenn Sie ein Dictionary mit einer for-Anweisung kombinieren, können Sie damit

die Schlüssel durchlaufen. Beispielsweise gibt print_hist jeden Schlüssel und den

entsprechenden Wert aus:

def print_hist(h):

for c in h:

print c, h[c]

Und so sieht die Ausgabe aus:

>>> h = histogramm('papagei')

>>> print_hist(h)

a 2

p 2

e 1

i 1

g 1

Auch in diesem Fall befinden sich die Schlüssel in keiner vorhersehbaren Reihenfolge.

Dictionaries bieten eine Methode mit dem Namen keys, die die Schlüssel des

Dictionary unsortiert als Liste zurückliefert.

Passen Sie print_hist so an, dass die Schlüssel und entsprechenden Werte in

alphabetischer Reihenfolge angezeigt werden.

 Listing 11.3

Inverse Suche

Angenommen, Sie haben ein Dictionary d und einen Schlüssel s. Dann ist es einfach,

den entsprechenden Wert w = d[s] zu finden.

Aber was ist, wenn Sie w haben und s suchen? Dann haben Sie zwei Probleme: Zum

einen kann es mehrere Schlüssel geben, die dem Wert w entsprechen. Je nach

Anwendung können Sie einfach einen davon aussuchen, oder Sie erstellen eine Liste,

die alle Schlüssel enthält. Das zweite Problem besteht darin, dass es keine einfache

Syntax für die sogenannte inverse Suche gibt. Sie müssen selbst nach den

Schlüsseln suchen.

Hier sehen Sie eine Funktion, die einen Wert erwartet und den ersten Schlüssel

zurückgibt, der diesem Wert entspricht:

def inverse_suche(d, w):

for s in d:

if d[s] == w:

return s

raise ValueError

Diese Funktion ist ein weiteres Beispiel für ein Suchmuster. Allerdings kommt darin

eine Funktion vor, die wir bisher nicht kennen: raise. Die raise-Anweisung löst eine

Ausnahme aus, in diesem Fall einen ValueError, der üblicherweise darauf hinweist,

dass es ein Problem mit einem der Parameterwerte gibt.

Wenn wir das Ende der Schleife erreicht haben, bedeutet das, dass w nicht im

Dictionary als Wert vorkommt. Daher lösen wir eine Ausnahme aus.

Hier ein Beispiel für eine erfolgreiche inverse Suche:

>>> h = histogramm('papagei')

>>> s = inverse_suche(h, 2)

>>> print s

a

Und ein Beispiel für eine nicht erfolgreiche inverse Suche:

>>> s = inverse_suche(h, 3)

Traceback (most recent call last):

 File "<stdin>", zeile 1, in ?

File "<stdin>", zeile 5, in inverse_suche

ValueError

Wenn Sie eine Ausnahme auslösen, erhalten Sie dasselbe Resultat, das auch Python

auslösen würde: Es wird ein Traceback und eine Fehlermeldung ausgegeben.

Sie können der raise-Anweisung auch eine detaillierte Fehlermeldung als optionales

Argument übergeben. Ein Beispiel:

>>> raise ValueError, 'Wert nicht im Dictionary enthalten'

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: Wert nicht im Dictionary enthalten

Eine inverse Suche ist wesentlich langsamer als eine herkömmliche Suche. Wenn

Sie häufig invers suchen oder das entsprechende Dictionary eine bestimmte Größe

erreicht, wird die Leistung Ihres Programms darunter leiden.

Passen Sie inverse_suche so an, dass die Funktion eine Liste aller Schlüssel

zurückliefert, die w entsprechen (oder eine leere Liste).

 Listing 11.4

Dictionaries und Listen

Listen können als Werte in einem Dictionary enthalten sein. Angenommen, Sie

haben ein Dictionary, das Buchstaben und deren Häufigkeit abbildet. Nehmen wir

weiter an, dass Sie es invertieren möchten, sprich ein Dictionary erstellen, das die

Häufigkeiten den jeweiligen Buchstaben zuordnet. Da es mehrere Buchstaben mit

derselben Häufigkeit geben kann, sollen die Werte im invertierten Dictionary eine

Liste von Buchstaben sein.

Hier eine Funktion, die ein Dictionary invertiert:

def invertiere_dict(d):

invers = dict()

for schluessel in d:

wert = d[schluessel]

if wert not in invers:

invers[wert] = [schluessel]

else:

invers[wert].append(schluessel)

return invers

Bei jedem Schleifendurchlauf enthält schluessel einen Schlüssel aus d und wert den

entsprechenden Wert. Wenn wert nicht in invers enthalten ist, haben wir diesen

Wert bisher noch nicht erfasst. In diesem Fall erstellen wir ein neues Element und

initialisieren es mit einer einelementigen Menge (einer Liste, die nur ein Element enthält). Andernfalls kennen wir diesen Wert bereits und hängen den entsprechenden

Schlüssel ans Ende der Liste an.

Beispiel:

>>> hist = histogramm('papagei')

>>> print hist

{'a': 2, 'p': 2, 'e': 1, 'i': 1, 'g': 1}

>>> invers = invertiere_dict(hist)

>>> print invers

{1: ['e', 'i', 'g'], 2: ['a', 'p']}

Abbildung 11.1 ist ein Zustandsdiagramm für hist und invers. Ein Dictionary wird darin als Kasten mit dem Typ dict abgebildet, der die Schlüssel/Wert-Paare enthält.

Wenn die Werte Integer, Fließkommazahlen oder Strings sind, zeichne ich sie

üblicherweise in den Kasten. Aber Listen stelle ich immer außerhalb des Kastens

dar, um das Diagramm überschaubar zu halten.

 Abbildung 11.1 Zustandsdiagramm

Listen können, wie wir in diesem Beispiel gesehen haben, Werte in einem

Dictionary sein, aber keine Schlüssel. Folgendes passiert, falls Sie es dennoch

versuchen:

>>> t = [1, 2, 3]

>>> d = dict()

>>> d[t] = 'Hoppla'

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'list'

Ich habe ja bereits erwähnt, dass Dictionaries mit einer Hashtabelle implementiert

sind, daher darf der Schlüssel auch nicht unhashable sein.

Ein Hash ist eine Funktion, die einen beliebigen Wert entgegennimmt und dafür

einen Integer zurückliefert. Dictionaries nutzen diese Integer, die sogenannten

Hashwerte, um Schlüssel/Wert-Paare zu speichern und zu suchen.

Dieses System funktioniert wunderbar, wenn die Schlüssel nicht veränderbar sind.

Sind die Schlüssel dagegen veränderbar, wie beispielsweise Listen, gibt es unschöne

Effekte. Wenn Sie ein Schlüssel/Wert-Paar erstellen, »hasht« Python den Schlüssel

und speichert ihn an der entsprechenden Stelle. Wenn Sie nun den Schlüssel ändern

und erneut hashen, weist dieser auf eine andere Speicherstelle. In diesem Fall

erhalten Sie zwei Einträge für denselben Schlüssel oder sind nicht mehr in der Lage,

einen Schlüssel zu finden. In beiden Fällen würde das Dictionary nicht mehr korrekt

funktionieren.

Das ist der Grund dafür, dass Schlüssel »hashable« sein müssen und veränderliche

Typen wie Listen nicht zulässig sind. Die einfachste Möglichkeit, diese Begrenzung

zu umgehen, sind »Tupel«. Darauf kommen wir im nächsten Kapitel zu sprechen.

Da Dictionaries veränderbar sind, können wir sie ebenfalls nicht als Schlüssel, aber

sehr wohl als Werte verwenden.

Lesen Sie die Dokumentation der Dictionary-Methode setdefault und schreiben Sie

damit eine kürzere Fassung von invertiere_dict. Lösung: invertiere_dict.py.

 Listing 11.5

Memos

Wenn Sie mit der fibonacci-Funktion aus „Noch ein Beispiel“ herumgespielt haben, wird Ihnen aufgefallen sein, dass die Funktion umso länger braucht, je größer das

angegebene Argument ist. Außerdem nimmt die Laufzeit sehr schnell zu.

Sehen Sie sich Abbildung 11.2 mit dem Aufrufdiagramm für fibonacci mit n=4 an: Abbildung 11.2 Aufrufdiagramm

Ein Aufrufdiagramm zeigt eine Reihe von Funktionsframes mit Linien, die jeden

Frame mit den Frames der jeweils aufgerufenen Funktionen verbinden. Ganz oben

im Diagramm steht fibonacci mit n=4, was fibonacci mit n=3 und n=2 aufruft.

fibonacci mit n=3 ruft wiederum fibonacci mit n=2 und n=1 auf usw.

Zählen Sie mal, wie oft fibonacci(0) und fibonacci(1) aufgerufen werden. Diese Lösung ist nicht effizient, und das Ganze wird immer schlimmer, je größer das

Argument wird.

Eine Alternative besteht darin, die bereits berechneten Werte in einem Dictionary zu

sammeln. Einen zuvor berechneten Wert, der für die spätere Verwendung

gespeichert wird, bezeichnet man als Memo. Hier sehen Sie eine Implementierung

von fibonacci mit Memos:

bekannt = {0:0, 1:1}

def fibonacci(n):

if n in bekannt:

return bekannt[n]

res = fibonacci(n-1) + fibonacci(n-2)

bekannt[n] = res

return res

bekannt ist ein Dictionary, in dem alle Fibonacci-Zahlen abgelegt werden, die wir

bereits kennen. Wir beginnen mit zwei Elementen: 0 entspricht 0, und 1 entspricht

1.

Jedes Mal, wenn fibonacci aufgerufen wird, überprüfen wir bekannt. Wenn das

Ergebnis bereits vorhanden ist, können wir es sofort zurückgeben. Ansonsten muss

der neue Wert berechnet, ins Dictionary eingefügt und zurückgeliefert werden.

Führen Sie diese Version von fibonacci und das Original mit einer Reihe von

Parametern aus und vergleichen Sie die Laufzeiten.

 Listing 11.6

Schreiben Sie eine Memo-Fassung der Ackermann-Funktion aus Listing 6.5 und schauen Sie, ob sich in dieser Version die Funktion mit größeren Argumenten

auswerten lässt. Tipp: Nein. Lösung: ackermann_memo.py.

 Listing 11.7

Globale Variablen

Im vorherigen Beispiel wird bekannt außerhalb der Funktion angelegt, deshalb

gehört es zu dem besonderen Frame mit dem Namen __main__. Variablen in

__main__ werden manchmal als global bezeichnet, weil Sie von jeder Funktion aus

darauf zugreifen können. Im Gegensatz zu lokalen Variablen, die verschwinden,

wenn die jeweilige Funktion beendet wird, bleiben globale Variablen von einem

Funktionsaufruf zum nächsten erhalten.

Globale Variablen werden häufig als Flags bezeichnet. Das sind Boolesche

Variablen, die anzeigen, ob eine Bedingung erfüllt ist oder nicht. Beispielsweise

verwenden manche Programme ein Flag mit dem Namen verbose, das angibt, wie detailliert die Ausgabe des Programms ist:

verbose = True

def Beispiel1():

if verbose:

print 'Beispiel1 wird ausgeführt'

Wenn Sie versuchen, einer globalen Variablen einen anderen Wert zuzuweisen,

werden Sie überrascht sein. Das folgende Beispiel soll mitverfolgen, ob die Funktion

bereits aufgerufen wurde:

wurde_aufgerufen = False

def Beispiel2():

wurde_aufgerufen = True # FALSCH

Aber wenn Sie dieses Beispiel ausführen, werden Sie feststellen, dass sich der Wert

von wurde_aufgerufen nicht ändert. Das Problem liegt darin, dass Beispiel2 eine

neue lokale Variable mit dem Namen wurde_aufgerufen anlegt. Die lokale Variable

verschwindet, wenn die Funktion endet, und hat keine Auswirkungen auf die globale

Variable.

Um eine globale Variable innerhalb einer Funktion zu verwenden, müssen Sie sie

zuvor deklarieren:

wurde_aufgerufen = False

def Beispiel2():

global wurde_aufgerufen

wurde_aufgerufen = True

Die Anweisung global sagt dem Interpreter ungefähr Folgendes: »Wenn ich

innerhalb dieser Funktion wurde_aufgerufen sage, meine ich die globale Variable.

Erstelle bitte keine lokale.«

Hier ein Beispiel, in dem eine globale Variable aktualisiert werden soll:

zaehler = 0

def Beispiel3():

zaehler = zaehler + 1 # FALSCH

Wenn Sie dieses Beispiel ausführen, erhalten Sie:

UnboundLocalError: local variable 'zaehler' referenced before assignment

Python geht davon aus, dass zaehler lokal ist. Entsprechend lesen Sie die Variable

aus, bevor Sie sie anlegen. Auch hier besteht die Lösung wieder darin, zaehler als

global zu deklarieren.

def Beispiel3():

 global zaehler

zaehler += 1

Wenn der globale Wert einem veränderbaren Typ angehört, können Sie ihn auch

ändern, ohne diesen vorher zu deklarieren:

bekannt = {0:0, 1:1}

def Beispiel4():

bekannt[2] = 1

Entsprechend können Sie Elemente einer globalen Liste oder eines globalen

Dictionary hinzufügen, löschen oder ersetzen. Aber wenn Sie die Variable erneut

zuweisen möchten, müssen Sie sie zuvor deklarieren:

def Beispiel5():

global bekannt

bekannt = dict()

Long Integer

Wenn Sie fibonacci(50) berechnen, erhalten Sie:

>>> fibonacci(50)

12586269025L

Das L am Ende bedeutet, dass es sich bei dem Ergebnis um einen »Long Integer«

vom Typ long handelt. Ab Python 3 gibt es keinen long mehr. Alle Integer, sogar

wirklich große, sind vom Typ int.

Werte vom Typ int haben einen begrenzten Wertebereich. Long Integer können

dagegen beliebig groß sein, brauchen aber auch mit zunehmender Größe immer

mehr Speicherplatz und Laufzeit.

Die mathematischen Operatoren und die Funktionen im Modul math arbeiten auch

mit Long Integers, sodass üblicherweise jeder Code, der mit int funktioniert, auch

mit long klappt.

Jedes Mal, wenn das Ergebnis einer Berechnung für einen Integer zu groß ist,

konvertiert Python das Ergebnis automatisch in einen Long Integer:

>>> 1000 * 1000

1000000

>>> 100000 * 100000

10000000000L

Im ersten Fall hat das Ergebnis den Typ int, im zweiten Fall ist es ein long.

Die Potenzierung großer Integer ist die Grundlage gebräuchlicher Algorithmen für

die Verschlüsselung mit öffentlichen Schlüsseln. Lesen Sie den Wikipedia-Artikel

über den RSA-Algorithmus (http://de.wikipedia.org/wiki/RSA-Kryptosystem) und schreiben Sie Funktionen zum Verschlüsseln und Entschlüsseln von Nachrichten.

 Listing 11.8

Debugging

Wenn Sie mit größeren Datenmengen arbeiten, kann es ziemlich umständlich

werden, beim Debugging die Daten von Hand ausgeben und überprüfen zu müssen.

Hier einige Vorschläge für das Debugging großer Datenmengen:

Reduzieren Sie die Eingaben:

Verringern Sie falls möglich die Größe der Datenmenge. Wenn ein Programm

beispielsweise eine Textdatei einliest, beginnen Sie einfach mit den ersten zehn

Zeilen oder der kleinstmöglichen Stichprobe. Dazu können Sie entweder die

Dateien direkt bearbeiten oder (vorzugsweise) das Programm so ändern, dass nur

die ersten n Zeilen gelesen werden.

Falls ein Fehler auftritt, können Sie n auf den kleinsten Wert reduzieren, für den

sich der Fehler manifestiert, und den Wert nach und nach erhöhen, während Sie

die Fehler finden und beseitigen.

Überprüfen Sie Zusammenfassungen und Typen:

Statt die gesamte Datenmenge auszugeben und zu überprüfen, können Sie auch

Zusammenfassungen der Daten ausgeben: beispielsweise die Anzahl der Elemente

in einem Dictionary oder die Summe einer Liste mit Zahlen.

Häufig treten Laufzeitfehler auf, weil ein Wert nicht den richtigen Typ hat. Um

solche Fehler aufzuspüren, reicht es oft aus, den Typ des jeweiligen Werts

auszugeben.

Automatische Überprüfung:

Manchmal können Sie auch Code schreiben, der automatisch Fehler aufspürt.

Wenn Sie beispielsweise den Durchschnitt einer Liste mit Zahlen berechnen,

können Sie überprüfen, ob das Ergebnis größer als das größte Element der Liste

oder kleiner als das kleinste ist. Solche Prüfungen bezeichnet man als

»Plausibilitätsprüfung«, weil dabei ermittelt wird, ob die Ergebnisse plausibel

sind.

Eine weitere Möglichkeit besteht darin, die Ergebnisse zweier unterschiedlicher

Berechnungen zu vergleichen und zu überprüfen, ob diese konsistent sind. Das

bezeichnet man als »Konsistenzprüfung«.

Ausgabe formatieren:

Wenn Sie die Debugging-Ausgaben entsprechend formatieren, ist es einfacher,

Fehler zu erkennen. Ein Beispiel hierfür haben wir in „Debugging“ gesehen. Das Modul pprint bietet die Funktion pprint, die die integrierten Typen in einem für

Menschen besser lesbaren Format ausgibt.

Auch hier gilt wieder: Die Zeit, die Sie in Scaffolding investieren, kann die für Debugging erforderliche Zeit reduzieren.

Glossar

Dictionary:

Zuordnung einer Reihe von Schlüsseln zu den entsprechenden Werten.

Schlüssel/Wert-Paar:

Darstellung der Zuordnung eines Schlüssels zu einem Wert.

Element:

Anderer Name für Schlüssel/Wert-Paar.

Schlüssel:

Objekt, das in einem Dictionary als erster Teil eines Schlüssel/Wert-Paars steht.

Wert:

Objekt, das in einem Dictionary als zweiter Teil eines Schlüssel/Wert-Paars steht.

Diese Definition ist zutreffender als unsere bisherige Verwendung des Worts

»Wert«.

Implementierung:

Verfahren, eine Berechnung umzusetzen.

Hashtabelle:

Algorithmus für die Implementierung von Python-Dictionaries.

Hashfunktion:

Funktion, die von einer Hashtabelle verwendet wird, um den Speicherort für einen

Schlüssel zu finden.

Hashable:

Typ, der über eine Hashfunktion verfügt. Unveränderbare Typen wie Integer,

Fließkommazahlen und Strings sind »hashable«, veränderbare Typen wie Listen

und Dictionaries dagegen nicht.

Suche:

Dictionary-Operation, die einen Schlüssel erwartet und den entsprechenden Wert

sucht.

Inverse Suche:

Dictionary-Operation, die einen Wert erwartet und den oder die entsprechenden

Schlüssel sucht.

Einelementige Menge:

Liste (oder andere Sequenz), die nur ein Element enthält.

Aufrufdiagramm:

Diagramm, das jeden während der Ausführung eines Programms erstellten Frame

zeigt. Dabei zeigen Pfeile an, welche Funktion welche aufgerufen hat.

Histogramm:

Menge von Zählern.

Memo:

Berechneter Wert, der zwischengespeichert wird, um unnötige weitere

Berechnungen einzusparen.

Globale Variable:

Außerhalb einer Funktion definierte Variable, auf die Sie von jeder Funktion aus

zugreifen können.

Flag:

Boolesche Variable, die angibt, ob eine Bedingung erfüllt ist.

Deklaration:

Anweisung wie z. B. global, die dem Interpreter Informationen zu einer Variablen

gibt.

Übungen

Wenn Sie Listing 10.8 gelöst haben, gibt es bereits eine Funktion mit dem Namen hat_duplikate, die eine Liste als Parameter erwartet und True zurückliefert, wenn

eines der Objekte mehr als einmal in der Liste vorkommt.

Verwenden Sie ein Dictionary, um eine schnellere und einfachere Version von

hat_duplikate zu schreiben. Lösung: hat_duplikate.py.

 Listing 11.9

Zwei Wörter sind »rotierende Paare«, wenn Sie durch Rotation des einen Worts das

andere bilden können (siehe rotiere_wort in Listing 8.12).

Schreiben Sie ein Programm, das eine Wortliste einliest und alle rotierenden Paare

findet. Lösung: rotiere_paare.py.

 Listing 11.10

Kapitel 12. Tupel

Tupel sind unveränderbar

Ein Tupel ist eine Sequenz von Werten. Die Werte können beliebigen Typs sein und

werden mit Integer-Werten indiziert. Insofern sind Tupel Listen sehr ähnlich. Der

Unterschied ist allerdings, dass Tupel nicht veränderbar sind.

Syntaktisch ist ein Tupel eine kommaseparierte Liste von Werten:

>>> t = 'a', 'b', 'c', 'd', 'e'

Es ist aber nicht zwingend notwendig, aber üblicherweise werden Tupel in

Klammern geschrieben:

>>> t = ('a', 'b', 'c', 'd', 'e')

Um ein Tupel mit einem einzigen Element zu erstellen, müssen Sie ein

abschließendes Komma schreiben:

>>> t1 = 'a',

>>> type(t1)

<type 'tuple'>

Ein Wert in Klammern dagegen ist kein Tupel:

>>> t2 = ('a')

>>> type(t2)

<type 'str'>

Eine weitere Möglichkeit, Tupel zu erstellen, bietet die integrierte Funktion tuple.

Ohne Angabe eines Arguments können Sie damit auch ein leeres Tupel erstellen:

>>> t = tuple()

>>> print t

()

Wenn Sie als Argument eine Sequenz übergeben (String, Liste oder Tupel), erhalten

Sie ein Tupel mit allen Elementen dieser Sequenz:

>>> t = tuple('lupinen')

>>> print t

('l', 'u', 'p', 'i', 'n', 'e', 'n')

Da tuple der Name einer integrierten Funktion ist, sollten Sie ihn nicht als

Variablennamen verwenden.

Die meisten Operatoren von Listen funktionieren auch mit Tupel. Der Klammer-

Operator indiziert ein Element:

>>> t = ('a', 'b', 'c', 'd', 'e')

>>> print t[0]

'a'

Und der Slice-Operator wählt einen Bereich von Elementen aus:

>>> print t[1:3]

('b', 'c')

Wenn Sie aber versuchen, eines der Elemente des Tupels zu ändern, erhalten Sie

einen Fehler:

>>> t[0] = 'A'

TypeError: objekt doesn't support item assignment

Sie können die Elemente eines Tupels nicht ändern, aber ein Tupel durch ein anderes

ersetzen:

>>> t = ('A',) + t[1:]

>>> print t

('A', 'b', 'c', 'd', 'e')

Tupel-Zuweisung

Häufig ist es nützlich, die Werte zweier Variablen zu vertauschen. Bei

herkömmlichen Zuweisungen müssen Sie dafür temporäre Variablen einsetzen. So

würden Sie beispielsweise die Werte von a und b vertauschen:

>>> temp = a

>>> a = b

>>> b = temp

Diese Lösung ist eher umständlich, die Tupel-Zuweisung ist da deutlich eleganter:

>>> a, b = b, a

Die linke Seite ist ein Tupel von Variablen, die rechte Seite ein Tupel von

Ausdrücken. Jeder Wert wird der entsprechenden Variablen zugewiesen. Vor der

Zuweisung werden alle Ausdrücke auf der rechten Seite ausgewertet.

Die Anzahl der Variablen auf der linken Seite der Zuweisung und die Anzahl der

Werte auf der rechten Seite müssen gleich sein:

>>> a, b = 1, 2, 3

ValueError: too many values to unpack

Genauer gesagt, kann die rechte Seite der Zuweisung eine beliebige Sequenz sein

(String, Liste oder Tupel). Wenn Sie beispielsweise eine E-Mail-Adresse in den

Benutzernamen und die Domain aufteilen möchten, können Sie das folgendermaßen

tun:

>>> adr = 'monty@python.org'

>>> uname, domain = adr.split('@')

Der Rückgabewert von split ist eine Liste mit zwei Elementen. Das erste Element

wird uname zugewiesen, das zweite domain.

>>> print uname

monty

>>> print domain

python.org

Tupel als Rückgabewerte

Genau genommen kann eine Funktion nur einen Wert zurückgeben. Aber wenn der

Rückgabewert ein Tupel ist, ist der Effekt der gleiche, als würden Sie mehrere Werte

zurückliefern. Wenn Sie beispielsweise zwei Integer dividieren und dabei den

Quotienten und den Rest berechnen möchten, wäre es ineffizient, x/y und dann x%y

zu berechnen. In diesem Fall ist es besser, beides gleichzeitig zu berechnen.

Die integrierte Funktion divmod erwartet zwei Argumente und gibt ein Tupel mit

zwei Werten zurück, den Quotienten und den Rest. Das Ergebnis können Sie als

Tupel speichern:

>>> t = divmod(7, 3)

>>> print t

(2, 1)

Oder Sie speichern die Elemente separat mithilfe einer Tupel-Zuweisung ab:

>>> quot, rest = divmod(7, 3)

>>> print quot

2

>>> print rest

1

Hier sehen Sie ein Beispiel für eine Funktion, die ein Tupel zurückliefert:

def min_max(t):

return min(t), max(t)

max und min sind integrierte Funktionen, die das größte und das kleinste Element

einer Sequenz suchen. min_max berechnet beide Werte und gibt ein Tupel mit den

beiden Werten zurück.

Argument-Tupel mit variabler Länge

Funktionen können eine variable Anzahl von Argumenten entgegennehmen. Ein

Parametername, der mit * beginnt, sammelt die Argumente in einem Tupel. Die

Funktion printalles nimmt beispielsweise eine beliebige Anzahl von Argumenten in

Empfang und gibt sie aus:

def printalles(*args):

print args

Der Sammelparameter kann einen beliebigen Namen haben, heißt aber üblicherweise

args. So funktioniert die Funktion:

>>> printalles(1, 2.0, '3')

(1, 2.0, '3')

Das Gegenteil davon ist die Streuung. Wenn Sie eine Sequenz von Werten haben und diese als mehrere Argumente an eine Funktion übergeben möchten, können Sie

den Operator * verwenden. divmod erwartet beispielsweise exakt zwei Argumente,

ein Tupel können Sie dagegen nicht übergeben:

>>> t = (7, 3)

>>> divmod(t)

TypeError: divmod expected 2 arguments, got 1

Wenn Sie dagegen das Tupel aufteilen, funktioniert es:

>>> divmod(*t)

(2, 1)

Viele der integrierten Funktionen verwenden Argument-Tupel mit variabler Länge.

max und min können beispielsweise eine beliebige Anzahl von Argumenten

entgegennehmen:

>>> max(1,2,3)

3

Bei sum ist das anders:

>>> sum(1,2,3)

TypeError: sum expected at most 2 arguments, got 3

Schreiben Sie eine Funktion mit dem Namen gesamt_summe, die eine beliebige

Anzahl von Argumenten summiert und das Ergebnis zurückgibt.

 Listing 12.1

Listen und Tupel

zip ist eine integrierte Funktion, die zwei oder mehr Sequenzen nach dem

Reißverschlussverfahren in einer Liste von Tupeln zusammenfasst. Dabei enthält

jedes Tupel ein Element aus jeder Sequenz. In Python 3 liefert zip einen Iterator mit

Tupeln. Aber im Wesentlichen verhält sich auch ein Iterator wie eine Liste.

Das folgende Beispiel »zippt« einen String und eine Liste:

>>> s = 'abc'

>>> t = [0, 1, 2]

>>> zip(s, t)

[('a', 0), ('b', 1), ('c', 2)]

Das Ergebnis ist eine Liste von Tupeln, wobei jedes Tupel einen Buchstaben aus

dem String und das entsprechende Element aus der Liste enthält.

Wenn die Sequenzen nicht die gleiche Länge haben, hat das Ergebnis die Länge der

kürzeren Sequenz:

>>> zip('Eber', 'Alb')

[('E', 'A'), ('b', 'l'), ('e', 'b')]

Sie können eine Tupel-Zuweisung auch in einer for-Schleife verwenden, um eine

Liste von Tupeln zu durchlaufen:

t = [('a', 0), ('b', 1), ('c', 2)]

for zeichen, zahl in t:

print zahl, zeichen

Bei jedem Schleifendurchlauf wählt Python das nächste Tupel in der Liste aus und

weist die Elemente den Variablen zeichen und zahl zu. So sieht die Ausgabe der

Schleife aus:

0 a

1 b

2 c

Wenn Sie zip, for und die Tupel-Zuweisung kombinieren, erhalten Sie eine nützliche

Konstruktion, um zwei (oder mehrere) Sequenzen gleichzeitig zu durchlaufen. Die

Funktion hat_treffer nimmt beispielsweise zwei Sequenzen t1 und t2 und liefert

True, wenn es einen Index i gibt, für den t1[i] == t2[i] gilt.

def hat_treffer(t1, t2):

for x, y in zip(t1, t2):

if x == y:

return True

return False

Möchten Sie die Elemente einer Sequenz und deren Indizes durchlaufen, können Sie

die integrierte Funktion enumerate nutzen:

for index, element in enumerate('abc'):

print index, element

So sieht die Ausgabe der Schleife aus:

0 a

1 b

2 c

Genau so.

Dictionaries und Tupel

Dictionaries verfügen über eine Methode mit dem Namen items, die eine Liste von

Tupeln zurückliefert, wobei jedes Tupel ein Schlüssel/Wert-Paar ist:

>>> d = {'a':0, 'b':1, 'c':2}

>>> t = d.items()

>>> print t

[('a', 0), ('c', 2), ('b', 1)]

Wie Sie es bereits vom Dictionary kennen, befinden sich die Elemente in keiner

bestimmten Reihenfolge. In Python 3 liefert items einen Iterator, aber für die

meisten Anwendungen verhalten sich Iteratoren genau wie Listen.

In der anderen Richtung können Sie eine Liste mit Tupeln dazu verwenden, ein

neues Dictionary zu initialisieren:

>>> t = [('a', 0), ('c', 2), ('b', 1)]

>>> d = dict(t)

>>> print d

{'a': 0, 'c': 2, 'b': 1}

Die Kombination aus dict und zip bietet eine kompakte Möglichkeit, ein Dictionary

zu erstellen:

>>> d = dict(zip('abc', range(3)))

>>> print d

{'a': 0, 'c': 2, 'b': 1}

Die Dictionary-Methode update erwartet ebenfalls eine Liste von Tupeln und fügt

sie als Schlüssel/Wert-Paare einem vorhandenen Dictionary hinzu.

Durch die Kombination aus items, Tupel-Zuweisung und for erhalten Sie eine

Möglichkeit, die Schlüssel und Werte eines Dictionary zu durchlaufen:

for schluessel, wert in d.items():

print wert, schluessel

So sieht die Ausgabe der Schleife aus:

0 a

2 c

1 b

Wieder einmal.

Häufig werden Tupel als Schlüssel in Dictionaries verwendet (in erster Linie, weil

Sie keine Listen verwenden können). Ein Telefonverzeichnis könnte beispielsweise

Paare aus Nachname und Vorname der entsprechenden Telefonnummer zuordnen.

Vorausgesetzt, wir haben nachname, vorname und nummer definiert, könnten wir

schreiben:

verzeichnis[nachname,vorname] = nummer

Der Ausdruck in den eckigen Klammern ist ein Tupel. Dieses Dictionary könnten

wir dann mithilfe der Tupel-Zuweisung durchlaufen:

for nachname, vorname in verzeichnis:

print vorname, nachname, verzeichnis[nachname,vorname]

Diese Schleife durchläuft die Schlüssel in verzeichnis, die wiederum Tupel sind. Die

Elemente jedes Tupels werden nachname und vorname zugewiesen. Anschließend

gibt die Schleife den jeweiligen Namen und die entsprechende Telefonnummer aus.

Es gibt zwei Möglichkeiten, Tupel in einem Zustandsdiagramm darzustellen. Die

detailliertere Version zeigt die Indizes und Elemente so, wie sie auch in einer Liste

erscheinen würden. Das Tupel ('Cleese', 'John') würde beispielsweise wie in

Abbildung 12.1 dargestellt.

 Abbildung 12.1 Zustandsdiagramm

Aber in einem größeren Diagramm würden Sie vielleicht die Details weglassen. Ein

Diagramm für das Telefonverzeichnis könnte dann wie in Abbildung 12.2 aussehen.

 Abbildung 12.2 Zustandsdiagramm

Hier werden die Tupel mit der Python-Syntax als grafische Kurzschreibweise

dargestellt.

Die Telefonnummer im Diagramm ist die Beschwerdenummer der BBC, also bitte

nicht anrufen!

Tupel vergleichen

Die relationalen Operatoren können Sie auch mit Tupeln und anderen Sequenzen

verwenden. Python beginnt damit, die ersten Elemente jeder Sequenz zu vergleichen.

Falls diese gleich sind, macht Python mit den nächsten Elementen weiter, bis es auf

Elemente stößt, die sich unterscheiden. Eventuell nachfolgende Elemente werden

nicht berücksichtigt (selbst wenn sie wirklich groß sind).

>>> (0, 1, 2) < (0, 3, 4)

True

>>> (0, 1, 2000000) < (0, 3, 4)

True

Die sort-Funktion arbeitet auf die gleiche Weise: Sie sortiert zunächst anhand des

ersten Elements. Sollte es dann erforderlich sein, sortiert sie anhand des zweiten

Elements usw.

Dieses Verfahren lehnt sich an ein Muster mit der Abkürzung DSU an:

Decorate:

»Dekorieren« Sie die Sequenz, indem Sie eine Liste mit Tupeln mit einem oder

mehreren Schlüsseln für die Sortierung vor den eigentlichen Elementen der Sequenz erstellen.

Sort:

Sortieren Sie diese Liste.

Undecorate:

Entfernen Sie die Dekoration wieder und extrahieren Sie die sortierten Elemente

der Sequenz.

Nehmen wir beispielsweise an, Sie haben eine Liste mit Wörtern, die Sie der Länge

nach absteigend sortieren möchten:

def sortiere_nach_laenge(worte):

t = []

for wort in worte:

t.append((len(wort), wort))

t.sort(reverse=True)

res = []

for laenge, wort in t:

res.append(wort)

return res

Die erste Schleife erstellt eine Liste mit Tupeln, die als ersten Wert die Länge des

Worts und als zweiten das Wort enthält.

sort vergleicht das erste Element, also die Länge, und zieht das zweite Element nur

heran, um gleichrangige Elemente zu sortieren. Das Schlüsselwortargument

reverse=True weist sort an, absteigend zu sortieren.

Die zweite Schleife durchläuft die Liste mit Tupeln und erstellt eine Liste von

Wörtern in nach der Länge absteigender Reihenfolge.

In diesem Beispiel werden Wörter mit gleicher Länge alphabetisch absteigend

sortiert. In manchen Fällen möchten Sie aber vielleicht, dass Wörter mit gleicher

Länge in zufälliger Reihenfolge erscheinen. Passen Sie das Beispiel so an, dass

Wörter mit gleicher Länge in zufälliger Reihenfolge sortiert werden. Tipp: Werfen

Sie einen Blick auf die random-Funktion im Modul random. Lösung:

 unbestaendige_sortierung.py.

 Listing 12.2

Sequenzen mit Sequenzen

Bisher habe ich mich auf Listen mit Tupeln konzentriert. Aber fast alle Beispiele in

diesem Kapitel funktionieren auch mit Listen mit Listen, Tupeln mit Tupeln und

Tupeln mit Listen. Um Ihnen die Aufzählung aller möglichen Kombinationen zu

ersparen, ist es einfacher, wenn wir einfach von Sequenzen mit Sequenzen sprechen.

In vielen Zusammenhängen sind die verschiedenen Arten von Sequenzen (Strings,

Listen und Tupel) austauschbar. Wie und warum wählen Sie also eine dieser

Optionen aus?

Fangen wir mit dem Offensichtlichen an: Strings bieten die begrenztesten

Möglichkeiten, da die Sequenz aus Zeichen bestehen muss. Außerdem sind Strings

nicht veränderbar. Wenn Sie also die Zeichen in einem String ändern müssen (ohne

einen neuen String zu erstellen), würden Sie wahrscheinlich eine Liste von

Buchstaben verwenden.

Listen sind gebräuchlicher als Tupel. Das liegt in erster Linie daran, dass sie

veränderbar sind. Es gibt aber einige Fälle, in denen Sie Tupeln den Vorzug geben

könnten:

1. In manchen Situationen, wie beispielsweise innerhalb einer return-Anweisung,

ist es syntaktisch einfacher, ein Tupel anstelle einer Liste zu erstellen. In

anderen Fällen ist eine Liste vielleicht praktischer.

2. Wenn Sie eine Sequenz als Dictionary-Schlüssel verwenden möchten, müssen

Sie einen unveränderlichen Typ wie ein Tupel oder einen String verwenden.

3. Wenn Sie eine Sequenz als Argument an eine Funktion übergeben, reduzieren

Sie mit Tupeln das Risiko unerwarteten Verhaltens aufgrund von Aliasing.

Da Tupel unveränderbar sind, bieten sie keine Methoden wie sort und reverse, die

vorhandene Listen ändern. Allerdings bietet Python die integrierten Funktionen

sorted und reversed, die eine beliebige Sequenz als Parameter entgegennehmen

und eine neue Liste mit denselben Elementen in einer anderen Reihenfolge

zurückliefern.

Debugging

Listen, Dictionaries und Tupel werden allgemein als Datenstrukturen bezeichnet.

In diesem Kapitel beginnen wir, uns mit zusammengesetzten Datenstrukturen zu

befassen, wie etwa Listen mit Tupeln und Dictionaries, die Tupel als Schlüssel und

Listen als Werte enthalten. Zusammengesetzte Datenstrukturen sind nützlich, aber

auch anfällig für das, was ich Strukturfehler nenne: Fehler, die dann auftreten,

wenn eine Datenstruktur den falschen Typ, die falsche Größe oder die falsche

Zusammensetzung hat. Wenn Sie beispielsweise eine Liste mit einem Integer

erwarten und ich Ihnen einfach nur einen ganz normalen Integer gebe (nicht in einer

Liste), funktioniert das nicht.

Als Hilfe für das Debugging solcher Fehler habe ich für die Programm-Suite

Swampy ein Modul mit dem Namen structshape geschrieben, das eine Funktion –

ebenfalls mit dem Namen structshape – bereitstellt, die eine beliebige

Datenstruktur als Argument entgegennimmt und einen String zurückliefert, der die entsprechende Form zusammenfasst. Sie können es unter folgender Adresse

herunterladen: http://thinkpython.com/code/structshape.py

Hier sehen Sie das Ergebnis für eine einfache Liste:

>>> from structshape import structshape

>>> t = [1,2,3]

>>> print structshape(t)

list of 3 int

Ein schickeres Programm würde natürlich »list of 3 int s« schreiben. Aber es war

einfacher, mich nicht um die Mehrzahl zu kümmern. (Es gibt nur eine

englischsprachige Version von Swampy.) Hier sehen Sie eine Liste mit Listen:

>>> t2 = [[1,2], [3,4], [5,6]]

>>> print structshape(t2)

list of 3 list of 2 int

Wenn die Elemente einer Liste nicht vom selben Typ sind, werden sie von

structshape nacheinander nach Typ gruppiert:

>>> t3 = [1, 2, 3, 4.0, '5', '6', [7], [8], 9]

>>> print structshape(t3)

list of (3 int, float, 2 str, 2 list of int, int)

Hier sehen Sie eine Liste mit Tupeln:

>>> s = 'abc'

>>> lt = zip(t, s)

>>> print structshape(lt)

list of 3 tuple of (int, str)

Und hier ein Dictionary mit zwei Elementen, die Integer mit Strings verknüpfen:

>>> d = dict(lt)

>>> print structshape(d)

dict of 3 int->str

Sollten Sie Probleme haben, Ihre Datenstrukturen im Auge zu behalten, kann Ihnen

structshape helfen.

Glossar

Tupel:

Unveränderbare Sequenz von Elementen.

Tupel-Zuweisung:

Zuweisung mit einer Sequenz auf der rechten Seite und einem Tupel von

Variablen auf der linken Seite. Zuerst wird die rechte Seite ausgewertet.

Anschließend werden die Elemente den entsprechenden Variablen auf der linken

Seite zugewiesen.

Sammlung:

Zusammenstellung eines Argument-Tupels variabler Länge.

Streuung:

Behandlung einer Sequenz als Liste von Argumenten.

DSU:

Abkürzung für »Decorate - Sort - Undecorate« (dekorieren, sortieren, Dekoration

entfernen). Muster, bei dem zunächst eine Liste mit Tupeln mit entsprechenden

Sortierkriterien erstellt, dann sortiert und anschließend wieder ein Teil des

Ergebnisses extrahiert wird.

Datenstruktur:

Sammlung von zusammengehörigen Werte in Listen, Dictionaries, Tupeln usw.

Form (einer Datenstruktur):

Zusammenfassung von Typ, Größe und Zusammenstellung einer Datenstruktur.

Übungen

Schreiben Sie eine Funktion mit dem Namen am_haeufigsten, die einen String

entgegennimmt und die darin enthaltenen Zeichen ihrer Häufigkeit nach in

absteigender Reihenfolge ausgibt. Suchen Sie Textbeispiele aus verschiedenen

Sprachen und untersuchen Sie, wie sich die Häufigkeit der Buchstaben in den

verschiedenen Sprachen unterscheidet. Vergleichen Sie Ihre Ergebnisse mit den

Tabellen unter http://de.wikipedia.org/wiki/Buchstabenhäufigkeit.

Lösung: am_haeufigsten.py.

 Listing 12.3

Mehr Anagramme!

1. Schreiben Sie ein Programm, das eine Wortliste aus einer Datei einliest (siehe

„Wortlisten einlesen“) und alle Wortgruppen ausgibt, die Anagramme sind.

So könnte die Ausgabe in etwa aussehen:

['ahnender', 'andrehen', 'naehernd', 'naehrend', 'nahender']

['verheilt', 'verhielt', 'verleiht']

['inserent', 'innerste', 'internes', 'reinsten', 'steinern']

Tipp: Eventuell möchten Sie ein Dictionary erstellen, das von einer Gruppe

von Buchstaben auf eine Liste mit Wörtern verweist, die mit diesen Zeichen

gebildet werden können. Dabei stellt sich die Frage, wie Sie die Gruppen von

Buchstaben so darstellen können, dass Sie sie als Schlüssel verwenden können.

2. Passen Sie das bisherige Programm so an, dass es die größte Anagrammgruppe

als erste ausgibt, dann die zweite usw.

3. In Scrabble spricht man von einem »Bingo«, wenn Sie alle sieben Steine auf

einmal spielen und mit einem Stein auf dem Spielbrett ein Wort mit acht

Buchstaben bilden können. Mit welcher Gruppe von acht Buchstaben sind die

meisten Bingos möglich?

Lösung: anagramm_gruppen.py.

 Listing 12.4

Zwei Wörter bilden ein »Metathese-Paar«, wenn Sie eines in das andere verwandeln

können, indem Sie zwei Zeichen vertauschen, beispielsweise »forsch« und »frosch«.

Schreiben Sie ein Programm, das alle Metathese-Paare in der Wortliste findet. Tipp:

Testen Sie nicht alle Wortpaare und testen Sie nicht alle möglichen Vertauschungen.

Lösung: metathese.py. Hinweis: Diese Übung wurde angeregt durch ein Beispiel von

http://puzzlers.org.

 Listing 12.5

Und wieder ein Car Talk-Rätsel:

Was ist das längste Wort, das ein gültiges deutsches Wort bleibt, auch wenn Sie einen Buchstaben nach dem anderen entfernen?

Die Buchstaben dürfen von beiden Enden oder aus der Mitte entfernt werden. Aber Sie dürfen keine Buchstaben neu anordnen. Jedes Mal, wenn Sie ein Zeichen entfernen, muss ein anderes deutsches Wort übrig bleiben. Zum Schluss wird nur noch ein Buchstabe übrig bleiben, der natürlich kein ganzes Wort mehr ergeben kann. Ich möchte wissen, wie das längste solche Wort heißt und wie viele Zeichen es enthält.

Ich gebe Ihnen ein kleines Beispiel: »Pfand«. Sie beginnen mit »Pfand« und entfernen das P am Anfang.

Übrig bleibt das Wort »fand«. Anschließend entfernen Sie das »d« am Ende und erhalten »Fan«. Wenn Sie nun noch das »F« entfernen, bleibt »an« und schließlich nur noch das »a«.

Schreiben Sie ein Programm, das solche Wörter findet und das längste ausgibt.

Diese Übung ist ein bisschen komplizierter als die meisten anderen, deshalb gebe ich

Ihnen einige Tipps:

1. Sie könnten eine Funktion schreiben, die ein Wort erwartet und eine Liste aller

Wörter berechnet, die aus diesem Wort gebildet werden können, nachdem ein

Buchstabe entfernt wurde. Das sind sozusagen die »Kinder« dieses Worts.

2. Rekursiv gesehen, ist ein Wort reduzierbar, wenn alle seine Kinder reduzierbar

sind. Als Basisfall können Sie davon ausgehen, dass der Leerstring reduzierbar

ist.

3. Für eine bessere Leistung Ihres Programms können Sie für alle Wörter ein

Memo anlegen, von denen Sie bereits wissen, dass sie reduzierbar sind.

Lösung: reduzierbar.py.

 Listing 12.6

Kapitel 13. Fallstudie: Wahl der richtigen

Datenstruktur

Häufigkeitsanalyse für Wörter

Wie üblich, sollten Sie mindestens eine der folgenden Übungen versuchen, bevor Sie

meine Lösungen lesen.

Schreiben Sie ein Programm, das eine Datei einliest, jede Zeile in Wörter zerlegt,

Whitespace und Interpunktionszeichen aus den Wörtern entfernt und sie in

Kleinbuchstaben konvertiert.

Tipp: Das Modul string stellt zwei nützliche Zeichenfolgen zur Verfügung:

whitespace – mit Leerzeichen, Tab, Zeilenvorschub usw. – sowie punctuation mit

Interpunktionszeichen. Mal sehen, ob wir Python fluchen lassen können:

>>> import string

>>> print string.punctuation

!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~

Außerdem können Sie versuchen, die String-Methoden strip, replace und translate

zu verwenden.

 Listing 13.1

Besuchen Sie die Website von Project Gutenberg

(http://www.gutenberg.org/wiki/DE_Hauptseite) und laden Sie Ihr bevorzugtes urheberrechtsfreies Buch im Textformat herunter.

Ändern Sie das Programm aus der vorherigen Übung so, dass es das

heruntergeladene Buch liest, die Header-Informationen am Anfang der Datei

überspringt und den Rest der Datei wie zuvor verarbeitet.

Passen Sie anschließend das Programm so an, dass es die Gesamtzahl der Wörter im

Buch zählt und berechnet, wie oft jedes dieser Wörter verwendet wird.

Geben Sie die Anzahl der unterschiedlichen im Buch verwendeten Wörter aus.

Vergleichen Sie mehrere Bücher von unterschiedlichen Autoren aus

unterschiedlichen Regionen. Welcher Autor nutzt den umfangreichsten Wortschatz?

 Listing 13.2

Überarbeiten Sie das Programm aus der vorherigen Übung dahin gehend, dass es die

20 am häufigsten verwendeten Wörter im Buch anzeigt.

 Listing 13.3

Ändern Sie das vorherige Programm so, dass es eine Wortliste einliest (siehe

„Wortlisten einlesen“), und geben Sie alle Wörter aus dem Buch aus, die nicht in der

Wortliste stehen. Wie viele davon sind Tippfehler? Wie viele davon sind gebräuchliche Wörter, die eigentlich in der Wortliste stehen müssten, und wie viele

sind eher ungewöhnlich? (Denken Sie daran, dass die Wortliste für Kreuzworträtsel

gedacht ist und daher »ä« als »ae«, »ö« als »oe, »ü« als »ue« und »ß« als »ss«

geschrieben werden.)

 Listing 13.4

Zufallszahlen

Wenn man Computerprogramme mit den gleichen Eingaben füttert, erzeugen sie

meistens die gleichen Ausgaben. Deshalb sagt man ihnen Determinismus nach.

Determinismus ist üblicherweise eine gute Sache, da wir ja auch erwarten, dass

dieselbe Berechnung dasselbe Ergebnis liefert. Bei manchen Anwendungen möchten

wir aber, dass der Computer unberechenbar ist. Spiele sind nur eines von vielen

Beispielen dafür.

Es ist gar nicht so einfach, ein Programm wirklich unberechenbar zu machen. Aber

es gibt Möglichkeiten, es wenigstens so wirken zu lassen. Eine solche Möglichkeit

sind Algorithmen, die Pseudozufallszahlen erzeugen. Pseudozufallszahlen sind

nicht wirklich zufällig, weil sie durch deterministische Berechnungen generiert

werden. Aber wenn man die Zahlen nur ansieht, ist es nahezu unmöglich, sie von

echten Zufallszahlen zu unterscheiden.

Das Modul random stellt Funktionen bereit, die Pseudozufallszahlen erzeugen (die

ich von nun an nur noch »Zufallszahlen« nenne).

Die Funktion random liefert eine zufällige Fließkommazahl zwischen 0,0 und 1,0

(einschließlich 0,0, aber ohne 1,0). Jedes Mal, wenn Sie random aufrufen, erhalten

Sie die nächste Zahl aus einer langen Reihe. Für eine kleine Kostprobe können Sie

die folgende Schleife ausführen:

import random

for i in range(10):

x = random.random()

print x

Die Funktion randint erwartet die Parameter low und high und liefert einen Integer

zwischen low und high (einschließlich der beiden Maximalwerte).

>>> random.randint(5, 10)

5

>>> random.randint(5, 10)

9

Um ein Element aus einer Sequenz zufällig auszuwählen, können Sie choice

verwenden:

>>> t = [1, 2, 3]

>>> random.choice(t)

2

>>> random.choice(t)

3

Das Modul random bietet auch Funktionen, mit denen Sie zufällige Werte aus

stetigen Verteilungen wie der Gaußschen, der Gamma-, der Exponentialverteilung

sowie einigen anderen auswählen können.

Schreiben Sie eine Funktion mit dem Namen waehle_aus_hist, die ein Histogramm

erwartet (siehe „Dictionary als Menge von Zählern“) und einen Zufallswert aus dem Histogramm liefert, der anhand der Wahrscheinlichkeit in Relation zur Häufigkeit

ausgewählt wird. Für das folgende Histogramm

>>> t = ['a', 'a', 'b']

>>> hist = histogramm(t)

>>> print hist

{'a': 2, 'b': 1}

sollte Ihre Funktion beispielsweise 'a' mit der Wahrscheinlichkeit 2:3 und 'b' mit der Wahrscheinlichkeit 1:3 zurückgeben.

 Listing 13.5

Worthistogramm

Sie sollten die bisherigen Übungen wenigstens versuchen, bevor Sie weitermachen.

Die Lösung finden Sie unter dem Namen analyse_buch.py in den Codebeispielen.

Außerdem brauchen Sie buddenbrooks.txt.

Hier sehen Sie ein Programm, das eine Datei liest und ein Histogramm der Wörter in

der Datei erstellt:

import string

def verarbeite_datei(dateiname):

hist = dict()

fp = open(dateiname)

for zeile in fp:

verarbeite_zeile(zeile, hist)

return hist

def verarbeite_zeile(zeile, hist):

zeile = zeile.replace('-', ' ')

for wort in zeile.split():

wort = wort.strip(string.punctuation + string.whitespace)

wort = wort.lower()

hist[wort] = hist.get(wort, 0) + 1

hist = verarbeite_datei('buddenbrooks.txt')

Dieses Programm liest buddenbrooks.txt, eine Datei mit dem Text von Die Buddenbrooks von Thomas Mann.

verarbeite_datei durchläuft die Zeilen der Datei und übergibt eine nach der anderen

an verarbeite_zeile. Das Histogramm hist wird dabei als Akkumulator verwendet.

verarbeite_zeile verwendet die String-Methode replace, um die Bindestriche durch

Leerzeichen zu ersetzen, bevor die Zeile mit split in eine Liste mit Strings zerlegt

wird. Anschließend durchlaufen wir diese Liste mit Wörtern, entfernen mit strip

Interpunktionszeichen und wandeln mit lower alle Buchstaben in Kleinbuchstaben

um. (Kurz gesagt: Die Strings werden »konvertiert«. Denken Sie daran, dass Strings

unveränderbar sind. Entsprechend liefern Methoden wie strip und lower neue

Strings zurück.)

In einem letzten Schritt aktualisiert verarbeite_zeile das Histogramm, indem ein

neues Element erstellt oder ein vorhandenes aktualisiert wird.

Um die Summe der Wörter im Buch insgesamt zu berechnen, können wir die

Häufigkeiten im Histogramm addieren:

def summe_woerter(hist):

return sum(hist.values())

Die Anzahl der unterschiedlichen Wörter entspricht der Anzahl der Elemente im

Dictionary:

def unterschiedliche_woerter(hist):

return len(hist)

Und hier der Code, um das Resultat auszugeben:

print 'Gesamtzahl Wörter:', summe_woerter(hist)

print 'Anzahl der unterschiedlichen Wörter:', unterschiedliche_woerter(hist)

Schließlich das Ergebnis:

Gesamtzahl Wörter: 235864

Anzahl der unterschiedlichen Wörter: 26674

Die häufigsten Wörter

Die häufigsten Wörter können wir mithilfe des DSU-Musters finden. Die Funktion

haeufigste_woerter erwartet ein Histogramm und liefert eine Liste von Wort-

Frequenz-Tupeln, absteigend sortiert nach Häufigkeit:

def haeufigste_woerter(hist):

t = []

for schluessel, wert in hist.items():

t.append((wert, schluessel))

t.sort(reverse=True)

return t

Die folgende Schleife gibt die zehn häufigsten Wörter aus:

t = haeufigste_woerter(hist)

print 'Die häufigsten Wörter lauten:'

for haeuf, wort in t[0:10]:

print wort, ' \t', haeuf

Und hier die Ergebnisse für Die Buddenbrooks:

Die häufigsten Wörter lauten:

und 9650

die 5753

der 4941

er 3745

in 3457

mit 3253

zu 3234

sie 3191

das 2605

sich 2595

Optionale Parameter

Integrierte Funktionen und Methoden, die eine variable Anzahl von Argumenten

erwarten, haben wir bereits gesehen. Es ist aber auch möglich, benutzerdefinierte

Funktionen mit optionalen Argumenten zu schreiben. Hier sehen Sie eine Funktion,

die die häufigsten Wörter in einem Histogramm ausgibt:

def print_haeufigste_woerter(hist, anz=10):

t = haeufigste_woerter(hist)

print 'Die häufigsten Wörter lauten:'

for haeuf, wort in t[:anz]:

print wort, ' \t', haeuf

Der erste Parameter ist erforderlich, der zweite optional. Der Standardwert von anz ist 10.

Wenn Sie nur ein Argument angeben:

print_haeufigste_woerter(hist)

erhält anz den Standardwert. Geben Sie jedoch zwei Argumente an:

print_haeufigste_woerter(hist, 20)

erhält anz stattdessen den Wert des Arguments. Anders ausgedrückt: Das optionale

Argument überschreibt den Standardwert.

Wenn eine Funktion sowohl erforderliche also optionale Parameter enthält, müssen

Sie zuerst alle erforderlichen Parameter angeben und dann die optionalen.

Dictionary-Subtraktion

Die Wörter, die im Buch vorkommen, aber nicht in unserer Wortliste wortliste.txt

stehen, können wir dadurch ermitteln, dass wir zwei Mengen voneinander

subtrahieren. Wir suchen also alle Wörter aus Menge 1 (die Wörter im Buch), die

nicht in Menge 2 (die Wörter in der Liste) enthalten sind.

subtrahiere erwartet die beiden Dictionaries buch_hist und wortliste_hist und

liefert ein neues Dictionary, das alle Schlüssel aus buch_hist enthält, die nicht in

wortliste_hist enthalten sind. Da uns die Werte nicht interessieren, verwenden wir

einfach None. Eine Besonderheit an dieser Stelle ist die Tatsache, dass unsere

Wortliste keine deutschen Sonderzeichen enthält (weil es ja eine »Kreuzwortliste«

ist). Damit wir bei unserer Subtraktion nicht alle Wörter erhalten, die zwar in der

Wortliste stehen, aber eben nicht mit Umlauten oder scharfem S, müssen wir diese

Zeichen vorher mit replace ersetzen.

def subtrahiere(buch_hist, wortliste_hist):

res = {}

for schluessel in buch_hist:

ersetzt = schluessel.replace('ä', 'ae').replace('ü', 'ue').replace('ö', 'oe').replace('ß', 'ss') if ersetzt not in wortliste_hist:

res[schluessel] = None

return res

In der vierten Zeile ersetzen wir die deutschen Sonderzeichen und weisen das

Ergebnis der temporären Variablen ersetzt zu. Diese Variable nutzen wir lediglich,

um das so veränderte Wort mit den Wörtern in unserer Wortliste zu vergleichen. Als

Schlüssel für das Ergebnis-Dictionary verwenden wir natürlich das ursprüngliche

Wort mit Sonderzeichen, damit wir es entsprechend ausgeben können.

Um alle Wörter zu finden, die nicht in wortliste.txt stehen, können wir

verarbeite_datei nutzen, um ein Histogramm für wortliste.txt zu erstellen, und

subtrahieren anschließend:

woerter = verarbeite_datei('wortliste.txt')

diff = subtrahiere(hist, woerter)

print "Folgende Wörter aus dem Buch sind nicht in der Wortliste enthalten:"

for wort in diff.keys():

print wort,

Hier einige Ergebnisse aus Die Buddenbrooks:

Folgende Wörter aus dem Buch sind nicht in der Wortliste enthalten:

dunkelgrauen hinabwallenden anheim gab geheime hauptpastor kaufmannsstand iuris nieder

parkettierten blendenden familienoberhaupt kurzum auftauchen ...

Manche dieser Wörter sind ungewöhnlich oder nicht mehr allzu gebräuchlich.

Andere dagegen, wie beispielsweise »geheime«, sollten dagegen auf jeden Fall in

der Liste stehen!

Zufallswörter

Der einfachste Algorithmus, um ein Wort aus dem Histogramm zufällig

herauszugreifen, besteht darin, eine Liste mit mehreren Kopien aller Wörter der

berechneten Häufigkeit entsprechend zu erstellen und dann aus der Liste zu wählen:

def zufalls_wort(h):

t = []

for wort, haeuf in h.items():

t.extend([wort] * haeuf)

return random.choice(t)

Der Ausdruck [wort] * haeuf erstellt eine Liste mit haeuf Kopien des Strings wort.

Die Methode extend funktioniert ähnlich wie append, allerdings ist in diesem Fall

das Argument eine Sequenz.

Dieser Algorithmus funktioniert, ist aber nicht sehr effizient. Jedes Mal, wenn Sie

ein Zufallswort auswählen, wird die Liste neu erstellt, die genauso groß wie das

ursprüngliche Buch ist. Eine naheliegende Verbesserung besteht darin, die Liste

einmal zu erstellen und mehrfach zu verwenden. Trotzdem ist die Liste immer noch

sehr groß.

Eine Alternative wäre:

1. Verwenden Sie keys, um die Liste der Wörter im Buch zu erhalten.

2. Erstellen Sie eine Liste, die die kumulative Summe der Worthäufigkeiten

enthält (siehe Listing 10.3). Das letzte Element in dieser Liste wäre die Summe der Anzahl der Wörter im Buch, n.

3. Wählen Sie eine Zufallszahl zwischen 1 und n. Nutzen Sie eine

Bisektionssuche (siehe Listing 10.11), um den Index zu finden, an dem die Zufallszahl in der kumulativen Summe eingesetzt werden soll.

4. Verwenden Sie diesen Index, um das entsprechende Wort in der Wortliste zu

finden.

Schreiben Sie ein Programm, das diesen Algorithmus verwendet, um ein zufälliges

Wort aus dem Buch auszuwählen. Lösung: analyse_buch2.py.

 Listing 13.6

Markov-Analyse

Wenn Sie Wörter zufällig aus einem Buch auswählen, können Sie sich einen

Eindruck vom verwendeten Wortschatz machen. Aber Sie erhalten wahrscheinlich

keinen korrekten Satz:

ist ein langen see und tom macht besonderes gruppen um pflegten steifte sich

ließ erörtert

Eine Folge zufällig ausgewählter Wörter ergibt nur selten Sinn, weil zwischen den

aufeinanderfolgenden Wörtern keine Beziehung besteht. In einem realen Satz

erwarten Sie, dass auf einen Artikel ein Adjektiv oder ein Nomen folgt und kein Verb oder Adverb.

Eine Möglichkeit, solche Beziehungen zu bestimmen, ist die Markov-Analyse.

Dabei wird für eine Sequenz von Wörtern die Wahrscheinlichkeit bestimmt, dass ein

bestimmtes Wort auf ein anderes folgt. So beginnt beispielsweise der Monty-

Python-Song Eric, the Half a Bee:

Half a bee, philosophically, Must, ipso facto, half not be. But half the bee has got to be Vis a vis, its entity. D’you see? But can a bee be said to be or not to be an entire bee. When half the bee is not a bee.

Due to some ancient injury?

In diesem Text folgt auf die Phrase »half the« immer das Wort »bee«. Auf »the bee«

folgt entweder »has« oder »is«.

Das Ergebnis einer Markov-Analyse ist ein Mapping von jedem Präfix (z. B. »half

the« und »the bee«) auf alle möglichen Suffixe (wie »has« und »is«).

Sobald Sie eine solche Zuordnungstabelle haben, können Sie einen Zufallstext

erzeugen, indem Sie mit einem beliebigen Präfix beginnen und nach dem

Zufallsprinzip aus der Liste der möglichen Suffixe auswählen. Im nächsten Schritt

kombinieren Sie dann das Ende des Präfix mit dem neuen Suffix, um daraus das

nächste Präfix zu bilden usw.

Wenn Sie in unserem Beispiel mit dem Präfix »Half a« beginnen, muss das nächste

Wort »bee« lauten, weil das Präfix nur einmal im Text vorkommt. Das nächste

Präfix ist »a bee«, das nächste Suffix könnte also »philosophically«, »be« oder

»due« sein.

In diesem Beispiel ist die Länge des Präfix immer 2. Sie können aber natürlich eine

Markov-Analyse mit einem Präfix beliebiger Länge durchführen.

Markov-Analyse:

1. Schreiben Sie ein Programm, das Text aus einer Datei liest und eine Markov-

Analyse durchführt. Das Ergebnis sollte ein Dictionary sein, das Präfixe einer

Sammlung möglicher Suffixe zuordnet. Diese Sammlung kann eine Liste, ein

Tupel oder ein Dictionary sein. Entscheiden Sie sich für eine geeignete

Datenstruktur. Testen Sie Ihr Programm mit einem Präfix der Länge 2.

Schreiben Sie das Programm aber so, dass Sie es auch mit anderen Präfixen

ausführen können.

2. Erweitern Sie das bisherige Programm um eine Funktion, die auf Grundlage

der Markov-Analyse Zufallstexte schreibt. Hier sehen Sie ein Beispiel aus Die

 Buddenbrooks mit der Präfixlänge 2:

Übrigens genoß Kai Graf Mölln eines gewissen Respekts wegen der Wildheit und zügellosen

Unbotmäßigkeit, die man mir gleich bei der Sache. »Ihr redet und redet«, rief Christian außer sich.

dann verstummte sie eingeschüchtert. Aber seine halbbewußten Bedürfnisse waren stärker, er

selbst fühlte sich unaussprechlich müde Er wird begreifen, daß es wie »Nally« klang; Madame Kethelsen das Stockwerk und auch die übrigen voreilig und verspätet ineinander hallenden Schallmassen nicht innehielten, einem aufdringlichen und in erstaunlicher Rundung über das andere ... ja, unausstehlich, das muß wahr sein.

In diesem Beispiel habe ich die Interpunktionszeichen nicht von den Wörtern

entfernt. Das Ergebnis ist beinahe syntaktisch korrekt, aber eben nicht ganz.

Semantisch ergibt das Ganze ebenfalls fast Sinn, aber auch nicht wirklich.

Was passiert, wenn Sie die Länge des Präfix erhöhen? Ist der Zufallstext dann

mehr sinnvoller?

3. Sie können auch versuchen, die Texte von zwei oder mehr Büchern zu

analysieren. Der Zufallstext mischt dann den Wortschatz und die Phrasen aus

mehreren Quellen. Vielleicht führt das zu interessanten Ergebnissen.

Hinweis: Diese Fallstudie basiert auf einem Beispiel von Kernighan and Pike, The

 Practice of Programming, Addison-Wesley, 1999.

 Listing 13.7

Sie sollten versuchen, diese Übung zu lösen, bevor Sie weiterlesen. Meine Lösung

finden Sie unter dem Namen markov.py in den Codebeispielen. Außerdem brauchen

Sie buddenbrooks.txt.

Datenstrukturen

Zufallstexte mit der Markov-Analyse sind witzig, aber diese Übung hat auch noch

einen anderen Sinn: die Wahl der richtigen Datenstruktur. In der vorherigen Übung

mussten Sie entscheiden:

wie Sie die Präfixe abbilden,

wie Sie die Sammlung möglicher Suffixe abbilden und

wie Sie das Mapping von jedem Präfix auf die Sammlung möglicher Suffixe

abbilden.

Okay, die letzte Frage ist einfach. Die einzige Mapping-Möglichkeit, die wir

kennengelernt haben, ist ein Dictionary.

Für die Präfixe lauten die naheliegenden Optionen String, Liste mit Strings oder

Tupel mit Strings. Für die Suffixe steht eine Liste oder ein Histogramm (Dictionary)

zur Auswahl.

Wie sollen Sie sich entscheiden? In einem ersten Schritt sollten Sie darüber

nachdenken, welche Operationen Sie für die jeweilige Datenstruktur implementieren

möchten. Bei den Präfixen müssen wir in der Lage sein, ein Wort am Anfang zu

entfernen und ein anderes Wort am Ende anzuhängen. Wenn das aktuelle Präfix

beispielsweise »Half a« und das nächste Wort »bee« ist, müssen Sie daraus als

nächstes Präfix »a bee« bilden können.

Ihre Wahl mag zunächst vielleicht auf eine Liste fallen, weil Sie dann Elemente

einfach hinzufügen und entfernen können. Aber wir müssen die Präfixe auch als

Schlüssel in einem Dictionary verwenden können. Daher kommen Listen nicht

infrage. Mit Tupeln können Sie zwar nichts hinzufügen oder entfernen, aber mit dem

Additionsoperator können Sie ein neues Tupel erstellen:

def verschieben(praefix, wort):

return praefix[1:] + (wort,)

verschieben erwartet ein Tupel mit Wörtern, praefix und den String wort. Die

Funktion bildet daraus ein neues Tupel, das bis auf das erste Wort die Wörter aus

praefix enthält und am Ende um wort verlängert wird.

Zur Suffixsammlung müssen wir unter anderem neue Suffixe hinzufügen (oder die

Häufigkeit vorhandener erhöhen) sowie ein Element zufällig auswählen können.

Das Hinzufügen eines neuen Suffix ist sowohl mit einer Liste als auch mit einem

Histogramm einfach. Die zufällige Auswahl eines Elements aus einer Liste ist

ebenfalls sehr einfach, bei einem Histogramm ist das schon komplizierter (siehe

Listing 13.6).

Bisher haben wir uns mit Datenstrukturen vor allem im Hinblick auf die Einfachheit

der Implementierung auseinandergesetzt. Aber bei der Wahl von Datenstrukturen

sind auch andere Faktoren zu berücksichtigen. Einer davon ist die Laufzeit.

Manchmal gibt es theoretische Gründe, die vermuten lassen, dass eine Datenstruktur

schneller als eine andere ist. Beispielsweise habe ich erwähnt, dass der in-Operator

mit Dictionaries schneller funktioniert als mit Listen, zumindest wenn die Anzahl

der Elemente groß ist.

Aber oft wissen Sie nicht von Anfang an, welche Implementierung schneller sein

wird. Dann können Sie einfach beide implementieren und herausfinden, welche

besser funktioniert. Diese Vorgehensweise bezeichnet man als Benchmarking. Eine

praktische Alternative besteht darin, sich für die Datenstruktur zu entscheiden, die

am einfachsten zu implementieren ist, um zu sehen, ob sie für die geplante

Anwendung schnell genug ist. Wenn ja, haben Sie Ihr Ziel bereits erreicht. Und für

den anderen Fall gibt es Tools, wie etwa das Modul profile, mit denen Sie die Stellen

in einem Programm finden können, die die meiste Zeit in Anspruch nehmen.

Ein weiterer Faktor, den Sie berücksichtigen müssen, ist der Speicherplatz. Ein

Histogramm für die verschiedenen Wörter in einem Text kann unter Umständen

weniger Speicherplatz in Anspruch nehmen, weil Sie jedes Wort nur einmal ablegen

müssen – unabhängig davon, wie oft es im Text vorkommt. Wenn Sie Speicherplatz

sparen, kann das in manchen Fällen dazu führen, dass Ihr Programm schneller läuft.

Und im Extremfall kann es passieren, dass Ihr Programm überhaupt nicht läuft,

wenn Ihnen der Speicher ausgeht. Bei den meisten Anwendungen muss der

Speicherhunger allerdings erst an zweiter Stelle nach der Laufzeit berücksichtigt

werden.

Ein abschließender Gedanke dazu: In dieser Diskussion sind wir davon ausgegangen,

dass wir sowohl für die Analyse als auch für die Erzeugung dieselbe Datenstruktur

verwenden. Da dies voneinander getrennte Phasen sind, ist es aber genauso möglich,

eine Datenstruktur für die Analyse zu verwenden und diese für die Erzeugung von

Inhalten dann in eine andere Struktur zu konvertieren. Entsprechend können Sie

dann Laufzeit sparen, wenn Sie dadurch bei der Erzeugung der Inhalte mehr Zeit

sparen, als Sie durch die Konvertierung verlieren.

Debugging

Wenn Sie ein Programm debuggen, insbesondere wenn Sie an einem besonders

hartnäckigen Fehler arbeiten, sollten Sie die folgenden vier Dinge versuchen:

Lesen:

Untersuchen Ihren Code. Lesen Sie ihn durch und überprüfen Sie, ob der

Programmcode wirklich das sagt, was Sie ausdrücken wollten.

Ausführen:

Experimentieren Sie, indem Sie Änderungen vornehmen und verschiedene

Versionen ausführen. Oft werden Probleme dann offensichtlich, wenn Sie an der

richtigen Stelle im Programm das Richtige anzeigen. Aber manchmal müssen Sie

eine gewisse Zeit in Scaffolding investieren.

Grübeln:

Nehmen Sie sich Zeit zum Nachdenken. Was für eine Art von Fehler ist es: ein

Syntaxfehler, ein Laufzeitfehler oder ein semantischer Fehler? Welche

Informationen erhalten Sie aus Fehlermeldungen oder aus den Ausgaben des

Programms? Welche Art von Fehler könnte das Problem verursachen, vor dem Sie

stehen? Was haben Sie zuletzt geändert, bevor das Problem aufgetaucht ist?

Einen Schritt zurückgehen:

Ab einem gewissen Punkt ist es am besten, wenn Sie einen Schritt zurückgehen

und die letzten Änderungen so lange rückgängig machen, bis Sie wieder ein

Programm haben, das funktioniert – und das Sie verstehen. Dann können Sie

erneut Funktionalitäten hinzufügen.

Gerade Programmieranfänger versteifen sich oft auf eine dieser Aktivitäten und

vergessen dabei die anderen. Und jede dieser Herangehensweisen zeichnet ein

eigenes Schadensbild.

Wenn ein Tippfehler das Problem verursacht, kann es helfen, den Code zu lesen. Bei einem Denkfehler bringt das relativ wenig. Wenn Sie nicht verstehen, was Ihr

Programm macht, können Sie es hundertmal lesen und finden den Fehler trotzdem

nicht. Weil der Fehler in Ihren Kopf steckt.

Es kann helfen, wenn Sie einfach experimentieren – vor allem wenn Sie kleine und

einfache Tests durchführen. Aber wenn Sie experimentieren, ohne nachzudenken

oder Ihren Code zu lesen, können Sie in eine Falle geraten, die ich

»Irrfahrtsprogrammierung« nenne. Dabei machen Sie so lange irgendwelche

Änderungen, bis das Programm das Richtige tut. Es erübrigt sich, darauf

hinzuweisen, dass die Irrfahrtsprogrammierung sehr lange dauern kann.

Nehmen Sie sich Zeit, nachzudenken. Debugging ist wie eine

Experimentalwissenschaft. Dafür brauchen Sie mindestens eine Hypothese darüber,

wo das Problem liegt. Gibt es zwei oder mehr Möglichkeiten, müssen Sie sich einen

Test einfallen lassen, durch den Sie eine davon ausschließen können.

Eine Pause hilft beim Nachdenken. Genauso wie darüber reden. Wenn Sie das

Problem jemand anderem (oder sich selbst) erklären, finden Sie manchmal die

Antwort, bevor Sie die Frage zu Ende gestellt haben.

Aber selbst die besten Debugging-Techniken versagen, wenn es zu viele Fehler gibt.

Oder der Code, den Sie zum Laufen bekommen möchten, zu umfangreich oder zu

kompliziert ist. Manchmal besteht die beste Option darin, einen Schritt

zurückzugehen und das Programm so lange zu vereinfachen, bis es funktioniert und

Sie es verstehen.

Programmieranfänger zögern häufig, einen Schritt zurückzugehen, weil sie es nicht

ausstehen können, auch nur eine einzige Zeile Code zu löschen (selbst wenn sie

falsch ist). Wenn Sie sich damit besser fühlen, kopieren Sie Ihr Programm in eine

andere Datei, bevor Sie es zerlegen. Dann können Sie die einzelnen Teile Stück für

Stück wieder einfügen.

Um einen hartnäckigen Fehler aufzuspüren, müssen Sie manchmal lesen, ausführen,

grübeln und auch einen Schritt zurückgehen. Wenn Sie sich zu lange mit einer dieser

Aktivitäten aufhalten, versuchen Sie es mit der nächsten.

Glossar

Deterministisch:

Bezieht sich auf ein Programm, das bei gleicher Eingabe bei jedem Ablauf

dasselbe Ergebnis erzielt.

Pseudozufallszahlen:

Sequenz von Zahlen, die zufällig zu sein scheinen, aber von einem

deterministischen Programm berechnet werden.

Standardwert:

Wert, den ein optionaler Parameter erhält, falls kein Argument angegeben wird.

Überschreiben:

Ersetzen eines Standardwerts durch ein Argument.

Benchmarking:

Auswahl von Datenstrukturen durch Implementierung von Alternativen und

Testläufe dieser Alternativen mit Stichproben der möglichen Eingaben.

Übungen

Der »Rang« eines Worts entspricht der Position dieses Worts in einer Liste von

Wörtern, die nach ihrer Häufigkeit sortiert sind: Das häufigste Wort hat Rang 1, das

zweithäufigste Rang 2 usw.

Das Zipfsche Gesetz beschreibt eine Beziehung zwischen den Rängen und

Häufigkeiten von Wörtern in natürlichen Sprachen

(http://de.wikipedia.org/wiki/Zipfsches_Gesetz). Konkret besagt dieses Gesetz, dass die Häufigkeit f eines Worts mit dem Rang r sich folgendermaßen errechnet: f = cr– s

Dabei sind s und c Parameter, die von der Sprache und dem Text abhängen. Wenn Sie den Logarithmus beider Seiten dieser Gleichung berechnen, erhalten Sie:

log f = log c – s log r

Wenn Sie also log f und log r grafisch darstellen, sollten Sie eine gerade Linie mit der Steigung -s erhalten und log c schneiden.

Schreiben Sie ein Programm, das Text aus einer Datei liest, die Häufigkeiten der

verschiedenen Werte bestimmt und in absteigender Reihenfolge nach Häufigkeit

zusammen mit log f und log r für jedes Wort eine Linie zeichnet. Verwenden Sie das Grafikprogramm Ihrer Wahl, um die Ergebnisse grafisch darzustellen und zu

überprüfen, ob sie eine gerade Linie ergeben. Können Sie den Wert von s schätzen?

Lösung: zipf.py. Für die Graphen müssen Sie unter Umständen matplotlib

installieren (siehe http://matplotlib.sourceforge.net/).

 Listing 13.8

Kapitel 14. Dateien

Persistenz

Die meisten Programme, die wir bisher gesehen haben, sind insofern flüchtig, als sie

nur für begrenzte Zeit ausgeführt werden. Solche Programme generieren bestimmte

Ausgaben, aber sobald das Programm endet, verschwinden die Daten. Wenn Sie das

Programm erneut ausführen, fangen Sie wieder von vorne an

Andere Programme sind dagegen persistent, werden also längere Zeit (oder

dauerhaft) ausgeführt. Diese Programme speichern zumindest einen Teil ihrer Daten

dauerhaft (beispielsweise auf einer Festplatte). Wenn solche Programme beendet

und neu gestartet werden, machen sie an der Stelle weiter, an der sie zuvor aufgehört

haben.

Beispiele für persistente Programme sind Betriebssysteme – die so ziemlich immer

laufen, solange der Computer an ist – und Webserver, die ständig laufen und auf

Anforderungen aus dem Netzwerk warten.

Eine der einfachsten Möglichkeiten für Programme, Daten zu speichern, sind

Textdateien. Wir haben bereits Programme gesehen, die Textdateien lesen. In

diesem Kapitel sehen wir uns auch Programme an, die Dateien schreiben.

Eine weitere Möglichkeit besteht darin, den Zustand des Programms in einer

Datenbank zu speichern. In diesem Kapitel stelle ich Ihnen daher ebenfalls eine

einfache Datenbank und das Modul pickle vor, mit dem es ganz einfach ist,

Programmdaten zu speichern.

Lesen und schreiben

Eine Textdatei ist eine Sequenz von Zeichen, die auf einem dauerhaften Medium wie

etwa einer Festplatte, einem Flashspeicher oder einer CD-ROM gespeichert wird. Im

„Wortlisten einlesen“ haben wir bereits gesehen, wie Sie eine Datei öffnen und lesen können.

Um eine Datei zu schreiben, müssen Sie sie mit dem Modus 'w' als zweiten

Parameter öffnen:

>>> fout = open('ausgabe.txt', 'w')

>>> print fout

<open file 'ausgabe.txt', mode 'w' at 0xb7eb2410>

Vorsicht: Wenn Sie eine vorhandene Datei im Schreibmodus öffnen, werden die

alten Daten dadurch gelöscht. Sollte die Datei nicht bereits existieren, wird eine

neue erstellt.

Die write-Methode schreibt Daten in eine Datei:

>>> zeile1 = "Edle Jungfrau...\n"

>>> fout.write(zeile1)

Auch in diesem Fall merkt sich das Dateiobjekt die aktuelle Stelle. Wenn Sie also

write erneut aufrufen, werden die Daten am Ende angefügt.

>>> zeile2 = "Verschwindet und preist irgendein anderes Gör.\n"

>>> fout.write(zeile2)

Wenn Sie mit dem Schreiben fertig sind, müssen Sie die Datei schließen:

>>> fout.close()

Formatoperator

Das Argument für die Methode write muss ein String sein. Wenn wir andere Werte

in eine Datei schreiben möchten, müssen wir diese zuvor in einen String

konvertieren. Die einfachste Möglichkeit dafür besteht in der Funktion str:

>>> x = 52

>>> f.write(str(x))

Eine weitere Möglichkeit ist der Formatoperator %. Bei Integer-Werten steht %

für den Modulus-Operator. Aber wenn der erste Operand ein String ist, steht % für

den Formatoperator.

Der erste Operand ist der Format-String, der eine oder mehrere Formatsequenzen enthält, die bestimmen, wie der zweite Operand formatiert werden soll. Das

Ergebnis ist wieder ein String.

Die Formatsequenz '%d' bedeutet beispielsweise, dass der zweite Operand als

Integer formatiert werden soll (d steht für »decimal«):

>>> kamele = 42

>>> '%d' % kamele

'42'

Das Ergebnis ist der String '42', nicht zu verwechseln mit dem Integer-Wert 42.

Eine Formatsequenz kann an beliebiger Stelle im String erscheinen, wodurch Sie

auch einen Wert in einen Satz einfügen können:

>>> kamele = 42

>>> 'Ich habe %d Kamele gesehen.' % kamele

'Ich habe 42 Kamele gesehen.'

Wenn es mehr als eine Formatsequenz im String gibt, muss das zweite Argument ein

Tupel sein. Jeder Formatsequenz wird der Reihe nach ein Element des Tupels

zugeordnet.

Im folgenden Beispiel wird '%d' für die Formatierung eines Integers, '%g' für die

Formatierung einer Fließkommazahl (fragen Sie bitte nicht, warum) und '%s' für die

Formatierung eines Strings verwendet:

>>> 'In %d Jahren habe ich %g %s.' % (3, 0.1, 'Kamele gesehen')

'In 3 Jahren habe ich 0.1 Kamele gesehen.'

Die Anzahl der Elemente im Tupel muss mit der Anzahl der Formatsequenzen im

String übereinstimmen. Außerdem müssen die Typen der Elemente den

Formatsequenzen entsprechen:

>>> '%d %d %d' % (1, 2)

TypeError: not enough arguments for format string

>>> '%d' % 'dollars'

TypeError: %d format: a number is required, not str

Im ersten Beispiel sind es nicht genug Elemente, im zweiten hat das Element den

falschen Typ.

Der Formatoperator ist mächtig, kann aber schwierig in der Anwendung sein. Mehr

darüber können Sie unter docs.python.org/lib/typesseq-strings.html erfahren.

Dateinamen und Pfade

Dateien sind in Verzeichnissen organisiert (auch Ordner genannt). Für jedes

laufende Programm gibt es ein aktuelles Verzeichnis, das als Standardverzeichnis

für die meisten Vorgänge verwendet wird. Wenn Sie beispielsweise eine Datei zum

Lesen öffnen, sucht Python danach im aktuellen Verzeichnis.

Das Modul os bietet Funktionen für die Arbeit mit Dateien und Verzeichnissen

(»os« steht für »operating system«, also das Betriebssystem). os.getcwd liefert

beispielsweise den Namen des aktuellen Verzeichnisses:

>>> import os

>>> cwd = os.getcwd()

>>> print cwd

/home/dinsdale

cwd steht für »current working directory«, also das aktuelle Arbeitsverzeichnis. In

diesem Fall lautet das Ergebnis /home/dinsdale – das Home-Verzeichnis des

Benutzers mit dem Namen dinsdale.

Einen String wie cwd, der eine Datei kennzeichnet, bezeichnet man als Pfad. Ein

relativer Pfad geht vom aktuellen Verzeichnis aus. Ein absoluter Pfad geht im Gegensatz dazu vom Wurzelverzeichnis des Dateisystems aus.

Die Pfade, mit denen wir bis jetzt tun hatten, waren einfach nur Dateinamen und

damit also relativ zum aktuellen Verzeichnis. Den absoluten Pfad einer Datei können

Sie mit os.path.abspath abfragen:

>>> os.path.abspath('memo.txt')

'/home/dinsdale/memo.txt'

os.path.exists prüft, ob eine Datei oder ein Verzeichnis existiert:

>>> os.path.exists('memo.txt')

True

Wenn die Datei existiert, können Sie mit os.path.isdir feststellen, ob es sich dabei

um ein Verzeichnis handelt:

>>> os.path.isdir('memo.txt')

False

>>> os.path.isdir('musik')

True

Entsprechend können Sie mit os.path.isfile überprüfen, ob es sich um eine einfache

Datei handelt.

os.listdir liefert eine Liste der Dateien (und auch der anderen Verzeichnisse) im

angegebenen Verzeichnis:

>>> os.listdir(cwd)

['musik', 'fotos', 'memo.txt']

Um diese Funktionen zu veranschaulichen, durchläuft das folgende Beispiel ein

Verzeichnis, gibt die Namen aller Dateien aus und ruft sich selbst rekursiv für alle

Unterverzeichnisse auf:

def durchlaufe(verz_name):

for name in os.listdir(verz_name):

pfad = os.path.join(verz_name, name)

if os.path.isfile(pfad):

print pfad

else:

durchlaufe(pfad)

os.pfad.join erwartet ein Verzeichnis und einen Dateinamen und kombiniert diese

miteinander zu einem vollständigen Pfad.

Das Modul os enthält eine Funktion mit dem Namen walk, die unserer recht ähnlich,

aber vielseitiger ist. Lesen Sie die Dokumentation und geben Sie mit dieser Funktion

die Namen der Dateien eines angegebenen Verzeichnisses und der

Unterverzeichnisse aus.

Lösung: durchlaufe.py.

 Listing 14.1

Ausnahmen abfangen

Beim Lesen und Schreiben von Dateien kann eine Menge schiefgehen. Wenn Sie

eine Datei öffnen möchten, die nicht existiert, erhalten Sie beispielsweise einen

IOError:

>>> fin = open('boese_datei')

IOError: [Errno 2] No such file or directory: 'boese_datei'

Das passiert, wenn Sie keine Zugriffsberechtigungen für eine Datei haben:

>>> fout = open('/etc/passwd', 'w')

IOError: [Errno 13] Permission denied: '/etc/passwd'

Und wenn Sie versuchen, ein Verzeichnis zum Lesen zu öffnen, erhalten Sie:

>>> fin = open('/home')

IOError: [Errno 21] Is a directory

Um diese Fehler zu vermeiden, können Sie natürlich Funktionen wie os.pfad.exists

und os.pfad.isfile verwenden. Das erfordert aber eine Menge Zeit und Code, um alle

Möglichkeiten zu überprüfen (Errno 21 kann vieles bedeuten, es können hier

mindestens 21 verschiedene Dinge schiefgelaufen sein).

Am besten versuchen Sie einfach Ihr Glück und kümmern sich um die Probleme

dann, wenn sie auftreten. Genau dafür gibt es die try-Anweisung. Die Syntax ist

ähnlich der einer if-Anweisung:

try:

fin = open('boese_datei')

for zeile in fin:

print zeile

fin.close()

except:

print 'Es ist etwas schiefgelaufen.'

Python beginnt damit, die try-Klausel auszuführen. Wenn alles gut geht, überspringt

Python die except-Klausel und macht weiter. Wird eine Ausnahme ausgelöst,

verlässt das Programm die try-Klausel und führt die except -Klausel aus.

Wenn Sie eine Ausnahme mit einer try-Anweisung behandeln, spricht man davon,

dass Sie eine Ausnahme abfangen. In diesem Beispiel gibt die except-Klausel eine

Fehlermeldung aus, die nicht sehr hilfreich ist. Üblicherweise fangen Sie aber eine

Ausnahme ab, um das Problem zu beheben, es erneut zu versuchen oder wenigstens

das Programm würdevoll zu beenden.

Schreiben Sie eine Funktion mit dem Namen sed, die folgende Argumente erwartet:

ein Suchmuster als String, einen String, durch den dieses Muster ersetzt werden soll,

sowie zwei Dateinamen als String. Die Funktion soll die erste Datei lesen und den

Inhalt in die zweite Datei schreiben (und diese erstellen, falls notwendig). Wenn das

Suchmuster in der Datei vorkommt, soll es durch den entsprechenden String ersetzt

werden.

Falls ein Fehler beim Öffnen, Lesen oder Schließen der Dateien auftritt, soll Ihr

Programm die Ausnahme abfangen, eine Fehlermeldung ausgeben und die

Ausführung beenden. Lösung: sed.py.

 Listing 14.2

Datenbanken

Eine Datenbank ist eine Datei, die für die Speicherung von Daten strukturiert ist.

Die meisten Datenbanken sind insofern wie ein Dictionary organisiert, als sie

Schlüsseln entsprechende Werte zuweisen. Der größte Unterschied besteht darin,

dass sich eine Datenbank auf einer Festplatte befindet (oder einem anderen

permanenten Speicher), damit die Daten auch dann erhalten bleiben, wenn das

Programm beendet wurde.

Das Modul anydbm stellt eine Schnittstelle für die Erstellung und Aktualisierung

von Datenbankdateien zur Verfügung. Als Beispiel werde ich eine Datenbank

erstellen, die Bildunterschriften für Bilddateien speichert.

Das Öffnen einer Datenbank gleicht dem Öffnen anderer Dateien:

>>> import anydbm

>>> db = anydbm.open('bildunterschriften.db', 'c')

Der Modus 'c' bedeutet, dass die Datenbank erstellt werden soll, falls sie nicht

bereits existiert. Als Rückgabewert erhalten Sie ein Datenbankobjekt, mit dem Sie

Operationen wie mit einem Dictionary durchführen können (größtenteils). Wenn Sie

ein neues Element erstellen, aktualisiert anydbm die Datenbankdatei.

>>> db['cleese.png'] = 'Foto von John Cleese.'

Greifen Sie auf eines der Elemente zu, liest anydbm die Datei:

>>> print db['cleese.png']

Foto von John Cleese.

Wenn Sie einem vorhandenen Schlüssel einen neuen Wert zuweisen, ersetzt anydbm

den alten Wert:

>>> db['cleese.png'] = 'Foto von John Cleese bei einem Silly Walk.'

>>> print db['cleese.png']

Foto von John Cleese bei einem Silly Walk.

Viele Dictionary-Methoden wie etwa keys und items funktionieren auch mit

Datenbankobjekten. Entsprechend können Sie ein Datenbankobjekt auch mit einer

for-Anweisung durchlaufen:

for schluessel in db.keys():

print schluessel

Genau wie bei anderen Dateien sollten Sie die Datenbank schließen, wenn Sie fertig

sind:

>>> db.close()

Pickling

Eine Einschränkung von anydbm besteht darin, dass die Schlüssel und Werte Strings

sein müssen. Wenn Sie versuchen, einen anderen Typ zu verwenden, erhalten Sie einen Fehler.

Das pickle-Modul kann aber Abhilfe schaffen. Es kann beinahe jeden Objekttyp in

einen String übersetzen und solche Strings auch wieder zurück in Objekte

umwandeln.

pickle.dumps erweitert ein Objekt als Parameter und liefert einen entsprechenden

String als Rückgabewert (dumps steht für »dump string«):

>>> import pickle

>>> t = [1, 2, 3]

>>> pickle.dumps(t)

'(lp0\nI1\naI2\naI3\na.'

Dieses Format ist für Menschen nicht verständlich, es soll aber auch nur für pickle

leicht zu interpretieren sein. pickle.loads (»load string«) stellt daraus wieder ein

Objekt her:

>>> t1 = [1, 2, 3]

>>> s = pickle.dumps(t1)

>>> t2 = pickle.loads(s)

>>> print t2

[1, 2, 3]

Obwohl das neue Objekt denselben Wert wie das alte hat, ist es (im Allgemeinen)

nicht dasselbe Objekt:

>>> t1 == t2

True

>>> t1 is t2

False

Anders ausgedrückt: Wenn Sie ein Objekt mit pickle konvertieren und wieder

zurückkonvertieren, hat das den gleichen Effekt, als würden Sie das Objekt kopieren.

Mit pickle können Sie auch andere Typen als Strings in einer Datenbank speichern.

Diese Kombination ist so gebräuchlich, dass sie in einem Modul mit dem Namen

shelve gekapselt wurde.

Meine Lösung für Listing 12.4 finden Sie in den Codebeispielen unter dem Namen anagramm_gruppen.py. Sie werden erkennen, dass ich darin ein Dictionary erstelle, das einem sortierten String eine Liste mit Wörtern zuordnet, die mit diesem Zeichen

buchstabiert werden können. Beispielsweise wird 'inserent' die Liste ['innerste',

'internes', 'reinsten', 'steinern'] zugeordnet.

Schreiben Sie ein Modul, das anagramm_gruppen importiert und zwei neue

Funktionen bereitstellt: speichere_anagramme soll das Anagramm-Dictionary in

einem »shelf« speichern, lese_anagramme soll ein Wort nachschlagen und die

Liste seiner Anagramme zurückgeben. Lösung: anagramm_db.py

 Listing 14.3

Pipes

Die meisten Betriebssysteme stellen eine Kommandozeile zur Verfügung, die auch

als Shell bezeichnet wird. In einer Shell können Sie üblicherweise Befehle eingeben, um durchs Dateisystem zu navigieren und Anwendungen zu starten. Unter Unix

können Sie beispielsweise mit cd das Verzeichnis wechseln, mit ls den

Verzeichnisinhalt anzeigen oder einen Webbrowser starten, indem Sie

beispielsweise firefox eingeben.

Jedes Programm, das Sie von der Shell aus starten können, können Sie auch mit

Python mithilfe einer Pipe starten. Eine Pipe ist ein Objekt, das ein laufendes

Programm abbildet.

Der Unix-Befehl ls -l zeigt normalerweise den Inhalt des aktuellen Verzeichnisses

(ausführlich) an. Befehle wie ls können Sie mit os.popen[1] aufrufen:

>>> cmd = 'ls -l'

>>> fp = os.popen(cmd)

Das Argument ist ein String, der einen Shell-Befehl enthält. Der Rückgabewert ist

ein Objekt, das sich wie eine geöffnete Datei verhält. Sie können die Ausgabe des ls-

Prozesses mit readline zeilenweise auslesen oder den gesamten Prozess mit read

abrufen:

>>> res = fp.read()

Wenn Sie fertig sind, schließen Sie die Pipe wie eine Datei:

>>> stat = fp.close()

>>> print stat

None

Der Rückgabewert ist der finale Status des ls-Prozesses; None bedeutet, dass der

Prozess normal (also ohne Fehler) beendet wurde.

Die meisten Unix-Systeme bieten beispielsweise einen Befehl mit dem Namen

md5sum, der den Inhalt einer Datei liest und eine Checksumme berechnet (md5

unter OS X). Auf der Seite http://de.wikipedia.org/wiki/Message-

Digest_Algorithm_5 können Sie mehr über MD5 erfahren. Mit diesem Befehl haben Sie eine effiziente Möglichkeit, zu überprüfen, ob zwei Dateien denselben Inhalt

haben. Die Wahrscheinlichkeit, dass unterschiedliche Inhalte dieselbe Checksumme

ergeben, ist sehr gering (so gering, dass es sehr unwahrscheinlich ist, dass dieser Fall eintritt, bevor das Universum in sich zusammenfällt).

Mit einer Pipe können Sie md5sum von Python aus starten und das Ergebnis

aufrufen:

>>> dateiname = 'book.txt'

>>> cmd = 'md5sum ' + dateiname

>>> fp = os.popen(cmd)

>>> res = fp.read()

>>> stat = fp.close()

>>> print res

1e0033f0ed0656636de0d75144ba32e0 book.tex

>>> print stat

None

In einer großen Sammlung von MP3-Dateien kann es manchmal mehr als eine

Version desselben Songs geben, die in verschiedenen Verzeichnissen oder unter

verschiedenen Dateinamen abgelegt sind. Das Ziel dieser Übung besteht darin,

solche Duplikate zu finden.

1. Schreiben Sie ein Programm, das ein Verzeichnis und alle Unterverzeichnisse

rekursiv durchsucht und die vollständigen Pfade aller Dateien mit einem

bestimmten Suffix (beispielsweise .mp3) zurückliefert. Tipp: In os.path gibt

es mehrere nützliche Funktionen für die Manipulation von Datei- und

Pfadnamen.

2. Duplikate können Sie ermitteln, indem Sie mit md5sum eine Checksumme für

jede Datei berechnen. Wenn zwei Dateien dieselbe Checksumme haben, sind

die Inhalte wahrscheinlich identisch.

3. Um wirklich sicherzugehen, können Sie den Unix-Befehl diff verwenden.

Lösung: finde_duplikate.py. Diese Datei funktioniert nur unter Unix/Linux/OS X, da unter Windows standardmäßig weder md5sum noch diff zur Verfügung steht.

 Listing 14.4

Module schreiben

Sie können jede Datei, die Python-Code enthält, als Modul importieren.

Angenommen, Sie haben eine Datei mit dem Namen wc.py, die den folgenden Code

enthält:

def zeilenzaehler(dateiname):

zaehler = 0

for zeile in open(dateiname):

zaehler += 1

return zaehler

print zeilenzaehler('wc.py')

Wenn Sie dieses Programm ausführen, liest es sich selbst ein und gibt die Anzahl

der Zeilen in der Datei aus, in diesem Fall 7. Sie können die Datei auch

folgendermaßen importieren:

>>> import wc

7

Jetzt haben Sie das Modulobjekt wc:

>>> print wc

<module 'wc' from 'wc.py'>

Die Funktion mit dem Namen zeilenzaehler rufen Sie dann folgendermaßen auf:

>>> wc.zeilenzaehler('wc.py')

7

Und so schreiben Sie Module in Python.

Das einzige Problem in diesem Beispiel besteht darin, dass beim Import des Moduls

der Testcode im unteren Teil ausgegeben wird. Normalerweise werden beim Import

eines Moduls die neuen Funktionen zwar definiert, aber nicht ausgeführt.

Programme, die als Module importiert werden, sind meistens nach dem folgenden

Muster geschrieben:

if __name__ == '__main__':

print zeilenzaehler('wc.py')

__name__ ist eine integrierte Variable, die gesetzt ist, wenn das Programm

gestartet wird. Wird das Programm als Skript ausgeführt, hat __name__ den Wert

__main__. In diesem Fall wird der Testcode ausgeführt. Ansonsten wissen Sie, dass

das Modul importiert wird, und der Testcode wird übersprungen.

Tippen Sie dieses Beispiel in eine Datei mit dem Namen wc.py und führen Sie sie als Skript aus. Starten Sie anschließend den Python-Interpreter und geben Sie import wc

ein. Was ist der Wert von __name__, wenn das Modul importiert wird?

Warnung: Wenn Sie ein Modul importieren, das bereits importiert wurde, macht

Python überhaupt nichts. Die Datei wird nicht erneut eingewiesen, selbst wenn Sie

sie verändert haben.

Möchten Sie also ein Modul erneut laden, können Sie dazu die integrierte Funktion

reload verwenden. Das kann teilweise aber verzwickt werden. Am sichersten ist es

daher, wenn Sie den Interpreter neu starten und das Modul erneut importieren.

 Listing 14.5

Debugging

Wenn Sie Dateien lesen und schreiben, kann es Probleme mit Whitespace

(Leerraum) geben. Solche Fehler können schwierig aufzuspüren sein, weil

Leerzeichen, Tabs und Zeilenvorschübe normalerweise unsichtbar sind:

>>> s = '1 2\t 3\n 4'

>>> print s

1 2 3

4

In solchen Fällen kann die integrierte Funktion repr hilfreich sein: Sie erwartet ein beliebiges Objekt als Argument und liefert die String-Repräsentation dieses Objekts.

Für Strings werden die Whitespace-Zeichen mit Backslash-Sequenzen dargestellt:

>>> print repr(s)

'1 2\t 3\n 4'

Das kann sich beim Debugging als sehr nützlich erweisen.

Ein weiteres Problem kann sich dadurch ergeben, dass unterschiedliche

Betriebssysteme verschiedene Zeichen für den Zeilenumbruch nutzen. Manche

Systeme verwenden eine neue Zeile, dargestellt durch \n, andere wiederum den

Wagenrücklauf \r. Und manche Betriebssysteme verwenden beides. Falls Sie

Dateien zwischen verschiedenen Betriebssystemen verschieben, können diese

Inkonsistenzen Probleme bereiten.

Für die meisten Betriebssysteme gibt es Anwendungen, die ein Format ins andere

konvertieren. Weitere Informationen dazu finden Sie unter

http://de.wikipedia.org/wiki/Zeilenumbruch. Natürlich können Sie auch selbst eine solche Anwendung programmieren.

Glossar

Persistenz:

Bezieht sich auf ein Programm, das dauerhaft ausgeführt wird und wenigstens

einen Teil seiner Daten in einem permanenten Speicher abgelegt.

Formatoperator:

Operator %, der einen Format-String sowie ein Tupel entgegennimmt und einen

String erzeugt, der die Elemente des Tupels dem Format-String entsprechend

formatiert.

Format-String:

String, der zusammen mit dem Formatoperator verwendet wird und

Formatsequenzen enthält.

Formatsequenz:

Zeichenfolge in einem Format-String, beispielsweise %d, die angibt, wie ein Wert

formatiert werden soll.

Textdatei:

In einem permanenten Speicher, beispielsweise auf einer Festplatte, gespeicherte

Zeichenfolge.

Verzeichnis:

Benannte Sammlung von Dateien, auch Ordner genannt.

Pfad:

String, der auf eine Datei oder ein Verzeichnis verweist.

Relativer Pfad:

Pfadangabe, die vom aktuellen Verzeichnis ausgeht.

Absoluter pfad:

Pfad, der mit dem obersten Verzeichnis des Dateisystems beginnt.

Abfangen einer Ausnahme:

Programmende durch eine Ausnahme verhindern, indem Sie die Anweisungen try

und except verwenden.

Datenbank:

Datei, deren Inhalte wie ein Dictionary mit Schlüsseln organisiert sind, für die

entsprechende Werte existieren.

Übungen

Das Modul urllib stellt Methoden für die Veränderung von URLs und den Download

von Informationen aus dem Internet zur Verfügung. Das folgende Beispiel lädt eine

geheime Nachricht von oreilly.de herunter und gibt sie aus:

import urllib

conn = urllib.urlopen('http://www.oreilly.de/catalog/thinkpythonger/chapter/geheim.html') for zeile in conn:

print zeile.strip()

Führen Sie diesen Code aus und befolgen Sie die Anweisungen, die Sie auf diese

Weise erhalten. Lösung: us_plz.py.

 Listing 14.6

[1] popen ist mittlerweile überholt. Das bedeutet, dass wir diese Funktion eigentlich nicht mehr verwenden und stattdessen das Modul subprocess nutzen sollten. Aber in einfacheren Fällen finde ich subprocess unnötig kompliziert. Also werde ich popen so lange weiter verwenden, bis es entfernt wird.

Kapitel 15. Klassen und Objekte

Die Codebeispiele für dieses Kapitel finden Sie unter Punkt1.py. Die Lösungen für die Übungen befinden sich in der Datei Punkt1_loesung.py.

Benutzerdefinierte Typen

Wir haben viele der integrierten Typen von Python bereits verwendet. Nun

definieren wir einen eigenen Typ. Für dieses Beispiel erstellen wir einen Typ mit

dem Namen Punkt, der einen Punkt im zweidimensionalen Raum abbildet.

In der mathematischen Schreibweise werden Punkte oft in Klammern geschrieben,

wobei ein Komma die Koordinaten voneinander trennt. (0,0) steht also

beispielsweise für den Ursprung, während (x,y) einen Punkt beschreibt, der x Einheiten rechts und y Einheiten oberhalb des Ursprung liegt.

Es gibt mehrere Möglichkeiten, wie wir Punkte in Python abbilden können:

Wir könnten die Koordinaten separat in zwei Variablen x und y speichern.

Wir könnten die Koordinaten als Elemente in einer Liste oder einem Tupel

ablegen.

Wir könnten einen neuen Typ für die Darstellung von Punkten als Objekte

erstellen.

Die Erstellung eines neuen Typs ist (ein bisschen) komplizierter als die anderen

beiden Optionen, bietet aber Vorteile, die Ihnen bald einleuchten werden.

Benutzerdefinierte Typen werden auch als Klassen bezeichnet. Eine

Klassendefinition sieht folgendermaßen aus:

class Punkt(object):

 """Bildet einen Punkt im zweidimensionalen Raum ab."""

Dieser Header gibt an, dass die neue Klasse ein Punkt, eine Art von object ist – also

ein integrierter Typ.

Der Body ist ein Docstring, der erklärt, wozu die Klasse gut ist. Sie können auch

Variablen und Funktionen innerhalb einer Klassendefinition definieren, aber dazu

kommen wir später.

Durch die Definition einer Klasse mit dem Namen Punkt erstellen Sie ein Klassen-

Objekt.

>>> print Punkt

<class '__main__.Punkt'>

Weil Punkt auf der obersten Ebene definiert ist, lautet der vollständige Name

__main__.Punkt.

Das Klassen-Objekt ist wie eine Fabrik für die Herstellung von Objekten. Um einen

Punkt zu erzeugen, rufen Sie Punkt wie eine Funktion auf.

>>> leer = Punkt()

>>> print leer

<__main__.Punkt instance at 0xb7e9d3ac>

Der Rückgabewert ist eine Referenz auf ein Punkt-Objekt, das wir der Variablen leer

zugewiesen haben. Die Erstellung eines neues Objekts bezeichnet man als

Instanziierung, das neue Objekt ist eine Instanz der Klasse.

Wenn Sie eine Instanz mit print ausgeben, sagt Ihnen Python, welcher Klasse diese

angehört und an welcher Stelle im Speicher sie gespeichert ist (das Präfix 0x

bedeutet, dass es sich bei der nachfolgenden Zahl um eine Hexadezimalzahl

handelt).

Attribute

Instanzen können Sie mithilfe der Punktschreibweise Werte zuweisen:

>>> leer.x = 3.0

>>> leer.y = 4.0

Diese Syntax ist der Syntax für die Auswahl einer Variablen aus einem Modul wie

beispielsweise math.pi oder string.whitespace recht ähnlich. In diesem Fall weisen

wir allerdings benannten Elementen eines Objekts Werte zu. Diese Elemente

bezeichnet man als Attribute.

Das folgende Diagramm zeigt das Ergebnis dieser Zuweisungen. Ein

Zustandsdiagramm, das ein Objekt und dessen Attribute darstellt, bezeichnet man

als Objektdiagramm, siehe Abbildung 15.1.

 Abbildung 15.1 Objektdiagramm

Die Variable leer bezieht sich auf ein Punkt-Objekt mit zwei Attributen. Und jedes

dieser Attribute bezieht sich auf eine Fließkommazahl.

Den Wert eines Attributs können Sie mit der gleichen Syntax auslesen:

>>> print leer.y

4.0

>>> x = leer.x

>>> print x

3.0

Der Ausdruck leer.x bedeutet: »Nimm das Objekt, auf das sich leer bezieht, und rufe

den Wert von x ab.« In diesem Fall weisen wir diesen Wert einer Variablen mit dem

Namen x zu. Es gibt keinen Namenskonflikt zwischen der Variablen x und dem Attribut x.

Die Punktschreibweise können Sie als Teil eines beliebigen Ausdrucks verwenden.

Ein Beispiel:

>>> print '(%g, %g)' % (leer.x, leer.y)

(3.0, 4.0)

>>> entfernung = math.sqrt(leer.x**2 + leer.y**2)

>>> print entfernung

5.0

Instanzen werden auf die gewohnte Art als Argument übergeben, beispielsweise so:

def print_punkt(p):

print '(%g, %g)' % (p.x, p.y)

print_punkt erwartet einen Punkt als Argument und zeigt ihn in der mathematischen

Notation an. Um die Funktion aufzurufen, können Sie leer als Argument übergeben:

>>> print_punkt(leer)

(3.0, 4.0)

Innerhalb der Funktion ist p ein Alias für leer. Wenn die Funktion also p

modifiziert, ändert sich dadurch auch leer.

Schreiben Sie eine Funktion mit dem Namen entfernung_zwischen_punkten, die

zwei Punkte als Argument erwartet und die Entfernung dazwischen zurückliefert.

 Listing 15.1

Rechtecke

Manchmal ist es naheliegend, welche Attribute ein Objekt haben soll. In anderen

Fällen müssen Sie genau nachdenken. Angenommen, Sie entwerfen eine Klasse für

die Abbildung von Rechtecken. Welche Attribute würden Sie verwenden, um die

Position und die Größe des Rechtecks zu beschreiben? Den Neigungswinkel können

Sie ignorieren. Gehen Sie der Einfachheit halber davon aus, dass das Rechteck

entweder vertikal oder horizontal liegt.

Es gibt mindestens zwei Möglichkeiten:

Sie könnten eine Ecke des Rechtecks (oder den Mittelpunkt) sowie die Breite und

Höhe festlegen.

Sie könnten zwei gegenüberliegende Ecken definieren.

Zum jetzigen Zeitpunkt ist es schwierig zu sagen, welche Variante die bessere ist.

Deshalb implementieren wir in diesem Beispiel die erste.

So sieht unsere Klassendefinition aus:

class Rechteck(object):

 """Bildet ein Rechteck ab.

 Attribute: breite, hoehe, ecke.

 """

Der Docstring nennt die Attribute. breite und hoehe sind Zahlen. ecke ist ein

Punkt-Objekt, das die untere linke Ecke bestimmt.

Um ein Rechteck abzubilden, müssen Sie ein Rechteck-Objekt instanziieren und den

Attributen entsprechende Werte zuweisen:

box = Rechteck()

box.breite = 100.0

box.hoehe = 200.0

box.ecke = Punkt()

box.ecke.x = 0.0

box.ecke.y = 0.0

Der Ausdruck box.ecke.x bedeutet: »Nimm das Objekt, auf das sich box bezieht,

und wähle das Attribut mit dem Namen ecke. Nimm anschließend dieses Objekt und

wähle das Attribut mit dem Namen x.«

Abbildung 15.2 zeigt den Zustand dieses Objekts. Ein Objekt, das ein Attribut eines anderen Objekts ist, nennt man eingebettetes Objekt.

 Abbildung 15.2 Objektdiagramm

Instanzen als Rückgabewerte

Funktionen können auch Instanzen zurückgeben. Die Funktion suche_mittelpunkt

erwartet beispielsweise ein Rechteck als Argument und liefert einen Punkt mit den

Koordinaten des Mittelpunkts des Rechteck:

def suche_mittelpunkt(re):

p = Punkt()

p.x = re.ecke.x + re.breite/2.0

p.y = re.ecke.y + re.hoehe/2.0

return p

Hier sehen Sie ein Beispiel, das box als Argument übergibt und den Ergebnispunkt

der Variablen mittelpunkt zuweist:

>>> mittelpunkt = suche_mittelpunkt(box)

>>> print_punkt(mittelpunkt)

(50.0, 100.0)

Objekte sind veränderbar

Den Zustand eines Objekts können Sie ändern, indem Sie einem seiner Attribute

einen Wert zuweisen. Wenn Sie beispielsweise die Größe eines Rechtecks ändern

möchten, ohne seine Position zu verändern, können Sie die Werte von breite und

hoehe entsprechend anpassen:

box.breite = box.breite + 50

box.hoehe = box.breite + 100

Außerdem können Sie Funktionen schreiben, die Objekte verändern. Die Funktion

vergroessere_rechteck erwartet beispielsweise ein Rechteck-Objekt mit den

Zahlen dbreite und dhoehe als Argumente und addiert die beiden Zahlen zur

bisherigen Breite und Höhe des Rechtecks hinzu:

def vergroessere_rechteck(re, dbreite, dhoehe):

re.breite += dbreite

re.hoehe += dhoehe

Das folgende Beispiel zeigt das Ergebnis:

>>> print box.breite

100.0

>>> print box.hoehe

200.0

>>> vergroessere_rechteck(box, 50, 100)

>>> print box.breite

150.0

>>> print box.hoehe

300.0

Innerhalb der Funktion ist re ein Alias für box. Wenn die Funktion also re verändert,

ändert sich dadurch auch box entsprechend.

Schreiben Sie eine Funktion mit dem Namen verschiebe_rechteck, die ein

Rechteck und zwei Zahlen mit den Namen dx und dy als Argumente erwartet. Die

Funktion soll die Position des Rechtecks anpassen, indem dx zur x-Koordinate von

ecke und dy zur y-Koordinate von ecke addiert wird.

 Listing 15.2

Kopieren

Durch Aliasing kann ein Programm schwer lesbar werden, weil Objektänderungen an

einer Stelle zu unerwarteten Effekten an einer anderen Stelle führen können. Es ist

schwierig, alle Variablen im Auge zu behalten, die sich auf ein bestimmtes Objekt

beziehen.

Eine Alternative zum Aliasing sind Kopien des Objekts. Das Modul copy enthält

eine Funktion mit dem Namen copy, mit der Sie ein beliebiges Objekt duplizieren

können:

>>> p1 = Punkt()

>>> p1.x = 3.0

>>> p1.y = 4.0

>>> import copy

>>> p2 = copy.copy(p1)

p1 und p2 enthalten dieselben Daten, es handelt sich aber nicht um denselben Punkt.

>>> print_punkt(p1)

(3.0, 4.0)

>>> print_punkt(p2)

(3.0, 4.0)

>>> p1 is p2

False

>>> p1 == p2

False

Der is-Operator zeigt, dass p1 und p2 nicht dasselbe Objekt sind. Genau das, was

wir erwartet haben. Aber vielleicht haben Sie ja gedacht, dass == den Wert True

ergibt, da die beiden Punkte dieselben Daten enthalten? In diesem Fall werden Sie

enttäuscht sein, dass das Standardverhalten des Operators == dasselbe ist wie das

des is-Operators: Er überprüft die Identität von Objekten, nicht die Gleichheit. Wie

wir später sehen werden, können Sie dieses Verhalten aber ändern.

Wenn Sie ein Rechteck mit copy.copy duplizieren, werden Sie dagegen feststellen,

dass zwar das Rechteck-Objekt kopiert wird, nicht aber der eingebettete Punkt.

>>> box2 = copy.copy(box)

>>> box2 is box

False

>>> box2.ecke is box.ecke

True

 Abbildung 15.3 Objektdiagramm

Abbildung 15.3 zeigt, wie das Objektdiagramm in diesem Fall aussieht. Diesen Vorgang bezeichnet man als flache Kopie, weil dabei zwar das Objekt selbst und

jegliche enthaltenen Referenzen kopiert werden, aber nicht die eingebetteten

Objekte.

In den meisten Anwendungen ist das nicht das, was Sie möchten. In diesem Beispiel

hätte der Aufruf von vergroessere_rechteck mit einem der Rechtecke keinerlei

Auswirkungen auf das andere. Ein Aufruf von verschiebe_rechteck mit einem der

Rechtecke würde dagegen beide verändern! Dieses Verhalten ist verwirrend und fehleranfällig.

Glücklicherweise enthält das Modul copy eine Methode mit dem Namen deepcopy.

Diese Methode kopiert nicht nur das Objekt selbst, sondern auch alle Objekte, auf

die sich das Objekt bezieht, sowie alle Objekte, auf die sich wiederum diese Objekte

beziehen usw. Es wird Sie nicht weiter überraschen, dass man dieses Verfahren als

tiefe Kopie bezeichnet.

>>> box3 = copy.deepcopy(box)

>>> box3 is box

False

>>> box3.ecke is box.ecke

False

box3 und box sind vollkommen eigenständige Objekte.

Schreiben Sie eine Version von verschiebe_rechteck, die ein neues Rechteck

erstellt und zurückgibt, statt das alte zu verändern.

 Listing 15.3

Debugging

Beim Umgang mit Objekten werden Sie es anfangs höchstwahrscheinlich mit einer

Reihe neuer Ausnahmen zu tun bekommen. Wenn Sie beispielsweise versuchen, auf

ein Attribut zuzugreifen, das nicht existiert, erhalten Sie einen AttributeError:

>>> p = Punkt()

>>> print p.z

AttributeError: Punkt instance has no attribute 'z'

Sollten Sie sich nicht sicher sein, zu welchem Typ ein Objekt gehört, können Sie das

folgendermaßen feststellen:

>>> type(p)

<type '__main__.Punkt'>

Und mit der integrierten Funktion hasattr können Sie ermitteln, ob ein Objekt ein

bestimmtes Attribut hat:

>>> hasattr(p1, 'x')

True

>>> hasattr(p1, 'z')

False

Das erste Argument kann ein beliebiges Objekt sein, das zweite Argument muss ein

String mit dem Namen eines Attributs sein.

Glossar

Klasse:

Benutzerdefinierter Typ. Durch eine Klassendefinition wird ein neues

Klassenobjekt erstellt.

Klassen-Objekt:

Objekt, das Informationen über einen benutzerdefinierten Typ enthält. Mit einem

Klassen-Objekt können Sie Instanzen des entsprechenden Typs erstellen.

Instanz:

Objekt einer bestimmten Klasse.

Attribut:

Benannter Wert, der einem Objekt zugeordnet ist.

Eingebettetes Objekt:

Objekt, das als Attribut eines anderen Objekts gespeichert wurde.

Flache Kopie:

Kopie der Inhalte eines Objekts einschließlich aller Referenzen auf eingebettete

Objekte. Implementiert durch die Funktion copy im Modul copy.

Tiefe Kopie:

Kopie der Inhalte eines Objekts sowie aller eingebetteten Objekte und aller darin

eingebetteten Objekten usw. Implementiert durch die Funktion deepcopy im

Modul copy.

Objektdiagramm:

Diagramm, das Objekte, deren Attribute sowie die Werte dieser Attribute zeigt.

Übungen

Swampy (siehe Kapitel 4) stellt ein Modul mit dem Namen World zur Verfügung, das einen benutzerdefinierten Typ enthält, der ebenfalls World heißt. So können Sie

ihn importieren:

from swampy.World import World

Der folgende Code erstellt ein World-Objekt und ruft die Methode mainloop auf, die

auf den Benutzer wartet.

welt = World()

welt.mainloop()

Daraufhin sollte ein Fenster mit einer Titelleiste und einem leeren Quadrat

erscheinen. Wir werden dieses Fenster verwenden, um Punkte, Rechtecke und andere

Formen zu zeichnen. Fügen Sie die folgenden Zeilen vor dem Aufruf von mainloop

ein und führen Sie das Programm erneut aus.

canvas = welt.ca(width=500, height=500, background='white')

bbox = [[-150,-100], [150, 100]]

canvas.rectangle(bbox, outline='black', width=2, fill='green4')

Nun sollten Sie ein grünes Rechteck mit einer schwarzen Außenlinie sehen. In der

ersten Zeile erstellen wir ein Canvas-Objekt, das im Fenster als weißes Quadrat

dargestellt wird. Dieses Objekt bietet Methoden wie beispielsweise rectangle, mit

denen Sie Formen zeichnen können.

bbox ist eine Liste mit Listen, die die »Bounding Box«, also den

Begrenzungsrahmen des Rechtecks, darstellt. Das erste Koordinatenpaar ist die linke

untere Ecke des Rechtecks, das zweite Koordinatenpaar bildet die obere rechte Ecke.

So können Sie einen Kreis zeichnen:

canvas.circle([-25,0], 70, outline=None, fill='red')

Der erste Parameter gibt das Koordinatenpaar für den Kreismittelpunkt an, der

zweite Parameter ist der Radius.

Wenn Sie diese Zeile in das Programm einfügen, sollte das Ergebnis wie die Flagge

von Bangladesch aussehen (siehe http://de.wikipedia.org/wiki/Nationalflaggen).

1. Schreiben Sie eine Funktion mit dem Namen zeichne_rechteck, die ein

Canvas-Objekt und ein Rechteck als Argumente erwartet und das Rechteck auf

dem Canvas darstellt.

2. Erweitern Sie Ihr Rechteck-Objekt um ein Attribut mit dem Namen farbe und

passen Sie zeichne_ rechteck so an, dass dieses Farbattribut als Füllfarbe

verwendet wird.

3. Schreiben Sie eine Funktion mit dem Namen zeichne_punkt, die ein Canvas-

Objekt und einen Punkt als Argumente erwartet und diesen Punkt auf dem

Canvas darstellt.

4. Definieren Sie eine neue Klasse mit dem Namen Kreis und entsprechenden

Attributen. Instanziieren Sie einige Kreis-Objekte. Schreiben Sie dann eine

Funktion mit dem Namen zeichne_kreis, die einen Kreis auf dem Canvas

zeichnet.

5. Schreiben Sie ein Programm, das die Nationalflagge von Tschechien zeichnet.

Tipp: Polygone können Sie folgendermaßen zeichnen:

punkte = [[-150,-100], [150, 100], [150, -100]]

canvas.polygon(punkte, fill='blue')

Ich habe ein kleines Programm geschrieben, das die zulässigen Farben auflistet. Die

entsprechende Datei aus den Codebeispielen heißt color_list.py.

 Listing 15.4

Kapitel 16. Klassen und Funktionen

Die Codebeispiele für dieses Kapitel finden Sie unter Zeit1.py.

Zeit

Als ein weiteres Beispiel für einen benutzerdefinierten Typ erstellen wir eine Klasse

mit dem Namen Zeit, die die Tageszeit speichert. So sieht die Klassendefinition aus:

class Zeit(object):

 """Stellt die Tageszeit dar.

 Attribute: stunde, minute, sekunde

 """

Wir erstellen ein neues Zeit-Objekt und weisen die Attribute für Stunden, Minuten

und Sekunden zu:

zeit = Zeit()

zeit.stunde = 11

zeit.minute = 59

zeit.sekunde = 30

Das Zustandsdiagramm für das Zeit-Objekt sehen Sie in Abbildung 16.1.

Schreiben Sie eine Funktion mit dem Namen print_zeit, die ein Zeit-Objekt erwartet

und es im Format stunde:minute:sekunde ausgibt. Tipp: Die Formatsequenz '%.2d'

gibt einen Integer mindestens zweistellig aus, bei Bedarf auch mit einer führenden

Null.

 Listing 16.1

Schreiben Sie eine Boolesche Funktion mit dem Namen liegt_nach, die zwei Zeit-

Objekte t1 und t2 erwartet und True zurückliefert, wenn t1 chronologisch nach t2

liegt, und ansonsten False zurückgibt. Zusätzliche Herausforderung: Verwenden Sie

keine if-Anweisung.

 Listing 16.2

 Abbildung 16.1 Zustandsdiagramm.

Reine Funktionen

In den nächsten Abschnitten schreiben wir zwei Funktionen, die Zeitwerte addieren.

Dabei lernen Sie zwei Arten von Funktionen kennen: reine Funktionen und modifizierende Funktionen. Außerdem lernen Sie einen Entwicklungsplan kennen,

den ich Prototyp und Patch nenne, mit dessen Hilfe wir komplizierte

Aufgabenstellungen zunächst mit einem einfachen Prototyp lösen und uns dann nach

und nach um die komplizierten Details kümmern.

Hier sehen Sie einen einfachen Prototyp für addiere_zeiten:

def addiere_zeiten(t1, t2):

summe = Zeit()

summe.stunde = t1.stunde + t2.stunde

summe.minute = t1.minute + t2.minute

summe.sekunde = t1.sekunde + t2.sekunde

return summe

Die Funktion erstellt ein neues Zeit-Objekt, initialisiert die Attribute und gibt eine

Referenz auf das neue Objekt zurück. Das nennt man eine reine Funktion, weil

dabei keines der als Argumente übergebenen Objekte verändert wird und die

Funktion lediglich einen Wert zurückgibt, aber keinerlei Nebeneffekte hat, wie etwa

Werte ausgibt, auf Benutzereingaben wartet usw.

Um diese Funktion zu testen, werde ich zwei Zeit-Objekte erstellen: start enthält die

Anfangszeit eines Films, beispielsweise Die Ritter der Kokosnuss, und dauer enthält die Spielzeit des Films, in diesem Fall 1 Stunde und 35 Minuten.

addiere_zeiten ermittelt, wann der Film endet:

>>> start = Zeit()

>>> start.stunde = 9

>>> start.minute = 45

>>> start.sekunde = 0

>>> dauer = Zeit()

>>> dauer.stunde = 1

>>> dauer.minute = 35

>>> dauer.sekunde = 0

>>> fertig = addiere_zeiten(start, dauer)

>>> print_zeit(fertig)

10:80:00

Das Ergebnis 10:80:00 ist wahrscheinlich nicht das, was Sie sich erhofft haben. Die

Funktion berücksichtigt leider jene Fälle nicht, in denen die Summe mehr als 60

Sekunden oder Minuten ergibt. In diesen Fällen müssen wir also die zusätzlichen

Sekunden in die Spalte für die Minuten und die zusätzlichen Minuten in die Spalte

für die Stunde übertragen.

Hier sehen Sie eine verbesserte Version:

def addiere_zeiten(t1, t2):

summe = Zeit()

summe.stunde = t1.stunde + t2.stunde

 summe.minute = t1.minute + t2.minute

summe.sekunde = t1.sekunde + t2.sekunde

if summe.sekunde >= 60:

summe.sekunde -= 60

summe.minute += 1

if summe.minute >= 60:

summe.minute -= 60

summe.stunde += 1

return summe

Diese Funktion ist zwar korrekt, aber etwas umständlich. Wir werden uns bald um

eine kürzere Alternative kümmern.

Modifizierende Funktionen

Manchmal ist es durchaus erwünscht, dass eine Funktion die als Parameter

übergebenen Objekte modifiziert, die Änderungen also für die aufrufende Funktion

sichtbar sind. Solche Funktionen bezeichnet man als modifizierende Funktionen .

Die folgende Funktion inkrement, die die angegebene Anzahl Sekunden einem Zeit-

Objekt hinzuaddiert, kann ganz einfach als modifizierende Funktion geschrieben

werden. Hier sehen Sie einen groben Entwurf:

def inkrement(zeit, sekunden):

zeit.sekunde += sekunden

if zeit.sekunde >= 60:

zeit.sekunde -= 60

zeit.minute += 1

if zeit.minute >= 60:

zeit.minute -= 60

zeit.stunde += 1

In der ersten Zeile wird die grundlegende Berechnung durchgeführt. Der Rest der

Funktion kümmert sich um die Sonderfälle, die wir bereits kennen.

Ist diese Funktion korrekt? Was passiert, wenn der Parameter sekunden wesentlich

größer als 60 ist?

In diesem Fall reicht ein einzelner Übertrag nicht aus. Wir müssen den Schritt so

lange wiederholen, bis zeit.sekunde kleiner als 60 ist. Eine Möglichkeit besteht

darin, die if-Anweisungen durch while-Anweisungen zu ersetzen. Dadurch wäre die

Funktion zwar korrekt, aber immer noch nicht sonderlich effizient.

Schreiben Sie eine korrekte Version von inkrement ohne Schleifen.

 Listing 16.3

Alles, was Sie mit modifizierenden Funktionen tun können, geht auch mit reinen Funktionen. In der Tat erlauben manche Programmiersprachen nur reine Funktionen.

Es gibt einige Anhaltspunkte dafür, dass sich Programme, die nur reine Funktionen

nutzen, schneller entwickeln lassen und weniger fehleranfällig sind. Aber

modifizierende Funktionen sind manchmal bequemer, und funktionale Programme

sind tendenziell weniger effizient.

Generell empfehle ich Ihnen, überall da reine Funktionen zu schreiben, wo es

sinnvoll ist, und nur dann auf modifizierende Funktionen zurückzugreifen, wenn sie

einen entscheidenden Vorteil bieten. Diesen Ansatz könnte man als funktionalen

Programmierstil bezeichnen

Schreiben Sie eine »reine« Version von inkrement, die ein neues Zeit-Objekt erstellt

und zurückliefert, anstatt den Parameter zu verändern.

 Listing 16.4

Prototyping kontra Planung

Der vorgestellte Entwicklungsplan heißt »Prototyp und Patch«. Für jede Funktion

habe ich zunächst einen Prototyp geschrieben, der die grundlegenden Berechnungen

durchführt. Anschließend habe ich die Funktionen getestet und dabei die Fehler

behoben.

Dieser Ansatz kann effizient sein, insbesondere wenn Sie die zugrunde liegenden

Probleme nicht wirklich verstehen. Aber schrittweise Anpassungen können zu

unnötig kompliziertem Code führen, weil Sie sich um viele Sonderfälle kümmern

müssen. Außerdem können solche Funktionen unzuverlässig sein, weil Sie nie ganz

sicher sind, ob Sie wirklich alle Fehler gefunden haben.

Eine Alternative dazu ist die geplante Entwicklung, bei der ein fundiertes

Verständnis der Problemstellung die Programmierung wesentlich erleichtern kann.

In unserem Fall wäre das die Erkenntnis, dass die Zeit in Wahrheit eine dreistellige

Zahl im Sexagesimalsystem (siehe

http://de.wikipedia.org/wiki/Sexagesimalsystem.) ist! Das Attribut sekunde ist die

»Einer-Spalte«, minute die »60er-Spalte« und stunde die »3600er-Spalte«.

Bei der Entwicklung von addiere_zeiten und inkrement haben wir unterm Strich

eine Addition im Sexagesimalsystem implementiert, deshalb mussten wir uns um

die Überträge von einer Stelle in die nächste kümmern.

Diese Erkenntnis wirft ein völlig neues Licht auf das eigentliche Problem: Wir

können Zeit-Objekte in Integer konvertieren und die Tatsache ausnutzen, dass sich

der Computer mit der Arithmetik von ganzen Zahlen auskennt.

Hier sehen Sie eine Funktion, die Zeitwerte in Integer umwandelt:

def zeit_zu_int(zeit):

minuten = zeit.stunde * 60 + zeit.minute

sekunden = minuten * 60 + zeit.sekunde

return sekunden

Und hier kommt die Funktion, die Integer in Zeitwerte konvertiert (erinnern Sie sich

daran, dass divmod das erste Argument durch das zweite dividiert und anschließend

sowohl den Quotienten als auch den Rest als Tupel zurückgibt?).

def int_zu_zeit(sekunden):

zeit = Zeit()

minuten, zeit.sekunde = divmod(sekunden, 60)

zeit.stunde, zeit.minute = divmod(minuten, 60)

return zeit

Eventuell müssen Sie ein bisschen nachdenken und einige Testläufe machen, um

sich selbst davon zu überzeugen, dass diese Funktionen korrekt arbeiten. Eine

Möglichkeit besteht darin, zeit_zu_int(int_zu_zeit(x)) == x für möglichst viele

Werte von x zu testen. Das ist ein Beispiel für eine Konsistenzprüfung.

Sobald Sie davon überzeugt sind, dass die Funktionen korrekt arbeiten, können Sie

damit addiere_zeiten neu schreiben:

def addiere_zeiten(t1, t2):

sekunden = zeit_zu_int(t1) + zeit_zu_int(t2)

return int_zu_zeit(sekunden)

Diese Version ist kürzer als die ursprüngliche und einfacher zu überprüfen.

Schreiben Sie inkrement mit zeit_zu_int und int_zu_zeit neu.

 Listing 16.5

In mancherlei Hinsicht ist die Konvertierung aus dem Sexagesimalsystem ins

Dezimalsystem und umgekehrt komplizierter als das Hantieren mit Zeiten. Die

Zahlenkonvertierung ist abstrakter, unsere Intuition für Zeitwerte deutlich besser.

Aber wenn wir auf den Trichter kommen, Zeitwerte als Sexagesimalzahlen zu

behandeln, und die erforderliche Zeit in die Konvertierungsfunktionen investieren

(zeit_zu_int und int_zu_zeit), erhalten wir ein Programm, das kürzer, leichter lesbar,

einfacher zu debuggen und zuverlässiger ist.

Außerdem ist es so auch einfacher, später neue Funktionalitäten hinzuzufügen.

Denken Sie beispielsweise an die Subtraktion zweier Zeitwerte, um die Zeitspanne

dazwischen zu ermitteln. Der naive Ansatz wäre die Subtraktion nach dem

Ergänzungsverfahren. Aber wenn wir die beiden Konvertierungsfunktionen

verwenden, kommen Sie leichter zu einem Ergebnis, das auch mit größerer

Wahrscheinlichkeit korrekt ist.

Ironischerweise können wir also ein Problem vereinfachen, indem wir es

komplizierter (oder allgemeiner) formulieren (weil es weniger Sonderfälle und

weniger Versteckmöglichkeiten für Fehler gibt).

Debugging

Ein Zeit-Objekt ist dann wohlgeformt, wenn die Werte für minute und sekunde

zwischen 0 und 60 liegen (einschließlich 0, aber ohne 60) und stunde positiv ist.

Außerdem müssen stunde und minute ganzzahlig sein, für sekunde können wir

eventuell Werte mit Nachkommastellen zulassen.

Solche Anforderungen, die immer erfüllt sein müssen, nennt man Invarianten.

Anders ausgedrückt: Sind diese Bedingungen nicht erfüllt, ist etwas schiefgelaufen.

Wenn Sie Code schreiben, um Ihre Invarianten zu überprüfen, können Sie Fehler

aufspüren und die entsprechenden Ursachen finden. Beispielsweise könnten Sie eine

Funktion gueltige_zeit schreiben, die ein Zeit-Objekt erwartet und False

zurückliefert, wenn eine der Invarianten nicht erfüllt ist:

def gueltige_zeit(zeit):

if zeit.stunde < 0 or zeit.minute < 0 or zeit.sekunde < 0: return False

if zeit.minute >= 60 or zeit.sekunde >= 60:

return False

return True

Dann können Sie zu Beginn jeder Funktion die Argumente überprüfen, um

sicherzustellen, dass sie gültig sind:

def addiere_zeiten(t1, t2):

if not gueltige_zeit(t1) or not gueltige_zeit(t2):

raise ValueError, 'Ungültiges Zeit-Objekt in addiere_zeiten'

sekunden = zeit_zu_int(t1) + zeit_zu_int(t2)

return int_zu_zeit(sekunden)

Oder Sie können die assert-Anweisung nutzen, die eine angegebene Invariante

überprüft und eine Ausnahme auslöst, falls diese nicht erfüllt ist:

def addiere_zeiten(t1, t2):

assert gueltige_zeit(t1) and gueltige_zeit(t2)

sekunden = zeit_zu_int(t1) + zeit_zu_int(t2)

return int_zu_zeit(sekunden)

assert-Anweisungen sind insofern nützlich, als Sie damit zwischen Bedingungen in

normalem Code und Bedingungen in Codezeilen unterscheiden können, die Fehler

aufspüren sollen.

Glossar

Prototyp und Patch:

Entwicklungsplan, bei dem Sie zunächst einen groben Entwurf eines Programms

schreiben, dieses testen und eventuelle Fehler dann korrigieren, wenn Sie sie

finden.

Geplante Entwicklung:

Entwicklungsplan mit fundierter Kenntnis der Problemstellung, bei dem die

Planung im Vordergrund steht und nicht die inkrementelle Entwicklung oder

Entwicklung von Prototypen.

Reine Funktion:

Funktion, die keines der als Argumente übergebenen Objekte modifiziert. Die

meisten reinen Funktionen liefern einen Rückgabewert.

Modifizierende Funktion:

Funktion, die eines oder mehrere der als Argumente übergebenen Objekte

modifiziert. Die meisten modifizierenden Funktionen liefern keinen

Rückgabewert.

Funktionaler Programmierstil:

Programmierstil, bei dem Sie in erster Linie reine Funktionen schreiben.

Invariante:

Bedingung, die während der Ausführung eines Programms immer erfüllt sein

muss.

Übungen

Die Codebeispiele für dieses Kapitel finden Sie unter Zeit1.py, die Lösungen unter Zeit1_loesung.py.

Schreiben Sie eine Funktion mit dem Namen mul_zeit, die ein Zeit-Objekt und eine

Zahl erwartet und ein neues Zeit-Objekt zurückliefert, das das Produkt der

ursprünglichen Zeit und der Zahl enthält.

Schreiben Sie anschließend mit mul_zeit eine Funktion, die ein Zeit-Objekt mit der

Laufzeit in einem Wettlauf sowie eine Zahl mit der gelaufenen Entfernung erwartet

und ein Zeit-Objekt mit der durchschnittlichen Laufgeschwindigkeit (Zeit pro

Meile) zurückliefert.

 Listing 16.6

Das Modul datetime enthält date- und time-Objekte, die den Objekten in diesem

Kapitel ähnlich sind, aber außerdem eine umfangreiche Sammlung an Methoden und

Operatoren zur Verfügung stellen. Lesen Sie die Dokumentation unter

http://docs.python.org/lib/datetime-date.html.

1. Schreiben Sie mit dem Modul datetime ein Programm, das das aktuelle Datum

abruft und den Wochentag ausgibt.

2. Schreiben Sie ein Programm, das einen Geburtstag als Eingabe erwartet und anschließend das Alter des Benutzers sowie die Tage, Stunden, Minuten und

Sekunden bis zum nächsten Geburtstag ausgibt.

3. Für zwei Menschen, die an verschiedenen Tagen geboren sind, gibt es einen

Tag, an dem die eine Person doppelt so alt ist wie die andere. Schreiben Sie ein

Programm, das die Geburtstage zweier Menschen erwartet und genau diesen

Tag berechnet.

4. Schreiben Sie als zusätzlichen Nervenkitzel eine allgemeinere Version dieser

Funktion, die den Tag berechnet, an dem eine Person n-mal so alt ist wie die

andere.

 Listing 16.7

Kapitel 17. Klassen und Methoden

Die Codebeispiele für dieses Kapitel finden Sie unter Zeit2.py.

Objektorientierte Programmierung

Python ist eine objektorientierte Programmiersprache. Das bedeutet, dass die

Sprache Funktionalitäten bietet, die die objektorientierte Programmierung

ermöglichen.

Es ist nicht einfach, die objektorientierte Programmierung zu definieren, aber Sie

kennen bereits einige der Merkmale:

Programme bestehen aus Objekt- und Funktionsdefinitionen. Die meisten

Berechnungen werden in Form von Operationen mit Objekten ausgedrückt.

Jede Objektdefinition entspricht einem Objekt oder Konzept in der realen Welt.

Und die Funktionen, die mit diesem Objekt arbeiten, entsprechen der Interaktion

von Objekten in der realen Welt.

Die Klasse Zeit aus Kapitel 16 entspricht beispielsweise der Art und Weise, wie Menschen die Tageszeit mitverfolgen. Und die Funktionen, die wir definiert haben,

entsprechen der Art und Weise, wie Menschen mit Zeit umgehen. Auf ähnliche

Weise entsprechen die Klassen Punkt und Rechteck den mathematischen Konzepten

eines Punkts und eines Rechtecks.

Bisher haben wir die Funktionalitäten von Python für die objektorientierte

Programmierung noch nicht genutzt. Das ist auch nicht obligatorisch. Meistens geht

es lediglich darum, das, was wir bisher gemacht haben, syntaktisch anders zu

formulieren. Aber diese andere Syntax ist eben häufig kürzer und wird der Struktur

des jeweiligen Programms besser gerecht.

In unserem Zeit-Programm gibt es beispielsweise keine offensichtliche Verbindung

zwischen der Klassendefinition und den nachfolgenden Funktionsdefinitionen. Bei

näherer Betrachtung zeigt sich aber, dass jede dieser Funktionen mindestens ein

Zeit-Objekt als Argument benötigt.

Diese Erkenntnis Veranlassung dazu, stattdessen Methoden zu verwenden. Eine

Methode ist eine Funktion, die einer bestimmten Klasse zugeordnet ist. Wir kennen

bereits Methoden fürs Strings, Listen, Dictionaries und Tupel. In diesem Kapitel

werden wir aber auch eigene Methoden für benutzerdefinierte Typen schreiben.

Methoden sind semantisch gesehen dasselbe wie Funktionen. Es gibt allerdings zwei

syntaktische Unterschiede:

Methoden werden innerhalb einer Klasse definiert, um die Beziehung zwischen

Klasse und Methode zu verdeutlichen.

Die Syntax für den Aufruf einer Methode unterscheidet sich von der Syntax für

den Aufruf einer Funktion.

In den folgenden Abschnitten werden wir die Funktionen aus den vorherigen beiden

Kapiteln in Methoden umwandeln. Diese Umwandlung ist ein rein mechanischer

Vorgang. Dafür brauchen Sie lediglich ein paar Schritte zu absolvieren. Wenn Sie

damit vertraut sind, eine Form in die andere umzuwandeln, werden Sie in der Lage

sein, in jeder Situation die beste Alternative auszuwählen.

Objekte ausgeben

In Kapitel 16 haben wir eine Klasse mit dem Namen Zeit definiert, und in

Listing 16.1 haben Sie eine Funktion mit dem Namen print_zeit geschrieben: class Zeit(object):

 """Stellt die Tageszeit dar."""

def print_zeit(zeit):

print '%.2d:%.2d:%.2d' % (zeit.stunde, zeit.minute, zeit.sekunde)

Damit Sie diese Funktion aufrufen können, müssen Sie ein Zeit-Objekt als Argument

übergeben:

>>> start = Zeit()

>>> start.stunde = 9

>>> start.minute = 45

>>> start.sekunde = 00

>>> print_zeit(start)

09:45:00

Um aus print_zeit eine Methode zu machen, müssen wir lediglich die

Funktionsdefinition in die Klassendefinition verschieben. Achten Sie auf die

Einrückung:

class Zeit(object):

def print_zeit(zeit):

print '%.2d:%.2d:%.2d' % (zeit.stunde, zeit.minute, zeit.sekunde)

Jetzt haben wir zwei Möglichkeiten, print_zeit aufzurufen. Die erste (und weniger

gebräuchliche) Möglichkeit ist die Funktionssyntax:

>>> Zeit.print_zeit(start)

09:45:00

Bei dieser Verwendung der Punktschreibweise ist Zeit der Name der Klasse und

print_zeit der Name der Methode. start wird als Parameter übergeben.

Die zweite (und prägnantere) Möglichkeit ist die Methodensyntax:

>>> start.print_zeit()

09:45:00

Bei dieser Verwendung der Punktschreibweise ist print_zeit (wieder) der Name der

Methode. Und start ist das Objekt, dessen Methode aufgerufen wird – in diesem Fall

nennt man es Subjekt. Genau wie das Subjekt in einem Satz angibt, worum es in dem Satz geht, gibt das Subjekt eines Methodenaufrufs an, mit welchem Objekt die

Methode arbeitet.

Innerhalb der Methode wird das Subjekt dem ersten Parameter zugewiesen. In

diesem Fall wird start also zeit zugewiesen.

Standardmäßig heißt der erste Parameter einer Methode self. Insofern wäre es eher

gebräuchlich, print_zeit folgendermaßen zu schreiben:

class Zeit(object):

def print_zeit(self):

print '%.2d:%.2d:%.2d' % (self.stunde, self.minute, self.sekunde)

Der Grund für diese Konvention ist eine implizite Metapher:

Die Syntax für den Funktionsaufruf print_zeit(start) erweckt den Eindruck, dass

die Funktion selbst aktiv wird, so nach dem Motto: »Hey print_zeit! Da ist ein

Objekt, das du ausgeben sollst.«

In der objektorientierten Programmierung sind die Objekte der aktive Part. Ein

Methodenaufruf wie beispielsweise start.print_zeit() bedeutet daher: »Hey start!

Bitte gibt dich auf der Konsole aus.«

Diese veränderte Perspektive mag vielleicht höflicher klingen. Allerdings ist es

nicht offensichtlich, inwiefern das auch nützlich sein soll. In den bisherigen

Beispielen ist es das wahrscheinlich auch nicht. Aber manchmal können Sie

vielseitigere Funktionen schreiben, wenn Sie die Verantwortung von den Funktionen

auf die Objekte verlagern. Außerdem lässt sich solche Art Code einfacher pflegen

und wieder verwenden.

Schreiben Sie zeit_zu_int (aus „Prototyping kontra Planung“) als Methode.

Vermutlich ist es eher unpassend, int_zu_zeit als Methode zu schreiben. Für welches

Objekt würden Sie sie aufrufen?

 Listing 17.1

Noch ein Beispiel

Hier sehen Sie eine Version von inkrement (aus „Modifizierende Funktionen“) als Methode:

 # innerhalb von Klasse Zeit:

def inkrement(self, sekunden):

sekunden += self.zeit_zu_int()

return int_zu_zeit(sekunden)

Diese Version geht davon aus, dass zeit_zu_int wie in Listing 17.1 eine Methode ist.

Beachten Sie außerdem, dass es sich um eine reine und nicht um eine modifizierende

Funktion handelt.

Und so würden Sie inkrement aufrufen:

>>> start.print_zeit()

09:45:00

>>> ende = start.inkrement(1337)

>>> ende.print_zeit()

10:07:17

Dem Subjekt start wird der erste Parameter self zugewiesen. Das Argument 1337

wird dem zweiten Parameter sekunden zugewiesen.

Dieser Mechanismus mag verwirren, vor allem wenn Sie einen Fehler machen.

Wenn Sie beispielsweise inkrement mit zwei Argumenten aufrufen, erhalten Sie

Folgendes:

>>> ende = start.inkrement(1337, 460)

TypeError: inkrement() takes exactly 2 arguments (3 given)

Diese Fehlermeldung ist anfangs verwirrend, weil innerhalb der Klammern nur zwei

Argumente stehen. Aber das Subjekt gilt eben auch als Argument, macht also

insgesamt drei.

Ein komplizierteres Beispiel

liegt_nach (aus Listing 16.2) ist insofern ein bisschen komplizierter, weil die Funktion zwei Zeit-Objekte als Parameter benötigt. In solchen Fällen wird der

Konvention folgend der erste Parameter self und der zweite other genannt:

 # innerhalb von Klasse Zeit:

def liegt_nach(self, other):

return self.zeit_zu_int() > other.zeit_zu_int()

Um diese Methode zu verwenden, müssen Sie sie für das eine Argument aufrufen

und das andere übergeben:

>>> ende.liegt_nach(start)

True

Ein netter Nebeneffekt dieser Syntax: Sie liest sich fast wie eine menschliche

Sprache: »Ende liegt nach Start?«

init-Methode

Die init-Methode (für »Initialisierung«) ist eine spezielle Methode, die bei der

Instanziierung eines Objekts aufgerufen wird. Der vollständige Name lautet __init__

(zwei Unterstriche, gefolgt von init und zwei weiteren Unterstrichen). Die init-

Methode für die Klasse Zeit könnte folgendermaßen aussehen:

 # innerhalb von Klasse Zeit:

 def __init__(self, stunde=0, minute=0, sekunde=0):

self.stunde = stunde

self.minute = minute

self.sekunde = sekunde

Die Parameter für __init__ haben üblicherweise dieselben Namen wie die Attribute.

Die Anweisung

self.stunde = stunde

speichert den Wert des Parameters stunde als Attribut von self.

Die Parameter sind optional. Wenn Sie also Zeit ohne Argumente aufrufen, erhalten

Sie die Standardwerte:

>>> zeit = Zeit()

>>> zeit.print_zeit()

00:00:00

Geben Sie nur ein Argument an, überschreiben Sie damit stunde:

>>> zeit = Zeit (9)

>>> zeit.print_zeit()

09:00:00

Übergeben Sie aber zwei Argumente, werden stunde und minute überschrieben:

>>> zeit = Zeit(9, 45)

>>> zeit.print_zeit()

09:45:00

Und wenn Sie drei Argumente angeben, werden alle drei Standardwerte

überschrieben.

Schreiben Sie eine init-Methode für die Punkt-Klasse, die x und y als optionale

Parameter erwartet und den entsprechenden Attributen zuweist.

 Listing 17.2

Methode __str__

__str__ ist genau wie __init__ eine spezielle Methode und soll die String-

Repräsentation eines Objekts zurückgeben.

Hier sehen Sie eine mögliche str-Methode für Zeit-Objekte:

 # innerhalb von Klasse Zeit:

def __str__(self):

return '%.2d:%.2d:%.2d' % (self.stunde, self.minute, self.sekunde)

Wenn Sie print mit einem Objekt angeben, ruft Python die str-Methode auf:

>>> zeit = Zeit(9, 45)

>>> print zeit

09:45:00

Wenn ich eine neue Klasse schreibe, fange ich fast immer mit __init__ an, weil ich

damit leichter Objekte instanziieren kann, und mit __str__, weil diese Methode fürs

Debugging sehr praktisch ist.

Schreiben Sie eine str-Methode für die Punkt-Klasse. Erstellen Sie ein Punkt-Objekt

und geben Sie es mit print aus.

 Listing 17.3

Operator-Überladung

Indem Sie zusätzliche, spezielle Methoden definieren, können Sie das Verhalten von

Operatoren mit benutzerdefinierten Typen bestimmen. Wenn Sie beispielsweise eine

Methode mit dem Namen __add__ für die Zeit-Klasse definieren, können Sie den

Operator + mit Zeit-Objekten benutzen.

So könnte die Definition aussehen:

 # innerhalb von Klasse Zeit:

def __add__(self, other):

sekunden = self.zeit_zu_int() + other.zeit_zu_int()

return int_zu_zeit(sekunden)

Und so könnten Sie sie verwenden:

>>> start = Zeit(9, 45)

>>> dauer = Zeit(1, 35)

>>> print start + dauer

11:20:00

Wenden Sie den Operator + auf Zeit-Objekte an, ruft Python __add__ auf. Und

wenn Sie das Ergebnis mit print ausgeben, ruft Python __str__ auf. Es passiert also

eine Menge hinter den Kulissen!

Wenn Sie das Verhalten eines Operators so ändern, dass er mit benutzerdefinierten

Typen funktioniert, spricht man von Operator-Überladung. Für jeden Operator gibt

es in Python eine entsprechende spezielle Funktion, wie etwa __add__. Mehr dazu

können Sie unter http://docs.python.org/ref/specialnames.html erfahren.

Schreiben Sie eine add-Methode für die Punkt-Klasse.

 Listing 17.4

Dynamische Bindung

Im vorherigen Abschnitt haben wir zwei Zeit-Objekte addiert. Aber vielleicht

möchten Sie auch einen Integer zu einem Zeit-Objekt addieren. Es folgt eine Version

von __add__, die den Typ von other überprüft und entsprechend entweder

addiere_zeiten oder inkrement aufruft:

 # innerhalb von Klasse Zeit:

def __add__(self, other):

if isinstance(other, Zeit):

return self.addiere_zeiten(other)

else:

return self.inkrement(other)

def addiere_zeiten(self, other):

sekunden = self.zeit_zu_int() + other.zeit_zu_int()

return int_zu_zeit(sekunden)

def inkrement(self, sekunden):

sekunden += self.zeit_zu_int()

return int_zu_zeit(sekunden)

Die integrierte Funktion isinstance erwartet einen Wert und ein Klassen-Objekt als

Parameter und liefert True, wenn der Wert eine Instanz der Klasse ist.

Ist other ein Zeit-Objekt, ruft __add__ die Methode addiere_zeiten auf. Ansonsten

wird davon ausgegangen, dass der Parameter eine Zahl ist, und entsprechend wirddie

Methode inkrement aufgerufen. Dieses Verfahren nennt man dynamische Bindung,

weil die Berechnung je nach Typ des Arguments dynamisch mit verschiedenen

Methoden ausgeführt wird.

Hier sehen Sie Beispiele für die Verwendung des Operators + mit verschiedenen

Typen:

>>> start = Zeit(9, 45)

>>> dauer = Zeit(1, 35)

>>> print start + dauer

11:20:00

>>> print start + 1337

10:07:17

Leider sind die Operanden bei dieser Implementierung der Addition nicht

austauschbar. Wenn der erste Operand ein Integer ist, erhalten Sie:

>>> print 1337 + start

TypeError: unsupported operand type(s) for +: 'int' and 'instance'

Das Problem besteht darin, dass Python einen Integer dazu auffordert, ein Zeit-

Objekt zu addieren, und dieser nicht weiß, wie das geht. Aber es gibt eine clevere

Lösung für dieses Problem: die spezielle Methode __radd__, die für »right-side

add« steht (rechte Seite addieren). Diese Methode wird aufgerufen, wenn ein Zeit-

Objekt auf der rechten Seite des Operators + steht. Hier folgt die entsprechende

Definition:

 # innerhalb von Klasse Zeit:

def __radd__(self, other):

 return self.__add__(other)

Und so wird die Methode verwendet:

>>> print 1337 + start

10:07:17

Schreiben Sie eine add-Methode für Punkte, die sowohl mit einem Punkt-Objekt als

auch mit einem Tupel funktioniert:

Wenn der zweite Operand ein Punkt ist, soll die Methode einen neuen Punkt

zurückliefern, dessen x-Koordinate die Summe der x-Koordinaten der Operanden ist. Mit den y-Koordinaten soll analog verfahren werden.

Wenn der zweite Operand ein Tupel ist, soll die Methode das erste Element des

Tupels zur x-Koordinate, das zweite Element zur y-Koordinate addieren und einen neuen Punkt mit dem Ergebnis zurückliefern.

 Listing 17.5

Polymorphismus

Die dynamische Bindung ist nützlich, wenn man sie braucht, aber (glücklicherweise)

nicht immer erforderlich. Oft können Sie darauf verzichten, indem Sie Funktionen

schreiben, die mit Argumenten verschiedener Typen korrekt zusammenarbeiten.

Viele der Funktionen, die wir für Strings geschrieben haben, funktionieren mit allen

Arten von Sequenzen. Im „Dictionary als Menge von Zählern“ haben wir beispielsweise histogramm verwendet, um zu zählen, wie oft jedes Zeichen in einem

Wort vorkommt.

def histogramm(s):

d = dict()

for c in s:

if c not in d:

d[c] = 1

else:

d[c] = d[z]+1

return d

Diese Funktion arbeitet auch mit Listen, Tupeln und sogar Dictionaries, solange die

Elemente von s hashable sind, damit sie als Schlüssel in d verwendet werden

können.

>>> t = ['spam', 'ei', 'spam', 'spam', 'speck', 'spam']

>>> histogramm(t)

{'speck': 1, 'ei': 1, 'spam': 4}

Funktionen, die mit mehreren Typen funktionieren, nennt man polymorph.

Polymorphismus kann die Wiederverwendung von Code erleichtern. Die integrierte

Funktion sum kann beispielsweise beliebige Elemente einer Sequenz addieren,

solange diese die Addition unterstützen.

Da Zeit-Objekte eine add-Methode zur Verfügung stellen, funktionieren sie auch mit sum:

>>> t1 = Zeit(7, 43)

>>> t2 = Zeit(7, 41)

>>> t3 = Zeit(7, 37)

>>> summe = sum([t1, t2, t3])

>>> print summe

23:01:00

Wenn alle Operationen innerhalb einer Funktion mit einem bestimmten Typ korrekt

arbeiten, funktioniert üblicherweise auch die gesamte Funktion mit diesem Typ.

Die besten Fälle von Polymorphismus sind die unbeabsichtigten: wenn Sie plötzlich

feststellen, dass eine Funktion, die Sie bereits geschrieben haben, auch mit einem

Typ funktioniert, an den Sie dabei gar nicht gedacht hatten.

Debugging

Es ist völlig in Ordnung, an einem beliebigen Punkt in der Ausführung eines

Programms Attribute einem Objekt hinzuzufügen. Aber wenn Sie ein Verfechter der

Typentheorie sind, finden Sie es eher zweifelhaft, wenn es Objekte desselben Typs

mit unterschiedlichen Attributen gibt. Deshalb ist es eine gute Idee, alle

Objektattribute in der init-Methode zu initialisieren.

Wenn Sie nicht sicher sind, ob ein Objekt ein bestimmtes Attribut hat, können Sie

das mit der integrierten Funktion hasattr überprüfen (siehe „Debugging“).

Eine weitere Möglichkeit, auf die Attribute eines Objekts zuzugreifen, ist das

besondere Attribut __dict__ – ein Dictionary, das die Attributnamen (als Strings)

den entsprechenden Werten zugeordnet:

>>> p = Punkt(3, 4)

>>> print p.__dict__

{'y': 4, 'x': 3}

Die folgende Funktion kann sich beim Debugging als praktisch erweisen:

def print_attribute(obj):

for attr in obj.__dict__:

print attr, getattr(obj, attr)

print_attribute durchläuft die Elemente im Dictionary des Objekts und gibt alle

Attributnamen sowie den entsprechenden Wert aus.

Die integrierte Funktion getattr erwartet ein Objekt und einen Attributnamen (als

String) und liefert den Wert dieses Attributs zurück.

Schnittstelle und Implementierung

Eines der Ziele der objektorientierten Entwicklung besteht darin, Software weniger

pflegeintensiv zu machen – damit das Programm auch dann funktioniert, wenn sich andere Teile des Systems ändern, und Sie das Programm an neue Anforderungen

anpassen können.

Ein Designprinzip, das dabei hilft, dieses Ziel zu erreichen, sieht vor, die

Schnittstellen von der Implementierung zu trennen. Im Fall von Objekten bedeutet

das, dass die Methoden einer Klasse nicht davon abhängig sein sollen, wie die

Attribute abgebildet werden.

In diesem Kapitel haben wir beispielsweise eine Klasse entwickelt, die die Tageszeit

repräsentiert. Zu den Methoden dieser Klasse gehören zeit_zu_int, liegt_nach und

addiere_zeiten.

Wir haben mehrere Möglichkeiten, diese Methoden zu implementieren. Im

Einzelnen hängt das davon ab, wie wir die Zeit abbilden. In diesem Kapitel hat ein

Zeit-Objekt die Attribute stunde, minute und sekunde.

Alternativ könnten wir diese Attribute durch einen einzelnen Integer ersetzen, der

die Anzahl der Sekunden seit Mitternacht enthält. Durch eine solche

Implementierung würden manche Methoden, wie etwa liegt_nach, vereinfacht

werden, andere dagegen werden komplizierter.

Manchmal finden Sie eine bessere Implementierung, nachdem Sie eine Klasse

bereitgestellt haben. Wenn andere Teile eines Programms diese Klasse verwenden,

kann es zeitaufwendig und fehleranfällig sein, die Schnittstelle anzupassen.

Wenn Sie aber die Schnittstelle sorgfältig durchdacht haben, können Sie die

Implementierung ändern, ohne die Schnittstelle anzupassen. Andere Teile des

Programms müssen dann nicht geändert werden.

Um die Schnittstelle von der Implementierung zu trennen, müssen Sie die Attribute

verbergen. Code in anderen Teilen des Programms (außerhalb der Klassendefinition)

muss entsprechende Methoden verwenden, um den Zustand des Objekts abzurufen

und zu verändern. Der direkte Zugriff auf die Attribute darf dabei nicht möglich

sein. Dieses Verfahren nennt man Information Hiding (siehe

http://en.wikipedia.org/wiki/Information_hiding) bzw. Datenkapselung (siehe

http://de.wikipedia.org/wiki/Datenkapselung_(Programmierung)).

Den Code für dieses Kapitel finden Sie in der Beispieldatei (Zeit2.py). Ändern Sie Zeit so, dass es nur noch ein Integer-Attribut für die Sekunden seit Mitternacht gibt.

Passen Sie anschließend die Methoden (und die Funktion int_zu_zeit) an die neue

Implementierung an. Den Testcode in main sollten Sie nicht anpassen müssen. Wenn

Sie damit fertig sind, sollten die Bildschirmausgaben dieselben wie zuvor sein.

Lösung: Zeit2_loesung.py

 Listing 17.6

Glossar

Objektorientierte Programmiersprache:

Sprache, die Funktionen bereitstellt, die die objektorientierte Programmierung

erleichtern, wie beispielsweise benutzerdefinierte Klassen und die

Methodensyntax.

Objektorientierte Programmierung:

Programmierstil, bei dem Daten und die Operationen, die diese manipulieren, in

Klassen und Methoden strukturiert sind.

Methode:

Funktion, die innerhalb einer Klassendefinition definiert ist und über Instanzen

dieser Klasse aufgerufen wird.

Subjekt:

Objekt, dessen Methode aufgerufen wird.

Operator-Überladung:

Anpassung des Verhaltens eines Operators wie beispielsweise +, damit er auch

mit einem benutzerdefinierten Typ funktioniert.

Dynamische Bindung:

Programmiermuster, bei dem der Typ eines Operanden überprüft und

entsprechend unterschiedliche Funktionen aufgerufen werden.

Polymorph:

Bezieht sich auf eine Funktion, die mit mehr als einem Typ funktioniert.

Datenkapselung:

Prinzip, das besagt, dass die Schnittstelle eines Objekts unabhängig von der

Implementierung sein soll, insbesondere was die Sichtbarkeit seiner Attribute

betrifft.

Übungen

Die folgende Übung ist eine alarmierende Geschichte über einen der häufigsten und

am schwierigsten aufspürbaren Fehler in Python.

Schreiben Sie die Definition einer Klasse mit dem Namen Kaenguru und den

folgenden Methoden:

1. Eine Methode __init__, die ein Attribut mit dem Namen beutel_inhalt mit

einer leeren Liste initialisiert.

2. Eine Methode mit dem Namen lege_in_beutel, die ein beliebiges Objekt erwartet und zu beutel_inhalt hinzufügt.

3. Eine Methode __str__, die eine String-Repräsentation des Kaenguru-Objekts

und seines Beutelinhalts ausgibt.

Testen Sie Ihren Code, indem Sie zwei Kaenguru-Objekte erstellen, diese den

Variablen kaengu und ru zuweisen und anschließend ru zum Beutelinhalt von

kaengu hinzufügen.

Sehen Sie sich die Datei BoesesKanguru.py aus den Codebeispielen an. Die Datei

zeigt eine Lösung für das vorherige Problem, allerdings mit einem schwerwiegenden

und gemeinen Fehler. Finden und beseitigen Sie den Bug.

Sollten Sie irgendwann nicht mehr weiterkommen, können Sie in der Datei

 GutesKaenguru.py nachsehen. In dieser Datei wird das Problem erklärt und eine

Lösung gezeigt.

 Listing 17.7

Visual ist ein Python-Modul für 3-D-Grafiken. Es ist nicht immer in der Python-

Installation enthalten, eventuell müssen Sie es aus Ihrem Software-Repository oder

von http://vpython.org installieren.

Das folgende Beispiel erstellt einen dreidimensionalen Raum, der 256 Einheiten

breit, lang und hoch ist. Der Punkt (128,128,128) wird als Mittelpunkt gewählt, und anschließend wird eine blaue Kugel gezeichnet.

from visual import *

scene.range = (256, 256, 256)

scene.center = (128, 128, 128)

farbe = (0.1, 0.1, 0.9) # vorwiegend blau

sphere(pos=scene.center, radius=128, color=farbe)

farbe ist ein RGB-Tupel mit Rot-Grün-Blau-Werten zwischen 0,0 und 1,0 (siehe

http://de.wikipedia.org/wiki/RGB-Farbraum).

Wenn Sie diesen Code ausführen, sollten Sie ein Fenster mit schwarzem Hintergrund

und einer blauen Kugel sehen. Wenn Sie die Maus bei gedrückter mittlerer Taste

nach oben und unten ziehen, können Sie den Bildausschnitt vergrößern bzw.

verkleinern (unter Windows linke und rechte Maustaste gleichzeitig gedrückt

halten). Sie können die Ansicht rotieren, indem Sie bei gedrückter rechter Maustaste

die Maus ziehen. Aber mit nur einer einzigen Kugel werden Sie kaum einen

Unterschied erkennen können.

Die folgende Schleife erstellt einen ganzen Würfel voller Kugeln:

t = range(0, 256, 51)

for x in t:

for y in t:

 for z in t:

pos = x, y, z

sphere(pos=pos, radius=10, color=farbe)

1. Tippen Sie diesen Code in ein Skript ein und vergewissern Sie sich, dass er

funktioniert.

2. Ändern Sie das Programm so, dass jede Kugel innerhalb des Würfels genau die

Farbe hat, die ihrer Position im RGB-Raum entspricht. Beachten Sie, dass die

Raumkoordinaten im Bereich 0–255 liegen, die Werte der RGB-Tupel dagegen

zwischen 0,0 und 1,0.

3. Verwenden Sie die Funktion read _colors aus der Beispieldatei color_list.py, um eine Liste der zulässigen Farben auf Ihrem System mit den jeweiligen

Namen und RGB-Werten zu erstellen. Zeichnen Sie für jede Farbe in der Liste

eine Kugel an der den RGB-Werten entsprechenden Position.

Meine Lösung finden Sie in den Codebeispielen unter dem Namen farbraum.py.

 Listing 17.8

Kapitel 18. Vererbung

In diesem Kapitel stelle ich Ihnen Klassen vor, die Spielkarten, Kartenstapel und die

Karten in der Hand des jeweiligen Pokerspielers repräsentieren. Sollten Sie Poker

nicht kennen, können Sie mehr darüber unter http://de.wikipedia.org/wiki/Poker

lesen, zwingend notwendig ist das aber nicht. Ich werde Ihnen erklären, was Sie für

die Übungen wissen müssen. Die Codebeispiele für dieses Kapitel finden Sie unter

 Karte.py.

Falls Sie nicht mit dem anglo-amerikanischen Blatt vertraut sind, erfahren Sie unter

http://de.wikipedia.org/wiki/Spielkarte alles über die verschiedenen Kartenbilder.

Karten-Objekte

Ein Kartenspiel enthält 52 Karten in vier Farben mit jeweils 13 Spielkarten. Die

Farben heißen Pik, Herz, Karo und Kreuz (in absteigender Reihenfolge), die

Rangfolge der Karten stellt sich so dar: Ass, 2, 3, 4, 5, 6, 7, 8, 9, 10, Bube, Dame und König. Je nach dem Pokertyp, den Sie spielen, kann ein Ass höher als der König oder

kleiner als die 2 sein.

Wenn wir ein neues Objekt für eine Spielkarte definieren möchten, ist klar, welche

Attribute wir brauchen: rang and farbe. Nicht ganz so klar ist, welchen Typ diese

Attribute haben sollen. Eine Möglichkeit wären Strings mit Wörtern wie etwa

'Kreuz' für Farben und 'Dame' für die Ränge. Ein Problem bei dieser

Implementierung besteht aber darin, dass es dann nicht gerade einfach ist, Karten

miteinander zu vergleichen und zu bestimmen, welche den höheren Rang oder die

höhere Farbe hat.

Eine Alternative besteht darin, Farben und Ränge mit Integern zu kodieren. In

diesem Kontext bedeutet »kodieren«, dass wir eine Verknüpfung zwischen Zahlen

und Farben bzw. Zahlen und Rängen definieren. Mit dieser Art der Kodierung sind

aber keine Geheimnisse gemeint (das wäre wiederum »Verschlüsselung«).

Die folgende Tabelle zeigt die Farben und die entsprechenden Integer-Werte:

Durch diesen Code ist es einfach, Karten zu vergleichen. Da höherwertige Farben

höheren Zahlen entsprechen, können wir die Farben direkt über den entsprechenden

Code miteinander vergleichen.

Die Zuordnung der Ränge erklärt sich von selbst. Die numerischen Karten

entsprechen der jeweiligen Zahl, und für Bildkarten gilt:

Ich verwende hier das Symbol

, um zu verdeutlichen,

dass diese Zuordnungen nicht Teil des Python-Programms sind. Sie sind Teil des

Programmdesigns, erscheinen aber nicht explizit im Code.

So sieht die Klassendefinition für Karte aus:

class Karte(object):

 """Repräsentiert eine Spielkarte."""

def __init__(self, farbe=0, rang=2):

self.farbe = farbe

self.rang = rang

Wie üblich erwartet die init-Methode einen optionalen Parameter für jedes Attribut.

Die Standardkarte ist die Kreuz-2.

Um eine Karte zu erstellen, rufen Sie Karte mit der Farbe und dem Rang der

gewünschten Karte auf.

karo_dame = Karte(1, 12)

Klassenattribute

Damit wir Karten-Objekte in für Menschen lesbarer Form ausgeben können,

brauchen wir eine Zuordnung der Integer-Codes zu den entsprechenden Rängen und

Farben. Eine naheliegende Möglichkeit dafür bieten Listen mit Strings. Diese Listen

weisen wir Klassenattributen zu:

 # innerhalb von Klasse Karte:

farb_namen = ['Kreuz', 'Karo', 'Herz', 'Pik']

rang_namen = [None, 'Ass', '2', '3', '4', '5', '6', '7',

 '8', '9', '10', 'Bube', 'Dame', 'König']

def __str__(self):

return Karte.farb_namen[self.farbe] + '-' + Karte.rang_namen[self.rang]

Variablen wie beispielsweise farb_namen und rang_namen, die innerhalb einer

Klasse, aber außerhalb einer Methode definiert werden, nennt man Klassenattribute,

weil sie mit dem Klassen-Objekt Karte assoziiert sind.

Solche Attribute sind von Variablen wie farbe und rang zu unterscheiden, die man

als Instanzattribute bezeichnet, weil sie mit einer bestimmten Instanz verknüpft

sind.

Auf beide Arten von Attributen greifen Sie über die Punktschreibweise zu. Innerhalb

von __str__ bezieht sich self auf ein Karten-Objekt und self.rang auf den Rang der

Karte. Auf ähnliche Weise ist Karte ein Klassen-Objekt und Karte.rang_namen

eine Liste von Strings, die dieser Klasse zugeordnet sind.

Jede Karte hat eine eigene farbe und einen eigenen rang, aber es gibt jeweils nur

eine Kopie von farb_namen und rang_namen.

Alles zusammengenommen, bedeutet der Ausdruck Karte.rang_namen[self.rang]:

»Nimm das Attribut rang des Objekts self als Index für die Liste rang_namen aus

der Klasse Karte und wähle den entsprechenden String aus.«

Das erste Element von rang_namen ist None, weil es keine Karte mit dem Rang 0

gibt. Indem wir None als Platzhalter verwenden, erhalten wir ein Mapping mit der

praktischen Eigenschaft, dass Index 2 dem String '2' entspricht usw. Auf diesen

Trick hätten wir verzichten können, wenn wir statt einer Liste ein Dictionary

verwendet hätten.

Mit den Methoden, die wir bisher geschrieben haben, können wir Karten erstellen

und ausgeben:

>>> karte1 = Karte(2, 11)

>>> print Karte1

Herz-Bube

Abbildung 18.1 zeigt das Diagramm für das Karten-Klassen-Objekt und eine Karten-Instanz. Karte ist ein Klassen-Objekt, daher hat es den Typ type. Karte1 hat den

Typ Karte. (Um Platz zu sparen, habe ich den Inhalt von farb_namen und

rang_namen nicht dargestellt).

 Abbildung 18.1 Objektdiagramm

Karten vergleichen

Für integrierte Typen gibt es die relationalen Operatoren (<, >, == usw.), mit denen Sie Werte vergleichen und bestimmen können, ob ein Operand im Vergleich zu

einem anderen größer, kleiner oder gleich ist. Bei benutzerdefinierten Typen können

wir das Verhalten der integrierten Operatoren überladen, indem wir eine Methode

mit dem Namen __cmp__ schreiben.

__cmp__ erwartet zwei Parameter – self und other – und gibt eine positive Zahl

zurück, wenn das erste Objekt größer ist, eine negative Zahl, wenn das zweite Objekt

größer ist, und 0, wenn die beiden Objekte gleich sind.

Die korrekte Reihenfolge der Karten ist nicht offensichtlich. Welche Karte ist mehr

wert? Die Kreuz-3 oder die Karo-2? Die eine hat einen höheren Rang, die andere

eine höhere Farbe. Damit wir Karten vergleichen können, müssen wir entscheiden,

ob der Rang oder die Farbe wichtiger ist.

Die Antwort hängt natürlich davon ab, welches Spiel Sie spielen. Der Einfachheit

halber treffen wir hier die willkürliche Entscheidung, dass die Farbe wichtiger ist als

der Rang, also Pik alle Karo-Karten übertrumpft usw.

Dementsprechend können wir nun __cmp__ schreiben:

 # innerhalb von Klasse Karte:

def __cmp__(self, other):

 # Farben vergleichen

if self.farbe > other.farbe: return 1

if self.farbe < other.farbe: return -1

 # Farben sind identisch ... Ränge prüfen

if self.rang > other.rang: return 1

if self.rang < other.rang: return -1

 # Ränge sind identisch ... unentschieden

 return 0

Mit einem Tupel-Vergleich lässt sich das noch prägnanter schreiben:

 # innerhalb von Klasse Karte:

def __cmp__(self, other):

t1 = self.farbe, self.rang

t2 = other.farbe, other.rang

return cmp(t1, t2)

Die integrierte Funktion cmp hat dieselbe Schnittstelle wie die Methode __cmp__:

Sie erwartet zwei Werte und liefert eine positive Zahl, wenn der erste Wert größer

ist, eine negative Zahl, wenn der zweite Wert größer ist, und 0, wenn beide Werte

gleich sind.

Schreiben Sie eine Methode__cmp__ für Zeit-Objekte. Tipp: Dafür können Sie

einen Tupel-Vergleich heranziehen oder die Subtraktion von Integer-Werten.

 Listing 18.1

Stapel

Nachdem wir jetzt Karten haben, können wir in einem nächsten Schritt Kartenstapel

definieren. Da ein Stapel aus Karten besteht, ist es nur logisch, dass ein Stapel eine

Liste mit Karten als Attribut enthält.

Hier sehen Sie eine Klassendefinition für Stapel. Die init-Methode erstellt das

Attribut karten und erzeugt ein Standardspiel mit 52 Karten:

class Stapel(object):

def __init__(self):

self.karten = []

for farbe in range(4):

for rang in range(1, 14):

karte = Karte(farbe, rang)

self.karten.append(karte)

Die einfachste Möglichkeit, den Stapel aufzubauen, ist eine verschachtelte Schleife.

Die äußere Schleife durchläuft die Farben von 0 bis 3. Die innere Schleife zählt alle

Ränge von 1 bis 13 auf. Bei jeder Iteration wird eine neue Karte mit der aktuellen

Farbe und dem aktuellen Rang erstellt und zu self.karten hinzugefügt.

Kartenstapel ausgeben

Hier sehen Sie die Methode __str__ für Stapel:

 # innerhalb von Klasse Stapel:

def __str__(self):

res = []

 for karte in self.karten:

res.append(str(karte))

return ' \n'.join(res)

Mit dieser Methode haben Sie eine effiziente Möglichkeit, einen großen String

zusammenzusetzen: indem Sie eine Liste mit Strings bilden und anschließend join

verwenden. Die integrierte Funktion str ruft die Methode __str__ für jede einzelne

Karte auf und liefert die String-Repräsentation.

Da wir join mit dem Zeichen für einen Zeilenumbruch aufrufen, werden die

einzelnen Karten durch einen Zeilenumbruch voneinander getrennt. So sieht das

Ergebnis aus:

>>> Stapel = Stapel()

>>> print Stapel

Herz-König

Kreuz-Bube

Karo-Ass

...

Herz-5

Kreuz-2

Herz-Dame

Pik-König

Auch wenn das Ergebnis auf 52 Zeilen angezeigt wird, so handelt es sich dennoch

um einen langen String – mit Zeilenumbrüchen.

Hinzufügen, entfernen, mischen und sortieren

Um Karten auszuteilen, brauchen wir eine Methode, die eine Karte vom Stapel zieht

und zurückliefert. Die Listenmethode pop bietet eine einfache Lösung dafür:

 # innerhalb von Klasse Stapel:

def ziehe_karte(self):

return self.karten.pop()

Nachdem pop die letzte Karte aus der Liste entfernt hat, teilen wir die Karten quasi

von ganz unten im Stapel aus. Im realen Leben ist das als Falschspiel verpönt, aber

in diesem Kontext geht das sicher in Ordnung.

Um eine Karte hinzuzufügen, können wir die Listenmethode append verwenden:

 # innerhalb von Klasse Stapel:

def hinzufuegen_karte(self, karte):

self.karten.append(karte)

Eine solche Methode, die eine andere Funktion aufruft, ohne wirklich etwas zu tun,

bezeichnet man manchmal als Veneer (zu Deutsch »Furnier«). Diese Metapher

stammt aus der Holzverarbeitung, wenn eine dünne Schicht qualitativ hochwertigen

Holzes auf ein billiges Stück Holz aufgeklebt wird.

In diesem Fall definieren wir einfach eine »schlanke« Methode, die eine Listenoperation so ausdrückt, dass sie für Kartenstapel geeignet ist.

Als zusätzliches Beispiel können wir eine Stapel-Methode mit dem Namen mischen

schreiben, die die Funktion shuffle aus dem Modul random verwendet:

 # innerhalb von Klasse Stapel:

def mischen(self):

random.shuffle(self.karten)

Vergessen Sie nicht, random zu importieren.

Schreiben Sie eine Stapel-Methode mit dem Namen sortieren, die mithilfe der

Listenmethode sort die Karten in einem Stapel sortiert. sort verwendet für die

Reihenfolge der Sortierung die Methode __cmp__ , die wir vorhin geschrieben

haben.

 Listing 18.2

Vererbung

Ein Merkmal von Programmiersprachen, das häufig mit der objektorientierten

Programmierung in Verbindung gebracht wird, ist die Vererbung . Unter Vererbung

versteht man die Möglichkeit, eine Klasse als modifizierte Version einer

vorhandenen Klasse zu definieren.

Von Vererbung spricht man deshalb, weil die neue Klasse die Methoden der

vorhandenen Klasse erbt. Dieser Metapher entsprechend bezeichnet man die

Basisklasse manchmal auch als Elternklasse und die abgeleitete Klasse dann als

Kindklasse.

Gehen wir als Beispiel davon aus, dass wir eine Klasse schreiben möchten, die eine

»Hand« repräsentiert, also die Karten, die ein Pokerspieler in der Hand hält. Eine

Hand ist ähnlich wie ein Stapel: Beide enthalten eine Reihe von Karten, und beide

benötigen Methoden zum Hinzufügen und Entfernen von Karten.

Eine Hand unterscheidet sich aber auch von einem Stapel: Für eine Hand brauchen

wir Operationen, die für einen Stapel keinen Sinn ergeben. Beispielsweise möchten

wir beim Poker die Hand zweier Spieler vergleichen, um zu bestimmen, wer

gewonnen hat. Im Skat würden wir wiederum die Punkte für eine Hand berechnen,

damit der Spieler reizen kann.

Eine solche Beziehung zwischen Klassen – sie sind ähnlich, aber eben doch

unterschiedlich – führt zur Vererbung.

Die Definition einer abgeleiteten Klasse gleicht anderen Klassendefinitionen,

allerdings wird der Name der Basisklasse in Klammern angegeben:

class Hand(Stapel):

 """Repräsentiert eine Hand mit Spielkarten."""

Diese Definition gibt an, dass Hand von Stapel erbt. Das bedeutet, dass wir

Methoden wie ziehe_karte und hinzufuegen_karte sowohl für Hand- als auch für

Stapel-Objekte verwenden können.

Hand erbt auch __init__ von Stapel. Aber diese Methode macht nicht wirklich das,

was wir möchten. Anstatt die Hand mit 52 neuen Karten zu füllen, soll die init-

Methode von Hand karten mit einer leeren Liste initialisieren.

Wenn wir in der Klasse Hand eine init-Methode definieren, wird dadurch die

Methode der Klasse Stapel überschrieben:

 # innerhalb von Klasse Hand:

def __init__(self, label=''):

self.karten = []

self.label = label

Wenn Sie also eine neue Hand erstellen, ruft Python diese init-Methode auf:

>>> hand = Hand('neue Hand')

>>> print hand.karten

[]

>>> print hand.label

neue Hand

Aber die anderen Methoden werden weiterhin von Stapel geerbt, deshalb können wir

ziehe_karte und hinzufuegen_karte nutzen, um eine Karte auszugeben:

>>> stapel = Stapel()

>>> karte = stapel.ziehe_karte()

>>> hand.hinzufuegen_karte(karte)

>>> print hand

Karo-Dame

Als nächsten Schritt kapseln wir diesen Code in eine Methode mit dem Namen

ziehe_karten:

 # innerhalb von Klasse Stapel:

def ziehe_karten(self, hand, anz):

for i in range(anz):

hand.hinzufuegen_karte(self.ziehe_karte())

ziehe_karten erwartet zwei Argumente, ein Hand-Objekt und die Anzahl der zu

verteilenden Karten. Die Methode modifiziert self und hand und liefert den

Rückgabewert None.

In manchen Spielen werden die Karten von einer Hand zu einer anderen

weitergegeben oder von einer Hand zurück auf den Stapel. Sie können ziehe_karten

für jede dieser Operationen verwenden: self kann sowohl ein Stapel als auch eine

Hand sein, und hand kann entgegen dem Namen auch ein Stapel sein.

Schreiben Sie eine Stapel-Methode mit dem Namen verteile_karten, die zwei

Parameter erwartet: die Anzahl der Hände und die Anzahl der Karten pro Hand. Die

Methode soll neue Hand-Objekte erstellen, pro Hand die entsprechende Anzahl

Karten ausgeben und eine Liste mit Hand-Objekten zurückliefern.

 Listing 18.3

Vererbung ist eine nützliche Sache. Manche Programme, die ohne Vererbung eher

repetitiv wären, können damit eleganter geschrieben werden. Vererbung kann auch

die Wiederverwendung von Code erleichtern, da Sie das Verhalten der Basisklassen

anpassen können, ohne sie zu ändern. In manchen Fällen spiegelt die

Vererbungsstruktur auch die natürliche Struktur der Problemstellung wider, wodurch

das Programm leichter zu verstehen ist.

Andererseits können Programme durch Vererbung auch schwieriger zu lesen sein.

Manchmal ist beim Aufruf einer Methode nicht ganz klar, wo die Definition steht.

Der entsprechende Code kann auf mehrere Module verteilt sein. Außerdem lassen

sich viele Dinge, die sich mit Vererbung lösen lassen, auch genauso gut oder

eventuell sogar besser ohne Vererbung lösen.

Klassendiagramme

Bisher haben wir nur Stapeldiagramme gesehen, die den Zustand eines Programms

darstellen, sowie Objektdiagramme, die die Attribute eines Objekts und deren Werte

zeigen. Diese Diagramme repräsentieren eine Momentaufnahme in der Ausführung

eines Programms, die sich entsprechend verändert.

Solche Diagramme sind sehr detailreich, für manche Zwecke sogar zu detailreich.

Klassendiagramme sind dagegen eine abstraktere Darstellung der Struktur eines

Programms. Anstatt einzelne Objekte darzustellen, werden die Klassen und die

entsprechenden Beziehungen zwischen ihnen abgebildet.

Es gibt verschiedene Arten von Beziehungen zwischen Klassen:

Objekte einer Klasse können Referenzen auf Objekte einer anderen Klasse

enthalten. So enthält beispielsweise jedes Rechteck eine Referenz auf einen

Punkt, genau wie ein Kartenstapel Referenzen auf viele Karten enthält. Eine

solche Beziehung bezeichnet man als Teil-Ganzes-Beziehung (auch »Hat-ein-

Beziehung«, denn: »ein Rechteck hat einen Punkt«).

Eine Klasse kann von einer anderen erben. Eine solche Beziehung bezeichnet man

als Oberbegriff-Beziehung (auch »Ist-ein-Beziehung«, denn: »eine Hand ist eine

Art von Stapel«).

Eine Klasse kann insofern von einer anderen abhängen, als Änderungen in der

einen Klasse auch Änderungen in der anderen Klasse erfordern.

Ein Klassendiagramm stellt solche Beziehungen grafisch dar. Abbildung 18.2 zeigt die Beziehungen zwischen Karte, Stapel und Hand.

 Abbildung 18.2 Klassendiagramm

Pfeile mit einer leeren Spitze stellen eine Oberbegriff-Beziehung dar. In diesem Fall

zeigt der Pfeil an, dass Hand von Stapel erbt.

Die standardmäßige Pfeilspitze kennzeichnet eine Teil-Ganzes-Beziehung. In

diesem Fall enthält ein Stapel Referenzen auf Karten-Objekte.

Der Stern (*) bei der Pfeilspitze zu Karte symbolisiert eine Kardinalität. Diese gibt an, wie viele Karten ein Stapel enthalten darf. Eine Kardinalität kann eine einfache

Zahl wie beispielsweise 52 sein, ein Wertebereich wie etwa 5..7 oder ein Stern, der

bedeutet, dass ein Stapel eine beliebige Anzahl von Karten enthalten darf.

Ein detaillierteres Diagramm könnte auch zeigen, dass ein Stapel eine Liste mit

Karten enthält. Aber integrierte Typen wie List und Dict werden üblicherweise nicht

in einem Klassendiagramm dargestellt.

Lesen Sie TurtleWorld.py, World.py und Gui.py. Zeichnen Sie anschließend ein Klassendiagramm, das die Beziehungen zwischen den in diesen Dateien definierten

Klassen darstellt.

 Listing 18.4

Debugging

Vererbung kann das Debugging zu einer echten Herausforderung machen. Denn

wenn Sie die Methode für ein Objekt aufrufen, wissen Sie unter Umständen nicht,

welche Methode tatsächlich aufgerufen wird.

Angenommen, Sie schreiben eine Funktion, die mit Hand-Objekten arbeitet. Die

Methode soll mit allen möglichen Arten von Hand-Objekten funktionieren,

beispielsweise mit PokerHand-, SkatHand-Objekten usw. Wenn Sie eine Methode

wie beispielsweise mischen aufrufen, kann es die Methode sein, die in Stapel

definiert ist. Aber wenn eine der Subklassen diese Methode überschreibt, wird

stattdessen diese Version aufgerufen.

Immer wenn Sie sich nicht sicher sind, wie Ihr Programm abläuft, besteht die

einfachste Lösung darin, die entsprechenden Methoden mit print-Anweisungen zu

versehen. Wenn Stapel.mischen eine Meldung wie Stapel.mischen wird

ausgeführt ausgibt, können Sie anhand solcher Ausgaben den Programmablauf

mitverfolgen.

Alternativ können Sie die folgende Funktion verwenden, die ein Objekt und einen

Methodennamen (als String) erwartet und die Klasse zurückliefert, in der die

verwendete Methode definiert ist:

def suche_definierende_klasse(obj, methoden_name):

for ty in type(obj).mro():

if methoden_name in ty.__dict__:

return ty

Sehen wir uns ein Beispiel an:

>>> hand = Hand()

>>> print suche_definierende_klasse(hand, 'mischen')

<class '__main__.Stapel'>

Die Methode mischen für diese Hand ist also diejenige, die in Stapel definiert

wurde.

suche_definierende_klasse verwendet die Methode mro, um die Liste der

Klassenobjekte (Typen) abzurufen, in denen nach Methoden gesucht wird. »MRO«

steht für »Method Resolution Order« (Reihenfolge bei der Auflösung der

Methodennamen).

Ein Vorschlag zum Programmdesign: Immer wenn Sie eine Methode überschreiben,

sollte die Schnittstelle der neuen Methode genau wie die Schnittstelle der alten

Methode sein. Die Methode soll dieselben Parameter erwarten, denselben Typ

zurückgeben und dieselben Vorbedingungen und Nachbedingungen stellen. Wenn

Sie diese Regel befolgen, werden alle Funktionen, die mit Instanzen einer

Superklasse wie beispielsweise Stapel funktionieren, auch mit allen Subklassen wie

Hand oder PokerHand funktionieren.

Wenn Sie diese Regel nicht einhalten, wird Ihr Code (leider) wie ein Kartenhaus in

sich zusammenfallen.

Datenkapselung

Kapitel 16 folgt einem Entwicklungsplan, den wir als »objektorientiertes Design«

bezeichnen könnten. Wir haben die Objekte ermittelt, die wir benötigen – Zeit,

Punkt und Rechteck – und entsprechende Klassen definiert. In jedem Fall gibt es

einen offensichtlichen Zusammenhang zwischen den Objekten und den

entsprechenden Entitäten in der realen Welt (oder zumindest in der mathematischen Welt).

Aber manchmal ist es weniger offensichtlich, welche Objekte Sie benötigen und wie

diese interagieren sollen. In solchen Fällen brauchen Sie einen anderen

Entwicklungsplan. Genau so, wie wir Schnittstellen für Funktionen durch Kapselung

und Generalisierung gefunden haben, können wir auch Schnittstellen für Klassen

durch Datenkapselung entwickeln.

Die Markov-Analyse aus „Markov-Analyse“ ist ein gutes Beispiel hierfür. Wenn Sie meinen Code in der Beispieldatei markov.py ansehen, werden Sie feststellen, dass darin zwei globale Variablen verwendet werden – suffix_map und praefix –, die von

mehreren Funktionen ausgelesen und geschrieben werden.

suffix_map = {}

praefix = ()

Da diese Variablen global sind, können wir immer nur eine Analyse zur gleichen

Zeit durchführen. Wenn wir zwei Texte gleichzeitig analysieren, würden die Präfixe

und Suffixe zu denselben Datenstrukturen hinzugefügt (was vielleicht auch zu

interessanten Ergebnissen führt).

Wenn wir mehrere Analysen gleichzeitig durchführen und diese voneinander trennen

möchten, können wir den Zustand der einzelnen Analysen jeweils in einem Objekt

kapseln. Das sieht folgendermaßen aus:

class Markov(object):

def __init__(self):

self.suffix_map = {}

self.praefix = ()

Als Nächstes wandeln wir die Funktionen in Methoden um. So sieht beispielsweise

verarbeite_wort aus:

def verarbeite_wort(self, wort, praefix_laenge=2):

if len(self.praefix) < praefix_laenge:

self.praefix += (wort,)

return

try:

self.suffix_map[self.praefix].append(wort)

except KeyError:

 # Eintrag für Präfix erstellen, falls dieser noch nicht existiert

self.suffix_map[self.praefix] = [wort]

self.praefix = verschieben(self.praefix, wort)

Eine solche Änderung des Programmdesigns ohne Änderung der Funktionalität ist

ein weiteres Beispiel für Refactoring (siehe „Refactoring“).

Außerdem zeigt dieses Beispiel einen möglichen Entwicklungsplan für das Design von Objekten und Methoden:

1. Beginnen Sie damit, Funktionen zu schreiben, die (soweit nötig) globale

Variablen lesen und schreiben.

2. Sobald das Programm funktioniert, suchen Sie die Verbindungen zwischen

globalen Variablen und den entsprechenden Funktionen, die diese verwenden.

3. Kapseln Sie entsprechende Variablen als Objektattribute.

4. Wandeln Sie die verknüpften Funktionen in Methoden einer neuen Klasse um.

Öffnen Sie die Beispieldatei aus „Markov-Analyse“ (markov.py) und führen Sie die oben beschriebenen Schritte durch, um die globalen Variablen als Attribute einer

neuen Klasse mit dem Namen Markov zu kapseln. Lösung: Markov_loesung.py.

 Listing 18.5

Glossar

Kodierung:

Abbildung einer Menge von Werten mit einer anderen Menge von Werten durch

eine entsprechende Zuordnung.

Klassenattribut:

Attribut, das mit einem Klassen-Objekt verknüpft ist. Klassenattribute werden

innerhalb einer Klassendefinition, aber außerhalb der Methodendefinitionen

definiert.

Instanzattribut:

Attribut, das mit einer Instanz einer Klasse verknüpft ist.

Veneer-Methode:

Methode, die eine Schnittstelle für eine andere Funktion definiert, ohne selbst

Berechnungen durchzuführen.

Vererbung:

Möglichkeit, eine neue Klasse zu definieren, die eine modifizierte Version einer

zuvor definierten anderen Klasse ist.

Basisklasse:

Klasse, von der eine abgeleitete Klasse erbt.

Abgeleitete Klasse:

Neue Klasse, die durch Vererbung von einer existierenden Klasse erstellt wird.

Wird auch als »Subklasse« bezeichnet.

Oberbegriff-Beziehung:

Beziehung zwischen einer abgeleiteten Klasse und ihrer Basisklasse.

Teil-Ganzes-Beziehung:

Beziehung zwischen zwei Klassen, von denen Instanzen der einen Klasse

Referenzen auf Instanzen der anderen enthalten.

Klassendiagramm:

Diagramm, das die in einem Programm verwendeten Klassen sowie die

Beziehungen zwischen diesen Klassen darstellt.

Kardinalität:

Bezeichnung in einem Klassendiagramm, die für eine Teil-Ganzes-Beziehung

angibt, wie viele Referenzen es zu Instanzen einer anderen Klasse gibt.

Übungen

Hier sehen Sie die möglichen Kartenkombinationen im Poker in der Wertigkeit

aufsteigend sortiert (und entsprechend in der Wahrscheinlichkeit absteigend

sortiert):

Paar:

Zwei Karten mit demselben Rang

Zwei Paare:

Zwei Paare von Karten mit demselben Rang

Drilling:

Drei Karten mit demselben Rang

Straße:

Fünf aufeinanderfolgende Karten verschiedener Farben (Asse können dabei die

niedrigste oder höchste Karte sein: Ass-2-3-4-5 ist eine Straße, genauso wie 10-

Bube-Dame-König-Ass, nicht aber Dame-König-Ass-2-3.)

Flush:

Fünf Karten derselben Farbe

Full House:

Kombination aus Drilling und einem Paar

Vierling:

Vier Karten mit demselben Rang

Straight Flush:

Fünf aufeinanderfolgende Karten (wie Straße) in derselben Farbe

Ziel dieser Übungen ist es, die Wahrscheinlichkeit dieser verschiedenen Hände zu

schätzen.

1. Dafür brauchen Sie die folgenden Beispieldateien:

Karte.py

Eine vollständige Implementierung der Klassen Karte, Stapel und Hand aus

diesem Kapitel.

PokerHand.py

Eine unvollständige Implementierung einer Poker-Hand sowie ein bisschen

Code zum Testen.

2. Wenn Sie PokerHand.py ausführen, werden sieben Poker-Hände mit jeweils

sieben Karten ausgegeben, und es wird geprüft, ob die jeweilige Hand einen

Flush enthält. Lesen Sie diesen Code sorgfältig durch, bevor Sie weitermachen.

3. Erweitern Sie PokerHand.py um Methoden mit den Namen hat_paar,

hat_zweipaare usw., die True oder False zurückliefern, je nachdem, ob die

jeweilige Hand die entsprechenden Kriterien erfüllt. Ihr Code soll für »Hände«

mit einer beliebigen Anzahl Karten funktionieren (obwohl es meistens 5 oder 7

sind).

4. Schreiben Sie eine Methode mit dem Namen auswerten, die das Blatt mit dem

höchsten Wert für eine Hand ermittelt und das Attribut label entsprechend

festlegt. Eine Hand mit 7 Karten kann beispielsweise einen Flush und ein Paar

enthalten. In diesem Fall sollte diese Hand das Label »Flush« erhalten.

5. Wenn Sie davon überzeugt sind, dass Ihre Auswertungsmethoden

funktionieren, können Sie in einem nächsten Schritt die Wahrscheinlichkeiten

der jeweiligen Blätter schätzen. Schreiben Sie eine Funktion in PokerHand.py,

die einen Stapel Karten mischt, mehrere Poker-Hände ausgibt, diese auswertet

und dabei zählt, wie oft das jeweilige Blatt vorkommt.

6. Geben Sie eine Tabelle der Blätter und der entsprechenden

Wahrscheinlichkeiten aus. Lassen Sie das Programm mit einer immer größeren

Anzahl von Poker-Händen laufen, bis die Ausgabewerte einen angemessenen

Genauigkeitsgrad erreichen. Vergleichen Sie ihre Ergebnisse mit

http://de.wikipedia.org/wiki/Hand_(Poker).

Lösung: PokerHandLoesung.py.

 Listing 18.6

Für diese Übung brauchen Sie TurtleWorld aus Kapitel 4. Sie werden Code

schreiben, der unsere Schildkröten Fangen spielen lässt. Falls Sie dieses Spiel nicht kennen, schauen Sie in http://de.wikipedia.org/wiki/Fangen.

1. Führen Sie die Datei Wobbler.py aus den Codebeispielen aus. Sie sollten eine TurtleWorld mit drei Turtles sehen. Wenn Sie auf den Button »Run« klicken,

marschieren die Schildkröten willkürlich drauflos.

2. Lesen Sie den Code und vergewissern Sie sich, dass Sie verstehen, wie er

funktioniert. Die Klasse Wobbler erbt von Turtle, entsprechend stehen die

Turtle-Methoden wie z. B. lt, rt, fd und bk auch für Wobbler zur Verfügung.

Die Methode step wird von TurtleWorld aufgerufen. In dieser Methode rufen

wir wiederum steuern auf, die die Schildkröte in die gewünschte Richtung

dreht, wobbeln, die zufällige Drehungen in Abhängigkeit von der

Tollpatschigkeit der Schildkröte macht, und bewegen, die die Schildkröte in

Abhängigkeit von der jeweiligen Geschwindigkeit einige Pixel vorwärts

bewegt.

3. Erstellen Sie eine Datei mit dem Namen Faenger.py. Importieren Sie alles aus Wobbler.py und definieren Sie anschließend eine Klasse mit dem Namen

Faenger, die von Wobbler erbt. Rufen Sie erstelle_welt auf und übergeben

Sie das Klassenobjekt Faenger als Argument.

4. Fügen Sie eine Methode steuern in Faenger ein, um die Methode in Wobbler

zu überschreiben. Schreiben Sie zunächst eine Version, bei der die Schildkröte

immer zum Ursprung zeigt. Tipp: Verwenden Sie die math-Funktion atan2 und

die Turtle-Attribute x, y und heading.

5. Passen Sie steuern so an, dass die Turtles auf der Bildfläche bleiben. Zum

Debugging können Sie den Button »Step« nutzen, der für jede Schildkröte

einmal die Methode step aufruft.

6. Passen Sie steuern so an, dass jede Schildkröte zum jeweils nächsten

Nachbarn schaut. Tipp: Turtles haben ein Attribut world, das auf die

TurtleWorld referenziert, in der sie leben. Und TurtleWorld hat wiederum das

Attribut animals, das eine Liste aller Turtles in dieser Welt enthält.

7. Passen Sie steuern so an, dass die Turtles Fangen spielen. Sie können Faenger

um Methoden erweitern und auch steuern und __init__ überschreiben. Aber

Sie dürfen nicht step, wobbeln oder bewegen anpassen bzw. überschreiben.

Außerdem dürfen Sie zwar in steuern das Heading der Turtles ändern, aber

nicht deren Position.

Passen Sie die Regeln in Ihrer Methode steuern so an, dass das Spiel Spaß

macht. Beispielsweise sollte es auch für eine langsame Schildkröte möglich

sein, irgendwann eine schnellere Schildkröte zu fangen.

Lösung: Faenger.py.

 Listing 18.7

Kapitel 19. Fallstudie: Tkinter

GUI

Die meisten Programme, die wir bisher gesehen haben, waren textbasiert. Aber viele

Programme benutzen eine grafische Benutzeroberfläche, auch als GUI bekannt (steht für »Graphical User Interface«).

Python bietet mehrere Möglichkeiten für das Schreiben von GUI-basierten

Programmen. Dazu gehören wxPython, Tkinter und Qt. Jede dieser Möglichkeiten

hat ihre Vor- und Nachteile, deshalb hat sich Python nie auf einen Standard

festgelegt.

In diesem Kapitel werde ich auf Tkinter eingehen, weil das meiner Meinung nach für

den Einstieg die einfachste Lösung ist. Die meisten in diesem Kapitel vorgestellten

Konzepte gelten natürlich auch für andere GUI-Module.

Es gibt viele Bücher und Webseiten über Tkinter. Eine der besten Onlineressourcen

ist An Introduction to Tkinter von Fredrik Lundh.

Ich habe ein Modul mit dem Namen Gui.py geschrieben, das in Swampy enthalten

ist. Es bietet eine vereinfachte Schnittstelle für die Funktionen und Klassen in

Tkinter. Die Beispiele in diesem Kapitel basieren auf diesem Modul.

Hier sehen Sie ein einfaches Beispiel für eine GUI. Um eine GUI zu erstellen,

müssen Sie zunächst Gui importieren und ein Gui-Objekt instanziieren:

from Gui import *

g = Gui()

g.title('Gui')

g.mainloop()

Wenn Sie diesen Code ausführen, sollte ein Fenster mit einem leeren grauen Quadrat

und dem Titel »Gui« angezeigt werden. mainloop ruft die Event-Schleife auf, die

darauf wartet, dass der Benutzer etwas macht, und darauf entsprechend reagiert. Es

handelt sich dabei um eine Endlosschleife, die ausgeführt wird, bis der Benutzer das

Fenster schließt, Strg-C drückt oder etwas tut, wodurch das Programm beendet wird.

Diese GUI macht nicht allzu viel, weil sie keine Widgets enthält. Widgets sind jene Elemente, die eine GUI ausmachen. Folgende gehören dazu:

Button:

Widget, das Text oder ein Bild enthält und eine Aktion durchführt, wenn man

darauf klickt

Canvas:

Bereich, der Linien, Rechtecke, Kreise und andere Formen anzeigen kann

Entry-Widget:

Bereich, in den der Benutzer Text eingeben kann

Scrollbar:

Widget, das den sichtbaren Bereich eines anderen Widgets steuert

Frame:

Container (meistens sichtbar), der andere Widgets enthält

Das leere graue Quadrat, das Sie sehen, wenn Sie eine GUI erstellen, ist ein Frame.

Wenn Sie ein neues Widget erstellen, wird es diesem Frame hinzugefügt.

Buttons und Callbacks

Die Methode bu erstellt ein Button-Widget:

button = g.bu(text='Drück mich.')

Der Rückgabewert von bu ist ein Button-Objekt, der im Frame angezeigte Button ist

eine grafische Darstellung dieses Objekts. Sie können den Button steuern, indem Sie

entsprechende Methoden dafür aufrufen.

bu erwartet bis zu 32 Parameter, über die Sie das Aussehen und die Funktionalität

des Buttons steuern können. Diese Parameter nennt man Optionen. Anstatt Werte

für alle 32 Optionen zu übergeben, können Sie Schlüsselwortargumente wie etwa

text='Drück mich.' angeben, um nur die gewünschten Optionen festzulegen. Für die

übrigen werden die Standardwerte verwendet.

Wenn Sie ein Widget dem Frame hinzufügen, schrumpft der Frame auf die Größe

des Buttons. Fügen Sie weitere Widgets hinzu, wächst der Frame wieder, um diese

aufzunehmen.

Mit der Methode la können Sie ein Label-Widget erstellen:

label = g.la(text='Drücken Sie den Button.')

Standardmäßig stapelt Tkinter die Widgets von oben nach unten und zentriert sie.

Wir werden uns aber bald ansehen, wie wir dieses Verhalten ändern können.

Wenn Sie auf den Button klicken, werden Sie feststellen, dass er nicht viel macht.

Das liegt daran, dass Sie ihn noch nicht »verkabelt« haben, ihm noch nicht gesagt

haben, was er tun soll!

Die Option, die das Verhalten eines Buttons steuert, heißt command. Als Wert für

command können Sie eine Funktion angeben, die ausgeführt werden soll, wenn der

Button gedrückt wird. In unserem Beispiel verwenden wir eine Funktion, die ein

neues Label erstellt:

def erstelle_label():

 g.la(text='Danke!')

Nun können wir einen Button erstellen, dem wir diese Funktion übergeben:

button2 = g.bu(text='Nein, drück mich!', command=erstelle_label)

Wenn Sie auf diesen Button klicken, sollte erstelle_label ausgeführt und ein neues

Label angezeigt werden.

Der Wert für die Option command ist ein Funktionsobjekt, das man als Callback

bezeichnet. Der Name rührt daher, dass Sie bu aufrufen, um den Button zu erstellen,

und das Programm Sie dann wiederum »zurückruft«, wenn der Benutzer auf den

Button klickt.

Eine solche Ablauflogik bezeichnet man als Event-orientierte Programmierung.

Benutzerinteraktionen wie etwa Klicks auf einen Button oder Tastenanschläge

bezeichnet man als Events. Bei der Event-orientierten Programmierung wird der

Programmablauf also eher durch Benutzerinteraktionen bestimmt als durch den

Programmierer.

Die Herausforderung bei der Event-orientierten Programmierung besteht darin, eine

Reihe von Widgets und Callbacks zu konstruieren, die für eine beliebige

Reihenfolge von Benutzeraktionen funktioniert (oder wenigstens eine entsprechende

Fehlermeldung ausgibt).

Schreiben Sie ein Programm, das eine GUI mit einem einzigen Button erstellt. Wenn

der Button gedrückt wird, soll ein zweiter Button erstellt werden. Und wenn dann

dieser Button angeklickt wird, soll ein Label mit dem Text »Gut gemacht!«

erscheinen.

Was passiert, wenn Sie die Buttons mehr als einmal klicken? Lösung:

 button_demo.py

 Listing 19.1

Canvas-Widgets

Eines der vielseitigsten Widgets ist Canvas, das einen Bereich zum Zeichnen von

Linien, Kreisen und anderen Formen angelegt. Wenn Sie Listing 15.4 gemacht haben, sind Sie bereits mit Canvas vertraut.

Die Methode ca erstellt ein neues Canvas:

canvas = g.ca(width=500, height=500)

width und height sind die Maße des Canvas in Pixeln.

Auch nachdem Sie ein Widget erstellt haben, können Sie die Optionen mit der

Methode config anpassen. Die Option bg ändert beispielsweise die

Hintergrundfarbe:

canvas.config(bg='white')

Der Wert von bg ist dabei ein String mit dem Namen einer Farbe. Die zulässigen

Farbnamen variieren je nach Python-Implementierung, aber alle Implementierungen

bieten mindestens die folgenden Optionen:

white black

red green blue

cyan yellow magenta

Formen auf dem Canvas heißen Items. Die Canvas-Methode circle zeichnet

beispielsweise (wie Sie sicher bereits vermutet haben) einen Kreis:

item = canvas.circle([0,0], 100, fill='red')

Das erste Argument ist ein Koordinatenpaar für den Mittelpunkt des Kreises. Das

zweite Argument bestimmt den Radius.

 Gui.py bietet ein standardmäßiges kartesisches Koordinatensystem mit dem

Ursprung im Mittelpunkt des Canvas. Der positive Teil der y-Achse zeigt nach oben.

Bei manchen anderen Grafiksystemen befindet sich der Ursprung dagegen in der

oberen linken Ecke, und die y-Achse verläuft nach unten.

Die Option fill bestimmt, dass der Kreis rot gefüllt werden soll.

Der Rückgabewert von kreis ist ein Item-Objekt mit Methoden zum Verändern des

Elements auf dem Canvas. So können Sie beispielsweise mit config eine beliebige

Kreisoption ändern:

item.config(fill='yellow', outline='orange', width=10)

width gibt die Dicke der Randlinie in Pixeln an, outline definiert die Farbe.

Schreiben Sie ein Programm, das ein Canvas und einen Button erstellt. Wenn der

Benutzer auf den Button klickt, soll das Programm einen Kreis auf das Canvas

zeichnen.

 Listing 19.2

Koordinatensequenzen

Die Methode rectangle erwartet eine Sequenz von Koordinaten, die die

gegenüberliegenden Ecken des Rechtecks definieren. Das folgende Beispiel zeichnet

ein grünes Rechteck mit der unteren linken Ecke im Ursprung und der oberen

rechten Ecke im Punkt (200,100):

canvas.rectangle([[0, 0], [200, 100]],

fill='blue', outline='orange', width=10)

Die Definition solcher Eckpunkte bezeichnet man als Bounding Box, als

Begrenzungsrahmen, weil die beiden Punkte das Rechteck begrenzen.

oval erwartet ebenfalls einen solchen Begrenzungsrahmen und zeichnet innerhalb des angegebenen Rechtecks ein Oval:

canvas.oval([[0, 0], [200, 100]], outline='orange', width=10)

line erwartet eine Sequenz von Koordinaten und zeichnet Linien, die diese Punkte

verbinden. Das folgende Beispiel zeichnet die beiden Schenkel eines Dreiecks:

canvas.line([[0, 100], [100, 200], [200, 100]], width=10)

polygon erwartet dieselben Argumente, zeichnet aber (falls nötig) auch den letzten

Schenkel des Polygons und füllt dieses:

canvas.polygon([[0, 100], [100, 200], [200, 100]],

fill='red', outline='orange', width=10)

Weitere Widgets

Tkinter stellt zwei Widgets zur Verfügung, in die die Benutzer Text eingeben

können: Entry mit einer einzigen Zeile und ein Text-Widget mit mehreren Zeilen.

en erstellt ein neues Entry-Widget:

entry = g.en(text='Standardtext.')

Mit der Option text können Sie beim Erstellen des Items Text in das Widget

schreiben. Die get-Methode liefert den Inhalt des Widgets zurück (der eventuell

vom Benutzer geändert wurde):

>>> entry.get()

'Standardtext.'

te erstellt ein Text-Widget:

text = g.te(width=100, height=5)

width und height bestimmen die Maße des Widgets in Zeichen und Zeilen.

insert schreibt Text in das Text-Widget:

text.insert(END, 'eine Zeile Text.')

END ist dabei ein spezieller Index, der sich auf das letzte Zeichen im Text-Widget

bezieht.

Sie können auch ein bestimmtes Zeichen über einen Index angeben, zum Beispiel

1.1. Vor dem Punkt steht die Zeilennummer, nach dem Punkt die Spaltennummer.

Das folgende Beispiel fügt die Zeichen 'Noch' vor dem ersten Zeichen in der ersten

Zeile ein.

>>> text.insert(1.0, 'Noch')

Die get-Methode liest den Text aus dem Widget aus. Auch hier können Sie einen

Start- und einen Endindex als Argumente angeben. Das folgende Beispiel liefert den

gesamten Text aus dem Widget, einschließlich des Zeilenvorschubs:

>>> text.get(0.0, END)

'Noch eine Zeile Text.\n'

Die Methode delete entfernt Text aus dem Widget. So löschen Sie beispielsweise

alles außer den ersten vier Buchstaben:

>>> text.delete(1.4, END)

>>> text.get(0.0, END)

'Noch\n'

Ändern Sie Ihre Lösung aus Listing 19.2, indem Sie ein Entry-Widget und einen zweiten Button einfügen. Wenn der Benutzer auf den zweiten Button klickt, soll ein

Farbname aus dem Entry-Widget gelesen und als Füllfarbe für den Kreis verwendet

werden. Passen Sie den vorhandenen Kreis mit config an. Erstellen Sie keinen neuen.

Ihr Programm soll den Fall berücksichtigen, dass der Benutzer die Farbe eines

Kreises zu ändern versucht, der noch nicht erstellt wurde, sowie den Fall, dass der

angegebene Farbname ungültig ist.

Meine Lösung finden Sie in der Datei kreis_demo.py.

 Listing 19.3

Widgets packen

Bisher haben wir Widgets nur in einer einzigen Spalte gestapelt. Aber die Layouts

der meisten Benutzeroberflächen sind komplizierter. Abbildung 19.1 zeigt als Beispiel eine vereinfachte Version von TurtleWorld (siehe Kapitel 4).

In diesem Abschnitt stelle ich den Code, der diese GUI erstellt, Schritt für Schritt

vor. Das vollständige Beispiel finden Sie in der Datei EinfacheTurtleWorld.py.

Auf der obersten Ebene enthält die GUI zwei Widgets, die in einer Reihe angeordnet

sind – ein Canvas und einen Frame. In einem ersten Schritt müssen wir also diese

Reihe erstellen.

class EinfacheTurtleWorld(TurtleWorld):

 """Diese Klasse ist identisch mit TurtleWorld. Um den

 Code für das Layout der GUI zu erklären, wurde dieser

 allerdings vereinfacht."""

def setup(self):

self.row()

...

setup ist die Funktion, die die Widgets erstellt und anordnet. Die Anordnung von

Widgets in einer GUI bezeichnet man als Packing.

 Abbildung 19.1 Vereinfachte Version von TurtleWorld.

row erstellt einen Zeilen-Frame und macht diesen zum aktuellen Frame. Bis dieser

Frame geschlossen oder ein anderer Frame erstellt wird, werden alle nachfolgenden

Widgets in diese Reihe gepackt.

Hier sehen Sie den Code, der das Canvas und den Spalten-Frame für die anderen

Widgets erstellt:

self.canvas = self.ca(width=400, height=400, bg='white')

self.col()

Das erste Widget in der Spalte ist ein Grid Frame mit zwei Buttons, die in

Zweiergruppen angeordnet sind:

self.gr(cols=2)

self.bu(text='Canvas drucken', command=self.canvas.dump)

self.bu(text='Beenden', command=self.quit)

self.bu(text='Turtle erstellen', command=self.make_turtle)

self.bu(text='Entfernen', command=self.clear)

self.endgr()

gr erstellt das Raster. Das Argument gibt die Anzahl der Spalten an. Die Widgets im

Grid werden von links nach rechts und von oben nach unten angeordnet.

Der erste Button verwendet self.canvas.dump als Callback, der zweite self.quit.

Dabei handelt es sich um gebundene Methoden, d. h. um Methoden, die mit einem

bestimmten Objekt verknüpft sind. Wenn Sie diese Methoden aufrufen, werden sie

für das entsprechende Objekt aufgerufen.

Das nächste Widget in der Spalte ist ein Reihen-Frame mit einem Button und einem

Entry-Widget:

self.row([0,1], pady=30)

self.bu(text='Datei ausführen', command=self.run_file)

self.en_file = self.en(text='koch.py', width=5)

self.endrow()

Das erste Argument für row ist eine Liste mit Gewichtungen, die bestimmt, wie

zusätzlicher Platz zwischen den Widgets aufgeteilt werden soll. Die Liste [0,1]

bestimmt, dass sämtlicher zusätzlicher Platz dem zweiten Widget, also dem Entry-

Widget, zugewiesen werden soll. Wenn Sie diesen Code ausführen und die Größe

des Fensters ändern, werden Sie feststellen, dass das Entry-Widget mitwächst, der

Button dagegen nicht.

Die Option pady verpasst dieser Reihe ein Padding in y-Richtung – 30 Pixel Platz nach oben und unten.

endrow schließt die Reihe der Widgets ab. Alle nachfolgenden Widgets werden also

in den Spalten-Frame gepackt. Gui.py stapelt die Frames:

Wenn Sie mit row, col oder gr einen Frame erstellen, wandert er oben auf den

Stapel und wird zum aktuellen Frame.

Wenn Sie mit endrow, endcol oder endgr einen Frame abschließen, wird er vom

Stapel entfernt, und der Frame darunter wird zum aktuellen Frame.

Die Methode run_file liest den Inhalt des Entry-Widgets, verwendet diesen als

Dateinamen, liest den Inhalt der Datei aus und übergibt diesen an run_code.

self.inter ist ein Interpreter-Objekt, das einen String erwartet und diesen als Python-

Code ausführt:

def run_file(self):

filename = self.en_file.get()

fp = open(filename)

source = fp.read()

self.inter.run_code(source, filename)

Die letzten beiden Widgets sind ein Text-Widget und ein Button:

self.te_code = self.te(width=25, height=10)

self.te_code.insert(END, 'world.clear()\n')

self.te_code.insert(END, 'tim = Turtle(world)\n')

self.bu(text='Code starten', command=self.run_text)

run_text ist ähnlich wie run_file, liest den Code allerdings nicht aus einer Datei,

sondern aus dem Text-Widget:

def run_text(self):

source = self.te_code.get(1.0, END)

 self.inter.run_code(source, '<user-provided code>')

Leider unterscheiden sich die Details beim Widget-Layout in den verschiedenen

Sprachen und Python-Modulen. Allein Tkinter bietet bereits drei verschiedene

Mechanismen für die Anordnung von Widgets. Diese Mechanismen heißen

Geometry Managers. Der Manager, den ich in diesem Abschnitt vorgestellt habe,

ist der Geometry Manager »grid«. Die anderen heißen »pack« und »place«.

Glücklicherweise gelten die meisten in diesem Abschnitt vorgestellten Konzepte

auch für andere GUI-Module und Sprachen.

Menüs und Callables

Ein Menubutton ist ein Widget, das wie ein Button aussieht, aber ein Menü öffnet,

wenn man darauf klickt. Nachdem der Benutzer ein Element ausgewählt hat, wird

das Menü wieder ausgeblendet.

Hier sehen Sie den Code, der einen Menubutton für die Farbauswahl erstellt (siehe

 menubutton_demo.py):

g = Gui()

g.la('Wählen Sie eine Farbe:')

farben = ['red', 'green', 'blue']

mb = g.mb(text=farben[0])

mb erstellt einen Menubutton. Anfangs entspricht der Text im Button dem Namen

der Standardfarbe. Die folgende Schleife erstellt jeweils ein Menüelement für jede

Farbe:

for farbe in farben:

g.mi(mb, text=farbe, command=Callable(waehle_farbe, farbe))

Das erste Argument von mi ist der Menubutton, dem diese Elemente zugeordnet

werden.

Die Option command ist ein Callable-Objekt – das ist etwas Neues. Bisher kennen

wir Funktionen und gebundene Methoden als Callbacks, was wunderbar funktioniert,

wenn Sie der jeweiligen Funktion keine Argumente übergeben müssen. Ansonsten

müssen Sie ein Callable-Objekt konstruieren, das eine Funktion wie etwa

waehle_farbe und die entsprechenden Argumente enthält, beispielsweise farbe.

Das Callable-Objekt speichert eine Referenz auf die Funktion und die Argumente als

Attribute. Wenn der Benutzer anschließend auf ein Menüelement klickt, ruft der

Callback die entsprechende Funktion auf und übergibt die gespeicherten Argumente.

Und so könnte waehle_farbe aussehen:

def waehle_farbe(farbe):

print farbe

mb.config(text=farbe)

Wenn der Benutzer ein Menüelement auswählt und waehle_farbe aufgerufen wird, konfiguriert die Funktion den Menubutton so, dass die neu ausgewählte Farbe

angezeigt und ausgegeben wird. Beim Nachvollziehen dieses Beispiels können Sie

sehen, dass waehle_farbe aufgerufen wird, wenn Sie ein Element auswählen (und

 nicht aufgerufen wird, wenn Sie das Callable-Objekt erstellen).

Bindung

Eine Bindung ist eine Verknüpfung zwischen einem Widget, einem Event und

einem Callback: Wenn ein Event (beispielsweise der Klick auf einen Button) in

einem Widget ausgelöst wird, wird der Callback aufgerufen.

In vielen Widgets gibt es Standardbindungen. Wenn Sie beispielsweise auf einen

Button klicken, wird durch eine Standardbindung der Button gedrückt dargestellt.

Lassen Sie den Button wieder los, wird das ursprüngliche Aussehen des Buttons

durch eine Standardbindung wiederhergestellt und der mit der Option command

angegebene Callback aufgerufen.

Mit der Methode bind können Sie diese Standardbindungen überschreiben oder neue

hinzufügen. Der folgende Code erstellt beispielsweise eine Bindung für ein Canvas

(den Code für diesen Abschnitt finden Sie in draggable_demo.py):

ca.bind('<ButtonPress-2>', erstelle_kreis)

Das erste Argument ist ein Event-String für das Event, das ausgelöst wird, wenn der

Benutzer die rechte Maustaste drückt. Es gibt natürlich noch andere Maus-Events,

wie etwa ButtonMotion, ButtonRelease und Double-Button.

Das zweite Argument ist ein Event-Handler. Ein Event-Handler ist eine Funktion

oder eine gebundene Methode, wie beispielsweise ein Callback. Der entscheidende

Unterschied besteht allerdings darin, dass ein Event-Handler ein Event-Objekt als

Parameter erwartet. Hier sehen Sie ein Beispiel:

def erstelle_kreis(event):

pos = ca.canvas_coords([event.x, event.y])

item = ca.circle(pos, 5, fill='red')

Das Event-Objekt enthält Informationen über die Art des Events sowie Details wie

beispielsweise die Koordinaten des Mauszeigers. In diesem Beispiel brauchen wir

die Position des Mauszeigers. Die entsprechenden Werte sind Pixelkoordinaten, die

durch das zugrunde liegende Grafiksystem vorgegeben sind. Die Methode

canvas_coords übersetzt diese Werte in »Canvas-Koordinaten«, die mit Canvas-

Methoden wie etwa circle kompatibel sind.

Bei Entry-Widgets wird üblicherweise das Event <Return> gebunden, das ausgelöst

wird, wenn der Benutzer die Eingabetaste drückt. Der folgende Code erstellt einen

Button und ein Entry-Widget:

bu = g.bu('Textelement erstellen:', erstelle_text)

en = g.en()

en.bind('<Return>', erstelle_text)

erstelle_text wird aufgerufen, wenn auf den Button geklickt wird oder der Benutzer

die Eingabetaste drückt, während er Text im Entry-Widget eingibt. Damit das

funktioniert, brauchen wir eine Funktion, die als Befehl (ohne Argumente) oder als

Event-Handler (mit einem Event als Argument) aufgerufen werden kann:

def erstelle_text(event=None):

text = en.get()

item = ca.text([0,0], text)

erstelle_text liest den Inhalt aus dem Entry-Widget und zeigt ihn als Textelement

auf dem Canvas an.

Außerdem können Sie Bindungen für Canvas-Elemente erstellen. Es folgt eine

Klassendefinition von Draggable, eine von Item abgeleitete Klasse, die Bindungen

für die Implementierung von Drag-and-drop bietet:.

class Draggable(Item):

def __init__(self, item):

self.canvas = item.canvas

self.tag = item.tag

self.bind('<ButtonPress-1>', self.auswaehlen)

self.bind('<B1-Motion>', self.drag)

self.bind('<ButtonRelease-1>', self.drop)

Die init-Methode erwartet ein Item als Parameter. Anschließend werden die

Attribute des Items kopiert und die Bindungen für drei Events erstellt: Drücken der

linken Maustaste, Ziehen mit gedrückter linker Maustaste und Loslassen der linken

Taste.

Der Event-Handler auswaehlen speichert die Koordinaten des aktuellen Events und

die ursprüngliche Farbe des Elements und färbt das Textelement anschließend gelb:

def auswaehlen(self, event):

self.dragx = event.x

self.dragy = event.y

self.fill = self.cget('fill')

self.config(fill='orange')

cget steht für »get configuration«. Die Methode erwartet den Namen einer Option

als String und liefert den aktuellen Wert dieser Option zurück.

drag ermittelt, wie weit das Objekt relativ zur Ausgangsposition gezogen wurde,

aktualisiert die gespeicherten Koordinaten entsprechend und verschiebt das Element.

def drag(self, event):

dx = event.x - self.dragx

dy = event.y - self.dragy

 self.dragx = event.x

self.dragy = event.y

self.move(dx, dy)

Diese Berechnung erfolgt bereits in Pixelkoordinaten. Eine Konvertierung in

Canvas-Koordinaten ist nicht erforderlich.

Zu guter Letzt stellt drop die ursprüngliche Farbe des Elements wieder her:

def drop(self, event):

self.config(fill=self.fill)

Über die Draggable-Klasse können Sie ein vorhandenes Element um die Drag-and-

drop-Funktionalitäten erweitern. Hier sehen Sie beispielsweise eine erweiterte

Version von erstelle_kreis, die ein Element mit circle erzeugt und es mit

Draggable Drag-and-drop-tauglich macht:

def erstelle_kreis(event):

pos = ca.canvas_coords([event.x, event.y])

item = ca.circle(pos, 5, fill='red')

item = Draggable(item)

Dieses Beispiel zeigt einen der Vorteile der Vererbung: Sie können die

Funktionalität einer Basisklasse ändern, ohne die zugrunde liegende Definition

anzupassen. Das ist besonders nützlich, wenn Sie das Verhalten eines Moduls ändern

möchten, das Sie nicht selbst geschrieben haben.

Debugging

Eine der Herausforderungen bei der GUI-Programmierung besteht darin, alle

Ereignisse im Auge zu behalten, die beim Aufbau der GUI sowie später als Reaktion

auf Benutzer-Events geschehen.

Wenn Sie beispielsweise einen Callback einrichten, wird häufig der Fehler gemacht,

die Funktion selbst aufzurufen, anstatt eine Referenz darauf zu übergeben:

def der_Callback():

print 'Called.'

g.bu(text='Das ist FALSCH!', command=der_Callback())

Wenn Sie diesen Code ausführen, werden Sie sehen, dass der_Callback sofort

aufgerufen wird und erst dann der Button erstellt wird. Wenn Sie anschließend auf

den Button drücken, passiert nichts, weil der_Callback den Rückgabewert None

liefert. Üblicherweise möchten Sie keinen Callback aufrufen, während Sie die GUI

einrichten. Diese Funktion soll erst später als Reaktion auf einen Benutzer-Event

aufgerufen werden.

Eine weitere Herausforderung der GUI-Programmierung besteht darin, dass Sie

keinen Einfluss auf den Programmablauf haben. Welche Teile des Programms

ausgeführt werden und in welcher Reihenfolge dies geschieht, wird durch die Benutzeraktionen bestimmt. Das bedeutet, dass Sie Ihr Programm so entwickeln

müssen, dass es mit einer beliebigen Abfolge aller möglichen Events funktioniert.

Die GUI in Listing 19.3 hat zwei Widgets: Eines erstellt ein Kreiselement, und das andere ändert die Farbe des Kreises. Wenn der Benutzer erst den Kreis erstellt und

dann die Farbe ändert, gibt es kein Problem. Aber was passiert, wenn der Benutzer

die Farbe eines Kreises ändern möchte, der noch gar nicht existiert? Oder mehr als

einen Kreis erstellt?

Mit zunehmender Anzahl der Widgets wird es immer schwieriger, sich alle

möglichen Folgen von Events auszumalen. Eine Möglichkeit, mit dieser

Komplexität umzugehen, besteht darin, die Zustände des Systems in einem Objekt

zu kapseln und Folgendes zu berücksichtigen:

Welche Zustände sind möglich? In unserem Beispiel mit dem Kreis müssen wir

zwei Zustände berücksichtigen: bevor und nachdem der Benutzer den ersten Kreis

erstellt hat.

Welche Events können im jeweiligen Zustand ausgelöst werden? In unserem

Beispiel können die Benutzer einen der beiden Buttons drücken oder das

Programm verlassen.

Was ist das gewünschte Ergebnis für das jeweilige Zustand-Event-Paar? Da es

zwei Zustände und zwei Buttons gibt, müssen wir insgesamt vier Zustand-Event-

Paare berücksichtigen.

Was kann zum Übergang von einem Zustand zum anderen führen? In diesem Fall

kommt es zu einem Übergang, wenn der Benutzer den ersten Kreis erstellt.

Es kann auch nützlich sein, Invarianten zu definieren und zu überprüfen, die

unabhängig von der Abfolge der Events eingehalten werden müssen.

Dieser Ansatz für die GUI-Programmierung kann Ihnen helfen, korrekten Code zu

schreiben, ohne alle möglichen Kombinationen von Benutzer-Events testen zu

müssen!

Glossar

GUI:

Grafische Benutzerschnittstelle

Widget:

Eines der Elemente, aus dem eine GUI aufgebaut wird: Buttons, Menüs,

Texteingabefelder usw.

Option:

Wert, der das Aussehen oder die Funktion eines Widgets steuert

Schlüsselwortargument:

Argument, das den Parameternamen als Teil des Funktionsaufrufs angibt

Callback:

Funktion, die einem Widget zugeordnet ist und aufgerufen wird, wenn der

Benutzer eine Aktion durchführt

Gebundene Methode:

Methode, die einer bestimmten Instanz zugewiesen ist

Event-orientierte Programmierung:

Programmierstil, bei dem der Programmablauf durch Aktionen der Benutzer

bestimmt wird

Event:

Benutzeraktion, wie etwa ein Mausklick oder Drücken einer Taste, die eine

Reaktion der GUI auslöst

Event-Schleife:

Endlosschleife, die auf Benutzeraktionen wartet und darauf reagiert

Item:

Grafisches Element auf einem Canvas-Widget

Begrenzungsrechteck:

Rechteck, das eine Gruppe von Elementen umfasst, üblicherweise durch zwei

gegenüberliegende Ecken definiert

Packing:

Elemente einer GUI anordnen und anzeigen

Geometry Manager:

System zum Packen von Widgets

Bindung:

Verknüpfung zwischen einem Widget, einem Event und einem Event-Handler.

Der Event-Handler wird aufgerufen, wenn das Event im Widget ausgelöst wird

Übungen

Für diese Übungen werden Sie einen Bildbetrachter schreiben. Hier sehen Sie ein

einfaches Beispiel:

g = Gui()

canvas = g.ca(width=300)

photo = PhotoImage(file='danger.gif')

canvas.image([0,0], image=photo)

g.mainloop()

PhotoImage liest eine Datei und liefert ein PhotoImage-Objekt zurück, das Tkinter

anzeigen kann. canvas.image zeigt das Bild auf dem Canvas mit den angegebenen

Koordinaten als Mittelpunkt an. Sie können es auch auf Labels, Buttons und einige

anderen Widgets darstellen:

g.la(image=photo)

g.bu(image=photo)

PhotoImage kann nur einige wenige Bildformate verarbeiten, wie beispielsweise GIF

und PPM. Aber wir können die »Python Imaging Library« (PIL) verwenden, um

andere Dateien zu lesen.

Der Name des Moduls PIL lautet Image, aber Tkinter definiert ein Objekt mit

demselben Namen. Um diesen Konflikt zu vermeiden, können Sie import...as

verwenden:

import Image as PIL

import ImageTk

In der ersten Zeile wird Image mit dem lokalen Namen PIL importiert. Die zweite

Zeile importiert schließlich ImageTk, das ein PIL-Bild in ein Tkinter-PhotoImage

konvertieren kann. Hier sehen Sie ein Beispiel:

image = PIL.open('allen.png')

photo2 = ImageTk.PhotoImage(image)

g.la(image=photo2)

1. Für diese Übung brauchen Sie bild_demo.py, danger.gif und allen.png aus dem Beispielcode. Führen Sie bild_demo.py aus. Unter Umständen müssen Sie PIL

und ImageTk installieren. Diese Pakete finden Sie wahrscheinlich in Ihrem

Software-Repository, ansonsten können Sie sie unter

http://pythonware.com/products/pil/ herunterladen.

2. Ändern Sie in bild_demo.py den Namen des zweiten PhotoImage von photo2 in

photo und führen Sie das Programm erneut aus. Nun sollten Sie das zweite

PhotoImage sehen, aber nicht das erste.

Wenn Sie photo erneut zuweisen, wird dadurch die Referenz auf das erste

PhotoImage überschrieben, das daraufhin verschwindet. Dasselbe passiert,

wenn Sie ein PhotoImage einer lokalen Variablen zuweisen. Es verschwindet,

sobald die Funktion beendet wird.

Um dieses Problem zu umgehen, müssen Sie eine Referenz auf jedes

PhotoImage speichern, das Sie behalten möchten. Dafür können Sie entweder

eine globale Variable verwenden oder die PhotoImages in einer Datenstruktur

bzw. als Attribut eines Objekts speichern.

Dieses Verhalten kann frustrierend sein, ich möchte Sie daher davor warnen

(deshalb steht in einem der Beispielbilder auch »Danger!«).

3. Schreiben Sie von diesem Beispiel ausgehend ein Programm, das den Namen eines Verzeichnisses erwartet, alle Dateien durchläuft und dann alle Dateien

anzeigt, die PIL als Bild erkennt. Sie können eine try-Anweisung verwenden,

um die Dateien abzufangen, die PIL nicht erkennt.

Wenn der Benutzer auf das Bild klickt, soll das Programm das nächste

anzeigen.

4. PIL bietet eine Vielzahl von Methoden für die Manipulation von Bildern. Mehr

darüber erfahren Sie unter http://pythonware.com/library/pil/handbook. Als Herausforderung können Sie sich einige dieser Methoden aussuchen und eine

GUI entwickeln, um diese Funktionen auf die Bilder anzuwenden.

Lösung: BildBrowser.py.

 Listing 19.4

Ein Vektorgrafikeditor ist ein Programm, mit dem Benutzer Formen auf dem

Bildschirm zeichnen und bearbeiten sowie Dateien in Vektorgrafikformaten wie

PostScript und SVG ausgeben können.

Schreiben Sie einen einfachen Vektorgrafikeditor mit Tkinter. Die Benutzer sollen

damit zumindest Linien, Kreise und Rechtecke zeichnen sowie mit Canvas.dump

eine PostScript-Beschreibung des Canvas-Inhalts erzeugen können.

Als zusätzliche Herausforderung können Sie den Benutzern die Möglichkeit bieten,

die Elemente auf dem Canvas auszuwählen und deren Größe zu ändern.

 Listing 19.5

Schreiben Sie mit Tkinter einen einfachen Webbrowser. Er soll ein Text-Widget

enthalten, in das die Benutzer eine URL eingeben können, sowie ein Canvas für die

Anzeige der Seiteninhalte.

Die HTML-Dateien können Sie mit dem Modul urllib herunterladen (siehe

Listing 14.6), die HTML-Tags können Sie mit dem Modul HTMLParser parsen (siehe http://docs.python.org/lib/module-HTMLParser.html).

Ihr Browser soll zumindest reinen Text und Hyperlinks unterscheiden. Als

zusätzliche Herausforderung können Sie Hintergrundfarben, Tags für die

Formatierung von Text sowie Bilder berücksichtigen.

 Listing 19.6

Anhang A. Debugging

In einem Programm können verschiedene Arten von Fehlern auftauchen. Daher ist es

nützlich, zwischen diesen Arten zu unterscheiden, um sie schneller zu finden:

Syntaxfehler treten auf, wenn Python den Quellcode in Bytecode übersetzt.

Üblicherweise deuten solche Fehler darauf hin, dass etwas an der Syntax des

Programms falsch ist. Beispiel: Wenn Sie den Doppelpunkt am Ende einer def-

Anweisung weglassen, erhalten Sie die etwas redundante Fehlermeldung

SyntaxError: invalid syntax.

Laufzeitfehler werden vom Interpreter gemeldet, wenn etwas bei der Ausführung

des Programms schiefläuft. Die meisten Meldungen bei Laufzeitfehlern enthalten

Informationen darüber, wo der Fehler aufgetreten ist und welche Funktionen

dabei ausgeführt wurden. Beispiel: Eine endlose Rekursion erzeugt üblicherweise

den Laufzeitfehler maximum recursion depth exceeded.

Für semantische Fehler werden keine Fehlermeldungen angezeigt, jedoch liefert

das Programm nicht das gewünschte Resultat. Beispiel: Ein Ausdruck wird nicht

in der von Ihnen erwarteten Reihenfolge ausgewertet und kommt deshalb zu

einem falschen Ergebnis.

In einem ersten Schritt sollten Sie beim Debugging herausfinden, um welche Art von

Fehler es sich handelt. Die folgenden Abschnitte teilen sich auf in die

entsprechenden Fehlertypen, manche Techniken sind aber in mehr als nur einer

Situation hilfreich.

Syntaxfehler

Syntaxfehler sind üblicherweise leicht zu beheben, sobald Sie sie gefunden haben.

Unglücklicherweise sind die Fehlermeldungen oft nicht sehr hilfreich. Die

häufigsten Meldungen lauten SyntaxError: invalid syntax und SyntaxError: invalid

token. Keine von beiden ist sonderlich aussagekräftig.

Andererseits können Sie in der Meldung erkennen, an welcher Stelle im Programm

das Problem aufgetreten ist. Genau genommen sagt Ihnen die Meldung, an welcher

Stelle Python ein Problem erkannt hat. Das muss allerdings nicht zwingend die

Stelle sein, an der sich der Fehler auch tatsächlich versteckt. Manchmal liegt der

Fehler vor der in der Fehlermeldung genannten Stelle, häufig in der Zeile davor.

Wenn Sie Ihr Programm inkrementell programmieren, sollten Sie eine ziemlich gute

Vorstellung davon haben, wo der Fehler liegt – im Zweifel in der letzten Zeile, die

Sie gerade geschrieben haben.

Beim Abtippen des Codes aus einem Buch sollten Sie Ihren Code mit dem Code im

Buch sehr sorgfältig vergleichen. Prüfen Sie jedes einzelne Zeichen. Bedenken Sie

außerdem, dass auch das Buch fehlerhaft sein kann. Wenn Sie also etwas entdecken,

das wie ein Syntaxfehler aussieht, kann es auch durchaus einer sein.

So können Sie die am häufigsten vorkommenden Syntaxfehler vermeiden:

1. Vergewissern Sie sich, dass Sie kein Python-Schlüsselwort als Variablenname

verwenden.

2. Überprüfen Sie, ob Sie ans Ende der Header aller Verbundanweisungen einen

Doppelpunkt geschrieben haben, einschließlich aller for-, while-, if- und def-

Anweisungen.

3. Stellen Sie sicher, dass alle Strings in entsprechende Anführungszeichen

eingefasst sind.

4. Überprüfen Sie bei mehrzeiligen Strings mit drei Anführungszeichen (einzeln

oder doppelt), ob Sie den jeweiligen String auch korrekt abgeschlossen haben.

Wenn Sie einen String nicht korrekt beenden, kann das zu einem invalid token-

Fehler am Ende Ihres Programms führen. Oder aber der folgende Teil des

Programms wird bis zum nächsten String als ein einziger langer String

aufgefasst. In diesem Fall wird unter Umständen überhaupt keine

Fehlermeldung gezeigt!

5. Bei öffnenden Operatoren, die nicht geschlossen werden, wie (, { oder [, macht

Python mit der nächsten Zeile als Teil der aktuellen Anweisung weiter.

Meistens wird für die unmittelbar darauffolgende Zeile ein Fehler gemeldet.

6. Suchen Sie nach dem Klassiker: einem = anstatt dem == in Bedingungen.

7. Überprüfen Sie die Einrückung der Codezeilen. Python kommt mit Leerzeichen

und Tabs klar. Aber wenn Sie diese beiden Zeichen miteinander mischen, kann

das zu Problemen führen. Am besten verwenden Sie einen Texteditor, der mit

Python umgehen kann und für eine konsistente Einrückung sorgt.

Sollte Ihr Programm nun immer noch nicht funktionieren, lesen Sie den nächsten

Abschnitt ...

Ich mache immer wieder Änderungen, sehe aber keinen

Unterschied

Wenn der Interpreter sagt, dass es einen Fehler gibt, und Sie ihn einfach nicht

finden, kann das daran liegen, dass der Interpreter und Sie nicht denselben Code

verwenden. Überprüfen Sie Ihre Programmierumgebung, um sicherzustellen, dass

Sie dasselbe Programm bearbeiten, das der Python-Interpreter ausführt.

Sollten Sie sich nicht sicher sein, können Sie absichtlich Syntaxfehler am Anfang

des Programms einfügen. Führen Sie es erneut aus. Wenn der Interpreter die neuen

Fehlern nicht findet, arbeiten Sie an einer anderen Datei.

Es gibt einige typische Verdächtige:

Sie haben die Datei bearbeitet, aber vergessen, die Änderungen vor der

Ausführung zu speichern. Manche Programmierumgebungen tun dies

automatisch, andere nicht.

Sie haben den Namen der Datei geändert, rufen aber immer noch denselben

Dateinamen auf.

Ihre Entwicklungsumgebung ist nicht korrekt konfiguriert.

Falls Sie ein Modul schreiben und mit import importieren: Vergewissern Sie

sich, dass Sie Ihrem Modul nicht den Namen eines der Standardmodule von

Python gegeben haben.

Wenn Sie mit import ein Modul einlesen, sollten Sie daran denken, den

Interpreter neu zu starten oder veränderte Dateien mit reload erneut zu lesen.

Wenn Sie das Modul einfach nur erneut importieren, ändert sich dadurch nichts.

Sollten Sie aber einfach nicht weiterkommen und nicht herausfinden können, was

schiefläuft, können Sie auch ein neues Programm schreiben. Beginnen Sie

beispielsweise mit »Hallo, Welt!«, um sicherzugehen, dass Sie wenigstens Code

zum Laufen bekommen, den Sie bereits kennen. Fügen Sie anschließend stückweise

das ursprüngliche Programm in das neue ein.

Laufzeitfehler

Sobald Ihr Programm syntaktisch korrekt ist, kann Python es kompilieren und

zumindest damit beginnen, es auszuführen. Was kann jetzt noch schiefgehen?

Mein Programm macht absolut gar nichts

Dieses Problem kommt häufig vor, wenn Ihre Datei nur aus Klassen und Funktionen

besteht, aber an keiner Stelle etwas ausgeführt wird. Wenn Sie vorhaben, dieses

Modul mit entsprechenden Klassen und Funktionen zu importieren, ist das ja auch in

Ordnung.

War das aber nicht Ihre Absicht, müssen Sie eine Funktion aufzurufen, um mit der

Programmausführung zu beginnen. Oder Sie führen eine entsprechende Funktion

über die Kommandozeile aus. Lesen Sie dazu auch den Abschnitt »Programmablauf«

weiter unten.

Mein Programm hängt

Wenn ein Programm stoppt und anscheinend nichts macht, »hängt« es. Oft wird das

durch eine Endlosschleife oder eine endlose Rekursion verursacht.

Wenn Sie eine bestimmte Schleife in Verdacht haben, fügen Sie unmittelbar vor

der Schleife eine print-Anweisung mit dem Text »Anfang Schleife« und direkt

danach eine weitere Anweisung mit dem Text »Ende Schleife« ein.

Führen Sie das Programm aus. Wenn Sie die erste Meldung sehen, aber nicht die

zweite, haben Sie es mit einer Endlosschleife zu tun. Lesen Sie dann weiter unten

den Abschnitt »Endlosschleife«.

Meistens führt eine endlose Rekursion dazu, dass Ihr Programm eine Weile

ausgeführt wird, bis Sie den Fehler RuntimeError: Maximum recursion depth

exceeded erhalten. Lesen Sie in diesem Fall weiter unten den Abschnitt

»Endlose Rekursion«.

Wenn Sie diesen Fehler nicht erhalten, aber der Meinung sind, dass es ein

Problem mit einer rekursiven Methode oder Funktion gibt, können Sie auch die

unter »Endlose Rekursion« aufgeführten Techniken anwenden.

Hilft keiner dieser Schritte, testen Sie andere Schleifen und andere rekursive

Funktionen und Methoden.

Falls auch das nicht hilft, kann es sein, dass Sie den Ablauf Ihres Programms

nicht ganz richtig verstehen. Lesen Sie in diesem Fall den Abschnitt

»Programmablauf« weiter unten.

Endlosschleifen

Wenn Sie glauben, dass Sie eine Endlosschleife haben, und nicht wissen, welche

Schleife das ist, fügen Sie am Ende jeder Schleife eine print-Anweisung ein, die die

Werte der Variablen in der Bedingung und den Wert der Bedingung ausgibt.

Beispiel:

while x > 0 and y < 0 :

 # mach etwas mit x

 # mach etwas mit y

print "x: ", x

print "y: ", y

print "Bedingung: ", (x > 0 and y < 0)

Führen Sie anschließend das Programm aus, erhalten Sie für jeden

Schleifendurchlauf die entsprechende Bildschirmausgabe. Bei der letzten Iteration

sollte die Bedingung false sein. Falls die Schleife weiter durchlaufen wird, können

Sie die Werte von x und y mitverfolgen und herausfinden, warum diese nicht korrekt

aktualisiert werden.

Endlose Rekursion

In den meisten Fällen führt eine endlose Rekursion dazu, dass das Programm einige

Zeit ausgeführt wird und anschließend den Fehler Maximum recursion depth

exceeded meldet.

Wenn Sie den Verdacht haben, dass eine Funktion oder Methode zu einer endlosen

Rekursion führt, sollten Sie in einem ersten Schritt überprüfen, ob es einen Basisfall

gibt. Es muss irgendeine Bedingung geben, die dazu führt, dass die Funktion oder

Methode ohne einen rekursiven Aufruf verlassen wird. Falls nicht, müssen Sie Ihren

Algorithmus noch mal überdenken und einen Basisfall herausarbeiten.

Falls es einen Basisfall gibt, das Programm diesen aber nicht erreicht, fügen Sie am

Anfang der Funktion bzw. Methode eine print-Anweisung ein, die die Parameter

ausgibt. Wenn Sie anschließend das Programm ausführen, erhalten Sie für jeden

Aufruf der Funktion oder Methode eine entsprechende Bildschirmausgabe. Sollten

sich die Parameter nicht zum Basisfall hinbewegen, können Sie so herausfinden,

woran das liegt.

Programmablauf

Sind Sie sich über den Ablauf Ihres Programms nicht sicher, fügen Sie einfach am

Anfang jeder Funktion eine print-Anweisung ein, die beispielsweise »Funktion foo«

ausgibt, wobei foo der Name der Funktion ist.

Wenn Sie anschließend das Programm ausführen, können Sie den Aufruf der

jeweiligen Funktion mitverfolgen.

Ich erhalte eine Ausnahme, wenn ich das Programm ausführe

Wenn während der Laufzeit irgendetwas schiefgeht, gibt Python eine Meldung mit

dem Namen der Ausnahme, der Programmzeile, in der das Problem aufgetreten ist,

sowie einen Traceback aus.

Im Traceback können Sie die Funktion erkennen, die zuletzt ausgeführt wurde, die

Funktion, von der die aktuelle Funktion aufgerufen wurde, die Funktion, von der

diese Funktion wiederum aufgerufen wurde usw. Anders ausgedrückt, Sie erhalten

die Abfolge der Funktionsaufrufe, die Sie dahin geführt haben, wo Sie gelandet sind.

Außerdem wird die Zeilennummer des jeweiligen Aufrufs in Ihrer Datei angezeigt.

In einem ersten Schritt sollten Sie die entsprechende Stelle im Programm prüfen und

versuchen, herauszufinden, was passiert ist. Hier sehen Sie eine Liste der am

häufigsten vorkommenden Laufzeitfehler:

NameError:

Sie versuchen, eine Variable zu verwenden, die in der aktuellen Umgebung nicht

existiert. Denken Sie daran, dass lokale Variablen auch wirklich lokal sind.

Außerhalb der definierenden Funktion können Sie sich nicht darauf beziehen.

TypeError:

Für diesen Fehler gibt es mehrere mögliche Ursachen:

Sie versuchen, einen Wert in nicht zulässiger Weise zu verwenden. Beispiel:

Indizierung eines Strings, einer Liste oder eines Tupels mit etwas anderem als

einem ganzzahligen Wert.

Die Elemente in einem Format-String und die für die Konvertierung

übergebenen Elemente passen nicht zueinander. Das kann passieren, wenn

entweder die Anzahl der Elemente nicht übereinstimmt oder dafür eine

unzulässige Konvertierung erforderlich wäre.

Sie übergeben die falsche Anzahl von Argumenten an eine Funktion oder

Methode. Werfen Sie bei Methoden einen Blick auf die Definition und

überprüfen Sie, ob der erste Parameter self lautet. Sehen Sie sich dann den

Methodenaufruf an: Vergewissern Sie sich, dass Sie die Methode für ein

Objekt des richtigen Typs aufrufen und die Argumente korrekt übergeben.

KeyError:

Sie versuchen, auf ein Element eines Dictionary mit einem Schlüssel zuzugreifen,

der im Dictionary nicht enthalten ist.

AttributeError:

Sie versuchen, auf ein nicht vorhandenes Attribut oder eine nicht existierende

Methode zuzugreifen. Überprüfen Sie Ihre Schreibweise! Mit dir können Sie die

vorhandenen Attribute auflisten.

Wenn ein AttributeError darauf hinweist, dass ein Objekt den NoneType hat,

bedeutet das, dass es None ist. Häufig liegt die Ursache darin, dass Sie vergessen

haben, von einer Funktion einen Wert zurückzugeben. Wenn Sie das Ende einer

Funktion erreichen, ohne eine return-Anweisung auszuführen, ist der

Rückgabewert None. Eventuell verwenden Sie aber auch das Ergebnis einer

Listenmethode wie beispielsweise sort, die den Rückgabewert None liefert.

IndexError:

Der Index, mit dem Sie auf eine Liste, einen String oder ein Tupel zugreifen, ist

größer als seine Länge minus 1. Fügen Sie unmittelbar vor der fehlerhaften Stelle

eine print-Anweisung ein, um den Wert des Index und die Länge des Arrays

anzuzeigen. Hat das Array die korrekte Größe? Hat der Index den richtigen Wert?

Der Python-Debugger (pdb) ist nützlich, um Ausnahmen aufzuspüren, weil Sie

damit den Zustand eines Programms unmittelbar vor dem Fehler untersuchen

können. Mehr über pdb können Sie unter http://docs.python.org/lib/module-

pdb.html erfahren.

Ich habe so viele print-Anweisungen eingefügt, dass mich die

Ausgaben überfordern

print-Anweisungen können beim Debugging problematisch werden, wenn Sie von

den Ausgaben überhäuft werden. Dann haben Sie zwei Möglichkeiten: die Ausgaben

vereinfachen oder das Programm vereinfachen.

Um die Bildschirmausgaben zu vereinfachen, können Sie unnötige print-

Anweisungen entfernen, auskommentieren, miteinander kombinieren oder die Ausgaben so formatieren, dass sie besser zu erfassen sind.

Es gibt mehrere Möglichkeiten, das Programm zu vereinfachen. In einem ersten

Schritt können Sie die Problemstellung vereinfachen. Wenn Sie beispielsweise eine

Liste durchsuchen, durchsuchen Sie einfach eine kleinere Liste. Wenn das

Programm Benutzereingaben erwartet, testen Sie mit möglichst einfachen Eingaben,

um den Fehler zu reproduzieren.

Räumen Sie in einem zweiten Schritt das Programm auf. Entfernen Sie Code, der nie

ausgeführt wird, und versuchen Sie, das Programm so zu strukturieren, dass es

möglichst einfach lesbar ist. Wenn Sie beispielsweise den Verdacht haben, dass der

Fehler in einem tief verschachtelten Teil des Programms liegt, versuchen Sie, diesen

Teil mit einer einfachen Struktur neu zu schreiben. Falls Sie den Fehler in einer

großen Funktion vermuten, versuchen Sie, diese in kleinere Funktionen aufzuteilen

und einzeln zu testen.

Häufig finden Sie bei der Suche nach dem minimalen Testfall auch den Fehler.

Wenn Sie herausfinden, dass Ihr Programm in einem Fall funktioniert, in einem

anderen dagegen nicht, erhalten Sie dadurch Hinweise, was tatsächlich geschieht.

Manchmal können Sie auch subtilere Bugs aufspüren, indem Sie einen bestimmten

Codeteil neu schreiben. Wenn Sie eine Änderung vornehmen, die sich eigentlich

nicht auf das Ergebnis auswirken sollte, aber trotzdem Wirkung zeigt, kann auch das

ein Anhaltspunkt sein.

Semantische Fehler

In gewisser Weise sind semantische Fehler am schwierigsten aufzuspüren, weil der

Interpreter keinerlei Informationen dazu liefert, was schiefläuft. Nur Sie können

wissen, was das Programm machen soll.

In einem ersten Schritt sollten Sie eine Verbindung zwischen dem Programmcode

und dem beobachteten Verhalten herstellen. Sie brauchen eine Hypothese darüber,

was das Programm tatsächlich macht. Eine der größten Schwierigkeiten dabei ist,

dass Computer so schnell arbeiten.

Häufig werden Sie sich wünschen, dass Sie das Programm auf menschliche

Geschwindigkeit herunterbremsen können. Und mit manchen Debuggern können Sie

das auch. Aber der Zeitaufwand für ein paar gut platzierte print-Anweisungen ist oft

geringer, als wenn Sie den Debugger einrichten, Haltepunkte einfügen und entfernen

und das Programm bis zur fehlerhaften Stelle schrittweise ausführen.

Mein Programm funktioniert nicht

Stellen Sie sich die folgenden Fragen:

Gibt es eine gewünschte Funktionalität, die das Programm nicht durchführt?

Finden Sie den zuständigen Codeabschnitt und prüfen Sie, ob dieser Teil so

ausgeführt wird, wie Sie sich das vorstellen.

Geschieht etwas, das nicht geplant war? Finden Sie den entsprechenden Code im

Programm und überprüfen Sie, ob er auch in Fällen ausgeführt wird, in denen das

nicht so sein sollte.

Führt ein Codeteil nicht zum gewünschten Effekt? Vergewissern Sie sich, dass

Sie den fraglichen Code verstehen, vor allem wenn dabei Funktionen oder

Methoden aus anderen Python-Modulen aufgerufen werden. Lesen Sie die

Dokumentation für diese Funktionen. Testen Sie sie mit einfachen Testfällen,

überprüfen Sie die Ergebnisse.

Damit Sie erfolgreich programmieren können, brauchen Sie ein Denkmodell dazu,

wie das Programm funktionieren soll. Wenn Sie ein Programm schreiben, das nicht

das tut, was Sie erwarten, liegt der Fehler häufig nicht im Programm, sondern in

Ihrem Modell.

Die beste Möglichkeit, Ihr Denkmodell zu korrigieren, besteht darin, das Programm

in seine Komponenten aufzuteilen (normalerweise die Funktionen und Methoden).

Dann können Sie die Komponenten einzeln testen. Sobald Sie die Diskrepanz

zwischen Ihrem Modell und der Realität aufgespürt haben, können Sie das Problem

auch lösen.

Natürlich sollten Sie die Komponenten während der Entwicklung des Programms

erstellen und testen. Wenn Sie dabei auf ein Problem stoßen, kann der Fehler immer

nur in einem kleinen Teil des Codes liegen.

Ich habe einen großen und haarigen Ausdruck, der nicht

macht, was er soll

Komplizierte Ausdrücke sind völlig in Ordnung, solange sie lesbar bleiben.

Allerdings können sie das Debugging entsprechend erschweren. Deshalb ist es

häufig am besten, komplizierte Ausdrücke in eine Reihe von Zuweisungen mit

temporären Variablen zu zerlegen:

self.haende[i].karte_hinzufuegen(self.haende[self.findeNachbar(i)].popKarte())

Diesen Ausdruck können Sie auch so schreiben:

nachbar = self.findeNachbar(i)

gezogeneKarte = self.haende[nachbar].popKarte()

self.haende[i].karte_hinzufuegen(gezogeneKarte)

Die ausführlichere Version ist einfacher zu lesen, weil die Variablennamen den

Vorgang zusätzlich dokumentieren. Außerdem ist diese Fassung einfacher zu

debuggen, weil Sie die Typen und Werte der temporären Variablen ausgeben

können.

Ein weiteres Problem mit langen Ausdrücken besteht darin, dass die Reihenfolge der

Auswertung anders ausfallen kann, als Sie es erwarten. Wenn Sie beispielsweise den

Ausdruck

in

Python übersetzen, würden Sie vielleicht schreiben:

y = x / 2 * math.pi

Diese Lösung ist nicht korrekt, weil Multiplikation und Division dieselbe Rangfolge

haben und daher von links nach rechts ausgewertet werden. Dieser Ausdruck

berechnet dementsprechend x

/2.

Am besten setzen Sie beim Debugging von Ausdrücken Klammern, um die

Reihenfolge der Auswertung explizit festzulegen:

y = x / (2 * math.pi)

Wann immer Sie sich nicht ganz klar über die Reihenfolge der Auswertung sind,

sollten Sie Klammern verwenden. Auf diese Weise funktioniert das Programm nicht

nur korrekt (macht das, was Sie wollen), sondern ist auch für andere besser lesbar,

die die Regeln der Reihenfolge ebenfalls nicht besser kennen.

Eine Funktion oder Methode liefert nicht den erwarteten

Rückgabewert

Bei return-Anweisungen mit komplizierten Ausdrücken können Sie den

Rückgabewert nicht ausgeben, bevor Sie ihn zurückliefern. Auch hier können Sie

wieder eine temporäre Variable einsetzen. Anstatt

return self.haende[i].entferneTreffer()

können Sie auch schreiben:

zaehler = self.haende[i].entferneTreffer()

return zaehler

Nun haben Sie die Gelegenheit, den Wert von zaehler anzuzeigen, bevor Sie ihn

zurückgeben.

Ich komme wirklich nicht weiter und brauche Hilfe

Als Erstes sollten Sie sich für ein paar Minuten vom Computer wegbewegen.

Computer senden Wellen aus, die das Gehirn beeinflussen und folgende Symptome

verursachen:

Frustration und Wut.

Aberglauben (»der Computer hasst mich«) und magisches Denken (»das

Programm funktioniert nur, wenn ich meinen Hut rückwärts aufsetze«).

Irrfahrtsprogrammierung (der Versuch, alle nur erdenklichen Programme zu

schreiben und dasjenige auszuwählen, das zum richtigen Ergebnis führt).

Wenn Sie bei sich eines dieser Symptome beobachten, sollten Sie aufstehen und um den Block gehen. Sobald Sie sich wieder beruhigt haben, denken Sie nochmals über

das Programm nach. Was genau macht es? Was könnten die Gründe für dieses

Verhalten sein? Wann hat das Programm zuletzt korrekt funktioniert, und was haben

Sie danach geändert?

Manchmal dauert es einige Zeit, bis Sie einen Bug finden. Ich finde die Fehler

häufig, wenn ich gar nicht am Computer sitze und meine Gedanken einfach

schweifen lasse. Die besten Orte, um Bugs zu finden, sind Züge, die Dusche und das

Bett, unmittelbar bevor Sie einschlafen.

Nein, ich brauche wirklich Hilfe

Das kann vorkommen. Selbst die besten Programmierer kommen gelegentlich nicht

weiter. Manchmal arbeiten sie so lange an einem Programm, das sie den Fehler

einfach nicht mehr sehen können. Dann hilft nur ein frisches Paar Augen.

Bevor Sie jemand anderen ins Boot holen, sollten Sie gut vorbereitet sein. Ihr

Programm sollte so einfach wie möglich sein, und Sie sollten mit der

kleinstmöglichen Datenmenge arbeiten, die den Fehler verursacht. An den

entsprechenden Stellen sollten geeignete print-Anweisungen stehen (die die

Ausgaben in einem verständlichen Format anzeigen). Und Sie sollten das Problem

gut genug verstehen, damit Sie es präzise beschreiben können.

Wenn Sie jemanden um Hilfe bitten, sollten Sie diese Person auch mit den nötigen

Informationen versorgen können:

Gibt es eine Fehlermeldung? Wie lautet sie, und auf welchen Programmteil

deutet sie hin?

Was haben Sie als Letztes getan, bevor dieser Fehler aufgetreten ist? Welche

Codezeilen haben Sie als Letztes geschrieben? Wie lautet der neue Testfall, der

fehlschlägt?

Was haben Sie bisher versucht, und was haben Sie dabei herausgefunden?

Wenn Sie den Fehler gefunden haben, nehmen Sie sich eine Sekunde lang Zeit,

darüber nachzudenken, wie Sie den Fehler schneller hätten finden können. Wenn Sie

das nächste Mal etwas Ähnliches sehen, werden Sie den Bug schneller finden.

Nicht vergessen: Das Ziel besteht nicht darin, das Programm zum Laufen zu bringen.

Das Ziel besteht darin, zu lernen, wie Sie das Programm zum Laufen bringen.

Anhang B. Algorithmenanalyse

Dieser Anhang ist ein überarbeiteter Auszug aus Think Complexity von Allen B. Downey, ebenfalls bei O’Reilly Media erschienen (2011). Vielleicht möchten Sie dieses Buch ja als Nächstes lesen.

Algorithmenanalyse ist eine der Hauptaufgaben der Informatik, bei der die

Leistung von Algorithmen untersucht wird, insbesondere hinsichtlich ihrer Laufzeit

und ihres Speicherbedarfs (siehe

http://de.wikipedia.org/wiki/Algorithmus#Algorithmenanalyse).

Das praktische Ziel der Algorithmenanalyse besteht darin, die Leistung

verschiedener Algorithmen zu prognostizieren, um entsprechende

Designentscheidungen zu treffen.

Während des Wahlkampfs für die Präsidentschaftswahlen der Vereinigten Staaten

im Jahr 2008 wurde Kandidat Barack Obama bei einem Besuch bei Google um eine

spontane Analyse gebeten. Firmenchef Eric Schmidt fragte ihn aus Spaß nach der

»effizientesten Methode, eine Million 32-Bit-Integer zu sortieren«. Offensichtlich

hatte Obama einen Tipp erhalten, weil er schnell antwortete: »Ich glaube, Bubblesort

wäre keine gute Entscheidung.« (http://www.youtube.com/watch?v=k4RRi_ntQc8)

Aber es stimmt: Bubblesort ist vom Konzept her einfach, aber für große Mengen zu

langsam. Die Antwort, die Schmidt hören wollte, war wahrscheinlich »Radixsort«

(http://de.wikipedia.org/wiki/Radixsort).[2]

Das Ziel der Algorithmenanalyse besteht darin, aussagekräftige Vergleiche zwischen

Algorithmen anzustellen. Aber dabei gibt es einige Probleme:

Die relative Leistung der Algorithmen kann von Hardwarefaktoren abhängen.

Deshalb kann ein Algorithmus auf Rechner A schneller sein, ein anderer dagegen

auf Rechner B. Generell wird bei einer solchen Problemstellung ein

Rechnermodell erstellt und die Anzahl der Schritte bzw. Operationen analysiert,

die für einen Algorithmus mit dem entsprechenden Modell erforderlich sind.

Die relative Leistung kann auch von Eigenschaften der verwendeten Daten

abhängen. Manche Sortieralgorithmen arbeiten beispielsweise schneller, wenn

die Daten bereits teilweise sortiert wurden. Andere Algorithmen sind in diesem

Fall dagegen langsamer. Um solche Probleme zu umgehen, wird häufig das

Worst Case-Szenario analysiert. Manchmal ist es nützlich, die durchschnittliche

Leistung zu analysieren. Aber üblicherweise ist das schwieriger. Außerdem ist es

manchmal nicht offensichtlich, welche Fälle für den Average Case

heranzuziehen sind.

Die relative Leistung hängt auch von der Größenordnung ab. Ein

Sortieralgorithmus, der mit kleinen Listen schnell arbeitet, kann für lange Listen

lange brauchen. Üblicherweise lässt sich die Lösung für dieses Problem finden,

indem Sie die Laufzeit (oder die Anzahl der Operationen) als Funktion der

Größenordnung ausdrücken und die Funktionen mit zunehmender Größe

asymptotisch vergleichen.

Das Gute an einem solchen Vergleich ist, dass er zu einer einfachen Klassifizierung

für Algorithmen führt. Wenn ich beispielsweise weiß, dass die Laufzeit von

Algorithmus A tendenziell proportional zur Größe der Eingangsdaten n ist und

Algorithmus B tendenziell proportional zu n 2 ist, gehe ich davon aus, dass A für große Werte von n schneller als B ist.

Solche Analysen sind manchmal mit Vorsicht zu genießen, aber darauf kommen wir

später noch zu sprechen.

Wachstumsordnung

Angenommen, Sie haben zwei Algorithmen analysiert und ihre Laufzeiten

hinsichtlich der Größe der Eingangsdaten ausgedrückt. Algorithmus A braucht

 100n+1 Schritte, um ein Problem der Größe n zu lösen. Algorithmus B benötigt n 2 + n + 1 Schritte.

Die folgende Tabelle zeigt die Laufzeiten dieser beiden Algorithmen für

unterschiedliche Problemgrößen:

Input

Laufzeit mit

Laufzeit mit

Größe

Algorithmus A Algorithmus B

10

1 001

111

100

10 001

10 101

1 000

100 001

1 001 001

10 000 1 000 001

>1010

Für n=10 schneidet Algorithmus A ziemlich schlecht ab. Er braucht fast zehnmal so lange wie Algorithmus B. Aber für n=100 sind die Laufzeiten ungefähr gleich, und bei größeren Werten schneidet Algorithmus A deutlich besser ab.

Der entscheidende Grund besteht darin, dass bei großen Werten für n jede Funktion mit n 2 schneller wächst als eine Funktion, deren Leitterm n ist. Der Leitterm ist der Term mit dem höchsten Exponenten.

Der Leitterm von Algorithmus A hat einen großen Koeffizienten (100), deshalb ist

Algorithmus B für kleine Werte von n besser geeignet. Aber unabhängig von den

Koeffizienten gibt es immer einen Wert für n, bei dem an 2 > bn.

Dasselbe gilt auch für die anderen Terme. Selbst wenn Algorithmus A eine Laufzeit

von n+1000000 hätte, wäre er für entsprechend große Werte von n immer noch schneller als Algorithmus B.

Üblicherweise gehen wir davon aus, dass ein Algorithmus mit einem kleineren

Leitterm für große Probleme besser geeignet ist. Bei kleineren Problemen kann es aber einen Kreuzungspunkt geben, ab dem ein anderer Algorithmus besser

funktioniert. Wo dieser Punkt liegt, hängt von den Einzelheiten der Algorithmen,

den Eingangsdaten und der Hardware ab. Daher wird der Kreuzungspunkt

üblicherweise bei der Algorithmenanalyse ignoriert. Das bedeutet aber nicht, dass

Sie ihn vergessen sollen.

Wenn zwei Algorithmen denselben Leitterm haben, ist es schwierig zu sagen,

welcher davon leistungsfähiger ist. Auch hier hängt die Antwort wieder von den

jeweiligen Details ab. Bei der Algorithmenanalyse werden Funktionen mit

demselben Leitterm als äquivalent betrachtet, selbst wenn sie unterschiedliche

Koeffizienten haben.

Eine Wachstumsordnung ist eine Menge von Funktionen, deren asymptotisches

Wachstumsverhalten als äquivalent betrachtet wird. So gehören beispielsweise 2n, 100n und n+1 zur selben Wachstumsordnung, die in der Landauschen O()-Notation als O(n) geschrieben werden. Man spricht dabei von linearem Wachstum, weil jede Funktion dieser Menge für Werte von n linear wächst.

Alle Funktionen mit dem Leitterm n 2 gehören zur Wachstumsordnung O(n 2) mit quadratischem Wachstum (»quadratisch« ist einfach ein schickes Wort für

Funktionen mit dem Leitterm n 2).

Die folgende Tabelle zeigt einige der häufigsten Wachstumsordnungen der

Algorithmenanalyse in aufsteigender Reihenfolge ihrer Bösartigkeit.

Wachstumsordnung Wachstum

 O(1)

konstant

 O(log bn)

logarithmisch (für beliebige Werte von b)

 (n)

linear

 O(n log bn)

superlineares Wachstum

 O(n 2)

quadratisch

 O(n 3)

kubisch

 O(cn)

exponentiell (für beliebige Werte von c)

Bei logarithmischen Termen spielt die Basis des Logarithmus keine Rolle. Wenn Sie

die Basis ändern, entspricht das der Multiplikation mit einer Konstanten, was

ebenfalls keinen Einfluss auf die Wachstumsordnung hat. Auf ähnliche Weise

gehören alle exponentiellen Funktionen unabhängig von der Basis des Exponenten

zur selben Wachstumsordnung. Exponentielle Funktionen wachsen sehr schnell und

sind daher nur für sehr kleine Eingangsvariablen geeignet.

Lesen Sie die Wikipedia-Seiten über die Landausche O()-Notation unter

http://de.wikipedia.org/wiki/Landau-Symbole und über Laufzeiten unter

http://de.wikipedia.org/wiki/Laufzeit_(Informatik). Beantworten Sie dann die folgenden Fragen:

1. Was ist die Wachstumsordnung von n 3 + n 2? Von 1000000 n 3 + n 2? Von n 3 + 1000000 n 2?

2. Was ist die Wachstumsordnung von (n 2 + n) · (n + 1)? Bevor Sie mit dem Multiplizieren anfangen, sollten Sie nicht vergessen: Es kommt nur auf den

Leitterm an.

3. Wenn f Element von O(g) für eine nicht näher bestimmte Funktion g ist, was können wir dann über af+b sagen?

4. Wenn f 1 und f 2 in O(g) enthalten sind, was gilt dann für f 1 + f 2?

5. Wenn f 1 Element von O(g) und f 2 Element von O(h), was können wir dann über f 1 + f 2 sagen?

6. Wenn f 1 Element von O(g) und f 2 Element von O(h), was gilt dann für f 1 · f 2?

 Listing B.1

Für Programmierer, denen es auf die Leistung ankommt, sind solche Analysen oft

schwer verdaulich. Und sie haben nicht ganz unrecht: Manchmal machen die

Koeffizienten und die untergeordneten Terme einen Unterschied. Manchmal ergeben

sich durch die Hardware, die Programmiersprache und Besonderheiten der

Eingangsdaten große Unterschiede. Und bei kleineren Datenmengen ist das

asymptotische Verhalten irrelevant.

Aber wenn Sie diese Warnungen im Hinterkopf behalten, ist die Algorithmenanalyse

ein nützliches Werkzeug. Zumindest bei größeren Problemstellungen ist der

»bessere« Algorithmus üblicherweise besser und manchmal sogar viel besser. Der

Unterschied zwischen zwei Algorithmen derselben Wachstumsordnung ist

üblicherweise ein konstanter Faktor. Der Unterschied zwischen einem guten

Algorithmus und einem schlechten Algorithmus ist dagegen grenzenlos!

Analyse grundlegender Python-Operationen

Die meisten arithmetischen Operationen sind zeitlich konstant. Multiplikation

dauert üblicherweise länger als Addition und Subtraktion, und die Division braucht

sogar noch länger. Aber diese Laufzeiten hängen nicht von der Größe der Operanden

ab. Besonders große Integer bilden die Ausnahme: In diesem Fall steigt die Laufzeit

mit der Anzahl der Stellen.

Indexoperationen – das Lesen oder Schreiben von Elementen in einer Sequenz oder

einem Dictionary – legen ebenfalls ein konstantes Wachstum an den Tag,

unabhängig von der Größe der Datenstruktur.

Eine for-Schleife, die eine Sequenz oder ein Dictionary durchläuft, unterliegt üblicherweise einem linearen Wachstum, solange alle Operationen im Body der

Schleife zu einer konstanten Wachstumsordnung gehören. Die Addition der

Elemente einer Liste ist beispielsweise linear:

summe = 0

for x in t:

summe += x

Die integrierte Funktion sum ist ebenfalls linear, weil sie dasselbe macht, ist aber

tendenziell schneller, weil die Implementierung effizienter ist. In der Sprache der

Algorithmenanalyse ausgedrückt, hat diese Funktion einen kleineren

Leitkoeffizienten.

Wenn Sie mit derselben Schleife eine Liste von Strings »addieren«, wächst die

Laufzeit quadratisch, weil die Konkatenation von Strings linear ist.

Die String-Methode join ist üblicherweise schneller, weil sie für die Gesamtlänge

der Strings linear ist.

Als Faustregel gilt: Wenn der Body einer Schleife die Wachstumsordnung O(na) hat, gehört die gesamte Schleife zu O(na+1). Eine Ausnahme ist nur dann gegeben, wenn Sie zeigen können, dass die Schleife nach einer konstanten Anzahl von Iterationen

verlassen wird. Wenn eine Schleife unabhängig von n genau k-mal ausgeführt wird, gehört die Schleife zur Wachstumsordnung O(na), selbst bei großen Werten für k.

Durch die Multiplikation mit k ändert sich die Wachstumsordnung nicht, genauso

wenig wie durch Division. Wenn der Body einer Schleife also zur

Wachstumsordnung O(na) gehört und n/k-mal ausgeführt wird, gehört die Schleife in O(na+1), selbst bei großen Werten für k.

Die meisten String- und Tupel-Operationen sind linear, Ausnahmen sind

Indexoperationen und len, die beide konstant sind. Die integrierten Funktionen min

und max sind linear. Die Laufzeit einer Slice-Operation ist proportional zur Länge

der Ausgabe, aber unabhängig von der Größe der Eingangsdaten.

Alle String-Methoden sind linear. Wenn die Länge des Strings allerdings durch eine

Konstante begrenzt ist – beispielsweise Operationen mit einzelnen Zeichen –, sind

auch diese konstant.

Die meisten Listenmethoden sind linear. Allerdings gibt es einige Ausnahmen:

Das Hinzufügen eines Elements am Ende einer Liste ist normalerweise linear.

Wenn dabei der Speicherplatz ausgeht, wird die Liste an einen anderen

Speicherort kopiert. Aber die Gesamtzeit für n Operationen beträgt O(n), daher sprechen wir davon, dass die »amortisierte« Zeit für eine Operation O(1) beträgt.

Das Entfernen eines Elements am Ende einer Liste ist konstant.

Die Wachstumsordnung für Sortierung lautet O(n log n).

Die Laufzeit für die meisten Dictionary-Operationen ist konstant. Aber auch hier gibt es einige Ausnahmen:

Die Laufzeit von copy ist proportional zur Anzahl der Elemente, aber nicht zur

Größe der Elemente (es werden Referenzen kopiert, nicht die Elemente selbst).

Die Laufzeit von update ist proportional zur Größe des als Parameter

übergebenen Dictionary, aber nicht des Dictionary, das aktualisiert wird.

keys, values und items sind linear, weil sie neue Listen zurückgeben. itervalues

und iteritems sind konstant, weil sie Iteratoren zurückliefern. Wenn Sie dagegen

die Iteratoren mit einer Schleife durchlaufen, nimmt die Laufzeit dieser Schleife

linear zu. Die »iter«-Funktionen sparen einen gewissen Overhead, haben aber

keinen Einfluss auf die Wachstumsordnung, außer wenn die Anzahl der Elemente

begrenzt ist.

Die Leistung von Dictionaries ist ein kleines Wunder der Informatik. Im

„Hashtabellen“ werden wir uns ansehen, wie sie funktionieren.

Lesen Sie die Wikipedia-Seite über Sortierverfahren unter

http://de.wikipedia.org/wiki/Sortierverfahren und beantworten Sie die folgenden Fragen:

1. Was ist »vergleichsbasiertes Sortieren«? Was ist die beste Worst Case-

Wachstumsordnung für vergleichsbasiertes Sortieren? Was ist die beste Worst

Case-Wachstumsordnung für Sortierverfahren allgemein?

2. Was ist die Wachstumsordnung von Bubblesort, und warum glaubt Barack

Obama, dass das »keine gute Entscheidung« sei?

3. Was ist die Wachstumsordnung von Radixsort? Welche Vorbedingungen

müssen dafür erfüllt sein?

4. Was ist ein stabiles Sortierverfahren, und welche Rolle spielt das in der Praxis?

5. Welcher ist der schlechteste Sortieralgorithmus (der einen Namen hat)?

6. Welchen Sortieralgorithmus verwendet die C-Bibliothek? Welchen

Sortieralgorithmus verwendet Python? Sind diese Algorithmen stabil?

Eventuell müssen Sie Google bemühen, um diese Antworten zu finden.

7. Viele nicht-vergleichsbasierte Sortierverfahren sind linear. Warum verwendet

Python ein vergleichsbasiertes Sortierverfahren der Menge O(n log n)?

 Listing B.2

Analyse von Suchalgorithmen

Eine Suche ist ein Algorithmus, der eine Sammlung sowie ein Zielelement benötigt

und ermittelt, ob das Ziel in der Sammlung enthalten ist, und häufig auch den Index

des Zielelements zurückliefert.

Der einfachste Suchalgorithmus ist eine »lineare Suche«, bei der die Elemente der

Sammlung nach der Reihenfolge durchlaufen werden und die Suche beendet wird, wenn das Ziel gefunden ist. Im schlimmsten Fall muss die gesamte Sammlung

durchlaufen werden, daher nimmt die Laufzeit linear zu.

Der Operator in für Sequenzen verwendet die lineare Suche, ebenso wie die String-

Methoden find und count.

Wenn die Elemente einer Sequenz eine bestimmte Reihenfolge einhalten, können

Sie die Bisektion einsetzen, die zur Wachstumsordnung O(log n) gehört. Die Bisektion gleicht dem Algorithmus, nach dem Sie ein Wort in einem Dictionary

suchen (in einem echten Wörterbuch, nicht in der Datenstruktur). Anstatt ganz vorne

anzufangen und jedes einzelne Element der Reihe nach zu überprüfen, fangen Sie

mit einem Element in der Mitte an. Wenn das gesuchte Wort davor stehen muss,

suchen Sie in der ersten Hälfte der Sequenz. Ansonsten durchsuchen Sie die zweite

Hälfte. In beiden Richtungen halbieren Sie auf diese Weise die Anzahl der zu

durchsuchenden Elemente.

Wenn eine Sequenz 1.000.000 Elemente enthält, sind ungefähr 20 Schritte

erforderlich, um das Wort zu finden oder zum Schluss zu kommen, dass es nicht in

der Sammlung enthalten ist. Das ist ungefähr 50.000-mal schneller als eine lineare

Suche.

Schreiben Sie eine Funktion mit dem Namen bisektion, die eine sortierte Liste und

einen Zielwert erwartet. Falls der Wert in der Liste enthalten ist, soll der

Rückgabewert der Index des Werts sein, ansonsten None.

Oder Sie lesen die Dokumentation des Moduls bisect und verwenden das Modul!

 Listing B.3

Die Suche nach dem Bisektionsverfahren kann wesentlich schneller als eine lineare

Suche sein, setzt aber voraus, dass die Sequenz sortiert ist, was unter Umständen

zusätzlichen Aufwand bedeutet.

Es gibt eine andere Datenstruktur, die Hashtabelle, die sogar noch schneller ist. Die Laufzeit dieser Suchfunktion ist konstant, und die Elemente müssen auch nicht

sortiert sein. Python-Dictionaries sind mit Hashtabellen implementiert. Deshalb ist

die Laufzeit der meisten Dictionary-Operationen konstant, einschließlich des in-

Operators.

Hashtabellen

Um zu erklären, wie Hashtabellen funktionieren und warum sie eine so gute

Leistung erbringen, fange ich mit einer einfachen Implementierung einer Map an

und verbessere sie schrittweise, bis wir eine Hashtabelle erhalten.

Ich verwende Python, um diese Implementierungen zu erklären. In der Praxis würden Sie solchen Code aber nicht in Python schreiben. Sie würden einfach ein

Dictionary verwenden. Stellen Sie sich also für den Rest dieses Kapitels einfach vor,

dass es keine Dictionaries gibt und Sie eine Datenstruktur implementieren möchten,

die Schlüsseln Werte zuweist. Folgende Operationen müssen implementiert werden:

hinzufuegen(s, w):

Erstellt ein neues Element, das einem Schlüssel s den Wert w zuweist. Bei einem

Python-Dictionary d wird diese Operation als d[s] = w geschrieben.

hole(ziel):

Sucht den Wert, der dem Schlüssel ziel entspricht, und liefert diesen zurück. Für

das Python-Dictionary d würden Sie diese Operation als d[ziel] oder d.get(ziel)

schreiben.

Für den Moment gehe ich davon aus, dass jeder Schlüssel nur einmal vorkommt. Die

einfachste Implementierung dieser Schnittstelle verwendet eine Liste mit Tupeln,

wobei jedes Tupel ein Schlüssel/Wert-Paar ist.

class LineareMap(object):

def __init__(self):

self.elemente = []

def hinzufuegen(self, s, w):

self.elemente.append((s, w))

def hole(self, s):

for schluessel, wert in self.elemente:

if schluessel == s:

return wert

raise KeyError

hinzufuegen fügt ein Schlüssel/Wert-Tupel der Liste der Elemente hinzu. Diese

Operation ist zeitlich konstant.

hole verwendet eine for-Schleife, um die Liste zu durchsuchen. Wird der

Zielschlüssel gefunden, liefert die Methode den entsprechenden Wert zurück.

Andernfalls wird ein KeyError erzeugt. get ist also linear.

Eine Alternative besteht darin, die Liste anhand der Schlüssel zu sortieren. Dann

könnte hole nach dem Bisektionsverfahren suchen, was zur Wachstumsordnung O(

log n) gehört. Das Einfügen eines neuen Elements in der Mitte einer Liste ist

allerdings linear. Daher ist das nicht die beste Möglichkeit. Es gibt andere

Datenstrukturen (siehe http://de.wikipedia.org/wiki/Rot-Schwarz-Baum), die hinzufuegen und hole in logarithmischer Laufzeit implementieren können, aber das

ist immer noch nicht so gut wie eine konstante Laufzeit. Machen wir also weiter.

Eine Möglichkeit, LineareMap zu verbessern, besteht darin, die Liste der Schlüssel/Wert-Paare in kleinere Listen aufzuteilen. Hier sehen Sie eine

Implementierung mit dem Namen BessereMap, die aus einer Liste von 100

LineareMap-Objekten besteht. Wie Sie gleich sehen werden, ist die

Wachstumsordnung für hole dann immer noch linear, aber BessereMap ist den

Hashtabellen immerhin schon einen Schritt näher:

class BessereMap(object):

def __init__(self, n=100):

self.maps = []

for i in range(n):

self.maps.append(LineareMap())

def suche_map(self, s):

index = hash(s) % len(self.maps)

return self.maps[index]

def hinzufuegen(self, s, w):

m = self.suche_map(s)

m.hinzufuegen(s, w)

def hole(self, s):

m = self.suche_map(s)

return m.hole(s)

__init__ erstellt eine Liste mit n LineareMap-Objekten.

suche_map wird von hinzufuegen und hole verwendet, um zu ermitteln, in welcher

Map gesucht bzw. ein neues Element abgelegt werden soll.

suche_map verwendet die integrierte Funktion hash, die für beinahe jedes Python-

Objekt einen Integer zurückliefert. Eine Grenze dieser Implementierung besteht

darin, dass sie nur mit Schlüsseln funktioniert, die hashable sind. Veränderbare

Typen wie Listen und Dictionaries sind leider nicht hashable.

Es wird davon ausgegangen, dass Objekte, die hashable sind, immer denselben

Hashwert zurückliefern. Aber die Umkehrung ist nicht notwendigerweise zutreffend:

Auch für zwei unterschiedliche Objekte kann derselbe Hash zurückgeliefert werden.

suche_map verwendet den Modulus-Operator, um die Hashwerte im Bereich von 0

bis len(self.maps) abzubilden, damit das Ergebnis einen zulässigen Index für die

Liste ergibt. Das bedeutet natürlich, dass viele verschiedene Hashwerte demselben

Index zugeordnet werden. Aber wenn die Hashfunktion alles schön gleichmäßig

verteilt (und dafür sind Hashfunktionen entwickelt worden), können wir von n/100

Elementen pro LineareMap ausgehen.

Da die Laufzeit von LineareMap.hole proportional zur Anzahl der Elemente ist,

gehen wir davon aus, dass BessereMap ungefähr 100-mal schneller als

LineareMap ist. Die Wachstumsordnung ist immer noch linear, aber der

Leitkoeffizient ist kleiner. Das ist nett, aber immer noch nicht so gut wie eine Hashtabelle.

Und hier (endlich) der entscheidende Gedanke, der Hashtabellen schnell macht:

Wenn Sie die maximale Länge von LineareMap begrenzen, hat LineareMap.hole

eine konstante Laufzeit. Dann müssen Sie lediglich die Anzahl der Elemente im

Auge behalten. Wenn die Anzahl der Elemente pro LineareMap eine bestimmte

Schwelle erreichen, vergrößern Sie die Hashtabelle um zusätzliche LineareMaps.

Hier sehen Sie eine Implementierung einer Hashtabelle:

class HashMap(object):

def __init__(self):

self.maps = BessereMap(2)

self.anz = 0

def hole(self, s):

return self.maps.hole(s)

def hinzufuegen(self, s, w):

if self.anz == len(self.maps.maps):

self.vergroessern()

self.maps.hinzufuegen(s, w)

self.anz += 1

def vergroessern(self):

neue_maps = BessereMap(self.anz * 2)

for m in self.maps.maps:

for s, w in m.elemente:

neue_maps.hinzufuegen(s, w)

self.maps = neue_maps

Jede HashMap enthält eine BessereMap. __init__ fängt mit zwei LineareMap-

Objekten an und initialisiert anz, das die Anzahl der Elemente mitverfolgt.

hole reicht die Aufrufe einfach an BessereMap durch. Die eigentliche Arbeit

geschieht in hinzufuegen, wo die Anzahl der Elemente und die Größe von

BessereMap überprüft werden. Wenn beide Zahlen gleich sind, ist die

durchschnittliche Anzahl von Elementen pro LineareMap gleich 1, entsprechend

wird vergroessern aufgerufen.

vergroessern erstellt eine neue BessereMap, die zweimal so groß wie die

vorherige ist, und »hasht« die Elemente von der alten auf die neue Map um.

Das »Rehashing« ist erforderlich, weil sich durch die veränderte Anzahl der

LineareMap-Objekte auch der Nenner für den Modulus-Operator in suche_map

ändert. Das bedeutet, dass einige Objekte, die bisher in dieselbe LineareMap

gepackt wurden, jetzt aufgeteilt werden (das wollten wir doch, oder?).

Rehashing ist linear, entsprechend ist auch vergroessern linear. Das erscheint auf

den ersten Blick zwar ungünstig, da ich ja versprochen hatte, dass hinzufuegen

konstant sein würde. Aber wir müssen vergroessern ja nicht jedes Mal aufrufen.

Daher hat hinzufuegen normalerweise eine konstante Laufzeit und nur gelegentlich

eine lineare. Der gesamte Aufwand, hinzufuegen n-mal aufzurufen, ist proportional zu n. Entsprechend ist die durchschnittliche Laufzeit für jedes hinzufuegen konstant!

Um zu verstehen, wie das funktioniert, stellen Sie sich einfach vor, dass wir mit

einer leeren Hashtabelle beginnen und eine Folge von Elementen hinzufügen. Wir

beginnen mit 2 LineareMaps. Das Hinzufügen der ersten beiden Elemente ist

schnell (keine Vergrößerung erforderlich). Nehmen wir einmal an, dass sie eine

Arbeitseinheit in Anspruch nehmen. Beim Hinzufügen des nächsten Elements ist

eine Vergrößerung erforderlich, also müssen wir die ersten beiden Elemente erneut

hashen (berechnen wir dafür einmal 2 weitere Arbeitseinheiten) und das dritte

Element hinzufügen (noch 1 Einheit). Das Hinzufügen des nächsten Elements kostet

uns 1 Einheit. Also brauchen wir bisher 6 Einheiten für 4 Elemente.

Der nächste Aufruf von hinzufuegen kostet 5 Einheiten, aber die nächsten drei

Elemente nur jeweils 1. Für die ersten 8 Elemente brauchen wir also insgesamt 14

Einheiten.

Das nächste hinzufuegen kostet 9 Einheiten. Dafür können wir 7 weitere Elemente

vor der nächsten Vergrößerung hinzufügen. Also beträgt die Summe 30 Einheiten für

die ersten 16 Elemente.

Nach 32 Elementen beträgt die Summe 62 Einheiten. Ich hoffe, Sie beginnen, ein

Muster zu erkennen. Nach dem Hinzufügen von n Elementen, wobei n eine Potenz von 2 ist, betragen die Kosten 2n-2 Einheiten. Der durchschnittliche Aufwand für das Hinzufügen pro Element ist demnach weniger als 2 Einheiten. Natürlich ist es

der beste Fall, wenn n eine Potenz von 2 ist. Für andere Werte von n ist der durchschnittliche Aufwand ein bisschen höher, aber das ist nicht wichtig. Der

wichtige Punkt ist, dass wir die Wachstumsordnung O(1) haben.

Abbildung B.1 zeigt grafisch, wie das funktioniert. Jeder Block steht für eine Arbeitseinheit. Die Spalten zeigen die Kosten insgesamt für jedes Hinzufügen von

links nach rechts: Die ersten beiden Aufrufe von hinzufuegen kosten je 1 Einheit,

der dritte 3 Einheiten usw.

 Abbildung B.1 Kosten für das Hinzufügen eines Elements zu einer Hashtabelle.

Der zusätzliche Aufwand für das Rehashing erscheint als Sequenz zunehmend

größerer Türme mit zunehmendem Abstand dazwischen. Wenn Sie nun die Türme

umstürzen, um die Kosten für das Vergrößern für alle Hinzufügungen insgesamt zu

amortisieren, können Sie in der Grafik sehen, dass die Gesamtkosten nach n-mal

hinzufuegen gleich 2 n – 2 sind.

Ein wichtiges Merkmal dieses Algorithmus besteht darin, dass die Hashtabelle

geometrisch wächst, wenn wir sie vergrößern. Wir multiplizieren die Größe mit

einer Konstanten. Wenn Sie die Größe arithmetisch erhöhen – jedes Mal also eine

feststehende Anzahl hinzufügen –, ist die durchschnittliche Laufzeit pro

hinzufuegen linear.

Meine Implementierung der HashMap finden Sie unter dem Namen Map.py in den

Codebeispielen. Bedenken Sie aber, dass es keinen Grund gibt, sie zu verwenden.

Wenn Sie eine Map brauchen, verwenden Sie einfach ein Python-Dictionary!

[2] Sollten Sie jemals eine solche Frage in einem Interview gestellt bekommen, wäre meiner Meinung nach die bessere Antwort: »Die schnellste Möglichkeit, eine Million Integer zu sortieren, ist die Sortierfunktion der jeweiligen Programmiersprache. Die Leistung sollte für die meisten Anwendungen ausreichen. Sollte ich feststellen, dass meine Anwendung zu langsam ist, würde ich einen Profiler verwenden, um herauszufinden, wofür die meiste Zeit verwendet wird. Sollte sich dabei herausstellen, dass ein schnellerer Sortieralgorithmus einen signifikanten Leistungsvorteil bringt, würde ich mich nach einer guten Implementierung von Radixsort umsehen.«

Anhang C. Lumpy

In diesem Buch habe ich immer wieder Diagramme verwendet, um den Zustand

laufender Programme darzustellen.

In „Variablen“ haben wir in einem Zustandsdiagramm die Namen und Werte von Variablen dargestellt. Im „Stapeldiagramme“ habe ich ein Stapeldiagramm vorgestellt, das für jeden Funktionsaufruf einen Frame zeigt. Jeder Frame zeigt

dabei die Parameter und lokalen Variablen der Funktion oder Methode.

Stapeldiagramme für rekursive Funktionen haben wir in „Stapeldiagramme für

rekursive Funktionen“ und „Mehr Rekursion“ kennengelernt.

„Listen können geändert werden“ zeigt, wie eine Liste in einem Zustandsdiagramm

aussieht, „Dictionaries und Listen“ zeigt ein Dictionary, und „Dictionaries und

Tupel“ zeigt zwei Möglichkeiten, Tupel darzustellen.

Im „Attribute“ werden Objektdiagramme eingeführt, die den Zustand der Attribute eines Objekts sowie deren Attribute usw. dargestellt. Der „Rechtecke“ zeigt Objektdiagramme für Rechtecke und ihre eingebetteten Punkte. „Zeit“ zeigt den Zustand eines Zeit-Objekts. „Klassenattribute“ enthält ein Diagramm mit einem Klassenobjekt und einer Instanz, jeweils mit den entsprechenden Attributen.

Und zu guter Letzt zeigt „Klassendiagramme“ Klassendiagramme, die die Klassen eines Programms und die entsprechenden Beziehungen veranschaulichen.

All diese Diagramme basieren auf UML (Unified Modeling Language), einer

standardisierten grafischen Sprache, mit der Software-Ingenieure über

Programmdesign kommunizieren, insbesondere für objektorientierte Programme.

UML ist eine umfangreiche Sprache mit vielen Arten von Diagrammen, die die

verschiedenartigen Beziehungen zwischen Objekten und Klassen abbilden. Was ich

in diesem Buch vorgestellt habe, ist nur ein kleiner Ausschnitt aus der Sprache –

aber der Ausschnitt, der in der Praxis am häufigsten verwendet wird.

Ziel dieses Anhangs ist es, die in den bisherigen Kapiteln vorgestellten Diagramme

noch einmal zu besprechen und Lumpy vorzustellen: Lumpy steht für »UML in

Python«, wobei ich einige Buchstaben umgestellt habe. Lumpy ist ein Teil von

Swampy, das Sie bereits installiert haben, wenn Sie an der Fallstudie in Kapitel 4

oder Kapitel 19 gearbeitet oder Listing 15.4 nachvollzogen haben.

Lumpy verwendet das Python-Modul inspect, um den Zustand eines laufenden

Programms zu analysieren und Objektdiagramme (einschließlich

Stapeldiagrammen) und Klassendiagramme zu erzeugen.

Zustandsdiagramm

Hier sehen Sie, wie Sie mit Lumpy ein Zustandsdiagramm erstellen können:

from swampy.Lumpy import Lumpy

lumpy = Lumpy()

lumpy.make_reference()

meldung = 'Und jetzt etwas ganz anderes'

n = 17

pi = 3.1415926535897932

lumpy.object_diagram()

Die erste Zeile importiert die Klasse Lumpy aus swampy.Lumpy. Sollten Sie

Swampy nicht als Paket installiert haben, vergewissern Sie sich, dass die Swampy-

Dateien in Pythons Suchpfad enthalten sind, und verwenden Sie stattdessen die

folgende import-Anweisung:

from Lumpy import Lumpy

In der nächsten Zeile erstellen wir ein Lumpy-Objekt und einen »Referenzpunkt«.

Das bedeutet, dass Lumpy die Objekte aufzeichnet, die bis dahin definiert wurden.

Als Nächstes definieren wir neue Variablen und rufen object_diagram auf, wodurch

die Objekte gezeichnet werden, die seit dem Referenzpunkt definiert wurden, in

diesem Fall meldung, n und pi.

Abbildung C.1 zeigt das Ergebnis. Die Grafik unterscheidet sich stilistisch von dem, was ich bisher gezeigt habe. Beispielsweise wird jede Referenz durch einen Kreis

neben dem Variablennamen sowie eine Linie und einen Wert dargestellt. Alle langen

Strings werden abgeschnitten. Aber die im Diagramm abgebildeten Informationen

sind dieselben.

Die Variablennamen befinden sich in einem Frame mit der Bezeichnung <module>,

die anzeigt, dass diese Variablen auf Modulebene definiert wurden, also globale

Variablen sind.

Dieses Beispiel finden Sie in den Codebeispielen unter dem Namen

 lumpy_demo1.py. Versuchen Sie, einige zusätzliche Zuweisungen einzufügen, und

sehen Sie sich das Diagramm dann noch mal an.

 Abbildung C.1 Von Lumpy erzeugtes Zustandsdiagramm.

Stapeldiagramm

Hier sehen Sie ein Beispiel für ein Stapeldiagramm mit Lumpy. Die entsprechende

Datei aus den Codebeispielen heißt lumpy_demo2.py.

from swampy.Lumpy import Lumpy

def countdown(n):

if n <= 0:

print 'Bumm!'

lumpy.object_diagram()

else:

print n

countdown(n-1)

lumpy = Lumpy()

lumpy.make_reference()

countdown(3)

Abbildung C.2 zeigt das Ergebnis. Jeder Frame wird durch einen Kasten mit dem Funktionsnamen und den enthaltenen Variablen darin dargestellt. Da die Funktion

rekursiv ist, wird für jede Rekursion ein Frame gezeigt.

 Abbildung C.2 Stapeldiagramm.

Bedenken Sie, dass ein Stapeldiagramm den Zustand des Programms an einem

bestimmten Punkt der Ausführung darstellt. Damit Sie das gewünschte Diagramm

erhalten, müssen Sie object_diagram an der entsprechenden Stelle aufrufen.

In diesem Fall rufe ich object_diagram nach der Ausführung des Basisfalls der

Rekursion auf. Auf diese Weise zeigt das Stapeldiagramm jede einzelne Rekursion.

Natürlich können Sie object_diagram auch mehr als einmal aufrufen, um eine Reihe

von Schnappschüssen zur Programmausführung zu erhalten.

Objektdiagramme

Dieses Beispiel erzeugt ein Objektdiagramm für die Listen aus „Eine Liste ist eine

Sequenz“. Die entsprechende Datei finden Sie unter dem Namen lumpy_demo3.py in den Beispieldateien.

from swampy.Lumpy import Lumpy

lumpy = Lumpy()

lumpy.make_reference()

kaesesorten = ['Cheddar', 'Edamer', 'Gouda']

zahlen = [17, 123]

leer = []

lumpy.object_diagram()

Abbildung C.3 zeigt das Ergebnis. Listen werden durch einen Kasten dargestellt, der die Indizes und die entsprechenden Elemente zeigt. Diese Darstellung ist leicht

irreführend, da die Indizes ja nicht wirklich Teil der Liste sind. Aber meiner

Meinung nach ist das Diagramm so einfacher zu lesen. Die leere Liste wird durch

einen leeren Kasten dargestellt.

 Abbildung C.3 Objektdiagramm.

Und hier ist das Beispiel mit den Dictionaries aus „Dictionaries und Listen“. Die entsprechende Datei finden Sie unter dem Namen lumpy_demo4.py in den

Beispieldateien.

from swampy.Lumpy import Lumpy

lumpy = Lumpy()

lumpy.make_reference()

hist = histogramm('papagei')

invers = invertiere_dict(hist)

lumpy.object_diagram()

Abbildung C.4 zeigt das Ergebnis. hist ist ein Dictionary, das Zeichen (Strings mit nur einem Zeichen) auf Integer abbildet. invers bildet dagegen Integer auf Listen mit

Strings ab.

 Abbildung C.4 Objektdiagramm.

Das folgende Beispiel erzeugt ein Objektdiagramm für Punkt- und Rechteck-Objekte

(siehe „Kopieren“). Die entsprechende Datei aus den Codebeispielen heißt lumpy_demo5.py.

import copy

from swampy.Lumpy import Lumpy

lumpy = Lumpy()

lumpy.make_reference()

box = Rechteck()

box.breite = 100.0

box.hoehe = 200.0

box.ecke = Punkt()

box.ecke.x = 0.0

box.ecke.y = 0.0

box2 = copy.copy(box)

lumpy.object_diagram()

Abbildung C.5 zeigt das Ergebnis. copy.copy erstellt eine flache Kopie, deshalb haben box und box2 jeweils eine eigene breite und hoehe, teilen sich aber das

eingebettete Punkt-Objekt. Eine solche gemeinsame Nutzung funktioniert wunderbar

mit unveränderbaren Objekten. Bei veränderbaren Objekten wäre dies allerdings

höchst fehleranfällig.

 Abbildung C.5 Objektdiagramm.

Funktions- und Klassenobjekte

Wenn ich mit Lumpy Objektdiagramme erstelle, definiere ich üblicherweise die

Funktionen und Klassen, bevor ich den Referenzpunkt anlege. Auf diese Weise

erscheinen die Funktions- und Klassenobjekte nicht im Diagramm.

Aber wenn Sie Funktionen und Klassen als Parameter übergeben, möchten Sie diese

vielleicht doch anzeigen. Das folgende Beispiel zeigt, wie das aussieht. Die

entsprechende Datei aus den Codebeispielen heißt lumpy_demo6.py.

import copy

from swampy.Lumpy import Lumpy

lumpy = Lumpy()

lumpy.make_reference()

class Punkt(object):

 """Bildet einen Punkt im zweidimensionalen Raum ab."""

class Rechteck(object):

 """Bildet ein Rechteck ab. """

def instanziieren(constructor):

 """Instanziiert ein neues Objekt."""

obj = constructor()

lumpy.object_diagram()

return obj

punkt = instanziieren(Punkt)

Abbildung C.6 zeigt das Ergebnis. Da wir object_diagram innerhalb einer Funktion aufrufen, erhalten wir ein Stapeldiagramm mit einem Frame für die Variablen der

Modulebene und für den Aufruf von instanziieren.

 Abbildung C.6 Objektdiagramm.

Auf der Modulebene beziehen sich Punkt und Rechteck auf Klassenobjekte (mit

dem Typ type). instanziieren bezieht sich auf ein Funktionsobjekt.

Dieses Diagramm stellt vermutlich zwei verwirrende Punkte klar: zum einen den

Unterschied zwischen dem Klassenobjekt Punkt und der Punkt-Instanz obj, zum

anderen den Unterschied zwischen dem Funktionsobjekt, das bei der Definition von

instanziieren erstellt wird, und dem Frame, der angelegt wird, wenn die Funktion

aufgerufen wird.

Klassendiagramme

Obwohl ich zwischen Zustands-, Stapel- und Objektdiagrammen unterscheide, sind

sie in erster Linie dasselbe: Sie zeigen den Zustand eines laufenden Programms zu

einem bestimmten Zeitpunkt.

Klassendiagramme sind dagegen etwas anderes: Sie zeigen die Klassen, aus denen

ein Programm besteht, sowie die entsprechenden Beziehungen zwischen den

Klassen. Klassendiagramme sind insofern zeitunabhängig, als sie das Programm

insgesamt beschreiben und nicht nur zu einem bestimmten Zeitpunkt. Wenn

beispielsweise eine Instanz von Klasse A generell eine Referenz auf eine Instanz von

Klasse B enthält, besteht eine Teil-Ganzes-Beziehung zwischen diesen Klassen.

Hier sehen Sie ein Beispiel für eine Teil-Ganzes-Beziehung. Die entsprechende

Datei aus den Codebeispielen heißt lumpy_demo7.py.

from swampy.Lumpy import Lumpy

lumpy = Lumpy()

lumpy.make_reference()

box = Rechteck()

box.breite = 100.0

box.hoehe = 200.0

box.ecke = Punkt()

box.ecke.x = 0.0

box.ecke.y = 0.0

lumpy.class_diagram()

Abbildung C.7 zeigt das Ergebnis. Jede Klasse wird durch einen Kasten dargestellt, der den Namen der Klasse, alle enthaltenen Methoden, Klassenvariablen und

Instanzvariablen enthält. In diesem Beispiel enthalten Rechteck und Punkt

Instanzvariablen, aber keine Methoden oder Klassenvariablen.

 Abbildung C.7 Klassendiagramm.

Der Pfeil von Rechteck zu Punkt bedeutet, dass Rechtecke einen eingebetteten Punkt enthalten können. Außerdem erben Rechteck und Punkt beide von object,

was im Diagramm an der dreieckigen Pfeilspitze zu erkennen ist.

Hier sehen Sie ein komplizierteres Beispiel mit meiner Lösung für Listing 18.6. Den Code finden Sie in der Beispieldatei lumpy_demo8.py, außerdem brauchen Sie

 PokerHand.py.

from swampy.Lumpy import Lumpy

from PokerHand import *

lumpy = Lumpy()

lumpy.make_reference()

stapel = Stapel()

hand = PokerHand()

stapel.ziehe_karten(hand, 7)

lumpy.class_diagram()

Abbildung C.8 zeigt das Ergebnis. PokerHand erbt von Hand, die wiederum von Stapel erbt. Sowohl Stapel als auch PokerHand enthalten Karten.

Dieses Diagramm zeigt nicht, dass Hand ebenfalls Karten enthält, weil es in diesem

Programm keine Instanzen von Hand gibt. Das Beispiel weist auf eine Grenze von

Lumpy hin. Das Modul kennt nur die Attribute und Teil-Ganzes-Beziehungen von

Objekten, die instanziiert wurden.

 Abbildung C.8 Klassendiagramm.

Index

#

0, Index beginnt mit 89, 110

A

abergläubiges Debugging 249

abgeleitete Klasse 215, 221

abs-Funktion 66

absoluter Pfad 167, 175

Ackermann-Funktion 77, 133

add-Methode 200

Addition mit Übertrag 84

Akkumulator 122

Histogramm 154

Liste 114

String 213

Summe 113

Aktualisierung 80, 83, 86

Datenbank 170

Elemente 111

globale Variable 134

Histogramm 154

Koordinaten 235

Slice 112

Aktualisierungsoperator 113

Algorithmen vergleichen 251

Algorithmenanalyse 251

Algorithmus 4, 10, 84, 157, 251

euklidischer 78

MD5 173

Quadratwurzel 86

RSA 135

Aliasing 117–118, 122, 179, 182, 206

durch Kopien vermeiden 121

Alphabet 52

alphabetische Folge 91

alphabetische Wörter 103

alternativer Programmablauf 55

Anagramm 123

Anagramm-Gruppe 149, 171

Analyse primitiver Werte 254

and-Operator 54

Anführungszeichen 49, 242

Anweisung 21

assert 192

bedingte 55, 62, 70

break 82

for 43, 90, 111

global 134

if 55

import 37, 42, 174

pass 55

print 8, 11, 200, 246

raise 129, 192

return 58, 65, 249

try 169

while 80

Zuweisung 14, 79

Anweisungen

Verbund- 55

anydbm-Modul 170

Apostroph 8, 13, 92

append-Methode 113, 119, 123, 213–214

Arbeitsverzeichnis 167

archimedische Spirale 52

Argument 25, 28, 30–31, 36, 119

Liste 119

optionales 95, 116, 129

sammeln 141

Schlüsselwort- 46, 50, 146, 226

Streuung 142

Tupel mit variabler Länge 141

arithmetischer Operator 16

assert-Anweisung 192

assignment

item 140

asymptotische Analyse 252

Attribut 204

__dict__ 203

initialisieren 203

Instanz 178, 184, 210, 221

Klassen- 210, 220

AttributeError 183, 246

Aufruf 99

Aufrufdiagramm 132, 137

Ausdruck 16–17, 22

Boolescher 53, 62

groß und haarig 248

ausführbares Programm 2, 10

Ausgaben formatieren 136

Auslassungszeichen 28

Ausnahme 4, 10, 20, 241, 245

AttributeError 183, 246

IndexError 90, 97, 111, 246

IOError 169

KeyError 126, 246

NameError 32, 245

OverflowError 61

RuntimeError 59

Syntaxfehler 27

TypeError 89, 92, 131, 140, 142, 167, 198, 245

UnboundLocalError 134

ValueError 60, 129, 140

Ausnahmen abfangen 169, 175

Austauschmuster 140

auswerten 17

Average Case 252

B

Bangladesh, Nationalflagge 185

Basisfall 58, 62, 265

Basisklasse 215, 221

bedingte Anweisung 55, 62, 70

bedingte Ausführung 55

Bedingung 55, 62, 81, 242, 244

verkettete 55, 62

verschachtelte 56, 62

Begrenzung 259

Begrenzungsrechteck 238

Beitragende XVI

Benchmarking 160, 162

benutzerdefinierter Typ 177, 187

Berechtigungen, Datei 169

BessereMap 258

Bildbetrachter 238

binäre Suche 124

Bindung 234, 238

dynamische 201–202

Bingo 149

bisect, Modul 124, 257

Bisektion 257

Bisektion, Debugging durch 85

bitweiser Operator 16

Blumen 51

Body 28, 36, 81

Bogenfunktion 44

bool, Typ 54

Boolesche Funktion 69, 187

Boolescher Ausdruck 53, 62

Boolescher Operator 95

Bösartigkeit von Algorithmen 253

Bounding Box 185, 229

break-Anweisung 82

Bubblesort 251

Buchstaben rotieren 100, 138

Buchstaben, Häufigkeit 149

Bug 4, 10

absolut schlimmster 239

schlimmster 205

Button-Widget 226

C

Callable-Objekt 233

Callback 227, 231, 233–234, 236–237

Canvas-item 228

Canvas-Koordinaten 228, 235

Canvas-Objekt 185

Canvas-Widget 227

Car Talk 107, 150

Checksumme 172–173

choice-Funktion 153

class 177

close-Methode 166, 170, 172

__cmp__-Methode 212

cmp-Funktion 212

Collatz-Problem 82

Compiler 2

config-Methode 227

constructor 269

copy 268

copy-Modul 182

count-Methode 95

Creative Commons XVI

Cummings, E. E. 4

D

Datei 165

Berechtigungen 169

lesen und schreiben 165

Datei-Objekt 101, 107

Dateiname 167

Datenbank 170, 176

Datenkapselung 45, 50, 204–205, 219

Datenstruktur 147, 149, 159

datetime-Modul 194

Dead Code 66, 76, 247

Debugger (pdb) 246

Debugging 4, 8, 10, 20, 35, 49, 60, 74, 96, 106, 120, 135, 147, 161, 174, 183, 192,

203, 218, 236, 241

Aberglaube 249

durch Bisektion 85

emotionale Reaktion 9, 249

experimentelles 5

Decorate-Sort-Undecorate, Muster 146

deepcopy-Funktion 183

def, Schlüsselwort 28

Definition

Funktions- 27

Klassen- 177

rekursive 150

Zirkel- 70

Deklaration 134, 138

Dekrement 80, 86

del-Operator 115

Denkmodell 248

deterministisch 152, 162

Diagramm

Aufruf- 137

Klassen- 217, 221, 263, 269–270

Objekt- 178, 180, 183–184, 187, 211, 263, 266

Stapel- 32, 119, 263, 265

Zustands- 14, 79, 98, 110, 118, 131, 145, 178, 180, 183, 187, 211, 263–264

__dict__ (Attribut) 203

dict-Funktion 125

Dictionary 125, 136, 143, 246, 266

initialisieren 144

inverse Suche 129

invertiert 130

Schleifen mit 128

Subtraktion 156

Suche 129

Traversierung 144, 203

Dictionary-Methoden 256

anydbm-Modul 170

 Die Ritter der Kokosnuss 188

diff 173

Dijkstra, Edsger 106

Division

Abrundung 16

Fließkommazahlen 16

ohne Rest 16, 22, 61

divmod 141, 191

Docstring 48, 50, 177

Doppelpunkt 28, 242

doppeltes Alter 194

Doyle, Arthur Conan 5

Drag-and-drop 235

Dreieck 63

dreifache Anführungszeichen, String 49

DSU-Muster 146, 149, 154

Duplikate 123, 138, 173

durchlaufen, Verzeichnis 168

durchschnittliche Kosten 261

dynamische Bindung 201–202, 205

E

E-Mail-Adresse 141

Eindeutigkeit 123

einelementige Menge 130, 137, 139

EinfacheTurtleWorld-Klasse 230

Eingabeaufforderung 3, 10, 60

eingebettetes Objekt 180, 184, 206

kopieren 182

Einrückung 28, 196, 242

Einstein, Albert 46

Element 98, 109, 121

Dictionary 137

Elemente aktualisieren 111

Elemente löschen 115

Elementzuweisung 110

elif-Schlüsselwort 56

Elkner, Jeff XIV

else-Schlüsselwort 55

emotionales Debugging 9, 249

endlose Rekursion 59, 62, 73, 243–244

Endlosschleife 81, 86, 225, 243–244

Entry-Widget 229

Entwicklungsplan 50, 219

Datenkapselung und Generalisierung 48

geplante Entwicklung 190

inkrementeller 66, 242

Irrfahrtsprogrammierung 161, 249

Problemerkennung 104, 106

Prototyp und Patch 188, 190

enumerate-Funktion 143

Epsilon 84

Ergänzungsverfahren, Subtraktion 84, 192

erweiterte Zuweisung 113, 122

euklidischer Algorithmus 78

eval-Funktion 87

Event 238

Event-Handler 234

Event-Objekt 234

Event-orientierte Programmierung 227, 236, 238

Event-Schleife 225, 238

Event-String 234

exists-Funktion 168

experimentelles Debugging 5, 161

Exponent 253

exponentielles Wachstum 254

extend-Methode 113

F

Fakultät 71, 73

False, spezieller Wert 54

Fangen 223

Farbe 209

Farbliste 185, 207

Fehler

Laufzeit- 4, 20, 59, 61, 241

semantischer 5, 14, 20, 97, 241, 247

Strukturfehler 147

Syntax- 4, 20, 241

Fehlermeldung 4–5, 8, 14, 20, 241

Fehlerprüfung 73

Fibonacci-Folge 73

Fibonacci-Funktion 132

Filtermuster 114, 122

flache Kopie 183–184, 268

Flag 133, 138

Fließkomma 21, 84

Fließkommadivision 16

float, Typ 13

float-Funktion 26

Folge 89, 109

for-Schleife 43, 90, 111, 143

Form 149

formale Sprache 6, 11

Format-String 166, 175

Formatoperator 166, 175, 246

Formatsequenz 166, 175

Frame 32, 37, 72, 132, 265

Frame-Widget 230

Free Documentation License, GNU XVI

Frustration 249

Funktion 8, 27, 36, 195

abs 66

ack 77, 133

bogen 44

choice 153

cmp 212

deepcopy 183

dict 125

enumerate 143

eval 87

exists 168

Fakultät 71

Fibonacci 73, 132

float 26

getattr 204

getcwd 167

hasattr 183, 203

int 25

isinstance 74, 201

kreis 44

len 37, 90, 126

list 116

log 26

max 141–142

min 141–142

modifizierende 189

open 101–102, 165, 169–170

polygon 44

popen 172

randint 123, 153

random 146, 152

raw_input 60

reine 188

rekursive 57

reload 174, 243

repr 174

reversed 147

shuffle 214

sorted 147

sqrt 27, 68

str 26

suche 93

sum 142

tuple 139

type 183

vergleiche 66

zip 142

Funktion mit Rückgabewert 33, 36

Funktion ohne Rückgabewert 33, 36

Funktion, mathematische 26

Funktion, trigonometrische 26

Funktion, Tupel als Rückgabewert 141

Funktion-Frame 265

funktionaler Programmierstil 190, 193

Funktionen, Gründe für 34

Funktions-Frame 32, 37, 72, 132

Funktionsargument 30

Funktionsaufruf 25, 36

Funktionsdefinition 27, 29, 36

Funktionskomposition 69

Funktionsobjekt 28, 36–37, 268

Funktionsparameter 30

Funktionsrahmen 58

Funktionssyntax 196

G

Gammafunktion 74

gebundene Methode 231, 237

Geburtstag 194

Geburtstagsparadoxon 123

geheime Übung 176

Generalisierung 45, 50, 104, 192

geometrische Vergrößerung 261

Geometry Manager 233, 238

geplante Entwicklung 190, 193

geschweifte Klammern 125

get-Methode 128

getattr-Funktion 204

getcwd-Funktion 167

ggT (größter gemeinsamer Teiler) 78

Gleichheit 118, 122

Gleichheit und Zuweisung 79

global-Anweisung 134

globale Variable 133, 137, 264

aktualisieren 134

GNU Free Documentation License XVI

grafische Benutzeroberfläche 225

grenzenloser Unterschied zwischen Algorithmen 254

Groß-/Kleinschreibung, Variablennamen 20

Großer Fermatscher Satz 63

großer, haariger Ausdruck 248

größter gemeinsamer Teiler (ggT) 78

Gruppe

Anagramm 149, 171

GUI 225, 237

Gui-Modul 225

H

Hallo, Welt 8

Hand-Klasse 215, 271

hasattr-Funktion 183, 203

Hash-Funktion 131, 137, 259

Hash-Tabelle 126, 137, 257

hashable 131, 137, 144

HashMap 260

Häufigkeit 127

Buchstaben 149

Wort 151, 162

Header 28, 36, 242

hexadezimal 178

Hilfedienstprogramm 11

Histogramm 127–128, 137

Häufigkeit eines Wortes 153

zufällige Auswahl 153, 157

höhere Programmiersprache 1, 9

Holmes, Sherlock 5

HTMLParser-Modul 240

Hyperlink 240

Hypotenuse 68

I

Identität 118, 122

if-Anweisung 55

Image-Modul 239

Implementierung 127, 137, 159, 204

import-Anweisung 37, 42, 174

in-Operator 95, 111, 126, 257

Index 89, 97–98, 110, 121, 125, 245

beginnt mit 0 89, 110

negativ 90

Schleifen mit 104, 111

Slice 91, 112

IndexError 90, 97, 111, 246

Indexoperationen 255

Information Hiding 204

init-Methode 199, 203, 210, 213, 215

Initialisierung

Variable 86

Initialisierung (vor Aktualisierung) 80

Inkrement 80, 86, 189, 197

inkrementelle Entwicklung 76, 242

Instanz 42, 50, 178, 184

als Argument 179

als Rückgabewert 180

Instanzattribut 178, 184, 210, 221

Instanziierung 178, 269

int, Typ 13

int-Funktion 25

Integer 21

Long 135

interaktiver Modus 2, 10, 17, 33

Interpreter 2

interpretieren 9

Invariante 192–193, 237

inverse Suche, Dictionary 129, 137

invertiertes Dictionary 130

IOError 169

Irrfahrtsprogrammierung 161, 249

is not defined 20, 29

is-Operator 117, 182

isinstance-Funktion 74, 201

item

Canvas 228, 238

item assignment 92, 140

items-Methode 143

Iteration 80, 86

J

J

join 255

join-Methode 117, 213

K

Kaenguru-Klasse 206

Kapselung 94, 216

von Daten 219

Kardinalität (in Klassendiagramm) 218, 221

Karten, spielen 209

Karten-Klasse 210, 271

KeyError 126, 246, 258

keys-Methode 129

Kilometerzähler 107

Klammer-Operator 89, 110, 140

Klammern

Argument in 25

Basisklasse in 215

geschweifte 125

leere 28, 94

Parameter in 30–31

Rangfolge ändern 18

sich entsprechende 4

Tupel in 139

Klasse 184

abgeleitete 215, 221

Basis 215

EinfacheTurtleWorld 230

Hand 215

Kaenguru 206

Karte 210

Punkt 177, 199, 267

Rechteck 180, 267

Stapel 213

Zeit 187

Klassenattribut 210, 220

Klassendefinition 177

Klassendiagramm 217, 221, 263, 269–270

Klassenobjekt 178, 184, 268

Koch-Kurve 64

Kodierung 209, 220

Kommentar 19, 22

Kommutativität 19, 201

kompilieren 9

Komposition 27, 31, 213

Komposition, Funktionskomposition 69

Konkatenation 19, 22, 31, 91, 93, 117

Liste 112, 119, 123

Konsistenzprüfung 136, 191

konstante Laufzeit 260

Konvertierung

Typ 25

Koordinaten

Canvas 228, 235

Pixel 235

Koordinatensequenz 228

Kopie

flache 183

Slice 92, 112

tiefe 183

zur Vermeidung von Aliasing 121

Kreisfunktion 44

Kreuzungspunkt 253

Kreuzworträtsel 101

kumulative Summe 115

L

Label-Widget 226

Laufgeschwindigkeit 12, 23, 193

Laufzeitfehler 4, 20, 59, 61, 241, 245

leere Liste 109

Leerraum 35, 61

Leerstring 99, 117

Leitkoeffizient 253

Leitterm 253

len-Funktion 37, 90, 126

lineare Suche 257

lineares Wachstum 253

LineareMap 258

Linux 5

Lipogramm 102

list

Funktion 116

Liste 109, 116, 121, 147

Abstraktion 115

als Argument 119

Element 110

Index 111

Konkatenation 112, 119, 123

Kopie 112

leere 109

Methoden 113

mit Objekten 213

mit Tupeln 143

Mitgliedschaft 111

Operationen 112

Slice 112

Traversierung 111, 122

verschachtelt 109, 111

Wiederholung 112

Listen-Methoden 255

Listenindex 266

log-Funktion 26

logarithmisches Wachstum 254

Logarithmus 163

logischer Operator 53–54

lokale Variable 31, 36

Long Integer 135

löschen, Listenelemente 115

ls (Unix-Befehl) 172

Lumpy 263–264

M

Mann, Thomas 154

Map-Muster 114, 122

Mapping 110, 122, 158

Markov-Analyse 157

Mash-up 159

mathematische Funktionen 26

Matplotlib 163

max-Funktion 141–142

McCloskey, Robert 91

MD5 172

MD5-Algorithmus 173

md5sum 173

Mehrdeutigkeit 7

mehrfache Zuweisung 79, 86, 134

mehrzeiliger String 49, 242

Memo 132, 137

Menge, Mitgliedschaft 126

MenuButton-Widget 233

Metapher, Methodenaufruf 197

Metathese 150

Method Resolution Order 219

Methode 94, 99, 195, 205

__cmp__ 212

__str__ 199, 213

add 200

append 113, 119, 213–214

close 166, 170, 172

config 227

count 95

extend 113

get 128

init 199, 210, 213, 215

items 143

join 117, 213

keys 129

mro 219

ohne Rückgabewert 113

pop 115, 214

radd 202

read 172

readline 101, 172

remove 115

replace 151

setdefault 132

sort 113, 120, 145, 215

split 116, 141

strip 102, 151

translate 151

update 144

values 126

Methode, append 123

Methode, gebundene 231

Methoden

String- 95

Methoden ohne Rückgabewert 113

Methoden, Liste 113

Methodenaufruf 94

Methodensyntax 197

Meyers, Chris XVI

min-Funktion 141–142

Mitgliedschaft

binäre Suche 124

Bisektion, Suche mit 124

Dictionary 126

Liste 111

Menge 126

Moby Project 101

Modell, mentales 248

modifizierende Funktion 189, 193

Modul 26, 36

anydbm 170

bisect 124, 257

copy 182

datetime 194

Gui 225

HTMLParser 240

Image 239

os 167

pickle 165, 171

pprint 136

profile 160

random 123, 146, 152, 214

reload 174, 243

shelve 171

string 151

structshape 147

time 124

urllib 176, 240

visual 206

vpython 206

World 184

Module schreiben 173

Modulobjekt 26, 37, 173

Modulus-Operator 53, 62

MP3 173

mro-Methode 219

Muster

Austausch 140

Decorate-Sort-Undecorate 146

DSU 146, 154

Filter 114, 122

Map 114, 122

Reduktion 114, 122

Suche 93, 99, 103, 129

Wächter 74, 76, 97

N

Nachbedingung 49–50, 75, 219

NameError 32, 245

natürliche Sprache 6, 11

negativer Index 90

Newton-Verfahren 83

niedere Programmiersprache 1, 9

None, spezieller Wert 34, 66, 76, 113, 115

not-Operator 54

O

O()-Notation, Landausche 253

Obama, Barack 251

Oberbegriff-Beziehung 221, 271

Objekt 92, 98, 117–118, 122, 177

ausgeben 196

Callable- 233

Canvas- 185

Datei- 101, 107

eingebettetes 180, 184, 206

Event- 234

Funktions- 28, 37, 268

Klassen- 178, 184, 268

kopieren 182

Modul- 173

Veränderbarkeit 181

Objektcode 2, 10

Objektdiagramm 178, 180, 183–184, 187, 211, 263, 266

Objekte kopieren 182

objektorientierte Programmiersprache 205

objektorientierte Programmierung 195, 205, 215

objektorientiertes Design 204

Oktalzahlen 15

Olin College XIV

open-Funktion 101–102, 165, 169–170

Operand 16, 22

Operator 21

Aktualisierung 113

and 54

bitweiser 16

Boolescher 95

del 115

Format- 166, 175, 246

in 95, 111, 126

is 117, 182

Klammer 89, 110, 140

logischer 53–54

Modulus 53, 62

not 54

or 54

relationaler 54, 212

Slice 91, 99, 112, 120, 140

String- 19

Überladung 205

Operator, arithmetischer 16

Operator-Überladung 200, 212

Option 226, 237

optionale Parameter 155, 199

optionales Argument 95, 116, 129

or-Operator 54

Ordner 167

os-Modul 167

other (Parametername) 198

OverflowError 61

P

Packing von Widgets 230, 238

Paket 41

Palindrom 77, 99, 105, 107

Parameter 30, 32, 36, 119

optionale 155, 199

other 198

sammeln 141

self 197

parsen 6, 11

pass-Anweisung 55

pdb (Python Debugger) 246

Persistenz 165, 175

Pfad 167, 175

absoluter 167

relativer 167

pflegeleichter Code 204

Pi 27, 87

pickle-Modul 165, 171

pickling 171

pie 51

PIL (Python Imaging Library) 239

Pipe 172

Pixelkoordinaten 235

Plausibilitätsprüfung 136

Poesie 7

Poker 209, 221

Polygonfunktion 44

Polymorphismus 203, 205, 218

pop-Methode 115, 214

popen-Funktion 172

Portabilität 1

Portierbarkeit 9

pprint-Modul 136

Präfix 158

praktische Algorithmenanalyse 254

print-Anweisung 8, 11, 200, 246

print-Funktion 8

Problemerkennung 104, 106–107

Problemlösung 1, 9

profile-Modul 160

Programm 3, 10

Programm hängt 243

Programmablauf 30, 37, 73, 75, 81, 218, 236, 245

Programme testen 106

Programmiersprache 1

Project Gutenberg 151

Prosa 7

Prototyp und Patch 188, 190, 193

Pseudozufallszahlen 152, 162

Punkt vor Strich 18

Punkt, mathematischer 177

Punkt-Klasse 177, 199, 267

Punktschreibweise 26, 35, 37, 94, 178, 196, 211

Python 3 8, 16, 60, 135, 142

Python Debugger (pdb) 246

Python Imaging Library (PIL) 239

Q

quadratisches Wachstum 253

Quadratwurzel 83

Quellcode 2, 10

R

radd-Methode 202

Radiant 26

Radixsort 251

Rahmen 58

raise-Anweisung 129, 192

Ramanujan, Srinivasa 87

randint-Funktion 123, 153

random-Funktion 146, 152

random-Modul 123, 146, 152, 214

Rang 209

Rangfolge 22, 248

Rangfolge von Operatoren 18, 21

Rangordnung 18

Raster 38

Rätsel 107, 150

raw_input-Funktion 60

read-Methode 172

readline-Methode 101, 172

Rechner 12, 23

Rechnermodell 252

Rechteck-Klasse 180, 267

Reduktion 114

Reduktionsmuster 122

Redundanz 7

reduzierbares Wort 150

Refactoring 47–48, 50, 220

Referenz 118–119, 122

Aliasing 118

Regeln für die Rangfolge 22

Rehashing 260

Reihenfolge von Operationen 248

reine Funktion 188, 193

reiner Text 101, 151, 240

Rekursion 57, 62, 70, 72, 265

Basisfall 58

endlose 59, 73, 244

rekursive Definition 71, 150

relationaler Operator 54, 212

relativer Pfad 167, 175

reload-Funktion 174, 243

remove-Methode 115

replace-Methode 151

repr-Funktion 174

Repräsentation 177, 179, 209

return-Anweisung 58, 65, 249

reversed-Funktion 147

Rot-Schwarz-Baum 258

Rotation

Buchstaben 100, 138

RSA-Algorithmus 135

Rückgabewert 25, 36, 65, 180

Tupel 141

RuntimeError 59, 73

S

Sammeln von Parametern 141

Sammlung 148

Satz des Pythagoras 66

Scaffolding 68, 76, 136

Schildkrötenschreibmaschine 52

Schleife 43, 50, 81, 143

Bedingung 244

endlose 81, 225, 244

Event- 225

for 43, 90, 111

Traversierung 90

verschachtelte 213

while 80

Schleifen

mit Dictionaries 128

mit Indizes 104, 111

und Strings 93

Schleifen und Zähler 93

schlimmster Bug 205

überhaupt 239

Schlüssel 125, 137

Schlüssel/Wert-Paar 125, 136, 143

Schlüsselwort 15, 21, 242

def 28

elif 56

else 55

Schlüsselwortargument 46, 50, 146, 226, 237

Schmidt, Eric 251

Schnittstelle 46, 49–50, 204, 219

Schreibmaschine, mit Turtle 52

Schrittgröße 99

Scrabble 149

self (Parametername) 197

Semantik 5, 10, 196

semantischer Fehler 5, 10, 14, 20, 97, 241, 247

Sequenz 98, 116, 139, 147

Koordinaten 228

setdefault-Methode 132

Sexagesimalsystem 191

Shell 172

shelve-Modul 171

shuffle-Funktion 214

sichere Sprache 4

sin-Funktion 26

Skript 3, 10

Skriptmodus 2, 10, 17, 33

Slice 99

aktualisieren 112

Kopie 92, 112

Liste 112

String 91

Tupel 140

Slice-Operator 91, 99, 112, 120, 140

Sonderfall 106–107, 190

sort-Methode 113, 120, 145, 215

sorted-Funktion 147

Sortierung 256

Sortierverfahren 256

spezieller Wert

False 54

None 34, 66, 76, 113, 115

True 54

Spielkarten, angloamerikanische 209

Spirale 52

split-Methode 116, 141

Sprache

formale 6

höhere 1

natürliche 6

niedere 1

Programmierung 1

sicher 4

Turing-Vollständigkeit 70

Sprichwörtlichkeit 7

sqrt 68

sqrt-Funktion 27

stabile Sortierverfahren 256

Standardwert 155, 162, 199

veränderbare Objekte vermeiden 205

Stapel, Spielkarten 213

Stapel-Klasse 213, 271

Stapeldiagramm 32, 37, 50, 58, 72, 76, 119, 263, 265

__str__-Methode 199, 213

str-Funktion 26

Streuung 142, 149

String 13, 21, 116, 147

Akkumulator 213

dreifache Anführungszeichen 49

leerer 117

mehrzeiliger 49, 242

Methoden 94

Operationen 19

Slice 91

unveränderbar 92

Vergleich 96

String-Konkatenation 255

String-Methoden 95, 255

String-Modul 151

String-Repräsentation 174, 199

strip-Methode 102, 151

structshape, Modul 147

Struktur 6

Strukturfehler 147

Subjekt 197, 205, 231

Subklasse 215

Subtraktion

Dictionary 156

Ergänzungsverfahren 84, 192

Suche 129, 256

Suche, binäre 124

Suche, Bisektion 124

Suche, Dictionary 129, 137

suche-Funktion 93

Suchmuster 93, 99, 103

Suffix 158

sum-Funktion 142

Superklasse 215

SVG 240

Swampy 41, 184, 223, 225, 264

Syntax 4, 10, 196, 242

Syntaxfehler 4, 10, 20, 27, 241

T

Tastatureingaben 59

Teil-Ganzes-Beziehung 217, 221, 270

Teilbarkeit 53

temporäre Variable 65, 76, 248

Testen

die Antwort kennen 67

Freiheit von Bugs 106

inkrementelle Entwicklung 66

interaktiver Modus 3

ist schwierig 106

minimaler Testfall 247

Vertrauensvorschuss 72

Testfall, minimaler 247

Text

reiner 101, 151, 240

Zufalls- 158

Text-Widget 229

Textdatei 175

tiefe Kopie 183–184

time, Modul 124

Tippfehler 161

Tkinter 225

Token 6, 11

Traceback 33, 37, 59–60, 129, 245

translate-Methode 151

Traversierung 90, 93, 96, 99, 103–104, 114, 122, 127–128, 143, 146, 154

Dictionary 144, 203

Liste 111

Trennzeichen 116, 122

trigonometrische Funktion 26

True, spezieller Wert 54

try-Anweisung 169

Tschechische Republik, Nationalflagge 185

Tupel 139, 141, 147–148

als Schlüssel in Dictionary 144, 159

in Klammern 144

Methoden 255

mit nur einem Element 139

Slice 140

Vergleich 145, 212

Zuweisung 140–141, 143, 148

tuple-Funktion 139

Turing, Alan 70

Turing-Vollständigkeit 70

Turing: vollständige Sprache 70

TurtleWorld 41, 63, 223

Typ 13, 21

benutzerdefinierter 177, 187

bool 54

dict 125

file 165

Liste 109

long 135

tuple 139

type

float 13

int 13

str 13

type-Funktion 183

TypeError 89, 92, 131, 140, 142, 167, 198, 245

Typkonvertierung 25

Typprüfung 73

U

Überladung 205

überschreiben 155, 162, 199, 212, 215, 219

Übertrag, Addition mit 84, 189, 191

Übung, geheime 176

umgekehrtes Paar 124

UML 263, 270

UnboundLocalError 134

Unified Modeling Language 263

Unix-Befehl

ls 172

Unterstrich 15

Unveränderbarkeit 92, 99, 119, 131, 139, 147

update-Methode 144

URL 176, 240

urllib-Modul 176, 240

V

ValueError 60, 129, 140

values-Methode 126

Variable 14, 21

aktualisieren 80

auf Modulebene 264

globale 133, 264

lokale 31

temporäre 65, 76, 248

Variablen auf Modulebene 264

Vektorgrafiken 240

Veneer 214, 221

veränderbares Objekt, als Standardwert 205

Veränderbarkeit 92, 110, 112, 118, 134, 139, 147, 181

Verbundanweisung 55, 62

Vererbung 215, 221

Vergleich

String 96

Tupel 145, 212

vergleiche-Funktion 66

vergleichsbasiertes Sortieren 256

Verkapselung 69, 84

verkettete Bedingung 55, 62

Verknüpfung 209

verschachtelte Bedingung 56, 62

verschachtelte Liste 109, 111, 121

Verschlüsselung 135, 209

verschränkte Wörter 124

Vertrauensvorschuss 72

Verzeichnis 167, 175

Arbeits- 167

durchlaufen 168

Verzweigung 55, 62

visual-Modul 206

Vorbedingung 49–50, 75, 123, 219

vorpal 70

vpython-Modul 206

W

Wachstumsordnung 252

Wächter-Muster 74, 76, 97

Wert 13, 21, 117–118, 137

Standard- 155

Tupel 141

while-Schleife 80

Whitespace 102, 174, 242

Widget 226, 237

Button 226

Canvas 227

Entry 229

Frame 230

Label 226

Menubutton 233

Text 229

Widget, Packing 230

Wiederholung 42

Liste 112

World-Modul 184

Worst Case 252

Wort, reduzierbares 150

Worthäufigkeit 162

Wortzähler 173

Wut 249

Z

Zahl, Zufalls- 152

Zähler 93, 99, 127, 134

Zähler und Schleifen 93

Zeichen 89

Zeichen für Zeilenumbruch 175

Zeilenumbruch 213

Zeilenvorschub 60, 79

Zeit-Klasse 187

zip-Funktion 142

Kombination mit dict 144

Zipfsches Gesetz 162

Zirkeldefinition 70

Zufallstext 158

Zufallszahl 152

Zugriff 110

zulässige Farben 185, 207

Zustandsdiagramm 14, 21, 79, 98, 110, 118, 131, 145, 178, 180, 183, 187, 211, 263–

264

Zuweisung 14, 21, 79, 109

Element 110

erweiterte 113, 122

item 92

mehrfache 86, 134

Tupel 140–141, 143, 148

Kolophon

Das Tier auf dem Einband von Programmieren lernen mit Python ist der

Karolinasittich (Conuropsis carolinensis). Diese Papageienart bewohnte die

südöstlichen USA und war damit die einzige kontinentale Papageienart mit einem

Lebensraum nördlich von Mexiko. Es gab eine Zeit, in der der Karolinasittich sogar

in New York und im Gebiet der Großen Seen lebte, auch wenn er in erster Linie von

Florida bis zu den Carolinas zu finden war.

Der Karolinasittich war vorwiegend grün mit einem gelben Kopf und einer

orangefarbenen Färbung, die mit der Geschlechtsreife auf Stirn und Wangen zu

sehen war. Der Sittich war durchschnittlich 31 bis 33 cm groß. Er hatte einen lauten,

harschen Ruf und plapperte beim Fressen unablässig. Der Vogel bewohnte hohle

Baumstämme in Sümpfen und an Flussufern. Der Karolinasittich war ein sehr

geselliges Tier und lebte in kleinen Gruppen, die sich beim Fressen zu Hunderten

versammelten.

Häufig waren die Futterplätze die Felder von Farmern, die die Vögel abschossen, um

sie von der Ernte fernzuhalten. Die soziale Ader der Vögel führte dazu, dass sie

ihren verwundeten Artgenossen zu Hilfe kamen, wodurch die Farmer ganze

Schwärme auf einmal abschießen konnten. Außerdem zierten ihre Federn die Hüte

der Damenwelt, und manche Papageien wurden als Haustiere gehalten. Die

Kombination dieser Faktoren führte dazu, dass der Karolinasittich Ende des 19.

Jahrhunderts selten geworden war. Auch eine Geflügelseuche kann zu den

schwindenden Zahlen beigetragen haben. In den Zwanzigerjahren des 20.

Jahrhunderts war die Art ausgestorben.

Heutzutage werden weltweit mehr als 700 ausgestopfte Karolinasittiche in Museen

aufbewahrt.

Die Umschlagabbildung stammt aus Johnson’s Natural History. Die Schriftart auf

dem Einband ist Adobe ITC Garamond. Die Schriftart für den Text ist Linotype

Birka. Die Schrift für die Überschriften heißt Adobe Myriad Condensed, und als

Schriftart für den Code haben wir TheSans Mono Condensed von LucasFont

verwendet.

Programmieren lernen mit Python

Allen B. Downey

Stefan Fröhlich

Impressum © 2012 O'Reilly Verlag GmbH & Co. KG

Die Informationen in diesem Buch wurden mit größter Sorgfalt erarbeitet. Dennoch können Fehler nicht vollständig ausgeschlossen werden. Verlag, Autoren und Übersetzer übernehmen keine juristische Verantwortung oder irgendeine Haftung für eventuell verbliebene Fehler und deren Folgen. Alle Warennamen werden ohne Gewährleistung der freien Verwendbarkeit benutzt und sind möglicherweise eingetragene Warenzeichen. Der Verlag richtet sich im Wesentlichen nach den Schreibweisen der Hersteller. Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Alle Rechte vorbehalten einschließlich der Vervielfältigung, Übersetzung, Mikroverfilmung sowie Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Originalausgabe erschien 2012 unter dem Titel Think Python bei O'Reilly Media, Inc.

Die Darstellung eines Karolinasittichs im Zusammenhang mit dem Thema Python ist ein Warenzeichen von O’Reilly Media, Inc.

Bibliografische Information Der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.de abrufbar.

Satz: Reemers Publishing Services GmbH, Krefeld, www.reemers.de Druck: Druckerei Kösel, Krugzell, www.koeselbuch.de

978-3-86899-946-4

Dieses Buch ist auf 100% chlorfrei gebleichtem Papier gedruckt.

O’Reilly Verlag GmbH & Co. KG

Balthasarstr. 81

Köln50670

kommentar@oreilly.de

Programmieren lernen mit Python

Inhaltsverzeichnis

Vorwort

Die seltsame Geschichte dieses Buchs

Typografische Konventionen

Nutzung der Codebeispiele

Danksagungen

Liste der Beitragenden

1. Programme entwickeln

Die Programmiersprache Python

Was ist ein Programm?

Was ist Debugging?

Syntaxfehler

Laufzeitfehler

Semantische Fehler

Experimentelles Debugging

Formale und natürliche Sprachen

Das erste Programm

Debugging

Glossar

Übungen

2. Variablen, Ausdrücke und Anweisungen

Werte und Typen

Variablen

Variablennamen und Schlüsselwörter

Operatoren und Operanden

Ausdrücke und Anweisungen

Interaktiver Modus und Skriptmodus

Rangfolge von Operatoren

String-Operationen

Kommentare

Debugging

Glossar

Übungen

3. Funktionen

Funktionsaufrufe

Funktionen zur Typkonvertierung

Mathematische Funktionen

Komposition

Neue Funktionen erstellen

Definition und Verwendung

Programmablauf

Parameter und Argumente

Variablen und Parameter sind lokal

Stapeldiagramme

Funktionen mit und ohne Rückgabewert

Warum Funktionen?

Import mit from

Debugging

Glossar

Übungen

4. Fallstudie: Gestaltung von Schnittstellen

TurtleWorld

Einfache Wiederholung

Übungen

Datenkapselung

Generalisierung

Gestaltung von Schnittstellen

Refactoring

Entwicklungsplan

Docstring

Debugging

Glossar

Übungen

5. Bedingungen und Rekursion

Modulus-Operator

Boolesche Ausdrücke

Logische Operatoren

Bedingte Ausführung

Alternativer Programmablauf

Verkettete Bedingungen

Verschachtelte Bedingungen

Rekursion

Stapeldiagramme für rekursive Funktionen

Endlose Rekursion

Tastatureingaben

Debugging

Glossar

Übungen

6. Funktionen mit Rückgabewert

Rückgabewerte

Inkrementelle Entwicklung

Funktionskomposition

Boolesche Funktionen

Mehr Rekursion

Vertrauensvorschuss

Noch ein Beispiel

Typprüfung

Debugging

Glossar

Übungen

7. Iteration

Mehrfache Zuweisungen

Variablen aktualisieren

Die while-Anweisung

break

Quadratwurzeln

Algorithmen

Debugging

Glossar

Übungen

8. Strings

Ein String ist eine Folge

len

Traversierung mit einer Schleife

String-Teile

Strings sind unveränderbar

Suchen

Schleifen und Zähler

String-Methoden

Der in-Operator

String-Vergleich

Debugging

Glossar

Übungen

9. Fallstudie: Wortspiele

Wortlisten einlesen

Übungen

Suchen

Schleifen mit Indizes

Debugging

Glossar

Übungen

10. Listen

Eine Liste ist eine Sequenz

Listen können geändert werden

Listen durchlaufen

Operationen mit Listen

Listen-Slices

Methoden für Listen

Map, Filter und Reduktion

Elemente löschen

Listen und Strings

Objekte und Werte

Aliasing

Listen als Argument

Debugging

Glossar

Übungen

11. Dictionaries

Dictionary als Menge von Zählern

Schleifen und Dictionaries

Inverse Suche

Dictionaries und Listen

Memos

Globale Variablen

Long Integer

Debugging

Glossar

Übungen

12. Tupel

Tupel sind unveränderbar

Tupel-Zuweisung

Tupel als Rückgabewerte

Argument-Tupel mit variabler Länge

Listen und Tupel

Dictionaries und Tupel

Tupel vergleichen

Sequenzen mit Sequenzen

Debugging

Glossar

Übungen

13. Fallstudie: Wahl der richtigen Datenstruktur

Häufigkeitsanalyse für Wörter

Zufallszahlen

Worthistogramm

Die häufigsten Wörter

Optionale Parameter

Dictionary-Subtraktion

Zufallswörter

Markov-Analyse

Datenstrukturen

Debugging

Glossar

Übungen

14. Dateien

Persistenz

Lesen und schreiben

Formatoperator

Dateinamen und Pfade

Ausnahmen abfangen

Datenbanken

Pickling

Pipes

Module schreiben

Debugging

Glossar

Übungen

15. Klassen und Objekte

Benutzerdefinierte Typen

Attribute

Rechtecke

Instanzen als Rückgabewerte

Objekte sind veränderbar

Kopieren

Debugging

Glossar

Übungen

16. Klassen und Funktionen

Zeit

Reine Funktionen

Modifizierende Funktionen

Prototyping kontra Planung

Debugging

Glossar

Übungen

17. Klassen und Methoden

Objektorientierte Programmierung

Objekte ausgeben

Noch ein Beispiel

Ein komplizierteres Beispiel

init-Methode

Methode __str__

Operator-Überladung

Dynamische Bindung

Polymorphismus

Debugging

Schnittstelle und Implementierung

Glossar

Übungen

18. Vererbung

Karten-Objekte

Klassenattribute

Karten vergleichen

Stapel

Kartenstapel ausgeben

Hinzufügen, entfernen, mischen und sortieren

Vererbung

Klassendiagramme

Debugging

Datenkapselung

Glossar

Übungen

19. Fallstudie: Tkinter

GUI

Buttons und Callbacks

Canvas-Widgets

Koordinatensequenzen

Weitere Widgets

Widgets packen

Menüs und Callables

Bindung

Debugging

Glossar

Übungen

A. Debugging

Syntaxfehler

Ich mache immer wieder Änderungen, sehe aber keinen Unterschied

Laufzeitfehler

Mein Programm macht absolut gar nichts

Mein Programm hängt

Endlosschleifen

Endlose Rekursion

Programmablauf

Ich erhalte eine Ausnahme, wenn ich das Programm ausführe

Ich habe so viele print-Anweisungen eingefügt, dass mich die Ausgaben

überfordern

Semantische Fehler

Mein Programm funktioniert nicht

Ich habe einen großen und haarigen Ausdruck, der nicht macht, was er soll

Eine Funktion oder Methode liefert nicht den erwarteten Rückgabewert

Ich komme wirklich nicht weiter und brauche Hilfe

Nein, ich brauche wirklich Hilfe

B. Algorithmenanalyse

Wachstumsordnung

Analyse grundlegender Python-Operationen

Analyse von Suchalgorithmen

Hashtabellen

C. Lumpy

Zustandsdiagramm

Stapeldiagramm

Objektdiagramme

Funktions- und Klassenobjekte

Klassendiagramme

Index

Kolophon

Copyright

[bookmark: outline]

Document Outline

	Programmieren lernen mit Python - Allen B. Downey - Stefan Fröhlich

	Inhaltsverzeichnis

	Vorwort

	Programmieren lernen mit Python Kapitel 1- 19

	Kapitel 1. Programme entwickeln

	Kapitel 2. Variablen, Ausdrücke und Anweisungen

	Kapitel 3. Funktionen

	Kapitel 4. Fallstudie: Gestaltung von Schnittstellen

	Kapitel 5. Bedingungen und Rekursion

	Kapitel 6. Funktionen mit Rückgabewert

	Kapitel 7. Iteration

	Kapitel 8. Strings

	Kapitel 9. Fallstudie: Wortspiele

	Kapitel 10. Listen

	Kapitel 11. Dictionaries

	Kapitel 12. Tupel

	Kapitel 13. Fallstudie: Wahl der richtigenDatenstruktur

	Kapitel 14. Dateien

	Kapitel 15. Klassen und Objekte

	Kapitel 16. Klassen und Funktionen

	Kapitel 17. Klassen und Methoden

	Kapitel 18. Vererbung

	Kapitel 19. Fallstudie: Tkinter

	Anhang A. Debugging

	Anhang B. Algorithmenanalyse

	Index

	Kolophon

	Impressum

Table of Contents

		Programmieren lernen mit Python - Allen B. Downey - Stefan Fröhlich

	Inhaltsverzeichnis

	Vorwort

	Programmieren lernen mit Python Kapitel 1- 19

		Kapitel 1. Programme entwickeln

		Kapitel 2. Variablen, Ausdrücke und Anweisungen

		Kapitel 3. Funktionen

		Kapitel 4. Fallstudie: Gestaltung von Schnittstellen

		Kapitel 5. Bedingungen und Rekursion

		Kapitel 6. Funktionen mit Rückgabewert

		Kapitel 7. Iteration

		Kapitel 8. Strings

		Kapitel 9. Fallstudie: Wortspiele

		Kapitel 10. Listen

		Kapitel 11. Dictionaries

		Kapitel 12. Tupel

		Kapitel 13. Fallstudie: Wahl der richtigenDatenstruktur

		Kapitel 14. Dateien

		Kapitel 15. Klassen und Objekte

		Kapitel 16. Klassen und Funktionen

		Kapitel 17. Klassen und Methoden

		Kapitel 18. Vererbung

		Kapitel 19. Fallstudie: Tkinter

	

	Anhang A. Debugging

	Anhang B. Algorithmenanalyse

	Index

	Kolophon

	Impressum

OEBPS/Images/image00295.jpeg

OEBPS/Images/image00294.jpeg
[

Quellcode:

‘Ausgabe

OEBPS/Images/image00293.jpeg

OEBPS/Images/image00292.jpeg
object |(]— Rechteck

_dict__

__weakref__

eite
ec)

hoe!

Punkt.

_dict__

weakref

OEBPS/Images/image00291.jpeg

OEBPS/Images/image00290.jpeg
[

Quellcode

Ausgabe

OEBPS/Images/image00289.jpeg

OEBPS/Images/image00288.jpeg
meldung —= "Und jetzt etwas ganz anderes’
n—s 17
pi —= 3.1415926535897932

OEBPS/Images/image00287.jpeg
Entfernung = V(x, — x))" + (v, - y))

OEBPS/Images/image00286.jpeg

OEBPS/Images/image00285.jpeg
<module>

loesche_ersten

buchstaben

list

0—a
1—=11

2—=7

OEBPS/Images/image00284.jpeg

OEBPS/Images/image00283.jpeg
a
G
f>1123]

OEBPS/Images/image00282.jpeg
Canvas drucken Beenden

Turtle erstellen Entfernen

Dateistarten | schneeflocke py

elt.clear()

tim = Turtle(velt)

Code starten

OEBPS/Images/image00281.jpeg
a—[1,2,3]
b—=[1,2,3]

OEBPS/Images/image00280.jpeg
Stapel

Karte

Hand

OEBPS/Images/image00324.jpeg
n+l ifm =10
A(m, n)={ A(m-1,1) ifm >0andn = 0
A(m -1, AGm, n-1)) ifm >0andn>0.

OEBPS/Images/image00279.jpeg
wort! —='gras’ wort2 —>'sarg’

i==0 i—3

OEBPS/Images/image00323.jpeg
Zeit

zeit —=| stunde —= 11
minute—= 59

'sekunde —= 30

OEBPS/Images/image00278.jpeg
type list
Karte —=| farb_namen ——={
list
rang_namen—{—=|
Karte
kartel —=| farb —= 1

rang—= 11

OEBPS/Images/image00322.jpeg
<module> ze.
Punkt O name__ “punke”
<xpe
Rechteck (| _name__ O *Rechteck"
unction
instanziieren O | name__ (-{— *instanziieren’

nstansijeren

obj O

[constructor o

OEBPS/Images/image00277.jpeg

OEBPS/Images/image00321.jpeg
<module>

fakultaet

fakultaet

fakultaet

fakultaet

n —=3 rekursion—= 2 ergebnis —= 6

n —= 2 rekursion—= 1 ergebnis —= 2

n —= 1 rekursion—= 1 ergebnis —= 1

n—»0

N AN AN A

Y

~

OEBPS/Images/image00276.jpeg
frucht—= ba‘n an‘e 2

index 0 1 2 3 4 5 6

OEBPS/Images/image00320.jpeg
box—={

breite —= 100.0
hoehe —= 200.0

x —= 0.0

100.0=— breite
200.0<=— hoehe

ecke

y—= 00

ecke

=—box2

OEBPS/Images/image00319.jpeg
<nodule> cchteck
box (- hoehe 200.0
ikt
ecke ¥ 0.0
x O—f—0.0
breite O-{/—100.0
cchteck
box2 O hoehe 200.0
ecke
breite (—{——100.0

OEBPS/Images/image00318.jpeg

OEBPS/Images/image00317.jpeg

OEBPS/Images/image00316.jpeg
Rechteck
box —=] breite —= 1000| pynq

hoehe —= 200.0

ecke ———— =1

x —= 0.0

y—= 00

OEBPS/Images/cover00264.jpeg
Einstieg in die Programmierung

. Allen B. Downey
O REILLY Ubersetzung von Stefan Froblich

OEBPS/Images/image00275.jpeg

OEBPS/Images/image00274.jpeg
(4K)!(1103 + 26390k)
(k!)*396%

OEBPS/Images/image00273.jpeg
obgect. and. Pokerand
tnie P
nae_eroan
nttorne aste
hinsutaegen xacte narten
mtachan 1abe1

stoho xaste

-
rang_oaman,

OEBPS/Images/image00272.jpeg

OEBPS/Images/image00271.jpeg
Bube —» 11
Dame —> 12
Konig —> 13

OEBPS/Images/image00315.jpeg
<nodule>

invers O 1 o ‘e
1 o—'i
2 of—'g
2 o Gp—rin
T o r—'8
hist O ‘ar 2
P O—2
rar g

OEBPS/Images/image00270.jpeg
SRV 4 = 10log 10(Pyipnat! Prausch)

OEBPS/Images/image00314.jpeg
<module>

countdown

countdown

countdown

countdown

OEBPS/Images/image00269.jpeg
peter -
.

OEBPS/Images/image00313.jpeg

OEBPS/Images/image00268.jpeg
a —= 'banane’

b —= ‘banane’

OEBPS/Images/image00312.jpeg
Punkt

leer —= x —= 3.0

y—=40

OEBPS/Images/image00267.jpeg
Pik
Herz
Karo
Kreuz

o~ w

OEBPS/Images/image00311.jpeg

OEBPS/Images/image00266.jpeg

OEBPS/Images/image00310.jpeg
<modulex

leer O

zahlen

17

kaesesorten

f—=as3

*Cheddar

{— 'Edamer’

{—— 'Gouda®

OEBPS/Images/image00309.jpeg

OEBPS/Images/image00308.jpeg

OEBPS/Images/image00307.jpeg
dict

(Cleese’, Joh') —=
(Chapman’, ‘Graham’) —=
(ldle’, Eric’) —=

(Gilliam, "Terry') —=
(Jones', "Terry) —=
(Pali’, "Michael’) —=

'08700 100 222"
’08700 100 222"
’08700 100 222"
'08700 100 222"
’08700 100 222
’08700 100 222’

OEBPS/Images/image00306.jpeg
dule>

countdown

n O

ountdown

n O

counts

n o

OEBPS/Images/image00305.jpeg
zeile1 —= 'Bing tiddle’
zeile2 — 'iddle bang.’

<module>

teill —= 'Bing tiddle "
zweimal_cat | teil2 —= 'tiddle bang."
cat —= 'Bing tiddle tiddle bang.’

print_zweimal | peter —= 'Bing tiddle tiddle bang.’

OEBPS/Images/image00304.jpeg
tuple

0 —= Cleese’

1 —= 'John'

OEBPS/Images/image00303.jpeg
<nodule>

pi O-{——3.14159265359

meldung (>—{—— 'Und jetzt etwas ganz anderes'

OEBPS/Images/image00302.jpeg

OEBPS/Images/image00301.jpeg
fibonacci(0) = 0
fibonacci(1) = 1
fibonacci(n) = fibonacci(r - 1) + fibonacci(- 2)

OEBPS/Images/image00300.jpeg
fibonacci

n—=4
fibonacei fibonacei
n—=3 n—2
fibonacci| | fibonacci| | fibonacei| | fibonacei
n—=2| |n 1| [n—=1| [n—0

fibonacci fibonacci
n—=1 n—=0

OEBPS/Images/image00299.jpeg

OEBPS/Images/image00298.jpeg

OEBPS/Images/image00297.jpeg
hist

dict dict list
a—=2 |invers 1 0—='e
=2 11—
= 1 2—=1g
e
B list
9 e
2 1=

OEBPS/Images/image00296.jpeg

OEBPS/Images/image00263.jpeg
kaesesorten —=

zahlen —=

leer —=

list
0 —= 'Cheddar’
1 —= 'Edamer’
2 —= 'Gouda’

list

0 —=17
1 aed
\5

list

OEBPS/Images/image00262.jpeg
Einstieg in die Programmierung

= V\\Q@@\\\?\\ /’-;’;} ‘s o 1
— =
== \.§‘ \‘ N \ \
S N\ RN

N
M=
=<

N
S

=
S =N

Allen B. Downey
Ubersetzung von Stefan Fréblich

O'REILLY"

