O’REILLY?

Einstieg in die Programmierung

\\\%g
X \
=T it

.
\\\” \k

Allen B. Downey

Ubersetzung von Stefan Froblich

Programmieren lernen mit Python
Allen B. Downey
Stefan Frohlich

Vorwort

Die seltsame Geschichte dieses Buchs

Im Januar 1999 bereitete ich mich als Dozent auf einen Einfiihrungskurs fiir Java-
Programmierung vor. Ich hatte den Kurs bereits dreimal gehalten, und so langsam
frustrierte er mich. Die Durchfallquote in den Kursen war zu hoch, und selbst bei
den erfolgreichen Studenten waren die Leistungen immer noch schwach.

Eines der Probleme bestand meiner Meinung nach in den Biichern: Sie waren zu
dick, enthielten zu viele unnétige Einzelheiten iiber Java und zu wenige
Informationen dariiber, wie man programmiert. Und sie litten alle unter dem
Falltiireffekt: Die Biicher fingen einfach an, steigerten sich allmédhlich, und
irgendwo um Kapitel 5 herum kam dann der Einbruch. Die Studenten erhielten zu
schnell zu viel neues Material und verbrachten den Rest des Semesters damit, die
Einzelteile zusammenzusetzen.

Zwei Wochen vor dem ersten Kurstag entschied ich mich, ein eigenes Buch zu
schreiben. Meine Ziele waren:

m So kurz wie moglich: Es ist einfacher, 10 statt 50 Seiten zu lesen.

= Bewusste Wortwahl: Ich habe versucht, den Fachjargon zu minimieren und jeden
Begriff bei der erstmaligen Verwendung zu definieren.

m Langsame Steigerung: Um Falltiiren zu vermeiden, habe ich die schwierigen
Themen in eine Reihe kleinerer Schritte aufgeteilt.

» Fokus auf der Programmierung, nicht der Programmiersprache: Ich habe den
kleinstmoglichen niitzlichen Ausschnitt aus Java erkldrt und den Rest
weggelassen.

Aus einer Laune heraus wahlte ich als Titel How to Think Like a Computer Scientist
(Wie Sie wie ein Informatiker denken).

Meine erste Fassung war holprig, aber funktionierte. Beim Lesen verstanden die
Studenten genug, damit ich mich in der Unterrichtszeit auf die schwierigen und
interessanten Themen konzentrieren konnte — und die Studenten Zeit zum Uben
hatten.

SchlieBlich verdffentlichte ich das Buch unter der GNU Free Documentation
License, nach der die Nutzer das Buch kopieren, dndern und verteilen diirfen.

Und dann kam der spannende Teil: Jeff Elkner, ein Highschool-Lehrer in Virginia,
nahm mein Buch und iibersetzte es in Python. Er schickte mir eine Ausgabe seiner
Ubertragung, und ich machte die ungewoéhnliche Erfahrung, Python zu lernen, indem
ich mein eigenes Buch las. Unter dem Namen »Green Tea Press« veroffentlichte ich
die erste Python-Version im Jahr 2001.

2003 begann ich dann, am Olin College zu unterrichten, und gab auch zum ersten

Mal Kurse in Python. Der Unterschied zu den Java-Kursen war offensichtlich: Die
Studenten hatten weniger zu kampfen, lernten mehr, arbeiteten an interessanteren
Projekten und hatten insgesamt eine Menge mehr SpaR.

In den vergangenen neun Jahren habe ich das Buch weiterentwickelt, Fehler
beseitigt, die Beispiele verbessert und zusatzliches Material eingefiigt, vor allem
neue Ubungen.

Das Ergebnis ist das vorliegende Buch mit dem etwas weniger bombastischen Titel
Programmieren lernen mit Python. Unter anderem hat sich Folgendes gedandert:

= Am Ende jedes Kapitels habe ich einen Abschnitt zum Thema Debugging
eingefiigt. Diese Abschnitte enthalten allgemeine Techniken zum Aufspiiren und
Vermeiden von Bugs sowie Warnungen vor entsprechenden Stolpersteinen in
Python.

= Ich habe zusitzliche Ubungen eingefiigt — von kurzen Verstidndnistests bis hin zu
grundlegenden Projekten. Und fiir die meisten habe ich Losungen geschrieben.

= AuBerdem gibt es Fallstudien — lingere Beispiele mit Ubungen, Lésungen und
Erldauterungen. Einige davon basieren auf Swampy, einer Reihe von Python-
Programmen, die ich fiir meine Kurse geschrieben habe. Swampy, Codebeispiele
und einige Losungen finden Sie unter http://thinkpython.com.

= Die Darstellung von Entwicklungspldnen und grundlegenden Entwurfsmustern
habe ich erweitert.

m Ich habe Anhdnge zum Thema Debugging, Analyse von Algorithmen und UML-
Diagrammen mit Lumpy eingefiigt.

Ich hoffe, dass Thnen die Arbeit mit diesem Buch Spall macht und es Ihnen dabei
hilft, zu lernen, wie Sie wie ein Informatiker programmieren und vielleicht auch ein
bisschen so denken.
— Allen B. Downey
Needham, MA

Typografische Konventionen
In diesem Buch werden die folgenden typografischen Konventionen verwendet:

Kursivschrift
Wird fiir URLs, E-Mail-Adressen, Dateinamen, Dateiendungen, Pfadnamen und
Verzeichnisse verwendet.

Fettschrift

Wird zum Hervorheben genutzt und um die erste Verwendung eines Begriffs zu
kennzeichnen.

http://thinkpython.com

Nichtproportionalschrift

Wird fiir Befehle oder anderen Text, den Sie wortwértlich eingeben miissen, sowie
fiir Befehlsausgaben verwendet.

Nutzung der Codebeispiele

Die Beispiele und die Losungen zu den Ubungen in diesem Buch stehen zum
Download zur Verfiigung. Sie finden sie auf unserer Verlagswebsite:
http://examples.oreilly.de/german_examples/thinkpythonger

Dieses Buch soll Thnen bei der Arbeit helfen. Es ist grundsatzlich erlaubt, den Code
dieses Buches in Thren Programmen und der Dokumentation zu verwenden. Hierfiir
ist es nicht notwendig, uns um Erlaubnis zu fragen, es sei denn, es handelt sich um
eine grofSere Menge Code. So ist es beim Schreiben eines Programms, das einige
Codeschnipsel dieses Buches verwendet, nicht nétig, sich mit uns in Verbindung zu
setzen; beim Verkauf oder Vertrieb einer CD-ROM mit Beispielen aus O’Reilly-
Biichern dagegen schon. Das Beantworten einer Frage durch Zitieren von
Beispielcode erfordert keine Erlaubnis. Verwenden Sie einen erheblichen Teil des
Beispielcodes aus diesem Buch in Ihrer Dokumentation, ist jedoch unsere Erlaubnis
notig.

Eine Quellenangabe ist zwar erwiinscht, aber nicht unbedingt notwendig. Hierzu
gehort in der Regel die Erwdhnung von Titel, Autor, Verlag und ISBN. Zum
Beispiel: »Programmierung lernen mit Python von Allen B. Downey (O’Reilly).
Copyright 2012 Allen B. Downey, 978-3-86899-946-4«.

Falls Sie nicht sicher sind, ob die Nutzung der Codebeispiele iiber die hier erteilte
Genehmigung hinausgeht, nehmen Sie bitte unter der Adresse
permissions@oreilly.com Kontakt mit uns auf.

Danksagungen

Herzlichen Dank an Jeff Elkner, der mein Java-Buch in Python iibersetzt, dieses
Projekt auf den Weg gebracht und mich mit dem vertraut gemacht hat, was sich als
meine Lieblingssprache entpuppen sollte.

Vielen Dank auch an Chris Meyers fiir mehrere Abschnitte in How to Think Like a
Computer Scientist.

Danke an die Free Software Foundation fiir die Entwicklung der GNU Free
Documentation License, die mir die Zusammenarbeit mit Jeff und Chris erleichtert
hat, sowie Creative Commons fiir die Lizenz, die ich jetzt nutze.

Vielen Dank aullerdem an die Lektoren bei Lulu, die an How to Think Like a
Computer Scientist gearbeitet haben.

http://examples.oreilly.de/german_examples/thinkpythonger
mailto:permissions@oreilly.com

Mein herzlicher Dank gilt aulerdem allen Studenten, die mit fritheren Versionen
dieses Buchs gearbeitet haben, sowie allen Beitragenden (siehe unten) fiir ihre
Korrekturen und Vorschlage.

Liste der Beitragenden

Uber 100 Leser mit scharfen Augen und scharfem Verstand haben mir in den
vergangenen Jahren Vorschldge und Korrekturen geschickt. Thre Beitrdge und ihr
Enthusiasmus fiir dieses Projekt waren eine grofSe Hilfe fiir mich. Falls Sie einen
Vorschlag oder eine Korrektur haben, schicken Sie bitte eine E-Mail an
feedback@thinkpython.com. Wenn ich aufgrund Ihrer Anregung eine Anderung
mache, nehme ich Sie in die Liste der Beitragenden auf (es sei denn, Sie mochten
das nicht).

Wenn Sie dabei einen Teil des entsprechenden fehlerhaften Satzes angeben,
erleichtert mir das die Suche ungemein. Die Seitenzahl des entsprechenden
Abschnitts ist natiirlich auch in Ordnung, macht es mir aber nicht ganz so leicht.
Vielen Dank!

Lloyd Hugh Allen hat eine Korrektur fiir Abschnitt 8.4 geschickt.
Yvon Boulianne hat mir eine Korrektur fiir einen semantischen Fehler in Kapitel 5 gesendet.

Fred Bremmer hat eine Korrektur fiir Abschnitt 2.1 geschickt.

Jonah Cohen hat die Perl-Skripten fiir die Konvertierung der LaTeX-Quelle dieses Buchs in

wunderschénem HTML geschrieben.

® Michael Conlon hat eine grammatikalische Korrektur fiir Kapitel 2 und stilistische Verbesserungen fiir
Kapitel 1 geschickt sowie die Diskussion iiber die technischen Aspekte von Interpretern gestartet.

B Benoit Girard hat die Korrektur fiir einen lustigen Fehler in Abschnitt 5.6 geschickt.

B Courtney Gleason und Katherine Smith haben horsebet.py geschrieben, das als Fallstudie in einer
fritheren Version des Buchs verwendet wurde. Das Programm finden Sie auf der Website.

B Tee Harr hat mehr Korrekturen geschickt, als wir hier abdrucken kénnen, und sollte eigentlich als einer
der wichtigsten Korrektoren des Texts genannt werden.

® James Kaylin ist ein Student, der mit dem Text arbeitet. Er hat zahlreiche Korrekturen geschickt.

® David Kershaw hat die fehlerhafte Funktion zweimal_cat in Abschnitt 3.10 korrigiert.

B FEddie Lam hat zahlreiche Korrekturen fiir die Kapitel 1, 2 und 3 eingeschickt. AuSerdem hat er das

Makefile so angepasst, dass es bei der ersten Ausfithrung einen Index erstellt, und uns so bei der

Einrichtung eines Versionsschemas geholfen.

® Man-Yong Lee hat eine Korrektur fiir den Beispielcode in Abschnitt 2.4 eingesendet.

B David Mayo hat darauf hingewiesen, dass das Wort »unbewusst« in Kapitel 1 in »unterbewusst« gedndert

werden muss.
B Chris McAloon hat mehrere Korrekturen fiir die Abschnitte 3.9 und 3.10 eingeschickt.
B Matthew J. Moelter macht schon seit Langem viele Korrekturen und Vorschlédge fiir dieses Buch.

® Simon Dicon Montford hat eine fehlende Funktionsdefinition und mehrere Tippfehler in Kapitel 3

aufgespiirt. AuRerdem hat er Fehler in der Funktion inkrement in Kapitel 13 gefunden.

John Ouzts hat die Definition von »Riickgabewert« in Kapitel 3 korrigiert.

Kevin Parks hat wertvolle Kommentare und Vorschldge dazu eingesendet, wie die Verteilung des Buchs
verbessert werden kann.

David Pool hat einen Tippfehler im Glossar in Kapitel 1 sowie ermunternde Worte geschickt.

Michael Schmitt hat eine Korrektur fiir das Kapitel {iber Dateien und Ausnahmen geschickt.

Paul Sleigh hat einen Fehler in Kapitel 7 und einen Bug in Jonah Cohens Perl-Skript gefunden, das aus
LaTeX HTML erzeugt.

Craig T. Snydal testet den Text in einem Kurs an der Drew University. Er hat mehrere wertvolle
Vorschldge und Korrekturen geliefert.

Ian Thomas und seine Studenten verwenden den Text in einem Programmierkurs. Sie sind die ersten, die
die Kapitel in der letzten Hélfte des Buchs testen, und haben zahlreiche Korrekturen und Vorschldge
gemacht.

Keith Verheyden hat eine Korrektur fiir Kapitel 3 eingeschickt.

Peter Winstanley hat uns auf einen langjahrigen Fehler in unserem Latein in Kapitel 3 hingewiesen.
Chris Wrobel hat Korrekturen am Code im Kapitel iiber die Dateiein- und -ausgabe und die
entsprechenden Ausnahmen vorgenommen.

Moshe Zadka hat unbezahlbare Beitrdge zu diesem Projekt geleistet. Zusétzlich zum ersten Entwurf fiir das
Kapitel iiber Dictionaries hat er uns in den Anfingen dieses Buchs kontinuierlich beraten.

Christoph Zwerschke hat mehrere Korrekturen und pddagogische Vorschldge eingeschickt und uns den
Unterschied zwischen »das Gleiche« und »dasselbe« erklért.

James Mayer hat uns eine ganze Menge an Rechtschreib- und typografischen Fehlern geschickt, darunter
zwei in der Liste der Beitragenden.

Hayden McAfee hat eine potenziell verwirrende Inkonsistenz zwischen zwei Beispielen entdeckt.

Angel Arnal ist Teil eines internationalen Teams von Ubersetzern, das an der spanischen Version des
Texts arbeitet. Er hat auBerdem mehrere Fehler in der englischen Version gefunden.

Tauhidul Hoque und Lex Berezhny haben die Illustrationen in Kapitel 1 angefertigt und viele andere
[lustrationen verbessert.

Dr. Michele Alzetta hat einen Fehler in Kapitel 8 aufgespiirt sowie einige interessante padagogische
Kommentare und Vorschldge zu Fibonacci und Old Maid eingebracht.

Andy Mitchell hat einen Tippfehler in Kapitel 1 und ein fehlerhaftes Beispiel in Kapitel 2 aufgesptirt.
Kalin Harvey hat eine Berichtigung in Kapitel 7 vorgeschlagen und einige Tippfehler entdeckt.
Christopher P. Smith hat mehrere Tippfehler gefunden und uns bei der Aktualisierung fiir das Buch auf
Python 2.2 geholfen.

David Hutchins hat einen Tippfehler im Vorwort entdeckt.

Gregor Lingl unterrichtet Python an einer Universitit in Wien. Er arbeitet an einer deutschen Ubersetzung
des Buchs und hat einige schlimme Fehler in Kapitel 5 aufgespiirt.

Julie Peters hat einen Tippfehler im Vorwort gefunden.

Florin Oprina hat eine Verbesserung fiir makeZeit, eine Korrektur fiir printZeit und einen hiibschen
Tippfehler gefunden.

D. J. Webre hat eine Klarstellung in Kapitel 3 vorgeschlagen.

Ken hat eine Handvoll Fehler in den Kapiteln 8, 9 und 11 gefunden.

Ivo Wever hat einen Tippfehler in Kapitel 5 gefunden und eine Klarstellung fiir Kapitel 3 vorgeschlagen.
Curtis Yanko hat eine Klarstellung fiir Kapitel 2 vorgeschlagen.

Ben Logan hat eine Reihe von Tippfehlern und Problemen bei der Ubersetzung des Buchs in HTML
eingeschickt.

Jason Armstrong hat das fehlende Wort in Kapitel 2 gefunden.

Louis Cordier hat eine Stelle in Kapitel 16 gefunden, an der der Code nicht mit dem Text iibereingestimmt
hat.

Brian Cain hat mehrere Klarstellungen fiir die Kapitel 2 und 3 vorgeschlagen.

Rob Black hat eine Menge Korrekturen eingeschickt, darunter einige Anderungen fiir Python 2.2.
Jean-Philippe Rey von der Ecole Centrale Paris hat eine Reihe von Patches eingeschickt, darunter einige
Aktualisierungen fiir Python 2.2 und andere scharfsinnige Verbesserungen.

Jason Mader von der George Washington University hat eine Reihe niitzlicher Vorschldge und
Korrekturen gemacht.

Jan Gundtofte-Bruun hat uns darauf hingewiesen, dass »ei Fehler« ein Fehler ist.

Abel David und Alexis Dinno haben uns daran erinnert, dass der Plural von »Matrix« ja »Matrizen« heiflt
und nicht »Matrixen«. Diesen Fehler gab es schon seit Jahren im Buch, und plétzlich haben zwei Leser
mit den gleichen Initialen den Fehler am selben Tag gemeldet. Seltsam, oder?

Charles Thayer hat uns ermutigt, die Semikola am Ende einiger Anweisungen zu entfernen und die
Verwendung von » Argument« und »Parameter« klarzustellen.

Roger Sperberg hat uns auf eine verdrehte Logik in Kapitel 3 hingewiesen.

Sam Bull hat uns auf einen verwirrenden Absatz in Kapitel 2 aufmerksam gemacht.

Andrew Cheung hat uns auf zwei Félle von »is not defined« hingewiesen.

C. Corey Capel hat das fehlende Wort im dritten Theorem des Debuggings sowie einen Tippfehler in
Kapitel 4 gefunden.

Alessandra hat uns dabei geholfen, eine Turtle-Verwirrung zu beseitigen.

Wim Champagne hat einen Dreher in einem Dictionary entdeckt.

Douglas Wright hat ein Problem bei der Division ohne Rest in bogen gefunden.

Jared Spindor hat einigen Ballast am Ende eines Satzes gefunden.

Lin Peiheng hat eine Reihe duRBerst hilfreicher Vorschldge eingeschickt.

Ray Hagtvedt hat zwei Fehler und einen nicht ganz so falschen Fehler eingeschickt.

Torsten Hiibsch hat uns auf eine Inkonsistenz in Swampy aufmerksam gemacht.

Inga Petuhhov hat ein Beispiel in Kapitel 14 korrigiert.

Arne Babenhauserheide hat mehrere hilfreiche Korrekturen eingeschickt.

Mark E. Casida hat ein Talent dafiir, Wortwiederholungen aufzusptiren.

Scott Tyler hat ein fehlendes A eingefiigt und eine ganze Menge Korrekturen eingeschickt.

Gordon Shephard hat mehrere Korrekturen eingeschickt, alle in separaten E-Mails.

Andrew Turner hat einen Fehler in Kapitel 8 gefunden.

Adam Hobart hat ein Problem bei der Division ohne Rest in bogen entdeckt.

Daryl Hammond und Sarah Zimmerman haben darauf hingewiesen, dass ich math.pi ins Spiel gebracht

habe. Und Zim hat einen Tippfehler gefunden.
George Sass hat einen Bug im Debugging-Abschnitt gefunden.
Brian Bingham hat Listing 11.10 vorgeschlagen.

Leah Engelbert-Fenton hat darauf hingewiesen, dass ich tuple entgegen meinem eigenen Rat als

Variablennamen verwendet habe, und hat eine Menge Tippfehler sowie ein »is not defined« gefunden.

Joe Funke hat einen Tippfehler gefunden.

Chao-chao Chen hat eine Inkonsistenz im Fibonacci-Beispiel entdeckt.
Jeff Paine kennt den Unterschied zwischen »space« und »spam«.
Lubos Pintes hat einen Tippfehler eingeschickt.

Gregg Lind und Abigail Heithoff haben Listing 14.4 vorgeschlagen.

Max Hailperin hat eine Reihe von Korrekturen und Vorschldgen eingeschickt. Max ist einer der Autoren

der auRergewohnlichen Concrete Abstractions: An Introduction to Computer Science Using Scheme, die

Sie vielleicht lesen mochten, wenn Sie mit diesem Buch fertig sind.

Chotipat Pornavalai hat einen Fehler in einer Fehlermeldung gefunden.

Stanislaw Antol hat eine Liste mit duerst hilfreichen Vorschldgen eingeschickt.

Eric Pashman hat eine Reihe von Korrekturen fiir die Kapitel 4 bis 11 eingeschickt.

Miguel Azevedo hat einige Tippfehler gefunden.

Jianhua Liu hat eine lange Liste mit Korrekturen geschickt.

Nick Konig hat ein fehlendes Wort gefunden.

Martin Zuther hat eine lange Liste mit Vorschldgen geschickt.

Adam Zimmerman hat eine Inkonsistenz in meiner Instanz von »instance« und viele andere Fehler
gefunden.

Ratnakar Tiwari hat eine FuBnote zur Erkldrung von degenerierten Dreiecken vorgeschlagen.
Anurag Goel hat eine andere Losung fiir ist_alphabetisch vorgeschlagen, zuséatzliche Korrekturen
eingeschickt und weilf, wie man Jane Austen buchstabiert.

Kelli Kratzer hat einen Tippfehler gefunden.

Mark Griffiths hat auf ein verwirrendes Beispiel in Kapitel 3 hingewiesen.

Roydan Ongie hat einen Fehler in meiner Newton-Methode gefunden.

Patryk Wolowiec hat mir bei einem Problem mit der HTML-Version geholfen.

Mark Chonofsky hat mich auf ein neues Schliisselwort in Python 3 hingewiesen.

Russell Coleman hat mir bei der Geometrie geholfen.

Wei Huang hat mehrere Tippfehler gefunden.

Karen Barber hat den éltesten Tippfehler im Buch gefunden.

Nam Nguyen hat einen Tippfehler gefunden und mich darauf hingewiesen, dass ich das Decorator-Muster

verwendet, aber nicht namentlich genannt habe.
Stéphane Morin hat mehrere Korrekturen und Vorschldge geschickt.

Paul Stoop hat einen Tippfehler in verwendet_nur korrigiert.

Eric Bronner hat auf eine Verwirrung in der Diskussion der Reihenfolge von Operationen hingewiesen.

Alexandros Gezerlis hat einen neuen Standard fiir die Anzahl und Qualitdt von eingesendeten
Vorschldgen gesetzt. Wir sind zutiefst dankbar dafiir!

Gray Thomas kann rechts und links unterscheiden.

Giovanni Escobar Sosa hat eine lange Liste mit Korrekturen und Vorschldgen eingeschickt.

Alix Etienne hat eine der URLs korrigiert.

Kuang He hat einen Tippfehler gefunden.

Daniel Neilson hat einen Fehler in der Reihenfolge der Operationen korrigiert.

Will McGinnis hat darauf hingewiesen, dass polylinie an zwei Stellen unterschiedlich definiert wurde.
Swarup Sahoo hat ein fehlendes Semikolon entdeckt.

Frank Hecker hat auf eine zu wenig spezifizierte Ubung sowie einige fehlerhaften Links hingewiesen.
Animesh B. hat mir dabei geholfen, ein verwirrendes Beispiel gerade zu riicken.

Martin Caspersen hat zwei Abrundungsfehler gefunden.

Gregor Ulm hat mehrere Korrekturen und Vorschldge geschickt.

Kapitel 1. Programme entwickeln

Das Ziel dieses Buchs besteht darin, [hnen beizubringen, wie Sie wie ein
Informatiker denken. Diese Denkweise kombiniert einige der besten Eigenschaften
aus Mathematik, Ingenieurswesen und Naturwissenschaft. Wie Mathematiker
verwenden Informatiker formale Sprachen, um Ideen symbolisch darzustellen
(genauer gesagt, Berechnungen). Ahnlich wie Ingenieure entwerfen Informatiker
Dinge, setzen Komponenten zu Systemen zusammen und suchen einen Kompromiss
aus mehreren Alternativen aus. Und wie Wissenschaftler beobachten sie komplexe
Systeme, entwickeln Hypothesen und testen Prognosen.

Die allerwichtigste Fahigkeit eines Informatikers besteht darin, Probleme zu lésen.
Mit Problemldsung ist die Fahigkeit gemeint, Probleme zu formulieren, kreativ iiber
Losungen nachzudenken und eine Losung klar und prazise auszudriicken. Dabei zeigt
sich, dass programmieren zu lernen eine ausgezeichnete Gelegenheit ist, Thre
Problemldsungsfahigkeiten zu trainieren. Deshalb heifSt dieses Kapitel auch
»Programme entwickeln«.

Auf einer Ebene werden Sie das Programmieren lernen — was an sich schon eine
niitzliche Fahigkeit ist. Auf einer anderen Ebene werden Sie die Programmierung als
Mittel zum Zweck kennenlernen. Und im weiteren Verlauf dieses Buchs wird dieser
Zweck immer klarer werden.

Die Programmiersprache Python

Die Programmiersprache, die Sie lernen werden, heifst »Python«. Python ist ein
Beispiel fiir eine héhere Programmiersprache. Andere hohere
Programmiersprachen, von denen Sie vielleicht bereits gehort haben, sind C, C++,
Perl und Java.

Niedere Programmiersprachen gibt es ebenfalls, die manchmal auch als
»Maschinensprachen« oder » Assembler-Sprachen« bezeichnet werden. Vereinfacht
ausgedriickt, konnen Computer nur Programme ausfiihren, die in niederen
Programmiersprachen geschrieben wurden. Entsprechend miissen Programme, die in
einer hoheren Programmiersprache geschrieben wurden, verarbeitet werden, bevor
Sie sie ausfiihren kénnen. Diese zusadtzliche Verarbeitung braucht ein bisschen Zeit,
was ein kleiner Nachteil hoherer Programmiersprachen ist.

Die Vorteile sind aber enorm. Zum einen ist es wesentlich einfacher, mit einer
hoheren Sprache zu programmieren. In einer héheren Sprache geschriebene
Programme lassen sich schneller schreiben, sind kiirzer und einfacher zu lesen und
sind mit groferer Wahrscheinlichkeit richtig. Aulerdem sind hohere
Programmiersprachen portierbar, d. h., Sie konnen mit nur wenigen oder gar keinen
Anderungen auf verschiedenen Arten von Computern ausgefiihrt werden. Mit

niederen Programmiersprachen geschriebene Programme kénnen nur auf eine Art
von Computern ausgefiihrt werden und miissen fiir andere Computertypen neu
geschrieben werden.

Aufgrund dieser Vorteile werden beinahe alle Programme in héheren
Programmiersprachen geschrieben. Niedere Programmiersprachen werden nur fiir
einige wenige spezielle Anwendungen verwendet.

Fiir die Verarbeitung von héheren Programmiersprachen in niedere
Programmiersprachen sind zwei Arten von Programmen erforderlich: Interpreter
oder Compiler. Ein Interpreter liest ein in einer h6heren Programmiersprache
geschriebenes Programm und fiihrt es aus — macht also das, was das Programm sagt.
Der Interpreter fithrt das Programm dabei Stiick fiir Stiick aus, liest immer wieder
Zeilen und fiihrt die entsprechenden Berechnungen durch. Abbildung 1.1 zeigt die
Ausfiihrung mit einem Interpreter.

ellcode '|: Interpreter
o J]—" L

Ausgabe

Abbildung 1.1 Der Interpreter fiihrt das Programm Stiick fiir Stiick aus, liest immer wieder Zeilen und fiihrt
die entsprechenden Berechnungen durch.

Ein Compiler liest das gesamte Programm ein und iibersetzt es vollstdndig, bevor es
ausgefiihrt werden kann. In diesem Zusammenhang bezeichnet man das Programm
in der hoheren Programmiersprache als Quellcode und das iibersetzte Programm als
Objektcode bzw. ausfiihrbare Datei. Ist ein Programm einmal kompiliert, kénnen
Sie es immer wieder ohne vorherige Ubersetzung ausfiihren.

Quellcode '|: Compiler | »| Objektcode .l: Executor ! >

Ausgabe

Abbildung 1.2 Ein Compiler iibersetzt Quellcode in Objektcode, der von einem Executor ausgefiihrt
werden kann.

Python wird als interpretierte Sprache bezeichnet, weil Python-Programme von
einem Interpreter ausgefiihrt werden. Es gibt zwei Moglichkeiten, den Interpreter zu
verwenden: im interaktiven Modus und im Skriptmodus. Im interaktiven Modus
tippen Sie Python-Programme ein, und der Interpreter zeigt das Ergebnis an:

>>> 1 + 1
2

>>> jst die Eingabeaufforderung, mit der der Interpreter Thnen signalisiert, dass er
bereit ist. Wenn Sie 1 + 1 eingeben, antwortet der Interpreter mit 2.

Alternativ konnen Sie Code in einer Datei speichern und mit dem Interpreter den
Inhalt der Datei ausfiihren, die man als Skript bezeichnet. Der Konvention
entsprechend enden die Namen von Python-Skripten mit py.

Um das Skript auszufiihren, miissen Sie dem Interpreter den Namen der Datei
nennen. Wenn Lhr Skript den Namen dinsdale.py hat und Sie in einem UNIX-
Terminalfenster arbeiten, geben Sie python dinsdale.py ein. In anderen
Entwicklungsumgebungen kann die Ausfiihrung von Skripten unterschiedlich
aussehen. Anleitungen fiir die jeweilige Umgebung finden Sie auf der Python-
Website unter http://python.org.

Der interaktive Modus ist eine bequeme Moglichkeit, kleinere Codeteile
auszuprobieren, weil Sie sie eintippen und sofort ausfiihren kénnen. Sobald es aber
um mehr als nur ein paar Zeilen geht, sollten Sie Thren Code als Skript abspeichern,
damit Sie ihn anpassen und auch kiinftig ausfiihren kénnen.

Was ist ein Programm?

Ein Programm ist eine Folge von Anweisungen, die bestimmen, wie eine
Berechnung durchgefiihrt wird. Eine solche Berechnung kann etwas Mathematisches
sein, wie etwa die Losung eines Gleichungssystems oder die Bestimmung der
Waurzeln eines Polynoms. Es kann sich aber auch um eine symbolische Berechnung
handeln, wenn Sie beispielsweise Text in einem Dokument suchen und ersetzen oder
ein Programm kompilieren (seltsam, oder?).

Die Details sehen natiirlich in jeder Programmiersprache anders aus, aber einige
grundlegende Anweisungen gibt es in so ziemlich jeder Sprache:

Eingabe:
Daten von der Tastatur, einer Datei oder einem Gerat abrufen.
Ausgabe:

Daten auf dem Bildschirm anzeigen oder an eine Datei bzw. ein Gerit senden.

Mathematische Anweisungen:

Grundlegende mathematische Berechnungen wie etwa Addition und
Multiplikation ausfiihren.

Bedingte Ausfiihrung:

Bestimmte Bedingungen priifen und den entsprechenden Code ausfiihren.
Wiederholung:

Aktionen wiederholt ausfiihren, meistens in einer bestimmten Variation.

Ob Sie es glauben oder nicht: Das ist auch schon so ziemlich alles. Jedes Programm,

http://python.org

das Sie jemals benutzt haben — unabhédngig davon, wie kompliziert es ist — besteht
aus solchen Anweisungen. Insofern kénnen Sie sich die Programmierung als den
Vorgang vorstellen, komplizierte Aufgaben in immer kleinere Teilaufgaben zu
zerlegen, bis diese einfach genug sind, um sie durch eine dieser grundlegenden
Anweisungen zu erledigen.

Das mag im Moment ein bisschen vage klingen, wir kommen aber auf dieses Thema
zurtiick, wenn wir iiber Algorithmen sprechen.

Was ist Debugging?

Beim Programmieren kénnen sich immer mal wieder Fehler einschleichen. Aus
irgendwelchen skurrilen Griinden werden solche Fehler als Bugs bezeichnet. Und der
Vorgang, sie aufzuspiiren, heifft Debugging.

In einem Programm finden Sie drei Arten von Fehlern: Syntaxfehler, Laufzeitfehler
und semantische Fehler. Es lohnt sich, zwischen diesen drei Arten zu unterscheiden,
um sie schneller aufzuspiiren.

Syntaxfehler

Python kann ein Programm nur ausfiihren, wenn die Syntax korrekt ist. Ansonsten
zeigt der Interpreter eine Fehlermeldung. Mit Syntax sind die Struktur eines
Programms und die Regeln fiir diese Struktur gemeint. Beispielsweise miissen
Klammern immer in passenden Paaren vorkommen. (1 + 2) ist korrekt, 8) ist
dagegen ein Syntaxfehler.

Englischsprachige Leser konnen die meisten Syntaxfehler tolerieren — deshalb
koénnen sie auch die Gedichte von E. E. Cummings lesen, ohne Fehlermeldungen
auszuspucken. Python ist da nicht so nachsichtig. Wenn es auch nur einen einzigen
Syntaxfehler irgendwo in Ihrem Programm gibt, zeigt Python eine Fehlermeldung.
Die Ausfiihrung wird abgebrochen, und Sie kénnen Ihr Programm nicht ausfiihren.
Waihrend der ersten paar Wochen Threr Karriere als Programmierer werden Sie
vermutlich eine Menge Zeit damit verbringen, Syntaxfehler aufzuspiiren. Mit
zunehmender Erfahrung werden Sie immer weniger Fehler machen und diese auch
schneller finden.

Laufzeitfehler

Die zweite Art von Fehlern heil$t Laufzeitfehler. Laufzeitfehler heillen so, weil sie
erst sichtbar werden, nachdem die Ausfiihrung des Programms begonnen hat. Solche
Fehler werden auch als Ausnahmen bezeichnet, weil etwas Ungewdhnliches (und
Unerfreuliches) passiert ist.

Laufzeitfehler sind in den einfachen Programmen, die Sie in den ersten paar

Kapiteln zu Gesicht bekommen, eher selten. Insofern kann es ein bisschen dauern,
bis Sie auf einen stoRen.

Semantische Fehler

Der dritte Fehlertyp ist der semantische Fehler. Wenn Thr Programm einen
semantischen Fehler enthélt, wird es insofern erfolgreich ausgefiihrt, als der
Computer keinerlei Fehlermeldungen zeigt. Allerdings macht das Programm nicht
das, was Sie mochten.

Das Problem dabei ist, dass Sie nicht das Programm geschrieben haben, das Sie
schreiben wollten. Die Bedeutung des Programms (seine Semantik) ist falsch. Es
kann ziemlich verzwickt werden, semantische Fehler aufzuspiiren: Sie miissen sich
von hinten nach vorne durcharbeiten, sich die Ausgabe des Programms ansehen und
so herauszufinden versuchen, was es eigentlich macht.

Experimentelles Debugging

Eine der wichtigsten Fahigkeiten, die Sie sich aneignen werden, ist das Debugging.
Auch wenn es frustrierend sein kann, so ist Debugging dennoch eine der intellektuell
anspruchsvollsten, forderndsten und interessantesten Beschédftigungen bei der
Programmierung.

In mancherlei Hinsicht ist Debugging wie Detektivarbeit. Sie erhalten Hinweise und
miissen daraus ableiten, welche Vorgdnge und Ereignisse zu den konkreten
Ergebnissen gefiihrt haben.

Debugging ist wie eine Experimentalwissenschaft. Sobald Sie eine Vorstellung
davon haben, was schieflduft, kénnen Sie Ihr Programm dndern und es noch mal
versuchen. Falls Thre Hypothese korrekt war, kénnen Sie das Ergebnis der Anderung
vorhersagen und sind einem funktionierenden Programm einen Schritt ndher
gekommen. War Thre Hypothese dagegen falsch, miissen Sie sich eine neue
iberlegen. Oder wie es Sherlock Holmes ausgedriickt hat: »Wenn man das
Unmogliche ausschliel$t, ist das Verbleibende die Wahrheit, egal wie
unwahrscheinlich es ist.« (A. Conan Doyle, Das Zeichen der Vier)

Fiir manche Menschen sind Programmieren und Debugging ein und dasselbe:
Programmieren ist der Prozess, ein Programm so lange schrittweise zu debuggen, bis
es das tut, was Sie mochten. Sie fangen also mit einem Programm an, das
irgendetwas tut. Dann nehmen Sie kleine Anderungen vor und debuggen diese
sofort, damit Sie immer ein funktionierendes Programm haben.

Linux ist beispielsweise ein Betriebssystem, das aus Tausenden von Zeilen Code
besteht. Seinen Anfang fand es aber als ganz einfaches Programm, mit dem Linus
Torvalds den 80386-Chip von Intel 80386 erkunden wollte. Larry Greenfield meint

dazu: »Eines von Linus’ ersten Projekten war ein Programm, das abwechselnd
AAAA und BBBB ausgeben konnte. Daraus entwickelte sich spater Linux.« (Larry
Greenfield, The Linux Users’ Guide).

In den folgenden Kapiteln erfahren Sie mehr zum Debugging und zu anderen
Programmiertechniken.

Formale und natirliche Sprachen

Natiirliche Sprachen sind jene Sprachen, die Menschen sprechen, wie etwa
Deutsch, Englisch, Spanisch und Franzosisch. Diese Sprachen wurden nicht von
Menschen entworfen (obwohl wir Menschen versuchen, eine gewisse Ordnung
reinzubringen), sondern haben sich natiirlich entwickelt.

Formale Sprachen sind dagegen Sprachen, die von Menschen fiir bestimmte
Anwendungen entworfen wurden. So ist beispielsweise die Notation der
Mathematiker eine formale Sprache, die besonders gut dafiir geeignet ist, die
Beziehungen zwischen Zahlen und Symbolen darzustellen. Chemiker verwenden
eine formale Sprache, um die chemische Struktur von Molekiilen abzubilden. Und
natiirlich das Wichtigste:

Programmiersprachen sind formale Sprachen, die entwickelt wurden, um Berechnungen
auszudriicken.

Formale Sprachen haben eher strenge Syntaxregeln. Beispielsweise ist 3 + 3 = 6 ein
syntaktisch korrekter mathematischer Ausdruck, 3+ = 3$6 dagegen nicht. H,O ist

eine syntaktisch korrekte chemische Formel, ,Zz dagegen nicht.

Es gibt zweierlei Syntaxregeln: Die einen regeln Tokens und die anderen die
Struktur. Tokens sind die grundlegenden Elemente einer Sprache, wie etwa Worter,
Zahlen oder chemische Elemente. Eines der Probleme an 3+ = 3$6 besteht darin,
dass $ kein zuldssiges Token in der Mathematik ist (zumindest nach meinem
Kenntnisstand nicht). Auf dhnliche Weise ist ,Zz als chemische Formel nicht

zuldssig, weil es kein Element mit der Abkiirzung Zz gibt.

Die zweite Art von Syntaxfehlern bezieht sich auf die Struktur einer Anweisung,
also auf die Art und Weise, in der Tokens arrangiert sind. Die Anweisung 3+ = 3 ist
nicht zuldssig, weil + und = zwar legale Tokens sind, aber nicht unmittelbar
hintereinanderstehen diirfen. Auf dhnliche Weise kommt in einer chemischen
Formel der Index nach dem Elementnamen, nicht davor.

Schreiben Sie einen wohlstrukturierten deutschen Satz, der ungiiltige Tokens enthalt.
Schreiben Sie anschlieSend einen anderen Satz mit zuldssigen Tokens, aber einer
ungiiltigen Struktur.

Listing 1.1

Wenn Sie einen deutschen Satz oder eine Anweisung in einer formalen Sprache
lesen, miissen Sie die Struktur dieses Satzes erfassen (obwohl das in einer
natiirlichen Sprache natiirlich unterbewusst geschieht). Diesen Vorgang nennt man
Parsen.

Horen Sie beispielsweise den Satz: »Der Groschen ist gefallen!«, erkennen Sie, dass
»Der Groschen« das Subjekt und »gefallen« das Pradikat ist. Sobald Sie den Satz
geparst haben, konnen Sie erfassen, was er bedeutet, bzw. die Semantik des Satzes
erkennen. Vorausgesetzt, Sie wissen, was ein Groschen ist und was es bedeutet,
wenn er fallt, verstehen Sie die Bedeutung des Satzes.

Obwohl formale und natiirliche Sprachen viele Merkmale gemeinsam haben —
Token, Struktur und Semantik —, gibt es jedoch auch einige Unterschiede:

Mehrdeutigkeit:

Natiirliche Sprachen sind voller Mehrdeutigkeiten, mit denen wir Menschen
anhand von Kontext und anderen Informationen gut umgehen kénnen. In formalen
Sprachen gibt es fast keine oder iiberhaupt keine Mehrdeutigkeiten. Insofern hat
jede Anweisung unabhdngig vom Kontext genau eine Bedeutung.

Redundanz:

Um die Mehrdeutigkeiten wieder wettzumachen und die Gefahr von
Missverstandnissen zu minimieren, gibt es eine Menge Redundanzen in
natilirlichen Sprachen. Dadurch sind sie oft sehr wortreich. Formale Sprachen
dagegen sind weniger redundant und pragnanter.

Sprichwortlichkeit:

Natiirliche Sprachen sind voller Idiome und Metaphern. Bei dem Ausspruch »Der
Groschen ist gefallen!« gibt es wahrscheinlich weder einen Groschen, noch fallt
etwas herunter (dieses Idiom bedeutet einfach, dass jemand nach langerer
Verwirrung endlich etwas verstanden hat). Formale Sprachen dagegen bedeuten
exakt das, was sie ausdriicken.

Menschen, die mit einer natiirlichen Sprache aufwachsen (also jeder), haben oft
Schwierigkeiten, sich an formale Sprachen zu gew6hnen. In gewisser Weise ist der
Unterschied zwischen einer formalen und einer natiirlichen Sprache wie der
Unterschied zwischen Poesie und Prosa:

Poesie:

Worter werden sowohl aufgrund ihres Klangs als auch ihrer Bedeutung eingesetzt,
und das Gedicht insgesamt zielt auf einen Effekt oder eine emotionale Reaktion
ab. Mehrdeutigkeiten sind nicht nur haufig, sondern oftmals beabsichtigt.

Prosa:

Die wortliche Bedeutung der Worter ist wichtiger, die Struktur tragt zusatzlich zur
Bedeutung bei. Prosa ist fiir eine Analyse zugédnglicher als Poesie, aber trotzdem
oft mehrdeutig.

Programme:

Die Bedeutung eines Computerprogramms ist eindeutig und wortwortlich. Sie
kann durch Analyse der Tokens und der Struktur vollstdndig erfasst werden.

Hier einige Vorschldge fiir das Lesen von Programmen (und anderen formalen
Sprachen): Erstens sollten Sie nicht vergessen, dass formale Sprachen wesentlich
dichter als natiirliche Sprachen sind und es daher langer dauert, sie zu lesen.
AuBerdem spielt die Struktur eine entscheidende Rolle. Deshalb ist es iiblicherweise
keine sonderlich gute Idee, von oben nach unten und links nach rechts zu lesen.
Stattdessen sollten Sie lernen, das Programm in Ihrem Kopf zu »parsen«, wobei Sie
die Tokens erkennen und die Struktur interpretieren. Und letztendlich kommt es auf
die Details an. Kleinere Rechtschreib- und Interpunktionsfehler, mit denen Sie in
natiirlichen Sprachen durchkommen, kénnen in einer formalen Sprache einen grofSen
Unterschied machen.

Das erste Programm

Traditionell heiflt das erste Programm, das Sie in einer neuen Sprache schreiben,
»Hallo, Welt!« — weil es einfach nur die Worte »Hallo, Welt!« ausgibt. In Python
sieht das folgendermalSen aus:

print 'Hallo, Welt!

Das ist ein Beispiel fiir eine print-Anweisung, die in Wahrheit natiirlich nichts
»druckt«. Sie zeigt den Wert einfach auf dem Bildschirm an. In diesem Fall lautet
das Ergebnis

Hallo, Welt!

Die Apostrophe in der Programmanweisung kennzeichnen den Anfang und das Ende
des anzuzeigenden Texts und erscheinen nicht im Ergebnis.

In Python 3 ist die Syntax fiir die Ausgabe geringfiigig anders:
print("Hallo, Welt!")

Die Klammern zeigen an, dass print eine Funktion ist. Wir werden auf Funktionen
im Kapitel 3 zu sprechen kommen.

Im Rest des Buchs werde ich die erste Version der print-Anweisung verwenden.
Sollten Sie mit Python 3 arbeiten, miissen Sie das entsprechend iibersetzen.
Ansonsten gibt es aber nur sehr wenige Unterschiede, tiber die Sie sich Gedanken
machen miissen.

Debugging

Es empfiehlt sich, beim Lesen dieses Buchs vor einem Computer zu sitzen. Dann
konnen Sie die Beispiele gleich ausprobieren. Die meisten Beispiele kénnen Sie im
interaktiven Modus ausfithren. Wenn Sie den Code dagegen in ein Skript schreiben,
ist es einfacher, die verschiedenen Variationen auszuprobieren.

Bei jedem Experiment mit einer neuen Funktion sollten Sie versuchen, Fehler zu
machen. Was passiert beispielsweise bei »Hallo, Welt!«, wenn Sie einen der
Apostrophe weglassen? Oder wenn Sie beide weglassen? Was passiert, wenn Sie
print falsch schreiben?

Durch solche Experimente kdnnen Sie sich besser an das erinnern, was Sie gerade
gelesen haben. Aullerdem hilft es beim Debugging, weil Sie sich mit der Bedeutung
der jeweiligen Fehlermeldung vertraut machen. Besser, Sie machen jetzt absichtlich
Fehler als spédter aus Versehen.

Beim Programmieren und speziell auch beim Debugging kénnen starke Emotionen
hochkommen. Wenn Sie mit einem besonders schwierigen Bug zu kdampfen haben,
kann es sein, dass Sie verdrgert, mutlos oder peinlich beriihrt sind.

Es gibt handfeste Beweise dafiir, dass Menschen so auf Computer reagieren, als
hétten sie es mit Menschen zu tun. Wenn der Computer korrekt arbeitet, sehen wir
ihn als Kollegen. Verhdlt er sich aber stur oder unhoflich, reagieren wir auf ihn
genau so wie auf sture oder unhéfliche Menschen (Reeves und Nass, The Media
Equation: How People Treat Computers, Television und New Media Like Real
People and Places).

Wenn Sie auf solche Reaktionen vorbereitet sind, konnen Sie vielleicht besser damit
umgehen. Eine mogliche Strategie besteht darin, sich den Computer als einen
Angestellten mit bestimmten Stdrken vorzustellen — wie etwa Geschwindigkeit und
Prazision — sowie bestimmten Schwéchen — beispielsweise mangelnde Empathie und
die Unfahigkeit, das grole Ganze zu erkennen.

Thre Aufgabe besteht darin, ein guter Manager zu sein: Méglichkeiten zu finden, die
Starken zu nutzen und die Schwachen abzumildern. Und Wege zu finden, Ihre
Gefiihle fiir die Losung des Problems zu nutzen, ohne sich von Ihren Reaktionen
davon abhalten zu lassen, effektiv zu arbeiten.

Debugging zu lernen, kann frustrierend sein. Es ist aber auch fiir viele anderen
Aktivitdten iiber das Programmieren hinaus eine wertvolle Fahigkeit. Am Ende jedes
Kapitels gibt es deshalb einen Debugging-Abschnitt wie diesen mit Gedanken zum
Thema Debugging. Ich hoffe, Sie konnen etwas damit anfangen!

Glossar

Probleml6sung:
Vorgang, ein Problem zu formulieren, eine Losung zu finden und diese
auszudriicken.

Hohere Programmiersprache:
Programmiersprache wie Python, die so entwickelt wurde, dass sie fiir Menschen
einfach zu lesen und zu schreiben ist.

Niedere Programmiersprache:
Programmiersprache, die dafiir entwickelt wurde, dass sie fiir einen Computer
einfach auszufiihren ist. Wird auch als »Maschinensprache« oder » Assembler-
Sprache« bezeichnet.

Portierbarkeit:
Eigenschaft eines Programms, dass es auf mehr als auf eine Art von Computer
ausgefiihrt werden kann.

Interpretieren:
Ausfiihrung eines Programms in einer hoheren Programmiersprache durch
zeilenweises Ubersetzen.

Kompilieren:

Vollstindige Ubersetzung eines in einer hoheren Programmiersprache
geschriebenen Programms in eine niedere Programmiersprache zur spateren
Ausfiihrung.

Quellcode:
Programm in einer hoheren Programmiersprache vor der Kompilierung.

Objektcode:
Ausgabe des Compilers nach der Ubersetzung des Programms.

Ausfiihrbares Programm:
Anderer Name fiir den ausfiihrbaren Objektcode.

Eingabeaufforderung:
Zeichen, die der Interpreter anzeigt, um darauf hinzuweisen, dass er fiir
Benutzereingaben bereit ist.

Skript:
In einer Datei gespeichertes Programm (iiblicherweise eines, das interpretiert
wird).

Interaktiver Modus:

Nutzung des Python-Interpreters, indem Sie Befehle und Ausdriicke in der
Eingabeaufforderung eingeben.

Skriptmodus:
Verwendung des Python-Interpreters, um die Anweisungen in einer Skriptdatei zu
lesen und auszufiihren.

Programm:
Folge von Anweisungen, die eine Berechnung beschreiben.

Algorithmus:
Allgemeiner Ansatz fiir die Losung einer Kategorie von Problemen.
Bug:
Fehler in einem Programm.
Debugging:
Vorgang, alle drei Arten von Programmfehlern (Bugs) aufzuspiiren und zu
beseitigen.
Syntax:
Struktur eines Programms.

Syntaxfehler:
Fehler in einem Programm, der es unmoglich macht, das Programm zu parsen
(und entsprechend zu interpretieren).

Ausnahme:
Ein Fehler, der wahrend der Ausfiihrung eines Programms auftritt.

Semantik:
Bedeutung eines Programms.

Semantischer Fehler:
Fehler in einem Programm, der dazu fiihrt, dass das Programm etwas anderes
macht, als der Programmierer erreichen wollte.

Natiirliche Sprache:
Jede gesprochene Sprache, die sich natiirlich entwickelt hat.

Formale Sprache:

Jede Sprache, die von Menschen fiir bestimmte Zwecke entwickelt wurde, wie
etwa fiir die Darstellung mathematischer Ideen oder das Schreiben von
Computerprogrammen. Alle Programmiersprachen sind formale Sprachen.

Token:

Grundlegendes Element der syntaktischen Struktur eines Programms, Aquivalent
eines Worts in einer natiirlichen Sprache.

Parsen:
Untersuchung und Analyse der syntaktischen Struktur eines Programms.

print-Anweisung:

Befehl, der den Python-Interpreter anweist, einen Wert auf dem Bildschirm
auszugeben.

Ubungen

Navigieren Sie mit einem Browser auf die offizielle Python-Website
http://python.org. Diese Seite enthdlt Informationen iiber Python und Links zu Seiten
iber Python und gibt Thnen die Moglichkeit, die Python-Dokumentation zu
durchsuchen. Diese Website gibt es derzeit nur auf Englisch. Eine deutsche
Ubersetzung der Python-Dokumentation von Guido van Rossum (dem Autor von
Python) finden Sie unter http://python.net/~gherman/publications/tut-de/online/tut/.

Listing 1.2

Starten Sie den Python-Interpreter und tippen Sie help() ein, um das Online-
Hilfedienstprogramm zu starten. Oder tippen Sie help('print') ein, um Informationen
zur print-Anweisung zu erhalten.

Wenn das nicht funktioniert, miissen Sie unter Umstdnden eine zusdtzliche Python-
Dokumentation installieren oder eine Umgebungsvariable festlegen. Die Details
hdngen vom jeweiligen Betriebssystem und der Python-Version ab.

Listing 1.3

Starten Sie den Python-Interpreter und verwenden Sie ihn als Rechner. Die Syntax
fiir mathematische Operationen in Python entspricht fast vollstandig der
standardmaRigen mathematischen Schreibweise. Die Symbole + und - stehen fiir
Addition und Subtraktion, wie Sie diese bereits kennen. Das Symbol fiir Division ist
/ und das Symbol fiir die Multiplikation *.

Wenn Sie 10 Kilometer in 43 Minuten und 30 Sekunden laufen, wie ist dann Ihre
Durchschnittszeit pro Kilometer? Wie hoch ist Ihre Geschwindigkeit in Meilen pro
Stunde? (Tipp: Eine Meile entspricht 1,61 Kilometern.)

Listing 1.4

http://python.org
http://python.net/~gherman/publications/tut-de/online/tut/

Kapitel 2. Variablen, Ausdriicke und Anweisungen

Werte und Typen

Ein Wert ist eines jener grundlegenden Dinge, mit denen ein Programm arbeitet —
wie etwa ein Buchstabe oder eine Zahl. Die Werte, denen wir bisher begegnet sind,
lauten 1, 2 und 'Hallo, Welt!'.

Diese Werte gehoren verschiedenen Typen an: 2 ist ein Integer (eine ganze Zahl),
und 'Hallo, Welt!" ist ein String, eine Folge von Zeichen. Sie (und der Interpreter)
erkennen Strings daran, dass sie in Apostrophe eingefasst werden.

Falls Sie sich nicht sicher sind, zu welchem Typ ein Wert gehort, kann Thnen der
Interpreter das verraten:

>>> type('Hallo, Welt!")

<type 'str'>

>>> type(17)

<type 'int'>
Es wird Sie nicht tiberraschen, dass Strings zum Typ str und Integer zum Typ int
gehoren. Dass Zahlen mit einen Dezimalpunkt zum Typ float gehoren, ist da schon
weniger liberraschend. Der Name dieses Typs kommt daher, dass Dezimalbriiche als
FlieBkommazahlen (engl. floating-point) dargestellt werden.

>>> type(3.2)

<type 'float'>
Was ist mit Werten wie '17' und '3.2'? Sie sehen aus wie Zahlen, stehen aber in
Apostrophen, genau wie Strings.

>>> type('17')

<type 'str'>

>>> type('3.2")
<type 'str'>

Es sind Strings.

Wenn Sie grole Zahlen eintippen, konnen Sie der Versuchung vielleicht nicht
widerstehen, einen Punkt als Tausendertrennzeichen sowie ein Komma fiir die
Dezimalstellen einzugeben, z. B. 1.000,00. In Python ist das zwar keine Zahl, aber
trotzdem zuldssig:

>>>1.000,00

(1.0, 0)
Das ist natiirlich etwas vollig anderes als das, was wir erwartet haben! Python
interpretiert 1.000,00 als kommaseparierte Folge von Zahlen. Dies ist also unser
erstes Beispiel fiir einen semantischen Fehler: Der Code wird ohne Fehlermeldung
ausgefiihrt, macht aber nicht das »Richtige«.

Variablen

Eine der leistungsfdahigsten Funktionen einer Programmiersprache ist die Fahigkeit,
mit Variablen zu arbeiten. Ein Variablenname ist dabei ein Name, der sich auf einen
Wert bezieht.

Durch die Zuweisung wird eine neue Variable erstellt, und ihr wird ein Wert
zugewiesen:

>>> meldung = 'Und jetzt etwas ganz anderes'

>>>n =17

>>> pi = 3.1415926535897932
In diesem Beispiel erfolgen drei Zuweisungen. In der ersten wird einer neuen
Variablen mit dem Namen meldung ein String zugewiesen. In der zweiten wird der
Integer 17 an n iibergeben. Und in der dritten wird der (ungefdhre) Wert von
— der

Variablen pi zugewiesen.

Eine gebrdauchliche Form, Variablen auf Papier darzustellen, besteht darin, den
Namen aufzuschreiben und mit einem Pfeil auf den Wert der Variablen zu zeigen.
Eine solche Darstellung bezeichnet man als Zustandsdiagramm, weil darin der
Zustand der jeweiligen Variablen dargestellt wird (quasi die »Gemiitsverfassung«
der Variablen). Abbildung 2.1 zeigt das Ergebnis des vorherigen Beispiels.

meldung —= 'Und jetzt etwas ganz anderes’
n—= 17
pi —= 3.1415926535897932

Abbildung 2.1 Zustandsdiagramm

Der Typ der Variablen richtet sich dabei nach dem Typ des Werts, auf den sie sich
bezieht.

>>> type(meldung)
<type 'str'>

>>> type(n)

<type 'int'>

>>> type(pi)

<type 'float'>

Wenn Sie einen Integer mit einer fiihrenden Null eingeben, erhalten Sie einen

merkwiirdigen Fehler:
>>> plz = 02492
A

SyntaxError: invalid token

Andere Zahlen scheinen zu funktionieren, aber die Ergebnisse sind eher seltsam:
>>> plz = 02132

>>> plZ

1114

Konnen Sie erkennen, was hier geschieht? Tipp: Geben Sie die Werte 01, 010, 0100
und 01000 ein.

Listing 2.1

Variablennamen und Schliisselworter

Ublicherweise wihlen Programmierer fiir ihre Variablen aussagekriftige Namen —
damit zu erkennen ist, wofiir die Variable verwendet wird.

Variablennamen konnen beliebig lang sein und diirfen sowohl Buchstaben als auch
Zahlen enthalten, miissen aber mit einem Buchstaben beginnen. Es ist auch zuléssig,
GrofRbuchstaben zu verwenden, allerdings ist es besser, Variablennamen mit einem
Kleinbuchstaben beginnen zu lassen (warum das so ist, werden Sie spater erfahren).

Der Unterstrich _ darf ebenfalls in Variablennamen vorkommen. Er wird héufig fiir
Namen verwendet, die aus mehreren Buchstaben bestehen, zum Beispiel
mein_name oder geschwindigkeit_einer_unbeladenen_schwalbe.

Wenn Sie einer Variablen einen nicht zuldssigen Namen geben, erhalten Sie einen
Syntaxfehler:

>>> 76posaunen = 'Grol3e Parade'

SyntaxError: invalid syntax

>>> mehr@ = 1000000

SyntaxError: invalid syntax

>>> else = 'Fortschrittliche Theoretische Zymologie'

SyntaxError: invalid syntax
76posaunen ist nicht zuldssig, weil der Name nicht mit einem Buchstaben beginnt.
mehr@ ist nicht zuléssig, weil das Zeichen @ fiir Variablennamen nicht zuldssig
ist. Aber was stimmt mit else nicht?

Wie Sie feststellen werden, ist else eines der reservierten Schliisselworter von
Python. Der Interpreter verwendet Schliisselworter, um die Struktur des Programms
zu erkennen. Deshalb diirfen Sie sie nicht als Variablennamen verwenden.

In Python 2 gibt es 31 Schliisselworter:

and del from not while
as elif global or with
assert else if pass yield
break except import print
class exec in raise
continue finally is return

def for lambda try

In Python 3 ist exec kein Schliisselwort mehr, dafiir aber nonlocal.

Vielleicht sollten Sie diese Liste immer zur Hand haben. Wenn der Interpreter sich
iber einen Threr Variablennamen beschwert und Sie partout nicht wissen, warum,
sehen Sie einfach auf der Liste nach.

Operatoren und Operanden

Operatoren sind spezielle Symbole, die Berechnungen darstellen, wie etwa
Addition und Multiplikation. Die Werte, auf die der Operator angewendet wird,
nennt man Operanden.

Die Operatoren +, -, *, / und ** stehen fiir Addition, Subtraktion, Multiplikation,
Division und Potenzen:

20+32 stunde-1 stunde*60+minute minute/60 5**2 (5+9)*(15-7)

In einigen anderen Sprachen wird * fiir den Exponenten verwendet, aber in Python
steht dieses Zeichen fiir den bitweisen Operator XOR. Ich werde in diesem Buch
nicht auf bitweise Operatoren eingehen, aber unter
http://wiki.python.org/moin/BitwiseOperators kénnen Sie alles dariiber nachlesen.

In Python 2 macht der Divisionsoperator unter Umstdnden nicht das, was Sie
erwarten:

>>> minute = 59

>>> minute/60

0
Der Wert von minute ist 59, und in der konventionellen Arithmetik ergibt 59
dividiert durch 60 den Wert 0,98333 — nicht 0. Der Grund fiir diese Diskrepanz liegt
darin, dass Python eine Division ohne Rest durchfiihrt. Wenn beide Operanden
ganze Zahlen sind, erhalten Sie als Ergebnis ebenfalls eine ganze Zahl. Die Stellen
nach dem Komma werden einfach abgeschnitten. In unserem Beispiel wird das
Ergebnis also auf null abgerundet.

In Python 3 ist das Ergebnis dieser Division eine FlieBkommazahl vom Typ float.
Fiir die Division ohne Rest kommt der neue Operator // zum Einsatz.

Wenn beide Operanden eine FlieBkommazahl sind, fiihrt Python eine
FlieBkommadivision durch, und das Ergebnis ist ein float:

>>> minute/60.0
0.98333333333333328

Ausdricke und Anweisungen

Ein Ausdruck kann eine Kombination aus Werten, Variablen und Operatoren sein.
Ein einzelner Wert stellt ebenso einen Ausdruck dar, genauso wie eine Variable.
Insofern sind alle folgenden Ausdriicke zuldssig (unter der Voraussetzung, dass der
Variablen X ein Wert zugewiesen wurde):

http://wiki.python.org/moin/BitwiseOperators

17

X

x+17
Eine Anweisung ist ein Codeteil, den der Python-Interpreter ausfiihren kann. Wir
kennen bisher zwei Arten von Anweisungen: print und Zuweisungen.

Technisch gesehen, ist ein Ausdruck ebenfalls eine Anweisung. Aber wahrscheinlich
ist es einfacher, sich die beiden als zwei verschiedene Dinge vorzustellen. Der
wichtigste Unterschied ist, dass ein Ausdruck einen Wert hat, eine Anweisung
dagegen nicht.

Interaktiver Modus und Skriptmodus

Einer der Vorziige bei der Arbeit mit einer interpretierten Sprache besteht darin,
dass Sie kleine Codeteile im interaktiven Modus testen konnen, bevor Sie sie in ein
Skript schreiben. Es gibt allerdings Unterschiede zwischen dem interaktiven Modus
und dem Skriptmodus, die teilweise verwirrend sein kénnen.

Wenn Sie Python beispielsweise als Rechner verwenden, kénnten Sie Folgendes
eingeben:

>>> meilen = 26.2

>>> meilen * 1.61

42.182
In der ersten Zeile wird meilen ein Wert zugewiesen, was aber keinen sichtbaren
Effekt hat. Die zweite Zeile ist ein Ausdruck, deshalb wertet der Interpreter ihn aus
und zeigt das Ergebnis an. Dabei finden wir heraus, dass ein Marathon ungefiahr 42
Kilometer lang ist.

Wenn Sie aber denselben Code in ein Skript eingeben und ausfiihren, erhalten Sie
tiberhaupt keine Ausgabe. Im Skriptmodus hat ein Ausdruck allein keinen sichtbaren
Effekt. Python wertet den Auszug aus, zeigt den Wert aber nicht an, es sei denn, Sie
weisen den Interpreter dazu an:

meilen = 26.2
print meilen * 1.61

Im ersten Moment kann dieses Verhalten verwirrend sein.

Ein Skript enthélt {iblicherweise eine Folge von Anweisungen. Wenn es mehr als
eine Anweisung gibt, erscheinen die Ergebnisse nacheinander in der Reihenfolge der
Anweisungen.

Das Skript

print 1
X=2
print x

erzeugt beispielsweise die folgende Ausgabe:

1
2

Fiir die Zuweisungsanweisung wird dabei nichts ausgegeben.

Tippen Sie die folgenden Anweisungen in den Python-Interpreter, um

herauszufinden, was sie machen:
5

x=5

X+ 1

Schreiben Sie nun dieselben Anweisungen in ein Skript und fiihren Sie es aus.
Welche Ausgabe erhalten Sie? Machen Sie anschlieend aus jedem Ausdruck eine
print-Anweisung und fiihren Sie das Skript erneut aus.

Listing 2.2

Rangfolge von Operatoren

Wenn in einem Ausdruck mehr als ein Operator vorkommt, richtet sich die
Reihenfolge der Auswertung nach der Rangordnung. Bei mathematischen
Operatoren folgt Python den mathematischen Konventionen. Fast jeder kennt die
Eselsbriicke »Punkt vor Strich«. Allerdings sind auch Klammern und Exponenten zu
berticksichtigen:

m Klammern haben den héchsten Rang. Dadurch kénnen Sie erzwingen, dass ein
Ausdruck in der gewiinschten Reihenfolge ausgewertet wird. Da Ausdriicke in
Klammern zuerst ausgewertet werden, ergibt 2 * (3-1) den Wert 4, und (1+1)**
(5-2) ergibt 8. AuRerdem ist ein Ausdruck mit Klammern einfacher lesbar, selbst
wenn sich dadurch das Ergebnis nicht dndert.

= Exponenten haben den nachsthéheren Rang, daher ergibt 2**1+1 den Wert 3 und
nicht 4. Und 3*1**3 ergibt 3, nicht 27.

m Multiplikation und Division haben denselben Rang, der wiederum héher ist als
der von Addition und Subtraktion (die ebenfalls denselben Rang haben).
Entsprechend ergibt 2*3-1 den Wert 5, nicht 4. Und 6+4/2 ergibt 8, nicht 5.

m Operatoren desselben Rangs werden von links nach rechts interpretiert (mit
Ausnahme von Exponenten). Im Ausdruck grad / 2 * pi wird also zuerst die
Division durchgefiihrt, anschliefend wird das Ergebnis mit pi multipliziert. Eine
Division durch 2

erreichen Sie entweder durch Klammern oder indem Sie grad / 2 / pi schreiben.

Ich verwende nicht allzu viel Energie darauf, mir die Regeln fiir die Rangfolge
anderer Operatoren zu merken. Wenn ich die Reihenfolge nicht am Ausdruck
erkennen kann, veranschauliche ich sie einfach durch entsprechende Klammern.

String-Operationen

Im Allgemeinen kénnen Sie keine mathematischen Operationen mit Strings
durchfiihren, selbst wenn diese wie Zahlen aussehen. Die folgenden Ausdriicke sind
daher nicht zuldssig:

'2'-"1" 'eier'/leicht’ 'drittel™'Ein Zauberspruch'

Der Operator + funktioniert mit Strings, macht aber nicht das, was Sie sich vielleicht
vorstellen: Sie fiihren damit eine Konkatenation durch, d. h., die Strings werden
aneinander angehdngt. Ein Beispiel:

erster = 'donner’

zweiter = 'gurgler’
print erster + zweiter

Die Ausgabe dieses Programms lautet donnergurgler.

Der Operator * funktioniert ebenfalls mit Strings: Er wiederholt den angegebenen
String. So ergibt 'Spam'*3 beispielsweise 'SpamSpamSpam'. Wenn einer der
Operanden ein String ist, muss der andere ein Integer sein.

Diese Verwendung von + und * ergibt auch in der Analogie zur Addition und
Multiplikation Sinn. Genau wie 4*3 dasselbe ist wie 4+4+4, erwarten wir, dass
'Spam™3 dasselbe ist wie 'Spam'+'Spam'+'Spam'. Und das ist es auch.
Andererseits gibt es einen signifikanten Unterschied zwischen der Konkatenation
bzw. Wiederholung von Strings einerseits und Addition und Multiplikation
andererseits. Fillt Thnen eine Eigenschaft der Addition ein, die die Konkatenation
von Strings nicht hat?

Kommentare

Wenn Programme gréfler und komplizierter werden, sind sie oft auch
uniibersichtlich. Formale Sprachen haben eine hohe Dichte, daher ist es oft
schwierig, einem Codeteil anzusehen, was er macht und warum.

Aus diesem Grund ist es am besten, Ihre Programme mit Notizen zu versehen, die in
einer natiirlichen Sprache erkldren, was das Programm macht. Solche Notizen nennt
man Kommentare. Sie beginnen mit dem Symbol #:

Berechnen, wie viel Prozent der aktuellen Stunde abgelaufen sind
prozentsatz = (minute * 100) / 60

In diesem Fall steht der Kommentar in einer eigenen Zeile. Sie konnen aber auch
Kommentare ans Zeilenende schreiben:

prozentsatz = (minute * 100) / 60 # Prozentsatz der aktuellen Stunde

Alles vom # bis zum Zeilenende wird ignoriert und hat keine Auswirkung auf das
Programm.

Kommentare sind besonders dann niitzlich, wenn Sie damit Details zum Code
erldutern, die nicht offensichtlich sind. Normalerweise kénnen Sie davon ausgehen,
dass der Leser erkennt, was der Code macht. Es ist wesentlich sinnvoller, zu
erkldren, warum Sie das entsprechend gel®st haben.

Dieser Kommentar ist redundant und daher sinnlos:

v=5 #vden Wert 5 zuneisen

Der folgende Kommentar enthélt dagegen niitzliche Informationen, die nicht im
Code stehen:

v=5 # Geschwindigkeit in Metern pro Sekunde

Aussagekriftige Variablennamen kénnen den Bedarf an Kommentaren minimieren.
Durch lange Namen sind komplizierte Ausdriicke aber schwierig zu lesen. Sie
miissen also einen Kompromiss finden.

Debugging

Die Syntaxfehler, die Sie bis jetzt am ehesten machen kénnen, sind unzuldssige
Variablennamen, wie etwa else und yield (Schliisselworter) oder komischer~job
und US$, die unzulissige Zeichen enthalten.

Wenn Sie ein Leerzeichen in einen Variablennamen einbauen, glaubt Python, es
handele sich um zwei Operanden ohne einen Operator:

>>> schlechter Name = 5

SyntaxError: invalid syntax
Bei Syntaxfehlern sind die Fehlermeldungen oft keine grolle Hilfe. Die hdufigsten
Fehlermeldungen lauten SyntaxError: invalid syntax und SyntaxError: invalid
token — und beide sind nicht sonderlich informativ.

Der Laufzeitfehler, den Sie wohl am haufigsten machen werden, lautet »is not
defined«. Dieser Fehler tritt auf, wenn Sie eine Variable verwenden mdochten, bevor
Sie ihr einen Wert zugewiesen haben. Das kann beispielsweise passieren, wenn Sie
einen Variablennamen falsch schreiben:

>>> kapital = 327.68

>>> zinsen = kapitel * zinssatz

NameError: name 'kapitel' is not defined
Bei Variablennamen wird zwischen GroB3- und Kleinschreibung unterschieden.
LaTeX st also nicht dasselbe wie latex.

Semantische Fehler machen Sie zum jetzigen Zeitpunkt am wahrscheinlichsten bei
der Reihenfolge von Berechnungen. Wenn Sie beispielsweise

— auswerten
mochten, wiirden Sie vielleicht Folgendes schreiben:

>>>1.0/2.0 * pi

Allerdings wird die Division zuerst durchgefiihrt, deshalb erhalten Sie

— / 2. Das ist
aber etwas vollig anderes! Python kann nicht wissen, was Sie eigentlich schreiben
wollten. In diesem Fall erhalten Sie also keine Fehlermeldung, sondern lediglich
eine falsche Antwort.

Glossar

Wert:
Grundlegende Dateneinheit, die ein Programm verarbeitet, beispielsweise eine
Zahl oder ein String.
Typ:
Kategorie von Werten. Die Typen, die wir bisher kennengelernt haben, sind
Integer (type int), FlieBkommazahlen (type float) und Strings (type str).
Integer:
Typ fiir die Darstellung ganzer Zahlen.

FlieBkommazahlen:

Typ fiir die Abbildung von Zahlen mit Nachkommastellen.
String:

Typ fiir die Darstellung von Zeichenfolgen.

Variable:
Name, der sich auf einen Wert bezieht.

Anweisung;:
Codeabschnitt, der einen Befehl oder Vorgang beschreibt. Bisher haben wir
Zuweisungen und print-Anweisungen kennengelernt.

Zuweisung:
Anweisung, die einer Variablen einen Wert zuweist.

Zustandsdiagramm:
Grafische Darstellung einer Reihe von Variablen und ihrer entsprechenden Werte.

Schliisselwort:

Reserviertes Wort, das der Compiler verwendet, um ein Programm zu parsen.
Schliisselworter wie beispielsweise if, def und while diirfen Sie nicht als
Variablennamen wdhlen.

Operator:
Spezielles Symbol, das einfache Berechnungen wie Addition, Multiplikation oder
die Konkatenation von Strings darstellt.

Operand:
Einer der Werte, auf die ein Operator angewendet wird.

Division ohne Rest:
Berechnung, bei der zwei Zahlen dividiert und die Nachkommastellen
abgeschnitten werden.

Ausdruck:
Kombination aus Variablen, Operatoren und Werten, die sich zu einem einzigen
Wert auswerten lassen.

Auswerten:
Vorgang, bei dem ein Ausdruck vereinfacht wird, indem einzelne Berechnungen
durchgefiihrt werden, um einen einzigen Wert zu erhalten.

Regeln fiir die Rangfolge:
Regeln fiir die Reihenfolge, in der Ausdriicke ausgewertet werden, die mehrere
Operatoren und Operanden enthalten.

Konkatenation:
Direktes Aneinanderhdngen zweier Operanden.

Kommentar:

Informationen im Programmcode, die sich an andere Programmierer richten (oder
jeden anderen Leser des Quellcodes) und sich nicht auf die Ausfiihrung des
Programms auswirken.

Ubungen

Angenommen, wir fiihren die folgenden Zuweisungsanweisungen aus:
breite = 17

hoehe = 12.0

trennzeichen ="'

Schreiben Sie fiir jeden der folgenden Ausdriicke Wert und Typ (des Werts des
Ausdrucks) auf:

1. breite/2
2. breite/2.0
3. hoehe/3
4. 1+2*5

5. trennzeichen * 5
Uberpriifen Sie Ihre Antworten mit dem Python-Interpreter.
Listing 2.3

Uben Sie sich im Gebrauch des Python-Interpreters als Rechner:

1. Der Rauminhalt einer Kugel mit Radius r ist
— . WiegroR

ist der Raum innerhalb einer Kugel mit dem Radius 5? Tipp: 392,7 ist falsch!

2. Angenommen, der Verkaufspreis fiir ein Buch betrdgt 24,95 Euro. Buchhdndler
erhalten einen Rabatt von 40 Prozent. Die Versandkosten betragen 3 Euro fiir
das erste und 75 Cent fiir jedes weitere Buch. Was ist der Handlergesamtpreis
fiir 60 Biicher?

3. Wenn ich um 6:52 Uhr das Haus verlasse, einen Kilometer bei langsamem
Tempo laufe (5:07 pro km) und drei Kilometer etwas schneller laufe (4:28 pro
km), um wie viel Uhr komme ich dann zum Friihstiick nach Hause?

Listing 2.4

Kapitel 3. Funktionen

Funktionsaufrufe

Im Kontext eines Programms ist eine Funktion eine benannte Folge von
Anweisungen, die eine Berechnung durchfiihren. Wenn Sie eine Funktion definieren,
geben Sie einen Namen und die entsprechenden Anweisungen vor. Spéter kénnen Sie
dann diese Funktion iiber ihren Namen »aufrufen«. Wir haben bereits ein Beispiel
fiir einen Funktionsaufruf gesehen:

>>> type(32)

<type 'int'>
Der Name der Funktion ist type. Den Ausdruck in Klammern nennt man das
Argument der Funktion. Das Ergebnis der Funktion ist in diesem Fall der Typ des
iibergebenen Arguments.

Man spricht iiblicherweise davon, dass eine Funktion ein Argument »erwartet« und
ein Ergebnis »zuriickliefert«. Das Ergebnis bezeichnet man auch als Riickgabewert.

Funktionen zur Typkonvertierung

Python stellt integrierte Funktionen zur Verfiigung, die Werte eines Typs in einen
anderen konvertieren. Die Funktion int nimmt beispielsweise einen beliebigen Wert
entgegen und konvertiert ihn falls méglich in einen Integer. Ansonsten beschwert sie
sich:

>>> int("32')

32

>>> int('Hallo")

ValueError: invalid literal for int(): Hallo
int kann FlieRkommazahlen in Integer konvertieren, rundet aber nicht ab. Die
Dezimalstellen werden einfach abgeschnitten:

>>> int(3.99999)

3

>>> int(-2.3)
-2

float konvertiert Integer und Strings in FlieBkommazahlen:

>>> float(32)

32.0

>>> float('3.14159")
3.14159

Und str konvertiert das iibergebene Argument in einen String:

>>> str(32)
|32|

>>> str(3.14159)
'3.14159'

Mathematische Funktionen

Python enthdlt ein mathematisches Modul, das die meisten bekannten
mathematischen Funktionen bereitstellt. Ein Modul ist eine Datei, die eine
Sammlung zusammengehoriger Funktionen enthalt.

Bevor wir ein Modul verwenden kénnen, miissen wir es importieren:
>>> import math

Diese Anweisung legt ein Modulobjekt mit dem Namen math an. Wenn Sie print
mit dem Modulobjekt aufrufen, erhalten Sie Informationen dartiber:

>>> print math

<module 'math’' (built-in)>
Das Modulobjekt enthélt die im Modul definierten Funktionen und Variablen. Um
auf eine dieser Funktionen zuzugreifen, miissen Sie den Namen des Moduls sowie
den Namen der Funktion mit einem Punkt voneinander getrennt eingeben. Dieses
Format nennt man Punktschreibweise.

>>> verhaeltnis = signalleistung / rauschleistung
>>> dezibel = 10 * math.log10(verhaeltnis)

>>> radiant = 0.7

>>> hoehe = math.sin(radiant)
Im ersten Beispiel wird mit log10 ein Signal-Rausch-Verhéltnis in Dezibel
berechnet (vorausgesetzt, signalstaerke und rauschpegel sind definiert). Das math-
Modul stellt auch log zur Verfiigung, mit dem Sie Logarithmen zur Basis e
berechnen kénnen.

Im zweiten Beispiel wird der Sinus von radiant berechnet. Der Name der Variablen
ist ein Hinweis darauf, dass sin und andere trigonometrische Funktionen (cos, tan
usw.) Argumente in Radiant erwarten. Fiir die Konvertierung von Grad in Radiant
dividieren Sie durch 360 und multiplizieren mit 2

>>> grad = 45

>>> radiant = grad / 360.0 * 2 * math.pi
>>> math.sin(radiant)
0.707106781187

Der Ausdruck math.pi ruft die Variable pi aus dem math-Modul ab. Der Wert dieser
Variablen ist eine Anndherung an

— auf etwa
15 Stellen genau.

Falls Sie sich mit Trigonometrie auskennen, konnen Sie die vorhergehenden
Ergebnisse tiberpriifen, indem Sie sie mit der Quadratwurzel von 2 dividiert durch 2
vergleichen:

>>> math.sqrt(2) / 2.0
0.707106781187

Komposition

Bisher haben wir die Elemente eines Programms isoliert betrachtet — Variablen,
Ausdriicke und Anweisungen —, ohne dartiiber zu sprechen, wie Sie sie miteinander
kombinieren kénnen.

Eine der niitzlichsten Funktionen von Programmiersprachen besteht darin, dass Sie
kleine Bausteine miteinander kombinieren konnen. Beispielsweise kann das
Argument einer Funktion jeder beliebige Ausdruck sein, einschlieflich
aritmethischer Operatoren:

x = math.sin(grad / 360.0 * 2 * math.pi)
Und Sie konnen sogar Funktionsaufrufe iibergeben:

x = math.exp(math.log(x+1))

Fast iiberall, wo Sie einen Wert angeben konnen, diirfen Sie auch einen beliebigen
Ausdruck iibergeben. Es gibt allerdings eine Ausnahme: Die linke Seite einer
Zuweisung muss sein Variablenname sein. Jeder andere Ausdruck auf der linken
Seite erzeugt einen Syntaxfehler (spater werden wir auch fiir diese Regel
Ausnahmen kennenlernen).

>>> minuten = stunden * 60 # richtig

>>> stunden * 60 = minuten # falsch!
SyntaxError: can't assign to operator

Neue Funktionen erstellen

Wir haben bislang nur jene Funktionen verwendet, die in Python enthalten sind. Es
ist aber auch moéglich, neue Funktionen hinzuzufiigen. Eine Funktionsdefinition
gibt den Namen einer neuen Funktion sowie die Reihe von Anweisungen an, die
beim Aufruf der Funktion ausgefiihrt werden sollen.

Hier ein Beispiel:

def zeige_text():
print "Veronika, der Lenz ist da."
print "Die Madchen singen trallala."
def ist ein Schliisselwort, das eine Funktionsdefinition kennzeichnet. Der Name
dieser Funktion lautet zeige_text. Die Regeln fiir Funktionsnamen sind die gleichen
wie fiir Variablennamen: Buchstaben, Zahlen und einige Interpunktionszeichen sind

zuldssig, aber das erste Zeichen darf keine Zahl sein. Aulerdem diirfen Sie kein
Schliisselwort als Funktionsnamen wéahlen. Und Sie sollten vermeiden, fiir eine
Funktion und eine Variable denselben Namen zu verwenden.

Die leeren Klammern nach dem Namen zeigen an, dass diese Funktion keine
Argumente erwartet.

Die erste Zeile der Funktionsdefinition bezeichnet man als Header, den Rest als
Body. Der Header muss mit einem Doppelpunkt enden, und der Body muss
eingertickt sein. Per Konvention muss der Body immer um vier Leerzeichen
eingertickt sein (siehe ,,Debugging®). Der Body kann eine beliebige Anzahl von
Anweisungen enthalten.

Die Strings der print-Anweisungen sind in doppelte Anfiihrungszeichen
eingeschlossen. Einfache und doppelte Anfiihrungszeichen bedeuten ein und
dasselbe. Die meisten verwenden einfache Anfiithrungszeichen auler in Fdllen wie
diesem, in dem einfache Anfiihrungszeichen (Apostrophe) im String selbst
erscheinen.

Wenn Sie eine Funktionsdefinition im interaktiven Modus eingeben, gibt der
Interpreter Auslassungszeichen (...) aus, um Sie darauf hinzuweisen, dass die
Definition noch nicht vollstandig ist:

>>> def zeige_text():

print "Veronika, der Lenz ist da."
print "Die Madchen singen trallala."

Zum Abschlielen der Funktion miissen Sie eine Leerzeile eingeben (in einem Skript
ist das natiirlich nicht erforderlich).

Durch die Definition der Funktion wird eine Variable desselben Namens angelegt.

>>> print zeige_text

<function zeige_text at Oxb7e99e9c>
>>> type(zeige_text)

<type 'function'>

Der Wert von zeige_text ist ein Funktionsobjekt vom Typ 'function'.

Die Syntax fiir den Aufruf einer neuen Funktion ist dieselbe wie fiir integrierte
Funktionen:

>>> zeige_text()

Veronika, der Lenz ist da.

Die Madchen singen trallala.
Sobald Sie eine Funktion definiert haben, kénnen Sie sie auch innerhalb anderer
Funktionen verwenden. Beispielsweise konnten wir eine Funktion mit dem Namen
wiederhole_refrain schreiben, die den Refrain wiederholt.

def wiederhole_refrain():
zeige_text()
zeige_text()

Dann rufen wir wiederhole_refrain auf:

>>> wiederhole_refrain()
Veronika, der Lenz ist da.
Die Madchen singen trallala.
Veronika, der Lenz ist da.
Die Madchen singen trallala.

Aber so geht das Lied natiirlich nicht wirklich.

Definition und Verwendung

Wenn wir alle Codeteile aus dem vorherigen Abschnitt zusammenstellen, sieht das
Programm folgendermalSen aus:
def zeige_text():

print "Veronika, der Lenz ist da."
print "Die Madchen singen trallala."

def wiederhole_refrain():
zeige_text()
zeige_text()

wiederhole_refrain()

Dieses Programm enthélt zwei Funktionsdefinitionen: zeige_text und
wiederhole_refrain. Funktionsdefinitionen werden genau so wie andere
Anweisungen ausgefiihrt, als Ergebnis werden aber Funktionsobjekte angelegt. Die
Anweisungen innerhalb der Funktion werden erst dann ausgefiihrt, wenn die
Funktion aufgerufen wird. Die Funktionsdefinition selbst erzeugt keinerlei Ausgabe.

Wie Sie sich sicher denken kénnen, miissen Sie eine Funktion erst erstellen, bevor
Sie sie ausfiihren kénnen. Anders ausgedriickt: Die Funktionsdefinition muss vor
dem ersten Aufruf ausgefiihrt werden.

Verschieben Sie die letzte Zeile dieses Programms ganz nach oben, sodass der
Funktionsaufruf vor den Definitionen erfolgt. Starten Sie das Programm und schauen
Sie, welche Fehlermeldung Sie erhalten.

Listing 3.1
Verschieben Sie den Funktionsaufruf wieder zuriick nach unten und verschieben Sie

die Definition von zeige_text hinter die Definition von wiederhole_refrain. Was
passiert, wenn Sie das Programm ausfiihren?

Listing 3.2

Programmablauf

Um sicherzustellen, dass eine Funktion vor der ersten Verwendung definiert wird,
miissen Sie wissen, in welcher Reihenfolge Anweisungen ausgefiihrt werden. Das
wird als Programmablauf bezeichnet.

Die Ausfiihrung eines Programms beginnt immer mit der ersten Anweisung. Die
Anweisungen werden nacheinander von oben nach unten ausgefiihrt.

Funktionsdefinitionen dndern den Ablauf eines Programms nicht. Die Anweisungen
innerhalb der Funktion werden erst ausgefiihrt, wenn die Funktion tatsdachlich
aufgerufen wird.

Ein Funktionsaufruf ist wie eine Umleitung im Programmablauf: Anstatt die
Ausfiihrung mit der ndchsten Anweisung fortzusetzen, springt das Programm in den
Body der Funktion, fiihrt dort alle Anweisungen aus, springt zuriick und macht an
der Stelle weiter, an der die Funktion aufgerufen wurde.

Das klingt ziemlich einfach. Bis Sie sich daran erinnern, dass eine Funktion auch
eine andere aufrufen kann. Unter Umstdnden muss das Programm mitten in der
einen Funktion Anweisungen einer anderen Funktion ausfiihren. Und wdhrend diese
neue Funktion ausgefiihrt wird, muss das Programm vielleicht sogar noch eine
weitere Funktion ausfiihren!

Gliicklicherweise kann sich Python sehr gut merken, wo es gerade ist. Jedes Mal,
wenn eine Funktion abgeschlossen ist, macht das Programm an der Stelle in der
anderen Funktion weiter, in der der Funktionsaufruf stand. Wenn das Ende des
Programms erreicht ist, wird die Ausfiihrung beendet.

Und was ist die Moral dieser Geschichte? Wenn Sie ein Programm lesen, sollten Sie
nicht von oben nach unten lesen. Manchmal ergibt es mehr Sinn, wenn Sie dem
Ablauf der Programmausfiihrung folgen.

Parameter und Argumente

Wie wir gesehen haben, erfordern einige integrierte Funktionen Argumente. Wenn
Sie beispielsweise math.sin aufrufen, iibergeben Sie eine Zahl als Argument.
Manche Funktionen erwarten auch mehr als ein Argument: math.pow erwartet zwei
— die Basis und den Exponenten.

Innerhalb der Funktion werden die Argumente entsprechenden Variablen
zugewiesen, den Parametern. Hier sehen Sie ein Beispiel fiir eine
benutzerdefinierte Funktion, die ein Argument erwartet:

def print_zweimal(peter):

print peter
print peter

Diese Funktion weist das Argument einem Parameter mit dem Namen peter zu.
Wenn sie aufgerufen wird, gibt sie den Wert des Parameters zweimal aus.

Die Funktion arbeitet mit jedem beliebigen Wert, der ausgegeben werden kann.

>>> print_zweimal('Spam")
Spam

Spam

>>> print_zweimal(17)

17

17

>>> print_zweimal(math.pi)
3.14159265359
3.14159265359

Die Kompositionsregeln fiir integrierte Funktionen gelten ebenso fiir
benutzerdefinierte Funktionen. Wir kénnen also beliebige Ausdriicke als Argumente
fiir print_zweimal tibergeben.

>>> print_zweimal('Spam "4)

Spam Spam Spam Spam

Spam Spam Spam Spam

>>> print_zweimal(math.cos(math.pi))

-1.0

-1.0
Das Argument wird ausgewertet, bevor die Funktion aufgerufen wird. In diesem
Beispiel werden die Ausdriicke 'Spam "4 und math.cos(math.pi) also jeweils nur
einmal ausgewertet.

Auch eine Variable kénnen Sie als Argument iibergeben:

>>> michael = 'Eric, the half a bee.'

>>> print_zweimal(michael)

Eric, the half a bee.

Eric, the half a bee.
Der Name der Variablen, die wir als Argument {ibergeben (michael), hat nichts mit
dem Namen des Parameters (peter) zu tun. Es spielt keine Rolle, wie dieser Wert
»zu Hause, also in der aufrufenden Funktion, heilst. In print_zweimal, nennen wir
sie alle peter.

Variablen und Parameter sind lokal

Wenn Sie eine Variable innerhalb einer Funktion erstellen, ist sie lokal. Das
bedeutet, dass sie nur innerhalb dieser Funktion existiert. Ein Beispiel:
def zweimal_cat(teil1, teil2):
cat = teil1 + teil2
print_zweimal(cat)
Diese Funktion erwartet zwei Argumente, konkateniert sie und gibt das Ergebnis
zweimal aus. Hier ein Beispiel fiir die Verwendung der Funktion:

>>> zeile1 = 'Bing tiddle '

>>> zeile2 = 'tiddle bang.'

>>> zweimal_cat(zeile1, zeile2)

Bing tiddle tiddle bang.

Bing tiddle tiddle bang.
Sobald die Ausfiihrung von zweimal_cat abgeschlossen ist, wird die Variable cat
zerstort. Wenn wir versuchen, sie auszugeben, erhalten wir eine Ausnahme:

>>> print cat
NameError: name 'cat' is not defined

Parameter sind ebenfalls lokal. Aulerhalb von print_zweimal gibt es also keine
Variable mit dem Namen peter.

Stapeldiagramme

Damit Sie den Uberblick dariiber behalten, welche Variablen Sie wo verwenden
konnen, empfiehlt es sich manchmal, ein Stapeldiagramm zu zeichnen. Genau wie
Zustandsdiagramme zeigen Stapeldiagramme den Wert aller Variablen, aber
zusdtzlich die Funktion, zu der die jeweilige Variable gehort.

Jede Funktion wird durch einen Frame dargestellt. Ein Frame ist einfach ein Kasten,
der die Parameter und Variablen einer Funktion enthdlt und neben dem der Name
einer Funktion steht. Das Stapeldiagramm fiir das vorhergehende Beispiel sehen Sie
in Abbildung 3.1.

zeilel —= 'Bing tiddle’
<module>))
zeile2 ——= 'tiddle bang.’

teil —= 'Bing tiddle ’
zweimal_cat | teil2 —= 'tiddle bang.’
cat —= 'Bing tiddle tiddle bang.’

print_zweimal | peter —= 'Bing tiddle tiddle bang.’

Abbildung 3.1 Stapeldiagramm

Die Frames werden in einem Stapel angeordnet, in dem zu erkennen ist, welche

Funktion welche aufruft. In diesem Beispiel wird print_zweimal von zweimal_cat

aufgerufen, und zweimal_cat wird aufgerufen von __main__ — das ist ein spezieller

Name fiir den obersten Frame (in unserem Stapeldiagramm heifSt er <module>).

Wenn Sie eine Variable aullerhalb von Funktionen erstellen, gehort sie zum Frame
main__.

Jeder Parameter bezieht sich auf denselben Wert wie das entsprechende Argument.

Also hat teil1 denselben Wert wie zeile1, teil2 denselben Wert wie zeile2, und peter
hat denselben Wert wie cat.

Wenn innerhalb eines Funktionsaufrufs ein Fehler auftritt, gibt Python den Namen
der Funktion aus sowie den Namen der Funktion, die die Funktion aufgerufen hat,
und den Namen der Funktion, die wiederum diese Funktion aufgerufen hat — bis hin
zu___main__.

Wenn Sie beispielsweise versuchen, auf cat innerhalb von print_zweimal
zuzugreifen, erhalten Sie einen NameError:
Traceback (innermost last):
File "test.py", line 13, in __main__
zweimal_cat(zeile1, zeile2)
File "test.py", line 5, in zweimal_cat
print_zweimal(katze)
File "test.py", line 9, in print_zweimal
print cat
NameError: name 'cat' is not defined
Diese Liste von Funktionen heil$t Traceback. Darin konnen Sie erkennen, in welcher
Programmdatei und in welcher Zeile der Fehler aufgetreten ist, und welche
Funktionen zu diesem Zeitpunkt ausgefiihrt wurden. Aulerdem wird die Codezeile

angezeigt, die den Fehler verursacht hat.

Die Reihenfolge der Funktionen im Traceback ist die gleiche wie die Reihenfolge
der Frames im Stapeldiagramm: Die Funktion, die gerade ausgefiihrt wird, steht
ganz unten.

Funktionen mit und ohne Riickgabewert

Einige Funktionen, die wir verwenden, beispielsweise die mathematischen
Funktionen, liefern Ergebnisse. Mangels eines besseren Namens nenne ich sie
Funktionen mit Riickgabewert. Andere Funktionen, wie z. B. print_zweimal,
fithren zwar eine Aktion aus, liefern aber keinen Wert zuriick. Solche Funktionen
nennen wir Funktionen ohne Riickgabewert.

Rufen Sie eine Funktion auf, die einen Riickgabewert liefert, méchten Sie fast
immer etwas mit dem Ergebnis tun — es beispielsweise einer Variablen zuweisen
oder als Teil eines Ausdrucks verwenden:

x = math.cos(radiant)

golden = (math.sqrt(5) + 1) / 2
Wenn Sie im interaktiven Modus eine Funktion aufrufen, die einen Riickgabewert
liefert, zeigt Python das Ergebnis an:

>>> math.sqrt(5)
2.2360679774997898

Wenn Sie dagegen in einem Skript eine Funktion, die einen Riickgabewert liefert,
einfach nur aufrufen, geht der Riickgabewert fiir immer verloren!

math.sqrt(5)

Dieses Skript berechnet die Quadratwurzel vom 5. Nachdem es aber das Ergebnis
weder speichert noch anzeigt, ist das nicht sonderlich niitzlich.

Funktionen ohne Riickgabewert zeigen unter Umstdnden etwas auf dem Bildschirm
an oder haben irgendeinen anderen Effekt, liefern aber keinen Wert zuriick. Wenn
Sie versuchen, ein solches Ergebnis einer Variablen zuzuweisen, erhalten Sie den
speziellen Wert None.

>>> ergebnis = print_zweimal('Bing')

Bing

Bing

>>> print ergebnis

None
Der Wert None ist nicht dasselbe wie der String 'None'. Es handelt sich um einen
besonderen Wert mit einem eigenen Typ:

>>> print type(None)

<type 'NoneType'>
Alle Funktionen, die wir bisher geschrieben haben, sind Funktionen ohne
Riickgabewert. Aber bereits wenige Kapitel weiter werden wir damit beginnen,
Funktionen zu schreiben, die einen Riickgabewert liefern!

Warum Funktionen?

Es mag nicht ganz offensichtlich sein, warum es sich lohnen kénnte, ein Programm
in Funktionen aufzuteilen. Aber es gibt tatsdchlich einige Griinde dafiir:

= FEine eigene Funktion gibt Ihnen die Moglichkeit, eine Gruppe von Anweisungen
unter einem Namen zusammenzufassen, wodurch IThr Programm einfacher zu
lesen und zu debuggen ist.

= Funktionen kénnen Programme kiirzer machen, indem Codewiederholungen
entfallen. Und wollen Sie spdter etwas dndern, miissen Sie das nur an einer Stelle
tun.

m Durch die Aufteilung eines langen Programms in Funktionen kénnen Sie die
verschiedenen Teile einzeln debuggen und dann zu einem funktionierenden
Ganzen zusammensetzen.

m Gut durchdachte Funktionen kénnen hdufig in mehreren Programmen niitzlich
sein. Sie programmieren und debuggen nur einmal, konnen den Code aber immer
wieder verwenden.

Import mit from

Python bietet zwei Moglichkeiten, Module zu importieren. Eine davon kennen wir
bereits:

>>> import math

>>> print math

<module 'math’' (built-in)>

>>> print math.pi

3.14159265359
Wenn Sie math importieren, erhalten Sie ein Modulobjekt mit dem Namen math.
Das Modulobjekt enthdlt Konstanten wie pi sowie Funktionen wie etwa sin und exp.

Aber wenn Sie versuchen, auf pi direkt zuzugreifen, erhalten Sie einen Fehler:

>>> print pi
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'pi' is not defined
Alternativ kénnen Sie auch folgendermalien ein Objekt aus einem Modul

importieren:
>>> from math import pi
Nun koénnen Sie direkt auf pi zugreifen, auch ohne die Punktschreibweise:

>>> print pi
3.14159265359

Oder Sie importieren alles aus dem Modul mit dem Asterisk-Operator:

>>> from math import *

>>> cos(pi)

-1.0
Wenn Sie alles aus dem mathematischen Modul importieren, konnen Sie Ihren Code
dadurch pragnanter schreiben. Allerdings kann es dann auch zu Konflikten zwischen
den in den verschiedenen Modulen definierten Namen oder zwischen einem Namen
aus einem Modul und einer Threr Variablen kommen.

Debugging

Wenn Sie Thre Skripten mit einem Texteditor schreiben, kann es Probleme mit
Leerzeichen und Tabs geben. Die beste Moglichkeit, diese Probleme zu vermeiden,
besteht darin, nur Leerzeichen zu verwenden (und keine Tabs). Die meisten
Texteditoren kennen Python und machen das bereits standardméafig. Manche tun das
aber leider nicht.

Tabs und Leerzeichen sind iiblicherweise unsichtbar, was das Debugging erschwert.
Am besten suchen Sie nach einem Editor, der die Einriickung fiir Sie tibernimmt.

Vergessen Sie aullerdem nicht, Thr Programm zu speichern, bevor Sie es ausfiihren.
Manche Entwicklungsumgebungen tun das automatisch, andere nicht. In diesem Fall

ist das Programm, das Sie im Editor sehen, nicht dasselbe wie das Programm, das
Sie ausfiihren.

Debugging kann eine Menge Zeit in Anspruch nehmen, wenn Sie immer wieder
dasselbe falsche Programm ausfiihren!

Vergewissern Sie sich, dass der Code, den Sie sehen, auch der Code ist, den Sie
ausfiihren. Sollten Sie sich nicht sicher sein, schreiben Sie beispielsweise print
'Hallo' an den Anfang des Programms und fiihren es erneut aus. Wenn Sie kein Hallo
sehen, wissen Sie, dass Sie nicht das richtige Programm ausfiihren.

Glossar

Funktion:
Benannte Folge von Anweisungen, die Aktionen vornehmen. Funktionen kénnen
Argumente erwarten und/oder ein Ergebnis zuriickliefern, miissen das aber nicht.
Funktionsdefinition:
Anweisung, die eine neue Funktion erstellt und den Namen sowie Parameter und
die auszufiihrenden Anweisungen angibt.
Funktionsobjekt:
Von der Funktionsdefinition angelegter Wert. Der Name der Funktion ist eine
Variable, die sich auf ein Funktionsobjekt bezieht.
Header:
Die erste Zeile einer Funktionsdefinition.
Body:
Folge von Anweisungen innerhalb einer Funktionsdefinition.
Parameter:
Name, der innerhalb einer Funktion verwendet wird, um auf einen als Argument
iibergebenen Wert zu verweisen.
Funktionsaufruf:
Anweisung, die eine Funktion ausfiihrt. Sie besteht aus dem Funktionsnamen
gefolgt von einer Argumentenliste.
Argument:
Wert, der an eine Funktion beim Funktionsaufruf iibergeben wird. Dieser Wert
wird innerhalb der Funktion dem entsprechenden Parameter zugewiesen.
Lokale Variable:
Innerhalb einer Funktion definierte Variable. Eine lokale Variable kann nur

innerhalb der entsprechenden Funktion verwendet werden.

Riickgabewert:
Ergebnis einer Funktion. Wenn der Funktionsaufruf als Ausdruck verwendet wird,
ist der Riickgabewert der Wert des Ausdrucks.

Funktion mit Riickgabewert:
Funktion, die einen Wert zuriickgibt.

Funktion ohne Riickgabewert:
Funktion, die keinen Wert zuriickgibt.

Modul:
Datei, die eine Sammlung zusammengehériger Funktionen und andere
Definitionen enthdalt.
import-Anweisung:
Anweisung, die eine Moduldatei einliest und ein Modulobjekt erstellt.
Modulobjekt:
Wert, der durch eine import-Anweisung erstellt wird und den Zugriff auf die in
einem Modul definierten Werte erméglicht.
Punktschreibweise:
Syntax fiir den Aufruf einer Funktion in einem anderen Modul, bei der der
Modulname gefolgt von einem Punkt und dem Funktionsnamen angegeben wird.
Programmablauf:
Reihenfolge, in der die Anweisungen in einem Programm ausgefiihrt werden.

Stapeldiagramm:
Grafische Darstellung eines Stapels von Funktionen sowie der zugehérigen
Variablen und Werte, auf die sie sich beziehen.

Frame:
Kasten in einem Stapeldiagramm, der einen Funktionsaufruf darstellt. Er enthdlt
die lokalen Variablen und Parameter der Funktion.

Traceback:

Liste der ausgefiihrten Funktionen, die angezeigt wird, wenn eine Ausnahme
auftritt.

Ubungen

Python bietet eine integrierte Funktion mit dem Namen len, die die Lédnge eines

Strings zuriickliefert. Der Wert von len('Allen') ist also 5.

Schreiben Sie eine Funktion mit dem Namen rechts_ausrichten, die einen String
mit dem Namen S als Parameter entgegennimmt und den String mit so vielen
vorangestellten Leerzeichen ausgibt, dass sich der letzte Buchstabe des Strings in
Spalte 70 der Anzeige befindet.

>>> rechts_ausrichten('Allen’)
Allen

Listing 3.3

Ein Funktionsobjekt ist ein Wert, den Sie einer Variablen zuweisen oder als
Argument {ibergeben kénnen. Beispielsweise ist mach_zwei eine Funktion, die ein

Funktionsobjekt als Argument erwartet und dieses zweimal aufruft:
def mach_zwei(f):

f()
f0)

Hier ein Beispiel, in dem mach_zwei dazu verwendet wird, eine Funktion mit dem

Namen print_spam zweimal aufzurufen.
def print_spam():
print 'spam’

mach_zwei(print_spam)

1. Tippen Sie dieses Beispiel in ein Skript ein und testen Sie es.

2. Andern Sie mach_zwei so, dass die Funktion zwei Argumente erwartet — ein
Funktionsobjekt und einen Wert. Die Funktion soll zweimal mit dem Wert als
Argument aufgerufen werden.

3. Schreiben Sie eine einfachere Version von print_spam mit dem Namen
print_zweimal, die einen String als Parameter entgegennimmt und diesen
zweimal ausgibt.

4. Nutzen Sie die gednderte Version von mach_zwei, um print_zweimal zweimal
aufzurufen, wobei 'spam’ als Argument {ibergeben wird.

5. Definieren Sie eine neue Funktion mit dem Namen mach_vier, die ein
Funktionsobjekt und einen Wert entgegennimmt, anschliefend diese Funktion
viermal aufruft und dabei den Wert als Parameter {ibergibt. Der Body dieser
Funktion soll nur zwei Anweisungen enthalten, nicht vier.

Losung: mach_vier.py.

Listing 3.4

Fiir diese Ubung benétigen Sie nur die Anweisungen und Funktionen, die wir bisher
kennengelernt haben.

1. Schreiben Sie eine Funktion, die ein Raster wie das folgende zeichnet:
+ -t -+

I
I
I
I
+----+----+
I
I
I
I
+

R i I o

Tipp: Fiir die Ausgabe mehr als eines Werts in einer Zeile konnen Sie eine

kommaseparierte Sequenz angeben:
print '+', *-'

Wenn die Sequenz mit einem Komma endet, schliefSt Python die Zeile nicht ab,

und der niachste Wert wird auf derselben Zeile ausgegeben.
print '+,
print '-'

Die Ausgabe dieser Anweisung lautet '+ -'.
Eine einzelne print-Anweisung beendet die aktuelle Zeile und wechselt zur
ndchsten.

2. Schreiben Sie eine Funktion, die ein dhnliches Raster mit vier Zeilen und vier
Spalten zeichnet.

Losung: raster.py. Hinweis: Diese Ubung basiert auf einer Ubung aus Oualline,
Practical C Programming, Third Edition, O’Reilly Media, 1997.

Listing 3.5

Kapitel 4. Fallstudie: Gestaltung von Schnittstellen
TurtleWorld

Begleitend zu diesem Buch habe ich ein Paket mit dem Namen Swampy
geschrieben. Die entsprechende Datei aus den Codebeispielen heil3t
http://thinkpython.com/swampy. Befolgen Sie einfach die Anweisungen, um
Swampy auf Threm System zu installieren.

Ein Paket ist eine Sammlung von Modulen. Eines der Module in Swampy ist
TurtleWorld. Dieses Modul stellt eine Reihe von Funktionen zur Verfiigung, mit
denen Sie Linien zeichnen konnen, indem Sie Schildkréten iiber den Bildschirm
bewegen.

Sobald Swampy als Paket auf Threm System installiert ist, konnen Sie TurtleWorld
folgendermalien importieren:

from import *

Wenn Sie die Swampy-Module heruntergeladen, aber nicht als Paket installiert
haben, konnen Sie entweder in dem entsprechenden Verzeichnis mit den Swampy-
Dateien arbeiten oder dieses Verzeichnis dem Suchpfad von Python hinzufiigen.
AnschlieBend konnen Sie TurtleWorld so importieren:

from import *

Die Einzelheiten des Installationsvorgangs sowie die Details zum Festlegen des
Suchpfads von Python hiangen von IThrem System ab. Statt dazu Néheres an dieser
Stelle zu erldutern, werde ich versuchen, die Informationen fiir verschiedene
Systeme unter http://thinkpython.com/swampy aktuell zu halten.

Erstellen Sie eine Datei mit dem Namen meinpolygon.py und tippen Sie den
folgenden Code ein:

from import *

welt = TurtleWorld()
tim = Turtle()
print tim

wait_for_user()

In der ersten Zeile wird alles aus dem Modul TurtleWorld des Pakets swampy
importiert.

In den folgenden Zeilen wird eine TurtleWorld erstellt und der Variablen welt
zugewiesen. Aullerdem weisen wir der Variablen tim eine neue Schildkréte zu. Wenn
Sie tim ausgeben, erhalten Sie in etwa Folgendes:

<TurtleWorld.Turtle instance at Oxb7bfbf4c>

http://thinkpython.com/swampy
http://thinkpython.com/swampy

Das bedeutet, dass sich tim auf eine Instanz einer Schildkréte (»Turtle«) in
TurtleWorld bezieht. In diesem Kontext bedeutet »Instanz«, dass es sich um das
Mitglied einer Gruppe handelt. Diese Turtle ist eine der méglichen Turtles.

wait_for_user weist TurtleWorld an, darauf zu warten, dass der Benutzer etwas
macht. In diesem Fall kann der Benutzer allerdings nicht mehr tun, als das Fenster
zu schlielSen.

TurtleWorld bietet mehrere Funktionen zum Steuern der Schildkréte: fd und bk fiir
vorwarts und riickwarts sowie It und rt fiir links und rechts. Aulerdem halt jede
Schildkrote einen Stift, der sich entweder oben oder unten befindet. Wenn sich der
Stift unten befindet, zeichnet die Schildkrote eine Spur, wenn sie sich bewegt. Die
Funktionen pu und pd stehen fiir »pen up« (Stift oben) und »pen down« (Stift unten).

Fiigen Sie diese Zeilen in das Programm ein, um einen rechten Winkel zu zeichnen
(nachdem Sie tim erstellt haben und bevor Sie wait_for_user aufrufen):

fd(tim, 100)
It(tim)
fd(tim, 100)

Die erste Zeile weist tim an, 100 Schritte vorwérts zu machen. Die zweite Zeile ldsst
ihn links abbiegen.

Wenn Sie dieses Programm ausfiihren, miisste sich tim zuerst nach Osten und dann
nach Norden bewegen und dabei zwei Linienabschnitte zuriicklassen.

Andern Sie nun das Programm so, dass es ein Quadrat zeichnet. Lassen Sie nicht
locker, bis es funktioniert!

Einfache Wiederholung
Hochstwahrscheinlich haben Sie ungefdhr Folgendes geschrieben (mit Ausnahme
des Codes, der die TurtleWorld erstellt und auf den Benutzer wartet):

fd(tim, 100)
It(tim)

fd(tim, 100)
It(tim)

fd(tim, 100)
It(tim)

fd(tim, 100)

Pragnanter konnen wir dasselbe mit einer for-Anweisung erreichen. Fiigen Sie die
folgenden Zeilen in meinpolygon.py ein und fiihren Sie das Skript erneut aus:

for iin range(4):
print 'Hallo!"

Nun sollten Sie in etwa Folgendes sehen:

Hallo!

Hallo!

Hallo!

Hallo!
Das ist die einfachste Einsatzmoglichkeit einer for-Anweisung. Mehr dazu erfahren
Sie spéter. Das sollte aber bereits ausreichen, damit Sie Ihr Programm zum Zeichnen

des Quadrats neu schreiben konnen. Bleiben Sie so lange dran, bis es funktioniert!
Hier sehen Sie eine for-Anweisung, die ein Quadrat zeichnet:

for iin range(4):
fd(tim, 100)
It(tim)
Die Syntax einer for-Anweisung ist einer Funktionsdefinition recht dhnlich. Sie hat
einen Header, der mit einem Doppelpunkt endet, sowie einen eingeriickten Body.
Auch hier kann der Body wieder eine beliebige Anzahl von Anweisungen enthalten.

Eine for-Anweisung wird manchmal auch als Schleife bezeichnet, weil das
Programm den Body in einer Schleife durchlduft. In diesem Fall wird der Body
viermal ausgefiihrt.

Diese Version unterscheidet sich genau genommen ein klein wenig von dem
bisherigen Code, weil sich die Schildkréte nach der letzten Seite des Quadrats noch
einmal zusétzlich dreht. Diese Drehung braucht ein wenig mehr Zeit, vereinfacht
aber den Code, wenn wir bei jedem Durchlauf durch die Schleife immer dasselbe
tun. AulBerdem landet die Schildkréte so auch wieder in der urspriinglichen Position
und zeigt in die Ausgangsrichtung.

Ubungen

Es folgt eine Reihe von Ubungen mit TurtleWorld. Sie sollen natiirlich SpaR
machen, haben aber auch einen Sinn. Denken Sie dariiber nach, welcher Sinn das
jeweils sein kénnte, wihrend Sie an den Ubungen arbeiten.

Die folgenden Abschnitte enthalten auch Losungen fiir die Ubungen. Blittern Sie
aber nicht vor, bevor Sie damit fertig sind (oder es wenigstens versucht haben).

1. Schreiben Sie eine Funktion mit dem Namen quadrat, die eine Schildkrote als
Parameter t erwartet. Die Funktion soll diese Schildkrote verwenden, um ein
Quadrat zu zeichnen.

Schreiben Sie eine Funktion, die tim als Argument an quadrat iibergibt, und
fiihren Sie das Programm erneut aus.

2. Fiigen Sie einen zusétzlichen Parameter mit dem Namen laenge in quadrat
ein. Andern Sie den Body so, dass die Kantenldnge durch laenge bestimmt

wird, und dndern Sie den Funktionsaufruf so, dass ein zweites Argument
iibergeben wird. Fiihren Sie das Programm erneut aus. Testen Sie es mit
verschiedenen Werten fiir laenge.

3. Die Funktionen It und rt biegen jeweils in einem Winkel von 90 Grad ab. Sie
konnen aber auch ein zweites Argument iibergeben, das den Winkel in Grad
angibt. Beispielsweise lasst It(tim, 45) unseren tim im 45-Grad-Winkel nach
links drehen.

Machen Sie eine Kopie von quadrat und dndern Sie den Namen in polygon.
Fiigen Sie einen zusédtzlichen Parameter n ein und dndern Sie den Body so, dass
ein gleichseitiges Polygon mit n Seiten gezeichnet wird. Tipp: Die
Aullenwinkel eines gleichseitigen n-seitigen Polygons betragen 360/n Grad.

4. Schreiben Sie eine Funktion mit dem Namen kreis, die eine Schildkrote t und
einen Radius r als Parameter erwartet und einen ungefdhren Kreis zeichnet,
indem sie polygon mit einer entsprechenden Ladnge und Anzahl von Seiten
aufruft. Testen Sie die Funktion mit mehreren Werten fiir r.

Tipp: Ermitteln Sie den Umfang des Kreises und vergewissern Sie sich, dass
laenge * n = umfang.

Noch ein Tipp: Wenn tim Thnen zu langsam ist, kénnen Sie das dndern, indem
Sie tim.delay anpassen. Dadurch legen Sie die Zeit zwischen den einzelnen
Bewegungen in Sekunden fest. Mit tim.delay = 0.01 wird er die Beine in die
Héande nehmen miissen.

5. Schreiben Sie eine allgemeinere Version von kreis mit dem Namen bogen, die
einen zusatzlichen Parameter winkel erwartet, mit dem Sie festlegen kénnen,
welcher Teil eines Kreises gezeichnet werden soll. winkel wird in Grad
angegeben, sodass bei winkel=360 ein vollstdndiger Kreis gezeichnet wird.

Datenkapselung

In der ersten Ubung sollten Sie den Code zum Zeichnen des Quadrats in eine
Funktionsdefinition schreiben und anschlielfend die Funktion aufrufen, wobei Sie die
Schildkrote als Parameter iibergeben. Hier eine mogliche Losung:
def quadrat(t):
for iin range(4):
fd(t, 100)
It(t)

quadrat(tim)

Die Anweisungen ganz innen — fd und It — wurden zweimal eingeriickt, um zu
kennzeichnen, dass sie innerhalb der for-Schleife stehen, die sich wiederum
innerhalb der Funktionsdefinition befindet. Die ndchste Zeile quadrat(tim) ist
wieder linksbiindig, wodurch sowohl das Ende der for-Schleife als auch der
Funktionsdefinition gekennzeichnet wird.

Innerhalb der Funktion bezieht sich t auf dieselbe Schildkréte wie tim, entsprechend
hat It(t) denselben Effekt wie lt(tim). Aber warum rufen wir dann nicht den
Parameter tim auf?

Weil t auf diese Weise eine beliebige Schildkréte sein kann, nicht nur tim. So
koénnen Sie auch eine zweite Schildkrote erstellen und als Argument an quadrat
ibergeben:

rudi = Turtle()

quadrat(rudi)
Wenn Sie eine Codezeile in eine Funktion auslagern, nennt man das
Datenkapselung. Einer der Vorteile der Datenkapselung besteht darin, dass der
entsprechende Codeteil einen Namen erhélt, was gleichzeitig auch der
Dokumentation des Codes dient. Und wenn Sie einen bestimmten Code mehrmals
verwenden mochten, ist es wesentlich einfacher, eine Funktion mehrfach aufzurufen,
als deren Body mehrmals zu kopieren und einzufiigen.

Generalisierung

Der néchste Schritt besteht darin, quadrat um den Parameter laenge zu erweitern.
Hier eine mogliche Losung:
def quadrat(t, laenge):
for iin range(4):

fd(t, laenge)
It(t)

quadrat(tim, 100)

Die Erweiterung einer Funktion um einen Parameter nennt man Generalisierung,
weil dadurch die Funktion verallgemeinert wird. In der vorherigen Version hatte das
Quadrat immer dieselbe Gréle. In dieser Version kann es eine beliebige Grofle
haben.

Der ndchste Schritt ist ebenfalls eine Generalisierung. Anstatt Quadrate zu zeichnen,
kann polygon regelméllige Polygone mit einer beliebigen Anzahl von Seiten
zeichnen. Hier eine mogliche Losung:
def polygon(t, n, laenge):
winkel = 360.0 /n
for iin range(n):
fd(t, laenge)
It(t, winkel)

polygon(tim, 7, 70)

Dadurch wird ein siebenseitiges Polygon mit einer Seitenldnge von 70 gezeichnet.
Wenn Sie mehr als ein numerisches Argument {ibergeben, kann es leicht passieren,
dass Sie vergessen, was die einzelnen Argumente bedeuten und in welcher

Reihenfolge Sie sie angeben miissen.

Es ist daher zuldssig — und manchmal auch durchaus hilfreich —, die Namen der
Parameter in der Argumentenliste mit anzugeben:

polygon(tim, n=7, laenge=70)

Solche Argumente bezeichnet man als Schliisselwortargumente, weil sie die
Parameternamen als »Schliisselworter« mit angeben (nicht zu verwechseln mit
Python-Schliisselwortern wie while und def).

Durch diese Syntax ist das Programm besser lesbar. Aullerdem veranschaulicht
dieses Beispiel, wie Argumente und Parameter funktionieren: Wenn Sie eine
Funktion aufrufen, werden die iibergebenen Argumente den entsprechenden
Parametern zugewiesen.

Gestaltung von Schnittstellen

Im ndchsten Schritt zeichnen Sie einen kreis mit dem Radius r als Parameter. Hier
sehen Sie eine einfache Losung, die mit polygon ein fiinfzigseitiges Polygon
zeichnet:
def kreis(t, r):

umfang = 2 * math.pi * r

n=>50

laenge = umfang / n

polygon(t, n, laenge)

In der ersten Zeile wird der Umfang des Kreises mit Radius r iiber die Formel 2

Da wir math.pi verwenden, miissen wir math importieren. Der Konvention nach
miissen import-Anweisungen am Anfang des Skripts stehen.

nist die Anzahl der Liniensegmente fiir die Anndherung an den Kreis. laenge ist die
Léange der einzelnen Linien. Entsprechend zeichnet polygon ein fiinfzigseitiges
Polygon als Anndherung an einen Kreis mit Radius r.

Eine Begrenzung dieser Losung liegt darin, dass n eine Konstante ist. Fiir sehr grof8e
Kreise sind die Liniensegmente zu lang, und bei sehr kleinen Kreisen verschwenden
wir Zeit, indem wir sehr kleine Kreissegmente zeichnen. Eine mogliche Losung
besteht darin, die Funktion zu generalisieren und n als Parameter
entgegenzunehmen. Dadurch hétten die Benutzer (wer auch immer kreis aufruft)
mehr Kontrolle, aber die Schnittstelle ware dadurch weniger iibersichtlich.

Die Schnittstelle einer Funktion fasst zusammen, wie sie verwendet wird: Wie
heilen die Parameter? Was macht die Funktion? Und was ist der Riickgabewert?
Eine Schnittstelle ist dann iibersichtlich, wenn sie »so einfach wie méglich, aber
nicht einfacher ist« (Einstein).

— r berechnet.

In diesem Beispiel gehort r zur Schnittstelle, weil es den zu zeichnenden Kreis
bestimmt. n ist dagegen nicht ganz zutreffend, weil es sich mehr auf die Einzelheiten
dazu bezieht, wie der Kreis gezeichnet werden soll.

Statt die Schnittstelle uniibersichtlicher zu machen, wahlen wir fiir n besser einen
Wert, der vom umfang abhangt:
def kreis(t, r):

umfang = 2 * math.pi * r

n = int(umfang / 3) + 1

laenge = umfang / n

polygon(t, n, laenge)
Nun entspricht die Anzahl der Segmente (ungefahr) umfang / 3, wodurch die Lange
jedes Segments (ungefdhr) 3 betrdgt. Das ist klein genug, damit der Kreis hiibsch
aussieht, und genug, um Kreise beliebiger Grolie effizient und angemessen zu
zeichnen.

Refactoring

Als ich kreis geschrieben habe, konnte ich polygon wiederverwenden, weil ein
Polygon mit beliebig vielen Seiten eine gute Anndherung an einen Kreis ist. Aber
bogen ist nicht ganz so kooperativ. Wir kénnen weder polygon noch kreis
verwenden, um einen Bogen zu zeichnen.

Eine Alternative besteht darin, mit einer Kopie von polygon zu beginnen und sie in
einen bogen umzuwandeln. Das Ergebnis konnte folgendermafen aussehen:
def bogen(t, r, winkel):
bogen_laenge = 2 * math.pi * r * winkel / 360
n = int(bogen_laenge / 3) + 1
schritt_laenge = bogen_laenge / n
schritt_winkel = float(winkel) / n

for iin range(n):
fd(t, schritt_laenge)
It(t, schritt_winkel)
Die zweite Halfte dieser Funktion sieht wie polygon aus, aber wir kénnen polygon
nicht verwenden, ohne die Schnittstelle zu d&ndern. Wir kénnten zwar polygon so
verallgemeinern, dass die Funktion einen Winkel als drittes Argument erwartet.
Aber dann wére polygon kein passender Name mehr! Verwenden wir lieber die
allgemeinere Funktion polylinie:
def polylinie(t, n, laenge, winkel):
for iin range(n):

fd(t, laenge)
It(t, winkel)

Nun kénnen wir polygon und bogen so umschreiben, dass sie polylinie verwenden:

def polygon(t, n, laenge):

winkel = 360.0/ n
polylinie(t, n, laenge, winkel)

def bogen(t, r, winkel):

bogen_laenge = 2 * math.pi * r * winkel / 360
n = int(bogen_laenge / 3) + 1

schritt_laenge = bogen_laenge / n
schritt_winkel = float(winkel) / n

polylinie(t, n, schritt_laenge, schritt_winkel)

Zum Abschluss kdnnen wir kreis noch so umschreiben, dass die Funktion bogen
verwendet wird:

def kreis(t, r):

bogen(t, r, 360)

Den Vorgang, ein Programm neu zu arrangieren, um Funktionsschnittstellen zu
verbessern und die Wiederverwendung von Code zu erleichtern, nennt man
Refactoring. In diesem Fall haben wir festgestellt, dass bogen und polygon
dhnlichen Code enthalten haben, deshalb haben wir ihn in die Funktion polylinie
»ausgeklammert«.

Wenn wir entsprechend vorausgeplant hétten, hédtten wir vielleicht zuerst polylinie
geschrieben und uns das Refactoring gespart. Aber oft wissen Sie am Anfang eines
Projekts nicht genug, um alle Schnittstellen entsprechend zu entwerfen. Sobald Sie
mit dem Code angefangen haben, verstehen Sie die Probleme besser. Manchmal ist
Refactoring ein Zeichen dafiir, dass Sie etwas gelernt haben.

Entwicklungsplan

Ein Entwicklungsplan ist ein Verfahren zum Schreiben von Programmen. Die
beiden Ansitze, die wir in dieser Fallstudie herangezogen haben, waren
»Datenkapselung« und »Generalisierung«. Die Schritte dieses Verfahrens lauten:

1.
2.

3.

Beginnen Sie mit einem kleinen Programm ohne Funktionsdefinitionen.
Sobald das Programm funktioniert, kapseln Sie es in eine Funktion und geben
ihr einen Namen.

Generalisieren Sie die Funktion durch entsprechende Parameter.
Wiederholen Sie die Schritte 1 bis 3, bis Sie eine Reihe entsprechender
Funktionen haben. Kopieren Sie den funktionierenden Code und fiigen Sie in
ein, um sich das erneute Tippen (und das erneute Debugging) zu ersparen.
Suchen Sie nach Méglichkeiten, das Programm durch Refactoring zu
verbessern. Wenn Sie beispielsweise an mehreren Stellen dhnlichen Code
verwenden, sollten Sie dariiber nachdenken, diesen in eine entsprechende
allgemeinere Funktion auszulagern.

Dieses Verfahren hat auch Nachteile (Alternativen dazu sehen wir uns spéter an),

kann aber sehr niitzlich sein, wenn Sie nicht von vornherein wissen, wie Sie das
Programm in Funktionen aufteilen kénnen. Bei diesem Ansatz gestalten Sie das
Programm immer wieder um, wdhrend Sie daran arbeiten.

Docstring

Ein Docstring ist ein String am Anfang einer Funktion, der die Schnittstelle erklart
(»doc« steht dabei fiir Dokumentation). Hier ein Beispiel:
def polylinie(t, n, laenge, winkel):
""Zeichnet n Liniensegmente.
t: Turtle-Objekt
n: Anzahl der Liniensegmente

laenge: Lange der einzelnen Segmente
winkel: Winkel zwischen den Segmenten in Grad

for iin range(n):
fd(t, laenge)
It(t, winkel)
Dieser Docstring steht in drei Anfithrungszeichen hintereinander. So etwas
bezeichnet man auch als mehrzeiligen String, weil er mehr als eine Zeile umfassen
kann.

Das ist kurz und knapp, enthdlt aber die wesentlichen Informationen fiir jemanden,
der diese Funktion verwenden mdochte. Der Docstring erklért exakt, was die Funktion
macht (ohne auf Einzelheiten einzugehen), welche Auswirkungen die jeweiligen
Parameter auf das Verhalten der Funktion haben und welcher Typ jeweils erwartet
wird (falls das nicht offensichtlich ist).

Diese Art der Dokumentation ist ein wichtiger Teil der Gestaltung von
Schnittstellen. Eine gut durchdachte Schnittstelle sollte einfach zu erkldren sein.
Sollten Sie Schwierigkeiten haben, eine Ihrer Funktionen zu beschreiben, kénnte das
ein Hinweis darauf sein, dass die Schnittstelle verbesserungsbediirftig ist.

Debugging

Eine Schnittstelle ist wie ein Vertrag zwischen einer Funktion und dem Aufrufenden.
Der Aufrufende stimmt zu, bestimmte Parameter zur Verfiigung zu stellen, und die
Funktion willigt ein, eine bestimmte Aufgabe zu erfiillen.

polylinie benétigt beispielsweise vier Argumente: t muss eine Turtle sein, nist die
Anzahl der Liniensegmente und muss daher ein Integer sein. laenge muss eine
positive Zahl sein, und winkel muss eine Zahl sein, die sich in Grad auswerten l&sst.

Diese Anforderungen nennt man Vorbedingungen, weil sie erfiillt sein miissen,
bevor die Funktion mit der Ausfiihrung beginnen kann.

Die Bedingungen gegen Ende der Funktion heilSen entsprechend Nachbedingungen.

Zu den Nachbedingungen gehoéren der gewiinschte Effekt der Funktion
(beispielsweise das Zeichnen von Liniensegmenten) sowie jegliche Nebeneffekte
(Bewegungen der Schildkréte oder andere Anderungen in der jeweiligen Welt).

Vorbedingungen unterliegen der Verantwortung des Aufrufenden. Falls der
Aufrufende eine (korrekt dokumentierte!) Vorbedingung nicht erfiillt und deshalb
die Funktion nicht korrekt arbeitet, liegt der Fehler beim Aufrufenden, nicht bei der
Funktion.

Glossar

Instanz:
Mitglied einer Gruppe. Die TurtleWorld in diesem Kapitel ist Mitglied einer
Gruppe von TurtleWorlds.

Schleife:
Teil eines Programms, der wiederholt ausgefiihrt wird.

Datenkapselung:
Vorgang, eine Folge von Anweisungen in eine Funktionsdefinition umzuwandeln.

Generalisierung:
Verfahren, etwas unnotig Spezifisches (etwa eine Zahl) durch etwas
Allgemeineres (etwa eine Variable oder einen Parameter) zu ersetzen.
Schliisselwortargument:
Argument, das den Namen des Parameters als »Schliisselwort« enthdlt.

Schnittstelle:
Beschreibung, wie eine Funktion zu verwenden ist, einschlieflich der Namen und
Beschreibungen der Argumente sowie des Riickgabewerts.

Refactoring:
Vorgang, die Funktionsschnittstellen und andere Qualitédten eines Programms zu
verbessern.

Entwicklungsplan:
Verfahren zum Schreiben von Programmen.

Docstring:

String in einer Funktionsdefinition, der die Schnittstelle der Funktion
dokumentiert.

Vorbedingung:

Bedingung, die vom Aufrufenden erfiillt werden muss, bevor eine Funktion
ausgefiihrt werden kann.

Nachbedingung:
Anforderung, die von einer Funktion erfiillt werden muss, bevor sie beendet wird.

Ubungen
Den Code fiir dieses Kapitel finden Sie in der Beispieldatei polygon.py.

1. Schreiben Sie entsprechende Docstrings fiir polygon, bogen und kreis.

2. Zeichnen Sie ein Stapeldiagramm, das den Zustand des Programms bei der
Ausfiihrung von kreis(tim, radius) darstellt. Die Berechnungen kénnen Sie
entweder von Hand durchfiihren oder entsprechende print-Anweisungen in den
Code einfiigen.

3. Die Version von bogen im ,,Refactoring” ist nicht allzu genau, weil die lineare
Anndherung an einen Kreis niemals einen echten Kreis ergibt. Als Konsequenz
davon landet die Schildkréte einige Einheiten von der korrekten Position
entfernt. Meine Losung zeigt eine Moglichkeit, den Effekt dieser Abweichung
zu reduzieren. Lesen Sie den Code und schauen Sie, ob er fiir Sie Sinn ergibt.
Wenn Sie ein Diagramm zeichnen, finden Sie vielleicht heraus, wie er
funktioniert.

Listing 4.1

Abbildung 4.1 Turtle-Blumen.
Schreiben Sie eine halbwegs allgemeine Sammlung von Funktionen, die Blumen wie
die in Abbildung 4.1 zeichnen kénnen.
Losung: blumen.py, benétigt polygon.py.
Listing 4.2

Abbildung 4.2 Turtle-Kuchen.

Schreiben Sie eine angemessen allgemeine Sammlung von Funktionen, die Formen
wie die in Abbildung 4.2 zeichnen kann.

Losung: kuchen.py.

Listing 4.3

Die Buchstaben des Alphabets kénnen aus einer {iberschaubaren Anzahl
grundlegender Elemente aufgebaut werden, wie etwa vertikalen und horizontalen
Linien sowie einigen Kurven. Gestalten Sie eine Schrift, die mit einer minimalen

Anzahl grundlegender Elemente gezeichnet werden kann, und schreiben Sie die
Funktionen, die die Buchstaben des Alphabets zeichnen.

Schreiben Sie jeweils eine Funktion fiir jeden Buchstaben mit den Namen
zeichne_a, zeichne_b usw. und legen Sie die Funktionen in einer Datei mit dem
Namen buchstaben.py ab. Die Datei schreibmaschine.py enthdlt eine
»Schildkrotenschreibmaschine«, mit der Sie Ihre Funktionen testen konnen.

Losung: buchstaben.py, benétigt aullerdem polygon.py.
Listing 4.4
Informieren Sie sich {iber Spiralen unter http://de.wikipedia.org/wiki/Spirale.

Schreiben Sie dann ein Programm, das eine archimedische Spirale zeichnet (oder
einen der anderen Typen).

Losung: spirale.py.
Listing 4.5

http://de.wikipedia.org/wiki/Spirale

Kapitel 5. Bedingungen und Rekursion

Modulus-Operator

Der Modulus-Operator arbeitet mit ganzen Zahlen und gibt den Rest zuriick, der
ibrig bleibt, wenn der erste Operand durch den zweiten dividiert wird. In Python
wird fiir den Modulus-Operator das Prozentzeichen verwendet (%). Die Syntax ist
dieselbe wie fiir andere Operatoren:

>>> quotient=7/3

>>> print quotient

2

>>>rest=7%3

>>> print rest
1

7 dividiert durch 3 ist 2, Rest 1.

Der Modulus-Operator ist iiberraschend niitzlich. Damit kdnnen Sie beispielsweise
ermitteln, ob eine Zahl durch eine andere teilbar ist — wenn X % Yy gleich 0 ist, dann
ist X durch y teilbar.

Aullerdem kénnen Sie damit die ganz rechts stehenden Ziffern einer Zahl
extrahieren. So liefert z. B. X % 10 die ganz rechts stehende Stelle von X (im
Dezimalsystem). Analog dazu liefert X % 100 die letzten beiden Stellen.

Boolesche Ausdriicke

Ein Boolescher Ausdruck ist ein Ausdruck, der entweder wahr oder falsch ist. In
den folgenden Beispielen wird der Operator == verwendet, der zwei Operanden
vergleicht. Wenn diese gleich sind, liefert er den Wert True zuriick, ansonsten den
Wert False:

>>>5==

True

>>> 5 ==

False

True und False sind spezielle Werte vom Typ bool. Es sind keine Strings:

>>> type(True)
<type 'bool'>
>>> type(False)
<type 'bool'>

Der Operator == ist ein relationaler Operator. Die anderen lauten:

xl=y # x ist ungleich y
X>y # x ist groBer als y
X<y # x ist kleiner als y

X>=y # x ist groBer gleich y

X<=y # x ist kleiner gleich y

Auch wenn Thnen diese Berechnungen wahrscheinlich bekannt vorkommen, so
unterscheiden sich die Python-Symbole von den mathematischen Symbolen. Ein
hdufig vorkommender Fehler besteht in der Verwendung eines einfachen
Gleichheitszeichens (=) statt des doppelten Gleichheitszeichens (==). Denken Sie
daran: = ist ein Zuweisungsoperator, == ist ein relationaler Operator. =< und =>
gibt es nicht als Operatoren.

Logische Operatoren

Es gibt drei logische Operatoren: and, or und not. Die semantische Bedeutung
dieser Operatoren ist der wortlichen Bedeutung recht dhnlich. Beispielsweise ist X >
0 and x < 10 nur wahr, wenn X grofer als 0 und kleiner als 10 ist.

N%2 == 0 or n%3 == 0 ist wahr, wenn eine der beiden Bedingungen zutrifft —
wenn die Zahl also entweder durch 2 oder 3 teilbar ist.

Der not-Operator negiert einen Booleschen Ausdruck. not (x > y) ist also wabhr,
wenn X > Y falsch ist — also nur dann, wenn X kleiner gleich y.

Streng genommen sollten die Operanden von logischen Operatoren Boolesche
Ausdriicke sein. Aber Python ist nicht sehr streng. Jegliche Zahl ungleich null wird
als »wahr« interpretiert.

>>> 17 and True

True
Diese Flexibilitdt kann niitzlich sein, es gibt aber auch einige Feinheiten, die
verwirrend sind. Solche Fille sollten Sie vermeiden (es sei denn, Sie wissen, was Sie
tun).

Bedingte Ausfiihrung

Damit wir sinnvolle Programme schreiben kdnnen, brauchen wir fast immer die
Moglichkeit, Bedingungen zu iiberpriifen und das Verhalten des Programms
entsprechend zu dndern. Bedingte Anweisungen geben uns genau diese Moglichkeit.
Die einfachste Form ist die if-Anweisung:

if x> 0:

print 'x ist positiv'

Den Booleschen Ausdruck nach if nennt man eine Bedingung. Wenn sie zutrifft,
wird die eingeriickte Anweisung ausgefiihrt. Falls nicht, passiert nichts.

if-Anweisungen haben die gleiche Struktur wie Funktionsdefinitionen: ein Header
gefolgt von einem eingeriickten Body. Solche Anweisungen nennt man
Verbundanweisung.

Es gibt keine Begrenzung fiir die Anzahl der Anweisungen im Body. Aber er muss
mindestens eine enthalten. Manchmal ist es niitzlich, einen Body ohne Anweisungen
zu haben (normalerweise als Platzhalter fiir Code, den Sie noch nicht geschrieben
haben). In diesem Fall kénnen Sie die pass-Anweisung verwenden, die einfach
nichts tut:

if x<O:
pass # Wir missen uns um negative Werte kiimmern!

Alternativer Programmablauf

Eine zweite Form der if-Anweisung ist der alternative Programmablauf, bei dem
es zwei Moglichkeiten gibt und die Bedingung dariiber entscheidet, welche davon
ausgefiihrt wird. Die Syntax sieht folgendermalSen aus:
if x%2 == 0:
print 'x ist gerade'
else:
print 'x ist ungerade'
Wenn der Rest bei der Division von X geteilt durch 2 gleich O ist, wissen wir, dass X
gerade ist, und das Programm zeigt eine entsprechende Meldung an. Trifft die
Bedingungen nicht zu, werden die alternativen Anweisungen ausgefiihrt. Nachdem
die Bedingung wahr oder falsch sein muss, wird genau eine der beiden Alternativen
ausgefiihrt. Diese Alternativen bezeichnet man als Verzweigungen, weil sie Zweige
im Programmablauf darstellen.

Verkettete Bedingungen

Manchmal gibt es mehr als zwei Moglichkeiten, und wir brauchen entsprechend
mehr als zwei Verzweigungen. Eine Moglichkeit, eine solche Berechnung
auszudriicken, bieten verkettete Bedingungen:

if x<vy:

print 'x ist kleiner als y'
elif x>vy:

print 'x ist groRer als y'
else:

print 'x und y sind gleich'

elif ist eine Abkiirzung fiir »else if«. Auch hier wird wieder genau eine Verzweigung
ausgefiihrt. Es gibt keine Begrenzung fiir die Anzahl der elif-Anweisungen. Wenn es
eine else-Klausel gibt, muss sie am Ende stehen. Aber es muss keine geben.

if auswahl =="'a":
zeichne_a()

elif auswahl =="'b":
zeichne_Db()

elif auswahl == 'c":
zeichne_c()

Die Bedingungen werden nacheinander tiberpriift. Wenn die erste falsch ist, wird die
ndchste tiberpriift usw. Trifft eine der Bedingungen zu, wird die entsprechende
Verzweigung ausgefiihrt und die Anweisung beendet. Selbst wenn mehr als eine
Bedingung wahr ist, wird nur die erste entsprechende Verzweigung ausgefiihrt.

Verschachtelte Bedingungen

Bedingungen kénnen auch ineinander verschachtelt werden. Wir hétten die
dreiteilige Entscheidung aus dem vorherigen Beispiel auch folgendermalSen
ausdriicken konnen:
if x==y:
print 'x und y sind gleich'
else:
if x<vy:
print 'x ist kleiner als y'
else:
print 'x ist groer als y'
Die dullere Bedingung enthélt zwei Verzweigungen. Die erste Verzweigung enthalt
eine einfache Anweisung, die zweite eine weitere if-Anweisung, die ihrerseits zwei
Verzweigungen hat. Diese beiden Verzweigungen sind jeweils einfache
Anweisungen, hitten aber auch eine bedingte Anweisung sein kénnen.

Obwohl die Struktur der Anweisungen durch die Einriickung erkennbar ist, sind
verschachtelte Bedingungen hiufig nicht schnell zu iiberblicken. Daher sollten Sie
sie wenn moglich vermeiden.

Logische Operatoren bieten haufig eine Méglichkeit, verschachtelte Bedingungen zu
vereinfachen. Beispielsweise konnen wir den folgenden Code auch in einer einzigen
Bedingung schreiben:
if 0 <x:
if x < 10:
print 'x ist eine positive einstellige Zahl.'
Die print-Anweisung wird nur ausgefiihrt, wenn beide Bedingungen erfiillt sind.
Entsprechend konnen wir dasselbe Ergebnis auch mit dem and-Operator erreichen:

if 0 <xand x<10:
print 'x ist eine positive einstellige Zahl.'

Rekursion

Eine Funktion darf eine andere aufrufen. Es ist sogar zuldssig, dass sich eine
Funktion selbst aufruft. IThnen mag auf den ersten Blick zwar nicht klar sein, wozu
das gut sein soll, wie Sie aber sehen werden, kann das eines der magischsten Dinge
sein, die ein Programm tun kann. Sehen Sie sich beispielsweise die folgende
Funktion an:

def countdown(n):
if n<=0:
print 'Bumm!'
else:
print n
countdown(n-1)
Wenn n gleich O oder negativ, wird das Wort »Bumm!« ausgegeben. Ansonsten wird
n ausgegeben, eine Funktion mit dem Namen countdown wird aufgerufen — das ist

dieselbe Funktion — und n-1 als Argument iibergeben.
Was passiert, wenn wir die Funktion folgendermalSen aufrufen?
>>> countdown(3)

Die Ausfiihrung von countdown beginnt mit n=3. Da n groler ist als 0, gibt die
Funktion 3 aus und ruft sich selbst auf ...

Die Ausfithrung von countdown beginnt mit n=2. Da n groRer ist als 0, gibt die Funktion 2 aus und ruft
sich selbst auf ...

Die Ausfithrung von countdown beginnt mit n=1. Da n grofer ist als 0, gibt die Funktion 1 aus und
ruft sich selbst auf ...

Die Ausfithrung von countdown beginnt mit n=0. Da n nicht groRer als 0 ist, gibt die Funktion
»Bumm!« aus und kehrt zuriick.

Der countdown fiir n=1 kehrt zuriick.

Der countdown fiir n=2 kehrt zuriick.
Der countdown fiir n=3 kehrt zurtick.

Und dann befinden Sie sich wieder in __main__. Also sieht die Ausgabe insgesamt
SO aus:

3

2

1

Bumm!
Eine Funktion, die sich selbst aufruft, nennt man rekursiv, den Vorgang nennt man
Rekursion.

Als weiteres Beispiel konnen wir eine Funktion schreiben, die einen String n Mal
ausgibt.
def print_n(s, n):
if n<=0:
return
print s
print_n(s, n-1)
Wenn n <= 0, beendet die return-Anweisung die Funktion. Der Programmablauf
kehrt sofort zuriick zum Aufrufenden, und die verbleibenden Zeilen der Funktion
werden nicht ausgefiihrt.

Die restliche Funktion ist dhnlich wie countdown: Wenn n gréRer als 0 ist, wird s
angezeigt, und die Funktion ruft sich selbst auf, um s weitere n-1 Male anzuzeigen.
Die Anzahl der ausgegebenen Zeilen ist 1 + (n - 1), also gleich n.

Fiir einfache Beispiele wie dieses ist es vermutlich einfacher, eine for-Schleife zu
verwenden. Aber wir werden spéter noch Beispiele sehen, die mit einer for-Schleife
nur sehr schwer zu schreiben sind, mit Rekursion jedoch umso einfacher. Insofern
konnen wir damit gar nicht friih genug anfangen!

Stapeldiagramme fiir rekursive Funktionen

In ,,Stapeldiagramme* haben wir den Zustand des Programms wadhrend eines
Funktionsaufrufs mit einem Stapeldiagramm dargestellt. Mit derselben Art von
Diagramm kann man auch eine rekursive Funktion interpretieren.

Bei jedem Funktionsaufruf erstellt Python einen neuen Funktionsnamen, der die
lokalen Variablen und Parameter der Funktion enthélt. Fiir eine rekursive Funktion
kann es auch mehr als einen Rahmen auf dem Stapel zur selben Zeit geben.

Abbildung 5.1 zeigt ein Stapeldiagramm fiir countdown mit n = 3.

<module=

countdown n—s—23

countdown n—2

countdown n—s- 1

countdown n—=20

Abbildung 5.1 Stapeldiagramm.

Wie iiblich befindet sich ganz oben im Stapel der Frame fiir __main__. Er ist leer,
weil wir in__main__ noch keine Variablen erstellt oder Argumente {ibergeben
haben.

In den vier Rahmen fiir countdown hat der Parameter n jeweils unterschiedliche
Werte. Den untersten Teil des Stapels, wenn n=0, nennt man den Basisfall. Er macht
keinen rekursiven Aufruf, daher gibt es keine weiteren Kasten.

Zeichnen Sie ein Stapeldiagramm fiir print_n mit s = 'Hallo' und n=2.
Listing 5.1

Schreiben Sie eine Funktion mit dem Namen mach_n, die ein Funktionsobjekt und

die Zahl n als Argumente entgegennimmt und die angegebene Funktion n Mal
aufruft.

Listing 5.2

Endlose Rekursion

Wenn eine Rekursion niemals einen Basisfall erreicht, setzen sich die rekursiven
Aufrufe endlos fort, und das Programm wird nie beendet. Diesen Fall bezeichnet
man als endlose Rekursion — im Allgemeinen keine so gute Idee. Dies ist ein
minimales Programm mit einer endlosen Rekursion:
def rekursiere():
rekursiere()
In den meisten Programmierumgebungen lduft ein Programm mit einer endlosen
Rekursion nicht wirklich fiir immer. Wenn die maximale Rekursionstiefe erreicht
ist, gibt Python eine Fehlermeldung aus:
File "<stdin>", line 2, in rekursiere

File "<stdin>", line 2, in rekursiere
File "<stdin>", line 2, in rekursiere

File “<stdi.n>", line 2, in rekursiere
RuntimeError: Maximum recursion depth exceeded
Dieser Traceback ist ein bisschen groRer als der, den wir im vorherigen Kapitel
gesehen haben. Wenn dieser Fehler auftritt, befinden sich 1.000 rekursiere-Frames
auf dem Stapel!

Tastatureingaben

Die Programme, die wir bisher geschrieben haben, sind insofern ein bisschen
unhoflich, als sie nicht auf Benutzereingaben reagieren und immer dasselbe tun.

Python 2 bietet eine integrierte Funktion mit dem Namen raw_input, die Eingaben
iber die Tastatur abruft. In Python 3 heif3t sie input. Wenn Sie diese Funktion
aufrufen, stoppt das Programm und wartet darauf, dass der Benutzer etwas eingibt.
Wenn der Benutzer die Eingabetaste driickt, wird das Programm weiter ausgefiihrt,
und raw_input liefert die Benutzereingabe als String.

>>> eingabe = raw_input()

Worauf warten Sie?

>>> print eingabe

Worauf warten Sie?
Bevor Sie auf die Benutzereingabe warten, sollten Sie den Benutzer auch wissen
lassen, was er eingeben soll. raw_input nimmt eine Eingabeaufforderung als

Argument entgegen:

>>> name = raw_input("Wie...heilen Sie?\n")

Wie...heilRen Sie?

Arthur, Konig der Briten!

>>> print name

Arthur, Konig der Briten!
Die Zeichenfolge \n am Ende der Eingabeaufforderung ist ein Zeilenvorschub — ein
Sonderzeichen, das einen Zeilenumbruch erzeugt. So erscheint die Benutzereingabe

unterhalb der Eingabeaufforderung.

Wenn Sie erwarten, dass der Benutzer einen Integer eingibt, kénnen Sie versuchen,
den Riickgabewert in int zu konvertieren:

>>> eingabeaufforderung = 'Wie hoch... ist die Fluggeschwindigkeit einer unbeladenen Schwalbe?\n'

>>> geschwindigkeit = raw_input(eingabeaufforderung)

Wie hoch... ist die Fluggeschwindigkeit einer unbeladenen Schwalbe?

17

>>> int(geschwindigkeit)

17
Gibt der Benutzer allerdings etwas anderes als einen String von Ziffern ein, erhalten
Sie einen Fehler:

>>> geschwindigkeit = raw_input(eingabeaufforderung)

Wie hoch... ist die Fluggeschwindigkeit einer unbeladenen Schwalbe?

Meinen Sie eine afrikanische oder eine europaische Schwalbe?

>>> int(geschwindigkeit)

ValueError: invalid literal for int()
Wir werden spéter darauf zu sprechen kommen, wie Sie am besten mit diesen Fehler
umgehen.

Debugging

Der Traceback, den Python anzeigt, wenn ein Fehler auftritt, enthdlt eine Menge
Informationen — eigentlich fast schon zu viele, insbesondere, wenn sich viele Frames
auf dem Stapel befinden. Die niitzlichsten Teile sind normalerweise:

m die Art von Fehler und
m wo der Fehler aufgetreten ist.

Syntaxfehler sind normalerweise einfach zu finden, aber es gibt einige Fallen.
Leerraum kann beispielsweise ein tiickisches Problem sein, weil Leerzeichen und
Tabs unsichtbar sind und wir sie tiblicherweise ignorieren.
>>>x=5
>>> y=6
File "<stdin>", line 1
y=6
A

SyntaxError: invalid syntax

In diesem Beispiel besteht das Problem darin, dass die zweite Zeile um ein
Leerzeichen eingeriickt ist. Die Fehlermeldung zeigt aber auf y, was in diesem Fall
irrefiihrend ist. Im Allgemeinen kennzeichnen Fehlermeldungen die Stelle, an der
das Problem entdeckt wurde. Der eigentliche Fehler kann aber auch frither im Code
entstanden sein, manchmal in einer der vorhergehenden Zeilen.

Dasselbe gilt fiir Laufzeitfehler.

Angenommen, Sie versuchen, ein Signal-Rausch-Verhdltnis in Dezibel zu
berechnen. Die Formel lautet <542V e = 10los 100 pws iscn) In
Python konnten Sie ungefdhr Folgendes schreiben:

import

signalleistung = 9

rauschleistung = 10

verhaeltnis = signalleistung / rauschleistung

dezibel = 10 * math.log10(verhaeltnis)
print dezibel

In Python 2 erhalten Sie aber eine Fehlermeldung.

Traceback (most recent call last):
File "snr.py", line 5, in ?
dezibel = 10 * math.log10(verhaeltnis)

OverflowError: math range error
Die Fehlermeldung deutet auf einen Fehler in Zeile 5 hin. Aber an dieser Stelle ist
nichts verkehrt. Um den wirklichen Fehler zu finden, erweist es sich als niitzlich,
den Wert von verhaeltnis auszugeben, der in Wahrheit 0 ist. Das Problem liegt
eigentlich in Zeile 4, weil bei der Division von zwei Integern die Nachkommastellen
ignoriert werden. Die Losung besteht darin, Signalleistung und Rauschleistung als
Flielkommawerte anzugeben.

Ublicherweise zeigen Ihnen die Fehlermeldungen, wo das Problem erkannt wurde.
Das ist aber oft nicht die Stelle, an der es verursacht wurde.

In Python 3 macht dieses Beispiel keine Schwierigkeiten. Der Divisionsoperator
fiihrt auch mit ganzzahligen Operanden eine Fliefkommadivision durch.

Glossar

Modulus-Operator:

Operator (%), der mit Integer-Werten funktioniert und den Rest zuriickliefert, der
bei der Division des einen Operanden durch den anderen zuriickbleibt.

Boolescher Ausdruck:
Ausdruck, dessen Wert entweder True oder False ist.

Relationale Operatoren:

Operatoren, die zwei Operanden vergleichen: ==, 1=, > < >= und <=.

Logische Operatoren:
Operatoren, die Boolesche Ausdriicke kombinieren: and, or und not.

Bedingte Anweisung:
Anweisung, die den Programmablauf in Abhdngigkeit von einer Bedingung
steuert.
Bedingung:
Boolescher Ausdruck in einer bedingten Anweisung, der dariiber entscheidet,
welche Verzweigung ausgefiihrt wird.
Verbundanweisung;:
Anweisungen, die aus einem Header und einem Body besteht. Der Header endet
mit einem Doppelpunkt (:). Der Body ist relativ zum Header eingertickt.
Verzweigung:
Einer der alternativen Codebldcke in einer bedingten Anweisung.

Verkettete Bedingung:
Bedingte Anweisung mit einer Reihe von alternativen Verzweigungen.

Verschachtelte Bedingung:

Bedingte Anweisung, die in einer Verzweigung einer anderen bedingten
Anweisung steht.

Rekursion:
Aufruf derselben Funktion, die gerade ausgefiihrt wird.

Basisfall:

Bedingte Verzweigung in einer rekursiven Funktion, die keinen rekursiven Aufruf
macht.

Endlose Rekursion:

Rekursion, fiir die es entweder keinen Basisfall gibt oder die diesen nie erreicht.
Eine endlose Rekursion erzeugt nach einer gewissen Zeit einen Laufzeitfehler.

Ubungen

Der »GroRle Fermatsche Satz« besagt, dass es keine ganzen Zahlen a, b und c gibt,
fir die gilt:

a+ b ="

fiir Werte von n grofSer als 2.

1. Schreiben Sie eine Funktion beweis fermat, die vier Parameter
entgegennimmt — a, b, ¢ und n —und tiberpriift, ob Fermats Theorem einer
Priifung standhélt. Wenn n grofSer ist als 2 und sich herausstellt, dass
a+b"=c"
soll das Programm ausgeben: »Heiliger Strohsack, Fermat hatte nicht recht!«,
ansonsten soll es ausgeben: »Nein, das funktioniert nicht.«

2. Schreiben Sie eine Funktion, die den Benutzer auffordert, Werte fiir a, b, ¢ und
n einzugeben, diese in Integer konvertiert und beweis_fermat verwendet, um
herauszufinden, ob sie gegen Fermats Theorem verstofSen.

Listing 5.3

Wenn Sie drei Stockchen bekommen, ist es nicht garantiert, dass Sie damit ein
Dreieck bilden konnen. Wenn beispielsweise eines der Stéckchen eine Lange von 25
Zentimetern hat und die anderen beiden jeweils nur einen Zentimeter lang sind, gibt
es keine Moglichkeit, dass sich die beiden kurzen Stéckchen in der Mitte beriihren.
Es gibt einen einfachen Test, um herauszufinden, ob es mit den drei gegebenen
Seitenldngen moglich ist, ein Dreieck zu bilden:

Ist eine der drei Seitenldngen groler als die Summe der anderen beiden, kénnen Sie damit kein Dreieck

aufbauen. (Wenn die Summe zweier Seitenldngen gleich der dritten ist, ergibt sich ein sogenanntes
»degeneriertes« Dreieck.)

1. Schreiben Sie eine Funktion mit dem Namen ist_dreieck, die drei Integer als
Argumente entgegennimmt und mit »Ja« oder »Nein« auf die Frage antwortet,
ob Sie mit den entsprechenden Seitenldngen ein Dreieck bilden kénnen.

2. Schreiben Sie eine Funktion, die den Benutzer zur Eingabe dreier Seitenldngen
auffordert, diese in Integer konvertiert und anschliefend mit ist_dreieck
iberpriift, ob sich damit ein Dreieck bilden lasst.

Listing 5.4
Die folgende Ubung verwendet TurtleWorld aus Kapitel 4:

Lesen Sie die folgende Funktion und versuchen Sie, herauszufinden, was sie macht.

Fiihren Sie sie anschlielend aus (siehe die Beispiele in Kapitel 4).
def zeichne(t, laenge, n):
if n==0:
return
winkel = 50
fd(t, laenge*n)
It(t, winkel)
zeichne(t, laenge, n-1)
rt(t, 2*winkel)
zeichne(t, laenge, n-1)
It(t, winkel)
bk(t, laenge*n)

Listing 5.5

Die Koch-Kurve ist ein Fraktal, das ungefdhr wie die Kurve in Abbildung 5.2
aussieht. Damit Sie eine Koch-Kurve mit der Lange x zeichnen kénnen, miissen Sie
Folgendes tun:

1.

Nk WwN

Zeichnen Sie eine Koch-Kurve mit der Lange x/3.
Machen Sie eine Drehung nach links um 60 Grad.
Zeichnen Sie eine Koch-Kurve mit der Lange x/3.
Machen Sie eine Drehung nach rechts um 120 Grad.
Zeichnen Sie eine Koch-Kurve mit der Lange x/3.
Machen Sie eine Drehung nach links um 60 Grad.
Zeichnen Sie eine Koch-Kurve mit der Lange x/3.

Abbildung 5.2 Koch-Kurve

Es gibt eine Ausnahme fiir den Fall, dass x kleiner als 3 ist: In diesem Fall zeichnen
Sie einfach eine gerade Linie mit der Lange x.

1.

Schreiben Sie eine Funktion mit dem Namen koch, die eine Schildkrote und
eine Ldnge als Parameter erwartet, um mit der Schildkréte eine Koch-Kurve
mit der angegebenen Lange zu zeichnen.

Schreiben Sie eine Funktion mit dem Namen schneeflocke, die mithilfe dreier
Koch-Kurven den Umriss einer Schneeflocke zeichnet.

Losung: koch.py.

. Es gibt mehrere Moglichkeiten, eine Koch-Kurve zu verallgemeinern. Schauen

Sie sich die Beispiele unter http://de.wikipedia.org/wiki/Koch-Kurve an und
implementieren Sie Thren Favoriten.

Listing 5.6

http://de.wikipedia.org/wiki/Koch-Kurve

Kapitel 6. Funktionen mit Riickgabewert

Riickgabewerte

Einige der integrierten Funktionen, die wir bisher verwendet haben — beispielsweise
die mathematischen Funktionen —, liefern ein Ergebnis. Der Aufruf der Funktion
erzeugt einen Wert, den wir tiblicherweise einer Variablen zuweisen oder als Teil
eines Ausdrucks verwenden.

e = math.exp(1.0)

hoehe = radius * math.sin(radiant)
Die Funktionen, die wir bisher geschrieben haben, liefern dagegen kein Ergebnis. Sie
geben entweder etwas aus oder bewegen Schildkroten, aber ihr Riickgabewert ist
None.

In diesem Kapitel schreiben wir (endlich) Funktionen mit Riickgabewert. Das erste
Beispiel ist die Funktion flaeche, die die Fldache eines Kreises mit dem angegebenen
Radius zurtickgibt:
def flaeche(radius):
temp = math.pi * radius**2
return temp
Die return-Anweisung haben wir bereits gesehen, aber in einer Funktion mit
Riickgabewert umfasst die return-Anweisung auch einen Ausdruck. Eine solche
Anweisung bedeutet: »Kehre sofort aus dieser Funktion zuriick und verwende den
folgenden Ausdruck als Riickgabewert.« Der Ausdruck kann beliebig kompliziert
sein. Also kénnen wir diese Funktion auch kiirzer schreiben:
def flaeche(radius):
return math.pi * radius**2
Andererseits erleichtern temporare Variablen wie beispielsweise temp das
Debugging.

Manchmal ist es niitzlich, mehrere return-Anweisungen zu schreiben — jede in einer
anderen Verzweigung einer Bedingung:
def absoluter_wert(x):
if x<O0:
return -x
else:
return x
Da diese return-Anweisungen fiir alternative Bedingungen gelten, wird nur eine
ausgefiihrt.

Sobald eine return-Anweisung ausgefiihrt wird, endet die Funktion, ohne
nachfolgende Anweisungen auszufiihren. Code, der nach einer return-Anweisung

steht oder an einer anderen Stelle, die der Programmablauf niemals erreichen kann,
nennt man Dead Code (»toten Code«).

In einer Funktion mit Riickgabewert sollte sichergestellt werden, dass bei jedem
moglichen Ablauf durch das Programm eine return-Anweisung erreicht wird:
def absoluter_wert(x):
if x<0:
return -x
if x> 0:
return x
Diese Funktion ist insofern nicht korrekt, als fiir x gleich 0 keine der beiden
Bedingungen zutrifft und die Funktion endet, ohne auf eine return-Anweisung zu
treffen. Wenn der Programmablauf das Ende einer Funktion erreicht, ist der
Riickgabewert None — etwas vollig anderes als der absolute Wert von 0.
>>> print absoluter_wert(0)
None
Python bietet iibrigens eine Funktion mit dem Namen abs, die den absoluten Wert
berechnet.

Schreiben Sie eine Funktion vergleiche, die 1 zuriickliefert, falls x >y, O, wenn X
==y,und -1, wenn X <.

Listing 6.1

Inkrementelle Entwicklung

Wenn Sie groRere Funktionen schreiben, verbringen Sie unter Umstdnden auch mehr
Zeit mit dem Debugging.

Bei der Entwicklung komplizierterer Programme koénnen Sie ein Vorgehensmodell
mit dem Namen inkrementelle Entwicklung ausprobieren. Ziel der inkrementellen
Entwicklung ist es, langwierige Debugging-Sitzungen zu vermeiden, indem Sie
immer nur kleine Codeteile hinzufiigen und sofort testen.

Angenommen, Sie mochten die Entfernung zwischen den beiden Punkten (xy, y;)
und (x», y,) berechnen. Nach dem Satz des Pythagoras ist die Entfernung:

= oa o e e ae L m me e —— e . ——— e o R T A — M e ——— me o

In einem ersten Schritt sollten Sie sich iiberlegen, wie eine solche Funktion
entfernung in Python aussehen konnte. Anders ausgedriickt: Was sind die
Eingabewerte (Parameter), und was sind die Ausgabewerte (Riickgabewerte)?

In diesem Fall sind die Eingabewerte zwei Punkte, die sich durch vier Zahlen
ausdriicken lassen. Der Riickgabewert ist die Entfernung, die wiederum ein
FlieBkommawert ist.

Und schon konnen Sie einen Entwurf fiir die Funktion schreiben:

def entfernung(x1, y1, x2, y2):
return 0.0
Ganz offensichtlich berechnet diese Version noch keine Entfernung, sondern liefert
immer 0.0 zuriick. Aber sie ist syntaktisch korrekt und lasst sich ausfiihren. Das
bedeutet, dass Sie sie testen konnen, bevor Sie sie komplizierter machen.

Rufen Sie die neue Funktion zum Testen mit Beispielargumenten auf:

>>> entfernung(1, 2, 4, 6)
0.0

Ich habe diese Werte gewdhlt, damit die horizontale Entfernung 3 und die vertikale
Entfernung 4 betragt. Auf diese Weise ist das Ergebnis 5 (die Hypotenuse eines
Dreiecks mit den Seitenldngen 3, 4 und 5). Beim Testen einer Funktion ist es immer
hilfreich, die richtige Antwort zu kennen.

Zu diesem Zeitpunkt haben wir bestatigt, dass die Funktion syntaktisch korrekt ist.
Insofern kénnen wir damit beginnen, zusatzlichen Code zum Body hinzuzufiigen.
Ein sinnvoller ndchster Schritt kdnnte sein, die Differenzen x, — x; und y, — y; zu

berechnen. In einem weiteren Schritt konnen wir diese Werte in temporaren
Variablen speichern und ausgeben.
def entfernung(x1, y1, x2, y2):

dx = x2 - x1

dy =y2-y1

print 'dx ist', dx

print 'dy ist', dy

return 0.0
Wenn die Funktion korrekt funktioniert, sollte sie 'dx ist 3' und 'dy ist 4' ausgeben.
Ist das der Fall, wissen wir, dass die Funktion die richtigen Argumente erhdlt und die
erste Berechnung korrekt durchfiihrt. Andernfalls miissen wir nur einige wenige
Zeilen tiberpriifen.

Als Nachstes berechnen wir die Summe der Quadrate von dx und dy:
def entfernung(x1, y1, x2, y2):

dx =x2 - x1

dy =y2 - y1

quadratsumme = dx**2 + dy**2

print 'Quadratsumme ist: ', quadratsumme
return 0.0

Auch in diesem Stadium wiirden Sie das Programm erneut ausfiihren und die
Ausgabe tiberpriifen (das Ergebnis sollte 25 lauten). In einem letzten Schritt konnen
Sie mit math.sqrt das Ergebnis berechnen und zuriickgeben:

def entfernung(x1, y1, x2, y2):
dx =x2 - x1

dy =y2-vy1
quadratsumme = dx**2 + dy**2
ergebnis = math.sqgrt(quadratsumme)
return ergebnis
Funktioniert das korrekt, sind Sie fertig. Falls nicht, konnten Sie den Wert von

ergebnis vor der return-Anweisung ausgeben.

Die endgiiltige Version der Funktion gibt bei ihrer Ausfiihrung nichts aus, sie liefert
lediglich einen Wert zuriick. Die print-Anweisungen waren nur fiir das Debugging
sinnvoll. Sobald die Funktion arbeitet, sollten Sie sie entfernen. Solchen Code
bezeichnet man als Scaffolding (vom englischen Begriff »scaffold« = Gertist), weil
er niitzlich beim Schreiben des Programms, aber nicht Bestandteil der endgiiltigen
Version ist.

Wenn Sie mit dem Programmieren beginnen, sollten Sie immer nur eine oder zwei
Zeilen Code auf einmal hinzufiigen. Mit zunehmender Erfahrung werden Sie dann
wahrscheinlich immer grofere Codeblécke schreiben und debuggen kénnen. So oder
so kann Thnen die inkrementelle Entwicklung eine Menge Debugging-Zeit sparen.

Die wichtigsten Aspekte dieses Verfahrens sind:

1. Beginnen Sie mit einem funktionierenden Programm und machen Sie
schrittweise kleine Anderungen. Falls ein Fehler auftritt, haben Sie auf diese
Weise immer eine relativ klare Vorstellung davon, an welcher Stelle er auftritt.

2. Verwenden Sie tempordre Variablen, um Zwischenwerte zu speichern, damit
Sie sie anzeigen und iiberpriifen kénnen.

3. Sobald das Programm funktioniert, sollten Sie den Scaffolding-Code entfernen
und mehrere Anweisungen zu Verbundanweisungen zusammenfassen, solange
das Programm dadurch nicht schwerer lesbar wird.

Nutzen Sie die inkrementelle Herangehensweise, um eine Funktion mit dem Namen
hypotenuse zu schreiben, die die beiden Katheten eines rechtwinkligen Dreiecks als
Argument entgegennimmt und die Lange der Hypotenuse zuriickliefert. Zeichnen Sie
dabei jedes Stadium des Entwicklungsprozesses auf.

Listing 6.2

Funktionskomposition

Wie Sie mittlerweile vermuten, konnen Sie eine Funktion aus einer anderen heraus
aufrufen. Diese Moglichkeit nennt man Funktionskomposition.

Als Beispiel schreiben wir eine Funktion, die zwei Punkte erwartet — den
Mittelpunkt eines Kreises und einen Punkt auf dem Umfang — und die Kreisfldche
berechnet.

Angenommen, der Kreismittelpunkt steht in den Variablen xk und yk und der Punkt

auf der Kreislinie in den Variablen xp und yp. In einem ersten Schritt bestimmen wir
den Radius des Kreises, also die Entfernung zwischen den beiden Punkten. Wir
haben bereits eine Funktion geschrieben, die das macht: entfernung.

radius = entfernung(xk, yk, xp, yp)

In einem ndchsten Schritt bestimmen wir die Fldache eines Kreises mit diesem
Radius. Auch diese Funktion haben wir schon geschrieben:

ergebnis = flaeche(radius)
Wenn wir diese Schritte in einer Funktion verkapseln, erhalten wir Folgendes:

def kreis_flaeche(xk, yk, xp, yp):
radius = entfernung(xk, yk, xp, yp)
ergebnis = flaeche(radius)
return ergebnis
Die tempordren Variablen radius und ergebnis sind fiir Entwicklung und Debugging
niitzlich. Sobald das Programm funktioniert, konnen wir es aber kiirzer schreiben,
indem wir die beiden Funktionsaufrufe kombinieren:

def kreis_flaeche(xk, yk, xp, yp):
return flaeche(entfernung(xk, yk, xp, yp))

Boolesche Funktionen

Funktionen kénnen Boolesche Werte zuriickliefern. Das ist oft niitzlich, um
komplizierte Tests in Funktionen zu verpacken. Ein Beispiel:
def ist_teilbar(x, y):
if x % y==0:
return True
else:
return False
Ublicherweise gibt man Booleschen Funktionen Namen, die wie Ja/Nein-Fragen
klingen. ist_teilbar liefert entweder True oder False, um anzugeben, ob x durch y
teilbar ist.

Beispiel:

>>> st_teilbar(6, 4)

False

>>> st_teilbar(6, 3)

True
Das Ergebnis des Operators == ist ebenfalls ein Boolescher Wert. Also kdnnen wir
die Funktion kiirzer schreiben, indem wir diesen Wert direkt zuriickgeben:

def ist_teilbar(x, y):
return x % y ==

Boolesche Werte werden hédufig in bedingten Anweisungen verwendet:

if ist_teilbar(x, y):
print 'x ist teilbar durch y'

Es mag verfiihrerisch erscheinen, beispielsweise Folgendes zu schreiben:

if ist_teilbar(x, y) == True:
print 'x ist teilbar durch y'

Aber der zusitzliche Vergleich ist tiberfliissig.

Schreiben Sie die Funktion liegt_zwischen(x, y, z), die True zuriickliefert, wenn
x <y <z, und ansonsten False zuriickgibt.

Listing 6.3

Mehr Rekursion

Wir haben uns bisher nur mit einem kleinen Ausschnitt aus Python beschéaftigt. Aber
es diirfte Sie interessieren, dass dieser Ausschnitt bereits eine vollstindige
Programmiersprache ist. Das bedeutet, dass sich alles, was berechnet werden kann,
in dieser Sprache ausdriicken ldsst. Jedes Programm, das jemals geschrieben wurde,
konnte mit den Sprachfunktionen, die Sie bisher kennengelernt haben, geschrieben
werden (natiirlich brauchen Sie noch ein paar Befehle fiir Gerdte wie Tastatur, Maus,
Festplatten usw. — aber das ist auch alles).

Der Beweis dieser Behauptung ist nicht trivial und wurde zuerst von Alan Turing
angetreten, einem der ersten Informatiker iiberhaupt (einige wiirden wahrscheinlich
darauf bestehen, dass er Mathematiker war, aber viele friithe Informatiker haben als
Mathematiker angefangen). Entsprechend spricht man von der »Turing-
Vollstandigkeit«. Fiir eine abschliefende (und zutreffende) Diskussion der Turing-
Vollstandigkeit empfehle ich Thnen Michael Sipsers Buch Introduction to the Theory
of Computation.

Um Thnen einen Eindruck davon zu vermitteln, was Sie alles mit den Werkzeugen
machen konnen, die Sie bisher kennengelernt haben, werden wir einige rekursiv
definierte mathematische Funktionen auswerten. Eine rekursive Definition ist
insofern einer Zirkeldefinition dhnlich, als die Definition eine Referenz auf den
Gegenstand der Definition enthélt. Eine echte Zirkeldefinition ist allerdings nicht
sehr niitzlich:

Vorpal:
Adjektiv, das eine Person oder eine Sache beschreibt, die vorpal ist.

Wiirden Sie diese Definition in einem Worterbuch lesen, wéren Sie genervt. Wenn
Sie andererseits die Definition der Fakultdtsfunktion nachschlagen, die mit dem
Symbol ! ausgedriickt wird, lesen Sie Folgendes:

0Ol=1n'=n(n-1)!

Die Definition besagt, dass die Fakultdt von 0 gleich 1 ist und die Fakultét jedes
anderen Werts n gleich n multipliziert mit der Fakultdt von n-1 ist.

Entsprechend ist 3! gleich 3 mal 2!, was 2 mal 1! ist, was wiederum gleich 1 mal 0!
ist. Zusammengefasst, ist also 3! gleich 3 mal 2 mal 1 mal 1 und damit 6.

Wenn es moglich ist, eine rekursive Definition von etwas zu schreiben, kénnen Sie
iblicherweise auch ein Python-Programm schreiben, um diese auszuwerten. Der
erste Schritt besteht darin, zu entscheiden, welche Parameter Sie benétigen. In
diesem Fall sollte klar sein, dass fakultaet einen Integer benotigt:

def fakultaet(n):
Wenn das Argument gleich O ist, miissen wir lediglich 1 zuriickgeben:

def fakultaet(n):
if n==0:
return 1
Der interessantere Teil sind allerdings die anderen Félle. Dann miissen wir einen
rekursiven Aufruf vornehmen, um die Fakultdt von n-1 zu berechnen und
anschliefend mit n zu multiplizieren:
def fakultaet(n):
if n==0:
return 1
else:
rekursion = fakultaet(n-1)
ergebnis = n * rekursion
return ergebnis
Der Ablauf dieses Programms dhnelt dem Ablauf von countdown in ,,Rekursion®.

Wenn wir fakultaet mit dem Wert 3 aufrufen, passiert Folgendes:

Da 3 nicht gleich 0 ist, nehmen wir die zweite Verzweigung und berechnen die
Fakultédt von n-1 ...

Da 2 nicht gleich 0 ist, nehmen wir die zweite Verzweigung und berechnen die Fakultdt von n-1 ...
Da 1 nicht gleich 0 ist, nehmen wir die zweite Verzweigung und berechnen die Fakultdt von n-1 ...

Da 0 gleich 0 ist, nehmen wir die erste Verzweigung und geben ohne weitere rekursive Aufrufe
den Wert 1 zuriick.

Der Riickgabewert (1) wird multipliziert mit n, das ergibt 1, und das Ergebnis wird zurtickgeliefert.

Der Riickgabewert (1) wird multipliziert mit n, das ergibt 2, und das Ergebnis wird zuriickgeliefert.

Der Riickgabewert (2) wird multipliziert mit n, das ergibt 3. Das Ergebnis 6 ist der
Riickgabewert des Funktionsaufrufs, der den ganzen Vorgang angestolSen hat.

Abbildung 6.1 zeigt das Stapeldiagramm fiir die Abfolge der Funktionsaufrufe.

<module=

o2}

fakultaet | n —= 3 rekursion — 2 ergebnis — 6

fakultaet n —= 2 rekursion—= 1 ergebnis — 2

—

fakultaet | n —= 1 rekursion —= 1 ergebnis — 1

SR L KR_J}U

fakultaet n —=10

Abbildung 6.1 Stapeldiagramm

Wie dargestellt, werden die Riickgabewerte im Stapel weiter nach oben gereicht. In
jedem Frame entspricht der Riickgabewert dem Wert von ergebnis, was wiederum
das Produkt von n und rekursion ist.

Im letzten Frame gibt es die lokalen Variablen rekursion und ergebnis nicht, weil
die Verzweigung, in der sie erstellt werden, nicht ausgefiihrt wird.

Vertrauensvorschuss

Eine Moglichkeit, Programme zu lesen, besteht darin, dem Programmablauf zu
folgen. Das kann aber schnell in ein Labyrinth ausarten. Die Alternative ist das, was
ich als »Vertrauensvorschuss« bezeichne. Wenn Sie einen Funktionsaufruf
erreichen, folgen Sie nicht dem Programmablauf, sondern gehen davon aus, dass die
Funktion korrekt arbeitet und das richtige Ergebnis liefert.

Unterm Strich geben Sie bereits diesen Vertrauensvorschuss, wenn Sie integrierte
Funktionen verwenden. Wenn Sie math.cos oder math.exp aufrufen, untersuchen
Sie nicht den Body dieser Funktionen. Sie gehen einfach davon aus, dass sie
funktionieren, weil sie von guten Programmierern geschrieben wurden.

Genauso ist es beim Aufruf Ihrer eigenen Funktionen. Im Kapitel ,,Boolesche
Funktionen* haben wir beispielsweise eine Funktion mit dem Namen ist_teilbar
geschrieben, die ermittelt, ob eine Zahl durch eine andere teilbar ist. Sobald wir uns
davon iiberzeugt haben, dass diese Funktion korrekt ist — indem wir den Code
untersuchen und testen —, konnen wir diese Funktion verwenden, ohne erneut einen
Blick auf den Body zu werfen.

Dasselbe gilt fiir rekursive Programme. Anstatt dem Programmablauf zu folgen,
sollten Sie einfach davon ausgehen, dass der rekursive Aufruf funktioniert (das
richtige Ergebnis liefert), und sich dann fragen: » Angenommen, ich kann die
Fakultdt von n-1 berechnen, kann ich dann die Fakultidt von n berechnen?« In diesem
Fall ist es klar, dass Sie das konnen: indem Sie sie mit n multiplizieren.

Natiirlich ist es eigenartig, davon auszugehen, dass eine Funktion korrekt
funktioniert, wenn Sie sie noch gar nicht fertig geschrieben haben. Aber deshalb
nenne ich das ja auch den Vertrauensvorschuss!

Noch ein Beispiel

Neben der fakultaet ist das haufigste Beispiel fiir eine rekursiv definierte
mathematische Funktion die fibonacci-Folge, die so definiert ist (siehe
http://en.wikipedia.org/wiki/Fibonacci_number):

0
1

fibonacci(n - 1) + fibonacci(n - 2)

fibonacci(0)

fibonacci(1)

fibonacci(n)

Ubersetzt in Python, sieht das folgendermaRen aus:

def fibonacci (n):
ifn==0:
return O
elif n==1:
return 1
else:
return fibonacci(n-1) + fibonacci(n-2)
Wenn Sie in diesem Beispiel versuchen, dem Programmablauf zu folgen, wird Ihr
Kopf rauchen — selbst bei kleinen Werten fiir n. Aber wenn Sie mit dem
Vertrauensvorschuss davon ausgehen, dass die beiden rekursiven Aufrufe korrekt
funktionieren, ist es offensichtlich, dass Sie durch Addition der beiden Werte das

richtige Ergebnis erhalten.

Typpriifung

Was passiert, wenn wir fakultaet aufrufen und 1.5 als Argument iibergeben?

>>> fakultaet(1.5)

RuntimeError: Maximum recursion depth exceeded
Das sieht nach einer endlosen Rekursion aus. Wie kann das sein? Es gibt doch den
Basisfall n == 0. Aber wenn n kein Integer ist, konnen wir den Basisfall verpassen
und endlos rekursieren.

Im ersten rekursiven Aufruf ist n gleich 0.5. Und im ndchsten -0.5. Von da an wird
der Wert immer kleiner (immer negativer), aber niemals 0.

Wir haben zwei Moglichkeiten: Wir konnen versuchen, die Funktion fakultaet so zu
generalisieren, dass sie auch mit Fliefkommazahlen arbeitet, oder in fakultaet den
Typ des Arguments iiberpriifen. Die erste Variante nennt man Gammafunktion, die
ein bisschen iiber den Rahmen dieses Buchs hinausgeht. Also entscheiden wir uns

http://en.wikipedia.org/wiki/Fibonacci_number

fir die zweite Variante.

Mit der integrierten Funktion isinstance konnen wir den Typ des Arguments
iberpriifen. Wenn wir schon dabei sind, konnen wir gleich sicherstellen, dass das
Argument positiv ist:

def fakultaet (n):
if not isinstance(n, int):
print 'Fakultat ist nur fir ganze Zahlen definiert.’
return None
elifn<0:
print 'Fakultat ist nicht fir negative ganze Zahlen definiert.’
return None

elifn==0:
return 1
else:

return n * fakultaet(n-1)

Der erste Basisfall kiimmert sich um Argumente, die keine Integer sind. Der zweite
fangt negative Integer auf. In beiden Féllen gibt das Programm eine Fehlermeldung
aus und liefert den Wert None, um zu zeigen, dass etwas schiefgelaufen ist:

>>> fakultaet('fred')

Fakultat ist nur fir ganze Zahlen definiert.

None

>>> fakultaet(-2)

Fakultat ist nicht fur negative ganze Zahlen definiert.

None
Wenn wir beide Priifungen bestehen, wissen wir, dass n positiv oder gleich null ist.
So konnen wir sicherstellen, dass die Rekursion zu Ende l&uft.

Dieses Programm zeigt ein Muster, das man manchmal als Wachter bezeichnet. Die
ersten beiden Bedingungen fungieren als Wachter und schiitzen den nachfolgenden
Code vor Werten, die einen Fehler verursachen kénnten. Der Wachter gibt uns die
Moglichkeit, die Richtigkeit des Codes zu beweisen.

Im ,,Inverse Suche® werden wir eine flexiblere Méglichkeit kennenlernen,
Fehlermeldungen auszugeben: indem wir eine Ausnahme auslsen.

Debugging

Wenn Sie grolere Programme in kleinere Funktionen zerlegen, entstehen dadurch
natiirliche Haltepunkte fiirs Debugging. Arbeitet eine Funktion nicht korrekt, konnen
Sie drei Moglichkeiten in Betracht ziehen:

» [rgendetwas stimmt mit den Argumenten nicht, die die Funktion erhélt: Eine
Vorbedingung wird nicht erfiillt.

m [rgendetwas mit der Funktion stimmt nicht: Eine Nachbedingung wird nicht
erfiillt.

m Es stimmt etwas mit dem Riickgabewert oder mit der Art und Weise nicht, in der
er verwendet wird.

Um die erste Moglichkeit auszuschliefen, kénnen Sie am Anfang der Funktion eine
print-Anweisung einfiigen und die Werte der Parameter (sowie eventuell die
entsprechenden Typen) anzeigen. Oder Sie schreiben Code, der die Vorbedingungen
explizit priift.

Sehen die Parameter korrekt aus, fiigen Sie vor jeder return-Anweisung eine print-
Anweisung ein, die den Riickgabewert anzeigt. Priifen Sie das Ergebnis wenn
moglich von Hand. Sie kdnnen auch die Funktion mit Werten aufrufen, mit denen
sich das Ergebnis einfach {iberpriifen lasst (siehe ,,Inkrementelle Entwicklung®).

Wenn die Funktion korrekt zu arbeiten scheint, sehen Sie sich den Funktionsaufruf
an, um sicherzustellen, dass der Riickgabewert korrekt verwendet wird (bzw.
tiberhaupt verwendet wird!).

print-Anweisungen am Anfang und am Ende einer Funktion kénnen helfen, den
Programmablauf sichtbar zu machen. Hier sehen Sie beispielsweise eine Version
von fakultaet mit solchen print-Anweisungen:

def fakultaet(n):

space ="'"'* (4" n)

print space, 'Fakultat’, n

ifn==0:
print space, 'Ruckgabewert 1'
return 1

else:
rekursion = fakultaet(n-1)
ergebnis = n * rekursion
print space, 'Ruckgabewert’, ergebnis
return ergebnis

space ist eine Folge von Leerzeichen, die die Bildschirmausgabe entsprechend
einriickt. Hier sehen Sie das Ergebnis von fakultaet(5) :

Fakultat 5
Fakultat 4
Fakultat 3
Fakultat 2
Fakultat 1
Fakultat O
Ruckgabewert 1
Ruckgabewert 1
Ruckgabewert 2
Ruckgabewert 6
Ruckgabewert 24
Ruckgabewert 120

Sollte der Programmablauf fiir Sie verwirrend sein, konnen solche Ausgaben sehr
niitzlich sein. Es dauert seine Zeit, effizientes Scaffolding zu entwickeln, aber es

kann Thnen eine Menge Debugging ersparen.

Glossar

Tempordre Variable:
Variable zum Speichern eines Zwischenwerts in komplexen Berechnungen.

Dead Code:

Teil eines Programms, der nie ausgefiihrt werden kann, hdufig weil er nach einer
return-Anweisung steht.

None:

Spezieller Wert, den Funktionen zuriickgeben, die keine return-Anweisung oder
eine return-Anweisung ohne Argument enthalten.

Inkrementelle Entwicklung:

Verfahren zur Programmentwicklung, bei dem der Debugging-Aufwand minimiert
wird, indem immer nur eine kleine Menge Code hinzugefiigt und getestet wird.

Scaffolding:

Code, der wahrend der Programmentwicklung verwendet wird, aber nicht Teil der
finalen Version ist.

Waichter:

Programmiermuster, bei dem mit bedingten Anweisungen Umstédnde {iberpriift
und behandelt werden, die einen Fehler verursachen konnten.

Ubungen

Zeichnen Sie ein Stapeldiagramm fiir das folgende Programm. Was gibt das

Programm aus? Losung: stapeldiagramm.py.
def b(z):

prod = a(z, z)

print z, prod

return prod

def a(x, y):
X=x+1
returnx*y

def c(x, y, z):
summe=x+y+z
quadrat = b(summe)**2
return quadrat

x=1
y=x+1

print c(x, y+3, x+y)
Listing 6.4

Die Ackermannfunktion A(m, n) ist folgendermalen definiert:

n+1 ifm =0
Alm, n)={ A(m -1, 1) ifm >0andn = 0

Am-1, A(m,n-1)) ifm >0andn > 0.

Siehe http://de.wikipedia.org/wiki/Ackermannfunktion. Schreiben Sie eine Funktion
mit dem Namen ack, die die Ackermannfunktion auswertet. Verwenden Sie Ihre
Funktion, um ack(3, 4) auszuwerten, was als Ergebnis 125 liefern sollte. Was
geschieht bei grolleren Werten fiir m und n? Losung: ackermann.py.

Listing 6.5

Ein Palindrom ist ein Wort, das vorwarts und riickwarts gleich buchstabiert wird,
beispielsweise » Anna« oder »Rentner«. Rekursiv betrachtet ist ein Wort dann ein
Palindrom, wenn die ersten und letzten Buchstaben identisch sind und die Mitte
ebenfalls ein Palindrom ist.

Die folgenden Funktionen erwarten einen String als Argument und liefern die ersten,

letzten und mittleren Buchstaben zuriick:

def erster(wort):
return wort[0]

def letzter(wort):
return wort[-1]

def mitte(wort):
return wort[1:-1]

Wie das genau funktioniert, sehen wir uns spater im Kapitel 8 an.

1. Tippen Sie diese Funktionen in eine Datei mit dem Namen palindrom.py und
testen Sie sie. Was passiert, wenn Sie mitte mit einem String aufrufen, der aus
nur zwei Buchstaben besteht? Aus einem Buchstaben? Was ist mit einem
Leerstring, der als " geschrieben wird und keine Buchstaben enthlt?

2. Schreiben Sie eine Funktion mit dem Namen ist_palindrom, die einen String
als Argument erwartet und True zuriickgibt, wenn dieser ein Palindrom ist, und
ansonsten False zuriickgibt. Wie Sie sich erinnern werden, konnen Sie mit der
integrierten Funktion len die Lénge eines Strings {iberpriifen.

Losung: palindrom_loesung.py.

Listing 6.6

http://de.wikipedia.org/wiki/Ackermannfunktion

Die Zahl a ist eine Potenz von b, wenn sie durch b teilbar ist und a/b eine Potenz von
b ist. Schreiben Sie eine Funktion mit dem Namen ist_potenz, die die Parameter a
und b entgegennimmt und True zuriickliefert, wenn a eine Potenz von b ist. Tipp:
Denken Sie an den Basisfall.

Listing 6.7

Der grofite gemeinsame Teiler (ggT) von a und b ist die grofSte Zahl, durch die beide
Zahlen ohne Rest dividiert werden kénnen.

Eine Moglichkeit, den ggT zweier Zahlen zu bestimmen, ist der euklidische
Algorithmus, der auf folgender Beobachtung basiert: Wenn r der Rest bei der
Division von a durch b ist, gilt: gcd(a, b) = gcd(b, r). Als Basisfall konnen wir gcd(a,
0) = a verwenden.

Schreiben Sie die Funktion ggt, die die Parameter a und b entgegennimmt und den
grolSten gemeinsamen Teiler zuriickliefert. Falls Sie Hilfe brauchen:
http://de.wikipedia.org/wiki/GroSter_gemeinsamer_Teiler.

Hinweis: Diese Ubung basiert auf einem Beispiel aus Struktur und Interpretation
von Computerprogrammen: Eine Informatik-Einfiihrung von Abelson und Sussman.

Listing 6.8

http://de.wikipedia.org/wiki/Gr%C3%B6%C3%9Fter_gemeinsamer_Teiler

Kapitel 7. Iteration

Mehrfache Zuweisungen

Wie Thnen vielleicht aufgefallen ist, konnen Sie einer Variablen mehr als einmal
einen Wert zuweisen. Bei einer erneuten Zuweisung verweist eine vorhandene
Variable auf einen neuen Wert (und nicht mehr auf den alten Wert).

peter =5

print peter,

peter = 7

print peter
Die Ausgabe dieses Programms lautet 5 7, weil peter bei der ersten Ausgabe den
Wert 5 und bei der zweiten den Wert 7 hat. Das Komma am Ende der ersten print-
Anweisung unterdriickt den Zeilenvorschub, weshalb beide Ausgaben in derselben
Zeile stehen.

Abbildung 7.1 zeigt, wie mehrfache Zuweisungen in einem Zustandsdiagramm
aussehen.

Bei mehrfachen Zuweisungen ist es besonders wichtig, zwischen einer Zuweisung
und einem Gleichheitsausdruck zu unterscheiden. Weil in Python fiir die Zuweisung
das Gleichheitszeichen (=) verwendet wird, ist die Versuchung grol}, eine
Anweisung wie a = b als Gleichheitsausdruck zu interpretieren. Das stimmt aber
nicht!

Zum einen ist der Gleichheitsausdruck im Gegensatz zur Zuweisung eine
symmetrische Beziehung. In der Mathematik gilt beispielsweise: wenn a = 7, dann
7 = a. In Python ist dagegen die Zuweisung a = 7 zuldssig, 7/ = a dagegen nicht.

AuBerdem ist in der Mathematik ein Gleichheitsausdruck wahr oder falsch — und das
fiir immer. Wenn jetzt a=b gilt, dann ist a immer gleich b. In Python kann eine
Zuweisung zwei Variablen gleichsetzen, sie miissen aber nicht gleich bleiben:

a=5

b=a #aundb sind jetzt gleich

a=3 #aundb sind nicht mehr gleich
Die dritte Zeile dndert den Wert von a, aber nicht den Wert von b. Entsprechend
sind die beiden Variablen nicht mehr gleich.

Obwohl mehrfache Zuweisungen haufig niitzlich sind, sollten Sie dabei Vorsicht
walten lassen. Wenn sich die Werte von Variablen hdufig dndern, kann der Code
dadurch schwierig zu lesen und zu debuggen sein.

peter -~
""H?

Abbildung 7.1 Zustandsdiagramm

Variablen aktualisieren

Eine der gebrauchlichsten Formen von mehrfachen Zuweisungen ist die
Aktualisierung, bei der der neue Wert der Variablen in Abhdngigkeit vom alten
Wert gedndert wird.

X = x+1

Das bedeutet: »Nimm den aktuellen Wert von X, addiere 1 dazu und aktualisiere X
mit dem neuen Wert.«

Wenn Sie versuchen, eine Variable zu aktualisieren, die nicht existiert, erhalten Sie
einen Fehler. Das liegt daran, dass Python die rechte Seite auswertet, bevor X ein
Wert zugewiesen wird:

>>> x = X+1

NameError: name 'X' is not defined
Bevor Sie eine Variable aktualisieren kénnen, miissen Sie sie initialisieren. Das
geschieht tiblicherweise durch eine einfache Zuweisung:

>>>x=0

>>> x = X+1
Wenn Sie eine Variable aktualisieren, indem Sie den Wert um 1 erh6éhen, bezeichnet
man das als Inkrement. Die Subtraktion um 1 heillt Dekrement.

Die while-Anhweisung

Computer werden haufig dazu verwendet, Aufgaben, die sich wiederholen, zu
automatisieren. Im Gegensatz zum Menschen sind Computer sehr gut darin,
identische oder dhnliche Aufgaben zu wiederholen, ohne dabei Fehler zu machen.

Wir haben zwei Programme kennengelernt, in denen Wiederholungen durch
Rekursion erfolgen — countdown und print_n. Das bezeichnet man auch als
Iteration. Weil die Iteration so hdufig vorkommt, bietet Python gleich mehrere
Sprachfunktionen, die diesen Vorgang erleichtern. Eine davon ist die for-Anweisung,
die wir in ,,Einfache Wiederholung® kennengelernt haben. Darauf kommen wir
spater noch zurtick.

Eine weitere ist die while-Anweisung. Hier sehen Sie eine Version von countdown
mit der while-Anweisung:

def countdown(n):
while n > 0:
print n
n=n-1
print 'Bumm!'

Wenn Sie »while« durch »wdhrend« ersetzen, ldsst sich die while-Anweisung leicht
ins Deutsche iibersetzen: »Wahrend n gréfer als O, gib den Wert von n aus und
reduziere den Wert von num 1. Wenn du O erreichst, gib das Wort Bumm! aus. «

Etwas formlicher ausgedriickt, sieht der Ablauf einer while-Anweisung so aus:

1. Werte die Bedingung aus, die entweder True oder False ergibit.

2. Wenn die Bedingung falsch ist, verlasse die while-Anweisung und setze das
Programm mit der ndchsten Anweisung fort.

3. Wenn die Bedingung zutrifft, fiihre den Body aus und kehre zuriick zu Schritt
1.

Einen solchen Programmablauf nennt man Schleife, weil vom dritten Schritt aus
eine weitere Schleife gedreht wird.

Im Body der Schleife sollte sich der Wert einer oder mehrerer Variablen so dndern,
dass die Bedingung irgendwann nicht mehr erfiillt ist und die Schleife beendet wird.
Ansonsten wird die Schleife fiir immer wiederholt. Das bezeichnet man dann als
Endlosschleife. Ein Running Gag fiir englischsprachige Informatiker ist die
standardméafige Anleitung auf Shampoos: »Lather, rinse, repeat« (Einseifen,
ausspiilen, wiederholen) — ein Beispiel fiir eine Endlosschleife im Alltag.

Im Fall von countdown konnen wir beweisen, dass die Schleife beendet werden
wird: Denn wir wissen, dass der Wert von n endlich ist und bei jedem
Schleifendurchlauf kleiner wird. Somit muss n irgendwann 0 erreichen. In anderen
Féllen ist das nicht so einfach zu sagen:

def sequenz(n):

while n!=1:
print n,
if n%2 == 0: # n ist gerade
n=n/2
else: # n ist ungerade
n=n*3+1

Die Bedingung fiir diese Schleife lautet n != 1, die Schleife wird also ausgefiihrt, bis
n gleich 1 ist, wodurch die Bedingung nicht mehr zutrifft.

Bei jedem Schleifendurchgang gibt das Programm den Wert von n aus und priift, ob
dieser Wert eine gerade Zahl ist. Wenn ja, wird n durch 2 dividiert. Falls n ungerade
ist, wird der Wert durch n*3+1 ersetzt. Ist das an sequenz iibergebene Argument
beispielsweise gleich 3, ergibt sich daraus die Folge 3, 10, 5, 16, 8, 4, 2, 1.

Da der Wert von n manchmal erhéht und manchmal verkleinert wird, gibt es keinen
offensichtlichen Beweis dafiir, dass n jemals 1 erreicht und das Programm
entsprechend beendet wird. Fiir konkrete Beispielwerte von n kénnen wir das
Programmende beweisen. So ist der Wert von n fiir alle Werte, die eine Potenz von 2
sind, immer eine gerade Zahl, bis die Schleife 1 erreicht. Das vorherige Beispiel

endet mit einer solchen Folge, die mit 16 beginnt.

Die schwierige Frage dabei ist, ob wir beweisen konnen, dass dieses Programm fiir
alle positiven Werte von n beendet wird. Bisher hat es noch niemand geschafft, dies
oder das Gegenteil zu beweisen! (Siehe http://de.wikipedia.org/wiki/Collatz-
Problem.)

Schreiben Sie die Funktion print_n aus dem ,,Rekursion“ so um, dass die Iteration
durch eine Schleife erfolgt.

Listing 7.1

break

Es gibt Situationen, in denen Sie nicht wissen, dass es an der Zeit ist, eine Schleife
zu beenden, bis Sie schon halb durch den Body sind. In diesem Fall konnen Sie die
Schleife mit der break-Anweisung verlassen.

Angenommen, Sie mochten Benutzereingaben entgegennehmen, bis fertig
eingegeben wird. Dann kénnten Sie Folgendes schreiben:
while True:
zeile = raw_input('> ")
if zeile == 'fertig":
break
print zeile

print 'Fertig!"

Die Bedingung dieser Schleife ist True und damit also immer erfiillt. Deshalb wird
die Schleife durchlaufen, bis die break-Anweisung erreicht ist.

Bei jedem Durchlauf wird der Benutzer mit einer spitzen Klammer zur Eingabe
aufgefordert. Gibt der Benutzer fertig ein, wird die Schleife mit der break-
Anweisung verlassen. Ansonsten gibt das Programm einfach das aus, was der
Benutzer eingetippt hat, und fiihrt die Schleife erneut aus. Hier ein
Beispieldurchlauf:

> nicht fertig

nicht fertig

> fertig

Fertig!
Diese Form der while-Schleife ist relativ gebrauchlich, weil Sie so die Bedingung an
einer beliebigen Stelle der Schleife (nicht nur ganz oben) iiberpriifen kénnen. Auf
diese Weise konnen Sie die Stoppbedingung explizit formulieren (» Beenden, wenn
dies oder jenes passiert«) statt im Umkehrschluss (» Ausfiihren, bis dies oder jenes
passiert«).

Ouadratwurzeln

http://de.wikipedia.org/wiki/Collatz-Problem

N T T TTT TTTT T Tt T/ T 7T ¢

Schleifen werden in Programmen oft dazu verwendet, numerische Ergebnisse
dadurch zu berechnen, dass von einer ungefdhren Antwort ausgegangen wird, die
dann schrittweise optimiert wird.

Das Newton-Verfahren ist beispielsweise eine Méglichkeit zur Berechnung von
Quadratwurzeln. Angenommen, Sie mochten die Quadratwurzel von a wissen. Wenn
Sie mit einer beliebigen Schatzung x beginnen, konnen Sie mit der folgenden Formel
eine bessere Schiatzung berechnen:

N i
T g,

Ist beispielsweise a gleich 4 und x gleich 3:

>>>a=40
>>>x=3.0
>>>y=(x+alx)/2
>>> printy
2.16666666667

Dieses Ergebnis kommt der korrekten Antwort schon relativ nahe (v* = 2). Wenn wir
denselben Vorgang mit der neuen Schitzung beginnen, kommen wir dem Ergebnis
noch ndher:

>>> X = V'
>>>y=(x+alx)/2
>>> printy
2.00641025641

Nach einigen weiteren Aktualisierungen ist die Schdtzung beinahe korrekt:

>>>x=y
>>>y=(x+alx)/2
>>> printy
2.00001024003
>>> X = V'
>>>y=(x+alx)/2
>>> print y
2.00000000003

Ublicherweise wissen wir im Voraus nicht, wie viele Schritte erforderlich sind, um
die richtige Antwort zu erhalten. Aber wir wissen, wenn es so weit ist: weil sich
dann die Schétzung nicht mehr dndert:

>>> X = V'

>>>y=(x+alx)/2
>>> print y

20
>>> X = Yy
>>>y=(x+alx)/2
>>> print y
20
Sobald y == X, konnen wir aufhéren. Hier sehen Sie eine Schleife, die mit der
anfanglichen Schédtzung x beginnt und diesen Wert immer weiter verbessert, bis er
sich nicht mehr dndert:
while True:
print x
y=(x+alx)/2
ify==x
break
X=y
Fiir die meisten Werte von a funktioniert das wunderbar. Allerdings ist es immer
etwas riskant, die Gleichheit beim Typ float zu tiberpriifen. FlieRkommawerte sind
stets nur anndhernd gleich: Die meisten rationalen Zahlen, wie etwa 1/3, und die
meisten irrationalen Zahlen, beispielsweise v2, kénnen mit dem Typ float nicht
genau abgebildet werden

Anstatt zu tiberpriifen, ob X und y exakt gleich sind, ist es sinnvoll, mit der
integrierten Funktion abs den absoluten Wert bzw. den Betrag der Differenz zu
bestimmen:
if abs(y-x) < epsilon:
break
Wobei epsilon einen Wert wie beispielsweise 0.0000001 hat, der definiert, wie
nahe »nahe genug dran« ist.

Verpacken Sie diese Schleife in eine Funktion mit dem Namen quadrat_wurzel, die
den Parameter a entgegennimmt, einen akzeptablen Wert fiir X wahlt und eine
Schitzung der Quadratwurzel von a zuriickgibt.

Listing 7.2

Algorithmen

Die Newton-Methode ist ein Beispiel fiir einen Algorithmus: ein mechanisches
Verfahren zur Losung einer Kategorie von Problemen (in diesem Fall fiir die
Berechnung von Quadratwurzeln).

Es ist nicht einfach, einen Algorithmus zu definieren. Manchmal ist es hilfreich, mit
etwas zu beginnen, das kein Algorithmus ist. Als Sie gelernt haben, einstellige
Zahlen miteinander zu multiplizieren, haben Sie wahrscheinlich die
Multiplikationstabelle auswendig gelernt. Unterm Strich haben Sie 100
Einzellésungen auswendig gelernt. Diese Art Wissen ist nicht algorithmisch.

Aber wenn Sie »faul« waren, haben Sie wahrscheinlich mit ein paar Tricks
geschummelt. Um beispielsweise das Produkt von n und 9 zu berechnen, kénnen Sie
n-1 als erste Stelle und 10-n als zweite Stelle schreiben. Dieser Trick ist eine
allgemeine Losung fiir die Multiplikation aller einstelligen Zahlen mit 9. Und das ist
ein Algorithmus!

Auf dhnliche Weise sind auch die Methoden Algorithmen, die Sie fiir die Addition
mit Ubertrag, die Subtraktion mit dem Ergénzungsverfahren sowie die schriftliche
Division gelernt haben. Ein Merkmal von Algorithmen besteht darin, dass dafiir
keinerlei Intelligenz erforderlich ist. Es sind mechanische Verfahren, in denen jeder
Schritt nach dem anderen einer Reihe einfacher Regeln folgt.

Meiner Meinung nach ist es peinlich, dass Menschen in der Schule so viel Zeit damit
verbringen, Algorithmen durchzudeklinieren, die buchstédblich keinerlei Intelligenz
erfordern.

Andererseits ist die Entwicklung von Algorithmen sehr interessant, intellektuell
anspruchsvoll und ein zentraler Teil dessen, was wir Programmieren nennen.

Einige der Dinge, die Menschen ganz natiirlich, ohne jede Schwierigkeit oder
gedankliche Anstrengung tun, sind am schwierigsten als Algorithmus auszudriicken.
Das Verstandnis der natiirlichen Sprache ist ein gutes Beispiel dafiir. Wir alle
verwenden sie, aber bis jetzt war noch niemand in der Lage, auszudriicken, wie wir
das tun, zumindest nicht in Form eines Algorithmus.

Debugging

Wenn Sie damit beginnen, gréllere Programme zu schreiben, verbringen Sie
vermutlich auch mehr Zeit mit dem Debugging. Mehr Code bedeutet auch mehr
Moglichkeiten, Fehler zu machen, und mehr Stellen, an denen sich Bugs verstecken
konnen.

Eine Moglichkeit, die Debugging-Zeit zu minimieren, ist das »Debugging durch
Bisektion«. Wenn Thr Programm beispielsweise 100 Zeilen hat und Sie jede einzeln
iberpriifen, sind dafiir 100 Schritte erforderlich.

Stattdessen konnen Sie versuchen, das Problem zu »halbieren«. Suchen Sie in der
Mitte des Programms oder irgendwo in der Ndhe nach einem Zwischenwert, den Sie
iberpriifen kénnen. Fiigen Sie eine print-Anweisung (oder etwas anderes, mit dem
Sie das Ergebnis iiberpriifen konnen) ein und fiihren Sie das Programm aus.

Wenn das Ergebnis in der Mitte falsch ist, muss es ein Problem in der ersten Halfte
des Programms geben. Ist das Ergebnis korrekt, befindet sich das Problem in der
zweiten Halfte.

Jedes Mal, wenn Sie so vorgehen, miissen Sie lediglich halb so viele Zeilen

durchsuchen. Nach sechs Schritten (deutlich weniger als 100) kommen Sie lediglich
auf ein oder zwei Zeilen Code, zumindest in der Theorie.

In der Praxis ist es nicht immer ganz klar, wo die »Mitte des Programms« liegt.
Entsprechend ist es auch nicht immer méglich, diese zu iiberpriifen. Es hat keinen
Sinn, Zeilen abzuzahlen, um die exakte Mitte zu bestimmen. Uberlegen Sie sich
stattdessen lieber Stellen in Threm Programm, an denen es zu Fehlern kommen
konnte und an denen eine Uberpriifung einfach ist. Wihlen Sie dann eine Stelle, an
der Threr Meinung nach die Wahrscheinlichkeit ungeféahr gleich hoch ist, dass der
Fehler davor oder danach liegt.

Glossar

Mehrfache Zuweisung:
Mehr als eine Zuweisung fiir dieselbe Variable wiahrend der Ausfiihrung eines
Programms.
Aktualisierung:
Zuweisung, bei der der neue Wert einer Variablen vom alten Wert abhéngt.
Initialisierung:
Zuweisung, bei der einer Variablen ein Anfangswert zugewiesen wird, die spater
aktualisiert wird.
Inkrement:
Aktualisierung, bei der der Wert einer Variablen (meistens um 1) erhéht wird.

Dekrement:
Aktualisierung, bei der der Wert einer Variablen verringert wird.

Iteration:
Wiederholte Ausfiihrung einer Reihe von Anweisungen — entweder mit einem
rekursiven Funktionsaufruf oder einer Schleife.

Endlosschleife:
Schleife mit einer Abbruchbedingung, die niemals erfiillt wird.

Ubungen

Um den Quadratwurzel-Algorithmus in diesem Kapitel zu testen, konnten Sie ihn
mit math.sqrt vergleichen. Schreiben Sie eine Funktion mit dem Namen

test_quadrat_wurzel, die eine Tabelle wie die folgende ausgibt:

1.01.0 1.0 0.0
2.0 1.41421356237 1.41421356237 2.22044604925¢e-16

3.0 1.73205080757 1.73205080757 0.0

4.02.0 2.0 0.0

5.0 2.2360679775 2.2360679775 0.0

6.0 2.44948974278 2.44948974278 0.0

7.0 2.64575131106 2.64575131106 0.0

8.0 2.82842712475 2.82842712475 4.4408920985e-16

9.03.0 3.0 0.0

In der ersten Spalte steht eine Zahl a. Die zweite Spalte zeigt die Quadratwurzel von
a, die mit der Funktion aus ,,Quadratwurzeln“ berechnet wird. In der dritten Spalte
steht die Quadratwurzel berechnet mit math.sqrt. Und in der vierten Spalte steht der

absolute Wert der Differenz zwischen den beiden Anndherungen.
Listing 7.3

Die integrierte Funktion eval erwartet einen String und wertet ihn mit dem Python-

Interpreter aus. Ein Beispiel:

>>>eval("1+2*3")

7

>>> import math

>>> eval('math.sqrt(5)')

2.2360679774997898

>>> eval('type(math.pi)')

<type 'float'>

Schreiben Sie eine Funktion mit dem Namen eval_Schleife, die den Benutzer
iterativ zur Eingabe auffordert, die Eingaben mit eval auswertet und das Ergebnis

ausgibt.
Die Schleife soll so lange fortgesetzt werden, bis der Benutzer 'fertig' eingibt.
Listing 7.4

Der Mathematiker Srinivasa Ramanujan hat eine unendliche Folge gefunden, mit der
eine numerische Anndherung an

— generiert
werden kann:

1 _ 2\2 f{4k}!{11n3+zﬁ3mm}

Schreiben Sie eine Funktion mit dem Namen schaetzung_pi, die anhand dieser
Formel einen Ndherungswert von

— berechnet
und zuriickgibt. Verwenden Sie dabei eine while-Schleife, um die Terme der Summe
zu berechnen, bis der letzte Term kleiner als 1e-15 ist (die Python-Schreibweise fiir
107"). Sie konnen das Ergebnis auch tiberpriifen, indem Sie es mit math.pi

vergleichen.

Losung: pi.py.
Listing 7.5

Kapitel 8. Strings

Ein String ist eine Folge

Ein String ist eine Folge von Zeichen. Auf die einzelnen Zeichen kdénnen Sie mit
dem Klammer-Operator zugreifen:

>>> frucht = 'banane’
>>> zeichen = frucht[1]

Die zweite Anweisung wahlt ein Zeichen aus frucht und weist es zeichen zu.

Den Ausdruck in eckigen Klammern nennt man Index. Der Index gibt an, welches
Zeichen Sie aus der Folge auslesen mochten (quasi wie ein Name).

Aber unter Umstdnden erhalten Sie nicht das, was Sie erwarten:

>>> print zeichen

a
Fiir die meisten Menschen ist das erste Zeichen von 'banane’ ein b, nicht a. Aber fiir
Informatiker ist der Index ein Versatz in Bezug auf den Anfang des Strings, und der
Versatz fiir das erste Zeichen ist 0.

>>> zeichen = frucht[0]

>>> print zeichen

b
Entsprechend ist b das 0. (das »nullte«) Zeichen von 'banane’, a das erste und n das
zweite Zeichen.

Sie konnen beliebige Ausdriicke als Index verwenden, einschlielSlich Variablen und
Operatoren. Aber der Indexwert muss ein Integer sein. Ansonsten erhalten Sie:

>>> zeichen = frucht[1.5]
TypeError: string indices must be integers

len

len ist eine integrierte Funktion, die die Anzahl Zeichen in einem String
zurtickliefert:

>>> frucht = 'banane’

>>> len(frucht)

6
Wenn Sie das letzte Zeichen eines Strings abrufen méchten, kénnten Sie in
Versuchung geraten, Folgendes zu probieren:

>>> laenge = len(frucht)

>>> |etzter = frucht[laenge]
IndexError: string Index out of range

Der Grund fiir den IndexError liegt darin, dass es in 'banane' kein Zeichen mit dem
Index 6 gibt. Da wir bei null beginnen zu zdhlen, haben die Zeichen die Nummern 0
bis 5. Um das letzte Zeichen zu erhalten, miissen Sie 1 von laenge abziehen:

>>> |etzter = frucht[laenge-1]

>>> print letzter

e
Alternativ kénnen Sie negative Indizes verwenden. In diesem Fall wird vom Ende
des Strings riickwarts gezahlt. Der Ausdruck frucht[-1] liefert das letzte Zeichen,
frucht[-2] das zweitletzte usw.

Traversierung mit einer Schleife

Bei vielen Berechnungen geht es darum, einen String Zeichen fiir Zeichen zu
verarbeiten. Haufig werden Sie dabei am Anfang des Strings beginnen, dann jedes
Zeichen einzeln auswahlen, etwas damit machen und diesen Vorgang bis zum Ende
fortsetzen. Dieses Verarbeitungsmuster nennt man Traversierung. Eine
Moglichkeit, eine Traversierung umzusetzen, ist die while-Schleife:
Index = 0
while Index < len(frucht):
zeichen = fruchtfindex]
print zeichen
Index = Index + 1
Diese Schleife durchlduft den String und zeigt jedes Zeichen in einer eigenen Zeile
an. Die Schleifenbedingung lautet Index < len(frucht). Ist also Index gleich der
Lange des Strings, ist die Bedingung falsch, und der Body der Schleife wird nicht
mehr ausgefiihrt. Als letztes Zeichen wird auf das Zeichen mit dem Index
len(frucht)-1 zugegriffen, was auch das letzte Zeichen im String ist.

Schreiben Sie eine Funktion, die einen String als Argument erwartet und die Zeichen
riickwarts anzeigt — eines pro Zeile.

Listing 8.1

Sie konnen einen String aber auch mit einer for-Schleife durchlaufen:

for zeichen in frucht:
print zeichen
Bei jedem Schleifendurchlauf wird das jeweils ndchste Zeichen der Variablen
zeichen zugewiesen. Die Schleife wird durchlaufen, bis keine Zeichen mehr iibrig
sind.

Das folgende Beispiel zeigt, wie Sie mit Konkatenation (String-Addition) und einer
for-Schleife eine alphabetische Folge erzeugen konnen. In Robert McCloskeys Buch
Make Way for Ducklings gibt es Entchen mit den Namen Jack, Kack, Lack, Mack,

Nack, Ouack, Pack und Quack. Die folgende Schleife gibt diese Namen in
alphabetischer Reihenfolge aus:

praefixe = 'JKLMNOPQ'
suffix = 'ack’

for zeichen in praefixe:
print zeichen + suffix

Und so sieht die Ausgabe aus:

Jack

Kack
Lack

Mack
Nack
Oack
Pack
Qack

Natiirlich ist das nicht ganz richtig, weil »Ouack« und »Quack« falsch geschrieben
sind.

Andern Sie das Programm, um diesen Fehler zu beheben.
Listing 8.2

String-Teile

Segmente eines Strings nennt man Slice. Die Auswahl eines Slice ist der Auswahl
eines einzelnen Zeichens recht dhnlich:

>>> s = 'Monty Python'

>>> print s[0:5]

Monty

>>> print s[6:12]

Python
Der Operator [n:m] gibt den Teil des Strings vom »n-ten« bis zum »m-ten« Zeichen
zuriick, einschliellich des ersten, aber ausschlielllich des letzten Zeichens. Dieses
Verhalten ist zwar nicht besonders intuitiv, aber vielleicht hilft es Ihnen, sich
vorzustellen, dass die Indizes zwischen die Zeichen zeigen, wie in Abbildung 8.1 zu
sehen.

index 0 1 2 3 4 5 6
Abbildung 8.1 Slice-Indizes

Wenn Sie den ersten Index (vor dem Doppelpunkt) weglassen, beginnt das Slice am

Anfang des Strings. Lassen Sie den zweiten Index weg, reicht das Slice bis zum
Ende des Strings:

>>> frucht = 'banane’

>>> frucht[:3]

'ban’

>>> frucht[3:]

‘ane'
Ist der erste Index grofSer oder gleich dem zweiten Index, erhalten Sie als Ergebnis
einen Leerstring, der durch zwei Apostrophe gekennzeichnet wird:

>>> frucht = 'banane’
>>> frucht[3:3]

Ein Leerstring enthdlt keine Zeichen und hat die Lange 0. Abgesehen davon, verhalt
er sich genau wie jeder andere String.

Angenommen, frucht ist ein String. Was bedeutet frucht[:]?
Listing 8.3

Strings sind unveranderbar

Die Versuchung ist groR, den []-Operator auf der linken Seite einer Zuweisung zu
verwenden, um ein Zeichen in einem String zu verdndern. Ein Beispiel:

>>> gruss = 'Hallo, Welt!"

>>> gruss[0] ="J'

TypeError: objekt does not support item assignment
Das objekt in diesem Fall ist der String, und das item ist das Zeichen, das Sie
zuweisen mochten. Fiir den Moment ist ein Objekt dasselbe wie ein Wert. Aber wir
werden diese Definition spater verfeinern. Ein Element (item) ist einer der Werte in
einer Sequenz.

Zu diesem Fehler kommt es, weil Strings unverdnderlich sind. Sie kdnnen also
einen vorhandenen String nicht verdndern. Aber Sie kdonnen einen neuen String
erstellen, der eine Variation des Originals ist:

>>> gruss = 'Hallo, Welt!'

>>> neuer_gruss ="'J' + greeting[1:]

>>> print neuer_gruss

Jallo, Welt!
Dieses Beispiel konkateniert ein neues erstes Zeichen mit einem Teil von gruss. Auf
den urspriinglichen String hat das keinerlei Auswirkungen.

Suchen

Was macht die folgende Funktion?

def suche(wort, zeichen):
index =0
while index < len(wort):
if wort[index] == zeichen:
return index
index = index + 1
return -1
In gewisser Weise ist suche das Gegenteil des []-Operators. Statt einen Index
entgegenzunehmen und das entsprechende Zeichen zu extrahieren, erwartet diese
Funktion ein Zeichen und findet den Index, an dem dieses Zeichen erscheint. Wird

das Zeichen nicht gefunden, liefert die Funktion den Wert -1.

Dies ist das erste Beispiel, in dem wir einer return-Anweisung innerhalb einer
Schleife begegnen. Wenn wort[index] == zeichen ist, verlasst die Funktion die
Schleife und kehrt sofort zurtick.

Kommt das Zeichen nicht in dem String vor, verldsst das Programm die Schleife
normal und liefert den Wert -1.

Dieses Verarbeitungsmuster — das Durchlaufen einer Sequenz und das Verlassen der
Schleife, wenn wir gefunden haben, was wir suchen — nennt man eine Suche.

Passen Sie suche so an, dass die Funktion einen dritten Parameter erwartet — den
Index, ab dem die Suche in wort beginnen soll.

Listing 8.4

Schleifen und Zahler

Das folgende Programm zdhlt, wie oft das Zeichen a in einem String vorkommt:

wort = 'banane'

anzahl =0

for zeichen in wort;:

if zeichen =="'a";
anzahl = anzahl + 1

print anzahl
Dieses Programm demonstriert ein weiteres Verarbeitungsmuster, einen
sogenannten Zdhler. Die Variable anzahl wird mit dem Wert O initialisiert und dann
jedes Mal um 1 erhoht, wenn ein a gefunden wurde. Beim Verlassen der Schleife

enthélt anzahl das Ergebnis, also die Gesamtzahl der a.

Verpacken Sie diesen Code in eine Funktion mit dem Namen anzahl und
generalisieren Sie sie so, dass sie den String und das Zeichen als Argumente
erwartet.

Listing 8.5

Schreiben Sie die Funktion so um, dass der String nicht durchlaufen wird, sondern

die Version von suche aus dem vorherigen Abschnitt mit drei Parametern zum
Einsatz kommt.

Listing 8.6
String-Methoden

Eine Methode ist einer Funktion sehr dhnlich — sie erwartet Argumente und liefert
einen Wert zuriick —, aber die Syntax ist unterschiedlich. Die Methode upper nimmt
beispielsweise einen String und liefert einen neuen String mit denselben Zeichen als
GroRbuchstaben zuriick:

Statt der Funktionssyntax upper(wort) kommt hier die Methodensyntax
wort.upper() zum Einsatz.

>>> wort = 'banane’

>>> neues_wort = wort.upper()

>>> print neues_wort

BANANE
Bei dieser Form der Punktschreibweise wird der Name der Methode upper und der
Name des Strings angegeben, auf den die Methode angewendet werden soll: wort.
Die leeren Klammern zeigen an, dass diese Methode keine Argumente erwartet.

Auch eine Methode wird aufgerufen. In diesem Fall rufen wir die Methode upper
von wort auf.

Wie sich herausstellt, gibt es auch eine String-Methode find, die der Funktion
erstaunlich dhnlich ist, die wir geschrieben haben:

>>> wort = 'banane’

>>> index = wort.find('a")
>>> print index

1

In diesem Beispiel konnen wir die Methode find von wort aufrufen und das gesuchte
Zeichen als Parameter {ibergeben.

Die find-Methode ist allgemeiner gehalten als unsere Funktion: Sie kann auch
Teilstrings suchen, nicht nur einzelne Zeichen:

>>> wort.find('na’)
2

Als zweites Argument konnen wir optional den Startindex angeben:

>>> wort.find('na’, 3)
A

Und als drittes Argument kénnen wir den Index angeben, ab dem die Suche beendet
werden soll:

>>> name = 'tim'

>>> name.find('t', 1, 2)

-1
Diese Suche schlédgt fehl, weil t nicht im Indexbereich von 1 bis 2 (exklusive 2)
vorkommt.

Es gibt eine String-Methode mit dem Namen count, die der Funktion aus der
vorherigen Ubung dhnelt. Lesen Sie die Dokumentation dieser Methode und
schreiben Sie einen Aufruf, der die Anzahl der a in 'banane' ermittelt.

Listing 8.7

Lesen Sie die Dokumentation der String-Methoden unter
http://docs.python.org/lib/string-methods.html. Vielleicht méchten Sie ja mit
einigen der Methoden experimentieren, um herauszufinden, wie sie funktionieren.
strip und replace sind besonders niitzlich.

In der Dokumentation wird eine Syntax verwendet, die vielleicht verwirrend sein
kann. Beispielsweise kennzeichnen die eckigen Klammern in find(sub[, start|,
end]]) optionale Argumente. Entsprechend ist das Argument sub erforderlich, aber
start ist optional. Und selbst wenn Sie start angeben, ist end optional.

Listing 8.8

Der in-Operator

Das Wort in ist ein Boolescher Operator, der zwei Strings erwartet und True
zuriickliefert, wenn der erste als Teilstring im zweiten vorkommt:

>>>'a' in 'banane’

True

>>>'samen’ in 'banane’

False
Die folgende Funktion gibt beispielsweise alle Zeichen aus wort1 aus, die ebenfalls
in wort2 vorkommen:

def in_beiden(wort1, wort2):

for zeichen in wort1:
if zeichen in wort2:
print zeichen

Mit gut gewdhlten Variablennamen liest sich Python manchmal fast wie Deutsch.
Diese Schleife konnten Sie auch folgendermalien lesen: »Fiir (jedes) zeichen in (dem
ersten) wort, wenn das zeichen im (zweiten) wort vorkommt, drucke (das) zeichen«.

Das kommt dabei heraus, wenn Sie einen Apfel mit einer Orange vergleichen:
>>> in_beiden(‘apfel', 'orange’)

a
e

http://docs.python.org/lib/string-methods.html

String-Vergleich

Der relationale Operator funktioniert auch mit Strings. Dadurch kénnen Sie
ermitteln, ob zwei Strings gleich sind:
if wort == 'banane":
print 'Alles klar, Bananen.'
Andere relationale Operatoren kénnen sich als niitzlich erweisen, um Worter
alphabetisch zu sortieren:
if wort < 'banane':
print 'lhr Wort' + wort + ' kommt im Alphabet vor banane.’
elif wort > 'banane’:
print 'lhr Wort' + wort + ' kommt im Alphabet nach banane.'
else:
print 'Alles klar, Bananen.'
Python geht mit Grol3- und Kleinbuchstaben nicht genau so um wie wir Menschen.
Alle Grolbuchstaben kommen vor den Kleinbuchstaben:

lhr Wort Pinienkern kommt vor banane.

Eine gebrduchliche Méglichkeit, dieses Problem zu l6sen, besteht darin, die Strings
vor dem Vergleich in ein Standardformat zu konvertieren — etwa in Kleinbuchstaben.
Daran sollten Sie unbedingt denken, wenn Sie sich gegen einen mit Pinienkernen
bewaffneten Mann verteidigen miissen.

Debugging

Wenn Sie einen Index verwenden, um die Werte in einer Folge zu durchlaufen, kann
es verzwickt sein, den Anfang und das Ende der Schleife richtig hinzubekommen.
Hier sehen Sie eine Funktion, die zwei Worter vergleichen und True zuriickliefern
soll, wenn ein Wort die Umkehrung des anderen ist. Leider enthdlt sie zwei Fehler:
def ist_umkehrung(wort1, wort2):
if len(wort1) != len(wort2):
return False
i=0
j = len(wort2)
while j > O:
if wort1[i] = wort2[j]:
return False
i= i+
j=J

return True

Die erste if-Anweisung tiberpriift, ob die beiden Worter die gleiche Léange haben.
Falls nicht, konnen wir sofort False zurtickliefern. Im Rest der Funktion kdonnen wir

davon ausgehen, dass die Worter die gleiche Lange haben. Das ist ein Beispiel fiir
ein Wachter-Muster aus ,, Typpriifung®.

i und j sind Indizes: i durchlauft wort1 vorwarts, wahrend j wort2 riickwirts
durchl&uft. Falls wir zwei Zeichen finden, die nicht {ibereinstimmen, konnen wir
sofort False zuriickgeben. Stimmen nach dem Durchlaufen der gesamten Schleife
alle Zeichen tiberein, geben wir True zuriick.

Wenn wir diese Funktion mit den Wértern »gras« und »sarg« testen, erwarten wir
den Riickgabewert True. Stattdessen erhalten wir einen IndexError:

>>> jst_umkehrung('gras’, 'sarg')

"i:ile "umkehrung.py", zeile 15, in ist_umkehrung
if wort1[i] = wort2(j]:
IndexError: string Index out of range
Beim Debugging eines solchen Fehlers gebe ich in einem ersten Schritt die
Indexwerte unmittelbar vor der fehlerhaften Zeile aus:

while j > O:
printi, j # hier ausgeben

if wort1[i] = wort2(j]:
return False
i =i+1
j=J1
Wenn ich das Programm jetzt ausfiihre, erhalte ich weitere Informationen:

>>> jst_umkehrung('gras’, 'sarg')
04

IndexError: string Index out of range

Beim ersten Schleifendurchlauf ist j gleich 4, was aulerhalb des Wertebereichs fiir
den String 'gras’ liegt. Der Index fiir das letzte Zeichen ist 3. Entsprechend sollte der
Anfangswert fiir j gleich len(wort2)-1 sein.

Wenn ich diesen Fehler behebe und das Programm erneut ausfiihre, erhalte ich:

>>> jst_umkehrung('gras’, 'sarg')
03

12

21

True

Diesmal erhalten wir die korrekte Antwort, aber es sieht so aus, als wére die Schleife
nur dreimal ausgefiihrt worden. Das ist verddchtig. Um eine bessere Vorstellung

davon zu bekommen, was hier geschieht, zeichnen wir ein Zustandsdiagramm. Den
Frame fiir ist_umkehrung bei der ersten Iteration sehen Sie in Abbildung 8.2.

wortl —='gras’ wort2 —='sarg’

i —= 0 j—=3

Abbildung 8.2 Zustandsdiagramm

Ich habe die Variablen im Frame entsprechend angeordnet und mit gepunkteten
Linien angedeutet, dass sich die Werte von i und j jeweils auf Zeichen in wort1 und
wort2 beziehen.

Gehen Sie das Programm von diesem Diagramm ausgehend auf Papier durch.
Andern Sie die Werte von i und j fiir jede Iteration. Finden Sie den zweiten Fehler in
dieser Funktion und beheben Sie ihn.

Listing 8.9
Glossar

Objekt:
Etwas, auf das sich eine Variable beziehen kann. Fiir den Moment konnen Sie
»Objekt« und »Wert« als Synonym verwenden.

Sequenz:
Geordnete Reihe. Eine Reihe von Werten, die jeweils einem ganzzahligen Index
zugeordnet sind.

Element:
Einer der Werte in einer Sequenz.

Index:
Ganzzahliger Wert, iiber den ein Element aus einer Sequenz ausgewdahlt wird,
beispielsweise ein Zeichen in einem String.

Slice:
Teil eines Strings, der {iber einen Indexbereich definiert wird.

Leerstring:

String, der keine Zeichen enthélt und die Lange 0 hat, wird durch zwei Apostrophe
dargestellt.

Unverdnderlichkeit:
Eigenschaft einer Sequenz, deren Elemente nicht zugewiesen werden kdnnen.

Traversieren:

Iteration {iber die Elemente einer Sequenz, bei der fiir jedes Element dhnliche
Operationen vorgenommen werden.

Suche:
Muster einer Traversierung, die endet, wenn das Gesuchte gefunden wurde.

Zahler:

Variable, mit der etwas gezahlt wird und die {iblicherweise mit O initialisiert und
dann erhoht wird.

Methode:

Funktion, die einem Objekt zugeordnet ist und iiblicherweise mit der
Punktschreibweise aufgerufen wird.

Aufruf:
Anweisung, mit der eine Methode aufgerufen wird.

Ubungen

Ein String-Slice kann einen dritten Index entgegennehmen, der die »SchrittgréfSe«
angibt. Das ist die Anzahl der Leerschritte zwischen den aufeinanderfolgenden
Zeichen. Eine Schrittgrofle von 2 bedeutet jedes zweite Zeichen, 3 steht fiir jedes

dritte usw.

>>> frucht = 'banane’

>>> frucht[0:5:2]

'bnn’

Eine SchrittgroBe von -1 durchlduft das Wort riickwarts. Das Slice [::-1] erzeugt
einen umgekehrten String.

Schreiben Sie mit diesem Idiom eine einzeilige Version der Funktion ist_palindrom
aus Listing 6.6.

Listing 8.10

Die folgenden Funktionen sollen alle iiberpriifen, ob ein String Kleinbuchstaben
enthélt. Einige davon sind allerdings falsch. Beschreiben Sie fiir jede Funktion, was

sie in Wirklichkeit tut (vorausgesetzt, der Parameter ist ein String).
def kleine_buchstaben1(s):
forcins:
if c.islower():
return True
else:
return False

def kleine_buchstaben2(s):
forcins:
if 'c'.islower():

return 'True'
else:
return 'False’

def kleine_buchstaben3(s):
forcins:
flag = c.islower()
return flag

def kleine_buchstaben4(s):
flag = False
forcins:
flag = flag or c.islower()
return flag

def kleine_buchstaben5(s):
forcins:
if not c.islower():
return False
return True

Listing 8.11

ROT13 ist eine schwache Form der Verschliisselung, bei der jedes Zeichen eines
Worts um 13 Buchstaben im Alphabet verschoben wird. » A« um drei Zeichen
verschoben wird zu »D«, »Z« um eins verschoben wird zu »A«.

Schreiben Sie eine Funktion mit dem Namen rotiere_zeichen, die einen String und
einen Integer als Parameter erwartet und als Riickgabewert einen neuen String
liefert, in dem die Zeichen des urspriinglichen Strings um die angegebene Anzahl
Zeichen »rotiert« sind.

Beispielsweise ergibt »loch« um 6 Zeichen verschoben »ruin«.

Dafiir konnen Sie die integrierten Funktionen ord — die ein Zeichen in einen
numerischen Code konvertiert — und chr — die numerische Codes in Zeichen
verwandelt — verwenden.

Im Internet werden beispielsweise potenziell anstoBige Witze manchmal mit ROT13
verschliisselt. Sollten Sie nicht so leicht aus der Ruhe zu bringen sein, kénnen Sie ja
einige suchen und dekodieren. Losung: rotiere_wort.py.

Listing 8.12

Kapitel 9. Fallstudie: Wortspiele

Wortlisten einlesen

Fiir die Ubungen in diesem Kapitel brauchen wir eine Liste deutscher Worter. Es
gibt jede Menge Wortlisten im Internet, aber fiir unsere Zwecke ist wohl jene Liste
am besten geeignet, die Grady Ward zusammengestellt und unter Public Domain im
Rahmen des Moby Lexicon Project zur Verfiigung gestellt hat (siehe
http://wikipedia.org/wiki/Moby_Project). Die Liste enthdlt 159.809 Wérter, die in
Kreuzwortrdtseln und anderen Wortspielen verwendbar sind (die deutschen
Sonderzeichen wurden deshalb durch »ae«, »oe«, »ue« und »ss« ersetzt). In der
Moby-Sammlung in fiinf Sprachen heif3t diese Liste mlang.tar.Z (unter
http://icon.shef.ac.uk/Moby/). Sie konnen aber auch direkt die deutsche Fassung
wortliste.txt aus den Codebeispielen verwenden.

Diese Datei ist eine reine Textdatei, Sie konnen sie also mit einem beliebigen
Texteditor 6ffnen — aber auch von Python aus einlesen. Die integrierte Funktion
open erwartet einen Dateinamen als Parameter und liefert ein Dateiobjekt zuriick,
mit dem Sie die Datei einlesen kdnnen.

>>> fin = open(‘wortliste.txt')

>>> print fin

<open file 'wortliste.txt', mode 'r' at Oxb7f4b380>
finist ein gebrauchlicher Name fiir ein Dateiobjekt, das zum Einlesen verwendet
wird. Der Modus 'r' gibt an, dass diese Datei zum Lesen geoffnet wird (im Gegensatz
zu'w' zum Schreiben).

Das Dateiobjekt bietet mehrere Methoden zum Lesen, unter anderem auch readline
— eine Methode, die Zeichen aus einer Datei einliest, bis ein Zeilenvorschub erreicht
ist und das Ergebnis als String zurtiickliefert:

>>> fin.readline()

'‘Aale\n’
Das erste Wort aus wortliste.txt lautet » Aale«. Die Zeichenfolge \r\n steht fiir zwei
Whitespace-Zeichen, einen Wagenriicklauf und einen Zeilenvorschub, die dieses
Wort vom néchsten trennen.

Das Dateiobjekt merkt sich, an welcher Stelle es sich in der Datei befindet. Wenn
Sie readline erneut aufrufen, erhalten Sie das ndachste Wort:

>>> fin.readline()
'Aalen\n’

Das ndchste Wort lautet » Aalen«. Falls Sie der Whitespace stort, konnen wir ihn mit
der Methode strip loswerden:

>>> zeile = fin.readline()

http://wikipedia.org/wiki/Moby_Project
http://icon.shef.ac.uk/Moby/

>>> wort = zeile.strip()
>>> print wort
Aals
Sie konnen ein Dateiobjekt auch als Teil einer for-Schleife verwenden. Das folgende
Programm liest wortliste.txt ein und gibt jedes Wort in einer eigenen Zeile aus:
fin = open('wortliste.txt")
for zeile in fin:
wort = zeile.strip()
print wort
Schreiben Sie ein Programm, das wortliste.txt einliest und nur Woérter mit mehr als
20 Zeichen ausgibt (ohne Whitespace).

Listing 9.1

Ubungen

Es gibt Losungen fiir die Ubungen aus dem nichsten Abschnitt. Versuchen Sie erst
mal selbst, die Ubungen zu bewiltigen, bevor Sie die Losungen lesen.

Im Jahr 1939 veroffentlichte Ernest Vincent Wright eine Novelle mit dem Titel
Gadsby, die aus 50.100 Wortern besteht, von denen kein einziges ein »e« enthdlt.
Das ist durchaus eine Leistung, da »e« im Englischen wie auch im Deutschen der am
hdufigsten vorkommende Buchstabe ist.

Tatsdchlich ist das am Anfang auch miihsam. Doch mit Ubung und Sorgfalt wird das
schon, jedoch gibt das nicht sofort auch Sinn ...

In Ordnung, ich gebe auf.

Schreiben Sie eine Funktion mit dem Namen hat_kein_e, die True zuriickliefert,
wenn das angegebene Wort kein »e« enthalt.

Andern Sie Thr Programm aus dem vorherigen Abschnitt dahin gehend, dass es nur
Worter ausgibt, die kein »e« enthalten, und berechnen Sie den Prozentsatz dieser
Worter in der Liste.

Listing 9.2

Schreiben Sie eine Funktion mit dem Namen vermeiden, die ein Wort und einen
String mit verbotenen Zeichen erwartet und True zuriickliefert, wenn das Wort
keines der verbotenen Zeichen enthdlt.

Andern Sie anschlieRend das Programm so, dass es den Benutzer zur Eingabe eines
Strings mit verbotenen Zeichen auffordert und die Anzahl der Worter ausgibt, die
keines dieser Zeichen enthalten. Kénnen Sie eine Kombination von aus fiinf
verbotenen Zeichen finden, die die kleinstmdgliche Anzahl Wérter ausschliefSt?

Listing 9.3

Schreiben Sie eine Funktion mit dem Namen verwendet_nur, die ein Wort und eine
Folge von Buchstaben erwartet und True zuriickliefert, wenn das Wort nur aus
Zeichen aus der Liste besteht. Konnen Sie einen Satz bilden, der nur aus den Zeichen
acefhlo aufgebaut ist? Auch einen anderen als »Hoe alfalfa?«

Listing 9.4

Schreiben Sie eine Funktion mit dem Namen verwendet_alle, die ein Wort und
einen String mit erforderlichen Zeichen erwartet und True zuriickliefert, wenn in
dem Wort alle angegebenen Zeichen vorkommen. Wie viele Worter gibt es, die alle
Vokale aeiou enthalten? Was ist mit aeiouy?

Listing 9.5

Schreiben Sie eine Funktion mit dem Namen ist_alphabetisch, die True
zurtiickliefert, wenn alle Zeichen in einem Wort in alphabetischer Reihenfolge
vorkommen (die Zeichen diirfen auch doppelt sein). Wie viele solcher
alphabetischen Worter gibt es?

Listing 9.6

Suchen

Alle Ubungen aus dem vorherigen Abschnitt haben etwas gemeinsam: Sie kénnen
mit dem Suchmuster aus ,,Suchen“ geldst werden. Das einfachste Beispiel:
def hat_kein_e(wort):
for zeichen in wort;:
if zeichen =='e";
return False
return True

Die for-Schleife durchliuft die Zeichen in wort. Wenn wir das Zeichen »e« finden,
konnen wir sofort False zuriickliefern. Ansonsten machen wir mit dem ndchsten

Zeichen weiter. Wenn wir die Schleife ganz durchlaufen, bedeutet das, dass wir kein
»e« gefunden haben, und liefern True zuriick.

vermeiden ist eine allgemeinere Version von hat_kein_e, hat aber dieselbe
Struktur:

def vermeiden(wort, verboten):
for zeichen in wort:
if zeichen in verboten:
return False
return True

Wir konnen False zuriickliefern, sobald wir ein verbotenes Zeichen finden.

Erreichen wir das Ende der Schleife, geben wir True zuriick.
verwendet_nur ist dhnlich, lediglich die Bedingung ist umgekehrt:

def verwendet_nur(wort, zulassig):
for zeichen in wort;:
if zeichen not in zulassig:
return False
return True
Statt einer Liste mit verbotenen Zeichen haben wir hier eine Liste mit zuldssigen
Zeichen. Wenn wir in wort ein Zeichen finden, das nicht in zulassig enthalten ist,

liefern wir False zuriick.

verwendet_alle ist ebenfalls dhnlich. Allerdings sind die Rollen des Worts und des
Strings mit den erforderlichen Zeichen vertauscht:
def verwendet_alle(wort, erforderlich):
for zeichen in erforderlich:
if zeichen not in wort:
return False

return True
Anstatt die Zeichen in wort zu durchlaufen, geht die Schleife die erforderlichen
Zeichen durch. Wenn eines der erforderlichen Zeichen nicht im Wort vorkommt,
wird False zuriickgeliefert.

Falls Sie wirklich wie ein Informatiker denken, ist Thnen aufgefallen, dass
verwendet_alle eine Instanz eines zuvor gelosten Problems ist, und haben
geschrieben:

def verwendet_alle(wort, erforderlich):

return verwendet_nur(erforderlich, wort)

Dies ist ein Beispiel fiir eine Programmentwicklungsmethode namens
Problemerkennung. Das bedeutet, dass Sie das Problem, an dem Sie gerade
arbeiten, als Instanz eines bereits gel6sten Problems erkennen und entsprechend eine
zuvor entwickelte Lésung darauf anwenden.

Schleifen mit Indizes

Ich habe die Funktionen im vorherigen Abschnitt mit for-Schleifen geschrieben,
weil ich nur die Zeichen in den Strings gebraucht habe. Mit den Indizes hatte ich
nichts zu tun.

Fiir ist_alphabetisch miissen wir aber benachbarte Zeichen vergleichen, was mit
einer for-Schleife ziemlich verzwickt ist:

def ist_alphabetisch(wort):
vorheriges = wort[0]
for ¢ in wort:
if ¢ < vorheriges:

return False
vorheriges = ¢
return True

Eine Alternative ist die Rekursion:

def ist_alphabetisch(wort):
if len(wort) <= 1:
return True
if wort[0] > wort[1]:
return False
return ist_alphabetisch(wort[1:])

Eine weitere Moglichkeit besteht in der Verwendung einer while-Schleife:
def ist_alphabetisch(wort):
i=0
while i < len(wort)-1:
if wort[i+1] < wort[i]:
return False
i =i+
return True
Die Schleife beginnt mit i=0 und endet bei i=len(wort)-1. Bei jedem
Schleifendurchlauf wird das i-te Zeichen (quasi das aktuelle Zeichen) mit dem i+1-
ten Zeichen (dem nachsten) verglichen.

Wenn das ndchste Zeichen kleiner als das aktuelle ist (also im Alphabet weiter vorne
erscheint), haben wir eine Unterbrechung in der alphabetischen Folge erkannt und
liefern den Riickgabewert False.

Wenn wir das Ende der Schleife erreichen, ohne einen Fehler entdeckt zu haben, hat
das Wort den Test bestanden. Damit Sie sich davon iiberzeugen konnen, dass die
Schleife korrekt beendet wird, untersuchen Sie ein Beispiel wie 'beginn'. Die Lange
des Worts ist 6, beim letzten Schleifendurchlauf ist i gleich 4, das entspricht dem
Index des vorletzten Zeichens. Bei der letzten Iteration wird das vorletzte Zeichen
mit dem letzten Zeichen verglichen — das ist genau das, was wir wollen.

Hier kommt eine Version von ist_palindrom (siehe Listing 6.6), die mit zwei Indizes
arbeitet. Einer beginnt am Anfang und zdhlt aufwarts. Der andere beginnt am Ende
des Strings und zdhlt abwarts.
def ist_palindrom(wort):
i=0
j = len(wort)-1
while i<j:
if wort[i] = wort[j]:
return False
i= i+
j=J

return True

Sollte Thnen aufgefallen sein, dass dies eine Instanz eines bereits geldsten Problems
ist, konnen Sie aber auch schreiben:

def ist_palindrom(wort):
return ist_umkehrung(wort, wort)

Natiirlich vorausgesetzt, Sie haben Listing 8.9 gelost.

Debugging

Es ist knifflig, Programme zu testen. Die Funktionen in diesem Kapitel sind relativ
einfach zu tiberpriifen, weil Sie die Ergebnisse auch von Hand bestétigen kénnen.
Trotzdem ist es schwierig bis unmdoglich, Wérter zu finden, mit denen Sie alle
moglichen Fehler testen kénnen.

Beispielsweise gibt es in hat_kein_e zwei offensichtliche Fille zu priifen: Worter
mit einem »e« sollen den Wert False liefern. Alle anderen Wérter sollen True
ergeben. Da haben Sie keinerlei Schwierigkeiten, sich je eines zu iiberlegen.

In jedem der beiden Félle gibt es aber auch einige weniger offensichtliche
Unterfélle. Bei den Wértern mit einem »e« sollten Sie auch Wérter mit einem »e«
am Anfang, am Ende und irgendwo in der Mitte testen. Aullerdem sollten Sie lange
Worter, kurze Worter und sehr kurze Worter testen — wie etwa einen Leerstring. Der
Leerstring ist ein Beispiel fiir einen Sonderfall, einen der absolut nicht
offensichtlichen Faille, hinter denen sich oft Fehler verstecken kénnen.

Zusatzlich zu solchen Testfdllen kénnen Sie IThr Programm auch mit einer Wortliste,
wie z. B. wortliste.txt, testen. Indem Sie die Ausgabe untersuchen, kénnen Sie unter
Umstdnden Fehler aufspiiren. Aber Vorsicht: Eventuell finden Sie nur eine
bestimmte Art von Fehlern (wie etwa Worter, die nicht in der Ausgabe erscheinen
sollten, aber trotzdem auftauchen), eine andere Art von Fehlern dagegen nicht (wie
etwa Worter, die im Ergebnis auftauchen sollten, aber trotzdem nicht erscheinen).

Ublicherweise konnen Tests Thnen dabei helfen, Fehler zu finden. Aber es ist nicht
einfach, eine gute Sammlung von Testfdllen zu generieren. Und selbst dann kénnen
Sie nicht sicher sein, dass Ihr Programm wirklich korrekt arbeitet.

So hat es ein legendérer Informatiker auf den Punkt gebracht:

Durch Testen kann man stets nur die Anwesenheit, nie aber die Abwesenheit von Fehlern beweisen.
— Edsger W. Dijkstra

Glossar

Dateiobjekt:
Wert, der eine gedffnete Datei abbildet.

Problemerkennung:

Losung eines Problems, indem Sie es als Instanz eines zuvor geldsten Problems
ausdriicken.

Sonderfall:

Testfall, der entweder atypisch oder nicht offensichtlich ist (und mit geringerer
Wahrscheinlichkeit korrekt behandelt wird).

Ubungen

Diese Ubung basiert auf einem Ritsel aus der amerikanischen Radiosendung Car
Talk:

»Neulich bin ich auf der Autobahn gefahren und habe einen Blick auf meinen Kilometerzéhler geworfen.
Wie die meisten Kilometerzéhler zeigte er sechs Ziffern in Meilen. Wenn ich also beispielsweise 300.000
Meilen mit meinem Auto gefahren bin, zeigt der Tacho 3-0-0-0-0-0.

Was ich an diesem Tag gesehen habe, fand ich sehr interessant: Mir fiel auf, dass die letzten vier Stellen
ein Palindrom waren, vorwaérts und riickwérts also identisch zu lesen waren. Ein Beispiel fiir ein
Palindrom wire etwa 5-4-4-5. Mein Kilometerzéhler hétte also beispielsweise 3-1-5-4-4-5 zeigen kénnen.
Eine Meile spiter waren die letzten fiinf Stellen ein Palindrom — wie zum Beispiel 3-6-5-4-5-6. Eine
weitere Meile spéter waren die mittleren vier der sechs Zahlen ein Palindrom. Und halten Sie sich fest:
Eine Meile spater waren alle sechs Ziffern ein Palindrom!

Die Frage lautet nun: »Was zeigte mein Kilometerzahler, als ich zum ersten Mal darauf geschaut hatte?«

Schreiben Sie ein Python-Programm, das alle sechsstelligen Zahlen testet und die
Zahlen ausgibt, die diesen Vorgaben entsprechen. Losung: cartalkl.py.

Listing 9.7

Hier kommt noch ein Car Talk-Ritsel, das Sie mit einer Suche 16sen kénnen:

»Kiirzlich hat mich meine Mutter besucht, und wir haben festgestellt, dass die beiden Ziffern meines
Alters genau den umgekehrten Ziffern ihres Alters entsprechen. Wire sie beispielsweise 73, wére ich 37.
Wir haben uns gefragt, wie oft das wohl in unser beider Leben vorkommt. Aber wir haben uns dann iiber
andere Themen unterhalten und deshalb nie eine Antwort auf diese Frage gefunden.

Als ich nach Hause kam, bin ich darauf gekommen, dass die Zahlen unseres Alters bereits sechsmal
austauschbar waren. AuRerdem bin ich zu dem Ergebnis gekommen, dass es mit ein bisschen Gliick in
ein paar Jahren wieder so weit ist. Und mit ganz viel Gliick konnten wir es noch einmal danach schaffen.
Damit wéren es insgesamt achtmal. Und nun die Frage: Wie alt bin ich jetzt?«

Schreiben Sie ein Python-Programm, das die Losung fiir dieses Ratsel sucht. Tipp:
Vielleicht stellt sich ja die String-Methode Zfill als niitzlich heraus.

Losung: cartalk2.py.
Listing 9.8

Kapitel 10. Listen

Eine Liste ist eine Sequenz

Genau wie ein String ist eine Liste eine Folge von Werten. In einem String sind
diese Werte Zeichen. In einer Liste konnen die Werte beliebigen Typs sein. Die
Werte in einer Liste bezeichnet man als Elemente.

Es gibt mehrere Moglichkeiten, eine neue Liste anzulegen. Die einfachste besteht
darin, die Elemente in eckige Klammern zu schreiben ([und]):

[10, 20, 30, 40]

['‘crunchy frog', 'ram bladder', 'lark vomit']
Das erste Beispiel ist eine Liste mit vier Integer-Werten. Das zweite ist eine Liste
mit drei Strings (kennen Sie den Sketch von Monty Python?). Die Elemente einer
Liste miissen aber nicht vom selben Typ sein. Die folgende Liste enthdlt einen
String, eine FliefRkommazahl, einen Integer und — genau! — eine weitere Liste:

['spam’, 2.0, 5, [10, 20]]
Eine Liste innerhalb einer anderen Liste nennt man verschachtelt.

Eine Liste, die keine Elemente enthdlt, bezeichnet man als leere Liste. Leere Listen
koénnen Sie mit leeren eckigen Klammern erstellen: [].

Wie Sie sich schon gedacht haben, kénnen Sie Listenwerte auch Variablen zuweisen:

>>> kaesesorten = ['Cheddar’, 'Edamer’, 'Gouda']
>>> zahlen = [17, 123]

>>> |eer =[]

>>> print kaesesorten, zahlen, leer

['Cheddar', 'Edamer’, 'Gouda'] [17, 123] []

Listen konnen geandert werden

Die Syntax fiir den Zugriff auf die Elemente einer Liste ist dieselbe wie fiir den
Zugriff auf die Zeichen eines Strings: der Klammer-Operator. Der Ausdruck
innerhalb der Klammern ist der Index. Denken Sie daran, dass der Index immer mit
0 beginnt:

>>> print kaesesorten[0]

Cheddar
Im Gegensatz zu Strings sind Listen verdnderbar. Wenn der Klammer-Operator auf
der linken Seite einer Zuweisung erscheint, reprasentiert er das Listenelement, dem
der Wert zugewiesen wird.

>>> zahlen = [17, 123]

>>> zahlen[1] = 5
>>> print zahlen

[17, 5]
Das 1-te Element von zahlen, das einmal 123 war, ist jetzt 5.

Eine Liste konnen Sie sich als Beziehung zwischen Indizes und Elementen
vorstellen. Diese Beziehung nennt man Mapping. Jedem Index ist eines der
Elemente zugeordnet. Abbildung 10.1 zeigt das Zustandsdiagramm fiir
kaesesorten, zahlen und leer:

kaesesorten —= 0 —= 'Cheddar’
1 —= 'Edamer’
2 —= 'Gouda’

zahlen —= 0 —= 17

list

leer —=

Abbildung 10.1 Zustandsdiagramm

Listen werden durch Kéasten mit dem Wort »Liste« und den Elementen darin
dargestellt. kaesesorten bezieht sich auf eine Liste mit drei Elementen mit den
Indizes O, 1 und 2. zahlen enthélt zwei Elemente. Das Diagramm zeigt, dass dem
zweiten Element statt dem urspriinglichen Wert 123 der Wert 5 zugewiesen wurde.
leer bezieht sich auf eine Liste ohne Elemente.

Indizes fiir Listen funktionieren genauso wie Indizes fiir Strings:

m Ein beliebiger ganzzahliger Ausdruck kann als Index verwendet werden.

= Wenn Sie versuchen, ein Element zu lesen oder zu schreiben, das nicht existiert,
erhalten Sie einen IndexError.

= Hat ein Index einen negativen Wert, wird dieser riickwérts vom Ende der Liste
gezahlt.

Der in-Operator funktioniert auch mit Listen:

>>> kaesesorten = ['Cheddar’, 'Edamer’, 'Gouda']
>>>'Edamer’ in kaesesorten

True

>>> "Brie' in kaesesorten

False

Listen durchlaufen

Der gebrauchlichste Weg, die Elemente einer Liste zu durchlaufen, ist eine for-
Schleife. Die Syntax ist die gleiche wie fiir Strings:
for kaese in kaesesorten:
print kaese
Das funktioniert wunderbar, solange Sie die Elemente der Liste nur lesen mochten.
Wenn Sie aber die Elemente schreiben oder aktualisieren mochten, brauchen Sie den
jeweiligen Index. Haufig werden dazu die Funktionen range und len kombiniert:
for i in range(len(zahlen)):
zahlen[i] = zahlen[i] * 2
Diese Schleife durchlduft die Liste und aktualisiert jedes Element. len liefert die
Anzahl der Elemente in der Liste. range liefert eine Liste der Indizes von O bis n-1,
wobei n gleich der Lange der Liste ist. Bei jedem Schleifendurchlauf enthélt i den
Index des ndchsten Elements. Die Zuweisungsanweisung im Body verwendet
wiederum i dazu, den alten Wert des Elements zu lesen und den neuen Wert
zuzuweisen.

Bei einer for-Schleife fiir eine leere Liste wird der Body niemals ausgefiihrt:

for xin []:
print 'Dazu wird es nie kommen.'

Obwohl eine Liste auch eine andere Liste enthalten kann, zdhlt die verschachtelte
Liste als ein einziges Element. Die Lange dieser Liste ist vier:

['spam’, 1, ['Brie', 'Roquefort’, 'Pol le VeqT, [1, 2, 3]]

Operationen mit Listen

Der Operator + konkateniert Listen:

>>>a=[1,2,3]
>>>b=1[4,5, 0]
>>c=a+b
>>> print ¢
[1,2,3,4,5,6]

Analog wiederholt der Operator * eine Liste n-mal:

>>>[0] * 4

[0,0,0,0]
>>>101,2,3]*3
[1,2,3,1,2,3,1,2,3]

Im ersten Beispiel wird [0] viermal wiederholt. Im zweiten Beispiel wird die Liste
[1, 2, 3] dreimal wiederholt.

l icten-Qlirec

milow G Wil WIIWWW

Der Slice-Operator funktioniert auch mit Listen:

>>>t=[a,'b,'c,'d, e, f]

>>> {[1:3]

[b','c’]

>>> {[:4]

[a','b', 'c', 'd]

>>> {[31]

[d, ‘e, 'f]
Wenn Sie den ersten Index weglassen, beginnt das Slice am Anfang. Wenn Sie den
zweiten weglassen, geht das Slice bis zum Ende. Wenn Sie beide Indizes weglassen,
ist das Slice eine Kopie der gesamten Liste.

>>> t[]

[a', ', 'c','d", ‘e, 'f]
Nachdem Listen verdndert werden konnen, ist es haufig besser, eine Kopie
anzufertigen, bevor Sie entsprechende Operationen durchfiihren.

Mit einem Slice-Operator auf der linken Seite einer Zuweisung kénnen Sie mehrere
Elemente auf einmal aktualisieren:

>>> t - [lal’ 'b', 'C', 'd', |e|’ |f|]

>>>11:3] =[x, y]

>>> print t

[lal’ 'X', lyl’ ldl’ |e|, lf‘]

Methoden fiir Listen

Python bietet Methoden fiir die Verarbeitung von Listen. Beispielsweise hdangt
append ein neues Element am Ende einer Liste an:

>>> t - [lal’ 'b', |C|]

>>> t.append('d')

>>> print t

[lal’ lbl, 'C" ldl]
extend erwartet eine Liste als Argument und héngt alle Elemente an eine andere
Liste an:

>>> t1 = [lal’ lbl, ICI]

>>> t2 = [ldl’ lel]

>>> t1.extend(t2)

>>> print t1
[a','p','c','d,'e

In diesem Beispiel bleibt t2 unverédndert.

sort sortiert die Elemente einer Liste von unten nach oben:
>>>t=[d,'c,'e,'b,'al

>>> t.sort()
>>> print t

[a','p', 'c','d, ‘e
Keine der Methoden fiir Listen hat einen Riickgabewert. Sie verdndern die Liste und

liefern None. Falls Sie versehentlich t = t.sort() schreiben, werden Sie vom
Ergebnis enttduscht sein.

Map, Filter und Reduktion

Um alle Zahlen in einer Liste zu addieren, kénnen Sie eine Schleife wie die folgende
verwenden:
def addiere_alle(t):
summe = 0
forxint:
summe += X

return summe
summe wird mit dem Wert O initialisiert. Bei jedem Schleifendurchgang liest X ein
Element aus der Liste aus. Der Operator += bietet eine Kurzschreibweise, um die
Variable zu aktualisieren. Die folgende erweiterte Zuweisung

summe += X
ist identisch mit:
summe = summe + X

Wihrend die Schleife ausgefiihrt wird, sammelt summe die Summe der Elemente.
Eine Variable, die auf diese Weise verwendet wird, bezeichnet man manchmal auch
als Akkumulator.

Die Summierung aller Elemente einer Liste ist eine so hdufig benétigte Aufgabe,
dass Python dafiir die integrierte Funktion sum zur Verfiigung stellt:

>>>t=1,2, 3]

>>> sum(t)

6
Operationen wie diese, bei der eine Sequenz von Elementen zu einem einzigen Wert
zusammengefasst werden, bezeichnet man manchmal als Reduktion.

Schreiben Sie eine Funktion mit dem Namen verschachtelte summe, die eine
verschachtelte Liste von Integer-Werten erwartet und die Elemente aller
verschachtelten Listen summiert.

Listing 10.1

Manchmal mochten Sie eine Liste durchlaufen, wiahrend Sie eine andere aufbauen.
Die folgende Funktion nimmt beispielsweise eine Liste von Strings entgegen und
liefert eine neue Liste zuriick, die diese Strings als Groffbuchstaben enthalt:

def alles_gross(t):

res =[]
forsint:
res.append(s.capitalize())
return res
res wird mit einer leeren Liste initialisiert. Bei jedem Schleifendurchgang hingen
wir das nachste Element am Ende an. Insofern ist res ebenfalls eine Art
Akkumulator.

Vorgdnge wie alles_gross werden manchmal als Map bezeichnet, weil sie eine
Funktion (in diesem Fall die Methode capitalize) mit jeden Element einer Folge
verkniipfen.

Verwenden Sie alles_gross, um eine Funktion mit dem Namen
verschachtelt_gross zu schreiben, die eine verschachtelte Liste von Strings
entgegennimmt und eine neue verschachtelte Liste liefert, in der alle Strings in
Grobuchstaben enthalten sind.

Listing 10.2

Eine weitere typische Aufgabe besteht darin, nur bestimmte Elemente einer Liste
auszuwdhlen und diese als Teilliste zuriickzuliefern. Die folgende Funktion erwartet
beispielsweise eine Liste von Strings und liefert eine Liste als Riickgabewert, die nur
die Strings enthdlt, die aus GroRbuchstaben bestehen:
def nur_grosse(t):
res =[]
forsint:
if s.isupper():
res.append(s)
return res
isupper ist eine String-Methode, die True zuriickliefert, wenn der String nur
Grolibuchstaben enthilt.

Eine Funktion wie nur_grosse bezeichnet man als Filter, weil sie nur bestimmte
Elemente auswahlt und die anderen ausfiltert.

Die meisten typischen Operationen mit Listen lassen sich als Kombination aus Map,
Filter und Reduktion umsetzen. Und da diese Aufgaben so gebrauchlich sind, bietet
Python Sprachfunktionen, um diese zu unterstiitzen. Dazu gehort die integrierte
Funktion map sowie ein Operator mit dem Namen »Listen-Abstraktion«

Schreiben Sie eine Funktion, die eine Liste von Zahlen erwartet und die kumulative
Summe zuriickliefert. Der Riickgabewert soll eine neue Liste sein, in der das i-te
Element gleich der Summe der ersten i+1 Elemente aus der urspriinglichen Liste ist.
Die kumulative Summe von [1, 2, 3] ist beispielsweise [1, 3, ©].

Listing 10.3

Elemente l6oschen

Es gibt mehrere Moglichkeiten, Elemente aus einer Liste zu 16schen. Wenn Sie den
Index des gewlinschten Elements kennen, konnen Sie die Methode pop verwenden:

>>>t=[a,'b,'c]

>>> x = t.pop(1)

>>> print t

[a','c]

>>> print X

b

pop dndert die Liste und liefert das geldschte Element zuriick. Wenn Sie keinen
Index angeben, wird das letzte Element geldscht und zuriickgegeben.

Brauchen Sie den gel6schten Wert nicht, konnen Sie den del-Operator verwenden:
>>> t - [lal’ 'b', |C|]
>>> del t[1]
>>> print t
[lal’ ICI]
Wenn Sie das Element kennen, das Sie entfernen mochten (aber nicht den Index),
kénnen Sie remove verwenden:
>>> t - [lal’ 'b', |C|]
>>> t.remove('b'")

>>> print t
[lal’ ICI]

Der Riickgabewert von remove ist None.

Mochten Sie mehr als ein Element 16schen, konnen Sie del mit einem Slice-Index
verwenden:

>>>t=[a,'d,'c,'d,'e, ']

>>> del t[1:5]

>>> print t

[a", ']
Wie gehabt, wdhlt das Slice alle Elemente bis zum ersten Index, aber nicht
einschliellich des zweiten.

Schreiben Sie eine Funktion mit dem Namen mitte, die eine Liste als Argument
erwartet und eine neue Liste zuriickgibt, die alle Elemente bis auf das erste und das
letzte enthdlt. mitte([1,2,3,4]) sollte also den Riickgabewert [2,3] liefern.

Listing 10.4

Schreiben Sie eine Funktion mit dem Namen schnipp, die eine Liste erwartet, die
das erste und das letzte Element entfernt und den Riickgabewert None liefert.

Listing 10.5

Listen und Strings

Ein String ist eine Sequenz von Zeichen, eine Liste ist eine Sequenz von Werten.
Aber eine Liste mit Zeichen ist nicht dasselbe wie ein String. Wenn Sie einen String
in eine Liste von Zeichen konvertieren mochten, konnen Sie das mit list tun:

>>>g = 'spam’

>>>t = list(s)
>>> print t

['s','p,'a', 'm]
Da list der Name einer integrierten Funktion ist, sollten Sie ihn nicht als

Variablennamen verwenden. Auch | sollten Sie vermeiden, weil es fast wie eine 1
aussieht. Deshalb verwende ich hier t.

Die Funktion list zerlegt einen String in einzelne Zeichen. Wenn Sie dagegen einen
String in einzelne Worter aufteilen mochten, verwenden Sie dazu die split-Methode:

>>> s = 'Sehnsucht nach den Fjorden'

>>>t = s.split()

>>> print t

['Sehnsucht', 'nach’, 'den’, 'Fjorden’]
Mit einem optionalen Argument fiir das Trennzeichen koénnen Sie angeben, welches
Zeichen als Begrenzung fiir die einzelnen Worter dienen soll. Im folgenden Beispiel
wird ein Bindestrich als Trennzeichen verwendet:

>>> g = 'spam-spam-spam’

>>> trennzeichen = '-'

>>> s.split(trennzeichen)

['spam’, 'spam’, 'spam’]
join ist das Gegenteil von split. Diese Methode erwartet eine Liste von Strings und
konkateniert die einzelnen Elemente. join ist eine String-Methode. Sie nehmen das
gewiinschte Trennzeichen als String, rufen fiir diesen String die Methode auf und
iibergeben die Liste als Parameter:

>>> t = ['Sehnsucht', 'nach’, 'den’, 'Fjorden']

>>> trennzeichen ="'

>>> trennzeichen.join(t)

'Sehnsucht nach den Fjorden'
In diesem Fall ist das Trennzeichen ein Leerzeichen, deshalb schreibt join
Leerzeichen zwischen die einzelnen Worter. Wenn Sie die Elemente ohne
Zwischenraum zusammenfiigen mochten, konnen Sie den Leerstring " als
Trennzeichen angeben.

Objekte und Werte

Angenommen, wir fithren die folgenden Zuweisungen aus:

a = 'banane’

b = 'banane'
Dann wissen wir, dass sich sowohl a als auch b auf einen String beziehen. Aber wir
wissen nicht, ob sie sich auf denselben String beziehen. Es gibt zwei mogliche
Zustdnde, die Sie in Abbildung 10.2 sehen.

a —= 'banane’ 8~

‘banane’
b —= 'banane’ B

Abbildung 10.2 Zustandsdiagramm

Im ersten Fall beziehen sich a und b auf zwei unterschiedliche Objekte, die
denselben Wert haben. Im zweiten Fall beziehen sie sich auf dasselbe Objekt.

Wenn Sie iiberpriifen mochten, ob sich zwei Variablen auf dasselbe Objekt beziehen,
koénnen Sie dafiir den is-Operator verwenden:

>>> g = 'banane'

>>> b = 'banane'

>>>aisb

True
In diesem Fall hat Python nur ein String-Objekt angelegt, und sowohl a als auch b
beziehen sich darauf.

Wenn Sie dagegen zwei Listen erstellen, erhalten Sie zwei Objekte:

>>>a=[1, 2, 3]
>>>b=[1, 2, 3]
>>>3ais b
False

Entsprechend sieht das Zustandsdiagramm das wie in Abbildung 10.3 aus:

a—s=[1,2.23]
b—=[1,2 3]

Abbildung 10.3 Zustandsdiagramm

In diesem Fall konnen wir sagen, dass die beiden Listen gleich sind, weil sie die
gleichen Elemente enthalten. Sie sind aber nicht identisch, weil sie nicht dasselbe
Objekt sind. Wenn zwei Objekte identisch sind, sind sie auch gleich. Andererseits
sind zwei Objekte nicht notwendigerweise identisch, wenn sie gleich sind.

Bis jetzt haben wir die Worter »Objekt« und »Wert« als Synonyme verwendet.
Genau genommen ist es aber richtiger, wenn man sagt, dass ein Objekt einen Wert
hat. Wenn Sie [1,2,3] eingeben, erhalten Sie ein Listen-Objekt, dessen Wert eine
Folge von ganzen Zahlen ist. Enthdlt eine andere Liste die gleichen Elemente,
kénnen wir sagen, dass sie den gleichen Wert hat, es sich aber nicht um dasselbe

Objekt handelt.

Aliasing

Wenn a auf ein Objekt verweist und Sie b = a zuweisen, verweisen beide Variablen

auf dasselbe Objekt:
>>>a=[1,2,3]
>>>pb=2g
>>>Dbis a
True

Das entsprechende Zustandsdiagramm sieht dann wie das in Abbildung 10.4 aus.

d
H
. _>11.23]

Abbildung 10.4 Zustandsdiagramm

Die Zuordnung einer Variablen zu einem Objekt nennt man Referenz. In diesem
Beispiel gibt es zwei Referenzen auf dasselbe Objekt.

Ein Objekt, fiir das mehr als eine Referenz existiert, hat mehr als einen Namen,
quasi einen Alias. Deswegen spricht man in diesem Fall von Aliasing.

Falls das Objekt verdnderbar ist, fiir das ein Alias existiert, wirken sich Anderungen,
die an einem Alias vorgenommen werden, auch auf den anderen aus:

>>> b[0] = 17

>>> print a

[17, 2, 3]
Dieses Verhalten kann zwar niitzlich sein, aber auch zu Fehlern fiihren.
Ublicherweise ist es sicherer, das Aliasing von verdnderbaren Objekten zu
vermeiden.

Bei unverdnderbaren Objekten wie etwa Strings stellt das Aliasing kein sonderliches
Problem dar:

a = 'banane'
b = 'banane'

Es kommt fast nie darauf an, ob sich a und b auf denselben String beziehen oder
nicht.

Listen als Argument

Wenn Sie eine Liste an eine Funktion iibergeben, erhdlt die Funktion eine Referenz
auf die Liste. Verdndert die Funktion eine als Parameter {ibergebene Liste, sind diese
Anderungen auch fiir den Aufrufenden sichtbar. Im folgenden Beispiel 16scht

loesche_ersten das erste Element aus einer Liste:

def loesche_ersten(t):
del t[0]

So wird die Funktion verwendet:

>>> puchstaben = ['a', 'b', 'c']
>>> |oesche_ersten(buchstaben)
>>> print buchstaben

[0, ¢

In diesem Fall sind der Parameter t und die Variable buchstaben Aliase fiir dasselbe
Objekt. Das zugehorige Stapeldiagramm sehen Sie in Abbildung 10.5.

i
<module= | buchstaben - L

T g
2 1— 7V

2—=7

loesche_ersten e

Abbildung 10.5 Stapeldiagramm

Da die Liste von zwei Frames gemeinsam genutzt wird, habe ich sie daneben
dargestellt.

Es ist wichtig, zwischen Operationen zu unterscheiden, die Listen verdndern, und
solchen, die neue Listen erstellen. Die Methode append verdndert beispielsweise
eine Liste. Der Operator + erstellt dagegen eine neue Liste:

>>>t1=[1,2]

>>> {2 = t1.append(3)

>>> print t1

[1,2, 3]

>>> print {2

None

>>> 13 = t1 + [4]

>>> print t3

[1,2,3,4]
Dieser Unterschied ist insbesondere dann wichtig, wenn Sie Funktionen schreiben,
die Listen verdndern sollen. Die folgende Funktion l6scht beispielsweise nicht das
erste Element einer Liste:

def falsche_loesche_erstes(t):

t=11] # FALSCH!

Der Slice-Operator erstellt eine neue Liste, und durch die Zuweisung verweist t zwar
darauf, aber all das hat keinerlei Auswirkungen auf die Liste, die als Argument
tibergeben wurde.

Eine Alternative besteht darin, eine Funktion zu schreiben, die eine neue Liste

erstellt und diese zuriickgibt. Die folgende Funktion rest liefert beispielsweise alle
Elemente einer Liste bis auf das erste als Riickgabewert:

def rest(t):

return t[1:]

Diese Funktion verdndert an der urspriinglichen Liste nichts. Deshalb wird sie
folgendermalien verwendet:

>>> puchstaben = ['a', 'b', 'c']

>>> rest = rest(buchstaben)

>>> print rest
[lbl’ ICI]

Debugging

Der unvorsichtige Einsatz von Listen (und anderen verdnderbaren Objekten) kann zu
vielen Stunden Debugging fiihren. Im Folgenden stelle ich Ihnen einige haufige
Stolperfallen vor und erklédre, wie Sie sie vermeiden kénnen:

1. Denken Sie daran, dass die meisten Listenmethoden das Argument verdndern
und None zuriickliefern. Das ist das genaue Gegenteil der String-Methoden,
die einen neuen String zurtiickliefern und das Original unberiihrt lassen.
Wenn Sie daran gewohnt sind, Stringcode wie den folgenden zu schreiben:

wort = wort.strip()

... ist die Versuchung grol$, Code wie den folgenden mit Listen zu schreiben:
t = t.sort() # FALSCH!

Da sort den Wert None zuriickliefert, werden die ndchsten Operationen mit t
hochstwahrscheinlich fehlschlagen.
Bevor Sie mit Methoden und Operatoren fiir Listen arbeiten, sollten Sie die
Dokumentation aufmerksam lesen und diese im interaktiven Modus testen. Die
Methoden und Operatoren, die Listen mit anderen Sequenzen (wie Strings)
gemeinsam haben, finden Sie unter http://docs.python.org/lib/typesseq.html.
Die Methoden und Operatoren, die nur fiir veranderbare Sequenzen gelten, sind
unter http://docs.python.org/lib/typesseq-mutable.html dokumentiert.

2. Suchen Sie sich eine Syntaxvariante aus und bleiben Sie dabei.
Eines der Probleme mit Listen besteht darin, dass es zu viele Moglichkeiten
gibt, die verschiedenen Operationen vorzunehmen. Um ein Element aus einer
Liste zu entfernen, konnen Sie beispielsweise mit pop, remove, del oder sogar
einer Slice-Zuweisung arbeiten.
Elemente hinzufiigen kénnen Sie entweder mit der append-Methode oder dem
Operator +. Angenommen, t ist eine Liste und X ein Listenelement. Dann sind

http://docs.python.org/lib/typesseq.html
http://docs.python.org/lib/typesseq-mutable.html

die folgenden Anweisungen richtig:

t.append(x)
t=t+][x]

Und diese sind falsch:

t.append([x]) # FALSCH!
t = t.append(x) # FALSCH!
t+ [x] # FALSCH!
t=t+x # FALSCH!

Probieren Sie jedes dieser Beispiele im interaktiven Modus aus und
vergewissern Sie sich, dass Sie sie auch verstehen. Beachten Sie, dass nur die
letzte Anweisung einen Laufzeitfehler erzeugt. Die anderen drei sind zuldssig,
tun aber nicht das Richtige.

3. Erstellen Sie Kopien, um Aliase zu vermeiden.
Wenn Sie eine Methode wie sort verwenden méchten, die das Argument
verandert, Sie aber die urspriingliche Liste ebenfalls behalten méchten, kénnen
Sie einfach eine Kopie machen:

orig =[]
t.sort()

In diesem Beispiel konnten Sie auch die integrierte Funktion sorted nutzen,
die eine neue sortierte Liste zuriickliefert und das Original in Ruhe lasst.

Glossar

Liste:
Eine Folge von Werten.

Element:
Einer der Werte in einer Liste (oder einer anderen Sequenz).

Index:
Integer-Wert, der ein Element in einer Liste kennzeichnet.

Verschachtelte Liste:
Liste, die Element einer anderen Liste ist.

Traversierung von Listen:
Sequenzieller Zugriff auf alle Elemente einer Liste.

Mapping:

Beziehung, bei der jedes Element einer Menge einem Element einer anderen
Menge entspricht. Listen sind beispielsweise ein Mapping von Indizes auf
Elemente.

Akkumulator:
Variable, die in einer Schleife verwendet wird, um ein Ergebnis zu addieren oder
zu akkumulieren.

Erweiterte Zuweisung:
Anweisung, die den Wert einer Variablen mit einem Operator wie z. B. +=
aktualisiert.

Reduktion:
Verarbeitungsmuster, bei dem eine Sequenz durchlaufen wird und die Elemente
zu einem einzigen Ergebnis akkumuliert werden.

Map:
Verarbeitungsmuster, das eine Folge durchlauft und mit jedem Element eine
Operation durchfiihrt.

Filter:

Verarbeitungsmuster, bei dem eine Liste durchlaufen wird und alle Elemente
ausgewdhlt werden, die ein bestimmtes Kriterium erfiillen.

Objekt:

Etwas, auf das sich eine Variable beziehen kann. Ein Objekt hat einen Typ und
einen Wert.

Gleichheit:
Denselben Wert haben.

Identitat:
Bezug auf dasselbe Objekt (woraus sich auch Gleichheit ergibt).

Referenz:
Verkniipfung zwischen einer Variablen und ihrem Wert.

Aliasing:
Von Aliasing spricht man, wenn sich zwei oder mehr Variablen auf dasselbe
Objekt beziehen.

Trennzeichen:

Zeichen oder Zeichenfolge, die kennzeichnet, an welcher Stelle ein String geteilt
werden soll.

Ubungen

Schreiben Sie eine Funktion mit dem Namen ist_sortiert, die eine Liste als
Parameter erwartet und True zuriickliefert, wenn die Liste aufsteigend sortiert ist,
und ansonsten den Wert False zuriickgibt. Sie konnen davon ausgehen (als
Vorbedingung), dass die Elemente der Liste mit den relationalen Operatoren <, >
usw. vergleichbar sind.

Beispielsweise sollte ist_sortiert([1,2,2]) den Wert True und ist_sortiert(['b','a'])
das Ergebnis False liefern.

Listing 10.6

Zwei Worter werden dann als Anagramm bezeichnet, wenn Sie die Buchstaben des
einen Worts so umstellen konnen, dass Sie das andere Wort erhalten. Schreiben Sie
eine Funktion mit dem Namen ist_anagramm, die zwei Strings erwartet und True

liefert, wenn es sich um Anagramme handelt.

Listing 10.7

Das Geburtstagsparadoxon:

1. Schreiben Sie eine Funktion mit dem Namen hat_duplikate, die eine Liste
erwartet und True zuriickliefert, wenn eines der Elemente mehr als einmal
darin enthalten ist. Die urspriingliche Liste soll dabei nicht verdndert werden.

2. 23 Studenten sitzen in einem Horsaal. Wie hoch ist die Wahrscheinlichkeit,
dass zwei davon am selben Tag Geburtstag haben? Diese Wahrscheinlichkeit
konnen Sie schétzen, indem Sie 23 zufdllige Geburtstage generieren und auf
Ubereinstimmungen priifen. Tipp: Zufallsgeburtstage kénnen Sie mit der
Funktion randint aus dem Modul random erzeugen.

Mehr zu diesem Thema erfahren Sie unter
http://de.wikipedia.org/wiki/Geburtstagsparadoxon. Und die Losung finden Sie unter
geburtstag.py.

Listing 10.8

Schreiben Sie eine Funktion mit dem Namen entferne _duplikate, die eine Liste als
Parameter erwartet und eine Liste zuriickliefert, die nur die eindeutigen Elemente
aus dem Original enthdlt. Tipp: Sie brauchen nicht in der gleichen Reihenfolge
vorzukommen.

Listing 10.9

Schreiben Sie eine Funktion, die die Datei wortliste.txt ausliest und eine Liste mit
einem Element pro Wort erstellt. Schreiben Sie zwei Versionen dieser Funktion,

http://de.wikipedia.org/wiki/Geburtstagsparadoxon

eine mit der append-Methode und eine nach dem Muster t = t + [x]. Welche
Version dauert langer? Warum?

Tipp: Verwenden Sie das Modul time, um die verstrichene Zeit zu messen. Losung:
wortliste_erstellen.py.

Listing 10.10

Um herauszufinden, ob sich ein bestimmtes Wort in der Liste befindet, konnten Sie
den in-Operator verwenden. Aber das wére zu langsam, weil dabei alle Worter
durchsucht werden.

Da sich die Wérter in alphabetischer Reihenfolge befinden, konnen wir das Ganze
etwas beschleunigen — und zwar mit einem Verfahren, das man Bisektion nennt
(auch »bindre Suche« genannt). Das funktioniert dhnlich wie das Nachschlagen eines
Worts im Worterbuch: Sie fangen in der Mitte an und sehen nach, ob das gesuchte
Wort vor oder nach dem Wort in der Mitte kommt. Davon abhédngig suchen Sie in
der ersten oder in der zweiten Halfte.

In beide Richtungen halbieren Sie erneut den Suchraum. Wenn eine Wortliste
113.809 Worter enthilt, sind nur etwa 17 Schritte erforderlich, um das Wort zu
finden oder herauszufinden, dass es nicht in der Liste enthalten ist.

Schreiben Sie eine Funktion mit dem Namen bisektion, die eine sortierte Liste sowie
einen Zielwert erwartet und den Index des Werts in der Liste liefert, falls dieser in
der Liste vorkommt, oder ansonsten None zuriickgibt.

Oder Sie lesen die Dokumentation fiir das Modul bisect und verwenden das Modul.
Losung: bisektion.py.

Listing 10.11

Zwei Worter sind ein »umgekehrtes Paar«, wenn beide Worter jeweils die
Umkehrung des anderen sind. Schreiben Sie ein Programm, das alle umgekehrten
Paare in der Wortliste findet. Losung: umgekehrtes_paar.py.

Listing 10.12

Zwei Worter sind »verschrankt«, wenn sich daraus ein neues Wort bilden lasst,
indem man abwechselnd Buchstaben aus den beiden Wértern nach dem
Reilverschlussverfahren aneinanderreiht. Beispielsweise ergibt sich aus einer
Verschrdankung von »Zeug« und »ihn« das Wort »Ziehung«. Losung:
verschraenkte_woerter.py. Hinweis: Diese Ubung wurde angeregt durch ein Beispiel
von http://puzzlers.org.

1. Schreiben Sie ein Programm, das alle Wortpaare auflistet, die sich
verschranken lassen. Tipp: Zdhlen Sie nicht alle Paare auf!

http://puzzlers.org

2. Konnen Sie Worter finden, die sich dreifach verschrinken lassen? Bei denen
sich also aus jedem dritten Zeichen aus dem ersten, zweiten und dritten Wort
ein neues bilden ladsst? Beispiel: »Sie«, »irr« und »bin« ergeben »Sibiriern«.

Listing 10.13

Kapitel 11. Dictionaries

Ein Dictionary ist wie eine Liste, aber generischer. In einer Liste miissen die Indizes
Integer-Werte sein, in einem Dictionary kénnen Sie dagegen (fast) alle Datentypen
als Index verwenden.

Ein Dictionary konnen Sie sich als Mapping zwischen einer Reihe von Indizes
(Schliissel genannt) und einer Reihe von Werten vorstellen. Die Verkniipfung eines
Schliissels mit einem Wert bezeichnet man als Schliissel/Wert-Paar oder
manchmal als Element.

Als Beispiel erstellen wir ein Dictionary in Form eines echten Worterbuchs, das
deutsche Worter mit spanischen Wortern verkniipft. Entsprechend sind sowohl die
Schliissel als auch die Werte Strings.

Die Funktion dict erstellt ein neues Dictionary ohne Elemente. Da dict der Name
einer integrierten Funktion ist, sollten Sie dieses Wort nicht als Variablennamen
verwenden.

>>> de2es = dict()
>>> print de2es

{
Die geschweiften Klammern {} stehen fiir ein leeres Dictionary. Um dem
Worterbuch Elemente hinzuzufiigen, verwenden Sie eckige Klammern:

>>> de2es|['eins'] = 'uno’

Diese Zeile erzeugt ein Element, das dem Schliissel 'eins' den Wert 'uno' zuweist.
Wenn wir das Dictionary jetzt noch mal ausgeben, sehen wir ein Schliissel/Wert-
Paar, bei dem Schliissel und Wert mit einem Doppelpunkt voneinander getrennt
dargestellt werden:

>>> print de2es

{'eins": 'uno'}
Dieses Ausgabeformat ist gleichzeitig auch ein Eingabeformat. Mit der folgenden
Zeile konnen Sie beispielsweise ein neues Worterbuch mit drei Elementen erstellen:

>>> de2es = {'eins': 'uno’, 'zwei': 'dos’, 'drei': 'tres'}
Wenn Sie anschliefend de2es ausgeben, werden Sie iiberrascht sein:

>>> print de2es

{'eins': 'uno', 'drei": 'tres’, 'zwei': 'dos'}
Die Reihenfolge der Schliissel/Wert-Paare ist nicht dieselbe. Wenn Sie dasselbe
Beispiel auf Threm Computer eintippen, erhalten Sie vielleicht sogar noch ein
anderes Ergebnis. Die Reihenfolge der Elemente in einem Dictionary ist nicht
vorhersehbar.

Das ist aber kein Problem, weil die Elemente eines Dictionary ja nicht mit Integer-
Indizes indiziert werden. Stattdessen rufen Sie die Werte {iber den entsprechenden
Schliissel ab:

>>> print de2es['zwei']

'dos'
Der Schliissel 'zwei' ist immer dem Wert 'dos' zugeordnet, daher spielt die
Reihenfolge der Elemente auch keine Rolle.

Sollte der Schliissel nicht im Dictionary enthalten sein, erhalten Sie eine Ausnahme:

>>> print de2es['vier']

KeyError: 'vier'
Die Funktion len gibt es auch fiir Dictionaries. Sie liefert die Anzahl der
Schliissel/Wert-Paare:

>>> len(de2es)

3
Der in-Operator funktioniert ebenfalls mit Dictionaries. Er teilt Thnen mit, ob etwas
als Schliissel im Dictionary vorkommt (nicht als Wert).

>>>'eins' in de2es

True

>>>"'uno' in deZes

False
Um festzustellen, ob ein Wert im Dictionary enthalten ist, konnen Sie die Methode
values verwenden, die alle Werte als Liste zuriickliefert. Anschliefend konnen Sie
den in-Operator nutzen:

>>> werte = de2es.values()

>>>'uno' in werte

True
Der in-Operator verwendet unterschiedliche Algorithmen fiir Listen und
Dictionaries. Fiir Listen verwendet er einen Suchalgorithmus, wie in ,,Suchen®
beschrieben. Wenn die Liste langer wird, verlangert sich damit auch die Suchzeit
direkt proportional. Fiir Dictionaries verwendet Python einen Algorithmus mit dem
Namen Hashtabelle, der eine bemerkenswerte Eigenschaft hat: Der in-Operator
braucht immer ungefdhr gleich lang, unabhdngig davon, wie viele Elemente sich in
einem Dictionary befinden. Ich werde jetzt nicht erklaren, wie das moglich ist. Mehr
dazu konnen Sie unter http://de.wikipedia.org/wiki/Hashtabelle erfahren.

Schreiben Sie eine Funktion, die die Worter aus wortliste.txt einliest und als
Schliissel in einem Dictionary speichert. Die jeweiligen Werte spielen keine Rolle.
AnschlieBend konnen Sie mit dem in-Operator schnell feststellen, ob sich ein
bestimmter String im Dictionary befindet.

http://de.wikipedia.org/wiki/Hashtabelle

Wenn Sie die Ubung aus Listing 10.11 gemacht haben, kénnen Sie die
Geschwindigkeit dieser Implementierung mit dem in-Operator fiir Listen und der
Bisektionssuche vergleichen.

Listing 11.1

Dictionary als Menge von Zahlern

Angenommen, Sie haben einen String und méchten zdhlen, wie oft jedes Zeichen
darin vorkommt. Dafiir gibt es mehrere Mdéglichkeiten:

1. Sie kénnten 26 Variablen erstellen, fiir jeden Buchstaben des Alphabets eine.
Anschliellend konnten Sie den String durchlaufen und fiir jeden Buchstaben
den entsprechenden Zdhler erh6hen, vermutlich mit einer verketteten
Bedingung.

2. Sie konnten eine Liste mit 26 Elementen erstellen. Anschliellend konvertieren
Sie jeden Buchstaben in eine Zahl (mit der integrierten Funktion ord),
verwenden diese Zahl als Index fiir die Liste und erh6hen den entsprechenden
Zahler.

3. Oder Sie erstellen ein Dictionary mit den Buchstaben als Schliissel und dem
jeweiligen Zadhler als entsprechenden Wert. Wenn Sie einen Buchstaben zum
ersten Mal finden, fiigen Sie ein entsprechendes Element dem Dictionary
hinzu. Bei jedem weiteren Mal erhthen Sie einfach den Wert des vorhandenen
Elements.

Jede dieser Varianten fiihrt dieselbe Berechnung durch. Aber in jeden Fall wird die
Berechnung auf unterschiedliche Weise implementiert.

Eine Implementierung ist ein bestimmter Losungsansatz fiir eine Berechnung.
Manche Implementierungen sind besser geeignet als andere. Die Implementierung
mit dem Dictionary hat beispielsweise den Vorteil, dass wir uns, da wir nicht von
vornherein wissen, welche Zeichen in dem String vorkommen, entsprechend nur um
die Zeichen kiimmern miissen, die auch tatsdachlich darin enthalten sind.

Der entsprechende Code konnte folgendermalien aussehen:

def histogramm(s):
d = dict()
forcins:
if c not in d:
dlc]=1
else:
d[c] += 1
return d

Der Name der Funktion lautet histogramm. Das ist ein statistischer Begriff fiir eine
Menge von Zadhlern (oder Haufigkeiten).

In der ersten Zeile der Funktion wird ein leeres Dictionary angelegt. Die for-Schleife
durchlduft den String. Bei jedem Schleifendurchlauf erstellen wir fiir jedes Zeichen
C, das sich nicht im Dictionary befindet, ein neues Element mit dem Schliissel ¢ und
dem Anfangswert 1 (schlieflich haben wir das Zeichen bisher nur einmal gefunden).
Wenn c sich bereits im Dictionary befindet, erh6hen wir d[c].

Und so funktioniert es:

>>> h = histogramm('brontosaurus')

>>> print h

{a:1,'0"1,'0:2,'n" 1,'s"2,'r": 2,"u" 2, 't 1)
Das Programm zeigt uns, dass die Buchstaben 'a’ und 'b' einmal, '0' zweimal usw.
vorkommen.

Dictionaries stellen eine Methode mit dem Namen get zur Verfiigung, die einen
Schliissel und einen Standardwert erwartet. Wenn der Schliissel im Dictionary
vorkommt, liefert get den entsprechenden Wert. Ansonsten erhalten Sie den
Standardwert zurtiick. Ein Beispiel:

>>> h = histogramm('a')

>>> print h

{a": 1}

>>> h.get('a’, 0)

1

>>> h.get('b’, 0)

0

Schreiben Sie eine kiirzere Fassung von histogramm mit der Methode get . Damit
sollten Sie in der Lage sein, die if-Anweisung zu eliminieren.

Listing 11.2

Schleifen und Dictionaries

Wenn Sie ein Dictionary mit einer for-Anweisung kombinieren, kénnen Sie damit
die Schliissel durchlaufen. Beispielsweise gibt print_hist jeden Schliissel und den
entsprechenden Wert aus:

def print_hist(h):
forcinh:
print c, h[c]

Und so sieht die Ausgabe aus:

>>> h = histogramm('papagei')
>>> print_hist(h)

a2

p2

el

i1

g1

Auch in diesem Fall befinden sich die Schliissel in keiner vorhersehbaren
Reihenfolge.

Dictionaries bieten eine Methode mit dem Namen keys, die die Schliissel des
Dictionary unsortiert als Liste zuriickliefert.

Passen Sie print_hist so an, dass die Schliissel und entsprechenden Werte in
alphabetischer Reihenfolge angezeigt werden.

Listing 11.3

Inverse Suche

Angenommen, Sie haben ein Dictionary d und einen Schliissel s. Dann ist es einfach,
den entsprechenden Wert w = d[s] zu finden.

Aber was ist, wenn Sie w haben und s suchen? Dann haben Sie zwei Probleme: Zum
einen kann es mehrere Schliissel geben, die dem Wert w entsprechen. Je nach
Anwendung konnen Sie einfach einen davon aussuchen, oder Sie erstellen eine Liste,
die alle Schliissel enthélt. Das zweite Problem besteht darin, dass es keine einfache
Syntax fiir die sogenannte inverse Suche gibt. Sie miissen selbst nach den
Schliisseln suchen.

Hier sehen Sie eine Funktion, die einen Wert erwartet und den ersten Schliissel
zuriickgibt, der diesem Wert entspricht:

def inverse_suche(d, w):

forsind:
if d[s] == w:
return s

raise ValueError

Diese Funktion ist ein weiteres Beispiel fiir ein Suchmuster. Allerdings kommt darin
eine Funktion vor, die wir bisher nicht kennen: raise. Die raise-Anweisung 16st eine
Ausnahme aus, in diesem Fall einen ValueError, der tiblicherweise darauf hinweist,
dass es ein Problem mit einem der Parameterwerte gibt.

Wenn wir das Ende der Schleife erreicht haben, bedeutet das, dass w nicht im
Dictionary als Wert vorkommt. Daher 16sen wir eine Ausnahme aus.
Hier ein Beispiel fiir eine erfolgreiche inverse Suche:

>>> h = histogramm('papagei')

>>> s = inverse_suche(h, 2)

>>> print s
a

Und ein Beispiel fiir eine nicht erfolgreiche inverse Suche:

>>> s = inverse_suche(h, 3)
Traceback (most recent call last):

File "<stdin>", zeile 1, in ?
File "<stdin>", zeile 5, in inverse_suche
ValueError
Wenn Sie eine Ausnahme ausldsen, erhalten Sie dasselbe Resultat, das auch Python
auslosen wiirde: Es wird ein Traceback und eine Fehlermeldung ausgegeben.

Sie kénnen der raise-Anweisung auch eine detaillierte Fehlermeldung als optionales
Argument {ibergeben. Ein Beispiel:

>>> raise ValueError, 'Wert nicht im Dictionary enthalten’

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: Wert nicht im Dictionary enthalten
Eine inverse Suche ist wesentlich langsamer als eine herkdmmliche Suche. Wenn
Sie haufig invers suchen oder das entsprechende Dictionary eine bestimmte Grolie
erreicht, wird die Leistung Ihres Programms darunter leiden.

Passen Sie inverse_suche so an, dass die Funktion eine Liste aller Schliissel
zuriickliefert, die w entsprechen (oder eine leere Liste).

Listing 11.4

Dictionaries und Listen

Listen konnen als Werte in einem Dictionary enthalten sein. Angenommen, Sie
haben ein Dictionary, das Buchstaben und deren Haufigkeit abbildet. Nehmen wir
weiter an, dass Sie es invertieren mdchten, sprich ein Dictionary erstellen, das die
Haufigkeiten den jeweiligen Buchstaben zuordnet. Da es mehrere Buchstaben mit
derselben Haufigkeit geben kann, sollen die Werte im invertierten Dictionary eine
Liste von Buchstaben sein.

Hier eine Funktion, die ein Dictionary invertiert:
def invertiere_dict(d):
invers = dict()
for schluessel in d:
wert = d[schluessel]
if wert not in invers:
invers[wert] = [schluessel]
else:
invers[wert].append(schluessel)
return invers

Bei jedem Schleifendurchlauf enthélt schluessel einen Schliissel aus d und wert den
entsprechenden Wert. Wenn wert nicht in invers enthalten ist, haben wir diesen
Wert bisher noch nicht erfasst. In diesem Fall erstellen wir ein neues Element und
initialisieren es mit einer einelementigen Menge (einer Liste, die nur ein Element
enthdlt). Andernfalls kennen wir diesen Wert bereits und hdangen den entsprechenden
Schliissel ans Ende der Liste an.

Beispiel:

>>> hist = histogramm('papagei')

>>> print hist

{a:2,'p:2,'e:1,":1,'g: 1}

>>> invers = invertiere_dict(hist)

>>> print invers

{1:[e', ', 'g], 2: 2", 'pT}
Abbildung 11.1 ist ein Zustandsdiagramm fiir hist und invers. Ein Dictionary wird
darin als Kasten mit dem Typ dict abgebildet, der die Schliissel/Wert-Paare enthilt.
Wenn die Werte Integer, FlieSkommazahlen oder Strings sind, zeichne ich sie
iblicherweise in den Kasten. Aber Listen stelle ich immer aulSerhalb des Kastens

dar, um das Diagramm {iberschaubar zu halten.

dict dict list
hist—= ‘a’ —= 2 invers—= 1 : 0 — '@
P —=2 1—=7
e —= 1 2—q
i —=1
e list
0 =1

2 > 1 —=T

Abbildung 11.1 Zustandsdiagramm

Listen konnen, wie wir in diesem Beispiel gesehen haben, Werte in einem
Dictionary sein, aber keine Schliissel. Folgendes passiert, falls Sie es dennoch
versuchen:

>>>t=[1,2, 3]

>>> d = dict()

>>> d[t] = 'Hoppla'

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'list'
Ich habe ja bereits erwdhnt, dass Dictionaries mit einer Hashtabelle implementiert
sind, daher darf der Schliissel auch nicht unhashable sein.

Ein Hash ist eine Funktion, die einen beliebigen Wert entgegennimmt und dafiir
einen Integer zuriickliefert. Dictionaries nutzen diese Integer, die sogenannten
Hashwerte, um Schliissel/Wert-Paare zu speichern und zu suchen.

Dieses System funktioniert wunderbar, wenn die Schliissel nicht verdnderbar sind.
Sind die Schliissel dagegen verdnderbar, wie beispielsweise Listen, gibt es unschone
Effekte. Wenn Sie ein Schliissel/Wert-Paar erstellen, »hasht« Python den Schliissel
und speichert ihn an der entsprechenden Stelle. Wenn Sie nun den Schliissel dndern

und erneut hashen, weist dieser auf eine andere Speicherstelle. In diesem Fall
erhalten Sie zwei Eintrédge fiir denselben Schliissel oder sind nicht mehr in der Lage,
einen Schliissel zu finden. In beiden Fallen wiirde das Dictionary nicht mehr korrekt
funktionieren.

Das ist der Grund dafiir, dass Schliissel »hashable« sein miissen und verdanderliche
Typen wie Listen nicht zuldssig sind. Die einfachste Moglichkeit, diese Begrenzung
zu umgehen, sind »Tupel«. Darauf kommen wir im ndchsten Kapitel zu sprechen.

Da Dictionaries verdnderbar sind, kénnen wir sie ebenfalls nicht als Schliissel, aber
sehr wohl als Werte verwenden.

Lesen Sie die Dokumentation der Dictionary-Methode setdefault und schreiben Sie
damit eine kiirzere Fassung von invertiere_dict. Losung: invertiere_dict.py.

Listing 11.5

Memos

Wenn Sie mit der fibonacci-Funktion aus ,,Noch ein Beispiel“ herumgespielt haben,
wird Thnen aufgefallen sein, dass die Funktion umso langer braucht, je grofer das
angegebene Argument ist. Auerdem nimmt die Laufzeit sehr schnell zu.

Sehen Sie sich Abbildung 11.2 mit dem Aufrufdiagramm fiir fibonacci mit n=4 an:

fibonacci
n—4
fibonacci fibonacci
n—3 n—s 2
fibonacci fibonacci fibonacci fibonacci
n—s2 n —s 1 n— 1 n—=20
fibonacci fibonacci
n—1 n—20

Abbildung 11.2 Aufrufdiagramm

Ein Aufrufdiagramm zeigt eine Reihe von Funktionsframes mit Linien, die jeden
Frame mit den Frames der jeweils aufgerufenen Funktionen verbinden. Ganz oben
im Diagramm steht fibonacci mit n=4, was fibonacci mit n=3 und n=2 aufruft.
fibonacci mit n=3 ruft wiederum fibonacci mit n=2 und n=1 auf usw.

Zdhlen Sie mal, wie oft fibonacci(0) und fibonacci(1) aufgerufen werden. Diese
Losung ist nicht effizient, und das Ganze wird immer schlimmer, je grofer das
Argument wird.

Eine Alternative besteht darin, die bereits berechneten Werte in einem Dictionary zu
sammeln. Einen zuvor berechneten Wert, der fiir die spatere Verwendung
gespeichert wird, bezeichnet man als Memo. Hier sehen Sie eine Implementierung
von fibonacci mit Memos:

bekannt = {0:0, 1:1}

def fibonacci(n):
if n in bekannt:
return bekannt[n]

res = fibonacci(n-1) + fibonacci(n-2)

bekannt[n] = res

return res
bekannt ist ein Dictionary, in dem alle Fibonacci-Zahlen abgelegt werden, die wir
bereits kennen. Wir beginnen mit zwei Elementen: O entspricht O, und 1 entspricht
1.

Jedes Mal, wenn fibonacci aufgerufen wird, tiberpriifen wir bekannt. Wenn das
Ergebnis bereits vorhanden ist, konnen wir es sofort zuriickgeben. Ansonsten muss
der neue Wert berechnet, ins Dictionary eingefiigt und zuriickgeliefert werden.

Fiihren Sie diese Version von fibonacci und das Original mit einer Reihe von
Parametern aus und vergleichen Sie die Laufzeiten.

Listing 11.6

Schreiben Sie eine Memo-Fassung der Ackermann-Funktion aus Listing 6.5 und
schauen Sie, ob sich in dieser Version die Funktion mit grélleren Argumenten
auswerten lasst. Tipp: Nein. Losung: ackermann_memo.py.

Listing 11.7

Globale Variablen

Im vorherigen Beispiel wird bekannt aullerhalb der Funktion angelegt, deshalb
gehort es zu dem besonderen Frame mit dem Namen __main__. Variablen in
__main__ werden manchmal als global bezeichnet, weil Sie von jeder Funktion aus
darauf zugreifen konnen. Im Gegensatz zu lokalen Variablen, die verschwinden,
wenn die jeweilige Funktion beendet wird, bleiben globale Variablen von einem
Funktionsaufruf zum ndchsten erhalten.

Globale Variablen werden haufig als Flags bezeichnet. Das sind Boolesche
Variablen, die anzeigen, ob eine Bedingung erfiillt ist oder nicht. Beispielsweise

verwenden manche Programme ein Flag mit dem Namen verbose, das angibt, wie
detailliert die Ausgabe des Programms ist:

verbose = True

def Beispiel1():
if verbose:
print 'Beispiel1 wird ausgefihrt’
Wenn Sie versuchen, einer globalen Variablen einen anderen Wert zuzuweisen,
werden Sie iiberrascht sein. Das folgende Beispiel soll mitverfolgen, ob die Funktion
bereits aufgerufen wurde:

wurde_aufgerufen = False

def Beispiel2():
wurde_aufgerufen = True # FALSCH

Aber wenn Sie dieses Beispiel ausfiihren, werden Sie feststellen, dass sich der Wert
von wurde_aufgerufen nicht dndert. Das Problem liegt darin, dass Beispiel2 eine
neue lokale Variable mit dem Namen wurde_aufgerufen anlegt. Die lokale Variable
verschwindet, wenn die Funktion endet, und hat keine Auswirkungen auf die globale
Variable.

Um eine globale Variable innerhalb einer Funktion zu verwenden, miissen Sie sie
zuvor deklarieren:

wurde_aufgerufen = False

def Beispiel2():
global wurde_aufgerufen
wurde_aufgerufen = True

Die Anweisung global sagt dem Interpreter ungefdhr Folgendes: »Wenn ich
innerhalb dieser Funktion wurde_aufgerufen sage, meine ich die globale Variable.
Erstelle bitte keine lokale.«

Hier ein Beispiel, in dem eine globale Variable aktualisiert werden soll:

zaehler = 0

def Beispiel3():
zaehler = zaehler + 1 # FALSCH

Wenn Sie dieses Beispiel ausfiihren, erhalten Sie:
UnboundLocalError: local variable ‘zaehler' referenced before assignment

Python geht davon aus, dass zaehler lokal ist. Entsprechend lesen Sie die Variable
aus, bevor Sie sie anlegen. Auch hier besteht die Losung wieder darin, zaehler als
global zu deklarieren.

def Beispiel3():

global zaehler

zaehler += 1
Wenn der globale Wert einem verdnderbaren Typ angehort, konnen Sie ihn auch
dndern, ohne diesen vorher zu deklarieren:

bekannt = {0:0, 1:1}

def Beispield():
bekannt[2] = 1
Entsprechend kénnen Sie Elemente einer globalen Liste oder eines globalen
Dictionary hinzufiigen, 16schen oder ersetzen. Aber wenn Sie die Variable erneut
zuweisen mochten, miissen Sie sie zuvor deklarieren:
def Beispiel5():

global bekannt
bekannt = dict()

Long Integer
Wenn Sie fibonacci(50) berechnen, erhalten Sie:

>>> fibonacci(50)

12586269025L
Das L am Ende bedeutet, dass es sich bei dem Ergebnis um einen »Long Integer«
vom Typ long handelt. Ab Python 3 gibt es keinen long mehr. Alle Integer, sogar
wirklich groRe, sind vom Typ int.

Werte vom Typ int haben einen begrenzten Wertebereich. Long Integer konnen
dagegen beliebig grof$ sein, brauchen aber auch mit zunehmender Gréfle immer
mehr Speicherplatz und Laufzeit.

Die mathematischen Operatoren und die Funktionen im Modul math arbeiten auch
mit Long Integers, sodass iiblicherweise jeder Code, der mit int funktioniert, auch
mit long klappt.

Jedes Mal, wenn das Ergebnis einer Berechnung fiir einen Integer zu grol$ ist,
konvertiert Python das Ergebnis automatisch in einen Long Integer:

>>> 1000 * 1000

1000000

>>> 100000 * 100000
10000000000L

Im ersten Fall hat das Ergebnis den Typ int, im zweiten Fall ist es ein long.

Die Potenzierung grolSer Integer ist die Grundlage gebrauchlicher Algorithmen fiir
die Verschliisselung mit 6ffentlichen Schliisseln. Lesen Sie den Wikipedia-Artikel
tiber den RSA-Algorithmus (http://de.wikipedia.org/wiki/RSA-Kryptosystem) und
schreiben Sie Funktionen zum Verschliisseln und Entschliisseln von Nachrichten.

http://de.wikipedia.org/wiki/RSA-Kryptosystem

Listing 11.8

Debugging

Wenn Sie mit groleren Datenmengen arbeiten, kann es ziemlich umstédndlich
werden, beim Debugging die Daten von Hand ausgeben und {iberpriifen zu miissen.
Hier einige Vorschlédge fiir das Debugging grofSer Datenmengen:

Reduzieren Sie die Eingaben:

Verringern Sie falls méglich die Grélle der Datenmenge. Wenn ein Programm
beispielsweise eine Textdatei einliest, beginnen Sie einfach mit den ersten zehn
Zeilen oder der kleinstmoglichen Stichprobe. Dazu kénnen Sie entweder die
Dateien direkt bearbeiten oder (vorzugsweise) das Programm so dndern, dass nur
die ersten n Zeilen gelesen werden.

Falls ein Fehler auftritt, konnen Sie n auf den kleinsten Wert reduzieren, fiir den
sich der Fehler manifestiert, und den Wert nach und nach erhéhen, wiahrend Sie
die Fehler finden und beseitigen.

Uberpriifen Sie Zusammenfassungen und Typen:

Statt die gesamte Datenmenge auszugeben und zu iiberpriifen, konnen Sie auch
Zusammenfassungen der Daten ausgeben: beispielsweise die Anzahl der Elemente
in einem Dictionary oder die Summe einer Liste mit Zahlen.

Haufig treten Laufzeitfehler auf, weil ein Wert nicht den richtigen Typ hat. Um
solche Fehler aufzuspiiren, reicht es oft aus, den Typ des jeweiligen Werts
auszugeben.

Automatische Uberpriifung:

Manchmal kénnen Sie auch Code schreiben, der automatisch Fehler aufspiirt.
Wenn Sie beispielsweise den Durchschnitt einer Liste mit Zahlen berechnen,
konnen Sie iiberpriifen, ob das Ergebnis grofSer als das grélite Element der Liste
oder kleiner als das kleinste ist. Solche Priifungen bezeichnet man als
»Plausibilitatspriifung«, weil dabei ermittelt wird, ob die Ergebnisse plausibel
sind.

Eine weitere Moglichkeit besteht darin, die Ergebnisse zweier unterschiedlicher
Berechnungen zu vergleichen und zu iiberpriifen, ob diese konsistent sind. Das
bezeichnet man als »Konsistenzpriifung«.

Ausgabe formatieren:

Wenn Sie die Debugging-Ausgaben entsprechend formatieren, ist es einfacher,
Fehler zu erkennen. Ein Beispiel hierfiir haben wir in ,,Debugging® gesehen. Das
Modul pprint bietet die Funktion pprint, die die integrierten Typen in einem fiir
Menschen besser lesbaren Format ausgibt.

Auch hier gilt wieder: Die Zeit, die Sie in Scaffolding investieren, kann die fiir
Debugging erforderliche Zeit reduzieren.

Glossar

Dictionary:
Zuordnung einer Reihe von Schliisseln zu den entsprechenden Werten.

Schliissel/Wert-Paar:
Darstellung der Zuordnung eines Schliissels zu einem Wert.

Element:
Anderer Name fiir Schliissel/Wert-Paar.

Schliissel:
Objekt, das in einem Dictionary als erster Teil eines Schliissel/Wert-Paars steht.

Wert:

Objekt, das in einem Dictionary als zweiter Teil eines Schliissel/Wert-Paars steht.
Diese Definition ist zutreffender als unsere bisherige Verwendung des Worts
»Wert«.

Implementierung:
Verfahren, eine Berechnung umzusetzen.

Hashtabelle:
Algorithmus fiir die Implementierung von Python-Dictionaries.

Hashfunktion:

Funktion, die von einer Hashtabelle verwendet wird, um den Speicherort fiir einen
Schliissel zu finden.

Hashable:

Typ, der iiber eine Hashfunktion verfiigt. Unverdnderbare Typen wie Integer,
Fliefkommazahlen und Strings sind »hashable«, verdnderbare Typen wie Listen
und Dictionaries dagegen nicht.

Suche:
Dictionary-Operation, die einen Schliissel erwartet und den entsprechenden Wert
sucht.

Inverse Suche:

Dictionary-Operation, die einen Wert erwartet und den oder die entsprechenden
Schliissel sucht.

Einelementige Menge:
Liste (oder andere Sequenz), die nur ein Element enthalt.

Aufrufdiagramm:
Diagramm, das jeden wahrend der Ausfiihrung eines Programms erstellten Frame
zeigt. Dabei zeigen Pfeile an, welche Funktion welche aufgerufen hat.
Histogramm:
Menge von Zahlern.

Memo:

Berechneter Wert, der zwischengespeichert wird, um unnétige weitere
Berechnungen einzusparen.

Globale Variable:

Aulerhalb einer Funktion definierte Variable, auf die Sie von jeder Funktion aus
zugreifen konnen.

Flag:
Boolesche Variable, die angibt, ob eine Bedingung erfiillt ist.

Deklaration:

Anweisung wie z. B. global, die dem Interpreter Informationen zu einer Variablen
gibt.

Ubungen

Wenn Sie Listing 10.8 gelost haben, gibt es bereits eine Funktion mit dem Namen
hat_duplikate, die eine Liste als Parameter erwartet und True zuriickliefert, wenn
eines der Objekte mehr als einmal in der Liste vorkommt.

Verwenden Sie ein Dictionary, um eine schnellere und einfachere Version von
hat_duplikate zu schreiben. Losung: hat_duplikate.py.

Listing 11.9
Zwei Worter sind »rotierende Paare«, wenn Sie durch Rotation des einen Worts das
andere bilden kénnen (siehe rotiere_wort in Listing 8.12).

Schreiben Sie ein Programm, das eine Wortliste einliest und alle rotierenden Paare
findet. Losung: rotiere_paare.py.

Listing 11.10

Kapitel 12. Tupel

Tupel sind unveranderbar

Ein Tupel ist eine Sequenz von Werten. Die Werte konnen beliebigen Typs sein und
werden mit Integer-Werten indiziert. Insofern sind Tupel Listen sehr dhnlich. Der
Unterschied ist allerdings, dass Tupel nicht verdnderbar sind.

Syntaktisch ist ein Tupel eine kommaseparierte Liste von Werten:
>>>t="a",'d,'c,'d, e

Es ist aber nicht zwingend notwendig, aber {iblicherweise werden Tupel in

Klammern geschrieben:

>>> t = (lal’ lbl, 'C', ldl, lel)
Um ein Tupel mit einem einzigen Element zu erstellen, miissen Sie ein
abschliefendes Komma schreiben:

>>> 1 ="'a,

>>> type(t1)
<type 'tuple'>

Ein Wert in Klammern dagegen ist kein Tupel:

>>>12 = ('a')
>>> type(t2)
<type 'str'>
Eine weitere Moglichkeit, Tupel zu erstellen, bietet die integrierte Funktion tuple.
Ohne Angabe eines Arguments konnen Sie damit auch ein leeres Tupel erstellen:
>>>t = tuple()
>>> print t

()

Wenn Sie als Argument eine Sequenz iibergeben (String, Liste oder Tupel), erhalten
Sie ein Tupel mit allen Elementen dieser Sequenz:

>>> t = tuple('lupinen')
>>> print t

(r, ', 'p’ i, 't el ')
Da tuple der Name einer integrierten Funktion ist, sollten Sie ihn nicht als
Variablennamen verwenden.

Die meisten Operatoren von Listen funktionieren auch mit Tupel. Der Klammer-
Operator indiziert ein Element:

>>> t = (lal’ lbl, ICI, ldl, lel)

>>> print t[0]

lal

Und der Slice-Operator wahlt einen Bereich von Elementen aus:

>>> print {[1:3]

(lbl’ ICI)
Wenn Sie aber versuchen, eines der Elemente des Tupels zu dndern, erhalten Sie
einen Fehler:

>>> {[0] = 'A

TypeError: objekt doesn't support item assignment
Sie konnen die Elemente eines Tupels nicht dndern, aber ein Tupel durch ein anderes
ersetzen:

>>>t=('A,) +t[1]

>>> print t
(IAI’ lbl, 'C" ldl’ lel)

Tupel-Zuweisung

Haufig ist es niitzlich, die Werte zweier Variablen zu vertauschen. Bei
herkdmmlichen Zuweisungen miissen Sie dafiir tempordre Variablen einsetzen. So
wiirden Sie beispielsweise die Werte von a und b vertauschen:

>>>temp=a

>>>g=Db

>>> b =temp

Diese Losung ist eher umstdndlich, die Tupel-Zuweisung ist da deutlich eleganter:
>>>3a,b=b,a
Die linke Seite ist ein Tupel von Variablen, die rechte Seite ein Tupel von

Ausdriicken. Jeder Wert wird der entsprechenden Variablen zugewiesen. Vor der
Zuweisung werden alle Ausdriicke auf der rechten Seite ausgewertet.

Die Anzahl der Variablen auf der linken Seite der Zuweisung und die Anzahl der
Werte auf der rechten Seite miissen gleich sein:

>>>a,b=1,2,3

ValueError: too many values to unpack
Genauer gesagt, kann die rechte Seite der Zuweisung eine beliebige Sequenz sein
(String, Liste oder Tupel). Wenn Sie beispielsweise eine E-Mail-Adresse in den
Benutzernamen und die Domain aufteilen méchten, konnen Sie das folgendermalen
tun:

>>> adr = 'monty@python.org'

>>> uname, domain = adr.split('@'")
Der Riickgabewert von split ist eine Liste mit zwei Elementen. Das erste Element
wird uname zugewiesen, das zweite domain.

>>> print uname

monty
>>> print domain

python.org

Tupel als Riickgabewerte

Genau genommen kann eine Funktion nur einen Wert zuriickgeben. Aber wenn der
Riickgabewert ein Tupel ist, ist der Effekt der gleiche, als wiirden Sie mehrere Werte
zuriickliefern. Wenn Sie beispielsweise zwei Integer dividieren und dabei den
Quotienten und den Rest berechnen mochten, ware es ineffizient, x/y und dann x%y
zu berechnen. In diesem Fall ist es besser, beides gleichzeitig zu berechnen.

Die integrierte Funktion divmod erwartet zwei Argumente und gibt ein Tupel mit
zwei Werten zuriick, den Quotienten und den Rest. Das Ergebnis kénnen Sie als
Tupel speichern:

>>>t = divmod(7, 3)

>>> print t
2,1)

Oder Sie speichern die Elemente separat mithilfe einer Tupel-Zuweisung ab:

>>> quot, rest = divmod(7, 3)
>>> print quot

2

>>> print rest

1

Hier sehen Sie ein Beispiel fiir eine Funktion, die ein Tupel zuriickliefert:

def min_max(t):
return min(t), max(t)
max und min sind integrierte Funktionen, die das grofSte und das kleinste Element
einer Sequenz suchen. min_max berechnet beide Werte und gibt ein Tupel mit den
beiden Werten zurtick.

Argument-Tupel mit variabler Lange

Funktionen konnen eine variable Anzahl von Argumenten entgegennehmen. Ein
Parametername, der mit * beginnt, sammelt die Argumente in einem Tupel. Die
Funktion printalles nimmt beispielsweise eine beliebige Anzahl von Argumenten in
Empfang und gibt sie aus:

def printalles(*args):

print args

Der Sammelparameter kann einen beliebigen Namen haben, heil$t aber iiblicherweise
args. So funktioniert die Funktion:

>>> printalles(1, 2.0, '3')
(1,2.0,'3)

Das Gegenteil davon ist die Streuung. Wenn Sie eine Sequenz von Werten haben
und diese als mehrere Argumente an eine Funktion tibergeben méchten, kénnen Sie
den Operator * verwenden. divmod erwartet beispielsweise exakt zwei Argumente,
ein Tupel kénnen Sie dagegen nicht iibergeben:

>>>t=(7,3)

>>> divmod(t)
TypeError: divmod expected 2 arguments, got 1

Wenn Sie dagegen das Tupel aufteilen, funktioniert es:

>>> divmod(*t)

(2,1)
Viele der integrierten Funktionen verwenden Argument-Tupel mit variabler Lange.
max und min kénnen beispielsweise eine beliebige Anzahl von Argumenten

entgegennehmen:
>>>max(1,2,3)
3

Bei sum ist das anders:

>>>sum(1,2,3)

TypeError: sum expected at most 2 arguments, got 3

Schreiben Sie eine Funktion mit dem Namen gesamt_summe, die eine beliebige
Anzahl von Argumenten summiert und das Ergebnis zuriickgibt.

Listing 12.1

Listen und Tupel

zZip ist eine integrierte Funktion, die zwei oder mehr Sequenzen nach dem
Reillverschlussverfahren in einer Liste von Tupeln zusammenfasst. Dabei enthélt
jedes Tupel ein Element aus jeder Sequenz. In Python 3 liefert zip einen Iterator mit
Tupeln. Aber im Wesentlichen verhdlt sich auch ein Iterator wie eine Liste.

Das folgende Beispiel »zippt« einen String und eine Liste:

>>>s = "abc'

>>>t=10,1, 2]

>>> zip(s, t)

[(a", 0), (b, 1), ('c', 2)]
Das Ergebnis ist eine Liste von Tupeln, wobei jedes Tupel einen Buchstaben aus
dem String und das entsprechende Element aus der Liste enthdlt.

Wenn die Sequenzen nicht die gleiche Lange haben, hat das Ergebnis die Lange der
kiirzeren Sequenz:

>>> zip(‘Eber', 'Alb")
[(E","'A), (b, T), (€', 'D')]

Sie konnen eine Tupel-Zuweisung auch in einer for-Schleife verwenden, um eine

Liste von Tupeln zu durchlaufen:

t=[(a", 0), (b 1), (¢, 2)]
for zeichen, zahl in t:
print zahl, zeichen
Bei jedem Schleifendurchlauf wahlt Python das niachste Tupel in der Liste aus und
weist die Elemente den Variablen zeichen und zahl zu. So sieht die Ausgabe der
Schleife aus:
Oa
1b
2c
Wenn Sie zip, for und die Tupel-Zuweisung kombinieren, erhalten Sie eine niitzliche
Konstruktion, um zwei (oder mehrere) Sequenzen gleichzeitig zu durchlaufen. Die
Funktion hat_treffer nimmt beispielsweise zwei Sequenzen t1 und t2 und liefert
True, wenn es einen Index i gibt, fiir den t1[i] == t2]i] gilt.
def hat_treffer(t1, t2):
for x, y in zip(t1, t2):
if x==y:
return True
return False
Mochten Sie die Elemente einer Sequenz und deren Indizes durchlaufen, kénnen Sie
die integrierte Funktion enumerate nutzen:

for index, element in enumerate('abc'):
print index, element

So sieht die Ausgabe der Schleife aus:

Oa
1b
2c¢C

Genau so.

Dictionaries und Tupel

Dictionaries verfiigen iiber eine Methode mit dem Namen items, die eine Liste von
Tupeln zuriickliefert, wobei jedes Tupel ein Schliissel/Wert-Paar ist:

>>>d = {a"0, 'b"1, 'c":2}

>>>t = d.items()

>>> print t

[(a", 0), (¢, 2), (b', 1)]
Wie Sie es bereits vom Dictionary kennen, befinden sich die Elemente in keiner

bestimmten Reihenfolge. In Python 3 liefert items einen Iterator, aber fiir die
meisten Anwendungen verhalten sich Iteratoren genau wie Listen.

In der anderen Richtung kénnen Sie eine Liste mit Tupeln dazu verwenden, ein

neues Dictionary zu initialisieren:

>>>t=][(a', 0), ('c', 2), ("0, 1)]

>>> d = dict(t)

>>> print d

{a:0,'c:2,'0" 1}
Die Kombination aus dict und zip bietet eine kompakte Mdéglichkeit, ein Dictionary
zu erstellen:

>>> d = dict(zip('abc’, range(3)))

>>> print d

{a:0,'c:2,'0" 1}
Die Dictionary-Methode update erwartet ebenfalls eine Liste von Tupeln und fiigt
sie als Schliissel/Wert-Paare einem vorhandenen Dictionary hinzu.

Durch die Kombination aus items, Tupel-Zuweisung und for erhalten Sie eine
Moglichkeit, die Schliissel und Werte eines Dictionary zu durchlaufen:

for schluessel, wert in d.items():
print wert, schluessel

So sieht die Ausgabe der Schleife aus:

Oa
2c¢C
1b

Wieder einmal.

Haufig werden Tupel als Schliissel in Dictionaries verwendet (in erster Linie, weil
Sie keine Listen verwenden konnen). Ein Telefonverzeichnis kdnnte beispielsweise
Paare aus Nachname und Vorname der entsprechenden Telefonnummer zuordnen.
Vorausgesetzt, wir haben nachname, vorname und nummer definiert, kénnten wir
schreiben:

verzeichnis[nachname,vorname] = nummer

Der Ausdruck in den eckigen Klammern ist ein Tupel. Dieses Dictionary konnten
wir dann mithilfe der Tupel-Zuweisung durchlaufen:
for nachname, vorname in verzeichnis:
print vorname, nachname, verzeichnis[nachname,vorname]
Diese Schleife durchlduft die Schliissel in verzeichnis, die wiederum Tupel sind. Die
Elemente jedes Tupels werden nachname und vorname zugewiesen. Anschliellend
gibt die Schleife den jeweiligen Namen und die entsprechende Telefonnummer aus.

Es gibt zwei Moglichkeiten, Tupel in einem Zustandsdiagramm darzustellen. Die
detailliertere Version zeigt die Indizes und Elemente so, wie sie auch in einer Liste
erscheinen wiirden. Das Tupel (‘Cleese’, 'John') wiirde beispielsweise wie in
Abbildung 12.1 dargestellt.

tuple
0 —= 'Cleese’

1 —= 'John'

Abbildung 12.1 Zustandsdiagramm

Aber in einem groBeren Diagramm wiirden Sie vielleicht die Details weglassen. Ein
Diagramm fiir das Telefonverzeichnis kénnte dann wie in Abbildung 12.2 aussehen.

dict

(‘Cleese’, 'John’) —= '08700 100 222"
(‘Chapman’, 'Graham') —= '08700 100 222’
(‘ldle’, 'Eric’) ——= 08700 100 222’

('Gilliam’, 'Terry’) —= '08700 100 222’
(‘Jones’, "Terry’) —= 08700 100 222’
(‘Palin’, ‘'Michael’) —= 08700 100 222’

Abbildung 12.2 Zustandsdiagramm

Hier werden die Tupel mit der Python-Syntax als grafische Kurzschreibweise
dargestellt.

Die Telefonnummer im Diagramm ist die Beschwerdenummer der BBC, also bitte
nicht anrufen!

Tupel vergleichen

Die relationalen Operatoren konnen Sie auch mit Tupeln und anderen Sequenzen
verwenden. Python beginnt damit, die ersten Elemente jeder Sequenz zu vergleichen.
Falls diese gleich sind, macht Python mit den ndchsten Elementen weiter, bis es auf
Elemente stoRt, die sich unterscheiden. Eventuell nachfolgende Elemente werden
nicht beriicksichtigt (selbst wenn sie wirklich groR sind).

>>>(0,1,2)< (0, 3,4)

True

>>> (0, 1, 2000000) < (0, 3, 4)

True
Die sort-Funktion arbeitet auf die gleiche Weise: Sie sortiert zundchst anhand des
ersten Elements. Sollte es dann erforderlich sein, sortiert sie anhand des zweiten
Elements usw.

Dieses Verfahren lehnt sich an ein Muster mit der Abkiirzung DSU an:

Decorate:
»Dekorieren« Sie die Sequenz, indem Sie eine Liste mit Tupeln mit einem oder

mehreren Schliisseln fiir die Sortierung vor den eigentlichen Elementen der
Sequenz erstellen.

Sort:
Sortieren Sie diese Liste.

Undecorate:

Entfernen Sie die Dekoration wieder und extrahieren Sie die sortierten Elemente
der Sequenz.

Nehmen wir beispielsweise an, Sie haben eine Liste mit Wortern, die Sie der Lange
nach absteigend sortieren mochten:

def sortiere_nach_laenge(worte):

t=1]
for wort in worte:
t.append((len(wort), wort))

t.sort(reverse=True)

res =]
for laenge, wort in t;
res.append(wort)
return res
Die erste Schleife erstellt eine Liste mit Tupeln, die als ersten Wert die Lange des

Worts und als zweiten das Wort enthélt.

sort vergleicht das erste Element, also die Lange, und zieht das zweite Element nur
heran, um gleichrangige Elemente zu sortieren. Das Schliisselwortargument
reverse=True weist sort an, absteigend zu sortieren.

Die zweite Schleife durchlduft die Liste mit Tupeln und erstellt eine Liste von
Wortern in nach der Lange absteigender Reihenfolge.

In diesem Beispiel werden Worter mit gleicher Lange alphabetisch absteigend
sortiert. In manchen Fallen mochten Sie aber vielleicht, dass Worter mit gleicher
Lange in zufélliger Reihenfolge erscheinen. Passen Sie das Beispiel so an, dass
Worter mit gleicher Lange in zufélliger Reihenfolge sortiert werden. Tipp: Werfen
Sie einen Blick auf die random-Funktion im Modul random. Losung:
unbestaendige_sortierung.py.

Listing 12.2

Sequenzen mit Sequenzen

Bisher habe ich mich auf Listen mit Tupeln konzentriert. Aber fast alle Beispiele in
diesem Kapitel funktionieren auch mit Listen mit Listen, Tupeln mit Tupeln und
Tupeln mit Listen. Um Thnen die Aufzdhlung aller méglichen Kombinationen zu

ersparen, ist es einfacher, wenn wir einfach von Sequenzen mit Sequenzen sprechen.

In vielen Zusammenhdngen sind die verschiedenen Arten von Sequenzen (Strings,
Listen und Tupel) austauschbar. Wie und warum wahlen Sie also eine dieser
Optionen aus?

Fangen wir mit dem Offensichtlichen an: Strings bieten die begrenztesten
Moglichkeiten, da die Sequenz aus Zeichen bestehen muss. Aullerdem sind Strings
nicht verdnderbar. Wenn Sie also die Zeichen in einem String dndern miissen (ohne
einen neuen String zu erstellen), wiirden Sie wahrscheinlich eine Liste von
Buchstaben verwenden.

Listen sind gebrduchlicher als Tupel. Das liegt in erster Linie daran, dass sie
verdnderbar sind. Es gibt aber einige Fille, in denen Sie Tupeln den Vorzug geben
konnten:

1. In manchen Situationen, wie beispielsweise innerhalb einer return-Anweisung,
ist es syntaktisch einfacher, ein Tupel anstelle einer Liste zu erstellen. In
anderen Fallen ist eine Liste vielleicht praktischer.

2. Wenn Sie eine Sequenz als Dictionary-Schliissel verwenden méchten, miissen
Sie einen unverdnderlichen Typ wie ein Tupel oder einen String verwenden.

3. Wenn Sie eine Sequenz als Argument an eine Funktion iibergeben, reduzieren
Sie mit Tupeln das Risiko unerwarteten Verhaltens aufgrund von Aliasing.

Da Tupel unverdnderbar sind, bieten sie keine Methoden wie sort und reverse, die
vorhandene Listen dndern. Allerdings bietet Python die integrierten Funktionen
sorted und reversed, die eine beliebige Sequenz als Parameter entgegennehmen
und eine neue Liste mit denselben Elementen in einer anderen Reihenfolge
zuriickliefern.

Debugging

Listen, Dictionaries und Tupel werden allgemein als Datenstrukturen bezeichnet.
In diesem Kapitel beginnen wir, uns mit zusammengesetzten Datenstrukturen zu
befassen, wie etwa Listen mit Tupeln und Dictionaries, die Tupel als Schliissel und
Listen als Werte enthalten. Zusammengesetzte Datenstrukturen sind niitzlich, aber
auch anfillig fiir das, was ich Strukturfehler nenne: Fehler, die dann auftreten,
wenn eine Datenstruktur den falschen Typ, die falsche Grofe oder die falsche
Zusammensetzung hat. Wenn Sie beispielsweise eine Liste mit einem Integer
erwarten und ich Thnen einfach nur einen ganz normalen Integer gebe (nicht in einer
Liste), funktioniert das nicht.

Als Hilfe fiir das Debugging solcher Fehler habe ich fiir die Programm-Suite
Swampy ein Modul mit dem Namen structshape geschrieben, das eine Funktion —
ebenfalls mit dem Namen structshape — bereitstellt, die eine beliebige

Datenstruktur als Argument entgegennimmt und einen String zuriickliefert, der die
entsprechende Form zusammenfasst. Sie konnen es unter folgender Adresse
herunterladen: http://thinkpython.com/code/structshape.py

Hier sehen Sie das Ergebnis fiir eine einfache Liste:

>>> from structshape import structshape

>>>t=[1,2,3]

>>> print structshape(t)

list of 3 int
Ein schickeres Programm wiirde natiirlich »list of 3 ints« schreiben. Aber es war
einfacher, mich nicht um die Mehrzahl zu kiimmern. (Es gibt nur eine
englischsprachige Version von Swampy.) Hier sehen Sie eine Liste mit Listen:

>>> 12 =[[1,2], [3,4], [5,6]]

>>> print structshape(t2)

list of 3 list of 2 int
Wenn die Elemente einer Liste nicht vom selben Typ sind, werden sie von
structshape nacheinander nach Typ gruppiert:

>>>13=[1, 2, 3,4.0,'5,'6', [7], [8], 9]

>>> print structshape(t3)
list of (3 int, float, 2 str, 2 list of int, int)

Hier sehen Sie eine Liste mit Tupeln:

>>>s = "abc'

>>> |t = zip(t, s)

>>> print structshape(lt)
list of 3 tuple of (int, str)

Und hier ein Dictionary mit zwei Elementen, die Integer mit Strings verkniipfen:

>>> d = dict(It)
>>> print structshape(d)
dict of 3 int->str

Sollten Sie Probleme haben, Thre Datenstrukturen im Auge zu behalten, kann Thnen
structshape helfen.

Glossar

Tupel:
Unverdnderbare Sequenz von Elementen.

Tupel-Zuweisung:
Zuweisung mit einer Sequenz auf der rechten Seite und einem Tupel von
Variablen auf der linken Seite. Zuerst wird die rechte Seite ausgewertet.

Anschliellend werden die Elemente den entsprechenden Variablen auf der linken
Seite zugewiesen.

http://thinkpython.com/code/structshape.py

Sammlung:
Zusammenstellung eines Argument-Tupels variabler Lange.

Streuung:
Behandlung einer Sequenz als Liste von Argumenten.

DSU:

Abkiirzung fiir »Decorate - Sort - Undecorate« (dekorieren, sortieren, Dekoration
entfernen). Muster, bei dem zundchst eine Liste mit Tupeln mit entsprechenden
Sortierkriterien erstellt, dann sortiert und anschliefend wieder ein Teil des
Ergebnisses extrahiert wird.

Datenstruktur:
Sammlung von zusammengehorigen Werte in Listen, Dictionaries, Tupeln usw.

Form (einer Datenstruktur):
Zusammenfassung von Typ, Groe und Zusammenstellung einer Datenstruktur.

Ubungen

Schreiben Sie eine Funktion mit dem Namen am_haeufigsten, die einen String
entgegennimmt und die darin enthaltenen Zeichen ihrer Haufigkeit nach in
absteigender Reihenfolge ausgibt. Suchen Sie Textbeispiele aus verschiedenen
Sprachen und untersuchen Sie, wie sich die Haufigkeit der Buchstaben in den
verschiedenen Sprachen unterscheidet. Vergleichen Sie Ihre Ergebnisse mit den
Tabellen unter http://de.wikipedia.org/wiki/Buchstabenhaufigkeit.

Losung: am_haeufigsten.py.

Listing 12.3

Mehr Anagramme!

1. Schreiben Sie ein Programm, das eine Wortliste aus einer Datei einliest (siehe
,Wortlisten einlesen®) und alle Wortgruppen ausgibt, die Anagramme sind.

So konnte die Ausgabe in etwa aussehen:
['ahnender’, ‘andrehen’, 'naehernd', 'naehrend', 'nahender’]
['verheilt', 'verhielt', 'verleiht']

[inserent', 'innerste’, 'internes’, 'reinsten’, 'steinern’]

Tipp: Eventuell méchten Sie ein Dictionary erstellen, das von einer Gruppe
von Buchstaben auf eine Liste mit Wortern verweist, die mit diesen Zeichen
gebildet werden konnen. Dabei stellt sich die Frage, wie Sie die Gruppen von
Buchstaben so darstellen konnen, dass Sie sie als Schliissel verwenden konnen.
2. Passen Sie das bisherige Programm so an, dass es die grolSte Anagrammgruppe

http://de.wikipedia.org/wiki/Buchstabenh%C3%A4ufigkeit

als erste ausgibt, dann die zweite usw.

3. In Scrabble spricht man von einem »Bingo«, wenn Sie alle sieben Steine auf
einmal spielen und mit einem Stein auf dem Spielbrett ein Wort mit acht
Buchstaben bilden kénnen. Mit welcher Gruppe von acht Buchstaben sind die
meisten Bingos méglich?

Losung: anagramm_gruppen.py.

Listing 12.4

Zwei Worter bilden ein »Metathese-Paar«, wenn Sie eines in das andere verwandeln
konnen, indem Sie zwei Zeichen vertauschen, beispielsweise »forsch« und »frosch«.
Schreiben Sie ein Programm, das alle Metathese-Paare in der Wortliste findet. Tipp:
Testen Sie nicht alle Wortpaare und testen Sie nicht alle méglichen Vertauschungen.
Losung: metathese.py. Hinweis: Diese Ubung wurde angeregt durch ein Beispiel von
http://puzzlers.org.

Listing 12.5

Und wieder ein Car Talk-Réatsel:

Was ist das ldngste Wort, das ein giiltiges deutsches Wort bleibt, auch wenn Sie einen Buchstaben nach
dem anderen entfernen?

Die Buchstaben diirfen von beiden Enden oder aus der Mitte entfernt werden. Aber Sie diirfen keine
Buchstaben neu anordnen. Jedes Mal, wenn Sie ein Zeichen entfernen, muss ein anderes deutsches Wort
iibrig bleiben. Zum Schluss wird nur noch ein Buchstabe iibrig bleiben, der natiirlich kein ganzes Wort
mehr ergeben kann. Ich méchte wissen, wie das ldngste solche Wort heiit und wie viele Zeichen es
enthalt.

Ich gebe Thnen ein kleines Beispiel: »Pfand«. Sie beginnen mit »Pfand« und entfernen das P am Anfang.
Ubrig bleibt das Wort »fand«. Anschliefend entfernen Sie das »d« am Ende und erhalten »Fan«. Wenn
Sie nun noch das »F« entfernen, bleibt »an« und schlieflich nur noch das »a«.

Schreiben Sie ein Programm, das solche Worter findet und das langste ausgibt.

Diese Ubung ist ein bisschen komplizierter als die meisten anderen, deshalb gebe ich
Thnen einige Tipps:

1. Sie konnten eine Funktion schreiben, die ein Wort erwartet und eine Liste aller
Worter berechnet, die aus diesem Wort gebildet werden kénnen, nachdem ein
Buchstabe entfernt wurde. Das sind sozusagen die »Kinder« dieses Worts.

2. Rekursiv gesehen, ist ein Wort reduzierbar, wenn alle seine Kinder reduzierbar
sind. Als Basisfall konnen Sie davon ausgehen, dass der Leerstring reduzierbar
ist.

3. Fiir eine bessere Leistung Ihres Programms konnen Sie fiir alle Worter ein
Memo anlegen, von denen Sie bereits wissen, dass sie reduzierbar sind.

Losung: reduzierbar.py.
Listing 12.6

http://puzzlers.org

Kapitel 13. Fallstudie: Wahl der richtigen
Datenstruktur

Haufigkeitsanalyse fiir Worter

Wie iiblich, sollten Sie mindestens eine der folgenden Ubungen versuchen, bevor Sie
meine Losungen lesen.

Schreiben Sie ein Programm, das eine Datei einliest, jede Zeile in Worter zerlegt,
Whitespace und Interpunktionszeichen aus den Wortern entfernt und sie in
Kleinbuchstaben konvertiert.

Tipp: Das Modul string stellt zwei niitzliche Zeichenfolgen zur Verfiigung:
whitespace — mit Leerzeichen, Tab, Zeilenvorschub usw. — sowie punctuation mit

Interpunktionszeichen. Mal sehen, ob wir Python fluchen lassen kénnen:

>>> jmport string

>>> print string.punctuation

I"#$%&()+,-./:;<=>2@N]"_{[}~

AuBerdem konnen Sie versuchen, die String-Methoden strip, replace und translate
zu verwenden.

Listing 13.1

Besuchen Sie die Website von Project Gutenberg
(http://www.gutenberg.org/wiki/DE_Hauptseite) und laden Sie Ihr bevorzugtes
urheberrechtsfreies Buch im Textformat herunter.

Andern Sie das Programm aus der vorherigen Ubung so, dass es das
heruntergeladene Buch liest, die Header-Informationen am Anfang der Datei
iberspringt und den Rest der Datei wie zuvor verarbeitet.

Passen Sie anschliellend das Programm so an, dass es die Gesamtzahl der Worter im
Buch zdhlt und berechnet, wie oft jedes dieser Worter verwendet wird.

Geben Sie die Anzahl der unterschiedlichen im Buch verwendeten Woérter aus.
Vergleichen Sie mehrere Biicher von unterschiedlichen Autoren aus
unterschiedlichen Regionen. Welcher Autor nutzt den umfangreichsten Wortschatz?

Listing 13.2

Uberarbeiten Sie das Programm aus der vorherigen Ubung dahin gehend, dass es die
20 am haufigsten verwendeten Worter im Buch anzeigt.
Listing 13.3

Andern Sie das vorherige Programm so, dass es eine Wortliste einliest (siehe
,Wortlisten einlesen®), und geben Sie alle Worter aus dem Buch aus, die nicht in der

http://www.gutenberg.org/wiki/DE_Hauptseite

Wortliste stehen. Wie viele davon sind Tippfehler? Wie viele davon sind
gebrdauchliche Warter, die eigentlich in der Wortliste stehen miissten, und wie viele
sind eher ungewohnlich? (Denken Sie daran, dass die Wortliste fiir Kreuzwortrétsel
gedacht ist und daher »d« als »ae«, »0« als »oe, »ii« als »ue« und »B« als »ss«
geschrieben werden.)

Listing 13.4

Zufallszahlen

Wenn man Computerprogramme mit den gleichen Eingaben fiittert, erzeugen sie
meistens die gleichen Ausgaben. Deshalb sagt man ihnen Determinismus nach.
Determinismus ist iiblicherweise eine gute Sache, da wir ja auch erwarten, dass
dieselbe Berechnung dasselbe Ergebnis liefert. Bei manchen Anwendungen méchten
wir aber, dass der Computer unberechenbar ist. Spiele sind nur eines von vielen
Beispielen dafiir.

Es ist gar nicht so einfach, ein Programm wirklich unberechenbar zu machen. Aber
es gibt Moglichkeiten, es wenigstens so wirken zu lassen. Eine solche Moglichkeit
sind Algorithmen, die Pseudozufallszahlen erzeugen. Pseudozufallszahlen sind
nicht wirklich zuféllig, weil sie durch deterministische Berechnungen generiert
werden. Aber wenn man die Zahlen nur ansieht, ist es nahezu unméglich, sie von
echten Zufallszahlen zu unterscheiden.

Das Modul random stellt Funktionen bereit, die Pseudozufallszahlen erzeugen (die
ich von nun an nur noch »Zufallszahlen« nenne).

Die Funktion random liefert eine zuféllige FlieRkommazahl zwischen 0,0 und 1,0

(einschlieBlich 0,0, aber ohne 1,0). Jedes Mal, wenn Sie random aufrufen, erhalten
Sie die ndchste Zahl aus einer langen Reihe. Fiir eine kleine Kostprobe konnen Sie
die folgende Schleife ausfiihren:

import

for iin range(10):
x = random.random()
print x
Die Funktion randint erwartet die Parameter low und high und liefert einen Integer
zwischen low und high (einschliellich der beiden Maximalwerte).
>>> random.randint(5, 10)
5
>>> random.randint(5, 10)
9
Um ein Element aus einer Sequenz zuféllig auszuwdhlen, kénnen Sie choice
verwenden:

>>>t=[1,2, 3]

>>> random.choice(t)

2

>>> random.choice(t)

3
Das Modul random bietet auch Funktionen, mit denen Sie zufdllige Werte aus
stetigen Verteilungen wie der Gaullschen, der Gamma-, der Exponentialverteilung

sowie einigen anderen auswdhlen kénnen.

Schreiben Sie eine Funktion mit dem Namen waehle_aus_hist, die ein Histogramm
erwartet (siehe ,,Dictionary als Menge von Zdhlern“) und einen Zufallswert aus dem
Histogramm liefert, der anhand der Wahrscheinlichkeit in Relation zur Haufigkeit

ausgewdahlt wird. Fiir das folgende Histogramm

>>>t=[a,'a, 'b]

>>> hist = histogramm(t)

>>> print hist

{a: 2,'b" 1}

sollte Thre Funktion beispielsweise 'a' mit der Wahrscheinlichkeit 2:3 und 'b' mit der
Wahrscheinlichkeit 1:3 zuriickgeben.

Listing 13.5

Worthistogramm

Sie sollten die bisherigen Ubungen wenigstens versuchen, bevor Sie weitermachen.
Die Losung finden Sie unter dem Namen analyse_buch.py in den Codebeispielen.
Aullerdem brauchen Sie buddenbrooks.txt.

Hier sehen Sie ein Programm, das eine Datei liest und ein Histogramm der Worter in
der Datei erstellt:

import

def verarbeite_datei(dateiname):
hist = dict()
fp = open(dateiname)
for zeile in fp:
verarbeite_zeile(zeile, hist)
return hist

def verarbeite_zeile(zeile, hist):
zeile = zeile.replace('-', ' ")

for wort in zeile.split():
wort = wort.strip(string.punctuation + string.whitespace)
wort = wort.lower()

hist[wort] = hist.get(wort, 0) + 1

hist = verarbeite_datei('buddenbrooks.ixt')

Dieses Programm liest buddenbrooks.txt, eine Datei mit dem Text von Die
Buddenbrooks von Thomas Mann.

verarbeite_datei durchléduft die Zeilen der Datei und iibergibt eine nach der anderen
an verarbeite_zeile. Das Histogramm hist wird dabei als Akkumulator verwendet.

verarbeite_zeile verwendet die String-Methode replace, um die Bindestriche durch
Leerzeichen zu ersetzen, bevor die Zeile mit split in eine Liste mit Strings zerlegt
wird. Anschliefend durchlaufen wir diese Liste mit Wortern, entfernen mit strip
Interpunktionszeichen und wandeln mit lower alle Buchstaben in Kleinbuchstaben
um. (Kurz gesagt: Die Strings werden »konvertiert«. Denken Sie daran, dass Strings
unverdnderbar sind. Entsprechend liefern Methoden wie strip und lower neue
Strings zuriick.)

In einem letzten Schritt aktualisiert verarbeite zeile das Histogramm, indem ein
neues Element erstellt oder ein vorhandenes aktualisiert wird.

Um die Summe der Worter im Buch insgesamt zu berechnen, kénnen wir die
Héaufigkeiten im Histogramm addieren:

def summe_woerter(hist):
return sum(hist.values())

Die Anzahl der unterschiedlichen Worter entspricht der Anzahl der Elemente im
Dictionary:

def unterschiedliche_woerter(hist):
return len(hist)

Und hier der Code, um das Resultat auszugeben:

print 'Gesamtzahl Woérter:', summe_woerter(hist)
print 'Anzahl der unterschiedlichen Woarter:', unterschiedliche_woerter(hist)

SchlieBlich das Ergebnis:

Gesamtzahl Worter: 235864
Anzahl der unterschiedlichen Worter: 26674

Die haufigsten Worter

Die hdufigsten Worter konnen wir mithilfe des DSU-Musters finden. Die Funktion
haeufigste_woerter erwartet ein Histogramm und liefert eine Liste von Wort-
Frequenz-Tupeln, absteigend sortiert nach Haufigkeit:

def haeufigste_woerter(hist):
t=1]
for schluessel, wert in hist.items():
t.append((wert, schluessel))

t.sort(reverse=True)
return t

Die folgende Schleife gibt die zehn hdufigsten Worter aus:

t = haeufigste_woerter(hist)
print 'Die haufigsten Warter lauten:'
for haeuf, wort in t[0:10]:

print wort, '\t', haeuf

Und hier die Ergebnisse fiir Die Buddenbrooks:

Die haufigsten Warter lauten:
und 9650
die 5753
der 4941
er 3745
in 3457
mit 3253
zu 3234
sie 3191
das 2605
sich 2595

Optionale Parameter

Integrierte Funktionen und Methoden, die eine variable Anzahl von Argumenten
erwarten, haben wir bereits gesehen. Es ist aber auch moglich, benutzerdefinierte
Funktionen mit optionalen Argumenten zu schreiben. Hier sehen Sie eine Funktion,
die die hdufigsten Worter in einem Histogramm ausgibt:

def print_haeufigste_woerter(hist, anz=10):
t = haeufigste_woerter(hist)
print 'Die haufigsten Worter lauten:'
for haeuf, wort in t[:anz]:
print wort, '\t', haeuf

Der erste Parameter ist erforderlich, der zweite optional. Der Standardwert von anz
ist 10.

Wenn Sie nur ein Argument angeben:
print_haeufigste_woerter(hist)

erhdlt anz den Standardwert. Geben Sie jedoch zwei Argumente an:
print_haeufigste_woerter(hist, 20)

erhdlt anz stattdessen den Wert des Arguments. Anders ausgedriickt: Das optionale
Argument tiberschreibt den Standardwert.

Wenn eine Funktion sowohl erforderliche also optionale Parameter enthélt, miissen
Sie zuerst alle erforderlichen Parameter angeben und dann die optionalen.

Dictionary-Subtraktion

Die Worter, die im Buch vorkommen, aber nicht in unserer Wortliste wortliste.txt

stehen, konnen wir dadurch ermitteln, dass wir zwei Mengen voneinander
subtrahieren. Wir suchen also alle Worter aus Menge 1 (die Worter im Buch), die
nicht in Menge 2 (die Worter in der Liste) enthalten sind.

subtrahiere erwartet die beiden Dictionaries buch_hist und wortliste_hist und
liefert ein neues Dictionary, das alle Schliissel aus buch_hist enthilt, die nicht in
wortliste hist enthalten sind. Da uns die Werte nicht interessieren, verwenden wir
einfach None. Eine Besonderheit an dieser Stelle ist die Tatsache, dass unsere
Wortliste keine deutschen Sonderzeichen enthélt (weil es ja eine »Kreuzwortliste«
ist). Damit wir bei unserer Subtraktion nicht alle Worter erhalten, die zwar in der
Wortliste stehen, aber eben nicht mit Umlauten oder scharfem S, miissen wir diese
Zeichen vorher mit replace ersetzen.
def subtrahiere(buch_hist, wortliste_hist):
res = {}
for schluessel in buch_hist:
ersetzt = schluessel.replace('a’, 'ae').replace('U’, 'ue').replace('d', ‘'oe").replace('l?', 'ss’)
if ersetzt not in wortliste_hist:
res[schluessel] = None

return res
In der vierten Zeile ersetzen wir die deutschen Sonderzeichen und weisen das
Ergebnis der tempordren Variablen ersetzt zu. Diese Variable nutzen wir lediglich,
um das so verdnderte Wort mit den Wortern in unserer Wortliste zu vergleichen. Als
Schliissel fiir das Ergebnis-Dictionary verwenden wir natiirlich das urspriingliche
Wort mit Sonderzeichen, damit wir es entsprechend ausgeben kénnen.

Um alle Worter zu finden, die nicht in wortliste.txt stehen, konnen wir
verarbeite datei nutzen, um ein Histogramm fiir wortliste.txt zu erstellen, und
subtrahieren anschliefSend:

woerter = verarbeite_datei('wortliste.txt')
diff = subtrahiere(hist, woerter)

print "Folgende Worter aus dem Buch sind nicht in der Wortliste enthalten:"
for wort in diff.keys():
print wort,

Hier einige Ergebnisse aus Die Buddenbrooks:

Folgende Woérter aus dem Buch sind nicht in der Wortliste enthalten:

dunkelgrauen hinabwallenden anheim gab geheime hauptpastor kaufmannsstand iuris nieder

parkettierten blendenden familienoberhaupt kurzum auftauchen ...
Manche dieser Worter sind ungewohnlich oder nicht mehr allzu gebrauchlich.
Andere dagegen, wie beispielsweise »geheime, sollten dagegen auf jeden Fall in
der Liste stehen!

Zufallsworter

Der einfachste Algorithmus, um ein Wort aus dem Histogramm zufdllig
herauszugreifen, besteht darin, eine Liste mit mehreren Kopien aller Worter der
berechneten Haufigkeit entsprechend zu erstellen und dann aus der Liste zu wéahlen:

def zufalls_wort(h):

t=1]
for wort, haeuf in h.items():
t.extend([wort] * haeuf)

return random.choice(t)

Der Ausdruck [wort] * haeuf erstellt eine Liste mit haeuf Kopien des Strings wort.
Die Methode extend funktioniert dhnlich wie append, allerdings ist in diesem Fall
das Argument eine Sequenz.

Dieser Algorithmus funktioniert, ist aber nicht sehr effizient. Jedes Mal, wenn Sie
ein Zufallswort auswahlen, wird die Liste neu erstellt, die genauso grofl wie das
urspriingliche Buch ist. Eine naheliegende Verbesserung besteht darin, die Liste
einmal zu erstellen und mehrfach zu verwenden. Trotzdem ist die Liste immer noch
sehr grolS.

Eine Alternative ware:

1. Verwenden Sie keys, um die Liste der Worter im Buch zu erhalten.

2. Erstellen Sie eine Liste, die die kumulative Summe der Worthaufigkeiten
enthélt (siehe Listing 10.3). Das letzte Element in dieser Liste wdre die Summe
der Anzahl der Worter im Buch, n.

3. Wahlen Sie eine Zufallszahl zwischen 1 und n. Nutzen Sie eine
Bisektionssuche (siehe Listing 10.11), um den Index zu finden, an dem die
Zufallszahl in der kumulativen Summe eingesetzt werden soll.

4. Verwenden Sie diesen Index, um das entsprechende Wort in der Wortliste zu
finden.

Schreiben Sie ein Programm, das diesen Algorithmus verwendet, um ein zufélliges
Wort aus dem Buch auszuwdhlen. Losung: analyse_buchZ2.py.

Listing 13.6

Markov-Analyse

Wenn Sie Worter zufdllig aus einem Buch auswihlen, kénnen Sie sich einen
Eindruck vom verwendeten Wortschatz machen. Aber Sie erhalten wahrscheinlich
keinen korrekten Satz:

ist ein langen see und tom macht besonderes gruppen um pflegten steifte sich

lieR erortert
Eine Folge zufdllig ausgewdhlter Worter ergibt nur selten Sinn, weil zwischen den
aufeinanderfolgenden Wortern keine Beziehung besteht. In einem realen Satz

erwarten Sie, dass auf einen Artikel ein Adjektiv oder ein Nomen folgt und kein
Verb oder Adverb.

Eine Moglichkeit, solche Beziehungen zu bestimmen, ist die Markov-Analyse.
Dabei wird fiir eine Sequenz von Wortern die Wahrscheinlichkeit bestimmt, dass ein
bestimmtes Wort auf ein anderes folgt. So beginnt beispielsweise der Monty-
Python-Song Eric, the Half a Bee:

Half a bee, philosophically, Must, ipso facto, half not be. But half the bee has got to be Vis a vis, its

entity. D’you see? But can a bee be said to be or not to be an entire bee. When half the bee is not a bee.
Due to some ancient injury?

In diesem Text folgt auf die Phrase »half the« immer das Wort »bee«. Auf »the bee«
folgt entweder »has« oder »is«.

Das Ergebnis einer Markov-Analyse ist ein Mapping von jedem Préfix (z. B. »half
the« und »the bee«) auf alle moglichen Suffixe (wie »has« und »is«).

Sobald Sie eine solche Zuordnungstabelle haben, kénnen Sie einen Zufallstext
erzeugen, indem Sie mit einem beliebigen Prafix beginnen und nach dem
Zufallsprinzip aus der Liste der méglichen Suffixe auswdhlen. Im ndchsten Schritt
kombinieren Sie dann das Ende des Prafix mit dem neuen Suffix, um daraus das
ndchste Préfix zu bilden usw.

Wenn Sie in unserem Beispiel mit dem Préfix »Half a« beginnen, muss das ndchste
Wort »bee« lauten, weil das Prafix nur einmal im Text vorkommt. Das néchste
Préfix ist »a bee«, das ndchste Suffix konnte also »philosophically«, »be« oder
»due« sein.

In diesem Beispiel ist die Lange des Prafix immer 2. Sie kénnen aber natiirlich eine
Markov-Analyse mit einem Préfix beliebiger Lange durchfiihren.

Markov-Analyse:

1. Schreiben Sie ein Programm, das Text aus einer Datei liest und eine Markov-
Analyse durchfiihrt. Das Ergebnis sollte ein Dictionary sein, das Préafixe einer
Sammlung moglicher Suffixe zuordnet. Diese Sammlung kann eine Liste, ein
Tupel oder ein Dictionary sein. Entscheiden Sie sich fiir eine geeignete
Datenstruktur. Testen Sie Ihr Programm mit einem Préfix der Lange 2.
Schreiben Sie das Programm aber so, dass Sie es auch mit anderen Prafixen
ausfiihren kénnen.

2. Erweitern Sie das bisherige Programm um eine Funktion, die auf Grundlage
der Markov-Analyse Zufallstexte schreibt. Hier sehen Sie ein Beispiel aus Die
Buddenbrooks mit der Prafixlange 2:

Ubrigens genoB Kai Graf Mélln eines gewissen Respekts wegen der Wildheit und ziigellosen

UnbotméRigkeit, die man mir gleich bei der Sache. »Ihr redet und redet«, rief Christian auRer sich.
dann verstummte sie eingeschiichtert. Aber seine halbbewuften Bediirfnisse waren stérker, er

selbst fiihlte sich unaussprechlich miide Er wird begreifen, daf8 es wie »Nally« klang; Madame
Kethelsen das Stockwerk und auch die iibrigen voreilig und verspétet ineinander hallenden
Schallmassen nicht innehielten, einem aufdringlichen und in erstaunlicher Rundung tiber das
andere ... ja, unausstehlich, das mufl wahr sein.

In diesem Beispiel habe ich die Interpunktionszeichen nicht von den Wortern
entfernt. Das Ergebnis ist beinahe syntaktisch korrekt, aber eben nicht ganz.
Semantisch ergibt das Ganze ebenfalls fast Sinn, aber auch nicht wirklich.
Was passiert, wenn Sie die Lange des Prafix erhohen? Ist der Zufallstext dann
mehr sinnvoller?

3. Sie konnen auch versuchen, die Texte von zwei oder mehr Biichern zu
analysieren. Der Zufallstext mischt dann den Wortschatz und die Phrasen aus
mehreren Quellen. Vielleicht fiihrt das zu interessanten Ergebnissen.

Hinweis: Diese Fallstudie basiert auf einem Beispiel von Kernighan and Pike, The
Practice of Programming, Addison-Wesley, 1999.

Listing 13.7

Sie sollten versuchen, diese Ubung zu 16sen, bevor Sie weiterlesen. Meine Lésung
finden Sie unter dem Namen markov.py in den Codebeispielen. AulSerdem brauchen
Sie buddenbrooks.txt.

Datenstrukturen

Zufallstexte mit der Markov-Analyse sind witzig, aber diese Ubung hat auch noch
einen anderen Sinn: die Wahl der richtigen Datenstruktur. In der vorherigen Ubung
mussten Sie entscheiden:

= wie Sie die Prafixe abbilden,

= wie Sie die Sammlung moglicher Suffixe abbilden und

m wie Sie das Mapping von jedem Prifix auf die Sammlung moglicher Suffixe
abbilden.

Okay, die letzte Frage ist einfach. Die einzige Mapping-Maoglichkeit, die wir
kennengelernt haben, ist ein Dictionary.

Fiir die Préafixe lauten die naheliegenden Optionen String, Liste mit Strings oder
Tupel mit Strings. Fiir die Suffixe steht eine Liste oder ein Histogramm (Dictionary)
zur Auswahl.

Wie sollen Sie sich entscheiden? In einem ersten Schritt sollten Sie dariiber
nachdenken, welche Operationen Sie fiir die jeweilige Datenstruktur implementieren
mochten. Bei den Prafixen miissen wir in der Lage sein, ein Wort am Anfang zu
entfernen und ein anderes Wort am Ende anzuhdngen. Wenn das aktuelle Prafix
beispielsweise »Half a« und das ndachste Wort »bee« ist, miissen Sie daraus als

nachstes Prafix »a bee« bilden konnen.

Thre Wahl mag zunéchst vielleicht auf eine Liste fallen, weil Sie dann Elemente
einfach hinzufiigen und entfernen kénnen. Aber wir miissen die Prafixe auch als
Schliissel in einem Dictionary verwenden kénnen. Daher kommen Listen nicht
infrage. Mit Tupeln kénnen Sie zwar nichts hinzufiigen oder entfernen, aber mit dem
Additionsoperator kdnnen Sie ein neues Tupel erstellen:

def verschieben(praefix, wort):

return praefix[1:] + (wort,)

verschieben erwartet ein Tupel mit Wortern, praefix und den String wort. Die
Funktion bildet daraus ein neues Tupel, das bis auf das erste Wort die Worter aus
praefix enthdlt und am Ende um wort verlangert wird.

Zur Suffixsammlung miissen wir unter anderem neue Suffixe hinzufiigen (oder die
Haufigkeit vorhandener erh6hen) sowie ein Element zuféllig auswdhlen kénnen.

Das Hinzufiigen eines neuen Suffix ist sowohl mit einer Liste als auch mit einem
Histogramm einfach. Die zuféllige Auswahl eines Elements aus einer Liste ist
ebenfalls sehr einfach, bei einem Histogramm ist das schon komplizierter (siehe
Listing 13.6).

Bisher haben wir uns mit Datenstrukturen vor allem im Hinblick auf die Einfachheit
der Implementierung auseinandergesetzt. Aber bei der Wahl von Datenstrukturen
sind auch andere Faktoren zu beriicksichtigen. Einer davon ist die Laufzeit.
Manchmal gibt es theoretische Griinde, die vermuten lassen, dass eine Datenstruktur
schneller als eine andere ist. Beispielsweise habe ich erwadhnt, dass der in-Operator
mit Dictionaries schneller funktioniert als mit Listen, zumindest wenn die Anzahl
der Elemente grofR ist.

Aber oft wissen Sie nicht von Anfang an, welche Implementierung schneller sein
wird. Dann kénnen Sie einfach beide implementieren und herausfinden, welche
besser funktioniert. Diese Vorgehensweise bezeichnet man als Benchmarking. Eine
praktische Alternative besteht darin, sich fiir die Datenstruktur zu entscheiden, die
am einfachsten zu implementieren ist, um zu sehen, ob sie fiir die geplante
Anwendung schnell genug ist. Wenn ja, haben Sie Ihr Ziel bereits erreicht. Und fiir
den anderen Fall gibt es Tools, wie etwa das Modul profile, mit denen Sie die Stellen
in einem Programm finden kénnen, die die meiste Zeit in Anspruch nehmen.

Ein weiterer Faktor, den Sie berticksichtigen miissen, ist der Speicherplatz. Ein
Histogramm fiir die verschiedenen Worter in einem Text kann unter Umstdnden
weniger Speicherplatz in Anspruch nehmen, weil Sie jedes Wort nur einmal ablegen
miissen — unabhdngig davon, wie oft es im Text vorkommt. Wenn Sie Speicherplatz
sparen, kann das in manchen Féllen dazu fiihren, dass Ihr Programm schneller lauft.
Und im Extremfall kann es passieren, dass Ihr Programm tiberhaupt nicht lauft,

wenn Thnen der Speicher ausgeht. Bei den meisten Anwendungen muss der
Speicherhunger allerdings erst an zweiter Stelle nach der Laufzeit beriicksichtigt
werden.

Ein abschliefender Gedanke dazu: In dieser Diskussion sind wir davon ausgegangen,
dass wir sowohl fiir die Analyse als auch fiir die Erzeugung dieselbe Datenstruktur
verwenden. Da dies voneinander getrennte Phasen sind, ist es aber genauso moglich,
eine Datenstruktur fiir die Analyse zu verwenden und diese fiir die Erzeugung von
Inhalten dann in eine andere Struktur zu konvertieren. Entsprechend kdnnen Sie
dann Laufzeit sparen, wenn Sie dadurch bei der Erzeugung der Inhalte mehr Zeit
sparen, als Sie durch die Konvertierung verlieren.

Debugging

Wenn Sie ein Programm debuggen, insbesondere wenn Sie an einem besonders
hartndckigen Fehler arbeiten, sollten Sie die folgenden vier Dinge versuchen:

Lesen:

Untersuchen Thren Code. Lesen Sie ihn durch und tiberpriifen Sie, ob der
Programmcode wirklich das sagt, was Sie ausdriicken wollten.

Ausfiihren:

Experimentieren Sie, indem Sie Anderungen vornehmen und verschiedene
Versionen ausfiihren. Oft werden Probleme dann offensichtlich, wenn Sie an der
richtigen Stelle im Programm das Richtige anzeigen. Aber manchmal miissen Sie
eine gewisse Zeit in Scaffolding investieren.

Griibeln:

Nehmen Sie sich Zeit zum Nachdenken. Was fiir eine Art von Fehler ist es: ein
Syntaxfehler, ein Laufzeitfehler oder ein semantischer Fehler? Welche
Informationen erhalten Sie aus Fehlermeldungen oder aus den Ausgaben des
Programms? Welche Art von Fehler kénnte das Problem verursachen, vor dem Sie
stehen? Was haben Sie zuletzt gedndert, bevor das Problem aufgetaucht ist?

Einen Schritt zuriickgehen:

Ab einem gewissen Punkt ist es am besten, wenn Sie einen Schritt zuriickgehen
und die letzten Anderungen so lange riickgingig machen, bis Sie wieder ein
Programm haben, das funktioniert — und das Sie verstehen. Dann kénnen Sie
erneut Funktionalitdten hinzufiigen.

Gerade Programmieranfanger versteifen sich oft auf eine dieser Aktivitdten und
vergessen dabei die anderen. Und jede dieser Herangehensweisen zeichnet ein
eigenes Schadensbild.

Wenn ein Tippfehler das Problem verursacht, kann es helfen, den Code zu lesen. Bei
einem Denkfehler bringt das relativ wenig. Wenn Sie nicht verstehen, was Thr
Programm macht, kénnen Sie es hundertmal lesen und finden den Fehler trotzdem
nicht. Weil der Fehler in Ihren Kopf steckt.

Es kann helfen, wenn Sie einfach experimentieren — vor allem wenn Sie kleine und
einfache Tests durchfiihren. Aber wenn Sie experimentieren, ohne nachzudenken
oder Thren Code zu lesen, kdnnen Sie in eine Falle geraten, die ich
»Irrfahrtsprogrammierung« nenne. Dabei machen Sie so lange irgendwelche
Anderungen, bis das Programm das Richtige tut. Es eriibrigt sich, darauf
hinzuweisen, dass die Irrfahrtsprogrammierung sehr lange dauern kann.

Nehmen Sie sich Zeit, nachzudenken. Debugging ist wie eine
Experimentalwissenschaft. Dafiir brauchen Sie mindestens eine Hypothese dartiber,
wo das Problem liegt. Gibt es zwei oder mehr Mdéglichkeiten, miissen Sie sich einen
Test einfallen lassen, durch den Sie eine davon ausschlielSen konnen.

Eine Pause hilft beim Nachdenken. Genauso wie dariiber reden. Wenn Sie das
Problem jemand anderem (oder sich selbst) erkldren, finden Sie manchmal die
Antwort, bevor Sie die Frage zu Ende gestellt haben.

Aber selbst die besten Debugging-Techniken versagen, wenn es zu viele Fehler gibt.
Oder der Code, den Sie zum Laufen bekommen mdochten, zu umfangreich oder zu
kompliziert ist. Manchmal besteht die beste Option darin, einen Schritt
zuriickzugehen und das Programm so lange zu vereinfachen, bis es funktioniert und
Sie es verstehen.

Programmieranfanger zégern hdufig, einen Schritt zuriickzugehen, weil sie es nicht
ausstehen kénnen, auch nur eine einzige Zeile Code zu l6schen (selbst wenn sie
falsch ist). Wenn Sie sich damit besser fiihlen, kopieren Sie Thr Programm in eine
andere Datei, bevor Sie es zerlegen. Dann kénnen Sie die einzelnen Teile Stiick fiir
Stiick wieder einfiigen.

Um einen hartndckigen Fehler aufzuspiiren, miissen Sie manchmal lesen, ausfiihren,
griibeln und auch einen Schritt zuriickgehen. Wenn Sie sich zu lange mit einer dieser
Aktivitdten aufhalten, versuchen Sie es mit der ndachsten.

Glossar

Deterministisch:
Bezieht sich auf ein Programm, das bei gleicher Eingabe bei jedem Ablauf
dasselbe Ergebnis erzielt.

Pseudozufallszahlen:
Sequenz von Zahlen, die zufdllig zu sein scheinen, aber von einem

deterministischen Programm berechnet werden.

Standardwert:
Wert, den ein optionaler Parameter erhilt, falls kein Argument angegeben wird.

Uberschreiben:
Ersetzen eines Standardwerts durch ein Argument.

Benchmarking:

Auswahl von Datenstrukturen durch Implementierung von Alternativen und
Testldufe dieser Alternativen mit Stichproben der moglichen Eingaben.

Ubungen

Der »Rang« eines Worts entspricht der Position dieses Worts in einer Liste von
Wortern, die nach ihrer Haufigkeit sortiert sind: Das haufigste Wort hat Rang 1, das
zweithdufigste Rang 2 usw.

Das Zipfsche Gesetz beschreibt eine Beziehung zwischen den Rdngen und
Haufigkeiten von Wortern in natiirlichen Sprachen
(http://de.wikipedia.org/wiki/Zipfsches_Gesetz). Konkret besagt dieses Gesetz, dass
die Haufigkeit f eines Worts mit dem Rang r sich folgendermalien errechnet:

f=cr?®

Dabei sind s und ¢ Parameter, die von der Sprache und dem Text abhdngen. Wenn
Sie den Logarithmus beider Seiten dieser Gleichung berechnen, erhalten Sie:
logf=logc—slogr

Wenn Sie also log f und log r grafisch darstellen, sollten Sie eine gerade Linie mit
der Steigung -s erhalten und log c schneiden.

Schreiben Sie ein Programm, das Text aus einer Datei liest, die Haufigkeiten der
verschiedenen Werte bestimmt und in absteigender Reihenfolge nach Haufigkeit
zusammen mit log f und log r fiir jedes Wort eine Linie zeichnet. Verwenden Sie das
Grafikprogramm Threr Wahl, um die Ergebnisse grafisch darzustellen und zu
iberpriifen, ob sie eine gerade Linie ergeben. Kénnen Sie den Wert von s schitzen?

Losung: zipf.py. Fiir die Graphen miissen Sie unter Umstdnden matplotlib
installieren (siehe http://matplotlib.sourceforge.net/).

Listing 13.8

http://de.wikipedia.org/wiki/Zipfsches_Gesetz
http://matplotlib.sourceforge.net/

Kapitel 14. Dateien

Persistenz

Die meisten Programme, die wir bisher gesehen haben, sind insofern fliichtig, als sie
nur fiir begrenzte Zeit ausgefiihrt werden. Solche Programme generieren bestimmte
Ausgaben, aber sobald das Programm endet, verschwinden die Daten. Wenn Sie das
Programm erneut ausfiihren, fangen Sie wieder von vorne an

Andere Programme sind dagegen persistent, werden also ldngere Zeit (oder
dauerhaft) ausgefiihrt. Diese Programme speichern zumindest einen Teil ihrer Daten
dauerhaft (beispielsweise auf einer Festplatte). Wenn solche Programme beendet
und neu gestartet werden, machen sie an der Stelle weiter, an der sie zuvor aufgehort
haben.

Beispiele fiir persistente Programme sind Betriebssysteme — die so ziemlich immer
laufen, solange der Computer an ist — und Webserver, die stindig laufen und auf
Anforderungen aus dem Netzwerk warten.

Eine der einfachsten Moglichkeiten fiir Programme, Daten zu speichern, sind
Textdateien. Wir haben bereits Programme gesehen, die Textdateien lesen. In
diesem Kapitel sehen wir uns auch Programme an, die Dateien schreiben.

Eine weitere Moglichkeit besteht darin, den Zustand des Programms in einer
Datenbank zu speichern. In diesem Kapitel stelle ich Thnen daher ebenfalls eine
einfache Datenbank und das Modul pickle vor, mit dem es ganz einfach ist,
Programmdaten zu speichern.

Lesen und schreiben

Eine Textdatei ist eine Sequenz von Zeichen, die auf einem dauerhaften Medium wie
etwa einer Festplatte, einem Flashspeicher oder einer CD-ROM gespeichert wird. Im
,Wortlisten einlesen® haben wir bereits gesehen, wie Sie eine Datei 6ffnen und lesen
konnen.

Um eine Datei zu schreiben, miissen Sie sie mit dem Modus 'W' als zweiten
Parameter o6ffnen:

>>> fout = open(‘ausgabe.txt', 'w')

>>> print fout

<open file 'ausgabe.txt', mode 'w' at Oxb7eb2410>
Vorsicht: Wenn Sie eine vorhandene Datei im Schreibmodus 6ffnen, werden die
alten Daten dadurch geldscht. Sollte die Datei nicht bereits existieren, wird eine
neue erstellt.

Die write-Methode schreibt Daten in eine Datei:

>>> zeile1 = "Edle Jungfrau...\n"

>>> fout.write(zeile1)
Auch in diesem Fall merkt sich das Dateiobjekt die aktuelle Stelle. Wenn Sie also
write erneut aufrufen, werden die Daten am Ende angefiigt.

>>> zeile2 = "Verschwindet und preist irgendein anderes Gor.\n"
>>> fout.write(zeile2)

Wenn Sie mit dem Schreiben fertig sind, miissen Sie die Datei schliel8en:

>>> fout.close()

Formatoperator

Das Argument fiir die Methode write muss ein String sein. Wenn wir andere Werte
in eine Datei schreiben mochten, miissen wir diese zuvor in einen String
konvertieren. Die einfachste Méglichkeit dafiir besteht in der Funktion str:

>>> x = 52

>>> f.write(str(x))
Eine weitere Moglichkeit ist der Formatoperator %. Bei Integer-Werten steht %
fiir den Modulus-Operator. Aber wenn der erste Operand ein String ist, steht % fiir
den Formatoperator.

Der erste Operand ist der Format-String, der eine oder mehrere Formatsequenzen
enthdlt, die bestimmen, wie der zweite Operand formatiert werden soll. Das
Ergebnis ist wieder ein String.

Die Formatsequenz '%d' bedeutet beispielsweise, dass der zweite Operand als
Integer formatiert werden soll (d steht fiir »decimal«):
>>> kamele = 42

>>>"%d' % kamele
l42l

Das Ergebnis ist der String '42', nicht zu verwechseln mit dem Integer-Wert 42.

Eine Formatsequenz kann an beliebiger Stelle im String erscheinen, wodurch Sie
auch einen Wert in einen Satz einfiigen kénnen:

>>> kamele = 42

>>>"Ich habe %d Kamele gesehen.' % kamele

'lch habe 42 Kamele gesehen.'
Wenn es mehr als eine Formatsequenz im String gibt, muss das zweite Argument ein
Tupel sein. Jeder Formatsequenz wird der Reihe nach ein Element des Tupels
zugeordnet.

Im folgenden Beispiel wird '%d' fiir die Formatierung eines Integers, '%g' fiir die
Formatierung einer FlieBkommazahl (fragen Sie bitte nicht, warum) und '%s' fiir die
Formatierung eines Strings verwendet:

>>>"In %d Jahren habe ich %g %s.' % (3, 0.1, 'Kamele gesehen')

'In 3 Jahren habe ich 0.1 Kamele gesehen.’
Die Anzahl der Elemente im Tupel muss mit der Anzahl der Formatsequenzen im
String libereinstimmen. AulSerdem miissen die Typen der Elemente den
Formatsequenzen entsprechen:

>>>'%d %d %d' % (1, 2)

TypeError: not enough arguments for format string

>>> '%d' % 'dollars'

TypeError: %d format: a number is required, not str
Im ersten Beispiel sind es nicht genug Elemente, im zweiten hat das Element den
falschen Typ.

Der Formatoperator ist machtig, kann aber schwierig in der Anwendung sein. Mehr
dariiber kdonnen Sie unter docs.python.org/lib/typesseq-strings.html erfahren.

Dateinamen und Pfade

Dateien sind in Verzeichnissen organisiert (auch Ordner genannt). Fiir jedes
laufende Programm gibt es ein aktuelles Verzeichnis, das als Standardverzeichnis
fiir die meisten Vorgiange verwendet wird. Wenn Sie beispielsweise eine Datei zum
Lesen 6ffnen, sucht Python danach im aktuellen Verzeichnis.

Das Modul os bietet Funktionen fiir die Arbeit mit Dateien und Verzeichnissen
(»os« steht fiir »operating system, also das Betriebssystem). 0s.getcwd liefert
beispielsweise den Namen des aktuellen Verzeichnisses:

>>> import 0s

>>> cwd = os.getcwd()

>>> print cwd

/home/dinsdale
cwd steht fiir »current working directory, also das aktuelle Arbeitsverzeichnis. In
diesem Fall lautet das Ergebnis /home/dinsdale — das Home-Verzeichnis des
Benutzers mit dem Namen dinsdale.

Einen String wie cwd, der eine Datei kennzeichnet, bezeichnet man als Pfad. Ein
relativer Pfad geht vom aktuellen Verzeichnis aus. Ein absoluter Pfad geht im
Gegensatz dazu vom Wurzelverzeichnis des Dateisystems aus.

Die Pfade, mit denen wir bis jetzt tun hatten, waren einfach nur Dateinamen und
damit also relativ zum aktuellen Verzeichnis. Den absoluten Pfad einer Datei kénnen
Sie mit 0s.path.abspath abfragen:

>>> os.path.abspath('memao.txt')
'lhome/dinsdale/memo.txt'

os.path.exists priift, ob eine Datei oder ein Verzeichnis existiert:

>>> os.path.exists('memo.txt')

True

Wenn die Datei existiert, konnen Sie mit 0s.path.isdir feststellen, ob es sich dabei
um ein Verzeichnis handelt:

>>> os.path.isdir('memao.txt')

False

>>> os.path.isdir('musik’)

True
Entsprechend konnen Sie mit 0s.path.isfile tiberpriifen, ob es sich um eine einfache
Datei handelt.

os.listdir liefert eine Liste der Dateien (und auch der anderen Verzeichnisse) im
angegebenen Verzeichnis:

>>> os.listdir(cwd)

[musik', 'fotos’, 'memo.txt']
Um diese Funktionen zu veranschaulichen, durchlduft das folgende Beispiel ein
Verzeichnis, gibt die Namen aller Dateien aus und ruft sich selbst rekursiv fiir alle
Unterverzeichnisse auf:

def durchlaufe(verz_name):

for name in os listdir(verz_name):
pfad = os.path.join(verz_name, name)

if os.path.isfile(pfad):
print pfad

else:
durchlaufe(pfad)

os.pfad.join erwartet ein Verzeichnis und einen Dateinamen und kombiniert diese
miteinander zu einem vollstandigen Pfad.

Das Modul os enthilt eine Funktion mit dem Namen walk, die unserer recht dhnlich,
aber vielseitiger ist. Lesen Sie die Dokumentation und geben Sie mit dieser Funktion
die Namen der Dateien eines angegebenen Verzeichnisses und der
Unterverzeichnisse aus.

Losung: durchlaufe.py.
Listing 14.1

Ausnahmen abfangen

Beim Lesen und Schreiben von Dateien kann eine Menge schiefgehen. Wenn Sie

eine Datei 6ffnen mochten, die nicht existiert, erhalten Sie beispielsweise einen
|OError:

>>> fin = open('boese_datei')
IOError: [Errno 2] No such file or directory: 'boese_datei’

Das passiert, wenn Sie keine Zugriffsberechtigungen fiir eine Datei haben:

>>> fout = open('/etc/passwd’, 'w')
IOError: [Errno 13] Permission denied: '/etc/passwd'

Und wenn Sie versuchen, ein Verzeichnis zum Lesen zu 6ffnen, erhalten Sie:

>>> fin = open('/home")

IOError: [Errno 21] Is a directory
Um diese Fehler zu vermeiden, konnen Sie natiirlich Funktionen wie os.pfad.exists
und os.pfad.isfile verwenden. Das erfordert aber eine Menge Zeit und Code, um alle
Moglichkeiten zu tiberpriifen (Errno 21 kann vieles bedeuten, es konnen hier
mindestens 21 verschiedene Dinge schiefgelaufen sein).

Am besten versuchen Sie einfach Ihr Gliick und kiimmern sich um die Probleme
dann, wenn sie auftreten. Genau dafiir gibt es die try-Anweisung. Die Syntax ist
dhnlich der einer if-Anweisung:
try.
fin = open('boese_datei')
for zeile in fin:
print zeile
fin.close()
except:
print 'Es ist etwas schiefgelaufen.'
Python beginnt damit, die try-Klausel auszufiihren. Wenn alles gut geht, iiberspringt
Python die except-Klausel und macht weiter. Wird eine Ausnahme ausgelost,
verldsst das Programm die try-Klausel und fiihrt die except -Klausel aus.

Wenn Sie eine Ausnahme mit einer try-Anweisung behandeln, spricht man davon,
dass Sie eine Ausnahme abfangen. In diesem Beispiel gibt die except-Klausel eine
Fehlermeldung aus, die nicht sehr hilfreich ist. Ublicherweise fangen Sie aber eine
Ausnahme ab, um das Problem zu beheben, es erneut zu versuchen oder wenigstens
das Programm wiirdevoll zu beenden.

Schreiben Sie eine Funktion mit dem Namen sed, die folgende Argumente erwartet:
ein Suchmuster als String, einen String, durch den dieses Muster ersetzt werden soll,
sowie zwei Dateinamen als String. Die Funktion soll die erste Datei lesen und den
Inhalt in die zweite Datei schreiben (und diese erstellen, falls notwendig). Wenn das
Suchmuster in der Datei vorkommt, soll es durch den entsprechenden String ersetzt
werden.

Falls ein Fehler beim Offnen, Lesen oder SchlieRen der Dateien auftritt, soll IThr
Programm die Ausnahme abfangen, eine Fehlermeldung ausgeben und die
Ausfiihrung beenden. Losung: sed.py.

Listing 14.2

Datenbanken

Eine Datenbank ist eine Datei, die fiir die Speicherung von Daten strukturiert ist.
Die meisten Datenbanken sind insofern wie ein Dictionary organisiert, als sie
Schliisseln entsprechende Werte zuweisen. Der grofSte Unterschied besteht darin,
dass sich eine Datenbank auf einer Festplatte befindet (oder einem anderen
permanenten Speicher), damit die Daten auch dann erhalten bleiben, wenn das
Programm beendet wurde.

Das Modul anydbm stellt eine Schnittstelle fiir die Erstellung und Aktualisierung
von Datenbankdateien zur Verfiigung. Als Beispiel werde ich eine Datenbank
erstellen, die Bildunterschriften fiir Bilddateien speichert.

Das Offnen einer Datenbank gleicht dem Offnen anderer Dateien:

>>> import anydbm
>>> db = anydbm.open('bildunterschriften.db’, 'c')

Der Modus 'c' bedeutet, dass die Datenbank erstellt werden soll, falls sie nicht
bereits existiert. Als Riickgabewert erhalten Sie ein Datenbankobjekt, mit dem Sie
Operationen wie mit einem Dictionary durchfiihren kénnen (gréfStenteils). Wenn Sie
ein neues Element erstellen, aktualisiert anydbm die Datenbankdatei.

>>> db['cleese.png'] = 'Foto von John Cleese.'
Greifen Sie auf eines der Elemente zu, liest anydbm die Datei:

>>> print db['cleese.png']
Foto von John Cleese.

Wenn Sie einem vorhandenen Schliissel einen neuen Wert zuweisen, ersetzt anydbm
den alten Wert:

>>> db['cleese.png'] = 'Foto von John Cleese bei einem Silly Walk.'
>>> print db['cleese.png']
Foto von John Cleese bei einem Silly Walk.

Viele Dictionary-Methoden wie etwa keys und items funktionieren auch mit
Datenbankobjekten. Entsprechend kénnen Sie ein Datenbankobjekt auch mit einer
for-Anweisung durchlaufen:

for schluessel in db.keys():
print schluessel

Genau wie bei anderen Dateien sollten Sie die Datenbank schlieBen, wenn Sie fertig
sind:

>>> db.close()

Pickling

Eine Einschrankung von anydbm besteht darin, dass die Schliissel und Werte Strings

sein miissen. Wenn Sie versuchen, einen anderen Typ zu verwenden, erhalten Sie
einen Fehler.

Das pickle-Modul kann aber Abhilfe schaffen. Es kann beinahe jeden Objekttyp in
einen String iibersetzen und solche Strings auch wieder zuriick in Objekte
umwandeln.

pickle.dumps erweitert ein Objekt als Parameter und liefert einen entsprechenden
String als Riickgabewert (dumps steht fiir »dump string«):

>>> import pickle
>>>t=[1, 2, 3]

>>> pickle.dumpsi(t)
'(Ip0\nIM\nal2\nal3\na.'

Dieses Format ist fiir Menschen nicht verstandlich, es soll aber auch nur fiir pickle
leicht zu interpretieren sein. pickle.loads (»load string«) stellt daraus wieder ein
Objekt her:

>>>t1=[1,2,3]

>>> s = pickle.dumps(t1)

>>> {2 = pickle.loads(s)

>>> print {2

[1,2, 3]
Obwohl das neue Objekt denselben Wert wie das alte hat, ist es (im Allgemeinen)
nicht dasselbe Objekt:

>>>t1 ==12
True
>>>t1is 12
False

Anders ausgedriickt: Wenn Sie ein Objekt mit pickle konvertieren und wieder
zuriickkonvertieren, hat das den gleichen Effekt, als wiirden Sie das Objekt kopieren.

Mit pickle konnen Sie auch andere Typen als Strings in einer Datenbank speichern.
Diese Kombination ist so gebrduchlich, dass sie in einem Modul mit dem Namen
shelve gekapselt wurde.

Meine Losung fiir Listing 12.4 finden Sie in den Codebeispielen unter dem Namen
anagramm_gruppen.py. Sie werden erkennen, dass ich darin ein Dictionary erstelle,
das einem sortierten String eine Liste mit Wortern zuordnet, die mit diesem Zeichen
buchstabiert werden kdnnen. Beispielsweise wird 'inserent' die Liste ['innerste’,
'internes’, 'reinsten’, 'steinern’] zugeordnet.

Schreiben Sie ein Modul, das anagramm_gruppen importiert und zwei neue
Funktionen bereitstellt: speichere_anagramme soll das Anagramm-Dictionary in
einem »shelf« speichern, lese_anagramme soll ein Wort nachschlagen und die
Liste seiner Anagramme zuriickgeben. Lésung: anagramm_db.py

Listing 14.3

Pipes

Die meisten Betriebssysteme stellen eine Kommandozeile zur Verfiigung, die auch
als Shell bezeichnet wird. In einer Shell konnen Sie iiblicherweise Befehle eingeben,
um durchs Dateisystem zu navigieren und Anwendungen zu starten. Unter Unix
koénnen Sie beispielsweise mit cd das Verzeichnis wechseln, mit IS den
Verzeichnisinhalt anzeigen oder einen Webbrowser starten, indem Sie
beispielsweise firefox eingeben.

Jedes Programm, das Sie von der Shell aus starten kénnen, kénnen Sie auch mit
Python mithilfe einer Pipe starten. Eine Pipe ist ein Objekt, das ein laufendes
Programm abbildet.

Der Unix-Befehl Is -I zeigt normalerweise den Inhalt des aktuellen Verzeichnisses
(ausfiihrlich) an. Befehle wie Is kénnen Sie mit 0s.popen?! aufrufen:

>>>cmd ="Is -I'

>>> fp = 0s.popen(cmd)
Das Argument ist ein String, der einen Shell-Befehl enthélt. Der Riickgabewert ist
ein Objekt, das sich wie eine gedffnete Datei verhdlt. Sie konnen die Ausgabe des Is-
Prozesses mit readline zeilenweise auslesen oder den gesamten Prozess mit read
abrufen:

>>> res = fp.read()
Wenn Sie fertig sind, schlielen Sie die Pipe wie eine Datei:

>>> stat = fp.close()

>>> print stat

None
Der Riickgabewert ist der finale Status des Is-Prozesses; None bedeutet, dass der
Prozess normal (also ohne Fehler) beendet wurde.

Die meisten Unix-Systeme bieten beispielsweise einen Befehl mit dem Namen
mdSsum, der den Inhalt einer Datei liest und eine Checksumme berechnet (md5
unter OS X). Auf der Seite http://de.wikipedia.org/wiki/Message-
Digest_Algorithm_5 kdnnen Sie mehr iber MD5 erfahren. Mit diesem Befehl haben
Sie eine effiziente Moglichkeit, zu tiberpriifen, ob zwei Dateien denselben Inhalt
haben. Die Wahrscheinlichkeit, dass unterschiedliche Inhalte dieselbe Checksumme
ergeben, ist sehr gering (so gering, dass es sehr unwahrscheinlich ist, dass dieser Fall
eintritt, bevor das Universum in sich zusammenfillt).

Mit einer Pipe konnen Sie md5sum von Python aus starten und das Ergebnis
aufrufen:

http://de.wikipedia.org/wiki/Message-Digest_Algorithm_5

>>> dateiname = 'book.txt'

>>> cmd = 'mdSsum ' + dateiname

>>> fp = 0s.popen(cmd)

>>> res = fp.read()

>>> stat = fp.close()

>>> print res

1e0033f0ed0656636de0d75144ba32e0 book.tex

>>> print stat

None
In einer grofen Sammlung von MP3-Dateien kann es manchmal mehr als eine
Version desselben Songs geben, die in verschiedenen Verzeichnissen oder unter
verschiedenen Dateinamen abgelegt sind. Das Ziel dieser Ubung besteht darin,

solche Duplikate zu finden.

1. Schreiben Sie ein Programm, das ein Verzeichnis und alle Unterverzeichnisse
rekursiv durchsucht und die vollstandigen Pfade aller Dateien mit einem
bestimmten Suffix (beispielsweise .mp3) zuriickliefert. Tipp: In 0s.path gibt
es mehrere niitzliche Funktionen fiir die Manipulation von Datei- und
Pfadnamen.

2. Duplikate konnen Sie ermitteln, indem Sie mit md5sum eine Checksumme fiir
jede Datei berechnen. Wenn zwei Dateien dieselbe Checksumme haben, sind
die Inhalte wahrscheinlich identisch.

3. Um wirklich sicherzugehen, konnen Sie den Unix-Befehl diff verwenden.

Losung: finde_duplikate.py. Diese Datei funktioniert nur unter Unix/Linux/OS X, da
unter Windows standardmaRig weder md5sum noch diff zur Verfiigung steht.

Listing 14.4

Module schreiben

Sie konnen jede Datei, die Python-Code enthlt, als Modul importieren.
Angenommen, Sie haben eine Datei mit dem Namen wc.py, die den folgenden Code
enthalt:
def zeilenzaehler(dateiname):
zaehler =0
for zeile in open(dateiname):

zaehler += 1
return zaehler

print zeilenzaehler(‘'wc.py")

Wenn Sie dieses Programm ausfiihren, liest es sich selbst ein und gibt die Anzahl
der Zeilen in der Datei aus, in diesem Fall 7. Sie konnen die Datei auch
folgendermalien importieren:

>>> import wc
7

Jetzt haben Sie das Modulobjekt wc:

>>> print wc
<module 'wc' from 'wc.py'>

Die Funktion mit dem Namen zeilenzaehler rufen Sie dann folgendermalien auf:

>>> wc.zeilenzaehler('wc.py')
7

Und so schreiben Sie Module in Python.

Das einzige Problem in diesem Beispiel besteht darin, dass beim Import des Moduls
der Testcode im unteren Teil ausgegeben wird. Normalerweise werden beim Import
eines Moduls die neuen Funktionen zwar definiert, aber nicht ausgefiihrt.

Programme, die als Module importiert werden, sind meistens nach dem folgenden
Muster geschrieben:
if _name__=='_main__"
print zeilenzaehler('wc.py')
__name___ist eine integrierte Variable, die gesetzt ist, wenn das Programm
gestartet wird. Wird das Programm als Skript ausgefiihrt, hat __name__ den Wert
__main__. In diesem Fall wird der Testcode ausgefiihrt. Ansonsten wissen Sie, dass

das Modul importiert wird, und der Testcode wird iibersprungen.

Tippen Sie dieses Beispiel in eine Datei mit dem Namen wc.py und fiihren Sie sie als
Skript aus. Starten Sie anschliefend den Python-Interpreter und geben Sie import wc
ein. Was ist der Wert von __name__, wenn das Modul importiert wird?

Warnung: Wenn Sie ein Modul importieren, das bereits importiert wurde, macht
Python tiberhaupt nichts. Die Datei wird nicht erneut eingewiesen, selbst wenn Sie
sie verandert haben.

Mochten Sie also ein Modul erneut laden, kénnen Sie dazu die integrierte Funktion
reload verwenden. Das kann teilweise aber verzwickt werden. Am sichersten ist es
daher, wenn Sie den Interpreter neu starten und das Modul erneut importieren.

Listing 14.5

Debugging

Wenn Sie Dateien lesen und schreiben, kann es Probleme mit Whitespace
(Leerraum) geben. Solche Fehler konnen schwierig aufzuspiiren sein, weil
Leerzeichen, Tabs und Zeilenvorschiibe normalerweise unsichtbar sind:
>>>s="12t3\n4
>>> print s

12 3
4

In solchen Fillen kann die integrierte Funktion repr hilfreich sein: Sie erwartet ein
beliebiges Objekt als Argument und liefert die String-Représentation dieses Objekts.
Fiir Strings werden die Whitespace-Zeichen mit Backslash-Sequenzen dargestellt:

>>> print repr(s)
12\t 3\n 4'

Das kann sich beim Debugging als sehr niitzlich erweisen.

Ein weiteres Problem kann sich dadurch ergeben, dass unterschiedliche
Betriebssysteme verschiedene Zeichen fiir den Zeilenumbruch nutzen. Manche
Systeme verwenden eine neue Zeile, dargestellt durch \n, andere wiederum den
Wagenriicklauf \r. Und manche Betriebssysteme verwenden beides. Falls Sie
Dateien zwischen verschiedenen Betriebssystemen verschieben, konnen diese
Inkonsistenzen Probleme bereiten.

Fiir die meisten Betriebssysteme gibt es Anwendungen, die ein Format ins andere
konvertieren. Weitere Informationen dazu finden Sie unter
http://de.wikipedia.org/wiki/Zeilenumbruch. Natiirlich kénnen Sie auch selbst eine
solche Anwendung programmieren.

Glossar

Persistenz:
Bezieht sich auf ein Programm, das dauerhaft ausgefiihrt wird und wenigstens
einen Teil seiner Daten in einem permanenten Speicher abgelegt.

Formatoperator:
Operator %, der einen Format-String sowie ein Tupel entgegennimmt und einen
String erzeugt, der die Elemente des Tupels dem Format-String entsprechend
formatiert.

Format-String:
String, der zusammen mit dem Formatoperator verwendet wird und
Formatsequenzen enthilt.

Formatsequenz:
Zeichenfolge in einem Format-String, beispielsweise %d, die angibt, wie ein Wert
formatiert werden soll.

Textdatei:
In einem permanenten Speicher, beispielsweise auf einer Festplatte, gespeicherte
Zeichenfolge.

Verzeichnis:

http://de.wikipedia.org/wiki/Zeilenumbruch

Benannte Sammlung von Dateien, auch Ordner genannt.

Pfad:
String, der auf eine Datei oder ein Verzeichnis verweist.

Relativer Pfad:
Pfadangabe, die vom aktuellen Verzeichnis ausgeht.

Absoluter pfad:
Pfad, der mit dem obersten Verzeichnis des Dateisystems beginnt.

Abfangen einer Ausnahme:

Programmende durch eine Ausnahme verhindern, indem Sie die Anweisungen try
und except verwenden.

Datenbank:

Datei, deren Inhalte wie ein Dictionary mit Schliisseln organisiert sind, fiir die
entsprechende Werte existieren.

Ubungen

Das Modul urllib stellt Methoden fiir die Verdnderung von URLs und den Download
von Informationen aus dem Internet zur Verfiigung. Das folgende Beispiel 1ddt eine

geheime Nachricht von oreilly.de herunter und gibt sie aus:
import

conn = urllib.urlopen('http://www.oreilly.de/catalog/thinkpythonger/chapter/geheim.html')
for zeile in conn:
print zeile.strip()
Fiihren Sie diesen Code aus und befolgen Sie die Anweisungen, die Sie auf diese

Weise erhalten. Lésung: us_plz.py.
Listing 14.6

(] popen ist mittlerweile {iberholt. Das bedeutet, dass wir diese Funktion eigentlich nicht mehr verwenden und
stattdessen das Modul subprocess nutzen sollten. Aber in einfacheren Fillen finde ich subprocess unnétig
kompliziert. Also werde ich popen so lange weiter verwenden, bis es entfernt wird.

Kapitel 15. Klassen und Objekte

Die Codebeispiele fiir dieses Kapitel finden Sie unter Punkt1.py. Die Lésungen fiir
die Ubungen befinden sich in der Datei Punkt1_loesung.py.

Benutzerdefinierte Typen

Wir haben viele der integrierten Typen von Python bereits verwendet. Nun
definieren wir einen eigenen Typ. Fiir dieses Beispiel erstellen wir einen Typ mit
dem Namen Punkt, der einen Punkt im zweidimensionalen Raum abbildet.

In der mathematischen Schreibweise werden Punkte oft in Klammern geschrieben,
wobei ein Komma die Koordinaten voneinander trennt. (0,0) steht also
beispielsweise fiir den Ursprung, wahrend (x,y) einen Punkt beschreibt, der x
Einheiten rechts und y Einheiten oberhalb des Ursprung liegt.

Es gibt mehrere Moglichkeiten, wie wir Punkte in Python abbilden kénnen:

m Wir kénnten die Koordinaten separat in zwei Variablen X und y speichern.

m Wir kénnten die Koordinaten als Elemente in einer Liste oder einem Tupel
ablegen.

m Wir konnten einen neuen Typ fiir die Darstellung von Punkten als Objekte
erstellen.

Die Erstellung eines neuen Typs ist (ein bisschen) komplizierter als die anderen
beiden Optionen, bietet aber Vorteile, die Thnen bald einleuchten werden.

Benutzerdefinierte Typen werden auch als Klassen bezeichnet. Eine
Klassendefinition sieht folgendermalSen aus:

class Punkt(object):

rrrrrr

Dieser Header gibt an, dass die neue Klasse ein Punkt, eine Art von object ist — also
ein integrierter Typ.

Der Body ist ein Docstring, der erklart, wozu die Klasse gut ist. Sie konnen auch
Variablen und Funktionen innerhalb einer Klassendefinition definieren, aber dazu
kommen wir spater.

Durch die Definition einer Klasse mit dem Namen Punkt erstellen Sie ein Klassen-
Objekt.

>>> print Punkt
<class'__main__.Punkt>

Weil Punkt auf der obersten Ebene definiert ist, lautet der vollstdndige Name
__main__.Punkt.

Das Klassen-Objekt ist wie eine Fabrik fiir die Herstellung von Objekten. Um einen

Punkt zu erzeugen, rufen Sie Punkt wie eine Funktion auf.

>>> |eer = Punkt()

>>> print leer

<__main__.Punkt instance at Oxb7e9d3ac>
Der Riickgabewert ist eine Referenz auf ein Punkt-Objekt, das wir der Variablen leer
zugewiesen haben. Die Erstellung eines neues Objekts bezeichnet man als
Instanziierung, das neue Objekt ist eine Instanz der Klasse.

Wenn Sie eine Instanz mit print ausgeben, sagt IThnen Python, welcher Klasse diese
angehort und an welcher Stelle im Speicher sie gespeichert ist (das Prafix Ox
bedeutet, dass es sich bei der nachfolgenden Zahl um eine Hexadezimalzahl
handelt).

Attribute

Instanzen konnen Sie mithilfe der Punktschreibweise Werte zuweisen:

>>> leer.x = 3.0

>>> leer.y = 4.0
Diese Syntax ist der Syntax fiir die Auswahl einer Variablen aus einem Modul wie
beispielsweise math.pi oder string.whitespace recht dhnlich. In diesem Fall weisen
wir allerdings benannten Elementen eines Objekts Werte zu. Diese Elemente
bezeichnet man als Attribute.

Das folgende Diagramm zeigt das Ergebnis dieser Zuweisungen. Ein
Zustandsdiagramm, das ein Objekt und dessen Attribute darstellt, bezeichnet man
als Objektdiagramm, siehe Abbildung 15.1.

Punkt
leer —={ ¥y — = 3.0

y —= 4.0

Abbildung 15.1 Objektdiagramm

Die Variable leer bezieht sich auf ein Punkt-Objekt mit zwei Attributen. Und jedes
dieser Attribute bezieht sich auf eine Fliefkommazahl.

Den Wert eines Attributs konnen Sie mit der gleichen Syntax auslesen:

>>> print leer.y

4.0

>>> x = leer.x
>>> print X
3.0

Der Ausdruck leer.x bedeutet: »Nimm das Objekt, auf das sich leer bezieht, und rufe
den Wert von X ab.« In diesem Fall weisen wir diesen Wert einer Variablen mit dem

Namen X zu. Es gibt keinen Namenskonflikt zwischen der Variablen X und dem
Attribut x.

Die Punktschreibweise konnen Sie als Teil eines beliebigen Ausdrucks verwenden.
Ein Beispiel:

>>> print '(%g, %g)" % (leer.x, leer.y)

(3.0, 4.0)

>>> entfernung = math.sqrt(leer.x**2 + leer.y**2)

>>> print entfernung
5.0

Instanzen werden auf die gewohnte Art als Argument {ibergeben, beispielsweise so:

def print_punkt(p):
print '(%g, %g)" % (p-X, p.y)

print_punkt erwartet einen Punkt als Argument und zeigt ihn in der mathematischen
Notation an. Um die Funktion aufzurufen, konnen Sie leer als Argument {ibergeben:

>>> print_punkt(leer)
(3.0, 4.0)

Innerhalb der Funktion ist p ein Alias fiir leer. Wenn die Funktion also p
modifiziert, dndert sich dadurch auch leer.

Schreiben Sie eine Funktion mit dem Namen entfernung_zwischen_punkten, die
zwei Punkte als Argument erwartet und die Entfernung dazwischen zurtickliefert.

Listing 15.1

Rechtecke

Manchmal ist es naheliegend, welche Attribute ein Objekt haben soll. In anderen
Féllen miissen Sie genau nachdenken. Angenommen, Sie entwerfen eine Klasse fiir
die Abbildung von Rechtecken. Welche Attribute wiirden Sie verwenden, um die
Position und die Grolle des Rechtecks zu beschreiben? Den Neigungswinkel kénnen
Sie ignorieren. Gehen Sie der Einfachheit halber davon aus, dass das Rechteck
entweder vertikal oder horizontal liegt.

Es gibt mindestens zwei Mdoglichkeiten:

m Sie konnten eine Ecke des Rechtecks (oder den Mittelpunkt) sowie die Breite und
Hohe festlegen.
= Sie konnten zwei gegeniiberliegende Ecken definieren.

Zum jetzigen Zeitpunkt ist es schwierig zu sagen, welche Variante die bessere ist.
Deshalb implementieren wir in diesem Beispiel die erste.

So sieht unsere Klassendefinition aus:

class Rechteck(object):

""Bildet ein Rechteck ab.

Attribute: breite, hoehe, ecke.
Der Docstring nennt die Attribute. breite und hoehe sind Zahlen. ecke ist ein
Punkt-Objekt, das die untere linke Ecke bestimmt.

Um ein Rechteck abzubilden, miissen Sie ein Rechteck-Objekt instanziieren und den
Attributen entsprechende Werte zuweisen:

box = Rechteck()

box.breite = 100.0

box.hoehe = 200.0

box.ecke = Punkt()

box.ecke.x = 0.0

box.ecke.y = 0.0
Der Ausdruck box.ecke.x bedeutet: »Nimm das Objekt, auf das sich box bezieht,
und wahle das Attribut mit dem Namen ecke. Nimm anschliefend dieses Objekt und

wahle das Attribut mit dem Namen X.«

Abbildung 15.2 zeigt den Zustand dieses Objekts. Ein Objekt, das ein Attribut eines
anderen Objekts ist, nennt man eingebettetes Objekt.

Rechteck

box —=| breite —= 100.0 Punkt
hoehe —= 200.0 X 0.0
ecke =1y = 0.0

Abbildung 15.2 Objektdiagramm

Instanzen als Riickgabewerte

Funktionen koénnen auch Instanzen zuriickgeben. Die Funktion suche_mittelpunkt
erwartet beispielsweise ein Rechteck als Argument und liefert einen Punkt mit den
Koordinaten des Mittelpunkts des Rechteck:
def suche_mittelpunkt(re):
p = Punkt()
p.x = re.ecke.x + re.breite/2.0
p.y = re.ecke.y + re.hoehe/2.0
return p
Hier sehen Sie ein Beispiel, das box als Argument {ibergibt und den Ergebnispunkt
der Variablen mittelpunkt zuweist:
>>> mittelpunkt = suche_mittelpunkt(box)

>>> print_punkt(mittelpunkt)
(50.0, 100.0)

Objekte sind veranderbar

Den Zustand eines Objekts konnen Sie dndern, indem Sie einem seiner Attribute
einen Wert zuweisen. Wenn Sie beispielsweise die Groe eines Rechtecks dndern
mochten, ohne seine Position zu verdandern, konnen Sie die Werte von breite und
hoehe entsprechend anpassen:

box.breite = box.breite + 50

box.hoehe = box.breite + 100
AuBerdem konnen Sie Funktionen schreiben, die Objekte verdndern. Die Funktion
vergroessere_rechteck erwartet beispielsweise ein Rechteck-Objekt mit den
Zahlen dbreite und dhoehe als Argumente und addiert die beiden Zahlen zur
bisherigen Breite und H6he des Rechtecks hinzu:

def vergroessere_rechteck(re, dbreite, dhoehe):

re.breite += dbreite
re.hoehe += dhoehe

Das folgende Beispiel zeigt das Ergebnis:

>>> print box.breite

100.0

>>> print box.hoehe

200.0

>>> vergroessere_rechteck(box, 50, 100)
>>> print box.breite

150.0

>>> print box.hoehe

300.0

Innerhalb der Funktion ist re ein Alias fiir box. Wenn die Funktion also re verdndert,

andert sich dadurch auch box entsprechend.

Schreiben Sie eine Funktion mit dem Namen verschiebe_rechteck, die ein
Rechteck und zwei Zahlen mit den Namen dx und dy als Argumente erwartet. Die
Funktion soll die Position des Rechtecks anpassen, indem dx zur x-Koordinate von
ecke und dy zur y-Koordinate von ecke addiert wird.

Listing 15.2

Kopieren

Durch Aliasing kann ein Programm schwer lesbar werden, weil Objektdnderungen an
einer Stelle zu unerwarteten Effekten an einer anderen Stelle fiihren kénnen. Es ist
schwierig, alle Variablen im Auge zu behalten, die sich auf ein bestimmtes Objekt
beziehen.

Eine Alternative zum Aliasing sind Kopien des Objekts. Das Modul copy enthalt
eine Funktion mit dem Namen copy, mit der Sie ein beliebiges Objekt duplizieren

konnen:

>>> p1 = Punkt()
>>>p1.x=3.0
>>>ply=4.0

>>> import copy
>>> p2 = copy.copy(p1)

p1 und p2 enthalten dieselben Daten, es handelt sich aber nicht um denselben Punkt.

>>> print_punkt(p1)

(3.0, 4.0)

>>> print_punkt(p2)

(3.0, 4.0)

>>>p1is p2

False

>>>p1 == p2

False
Der is-Operator zeigt, dass p1 und p2 nicht dasselbe Objekt sind. Genau das, was
wir erwartet haben. Aber vielleicht haben Sie ja gedacht, dass == den Wert True
ergibt, da die beiden Punkte dieselben Daten enthalten? In diesem Fall werden Sie
enttduscht sein, dass das Standardverhalten des Operators == dasselbe ist wie das
des is-Operators: Er iiberpriift die Identitdt von Objekten, nicht die Gleichheit. Wie

wir spdter sehen werden, kénnen Sie dieses Verhalten aber dndern.

Wenn Sie ein Rechteck mit copy.copy duplizieren, werden Sie dagegen feststellen,
dass zwar das Rechteck-Objekt kopiert wird, nicht aber der eingebettete Punkt.

>>> box2 = copy.copy(box)
>>> box2 is box

False
>>> box2.ecke is box.ecke
True
box—=f breite —= 100.0 100.0=— breite |=—box2
hoehe —== 200.0 % 00 200.0=— hoehe

ecke

ecke

y—= 00
Abbildung 15.3 Objektdiagramm

Abbildung 15.3 zeigt, wie das Objektdiagramm in diesem Fall aussieht. Diesen
Vorgang bezeichnet man als flache Kopie, weil dabei zwar das Objekt selbst und
jegliche enthaltenen Referenzen kopiert werden, aber nicht die eingebetteten
Objekte.

In den meisten Anwendungen ist das nicht das, was Sie mdchten. In diesem Beispiel
hétte der Aufruf von vergroessere_rechteck mit einem der Rechtecke keinerlei
Auswirkungen auf das andere. Ein Aufruf von verschiebe rechteck mit einem der

Rechtecke wiirde dagegen beide verdandern! Dieses Verhalten ist verwirrend und
fehleranfillig.

Gliicklicherweise enthdlt das Modul copy eine Methode mit dem Namen deepcopy.
Diese Methode kopiert nicht nur das Objekt selbst, sondern auch alle Objekte, auf
die sich das Objekt bezieht, sowie alle Objekte, auf die sich wiederum diese Objekte
beziehen usw. Es wird Sie nicht weiter iiberraschen, dass man dieses Verfahren als
tiefe Kopie bezeichnet.

>>> box3 = copy.deepcopy(box)

>>> box3 is box

False

>>> box3.ecke is box.ecke
False

box3 und box sind vollkommen eigenstdndige Objekte.

Schreiben Sie eine Version von verschiebe rechteck, die ein neues Rechteck
erstellt und zuriickgibt, statt das alte zu verandern.

Listing 15.3

Debugging

Beim Umgang mit Objekten werden Sie es anfangs hochstwahrscheinlich mit einer
Reihe neuer Ausnahmen zu tun bekommen. Wenn Sie beispielsweise versuchen, auf
ein Attribut zuzugreifen, das nicht existiert, erhalten Sie einen AttributeError:

>>> p = Punkt()

>>> print p.z

AttributeError: Punkt instance has no attribute 'z’
Sollten Sie sich nicht sicher sein, zu welchem Typ ein Objekt gehort, kénnen Sie das
folgendermalSen feststellen:

>>> type(p)

<type' _main__.Punkt>
Und mit der integrierten Funktion hasattr konnen Sie ermitteln, ob ein Objekt ein
bestimmtes Attribut hat:

>>> hasattr(p1, 'x')

True

>>> hasattr(p1, 'z')
False

Das erste Argument kann ein beliebiges Objekt sein, das zweite Argument muss ein
String mit dem Namen eines Attributs sein.

Glossar

Klasse:
Benutzerdefinierter Typ. Durch eine Klassendefinition wird ein neues
Klassenobjekt erstellt.

Klassen-Objekt:
Objekt, das Informationen iiber einen benutzerdefinierten Typ enthdlt. Mit einem
Klassen-Objekt kénnen Sie Instanzen des entsprechenden Typs erstellen.

Instanz:
Objekt einer bestimmten Klasse.

Attribut:
Benannter Wert, der einem Objekt zugeordnet ist.

Eingebettetes Objekt:
Objekt, das als Attribut eines anderen Objekts gespeichert wurde.

Flache Kopie:

Kopie der Inhalte eines Objekts einschliellich aller Referenzen auf eingebettete
Objekte. Implementiert durch die Funktion copy im Modul copy.

Tiefe Kopie:
Kopie der Inhalte eines Objekts sowie aller eingebetteten Objekte und aller darin

eingebetteten Objekten usw. Implementiert durch die Funktion deepcopy im
Modul copy.

Objektdiagramm:
Diagramm, das Objekte, deren Attribute sowie die Werte dieser Attribute zeigt.

Ubungen

Swampy (siehe Kapitel 4) stellt ein Modul mit dem Namen World zur Verfiigung,
das einen benutzerdefinierten Typ enthélt, der ebenfalls World heifSt. So konnen Sie
ihn importieren:

from import World

Der folgende Code erstellt ein World-Objekt und ruft die Methode mainloop auf, die
auf den Benutzer wartet.

welt = World()

welt.mainloop()

Daraufhin sollte ein Fenster mit einer Titelleiste und einem leeren Quadrat
erscheinen. Wir werden dieses Fenster verwenden, um Punkte, Rechtecke und andere
Formen zu zeichnen. Fiigen Sie die folgenden Zeilen vor dem Aufruf von mainloop
ein und fiihren Sie das Programm erneut aus.

canvas = welt.ca(width=500, height=500, background="white")

bbox = [[-150,-100], [150, 100]]

canvas.rectangle(bbox, outline='black’, width=2, fill="green4")

Nun sollten Sie ein griines Rechteck mit einer schwarzen Aullenlinie sehen. In der
ersten Zeile erstellen wir ein Canvas-Objekt, das im Fenster als weilles Quadrat
dargestellt wird. Dieses Objekt bietet Methoden wie beispielsweise rectangle, mit
denen Sie Formen zeichnen kénnen.

bbox ist eine Liste mit Listen, die die »Bounding Box«, also den
Begrenzungsrahmen des Rechtecks, darstellt. Das erste Koordinatenpaar ist die linke
untere Ecke des Rechtecks, das zweite Koordinatenpaar bildet die obere rechte Ecke.

So konnen Sie einen Kreis zeichnen:

canvas.circle([-25,0], 70, outline=None, fill="red")

Der erste Parameter gibt das Koordinatenpaar fiir den Kreismittelpunkt an, der
zweite Parameter ist der Radius.

Wenn Sie diese Zeile in das Programm einfiigen, sollte das Ergebnis wie die Flagge
von Bangladesch aussehen (siehe http://de.wikipedia.org/wiki/Nationalflaggen).

1. Schreiben Sie eine Funktion mit dem Namen zeichne_rechteck, die ein
Canvas-Objekt und ein Rechteck als Argumente erwartet und das Rechteck auf
dem Canvas darstellt.

2. Erweitern Sie Thr Rechteck-Objekt um ein Attribut mit dem Namen farbe und
passen Sie zeichne_rechteck so an, dass dieses Farbattribut als Fiillfarbe
verwendet wird.

3. Schreiben Sie eine Funktion mit dem Namen zeichne_punkt, die ein Canvas-
Objekt und einen Punkt als Argumente erwartet und diesen Punkt auf dem
Canvas darstellt.

4. Definieren Sie eine neue Klasse mit dem Namen Kreis und entsprechenden
Attributen. Instanziieren Sie einige Kreis-Objekte. Schreiben Sie dann eine
Funktion mit dem Namen zeichne_Kkreis, die einen Kreis auf dem Canvas
zeichnet.

5. Schreiben Sie ein Programm, das die Nationalflagge von Tschechien zeichnet.

Tipp: Polygone konnen Sie folgendermafen zeichnen:
punkte = [[-150,-100], [150, 100], [150, -100]]
canvas.polygon(punkte, fill="blue")

Ich habe ein kleines Programm geschrieben, das die zuldssigen Farben auflistet. Die
entsprechende Datei aus den Codebeispielen heilst color_list.py.

Listing 15.4

http://de.wikipedia.org/wiki/Nationalflaggen

Kapitel 16. Klassen und Funktionen
Die Codebeispiele fiir dieses Kapitel finden Sie unter Zeit1.py.

Zeit
Als ein weiteres Beispiel fiir einen benutzerdefinierten Typ erstellen wir eine Klasse
mit dem Namen Zeit, die die Tageszeit speichert. So sieht die Klassendefinition aus:

class Zeit(object):
""" Stellt die Tageszeit dar.

Afttribute: stunde, minute, sekunde
Wir erstellen ein neues Zeit-Objekt und weisen die Attribute fiir Stunden, Minuten
und Sekunden zu:
zeit = Zeit()
zeit.stunde = 11

zeit.minute = 59
zeit.sekunde = 30

Das Zustandsdiagramm fiir das Zeit-Objekt sehen Sie in Abbildung 16.1.

Schreiben Sie eine Funktion mit dem Namen print_zeit, die ein Zeit-Objekt erwartet
und es im Format stunde:minute:sekunde ausgibt. Tipp: Die Formatsequenz '%.2d'
gibt einen Integer mindestens zweistellig aus, bei Bedarf auch mit einer fiihrenden
Null.

Listing 16.1
Schreiben Sie eine Boolesche Funktion mit dem Namen liegt_nach, die zwei Zeit-
Objekte t1 und t2 erwartet und True zuriickliefert, wenn t1 chronologisch nach t2

liegt, und ansonsten False zuriickgibt. Zusatzliche Herausforderung: Verwenden Sie
keine if-Anweisung.

Listing 16.2

Zeit

zeit —=| stunde——= 11

minute —= 59
sekunde —= 30

Abbildung 16.1 Zustandsdiagramm.

Reine Funktionen

In den ndchsten Abschnitten schreiben wir zwei Funktionen, die Zeitwerte addieren.

Dabei lernen Sie zwei Arten von Funktionen kennen: reine Funktionen und
modifizierende Funktionen. Aullerdem lernen Sie einen Entwicklungsplan kennen,
den ich Prototyp und Patch nenne, mit dessen Hilfe wir komplizierte
Aufgabenstellungen zundchst mit einem einfachen Prototyp lésen und uns dann nach
und nach um die komplizierten Details kiimmern.

Hier sehen Sie einen einfachen Prototyp fiir addiere_zeiten:

def addiere_zeiten(t1, t2):
summe = Zeit()
summe.stunde = t1.stunde + t2.stunde
summe.minute = t1.minute + t2.minute
summe.sekunde = t1.sekunde + t2.sekunde
return summe

Die Funktion erstellt ein neues Zeit-Objekt, initialisiert die Attribute und gibt eine
Referenz auf das neue Objekt zuriick. Das nennt man eine reine Funktion, weil
dabei keines der als Argumente iibergebenen Objekte verdndert wird und die
Funktion lediglich einen Wert zuriickgibt, aber keinerlei Nebeneffekte hat, wie etwa
Werte ausgibt, auf Benutzereingaben wartet usw.

Um diese Funktion zu testen, werde ich zwei Zeit-Objekte erstellen: start enthélt die
Anfangszeit eines Films, beispielsweise Die Ritter der Kokosnuss, und dauer enthalt
die Spielzeit des Films, in diesem Fall 1 Stunde und 35 Minuten.

addiere_zeiten ermittelt, wann der Film endet:

>>> start = Zeit()

>>> start.stunde = 9
>>> start.minute = 45
>>> start.sekunde = 0

>>> dauer = Zeit()

>>> dauer.stunde = 1
>>> dauer.minute = 35
>>> dauer.sekunde = 0

>>> fertig = addiere_zeiten(start, dauer)

>>> print_zeit(fertig)

10:80:00
Das Ergebnis 10:80:00 ist wahrscheinlich nicht das, was Sie sich erhofft haben. Die
Funktion berticksichtigt leider jene Félle nicht, in denen die Summe mehr als 60
Sekunden oder Minuten ergibt. In diesen Fallen miissen wir also die zusatzlichen
Sekunden in die Spalte fiir die Minuten und die zusétzlichen Minuten in die Spalte
fiir die Stunde tibertragen.

Hier sehen Sie eine verbesserte Version:

def addiere_zeiten(t1, t2):
summe = Zeit()
summe.stunde = t1.stunde + t2.stunde

summe.minute = t1.minute + t{2.minute
summe.sekunde = t1.sekunde + t2.sekunde

if summe.sekunde >= 60:
summe.sekunde -= 60
summe.minute += 1

if summe.minute >= 60:
summe.minute -= 60
summe.stunde += 1

return summe

Diese Funktion ist zwar korrekt, aber etwas umstdndlich. Wir werden uns bald um
eine kiirzere Alternative kiimmern.

Modifizierende Funktionen

Manchmal ist es durchaus erwiinscht, dass eine Funktion die als Parameter
iibergebenen Objekte modifiziert, die Anderungen also fiir die aufrufende Funktion
sichtbar sind. Solche Funktionen bezeichnet man als modifizierende Funktionen .

Die folgende Funktion inkrement, die die angegebene Anzahl Sekunden einem Zeit-
Objekt hinzuaddiert, kann ganz einfach als modifizierende Funktion geschrieben
werden. Hier sehen Sie einen groben Entwurf:

def inkrement(zeit, sekunden):
zeit.sekunde += sekunden

if zeit.sekunde >= 60:
zeit.sekunde -= 60
zeit.minute += 1

if zeit.minute >= 60:
zeit.minute -= 60
zeit.stunde += 1
In der ersten Zeile wird die grundlegende Berechnung durchgefiihrt. Der Rest der
Funktion kiimmert sich um die Sonderfélle, die wir bereits kennen.

Ist diese Funktion korrekt? Was passiert, wenn der Parameter sekunden wesentlich
grofSer als 60 ist?

In diesem Fall reicht ein einzelner Ubertrag nicht aus. Wir miissen den Schritt so
lange wiederholen, bis zeit.sekunde kleiner als 60 ist. Eine Mdéglichkeit besteht
darin, die if-Anweisungen durch while-Anweisungen zu ersetzen. Dadurch wiére die
Funktion zwar korrekt, aber immer noch nicht sonderlich effizient.

Schreiben Sie eine korrekte Version von inkrement ohne Schleifen.

Listing 16.3

Alles, was Sie mit modifizierenden Funktionen tun kdnnen, geht auch mit reinen
Funktionen. In der Tat erlauben manche Programmiersprachen nur reine Funktionen.
Es gibt einige Anhaltspunkte dafiir, dass sich Programme, die nur reine Funktionen
nutzen, schneller entwickeln lassen und weniger fehleranféllig sind. Aber
modifizierende Funktionen sind manchmal bequemer, und funktionale Programme
sind tendenziell weniger effizient.

Generell empfehle ich Thnen, {iberall da reine Funktionen zu schreiben, wo es
sinnvoll ist, und nur dann auf modifizierende Funktionen zuriickzugreifen, wenn sie
einen entscheidenden Vorteil bieten. Diesen Ansatz kénnte man als funktionalen
Programmierstil bezeichnen

Schreiben Sie eine »reine« Version von inkrement, die ein neues Zeit-Objekt erstellt
und zuriickliefert, anstatt den Parameter zu verdandern.

Listing 16.4

Prototyping kontra Planung

Der vorgestellte Entwicklungsplan heifSt »Prototyp und Patch«. Fiir jede Funktion
habe ich zunéchst einen Prototyp geschrieben, der die grundlegenden Berechnungen
durchfiihrt. AnschlieBend habe ich die Funktionen getestet und dabei die Fehler
behoben.

Dieser Ansatz kann effizient sein, insbesondere wenn Sie die zugrunde liegenden
Probleme nicht wirklich verstehen. Aber schrittweise Anpassungen kénnen zu
unnotig kompliziertem Code fiihren, weil Sie sich um viele Sonderféille kiimmern
miissen. Aullerdem konnen solche Funktionen unzuverldssig sein, weil Sie nie ganz
sicher sind, ob Sie wirklich alle Fehler gefunden haben.

Eine Alternative dazu ist die geplante Entwicklung, bei der ein fundiertes
Verstdndnis der Problemstellung die Programmierung wesentlich erleichtern kann.
In unserem Fall wire das die Erkenntnis, dass die Zeit in Wahrheit eine dreistellige
Zahl im Sexagesimalsystem (siehe
http://de.wikipedia.org/wiki/Sexagesimalsystem.) ist! Das Attribut sekunde ist die
»Einer-Spalte«, minute die »60er-Spalte« und stunde die »3600er-Spalte«.

Bei der Entwicklung von addiere_zeiten und inkrement haben wir unterm Strich
eine Addition im Sexagesimalsystem implementiert, deshalb mussten wir uns um
die Ubertrdge von einer Stelle in die ndchste kiimmern.

Diese Erkenntnis wirft ein vollig neues Licht auf das eigentliche Problem: Wir
kénnen Zeit-Objekte in Integer konvertieren und die Tatsache ausnutzen, dass sich
der Computer mit der Arithmetik von ganzen Zahlen auskennt.

Hier sehen Sie eine Funktion, die Zeitwerte in Integer umwandelt:

http://de.wikipedia.org/wiki/Sexagesimalsystem

def zeit_zu_int(zeit):
minuten = zeit.stunde * 60 + zeit.minute
sekunden = minuten * 60 + zeit.sekunde
return sekunden
Und hier kommt die Funktion, die Integer in Zeitwerte konvertiert (erinnern Sie sich
daran, dass divmod das erste Argument durch das zweite dividiert und anschliefend
sowohl den Quotienten als auch den Rest als Tupel zuriickgibt?).
def int_zu_zeit(sekunden):
zeit = Zeit()
minuten, zeit.sekunde = divmod(sekunden, 60)
zeit.stunde, zeit.minute = divmod(minuten, 60)
return zeit
Eventuell miissen Sie ein bisschen nachdenken und einige Testlaufe machen, um
sich selbst davon zu iiberzeugen, dass diese Funktionen korrekt arbeiten. Eine
Moglichkeit besteht darin, zeit_zu_int(int_zu_zeit(x)) == x fiir moglichst viele
Werte von X zu testen. Das ist ein Beispiel fiir eine Konsistenzpriifung.

Sobald Sie davon tliberzeugt sind, dass die Funktionen korrekt arbeiten, konnen Sie
damit addiere_zeiten neu schreiben:
def addiere_zeiten(t1, t2):

sekunden = zeit_zu_int(t1) + zeit_zu_int(t2)
return int_zu_zeit(sekunden)

Diese Version ist kiirzer als die urspriingliche und einfacher zu iiberpriifen.
Schreiben Sie inkrement mit zeit_zu int und int_zu_zeit neu.
Listing 16.5

In mancherlei Hinsicht ist die Konvertierung aus dem Sexagesimalsystem ins
Dezimalsystem und umgekehrt komplizierter als das Hantieren mit Zeiten. Die
Zahlenkonvertierung ist abstrakter, unsere Intuition fiir Zeitwerte deutlich besser.

Aber wenn wir auf den Trichter kommen, Zeitwerte als Sexagesimalzahlen zu
behandeln, und die erforderliche Zeit in die Konvertierungsfunktionen investieren
(zeit_zu_int und int_zu_zeit), erhalten wir ein Programm, das kiirzer, leichter lesbar,
einfacher zu debuggen und zuverlassiger ist.

AuBerdem ist es so auch einfacher, spater neue Funktionalitdten hinzuzufiigen.
Denken Sie beispielsweise an die Subtraktion zweier Zeitwerte, um die Zeitspanne
dazwischen zu ermitteln. Der naive Ansatz wére die Subtraktion nach dem
Erganzungsverfahren. Aber wenn wir die beiden Konvertierungsfunktionen
verwenden, kommen Sie leichter zu einem Ergebnis, das auch mit groRerer
Wahrscheinlichkeit korrekt ist.

Ironischerweise konnen wir also ein Problem vereinfachen, indem wir es
komplizierter (oder allgemeiner) formulieren (weil es weniger Sonderfélle und

weniger Versteckmoglichkeiten fiir Fehler gibt).

Debugging

Ein Zeit-Objekt ist dann wohlgeformt, wenn die Werte fiir minute und sekunde

zwischen 0 und 60 liegen (einschlieRlich 0, aber ohne 60) und stunde positiv ist.
Aullerdem miissen stunde und minute ganzzahlig sein, fiir sekunde kénnen wir

eventuell Werte mit Nachkommastellen zulassen.

Solche Anforderungen, die immer erfiillt sein miissen, nennt man Invarianten.
Anders ausgedriickt: Sind diese Bedingungen nicht erfiillt, ist etwas schiefgelaufen.

Wenn Sie Code schreiben, um Ihre Invarianten zu tiberpriifen, konnen Sie Fehler
aufspiiren und die entsprechenden Ursachen finden. Beispielsweise kénnten Sie eine
Funktion gueltige_zeit schreiben, die ein Zeit-Objekt erwartet und False
zuriickliefert, wenn eine der Invarianten nicht erfiillt ist:
def gueltige_zeit(zeit):
if zeit.stunde < O or zeit.minute < 0 or zeit.sekunde < 0:
return False
if zeit.minute >= 60 or zeit.sekunde >= 60:

return False
return True

Dann kénnen Sie zu Beginn jeder Funktion die Argumente {iberpriifen, um
sicherzustellen, dass sie giiltig sind:
def addiere_zeiten(t1, t2):
if not gueltige_zeit(t1) or not gueltige_zeit(t2):
raise ValueError, 'Unglltiges Zeit-Objekt in addiere_zeiten'
sekunden = zeit_zu_int(t1) + zeit_zu_int(t2)
return int_zu_zeit(sekunden)
Oder Sie konnen die assert-Anweisung nutzen, die eine angegebene Invariante
iberpriift und eine Ausnahme auslost, falls diese nicht erfiillt ist:
def addiere_zeiten(t1, t2):
assert gueltige_zeit(t1) and gueltige_zeit(t2)
sekunden = zeit_zu_int(t1) + zeit_zu_int(t2)
return int_zu_zeit(sekunden)
assert-Anweisungen sind insofern niitzlich, als Sie damit zwischen Bedingungen in
normalem Code und Bedingungen in Codezeilen unterscheiden konnen, die Fehler
aufspiiren sollen.

Glossar

Prototyp und Patch:

Entwicklungsplan, bei dem Sie zundchst einen groben Entwurf eines Programms
schreiben, dieses testen und eventuelle Fehler dann korrigieren, wenn Sie sie

finden.

Geplante Entwicklung:

Entwicklungsplan mit fundierter Kenntnis der Problemstellung, bei dem die
Planung im Vordergrund steht und nicht die inkrementelle Entwicklung oder
Entwicklung von Prototypen.

Reine Funktion:
Funktion, die keines der als Argumente iibergebenen Objekte modifiziert. Die
meisten reinen Funktionen liefern einen Riickgabewert.

Modifizierende Funktion:

Funktion, die eines oder mehrere der als Argumente iibergebenen Objekte
modifiziert. Die meisten modifizierenden Funktionen liefern keinen
Riickgabewert.

Funktionaler Programmierstil:
Programmierstil, bei dem Sie in erster Linie reine Funktionen schreiben.

Invariante:

Bedingung, die widhrend der Ausfiihrung eines Programms immer erfiillt sein
muss.

Ubungen

Die Codebeispiele fiir dieses Kapitel finden Sie unter Zeit1.py, die Lésungen unter
Zeitl_loesung.py.

Schreiben Sie eine Funktion mit dem Namen mul_zeit, die ein Zeit-Objekt und eine
Zahl erwartet und ein neues Zeit-Objekt zuriickliefert, das das Produkt der
urspriinglichen Zeit und der Zahl enthalt.

Schreiben Sie anschliefend mit mul_zeit eine Funktion, die ein Zeit-Objekt mit der
Laufzeit in einem Wettlauf sowie eine Zahl mit der gelaufenen Entfernung erwartet
und ein Zeit-Objekt mit der durchschnittlichen Laufgeschwindigkeit (Zeit pro
Meile) zuriickliefert.

Listing 16.6

Das Modul datetime enthélt date- und time-Objekte, die den Objekten in diesem
Kapitel dhnlich sind, aber auSerdem eine umfangreiche Sammlung an Methoden und
Operatoren zur Verfiigung stellen. Lesen Sie die Dokumentation unter
http://docs.python.org/lib/datetime-date.html.

1. Schreiben Sie mit dem Modul datetime ein Programm, das das aktuelle Datum
abruft und den Wochentag ausgibt.

http://docs.python.org/lib/datetime-date.html

2. Schreiben Sie ein Programm, das einen Geburtstag als Eingabe erwartet und
anschliefend das Alter des Benutzers sowie die Tage, Stunden, Minuten und
Sekunden bis zum ndchsten Geburtstag ausgibt.

3. Fiir zwei Menschen, die an verschiedenen Tagen geboren sind, gibt es einen
Tag, an dem die eine Person doppelt so alt ist wie die andere. Schreiben Sie ein
Programm, das die Geburtstage zweier Menschen erwartet und genau diesen
Tag berechnet.

4. Schreiben Sie als zusatzlichen Nervenkitzel eine allgemeinere Version dieser
Funktion, die den Tag berechnet, an dem eine Person n-mal so alt ist wie die
andere.

Listing 16.7

Kapitel 17. Klassen und Methoden

Die Codebeispiele fiir dieses Kapitel finden Sie unter Zeit2.py.

Objektorientierte Programmierung

Python ist eine objektorientierte Programmiersprache. Das bedeutet, dass die
Sprache Funktionalitdten bietet, die die objektorientierte Programmierung
ermdoglichen.

Es ist nicht einfach, die objektorientierte Programmierung zu definieren, aber Sie
kennen bereits einige der Merkmale:

m Programme bestehen aus Objekt- und Funktionsdefinitionen. Die meisten
Berechnungen werden in Form von Operationen mit Objekten ausgedriickt.

m Jede Objektdefinition entspricht einem Objekt oder Konzept in der realen Welt.
Und die Funktionen, die mit diesem Objekt arbeiten, entsprechen der Interaktion
von Objekten in der realen Welt.

Die Klasse Zeit aus Kapitel 16 entspricht beispielsweise der Art und Weise, wie
Menschen die Tageszeit mitverfolgen. Und die Funktionen, die wir definiert haben,
entsprechen der Art und Weise, wie Menschen mit Zeit umgehen. Auf dhnliche
Weise entsprechen die Klassen Punkt und Rechteck den mathematischen Konzepten
eines Punkts und eines Rechtecks.

Bisher haben wir die Funktionalitdten von Python fiir die objektorientierte
Programmierung noch nicht genutzt. Das ist auch nicht obligatorisch. Meistens geht
es lediglich darum, das, was wir bisher gemacht haben, syntaktisch anders zu
formulieren. Aber diese andere Syntax ist eben haufig kiirzer und wird der Struktur
des jeweiligen Programms besser gerecht.

In unserem Zeit-Programm gibt es beispielsweise keine offensichtliche Verbindung
zwischen der Klassendefinition und den nachfolgenden Funktionsdefinitionen. Bei
ndherer Betrachtung zeigt sich aber, dass jede dieser Funktionen mindestens ein
Zeit-Objekt als Argument benotigt.

Diese Erkenntnis Veranlassung dazu, stattdessen Methoden zu verwenden. Eine
Methode ist eine Funktion, die einer bestimmten Klasse zugeordnet ist. Wir kennen
bereits Methoden fiirs Strings, Listen, Dictionaries und Tupel. In diesem Kapitel
werden wir aber auch eigene Methoden fiir benutzerdefinierte Typen schreiben.

Methoden sind semantisch gesehen dasselbe wie Funktionen. Es gibt allerdings zwei
syntaktische Unterschiede:

m Methoden werden innerhalb einer Klasse definiert, um die Beziehung zwischen
Klasse und Methode zu verdeutlichen.
m Die Syntax fiir den Aufruf einer Methode unterscheidet sich von der Syntax fiir

den Aufruf einer Funktion.

In den folgenden Abschnitten werden wir die Funktionen aus den vorherigen beiden
Kapiteln in Methoden umwandeln. Diese Umwandlung ist ein rein mechanischer
Vorgang. Dafiir brauchen Sie lediglich ein paar Schritte zu absolvieren. Wenn Sie
damit vertraut sind, eine Form in die andere umzuwandeln, werden Sie in der Lage
sein, in jeder Situation die beste Alternative auszuwdahlen.

Objekte ausgeben

In Kapitel 16 haben wir eine Klasse mit dem Namen Zeit definiert, und in
Listing 16.1 haben Sie eine Funktion mit dem Namen print_zeit geschrieben:

class Zeit(object):
""Stellt die Tageszeit dar.

nm

def print_zeit(zeit):
print '%.2d:%.2d:%.2d" % (zeit.stunde, zeit.minute, zeit.sekunde)

Damit Sie diese Funktion aufrufen kénnen, miissen Sie ein Zeit-Objekt als Argument
ibergeben:

>>> start = Zeit()

>>> start.stunde = 9

>>> start.minute = 45

>>> start.sekunde = 00

>>> print_zeit(start)

09:45:00
Um aus print_zeit eine Methode zu machen, miissen wir lediglich die
Funktionsdefinition in die Klassendefinition verschieben. Achten Sie auf die
Einriickung:

class Zeit(object):

def print_zeit(zeit):
print '%.2d:%.2d:%.2d" % (zeit.stunde, zeit.minute, zeit.sekunde)

Jetzt haben wir zwei Moglichkeiten, print_zeit aufzurufen. Die erste (und weniger
gebrdauchliche) Moglichkeit ist die Funktionssyntax:

>>> Zeit.print_zeit(start)

09:45:00
Bei dieser Verwendung der Punktschreibweise ist Zeit der Name der Klasse und
print_zeit der Name der Methode. start wird als Parameter iibergeben.

Die zweite (und pragnantere) Moglichkeit ist die Methodensyntax:

>>> start.print_zeit()
09:45:00

Bei dieser Verwendung der Punktschreibweise ist print_zeit (wieder) der Name der
Methode. Und start ist das Objekt, dessen Methode aufgerufen wird — in diesem Fall

nennt man es Subjekt. Genau wie das Subjekt in einem Satz angibt, worum es in
dem Satz geht, gibt das Subjekt eines Methodenaufrufs an, mit welchem Objekt die
Methode arbeitet.

Innerhalb der Methode wird das Subjekt dem ersten Parameter zugewiesen. In
diesem Fall wird start also zeit zugewiesen.

Standardmaélig heillt der erste Parameter einer Methode self. Insofern wére es eher
gebrauchlich, print_zeit folgendermalien zu schreiben:
class Zeit(object):

def print_zeit(self):
print '%.2d:%.2d:%.2d" % (self.stunde, self. minute, self.sekunde)

Der Grund fiir diese Konvention ist eine implizite Metapher:

m Die Syntax fiir den Funktionsaufruf print_zeit(start) erweckt den Eindruck, dass
die Funktion selbst aktiv wird, so nach dem Motto: »Hey print_zeit! Da ist ein
Objekt, das du ausgeben sollst.«

» In der objektorientierten Programmierung sind die Objekte der aktive Part. Ein
Methodenaufruf wie beispielsweise start.print_zeit() bedeutet daher: »Hey start!
Bitte gibt dich auf der Konsole aus.«

Diese verdnderte Perspektive mag vielleicht hoflicher klingen. Allerdings ist es
nicht offensichtlich, inwiefern das auch niitzlich sein soll. In den bisherigen
Beispielen ist es das wahrscheinlich auch nicht. Aber manchmal kénnen Sie
vielseitigere Funktionen schreiben, wenn Sie die Verantwortung von den Funktionen
auf die Objekte verlagern. Aullerdem ldsst sich solche Art Code einfacher pflegen
und wieder verwenden.

Schreiben Sie zeit_zu int (aus ,,Prototyping kontra Planung®) als Methode.
Vermutlich ist es eher unpassend, int_zu zeit als Methode zu schreiben. Fiir welches
Objekt wiirden Sie sie aufrufen?

Listing 17.1

Noch ein Beispiel
Hier sehen Sie eine Version von inkrement (aus ,,Modifizierende Funktionen®) als
Methode:

innerhalb von Klasse Zeit:

def inkrement(self, sekunden):
sekunden += self.zeit_zu_int()
return int_zu_zeit(sekunden)
Diese Version geht davon aus, dass zeit_zu_int wie in Listing 17.1 eine Methode ist.
Beachten Sie aulerdem, dass es sich um eine reine und nicht um eine modifizierende

Funktion handelt.
Und so wiirden Sie inkrement aufrufen:

>>> start.print_zeit()
09:45:00
>>> ende = start.inkrement(1337)
>>> ende.print_zeit()
10:07:17
Dem Subjekt start wird der erste Parameter self zugewiesen. Das Argument 1337

wird dem zweiten Parameter sekunden zugewiesen.

Dieser Mechanismus mag verwirren, vor allem wenn Sie einen Fehler machen.
Wenn Sie beispielsweise inkrement mit zwei Argumenten aufrufen, erhalten Sie
Folgendes:

>>> ende = start.inkrement(1337, 460)

TypeError: inkrement() takes exactly 2 arguments (3 given)
Diese Fehlermeldung ist anfangs verwirrend, weil innerhalb der Klammern nur zwei
Argumente stehen. Aber das Subjekt gilt eben auch als Argument, macht also
insgesamt drei.

Ein komplizierteres Beispiel

liegt_nach (aus Listing 16.2) ist insofern ein bisschen komplizierter, weil die
Funktion zwei Zeit-Objekte als Parameter benotigt. In solchen Féllen wird der
Konvention folgend der erste Parameter self und der zweite other genannt:

innerhalb von Klasse Zeit:

def liegt_nach(self, other):
return self.zeit_zu_int() > other.zeit_zu_int()

Um diese Methode zu verwenden, miissen Sie sie fiir das eine Argument aufrufen
und das andere iibergeben:

>>> ende.liegt_nach(start)
True

Ein netter Nebeneffekt dieser Syntax: Sie liest sich fast wie eine menschliche
Sprache: »Ende liegt nach Start?«

init-Methode

Die init-Methode (fiir »Initialisierung«) ist eine spezielle Methode, die bei der
Instanziierung eines Objekts aufgerufen wird. Der vollstdndige Name lautet __init___
(zwei Unterstriche, gefolgt von init und zwei weiteren Unterstrichen). Die init-
Methode fiir die Klasse Zeit konnte folgendermalien aussehen:

innerhalb von Klasse Zeit:

def __init_ (self, stunde=0, minute=0, sekunde=0):
self.stunde = stunde
self.minute = minute
self.sekunde = sekunde

Die Parameter fiir __init__ haben iiblicherweise dieselben Namen wie die Attribute.
Die Anweisung

self.stunde = stunde
speichert den Wert des Parameters stunde als Attribut von self.

Die Parameter sind optional. Wenn Sie also Zeit ohne Argumente aufrufen, erhalten
Sie die Standardwerte:

>>> zeit = Zeit()
>>> zeit.print_zeit()
00:00:00

Geben Sie nur ein Argument an, iiberschreiben Sie damit stunde:

>>> zeit = Zeit (9)
>>> zeit.print_zeit()
09:00:00

Ubergeben Sie aber zwei Argumente, werden stunde und minute iiberschrieben:

>>> zeit = Zeit(9, 45)
>>> zeit.print_zeit()
09:45:00

Und wenn Sie drei Argumente angeben, werden alle drei Standardwerte
iberschrieben.

Schreiben Sie eine init-Methode fiir die Punkt-Klasse, die X und y als optionale
Parameter erwartet und den entsprechenden Attributen zuweist.

Listing 17.2

Methode str

__str___ist genau wie __init__ eine spezielle Methode und soll die String-

Reprasentation eines Objekts zuriickgeben.

Hier sehen Sie eine mogliche str-Methode fiir Zeit-Objekte:

innerhalb von Klasse Zeit:

def _str_ (self):

return '%.2d:%.2d:%.2d' % (self.stunde, self.minute, self.sekunde)

Wenn Sie print mit einem Objekt angeben, ruft Python die str-Methode auf:

>>> zeit = Zeit(9, 45)
>>> print zeit

09:45:00

Wenn ich eine neue Klasse schreibe, fange ich fast immer mit __init__ an, weil ich
damit leichter Objekte instanziieren kann, und mit __str__, weil diese Methode fiirs
Debugging sehr praktisch ist.

Schreiben Sie eine str-Methode fiir die Punkt-Klasse. Erstellen Sie ein Punkt-Objekt
und geben Sie es mit print aus.

Listing 17.3

Operator-Uberladung

Indem Sie zusétzliche, spezielle Methoden definieren, konnen Sie das Verhalten von
Operatoren mit benutzerdefinierten Typen bestimmen. Wenn Sie beispielsweise eine
Methode mit dem Namen __add__ fiir die Zeit-Klasse definieren, koénnen Sie den
Operator + mit Zeit-Objekten benutzen.

So konnte die Definition aussehen:
innerhalb von Klasse Zeit:
def _add__ (self, other):

sekunden = self.zeit_zu_int() + other.zeit_zu_int()
return int_zu_zeit(sekunden)

Und so konnten Sie sie verwenden:

>>> start = Zeit(9, 45)

>>> dauer = Zeit(1, 35)

>>> print start + dauer

11:20:00
Wenden Sie den Operator + auf Zeit-Objekte an, ruft Python __add__ auf. Und
wenn Sie das Ergebnis mit print ausgeben, ruft Python __str__ auf. Es passiert also
eine Menge hinter den Kulissen!

Wenn Sie das Verhalten eines Operators so dndern, dass er mit benutzerdefinierten
Typen funktioniert, spricht man von Operator-Uberladung. Fiir jeden Operator gibt
es in Python eine entsprechende spezielle Funktion, wie etwa __add__. Mehr dazu
konnen Sie unter http://docs.python.org/ref/specialnames.html erfahren.

Schreiben Sie eine add-Methode fiir die Punkt-Klasse.
Listing 17.4

Dynamische Bindung

Im vorherigen Abschnitt haben wir zwei Zeit-Objekte addiert. Aber vielleicht
mochten Sie auch einen Integer zu einem Zeit-Objekt addieren. Es folgt eine Version
von __add__, die den Typ von other iiberpriift und entsprechend entweder

http://docs.python.org/ref/specialnames.html

addiere_zeiten oder inkrement aufruft:

innerhalb von Klasse Zeit:

def _add__ (self, other):
if isinstance(other, Zeit):
return self.addiere_zeiten(other)
else:
return self.inkrement(other)

def addiere_zeiten(self, other):
sekunden = self.zeit_zu_int() + other.zeit_zu_int()
return int_zu_zeit(sekunden)

def inkrement(self, sekunden):
sekunden += self.zeit_zu_int()
return int_zu_zeit(sekunden)

Die integrierte Funktion isinstance erwartet einen Wert und ein Klassen-Objekt als
Parameter und liefert True, wenn der Wert eine Instanz der Klasse ist.

Ist other ein Zeit-Objekt, ruft _add__ die Methode addiere_zeiten auf. Ansonsten
wird davon ausgegangen, dass der Parameter eine Zahl ist, und entsprechend wirddie
Methode inkrement aufgerufen. Dieses Verfahren nennt man dynamische Bindung,
weil die Berechnung je nach Typ des Arguments dynamisch mit verschiedenen
Methoden ausgefiihrt wird.

Hier sehen Sie Beispiele fiir die Verwendung des Operators + mit verschiedenen
Typen:

>>> start = Zeit(9, 45)

>>> dauer = Zeit(1, 35)

>>> print start + dauer

11:20:00

>>> print start + 1337
10:07:17

Leider sind die Operanden bei dieser Implementierung der Addition nicht
austauschbar. Wenn der erste Operand ein Integer ist, erhalten Sie:

>>> print 1337 + start

TypeError: unsupported operand type(s) for +: 'int' and 'instance'
Das Problem besteht darin, dass Python einen Integer dazu auffordert, ein Zeit-
Objekt zu addieren, und dieser nicht weils, wie das geht. Aber es gibt eine clevere
Losung fiir dieses Problem: die spezielle Methode _ radd__, die fiir »right-side
add« steht (rechte Seite addieren). Diese Methode wird aufgerufen, wenn ein Zeit-
Objekt auf der rechten Seite des Operators + steht. Hier folgt die entsprechende
Definition:

innerhalb von Klasse Zeit:

def __radd__(self, other):

return self.__add__(other)

Und so wird die Methode verwendet:

>>> print 1337 + start
10:07:17

Schreiben Sie eine add-Methode fiir Punkte, die sowohl mit einem Punkt-Objekt als
auch mit einem Tupel funktioniert:

= Wenn der zweite Operand ein Punkt ist, soll die Methode einen neuen Punkt
zuriickliefern, dessen x-Koordinate die Summe der x-Koordinaten der Operanden
ist. Mit den y-Koordinaten soll analog verfahren werden.

= Wenn der zweite Operand ein Tupel ist, soll die Methode das erste Element des
Tupels zur x-Koordinate, das zweite Element zur y-Koordinate addieren und
einen neuen Punkt mit dem Ergebnis zuriickliefern.

Listing 17.5

Polymorphismus

Die dynamische Bindung ist niitzlich, wenn man sie braucht, aber (gliicklicherweise)
nicht immer erforderlich. Oft konnen Sie darauf verzichten, indem Sie Funktionen
schreiben, die mit Argumenten verschiedener Typen korrekt zusammenarbeiten.

Viele der Funktionen, die wir fiir Strings geschrieben haben, funktionieren mit allen
Arten von Sequenzen. Im ,,Dictionary als Menge von Zdhlern“ haben wir
beispielsweise histogramm verwendet, um zu zédhlen, wie oft jedes Zeichen in einem
Wort vorkommt.
def histogramm(s):
d = dict()
forcins:
if c notind:
d[c] = 1
else:
dc] = dz]+1
return d
Diese Funktion arbeitet auch mit Listen, Tupeln und sogar Dictionaries, solange die
Elemente von s hashable sind, damit sie als Schliissel in d verwendet werden
konnen.
>>>t=['spam’, 'ei', 'spam’, 'spam’, 'speck’, 'spam’]
>>> histogramm(t)
{'speck’: 1, 'ei": 1, 'spam': 4}
Funktionen, die mit mehreren Typen funktionieren, nennt man polymeorph.
Polymorphismus kann die Wiederverwendung von Code erleichtern. Die integrierte
Funktion sum kann beispielsweise beliebige Elemente einer Sequenz addieren,
solange diese die Addition unterstiitzen.

Da Zeit-Objekte eine add-Methode zur Verfiigung stellen, funktionieren sie auch
mit sum:

>>> t1 = Zeit(7, 43)

>>> {2 = Zeit(7, 41)

>>> 3 = Zeit(7, 37)

>>> summe = sum([t1, t2, t3])

>>> print summe

23:01:00
Wenn alle Operationen innerhalb einer Funktion mit einem bestimmten Typ korrekt
arbeiten, funktioniert iiblicherweise auch die gesamte Funktion mit diesem Typ.

Die besten Félle von Polymorphismus sind die unbeabsichtigten: wenn Sie plétzlich
feststellen, dass eine Funktion, die Sie bereits geschrieben haben, auch mit einem
Typ funktioniert, an den Sie dabei gar nicht gedacht hatten.

Debugging

Es ist vollig in Ordnung, an einem beliebigen Punkt in der Ausfiihrung eines
Programms Attribute einem Objekt hinzuzufiigen. Aber wenn Sie ein Verfechter der
Typentheorie sind, finden Sie es eher zweifelhaft, wenn es Objekte desselben Typs
mit unterschiedlichen Attributen gibt. Deshalb ist es eine gute Idee, alle
Objektattribute in der init-Methode zu initialisieren.

Wenn Sie nicht sicher sind, ob ein Objekt ein bestimmtes Attribut hat, kénnen Sie
das mit der integrierten Funktion hasattr {iberpriifen (siehe ,,Debugging®).

Eine weitere Moglichkeit, auf die Attribute eines Objekts zuzugreifen, ist das
besondere Attribut __dict — ein Dictionary, das die Attributnamen (als Strings)
den entsprechenden Werten zugeordnet:

>>> p = Punki(3, 4)
>>> print p.__dict__
{y': 4,'x": 3}
Die folgende Funktion kann sich beim Debugging als praktisch erweisen:
def print_attribute(obj):
for attr in obj.__dict__:
print attr, getattr(obj, attr)

print_attribute durchlduft die Elemente im Dictionary des Objekts und gibt alle
Attributnamen sowie den entsprechenden Wert aus.

Die integrierte Funktion getattr erwartet ein Objekt und einen Attributnamen (als
String) und liefert den Wert dieses Attributs zuriick.

Schnittstelle und Implementierung

Eines der Ziele der objektorientierten Entwicklung besteht darin, Software weniger

pflegeintensiv zu machen — damit das Programm auch dann funktioniert, wenn sich
andere Teile des Systems d@ndern, und Sie das Programm an neue Anforderungen
anpassen konnen.

Ein Designprinzip, das dabei hilft, dieses Ziel zu erreichen, sieht vor, die
Schnittstellen von der Implementierung zu trennen. Im Fall von Objekten bedeutet
das, dass die Methoden einer Klasse nicht davon abhédngig sein sollen, wie die
Attribute abgebildet werden.

In diesem Kapitel haben wir beispielsweise eine Klasse entwickelt, die die Tageszeit
reprasentiert. Zu den Methoden dieser Klasse gehoren zeit_zu int, liegt_nach und
addiere_zeiten.

Wir haben mehrere Moglichkeiten, diese Methoden zu implementieren. Im
Einzelnen hingt das davon ab, wie wir die Zeit abbilden. In diesem Kapitel hat ein
Zeit-Objekt die Attribute stunde, minute und sekunde.

Alternativ konnten wir diese Attribute durch einen einzelnen Integer ersetzen, der
die Anzahl der Sekunden seit Mitternacht enthdlt. Durch eine solche
Implementierung wiirden manche Methoden, wie etwa liegt_nach, vereinfacht
werden, andere dagegen werden komplizierter.

Manchmal finden Sie eine bessere Implementierung, nachdem Sie eine Klasse
bereitgestellt haben. Wenn andere Teile eines Programms diese Klasse verwenden,
kann es zeitaufwendig und fehleranfallig sein, die Schnittstelle anzupassen.

Wenn Sie aber die Schnittstelle sorgfaltig durchdacht haben, kénnen Sie die
Implementierung dndern, ohne die Schnittstelle anzupassen. Andere Teile des
Programms miissen dann nicht gedndert werden.

Um die Schnittstelle von der Implementierung zu trennen, miissen Sie die Attribute
verbergen. Code in anderen Teilen des Programms (aullerhalb der Klassendefinition)
muss entsprechende Methoden verwenden, um den Zustand des Objekts abzurufen
und zu verdndern. Der direkte Zugriff auf die Attribute darf dabei nicht méglich
sein. Dieses Verfahren nennt man Information Hiding (siehe
http://en.wikipedia.org/wiki/Information_hiding) bzw. Datenkapselung (siehe
http://de.wikipedia.org/wiki/Datenkapselung_(Programmierung)).

Den Code fiir dieses Kapitel finden Sie in der Beispieldatei (Zeit2.py). Andern Sie
Zeit so, dass es nur noch ein Integer-Attribut fiir die Sekunden seit Mitternacht gibt.
Passen Sie anschliefend die Methoden (und die Funktion int_zu zeit) an die neue
Implementierung an. Den Testcode in main sollten Sie nicht anpassen miissen. Wenn
Sie damit fertig sind, sollten die Bildschirmausgaben dieselben wie zuvor sein.

Losung: Zeit2_loesung.py
Listing 17.6

http://en.wikipedia.org/wiki/Information_hiding
http://de.wikipedia.org/wiki/Datenkapselung_(Programmierung)

Glossar

Objektorientierte Programmiersprache:
Sprache, die Funktionen bereitstellt, die die objektorientierte Programmierung
erleichtern, wie beispielsweise benutzerdefinierte Klassen und die
Methodensyntax.

Objektorientierte Programmierung:
Programmierstil, bei dem Daten und die Operationen, die diese manipulieren, in
Klassen und Methoden strukturiert sind.

Methode:
Funktion, die innerhalb einer Klassendefinition definiert ist und iiber Instanzen
dieser Klasse aufgerufen wird.

Subjekt:
Objekt, dessen Methode aufgerufen wird.

Operator-Uberladung:
Anpassung des Verhaltens eines Operators wie beispielsweise +, damit er auch
mit einem benutzerdefinierten Typ funktioniert.

Dynamische Bindung:
Programmiermuster, bei dem der Typ eines Operanden {iberpriift und
entsprechend unterschiedliche Funktionen aufgerufen werden.

Polymorph:
Bezieht sich auf eine Funktion, die mit mehr als einem Typ funktioniert.

Datenkapselung:

Prinzip, das besagt, dass die Schnittstelle eines Objekts unabhdngig von der
Implementierung sein soll, insbesondere was die Sichtbarkeit seiner Attribute
betrifft.

Ubungen
Die folgende Ubung ist eine alarmierende Geschichte iiber einen der hidufigsten und
am schwierigsten aufspiirbaren Fehler in Python.

Schreiben Sie die Definition einer Klasse mit dem Namen Kaenguru und den
folgenden Methoden:

1. Eine Methode __init__, die ein Attribut mit dem Namen beutel inhalt mit
einer leeren Liste initialisiert.

2. Eine Methode mit dem Namen lege_in_beutel, die ein beliebiges Objekt
erwartet und zu beutel_inhalt hinzufiigt.

3. Eine Methode __str__, die eine String-Représentation des Kaenguru-Objekts
und seines Beutelinhalts ausgibt.

Testen Sie Thren Code, indem Sie zwei Kaenguru-Objekte erstellen, diese den
Variablen kaengu und ru zuweisen und anschliefend ru zum Beutelinhalt von
kaengu hinzufiigen.

Sehen Sie sich die Datei BoesesKanguru.py aus den Codebeispielen an. Die Datei
zeigt eine Losung fiir das vorherige Problem, allerdings mit einem schwerwiegenden
und gemeinen Fehler. Finden und beseitigen Sie den Bug.

Sollten Sie irgendwann nicht mehr weiterkommen, kénnen Sie in der Datei
GutesKaenguru.py nachsehen. In dieser Datei wird das Problem erklart und eine
Losung gezeigt.

Listing 17.7

Visual ist ein Python-Modul fiir 3-D-Grafiken. Es ist nicht immer in der Python-
Installation enthalten, eventuell miissen Sie es aus Ihrem Software-Repository oder
von http://vpython.org installieren.

Das folgende Beispiel erstellt einen dreidimensionalen Raum, der 256 Einheiten
breit, lang und hoch ist. Der Punkt (128,128,128) wird als Mittelpunkt gewdhlt, und

anschliefend wird eine blaue Kugel gezeichnet.
from import *

scene.range = (256, 256, 256)
scene.center = (128, 128, 128)

farbe = (0.1, 0.1, 0.9) # vorwiegend blau

sphere(pos=scene.center, radius=128, color=farbe)

farbe ist ein RGB-Tupel mit Rot-Griin-Blau-Werten zwischen 0,0 und 1,0 (siehe
http://de.wikipedia.org/wiki/RGB-Farbraum).

Wenn Sie diesen Code ausfiihren, sollten Sie ein Fenster mit schwarzem Hintergrund
und einer blauen Kugel sehen. Wenn Sie die Maus bei gedriickter mittlerer Taste
nach oben und unten ziehen, kénnen Sie den Bildausschnitt vergréfSern bzw.
verkleinern (unter Windows linke und rechte Maustaste gleichzeitig gedriickt
halten). Sie konnen die Ansicht rotieren, indem Sie bei gedriickter rechter Maustaste
die Maus ziehen. Aber mit nur einer einzigen Kugel werden Sie kaum einen
Unterschied erkennen kdnnen.

Die folgende Schleife erstellt einen ganzen Wiirfel voller Kugeln:
t = range(0, 256, 51)
forxint:

foryint:

http://vpython.org
http://de.wikipedia.org/wiki/RGB-Farbraum

forzint:
pos =X, Y, Z
sphere(pos=pos, radius=10, color=farbe)

1. Tippen Sie diesen Code in ein Skript ein und vergewissern Sie sich, dass er
funktioniert.

2. Andern Sie das Programm so, dass jede Kugel innerhalb des Wiirfels genau die
Farbe hat, die ihrer Position im RGB-Raum entspricht. Beachten Sie, dass die
Raumkoordinaten im Bereich 0-255 liegen, die Werte der RGB-Tupel dagegen
zwischen 0,0 und 1,0.

3. Verwenden Sie die Funktion read _colors aus der Beispieldatei color_list.py,
um eine Liste der zuldssigen Farben auf Ihrem System mit den jeweiligen
Namen und RGB-Werten zu erstellen. Zeichnen Sie fiir jede Farbe in der Liste
eine Kugel an der den RGB-Werten entsprechenden Position.

Meine Losung finden Sie in den Codebeispielen unter dem Namen farbraum.py.
Listing 17.8

Kapitel 18. Vererbung

In diesem Kapitel stelle ich Thnen Klassen vor, die Spielkarten, Kartenstapel und die
Karten in der Hand des jeweiligen Pokerspielers reprdsentieren. Sollten Sie Poker
nicht kennen, konnen Sie mehr dariiber unter http://de.wikipedia.org/wiki/Poker
lesen, zwingend notwendig ist das aber nicht. Ich werde Thnen erkldren, was Sie fiir
die Ubungen wissen miissen. Die Codebeispiele fiir dieses Kapitel finden Sie unter
Karte.py.

Falls Sie nicht mit dem anglo-amerikanischen Blatt vertraut sind, erfahren Sie unter
http://de.wikipedia.org/wiki/Spielkarte alles iiber die verschiedenen Kartenbilder.

Karten-Objekte

Ein Kartenspiel enthélt 52 Karten in vier Farben mit jeweils 13 Spielkarten. Die
Farben heillen Pik, Herz, Karo und Kreuz (in absteigender Reihenfolge), die
Rangfolge der Karten stellt sich so dar: Ass, 2, 3, 4, 5, 6, 7, 8,9, 10, Bube, Dame und
Konig. Je nach dem Pokertyp, den Sie spielen, kann ein Ass hoher als der Konig oder
kleiner als die 2 sein.

Wenn wir ein neues Objekt fiir eine Spielkarte definieren méchten, ist klar, welche
Attribute wir brauchen: rang and farbe. Nicht ganz so klar ist, welchen Typ diese
Attribute haben sollen. Eine Méglichkeit wdren Strings mit Wortern wie etwa
'‘KreuZz' fiir Farben und 'Dame’ fiir die Rénge. Ein Problem bei dieser
Implementierung besteht aber darin, dass es dann nicht gerade einfach ist, Karten
miteinander zu vergleichen und zu bestimmen, welche den héheren Rang oder die
hohere Farbe hat.

Eine Alternative besteht darin, Farben und Rdnge mit Integern zu kodieren. In
diesem Kontext bedeutet »kodieren«, dass wir eine Verkniipfung zwischen Zahlen
und Farben bzw. Zahlen und Rangen definieren. Mit dieser Art der Kodierung sind
aber keine Geheimnisse gemeint (das ware wiederum » Verschliisselung«).

Die folgende Tabelle zeigt die Farben und die entsprechenden Integer-Werte:

Pik — - 3
Herz — 2
Karo —]

Kreuz — ()

http://de.wikipedia.org/wiki/Poker
http://de.wikipedia.org/wiki/Spielkarte

Durch diesen Code ist es einfach, Karten zu vergleichen. Da htherwertige Farben
hoheren Zahlen entsprechen, kénnen wir die Farben direkt {iber den entsprechenden
Code miteinander vergleichen.

Die Zuordnung der Range erkldrt sich von selbst. Die numerischen Karten
entsprechen der jeweiligen Zahl, und fiir Bildkarten gilt:

Bube — 11
Dame —» 12
Konig —— 13
Ich verwende hier das Symbol & —===——— m zu verdeutlichen,

dass diese Zuordnungen nicht Teil des Python-Programms sind. Sie sind Teil des
Programmdesigns, erscheinen aber nicht explizit im Code.

So sieht die Klassendefinition fiir Karte aus:

class Karte(object):
""Repréasentiert eine Spielkarte.

nn

def __init_ (self, farbe=0, rang=2):
self.farbe = farbe
self.rang = rang

Wie iiblich erwartet die init-Methode einen optionalen Parameter fiir jedes Attribut.
Die Standardkarte ist die Kreuz-2.

Um eine Karte zu erstellen, rufen Sie Karte mit der Farbe und dem Rang der
gewiinschten Karte auf.

karo_dame = Karte(1, 12)

Klassenattribute

Damit wir Karten-Objekte in fiir Menschen lesbarer Form ausgeben kdnnen,
brauchen wir eine Zuordnung der Integer-Codes zu den entsprechenden Rangen und
Farben. Eine naheliegende Moglichkeit dafiir bieten Listen mit Strings. Diese Listen
weisen wir Klassenattributen zu:

innerhalb von Klasse Karte:

farb_namen = [Kreuz', 'Karo', 'Herz', 'Pik']
rang_namen = [None, 'Ass', '2','3','4','5', '6", '7",

'8','9', "10', 'Bube’, 'Dame’, 'Konig']

def _str_ (self):
return Karte.farb_namen(self.farbe] + '-' + Karte.rang_namen|[self.rang]
Variablen wie beispielsweise farb_namen und rang_namen, die innerhalb einer
Klasse, aber aullerhalb einer Methode definiert werden, nennt man Klassenattribute,
weil sie mit dem Klassen-Objekt Karte assoziiert sind.

Solche Attribute sind von Variablen wie farbe und rang zu unterscheiden, die man
als Instanzattribute bezeichnet, weil sie mit einer bestimmten Instanz verkniipft
sind.

Auf beide Arten von Attributen greifen Sie iiber die Punktschreibweise zu. Innerhalb
von __str__ bezieht sich self auf ein Karten-Objekt und self.rang auf den Rang der
Karte. Auf dhnliche Weise ist Karte ein Klassen-Objekt und Karte.rang_namen
eine Liste von Strings, die dieser Klasse zugeordnet sind.

Jede Karte hat eine eigene farbe und einen eigenen rang, aber es gibt jeweils nur
eine Kopie von farb_namen und rang_namen.

Alles zusammengenommen, bedeutet der Ausdruck Karte.rang_namen[self.rang]:
»Nimm das Attribut rang des Objekts self als Index fiir die Liste rang_namen aus
der Klasse Karte und wahle den entsprechenden String aus.«

Das erste Element von rang_namen ist None, weil es keine Karte mit dem Rang 0
gibt. Indem wir None als Platzhalter verwenden, erhalten wir ein Mapping mit der
praktischen Eigenschaft, dass Index 2 dem String '2' entspricht usw. Auf diesen
Trick hatten wir verzichten konnen, wenn wir statt einer Liste ein Dictionary
verwendet hatten.

Mit den Methoden, die wir bisher geschrieben haben, kénnen wir Karten erstellen
und ausgeben:

>>> karte1 = Karte(2, 11)

>>> print Karte1

Herz-Bube
Abbildung 18.1 zeigt das Diagramm fiir das Karten-Klassen-Objekt und eine Karten-
Instanz. Karte ist ein Klassen-Objekt, daher hat es den Typ type. Karte1 hat den
Typ Karte. (Um Platz zu sparen, habe ich den Inhalt von farb_namen und
rang_namen nicht dargestellt).

type list
Karte —= farb_namen =

list

rang_namen

Karte
kartel —= farb —= 1

rang —= 11

Abbildung 18.1 Objektdiagramm

Karten vergleichen

Fiir integrierte Typen gibt es die relationalen Operatoren (<, >, == usw.), mit denen
Sie Werte vergleichen und bestimmen kdnnen, ob ein Operand im Vergleich zu
einem anderen groBer, kleiner oder gleich ist. Bei benutzerdefinierten Typen kénnen
wir das Verhalten der integrierten Operatoren iiberladen, indem wir eine Methode
mit dem Namen __cmp___ schreiben.

___cmp___ erwartet zwei Parameter — self und other — und gibt eine positive Zahl
zuriick, wenn das erste Objekt grofer ist, eine negative Zahl, wenn das zweite Objekt
groller ist, und 0, wenn die beiden Objekte gleich sind.

Die korrekte Reihenfolge der Karten ist nicht offensichtlich. Welche Karte ist mehr
wert? Die Kreuz-3 oder die Karo-2? Die eine hat einen hoheren Rang, die andere
eine hohere Farbe. Damit wir Karten vergleichen kénnen, miissen wir entscheiden,
ob der Rang oder die Farbe wichtiger ist.

Die Antwort hdngt natiirlich davon ab, welches Spiel Sie spielen. Der Einfachheit
halber treffen wir hier die willkiirliche Entscheidung, dass die Farbe wichtiger ist als
der Rang, also Pik alle Karo-Karten tibertrumpft usw.

Dementsprechend konnen wir nun __cmp___ schreiben:

innerhalb von Klasse Karte:

def __cmp__ (self, other):
Farben vergleichen
if self.farbe > other.farbe: return 1
if self.farbe < other.farbe: return -1

Farben sind identisch ... Range priifen
if self.rang > other.rang: return 1
if self.rang < other.rang: return -1

Réange sind identisch ... unentschieden

return 0

Mit einem Tupel-Vergleich lasst sich das noch préagnanter schreiben:

innerhalb von Klasse Karte:

def __cmp__ (self, other):

t1 = self.farbe, self.rang

t2 = other.farbe, other.rang

return cmp(t1, t2)
Die integrierte Funktion cmp hat dieselbe Schnittstelle wie die Methode __cmp__:
Sie erwartet zwei Werte und liefert eine positive Zahl, wenn der erste Wert grofSer
ist, eine negative Zahl, wenn der zweite Wert grofer ist, und 0, wenn beide Werte
gleich sind.

Schreiben Sie eine Methode__cmp___ fiir Zeit-Objekte. Tipp: Dafiir konnen Sie
einen Tupel-Vergleich heranziehen oder die Subtraktion von Integer-Werten.

Listing 18.1

Stapel

Nachdem wir jetzt Karten haben, konnen wir in einem ndchsten Schritt Kartenstapel
definieren. Da ein Stapel aus Karten besteht, ist es nur logisch, dass ein Stapel eine
Liste mit Karten als Attribut enthalt.

Hier sehen Sie eine Klassendefinition fiir Stapel. Die init-Methode erstellt das
Attribut karten und erzeugt ein Standardspiel mit 52 Karten:

class Stapel(object):

def _init_ (self):
self.karten =[]
for farbe in range(4):
for rang in range(1, 14):
karte = Karte(farbe, rang)
self karten.append(karte)
Die einfachste Moglichkeit, den Stapel aufzubauen, ist eine verschachtelte Schleife.
Die dullere Schleife durchlduft die Farben von 0 bis 3. Die innere Schleife z&hlt alle
Rénge von 1 bis 13 auf. Bei jeder Iteration wird eine neue Karte mit der aktuellen

Farbe und dem aktuellen Rang erstellt und zu self.karten hinzugefiigt.

Kartenstapel ausgeben
Hier sehen Sie die Methode __ str__ fiir Stapel:

innerhalb von Klasse Stapel:

def _str_ (self):
res =]

for karte in self karten:
res.append(str(karte))
return '\n'.join(res)
Mit dieser Methode haben Sie eine effiziente Moglichkeit, einen groen String
zusammenzusetzen: indem Sie eine Liste mit Strings bilden und anschlielend join
verwenden. Die integrierte Funktion str ruft die Methode __str__ fiir jede einzelne
Karte auf und liefert die String-Reprasentation.

Da wir join mit dem Zeichen fiir einen Zeilenumbruch aufrufen, werden die
einzelnen Karten durch einen Zeilenumbruch voneinander getrennt. So sieht das
Ergebnis aus:

>>> Stapel = Stapel()

>>> print Stapel

Herz-Konig

Kreuz-Bube
Karo-Ass

i—l|.erz-5

Kreuz-2

Herz-Dame

Pik-Kénig
Auch wenn das Ergebnis auf 52 Zeilen angezeigt wird, so handelt es sich dennoch
um einen langen String — mit Zeilenumbriichen.

Hinzufligen, entfernen, mischen und sortieren
Um Karten auszuteilen, brauchen wir eine Methode, die eine Karte vom Stapel zieht
und zuriickliefert. Die Listenmethode pop bietet eine einfache Lésung dafiir:

innerhalb von Klasse Stapel:

def ziehe_karte(self):
return self.karten.pop()

Nachdem pop die letzte Karte aus der Liste entfernt hat, teilen wir die Karten quasi
von ganz unten im Stapel aus. Im realen Leben ist das als Falschspiel verpont, aber
in diesem Kontext geht das sicher in Ordnung.

Um eine Karte hinzuzufiigen, konnen wir die Listenmethode append verwenden:

innerhalb von Klasse Stapel:

def hinzufuegen_karte(self, karte):
self karten.append(karte)
Eine solche Methode, die eine andere Funktion aufruft, ohne wirklich etwas zu tun,
bezeichnet man manchmal als Veneer (zu Deutsch »Furnier«). Diese Metapher
stammt aus der Holzverarbeitung, wenn eine diinne Schicht qualitativ hochwertigen
Holzes auf ein billiges Stiick Holz aufgeklebt wird.

In diesem Fall definieren wir einfach eine »schlanke« Methode, die eine
Listenoperation so ausdriickt, dass sie fiir Kartenstapel geeignet ist.

Als zusétzliches Beispiel konnen wir eine Stapel-Methode mit dem Namen mischen
schreiben, die die Funktion shuffle aus dem Modul random verwendet:

innerhalb von Klasse Stapel:

def mischen(self):
random.shuffle(self karten)

Vergessen Sie nicht, random zu importieren.

Schreiben Sie eine Stapel-Methode mit dem Namen sortieren, die mithilfe der
Listenmethode sort die Karten in einem Stapel sortiert. sort verwendet fiir die

Reihenfolge der Sortierung die Methode __cmp___, die wir vorhin geschrieben
haben.

Listing 18.2

Vererbung

Ein Merkmal von Programmiersprachen, das hdufig mit der objektorientierten
Programmierung in Verbindung gebracht wird, ist die Vererbung . Unter Vererbung
versteht man die Moéglichkeit, eine Klasse als modifizierte Version einer
vorhandenen Klasse zu definieren.

Von Vererbung spricht man deshalb, weil die neue Klasse die Methoden der
vorhandenen Klasse erbt. Dieser Metapher entsprechend bezeichnet man die
Basisklasse manchmal auch als Elternklasse und die abgeleitete Klasse dann als
Kindklasse.

Gehen wir als Beispiel davon aus, dass wir eine Klasse schreiben méchten, die eine
»Hand« repradsentiert, also die Karten, die ein Pokerspieler in der Hand hélt. Eine
Hand ist dhnlich wie ein Stapel: Beide enthalten eine Reihe von Karten, und beide
benoétigen Methoden zum Hinzufiigen und Entfernen von Karten.

Eine Hand unterscheidet sich aber auch von einem Stapel: Fiir eine Hand brauchen
wir Operationen, die fiir einen Stapel keinen Sinn ergeben. Beispielsweise mdchten
wir beim Poker die Hand zweier Spieler vergleichen, um zu bestimmen, wer
gewonnen hat. Im Skat wiirden wir wiederum die Punkte fiir eine Hand berechnen,
damit der Spieler reizen kann.

Eine solche Beziehung zwischen Klassen — sie sind dhnlich, aber eben doch
unterschiedlich — fiihrt zur Vererbung.

Die Definition einer abgeleiteten Klasse gleicht anderen Klassendefinitionen,
allerdings wird der Name der Basisklasse in Klammern angegeben:

class Hand(Stapel):
""Représentiert eine Hand mit Spielkarten.

nn

Diese Definition gibt an, dass Hand von Stapel erbt. Das bedeutet, dass wir
Methoden wie ziehe karte und hinzufuegen_karte sowohl fiir Hand- als auch fiir
Stapel-Objekte verwenden kénnen.

Hand erbt auch __init__ von Stapel. Aber diese Methode macht nicht wirklich das,
was wir mochten. Anstatt die Hand mit 52 neuen Karten zu fiillen, soll die init-
Methode von Hand karten mit einer leeren Liste initialisieren.

Wenn wir in der Klasse Hand eine init-Methode definieren, wird dadurch die
Methode der Klasse Stapel iiberschrieben:

innerhalb von Klasse Hand:

def __init_ (self, label="):
self.karten =[]
self.label = label

Wenn Sie also eine neue Hand erstellen, ruft Python diese init-Methode auf:

>>> hand = Hand('neue Hand')
>>> print hand.karten

I

>>> print hand.label

neue Hand
Aber die anderen Methoden werden weiterhin von Stapel geerbt, deshalb kénnen wir
ziehe_karte und hinzufuegen_karte nutzen, um eine Karte auszugeben:

>>> stapel = Stapel()

>>> Kkarte = stapel.ziehe_karte()

>>> hand.hinzufuegen_karte(karte)

>>> print hand

Karo-Dame
Als ndchsten Schritt kapseln wir diesen Code in eine Methode mit dem Namen
ziehe karten:

innerhalb von Klasse Stapel:

def ziehe karten(self, hand, anz):
for iin range(anz):
hand.hinzufuegen_karte(self.ziehe_karte())
ziehe karten erwartet zwei Argumente, ein Hand-Objekt und die Anzahl der zu
verteilenden Karten. Die Methode modifiziert self und hand und liefert den
Riickgabewert None.

In manchen Spielen werden die Karten von einer Hand zu einer anderen
weitergegeben oder von einer Hand zuriick auf den Stapel. Sie kénnen ziehe karten
fiir jede dieser Operationen verwenden: self kann sowohl ein Stapel als auch eine

Hand sein, und hand kann entgegen dem Namen auch ein Stapel sein.

Schreiben Sie eine Stapel-Methode mit dem Namen verteile karten, die zwei
Parameter erwartet: die Anzahl der Hinde und die Anzahl der Karten pro Hand. Die
Methode soll neue Hand-Objekte erstellen, pro Hand die entsprechende Anzahl
Karten ausgeben und eine Liste mit Hand-Objekten zuriickliefern.

Listing 18.3

Vererbung ist eine niitzliche Sache. Manche Programme, die ohne Vererbung eher
repetitiv waren, konnen damit eleganter geschrieben werden. Vererbung kann auch
die Wiederverwendung von Code erleichtern, da Sie das Verhalten der Basisklassen
anpassen konnen, ohne sie zu dndern. In manchen Féllen spiegelt die
Vererbungsstruktur auch die natiirliche Struktur der Problemstellung wider, wodurch
das Programm leichter zu verstehen ist.

Andererseits kénnen Programme durch Vererbung auch schwieriger zu lesen sein.
Manchmal ist beim Aufruf einer Methode nicht ganz klar, wo die Definition steht.
Der entsprechende Code kann auf mehrere Module verteilt sein. Aullerdem lassen
sich viele Dinge, die sich mit Vererbung 16sen lassen, auch genauso gut oder
eventuell sogar besser ohne Vererbung l6sen.

Klassendiagramme

Bisher haben wir nur Stapeldiagramme gesehen, die den Zustand eines Programms
darstellen, sowie Objektdiagramme, die die Attribute eines Objekts und deren Werte
zeigen. Diese Diagramme reprdsentieren eine Momentaufnahme in der Ausfiihrung
eines Programms, die sich entsprechend verdndert.

Solche Diagramme sind sehr detailreich, fiir manche Zwecke sogar zu detailreich.
Klassendiagramme sind dagegen eine abstraktere Darstellung der Struktur eines
Programms. Anstatt einzelne Objekte darzustellen, werden die Klassen und die
entsprechenden Beziehungen zwischen ihnen abgebildet.

Es gibt verschiedene Arten von Beziehungen zwischen Klassen:

= Objekte einer Klasse kdénnen Referenzen auf Objekte einer anderen Klasse
enthalten. So enthélt beispielsweise jedes Rechteck eine Referenz auf einen
Punkt, genau wie ein Kartenstapel Referenzen auf viele Karten enthélt. Eine
solche Beziehung bezeichnet man als Teil-Ganzes-Beziehung (auch »Hat-ein-
Beziehung«, denn: »ein Rechteck hat einen Punkt«).

m Eine Klasse kann von einer anderen erben. Eine solche Beziehung bezeichnet man
als Oberbegriff-Beziehung (auch »Ist-ein-Beziehung«, denn: »eine Hand ist eine
Art von Stapel«).

= Eine Klasse kann insofern von einer anderen abhéngen, als Anderungen in der

einen Klasse auch Anderungen in der anderen Klasse erfordern.

Ein Klassendiagramm stellt solche Beziehungen grafisch dar. Abbildung 18.2 zeigt
die Beziehungen zwischen Karte, Stapel und Hand.

¥
Stapel > Karte
il
Hand

Abbildung 18.2 Klassendiagramm

Pfeile mit einer leeren Spitze stellen eine Oberbegriff-Beziehung dar. In diesem Fall
zeigt der Pfeil an, dass Hand von Stapel erbt.

Die standardmdfSige Pfeilspitze kennzeichnet eine Teil-Ganzes-Beziehung. In
diesem Fall enthdlt ein Stapel Referenzen auf Karten-Objekte.

Der Stern (*) bei der Pfeilspitze zu Karte symbolisiert eine Kardinalitat. Diese gibt
an, wie viele Karten ein Stapel enthalten darf. Eine Kardinalitdt kann eine einfache
Zahl wie beispielsweise 52 sein, ein Wertebereich wie etwa 5..7 oder ein Stern, der
bedeutet, dass ein Stapel eine beliebige Anzahl von Karten enthalten darf.

Ein detaillierteres Diagramm kénnte auch zeigen, dass ein Stapel eine Liste mit
Karten enthdlt. Aber integrierte Typen wie List und Dict werden {iblicherweise nicht
in einem Klassendiagramm dargestellt.

Lesen Sie TurtleWorld.py, World.py und Gui.py. Zeichnen Sie anschliefend ein
Klassendiagramm, das die Beziehungen zwischen den in diesen Dateien definierten
Klassen darstellt.

Listing 18.4

Debugging

Vererbung kann das Debugging zu einer echten Herausforderung machen. Denn
wenn Sie die Methode fiir ein Objekt aufrufen, wissen Sie unter Umstdnden nicht,
welche Methode tatsdachlich aufgerufen wird.

Angenommen, Sie schreiben eine Funktion, die mit Hand-Objekten arbeitet. Die
Methode soll mit allen moglichen Arten von Hand-Objekten funktionieren,
beispielsweise mit PokerHand-, SkatHand-Objekten usw. Wenn Sie eine Methode
wie beispielsweise mischen aufrufen, kann es die Methode sein, die in Stapel
definiert ist. Aber wenn eine der Subklassen diese Methode iiberschreibt, wird

stattdessen diese Version aufgerufen.

Immer wenn Sie sich nicht sicher sind, wie Ihr Programm ablauft, besteht die
einfachste Losung darin, die entsprechenden Methoden mit print-Anweisungen zu
versehen. Wenn Stapel.mischen eine Meldung wie Stapel.mischen wird
ausgefuhrt ausgibt, konnen Sie anhand solcher Ausgaben den Programmablauf
mitverfolgen.

Alternativ kénnen Sie die folgende Funktion verwenden, die ein Objekt und einen
Methodennamen (als String) erwartet und die Klasse zuriickliefert, in der die
verwendete Methode definiert ist:
def suche_definierende_klasse(obj, methoden_name):
for ty in type(obj).mro():

if methoden_name in ty.__dict__:
return ty

Sehen wir uns ein Beispiel an:

>>> hand = Hand()

>>> print suche_definierende_klasse(hand, 'mischen')

<class'__main__.Stapel'>
Die Methode mischen fiir diese Hand ist also diejenige, die in Stapel definiert
wurde.

suche_definierende_klasse verwendet die Methode mro, um die Liste der
Klassenobjekte (Typen) abzurufen, in denen nach Methoden gesucht wird. »MRO«
steht fiir »Method Resolution Order« (Reihenfolge bei der Auflésung der
Methodennamen).

Ein Vorschlag zum Programmdesign: Immer wenn Sie eine Methode iiberschreiben,
sollte die Schnittstelle der neuen Methode genau wie die Schnittstelle der alten
Methode sein. Die Methode soll dieselben Parameter erwarten, denselben Typ
zuriickgeben und dieselben Vorbedingungen und Nachbedingungen stellen. Wenn
Sie diese Regel befolgen, werden alle Funktionen, die mit Instanzen einer
Superklasse wie beispielsweise Stapel funktionieren, auch mit allen Subklassen wie
Hand oder PokerHand funktionieren.

Wenn Sie diese Regel nicht einhalten, wird IThr Code (leider) wie ein Kartenhaus in
sich zusammenfallen.

Datenkapselung

Kapitel 16 folgt einem Entwicklungsplan, den wir als »objektorientiertes Design«
bezeichnen konnten. Wir haben die Objekte ermittelt, die wir benétigen — Zeit,
Punkt und Rechteck — und entsprechende Klassen definiert. In jedem Fall gibt es
einen offensichtlichen Zusammenhang zwischen den Objekten und den

entsprechenden Entitdten in der realen Welt (oder zumindest in der mathematischen
Welt).

Aber manchmal ist es weniger offensichtlich, welche Objekte Sie benétigen und wie
diese interagieren sollen. In solchen Féllen brauchen Sie einen anderen
Entwicklungsplan. Genau so, wie wir Schnittstellen fiir Funktionen durch Kapselung
und Generalisierung gefunden haben, konnen wir auch Schnittstellen fiir Klassen
durch Datenkapselung entwickeln.

Die Markov-Analyse aus ,,Markov-Analyse“ ist ein gutes Beispiel hierfiir. Wenn Sie
meinen Code in der Beispieldatei markov.py ansehen, werden Sie feststellen, dass
darin zwei globale Variablen verwendet werden — suffix_map und praefix —, die von
mehreren Funktionen ausgelesen und geschrieben werden.

suffix_map = {}

praefix = ()
Da diese Variablen global sind, konnen wir immer nur eine Analyse zur gleichen
Zeit durchfiihren. Wenn wir zwei Texte gleichzeitig analysieren, wiirden die Préfixe
und Suffixe zu denselben Datenstrukturen hinzugefiigt (was vielleicht auch zu
interessanten Ergebnissen fiihrt).

Wenn wir mehrere Analysen gleichzeitig durchfiihren und diese voneinander trennen
mochten, konnen wir den Zustand der einzelnen Analysen jeweils in einem Objekt
kapseln. Das sieht folgendermalien aus:

class Markov (object):

def _init_ (self):
self.suffix_map = {}
self.praefix = ()

Als Néachstes wandeln wir die Funktionen in Methoden um. So sieht beispielsweise
verarbeite wort aus:

def verarbeite_wort(self, wort, praefix_laenge=2):
if len(self.praefix) < praefix_laenge:
self.praefix += (wort,)
return

try.
self.suffix_map[self.praefix].append(wort)

except KeyError:
Eintrag fiir Préfix erstellen, falls dieser noch nicht existiert
self.suffix_map[self.praefix] = [wort]

self.praefix = verschieben(self.praefix, wort)

Eine solche Anderung des Programmdesigns ohne Anderung der Funktionalitit ist
ein weiteres Beispiel fiir Refactoring (siehe ,,Refactoring®).

AuBerdem zeigt dieses Beispiel einen moglichen Entwicklungsplan fiir das Design
von Objekten und Methoden:

1. Beginnen Sie damit, Funktionen zu schreiben, die (soweit nétig) globale
Variablen lesen und schreiben.

2. Sobald das Programm funktioniert, suchen Sie die Verbindungen zwischen
globalen Variablen und den entsprechenden Funktionen, die diese verwenden.

3. Kapseln Sie entsprechende Variablen als Objektattribute.

4. Wandeln Sie die verkniipften Funktionen in Methoden einer neuen Klasse um.

Offnen Sie die Beispieldatei aus ,,Markov-Analyse® (markov.py) und fiihren Sie die
oben beschriebenen Schritte durch, um die globalen Variablen als Attribute einer
neuen Klasse mit dem Namen Markov zu kapseln. Losung: Markov_loesung.py.

Listing 18.5
Glossar

Kodierung:
Abbildung einer Menge von Werten mit einer anderen Menge von Werten durch
eine entsprechende Zuordnung.

Klassenattribut:
Attribut, das mit einem Klassen-Objekt verkniipft ist. Klassenattribute werden
innerhalb einer Klassendefinition, aber auBerhalb der Methodendefinitionen
definiert.

Instanzattribut:
Attribut, das mit einer Instanz einer Klasse verkniipft ist.

Veneer-Methode:
Methode, die eine Schnittstelle fiir eine andere Funktion definiert, ohne selbst
Berechnungen durchzufiihren.

Vererbung:
Moglichkeit, eine neue Klasse zu definieren, die eine modifizierte Version einer
zuvor definierten anderen Klasse ist.

Basisklasse:
Klasse, von der eine abgeleitete Klasse erbt.

Abgeleitete Klasse:

Neue Klasse, die durch Vererbung von einer existierenden Klasse erstellt wird.
Wird auch als »Subklasse« bezeichnet.

Oberbegriff-Beziehung:
Beziehung zwischen einer abgeleiteten Klasse und ihrer Basisklasse.

Teil-Ganzes-Beziehung:

Beziehung zwischen zwei Klassen, von denen Instanzen der einen Klasse
Referenzen auf Instanzen der anderen enthalten.

Klassendiagramm:

Diagramm, das die in einem Programm verwendeten Klassen sowie die
Beziehungen zwischen diesen Klassen darstellt.

Kardinalitat:

Bezeichnung in einem Klassendiagramm, die fiir eine Teil-Ganzes-Beziehung
angibt, wie viele Referenzen es zu Instanzen einer anderen Klasse gibt.

Ubungen

Hier sehen Sie die moglichen Kartenkombinationen im Poker in der Wertigkeit
aufsteigend sortiert (und entsprechend in der Wahrscheinlichkeit absteigend
sortiert):

Paar:

Zwei Karten mit demselben Rang
Zwel Paare:

Zwei Paare von Karten mit demselben Rang
Drilling:

Drei Karten mit demselben Rang

StralSe:

Fiinf aufeinanderfolgende Karten verschiedener Farben (Asse kénnen dabei die
niedrigste oder hochste Karte sein: Ass-2-3-4-5 ist eine StralSe, genauso wie 10-
Bube-Dame-Konig-Ass, nicht aber Dame-Konig-Ass-2-3.)

Flush:

Fiinf Karten derselben Farbe

Full House:
Kombination aus Drilling und einem Paar

Vierling:
Vier Karten mit demselben Rang

Straight Flush:
Fiinf aufeinanderfolgende Karten (wie Stralle) in derselben Farbe

Ziel dieser Ubungen ist es, die Wahrscheinlichkeit dieser verschiedenen Hénde zu
schitzen.

1.

Dafiir brauchen Sie die folgenden Beispieldateien:

Karte.py
Eine vollstdndige Implementierung der Klassen Karte, Stapel und Hand aus
diesem Kapitel.

PokerHand.py

Eine unvollstandige Implementierung einer Poker-Hand sowie ein bisschen
Code zum Testen.

. Wenn Sie PokerHand.py ausfiihren, werden sieben Poker-Hdnde mit jeweils

sieben Karten ausgegeben, und es wird gepriift, ob die jeweilige Hand einen
Flush enthdlt. Lesen Sie diesen Code sorgfaltig durch, bevor Sie weitermachen.

. Erweitern Sie PokerHand.py um Methoden mit den Namen hat_paar,

hat_zweipaare usw., die True oder False zuriickliefern, je nachdem, ob die
jeweilige Hand die entsprechenden Kriterien erfiillt. IThr Code soll fiir »Hande«
mit einer beliebigen Anzahl Karten funktionieren (obwohl es meistens 5 oder 7
sind).

Schreiben Sie eine Methode mit dem Namen auswerten, die das Blatt mit dem
hochsten Wert fiir eine Hand ermittelt und das Attribut label entsprechend
festlegt. Eine Hand mit 7 Karten kann beispielsweise einen Flush und ein Paar
enthalten. In diesem Fall sollte diese Hand das Label »Flush« erhalten.

. Wenn Sie davon iiberzeugt sind, dass Ihre Auswertungsmethoden

funktionieren, konnen Sie in einem ndchsten Schritt die Wahrscheinlichkeiten
der jeweiligen Blétter schitzen. Schreiben Sie eine Funktion in PokerHand.py,
die einen Stapel Karten mischt, mehrere Poker-Hande ausgibt, diese auswertet
und dabei zdhlt, wie oft das jeweilige Blatt vorkommt.

. Geben Sie eine Tabelle der Blétter und der entsprechenden

Wahrscheinlichkeiten aus. Lassen Sie das Programm mit einer immer groferen
Anzahl von Poker-Hdnden laufen, bis die Ausgabewerte einen angemessenen
Genauigkeitsgrad erreichen. Vergleichen Sie ihre Ergebnisse mit
http://de.wikipedia.org/wiki/Hand_(Poker).

Losung: PokerHandLoesung.py.
Listing 18.6

Fiir diese Ubung brauchen Sie TurtleWorld aus Kapitel 4. Sie werden Code

http://de.wikipedia.org/wiki/Hand_(Poker)

schreiben, der unsere Schildkréten Fangen spielen ldsst. Falls Sie dieses Spiel nicht
kennen, schauen Sie in http://de.wikipedia.org/wiki/Fangen.

1. Fiihren Sie die Datei Wobbler.py aus den Codebeispielen aus. Sie sollten eine
TurtleWorld mit drei Turtles sehen. Wenn Sie auf den Button »Run« klicken,
marschieren die Schildkréten willkiirlich drauflos.

2. Lesen Sie den Code und vergewissern Sie sich, dass Sie verstehen, wie er
funktioniert. Die Klasse Wobbler erbt von Turtle, entsprechend stehen die
Turtle-Methoden wie z. B. It, rt, fd und bk auch fiir Wobbler zur Verfiigung.
Die Methode step wird von TurtleWorld aufgerufen. In dieser Methode rufen
wir wiederum steuern auf, die die Schildkréte in die gewiinschte Richtung
dreht, wobbeln, die zuféllige Drehungen in Abhédngigkeit von der
Tollpatschigkeit der Schildkréte macht, und bewegen, die die Schildkréte in
Abhédngigkeit von der jeweiligen Geschwindigkeit einige Pixel vorwarts
bewegt.

3. Erstellen Sie eine Datei mit dem Namen Faenger.py. Importieren Sie alles aus
Wobbler.py und definieren Sie anschlielfend eine Klasse mit dem Namen
Faenger, die von Wobbler erbt. Rufen Sie erstelle_welt auf und tibergeben
Sie das Klassenobjekt Faenger als Argument.

4. Fiigen Sie eine Methode steuern in Faenger ein, um die Methode in Wobbler
zu iiberschreiben. Schreiben Sie zunédchst eine Version, bei der die Schildkréte
immer zum Ursprung zeigt. Tipp: Verwenden Sie die math-Funktion atan2 und
die Turtle-Attribute X, y und heading.

5. Passen Sie steuern so an, dass die Turtles auf der Bildflache bleiben. Zum
Debugging kénnen Sie den Button »Step« nutzen, der fiir jede Schildkrote
einmal die Methode step aufruft.

6. Passen Sie steuern so an, dass jede Schildkréte zum jeweils ndchsten
Nachbarn schaut. Tipp: Turtles haben ein Attribut world, das auf die
TurtleWorld referenziert, in der sie leben. Und TurtleWorld hat wiederum das
Attribut animals, das eine Liste aller Turtles in dieser Welt enthdlt.

7. Passen Sie steuern so an, dass die Turtles Fangen spielen. Sie konnen Faenger
um Methoden erweitern und auch steuernund __init__ iiberschreiben. Aber
Sie diirfen nicht step, wobbeln oder bewegen anpassen bzw. iiberschreiben.
AuBerdem diirfen Sie zwar in steuern das Heading der Turtles dndern, aber
nicht deren Position.

Passen Sie die Regeln in Threr Methode steuern so an, dass das Spiel Spal$
macht. Beispielsweise sollte es auch fiir eine langsame Schildkréte moglich
sein, irgendwann eine schnellere Schildkréte zu fangen.

Losung: Faenger.py.
Listing 18.7

http://de.wikipedia.org/wiki/Fangen

Kapitel 19. Fallstudie: Tkinter
GUI

Die meisten Programme, die wir bisher gesehen haben, waren textbasiert. Aber viele
Programme benutzen eine grafische Benutzeroberflache, auch als GUI bekannt
(steht fiir »Graphical User Interface«).

Python bietet mehrere Moglichkeiten fiir das Schreiben von GUI-basierten
Programmen. Dazu gehoren wxPython, Tkinter und Qt. Jede dieser Moglichkeiten
hat ihre Vor- und Nachteile, deshalb hat sich Python nie auf einen Standard
festgelegt.

In diesem Kapitel werde ich auf Tkinter eingehen, weil das meiner Meinung nach fiir
den Einstieg die einfachste Losung ist. Die meisten in diesem Kapitel vorgestellten
Konzepte gelten natiirlich auch fiir andere GUI-Module.

Es gibt viele Biicher und Webseiten iiber Tkinter. Eine der besten Onlineressourcen
ist An Introduction to Tkinter von Fredrik Lundh.

Ich habe ein Modul mit dem Namen Gui.py geschrieben, das in Swampy enthalten
ist. Es bietet eine vereinfachte Schnittstelle fiir die Funktionen und Klassen in
Tkinter. Die Beispiele in diesem Kapitel basieren auf diesem Modul.

Hier sehen Sie ein einfaches Beispiel fiir eine GUI. Um eine GUI zu erstellen,
miissen Sie zundchst Gui importieren und ein Gui-Objekt instanziieren:

from import *

g = Gui()

g.title('Gui')
g.mainloop()

Wenn Sie diesen Code ausfiihren, sollte ein Fenster mit einem leeren grauen Quadrat
und dem Titel »Gui« angezeigt werden. mainloop ruft die Event-Schleife auf, die
darauf wartet, dass der Benutzer etwas macht, und darauf entsprechend reagiert. Es
handelt sich dabei um eine Endlosschleife, die ausgefiihrt wird, bis der Benutzer das
Fenster schlieft, Strg-C driickt oder etwas tut, wodurch das Programm beendet wird.

Diese GUI macht nicht allzu viel, weil sie keine Widgets enthédlt. Widgets sind jene
Elemente, die eine GUI ausmachen. Folgende gehoren dazu:
Button:
Widget, das Text oder ein Bild enthdlt und eine Aktion durchfiihrt, wenn man
darauf klickt
Canvas:
Bereich, der Linien, Rechtecke, Kreise und andere Formen anzeigen kann

Entry-Widget:
Bereich, in den der Benutzer Text eingeben kann

Scrollbar:
Widget, das den sichtbaren Bereich eines anderen Widgets steuert

Frame:
Container (meistens sichtbar), der andere Widgets enthalt

Das leere graue Quadrat, das Sie sehen, wenn Sie eine GUI erstellen, ist ein Frame.
Wenn Sie ein neues Widget erstellen, wird es diesem Frame hinzugefiigt.

Buttons und Callbacks

Die Methode bu erstellt ein Button-Widget:
button = g.bu(text="Druck mich.")

Der Riickgabewert von bu ist ein Button-Objekt, der im Frame angezeigte Button ist
eine grafische Darstellung dieses Objekts. Sie konnen den Button steuern, indem Sie
entsprechende Methoden dafiir aufrufen.

bu erwartet bis zu 32 Parameter, iiber die Sie das Aussehen und die Funktionalitét
des Buttons steuern kénnen. Diese Parameter nennt man Optionen. Anstatt Werte
fiir alle 32 Optionen zu iibergeben, konnen Sie Schliisselwortargumente wie etwa
text="Druck mich." angeben, um nur die gewliinschten Optionen festzulegen. Fiir die
iibrigen werden die Standardwerte verwendet.

Wenn Sie ein Widget dem Frame hinzufiigen, schrumpft der Frame auf die Gro3e
des Buttons. Fiigen Sie weitere Widgets hinzu, wachst der Frame wieder, um diese
aufzunehmen.

Mit der Methode la kénnen Sie ein Label-Widget erstellen:
label = g.la(text="Drlicken Sie den Button.")

StandardmalSig stapelt Tkinter die Widgets von oben nach unten und zentriert sie.
Wir werden uns aber bald ansehen, wie wir dieses Verhalten dndern konnen.

Wenn Sie auf den Button klicken, werden Sie feststellen, dass er nicht viel macht.
Das liegt daran, dass Sie ihn noch nicht »verkabelt« haben, ihm noch nicht gesagt
haben, was er tun soll!

Die Option, die das Verhalten eines Buttons steuert, heilst command. Als Wert fiir
command koénnen Sie eine Funktion angeben, die ausgefiihrt werden soll, wenn der
Button gedriickt wird. In unserem Beispiel verwenden wir eine Funktion, die ein
neues Label erstellt:

def erstelle_label():

g.la(text="Danke!")
Nun konnen wir einen Button erstellen, dem wir diese Funktion iibergeben:
button2 = g.bu(text="Nein, driick mich!', command=erstelle_label)

Wenn Sie auf diesen Button klicken, sollte erstelle label ausgefiihrt und ein neues
Label angezeigt werden.

Der Wert fiir die Option command ist ein Funktionsobjekt, das man als Callback
bezeichnet. Der Name riihrt daher, dass Sie bu aufrufen, um den Button zu erstellen,
und das Programm Sie dann wiederum »zuriickruft«, wenn der Benutzer auf den
Button klickt.

Eine solche Ablauflogik bezeichnet man als Event-orientierte Programmierung.
Benutzerinteraktionen wie etwa Klicks auf einen Button oder Tastenanschldge
bezeichnet man als Events. Bei der Event-orientierten Programmierung wird der
Programmablauf also eher durch Benutzerinteraktionen bestimmt als durch den
Programmierer.

Die Herausforderung bei der Event-orientierten Programmierung besteht darin, eine
Reihe von Widgets und Callbacks zu konstruieren, die fiir eine beliebige
Reihenfolge von Benutzeraktionen funktioniert (oder wenigstens eine entsprechende
Fehlermeldung ausgibt).

Schreiben Sie ein Programm, das eine GUI mit einem einzigen Button erstellt. Wenn
der Button gedriickt wird, soll ein zweiter Button erstellt werden. Und wenn dann
dieser Button angeklickt wird, soll ein Label mit dem Text »Gut gemacht!«
erscheinen.

Was passiert, wenn Sie die Buttons mehr als einmal klicken? Lésung:
button_demo.py

Listing 19.1

Canvas-Widgets

Eines der vielseitigsten Widgets ist Canvas, das einen Bereich zum Zeichnen von
Linien, Kreisen und anderen Formen angelegt. Wenn Sie Listing 15.4 gemacht
haben, sind Sie bereits mit Canvas vertraut.

Die Methode ca erstellt ein neues Canvas:
canvas = g.ca(width=500, height=500)
width und height sind die Male des Canvas in Pixeln.

Auch nachdem Sie ein Widget erstellt haben, konnen Sie die Optionen mit der
Methode config anpassen. Die Option bg dndert beispielsweise die
Hintergrundfarbe:

canvas.config(bg="white")

Der Wert von bg ist dabei ein String mit dem Namen einer Farbe. Die zuldssigen
Farbnamen variieren je nach Python-Implementierung, aber alle Implementierungen
bieten mindestens die folgenden Optionen:

white black

red green blue

cyan yellow magenta
Formen auf dem Canvas heiflen Items. Die Canvas-Methode circle zeichnet
beispielsweise (wie Sie sicher bereits vermutet haben) einen Kreis:

item = canvas.circle([0,0], 100, fill="red")

Das erste Argument ist ein Koordinatenpaar fiir den Mittelpunkt des Kreises. Das
zweite Argument bestimmt den Radius.

Gui.py bietet ein standardmaéliges kartesisches Koordinatensystem mit dem
Ursprung im Mittelpunkt des Canvas. Der positive Teil der y-Achse zeigt nach oben.
Bei manchen anderen Grafiksystemen befindet sich der Ursprung dagegen in der
oberen linken Ecke, und die y-Achse verldauft nach unten.

Die Option fill bestimmt, dass der Kreis rot gefiillt werden soll.

Der Riickgabewert von kreis ist ein Item-Objekt mit Methoden zum Verédndern des
Elements auf dem Canvas. So konnen Sie beispielsweise mit config eine beliebige
Kreisoption dndern:

item.config(fill="yellow', outline="orange', width=10)
width gibt die Dicke der Randlinie in Pixeln an, outline definiert die Farbe.

Schreiben Sie ein Programm, das ein Canvas und einen Button erstellt. Wenn der
Benutzer auf den Button klickt, soll das Programm einen Kreis auf das Canvas
zeichnen.

Listing 19.2

Koordinatensequenzen

Die Methode rectangle erwartet eine Sequenz von Koordinaten, die die
gegeniiberliegenden Ecken des Rechtecks definieren. Das folgende Beispiel zeichnet
ein griines Rechteck mit der unteren linken Ecke im Ursprung und der oberen
rechten Ecke im Punkt (200,100):

canvas.rectangle([[0, 0], [200, 100]],

fill="blue', outline='orange', width=10)

Die Definition solcher Eckpunkte bezeichnet man als Bounding Box, als
Begrenzungsrahmen, weil die beiden Punkte das Rechteck begrenzen.

oval erwartet ebenfalls einen solchen Begrenzungsrahmen und zeichnet innerhalb
des angegebenen Rechtecks ein Oval:

canvas.oval([[0, 0], [200, 100]], outline="orange', width="10)

line erwartet eine Sequenz von Koordinaten und zeichnet Linien, die diese Punkte
verbinden. Das folgende Beispiel zeichnet die beiden Schenkel eines Dreiecks:

canvas.line([[0, 100], [100, 200], [200, 100]], width=10)

polygon erwartet dieselben Argumente, zeichnet aber (falls nétig) auch den letzten
Schenkel des Polygons und fiillt dieses:
canvas.polygon([[0, 100], [100, 200], [200, 100]],
fill="red’, outline="orange', width=10)

Weitere Widgets

Tkinter stellt zwei Widgets zur Verfiigung, in die die Benutzer Text eingeben
kénnen: Entry mit einer einzigen Zeile und ein Text-Widget mit mehreren Zeilen.

en erstellt ein neues Entry-Widget:
entry = g.en(text="Standardtext.")

Mit der Option text konnen Sie beim Erstellen des Items Text in das Widget
schreiben. Die get-Methode liefert den Inhalt des Widgets zuriick (der eventuell
vom Benutzer gedndert wurde):

>>> entry.get()
'Standardtext.’

te erstellt ein Text-Widget:

text = g.te(width=100, height=5)
width und height bestimmen die Malle des Widgets in Zeichen und Zeilen.
insert schreibt Text in das Text-Widget:

text.insert(END, 'eine Zeile Text.")

END ist dabei ein spezieller Index, der sich auf das letzte Zeichen im Text-Widget
bezieht.

Sie kénnen auch ein bestimmtes Zeichen iiber einen Index angeben, zum Beispiel
1.1. Vor dem Punkt steht die Zeilennummer, nach dem Punkt die Spaltennummer.
Das folgende Beispiel fiigt die Zeichen 'Noch' vor dem ersten Zeichen in der ersten
Zeile ein.

>>> text.insert(1.0, 'Noch')

Die get-Methode liest den Text aus dem Widget aus. Auch hier kénnen Sie einen
Start- und einen Endindex als Argumente angeben. Das folgende Beispiel liefert den

gesamten Text aus dem Widget, einschlielllich des Zeilenvorschubs:

>>> text.get(0.0, END)

'Noch eine Zeile Text.\n'
Die Methode delete entfernt Text aus dem Widget. So 16schen Sie beispielsweise
alles auller den ersten vier Buchstaben:

>>> text.delete(1.4, END)

>>> text.get(0.0, END)

'Noch\n'
Andern Sie Ihre Losung aus Listing 19.2, indem Sie ein Entry-Widget und einen
zweiten Button einfiigen. Wenn der Benutzer auf den zweiten Button klickt, soll ein
Farbname aus dem Entry-Widget gelesen und als Fiillfarbe fiir den Kreis verwendet
werden. Passen Sie den vorhandenen Kreis mit config an. Erstellen Sie keinen neuen.

Ihr Programm soll den Fall berticksichtigen, dass der Benutzer die Farbe eines
Kreises zu dndern versucht, der noch nicht erstellt wurde, sowie den Fall, dass der
angegebene Farbname ungiiltig ist.

Meine Losung finden Sie in der Datei kreis_demo.py.
Listing 19.3

Widgets packen

Bisher haben wir Widgets nur in einer einzigen Spalte gestapelt. Aber die Layouts
der meisten Benutzeroberflachen sind komplizierter. Abbildung 19.1 zeigt als
Beispiel eine vereinfachte Version von TurtleWorld (siehe Kapitel 4).

In diesem Abschnitt stelle ich den Code, der diese GUI erstellt, Schritt fiir Schritt
vor. Das vollstandige Beispiel finden Sie in der Datei EinfacheTurtleWorld.py.

Auf der obersten Ebene enthélt die GUI zwei Widgets, die in einer Reihe angeordnet
sind — ein Canvas und einen Frame. In einem ersten Schritt miissen wir also diese
Reihe erstellen.
class EinfacheTurtleWorld(TurtleWorld):
""Diese Klasse ist identisch mit TurtleWorld. Um den

Code fiir das Layout der GUI zu erkldren, wurde dieser
allerdings vereinfacht.™"

def setup(self):
self.row()

setup ist die Funktion, die die Widgets erstellt und anordnet. Die Anordnung von
Widgets in einer GUI bezeichnet man als Packing.

TurtleWorld

- Canvas drucken Beenden |
5 o
i PL ™ i|
. = it R,
5 o Turtle erstellen Entfernen |
L‘I_ 'VJ
g : L . 3 e L]
*'ALH_'J 'L:_ _‘ﬂL'-_.'_,"‘i 1L'-_n_,"‘“"_ JJ L'_pu“n-’_-_
~ 1
L 3) |
H ‘“:_ ' Datei starten | schneeflocke.py
i T |
£ 1
c¥o e
n f‘r iwelt.clear()
E 4 [tim = Turtle(welt
,___F'J\Ln__ 1‘_‘_'1-"*-{__? ()
£ 3
L, i
. %
3 =
L e S o
£ A ,5 M M,
h‘nl-\. & i h Lu—}-..-rf
i o
& g
Ly A
v f . a

Code starten

Abbildung 19.1 Vereinfachte Version von TurtleWorld.

row erstellt einen Zeilen-Frame und macht diesen zum aktuellen Frame. Bis dieser
Frame geschlossen oder ein anderer Frame erstellt wird, werden alle nachfolgenden
Widgets in diese Reihe gepackt.

Hier sehen Sie den Code, der das Canvas und den Spalten-Frame fiir die anderen
Widgets erstellt:

self.canvas = self.ca(width=400, height=400, bg="white")

self.col()
Das erste Widget in der Spalte ist ein Grid Frame mit zwei Buttons, die in
Zweiergruppen angeordnet sind:

self.gr(cols=2)

self.bu(text='"Canvas drucken’, command=self.canvas.dump)

self.bu(text='"Beenden’, command=self.quit)

self.bu(text="Turtle erstellen’, command=self.make_turtle)

self.bu(text="Entfernen', command=self.clear)

self.endgr()
gr erstellt das Raster. Das Argument gibt die Anzahl der Spalten an. Die Widgets im
Grid werden von links nach rechts und von oben nach unten angeordnet.

Der erste Button verwendet self.canvas.dump als Callback, der zweite self.quit.
Dabei handelt es sich um gebundene Methoden, d. h. um Methoden, die mit einem
bestimmten Objekt verkniipft sind. Wenn Sie diese Methoden aufrufen, werden sie

fiir das entsprechende Objekt aufgerufen.

Das ndchste Widget in der Spalte ist ein Reihen-Frame mit einem Button und einem
Entry-Widget:

self.row([0,1], pady=30)

self.bu(text='"Datei ausflhren’, command=self.run_file)

self.en_file = self.en(text="koch.py', width=5)

self.endrow()
Das erste Argument fiir row ist eine Liste mit Gewichtungen, die bestimmt, wie
zusétzlicher Platz zwischen den Widgets aufgeteilt werden soll. Die Liste [0,1]
bestimmt, dass samtlicher zusétzlicher Platz dem zweiten Widget, also dem Entry-
Widget, zugewiesen werden soll. Wenn Sie diesen Code ausfiihren und die Grof3e
des Fensters dndern, werden Sie feststellen, dass das Entry-Widget mitwachst, der
Button dagegen nicht.

Die Option pady verpasst dieser Reihe ein Padding in y-Richtung — 30 Pixel Platz
nach oben und unten.

endrow schliefSt die Reihe der Widgets ab. Alle nachfolgenden Widgets werden also
in den Spalten-Frame gepackt. Gui.py stapelt die Frames:

= Wenn Sie mit row, col oder gr einen Frame erstellen, wandert er oben auf den
Stapel und wird zum aktuellen Frame.

= Wenn Sie mit endrow, endcol oder endgr einen Frame abschliellen, wird er vom
Stapel entfernt, und der Frame darunter wird zum aktuellen Frame.

Die Methode run_file liest den Inhalt des Entry-Widgets, verwendet diesen als
Dateinamen, liest den Inhalt der Datei aus und iibergibt diesen an run_code.
self.inter ist ein Interpreter-Objekt, das einen String erwartet und diesen als Python-
Code ausfiihrt:
def run_file(self):

filename = self.en_file.get()

fp = open(filename)

source = fp.read()

self.inter.run_code(source, filename)

Die letzten beiden Widgets sind ein Text-Widget und ein Button:

self.te_code = self.te(width=25, height=10)
self.te_code.insert(END, 'world.clear()\n")
self.te_code.insert(END, 'tim = Turtle(world)\n")

self.bu(text='"Code starten', command=self.run_text)

run_text ist dhnlich wie run_file, liest den Code allerdings nicht aus einer Datei,
sondern aus dem Text-Widget:

def run_text(self):
source = self.te_code.get(1.0, END)

self.inter.run_code(source, '<user-provided code>")

Leider unterscheiden sich die Details beim Widget-Layout in den verschiedenen
Sprachen und Python-Modulen. Allein Tkinter bietet bereits drei verschiedene
Mechanismen fiir die Anordnung von Widgets. Diese Mechanismen heilien
Geometry Managers. Der Manager, den ich in diesem Abschnitt vorgestellt habe,
ist der Geometry Manager »grid«. Die anderen heillen »pack« und »place«.

Gliicklicherweise gelten die meisten in diesem Abschnitt vorgestellten Konzepte
auch fiir andere GUI-Module und Sprachen.

Menis und Callables

Ein Menubutton ist ein Widget, das wie ein Button aussieht, aber ein Menii 6ffnet,
wenn man darauf klickt. Nachdem der Benutzer ein Element ausgewdhlt hat, wird
das Menii wieder ausgeblendet.

Hier sehen Sie den Code, der einen Menubutton fiir die Farbauswahl erstellt (siehe
menubutton_demo.py):

g = Gui()

g.la('Wahlen Sie eine Farbe:')

farben = ['red', 'green’, 'blue']

mb = g.mb(text=farben[0])
mb erstellt einen Menubutton. Anfangs entspricht der Text im Button dem Namen
der Standardfarbe. Die folgende Schleife erstellt jeweils ein Meniielement fiir jede
Farbe:

for farbe in farben:

g.mi(mb, text=farbe, command=Callable(waehle_farbe, farbe))

Das erste Argument von mi ist der Menubutton, dem diese Elemente zugeordnet
werden.

Die Option command ist ein Callable-Objekt — das ist etwas Neues. Bisher kennen
wir Funktionen und gebundene Methoden als Callbacks, was wunderbar funktioniert,
wenn Sie der jeweiligen Funktion keine Argumente {ibergeben miissen. Ansonsten
miissen Sie ein Callable-Objekt konstruieren, das eine Funktion wie etwa
waehle_farbe und die entsprechenden Argumente enthilt, beispielsweise farbe.

Das Callable-Objekt speichert eine Referenz auf die Funktion und die Argumente als
Attribute. Wenn der Benutzer anschliefend auf ein Meniielement klickt, ruft der
Callback die entsprechende Funktion auf und iibergibt die gespeicherten Argumente.

Und so konnte waehle farbe aussehen:

def waehle_farbe(farbe):
print farbe
mb.config(text=farbe)

Wenn der Benutzer ein Meniielement auswahlt und waehle_farbe aufgerufen wird,
konfiguriert die Funktion den Menubutton so, dass die neu ausgewdhlte Farbe
angezeigt und ausgegeben wird. Beim Nachvollziehen dieses Beispiels konnen Sie
sehen, dass waehle_farbe aufgerufen wird, wenn Sie ein Element auswahlen (und
nicht aufgerufen wird, wenn Sie das Callable-Objekt erstellen).

Bindung

Eine Bindung ist eine Verkniipfung zwischen einem Widget, einem Event und
einem Callback: Wenn ein Event (beispielsweise der Klick auf einen Button) in
einem Widget ausgeldst wird, wird der Callback aufgerufen.

In vielen Widgets gibt es Standardbindungen. Wenn Sie beispielsweise auf einen
Button klicken, wird durch eine Standardbindung der Button gedriickt dargestellt.
Lassen Sie den Button wieder los, wird das urspriingliche Aussehen des Buttons
durch eine Standardbindung wiederhergestellt und der mit der Option command
angegebene Callback aufgerufen.

Mit der Methode bind kénnen Sie diese Standardbindungen iiberschreiben oder neue
hinzufiigen. Der folgende Code erstellt beispielsweise eine Bindung fiir ein Canvas
(den Code fiir diesen Abschnitt finden Sie in draggable_demo.py):

ca.bind('<ButtonPress-2>', erstelle_kreis)

Das erste Argument ist ein Event-String fiir das Event, das ausgeldst wird, wenn der
Benutzer die rechte Maustaste driickt. Es gibt natiirlich noch andere Maus-Events,
wie etwa ButtonMotion, ButtonRelease und Double-Button.

Das zweite Argument ist ein Event-Handler. Ein Event-Handler ist eine Funktion
oder eine gebundene Methode, wie beispielsweise ein Callback. Der entscheidende
Unterschied besteht allerdings darin, dass ein Event-Handler ein Event-Objekt als
Parameter erwartet. Hier sehen Sie ein Beispiel:
def erstelle_kreis(event):

pos = ca.canvas_coords([event.x, event.y])

item = ca.circle(pos, 5, fill="red")
Das Event-Objekt enthdlt Informationen iiber die Art des Events sowie Details wie
beispielsweise die Koordinaten des Mauszeigers. In diesem Beispiel brauchen wir
die Position des Mauszeigers. Die entsprechenden Werte sind Pixelkoordinaten, die
durch das zugrunde liegende Grafiksystem vorgegeben sind. Die Methode
canvas_coords iibersetzt diese Werte in »Canvas-Koordinaten«, die mit Canvas-
Methoden wie etwa circle kompatibel sind.

Bei Entry-Widgets wird tiblicherweise das Event <Return> gebunden, das ausgeldst
wird, wenn der Benutzer die Eingabetaste driickt. Der folgende Code erstellt einen
Button und ein Entry-Widget:

bu = g.bu('Textelement erstellen:', erstelle_text)
en = g.en()
en.bind('<Return>', erstelle_text)
erstelle_text wird aufgerufen, wenn auf den Button geklickt wird oder der Benutzer
die Eingabetaste driickt, wahrend er Text im Entry-Widget eingibt. Damit das
funktioniert, brauchen wir eine Funktion, die als Befehl (ohne Argumente) oder als
Event-Handler (mit einem Event als Argument) aufgerufen werden kann:
def erstelle_text(event=None):
text = en.get()
item = ca.text([0,0], text)
erstelle_text liest den Inhalt aus dem Entry-Widget und zeigt ihn als Textelement
auf dem Canvas an.

AuBerdem konnen Sie Bindungen fiir Canvas-Elemente erstellen. Es folgt eine
Klassendefinition von Draggable, eine von Item abgeleitete Klasse, die Bindungen
fiir die Implementierung von Drag-and-drop bietet:.
class Draggable(ltem):
def __init_ (self, item):

self.canvas = item.canvas

self.tag = item.tag

self.bind('<ButtonPress-1>', self.auswaehlen)

self.bind('<B1-Motion>', self.drag)

self.bind('<ButtonRelease-1>', self.drop)
Die init-Methode erwartet ein Item als Parameter. Anschlielfend werden die
Attribute des Items kopiert und die Bindungen fiir drei Events erstellt: Driicken der
linken Maustaste, Ziehen mit gedriickter linker Maustaste und Loslassen der linken
Taste.

Der Event-Handler auswaehlen speichert die Koordinaten des aktuellen Events und
die urspriingliche Farbe des Elements und farbt das Textelement anschliefSend gelb:
def auswaehlen(self, event):

self.dragx = event.x
self.dragy = event.y

self fill = self.cget('fill")

self.config(fill="orange")
cget steht fiir »get configuration«. Die Methode erwartet den Namen einer Option
als String und liefert den aktuellen Wert dieser Option zuriick.

drag ermittelt, wie weit das Objekt relativ zur Ausgangsposition gezogen wurde,
aktualisiert die gespeicherten Koordinaten entsprechend und verschiebt das Element.
def drag(self, event):

dx = event.x - self.dragx
dy = event.y - self.dragy

self.dragx = event.x
self.dragy = event.y

self.move(dx, dy)

Diese Berechnung erfolgt bereits in Pixelkoordinaten. Eine Konvertierung in
Canvas-Koordinaten ist nicht erforderlich.

Zu guter Letzt stellt drop die urspriingliche Farbe des Elements wieder her:

def drop(self, event):
self.config(fill=self fill)
Uber die Draggable-Klasse kénnen Sie ein vorhandenes Element um die Drag-and-
drop-Funktionalitdten erweitern. Hier sehen Sie beispielsweise eine erweiterte
Version von erstelle_kreis, die ein Element mit circle erzeugt und es mit
Draggable Drag-and-drop-tauglich macht:
def erstelle_kreis(event):

pos = ca.canvas_coords([event.x, event.y])

item = ca.circle(pos, 5, fill="red’)

item = Draggable(item)
Dieses Beispiel zeigt einen der Vorteile der Vererbung: Sie kénnen die
Funktionalitdt einer Basisklasse dndern, ohne die zugrunde liegende Definition
anzupassen. Das ist besonders niitzlich, wenn Sie das Verhalten eines Moduls dndern
mochten, das Sie nicht selbst geschrieben haben.

Debugging

Eine der Herausforderungen bei der GUI-Programmierung besteht darin, alle
Ereignisse im Auge zu behalten, die beim Aufbau der GUI sowie spéter als Reaktion
auf Benutzer-Events geschehen.

Wenn Sie beispielsweise einen Callback einrichten, wird haufig der Fehler gemacht,
die Funktion selbst aufzurufen, anstatt eine Referenz darauf zu iibergeben:

def der_Callback():
print 'Called.’

g.bu(text="Das ist FALSCH!', command=der_Callback())

Wenn Sie diesen Code ausfiihren, werden Sie sehen, dass der_Callback sofort
aufgerufen wird und erst dann der Button erstellt wird. Wenn Sie anschliefend auf
den Button driicken, passiert nichts, weil der_Callback den Riickgabewert None
liefert. Ublicherweise mochten Sie keinen Callback aufrufen, wihrend Sie die GUI
einrichten. Diese Funktion soll erst spater als Reaktion auf einen Benutzer-Event
aufgerufen werden.

Eine weitere Herausforderung der GUI-Programmierung besteht darin, dass Sie
keinen Einfluss auf den Programmablauf haben. Welche Teile des Programms

ausgefiihrt werden und in welcher Reihenfolge dies geschieht, wird durch die
Benutzeraktionen bestimmt. Das bedeutet, dass Sie Ihr Programm so entwickeln
miissen, dass es mit einer beliebigen Abfolge aller méglichen Events funktioniert.

Die GUI in Listing 19.3 hat zwei Widgets: Eines erstellt ein Kreiselement, und das
andere dndert die Farbe des Kreises. Wenn der Benutzer erst den Kreis erstellt und
dann die Farbe dndert, gibt es kein Problem. Aber was passiert, wenn der Benutzer
die Farbe eines Kreises dndern mochte, der noch gar nicht existiert? Oder mehr als
einen Kreis erstellt?

Mit zunehmender Anzahl der Widgets wird es immer schwieriger, sich alle
moglichen Folgen von Events auszumalen. Eine Moglichkeit, mit dieser
Komplexitdt umzugehen, besteht darin, die Zustdnde des Systems in einem Objekt
zu kapseln und Folgendes zu berticksichtigen:

m Welche Zustédnde sind moglich? In unserem Beispiel mit dem Kreis miissen wir
zwei Zustdnde berticksichtigen: bevor und nachdem der Benutzer den ersten Kreis
erstellt hat.

m Welche Events kénnen im jeweiligen Zustand ausgeldst werden? In unserem
Beispiel konnen die Benutzer einen der beiden Buttons driicken oder das
Programm verlassen.

m Was ist das gewiinschte Ergebnis fiir das jeweilige Zustand-Event-Paar? Da es
zwei Zustdande und zwei Buttons gibt, miissen wir insgesamt vier Zustand-Event-
Paare berticksichtigen.

= Was kann zum Ubergang von einem Zustand zum anderen fiihren? In diesem Fall
kommt es zu einem Ubergang, wenn der Benutzer den ersten Kreis erstellt.

Es kann auch niitzlich sein, Invarianten zu definieren und zu iiberpriifen, die
unabhdngig von der Abfolge der Events eingehalten werden miissen.

Dieser Ansatz fiir die GUI-Programmierung kann IThnen helfen, korrekten Code zu
schreiben, ohne alle méglichen Kombinationen von Benutzer-Events testen zu
miissen!

Glossar

GUI:
Grafische Benutzerschnittstelle
Widget:

Eines der Elemente, aus dem eine GUI aufgebaut wird: Buttons, Mentis,
Texteingabefelder usw.

Option:

Wert, der das Aussehen oder die Funktion eines Widgets steuert

Schliisselwortargument:
Argument, das den Parameternamen als Teil des Funktionsaufrufs angibt

Callback:
Funktion, die einem Widget zugeordnet ist und aufgerufen wird, wenn der
Benutzer eine Aktion durchfiihrt

Gebundene Methode:
Methode, die einer bestimmten Instanz zugewiesen ist

Event-orientierte Programmierung:
Programmierstil, bei dem der Programmablauf durch Aktionen der Benutzer
bestimmt wird

Event:
Benutzeraktion, wie etwa ein Mausklick oder Driicken einer Taste, die eine
Reaktion der GUI auslost

Event-Schleife:
Endlosschleife, die auf Benutzeraktionen wartet und darauf reagiert

[tem:
Grafisches Element auf einem Canvas-Widget

Begrenzungsrechteck:
Rechteck, das eine Gruppe von Elementen umfasst, {iblicherweise durch zwei
gegeniiberliegende Ecken definiert
Packing:
Elemente einer GUI anordnen und anzeigen
Geometry Manager:
System zum Packen von Widgets
Bindung:

Verkniipfung zwischen einem Widget, einem Event und einem Event-Handler.
Der Event-Handler wird aufgerufen, wenn das Event im Widget ausgel st wird

Ubungen

Fiir diese Ubungen werden Sie einen Bildbetrachter schreiben. Hier sehen Sie ein

einfaches Beispiel:
g = Gui()

canvas = g.ca(width=300)

photo = Photolmage(file='danger.gif')

canvas.image([0,0], image=photo)

g.mainloop()

Photolmage liest eine Datei und liefert ein Photolmage-Objekt zuriick, das Tkinter
anzeigen kann. canvas.image zeigt das Bild auf dem Canvas mit den angegebenen
Koordinaten als Mittelpunkt an. Sie konnen es auch auf Labels, Buttons und einige

anderen Widgets darstellen:

g.la(image=photo)

g.bu(image=photo)

Photolmage kann nur einige wenige Bildformate verarbeiten, wie beispielsweise GIF
und PPM. Aber wir kdnnen die »Python Imaging Library« (PIL) verwenden, um
andere Dateien zu lesen.

Der Name des Moduls PIL lautet Image, aber Tkinter definiert ein Objekt mit
demselben Namen. Um diesen Konflikt zu vermeiden, kénnen Sie import...as
verwenden:

import as

import

In der ersten Zeile wird Image mit dem lokalen Namen PIL importiert. Die zweite
Zeile importiert schlieflich ImageTk, das ein PIL-Bild in ein Tkinter-PhotoImage
konvertieren kann. Hier sehen Sie ein Beispiel:

image = PIL.open('allen.png’)

photo2 = ImageTk.Photolmage(image)

g.la(image=photo2)

1. Fiir diese Ubung brauchen Sie bild_demo.py, danger.gif und allen.png aus dem
Beispielcode. Fiihren Sie bild_demo.py aus. Unter Umstdnden miissen Sie PIL
und ImageTk installieren. Diese Pakete finden Sie wahrscheinlich in Threm
Software-Repository, ansonsten konnen Sie sie unter
http://pythonware.com/products/pil/ herunterladen.

2. Andern Sie in bild_demo.py den Namen des zweiten PhotoImage von photo2 in
photo und fiihren Sie das Programm erneut aus. Nun sollten Sie das zweite
Photolmage sehen, aber nicht das erste.

Wenn Sie photo erneut zuweisen, wird dadurch die Referenz auf das erste
PhotoImage iiberschrieben, das daraufhin verschwindet. Dasselbe passiert,
wenn Sie ein Photolmage einer lokalen Variablen zuweisen. Es verschwindet,
sobald die Funktion beendet wird.

Um dieses Problem zu umgehen, miissen Sie eine Referenz auf jedes
Photolmage speichern, das Sie behalten mdchten. Dafiir koénnen Sie entweder
eine globale Variable verwenden oder die Photolmages in einer Datenstruktur
bzw. als Attribut eines Objekts speichern.

Dieses Verhalten kann frustrierend sein, ich mochte Sie daher davor warnen
(deshalb steht in einem der Beispielbilder auch »Danger!«).

http://pythonware.com/products/pil/

3. Schreiben Sie von diesem Beispiel ausgehend ein Programm, das den Namen
eines Verzeichnisses erwartet, alle Dateien durchlduft und dann alle Dateien
anzeigt, die PIL als Bild erkennt. Sie konnen eine try-Anweisung verwenden,
um die Dateien abzufangen, die PIL nicht erkennt.

Wenn der Benutzer auf das Bild klickt, soll das Programm das ndchste
anzeigen.

4. PIL bietet eine Vielzahl von Methoden fiir die Manipulation von Bildern. Mehr
dartiiber erfahren Sie unter http://pythonware.com/library/pil/handbook. Als
Herausforderung kénnen Sie sich einige dieser Methoden aussuchen und eine
GUI entwickeln, um diese Funktionen auf die Bilder anzuwenden.

Losung: BildBrowser.py.
Listing 19.4

Ein Vektorgrafikeditor ist ein Programm, mit dem Benutzer Formen auf dem
Bildschirm zeichnen und bearbeiten sowie Dateien in Vektorgrafikformaten wie
PostScript und SVG ausgeben kdnnen.

Schreiben Sie einen einfachen Vektorgrafikeditor mit Tkinter. Die Benutzer sollen
damit zumindest Linien, Kreise und Rechtecke zeichnen sowie mit Canvas.dump
eine PostScript-Beschreibung des Canvas-Inhalts erzeugen kénnen.

Als zusdtzliche Herausforderung kénnen Sie den Benutzern die Méglichkeit bieten,
die Elemente auf dem Canvas auszuwdhlen und deren GréfSe zu dndern.

Listing 19.5

Schreiben Sie mit Tkinter einen einfachen Webbrowser. Er soll ein Text-Widget
enthalten, in das die Benutzer eine URL eingeben kénnen, sowie ein Canvas fiir die
Anzeige der Seiteninhalte.

Die HTML-Dateien konnen Sie mit dem Modul urllib herunterladen (siehe
Listing 14.6), die HTML-Tags konnen Sie mit dem Modul HTMLParser parsen
(siehe http://docs.python.org/lib/module-HTMLParser.html).

Thr Browser soll zumindest reinen Text und Hyperlinks unterscheiden. Als
zusdtzliche Herausforderung konnen Sie Hintergrundfarben, Tags fiir die
Formatierung von Text sowie Bilder berticksichtigen.

Listing 19.6

http://pythonware.com/library/pil/handbook
http://docs.python.org/lib/module-HTMLParser.html

Anhang A. Debugging

In einem Programm konnen verschiedene Arten von Fehlern auftauchen. Daher ist es
niitzlich, zwischen diesen Arten zu unterscheiden, um sie schneller zu finden:

m Syntaxfehler treten auf, wenn Python den Quellcode in Bytecode iibersetzt.
Ublicherweise deuten solche Fehler darauf hin, dass etwas an der Syntax des
Programms falsch ist. Beispiel: Wenn Sie den Doppelpunkt am Ende einer def-
Anweisung weglassen, erhalten Sie die etwas redundante Fehlermeldung
SyntaxError: invalid syntax.

m Laufzeitfehler werden vom Interpreter gemeldet, wenn etwas bei der Ausfiihrung
des Programms schieflduft. Die meisten Meldungen bei Laufzeitfehlern enthalten
Informationen dariiber, wo der Fehler aufgetreten ist und welche Funktionen
dabei ausgefiihrt wurden. Beispiel: Eine endlose Rekursion erzeugt {iblicherweise
den Laufzeitfehler maximum recursion depth exceeded.

m Fiir semantische Fehler werden keine Fehlermeldungen angezeigt, jedoch liefert
das Programm nicht das gewiinschte Resultat. Beispiel: Ein Ausdruck wird nicht
in der von Thnen erwarteten Reihenfolge ausgewertet und kommt deshalb zu
einem falschen Ergebnis.

In einem ersten Schritt sollten Sie beim Debugging herausfinden, um welche Art von
Fehler es sich handelt. Die folgenden Abschnitte teilen sich auf in die
entsprechenden Fehlertypen, manche Techniken sind aber in mehr als nur einer
Situation hilfreich.

Syntaxfehler

Syntaxfehler sind iiblicherweise leicht zu beheben, sobald Sie sie gefunden haben.
Ungliicklicherweise sind die Fehlermeldungen oft nicht sehr hilfreich. Die
haufigsten Meldungen lauten SyntaxError: invalid syntax und SyntaxError: invalid
token. Keine von beiden ist sonderlich aussagekréftig.

Andererseits konnen Sie in der Meldung erkennen, an welcher Stelle im Programm
das Problem aufgetreten ist. Genau genommen sagt Ihnen die Meldung, an welcher
Stelle Python ein Problem erkannt hat. Das muss allerdings nicht zwingend die
Stelle sein, an der sich der Fehler auch tatsdchlich versteckt. Manchmal liegt der
Fehler vor der in der Fehlermeldung genannten Stelle, hdufig in der Zeile davor.

Wenn Sie Thr Programm inkrementell programmieren, sollten Sie eine ziemlich gute
Vorstellung davon haben, wo der Fehler liegt — im Zweifel in der letzten Zeile, die
Sie gerade geschrieben haben.

Beim Abtippen des Codes aus einem Buch sollten Sie IThren Code mit dem Code im
Buch sehr sorgfiltig vergleichen. Priifen Sie jedes einzelne Zeichen. Bedenken Sie
aullerdem, dass auch das Buch fehlerhaft sein kann. Wenn Sie also etwas entdecken,

das wie ein Syntaxfehler aussieht, kann es auch durchaus einer sein.
So konnen Sie die am hdufigsten vorkommenden Syntaxfehler vermeiden:

1. Vergewissern Sie sich, dass Sie kein Python-Schliisselwort als Variablenname
verwenden.

2. Uberpriifen Sie, ob Sie ans Ende der Header aller Verbundanweisungen einen
Doppelpunkt geschrieben haben, einschlieBlich aller for-, while-, if- und def-
Anweisungen.

3. Stellen Sie sicher, dass alle Strings in entsprechende Anfiihrungszeichen
eingefasst sind.

4. Uberpriifen Sie bei mehrzeiligen Strings mit drei Anfiihrungszeichen (einzeln
oder doppelt), ob Sie den jeweiligen String auch korrekt abgeschlossen haben.
Wenn Sie einen String nicht korrekt beenden, kann das zu einem invalid token-
Fehler am Ende Thres Programms fiihren. Oder aber der folgende Teil des
Programms wird bis zum ndchsten String als ein einziger langer String
aufgefasst. In diesem Fall wird unter Umstdnden iiberhaupt keine
Fehlermeldung gezeigt!

5. Bei 6ffnenden Operatoren, die nicht geschlossen werden, wie (, { oder [, macht
Python mit der ndchsten Zeile als Teil der aktuellen Anweisung weiter.
Meistens wird fiir die unmittelbar darauffolgende Zeile ein Fehler gemeldet.

6. Suchen Sie nach dem Klassiker: einem = anstatt dem == in Bedingungen.

7. Uberpriifen Sie die Einriickung der Codezeilen. Python kommt mit Leerzeichen
und Tabs klar. Aber wenn Sie diese beiden Zeichen miteinander mischen, kann
das zu Problemen fiihren. Am besten verwenden Sie einen Texteditor, der mit
Python umgehen kann und fiir eine konsistente Einriickung sorgt.

Sollte Thr Programm nun immer noch nicht funktionieren, lesen Sie den nachsten
Abschnitt ...

Ich mache immer wieder Anderungen, sehe aber keinen
Unterschied

Wenn der Interpreter sagt, dass es einen Fehler gibt, und Sie ihn einfach nicht
finden, kann das daran liegen, dass der Interpreter und Sie nicht denselben Code

verwenden. Uberpriifen Sie Ihre Programmierumgebung, um sicherzustellen, dass
Sie dasselbe Programm bearbeiten, das der Python-Interpreter ausfiihrt.

Sollten Sie sich nicht sicher sein, konnen Sie absichtlich Syntaxfehler am Anfang
des Programms einfiigen. Fiihren Sie es erneut aus. Wenn der Interpreter die neuen
Fehlern nicht findet, arbeiten Sie an einer anderen Datei.

Es gibt einige typische Verdachtige:

= Sie haben die Datei bearbeitet, aber vergessen, die Anderungen vor der

Ausfiihrung zu speichern. Manche Programmierumgebungen tun dies
automatisch, andere nicht.

m Sie haben den Namen der Datei gedndert, rufen aber immer noch denselben
Dateinamen auf.

» Thre Entwicklungsumgebung ist nicht korrekt konfiguriert.

m Falls Sie ein Modul schreiben und mit import importieren: Vergewissern Sie
sich, dass Sie Ihrem Modul nicht den Namen eines der Standardmodule von
Python gegeben haben.

= Wenn Sie mit import ein Modul einlesen, sollten Sie daran denken, den
Interpreter neu zu starten oder verdnderte Dateien mit reload erneut zu lesen.
Wenn Sie das Modul einfach nur erneut importieren, andert sich dadurch nichts.

Sollten Sie aber einfach nicht weiterkommen und nicht herausfinden konnen, was
schiefldauft, konnen Sie auch ein neues Programm schreiben. Beginnen Sie
beispielsweise mit »Hallo, Welt!«, um sicherzugehen, dass Sie wenigstens Code
zum Laufen bekommen, den Sie bereits kennen. Fiigen Sie anschlieSend stiickweise
das urspriingliche Programm in das neue ein.

Laufzeitfehler

Sobald IThr Programm syntaktisch korrekt ist, kann Python es kompilieren und
zumindest damit beginnen, es auszufiihren. Was kann jetzt noch schiefgehen?

Mein Programm macht absolut gar nichts

Dieses Problem kommt hdufig vor, wenn Ihre Datei nur aus Klassen und Funktionen
besteht, aber an keiner Stelle etwas ausgefiihrt wird. Wenn Sie vorhaben, dieses
Modul mit entsprechenden Klassen und Funktionen zu importieren, ist das ja auch in
Ordnung.

War das aber nicht Thre Absicht, miissen Sie eine Funktion aufzurufen, um mit der
Programmausfiihrung zu beginnen. Oder Sie fiihren eine entsprechende Funktion
iber die Kommandozeile aus. Lesen Sie dazu auch den Abschnitt »Programmablauf«
weiter unten.

Mein Programm hangt

Wenn ein Programm stoppt und anscheinend nichts macht, »hdngt« es. Oft wird das
durch eine Endlosschleife oder eine endlose Rekursion verursacht.

= Wenn Sie eine bestimmte Schleife in Verdacht haben, fiigen Sie unmittelbar vor
der Schleife eine print-Anweisung mit dem Text » Anfang Schleife« und direkt
danach eine weitere Anweisung mit dem Text »Ende Schleife« ein.
Fiihren Sie das Programm aus. Wenn Sie die erste Meldung sehen, aber nicht die
zweite, haben Sie es mit einer Endlosschleife zu tun. Lesen Sie dann weiter unten

den Abschnitt »Endlosschleife«.

m Meistens fiihrt eine endlose Rekursion dazu, dass Ihr Programm eine Weile
ausgefiihrt wird, bis Sie den Fehler RuntimeError: Maximum recursion depth
exceeded erhalten. Lesen Sie in diesem Fall weiter unten den Abschnitt
»Endlose Rekursion«.

Wenn Sie diesen Fehler nicht erhalten, aber der Meinung sind, dass es ein
Problem mit einer rekursiven Methode oder Funktion gibt, konnen Sie auch die
unter »Endlose Rekursion« aufgefiihrten Techniken anwenden.

m Hilft keiner dieser Schritte, testen Sie andere Schleifen und andere rekursive
Funktionen und Methoden.

m Falls auch das nicht hilft, kann es sein, dass Sie den Ablauf Ihres Programms
nicht ganz richtig verstehen. Lesen Sie in diesem Fall den Abschnitt
»Programmablauf« weiter unten.

Endlosschleifen

Wenn Sie glauben, dass Sie eine Endlosschleife haben, und nicht wissen, welche
Schleife das ist, fiigen Sie am Ende jeder Schleife eine print-Anweisung ein, die die
Werte der Variablen in der Bedingung und den Wert der Bedingung ausgibt.

Beispiel:

while x>0andy <0
mach etwas mit x
mach etwas mit y

print "x: ", x

print"y: ",y

print "Bedingung: ", (x> 0 and y < 0)
Fiihren Sie anschlieend das Programm aus, erhalten Sie fiir jeden
Schleifendurchlauf die entsprechende Bildschirmausgabe. Bei der letzten Iteration
sollte die Bedingung false sein. Falls die Schleife weiter durchlaufen wird, kénnen
Sie die Werte von X und y mitverfolgen und herausfinden, warum diese nicht korrekt
aktualisiert werden.

Endlose Rekursion

In den meisten Fallen fiihrt eine endlose Rekursion dazu, dass das Programm einige
Zeit ausgefiihrt wird und anschliefend den Fehler Maximum recursion depth
exceeded meldet.

Wenn Sie den Verdacht haben, dass eine Funktion oder Methode zu einer endlosen
Rekursion fiihrt, sollten Sie in einem ersten Schritt iiberpriifen, ob es einen Basisfall
gibt. Es muss irgendeine Bedingung geben, die dazu fiihrt, dass die Funktion oder
Methode ohne einen rekursiven Aufruf verlassen wird. Falls nicht, miissen Sie Ihren

Algorithmus noch mal iiberdenken und einen Basisfall herausarbeiten.

Falls es einen Basisfall gibt, das Programm diesen aber nicht erreicht, fiigen Sie am
Anfang der Funktion bzw. Methode eine print-Anweisung ein, die die Parameter
ausgibt. Wenn Sie anschlieffend das Programm ausfiihren, erhalten Sie fiir jeden
Aufruf der Funktion oder Methode eine entsprechende Bildschirmausgabe. Sollten
sich die Parameter nicht zum Basisfall hinbewegen, konnen Sie so herausfinden,
woran das liegt.

Programmablauf

Sind Sie sich tiber den Ablauf Thres Programms nicht sicher, fiigen Sie einfach am
Anfang jeder Funktion eine print-Anweisung ein, die beispielsweise » Funktion foo«
ausgibt, wobei foo der Name der Funktion ist.

Wenn Sie anschlieffend das Programm ausfiihren, konnen Sie den Aufruf der
jeweiligen Funktion mitverfolgen.

Ich erhalte eine Ausnahme, wenn ich das Programm ausfiihre

Wenn wadhrend der Laufzeit irgendetwas schiefgeht, gibt Python eine Meldung mit
dem Namen der Ausnahme, der Programmzeile, in der das Problem aufgetreten ist,
sowie einen Traceback aus.

Im Traceback kénnen Sie die Funktion erkennen, die zuletzt ausgefiihrt wurde, die
Funktion, von der die aktuelle Funktion aufgerufen wurde, die Funktion, von der
diese Funktion wiederum aufgerufen wurde usw. Anders ausgedriickt, Sie erhalten
die Abfolge der Funktionsaufrufe, die Sie dahin gefiihrt haben, wo Sie gelandet sind.
Aullerdem wird die Zeilennummer des jeweiligen Aufrufs in Ihrer Datei angezeigt.

In einem ersten Schritt sollten Sie die entsprechende Stelle im Programm priifen und
versuchen, herauszufinden, was passiert ist. Hier sehen Sie eine Liste der am
hdufigsten vorkommenden Laufzeitfehler:

NameError:

Sie versuchen, eine Variable zu verwenden, die in der aktuellen Umgebung nicht
existiert. Denken Sie daran, dass lokale Variablen auch wirklich lokal sind.
AuBerhalb der definierenden Funktion konnen Sie sich nicht darauf beziehen.

TypeError:
Fiir diesen Fehler gibt es mehrere mogliche Ursachen:

m Sie versuchen, einen Wert in nicht zuldssiger Weise zu verwenden. Beispiel:
Indizierung eines Strings, einer Liste oder eines Tupels mit etwas anderem als
einem ganzzahligen Wert.

» Die Elemente in einem Format-String und die fiir die Konvertierung

libergebenen Elemente passen nicht zueinander. Das kann passieren, wenn
entweder die Anzahl der Elemente nicht {ibereinstimmt oder dafiir eine
unzuldssige Konvertierung erforderlich ware.

m Sie libergeben die falsche Anzahl von Argumenten an eine Funktion oder
Methode. Werfen Sie bei Methoden einen Blick auf die Definition und
tiberpriifen Sie, ob der erste Parameter self lautet. Sehen Sie sich dann den
Methodenaufruf an: Vergewissern Sie sich, dass Sie die Methode fiir ein
Objekt des richtigen Typs aufrufen und die Argumente korrekt iibergeben.

KeyError:

Sie versuchen, auf ein Element eines Dictionary mit einem Schliissel zuzugreifen,
der im Dictionary nicht enthalten ist.

AttributeError:

Sie versuchen, auf ein nicht vorhandenes Attribut oder eine nicht existierende
Methode zuzugreifen. Uberpriifen Sie Ihre Schreibweise! Mit dir kénnen Sie die
vorhandenen Attribute auflisten.

Wenn ein AttributeError darauf hinweist, dass ein Objekt den NoneType hat,
bedeutet das, dass es None ist. Haufig liegt die Ursache darin, dass Sie vergessen
haben, von einer Funktion einen Wert zuriickzugeben. Wenn Sie das Ende einer
Funktion erreichen, ohne eine return-Anweisung auszufiihren, ist der
Riickgabewert None. Eventuell verwenden Sie aber auch das Ergebnis einer
Listenmethode wie beispielsweise sort, die den Riickgabewert None liefert.

IndexError:

Der Index, mit dem Sie auf eine Liste, einen String oder ein Tupel zugreifen, ist
groller als seine Lange minus 1. Fiigen Sie unmittelbar vor der fehlerhaften Stelle
eine print-Anweisung ein, um den Wert des Index und die Ldnge des Arrays
anzuzeigen. Hat das Array die korrekte Gréfle? Hat der Index den richtigen Wert?

Der Python-Debugger (pdb) ist niitzlich, um Ausnahmen aufzuspiiren, weil Sie
damit den Zustand eines Programms unmittelbar vor dem Fehler untersuchen
kénnen. Mehr iiber pdb kénnen Sie unter http://docs.python.org/lib/module-
pdb.html erfahren.

Ich habe so viele print-Anweisungen eingefiigt, dass mich die
Ausgaben liberfordern

print-Anweisungen kénnen beim Debugging problematisch werden, wenn Sie von
den Ausgaben tiberhduft werden. Dann haben Sie zwei Mdéglichkeiten: die Ausgaben
vereinfachen oder das Programm vereinfachen.

Um die Bildschirmausgaben zu vereinfachen, kénnen Sie unnétige print-

http://docs.python.org/lib/module-pdb.html

Anweisungen entfernen, auskommentieren, miteinander kombinieren oder die
Ausgaben so formatieren, dass sie besser zu erfassen sind.

Es gibt mehrere Moglichkeiten, das Programm zu vereinfachen. In einem ersten
Schritt kénnen Sie die Problemstellung vereinfachen. Wenn Sie beispielsweise eine
Liste durchsuchen, durchsuchen Sie einfach eine kleinere Liste. Wenn das
Programm Benutzereingaben erwartet, testen Sie mit moglichst einfachen Eingaben,
um den Fehler zu reproduzieren.

Rédumen Sie in einem zweiten Schritt das Programm auf. Entfernen Sie Code, der nie
ausgefiihrt wird, und versuchen Sie, das Programm so zu strukturieren, dass es
moglichst einfach lesbar ist. Wenn Sie beispielsweise den Verdacht haben, dass der
Fehler in einem tief verschachtelten Teil des Programms liegt, versuchen Sie, diesen
Teil mit einer einfachen Struktur neu zu schreiben. Falls Sie den Fehler in einer
grofSen Funktion vermuten, versuchen Sie, diese in kleinere Funktionen aufzuteilen
und einzeln zu testen.

Héufig finden Sie bei der Suche nach dem minimalen Testfall auch den Fehler.
Wenn Sie herausfinden, dass Ihr Programm in einem Fall funktioniert, in einem
anderen dagegen nicht, erhalten Sie dadurch Hinweise, was tatsdchlich geschieht.

Manchmal kénnen Sie auch subtilere Bugs aufspiiren, indem Sie einen bestimmten
Codeteil neu schreiben. Wenn Sie eine Anderung vornehmen, die sich eigentlich
nicht auf das Ergebnis auswirken sollte, aber trotzdem Wirkung zeigt, kann auch das
ein Anhaltspunkt sein.

Semantische Fehler

In gewisser Weise sind semantische Fehler am schwierigsten aufzuspiiren, weil der
Interpreter keinerlei Informationen dazu liefert, was schieflduft. Nur Sie kénnen
wissen, was das Programm machen soll.

In einem ersten Schritt sollten Sie eine Verbindung zwischen dem Programmcode
und dem beobachteten Verhalten herstellen. Sie brauchen eine Hypothese dariiber,
was das Programm tatsdchlich macht. Eine der grofSten Schwierigkeiten dabei ist,
dass Computer so schnell arbeiten.

Haufig werden Sie sich wiinschen, dass Sie das Programm auf menschliche
Geschwindigkeit herunterbremsen kénnen. Und mit manchen Debuggern kdnnen Sie
das auch. Aber der Zeitaufwand fiir ein paar gut platzierte print-Anweisungen ist oft
geringer, als wenn Sie den Debugger einrichten, Haltepunkte einfiigen und entfernen
und das Programm bis zur fehlerhaften Stelle schrittweise ausfiihren.

Mein Programm funktioniert nicht
Stellen Sie sich die folgenden Fragen:

m Gibt es eine gewiinschte Funktionalitdt, die das Programm nicht durchfiihrt?
Finden Sie den zustdndigen Codeabschnitt und priifen Sie, ob dieser Teil so
ausgefiihrt wird, wie Sie sich das vorstellen.

m Geschieht etwas, das nicht geplant war? Finden Sie den entsprechenden Code im
Programm und tiberpriifen Sie, ob er auch in Fillen ausgefiihrt wird, in denen das
nicht so sein sollte.

m Fiihrt ein Codeteil nicht zum gewiinschten Effekt? Vergewissern Sie sich, dass
Sie den fraglichen Code verstehen, vor allem wenn dabei Funktionen oder
Methoden aus anderen Python-Modulen aufgerufen werden. Lesen Sie die
Dokumentation fiir diese Funktionen. Testen Sie sie mit einfachen Testféllen,
iberpriifen Sie die Ergebnisse.

Damit Sie erfolgreich programmieren kénnen, brauchen Sie ein Denkmodell dazu,
wie das Programm funktionieren soll. Wenn Sie ein Programm schreiben, das nicht
das tut, was Sie erwarten, liegt der Fehler hdaufig nicht im Programm, sondern in
Threm Modell.

Die beste Méglichkeit, Ihr Denkmodell zu korrigieren, besteht darin, das Programm
in seine Komponenten aufzuteilen (normalerweise die Funktionen und Methoden).
Dann kénnen Sie die Komponenten einzeln testen. Sobald Sie die Diskrepanz
zwischen Threm Modell und der Realitdt aufgespiirt haben, konnen Sie das Problem
auch l6sen.

Natiirlich sollten Sie die Komponenten wiahrend der Entwicklung des Programms
erstellen und testen. Wenn Sie dabei auf ein Problem stollen, kann der Fehler immer
nur in einem kleinen Teil des Codes liegen.

Ich habe einen gro3en und haarigen Ausdruck, der nicht
macht, was er soll

Komplizierte Ausdriicke sind vollig in Ordnung, solange sie lesbar bleiben.
Allerdings konnen sie das Debugging entsprechend erschweren. Deshalb ist es
haufig am besten, komplizierte Ausdriicke in eine Reihe von Zuweisungen mit
tempordren Variablen zu zerlegen:

self.haendeli].karte_hinzufuegen(self.haende[self.findeNachbar(i)].popKarte())
Diesen Ausdruck kénnen Sie auch so schreiben:

nachbar = self.findeNachbar(i)

gezogeneKarte = self.haende[nachbar].popKarte()

self.haendeli].karte_hinzufuegen(gezogeneKarte)
Die ausfiihrlichere Version ist einfacher zu lesen, weil die Variablennamen den
Vorgang zusétzlich dokumentieren. Aulerdem ist diese Fassung einfacher zu
debuggen, weil Sie die Typen und Werte der tempordren Variablen ausgeben
konnen.

Ein weiteres Problem mit langen Ausdriicken besteht darin, dass die Reihenfolge der
Auswertung anders ausfallen kann, als Sie es erwarten. Wenn Sie beispielsweise den
Ausdruck — in
Python iibersetzen, wiirden Sie vielleicht schreiben:

y = x/2* math.pi

Diese Losung ist nicht korrekt, weil Multiplikation und Division dieselbe Rangfolge
haben und daher von links nach rechts ausgewertet werden. Dieser Ausdruck
berechnet dementsprechend x

— /2.

Am besten setzen Sie beim Debugging von Ausdriicken Klammern, um die
Reihenfolge der Auswertung explizit festzulegen:

y = x/ (2 * math.pi)

Wann immer Sie sich nicht ganz klar iiber die Reihenfolge der Auswertung sind,
sollten Sie Klammern verwenden. Auf diese Weise funktioniert das Programm nicht
nur korrekt (macht das, was Sie wollen), sondern ist auch fiir andere besser lesbar,
die die Regeln der Reihenfolge ebenfalls nicht besser kennen.

Eine Funktion oder Methode liefert nicht den erwarteten
Riickgabewert

Bei return-Anweisungen mit komplizierten Ausdriicken kénnen Sie den
Riickgabewert nicht ausgeben, bevor Sie ihn zuriickliefern. Auch hier kénnen Sie
wieder eine tempordre Variable einsetzen. Anstatt

return self.haendel[i].entferneTreffer()

konnen Sie auch schreiben:

zaehler = self.haendeli].entferneTreffer()

return zaehler
Nun haben Sie die Gelegenheit, den Wert von zaehler anzuzeigen, bevor Sie ihn
zuriickgeben.

Ich komme wirklich nicht weiter und brauche Hilfe

Als Erstes sollten Sie sich fiir ein paar Minuten vom Computer wegbewegen.
Computer senden Wellen aus, die das Gehirn beeinflussen und folgende Symptome
verursachen:

» Frustration und Wut.

m Aberglauben (»der Computer hasst mich«) und magisches Denken (»das
Programm funktioniert nur, wenn ich meinen Hut riickwérts aufsetze«).

» [rrfahrtsprogrammierung (der Versuch, alle nur erdenklichen Programme zu
schreiben und dasjenige auszuwdhlen, das zum richtigen Ergebnis fiihrt).

Wenn Sie bei sich eines dieser Symptome beobachten, sollten Sie aufstehen und um
den Block gehen. Sobald Sie sich wieder beruhigt haben, denken Sie nochmals iiber
das Programm nach. Was genau macht es? Was konnten die Griinde fiir dieses
Verhalten sein? Wann hat das Programm zuletzt korrekt funktioniert, und was haben
Sie danach gedndert?

Manchmal dauert es einige Zeit, bis Sie einen Bug finden. Ich finde die Fehler
haufig, wenn ich gar nicht am Computer sitze und meine Gedanken einfach
schweifen lasse. Die besten Orte, um Bugs zu finden, sind Ziige, die Dusche und das
Bett, unmittelbar bevor Sie einschlafen.

Nein, ich brauche wirklich Hilfe

Das kann vorkommen. Selbst die besten Programmierer kommen gelegentlich nicht
weiter. Manchmal arbeiten sie so lange an einem Programm, das sie den Fehler
einfach nicht mehr sehen kénnen. Dann hilft nur ein frisches Paar Augen.

Bevor Sie jemand anderen ins Boot holen, sollten Sie gut vorbereitet sein. IThr
Programm sollte so einfach wie moéglich sein, und Sie sollten mit der
kleinstmoglichen Datenmenge arbeiten, die den Fehler verursacht. An den
entsprechenden Stellen sollten geeignete print-Anweisungen stehen (die die
Ausgaben in einem verstdandlichen Format anzeigen). Und Sie sollten das Problem
gut genug verstehen, damit Sie es prazise beschreiben kénnen.

Wenn Sie jemanden um Hilfe bitten, sollten Sie diese Person auch mit den nétigen
Informationen versorgen konnen:

m Gibt es eine Fehlermeldung? Wie lautet sie, und auf welchen Programmteil
deutet sie hin?

m Was haben Sie als Letztes getan, bevor dieser Fehler aufgetreten ist? Welche
Codezeilen haben Sie als Letztes geschrieben? Wie lautet der neue Testfall, der
fehlschlagt?

m Was haben Sie bisher versucht, und was haben Sie dabei herausgefunden?

Wenn Sie den Fehler gefunden haben, nehmen Sie sich eine Sekunde lang Zeit,
dariiber nachzudenken, wie Sie den Fehler schneller hitten finden konnen. Wenn Sie
das nichste Mal etwas Ahnliches sehen, werden Sie den Bug schneller finden.

Nicht vergessen: Das Ziel besteht nicht darin, das Programm zum Laufen zu bringen.
Das Ziel besteht darin, zu lernen, wie Sie das Programm zum Laufen bringen.

Anhang B. Algorithmenanalyse

Dieser Anhang ist ein {iberarbeiteter Auszug aus Think Complexity von Allen B. Downey, ebenfalls bei
O’Reilly Media erschienen (2011). Vielleicht mochten Sie dieses Buch ja als Néchstes lesen.

Algorithmenanalyse ist eine der Hauptaufgaben der Informatik, bei der die
Leistung von Algorithmen untersucht wird, insbesondere hinsichtlich ihrer Laufzeit
und ihres Speicherbedarfs (siehe
http://de.wikipedia.org/wiki/Algorithmus#Algorithmenanalyse).

Das praktische Ziel der Algorithmenanalyse besteht darin, die Leistung
verschiedener Algorithmen zu prognostizieren, um entsprechende
Designentscheidungen zu treffen.

Waihrend des Wahlkampfs fiir die Prasidentschaftswahlen der Vereinigten Staaten
im Jahr 2008 wurde Kandidat Barack Obama bei einem Besuch bei Google um eine
spontane Analyse gebeten. Firmenchef Eric Schmidt fragte ihn aus Spal§ nach der
»effizientesten Methode, eine Million 32-Bit-Integer zu sortieren«. Offensichtlich
hatte Obama einen Tipp erhalten, weil er schnell antwortete: »Ich glaube, Bubblesort
ware keine gute Entscheidung.« (http://www.youtube.com/watch?v=k4RRi_ntQc8)

Aber es stimmt: Bubblesort ist vom Konzept her einfach, aber fiir grole Mengen zu
langsam. Die Antwort, die Schmidt horen wollte, war wahrscheinlich »Radixsort«
(http://de.wikipedia.org/wiki/Radixsort).'!

Das Ziel der Algorithmenanalyse besteht darin, aussagekraftige Vergleiche zwischen
Algorithmen anzustellen. Aber dabei gibt es einige Probleme:

» Die relative Leistung der Algorithmen kann von Hardwarefaktoren abhdangen.
Deshalb kann ein Algorithmus auf Rechner A schneller sein, ein anderer dagegen
auf Rechner B. Generell wird bei einer solchen Problemstellung ein
Rechnermodell erstellt und die Anzahl der Schritte bzw. Operationen analysiert,
die fiir einen Algorithmus mit dem entsprechenden Modell erforderlich sind.

= Die relative Leistung kann auch von Eigenschaften der verwendeten Daten
abhdngen. Manche Sortieralgorithmen arbeiten beispielsweise schneller, wenn
die Daten bereits teilweise sortiert wurden. Andere Algorithmen sind in diesem
Fall dagegen langsamer. Um solche Probleme zu umgehen, wird haufig das
Worst Case-Szenario analysiert. Manchmal ist es niitzlich, die durchschnittliche
Leistung zu analysieren. Aber iiblicherweise ist das schwieriger. Aullerdem ist es
manchmal nicht offensichtlich, welche Falle fiir den Average Case
heranzuziehen sind.

m Die relative Leistung hdangt auch von der Gré8enordnung ab. Ein
Sortieralgorithmus, der mit kleinen Listen schnell arbeitet, kann fiir lange Listen
lange brauchen. Ublicherweise ldsst sich die Losung fiir dieses Problem finden,
indem Sie die Laufzeit (oder die Anzahl der Operationen) als Funktion der

http://de.wikipedia.org/wiki/Algorithmus#Algorithmenanalyse
http://www.youtube.com/watch?v=k4RRi_ntQc8
http://de.wikipedia.org/wiki/Radixsort

Grollenordnung ausdriicken und die Funktionen mit zunehmender GroRe
asymptotisch vergleichen.

Das Gute an einem solchen Vergleich ist, dass er zu einer einfachen Klassifizierung
fiir Algorithmen fiihrt. Wenn ich beispielsweise weil}, dass die Laufzeit von
Algorithmus A tendenziell proportional zur GroRe der Eingangsdaten n ist und
Algorithmus B tendenziell proportional zu n? ist, gehe ich davon aus, dass A fiir
grofSe Werte von n schneller als B ist.

Solche Analysen sind manchmal mit Vorsicht zu geniellen, aber darauf kommen wir
spater noch zu sprechen.

Wachstumsordnung

Angenommen, Sie haben zwei Algorithmen analysiert und ihre Laufzeiten
hinsichtlich der Grél3e der Eingangsdaten ausgedriickt. Algorithmus A braucht
100n+1 Schritte, um ein Problem der Grofle n zu 16sen. Algorithmus B benotigt
n* + n + 1 Schritte.

Die folgende Tabelle zeigt die Laufzeiten dieser beiden Algorithmen fiir
unterschiedliche Problemgréfien:

Input |Laufzeit mit |Laufzeit mit

Grolle | Algorithmus A | Algorithmus B

10 1001 111
100 10 001 10 101
1000 |100 001 1001 001

10 000 |1 000 001 >1010

Fiir n=10 schneidet Algorithmus A ziemlich schlecht ab. Er braucht fast zehnmal so
lange wie Algorithmus B. Aber fiir n=100 sind die Laufzeiten ungefdhr gleich, und
bei grélleren Werten schneidet Algorithmus A deutlich besser ab.

Der entscheidende Grund besteht darin, dass bei groBen Werten fiir n jede Funktion
mit n? schneller wichst als eine Funktion, deren Leitterm n ist. Der Leitterm ist der
Term mit dem hochsten Exponenten.

Der Leitterm von Algorithmus A hat einen grolen Koeffizienten (100), deshalb ist
Algorithmus B fiir kleine Werte von n besser geeignet. Aber unabhdngig von den
Koeffizienten gibt es immer einen Wert fiir n, bei dem an? > bn.

Dasselbe gilt auch fiir die anderen Terme. Selbst wenn Algorithmus A eine Laufzeit
von n+1000000 hitte, ware er fiir entsprechend grofSe Werte von n immer noch
schneller als Algorithmus B.

Ublicherweise gehen wir davon aus, dass ein Algorithmus mit einem kleineren

Leitterm fiir grofle Probleme besser geeignet ist. Bei kleineren Problemen kann es
aber einen Kreuzungspunkt geben, ab dem ein anderer Algorithmus besser
funktioniert. Wo dieser Punkt liegt, hdngt von den Einzelheiten der Algorithmen,
den Eingangsdaten und der Hardware ab. Daher wird der Kreuzungspunkt
iblicherweise bei der Algorithmenanalyse ignoriert. Das bedeutet aber nicht, dass
Sie ihn vergessen sollen.

Wenn zwei Algorithmen denselben Leitterm haben, ist es schwierig zu sagen,
welcher davon leistungsfahiger ist. Auch hier hangt die Antwort wieder von den
jeweiligen Details ab. Bei der Algorithmenanalyse werden Funktionen mit
demselben Leitterm als dquivalent betrachtet, selbst wenn sie unterschiedliche
Koeffizienten haben.

Eine Wachstumsordnung ist eine Menge von Funktionen, deren asymptotisches
Wachstumsverhalten als dquivalent betrachtet wird. So gehoren beispielsweise 2n,
100n und n+1 zur selben Wachstumsordnung, die in der Landauschen O()-Notation
als O(n) geschrieben werden. Man spricht dabei von linearem Wachstum, weil jede
Funktion dieser Menge fiir Werte von n linear wachst.

Alle Funktionen mit dem Leitterm n? geh6ren zur Wachstumsordnung O(n?) mit
quadratischem Wachstum (»quadratisch« ist einfach ein schickes Wort fiir
Funktionen mit dem Leitterm n?).

Die folgende Tabelle zeigt einige der hdaufigsten Wachstumsordnungen der
Algorithmenanalyse in aufsteigender Reihenfolge ihrer Bosartigkeit.

Wachstumsordnung | Wachstum

0(@) konstant

O(logpn) logarithmisch (fiir beliebige Werte von b)
n) linear

O(nlogpn) superlineares Wachstum

O(n2) quadratisch

on®) kubisch

o(c™ exponentiell (fiir beliebige Werte von c)

Bei logarithmischen Termen spielt die Basis des Logarithmus keine Rolle. Wenn Sie
die Basis dndern, entspricht das der Multiplikation mit einer Konstanten, was
ebenfalls keinen Einfluss auf die Wachstumsordnung hat. Auf dhnliche Weise
gehoren alle exponentiellen Funktionen unabhédngig von der Basis des Exponenten
zur selben Wachstumsordnung. Exponentielle Funktionen wachsen sehr schnell und
sind daher nur fiir sehr kleine Eingangsvariablen geeignet.

Lesen Sie die Wikipedia-Seiten iiber die Landausche O()-Notation unter

http://de.wikipedia.org/wiki/Landau-Symbole und iiber Laufzeiten unter
http://de.wikipedia.org/wiki/Laufzeit_(Informatik). Beantworten Sie dann die
folgenden Fragen:

1. Was ist die Wachstumsordnung von n® + n?? Von 1000000n® + n*? Von
n® + 1000000n??

2. Was ist die Wachstumsordnung von (n? + n) - (n + 1)? Bevor Sie mit dem
Multiplizieren anfangen, sollten Sie nicht vergessen: Es kommt nur auf den
Leitterm an.

3. Wenn f Element von O(g) fiir eine nicht ndher bestimmte Funktion g ist, was
konnen wir dann tiber af+b sagen?

4. Wenn f; und f, in O(g) enthalten sind, was gilt dann fiir f; + f,?

5. Wenn f; Element von O(g) und f, Element von O(h), was konnen wir dann iiber

fi1 +f> sagen?
6. Wenn f; Element von O(g) und f, Element von O(h), was gilt dann fiir f; - f,?

Listing B.1

Fiir Programmierer, denen es auf die Leistung ankommt, sind solche Analysen oft
schwer verdaulich. Und sie haben nicht ganz unrecht: Manchmal machen die
Koeffizienten und die untergeordneten Terme einen Unterschied. Manchmal ergeben
sich durch die Hardware, die Programmiersprache und Besonderheiten der
Eingangsdaten grofSe Unterschiede. Und bei kleineren Datenmengen ist das
asymptotische Verhalten irrelevant.

Aber wenn Sie diese Warnungen im Hinterkopf behalten, ist die Algorithmenanalyse
ein niitzliches Werkzeug. Zumindest bei grofleren Problemstellungen ist der
»bessere« Algorithmus iiblicherweise besser und manchmal sogar viel besser. Der
Unterschied zwischen zwei Algorithmen derselben Wachstumsordnung ist
iiblicherweise ein konstanter Faktor. Der Unterschied zwischen einem guten
Algorithmus und einem schlechten Algorithmus ist dagegen grenzenlos!

Analyse grundlegender Python-Operationen

Die meisten arithmetischen Operationen sind zeitlich konstant. Multiplikation
dauert iiblicherweise langer als Addition und Subtraktion, und die Division braucht
sogar noch langer. Aber diese Laufzeiten hangen nicht von der Grofle der Operanden
ab. Besonders grofle Integer bilden die Ausnahme: In diesem Fall steigt die Laufzeit
mit der Anzahl der Stellen.

Indexoperationen — das Lesen oder Schreiben von Elementen in einer Sequenz oder
einem Dictionary — legen ebenfalls ein konstantes Wachstum an den Tag,
unabhédngig von der Grélie der Datenstruktur.

http://de.wikipedia.org/wiki/Landau-Symbole
http://de.wikipedia.org/wiki/Laufzeit_(Informatik)

Eine for-Schleife, die eine Sequenz oder ein Dictionary durchlauft, unterliegt
iblicherweise einem linearen Wachstum, solange alle Operationen im Body der
Schleife zu einer konstanten Wachstumsordnung gehoren. Die Addition der
Elemente einer Liste ist beispielsweise linear:

summe =0

forxint:

summe += X

Die integrierte Funktion sum ist ebenfalls linear, weil sie dasselbe macht, ist aber
tendenziell schneller, weil die Implementierung effizienter ist. In der Sprache der
Algorithmenanalyse ausgedriickt, hat diese Funktion einen kleineren
Leitkoeffizienten.

Wenn Sie mit derselben Schleife eine Liste von Strings »addieren«, wachst die
Laufzeit quadratisch, weil die Konkatenation von Strings linear ist.

Die String-Methode join ist tiblicherweise schneller, weil sie fiir die Gesamtldnge
der Strings linear ist.

Als Faustregel gilt: Wenn der Body einer Schleife die Wachstumsordnung O(n‘) hat,
gehort die gesamte Schleife zu O(n“*!). Eine Ausnahme ist nur dann gegeben, wenn
Sie zeigen konnen, dass die Schleife nach einer konstanten Anzahl von Iterationen
verlassen wird. Wenn eine Schleife unabhdngig von n genau k-mal ausgefiihrt wird,
gehort die Schleife zur Wachstumsordnung O(n®), selbst bei groBen Werten fiir k.

Durch die Multiplikation mit k dndert sich die Wachstumsordnung nicht, genauso
wenig wie durch Division. Wenn der Body einer Schleife also zur
Wachstumsordnung O(n”) gehort und n/k-mal ausgefiihrt wird, gehort die Schleife in
O(n"*Y), selbst bei grofSen Werten fiir k.

Die meisten String- und Tupel-Operationen sind linear, Ausnahmen sind
Indexoperationen und len, die beide konstant sind. Die integrierten Funktionen min
und max sind linear. Die Laufzeit einer Slice-Operation ist proportional zur Linge
der Ausgabe, aber unabhdngig von der GrofSe der Eingangsdaten.

Alle String-Methoden sind linear. Wenn die Lange des Strings allerdings durch eine
Konstante begrenzt ist — beispielsweise Operationen mit einzelnen Zeichen —, sind
auch diese konstant.

Die meisten Listenmethoden sind linear. Allerdings gibt es einige Ausnahmen:

» Das Hinzufiigen eines Elements am Ende einer Liste ist normalerweise linear.
Wenn dabei der Speicherplatz ausgeht, wird die Liste an einen anderen
Speicherort kopiert. Aber die Gesamtzeit fiir n Operationen betragt O(n), daher
sprechen wir davon, dass die »amortisierte« Zeit fiir eine Operation O(1) betragt.

m Das Entfernen eines Elements am Ende einer Liste ist konstant.

m Die Wachstumsordnung fiir Sortierung lautet O(n log n).

Die Laufzeit fiir die meisten Dictionary-Operationen ist konstant. Aber auch hier
gibt es einige Ausnahmen:

» Die Laufzeit von copy ist proportional zur Anzahl der Elemente, aber nicht zur
Grole der Elemente (es werden Referenzen kopiert, nicht die Elemente selbst).

m Die Laufzeit von update ist proportional zur Gréfe des als Parameter
iibergebenen Dictionary, aber nicht des Dictionary, das aktualisiert wird.

m Kkeys, values und items sind linear, weil sie neue Listen zuriickgeben. itervalues
und iteritems sind konstant, weil sie Iteratoren zuriickliefern. Wenn Sie dagegen
die Iteratoren mit einer Schleife durchlaufen, nimmt die Laufzeit dieser Schleife
linear zu. Die »iter«-Funktionen sparen einen gewissen Overhead, haben aber
keinen Einfluss auf die Wachstumsordnung, auller wenn die Anzahl der Elemente
begrenzt ist.

Die Leistung von Dictionaries ist ein kleines Wunder der Informatik. Im
,,Hashtabellen“ werden wir uns ansehen, wie sie funktionieren.

Lesen Sie die Wikipedia-Seite {iber Sortierverfahren unter
http://de.wikipedia.org/wiki/Sortierverfahren und beantworten Sie die folgenden
Fragen:

1. Was ist »vergleichsbasiertes Sortieren«? Was ist die beste Worst Case-
Wachstumsordnung fiir vergleichsbasiertes Sortieren? Was ist die beste Worst
Case-Wachstumsordnung fiir Sortierverfahren allgemein?

2. Was ist die Wachstumsordnung von Bubblesort, und warum glaubt Barack
Obama, dass das »keine gute Entscheidung« sei?

3. Was ist die Wachstumsordnung von Radixsort? Welche Vorbedingungen
miissen dafiir erfiillt sein?

4. Was ist ein stabiles Sortierverfahren, und welche Rolle spielt das in der Praxis?

5. Welcher ist der schlechteste Sortieralgorithmus (der einen Namen hat)?

6. Welchen Sortieralgorithmus verwendet die C-Bibliothek? Welchen
Sortieralgorithmus verwendet Python? Sind diese Algorithmen stabil?
Eventuell miissen Sie Google bemiihen, um diese Antworten zu finden.

7. Viele nicht-vergleichsbasierte Sortierverfahren sind linear. Warum verwendet
Python ein vergleichsbasiertes Sortierverfahren der Menge O(n log n)?

Listing B.2

Analyse von Suchalgorithmen

Eine Suche ist ein Algorithmus, der eine Sammlung sowie ein Zielelement benétigt
und ermittelt, ob das Ziel in der Sammlung enthalten ist, und haufig auch den Index
des Zielelements zuriickliefert.

Der einfachste Suchalgorithmus ist eine »lineare Suche, bei der die Elemente der

http://de.wikipedia.org/wiki/Sortierverfahren

Sammlung nach der Reihenfolge durchlaufen werden und die Suche beendet wird,
wenn das Ziel gefunden ist. Im schlimmsten Fall muss die gesamte Sammlung
durchlaufen werden, daher nimmt die Laufzeit linear zu.

Der Operator in fiir Sequenzen verwendet die lineare Suche, ebenso wie die String-
Methoden find und count.

Wenn die Elemente einer Sequenz eine bestimmte Reihenfolge einhalten, konnen
Sie die Bisektion einsetzen, die zur Wachstumsordnung O(log n) gehort. Die
Bisektion gleicht dem Algorithmus, nach dem Sie ein Wort in einem Dictionary
suchen (in einem echten Worterbuch, nicht in der Datenstruktur). Anstatt ganz vorne
anzufangen und jedes einzelne Element der Reihe nach zu iiberpriifen, fangen Sie
mit einem Element in der Mitte an. Wenn das gesuchte Wort davor stehen muss,
suchen Sie in der ersten Halfte der Sequenz. Ansonsten durchsuchen Sie die zweite
Halfte. In beiden Richtungen halbieren Sie auf diese Weise die Anzahl der zu
durchsuchenden Elemente.

Wenn eine Sequenz 1.000.000 Elemente enthélt, sind ungefdhr 20 Schritte
erforderlich, um das Wort zu finden oder zum Schluss zu kommen, dass es nicht in
der Sammlung enthalten ist. Das ist ungefdhr 50.000-mal schneller als eine lineare
Suche.

Schreiben Sie eine Funktion mit dem Namen bisektion, die eine sortierte Liste und
einen Zielwert erwartet. Falls der Wert in der Liste enthalten ist, soll der
Riickgabewert der Index des Werts sein, ansonsten None.

Oder Sie lesen die Dokumentation des Moduls bisect und verwenden das Modul!
Listing B.3

Die Suche nach dem Bisektionsverfahren kann wesentlich schneller als eine lineare
Suche sein, setzt aber voraus, dass die Sequenz sortiert ist, was unter Umstdnden
zusatzlichen Aufwand bedeutet.

Es gibt eine andere Datenstruktur, die Hashtabelle, die sogar noch schneller ist. Die
Laufzeit dieser Suchfunktion ist konstant, und die Elemente miissen auch nicht
sortiert sein. Python-Dictionaries sind mit Hashtabellen implementiert. Deshalb ist
die Laufzeit der meisten Dictionary-Operationen konstant, einschlieflich des in-
Operators.

Hashtabellen

Um zu erkldren, wie Hashtabellen funktionieren und warum sie eine so gute
Leistung erbringen, fange ich mit einer einfachen Implementierung einer Map an
und verbessere sie schrittweise, bis wir eine Hashtabelle erhalten.

Ich verwende Python, um diese Implementierungen zu erkldren. In der Praxis
wiirden Sie solchen Code aber nicht in Python schreiben. Sie wiirden einfach ein
Dictionary verwenden. Stellen Sie sich also fiir den Rest dieses Kapitels einfach vor,
dass es keine Dictionaries gibt und Sie eine Datenstruktur implementieren mochten,
die Schliisseln Werte zuweist. Folgende Operationen miissen implementiert werden:

hinzufuegen(s, w):
Erstellt ein neues Element, das einem Schliissel s den Wert w zuweist. Bei einem
Python-Dictionary d wird diese Operation als d[s] = w geschrieben.

hole(ziel):
Sucht den Wert, der dem Schliissel ziel entspricht, und liefert diesen zuriick. Fiir

das Python-Dictionary d wiirden Sie diese Operation als d[ziel] oder d.get(ziel)
schreiben.

Fiir den Moment gehe ich davon aus, dass jeder Schliissel nur einmal vorkommt. Die
einfachste Implementierung dieser Schnittstelle verwendet eine Liste mit Tupeln,
wobei jedes Tupel ein Schliissel/Wert-Paar ist.

class LineareMap(object):

def _init_ (self):
self.elemente = []

def hinzufuegen(self, s, w):
self.elemente.append((s, w))

def hole(self, s):
for schluessel, wert in self.elemente:
if schluessel == s:
return wert
raise KeyError
hinzufuegen fiigt ein Schliissel/Wert-Tupel der Liste der Elemente hinzu. Diese

Operation ist zeitlich konstant.

hole verwendet eine for-Schleife, um die Liste zu durchsuchen. Wird der
Zielschliissel gefunden, liefert die Methode den entsprechenden Wert zurtick.
Andernfalls wird ein KeyError erzeugt. get ist also linear.

Eine Alternative besteht darin, die Liste anhand der Schliissel zu sortieren. Dann
koénnte hole nach dem Bisektionsverfahren suchen, was zur Wachstumsordnung O(
log n) gehort. Das Einfiigen eines neuen Elements in der Mitte einer Liste ist
allerdings linear. Daher ist das nicht die beste Méglichkeit. Es gibt andere
Datenstrukturen (siehe http://de.wikipedia.org/wiki/Rot-Schwarz-Baum), die
hinzufuegen und hole in logarithmischer Laufzeit implementieren konnen, aber das
ist immer noch nicht so gut wie eine konstante Laufzeit. Machen wir also weiter.

http://de.wikipedia.org/wiki/Rot-Schwarz-Baum

Eine Moglichkeit, LineareMap zu verbessern, besteht darin, die Liste der
Schliissel/Wert-Paare in kleinere Listen aufzuteilen. Hier sehen Sie eine
Implementierung mit dem Namen BessereMap, die aus einer Liste von 100
LineareMap-Objekten besteht. Wie Sie gleich sehen werden, ist die
Wachstumsordnung fiir hole dann immer noch linear, aber BessereMap ist den
Hashtabellen immerhin schon einen Schritt nédher:

class BessereMap(object):

def _init_ (self, n=100):
self.maps =[]
for i in range(n):
self.maps.append(LineareMap())

def suche_map(self, s):
index = hash(s) % len(self.maps)
return self. maps[index]

def hinzufuegen(self, s, w):
m = self.suche_map(s)
m.hinzufuegen(s, w)

def hole(self, s):
m = self.suche_map(s)
return m.hole(s)

__init__ erstellt eine Liste mit n LineareMap-Objekten.

suche_map wird von hinzufuegen und hole verwendet, um zu ermitteln, in welcher
Map gesucht bzw. ein neues Element abgelegt werden soll.

suche_map verwendet die integrierte Funktion hash, die fiir beinahe jedes Python-
Objekt einen Integer zuriickliefert. Eine Grenze dieser Implementierung besteht
darin, dass sie nur mit Schliisseln funktioniert, die hashable sind. Verdnderbare
Typen wie Listen und Dictionaries sind leider nicht hashable.

Es wird davon ausgegangen, dass Objekte, die hashable sind, immer denselben
Hashwert zuriickliefern. Aber die Umkehrung ist nicht notwendigerweise zutreffend:
Auch fiir zwei unterschiedliche Objekte kann derselbe Hash zuriickgeliefert werden.

suche_map verwendet den Modulus-Operator, um die Hashwerte im Bereich von 0
bis len(self.maps) abzubilden, damit das Ergebnis einen zuldssigen Index fiir die
Liste ergibt. Das bedeutet natiirlich, dass viele verschiedene Hashwerte demselben
Index zugeordnet werden. Aber wenn die Hashfunktion alles schon gleichmalSig
verteilt (und dafiir sind Hashfunktionen entwickelt worden), koénnen wir von n/100
Elementen pro LineareMap ausgehen.

Da die Laufzeit von LineareMap.hole proportional zur Anzahl der Elemente ist,
gehen wir davon aus, dass BessereMap ungefdahr 100-mal schneller als
LineareMap ist. Die Wachstumsordnung ist immer noch linear, aber der

Leitkoeffizient ist kleiner. Das ist nett, aber immer noch nicht so gut wie eine
Hashtabelle.

Und hier (endlich) der entscheidende Gedanke, der Hashtabellen schnell macht:
Wenn Sie die maximale Lange von LineareMap begrenzen, hat LineareMap.hole
eine konstante Laufzeit. Dann miissen Sie lediglich die Anzahl der Elemente im
Auge behalten. Wenn die Anzahl der Elemente pro LineareMap eine bestimmte
Schwelle erreichen, vergréllern Sie die Hashtabelle um zusétzliche LineareMaps.

Hier sehen Sie eine Implementierung einer Hashtabelle:

class HashMap(object):

def _init_ (self):
self.maps = BessereMap(2)
selfanz =0

def hole(self, s):
return self.maps.hole(s)

def hinzufuegen(self, s, w):
if self.anz == len(self.maps.maps):
self.vergroessern()

self.maps.hinzufuegen(s, w)
self.anz += 1

def vergroessern(self):
neue_maps = BessereMap(self.anz * 2)

for m in self.maps.maps:
for s, w in m.elemente:
neue_maps.hinzufuegen(s, w)

self.maps = neue_maps

Jede HashMap enthilt eine BessereMap. __init__ fangt mit zwei LineareMap-
Objekten an und initialisiert anz, das die Anzahl der Elemente mitverfolgt.

hole reicht die Aufrufe einfach an BessereMap durch. Die eigentliche Arbeit
geschieht in hinzufuegen, wo die Anzahl der Elemente und die Gré8e von
BessereMap iiberpriift werden. Wenn beide Zahlen gleich sind, ist die
durchschnittliche Anzahl von Elementen pro LineareMap gleich 1, entsprechend
wird vergroessern aufgerufen.

vergroessern erstellt eine neue BessereMap, die zweimal so grof8 wie die
vorherige ist, und »hasht« die Elemente von der alten auf die neue Map um.

Das »Rehashing« ist erforderlich, weil sich durch die verdnderte Anzahl der
LineareMap-Objekte auch der Nenner fiir den Modulus-Operator in suche_map
andert. Das bedeutet, dass einige Objekte, die bisher in dieselbe LineareMap

gepackt wurden, jetzt aufgeteilt werden (das wollten wir doch, oder?).

Rehashing ist linear, entsprechend ist auch vergroessern linear. Das erscheint auf
den ersten Blick zwar ungiinstig, da ich ja versprochen hatte, dass hinzufuegen
konstant sein wiirde. Aber wir miissen vergroessern ja nicht jedes Mal aufrufen.
Daher hat hinzufuegen normalerweise eine konstante Laufzeit und nur gelegentlich
eine lineare. Der gesamte Aufwand, hinzufuegen n-mal aufzurufen, ist proportional
zu n. Entsprechend ist die durchschnittliche Laufzeit fiir jedes hinzufuegen konstant!

Um zu verstehen, wie das funktioniert, stellen Sie sich einfach vor, dass wir mit
einer leeren Hashtabelle beginnen und eine Folge von Elementen hinzufiigen. Wir
beginnen mit 2 LineareMaps. Das Hinzufiigen der ersten beiden Elemente ist
schnell (keine VergroBBerung erforderlich). Nehmen wir einmal an, dass sie eine
Arbeitseinheit in Anspruch nehmen. Beim Hinzufiigen des ndchsten Elements ist
eine VergroBBerung erforderlich, also miissen wir die ersten beiden Elemente erneut
hashen (berechnen wir dafiir einmal 2 weitere Arbeitseinheiten) und das dritte
Element hinzufiigen (noch 1 Einheit). Das Hinzufiigen des ndchsten Elements kostet
uns 1 Einheit. Also brauchen wir bisher 6 Einheiten fiir 4 Elemente.

Der ndchste Aufruf von hinzufuegen kostet 5 Einheiten, aber die ndchsten drei
Elemente nur jeweils 1. Fiir die ersten 8 Elemente brauchen wir also insgesamt 14
Einheiten.

Das nachste hinzufuegen kostet 9 Einheiten. Dafiir konnen wir 7 weitere Elemente
vor der ndchsten VergrofSerung hinzufiigen. Also betrdagt die Summe 30 Einheiten fiir
die ersten 16 Elemente.

Nach 32 Elementen betrdgt die Summe 62 Einheiten. Ich hoffe, Sie beginnen, ein
Muster zu erkennen. Nach dem Hinzufiigen von n Elementen, wobei n eine Potenz
von 2 ist, betragen die Kosten 2n-2 Einheiten. Der durchschnittliche Aufwand fiir
das Hinzufiigen pro Element ist demnach weniger als 2 Einheiten. Natiirlich ist es
der beste Fall, wenn n eine Potenz von 2 ist. Fiir andere Werte von n ist der
durchschnittliche Aufwand ein bisschen hoher, aber das ist nicht wichtig. Der
wichtige Punkt ist, dass wir die Wachstumsordnung O(1) haben.

Abbildung B.1 zeigt grafisch, wie das funktioniert. Jeder Block steht fiir eine
Arbeitseinheit. Die Spalten zeigen die Kosten insgesamt fiir jedes Hinzufiigen von
links nach rechts: Die ersten beiden Aufrufe von hinzufuegen kosten je 1 Einheit,
der dritte 3 Einheiten usw.

L] CIIT LTI T TTTTT]
EEEEEEEE EEEEEEER EEEEEEEEEEEEEEEE

Abbildung B.1 Kosten fiir das Hinzufiigen eines Elements zu einer Hashtabelle.

Der zusitzliche Aufwand fiir das Rehashing erscheint als Sequenz zunehmend
groferer Tiirme mit zunehmendem Abstand dazwischen. Wenn Sie nun die Tiirme
umstiirzen, um die Kosten fiir das Vergrofern fiir alle Hinzufiigungen insgesamt zu
amortisieren, konnen Sie in der Grafik sehen, dass die Gesamtkosten nach n-mal
hinzufuegen gleich 2n — 2 sind.

Ein wichtiges Merkmal dieses Algorithmus besteht darin, dass die Hashtabelle
geometrisch wdchst, wenn wir sie vergréfSern. Wir multiplizieren die Groe mit
einer Konstanten. Wenn Sie die GrolSe arithmetisch erhohen — jedes Mal also eine
feststehende Anzahl hinzufiigen —, ist die durchschnittliche Laufzeit pro
hinzufuegen linear.

Meine Implementierung der HashMap finden Sie unter dem Namen Map.py in den
Codebeispielen. Bedenken Sie aber, dass es keinen Grund gibt, sie zu verwenden.
Wenn Sie eine Map brauchen, verwenden Sie einfach ein Python-Dictionary!

(2 Soliten Sie jemals eine solche Frage in einem Interview gestellt bekommen, wére meiner Meinung nach die
bessere Antwort: »Die schnellste Moglichkeit, eine Million Integer zu sortieren, ist die Sortierfunktion der
jeweiligen Programmiersprache. Die Leistung sollte fiir die meisten Anwendungen ausreichen. Sollte ich
feststellen, dass meine Anwendung zu langsam ist, wiirde ich einen Profiler verwenden, um herauszufinden,
wofiir die meiste Zeit verwendet wird. Sollte sich dabei herausstellen, dass ein schnellerer Sortieralgorithmus
einen signifikanten Leistungsvorteil bringt, wiirde ich mich nach einer guten Implementierung von Radixsort
umsehen.«

Anhang C. Lumpy

In diesem Buch habe ich immer wieder Diagramme verwendet, um den Zustand
laufender Programme darzustellen.

In ,,Variablen“ haben wir in einem Zustandsdiagramm die Namen und Werte von
Variablen dargestellt. Im ,,Stapeldiagramme* habe ich ein Stapeldiagramm
vorgestellt, das fiir jeden Funktionsaufruf einen Frame zeigt. Jeder Frame zeigt
dabei die Parameter und lokalen Variablen der Funktion oder Methode.
Stapeldiagramme fiir rekursive Funktionen haben wir in ,,Stapeldiagramme fiir
rekursive Funktionen® und ,,Mehr Rekursion“ kennengelernt.

,Listen kénnen gedndert werden® zeigt, wie eine Liste in einem Zustandsdiagramm
aussieht, ,,Dictionaries und Listen“ zeigt ein Dictionary, und ,,Dictionaries und
Tupel® zeigt zwei Moglichkeiten, Tupel darzustellen.

Im ,,Attribute” werden Objektdiagramme eingefiihrt, die den Zustand der Attribute
eines Objekts sowie deren Attribute usw. dargestellt. Der ,,Rechtecke® zeigt
Objektdiagramme fiir Rechtecke und ihre eingebetteten Punkte. ,,Zeit* zeigt den
Zustand eines Zeit-Objekts. ,,Klassenattribute” enthdlt ein Diagramm mit einem
Klassenobjekt und einer Instanz, jeweils mit den entsprechenden Attributen.

Und zu guter Letzt zeigt ,,Klassendiagramme* Klassendiagramme, die die Klassen
eines Programms und die entsprechenden Beziehungen veranschaulichen.

All diese Diagramme basieren auf UML (Unified Modeling Language), einer
standardisierten grafischen Sprache, mit der Software-Ingenieure iiber
Programmdesign kommunizieren, insbesondere fiir objektorientierte Programme.

UML ist eine umfangreiche Sprache mit vielen Arten von Diagrammen, die die
verschiedenartigen Beziehungen zwischen Objekten und Klassen abbilden. Was ich
in diesem Buch vorgestellt habe, ist nur ein kleiner Ausschnitt aus der Sprache —
aber der Ausschnitt, der in der Praxis am haufigsten verwendet wird.

Ziel dieses Anhangs ist es, die in den bisherigen Kapiteln vorgestellten Diagramme
noch einmal zu besprechen und Lumpy vorzustellen: Lumpy steht fiir »UML in
Python«, wobei ich einige Buchstaben umgestellt habe. Lumpy ist ein Teil von
Swampy, das Sie bereits installiert haben, wenn Sie an der Fallstudie in Kapitel 4
oder Kapitel 19 gearbeitet oder Listing 15.4 nachvollzogen haben.

Lumpy verwendet das Python-Modul inspect, um den Zustand eines laufenden
Programms zu analysieren und Objektdiagramme (einschlieflich
Stapeldiagrammen) und Klassendiagramme zu erzeugen.

Zustandsdiagramm

Hier sehen Sie, wie Sie mit Lumpy ein Zustandsdiagramm erstellen kénnen:

from import Lumpy

lumpy = Lumpy()
lumpy.make_reference()

meldung = 'Und jetzt etwas ganz anderes'
n=17
pi = 3.1415926535897932

lumpy.object_diagram()

Die erste Zeile importiert die Klasse Lumpy aus swampy.Lumpy. Sollten Sie
Swampy nicht als Paket installiert haben, vergewissern Sie sich, dass die Swampy-
Dateien in Pythons Suchpfad enthalten sind, und verwenden Sie stattdessen die
folgende import-Anweisung:

from import Lumpy

In der ndchsten Zeile erstellen wir ein Lumpy-Objekt und einen »Referenzpunkt«.
Das bedeutet, dass Lumpy die Objekte aufzeichnet, die bis dahin definiert wurden.

Als Néchstes definieren wir neue Variablen und rufen object_diagram auf, wodurch
die Objekte gezeichnet werden, die seit dem Referenzpunkt definiert wurden, in
diesem Fall meldung, n und pi.

Abbildung C.1 zeigt das Ergebnis. Die Grafik unterscheidet sich stilistisch von dem,
was ich bisher gezeigt habe. Beispielsweise wird jede Referenz durch einen Kreis
neben dem Variablennamen sowie eine Linie und einen Wert dargestellt. Alle langen
Strings werden abgeschnitten. Aber die im Diagramm abgebildeten Informationen
sind dieselben.

Die Variablennamen befinden sich in einem Frame mit der Bezeichnung <module>,
die anzeigt, dass diese Variablen auf Modulebene definiert wurden, also globale
Variablen sind.

Dieses Beispiel finden Sie in den Codebeispielen unter dem Namen
lumpy_demol.py. Versuchen Sie, einige zusdtzliche Zuweisungen einzufiigen, und
sehen Sie sich das Diagramm dann noch mal an.

amodul e

pi 3.14159265359

meldung 'Und jetzt etwas ganz anderes'

Abbildung C.1 Von Lumpy erzeugtes Zustandsdiagramm.

Stapeldiagramm

Hier sehen Sie ein Beispiel fiir ein Stapeldiagramm mit Lumpy. Die entsprechende
Datei aus den Codebeispielen heilst lumpy_demoZ2.py.

from import Lumpy

def countdown(n):
if n<=0:
print 'Bumm!'
lumpy.object_diagram()
else:
print n
countdown(n-1)

lumpy = Lumpy()
lumpy.make_reference()

countdown(3)
Abbildung C.2 zeigt das Ergebnis. Jeder Frame wird durch einen Kasten mit dem
Funktionsnamen und den enthaltenen Variablen darin dargestellt. Da die Funktion
rekursiv ist, wird fiir jede Rekursion ein Frame gezeigt.

countdown countdown countdown

2 n 1 n 0

<module>

Abbildung C.2 Stapeldiagramm.

Bedenken Sie, dass ein Stapeldiagramm den Zustand des Programms an einem
bestimmten Punkt der Ausfiihrung darstellt. Damit Sie das gewiinschte Diagramm
erhalten, miissen Sie object_diagram an der entsprechenden Stelle aufrufen.

In diesem Fall rufe ich object_diagram nach der Ausfiihrung des Basisfalls der
Rekursion auf. Auf diese Weise zeigt das Stapeldiagramm jede einzelne Rekursion.
Nattirlich kénnen Sie object_diagram auch mehr als einmal aufrufen, um eine Reihe
von Schnappschiissen zur Programmausfiihrung zu erhalten.

Objektdiagramme

Dieses Beispiel erzeugt ein Objektdiagramm fiir die Listen aus ,,Eine Liste ist eine
Sequenz®. Die entsprechende Datei finden Sie unter dem Namen lumpy_demo3.py in
den Beispieldateien.

from import Lumpy

lumpy = Lumpy()
lumpy.make_reference()

kaesesorten = [Cheddar', 'Edamer’, 'Gouda']
zahlen =[17, 123]
leer =]

lumpy.object_diagram()

Abbildung C.3 zeigt das Ergebnis. Listen werden durch einen Kasten dargestellt, der
die Indizes und die entsprechenden Elemente zeigt. Diese Darstellung ist leicht
irrefiihrend, da die Indizes ja nicht wirklich Teil der Liste sind. Aber meiner
Meinung nach ist das Diagramm so einfacher zu lesen. Die leere Liste wird durch

einen leeren Kasten dargestellt.

<module>
leer
zahlen { 0O
1
kaesesorten { 0O

2

Abbildung C.3 Objektdiagramm.

Und hier ist das Beispiel mit den Dictionaries aus ,,Dictionaries und Listen®. Die
entsprechende Datei finden Sie unter dem Namen [umpy_demo4.py in den

Beispieldateien.

from import Lumpy

lumpy = Lumpy()
lumpy.make_reference()

hist = histogramm('papagei’)
invers = invertiere_dict(hist)

lumpy.object_diagram()

Abbildung C.4 zeigt das Ergebnis. hist ist ein Dictionary, das Zeichen (Strings mit
nur einem Zeichen) auf Integer abbildet. invers bildet dagegen Integer auf Listen mit

17

123

'Cheddar"

'Edamer’

"Gouda”

Strings ab.

<modul e

invers 1 0 ‘e
1 i
2 'g
2 0 a
1 P

hist 'a' 2

B 2

‘e 1

i 1

g 1

Abbildung C.4 Objektdiagramm.

Das folgende Beispiel erzeugt ein Objektdiagramm fiir Punkt- und Rechteck-Objekte
(siehe ,,Kopieren®). Die entsprechende Datei aus den Codebeispielen heilst
lumpy_demo5.py.

import copy
from swampy.Lumpy import Lumpy

lumpy = Lumpy()
lumpy.make_reference()

box = Rechteck()
box.breite = 100.0
box.hoehe = 200.0
box.ecke = Punkt()
box.ecke.x = 0.0

box.ecke.y = 0.0
box2 = copy.copy(box)

lumpy.object_diagram()

Abbildung C.5 zeigt das Ergebnis. copy.copy erstellt eine flache Kopie, deshalb
haben box und box2 jeweils eine eigene breite und hoehe, teilen sich aber das
eingebettete Punkt-Objekt. Eine solche gemeinsame Nutzung funktioniert wunderbar
mit unverdnderbaren Objekten. Bei verdnderbaren Objekten wire dies allerdings
hochst fehleranfallig.

<madulas Eechteck
box hoehe 200.0
Funkt
ecke ¥ 0.0
b 0.0
breite 100.0
Eechteck
box2 hoshe 200.0
ecke
breite 100.0

Abbildung C.5 Objektdiagramm.

Funktions- und Klassenobjekte

Wenn ich mit Lumpy Objektdiagramme erstelle, definiere ich iiblicherweise die
Funktionen und Klassen, bevor ich den Referenzpunkt anlege. Auf diese Weise
erscheinen die Funktions- und Klassenobjekte nicht im Diagramm.

Aber wenn Sie Funktionen und Klassen als Parameter {ibergeben, mochten Sie diese
vielleicht doch anzeigen. Das folgende Beispiel zeigt, wie das aussieht. Die
entsprechende Datei aus den Codebeispielen heilst lumpy_demo6.py.

import
from import Lumpy

lumpy = Lumpy()
lumpy.make_reference()

class Punkt(object):
""Bildet einen Punkt im zweidimensionalen Raum ab.""

class Rechteck(object):
""Bildet ein Rechteck ab. "™

def instanziieren(constructor):
""Instanziiert ein neues Objekt."™
obj = constructor()
lumpy.object_diagram()
return obj

punkt = instanziieren(Punkt)

Abbildung C.6 zeigt das Ergebnis. Da wir object_diagram innerhalb einer Funktion
aufrufen, erhalten wir ein Stapeldiagramm mit einem Frame fiir die Variablen der
Modulebene und fiir den Aufruf von instanziieren.

cmodula= Lype instanziieran
[] Punkt
Punkt { ___nhame { 'Punkt’ ob] |
type
' constructor
Rechteck __name { 'Rechteck
function
instanziieren __name__ { ‘instanziieren’

Abbildung C.6 Objektdiagramm.

Auf der Modulebene beziehen sich Punkt und Rechteck auf Klassenobjekte (mit
dem Typ type). instanziieren bezieht sich auf ein Funktionsobjekt.

Dieses Diagramm stellt vermutlich zwei verwirrende Punkte klar: zum einen den
Unterschied zwischen dem Klassenobjekt Punkt und der Punkt-Instanz obj, zum
anderen den Unterschied zwischen dem Funktionsobjekt, das bei der Definition von
instanziieren erstellt wird, und dem Frame, der angelegt wird, wenn die Funktion
aufgerufen wird.

Klassendiagramme

Obwohl ich zwischen Zustands-, Stapel- und Objektdiagrammen unterscheide, sind
sie in erster Linie dasselbe: Sie zeigen den Zustand eines laufenden Programms zu
einem bestimmten Zeitpunkt.

Klassendiagramme sind dagegen etwas anderes: Sie zeigen die Klassen, aus denen
ein Programm besteht, sowie die entsprechenden Beziehungen zwischen den

Klassen. Klassendiagramme sind insofern zeitunabhdngig, als sie das Programm
insgesamt beschreiben und nicht nur zu einem bestimmten Zeitpunkt. Wenn
beispielsweise eine Instanz von Klasse A generell eine Referenz auf eine Instanz von
Klasse B enthdlt, besteht eine Teil-Ganzes-Beziehung zwischen diesen Klassen.

Hier sehen Sie ein Beispiel fiir eine Teil-Ganzes-Beziehung. Die entsprechende
Datei aus den Codebeispielen heilst lumpy_demo?7.py.

from import Lumpy

lumpy = Lumpy()
lumpy.make_reference()

box = Rechteck()
box.breite = 100.0
box.hoehe = 200.0
box.ecke = Punkt()
box.ecke.x = 0.0
box.ecke.y = 0.0

lumpy.class_diagram()

Abbildung C.7 zeigt das Ergebnis. Jede Klasse wird durch einen Kasten dargestellt,
der den Namen der Klasse, alle enthaltenen Methoden, Klassenvariablen und
Instanzvariablen enthélt. In diesem Beispiel enthalten Rechteck und Punkt
Instanzvariablen, aber keine Methoden oder Klassenvariablen.

chject q— Rechteck

_ dict_

_ weakref

breite
ecke

hoehe

Punkt

. dict

_ weakref

X

Y

Abbildung C.7 Klassendiagramm.

Der Pfeil von Rechteck zu Punkt bedeutet, dass Rechtecke einen eingebetteten
Punkt enthalten konnen. Auflerdem erben Rechteck und Punkt beide von object,
was im Diagramm an der dreieckigen Pfeilspitze zu erkennen ist.

Hier sehen Sie ein komplizierteres Beispiel mit meiner Losung fiir Listing 18.6. Den
Code finden Sie in der Beispieldatei lumpy_demo8.py, aullerdem brauchen Sie
PokerHand.py.

from import Lumpy

from import *

lumpy = Lumpy()
lumpy.make_reference()

stapel = Stapel()
hand = PokerHand()
stapel.ziehe_karten(hand, 7)

lumpy.class_diagram()

Abbildung C.8 zeigt das Ergebnis. PokerHand erbt von Hand, die wiederum von
Stapel erbt. Sowohl Stapel als auch PokerHand enthalten Karten.

Dieses Diagramm zeigt nicht, dass Hand ebenfalls Karten enthélt, weil es in diesem
Programm keine Instanzen von Hand gibt. Das Beispiel weist auf eine Grenze von
Lumpy hin. Das Modul kennt nur die Attribute und Teil-Ganzes-Beziehungen von
Objekten, die instanziiert wurden.

cbiect

Stapel

_inie__

__atr
entferne_karte
hinzufuegen karte
mischan

sortieren

' ziohe_karte

‘zimhe_karten

Hand

—inie_

PokerHand

\I
_diet

__weakref__

A\
karten

L

Karte

emp
dnit

aty

farb_naman
rARG_nAmEn

farbe

rang

Abbildung C.8 Klassendiagramm.

farb _hist
hat_flush

karten
label

Index
#
0, Index beginnt mit 89, 110
A
aberglaubiges Debugging 249
abgeleitete Klasse 215, 221
abs-Funktion 66
absoluter Pfad 167, 175
Ackermann-Funktion 77, 133
add-Methode 200
Addition mit Ubertrag 84
Akkumulator 122
Histogramm 154
Liste 114
String 213
Summe 113
Aktualisierung 80, 83, 86
Datenbank 170
Elemente 111
globale Variable 134
Histogramm 154
Koordinaten 235
Slice 112

Aktualisierungsoperator 113

Algorithmen vergleichen 251
Algorithmenanalyse 251
Algorithmus 4, 10, 84, 157, 251

euklidischer 78

MD5 173

Quadratwurzel 86

RSA 135
Aliasing 117-118, 122, 179, 182, 206

durch Kopien vermeiden 121
Alphabet 52
alphabetische Folge 91
alphabetische Wérter 103
alternativer Programmablauf 55
Anagramm 123
Anagramm-Gruppe 149, 171
Analyse primitiver Werte 254
and-Operator 54
Anfiihrungszeichen 49, 242
Anweisung 21

assert 192

bedingte 55, 62, 70

break 82

for 43, 90, 111

global 134

if 55

import 37, 42, 174

pass 55

print 8, 11, 200, 246

raise 129, 192

return 58, 65, 249

try 169

while 80

Zuweisung 14, 79
Anweisungen

Verbund- 55
anydbm-Modul 170
Apostroph 8, 13, 92
append-Methode 113, 119, 123, 213-214
Arbeitsverzeichnis 167
archimedische Spirale 52
Argument 25, 28, 30-31, 36, 119

Liste 119

optionales 95, 116, 129

sammeln 141

Schliisselwort- 46, 50, 146, 226

Streuung 142

Tupel mit variabler Lange 141

arithmetischer Operator 16

assert-Anweisung 192
assignment
item 140
asymptotische Analyse 252
Attribut 204
__dict__ 203
initialisieren 203
Instanz 178, 184, 210, 221
Klassen- 210, 220
AttributeError 183, 246
Aufruf 99
Aufrufdiagramm 132, 137
Ausdruck 16-17, 22
Boolescher 53, 62
grof$ und haarig 248
ausfiihrbares Programm 2, 10
Ausgaben formatieren 136
Auslassungszeichen 28
Ausnahme 4, 10, 20, 241, 245
AttributeError 183, 246
IndexError 90, 97, 111, 246
IOError 169
KeyError 126, 246
NamekError 32, 245

OverflowError 61
RuntimeError 59
Syntaxfehler 27
TypeError 89, 92, 131, 140, 142, 167, 198, 245
UnboundLocalError 134
ValueError 60, 129, 140
Ausnahmen abfangen 169, 175
Austauschmuster 140
auswerten 17
Average Case 252
B
Bangladesh, Nationalflagge 185
Basisfall 58, 62, 265
Basisklasse 215, 221
bedingte Anweisung 55, 62, 70
bedingte Ausfiihrung 55
Bedingung 55, 62, 81, 242, 244
verkettete 55, 62
verschachtelte 56, 62
Begrenzung 259
Begrenzungsrechteck 238
Beitragende XVI
Benchmarking 160, 162

benutzerdefinierter Typ 177, 187

Berechtigungen, Datei 169

BessereMap 258

Bildbetrachter 238

bindre Suche 124

Bindung 234, 238
dynamische 201-202

Bingo 149

bisect, Modul 124, 257

Bisektion 257

Bisektion, Debugging durch 85

bitweiser Operator 16

Blumen 51

Body 28, 36, 81

Bogenfunktion 44

bool, Typ 54

Boolesche Funktion 69, 187

Boolescher Ausdruck 53, 62

Boolescher Operator 95

Bosartigkeit von Algorithmen 253

Bounding Box 185, 229

break-Anweisung 82

Bubblesort 251

Buchstaben rotieren 100, 138

Buchstaben, Haufigkeit 149

Bug 4, 10

absolut schlimmster 239

schlimmster 205
Button-Widget 226
C
Callable-Objekt 233
Callback 227, 231, 233-234, 236-237
Canvas-item 228
Canvas-Koordinaten 228, 235
Canvas-Objekt 185
Canvas-Widget 227
Car Talk 107, 150
Checksumme 172-173
choice-Funktion 153
class 177
close-Methode 166, 170, 172
__cmp__-Methode 212
cmp-Funktion 212
Collatz-Problem 82
Compiler 2
config-Methode 227
constructor 269
copy 268
copy-Modul 182

count-Methode 95
Creative Commons XVI
Cummings, E. E. 4
D
Datei 165
Berechtigungen 169
lesen und schreiben 165
Datei-Objekt 101, 107
Dateiname 167
Datenbank 170, 176
Datenkapselung 45, 50, 204—-205, 219
Datenstruktur 147, 149, 159
datetime-Modul 194
Dead Code 66, 76, 247
Debugger (pdb) 246

Debugging 4, 8, 10, 20, 35, 49, 60, 74, 96, 106, 120, 135, 147, 161, 174, 183, 192,
203, 218, 236, 241

Aberglaube 249

durch Bisektion 85

emotionale Reaktion 9, 249

experimentelles 5
Decorate-Sort-Undecorate, Muster 146
deepcopy-Funktion 183
def, Schliisselwort 28

Definition

Funktions- 27
Klassen- 177
rekursive 150
Zirkel- 70
Deklaration 134, 138
Dekrement 80, 86
del-Operator 115
Denkmodell 248
deterministisch 152, 162
Diagramm
Aufruf- 137
Klassen- 217, 221, 263, 269-270
Objekt- 178, 180, 183184, 187, 211, 263, 266
Stapel- 32, 119, 263, 265
Zustands- 14, 79, 98, 110, 118, 131, 145, 178, 180, 183, 187, 211, 263-264
__dict__ (Attribut) 203
dict-Funktion 125
Dictionary 125, 136, 143, 246, 266
initialisieren 144
inverse Suche 129
invertiert 130
Schleifen mit 128
Subtraktion 156
Suche 129

Traversierung 144, 203

Dictionary-Methoden 256
anydbm-Modul 170
Die Ritter der Kokosnuss 188
diff 173
Dijkstra, Edsger 106
Division
Abrundung 16
Fliefkommazahlen 16
ohne Rest 16, 22, 61
divmod 141, 191
Docstring 48, 50, 177
Doppelpunkt 28, 242
doppeltes Alter 194
Doyle, Arthur Conan 5
Drag-and-drop 235
Dreieck 63
dreifache Anfiihrungszeichen, String 49
DSU-Muster 146, 149, 154
Duplikate 123, 138, 173
durchlaufen, Verzeichnis 168
durchschnittliche Kosten 261
dynamische Bindung 201-202, 205
E

E-Mail-Adresse 141

Eindeutigkeit 123
einelementige Menge 130, 137, 139
EinfacheTurtleWorld-Klasse 230
Eingabeaufforderung 3, 10, 60
eingebettetes Objekt 180, 184, 206
kopieren 182
Einrtickung 28, 196, 242
Einstein, Albert 46
Element 98, 109, 121
Dictionary 137
Elemente aktualisieren 111
Elemente 16schen 115
Elementzuweisung 110
elif-Schliisselwort 56
Elkner, Jeff XIV
else-Schliisselwort 55
emotionales Debugging 9, 249
endlose Rekursion 59, 62, 73, 243-244
Endlosschleife 81, 86, 225, 243244
Entry-Widget 229
Entwicklungsplan 50, 219
Datenkapselung und Generalisierung 48
geplante Entwicklung 190
inkrementeller 66, 242

Irrfahrtsprogrammierung 161, 249
Problemerkennung 104, 106
Prototyp und Patch 188, 190
enumerate-Funktion 143
Epsilon 84
Erganzungsverfahren, Subtraktion 84, 192
erweiterte Zuweisung 113, 122
euklidischer Algorithmus 78
eval-Funktion 87
Event 238
Event-Handler 234
Event-Objekt 234
Event-orientierte Programmierung 227, 236, 238
Event-Schleife 225, 238
Event-String 234
exists-Funktion 168
experimentelles Debugging 5, 161
Exponent 253
exponentielles Wachstum 254
extend-Methode 113
F
Fakultat 71, 73
False, spezieller Wert 54
Fangen 223

Farbe 209
Farbliste 185, 207
Fehler
Laufzeit- 4, 20, 59, 61, 241
semantischer 5, 14, 20, 97, 241, 247
Strukturfehler 147
Syntax- 4, 20, 241
Fehlermeldung 4-5, 8, 14, 20, 241
Fehlerpriifung 73
Fibonacci-Folge 73
Fibonacci-Funktion 132
Filtermuster 114, 122
flache Kopie 183—-184, 268
Flag 133, 138
FlieBRkomma 21, 84
Fliefkommadivision 16
float, Typ 13
float-Funktion 26
Folge 89, 109
for-Schleife 43, 90, 111, 143
Form 149
formale Sprache 6, 11
Format-String 166, 175
Formatoperator 166, 175, 246

Formatsequenz 166, 175
Frame 32, 37, 72, 132, 265
Frame-Widget 230
Free Documentation License, GNU XVI
Frustration 249
Funktion 8, 27, 36, 195

abs 66

ack 77, 133

bogen 44

choice 153

cmp 212

deepcopy 183

dict 125

enumerate 143

eval 87

exists 168

Fakultat 71

Fibonacci 73, 132

float 26

getattr 204

getcwd 167

hasattr 183, 203

int 25

isinstance 74, 201

kreis 44

len 37, 90, 126
list 116

log 26

max 141-142
min 141-142
modifizierende 189
open 101-102, 165, 169-170
polygon 44
popen 172
randint 123, 153
random 146, 152
raw_input 60
reine 188
rekursive 57
reload 174, 243
repr 174
reversed 147
shuffle 214
sorted 147

sqrt 27, 68

str 26

suche 93

sum 142

tuple 139

type 183

vergleiche 66

zip 142
Funktion mit Riickgabewert 33, 36
Funktion ohne Riickgabewert 33, 36
Funktion, mathematische 26
Funktion, trigonometrische 26
Funktion, Tupel als Riickgabewert 141
Funktion-Frame 265
funktionaler Programmierstil 190, 193
Funktionen, Griinde fiir 34
Funktions-Frame 32, 37, 72, 132
Funktionsargument 30
Funktionsaufruf 25, 36
Funktionsdefinition 27, 29, 36
Funktionskomposition 69
Funktionsobjekt 28, 36-37, 268
Funktionsparameter 30
Funktionsrahmen 58
Funktionssyntax 196
G
Gammafunktion 74

gebundene Methode 231, 237

Geburtstag 194

Geburtstagsparadoxon 123

geheime Ubung 176

Generalisierung 45, 50, 104, 192

geometrische VergrofSerung 261

Geometry Manager 233, 238

geplante Entwicklung 190, 193

geschweifte Klammern 125

get-Methode 128

getattr-Funktion 204

getcwd-Funktion 167

ggT (grolter gemeinsamer Teiler) 78

Gleichheit 118, 122

Gleichheit und Zuweisung 79

global-Anweisung 134

globale Variable 133, 137, 264
aktualisieren 134

GNU Free Documentation License XVI

grafische Benutzeroberfldache 225

grenzenloser Unterschied zwischen Algorithmen 254

Grol-/Kleinschreibung, Variablennamen 20

Groller Fermatscher Satz 63

grolSer, haariger Ausdruck 248

grofSter gemeinsamer Teiler (ggT) 78

Gruppe
Anagramm 149, 171
GUI 225, 237
Gui-Modul 225
H
Hallo, Welt 8
Hand-Klasse 215, 271
hasattr-Funktion 183, 203
Hash-Funktion 131, 137, 259
Hash-Tabelle 126, 137, 257
hashable 131, 137, 144
HashMap 260
Haufigkeit 127
Buchstaben 149
Wort 151, 162
Header 28, 36, 242
hexadezimal 178
Hilfedienstprogramm 11
Histogramm 127-128, 137
Haufigkeit eines Wortes 153
zufallige Auswahl 153, 157
hohere Programmiersprache 1, 9
Holmes, Sherlock 5
HTMLParser-Modul 240

Hyperlink 240
Hypotenuse 68
I
Identitat 118, 122
if-Anweisung 55
Image-Modul 239
Implementierung 127, 137, 159, 204
import-Anweisung 37, 42, 174
in-Operator 95, 111, 126, 257
Index 89, 97-98, 110, 121, 125, 245
beginnt mit 0 89, 110
negativ 90
Schleifen mit 104, 111
Slice 91, 112
IndexError 90, 97, 111, 246
Indexoperationen 255
Information Hiding 204
init-Methode 199, 203, 210, 213, 215
Initialisierung
Variable 86
Initialisierung (vor Aktualisierung) 80
Inkrement 80, 86, 189, 197
inkrementelle Entwicklung 76, 242
Instanz 42, 50, 178, 184

als Argument 179

als Riickgabewert 180
Instanzattribut 178, 184, 210, 221
Instanziierung 178, 269
int, Typ 13
int-Funktion 25
Integer 21

Long 135
interaktiver Modus 2, 10, 17, 33
Interpreter 2
interpretieren 9
Invariante 192-193, 237
inverse Suche, Dictionary 129, 137
invertiertes Dictionary 130
IOError 169
Irrfahrtsprogrammierung 161, 249
is not defined 20, 29
is-Operator 117, 182
isinstance-Funktion 74, 201
item

Canvas 228, 238
item assignment 92, 140
items-Methode 143

Iteration 80, 86
J

join 255
join-Methode 117, 213
K
Kaenguru-Klasse 206
Kapselung 94, 216
von Daten 219
Kardinalitdt (in Klassendiagramm) 218, 221
Karten, spielen 209
Karten-Klasse 210, 271
KeyError 126, 246, 258
keys-Methode 129
Kilometerzahler 107
Klammer-Operator 89, 110, 140
Klammern
Argument in 25
Basisklasse in 215
geschweifte 125
leere 28, 94
Parameter in 30-31
Rangfolge dndern 18
sich entsprechende 4
Tupel in 139
Klasse 184
abgeleitete 215, 221

Basis 215

EinfacheTurtleWorld 230

Hand 215

Kaenguru 206

Karte 210

Punkt 177, 199, 267

Rechteck 180, 267

Stapel 213

Zeit 187
Klassenattribut 210, 220
Klassendefinition 177
Klassendiagramm 217, 221, 263, 269-270
Klassenobjekt 178, 184, 268
Koch-Kurve 64
Kodierung 209, 220
Kommentar 19, 22
Kommutativitdt 19, 201
kompilieren 9
Komposition 27, 31, 213
Komposition, Funktionskomposition 69
Konkatenation 19, 22, 31, 91, 93, 117

Liste 112, 119, 123
Konsistenzpriifung 136, 191

konstante Laufzeit 260

Konvertierung

Typ 25
Koordinaten

Canvas 228, 235

Pixel 235
Koordinatensequenz 228
Kopie

flache 183

Slice 92, 112

tiefe 183

zur Vermeidung von Aliasing 121
Kreisfunktion 44
Kreuzungspunkt 253
Kreuzwortratsel 101
kumulative Summe 115
L
Label-Widget 226
Laufgeschwindigkeit 12, 23, 193
Laufzeitfehler 4, 20, 59, 61, 241, 245
leere Liste 109
Leerraum 35, 61
Leerstring 99, 117
Leitkoeffizient 253

Leitterm 253

len-Funktion 37, 90, 126
lineare Suche 257
lineares Wachstum 253
LineareMap 258
Linux 5
Lipogramm 102
list
Funktion 116
Liste 109, 116, 121, 147
Abstraktion 115
als Argument 119
Element 110
Index 111
Konkatenation 112, 119, 123
Kopie 112
leere 109
Methoden 113
mit Objekten 213
mit Tupeln 143
Mitgliedschaft 111
Operationen 112
Slice 112
Traversierung 111, 122
verschachtelt 109, 111

Wiederholung 112
Listen-Methoden 255
Listenindex 266
log-Funktion 26
logarithmisches Wachstum 254
Logarithmus 163
logischer Operator 53-54
lokale Variable 31, 36
Long Integer 135
16schen, Listenelemente 115
Is (Unix-Befehl) 172
Lumpy 263-264
M
Mann, Thomas 154
Map-Muster 114, 122
Mapping 110, 122, 158
Markov-Analyse 157
Mash-up 159
mathematische Funktionen 26
Matplotlib 163
max-Funktion 141-142
McCloskey, Robert 91
MD5 172
MD5-Algorithmus 173

md5sum 173

Mehrdeutigkeit 7

mehrfache Zuweisung 79, 86, 134
mehrzeiliger String 49, 242
Memo 132, 137

Menge, Mitgliedschaft 126
MenuButton-Widget 233
Metapher, Methodenaufruf 197
Metathese 150

Method Resolution Order 219
Methode 94, 99, 195, 205

_cmp__ 212
_str 199, 213
add 200

append 113, 119, 213-214
close 166, 170, 172
config 227

count 95

extend 113

get 128

init 199, 210, 213, 215
items 143

join 117, 213

keys 129

mro 219

ohne Riickgabewert 113

pop 115, 214

radd 202

read 172

readline 101, 172

remove 115

replace 151

setdefault 132

sort 113, 120, 145, 215

split 116, 141

strip 102, 151

translate 151

update 144

values 126
Methode, append 123
Methode, gebundene 231
Methoden

String- 95
Methoden ohne Riickgabewert 113
Methoden, Liste 113
Methodenaufruf 94
Methodensyntax 197
Meyers, Chris XVI

min-Funktion 141-142
Mitgliedschaft

bindre Suche 124

Bisektion, Suche mit 124

Dictionary 126

Liste 111

Menge 126
Moby Project 101
Modell, mentales 248
modifizierende Funktion 189, 193
Modul 26, 36

anydbm 170

bisect 124, 257

copy 182

datetime 194

Gui 225

HTMLParser 240

Image 239

os 167

pickle 165, 171

pprint 136

profile 160

random 123, 146, 152, 214

reload 174, 243

shelve 171
string 151
structshape 147
time 124
urllib 176, 240
visual 206
vpython 206
World 184
Module schreiben 173
Modulobjekt 26, 37, 173
Modulus-Operator 53, 62
MP3 173
mro-Methode 219
Muster
Austausch 140
Decorate-Sort-Undecorate 146
DSU 146, 154
Filter 114, 122
Map 114, 122
Reduktion 114, 122
Suche 93, 99, 103, 129
Wachter 74, 76, 97
N

Nachbedingung 49-50, 75, 219

NamekError 32, 245
natiirliche Sprache 6, 11
negativer Index 90
Newton-Verfahren 83
niedere Programmiersprache 1, 9
None, spezieller Wert 34, 66, 76, 113, 115
not-Operator 54
(0]
O()-Notation, Landausche 253
Obama, Barack 251
Oberbegriff-Beziehung 221, 271
Objekt 92, 98, 117-118, 122, 177
ausgeben 196
Callable- 233
Canvas- 185
Datei- 101, 107
eingebettetes 180, 184, 206
Event- 234
Funktions- 28, 37, 268
Klassen- 178, 184, 268
kopieren 182
Modul- 173
Veranderbarkeit 181
Objektcode 2, 10

Objektdiagramm 178, 180, 183-184, 187, 211, 263, 266
Objekte kopieren 182
objektorientierte Programmiersprache 205
objektorientierte Programmierung 195, 205, 215
objektorientiertes Design 204
Oktalzahlen 15
Olin College XIV
open-Funktion 101-102, 165, 169—-170
Operand 16, 22
Operator 21

Aktualisierung 113

and 54

bitweiser 16

Boolescher 95

del 115

Format- 166, 175, 246

in 95, 111, 126

is 117, 182

Klammer 89, 110, 140

logischer 53-54

Modulus 53, 62

not 54

or 54

relationaler 54, 212

Slice 91, 99, 112, 120, 140
String- 19
Uberladung 205
Operator, arithmetischer 16
Operator-Uberladung 200, 212
Option 226, 237
optionale Parameter 155, 199
optionales Argument 95, 116, 129
or-Operator 54
Ordner 167
os-Modul 167
other (Parametername) 198
OverflowError 61
P
Packing von Widgets 230, 238
Paket 41
Palindrom 77, 99, 105, 107
Parameter 30, 32, 36, 119
optionale 155, 199
other 198
sammeln 141
self 197
parsen 6, 11

pass-Anweisung 55

pdb (Python Debugger) 246
Persistenz 165, 175
Pfad 167, 175

absoluter 167

relativer 167
pflegeleichter Code 204
Pi 27, 87
pickle-Modul 165, 171
pickling 171
pie 51
PIL (Python Imaging Library) 239
Pipe 172
Pixelkoordinaten 235
Plausibilitatspriifung 136
Poesie 7
Poker 209, 221
Polygonfunktion 44
Polymorphismus 203, 205, 218
pop-Methode 115, 214
popen-Funktion 172
Portabilitat 1
Portierbarkeit 9
pprint-Modul 136
Prafix 158

praktische Algorithmenanalyse 254
print-Anweisung 8, 11, 200, 246
print-Funktion 8
Problemerkennung 104, 106-107
Problemlosung 1, 9

profile-Modul 160

Programm 3, 10

Programm héangt 243
Programmablauf 30, 37, 73, 75, 81, 218, 236, 245
Programme testen 106
Programmiersprache 1

Project Gutenberg 151

Prosa 7

Prototyp und Patch 188, 190, 193
Pseudozufallszahlen 152, 162
Punkt vor Strich 18

Punkt, mathematischer 177
Punkt-Klasse 177, 199, 267
Punktschreibweise 26, 35, 37, 94, 178, 196, 211
Python 3 8, 16, 60, 135, 142
Python Debugger (pdb) 246

Python Imaging Library (PIL) 239

Q

quadratisches Wachstum 253

Quadratwurzel 83
Quellcode 2, 10

R

radd-Methode 202

Radiant 26

Radixsort 251

Rahmen 58
raise-Anweisung 129, 192
Ramanujan, Srinivasa 87
randint-Funktion 123, 153
random-Funktion 146, 152
random-Modul 123, 146, 152, 214
Rang 209

Rangfolge 22, 248
Rangfolge von Operatoren 18, 21
Rangordnung 18

Raster 38

Ritsel 107, 150
raw_input-Funktion 60
read-Methode 172
readline-Methode 101, 172
Rechner 12, 23
Rechnermodell 252
Rechteck-Klasse 180, 267

Reduktion 114
Reduktionsmuster 122
Redundanz 7
reduzierbares Wort 150
Refactoring 47-48, 50, 220
Referenz 118-119, 122
Aliasing 118
Regeln fiir die Rangfolge 22
Rehashing 260
Reihenfolge von Operationen 248
reine Funktion 188, 193
reiner Text 101, 151, 240
Rekursion 57, 62, 70, 72, 265
Basisfall 58
endlose 59, 73, 244
rekursive Definition 71, 150
relationaler Operator 54, 212
relativer Pfad 167, 175
reload-Funktion 174, 243
remove-Methode 115
replace-Methode 151
repr-Funktion 174
Repréasentation 177, 179, 209

return-Anweisung 58, 65, 249

reversed-Funktion 147
Rot-Schwarz-Baum 258
Rotation
Buchstaben 100, 138
RSA-Algorithmus 135
Riickgabewert 25, 36, 65, 180
Tupel 141
RuntimeError 59, 73
S
Sammeln von Parametern 141
Sammlung 148
Satz des Pythagoras 66
Scaffolding 68, 76, 136
Schildkrétenschreibmaschine 52
Schleife 43, 50, 81, 143
Bedingung 244
endlose 81, 225, 244
Event- 225
for 43,90, 111
Traversierung 90
verschachtelte 213
while 80
Schleifen

mit Dictionaries 128

mit Indizes 104, 111

und Strings 93
Schleifen und Zahler 93
schlimmster Bug 205

tiberhaupt 239
Schliissel 125, 137
Schliissel/Wert-Paar 125, 136, 143
Schliisselwort 15, 21, 242

def 28

elif 56

else 55
Schliisselwortargument 46, 50, 146, 226, 237
Schmidt, Eric 251
Schnittstelle 46, 49-50, 204, 219
Schreibmaschine, mit Turtle 52
Schrittgrolle 99
Scrabble 149
self (Parametername) 197
Semantik 5, 10, 196
semantischer Fehler 5, 10, 14, 20, 97, 241, 247
Sequenz 98, 116, 139, 147

Koordinaten 228
setdefault-Methode 132

Sexagesimalsystem 191

Shell 172
shelve-Modul 171
shuffle-Funktion 214
sichere Sprache 4
sin-Funktion 26
Skript 3, 10
Skriptmodus 2, 10, 17, 33
Slice 99

aktualisieren 112

Kopie 92, 112

Liste 112

String 91

Tupel 140
Slice-Operator 91, 99, 112, 120, 140
Sonderfall 106-107, 190
sort-Methode 113, 120, 145, 215
sorted-Funktion 147
Sortierung 256
Sortierverfahren 256
spezieller Wert

False 54

None 34, 66, 76, 113, 115

True 54

Spielkarten, angloamerikanische 209

Spirale 52
split-Methode 116, 141
Sprache
formale 6
hohere 1
natiirliche 6
niedere 1
Programmierung 1
sicher 4
Turing-Vollstandigkeit 70
Sprichwortlichkeit 7
sqrt 68
sqrt-Funktion 27
stabile Sortierverfahren 256
Standardwert 155, 162, 199
verdnderbare Objekte vermeiden 205
Stapel, Spielkarten 213
Stapel-Klasse 213, 271
Stapeldiagramm 32, 37, 50, 58, 72, 76, 119, 263, 265
__str__-Methode 199, 213
str-Funktion 26
Streuung 142, 149
String 13, 21, 116, 147
Akkumulator 213

dreifache Anfiihrungszeichen 49

leerer 117

mehrzeiliger 49, 242

Methoden 94

Operationen 19

Slice 91

unverdnderbar 92

Vergleich 96
String-Konkatenation 255
String-Methoden 95, 255
String-Modul 151
String-Reprasentation 174, 199
strip-Methode 102, 151
structshape, Modul 147
Struktur 6
Strukturfehler 147
Subjekt 197, 205, 231
Subklasse 215
Subtraktion

Dictionary 156

Erganzungsverfahren 84, 192
Suche 129, 256
Suche, bindre 124
Suche, Bisektion 124

Suche, Dictionary 129, 137
suche-Funktion 93
Suchmuster 93, 99, 103
Suffix 158
sum-Funktion 142
Superklasse 215
SVG 240
Swampy 41, 184, 223, 225, 264
Syntax 4, 10, 196, 242
Syntaxfehler 4, 10, 20, 27, 241
T
Tastatureingaben 59
Teil-Ganzes-Beziehung 217, 221, 270
Teilbarkeit 53
tempordre Variable 65, 76, 248
Testen
die Antwort kennen 67
Freiheit von Bugs 106
inkrementelle Entwicklung 66
interaktiver Modus 3
ist schwierig 106
minimaler Testfall 247
Vertrauensvorschuss 72

Testfall, minimaler 247

Text
reiner 101, 151, 240
Zufalls- 158
Text-Widget 229
Textdatei 175
tiefe Kopie 183184
time, Modul 124
Tippfehler 161
Tkinter 225
Token 6, 11
Traceback 33, 37, 59-60, 129, 245
translate-Methode 151
Traversierung 90, 93, 96, 99, 103-104, 114, 122, 127-128, 143, 146, 154
Dictionary 144, 203
Liste 111
Trennzeichen 116, 122
trigonometrische Funktion 26
True, spezieller Wert 54
try-Anweisung 169
Tschechische Republik, Nationalflagge 185
Tupel 139, 141, 147-148
als Schliissel in Dictionary 144, 159
in Klammern 144

Methoden 255

mit nur einem Element 139
Slice 140
Vergleich 145, 212
Zuweisung 140-141, 143, 148
tuple-Funktion 139
Turing, Alan 70
Turing-Vollstandigkeit 70
Turing: vollstdndige Sprache 70
TurtleWorld 41, 63, 223
Typ 13, 21
benutzerdefinierter 177, 187
bool 54
dict 125
file 165
Liste 109
long 135
tuple 139
type
float 13
int 13
str 13
type-Funktion 183
TypeError 89, 92, 131, 140, 142, 167, 198, 245

Typkonvertierung 25

Typpriifung 73
U
Uberladung 205
tiberschreiben 155, 162, 199, 212, 215, 219
Ubertrag, Addition mit 84, 189, 191
Ubung, geheime 176
umgekehrtes Paar 124
UML 263, 270
UnboundLocalError 134
Unified Modeling Language 263
Unix-Befehl
Is 172
Unterstrich 15
Unverdnderbarkeit 92, 99, 119, 131, 139, 147
update-Methode 144
URL 176, 240
urllib-Modul 176, 240
\'/
ValueError 60, 129, 140
values-Methode 126
Variable 14, 21
aktualisieren 80
auf Modulebene 264
globale 133, 264

lokale 31

tempordre 65, 76, 248
Variablen auf Modulebene 264
Vektorgrafiken 240
Veneer 214, 221
verdnderbares Objekt, als Standardwert 205
Veranderbarkeit 92, 110, 112, 118, 134, 139, 147, 181
Verbundanweisung 55, 62
Vererbung 215, 221
Vergleich

String 96

Tupel 145, 212
vergleiche-Funktion 66
vergleichsbasiertes Sortieren 256
Verkapselung 69, 84
verkettete Bedingung 55, 62
Verkniipfung 209
verschachtelte Bedingung 56, 62
verschachtelte Liste 109, 111, 121
Verschliisselung 135, 209
verschrankte Worter 124
Vertrauensvorschuss 72
Verzeichnis 167, 175

Arbeits- 167

durchlaufen 168
Verzweigung 55, 62
visual-Modul 206
Vorbedingung 49-50, 75, 123, 219
vorpal 70
vpython-Modul 206
W
Wachstumsordnung 252
Waichter-Muster 74, 76, 97
Wert 13, 21, 117-118, 137

Standard- 155

Tupel 141
while-Schleife 80
Whitespace 102, 174, 242
Widget 226, 237

Button 226

Canvas 227

Entry 229

Frame 230

Label 226

Menubutton 233

Text 229
Widget, Packing 230
Wiederholung 42

Liste 112
World-Modul 184
Worst Case 252
Wort, reduzierbares 150
Worthaufigkeit 162
Wortzdhler 173
Wut 249
y4
Zahl, Zufalls- 152
Zéhler 93, 99, 127, 134
Zahler und Schleifen 93
Zeichen 89
Zeichen fiir Zeilenumbruch 175
Zeilenumbruch 213
Zeilenvorschub 60, 79
Zeit-Klasse 187
zip-Funktion 142

Kombination mit dict 144
Zipfsches Gesetz 162
Zirkeldefinition 70
Zufallstext 158
Zufallszahl 152
Zugriff 110
zuldssige Farben 185, 207

Zustandsdiagramm 14, 21, 79, 98, 110, 118, 131, 145, 178, 180, 183, 187, 211, 263—
264

Zuweisung 14, 21, 79, 109
Element 110
erweiterte 113, 122
item 92
mehrfache 86, 134
Tupel 140-141, 143, 148

Kolophon

Das Tier auf dem Einband von Programmieren lernen mit Python ist der
Karolinasittich (Conuropsis carolinensis). Diese Papageienart bewohnte die
stidostlichen USA und war damit die einzige kontinentale Papageienart mit einem
Lebensraum nordlich von Mexiko. Es gab eine Zeit, in der der Karolinasittich sogar
in New York und im Gebiet der Groffen Seen lebte, auch wenn er in erster Linie von
Florida bis zu den Carolinas zu finden war.

Der Karolinasittich war vorwiegend griin mit einem gelben Kopf und einer
orangefarbenen Farbung, die mit der Geschlechtsreife auf Stirn und Wangen zu
sehen war. Der Sittich war durchschnittlich 31 bis 33 cm groR. Er hatte einen lauten,
harschen Ruf und plapperte beim Fressen unabldssig. Der Vogel bewohnte hohle
Baumstdmme in Stimpfen und an Flussufern. Der Karolinasittich war ein sehr
geselliges Tier und lebte in kleinen Gruppen, die sich beim Fressen zu Hunderten
versammelten.

Héaufig waren die Futterpldtze die Felder von Farmern, die die Vogel abschossen, um
sie von der Ernte fernzuhalten. Die soziale Ader der Vogel fiihrte dazu, dass sie
ihren verwundeten Artgenossen zu Hilfe kamen, wodurch die Farmer ganze
Schwérme auf einmal abschiellen konnten. AulSerdem zierten ihre Federn die Hiite
der Damenwelt, und manche Papageien wurden als Haustiere gehalten. Die
Kombination dieser Faktoren fiihrte dazu, dass der Karolinasittich Ende des 19.
Jahrhunderts selten geworden war. Auch eine Gefliigelseuche kann zu den
schwindenden Zahlen beigetragen haben. In den Zwanzigerjahren des 20.
Jahrhunderts war die Art ausgestorben.

Heutzutage werden weltweit mehr als 700 ausgestopfte Karolinasittiche in Museen
aufbewabhrt.

Die Umschlagabbildung stammt aus Johnson’s Natural History. Die Schriftart auf
dem Einband ist Adobe ITC Garamond. Die Schriftart fiir den Text ist Linotype
Birka. Die Schrift fiir die Uberschriften heit Adobe Myriad Condensed, und als
Schriftart fiir den Code haben wir TheSans Mono Condensed von LucasFont
verwendet.

Programmieren lernen mit Python

Allen B. Downey

Stefan Frohlich
Impressum © 2012 O'Reilly Verlag GmbH & Co. KG

Die Informationen in diesem Buch wurden mit gro8ter Sorgfalt erarbeitet. Dennoch kénnen Fehler nicht
vollstindig ausgeschlossen werden. Verlag, Autoren und Ubersetzer {ibernehmen keine juristische
Verantwortung oder irgendeine Haftung fiir eventuell verbliebene Fehler und deren Folgen. Alle Warennamen
werden ohne Gewahrleistung der freien Verwendbarkeit benutzt und sind méglicherweise eingetragene
Warenzeichen. Der Verlag richtet sich im Wesentlichen nach den Schreibweisen der Hersteller. Das Werk
einschlieBlich aller seiner Teile ist urheberrechtlich geschiitzt. Alle Rechte vorbehalten einschlieRlich der
Vervielfiltigung, Ubersetzung, Mikroverfilmung sowie Einspeicherung und Verarbeitung in elektronischen
Systemen.

Die Originalausgabe erschien 2012 unter dem Titel Think Python bei O'Reilly Media, Inc.

Die Darstellung eines Karolinasittichs im Zusammenhang mit dem Thema Python ist ein Warenzeichen von
O’Reilly Media, Inc.

Bibliografische Information Der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet
diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet iiber
http://dnb.de abrufbar.

Satz: Reemers Publishing Services GmbH, Krefeld, www.reemers.de Druck: Druckerei Kosel, Krugzell,
www.koeselbuch.de

978-3-86899-946-4
Dieses Buch ist auf 100% chlorfrei gebleichtem Papier gedruckt.

O’Reilly Verlag GmbH & Co. KG
Balthasarstr. 81

Ko6In50670
kommentar@oreilly.de

mailto:kommentar@oreilly.de

Programmieren lernen mit Python

Inhaltsverzeichnis

Vorwort
Die seltsame Geschichte dieses Buchs
Typografische Konventionen
Nutzung der Codebeispiele
Danksagungen
Liste der Beitragenden

1. Programme entwickeln

Die Programmiersprache Python
Was ist ein Programm?

Was ist Debugging?
Syntaxfehler

Laufzeitfehler

Semantische Fehler
Experimentelles Debugging
Formale und natiirliche Sprachen
Das erste Programm

Debugging
Glossar

Ubungen
2. Variablen, Ausdriicke und Anweisungen

Werte und Typen

Variablen
Variablennamen und Schliisselworter

Operatoren und Operanden

Ausdriicke und Anweisungen

Interaktiver Modus und Skriptmodus
Rangfolge von Operatoren

String-Operationen
Kommentare

Debugging
Glossar

Ubungen
3. Funktionen

Funktionsaufrufe

Funktionen zur Typkonvertierung
Mathematische Funktionen

Komposition
Neue Funktionen erstellen

Definition und Verwendung
Programmablauf

Parameter und Argumente
Variablen und Parameter sind lokal

Stapeldiagramme
Funktionen mit und ohne Riickgabewert

Warum Funktionen?

Import mit from

Debugging
Glossar

Ubungen
4. Fallstudie: Gestaltung von Schnittstellen
TurtleWorld

Einfache Wiederholung
Ubungen

Datenkapselung
Generalisierung

Gestaltung von Schnittstellen
Refactoring
Entwicklungsplan

Docstring

Debugging
Glossar

Ubungen
5. Bedingungen und Rekursion

Modulus-Operator

Boolesche Ausdriicke

Logische Operatoren

Bedingte Ausfiihrung
Alternativer Programmablauf

Verkettete Bedingungen

Verschachtelte Bedingungen
Rekursion

Stapeldiagramme fiir rekursive Funktionen
Endlose Rekursion
Tastatureingaben

Debugging
Glossar

Ubungen
6. Funktionen mit Riickgabewert

Riickgabewerte

Inkrementelle Entwicklung

Funktionskomposition

Boolesche Funktionen
Mehr Rekursion
Vertrauensvorschuss

Noch ein Beispiel

Typpriifung
Debugging
Glossar
Ubungen
7. Iteration
Mehrfache Zuweisungen

Variablen aktualisieren

Die while-Anweisung
break
Quadratwurzeln

Algorithmen
Debugging

Glossar

Ubungen
8. Strings

Ein String ist eine Folge
len

Traversierung mit einer Schleife
String-Teile

Strings sind unverdnderbar

Suchen

Schleifen und Zdhler
String-Methoden
Der in-Operator

String-Vergleich

Debugging
Glossar

Ubungen
9. Fallstudie: Wortspiele

Wortlisten einlesen

Ubungen
Suchen

Schleifen mit Indizes

Debugging
Glossar

Ubungen
10. Listen

Eine Liste ist eine Sequenz
Listen kénnen gedndert werden

Listen durchlaufen

Operationen mit Listen

Listen-Slices

Methoden fiir Listen

Map, Filter und Reduktion
Elemente 16schen

Listen und Strings
Objekte und Werte
Aliasing

Listen als Argument

Debugging
Glossar

Ubungen
11. Dictionaries

Dictionary als Menge von Zdhlern

Schleifen und Dictionaries

Inverse Suche

Dictionaries und Listen

Memos
Globale Variablen

Long Integer
Debugging
Glossar
Ubungen

12. Tupel
Tupel sind unverdnderbar

Tupel-Zuweisung

Tupel als Riickgabewerte
Argument-Tupel mit variabler Lange
Listen und Tupel

Dictionaries und Tupel

Tupel vergleichen
Sequenzen mit Sequenzen

Debugging
Glossar

Ubungen
13. Fallstudie: Wahl der richtigen Datenstruktur

Haufigkeitsanalyse fiir Worter
Zufallszahlen

Worthistogramm
Die hdufigsten Worter

Optionale Parameter

Dictionary-Subtraktion

Zufallsworter

Markov-Analyse

Datenstrukturen

Debugging
Glossar

Ubungen
14. Dateien

Persistenz
Lesen und schreiben

Formatoperator

Dateinamen und Pfade

Ausnahmen abfangen
Datenbanken
Pickling

Pipes

Module schreiben

Debugging
Glossar

Ubungen
15. Klassen und Objekte

Benutzerdefinierte Typen
Attribute

Rechtecke

Instanzen als Riickgabewerte
Objekte sind verdnderbar
Kopieren

Debugging
Glossar

Ubungen

16. Klassen und Funktionen

Zeit
Reine Funktionen

Modifizierende Funktionen
Prototyping kontra Planung

Debugging
Glossar

Ubungen
17. Klassen und Methoden

Objektorientierte Programmierung

Objekte ausgeben
Noch ein Beispiel

Ein komplizierteres Beispiel
init-Methode

Methode __str
Operator-Uberladung

Dynamische Bindung
Polymorphismus
Debugging

Schnittstelle und Implementierung
Glossar

Ubungen
18. Vererbung

Karten-Objekte
Klassenattribute

Karten vergleichen

Stapel

Kartenstapel ausgeben

Hinzufiigen, entfernen, mischen und sortieren
Vererbung

Klassendiagramme

Debugging

Datenkapselung

Glossar

Ubungen
19. Fallstudie: Tkinter

GUI

Buttons und Callbacks
Canvas-Widgets
Koordinatensequenzen

Weitere Widgets

Widgets packen
Meniis und Callables
Bindung

Debugging

Glossar

Ubungen

A. Debugging
Syntaxfehler

Ich mache immer wieder Anderungen. sehe aber keinen Unterschied

Laufzeitfehler

Mein Programm macht absolut gar nichts

Mein Programm hdngt
Endlosschleifen

Endlose Rekursion
Programmablauf

Ich erhalte eine Ausnahme, wenn ich das Programm ausfiihre

Ich habe so viele print-Anweisungen eingefiigt, dass mich die Ausgaben

tiberfordern
Semantische Fehler

Mein Programm funktioniert nicht
Ich habe einen grolen und haarigen Ausdruck, der nicht macht, was er soll

Eine Funktion oder Methode liefert nicht den erwarteten Riickgabewert
Ich komme wirklich nicht weiter und brauche Hilfe

Nein, ich brauche wirklich Hilfe

B. Algorithmenanalyse
Wachstumsordnung

Analyse grundlegender Python-Operationen

Analyse von Suchalgorithmen
Hashtabellen

C. Lumpy
Zustandsdiagramm
Stapeldiagramm
Objektdiagramme
Funktions- und Klassenobjekte

Klassendiagramme
Index
Kolophon
Copyright

	Programmieren lernen mit Python - Allen B. Downey - Stefan Fröhlich
	Inhaltsverzeichnis
	Vorwort
	Programmieren lernen mit Python Kapitel 1- 19
	Kapitel 1. Programme entwickeln
	Kapitel 2. Variablen, Ausdrücke und Anweisungen
	Kapitel 3. Funktionen
	Kapitel 4. Fallstudie: Gestaltung von Schnittstellen
	Kapitel 5. Bedingungen und Rekursion
	Kapitel 6. Funktionen mit Rückgabewert
	Kapitel 7. Iteration
	Kapitel 8. Strings
	Kapitel 9. Fallstudie: Wortspiele
	Kapitel 10. Listen
	Kapitel 11. Dictionaries
	Kapitel 12. Tupel
	Kapitel 13. Fallstudie: Wahl der richtigenDatenstruktur
	Kapitel 14. Dateien
	Kapitel 15. Klassen und Objekte
	Kapitel 16. Klassen und Funktionen
	Kapitel 17. Klassen und Methoden
	Kapitel 18. Vererbung
	Kapitel 19. Fallstudie: Tkinter

	Anhang A. Debugging
	Anhang B. Algorithmenanalyse
	Index
	Kolophon
	Impressum

