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Vorwort zumGesamtwerk

Die Natur auf Erden ist in ihrer Vielfalt und Schönheit ein großesWunder, wer wird
es leugnen? Erweitert man die Sicht auf den planetarischen, auf den galaktischen
und auf den ganzen kosmischen Raum, drängt sich der Begriff eines überwälti-
genden und gleichzeitig geheimnisvollen Faszinosums auf. Wie konnte das Alles
nur werden, wer hat das Werden veranlasst? – Es ist eine große geistige Leistung
des Menschen, wie er die Natur im Kleinen und Großen in ihren vielen Einzel-
heiten inzwischen erforschen konnte. Dabei stößt er zunehmend an Grenzen des
Erkennbaren/Erklärbaren. –

Es lohnt sich, in die Naturwissenschaften mit ihren Leitdisziplinen, Physik,
Chemie und Biologie, einschließlich ihrer Anwendungsdisziplinen, einzudringen,
in der Absicht, die Naturgesetze zu verstehen, die dem Werden und Wandel zu-
grunde lagen bzw. liegen: Wie ist die Materie aufgebaut, was ist Strahlung, woher
bezieht die Sonne ihre Energie, wie ist die Formel E D m �c2 zu verstehen, welche
Aussagen erschließen sich aus der Relativitäts- und Quantentheorie, wie funktio-
niert der genetische Code, wann und wie entwickelte sich der Mensch bis heute als
letztes Glied der Homininen? Ist der Mensch, biologisch gesehen, eine mit Geist
und Seele ausgestattete Sonderform im Tierreich oder doch mehr? Von göttlicher
Einzigartigkeit? Hiermit stößt man die Tür auf, zur Seins- und Gottesfrage.

Für mich war das Motivation genug. Indem ich mich um eine Gesamtschau
der Naturwissenschaften mühte, ging es mir um Erkenntnis, um Tiefe. Aber auch
über die Dinge, die eher zum Alltag der heutigen Zivilisation gehören, wollte ich
besser Bescheid wissen: Was versteht man eigentlich unter Energie, wie funktio-
niert eine Windkraftanlage, warum kann der Wirkungsgrad eines auf chemischer
Verbrennung beruhenden Motors nicht viel mehr als 50% erreichen, wie entsteht
elektrischer Strom, wie lässt er sich speichern, wie sendet das Smart-Phone ei-
ne Mail, was ist ein Halbleiter, woraus bestehen Kunststoffe, was passiert beim
Klonen, ist Gentechnik wirklich gefährlich? Wodurch entsteht eigentlich die CO2-
Emission, wie viel hat sich davon inzwischen in der Atmosphäre angereichert,
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wieso verursacht CO2 den Klimawandel, wie sieht es mit der Verfügbarkeit der
noch vorhandenen Ressourcen aus, bei jenen der Energie und jenen der Indus-
trierohstoffe? Wird alles reichen, wenn die Weltbevölkerung von zurzeit 7,5 Milli-
arden Bewohnern am Ende des Jahrhunderts auf 11 Milliarden angewachsen sein
wird? Wird dann noch genügend Wasser und Nahrung zur Verfügung? Viele Fra-
gen, ernste Fragen, Fragen ethischer Dimension.

Kurzum: Es waren zwei dominanteMotive, warum ich mich dem Thema Natur-
wissenschaften gründlicher zugewandt habe, gründlicher als ich darin viele Jahr-
zehnte zuvor in der Schule unterwiesen worden war:

� Zum einen hoffte ich die in der Natur waltenden Zusammenhänge besser ver-
stehen zu können und wagte den Versuch, von den Quarks und Leptonen über
die rätselhafte, alles dominierende Dunkle Materie (von der man nicht weiß,
was sie ist), zur Letztbegründung allen Seins vorzustoßen und

� zum anderen wollte ich die stark technologisch geprägten Entwicklungen in der
heutigen Zeit sowie den zivilisatorischen Umgang mit ‚meinem‘ Heimatplane-
ten und die Folgen daraus besser beurteilen können.

Es liegt auf der Hand: Will man tiefer in die Geheimnisse der Natur, in ihre Ge-
setze, vordringen, ist es erforderlich, sich in die experimentellen Befunde und
hypothetischen Modelle hinein zu denken. So gewinnt man die erforderlichen na-
turwissenschaftlichen Kenntnisse und Erkenntnisse für ein vertieftes Weltverständ-
nis. Dieses Ziel auf einer vergleichsweise einfachen theoretischen Grundlage zu
erreichen, ist durchaus möglich. Mit dem vorliegenden Werk habe ich versucht,
dazu den Weg zu ebnen. Man sollte sich darauf einlassen, man sollte es wagen!
Wo der Text dem Leser (zunächst) zu schwierig ist, lese er über die Passage hinweg
und studiere nur die Folgerungen. Wo es im Text tatsächlich spezieller wird, ha-
be ich eine etwas geringere Schriftgröße gewählt, auch bei diversen Anmerkungen
und Beispielen. Vielleicht sind es andererseits gerade diese Teile, die interessierte
Schüler und Laien suchen. – Zentral sind die Abbildungen für die Vermittlung des
Stoffes, sie wurden von mir überwiegend entworfen und gezeichnet. Sie sollten ge-
meinsam mit dem Text ‚gelesen‘ werden, sie tragen keine Unterschrift. – Die am
Ende pro Kapitel aufgelistete Literatur verweist auf spezielle Quellen. Sie dient
überwiegend dazu, auf weiterführendes Schrifttum hinzuweisen, zunächst meist
auf Literatur allgemeinerer populärwissenschaftlicher Art, fortschreitend zu aus-
gewiesenen Lehr- und Fachbüchern. – Es ist bereichernd und spannend, neben viel
Neuem in den Künsten und Geisteswissenschaften, an den Fortschritten auf dem
dritten Areal menschlicher Kultur, den Naturwissenschaften, teilhaben zu können,
wie sie in den Feuilletons der Zeitungen, in den Artikeln der Wissenszeitschrif-
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ten und in Sachbüchern regelmäßig publiziert werden. So wird der Blick auf das
Ganze erst vollständig.

Das Werk ist in fünf Bände gegliedert, die Zahl der Kapitel in diesen ist unter-
schiedlich:

Band I: Geschichtliche Entwicklung, Grundbegriffe, Mathematik
1. Naturwissenschaft – Von der Antike bis ins Anthropozän
2. Grundbegriffe und Grundfakten
3. Mathematik – Elementare Einführung

Band II: Grundlagen der Mechanik einschl. solarer Astronomie und Ther-
modynamik
1. Mechanik I: Grundlagen
2. Mechanik II: Anwendungen einschl. Astronomie I
3. Thermodynamik

Band III: Grundlagen der Elektrizität, Strahlung und relativistischen Mechanik,
einschließlich stellarer Astronomie und Kosmologie
1. Elektrizität und Magnetismus – Elektromagnetische Wellen
2. Strahlung I: Grundlagen
3. Strahlung II: Anwendungen, einschl. Astronomie II
4. Relativistische Mechanik, einschl. Kosmologie

Band IV: Grundlagen der Atomistik, Quantenmechanik und Chemie
1. Atomistik – Quantenmechanik – Elementarteilchenphysik
2. Chemie

Band V: Grundlagen der Biologie im Kontext mit Evolution und Religion
1. Biologie
2. Religion und Naturwissenschaft

Abschließend sei noch angemerkt: Während sich der Inhalt des Bandes II, der mit
Mechanik und Thermodynamik (Wärmelehre) für die Grundlagen der klassischen
Technik steht und sich dem interessierten Leser eher erschließt, ist das beim Stoff
der Bände III und IV nur noch bedingt der Fall. Das liegt nicht am Leser. Die In-
varianz der Lichtgeschwindigkeit etwa und die hiermit verbundenen Folgerungen
in der Relativitätstheorie, sind vom menschlichen Verstand nicht verstehbar, etwa
die daraus folgende Konsequenz, dass die räumliche Ausdehnung, auch Zeit und
Masse, von der relativen Geschwindigkeit zwischen den Bezugssystemen abhän-
gig ist. Ähnlich schwierig ist die Massenanziehung und das hiermit verbundene
gravitative Feld zu verstehen. Die Gravitation wird auf eine gekrümmte Raumzeit
zurückgeführt. Der Feldbegriff ist insgesamt ein schwieriges Konzept. Dennoch,
es muss alles seine Richtigkeit haben: Der Mond hält seinen Abstand zur Erde
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und stürzt nicht auf sie ab, der drahtlose Anruf nach Australien gelingt, die Da-
ten des GPS-Systems und die Anweisungen des Navigators sind exakt. Analog
verhält es sich mit den Konzepten der Quantentheorie. Sie sind ebenfalls prinzi-
piell nicht verstehbar, etwa die Dualität der Strahlung, gar der Ansatz, dass auch
alle Materie aus Teilchen besteht und zugleich als Welle gesehen werden kann.
Genau betrachtet, ist sie weder Teilchen noch Welle, sie ist schlicht etwas ande-
res. Wie man sich die Elektronen im Umfeld des Atomkerns als Ladungsorbitale
vorstellen soll, ist wiederum nicht möglich, weil unanschaulich und demgemäß
unbegreiflich. Man hat es im Makro- und Mikrokosmos mit Dingen zu tun, die
aus der vertrauten Welt heraus fallen, sie sind gänzlich verschieden von den Din-
gen der gängigen Erfahrung. Im Kleinen werden sie gar unbestimmt, für ihren
jeweiligen Zustand lässt sich nur eine Wahrscheinlichkeitsaussage machen. Für al-
le diese Verhaltensweisen ist unser Denk- und Sprachvermögen nicht konzipiert:
In der Evolution haben sich Denken und Sprechen zur Bewältigung der täglichen
Aufgaben entwickelt, für das vor Ort Erfahr- und Denkbare. Nur mit denMitteln ei-
ner abgehobenen Kunstsprache, der Mathematik, sind die Konzepte der modernen
Physik in Form abstrakter Modelle darstellbar. Unanschaulich bleiben sie dennoch,
auch für jene Forscher, die mit ihnen arbeiten, in der Abstraktion werden sie ih-
nen vertraut. Damit stellt sich die Frage: Wie soll es möglich sein, solche Dinge
dennoch verständlich (populärwissenschaftlich) darzustellen? Die Erfahrung zeigt,
dass es möglich ist, auch ohne höhere Mathematik. Man muss mit modellmäßi-
gen Annäherungen arbeiten. Dabei gelingt es, eine Ahnung davon zu entwickeln,
wie alles im Großen und Kleinen funktioniert, nicht nur qualitativ, auch quanti-
tativ. Man sollte vielleicht gelegentlich versuchen, die eine und andere Ableitung
mit Stift und Papier nachzuvollziehen und mit Hilfe eines Taschenrechners das ei-
ne und andere Zahlenbeispiel nachzurechnen. – Themen, die noch ungelöst sind,
wie etwa der Versuch, Relativitäts- und Quantentheorie in der Theorie der Quan-
tengravitation zu vereinen, bleiben außen vor: Das Graviton wurde bislang nicht
entdeckt, eine quantisierte Raum-Zeit ist ein inkonsistenter Ansatz. Nur was durch
messende Beobachtung und Experiment verifiziert werden kann, hat Anspruch, als
naturwissenschaftlich gesichert angesehen zu werden. – Der Inhalt des Bandes V
ist dem Leser leichter zugänglich. Als erstes geht es um das Gebiet der Biologie.
Ihre Fortschritte sind faszinierend und in Verbindung mit Genetik und Biomedi-
zin für die Zukunft von großer Bedeutung – Die Evolutionstheorie ist inzwischen
zweifelsfrei fundiert. Ihre Aussagen berühren das Selbstverständnis des Menschen,
die Frage nach seiner Herkunft und seiner Bestimmung. Das befördert unvermeid-
lich einen Konflikt mit den Glaubenswirklichkeiten der Religionen. Denken und
Glauben sind zwei unterschiedliche Kategorien des menschlichen Geistes. Indem
dieser grundsätzliche Unterschied anerkannt wird, sollten sich alle Partner bei der
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Suche nach der Wahrheit mit Respekt begegnen. Was ist wahr? Die Frage bleibt
letztlich unbeantwortbar. Das ist des Menschen Los. Jedem stehen das Recht und
die Freiheit zu, auf die Frage seine eigene Antwort zu finden.

Der Verfasser dankt dem Verlag Springer-Vieweg und allen Mitarbeitern im
Lektorat, in der Setzerei, Druckerei und Binderei für ihr Engagement, insbesondere
seinem Lektor Herrn Ralf Harms für seine Unterstützung.

Ottobrunn (München), Februar 2017 Christian Petersen



Vorwort zum vorliegenden Band II

In Kap. 1 werden die Grundlagen der Mechanik behandelt. Die Mechanik ist die
älteste Disziplin der Physik und kann als abgeschlossen gelten. Begriffe wie Kraft,
Impuls, Arbeit und Leistung sowie Energie und Energiezerstreuung, werden er-
klärt. Unter letzterer versteht man Reibung und Dämpfung, man spricht auch von
(Energie-)Dissipation. Das führt auf den Begriff Wirkungsgrad. Anhand eines Bei-
spiels wird die ‚Gewinnung‘ von Energie in einer Wasserkraftanlage gezeigt, ge-
nauer, die Wandlung von potentieller in kinetische und letztlich in elektrische
Energie. –

Kap. 2 ist umfangreicher. Statik und Festigkeit der Teile von Bauwerken ste-
hen am Anfang. Dann werden Bewegungszustände studiert. Es folgt Statik und
Dynamik der Fluide. Hierunter werden Flüssigkeiten und Gase zusammen gefasst.
Als Beispiel wird die Erzeugung von Energie mit Hilfe einer Windkraftanlage be-
handelt. Hierbei geht es um die Wandlung der Strömungsenergie des Windes in
elektrische Energie. Es folgen die Themen: Schwingungen und Wellen mit di-
versen Anwendungen, u. a. mit Akustik. Schließlich wird die Himmelsmechanik
anhand der Planeten-, Mond- und Kometenbewegung aufbereitet und das Sonnen-
system beschrieben (solare Astronomie). –

Nicht minder interessant und wichtig ist die Thermodynamik. Sie ist Gegen-
stand des Kap. 3. Es wird untersucht, wie sich Festkörper, Flüssigkeiten und Gase
bei Wärmeeinwirkung verhalten. Das führt auf die Gasgesetze und Hauptsätze
der Wärmelehre und auf die hierauf aufbauenden Wärmevorgänge und -prozesse,
wie sie in Verbrennungsmotoren ablaufen. Das macht es notwendig, sich mit der
Energieversorgung hierzulande und weltweit zu befassen, mit den fossilen und
nicht-fossilen (erneuerbaren) Energiequellen. Gerade Letztgenannten wie Wind,
Sonne, Geothermie und Biomasse, wird in Zukunft eine immer größere Bedeu-
tung zukommen. Dabei stellen sich Fragen: Wie hoch ist ihr Beitrag heute schon?
Werden sie die fossilen Energiequellen eines fernen Tages ersetzen können?

XI
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1Mechanik I: Grundlagen

1.1 Modellannahmen – Bewegung auf einer geraden Bahn

Um in die Wissenschaft der Mechanik, der ältesten Disziplin der Physik, mög-
lichst einfach einführen zu können, werden ihre Grundgrößen und Grundgesetze
im Folgenden auf der Basis nachstehender Annahmen erläutert:

1. Alle auftretenden Geschwindigkeiten sind gegenüber der Lichtgeschwindigkeit
sehr gering (v � c/; relativistische Effekte existieren nicht.

2. Die Masse der Körper wird in deren Schwerpunkt vereinigt gedacht. Derartige
Punktmassen sind drallfrei. Kräfte greifen im Schwerpunkt an.

3. Alle Punktmassen bewegen sich auf einer Geradenbahn.

Durch diese Annahmen kann auf eine vektorielle Darstellung verzichtet werden.
In Kap. 2 wird die Darstellung auf gekrümmte Bahnen erweitert, im Wesentlichen
bei Aufrechterhaltung der 1. und 2. Annahme. Um eine beliebige krummlinige
Bewegung darstellen zu können, bedarf es des Vektorkalküls.

1.2 Weg (s)

Abb. 1.1a zeigt, wie sich eine Punktmasse m in einem dreidimensionalen Raum,
in dem ein rechtwinkliges Koordinatensystem x; y; z aufgespannt ist, auf einer
geraden Bahn bewegt, Formelkürzel für den Weg ist s.

Bei der Masse m möge es sich um eine Trägerrakete, die einen Satelliten in
den Weltraum befördert, handeln: Der Startpunkt falle mit dem Nullpunkt des
Koordinatensystems zusammen, im Augenblick des Starts werde die Zeit t zu
t D 0 angenommen. In Teilabbildung b ist der Weg s über der Zeit t aufgetragen,

1© Springer Fachmedien Wiesbaden GmbH 2017
C. Petersen, Naturwissenschaften im Fokus II, DOI 10.1007/978-3-658-15298-7_1
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Abb. 1.1

man spricht von einem Weg-Zeit-Diagramm. Wie erkennbar, ist die Weg-Zeit-
Funktion nicht geradlinig: Im Startzeitpunkt ist die Beschleunigung a und damit
die auf m ausgeübte Kraft durch den Raketenmotor am größten, m bewegt sich
von Null aus zunächst langsam, dann immer schneller. Der Raketenmotor muss
gegen die Erdanziehung an arbeiten. Aus der Beschreibung wird deutlich: Weg s,
Geschwindigkeit v und Beschleunigung a sind Funktionen der Zeit t ; s, v und a

sind kinematische Größen, sie kennzeichnen den Bewegungsablauf.

1.3 Geschwindigkeit (v)

Unter Geschwindigkeit versteht man die Änderung des Weges in der Zeiteinheit,
also die in der Zeiteinheit dt zurück gelegte Wegstrecke ds:

v D ds

dt
D Ps

Zeitableitungen d. � /=dt und @. � /=@t werden hier und im Folgenden durch einen
hochgestellten Punkt gekennzeichnet. Die Einheit der Geschwindigkeit folgt aus

Œv� D Œds�

Œdt �
D m

s
D ms�1

(Eine Einheit für die Geschwindigkeit v in der Seefahrt (außerhalb des SI) ist der
Knoten kn: 1 knD 0,5144m=sD 1,852 km=h.)

Abb. 1.2a zeigt drei unterschiedliche Weg-Zeit-Kurven. Im Falle der Kurve ①

verläuft die Bewegung über der Zeit linear, d. h. die Geschwindigkeit ist konstant
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Abb. 1.2

(D gleichförmige Bewegung). Die Kurven ② und ③ zeigen ungleichförmige Be-
wegungen,② verläuft progressiv (‚immer schneller‘), ③ verläuft degressiv (‚immer
langsamer‘). Teilabbildung b zeigt die zugehörigen Geschwindigkeiten als Funk-
tion der Zeit, ①: v D konst. ②: v steigt an, ③: v sinkt. Teilabbildung c zeigt, wie
sich die Beschleunigung in den drei Fällen mit der Zeit ändert.

1. Anmerkung
Die Änderung einer Funktion, z. B. der Funktion y D y.x/, kann geometrisch als deren
Steigung (C) oder Neigung (�) gedeutet werden. Wie Abb. 1.3 zu entnehmen ist, ist die
Steigung an der Stelle x der Quotient �y=�x, was gleichbedeutend mit der Steigung der
Tangente an die Kurve an der Stelle x ist, man spricht daher auch vom Tangens. Lässt man
�t immer kleiner werden, geht man also von einer finiten Länge �x zu einer infinitesima-
len (unendlich kurzen) Länge dx über, erhält man die lokale Steigung der Kurve im Punkt
x, das ist die lokale Änderung von y D y.x/. Der Differenzenquotient wird bei diesem
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Abb. 1.3

Grenzübergang zu einem Differentialquotienten:

dy

dx
D lim

�x!0

�y

�x

In diesem Sinne ist die obige Definition der Geschwindigkeit zu begreifen. – Ist s als Funk-
tion von t gegeben, muss s D s.t/ nach t differenziert werden, um v, also die Geschwindig-
keit, zu erhalten, v ist i. Allg. selbst wieder eine Funktion der Zeit t .

Beispiel
s D c1 � t C c3 � t 3 (diese Funktion entspricht der Kurve ② in Abb. 1.2a). Die Ableitung nach
t lautet in diesem Falle: Ps D c1 C 3 c3 � t 2 D v.t/, man vgl. mit dem Verlauf der Kurve ② in
Abb. 1.2b.

2. Anmerkung
Die Umrechnung der Einheit m=s in km=h (Kilometer durch Stunde, umgangssprachlich:
Stundenkilometer) lautet mit

1m D 1

1000
km D 10�3 kmI 1 s D 1

60 � 60
h D 1

3600
h D 1

3;6
� 10�3 hW

1
m

s
D 1

10�3 km
1

3;6
� 10�3 h

D 3;6
km

h
I Kehrwert: 1

km

h
D 1

3;6

m

s
D 0;2778

m

s

1.4 Beschleunigung (a)

Unter der Beschleunigung a versteht man die zeitliche Änderung der Geschwin-
digkeit. Nimmt sie zu, spricht man von Beschleunigung, nimmt sie ab von Verzö-
gerung (Bremsung). Im Falle einer gleichförmigen Bewegung (v D konst., Kur-
ve ① in Abb. 1.2) ist die Beschleunigung Null, im Falle einer ungleichförmigen
Bewegung ist die Beschleunigung verschieden von Null (Kurve ②: a: positiv und
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Kurve ③: a: negativ). Mathematisch formuliert gilt:

a D lim
�t!0

�v

�t
D dv

dt
D Pv D Rs

Einheit: Œa� D Œdv�

Œdt �
D m=s

s
D m

s2
D m � s�2

Anmerkungen
Die Einführung der physikalischen Größe ‚Beschleunigung‘ geht auf G. GALILEI (1564–
1642) zurück. Bei Rollversuchen auf geneigten Bahnen, auch solchen in Kreisform, hatte er
das Gesetz für die Bahnkurve des fallenden Körpers zu s D s.t/ D .1=2/ � g � t 2 erkannt,
zudem, dass die Erdbeschleunigung g eine stoffunabhängige Konstante ist. Durch Differen-
zieren von s D s.t/ nach t folgt: v D g � t und a D g. Hiermit waren erstmals Begriffe
wie Schwere und Trägheit eingeführt, was den Begriff der Kraft bereits beinhaltete. Die Ur-
sache für die Wechselbeziehung zwischen Beschleunigung und Kraft wurde erst 50 Jahre
später von I. NEWTON (1643–1727) zutreffend erkannt und in seinem Werk ‚Mathema-
tische Prinzipien der Naturphilosophie‘ im Jahre 1686 veröffentlicht. Da G. GALILEI das
Prinzip des systematisch angelegten Experiments mit Variation der Versuchsparameter und
die Erfassung und Beschreibung des experimentellen Ergebnisses mit den Mitteln der Ma-
thematik in die Naturforschung einführte, steht sein Tun für den Anfang der Mechanik und
damit der Physik überhaupt, auch gehen noch weitere Erkenntnisse und Erfindungen auf ihn
zurück. Sein Konflikt mit der katholischen Amtskirche ist bekannt, siehe Bd. I, Abschn. 1.4
und [1].

Zur historischen Entwicklung der mechanischen Prinzipien mit umfangreichem
Schrifttumwird auf [1] verwiesen. Die KlassischeMechanik wird in vielenWerken
abgehandelt, vgl. z. B. [2–5], anschauliche Darstellung in [6, 7].

1.5 Kraftaxiome nach I. NEWTON – Kraft (F D m � a)

Die von I. NEWTON (1642–1727) formulierten Grundgesetze lauten:

Lex I Ohne Krafteinwirkung tritt keine Änderung des Zustandes eines Körpers
mit der Masse m ein, weder im Zustand der Ruhe, noch im Zustand der Bewegung.
In heutiger Ausdeutung: Eine Punktmasse m verharrt im Zustand der Ruhe oder
bewegt sich mit konstanter Geschwindigkeit auf einer geradlinigen Bahn, wenn
keine äußere Kraft auf sie einwirkt. Dieses Trägheitsgesetz geht im Kern auf GA-
LILEI zurück (s. o.). In einer noch weitergehenden Auslegung kann man folgern:
v D konst. bedeutet a D 0, somit gilt: F D 0. F ist das Kürzel für die Kraft.
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Lex II Die Änderung des Impulses ist der von außen einwirkenden Kraft pro-
portional und gleichgerichtet. Der Impuls (auch Bewegungsgröße genannt) ist das
Produkt aus Masse und Geschwindigkeit (und insofern, wie die Kraft, eine vekto-
rielle Größe): p D m � v. p ist das Kürzel für den Impuls.

In heutiger Ausdeutung lautet das Bewegungsgesetz:

dp D d.m � v/ D F � dt ! F D d

dt
.m � v/ D d

dt
p D Pp

Ist m konstant, also zeitinvariant, gilt:

F D m � a D m � Rs

In Worten: Kraft und Beschleunigung sind gleichgerichtet und zueinander propor-
tional. (In dieser Form geht das Gesetz nicht auf NEWTON sondern auf L. EULER
(1707–1783) zurück). Mit dem obigen Kraftgesetz findet man die Definition für die
Krafteinheit zu:

ŒF � D Œm� � Œa� D kg � m
s2
D kg �m � s�2 D N (gesprochen: Newton)

Ist F D 0, folgt Lex I aus Lex II.

Lex III Die Kräfte, die zwei Körper aufeinander ausüben, sind ihrer Größe nach
gleich und einander entgegen gerichtet:Wechselwirkungsgesetz (auch als Gegen-
wirkungsgesetz oder als Gesetz von actio et reactio bezeichnet).

Das Bewegungsgesetz lässt sich quasi-statisch anschreiben:

F C .�m � a/ D 0

Der Term (�m � a/ wird Trägheitskraft genannt. Der Term beschreibt den ‚Wi-
derstand‘ der Masse m gegen eine sie beschleunigende Kraft F . Die in dieser
(kinetischen) ‚Gleichgewichtsgleichung‘ zum Ausdruck kommende Schreibwei-
se des Newton’schen Bewegungsgesetzes wird als d’Alembert’sches Prinzip nach
J.R. d’ALEMBERT (1717–1783) bezeichnet. Das Prinzip, im Jahre 1743 veröf-
fentlicht, erweist sich bei vielen dynamischen Untersuchungen als sehr hilfreich. –

Wird das Gleichgewicht aus dem Prinzip der virtuellen Verrückung (wonach
die Arbeit der Kräfte bei einer virtuellen Verrückung Null ist) entwickelt, kommt
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man zur Fassung des d‘Alembert’schen Prinzips nach J.L. LAGRANGE (1736–
1813) [1].

Anmerkung
Mit der Postulierung des Trägheitssatzes gilt I. NEWTON als Begründer der modernen Me-
chanik. R. DESCARTES (1596–1650) hatte die ‚bewegende Kraft‘ noch als Produkt aus
Masse und Geschwindigkeit angesetzt gehabt und G.W. LEIBNIZ (1646–1716) als Produkt
aus Masse und dem Quadrat der Geschwindigkeit. I. KANT (1724–1804) glaubte, von bei-
den Ansätzen sei mal der eine, mal der andere richtig (da war er noch 22 Jahre jung).

1.6 Das gravitative Kraftgesetz nach I. NEWTON

Das erstmals von NEWTON im Jahre 1666 formulierte Massenanziehungsgesetz
lautet:

F D G � m1 �m2

r2

G: Gravitationskonstante: G D 6;6742 � 10�11 m3 � kg�1 � s�2.
Die Anziehungskraft zwischen zwei Massen, die auf der Erdoberfläche ruhen,

ist von sehr geringer Größe und kann bei technischen Fragestellungen i. Allg. ver-
nachlässigt werden.

Hierzu ein Beispiel: Für zwei sich gegenseitig berührende Stahlkugeln mit je 1Meter Durch-
messer, berechnet sich die gegenseitige Massenanziehungskraft wie folgt (Abb. 1.4):

�Stahl D 7850 kg �m�3I VKugel D 4

3
� � 0;53 D 0;5236m�3I mKugel D 4110 kg

F D 6;6742 � 10�11 � 4110 � 4110

1;02
D 0;0011N

Das entspricht dem Gewicht (der Gewichtskraft) eines kugelförmigen Wassertropfens von
ca. 3mm!

Abb. 1.4



8 1 Mechanik I: Grundlagen

1.7 Erdschwere – Gewicht – Fallbeschleunigung –
Gravimetrie

In einem Gravitationsfeld (Schwerefeld) wirkt auf einen Körper der Masse m eine
Kraft ein. Im Schwerefeld der Erde nennt man diese Gewichtskraft das Gewicht
des Körpers:

FG D m � g in N.

g ist die Erdbeschleunigung, Näherungswert in europäischen Breiten:

g D 9;81m � s�2 .� 10m � s�2/

Die abgeleitete Einheit für die Kraft ist N (Newton):

ŒF � D Œm� � Œa� D kg �m � s�2;

gesprochen ‚Newton‘. – Mit g D 10m � s�2 kann gerechnet werden, wenn eine
Genauigkeit von 2% ausreicht.

Der exakte Wert für g in m=s2, der die Erdrotation und Erdabplattung berück-
sichtigt, beträgt für einen Ort mit der geografischen Breite ' und der Höhe H über
dem Meeresspiegel (NN):

gD 9;780327 � Œ1C 0;0053024 � sin2 ' � 0;00000558 � sin2.2'/�� 3;086 � 10�6 �H
Anstelle des additiven Terms wird auch mit �3;088 �10�6 �.1�0;00138 �sin2 '/ �H
gerechnet. Bei H D 300m macht diese Änderung nur 1� aus.

Wendet man das Gravitationsgesetz auf einen Körper mit der Masse m an, der
auf der Erdoberfläche ruht (Abb. 1.5), folgt aus der Gleichsetzung der Gewichts-
kraft FG mit der auf die Masse m ausgeübten Anziehungskraft durch die Masse
der Erde (als Kugel):

m � g D G � m �mErde

R2
Erde

! g D G � mErde

R2
Erde

.RErde D Erdradius/

Abb. 1.5
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Abb. 1.6

Insofern sind g und G miteinander verknüpft. Mit

mErde D 5;976 � 1024 kg; RErde D 6;371 � 106 m

folgt g zu 9;826m � s�2. Dieser Wert gilt für die Erde als Kugel. Bedingt durch die
Geoidform der Erde und ihrer ungleichförmigen Massenverteilung einerseits und
die Erdrotation andererseits, erfährt der berechnete Wert eine Änderung. Die oben
angegebene Gleichung für g gilt als beste Annäherung.

Interessehalber sei in dem Zusammenhang erwähnt, dass täglich, verursacht
durch die Gezeitenwirkung des Mondes, zwei Niveauänderungen der Erdkruste als
Folge der elastischen Nachgiebigkeit des Erdballs auftreten. Die Doppelamplitu-
den der in Abb. 1.6 gezeigten Schwankungen von ca. 25 �10�2 cm � s�2 entsprechen
etwa 30 cm. Die Erde ist somit keinesfalls ein starrer statischer Körper [8]. Für
die überwiegende Zahl der erdgebundenen Probleme sind die Schwankungen ohne
Belang.

Anmerkung 1
Landläufige Bezeichnungen wie ‚Mein Gewicht beträgt 75 kg‘ oder ‚Das Bruttogewicht des
Warenpakets beträgt 5,4 kg‘ sind streng genommen falsch. Wenn es das Gewicht ist, gemes-
sen mit einer Federwaage (Abb. 1.7a), müsste es eigentlich heißen: ‚Mein Gewicht beträgt
750N‘ und, wenn es sich tatsächlich um die Masse des Pakets handelt (gemessen mit einer
Balkenwaage, Abb. 1.7b), müsste es heißen: ‚Die Bruttomasse des Pakets beträgt 5,4 kg‘.
Auf eine solche wünschenswerte sprachliche Einheitenbereinigung wird man wohl noch lan-
ge warten müssen.

Anmerkung 2
Die Bestimmung der Masse eines Körpers erfolgt gängiger Weise (mit einer zumindest für
technische Zwecke ausreichenden Genauigkeit) aus dem Gewicht:

m D FG

g
I Œm� D ŒFG�

Œg�
D N

m � s�2
D kg �m � s�2

m � s�2
D kg
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Abb. 1.7

Die Dichte � der Materie eines Körpers ist der Quotient aus Masse m und Volumen V :

� D m

V
I Œ�� D Œm�

ŒV �
D kg

m3
D kg �m�3

Die Wichte � (auch spezifisches Gewicht genannt) ist der Quotient aus Gewicht FG und
Volumen V :

� D FG

V
I Œ� � D ŒFG�

ŒV �
D N �m�3 D kg �m � s�2

m3
D kg �m�2 � s�2

(In DIN 1306 wird empfohlen, die Wichte nicht mehr zu verwenden.)
Ist � in N=m3 angegeben, folgt hieraus � zu:

� D �

g
D �

9;81
� 0;1 � � in kgm�3

Ist das Gewicht FG in N angegeben, folgt hieraus die Masse m zu:

m D FG

g
D FG

9;81
� 0;1 � FG in kg
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1.8 Spannung (� ) und Druck (p)

1.8.1 Spannung (� ) D Kraft je Flächeneinheit

Die Spannung � ist als die auf den Querschnitt A bezogene Kraft definiert (das
bedeutet: � D Kraft durch Fläche):

� D F

A
I Œ�� D N

m2
D N �m�2

A ist die Querschnittsfläche normal (senkrecht) zur Kraftrichtung.
Abb. 1.8a zeigt eine Tragstruktur in seitlicher Ansicht. Die Struktur stehe stell-

vertretend für ein turmartiges Bauwerk. In den Schwerpunkten der drei aufeinander
stehenden Teile wirken die lotrechten (Gewichts-) Kräfte F1, F2, F3.

Die Querschnittsflächen in den Schnitten I (durch die Säule unten) und II (un-
terhalb der Fundamentplatte) seien AI und AII.

Die (Normal-)Spannungen in diesen Schnitten betragen:

�I D F1 C F2

AI
I �II D F1 C F2 C F3

AII

Es handelt sich um Druckspannungen. In Teilabbildung b sind Höhe und Vertei-
lung der Spannungen angedeutet. Tatsächlich biegt sich die Fundamentplatte etwas
durch. Dadurch stellt sich keine konstante Spannung (D Druckpressung) unter der

Abb. 1.8
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Fundamentplatte ein, sondern eine ungleichförmige, mit einer höherer Pressung
zur Mitte hin, insofern hat �II hier die Bedeutung eines Mittelwertes.

1.8.2 Wasserdruck

Infolge derWasserauflast stellt sich imWasser ein Druck ein. In der Tiefe h ruht auf
der Fläche A eineWassersäule. Die aufliegendeMasse und die auf die Bodenfläche
der Wassersäule einwirkende Gewichtskraft betragen (Abb. 1.9):

m D � � V D � � A � hI FG D g �m D g � � � A � h

Mit der Dichte des Wassers � D 1000 kg=m3 und der Erdbeschleunigung g D
9;81m=s2 folgt für FG :

FG D 9;81 � 1000 � A � h D 9810 � A � h

Der Druck p (Pressung, pressure) auf die Fläche A, beträgt:

p D FG

A
D g � � � h D 9810 � h

p ist der hydrostatische Druck, hier in der Tiefe h, er wächst linear mit der Tie-
fe. Der Druck wirkt allseitig auf das lokale Volumenelement und damit senkrecht
(normal) auf eine das Wasser begrenzende Wand.

Die Druckeinheit (allgemein Spannungseinheit) N=m2 heißt im SI: ‚Pascal‘,
abgekürzt:

1Pa D 1
N

m2
D 1N �m�2

Abb. 1.9
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Anmerkung
Die bislang tiefste Tauchfahrt gelang am 23.01.1960 J. PICCARD (1922–2008) und
D. WALSH mit dem von ihnen und Vater A. PICCARD (1884–1962) konstruierten, 14 t
wiegenden Tieftauchgerät ‚Trieste‘. Sie erreichten im Marianengraben (Challenger Tief),
der tiefsten Stelle aller Weltmeere, eine Tiefe von 10.916 m. Sie saßen in einer Stahlkugel.
Als Auftriebskörper waren am Tauchgerät zylindrische Tanks mit einer ca. 110 t fassenden
Benzinfüllung untergebracht (� � 670 kg=m3). Der aus Stahlkörpern bestehende Ballast
(ebenfalls ca. 14 t wiegend) wurde durch Elektromagnete gehalten. Bei einem Ausfall der
Stromversorgung wären die Ballastkörper abgefallen und das Boot wäre sofort selbsttätig
aufgestiegen (so erfolgte auch der planmäßige Aufstieg). – Eine Tauchfahrt auf 10.916m
Tiefe bedeutet ein Druck von:

p D 9810 � 10:916 D 107:085:960Pa D 107MPa:

Das entspricht einer Pressung pro Quadratmeter durch einen 10:916=7;87 D 1387m hohen
Turm aus massivem Eisen oder einem 10:916=2;4 D 4548m hohen Turm aus massivem Be-
ton. Die Tauchkugel hatte eine Wanddicke von 120mm, im Bereich der beiden Fenster von
180mm, und einen Durchmesser von ca. 2m. Sie bestand aus hochfestem Chrom-Nickel-
Molybdän-Stahl. – Am 26.03.2012 wiederholte J. CAMERON (*1955) die Tauchfahrt im
Alleingang mit seinem ca. 8m lagen U-BOOT ‚Deepsea Challenger‘. Es gelang ihm, mit
einem Greifarm Proben vom Tiefseeboden zu nehmen und Filmaufnahmen zu machen (Tem-
peratur hier etwa 2 °C).

1.8.3 Luftdruck

Durch das Gewicht der Lufthülle herrscht auf dem Erdboden und oberhalb davon
ein Luftdruck. Der Verlauf ist nicht geradlinig (wie beim weitgehend inkompres-
siblen Wasser), sondern ungleichförmig, wie in Abb. 1.10 dargestellt. Luft ist ein
kompressibles Gas. Die Dichte der Luft ist vom Druck abhängig, außerdem von

Abb. 1.10
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der Temperatur (Bd. I, Abschn. 2.7.3). Die exponentielle Abnahme des Luftdrucks
mit der Höhe gehorcht der sogenannten barometrischen Höhenformel (vgl. Ab-
schn. 2.4.1.2):

p.h/ D p0 � e�g� �0
p0
�hI Œp� D Pa

p0 ist der Luftdruck und �0 die Luftdichte in Höhe der Erdoberfläche:

p0 D 1;013 � 105 PaI �0 D 1;225 kg �m�3

Die vorstehende Formel ist eine Näherung, sie unterstellt eine isotherme Atmo-
sphäre, d. h. eine konstante Temperatur über die Höhe h. h ist die Höhe über dem
Meeresspiegel, also über N.N. (Normal Null). Für diese Höhe gelten die ange-
schriebenen Werte p0 und �0 als Standard, man spricht bei dem Standard auch von
Normal- oder Normbedingung, vgl. folgenden Abschnitt.

Beispiel
Befindet sich ein Bergsteiger im Gebirge auf 1000m Höhe (Zustand ①) und steigt er von
hier aus auf einen Gipfel mit 2500 m Höhe (Zustand ②), betragen die Druckverhältnisse auf
diesen Höhen mit:

�g
�0

p0

D �9;81 � 1;225

1;013 � 105
m�1 D �11;863 � 10�5 m�1

Zustand ①, h D 1000m:

�g � �0

p0

� h D �0;11863 ! p.1000/ D 1;013 � 105 � 0;8881 D 0;900 � 105 Pa

Zustand ②, h D 2500m:

�g � �0

p0

� h D �0;29680 ! p.2500/ D 1;013 � 105 � 0;7434 D 0;753 � 105 Pa

Bezogen auf den Ausgangszustand ① beträgt die Abnahme des Drucks: 0;147 � 105 Pa:
14,5%.

1.8.4 Druckeinheiten

Neben der SI-Einheit Pascal sind folgende Druckeinheiten im Gebrauch:

� Bar: 1 bar D 105 Pa D 100 kPa (1 bar D atmosphärischer Druck auf der Erd-
oberfläche),

� Physikalische Atmosphäre: 1 atm D 1;01325 � 105 Pa;
� Technische Atmosphäre: 1 at D 0;98066 � 105 Pa;
� Torr: 1Torr D 1;33322 � 102 Pa.
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Abb. 1.11

Mittels der Tabellenwerte in Abb. 1.11 können die unterschiedlichen Druckeinhei-
ten (einschl. WS D Wassersäule) untereinander umgerechnet werden. Näherung:
1 bar � 1 at � atm. atü steht für Überdruck, z. B. 3 atü D 1 C 3 D 4 at. 1 psi D
6895Pa.

1.9 Kraftmoment (M )

In einem engen Zusammenhang mit der Kraft steht der Begriff des (Kraft-)Mo-
mentes: Betrachtet man einen festen Bezugspunkt außerhalb des momentanenWir-
kungsortes der Kraft F und ist l der senkrechte Abstand zur Wirkungslinie von F ,
ist das Moment von F zu

M D F � l ŒM � D N �m
definiert (vgl. Abb. 1.12): (‚Moment D Kraft mal Hebelarm‘). Der positive Dreh-
sinn von M ist frei vereinbar.

Abb. 1.13a zeigt als Beispiel einen mittig gelagerten Balken. Die Längen betragen zu beiden
Seiten l1 und l2. Bezogen auf den mittigen Stützpunkt betragen die gegenläufigen Momente

Abb. 1.12
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Abb. 1.13

der an den Enden des Balkens wirkenden Kräfte F1 und F2: M1 D F1 � l1 und M2 D F2 � l2.
Der Balken verbleibt im Falle l1 D l2 D l nur dann im Gleichgewicht, also in einer hori-
zontalen Gleichgewichtslage, wenn die Gleichung M1 � M2 D 0 ! F1 � l � F2 � l D 0

erfüllt ist. Die Lösung ist: F1 D F2, das ist plausibel. – Im Falle des in Teilabbildung b
dargestellten Balkens mit unterschiedlich langen überkragenden Längen lautet die Gleich-
gewichtsgleichung:

M1 �M2 D 0 ! F1 � l1 � F2 � l2 D 0 ! F2 D F1 � l1
l2

Man spricht vom Hebelgesetz. Es geht, wie andere einfache mechanische Werkmittel (Fla-
schenzug, Keil) auf ARCHIMEDES VON SYRAKUS (287–212 v. Chr.) zurück [3].

Abb. 1.13c zeigt als weiteres Beispiel einen im Fußpunkt (in der Fundamentplatte) einge-
spannten Biegestab. Am freien Ende wirke die Kraft F . Das System steht stellvertretend für
ein turmartiges Bauwerk, belastet durch Wind. Um die Beanspruchung im Fußpunkt berech-
nen zu können, wird durch den Balken im Übergang zum Fundament ein Rundschnitt gelegt.
An der Schnittstelle werden die (Quer-)Kraft Q und das (Biege-)Moment M definiert. Der
Schnitt ist eine Fiktion, eine Hilfsvorstellung, um die Beanspruchung im Inneren des Stab-
querschnittes berechnen bzw. beurteilen zu können. Die Gleichgewichtsgleichungen für den
oberhalb des gedachten Schnittes liegenden Stabbereich liefern:

Summe aller Kräfte in horizontaler Richtung gleich Null:
X

H D 0W Q � F D 0 ! Q D F

Summe aller Momente gleich Null:
X

M D 0W F � l �M D 0 ! M D F � l
(
P

ist das Summenzeichen.) Ausgehend von den Schnittgrößen Q und M kann die Be-
anspruchung an der Schnittstelle im Querschnitt berechnet und anschließend der Stabquer-
schnitt dimensioniert werden. Derartige Aufgaben fallen in das Gebiet der Statik und Fes-
tigkeitslehre, vgl. Abschn. 2.1.5.
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1.10 Impuls (p)

1.10.1 Impulssatz – Impulserhaltungsgesetz

Der Impulsbegriff wurde bereits in Abschn. 1.5 mit

p D m � v Œp� D Œm� � Œv� D kg � m
s
D kg �m � s�1

eingeführt.

Anmerkung
Für den Impuls gibt es im SI keinen eigenständigen Einheitennamen und auch kein eigen-
ständiges Einheitenkürzel. Hier wird p gewählt, wie in der Physik üblich. Eine Verwechs-
lung mit p für Druck (D Kraft bezogen auf die Flächeneinheit, vgl. Abschn. 1.8) ist eher
nicht zu befürchten.

Eine zeitliche Änderung des Impulses kann durch eine Änderung der Masse m,
der Geschwindigkeit v oder beider zustande kommen (p ist, wie v, eine vektorielle
Größe). Wie ebenfalls ausgeführt, geht die zeitliche Änderung des Impulses mit der
Wirkung einer Kraft einher, oder anders formuliert: Kraft ist gleich der zeitlichen
Änderung des Impulses (Lex II):

F D dp

dt
D Pp D d.m � v/

dt
D dm

dt
� v Cm � dv

dt
D Pm � v Cm � Pv D Pm � v Cm � a

Der Sonderfall mD konstant, d. h. Pm D 0, liegt am häufigsten vor, in diesem Falle
gilt: F D m � a (‚Kraft ist gleich Masse mal Beschleunigung‘).

Das Impulserhaltungsgesetz besagt, dass in einem abgeschlossenen System der
Impuls der sich bewegenden Massen konstant bleibt oder anders formuliert: Ein
abgeschlossenes System ist u. a. ein solches, in das keine Impulsänderung von
außen (in Form von Kräften) eingeprägt wird. Wirken äußere Kräfte, ist die Än-
derung des Gesamtimpulses proportional zur Resultierenden dieser Kräfte, das
System ist dann nicht abgeschlossen. Der Impulssatz hat in der Theorie stoßender
Körper große Bedeutung, vgl. den folgenden Abschnitt. Innerhalb der Kontakt-
phase werden Kräfte an den Kontaktstellen der beteiligten Körper bei gleichzei-
tiger Änderung ihrer Geschwindigkeit und damit des ihnen innewohnenden Im-
pulses geweckt. Wird die obige Definitionsgleichung für den Impuls für den Fall
m Dkonstant umgestellt, gilt:

dp D F � dt ! p D
Z

tp

F .t/ � dt C C
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Abb. 1.14

Die angeschriebene Größe p ist hier jene Impulsänderung, die auf der Wirkung
der Kraft F D F.t/ innerhalb der Impulsdauer tp beruht; der Freiwert C dient zur
Einrechnung der Anfangsbedingung.

1.10.2 Prallstoß (Körperstoß)

1.10.2.1 Zentrischer Prallstoß
Von den verschiedenen Aufprallstößen hat der gerade zentrische Stoß zweier Kör-
per die größte Bedeutung. Bei diesem Stoß treffen zwei drallfreie Körper zu-
sammen. Liegen deren Geschwindigkeitsvektoren auf der Verbindungsgeraden der
beiden Körperschwerpunkte, kommt es zu einem zentralen Stoß. Die Wirkungs-
linie der Stoßkräfte fällt mit dieser Geraden zusammen, wie z. B. bei zwei zen-
trisch aufeinander treffenden Kugeln, Abb. 1.14a. Auf das System sollen während
des Stoßes keine weiteren Kräfte einwirken, es handelt sich dann um ein abge-
schlossenes System. Für ein solches System bleibt der Gesamtimpuls konstant, s. o.
Der Gesamtimpuls ist gleich der (Vektor-)Summe der Einzelimpulse. Die Stoßzeit
(Kontaktzeit während des Stoßes) ist i. Allg. sehr kurz. Innerhalb dieser Kontakt-
zeit werden in den Kontaktzonen der beiden Körper Kräfte induziert. Sie bauen
sich von Null aus auf, erreichen einen Größtwert und bauen sich bei der Trennung
der Körper wieder auf Null ab, sie sind demnach zeitveränderlich, Funktionen der
Zeit: F1 D F1.t/ und F2 D F2.t/. Sie bilden während der gesamten Kontaktpha-
se ein Gleichgewichtspaar, sie sind gegengleich. Über deren zeitlichen Verlauf und
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über die Höhe des Kraftmaximums kann zunächst keine Aussage gemacht werden,
sie gilt es im Folgenden zu bestimmen.

Die betrachteten Körper haben eine unterschiedliche Masse: m1 und m2. Sie
bewegen sich gleichgerichtet mit unterschiedlichen Geschwindigkeiten. Unmittel-
bar vor dem Zusammentreffen, also unmittelbar vor dem Kontakt, betragen die
Geschwindigkeiten: v1a und v2a und unmittelbar nach der Trennung: v1e und v2e

(Annahme: v1a > v2a), vgl. Abb. 1.14b. Der Index a steht für Anfang, der Index
e für Ende der Kontaktphase. Die sich während des Stoßes einstellenden De-
formationen an den Kontaktstellen der beiden Körper seien so gering, dass sich
deren Masseverteilung und Schwerpunktlage nicht ändert; eine Zertrümmerung
der Körper finde nicht statt, die Größe der Massen bleibe konstant. Unbekannte
des Problems sind die Geschwindigkeiten v1e und v2e sowie F.t/, also der Verlauf
der Kontaktkraft als Funktion der Zeit. Das Impulserhaltungsgesetz verlangt, dass
der Impuls am Ende der Kontaktphase gleich jenem am Anfang ist:

m1 � v1a Cm2 � v2a D m1 � v1e Cm2 � v2e

Der Stoß zerfällt in zwei Phasen (Abb. 1.14b): I: Zusammendrückung (Kompressi-
on) und II: Entspannung (Restitution). Während dieser Phasen sind die Geschwin-
digkeiten von m1 und m2 unterschiedlich. Es gibt einen Augenblick, in welchem
die Geschwindigkeiten gleich groß sind. Diese gemeinsame Geschwindigkeit wird
mit w abgekürzt. Die Relativgeschwindigkeit zwischen den Körpern ist in diesem
Augenblick Null; der Schwerpunktabstand zwischen den Körpern erreicht ein Mi-
nimum und die inneren, gegengleichen Kontaktkräfte ein Maximum:

maxF1 D �maxF2:

Weiter gilt:

v1a > w > v2a und v1e < w < v2e:

Im Augenblick des Übergangs von Phase I auf II verlangt das Impulserhaltungsge-
setz:

m1 � v1a Cm2 � v2a D .m1 Cm2/ �w D m1 � v1e Cm2 � v2e

! w D m1 � v1a Cm2 � v2a

m1 Cm2

D m1 � v1e Cm2 � v2e

m1 Cm2

Abb. 1.14b zeigt einen möglichen Verlauf der Kontaktkraft. Die Zeitdauer der
Kompressionsphase betrage tI und jene der Restitutionsphase tII. Indem einmal
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über F.t/ während der Zeitdauer tI und einmal über F.t/ während der Zeitdau-
er tII integriert wird, lässt sich jeweils die der Masse m1 bzw. die der Masse m2

zugeordnete Impulsänderung zwischen Kontaktbeginn und Übergangzeitpunkt I/II
bzw. zwischen diesem Zeitpunkt und dem Kontaktende anschreiben:

�pI D �m1 � .w � v1a/ D Cm2 � .w � v2a/ D
Z

tI

F.t/ dt

�pII D �m1 � .v1e � w/ D Cm2 � .v2e � w/ D
Z

tII

F.t/ dt

Bildet man die Summe, bestätigt man:

�p D �pI C�pII D
Z

tICtII

F.t/ dt

Nach wie vor steht nur eine Gleichung für zwei Unbekannte (v1e; v2e) zur Ver-
fügung. Da über den Verlauf von F.t/ keine Aussage gemacht werden kann,
lässt sich die Aufgabe mittels obiger Gleichungen allein nicht lösen. Allenfalls
kann man schließen, dass die Beziehung zwischen v1a und v1e einerseits und v2a

und v2e andererseits vom Verhältnis der Restitutions-Impulsänderung �pI zur
Kompressions-Impulsänderung �pII abhängig sein wird. Dieser Quotient werde
mit " abgekürzt:

" D �pII

�pI
D

R
tII

F.t/ dt
R

tI
F.t/ dt

D v1e � w

w � v1a

D v2e � w

w � v2a

In Verbindung mit der obigen Gleichung für w ist der Quotient gleichwertig mit

" D v2e � v1e

v1a � v2a

;

wie man durch Einsetzen bestätigt. Im Zähler steht die Relativgeschwindigkeit
von m1 und m2 am Ende des Stoßes, im Nenner jene zu Beginn des Stoßes. Beide
lassen sich messen, damit wäre auch " bekannt. " nennt man Stoßzahl, auch Re-
stitutionszahl; ihre Einführung geht auf I. NEWTON zurück. Damit ergeben sich
die Geschwindigkeiten der beiden Massen am Ende des Stoßes zu:

v1e D v1a � .v1a � v2a/ � .1C "/

1Cm1=m2

; v2e D v2a C .v1a � v2a/ � .1C "/

1Cm2=m1
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Abb. 1.15

Überprüft man hiermit, ob die Energie nach dem Stoß erhalten geblieben ist, ver-
bleibt eine Differenz (die kinetische Energie wird in Abschn. 1.12.3 erklärt):

�E D 1

2
�m1 � v2

1a C
1

2
�m2 � v2

2a �
1

2
�m1 � v2

1e �
1

2
�m2 � v2

2e

D 1

2
.1 � "2/

m1 �m2

m1 Cm2

.v1a � v2a/2

Offensichtlich wird ein Teil der Energie während des Stoßes zustreut (dissipiert).
Das beruht darauf, dass infolge der Stoßkräfte plastische Stauchungen an den Kon-
taktstellen der beiden Körper auftreten. Auch wandern Druckwellen durch die
Körper hindurch und werden Eigenschwingungen angeregt; sie klingen infolge in-
nerer Dämpfung ab. Die Einzelimpulse der beiden Körper erfahren dadurch eine
Änderung. Diese Änderung ist dem Betrage nach in beiden Körpern gleichgroß
(sonst wäre das Impulserhaltungsgesetz verletzt). �p folgt zu:

�p D m1 � .v1a � v1e/ D �m2 � .v2a � v2e/ D .1C "/ �m1 �m2

m1 Cm2

� .v1a � v2a/

Bei einem vollelastischen Stoß ist " D 1, d. h. �E D 0 (es tritt keine Ener-
giezerstreuung ein), bei einem vollplastischen Stoß ist " D 0, �E nimmt den
größtmöglichen Wert an. Großen Einfluss auf " hat die Oberflächenbeschaffen-
heit der lokalen Kontaktbereiche. Die Vorstellung, dass " eine Werkstoffgröße
der beteiligten Stoßpartner ist, konnte durch sorgfältige Messungen nicht bestätigt
werden, das gilt allenfalls in Annäherung oberhalb einer gewissen Stoßgeschwin-
digkeit, vgl. Abb. 1.15. Insofern vermag die klassische Stoßtheorie das Stoßpro-
blem nur phänomenologisch zu umschreiben. Gleichwohl, wenn sich " für eine
bestimmte Problemklasse zuverlässig bestimmen oder abschätzen lässt, steht mit
der Stoßtheorie eine mit den Grundprinzipien der Mechanik im Einklang stehen-
de Berechnungsmethodik zur Verfügung, das gilt in jedem Falle für Stoßprobleme
rein elastisch reagierender Partner.
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1. Anmerkung
Von C. HUYGENS (1629–1695) wurden die Stoßgesetze 1669 formuliert, I. NEWTON
(1642–1727) ergänzte sie 1687 durch Einführung der Stoßzahl ". Erst sehr viel später gelang
es H. HERTZ (1857–1894) im Jahre 1881 unter einer Reihe idealisierender Voraussetzungen,
den zeitlichen Stoßvorgang zu analysieren, die Stoßdauer zu berechnen und die lokale Pres-
sungsverteilung und -verformung zu bestimmen. Die von HERTZ hergeleiteten Formeln für
die Berechnung der lokalen Pressungsverteilung zwischen elastischen Körpern finden noch
heute im Maschinenbau (z. B. beim Bau von Brückenlagern) breite Anwendung.

2. Anmerkung
Anstelle der Benennungen vollelastischer bzw. vollplastischer Stoß sind Begriffe wie ideal-
elastischer Stoß (" D 1), idealplastischer Stoß (" D 0) bzw. elastisch-plastischer Stoß
(0 < " < 1) üblich. Anstelle zentrischer Stoß sagt man auch zentraler Stoß.

Auch der exzentrische Stoß lässt sich analysieren, worauf hier verzichtet wird.

1.10.2.2 Ergänzungen und Beispiele zum zentrischen Prallstoß
Zur Veranschaulichung der im vorangegangenen Abschnitt behandelten Theorie
des zentrischen Stoßes werden im Folgenden einige Beispiele behandelt. Sie bilden
die Grundlage für weitergehende Analysen bei technischen Fragestellungen.

1. Beispiel (Abb. 1.16)
Zusammenprall zweier Körper mit unterschiedlicher Masse, die mit unterschiedlichen Ge-
schwindigkeiten auf einander treffen (Abb. 1.16), es gelte im Beispiel: m1=m2 D 1=4,
v1a=v2a D �2, " D 0;5. Demgemäß beträgt m1 nur ein Viertel von m2, und bewegt sich
aber doppelt so schnell wie m2. Die Auswertung obiger Formeln liefert:

v1e D �0;8 � v1a; v2e D �0;05 � v1a

Abb. 1.16 zeigt (ausgehend von einem frei gewählten Zeitpunkt) das Weg-Zeit-Diagramm
vor und nach dem Stoß (Zeitachse nach unten). Durch die gegenüber m1 viermal so große

Abb. 1.16
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Masse von m2 erfährt m1 einen Rückprall. – Die während des Stoßes dissipierte Energie
beträgt:

�E D 1

2
.1 � 0;52/

m1 � 4 �m1

m1 C 4 �m1

.v1a � 0;5 � v1a/2 D 0;675 �m1 � v2
1a

Vor dem Stoß betrug die Gesamtenergie (D Summe aus der kinetischen Energie beider Kör-
per):

E D 1

2
m1 � v2

1a C
1

2
m2 � v2

2a D m1 � v2
1a

Nach dem Stoß beträgt die verbleibende Gesamtenergie (D Differenz vor und nach dem
Stoß):

.1 � 0;675/ �m1 � v2
1a D 0;325 �m1 � v2

1a

2. Beispiel (Abb. 1.17)
Rückprallversuch zur Bestimmung der Stoßzahl ". Von der Höhe hI aus wird ein Körper
mit der Massem (D m1/ auf eine feste Unterlage fallen gelassen. Für diese Unterlage kann
gesetzt werden: m2 D 1 und v2a D 0. Der Körper schnellt auf die Höhe hII (kleiner hI/

zurück. Das ist ein Hinweis, dass der Körper während des Stoßvorganges Energie ‚verloren‘
hat, oder, anders formuliert: Während der Stoßphase wurde Energie dissipiert, überwiegend
in Wärme innerhalb der plastisch deformierten Kontaktbereiche. Die plastischen Deforma-
tionen sind in Form kleiner lokaler Abplattungen erkennbar.

Die Auftreffgeschwindigkeit lässt sich mittels der nachstehender Formel berechnen (Ab-
schn. 1.12.3):

v1a D
p

2 g hI

Die Formel gilt, wenn die bremsende Wirkung durch die Luft vernachlässigt wird; g ist die
Erdbeschleunigung. – Die Rückprallgeschwindigkeit v1e folgt aus der obigen Gleichung für
v1e zu:

v1e D �" � v1a

Abb. 1.17
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Die Gleichsetzung mit der Geschwindigkeit, mit der die Höhe hII erreicht wird,

v1e D �
p

2 g hII;

liefert die gesuchte Formel:

" D
s

hII

hI

Im Falle von Hartkugeln gilt:

Stahl/Stahl: " D 0;6 bis 0;8I
Hartholz/Hartholz: " D 0;45 bis 0;55:

3. Beispiel
Vollelastischer Stoß (" D 1): Die Berechnungsformeln findet man aus den im vorangegan-
genen Abschnitt hergeleiteten, indem hierin " D 1 gesetzt wird:

v1e D 2 w � v1a; v2e D 2 w � v2a mit w D m1 � v1a Cm2 � v2a

m1 Cm2

W

v1e D m1 � v1a Cm2 � .2 v2a � v1a/

m1 Cm2

; v2e D m2 � v2a Cm1 � .2 v1a � v2a/

m1 Cm2

�E D 0I �p D 2
m1 �m2

m1 Cm2

.v1a � v2a/

Der Verlauf der Stoßkraft F.t/ ist symmetrisch: Kompression- und Restitutionsphase sind
gleichlang. Die Stoßdauer ist insgesamt kurz, es wird eine hohe Kraftspitze induziert, vgl.
Abb. 1.18.

Abb. 1.18
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Abb. 1.19

4. Beispiel
Vollplastischer Stoß (" D 0): Die Berechnungsformeln findet man wiederum aus den im
vorangegangenen Abschnitt hergeleiteten Formeln, indem hierin " D 0 gesetzt wird:

v1e D v2e D w D m1 � v1a Cm2 � v2a

m1 Cm2

Die Körper nehmen beide dieselbe Geschwindigkeit an. Die Energiedissipation erreicht den
größtmöglichen Wert:

�E D 1

2
� m1 �m2

m1 Cm2

� .v1a � v2a/2 D 1

2
� m1

1Cm1=m2

� .v1a � v2a/2

Für �p folgt:

�p D m1 �m2

m1 Cm2

� .v1a � v2a/ D m1

1Cm1=m2

� .v1a � v2a/

Es existiert nur eine Kompressionsphase. Einen möglichen Verlauf der Stoßkraft zeigt
Abb. 1.19. Der Stoß dauert im Vergleich zum Fall " D 1 länger, die maximale Stoßkraft fällt
geringer aus.

Sonderfall: Aufprall auf eine feste Unterlage:

m2 D 1; v2a D 0W w D 0 ! v1e D 0

Energiedissipation:

�E D 1

2
�m1 � v2

1a

Dieser Wert entspricht dem im Körper der Masse m1 vorhandenen Arbeitsvermögen beim
Aufschlag auf die Unterlage, also seiner kinetischen Energie beim Aufschlag, sie wird voll-
ständig zerstreut.

Für �p folgt:

�p D m1 � v1a

Dieser Wert ist halb so groß wie beim vollelastischen Stoß.
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Abb. 1.20

5. Beispiel
Abpufferung von Fahrzeugen: Zwei Fahrzeuge mit den Massen m1 und m2 stoßen mit
den Geschwindigkeiten v1a D v1 und v2a D �v2 frontal zusammen (Abb. 1.20a). Die
Fahrzeuge sollen so abgepuffert werden, dass Schäden vermieden werden. Eine analoge
Aufgabenstellung liegt vor, wenn ein Fahrzeug gegen einen Endanschlag (Prellbock) auf-
fährt (Abb. 1.20b). Die Puffer sollen so ausgelegt werden, dass es zu keiner Rückfederung
kommt, der Stoß kann dann der Kategorie vollplastisch (" D 0/ zugeordnet werden. Für die
Dimensionierung der beiden Puffer werde folgender Ansatz vereinbart: Die Puffer sollen so
hart sein, dass die Stoßdauer als kurz eingestuft werden kann; in den Fahrzeugen selbst soll
die Beanspruchung elastisch bleiben.

Fall I: Zwei Fahrzeuge stoßen frontal mit den Geschwindigkeiten v1 und v2 zusammen.
In den Puffern der beiden Fahrzeuge ist gemeinsam die Energie

�E D 1

2
� m1 �m2

m1 Cm2

� .v1 C v2/2

aufzunehmen (vgl. 4. Beispiel). Im Falle m1 D m2 D m und v1 D v2 D v ergibt sich.

�E D 2 � 1
2
�m � v2

Die kinetischen Energien der beiden Fahrzeuge addieren sich in voller Höhe, das ist plausi-
bel.

Fall II: Ein Fahrzeug fährt gegen einen starren Prellbock; das bedeutet m2 D1, v2 D 0.
Hierfür folgt:

�E D 1

2
�m � v2

Die im Puffer geweckte Kraft ist von der Bauart des Puffers abhängig. Eine mögliche Cha-
rakteristik zeigt Abb. 1.21: Der Puffer reagiert mit einer konstanten Widerstandskraft F0.
Dieser überlagert sich eine linear mit der Verschiebung s anwachsende Widerstandskraft,
wobei k die (Feder-)Rate dieses Widerstandes ist:

F.s/ D F0 C k � s:
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Abb. 1.21

Wird der Puffer um das Maß � eingedrückt, wird jene Energie im Puffer zerstreut, die der
schraffierten Fläche unter der Kraftverschiebungslinie in Abb. 1.21 entspricht:

�E D F0 ��C 1

2
�� � k �� D F0 ��C 1

2
� k ��2

Wird die eingeprägte Energie mit der dissipierten Energie gleichgesetzt, lässt sich die Ein-
drückung des Puffers berechnen:

1

2
�m � v2 D F0 ��C 1

2
� k ��2 ! � D

"s

1C m � v2 � k
F 2

0

� 1

#
� F0

k
;

maxF D
q

F 2
0 C v2 �m � k

Besteht der Puffer nur aus einer Feder mit der Federkonstanten k, das bedeutet F0 D 0, folgt
aus den vorstehenden Formeln:

� D
r

m � v2

k
; maxF D v �

p
m � k

1.10.3 Kraftstoß

Wird der Impulsansatz F D dp=dt (Kraft D zeitliche Änderung des Impulses),
umgestellt, nennt man

F.t/ � dt D dp

den Kraftstoß von F.t/. Hierbei denkt man an eine kurzzeitig wirkende Kraft auf
einen Körper mit der Masse m D konstant, der sich zum Beispiel mit der Ge-
schwindigkeit v1 bewegt. Die Kraft innerhalb der Zeitspanne �t D t2 � t1 in
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Abb. 1.22

Richtung der Bewegung sei konstant und gleich F D maxF (Abb. 1.22a):

maxF ��t D �p D �.m � v/ D m ��v D m � .v2 � v1/

Der Körper erfährt einen Geschwindigkeitszuwachs innerhalb der Zeitspanne �t

um

�v D v2 � v1 D maxF

m
��t

Handelt es sich um einen veränderlichen Kraftverlauf, wie in Abb. 1.22b darge-
stellt, berechnet sich die Geschwindigkeit v (wieder für mD konstant) aus:

F.t/ D m � a D m � dv

dt
! dv D F.t/

m
dt

! v D
Z

�t

F.t/

m
dt D 1

m

Z

�t

F dt

Der zeitliche Verlauf von F.t/ muss gegeben sein, um den Geschwindigkeitszu-
wachs nach Ende des Kraftstoßes, also nach Ablauf von �t , berechnen zu können.
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Ist der Kraftverlauf über der Zeitspanne �t parabelförmig verteilt, ist das Inte-
gral über F.t/ gleich dem Produkt aus 2=3 D 0;6667 mal maxF � �t , denn 2=3

mal Höhe mal Basislänge ist der Flächeninhalt unter einer Parabel:

�v D v2 � v1 D 1

m

t2Z

t1

F dt D 1

m
� 2

3
��t �maxF D 2

3
� maxF

m
�t

Soll der Bewegungsablauf im Einzelnen innerhalb der Zeitspanne �t berechnet
werden, muss über F.t/ von t D t0 bis t integriert werden.

Im Falle F.t/ D maxF D konst: ist das einfach (Abb. 1.22a). In Erweiterung
der obigen Gleichung für die Geschwindigkeit gilt (mit 	 als Integrationsvariable):

v.t/ D 1

m

tZ

t1

F .	/ d	 D maxF

m

tZ

t1

d 	 D maxF

m
� Œ	 �tt1 D

maxF

m
� .t � t1/

Das bedeutet: v.t/ wächst geradlinig an.
Für die Beschleunigung folgt: a D dv=dt D maxF=m, wie es sein muss.
Wird im Falle des parabelförmigen Kraftverlaufes (Abb. 1.22b) dessen Beginn

mit t D 0 gleichgesetzt, gilt für einen solchen Verlauf:

F.t/ D 4 �maxF �
"

t

TF

�
�

t

TF

�2
#

Die Dauer ist gleich TF . Setzt man diesen Ausdruck in obige Gleichung, also in

v.t/ D 1

m

TFZ

0

F.	/ d	

ein, folgt nach kurzer Rechnung für v.t/ und anschließend für a.t/:

v.t/ D 4 � maxF

m
�
�

t 2

2 TF

� t 3

3 T 2
F

�
I

a.t/ D dv

dt
D 4 � maxF

m
�
"

t

TF

�
�

t

TF

�2
#

Die Verläufe von v.t/ und a.t/ sind in Abb. 1.23b, c skizziert.
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Abb. 1.23

1.10.4 Rückstoß – Raketengleichung

Die Bewegung einer Rakete kommt durch den Rückstoß des aus der Düse aus-
strömenden Verbrennungsgases zustande. Äußere Kräfte sind nicht beteiligt(wenn
man vom Luftwiderstand absieht). Der Impulssatz liefert die Bewegungslösung:
In der Startphase hat die Rakete die Masse m, einschl. der Masse des Treibstoffes
(Abb. 1.24a). Dieser möge geregelt verbrennen. Dadurch stellt sich eine bestimmte
Ausströmgeschwindigkeit vA des Gases ein.

Der Verlust an Treibstoffmasse in der Zeiteinheit und die Ausströmgeschwin-
digkeit stehen vermittelst des in der Rakete installierten Regelsystems in einer
funktionalen Beziehung zueinander. Diese muss bekannt sein. Zum Startzeitpunkt
t0 sind alle Bewegungsgrößen Null, im Zustand der Bewegung zum Zeitpunkt t

betragen sie:

s D s.t/; v D v.t/ und a D a.t/

Die Masse der Rakete hat sich im Zeitpunkt t von m0 auf m D m.t/ verringert
(Abb. 1.24b). Die Ausströmgeschwindigkeit des Gases sei vA.t/. In dem besagten
Zeitpunkt t der Bewegung beträgt der momentane Impuls der Rakete:

p.t/ D m.t/ � v.t/
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Abb. 1.24

In dem um dt fortgeschrittenen Zeitpunkt tCdt haben sich die Bewegungsgrößen
verändert: Die Masse der Rakete ändert sich um dm (Treibstoffverlust, d. h. real
erfährt sie eine Verringerung), die Geschwindigkeit ändert sich um dv (real erfährt
sie eine Steigerung). Somit beträgt der Impuls der Rakete im Zeitpunkt t C dt :

p.t C dt/ D Œm.t/C dm� � Œv.t/C dv�C dm � fvA.t/� Œ.v.t/C dv�g

Der zweite Term rechterseits ist wie folgt zu deuten: Die aus der Düse strömenden
Partikel dm haben die Geschwindigkeit vA.t/� Œv.t/C dv�, relativ zur Bewegung
der Rakete. Die Rakete erfährt dadurch in Bewegungsrichtung (gemäß Lex II) den
Impuls dm � fvA.t/� Œ.v.t/Cdv�g. Der Impulssatz fordert, dass für das abgeschlos-
sene System der Rakete p.t/ D p.t C dt/ gilt. Die Gleichsetzung der Impulse in
den Zeitpunkten t und t C dt ergibt nach Umformung:

m.t/ � dvC dm � vA.t/ D 0 $ dv D �vA.t/ � dm

m.t/

Dividiert durch dt , ergibt sich eine Differentialgleichung für die Geschwindigkeit
v.t/. Ihre Lösung gelingt nur, wenn vA.t/ als Funktion von m.t/ bekannt ist (vice
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versa). – Nimmtman an, dass die Verbrennung des Treibstoffs kontinuierlich, quasi
linear, erfolgt, gilt:

vA D konst: d. h.: dv D �vA � dm

m.t/

Es sei die Lösung innerhalb der Brenndauer tB gesucht. Die Anfangsmasse verrin-
gert sich in dieser Zeit auf mB . Über die vorstehende Gleichung wird integriert,
von t D t0 bis t D tB d. h. von m D m0 bis m D mB bzw. von v D v0 bis v D vB :

vBZ

v0

dv D �vA �
mBZ

m0

dm

m
! Œv�vB

v0
D �vA � Œlnm�mB

m0

! vB � v0 D �vA � .lnmB � lnm0/

Die Auflösung nach vB am Ende der Brenndauer liefert:

vB D vA � ln m0

m.t/
� v0

Für einen Zeitpunkt zwischen t0 und tB gilt, wenn noch berücksichtigt wird, dass
die Bewegung gegen die Erdbeschleunigung g erfolgt und dass zum Startzeitpunkt
die Geschwindigkeit null ist (v0 D 0):

v.t/ D vA � ln mB

m.t/
� g � t

Die Gleichung gilt in Erdnähe, wo g D konst: gesetzt werden kann. Strenger gilt:

v.t/ D vA � ln mB

m.t/
�

tZ

0

g.	/ d	

	 : Integrationsvariable.
In der vorstehenden (klassischen) Raketengleichung ist der bremsende Einfluss

der Luft nicht berücksichtigt, insofern gilt sie streng nur im Vakuum. Die Glei-
chung geht auf K.R. ZIOLKOWSKI (1857–1935) zurück.

In der Technik arbeiten viele Antriebe nach dem Rückstoßprinzip. Stets gilt es
einen Kompromiss zu finden zwischen einer möglichst geringer Startmasse (m0)
und einer möglichst hoher Strahlgeschwindigkeit vA (z. B. vA D 5000m=s). Ra-
keten tragen nicht nur den Treibstoff mit sich, sondern auch die zur Verbrennung
erforderlichen Substanzen. Bei Flugzeugen mit Strahlantrieb wird der angesaugte
Sauerstoff verbrannt, dieser geht als Masse in den Rückstoß mit ein; hierfür gilt
die obige Herleitung nicht; auf [9] wird verwiesen.
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1.11 Arbeit (W ) – Leistung (P )

Die von der Kraft F.t/ auf der infinitesimalen Wegstrecke ds verrichtete Arbeit
(W ) ist (siehe Abb. 1.25):

dW D F.t/ � ds

Die Einheit der Arbeit lässt sich daraus ableiten:

ŒW � D ŒF � � Œs� D N �m D J

�
J D N �m D kg �m

s2
�m D kg �m2 � s�2

�

Für 1Nm (Newtonmeter) wird im SI die Einheit J gesetzt (Joule, gesprochen
‚Dschul‘ nach J.P. JOULE (1818–1889)).

Ändert sich die Kraft F.t/ auf demWeg s.t/, berechnet sich die Arbeit, die die
Kraft auf dem Weg von s1 (t D t1) bis s2 (t D t2) verrichtet, zu:

W D
s2Z

s1

dW D
s2Z

s1

F .t/ ds

Das ist der Flächeninhalt über der F -s-Kurve, wie in Abb. 1.25 dargestellt.
Ändert sich F auf dem Weg nicht, ist also konstant, gilt:

W D F �
s2Z

s1

ds D F � .s2 � s1/ .F D konst:/

In diesem Falle berechnet sich die von der Kraft F verrichtete Arbeit zu ‚Arbeit ist
gleich Kraft mal Weg‘.

Abb. 1.25
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Abb. 1.26

Das Vorhergesagte gilt nur dann, wenn die Richtung des Kraftvektors durch-
gängig mit der Richtung des Wegvektors übereinstimmt, im anderen Falle ist das
Produkt aus deren gleichgerichteten Komponenten entlang des Weges die von F

geleistete Arbeit!
Bewegt sich ein Bergsteiger mit der Masse m im erdnahen Schwerefeld (g D

konst:), ist seine Gewichtskraft gleich FG D m �g. Erklimmt er die Höhe h, beträgt
die von ihm geleistete Arbeit (Steigarbeit, Hubarbeit) gegen die Anziehungskraft
der Erde: W D FG � h D m � g � h. Die Steigkraft FG ist der Schwerkraft entge-
gen gerichtet (Abb. 1.26). Die Arbeit ist bis zur Höhe h unabhängig vom Verlauf
des Weges, denn die Gewichtskraft FG wirkt durchgängig gleichgerichtet lotrecht
und ist konstant, es zählen nur die lotrechten Wegkomponenten. Bewegt sich der
Bergsteiger in der Ebene, verrichtet er (physikalisch gesehen) keine Arbeit.

Ändert sich die Kraft F mit demWeg s, ist von der obigen Definitionsgleichung
für W auszugehen. Ist s beispielsweise die Verschiebung einer Spiralfeder, ist die
Kraft, die diese Federlängung bewirkt, veränderlich. Bei einerLinearfeder längt sich
die Feder proportional zur Federkraft. Ist k die Federkonstante, gilt (Abb. 1.27):

F D k � s:

Abb. 1.27
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Abb. 1.28

Demgemäß beträgt die von F verrichtete Arbeit:

W D 1

2
� F � s D 1

2
.k � s/ � s D 1

2
k � s2

Das ist die Fläche des in Abb. 1.27b schraffierten Dreiecks.
Abb. 1.28 zeigt unterschiedliche Kraft-Verschiebungsdiagramme und deren Ar-

beitsflächen. Die verrichtete Arbeit muss in solchen Fällen durch Integration der
Fläche (ggf. numerisch) berechnet werden.

Unter der Leistung (P / versteht man die in der Zeiteinheit verrichtete Arbeit,
geschrieben: Ableitung der Arbeit W nach der Zeit t :

P D dW.t/

dt
D PW

Dieser Ausdruck kennzeichnet die Momentanleistung. Vielfach versteht man un-
ter Leistung die Durchschnittsleistung, also die in der Zeitspanne �t verrichtete
Arbeit im Sinne eines Mittelwertes. Dann schreibt man:

Peff D �W

�t

Ein Bergsteiger mit der Masse m D 85 kg (einschließlich Gepäck) verrichtet mit
diesem Gewicht (FG D m � g D 85 � 9;81 D 839N) beim Durchsteigen der Höhe
h D 300m die Steigarbeit:

W D FG � h D 839 � 300 D 250:155 J D 2;502 � 105 J D 250;2 kJ:

Wird das Ziel in 1 Stunde (D 3600 s) erreicht, bedeutet das eine mittlere Leistung
von:

P D 250:155

3600
D 69;5

J

s
D 69;5 J s�1 D 69;5W

Das entspricht der Leistungsabstrahlung einer 70 Watt-Birne.
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W (Watt nach J. WATT (1736–1819)) ist die Leistungseinheit im SI:

ŒP � D ŒW �

Œt �
D J

s
DW

�
W D J

s
D Nm

s
D kgm

s2
� m
s
D kgm2 s�3

�

Die Leistungseinheit PS D Pferdestärke ist im SI nicht mehr vorgesehen:

1 PS D 736W D 0;736 kW bzw.: 1 kW D 1;36 PS:

Setzt man in die obige Gleichung für die Momentanleistung den Ausdruck für die
innerhalb der infinitesimalen Zeitspanne dt verrichtete Arbeit ein, folgt:

dW.t/D F.t/ � dt ! P.D Pmom/ D dW.t/

dt
D F.t/ � ds

dt
D F.t/ � v.t/

Hierin ist v D v.t/ die Momentangeschwindigkeit. F ist z. B. die vom Motor
eines Fahrzeugs ausgeübte Kraft, um das Fahrzeug mit der Geschwindigkeit v zu
bewegen; das bedeutet umgekehrt: F D P=v, wenn F und v konstant sind.

1.12 Energie (E )

1.12.1 Energieformen – Energieerhaltungsgesetz

Energie ist das einem Körper oder einem System innewohnende Vermögen,
Arbeit zu leisten. Man unterscheidet unterschiedliche Energieformen: Potentiel-
le Energie, kinetische Energie, kalorische Energie, chemische Energie, elektrische
Energie, magnetische Energie u. a. Eine begriffliche Vorstellung von Energie ge-
winnt man am ehesten, wenn Energieänderungen, d. h. die Übergänge der Energie-
formen ineinander, betrachtet werden. – Nach A. EINSTEIN (1879–1955) besteht
zwischen Ruhemasse und Energie das Masse-Energie-Äquivalent-Gesetz (Bd. IV,
Abschn. 4.1.5.3):

E D m � c2

Hierin ist c die Lichtgeschwindigkeit im Vakuum (c � 3 � 108 ms�1). Die Einheit
der Energie ist demnach:

ŒE� D Œm� � Œc2� D kg �
�m
s

�2 D kgm2 s�2 D J:
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Abb. 1.29

Energie wird (wie die Arbeit) in der Einheit J gemessen. Daneben sind die Ein-
heiten kWh und eV zugelassen. Die Einheit kcal (Kilokalorie) soll nicht mehr
verwendet werden. In der Tabelle in Abb. 1.29 bedeuten: kWh: Kilowattstunde,
eV: Elektronenvolt.

Die Einheit kWh kann man sich wie folgt klar machen: 1 Watt (1W) ist eine
Leistung, bei welcher während einer Sekunde eine Energie von 1 J umgesetzt wird,
1 kW ist eine Leistung bei welcher eine Energie von 1000 J (D 1000Nm) pro
Sekunde umgesetzt wird. Wird diese mit 3600 s (D 1 h D 1 Stunde) multipliziert,
ergibt sich die (‚gewonnene oder verbrauchte‘) Energie von 1 kWh in einer Stunde
zu:

1 kWh D 1000
J

s
� 3600 s D 3;6 � 106 J D 3;6MJ

Von zentraler Bedeutung in der Physik ist das Energieerhaltungsgesetz. Es be-
sagt: In einem abgeschlossenen System bleibt die dem System innewohnende
Energie erhalten. Es kommt weder Energie hinzu, noch kann Energie verloren
gehen, wohl können unterschiedliche Energieformen ineinander übergehen.

Anmerkung
Die Begründung des Energieerhaltungsgesetzes geht auf Versuche und theoretische Über-
legungen von R. MAYER (1814–1878), J.P. JOULE (1818–1889), H. v. HELMHOLTZ
(1821–1894) und R. CLAUSIUS (1822–1888) zurück, erstere bewiesen das Äquivalent von
mechanischer Arbeit und Wärme durch Versuche, letzterer formulierte die beiden Hauptsät-
ze der Thermodynamik (vgl. Abschn. 3.3)

1.12.2 Potentielle Energie (Lageenergie)

Ein Bergwanderer mit der Masse m (einschließlich Gepäck) steige um die Höhe
h1 gegen die Erdgravitation an (Abb. 1.30). Die ihm innewohnende potentielle
Energie wächst dabei an. Mit Erreichen des Gipfelpunktes (1) ist die Energie um
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Abb. 1.30

Epot1 D F � h1 D m � g � h1 gegenüber dem Ausgangsniveau (0) angewachsen.
Durchgängig war die Steigkraft F D m � g gegen die Erdanziehung aufzubringen.

Auf dem Niveau (2), einem gegenüber dem Ausgangsniveau (0) tiefer gelege-
nen Tal, liegt die potentielle Energie um den Betrag Epot2 D m � g � h2 niedriger.

Als weiteres Beispiel sei die in Abb. 1.27 skizzierte Feder betrachtet, ihre Fe-
derkonstante sei k. Bei einer Längung um s gegenüber dem spannungslosen Aus-
gangszustand, ist die in der Feder gespeicherte potentielle Energie gleich der von
der linear anwachsenden Federkraft F D k � s auf dem Wege s verrichtete Form-
änderungsarbeit:

Epot D F � s
2
D k � s

2

2
I ŒEpot� D N

m
�m2 D Nm D J

1.12.3 Kinetische Energie (Bewegungsenergie)

Wird ein Körper mit der Masse m aus dem Ruhezustand reibungsfrei vom Zeit-
punkt t D 0 zum Zeitpunkt t um den Weg s von der Kraft F D konst: weiter
bewegt (verschoben), wird er dabei durchgehend mit a D F=m D konst: be-
schleunigt (Abb. 1.31). Für diesen Bewegungsverlauf lassen sich Geschwindigkeit
v D v.t/ und Weg s D s.t/ im Zeitpunkt t vom Ruhezustand aus berechnen
(	 dient als Integrationsvariable):

a D konst.W v.t/ D
tZ

0

a d	 D a

tZ

0

d	 D a � t ! t D v.t/

a

s.t/ D
tZ

0

v.	/ d	 D
tZ

0

a � 	 d	 D a

tZ

0

	 d	

D a � t
2

2
D a � 1

2
� v

2.t/

a2
D v2.t/

2 a
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Abb. 1.31

Die von der Kraft F D m � a D konst: von s D 0 aus auf der Wegstrecke s

geleistete Arbeit beträgt damit im Zeitpunkt t :

W.t/ D F � .s.t/� 0/ D m a � v2

2 a
D m

v2

2

Die bis zum Zeitpunkt t dem bewegten Körper mit der Masse m ‚zugeführte‘
Arbeit ist gleich der im Körper vorhandenen Bewegungsenergie (kinetischen Ener-
gie), wobei v D v.t/ die momentane Geschwindigkeit des Körpers ist:

Ekin D m
v2

2
I ŒEkin� D Œm� � Œv2� D kg �

�m
s

�2 D kg �m
s2
�m D Nm D J

Ein instruktives Beispiel für den kontinuierlichen Austausch von potentieller und
kinetischer Energie ist das reibungsfrei aufgehängte Pendel (Abb. 1.32): In der
Hochlage hat der Pendelkörper mit der Masse m gegenüber der Tieflage die Höhe
h. Die dem Körper innewohnende Lageenergie beträgt in der Hochlage gegenüber
der Tieflage:

Epot D m � g � hI

in der Tieflage ist:

Epot D 0:

In der Hochlage ist die kinetische Energie Null, denn die Geschwindigkeit ist im
Moment der Bewegungsumkehr Null. Beim Schwingen durch die Tieflage ist die
Geschwindigkeit am höchsten: v D max v. Die Bewegungsenergie ist daher in
diesem Moment am höchsten:

Ekin D .1=2/ �m � .max v/2:



40 1 Mechanik I: Grundlagen

Abb. 1.32

Der Energieinhalt im System bleibt konstant: Die Gleichsetzung der potentiellen
Energie im Hochpunkt mit der kinetischen Energie im Tiefpunkt, ergibt:

Epot;'Dmax' D Ekin;'D0W m � g � h D 1

2
m � .max v/2 ! max v D

p
2 g h

Nach dem Zurückschwingen aus der Tieflage erreicht der Körper wieder die ge-
genüberliegende Hochlage, usf.

Das vorangegangene Beispiel des reibungsfrei gelagerten Pendels (streng ge-
nommen bei einer Bewegung im Vakuum) unterstellt die Gültigkeit des Energie-
erhaltungsgesetzes. Dieses lautet, wie bereits ausgeführt: Die Summe aus potenti-
eller und kinetischer Energie ist in einem abgeschlossenen mechanischen System
konstant, jegliche Änderung in der Zeiteinheit ist Null. Man spricht in diesem Fal-
le von einem konservativen System. Mathematisch gesprochen lautet das Gesetz:
Die Ableitung der Summe aus potentieller und kinetischer Energie nach der Zeit
ist Null:

d

dt
.Epot C Ekin/ D 0

Sind energiezerstreuende (dissipative) Mechanismen wirksam, wird die mechani-
sche Energie kontinuierlich in Wärme überführt, die sich dann verflüchtigt. Dissi-
pation ist nicht reversibel: Die Wärmeenergie wird an die Umgebung abgegeben.
Die Bewegung (hier die Pendelschwingung) kommt, sofern kein neuer Energieein-
trag erfolgt, zum Erliegen.

Da in einem abgeschlossenen System keine Energie ‚verschwindet‘, noch ‚aus
sich selbst heraus entstehen kann‘, mussten alle Versuche scheitern, ein sogen.
Perpetuum Mobile (PM), also eine Maschine, zu erfinden, die selbsttätig ohne
Energiezufuhr funktioniert oder gar Energie erzeugt.

An dieser Aufgabe haben sich viele Gelehrte versucht, so auch LEONARDO
DA VINCI (1452–1519). Der in Abb. 1.33 abgebildete Apparat zeigt seinen Vor-
schlag.
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Abb. 1.33

Neben dem Perpetuum Mobile 1. Art (wie beschrieben) versteht man unter
einem PM 2. Art eine Maschine, die mittels der aus dem Betrieb der Maschine
gewonnenen Wärme(-energie) wiederum sich selbst antreibt. Das ist wegen der
diversen Energieverluste unmöglich. Ein PM 3. Art ist schließlich ein solches, das
trotz Bewegung keine Arbeit leistet, auch keine (dissipative) Verlustarbeit.

Von den Elektronen wird angenommen, dass sie sich in der Atomhülle dissipa-
tionsfrei bewegen (erstaunlich!). – Bei der Bahnbewegung der Himmelskörper um
ein Massezentrum (Muttergestirn), wie im Falle Mond/Erde, Planet/Sonne oder
Sonnensystem/Galaktisches Zentrum wird dagegen permanent Energie zerstreut.
Das hat verschiedene Ursachen und führt zu einer Verringerung ihrer Umlauf-
und Rotationsgeschwindigkeit: Das ‚Vakuum‘ ist mit interstellarem Staub und mit
mehr oder minder großen Körpern angereichert, es kommt zu Stoßprozessen. Au-
ßerdem wird den Objekten infolge der gegenseitigen Gezeitenwirkung Energie
entzogen, auch dadurch, dass sie Energie abstrahlen. Im jeweils geschlossenen
System geht an Energie nichts verloren und wird auch nichts hinzugewonnen.

1.13 Dissipation – Reibung und Dämpfung

1.13.1 Reibung: Einführung

Wie im vorangegangenen Abschnitt ausgeführt, werden bei sich berührenden und
sich relativ zueinander bewegenden festen Körpern gegenseitig wirkende Rei-
bungskräfte in deren Grenzflächen geweckt. Bei Fluiden (also in Flüssigkeiten und
Gasen) werden zusätzlich Reibungskräfte innerhalb der Fluidschichten induziert.
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Abb. 1.34

Abb. 1.35

Das gilt für alle Stoffformen, also Aggregatzustände der Partner, wie im Sche-
ma der Abb. 1.34 angedeutet, wobei die ursächlichen Mechanismen der hierbei
ausgelösten Kräfte im Einzelnen sehr unterschiedlich sind.

Reibung geht mit einer Verhakung/Verklammerung in den sich relativ zuein-
ander verschiebenden Schichten und einer Molekülbewegung in diesen einher.
Hierdurch entsteht Wärme. Dieser Vorgang ist irreversibel, d. h. er ist nicht um-
kehrbar. Die Wärme verflüchtigt sich: Es wird Energie dissipiertD zerstreut.

Die verrichtete Arbeit ist umso größer, je länger die Strecke ist, entlang der die
Reibungskraft (i. Allg. als konstant unterstellt) wirkt. So ist z. B. die Reibungsar-
beit einer Kraft R, die entlang des längeren Weges ② von Punkt 1 nach Punkt 2
geleistet wird, größer als jene entlang des kürzeren Weges ① von Punkt 1 nach
Punkt 2, weil eben Weg ① kürzer ist (vgl. Abb. 1.35). Das bedeutet: Das Arbeits-
integral ist wegabhängig. Reibungskräfte nennt man daher nichtkonservativ. Ist
die Arbeit einer Kraft vomWeg unabhängig, heißt sie konservativ; Kräfte im Gra-
vitationsfeld sind konservativ.

1.13.2 Körperreibung

Das auf C.A. de COULOMB (1736–1806) zurückgehende Reibungsgesetz zwi-
schen Festkörpern lautet (Abb. 1.36):

FR D 
 � FN :

FR ist die Reibungskraft in Richtung der Relativverschiebung. Man spricht von
Festkörperreibung. – FN ist die senkrecht (normal) zur Gleitfläche wirkende re-
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Abb. 1.36

sultierende Kraft, auf horizontaler Ebene ist es die Auflast, also das Gewicht, des
Körpers. 
 ist der Reibbeiwert (Reibkoeffizient).

Es wird zwischen 
G (Gleitreibung) und 
H (Haftreibung) unterschieden.
Stets gilt 
G � 
H , vgl. Abb. 1.36.

Bei der Anwendung des Reibungsgesetzes wird angenommen, dass 
G von der
Höhe der Relativgeschwindigkeit unabhängig ist. Auch wird unterstellt, dass der
Beiwert 
G unabhängig von der Größe der Kontaktfläche ist. Beide Annahmen
treffen nur in Annäherung zu! In erster Linie sind 
G und 
H von der Rauig-
keit der Berührungsfläche der beiden Reibpartner abhängig. Je besser die Flächen
aufeinander passen (z. B. geschliffene Flächen), umso stärker wirkt sich die natür-
liche Haftkraft (Adhäsion) aus. Es gibt auch Fälle, in denen 
 stärker vom Druck
beeinflusst wird, z. B. beim Gleitwerkstoff PTFE (Polytetrafluorethylen).

Da Reibung mit Abrieb verbunden ist und mit Verschleiß einhergeht, kann sich
der Reibbeiwert im Laufe der Zeit ändern. Zusammengefasst bleibt festzuhalten:
Stoffart, Rauigkeit, Zustand (trocken, nass, geschmiert), fallweise Walz- und Fa-
serstruktur und deren Lage zur Bewegungsrichtung, sie alle zusammen, bestimmen
die Größe des Reibungsbeiwertes. Die in Abb. 1.37 angegebenen Reibbeiwerte
sind als Anhalt zu begreifen; die Streuung der Werte ist z. T. beträchtlich.

Reibbeiwerte werden im Versuch ermittelt. Abb. 1.38a zeigt das Vorgehen auf
einer Horizontalebene, FN ist gleich der vertikalen Auflast Q: 
G und 
H lassen
sich im Versuch bestimmen, indem die Kraft FR mit einer Federwaage gemessen
wird: 
 D FR=FN . Die Oberfläche der Unterlage und jene des gleitenden Körpers
haben bei dem Versuch eine definierte Beschaffenheit. – Eine weitere Möglichkeit
bietet ein Rutschversuch auf einer schiefen Ebene. Sie sei gegenüber der Hori-
zontalen unter dem Winkel � geneigt (Abb. 1.38b). Bei einem bestimmten Winkel
beginnt der Körper zu gleiten, zu rutschen. Das Gewicht des Körpers sei Q. Die
normal zur schiefen Ebene wirkende Kraft beträgt: FN D Q � cos � und die in
Richtung der schiefen Ebene wirkende (Abtriebs-)Kraft: Q �sin �. Der Körper setzt
sich bei jenemWinkel �H in Bewegung, bei welchem die (Hang-)Abtriebskraft die
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Abb. 1.37

Abb. 1.38

Haftreibungskraft erreicht bzw. überschreitet:

Q � sin �H D FR D 
H � FN D 
H �Q � cos �H ! 
H D tan �H

Der Haftreibungskoeffizient ist somit gleich dem Tangens jenes Winkels, bei wel-
chem der Körper zu rutschen beginnt.

Großen Einfluss auf den Reibungsbeiwert hat einsichtiger Weise der Schmier-
zustand. Bei der Schmierung ist ein Medium in Form eines Schmierstoffes, z. B.
Öl, am Reibungsvorgang beteiligt. Die Schmierung dient bei Maschinenelemen-
ten dazu, Reibung und Verschleiß herab zu setzen. Das Fachgebiet nennt man im
Maschinenwesen ‚Tribologie‘.
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Wie bekannt, gibt es Fälle, in denen eine Schmierung unerwünscht ist, z. B.
beim Bremsvorgang auf feuchter/vereister Fahrbahn oder beim Gehen auf vereis-
ten Fußwegen, wenn diese nicht gestreut sind.

Reibungsarbeit WR und Reibungsleistung PR (Verlustleistung) folgen aus:

WR D FR � s D 
 �Q � sI PR D WR

t
D 
 �Q � s

t
D 
 �Q � v D FR � v

s ist der Verschiebungsweg. Die Formel für PR unterstellt eine konstante (ggf.
gemittelte) Geschwindigkeit v und eine konstante Auflast Q. t ist hier jene Zeit, in
der die Strecke s durchmessen/durchfahren wird.

Rollreibung Ein technisch wichtiger Fall ist die Rollreibung (Abb. 1.39a). Beim
Eindrücken eines Rades (oder einer Rolle) in die Unterlage, stellt sich ein Ver-
satz zwischen der Auflast Q und der Gegenkraft ein. Diesen Versatz nennt man
‚Hebelarm der rollenden Reibung‘. Er wird mit f abgekürzt. Damit eine Rollbe-
wegung zustande kommt, muss das Drehmoment Q � f aufgebracht werden. Dem
entspricht das äquivalente Ersatzproblem einer Abrollung auf einer ebenen Fläche
(ohne Eindrückung), bei welcher die Reibungskraft FR am Hebelarm R wirkt. R

ist der sogenannte ‚Hebelarm der Drehung‘, also der Radius des Rades oder der
Rolle, vgl. Abb. 1.39a. Aus der Gleichsetzung von FR � R mit Q � f folgt:

FR D Q � f
R
I f W Hebelarm der Rollreibung

f ist abhängig von der Beschaffenheit der Partner, also vom Zustand der Fahrbahn
und des Rades. Beim Rad mit Reifen beeinflusst unter anderem der Luftdruck im
Reifen und damit dessen ‚Latsch‘ die Höhe des Rollwiderstandes. Die Zahl f kann
nur mittels Versuchen bestimmt werden. Hierzu seien einige Anhaltswerte ver-
merkt: Eisenbahnrad auf Schiene: f D 0;05 cm; Kranrad aus Stahl mit Spurkranz:

Abb. 1.39
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f D 0;05–0,07cm, Kranrad aus Kunststoff mit Spurkranz: f D 0;10–0,15 cm.
Dem Rollvorgang überlagert sich eine gewisse Schlupfbewegung (Gleitreibungs-
anteil), der Einfluss ist über den Versuch in f enthalten. – Reibungsarbeit und
-leistung berechnen sich nach obigen Gleichungen (vgl. auch unten).

Wälzreibung Das Problem der Wälzreibung (Abb. 1.39b) ist mit dem Problem
der Rollreibung verwandt, gleichwohl gibt es einen entscheidenden Unterschied:
Die Achse rollt nicht auf einer Ebene ab, sondern gleitet auf einer gekrümmten
Fläche und bewegt sich dabei nicht vorwärts. Der Gleitkomponente überlagert sich
ein Schlupf. Um die im Lager sich ausbildenden Widerstände unterschiedlichen
Ursprungs zu überwinden, muss das Reibungsmoment MR D FR � r D 
 �Q � r
aufgebracht werden. 
 ist hier die Wälzreibungszahl, man spricht auch von der
Zapf- oder Lagerreibungszahl. Stoffart der Partner und Schmierung des Lagers
haben großen Einfluss auf 
.

Der Wälzreibungsbeiwert ist theoretisch etwas kleiner als der Reibungsbei-
wert derselben Partner bei einer Gleitreibung auf ebener Fläche, zwängungsfreies
Lagerspiel vorausgesetzt. Real sind i. Allg. Zwängungen vorhanden, dann ist 


höher als bei einer ebenen Gleitung. Der Erhöhungsfaktor ist u. a. vom Lager-
spiel, der spezifischen Lagerbelastung und der hiermit verbundenen Lagerverfor-
mung sowie von der Temperatur abhängig, letzteres wegen der temperaturabhän-
gigen Änderung des Lagerspiels. Hierzu einige Angaben: Wälzlager als Kugel-
lager: 
 D 0;001–0,004; Wälzlager als Gleitlager: Abhängig von der Paarung
gelten folgende Anhalte (erste Zahl trocken, zweite Zahl geschmiert): Stahl/Stahl:
0,10/0,05; Stahl/Gusseisen: 0,15/0,05; Stahl-Bronze/Stahl-Gusseisen: 0,10/0,07:
Stahl-Hartchrom/Gusseisen-Hartchrom: 0,15/0,03.

Für eine volle Umdrehung folgen Reibungsarbeit und Reibungsleistung aus:

WR D FR � s D FR � 2 � � r D 2 � �MR

PR D WR

t
D 2 �

t
�MR D 2 �

60=n
�MR D �

30
� n �MR

n ist die Drehzahl pro Minute. – Handelt es sich um das Lager eines Laufrades mit
dem Radradius R, kann der Wälzreibungseinfluss durch eine Reibungskraft in der
Abrollfläche äquivalent ersetzt werden:

FR D MR

R
D 
 �Q � r

R

Fahrwiderstand eines Rades Der Fahrwiderstand eines Rades setzt sich aus dem
Widerstand beim Abrollen des Rades auf der Fahrbahn und dem Wälzwiderstand
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am Achszapfen zusammen, vgl. oben:

FR D Q � f
R
C 
 �Q � r

R
! FR D f C 
 � r

R
�Q D 
R �Q


R bezeichnet man als Fahrwiderstandszahl. In ihr ist der Rollwiderstand auf der
Fahrbahn und der Wälzwiderstand auf der Achse zusammengefasst: f ist der He-
belarm der Rollreibung und 
 die Wälzreibungszahl. (Bei einem Fahrzeug tritt
noch der Luftwiderstand hinzu.)

Durch die Verformung des Reifens im Bereich der Seitenwand und des Um-
laufbandes innerhalb des Latsch und durch die hierbei entstehende innere Mate-
rialreibung einerseits und das Einsinken des Reifens in die Fahrbahn andererseits
kommt der Fahrwiderstand zustande; der Beitrag der Wälzreibung des Rades auf
der Achse ist gegenüber diesem Einfluss gering. Richtiger Reifendruck vorausge-
setzt, gilt für PKW-Reifen auf Asphaltstraßen bis 100 km=h: 
R D 0;010; von
hier aus ansteigend auf 0,015 bis 0,020 bei ca. 200 km/h, teilweise noch höher; auf
Kopfsteinpflaster und Schotterwegen liegen die Werte doppelt so hoch.

Für LKW-Reifen beträgt 
R bei Asphaltstraßen ca. 0,020, bei festem Erdweg
ca. 0,050 und bei aufgeweichtem Boden ca. 0,200 bis 0,400, ggf. liegt 
R noch
höher.

1.13.3 Ergänzungen und Beispiele zum Thema Reibung

1. Beispiel
Ein PKW mit der Masse m D 1200 kg, zusätzlich 3 Personen à 75 kg und Gepäck 75 kg
durchfährt auf einer Asphaltstraße eine Strecke von 50 km D 50:000m Länge mit der mitt-
leren Geschwindigkeit 100 km=h. Der Rollwiderstand sei 
R D 0;0175. Wie groß sind FR ,
WR und PR?

FR D 
R �Q D 0;0175 � .1200C 3 � 75C 75/ � 9;81 D 0;0175 � 14:715 D 257;5N

WR D FR � s D 257;5 � 50:000 D 12;9 � 106 J D 12;9 � 103 kJ

Fahrzeit:

t D s

v
D 50 km

100 km=h
D 0;5 h D 1800 s

PR D WR

t
D 12;9 � 106

1800
D 7153

J

s
D 7153W D 7;153 kW .D 9;73PS/

In der Realität tritt noch der Strömungswiderstand und fallweise der Steigungswiderstand
bei hügeliger Straße hinzu. Der Luftwiderstand berechnet sich zu (vgl. Abschn. 2.4.2.3):

FW D �

2
� cw �A � v2
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Abb. 1.40

� ist die Dichte der Luft, sie beträgt etwa 1;25 kg=m3. cw ist der Luftwiderstandsbeiwert; für
PKW gilt etwa 0,25 bis 0,35, A ist die verdrängte Frontfläche und v die Fahrgeschwindigkeit.
Für Sportwagen kann cw zu 0,25 bis 0,35 angesetzt werden, fürMehrzweck-PKW und offene
Kabrioletts zu 0,5 bis 0,7, für Omnibusse zu 0,6 bis 0,7 und für LKW zu 0,7 bis 1,4, vgl. hier
den genannten Abschnitt.

2. Beispiel
Die Aufgabe des vorangegangenen Beispiels wird auf vier Geschwindigkeiten erweitert. Der
Fahrwiderstandsbeiwert wird dabei der Geschwindigkeit angepasst. Gesucht ist die Fahrleis-
tung für Q D 15:000N (� 14.715N). Für das Beispiel gelte: cw D 0;30, A D 1;90m2. In
Abb. 1.40 (links) ist die Rechnung ausgewiesen, Teilabbildung rechts zeigt das Ergebnis als
Grafik: Die Fahrleistung steigt stark überproportional mit der Geschwindigkeit, was auf der
linearen Zunahme von FR und der quadratischen Zunahme von FW mit der Geschwindigkeit
v beruht. Hinweis: für die Berechnung der Leistung P ist von obiger Formel auszugehen.

Der Steigungswiderstand auf einer Fahrbahn mit dem Steigungswinkel ˛ berechnet sich
zu:

FS D Q � sin˛ D Q � h
s

.g D 9;81m=s2/; Q D m � g

Muss das Fahrzeug steigen, ist die Steigungskraft FS dem Roll- und Fahrwiderstand
FR C FW hinzu zu addieren, bei Gefälle zu subtrahieren.

Um ein Fahrzeug anzutreiben, muss die Haftreibung in der Radaufstandsfläche größer
sein als die Antriebskraft am Rad: Die Haftkraft beschränkt die Antriebskraft. Ist letztere
größer, drehen die Antriebsräder durch.

Durch einen Spoiler kann die auf die Fahrbahn abgesetzte Druckkraft erhöht werden.
Die Haftreibungszahl ist vom Straßen- und Reifenzustand abhängig, hierzu einige An-

gaben: Trockene Asphaltstraße 
H D 0;7 bis 0,9. Bei nasser Fahrbahn fällt der Wert in
Abhängigkeit von der Dicke des Wasserfilms und der Fahrgeschwindigkeit auf 0,5 und noch
tiefer ab, fallweise bis herunter auf 0,1, bei Glatteis gar auf 0,05 (bei ca. 0 °C); bei nochmals
tieferer Temperatur steigt die Haftreibung wieder an.

3. Beispiel
Soll ein PKW mit Q D 15:000N aus der Geschwindigkeit v D 100 km=h D 27;8m=s
heraus über alle Räder voll abgebremst werden und ist der Reibbeiwert 0,5, lässt sich der
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Bremsweg mit Hilfe des Energieerhaltungssatzes einfach berechnen: Die kinetische Energie
des Fahrzeugs beträgt:

Ekin D m � v
2

2
D 15:000

9;81
� 27;82

2
D 1529 � 386;4 D 590:836 J

Die bei einer Vollbremsung dissipierte Energie berechnet sich zu:

Edis D 
 �Q � sBremsweg D 0;5 � 15:000 � sB D 7500 � sB

Aus der Gleichsetzung Ekin D Edis ergibt sich der Bremsweg zu:

sBremsweg D 590:836

7500
D 79m

Erreicht der Reibbeiwert beim Abbremsen nur den halben Wert, verdoppelt sich der Brems-
weg, auch, wenn die Bremsung bei den Rädern vorne oder hinten ausfällt. – Moderne Fahr-
zeuge sind mit einem ABS (Antiblockiersystem) ausgestattet. Durch dieses wird ein Blo-
ckieren der Räder bei der Bremsung geregelt verhindert. Dadurch wird ein Ausbrechen des
Fahrzeugs aus der Spur unterdrückt, die Bremsfunktion wird verbessert.

Neben den zuvor behandelten Reibungsarten spielen weitere, insbesondere im
Maschinenbau, eine wichtige Rolle (Abb. 1.41): a, Zapfreibung (Bohrreibungwirkt
ähnlich) und b, Gewindereibung bei Spindelbetrieb. Die Reibung beim Anziehen
einer Schraubenmutter wirkt ähnlich wie Fall b. – Wichtig ist auch die Seilreibung
bei Antriebssträngen aller Art, wie bei Riemen- und Seilantrieben (ohne und mit
Keilnut, beispielsweise bei Seilbahnantrieben oder bei Keilriemen in Kraftfahr-
zeugen) und zur Fixierung von Seilen. Auch dieser Fall wird im Maschinenbau im
Fachgebiet ‚Maschinenelemente‘ behandelt.

Abb. 1.41
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1.13.4 Fluidreibung

Unter einem Fluid wird im Folgenden ein Stoff im Aggregatzustand flüssig oder
gasförmig verstanden. Die Bindung der Moleküle untereinander ist bei einem Gas
schwächer als bei einer Flüssigkeit, bei einemGas ist sie nahezu aufgehoben (Bd. I,
Abschn. 2.3.3 und 3.2.5). Das Strömungsverhalten ist bei Flüssigkeiten und Gasen
ähnlich. Daher ist es zur Beschreibung der Strömung möglich, sie unter dem Be-
griff Fluid zusammenzufassen. Die Fluidreibung wird zwischen den sich relativ
zueinander bewegenden Flüssigkeits- und Gaspartikeln bewirkt. Einsichtigerweise
ist sie in einer Flüssigkeit größer als in einem Gas. Deutlich wird der Unterschied,
wenn die Sinkgeschwindigkeit, z. B. einer Kugel in einem Fluid, gemessen wird.

Die Geschwindigkeit ist von der ‚Klebrigkeit‘ des Fluids abhängig, man spricht
von der Viskosität oder Zähigkeit des Fluids. Die Viskosität ist ein Stoffwert, er ist
vom Druck und in starkem Maße von der Temperatur abhängig. Eine Flüssigkeit
ist deutlich zäher als ein Gas, außerdem wird bei einer Bewegung in einer Flüs-
sigkeit eine viel größere Fluidmasse verdrängt, was mit einer Trägheitswirkung
einhergeht. Die Unterschiede bei einer Bewegung in einer Flüssigkeit und einem
Gas lassen sich wie folgt kennzeichnen:

1. Die Viskosität einer Flüssigkeit und eines Gases ein und desselben Stoffes un-
terscheiden sich um ein, zwei oder mehr Zehnerpotenzen! Bei einer Tempera-
turerhöhung sinkt die Viskosität in einer Flüssigkeit (da die Molekularbindung
schwächer wird), in einem Gas steigt sie an (was auf der stärker anwachsenden
Geschwindigkeit und Stoßenergie der Gasmoleküle beruht).

2. Als Folge der unterschiedlichen Viskosität gemäß Pkt. 1, ist die Relativge-
schwindigkeit bei natürlichen und technischen Strömungen in Flüssigkeiten
i. Allg. geringer als in Gasen. Das wird deutlich, wenn man beispielsweise
die Strömung in Wasser und Wasserdampf gegenüber stellt. – Die Strömungs-
zustände unterscheiden sich wesentlich: Bei einer Bewegung in Flüssigkeit
(zumindest in einer hochviskosen, z. B. in Öl) handelt es sich eher um eine
laminare (glatte, gleichförmig geschichtete) Strömung, bei einer Bewegung in
einem Gas eher um eine turbulente (insbesondere im Nachlauf und das bei ho-
her Geschwindigkeit). In Abb. 1.42 sind die Unterschiede im Strömungsverlauf
schematisch dargestellt, so wie sie im Regelfall vorliegen: Bei sehr geringer
Geschwindigkeit verläuft die Strömung in einem Gas laminar, bei sehr hoher
Geschwindigkeit in einer Flüssigkeit turbulent.

3. Wegen der unter Pkt. 2 genannten Unterschiede ist der durch die Bewegung in
einem Fluid ausgelösteWiderstand (StrömungswiderstandFW / in unterschied-
licher Weise von der Geschwindigkeit v abhängig:
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Abb. 1.42

Fluide mit hoher Viskosität: FW ist proportional zu v (gilt für Flüssigkeiten),
Fluide mit geringer Viskosität: FW ist proportional zu v2 (gilt für Gase).
Im ersten Falle steigt der Widerstand linear mit der Geschwindigkeit, im zwei-
ten Falle quadratisch, also nicht-linear, es handelt sich dann eigentlich um keine
Reibungs- sondern um eine mit der Verdrängung einhergehende Trägheitswir-
kung.

Die Herleitung des Strömungswiderstandes in viskosen und nicht-viskosen Flui-
den ist Gegenstand der Fluiddynamik (Strömungsmechanik, Abschn. 2.4.2), die
Vorgänge sind komplex und vielfältig.

Für den einfachsten Verdrängungskörper, die Kugel, lauten die Gesetze:

� Viskoses Fluid bei eher geschichteter Strömung (Flüssigkeit mit hoher Viskosi-
tät):

FW D 6� r � � v D 6
A

r
� � v

r : Radius der Kugel in m, A: Verdrängungsfläche in m2, �: ‚dynamische Vis-
kosität‘, v: Geschwindigkeit in m=s. Die SI-Einheit von � lautet Pascalsekunde
(Pa � s): 1Pa � s D 1Ns=m2 D 1 kg=m � s.
Der Quotient aus der dynamischen Viskosität und der Dichte wird ‚kinemati-
sche Viskosität‘ genannt (es ist das Viskositäts-Dichte-Verhältnis): � D �=�.

� Nicht-viskoses Fluid bei eher turbulenter Strömung (Gas mit vernachlässigbarer
Viskosität):

FW D �

2
� cw � A � v2

�: Dichte in kg=m3, cw: Strömungsbeiwert (dimensionsfrei), A: Verdrängungs-
fläche in m2, v: Geschwindigkeit in m=s. Im Falle der Kugel ist cw keine
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Abb. 1.43

Konstante, sondern von der sogen. Reynolds-Zahl abhängig, die ihrerseits eine
Funktion der Geschwindigkeit und Kugelgröße ist. Bei niedrigen Reynolds-
Zahlen beträgt cw ca. 0,50, bei höheren ca. 0,20, bei sehr hohen ca. 0,10.
Die cw-Werte können nur im Wasser- oder Windkanal experimentell bestimmt
werden. Wegen weiterer Einzelheiten vgl. Abschn. 2.4.2.

1.13.5 Dämpfung: Einführung

Mit der Schwingungsbewegungmaterieller Körper und Kontinua geht stets Dämp-
fung einher. Es handelt sich um Energie dissipierende Vorgänge. Sie werden durch
unterschiedliche innere und äußere Reibungen verursacht. Der Begriff ‚Dämpfung‘
steht nicht für einen konkreten Stoffwert sondern für eine Stoffeigenschaft, für das
Vermögen eines Stoffes oder Stoffsystems, Bewegungsenergie zu zerstreuen.

Irgendwann kommt jede Bewegung, jede Schwingung, zum Erliegen, sofern
nicht ständig soviel Anregungsenergie im zeitlichen Mittel zugeführt wird, wie
im Mittel Dämpfungsenergie zerstreut wird. Der zeitliche Verlauf einer abklingen-
den Schwingung erlaubt Schlüsse über die Dämpfungsursache und die Höhe der
Dämpfung, wie in Abb. 1.43 angedeutet.

Insgesamt erfasst der Begriff Dämpfung ein weites Feld, eine systematische
Behandlung ist schwierig. – Bei technischen Anlagen werden vielfach Schwin-
gungsdämpfer eingesetzt: Stoßdämpfer in Straßen- und Schienenfahrzeugen aller
Art, Dämpfer und Dämmstoffe bei Maschinenfundamenten, seismische Schutzsys-
teme im Hoch- und Brückenbau. – Neben der mechanischen Dämpfung gibt es sie
in elektrischen Systemen.

1.13.6 Reibungsdämpfung

Unter dem Begriff Reibungsdämpfung wird im Folgenden die bei einer zyklischen
Bewegung eines Körpers durch Festkörper-Reibung dissipierte Energie verstan-
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den. Die Reibungskraft FR wird bei den Hin-und-Her-Bewegungen als konstant
unterstellt. Abb. 1.44a steht für den Vorgang: Der Körper übt auf die Unterlage
die Gewichtskraft Q D m � g aus. Der Reibungsbeiwert sei 
. Die Reibungskraft
beträgt dann FR D 
 � Q. Zwischen Haft- und Gleitreibung werde nicht unter-
schieden.

Wird der Körper von 0� über ① nach ② verschoben, ist die Reibungskraft
gemäß vorstehender Voraussetzung durchgängig konstant: FR D konst: Bei ②

wechselt FR mit dem Wechsel der Bewegungsrichtung ihre Wirkungsrichtung. So
fortschreitend wird nach und nach ein voller Zyklus durchfahren und mit der Stel-
lung ⑧ der Ausgang der Bewegung wieder erreicht. Von hier aus wiederholt sich
der Vorgang. Im ersten Viertel eines Umlaufs wird von FR die Arbeit FR � Os ver-
richtet. Os ist die Amplitude (der Ausschlag) der zyklischen Bewegung. Im zweiten
Viertel wird von FR dieselbe Arbeit verrichtet: .�FR/ � .�Os/ D FR � Os. Insgesamt
beläuft sich die Reibungsarbeit eines vollen Zyklus zu:

WR D 4 � FR � Os
Das ist der Inhalt des Rechtecks in Abb. 1.44b. Man nennt die Figur ‚Hysterese‘.
WR ist die während eines Zyklus sich im Wesentlichen als Wärme verflüchtigende
Energie. (Bekanntlich reibt man die Handflächen gegeneinander, um die Hände zu
wärmen.)

WR ist im vorliegenden Falle unabhängig von der zeitlichen Änderung der Ver-
schiebung, also unabhängig davon, wie schnell die Hin und Herbewegung erfolgt.
Man spricht in solchen Fällen auch von hysteretischer Dämpfung.

Verläuft die Bewegung sinusförmig, nennt man sie ‚harmonisch‘. Der Weg
s D s.t/ gehorcht in diesem Falle der Funktion (Abb. 1.44c):

s D s.t/ D Os � sin 2�
t

T

t ist die Zeit und T die Dauer einer Periode, sie wird in s (Sekunden) gemessen. Os
ist die Amplitude in m (Meter).

Der Ablauf der sinusförmigen Bewegung eines Zyklus nach vorstehender Glei-
chung lässt erkennen, dass die Wegordinate s D s.t/ für die Zeitpunkte t=T D
1=2 und t=T D 1 gleich Null ist, also der Nullpunkt durchlaufen wird und dass
für die Zeitpunkte t=T D 1=4 und =3=4 die Wegordinate gleichC1 � Os bzw. �1 � Os
ist, also jeweils der Größtwert, die Amplitude, erreicht wird. – Der Kehrwert von
T ist die ‚Frequenz‘ der harmonischen Bewegung, abgekürzt mit f :

f D 1

T
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Abb. 1.44
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Abb. 1.45

Das ist die Anzahl der Sinus-Zyklen pro Zeiteinheit, also pro Sekunde. Diese Ein-
heit trägt den Namen Hertz (abgekürzt mit Hz, benannt zu Ehren von H. HERTZ
(1857–1894), dem Entdecker der elektromagnetischen Wellen).

Dauert die Periode eines Zyklus T D 1s, also eine Sekunde (Abb. 1.45a), be-
trägt die Frequenz f D 1=1 s D 1Hz, das bedeutet ein Schwingungszyklus pro
Sekunde. Dauert der Zyklus eine halbe Sekunde, gilt also T D 0;5 � s, beträgt die
Frequenz f D 1=.0;5 �s/ D 2Hz, das sind zwei Zyklen pro Sekunde (Abb. 1.45b).

Die Funktion für die harmonische Bewegung kann bei Verwendung der Fre-
quenz f zu

s D s.t/ D Os � sin 2� f � t
angeschrieben werden. Es ist üblich, den Ausdruck 2� f mit ! abzukürzen und
mit ‚Kreisfrequenz‘ zu benennen:

! D 2� f D 2�

T

Hiermit lautet Gleichung für die zyklische Hin-und-Her-Bewegung

s D s.t/ D Os � sin! t:

Wird die Arbeit eines Zyklus auf die Dauer des Zyklus bezogen, also auf T , erhält
man die (mittlere) Leistung (man spricht von Verlustleitung) zu:

PR D WR

T
D WR � f

Das ist einsichtig: Ist die Frequenz hoch, werden pro Zeiteinheit viele Hysteresen
durchlaufen, die Verlustleistung PR ist entsprechend hoch, vice versa.

Ist der Körper in Abb. 1.44a mit einer Zug-Druck-Feder verbunden, muss bei
der Verschiebung zusätzlich zum Reibungswiderstand ein Federwiderstand über-
wunden werden. Die Rückstellkraft der Feder ist k � s, wenn k die Federkonstante
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Abb. 1.46

ist. (Die Federkraft ist gleich der Federkonstanten mal dem Federweg.) Im Um-
kehrpunkt der Bewegung ist die Federkraft mit k � Os am größten, während des
Nulldurchgangs ist sie Null. Wird die Summe aus Reibungskraft und Federkraft,
also F D FR C k � s, über der Verschiebung s aufgetragen, stellt sich eine schief
liegende Hysterese ein, wie in Abb. 1.46b dargestellt.

1.13.7 Viskose Dämpfung

Ändert sich die Reibungskraft proportional mit der Geschwindigkeit, spricht man
von viskoser Reibung und im Falle einer zyklischen (Schwingungs-)Bewegung
von viskoser Dämpfung. Sie ist bei einer Bewegung in einem viskosen Medium
wirksam, z. B. in Öl. (Der Vorgang wird häufig durch einen Hydraulikzylinder
versinnbildlicht: Öl strömt bei der Hin- und Herbewegung des Kolbens über einen
Speicher, Abb. 1.47a. Die Darstellung in Abb. 1.47b, das Öl strömt durch den Spalt
zwischen Kolben und Zylinder ist als Modell zu begreifen!)

Die viskose Reibungskraft ist zu FR D d �v definiert, v ist die Geschwindigkeit
in m/s und d der viskose Reibungs- bzw. Dämpfungsbeiwert. Dieser Beiwert muss
experimentell bestimmt werden (s. u.).

Wird von vornherein von einer harmonischen Bewegung ausgegangen, so folgt
die Geschwindigkeit als Ableitung des Weges s D s.t/ nach der Zeit (vgl. Ab-
schn. 1.2):

v D v.t/ D ds

dt
D Os � 2�

T
� cos 2�

t

T
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Abb. 1.47

(Das Differential der Sinusfunktion ist dem Verlauf nach die Cosinusfunktion,
Bd. I, Abschn. 3.7.1.3.) Die Dämpfungskraft verläuft demnach cosinusförmig:

FR D d � v D d � Os � 2�

T
� cos 2�

t

T

D OFR � cos 2�
t

T
D OFR � cos 2�f t D OFR � cos! t

mit der Kraftamplitude:

OFR D d � Os � 2�

T

In den Umkehrpunkten der Bewegung ist die Geschwindigkeit Null, daher auch
die Dämpfungskraft. Beim Nulldurchgang ist die Geschwindigkeit am größten,
demnach auch die Dämpfungskraft. Das erklärt den in Abb. 1.48b dargestellten
zeitlichen Verlauf der Dämpfungskraft FR.

Werden zugeordnete Werte FR und s in einem FR-s-Diagramm aufgetragen,
ergibt sich als Graph dieser Funktion eine Ellipse. Das bedeutet: Die Ellipse ist
die Hystereseform der viskosen Dämpfung. In Abb. 1.48c ist das Ergebnis veran-
schaulicht, Teilabbildung d zeigt die Hysterese einschließlich der Wirkung einer
elastischen Federkraft. Der Vergleich mit Abb. 1.46b verdeutlicht den Unterschied
zwischen einer Dämpfung durch trockene und viskose Reibung.

Wird die Gleichung für FR durch OFR dividiert und anschließend quadriert, folgt:

.FR.t/= OFR/2 D cos2 ! t

Weiter umgeformt folgt (sin2 x C cos2 x D 1! cos2 x D 1 � sin2 x):

.FR.t/= OFR/2 D cos2 ! t D 1 � sin2 ! t D 1 � .s=Os/2
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Abb. 1.48

Aus vorstehender Beziehung folgt nach geringer Umstellung:

�
FR

OFR

�2

C
� s

Os
�2 D 1

Das ist die Gleichung einer Ellipse mit den Halbmessern OFR und Os.
Der Flächeninhalt dieser Ellipse ist die pro Zyklus dissipierte Dämpfungsarbeit

(Dämpfungsenergie):

WR D � � OFR � Os D � � d � ! � Os2

Beweisen lässt sich das Ergebnis, indem über dWR D FR �ds über die Dauer eines
vollen Zyklus integriert wird. – Kann die in einem Versuch ermittelte elliptische
Hysterese ausgemessen werden, kennt man deren Flächeninhalt (D WR). Daraus
folgt der Dämpfungsbeiwert d zu:

d D WR

� � ! � Os2
in der Einheit

N

m=s
:
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1.14 Energiewandlung

1.14.1 Wirkungsgrad

Wie in den vorangegangenenAbschnitten ausgeführt, kann die einem System inne-
wohnende Energie (das ist das Arbeitsvermögen des Systems) in unterschiedlicher
Form vorliegen, als mechanische, thermische, chemische, elektrische, magneti-
sche oder nukleare Energie. Vielfach gilt es, eine Energieform in eine andere zu
überführen. Bei dieser Umsetzung zwecks ‚Erzeugung‘ (‚Nutzung‘) geht ein Teil
‚verloren‘. Das bedeutet: Ein Teil der zugeführten Energie dient als Nutzenergie
dem angestrebten Zweck, der andere ist Verlustenergie. Dieser Teil verflüchtigt
sich in irgendeiner Form, überwiegend als ‚Abwärme‘: Es handelt sich um Dissi-
pation, also um Zerstreuung von Energie in Form von Wärme an die Umgebung.

In Abb. 1.49 sind in schematischer Form unwirtschaftlich und wirtschaftlich ar-
beitende Systeme gegenübergestellt. Bei den Zweitgenannten handelt es sich z. B.
um Kraftwerke mit Wärmekraftkopplung. Mit ihnen lässt sich der Wirkungsgrad
anheben, indem die Abwärme für Heizungs- oder Antriebszwecke genutzt wird.

Mit demWirkungsgrad lässt sich die Güte, die Effizienz, der Energiewandlung
bewerten. Es ist eine für alle technischen Systeme wichtige Größe:

� Die höchsten Wirkungsgrade werden in technischen Anlagen mit rein mecha-
nischer Energiewandlung erreicht, wie beispielsweise bei der Kraftübertragung
durch Hebel, Riemen oder Zahnräder, beim Flaschenzug usf. Hier wirkt die
trockene Reibung energiedissipierend.

� Wird potentielle Energie in kinetische Energie umgesetzt, wie bei Wasserrädern
und -turbinen, ist ebenfalls mit einem hohen Wirkungsgrad zu rechnen. Neben
der trockenen Reibung treten noch hydraulische Reibungsanteile hinzu, z. B.
infolge innerer und äußerer Fluidreibung (Strömungsturbulenz und Wandrei-
bung).

Abb. 1.49
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Abb. 1.50

� Auch bei elektrischen Generatoren ist der Wirkungsgrad hoch, weil die elektro-
magnetische Induktion vergleichsweise verlustarm verläuft.

� Hohe ‚Verluste‘ treten immer dann auf, wenn Verbrennungsvorgänge bei der
Umsetzung von chemisch oder nuklear gebundener Energie in mechanische
oder elektrische Energie beteiligt sind, wie bei Wärmekraftmaschinen aller Art.
Es handelt sich hierbei um Kreisprozesse. Deren Effizienz ist aus thermodyna-
mischen Gründen begrenzt. Der Wirkungsgrad liegt i. Allg. unter 50%, meist
deutlich darunter! Kap. 3 (Thermodynamik) widmet sich dieser wichtigen The-
matik.

Alle Energiewandlungen sind in einem abgeschlossenen System dem Energieer-
haltungsgesetz unterworfen, physikalisch geht keine Energie ‚verloren‘.

Der Wirkungsgrad ist zu

� D ENutzenergie

EEnergieeinsatz
< 1

definiert. Ein Wirkungsgrad � D 1 kann grundsätzlich nicht erreicht werden.
Die in der Tabelle der Abb. 1.50 links angegebenenWerte für � lassen erkennen,

dass die Wirkungsgrade technischer Komponenten aus den oben erläuterten Grün-
den sehr unterschiedlich sind. Wie ebenfalls bereits erwähnt, erreichen elektrische
Generatoren und Motoren die höchsten Werte. Solarzellen, welche elektromagne-
tische Strahlung der Sonne in elektrischen Gleichstrom umwandeln, liegen am
unteren Ende. Gängige Solarzellen sind mit � � 0;15–0,20 vergleichsweise ineffi-
zient. Solarzellen in den Satelliten der Raumfahrt erreichen höhereWirkungsgrade,
vgl. Abschn. 3.5.7.2.

Sind mehrere Energiewandler in Serie geschaltet, geht bei jedemWandler Ener-
gie ‚verloren‘. Der Gesamtwirkungsgrad ist das Produkt aus den Wirkungsgraden
der beteiligten Komponenten (n sei die Anzahl der Komponenten):

�ges D �1 � �2 � �3 � : : : � �n
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Die in der Tabelle der Abb. 1.50 rechts eingetragenen Werte haben die Bedeutung
von �ges.

Summa summarum kann man erkennen, dass die Energienutzung (trotz der
inzwischen entwickelten Hochtechnologie) nicht sehr befriedigend ist. Alle Maß-
nahmen, die eine Erhöhung des Wirkungsgrades anstreben, verdienen im Hinblick
auf die künftige Energieversorgung höchste Priorität, ebenso die Erschließung neu-
er Energiequellen.

1.14.2 Energiegewinnung durchWasserkraft

Als Beispiel zum Thema Energiewandlung wird die Energiegewinnung aus Was-
serkraft nachfolgend etwas ausführlicher behandelt. – Geschichtliche Darstellun-
gen zur Wasserkraft findet der Leser in [10–12], Fachliteratur in [13–16] und zum
Thema Wasserkraft als Beitrag zu den Erneuerbaren Energien in [17].

Die eingestrahlte Sonnenenergie lässt das Wasser auf Erden allüberall verduns-
ten, insbesondere jenes der Meere. Das Wasser steigt als Wasserdampf in die At-
mosphäre auf. Je wärmer die Luft ist, umso mehr Wasserdampf kann sie aufneh-
men (Abb. 1.51). Während des Aufstiegs kühlt sich die Luft ab, der Wasserdampf
kondensiert (zu Wolken) und wird vomWind verfrachtet. Ein Teil regnet über dem
Meer (als Süßwasser) wieder ab, der andere über dem Festland und sammelt sich
im Grundwasser oder in Bächen, Flüssen und in den großen Strömen und gelangt
so wieder ins Meer, ein Teil fällt als Schnee über den polaren Eismassen und den
Gletschern der Hochgebirge herab.

Abb. 1.51
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Abb. 1.52

Die Energie des in den Bächen und Flüssen abfließenden Wassers wurde schon
im Altertum vor der Zeitenwende und zunehmend im Mittelalter bis in die neuere
Zeit mit Hilfe von Wasserrädern als Antriebsenergie für Mühlen, Schmieden und
Sägewerke, auch in Bergwerken, umgenutzt. Dabei gibt es zwei Formen von Was-
serrädern: Das ‚Unterschlächtige Wasserrad‘, dessen Schaufeln in das strömende
Wasser eintauchen und dadurch die Stoßkraft aus dem aufgestauten Wasser bezie-
hen (Abb. 1.52a) und das ‚OberschlächtigeWasserrad‘, bei welchem die potentielle
Energie des Oberwassers beim Ablaufen über die becherförmigen Schaufeln in ki-
netische Drehenergie umgesetzt wird (Abb. 1.52b). Mit dem letztgenannten Rad
lassen sich höhere Wirkungsgrade erzielen.

In modernen Wasserkraftwerken gibt es im Wesentlichen drei unterschiedliche
Turbinenformen, vgl. Abb. 1.53. Es werden Wirkungsgrade bis 95% erreicht. In
allen Fällen werden Generatoren angetrieben, die den erzeugten Strom ins Netz
speisen: Die Kaplan-Turbine (nach V. KAPLAN (1876–1934), 1913 erfunden)
kommt vorrangig in Flusskraftwerken (in sogen. Laufwasserkraftwerken) mit

Abb. 1.53
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Abb. 1.54

großen Wassermengen bei gleichzeitig geringer Fallhöhe zum Einsatz. Die Schau-
feln sind verstellbar. Durch ein Wehr wird der Fluss aufgestaut. Im Wehr sind
i. Allg. mehrere Turbinen nebeneinander untergebracht, um in Abhängigkeit vom
Wasserstand jede Turbine möglichst optimal bei Volllast betreiben zu können.

Die Pelton-Turbine (nach L. PELTON (1829–1908), 1880 erfunden) kommt
bei großen Fallhöhen zur Anwendung, dort wo das Wasser aus Stauseen im Hoch-
gebirge über Druckstollen oder Druckfallleitungen entnommen wird (Speicher-
kraftwerke). Die kinetische Energie des ankommendenWassers setzt sich in Strahl-
stoßkraft gegen gewölbte Hohlschaufeln um und treibt die Turbine an. Vielfach
wird das Wasser über mehrere Düsen über den Umfang des Rades zugeführt. Die
Turbine arbeitet mit hoher Drehzahl. Die Geschwindigkeit des aus der Düse aus-
tretenden Freistrahls berechnet sich zu v D p

2 g � h mit g D 9;81m=s2 und h als
Fallhöhe (vgl. Abschn. 1.12.3). Hiervon ausgehend wird die Leistung der Pelton-
Turbine berechnet. Es wurden schon Anlagen mit bis zu 1883m Fallhöhe gebaut!

Die Francis-Turbine (nach J.B. FRANCIS (1829–1908), 1848 erfunden)
kommt für mittlere bis größere Fallhöhen zum Einsatz. Sie besitzt schnecken-
förmige regelbare Leitschaufeln und hat insgesamt einen spiraligen Aufbau. Die
Turbine ist auch als Pumpe einsetzbar, z. B. in Pumpspeicherkraftwerken.

Das in Abb. 1.54 wiedergegebeneDiagramm vermittelt Anhalte zum Einsatzbe-
reich der Turbinen und zur erzielbaren Leistung in Abhängigkeit von der Fallhöhe
und der pro Zeiteinheit verfügbaren Wassermenge [13, 14].

Auf Abschn. 3.5.7 (Nichtfossile Energieträger) wird verwiesen.
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Abb. 1.55

1.14.3 Beispiel und Anmerkungen zur Energiegewinnung
durchWasserkraft

Beispiel
Der Höhenunterschied zwischen Ober- und Unterwasser bestimmt die Nutzhöhe, Abb. 1.55:

An der Turbine beträgt die potentielle Energie:

Epot D F � h

(Energie D Arbeitsvermögen D Kraft mal Weg). F ist die ‚Wasserkraft‘. Sie lässt sich wie
folgt bestimmen: Aus dem Wasservolumen V , das in der Zeiteinheit, z. B. in der Sekun-
de, durch die Turbinen strömt, berechnet sich die zugehörige Wassermasse (D Dichte mal
Volumen):

m D �Wasser � V

Die (Gewichts-)Wasserkraft F ist Masse mal Erdbeschleunigung:

F D m � g D �Wasser � g � V; g D 9;81m=s2

Somit beträgt die potentielle Energie, die die Turbine und damit den Generator antreibt:

Epot D �Wasser � g � V � h

Pro Tag mögen 6,0 Millionen m3 Wasser aus einem Stausee durch die Turbine strömen.
Die Stauhöhe h gegenüber dem Unterwasser betrage 25m. Die Leistung des Kraftwerkes



1.14 Energiewandlung 65

berechnet sich in folgenden Schritten:

Dichte des Wassers: �Wasser D 1;0 � 103 kg=m3

Wassermasse: m D �Wasser � V D 1;0 � 103 � 6;0 � 106 D 6;0 � 109 kg

Wasserkraft: F D m � g D 6;0 � 109 � 9;81 D 58;86 � 109 N

Potentielle Energie: Epot D F � h D 58;86 � 109 � 25;0 D 14;72 � 1011 Nm

D 14;72 � 1011 J:

Diese potentielle Energie wird jeden Tag als Arbeit an der Turbine abgesetzt. Die Leistung
des Kraftwerkes ist die pro Sekunde verrichtete Arbeit. Der Tag hat 24 � 60 � 60 D 86:400

Sekunden. Somit berechnet sich die Leistung des Kraftwerks in Watt (D Joule=Sekunde)
bzw. in MW zu

P D �
14;72 � 1011=86:400

	
W D 17;04 � 106 W D 17;04MW .MW D Megawatt/:

Es treten diverse mechanische Verluste infolgeWandreibung und Verwirbelung innerhalb der
Rohrleitung und infolge der Reibung in den Turbinen- und Generatorlagern auf, zusätzlich
elektromagnetische Verluste im Generator und in den Elektroleitungen. Der Gesamtwir-
kungsgrad betrage: �ges D 0;8. Das ergibt eine Nennleistung von

P D 0;8 � 17;04 D 13;6MW

1. Anmerkung
Ein Kraftwerk erzeuge Strom mit einer Leistung von 1W (1 Watt). Das ergibt pro Sekunde
eine Energie von 1 J (1 Joule) und pro Stunde eine Energie von 3600 J. Um eine Energie
von 1 J pro Stunde zu erzeugen, bedarf es der Leistung .1=3600/W D 2;78 � 10�4 W D
2;78 � 10�7 kW. Somit gilt: 1 J) 2;78 � 10�7 kWh.

Ein Kraftwerk mit einer Leistung von 1W D 1 J=s liefert demnach eine Energie in kWh

pro Sekunde (s) von 1 J=s � s D 1 J D 2;78 � 10�7 kWh

pro Stunde (h) von 1 J=s � 3600 s D 3600 J D 1;00 � 10�3 kWh

pro Tag (d) von 1 J=s � 3600 � 24 s D 85:400 J D 2;40 � 10�2 kWh

pro Jahr (a) von 1 J=s � 3600 � 24 � 365 s D 31:536:000 J D 8;77 kW h

Ein Kraftwerk mit einer Leistung von 1000MW (das ist das 1000 � 106 D 109-fache eines 1-
W-Kraftwerkes) erzeugt jährlich eine Energie von 109 �8;77 kW h D 8770�106 kWh D 8770

Millionen kWh. Das setzt einen 100%igen Volllastbetrieb voraus. Bei 70% verfügbarer
Volllast würde bei einem 1000-MW-Kraftwerk jährlich eine Energie von

0;7 � 8770 � 106 kWh D 6140 � 106 kWh

anfallen.
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Abb. 1.56

2. Anmerkung
Wie ausgeführt, ist die Gewinnung elektrischer Energie durch Wasserkraft dank des hohen
Wirkungsgrades sehr wirtschaftlich und zudem CO2-frei. Der investive Aufwand ist indes-
sen beträchtlich, i. Allg. auch der Eingriff in das örtliche Ökosystem. Weltweit beläuft sich
die Anzahl der projektiertenWasserkraftwerke (Staudämme) mit einer Leistung > 1MW auf
über 3500. Der Beitrag ist lokal wichtig, global gesehen, eher gering, die ökologischen Fol-
gen häufig schwerwiegend. – In Brasilien müssen im Amazonasgebiet wegen des in Angriff
genommenen 11.000-MW-Belo-Monte-Projekts ca. 16.000 Angehörige indigener Völker
umgesiedelt werden. – In China, Laos, Thailand und Kambodscha sind entlang des Me-
kong mehrere Staudammprojekte fertig gestellt worden bzw. in der Planung, die erhebliche
Auswirkungen auf die Tierwelt einerseits und auf die Ernährung der dortigen Bevölkerung
andererseits haben. – In der Türkei stößt eine große Zahl von Staudamm-Projekten, insbe-
sondere der Bau des Ilisu-Damms am Tigris mit der Flutung der Felsenstadt Hasankeyf, auf
Proteste. – Auch sind in den an die Adria angrenzenden Balkanländern in Ergänzung zu
den vorhandenen weitere Staudämme im Bau und in der Planung, wohl über 500, viele in
ländlichen Siedlungsräumen, viele in unberührter Natur. –

Die Nennleistung der drei weltgrößten Wasserkraftwerke zeigt Abb. 1.56.

3. Anmerkung
Weltweit werden ca. 18% des elektrischen Stroms aus Wasserkraft gewonnen, bezogen auf
die Primärenergie insgesamt sind das etwa 6,4%. In Abb. 1.57 ist die Jahresproduktion elek-
trischer Energie in den verschiedenen Weltregionen für das Jahr 2008 einschließlich des
Wasserkraftanteils zusammengestellt. Ca. ein Drittel der auf Erden verfügbaren Wasserkraft-
kapazität werden heute schon genutzt. – In China sind vier Großkraftwerke mit zusammen
ca. 27.000MW im Bau (2010), in Russland eines mit 4000MW und in Tadschikistan eines
mit 3600MW. Bei letzterem wird der Fluss Wachsch durch einen 315m hohen Wall auf-
gestaut. – Die asiatischen Kraftwerke sind auf einen gesicherten und ausreichenden Zufluss
des Gletscher-Wassers aus dem Himalaja angewiesen.

4. Anmerkung
In Europa werden ca. 16% des Stroms aus Wasserkraft gewonnen, in Norwegen nahezu
100%, in Schweden 56%, in der Schweiz 55% und in Österreich 60%. In Deutschland
sind es nur ca. 4%. Hier werden 670 Wasserkraftwerke (2900MW) von öffentlichen Strom-
versorgern betrieben und ca. 4500 von privaten (400MW). In der Summe steht also eine
Leistung von 3300MW aus Wasserkraft zur Verfügung. Eine nennenswerte Steigerung des
Wasserkraftanteils an der Stromerzeugung ist hierzulande nicht möglich und würde auf Wi-
derstand stoßen, ca. 75% des Potentials sind in der Nutzung. Effizienzsteigerungen sind
denkbar: Beim Laufwasserkraftwerk Rheinfelden (Baujahr 1898), eines von sechs Anlagen
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Abb. 1.57

Abb. 1.58

am Hochrhein, wurde die installierte Leistung beispielsweise durch Erhöhung des Aufstaus
und der eingespeisten Wassermenge von 26MW auf 100MW gesteigert. – Eine Steigerung
der Leistung des Speicherkraftwerkes Walchensee (Baujahr 1924) mit 124MW wäre mög-
lich, dürfte sich nicht umsetzen lassen und ist wegen der baulichen Eingriffe wohl auch nicht
gerechtfertigt.

5. Anmerkung
In Abb. 1.58 sind die Leistungen der drei größten deutschen Pumpspeicherwerke wieder-
gegeben. Insgesamt bündeln die 34 Pumpspeicherwerke in Deutschland eine Leistung von
6400MW. Sie waren ursprünglich als schnell abrufbarer Ersatz bei Ausfall traditioneller
Kraftwerksblöcke konzipiert worden. Inzwischen dienen sie auch dem Ausgleich der bei der
Stromerzeugung aus Wind und Sonne unvermeidbaren Schwankungen. Ihr Wirkungsgrad
liegt pro Zyklus bei ca. 0,75 bis 0,85 und liegt somit, im Vergleich mit anderen Speicher-
techniken, relativ hoch.

6. Anmerkung
Gezeitenkraftwerke sind auf einen Tidehub zwischen Ebbe und Flut von 6m und mehr
angewiesen, um wirtschaftlich arbeiten zu können. Die Turbinen arbeiten beim Ein- und
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Ausströmen des Meerwassers in bzw. aus dem Stauraum. Hierbei kann es sich z. B. um eine
durch einen Damm abgeschottete Bucht handeln. Das größte Gezeitenkraftwerk wurde im
Jahre 1967 bei Saint Malo an der nordfranzösischen Atlantikküste in Betrieb genommen,
Leistung 240MW. Bedingt durch den Stillstand in Zeiten des vollständigen Aufstaus und
des völligen Auslaufs beträgt die Auslastung der 24 Turbinen im Schnitt nur ca. 26%. Das
ergibt eine jährliche Stromerzeugung von 0;26 � 240 � .365 � 24/ D 547:000MWh=a D
547GWh=a. – Ein solches Kraftwerk bezieht seine Energie vorrangig aus der dem Erdkör-
per innewohnenden kinetischen Rotationsenergie und aus der gravitativen Gezeitenwirkung
des Mond-Erde-Systems.

Meerestechnische Wellen- und Strömungskraftwerke sind Gegenstand der Forschung
und Entwicklung. Obwohl das Energiereservoir hoch ist, wird die Nutzung voraussehbar
gering bleiben.
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2Mechanik II: Anwendungen

2.1 Statik – Stabilität – Festigkeit

2.1.1 Einleitung

Wenn der Anfang der Physik mit der Entwicklung der Mechanik zu einer wis-
senschaftlichen Disziplin gleich gesetzt wird, so war es innerhalb dieser die Sta-
tik, die am Anfang stand. Frühzeitig erfunden wurden Rolle und Rad, Hammer
und Keil, Seilzug und Hebel. Es war ARCHIMEDES von SYRAKUS (287–212
v.Chr.), der deren Wirkprinzip erklären und dank seiner mathematischen Kennt-
nisse erstmals beschreiben konnte. Das ermöglichte ihm, Weiteres zu erfinden, so
die Wasserschnecke und den Flaschenzug. Die Theorie des Gleichgewichts, des
Körperschwerpunktes und des Auftriebs schwimmender Körper geht auch auf ihn
zurück [1]. – In den Jahrhunderten darauf trat viel Neues hinzu, Riemen- und Ket-
tenantrieb, Zahnrad und Schraube, man sprach von ‚Mechanischen Künsten‘. Sie
kamen bei der Errichtung von Bauwerken und Festungsanlagen, für den Betrieb
von Berg- und Wasserwerken, für die Fertigung von Räderfahrzeugen und Schif-
fen und zuvörderst für die Entwicklung von Kriegsgerät zum Einsatz.

Hatte man über Jahrhunderte beim Bau von Hütten, Häusern und Tempeln nur
den Balken gekannt, also das Gebälk, das auf Mauern oder Säulen ruht, waren es
die Römer, die von des Etruskern den Rundbogen übernahmen und die Technik des
Bogens und des Rundgewölbes als raumübergreifende Konstruktionsformen für
den Hoch- und Brückenbau und für den Bau von Aquädukten weiter entwickelten,
vgl. Abb. 2.1. Auch gelangen ihnen Fortschritte in der Hydraulik und im Wasser-
wesen. Es war der römische Baumeister und Architektur-Theoretiker VITRUVIUS
POLLIO (84–27 v.Chr.), der in seinem zehnbändigen Buch ‚De architectura‘ das
erste umfassende Werk über die Baukunst und Bautechnik, unter Einbindung der
griechischen Tradition, verfasste. firmitatis, utilitatis, venustatiswaren die von ihm
postulierten Prinzipien, nach denen gebaut werden sollte (Erstes Buch, III. Ka-
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Abb. 2.1

pitel). Firmitatis steht für Haltbarkeit, Standfestigkeit, Tragfähigkeit, utilitatis für
Nützlichkeit und Zweckentsprechung und venustatis für Schönheit, erfreulicher
Anblick, Ästhetik und humane Proportion [2].

Das in der Zeit der Römer erworbene Wissen der Bauleute wurde in den folgen-
den Jahrhunderten weiter gegeben und erweitert. Auf diesem Wege kam es auch
in die Dombauhütten. Es war aus der Erfahrung gewachsenes Wissen und Kön-
nen, im heutigen Verständnis indessen noch keine Wissenschaft. Sie entwickelte
sich erst viel später als Bau- und Ingenieurwissenschaft mit der (Technischen) Me-
chanik und Materialkunde als Grundlage und im Zuge der Verwendung von Eisen
als Baumaterial. Nach den Methoden der Technischen Mechanik wurden und wer-
den die Konstruktionen im Hoch- und Brückenbau, im Fahrzeug-, Flugzeug- und
Schiffbau berechnet. Dabei findet der Computer seit Mitte des 20. Jh. breiteste An-
wendung, auch bei der baulichen Durchbildung und in der Fertigung. Die hierfür
entwickelte Software beinhaltet Mechanik und Mathematik in hoher Abstraktion.
Eine aufregende Geschichte von ARCHMEDES bis K. ZUSE (1910–1995), ei-
nem Bauingenieur, der um 1946 auf dem von ihm erfundenen Computer die ersten
baustatischen Rechenprogramme im Freiburger Code erstellte [3]. (Vgl. hier auch
Literatur im vorangegangenen Kapitel zum Thema Mechanik).
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Abb. 2.2

2.1.2 Kräfte als Vektoren – ‚Parallelogramm der Kräfte‘

Auf einen ruhenden Körper wirkt im Schwerefeld der Erde seine eigene Gewichts-
kraft. Ist m die Masse des Körpers in kg, beträgt sein Gewicht in N (Newton), vgl.
Abb. 2.2:

Fg D m � g
(Gewicht D Masse des Körpers mal Erdbeschleunigung.) Die Erdbeschleunigung
beträgt in mittleren Breiten: g D 9;81m=s2 � 10m=s2. Neben der Eigenlast
müssen beim baustatischen Nachweis weitere Lasten berücksichtigt werden: Nutz-
lasten im Hochbau, Verkehrslasten im Brückenbau, Schneelasten,Windlasten, Erd-
bebenlasten und viele weitere, auch Temperatureinflüsse. Die Bauvorschriften ent-
halten die notwendigen Angaben, inzwischen neben den nationalen die europäi-
schen Regelwerke.

Wirken mehrere Kräfte gleichzeitig, ist es notwendig, sie als Vektoren zu be-
handeln. Ihre Größe undWirkrichtung wird dabei gleichzeitig erfasst. Zeichnerisch
werden Vektoren als Pfeile dargestellt. Eine graphische Lösung statischer Proble-
me ist häufig anschaulicher und einfacher als eine rechnerische. Hierbei treten zwei
Grundaufgaben auf.

1. Bildung der Resultierenden (der vektoriellen Summe) aus mehreren Kräf-
ten Das sei anhand von Abb. 2.3 erläutert. Es zeigt vier Fälle: In Teilabbildung a
wirkt nur eine Kraft, in Teilabbildung b sind es zwei, die senkrecht zueinander ste-
hen. Sie werden zeichnerisch aneinander gefügt. Die Resultierende geht aus dem
so entstehenden ‚Krafteck‘ hervor. Rechnerisch gilt:

F 2
1 C F 2

2 D R2 (Satz des Pythagoras)

! R D
q

F 2
1 C F 2

2

Stehen die beiden Kräfte nicht rechtwinklig zueinander, werden sie durch jeweilige
Parallelverschiebung zusammengefügt. Teilabbildung c zeigt das so entstehende
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Abb. 2.3

‚Parallelogramm der Kräfte‘. Diese Vorgehensweise ist schon sehr alt. Sie geht auf
S. STEVIN (1548–1620) zurück.

In jenem Maßstab, der für die Auftragung von F1 und F2 gewählt wurde, kann
R abgegriffen werden. Aus der Geometrie des Kraftecks lässt sich R auch in ein-
facher Weise berechnen. – Wirken mehr als zwei, z. B. drei Kräfte F1; F2; F3,
werden sie wiederum so aneinander gefügt, wie es ihrer Richtung und Reihen-
folge entspricht (zeichnerisch durch Parallelverschiebung). Die Schlusslinie ist
die gesuchte Resultierende. Sie kann auch aus den Komponenten der einzelnen
Kräfte additiv (unter Berücksichtigung des Vorzeichens) ermittelt werden, wie in
Teilabbildung e angedeutet. Dazu werden zunächst aus den Einzelkräften deren
Komponenten und aus diesen die Größen RH und RV additiv bestimmt und an-
schließend die Resultierende R berechnet:

R D
q

R2
H C R2

V

2. Zerlegung einer Kraft in zwei Richtungen Diese Grundaufgabe sei anhand
Abb. 2.4 erklärt. Sie zeigt einen Stützbock mit des Streben S1 und S2. Die Geo-
metrie liegt mit den Winkeln ˛ und ˇ fest. Auf den Bock wirkt im Hochpunkt die
Kraft F unter dem Winkel � . Welche Kräfte werden dadurch in den Streben S1

und S2 geweckt?
Zur Lösung der Aufgabe wird die Kraft F in die Richtungen der Streben S1 und

S2 zerlegt. Dazu wird F in einem frei vereinbarten Maßstab gezeichnet. Parallel
zur Richtung der Streben werden die Kräfte F1 und F2 aus dem so entstehenden
Krafteck mit dem gewählten Maßstab abgegriffen. F1 ist eine Zugkraft in der Stre-
be S1 und F2 eine Druckkraft in der Strebe S2. Auch in diesem Falle ist aus der
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Abb. 2.4

Figur des Kraftecks einfach zu erkennen, wie die Kräfte F1 und F2 rechnerisch
gefunden werden können. – Das Beispiel lehrt: Eine Kraft lässt sich eindeutig in
zwei Richtungen zerlegen. Eine Zerlegung einer Kraft in drei oder mehr Richtun-
gen ist aus dem Gleichgewichtsprinzip allein nicht eindeutig machbar. – Wirken
auf den Stützbock mehrere Kräfte, ist von diesen zunächst die Resultierende zu
bilden (1. Grundaufgabe). Sie wird anschließend in die Richtung der Streben zer-
legt.

2.1.3 Arten des Gleichgewichts

Es werden drei Gleichgewichtszustände unterschieden: Ruht eine Kugel auf dem
Hochpunkt einer Kuppe, ist das Gleichgewicht labil: Es genügt eine noch so klei-
ne Störung, z. B. in Form einer geringen seitlichen Kraft, und die Kugel rollt ab
(Abb. 2.5a). Ruht die Kugel auf einer Ebene, ist das Gleichgewicht indifferent:
Nach einer Verschiebung kehrt die Kugel nicht in ihre ehemalige Position zurück.
(Teilabbildung b). Liegt die Kugel in einer Mulde, ist das Gleichgewicht stabil:

Abb. 2.5
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Nach einer Störung kehrt die Kugel in ihre ursprüngliche Lage zurück (Teilabbil-
dung c). Teilabbildung d zeigt eine Sattelfläche. Liegt die Kugel im Sattelpunkt
und erfährt sie eine Störung in Richtung der abwärts gerichteten Sattellinie, rollt
sie ab. Eine solche Lage ist immer labil, auch dann, wenn sich bei einer Störung in
eine andere Richtung die Lage als indifferent oder stabil erweist.

2.1.4 Statik der Starrkörper

Körper, die infolge der auf sie einwirkenden Kräfte nur eine vernachlässigbare
geringe Formänderung erfahren, nennt man ‚starr‘. Dabei kann es sich auch um
gegliederte Strukturen handeln. Ein solcher Ansatz ist bei der überwiegenden An-
zahl statischer Aufgaben zulässig. Wird die Gleichgewichtslage an einem solcher-
maßen definierten System analysiert, spricht man von Statik ‚Theorie I. Ordnung‘.
Werden die Gleichgewichtsgleichungen am verformten System erfüllt, also unter
Berücksichtigung der sich einstellenden (kleinen) Formänderungen, spricht man
von ‚Theorie II. Ordnung‘, sind die Verformungen gar endlich (groß) und wird ihr
Einfluss in den Gleichgewichtsgleichungen mit erfasst, spricht man von ‚Theorie
III. Ordnung‘.

In der Baustatik wird im Rahmen der Standsicherheitsberechnung nachge-
wiesen, dass der zu untersuchende Baukörper gegenüber einer Gefährdung durch
Umkippen, Gleiten und Abheben ausreichend sicher ist. Dabei ist eine Sicherheit
größer Eins einzuhalten, z. B. 1,5.

1. Umkippen: Abb. 2.6 zeigt eine turmartige Konstruktion mit breitem Funda-
ment. Die Eigenlast wird zu drei vertikalen Kräften zusammengefasst: Fg0,

Abb. 2.6
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Fg1 und Fg2. Bezogen auf die Fundamentsohle wirken im Abstand h1 und h2

die Horizontalkräfte H1 und H2. Ist die Unterlage ‚starr‘, besteht die Gefahr
des Umkippens um die rückseitige Kante, wenn das Kippmoment größer als
das Standmoment ist (Teilabbildungen a1/a2). Das Kippmoment beträgt (Mo-
mentD Kraft mal Hebelarm, Abschn. 1.9):

MKippen D H1 � h1 CH2 � h2

Dem wirkt das Standmoment entgegen (in Teilabbildung a2 ist der Kippbeginn
überzeichnet dargestellt):

MWiderstand D .Fg0 C Fg1 C Fg2/ � a

Ist das Kippmoment größer als das Standmoment, kippt das Objekt. Die Kipp-
sicherheit berechnet sich zu:

�Kippen DMWiderstand=MKippen:

Das Fundament ist so breit zu dimensionieren, dass die geforderte Kippsicher-
heit eingehalten wird. – Der vorstehendeAnsatz liegt nicht auf der sicheren Sei-
te! Die Fundamentsohle ist nicht ‚starr‘, der Kipppunkt liegt real etwas inner-
halb der Kante, das führt zu einer Verkleinerung des ‚inneren Hebelarms (a)‘.
Das Stützmoment fällt dadurch geringer aus! Ein weiterer Versagenszustand ist
ein Grundbruch, der gesondert nachgewiesen werden muss (Abb. 2.6b).
Abb. 2.7a zeigt ein praktisches Beispiel und zwar eine im Schnitt dargestellte
Stützmauer am Ort eines Geländesprungs. Beginnt die Mauer sich ein wenig
zu bewegen (zu kippen), löst sich rückwärtig ein Erdkeil, er rutscht und drückt
gegen die Mauer. Die Mauer droht zu kippen. Die Eigenlast der Mauer wirkt
dem entgegen.

Abb. 2.7
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Günstig ist es in einem solchen Falle, wenn möglich, eine Winkelstützmauer
aus Stahlbeton zu konstruieren. Hier wirkt die vertikale Auflast aus dem Erdkeil
rücktreibend, also stabilisierend (Abb. 2.7b).
Die Erdstatik fällt in das Gebiet der Bodenmechanik, dazu gehört auch die Sta-
tik der Baugruben. Ein weiterer Zweig ist die Felsstatik und die Tunnelstatik,
z. B. von Straßentunneln, U-Bahnröhren und Wasserstollen.

2. Gleiten: Infolge einer horizontalen Belastung kann auch ein Gleiten ausgelöst
werden. Gleiten setzt ein, wenn der Reibungswiderstand geringer ist als die
Summe der horizontalen Schubkräfte. Ist 
 die Reibungszahl in der Funda-
mentfuge, betragen im Falle des in Abb. 2.6 behandelten Beispiels

FGleiten D H1 CH2; FWiderstand D 
 � .Fg0 C Fg1 C Fg2/

Die Gleitsicherheit ist gleich:

�Gleiten D FWiderstand=FGleiten:

3. Abheben: Auch gegen Abheben durch aufwärtsgerichtete (Zug-)Kräfte muss
eine ausreichende Sicherheit nachgewiesen werden. Dieser Fall hat beispiels-
weise bei Rückhaltefundamenten vonAbspannseilen eines abgespannten Funk-
mastes praktische Bedeutung, wie in Abb. 2.8 dargestellt. In Teilabbildung a
sind die wirksamen Kräfte eingetragen. G ist die Eigenlast des Fundaments,
sie wirkt im Schwerpunkt.
Ea ist der aktive und Ep der passive Erddruck. Ep wird aktiviert, wenn sich
das Fundament seitlich gegen das Erdreich zu bewegen beginnt. Die Seilkraft
F hat die Komponenten H und V . Die Sicherheit gegen Abheben berechnet
sich zu:

�Abheben D G=V:

Liegt das Fundament im Grundwasser, muss der Auftrieb des verdrängtenWas-
servolumens berücksichtigt werden, er mindert die Auflast G!

Abb. 2.8
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Bei den vorstehenden Beispielen handelt es sich um ebene Probleme. Mittels der
drei Gleichgewichtgleichungen konnten die Aufgaben gelöst werden:

X
M D 0 (Summe aller Momente gleich Null): Kippen

X
H D 0 (Summe aller H-Kräfte gleich Null): Gleiten

X
V D 0 (Summe aller V-Kräfte gleich Null): Abheben

Bei räumlichen Problemen sind drei Momenten- und drei Kraft-Gleichgewichts-
gleichungen zu erfüllen.

2.1.5 Statik der Tragwerke

Um den durch die Erdschwere verursachten Lasten und allen weiteren Einwirkun-
gen zu widerstehen, bedürfen alle technischen Objekte einer inneren Tragstruk-
tur: Bauwerke, Maschinen, Fahrzeuge, Flugzeuge, Schiffe. Das gilt ebenso für
alle biologischen, wie Pflanzen und Tiere, auch für den Mensch mit seinem Kno-
chenskelett, mit Sehnen undMuskeln. Eine stimmige Statik ist Voraussetzung ihres
Bestehens. Bei biologischen Strukturen werden solche Fragen in der Bionik und
Biomechanik untersucht. Letztere bildet eine wichtige Grundlage in der Ortho-
pädie und Sportmedizin. Es handelt sich jeweils einzeln um weite Felder in der
naturwissenschaftlichen Forschung.

Beschränkt auf die Bautechnik zeigt Abb. 2.9 wichtige Tragelemente: Zugstab,
Stange, Kette, Seil (Teilabbildung a), Fachwerk mit in ‚Knotengelenken‘ miteinan-
der verbundenen Stäben (Teilabbildung b), Balken, Biegeträger; sie werden auch
als Rahmen oder Bogen ausgebildet (Teilabbildung c). Die dargestellten Tragele-
mente/Tragwerke sind ebene Systeme. Daneben gibt es räumliche wie Scheiben,
Faltwerke, Platten, Schalen, Kuppeln, Seilwerke usf. Entsprechend wächst der

Abb. 2.9
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Abb. 2.10

Schwierigkeitsgrad ihrer statischen Berechnung. Fallweise bedarf es dynamischer
Analysen, wenn stoßartige Beanspruchungen oder Schwingungen auftreten.

Letztlich beruhen alle Berechnungsverfahren auf dem ‚Gleichgewichtsprinzip‘
oder dem ‚Energieprinzip‘, letzteres als ‚Prinzip der virtuellen Verrückung‘, als
‚Prinzip vomMinimum der Formänderungsarbeit‘ oder als ‚Prinzip vomMinimum
der potentielle Energie‘ bezeichnet, sie sind mathematisch dem Variationsprinzip
zuzuordnen.

Das Gleichgewichtprinzip bildet nach wie vor die wichtigste Basis aller stati-
schen Berechnungen.

Das einfachste Tragelement ist der Stab, der zentrisch durch eine Zug- oder
eine Druckkraft belastet wird. In Abb. 2.10 ist F die äußere Kraft. Um die Kraft
im Inneren des Stabes berechnen zu können, wird an beliebiger Stelle ein Schnitt
gelegt, nicht real sondern virtuell. An der Schnittstelle wird die innere Kraft an-
getragen, die es zu berechnen gilt. Das ist hier eine Zugkraft (allgemeiner: eine
Normalkraft weil sie normal (also senkrecht) zur Schnittebene liegt). Der Schnitt
wird zu einem Rundschnitt ergänzt. Innerhalb des so entstehenden geschlossenen
Gebietes werden die Gleichgewichtsgleichungen formuliert. Das ist in diesem Bei-
spiel trivial: Innerhalb des Rundschnittes muss die Summe aller Kräfte in Richtung
der Stabachse Null sein:

F �Z D 0 ! Z D F .Zugkraft D äußere Kraft/

Dieses Vorgehen führt auch bei Fachwerken zum Erfolg (sofern sie ‚statisch be-
stimmt‘ sind). In Abb. 2.11a sind einfache Systeme skizziert und benannt. Genau
betrachtet sind es Modelle, mit denen die reale Konstruktion angenähert wird.

Dieses Vorgehen ist typisch für jede Form von Systemanalyse, gleich welcher
Art das Problem ist. Im vorliegenden Falle wird angenommen, dass die Stäbe
in den Knoten in Form reibungsfreier Gelenke miteinander verbunden sind, wie
gesagt, als Modellannahme. Das Tragwerk liegt beidseitig auf einem festen oder
verschieblichen Lager auf. Im Falle des in Abb. 2.11b skizzierten Systems greift
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Abb. 2.11

im unteren Knoten die lotrechte Kraft F an. Die Auflagerkräfte links und rechts
betragen: F=2. Wird um das linke Auflager ein Rundschnitt gelegt und werden die
Stabkräfte Z und D angetragen, kann das Krafteck gezeichnet werden. Ist ˛ der
Winkel zwischen den Stäben, liefern die Gleichgewichtsgleichungen in vertikaler
und horizontaler Richtung:

D � sin˛ � F=2 D 0 ! D D F=2

sin˛

D � cos˛ �Z D 0 ! Z D D � cos˛ D F=2

sin˛
� cos˛ D F=2

tan˛

Hinweis
In Abschn. 2.1.7 wird ein weiter führendes Beispiel behandelt: 3. Beispiel.

Die Tragwirkung des Balkens lässt sich mit Hilfe des in Abb. 2.12 dargestellten
Modells erläutern. Es möge sich um einen Stahlträger handeln. Aus ihm wird ein
Abschnitt heraus geschnitten (wieder als gedankliches Modell). Die Teilabbildun-
gen a und b zeigen den Bereich mit den Benennungen im Querschnitt und in der
Ansicht. In den Teilabbildungen c und d wird die Modellierung noch weiter getrie-
ben: Die Gurte werden durch Federn ersetzt. Kommt es infolge der zwei gegen-
läufigen Schnittmomente M zu einer Verkrümmung des Stabelementes, wird die

Abb. 2.12
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untere Feder gedehnt, dabei wird hier eine Zugkraft geweckt, die obere Feder wird
gestaucht, es wird eine Druckkraft geweckt (Abb. 2.12c). Da keine weiteren Kräf-
te wirken, folgt aus der Gleichgewichtsbedingung in Längsrichtung Z � D D 0:
Z D D. Der Abstand der Federn sei h. Die Bedingung des Momentengleichge-
wichts am Element ergibt:

M �Z � h D 0 oder M �D � h D 0 ! Z D D D M

h

h bezeichnet man als ‚inneren Hebelarm‘.
Real ist der Träger monolithisch. Das vorstehendeModel erlaubt daher nur eine

angenäherte Berechnung der (inneren) Gurtkräfte Z und D. Zudem: Real erleidet
der Träger keinen Knick sondern eine Krümmung. Sie ist umso stärker, je höher
das Biegemoment M ist. Innerhalb des Querschnittes baut sich ein Biegezug- und
Biegedruckspannungszustand auf, wie in Abb. 2.12e eingezeichnet. An den Rän-
dern sind die Spannungen am höchsten, in der Mittellinie ist die Biegespannung
Null. – Es hat lange gedauert, bis der innere Beanspruchungszustand in einem Bal-
ken (Biegeträger) zutreffend erkannt und beschrieben werden konnte [4].

Abb. 2.13 zeigt in überzeichneter Form die sich beim Versagen eines Biegebal-
kens einstellenden Zustände, getrennt für einen Stahl-, Stahlbeton- und Holzbal-
ken:

� Teilabbildung a: Infolge übergroßer Zugspannungen im unteren Flansch dehnt
sich dieser, ggf. über alle Grenzen, er ‚fließt‘ aus. Der obere Flansch wird ge-
drückt, es besteht hier die Tendenz, dass der dünnwandige Flansch ‚beult‘.

� Teilabbildung b: Stahlbetonträger sind ‚bewehrt‘ (armiert) mit Längseisen in
der Zugzone (unten) und in der Druckzone (oben). Vor dem Versagen bilden
sich auf der Zugseite Risse. Im Versagensfall dehnen sich die Eisen in der
Zugzone übermäßig, es bilden sich übergroße Risse im Beton, ggf. reißt der

Abb. 2.13
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Querschnitt hier auf. Auf der Biegedruckseite (oben) platzt der Beton ab, es
wird ein Teil abgesprengt.

� Teilabbildung c: Beim Holzträger beginnen die Fasern an der Biegezugseite zu
reißen, i. Allg. dominiert ein Riss, der Querschnitt klafft auf. Auf der Biege-
druckseite knickt das Fasergerüst ein, es kommt zu Absplitterungen.

Im Zug der statischen Berechnung muss der Nachweis erbracht werden, dass ge-
genüber diesen Grenzzuständen eine ausreichende Sicherheitsmarge eingehalten
wird. Das setzt streng genommen voraus, dass das Tragwerk nicht elasto-statisch
sondern plasto-statisch (also nach der Plastizitätstheorie) berechnet wird. Hinzu
kommt, dass die dargestellten Bruchzustände in den meisten Fällen gar nicht er-
reicht werden, weil das Versagen der Konstruktion schon vorher durch Instabilitä-
ten eingetreten ist, meistens durch lokales Knicken, Kippen oder Beulen einzelner
Tragglieder. Die zugehörigen Nachweise werden nach den Methoden der Stabili-
tätstheorie geführt [5]. Schließlich kann Versagen durch Bruch von Verbindungs-
mitteln eintreten (Bruch von Nieten, Bolzen, Schrauben, Schweißnähten, Dübeln,
Leimfugen).

2.1.6 Materialfestigkeit – Materialzähigkeit

Vom Standpunkt der geschichtlichen Entwicklung her, werden folgende Mate-
rialien beim Bauen verwendet: Nadel- und Laubholz, Lehm, Mörtel und Zie-
gel, Glas, Beton (Stahlbeton, Spannbeton), Blei, Kupfer, Eisen, Stahl (Eisen-
Kohlenstoff-Legierungen, Chrom-Nickel-Legierungen), Aluminium-Legierungen
und weitere metallische Legierungen, Kunststoffe, Kohlenstoff- und Glasfaser-
Verbundwerkstoffe. Jedes Material ist eine Wissenschaft für sich. Die Grundlagen
der Werkstoffwissenschaften werden in der Festkörper-Physik und in der Chemie
erarbeitet.

Wichtige Festigkeits- und Zähigkeitseigenschaften werden im Zugversuch (bei
metallischen Werkstoffen und bei Holz) oder im Druckversuch (bei Beton und
Mauerwerk) gewonnen. Um zu vergleichbaren Ergebnissen zu kommen, ist ein
umfangreiches Normenwerk zu beachten. Abb. 2.14 steht stellvertretend für ge-
normte Prüfkörper für Zug- und Druckproben.

Ist F die Kraft und A0 die anfängliche Querschnittsfläche des Prüflings, ist

� D F

A0
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Abb. 2.14

die Spannung (Abschn. 1.8). Bei Steigerung der Prüfkraft wird die Zunahme der
anfänglichen Messlänge l0 gemessen.Dehnung ist die Längenzunahme�l gegen-
über der Anfangslänge:

" D �l

l0
I �l D l � l0

Das entsprechende gilt für Druckproben (auch für Schubproben, vgl. in dem Zu-
sammenhang Bd. I, Abschn. 2.9).

Abb. 2.15 zeigt typische �-"-Linien (Spannungs-Dehnungs-Linien). Bei me-
tallischen Werkstoffen ist das Spannungs-Dehnungs-Verhalten bei Druck- und
Zugbeanspruchung weitgehend gleich, nicht bei Holz und Beton. Beton kann
deutlich höheren Druck als Zug aufnehmen, bei Holz ist es eher umgekehrt. Ober-
halb einer gewissen Beanspruchung (Spannung) wird das Verhalten nicht-linear

Abb. 2.15
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Abb. 2.16

Abb. 2.17

und geht in ein plastisches über. Solange die Abhängigkeit linear ist, spricht man
von elastischem Verhalten: Die Dehnung berechnet sich zu:

" D �=E D F=E A:

Die �-"-Linie ist eine Gerade. Das ist bei Stahl bis zu hohen Spannungsniveaus
der Fall, wie in Abb. 2.16 für einen niedrig-legierten Stahl dargestellt.

Das Verhältnis �=" im elastischen Bereich, also die Steigung der �-"-Linie,
bezeichnet man als Elastizitätsmodul (E-Modul). Der Elastizitätsmodul kenn-
zeichnet die Steifigkeit des Materials. Die Tabelle in Abb. 2.17 enthält hierzu
Angaben. DieWerte gelten für metallischeWerkstoffe weitgehend exakt, für nicht-
metallische handelt es sich eher um Anhaltswerte bei niederer Beanspruchung.
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Abb. 2.18

Der E-Modul dient im Rahmen der Tragwerksstatik dazu, die Stabilitätsnach-
weise zu führen und die Formänderungen (Verformungen) des Tragwerkes und
seiner Glieder zu berechnen, es sind dieses: Verschiebungen, Durchbiegungen,
Verdrillungen.

Für Sicherheitsbetrachtungen ist neben der Festigkeit die Zähigkeit von
vergleichbar großer Bedeutung. Werkstoffe mit sprödem Verhalten sind als Kon-
struktionswerkstoff nicht geeignet, bei Druck wohl, wie bei unbewehrtem Beton
und Mauerwerk. Dass Stahl ein so guter Werkstoff ist, beruht auf seiner hohen
plastischen Dehnfähigkeit (Zähigkeit, Duktilität): Hohe Spannungsspitzen, die
an Ecken, Löchern, Schweißnähten, auftreten, ‚fließen‘ plastisch aus und führen
nicht zum lokalen Riss und Bruch. Auch Eigenspannungen aus dem Fertigungs-
prozess (Walzen, Brennschneiden, Schweißen) bleiben ohne Einfluss. Indessen:
Bei tieferen Temperaturen sinkt auch bei Stahl die Zähigkeit, die Stähle werden
kerbempfindlich und sind dann sprödbruchgefährdet. In der Tieftemperaturtechnik
werden daher ‚kaltzähe‘ Stähle eingesetzt, im Grenzfall spezielle Nickellegierun-
gen. Bei hohen Betriebstemperaturen kommen ‚warmfeste‘ Stähle zum Einsatz.
Durch Legieren und Vergüten (Wärmebehandlung) lassen sich bei Stählen die
unterschiedlichsten Werkstoffeigenschaften einstellen.

Der Kerbschlagversuch dient dazu, die Zähigkeit einer Stahllegierung bei
tieferen Temperaturen zu prüfen. Abb. 2.18a zeigt das genormte Pendelschlag-
werk. Beim Versuch durchschlägt der Hammer mit dem Gewicht G die Probe aus
der Hochlage heraus. Hierbei wird an der Probe Brucharbeit geleistet. Nach dem
Durchschlag erreicht der Hammer eine verringerte Höhe. G � h ist der Verlust an
potentieller Energie, der als Formänderungsarbeit in der Probe aufgezehrt wurde. h
ist die Höhendifferenz, vgl. Abb. 2.18. Teilabbildung b zeigt zwei ISO-Kerbproben
(ISO D International Standard Organisation). In Teilabbildung c ist angedeutet,
an welchen Stellen eines geschweißten Querschnitts mit X-Stumpfnaht die Proben
herausgearbeitet werden.
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Abb. 2.19

Die WEZ (Wärmeeinflusszone) einer Schweißnaht umfasst den Übergang vom
Schweißgut auf das Grundmaterial. Diese Zone wird beim Schweißen aufge-
schmolzen bzw. hoch erhitzt. Hier stellen sich Änderungen der metallurgischen
Eigenschaften und fallweise hohe Eigenspannungen ein, die sich als Zähig-
keitsverlust auswirken. – Die Versuche werden an Proben mit unterschiedlicher
Temperatur durchgeführt. Bei tiefer Temperatur wird eine geringere Kerbschlag-
arbeit Av in J (Joule) gemessen (Tieflage) als bei normaler und hoher Temperatur
(Hochlage). Das Ergebnis mehrerer Versuche liefert die gesuchte Abhängigkeit
zwischen Av und der Temperatur, wie in Teilabbildung d dargestellt. – Eine
Versprödung kann sich auch bei starker Neutronenbelastung in kerntechnischen
Anlagen einstellen, was für die Sicherheitsbeurteilung in solchen Fällen von zen-
traler Bedeutung ist.

Eine weitere wichtige Festigkeitsgröße ist die Härte. Sie wird ebenfalls nach
ISO-Normen ermittelt, indem in die Oberfläche des Materials eine gehärtete Kugel
oder eine diamantene Spitze innerhalb einer definierten Zeitspanne eingedrückt
wird (Abb. 2.19). Aus den Abmessungen des bleibenden (plastischen) Eindrucks
in die Oberfläche des Materials wird auf die Härte geschlossen und die Härteziffer
bestimmt (z. B. Brinell-Härte).

Bei Elastomeren (Gummi-Materialien) wird die Härte in Shore gemessen bzw.
angegeben.

Von der ‚statischen‘ ist die ‚dynamische‘ (zyklische) Festigkeit zu unterschei-
den. Man spricht von Dauer-, Betriebs- oder Ermüdungsfestigkeit. Ehemals wurde
dieser Festigkeitskomplex allein phänomenologisch geklärt, heute wird die Bruch-
mechanik als eigenständige Disziplin der Materialkunde hinzu gezogen. Die Ursa-
chen für die Materialermüdung (Zerrüttung) bei lang andauernder wechselnder
oder schwellender Beanspruchung werden inzwischen gut verstanden.

Das Ermüdungsversagen eines Bauteiles geht immer von einem lokalen Versa-
gen aus: Wo eine innere oder äußere Kerbe liegt, was an dieser Stelle mit einer
hohen Spannungsspitze einher geht, kann sich bei zyklischer (wiederholter) Last-
folge infolge Überbeanspruchung ein Mikroriss bilden, der sich im Laufe der Zeit
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Abb. 2.20

zu einem Makroriss vergrößert, gegen Ende progressiv fortschreitend. Der noch
verbleibende Restquerschnitt versagt schließlich als Gewaltbruch. Die Ermüdungs-
bruchfläche ist glatt, feinkristallin, die Gewaltbruchfläche grob, zerklüftet.

Um das Problem zu lösen, wird der sogen. Wöhler-Versuche durchgeführt, be-
nannt nach A. WÖHLER (1819–1914). Anlass für die damaligen Versuche waren
Brüche an Eisenbahn-Wagonachsen. In der Zeit von 1858 bis 1870 führte WÖH-
LER mit der von ihm konzipierten Prüfmaschine Reihenversuche durch. Dabei
gelang es ihm, eine Gesetzmäßigkeit zwischen der in der Prüfmaschine eingestell-
ten Spannungspanne und der Bruchlastwechselzahl quantitativ aufzudecken.

Anhand Abb. 2.20 sei das Vorgehen erläutert: Es wird zunächst eine größere
Zahl gleicher Prüfkörper mit einer definierten ‚Kerbe‘ gefertigt, z. B. mit einem
Loch oder einer Schweißnaht (Teilabbildung a). Die Prüfkörper werden der Reihe
nach in der Dauerprüfmaschine pulsiert. Vorher werden vor jedem Versuch in der
Prüfmaschine eine Ober- und eine Unterkraft eingestellt, zwischen denen die Prüf-
kraft wechselt. Hierzu gehören im Prüfkörper eine Oberspannung (�o) und eine
Unterspannung (�u) und damit eine bestimmte Spannungsspanne �� . Zwischen
diesen Marken wechselt die Spannung während des Dauerversuchs mit vielen
Lastwechseln. In Abb. 2.20b handelt es sich um eine reine Wechselbeanspruchung.

Wird eine hohe Spannungsspanne eingestellt, wird der Dauerbruch frühzeitig,
also bei einer geringen Lastspielzahl, eintreten, liegt die Spannungsspanne niedrig,
wird eine hohe Bruchlastspielzahl erreicht. Das ist plausibel.

In Teilabbildung c ist ein typisches Versuchsergebnis auf fünf Prüfhorizonten
mit je drei Prüfkörpern beispielhaft aufgetragen. Wo die gemittelte Kurve durch die
Versuchswerte auf die Lastwechselzahl ND trifft, wird die zugehörige Spannung
als ‚Dauerfestigkeit‘ (��D) definiert. ND ist die von der zu erwartenden Dauer-
beanspruchung der Konstruktion (z. B. Brücke) vereinbarte Grenzlastwechselzahl,
sie liegt in der Größenordnung 2�106 bis 10�106 Lastwechsel. Wird die Spannungs-
spanne (��) und die Lastspielzahl (N ) jeweils in logarithmischer Skalierung auf-
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getragen, ergibt sich die ‚Wöhlerlinie‘, auch Lebensdauerlinie genannt, als Gerade.
Real weist sie zwei Krümmungswechsel auf, vom Bereich der Kurzeitfestigkeit
zur Zeitfestigkeit und von dieser zur Dauerfestigkeit übergehend. Die Streuung
der Versuchswerte ist i. Allg. beträchtlich. Deshalb dient meist eine untere Fraktile
durch die Versuchswerte dazu, die ertragbare Dauerfestigkeit festzulegen. Die-
ser Wert gilt dann für ein bestimmtes Material, ein bestimmtes Verhältnis von
Unter- zu Oberspannung und einen bestimmten Kerbfall. Der Versuchsaufwand
ist erheblich. Wegen der Übertragung des an Kleinproben gewonnenen Versuchs-
ergebnisses auf Großbauteile bedarf es ergänzender Sicherheitsüberlegungen. –
Abb. 2.20d zeigt den typischen Verlauf einer Kerbspannung im Verhältnis zur
Nennspannung im Bereich einer Probe mit einem mittigen Schraubenloch.

2.1.7 Beispiele

1. Beispiel
Ein Zugstab werde durch eine Kraft F belastet. Die Kraft löst im Zugstab die Spannung

� D F

A

aus. A ist die Querschnittsfläche. Die Beanspruchung liege im elastische Bereich: Die Span-
nung � wächst linear mit der Dehnung " (Abb. 2.21):

� D E � " ! E D �="

E ist der Elastizitätsmodul. E kennzeichnet die Steigung der � -"-Geraden. Die Auflösung
der Gleichung nach " ergibt:

" D �

E
D F

E A

Abb. 2.21
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Abb. 2.22

Den Term E A bezeichnet man als Dehnsteifigkeit. – Hat der Stab die Länge l , verlängert er
sich unter der Zugkraft F um:

�l D " � l D F

E � A � l

Zahlenbeispiel
Zugstange aus Stahl: E D 21:000 kN=cm2, F D 32 kN, A D 2;0 cm2, l D 300 cm:

� D F

A
D 32 kN

2;0 cm2
D 16;0

kN

cm2
I " D �

E
D 16;0 kN=cm2

21:000 kN=cm2
D 0;000762I

�l D " � l D 0;000762 � 300 D 0;229 cm D 2;29mm

Die Fließspannung des Stabmaterials (�F ) betrage 24;0 kN=cm2 (vgl. mit Abb. 2.16). Die
Sicherheit gegen diese ‚Fließgrenze‘ beträgt damit: 24;0=16;0 D 1;5.

Anstelle massiver Stäbe werden vielfach Seile als Zugglieder eingesetzt. Abb. 2.22 zeigt
drei Spiralseilarten für ‚stehende Seile‘. ‚Laufende Seile‘ für Krane und andere Zwecke ha-
ben einen anderen Aufbau; sie sind biegeweicher. Die Einsatzbereiche für die Tragseile sind
in der Abbildung notiert. Die Einzeldrähte sind rund oder haben eine Z-Form. Die letztge-
nannten Formdrähte schmiegen sich dicht an dicht aneinander und ‚verschließen‘ das Seil
gegen Feuchtigkeit. Für den Seewasserbau kommen Seile mit bis 30 cm Durchmesser zum
Einsatz!

Die Summe der Einzeldrahtquerschnitte liegt um den Faktor f niedriger als bei einem
Vollquerschnitt gleichen Durchmessers. Bedingt durch die spiralige Verseilung liegt auch
der E-Modul. niedriger als bei einem massiven Vollstab:

Offene Spiralseile: f � 0;75; E D 150:000N=mm2;

Voll verschlossene Seile: f � 0;83; E D 190:000N=mm2:

2. Beispiel
Eine hängende Stange mit durchgehend konstantem Querschnitt werde nur durch ihr Ei-
gengewicht beansprucht (Abb. 2.23). Im Verankerungspunkt tritt die höchste Spannung auf.
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Abb. 2.23

Die Dichte des Materials sei �. Die Bruchspannung sei �B . Gesucht ist die maximal mögli-
che Länge (Grenzlänge), bis zu welcher die Stange nicht reißt: Hat die Stange die Länge l ,
beträgt ihre Gewichtskraft:

Fg D g � .� � A � l/ D maxZ

A � l ist das Volumen, � �A � l die Masse und g die Erdbeschleunigung.
Wird die max. Zugspannung

max � D maxZ

A
D g � .� � A � l/

A
D g � � � l

mit der Bruchspannung �B gleich gesetzt, findet man die gesuchte Länge zu:

max �
:D �B ! g � � � lGrenze :D �B ! lGrenze D �B

g � �

Zahlenbeispiel
Stahl: �B D 37;0 kN=cm2 D 37:000N=mm2 D 3;7 � 108 N=m2, � D 7850 kg=m3:

lGrenze D 3;7 � 108 N=m2

9;81m=s2 � 7850 kg=m3
D 4805m

Der Verlauf der Zugkraft in der Stange ändert sich linear von Null bis zum Größtwert
(Abb. 2.23). Würde sich das Material bis zum Bruch linear-elastisch verhalten, berechnet
sich die Längenänderung nach der Formel (ohne Nachweis):

�l D 1

2

g � �
E
� l2

Grenze D
1

2
� 9;81m=s2 � 7850 kg=m3

2;1 � 1011 N=m2
� 48052 m2 D 4;23m

Real wird sich eine wesentlich größere Längenänderung einstellen, weil jene Stangenberei-
che im oberen Bereich, in denen die Fließgrenze überschritten wird, sich plastisch verformen
bzw. verlängern, insofern hat das Beispiel keine reale praktische Bedeutung.
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Abb. 2.24

3. Beispiel
Für das in Abb. 2.24 dargestellte Fachwerk seien die Stabkräfte auf zeichnerischem Wege
gesucht. Das System werde durch drei lotrechte Kräfte (F / in den unteren Knoten belastet:
Die Auflagerkräfte links und rechts betragen: .3 �F /=2. Die Auflagerkraft links im Knoten 0
wird in die Richtungen 01 und 02 zerlegt. Aus dem zugehörigen Krafteck 0 werden S01 und
S02 abgegriffen. An den gegenüber liegenden Stabenden haben die Kräfte die entgegenge-
setzte Richtung. Das erlaubt die Zerlegung von S10 und F in die Richtungen 13 und 12.
Das liefert die Stabkräfte S13 und S12 aus dem Krafteck 1. Auf diese Weise kann das Fach-
werk, von Knoten zu Knoten fortschreitend, ‚abgebrochen‘ werden, sofern jeweils nur zwei
neue Stäbe bzw. Stabkräfte anstehen. Dann ist das Fachwerk (innerlich) statisch bestimmt:
Alle Stabkräfte lassen sich allein mit Hilfe der Gleichgewichtgleichungen bestimmen, nicht
anderes bedeuten die Kraftecke. Fasst man die Kraftecke in einer Gesamtfigur zusammen,
erhält man den sogen. Cremona-Plan, nach L. CREMONA (1830–1903) benannt, der diese
Berechnungsform ‚erfunden‘ hat.

Die Grafische Statik wurde im Wesentlichen von K. CULMANN (1821–1881) be-
gründet, das Schnittverfahren für statisch bestimmte Fachwerke, wie sie in der Frühzeit
des Eisenbaues dominierten, von A. RITTER (1826–1908). Auch wenn in heutiger Zeit
nahezu alle Tragwerke computergestützt berechnet werden, empfehlen sich Gleichge-
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wichtskontrollen an herausgeschnittenen Bereichen zwecks Überprüfung der ‚Black-Box-
Berechnungen‘.

4. Beispiel
Gesucht seien die Schnittgrößen für einen Balken (Träger), der durch eine mittige Kraft
(F ) beansprucht wird (Abb. 2.25): Unter Schnittgrößen versteht man jene Resultierenden,
die in einem fiktiven Schnitt senkrecht zur Balkenachse die hier auftretenden Spannungen
repräsentieren, es sind dieses:

� Normalkraft (N ): Resultierende der Längsspannungen (Normalspannungen),
� Querkraft (Q): Resultierende der Schubspannungen,
� Biegemoment (M ): Resultierende der Biegespannungen.

In Abb. 2.26 ist ihre Positivdefinition für das linke und rechte Schnittufer erklärt.
In Abb. 2.25 ist die Vorgehensweise der statischen Berechnung erläutert: An beliebiger

Stelle wird ein Schnitt im Abstand x vom linken Auflager gelegt und die Schnittgrößen N ,

Abb. 2.25



94 2 Mechanik II: Anwendungen

Abb. 2.26

Q und M angetragen. Dann werden die drei Gleichgewichtsgleichungen für den durch einen
Rundschnitt herausgelösten Bereich formuliert (Teilabbildung b):

Summe aller Längskräfte D Null: Ergebnis: N D 0

Summe aller Querkräfte D Null: Ergebnis: Q D F=2

Summe aller Momente D Null: Ergebnis: .F=2/ � x �M D 0

! M DM.x/ D .F=2/ � x

Während die Querkraft für jeden Wert von x; von x D 0 bis x D l=2, konstant ist, steigt
das Biegemoment linear mit x an. Unter der mittigen Einzellast stellt sich das höchste Bie-
gemoment ein:

x D l

2
W maxM DM

�
l

2

�
D F

2
� l

2
D F � l

4

In den Teilabbildungen c und d sind die Verläufe von Q und M dargestellt. Man spricht von
der Querkraft- bzw. Momentenfläche.

Unter Verweis auf Abb. 2.12e und 2.27 sei noch geklärt, welche Spannungen infolge
eines Biegemomentes M innerhalb eines Balkenquerschnittes geweckt werden: Die Krüm-
mung des Balkens hat zur Folge, dass die Fasern im Inneren des Querschnitts auf der Zugsei-
te (hier unterhalb der Trägerachse) gedehnt und auf der Druckseite (hier oberhalb der Trä-
gerachse) gestaucht werden. In der Mittelfaser (eines doppeltsymmetrischen Querschnitts,
wie in Abb. 2.27) treten keine Verzerrungen auf. Unterstellt man, dass die Querschnitt-
sebenen bei der Biegekrümmung eben bleiben und sich die Spannungen linear mit der
Dehnung/Stauchung ändern (elastisches Verhalten), sind die Dehnungen und Spannungen
verschränkt linear über den Querschnitt verteilt. Im Falle eines Rechteckquerschnittes der
Breite b baut sich über der Zug- und Druckzone jeweils ein dreieckförmiger Spannungs-
körper der Breite b auf. Ist a die Höhe des Querschnitts, ergibt sich das Volumen der
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Abb. 2.27

Spannungskörper auf der Zug- und Druckseite zu:

1

2
� �R � a

2
� b D �R � a

4
� b D �R � a � b

4

�R ist die Randspannung. Die Resultierenden der Biegespannungen auf der Zug- bzw.
Druckseite sind gleich den Spannungsvolumina:

Z D D D �R � a � b
4

Ihr gegenseitiger Abstand (ihr innerer Hebelarm) ist h D .2=3/ � a. Das von Z und D

aufgebaute Biegemoment ist demgemäß:

M D Z � h D D � h D �R � a � b
4
� 2

3
a D �R � a

2 � b
6
D �R �W

W bezeichnet man als Widerstandsmoment. Ist M bekannt, kann die Randspannung zu

�R DM=W

berechnet werden. Für den Rechteckquerschnitt gilt:

W D a2 � b
6

Der nächste Schritt wäre die Berechnung der Trägerdurchbiegung über die Krümmung der
Stabachse. – Im Schrifttum zur Statik sind die Verfahren für die Berechnung der verschiede-
nen Systeme des Hoch- und Brückenbaues ausgearbeitet. Hier findet man auch umfangreich
ausgearbeitete Formelsammlungen und Tabellen für die verschiedenen Aufgabenstellungen
der Praxis.

Auf R. HOOKE (1635–1703) geht das Proportionalitätsgesetz � D E � " zurück. – Wie
schon angedeutet hat es lange gedauert, bis die Verteilung der Biegespannungen in einem
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Abb. 2.28

Balken von J. (Jakob) BERNOULLI (1654–1705) zutreffend erkannt werden konnte. Die
diesbezüglichen Ansätze von G. GALILEI (1564–1642), E. MARIOTTE (1620-184) und
G.W. LEIBNIZ (1646–1716) waren noch irrig gewesen. C.A. de COULOMB (1736–1806)
gab letztlich die richtige Lösung an (s. o.).

Als Begründer der Tragwerksstatik im modernen Sinne gilt C.H. NAVIER (1785–1836).
Ihm folgten später viele weitere, auch bei der Entwicklung der Theorie der Platten- und Scha-
lentragwerke. – L. EULER (1707–1783) bestimmte erstmals die Knickkraft des Druckstabes
und steht damit am Anfang der inzwischen weit ausgebauten Stabilitätstheorie und Theorie
II. Ordnung. Auf die ausführlichen Darstellungen zur Geschichte der Baustatik in [3] und
[6] wird verwiesen. Es ist ein weites Feld der Ingenieurwissenschaften. Das Schrifttum zur
Baustatik ist umfangreich, das Gebiet gehört zur Technischen Mechanik [7].

Die Abb. 2.28 und 2.29 mögen zum Abschluss beispielhaft verdeutlichen, wie sich die
Tragstrukturen aus einfachen Grundsystemen zu großem Formenreichtum entwickeln lassen.

Abb. 2.29
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2.2 Bewegung entlang einer Geraden- und einer
Kreisbahn – Rotation

2.2.1 Bewegung entlang einer geraden Bahn

Entlang eines geraden Weges fällt die Richtung der Wegordinate s D s.t/, der
Geschwindigkeit v D v.t/ und der Beschleunigung a D a.t/ mit der Richtung
der Geraden zusammen (Abb. 2.30). s, v und a sind Funktionen der Zeit t . Zur
Definition dieser drei kinematischen Größen und zu ihrer Verknüpfung wird auf
die Abschnitte 1.1–1.4 verwiesen. Richtiger wäre es an dieser Stelle, die Größen
als Vektoren Es, Ev und Ea zu kennzeichnen. Bei einer Bewegung auf einer geraden
Strecke ist das entbehrlich, bei einer Bewegung auf einer gekrümmten Bahn, wie
im übernächsten Abschnitt, ist eine vektorielle Beschreibung zweckmäßig und ei-
gentlich zwingend.

Benötigt ein Körper (gleich welcher Art, z. B. ein Fahrzeug) für das Durchfah-
ren der geraden Wegstrecke der Länge l die Zeitdauer t , beträgt seine mittlere
(durchschnittliche) Geschwindigkeit:

Nv D l

t
; Œv� D Œl�

Œt �
D m

s
D m � s�1

Ist Nv gegeben, wird für eine Strecke der Länge l die Zeitdauer t D l= Nv benötigt.

1. Beispiel
EinMarathonläufer benötige für die Bewältigung der Marathonstrecke l D 42;195 km eine
Dauer von t D 2:36:5 Stunden. Wie hoch ist seine mittlere Laufgeschwindigkeit? Aus der
Streckenlänge in m und der Zeitdauer in s wird die mittlere Geschwindigkeit berechnet (zur
Umrechnung in km=h siehe Abschn. 1.3):

l D 42:195m; t D 2 � 60 � 60C 36 � 60C 5 D 7200C 2160C 5 D 9365 sW
Nv D 42:195

9265
D 4;51m=s D 16;22 km=h

2. Beispiel
Ein Verkehrsflugzeug fliege in 10.000 m Höhe mit 0,85Mach, also mit 85% der Schallge-
schwindigkeit. Letztere beträgt in dieser Höhe ca. 300m=s. Die mittlere Fluggeschwindig-

Abb. 2.30
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Abb. 2.31

keit ist demnach:

Nv D 0;85 � 300 D 255m=s D 918 km=h:

Für eine Strecke von 8000 km dauert der Flug: t D 8000=918 D 8;71 Stunden. Da die Flug-
geschwindigkeit in der Start- und Ladephase niedriger liegt, wird real eine längere Flugzeit
benötigt. Sie ist zudem stark von den Windverhältnissen abhängig.

3. Beispiel
Wird die Bahn der Erde um die Sonne als Kreis angenähert und als Gerade abgewickelt
(Abb. 2.31), berechnet sich die Erdbahnlänge zu:

lErdbahn D 2� � RErdbahn

Der Erdbahnradius beträgt:

RErdbahn D 1;49 � 108 km:

Ein vollständiger Umlauf dauert ein Jahr D 365;2425 Tage à 24 h à 60min à 60 s:

tErdbahn D 365;2425 � .24 � 60 � 60/ D 3;1557 � 107 s:

Somit beträgt die mittlere Bahngeschwindigkeit der Erde (real ist die Bahn eine Ellipse):

NvErdbahn D lErdbahn

tErdbahn
D 2� � 1;49 � 1011 m

3;1557 � 107 s
D 29 667m=s D 29;667 km=s D 106:800 km=h

Die Tabelle in Abb. 2.32 enthält für eine Reihe von Bewegungsvorgängen deren
Geschwindigkeiten. Sie gelten im Falle der eingetragenen Maximal- und Rekord-
werte für die zugehörige Länge.

Bei allen übrigenWerten handelt es sich umMittelwerte, sie beziehen sich letzt-
lich auch auf eine kürzere oder längere Wegstrecke.
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Abb. 2.32

4. Beispiel
Die Bewegung eines Fahrzeugs auf einer geraden Strecke beginnt am Anfang mit einer
starken Beschleunigung, man denke an städtische Bahnen, wie S- und U-Bahnen. Die Be-
schleunigung wird anschließend vom Fahrer linear zurück genommen. Am Ende dieser
Phase (Zeitpunkt T ) erreicht die Geschwindigkeit den Wert vT , vgl. Abb. 2.33. Wie man
sich überzeugt, genügt die Geschwindigkeit während dieser linear abnehmenden Beschleu-
nigungsphase der Funktion:

v D v.t/ D vT

�
2 � t

T

�
� t

T

Abb. 2.33
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Abb. 2.34

Für t D 0 ist v D 0 und für t D T ist v D vT . Das Fahrzeug fährt ab jetzt mit konstan-
ter Geschwindigkeit weiter. v D vT D konst: Die Beschleunigung a D a.t/ folgt durch
Differentiation von v nach t und die Wegordinate s D s.t/ durch Integration von v über t :

s D s.t/ D vT

�
1 � 1

3

t

T

�
� t

T
� t

a D a.t/ D 2
vT

T

�
1 � t

T

�

Zu Beginn der Bewegung gilt:

t D 0W s0 D 0I v0 D 0I a0 D 2
vT

T

und am Ende:

t D T W sT D 2

3
vT � T I vT D vT I aT D 0

In Abb. 2.34 ist ein Zahlenbeispiel mit drei Teilstrecken wiedergegeben. Deren Fahrdauer
sei jeweils gleichlang und betrage 600 s D 10min. Während der ersten Teilstrecke wird das
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Fahrzeug anfangs mit 0,08333 m=s2 beschleunigt. Nach T D 600 s beträgt die Geschwin-
digkeit vT D 25;0m=s und sind sT D 10:000m durchfahren. Wird die Fahrt im zweiten
Abschnitt mit 25;0m=s fortgesetzt, sind am Ende dieser Teilstrecke:

25;0 � 600 D 15:000m

durchfahren. Die dritte Teilstrecke folgt entsprechend. Am Ende der drei Teilstrecken sind
insgesamt 35:000m D 35 km zurückgelegt. Die mittlere Geschwindigkeit ergibt sich zu:

Nv D 35:000m

1800 s
D 19;44m=s

5. Beispiel
Ein Fahrzeug werde mit konstanter Verzögerung (D negative Beschleunigung) abgebremst:
Der Fahrzeugtyp bestimmt die Art der Bremsung (Schienenfahrzeug, Radfahrzeug). – Im
Falle eines PKW bestimmt die Reibung zwischen den bremsenden Rädern und der Fahrbahn
die maximal mögliche Bremskraft. Beim Gleiten auf nasser/vereister Fahrbahn wird nur ein
geringer Reibwiderstand aktiviert. Das Fahrzeug ist dann nur noch bedingt oder überhaupt
nicht mehr lenkbar, weil auch der seitliche Führungswiderstand an den Rädern wegfällt (Ab-
schn. 1.13.2 und 1.13.3). – Bei kontrollierter Rollreibung (ABS, ausreichende Profiltiefe der
Reifen vorausgesetzt) wird eine hohe Rollreibung erreicht, sie ist abhängig vom aktiven
Schlupf.

Die vom Fahrzeug ausgehende Trägheitskraft ist gemäß dem d’Alembert’schen Prinzip
(Abschn. 1.5) entgegen der positiv definierten Wegordinate anzusetzen (Abb. 2.35):

Fm D m � a D Q

g
� a; g D 9;81m=s2

Q ist das Gewicht des Fahrzeugs (in N). – Es wird unterstellt, dass sich alle Räder in gleicher
Weise an der Bremsung beteiligen. Die gesamte aktivierte Reibungskraft beträgt dann:

FR D 
R �Q .
R ist hier als konstant angesetzt/

Abb. 2.35
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Die Gleichgewichtsgleichung liefert (Abb. 2.35b):

Fm C FR D 0 ! Q

g
� aC 
R �Q D 0 ! a D a0 D �g � 
R

Ab Bremsbeginn wird die Zeit gezählt (t D 0). Die Anfangsbedingungen der Bremsbewe-
gung aus der Anfangsgeschwindigkeit v0 heraus lauten:

t D 0W s D 0; v D v0; a D a0:

Geschwindigkeit v D v.t/ und Wegordinate s D s.t/ folgen mittels Integration:

v D
Z

a dt D a0 �
Z

dt D a0 � t C C1

Aus der Anfangsbedingung für v (t D 0: v D v0) folgt: C1 D v0. Somit gilt: v D v0Ca0 � t .

s D
Z

v dt D
Z

.v0 C a0 � t / dt D v0 � t C a0 � t
2

2
C C2

Die Anfangsbedingung für s führt auf: C2 D 0. Somit gilt: s D v0 � t C a0
t2

2
.

Am Ende der Bremsstrecke ist die Geschwindigkeit gleich Null. Aus dieser Bedingung
ergibt sich die Bremszeit tB zu:

0 D v0 C a0 � tB ! tB D �v0

a0

D v0

g � 
R

Für die Bremslänge ergibt sich:

sB D v0 � tB C a0

t2
B

2
! sB D v0 � v0

g � 
R

� g � 
R

2

�
v0

g � 
R

�2

! sB D 1

2
� v2

0

g � 
R

Bei geneigter Straße sind in der Gleichgewichtsgleichung die Abtriebskraft und die vermin-
derte Reibungskraft einzubeziehen.

Zahlenbeispiel
v0 D 27;8m=s (100 km=h), 
R D 0;5: a0 D �0;5 � 9;81 � �5m=s2. – Die zahlenmä-
ßige Auswertung der Formeln ergibt: tB D 5;67 s, sB D 78;8m (vgl. auch 3. Beispiel in
Abschn. 1.13.3).

Für a0 gelten folgende Anhalte für Bremsverzögerungen in m=s2: Asphaltfahrbahn: ca.
�8 (trocken), �6 (nass); Betonfahrbahn: �5; sandige Fahrbahn: �4; schneebedeckte Fahr-
bahn �1 bis �2; fest vereiste Fahrbahn und Aquaplaning 0 bis �1.

Die reale Bremszeit dauert länger, weil die Reaktionszeit des Fahrers und die Zeit bis
zur vollen Entfaltung der Bremswirkung zur physikalischen Bremszeit hinzu tritt. Setzt man
hierfür (auf der sicheren Seite liegend) eine Sekunde an, ist im obigen Beispiel der Rechen-
wert für den Bremsweg um die Länge 1;0 � 27;8 D 27;8m zu vergrößern, das ergibt ca.
100m!
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Abb. 2.36

2.2.2 Bahnbeschreibung

Unterschieden werden: Geführte und freie Bewegung.
Die Bewegung eines Eisenbahnzuges auf einem Gleis ist das typische Beispiel

einer geführten Bewegung (Zwangsbewegung). Weitere Beispiele sind: Wagen
einer Achterbahn, Gondel einer Seilbahn, Greifer eines Industrieroboters. Auch
die Fahrt eines Straßenfahrzeuges ist eine geführte Bewegung. Hier ist es die Rei-
bung zwischen Radreifen oder Raupenkette und der Fahrbahn, die die Führung
übernimmt.

Freie Bewegungen sind solche in Kraftfeldern, wie in gravitativen oder elektri-
schen Feldern. Typische Beispiele sind Geschosse, Satelliten, Planeten und andere
kosmische Objekte. Flugzeuge mit Leitwerk oder Raketen mit Steuerdüsen sind
eher den geführten Bewegungen zuzurechnen.

Um die Bewegung eines (punktförmigen) Körpers der Masse m zu beschreiben,
bedarf es eines Koordinatensystems. Bei einer Bewegung in einer Ebene kann z. B.
ein rechtwinkliges Koordinatensystem x; y gewählt werden, wie in Abb. 2.36a
für einen Flug von München nach Hamburg angedeutet; in dem Beispiel ist die
Kugeloberfläche Deutschlands als Ebene angenähert. Es kann sich auch um eine
vertikale Ebene handeln, wie z. B. bei einer Bergbahn; in Teilabbildung b besteht
sie aus drei Geradebahnen (wenn man vom Kabeldurchhang absieht). – Teilab-
bildung c zeigt eine krummlinige Bahn. – In allen Fällen kann die momentane
Bewegung des Körpers auf seiner Bahn durch die (Weg-) Ordinaten x D x.t/ und
y D y.t/ als Funktion der Zeit t beschrieben werden oder polar durch den Radi-
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usstrahl r D r.t/ und den Winkel ' D '.t/. Offensichtlich sind die Ordinaten der
beiden Koordinatensysteme durch die Beziehungen

r.t/ D
p

x2.t/C y2.t/ und tan '.t/ D y.t/=x.t/

! '.t/ D arctan y.t/=x.t/

miteinander verknüpft, vgl. Teilabbildung c.
Bei einer Bewegung auf einer Kreisbahn ist es günstig, die Bewegung vom

Kreismittelpunkt M und bei einer Bewegung auf einer Ellipsenbahn von einem
der beiden Brennpunkte F aus zu beschreiben (letzteres, wie bei Planeten- und
Kometenbahnen von jenem Brennpunkt aus, in welchem das Zentralgestirn, die
Sonne, liegt, vgl. Abschn. 2.8.5). Die Teilabbildungen d und e mögen das Gesagte
verdeutlichen.

Die Beschreibung einer allgemeinen (krummlinigen) Bewegung eines punktför-
migen Körpers der Masse m setzt eine vektorielle Behandlung voraus. Darauf wird
hier zunächst verzichtet. Die Fachbücher zur Mechanik geben Auskunft. Es zeigt
sich, dass bei einer krummlinigen Bewegung zwei Beschleunigungskomponenten
auftreten, eine tangentiale in Richtung der Bahn und eine normale (normal D
senkrecht) zur Bahn:

at D dv

dt
D d 2s

dt2
I an D v2

�

Hierin ist � der Radius des lokalen Krümmungskreises an die Bahn. an bewirkt
die Bahnführung in Richtung auf den momentanen Krümmungsmittelpunkt. Im
allgemeinen Fall sind alle Bewegungsgrößen, der Weg s, die Geschwindigkeit v

und die Beschleunigungskomponenten an und at sowie der Krümmungsradius �

der Bahnkurve Funktionen der Zeit t .

2.2.3 Bewegung entlang einer Kreisbahn

Die kreisförmige Bewegung ist ein Sonderfall der krummlinigen. Der Krüm-
mungsradius ist konstant, er werde mit r abgekürzt, wie in Abb. 2.37 einschließlich
der Bahnordinate s D s.t/ und der Bahngeschwindigkeit v D v.t/ skizziert.

Abb. 2.38 zeigt die Bewegung der Punktmasse m auf einer Kreisbahn beim
Fortschreiten um denWeg ds innerhalb des Zeitintervalls dt . Die Geschwindigkeit
ändert sich dabei um dv, vektoriell in der Richtung auf denMittelpunkt des Kreises
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Abb. 2.37

Abb. 2.38

zu. Der Richtungspfeil erfährt eine Drehung. Die Geschwindigkeitsänderung dv

in der Zeiteinheit ist die Beschleunigung in Richtung auf den Mittelpunkt. Die
Ähnlichkeit der schraffierten Dreiecke in Abb. 2.38 erlaubt folgenden Schluss:

ds

r
D dv

v
! dv D v � ds

r
! dv

dt
D v

r
� ds

dt
D v

r
� v D v2

r

Das ist die Beschleunigungskomponente in Richtung auf den Kreismittelpunkt,
also normal zur Bahnkurve:

an D v2

r

Auf den Schwerpunkt des Körpers mit der Masse m wirkt die Zentripetalkraft Fr

(Kraft gleich Masse mal Beschleunigung)

Fr D m � an D m � v
2

r
ŒN�
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nach ‚innen‘. Die vom Körper auf die Führung der Bahn nach ‚außen‘ gerichtete
Gegenkraft ist die Zentrifugalkraft (Fliehkraft) FZ :

FZ D Fr D m � an D m � v
2

r

Anstelle der Bahnordinate s und der Bahngeschwindigkeit v kann man die mo-
mentane Lage des Körpers und seine Geschwindigkeit auch mit Hilfe der Winkel-
ordinate ' (s D ' � r) bzw. mit Hilfe der Winkelgeschwindigkeit ! (v D ! � r)
beschreiben. Hiermit folgen Normalbeschleunigung und Zentrifugalkraft zu:

an D !2 � r I FZ D Fr D m � !2 � r

Die Dauer T einer Umkreisung (Länge der Kreisbahn: l D 2� � r) beträgt alterna-
tiv:

T D 2� � r
v
D 2�

!
Œs� ! an D .2�/2 � r

T 2

Vielfach wird die Anzahl der Umrundungen pro Sekunde als Maß für die Schnel-
ligkeit einer Bewegung auf einer Kreisbahn verwendet. Man spricht dann von der
Frequenz f der Kreisbewegung in der Einheit Hertz (Hz):

f D 1

T
D v

2� � r D
!

2�

�
1

s
D Hz

�
! an D .2�/2 � r � f 2

In der Version ! D 2� � f nennt man ! Kreisfrequenz. – Ein weiteres Maß ist die
Anzahl der Umdrehungen pro Minute. Diese Anzahl wird i. Allg. mit n abgekürzt:

n D 60 � f D 60 � 1

T
D 60 � v

2� � r D 60 � !

2�
! an D .2�/2 � r

3600
� n2

Umkehrung:

f D n=60I T D 60=nI v D 2� � r � n=60I ! D 2� � n=60

Anmerkung
Die vorangegangene Beschreibung gilt für eine gleichförmige Bahnbewegung, also eine kon-
stante Bahngeschwindigkeit. Ist die Bahnbewegung ungleichförmig (also in Bahnrichtung
beschleunigt), sind v, at , an Funktionen der Zeit. In diesem Falle wird die (tangentiale)
Winkelbeschleunigung mit " D P! D R' D at =r D Pv=r D Rs=r abgekürzt.
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Abb. 2.39

1. Beispiel
Zentrifugen finden in der Technik und in den experimentellen Naturwissenschaften eine
breite Anwendung. Es gibt Ultrazentrifugen mit bis zu n D 500:000 Umdrehungen pro
Minute. Zentrifugen dienen überwiegend der Stoffabscheidung, also der Trennung unter-
schiedlich schwerer Stoffanteile. – Mit r (in cm!) und n als Drehzahl pro Minute dient
die ‚Relative Zentrifugalbeschleunigung (RZB)‘, auch ‚Schleuderziffer‘ genannt, zur Kenn-
zeichnung der Zentrifuge in Bezug zur Erdbeschleunigung (DIN 58970-2):

a D .2�/2 � .r=100/

3600
� n2 D 0;00010966 � r Œcm� � n2 Œa� D Œm=s2�

RZB D a

g
D a Œm=s2�

9;81m=s2
D 0;00001118 � r Œcm� � n2

2. Beispiel
In Wäscheschleudern und Waschmaschinen mit Schleudergang treten hohe Zentrifugalbe-
schleunigungen auf (Abb. 2.39). Beispielsweise wird die Wäsche bei einem Trommeldurch-
messer d D 0;5m und bei n D 1400 Umdrehungen pro Minute an der Trommelwand
(r D 0;25m) mit

a D .2�/2 � 0;25

3600
� .1400/2 D 5374m=s2 D 548 � g

beschleunigt. Das ist das 550-fache der Erdbeschleunigung!

3. Beispiel
Der Fliehkraftregler, auch Zentrifugal-Regulator genannt, dient zur Messung und zur Re-
gelung der Drehzahl. Abb. 2.40 zeigt das Prinzip. Die Zentrifugalkräfte der beiden Kugeln
stehen über das Gestänge mit den lotrechten Kräften G1 und G2 im Gleichgewicht. Die Ver-
schiebungskinematik der Gewichte ist von der Umdrehungszahl nichtlinear abhängig.

4. Beispiel
Der Radius des Erdkörpers am Äquator beträgt: RErde D 6;378 � 106 m. Eine 360°-Rotation
der Erde um ihre Achse dauert einen siderischen Tag: 23 h 56min 4,099 s. Das sind in Se-
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Abb. 2.40

kunden

T D 23 � 60 � 60C 56 � 60C 4;099 D 82:800C 3360C 4;099 D 86:164 s

Am Äquator beträgt demgemäß die Zentrifugalbeschleunigung:

a D .2�/2 � 6;378 � 106

86:1642
D 0;0339m=s2 .� 0;35% von g/

Die Schwerebeschleunigung am Äquator beträgt 9;7803m=s2. Ohne den zentrifugalen An-
teil ergibt sich: 9;8120m=s2 .

5. Beispiel
Liegen in einem Drehgestell zwei miteinander verbundene, unterschiedlich große Massen
m1 und m2 auf einem Seil (Abb. 2.41), stellt sich ihre Lage bei einer Rotation so ein, dass

Abb. 2.41
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Abb. 2.42

m1 � r1 D m2 � r2 gilt. Das entspricht dem Hebelgesetz. Nur bei diesem Abstandsverhältnis
stehen die Zentrifugalkräfte im Gleichgewicht:

FZ1 D FZ2 ! m1 � ! � r1 D m2 � ! � r2 ! m1 � r1 D m2 � r2 ! r1

r2

D m2

m1

6. Beispiel
Auf einer ebenen horizontalen Straße erfährt ein Fahrzeug bei Kurvenfahrt durch die Rei-
bung mit der Fahrbahn die notwendige Führung. Abb. 2.42 zeigt einMotorrad. DieMasse be-
trage m D 280 kg. Das Fahrzeug fahre mit der Geschwindigkeit v D 90 km=h D 90=3;6 D
25;0m=s durch eine Kreiskurve. Der Radius der Kurve sei r D 80m. Die Zentrifugalkraft
ergibt sich zu:

FZ D 280 � 25;02

80
D 2187;5N

Die Reibungskraft berechnet sich zu:

FR D 
R � G D 
R � .g �m/ D 
R � .9;81 � 280/

Um nicht aus der Kurve geschleudert zu werden, bedarf es einer Mindestreibungszahl. Sie
folgt aus der Gleichsetzung:

FZ D FR ! 2187;5 D 
R � 2746;8 ! 
R D 0;798 � 0;8


R hat hier die Bedeutung einer Haftreibungszahl. Für eine beliebige horizontale Kurven-
fahrt in der Ebene berechnet sich der Mindestwert zu:

FZ D FR ! m � v
2

r
D 
R �G ! G

g
� v

2

r
D 
R � G ! 
R D v2

g � r

7. Beispiel
Straßen- und Bahngleise werden in Kurvenbereichen mit einer Querneigung gebaut. Hierzu
sind in Deutschland die ‚Richtlinien für den Ausbau von Landstraßen (RAL)‘ für die un-
terschiedlichen Straßenkategorien zu beachten, von der Autobahn bis zur Gemeindestraße.
Entsprechende Regelwerke gibt es für den Bahnbau.
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Abb. 2.43

Steht die Resultierende aus der lotrechten Gewichtskraft und der Fliehkraft senkrecht zur
geneigten Fahrbahn, bedarf es zur Führung des Fahrzeugs keiner Reibung, vgl. Abb. 2.43a.
Der zugehörige Winkel folgt aus:

tan ˛ D FZ

G
D G

g
� v

2

r
� 1

G
D v2

g � r

Bei jeder Abweichung von ˛ verbleibt ein Über- oder Unterschuss an Zentrifugalkraft, der
durch Reibung ausgeglichen werden muss.

Beim Übergang von einer Geraden- auf eine Kreisbahn stellt sich die Zentrifugalbe-
schleunigung mit Beginn der Kreisbahn sprunghaft ein. Um dem zu begegnen, wird im Stra-
ßenbau eine sogenannte Klothoide eingeschaltet. Innerhalb dieser Strecke wachsen Krüm-
mung und Querneigung kontinuierlich auf die planmäßigen Werte an bzw. nehmen planmä-
ßig wieder ab (Abb. 2.43b). Die Übergänge im Bahnbau werden entsprechend gestaltet (auch
die Gleise von Achterbahnen).

2.2.4 Drehimpuls (Drall) – Drehbewegung und Rotation

Bewegt sich ein punktförmiger Körper mit der Masse m und der Geschwindigkeit
v auf einer Geradenbahn, trägt er den Impuls:

p D m � v

Wirkt auf den Körper die Kraft F , erfährt der Impuls eine Änderung. Nach dem
Newton’schen Axiom gilt (im Falle m D konst:):

F D dp

dt
D m � dv

dt
D m � a

In Worten: Kraft DMasse mal Beschleunigung.
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Abb. 2.44

Bewegt sich der punktförmige Körper auf einer Kreisbahn im Abstand r vom
Mittelpunkt (Abb. 2.44a), ist der Drehimpuls (auch Drall genannt) zu ‚Impuls mal
Abstand‘ definiert:

L D p � r D .m � v/ � r D .m � .! � r// � r D m � r2 � ! D J � !

! D v=r ist die Winkelgeschwindigkeit. Das Produkt m � r2 wird als Trägheits-
moment bezeichnet, abgekürzt mit J . (Bei der kreisförmigen Bewegung hat J

dieselbe Bedeutung wie die Masse m bei der geradlinigen). –
In Abb. 2.44b sind EL und E! als Vektoren dargestellt. Sie stehen im Kreismittel-

punkt senkrecht zur Bahnebene.
Die zeitliche Änderung des Drehimpulses ist dem auf die Masse einwirkenden

(Kraft)-Moment M proportional (Erweiterung des Newton’schen Axioms).

M D dL

dt
D J � d!

dt
D J � "

Wirkt kein Moment, bleibt der Drehimpuls erhalten (Drehimpulserhaltungsgesetz,
im Jahre 1775 von L. EULER postuliert). " ist die Winkelbeschleunigung (auch
Drehbeschleunigung genannt). In Worten: MomentD Trägheitsmoment mal Win-
kelbeschleunigung.

Ausgehend von den vorstehenden Postulaten gelingt der Übergang von der Be-
wegung eines punktförmigen Körpers auf einer Kreisbahn auf die Drehbewegung
eines Festkörpers um sich selbst (Rotation). Der Körper wird als ‚starr‘ unter-
stellt, das bedeutet, die durch die Rotation des Körpers verursachten Verzerrungen
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bzw. Verformungen bleiben unberücksichtigt. Der Übergang zur Rotation werde
anhand von Beispielen erläutert.

1. Beispiel
Berechnung des Trägheitsmomentes einer Kreisscheibe für eine Drehung um die durch
den Mittelpunkt gehende Achse. Radius a, Dicke b (Abb. 2.45a). Als Hilfsvorstellung wird
angenommen, dass sich die Scheibe aus vielen kleinen infinitesimalen Massenelementen
zusammensetzt. Für jedes einzelne Element gilt die oben angeschriebene Formel für den
Drehimpuls L. Über die Elemente wird summiert (mathematisch: integriert).

Abb. 2.45a zeigt die Scheibe und innerhalb dieser einen Ring im Abstand r vom Mit-
telpunkt. In Teilabbildung b ist der aus der Scheibe herausgeschnittene Ring der Breite dr

dargestellt. Stellvertretend wird ein infinitesimales Element innerhalb des Ringes mit der
Breite dr in Richtung r herausgetrennt. Das infinitesimale Element hat die Breite r � d˛ in
Richtung des Umlaufwinkels ˛, Winkel ˛ in Bogenmaß. Die Tiefe b ist gleich der Dicke der
Scheibe. Das Volumen des Elementes beträgt:

dV D dr � .r � d˛/ � b:

Die Dichte des Scheibenmaterials sei �. Die Masse des Elementes berechnet sich damit zu:

dm D � � dV D � � dr � .r � d˛/ � b D � � .b � r � dr � d˛/:

Über alle Elemente wird summiert. Es handelt sich um eine Doppelsumme bzw. ein Dop-
pelintegral, einmal über dr von r D 0 bis r D a und einmal über d˛ von ˛ D 0 bis ˛ D 2�

(360°), also über die volle Kreisfläche. Damit ist der Beitrag aller Elemente der Scheibe er-
fasst, also die Scheibe insgesamt. Der Drehimpuls eines einzelnen Elementes beträgt (s. o.):

dL D dm � ! � r2 D � � .b � r � dr � d˛/ � ! � r2 D � � b � ! � r3 � dr � d˛

Die Integration über alle infinitesimalen Elemente ergibt:

L D
2�Z

0

aZ

0

dL D
2�Z

0

2

4
aZ

0

� � b � ! � r3 � dr

3

5 d˛ D � � b � !
2�Z

0

2

4
aZ

0

r3 � dr

3

5 d˛

D � � b � ! �
�

r4

4

�a

0

� Œ˛�2�
0 D

2�

4
� � � b � ! � a4 D � � �

2
� b � a4 � !

Abb. 2.45
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Abb. 2.46

Der Term vor ! ist das gesuchte Trägheitsmoment J . Zusammengefasst lautet das Ergebnis:

L D J � ! mit J D � � �
2
� b � a4 D 1

2
�m � a2; m D � � � � a2 � b

Im Fachschrifttum findet man Formeln für die Berechnung von m in kg und J in kgm für
die unterschiedlichster Körper, Beispiele (vgl. Abb. 2.46):

Elliptischer Vollzylinder:

m D � � � � a � b � c; J D 1

4
m � .a2 C b2/

Kreis-Vollzylinder (s. o.):

m D � � � � a2 � c; J D 1

2
m � a2

Prismatischer Vollzylinder:

m D � � 4 � a � b � c; J D 1

3
m � .a2 C b2/

Für eine Vollkugel und eine Kugelschale gelten folgende Formeln (Abb. 2.47):

Vollkugel:

m D 4

3
� � � � �R3; J D 2

5
m �R2

Dickwandige Kugelschale:

m D 4

3
� � � � � .R3

a �R3
i /; J D 2

5
�m � R

5
a �R5

i

R3
a �R3

i

Dünnwandige Kugelschale, Wanddicke d :

m D 4 � � � � � d � R2; J D 2

3
�m �R2
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Abb. 2.47

2. Beispiel
Besteht eine Kugel aus mehreren Schalen unterschiedlicher Dichte, wie dieses nahezu bei
allen Himmelskörpern der Fall ist, berechnet sich das Trägheitsmoment der Kugel aus der
Summe der Trägheitsmomente der einzelnen Schalen. Das ist möglich, weil alle Teile den-
selben Schwerpunkt haben, vgl. Abb. 2.48.

Verläuft die Drehbewegung nicht durch den Schwerpunkt, berechnet sich das
Trägheitsmoment nach der Formel (vgl. Abb. 2.49):

J D JS Cm � r2
S

Hierin ist JS das (Eigen-)Trägheitsmoment des Körpers für jene Schwerpunktsach-
se, die parallel zur Drehachse liegt, rS ist der Abstand zwischen den Achsen. Man
spricht von der Steiner-Formel (nach J. STEINER (1796–1863)).

Abb. 2.48

Abb. 2.49
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Abb. 2.50

Beispiel
Ein prismatischer Körper rotiere im Abstand r um eine Drehachse, die außerhalb des Kör-
pers liegt, die Abmessungen des Körpers mit quadratischer Ansicht zeigt Abb. 2.50a. Die
Masse des Körpers beträgt:

m D � � 2a � 2a � c D 4 � � � a2 � c
c ist die Dicke des Körpers. Das (Eigen-) Trägheitsmoment des Körpers für die zur Dreh-
achse parallel liegende Schwerpunktsachse berechnet sich mit Hilfe der in Abb. 2.46b ange-
gebenen Formel zu:

JS D 1

3
�m � .a2 C a2/ D 8

3
� � a4 � c

Das gesuchte Trägheitsmoment für die Rotation um die Drehachse ergibt sich mit r D 2 � a
zu:

J D JS Cm � r2 D 8

3
� � a4 � c C 4� � a2 � c � .2 � a/2 D

�
8

3
C 16

�
� � � a4 � c D 56

3
� � a4 � c

Würde der Körper mit n D 45 Umdrehungen in der Minute rotieren, beträgt die Winkelge-
schwindigkeit:

! D 2� � n

60
D 2� � 45

60
D 2� � 0;75 D 4;712 1=s

Trägheitsmoment und Drehimpuls (Drall) berechnen sich in den Einheiten:

kg

m3
�m4 �m D kg �m2 bzw. kg �m2 � 1

s
D kg � m

2

s

Im Falle des in Abb. 2.50b dargestellten Problems entfällt das Eigenträgheitsmoment JS

bei der Berechnung des Gesamtträgheitsmomentes um die Drehachse, da der Körpers selbst
nicht rotiert.
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Abb. 2.51

2.2.5 Kinetische Energie – Bewegung auf einer Geraden- und
einer Kreisbahn

In Abb. 2.51 ist dargestellt, wie sich die allgemeine ebene Bewegung eines Körpers
aus einer Translation und einer Rotation zusammensetzt. – Translatorisch heißt
eine Bewegung, wenn sich alle Punkte auf kongruenten Bahnen bewegen, dann
kann die Bewegung durch die Bewegung des Körperschwerpunktes S vollständig
beschrieben werden. Rotatorisch ist eine Bewegung, bei der sich alle Punkte um
eine gemeinsame raumfeste Achse drehen. – Wieder beschränkt auf eine Geraden-
und eine Kreisbewegung wird im Folgenden hierfür die kinetische Energie abge-
leitet.

Bewegung auf einer Geradenbahn (Abb. 2.52a) Verschiebt sich die Kraft F

innerhalb des Zeitintervalls �t von s.t/ nach s.t C �t/ D s.t/C �s, verrichtet
die Kraft an der Masse m die Arbeit F ��s:

F ��s D .m � a/ � ds D m � dv

dt
� ds D m � ds

dt
� dv D m � v � dv D d

�m

2
� v2

�

Über den jeweils links- und rechtsseitigen Term wird das Weg- bzw. Zeitintegral
erstreckt und zwar über das Zeitintervall von t1 bis t2. Die zugehörigen Wegor-

Abb. 2.52
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dinaten seien s1 und s2 und die zugehörigen Geschwindigkeiten v1 und v2. Die
Integration ergibt:

s2Z

s1

F � ds D m �
�

v2
2

2
� v2

1

2

�

Das linksseitige Wegintegral erstreckt sich über die Wegstrecke von s1 nach s2. Es
ist die von F D F.t/ auf der Wegstrecke �s verrichtete mechanische Arbeit.

Im Falle F D konst: ist W D F � .s2 � s1/ die verrichtete Arbeit. Die Größe
m �v2=2 ist die kinetische Energie. Die vorstehende Gleichung besagt, dass die von
F im Bahnintervall s1 bis s2 geleistete Arbeit gleich der Differenz der kinetischen
Energien am Ende und Anfang der Wegstrecke ist:

W D Ekin;2 �Ekin;1; Ekin D m � v
2

2

Bewegung auf einer Kreisbahn (Abb. 2.52b) Verschiebt sich die Kraft F inner-
halb des Zeitintervalls �t von s.t/ nach s.t C �t/ D s.t/ C �s, also um die
Winkelordinate von '.t/ nach '.t C�t/ D '.t/C�', verrichtet das Moment an
der Masse m bzw. am Trägheitsmoment die Arbeit M ��', umgeformt, folgt:

M � d' D J � " � d' D J � d!

dt
� d' D J � d'

dt
� d! D J � ! � d! D d

�
J

2
� !2

�

Die Integration über das Zeitintervall von t1 bis t2 liefert analog zu oben:

'2Z

'1

M � d' D J

�
!2

2

2
� !2

1

2

�
! W D Ekin;2 �Ekin;1 ; Ekin D J � !

2

2

'1 und '2 sind die Drehwinkel und !1 und !2 die Winkelgeschwindigkeiten an
den Intervallgrenzen.

Das Energieerhaltungsgesetz gilt selbstredend in allen Fällen.

1. Beispiel (Abb. 2.53)
Ein Fahrzeug auf vier Rädern habe die Gesamtmasse m: Jedes der vier Räder habe die
Masse mR und das Trägheitsmoment JR. Dem mit der Geschwindigkeit v fahrenden Fahr-
zeug wohnt folgende kinetische Energie (einschließlich jene der Räder) inne:

Ekin D m � v2

2
C 4 � mR � v2

2
C 4 � JR � !

2

2
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Abb. 2.53

Bei der vollen Umdrehung eines Rades bewegt sich das Fahrzeug um den Radumfang 2� �R
weiter. Beträgt die Winkelgeschwindigkeit der Räder !, fährt das Fahrzeug mit der Ge-
schwindigkeit v D 2� � R � !. Daraus folgt: ! D v=2� � R. Die kinetische Energie beträgt
demnach, in der Fahrzeuggeschwindigkeit v ausgedrückt:

Ekin D m � v2

2
C 4 � mR � v2

2
C 4 � JR

2
� v2

.2� �R/2
D 1

2

�
mC 4 �mR C JR

�2 � R2

�
� v2

Rollt das Fahrzeug reibungsfrei von einer Anhöhe um h abwärts, wird seine anfängliche
potentielle Energie in kinetische Energie umgesetzt. Aus dieser Bedingung lässt sich die
Geschwindigkeit nach Durchfahren der Gefällstrecke berechnen:

Epot D .mC 4 �mR/ � g � h; Ekin
:D Epot ! v D

s
2.mC 4 �mR/ � g � h
�
mC 4 �mR C JR

�2 �R2

	

Wird der Rotationsbeitrag der Räder vernachlässigt, folgt: v D p
2g � h.

2. Beispiel (Abb. 2.54)
Ein Schwungrad aus Stahl drehe sich mit n D 3000 Umdrehungen pro Minute. Gesucht ist
die kinetische Energie im Schwungrad. Die Dichte von Eisen beträgt: � D 7850 kg=m3.

Abb. 2.54 zeigt die Abmessungen des Rades.

m D � � �a2 � c D 7850 � � � 1;02 � 0;2 D 4932 kg

J D m � a2=2 D 4932 � 1;02=2 D 2466 kg m2

! D 2� � n=60 D 2� � 3000=60 D 314 1=s .D rad=s/

Ekin D J � !
2

2
D 2466 � 3142

2
D 1;22 � 108 J .1;22 � 108 J � 2;78 � 10�7 kWh

J
D 33;9 kW h/

Die Energiedichte (das ist die Energie geteilt durch die Masse des Schwungrades, hier in
kWh pro Tonne ausgedrückt) berechnet sich zu:

Ekin=m D 33;9=4;93 D 6;9 kWh=t:
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Abb. 2.54

Wenn das Schwungrad innerhalb einer Minute ‚entladen‘ wird, also seine Energie abgibt,
beträgt die Leistung in diesem Zeitraum:

P D 1;22 � 108 J=60 s D 20;3 � 106 W D 20;3 � 103 kW D 20;3MW

Es stellt sich die Frage, ob die Festigkeit des Schwungrades ausreichend ist, um der Flieh-
kraftbeanspruchung zu widerstehen. Infolge der Fliehbeschleunigung treten in der Scheibe
die in Abb. 2.54 gezeichneten Spannungsverläufe auf. Dargestellt sind die Verläufe der Radi-
alspannung �r und der Tangentialspannung �t . Es sind Zugspannungen. Sie sind im Zentrum
gleichgroß und erreichen hier ihren höchsten Wert. Für das Beispiel berechnet sich der Wert
zu (Formel ohne Nachweis):

max �r D max �t D 0;396 � � � !2 � a2 D 0;396 � 7850 � 3142 � 1;02 D 3;06 � 108 N=m2

D 306N=mm2

Eine Beanspruchung in dieser Höhe kann von einem hochfesten Stahl (einschließlich ei-
nes Sicherheitsfaktor 1,5 gegenüber der Fließgrenze) aufgenommen werden. Die Höhe der
Eigenspannungen aus der Fertigung sowie die Frage der Ermüdungsfestigkeit erfordern ver-
tiefte Überlegungen, auch die Aufnahme der Beanspruchung innerhalb der Entladungsphase.

1. Anmerkung
Die Klassische Mechanik überstreicht in ihrer analytischen Form ein weites Feld. Es hat
länger gedauert, bis sie seit Postulierung des Axioms F D Pp durch NEWTON in allen
Einzelheiten ausgearbeitet war, zum einen für die allgemeine Bewegung von Massepunk-
ten in Kraftfeldern, wie in der Himmelsmechanik, zum anderen in der Dynamik des starren
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Abb. 2.55

Körpers einschließlich der kinematischen Körperbindungen. Heute sind sie Grundlage der
Sattelitennavigation und -geodäsie einerseits und der Theorie der Handhabungsroboter aller
Art andererseits. – Es war L. EULER (1707–1783), der die Dynamik des starren Körpers im
Jahre 1775 endgültig ausformulierte und das in Form des Momentensatzes ( EM D Er	 EF ) und

des Drallsatzes ( EL D Er	 PEp), was schließlich zum Axiom EM D PEL (analog zu EF D PEp) führte.
Bereits 1758 konnte EULER die Kreiselgleichungen angeben. Deren Herleitung erfordert ei-
ne vertiefte Behandlung [8]. Zur Geschichte der klassischenMechanik wird nochmals auf [4]
und auf das Schrifttum im voran gegangenen Kapitel hingewiesen. Detailliertere Darstellun-
gen enthalten die Physik-Fachbücher zur Thematik Mechanik, eine anschauliche Einführung
gibt [9].

2. Anmerkung
Ein Kreisel ist ein Körper, der sich um eine im Raum frei bewegliche Achse drehen kann
(wie z. B. beim Spielkreisel); man spricht von einem freien Kreisel. Im Gegensatz dazu hat
ein gefesselter Kreisel eine fest liegende Drehachse. – Ist der rotierende Körper eines freien
Kreisels keiner direkten äußeren Einwirkung ausgesetzt, behält er seine Drehachse bei. Das
verlangt das Drehimpulserhaltungsgesetz (Drallerhaltungsgesetz). Wird die Drehachse in-
dessen einem Drehmoment ausgesetzt, weicht sie seitlich aus. Man nennt diese Erscheinung
Präzession. Der Erdkörper ist dafür ein Beispiel (Abb. 2.55). Wäre die Erde exakt eine Kugel
mit homogener Dichteverteilung, würde die Neigung ihrer Rotationsachse zur Ekliptik auch
bei gravitativer Einwirkung anderer Himmelskörper unverändert bleiben. Da sich infolge der
Rotation der Erde und der damit verbundenen zentrifugalen Wirkung ein Äquatorwulst aus-
bildet sowie eine Abplattung an den Polen, bewirken die Anziehungskräfte von Mond und
Sonne eine Präzession der Erdachse. Das beruht darauf, dass durch die unterschiedlichen
Abstände zu den beiden Wülsten, die Anziehungskräfte verschieden groß sind und dadurch
ein Moment auf die Drehachse geweckt wird, vgl. Abb. 2.55. Der vollständige Umlauf der
präzessierenden Erdachse umfasst einen Zeitraum von ca. 25.800 Jahren. Der Frühlings-
punkt (Schnittpunkt der Äquatorebene mit der Ekliptik) wandert dadurch rückläufig um die
Erde. Hierauf beruht es, dass jedes der 12 Sternbilder alle 25:800=12 D 2150 Jahre um ein
Bild weiter rückt.
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Abb. 2.56

3. Anmerkung
Abb. 2.56 zeigt die kardanische Aufhängung einer sich um die Kreiselachse 1 drehen-
den Scheibe. Das Bestreben der Scheibe ihre Lage beizubehalten (anderenfalls würde eine
Änderung ihres Dralls eintreten), sorgt dafür, dass die Lage der Achse auch dann erhalten
bleibt, wenn der Rahmen der Aufhängung eine Lagedrehung erfährt. Diese Erkenntnis wird
beim Kurskreisel und beim Kreiselkompass genutzt. Trotz der Erddrehung bleibt die Lage
der auf Nord eingerichteten Achse des Kreiselkompasses erhalten. Für die Schifffahrt hat
der Kreiselkompass große Bedeutung, auch bei Raketen, Drohnen und Geschossen.

4. Anmerkung
Ehemals wurde versucht, mit einem massereichen Stabilisierungskreisel die Schlingerbewe-
gung von Schiffen, insbesondere von großen Passierschiffen, zu verringern (Schlick’scher
Kreisel nach E.O. SCHLICK (1840–1913)). Wegen diverser Nachteile wurde die Technik
später wieder aufgegeben.

5. Anmerkung
Beim Fahren verdanken Zweiräder ihre Stabilität der Kreiselwirkung der beiden Räder, ins-
besondere jene des Vorderrades. Je größer der Raddurchmesser und die Schwere der Felgen
sind, umso höher sind die Kreiselwirkung und damit die Stabilität. Wichtig ist auch, dass
die Achse der Gelenksäule in Verlängerung zum Boden diesen vor dem Kontaktpunkt des
Reifens trifft (vgl. Abb. 2.57).

Abb. 2.57
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2.3 Fall- undWurfmechanik – Ballistik

2.3.1 Fallbewegung

Wie in Abschn. 2.4 ausgeführt, war es G. GALILEI (1564–1642), der ab dem Jahre
1590 bei Rollversuchen auf einer schiefen Ebene feststelle, dass die Geschwin-
digkeit fallender Körper in gleichen Zeiten immer um den denselben Betrag
anwächst, das bedeutet: Alle Körper werden im Schwerefeld der Erde konstant
beschleunigt. (Es ist wohl eher eine Legende, G. GALILEI habe Fallversuche vom
schiefen Turm von Pisa durchgeführt oder durchführen lassen). Die auf ARIS-
TOTELES (384–322 v. Chr.) zurückgehende Lehre, wonach ein schwerer Körper
schneller falle als ein leichter und deren Geschwindigkeiten jeweils konstant seien,
war damit widerlegt, was bereits S. STEVIN (1548–1620) im Jahre 1586 in einem
Versuch bewiesen hatte.

Abb. 2.58a zeigt einen aus der erdnahen Höhe h fallenden Körper der Masse m.
Ab dem Startpunkt (t D 0) hat der Körper bis zum Zeitpunkt t den Weg s durch-
messen. Wie ausgeführt, ist die Geschwindigkeit die Änderung des Weges in der
Zeiteinheit dt und die Beschleunigung die Änderung der Geschwindigkeit in der
Zeiteinheit dt :

v.t/ D ds

dt
D Ps; a.t/ D dv

dt
D Pv D Rs

Der hochgestellte Punkt kennzeichnet die Ableitung nach der Zeit. v D v.t/ und
a D a.t/ sind, wie der Weg s D s.t/, Funktionen der Zeit. Diese Bewegungs-
größen gilt es zu finden, insbesondere interessiert die Länge des Fallweges s in
Abhängigkeit von der Zeit, vice versa.

Wird um den Körper mit der Massen m während des freien Falls ein Freischnitt
gelegt, wirken auf ihn die Gewichtskraft mit g als Erdbeschleunigung Fg D m � g

Abb. 2.58
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nach unten und die Trägheitskraft Fa D m � a entgegen der Bewegung nach oben.
Die vomMedium ausgehende Bremskraft Fv wirkt ebenfalls der Bewegung entge-
gen. Diese Bremskraft ist eine Reibungskraft und irgendwie von der momentanen
Geschwindigkeit des fallenden Körpers abhängig. Für Fv wird der sehr allgemeine
Ansatz

Fv D k0 C k1 � v C k2 � v2 C � � � C kn � vn

gewählt. Die Beiwerte k0; k1; : : : müssen im Experiment bestimmt werden. Sie
werden im Folgenden als bekannt unterstellt. Der erste Term im Ansatz steht für
eine konstante Reibung, der zweite Term für eine mit der Geschwindigkeit linear
anwachsende Reibung (wie für zähe Flüssigkeiten mit geringer Geschwindigkeit
typisch, Stoke’sches Reibungsgesetz) und der dritte Term für einen mit der Ge-
schwindigkeit quadratisch ansteigenden Widerstand (wie in dünnen Gasen, z. B.
in Luft, vgl. Abschn. 2.4.2.3: Newton’sches Reibungsgesetz). Im letztgenannten
Falle gilt:

k2 D 1

2
� � cw � A

� ist die Gasdichte, cw der Strömungsbeiwert und A die Verdrängungsfläche des
fallenden Objektes.

Die kinetische ‚Gleichgewichtsgleichung‘ im Zeitpunkt t lautet (vgl.
Abb. 2.58b):

Fa � Fg C Fv D 0

! m � Rs �m � gC k0 C k1 � Ps C k2 � Ps2 C � � � C kn � Psn D 0

Das ist die vollständige Bewegungsgleichung des Problems. Es ist eine Differen-
tialgleichung für s D s.t/. In der vorliegenden allgemeinen Form lässt sich die
Gleichung analytisch nicht lösen! Das gelingt nur numerisch.

Besonders einfach ist der reibungsfreie Fall. Die Bewegungsgleichung ver-
kürzt sich hierfür zu:

m � Rs �m � g D 0 ! Rs D g

Hinweis
Die Erdbeschleunigung g wurde in der Bewegungsgleichung als konstant angesetzt.

Die Lösung für die Fallbewegung s D s.t/ folgt durch zweimalige Integration:

Rs D g .D a/ ! Ps D g � t C C1 .D v/ ! s D g
t2

2
C C1 � t C C2
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Im Zeitpunkt t D 0 ist die Geschwindigkeit Null, ebenso der Weg qua Definition
(Abb. 2.58a). Wie erkennbar, ergeben sich hierfür die beiden Freiwerte zu Null.
Die Lösung des Problems lautet somit:

s D g
t2

2
; v D Ps D g � t; a D Rs D g

Das Ergebnis zeigt: Alle Bewegungsgrößen (s D s.t/, v D v.t/, a D a.t// sind
beim reibungsfreien Fall (im Vakuum) unabhängig von der Masse des Körpers,
ebenso unabhängig von seiner Form und seiner stofflichen Beschaffenheit!

Soll die Dauer für den aus der Höhe h auf den Erdboden aufschlagenden Körper
berechnet werden, ist s D h zu setzen und die Gleichung nach t aufzulösen:

h D g � t
2
h

2
! th D

s
2 h

g
; vh D g �

s
2 h

g
D

p
2 g � h

vh ist die Aufschlaggeschwindigkeit. Die kinetische Energie beim Aufschlag ist:

Ekin D m � v2
h=2

Für die Widerstandsgesetze k1 � Ps und k2 � Ps2 lassen sich ebenfalls geschlossene Lö-
sungen der obigen Bewegungsgleichung angeben. Einzelheiten können der Fachli-
teratur zur Mechanik entnommen werden. – Für den Fall des geschwindigkeits-
quadratischen Widerstandes, wie beim freien Fall in Luft, lautet die Lösung (ohne
Nachweis):

s D v2
G

g
ln

�
cosh

g t

vG

�
; v D vG � tanh g t

vG

; a D
"

1 �
�

v

vG

�2
#
� g

(Es bedeuten: ln: natürlicher Logarithmus, cosh und tanh: hyperbolische Funktio-
nen, vgl. Abschn. 3.7.1.2 und 3.7.1.4 in Bd. I). vG ist die sogen. Grenzgeschwin-
digkeit:

vG D vGrenze D
s

2 �m � g
cw � � � A

Dieser Geschwindigkeit nähert sich der fallende Körper als Folge des bremsenden
Luftwiderstandes asymptotisch an.
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1. Beispiel
Von einem 300m hohen Funkturm löst sich ein kugelförmiger Brocken aus Schneeeis,
Durchmesser 0,6m, �Schneeeis D 800 kg=m3. Mit welcher kinetischen Energie schlägt der
Brocken auf dem Boden auf? Masse und Verdrängungsfläche betragen:

m D 800 � 4
3

� � 0;33 D 90 kg; A D 0;62�=4 D 0;28m2:

Es wird angesetzt:

�Luft D 1;25 kg=m3; cw D 0;6:

Für vG findet man:

vG D
s

2 � 90 � 9;81

0;6 � 1;25 � 0;28
D 91;7m=s

Für Auftreffgeschwindigkeit und kinetische Energie mit und ohne Einfluss durch die brem-
sende Luft liefert die Rechnung:

Mit Lufteinfluss:

v D 65m=sW Ekin D 190:000 J;

ohne Lufteinfluss:

v D 77m=sW Ekin D 267:000 J:

Die Differenz �Ekin D 77:000 J wird infolge Luftreibung dissipiert.
Beim Fall ohne Lufteinfluss folgt die Auftreffgeschwindigkeit auch aus der Gleichset-

zung von Epot im Hochpunkt und Ekin im Tiefpunkt: m g � h D m � v2=2 zu

v D p
2 g � h D 77m=s:

Die Tabelle in Abb. 2.59 lässt erkennen, dass Fallweg und Fallgeschwindigkeit in den ersten
5 Sekunden durch die Luftreibung nahezu unbeeinflusst bleiben: Die Geschwindigkeit ist
hierfür noch zu gering. Dieser Befund lässt sich auf alle gängigen Körper verallgemeinern.

2. Beispiel
Vom einem 10-m-Turm tauchen Wasserspringer nach knapp 1,5 Sekunden Falldauer mit
etwa 14m=s D 50 km=h ins Wasser ein, Klippenspringer aus 20m Höhe mit ca. 20m=s D
72 km=h. Seit dem Jahr 2013 gehört Klippenspringen zu den Disziplinen der Schwimm-
Weltmeisterschaften, Männer springen aus 27m und Frauen aus 20m Höhe. Hierbei werden
Figuren gesprungen, mit Füßen taucht der Springer ins Wasser ein.

3. Beispiel
Mit Ausrüstung betrage die Masse eines Fallschirmspringers m D 100 kg. Für den Schirm
gelte: A D 24m2, cw D 1;5. Für die Grenzgeschwindigkeit ergibt die Rechnung: 6,6m=s.
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Abb. 2.59

In Abb. 2.60 ist der Verlauf der Geschwindigkeit über dem Fallweg aufgetragen. Mit
Lufteinfluss hat der Springer bereits nach ca. 5 Sekunden die Grenzgeschwindigkeit erreicht.
Mit dieser segelt er sanft zu Boden. Aus 90m Höhe würde er den Boden nach 14,1 s errei-
chen. Ohne Luftwiderstand würde er nach ca. 4,3 s aufschlagen, die kinetische Energie wäre
ca. 40-mal höher.

Abb. 2.60
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Beim Fallschirm bläht sich der Schirm in Form einer Halbkugel auf. In Schirmmitte liegt
eine Öffnung. Die durch das Loch strömende Luft beruhigt die Fallbewegung und verhindert
ein stärkeres Pendeln. – Beim Sportspringen wird der Schirm ca. 1500 bis 700m über Grund
geöffnet, bis dahin wird eine durchschnittliche Fallgeschwindigkeit von 180 bis 200 km=h
erreicht; bei Kopfsprung liegt die Geschwindigkeit deutlich höher. – Die Sinkgeschwindig-
keit vor der Landung sollte bei geöffnetem Schirm höchstens 18 km=h D 5m=s betragen. –
Im Jahre 2012 sprang F. BAUMGARTNER (*1969) aus 39.000 m Höhe aus der Kapsel
eines mit Helium gefüllten Ballons. Während des freien Falls erreichte er eine Geschwin-
digkeit von 1355 km=h. Im Jahre 2014 wurde der Höhenrekord von A. EUSTACE (*1957)
auf 41.420 m gesteigert.

In den genannten Höhen des Absprungs ist die Luftdichte deutlich geringer als in Erdnä-
he, das gilt auch für die Erdbeschleunigung. (Um Aufgaben dieser Art mit höhenabhängiger
Dichte und Erdbeschleunigung mathematisch zu lösen, bedarf es numerischer Verfahren.) –
Genau so spektakulär wie Sprünge aus großer Höhe sind solche aus geringer, etwa aus 150m
Höhe, wie von turmartigen Gebäuden oder aus Seilbahnkabinen. Hier muss die Reißleine des
Fallschirms sofort nach dem Absprung gezogen werden.

Bleibt jegliche Reibung unberücksichtigt, entspricht das Herabrollen eines Kör-
pers auf einer schrägen oder gekrümmten Bahn dem freien Fall, vgl. Abb. 2.61.
Von dieser Überlegung ausgehend, lässt sich die Geschwindigkeit in Richtung der
Bahn berechnen. Senkrecht zur Bahn wirkt die Kraft: m �g �cos˛. Sie löst trockene
und rollende Reibung aus (Abb. 2.61b). Die Abtriebskraft in Bahnrichtung beträgt:
m �g � sin˛. Ihr wirkt die Kraft aus der Luftreibung entgegen. Durch den Reibungs-
einfluss auf der Bahn wird die Geschwindigkeit ebenfalls verringert. Wird auf einer
Rollbahn von der Höhe h1 aus auf der Gegenseite der Bahn die Höhe h2 erreicht, ist
m �g � .h1�h2/ der durch Reibung eingetretene ‚Energieverlust‘ (Teilabbildung c).
Ausgehend von diesen Ansätzen werden Achter- und Loopingbahnen berechnet
(Abb. 2.61d). Hierbei müssen alle beteiligten Reibungsarten erfasst werden. Ei-
ne Berechnung gelingt nur mittels iterativer Zeitschrittverfahren, vgl. [10–12] und
DIN 4112. Die Übergänge von den kreisförmigen auf die geradlinigen Bahnstre-
cken und umgekehrt werden als Klothoiden trassiert.

Rennrodler und Bobfahrer erreichen heutzutage im Eiskanal Geschwindigkei-
ten ca. 40m=s D 144 km=h, was als gerade noch vertretbar angesehen wird.

Abb. 2.61
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Abb. 2.62

2.3.2 Wurfbewegung

Um die Wurfbewegung eines Körpers der Masse m zu analysieren, wird im Ab-
wurfpunkt ein rechtwinkliges Koordinatensystem aufgespannt (Abb. 2.62). x D
x.t/ und y D y.t/ sind die gesuchten Komponenten der Bahnkurve.

Für die Abwurfordinaten gilt demgemäß:

t D 0W x0 D 0; y0 D 0:

Die Wurfgeschwindigkeit beim Abwurf sei v0 und der Abwurfwinkel ˛0. Die
Komponenten der Abwurfgeschwindigkeit v0 betragen:

vx0 D v0 � cos˛0; vy0 D v0 � sin˛0:

Zum Zeitpunkt t erreicht der Körper die Geschwindigkeit v.t/ und den Bahnwin-
kel ˛.t/. Die Bahnparameter sind Funktionen der Zeit, sie bestimmen die Bahn-
kurve. Die Komponenten der Bahngeschwindigkeit im Zeitpunkt t sind:

vx D v � cos˛; vy D v � sin˛

Im vorangegangenen Abschnitt wurde deutlich, dass sich die bremsende Wirkung
der Luft bei geringer Geschwindigkeit nur untergeordnet auf die Fallbewegung
auswirkt, sie bleibt daher im Folgenden zunächst auch unberücksichtigt, es wird
quasi die Bahnkurve im Vakuum analysiert. Diese Annahme bedeutet, dass der
Körper in Richtung x (also in der Horizontalen quer zur Erdbeschleunigung) keiner
Bremsung, also negativen Beschleunigung, ausgesetzt ist, die Bahngeschwindig-
keit bleibt in dieser Richtung unverändert gleich der Anfangsgeschwindigkeit:

vx D vx0 D konst:
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Nach der Zeitdauer t hat sich der Körper in Richtung x um x D vx0 � t weiter
bewegt. – In y-Richtung unterliegt der Körper der Gravitation. Für die Bahnkom-
ponente y D y.t/ gilt die im vorangegangenen Abschnitt hergeleitete Differenti-
algleichung der Fallbewegung. Ihre Lösung lautet:

y D �g
t2

2
C C1 � t C C2I Py D �g � t C C1

Hierin ist s gleich �y und Ps D � Py gesetzt, da die positive Richtung der Bewe-
gungskomponente y entgegengesetzt zuCs ist, vgl. Abb. 2.58 mit Abb. 2.62.

Die Freiwerte folgen aus den Anfangsbedingungen des Wurfs (Zeitpunkt
t D 0):

t D 0W y0 D 0W 0 D �g
02

2
C C1 � 0C C2 ! C2 D 0

t D 0W Py0 D vy0W vy0 D �g � 0C C1 ! C1 D vy0

Somit lautet die Lösung:

y D �g
t2

2
C vy0 � t I Py D �g � t C vy0 D vy

Zusammenfassung:

x D vx0 � t; vx D vx0I y D vy0 � t � g
t2

2
; vy D vy0 � g � t

Die Tangente an die Bahn fällt mit dem Geschwindigkeitsvektor zusammen
(Abb. 2.62):

tan˛ D vy

vx

I v D
q

v2
x C v2

y

Wird t aus der Gleichung für x frei gestellt und in die Gleichung für y eingesetzt,
folgt die Gleichung für die Bahnkurve y D y.x/ zu:

t D x

vx0

! y D vy0

vx0

� x � g

2
�
�

x

vx0

�2

D tan˛0 � x � g

2
� x2

v2
0 � cos2 ˛0

D tan˛0 � x � g

2
� .1C tan2 ˛0/

v2
0

� x2

Mit dieser Formel lässt sich die Bahnkurve berechnen. Es handelt sich um eine
Parabel (D Wurfparabel). Mit der Lösung lassen sich alle Fragestellungen bear-
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Abb. 2.63

beiten. Vielfach erweist es sich als günstiger, mit t als Parameter in den Formeln
für y und x zu rechnen. – Die Beschleunigung in y-Richtung berechnet sich zu:

Ry D d 2y

dt2
D dvy

dt
D �g;

wie es sein muss.
In Abb. 2.63a sind die auf den Körper einwirkenden Kräfte m � g und m � Ry bei

Bewegung in positiver y-Richtung eingetragen. Die Beschleunigung Ry des Körpers
ist negativ und dem Betrage nach gleich g (Abb. 2.63b). –

Würde eine Person im schräg ‚geworfenen‘ Körper ‚mitfliegen‘, würde sie sich
schwerelos fühlen (wie bei jeder Fallbewegung). – Bei sogen. Parabelflügen wird
dieser Effekt genutzt, um Experimente im Zustand der Mikrogravitation durchzu-
führen, Zeitdauer ca. 20 Sekunden, vgl. Abb. 2.63c: Es wird im Hochpunkt des
Fluges indessen nur 1% von g und nicht Null erreicht. Bei einer Flugkampa-
gne werden bis zu 30 Parabeln hintereinander durchflogen, z. B. mit einem Airbus
A300. – Im Fallturm von Bremen (Fallstrecke 110m, Falldauer 4,7 s) werden Ver-
suche mit ähnlicher Zielsetzung durchgeführt, ebenso mit ballistischen Raketen.
In Raumstationen wird über lange Zeit ein Zustand absoluter Schwerelosigkeit er-
reicht.

1. Beispiel
Abb. 2.64 zeigt für v0 D 10m=s und fünf Wurfwinkel die zugehörigen Bahnkurven. Bis
zu einem Winkel ˛0 D 45° wächst die erreichbare horizontale Wurfweite; für noch größere
Winkel sinkt sie wieder.

Indem die oben abgeleitete Formel für y D y.x/ Null gesetzt wird, erhält man die hori-
zontale Weite des Wurfes (x1) und indem dy=dx gleich Null gesetzt wird, die Abszisse des
Hochpunktes der Bahn (x2). Das Ergebnis dieser Rechnungen lautet:

x1 D 2 � v0x � v0y

g
; max x1 D v2

0

g
für ˛0 D 45ıI x2 D v0x � v0y

g
D x1

2

In Zahlen ergibt sich für das Beispiel:

v0x D v0y D
p

2

2
� 10;0 D 0;7071 � 10;0 D 7;071m=sI x1 D 10;194m; x2 D 5;097m
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Abb. 2.64

2. Beispiel
In vielen Sportdisziplinen sind große Wurfweiten oder geschickte ‚Ballschüsse‘ das Ziel der
Anstrengung.

Beim Kugelstoßen beträgt die Masse der Kugel 7,257 kg für Männer und 4,000 kg für
Frauen. Da die Kugel von der Höhe y0 oberhalb der horizontalen Auftreffebene aus gestoßen
wird, sind körpergroße Athleten im Vorteil. Als optimaler Stoßwinkel gilt der Bereich 37°
bis 42°. Die Bahnkurve berechnet sich nach den Formeln:

x D vx0 � t; y D y0 C vy0 � t � g
t2

2

Abb. 2.65a zeigt die Flugbahn einer Kugel, wenn dem Sportler ein Stoß aus y0 D 2;0mHöhe
mit v0 D 13m=s gelingt. Es wird eine Weite von 18,6m erreicht; ca. 1,6m Weite beruhen
auf der Abwurfhöhe (hier 2,0m). In Abb. 2.65b ist der Verlauf der Bahngeschwindigkeit
v D v.t/ wiedergegeben, Mittelwert ca. 11m=s.

Abb. 2.65
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Abb. 2.66

Der Durchmesser der Kugel aus Eisen beträgt für männliche Werfer d D 12;1 cm und
für weibliche 10 cm. Für d D 12;1 cm berechnen sich die Verdrängungsfläche und der Luft-
widerstand zu:

A D 0;01147m2 ! F D cw � �
2
�A � v2 D 0;6 � 1;25

2
� 0;01147 � 112 D 0;52N

Die bremsende Kraft durch den Luftwiderstand ist von eher untergeordneter Größe. – Die
Kugelstoß-Weltrekorde sind: Männer: 23,1m, Frauen: 22,6m.

Die Bahnkurve eines Diskus oder eines Speers kann nicht als Wurfparabel berechnet
werden. Hier wirkt sich der aerodynamische Auftrieb maßgeblich aus. Dank der Kreiselwir-
kung bleibt die Lage der rotierenden Diskusscheibe nahezu konstant, beim Speer durch die
Länge des Gerätes, erst gegen Ende der Flugbahn beginnt der Speer nach vorne zu kippen
(Abb. 2.66). – Auf die Kugel des Hammerwerfers oder friesischen Wurf-Boßlers wirkt
sich die Bremswirkung der Luft infolge der hohen Fluggeschwindigkeit stärker aus. Masse
der Kugel beim Hammerwerfen wie beim Kugelstoßen, Seillänge 1,219 m. – Weltrekorde:
Diskus: M (2 kg): 74m, F (1 kg): 77m; Speer: M (0,8 kg): 98m, F (0,6m): 72m; Hammer-
werfen: M: 87m, F: 78m.

Der Golfball, 45,93 g schwer, mit einem Durchmesser d D 42;67mm, trägt auf der
Oberfläche 300 bis 500 kleine Dellen (Dimples), Abb. 2.67a. Diesen Balltyp ließ sich
C. HASCELL (1868–1922) im Jahre 1899 patentieren; sein Ball bestand zudem aus Voll-
gummi und revolutionierte den Golfsport: Infolge der Dellen strömt die Luft rückseitig
turbulent ab, wodurch der Luftwiderstand deutlich geringer ausfällt. – Beim Schlag werden
auf den Ball gleichzeitig ein Impuls und ein Drehimpuls abgesetzt (Teilabbildung c/d).
Infolge der Drehung (bis 50 Rotationen in der Sekunde) erhält der Ball einen aerodynami-
schen Auftrieb, der als Magnus-Effekt bezeichnet wird, von H.G. MAGNUS (1802–1870)

Abb. 2.67
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Abb. 2.68

im Jahre 1852 entdeckt. Bei Fluggeschwindigkeiten ca. 70m=s D 250 km=h werden
Schlagdistanzen bis 265m erreicht. – Der Magnus-Effekt wirkt sich auch im Tennis- und
Fußballsport bei ‚geschnittenen‘ Bällen aus. – Abb. 2.67d zeigt die Stromlinien um eine sich
drehende Kugel. Teilabbildung e kann der Widerstandsbeiwert cw und der Auftriebsbeiwert
ca als Funktion von r � !=v entnommen werden (r : Radius, !: Winkelgeschwindigkeit, v:
Fluggeschwindigkeit des Balles).

3. Beispiel
Der Flug eines Skispringers folgt nur in Annäherung einer Flugparabel. Hier handelt es
sich eher um ein Flugsegeln. Entscheidend für große Flugweiten sind der Absprung und die
Aktivierung eines hohen aerodynamischen Auftriebs. Springer mit geringem Gewicht sind
im Vorteil. –

Abb. 2.68 zeigt die Maße der Flugschanzen der Vierschanzen-Tournee, die alljährlich
zum Jahreswechsel ausgetragen wird. Aus der Abbildung geht auch hervor, wie der Flugstil
im Laufe der Jahre zwecks Erhöhung des Auftriebs optimiert wurde. – Konstruktiv werden
die Schanzen nach den halbempirischen Normen des FIS (Internationaler Skiverband) aus-
gelegt. – Auf der neu ausgebauten Skiflugschanze Kulm wurde 2015 eine Sprungweite von
237,5m erreicht.

Die Physik des Sports wird in [13] ausführlich behandelt.

2.3.3 Ballistik

Die rechnerische Erfassung der verschiedenen Einflüsse auf die Bahnbewegung ei-
nes geworfenen oder geschossenen Projektils führt auf komplizierte Mathematik.
Das gilt in Sonderheit für die Berücksichtigung des bremsenden Luftwiderstan-
des bei hohen Bahngeschwindigkeiten ab etwa 30m=s. Seitdem der Computer zur
Verfügung steht, werden Aufgaben solcher Art numerisch gelöst. Das sei im Fol-
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Abb. 2.69

genden mit Hilfe eines einfachen Berechnungsverfahrens gezeigt. In der Praxis
kommen strengere Verfahren zum Einsatz, z. B. in der Raketen- und Weltraumme-
chanik.

Vom Startpunkt 0 mit den Ordinaten x0; y0 werde ein Körper mit der Mas-
se m unter dem Winkel ˛0 mit der Geschwindigkeit v0 geworfen (abgeschossen),
Abb. 2.69. Auf den Körper wirkt die Luftreibung bremsend entgegen seiner Bewe-
gung. Die Kraft sei proportional dem Quadrat der momentanen Geschwindigkeit.
Im Augenblick des Abschusses beträgt die bremsende Kraft des Luftwiderstands:

F0 D cw � �
2
� A � v2

0

cw ist der aerodynamische Widerstandsbeiwert, � die Luftdichte und A die Ver-
drängungsfläche. (An dieser Stelle wäre es möglich, auch andere Widerstandsge-
setze zu vereinbaren.)

Zum Zwecke der Bahnberechnung wird im Folgenden ein numerisches Berech-
nungsverfahren aufbereitet: Die Bahn wird ‚step by step‘, also in kurzen endlichen
(finiten) Zeitschritten, bestimmt. �t ist das erste finite Zeitintervall von Anfangs-
punkt 0 nach Punkt 1. Die folgenden Zeitintervalle �t werden während des wei-
teren Bewegungsverlaufes als gleichlang angesetzt, also von 1 nach 2, von 2 bis
3, usf. – Die Bewegung des Körpers wird im ersten Zeitschritt um a0 verzögert,
abgebremst, das bedeutet:

a0 D �v0

�t

Hinweis
Die Beschleunigung ist die Ableitung der Geschwindigkeit nach der Zeit, die Änderung der
Geschwindigkeit in der Zeiteinheit: a.t/ D dv.t/=dt
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�v0 ist die Änderung (die Verringerung) der Geschwindigkeit innerhalb des
Bahnabschnittes von 0 nach 1 gegenüber v0 bei Abschuss des Körpers. Die Brems-
kraft in diesem ersten Zeitschritt beträgt (Kraft ist gleich Masse mal Beschleuni-
gung, das bedeutet, sie ist gleich Masse mal Geschwindigkeitsänderung):

F0 D m � a0 D m � �v0

�t

Aufgelöst nach �v0 folgt:

�v0 D F0

m
��t D cw

m
� �

2
� A � v2

0 ��t

Um diesen Betrag wird die Anfangsgeschwindigkeit v0 verringert. – Die Ordinate
des Punktes 10 (siehe Abb. 2.69) wird mit der Geschwindigkeit v1 erreicht:

v1 D v0 ��v0 D v0 � cw

m
� �

2
� A � v2

0 ��t

Gleichzeitig wirkt sich die Erdanziehung g auf die Bewegung des Projektils in
lotrechter y-Richtung verzögernd aus. Demgemäß kann für die Berechnung der
Geschwindigkeitskomponenten in Richtung x und y von Punkt 1 aus im nächsten
Zeitschritt

vx1 D v1 � cos˛0; vy1 D v1 � sin˛0 � g ��t

angesetzt werden. Zusammengefasst sind als Ausgangswerte für den nächsten
Zeitschritt die Bahnparameter

x1 D x0 C vx1 ��t; y1 D y0 C vy1 ��t

˛1 D arctan
vy1

vx1

; v1 D
q

v2
x1 C v2

y1

als Ausgangswerte anzusetzen. Hiervon ausgehend, wird im nächsten Schritt

v2 D v1 ��v1 D v1 � cw

m
� �

2
� A � v2

1 ��t

berechnet, usf. – Die Näherungsberechnung fällt umso genauer aus, je kürzer die
Schrittweite �t gewählt wird. Es empfiehlt sich, ein kleines Computerprogramm
zu erstellen. Der vorstehende Algorithmus lehnt sich an [14] an. –

Die Bewegungsgleichungen der klassischen Mechanik sind überwiegend Dif-
ferentialgleichungen 2. Ordnung. Zu ihrer Lösung stehen diverse Verfahren der
Numerischen Mathematik zur Verfügung, auch fertige Routinen, etwa [10],
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Abb. 2.70

Beispiel
Ein Projektil mitm D 15 kg werde mit v0 D 750m=s abgeschossen; Durchmesser (Kaliber):
10 cm. Es wird angesetzt:

cw D 0;5; � D 1;25 kg=m3I A D � � 0;102=4 D 0;007854m2

Hierfür folgt:

cw

m
� �

2
�A D 0;5

15;0
� 1;25

2
� 0;007854 D 0;00016363 1=m

Für die drei Winkel ˛0 D 15ı (¶ 0,2618), ˛0 D 45ı (¶ 0,7854) und ˛0 D 75ı (¶ 1,3090)
zeigt Abb. 2.70 das Ergebnis der numerischen Berechnung, Schrittweite hier gewählt: �t D
0;5 s.

Ohne Bremswirkung ergeben sich Parabeln (Teilabbildung a), mit Bremswirkung werden
deutlich kürzere Weiten erreicht (Teilabbildung b).

In Abb. 2.71 sind die Bahnen des Projektils mit Berücksichtigung der Luftreibung noch-
mals in vergrößertem Maßstab aufgetragen. Die Abweichungen im Vergleich zum parabel-
förmigen Verlauf sind markant. – Die Genauigkeit des numerischen Verfahrens kann anhand
der Ergebnisse für den Bahnverlauf ohne Lufteinfluss durch Vergleich der analytischen mit
der numerischen Lösung beurteilt werden: Für ˛0 D 45ı ergeben sich nach 60 Sekunden
Flugdauer (frei gewählt) folgende Bahnordinaten (ohne Lufteinfluss):

streng (Wurfparabel): x D 31:820m; y D 14:162m

numerisch: �t D 1;0 sW x D 31:820m; y D 13:868m

numerisch: �t D 0;5 sW x D 31:820m; y D 14:015m

Die Übereinstimmung ist offensichtlich sehr gut. (Die Rechenzeit für eine Flugbahnberech-
nung auf einem gängigen PC beträgt Bruchteile einer Sekunde.)
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Abb. 2.71

Die realen Aufgaben sind um Vielfaches komplizierter. Zu berücksichtigen
wären: Abhängigkeit des Beiwertes cw von der Geschwindigkeit, insbesondere
bei Annäherung an die Schallgeschwindigkeit und darüber liegend (modifiziertes
Widerstandsgesetz), Änderung von � und g mit der Flughöhe, Berücksichtigung
der durch die Erddrehung verursachten Coriolis-Beschleunigung, Einrechnung des
Magnuseffekts und Erfassung der Kreiselwirkung der sich drehenden Projektile
bei schraubenförmigem Zug des Rohrlaufes zwecks Bahnstabilisierung.

Anmerkungen
Es war N. TARTAGLIA (1500–1557), der erste praktische Regeln für die Artillerie ent-
wickelte (1537), wenn man davon absieht, dass bereits ARISTOTELES (384–322 v. Chr.)
versucht hatte, die Bahnkurve als aus drei Abschnitten bestehend zu deuten. G. GALILEI
(1564–1642) gab im Jahre 1638 die Wurfbewegung als Parabel an. Sie galt nach ihm nicht
für Feuerwaffen, weil der Luftwiderstand nicht berücksichtigt sei, wie er richtig erkannte.
Mit den für das Militär so überaus wichtigen Fragen des Geschossverlaufes und der Reich-
weite beschäftigten sich in der Folgezeit alle seinerzeit namhaften Gelehrten der Mechanik:

J. (Jakob) BERNOULLI (1655–1705), B. ROBINS (1707–1751), L. EULER (1702–
1783). – Das Problem bestand für alle im zutreffenden Ansatz der Luftreibung, besonders
für hohe Geschossgeschwindigkeiten. Meist ging man von einem geschwindigkeitspropor-
tionalen Widerstand aus, obwohl I. NEWTON (1643–1727), wohl aufgrund von Versuchen,
das geschwindigkeitsquadratische Gesetz vorgeschlagen hatte. Hierfür gab J.H. LAMBERT
(1728–1777) als erster im Jahre 1766 eine Formel für die Bahnkurve in Form einer Rei-
henentwicklung an. – Zu weiteren Einzelheiten der geschichtlichen Entwicklung sei auf [4]
verwiesen.

In den zurückliegenden 250 Jahren hat sich die Ballistik zu einer immensenWissenschaft
der Wehrtechnik, einschließlich Raketentechnik, entwickelt. C. CRANZ (1858–1945) fass-
te das Wissen Anfang des 20.Jahrhunderts in einem vielbändigen Werk zusammen [15]. Er
gilt als Begründer der modernen Ballistik, vgl. auch [16]. Eine moderne Darstellung findet
man in [17]. – Seit Verfügbarkeit des Computers können in der Ballistik Aufgaben ange-
gangen und gelöst werden, die ehemals wegen der mathematischen Komplexität und des
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Rechenaufwandes unlösbar waren. Heute werden in die Projektile Sensoren und Microchips
integriert, die anhand von Radar- oder GPS-Daten die Flugbahn in engen Grenzen lenken
bzw. korrigieren können.

2.4 Fluidmechanik

Unter dem Begriff ‚Fluid‘ werden hier Flüssigkeiten und Gase zusammengefasst.
Im statischen und dynamischen Verhalten zeigen sie große Ähnlichkeiten. Es gibt
indessen einen fundamentalen Unterschied: In einer Flüssigkeit liegen die Mole-
küle dicht bei dicht, intermolekulare Kräfte bewirken, dass die Moleküle der Flüs-
sigkeit einen im Mittel konstanten gegenseitigen Abstand einhalten. Dieser ist von
der Temperatur und vomDruck nur schwach abhängig. Das bedeutet: Flüssigkeiten
sind nahezu dichtebeständig, also inkompressibel (nicht zusammendrückbar).

Im Gegensatz dazu sind Gase zusammendrückbar (kompressibel), also dichte-
veränderlich. Unter Normalbedingungen enthält jedes Gas mit einem Volumen von
1 dm3 (1 Liter) 2;69 � 1022 Moleküle. – Bezogen auf ihre Größe liegen die Gasmo-
leküle weit auseinander, intermolekulare Kräfte werden erst bei sehr hohem Druck
wirksam, wenn die Gasmoleküle dichter zusammenrücken.

Die Gasmoleküle bewegen sich mit hoher Geschwindigkeit, bis sie irgendwann
zusammenstoßen. Beim Zusammenstoß ändern sie ihre Richtung, wodurch ihre
wirre Zick-Zack-Bewegung zustande kommt. Die mittlere Wegstrecke zwischen
den Zusammenstößen liegt in der Größenordnung 0,0001 mm. Die Stöße wirken
sich als Druck im Gas und als Druck auf die das Gas begrenzende Wandung aus.
Die Temperatur bestimmt die Gaskinetik. Die zugehörigen Gesetze (für ideale Ga-
se) wurden in Bd. I, Abschn. 2.7.3 vorgestellt, sie werden im folgenden Kap. 3
(‚Thermodynamik‘) nochmals ausführlicher behandelt. – In [18–21] und vielen
weiteren Werken wird die Strömungsmechanik wissenschaftlich abgehandelt, sie
gehört zur (Technischen) Mechanik.

Da sich die Dichte einer Flüssigkeit von jener des zugehörigen Gases um Grö-
ßenordnungen unterscheidet, wie etwa zwischen Wasser und Wasserdampf, wirkt
sich die Erdschwere unterschiedlich aus: Flüssigkeiten bilden in einem offenen
Gefäß eine freie Oberfläche, der hydrostatische Druck wird im Wesentlichen von
der Erdschwere verursacht. Gase füllen ein geschlossenes Volumen voll aus. Der
Druck in einem Gas ist im Wesentlichen von der Temperatur abhängig, die Erd-
schwere wirkt sich in diesem Falle nur untergeordnet aus. Allerdings, in einem sehr
großen Volumen, wie innerhalb der Erdatmosphäre, beeinflusst auch die Erdschwe-
re, neben der Temperatur, die Dichte- und Druckverhältnisse im Gasvolumen.

Auf die Behandlung desWasser- und Luftdrucks in den Abschn. 1.8.2 und 1.8.3
wird an dieser Stelle erinnert.



2.4 Fluidmechanik 139

Abb. 2.72

2.4.1 Statik der Fluide

2.4.1.1 Flüssigkeitsdruck (Wasserdruck) in offenen Gefäßen
Abb. 2.72a zeigt einen mit einer Flüssigkeit (Wasser) gefüllten Behälter in Schnitt-
darstellung. Durch das Gewicht der Flüssigkeitssäule wird in der Tiefe x der
Schweredruck

p D p.x/ D � � g � x Œp� D N=m2 D kg=s2 m D Pa (Pascal)

ausgelöst. � ist die Dichte und g die Erdbeschleunigung (g D 9;81m=s2). Man
spricht von hydrostatischem Druck. Jede benachbarte Flüssigkeitssäule verur-
sacht denselben Druck. Dadurch ist der Druck in der betrachteten Tiefe x allseits
gleichgroß, einschließlich des Seitendrucks auf die umfassenden Wände. p ist un-
abhängig von der Größe des Behälters (Teilabbildung b). Dass der Druck mit der
Tiefe zunimmt, ist eine allgemeine Erfahrung und lässt sich mittels zweier unter-
schiedlich hoher Abflussöffnungen in der Behälterwand zeigen, vgl. Teilabbildung
c. Aus Teilabbildung d wird erkennbar, wie ein aus einem Behälter über ein Rohr
austretender Wasserstrahl die Höhe des Wasserspiegels im Behälter wieder er-
reicht, allerdings nicht ganz, weil sich in der Leitung ‚Energieverluste‘ infolge
Fluidreibung aufsummieren: Die sich bewegenden Flüssigkeitsmoleküle verschie-
ben sich gegenseitig, wodurch Reibung zwischen ihnen induziert wird. Das beruht
auf der Zähigkeit des Fluids. Diese ist bei Wasser sehr gering, bei Öl dagegen groß.
Selbst bei Gasen ist ein sehr schwacher Reibungseinfluss messbar.

Obige Formel liefert den hydrostatischen Druck relativ zur freien Oberfläche.
Um den absoluten Druck zu erhalten, muss p um p0 zu

p D p.x/ D p0 C � � g � x

erhöht werden. p0 ist der in Höhe des Flüssigkeitsspiegels herrschende Gasdruck
(Luftdruck). In Höhe einer freien Wasseroberfläche ist p0 der lokale Luftdruck.
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Auf eine Fläche der Größe A in der Wand des Behälters in der Tiefe x wird die
Kraft

F D p.x/ � A D .p0 C � � g � x/ � A
ausgeübt und zwar immer senkrecht (normal) zur Fläche, denn im Ruhezustand
wird vom Fluid keine (tangentiale) Schubkraft auf die Wand abgesetzt, selbstre-
dend auch keine Zugkraft.

2.4.1.2 Luftdruck
Die Lufthülle über der Erdoberfläche kann als großer Behälter aufgefasst werden.
Er reicht bis in den planetarischen Raum hinein, ca. 3000 km hoch. Neben dem
Luftdruck ist auch die Temperatur über die Höhe stark veränderlich.

Ähnlich wie das Gewicht der Wassersäule im Behälter drückt das Gewicht der
Luftsäule auf die Erdoberfläche. Allerdings ist die Dichte in dieser Luftsäule nicht
konstant, sie nimmt mit der Höhe ab. In Meereshöhe beträgt sie etwa 1;25 kg=m3.

An der sinkenden Luftdichte ist auch die mit der Höhe abnehmende Erdanzie-
hung beteiligt, Im Übergang der Atmosphäre zum Weltraum geht die Luftdichte
gegen Null.

In 1000m Höhe sinkt der Luftdruck gegenüber dem Druck in Meereshöhe auf
88%, in 5000m Höhe auf 54%, in 10.000m Höhe auf 30% und in 20.000m Hö-
he auf 7%. In Meereshöhe beträgt der Druck p0 D 101:325Pa (Normaldruck).
Dieser Wert ist etwa gleich 1 bar� 1 at (man spricht vom Atmosphärendruck). Als
Druckeinheit lässt sich ‚bar‘ gut merken: Ein Druck von 3 bar ist z. B. der dreifache
Wert des auf Meereshöhe bezogenen Luftdrucks.

Wird ein mit Quecksilber gefülltes Rohr überkopf verschwenkt und in ein mit
Quecksilber gefülltes offenes Gefäß getaucht, verbleibt im Rohr eine Säule von
ca. 760mm Höhe, oberhalb bildet sich ein Vakuum (Abb. 2.73). Das Gewicht
der Quecksilbersäule steht mit dem auf die Oberfläche des Quecksilbers lastenden
Luftdrucks im Gleichgewicht. Das bietet die Möglichkeit, Luftdruckschwankun-

Abb. 2.73
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gen zu messen. Dieses Messprinzip eines Barometers (Luftdruckmessers) geht auf
E. TORRICELLI (1608–1647) zurück. –

Die Dichte des Wassers liegt gegenüber der Dichte des Quecksilbers im Ver-
hältnis 1000 kg=m3 zu 13.600kg=m3 D 0,0735 niedriger, Wasser ist in diesem
Verhältnis leichter. Bei einem mit Abb. 2.73 vergleichbaren Versuch mit Wasser
stellt sich eine 760=0;0735 D 10:336mm � 10m hohe Wassersäule ein, vgl. 3.
Anmerkung unten.

Gängige Barometer bestehen aus einer luftleeren Metalldose. In Abhängigkeit
vom schwankenden Luftdruck biegt sich der gewellte Dosendeckel. Die Verfor-
mung des Deckels wird über einen Bügel und einen Zeiger auf eine geeichte Skala
übertragen.

1. Anmerkung
Beim Trinken mit dem Strohhalm wird im Mund ein Unterdruck erzeugt. Der Luftdruck
befördert das Getränk in den Mund. – Ein ‚Saugheber‘ arbeitet entsprechend, ebenso ein
Füllfederhalter beim Füllen mit Tinte. – Eine Pumpe kann Wasser nach dem Saugprinzip
nur aus 10m Tiefe fördern (s. o.).

2. Anmerkung
Im Jahre 1657 führte O. v. GUERICKE (1602–1686) seinen berühmten Versuch mit einer aus
zwei kupfernen Halbschalen bestehenden Kugel durch, Durchmesser ca. 41 cm. Die Kugel
war zuvor leer gepumpt worden. Erst acht beidseitig vorgespannte Pferde vermochten die
Kugel zu trennen. Die Vakuumpumpe hat O. v. GUERICKE auch erfunden, sie arbeitete
nach dem Kolbenprinzip (1649). – Seither wurden die unterschiedlichsten Vakuumpumpen
entwickelt. Im Extremfall können Hochvakua bis herunter auf 10�12 mbar (Millibar) erzeugt
werden. Ein absolutes Vakuum ist technisch nicht realisierbar. – Das Vakuum im Weltraum
ist deutlich geringer als die auf Erden technisch erreichbaren Vakua. Man schätzt, dass eine
Million Atome auf 1m3 entfallen, das bedeutet etwa 1 Atom pro cm3. Bei Normaldruck sind
es auf Erden pro cm3 ca. 2;7 � 1019 Luftteilchen!

3. Anmerkung
O. v. GUERICKE führte auch verschiedene Druckexperimente durch, unter anderem das
oben beschriebene mit einem über zehn Meter langen Wasserrohr. Im Jahre 1660 konnte er
hiermit aufgrund des Tiefstandes der Wassersäule ein Unwetter vorhersagen.

4. Anmerkung
ARISTOTELES (384–322 v. Chr.) vertrat die Auffassung, dass es keine Leere gäbe, kein
Vakuum. Zudem sei Luft gewichtslos, ‚wie Feuer‘. Die seinerzeitigen Versuche zeigten das
Gegenteil. Da sich die Römische Kirche die aristotelische Naturlehre zu eigen machte, er-
gaben sich für die Naturforscher Schwierigkeiten: B. PASCAL (1623–1662) führte im Jahre
1648 mittels des von TORRICELLI angegebenen Barometers Reihenversuche in der Ebene
und auf dem Gipfel eines 500 ‚Klafter‘ hohen Berges bei unterschiedlichem Wetter in Ge-
genwart von Zeugen durch, das tat er im Sommer wie imWinter. In der Ebene maß er immer
700mm, auf dem Berg immer 610mm. Das konnte und durfte nicht stimmen und trug ihm
langwierige Auseinandersetzungen mit dem Jesuitenorden in Paris ein.
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Abb. 2.74

2.4.1.3 Auftrieb – Schweben – Tauchen – Schwimmen
Abb. 2.74 zeigt einen in einem Fluid schwebenden prismatischen Körper. Sind h1

und h2 die Druckhöhen unterhalb des Fluidspiegels, sind

p1 D �Fl � g � h1 bzw. p2 D �Fl � g � h2

die hier herrschenden hydrostatischen Drücke. �Fl ist die Dichte des Fluids.
Ist �K die Dichte des Körpers, und A die Fläche des Körpers in den Ebenen 1

und 2, gilt im Falle eines Schwebezustandes die Gleichgewichtsgleichung:

FK C p1 � A � p2 � A D 0 ! �K � g � V D �Fl � g � .h2 � h1/ � A
! �K � g � A � b D �Fl � g � b � A ! �K D �Fl

Denn h2 � h1 D b ist der Höhenunterschied, V D A � b ist das Volumen des
Körpers. – Das bedeutet: Ist das Gewicht des Körpers gleich dem Gewicht des
verdrängten Fluidvolumens, schwebt der Körper. Im Falle �K > �Fl sinkt er, im
Falle �K < �Fl steigt er, der Körper erfährt einen Auftrieb, eine Auftriebskraft.

Dieses auf ARCHIMEDES (287–212 v. Chr.) zurückgehende Prinzip gilt un-
abhängig von der Körperform: Die Auftriebskraft ist gleich dem Gewicht (der
Gewichtskraft) der vom Körper verdrängten Flüssigkeitsmenge und unabhängig
von der Wassertiefe [1].

Beim Schwimmen taucht ein Teil des Körpers aus demWasser heraus. Im Falle
des in Abb. 2.75 skizzierten prismatischen Körpers (seine Breite sei c/ gilt im
Schwimmzustand die Gleichgewichtsgleichung:

Körpergewicht FK D Auftrieb FA

�K � a � b � c D �Fl � a � h � c ! h D �K

�Fl
� b ! b � h D

�
1 � �K

�Fl

�
� b

Das Maß b � h nennt man Freibord.
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Abb. 2.75

1. Anmerkung
Für die Unterwasser-Seefahrt, für die Gewerbe- und Sporttaucher-Technik und für die im
Wasser lebenden Tiere hat das Auftriebsprinzip große Bedeutung. – Fische regulieren ihren
Schwebezustand mittels ihrer Schwimmblase. Für die unterhalb von ca. 500m Tiefe leben-
den Fische herrscht tiefe Dunkelheit, man spricht dann von Tiefseefischen. Es gibt solche,
deren Lebensraum bis in eine Tiefe von 10.000m reicht!

2. Anmerkung
Auch in einem Gas erfahren Körper einen Auftrieb. Wegen der üblichen Gasdichte ist er
eher gering. In der Lufthülle der Erde sinkt zudem die Dichte mit der Höhe (s. o.). In der
Ballon-Technik wird der Gasauftrieb genutzt, ebenso in der Technik der Luftschiffe.

J.A.C. CHARLES (1746–1823) und N.L. ROBERT (1760–1810) gelang im Jahre 1783
die erste bemannte Fahrt mit einem seidenen Wasserstoff-Ballon über die Dauer von 2 Stun-
den und eine Strecke von 36 km. Die Gebrüder MONTGOLFIER (J.M. 1740–1810; J.E.
1745–1799) waren ihnen allerdings mit einem Heißluftballon zwei Monate zuvor gekom-
men. – F. Graf ZEPPELIN (1836–1917) erbaute das erste lenkbare, von Motoren angetrie-
bene, Luftschiff mit starrem Rumpf. Die erste Fahrt mit LZ1 fand im Jahre 1900 statt. –
Ab 2000 wurde der ‚Cargo-Lifter‘ entwickelt. Mit dieser ‚Lighter-Than-Air-Technologie‘
sollten Nutzlasten bis 160 t, später gar bis 400 t, transportiert werden, das Unternehmen
scheiterte.

Abb. 2.76 zeigt einen Gasballon älterer Bauart und Abb. 2.77 das Luftschiff ‚Hinden-
burg‘, das im Jahre 1937 beim Anflug des Flugplatzes Lakehurst (USA) in Brand geriet und
abstürzte (36 Tote). Der Absturz, ca. 100m oberhalb des Landeplatzes, wurde wohl durch
einen Funken infolge elektrostatischer Aufladung der Außenhaut (oder durch einen Blitz)
ausgelöst. Die Kammern des Zeppelins waren mit Wasserstoff gefüllt gewesen, �Wasserstoff D
0;0899 kg=m3. Das ist gegenüber Luft mit �Luft D 1;25 kg=m3 wenig und ergibt demgemäß
einen starken Auftrieb. Beim Landen der ‚Hindenburg‘ wurde Wasserstoff abgelassen.

Heutige Gasballone verwenden nicht-brennbares Helium �Helium D 0;1785 kg=m3.

2.4.1.4 Hydraulische Presse
Abb. 2.78a zeigt einen Kugelbehälter mit einem aufgesetzten Zylinder und Kolben.
Bei einer Verschiebung des Kolbens wird im Fluid (es sei hier eine Flüssigkeit) ein
Druck aufgebaut. Der Kompressionsmodul ist hoch, die Flüssigkeit reagiert auf
den Druck wie eine sehr strenge Feder (Gas reagiert wie eine weiche). Dieses
Verhalten stellt sich bei beliebigen Behälterformen ein (Teilabbildung a/b). Das
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Abb. 2.76

Abb. 2.77

gilt auch für die in Teilabbildung c dargestellte Vorrichtung: An beiden Enden
liegt ein Zylinder mit Kolben. Deren Kolbenflächen seinen A1 und A2, sie seien
voneinander verschieden. Gegen den Kolben 1 wirke die Kraft F1 D p � A1. Am
Kolben 2 wird dadurch die Kraft F2 D p �A2 ausgelöst, wenn p der Druck im Fluid
ist. Wird jeweils p frei gestellt und die beiden Ausdrücke gleich gesetzt, folgt:

1W p D F1

A1

; 2W p D F2

A2

! p D p ! F1

A1

D F2

A2

! F2 D A2

A1

� F1

Ist das Verhältnis A2=A1 groß, vermag eine geringe Kraft F1 eine hohe Kraft F2

zu induzieren. Das ist das Prinzip einer hydraulischen Presse.
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Abb. 2.78

Sieht man von der Kompressibilität des Fluids ab, verhalten sich die Kolben-
wege reziprok zu den Kräften, was auf die Formel

�2 D A1

A2

��1

führt, denn die an beiden Kolben verrichtete Arbeit ist gleich groß:

W1 D F1 ��1; W2 D F2 ��2 D A2

A1

� F1 � A1

A2

��1 D F1 ��1

Die in vielen Bereichen der technischen Hydraulik einwickelten Systeme arbei-
ten nach vorstehendem Prinzip, wobei Hydraulikpumpen und -speicher (auch als
Puffer) mit den unterschiedlichsten Hydraulikölen zum Einsatz kommen, z. B. bei
Handhabungsrobotern mit speziellen Regel- und Steuersystemen, ein weites Ge-
biet des Maschineningenieurwesens.

2.4.1.5 Beanspruchung in Behältern und Rohren – Kesselformel
In Abb. 2.79 ist ein liegender zylindrischer Behälter dargestellt, linksseitig im
Längsschnitt, rechtsseitig in der Ansicht. Es möge sich um einen Gasbehälter han-
deln. Der Innendruck betrage p. Die Querschnittsfläche des Behälters ist � �r2. Auf
die beiden Stirnseiten des Behälters wirken als Resultierende die gegengleichen
Kräfte p � �r2. Sie stehen über die zylindrische Behälterwandung im Gleichge-
wicht.
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Abb. 2.79

Dividiert durch den Umfang ergibt sich die Längskraft pro Umfangseinheit zu
(Teilabbildung b)

ZL D p � �r2

2�r
D 1

2
p � r

In Querrichtung wirkt p radial auf die Behälterwand (Teilabbildung c). Wird ein
Schnitt gelegt, folgt die Ringkraft pro Längeneinheit aus der Gleichgewichtsglei-
chung zu (Teilabbildung c/e):

ZR D p � r

ZR ist doppelt so groß wieZL. Ist t die Blechdicke der Behälterwandung, beträgt
die Ringspannung:

�R D ZR

t
D p � r

t

Man spricht von der ‚Kesselformel‘. – In der Blechhaut eines Kugelbehälters stellt
sich der halbe Wert ein. –

Behälter werden heute geschweißt, ehemals wurden sie genietet. Die genie-
teten Verbindungen mussten gasdicht sein. – Alle Druckbehälter bedürfen eines
Sicherheitsventils! Bei der Auslegung und beim Bau von Behältern aller Art ist
ein umfangreiches Regelwerk unter Aufsicht diverser Ämter zu beachten.

2.4.1.6 Verbundene (‚kommunizierende‘) Röhren
Die Thematik hat nur für Systeme Bedeutung, in denen sich eine Flüssigkeit mit
freier Oberfläche befindet. – Das einfachste und bekannteste Beispiel ist die Gieß-
kanne (Abb. 2.80a). –

In einem offenen System mit einer Flüssigkeit konstanter Dichte, stellt sich ein
ebener Fluidhorizont ein. In Höhe dieses Horizontes ist der Luftdruck gleichhoch.
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Abb. 2.80

Das Prinzip kann im Hochbau für ein Nivellement mit Hilfe eines gefüllten Was-
serschlauchs zwischen solchen Räumen verwendet werden, die untereinander nicht
unmittelbar zugänglich sind. Ehemals war diese ‚Wasserwaage‘ im Bauwesen sehr
verbreitet. –

Handelt es sich um ein U-Rohrsystem mit zwei nichtmischbaren Flüssig-
keiten unterschiedlicher Dichte, stellen sich unterschiedlich hohe Spiegel ein
(Abb. 2.80b). In der Grenzebene der beiden Flüssigkeiten ist der Fluiddruck
(praktisch) gleichgroß. Da der Querschnitt des U-Rohres beidseitig der Grenzflä-
che gleich groß ist, liefert die Gleichgewichtsgleichung an dieser Stelle für das
Verhältnis der Höhen h1 und h2 bzw. jenes der Dichten �1 und �2:

p0 C �1 � g � h1 D p0 C �2 � g � h2 ! h1

h2

D �2

�1

! �1

�2

D h2

h1

Hieraus lässt sich die Dichte des einen Fluids bestimmen, wenn jene des andern
bekannt ist.

In Abb. 2.81 ist das Aufbau der zwei verbreitetsten Wasserversorgungssysteme
skizziert, links mit einer hochliegenden Quelle und benachbartem Hochbehälter in
hügeligem oder bergigem Gelände, rechts mit einem Grundwasserbrunnen und ei-
nem Hochbehälter (Wasserturm) zwecks Aufbau des notwendigen Förderdrucks.
Im zweitgenannten Falle wird der Druck vielfach nicht über einenWasserturm son-
dern über Pumpen erzeugt. Das Rohrleitungssystem muss dem Druck standhalten.
Für die Dimensionierung der Rohre geht man von der oben abgeleiteten Kessel-
formel aus. – In allen Rohrleitungssystemen tritt infolge Reibungsverlusten an
Krümmern und Verengungen ein Druckverlust ein. – Ein Grenzfall geschlossener
Rohrleitungssysteme sind offene Gerinne, wie in Aquädukten, Bächen, Flüssen,
ohne und mit Verbau. Fragen dieser Art werden im Wasserbau (in der Hydraulik
innerhalb des Bauingenieurwesens) bearbeitet.
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Abb. 2.81

2.4.1.7 Oberflächenspannung – Kapillarität
Vermöge der zwischen den Molekülen wirkenden intermolekularen Anziehungs-
kräfte haften die Moleküle aneinander, bei fester Materie fest, bei flüssiger weniger
fest, bei gasförmiger nur dann, wenn die Moleküle infolge eines sehr hohen Drucks
eng zusammen gepresst liegen. Man nennt diese Haftung zwischen gleicharti-
gen Molekülen Kohäsion. Abb. 2.82a zeigt Flüssigkeitsmoleküle mit einer freien
Grenzfläche (in schematischer Darstellung). Entlang der Grenzfläche werden die
Randmoleküle in das Innere gezogen.

Die intermolekularen Kräfte zwischen den Molekülen unterschiedlicher Ma-
terie wirken ebenfalls wechselseitig anziehend. Ihre Größe ist von der Stoffpaa-
rung abhängig. Die hiermit einhergehende Haftung bezeichnet man als Adhäsion.
Hierauf beruht beispielsweise die Klebung zwischen unterschiedlichen Feststof-
fen, auch Beschichtung und Lackierung. – Die adhäsive Wirkung zwischen den

Abb. 2.82
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Molekülen einer Flüssigkeit und einem Gas, z. B. zwischen Wasser und Luft, ist
sehr gering, sodass in der Grenzfläche zwischen ihnen die kohäsive Wirkung der
Flüssigkeitsmoleküle (nach innen) gegenüber den adhäsiven zwischen den Mo-
lekülen der Flüssigkeit und jenen der Luft weit überwiegt. Infolge der Kohäsion
bleibt die freie Oberfläche der Flüssigkeit geschlossen, die Moleküle der Ober-
fläche bilden quasi eine Membran, in dieser herrscht die Oberflächenspannung � .
� ist eine für die benachbarten Partner typische Stoffkonstante in der Dimensi-
on Kraft/Längeneinheit; Beispiele: Wasser gegen Luft: 0,073N=m, Alkohol gegen
Luft: 0,025N=m.

Für die Grenzfläche zwischen Flüssigkeiten, die sich nicht mischen, gilt das
Gesagte ebenfalls; Beispiele: Öl gegen Wasser: 0,020N=m, Quecksilber gegen
Wasser: 0,375N=m.

Bei Schwerelosigkeit formt sich jeder Flüssigkeitskörper zu einer Kugel. Die
Kugel weist von allen Körperformen das größte Volumen bei kleinster Oberfläche
auf. Regentropfen verformen sich beim Fallen infolge des Luftwiderstandes etwas
länglich, stromlinienförmig. Fein verstäubte Flüssigkeitstropfen haben dagegen im
Schwebezustand näherungsweise Kugelform.

Im Falle einer gekrümmten Grenzfläche resultiert aus der Oberflächenspannung
ein nach innen gerichteter Zug p. Er ‚hält die Flüssigkeit zusammen‘:

p D � �
�

1

r1

C 1

r2

�

Die Wirkungsweise der Oberflächenspannung ist in Abb. 2.82b, c veranschaulicht.
Ist die Oberfläche kugelförmig, gilt p D �=2r , ist sie zylindrisch p D �=r .

Die Formeln korrespondieren mit der oben abgeleiteten ‚Kesselformel‘. r ist der
lokale Krümmungsradius der Flüssigkeitsoberfläche (der ‚Flüssigkeitsmembran‘).

Liegt ein Flüssigkeitstropfen auf einer Platte, z. B. auf einer Glasplatte, ist die
sich einstellende Tropfenform davon abhängig, ob die Adhäsionskraft zwischen
dem Plattenmaterial und der Flüssigkeit größer oder kleiner als die Kohäsionskraft
innerhalb der Flüssigkeit ist. Im erstgenannten Falle (FAdhäsion > FKohäsion) wird die
Flüssigkeit auf die Platte gezogen, sie breitet sich flach aus, es kommt zu einer Be-
netzung (Abb. 2.83a1), im zweitgenannten Falle (FAdhäsion < FKohäsion) dominiert
die nach innen gerichtete kohäsive Haftung zwischen den Flüssigkeitsmolekülen,
sie ziehen sich zu einem Tropfen zusammen, es liegt der Fall einer Nichtbenet-
zung vor (Abb. 2.83a2). Genau betrachtet ist der Übergangspunkt dreiphasig. Die
Wölbung des Tropfens auf der flachen Basis nennt man Meniskus.

Wird ein oben offenes Glasrohr (mit sauberer Innenwand) in eine Flüssigkeit
getaucht, kommt es zu einer kapillaren Hebung oder Senkung, wie in Abb. 2.83b
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Abb. 2.83

erläutert. Hebung tritt bei einer benetzenden Flüssigkeit ein (z. B. beiWasser), Sen-
kung bei einer nicht benetzenden Flüssigkeit (z. B. bei Quecksilber). Die Höhe der
Hebung bzw. Senkung ist der Grenzflächenspannung zwischen der Flüssigkeit und
dem Röhrchenmaterial proportional. Sie ist reziprok zum Durchmesser des Röhr-
chens. Ist der Durchmesser gering, stellt sich eine große Höhendifferenz ein. Man
spricht bei dieser Erscheinung von Kapillarität.

1. Anmerkung
Da die Oberflächenspannung von Wasser relativ groß ist, können ‚Wasserläufer‘ (es handelt
sich um ein Insekt) dank ihrer vier langen Mittel- und Hinterbeine auf demWasser laufen oh-
ne einzusinken. Das lässt sich auch mit dünnen Rasierklingen und feinen Nadeln erreichen. –
Geschmolzene Metalle zeichnen sich durch eine hohe Oberflächenspannung aus, sie ist ca.
3- bis 4-mal höher als bei Quecksilber. – Verunreinigungen verändern die Oberflächenspan-
nung stark. – Durch Tenside, die in Spül- und Waschmitteln und in Shampoos enthalten sind,
tritt eine ‚Entspannung‘ des Wassers ein: Die Oberflächenspannung wird herabgesetzt, auch
jene zwischen zwei flüssigen Phasen wie Wasser und Fett. Die adhäsive Haftung von Par-
tikeln (Schmutz) auf Gegenständen und untereinander wird verringert bis aufgehoben, sie
verbleiben als Suspension schwebend im Wasser. Das Wasser läuft beim Trocknen des Ge-
genstandes besser und ohne Rückstände ab. Heutige Tenside werden nahezu ausschließlich
synthetisch hergestellt, ehemals nutze man aus Tierknochen gesiedete Seife.

2. Anmerkung
Auf der kapillaren Wirkung beruht das Aufsteigen von Wasser aus dem Wurzelwerk der
Pflanzen über Stängel bzw. Stamm und Äste ins Blatt- und Nadelwerk der Bäume. Die Steig-
höhe in Bäumen ist auf ca. 130m begrenzt. – Auch in Spalten, in porösen Materialien (Sand,
Mauerwerk), in Papier, in Filze und in Schwämmen wirkt sich die Kapillarität in einer (häu-
fig spontanen) Durchfeuchtung aus, als handle es sich um eine Saugwirkung. – Auch für die
Atmung der Lunge hat die Kapillarität Bedeutung.
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Abb. 2.84

2.4.2 Dynamik der Fluide

2.4.2.1 Kontinuitätsgleichung
Wie ausgeführt, können Flüssigkeiten als inkompressibel betrachtet werden. Das
gilt auch für strömende Gase, solange ihre Geschwindigkeit deutlich unter der
Schallgeschwindigkeit des Gases liegt, etwa unter 30%. Diese Bedingung ist für
die natürlichen Luftströmungen oberhalb der Erdoberfläche gut erfüllt, selbst bei
Starkwind und Orkan.

Unter der Annahme, dass vorstehende Bedingung erfüllt ist, können Gase wie
inkompressible Fluide untersucht werden, hiervon wird im Folgenden bei der Be-
handlung der Strömungsprobleme in Luft ausgegangen.

Stromlinien kennzeichnen die Richtung der lokalen Strömungsgeschwindig-
keit. Wo die Linien eng liegen, ist die Strömungsgeschwindigkeit hoch, wo sie
weiter auseinander liegen, ist sie gering, vgl. Abb. 2.84. Stromlinien fasst man zu
Stromröhren zusammen.

In einem realen Rohr wird die Strömung in erster Näherung als imMittel gleich-
förmig verteilt betrachtet. Die Strömungsgeschwindigkeit (v) hat dann die Bedeu-
tung eines Mittelwertes. Abb. 2.85a zeigt eine Stromröhre veränderlichen Quer-
schnitts. Im Falle einer gleichförmigen stationären Strömung gilt:

A1 � v1 D A2 � v2

Abb. 2.85
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Die Gleichung besagt: Pro Zeiteinheit, z. B. pro Sekunde, tritt gleichviel fluide
Masse durch jeden Querschnitt hindurch. Andernfalls wäre der Massenerhaltungs-
satz verletzt.

Nichtstationäre Strömungen liegen in schwingenden fluiden Systemen vor,
auch bei solchen mit Wellencharakter. Sie bleiben hier ausgeklammert.

Ist � die Dichte und dV das Volumen eines infinitesimalen Fluidelementes in-
nerhalb einer Stromröhre, wie in Abb. 2.85b angedeutet, so ist dm D � � dV die
infinitesimale Fluidmasse, die sich mit der (gemittelten) Geschwindigkeit v über
die Strecke ds bewegt. An der Stelle der Linienkoordinate s habe die Stromröhre
den Querschnitt A, dann hat das infinitesimale Volumen die Größe dV D A � ds

und es gilt:

dm D � � A � ds

Wird der Ausdruck durch die zum infinitesimalenWeg ds gehörende infinitesimale
Zeitspanne dt dividiert, ergibt sich:

dm

dt
D � � A � ds

dt
D � � A � v

v D ds=dt ist die Geschwindigkeit. Die durch jeden Querschnitt A pro Zeitein-
heit strömende Fluidmenge (-masse) muss im Falle einer stationären Strömung
konstant sein. Das ist ihr Kennzeichen. Das bedeutet:

dm

dt
D � � A � v D konst: ! Pm

�
D A � v

Der Punkt kennzeichnet die Ableitung nach der Zeit. Die linke Seite der Gleichung
ist eine Konstante. Das führt (wie bereits oben angeschrieben) auf:

A � v D konst: .Ai � vi D konst:/

Man spricht von der Kontinuitätsgleichung. Durch den Querschnitt A strömt
während der Zeitdauer t im Falle einer stationären Strömung die Fluidmenge

m D � � A � v � t ! m=t D � � A � v
m=t ist der Massenstrom pro Zeiteinheit.

Beispiel
Durch eine Ölleitung mit einem Rohr-Innendurchmesser 0,90m sollen 4;0 � 106 kg Öl pro
Stunde transportiert werden. Gesucht ist die Fördergeschwindigkeit. Die Dichte des Öls be-
trage: �Öl D 900 kg=m3. Lösung: Der Querschnitt des Rohres beträgt:

A D � � d2=4 D � � 0;92=4 D 0;636m2
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Der Massenstrom pro Sekunde folgt zu:

m=t D 4;0 � 106 kg=h D 4;0 � 106=.60 � 60 s/ D 1111 kg=s:

Nach Umstellung der obigen Formel berechnet sich die gesuchte Geschwindigkeit zu:

v D m=t

A � � D
1111

0;636 � 900
D 1;74m=s

2.4.2.2 Energie-Gleichung – Bernoulli-Gleichung
Mit der Strömung, also der Bewegung des Fluids, gehen Energieumwandlungen
einher. Das sei an dem in Abb. 2.86a (oben) dargestellten System erläutert. Es be-
steht aus zwei unterschiedlichen Zylindern mit Kolben und einer sie verbindenden
Rohrleitung. Das Fluid unterliegt der Erdschwere. Bei einer Verschiebung des un-
teren Kolbens um s1, wird das Fluid nach oben verdrängt, entsprechend verschiebt
sich der obere Kolben um s2. Hierbei wird Arbeit verrichtet. Arbeit ist gleich Kraft
mal Weg. F D p � A ist die Kraft, p ist der vom Kolben ausgelöste Druck. Mit
dem Kolbenweg s folgt die Kolbenarbeit zu W D F � s D p � A � s. Die Differenz
der von den beiden Kolben verrichteten Arbeiten beträgt:

p1 � A1 � s1 � p2 � A2 � s2 D p1 � V1 � p2 � V2 D .p1 � p2/ � V
Hierbei wird das Fluid als inkompressibel angenommen, das bedeutet: Die in den
beiden Kolben verdrängten Volumina sind gleichgroß. p1 ist der Druck des Fluids
gegen den unteren Kolben und p2 der Druck gegen den oberen.

Abb. 2.86
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Die Fluidmasse � � V wird um die Höhendifferenz .h2 � h1/ gegen die Gravi-
tation bewegt. Das bedeutet eine Zunahme der Lageenergie (potentiellen Energie)
um

� � V � g � .h2 � h1/; g D 9;81m=s2

Die Geschwindigkeiten der beiden Kolben seien v1 bzw. v2. Die Differenz der
zugehörigen Bewegungsenergien (kinetischen Energien) ist:

� � V
�

v2
2

2
� v2

1

2

�
D � � V

2
.v2

2 � v2
1/

Hinweis
Die kinetische Energie berechnet sich zu: Masse mal Geschwindigkeit zum Quadrat, divi-
diert durch zwei: m � v2=2.

Infolge der inneren Reibungseffekte erwärmt sich das bewegte Fluid. Wärme
ist eine Energieform (vgl. Kap. 3, ‚Thermodynamik‘). Dieser Anteil wird zu Q �V
angesetzt. Den Arbeiten an den Zylindern stehen damit folgende Energieanteile
gegenüber:

.p1 � p2/ � V D � � V � g � .h2 � h1/C � � V
2

.v2
2 � v2

1/CQ � V

Nach Division durch V und Umstellung folgt aus der Energiebilanzierung:

.p2 � p1/C � � g � .h2 � h1/C �

2
.v2

2 � v2
1/CQ D 0

Im Falle Q D 0 lautet die Gleichung:

p2 C � � g � h2 C �

2
v2

2 D p1 C � � g � h1 C �

2
v2

1

In dieser Form spricht man von der Bernoulli-Gleichung.

Anmerkung
Vorstehende Gleichung geht auf D. (Daniel) BERNOULLI (1700–1782) zurück, der sie im
Jahre 1738 in seinem Werk ‚Hydrodynamica‘ veröffentlichte. Zuvor, im Jahre 1733, hatte
er das Manuskript des Buches der St.-Petersburger Akademie übergeben. Er kannte noch
nicht den Energiebegriff und sprach vom ‚Prinzip vom Erhalt der lebendigen Kräfte‘. – Zur
Frage der Priorität gegenüber seinem Vater, J. (Johann) BERNOULLI (1667–1748), in des-
sen Werk ‚Hydraulica‘ aus dem Jahre 1732 die Gleichung auch abgeleitet wurde und zur
Frage, ob das letztgenannte Werk von J. BERNOULLI vordatiert wurde, wird auf [4] ver-
wiesen. Festzuhalten bleibt, dass in beiden Werken die Hydromechanik/Hydraulik erstmals
umfassend und in großer Tiefe behandelt worden ist.
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Abb. 2.87

Für die in Abb. 2.87a skizzierte Strömung durch ein horizontal liegendes Rohr
mit einer Verengung gilt im Falle eines reibungsfreien Fluids (wegen h2�h1 D 0):

.p2 � p1/C �

2
.v2

2 � v2
1/ D 0 ! p2 C �

2
v2

2 D p1 C �

2
v2

1

Mit der Kontinuitätsgleichung

A1 � v1 D A2 � v2 ! v2 D A1

A2

� v1

lässt sich aus der Bernoulli-Gleichung die Druckdifferenz

�p D p2 � p1 D �

2

"
1 �

�
A1

A2

�2
#
� v2

1 D
�

2

"
1 �

�
d1

d2

�4
#
� v2

1

ableiten. d1 bzw. d2 sind die Rohrdurchmesser der beiden Rohrabschnitte.
Schließt man an die Rohrabschnitte 1 und 2 je ein Steigrohr an, stellen sich

in diesen wegen der unterschiedlichen Drücke unterschiedliche Steighöhen ein,
vgl. Teilabbildung b. Wo der Querschnitt eng und demgemäß die Geschwindigkeit
hoch ist, ist der Druck gering. Das Entsprechende gilt umgekehrt. Führt man den
Versuch durch, erkennt man, dass sich im rückwärtigen Rohrabschnitt eine etwas
geringere Druckhöhe einstellt. Das beruht auf den Energie-‚Verlusten‘ im strömen-
den Fluid durch Reibung.

Beispiel
Aus einem großen Behälter wird Wasser entnommen. Die Höhendifferenz zwischen dem
Wasserstand und der Austrittsöffnung sei �h D h2 � h1 (Abb. 2.88). Es fließe ständig
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Abb. 2.88

Wasser nach, die Füllhöhe im Behälter ändere sich dadurch nicht, die Sinkgeschwindigkeit
ist dann Null (v2 D 0). Die Luftdruckwerte in den Höhen 1 und 2 seien nahezu gleich
(p1 � p2 D p0). Die Bernoulli-Gleichung ergibt:

.p2 � p1/C � � g � .h2 � h1/C �

2
.v2

2 � v2
1/ D 0

! .p0 � p0/C � � g ��hC �

2
.0 � v2

1/ D 0 ! v1 D
p

2 g ��h

Infolge diverser Reibungseinflüsse im Rohrleitungssystem liegt die Austrittsgeschwindigkeit
real etwas niedriger. Die Einflüsse erfasst man durch die Ausflusszahl 
, dann gilt:

v1 D 
 �
p

2 g ��h


 wird in hydraulischen Versuchen ermittelt. Der Beiwert ist zudem von der Art der Aus-
flussmündung abhängig, scharfkantig: 0,60, abgerundet: 0,95.

Wie die Ausflussformel zeigt, geht der Querschnitt des Behälters nicht ein, nur die Füll-
höhe. Bei sehr großer Höhendifferenz wäre der unterschiedliche Luftdruck in diesen Höhen
einzurechnen.

Die Ausflussmenge folgt aus der Kontinuitätsgleichung:

m D � �A1 � v1 � t

A1 ist der Ausflussquerschnitt. �1, A1 und v1 sind Konstante. t ist die Ausflussdauer:
tAusflussdauer. Zusammengefasst gilt:

m D � � A1 � 
 �
p

2 g ��h � tAusflussdauer
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Gegenüber der Mündung befinde sich eine starre Wand. Gegen diese ‚schießt‘ der Was-
serstrahl, vgl. die Abbildung. Dadurch wird an dieser Stelle ein Druck ausgelöst. Auf die
Schnitte 1 und 3 des Freistrahls wird die Bernoulli-Gleichung angewandt. Schnitt 1 liegt un-
mittelbar hinter der Mündung, die Geschwindigkeit ist hier v1. Schnitt 3 fällt mit der Wand
zusammen. Betrachtet werde der Mittelfaden des Strahls, er liegt horizontal, das bedeutet:
h3 � h1 D 0. Der Stromfaden trifft die Wand frontal, die Geschwindigkeit des Fadens sinkt
auf Null: v3 D 0. Den lokalen Druck im Auftreffpunkt bezeichnet man als ‚Staudruck‘,
abgekürzt mit q: p3 D p0 C q.

Aus der Bernoulli-Gleichung lässt sich der Staudruck nach Umformung ableiten:

.q C p0 � p0/C � � g � .0/C �

2
.0 � v2

1/ D 0 ! q � �

2
v2

1 D 0

! q D �

2
v2; v D v1

Die demMittelfaden benachbarten Stromfäden werden zur Seite hin abgelenkt. Dadurch ent-
steht ein um das Zentrum gebündelter Druckbereich. Die resultierende Strahlkraft ist gleich
dem Staudruck multipliziert mit der Querschnittsfläche des Strahls:

F D q �A1:

2.4.2.3 Ideale Strömung – Reale Strömung –
Strömungswiderstand

Wird eine Strömung als reibungsfrei unterstellt, spricht man von einer idealen
Strömung. Hierfür existiert eine auf L. EULER (1707–1783) zurück gehende
Theorie (Potential-Theorie der idealen Strömung). Nach dieser Theorie gelingen
für einige Umströmungsprobleme geschlossene analytische Lösungen. Hierzu ge-
hört die Umströmung eines Kreiszylinders. Abb. 2.89a1 zeigt die zugehörigen
Strömungslinien. Wie erkennbar, ist das Strömungsbild auf der Luv- und Leeseite
gegengleich.

Der ungestörte Bereich weit vor dem Zylinder werde durch den Index 0 ge-
kennzeichnet, entsprechend der Druck mit p0 und die Geschwindigkeit mit v0. Die

Abb. 2.89
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Bewegung der Fluidpartikel innerhalb des mittigen Stromfadens wird im luvseiti-
gen Staupunkt (1) auf Null abgebremst: v1 D 0. Aus der Bernoulli-Gleichung lässt
sich für diese Stelle im Verhältnis zum vorgelagerten ungestörten Bereich folgern:

.p1 � p0/C �

2
.v2

1 � v2
0/ D 0 mit v1 D 0 ! p1 D �

2
v2

0 C p0 D q C p0

Somit steigt der Druck im Staupunkt gegenüber dem Umgebungsdruck (p0) um:

q D �

2
v2

0

q ist der bereits im vorangegangenen Beispiel eingeführte Staudruck, also die
Druckerhöhung im Staupunkt gegenüber dem (Luft-)Druck im ungestörten Um-
feld. Die Stromfäden, die dem mittigen Stromfaden benachbart sind, werden nach
beiden Seiten abgedrängt. An den Flanken des Zylinders (Punkt 2) erreicht die
Geschwindigkeit nach der Potentialtheorie mit v2 D 2 � v0 ihren höchsten Wert.
Bezogen auf den Staupunkt (1) lautet die Bernoulli-Gleichung für diesen Punkt:

.p2 � p1/C �

2
.v2

2 � v2
1/ D 0 mit v1 D 0

! p2 D ��

2
v2

2 C p1 D ��

2
.2 � v0/2 C q C p0

D ��

2
� 4 � v2

0 C
�

2
v2

0 C p0 D �3 � �
2

v2
0 C p0 D �3q C p0

Im Vergleich zum Staupunkt tritt im Punkt 2 ein negativer Druck auf (ein Unter-
druck D Sog), der dem Betrage nach dreimal so groß ist wie die Druckerhöhung
im Staupunkt, also der Staudruck. Abb. 2.89a2 zeigt den vollständigen Druckver-
lauf über den Umfang des Kreiszylinders. Aus der Verteilung werden die hohen
Sogkräfte an den beidseitigen Flanken deutlich. Die Druckverteilung auf der wind-
abgewandten Seite, der Leeseite, entspricht jener auf der Luvseite. In Teilabbil-
dung a3 sind die aus dem Umfangsdruck auf die Kreiskontur resultierenden Längs-
und Querkräfte eingezeichnet. Sie stehen im Gleichgewicht: Auf den Körper wirkt
demnach keine Strömungskraft! Man spricht vom d’Alembert’schen Paradoxon
(nach J. d’ALEMBERT (1717–1783)). Es ist einsichtig, dass die Lösung in dieser
Form nicht stimmen kann. Grund hierfür ist die Annahme, dass es sich um eine
ideale, also reibungsfreie Strömung handelt.

Abb. 2.89b1 zeigt die gemessene Druckverteilung in einer realen Strömung:
Auf der Luvseite und entlang der Flanken korrespondiert die Druckverteilung mit
jener nach der Potentialtheorie, dagegen nicht auf der Leeseite. Hier herrscht Sog.
Aus der Druckkraft auf der Luvseite und der Sogkraft auf der Leeseite baut sich
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die Strömungskraft auf. Der Körper reagiert mit einem gleichgroßen Strömungs-
widerstand. Dieser berechnet sich zu:

FW D cW � �
2

v2
0 � A

cW ist der Strömungsbeiwert und A die Staufläche senkrecht zur Hauptströmungs-
richtung. Die Strömungskraft wächst mit demQuadrat der Geschwindigkeit! Dabei
sind die Fälle ‚Strömung bewegt sich um einen ruhenden Körper‘ oder ‚Körper
bewegt sich in einem ruhenden Fluid‘ äquivalent. – Mit der sogen. Navier-Stokes-
Gleichung (nach C.H. NAVIER (1785–1836) und C.G. STOKES (1819–1903))
steht eine gegenüber der Potentialtheorie strengere Theorie für reibungsbehaftete
(viskose) Fluide zur Verfügung. Wegen ihrer mathematischen Komplexität gelin-
gen nur wenige praktisch verwertbare analytische Lösungen. Numerische Lösun-
gen sind dank Computereinsatz zwischenzeitlich möglich geworden. Letztendlich
ist die strömungsmechanische Forschung nach wie vor auf Versuche im Wasser-
oder Windkanal angewiesen. Für die Ausmessung der cW -Werte steht eine zu-
verlässige Versuchstechnik zur Verfügung, auch viel Erfahrung in den beteiligten
aero-dynamischen Versuchsanstalten. Die Versuche werden in den Versuchsstel-
len an strömungsmechanisch äquivalenten Kleinkörper-Modellen durchgeführt. Es
gibt inzwischen Windkanäle, in denen komplette PKW im Maßstab 1 W 1 unter-
sucht werden können.

Abb. 2.90 zeigt praktische Beispiele für cW -Werte und Druckverteilungen:
Teilabbildungen a/b: cW -Werte für einzelne Körper.
Teilabbildung c: cW -Werte für PKW unterschiedlicher Jahrgänge.
Teilabbildung d: Druck-Sog-Verteilung um einen PKW. Die Verteilung ist stark

von der Karosserieform abhängig. Typisch und bedeutsam ist die Erkenntnis, dass
über die ganze Länge des PKW oberseitig überwiegend Sogkräfte wirken, die das
Fahrzeug von der Fahrbahn abzuheben trachten. Das Eigengewicht wirkt dem ent-
gegen. Gleichwohl, bei sehr hoher Geschwindigkeit besteht die Gefahr, dass die
Bodenhaftung verloren geht (in Kurven steigt sie dann zusätzlich und bei Seiten-
wind). Durch einen Heckspoiler gelingt es, rückwärtig einen vertikalen Druck in
Richtung auf die Fahrbahn zu induzieren. Im Motorsport haben die angesproche-
nen Probleme große Bedeutung, inzwischen auch bei Hochgeschwindigkeitszü-
gen: Bei den angestrebten hohen Zuggeschwindigkeiten von 350 bis 400 km/h
(und gleichzeitiger Leichtbauweise) muss ein Abheben des Zuges aus den Gleisen
absolut ausgeschlossen bleiben.

Teilabbildung e: Druck-Sog-Verteilung um eine geschlossene Halle mit Giebel-
dach. Auch hier sind es die Sogkräfte, insbesondere bei flach geneigten Dächern
und Flachdächern, bevorzugt an den Kanten und Ecken, die bei der statischen



160 2 Mechanik II: Anwendungen

Abb. 2.90

Abb. 2.91

und konstruktiven Durchbildung eingehend berücksichtigt werden müssen, um
Schäden in diesen Bereichen auszuschließen. Die Erfahrung lehrt, dass sich ers-
te Sturmschäden zunächst immer entlang der Ränder einstellen und sich dann von
hieraus fortpflanzen. – Für die unterschiedlichen Bauformen existieren in den Re-
gelwerken des Konstruktiven Ingenieurbaus ausführliche Angaben (z. B. in DIN
1055, Teil 4).

In Abb. 2.91 sind zwei gemessene (hier nachgezeichnete) Strömungsfelder
um einen Kreiszylinder einander gegenüber gestellt. Das Bild links steht für eine
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Abb. 2.92

‚schleichende‘ Strömung sehr geringer Geschwindigkeit. Man spricht bei dieser
gleichförmig geschichteten Strömung von einer laminaren. Im Gegensatz dazu
zeigt das rechte Bild eine turbulente Strömung: Im Nachlauf erkennt man Wirbel,
die sich wechselweise von der Kontur ablösen. Ursache dafür ist die zwischen
den Stromfäden wirkende Reibung, insbesondere jene zwischen dem Fluid und
der Oberfläche der kreisförmigen Kontur: Unmittelbar auf der rauen Oberfläche
wird die Bewegung des Fluids auf Null abgebremst. Innerhalb einer sehr dünnen
Grenzschicht wächst die Geschwindigkeit von Null auf den Wert der regulären
Umströmung an. Das ist der Ansatz der auf L. PRANDTL (1875–1953) zurückge-
henden Grenzschichttheorie. Als Folge des großen Geschwindigkeitsunterschieds
innerhalb der Grenzschicht wird die Strömung in dieser instabil: Aus ihr heraus
rollen sich die Wirbel an den Flanken der Kreisstruktur im Wechsel auf. Hat der
umströmte Körper Kanten, wird die Strömung an diesen lokal instabil und löst
sich regellos turbulent ab. Man spricht in diesem Falle von Abreißströmung an
einer Abreißkante.

In Abb. 2.92 sind unterschiedliche Strömungszustände gegenübergestellt:
Teilabbildung a: Laminare Strömung in einem Rohr mit parabolischer Ge-

schwindigkeitsverteilung; darunter Teilabbildung b: Turbulente Rohrströmung
(die maximale Geschwindigkeit liegt niedriger, ihr Verlauf innerhalb des Rohr-
querschnittes ist gedrungener als bei laminarer Strömung (bei im Mittel gleicher
Geschwindigkeit).

In den Teilabbildungen c bis f sind Beispiele für wirbelbehaftete Abreißströ-
mungen dargestellt: c Strömung über eine Sprungstelle innerhalb einer Einengung
hinweg, Teilabbildung d: Strömung um ein kantiges Hindernis, e: Strömung durch
eine Einengung mit anschließender Aufweitung und f: Strömung über eine Barrie-
re in einem offenen Gerinne. Alle diese Probleme haben praktische Bedeutung
und werden in der technischen Strömungslehre/Hydraulik behandelt. Sie fallen
übergeordnet in das Gebiet der Strömungsmechanik, hierzu gehört auch die Flug-
mechanik.
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Abb. 2.93

2.4.2.4 Flugmechanik
Die Flugmechanik bildet die Grundlage für eines der größten Technikfelder über-
haupt, die Luft- und Raumfahrttechnik [22–24]. Auch in diesem Falle steht die
Bernoulli-Gleichung am Anfang. Mit einem schräg im Luftstrom liegenden ebenen
Brett kann man nicht fliegen: Im Nachlauf bildet sich ein verwirbeltes unruhiges
Turbulenzfeld. Ein definierter Auftrieb kommt nicht zustande (Abb. 2.93a).

Hat das Brett dagegen eine gewölbte, windschnittige Form geringer Dicke
strömt das Fluid, also die Luft, unter- und oberseitig laminar ab. Nur an der
scharfen Hinterkante bildet sich eine schmale Wirbelschleppe (Teilabbildung c).
Durch die Wölbung des Profils nach oben liegen die Stromfäden oberseitig dich-
ter, die Strömungsgeschwindigkeit ist hier höher als im ungestörten Bereich vor
dem Profil. Gemäß der Bernoulli-Gleichung herrscht oberseitig Unterdruck (Sog).
Unterseitig stellt sich bei einem schwachen Anstellwinkel ein geringer Überdruck
ein. Aus dem Unterdruck oberseitig und dem Überdruck unterseitig baut sich
ein resultierender Auftrieb auf (FA). Dank der schlanken Stromlinienform des
Profils ist der Strömungswiderstand selbst gering (FW , als Rücktrieb bezeichnet).
Zusammengefasst gilt:

Aerodynamischer Auftrieb (lift): FA D cA � �v2

2
� A

Aerodynamischer Widerstand (drag): FW D cW � �v2

2
� A



2.4 Fluidmechanik 163

Abb. 2.94

Die Beiwerte cA und cW beziehen sich auf die Tragflügelfläche A. A ist die Fläche
des Flügels in der Aufsicht (!), ggf. bezogen auf die Einheitslänge des Flügels in
Richtung der Längserstreckung des Profils. Es kommen im Flugwesen die unter-
schiedlichsten Profile zum Einsatz. Zwischen ihren jeweiligen Vor- und Nachteilen
muss ein Kompromiss gefunden werden. Die cA- und cW -Werte werden im Wind-
kanal vermessen. Der cW -Wert liegt i. Allg. deutlich niedriger als der cA-Wert.

Es gibt für jedes Profil einen bestimmten (steilen) Anstellwinkel ˛, ab welchem
der laminare Strömungsnachlauf in einen turbulenten umschlägt: Die Strömung
reißt ab. Man spricht bei diesem Strömungsabriss auch von Stall (engl.). Der Trag-
flügel verliert seine stabile Auftriebseigenschaft (Abb. 2.93b).

Die Profile werden vielfach mit vorder- oder/und rückseitigen Klappen aus-
gestattet. Je nach Lage erfüllen sie unterschiedliche Funktionen: Erhöhung des
Auftriebs beim Start oder des Widerstands bei der Landung. Mit ihnen lässt sich
auch der Stallwinkel anheben.

Abb. 2.94a zeigt die prinzipielle Druck-Sogverteilung um ein Profil. Der Ver-
lauf ist in ausgeprägter Weise vom Anstellwinkel abhängig. Zu jedem Winkel ˛

gehört ein Auftriebsbeiwert cA und ein Widerstandsbeiwert cW . In Teilabbildung
b sind Auftriebskraft FA und Widerstandskraft FW definiert. Werden die Beiwer-
te über dem Anstellwinkel aufgetragen, ergeben sich profil-typische Diagramme
(Teilabbildung c). Der kritische Stall-Winkel liegt dort, wo die cA-Kurve ihr Ma-
ximum erreicht, anschließend ‚stürzt‘ der Wert auf Null ab. Für die Auslegung des
Flugobjekts bedarf es als weiterer Information noch der Angabe des sogenann-
ten Druckmittelpunktes, in welchem die Resultierende aus FA und FW am Profil
angreift, auch sie wird im Windkanal bestimmt.
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FA, FW und Druckmittelpunkt sind auch von der Streckung und Pfeilung der
Tragfläche abhängig. Eine hohe Streckung (schlanker Flügel) liefert einen relativ
hohen cA-Wert, eine geringe Streckung (stumpfer Flügel) einen relativ niedrigen.
Zu dem Luftwiderstand (cW ) addiert sich als Folge des Randwirbel am Tragflä-
chenende und weiterer Einflüsse ein zusätzlicher Widerstand, er wird in einem
separaten cW i -Wert zusammengefasst.

Die hier erläuterten aerodynamischen Auftriebs- und Widerstandskräfte sind
bei allen Flugobjekten und ihren Manövern in unterschiedlicher Art und Weise
wirksam. – Sie haben bei der Auslegung und Gestaltung der Profile von Propel-
lern, Turbinenschaufeln, Schiffsschrauben, Windmühlenflügel und den Rotorblät-
tern von Windkraftanlagen eine gleichgroße Bedeutung.

Für die mit Überschallgeschwindigkeit fliegenden Objekte gilt eine über die
klassische Flugmechanik hinausreichende Theorie. Auch sie stützt sich heutzuta-
ge neben Windkanalversuchen auf computergestützte Analysen, jetzt im Machbe-
reich. Flugmechanik und -regelung sind schwierige Gebiete. Zur Dokumentation
der Flugtechnik und ihrer Geschichte vgl. [25, 26].

Anmerkung
Die ersten Überlegungen zur Entwicklung eines Fluggerätes gehen auf G. CAYLEY (1773–
1857) aus dem Jahre 1810 zurück. Ihm folgten weitere Forscher. Konkrete Projekte wurden
dabei indessen nicht umgesetzt.

Es war schließlich O. LILIENTHAL (1848–1896), der gemeinsam mit seinem Bruder
diverse Flugapparate aus Weidenholz und Bambus-Rohr baute, um damit ab 1891 bis zu sei-

Abb. 2.95
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Abb. 2.96

nem tödlichen Absturz mehr als 2000 Gleitflüge bis zu 350mWeite zu machen (Abb. 2.95a).
Zuvor hatte er die Mechanik des Vogelflugs studiert. Anhand von Versuchen mit einem Ro-
tationsflugapparat erkannt er, dass der gewölbte Tragflügel im Gegensatz zum ebenen eine
hebende Kraft erfährt, die er als Zentrifugalkraft der kreisförmigen Luftströmung deutete
(Teilabbildungen b/c). Er fasste seine Versuchsergebnisse in seinem 1889 publizierten Buch
‚Der Vogelflug als Grundlage der Fliegekunst‘ zusammen. –

Das erste motorangetriebene Fluggerät startete am 17.12.1903, es war ein Doppeldecker,
erbaut von den Gebrüdern O. und W. WRIGHT (Orville (1871–1948), Wilbur (1867–1912)).
Diese Pioniertat der USA-Amerikaner wird bestritten. Der erste Motorflug könnte auch dem
Franken G. WEISZKOPF (1874–1927) am 14.08.1901 mit einem Eindecker gelungen sein.

Die Entwicklung der Flugtechnik schritt zügig voran, beschleunigt durch den Einsatz
von Flugzeugen beim Militär. Zunächst dominierte der Doppeldecker. Im Jahre 1915 baute
H. JUNKERS (1859–1935) das erste Ganzmetallflugzeug (Ju1). Die hochfeste Aluminium-
legierung wurde damit zum Werkstoff für die Leichtbauweise in der Luftfahrttechnik. –

Dieser Entwicklung war der weitere Ausbau der Tragflügeltheorie durch F.W. LANCHE-
STER (1878–1946), N. JOUKOWSKY (1847–1921) und W. KUTTA (1867–1944) und die
Entwicklung einer strömungsmechanischen Versuchstechnik im Windkanal vorangegangen,
diesbezüglich ist L. PRANDTL (1875–1953) in Göttingen für seine Forschungen hervorzu-
heben. –

Hundert Jahre Luftfahrttechnik ermöglichen inzwischen den Bau der unterschiedlichs-
ten zivilen und militärischen Flugzeuge und Geräte, einschließlich des Hubschraubers. Hö-
hepunkt dieser Entwicklung war der Bau des Airbus A380 für maximal 840 Passagiere
(Abb. 2.96). Die Entwicklung ist damit keinesfalls abgeschlossen. Insgesamt ist die Luft-
und Weltraumtechnik eine faszinierende Ingenieurdisziplin.
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Abb. 2.97

2.4.2.5 Energiegewinnung durch Windkraft
Zwecks Umsetzung der kinetischen Strömungsenergie des Windes in mechanische
Antriebsenergie werden zwei Formen unterschieden:

� Anlagen nach dem Widerstandsprinzip und
� Anlagen nach dem Auftriebsprinzip.

Zur ersten Gruppe zählen die mit vertikaler Achse arbeitenden Schalenkreuze
(Abb. 2.97a, b), Savoniussysteme (Teilabbildung c, d) und Schirmsysteme (Teilab-
bildung e). Ihr Wirkungsgrad ist mit 0,10 bis 0,20 gering. Für großtechnische
Aufgaben spielen sie daher keine bedeutende Rolle. Unter dem (aerodynamischen)
Wirkungsgrad versteht man das Verhältnis der an die Rotorwelle abgegebenen
Leistung zum Leistungsangebot des Windes innerhalb der Wandlerfläche.

Zur zweiten Gruppe nach dem Auftriebsprinzip zählen Rotoren (Windräder,
Windturbinen) mit Flügeln (Blättern) unterschiedlicher Form und einem Quer-
schnittsprofil in Anlehnung an die Luftfahrttechnik. Es werden Anlagen mit verti-
kaler und horizontaler Achse unterschieden. Zu den Vertikalanlagen gehören ins-
besondere die Darrieus-Windräder in O- und H-Form (nach G. DARRIEUS (1888–
1979), im Jahre 1927 erfunden), vgl. Abb. 2.98. Sie arbeiten windrichtungsunab-
hängig ohne Nachführung. Sie weisen eine vergleichsweise einfache Bauart auf.
Diesem Vorteil steht als Nachteil die bodennahe Lage mit entsprechend geringer
Ausbeute gegenüber. Als weiterer Nachteil kommt hinzu, dass sich die Rotorblätter
in Abhängigkeit vom Betriebszustand nicht verstellen lassen, zudem bedürfen sie
zum Anlaufen einer externen Motorkraft. Die Systeme kommen überwiegend als
Einzelanlagen zum Einsatz. Die größte Anlage wurde bisher in Kanada (4-MW-
Darrieus-Anlage mit 115m Höhe) gebaut, allerdings mit nicht befriedigendem
Ergebnis. Konverter in H-Form wurden für Sonderfälle, z. B. auf Bergen, errichtet.

Für den großtechnischen Einsatz haben sich allein Windenergiekonverter mit
horizontaler Achse auf freistehenden oder abgespannten Türmen durchgesetzt
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Abb. 2.98

Abb. 2.99

(Abb. 2.99). Hierbei werden Langsamläufer (Abb. 2.100a) und Schnellläufer
mit 1 bis 3 Rotorflügeln unterschieden (Teilabbildung b), letztere als Luvläufer
(mit Nachstellmechanik) oder Leeläufer (Teilabbildung c). Technik, Bau und Be-
rechnung werden in [27–30] ausführlich abgehandelt, vgl. auch Schrifttum zur
Strömungsmechannik.

Die Berechnung der mit einem Windkonverter zu erzeugenden Nutzenergie
geht von einer Reihe von Annahmen aus, das wird im Folgenden in gebotener Kür-
ze gezeigt: Steht quer zum Wind ein durchströmungsfähiges Objekt, hier in Form
eines Windrades mit der kreisförmigen Wandlerfläche A D � � D2=4, so wird
auf das Objekt eine Kraft F ausgeübt. D ist der Rotordurchmesser. Es kommt
zu einer Verdrängung der Strömung. Es bildet sich eine Stromröhre veränderli-
chen Querschnitts aus, über deren ‚freie‘ Oberfläche per definitionem weder Luft
zu- noch abströmt, Abb. 2.101a. Wegen der vergleichsweise geringen Strömungs-
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Abb. 2.100

Abb. 2.101

geschwindigkeit kann die Luft als inkompressibel angenommen werden, d. h. die
Luftdichte kann mit � D 1;25 kg=m3 angesetzt werden. Außerdemwird unterstellt,
dass die Strömungsgeschwindigkeit entlang der Stromfäden innerhalb der Ebenen
der Stromröhre konstant ist. Drall- und Randeffekte werden vernachlässigt, es han-
delt sich demnach um eine reibungsfreie Laminarströmung.

In der Ebene des Rotors betrage die Geschwindigkeit v. In den Ebenen wei-
ter davor und weiter dahinter betrage sie v1 bzw. v2 (Teilabbildung b). Ist p0 der
Atmosphärendruck, lauten die Bernoulli-Gleichungen für den Vor- bzw. Nachlauf-
bereich (vgl. Teilabbildung c):

.p1 � p0/ D �

2
.v2

1 � v2/I .p2 � p0/ D �

2
.v2

2 � v2/
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Der resultierende Strömungsdruck p und die Strömungskraft F folgen hieraus zu:

p D p1 � p2 D �

2
.v2

1 � v2
2/I F D p � A D �

2
.v2

1 � v2
2/ � A

Der Massendurchsatz pro Zeiteinheit, also der Massenstrom dm=dt D Pm, ist in-
nerhalb der Ebenen der Stromröhre konstant (Teilabbildung d), es fließt keine Luft
hinein, keine hinaus. In der Ebene des Rotors gilt:

Pm D � � A � v

Gemäß dem Impulssatz beträgt die von der Strömung ausgeübte Kraft:

F D Pm � .v1 � v2/

v1�v2 ist die Änderung der Geschwindigkeit innerhalb des hier betrachteten Strö-
mungssystems, also innerhalb der Stromröhre. Die Gleichsetzung mit der obigen
Gleichung für F ergibt:

v D 1

2
.v1 C v2/

Das bedeutet: Die Strömungsgeschwindigkeit in der Rotorebene ist gleich dem
arithmetischen Mittel der Windgeschwindigkeiten vor und nach dem Rotor.

Die von einer Kraft verrichtete Arbeit ist ‚Kraft mal Weg‘

W D F � s:

Die Leistung ist Arbeit pro Zeiteinheit, also

P D dW=dt D d.F � s/=dt D F � ds=dt D F � v:

Mit den Ausdrücken für F und v berechnet sich die aufgenommene Leistung zu:

P D F � v D �

4
� A � .v1 C v2/2 � .v1 � v2/ .D PnW Nennleistung/

Die Anströmgeschwindigkeit v1 ist gegeben; die Abströmgeschwindigkeit v2 ist
abhängig von der Rotoranlage. Trägt man die Leistung für einen festen Wert von
v1 über v2 auf, erhält man die Leistungskennlinie des Rotors.
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Beispiel
D D 50 m, v1 D 4m=s. Abb. 2.101e zeigt den Verlauf von P D P.v2/. Für v2 D 1m=s
findet man z. B.:

P D 1;25

4
� � � 502

4
� .4;0C 1;0/2 � .4;0 � 1;0/ D 46:017

kg

m3
�m2 �

�m
s

�2 � m
s

D 46:017
kgm2

s3
D 46:017

Nm

s
D 46:017

J

s
D 46:017W D 46;017 kW

Würde die Anlage mit dieser Leistung eine Stunde laufen, wäre die Energieausbeute E D
46;017 kW h.

Es gibt offensichtlich ein Maximum, also eine bestimmteAbströmgeschwindig-
keit, bei welcher die Anlage am günstigsten arbeitet. Um diese zu erhalten, wird
P nach v2 differenziert und dieser Ausdruck Null gesetzt. Es ergibt sich:

v2;max D 1

3
v1

Das bedeutet, bei einer Reduzierung derWindgeschwindigkeit im Nachlauf auf ein
Drittel der Anströmgeschwindigkeit, nimmt die Anlage die höchste Leistung auf.
Für die maximal erreichbare Leistung folgt für diesen Fall:

Pmax D 16

27
� �

2
� A � v3

1 D
16

27
� PWind mit PWind D �

2
A � v3

1

Pmax ist abhängig von der dritten Potenz der Anströmgeschwindigkeit! PWind ist
in dieser Gleichung die an den Rotor idealer Weise übertragbare Windleistung.
Hiermit kann die Nennleistung (nach Umformung) zu

PBETZ D 1

2

�
1C v2

v1

�
�
"

1 �
�

v2

v1

�2
#
� PWind D �BETZ � PWind

angeschrieben werden. �BETZ ist der Wirkungsgrad nach A. BETZ (1885–1968).
�BETZ kennzeichnet die Energieentnahme pro Zeiteinheit aus der ungestörten
Windströmung. Im günstigsten Falle (v2=v1 D 1=3; v=v1 D 2=3) beträgt der
Wirkungsgrad:

max �BETZ D 16

27
� 0;59 D 59%; maxPBETZ D max �BETZ � PWind

Die vorstehende Abschätzung wurde im Jahre 1926 von A. BETZ angegeben. Für
v2 ! 0 versagt die Lösung, weil hierfür der Eintrittsquerschnitt der Stromröhre
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Abb. 2.102

und damit der Massenstrom gegen Null gehen müsste. – Bei einer technischen An-
lage lässt sich aus einer Reihe von Gründen ein Wirkungsgrad 0,59 nicht erreichen,
vielmehr nur

maxPWelle D max cd � PWind

mit max cd im Bereich 0,35 bis 0,45, ggf. etwas höher, nahe 0,5.
In Abb. 2.101f sind die Verläufe vonPWind sowie von maxPBETZ undmaxPWelle

für das obige Beispiel (nach etwas längerer Rechnung) aufgetragen.
Gründe für den Abfall des Wirkungsgrades gegenüber dem Idealwert sind

Luftreibungsverluste infolge der Drallströmung vor und hinter dem Rotor, so-
wie Verluste infolge von Widerstands-, Turbulenz- und Wirbeleffekten am Rotor.
Hinzu kommt, dass die Windleistung in der Rotorebene nicht gleichförmig über
die Rotorblätter entnommen werden kann. Zum einen ist deren Anzahl endlich,
zum anderen bewegen sich die Blattquerschnitte innerhalb der Rotorebene nicht
gleichförmig, sondern mit einer von der Blattwurzel bis zur Blattspitze linear an-
wachsenden Umfangsgeschwindigkeit ur D u � r=R, worin u die Geschwindigkeit
an der Spitze, r der Radialabstand und R der Blattradius sind (Abb. 2.102). Die
angestrebte Windgeschwindigkeitsabnahme am Rotor auf 2 � v1=3 zur Erzielung
des höchsten Wirkungsgrades ist nur bei Bezug auf eine bestimmte Blattzone
und für eine bestimmte Drehzahl möglich. Durch variable Tiefe und Verwindung
des Blattes (sowie fallweise durch eine Blattverstellung in Abhängigkeit von der
Drehzahl) können die Unterschiede der Geschwindigkeitsminderung innerhalb der
Rotorebene zwar verringert aber nie ganz aufgehoben werden.
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Abb. 2.103

Aus den vorangegangenen Erläuterungen wird deutlich, dass die Leistungsauf-
nahme rotor- und drehzahlabhängig ist. Zu deren Kennzeichnung wird die sogen.
Schnelllaufzahl


 D u

v

eingeführt. u ist die Umlaufgeschwindigkeit an der Blattspitze (s. o.) und v 
 v1

die Geschwindigkeit der ungestörten Windanströmung.
Der (maximale) Leistungsbeiwert nach BETZ ist drehzahlunabhängig

(16=27 D 0;593), vgl. Kurve ① in Abb. 2.103. Wird die Drallströmung innerhalb
der Stromröhre berücksichtigt, ergibt sich der in der Abbildung dargestellte Abfall
(Kurve ②). Weitere Verluste entstehen durch den Profilwiderstand (Kurve ③). Der
Leistungsbeiwert realer Anlagen kann nur unterhalb dieser Kurve verlaufen. In der
erwähnten Figur sind mehrere anlagentypische Verläufe des Leistungsbeiwertes
cd in Abhängigkeit von 
 (aus unterschiedlichen Quellen) zusammengestellt. Der
Unterschied zwischen den Langsam- und Schnellläufern wird hieraus deutlich.
Ein Schnellläufer setzt im Vergleich zum Langsamläufer bei gleicher Leistung
wegen der höheren Drehzahl ein geringeres Drehmoment auf die Welle ab, ein be-
deutender Vorteil bei der maschinenbaulichen Auslegung. Die Kurven in der Figur
verdeutlicht weiterhin, wie der Leistungsbereich der verschiedenen Anlagentypen
im Zuge der Entwicklung aerodynamisch ausgereifterer Blatt- und Betriebsformen
verbessert und dabei das Optimalplateau verbreitert werden konnte.
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Abb. 2.104

Abb. 2.104a zeigt, wie sich der Umfangsdruck um ein Auftriebsprofil einstellt:
Der Druck auf der annähernd ebenen Unterseite und der Sog auf der gewölbten
Oberseite liefern die Auftriebskraft FA am Profil (vgl. den vorangegangenen Ab-
schnitt zum Auftrieb eines Flugzeugflügels). Bei der Formfindung wird angestrebt,
dass die Widerstandskraft FW möglichst gering ist. FA und FW sind zu

FA D cA � �
2

v2 � A; FW D cW � �
2

v2 � A

definiert. Als Bezugsfläche A wird das Produkt aus Blatttiefe t und Blattlänge
vereinbart (Abb. 2.104a). Die aerodynamischen Beiwerte cA und cW werden im
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Windkanal gemessen, sie ändern sich mit dem Anstellwinkel ˛ (Teilabbildun-
gen b/c).

Die gemeinsame Auftragung von cA und cW mit ˛ als Parameter liefert die Pro-
filkennlinie, wie in Teilabbildung d beispielhaft dargestellt. – Indem die Profile
eines Blattes mit unterschiedlicher Form und mit unterschiedlichem Anstellwinkel
über die Länge des Rotorblattes ‚aufgefädelt‘ werden, versucht man, das anlagen-
spezifische Optimum zu erzielen. Dieses Ziel ist dann erreicht, wenn die Anlage
in einem möglichst weiten Windgeschwindigkeitsbereich in ihrem Optimalpunkt

opt geregelt betrieben werden kann.

Es wird der Anlaufbereich, der Nennlastbereich und der Überlastbereich unter-
schieden; oberhalb einer bestimmten Windgeschwindigkeit muss die Anlage (auf
unterschiedliche Weise) still gesetzt. –

1. Anmerkung
Die Windenergie trägt zurzeit mit ca. 3% zur globalen elektrischen Energiegewinnung bei.
Im Jahre 2015 waren ca. 430GW installiert. Das ergibt weltweit bei einer Verfügbarkeit
von im Mittel 23% eine Energieausbeute pro Jahr von

0;23 � Œ430 � .365 � 24/� D 866:499GWh=a D 866TWh=a;

G: GigaD 109, T: TeraD 1012.
Für die EU ergibt sich entsprechend mit einer installierten Leistung von 148GW eine

Energie von

0;23 � Œ148 � .365 � 24/� D 298:000GWh=a D 298TWh=a;

was etwa 8% der EU-Stromproduktion entspricht. – Die Rangfolge der installierten An-
lagenleistungen führten im Jahre 2015 an: China (145GW), USA (74GW), Deutschland
(45GW), Indien (25GW), Spanien (23GW), . . . , in der Summe 430GW (s. o.). – Die Win-
denergietechnik wird weltweit progressiv ausgebaut, z. T. mit zweistelligen Zuwachsraten
pro Jahr. In Abb. 2.105 ist die Installationsentwicklung in GW in der Zeit von 1995 bis
2015, also für die Zeitspanne der letzten 20 Jahre, wiedergegeben, in Deutschland verläuft
sie schleppender, was auf dem ungenügenden Ausbau der Netz- und Speicherkapazität be-
ruht. – Bis 2020 wird weltweit eine Steigerung auf 790GW prognostiziert.

In Deutschland ist die Windenergie mit 23.000 Anlagen und 86 TWh zu 13,3% an der
Stromversorgung beteiligt (2015). In anderen europäischen Ländern liegt dieser Anteil be-
deutender höher.

Technisch werden Windenergieanlagen (WEA) mit und ohne Getriebe unterschieden.
Im erstgenannten Falle setzt das Getriebe die relativ geringe Drehzahl des Rotors (6 bis 19
Umdrehungen pro Minute) in 1500U=min für den Antrieb des Asynchrongenerators um,
im zweitgenannten Falle arbeitet ein Synchrongenerator in der Rotorlaufzahl mit anschlie-
ßender elektrischer Regelung. Es wird dreiphasiger Drehstrom unterschiedlicher Spannung
produziert, vgl. Bd. III, Abschn. 1.5.6. Die Spannung ist von der Größe der Anlage abhän-
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Abb. 2.105

gig: 12 bis 48 Volt bei Kleinstanlagen, 120 bis 240 Volt bei Kleinanlagen und 400 bis 690
Volt bei Groß- und Größtanlagen. In Abhängigkeit von der anschließenden Nutzung des
Stroms bedarf es einer Umspannung (Transformation) in das örtliche Netz (230V) oder in
eine Überlandleitung (bis 380.000 Volt).

2. Anmerkung
Am Stromaufkommen ist der Offshoreanteil in Deutschland bislang nur gering beteiligt.
Im Jahre 2015 waren 226 Anlagen in Nord- und Ostsee installiert (94 mit 865MW bzw.
22 mit 51MW, in der Summe 916MW). Ein verstärkter Ausbau ist geplant, bis 2020 soll
eine Leistung von 6500MW errichtet sein (die ursprüngliche Planung (23.000MW) wur-
de zurückgenommen). Abb. 2.106a zeigt die in der ‚Ausschließlichen Wirtschaftszone‘ für
Deutschland ausgewiesenen Windparks. Diverse Projekte sind hier in der Planung, in der
Genehmigung und im Ausbau. Lohnend sind nur Großanlagen mit mindestens 4, günstiger
mit 5-MW-Leistung und einer verlässlichen Betriebsdauer von� 15 bis 20 Jahren bei gleich-
zeitig hoher Verfügbarkeit. 8-MW-Turbinen sind in der Planung bzw. in der Erprobung.

Die Gründung der Türme bei Wassertiefen 20 bis 40m ist technisch schwierig und der
Korrosionsschutz im Salzwasser aufwendig, vgl. Abb. 2.106b. Für die Errichtung der Türme
mit Maschinenhaus und Rotor bedarf es spezieller Montageschiffe. Pro Windpark ist ein
Umspannwerk zu bauen, Unterwasserkabel (¿ 16 cm) sind zu verlegen. Die Wartung ist
ebenfalls aufwendig.
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Abb. 2.106

Abb. 2.107

3. Anmerkung
Für die Auslegung einer Windenergieanlage sind drei wichtige Standortfragen vorab zu be-
antworten (Abb. 2.107):

� Verlauf der mittleren Windgeschwindigkeit mit der Höhe über Grund/See (Teilabbil-
dung a).

� Häufigkeitsverteilung der mittleren Windgeschwindigkeit übers Jahr verteilt (z. B. in
10m Höhe, Teilabbildung b).

� Verteilung der Windrichtung (Windrose). In Deutschland dominiert Westwind (Teilab-
bildung c).

Um eine WEA wirtschaftlich betreiben zu können, sollte die mittlere Windgeschwindigkeit
in 10m Höhe � 5m=s betragen, was in Deutschland in der Norddeutschen Tiefebene und
in Mittelgebirgslagen der Fall ist. Der Betrieb von WEA-Anlagen im Süden ist eher unwirt-
schaftlich.
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Maßgebend für den baulichen Entwurf sind die ‚Richtlinie für Windenergieanlagen, Ein-
wirkungen, Standsicherheitsnachweis für Turm und Gründung‘ des Deutschen Instituts für
Bautechnik, Fassung März 2004 und DIN EN 61400-1:2015.

4. Anmerkung
Mit der Errichtung einer WEA sind mannigfaltige Probleme verbunden: Gefährdung von
Vögeln und Fledermäusen, ‚Verspargelung‘ der Landschaft, Geräuschentwicklung, Beein-
trächtigung des Flugverkehrs (es müssen bestimmte Abstände zu Radar- und Funkanlagen
eingehalten werden).

Da die Windenergiegewinnung in Deutschland vorrangig im Norden gelingt, bedarf es
ausgedehnter Hochvolt-Stromtrassen.

2.5 Mechanik der Schwingungen

2.5.1 Einführung

Schwingungen (Oszillationen) treten in den unterschiedlichsten Formen auf: Ein
Kind erlebt Schwingungen in der Wiege, später auf der Schaukelt und nochmals
später auf dem Kirmes in der Schiffsschaukel, auch beim Geläut der Glocken.

Radfahrzeuge aller Art sind federnd aufgehängt und mit Stoßdämpfern ausge-
rüstet. Auch Boote und Schiffe schaukeln (schwingen), sie ‚stampfen‘ oder ‚rol-
len‘.

Bäume und Türme schwingen imWind. Kurzum, alle massebehafteten Struktu-
ren vermögen zu schwingen; in Körpern und Kontinua sind es Dichteschwingun-
gen.

Auch die Erde schwingt bei Sprengungen und Erdbeben, selbst die Sonne
schwingt (pulsiert), auch alle Sterne.

Nach dem zeitlichen Verlauf unterscheidet man folgende Schwingungsformen:

� harmonische Schwingungen (sinus-/cosinusförmige),
� periodische Schwingungen mit zeitlich streng wiederkehrenden Merkmalen,
� aperiodische (stoßförmige, anschwellende, abklingende) Schwingungen,
� stochastische (regellos-zufällige) Schwingungen und
� chaotische (vollständig regellose) Schwingungen.

Entweder ist die Schwingung

� frei, dann geht sie von einer anfänglichen Anregung aus, oder sie ist
� erzwungen, dann ist sie fremderregt, selbsterregt oder parametererregt.
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Nach der Art der Mechanik werden die Schwingungen mathematisch von linearen
oder nichtlinearen Differentialgleichungen bzw. Differentialgleichungssystemen
beherrscht. Dabei kann es sich um Schwingungen eines Einzelkörpers in Richtung
eines oder mehrerer Freiheitsgrade handeln, um Schwingungen von Mehrkörper-
systemen oder um solche stab-, platten- oder schalenförmiger Struktur, ein weites
Feld der Mechanik.

2.5.2 Federschwinger – Freie Schwingungen

Abb. 2.108a zeigt einen gefederten Einmassenschwinger (Federschwinger) in sei-
ner statischen Ruhelage. Um diese Ruhelage vermag er auf und ab zu schwingen.
Der Schwingweg werde mit y D y.t/ abgekürzt. Man spricht auch von Auslen-
kung oder Elongation. Schwingt das System um den Weg y aufwärts (als positive
Richtung definiert), werden im Feder- und Dämpfungselement Rückstellkräfte ge-
weckt (Abb. 2.108b, c), sie betragen:

Fk D k � y und Fd D d � Py
Im betrachteten Zeitpunkt t ist y D y.t/ der Schwingweg, Py D Py.t/ D dy=dt

ist die Schwinggeschwindigkeit. Fk ist die Federkraft D Federkonstante (k/ mal
Auslenkung (y/. Fd ist die Dämpfungskraft, sie ändert sich proportional zur Ge-
schwindigkeit, man spricht von viskoser Dämpfung (Abschn. 1.13.5), d ist die
Dämpfungskonstante. k und d sind gemeinsam mit der Masse m gegeben, sie sind
die Kenngrößen des Systems. Sie müssen bekannt, also gemessen worden sein.

Von der Masse m geht im Zeitpunkt t die Trägheitskraft Fm aus:

Fm D m � Ry

Abb. 2.108
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Sie wirkt entgegen der momentanenBewegungsrichtung (Prinzip nach d’Alembert,
Abschn. 1.5). Ry D Ry.t/ D d 2y=dt2 ist die Beschleunigung der Masse im momen-
tanen Zeitpunkt t (Fm D Trägheitskraft DMasse mal Beschleunigung).

Auf den Körper wirke die äußere Kraft F D F.t/. Es kann sich, wie eingangs
erwähnt, um eine harmonische (sinusförmige), eine periodische, eine impulsarti-
ge (stoßende) oder um eine stochastische (zufällig-regellose) Kraft handeln. Für
jede dieser Lastarten existieren Lösungen. – Im Folgenden wird zunächst der Fall
einer freien Schwingung ohne äußere Kraftanregung behandelt (F.t/ D 0). Die
zugehörige kinetische Gleichgewichtsgleichung lautet (Abb. 2.108c):

Fm C Fd C Fk D 0 ! m � Ry C d � Py C k � y D 0:

Von dieser Bewegungsgleichung ausgehend lassen sich die freien Schwingungen
eines Einmassen-Schwingers studieren.

Ist das System ungedämpft, verkürzt sich die Bewegungsgleichung zu:

Fm C Fk D 0 ! m � Ry C k � y D 0

Es handelt sich um eine lineare Differentialgleichung (zur Lösung vgl. Bd. I, Ab-
schn. 3.8.2.2). Die Gleichung wird durch m dividiert und ! als Parameter einge-
führt:

Ry C k

m
� y D 0 ! Ry C !2 � y D 0 mit !2 D k

m
bzw. ! D

r
k

m

Die Lösung der Gleichung lautet:

y D C1 � sin!t C C2 � cos!t

Bildet man die zweite Ableitung, ergibt sich:

Ry D �!2 � C1 � sin!t � !2 � C2 � cos!t

Werden y und Ry in die Differentialgleichung eingesetzt, wird die Gleichung für
jeden Wert von t zu Null erfüllt, das bedeutet: Die Lösung ist richtig.

C1 und C2 sind Freiwerte. Sie folgen aus den Anfangsbedingungen der Be-
wegung. Es werde angenommen, dass die Bewegung von der Anfangsauslenkung
y.0/ D y0 mit der Anfangsgeschwindigkeit Py.0/ D v0 ausgeht. Aus diesen beiden
Bedingungen lassen sich C1 und C2 bestimmen (Zeitpunkt t D 0/:

y.0/ D C1 � sin!0C C2 � cos!0 D C1 � 0C C2 � 1 D y0

Py.0/ D ! � C1 � cos!0 � ! � C2 � sin!0 D ! � C1 � 1 � ! � C2 � 0 D v0
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Abb. 2.109

Die Freiwerte folgen aus den beiden Gleichungen zu:

C1 D v0

!
und C2 D y0:

Die gesuchte Lösung lautet zusammengefasst, einschließlich der Geschwindigkeit
Py.t/:

y.t/ D v0

!
� sin!t C y0 � cos!t

Py.t/ D v0 � cos!t � ! � y0 � sin!t

Die Beschleunigung als Funktion der Zeit t , also Ry D Ry.t/, ist damit auch bekannt.
Betrachtet man als Beispiel den Fall, dass das System aus einer anfänglichen

Ruhelage (v0 D 0) mit der Anfangsauslenkung y0 heraus frei gesetzt wird, ergibt
sich ein cosinusförmiger Schwingungsverlauf über der Zeitachse, vgl. Abb. 2.109.
Nach einem vollen Bewegungszyklus stellt sich die Amplitude, also der Maximal-
wert, wieder ein: Oy D y0. Nach der Zeitdauer T wiederholt sich der Bewegungs-
ablauf, immer auf dieselbe Weise. Diese Zeitdauer bezeichnet man als Periode:

y0 � cos!T D y0 ! cos!T D 1

Diese Bedingung ist für !T D 2� erfüllt. Das liefert für die Periode den Aus-
druck:

T D 2�

!
D 2�

r
m

k
in der Einheit s (Sekunde)

Würde das System beispielsweise 0,5 Sekunden für einen Schwingungszyklus be-
nötigen (T D 0;5 s), würde es in einer Sekunde zwei Zyklen durchlaufen. Die



2.5 Mechanik der Schwingungen 181

Anzahl der Zyklen pro Sekunde bezeichnet man als Frequenz. Sie ist der Kehr-
wert der Periode (im Beispiel: f D 1=T D 1=0;5 D 2;0 1=s D zwei Zyklen pro
Sekunde):

f D 1

T
D 1

2�

r
k

m
D !

2�
in der Einheit Hz .Hertz D 1=s/

! D 2�f D 2�=T nennt man Kreisfrequenz. T bezeichnet man auch als
Schwingungsdauer.

Beispiel
Das System werde um y0 ausgelenkt und frei gegeben. Die Anfangsgeschwindigkeit sei
Null (v0 D 0/. In der auf y0 bzw. ! � y0 bezogenen Form lautet die vollständige Lösung des
Problems:

y.t/

y0

D 1 � cos!t D cos!t I Py.t/

! � y0

D �1 � sin!t D � sin!t

Beträgt die Periode des Systems T D 1;0 s, folgen Frequenz und Kreisfrequenz zu:

f D 1=1;0 D 1Hz und ! D 2� � f D 2� � 1;0 D 6;28 1=s:

Hierfür zeigt Abb. 2.110 den Graphen der Lösungsfunktion (D Cosinusfunktion) über die
Dauer von 10 Zyklen, aufgetragen über !t . – Wird die Schwinggeschwindigkeit für gleiche
Zeitpunkte t über dem Schwingweg aufgetragen, bezeichnet man diesen Graphen als Orts-
kurve. Abb. 2.110b zeigt das Ergebnis (hier Py D Py.t/ über y D y.t/ jeweils in bezogener
Form aufgetragen). Es handelt sich um eine Parameterdarstellung mit t als Parameter.

Abb. 2.110
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Ist das System gedämpft, ist die Bewegungsgleichung in ihrer vollständigen
Form zu lösen:

m � Ry C d � Py C k � y D 0

Das ist etwas schwieriger. Die Lösung lautet (unter Verzicht auf ihre Herleitung):

y D 1

2!
p

�2 � 1

�
n


y0 � .� C
p

�2 � 1/ � ! C v0

� � e�.��
p

�2�1/�!t

� 

y0 � .� �

p
�2 � 1/ � ! C v0

� � e�.�C
p

�2�1/�!t
o

Py D 1

2!
p

�2 � 1

�
n
�.� �

p
�2 � 1/ � ! � 
y0 � .� C

p
�2 � 1/ � ! C v0

� � e�.��
p

�2�1/�!t

C .� C
p

�2 � 1/ � ! � 
y0 � .� �
p

�2 � 1/ � ! C v0

� � e�.�C
p

�2�1/�!t
o

e ist die Exponentialfunktion, vgl. Abschn. 3.7.1.2 in Bd. I. � (Zeta) steht für:

� D d

dkr

D d

2 m
� 1

!
! d

2 m
D � � ! ! d D 2 m !�

� kennzeichnet die Dämpfung. Die angeschriebene Lösung unterstellt, dass d klei-
ner als die sogenannte kritische Dämpfung dkr D 2 m ! D 2

p
k �m ist. Liegt d

darüber, ist die Dämpfung zu groß, eine Schwingung kommt dann nicht zustande,
nur eine Kriechbewegung.

Beispiel
In Erweiterung zum vorangegangenen Beispiel wird für folgende Systemdaten die abklin-
gende Schwingung berechnet: ! D 6;28 s�1, � D 0;05� 1. Abb. 2.111 zeigt das Ergebnis,
einschließlich der zugehörigen Ortskurve.

Periode und Frequenz werden von der Höhe der Dämpfung beeinflusst (In-
dex: d ):

Periode: Td D 1p
1 � �2

� T mit T D 2�

r
m

k

Frequenz: fd D
p

1 � �2 � f mit f D 1

2�

r
k

m
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Abb. 2.111

� ist in den meisten praktischen Fällen von sehr geringer Größe. In solchen Fällen
kann in guter Näherung gesetzt werden: Td � T und fd � f .

In Fällen (� � 1) gehorcht die Schwingung von der Anfangsauslenkung y0 aus
der Funktion

y.t/ D y0 � e��!t � cos!t:

In Zeitpunkten, die sich um die Periode T unterscheiden, stehen die Schwingwege
in folgendem Verhältnis zueinander:

y.t/

y.t C T /
D e��!t

e��!.tCT /
D e��!t

e��!t � e��!T
D e�!T

Werden beide Seiten logarithmiert, ergibt sich:

ln
y.t/

y.t C T /
D � � ! � T D � � 2�f � T D 2� � � D �

Das bedeutet: Der logarithmierte Quotient zweier aufeinander folgender Schwin-
gungsamplituden ist bei einem viskos gedämpften System eine Konstante. Man
nennt diesen Quotienten logarithmisches Dekrement der gedämpften Schwin-
gung und kürzt es mit � ab. Sind Oyi und OyiC1 zwei aufeinander folgende Amplitu-
den, berechnet sich das log. Dekrement zu:

� D ln
Oyi

OyiC1
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Kann eine abklingende Schwingung vermessen werden, kann hierfür � bestimmt
und anschließend der Dämpfungsparameter � bestimmt werden:

� D �=2�:

2.5.3 Beispiele: Freie Schwingungen

1. Beispiel
Die allgemeine Bewegungslösung für ein ungedämpftes System lautet (vgl. vorangegange-
nen Abschnitt):

y D y.t/ D C1 � sin!t C C2 � cos!t

Schwingt das System von der statischen Ruhelage aus (y.0/ D 0) und erreicht es nach der
Zeit

t D T=4 ! !t D �=2

die Amplitude (Schwingweite) Oy, lauten die Bedingungen, aus denen die Freiwerte C1 und
C2 bestimmt werden können:

y.!t D 0/ D C1 � 0C C2 � 1 D 0

y.!t D �=2/ D C1 � 1C C2 � 0 D Oy
Hieraus ergeben sich die Freiwerte zu: C1 D Oy, C2 D 0. Die Lösung ergibt sich in diesem
Falle als Sinusschwingung: y D Oy � sin!t . Sie ist in Abb. 2.112a, einschließlich Zeiger-
diagramm, dargestellt. – Setzt die Schwingung zu Beginn mit dem Nullphasenwinkel '0 ein
(t D 0/, lautet die Lösung:

y D Oy � sin.!t C '0/

Abb. 2.112b zeigt den Graphen.

Abb. 2.112
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Abb. 2.113

2. Beispiel
Punktpendel: Ein Pendel mit einem punktförmigen Körper der Masse m und einer Pendel-
stange der Länge l , ist ein idealisiertes Modell. Man spricht von einem ‚Mathematischen
Pendel‘ oder einem Fadenpendel. Abb. 2.113a zeigt das Modell, wobei der Pendelkörper
(real müsste er als Punkt gezeichnet sein) hier zusätzlich mit einem Dämpfungselement ver-
bunden ist. Die Pendelausschläge seien im Verhältnis zur Pendellänge ‚klein‘ (' kleiner ca.
5°). ' ist der Pendelwinkel. Im ausgeschwungenen Zustand wirkt auf den Körper die verti-
kale Gravitationskraft (die Gewichtskraft) Fg D m �g (g D 9;81m=s2: Erdbeschleunigung).
In horizontaler Richtung greifen die Dämpfungskraft Fd D d � .l � P'/ und die Trägheitskraft
Fm D m �.l � R'/ am Körper an. .l �'/ ist die seitliche Auslenkung, also der Schwingweg (eine
‚kleine‘ Auslenkung vorausgesetzt!). Bezogen auf den gelenkigen Aufhängepunkt folgt aus
der Momentengleichgewichtsgleichung die Bewegungsgleichung des Problems:

Fg � .l � '/C .Fd C Fm/ � l D 0 ! m � g � l � ' C d � l2 � P' Cm � l2 � R' D 0

! m � l � R' C d � l � P' Cm � g � ' D 0 ! R' C d

m
� P' C g

l
� ' D 0

In diesem Falle bezieht das System aus der Gravitation (der Erschwere) seine Rückstellwir-
kung. Der Vergleich mit der Bewegungsgleichung des Federschwingers (siehe vorangegan-
genen Abschnitt),

Ry C d

m
� Py C k

m
� y D 0;

zeigt eine vollständige Analogie zwischen den Gleichungen.
Im Falle des ungedämpften Pendels folgt die Kreisfrequenz und alles weitere durch

Analogieschluss:

! D
r

g

l
I f D !

2�
D 1

2�

r
g

l
; T D 1

f
D 2�

s
l

g

Entsprechend kann die Bewegungsfunktion übernommen werden (auch für den gedämpften
Fall).

Die vorstehende Lösung für das ungedämpfte Pendel ist eine Näherung. Sie gilt hinrei-
chend genau für kleine Pendelwinkel, nicht für große. Im Falle großer Ausschläge ist die
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Periode von der Größe der erreichten Amplitude abhängig; die Schwingungsperiode kann in
diesem Falle mit Hilfe der Reihenformel

T D 2�

s
l

g
�
"

1C
�

1

2

�2

� sin2

� O'
2

�
C

�
1

2
� 3

4

�2

� sin4

� O'
2

�

C
�

1

2
� 3

4
� 5

6

�2

� sin6

� O'
2

�
C � � �

#

berechnet werden, O' ist die Amplitude des Auslenkwinkels (in Bogenmaß). –
Um die strenge Lösung für große Schwingungswinkel herleiten zu können, muss von der

Differentialgleichung

R' C g

l
� sin' D 0 ! R' C !2 � sin' D 0

ausgegangen werden. Der Lösungstyp dieser Gleichung gehört zu den sogen. ‚Elliptischen
Integralen‘, die Fachliteratur gibt Auskunft.

3. Beispiel
Schwerependel: Ein Schwerependel schwinge in einem gasförmigen Umfeld, beispiels-
weise in Luft, Abb. 2.114. Bei der Bewegung wird auf den Körper eine aerodynamische
Widerstandskraft ausgeübt. Sie ist dem Betrage nach dem Quadrat der Geschwindigkeit pro-
portional (vgl. Abschn. 2.4.2.3). A sei die Verdrängungsfläche des Körpers, � die Luftdichte
und cW der Strömungsbeiwert:

FW D cW � �
2
� v2 � A

Die Festwerte werden zu einer Konstanten zusammengefasst:

FW D d � v2 ! d D cW � �
2
�A ! Œd � D N=.m=s/2

Abb. 2.114
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Abb. 2.115

FW hat die Bedeutung einer rückstellenden Dämpfungskraft. Sie wirkt immer der Bewegung
entgegen. Dieser Sachverhalt wird durch die Signum-Funktion beschrieben. Ist s D ' � l der
bogenförmige Schwingweg, lautet ihre Definition:

Schwingung in Richtung nach rechts: sign.s/ D C,
Schwingung in Richtung nach links: sign.s/ D �.
Damit gilt für FW :

FW D sign.Ps/ � d � Ps2 mit Ps D P' � l

In Abb. 2.115 ist erklärt, wie durch das Vorzeichen der Geschwindigkeit (Ps bzw. P') die
Richtung von FW gekennzeichnet wird.

Bezogen auf den Aufhängepunkt des Pendels lautet die kinetische Gleichgewichtsglei-
chung (Abb. 2.114):

� X
M D 0

	W .m � Rs/ � l C J � R' C sign.Ps/ � d � Ps2 � l Cm � g � l � sin' D 0
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Abb. 2.116

Mit s D ' � l folgt:

m � R' � l2 C J � R' C sign.Ps/ � d � P'2 � l3 Cm � g � l � sin' D 0

! .m � l2 C J / � R' C sign. P'/ � d � l3 � P'2 Cm � g � l � sin' D 0

Nach weiterer Umformung lautet die zu lösende Differentialgleichung:

R' C sign. P'/ � � � P'2 C !2 � sin' D 0

Die Abkürzungen bedeuten:

� D d � l3

m � l2 C J
; Œ�� D 1I ! D

s
m � g � l

m � l2 C J
; Œ!� D 1

s

Hinweis: Der Dämpfungskennwert � hat hier eine andere Bedeutung wie im obigen Ab-
schnitt!

Die Differentialgleichung lässt sich analytisch nicht lösen, wohl numerisch, z. B. mit
Hilfe des Verfahrens nach Runge-Kutta. Es werde folgendes Zahlenbeispiel behandelt: Eine
Stahlkugel mit einem Durchmesser 0,30m und einer 2,0m langen Pendelstange schwinge
in Luft. Die Parameter � und ! findet man für cW D 0;5 aus vorstehenden Formeln nach
Zwischenrechnung zu: � D 0;0004 und ! D 2;21 s�1. Ausgehend von einer Anfangsauslen-
kung '0 D �

4
D 45ı zeigt Abb. 2.116 (links oben) die Lösung für den dämpfungsfreien Fall
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.� D 0). Für die drei frei gewählten �-Werte 0,02; 0,20 und 2,0 sind in Abb. 2.115 die nume-
risch berechneten Schwingungen wiedergegeben. Aus dem Abklingcharakter erkennt man,
dass die Dämpfung von nicht-viskoser Art ist. Ist das System dämpfungsfrei und werden nur
‚kleine‘ Amplituden erreicht, lautet die zugehörige Differentialgleichung R'C!2 � sin' D 0,
wie es sein muss. Der Fall wurde oben diskutiert.

2.5.4 Eigenfrequenzen einfacher Schwingungssysteme –
Beispiele

Die Kenntnis der Eigenfrequenz hat in der Schwingungsmechanik die allergrößte Bedeu-
tung. Für einfache Systeme, wie beim zuvor behandelten Federschwinger oder Pendel, lassen
sich explizite Formeln zur Berechnung der Eigenfrequenz herleiten.

Für komplizierte Systeme stehen spezielle Methoden für Rechnungen von Hand zur Ver-
fügung. Sie wurden ehemals eingesetzt. Sie führten nach langwierigen Rechnungen zum
Ergebnis. Dank des Computers und der hierfür unter Verwendung des Matrizenkalküls ent-
wickelten numerischen Methoden, lassen sich solche Berechnungen heutzutage auf ver-
gleichsweise einfache Weise erledigen, auch für verwickelte Systeme. Die Bestimmung der
Eigenfrequenz (bzw. der Eigenfrequenzen bei mehrläufigen und kontinuierlichen Systemen)
steht dabei stets am Anfang einer Schwingungsuntersuchung (vgl. z. B. [10]).

Anhand von Abb. 2.117 werden im Folgenden Hinweise zur Eigenfrequenzberechnung
einiger einfacher Systeme gegeben. Sie gelten ausschließlich für ‚kleine‘ Schwingwege und
unter der Maßgabe, dass der Einfluss der Dämpfung auf die Höhe der Eigenfrequenz ver-
nachlässigbar gering ist.

Abb. 2.117
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Abb. 2.117a: Punktpendel (Abschn. 2.5.3, 2. Beispiel):

f D 1

2�

r
g

l
I g D 9;81m=s2

Abb. 2.117b: Schwerependel (Abschn. 2.5.3, 3. Beispiel):

f D 1

2�

s
m g � l

m l2 C J
D 1

2�

s
m g � l

J0

J0 ist das sich auf den Drehpunkt beziehende Trägheitsmoment. Sind m und
l bekannt, kann J0 bzw. J nach Messung der Schwingungsperiode mittels
vorstehender Formel und deren Umstellung berechnet werden.

Abb. 2.117c: Transversalpendel:

f D 1

2�

r
g

l

Bei den Schwingungen entstehen Wechselkräfte in den Haltestangen!
Abb. 2.117d: Rollende Kugel in einer Hohlkugel:

f D 1

2�

r
g

7=5 � .R � r/

Rollende Walze in einer Hohlwalze:

f D 1

2�

r
g

3=2 � .R � r/

Abb. 2.117e: U-Rohr mit Fluid:

f D 1

2�

r
2 g

L

L ist die Länge der gesamten Fluidsäule im Rohr.
Abb. 2.117f: Flacher Behälter mit Fluid, antimetrische Schwingung, n D 1:

f D 1

2�

r
˛ � g

L
� tanh ˛

H

L

˛ ist ein von der Behälterform im Grundriss abhängiger Beiwert:
Rechteckform: ˛ D p

5=2 D 1;58, Kreisform: ˛ D p
27=8 D 1;84

Abb. 2.117g: Federschwinger (Abschn. 2.5.2):

f D 1

2�

r
k

m
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Abb. 2.117h: Ist die Federkennlinie nichtlinear, z. B. progressiv (wie bei Elastomer-
Federn) oder degressiv (wie bei Tellerfedern), wird in Höhe der statischen
(Eigengewichts-)Einsenkung die Tangente an die Federlinie gelegt. Die Fe-
derkonstante ist jene Kraft (z. B. in N) die zu einer Verschiebung s D 1 (z. B.
in m) gehört, k ergibt in der Einheit Kraft durch Länge (z. B. in N=m).

Abb. 2.117i: Die Federkonstante gekoppelter Federn wird gemäß der vorstehenden Vor-
schrift bestimmt:
Parallelschaltung zweier Federn mit den Federkonstanten k1 und k2:

s D k

k1 C k2

D 1 ! k D k1 C k2

Serienschaltung zweier Federn mit den Federkonstanten k1 und k2: Infolge
k längt sich die Feder 1 um k=k1 und die Feder 2 um k=k2. Die Summe wird
gleich Eins gesetzt:

s D k

k1

C k

k2

D 1 ! k D 1

1=k1 C 1=k2

Abb. 2.117j: Einfache Träger mit einer Einzelmasse am freien Ende. Die Biegesteifigkeit
sei EI , E ist der Elastizitätsmodul und I das Flächenträgheitsmoment. Mit
Hilfe der Methoden der Festigkeitslehre bzw. Statik wird die Durchbiegung
am Ort der Masse infolge einer Einzelkraft bestimmt. Indem die Durchbie-
gung gleich ‚Eins‘ gesetzt wird, erhält man die Federkonstante:
Freiträger der Länge l : k D 3 EI=l3:

f D 1

2�

r
3EI

m l3

Einfacher Träger der Länge l , mittig belastet: k D 48 EI=l3:

f D 1

2�

r
48EI

m l3

Soll die Massebelegung des Trägers berücksichtigt werden und beträgt diese

 in kg=m, ist in der Formel für m im Falle des Freiträgers mC 
 � l=3 und
im Falle des einfachen Trägers mC 
 � l=2 zu setzen.

Abb. 2.117k: Längseigenschwingungen bzw. Torsionseigenschwingungen eines Trägers:

fn D n

2l

s
E

�
bzw. fn D .nC 1=2/

2l

s
G

�
;

� ist die Materialdichte.
Abb. 2.117l: Saite mit der Zugkraft S und der Massebelegung 
 (z. B. in kg=m):

fn D n

2l

s
S



; n D 1; 2; 3; : : :
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Abb. 2.117m: Stäbe mit der Biegesteifigkeit EI und der Massebelegung 
 (z. B. in kg=m):

fn D �n

1

l2

s
EI



; n D 1; 2; 3; : : :

Die �n-Werte sind in Teilabbildung m2 für vier unterschiedliche Randbedin-
gungen angegeben.

Bei der Saite und den Stäben ist jeder Eigenfrequenz fn eine bestimmte Eigen-
schwingungsform zugeordnet, man spricht verkürzt von Eigenform. Das gilt stets
für alle Strukturen und Kontinua mit Massebelegung! Abb. 2.118 zeigt die erste,
zweite, und dritte Eigenform des Freiträgers (eingespannt – frei).

Mit wachsender Eigenfrequenzordnung, wird der Einfluss der Schubverzerrung
und Rotationsträgheit auf die Höhe des Frequenzwertes bedeutender.

Neben den aufgeführten Berechnungsbehelfen existieren im Fachschrifttum
weitere. Eine computergestützte Berechnung wird heutzutage bei technischen
Fragestellungen vorgezogen.

Abb. 2.119 zeigt hierfür ein Beispiel: Dargestellt sind die ersten vier Eigenfor-
men für einen Fernsehturm. Die zugehörigen Eigenfrequenzen sind eingetragen.
Den Eigenformen der Biegelinien (an der Spitze des Turmes auf ‚Eins‘ normiert)
sind die für den Biegewinkel der Stabachse, für das Biegemoment und die Quer-
kraft (Transversaalkraft) geltenden, zugeordnet.

Dass sich mit den heute zur Verfügung stehenden Berechnungsverfahren zu-
verlässige Ergebnisse erzielen lassen, ist in Abb. 2.120 bzw. in Abb. 2.121 für
den Münchner Fernsehturm dokumentiert. Die berechneten ersten vier Eigen-
frequenzen sind den gemessenen gegenübergestellt [31].

Anmerkung
Die dritte Eigenfrequenz ließ sich nicht zuverlässig bestimmen, weil die Messdosen im
Turmschaft in Höhe des Knotens der zugehörigen Eigenform für das Biegemoment lagen.

Abb. 2.118
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Abb. 2.119

Abb. 2.120

Abb. 2.121
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2.5.5 Federschwinger – Fremderregte Schwingungen –
Resonanz

Beschränkt auf den Fall einer harmonischen (sinusförmigen) Krafterregung

F.t/ D OF � sin˝t

lautet die zu lösende vollständige Differentialgleichung (vgl. Abschn. 2.5.2):

m � Ry C d � Py C k � y D F.t/ D OF � sin˝t

OF ist die Amplitude und ˝ die Kreisfrequenz der harmonischen Krafterregung.
Die Lösung der Differentialgleichung setzt sich aus der homogenen Lösung der

freien Schwingung und der partikulären Lösung der Krafterregung zusammen:

y.t/ D yhom.t/C ypart.t/

Setzt die Schwingung aus dem Ruhezustand ein, geht sie nach einer (instationären)
Anlaufphase in einen (stationären) Beharrungszustand über. Die Lösung hierfür
lautet (ohne Herleitung):

ypart.t/ D y.t/ D Oy � sin.˝t � '/

Das System schwingt gleichförmig in der Anregungsfrequenz mit einem gewissen
zeitlichen Nachlauf gegenüber der Anregung. Amplitude und Phase der Schwin-
gung berechnen sich zu:

Oy D 1
q


1 � �
˝
!

	2�2 C �
2� ˝

!

	2
�
OF
k

; tan ' D 2� ˝
!

1 � �
˝
!

	2

Setzt die Erregung aus, kommt das System infolge der dem System innewohnenden
Dämpfung nach einer gewissen (instationären) Auslaufphase wieder zur Ruhe. Die
Dauer der Anlauf- und Auslaufphase sind von der Höhe der Dämpfung abhängig.

Um die Beharrungsschwingung zu charakterisieren, ist es üblich, die Schwin-
gungsamplitude ( Oy/ auf jene statische Verschiebung zu beziehen, die eine Kraft,
die gleich der Kraftamplitude ist, verursachen würde, also bezogen auf:

yst D
OF
k
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Abb. 2.122

k ist die Federkonstante. Das Verhältnis von Oy zu yst nennt man Vergrößerungs-
funktion. Man kürzt es mit V ab:

V D Oy
yst

D 1q
.1� �2/2 C .2��/2

; tan ' D 2��

1 � �2

Hierin kennzeichnet � das Verhältnis Erregerfrequenz zur Eigenfrequenz des Sys-
tems (Frequenzverhältnis):

� D ˝

!
mit ! D

r
k

m

In Abb. 2.122a ist der Verlauf der Vergrößerungsfunktion (V / über dem Frequenz-
verhältnis (�) für verschiedene Dämpfungsgrade (�) aufgetragen.
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Fallen Erregerfrequenz und Eigenfrequenz zusammen, ist die Reaktion beson-
ders heftig; man sagt, das System schwingt in Resonanz. Der Maximalwert folgt
für das Frequenzverhältnis

� D
p

1 � 2�2

zu:

maxV D max Oy
yst

D 1

2� �p1 � �2

Für geringe Dämpfung kann der Größtwert des Vergrößerungsfaktors in guter An-
näherung für das Frequenzverhältnis � D 1 zu

maxV D max Oy
yst

� 1

2�
D �

�

bestimmt werden. � ist das log. Dekrement. – Die Auftragung des Phasenwinkels
' über � lässt erkennen, dass der Nachlauf des Schwingweges gegenüber der Kraft
umso größer ist, je höher � ist (Abb. 2.122b):

� < 1W ' < �=2 .< 90ı/;
� D 1W ' D �=2 .D 90ı/;
� > 1W ' > �=2 .> 90ı/:

Im Falle � � 1: ' ! � (! 180ı) schwingt das System in Gegenphase zur
Krafterregung.

2.5.6 Beispiele: Fremderregte Schwingungen

1. Beispiel
Das Resonanzspektrum in Abb. 2.122a lässt erkennen, dass die Vergrößerungsfunktion V

für Frequenzverhältnisse � größer ca. 1,4 kleiner Eins wird. Je größer der Abstand zwi-
schen � und der Resonanzstelle ist, umso mehr nähert sich V gegen Null! Das bedeutet, das
fremderregte System befindet sich nahezu im Ruhezustand. Aus diesem Befund kann ein
Nutzen für die Auslegung einer Maschinengründung gezogen werden: Um die Maschine
möglichst vibrationsfrei zu betreiben, ist die Eigenfrequenz der Anlage möglichst niedrig
einzustellen. Das zeigt die Formel für das Frequenzverhältnis � D ˝=!. Da die Erregerfre-
quenz ˝ betriebsbedingt fest liegt, kann das Ziel nur über die Einstellung der Eigenfrequenz
des Systems erreicht werden. Um einen hohen �-Wert zu erhalten, muss ! D p

k=m mög-
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Abb. 2.123

lichst niedrig liegen. Entweder muss die Federkonstante k, also die Steifigkeit der Gründung,
niedrig liegen oder die Masse des Fundamentes m muss möglichst groß sein, oder beides ge-
meinsam. Tatsächlich werden Maschinenfundamente in dieser Weise ausgelegt. Abb. 2.123a
zeigt das Prinzip einer solchen Lösung. Vielfach genügt eine alleinige ‚weiche‘ Aufstel-
lung der Maschine auf Spiralfeder- oder Gummifederelementen. Es kommen auch gelochte
Kork- oder Elastomermatten (Elastomer D Gummi) zum Einsatz. Sie werden unter dem
Fundament oder direkt unter der Maschine angeordnet. Man sagt: Die Maschine arbeitet im
überkritischen Bereich (Abb. 2.123b). Die Lösung hat einen Nachteil: Während des Anlaufs
und während des Auslaufs durchläuft die Anlage die Resonanzstelle, was mit einer gewissen
Unruhe oder gar mit stärkeren Schwingungen einhergeht.

2. Beispiel
Schwingungsfähige Strukturen können durch ein strömendes Medium (Luft, Wasser) zu
Schwingungen angeregt werden. Man spricht von strömungsinduzierten Schwingungen.
Sie beruhen auf fluid-elastischen Wechselwirkungen zwischen der schwingenden Struktur
und dem strömenden Fluid, welches die kinetische Anregungs-Energie mit sich führt. Im
Falle von Wind werden folgende Phänomene unterschieden:

� Böeninduzierte Schwingungen in Richtung des Windes bei Sturm/Orkan.
� Wirbelinduzierte Schwingungen zylindrischer Objekte, insbesondere solcher mit Kreis-

querschnitt. Betroffen sind z. B. hohe, schlanke Industrieschornsteine. Die Schwingun-
gen stellen sich quer zur Windrichtung ein. Man spricht von einer Kármán’schen Quer-
schwingung, da das Strömungsphänomen erstmals von T. v. KÁRMÁN (1881–1963) im
Jahre 1912 potential-theoretisch behandelt wurde.

� Bewegungsinduzierte Schwingungen schlanker Strukturen mit einem aeroelastisch in-
stabilen Querschnittsprofil. Setzt die Bewegung bei einer bestimmten kritischen Wind-
geschwindigkeit ein, werden die Luftkräfte von der schwingenden Struktur so gesteuert,
dass die Schwingung immer stärker angefacht wird, wie beispielsweise bei vereisten
Freileitungsseilen oder bei torsionsweichen Flugzeugtragflügeln oder auch bei Hänge-
brücken; man spricht von Flatterschwingungen.
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Abb. 2.124

Abb. 2.124 zeigt eine sich hinter einem Zylinder bildende Wirbelstraße (hier als Potential-
strömung modelliert). Durch die sich im Wechsel ablösenden Wirbel wirkt auf den Zylinder
eine Wechselkraft in der Ablösefrequenz. Die Ablösefrequenz der Wirbel folgt dem Gesetz:

f D S � v

d

v ist die Geschwindigkeit der Wind- oder Wasserströmung und d der Durchmesser des
Kreiszylinders. Mit S ist die sogen. Strouhal-Zahl abgekürzt, erstmals experimentell be-
stimmt von V. STROUHAL (1850–1922). Sie beträgt etwa S D 0;2.

Herrscht eine Windgeschwindigkeit, bei welcher die Ablösefrequenz der
Wirbel mit der Eigenfrequenz der Struktur übereinstimmt, kann es zu Reso-
nanzschwingungen kommen. Die sich aufschaukelnden Schwingungen können so
heftig sein, dass die bauliche Anlage einstürzt. Diese Gefahr ist besonders groß,
wenn die Eigendämpfung der Struktur gering ist. Die kritische Windgeschwindig-
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Abb. 2.125

keit folgt aus der Gleichsetzung der Eigenfrequenz mit der Ablösefrequenz:

S � vkrit
d

:D feig ! vkrit D d

S
� feig D d

0;2
� feig D 5 � d � feig

Beträgt der Durchmesser der kreiszylindrischen Struktur beispielsweise 1,0m und
die Eigenfrequenz 1,25Hz, beträgt die kritische Windgeschwindigkeit:

vkrit D 5 � 1;0 � 1;25 D 6;25m=s:

Das ist eine bei stärkerem Wind häufig auftretende (mittlere) Windgeschwindig-
keit. Das Objekt wäre demnach als schwingungsgefährdet einzustufen. Abhilfe
gelingt durch eine Störwendel, welche die Ausbildung einer stabilen Wirbelstraße
unterbindet, oder mit Hilfe eines Schwingungsdämpfers, mit dem die Dämpfung
der turmartigen Anlage wirkungsvoll angehoben werden kann (Abb. 2.125a, b).
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Abb. 2.126

2.5.7 Frequenzanalyse

Für jede Schwingungsuntersuchung bedarf es zweier wichtiger Informationen:

� Art der äußeren Einwirkung und ihres Angriffsortes sowie Höhe der Erreger-
frequenz, wobei es sich auch um zwei oder mehrere Erregerfrequenzen handeln
kann oder um ein Erregerfrequenzband zwischen einem unteren und oberen
Grenzwert.

� Höhe der Eigenfrequenz oder der Eigenfrequenzen jener Struktur, die der äuße-
ren Einwirkung ausgesetzt ist und die untersucht werden soll.

Führt eine theoretische Berechnung nicht zum Ziel, muss gemessen werden.

Es werde ein Beispiel betrachtet: Die dynamische Größe, für die das Frequenzspektrum
gesucht ist, werde mit x D x.t/ abgekürzt. Die periodische Funktion setze sich aus sechs
harmonischen (sinusförmigen) Anteilen additiv zusammen:

x.t/ D
6X

nD1

xn � sin.2�fn C 'n/

(
P

ist das Symbol für eine Summe, hier über 6 Anteile; n ist die Laufvariable.)
In Abb. 2.126a ist das diskrete Amplitudenspektrum für das Beispiel dargestellt. In

Teilabbildung b sind alle Kennwerte der sechs sinusförmigen Anteile tabellarisch aufge-
listet, das sind die Amplituden ( Oxn) und Nullphasenwinkel ('n) in Abhängigkeit von den
sechs Frequenzen fn, n D 1; 2; 3; 4; 5; 6. – Abb. 2.127 gibt die Überlagerung der sechs
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Abb. 2.127
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Abb. 2.128

Teilverläufe über der Zeitachse wieder. Dem Augenschein nach ist die Überlagerung höchst
unregelmäßig. Tatsächlich setzt sie sich periodisch mit der Periode 1,0 s fort, mit ihr wie-
derholt sich das Muster. Die Periodendauer der einzelnen Verläufe gehen in 1,0 s jeweils
ganzzahlig auf.

Die Fragestellung werde nunmehr umgedreht: Gegeben sei der dynamische
Verlauf gemäß Abb. 2.127b. Gesucht sind jene harmonischen Anteile, aus denen
sich der Verlauf zusammensetzt. Hier greift die sogenannte Fourier-Analyse, be-
nannt nach J.B.J. FOURIER (1768–1830), der sie im Jahre 1822 publizierte. –
Heutzutage stehen computergestützte Rechen- und Messverfahren zur Verfügung,
die eine solche Analyse zeit-schnell ermöglichen. Sie haben sich aus der Fouri-
er-Reihenentwicklung über die Fourier-Transformation und die diskrete Fourier-
Analyse zur Fast-Fourier-Transformation (FFT, Schnelle Fourier-Transformation)
entwickelt. Sie spielen in der modernen Signalverarbeitung eine zentrale Rolle.

Wird der Verlauf in Abb. 2.127b mit Hilfe eines kommerziellen Rechenpro-
gramms einer FFT-Analyse unterzogen, gewinnt man das in Abb. 2.128 wiederge-
gebene Amplitudenspektrum. Der Schrieb in Teilbild a ermöglicht es, anhand der
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‚Peaks‘, also der einzelnen Spitzen, die diskreten Frequenzen 1,0; 2,0; 3,0; 4,0;
5,0 und 6,0 Hz zu identifizieren. Diese Information ist i. Allg. die gesuchte. Die
Höhe der einzelnen Amplituden korrespondiert indessen nicht mit jenen der Aus-
gangswerte! – Eine FFT für den alleinigen Verlauf von x6 D x6.t/ ergibt das in
Abb. 2.128b wieder gegebene Ergebnis: Bei f D 6;0Hz liegt ein scharfer Peak,
wie es sein muss (eigentlich wäre ein Strich zu erwarten). Die Spitze des Peaks
erreicht auch hier nur etwa die Hälfte des Ausgangswertes

Mit Hilfe sogenannter ‚Befensterungen‘ gelingt es, den Amplitudenfehler weit-
gehend zu reduzieren.

Ist x D x.t/ die zu analysierende periodische Größe bzw. Funktion, berechnen
sich die Fourier-Koeffizienten mittels der Formeln:

a0 D 2

T

TZ

0

x.t/ dt I an D 2

T

TZ

0

x.t/ � cos 2�fnt dt I

bn D 2

T

TZ

0

x.t/ � sin 2�fnt dt

Hiermit baut sich die angenäherte Funktion als Summe auf:

x.t/ � a0

2
C

X

n

.an � cos 2�fnt C bn � sin 2�fnt/I

fn D n � 2�

T
; n D 1; 2; 3; : : :

T ist die Periode der Entwicklung. Die Formeln für die Fourier-Koeffizienten er-
geben sich aus der Bedingung, dass das Integral über dem Abweichungsquadrat
zwischen der approximierten und der vorgelegten Funktion zu einem Minimum
wird.

Ist die vorgelegte Funktion x D x.t/ von analytischer Art, gelingt in vielen
Fällen eine analytische Integration, um die Fourier-Koeffizienten zu bestimmen,
im anderen Falle muss numerisch integriert werden.

Liegt die Funktion x D x.t/ als gemessener Schrieb vor, lassen sich a0, an und
bn mit Hilfe der Diskreten Fourier-Analyse computergestützt finden oder mittels
der FFT.



204 2 Mechanik II: Anwendungen

Abb. 2.129

1. Beispiel
Gegeben sei die in Abb. 2.129 dargestellte Abfolge halbsinusförmiger Impulse innerhalb der
Periode T . Die Dauer der Einzelimpulse betrage TI . Der Spitzenwert der Impulse sei Ox. Die
Fourier-Koeffizienten ergeben sich nach längerer Rechnung zu:

a0 D 4

�
� TI

T
Ox; an D 2�

TI =T

�2 � .2n� � TI =T /2
Œ Ox � .1C cos 2n� � TI =T /�

bn D 2�
TI =T

�2 � .2n� � TI =T /2
Œ Ox � sin 2n� � TI =T �

Für den Fall TI =T D 1=4 und Ox D 1 weist die Tabelle in Abb. 2.130a die ersten 12 Fourier-
Koeffizienten aus. In Teilabbildung b sind die Spektren von an und bn über n D 1 bis
n D 12 dargestellt. – Beschränkt auf die ersten fünf Harmonischen ergibt deren Summe das

Abb. 2.130
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Abb. 2.131

in Abb. 2.131b wieder gegebene Ergebnis, offensichtlich wird schon mit n D 5 Gliedern
eine recht gute Annäherung an den vorgelegten Impulsverlauf erreicht.

2. Beispiel
Durch die Schwingungen einer Glocke werden über den Glockenstuhl horizontale Kräfte
H D H.t/ auf den Glockenturm ausgeübt. Sie sind in ihrer Größe und in ihrem zeitlichen
Verlauf vom Läutewinkel O' abhängig. Die Formel in Abb. 2.132a erlaubt die Berechnung
der Horizontalkraft H über die Dauer einer Schwingungsperiode in Form einer Fourier-
Reihe. In Teilabbildung b ist der bezogene Verlauf H=G � c für einen Läutewinkel O' D 60ı
dargestellt. c ist ein Formbeiwert, der die Glocke über ihr Trägheitsmoment kennzeichnet. –
Abb. 2.132b, c zeigt, wie sich der antimetrische Kraftverlauf durch die Harmonischen n D 1,
n D 3 und n D 5 zusammensetzt. Falls eine der zugehörigen Frequenzen mit der Grund-
frequenz des Glockenturmes zusammenfällt, besteht die Gefahr einer Resonanzanregung in
dieser Teilfrequenz. Einzelheiten können DIN 4178 entnommen werden.
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Abb. 2.132

2.6 Mechanik derWellen

2.6.1 Einleitung

Im vorangegangenen Abschnitt (Schwingungsmechanik) wurden zyklische Be-
wegungen materieller Körper und Kontinua als Bewegungsvorgang innerhalb ei-
nes energetisch geschlossenen Systems behandelt. Wellen beschreiben auch einen
schwingenden Vorgang. Im Gegensatz zu ‚stehenden‘ Schwingungen ‚laufen‘ sie.
Sie ändern sich periodisch nicht nur mit der Zeit, sondern auch räumlich (meist in
beiden Fällen harmonisch). Sie transportieren dabei Energie und Impuls. Materie
wird von der Welle nicht transportiert!

Im Folgenden werdenmechanische Wellen eines schwingungsfähigen (masse-
behafteten) Kontinuums untersucht, beschränkt auf eindimensional (linienförmig)
fortschreitende Wellen. Daneben gibt es zwei- und dreidimensionale Wellen in der
Fläche bzw. im Raum. Beispiele dafür sind Kreis- und Kugelwellen.

Der Form nach werden Längswellen (Longitudinalwellen) und Querwellen
(Transversalwellen) unterschieden. Erstgenannte gehen mit Zug-Druck-Verzer-
rungen bzw. Zug-Druck-Spannungen in Längsrichtung, zweitgenannte mit Schub-
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Gleitungen bzw. Schub-Spannungen quer dazu einher. In einem elastischen Stab
pflanzen sie sich mit unterschiedlicher Geschwindigkeit fort:

Longitudinalwellen: c D
s

E

�
EW Elastizitätsmodul

Transversalwellen: c D
s

G

�
GW Schubmodul

� ist die Stoffdichte. Der Schubmodul liegt niedriger als der Elastizitätsmodul,
folglich liegt die Fortpflanzungsgeschwindigkeit der Transversalwelle niedriger als
jene der Longitudinalwelle. – Da Fluide und Gase praktisch keine, allenfalls nur ei-
ne sehr geringe Schub-/Scherfestigkeit besitzen, können sich mechanische Wellen
in diesen (z. B. Schallwellen) nur als Longitudinalwellen fortpflanzen.

Bei den mechanischen Wellen schwingen die einzelnen Massenteilchen um
ihre statische Ruhelage, die Teilchen selbst verbleiben am Ort!

Alle mechanischen Wellen klingen im Medium infolge innerer Reibungsein-
flüsse auf Null ab. Sie laufen aus, wenn der Raum unbegrenzt ist.

Neben den genannten gibt es weitere Wellenformen, z. B. jene vom Love- und
Rayleigh-Typ (Oberflächenwellen), die in der Seismik eine Rolle spielen, und jene
vom Morrison-Typ, die in der Meeresmechanik Bedeutung haben.

Elektromagnetische Wellen sind von einer grundsätzlich anderen Art. Gleich-
wohl stimmt ihre kinematische Beschreibung mit jener der mechanischen Wellen
überein. Sie werden in Bd. III, Abschn. 1.7 getrennt behandelt. Elektromagneti-
sche Wellen schwingen transversal, sie sind zudem polarisiert. Sie sind nicht an
ein schwingungsfähiges Kontinuum gebunden, sie pflanzen sich auch im Vakuum
fort. Ein Beispiel dafür ist Licht, das sich mit Lichtgeschwindigkeit fortpflanzt:
c0 � 3 � 108 m=s (D konstant). In Medien (Gasen, Fluiden und Festkörpern) liegt
die Lichtgeschwindigkeit niedriger, sie ist dann stoffabhängig.

Der Wellenfortpflanzung elektromagnetischer Wellen liegen andere physikali-
sche Prozesse zugrunde als jene mechanischer Wellen. Welcher Natur sie genau
sind, ist immer noch nicht vollständig geklärt. Es handelt sich letztlich um die wel-
lenförmige Ausbreitung von Energie und Impuls in einem elektromagnetischen
Feld. Dieser Vorgang ist nur schwierig zu begreifen, zumal das Feld auch als Teil-
chenstrom gedeutet werden kann, es sind Teilchen, die Impuls und Energie tragen.

Materiewellen haben im Mikrokosmos der Atome und Moleküle, also in der
‚Welt der Elementarteilchen‘, Bedeutung. Eine Materiewelle ist keine reale Wel-
le in physikalischem Sinne, sondern ein mathematisches Konstrukt. Sie gibt die
Wahrscheinlichkeit dafür an, dass sich ein Teilchen zu einem bestimmten Zeit-
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punkt an einem bestimmten Ort befindet. Man spricht daher auch von Wahrschein-
lichkeitswelle. Ihre Theorie fällt in das Gebiet der Quantenmechanik (Bd. IV, Ab-
schn. 1.1.10).

BeschleunigteMassen vermögenGravitationswellen im Raum-Zeit-Kontinuum
auszulösen, so postuliert es die Allgemeine Relativitätstheorie. Ihr Nachweis ist
schwierig. Im Jahre 2016 ist der Nachweis erstmals gelungen. Quelle der Wellen
war eine Verschmelzung zweier Schwarzer Löcher, vgl. zur Thematik Bd. III,
Abschn. 4.3.9.

2.6.2 Kinematik des ebenenWellenfeldes –
Ausbreitungsgeschwindigkeit

Eine sinusveränderliche (harmonische), sich in eine Richtung linear ausbreitende
Welle, lässt sich durch die Funktion

u.x; t/ D Ou sin 2�

�
t

T
� x




�
(a)

kinematisch beschreiben. Hierbei steht u.x; t/ für die Verschiebung der materiel-
len Teilchen in Richtung der Ortskoordinate x zum Zeitpunkt t . Ou ist die Amplitude
dieser Schwingung. t ist die Zeitkoordinate. Es handelt sich um eine zyklische Be-
wegung im Orts- und Zeitraum.

Abb. 2.133a zeigt einen Stab, der sich in Richtung x erstreckt. Er kann (als
Modell) durch eine Folge von Massenteilchen ersetzt werden, die untereinander

Abb. 2.133
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federelastisch verbunden sind (Teilabbildung b). Teilabbildung c zeigt, wie die
Massen hin und her schwingen. Für einen festen Zeitpunkt t D t0 beschreibt
die Funktion

u.x/ D Ou � sin 2�

�
t0

T
� x




�
D Ou �

�
sin 2�

t0

T
� cos 2�

x



� cos 2�

t0

T
� sin 2�

x




�

die Wellenbewegung entlang der Ortsachse. Ein bestimmter Merkmalswert wie-
derholt sich, wenn x D 
 ist, genauer, wenn x D n � 
 ist, wobei n eine ganze
positive Zahl ist (n D 1; 2; 3; : : : ). 
 ist die Wellenlänge.

Für einen festen Ort x D x0 beschreibt die Funktion

u.t/ D Ou � sin 2�

�
t

T
� x0




�
D Ou �

�
sin 2�

t

T
� cos 2�

x0



� cos 2�

t

T
� sin 2�

x0




�

die Wellenbewegung entlang der Zeitachse. Ein bestimmter Merkmalswert wie-
derholt sich, wenn t D T ist. T ist die Periode (Schwingungszeit). Anstelle T ,
also der Dauer eines Zyklus, wird vielfach mit der Anzahl der Zyklen pro Zeitein-
heit gerechnet. Das ist die Frequenz. Sie ist der Kehrwert von T . Im Gegensatz
zum vorangegangenen Abschnitt (Schwingungsmechanik) wird die Frequenz bei
der Beschreibung von Wellen hier mit � abgekürzt! Die formelmäßige Beziehung
zwischen T und � lautet:

� D 1=T bzw. T D 1=�:

Die Einheiten von 
, T und � sind:

Œ
� D m; ŒT � D s; Œ�� D 1=s D Hz .Hertz/

Beispiel
Die Frequenz sei 50Hz, dann beträgt die Dauer einer Schwingung: 1=50 D 0;02 s. 50 Hz
steht für 50 Schwingungen pro Sekunde.

In Abb. 2.134 ist die Wellenbewegung veranschaulicht. Der Pfeil im schraf-
fierten Orts-Zeit-Feld markiert die Wellenfortpflanzung in Orts- und Zeitrichtung:
Wenn das Argument der Sinusfunktion in Formel (a) einen bestimmten Merkmals-
wert erstmals wieder annimmt, z. B. einen gleichgerichteten Nulldurchgang, dann
hat sich die Welle in Richtung x um 
 und in Richtung t um T fortgepflanzt. Zwei
aufeinander folgende Nulldurchgänge (Knoten) sind demgemäß durch

t

T
� x



D 0 ! x

t
D 


T
D 
 � �
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Abb. 2.134

bestimmt. x=t ist die Fortpflanzungsgeschwindigkeit der Welle, sie wird mit c

abgekürzt. Man nennt c auch Ausbreitungs-, Phasen- oder Wellengeschwindig-
keit:

c D 
 � � (b)

Zur Veranschaulichung vgl. das schraffierte Dreieck in Abb. 2.134. Die Beziehung
ist wichtig, sehr wichtig. Sie gilt für alle oben beschriebenen Wellenarten!

Mit der Frequenz � bzw. Kreisfrequenz ! D 2�� lautet die Gleichung der
harmonischen Welle (a):

u.t; x/ D Ou � sin 2��
�
t � x

c

�
D Ou � sin!

�
t � x

c

�
(c)

Vielfach wird anstelle der Wellenlänge 
 mit der Größe

k D 2�




gerechnet. Man nennt die Größe k=2� D 1=
 Wellenzahl. Das ist die Anzahl der
Wellen pro Längeneinheit. Hiermit lautet die Gleichung der harmonischen Welle:

u.x; t/ D Ou � sin.!t � kx/
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Abb. 2.135

2.6.3 Wellengleichung –Wellenlösung

Die im vorangegangenenAbschnitt angegebene Funktion für die Ausbreitung einer
linienförmigen Welle (a) / (c) wird im Folgenden hergeleitet. Dazu wird von einem
materiellen Träger der Welle, von einem langen Stab, ausgegangen. Abb. 2.135
zeigt ein infinitesimales (‚unendlich kleines‘) Element, das aus dem Stab heraus
gelöst ist. Der Querschnitt des Stabes sei A, das Material habe die Dichte �, der
Elastizitätsmodul sei E .

Im Ruhezustand sei der Stab verzerrungs- und damit spannungsfrei. Das
Verformungs- bzw. Schwingungsverhalten sei dissipationsfrei (dämpfungsfrei).

Das aus dem Stab heraus getrennte Element hat das Volumen dV D A � dx,
Abb. 2.135a. Die Masse dieses (infinitesimalen) Volumenelementes beträgt (� ist
die Dichte des Materials):

dm D � � dV D � � A � dx

Im Bewegungszustand schwingen die Massenelemente um die Ruhelage. Das Sys-
tem kann modellmäßig als Schwingerkette gedeutet werden, wie in Abb. 2.133b
skizziert.

Die Bewegungsordinate der in Längsrichtung x hin- und her schwingenden
Materieteilchen sei u D u.x; t/. Deren Schwinggeschwindigkeit ist dann v D
@u=@t D Pu und deren Schwingbeschleunigung a D @2u=@t2 D Ru. Die Geschwin-
digkeit v der schwingenden Teilchen bezeichnet man mit Schnelle.

Anmerkung
Aus Gründen der Schreiberleichterung wird die partielle Ableitung nach der Zeitordinate t

durch einen Punkt und die partielle Ableitung nach der Ortsordinate x durch einen Strich
gekennzeichnet, jeweils hochgestellt, z. B. bei der Veränderlichen u:

@u

@t
D PuI @u

@x
D u0



212 2 Mechanik II: Anwendungen

Wegen der inneren elastischen Kopplung der Teilchen (in Abb. 2.133 durch Fe-
dern symbolisiert), gehen mit den BewegungsoszillationenZug-/Druckspannungen
einher. Zugspannungen (� werden im Folgenden als positiv, Druckspannungen als
negativ angesetzt (Abb. 2.135)!

Befindet sich das Massenteilchen dm an der Stelle x im momentanen Bewe-
gungszustand u D u.x; t/, wirkt im Volumenelement die Trägheitskraft dm � Ru
(‚Kraft ist gleich Masse mal Beschleunigung‘). Dadurch erfährt die innere ‚Spann-
kraft‘ eine Änderung. In dem frei geschnittenen Element wird die Trägheitskraft
(im d’Alembert’schen Sinne) entgegen der positiven Bewegungsordinate ange-
setzt. Die Spannung � D �.x; t/ erfährt bei Fortschreiten vom Schnittufer x zum
Schnittufer xCdx die Änderung d� , wie in Abb. 2.135b dargestellt. Die kinetische
Gleichgewichtgleichung (in Richtung x/ lautet:

� � A � .� C d�/ � AC dm � Ru D 0 ! �d� � AC dm � Ru D 0

! d� � A D � � A � dx � Ru
Umgestellt folgt:

@�

@x
D � � Ru ! � 0 D � � Ru (d)

Das Hooke’sche Formänderungsgesetz zwischen Spannung � und Verzerrung "

(Dehnung/Stauchung) lautet:

� D E � "
Spannung � und Verzerrung " verhalten sich über E proportional zueinander. Die
Verzerrung ist die auf dx bezogene Längenänderung du, hier also:

" D @u

@x
D u0 ! � D E � u0 (e)

Die Änderung der Spannung in Richtung der Längeneinheit dx ist die Ableitung
von � nach x:

� 0 D E � u00 (f)

Indem diese Verzerrungsbeziehung (f) mit der Gleichgewichtsgleichung (d) ver-
knüpft wird, erhält man die gesuchte Grundgleichung des Problems, also die ge-
suchteWellengleichung:

E � u00 D � � Ru ! Ru D E

�
� u00 .ausführlich:

@2u

@t2
D E

�
� @

2u

@x2
/
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Mit der Abkürzung

c D
s

E

�

hm

s

i
(g)

lautet die zu lösende partielle Differentialgleichung für u D u.x; t/:

Ru D c2 � u00 .ausführlich:
@2u

@t2
D c2 � @

2u

@x2
/ (h)

Wie man durch Einsetzen bestätigen kann, ist

u.x; t/ D Ou � sin 2��
�
t � x

c

�
(i)

die Lösung der Differentialgleichung; sie kennzeichnet die harmonische Eigen-
bewegung der Welle, vgl. den vorangegangenen Abschnitt. Ou ist die Amplitude
der sich in Cx-Richtung mit der (Eigen-) Frequenz � ausbreitenden Welle. – Ge-
schwindigkeit (Schnelle) v und Beschleunigung a der hin und her oszillierenden
Massenteilchen folgen aus u.x; t/ durch ein- bzw. zweimalige Ableitung nach t :

v D Pu.x; t/ D 2�� � Ou � cos 2��
�
t � x

c

�

D Ov � cos 2��
�
t � x

c

�
mit Ov D 2�� � Ou

a D Ru.x; t/ D �.2��/2 � Ou � sin 2��
�
t � x

c

�

D �Oa � sin 2��
�
t � x

c

�
mit Oa D .2� � �/2 � Ou

Die Änderung der Spannung in der Zeiteinheit ist die Ableitung von (e) nach t :

P� D E � Pu0 (j)

Die obige Gleichung (f) für � 0 wird nach x und die vorstehende Gleichung für P�
nach t differenziert, das ergibt:

� 00 D � � Ru0 bzw. R� D E � Ru0

Die Freistellung dieser beiden Gleichungen nach Ru0 und ihre Gleichsetzung liefert,
wenn noch die Beziehung für die Fortpflanzungsgeschwindigkeit berücksichtigt
wird:

� 00

�
D R�

E
! R� D c2 � � 00 .ausführlich:

@2�

@t2
D c2 � @

2�

@x2
/ (k)
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Das ist eine zur obigen Wellengleichung für u.x; t/ äquivalente Form; die Lösung
dieser Gleichung lautet:

�.x; t/ D �O� � cos 2��
�
t � x

c

�
(l)

Die Richtigkeit bestätigt man wieder durch Einsetzen in (k).
u D u.x; t/ wird hieraus mittels Integration über x bestimmt (vgl. (c) u. (g)):

u.x; t/ D O�
2��

� 1

� � c � sin 2��
�
t � x

c

�
(m)

(Siehe hierzu die Teilabbildungen d und e in Abb. 2.133.)
Aus der Gleichsetzung von (i) und (m) findet man die Beziehung zwischen der

Verschiebungsamplitude Ou und der Spannungsamplitude O� :

Ou D O�
2�� � �c

bzw. O� D 2�� � �c � Ou (n)

Die obigen Gleichungen für Schnelle (v) und Beschleunigung (a) lauten damit:

v D Pu.x; t/ D 2�� � Ou � cos 2��
�
t � x

c

�
D O�

�c
� cos 2��

�
t � x

c

�

D Ov � cos 2��
�
t � x

c

�

a D Ru.x; t/ D �.2��/2 � Ou � sin 2��
�
t � x

c

�

D �2�� � O�
�c
� sin 2��

�
t � x

c

�

! a D �Oa � sin 2��
�
t � x

c

�

Für die Amplituden von v und a gilt somit:

Ov D O�
�c

und Oa D 2�� � O�
�c

(o1)

Zeitlich liegen die Amplituden von u und � orthogonal zueinander, d. h. O� tritt
gegenüber Ou mit dem Phasenwinkel �=2 verzögert auf, vgl. dazu Abb. 2.133d, e;
� liegt dagegen mit v in Phase. Nach O� freigestellt, folgt mit Ov D 2�� � Ou:

O� D �c � 2�� � Ou D �c � Ov (o2)
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Das Produkt �c bezeichnet man als Wellenwiderstand, hierbei handelt es sich,
wie aus der Formel erkennbar ist, um eine Stoffkonstante. Sie wird i. Allg. mit Z

abgekürzt: Z D �c.
Wie weiter erkennbar, tritt in u0.x; t/ und damit in �.x; t/ D E � u0.x; t/ die

Cosinusfunktion auf. Für �.x; t/ folgt:

�.x; t/ D ��c � 2�� � Ou � cos 2��
�
t � x

c

�
D ��c � Ov � cos 2��

�
t � x

c

�
(p)

Als Beispiel ist der Verlauf für t D 0 in Abb. 2.133e über die Dauer einer Wellen-
länge dargestellt.

Je höher derWellenwiderstand �c ist, umso höher ist die imMedium ausgelöste
Spannung. Die Darstellung in Abb. 2.133e steht stellvertretend für die gegenseiti-
ge Verschiebung in den Federn und die dadurch in diesen geweckten Kräfte bzw.
Spannungen.

2.6.4 Energie- und Leistungsdurchsatz

Die Masse dm des infinitesimalen Volumenelementes dV oszilliert während eines
Schwingungszyklus zwischen den Energieformen

� maximale potentielle Energie imMoment der größten Auslenkungmaxu D Ou
(v ist Null) und

� maximale kinetische Energie im Moment des Nulldurchgangs. Die Schnelle
beträgt in diesem Moment max v D Ov (u ist Null).

Die kinetische Energie von dm erreicht beim Nulldurchgang ihr Maximum:

maxdEkin D 1

2
dm � Ov2 D 1

2
� Ov2 dV

Als Energiedichte w bezeichnet man die (mittlere) Energie pro Volumenelement.
Ausgehend von Ov D 2�� � Ou findet man jenen Anteil von w, der von der kineti-
schen Energie beigetragen wird, zu:

max dEkin

dV
D 1

2
� � .2�� � Ou/2 D 1

2
� Ov2 D 2�2 � � � �2 � Ou2 D 1

2

O�2

�c2
(q)

Der Anteil ist dem Quadrat von Ou bzw. O� proportional.
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Abb. 2.136

Eine andere Form der Herleitung geht von jener kinetischen Energie aus, die
dem Massenelement an der Stelle x im momentanen Zeitpunkt t innewohnt:

dEkin D 1

2
dm � v2.x; t/ D 1

2
�dV � v2.x; t/

Setzt man für v D v.x; t/ obige Gleichung für v ein, ergibt sich die auf das Vo-
lumen des Massenelementes dm bezogene ‚Dichte‘ der kinetischen Energie im
Zeitpunkt t zu:

dEkin

dV
D 1

2
� � .2��/2 � Ou2 � cos2

h
2��

�
t � x

c

�i

D 2�2� � �2 Ou2 � cos2
h
2��

�
t � x

c

�i

In Abb. 2.136 sind zur Kennzeichnung von u; v und v2 die Verläufe von sin, cos
und cos2 entlang der Zeitachse über die Dauer zweier Zyklen dargestellt. Wie es
sein muss, ist v2 und damit die kinetische Energiedichte, positiv definit. Der Zeit-
mittelwert der Energiedichte eines vollen Zyklus der Periode T ergibt sich nach
Zwischenrechnung zu:

dEkin

dV
D 1

T

TZ

0

dEkin

dV
dt D �2� � �2 � Ou2 D 1

4

O�2

�c2

Das ist der halbe Wert von maxdEkin=dV in obiger Gleichung.
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Abb. 2.137

Die potentielle Energie des Massenelementes ist gleich der gespeicherten
Formänderungsarbeit. Das ist der Inhalt des schraffierten Dreiecks unter der in
Abb. 2.137 dargestellten elastischen Kraft-Verschiebungs-Kurve.

Die zur Kraft � � dA gehörende Verschiebung ist " � dx. Demnach gilt:

dEpot D 1

2
� � dA � " dx D 1

2
� � " dV

Mit " D u0 und � D E � " D Eu0 folgt die ‚Dichte‘ der potentiellen Energie zu:

dEpot

dV
D 1

2
Eu02

Wird von u D u.x; t/ die Ableitung nach x gebildet

u0 D � Ou2��

c
� cos 2��

�
t � x

c

�

und diese Beziehung in vorstehende Gleichung eingesetzt, ergibt sich:

dEpot

dV
D 1

2
E � Ou2 4�2�2

c2
� cos2

h
2��

�
t � x

c

�i

D 2�2� � �2 � Ou2 � cos2
h
2��

�
t � x

c

�i

Wird hiervon der Zeitmittelwert für einen Zyklus gebildet, erhält man denselben
Ausdruck wie für die kinetische Energie. Wie aus den Gleichungen erkennbar,
liegen kinetische und potentielle Energie in Phase. Die Summe aus beiden Mittel-
werten ist die gesuchte Energiedichte:

w D dEkin

dV
C dEpot

dV
D 2�2 � � � �2 � Ou2 D 1

2
� � Ov2 D 1

2

O�2

�c2
(r)
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Abb. 2.138

Als Intensität der Welle ist jene Energie definiert, die pro Zeiteinheit dt die Flä-
cheneinheit dA im Mittel durchsetzt, vgl. Abb. 2.138. Sie lässt sich wie folgt
herleiten: Pro Zeiteinheit schreitet die Welle um den Weg c � dt fort. Der mittlere
Energiedurchsatz beträgt demnach:

dE D w � dA � c � dt D w � c � dA � dt (s)

Der mittlere Energiedurchsatz pro Flächen- und Zeiteinheit ist:

I D dE

dA � dt
D w � c D 2�2 � �c � �2 � Ou2 D 1

2
�c � Ov2 D 1

2

O�2

�c
(t)

I ist eine Leistungsgröße, man nennt sie Energiestromdichte der Welle. I ist die
zeitgemittelte Leistung der Welle. Sie ist proportional zum Quadrat der Auslen-
kung und Schnelle.

Wird O� D �c � Ov in die Gleichung für I eingesetzt, ergibt sich:

I D 1

2
O� � O�

�c
D 1

2
O� Ov (u)

Dieses Ergebnis lässt sich auch wie folgt herleiten bzw. deuten: Die augenblick-
liche Leistung des sich oszillierend um den kleinen Weg du.t/ verschiebenden
Massenteilchens dm ist das Produkt aus der momentanen auf dA bezogenen Kraft
�.t/ � dA=dA D �.t/ und der momentanen Geschwindigkeit v.t/:

�.t/ � v.t/ denn

�
�.t/ � dA

dA
� du.t/

� .
dt D �.t/ � du.t/

dt
D �.t/ � v.t/

Wird über dieses Produkt über die Dauer einer Periode T integriert und anschlie-
ßend durch T dividiert, liefert das die (mittlere) Intensität des Wellenfeldes:

I D 1

T

Z

T

�.t/ � v.t/ dt
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Mit

� D �O� � cos 2��
�
t � x

c

�
und v D Ov � cos 2��

�
t � x

c

�

folgt für das Integral nach Zwischenrechnung:

I D 1

2
O� Ov; (u)

womit (u, oben) bestätigt ist. Der Ausdruck ist gleichwertig mit:

I D 1

2
�c � .2��/2 � Ou2

Bei einer Leistungsmessung wird vielfach von den Effektivwerten der Spannung
�.t/ und Schnelle v.t/ ausgegangen. Sie sind wie folgt definiert:

�eff D 1

2

vuut
Z

T

�2.t/ dt I veff D 1

2

vuut
Z

T

v2.t/ dt (v)

Werden in diese Definitionsbeziehungen für die sich harmonisch ausbreitendeWel-
le die gefundenen Gleichungen für �.t/ und v.t/ eingesetzt, liefern Integration und
Umformung:

�eff D O�p
2

und veff D Ovp
2

(w)

Aufgelöst nach den Amplituden, gilt:

O� D p2 � �eff und Ov D p2 � veff
Setzt man dieses Ergebnis in (u) für I ein, erhält man:

I D �eff � veff (x)

Die sich aus der kinetischen und potentiellen Energie aufbauende Energiedichte
folgt aus: w D I=c. – Damit ist die Wellentheorie relativ ausführlich dargestellt.

1. Anmerkung
Mit der Ausbreitung der Welle geht eine Dissipation einher, d. h. eine Energiezerstreuung.
Die Energiestromdichte I sinkt. Irgendwann kommt die Wellenbewegung zum Erliegen. Die
mechanische Energie wandelt sich (überwiegend) in Wärme um. Hierfür sind unterschiedli-
che Mechanismen verantwortlich, insbesondere innere Reibungsvorgänge im Material. Mit
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der Energieabnahme verringern sich alle Feldgrößen ( Ou, Ov, Oa, O� , w, I ). – Das Abklingen der
Bewegung kann durch eine Absorptionskonstante beschrieben werden, sie ist abhängig vom
Medium bzw. vom Stoff, in welchem sich die Welle ausbreitet.

2. Anmerkung
Bei Kreis- und Kugelwellen in der Ebene bzw. im Raum sinkt die Energiestromdichte I

mit zunehmendem Abstand von der Quelle, die Energie verteilt sich auf einen immer größer
werdenden Kreisumfang bzw. auf ein immer größer werdendes Kugelvolumen. Ist IQ die
Intensität auf der Umfangslinie bzw. -fläche unmittelbar um die Energie abstrahlende Quelle,
beträgt die Intensität im Abstand r von der Quelle für eine

� Kreiswelle (Zylinderwelle)

I D IQ � rQ

r

� und für eine Kugelwelle:

I D IQ �
� rQ

r

�2

Hierin ist rQ der Radius unmittelbar um die Quelle. – Vorstehende Beziehungen gelten
im Fernfeld (r > 2
). Im Nahfeld liegen komplizierte Druckverhältnisse vor. Bei ausrei-
chender Entfernung kann das Wellenfeld lokal als ein sich linear fortpflanzendes ebenes
Feld angenähert werden. Da im Nenner der vorstehenden Ausdrücke r bzw. r2 steht,
‚verflüchtigt‘ sich die abgestrahlte Energie in großer Entfernung vollständig (was nicht
auf Stoffdämpfung beruht).

2.6.5 Ergänzungen und Beispiele

1. Beispiel
Als Folge einer kontinuierlichen äußeren Erregung durch einen Schwingungserreger durch-
laufe eine Longitudinalwelle eine stählerne Schiene (Abb. 2.139). Gesucht sind alle maßge-
benden Feldgrößen der Welle.

Abb. 2.139
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Die Dichte von Stahl beträgt: � D 7850 kg=m3. – Elastizitäts- und Gleitmodul sind:

E D 210:000N=mm2 D 210:000 � 106 N=m2

G D 81:000N=mm2 D 81:000 � 106 N=m2 D 0;386 �E

Die Fortpflanzungsgeschwindigkeiten der Longitudinal- und Transversalwelle berechnen
sich zu:

clong D
s

E

�
D

r
210:000 � 106

7850
D 5172

m

s

ctran D
p

0;386 � clong D 0;621 � clong D 3212
m

s

Durch den Schwingungserreger werde eine Dehnungsamplitude O" D 10�3 mit der Erreger-
frequenz � D 100Hz eingeprägt. Die zugehörige Spannungsamplitude berechnet sich zu:

O� D E � O" D 210:000 � 106 � 10�3 D 210:000 � 103 N=m2 D 210N=mm2

Die Beanspruchung liegt im elastischen Bereich. Das Problem fällt somit in den Gültigkeits-
bereich der hier behandelten Theorie elastischer Wellen. (Die Theorie plastischer Wellen ist
ungleich schwieriger. Das gilt insgesamt für alle in die Plastizitätstheorie fallenden Aufga-
ben innerhalb der Kontinuumsmechanik).

Die Welle pflanzt sich wegen c D 
 � � mit der Wellenlänge 
 D c=� D 5172=100 D
51;72m fort.

Der Wellenwiderstand berechnet sich zu:

Z D �c D 7850 � 5172 D 4;060 � 107 N=m2

m=s

�
kg

m3
� m
s
D N=m2

m=s

�

Die Amplituden von u.x; t/, v.x; t/ und a.x; t/ ergeben sich zu:

Ou D O�
2�� � �c

D 210:000 � 103

2� � 100 � 4;060 � 107
D 210:000 � 103

628;3 � 4;060 � 107
D 8;232 � 10�3 m

D 8;232mm

Ov D O�
�c
D 210:000 � 103

4;060 � 107
D 5172

m

s
D 5;172

mm

s

(das stimmt hier zufällig mit c überein)

Oa D 2�� � Ov D 628;3 � 5;172 D 3249;6
m

s2
D 3;250

mm

s2

Für Energiedichte, Intensität und Wellendruck folgt:

w D 2�2 � � � �2 � Ou2 D 2�2 � 7850 � 1002 � .8;323 � 10�3/2 D 105:000
J

m3
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Abb. 2.140

Die Formeln w D 1
2
� � Ov2 und w D 1

2
O�2

�c2 liefern dasselbe Ergebnis, wie es sein muss.

I D 1

2
O� � Ov D 1

2
� 210:000 � 103 � 5;172 D 5;431 � 108 W

m2

Hätte die Schiene einen quadratischen Querschnitt � 1 cm 	 1 cm, müsste der Schwingungs-
erreger mit einer Leistung

P D I � A D 5;431 � 108 � .10�2 � 10�2/ D 5;431 � 104 W D 5;431 � 101 kW D 54;21 kW

betrieben werden.
Trifft eine Welle auf eine Wand (allgemeiner, auf eine Grenzfläche), wird sie von dieser

reflektiert. Dabei wird ein Druck auf das ‚Hindernis‘ ausgeübt. Man spricht hierbei von
Wellendruck (bei elektromagnetischen Wellen von Lichtdruck), abgekürzt mit q:

Der Wellendruck berechnet sich beim Auftreffen auf eine ‚harte‘ Wand zu:

q D � Ov2 D O�2

�c2
D 2I

c

Für das vorliegende Beispiel berechnet sich der Druck zu:

q D � � Ov2 D 7850 � 5;1722 D 210:000N=m2

Die vorstehende Behandlung gilt für einen (schlanken) Stab, der sich quer zur Längsrichtung
unbehindert verjüngen und verdicken kann. Ist der Stab Bestandteil einer Platte oder eines
Körpers, wird eine solche Verformung verhindert. Das wirkt sich als Erhöhung der Steifig-
keit aus. In solchen Fällen kann die Phasengeschwindigkeit einer Longitudinalwelle in einer
Platte und in einem Körper nach folgenden Formeln berechnet werden (Abb. 2.140b, c):

Platte: c D
s

E

�
� 1

.1 � 
2/

Körper: c D
s

E

�
� 1 � 


.1C 
/.1 � 2
/
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Abb. 2.141


 ist die Querdehnungszahl (Poisson’sche Konstante). Für Stahl gilt 
 D 0;3, für Beton
und Steine 
 � 0;1. Für Material, das querdehnungsfrei ist, wäre 
 D 0;5 zu setzen. Dafür
ergäbe sich c zu unendlich. –

Transversalwellen gehen mit keiner Volumenänderung einher, wie in Abb. 2.141 erläu-
tert, sondern nur mit einer Gestaltänderung, eine Abhängigkeit von 
 besteht daher nicht.
Bei einer Longitudinalwelle tritt dagegen im Zuge der Zug/Druck-Beanspruchung eine Ver-
schmälerung bzw. Verdickung ein, folglich ist c in diesem Falle von 
 abhängig.

2. Beispiel
Für ein gespanntes Seil berechnet sich die Phasengeschwindigkeit der Transversalwelle nach
der Formel:

c D
r

�

�
D

r
S

m

� : Spannung, �: Materialdichte; S : Seilkraft, m: Massenbelegung pro Längeneinheit. Wird
in der ersten Wurzel Zähler und Nenner um A (Querschnitt des Seiles) erweitert, folgt die
zweite Wurzel:

c D
s

� � A
� �A D

r
S

m
; ŒS� D N; Œm� D kg=m

Die Formel gilt für alle biegeweichen Stränge, z. B. für Saiten.
Für ein Spiralseil ¿40 mit einer Massenbelegung m D 8;6 kg=m und einer Seilkraft

S D 400:000N ergibt sich die Wellengeschwindigkeit beispielsweise zu:

c D
s

400:000

8;6
D 215m=s

Die Seilwelle ist das typische Beispiel einer Transversalwelle. In Richtung des Seiles kann
sich gleichzeitig eine Longitudinalwelle ausbreiten.

In schwingungsfähigen elastischen Körpern treten i. Allg. alle Wellenformen gleichzeitig
auf, einschließlich Biege- und Torsionswellen. Je nach Art und Richtung der Erregung domi-
niert die eine oder andere. Dabei gelten für jede einzelne Wellenform die oben hergeleiteten
Formeln für die unterschiedlichen Wellenfeldgrößen.
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Abb. 2.142

In Abb. 2.142 sind in Ergänzung zu Abb. 2.133 eine in x-Richtung fortschreitende Lon-
gitudinalwelle und eine Transversalwelle einander gegenüber gestellt. Die Ausprägung der
Letzteren ist anschaulicher.

3. Beispiel
Überlagerung zweier gleich gerichteter Wellen gleicher Frequenz: Abb. 2.143 zeigt das
Ergebnis der Überlagerung. In Teilabbildung a liegen u1.x; t/ und u2.x; t/ in Phase, in

Abb. 2.143



2.6 Mechanik der Wellen 225

Abb. 2.144

Teilabbildung b um 
=2 zueinander versetzt, also in Gegenphase. Im erstgenannten Falle
tritt eine Verdoppelung der Verschiebung ein, im zweitgenannten eine Auslöschung, sofern
Ou1 D Ou2 D Ou ist.

Man spricht bei dieser Art der Überlagerung von Interferenz, bei einer Verstärkung von
‚Konstruktiver Interferenz‘, bei einer Tilgung von ‚Destruktiver Interferenz‘. – Es gilt das
Gesetz der ‚Ungestörten Überlagerung‘: Ganz gleich wie das Wellenfeld beschaffen ist, jede
Welle durchläuft das Feld, der ursprünglichen Richtung folgend, unbehindert, wobei sie mit
allen anderen Wellen interferiert. –

An Grenzflächen kommt es zu einer Reflektion, in gewissen Fällen zu einer Beugung
(Umlenkung). Auf diese Probleme wird bei der Behandlung des Lichts eingegangen. –
Abb. 2.144 zeigt, wie gleichartige Kreiswellen, die von zwei Quellen ausgehen, interferie-
ren. Wo die Differenz der Laufwege der Wellen u1 und u2 gleich n � 
 ist (n D 1; 2; 3; : : : )
kommt es zu Konstruktiver Interferenz.

4. Beispiel
Abb. 2.145 zeigt stehende Wellen zwischen zwei gleichartigen Wänden. Die halbe Wellen-
länge (
=2) geht ganzzahlig im Wandabstand l auf (im Bild drei Halbwellen). Die Welle
unterliegt keiner Dissipation. Die Longitudinalwelle läuft zwischen den sie reflektierenden
Wänden hin und her, die Gegenwelle entsprechend, dadurch entsteht der Eindruck einer
ortsfesten (stehenden) Welle. Die Beschaffenheit der beidseitigen Grenzflächen bestimmt
das Bewegungsbild. Sind beide Grenzflächen ‚hart‘, wird hier jede Bewegung zu Null un-
terbunden. Hier liegen Knoten, die Schnelle erreicht hier ihren höchsten Wert, verbunden
mit dem jeweils höchsten Wechseldruck. Die Welle wird hart reflektiert. Es tritt ein Pha-
sensprung um � ein (Abb. 2.145a). Handelt es sich um ‚weiche‘ Grenzflächen, ist nur eine
Wellenform möglich, bei welcher der Wechseldruck an den Grenzflächen zu Null wird, nach
der Reflektion läuft die Welle in sich selbst (ohne Phasensprung) zurück (Abb. 2.145b).
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Abb. 2.145

Für den Hinlauf einer Welle gilt die Funktion

u1 D Ou � sin 2�

�
t

T
� x




�

und für den Rücklauf:

u2 D Ou � sin 2�

�
t

T
C x




�

Die Superposition (Überlagerung) der Wellen ergibt:

u D Ou � sin2�

�
t

T
� x




�
C Ou � sin2�

�
t

T
C x




�

Unter Heranziehung des trigonometrischen Additionstheorems

sin.˛ 
 ˇ/ D sin˛ � cosˇ 
 cos ˛ � sinˇ

liefert die Auswertung für die überlagerte Welle:

u D 2 Ou � sin2�
t

T
� cos 2�

x




Diese Funktion kennzeichnet keine fortlaufende, sondern eine stehende Welle: An jedem
Punkt x schwingt die Materie sinusförmig mit der Periode T .

Die Amplitude (2 Ou/ und der Nulldurchgang (Knoten) treten jeweils an derselben Stelle
auf. Es handelt sich um eine ortsfeste Schwingung! Energie wird von einer stehenden Welle
im zeitlichen Mittel nicht befördert.
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Abb. 2.146

Hat die Schwingungsform einer stehenden Welle im Abstand l einen ‚Bauch‘ (l D 
=2

! 
 D 2l), spricht man von der Grundschwingung (Abb. 2.146a), stellen sich zwei ‚Bäuche‘
und ein Knoten ein (l D 
! 
 D l), spricht man von der 1. Oberschwingung oder von der
2. Harmonischen, bei drei Bäuchen und zwei Knoten (l D 3=2 �
! 
 D 2=3 � l) von der 2.
Oberschwingung oder 3. Harmonischen (Abb. 2.146b), usf.

Für die n-te Oberschwingung mit n� 1 Knoten gilt:

l D .nC 1/



2
! 
 D 2

nC 1
l

Im Falle einer Saite kann aus

c D
r

�

�
D 
 � � D 2

nC 1
� l � �

auf die Frequenz

�n D nC 1

2 l

r
�

�
.n D 1; 2; 3; : : : /

für die n-te Oberschwingung geschlossen werden. (Auf Abschn. 2.7.4.3, 1. Ergänzung, wird
verwiesen.)

Auf der Erzeugung stehender Wellen beruhen alle Musikinstrumente, sowohl die Saiten-
instrumente wie Geige, Cello, Bass, Zitter, Klavier usf. als auch die Blasinstrumente wie
Flöte, Posaune, Saxophon, Orgel usw. Bei Letzteren wird in der Röhre eine stehende Luft-
welle erzeugt. Indem durch Setzen der Griffe auf die Länge der schwingenden Saite bzw.
Luftsäule Einfluss genommen wird, verändert sich die Frequenz der stehenden Welle, die
ihrerseits über das Instrument als Resonanzkörper die umgehende Luft zu Schwingungen
anregt. Von dieser Quelle breitet sich der Ton bzw. die Tonfolge als Luftwelle (Schall) aus,
vgl. Abschn. 2.7.4.
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5. Beispiel
An der Stelle x D 0 werden zwei gleichphasige harmonische Wellen unterschiedlicher Fre-
quenz und Amplitude (u1 D Ou1 � sin!1t und u2 D Ou2 � sin!2t ) überlagert. Die auf diese
Weise entstehende neue Welle wird durch nachstehende Funktion beschrieben:

u D u1 C u2 D Ou1 � sin!1t C Ou2 � sin!2t D Ou2 � .sin!1t C sin!2t/C . Ou1 � Ou2/ � sin!1t

D 2 Ou2 � cos !1 � !2

2
t � sin !1 C !2

2
t C . Ou1 � Ou2/ � sin!1t

Bei der letzten Umformung wird von der trigonometrischen Beziehung

sin˛ C sinˇ D 2 � cos
�

1

2
.˛ � ˇ/

�
� sin

�
1

2
.˛ C ˇ/

�

Gebrauch gemacht. – Werden die Abkürzungen

�! D !1 � !2

2
I N! D !1 C !2

2
und � Ou D Ou1 � Ou2

eingeführt, lautet die Funktion für die überlagerte Welle:

u D 2 � Ou2 � cos�!t � sin N!t C� Ou � sin!1t

Abb. 2.147 zeigt drei Beispiele: Die Frequenzen der beiden Ausgangswellen (Teilwellen,
Partialwellen, Primärwellen) sind �1 D 1;04Hz und �2 D 0;96Hz. Die Frequenzen sind eng
benachbart. Die Amplituden der drei Teilwellen stehen im Verhältnis

1 W 1; 1 W 0;666 und 1 W 0;333

zueinander. (alle Werte hier frei gewählt).
Im ersten Falle spricht man von einer ‚reinen‘ Schwebung (Abb. 2.147a), in den beiden

anderen Fällen von einer ‚unreinen‘.
Für die reine Schwebung lautet die Funktion mit

Ou D Ou1 D Ou2 ! � Ou D 0W u D 2 � Ou � cos�!t � sin N!t

Die Dauer zwischen zwei Nullpunkten (Knoten) der Schwebung berechnet sich zu:

TSchwebung D 2�

!1 � !2

D �

�!

Für die Dauer der eigentlichen Schwingung gilt (vgl. Abb. 2.148):

TSchwingung D 2 � 2�

!1 C !2

D 2
�

N! ;
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Abb. 2.147
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Abb. 2.148

Für das Zahlenbeispiel der reinen Schwebung mit den Kreisfrequenzen

!1 D 2� � 1;04 D 6;5345 1=s;

!2 D 2� � 0;96 D 6;0319 1=s

ergeben sich �! und N! zu:

�! D 2� � .1;04 � 0;96/=2 D 2� � 0;04 D 0;2513 1=s;

N! D 2� � .1;04C 0;96/=2 D 2� � 1;00 D 6;2832 1=s

TSchwebung D �

0;2513
D 12;5 s; TSchwingung D 2

�

6;2832
D 1;00 s

Die Amplitude der reinen Schwebung erreicht die Größe:

Ou D Ou1 C Ou2:

6. Beispiel
Das vorangegangene Beispiel wird erweitert, indem nicht nur zwei sondern mehrere Si-
nuswellen unterschiedlicher Frequenz überlagert werden. Das führt auf das Konzept der
Wellenpakete und der Gruppengeschwindigkeit. Das Konzept hat in der Informations-
theorie große Bedeutung.

Betrachtet werde als erstes die Überlagerung zweier Wellen gleicher Amplitude unter-
schiedlicher Frequenz im Startpunkt x D 0:

u D Ou � .sin!1t C sin!2t/
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u1 D Ou � sin!1t und u2 D Ou � sin!2t sind die Teilwellen. – Es werden, wie im vorangegan-
genen Beispiel, die Abkürzungen

N! D !1 C !2

2
und �! D !1 � !2

2

vereinbart. Umgestellt gilt:

!1 D N! C�! und !2 D N! ��!

Werden diese Ausdrücke in die Ausgangsgleichung eingesetzt, lautet sie:

u D Ou � Œsin. N! C�!/t C sin. N! ��!/t�

Mit der trigonometrischen Beziehung sin˛ C sinˇ D 2 � sin 1
2
.˛ C ˇ/ � cos 1

2
.˛ � ˇ/ folgt

nach Umformung für u D u.t/:

u D 2 � Ou � cos�!t � sin N!t

Wie erkennbar, handelt sich um eine Sinuswelle mit der mittleren Kreisfrequenz N!. Dieser ist
eine Cosinuswelle mit der Kreisfrequenz �! überlagert. Im Zusammenspiel dieser beiden
Schwingungen ergibt sich der charakteristische Verlauf der überlagerten Welle.

Fällt das Teilwellenpaar zusammen, gilt N! D !1 D !2 und �! D 0: Da cos 0 D
1 ist, ergibt sich einsichtiger Weise bei der Überlagerung eine Sinuswelle mit derselben
Frequenz wie die (identischen) Teilwellen. Abb. 2.149a zeigt einen solchen Verlauf für N! D
6;2832 1=s über eine Zeitdauer von 60 Sekunden. Die Amplitude ist auf ‚Eins‘ normiert.

Als nächstes wird ein Teilwellenpaar mit �1 D 1;04Hz und �2 D 0;96Hz betrachtet.
Hierfür ergeben sich N! und �! zu:

N! D 2�
1;04C 0;96

2
D 6;2832 1=s; �! D 2�

1;04 � 0;96

2
D 0;2513 1=s

Abb. 2.149b zeigt das Ergebnis der Überlagerung ( N! ˙ �!/, wiederum mit auf Eins nor-
mierter Amplitude, das Ergebnis ist eine typische Schwebung (entspricht 5. Beispiel).

Als weiteres werden insgesamt 2 Teilwellenpaare überlagert (Abb. 2.149c):

N! ˙�!W uI D 2 Ou � cos�!t � sin N!t

N! ˙�!=2W uII D 2 Ou � cos.�!=2/t � sin N!t

Das Ergebnis dieser Überlagerung ist in Abb. 2.149c wiedergegeben. Auf diese Weise kann
fortgefahren werden. – Werden die Bereiche �! beidseitig von N! in zehn Intervalle zerlegt
und die Summe aus den zehn Paaren gebildet, findet man den in Teilabbildung d gezeigten
Verlauf. Der im Ursprung liegende Block dominiert immer stärker, man spricht von einem
Wellenpaket oder einer Wellengruppe.

In Abb. 2.150a–d ist die Überlagerung anhand eines !-Diagramms erklärt: Über den
Kreisfrequenzen ! ˙ �!=n sind die paarweise superponierten Teilwellen markiert, wobei
die Amplitude aller Teilwellen konstant ist.
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Abb. 2.149
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Abb. 2.150

Abb. 2.149e zeigt ein weiteres Beispiel. In diesem Falle sind die Amplituden unterschied-
lich gewichtet. Die Gewichtung geht aus Abb. 2.149h hervor. Sie folgt der Funktion

G.!/ D exp

�
� . N! ��!/2

2.�!/2

�

exp D Exponentialfunktion.
Würde man unendlich viele Teilwellenpaare überlagern, die mit dieser Funktion gewich-

tet werden, ergäbe sich ein singuläres Wellenpaket! G.!/ ist die Fourier-Transformierte des
Wellenpakets. Sie hat hier die Form der Gauß’schen Glockenkurve. Um diese Aussage zu
prüfen, wird die Überlagerung auf zwanzig Funktionenpaare erweitert, jetzt mit verdoppelter
Bandbreite (also˙2�!/. Abb. 2.149f, g zeigt das Ergebnis, vgl. auch Abb. 2.149h.

Kommentar
� Im vorangegangenen 5. Beispiel wird ein Paar harmonischer Wellen mit eng benachbar-

ten Frequenzen überlagert. Es entsteht eine Schwebung. Sie kann in der Form

u.t/ D Oumod.t/ � sin N!t mit Oumod.t/ D 2u � cos�!t

angeschrieben und in dieser Form als amplitudenmodulierte Schwingung gedeutet
werden: Die Amplitude ist nicht konstant sondern ist mit der Modulations-Kreisfre-
quenz �! als schwach veränderliche Sinusschwingung (als Schwebung, als Einhüllen-
de) einer Cosinusschwingung mit der Träger-Kreisfrequenz N! überlagert.

� Im 6. Beispiel ist N! nach wie vor als Träger-Kreisfrequenz einer Sinusschwingung zu
sehen. Dieser Schwingung ist eine amplitudenmodulierte Schwingung in Form eines
Wellenpakets überlagert, wobei das Paket durch die Überlagerung einer großen Zahl
frequenzbenachbarter Teilwellen innerhalb der Modulations-Kreisfrequenzbreite ˙�!

zustande kommt.
� Die Darstellung im 5. und 6. Beispiel geht von Wellen aus, die am Ort x D 0 überlagert

werden. Die Darstellung kann in den Ortsbereich erweitert werden, indem z. B. zwei
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Wellen überlagert werden, die sich im Zeitpunkt t und am Ort x gemäß

u1 D Ou � sin.!1 � t � k1 � x/; u2 D Ou � sin.!2 � t � k2 � x/

als harmonische Wellen beschreiben lassen, wobei die Wellenzahlen k1 und k2 für

k1 D 2�


1

und k2 D 2�


2

stehen. Kreisfrequenz und Wellenzahl sind durch die gemeinsame Phasengeschwindig-
keit miteinander verbunden:

c D � � 
 D �1 � 
1 D !1

2�
� 2�

k1

D !1

k1

D !2

k2

Die Überlagerung von u1 und u2 ergibt nach Umformung:

u D u1 C u2 D 2 Ou � cos.�! � t ��k � x/ � sin. N! � t � Nk � x/

Die Funktion beschreibt dieselbe Schwebung wie zuvor. Die Schwebung bewegt sich in
Zeit und Raum mit der Gruppengeschwindigkeit:

cGruppe D N!Nk

Die Überlagerung vieler Teilwellenpaare und ihre Gruppierung um N! und Nk ist auf die
gleiche Art und Weise möglich. Die so entstehende Wellengruppe bewegt sich mit der
angeschriebenen Gruppengeschwindigkeit in Zeit und Raum.

Vermittelst der Modulation kann jede Information in Form einer Wellengruppe
transportiert werden. Das Prinzip der Informationstechnologie ist damit im Kern
angedeutet. (Eine weitergehende Vertiefung des Stoffes ist in diesem Rahmen nicht
möglich; auf das Fachschrifttun wird verwiesen, z. B. auf [32, 33].)

� Neben der Amplitude kann auch die Frequenz und die Phase moduliert werden,
womit weitere Informationsübertagungsmöglichkeiten zur Verfügung stehen. Eine
reine harmonische Welle kann kein Signal übertragen, allenfalls einen Brummton.

� Es gibt Medien, für die die oben dargestellte Form der Wellentheorie einer Modifikation
bedarf. Das ist dann der Fall, wenn die Fortpflanzungsgeschwindigkeit von der Wellen-
länge abhängig ist. Das ist z. B. bei allen nicht-elastischenWellen mit großen Amplituden
gegeben, bei Oberflächenwellen von Fluiden, auch bei elektromagnetischen Wellen in al-
len materiellen Medien. Man spricht bei dieser Erscheinung von Dispersion. Die oben
angeschriebene Formel für die Gruppengeschwindigkeit gilt nur für dispersionsfreieWel-
len! – Schallwellen in Luft sind dispersionsfrei.
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2.7 Akustik

2.7.1 Schallmechanik (Grundlagen)

2.7.1.1 Schall – Schallwellen – Schallgeschwindigkeit
Unter Schall versteht man gängigerWeise Luftschwingungen, die das Trommelfell
im Ohr zu Schwingungen anregen. Das hierbei übertragene Signal wird im Gehirn
identifiziert. Schallerreger (Schallquelle) kann eine schwingende Saite (z. B. einer
Geige), eine schwingende Membran (z. B. einer Trommel), ein schwingender Stab
(z. B. einer Stimmgabel) oder ein sonstiger schwingungsfähige Körper sein, z. B.
eine Glocke. Nicht zuletzt sind es die Stimmbänder in der Kehle, die in Verbindung
mit Zunge und Gaumen, dem Menschen Sprechen und Singen ermöglichen. Beim
Schallerreger kann es sich auch um eine schwingende Luftsäule handeln (wie bei
einer Flöte oder Orgelpfeife). – Schall breitet sich nicht nur in Luft sondern auch
in anderen Gasen, sowie in Flüssigkeiten und Feststoffen aus. Schall benötigt als
mechanische Schwingung einen Schallträger, im Vakuum vermag sich kein Schall
auszubreiten! Eine ausführliche Behandlung bieten u. a. [34, 35].

Abb. 2.151 zeigt das bereits in Abschn. 2.6.2 behandelte ebene Wellenfeld.
Dargestellt ist ein Strang mit diskreten Massen und Federn als Modell für das elas-
tische Kontinuum. In Richtung des Stranges schwingen die Massen hin und her, es
handelt sich um longitudinale (längsgerichtete) Dichtewellen. Die Ortskoordinate

Abb. 2.151
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in Richtung des Stranges ist x, die Zeitkoordinate ist t . Für einen bestimmten Ton,
also eine bestimmte Frequenz, schwingen die Massenteilchen harmonisch (sinus-
förmig). Kinematisch lässt sich deren Hin-und-Her-Bewegung in Richtung x und
mit der Zeit t fortschreitend, durch die Funktion

u.x; t/ D Ou � sin 2��
�
t � x

c

�
D Ou � sin 2�

�
�t � x




�
D Ou � sin 2�

�
t

T
� x




�

beschreiben, vgl. den vorangegangenen Abschn. 5.6 (Wellen). � ist die Frequenz
und T D 1=� die Wellenperiode. 
 ist die Wellenlänge. � und 
 sind mit der
Ausbreitungsgeschwindigkeit durch die Beziehung

c D � � 


miteinander verknüpft.
Die Beschreibung gilt für ein ebenes Wellenfeld. In x-Richtung schreitet die

Welle um die Wellenlänge 
 und in t -Richtung um die Wellenperiode T fort, dann
stellt sich der Ausgangszustand wieder ein. Für den Zeitpunkt t D 0 lautet die
Wellenfunktion:

u.x; 0/ D Ou � sin 2�
�
�x




�
I

an den Stellen x D 0, x D 
=4, x D 
=2, x D 3=4 � 
 und x D 
 liefert die
Gleichung folgende Ausschläge (vgl. Abb. 2.151c):

u.0;0/ D 0; u

�



4
; 0

�
D �Ou; u

�



2
; 0

�
D 0;

u

�
3

4

; 0

�
D COu; u .
; 0/ D 0

Zum Zeitpunkt t D T=2 D 1=2� liefert die Funktion folgende Verschiebungen:

u

�
x;

T

2

�
D Ou � sin 2�

�
�

T

2
� x




�
D Ou � sin 2�

�
1

2
� x




�

An den entsprechenden Stellen wie zuvor betragen die Ausschläge nun: 0, COu, 0,
�Ou, 0. Auf diese Weise lassen sich die in Abb. 2.151b, c dargestellten Schwin-
gungszustände des Massen-Stranges für die insgesamt 24 Stellen innerhalb der
Wellenlänge 
 und für die 24 Zeitpunkte innerhalb der Periode T veranschauli-
chen. Ist der Anfangszustand zu x D 0 und t D 0 vereinbart, wiederholt sich die
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Abb. 2.152

Wellenbewegung jeweils nach dem vollständigen Durchgang der Welle durch den
Strang in Richtung x um die Strecke 
 und in Richtung t nach der Zeit T . Der Aus-
gangszustand wiederholt sich dann identisch. Für das Argument der sinusförmigen
Wellenfunktion bedeutet das:

T � 


c
D 0 ! 1

�
� 


c
D 0 ! c D � � 


c ist die Ausbreitungsgeschwindigkeit desWellenzuges, in Abb. 2.151b durch Pfei-
le markiert. Man erkennt, dass sowohl örtlich (entlang x/ wie zeitlich (entlang t /

ein Signal, eine Information, übertragen wird.
In den verschiedenen Übertragungsmedien ist die Schallgeschwindigkeit unter-

schiedlich, sie ist stoffabhängig. Für Luft in Höhe der Erdoberfläche (bei 101,3 kPa
Luftdruck) gelten für c folgende Annäherungen (alternativ), c in m=s:

c D .331C 0;6 � #/ oder c D 20;05 �
p

273;2C #

oder c D 332 �
p

1C #=273;2

# ist die Lufttemperatur in °C. Für # D 20 °C liefern die Formeln der Reihe
nach: 343,0; 343,3 bzw. 343,9m=s. In größerer Höhe über der Erdoberfläche gelten
andere Gesetze, das beruht auf der Änderung der Dichte und der Lufttemperatur
über die Höhe. Der Einfluss der Luftfeuchte ist eher gering.

Anmerkung
Merkregel bei Blitz und Donner: 3 Sekunden zwischen Blitz und Donner bedeuten eine
Blitzentfernung von ca. 1 km. Man zähle laut nach Aufleuchten des Blitzes: Einundzwanzig,
Zweiundzwanzig usf. und multipliziere die Zahl minus 20 mit 350m.

Die Tabelle in Abb. 2.152 enthält für gasförmige, flüssige und feste Stoffe An-
haltswerte für die Ausbreitungsgeschwindigkeit c in m=s. Da es sich beim Schall
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umDruckschwankungen handelt, ist verständlich, dass c vomKompressionsmodul
K und von der Dichte � des Mediums abhängig ist:

c D
s

K

�

K kennzeichnet die Elastizität (die ‚Steifigkeit‘) und � die Dichte des schwingen-
den Stoffes. Flüssigkeiten sind im Vergleich zu Gasen weitgehend inkompressibel
(hohe SteifigkeitD hoher K-Modul), Gase haben andererseits eine geringe Dichte.
So werden die Werte in der Tabelle verständlich. Bei Gasen lässt sich die Funkti-
on der Schallgeschwindigkeit von Druck und Temperatur nur auf der Basis der
Gastheorie herleiten (Bd. I, Abschn. 2.7.3). – Interessant ist der Sachverhalt, dass
c bei konstanten Bedingungen unabhängig von der Frequenz ist, gleichgültig, ob
es sich um ein sphärisches oder ebenes Wellenfeld handelt, das gilt auch für alle
anderen Phänomene bei der Wellenausbreitung (Reflektion, Brechung, Beugung,
Interferenz), auch bei der Absorption.

2.7.1.2 Schallfeld – Schallfeldgrößen
Wenn der Schall von einer Punktquelle ausgeht, ist das Schallfeld kugelförmig
(sphärisch). Sind es viele Quellen, kommt es zu den unterschiedlichsten Überla-
gerungen. In diesem Abschnitt wird von einer einzelnen ortsfesten monofrequen-
ten Schallquelle ausgegangen. Mit wachsendem Abstand von der Quelle wird die
Krümmung der Wellenfront immer geringer, dann kann das Wellenfeld lokal als
ein ebenes angenähert werden (Abb. 2.153a).

Im Schallfeld pflanzen sich, wie bei jederWellenbewegung, Energie und Impuls
fort. Die Ausbreitung erfolgt von Ort zu Ort mit der im vorangegangenenAbschnitt
aufgezeigten Ausbreitungsgeschwindigkeit c. Die Lautstärke vor Ort wird von der
abgestrahlten Schallleistung und vom Abstand bestimmt.

Im Schallfeld schwingen die Teilchen bei einem reinen Ton sinusförmig (har-
monisch) mit der Tonfrequenz �:

u D u.x; t/ D Ou � sin 2��
�
t � x

c

�

u ist der Schwingweg des stofflichen Teilchens um die Ruhelage und Ou die zuge-
hörige Amplitude. Die Teilchengeschwindigkeit (Schallschnelle, Schallwechsel-
geschwindigkeit) ist die Ableitung von u.x; t/ nach der Zeit t :

v D v.x; t/ D Ov � cos 2��
�
t � x

c

�
; Ov D 2�� � Ou
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Abb. 2.153

Schallschnelle v.x; t/ und Schalldruck (Schallwechseldruck) p.x; t/ sind inner-
halb der Akustik die wichtigsten Feldgrößen. –

Die Schallschwingungen überlagern sich dem mittleren Druck im Medium (bei
Luft ist es der Luftdruck vor Ort, Abb. 2.153c). Bei einem monofrequenten Schall,
also einem einfachen Ton, verlaufen auch die Druckschwankungen harmonisch.

Hinweis
In Abschn. 2.6 (Theorie der Wellen) wurde der Druck mit Spannung �.x; t/ benannt und war
als Zugspannung positiv vereinbart. Im Folgenden wird der Druck mit p.x; t/ abgekürzt und
dabei als Druck positiv! Das entspricht der üblichen Definition in der Akustik.

Der Schalldruck p.x; t/ verläuft cosinusförmig (wie v.x; t/) und somit gegen-
über u.x; t/ um die Phase �=2 (90°) verzögert:

p D p.x; t/ D Op � cos 2��
�
t � x

c

�

Die Druckamplitude dieser harmonischen Druckschwankungen berechnet sich zu
(vgl. Abschn. 2.6.3, (l)):

Op D 2�� � � c � Ou D �c � Ov

Das Produkt �c ist der Wellenwiderstand. Anhand der in Abb. 2.152 angegebenen
c-Werte und der zugehörigen Stoffdichten � kann der Wellenwiderstand berech-
net werden. Man spricht auch von der Schallimpedanz. Bildet man den Quotienten
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Op= Ov, ergibt sich �c. Somit gilt für die Schallimpedanz, abgekürzt mit Z:

Z D �c D OpOv
Beispiele für Z in kg=m2 s D Ns=m3für 20 °C und Normaldruck: Wasserstoff:
110, Luft: 408, Wasser: 1;48 � 106, Stahl: 3;95 � 107. Bei Luft kann mit dem Zah-
lenwert 400 gerechnet werden. Zur Bedeutung von Z vgl. Abschn. 2.7.3.

Abb. 2.153b zeigt die prinzipiellen Verläufe von u.x; t/, v.x; t/ und p.x; t/

innerhalb der Wellenlänge 
 D c=�. Geht man beispielsweise von einem in Luft
übertragenen Ton mit der Frequenz � D 750Hz aus und ist die Amplitude des
Schallausschlags gleich

Ou D 1 � 10�5 m D 1 � 10�2 mm D 0;10mm D 10 �m;

ergibt sich die Amplitude des Schallwechseldrucks für �Luft D 1;21 kg=m3 und
cLuft D 337m=s in Pa (Pascal D N=m2) zu:

Op D 2�� � �c � Ou D 2� � 750 � 1;21 � 337 � 1 � 10�5

D 19;22 Pa � 20Pa .kgm=s2=m D N=m2/

Die Schallwechselamplitude Op D 20 Pa liegt für das menschliche Ohr nahe der Er-
träglichkeit. Die Schmerzgrenze liegt im Bereich 25 bis 30 Pa, i.M. bei 27,5Pa.
Der Norm-Luftdruck auf der Erdoberfläche beträgt 101.325Pa. Ein Druck von
27,5 Pa ist davon der 27;5=101:325 D 0;000271-fache Teil, also viel weniger als
in Abb. 2.153c zur Veranschaulichung dargestellt. Aus dieser Abschätzung wird
deutlich, um welch’ geringe Ausschläge der Luftmoleküle und um welch’ geringe
Luftdruckschwankungen es sich beim Schall letztlich handelt.

Der Mensch hat ein breites Hörvermögen, es reicht von ca. 0,00002Pa bis
27,5 Pa, bei 10 Pa setzt erstes Schmerzempfinden ein. Ab 0,4 Pa ist bei lang an-
dauernder Einwirkung mit Gehörschäden zu rechnen, ab 20Pa bei kurzdauernder.

Neben der Schallschnelle v.x; t/ und dem Schallwechseldruck p.x; t/ ist die
Schallstärke I (Schallintensität) eine weitere wichtige Feldgröße. Wie in Ab-
schn. 2.6.4 erläutert, ist I ein Maß für den mittleren Energiedurchsatz pro Flächen-
und Zeiteinheit. Weil auf die Zeiteinheit bezogen, handelt es sich bei I um eine
Leistungsgröße. Sie bestimmt sich nach der Formel (Abschn. 2.6.4, (u)):

I D 1

2
Op � Ov
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Wie oben angegeben, ist Op die Amplitude des Schallwechseldrucks und Ov die Am-
plitude der Schallschnelle. Zwischen Op und Ov besteht die Beziehung:

Ov D Op
� � c

Somit kann I auch zu

I D 1

2
� Op

2

� � c
angeschrieben werden; der Schallwechseldruck geht quadratisch in I ein.

Für das obige Beispiel ergibt sich I zu:

I D 1

2
� 19;222

1;21 � 337
D 0;453W=m2 .Nm=m2 D J=m2 � s DW=m2/

Wie in Abschn. 2.6.4 weiter erläutert, kann I aus den Effektivwerten von p und v

bestimmt werden:

I D peff � veff mit peff D Op=
p

2; veff D Ov=
p

2

Diese Berechnungsform hat für die Schallmessung Bedeutung: Die Effektivwerte
lassen sich bei einem Tongemisch auf der Basis der Signaltheorie messen. Über
die Schallkennimpedanz Z sind die Effektivwerte miteinander verknüpft:

Z D � � c D OpOv D
peff

veff

Die Energieschwankungen im Schallfeld sind positiv definit, ihr Verlauf ist in
Abb. 2.153b (unten) angedeutet.

Als Energiedichte w ist die mittlere Energie vereinbart, die das Schallfeld pro
Volumeneinheit durchsetzt (Abschn. 2.6.4). Sie berechnet sich im ebenen Schall-
feld zu:

w D 2�2 � � � �2 � Ou2 D 1

2
� � Ov2 D 1

2
� Op

2

� � c2

Für obiges Zahlenbeispiel ergibt sich:

w D 2�2 � 1;21 � 7502 � .1 � 10�5/2 D 0;00134Nm=m3 D 0;00134 J=m3
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Auch dieses Ergebnis lässt erkennen, wie gering die beim Luftschall übertragenen
Energien sind.

Die Leistung einer Schallquelle ist die in der Zeiteinheit (1 Sekunde) bezogene
abgestrahlte Schallenergie: Die Schallquelle hat eine Leistung von einem Watt,
wenn von ihr in der Sekunde eine Energie von 1 Joule abgestrahlt wird. Wird
die Leistung nach allen Richtungen, quasi kugelförmig, abgestrahlt, nimmt sie mit
dem Quadrat des Abstandes ab (1=r2/. Anhaltswerte für Leistungsabstrahlungen
in Watt: Gängige Unterhaltungssprache, eher gedämpft: 0;0000007I Spitzenleis-
tung der menschlichen Stimme: 0,002; Musikinstrumente, in fortissimo gespielt:
Geige: 0,001; Flügel: 0,2; Trompete: 0,3; Orgel: 1 bis 10; Pauke: 10; Autohupe: 5,
Großlautsprecher: 100 und mehr; alle Angaben in Watt.

2.7.2 Sprechen – Hören

Mittels seiner Stimmbänder im Kehlkopf vermag der Mensch einen Ton zu er-
zeugen. Hohe Töne entstehen bei hoher Anspannung der Bänder, tiefe bei gerin-
ger. Die Luft aus der Lunge strömt durch die Stimmritze der Stimmbänder. Die
hierbei angeregte Luftschwingung ergibt den Ton. Dieser Ton wäre praktisch un-
hörbar, wenn er nicht durch die Resonanzräume in Mund und Rachen, in Brust-
und Stirnhöhle, auf eine hörbare Höhe verstärkt würde. Mit Lippe und Zunge
werden die unterschiedlichen Laute gebildet. So gelingt es, zu sprechen und zu sin-
gen. Das geschieht durch Rückkopplung mit dem eigenen Hören. (Taubgeborene
bleiben stumm.) Die Frequenzen der durch das Sprechen ausgelösten Luftschwin-
gungen liegen beim erwachsenen Mann zwischen 65 bis 320Hz, bei der erwachse-
nen Frau zwischen 200 bis 400Hz (schreiende Säuglinge erreichen 1000Hz). Für
Sänger/Sängerinnen gilt: Bass 65 bis 320Hz, Tenor 130 bis 430Hz, Alt 170 bis
640Hz, Sopran 260 bis 830Hz.

Im Gehirn aller heutigen homo sapiens steht dasselbe Grundprogramm zum Er-
lernen des Sprechens zur Verfügung. Das wird neben anderen Hinweisen als Indiz
für die Abstammung des Menschen von einem gemeinsamen Ahnen, unabhängig
von seiner Rasse und seinem kontinentalen Lebensraum, angesehen (Bd. V, Ab-
schn. 1.2.6.1 und 1.5.5).

Der Mensch vermag nur deshalb artikuliert zu sprechen, weil sich der Kehl-
kopf nach dem ersten Lebensjahr absenkt und sich dabei die Rachenhöhle bildet
(A. PORTMANN (1897–1982), Abb. 2.154a). – Bei Menschenaffen findet diese
Umformung nicht statt, auch nicht bei allen anderen Wirbeltieren. Sie vermögen
daher auch nicht zu sprechen, sondern nur zu quieken, grunzen, knurren, schnalzen
und zu schmatzen. – Einzelheiten vermittelt die Neuro-Linguistik.
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Abb. 2.154

Abb. 2.155

Jüngere Funde lassen darauf schließen, dass der Neandertaler, der sich paral-
lel zum Menschen entwickelte und vor ca. 25.000 Jahren ausstarb, vielleicht auch
sprechen konnte. An den fossilen Resten konnte nachgewiesen werden, dass die
Zungenbeine und die Ansätze für die Sprechmuskeln mit jenen des Menschen ver-
gleichbar sind.

Hören vermag der Mensch dank seiner Ohren. Das Ohr besteht aus dem äußeren
Ohr, dem Mittelohr und dem Innenohr (Abb. 2.155). Die Schallwelle wird von der
Ohrmuschel (max. ca. 10 cm2 groß) aufgefangen und gelangt zum Trommelfell.
Dabei werden die für das Sprachverstehen wichtigen Frequenzen im Gehörgang
verstärkt. Die Schwingungen des Trommelfells werden von den Gehörknöchel-
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Abb. 2.156

chen in der Paukenhöhle übernommen und dabei um das 20 bis 25-fache verstärkt
und ins Innenohr übertragen. Von hier werden die Signale über Membrane und
die Lymphflüssigkeit auf die Sinneszellen und anschließend bioelektrisch über den
Hörnerv ins Hörzentrum des Gehirns weitergeleitet. Hier werden sie als bewusstes
Hören und Verstehen verarbeitet.

Das Hörempfinden bzw. -vermögen liegt beim Menschen zwischen den Fre-
quenzen � � 20Hz (das entspricht einer Wellenlänge 
 D 17m) und ca.
20.000Hz (20 kHz, 
 D 0;017m D 17mm). Abb. 2.156a vermittelt einen Über-
blick.

Aus der Differenz der beim linken und rechten Ohr ankommenden Wel-
lenfronten vermag der Mensch die Richtung der Schallwelle intuitiv zu orten
(Abb. 2.156b), zudem wird der von vorne ankommende Schall vermöge der Stel-
lung der Ohrmuscheln deutlich stärker wahrgenommen (stereographisches oder
Richtungshören).

Ab dem 40sten Lebensjahr sinkt das Hörvermögen, gleichzeitig wird Geschrei
und Lärm lauter empfunden. – Mit der ab dem Jahre 1750 gebräuchlichen Hörmu-
schel konnte die Lautstärke bei Schwerhörigkeit verdoppelt werden. Heute kom-
men In-Ohr-Geräte als Verstärker zum Einsatz, sie sitzen unsichtbar im Gehörgang.

Zur Belüftung der Paukenhöhle und zum Druckausgleich dient die etwa 3,5 cm
lange sogen. Eustachische Röhre zwischen Nasen- und Rachen-Raum.

Anmerkung
Bei den Tieren ist der Frequenzbereich des Hörens und Ortens von jenem des Menschen ver-
schieden und, wie alle anderen Fähigkeiten, an die Lebensumstände evolutionär angepasst. –
Fledermäuse stoßen laufend hohe Töne bis in den zweistelligen kHz-Bereich aus und können
deren Echo orten. Ihr Hörvermögen reicht bis 210 kHz. Dank dieser Fähigkeiten können sie
sich auch bei völliger Dunkelheit orientieren und Beutetiere im Flug fangen. Die ersten dies-
bezüglichen Versuche stellte L. SPALLANZANI (1729–1799) an. – Die große Wachsmotte
kann Töne bis 300 kHz wahrnehmen, andere Insekten bis 200 kHz, was es ihnen ermöglicht,
den jagenden Fledermäusen auszuweichen.
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2.7.3 Hörempfinden – Schallpegel – Schallspektrum

2.7.3.1 Unbewerteter Schallpegel (Lärmpegel)
Wie ausgeführt, ist das Hörvermögen des Menschen durch eine große Breite aus-
gezeichnet. Für die verschiedenen Schallfeldgrößen gilt:

� Im Frequenzbereich (�) 16 bis 20Hz als untere und 16.000 bis 20.000Hz als
obere Grenze. Das sind ca. 10 Oktaven. Mit zunehmendem Alter sinkt insbe-
sondere der obere Wert.

� Im Schalldruckbereich (p/ von ca. 0,00002 Pa über 20 Pa (schmerzhaft) bis
27,5Hz (unerträglich, es wird nichts mehr ‚gehört‘, sondern nur noch Schmerz
empfunden): Diesen Grenzwerten entsprechen Schallstärken, also Schallinten-
sitäten, die gemäß

I D 1

2
Op � Ov D 1

2
� � Ov2 D 1

2
� Op

2

� � c D peff � veffI

peff D Op=
p

2; veff D Ov=
p

2

mit � D 1;21 kg=m3 und c D 343m=s berechnet werden können.
� Im Schallstärkebereich (I ) untere Grenze ca. 0;5�10�12 W=m2 und obere Gren-

ze ca. 1W=m2.

Zur physiologischen Bewertung der Lautstärke sind die physikalischen Größen Ov,
Op und I nicht unmittelbar geeignet. Um Schalldruck und Schallstärke als energe-
tische Größen mit dem menschlichen Hörempfinden in Verbindung zu bringen,
geht die Bewertung der Schallstärke von deren Amplitudenwerten aus (genauer
von deren Effektivwerten bei vielfrequenten Tönen und Geräuschen). Nach dem
von W.E. WEBER (1804–1891) und G.T. FECHNER (1801–1882) vorgeschlage-
nen Empfindungsgesetz besteht beim Menschen zwischen der Stärke der Höremp-
findung (also dem empfundenen Sinnesreiz E) und der Stärke des einwirkenden
Reizes R der Zusammenhang: E D k � logR. Von diesem Vorschlag ausgehend,
werden die gemessenen Effektivwerte durch einen zugeordneten (genormten) Be-
zugswert dividiert und hiervon der dekadische Logarithmus genommen. Diesen
Wert bezeichnet man als (Lautstärke-)Pegel, abgekürzt durch L. Als Einheit dient
das Dezibel (dB), benannt nach A.G. BELL (1847–1922).

Im Einzelnen wurden vereinbart bzw. sind genormt (p steht im Folgenden für
peff und v für veff, die Bezugswerte sind durch den Index 0 gekennzeichnet):
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� Pegel des Schall(wechsel)drucks in dB:

Lp D 10 � log p2

p2
0

D 20 � log p

p0

.invers: p D p0 � 10Lp=20/

(Kennwert des Pegels ist die Differenz der Logarithmen von p2 gegenüber
jenem von p2

0:

logp2 � logp2
0 D log.p2=p2

0/ D 2 � log.p=p0/:

Als Bezugswert p0 ist der Schalldruck an der Hörschwelle vereinbart worden,
also am leisesten noch hörbaren Ton im Bereich der höchsten Empfindlichkeit.
Dieser Bereich liegt beim Menschen bei 1000Hz:

p0 D 2 � 10�5 N=m2 D 20 �Pa D 2 � 10�4�bar .�W 10�6;Mikro-/

Für p D p0 folgt Lp D 0. Somit ist der Schalldruckpegel normativ an der
Hörschwelle zu Null vereinbart. An der Schmerzschwelle ( Op D 20N=m2) be-
rechnet sich der Pegel zu:

Lp D 20 � log.20=20 � 10�6/ D 20 � log.106/ D 20 � 6 D 120:

� Pegel der Schallschnelle in dB:

Lv D 10 � log v2

v2
0

D 20 � log v

v0

.invers: v D v0 � 10Lv=20/

Bezugsschallschnelle:

v0 D 5 � 10�8 m=s D 50 nm=s .nW 10�9;Nano-/

� Pegel der Schallintensität (Schallstärke) in dB:

LI D 10 � log I

I0

.invers: I D I0 � 10LI =10/

Bezugsintensität:

I0 D 10�12 W=m2



2.7 Akustik 247

Abb. 2.157

Der Pegel für die Schallleistung (Lp) ist entsprechend definiert. – Wird die Be-
zugskennimpedanz für ebene Schallwellen (und kugelförmige im Fernfeld) zu

Z0 D p0

v0

D 400
Ns

m3
; d. h. I D p2

Z0

D Z0 v2

eingeführt, gehen die Pegel ineinander über, d. h. sie sind dann einander gleich.
Eine Verdoppelung bzw. Halbierung des Schalldrucks (p) führt zu einer Ände-

rung des Lp-Pegels um˙6 dB, denn

˙10 � log 22 D ˙10 � 0;6021 � ˙10 � 0;60 D ˙6 dB

Eine Verdoppelung bzw. Halbierung des Schallstärke (I ) führt zu einer Änderung
des LI -Pegels um˙3 dB, denn

˙10 � log 2 D ˙10 � 0;3010 � ˙10 � 0;30 D ˙3 dB

Bei einer Verzehnfachung der Schallstärke (I ) steigt der LI -Pegel um 10 dB, bei
einer Verhundertfachung um 20 dB, bei einer Vertausendfachung um 30 dB.

Die Darstellung in Abb. 2.157, in welcher die Schallstärke I in W=m2 dem
zugeordneten Lautstärkepegel LI in dB gegenübergestellt ist, macht den Zusam-
menhang zwischen diesen Größen deutlich.

2.7.3.2 Schallspektrum – Ton, Klang, Lärm, Knall
Handelt es sich um eine harmonische Schallwelle mit fester Frequenz, spricht man
von einem (physikalischen) Ton, Abb. 2.158a. Überlagern sich zwei oder mehrere
harmonische Schallwellen mit jeweils definierter Frequenz, entsteht ein Klang, wo-
bei die Frequenzen in einem ganzzahligen Verhältnis stehen müssen, damit sie im
musikalischen Sinne als Klang empfunden werden. Die untere Frequenz bestimmt
die Tonhöhe, die Obertöne die Klangfarbe; der Zeitverlauf des Schallwechsel-
drucks ist periodisch, das Spektrum weist zwei oder mehrere diskrete Werte auf
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Abb. 2.158

(Abb. 2.158b). Treten innerhalb des Frequenzbandes (unendlich) viele harmoni-
sche Anteile auf, und sind die Werte von stochastischem Typ, spricht man von
Geräusch (Rauschen), bei erhöhter Intensität von Lärm (Abb. 2.158c). Bei sehr
hoher Intensität und kurzer Dauer handelt es sich um einen Knall (Abb. 2.158d).

Nach der Frequenz werden unterschieden:

� � � 20Hz: Infraschall (nicht hörbar)
� � D 20 bis 20.000Hz (D 20 kHz): Hörschall
� � D 20 kHz bis 1GHz: Ultraschall (nicht hörbar)
� � � 1GHz: Hyperschall

In dem Spektrum des als Lärm charakterisierten Schallfeldes ist der Schalldruck
kontinuierlich über der Frequenz verteilt (Abb. 2.158c).

Der Schalldruck lässt sich nach elektro-akustischer Wandlung messen. Die
wichtigsten Einwert-Kenngrößen des Schalldrucks sind sein Effektivwert und die
zugehörige Schallintensität:

peff D

vuuut lim
T!1

1

T
�

TZ

0

p2.t/ dt I I D p2
eff

Z

Das bedeutet: Es wird der quadratische Zeitmittelwert für die Zeitdauer T gebildet
und hieraus die Wurzel gezogen. Da p D p.t/ um den barometrischen Ruhedruck
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schwankt, ist peff bei einem stationären Schallfeld mit der Standardabweichung
des regellosen Wechseldrucks identisch. Alle in der Signaltheorie entwickel-
ten Analysemethoden sind auf p.t/ anwendbar, auch bei einem impulsartigen
Schallfeld. Modernen computergestützten Mess- und Analyseverfahren liegt die
Schnelle-Fourier-Transformation zugrunde: FFT (Fast-Fourier-Transformation,
vgl. Abschn. 2.5.7). Historisch bedingt kommen bei den Mehrwert-Verfahren
nach wie vor Filtermethoden zum Einsatz: Hierbei wird der Effektivwert des
Schalldrucks mittels eingebauter Filter für voreingestellte Frequenzbandbreiten
gemessen und dieser Wert über der Mittelfrequenz des jeweiligen Frequenzban-
des aufgetragen. Das liefert das Spektrum für p.t/. Dem Effektivwert peff;i jedes
Bandes ist die Intensität

Ii D
p2
eff;i

Z

zugeordnet, das ergibt das Spektrum für I : Die Summe der auf diese Weise ermit-
telten Intensitäten je Bandbreite liefert die Gesamtintensität des Schallfeldes:

I D
X

Ii

Die Messgeräte bestehen aus einem Mikrophon, welches den Schalldruck auf-
nimmt, und einem Verstärker. Bei der elektro-akustischen Wandlung werden plan-
mäßige Verzerrungen vorgenommen, um den sogen. bewerteten Schallpegel zu
gewinnen. Die elektro-akustischen Messgeräte und -verfahren sind umfassend ge-
normt; Einzelheiten vermittelt das technische Schrifttum [36–39].

2.7.3.3 Bewerteter Schallpegel (Lautstärkepegel)
Die Empfindungen des menschlichen Gehörs sind nicht physikalischer sondern
physiologischer und psychologischer Natur. Sowohl die (untere) Hörschwelle wie
die (obere) Schmerzschwelle sind stark von der Frequenz abhängig (und natürlich
vom Alter und der Konstitution der Person). Das Gebiet der höchsten Empfind-
lichkeit liegt bei ca. 1000Hz (1 kHz). Das Hörvermögen sinkt, je mehr sich die
Schallfrequenz den Bereichsgrenzen nähert. Bei gleich hohem Schallpegel werden
tiefe Töne weniger laut empfunden als höhere. Abb. 2.159 zeigt Kurven gleicher
Lautstärke (d. h. gleicher Empfindlichkeit) für Normalhörende nach ISO 225:2006,
ehemals nach DIN 45630-2:1967.

Die Kurven wurden durch Hörvergleichsmessungen bestimmt. Es handelt sich
also nicht um physikalisch sondern subjektiv gewonnene Ergebnisse. Einsichtiger
Weise wird ein Ton umso lautstärker empfunden, je höher der Schalldruck und
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Abb. 2.159

damit der Schallpegel ist. Als Referenzwert für die Definition des Lautstärke-
pegels LS wurde der Ton bei 1000Hz und als Einheit 1 phon gewählt (maßgebend
DIN 1318:1970).

Die LS -Kurven in Abb. 2.159 wurden dadurch gewonnen, dass der Schalldruck-
pegel Lp eines mit der Frequenz � gesendeten Messtones solange variiert wurde,
bis eine repräsentative Anzahl von Hörern den Ton als gleichlaut wie den 1000-Hz-
Bezugston mit dem eingestellten Schalldruckpegel Lp (in dB D phon) empfand.
In dieser Form wurden die Kurven (international) genormt. Ihrer Entstehung nach
gelten sie für reine Einzeltöne, nicht dagegen für breitbandigen Lärm.

Kennt man von einem Ton die Frequenz und den Schalldruck bzw. dessen Pegel
Lp, kann dem Diagramm die Lautstärke des Tons in phon entnommen werden.

Beispiele
1) � D 125Hz, Lp D 31 dB. Aus Abb. 2.159 findet man den Lautstärkepegel zu LS D
20 phon. (Je tiefer der Ton ist, umso geringer ist sein Lautstärkepegel LS in phon im Ver-
gleich zu seinem Schallpegel Lp in dB.)

2) � D 4000Hz, Lp D 88 dB. Aus Abb. 2.159 folgt der Lautstärkepegel zu LS D
100 phon. (Hier liegt LS in phon höher als Lp in dB.)

Aus den Kurven des Diagramms erkennt man die Empfindlichkeitsabnahme des
Ohres zu tiefen Frequenzen hin. Außerdem erkennt man gewisse Verstärkungsbe-
reiche um 4 kHz. – Ein Unterschied im Lautstärkepegel von 1 phon wird gerade
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Abb. 2.160

noch wahrgenommen. Aus diesem Grund wird LS nur in ganzzahligen phon-
Einheiten und Lp nur in ganzzahligen dB-Einheiten angegeben.

Um die komplexen Zusammenhänge bei der subjektiven Schallwahrnehmung
zu objektivieren und messtechnisch erfassen zu können, wurden Frequenzbewer-
tungen vereinbart und genormt. Hierzu wird der gemessene Schalldruck mittels
einer im Messgerät eingebauten Schaltung in Abhängigkeit von der Frequenz ge-
schwächt oder verstärkt. Die Bewertungen gehen aus Abb. 2.160 hervor, die Be-
wertungen sind in Abhängigkeit von der Frequenz genormt. Es gibt vier verschie-
dene Bewertungen: A, B, C und D. Die bewerteten Schallpegel nennt man LA, LB ,
LC und LD . Sie werden durch eine Erweiterung der dB-Einheit gekennzeichnet,
z. B. dB(A). – Verbreitet ist die A-Bewertung. Soll das Lautstärkeempfinden ei-
nes sinusförmigen Schalls oberhalb 60 dB angenähert werden, empfiehlt sich eine
B-Bewertung, oberhalb 100 dB eine C-Bewertung (auch bei Körperschallmessun-
gen). Den Fluglärmmessungen wird i. Allg. die D-Bewertung zugrunde gelegt.
Ein Vergleich der Kurven in Abb. 2.159 und in Abb. 2.160 verdeutlicht, wie mit
dem bewerteten Schallpegel versucht wird, das menschliche Hörempfinden bei der
Messung zu berücksichtigen. (Streng genommen gelten sowohl der unbewertete
wie der bewertete Pegel für reine Töne.)

Für eine Bewertung der absoluten Lautheit und Lästigkeit realer Schall- und
Lärmimmissionen sind die Schallpegel allein nicht ausreichend. Die bei al-
len Schall- und Lärmschutzmaßnahmen angegebenen Pegel (überwiegend mit
A-Bewertung) sind vorrangig als Referenzwerte zu begreifen, um normative An-
forderungen festlegen zu können und das letztlich immer zu Vergleichszwecken,
z. B. zur Beurteilung einer Schall- oder Lärmschutzmaßnahme relativ zum unge-
schützten Fall.

Aus Abb. 2.161 (linksseitig) können die Beziehungen zwischen Schalldruck,
Schallintensität und Schallpegel und das in Bezug zu einigen Schallquellen ent-
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Abb. 2.161

nommen werden. In der Zusammenstellung sind auch Angaben zum Verkehrslärm
enthalten (rechtsseitig).

Beispiel
Der Schallpegel (Schalldruckpegel) eines Tones mit � D 125Hz sei unbewertet zu Lp D
70 dB gemessen worden. Gesucht sind die bewerteten Pegel.

Ausgehend von � D 1;21 kg=m3 und c D 343m=s werden berechnet:
Wellenlänge und Kennimpedanz:


 D c=� D 343=125 D 2;74m; Z D � � c D 1;21 � 343 D 415N s=m3

Effektivwert und Amplitude des Schalldrucks (hier reiner Ton):

p D peff D p0 � 10Lp=10 D 2 � 10�5 � 1070=20 D 2 � 10�5 � 103;5 D 2 � 10�1;5 D 2 � 0;03162

D 0;06325 D 6;325 � 10�2 N=m2 .Pa/

Op D p2 � peff D 8;945 � 10�2 N=m2

Effektivwert und Amplitude der Schallschnelle:

veff D peff=Z D 6;325 � 10�2=415 D 1;524 � 10�4 m=s;

Ov D p2 � veff D
p

2 � 1;524 � 10�4 D 2;155 � 10�4 m=s
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Schallintensität und zugehöriger Pegel:

I D p2
eff

Z
D .6;325 � 10�2/2

415
D 0;964 � 10�5 Nm

s
� 1

m2
D 0;964 � 10�5 W

m2
;

LI D 10 � log 0;964 � 10�5

10�12
� 10 � lg 107 D 10 � 7 D 70 dB

Den Lautstärkepegel entnimmt man aus Abb. 2.159 zu LS D 67 phon. Die bewerteten Pegel
betragen (Abb. 2.160):

LA D 70 � 16;1 D 54 dB.A/; LB D 70 � 4;2 D 66 dB.B/;

LC D 70 � 0;2 D 70 dB.C/; LD D 70 � 6 D 64 dB.D/:

(Die Abzüge sind hier nicht dokumentiert, vgl. einschlägiges Schrifttum.)
Annahme: Aufgrund einer Schutzmaßnahme konnte der Pegel um 5 dB gesenkt werden:

70 � 5 D 65 dB. Der Schalldruck beträgt hierfür:

p D p0 � 10Lp=20 D 2 � 10�5 � 1065=20 D 3;557 � 10�2 N=m2

Das bedeutet eine Abnahme von p um mehr als die Hälfte:

�p D .6;325 � 3;557/ � 10�2 D 2;768 � 10�2 N=m2

2.7.3.4 Lärmschutz
Im Trend wachsen weltweit die Städte und mit ihnen Wohndichte und innerstäd-
tischer Verkehr. Die höchste Lärmbelastung geht vom Verkehr aus, und das glei-
chermaßen auf der Straße, auf der Schiene und im Luftraum, letzteres vorrangig
in Einflugschneisen und in Flughafennähe. Eine hohe Dauerbelastung ist gesund-
heitsschädlich, insbesondere während der Nacht (Herz- und Kreislauferkrankun-
gen). Durch Lärmschutzmaßnahmen wird versucht, die Belastung zu reduzieren.
Das zählt zu den Aufgaben der Stadt- und Landesplanung. 40 dB gilt als Schwelle
für von außen eindringenden Dauerlärm, meist werden höhere Werte zugelassen.
Ab einem Dauerlärmpegel 65 dB ist mit einer Erkrankung der betroffenen Perso-
nen zu rechnen. Das gilt bereits ab 50 dB bei regelmäßigem nächtlichen Flugver-
kehr.

Unterschieden werden aktiver und passiver Lärmschutz. Aktive Maßnahmen
setzten an der Quelle an. Straßenverkehr: Einrichtung von 30-km=h-Zonen, offene
und geschlossene Tunnel, Lärmschutzwände und begrünte -wälle (10 dB), Flüs-
terasphalt (5 bis 8 dB, im Laufe der Zeit abnehmend). Schienenverkehr: Gleis in ei-
nem Schotterbett (insbesondere auf Brücken, 4 dB), Dämmmatten und Dämmele-
mente unter Schwellen und Schienen (2 dB), Schallschutzwände, hoch (bis 20 dB),
niedrig, näher am Gleis (bis 5 dB), Schutzwälle (wie Wände wirkend). Die Klam-
merwerte geben einen Anhalt zur Wirksamkeit der Maßnahme. Hinzu treten Fahr-
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und Flugzeiteinschränkungen bis Verbote im Nacht-Tag-Wechsel, Verkehrsverla-
gerung (vielfach auch im Bestreben, die Schadstoffbelastung zu reduzieren), Tren-
nung von PKW- und Schwerlastverkehr. Alle diese Maßnahmen sind Gegenstand
lokaler und regionaler Planung und unterliegen vielfältiger behördlicher Regelun-
gen (vgl. Bundes- und Landesämter für Umweltschutz). PassiveMaßnahmen gehö-
ren zu den Aufgaben der Siedlungsplaner, Architekten und Tragwerksplaner: Lage
und Ausrichtung der Wohnsiedlung und -gebäude, Fassadengestaltung, Verwen-
dung schallschluckenden Materials, Lärmschutzfenster. Die Schutzwirkung letz-
terer ist ausgeprägt: Abhängig von der Verkehrsdichte (Kfz pro Stunde) und vom
Abstand des Gebäudes von der Straße wird die Schallschutzklasse gewählt, I bis
VI, Klasse I (ca. 25 dB), Klasse VI (> 50 dB).

Anmerkung
Soll geprüft werden, wie sich eine Lärmschutzmaßnahme (2) im Vergleich zum ungeschütz-
ten Ausgangszustand (1) auf den Lärmpegel (auf die Schallintensität I ) auswirkt, ist zu
rechnen:

�LI D LI2 � LI1 D 10 � log I2

I0

� 10 � log I1

I0

D 10 � .log I2 � log I0 � .log I1 � log I0//

! �LI D 10 � .log I2 � log I1/ D 10 � log I2

I1

Beispiel
Nach der Lärmschutzmaßnahme werde I2=I1 D 0;5 gemessen, in Dezibel sind das:

�LI D 10 � log 0;5 D �3;01:

Die Auswirkung auf den Schalldruckpegel berechnet sich mittels der Formel:

�Lp D 20 � .logp2 � logp1/ D 20 � log p2

p1

Aus der Tabelle in Abb. 2.162 geht der Zusammenhang zwischen den Kennwerten hervor.

2.7.4 Akustik der Musikinstrumente

2.7.4.1 Einführung
Wie in Abschn. 2.7.1.1 ausgeführt, überträgt die Luft die von einem vibrieren-
den Körper ausgelösten Luftdruckschwankungen mit der Schallgeschwindigkeit
c D 334m=s (# D 20 ıC). Mechanisch wirkende Musikinstrumente erzeugen
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Abb. 2.162

Schallfelder dadurch, dass gewisse Teile des Instruments schwingen, eine Saite
(wie bei einer Geige, gestrichen, gezupft, geschlagen), eine Membran (wie bei
einer Trommel), ein Stab (wie bei der Stimmgabel, Abb. 2.163), ein ganzer Kör-
per (wie bei einer Glocke) oder eine Luftsäule innerhalb eines röhrenförmigen
Instruments (wie bei der Flöte, Orgelpfeife, Trompete, Horn). Diese Schwingun-
gen werden an die umgebende Luft weitergeben. Die menschliche Stimme gehört
auch dazu: Die von den Stimmbändern ausgehenden Luftschwingungen werden in
der Rachen-Mund-Höhle verstärkt. Elektrisch wirkende Musikinstrumente erzeu-
gen den Schall über ein Mikrophon (Abb. 2.164). – Die vom Ohr empfangenen
Töne lösen beim Menschen ein Hörempfinden aus, es ist nicht physikalischer, son-
dern subjektiv-psychologischer Natur.

Die Schallwellen pflanzen sich als Longitudinalwellen fort; für sie gelten die in
Abschn. 2.7 zusammengefassten physikalischen Gesetze. Die Frequenz bestimmt
die Tonhöhe der Schallwelle und die Intensität (die Amplitude) deren Lautstärke.
Die Obertöne bestimmen die Klangfarbe durch ihr Verhältnis zum Grundton und
durch das Einsetzten und Abklingen ihrer Schwingungen, was wiederum von der
Charakteristik des Instrumentes abhängig ist und selbstredend vom Können des
Musikers. Auf die Klangfarbe kommt es an. Wenn zwei Tönen viele gemeinsa-
me Obertöne eigen sind, werden sie als konsonant (wohlklingend) empfunden, im
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Abb. 2.163

Abb. 2.164

anderen Falle als dissonant (misstönend). Ein weites Feld der Instrumenten- und
Musikkunde (Musikwissenschaft) [40, 41].

2.7.4.2 Tonskalen
Von den tiefen zu den hohen Tönen fortschreitend werden beim Hören wiederkeh-
rende Intervalle erkennbar, wohl etwas dem Menschen (evolutionär?) Angebore-
nes.

Es war PYTHAGORAS von TARENT (570–510 v. Chr.), der mit Hilfe eines
Einsaiten-Instruments, einem Monochord, Studien zu den Tonhöhen anstellte und
eine Tonskala entwarf. An dem Instrument konnten Saitenspannung und Saiten-
länge unterschiedlich eingestellt werden. Saitenlänge und Saitenfrequenz stehen
reziprok zueinander: Wird die Saitenlänge halbiert, verdoppelt sich die Frequenz,
das umfasst eine Oktave. Eine abermalige Halbierung der Länge ergibt eine weite-
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Abb. 2.165

re Oktave. Da die Tonhöhe mit der Frequenz und die Lautstärke mit dem Quadrat
der Frequenz ansteigt, folgen die Oktavfrequenzen der algebraischen Reihe 1 W
2 W 3 W 4 usf. und die der zugehörigen Schallintensitäten der geometrischen Reihe
1 W 4 W 9 W 16 usw. Bei einer 2=3-Teilung der Saite hört man eine Quinte zum
Grundton, bei einer 3=4-Teilung eine Quarte, beide werden als konsonant empfun-
den. Zusammengefasst lauten die Tonbuchstaben für die Saitenlängenverhältnisse
1 W 3=4 W 2=3 W 1=2 und mit C als Grundton: C W F W G W c. Von ARCHYTAS von
TARENT (429–347 v.Chr.) wurde die große und kleine Terz mit der 4=5- bzw.
5=6-Saitenlängenteilung eingeführt. Zwischen den Oktavtönen lassen sich weitere
Töne, orientiert an entsprechenden Saitenteilungen, vereinbaren. –

In Abb. 2.165 ist die pythagoreische Oktavskala angegeben und daneben die
didymotische (nach DIDYMOS von ALEXANDRIA (398–312 v.Chr.)). Die erst-
genannte Tonfolge wird als ‚harmonisch‘, die zweitgenannte als ‚rein‘ bezeichnet.
Die Töne tragen der Reihe nach folgende Benennungen (mit dem Seitenlängenver-
hältnis in Klammer): Sekund (8=9), Große Terz (4=5), Quart (3=4), Quint (2=3),
Sext (3=5), Septim (8=15), Oktav (1=2). Die in Abb. 2.165 eingetragenen Fre-
quenzen zwischen C und c (bzw. c0 und c00) sind so berechnet, dass der Ton A
(Kammerton) die Frequenz 440Hz aufweist. – Neben den Genannten beschäftig-
ten sich in der Antike und später im Mittelalter bis in die Neuzeit viele weitere
mit musiktheoretischen Fragen. L. EULER (1707–1783) schlug im Jahre 1739 in
seiner Schrift ‚Tentamen novae theoriae musicae‘ vor, die Tonwerte mit Hilfe von
Logarithmen auf der Basis 2 zu berechnen. – Auf H. BELLERMANN (1833–1903)
geht die ‚wohltemperierte‘ Oktave zurück, mit 12 gleichen Intervallen, berech-
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net mit Hilfe der Logarithmen auf der Basis 12
p

2 D 1;059463094. Abb. 2.165
zeigt rechtsseitig die Tonfolge zwischen c0 und c00. Die Dur-Tonleiter ist zu 1-
1-1=2-1-1-1-1=2 aufgebaut, die Moll-Tonleiter zu 1-1=2-1-1-1=2-1-1 (1 steht für
Ganztonintervall, 1=2 für Halbtonintervall). Die (eingestrichene) C-Dur-Tonleiter
lautet (mit den in Abb. 2.165 rechts markierten Frequenzen): c0-d0-e0-f0-g0-a0-h0-
c00. – Der Vollständigkeit halber sei erwähnt, dass von A.J. ELLIS (1814–1890) im
Jahre 1885 eine Unterteilung der Oktave in 1200 gleiche Intervalle vorgeschlagen
wurde: 1200

p
2 D 1;000577790. – Der musikalische Tonbereich zerfällt in acht Ok-

taven vom Subcontra C (261;6=2 � 2 � 2 � 2 D 16;4Hz) bis zum fünfgestrichenen
c00000 (261;6 � 2 � 2 � 2 � 2 D 4185;6Hz). Die obere Hörschwelle liegt beim Menschen
bei ca. 16.000Hz, bei jüngeren bei 20.000Hz.

2.7.4.3 Musikinstrumente und ihre Eigenfrequenzen
Hohle Baumkörper und ähnliches, auf denen getrommelt wurde, waren wohl die
ersten Toninstrumente der Frühmenschen. Zu den ältesten zählen Flöten aus Kno-
chen und Elfenbein. Im Jahre 2008 wurde in der Höhle ‚Hohe Fels‘ in der Nähe
von Blaubeuren eine 22 cm lange und 8mm dicke Flöte aus dem Speicherknochen
eines Gänsegeiers mit fünf Grifflöchern gefunden. Das Alter wurde zu 35.000 Jah-
re bestimmt (Abb. 2.166). – Auch Saiteninstrumente gehören zu den ältesten.

Wie in Abschn. 2.5.2 gezeigt, berechnet sich die Eigenfrequenz eines Feder-
Masse-Systems nach der Formel:

� D 1

2�

r
k

m

k ist die Federkonstante und m die Masse, k kennzeichnet die Steifigkeit und m

die Trägheit des Systems. Mit der Steife steigt die Frequenz, mit der Masse fällt
sie. Der Verlauf der Eigenschwingung als Funktion der Zeit (t ) ist sinusförmig
(harmonisch):

y.t/ D Oy � sin 2��t

Oy ist die Amplitude. – Dem Prinzip nach gilt das Gesagte auch für Musikinstru-
mente, sie bestehen aus Saiten, Stäben, Membranen, Platten, Schalen oder Röhren,

Abb. 2.166
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Abb. 2.167

die harmonisch schwingen, wenn sie durch Schlagen, Zupfen, Streichen oder Bla-
sen zu Schwingungen angeregt werden. Sie schwingen in der für sie typischen
Grundfrequenz (�1/ und in höheren Eigenfrequenzen (�2; �3; : : : ) und das in der
jeweils zugeordneten Eigenschwingungsform (vgl. Abschn. 2.5.4).

Die mit der Schwingung verbundene Beanspruchung des Instruments ist sehr
gering, das gilt auch für die Größe der Bewegungen im Verhältnis zu den Abmes-
sungen der schwingenden Teile. Da ein linear-elastisches System vorliegt, können
die Eigenfrequenzen/-formen auf der Grundlage der Elastizitätstheorie berechnet
werden, ergänzt durch Messungen. Je komplizierter das Instrument aufgebaut ist,
umso mehr ist der Instrumentenbauer auf Versuche und Erfahrung angewiesen, In
[42, 43] werden die Instrumente und ihre Eigenschaften ausführlich behandelt.

Wie erwähnt, unterscheiden sich die Musikinstrumente durch das schwingende
Medium. Entweder handelt es sich um ein schwingendes mechanisches Teil oder
um eine schwingende Luftsäule. Zur ersten Gruppe zählen als wichtigste die Sai-
teninstrumente. –

In Abb. 2.167 sind die ersten drei Eigenschwingungsformen einer Saite skiz-
ziert. Die Saite wird durch die Zugkraft S D � � A gespannt (� : Spannung je
Flächeneinheit, A: Querschnittfläche der Saite). Ist 
 D � � A die Massebelegung
je Längeneinheit (�: Materialdichte) und l die Länge, berechnen sich die Eigenfre-
quenzen der Saite zu:

�n D n

2l

r
�

�
! �n D n

2l

s
S



.n D 1; 2; 3; : : : /

Bei der Auslenkung der Saite wird die rücktreibende Federwirkung geweckt
(Abb. 2.167b zeigt das Prinzip). – Aus der Formel geht hervor, dass die Frequenz
mit anwachsender Spannkraft steigt, mit anwachsender Länge sinkt. Insofern ist
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Abb. 2.168

verständlich, dass Saiteninstrumente mit hoher Tonlage eine geringe Länge auf-
weisen (Geige, Bratsche) und solche mit tiefer Tonlage eine große (Cello, Bass).
Das gilt im Prinzip auch für Blasinstrumente (Piccoloflöte–Alphorn). –

Der von einem Saiteninstrument ausgehende Ton beruht nur geringfügig auf
der Schwingung der Saiten selbst, sondern dominant auf der Schwingung des Re-
sonators, also von Decke und Boden des (dünnwandigen) Holzkastens. Über den
Steg werden die Saitenschwingungen auf den Resonator übertragen, dabei werden
unterschiedliche Bereiche des Resonanzkörpers angeregt. Von ihnen gehen die ei-
gentlichen Schallwellen aus. Zu den Streichinstrumenten gehören auch: Gitarre,
Banjo, Laute, Mandoline, Zitter, Harfe, Klavier, Flügel. Bei den Streichinstrumen-
ten werden bis zu n D 10 (und mehr) Oberschwingungen geweckt (je mehr, je
hochwertiger das Instrument). Bei den durch Hammerschlag angeregten Saiten
(Klavier) liegt die Anzahl der Obertöne deutlich niedriger.

Bei Blasinstrumenten wird der Ton durch die innerhalb der Röhre schwingen-
de Luftsäule ausgelöst. Spannung, Masse und Geschwindigkeit der im Inneren der
Röhre schwingenden Luft entsprechen in ihren Mittelwerten den atmosphärischen
Verhältnissen vor Ort. Diesen Mittelwerten überlagern sich die Luftschwingungen
im Rohr. Die hiermit verbundenen Druckschwankungen übertragen sich auf das
Rohr als Resonator. Von hier werden der Grundton und die Obertöne abgestrahlt.
Länge, Durchmesser, Dicke und das Material des Rohres bestimmen Tonhöhe und
Klangfarbe des Instruments.

In Abb. 2.168 sind die beiden Schwingungsgrundformen aller Blasinstrumente
skizziert, es ist die beidseitig offene und die einseitig offene/einseitig geschlossene
(gedackte) Röhre (Pfeife). Mit den hin- und her schwingenden Luftpartikeln gehen
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entsprechende Druckschwankungen (um den Mittelwert) einher. Am offenen En-
de liegt ein ‚Schwingungsbauch‘ und ein ‚Druckknoten‘, am geschlossenen Ende
ist es umgekehrt. Nur so kann sich im Innenraum eine stehende Welle, also eine
stationäre Schwingung, ausbilden. Bei Berücksichtigung dieser Randbedingungen
geht die Länge l der Röhre in eine unterschiedliche Anzahl Wellenlängenanteile
auf. Sie sind für die ersten drei Eigenschwingungen in Abb. 2.168 angeschrie-
ben. Daraus lassen sich über c D � � 
 die zugehörigen Eigenfrequenzen angeben
(Schallwellengeschwindigkeit ist gleich Frequenz mal Wellenlänge):

Beidseitig offene Röhre:

l D n � 
n

2
! 
n D 2l

n
! �n D n � c

2l
.n D 1; 2; 3; : : :/

Einseitig offene/einseitig geschlossene Röhre:

l D .2n� 1/

n

4
! 
n D 4l

2n � 1

! �n D .2n � 1/ � c
4l

.n D 1; 2; 3; : : : /

Die vorstehenden Formeln gelten nur als Anhalt, denn dort, wo das Mundstück
liegt, handelt es sich nur eingeschränkt um ein offenes Ende. An dem nach au-
ßen offenen Ende reicht die schwingende Luftsäule über das reale Ende etwas
hinaus; es bedarf einer ‚Mündungskorrektur‘ in der Größenordnung ca. 0,3 des
Rohrdurchmessers. – Beim Blasen entsteht hinter demMundstück eine lokaleWir-
belschleppe. Sie regt die Luftsäule zu den eigentlichen Schwingungen an. Die
Erzeugung der Luftwirbel beruht auf unterschiedlichen Mechanismen: Es kann
sich um eine schmale Öffnung, eine Schneide, eine Kombination aus beiden, ein
einfaches oder doppeltes Rohrblatt (das gemeinsam mit der Zunge schwingt) oder
ein kelchförmiges Mundstück (in welchem die Luftwirbel in Verbindung mit den
Lippen generiert werden) handeln. – Durch Grifflöcher, Klappen, Ventile kann auf
die Länge der schwingenden Luftsäule Einfluss genommen werden, oder, wie bei
der Posaune, durch Ineinanderschieben der Rohrteile. Bei der Orgel stehen die
Pfeifen fester Länge nebeneinander, wie bei der Panflöte. In Abb. 2.169 sind Ein-
zelheiten zu den Blasinstrumenten angedeutet, wegen weitere Details wird auf die
Literatur verwiesen. Zur Geschichte, Entwicklung und Fertigung der Instrumente
lässt sich viel Interessantes erzählen (vgl. oben). –

Die Trommelinstrumente und die sogen. Selbstklinger, wie Stimmgabel, Tri-
angel, Gong, Glocke oder Xylophon, sind zwei weitere Instrumentengruppen. Hier
sind es die Biegeschwingungen der stab-, platten- oder schalenförmigen Teile oder
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Abb. 2.169

des ganzen Körpers, von denen die Schallwellen unmittelbar ausgehen. Auch die
Vibrationen der Zungen einer Harmonika, eines Akkordeons oder der oben er-
wähnten Rohrblätter bei Oboe und Klarinette sind Biegeschwingungen, sie gehö-
ren also zu den Stabschwingern.

1. Ergänzung: Saitenschwingungen
Abb. 2.170a zeigt eine Saite im Schwingungszustand. Sie hat die Länge l:S ist ihre Spann-
kraft. Die Massebelegung ist entlang der Saite konstant: 
 D � � A, � ist die Dichte und
A die Querschnittsfläche. Qua Definition ist eine Saite biegeschlaff, d. h., bei einer Auslen-
kung werden keine Biegemomente geweckt. Die Auslenkung an der Stellex im Zeitpunkt t

ist gleich u D u.x; t/. – Gedanklich wird aus der Saite ein infinitesimales (unendlich kurzes)
Element herausgetrennt (Teilbild b). Beidseitig der Schnittufer werden die hier wirkenden
Kraftkomponenten angetragen, es sind dieses die Transversalkraft T und die Längskraft L

linkerseits und T C dT bzw. L C dL rechterseits. dT und dL sind die Änderungen der
Kräfte T und L bei Fortschreiten um dx. Genau besehen sind es die linearen Zuwächse
ihrer Taylor-Entwicklung:

�
dT

dx
C 1

2Š

d2T

dx2
C : : :

�
dx � dT

dx
dx � dT

Die Schwingungsauslenkung wird im Verhältnis zur Saitenlänge als so klein angesehen,
dass es genügt, nur den linearen Term zu berücksichtigten. Die Zunahme der Saitenkraft bei
der Auslenkung wird aus dem gleichen Grund als von höherer Ordnung klein unterdrückt.
(bezüglich Zuschärfungen vgl. z. B. [10]).
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Abb. 2.170

An dem Element dx werden im Augenblick der Auslenkung u D u.x; t/ die drei Gleich-
gewichtsgleichungen

P
L D 0,

P
T D 0 und

P
M D 0 formuliert: Die Summe aller

Kräfte in Längs- und Querrichtung sowie die Summe aller Momente ist gleich Null. Dabei
wird die entgegen der momentanen Auslenkung wirkende Trägheitskraft 
 � dx � Ru berück-
sichtigt (Kraft ist gleich Masse mal Beschleunigung, d’Alembert’sche Kraft, Abschn. 1.5).
Aus Gründen der Schreiberleichterung bedeuten im Folgenden ein hoch gestellter Punkt die
Ableitung nach der Zeit t und ein hochgestellter Strich die Ableitung nach der Längsor-
dinate x, z. B.: @u=@t D Pu, @u=@x D u0. Das Symbol ! steht für ‚daraus folgt‘. – Die
Gleichgewichtsgleichungen ergeben der Reihe nach:

X
L D 0W L � .LC dL/ D 0 ! dL D 0 ! L D konst D S

.S W Saitenspannkraft/
X

T D 0W T � .T C dT /C 
 Ru dx D 0 ! dT D 
 Ru dx ! T 0 D 
 Ru
X

M D 0W T � dx � L � duC .
 Ru dx/ � dx

2
D 0 ! T D L � u0 D S � u0

.denn L D S D konst/

Wird T nach x differenziert und diese Ableitung mit T 0 aus der 2. Gleichgewichtsgleichung.
verknüpft, folgt:

T 0 D S � u00 ! 
 � Ru D S � u00 ! Ru � S



� u00 D 0

Für die Vorzahl des zweiten Terms in der Gleichung wird vereinbart:

c D
s

S




Damit lautet die zu lösende partielle Differentialgleichung

Ru � c2 � u00 D 0;



264 2 Mechanik II: Anwendungen

ausführlicher:

@2u

@t2
� c2 @2u

@x2
D 0

Das entspricht der in Abschn. 2.6.3 hergeleiteten Wellengleichung. – Zur Lösung kann man
vom d’Alembert’schen Wellenansatz ausgehen oder vom Bernoulli’schen Produktansatz. Im
zweitgenannten Falle wird für die Bezugsunbekannte u gesetzt:

u.x; t/ D u1.x/ � u2.t/

Eingesetzt in die Differentialgleichung folgt:

u1.x/ � Ru2.t/ � c2 � u001.x/ � u2.t/ D 0 ! Ru2

u2

� c2 u001
u1

D 0

Der erste Term ist eine Funktion von t , der zweite eine Funktion von x. Von Null verschie-
dene Lösungen der partiellen Differentialgleichung existieren nur, wenn die beiden Terme
(dem Betrage nach) gleich sind; es wird gesetzt:

Ru2

u2

D �k2; �c2 u001
u1

D Ck2

Damit zerfällt die partielle Differentialgleichung in zwei gewöhnliche Differentialgleichun-
gen, sie lauten einschließlich ihrer Lösungen (wie man durch Einsetzten überprüfen kann):

Ru2 C k2 � u2 D 0 ! u2 D A � sinkt C B � cos kt

u001 C
�

k

c

�2

� u1 D 0 ! u1 D C � sin k

c
x CD � cos k

c
x

Ist die Saite an beiden Enden fest verankert, lauten die Randbedingungen:

x D 0W u D 0 ! u1 D 0 ! C � 0CD � 1 D 0 ! D D 0

x D l W u D 0 ! u1 D 0 ! C � sin k

c
l D 0

Die zweite Nullbedingung liefert eine Gleichung für die Unbekannte k:

C ¤ 0W sin
k

c
l D 0 ! k

c
l D n� ! k D n

�c

l
.n D 1; 2; 3; : : : /

Nunmehr kann die Lösung für die Saitenschwingungen zusammengefasst werden:

u D
1X

nD1

un D
1X

nD1

h
Cn � sin n�x

l

�
An � sin n�c

l
t C Bn � cos n �c

l
t
�i
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Die einzelnen Eigenschwingungen verlaufen harmonisch. Die jeweils zugehörige Eigen-
kreisfrequenz bzw. Eigenfrequenz betragen:

!n D n�c

l
D n�

s
S


l2
! �n D !n

2�
D n

2

s
S


l2
.n D 1; 2; 3; : : : /

Gleichwertig mit obiger Gleichung für u ist die Formulierung:

u D
1X

nD1

un D
1X

nD1

.An � sin!nt C Bn � cos!nt/ � Cn � sin n�x

l

Zu n D 1 gehört eine Schwingung mit einer Halbwelle, zu n D 2 eine solche mit zwei Halb-
wellen, usw., vgl. Abb. 2.167. Mit An und Bn kann den Anfangsbedingungen zum Zeitpunkt
t D 0 genügt werden, wenn, ausgehend von den Eigenformen, fremderregte Schwingungen
analysiert werden sollen.

Die Theorie der schwingenden Saite war die erste, in welcher der Differentialkalkül
auf ein praktisches mechanisches Problem angewandt wurde, beginnend mit B. TAYLOR
(1685–1731), J. d’ALEMBERT (1717–1783), J. (Johann) BERNOULLI (1667–1748) und
D. BERNOULLI (1700–1782), vollendet von J.L. LAGRANGE (1736–1813) [4]. Die Klä-
rung des Problems der harmonischen Welle bzw. Schwingung war insofern bedeutsam, weil
J. FOURIER (1768–1830) im Jahre 1801 aufzeigen konnte, dass jede periodische (stehen-
de) Welle bzw. Schwingung aus harmonischen Anteilen besteht und sie sich aus solchen
eindeutig zusammensetzten lässt, vgl. die folgende Ergänzung.

2. Ergänzung
Abb. 2.171a zeigt vier harmonische Funktionen, die einem Ton (n D 1) und drei äquidistan-
ten Obertönen entsprechen mögen. Außerdem zeigt sie deren Überlagerung, einschließlich
der zugehörigen Frequenz- und Phasenspektren, wie in Abschn. 2.5.7 im Zusammenhang mit
der Fourier-Analyse behandelt. Es entsteht bei der Überlagerung eine periodische Funkti-
on, deren Periode gleich der Dauer der niedrigfrequentesten harmonischen Komponente ist.

Abb. 2.171
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Abb. 2.172

Im Umkehrschluss lässt sich jede periodische Funktion in ihre harmonischen Komponenten
zerlegen.

3. Ergänzung
Zwei Töne gleicher Intensität (Amplitude), deren Frequenzen eng benachbart liegen, überla-
gern sich zu einem Ton, der regelmäßig auf- und abschwillt. Die Erscheinung heißt Schwe-
bung. Abb. 2.172 zeigt ein Beispiel. Die Schwebung verläuft selbst wieder harmonisch und
wird als selbständiger Ton empfunden. Sind y1 D a � sin 2��1t und y2 D a � sin2��2t die
Funktionen der beiden Einzeltöne und �1 und �2 deren Frequenzen, gilt für die überlagerte
Funktion z D y1 C y2 mit �� D �2 � �1 als Frequenzdifferenz, wobei �2 > �1 unterstellt
ist:

z D b � sin.2��1 C � ���/t mit b D p
2.1C cos 2���t/ � a

T D 1=�� ist die Periode der Schwebung. Die Amplitude ist eine Funktion der Zeit: b D
b.t/, vgl. die Abbildung. Geht ��, also die Differenz zwischen den Frequenzen der beiden
Einzeltöne, gegen Null (die Einzeltöne stimmen dann überein) folgt:

z D 2a � sin 2��t:

Die Schwebung dient dem Musiker zur Stimmung seines Instruments, z. B. mit Hilfe einer
Stimmgabel. Indem die Oboe in einem Orchester den Kammerton bläst (440Hz), kann je-
der Musiker sein Instrument solange darauf stimmen, bis er bei seinem Instrument keine
Schwebung mehr wahrnimmt.

4. Ergänzung
Erste eingehende experimentelle Untersuchungen zur Akustik, speziell zum Schwingungs-
verhalten ‚klingender elastischer Körper‘, auch jener von Luftsäulen in Rohren, wurden
im Jahre 1787 von E.F.F. CHLADNI (1756–1827) publiziert und im Jahre 1802 in seinem
Akustikbuch zusammengefasst [44]. Dazu brachte er mit feinem Sand bestreute dünne Ei-
senplatten durch Streichen mit einem Geigenbogen zum ‚zittern‘. Dadurch konnte er deren
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Abb. 2.173

Eigenschwingungsformen anhand der sich entlang der Knotenlinien ansammelnden Sandfi-
guren aufzeigen. Abb. 2.173 zeigt eine kleine Auswahl. Auch behandelte er verschiedene
Oktavteilungen einschl. jene mit dem 12

p
2-Intervall sowie die ‚schwebende Temperatur‘

und diverse Besonderheiten der Musikinstrumente. Sich selbst sah er als Naturforscher und
Künstler, bestritt mit seinen Versuchen seinen Lebensunterhalt und wurde sogar von Napo-
leon empfangen.

Auch kommt mir bey meinen Reisen sowohl wie bey meinen Arbeiten eine feste Ge-
sundheit, wie auch eine durch ehemalige Verhältnisse und durch die Vereitelung vieler
Wünsche zur Gewohnheit gewordene Unempfindlichkeit gegen manches Unangeneh-
me aber desto mehrere Empfänglichkeit für jede Art von angenehmen Eindrücken
sehr wohl zu Statten.

Auch heute noch ist man in der Instrumentenkunde im Wesentlichen auf experimentelle
Untersuchungen in schallisolierten Laboren angewiesen [45]: Abb. 2.174 zeigt als Beispiel

Abb. 2.174
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das Profil einer Glocke (Teilbild a) und die gemessenen ersten fünf (zentralsymmetrischen)
Eigenschwingungsformen eines vergleichsweise kleinen Glockenkörpers (Teilbild b) sowie
das Ergebnis einer Computerberechnung der 2. und 5. Eigenschwingungsform (Teilbild c).

2.7.5 Ultraschall – Schallortung

Die obere Hörschwelle liegt beimMenschen bei 20:000Hz D 20 kHz (20�103 Hz/.
Der Frequenzbereich 20 kHz bis 1GHz (1�109 Hz) wird als Ultraschall, der Bereich
darüber, als Hyperschall bezeichnet. – Zur technischen Erzeugung von Ultraschall-
wellen in Stoffen, gleich welchen Aggregatzustandes, wird überwiegend der sogen.
piezoelektrische Effekt genutzt, der bei gewissen Kristallen (wie Quarz) und Kera-
miken auftritt. Er wurde im Jahre 1880 von P. CURIE (1859–1906) und J. CURIE
(1855–1941) entdeckt: Unter eingeprägter Verformung entsteht durch die Defor-
mation des Gitters im Material ein elektrisches Feld. Umgekehrt erzeugt ein an-
gelegtes elektrisches Wechselfeld mechanische Schwingungen des Materials und
zwar solche hoher bis höchster Frequenz und Stärke (in W=m2). Die Wellenlän-
ge ist entsprechend gering, was eine streng gerichtete Bündelung und Abstrahlung
ermöglicht.

Zur Anwendung kommt die Ultraschalltechnik bei der Vermessung im Meer
(Auslotung der unterseeischen Morphologie, Ortung von Schiffswracks und Fisch-
schwärmen). Bedeutsam ist die Technik vor allem als ungefährliches medizini-
sches Verfahren zur Diagnostik der Organe im Körperinneren. Es kommen un-
terschiedliche Echo-Sonographie- und Bildgebungs-Verfahren zum Einsatz (1 bis
10MHz). Möglich ist auch die Zertrümmerung von Galle- und Nierensteinen. –
Ultraschall wird auch in der zerstörungsfreien Materialforschung und -prüfung
eingesetzt, um Material- und Schweißnahtfehler in metallischen Werkstoffen auf-
zufinden.

Dass Insekten, Fledermäuse, Delphine, Wale, auch Mäuse und Ratten, über
Ultraschall-Impulse orten und kommunizieren können, wurde bereits erwähnt.

2.7.6 Doppler-Effekt

Der von C.J. DOPPLER (1803–1853) im Jahre 1842 aufgedeckte und nach ihm
benannte Doppler-Effekt dient u. a. zur Geschwindigkeits- und Entfernungsmes-
sung von zwei sich relativ zueinander bewegenden punktförmigen Körpern. Einer
trägt einen Wellensender, der andere einen Wellenempfänger. Hierbei lassen sich
drei Fälle unterscheiden:
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Abb. 2.175

Fall 1: Der Wellensender ist ortsfest, der Empfänger (E) bewegt sich mit der Ge-
schwindigkeit vE auf den Sender (S) zu (Abb. 2.175a) oder entfernt sich
von ihm.

Fall 2: Der Empfänger ist ortsfest, der Wellensender bewegt mit der Geschwindig-
keit vS auf den Empfänger zu (Abb. 2.175b) oder entfernt sich von ihm.

Fall 3: Wellensender und Empfänger bewegen sich mit den Geschwindigkeiten vS

bzw. vE (Abb. 2.175c) gleichgerichtet aufeinander zu. Bewegen sie sich
gegengerichtet, ist eine der Geschwindigkeiten negativ.

Die Fälle 1 und 2 sind Sonderfälle von Fall 3. Ein weiterer Fall wäre, wenn sich
Sender und Empfänger nicht auf einer Geraden aufeinander zu, sondern sich in
einem gewissen Abstand aneinander vorbei bewegen.

Wie gezeigt, beträgt die Ausbreitungsgeschwindigkeit einer Welle im allseitig
ruhenden, homogenen Medium: c D � � 
. � ist die Wellenfrequenz und 
 die
Wellenlänge.

Fall 1 (Abb. 2.175a) Das vom ortsfesten Sender ausgehende Wellenfeld ist sta-
tionär: Frequenz undWellenlänge sind konstant. Handelt sich um eine Schallwelle,
wie hier behandelt, strahlt der Sender einen definierten Ton aus.

Geht man in diesem Falle von einer Schallgeschwindigkeit c D 340m=s aus
und beträgt die Tonfrequenz beispielsweise �S D 500Hz, beträgt die Wellenlänge:


S D c=�S D 340=500D 0;68m:

Ein Schwingungszyklus dauert: TS D 1=�S D 1=500 D 0;002 s.
Bewegt sich der Empfänger mit der Geschwindigkeit vE auf den ortsfesten Sen-

der zu, wird vom Empfänger pro Zeiteinheit, z. B. in einer Sekunde, eine größere
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Wellenanzahl als im Ruhezustand registriert. Die Geschwindigkeiten überlagern
sich, mit der Folge, dass vom Empfänger eine höhere Frequenz (D eine höhere
Anzahl pro Zeiteinheit) im Vergleich zum Ruhezustand gemessen wird. Der Erhö-
hungsfaktor beträgt: .c C vE/=c. Zusammengefasst: Wahrgenommene Frequenz
und Wellenlänge durch den Empfänger betragen:

� Der Empfänger (E) bewegt sich mit vE auf den ortsfesten Sender (S) zu:

�E D c C vE

c
� �S D

�
1C vE

c

�
� �S

! 
E D 1�
1C vE

c

	 � 
S D c

c C vE

� 
S

� Der Empfänger entfernt sich mit der Geschwindigkeit vE vom ortsfesten Sender
weg:

�E D c � vE

c
� �S D

�
1 � vE

c

�
� �S

! 
E D 1�
1 � vE

c

	 � 
S D c

c � vE

� 
S

In den vorstehenden Formeln ist vE jeweils als positiv definit vereinbart!
Für das zuvor behandelte Zahlenbeispiel (�S D 500Hz, 
S D 0;68m) liefern

die Formeln, wenn für die Geschwindigkeit des Empfängers vE D 100m=s gilt:

� E bewegt sich mit vE auf S zu: �E D 647Hz; 
E D 0;53m.
� E bewegt sich mit vE von S weg: �E D 353Hz; 
E D 0;96m.

Fall 2 (Abb. 2.175b) Bewegt sich der Sender mit der Geschwindigkeit vS auf den
ortsfesten Empfänger zu, ist das gesendete Wellenfeld offensichtlich nicht mehr
stationär. Die Wellenfronten werden vom Sender, der sich mit der Geschwindigkeit
vS bewegt, mit der Frequenz �S abgestrahlt. In Richtung auf den Empfänger liegen
die Wellenfronten dichter als im Ruhezustand, die Länge jeder Welle wird vom
Empfänger als um den Faktor .c � vS /=c kürzer registriert:


E D c � vS

c
� 
S D

�
1 � vS

c

�
� 
S ! �E D 1�

1 � vS

c

	 � �S D c

c � vS

� �S

Entfernt sich derWellensender mit vS vom ortsfesten Empfänger, ist die vom Emp-
fänger registrierte Welle um den Faktor .c C vS /=c länger:


E D c C vS

c
� 
S D

�
1C vS

c

�
� 
S ! �E D 1�

1C vS

c

	 � �S D c

c C vS

� �S
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Auch hier ist vS positiv definit! – Für das zuvor behandelte Zahlenbeispiel mit
�S D 500Hz und 
S D 0;68m liefern die Formeln, wenn vS D 100m=s beträgt:

� S bewegt sich mit vS auf E zu: 
E D 0;48m; �E D 708Hz.
� S bewegt sich mit vS von E weg: 
E D 0;88m; �E D 386Hz.

Fall 3 (Abb. 2.175c) Bewegen sich der Sender mit der Geschwindigkeit vS und
der Empfänger mit der Geschwindigkeit vE , jeweils relativ zur ruhenden Luft, lau-
ten die Formeln:

� E und S nähern sich einander, d. h. der Abstand von E und S verkleinert sich:

�E D c C vE

c � vS

� �S ! 
E D c � vS

c C vE

� 
S

� E und S entfernen sich voneinander, d. h. der Abstand von E und S vergrößert
sich:

�E D c � vE

c C vS

� �S ! 
E D c C vS

c � vE

� 
S

Um vS bestimmen zu können, muss vE bekannt sein.

1. Anmerkung (Beispiel)
Für Geschwindigkeitskontrollen mittels Radar wird der Dopplereffekt genutzt. Hierbei sen-
det das Radargerät keine Schallwelle, sondern eine elektromagnetische Welle aus. Deren
Geschwindigkeit ist gleich der Lichtgeschwindigkeit. Die Lichtgeschwindigkeit beträgt im
Vakuum (und mit guter Annäherung in Luft): c D 3;0 � 108 m=s.

Die Welle wird vom auszumessenden Objekt reflektiert, nach Empfang der reflektierten
Welle lässt sich die Geschwindigkeit des Objektes relativ zum Radarsender berechnen. Es
handelt sich also in diesem Falle um eine hin und rück laufende Welle! Radar steht für ‚Radio
Detecting And Ranging‘. Das System arbeitet mit relativ kurzen Wellen im Dezimeter- bis
Millimeterbereich.

Von dem ortsfesten Radarsender (S) wird die Welle mit der Frequenz �S gesendet. Das
sich nähernde Fahrzeug ist der Empfänger (E), von ihm wird die Welle mit der Frequenz
�E empfangen. Durch Reflektion wird das Fahrzeug zum Sender (S0), das Radargerät wird
zum Empfänger (E0). Abb. 2.176 zeigt den Ablauf. Die Geschwindigkeit des Fahrzeugs sei
v. Dann gilt:

S! E (Fall 1a): �E D .1C v=c/ � �S

S0 ! E0 (Fall 2a) �E0 D 1

.1 � v=c/
� �S 0
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Abb. 2.176

S0 ist identisch mit E: �S 0 D �E . Somit gilt:

�E0 D 1

.1 � v=c/
� �S 0 D 1

.1 � v=c/
� �E D 1

.1 � v=c/
� .1C v=c/ � �S

! �E0 D .1C v=c/

.1 � v=c/
� �S

Die Frequenzdifferenz zwischen der Sende- und der Empfangswelle in S D E0 berechnet
sich zu:

�� D �E0 � �S D
�

1C v=c

1 � v=c
� 1

�
� �S D 2

v=c

1 � v=c
� �S

Da v=c � 1 ist, lässt sich der Ausdruck mittels einer Reihenentwicklung verkürzen. Das
ergibt:

1

1 � v=c
D 1C v

c
C

� v

c

�2 C
� v

c

�3 C � � � � 1

zu

�� D 2
v

c
� �S ! v D ��

�S

� c
2

Bei Annäherung des Fahrzeugs ist v positiv, bei Entfernung negativ zu setzen. Den Frequenz-
unterschied bezeichnet man als ‚Dopplerfrequenz‘ oder ‚Dopplerverschiebung‘. – Systeme
zur Verkehrsüberwachung arbeiten mit �S D 34;3GHz D 34;3 � 109 Hz. Die zugehörige
Wellenlänge beträgt:


S D c=�S D .3 � 108 m=s/=.34;3 � 109 1=s/ D 0;00875m D 8;75mm

Fährt ein Fahrzeug mit 50 km=h, ergibt die Rechnung �� D 1;143 � 107 Hz. Hieraus wird
deutlich, auf welch’ geringe Frequenzunterschiede (bezogen auf die Senderfrequenz) es an-
kommt, um geringe Geschwindigkeitsunterschiede zuverlässig registrieren zu können.

2. Anmerkung
In der Astronomie hat der Doppler-Effekt für die Entfernungsmessung ferner Himmelskör-
per große Bedeutung: Entfernt sich ein Himmelskörper vom irdischen Beobachter, macht
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sich das in einer Verschiebung der Wellenlänge im Spektrum bemerkbar. Das beruht darauf,
dass die Linien der verschiedenen leuchtenden Elemente im Spektrum an ganz bestimmten
Stellen (D Frequenzen bzw. Wellenlängen) liegen. Deren spektrale Lage (also deren Wel-
lenlänge im elektromagnetischen Spektrum) lässt sich durch Labormessung auf Erden exakt
bestimmen. Wenn die Linien im Spektrum des sich entfernenden (leuchtenden) Himmelskör-
pers verschoben erscheinen, wird dieser Befund als Doppler-Verschiebung gedeutet. Licht
ist von elektromagnetischer Wellennatur. Deren Geschwindigkeit ist im Vakuum gleich der
Lichtgeschwindigkeit: c D 3;0 � 108 m=s. Entfernt sich der Himmelskörper (S), wirkt sich
das im Spektrum als ‚Rotverschiebung‘ (
E > 
S ) beim Empfänger (E) aus, bei Annä-
herung als ‚Blauverschiebung‘ (
E < 
S ); vgl. Bd. III, Abschn. 4.3.2. – Bei sehr hoher
Geschwindigkeit des Himmelskörpers im Verhältnis zur Erde, sei es eines Sternes oder ei-
ner Galaxie, ist relativistisch zu rechnen. Es gelten dann modifizierte Formeln, vgl. Bd. III,
Abschn. 4.1.4.5.

2.7.7 Überschallgeschwindigkeit

Ein mit der Bewegung des punktförmigen Wellensenders in Verbindung stehen-
des Phänomen ist die Ausbreitung des Wellenfeldes bei Überschallgeschwindig-
keit, womit gemeint ist, dass die Schallquelle eine höhere Geschwindigkeit als der
Schall selbst hat. Bei elektromagnetischen Wellen kann dieses Problem nicht auf-
treten, da es keine über der Lichtgeschwindigkeit liegende Geschwindigkeit gibt.

Nähert sich die Geschwindigkeit des Schallsenders der Schallgeschwindigkeit,
drängen sich die Schallwellen immer enger zusammen (siehe hierzu Abb. 2.176b).
Erreicht vS die Schallgeschwindigkeit c, liegen dieWellen in der Frontlinie unend-
lich nahe zusammen, es entsteht eine Stoßwelle mit einer steilen Wellenfront hoher
Kompression. Der unmittelbar folgende Druckausgleich breitet sich als Knall aus.
Dieser Fall ist in Abb. 2.177a skizziert.

Ist vS größer als c (hier Schallgeschwindigkeit), entsteht der in Teilabbildung b
dargestellte Stoßwellenkegel: Erreicht der Flugkörper den Punkt A, hat die Schall-
welle erst den Punkt B erreicht, das Entsprechende gilt für die Punkte A0 und B0

usf. Der halbe Öffnungswinkel des Kegels folgt aus (Abb. 2.177b):

sin˛ D c � t
vS � t D

c

vS

Je höher die Fluggeschwindigkeit vS ist, umso spitzer ist die kegelförmige
Kopfwelle. Der Schnitt des Kegels mit der Erdoberfläche ist bei Horizontal-
flug eine Hyperbel. Entlang dieser Hyperbellinie wird der Knall wahrgenommen.
Es handelt sich somit um eine Knallschleppe, die der Flugkörper hinter sich her
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Abb. 2.177

zieht. Die Überschallgeschwindigkeit wird als Quotient Fluggeschwindigkeit zu
Schallgeschwindigkeit (vS =c) in Ma (Mach) angegeben, benannt nach E. MACH
(1838–1916). Die Stoßwelle bezeichnet man auch als Schockwelle, Machwelle
oder Machkopfwelle. Die Machzahl ist keine SI-Einheit. Da die Schallgeschwin-
digkeit in großer Höhe von den dort herrschenden meteorologischen Bedingungen
(Druck, Temperatur) abhängig ist, kann aus der Mach-Zahl nicht unmittelbar genau
auf die Fluggeschwindigkeit geschlossen werden, vice versa. Bei c D 340m=s
entspricht 1Ma der Fluggeschwindigkeit vS D c D 340m=s, umgerechnet
in Stundenkilometer: 3;6 � 340 D 1224km=h. das bedeutet, 2Ma entspricht
2448km=h, usf. Dort, wo die Stoßwelle den Boden trifft, wird ein kurzzeitiger
hoher Schalldruck geweckt.

Anmerkung
Flugzeuge mit Propellerantrieb können die Überschallgeschwindigkeit nicht erreichen, nur
solche mit Strahl- oder Raketenantrieb. 1947 wurde die Schallmauer erstmals von einer ame-
rikanischen Bell-X-1 mit vier Raketenmotoren durchbrochen, Alkohol und flüssiger Sauer-
stoff dienten als Treibmittel. Der Flugkörper wurde in 6000 m Höhe von einem B29-Bomber
abgesetzt, in 10.000 m Höhe erreichte die X-1 im Horizontalflug für die Dauer von 18
Sekunden Ma D 1;06. Seit 1950 fliegen Militärjets regelmäßig mit Überschallgeschwindig-
keiten. – Das amerikanische unbemannte Fluggerät X-51A WaveRider erreichte inzwischen
in 15.000 m Höhe über die Dauer von 150 Sekunden eine Geschwindigkeit von Ma D 5;1,
angetrieben von einem sogen. Scramjet-Triebwerk. Der Scramjet-Flugkörper X-43-A er-
reichte über die Dauer von 10 Sekunden Ma D 9;6! Man spricht bei Flügen mit solchen
Geschwindigkeiten von Hyperschallflug. – Der ehemalige zivile Flugbetrieb mit der russi-
schen Tupolew Tu-144 und der französischen Concorde, die mit Überschallgeschwindigkeit
unterwegs waren, wurde wegen Unwirtschaftlichkeit und technischer Probleme in den Jah-
ren 1999 bzw. 2003 eingestellt.
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2.8 Astronomie I: Himmelsmechanik – Sonne, Planeten,
Monde und Kometen

Durch die Gravitation sind alle Himmelskörper untereinander verbunden. Die von
dieser Bindung ausgehenden Kräfte sind real und geheimnisvoll zugleich.Was fes-
selt die Erde an die Sonne, was den Mond an die Erde?

Aufgabe der Himmelsmechanik ist es, die freie Bewegung der Himmelskörper
in dem von ihren Massen aufgebauten Gravitationsfeld zu berechnen, wobei das
Feld als Folge der Bewegung der Körper eine ständige Veränderung erfährt. –

In ihren Anfängen widmete sich die Himmelsmechanik ausschließlich der Dy-
namik der Planeten, der Kometen und des Mondes innerhalb des Sonnensystems
(Ephemeriden Rechnung). Inzwischen befasst sie sich auch mit der Bewegung der
Sterne und Sternhaufen in den Galaxien, zumal ca. 30% aller Sterne, wie man heu-
te weiß, Doppel- oder Mehrfachsysteme mit einem gebundenen Schwerpunkt sind.

Es waren zunächst französischeMathematiker, die die Theorie der Himmelsme-
chanik schufen: A.C. CLAIRAULT (1713–1765), J.L. LAGRANGE (1736–1813),
P.S.M. LAPLACE (1749–1827), U.J.J. Le VERRIER (1811–1877), J.H. POIN-
CARE (1854–1912). Als besonderer Höhepunkt gilt die Entdeckung des Planeten
Neptun durch F.G. GALLE (1812–1910) im Jahre 1846 dank eines Hinweises von
Le VERRIER, der den vermuteten Ort aus einer Bahnstörung des Planeten Ura-
nus rechnerisch abgeleitet hatte. – Die Lösung des Drei- und Mehrkörperproblems
zählt nach wie vor zu den klassischen Aufgaben der analytischen Himmelmecha-
nik. Inzwischen dominieren auch hier, wie überall, die computergestützten Me-
thoden der numerischen Mathematik. – Zur Geschichte der Astronomie wird auf
[46, 47], als erzählerische Einführung in die Astronomie auf [48–52], als Sachbuch
auf [53–57] und als Lehrbuch (auch für interessierte Laien) auf [58–60] verwiesen.

2.8.1 Astronomische Entfernungsmessungen im Altertum

Die älteste astronomische Vermessung geht auf ARISTARCHOS von SAMOS
(310–230 v.Chr.) zurück: Der Mond erscheint im ersten Viertel als Halbmond. Das
bedeutet, der Winkel zwischen den Achsen Mond-Sonne und Mond-Erde ist ein
rechter (90°). Lässt sich zu diesem Zeitpunkt der Winkel zwischen den Richtun-
gen Erde-Sonne und Erde-Mond bestimmen, der Winkel werde mit ˛ abgekürzt,
gilt (Abb. 2.178):

cos˛ D rMond

rErde
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Abb. 2.178

Hierbei ist rMond der Bahnradius des Mondes um die Erde und rErde der Bahnra-
dius der Erde um die Sonne. ARISTARCH bestimmte ˛ zu 87°; das ergibt:

rMond

rErde
D cos 87ı D 0;0523 D 1

19

Dieser Quotient, Aristarch’sche Zahl genannt, galt weit bis ins Mittelalter als gesi-
cherter Wert, also ca. 1700 Jahre lang. Tatsächlich beträgt ˛ 89,853°, was auf

rMond

rErde
D 0;002566 D 1

390

führt. Die erste Neubestimmung geht auf J. KEPLER (1571–1630) zurück, der den
Quotienten seinerzeit zu 1=400 ermittelte.

ERATOSTHENES von KYRENE (284–202 v.Chr.) bestimmte erstmals die
Größe der Erdkugel: Ihm war bekannt, dass sich am Tag der Sommersonnen-
wende die Sonne in einem tiefen Brunnen in Syene spiegelt (Syene ist das heutige
Assuan am oberen Nil). Das bedeutet: Die Sonne steht in diesem Moment exakt
senkrecht zu der an diesem Ort an die Erdkugel angelegten Tangentialebene. Be-
kannt war auch, dass zu diesem Zeitpunkt ein Obelisk in Alexandria einen Schatten
mit dem Schattenwinkel ˛ D 7ı100 D 7;16ı wirft (Abb. 2.179).

Abb. 2.179
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Ist RErde der Erdradius, gilt demnach bei Ansatz einer parallelen Sonnenein-
strahlung (in Annäherung):

arc˛ � RErde D a D Entfernung Syene/Alexandria

Die Entfernung zwischen den beiden Städten beträgt ca. 5000 (ägyptische) Stadien.
Mit diesem Wert folgt der Erdradius zu:

RErde D a

arc˛
D 5000

7;16 � �=180
D 40:011 Stadien:

Das liefert einen Erdumfang von 2 � 40:011 � � D 251:400 Stadien. Wird eine
(ägyptische) Stadie zu 157;5m D 0;1575km angesetzt, ergeben sich Radius und
Umfang der Erde zu:

RErde D 6302 km (ca. 6368km);

UErde D 2 � � � 6302 D 39:597km (ca. 40.011km)

Die Klammerwerte geben die heute gültigen Mittelwerte an. Der Vergleich lässt
erkennen, dass ERATOSTHENES eine sehr genaue Bestimmung gelang (ca. 1%
genau), wobei einschränkend gesagt werden muss, dass sowohl die Entfernung a

wie auch die genaue Länge einer Stadie nicht sicher überliefert bzw. bekannt sind.
Die Idee der Messung ist in jedem Falle bestechend.

Eine weitere bedeutende Messung gelang HIPPARCHOS von NIKAIA (190–
125 v. Chr.) und zwar die Bestimmung des Durchmessers der Erdbahn um die
Sonne. Für HIPPARCH stand die Erde nicht im Mittelpunkt der Welt! Die Bestim-
mung gelang ihm aus der von ihm gemessenen Zeit, die eine totale Mondfinsternis
dauert, in der sich der Mond im Kernschatten der Erde bewegt. Abb. 2.180 zeigt
diese Situation im Himmelsraum, d. h. die Lage von Erde und Mond zueinander
während einer Mondfinsternis: Für einen Umlauf um die Erde benötigt der Mond
29,5 Tage. Die Dauer einer Mondfinsternis bestimmte HIPPARCH zu 2 2

3
D 2;67

Stunden. Da sich der Mond täglich um 360ı=29;5 D 12;2ı auf seiner Bahn um
die Erde weiter bewegt, sind das in Bogengrad bzw. -minuten in 2,67 Stunden:
.2;67=24/ � 12;2ı D 1;357ı D 81;40. Das ist in Abb. 2.180 jener Winkel 2ı, um
den der Mond im Erdschatten wandert.

Aus der Figur entnimmt man: ˛ C ˇ D � C ı. Denn es gilt � D ˛ C " und
ı D ˇ � ", womit � C ı D ˛C "C ˇ � " D ˛C ˇ bestätigt ist. Gemessen wurde
der Winkel � seinerzeit zu 15;50 (das ist jener Winkel unter dem der Radius der
Sonnenscheibe von der Erde aus erscheint). Aus der Figur folgt:

˛ � rErdbahn D ˇ � rMondbahn ! ˇ D rErdbahn

rMondbahn
� ˛



278 2 Mechanik II: Anwendungen

Abb. 2.180

Setzt man das Bahnverhältnis nach ARISTARCH zu 19 an (s. o.), ergibt sich:

ˇ D 19 � ˛
Nunmehr kann ˇ mit dem Winkel ı D 81; 40=2 bestimmt werden:

˛ C 19 � ˛ D 15;50 C 81;40=2 D 56;20 ! ˛ D 2;810I ˇ D 19 � ˛ D 53;40

Für die Radien von Mond- und Erdbahn findet man damit schließlich:

rMondbahn D RErde= arcˇ D 6302=.53;40 � �=180 � 60/ D 406:000 km

rErdbahn D RErde= arc ˛ D 6302=.2;810 � �=180 � 60/ D 7:710:000km

Bei dieser Rechnung ist der Erdradius nach ERATOSTHENES zu 6302km ange-
setzt.

HIPPARCHOS war ein sehr exakter Beobachter. Er gilt als Begründer der astro-
nomischen Mathematik, insbesondere der Trigonometrie. Da seiner Berechnung
die Aristarch’sche Zahl 19 zugrunde lag, waren die von ihm ermittelten Bahn-
radien zwar falsch, das von ihm angewandte Messprinzip ist indessen wiederum
bestechend. Geht man von der korrekten Zahl aus, nämlich 390, ergibt sich:

˛ D 0;14370 ! ˇ D 56;060

! rMondbahn D 386:455km D 386 � 103 kmI
rErdbahn D 150:760:000km D 151 � 106 km

Diese Werte stimmen gut mit den heute gültigen überein.
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Anmerkung
Geht man von dem von HIPPARCHOS ermittelten Wert für den Erdbahnradius aus, ergibt
sich für die Bahngeschwindigkeit der Erde um die Sonne der Wert:

2� � 7:710:000=.364;25 � 24 � 60 � 60/ D 1;54 km=s:

Der richtige Wert ist 30,1 km=s. Da das Gravitationsgesetz im Altertum nicht bekannt war,
konnte nicht erkannt werden, dass eine Bahngeschwindigkeit 1,54 km=s zur Gewährleistung
einer stabilen Sonnenumrundung viel zu gering ist.

2.8.2 Das Weltbild des PTOLEMÄUS

Das Weltbild des C. PTOLEMÄUS (100–160 n. Chr.), das in seinem Hauptwerk
‚Almagest‘ zusammengefasst ist und 1 1

2
Jahrtausende Bestand haben sollte, wird

‚Geozentrisches Weltbild‘ genannt, weil es die Erde in den Mittelpunkt der Welt
stellt. Diesem Weltbild gingen ein Jahrtausend währende astronomische Beobach-
tungen und Deutungen voraus. Die Babylonier waren die ersten, denen genauere
astronomische Beobachtungen und Erkenntnisse gelangen, u. a. erkannten sie Pe-
rioden im Himmelsgeschehen, z. B. wiederkehrende Planetenstellungen. Über die
ägyptische Astronomie ist wenig Konkretes bekannt. Bestimmend für die weitere
Entwicklung der Astronomie wurden die Beobachtungen und Berechnungen der
Griechen. Sie wurden im vorangegangenen Abschnitt kurz dargestellt. Ergänzend
sind zu den Genannten nachfolgende astronomische Gelehrte zu erwähnen:

� THALES von MILET (650–560 v.Chr.): Er sah die Erde als eine auf demWas-
ser schwimmende Scheibe.

� Für die Pythagoreer, die sich auf PYTHAGORAS von SAMOS (580–500
v. Chr.) beriefen, bewegten sich die Planeten einschließlich Sonne und Mond
auf Kreisen innerhalb der Ekliptik mit ihren Tierkreissternbildern, also in der
Ebene des Himmeläquators und das in unterschiedlicher Entfernung zur Erde.
Die Fixsterne sahen sie ebenso.

� Später kursierten erste heliozentrische Ansätze, wonach sich die Planeten Mer-
kur und Venus um die Sonne bewegen würden. – Für ANAXAGORAS von
KLAZOMENAI (500–428 v.Chr.) war die Erde eine Kugel. – Auf EUDO-
XOS von KNIDOS (400–350 v.Chr.) geht das erste sphärische Weltmodell
zurück: Er nahm an, dass sich alle Himmelskörper auf kugeligen Sphären um
die Erde bewegen, wobei sich jede einzelne Sphäre um eine eigene Achse
dreht. Für die Planeten führte er Epizykeln ein. Die Erde wurde etwas aus
dem Mittelpunkt der die Epizykeln tragenden Planeten-Kreisbahnen verscho-
ben. Diese Epizykel- und Exzentertheorie wurde von HERAKLEIDOS von
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Abb. 2.181

PONTOS (388–310 v. Chr.) und in der Folge von APOLLONIOS von PERGE
(ca. 260–190 v. Chr.) weiter vervollkommnet, u. a. mit der Ansicht, dass sich
die Erde einmal täglich um ihre Achse dreht. – Von ARISTARCH (s. o.) wurde
die Sonne als ruhenderMittelpunkt des Planetensystems und der Fixsternsphäre
gesehen, eine Auffassung, die sich bekanntlich nicht durchsetzte.

� HIPPARCH von NIKAIA (s. o.) erstellte mit ca. 1000 Fixsternen den ersten
ausführlichen Sternenkatalog.

Alle vorgenannten Deutungen und Messungen (vgl. auch Bd. I, Abschn. 1.2.3
und 3.5.1) und vieles mehr, wurde von C. PTOLEMÄUS aufgegriffen und ma-
thematisch vervollkommnet. Für das christlich geprägte Abendland wurde dieses
geozentrische Weltbild mit der Erde als Mittelpunkt des von Gott erschaffenen
Kosmos zur absoluten Wahrheit, von der Kirche zum Glaubensdogma, erhoben.

Abb. 2.181a zeigt das Sphärenmodell. Die zeitweise rückläufigen Planeten-
bewegungen vor dem Hintergrund der Fixsternsphäre wurden durch komplizier-
te Epizykelbahnen erklärt, hierbei ist der Deferent der Trägerkreis des Planeten.
Abb. 2.181a zeigt als Beispiel die Saturn-Epizykeln. Die Sonnenbahn liegt im
Modell leicht exzentrisch. Die im Laufe der Jahrhunderte aufgetretenen Abwei-
chungen im Umlauf der Planeten wurden durch Korrekturen an den Epizykeln
ausgeglichen.

2.8.3 DasWeltbild des KOPERNIKUS

In seinem Hauptwerk ‚De revolutionibus orbium coelestium‘ (Über die Bewegung
der Himmelskörper) schlug NICOLAUS KOPERNIKUS (1473–1543) das helio-
zentrische Weltbild vor. Danach liegt die Sonne im Zentrum der Welt, die Erde
ist ein Planet mit einem Mond. Die Drehung der Fixsternsphäre entsteht durch die
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Abb. 2.182

Rotation der Erde um ihre Achse (Abb. 2.181b). Genau besehen sah auch KOPER-
NIKUS den Mittelpunkt der Planeten-Kreisbahnen nicht im Zentrum der Sonne
gelegen, sondern im Mittelpunkt der Erdbahn und der lag für ihn etwas exzentrisch
zum Sonnenmittelpunkt. Da KOPERNIKUS bei der Ausarbeitung seines Modells
auf die antiken Entfernungsdaten angewiesen war, boten die von ihm berechneten
Planetenbahnen gegenüber jenen nach dem ptolemäischen Modell zunächst kei-
ne wesentlichen Vorteile, weshalb das neue Weltmodell auch wenig Zustimmung
unter seinen Zeitgenossen fand. Nach wie vor stellte auch er sich die rückläufige
Bewegung der Planeten durch deren Epizykelbahnen verursacht vor.

Tatsächlich kommt es durch die Bewegung der Erde um die Sonne vor dem
Fixsternhintergrund zu einer gelegentlichen rückläufigen Bewegung der Planeten.
Diese Bewegung ist nur scheinbar rückläufig, was sich wie folgt erklären lässt:

Nimmt man einen äußeren Planeten P als feststehend an und bewegt sich die
Erde auf ihrer Bahn von der Stellung 1 über 2 nach 3 (Abb. 2.182), verläuft die
Planetenbahn, von der Erde aus betrachtet, scheinbar rückläufig. Der Winkel ˛,
unter dem von P aus der Erdradius gemessen werden könnte, ist bei der Stellung 1
am größten, bei der Stellung 2 gleich Null und bei der Stellung 3 in Gegenrichtung
wieder am größten. Man nennt ˛ die jährliche Parallaxe des Planeten. Indem ˇ in
der Stellung 2 gemessen wird und zwar für jenen Ort des Fixsternhimmels, an dem
der Planet scheinbar bei der Stellung 1 stand und aus der Überlegung heraus, dass
die Fixsternsphäre im Vergleich zur Planetenbahn unendlich weit entfernt ist, somit
˛ D ˇ ist, kann das Verhältnis des Planetenbahnradius zum Erdbahnradius aus

rErdbahn

rPlanetenbahn
D sin˛
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bestimmt werden. Die Überlegung bleibt in Annäherung auch gültig, wenn die
Bewegung des Planeten auf seiner Bahn berücksichtigt wird. Die Abschätzung
lässt sich auf die inneren Planeten modifiziert erweitern. Im Ergebnis fand KO-
PERNIKUS folgende Abstandsverhältnisse für die Planeten von der Sonne in der
Astronomischen Einheit (AE): Merkur 0,38 (0,387), Venus 0,72 (0,723), Mars 1,52
(1,524), Jupiter 5,22 (5,203), Saturn 9,21 (9,546). Die Klammerwerte geben den
heutigen Kenntnisstand wieder. (Die Astronomische Einheit ist der Erdbahnradius
um die Sonne, vgl. zur Maßeinheit von AE: Bd. I, Abschn. 2.4). –

Einschließlich der Erde waren seinerzeit sechs Planeten bekannt (man nannte
sie auch Wandelsterne), die restlichen drei wurden erst später entdeckt: Uranus im
Jahre 1781, Neptun im Jahre 1846 und Pluto im Jahre 1930. (Dem Letztgenannten
wurde der Planetenstatus inzwischen wieder entzogen, weil als zu klein befunden.)

Die Anzahl der entdeckten Planetenmonde hat sich in jüngerer Zeit dank der
genaueren Beobachtungsmöglichkeiten deutlich vergrößert, heute liegt die Anzahl
bei 175. Einschließlich jener um die Zwergplaneten sind es wohl 250 (2015).

2.8.4 Das Weltbild des de BRAHE

Mit T. de BRAHE (1546–1601) gelang der Durchbruch in ein neues astronomi-
sches Zeitalter. Mittels seiner hochgenauen Instrumente war eine Vermessung der
Planeten und Sterne mit einer bis dahin unerreichten Präzision möglich. Vom däni-
schen König gefördert, vermaß er als Hofastronom von der Sternwarte Uraniborg
aus den Himmel. Die Sternwarte lag auf der Insel Hven im Öresund. Im Jahre
1596 kam er nach Augsburg. Im Jahre 1599 wurde er schließlich nach Stationen
in Leipzig, Rostock und Basel kaiserlicher ‚Mathematicus‘ in Prag. Er hinterließ
einen riesigen Datenfundus.

Darüber hinaus machte er sich auch Gedanken über die Gestalt der Welt und
entwarf das in Abb. 2.183 schematisch skizzierte Weltmodell: Es war wohl als
Kompromiss gedacht: Sonne und Mond umrunden die Erde, alle anderen Planeten
die Sonne, die inneren auf Kreisen. die äußeren auf Epizykeln.

Insgesamt war das 16. Jahrhundert noch von großer Unsicherheit geprägt,
wenngleich die Fortschritte in der Astronomie bedeutend waren. Die Erfindung
des Fernrohres (1608) trug dazu bei. Von G. GALILEI (1564–1642) wurden hier-
mit vier Jupitermonde entdeckt, auch die Ringe des Saturns. Erst seit 1980 weiß
man aufgrund neuer Textfunde, dass GALILEI um die Jahreswende 1612/13 den
Planeten Neptun bereits gesichtet hat. Den in sein Tagebuch eingetragenen Befund
deutete er indessen als (Fix-)Stern.
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Abb. 2.183

2.8.5 Planetengesetze von KEPLER

Im Jahre 1601 wurde J. KEPLER (1571–1630) in Prag Nachfolger von de BRA-
HE. Hier diente er dem Kaiser Rudolf II als Hofastronom (und Astrologe). Er hatte
schon einige Zeit zuvor bei de BRAHE als Assistent gearbeitet. Auf der Grundla-
ge des hinterlassenen Datenmaterials entwickelte er später die nach ihm benannten
kinematischen Gesetze, wozu er wohl 15 Lebensjahre benötigte. Das 1. und 2.
Gesetz wurde im Jahre 1609 (in ‚Astronomia Nova‘) und das 3. Gesetz im Jahre
1619 veröffentlicht (in ‚Harmonice Mundi‘). Im Jahre 1627 brachte er die sogen.
Rudolphini’schen Tafeln heraus, die eine bedeutend genauere Berechnung der Pla-
netenbahnen ermöglichten.

In jüngeren Jahren war er in seinem Denken noch stark religiös-metaphysisch
geprägt gewesen, sein erstes Buch ‚Mysterium Cosmographicum‘ (1596) ist dafür
Beleg.

Die Kepler’schen Gesetze lauten:

1. Die Bahnen der Planeten um die Sonne sind Ellipsen, die Sonne liegt in
einem der beiden Brennpunkte der Ellipse.

2. Der von der Sonne zu den Planeten gezogene Ortsvektor überstreicht in
gleichen Zeiten gleiche Flächen (Abb. 2.184a). Man spricht vom Flächensatz.
An dem der Sonne nächsten Bahnpunkt (Perihel) bewegt sich der Planet am
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Abb. 2.184

schnellsten, an dem am weitesten entfernten Bahnpunkt (Aphel) am langsams-
ten. Das Gesetz ist gleichbedeutend mit dem Satz von der Drehimpulserhaltung
des Planeten auf seiner Bahn.

3. Die Quadrate der Umlaufzeiten T zweier beliebiger Planeten verhalten
sich wie die 3. Potenz ihrer großen Halbachsen (Abb. 2.184b):

T 2
1

T 2
2

D a3
1

a3
2

D K

K ist eine für das ganze Sonnensystem geltende Konstante, die Konstante war
KEPLER noch nicht bekannt.

Die Gesetze wurden von KEPLER nicht aus irgendwelchen Naturgesetzen herge-
leitet, sondern phänomenologisch gefunden. Erst I. NEWTON (1642–1727) konn-
te die Gesetze theoretisch bestätigen bzw. aus ihnen das Gravitationsgesetz folgern.

Die Vorgehensweise KEPLERs bei der Herleitung des 1.Gesetzes lässt sich wie
folgt erläutern (Abb. 2.185): Die Umlaufzeiten der Planeten in Tagen waren seiner-
zeit bekannt, z. B. Mars 687 Tage. Das bedeutet, nach einem Marsjahr steht Mars
(von der Sonne aus betrachtet) wieder an derselben Stelle. Wird als Ausgangszeit-
punkt jene Konstellation gewählt, bei welcher Sonne-Erde-Mars auf einer Linie
liegen und wird diese Stellung der Erde mit E0 abgekürzt (Zeitpunkt 0), so steht
Mars nach 687 Tagen wieder an derselben Stelle, nicht dagegen die Erde, ihre Stel-
lung in der gemeinsamen Bewegungsebene ist jetzt E1. Gegenüber E0 ist E1 um
2 � 365� 687 D 43 Tage weiter vorgerückt. Nach abermals 687 Tagen erreicht der
Mars wieder seinen Ausgangsort, die Erde befindet sich am Ort E2, usw. Die Win-
kel ˛1, ˛2 usw. konnte KEPLER dem Datenmaterial seines Vorgängers de BRAHE
entnehmen.
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Abb. 2.185

Die Winkel ˇ1, ˇ2 usw. ergeben sich aufgrund des sich aufsummierenden Nach-
laufs. Ausgehend von den so gewonnenen Bahnelementen konnte KEPLER die
Bahnpunkte zeichnen und dabei die elliptische Form der Mars- und Erdbahn erken-
nen. Für die Bahnen der anderen Planeten gelang ihm der Nachweis auf analogem
Wege. Das 2. und 3. Gesetz konnte KEPLER ebenfalls aus den Messdaten kine-
matisch folgern. – Die überaus sorgfältige Arbeitsweise von J. KEPLER lässt sein
Werk Astronomia Nova [61] erkennen.

1. Anmerkung
Die Gleichung der mit ihrem Mittelpunkt im Nullpunkt eines x � y-Koordinaten-Systems
aufgespannten Ellipse lautet (Abb. 2.186a):

x2

a2
C y2

b2
D 1

a ist die große und b die kleine Halbachse der Ellipse. Deren Brennpunkte liegen im Abstand
e vom Mittelpunkt entfernt (Abb. 2.186b):

e D
p

a2 � b2

Als numerische Exzentrizität bezeichnet man den Quotienten

" D e

a

Es erweist sich, dass die Planetenbahnen im Gegensatz zur Darstellung zu Abb. 2.186 eher
Kreise als Ellipsen sind, ihre numerische Exzentrizität ist sehr gering. Abb. 2.187 zeigt die
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Abb. 2.186

Bahn des Planeten Pluto. Wie bereits erwähnt, wird Pluto seit dem Jahre 2006 nicht mehr
als Planet geführt. Das Folgende wird dennoch an dessen Bahn erläutert, die Bahn weist
nämlich im Vergleich mit den Bahnen aller anderen Wandelsterne die größte Exzentrizität
auf, dennoch erscheint sie als Bild eher als Kreis: Aus der größten und kleinsten Entfernung
zwischen Sonne und dem Planeten mit 49,3 AE und 29,7 AE folgt die große Halbachse zu:

a D .49;3C 29;7/=2 D 39;5AE

Die Exzentrizität beträgt demnach:

e D 39;5 � 29;7 D 9;80AE;

vgl. Abb. 2.186.
Weiter folgt: b D pa2 � e2 D 38;26AE und " D e=a D 0;248. Hiermit kann die in

Abb. 2.187 wiedergegebene Bahnkurve gezeichnet werden. Obwohl die Exzentrizität relativ
groß ist, ähnelt die Bahnkurve dem Augenschein nach eher einem Kreis.

2. Anmerkung
Gegenüber einer Darstellung in kartesischen Koordinaten ist es vorteilhafter, die elliptischen
Planetenbahnen in Polarkoordinaten darzustellen. Über die Theorie der Kegelschnitte lassen
sich dadurch neben der Ellipsenbahn auch die Hyperbel- und Parabelbahn erfassen. Im Fal-
le der Ellipse dient einer der Brennpunkte als Ursprung des Polarkoordinatensystems, vgl.
Abb. 2.188. Hiervon ausgehend werden der Radiusvektor r und der Winkel ' gegenüber der
großen Halbachse als Bestimmungsstücke vereinbart. Für die Ellipse gilt alternativ für r :

r D a2 � e2

a C e � cos '
D 1 � "2

1C " � cos '
� a D 1

.1C " � cos '/
� b D p

1C " � cos '
� a

Es bedeuten:

" D e

a
I p D b

a
." < 1/
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Abb. 2.187

Die Formel mit dem Parameter p ist auch auf die Hyperbel (" > 1) und die Parabel ." D 1/

anwendbar. Für den Kreis gilt: " D 0. Alle Kegelschnitte haben demnach in Polarkoordi-
naten (deren Nullrichtung vom Pol bis zum nächstgelegenen Scheitel weist) Gleichungen
derselben Form. In Abb. 2.188 sind die Kegelschnitte für p D 4;0 gemeinsam dargestellt.

Abb. 2.188
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Abb. 2.189

Als weitere Form der Ellipsendarstellung dient die sogen. Exzentrische Anomalie und der
zugehörige Scheitelkreis. Mit dieser Darstellung lassen sich die drei Kepler’schen Gesetze
geschlossen darstellen. Diese Darstellungsform wird in den Fachbüchern der Astronomie
abgehandelt.

3. Anmerkung
Aus den elliptischen Bahnen diverser ‚Fixsterne‘, die über Jahre hinweg vermessen wurden,
war es möglich, auf das Vorhandensein eines ‚Schwarzen Loches‘ im Zentrum der Milch-
straße (Galaxis) zu schließen, es muss im gemeinsamen Brennpunkt der Bahnen liegen.
Abb. 2.189 zeigt eine dieser Bahnen, aufgenommen im Zentrum der Milchstraße. Das ist
eine der wenigen indirekten Möglichkeiten, Schwarze Löcher zu orten.

2.8.6 Gravitationsgesetz von I. NEWTON und einige
Folgerungen

2.8.6.1 Zur Herleitung des Gravitationsgesetzes
Ausgehend von den Kepler’schen Gesetzen folgerte I. NEWTON (1642–1727) im
Jahre 1666 das Gravitationsgesetz, wobei er zunächst vom System Erde-Mond aus-
ging; Erddurchmesser und Mondbahnradius waren seinerzeit in guter Annäherung
bekannt, ebenso, dank der Fallversuche von G. GALILEI, die Beschleunigung auf
der Erdoberfläche, vgl. Abschn. 2.3.1.
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Abb. 2.190

Abb. 2.190 zeigt das Erde-Mond-System. Die heute gültigen Größen sind hierin
eingetragen:

Erdradius: RE D 6;37 � 106 m,
Mondbahnradius: rM D 3;84 � 108 m,
Erdbeschleunigung: aE D g D 9;81m=s2

(Indizes: E: Erde, M : Mond).
Geht man von einer Kreisbewegung aus, berechnet sich die Bahngeschwindig-

keit des Mondes zu (Bahnlänge durch Umlaufzeit):

vM D 2� � rM

TM

TM ist die (siderische) Dauer der Umrundung des Mondes um die Erde, sie beträgt:
TM D 27;32 d (d: Tage).

Die zentrifugale Beschleunigung desMondes aus seiner Bahn heraus, berechnet
sich hiermit zu (Abschn. 2.2.3):

aM D v2
M

rM

D 4�2 � r2
M

T 2
M � rM

D 4�2 � rM

T 2
M

D 4�2 � 3;84 � 108

.27;32 � 24 � 60 � 60/2
D 2;72 � 10�3 m=s2

Damit der Mond seine Bahn nicht verlässt, muss er vermöge der Gravitations-
Wechselwirkung von seinem Mutterplaneten, der Erde, durch eine Kraft angezo-
gen werden, die die Fliehkraft aufhebt. Das bedeutet, er muss eine Beschleunigung
in Richtung Erdmittelpunkt erfahren, der dem zuvor ausgerechneten Wert ent-
spricht, also 2;72 � 10�3 m=s2. Eine Masse auf der Erdoberfläche wird zum Erdmit-
telpunkt mit g D 9;81m=s2 beschleunigt. Das Verhältnis der Beschleunigungen
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auf der Erde und auf dem Mond (letztere durch die gravitative Wechselwirkung
zwischen den beiden Himmelskörpern) beträgt demnach:

aE

aM

D 9;81

2;72 � 10�3
D 3606 � .60/2

Offensichtlich und interessant ist nun, dass das Verhältnis des Abstandes zwischen
einer Masse auf dem Mond bis zum Erdmittelpunkt und einer Masse auf der Erd-
oberfläche bis zum Erdmittelpunkt ebenfalls

rM

RE

D 3;84 � 108

6;37 � 106
� .60/2

beträgt. Daraus folgerte NEWTON, dass die Schwerebeschleunigung, die von der
Erde ausgeht, mit dem Quadrat des Abstandes abnimmt. Zudem folgerte er, dass
die Anziehungskraft zwischen zwei Körpern ihrer Masse jeweils proportional ist.
Das führte auf das Gesetz für die Gravitationskraft:

F D G � m1 �m2

r2

Hierin ist r der Abstand zwischen den Schwerpunkten der beiden Körper mit den
Massen m1 bzw. m2. Die Kraft wirkt wechselseitig. G ist eine Konstante, sie war
I. NEWTON zunächst nicht bekannt.

G lässt sich nur durch Messung bestimmen, was erstmals H. CAVENDISH
(1731–1810) im Jahre 1798 gelang. Abb. 2.191 zeigt die von ihm hierfür gebau-
te Gravitationswaage: Der Balken der Waage hängt an einem dünnen Quarzfaden.
Teilabbildung b zeigt das System in der Aufsicht. Mit der Waage war es mög-
lich, unterschiedlich schwere Bleikugeln mit unterschiedlichen gegenseitigen Ab-
ständen zu realisieren. Die Kraft ist gleich der Drehfederkonstanten des Fadens
multipliziert mit dem sich einstellenden Drehwinkel. Auf diese Weise wurde von
CAVENDISH für die unterschiedlichsten Waagebeladungen der Wert

G D 6;754 � 10�11 m3 kg�1 s�2

gefunden. Ebenso konnte er die Gleichheit von träger und schwerer Masse zeigen.
Weitere Messungen wurden später von J.H. POYNTING (1852–1914): 6,698

und K. BRAUN (1850–1918): 6,658 angestellt. Nochmals später wurden die Mes-
sungen von L. EÖTVÖS (1848–1919) und seinen Nachfolgern mit abermals ge-
steigerter Genauigkeit fortgesetzt und hierbei die Materialunabhängigkeit von G

bestätigt.
Die von EÖTVÖS konstruierte Drehwaage war so empfindlich, dass er sie zur

gravimetrischen Lagerstättenerkundung (Erdölprospektion) erfolgreich einsetzen
konnte.



2.8 Astronomie I: Himmelsmechanik – Sonne, Planeten, Monde und Kometen 291

Abb. 2.191

Ergänzend sei erwähnt, dass NEWTON eine Abschätzung von G versuchte,
indem er die mittlere Dichte des Erdkörpers zu � D 5 � 103 kg=m3 ansetzte, das
ergab eine Erdmasse von

mE D �E � VE D �E � 4
3

� �R3
E D 5 � 103 � 4

3
� � .6;37 � 106/3 D 5;43 � 1024 kg

Wird die Schwerkraft eines auf der Erdoberfläche liegenden Körpers mit der Masse
m (F D m � g) mit der auf den Körper einwirkenden Gravitationskraft durch die
Erde mit der Masse mE im Abstand RE vom Erdmittelpunkt gleichgesetzt, folgt:

g �m D G � mE �m
R2

E

! G D g � R2
E

mE

D 9;81 � .6;37 � 106/2

5;43 � 1024
D 7;35 � 10�11 m3 kg�1 s�2
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Dieser Wert liegt gegenüber dem richtigen um ca. 10% zu hoch, was darauf beruht,
dass NEWTON die mittlere Dichte der Erde mit � D 5 �103 kg=m3 gegenüber dem
richtigen Wert, � D 5;52 � 103 kg=m3, zu niedrig abgeschätzt hatte.

Anmerkung
Das Gravitationsgesetz lässt erkennen, dass die Gravitationskraft proportional zum Rezi-
prokwert des Abstandsquadrates ist. Man spricht daher vom .1=r2/-Kraftgesetz. Es ist auch
für die elektrostatische Kraftwirkung gültig (Bd. III, Abschn. 2.2.1). Die Kräfte wirken
zentral zueinander. – In kosmischen Räumen ist .1=r2/ ein winziger Wert. Dass sich die
Gravitation im Universum dennoch so bedeutend auswirkt, z. B. im Wechselspiel der Sterne
und Sternsysteme untereinander, beruht auf den beteiligten riesigen Massen. Grundsätzlich
ist die Gravitation von allen Wechselwirkungskräften die schwächste. Wodurch sie ausgelöst
wird, ist immer noch nicht endgültig geklärt, vgl. hier Bd. IV, Abschn. 1.3.6.

2.8.6.2 Drittes Kepler’sches Gesetz
Wendet man die Formel für die zentripetale Beschleunigung auf das Sonne-
Planeten-System an, lautet sie für einen Planeten, der die Sonne umkreist:

aP D v2
P

rP

D 4�2 � rP

T 2
P

Multipliziert mit der Masse des Planeten folgt damit die vom Planeten auf die Son-
ne hin gerichtete Kraft, die mit der von der Sonne ausgehenden Gravitationskraft
im Gleichgewicht steht, zu:

FP D mP � aP D 4�2 �mP � rP

T 2
P

Gemäß dem 3. Keplerschen Gesetz gilt für die Umlaufbahn des Planeten:

T 2
P D K � r3

P

Setzt man diesen Ausdruck in vorstehende Gleichung ein, ergibt sich:

FP D 4�2 �mP � rP

K � r3
P

D
�

4�2

K

�
� mP

r2
P

D � � mP

r2
P

Das Ergebnis bestätigt das .1=r2/-Gesetz. Im Rückschluss ist es der Beweis für das
3. Kepler’sche Gesetz. (In der vorangegangenen Beweisführung allerdings unter
der Annahme, dass sich der Planet auf einer Kreisbahn bewegt!)
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Abb. 2.192

Wegen des Wechselwirkungsgesetzes (Lex III nach NEWTON) gilt für die zwi-
schen den Massen m1 und m2 wirkenden Gravitationskräfte (Abb. 2.192):

EF1 D � EF2W jF j D jm1 � a1j D jm2 � a2j mit a1 D � � m1

r2
und a2 D � � m2

r2

Im Falle einer kreisförmigen Bewegung rotieren m1 und m2 um einen gemeinsa-
men Mittelpunkt. Die Abstände r1 und r2 stehen im Verhältnis

r1

r2

D m2

m1

zueinander (Hebelgesetz), siehe Abb. 2.192. Das lässt sich wie folgt zeigen: Aus
der Gleichgewichtsgleichungm1 �a1 D m2 �a2 und der Gleichheit der Umlaufzeiten
T1 D T2 der beiden Massen um den gemeinsamen Schwerpunkt, ergibt sich mit

a1 D 4�2 � r1

T 2
1

und a2 D 4�2 � r2

T 2
2

das Abstandsverhältnis aus

m1 � 4�2 � r1

T 2
1

D m2 � 4�2 � r2

T 2
2

zu:

m1 � r1 D m2 � r2 ! r1

r2

D m2

m1

Hieraus lässt sich mit r D r1 C r2 die Formel

r1 D r

1Cm1=m2

für die Berechnung des gemeinsamen Schwerpunktes anschreiben.
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Von einem Planeten um die Sonne oder von einem Mond um einen Plane-
ten lassen sich die Umlaufzeiten und die gegenseitigen Abstände relativ genau
messen. Das ermöglicht die Bestimmung der Masse des jeweiligen Muttergestirns
und damit die Berechnung ihrer mittleren Dichte. Fehlt ein Satellit, entfällt diese
Möglichkeit. Für das Sonne-Planeten-System geht die Lösung von nachstehenden
Beziehungen aus (Index S: Sonne, P: Planet):

F D G � mS �mP

r2
P

und F D mP � aP D mP � 4�2rP

T 2
P

Werden die Kräfte gleich gesetzt, ergibt sich:

mS D 4�2r3
P

G � T 2
P

I �S D mS

VS

Entsprechend folgt für ein Planeten-Mond-System (Index P : Planet, M : Mond):

mP D 4�2r3
M

G � T 2
M

I �P D mP

VP

G ist die Gravitationskonstante: G D 6;6742 � 10�11 m3 kg�1 s�2.
Die Bestimmung setzt eine möglichst exakte Kenntnis der Bahnparameter vor-

aus. V ist in den Formeln das Volumen des jeweiligen Himmelskörpers.
Die Umlaufzeit eines Satelliten im Abstand rSatellit um einen Himmelskörper,

wobei unter Satellit ganz allgemein ein Planet um die Sonne, ein Mond um sei-
nen Planeten oder ein technischer Erdsatellit um die Erde gemeint ist, folgt nach
Umstellung obiger Gleichungen zu:

TSatellit D 2�

s
r3
Satellit

G �mHimmelskörper

Die Bahngeschwindigkeit des Satelliten bestimmt sich aus:

vSatellit D 2� � rSatellit
TSatellit

D
s

G �mHimmelskörper

rSatellit

Sind Umlaufzeit TSatellit und Abstand rSatellit genau bekannt, berechnet sich die
Masse des Himmelskörpers mittels der Formel:

mHimmelskörper D 4�2 r3
Satellit

G � T 2
Satellit

D v2
Satellit � rSatellit

G
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Hiermit lässt sich zum Beispiel die Masse der Sonne (ganz allgemein die Masse ei-
nes Sterns) oder eines Planeten bestimmen, wenn sich Abstand und Umlaufzeit des
Satelliten messen lassen (wobei im Falle eines Planeten die Masse seiner Monde,
die ihn mit derselben Umlaufzeit begleiten, enthalten ist).

Beispiel
Jupiter ist der größte und massereichste Planet im Sonnensystem (vgl. Abschn. 2.8.10.8). Er
wird von einer großen Zahl vonMonden mit Durchmessern zwischen 2 km und 5000 km um-
kreist. Vier der Monde wurden bereits im Jahre 1610 von G. GALILEI entdeckt. Ganymed
ist der größte von ihnen. Von ihm ausgehend wird gerechnet:

rSatellit D 1;070 � 109 m; TSatellit D 7;155 a D 6;18192 � 105 s

Aus obiger Gleichung folgt die Masse des Planeten zu:

mJupiter D 1;897 � 1027 kg:

Der mittlere Radius des Planeten beträgt:

RJupiter D 6;984 � 107 m:

Hiermit berechnet sich das Volumen

VJupiter D 4

3
� �R3

Jupiter D 1;427 � 1024 m3

und die mittlere Dichte zu:

� D mJupiter

VJupiter
D 1;897 � 1027

1;427 � 1024
D 1329

kg

m3
.Erde: � D 5520

kg

m3
/

Jupiter weist eine vergleichsweise große Abplattung auf:

RÄquator D 7;1492 � 107 m; RPol D 6;6990 � 107 m

Die ‚Abplattung‘ ist zu

f D RÄquator �RPol

RÄquator
D 0;0630

definiert.
Für den größten und kleinsten Bahnabstand zur Sonne wurden für Jupiter die in

Abb. 2.193a angeschriebenen Werte gemessen. Hieraus folgen die Parameter a; e; b und
29;8 der elliptischen Bahn zu (vgl. Abschn. 2.8.5):

a D .7;41C 8;15/ � 1011=2 D 7;780 � 1011 m;

e D .7;780 � 7;410/ � 1011 D 0;370 � 1011 m;

b D
p

a2 � e2 D 7;771 � 1011 m;

" D e

a
D 0;370 � 1011

7;780 � 1011
D 0;048
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Abb. 2.193

Ausgehend vom 3. Keplerschen Gesetz wird die Umlaufzeit berechnet, wobei auf die Bahn-
daten der Erde Bezug genommen wird:

T 2
Jupiter D

a3
Jupiter

a3
Erde

� T 2
Erde D .T 2

Erde � a�3
Erde/ � a3

Jupiter

Für TErde ist deren siderische Umlaufzeit zu

TErde;sid:.D asid:/ D 365 d 6 h 9min 9;54 s D 365;25636 d D 3;1558150 � 107 s

und für die große Halbachse aErde D 1;496 � 1011 m anzusetzen. Für den obigen Klammer-
ausdruck, der Kepler’schen Konstanten K (siehe Abschn. 2.8.5), ergibt sich:

K D T 2
Erde � a�2

Erde D 2;97459 � 10�19 s2 m�3

Für TJupiter liefert die Rechnung:

TJupiter D 3;742659 � 108 s D 11;86 asid::

Im Umfeld von Jupiter befinden sich mehr als 60 Monde und mindestens zwei (schwache)
Ringsysteme. – Interessant sind zwei sogen. Trojanergruppen, die sich auf der Jupiterbahn
mit derselben Geschwindigkeit wie der Planet selbst bewegen. Die Trojaner zählen zu den
Planetoiden. Ihre Lage fällt mit den sogen. Librations- oder Lagrange-Punkten des Drei-
körperproblems ‚Sonne-Planet-Planetoid‘ zusammen. Planetoiden an diesen Stellen wurden
1772 von J.L. LAGRANGE vorausgesagt und hundert Jahre später hier tatsächlich entdeckt
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(Abb. 2.193b). Wie die Figur zeigt, bilden die Librationspunkte mit dem Planeten und der
Sonne je ein gleichseitiges Dreieck. Die Trojaner liegen an diesen Punkten nicht fest sondern
durchlaufen nierenförmige Bahnen mit einer Umlaufperiode von mehr als 150 Jahren. Kör-
perlich haben die Trojaner keine Kugelform. Hektor ist mit ca. 400 km 	 300 km der größte
Brocken unter ihnen. Die Anzahl der Trojaner wird auf mehrere Tausend geschätzt.

2.8.6.3 Erdsatelliten – Geostationäre Satelliten
Die um die Erde kreisenden Satelliten unterliegen selbstredend den Gesetzen
von NEWTON und KEPLER, wobei Erde und Satellit jeweils als Punktmas-
se behandelt werden können. Die Bewegung im Raum ist eine Funktion der
sechs Kepler’schen Bahnelemente. Die Funktion kann auf der Grundlage der
sechs Lagrange-Störungs-Differentialgleichungen ermittelt werden. Hierbei ist
es notwendig, den gravitativen Einfluss von Mond und Sonne, den Einfluss des
Luftwiderstandes und jenen des solaren Strahlungsdrucks als Störgrößen mit
zu erfassen. Heutzutage kommen dafür praktisch ausschließlich Verfahren der
numerischen Mathematik in Form von Zeitschrittverfahren zur Lösung der Bewe-
gungsgleichungen zum Einsatz.

Die Aufgabe, die ein Satellit zu erfüllen hat, bestimmt seine Bahnhöhe (H ). Zu
jeder Bahnhöhe gehört eine bestimmte (mittlere) Bahngeschwindigkeit:

vSatellit D
s

G �mErde

rSatellit
; mErde � 6 � 1024 kgI

rSatellit D RErde CH; RErde D 6;370 � 106 m; TSatellit D 2� � rSatellit=vSatellit

Für den (fiktiven) Fall H D 0 findet man: vSatellit D 7926m=s D 7;93 km=s, man
spricht von der 1. Kosmischen Geschwindigkeit, TSatellit D 5049 s D 1 h 24m 9 s.

Satelliten werden für zivile und militärische Zwecke eingesetzt, im erstgenann-
ten Falle z. B. für navigatorische, geodätische, geophysikalische und meteorologi-
sche Aufgaben. Entsprechend unterscheiden sie sich bezüglich Bauform, Energie-
versorgung undMesssystem.Mit den europäischen Sentinel-Satelliten ist seit 2014
ein hochauflösendes digitales Erdbeobachtungssystem in 13 Farben im Einsatz.

Große Bedeutung haben Navigations- und Positionierungssysteme, Abk.:
GNSS (Global Navigation Satellite System):

� GPS (Global Positioning System, USA), seit 1993 in Betrieb, 21 SatellitenC 3
Reservesatelliten in 20.200km Höhe:

r D RErde C 20:200 D 26:570kmI
T D 42:751 s � 11 h 53min

(Abb. 2.194).
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Abb. 2.194

� GLONASS (Global Navigation Satellite System, Russland), seit 2010 in Be-
trieb und im weiteren Ausbau, 21 Satelliten C Reservesatelliten, in 19.100km
Höhe über der Erde:

r D RErde C 19:100 D 25:470kmI
T D 40:119 s � 11 h 09min

� Galileo (EU): 30 Satelliten in 23.616km Höhe,

r D RErde C 23:616 D 29:986kmI
T D 52:613 s � 14 h 22min;

Inbetriebnahme 2018, dann mit ca. 13Milliarden C aufgelaufenen Kosten, Kos-
ten während des Betriebs jährlich 600 Millionen C.

� Beidou (China), im Aufbau mit 35 geplanten Satelliten.
� Terrar-X-Radarsatellit, seit 2007 in Betrieb, niedrig fliegend in 514 km Höhe,

r D RErde C 514 D 6884kmI
T D 5674 s � 1 h 35min:

Eine Sonderstellung nehmen die sogenannten Geostationären Satelliten ein: Sie
werden so positioniert, dass sie exakt über einem bestimmten Punkt der Erdober-
fläche stehen, das bedeutet, sie bewegen sich synchron mit der Eigenrotation der
Erde. Ihre Umlaufbahn lässt sich wie folgt angeben: Die Lage eines geostationären
Satelliten bleibt am Himmel dann ortsfest, wenn die Dauer seines Umlaufs gleich
einem Sterntag (siderischer Tag) ist. Die siderische Umlaufzeit T der Erde beträgt:

23 h 56m 4 s D 86:164 s .< 24 � 60 � 60 D 86:400 s/:
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Abb. 2.195

Auf der Erdoberfläche ist die Erdbeschleunigung im Abstand RErde vom Erdmit-
telpunkt gleich g D 9;81m=s2 (Abb. 2.195). Diese Beschleunigung nimmt qua-
dratisch mit der Höhe ab. Das bedeutet, im Abstand r vom Erdmittelpunkt beträgt
die Erdbeschleunigung:

g �
�

RErde

r

�2

Wird diese Beschleunigung mit der zentripetalen Beschleunigung, die der Satellit
auf seiner Bahn erfährt, gleichgesetzt, also mit 4�2r

T 2 , folgt nach Umformung:

rGeostationärer Satellit D 3

s
g � R2

Erde � T 2

4�2
;

T beträgt, wie angegeben, T D 86:164 s.
Mit den in Abb. 2.195 angeschriebenen Größen ergibt sich:

rGeostationärer Satellit D 42:164 km;

also eine Höhe ca. 35.786km über der Erde.
Typische geostationäre Satelliten sind Wettersatteliten, z. B. Meteosat in sei-

nen verschiedenen technischen Versionen (seit 1997 im Einsatz) und die Systeme
Astra, Entelsat, Inmarsat, Alphasat und weitere, die der Telekommunikation die-
nen bzw. dienten.
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Abb. 2.196

2.8.6.4 Gravitation innerhalb und außerhalb einer Kugelmasse
Die bisherigen Überlegungen in diesem Kapitel gingen von der Vorstellung einer
gravitativen Wechselwirkung zwischen zwei Punktmassen aus, das bedeutet, die
Masse der wechselwirkenden Körper wurde in deren Schwerpunkt konzentriert
gedacht. Die Aufgabenstellung wird im Folgenden auf einen Körper endlicher
Ausdehnung, einen Kugelkörper, erweitert.

Bevor das Problem für die Vollkugel gelöst wird, muss geklärt werden, wel-
che gravitative Kraft auf eine Punktmasse m im Innenraum einer dünnwandigen
Hohlkugel von dieser ausgeübt wird. Die Oberfläche einer solchen Hohlkugel be-
trägt A D 4�R2, wenn R ihr Radius ist. Ist d die Wanddicke und � die Dichte,
berechnen sich Volumen und Masse der Hohlkugel in Annäherung zu:

V D A � d D 4�R2 � d; M D � � V D � � 4�R2 � d
Es handelt sich um eine sehr dünne Kugelschale! Innerhalb der Kugelschale wird
ein beliebiger Punkt P betrachtet. Ein wiederum beliebiger geradliniger Strahl, der
durch P hindurch tritt, trifft die Schale in zwei Punkten, 1 und 2, vgl. Abb. 2.196a.

Zwei von P ausgehende infinitesimale Strahlenkegel (in der Abbildung schraf-
fiert) mit gleichgroßen Öffnungswinkeln und mit dem zuvor erklärten Strahl im
Zentrum, schneiden aus der Schalenfläche zwei infinitesimale Flächenelemente dA
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heraus. Sie haben eine gegengleiche Winkellage. Sie stehen im Verhältnis

dA1

dA2

D c2
1

c2
2

zueinander. c1 und c2 sind die Abstände zwischen dem Punkt P und den Punk-
ten 1 und 2. Vorstehende Relation gilt immer, auch dann, wenn Punkt P nicht in
der durch den Mittelpunkt der Hohlkugel verlaufenden Ebene liegt. Die beiden
infinitesimalen Strahlenkegel müssen nur, wie vorausgesetzt, einen gleichgroßen
räumlichen Zentriwinkel haben.

Die Gravitationsbeschleunigungen, die von den infinitesimalen Massen dm1

und dm2 in Richtung auf Punkt P ausgehen, sind:

a1 D G
dm1

c2
1

D G
� � dA1 � d

c2
1

; a2 D G
dm2

c2
2

D G
� � dA2 � d

c2
2

Bildet man das Verhältnis a1=a2, findet man unter Einbeziehung der oben ange-
schriebenen Relation für dA1=dA2:

a1

a2

D G � � � d
G � � � d �

dA1

c2
1

� c2
2

dA2

D 1

Das bedeutet: Die Beschleunigungen, die eine Masse m in irgendeinem beliebi-
gen Punkt P infolge der jeweils gegenüberliegenden infinitesimalen Masse auf der
Hohlkugelfläche erfährt, sind gegengleich. Deren Summe hebt sich zu Null auf.
Diese Überlegung kann auf die gesamte Schale der Hohlkugel erweitert werden:
Was für den betrachteten Punkt gilt, gilt für jeden anderen auch. Das bedeutet:
Innerhalb einer Kugelschale mit homogener Massenbelegung ist die Gravitation
Null. – Eine Kugelschale mit endlicher Dicke (Abb. 2.196b) kann aus unendlich
vielen Schalen infinitesimaler Dicke zusammengefügt gedacht werden. Da für jede
dieser Schalen die vorangegangene Aussage gilt, gilt sie auch für den Innenraum
einer Kugelschale endlicher Dicke.

Eine (massive) Vollkugel lässt sich aus einer inneren (i) Vollkugel und einer
äußeren (a) Hohlkugel zusammensetzen. In Abb. 2.197a ist dargestellt, wie sich
eine Vollkugel mit dem Radius R auf dreierlei Weise aus einer kleineren Vollkugel
und einer passenden größeren Hohlkugel aufbauen lässt. Auf der Oberfläche einer
inneren Vollkugel mit dem Radius ri und der Masse

Mi D � � Vi D � � 4
3

� � r3
i
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Abb. 2.197

beträgt die zum Mittelpunkt hin gerichtete Gravitationsbeschleunigung:

ai D G � Mi

r2
i

Die Dichte der Vollkugel und damit jene der Teilkugeln sei homogen. Wird der
obige Ausdruck für Mi in die Formel für ai eingesetzt, lautet sie:

ai D 4

3
� �G � � � ri

Das bedeutet: Die Beschleunigung wächst linear mit dem Radius der inneren Voll-
kugel an. Da von der äußeren Hohlkugel keine Gravitationswirkung nach innen
ausgeht, gilt das vorstehend angeschriebene Ergebnis für jeden innerhalb der Voll-
kugel im Abstand ri vom Kugelzentrum entfernt liegenden Punkt und das für alle
Punkte bis zur Oberfläche der Kugel. Kurzum, die Gravitationsbeschleunigung im
Inneren einer Vollkugel im Abstand r vom Mittelpunkt berechnet sich zu:

a.r/ D 4

3
� � G � � � r

Abb. 2.197b zeigt den linearen Anstieg. Wird die Formel mit R3=R3 erweitert,
folgt:

a.r/ D G �
�
� � 4

3
� �R3

�
� 1

R2

r

R
D G � M

R2
� r

R

M ist die Masse der Vollkugel mit dem Radius R. Diese Kugel kann z. B. mit der
Erdkugel gleichgesetzt werden. Dann gilt für jeden beliebigen Punkt im Erdinne-
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ren im Abstand r vom Mittelpunkt:

a.r/ D G � MErde

R2
Erde

� r

RErde
D g � r

RErde
.r � RErde/

Auf der Erdoberfläche ist

g D G � MErde

R2
Erde

die Erdbeschleunigung, vgl. Abschn. 2.8.6.1. Auf eine Masse m auf der Erdober-
fläche wirkt die Gravitationskraft:

F D �a.R/ �m D �G � MErde �m
R2

Erde

.r D RErde/

Das ist derselbe Wert, der sich ergibt, wenn die Erdmasse im Zentrum vereinigt
gedacht wird. Damit ist gezeigt, dass die Masse eines kugelförmigen Körpers wie
eine Punktmasse in dessen Zentrum (D Schwerpunkt) behandelt werden kann.

Außerhalb der Erde beträgt die Gravitationsbeschleunigung:

a.r/ D G � MErde

r2
D g �

�
RErde

r

�2

.r > RErde/

Entsprechend ergibt sich die Kraft auf eine Masse m im Abstand r vom Zentrum:
F.r/ D �m � a.r/ für r > RErde. Der Verlauf der Gravitationsbeschleunigung ist
in Abb. 2.197b wiedergegeben.

2.8.7 Energie im Gravitationsfeld

2.8.7.1 Potentielle und kinetische Energie im Gravitationsfeld
Um die potentielle Energie eines Körpers der Masse m im gemeinsamen Gravi-
tationsfeld mit dem Körper der Masse M zu berechnen, wird das in Abb. 2.198a
dargestellte Koordinatensystem aufgespannt. Der Radiusvektor Er reiche vom Null-
punkt bis zum Punkt mit dem Abstand r D jErj. In Richtung des Radiusvektors,
also in Richtung des Einheitsvektors Eer , wirke die Kraft EF . Sie sei eine Funktion
des Abstandes r . Die von EF bei einer Verschiebung um d Er geleistete Arbeit ist:

dW D EF � d ErI EF D EF .r/
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Abb. 2.198

Auf demWeg von r D rA bis r D rB verrichtet die Kraft die Arbeit (Abb. 2.198b):

W D
rBZ

rA

EF � d Er

Vgl. Abschn. 1.11; daselbst Abb. 1.25. EF werde nunmehr mit jener Anziehungs-
kraft identifiziert, die die Masse m im Abstand r infolge der Gravitationswechsel-
wirkung mit der Masse M , die im Nullpunkt liege, erfährt:

EF D �G � M �m
r2
� Eer

Dem Ausdruck ist ein Minuszeichen voran gesetzt, weil die Gravitationskraft in
Richtung M , also entgegen der Positivdefinition von EF bzw. Eer , wirkt. Wird EF in
die obige Gleichung für W eingesetzt, lautet der Ausdruck für die Arbeit:

W D �
rBZ

rA

G � M �m
r2

dr

Es werde nunmehr W für den Fall berechnet, dass die Masse m ins Unendliche
verschoben wird. Die Integration erstreckt sich dann von r D rA bis r D rB D 1.
Im Unendlichen ist die Gravitationswirkung Null. Mit der allgemeinen Lösung des
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Integrals
R

r�2 dr D �r�1 D � 1
r
folgt für W :

W D
�
CG � M �m

r

�1

rA

D 0 �G � M �m
rA

Dieses Ergebnis wird auch gewonnen, wenn andere Integrationswege gewählt wer-
den, wie in Abb. 2.198c angedeutet: Wege 1, 2 oder 3. – Auf Kreisbogen um
M wird in tangentialer Richtung keine Arbeit geleistet, sondern nur auf zentralen
Wegkomponenten, die von M aus radial nach außen gerichtet sind. Als Ergebnis
der Integration kann festgehalten werden, dass die Lageenergie (potentielle Ener-
gie) Epot im Gravitationsfeld im Abstand r gleich

Epot D �G � M �m
r

ist. Epot ist die von r bis r D 1 im Gravitationsfeld aufsummierte Arbeit. Sie
steht im Abstand r als Arbeitsvermögen im Gravitationsfeld zur Verfügung.

Bewegt sich die Masse m im Abstand r relativ zur Masse M mit der Geschwin-
digkeit v, wohnt ihr des weiteren die Bewegungsenergie (kinetische Energie) Ekin

inne:

Ekin D 1

2
m � v2

Die Gesamtenergie im Gravitationsfeld beträgt demnach:

E D Ekin C Epot D 1

2
m � v2 �G � M �m

r

Innerhalb eines geschlossenen Systems, z. B. Erde/Mond oder Sonne/Planet, ist
E (zeitlich) konstant. Es gilt das Energieerhaltungsgesetz. Ist M die Masse des
Zentralgestirns,m jene des Satelliten und r der Abstand des Satelliten vomZentral-
gestirn, kann aus vorstehender Beziehung gefolgert werden (vgl. hier Abb. 2.184a):

� Ist r klein (Perihelstellung bei einer Planetenbahn), ist v groß,
� ist r groß (Aphelstellung bei einer Planetenbahn), ist v klein.

Als Beispiel werde verfolgt, wie sich die Energie eines Körpers der Masse m ändert, wenn
der Körper vom Punkt B im Abstand rB vom Mittelpunkt der Masse M in Richtung M bis
zum Punkt A im Abstand rA herunter fällt (Abb. 2.199a). Die potentielle Energie ändert sich

von �G � M �m
rB

auf �G � M �m
rA

:
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Abb. 2.199

Die Differenz (Änderung ‚neu‘ gegen ‚alt‘) beträgt dann:

�Epot D �G �M �m �
�

1

rA

� 1

rB

�

Hat der Körper in der Höhe B die Geschwindigkeit vB und in der Höhe A die Geschwindig-
keit vA, ergibt sich die Änderung der kinetischen Energie zu:

�Ekin D m � v2
A

2
� m � v2

B

2
D m

2
� .v2

A � v2
B /

Die Änderung der Energie auf der Bahn von B nach A beträgt demgemäß insgesamt:

�E D �Epot C�Ekin D �G �M �m �
�

1

rA

� 1

rB

�
C m

2
� .v2

A � v2
B /

Da es sich um ein abgeschlossenes System mit E D konst: handelt, ist diese Änderung Null
(�E D 0). Das ermöglicht es, vA aus der vorstehenden Gleichung frei zu stellen:

vA D
s

v2
B C 2GM

�
1

rA

� 1

rB

�

Die Abnahme der potentiellen Energie bei der Bewegung von B nach A geht mit einer Zu-
nahme der kinetischen Energie und damit der Geschwindigkeit einher. Das gilt auch, wenn
die Bewegung auf einer krummlinigen Bahn erfolgt, wie in Abb. 2.199b dargestellt.

Fällt der Körper mit der Masse m aus der Höhe B (vB D 0) in Richtung auf einen kugel-
förmigen Körper der Masse M mit dem Radius R, gilt beim Aufschlag auf die Oberfläche
des Körpers mit rA D R und rB D RCH (Abb. 2.200):

�G �M �m �
�

1

R
� 1

RCH

�
C m

2
� v2

A D 0
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Abb. 2.200

Hieraus kann vA frei gestellt werden:

vA D
s

2 � G �M
R2

� H

1CH=R

Im Falle der Erde ist G �M=R2 die Erdbeschleunigung, also gleich g. In diesem Falle gilt,
wenn der Fall aus geringer Höhe erfolgt (H � R/:

vA D
s

2 g � H

1CH=R
� p

2gH

Das ist die Aufschlaggeschwindigkeit beim Fall auf die Erde (auf Abschn. 2.3.1 wird ver-
wiesen).

2.8.7.2 Startgeschwindigkeit einer Rakete in eine
Satellitenumlaufbahn

Die für unterschiedliche Zwecke eingesetzten Erdsatelliten umkreisen die Erde auf
vorab festgelegten Kreisbahnen. Der Bahnradius, bezogen auf den Erdmittelpunkt,
ist von der Aufgabenstellung der Satellitenmission abhängig. Gesucht ist die Start-
geschwindigkeit, um eine Bahn im Abstand r zu erreichen. Auf dieser Bahn muss
die Bahngeschwindigkeit des Satelliten so groß sein, dass Gleichgewicht zwischen
der zentrifugalen und gravitativen Kraft auf die Satellitenmasse m besteht:

m � v
2

r
D G � m �M

r2
.v 
 vSatelliten-Kreisbahn/

Hieraus folgt die Bahngeschwindigkeit des Satelliten, die erreicht werden muss:

vSatelliten-Kreisbahn D
p

G �M=r D
p

g �R2=r
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Die Startgeschwindigkeit, um diese Bahngeschwindigkeit zu erreichen, lässt sich
wieder aus dem Energieerhaltungsgesetz berechnen (vgl. die Ausführungen im
vorangegangenen Abschnitt):

1

2
m � v2

Start �G � M �m
R
�

�
1

2
m � v2

Satelliten-Kreisbahn �G � M �m
r

�
D 0

Aufgelöst nach vStart folgt:

vStart D
s

2GM

�
1

R
� 1

2 r

�
D

s

2gR

�
1 � 1

2

R

r

�

(r D rSatelliten-Bahnradius, M : Erdmasse, R: Erdradius).

2.8.7.3 Fluchtgeschwindigkeit einer Rakete
Soll eine Trägerrakete von der Erde aus eine Sonde in den Weltraum, also in die
Unendlichkeit des Alls, befördern, muss sie das Gravitationsfeld der Erde über-
winden. Beim Verlassen der Erdoberfläche bedarf es der Startenergie:

EStart D 1

2
mv2 �G � M �m

R

Hierin ist M die Erdmasse, R der Erdradius und m die Masse der Rakete mit
Treibstoff und Nutzlast. v ist die gesuchte Startgeschwindigkeit. Diese muss so
hoch eingestellt sein, dass bei Erreichen des unendlich entfernten Raumes die Ge-
schwindigkeit der Rakete und damit ihre kinetische Energie gerade Null sind; die
potentielle Energie geht bei Erreichen r D 1 ohnehin gegen Null. Beim Start
muss demnach (mindestens) folgende Bedingung erfüllt sein:

�E D EStart �EBeimFlugwird rD1 erreicht D 1

2
m � v2

Flucht �G � M �m
R
� .0 � 0/ D 0

Hieraus folgt die sogen. Fluchtgeschwindigkeit zu:

vFlucht D
p

2 � GM=R Dp
2 � g �R

Man spricht auch von der 2. Kosmischen Geschwindigkeit.
Für die Erde findet man mit M D 6 � 1024 kg und R D 6370 � 103 m:

vFlucht D 11:200m=s D 11;2 km=s
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(Auf demMond beträgt die Fluchtgeschwindigkeit ca. 1,6 km=s, auf dem Planeten
Jupiter ca. 60 km=s.) Ist v < vFlucht, kehrt das Projektil zurück. Beim Start muss
v � vFlucht erfüllt sein, um den freien Weltraum zu erreichen. Die Formel für
vFlucht gilt unabhängig von der Masse der Rakete! Abhängig von deren Masse sind
selbstredend Anfangsbeschleunigung und Antriebskraft einzustellen.

2.8.7.4 Potentielle Energie außerhalb und innerhalb einer
Kugelmasse

Die potentielle Energie der Punktmasse m im gemeinsamen Gravitationsfeld mit
der Kugelmasse M ist außerhalb der Kugelmasse gleich

Epot D �G
M �m

r
.r � R/;

vgl. Abschn. 2.8.7.4.
Innerhalb der Kugelmasse lässt sich die potentielle Energie analog zu Ab-

schn. 2.8.6.4 herleiten, vgl. auch Abb. 2.197a. Die Gravitationskraft ist demgemäß
zu

F.r/ D �m � a.r/ D �G � M �m
R2

� r

R

gegeben. Bei einer infinitesimalen Verschiebung von F.r/ um dr wird die Arbeit

dW D �F.r/ dr

verrichtet. Wird die Gleichung für F.r/ eingesetzt, ergibt sich nach Integration:

dW D G � M �m
R2

� r

R
dr

! W.r/ D G � M �m
R2

� 1

R

Z
r dr D G � M �m

R2
� 1

R
� r

2

2
C C

Der Freiwert C folgt aus der Bedingung, dass W.r/ im Abstand r D R vom
Zentrum entfernt, also auf der Kugeloberfläche, gleich der potentiellen Energie an
dieser Stelle ist, also gleich dem hier vorhandenen Arbeitsvermögen:

W.R/ D G � M �m
R2

� 1

R
� R

2

2
C C D �G � M �m

R
! C D �3

2
G � M �m

R



310 2 Mechanik II: Anwendungen

Abb. 2.201

Wird C eingesetzt, folgt nach kurzer Umformung:

Epot D �G

2
� M �m

R
�
�
3 �

� r

R

�2
�

Im Zentrum .r D 0/ beträgt die potentielle Energie:

Epot.r D 0/ D �3

2
G � M �m

R

Das ist dem Betrage nach der 1,5-fache Wert des Wertes von Epot an der Ober-
fläche. Abb. 2.201b zeigt den Verlauf von Epot inner- und außerhalb der Kugel-
masse.

2.8.8 Gravitationsenergie – Eigenenergie

Eine Konfiguration von Massen (ein Massenkontinuum) besitzt aufgrund der ge-
genseitigen Abstände der Massenelemente eine potentielle (Eigen-)Energie. Sie
kann als jene Arbeit gedeutet werden, die aufgewendet werden muss, um die
Massenkonfiguration aus dem Unendlichen in die betrachtete Stellung zu ver-
schieben.

2.8.8.1 Gravitationsenergie einer Konfiguration aus Punktmassen
Für zwei Punktmassen m1 und m2 mit dem gegenseitigen Abstand r12 beträgt die
potentielle Energie (Abb. 2.202a):

Epot D �G � m1 �m2

r12

D �1

2
G �

�
m1 �m2

r12

C m2 �m1

r21

�
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Abb. 2.202

Bei drei Punktmassen gilt beispielsweise (Abb. 2.202b):

Epot D �G �
�

m1 �m2

r12

C m2 �m3

r23

C m3 �m1

r31

�

D �1

2
G �

�
m1 �m2

r12

C m2 �m1

r21

C m2 �m3

r23

C m3 �m2

r32

C m3 �m1

r31

C m1 �m3

r13

�

Offensichtlich lassen sich für Epot bei n Punktmassen zwei alternative Formeln
anschreiben:

Epot D �G �
X

i¤j

mi �mj

rij

oder Epot D �1

2
G �

nX

iD1

nX

jD1

mi �mj

rij

In der rechtsseitigen Alternative sind Terme mit i D j auszuschließen, anderen-
falls wäre das die Eigenenergie einer Masse mit sich selbst.

Die vorstehende Betrachtung gilt gleichermaßen

� für die Konfiguration von Himmelskörpern in fester räumlicher Zuordnung,
z. B. für Sterne in einer Galaxie wie.

� für die Konfiguration von Atomen in einem festen Verbund.

Beispiel
Unter der Annahme, dass eine Galaxie aus n Sternen besteht, die (im Mittel) alle dieselbe
Masse M und denselben gegenseitigen Abstand r haben, folgt aus vorstehender Formel:

Epot D �1

2
G � .n� 1/ � n � M

2

r

Wird von 800 Milliarden Sternen mit einer mittleren Masse gleich der Sonnenmasse ausge-
gangen, ergibt die Rechnung (M D 2 � 1030 kg, r D 3 � 1021 m):

Epot D �1

2
� 6;67 � 10C11 � .8 � 10C11/ � .8 � 10�11/ � .2 � 1030/2

3 � 1021
D �285 � 1050 � �3 � 1052 J

Die Einheit kommt durch folgende Umrechnung zustande: m2 kg s�2 D Nm D J (Joule).
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Abb. 2.203

2.8.8.2 Gravitationsenergie einer Kugelmasse
Gegeben ist eine Kugelmasse mit dem Radius R. Die Dichte � sei im Mittel kon-
stant (die Masse sei homogen verteilt). Zum Zwecke der Lösung wird zunächst die
potentielle Energie zwischen der wechselwirkenden Kugelmasse mit dem Radius
r und der benachbarten Kugelschale mit der Dicke dr formuliert (Abb. 2.203):

dEpot D �G �
�
� � 4

3
� � r3

	 � �� � 4�r2 dr
	

r
D �G�2 � 16

3
�2 � r4 dr

Anschließend wird über alle Wechselwirkungen von r D 0 bis r D R integriert:

Epot D
rDRZ

rD0

dEpot D �G�2 16

3
�2 �

RZ

0

r4 dr D �G�2 16

3
�2 � r

5

5

ˇ̌
ˇ̌
R

0

D �G�2 16

15
�2 �R5

Die Vollkugel mit dem Radius R hat die Masse:

M D � � 4
3

� �R3

Wird � freigestellt und in vorstehende Gleichung für Epot eingeführt, lautet das
gesuchte Ergebnis:

Epot D �3

5
G � M

2

R
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Beispiel
Unterstellt man, die Sonne habe eine homogene Masseverteilung mit der mittleren Dichte �,
berechnet sich Epot zu:

Epot D �3

5
� 6;67 � 10�11 � .2 � 1030/2

7 � 108
D 2;29 � 1041 Joule

Tatsächlich ist die Dichteverteilung innerhalb der Sonne ungleichförmig, weshalb der wirk-
liche Wert von dem hier berechneten abweicht.

Die Gravitationsenergie hat die Bedeutung einer Bindungsenergie. Es ist jene
Energie, die frei wird, wenn sich die ursprünglich im Unendlichen liegenden mate-
riellen Bestandteile zu einem Kugelkörper gravitativ vereinigen. Absolut gesehen
hält die Energie die Kugelmasse zusammen, sie bindet sie, und löst bei ausreichen-
der Größe der Masse infolge des sich hierbei einstellenden hohen Drucks und der
hierauf beruhenden hohen Temperatur die Kernfusion im Inneren des Körpers aus.
Insofern beruht auch das Fusionsfeuer der Sterne letztlich auf der Wirkung der
Gravitation.

2.8.9 Beispiele zur Himmelsmechanik

In den voran gegangenen Abschnitten wurden Grundfragen, welche die Kräfte auf
Massen und deren potentielle und kinetische Energie in einem Gravitationsfeld
betreffen, diskutiert. Hiervon ausgehend werden anschließend einige elementare
Beispiele zur Himmelsmechanik behandelt.

1. Beispiel
Ausgehend von der Theorie der Kegelschnitte in Polarkoordinaten werden im Folgenden
Formeln zur Berechnung der Bahnelemente von Planeten und Monden ohne Nachweis
zusammengestellt.

Für die Beschreibung einer elliptischen Bahnkurve gilt alternativ (vgl. Abb. 2.186
und 2.204):

r D a2 � e2

aC e � cos '
D 1 � "2

1C " � cos '
� a D 1

1C " � cos '
� b D p

1C " � cos '

a ist die große und b die kleine Bahnhalbachse einer elliptischen Bahn (" < 1). Für die
Kreisbahn als Sonderfall der elliptischen Bahn gilt: a D b D r (" D 0). e ist der Abstand der
Brennpunkte vom Mittelpunkt der Bahnkurve. Im Brennpunkt wird das Koordinatensystem
r; ' aufgespannt, r : Bahnradius; ': Winkel (wahre Anomalie); ": numerische Exzentrizität:

" D e

a
I p D b

a
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Abb. 2.204

Geschwindigkeit in einem beliebigen Bahnpunkt:

v D
s

G �M
�

2

r
� 1

a

�

Perihelgeschwindigkeit:

vper D
s

G �M
a

�
1C "

1 � "

�
;

Aphelgeschwindigkeit:

vaph D
s

G �M
a

�
1 � "

1C "

�

G: Gravitationskonstante, M : Masse des Zentralgestirns.

Beispiel: Bahn des Erdkörpers
Berechnung einiger Bahnkennwerte:

a D 149;6 � 109 m; " D 0;0168I e D 2;513 � 109 mI
b D
p

a2 � e2 D 149;62 � 109 mI b=a D 0;99986

Perihelabstand:

r D a.1 � "/ D 0;9832 � a D 147;1 � 109 m;

Aphelabstand:

r D a.1C "/ D 1;0168 � a D 152;1 � 109 m:
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Abb. 2.205

Im Mittel beträgt der Abstand zwischen Sonne und Erde: r D 149;6 � 109 m D AE (Astro-
nomische Einheit). Geschwindigkeiten im Perihel und Aphel:

vper D 30;30 � 103 m=s bzw.: vaph D 29;30 � 103 m=s;

Mittelwert: vmittel D 29;80 � 103 m=s

(Masse der Sonne: MSonne D 1;99 � 1030 kg), Geschwindigkeit im Schnittpunkt der Hoch-
achse mit der Bahnkurve (Punkt 2 in Abb. 2.205): v D 29;80 � 103 m=s.

Für mErde D 5;974 � 1024 kg lassen sich die in der Tabelle der Abb. 2.205 eingetragenen
Werte für die potentielle und kinetische Energie in den Punkten 1 (Perihel), 2 und 3 (Aphel)
mittels nachstehender Formeln berechnen:

Epot D �G
MSonne �mErde

r
I Ekin D 1

2
�mErde � v2

Man erkennt, dass in guter Annäherung

Ekin D �1

2
� Epot

gilt. Das ist kein Zufall, sondern Aussage des sogen. Virialsatzes (s. u.). – Im vorliegenden
Falle ist die Umlaufbahn der Erde nahezu kreisförmig. Für Kreisbahnen gilt der Virialsatz
exakt, im Übrigen im zeitlichen Mittel.

Epot ist jenes Arbeitsvermögen des sich um das Zentralgestirn bewegenden Trabanten,
das er innehätte, wenn er im Gravitationsfeld aus seiner Bahn ins Unendliche verschoben
würde. Bezogen auf das Zentralgestirn ist der Weg vom Perihel ins Unendliche länger als
vom Aphel. Demgemäß ist Epot;per größer als Epot;aph, absolut gesehen.

Bildet man für verschiedene Bahnpunkte die Summe E D EpotCEkin, bestätigt man für
jeden Punkt der Bahn:

E D �2;651 � 1033 J D konst:

Die Energie ändert sich auf der Bahn somit nicht, wie es das Energieerhaltungsgesetz ver-
langt.
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Abb. 2.206

2. Beispiel Virialsatz
Betrachtet man zwei Bahnpunkte in infinitesimalem Abstand, unterscheiden sich die Radi-
usvektoren dem Betrage nach um .rCdr/�r D dr (Abb. 2.206). Die potentiellen Energien
differieren in den beiden Punkten um:

�Epot D �GM �m
r C dr

�
�
�GM �m

r

�
D GM �m

�
1

r
� 1

r C dr

�

D GM �m
r

�
1 � 1

1C dr=r

�

Wird der Klammerterm entwickelt, folgt:

1 � 1

1C dr=r
D 1 �

"
1 � dr

r
C

�
dr

r

�2

�
�

dr

r

�3

C � � �
#
� dr

r

Somit gilt:

�Epot D GM �m
r

� dr

r

Die kinetischen Energien in den beiden Punkten differieren um

�Ekin D 1

2
m � .v C dv/2 � 1

2
�m � v2 � 1

2
m � 2v � dv � mv � dv

Bildet man den Quotienten �Ekin=�Epot, erhält man:

�Ekin

�Epot
D m � v � dv

GM �m � dv
� r2 D r2

GM
� v dv

dr

Geht man für v von

v D
�

GM

r

� 1
2

D .GM /
1
2 � r� 1

2

aus und differenziert nach r , folgt:

dv

dr
D .GM /

1
2 �

�
�1

2

�
r�

3
2
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Werden v und ihre Ableitung in den obigen Ausdruck für �Ekin=�Epot eingesetzt, ergibt
sich:

�Ekin

�Epot
D � r2

GM
� .GM /

1
2 � r� 1

2 � .GM /
1
2 � 1

2
� r� 3

2 D �1

2

Damit ist der Virialsatz erläutert, nicht bewiesen, denn die Reihenentwicklung und der Lö-
sungsansatz für v D v.r/ gelten so nicht streng, sondern nur in Annäherung, im zeitlichen
Mittel.

Wird r gleich rMittel gesetzt, erhält man für die Erde die Bahngeschwindigkeit zu:

v D
s

GM

rMittel
D

s
6;6742 � 10�11 � 1;99 � 1030

149;6 � 109
D 29;80 � 103 m=s

Der Virialsatz wurde ursprünglich für abgeschlossene Systeme in der StatistischenMechanik
der Gase eingeführt, er erlaubt auch Abschätzungen für Sternsysteme.

3. Beispiel
Für die elliptische Bahn des Halley’schen Kometen gelten folgende Bahnparameter in der
Astronomischen Einheit AE D 149;6 � 109 m:

a D 17;960AE; b D 4;585AE; e D 17;365AE; " D 0;96687

Berechnet man die Geschwindigkeiten im Zeitpunkt der Bewegung durch das Perihel und
das Aphel ergibt sich: vper D 5;417 � 104 m=s bzw. vaph D 9;12 � 102 m=s. Der Rechnung
liegen für Sonne und Komet folgende Massen zugrunde: MSonne D 1;99 � 1030 kg, mKomet D
1;00 � 1014 kg.

Die Geschwindigkeit im fernen Umkehrpunkt fällt offensichtlich nahezu auf Null ab. In
Abb. 2.207a ist der Verlauf der Geschwindigkeit für einen halben Umlauf über dem Winkel

Abb. 2.207



318 2 Mechanik II: Anwendungen

˛ aufgetragen, berechnet nach der oben angeschriebenen Formel. Der Verlauf von Epot und
Ekin ist in Abb. 2.207b wiedergegeben. Für alle Bahnpunkte findet man: E D �2;4716 �
1021 J D konst:, wie es sein muss.

Mit Hilfe des 3. Kepler’schen Gesetzes lässt sich die Dauer eines vollen Umlaufs des
Kometen berechnen, ausgehend von der Umlaufzeit der Erde (Indizes E: Erde, K: Komet):

T 2
K

T 2
E

D a3
K

a3
E

! TK D TE �
s

a3
K

a3
E

D 1 a �
s

.17;950AE/3

.1AE/3
D 76;11 a (Jahre)

4. Beispiel
Gesucht ist ein Formelsystem, mit dem es gelingt, eine Satelliten- oder Raketenbahn nu-
merisch zu berechnen. Es soll sich dabei ganz allgemein um die Bahn eines Planeten, eines
Mondes, eines Kometen, eines Raumsatelliten oder einer Trägerrakete im Gravitationsfeld
eines ‚Muttergestirns‘ handeln.

Ausgehend von einem Anfangszustand zum Zeitpunkt t D 0 werden Schritt für Schritt
die Bahnordinaten berechnet, entweder als Raumkurve im Koordinatensystem x, y, z oder
vereinfacht als Bahnkurve in der Ebene im Koordinatensystem x, y (oder r; '). Die Aufgabe
fällt in das Gebiet der numerischen Mathematik. – Im Folgenden wird ein sehr einfacher
Algorithmus für die Berechnung eines ebenen Bahnverlaufes vorgestellt. Dazu werden im
Zeitpunkt t für den Bewegungszustand des (Flug-)Körpers der Masse m vereinbart:

x D x.t/, y D y.t/ W Bahnordinaten

vx D vx.t/, vy D vy.t/: Geschwindigkeitskomponenten in Richtung x bzw. y

ax D ax.t/, ay D ay.t/: Beschleunigungskomponenten in Richtung x bzw. y

Der Weg entlang der Bahnkurve sei s D s.t/. Abb. 2.208a zeigt die Wegordinaten zu defi-
nierten Zeitpunkten. Das Zeitintervall zwischen diesen Zeitpunkten wird als jeweils gleich
lang angesetzt, es wird also mit einer ‚äquidistanten‘ Zeitskala gerechnet. Die Zeitpunkte
werden durch die Laufvariable i von i D 0; 1; 2; : : : über i � 1; i; i C 1 usw. gekennzeich-
net. Im Zeitpunkt ti sind i ��t Zeitintervalle seit Anfang der Bewegung durchlaufen.

Betrachtet werde der Zeitbereich von ti�1 über ti bis tiC1, wie in Abb. 2.208b, c skiz-
ziert. Die zugehörigen Wegordinaten seien si�1, si und siC1. In diesen Zeitpunkten habe der

Abb. 2.208
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Körper die Bahngeschwindigkeiten vi�1, vi und viC1 und in Richtung der Bahnkurve die
Bahnbeschleunigungen ai�1, ai und aiC1. Geschwindigkeit und Beschleunigung werden im
Folgenden durch einen bzw. zwei hoch gestellte Punkte gekennzeichnet:

s D s.t/; v D Ps D Ps.t/; a D Rs D Rs.t/:

Die Geschwindigkeit im Zeitpunkt ti wird als Steigung der Bahnkurve über der Zeitspanne
2 ��t bei Fortschreiten von ti�1 bis tiC1 angenähert (Abb. 2.208b)

vi D Psi D siC1 � si�1

2 ��t
D 1

2 ��t
.siC1 � si�1/

Neben dieser geometrischen Deutung gibt es eine andere: Der stetige Bahnverlauf wird durch
einen polygonalen ersetzt (Abb. 2.208c). Von den Steigungen zwischen den Punkten i � 1

und i sowie zwischen i und iC1 wird der Mittelwert gebildet und dieser Wert als Näherung
für die Geschwindigkeit im Punkt i angesehen:

�si�1;i

�t
D si � si�1

�t
;

�si;iC1

�t
D siC1 � si

�t

! Psi D 1

2

�
�si�1;i

�t
C �si;iC1

�t

�
D 1

2

� si � si�1

�t
C siC1 � si

�t

�
D 1

2 ��t
.siC1 � si�1/

Die Beschleunigung im Punkt i berechnet sich aus der bezogenen Änderung der Geschwin-
digkeiten in den beiden benachbarten Intervallen nach einer entsprechenden Formel:

Rsi D
�si;iC1

�t
� �si�1;i

�t

�t
D 1

�t

� siC1 � si

�t
� si � si�1

�t

�
D 1

.�t/2
.siC1 � 2si C si�1/

Mit den vorstehenden Gleichungen sind die beiden gesuchten Differenzenformeln abgelei-
tet. – Neben der vorstehenden Herleitung, die vom geometrischen Bewegungsablauf ausgeht,
lassen sich die Formeln auch mittels der Taylor-Entwicklung herleiten. Dieser Weg hat den
Vorteil, dass ein Fehlerglied anfällt, welches eine Aussage über den Genauigkeitsgrad der
Formel erlaubt. Auch lassen sich auf diese Weise spezielle Randformeln angeben und Diffe-
renzenformeln höherer Genauigkeit finden. – Neben dem auf den vorstehenden Formeln
basierenden Differenzenverfahren, stehen für die Lösung der Bewegungsdifferentialglei-
chungen hochgenaue Zeitschrittverfahren zur Verfügung. Die Fachbücher zur numerischen
Mathematik geben Auskunft: Verfahren nach Euler-Chauchy, Heun, Runge-Kutta, Houbolt,
Newmark, Wilson und anderen [62, 63], vgl. auch [10]. Zur Thematik Himmelsmechanik
existieren keine elementaren Einführungen, auf die Fachbücher vom K. STUMPFF (1885–
1970) und M. SCHNEIDER (1935–2016) wird verwiesen, vgl. auch [64]. – In den anschlie-
ßenden Beispielen wird geprüft, welche Genauigkeit mit den oben abgeleiteten Formeln
erreicht werden kann.

5. Beispiel
Die Internationale Raumstation ISS (Intern. Space Station) hat eine Masse von ca.
415.000 kg. Die Höhe ihrer kreisförmigen Bahn ist variabel. Geht man im Beispiel von
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Abb. 2.209

h D 493 � 103 m über dem Erdboden aus und setzt den Radius der Erdkugel zu 6363 � 103 m
an, beträgt der Abstand vom Erdmittelpunkt: rISS D .6370C 493/ � 103 D 6863 � 103 m. Mit
mErde D 5;9 � 1024 kg berechnet sich die Umlaufzeit zu:

TISS D 2�

s
r3
ISS

G �mErde
D 2�

s
.6;863 � 106/3

6;6742 � 10�11 � 5;9 � 1024
D 5692;8 s

In Stunden beträgt die Umlaufzeit: T D 5692;8=3600 D 1;581 h und die Geschwindigkeit:

vISS D 2�
6;863 � 106

5692;8
D 7574;748m=s D 27:269 km=h

Berechnet man die Kreisbahn numerisch mit Hilfe obiger Formeln, ausgehend von den
Startkoordinaten x0 D 6;863 � 106 m und y0 D 0m und der Startgeschwindigkeit v0 D
7574;748m=s, muss erwartet werden, dass der Ausgangspunkt nach einer Umrundung wie-
der erreicht wird. Abb. 2.209 zeigt die berechnete Kreisbahn. (Wegen der unterschiedlichen
Skalierung in Richtung x und y erscheint der Kreis in der Figur als Ellipse. Auf die Wieder-
gabe des Rechenprogramms wird unter Hinweis auf das nächste Beispiel verzichtet.)

Die Auswirkung von vier unterschiedlichen Zeit-Schrittweiten �t auf das Ergebnis der
numerischen Berechnung wird aus der folgenden Gegenüberstellung deutlich, wenn die Dau-
er einer Bahnumrundung mit dem oben angegebenen Rechenwert T D 5692;8 s verglichen
wird:

�t D 1 sW 5694;1 s .0;023%/

�t D 2 sW 5695;4 s .0;046%/

�t D 5 sW 5698;0 s .0;091%/

�t D 10 sW 5703;1 s .0;180%/
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Abb. 2.210

Die Klammerwerte geben die relative Abweichung zum strengen Wert in Prozent an. Ein-
sichtiger Weise sinkt die Genauigkeit der Rechnung je größer �t gewählt wird. Insgesamt
ist die Genauigkeit des Resultats als sehr gut zu bewerten.

6. Beispiel: Berechnung einer Raketenbahn im Gravitationsfeld der Erde
Abb. 2.210 zeigt einen kugelförmigen Körper mit der Masse M , es handele sich um die Er-
de. Im Zentrum wird das Koordinatensystem x, y aufgespannt. Gesucht sei die Bahnkurve
einer Rakete mit der Masse m, die im Startpunkt 0 mit den Koordinaten x0; y0 und mit der
Geschwindigkeit v0 unter einem definierten Winkel abgeschossen wird. Die Geschwindig-
keitskomponenten im Startpunkt werden mit vx0 und vy0 abgekürzt. Sie müssen, wie x0; y0,
bekannt sein. Gesucht sind im Zeitpunkt t die Bahnkoordinaten x D x.t/ und y D y.t/ des
Flugobjektes. Es wird im Folgenden der einfachste Fall unter nachstehenden Voraussetzun-
gen gelöst:

� Die Masse m wird als konstant betrachtet. Tatsächlich verliert die Rakete Treibstoff, ihre
Masse verringert sich. Ist der Treibstoff verbrannt, bewegt sich die Rakete ab diesem
Zeitpunkt frei im Gravitationsfeld. Streng genommen sind somit zwei Flugphasen zu
unterscheiden: Flug der Rakete als Körper mit zeitveränderlicher Masse m D m.t/ unter
Schub, anschließend freier Flug als Körper ohne Schub.
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� Beim erdnahen Aufstieg bleibt die bremsende Wirkung des Luftwiderstandes innerhalb
der Erdatmosphäre unberücksichtigt.

� Die Gravitationswirkung der anderen Himmelskörper, insbesondere jener von Sonne und
Mond, bleibt ebenfalls außer Betracht.

Die Gravitationskraft auf der gemeinsamen Linie zwischen dem Erdmittelpunkt und der
Rakete, also zwischen M und m, und deren Komponenten in Richtung x und y betragen:

jF j D G � M �m
r2

Fx D �x

r
� F D �G � M �m

r2
� x

r
D �G

M �m
r3

x

Fy D �y

r
� F D �G � M �m

r2
� y

r
D �G

M �m
r3

y

Die auf den Flugkörper m einwirkenden Kraftkomponenten haben die entgegen gesetzte
Richtung zur Positivdefinition von x und y, sie sind daher negativ, vgl. Abb. 2.210.

Für das Objekt lauten die Bewegungsgleichungen:

Fx D m � ax; Fy D m � ay

ax und ay sind die Beschleunigungskomponenten in Richtung x und y. vx und vy sind die
Geschwindigkeits- und x und y die Bahnkomponenten.

Alle Bewegungsstücke sind Funktionen der Zeit t ; zusammengefasst:

x D x.t/; y D y.t/I
vx D vx.t/; vy D vy.t/I
ax D ax.t/; ay D ay.t/

Der Abstand, also der Radiusvektor zwischen den Mittelpunkten der beiden beteiligten Kör-
per mit den Massen M und m ist ebenfalls eine Funktion der Zeit:

r D r.t/ D
p

x2.t/C y2.t/

Die kinetischen Gleichgewichtsgleichungen im Bahnpunkt x, y zum Zeitpunkt t lauten:

�G
M �m

r3
x �m � ax D 0 ! ax CG

M

r3
x D 0 ! d2x

dt2
CG � M

r3
� x D 0

�G
M �m

r3
y �m � ay D 0 ! ay CG

M

r3
y D 0 ! d2y

dt2
CG � M

r3
� y D 0

Über r D r.t/ sind die beiden Differentialgleichungen miteinander gekoppelt; ausgeschrie-
ben lautet das Differentialgleichungssystem:

d2x

dt2
CGM � x

.x2 C y2/1=2
D 0;

d2y

dt2
CGM � y

.x2 C y2/1=2
D 0
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Eine analytische Lösung dieses gekoppelten Gleichungssystems ist schwierig; man spricht
vom Zweikörperproblem. Das Problem zählt zu den sehr frühzeitig behandelten Aufgaben
der Himmelsmechanik. – Zum Zwecke der numerischen Lösung werden die Beschleuni-
gungskomponenten im Zeitpunkt t durch die im 4. Beispiel hergeleiteten Formeln ersetzt.
Das bedeutet: Die Differentialgleichungen werden in Differenzengleichungen überführt:

1

.�t/2
.xiC1 � 2xi C xi�1/CGM � xi

r3
i

D 0 ! xiC1 D
�
2 � GM

r3
i

.�t/2

�
� xi � xi�1

1

.�t/2
.yiC1 � 2yi C yi�1/CGM � yi

r3
i

D 0 ! yiC1 D
�
2 � GM

r3
i

.�t/2

�
� yi � yi�1

r3
i D .x2

i C y2
i /3=2

Im Startpunkt 0 sind x0; y0 und vx0; vy0 gegeben. Für den ersten Zeitschritt von 0 bis 1 wird
modifiziert gerechnet:

x1 D x0 C v0x ��t; y1 D y0 C v0y ��t

Im Zeitpunkt 1 sind damit die Bahnwerte bekannt. Da auch die Werte für Punkt 0 bekannt
sind, kann mittels obiger Formeln von Bahnpunkt 1 auf Punkt 2 geschlossen (extrapoliert)
werden, weiter von 2 auf 3, von 3 auf 4 und so fortlaufend, was sich unschwer programmie-
ren lässt.

Zahlenbeispiel
Die Rakete starte von der Erdoberfläche im Punkt 0 mit den Koordinaten: x0 D y0 D
4;50 � 106 m (r0 D 6;370 � 106 m, Radius des Erdkörpers) und den Geschwindigkeitskom-
ponenten vx0 D 750m=s und vy0 D 1300m=s. Bezogen auf das Koordinatensystem gemäß
Abb. 2.210 berechnet sich ˛ aus tan ˛ D vy0=vx0 zu ˛ D 60ı. Nach Programmierung des
Algorithmus liefert die Zahlenrechnung das in Abb. 2.211a wieder gegebene Ergebnis. Of-
fensichtlich kehrt der Flugkörper nach einer gewissen Flugdauer um und schlägt später auf

Abb. 2.211
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der Erde wieder auf. Berechnungen mit den unterschiedlichen Zeitschrittweiten �t D 1 s,
2 s und 5 s liefern praktisch identische Ergebnisse.

Die Fluchtgeschwindigkeit von der Erde beträgt mit den im Zahlenbeispiel angesetzten
Werten (M D 5;9 �1024 kg, R D 6;370 �106 m): vFlucht D 11:200m=s. Abb. 2.211b zeigt den
Bahnverlauf für fünf unterhalb der Fluchtgeschwindigkeit liegende Startgeschwindigkeiten
v0, jeweils mit einem Startwinkel ˛ D 60ı. Bezogen auf die an den Startpunkt angelegte
Tangente ist das ein Winkel von 45ı C 60ı D 105ı. Wie erkennbar, unterscheiden sich die
Auftreffpunkte nur wenig voneinander.

Inzwischen hat sich sehr viel ‚Weltraummüll‘ aus ausgebrannten Raketen- und
anderen Trümmerteilen, sowie aus inaktiven Satelliten, angesammelt. Ca. 20.000
große Teile werden von der Erde aus verfolgt, von insgesamt 300 Millionen Teilen
bis herab in den mm-Bereich! Es wird daran geforscht, den Müll zu entsorgen,
indem er gezielt eingefangen und in einen Absturzorbit überführt wird.

2.8.10 Sonnensystem

2.8.10.1 Sonne und Planeten (Wandelsterne)
Bezogen auf das Alter des Universums mit 13;82 � 109 Jahren ist das Sonnensys-
tem mit 4;56 �109 Jahren vergleichsweise jung. Das Sonnensystem liegt ca. 26.000
Lichtjahre (Lj) vom Zentrum der Galaxis (der Milchstraße) entfernt, also an deren
Rand. Das System ist aus einer riesigen, wohl 50 bis 100Lj umfassenden Wolke
verwirbelten molekularen Gases und Staubes, dem solaren Urnebel, entstanden.
Der Staub stammte aus den mineralischen und metallischen Partikelresten einer
oder mehrerer vorangegangener Sternexplosionen (Supernovae). Durch gravitati-
ve Wirkung bündelte sich im Zentrum der Wolke vorrangig Wasserstoffgas als
leichtestes Element zu einem gewaltigen kugelförmigen Körper, der Sonne. Infol-
ge des mit der Tiefe ins Sonneninnere anwachsenden hohen Drucks und der damit
einhergehenden hohen Temperatur fusionierten irgendwann zwei Wasserstoffkerne
zu einem Heliumkern. Anschließend setzte die Kernfusion kaskadenartig ein, die
Kernfusion war gezündet. Das war die Geburtsstunde unserer Sonne, eines neuen
Sterns. Anfangs setzte sich das Material der Sonne aus 82%Wasserstoff (H), 17%
Helium (He) und zu 1% aus anderen Spurengasen zusammen. Inzwischen besteht
das Sonnenplasma aus 73%H, 25%He und 2% schwereren Elementen, u. a. Koh-
lenstoff. Pro Sekunde fusioniert in der Sonne eine Masse von ca. 4;26 �109 kg (4,26
Milliarden Kilogramm) Wasserstoff und wird als Energie abgestrahlt (Bd. IV, Ab-
schn. 1.2.5.1). Als Kernbrennstoff reicht der vorhandene Wasserstoffvorrat wohl
noch für weitere 4;5 � 109 Jahre. Wenn dieser aufgezehrt sein wird, wird sich die
Sonne (sie ist ein Stern der Größe G2V) zu einem ‚Roten Riesen‘ aufblähen und
dabei die Bahn von Merkur und Venus, gar jene der Erde, erreichen. Schließlich
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Abb. 2.212

wird sie, nachdem sie ihre gewaltige materielle Hülle schichtenweise abgestoßen
hat, zu einem ‚Weißen Zwerg‘ schrumpfen und irgendwann nach weiterer Abküh-
lung verlöschen (Bd. III, Abschn. 3.9.8.4 und 3.9.8.5).

Abb. 2.212 zeigt die Sonne in schematischer Darstellung. Im Zentrum liegt der
Kern, die Temperatur beträgt hier ca. 15 � 106 K. Dem Kern schließen sich die
Strahlungs- und Konvektionszone an. In der Strahlungszone erreicht die Tempe-
ratur ca. 2 � 106 K. Zum Rand hin folgt die Photosphäre (nur 400 km mächtig).
Sie hat eine körnige Oberfläche in Form von etwa rechteckiger Granularen, quasi
‚blubbernden‘ Gasballen. Die Temperatur beträgt hier 5770K. Aus dieser Schicht
dringt die elektromagnetische Strahlung (vorrangig sichtbares Licht) aus, welche
die Chromosphäre anschließend passiert. Letztere ist mit 12.000km mächtiger als
die Photosphäre. Ihre Dichte ist gering, sie geht in die Korona über.

Bedingt durch die unterschiedliche Rotation der inneren Schichten zueinander
und die hiermit verbundene Reibung baut sich im Sonnenkörper ein gewaltiges
Magnetfeld mit wechselnder Polung auf. Durch dessen Kräfte wird heißes solares
Plasma aus der Sonne heraus geschleudert, man spricht von Protuberanzen. Sie
erreichen Höhen bis 100.000km, gelegentlich noch höher aufsteigend. Die Form
der filamentartigen Protuberanzen ist überwiegend schleifenartig.

Auch die Sonnenflecken (um 500 bis 1000K kühler) mit einer Ausdehnung bis
10.000km beruhen auf der Wirkung des solaren Magnetfeldes. Sie treten in elf-
jährigem Rhythmus verstärkt auf, ebenso, damit in Verbindung stehend, die sogen.
Flares mit verstärkter UV- und Röntgenstrahlung, sowie die koronalen Massen-
auswürfe (CMEs). Das sind solare Eruptionen. Sie dauern wenige Minuten bis
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zu Stunden. Die hierbei ausgestoßene Materie durchdringt mit hoher Geschwin-
digkeit (3 � 106 km=h) als Sonnensturm (Sonnenwind) das ganze Sonnensystem.
Auf der Erde wird der Sonnenwind durch die Erdatmosphäre weitgehend abgefan-
gen, nur in seltenen Fällen erreichen die Materieteilchen die Oberfläche der Erde.
Dann kann es zu Störungen der Strom- und Funktechnik kommen, in seltenen Fäl-
len zu Zerstörungen (01.09.1859, 13.03.1989). – In den nördlichen und südlichen
Polregionen löst der Sonnenwind durch Wechselwirkung mit dem Magnetfeld Po-
larlichter in der Hochatmosphäre aus (Bd. III, Abschn. 3.7).

Die Sonne wird von einem Strahlenkranz ionisierten Gases umhüllt und das in
einer Mächtigkeit, die ihrem Radius entspricht, es ist die sogen. Korona. Sie ist
von sehr geringer Dichte, ihre Temperatur beträgt wohl 1 �106 K und mehr. Nur bei
totaler Sonnenfinsternis wird sie von der Erde aus sichtbar.

Die Sonne ist ein Stern des Spektraltyps G2V mit folgenden Merkmalen:

� Radius 6;96 � 108 m (¶ 109 Erdradien),
� Masse 1;99 � 1030 kg (¶ 333.000 Erdmassen), die Masse der Sonne umfasst ca.

99,3% der Masse des gesamten Sonnensystems,
� Mittlere Dichte 1409 kg=m3 (¶ 25,5% mittlere Erddichte), die Dichte im Son-

nenkörper ist extrem unterschiedlich, innen 100:000kg=m3, außen 10 kg=m3,
� Periode der Eigenrotation ca. 25 Tage am Äquator und ca. 34 Tage an den Polen,
� Geschwindigkeit der Sonne in Richtung auf das Sternbild Herkules (einschließ-

lich des gesamten Sonnensystems) ca. 20 km=s. Die Umlaufgeschwindigkeit
des Sonnensystems um das Zentrum der Galaxis beträgt rund 220 km=s und die
Umlaufzeit 2;25 � 108 Jahre, man spricht vom ‚Kosmischen Jahr‘.

Wie ausgeführt, formte sich das Sonnensystem einst aus einer rotierenden Mate-
riescheibe gewaltigen Ausmaßes. Die Rotationsenergie hatte das Gesamtsystem
von vorangegangenen Supernovae bezogen, aus deren Materie sich das Ganze bil-
dete, insbesondere die Sonnenmasse im Zentrum der Scheibe. Das Gesetz von der
Erhaltung des Drehimpulses verlangt, dass die Rotation über alle Zeiten aufrecht-
erhalten bleibt.

Außerhalb der Sonne verklumpten die harten Partikel innerhalb der Scheibe
zu Flocken, zu Brocken, zu Blöcken und schließlich zu steinigen Planetesimalen,
die sich zu Planeten gravitativ ballten. Am Ort ihrer Bildung hatten die Planeten
jene Geschwindigkeit, die eine stabile Umlaufbahn sicherte, die demgemäß mit
den Grundgesetzen der Mechanik, in diesem Falle mit den Kepler’schen Gesetzen,
korrespondierte.

Zunächst bildeten sich in relativ kurzer Zeit (in ca. 10 � 106 Jahren) in größerer
Entfernung von der Sonne die Gasplaneten Jupiter, Saturn, Uranus und Neptun.
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Abb. 2.213

Sie haben einen festen Kern aus Gestein und Eis. Später entstanden in einem
vergleichsweise langen Zeitraum (in ca. 100 bis 300 � 106 Jahren) die sogen. ter-
restrischen Planeten Merkur, Venus, Erde und Mars. Sie bestehen vorrangig aus
mineralischer und metallischer Materie, umgeben von einer dünnen gasförmigen
Atmosphäre (Merkur trägt keine).

Während der Entstehungsphase wurden die planetarischen Körper durch die
Kollisionsenergie der einschlagenden Materie glutflüssig erhitzt, die schwereren
Metalle, vorrangig Eisen und Nickel, sanken in den Kernbereich ab, die leichteren
Mineralien verblieben im Randbereich. Auf diese Weise hat sich auch die Erde in
ihre unterschiedlichen Kern- und Krustenschalen ausdifferenziert.

Zwischen den inneren und äußeren Planetensystemen bewegt sich innerhalb
einer kreisringförmigen Scheibe eine riesige Anzahl von Planetoiden (Asteroiden)
unterschiedlicher Form und Größe.

Außerhalb des Neptuns kreisen weitere Kleinplaneten, eingebettet in einen gi-
gantischen Materiestrom, dem sogenannten Kuiper-Gürtel (man spricht in dem
Falle von Transneptun-Objekten (TNO)). Nochmals entfernter kreisen in der das
Sonnensystem allseits umgebenden Oort’schen Wolke weitere Körper bei tiefster
Temperatur. Aus den genannten Bereichen stammen viele der gelegentlich bis ins
Innere des Sonnensystems eindringenden Kometen.

Abb. 2.213 zeigt den Aufbau des Planetensystems. In der Tabelle der Abb. 2.214
sind die wichtigsten Kenndaten der acht Planeten des Sonnensystems (bezogen
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Abb. 2.214

auf die Erde) zusammengefasst. Die drei Kleinplaneten Ceres, Pluto und Eris sind
in der Tabelle mit aufgenommen. Ceres bewegt sich innerhalb des Planetoiden-
Gürtels. Pluto (einschließlich seiner fünf Monde) und Eris umkreisen die Sonne in
eisiger Entfernung im Kuipergürtel. Pluto wurde ehemals zu den Planeten gezählt.
Im Jahre 2006 wurde ihm von der IAU (Internationale Astronomische Union) der
Status eines Planeten aberkannt, zu gering sei seine Größe, zu exzentrisch seine
Bahnebene. Im Jahre 2015 konnte die Raumsonde ‚New Horizons‘ Pluto im Vor-
beiflug vermessen, anschließend soll sie den Kuipergürtel weiter erkunden.

Die Astronomie wird in vielen Büchern abgehandelt, überwiegend mit farbi-
gem Bildmaterial und interessanten Details, auch zur Geschichte der Disziplin.
Die Himmelskunde hat die Menschen seit alters her fasziniert. Zur Vertiefung sei
auf die Zeitschrift Sterne und Weltraum verwiesen und zwecks eines anspruchs-
volleren Einstiegs auf die bereits zitierte Literatur [53–60] und auf [65]. Die Sonne
selbst ist ein faszinierender Stern [66, 67].

2.8.10.2 Stellung der Planeten – synodische/siderische Zeit
Wie ausgeführt, werden die um die Sonne kreisenden kugelförmigen Himmelskör-
per als Planeten bezeichnet. Sie bewegen sich näherungsweise in einer gemein-
samen Ebene auf elliptischen Bahnen. Als Bezugsebene dient die Bahnebene der
Erde um die Sonne, man nennt sie ekliptikale Ebene und ihre Randlinie am Him-
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Abb. 2.215

mel Ekliptik. Gegenüber dieser Ebene weisen die anderen Planetenbahnen eine
mehr oder minder großeWinkel-Neigung (Inklination) auf (vgl. Abb. 2.214). – Die
Planeten werden bezüglich ihrer Stellung zur Erde in innere und äußere und be-
züglich ihres Aufbaues als untere und obere bezeichnet. Die inneren Planeten sind
Merkur und Venus und die unteren die erdähnlichen Planeten Merkur bis Mars. –
Abb. 2.215 enthält Benennungen zur Kennzeichnung der Planetenstellungen.

In den jährlich erscheinenden astronomischen Jahrbüchern sind die monatli-
chen Planetenstellungen vor dem Himmelshintergrund und den im Laufe des Jah-
res entlang der Ekliptik wechselnden Tierkreiszeichen ausgewiesen.

Die unteren (erdähnlichen) Planeten umschließen keine Materie-Ringe, wohl
alle oberen. Letztere werden von vergleichsweise vielen Monden umkreist (Ab-
schn. 2.8.10.8).

Abb. 2.216a zeigt, wie die inneren Planeten von der Erde aus vor dem Fix-
sternhimmel erscheinen, sie stehen entweder in unterer oder oberer Konjunktion in
Bezug zur Erde.

Bei den äußeren Planeten sind Konjunktion und Opposition markante Stellun-
gen (Teilabbildung b). Aus den Abbildungen wird deutlich, wann die Planeten
von der Erde aus gut, mäßig oder nicht sichtbar sind. Merkur ist wegen seiner
Sonnennähe stets nur kurz zu sehen, Venus dagegen als Abend- und Morgenstern
überwiegend in schönem Glanz, Mars in Opposition um Mitternacht als kleiner
Stern in rötlichem Licht. – Die inneren Planeten kreisen schneller als die Erde,
die äußeren langsamer. Abb. 2.216c zeigt als Beispiel die wechselnde scheinbare
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Abb. 2.216

Abb. 2.217

Größe und Helligkeit der Planeten im Laufe eines Jahres, was durch den unter-
schiedlichen Abstand zwischen ihnen und der Erde im Jahreslauf bedingt ist. (Die
gelegentlich von der Erde aus zu beobachtende mutmaßliche Rückbewegung der
äußeren Planeten in Form einer Schleife vor dem Himmelshintergrund wurde be-
reits in Verbindung mit Abb. 2.182 erklärt, vgl. auch Abb. 2.216b.)

Ein wichtiger Parameter jeder Planeten- und Mondbahn ist die Umlaufzeit, sie
wird auch als Periode bezeichnet. – Als Beispiel werde die Umlaufzeit des Planeten
Mars um die Sonne betrachtet. Mars gehört zu den äußeren Planeten. Abb. 2.217
zeigt seine Umlaufbahn und jene der Erde. Die Umlaufperiode der Erde beträgt:
TErde D 365;25636 d, dD Erdentag.

Die Oppositionsstellung von Mars und Erde sei für die folgende Betrachtung
die Bezugsposition. In diesem Falle liegen Sonne, Erde und Mars auf einer Ge-
raden. Vollendet der Mars einen vollen Umlauf, erscheint er, von der Sonne aus
gesehen, exakt an derselben Stelle am Fixsternhimmel. Die Dauer dieses Umlaufs
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bezeichnet man als seine siderische Periode, sie kennzeichnet den wahren Umlauf
des Planten, hier: TMars;sid:.

Mars bewegt sich langsamer als die Erde, seine siderische Periode dauert mehr
als zweimal so lange wie die Erdumlaufbahn, sie beträgt: TMars;sid: D 686;98 d. Für
Mars und Erde folgen die Winkelgeschwindigkeiten (! D v=r D 2�=T ) aus:

!Erde D 2�

TErde
I !Mars D 2�

TMars;sid:

Abb. 2.217 zeigt neben der ersten auch die nachfolgende Oppositionsstellung der
beiden Planten. Bei dieser hat sich Mars einmal um die Sonne und darüber hinaus
noch ein gewisses Stück weiter bewegt. Die Zeit, die der Planet für diese Strecke
benötigt, also von Opposition bis zur nächsten Opposition, bezeichnet man als
seine synodische Periode, sie ist die auf die Erde bezogene Umlaufzeit. Die Erde
benötigt bis zum Erreichen dieser Stellung einen zusätzlichen Umlauf, anders stellt
sich die erneute Opposition nicht ein. Der von Mars überstrichene Winkel bis zum
Erreichen dieser ins Auge gefassten Stellung ist seine Winkelgeschwindigkeit mal
seiner synodischen Periode. Für die Erde gilt das Analoge, ergänzt um den Winkel
2� (vgl. Abb. 2.217):

!Mars � TMars;syn: D 2� C !Erde � TMars;syn:

Setzt man obige Ausdrücke in die Gleichung ein, folgt nach Umformung:

1

TMars;syn:

D 1

TErde
� 1

TMars;sid:

In Zahlen ergibt sich für den Planeten Mars mit TMars;sid: D 686;98 d:

1

TMars;syn:
D 1

365;25636d
� 1

686;98 d
D 1

779;94 d
! TMars;syn: D 779;94 d

Für die beiden inneren Planeten gilt eine modifizierte Formel.
Da sich die Planeten nicht auf einer Kreis- sondern auf einer Ellipsenbahn be-

wegen, haben die diskutierten Umlaufzeiten die Bedeutung von mittleren Perioden.
Auch für die Umrundung eines Mondes um seinen Planeten interessiert die

Fragestellung. Sie werde am Beispiel des Erdmondes geklärt: Abb. 2.218 zeigt
den Umlauf der Erde um die Sonne und gleichzeitig den Umlauf des Mondes um
die Erde und das für zwei unterschiedliche Zeitpunkte bzw. Mondstellungen.

Die dargestellten Stellungen unterscheiden sich um die Dauer einer vollständi-
gen Umkreisung desMondes um die Erde: Stellungen 1 und 2. In diesen Stellungen
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Abb. 2.218

erscheint der Mond von der Erde aus jeweils exakt als Halbmond. Diese Zeit
zwischen zwei gleichen Mondphasen bezeichnet man als synodische Periode des
Mondes: TMond;syn:. Sie lässt sich exakt von der Erde aus messen. Die hierbei vom
Mond überstrichene Bahnlänge ist etwas länger als es der vollen Umkreisung der
Erde um 360° entspricht. Bei seiner Umkreisung der Erde um 360° würde ein Fix-
stern vomMond aus gesehen mit einer festen Visiereinrichtung wieder an derselbe
Stelle erscheinen. Das wäre seine siderische Periode: TMond;sid:. Die synodische
Periode dauert länger als die siderische. Die Perioden sind über die Formel

1

TMond;sid:

D 1

TErde
C 1

TMond;syn:

miteinander verknüpft. In Zahlen folgt für TMond;syn: D 29;53059d:

1

TMond;sid:

D 1

365;25636d
C 1

29;53059 d
D 1

27;32166d

! TMond;sid: D 27;32166d

Erwähnt sei an dieser Stelle die sogen. Titius-Bode-Formel. Sie besagt, dass der
mittlere Abstand der Planeten von der Sonne (in Astronomischen Einheiten, AE)
in Annäherung der Formel

rn D 0;4C 0;3 � 2n

gehorcht (aufgedeckt wurde sie von D. TITIUS (1729–1796) und E. BODE (1747–
1826)). Für den Exponenten n ist zu setzen: Merkur: n D �1, Venus: n D 0,
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Abb. 2.219

Erde: n D 1, Mars: n D 2, Planetoiden: n D 3, Jupiter: n D 4, usf. Die Abwei-
chungen liegen im Wenige-Prozent-Bereich. Beim Neptun liegt die Abweichung
allerdings bei 27%. Auch für den Planetoidengürtel ist die Formel zu ungenau.
Ein inneres Naturgesetz, das der Formel zugrunde liegen könnte, ist nicht bekannt.

2.8.10.3 Merkur
Abb. 2.219 zeigt die Bahnen von Erde undMerkur um die Sonne, einschließlich ih-
rer Perihel- und Aphelstellungen (A und P) in Verbindung mit den kalendarischen
Erddaten. – Die mittlere Dichte des Merkur ist etwas geringer als jene der Erde,
was auf einen vergleichbaren Aufbau mit einem Eisen-Nickel-Kern schließen lässt,
er erfasst wohl ca. 3=4 des Durchmessers (Abb. 2.220). Das Magnetfeld ist den-
noch schwach, was vermutlich auf der langsamen Rotation des Planeten beruht.
Dadurch werden nur geringe gegenseitige Schiebungen und Reibungen innerhalb
des Eisenkerns induziert.

Wegen der Nähe zur Sonne und ihrer starken gravitativen Wirkung einerseits
und des von der Sonne ausgehenden starken Sonnenwindes andererseits, konnte
sich auf dem Planeten keine gasförmige Atmosphäre bilden bzw. halten. Dieser
Umstand hat extreme Temperaturunterschiede zwischen Tag und Nacht zur Folge.
Das beruht auch auf der bereits erwähnten sehr langen Rotationsperiode, sie dauert
58,6 Erdentage und der Umlauf um die Sonne 88 Erdentage. Das gemeinsam hat
zur Folge, dass, bezogen auf die Sonne, ein Sonnentag auf dem Planeten 1;98 � 2

Merkurjahre dauert!
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Abb. 2.220

Da jeglicher Wind fehlt, gibt es auf dem Planeten seit seiner Entstehung kei-
ne Erosion. Die krustige, wüstenartige und relativ flache Oberfläche ist sehr alt
und übersät mit Einschlagkratern aller Größenordnungen, der größte weist einen
Durchmesser von ca. 1550 km auf, es ist das Carolis-Becken.

2.8.10.4 Venus
Die Venusbahn verläuft fast kreisförmig. Die Entfernung bis zur Sonne beträgt ca.
0,7AE. Der Planet hat mit einem Durchmesser von 12.104km nahezu die Größe
der Erde.

Seine mittlere Dichte beträgt 5250 kg=m3, das sind 95% der Erddichte. Der
Durchmesser des Eisenkerns wird zu 6000 km geschätzt.

Je nach Stellung in Bezug zur Erde erscheint der Planet von der Erde aus als
eine Sichel mit einem Abstand von 42 � 106 km oder als kleine runde Scheibe mit
einem Abstand von 258 � 106 km von der Erde, vgl. Abb. 2.221.

Gegenüber der Erde weist der Planet einige Besonderheiten auf:

� Die Rotation um die eigene Achse ist gegenläufig zum Drehsinn der Bahn um
die Sonne, man nennt eine solche Rotation retrograd. Die Dauer eines Um-

Abb. 2.221
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laufs um die Sonne beträgt 225 Erdentage, die Dauer einer Rotation um die
eigene Achse 243 Erdentage. Das bedeutet: Der Venustag dauert länger als ein
Venusjahr! Als Folge dieser extrem langsamen Rotation stellen sich, wie beim
Merkur, nur geringe gegenseitige Bewegungen innerhalb des flüssigen Eisen-
kerns ein, was auch in diesem Falle das schwache magnetische Feld erklärt.

� Auf der Oberfläche lastet eine ca. 100 km mächtige sehr dichte Gashülle aus
96% Kohlendioxid (auf der Erde sind es 0,03%) und 3,5% Stickstoff sowie
Spuren von Argon. Am Boden herrscht ein Druck von 90 bar, das ist das 90-
fache des atmosphärischen Drucks auf Erden in Höhe des Meeresspiegels.
Druck und Dichte sind innerhalb der Venusatmosphäre unterschiedlich gestaf-
felt, das gilt auch für die Strömungsverhältnisse mit zum Teil extrem heftigen
Stürmen in unterschiedlichen Höhen.

� Die Oberfläche der Venus ist von außen nicht einsehbar. Dank der vielen, seit
1966 durchgeführten Raummissionen ist der Planet inzwischen umfassend kar-
tiert. Die Oberfläche zeigt mehr als 1000 Vulkane, auch ausgedehnte Lavaflüsse
und -becken. Die Vulkane sind überwiegend aktiv. Der Venusmantel ist glühend
heiß, ebenso die unteren Schichten der Gashülle, wohl bis max. 500 °C! Das hat
zur Folge, dass die Temperaturunterschiede auf der Venustag- und Venusnacht-
seite vergleichsweise gering sind, obwohl die Eigenrotation so lange dauert und
obwohl nur 2% des Sonnenlichts die Venusoberfläche erreicht. Die Gashülle
wirkt wie eine Isolierung, wie ein ‚Treibhaus‘. Lebensformen, wie auf der Er-
de, konnten sich auf dem Planten nicht entwickeln. Wasser ist nur in geringstem
Umfang vorhanden und das in Form von Schwefelsäuretröpfchen.

2.8.10.5 Erde
Von der Sonne aus gesehen, ist die Erde der dritte Planet. Die Erde zu erforschen
ist Aufgabe der Geowissenschaften.

Die Bahn der Erde um die Sonne ist nahezu kreisförmig (" D 0;01674). Größter
und kleinster Abstand von der Sonne unterscheiden sich nur geringfügig: 1;471 �
1011 m (Perihel, sonnennächste Stellung am 2. Januar), 1;521 � 1011 m (Aphel, son-
nenfernste Stellung am 5. Juli). Der mittlere Abstand ist mit 1;495979 � 1011 m
als Astronomische Einheit (AE) vereinbart – Die Geschwindigkeit auf der Bahn
um die Sonne beträgt im Mittel 29;8 km=s D 107:219km=h. – Das Jahr dauert
365,25636 Tage. – Die siderische Rotationsperiode um die eigene Achse dauert
23 h 56min 4,099 s und die synodische (gegenüber der Sonne) 24 h (24 Stunden,
24 � 60 � 60 D 86:400 Sekunden). – Umlaufbahn und Rotation weisen denselben
Drehsinn auf, vgl. Abb. 2.222.

Gegenüber der ekliptikalen Ebene ist die Rotationsachse um 66,55° geneigt.
Lage und Richtung der Drehachse bleiben bei der Umrundung der Sonne unver-
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Abb. 2.222

ändert. Dadurch ist der Sonneneinfall auf der Erdoberfläche im Laufe des Jahres
unterschiedlich. Auf diesem Umstand beruhen die Jahreszeiten.

Aus Abb. 2.222 gehen alle weiteren Einzelheiten hervor: Pole, Polarkreise,
Wendekreise und Äquator. Ab 21. Juni geht polseits des nördlichen Polarkreises
die Sonne nicht mehr unter, polseits des südlichen Polarkreises nicht mehr auf
(˙66;55ı Breite). Das Entsprechende gilt umgekehrt ab 21. Dezember. Am 21.
März bzw. 23. September sind Tag und Nacht gleich lang (Tag- und Nachtgleiche).

Der Form nach ist die Erde ein abgeplattetes Rotationsellipsoid, die Abplattung
beträgt:

f D 6376;137� 6356;752

6378;137
D 0;00335 D 1

298;253



2.8 Astronomie I: Himmelsmechanik – Sonne, Planeten, Monde und Kometen 337

Diese Ausformung beruht auf der von der Erdrotation ausgehenden zentrifuga-
len Beschleunigung, sie ist in der Äquatorebene am größten. Man bezeichnet die
Erdform als Geoid. Der Erdkörper ist gegenüber einem idealen Rotationsellipso-
id nochmals unregelmäßiger (‚kartoffelartig‘) geformt. Das beruht auf der Dichte-
bzw. Masseinhomogenität innerhalb des mehrschaligen Erdaufbaues. – Die Erde
gliedert sich wie folgt von innen nach außen: Innerer fester Eisen-Nickel-Kern
(Radius 1230 km), flüssiger Eisen-Nickel-Mantel (2260 km dick), innerer (visko-
ser) und äußerer (fester) Silikat-Mantel (insgesamt ca. 2900 km dick). Die Dicke
der Erdkruste selbst ist gering, die ozeanische Kruste zwischen 8 bis 10 km, jene
unter dem Festland bis 50 km dick. Die feste (spröde) Kruste besteht vorrangig aus
basischen und sauren Silikaten (vgl. hier Bd. IV, Abschn. 2.4.2.2)

Das magnetische Feld beruht auf den gegenseitigen Materialverschiebungen in-
nerhalb der metallisch-flüssigen Kernschale. Da die Erde relativ schnell rotiert, hat
das einen vergleichsweise starken Magnetismus zur Folge. Die magnetische Feld-
stärke klingt außerhalb des Erdkörpers rasch ab (Bd. III, Abschn. 1.4.1). Ohne das
Magnetfeld hätte sich wohl Leben auf Erden nicht entwickeln können, es verhin-
dert das Eindringen der Partikel des Sonnenwindes bis zur Erdoberfläche.

Während die Atmosphäre auf den Nachbarplaneten Venus und Mars vorrangig
aus CO2 besteht (auf dem Mars nur in sehr geringer Dichte), ist hiervon auf der
Erde nur wenig vorhanden, auf der Erde dominieren bis etwa 100 km Höhe Stick-
stoff (N2, 78%), Sauerstoff (O2, 21%) und 1% Edelgase. Der Höhe nach weist
die Erdatmosphäre einen wechselnden Schichtenaufbau mit stark veränderlichen
Druck- und Temperaturverhältnissen auf (vgl. Bd. III, Abschn. 2.7.4).

Eine Besonderheit des Erdkörpers ist seine Präzession. Hierunter versteht man
die zeitveränderliche Verlagerung der Rotationsachse entlang des Außenmantels
eines (virtuellen) Kegels, dessen Spitze im Erdschwerpunkt ruht. Abb. 2.223a zeigt
die Schwenkung der Drehachse und den zugehörigen Drehsinn. Die Umlaufzeit
dieser kreiselnden Bewegung beträgt 25.750 Jahre (‚Platonisches Jahr‘). In die-
sem Zeitraum durchmisst der Nordpol am nördlichen Sternenhimmel einen Kreis
(der Südpol einen entsprechenden). Abb. 2.223b zeigt die Kreisbahn des Nord-
pols am Himmel, beginnend im Jahre 2000 v.Chr. über 0 (Chr. Geb.) bis 2000
n.Chr. (heute) und so fort. Die Abbildung zeigt die Konstellation der Sterne auf
dem Himmelsgewölbe, welche die Erdbewohner während eines Platonischen Jah-
res in Richtung der Rotationsachse sehen.

Die Präzession hat ihre Ursache in dem in der Äquatorebene liegenden Wulst,
der durch die Zentripetalbeschleunigung hervor gerufenen wird. DerWulst hat eine
Dicke (eine Überwölbung) von ca. 20 km. Er liegt nicht in der Bahnebene, ist also
nicht zur Sonne hin gerichtet (Abb. 2.224a). Der der Sonne zugewandte Teil des
Wulstes unterliegt einer stärkeren Anziehung als der von ihr abgewandte. Dadurch
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Abb. 2.223

Abb. 2.224
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besteht die Tendenz, die Erdachse aufzurichten, wie in Abb. 2.224b, c schematisch
angedeutet. Der der Erde innewohnende Drehimpuls um die Rotationsachse wirkt
dem entgegen. Die Erdachse weicht dem eingeprägten Kippmoment aus. Die Er-
de verhält sich wie ein Kreisel. – Auch der Mond ist an der Präzession beteiligt,
seine Bahnebene fällt nicht genau mit der äquatorialen zusammen. Gegenüber der
ekliptikalen ist seine Bahnebene unter demWinkel 5,15° geneigt. Man spricht von
lunisolarer Präzession.

Der Einfluss der übrigen Planeten auf die Erdbahn (planetare Präzession) ist
verschwindend gering, wohl bewirkt deren Gravitation eine schwache langfristige
Verlagerung der ekliptikalen Ebene.

Da sich bei der Umrundung der Sonne nicht der Erdmittelpunkt auf der el-
liptischen Bahn bewegt sondern der gemeinsame Schwerpunkt des Erde-Mond-
Systems, liegt der Schwerpunkt des Mondes im Laufe eines Mondumlaufs einmal
der Sonne näher (Neumond) und einmal der Sonne ferner (Vollmond). Dieser Um-
stand bewirkt ein weiteres geringes Kippen der Erdachse. Das macht sich in einer
kurzperiodischen Schwankung der Erdachse bemerkbar (Periode: 18,6 Jahre). Man
nennt dieses Phänomen Nutation. – Schließlich verändern sich der Neigungswin-
kel der Erdachse im Zyklus von ca. 41.000 Jahren und die Bahnexzentrizität im
Zyklus von ca. 110.000 Jahren. – Mit alledem sind bei gleichbleibender Sonnen-
einstrahlung, kontinuierliche Schwankungen des Erdklimas verbunden: Kalt- und
Warmzeiten wechseln sich in kurz- und langfristig überlagernden Zyklen ab und
das mit unterschiedlicher Intensität innerhalb der verschiedenen Regionen der Er-
de, ein kompliziertes Geschehen mit erheblichen Auswirkungen auf das Klima und
die irdischen Lebensbedingungen (Bd. V, Abschn. 1.2.7).

2.8.10.6 Erdmond – Sonnen- undMondfinsternis – Gezeiten
Der Mond ist ein vergleichsweise großer Trabant. Man spricht beim Erde-Mond-
System daher auch von einem Doppelplaneten. – Die Exzentrizität ist mit " D
0;0549 sehr gering, das bedeutet, die Mondbahn um die Erde ist nahezu kreis-
förmig. Der Mond bewegt sich auf seiner Bahn mit 1,023 km=s. Die siderische
Umlaufzeit um die Erde dauert 27 d 7 h 43,7minD 27,32166d, die synodische ca.
2 1

2
Tage länger (vgl. oben). –
Rotationssinn und Umlaufsinn stimmen beim Mond überein, ihre Dauer ist

gleichlang! Das bedeutet: Der Mond dreht sich während der Umrundung der Er-
de exakt einmal um seine eigene Achse (man spricht von gebundener Rotation).
Das hat zur Folge, dass der Mond der Erde immer nur seine ‚Vorderseite‘ zukehrt,
die ‚Rückseite‚ ist von der Erde aus nicht einsehbar. (Wegen minimaler Geschwin-
digkeitsschwankungen ist dennoch etwas mehr als die Hälfte zu sehen.) Dank der
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Abb. 2.225

Mondmissionen ist die Oberfläche des Mondes inzwischen im Detail kartiert, auch
seine ‚Rückseite‘.

Die Bahnebene des Mondes stimmt mit jener der Erde weitgehend überein
(Bahnneigung 5,15°). Die unterschiedlichen Mondphasen sind von der Erde aus
gut nachvollziehbar:

Neumond – Halbmond – Vollmond – Halbmond – Neumond (Abb. 2.225).
Nach gewissen Zeiträumen kommt es zu einer Übereinstimmung der Himmels-

körper auf der Linie Sonne-Mond-Erde, dann spricht man von einer Sonnenfins-
ternis (einer partiellen oder totalen, Abb. 2.226a).

Bei einer Übereinstimmung auf der Linie Sonne-Erde-Mond stellt sich eine
Mondfinsternis ein (Abb. 2.226b). Die Zeit, in welcher der Mond im Kernschat-
ten verweilt, beträgt etwa 1,5 Stunden, jene der Finsternis insgesamt ca. 7 Stunden
(Abb. 2.227).

In Abb. 2.228 ist das Entstehen einer Sonnenfinsternis nochmals genauer dar-
gestellt, sie kann nur bei Neumond auftreten: In Teilabbildung a erkennt man den
Bereich der totalen Finsternis auf der Erde im Kernschatten und die beidseitig
liegenden Bereiche der partiellen Finsternis. Die Dauer einer totalen Sonnenfins-
ternis beträgt 7 Minuten und 31 Sekunden. Auf der Erde wird dabei ein Streifen
von 272 km Breite erfasst. In Teilabbildung b ist der bei der Sonnenfinsternis in
Süddeutschland am 11.08.1999 überstrichene Streifen wiedergegeben.

Der Mond besitzt praktisch keine Atmosphäre, die Temperaturunterschiede
zwischen Nacht und Tag sind auf der Mondoberfläche mit �160 °C und C120 °C
sehr hoch. Die Oberfläche ist absolut trocken. Es wird vermutet, dass sich in
größeren Tiefen Spuren von Wasser befinden.
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Abb. 2.226

Abb. 2.227

Bei den bisherigen sechs Missionen wurde der Mond von 12 Menschen betre-
ten. Die erste Mondlandung fand 1969 statt, die fünf weiteren folgten bis 1972, bei
jeder waren 2 Astronauten beteiligt.

Der Trabant ist inzwischen gut erforscht. Dank der mitgebrachten Bodenpro-
ben geht man bezüglich seiner Entstehung von folgendem Szenario aus: Kurz nach
ihrer Ausformung vor ca. 4,53 Milliarden Jahren kollidierte die Erde mit einem in-
stabilen, etwa marsgroßen Asteroiden (man gab ihm den Namen ‚Theia‘). Hierbei
wurde glutzähesMaterial aus beiden Körpern herausgeschleudert, vorrangig silika-
tes aus den oberen Schichten. Aus diesemMaterial bildete sich der Mond auf einer
sehr nahen Umlaufbahn. Im Erdkörper verblieb ein relativ hoher Eisenanteil aus
beiden Körpern. Das könnte erklären, warum der Mond nur einen relativ kleinen
metallischen Kern besitzt: Die mittlere Dichte der Erde beträgt 5515 kg=m3, jene
des Mondes 3343 kg=m3. Im Laufe der Jahrmilliarden wuchs der Abstand zwi-
schen Mond und Erde an, von rund 20.000km zu Anfang auf 384.000km heute,
was u. a. auf demmit der Gezeitenwirkung einhergehenden ‚Verlust‘ an kinetischer
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Abb. 2.228

Energie beruht. In heutiger Zeit nimmt der Abstand zwischen Erde und Mond alle
100 Jahren um ca. 3,8m zu. – Man geht davon aus, dass die Erde ihre außerordent-
lich hohe Bahn- und Rotationsstabilität der Nähe zum Mond und der Rotation um
den gemeinsamen Schwerpunkt zu verdanken hat. Den erdnahen Planeten Venus
und Mars fehlt ein solcher stabilisierender Partner, deren Rotation ist vergleichs-
weise kreiselnd-schlingernd. Ohne die hohe Stabilität ihrer Bahnparameter hätte
die Erde nicht jenes gleichförmige Klima gehabt, das für die Entwicklung der ho-
hen Lebensformen auf Erden notwendig war.

Gegen die oben erläuterte Hypothese, wonach der Mond aus dem Material
der Erde und jenem des seinerzeitigen Kollisionsasteroiden entstanden ist, gibt
es Einwände: In diversen Mondproben wurden dieselben prozentualen Anteile an
Elementen bestimmt, wie sie sich auf der Erde finden. Der Asteroid müsste dem-
nach dieselben Anteile enthalten haben wie auf der Erde, soll doch der Mond aus
beiden entstanden sein, was als eher unwahrscheinlich angesehen wird.

Die Nähe vonMond und Erde und die Rotation um ihren gemeinsamen Schwer-
punkt bewirkt das Gezeiten-Phänomen mit Ebbe und Flut. Um es zu erklären,
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Abb. 2.229

wird zunächst untersucht, welche Kräfte auf eine (Probe-)Masse m an verschie-
denen Orten auf der Erdoberfläche einwirken (etwa m D 1 kg). Der Einfluss des
Mondes werde dabei zunächst nicht einbezogen. Setzt man für die Erde

mErde D mE D 5;974 � 1024 kgI RErde D RE D 6;371 � 106 m (Mittelwert)

an, folgt die gravitative Kraft auf die (Probe-)Masse m zu:

F D G � m �mE

R2
E

D 6;6742 � 10�11 � m � 5;974 � 1024

.6;371 � 106/2
D 9;826 �m:

Die Kraft wirkt in Richtung auf den Erdmittelpunkt (Abb. 2.229a).
Da sich der Abstand zwischen m und der Rotationsachse mit der geographi-

schen Breite ändert, sind die zentripetalen Kräfte auf die Masse m an den ver-
schiedenen Orten auf der Erdoberfläche unterschiedlich groß (Teilabbildung b).
Ausgehend von der Ebene des Erdäquators betragen die Abstände zwischen der
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Rotationsachse und der Erdoberfläche in den einzelnen Breitengraden:

' D 0ıW r D 6;371 � 106 m;

' D 30ıW r D 5;571 � 106 m;

' D 60ıW r D 3;186 � 106 m;

' D 90ıW r D 0m

Bei der Rotation (Dauer einer vollständigen Drehung: 24 StundenD 66.400 s) be-
rechnet sich die Zentripetalkraft

F D m � 4�2 � r
T 2

in Höhe der einzelnen Breiten zu:

' D 0ıW F D 0;0337 �m;

' D 30ıW F D 0;0291 �m;

' D 60ıW F D 0;0168 �m;

' D 90ıW F D 0

Den Verlauf der Kräfte über den Erdumfang zeigt Abb. 2.220b. Sie sind um zwei
Größenordnungen kleiner als die oben ausgewiesene, radial wirkende Gravitati-
onskraft. Die Zentripetalkräfte sind mit den (konstanten) gravitativen Kräften unter
Berücksichtigung der Winkelrichtung vektoriell zu überlagern. Die Wirkung der
zentripetalen Beschleunigung führt, wie ausgeführt, zur Geoidform des Erdkör-
pers, selbstredend einschließlich der Wasseroberfläche der Ozeane.

Den vorstehenden Kräften auf die Massen m überlagern sich jene, die durch den
Mond hervorgerufen werden. Sie entstehen erstens durch die Anziehung des Mon-
des und zweitens durch die Zentripetalbeschleunigung der Erde-Mond-Rotation
um die durch den gemeinsamen Schwerpunkt des Erd-Mond-Systems verlaufende
Achse, die nicht mit der Rotationsachse zusammenfällt, sondern senkrecht auf der
Erde-Mond-Ebene steht. Der Abstand des Systemschwerpunktes vom Erdmittel-
punkt folgt aus (vgl. Abb. 2.229c):

r1 D 1

1Cm1=m2

� r

Hierin ist zu setzen: m1 D mErde, m2 D mMond D 7;348 � 1022 kg und r D
384:400km (mittlerer Abstand zwischen Erde und Mond). Die Rechnung ergibt:
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r1 D 4669 km. Der Schwerpunkt des Systems liegt innerhalb des Erdkörpers! Die
unterschiedlichen Abstände der Massen auf der Erdoberfläche von der gemein-
samen Rotationsachse lassen sich nunmehr angeben. Die eine Hälfte der Wulst-
Masse liegt demMond näher ①, die andere liegt demMond ferner ②, entsprechend
sind die Anziehungskräfte, die vomMond bewirkt werden, unterschiedlich. Sie be-
rechnen sich für eine Masse m; einmal in Richtung auf den Mond und einmal in
Gegenrichtung zu:

①: r D 3;7803 � 108 m: F D 3;4318 � 10�5 �m!
②: r D 3;9077 � 108 m: F D 3;2116 � 10�5 �m!

(vgl. Abb. 2.229c): Die Drehung um den gemeinsamen Schwerpunkt dauert etwa
einen Monat, genau: 27;32166 d D 2;3606 � 106 s. Mit den Abständen 1702 km ①

und 11.040km ② folgen die zentripetalen Kräfte aus dieser Drehung zu:

①: r D 1;702 � 106 m: F D 1;2058 � 10�5 �m!
②: r D 11;040 � 106 m: F D 7;8002 � 10�5 �m 

Die gravitativen Kräfte auf m vom Mond und die zentripetalen Kräfte des Erd-
Mond-Systems auf m sind offensichtlich von gleicher Größenordnung, ihre Über-
lagerung in den Punkten ① und ② ergibt:

①: F D .3;4318C 1;2058/ � 10�5 �m D 4;6376 � 10�5 �m!
②: F D .3;32116� 7;8002/ � 10�5 �m D �4;5886 � 10�5 �m 

Hiermit ist erläutert, warum sich immer zwei etwa gleich hohe Flutberge in den
Meeren der Erde in Richtung und in Gegenrichtung zum Mond bilden. ‚Unter die-
sen örtlich und zeitlich nur schwach veränderlichen Flutbergen dreht sich die Erde
um ihre Rotationsachse täglich hinweg‘. Das führt zweimal am Tag zu Ebbe und
Flut. Die Flutberge brechen sich an den Küsten (D Brandung). Hierbei wird die
ihnen innewohnende Energie zerstreut. Eine entsprechende Energiedissipation ist
mit der Gezeitenwirkung im Erd- und Mondkörper verbunden (sie werden ständig
‚geknetet‘). Das alles geht zu Lasten der Rotationsenergie von Erde und Mond und
der Bahnenergie des Erde-Mond-Systems: Die Rotations- und Umrundungszeiten
steigen an, der gegenseitige Abstand wächst.

Die oben erläuterte Ursache für das Gezeitenphänomen dürfte keinesfalls er-
schöpfend dargestellt sein, hierzu gehört auch die Frage des Drehimpulstransfers
innerhalb des Systems in den zurückliegenden Erdzeiten, dabei wäre auch die Fra-
ge interessant, wie mächtig die Gezeiten und ihre Auswirkungen waren, als sich
Mond und Erde in der Frühzeit noch viel näher umrundeten.
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2.8.10.7 Mars
Der Mars ist mit einem Äquatordurchmesser von 6794km nur etwa halb so groß
wie die Erde. Seine mittlere Dichte beträgt 3940kg=m3, das sind 72% der Erddich-
te. Insgesamt erreicht die Masse des Mars nur ca. 11% der Erdmasse. Es handelt
sich somit um einen vergleichsweise kleinen Planeten. – Die Umrundung der Son-
ne währt ca. 687 Erdentage (TMars;sid:). Die Rotation um die eigene Achse dauert
mit 27,623h etwas länger als die Erdrotation. – Je nach Bahnstellung schwankt
die Entfernung zwischen Erde und Mars zwischen ca. 55;8 � 106 km und dem 7,1-
fachen Wert davon, entsprechend unterschiedlich erscheint die Größe des Planeten
von der Erde aus als rötliche Scheibe.

Die Marsatmosphäre ist sehr dünn, sie besteht zu 95% aus CO2, und zu 3% aus
N2 sowie aus Spuren von Argon. Der Gasdruck auf der Marsoberfläche erreicht
nur 1% des atmosphärischen Drucks auf Erden. – Die Äquatorneigung ist mit
25,20° ca. 7% größer als jene der Erde, es gibt vergleichbare Jahreszeiten. – Die
Temperatur beträgt im Mittel �63 °C, sie schwankt zwischen ca. �140 °C (eisig)
und 30 °C (warm).

Die Oberfläche ist überwiegend sandig-wüstenartig und mit gerölligen Stein-
und Felsbrocken übersät. Es handelt sich um eisenoxidisches (rostiges) Boden-
material, einschließlich Anteilen aus Si, Mg, Ka, Al. Vieles ist basaltisches Erup-
tivmaterial (Lava) aus der ehemals aktiven Vulkantätigkeit herrührend. Der Vul-
kanismus muss mächtig gewesen sein. Uralte erloschene Vulkanberge erreichen
Höhen bis 26.000m. Großräumig gibt es Graben- und Rillenformationen sowie
eine riesige Anzahl von Einschlagkratern unterschiedlicher Größe. Flussbette las-
sen auf ehemals gewaltige Ströme schließen. – An den Polen breiten sich in den
Marswintern große Eiskappen aus (bei�120 °C), bestehend aus Wasser- und CO2-
Trockeneis. Während der Marssommer verbleiben hiervon meist nur kleine Reste
(bei �15 °C) übrig. In den oberen Breiten des Mars werden nach wie vor ausge-
dehnte Wasservorkommen in Form von Permaeis im Krustengestein vermutet. –

Die bisherigen Marsmissionen mit Marsorbitern und Marsrovern erlauben ein
detailreiches Bild vom Nachbarplaneten. Die Oberfläche ist weitgehend kartiert.
Künftige Missionen werden das Bild weiter vervollständigen. Insbesondere geht
es auch um die Frage, ob sich organische Substanzen oder gar fossile Lebensfor-
men einfachster Art, z. B. in Form von Bakterien oder Mikroben, aus früherer Zeit
finden lassen. Der im Jahre 2004 abgesetzte Rover ‚Opportunity‘ hat in zehn Jah-
ren etwa 40 km abgefahren, lebensfreundliche Spuren hat er nicht entdeckt. – Ob
es je einen bemannten Flug zum Mars geben wird, bleibt abzuwarten. Ein tiefe-
rer Sinn für ein solches Unternehmen erschließt sich einem kaum. – Eine aktuelle
Dokumentation zur Marsforschung einschließlich Bildmaterial enthält [68].
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Abb. 2.230

Der Planet wird von zwei kleinen Monden umkreist, Phobos und Deimos, sie
haben keine Kugelform.

2.8.10.8 Gasplaneten Jupiter, Saturn, Uranus und Neptun
Die vier großen Gasplaneten haben eine Reihe von Gemeinsamkeiten:

� Es herrscht eisige Kälte, die tiefsten Oberflächentemperaturen erreichen ca.
�120 °C bei Jupiter und ca. �200 °C bei Neptun.

� Die Bahnen der Planeten fallen weitgehend mit der ekliptikalen Ebene zusam-
men, es sind näherungsweise Kreise. Abb. 2.230 zeigt zeitgleiche Perihelposi-
tionen.

� Von der Erde aus sind die Gasplaneten umso ungünstiger sichtbar, je weiter sie
entfernt liegen, da auch ihr Durchmesser im Vergleich zum nächstgelegenen Ju-
piter, im Verhältnis 1 W 0;84 W 0;36 W 0;35 abnimmt, vgl. Tabellen in Abb. 2.214
und 2.231.

� Die Dauer ihrer Eigendrehung ist vergleichsweise kurz (� 10/10,6/17/16 Stun-
den), entsprechend hoch ist die Umfangsgeschwindigkeit auf der Oberfläche.
Das bedingt sehr hohe Windgeschwindigkeiten in ihrer Atmosphäre. Auf Jupi-
ter werden bis zu 500 km=h erreicht, auf Saturn und Uranus bis zu 250 km=h.

� Die hohe Rotationsgeschwindigkeit hat außerdem eine starke Abplattung zur
Folge. Das beruht auch auf dem wenig festen Material der äußeren Planeten-
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Abb. 2.231

Abb. 2.232

schale, der Kruste. Die Abplattung der vier Planeten beträgt: 0,065/0,098/0,023/
0,058.
Bei Saturn ist die Abplattung mit ca. 11% am höchsten.

� Die mittlere Dichte ist bei allen vier Planeten ähnlich gering, was auf einen
vergleichbaren Aufbau schließen lässt. – Abb. 2.232 zeigt den schalenförmi-
gen Aufbau des Planeten Jupiter: Im Inneren wachsen Druck und Temperatur
stark an. Der Gesteinskern umfasst wohl 15 bis 20 Erdmassen. Die zweite
Schale besteht aus Wasserstoff in metallisch-flüssiger Konfiguration, die drit-
te aus verflüssigtem Gas (H und He), der Übergang von der flüssigen Schale
zur gasförmigen Hülle, beides in großer Mächtigkeit, ist eher fließend. Neben
Wasserstoff und Helium ist in der Hülle Ammoniak und kristalliner Wasser-
dampf vorhanden. Die Drehung der einzelnen Schalen verläuft nicht synchron,
man spricht von differentieller Rotation.
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Abb. 2.233

Jupiter vereinigt ca. 65% der Masse aller Planeten in sich. Von ihm geht ein
starker gravitativer Einfluss auf die Bahn aller anderen Planeten und Kometen
aus. Charakteristisch sind Hell-Dunkel-Wolkenbänder und ein riesiger ortsfester
Wolkenwirbel, der sogenannte ‚Große Rote Fleck‘, mit einer Ausdehnung von ca.
40.000km, vgl. Abb. 2.233. – In der Hülle des Planeten toben regelmäßig gewal-
tige Gewitterstürme mit hoher Blitzfolge. – Seit Juli 2016 wird die Physik des
Planeten von dem NASA-Satelliten ‚Juno‘ erkundet. – Von den 67 Monden sind
die vier größten bereits von G. GALILEI im Jahre 1610 entdeckt worden: Io, Eu-
ropa, Ganymed und Kallisto. Astronomisch sind sie wegen ihrer unterschiedlichen
Beschaffenheit sehr interessant. Sie bilden um Jupiter quasi ein eigenes ‚Plane-
tensystem‘. Unter ihrer dicken Eiskruste werden gewaltige Ozeane aus flüssigem
Wasser vermutet. Die Raumsonde ‚Juice‘ soll sie ab dem Jahre 2030 (in einer Ent-
fernung von nur 800 km) detailliert untersuchen.

Dank des Ringsystems mit seiner sehr differenzierten, sogenannten Cassi-
nischen Teilung, ist Saturn der wohl berühmteste Planet im Sonnensystem. Der
Ring (ca. 400m dick) umfasst hunderttausend Einzelringe. Sie bestehen aus
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Abb. 2.234

Brocken von zehn Meter Durchmesser bis herunter zu sandigem Gestein in Staub-
korngröße, zudem aus tiefgefrorenem Eis (Wasser, Methan und Ammoniak). Auch
Saturn wird von vielen Monden umkreist. Titan ist der größte und ist von einer
Atmosphäre aus N2, und CH4 umgeben.

Die Besonderheit des Planeten Uranus ist die Lage seiner Rotationsachse und
die zur Bahnrichtung gegenläufige Rotationsrichtung. Abb. 2.234 gibt hierzu Aus-
kunft. Auch Uranus hat zwei Ringsysteme. Sie sind indessen nur schwach ausge-
prägt und liegen weit auseinander. Der Planet wurde im Jahre 1781 entdeckt.

Neptun zieht in eisiger Ferne seine Bahn. Sein Umlauf um die Sonne dauert ca.
165 Erdenjahre; entdeckt wurde der Planet im Jahre 1846.

Wie ausgeführt, werden die Gasplaneten von einer großen Zahl vonMonden un-
terschiedlichster Größe und Beschaffenheit begleitet. Dank der von den Raumson-
den angefertigten Fotos im Verlauf der bislang erfolgreich durchgeführten Missio-
nen und der dabei durchgeführten Messungen sind die Gasplaneten, ihre Monde
und ihre Ringsysteme gut erforscht. In den Büchern und Zeitschriften der Astro-
nomie sind die Erkundungsergebnisse ausführlich dokumentiert.

Ob es den bislang nur anhand himmelsmechanischer Berechnungen georteten
massereichen Gasplaneten Planet Nr. 9 wirklich gibt, weit hinter dem Kuipergürtel
gelegen, müssen Teleskopbeobachtungen noch bestätigen (2015/2016).

2.8.10.9 Zwergplaneten – Planetoiden (Asteroiden) – Meteoriden
Außer den Planeten mit ihren Monden umkreisen noch viele weitere kleine und
große Objekte die Sonne. Sie verteilen sich
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Abb. 2.235

� auf den Hauptgürtel (auch Planetoiden- oder Asteroidengürtel genannt) im Ab-
stand von 2,2 bis 3,2AE von der Sonne entfernt, zwischen Mars und Jupiter
gelegen (Abb. 2.235),

� den Kuipergürtel jenseits des Neptuns und
� auf die noch weiter entfernt liegende Oort’sche Wolke.

In den beiden letztgenannten Bereichen herrscht eisige Kälte. Die Körper bestehen
aus Eis und mineralischem Gestein.

Es werden unterschieden:

� Zwergplaneten (auch Kleinplaneten genannt): Es sind relativ große Himmels-
körper, von deren Masse eine so hohe Schwerkraft während ihrer Entstehung
ausging, dass sich aus den aufgesammelten Planetesimalen eine Kugelform
bilden konnte, zumindest näherungsweise. Während die Planeten das meiste
Material bei ihrer Entstehung rundum gravitativ aufsammelten, verblieb im
Umfeld der Zwergplaneten noch viel Material übrig. – Ein großer Zwergpla-
net im Asteroiden-Hauptgürtel ist: Ceres (975 km). Größere Zwergplaneten im
Kuipergürtel sind Eris (2326 km), Pluto (2374 km), Sedna (1700 km), Orcus
(1700 km), Makemake (1502 km). Quaoar (1250 km) und Haumea (ein ellipsoi-
der Körper, 1920	1540	990km). Die Klammerwerte geben den Durchmesser
der Kleinplaneten an. Zum Teil werden sie von Monden umkreist.
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Abb. 2.236

� Planetoiden/Asteroiden: Hierunter fallen Körper unterschiedlicher Größe mit
unregelmäßiger Gestalt (Abb. 2.236).Meist sind sie wie alle Planeten undMon-
de mit Einschlagkratern übersät. Ihre Anzahl dürfte in allen drei oben genannten
Bereichen viele hundert Millionen, gar Milliarden, betragen, wenn man auch
sämtliche kleinen Objekte im Meter-Bereich mit zählt. Die Körper bestehen
überwiegend aus silikathaltigem Gestein, viele wohl auch aus nickelhaltigem
Eisen. – Ca. 600.000 Objekte sind dezidiert bekannt, davon tragen 17.000 einen
Namen. Im Zuge der laufenden Durchmusterung werden ständig weitere ge-
sichtet und in die Registrierung aufgenommen.

Im Hauptgürtel gibt es eine große Zahl von Asteroiden, die sich auf elliptischen
Bahnen der Erde nähern, zum Teil bis in den inneren Mondbahnbereich hinein! In
diesem Falle spricht von Erdbahnkreuzern oder von NEOs (Near Earth Objects).
Von ihnen wurden bisher mehr als 19.500 Objekte mit Durchmessern zwischen
100 und 1000 Metern entdeckt. 1500 werden wegen ihres Bahnverlaufs als ‚po-
tenziell‘ gefährlich bewertet. – Für die Gefährdungseinstufung wurde die sogen.
Turin-Skala entwickelt.

Vor 65 Millionen Jahren, also am Ende der Kreidezeit, traf ein 10 km großer
Asteroid die Erde. Hierbei wurde ein Krater von 180 km Durchmesser geschlagen.
Durch die aufgewirbelte Materie verdunkelte sich die Welt. Während der unmit-
telbar sich anschließenden Eiszeit wurde die gesamte Pflanzen- und Tierwelt auf
Erden weitgehend vernichtet, dazu gehörte auch die Welt der Dinosaurier.

Es sind auf der festen Erdkruste ca. 190 Asteroidenkrater identifiziert, un-
ter anderem der Barring-Krater in der Wüste von Arizona mit 1260m Durch-
messer und 174m Tiefe. Er bildete sich vor 49.000 Jahren beim Einschlag eines
20m großen Brockens; er war wohl Teil eines 47m großen Körpers, der in 14 km
Höhe beim Eindringen in die Atmosphäre zerbarst. – Im Bereich des heutigen
Deutschlands wurden das Nördlinger Ries (¿20 km) und das Steinheimer Becken
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(¿3,5 km) erst im Jahre 1904 als Einschlagkrater identifiziert. Sie entstanden vor
mehr als 15 Millionen Jahren zeitgleich, als ein großer Brocken beim Eindringen
in die Erdatmosphäre auseinander brach. – Infolge der Erdplattenverschiebung,
der tektonischen Gebirgsverwerfungen und der starken Verwitterung und Erosi-
on ist die überwiegende Zahl der die Erde einstmals getroffenen Einschlagkrater
getilgt (ca. 175 Krater konnten bisher als solche identifiziert werden). Wo immer
diese Voraussetzungen wegen einer nicht vorhandenen Atmosphäre nicht gegeben
sind, wie auf den Planeten Merkur, Mars und dem Erdmond, sind die Oberflächen
seit der Frühzeit des Sonnensystems stark vernarbt. – Auf die Thematik der von
einem Asteroideneinschlag ausgehenden Gefährdung wird in Bd. V, Abschn. 1.2.8
nochmals eingegangen.

Als Meteoriden bezeichnet man Objekte im mm- bis cm-Durchmesser-
Bereich. Tritt ein solches Objekt in die Atmosphäre der Erde ein, spricht man
von einem Meteoriten oder Meteor. Je nach Größe und Fallgeschwindigkeit
dringt der Körper mehr oder weniger tief in die Lufthülle ein. Infolge Reibung an
den Luftmolekülen und der hierbei entstehenden enormen Reibungshitze schmilzt
das Material, was mit einem Aufleuchten einher geht. – Kleine Objekte im mm-
bis ein bis zwei cm-Bereich verdampfen dabei in 90 bis 110 km Höhe. Sie tauchen
am nächtlichen Himmel mit einer kurzen Leuchtspur auf, es sind die vertrauten
Sternschnuppen. Zu bestimmten Zeiten treten sie verstärkt auf und zwar dann,
wenn sich die Erde durch die Relikte eines ehemals zerborstenen Kometen bewegt.
Offiziell werden 64Meteorströme unterschieden, zu ihnen zählen die Perseiden (in
der Zeit von 10.08. bis 14.08), die Leoniden (11.11. bis 20.11.) und die Geminiden
(12.12. bis 15.12.).

Mittelgroße Objekte (bis 5 cm) dringen in die Lufthülle bis auf eine Tiefe von
50 km herab ein, große bis auf eine Tiefe von 10 km. Im letztgenannten Falle
spricht man von Feuerkugeln oder Boliden und zwar dann, wenn sie ca. fünf Mi-
nuten oder länger leuchten, häufig mit einem Lichtblitz einhergehend. Ihr Licht
erreicht Vollmondhelligkeit. In Europa gehen im Mittel 50 Feuerkugeln im Jahr
nieder. Vielfach erreichen sie die Erdoberfläche in zum Teil abgeschmolzenem Zu-
stand. Beim Aufschlag wird ein Teil der kinetischen Energie in Wärme umgesetzt.
Der Aufschlag wird als Explosion wahrgenommen.

Die Herkunft der Meteoriden ist unterschiedlich. Entweder stammen sie als
Irrläufer aus dem außerplanetarischen Raum oder es sind Überbleibsel aus der
Frühzeit des sich ausformenden Sonnensystems. Überwiegend handelt es sich, wie
ausgeführt, um Materiereste ehemaliger Kometen.

2.8.10.10 Kometen (Schweifsterne)
Im Sonnensystem sind knapp 1000 Kometen bekannt. Es sind vergleichsweise
kleine Körper. Sie bestehen aus mineralischem Staub, Wasser und Gasen in tief ge-
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frorenem Zustand (u. a. Kohlenoxid, Methan, Ammoniak). Nähert sich der Komet
der Sonne, erwärmt sich seine Oberfläche. Von dieser trennen sich feinste Partikel
in höchster Verdünnung ab. Es bildet sich eine Hülle aus Staub und Gas um den
Kometen. Mit zunehmender Annäherung an die Sonne lösen sich immer weitere
Bestandteile ab und ‚verdampfen‘. Die Partikel begleiten den Kometen als Schweif
auf seiner Bahn. Durch den Lichtdruck des Sonnenwindes wird der Staubschweif
vom Kometen weggedrängt. Der Schweif kann eine Länge von tausenden Kilome-
tern erreichen. Die Gashülle um den Kern (die Koma) und der Schweif leuchten
des Nachts im Sonnenlicht.

Es kann vorkommen, dass ein Komet in Sonnennähe auseinander bricht, wie im
Jahre 2000 der Komet ‚Linear‘, vermutlich weil entweichender Wasserdampf den
Kern sprengte. – Es kommt auch vor, dass ein Komet vom Planeten Jupiter ver-
möge dessen hoher Gravitation angezogen wird und dabei in diesen hineinstürzt,
wie es im Jahre 1994 dem Kometen ‚Shoemaker-Levy 9‘ erging. Um 1960 war
er vom Planeten eingefangen worden und hatte ihn mehr als 30 Jahre als Mond
umkreist. Ähnliche Fälle sind belegt, auch solche, bei denen der Komet aus seiner
‚Mondbahn‘ um Jupiter wieder heraus geschleudert wurde.

Es werden periodische und nichtperiodische Kometen unterschieden. Periodi-
sche Kometen durchstreifen den Raum um die Sonne auf einer elliptischen Bahn
mit relativ kurzer Orbit-Zeit, wie beim ‚Encke-Kometen‘ alle 3,3 Jahre oder mit
einer sehr langen, wie beim ‚Kohoutek-Kometen‘ alle 75.000 Jahre. Nichtperiodi-
sche Kometen bewegen sich auf einer Hyperbel- oder Parabelbahn und erscheinen
nach ihrem Auf- und Abtauchen nie wieder. – Bei der Sonnenumrundung verlieren
die periodischen Kometen viel Masse, im Laufe der Zeit nimmt ihre Helligkeit ab,
irgendwann verlöschen sie.

Am bekanntesten, weil am hellsten, ist der ‚Halleysche Komet‘, benannt nach
E. HALLEY (1656–1742), der das Erscheinen des Kometen im Jahre 1758 anhand
historischer Aufzeichnungen zutreffend voraussagen konnte. Das Auftauchen des
Kometen ist ca. 30-mal anhand geschichtlicher Belege bezeugt. Seine Wiederkehr-
periode beträgt 76,1 Jahre. Im Jahre 2061 wird ‚Halley‘ wieder erscheinen.

Seine Abmessungen werden zu 8 mal 15 km geschätzt. 1986 wurde der Komet
von fünf Raumsonden im Vorbeiflug erkundet, die ESA-Sonde ‚Giotto‘ kam ihm
mit 600 km am nächsten.

Nach dem 3. Keplerschen Gesetz gilt mit dem Index H für Halleyscher Komet
und E für Erde (Abschn. 2.8.5):
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Abb. 2.237

Die numerische Exzentrizität beträgt " D 0;967. Das ergibt für die Kennwerte des
elliptischen Umlaufs:

eH D "H � aH D 0;967 � 17;96 D 17;37AEI bH D
q

1 � "2
H � aH D 4;48AE

aH C eH D 35;33AEI aH � eH D 0;59AEI 2aH D 35;92AE

Das Perihel der Bahn liegt zwischen Merkur (0,38AE) und Venus (0,72AE) und
das Aphel außerhalb des äußersten Planeten, also zwischen Neptun und Pluto; vgl.
Abb. 2.237. Mit dem ‚Stern von Bethlehem‘ hat der Komet nichts gemein.

Die Kometen stammen überwiegend aus fernen Regionen des Sonnensystems,
ihre Materie ist uralt, weil unverändert. Einige wurden vielleicht als Irrläufer aus
dem kosmischen Raum von der Sonne eingefangen. Jenseits des Planeten Nep-
tun, also weit draußen innerhalb der Oort’schen Wolke, dürfte es einige Milliarden
Kometen geben.

Ihre Erkundung erlaubt Rückschlüsse auf frühe Entwicklungsstadien des Son-
nensystems. Neuere Forschungen lassen vermuten, dass sich aus ihrem riesigen
Reservoir an Wassereis die irdischen Ozeane im Frühstadium der Erde gebildet
haben, als sie (und vereiste Asteroiden) in großer Zahl auf der Erde niedergingen.

Die im Jahre 2004 gestartete ESA-Sonde ‚Rosetta‘ erreichte im Jahre 2014 den
Kometen ‚67P/Tschurjumonow-Gerasimenka‘ (genannt ‚Tschuri‘) und umrundete
ihn. Auf dem Flug dorthin hatte die Sonde im Jahre 2008 den Asteroiden ‚Šteins‘
(¿4,5 km) und im Jahre 2010 den Asteroiden ‚Lutetia‘ (¿100 km) passiert und
erforscht. Der von der Sonde aus ca. 23 km Höhe abgeworfenen Lander ‚Philae‘
erreichte die Oberfläche des Kometen nach ca. sieben Stunden Abstieg. Wegen der
extrem geringen Gravitationskraft (nur ca. 1=100:000-tel der Erdbeschleunigung)
konnte das Gerät keine sichere Position einnehmen und kippte zur Seite. Das Ma-
növer der Sonde gilt dennoch als Meisterwerk der Weltraumforschung
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In ehemaligen Zeiten galt das Auftauchen eines Kometen als Menetekel, viel
Unheil hatte die Menschheit und jeder Sterbliche zu erwarten, Hungersnöte, Seu-
chen und Kriege. – ARISTOTELES (384–322 v.Chr.) lehrte: Die Kometen stam-
men aus feuchten und faulen irdischen Sümpfen, in Sonnennähe entzünde sich
ihr Faulgas. So waren die Vorstellungen auch noch im Mittelalter. Im Laufe der
Jahrhunderte kamen weitere ‚Theorien‘ hinzu. – In seiner 1577 publizierten Ab-
handlung ‚De Cometa Anni 1577‘ konnte T. de BRAHE (1546–1601) anhand
des damals auftauchenden Kometen den astronomischen Hintergrund des Him-
melsphänomens endgültig klären.

Es ist nachvollziehbar, dass in alten Zeiten der Kometen-Spuk bei den Zeitge-
nossen Furcht und Schrecken auslöste, für die Astrologen war das ein einträgliches
Geschäft. Dass ihre Zunft in heutiger Zeit immer noch viele Anhänger und Gläu-
bige findet, verwundert.
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3Thermodynamik

3.1 Einführung – Historische Anmerkungen

Unter dem Begriff Thermodynamik werden alle Erscheinungen zusammengefasst,
die mit dem Begriff Wärme in Verbindung stehen. Man hätte als Überschrift auch
‚Wärmelehre‘ oder ‚Wärmetheorie‘ wählen können. – Wärme beruht in allen Ag-
gregatzuständen eines Stoffes, als Festkörper, als Flüssigkeit oder als Gas, auf der
thermischen Bewegung seiner Atome bzw. Moleküle, also auf deren kinetischer
Energie. Deren Bewegung ist entweder gebunden, wie in Festkörpern, oder frei,
wie in Flüssigkeiten und Gasen. Wärme ist eine Energieform. Je höher der Ener-
gieeintrag ist, umso intensiver ist die thermische Bewegung der Teilchen und umso
höher ist die Temperatur. Dabei zeigt sich, dass die kinetische Wärmeenergie li-
near mit der absoluten Temperatur T ansteigt, vice versa. Ausgehend von dieser
Erkenntnis lassen sich eigentlich alle Wärmevorgänge deuten und begreifen.

Die Sinnesempfindungen kalt und warm sind vermutlich den meisten tierischen
Lebewesen eigen. Sicher haben auch die Urmenschen warm als wohltuend emp-
funden, wenn sie sich um das Lagerfeuer scharten und als belastend, wenn sie
der brütenden Sonnenhitze ausgesetzt waren. Am Feuer garten sie ihre Beute, här-
teten später Ziegel aus Lehm, brannten Töpfe aus Ton, schmolzen Metalle aus
Erz. In ihren Mythen und Religionen spielte das Feuer eine wichtige Rolle, auch
bei den Opferriten. Die griechischen Naturphilosophen, wie ARISTOTELES. sa-
hen im Feuer eines der vier Urelemente, später kam ein weiteres hinzu (Bd. I,
Abschn. 1.1.2). So stellte man sich auch im Mittelalter die Dinge noch vor. Man
wusste wohl, wie Wärme entsteht, was Wärme ist, wusste man nicht.

Ein erster wichtiger Schritt, um die Frage, was Wärme ist, zu klären, war die
Erfindung des Thermometers. Hiermit konnte die Höhe der Temperatur in Gra-
den gemessen werden, was quantifizierende Experimente ermöglichte. Erfunden
wurde das Thermometer mit einer passenden Skala im Jahre 1714 von D.G. FAH-
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RENHEIT (1686–1736) und später nochmals im Jahre 1742 von A. CELSIUS
(1701–1744) mit einer modifizierten Skala, vgl. Bd. I, Abschn. 2.6.

Die erste Wärmehypothese geht auf J. BLACK (1728–1799) zurück. Er pos-
tulierte 1760 einen ‚latenten und verborgenen Wärmestoff‘, den er ‚Caloricum‘
nannte.Wenn sich der Zustand eines Körpers ändert, entbindet oder verschluckt er
Caloricum. Man sah das Substrat quasi wie eine schwerelose unsichtbare Flüssig-
keit, die beim Wärmeübergang von einem Körper auf den anderen übergeht oder
von ihm aufgenommen wird, ähnlich, wie das von G.E. STAHL (1659–1734) pos-
tulierte ‚Phlogiston‘, eine im Stoff verborgene Substanz, welche beim Verbrennen
entweicht. Die Wärmestoffhypothese lag vielen späteren Forschern bei ihren Über-
legungen und Berechnungen zugrunde, um Probleme der Wärmeübertragung zu
lösen, wie z. B. bei A.L. de LAVOISIER (1743–1794), P.S.M. LAPLACE (1749–
1827), J.B.J. FOURIER (1768–1830) und S. CARNOT (1796–1832). Mit der Hy-
pothese gelangen erfolgreiche Schlüsse!

Was sich mit dem Ansatz indessen nicht erklären ließ, war die durch Reibung
bewirkte Erwärmung eines Körpers (bekanntlich erwärmen sich beim Reiben die
Handflächen).

R. BOYLE (1627–1691) vermutete schon früh, Wärme beruhe auf der Bewe-
gung atomarer Partikel im Inneren der Stoffe, so deutete auch D. BERNOULLI
(1700–1782) den Gasdruck auf eine das Gasvolumen begrenzende Wand und
schuf damit die Grundlage der Gastheorie. G.W. LEIBNIZ (1646–1716) hatte
bereits zuvor die ‚lebendige Kraft‘ im Inneren der Stoffe ins Spiel gebracht und
damit indirekt den Energiebegriff eingeführt. B. THOMPSON (1753–1814, spä-
ter Lord RUMFORT, Planer des Englischen Gartens in München) hatte beim
Aufbohren von Kanonenrohren festgestellt, dass die hierbei aufgewandte Rei-
bungsarbeit proportional zur Wärme ist, die dabei entsteht. Aus alle dem wurden
die entscheidenden Folgerungen gezogen: Wärme ist eine Energieform. Sie
entsteht, wenn Arbeit verrichtet wird. Antriebsarbeit geht in Wärme über und um-
gekehrt. R. MAYER, J.P. JOULE, später R. CLAUSIUS und H. v. HELMHOLTZ
schufen die tragfähigen Fundamente der Thermodynamik. J.C. MAXWELL und
L. BOLTZMANN bauten das Gebiet der Statistischen Mechanik aus, die Theorie
der Mehrkörpersysteme, speziell die Theorie der Gase, die im Jahrhundert zuvor
eher phänomenologisch entwickelt worden war [1].

Die Thermodynamik ist eine der physikalischen Disziplinen, auf denen die mo-
derne Technik, gemeinsam mit anderen, fundiert ist. Sie ist faszinierend, weil sich
mit ihr Begriffe wie Energie und Entropie behandeln und klären lassen, damit auch
so wichtige Themen wie energetische Antriebe und allgemeine Energieversorgung,
schließlich viele Phänomene des Alltags. – Zur Thermodynamik wird neben den
zahlreichen Grundlagenbüchern der Physik auf [2–4] verwiesen.
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Im Folgenden werden zunächst die Abhängigkeiten zwischen den Größen Vo-
lumen (V ) und Druck (p) als Funktion der Temperatur (T ) für Feststoffe, Flüs-
sigkeiten und Gase behandelt. Für den gasförmigen Aggregatzustand der Stoffe
lassen sich die Gesetze mit Hilfe des Impulssatzes herleiten und auf diese Weise
die Thermischen Gasgesetze begründen. Sie standen am Anfang der Physik (vgl.
Bd. I, Abschn. 2.7). Anschließend werden die Hauptsätze der Wärmetheorie dis-
kutiert, einschließlich aller hierauf beruhenden vielfältigen Folgerungen. Sie sind
für viele Erscheinungen in der Natur von fundamentaler Bedeutung, selbstredend
für viele Bereiche der Technik, man denke an Antriebsmotoren aller Art.

3.2 Verhalten von Festkörpern, Flüssigkeiten und Gasen bei
Wärmeeintrag

3.2.1 Festkörper bei Wärmeeinwirkung

Bei einer Erhöhung der Temperatur um �T verlängert sich ein Stab aus homoge-
nem Material, beispielsweise aus Metall, um die Länge �lT . �lT wächst linear
mit �T an:

�lT D ˛T � l ��T ! lT D l C�lT D .1C ˛T ��T / � l Œ˛T � D K�1

l ist die Ausgangslänge des Stabes (Abb. 3.1a). Das Gesetz besagt: Die Längenän-
derung �lT eines Stabes ist der Temperaturänderung �T proportional. Steigt die
Temperatur, verlängert sich der Stab, sinkt sie, verkürzt sich der Stab. Bei einem
Anstieg der Temperatur werden die Molekülschwingungen intensiver, sie nehmen
einen größeren Raum inne, es tritt eine Volumenvergrößerung ein; bei einer Ab-
kühlung verkleinert sich das Volumen.

Anmerkungen
Ein Temperaturanstieg oder -abfall kann anstelle mit �T in Kelvin (K) auch mit �# in Grad
Celsius (°C) charakterisiert werden: �T 
 �# . –

Als tiefste bislang auf Erden gemessene Außentemperatur gilt offiziell der Wert # D
�93;2 ıC, er wurde im Zentrum der Antarktis registriert.

˛T ist in obiger Formel der Temperatur-Ausdehnungskoeffizient. ˛T ist eine
Stoffkonstante. In Abb. 3.1c sind Werte notiert. Sie gelten für gängige atmosphä-
rischen Bedingungen. – Als Dehnung bezeichnet man die auf die ursprüngliche
Länge bezogene Längenzunahme; die Temperaturdehnung beträgt demnach:

"T D �lT

l
D ˛T ��T
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Abb. 3.1

So gesehen, ist ˛T die Dehnung bei einer Temperaturerhöhung um �T D 1K.
Man bezeichnet ˛T daher auch als Temperatur-Dehnzahl.

Bei einem Körper in Flächenform mit der Fläche A gilt:

�AT D ˇT � A ��T ! AT D AC�AT D .1C ˇT ��T / � A

mit ˇT D 2 � ˛T .
Wird ein Körper mit dem Volumen V in Gänze gleichförmig erwärmt, wächst

das Volumen um:

�VT D �T � V ��T ! VT D V C�VT D .1C �T ��T / � V

mit �T D 3 � ˛T .
In Abb. 3.1b ist die Volumenvergrößerung eines Würfels veranschaulicht.

1. Anmerkung
Für einen Quader mit den Kantenlängen a, b, c gilt streng und genähert:

VT D Œ.1C ˛T ��T / � a� � Œ.1C ˛T ��T / � b� � Œ.1C ˛T ��T / � c�

D .1C ˛T ��T /3 � a � b � c D .1C ˛T ��T /3 � V � .1C ˛T ��T / � V

Im Allgemeinen können die Anteile mit ˛2
T und ˛3

T , die sich beim Ausmultiplizieren des
Klammerterms hoch drei ergeben, als Terme höherer Kleinheitsordnung vernachlässigt wer-
den.

2. Anmerkung
Genau betrachtet, ist ˛T keine Konstante. Abb. 3.1d zeigt, wie ˛T mit der Temperatur
schwach ansteigt. Auf die Berücksichtigung dieses Effektes kann bei praktischen Berech-
nungen verzichtet werden. Ausnahmen bilden Untersuchungen zu speziellen Komponenten
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in der Kraftwerks- und Anlagentechnik, ebenso in der Tiefkühltechnik und bei Untersuchun-
gen von Brandzuständen, bei welchen die Temperatur hohe Werte erreicht.

Ist ˛T 0 die Dehnzahl bei # D 0 ıC und nimmt sie linear mit der Temperatur zu, gilt: ˛T D
˛T 0 C 
T � # . 
T ist der Steigungskoeffizient. Aus Abb. 3.1d entnimmt man beispielsweise
für Stahl: 
T � 0;007 � 10�6, das bedeutet: ˛T D .12;0 C 0;007 � #/ � 10�6. Steigt die
Temperatur von #1 auf #2 an, berechnet sich die Temperaturdehnung eines Stabes zu:

"T D �lT

l
D

h
˛T 0 � .#2 � #1/ C 
T

2
.#2

2 � #2
1 /

i

3. Anmerkung
Es gibt eine Eisen-Nickel-Legierung mit 36% Nickel, die sich durch einen extrem geringen
˛T -Koeffizienten auszeichnet: ˛T D 0;5 � 10�6. Der Werkstoff wurde 1896 von C.E. GUIL-
LAUME (1861–1938, Nobelpreis 1920) entdeckt. Die Legierung kommt als Material für
Schiffstanks zum Einsatz, in denen verflüssigtes Erdgas bei �168 ıC transportiert wird.

3.2.2 Ergänzungen und Beispiele zur Verformung von
Festkörpern bei Wärmeeinwirkung

Treten in Bauteilen technischer Anlagen gegenüber der Aufstellungstemperatur
(z. B. 10 ıC) Temperaturschwankungen von beispielsweise �T D �# D ˙25K
auf, beträgt die Längenänderung im Falle einer 100m langen Stahlkonstruktion,
etwa einer 100 m langen Stahlbrücke:

�lT D ˛T � l ��# D ˙12;0 � 10�6 � 100 � 25 D ˙0;030m D ˙30mm

Der Doppelhub beträgt 2 � �l D 60mm. – Wenn Temperaturverformungen blo-
ckiert werden, besteht die Gefahr, dass in einer Konstruktion Schäden in Form von
Abplatzungen oder Rissen entstehen. Um sie zu vermeiden, werden in baulichen
Anlagen Dehnfugen in größeren Abständen eingeplant. – Bei Brücken werden an
einem der beiden Brückenenden verschiebliche Rollen- oder Gleitlager zwischen
Brücke und Widerlager angeordnet (Abb. 3.2a, b), bei kurzen Brücken genügen
sogenannte Verformungslager (Gummilager).

Abb. 3.2c, d zeigt zwei spezielle Lagertypen des modernen Brückenbaues in
Form eines Topf- und eines Kalottenlagers. Sie zeichnen sich durch eine geringe
Bauhöhe aus, was von Vorteil ist.

Bei Rohrleitungen, insbesondere solchen zum Transport heißgehender Medien,
müssen in die Rohrleitung Kompensatoren eingebaut werden (Abb. 3.3b). Bei lan-
gen Leitungen werden Rohrbereiche mit U- oder Lyra-Bogen zwischengeschaltet,
wie in Abb. 3.3c skizziert.
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Abb. 3.2

Wird die Längenänderung vollständig verhindert, entstehen Zwängungsspan-
nungen:

��T D E ��"T D E � �lT

l
D E � ˛T ��#

E ist der Elastizitätsmodul des Materials, vgl. Abschn. 2, Abb. 3.17. ��T ist
unabhängig von der Länge! Kann sich keine Längenänderung einstellen, bauen
sich Druckspannungen auf. Sie können bei schlanken Baugliedern ein seitliches
Ausknicken auslösen. Aus diesem Grund wurden ehemals Eisenbahnschienen auf
Lücke verlegt. Verzichtete man darauf, bestand die Gefahr einer Gleisverwerfung
an heißen Tagen (Abb. 3.3d). Heute liegen die Schienen lückenlos auf schweren
Betonschwellen, die tief im Schotter eingebettet sind. Durch deren Schwere wird
ein Ausknicken des Gleises verhindert. Gleichwohl, die Erfahrung zeigt, dass an
extrem heißen Sommertagen und bei länger andauernder direkter Sonneneinstrah-
lung dennoch Gleisverwerfungen möglich sind. Das gilt auch für Schnellstraßen
(Autobahnen) mit einem Belag aus fugenlos verlegten Betonplatten geringer Di-
cke (20 cm, die Dicke sollte 30 cm betragen). Oberseitig kann die Temperatur auf
50 ıC und höher ansteigen, unterseitig bleibt sie deutlich darunter. Man spricht
beim Aufwölben des Straßenbelags von ‚Blow-up‘. Sie tritt sprungartig auf und
bedeutet eine tödliche Gefahr für die Verkehrsteilnehmer!
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Abb. 3.3

Zwängungen und fallweise Verwerfungen treten auch dort auf, wo Materia-
lien mit unterschiedlichem Temperaturausdehnungskoeffizient fest miteinander
verbunden sind und wo zwischengeschaltete Dehnungselemente (Gummileisten,
Schrauben mit Langlöchern) fehlen. Gefährdet sind beispielsweise untereinan-
der fest gefügte Bauteile aus Stahl, Aluminium, Kunststoff oder/und Glas. Deren
Dehnverhalten ist z. T. sehr verschieden.

Die Spulen der Elektromagneten des LHC (Large Hadron Collider) am CERN
werden auf 1,9K über dem absoluten Temperaturnullpunkt (0K D �271;15 ıC)
mit flüssigem Helium abgekühlt, dabei verkürzt sich der ca. 27 km lange Ring um
80 cm. Den hiermit verbundenen Verschiebungen müssen die Lager des Ringrohres
zwängungsfrei folgen können.

Die Bauweisen Stahlbeton und Spannbeton sind nur möglich, weil Stahl und
Beton etwa die gleichen Temperaturausdehnungskoeffizienten aufweisen. Wäre
das nicht so, würden Stahlbewehrung (Armierung) und Beton bei Temperaturän-
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derungen unverträglich gegeneinander arbeiten, die Haftung der Bewehrung würde
zerrüttet.

Beim Legen eines Radreifens macht man sich die Wärmeausdehnung zu Nutze:
Der stählerne Radreifen wird erhitzt und auf das Rad geschoben, nach Abkühlung
zieht er sich zusammen und sitzt unverrückbar auf dem Rad fest. So wurden bzw.
werden die Eisenreifen auf Holzräder montiert. Die Fertigung einer Schrumpfver-
bindung zwischen Rad und Welle beruht auf demselben Prinzip.

Bei einer Bi-Metall-Verbindung sind zwei metallische Elemente mit unter-
schiedlichem Dehnungskoeffizienten fest miteinander verbunden. Bei Tempe-
raturänderung verbiegt sich die Verbindung. Nach Eichung kann ein solches
Bi-Metall-Element zur Temperaturmessung genutzt werden, z. B. als Steuerele-
ment in Thermostaten.

Beispiele
Stellt sich innerhalb eines Bauteilquerschnittes bei einseitiger Temperaturerhöhung ein Tem-
peraturgefälle zwischen Ober- und Unterseite ein, krümmt sich das Bauteil. Das kann z. B.
ein Stab sein (Abb. 3.4a). Der Temperaturunterschied ist in der Abbildung mit �# und die
Dicke des Querschnittes in Richtung des Temperaturgradienten mit h abgekürzt. Die örtliche
Krümmung beträgt: � D ˛T � �#

h

Ist ein solcher Temperaturgradient über die Länge eines Trägers konstant vorhanden,
stellt sich (bei h Dkonstant) eine kreisförmige Biegelinie ein. Für einen beidseitig gelenkig
gelagerten Träger der Länge l berechnen sich die mittige Durchbiegung f und der Enddreh-
winkel ' bei einer solchen Temperaturbeanspruchung zu (Abb. 3.4b):

f D ˛T � �#

h
� l

2

8
I ' D ˛T � �#

h
� l

2

Da sich Brückenträger infolge einer Temperatureinwirkung und unter Verkehrslast über den
Auflagern um den Winkel ' verkanten (drehen), müssen die hier liegenden Brückenlager

Abb. 3.4
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nicht nur verschieblich, sondern auch kippfähig sein, damit Zwängungen und Beschädigun-
gen am Tragwerk und an den Lagern vermieden werden.

Ein (turmartiger) Freiträger verbiegt sich bei Sonneneinstrahlung, wie in Abb. 3.4c skiz-
ziert. Im Falle einer konstanten Dicke berechnen sich Durchbiegung und Drehwinkel am
freien Ende zu:

f D ˛T � �#

h
� l

2

2
I ' D ˛T � �#

h
� l

Bei turmartigen Antennenträgern dürfen aus funktechnischen Gründen bestimmte Grenzwin-
kel 'Grenze in Höhe der Antenne nicht überschritten werden, anderenfalls würde die
Sendekeule zu stark verzerrt. Gitterkonstruktionen sind in solchen Fällen gegenüber
vollwandigen (rohrartigen) Konstruktionen im Vorteil, weil sich nur geringere Tempera-
turverformungen einstellen.

3.2.3 Flüssigkeiten bei Wärmeeinwirkung

Flüssigkeiten füllen ein Volumen aus. Für die Volumenänderung bei einer Tempe-
raturerhöhung gilt obige Formel für �VT unverändert:

�VT D �T � V ��T ! VT D V C�VT D .1C �T ��T / � V

Hierbei ist unterstellt, dass die Flüssigkeit eine freie Oberfläche hat. Der Volu-
menausdehnungskoeffizient �T liegt 10- bis 100-mal höher als im Aggregatzu-
stand ‚fest‘, was auf dem a priori lockeren Molekülverband beruht. In der Tabelle
der Abb. 3.5a sind �T -Werte für gängige atmosphärische Bedingungen als Anhalt
ausgewiesen. Die von der Temperatur abhängige Dehnzahl von Wasser geht aus
Abb. 3.5b hervor.

Abb. 3.5
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Erhöht sich die Temperatur einer Flüssigkeit und gleichzeitig die Temperatur
des offenen Gefäßes, das die Flüssigkeit enthält, wird man zunächst die Volu-
menänderung des Gefäßes und anschließend die Volumenänderung der Flüssigkeit
bestimmen, um die Auswirkung der Temperaturerhöhung auf die Füllhöhe im Ge-
fäß zu berechnen.

Ist die Flüssigkeit in einem Gefäß eingeschlossen, entwickelt sich bei einer
Temperaturerhöhung oder -senkung ein Über- bzw. Unterdruck. Flüssigkeiten ver-
halten sich sehr ‚steif‘, der Kompressionsmodul liegt hoch, d. h. eine Flüssigkeit ist
nur schwach kompressibel. Die sich bei Temperaturanstieg aufbauende Drucker-
höhung folgt aus: �pT D K ��VT =V . K ist der Kompressionsmodul. Für Wasser
gilt: K � 2 � 109 N=m2.

Hinweis
Für Festkörper berechnet sich K über den Elastizitätsmodul E zu: K D E=3 � .1�2
/, 
 ist
die Querkontraktionszahl, für Stahl gilt z. B.: 
 D 0;3.

Für Flüssigkeitsthermometer ist Quecksilber (Hg) als Füllung geeignet, da es
zwischen �39 ıC und C356 ıC flüssig ist. Zudem ist der Ausdehnungskoeffizi-
ent im Temperaturbereich von �35 ıC bis C350 ıC weitgehend konstant, auch
tritt keine Benetzung der Röhren-Innenwandung ein. Nachteilig ist die Toxizität
(Giftigkeit) des Stoffes. Aus diesem Grund kommen heutzutage für Flüssigkeits-
thermometer Toluol (�90 ıC bisC110 ıC/ oder Pentan (�200 ıC bisC35 ıC/ zum
Einsatz, auch Alkohol oder Ethanol. Der �T -Wert der genannten Flüssigkeiten be-
trägt in allen Fällen ca. 1;100 � 10�3.

Die Verwendung von Quecksilber für Fieberthermometer (Messspanne:C36 ıC
bis C44 ıC/ ist inzwischen verboten. – Alternativ werden Digitale Fieberthermo-
meter eingesetzt. Sie messen die von einem Sensor erfasste Temperaturänderung
über die hierbei auftretende elektrische Widerstandsänderung. – Beim Infrarotther-
mometer wird die Temperaturstrahlung (meist im Ohr) gemessen und die Strah-
lungsintensität im Gerät verarbeitet.

3.2.4 Anomalie desWassers

Wasser zeigt oberhalb des Schmelzpunktes (˙0 ıC) ein unübliches Verhalten: Es
dehnt sich bei steigender Temperatur oberhalb von˙0 ıC bis zur Temperatur # D
4 ıC nicht aus, sondern schrumpft. Die Dichte steigt in diesem Temperaturbereich,
das bedeutet, es wird ‚schwerer‘. Erst oberhalb # D 4 ıC dehnt sich Wasser aus,
die Dichte sinkt, es wird ‚leichter‘. Zusammengefasst: Bei # D 4 ıC ist Wasser
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Abb. 3.6

Abb. 3.7

am dichtesten (‚schwersten‚). Abb. 3.6 zeigt die Dichte-Temperatur-Kurve destil-
lierten Wassers für zwei Temperaturbereiche. Diese sogen. Anomalie des Wassers
beruht auf der temperaturabhängigen Packungsdichte der Wassermoleküle. Sie ist
bei # D 4 ıC am höchsten.

Wenn bei tiefer Lufttemperatur imWinter die Temperatur der oberflächennahen
Wasserschicht eines stehenden Gewässers auf # D 4 ıC sinkt, taucht das derart er-
kaltete Wasser der Oberfläche in die Tiefe ab, wärmeres Wasser steigt auf. Erst
wenn das Wasser im gesamten Becken weitgehend auf 4 ıC abgekühlt ist, beginnt
das Gewässer, von der Oberfläche aus, zu gefrieren (Abb. 3.7). Ein Durchfrieren
des Gewässers tritt bei ausreichender Tiefe nicht ein. Eis ist zudem ein schlech-
ter Wärmeleiter, unter der Eisdecke bleibt die Wärme bei einer Temperatur 4 ıC
‚gefangen‘. Das ermöglicht der Flora und Fauna am Grund des Gewässers zu über-
leben. Ohne diese Anomalie des Wassers hätte sich das Leben auf Erden nicht
entwickeln können!
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Abb. 3.8

Anmerkungen
Gefrorenes Wasser, also Eis, schwimmt auf flüssigem Wasser, weil es, wie erläutert, im
festen Zustand leichter ist als im flüssigen. –

Wegen des Salzgehaltes liegt die Dichte von Meerwasser höher, sie beträgt ca.
1025 kg=m3 . Die Dichte eines Eisberges (aus Süßwasser bestehend!) beträgt wegen der
Lufteinschlüsse nur ca. 920 kg/m3. Die Spitze des schwimmenden Eisberges ragt daher ca.
10% aus dem Wasser heraus, wie man mit Hilfe des archimedischen Prinzips bestätigen
kann (Abb. 3.8).

Unter Druck sinkt der Schmelzpunkt des Wassers, man spricht von Druckschmelzen.
Hierauf beruht das Wandern der Gletscher: Unter ihrer Eigenlast verflüssigt sich das Eis
am Boden des Gletschers. Die darüber liegende Eismasse gleitet ab. – Unter den Kufen
von Schlitten und Schlittschuhen schmilzt das Eis infolge des lokal hohen Drucks. Der Rei-
bungskoeffizient sinkt dadurch nochmals weiter ab. Bei strenger Kälte wirkt das Eis beim
Eislaufen ‚stumpf‘, weil sich der Effekt nicht so ausprägen kann.

In (Fels-)Spalten gefrierendes Wasser dehnt sich aus (unterhalb 4 ıC, wie gezeigt), was
sich als Sprengkraft auf das Gestein auswirkt. Das befördert, gemeinsam mit dem abflie-
ßenden Wasser, die Erosion der Gebirge. – Gefüllte Wasserleitungen können beim Gefrieren
bersten. – Das durch Risse unter Fahrbahndecken von Straßen eindringende Wasser vermag
den Belag beim Frost aufzusprengen, wodurch der Schaden progressiv fortschreitet. (Die
Abhängigkeit des Schmelzpunktes von Druck und tieferer Temperatur ist bei Wasser recht
komplex. Neben der oben erwähnten Anomalie gibt es weitere, insofern ist Wasser ein ‚be-
sonderer Saft‘.)

3.2.5 Gase bei Wärmeeinwirkung

3.2.5.1 Ideale Gase – Thermisches Gasgesetz
Im gasförmigen Aggregatzustand bewegen sich die Atome/Moleküle nochmals in-
tensiver als im flüssigen. Sie sind untereinander losgelöst. Ihre mittlere Geschwin-
digkeit steigt mit der Temperatur. Der Raum wird von den Gasatomen/-molekülen
im Mittel gleichförmig ausgefüllt. Im Vergleich zum flüssigen Aggregatzustand
sind Teilchen- und Massendichte extrem gering. Man spricht von einem idea-
len Gas, wenn das Eigenvolumen der Teilchen im Vergleich zum Gasvolumen so
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Abb. 3.9

gering ist, die Teilchen liegen dann soweit auseinander, dass ihre gegenseitige gra-
vitative Wechselwirkung vernachlässigt werden kann.

Bei konstantem Druck dehnt sich Gas umso stärker aus, je höher die Tempe-
ratur ansteigt. Dabei dehnt es sich im Gegensatz zur Fest- und Flüssigphase nicht
nach einem stoffabhängigen sondern in allen Fällen nach einem stoffunabhängi-
gen Gesetz aus! Es lautet:

�VT D �T ��T � V ! VT D V C�VT D .1C �T ��T / � V
mit �T D 1

273;15
D 0;003661 � K�1.

Mit Hilfe des in Abb. 3.9 dargestellten Gasthermometers kann die Tempera-
tur einer Flüssigkeit gemessen werden: Durch den Druck des erwärmten Gases
wird der Flüssigkeitsspiegel der im gewinkelten Rohr liegenden Flüssigkeit (z. B.
schweres Quecksilber) um �h verschoben. Damit geht eine Änderung der Ge-
wichtskraft in der Flüssigkeitssäule einher. Nach entsprechender Eichung des Flüs-
sigkeitsstands, z. B. orientiert am Schmelz- und/oder Siedepunkt von Wasser, kann
die Apparatur als Thermometer eingesetzt werden. Geeignet ist das Gasthermome-
ter von�270 ıC bis ca. 1000 ıC.Werden hiermit unterschiedliche Gase vermessen,
bestätigt man folgenden Befund:

p � V D n �R � T
Das ist das Thermische Gasgesetz für ideale Gase; es handelt sich um ein Natur-
gesetz! Es gilt in Annäherung auch für reale Gase, vorausgesetzt, die Temperatur
im Gas ist hoch genug und liegt weit genug vom Siedepunkt der Flüssigphase ent-
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Abb. 3.10

fernt. Das Gesetz besagt: Das Produkt aus Druck (p) und Volumen (V ) ist der
absoluten Temperatur (T ), gemessen in Kelvin, proportional. Abb. 3.10 zeigt den
Graphen p als Funktion von T , wenn V konstant ist. Alle Geraden gehen vom
absoluten Nullpunkt aus. Die Gültigkeit endet dort, wo der Stoff bei sehr tiefer
Temperatur vom gasförmigen in den flüssigen Zustand übergeht. – Beispiele für
die Siedetemperatur bei Umgebungsdruck:

Stickstoff (N2): �196 ıC
Sauerstoff (O2): �183 ıC,
Methan (CH4): �162 ıC,
Wasserstoff (H): �253 ıC,
Helium (He): �269 ıC.

In obiger Gleichung bedeuten weiter:

n: Teilchenmenge in Mol,
R: Universelle Gaskonstante:

R D 8;316 J=.molK/ D 8;316Nmmol�1 K�1

Wird das Thermische Gasgesetz umgestellt, gilt für zwei Zustände 1 und 2:

p � V
n � T D R ! p1 � V1

n1 � T1

D p2 � V2

n2 � T2

Hiervon ausgehend folgen die für ein ideales Gas geltenden Gesetze, wie sie in der
Frühzeit der Physik erkannt und postuliert wurden (Bd. I, vgl. Abschn. 2.7.3).
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Abb. 3.11

Die erste zutreffende Deutung und Beschreibung des Gasdrucks geht auf
D. BERNOULLI (1700–1782) zurück, publiziert in seiner Schrift ‚Hydrodynami-
ca‘ (1738).

Die Gasgesetze lauten:

� Gesetz von R. BOYLE und E. MARIOTTE: T D konst: p � V D konst
� Erstes Gesetz von J.G. GAY-LUSSAC: p D konst: V=T D konst
� Zweites Gesetz von J.G. GAY-LUSSAC: V D konst: p=T D konst
� Gesetz von A. AVOGADRO: Alle Gase, gleich welchen chemischen Stoffes,

enthalten unter gleichen Bedingungen gleich viele Teile (Atome oder Molekü-
le).

Für die Zustände eines idealen Gases mit einer bestimmten Stoffmenge gilt nach
Umstellung obiger Gleichung: p�V

T
D n �R D konst.

Die gegenseitige Abhängigkeit der Zustandsgrößen p, V und T nach diesem
Gesetz zeigt Abb. 3.11 in einem dreidimensionalen Zustandsdiagramm. Es hat die
Form einer hyperbolisch gekrümmten Fläche. Die Darstellung ist schematisch zu
sehen. Aus dem Diagramm ist die Abhängigkeit zwischen zwei Größen erkenn-
bar, wenn die jeweils dritte konstant gehalten wird: Kurven für T D konst sind
Hyperbeln: p � V D konst.

Dieses Gesetz wurde von R. BOYLE und E. MARIOTTE als erstes Gasge-
setz entdeckt. Auf die Erläuterungen in Bd. I, Abschn. 2.7.3 wird an dieser Stelle
nochmals verwiesen. – Wie sich das Thermische Gasgesetz für ideale Gase auf der
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Basis eines vergleichsweise einfachen mechanischen Modells herleiten bzw. deu-
ten lässt, wird an späterer Stelle gezeigt, auch die Erweiterung des Gesetzes auf
reale Gase.

3.2.5.2 Zur praktischen Anwendung des Thermischen
Gasgesetzes

Ist die Stoffmenge eines Körpers gleich ‚1 Mol‘, so besteht der Körper aus 6;022 �
1023 Teilchen. Diese Definition gilt unabhängig vom Aggregatzustand. Für eine
Stoffmenge ‚1 Mol‘ wird n D 1mol geschrieben, n ist das Formel- und mol das
Einheitenzeichen für die Stoffmenge n. Die Anzahl der Teilchen der Stoffmenge
n D 1mol nennt man Avogadro’sche Konstante:

NA D 6;022 � 1023 mol�1 oder NA D 6;022 � 1026 kmol�1

kmol heißt Kilomol, das ist das 1000-fache von einem Mol.
Teilchen können Atome, Ionen, Moleküle oder andere Elementarteilchen sein.

Im Folgenden wird unter dem Begriff ein ‚Teilchen‘ ein (Gas-)Molekül verstanden
(wenn nichts anderes gesagt ist). Moleküle bilden die Bausteine der Materie, auch
der Gase, von Ausnahmen abgesehen, z. B. Edelgase, sie sind einatomig.

Hat ein Körper eines bestimmten Stoffes die Stoffmenge n D 1mol, nennt
man die zugehörige Masse ‚Molare Masse‘ mM . Sie wird in kg gemessen. Man er-
hält die Molare Masse eines Stoffes, indem man die absolute Masse des einzelnen
Moleküls (ma) mit NA multipliziert. Die absolute Masse ma erhält man, indem
die relative Atommasse (mr ) mit der Atomaren Einheit u D 1;6605 � 10�27 kg
multipliziert wird. Die Molare Masse bleibt für einen Stoff beim Wechsel des
Aggregatzustandes unverändert, da sich die Anzahl der Moleküle beim Übergang
in einen anderen Aggregatzustand weder vergrößert noch verkleinert: Es gilt das
Massenerhaltungsgesetz.

Beispiel
Kohlendioxid CO2: C: mr D 12;011, O: mr D 15;999 (Angaben zur Relativen Atommasse
mr und zum Periodensystem der Elemente enthält Bd. I, Abschn. 2.7 und 2.8). Die Molare
Masse berechnet sich in folgenden Schritten:

CO2W mr D 12;011C 2 � 15;999 D 44;009

! ma D 1;6605 � 10�27 � 44;009 D 73;081 � 10�27 kg

mM D 73;081 � 10�27 kg � 6;022 � 1023 mol�1 D 440;096 � 10�4kgmol�1

D 0;044096 kg mol�1 � 44 g=mol
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Von dem Gas werde eine Menge der Masse m D 1 kg betrachtet. Deren Stoffmenge beträgt:

n D m

mM

D 1000 g

44 g=mol
D 22;7mol

Hierfür lautet die Gasgleichung:

p � V D n �R � T ! p

�
N

m2

�
� V Œm3� D nŒmol� �R

�
Nm

molK

�
� T ŒK�

! p � V D 22;7 � 8;315 � T ! p � V D 188;75 � T

Von dieser Gleichung ausgehend können unterschiedliche Fragestellungen bearbeitet wer-
den.

Als ‚Normbedingungen‘ sind (auf der Erdoberfläche) die Zustandsgrößen Luftdruck und
Lufttemperatur zu p D 1;01325 � 105 Pa und # D 0 ıC (T D 273;15K) vereinbart. 1 kg
eines CO2-Gases nimmt unter diesen Bedingungen folgendes Volumen ein:

V D 188;75 � T
p

D 188;75 � 273;15

1;01325 � 105
D 0;5088m3 D 508;8 dm D .508;8 l/

Dividiert man dieses Volumen durch die Stoffmenge n D 22;7mol, ergibt sich das Molare
Volumen zu:

VM D V

n
D 0;5088m3

22;7mol
D 0;0224m3=mol D 22;4m3=kmol .22;4 l=mol/

Alle Gase nehmen unter gleichen Bedingungen dasselbe Molare Volumen ein,
die Anzahl der Moleküle ist hierin für alle Gase gleichgroß (Satz von AVOGA-
DRO). Dieser sich aus der allgemeinen Gasgleichung für ideale Gase ergebende
Befund konnte auch für die meisten realen Gase experimentell bestätigt werden.
Ist die Dichte des realen Gases sehr hoch, gilt die Thermische Gasgleichung nicht
mehr. Die Gleichung bedarf dann einer Modifikation.

3.2.5.3 Einführung in die kinetische Gastheorie
Betrachtet werde ein einatomiges Gas, das sich in einem geschlossenen Raum be-
findet. Die Anzahl der Atome sei N . Die Atome werden als kleine harte Kügelchen
gedeutet. Ihre Einzelmasse sei ma. Wenn sie gegen die Wand, die den Raum um-
gibt, prallen, möge dieser Prallstoß vollelastisch sein, das bedeutet, es wird beim
Stoß keine Energie zerstreut (dissipiert). Von den Atomen wird ein einzelnes her-
aus gegriffen. Es trage die Nummer i . i ist die Laufvariable von i D 1 bis i D N .
Im momentanen Zeitpunkt t habe das Atom i die Geschwindigkeit vi . Deren Kom-
ponenten in den Richtungen x, y, z seien vix , viy , viz (Abb. 3.12a).
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Abb. 3.12

Innerhalb des Zeitintervalls �t (von t bis t C�t/ bewege sich das betrachtete
Atom mehrfach zick-zack-förmig zwischen den Trennwänden in Richtung x hin
und her. Die Raumtiefe in dieser Richtung sei l .

Die eine Wand des Raumes sei ein Kolben mit der Fläche A. Das Volumen im
Zylinder ist dann V D A � l , vgl. Abb. 3.12b. Durch Verschieben des Kolbens kann
das Volumen verändert werden. Innerhalb des Zeitintervalls �t legt das Atom auf
seinem Zick-Zack-Kurs insgesamt die Strecke vix ��t zurück (WegD Geschwin-
digkeit mal Zeit). Bei jedem zweiten Prallstoß trifft das Atom auf die Kolbenfläche.
Innerhalb �t beträgt demnach die Anzahl der Stöße gegen die Kolbenfläche:

vix ��t

2l

Bei jedem dieser Stöße ist der Impuls des Atoms i gleich ma �vix (ImpulsDMasse
mal Geschwindigkeit). Sowohl beim Aufprall wie anschließend beim Rückprall
wird ein Impuls abgesetzt, denn der Prallstoß ist, wie vorausgesetzt, elastisch. Die
Summe der beiden Impulse auf die Kolbenfläche ist demnach: 2 � ma � vix . In der
Zeiteinheit �t beträgt somit der Gesamtimpuls auf die Fläche des Kolbens:

�Iix D 2 ma � vix � vix ��t

2l
D ma ��t

l
� v2

ix

Der abgesetzte Impuls wird hier mit I abgekürzt. Es ist der Einzelimpuls des
Atoms i mit der Geschwindigkeit vix in Richtung x: Da die N Atome dieselbe
Masse aber unterschiedliche Geschwindigkeiten haben, bewirken sie gemeinsam
im Zeitintervall �t die Impulsänderung:

�Ix D ma ��t

l
�

NX

iD1

v2
ix D

ma ��t

l
�N �

NX

iD1

v2
ix

N

HinweisP
ist das Summenzeichen. Die Summe erstreckt sich von i D 1 bis i D N .
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Die Geschwindigkeit der einzelnen Atome ist ungleich. Handelt es sich bei-
spielsweise um 5 Atome (N D 5/ mit den Geschwindigkeiten 1, 5, 3, 5, 6, beträgt
der Summenausdruck in vorstehender Gleichung:

12 C 52 C 32 C 52 C 62

5
D 1C 25C 9C 25C 36

5
D 96

5
D 19;2

Einen solchen Ausdruck nennt man ‚quadratischen Mittelwert‘. Der Ausdruck
wird durch das Symbol h � i gekennzeichnet. Mit dieser Vereinbarung kann die
Gleichung für �Ix zu �Ix D ma ��t

l
�N � ˝v2

x

˛
angeschrieben werden. Die im Mittel

innerhalb des Zeitintervalls �t in Richtung x auf die Kolbenfläche A abgesetzte
Kraft ist gemäß Lex II (KraftD zeitliche Änderung des Impulses, vgl. Abschn. 1.5;
die zeitliche Änderung ist hier �t ):

F D Fx D �Ix

�t
D N � ma �

˝
v2

x

˛

l

Der auf die Kolbenfläche wirkende Druck p D F=A beträgt (Kraft durch Fläche):

p D F

A
D N � ma �

˝
v2

x

˛

A � l D N

V
�ma �

˝
v2

x

˛

Das Gas sei homogen: Es gibt innerhalb des Gasvolumens keine bevorzugte Rich-
tung: Die quadratischen Mittelwerte der drei Geschwindigkeitskomponenten sind
gleichgroß. Jede Komponente liefert denselben Anteil an der Geschwindigkeit v:

˝
v2

x

˛ D
D
v2

y

E
D ˝

v2
z

˛ D ˝
v2

˛
=3

Damit nimmt die Gleichung für p folgende Form an:

p D N

V
�ma � 1

3

˝
v2

˛ ! p � V D 2

3
�N �

�
ma � v2

2



(a)

Die Größe

hEkini D
�
ma � v2

2



(b)

ist die mittlere (durchschnittliche) kinetische Energie der einzelnen Teilchen (hier
der einzelnen Atome). Multipliziert mit N , erhält man die gesamte im Volumen V
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enthaltene mittlere kinetische Energie des Gases. Von diesem Ansatz ausgehend,
wird die Temperatur des Gases zu

hEkini D 3

2
� kB � T (c)

definiert. Die mittlere kinetische Energie der Gasteilchen und die Temperatur im
Gas verhalten sich proportional zueinander.

In dieser Vereinbarung ist .3=2/ � kB ein Proportionalitätsfaktor. kB kann nur
im Experiment bestimmt werden. Die Definition bedeutet: Wenn die mittlere ki-
netische Energie des Gases Null ist, ist auch T gleich Null. Dem Erreichen der
Temperatur Null (also dem Absinken der Gastemperatur auf Null), gehen die Ag-
gregatzustände flüssig und fest voraus. Im Temperaturnullpunkt kommt jede Be-
wegung der Teilchen zum Erliegen. –

Wird (a) über (b) mit der Vereinbarung gemäß (c) verknüpft, folgt:

p � V D N � kB � T (d)

Damit ist das Thermische Gasgesetz für ideale Gase hergeleitet. Im vorliegenden
Fall für einatomige Gase. Das Gesetz wurde durch unzählige Experimente verifi-
ziert. Hierbei wurde für kB der Wert: kB D 1;381 � 10�23 J=K bestimmt. Auch kB

ist eineNaturkonstante! Sie wurde nach L. BOLTZMANN (1844–1906) benannt,
man spricht daher auch von der Boltzmann’schen Konstante.

Die Herleitung des Gesetzes mag erstaunen, weil der für makroskopische Kör-
per (‚elastische Kugeln‘) geltende Impulssatz offensichtlich zu einem zutreffenden
Ergebnis führt, hier für mikroskopische Partikel (Atome)! Noch mehr: Die Herlei-
tung gilt unverändert auch fürmehratomigeGase. In diesem Falle werden anstelle
der Atome die Gasmoleküle als winzige kugelförmige Teilchen mit der Masse
ma begriffen, wobei ma die gemeinsame Masse jener Atome beinhaltet, die im
Molekül vereinigt sind. Während sich ein einzelnes Atom nur in drei Richtungen
translatorisch bewegen kann, haben die Atome in einem Molekül zusätzliche Be-
wegungsmöglichkeiten (Freiheitsgrade), unter anderem rotatorische. Das führt auf
einen modifizierten Ausdruck für die innere Energie des Gases und damit zu einer
modifizierten Definition der Temperatur (vgl. Abschn. 3.2.5.5, 1. Ergänzung).

Herrschen in zwei unterschiedlichen Gasen gleichen Volumens V gleicher
Druck p und gleiche Temperatur T , enthalten sie gleich viele Teile, wie man aus

N D p � V
kB � T

erkennt: Die rechte Seite ist unabhängig von der chemischen Sorte des Gases! Das
ist die Aussage des Avogadro’schen Gesetzes.
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Die Stoffmenge n eines Gasvolumens in Mol kann berechnet werden, indem
die Gesamtanzahl der Teilchen durch NA (Avogadro-Konstante) dividiert wird:

n D N=NA

Setzt man N D n �NA in (d) ein, erhält man einen modifizierten Ausdruck für das
abgeleitete Gasgesetz:

p � V D n � NA � kB � T D N � kB � T (e)

Wird schließlich noch die Universelle Gaskonstante zu

R D NA � kB D 8;316
J

molK

vereinbart, erhält man:

p � V D n �R � T (f)

Die Gleichungen (d), (e) und (f) sind gleichwertige Versionen des Thermischen
(kinetischen) Gasgesetzes. Das Gesetz gilt für ideale Gase. Wird (e) nach p, also
nach dem Gasdruck im Volumen V , frei gestellt, folgt schließlich:

p D N

V
� kB � T D �N � kB � T I �N D N

V

�N ist die Teilchendichte im Gas, Einheit [m�3]. Der Gasdruck ist dieser Dichte
und der Temperatur proportional.

3.2.5.4 Barometrische Höhenformel
Zwischen den Luftschichten z und z C �z über Grund beträgt die (Luft-)Druck-
differenz (Abb. 3.13):

�p D p.z/� p.z C�z/ D �� � g ��z

Die Gleichung beinhaltet die Gleichgewichtsbedingung in lotrechter Richtung. �

ist die Luftdichte und g die Erdbeschleunigung. In der Höhe zC�z ist der Druck
geringer als in der Höhe z, bei Anstieg um �z sinkt der Druck, die Druckänderung
in obiger Gleichung ist daher negativ.

Erläuterung zur Gleichgewichtsgleichung: A ist der Querschnitt der Luftsäule,
� � A � �z ist die Masse und .� � A � �z/ � g die Gewichtskraft des Volumens der
Schichtdicke �z. Wird diese durch A dividiert, ergibt sich: j�pj D j�F=Aj D
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Abb. 3.13

j� � g ��zj. – Ist N die Anzahl der Luftteilchen (O2, N2) einer Volumeneinheit V

in Höhe z und ist ma die Teilchenmasse, berechnet sich die Dichte der Luft zu:

� D N �ma

V
! N D � � V

ma

Die Gasgleichung (e) nimmt damit folgende Form an (auf die Indizierung von kB

mit B wird verzichtet):

p � V D N � k � T ! p � V D � � V
ma

� k � T ! � D ma � p
k � T

Die Teilchendichte � ist proportional zum Druck p: Je höher der Druck, umso
höher die Dichte. –

Nach Übergang von der finiten Dicke �z der betrachteten Luftschicht auf die
infinitesimale Dicke dz, lautet die obige Gleichgewichtsbedingung:

dp D �� � g � dz D �ma � g
k � T � p � dz ! dp

dz
C ma � g

k � T � p D 0

Das ist eine Differentialgleichung für den Druck p in der Höhe z: p D p.z/. Die
Lösung lautet

p.z/ D C � e�ma �g
k�T �z

Indem diese Lösung in die Differentialgleichung eingesetzt wird, kann ihre Rich-
tigkeit bestätigt werden. Der in der Lösung vorhandene Freiwert C kann aus der
Bedingung, dass der Druck am Boden (z D 0) gleich p0 ist, gewonnen werden:
Setzt man p.z/ D p.z0/ D p0 für z D z0 D 0 folgt unmittelbar:

C D p0:
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Abb. 3.14

Die gesuchte barometrische Höhenformel lautet damit

p.z/ D p0 � e�
ma �g
k�T �z D p0 � e�

�0
p0
�g�z

; (g)

wenn noch aus der Gasgleichung � D �0 für p D p0 frei gestellt und in die
vorstehende Gleichung eingesetzt wird:

�0 D ma � p0

k � T ! ma

k � T D
�0

p0

Grundlage der vorangegangenen Herleitung ist die Annahme, dass Erdbeschleu-
nigung und Temperatur höhenunabhängig, also konstant sind. Das ist nur bis zu
einer gewissen Höhe innerhalb der unteren Luftschicht näherungsweise richtig.

Bei konstanter Temperatur sinkt der Druck exponentiell mit der Höhe, damit
sinkt entsprechend die Dichte

� D ma

k � T p

und ebenso die Anzahl der Moleküle in der Volumeneinheit (die Luft wird ‚dün-
ner‘). Abb. 3.14 zeigt, wie der Druck und damit die Dichte � mit der Höhe abneh-
men. In der Höhe z D k � T=ma � g nimmt die e-Funktion die Größe e�1 D 0;37

an. Das bedeutet: Der Druck fällt auf 37% gegenüber p0 ab; die zugehörige Höhe
beträgt ca. 8000m.

1. Anmerkung
Die barometrische Formel lässt Folgendes erkennen: Da die Teilchenmasse (ma) im Ex-
ponenten der e-Funktion steht, ist der Gradient, mit dem Druck und Dichte mit der Höhe
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abnehmen, von der Gasart abhängig. Bei einer reinen Wasserstoffatmosphäre wäre die Ab-
nahme schwächer als bei der vorhandenen Luftatmosphäre (H2 hat eine um den Faktor ca.
15 geringere Molekülmasse als N2 und O2/. Eine reine Wasserstoffatmosphäre würde we-
sentlich weiter in den Weltraum reichen und wäre wohl längst entwichen. Die Masse der
Luftmoleküle ist dagegen gerade so geartet, dass die Erdanziehung sie gegen ein Entweichen
(infolge der durch die Sonneneinstrahlung verursachten Wärmebewegung) halten kann.

2. Anmerkung
Das Gewicht (die Gewichtskraft) eines Luftteilchens der Masse ma beträgt im Gravitations-
feld mit g D konst: ma �g. Demgemäß beträgt die potentielle Energie des Teilchens in Höhe
z gegenüber jener am Erdboden (Niveau 0):

Epot.z/ D .ma � g/ � z
Hiervon ausgehend kann die Höhenformel auch zu

p.z/

p0

D e�
Epot .z/

k�T

angeschrieben werden. – Für zwei unterschiedliche Höhen z D h1 und z D h2, wobei
h2 > h1 gelten möge, beträgt das Druckverhältnis:

p2

p1

D e�
Epot;2�Epot;1

k�T

Das Verhältnis der Teilchendichten �2=�1 und der Teilchenanzahlen N2=N1 in Höhe des
Niveau 2 gegenüber Niveau 1 entspricht dem Verhältnis p2=p1 der zugehörigen Drücke auf
den beiden Niveaus. Wird die Differenz der potentiellen Energien auf den beiden Niveaus
mit �Epot D Epot;2 �Epot;1 abgekürzt, gilt zusammengefasst:

�2

�1

D N2

N1

D p2

p1

D e�
�Epot

k�T

Der rechtsseitige Ausdruck, also die e-Funktion, wird als Boltzmann’scher Faktor be-
zeichnet. Er tritt bei thermodynamischen Problemen dann auf, wenn es darum geht, die
Verhältnisse in einem Gas auf zwei unterschiedlichen thermischen Energieniveaus miteinan-
der zu vergleichen.

3. Anmerkung
Würde die Sonne ihre Einstrahlung über Nacht einstellen, würde die Temperatur alsbald so
tief absinken, dass sich die Luftatmosphäre bei ca.�190 ıC verflüssigen und bei ca. �210 ıC
verfestigen würde, die Erde wäre anschließend mit einer ca. 10m dicken Kruste aus gefro-
renem Stickstoff und Sauerstoff bedeckt. Auch das Wasser der Meere würde bis in große
Tiefen gefrieren. Wie sich die Wärme des Erdkerns auf das Geschehen auswirken würde, ist
müßige Spekulation. Denkbar wäre das Szenario, sollte die Erde infolge einer kosmischen
Katastrophe ins Weltall geschleudert werden. Dank der dem Planetensystem innewohnenden
hohen Stabilität, ist dieser Fall auszuschließen.
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3.2.5.5 Erweiterungen zur kinetischen Gastheorie
Die in Abschn. 3.2.5.3 vorgestellte Gastheorie bedarf in mehrfacher Hinsicht einer
Reihe von Zuschärfungen. Um welche es sich dabei im Einzelnen handelt, soll im
Folgenden in gebotener Kürze gezeigt werden.

1. Erweiterung: Gasgesetz mehratomiger Gase Die oben gezeigte Herleitung
galt für einatomigeGase. Sie führte auf die Definition der Temperatur idealer Gase
als Funktion der mittleren kinetischen Energie ihrer Atome, (c):

hEkini D 3

2
� kB � T

Die mittlere kinetische Energie eines idealen Gases ist gleich der Summe der ki-
netischen Energien ihrer einzelnen Geschwindigkeitskomponenten:

hEkini D
�
ma � v2

x

2



C

*
ma � v2

y

2

+
C

�
ma � v2

z

2




Für jede einzelne Komponente gilt (c), in Verbindung mit (b) bedeutet das:

�
ma � v2

x

2



D 1

2
� kB � T;

*
ma � v2

y

2

+
D 1

2
� kB � T;

�
ma � v2

z

2



D 1

2
� kB � T

Jede Geschwindigkeitskomponente (vx , vy , vz , das sind die drei atomaren Frei-
heitsgrade des einatomigen Gases) liefert zur mittleren kinetischen Energie des
Gases einen gleich hohen Beitrag (Abb. 3.15a).

Bei mehratomigen Gasen treten weitere Bewegungskomponenten der Atome im
Molekül hinzu: Wird die Verbindung der Atome eines zweiatomigenMoleküls als
starr angesehen (bildlich als ‚Hantel‘), vermag sich deren Schwerpunkt ebenfalls
in drei (unabhängigen) Richtungen translatorisch zu bewegen (Abb. 3.15b, Nr.: 1,
2 und 3). Zu diesen drei Bewegungen treten zwei rotatorische hinzu. Das sind jene
Rotationen, mit denen sich die beiden Atome um zwei beliebige, zur gemeinsamen
Verbindungslinie senkrecht stehende Achsen (unabhängig von einander) bewegen
können (Abb. 3.15b, Nr.: 4 und 5). Eine Rotation um die Verbindungsachse ist
auch möglich, liefert indessen keinen Beitrag, da die Atome als Massenpunkte
betrachtet werden.

Die Verbindung zwischen den Atomen ist real nicht starr, sondern kann auf-
grund der molekularen Wechselwirkung zwischen den Atomen als federelastisch
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Abb. 3.15

gedeutet werden, das liefert einen weiteren Freiheitsgrad in Richtung der Verbin-
dungsachse (Abb. 3.15b, Nr.: 6). Jeder Freiheitsgrad liefert nach dem ‚Gleich-
verteilungssatz‘ den gleichen Beitrag zur mittleren kinetischen Energie. Ist f der
Freiheitsgrad, sind es f Anteile, die in ihrer Summe die mittlere kinetische Ener-
gie ausmachen. Die Definition der Temperatur T gemäß (c) wird für molekulare
(mehratomige) Gase zu

hEkini D f � 1
2
� kB � T (h)

erweitert, vgl. Abschn. 3.2.5.3.

2. Erweiterung: Maxwell’sches Verteilungsgesetz Wie ausgeführt, bewegen
sich die Gasteilchen mit unterschiedlichen Geschwindigkeiten, es gibt solche mit
hoher, solche mit geringer und solche mit mittlerer Geschwindigkeit. Es ist zu
erwarten, dass die Teilchen mit mittlerer Geschwindigkeit am häufigsten vertreten
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Abb. 3.16

sind. Ihre Auftretenswahrscheinlichkeit dürfte von einer Funktion beherrscht wer-
den, wie in Abb. 3.16 als Hypothese gemutmaßt: Die Wahrscheinlichkeitsfunktion
der Geschwindigkeit ist hierin als Ordinate über der Geschwindigkeit als Abszis-
se aufgetragen. Die Summe unter der Fläche ist gleich 1, was 100% entspricht:
Innerhalb des betrachteten Bereiches sind die Geschwindigkeiten gemäß dem Kur-
venverlauf verteilt. Die schraffierte Fläche in Abb. 3.16a gibt jenen Prozentsatz
von v an, der kleiner/gleich v� ist. Aus der Darstellung in Abb. 3.16b folgt der
Prozentsatz jener Teilchen, deren Geschwindigkeit zwischen v und v C dv liegt.

Im Jahre 1859 wurde die in Abb. 3.16 als Hypothese angenommene Wahr-
scheinlichkeitsfunktion von J.C. MAXWELL (1831–1879) hergeleitet und im Jah-
re 1876 von L. BOLTZMANN theoretisch begründet. Sie lautet (vgl. 3. Ergän-
zung):

f .v/

N
D 4�

�
ma

2�kBT

�3=2

� v2 � e�mav2

2kB T (i)

In Abb. 3.17 sind je vier Graphen dieser Funktion für zwei Gase, Stickstoff N2 und
Sauerstoff O2, wiedergegeben und das für vier Temperaturen. In der Wahrschein-
lichkeitstheorie nennt man solche Graphen Dichteverteilung (im vorliegenden Fal-
le für die Häufigkeitsverteilung der Teilchengeschwindigkeit). Die Funktion selbst
nennt man Dichtefunktion, vgl. Bd. I, Abschn. 3.9.2.

Die absolute Molekülmasse der Gase beträgt:

Stickstoff N2: ma D 2 � 14;007 � 1;66054 � 10�27 D 46;48 � 10�27 kg und
Sauerstoff O2: ma D 2 � 15;999 � 1;66054 � 10�27 D 53;14 � 10�27 kg

Die Massen sind selbstredend unabhängig von der Temperatur, hier gewählt 100,
300, 500 bzw. 700K. Man erkennt: Je höher die Temperatur ist, umso weiter ver-
schieben sich die Kurven zu höheren Molekülgeschwindigkeiten.
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Abb. 3.17

Zwei Kennwerte lassen sich explizit angeben: Jene Geschwindigkeit, die die
Teilchen bei einer bestimmten Temperatur T des Gases am häufigsten (am wahr-
scheinlichsten) von allen möglichen Geschwindigkeiten annehmen (D Maximum
der Dichtefunktion)

vmax D
�

2kB � T
ma

�1=2

und jene, von der aus gesehen, alle anderen Geschwindigkeiten beidseitig gleich
häufig auftreten (D 50%-Fraktile), das ist die durchschnittliche Geschwindigkeit
mit der sich die Teilchen bewegen:

vmittl D
�

3kB � T
ma

�1=2

.D 1;225 � vmax/

Die Zahlenwerte dieser beiden Kennwerte sind für die oben angegebenen Gase und
Temperaturen in den beiden Abbildungen eingetragen.

3. Erweiterung: Herleitung des Maxwell’sches Verteilungsgesetzes Die mo-
mentane Geschwindigkeit eines Gasteilchens ist unterschiedlich hoch. Sie ist von
der Abfolge und der Weglänge zwischen den Stößen abhängig. Jedes Teilchen
bewegt sich zick-zack-förmig in zufälliger Weise durch das Gasvolumen. Es ist
einsichtig, dass es unmöglich ist, den Wegverlauf zu berechnen, wohl lässt sich
eine Aussage über die wahrscheinliche Geschwindigkeit machen, mit der sich ein
Teilchen an einem bestimmten Ort bewegt. Dass das Geschehen im Gas von der
eingeprägten Wärme (D Energie) bestimmt wird, ist ebenso einsichtig.
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Jedem Teilchen wohnt eine seiner momentanen Geschwindigkeit v entspre-
chende kinetische Energie inne: ma � v2=2. – Im Gasvolumen gibt es keine be-
vorzugte Richtung. Der Geschwindigkeitsvektor kann jede Richtung gleichwahr-
scheinlich annehmen, das bedeutet: Rundum wird der Vektor die Kugelfläche 4� �
v2 gleichwahrscheinlich durchstoßen. – Wird zur Kennzeichnung der kinetischen
Energieänderung zwischen den Zuständen v und v C dv der in der 2. Anmerkung
in Abschn. 3.2.5.4 angegebene Boltzmann’sche Faktor übernommen, kann für die
gesuchte Wahrscheinlichkeitsdichte der momentanen Geschwindigkeit der Ansatz

f .v/ D K � 4� � v2 � e� E
k�T D K � 4� � v2 � e�ma �v2

2�k�T

gewählt werden. K ist eine noch zu bestimmende Konstante. Mit der Wahrschein-
lichkeitD 1 (100% sicher) liegt die Geschwindigkeit zwischen v D 0 und v D1:

1Z

0

f .v/ dv D 1 !
1Z

0

K � 4� � v2 � e�ma �v2

2�k�T D 1

! 4� �K �
1Z

0

v2 � e�ma �v2

2�k�T D 1

Für das bestimmte Integral ist die Lösung explizit bekannt (vgl. math. For-
melsammlungen). Davon ausgehend lässt sich die Konstante K berechnen. Sie
lautet:

K D
� ma

2� � k � T
�3=2

Eingefügt in den obigen Ansatz für die Wahrscheinlichkeitsdichte f .v/ bestätigt
man das Maxwell’sche Verteilungsgesetz.

4. Erweiterung: Freie Weglänge In Abschn. 3.2.5.3 ist unterstellt, dass es sich
bei den Atomen um Teilchen handelt, die mit Masse behaftet sind. Zudem werden
sie als punktförmige Gebilde ohne räumliche Ausdehnung angesehen. Gemäß die-
ser Annahme können die Teilchen nicht gegenseitig zusammenprallen. Wird die
Annahme aufgegeben und werden die Atome als winzige Kügelchen mit endli-
chem Radius gedeutet, sind gegenseitige Stöße möglich und das umso häufiger,
je dichter sie im Gas verteilt sind. Ist r der Radius eines Atoms, stoßen zwei von
ihnen bei gegenseitiger und gleichzeitiger Annäherung dann zusammen, wenn ihr
Abstand kleiner/gleich 2r ist (Abb. 3.18a). Die Kreisfläche mit dem Radius 2r um
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Abb. 3.18

den Mittelpunkt des kugelförmigen Teilchens nennt man ‚Wirkungsquerschnitt‘:
� D � � .2r/2 D 4�r2. Das Auftreffen eines Atoms auf diese Fläche hat einen
Stoß zur Folge (es be‚wirkt‘ einen Stoß, Abb. 3.18b).

Die Teilchen füllen das Volumen des Gases im Mittel gleichförmig aus. Je-
weils einzeln ist ihr gegenseitiger Abstand unterschiedlich, ebenso jeweils ihre
Geschwindigkeit. Einsichtiger Weise wird es einen gegenseitigen Abstand zwi-
schen ihnen geben, der dominiert. Diesen am häufigsten vorhandenen Abstand
zwischen den Teilchen nennt man ‚mittlere freie Weglänge‘, sie wird mit l ab-
gekürzt.

Abb. 3.18c zeigt die momentane Situation zweier Atome zueinander. Der lokale
Rauminhalt bis zum Zusammentreffen mit dem benachbarten Atom beträgt: � � l .

Werden die N Atome im geschlossenen Gasvolumen V in ihrer Gesamtheit
betrachtet, beträgt der auf ein einzelnes Atom entfallende lokale Rauminhalt im
Mittel:

p
2 � � � l . Der Faktor p2 berücksichtigt, dass sich alle Atome räumlich

gleichzeitig regellos bewegen und demgemäß die mittlere freie Weglänge bis zum
nächsten Zusammenstoß größer als die anschaulich geometrische ist. Alle infini-
tesimalen Volumina füllen zusammen das Volumen V aus. Aus dieser Bedingung
lässt sich die mittlere freie Weglänge ableiten:

V D N � p2 � � � l
! l D V

N
� 1p

2 � 4� � r2
D 1

N=V
� 1p

2 � 4� � r2
D 1p

2 � 4� � �N � r2

�N ist die Teilchenanzahl pro Volumeneinheit (Teilchendichte) D N=V [1=m3].
Durch Abschätzung der mittleren freien Länge und des Durchmessers von Luft-

molekülen unter Normalbedingungen, gelang es H. LOSCHMIDT (1821–1895) im
Jahre 1865, deren Anzahl pro Volumeneinheit abzuschätzen; der Wert lag um den
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Faktor 15 zu niedrig. Im Laufe der Zeit konnte die Zahl immer genauer experi-
mentell ermittelt werden. Man nannte sie einst Loschmidt’sche-Zahl, heute heißt
sie Avogadro-Konstante (NA).

3.2.5.6 Ergänzungen und Beispiele

Abkürzungen und Einheiten der thermodynamischen Größen
mr : Relative Masse eines Teilchens (eines Atoms oder Moleküls). Für die Ato-

me der einzelnen chemischen Elemente kann mr dem Periodensystem der
Elemente entnommen werden.

ma: Absolute Masse eines Teilchens in kg: ma D u �mr

u: Atomare Masseneinheit: u D 1;66054 � 10�27 kg
N : Anzahl der Teilchen eines Gases mit dem Volumen V

m: Masse des Gases in kgDMasse aller Teilchen: m D N �ma

V : Volumen des Gases in m3

�: (Massen-)Dichte des Gases in kgm�3: � D m=V

�N : Teilchendichte des Gases pro Volumeneinheit: �N D N=V in m�3

p: Druck des Gases in N �m�2 (1N D 1 kgm s�2)
T : Temperatur in K
n: Stoffmenge im Gasvolumen V in mol: n D N=NA mit NA D 6;02214 � 1023

mM : Molare Masse in kgmol�1: mM D m=n. Die molare Masse mM D
1 kgmol�1 enthält NA Teilchen: mM D NA �ma

VM : Molares Volumen in m3 mol�1: VM D V=n. VM D 1m3 mol�1 enthält NA

Teilchen.
R: Universelle Gaskonstante: R D 8;31447 Jmol�1 K�1

kB : Boltzmann-Konstante: kB D 1;38065 � 10�23 JK�1 (1 J D 1Nm/.

1. Ergänzung: Spezifische Gaskonstante, molare Masse
Wird in der Zustandsgleichung (a) für ideale Gase die Stoffmenge n durch n D m=mM

ersetzt, ergibt sich für das Gasgesetz die Gleichungsversion:

p � V
T
D m

mM

�R

Der Quotient R=mM wird als spezifische Gaskonstante bezeichnet:

Rs D R

mM

Rs ist stoffabhängig. Mit dieser Vereinbarung lautet die Zustandsgleichung:

p � V
T
D m �Rs
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Abb. 3.19

Für Wasserstoffgas (H2) berechnet sich Rs in folgenden Schritten:

mr D 2 � 1;00794 D 2;01588

! ma D u �mr D 1;66054 � 10�27 � 2;015882 D 3;34745 � 10�27 kg

! mM D NA �ma D 6;02214 � 1023 � 3;34745 � 10�27 D 2;01588 � 10�3 kgmol�1

! Rs D R=mM D 8;31447=2;01588 � 10�3 D 4124 J K�1 kg�1:

Rs und mM sind in der Tabelle der Abb. 3.19 eingetragen. – Der Zahlenwert der Mola-
ren Masse in kgmol�1 ist gleich dem Zahlenwert der relativen Atom- bzw. Molekülmasse:
mM D mr in kg kmol�1 D kg=kmol D g=mol.

Als physikalische Normalbedingungen sind vereinbart:

#0 D 0 ıC ! T0 D 273;15K und p0 D 1013;25 hPa D 101:325Pa .� 1 bar/

Anstelle Normalbedingung spricht man auch von Normbedingung, Standardbedingung,
Normzustand, Normalatmosphäre oder NN (Normal über Null).

Als technische Normalbedingungen sind vereinbart:

#0 D 20 ıC ! T0 D 293;15K

und Luftdruck wie bei der physikalischen Normalbedingung.
Für Wasserstoffgas (H2-Gas) folgt für die (Massen-)Dichte �0 unter physikalischen Nor-

malbedingungen aus der Zustandsgleichung:

p � V
T
D m �Rs ! m

V
D p

T �Rs

! � D p

T �Rs

! �0 D p0

T0 �Rs

D 101:325

273;15 � 4124
D 0;08995 kgm�3
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Auch dieser Wert ist für andere Gase in der Tabelle der Abb. 3.19 eingetragen. – Für Pro-
pangas (C3H8) liefert eine entsprechende Rechnung:

mr D 3 � 12;0107C 8 � 1;00794 D 44;0962I
ma D 73;2235 � 10�27 kgI mM D 44;0962 � 10�3 kgmol�1

Rs D 8;31447=44;0962 � 10�3 D 189 J K�1 kg�1:

�0 D 101:325=.273;15 � 188;53/ D 1;96735 kgm�3:

Luft ist ein Gasgemisch in den Volumeneinheiten: N2 D 78%, O2 D 21%, Spurengase: 1%
u. a.: Argon. Die in der Tabelle der Abb. 3.19 für Luft eingetragenen Werte folgen aus den
Werten für N2 und O2 durch Einrechnung ihres prozentualen Auftretens in der bodennahen
Atmosphäre.

2. Ergänzung: Druckverhältnisse in Gasflaschen (Beispiel)
In einer Gasflasche mit einem Volumen von 15 l D 15 � 10�3 m3 befinden sich 25 kg Sauer-
stoff O2 bei einer Temperatur von 20 ıC D 293;15K. Gesucht ist der Gasdruck:

p D m

V
� T �Rs D 25

15 � 10�3
� 293;15 � 260 D 1;27 � 108 Pa

Im Vergleich zum Luftdruck unter Normalbedingungen ist das der 1254-fache Wert! – In-
folge eines Brandes erhitze sich die Gasflasche samt Inhalt auf 400 ıC D 675;15K. Gesucht
ist die Erhöhung des Gasdrucks in der Flasche. Allgemein gilt für zwei unterschiedliche
Zustände:

p1

T1

D p2

T2

! p2 D p1 � T2

T1

D 1;27 � 108 � 675;15

293;15
D 2;93 � 108 Pa

Der Gasdruck steigt proportional im Verhältnis der absoluten Temperaturen der beiden Zu-
stände, hier also im Verhältnis 2;93 W 1;27 D 2;30 W 1, also auf den 2,3-fachen Wert.

3. Ergänzung: Mittlere freieWeglänge
Unter physikalischen Normalbedingungen berechnet sich die mittlere Molekülgeschwindig-
keit im Wasserstoffgas zu (#0 D 0 ıC! T0 D 273;15K):

.ma D 3;347 � 10�27 kg/W

vmittel D
s

3 � kB � T
ma

D
s

3 � 1;38065 � 10�23 � 273;15

3;347 � 10�27
D 1838m=s D 6619 km=h

Ein Kubikmeter (1;0m3) des Gases hat bei diesen Bedingungen eine Masse von

m D p0

T0

� V

Rs

D 101:325

273;15
� 1;0

4124
D 0;08995 kg
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Das einzelne H2-Molekül hat eine Masse von (s. o.): ma D 3;347 � 10�27 kg. Somit sind in
1;0m3 des Gases

N D m

ma

D 0;08995

3;347 � 10�27
D 2;69 � 1025

H2-Teilchen enthalten. – Die Teilchendichte pro Raumeinheit (1;0m3, bzw. mm3/ beträgt:

�N D N

V
D 2;69 � 1025

1;0

D 2;69 � 1025 m�3 D 2;69 � 1016 mm�3 D 26:900:000:000:000:000mm�3

Der Radius eines Wasserstoffmoleküls liegt in der Größenordnung 1 � 10�10 m. Die mittlere
freie Weglänge berechnet sich hierfür zu:

l D 1

�N �
p

2 � 4� � r2
D 1

2;69 � 1025 � p2 � 4� � .1 � 10�10/2

D 2;0918 � 10�7 m D 2;0918 � 10�4 mm D 0; 00021mm

3.2.5.7 Reale Gase – Erweitertes Thermisches Gasgesetz
Einen Hinweis, dass sich reale Gase nur in Annäherung als ideale Gase behandeln
lassen, liefert die Abweichung gemessener �T -Zahlen für die thermische Volumen-
änderung vom theoretischen Wert:

�T D 1

273;15
D 0;003661K�1

Für eine Reihe von Gasen sind in Abb. 3.20 gemessene Koeffizienten zusammen-
gestellt. Sie gelten für Temperaturen, die deutlich über der zur Flüssigkeitsphase
gehörenden Temperatur liegen.

Die Behandlung realer Gase als ideale Gase ist nicht möglich, wenn ihre Teil-
chendichte sehr hoch liegt, entweder infolge eines zu hohen Drucks oder/und in-
folge einer zu tiefen Temperatur (in der Nähe der Umwandlung zur Flüssigkeit).
Dann werden zwei Effekte zunehmend wirksam:

Abb. 3.20
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� Je enger die Teilchen gepackt sind, umso höher wird der Einfluss ihrer gegen-
seitigen gravitativen und elektrischen Wechselwirkung (Kohäsion).

� Bei hoher Teilchendichte erreicht der Eigenvolumenanteil im Vergleich zum
Volumen insgesamt eine nicht mehr zu vernachlässigende Größe, was sich auf
das kinetische Verhalten der Teilchen auswirkt.

Es gibt unterschiedliche Vorschläge, um vorstehende Einflüsse zu berücksichtigen.
Einer der Vorschläge sieht vor, in die thermische Zustandsgleichung für ideale Ga-
se (Gleichung (f)) einen ‚Realgasfaktor‘ Z als Korrekturfaktor aufzunehmen:

p � V D Z � n �R � T
Es handelt sich hierbei um keine Konstante, sondern um eine temperatur- und
druckabhängige Größe. Für Luft beträgt sie bei gängigem Druck und hoher Tem-
peratur etwa 1,1, bei tiefer Temperatur etwa 0,9, bei Temperatur im Übergang zur
Verflüssigung etwa 0,4. Der Ansatz eines einzelnen Faktors ist offensichtlich ei-
ne zu grobe Näherung. Frühzeitig wurde von J.D. v. d. WAALS (1837–1923) eine
Zustandsgleichung für reale Gase mit zwei Koeffizienten entwickelt (1873, No-
belpreis 1916). Sie ermöglicht eine weitgehende Anpassung an das experimentell
gefundene Verhalten der Gase. Die Gleichung lautet (ohne Herleitung):

�
p C n2 � a

V 2

�
� .V � n � b/ D n �R � T;

alternativ:
�

p C a

V 2
M

�
� .VM � b/ D R � T

(j)

a und b sind Stoffkonstante. Im Grenzfall zum idealen Gas gehen die Konstanten
gegen Null. Die Gleichung nimmt dann die bekannte Form

p � V D n �R � T
an. n ist die Stoffmenge und R die Universelle Gaskonstante. Soll mit der Teil-
chenzahl gerechnet werden, lautet die modifizierte Gleichung:

�
p C n2 � a

V 2

�
� .V � n � b/ D N � kB � T (k)

kB ist die Boltzmann’sche Konstante.
In der Tabelle in Abb. 3.21 sind für eine Reihe von Gasen die Werte a und b

ausgewiesen. – Von den oben genannten Abweichungen eines realen Gases gegen-
über einem idealen, erfasst a den erstgenannten Einfluss (gegenseitige gravitative
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Abb. 3.21

und elektrische Wirkung) und b den zweitgenannten (Eigenvolumen). – Wird (j)
bzw. (k) nach p aufgelöst, folgt:

p D n �R � T
V � n � b � a

n2

V 2
D N � kB � T

V � n � b � a
n2

V 2

Abb. 3.22 zeigt für unterschiedliche Temperaturen die Graphen p (Druck) als
Funktion von V (Volumen). Die Darstellung erlaubt eine Reihe wichtiger Einsich-
ten:

1. Für hohe Temperaturen (Kurven Nr. 1 und 2) verlaufen die p-V -Kurven (man
nennt sie Isothermen) in Annäherung wie Hyperbeln. Das Verhalten ist jenem
eines idealen Gases ähnlich. Hohe Temperaturen bedeuten hohe thermische
Energie der Gasteilchen.

2. Es gibt eine Temperatur TK (Kurve Nr. 3) für welche die Zustandskurve einen
Wendepunkt aufweist. Diesem kritischen Punkt K ist das Wertepaar pK; VK

zugeordnet.
3. Für tiefere Temperaturen (Kurve Nr. 4 und darunter) durchlaufen die Kurven

ein Minimum und ein Maximum, anschließend fallen sie kontinuierlich ab. Ein
solches Verhalten lässt sich experimentell nicht verifizieren. Die Kurven verlau-
fen vielmehr über einen gewissen Bereich horizontal (Aufrechterhaltung des
Drucks). Dieser Bereich kennzeichnet den Übergang von der gasförmigen in
die flüssige Phase. Oberhalb des kritischen Punktes lässt sich das Gas nicht ver-
flüssigen. J.C. MAXWELL erkannte, dass die Flächen unter- und oberhalb der
horizontalen Phasengeraden gleichgroß sind (in der Abbildung sind sie schraf-
fiert).
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Abb. 3.22

DasWertetripel TK; pK; VK folgt aus (k): Im Punkt K verläuft die p-V -Kurve lokal
horizontal. Der Punkt ist gleichzeitig Wendepunkt: Erste und zweite Ableitung von
p nach V sind hier Null. Die Rechnung ergibt:

TK D 8a

27b �R I pK D a

27 b2
I VK D 3n � b ! VM;K D 3b

Die Werte TK; pK sind in Abb. 3.21 eingetragen. – Sind für Punkt K die Größen
TK; pK; VM;K bekannt, lassen sich mit Hilfe der Formeln die Konstanten a und b

berechnen. – Wie oben angedeutet, wurden neben der van der Waal’schen Glei-
chung weitere Zustandsgleichungen für reale Gase entwickelt.

3.3 Hauptsätze derWärmelehre und Folgerungen

3.3.1 Innere Energie – Energieeintrag durchWärme und
mechanische Arbeit

Der im vorangegangenen Abschn. 3.2 gebrauchte Begriff für Wärme und die ent-
sprechende Verwendung im täglichen Umgang bedürfen im Folgenden einer Zu-
schärfung. Dazu werden zunächst zwei Gedankenexperimente durchgeführt:
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Abb. 3.23

1. Drei Körper A, B, C unterschiedlichen Stoffes und Aggregatzustandes haben
eine unterschiedliche Temperatur. Die Körper liegen in einem wärmeisolierten
Raum auf thermischen Kontakt. Die Luft in dem Raum wird als ‚Körper‘ D mit
der Temperatur TD betrachtet (Abb. 3.23). Die Temperaturen seien unterschied-
lich: TA ¤ TB ¤ TC ¤ TD . Sie beruhen auf den unterschiedlichen thermischen
Bewegungsenergien der jeweils körpereigenen Atome bzw. Moleküle. Entlang
der Kontaktflächen werden die weniger intensiven Teilchenbewegungen eines
kälteren Körpers durch die intensiveren des benachbarten wärmeren Körpers
verstärkt: Vom wärmeren Körper wird Energie zum kälteren Körper übertra-
gen. Entsprechend vollzieht sich die Übertragung im Inneren der einzelnen
Körper. Das dauert solange, bis alle Körper dieselbe Temperatur angenommen
haben: TA D TB D TC D TD . Jetzt bewegen sich in allen Körpern die Teil-
chen jeweils gleich intensiv: Die mittlere (statistische) Geschwindigkeit der
sich ungeordnet bewegenden Teilchen ist innerhalb der Körper jeweils gleich-
hoch. Die anfänglich bevorzugte thermische Bewegung von warm nach kalt,
die mit einer stoffabhängigen ‚Strömungsgeschwindigkeit‘ verlief, ist mit dem
Erreichen des thermischen Gleichgewichts beendet. In dem geschilderten Bei-
spiel wird Innere Energie durch Zufuhr bzw. Abzug von Wärme übertragen
bzw. entzogen.

2. Innerhalb eines wärmeisolierten Raumes gleite ein Körper mit der Masse m

auf einer schiefen Ebene abwärts. Im Ausgangpunkt der Bewegung (Zeitpunkt
t D 0/ beträgt die potentielle Energie, bezogen auf das Ruheniveau:

E.0/ D Epot.0/ D m � g � h D m � g � l � sin˛

g ist die Erdbeschleunigung, ˛, h und l sind geometrische Größen und in
Abb. 3.24 erklärt.
Zum Zeitpunkt t sei der Körper um die Strecke s abwärts gerutscht. Zu diesem
Zeitpunkt setzt sich die Energie aus drei Beiträgen zusammen:

E.t/ D Epot.t/CEkin.t/CWrei.t/
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Abb. 3.24

Im Einzelnen bedeuten Epot.t/ momentane potentielle und Ekin.t/ momentane
kinetische Energie im Zeitpunkt t , in welchem der Körper um s abwärts ge-
rutscht ist. Die Energieanteile betragen: s D s.t/ ist der Weg und v D v.t/ die
momentane Geschwindigkeit:

Epot D m � g � .l � s/ � sin˛; Ekin D m � v2=2

Mit Wrei.t/ ist die Reibungsarbeit abgekürzt. Ist 
 der Reibungskoeffizient
(konst), beträgt die von der Reibkraft entlang der Strecke s verrichtete Arbeit:

Wrei D Reibkraft mal Weg D 
 � .m � g � cos˛/ � s
Um diesen Arbeitsbetrag erhöht sich die Innere Energie im System, was mit
einer Erhöhung der Temperatur einhergeht: Entlang der aufeinander reiben-
den Flächen werden den oberflächennahenMolekülen zusätzliche Bewegungen
aufgezwungen. Sie regen ihrerseits die weiter innen liegenden Moleküle an. So
wird die Energie (Wärme) weiter geleitet. Unter System werden hier alle Teile
innerhalb des isolierten Raumes verstanden, es ist ein geschlossenes System.
Schlägt der gleitende Körper auf, bleibt er liegen. Es stellen sich plastische
Verformungen ein. Die hierbei geleistete Formänderungsarbeit ist gleich der
kinetischen Energie beim Aufschlag. Auch durch diesen Arbeitsbeitrag wird
die Innere Energie weiter erhöht und damit die Temperatur. Insgesamt hat sich
die potentielle Energie zu Anfang der Bewegung in Innere Energie umgesetzt,
die letztlich den Körper, die Rutsche und die umgebende Luft erwärmt. Die
Temperatur in den einzelnen ‚Körpern‘ ist zunächst unterschiedlich, im Laufe
der Zeit gleichen sich die Temperaturen einander an.
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1. Anmerkung
Real wäre in dem 2. Beispiel noch die Bremskraft durch die Luft zu berücksichtigen. Die
turbulent verwirbelten Luftteilchen reiben aneinander, was mit einer Erwärmung einhergeht.
Der Luftwiderstand verringert die Gleitgeschwindigkeit, was sich in einer Minderung der
durch die plastische Verformung verursachten Energieumsetzung auswirkt.

2. Anmerkung
Wird in dem 2. Beispiel die Energiedifferenz �E D E.t/� E.0/ gebildet und Null gesetzt
(es gilt das Energieerhaltungsgesetz einschl. Innerer Energie für geschlossene Systeme, also
�E D konst), folgt für die Geschwindigkeit am Ende der Gleitbahn, wenn der Luftwi-
derstand unberücksichtigt bleibt: v D .2g � .sin˛ � 
 � cos ˛/ � s/1=2. Gleiten kommt nur
zustande, wenn die Bedingung sin˛ > 
 � cos ˛ erfüllt ist. Im Falle ˛ D �=2 ergibt sich:
v D .2g � h/1=2 (freier Fall), wie es sein muss.

Die Einsichten aus den beiden obigen Beispielen lassen sich wie folgt zusam-
menfassen: Die Temperatur ist der Inneren Energie der thermischen Teilchenbewe-
gung proportional. Sie kann durch Eintrag vonWärme oder/und durch Verrichtung
von Arbeit gesteigert werden, insofern sind Wärme und Arbeit äquivalent. Die
Innere Energie ist eine Zustandsgröße, Wärme und Arbeit sind Austausch-
größen.

Anmerkungen
Der Herleitung des Thermischen Gasgesetzes liegt der Ansatz einer temperaturabhängigen
Teilchenbewegung zugrunde. Das Gesetz ist experimentell umfassend verifiziert.

Für Flüssigkeiten lieferte R. BROWN (1773–1858) bereits im Jahre 1827 einen Hin-
weis auf eine ungeordnete thermische Teilchenbewegung: Unter einem Mikroskop sah er
Samen und Pollen, die sich zick-zack-förmig auf einer Flüssigkeit hin und her bewegten.
Verursacht wird die Bewegung in diesem Falle durch die von den sich regellos bewegenden
Molekülen ausgehenden Stöße. Der Befund konnte immer wieder experimentell bestätigt
werden. – Das gilt auch für das unregelmäßige ‚Zittern‘ der Atome im Kristallgitter. Sie
schwingen um ihre Ruhelage und das umso heftiger, je höher das Material erhitzt wird. Zur
Beobachtung bedarf es dazu eines Rasterelektronenmikroskops. – Bei sinkender Temperatur
verlangsamt sich die thermische Bewegung. Sinkt die Temperatur auf den absoluten Null-
punkt, kommt jegliche Bewegung der Teilchen zum Erliegen. Bei �273;15 ıC ist aus den
Atomen/Molekülen nahezu alle Energie entwichen. Man spricht bei diesem extremen Ag-
gregatzustand vom Bose-Einstein-Kondensat, benannt nach S.N. BOSE (1894–1974) und
A. EINSTEIN (1879–1955).

3.3.2 Hauptsätze der Thermodynamik

Nullter Hauptsatz Befinden sich zwei Körper A und B im thermischen Gleich-
gewicht und ebenso Körper A mit einem dritten Körper C, so befinden sich auch
die Körper B und C im thermischen Gleichgewicht. Der Temperaturmessung mit
einem Thermometer liegt dieser Satz zugrunde.
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Erster Hauptsatz Die Innere Energie kann durch Zufuhr von Wärme oder/und
Arbeit erhöht werden: �Einn D �QC�W . �Q ist die durch Wärme zugeführte
Energie und �W die durch Arbeit zugeführte. Die Temperatur ändert sich propor-
tional zu �Einn. (Hinweis: �Einn wird vielfach mit U abgekürzt.)

Zweiter Hauptsatz Die Innere Energie ‚strömt‘ von selbst von einem Körper
höherer Temperatur zu einem Körper tieferer Temperatur. Das gilt auch für alle
Bereiche innerhalb eines Körpers. Wird keineWärme oder/und Arbeit eingetragen,
streben alle Körper in einem abgeschlossenen System den Zustand des thermischen
Gleichgewichts an. In diesem Zustand gibt es für die Wärme keine bevorzugte Be-
wegungsrichtung. Der Zustand ist im statistischen Mittel durch die größtmögliche
thermische Bewegungsregellosigkeit gekennzeichnet, es ist der Zustand der maxi-
malen Entropie.

Hinweise
1) Die Entropie wird mit S abgekürzt, sie wird an späterer Stelle ausführlich erklärt. – 2) Es
lassen sich weitere Versionen des Zweiten Hauptsatzes postulieren.

Dritter Hauptsatz Es ist nicht möglich, den absoluten Temperaturnullpunkt auf
experimentellem Wege zu erreichen. – Im absoluten Nullpunkt geht die Entropie
mit der Temperatur gegen Null (T ! 0, S ! 0); Theorem nach W. NERST
(1864–1941).

3.3.3 Wärmekapazität

Welche Energie muss einem Körper zugeführt werden, damit sich seine Tempe-
ratur um einen bestimmten Wert erhöht, welche Wärme, welche Arbeit? Es zeigt
sich, dass die erforderliche Energiezufuhr von der Art des Stoffes und vom Ag-
gregatzustand abhängig ist, also davon, ob er fest, flüssig oder gasförmig ist. Die
Energiezufuhr kann aus mechanischer Arbeit oder aus elektrischer, chemischer
oder einer anderen Energieform bestehen.

3.3.3.1 Wärmekapazität von Festkörpern und Flüssigkeiten
Als Wärmemengenzunahme ist definiert:

�Q D c �m ��T

c ist ein Stoffwert in der Arbeits- bzw. Energieeinheit J pro Kilogramm Stoff und
pro Kelvin Temperaturerhöhung: J � kg�1 � K�1. Der Wert (c/ wird als spezifische
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Abb. 3.25

Wärmekapazität bezeichnet. Es ist jene Wärmemenge, die notwendig ist, um die
Temperatur eines Körpers eines bestimmten chemischen Stoffes mit der Masse
m D 1 kg um �T D 1K D 1 ıC zu erhöhen. – In Abb. 3.25 sind für eine Reihe
von Stoffen die c-Werte für deren gängige Aggregatzustände notiert. Offensicht-
lich ist die spezifische Wärme von Wasser extrem hoch.

Hinweis
Anstelle Joule rechnete man ehemals mit der Einheit Kalorie (cal): Eine Kalorie war als jene
Wärmemenge definiert, welche die Temperatur von 1 g Wasser von 14,5 auf 15,5 °C erhöht.
Umrechnung in J: 1 cal D 4,187 J. 1000 cal nannte man ‚Große Kalorie‘: kcal.

Beispiel
Mit Hilfe eines Heißwasserkochers mit 1800W Leistung werde folgender Versuch durchge-
führt: Ein Liter Wasser werde von 10 °C auf 100 °C, also auf Siedetemperatur, erhitzt. Die
hierfür erforderliche Zeit werde zu 220 Sekunden gemessen. Ausgehend von der Leistung
des Gerätes und der gemessenen Zeit berechnet sich die aufgewandte (‚verbrauchte‘) Energie
zu: (EnergieD Leistung mal Zeit D Arbeit pro Zeiteinheit mal Zeit):

Eele D 1800 � 220 D 396:000 J .W � s/
Wird �Q D Eele gesetzt, folgt c zu (m D 1 kg und �T D 100 � 10 D 90K):

396:000 D c � 1;0 � 90 ! c D 396:000

1;0 � 90
D 4400

J

kg � K
Aus genauer Messung ist bekannt (s. o.):

Wasser .fest, Eis: �10 ıC/W c D 2050 J=kg � K
Wasser .flüssig/W c D 4187 J=kg � K

Der Quotient 4187=4400 liefert für das Beispiel 0,95, was auf einen guten Wirkungsgrad des
Wasserkochers schließen lässt.
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Abb. 3.26

Als Erster postulierte R. MAYER (1814–1878) im Jahre 1842: Wärme ist ei-
ne Energieform. Er formulierte auch das Energieerhaltungsgesetz und dehnte es
auf alle Vorgänge in der lebenden Natur aus. Auch berechnete er als Erster das
Wärmeenergieäquivalent, indem er aus der einem Gas zugeführten Wärmearbeit
jene mechanische Arbeit bestimmte, mit der ein Gewicht in eine bestimmte Hö-
he angehoben werden konnte. – H. v. HELMHOLTZ (1821–1894) erweiterte das
Energieerhaltungsgesetz auf die verschiedenen Energieformen. Das führte in der
Physik und Chemie zur Akzeptanz des Gesetzes. – J.P. JOULE (1818–1889) war
es schließlich, der ab 1845 das mechanische Wärmeäquivalent durch weitere Ex-
perimente immer präziser bestimmen konnte; 1852 entdeckte er gemeinsam mit
W. THOMSON (Lord KELVIN, 1824–1907) den Joule-Thomson-Effekt, der zur
Grundlage der Gasverflüssigung in der Kältetechnik werden sollte.

Abb. 3.26 zeigt eines der von J.P. JOULE erdachten Experimente zur Bestim-
mung des Wärmeäquivalents: Es handelt sich um ein Rührwerk mit Schaufeln.
Zwischen den Schaufeln liegen schmale mit Flüssigkeit gefüllte Spalte, z. B. ge-
füllt mit Wasser. Senkt sich der Körper infolge seines Gewichts, drehen sich die
Schaufeln. Durch die Reibung innerhalb der Flüssigkeit tritt in dieser eine Erwär-
mung ein. Der Abnahme der potentiellen Energie des Körpers der Masse m um
G �� D m �g ��, mit � als Senkung des Körpers, entspricht eine bestimmte Tem-
peraturerhöhung (Erwärmung) der Flüssigkeit. Sie kann mit dem Thermometer
gemessen werden (die Reibung in den Lagern des Rührwerks ist bei der Auswer-
tung zu berücksichtigen).
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Abb. 3.27

1. Ergänzung
In ein mit einer Flüssigkeit (1) gefülltes, wärmeisoliertes Gefäß (2) mit den Temperaturen
T1 bzw. T2 wird ein Körper (3) gelegt. Letzterer habe die Temperatur T3. Es gelte T3 > T1,
T3 > T2. Abb. 3.27a, b zeigt die Anordnung. Beim Einlegen des Körpers (3) wird die über-
schüssige Flüssigkeit abgeschöpft und die Vorrichtung abgeschlossen. Nach ausreichender
Wartezeit stellt sich ein thermisches Gleichgewicht ein. Die zu diesem thermischen Gleich-
gewichtszustand gehörende Temperatur sei T , Teilabbildung c. Der Körper mit der Masse
m3 hat Wärme abgegeben, die ‚Körper‘ mit den Massen m1 und m2 haben Wärme aufge-
nommen. Die Änderungen der Wärmemengen betragen:

�Q1 D c1 �m1 � .T � T1/; �Q2 D c2 �m2 � .T � T2/; �Q3 D c3 �m3 � .T3 � T /

Dank der Wärmeisolation bleibe die (Wärme-)Energie im System in voller Höhe erhalten,
das Energieerhaltungsgesetz verlangt:

�Q1 C�Q2 D �Q3

Sind c1 und c2 bekannt, kann aus dieser Gleichung nach Einsetzen der Ausdrücke für �Q1,
�Q2 und �Q3 die unbekannte spezifische Wärmekapazität c3 frei gestellt und anschlie-
ßend aus den Messwerten m1; m2; m3 und T1; T2; T3; T zahlenmäßig bestimmt werden. Die
Einrichtung ist dem Prinzip nach einKalorimeter. Mit diesem kann die spezifische Wärme-
kapazität eines Stoffes gefunden werden (Mischungsverfahren).

2. Ergänzung
Um die molare Wärmekapazität herzuleiten, wird die sich auf die Masse m D1 kg bezie-
hende spezifische Wärmekapazität c auf die zugehörige Stoffmenge n in Mol umgerechnet:

�Q

n
D m � c

n
��T ! �Q

n
D C ��T
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Abb. 3.28

Hierin ist C die molare Wärmekapazität:

C D m � c
n
D mM � c; C in J �mol�1 � K�1

In der Tabelle der Abb. 3.28 sind für eine Reihe vonMetallen und fürWasser die spezifischen
und die molaren Wärmekapazitäten zusammengestellt. Wie erkennbar, beträgt C für alle
Metalle ca. 25 J=mol � K. Für Wasser liegt der Wert dreimal so hoch. �Q folgt aus �Q D
C � n ��T .

3.3.3.2 Wärmekapazität von Gasen (‚V D konstant‘)
In Abb. 3.29a ist ein wärmeisolierter Behälter mit dem Volumen V dargestellt,
in welchem ein Gas eingeschlossenen ist. Über ein im Boden des Behälters lie-
gendes Reservoir kann dem Gas eine definierte Wärmemenge (quasi per Schalter)
zugeführt oder entzogen werden. Wird die Wärmemenge �Q ‚zugeschaltet‘, wird
die Temperatur des Gases um �T angehoben. Infolge Erhöhung der Temperatur

Abb. 3.29
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Abb. 3.30

wächst der Druck an. Die Innere Energie steigt proportional mit der abgesetzten
Wärmemenge und zwar gemäß dem Gesetz:

�Einn D �Q D cV �m ��T .,V D konstant‘/

m ist die Masse und cV die spezifische Wärmekapazität des Gases. Der Index V

ist ein Hinweis auf den Prozesstyps ‚V D konstant‘. – Die Wärmekapazität c von
Festkörpern und Flüssigkeiten ist mit cV identisch.

3.3.3.3 Wärmekapazität von Gasen (‚p D konstant‘)
Abb. 3.30 kennzeichnet einen anderen Prozesstyp: Der Druck im Gas steht mit
der Gewichtskraft des auf dem Kolben (im Vakuum) aufliegenden Körpers im
statischen Gleichgewicht, FG sei sein Gewicht, das bedeutet: Der Druck p im Gas-
volumen bleibt konstant:

FG D p � A ! p D FG=A

A ist die Fläche des Kolbens.
Es werde dem Gas wieder eine Wärmemenge in Höhe �Q aus dem Wärme-

reservoir zugeführt. Die Gastemperatur wird sich dadurch erhöhen und das Gas
wird sich ausdehnen. Die Gewichtskraft verschiebt sich entgegen ihrer Wirkrich-
tung um �h, sie verrichtet eine negative Arbeit. Die spezifische Wärmekapazität
dieses Prozesses wird zu cp vereinbart (‚p D konstant‘). cp ist durch die Beziehung
�Q D cp �m ��T definiert. Die von FG verrichtete Arbeit FG ��h ist gleich der
von der Druckresultierenden p � A verrichteten Arbeit:

p � A ��h D p � dV:
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Demnach gilt für diesen Prozesstyp:

�Einn D �Q � p � dV D cp �m ��T � p � dV .,p D konstant‘/

3.3.3.4 Molare Wärmekapazität – Thermodynamischer
Freiheitsgrad

Die Gleichsetzung der in den beiden vorangegangenen Abschnitten (Abb. 3.29
und 3.30) angeschriebenen Inneren Energien ergibt nach Umformung:

cV �m ��T D cp �m ��T � p � dV

! cp � cV D p ��V

m ��T

Hierbei ist unterstellt, dass die Gassorte und alle anderen Ausgangsparameter der
beiden Prozesstypen gleich sind. – Wird das Thermische Gasgesetz für p D kon-
stant, also

p ��V D m �Rs ��T

nach Rs freigestellt

Rs D p ��V

m ��T

und mit er vorstehenden Beziehung verknüpft, folgt:

cp � cV D Rs

Das bedeutet: Die spezifische Gaskonstante Rs ist gleich der Differenz der spe-
zifischen Wärmekapazitäten der Fälle ‚p D konstant‘ und ‚V D konstant‘. Das
ermöglicht eine messtechnische Bestimmung von Rs .

Die molaren Wärmekapazitäten CV und Cp sind für die beiden Prozesstypen
über

�Einn D n � CV ��T mit CV D m � cV

n
D cV �mM

und

�Einn D n � Cp ��T � p � dV D n � .Cp �R/ ��T

mit Cp D m � cp

n
D cp �mM
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Abb. 3.31

definiert. mM ist die molare Masse des Gases. – Beim Typ ‚p D konstant‘ ist das
Thermische Gasgesetz in der Form p ��V D n �R ��T berücksichtigt.

In der Tabelle der Abb. 3.31 sind für eine Reihe ein-, zwei- und mehratomiger
Gase deren molare Wärmekapazitäten angeschrieben. Hieraus können cV und cp

berechnet werden:

cV D CV =mM bzw. cp D Cp=mM :

Wird Cp � CV gebildet, bestätigt man:

Cp � CV D R:

Das bedeutet: Die Allgemeine GaskonstanteR ist gleich der Differenz der molaren
Wärmekapazitäten der Fälle ‚p D konstant‘ und ‚V D konstant‘.

In Abschn. 3.2.5.5 (Gleichung (h)) wurde erläutert, dass die mittlere kinetische
Energie der Gasmoleküle eines idealen Gases dem thermodynamischen Freiheits-
grad f proportional ist:

hEkini D f

2
� kB � T D f

2
� n �R � T

Für einatomige Gase gilt f D 3 (drei Translationen), für zweiatomige Gase gilt
f D 5 (drei Translationen und zwei Rotationen) und für drei- und mehratomige
Gase: f � 6. Die Innere Energie eines Gases ist gleich der mittleren kinetischen
Energie seiner Moleküle:

Einn D hEkini ! Einn D f

2
� n �R � T
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Das führt im Falle des Prozesstyps ‚V D konstant‘ auf

f

2
� n �R � T D n � CV � T ! CV D f

2
�R

und im Falle des Prozesstyps ‚p D konstant‘ auf:

f

2
� n �R � T D n � .Cp �R/ � T ! Cp D .

f

2
C 1/ �R

Der Vergleich mit den Messwerten in der Tabelle der Abb. 3.31 lässt für ein- und
zweiatomige Gase eine befriedigende Übereinstimmung erkennen, für Gasmolekü-
le mit mehr als zwei Atomen gilt das nicht. Offensichtlich ist die molekulare Mo-
dellierung (vgl. Abb. 3.15) dann zu grob. Mit Hilfe der Quantentheorie lässt sich
die Diskrepanz erklären. Mit ihrer Hilfe kann auch begründet werden, warum der
aktive thermodynamische Freiheitsgrad mit ansteigender Temperatur anwächst.

3.3.4 Phasenumwandlung – Schmelzwärme –
Verdampfungswärme

Wird die Temperatur stetig gesteigert, also die Innere Energie eines Körpers durch
kontinuierliche Wärmezufuhr erhöht, geht der Stoff vom festen in den flüssigen
und schließlich in den gasförmigen Aggregatzustand über. Bei sinkender Tempe-
ratur, also Wärmeentzug, vollzieht sich die Phasenumwandlung in umgekehrter
Richtung. Abb. 3.32 zeigt linksseitig das Verhalten als Schema. Die Vorgänge sind
wohlbekannt. Die Zustandsfolgen bei Temperatursteigerung bzw. Temperatursen-
kung verdeutlicht das Bild rechtsseitig.

Den Übergang von fest auf gasförmig und umgekehrt (unter Umgehung der
Flüssigkeitsphase) nennt man Sublimation.

Die Umwandlung fest � flüssig bzw. flüssig � gasförmig erfolgt nicht sprung-
haft/spontan. Es bedarf vielmehr eines bestimmten Wärmeeintrags bzw. –entzugs,
bis die vollständige Umwandlung abgeschlossen ist. Während dieser Zeit liegt ein
Mischzustand fest/flüssig bzw. flüssig/gasförmig vor. Jene Wärme in J, die er-
forderlich ist, um die Masse 1 kg eines Stoffes vom Zustand fest in flüssig bei
der Schmelztemperatur TS umzuwandeln, ist LS . LS ist ein Stoffwert in J=kg.
Man nennt LS spezifische Schmelzwärme. Die Schmelztemperatur bezeichnet
man auch als Schmelzpunkt. Für den Übergang flüssig/fest gelten dieselben Wer-
te. ErstarrungstemperaturD Schmelztemperatur, spezifische Erstarrungswärme D
spezifische Schmelzwärme.
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Abb. 3.32

Die Umwandlung flüssig � gasförmig vollzieht sich bei der Verdampfung-
stemperatur TV (Siedetemperatur). Bei Umkehr spricht man von Kondensation.
Für die vollständige Umwandlung der Masse 1 kg bedarf es der spezifischen Ver-
dampfungswärme LV .

Anstelle spezifische Schmelzwärme und Verdampfungswärme spricht man
auch von Umwandlungswärme oder Umwandlungsenthalpie. Bei allen Umwand-
lungen wird vorausgesetzt, dass der Umgebungsdruck konstant bleibt, anderenfalls
bedarf es Ergänzungen.

Die Vorgänge lassen sich atomar/molekular gut verstehen: Bei Erhöhung der
Temperatur eines Festkörpers und damit Steigerung der Inneren Energie nehmen
die Wärmeschwingungen der Atome/Moleküle an ihren festen Plätzen zu, schließ-
lich löst sich deren Bindung: Einzelne Teile gehen vom festen in den flüssigen
Zustand über. Das vollzieht sich bei Aufrechterhaltung der Schmelztemperatur
solange, bis das gesamte Festgerüst abgebrochen ist, bis beispielsweise ein Eisbro-
cken vollständig in flüssiges Wasser übergegangen ist. Beim Sieden ist es ähnlich:
In der Flüssigkeit bilden sich Gasblasen, die Kohäsionskräfte zwischen den Ato-
men/Molekülen werden überwunden. Die Umwandlung der Flüssigkeit in Gas,
also beispielsweise von Wasser in Wasserdampf, dauert solange bei Aufrechter-
haltung der Verdampfungstemperatur bis die Flüssigkeit vollständig verdampft ist.
Bei anschließenderWärmezufuhr ist eine weitere Steigerung der Dampftemperatur
möglich.

In Abb. 3.33 sind für eine Reihe von Stoffen deren Schmelz- und Siedetempe-
ratur in K und °C sowie deren spezifische Schmelz- und Verdampfungswärmen
zusammengestellt. Alle Werte sind vom herrschenden Druck abhängig. Das betrifft
insbesondere die Verdampfung (und Kondensation)! Die Tabellenwerte gelten für
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Abb. 3.33

den atmosphärischen Normzustand (p D 1013hPaD 1 bar). Auf Abschn. 3.2.5.6,
1. Ergänzung, zur Definition des Normzustandes wird an dieser Stelle ver-
wiesen. –

Vielfach werden die spezifischen Wärmen in J=mol bzw. kJ=mol angegeben.
Für die Umrechnung benötigt man die Molmasse.

1. Beispiel
Aluminium:

mr D 26;98I ma D u �mr D 1;66056 � 10�27 � 26;98 kg D 44;802 � 10�27 kgI
mM D NA �ma D 6;022142 � 1023 � 44;802 � 10�27 kg=mol

D 269;80 � 10�4 kg=mol D 0;02698 kg=mol:

Schmelzwärme: 10;7 kJ=molW ! LS D 10;7=0;02698 D 397 kJ=kg:

Verdampfungswärme: 293 kJ=molW ! LV D 293=0;02698 D 10860 kJ=kg:

2. Beispiel
Soll eine geschlossene (Konserven-)Dose mit wässrigem Inhalt erwärmt werden, wäre es
falsch, sie direkt auf die Herdplatte zu stellen, dann besteht Explosionsgefahr! Man stelle
sie in ein Wasserbad. Dieses kann nicht heißer werden als die Siedetemperatur, das gilt dann
auch für das Wasser in der Dose. Ein leichter in der Dose sich aufbauende Druck verhindert
den vorzeitigen Übergang des Wassers in Wasserdampf. Das Wasserbad muss ausreichend
hoch sein und darf selbst nicht verdampfen!
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3.3.5 Wärmeübertragung

Es werden drei Formen der Wärmeübertragung unterschieden:

� Wärmeleitung innerhalb ruhender Körper. Gemeint sind in erster Linie Fest-
körper, aber auch ruhende Flüssigkeiten und Gase, wie beispielweise in Bau-
materialien oder in Dämmstoffen eingeschlossenes Wasser (Feuchte) bzw. in
Luftporen gefangene Luft. Bei der Wärmeleitung handelt es sich um einen
Energietransport.

� Wärmemitführung in strömenden Medien. Man spricht auch von Wärmever-
frachtung oder Konvektion. Diese Form der Wärmeübertragung kann nur in
Fluiden und Gasen (fallweise auch in Korn- und Granulatschüttungen) stattfin-
den. Die materiellen Teilchen führen die Wärme mit und geben sie an andere
Stelle niederer Temperatur untereinander oder an feste Körper über deren Ober-
fläche weiter. Konvektion besteht somit aus einem Energie- und Massentrans-
port. Er kann sich frei vollziehen (z. B. infolge Auftriebs in Schornsteinen) oder
erzwungen (durch Gebläse befördert).

� Wärmestrahlung in Form elektromagnetischer Wellen. Deren Energie wird
von fester, flüssiger oder gasförmiger Materie absorbiert. Die Wellen werden
ihrerseits von strahlender Materie ausgesandt (emittiert), z. B. von der Sonne
oder von flammenden Brandherden. Bei der Absorption wird Strahlungsenergie
in Innere Energie umgesetzt. Die Energie ist proportional der vierten Potenz der
Temperatur der Strahlungsquelle (T 4). Wegen ihrer großen Bedeutung wird die
Wärmestrahlung in Bd. III, Abschnitte 2 und 3, eigens behandelt.

3.3.6 Wärmeleitung –Wärmemitführung

Der Prozess der Wärmeleitung kann zeitlich stationär oder zeitlich instationär ver-
laufen. Instationär wäre z. B. eine Wärmeübertragung zwischen der Außen- und
Innenluft durch eine Wand hindurch im Laufe eines Tag-Nacht-Zyklus. Die Tem-
peratur folgt dem Zyklus mit einer gewissen zeitlichen Verzögerung.

Eine weitere (noch höhere) Instationarität liegt dann vor, wenn die Wärmequel-
le ortsveränderlich ist, wie z. B. bei Schweißvorgängen. In solchen Fällen werden
die sich beim instationären Wärmeübergang einstellenden orts- und zeitveränder-
lichen Temperaturfelder von partiellen Differentialgleichungen beherrscht. –

Im Folgenden wird nur die stationäre Wärmeübertragung behandelt. Damit ge-
lingen eine Reihe wichtiger Einsichten.

Nach dem 2. Hauptsatz der Wärmelehre verläuft der Wärmestrom immer
in Richtung von einem Bereich höherer zu einem Bereich tieferer Temperatur.
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Abb. 3.34

Abb. 3.34 zeigt den Temperaturverlauf durch eine Wand der Dicke d : Die Tempe-
ratur fällt von T1 (Innentemperatur) auf T2 (Außentemperatur) ab. Diese Situation
liegt im Winter bei Hauswänden vor. Der nichtlineare Verlauf in Teilabbildung
a wäre typisch für eine instationäre Wärmeübertragung. Jener in Teilabbildung
b interessiert hier. Der Verlauf ist geradlinig (linear) angesetzt. Ein solcher Ver-
lauf kann sich nur einstellen, wenn die Wand durchgängig aus einem homogenen
(einheitlichen) Stoff besteht, z. B. aus Beton. Gesucht ist die durch die Wand
hindurch tretende Wärmemenge pro Zeiteinheit, z. B in einer Stunde. Ein starkes
Temperaturgefälle, also ein hoher Temperaturgradient �T=d D .T1 � T2/=d

zwischen Innen- und Außenseite der Wand ist ein Hinweis auf einen starken
Wärmeaustausch. Im Falle T1 D T2 herrscht thermischer ‚Stillstand‘.

Die Wärmemenge, die durch eine Wand bei stationärer Wärmeströmung hin-
durch tritt, bezeichnet man als Wärmestrom. Es ist einsichtig, dass die Intensität
des Wärmestroms von der Stoffart und der Dicke der Wand abhängig ist.

Die Wärmestromdichte (q) ist jene Wärmemenge, die durch ein Bauteil mit
der Einheitsfläche A D 1m2 in der Zeiteinheit t D 1 s hindurch tritt:

q D U ��T Œq� D J

m2 � s D
W

m2

q ist proportional zum Temperaturunterschied �T D T1 � T2 in K (Kelvin). U

ist der Wärmedurchgangskoeffizient in der Einheit J=m2 Ks DW=m2K (ehemals
k-Wert). Der Kehrwert von U ist der Wärmedurchlasswiderstand R in m2 K=W:

R D 1=U

Führt man Experimente an einer homogenen Wand durch, ergibt sich U zu:

U D 


d
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Abb. 3.35


 ist dieWärmeleitzahl (Wärmeleitfähigkeit). Sie ist ein Stoffwert in der Einheit:

.J=m2 � K � s/ �m D .W=m2 � K/ �m DW=m � K:


 wird im Experiment bestimmt. d ist die Dicke der Wand in der Einheit m. U

ist reziprok zur Wanddicke d (je dicker die Wand, umso geringer ist der Wärme-
durchgang).

Metalle (allgemein kristalline Stoffe) besitzen ein hohes Wärmeleitvermögen
(
 liegt hoch), amorphe Stoffe ein geringes (
 liegt niedrig). Flüssigkeiten und
Gase sind schlechte Wärmeleiter. Aus diesem Grund ist die Wärmeleitfähigkeit
poröser Stoffe gering, ihr Wärmedämmvermögen entsprechend hoch. Man denke
an geschäumtes Dämmmaterial oder warme Wäsche (Stoffe aus Wolle, Winter-
jacken mit Daunenfüllung). Gute Wärmeleiter sind i. Allg. auch gute elektrische
Leiter.

In der Tabelle der Abb. 3.35 sind 
-Werte für einige Materialien angegeben. Sie
sind am baulichen Wärmeschutz orientiert. Die Wärmeleitfähigkeit eines Bauteils
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Abb. 3.36

(z. B. einer Mauer aus Ziegel) ist von der vorhandenen Durchfeuchtung abhängig.
Eine höhere Feuchtigkeit in der Wand oder Decke steigert die Wärmeleitfähig-
keit gegenüber dem trockenen Zustand und senkt entsprechend das Dämmvermö-
gen, weil der Luftporenanteil reduziert ist. Bei völliger Durchnässung entfällt die
Dämmwirkung der Wand weitgehend.

Die in den Bauvorschriften angegebenen 
-Werte (Abb. 3.35) sind als Rechen-
werte bei regulären Verhältnissen zu begreifen.

Handelt es sich um eine aus n Stoffschichten mit unterschiedlichen 
j -Werten
aufgebaute Wand (j D 1 bis n, vgl. Abb. 3.36) ist die Wärmestromdichte in allen
Schichten gleichgroß, sonst wäre es kein stationärer Beharrungszustand. Für jede
Schicht gilt:

qj D Uj ��Tj D 
j �
�Tj

dj

D q D konstant mit �Tj D Tj � TjC1:

dj ist die Dicke der Schicht j . Zur Zählung der Schichten sowie der Grenz- und
Randflächen vergleiche man Abb. 3.36. – Für die Temperaturdifferenz innerhalb
jeder Schicht gilt

�Tj D dj


j

� q

und für den Temperaturabfall innerhalb der Wand von der Randfläche 1 bis zur
Randfläche nC 1:

T1 � TnC1 D
nX

jD1

�Tj D q �
nX

jD1

dj


j
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Abb. 3.37

Die Wärmestromdichte durch eine mehrschichtige Wand ist demnach:

q D T1 � TnC1
Pn

jD1

dj


j

D U � .T1 � TnC1/ D U ��TWand

Zusammengefasst berechnet sich der Wärmedurchlasskoeffizient zu:

U D 1
Pn

jD1

dj


j

D 1
d1


1
C d2


2
C : : :C dn


n

Der Wärmedurchlasswiderstand ist R D 1=U .

Beispiel
Die Temperaturen an den Randflächen einer dreischichtigen Wand mit den Wärmeleitfähig-
keiten 
1 D 0;60, 
2 D 0;25 und 
3 D 0;80 in W=m �K mögen betragen: #1 D 30 ıC und
#4 D �10 ıC, Abb. 3.37. Gesucht ist der Temperaturverlauf innerhalb der Wand. Wärme-
durchlasswiderstand und Wärmedurchgangskoeffizient berechnen sich zu:

R D d1


1

C d2


2

C d3


3

D 0;06

0;60
C 0;25

0;25
C 0;04

0;80
D 0;10C 1;00C 0;05

D 1;15m2 K=W

! U D 1

1;15
D 0;87

W

m2 K

Die Wärmestromdichte beträgt:

q D U ��T D U ��# D 0;87 � .30 � .�10// D 0;87 � 40W=m2 D 34;78W=m2
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Abb. 3.38

Die Temperaturen in den einzelnen Grenzflächen berechnen sich zu:

#jC1 D #j � q � dj


j

! #2 D 30 � 34;78 � 0;10 D 26;52 ıCI

#3 D �8;26 ıCI #4 D �10;00 ıC

Die Wand habe die Fläche A D 10m2. Hierfür ergibt sich der Wärmestrom durch die Wand
zu:

Q D q �A D 34;78 � 10;00 D 347;8W

Der Wärmeübergang von einem strömenden (im Grenzfall ruhenden) Fluid
(also von einer Flüssigkeit oder einem Gas) auf einen Festkörper wird, wie aus-
geführt, als konvektiver Wärmeübergang bezeichnet. Bei winterlichem Wetter
wird die Wärme der Innenluft beheizter Räume über die Innenfläche der Wän-
de und Decken weitergeleitet. Nach Durchtritt der Wärme durch diese wird sie
über die Außenfläche an die Außenluft abgegeben. Bei sommerlichemWetter voll-
zieht sich der Übergang in umgekehrter Richtung. – Konvektion liegt auch bei der
Wärmeabgabe heißer Rauchgase auf die Futter von Schornsteinen oder auf de-
ren Rauchgasrohre vor. Hierbei handelt es sich einsichtiger Weise um ganz andere
Temperaturen wie im Falle beheizter Wohnräume. Das gilt ebenso für Feuerungs-
anlagen in Kraftwerken aller Art beim Wärmeübergang vom Heißstrom über den
Wärmetauscher an ein weiteres heiß gehendes Medium.

Die jeweiligen Bedingungen zwischen dem Fluid und der Oberfläche des Fest-
körpers (oder umgekehrt) bestimmen die Höhe desWärmeübergangs. Der Wärme-
übergang wird durch die Wärmeübergangszahl h in der Einheit W=m2 K charakte-
risiert. Für die Wärmestromdichte in der Konvektionszone wird gesetzt:

q D h ��T D h � .TL � TO/
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�T ist in diesem Falle die Differenz zwischen der Temperatur TL der Luft und
der Temperatur TO auf der Oberfläche des Festkörpers (Abb. 3.38a). Da Luft als
Gas nur über eine geringe Wärmeleitfähigkeit verfügt, liegt h bei stehender Luft
niedrig und bei strömender Luft hoch, weil im letztgenannten Falle mehr Wär-
me von der Luft übernommen und abgeführt wird. Bei den wärmephysikalischen
Berechnungen wird zudem angenommen, dass h einen gewissen Beitrag aus der
Wärmestrahlung pauschal beinhaltet. – Die konvektive Wärmeübertragung ist ein
höchst verwickelter Vorgang, er ist u. a. vom Strömungscharakter des Fluids ent-
lang der Randfläche (laminar oder turbulent) abhängig.

Da die Wärmestromdichte von der Innenluft über die Wand auf die Außenluft
im stationären Beharrungszustand konstant ist, vgl. Abb. 3.38b, kann gesetzt wer-
den:

q D hi � .TLi � TOi / D � � .TOi � TOa/

D ha � .TOa � TLa/ D gleichförmig (konstant):

Der Index i steht für innen, der Index a für außen.� ist hier derWärmeübergangs-
koeffizient für die Wand alleine mit der Dicke d DP

dj , Einheit W=m2 K.

� D 1
Pn

jD1

dj


j

Wird von q=hi D TLi � TOi , q=� D TOi � TOa und q=ha D TOa � TLa die
Summe gebildet, folgt:

q

�
1

hi

C 1

�
C 1

ha

�
D TLi � TLa ! q D U � .TLi � TLa/

mit

U D 1
1
hi
C 1

�
C 1

ha

D 1

1
hi
CPn

jD1

dj


j
C 1

ha

U ist der gesamtheitlicheWärmedurchgangskoeffizient einschließlich der Konvek-
tion an beiden Randflächen. Der gesamtheitliche Wärmedurchgangswiderstand ist
R D 1=U .

1. Beispiel
Die Lufttemperaturen innen und außen mögen betragen: #Li D 21 ıC, #La D �5 ıC
(Abb. 3.39). Wie hoch sind die Temperaturen auf der Oberfläche einer einschaligen Wand,
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Abb. 3.39

wenn für hi D 8 bzw. ha D 23W=m2 K gesetzt werden kann? 1=� betrage 0,500W=mK:

1

U
D 1

8
C 0;500C 1

23
D 0;1250C 0;5000C 0;0435 D 0;6685m2 K=W

U D 1;496W=m2 K

! q D U � .TLi � TLa/ D 1;496 � .21 � .�5// D 1;496 � 26 D 38;9W=m2:

#i D #Li � q

hi

D 21 � 38;9

8
D 16;13 ıC

#a D #i � q

�
D 16;13 � 0;500 � 38;9 D 16;13 � 19;45 D �3;32 ıC

#La D #a � q

ha

D �3;32 � 38;9

23
D �3;32 � 1;69 D �5;0 ıC

2. Beispiel
Für eine Außenwand aus 36,5 cm Kalksandsteinziegel (
 D 0;79W=m �K) ohne Außenputz
und 1,5 cm innenseitigem Kalkmörtel (
 D 0;87W=m � K) berechnet sich der U -Wert mit
1=ha D 0;04m2 K=W und 1=hi D 0;13m2K=W zu:

1

U
D 0;04C 0;365

0;79
C 0;015

0;87
C 0;13 D 0;040C 0;462C 0;017C 0;130

D 0;649m2 K=W

! U D 1;54W=m2 K

1. Anmerkung
In Deutschland sind Heizung, Warmwasseraufbereitung und Beleuchtung in privaten und
öffentlichen Gebäuden mit 40% am Gesamtenergieverbrauch beteiligt und in dieser Größen-
ordnung auch am CO2-Ausstoß. Aus diesem Grund kommt neben umweltfreundlichen und
effizienten Heizkesselanlagen, ggf. in Kombination mit Solar- und Erdwärmesystemen, der
Wärmedämmung in Gebäuden die allergrößte Bedeutung zur Energie- und Kosteneinspa-
rung zu, für Türen und Fenster, Fassaden, Dach und Keller. Neben Polystyrol-, Schaumglas-
und Porenbetonplatten kommen Mineralfaserplatten aus Glas- und Steinwolle, auch solche
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aus Holzleichtfasern, Hanf und Flachs zum Einsatz. – Für Neubauten gelten strenge Auf-
lagen, ebenso für Bauten im Bestand, also Altbauten, bei baulichen Änderungen sowie bei
Verkauf und Vermietung. Grundlage sind das Energie-Wärmegesetz (EEWärmeG) und die
Energieeinsparverordnung (EnEV) in der jeweils maßgebenden Fassung. Wichtige Techni-
sche Regelwerke sind:

� DIN V 18599, 1-10:2007-02: Energetische Bewertung von Gebäuden – Berechnung des
Nutz-, End- und Primärenergiebedarfs für Heizung, Kühlung, Lüftung, Trinkwasser und
Beleuchtung und

� DIN V 4108-6/10:2003-06: Wärmeschutz und Energie-Einsparung von Gebäuden – Be-
rechnung der Jahresheizwärme und des Jahresheizenergiebedarfs.

Auf das einschlägige Fachschrifttum [5–7] wird hingewiesen.

2. Anmerkung
Über die Einfachverglasung ehemaliger Zeiten ging viel Wärme verloren. Heute kommen
Mehrfach-Wärmedämmgläser mit Edelgasfüllung und zum Teil mit innenseitiger unsicht-
barer Edelmetall-Beschichtung zum Einsatz. Richtwerte für den Wärmedurchgangskoeffizi-
enten in W=m2 K sind: Einscheibengläser ca. 5,8, Zweischeibengläser ca. 3,0 bis herunter
auf ca. 1,5, Dreischeibengläser ca. 0,5! Letztere sind bei Neubauten inzwischen Standard. –
Durch die Umstellung der Beleuchtung auf LED-Technik lassen sich im Haushaltsbereich
bedeutende Energieeinsparungen erreichen (Bd. IV, Abschn. 1.1.6. 10. Erg.)

3.3.7 Verbrennungswärme – Brennwerte

Bei chemischen Vorgängen (auch biochemischen) wird Wärme frei oder es muss
Wärme zugeführt werden. Verbrennung bedeutet Oxidation, also die chemische
Verbindung eines Elementes oder einer Gruppe von Elementen mit Sauerstoff. Bei
einer solchen Oxidation kann die Wärme auch explosionsartig frei werden. Durch
die Aufnahme von Sauerstoff ist das Verbrennungsprodukt schwerer als der Aus-
gangsstoff.

Die Verbrennungsenergie wird durch den Brennwert (H/ des chemischen Pro-
zesses gekennzeichnet. Der Brennwert ist definiert als die in der Masse m des
Stoffes chemisch gebundene (gespeicherte) Wärmeenergie Q:

H D Q

m
! Q D H �m

H ist ein Stoffwert in der Einheit J=kg. In Abhängigkeit von der Art des Stoffes
wird der Brennwert entweder in der Einheit J (Joule) oder durch andere Einheiten
gleichwertig charakterisiert (hingewiesen sei an dieser Stelle auf die tabellarische
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Abb. 3.40

Zusammenstellung verschiedener Energieeinheiten in Abb. 1.29 in Abschn. 1.12.1.
Eine nicht mehr verwendete Einheit ist die Kilokalorie, ihre Umrechnung in Kilo-
joule lautet:

1 kcal ¶ 4;19 kJI 1 kJ ¶ 0;239 kcal

Jeder Organismus, auch jener des Menschen, ist zur Aufrechterhaltung seiner Kör-
pertemperatur und der Funktion seiner Organe (Fortbewegung, körperliche und
geistige Tätigkeit) auf die Aufnahme von Energie in Form von Nahrung ange-
wiesen, ebenso auf die Aufnahme von Energie in Form von natürlicher und/oder
künstlicher Strahlungswärme durch die Sonne und durch Verbrennungsvorgänge
in Heizungen usf.

In Abb. 3.40 sind die Nährwerte in kJ=kg bzw. in kcal=kg verschiedener Nah-
rungsmittel eingetragen. Man spricht in diesem Falle auch von physiologischen
Brennwerten.

Wie viele davon vom Organismus aufgenommen werden, ist von der Zube-
reitung (roh, gekocht) und von der individuellen Enzymausstattung der Person
abhängig.

Die Werte streuen stark! – In Ergänzung zu den Tabellenwerten seien in pau-
schalierter Form in kJ=kg aufgelistet: Eiweiß (Protein): 17.000, Kohlehydrate:
17.000, Zucker: 16.000, Fette: 38.000, Alkohol: 29.000. In der Einheit kcal=kg
liegen die Werte bei ca. einem Viertel der Werte in kJ.

1. Anmerkung
In vielen Ländern der Erde hat sich der Nahrungsbedarf infolge Verlagerung von einer
körperlichen zu einer sitzenden Tätigkeit bei gleichzeitiger Reduzierung der Arbeitszeit ver-
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Abb. 3.41

ringert. Die Nährwertzufuhr hat sich in diesen Ländern gleichwohl gegenläufig durch den
hier herrschenden Wohlstand erhöht. – Abb. 3.41 enthält in tabellarischer Form Richtwerte
für den Nährwertbedarf pro Tag. Solche Angaben sind sehr pauschal und anfechtbar, weil sie
viel differenzierter sein müssten. Lebensalter, Körpergröße, Gesundheitszustand und Jahres-
zeit wären zu berücksichtigen.

2. Anmerkung
Einen Anhalt für das anzustrebende Körpergewicht gibt der sogen. Body-Mass-Index (BMI)
der Weltgesundheitsorganisation (WHO) nach der Formel:

BMI D Körpergewicht in kg=.Körpergröße in m/2

Als Anhalt gilt: BMI < 18;5: Untergewicht, 18,5–24,9: Normalgewicht (Idealgewicht),
> 25: Übergewicht, > 30: Fettleibigkeit (Adipositas). Um als normalgewichtig zu gelten,
sollte der BMI in jungen Lebensjahren eher bei 19/20 liegen, mit zunehmendem Alter kann
er leicht ansteigen. – Alternativ wird die sogen. Broca-Formel angewandt: Normalgewicht
in kg D (Körperlänge in cm) � 100: Idealgewicht davon bei Männern 90%, bei Frau-
en 85%; die Werte dürften zu niedrig liegen. Zahlenbeispiel: Für einen Mann mit einem
Körpergewicht 78 kg und einer Körpergröße 1,76m ergibt sich der BMI-Index zu: BMI D
78=.1;76/2 D 25;2; die Broca-Formel liefert: Normalgewicht D 176 � 100 D 76 kg. (Hin-
weis: In allen Fällen müsste es eigentlich Körpermasse in kg und nicht Körpergewicht
heißen!)

3. Anmerkung
Eine Diät zwecks Abnahme des Körpergewichts sollte mit 5000 kJ Zufuhr pro Tag beginnen,
fallweise später auf 4500 kJ sinkend; ärztlicher Rat ist empfehlenswert! – Aus den Tabellen-
werten in Abb. 3.42 geht hervor, wie vergleichsweise gering der Energieumsatz bei den
unterschiedlichen körperlichen Tätigkeiten ist, auch bei anstrengenden Sportarten.

4. Anmerkung
In Deutschland sind ca. 67% der männlichen Erwachsenen übergewichtig, davon 23% fett-
leibig, bei den weiblichen Erwachsenen lautem die Zahlen 53% bzw. 24%, vgl. Abb. 3.43.
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Abb. 3.42

Auch von den Kindern und Jugendlichen werden inzwischen ca. 20% als übergewichtig
eingestuft. In den USA liegen die Zahlen nochmals deutlich höher. Fettleibigkeit trifft man
eher in ärmeren und bildungsferneren Schichten an. – Ein leichtes Übergewicht ist eher
von Vorteil, das Immunsystem ist stabiler, Stress wirkt sich weniger belastend aus, was sich
in einem geringeren Krankenstand und einer höhere Lebenserwartung niederschlägt. – Ho-
hes Übergewicht oder gar Fettleibigkeit sind mit den bekannten Gefahren und Folgen für
die Gesundheit verbunden: Bluthochdruck, Herzinfarkt, Schlaganfall, Typ-2-Diabetes und
orthopädische Leiden aller Art. In Deutschland liegt die Zahl der Diabetiker bei ca. 6 Mil-
lionen; Jugendliche sind zunehmend betroffen. Weltweit leiden 430 Millionen Menschen an
Diabetes mellitus, mit steigender Tendenz. Für die staatlichen Gesundheitssysteme ist die

Abb. 3.43
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Entwicklung bedrohlich. – Verantwortlich ist ein zu hoher Zuckerverzehr, insbesondere über
Limonaden und Softdrinks. In Deutschland liegt der jährliche Zuckerverbrauch pro Person
bei ca. 36 kg (um das Doppelte zu hoch), in den USA bei ca. 58 kg. Wichtig ist eine ausgewo-
gene Ernährung, dazu Vitamine (Obst), Mineralstoffe und reichlich Flüssigkeit, schließlich
viel Bewegung, Sport jeder Art, bis ins Alter. – Bei ständig zu hohem Zuckerverzehr vermag
die Bauchspeicheldrüse nicht genügend Insulin zur Regulierung des Blutzuckerspiegels aus-
zuschütten. Dann kann zum Versagen kommen: Insulinresistenz: Diabetes. Der Zucker setzt
sich als Körperfett ab. Zu viel davon im Bauch- und Taillenbereich (‚Apfeltyp‘) ist besonders
gefährlich, im Gesäß- und Schenkelbereich (‚Birnentyp‘) weniger. –

Als Empfehlungen für eine gesunde Ernährung galt ehemals für das Energieverhältnis
Eiweiß zu Fett zu Kohlehydrate: 15% W 30% W 55%, heute eher: 20% W 20% W 60%. Dem
steht der Rat entgegen, eine hohe kohlehydratanteilige Nahrung zu meiden. Wird zu viel da-
von angeboten, setzten sich die Kohlehydrate über Zucker in Körperfett um. Täglich 750 kcal
(3200 kJ) an Kohlehydraten (Brot, Nudeln, Kartoffeln) werden als ausreichend erachtet, mit
dem Vorteil, dass das Gewicht nicht zunimmt.

Trotz aller Forschungsarbeit in der Ernährungswissenschaft werden die Wirkzusammen-
hänge in allen Einzelheiten immer noch nicht vollständig verstanden, auch nicht, in wie weit
das Essverhalten genetisch bestimmt ist und in seiner unmäßigen Form als Suchterkrankung
zu sehen ist. – In vielen muslimischen Gesellschaften werden dicke Frauen bevorzugt, vor
der Hochzeit werden sie ‚genudelt‘.

5. Anmerkung
Ca 15% der heutigen Menschheit leidet unter Hunger (2015). Das sind bei 7 Milliarden
Menschen auf Erden ca. eine Milliarde. Betroffen sind vorrangig Menschen in den Entwick-
lungsländern in Asien und Afrika, auch in Teilen Südamerikas. Hier liegt die Nährwert-
aufnahme z. T. deutlich unter den in Abb. 3.41 angegebenen Richtwerten, eher bei 6500 bis
7000 kJ pro Person und Tag. Wird dieser Wertebereich dauerhaft und deutlich unterschritten,
leidet ein erwachsener Mensch an Hunger, was mit einer Schwächung der gesundheitlichen
Konstitution und als Folge davon mit höherer Sterblichkeit einhergeht. Kinder sind beson-
ders betroffen, bei Hunger im Entwicklungsstadium verbleiben lebenslange Schäden. – Auf
der anderen Seite nimmt die Zahl der Übergewichtigen, auch bei Kindern, in den Entwick-
lungsländern wegen falscher Ernährung drastisch zu, in Asien, sogar in Schwarzafrika.

6. Anmerkung
Zum Betreiben von Heizungsanlagen, von Motoren, Turbinen und Aggregaten aller Art be-
darf es zur Erzeugung von Wärme, Kraft und Elektrizität des Einsatzes von Brennstoffen.
In geschichtlicher Folge dienten bzw. dienen als Energiequellen: Holz, Wind, Wasser, Torf,
Braunkohle, Steinkohle, Erdöl, Erdgas, Uran und in jüngerer Zeit Biogas und Sonnenlicht.
Abb. 3.44 enthält für die genannten Brennstoffe deren Brennwerte in kWh=kg bzw. MJ=kg.

7. Anmerkung
Abb. 3.45 enthält die Brennwerte von Kraftstoffen für den Land-, Schiffs- und Flugverkehr.
Die Dichte ist eingetragen, im Mittel liegt ihr Wert bei 80% von Wasser. – Man bezeichnet
den Brennwert auch als ‚Energiedichte‘, sie erreicht bei Wasserstoff mit 150MJ=kg einen
sehr hohen Wert. – Die bei der Kernspaltung von Uran 235 frei werdende Energie erreicht
mit 21.000.000 kWh=kg eine extreme Höhe!
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Abb. 3.44

Abb. 3.45

Abb. 3.46

8. Anmerkung
Um bei einer Sprengung eine hohe Wirkung zu erzielen, ist die Energie in möglichst kurzer
Zeit frei zu setzen. Bei zivil eingesetzten Sprengstoffen (Tunnelbau, Bergbau) kommt es
auf ein hohes Arbeitsvermögen des Sprengstoffs an, bei militärischen Sprengstoffen auf die
Erzeugung eines hohen Stoßdrucks. Vielfach bedarf es eines Initialsprengstoffes, um die
Explosion zu zünden. Von der großen Zahl verwendeter Sprengstoffe gibt Abb. 3.46 für
einige wenige die Brennwerte in kJ=kg an.

9. Anmerkung
Der Brennwert von TNT (Trinitrotuol) dient vielfach als Äquivalenzwert zur Kennzeichnung
von Kernwaffenwirkungen: Das TNT-Äquivalent beträgt mit T für Tonne, KT für Kilotonne
und MT für Megatonne.

1 kg TNT ¶ 4;184 � 106 J; 1T TNT ¶ 4;184 � 109 J:

1KT TNT ¶ 4;184 � 1012 J; 1MT TNT ¶ 4;184 � 1015 J
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Die im Jahre 1945 über Hiroshima abgeworfene Atombombe hatte eine Sprengkraft von
12,3 KT TNT und jene von Nagasaki von 22Kt TNT. Die stärksten Wasserstoff-Bomben
hatten eine tausendfach höhere Sprengkraft: 1954 (USA): 15 MT TNT, 1961 (UdSSR): 50
MT TNT.

3.4 Thermodynamische Prozesse

3.4.1 Zustandsänderungen idealer Gase

Wie ausgeführt, bestimmen die Größen Druck (p), Volumen (V ) und Temperatur
(T ) den Zustand eines idealen Gases. Ändern sich zwei dieser Größen und die
dritte nicht (sie bleibt konstant), spricht man von einer Zustandsänderung.

In Abb. 3.47 sind vier Gasprozesse mit ihren Charakteristika zusammengestellt:
Isochorer Prozess (Volumen bleibt konstant), isobarer Prozess (Druck bleibt kon-
stant), isothermer Prozess (Temperatur bleibt konstant) und adiabatischer Prozess
(der Prozess läuft ohne Wärmeaustausch mit seiner Umgebung ab).

In den folgenden Abschnitten werden wegen ihrer großen Bedeutung der iso-
therme und der adiabatische Expansions-/Kompressionsprozess in Verbindung mit
der hierbei geleisteten mechanischen Arbeit ausführlicher behandelt. Sie bilden
die Grundlage für den dann zu diskutierenden Kreisprozess und damit für den in
Wärme- und Verbrennungskraftmaschinen ablaufenden Prozess. Diese Fragen ge-
hören zu den zentralen Themen der technischen Thermodynamik.

� Expansion steht für Ausdehnung (auch für Entspannung) und
� Kompression für Zusammendrückung/Stauchung (auch für Verdichtung).

Abb. 3.47



3.4 Thermodynamische Prozesse 427

Abb. 3.48

Das p-V -Diagramm ermöglicht eine unmittelbare und anschauliche Berechnung
der vom Gas geleisteten Arbeit, wenn sich das Gas ausdehnt oder zusammenzieht.
Arbeit ist Kraft mal Weg. Wenn sich die Kraft mit demWeg ändert, muss integriert
werden, vgl. Abschn. 1.11.

Abb. 3.48a zeigt als Beispiel einen isothermen Prozess: Bei konstanter Tem-
peratur steigt der Druck mit sinkendem Volumen (und umgekehrt). In Abb. 3.48b
sind die Zustände an einem Zylinder verdeutlicht. Es gilt:

p � V D p1 � V1

Ist die Fläche des Kolbens gleich A, beträgt das Volumen: V D A � s. s ist der
Kolbenweg. Die Zustandsgleichung kann somit auch zu

p � A � s D p1 � A � s1

formuliert werden. p �A ist die auf den Kolben einwirkende Kraft, damit gilt gleich-
wertig:

F � s D F1 � s1

Beispiel
Im Ausgangszustand (1) betrage das Volumen V1 D 0;001m3 und der Weg s1 D 0;1m.
Der Gasdruck betrage p1 D 2 � 106 Pa. Die Kolbenfläche sei A D 0;01m2. Die zugehörige
Kolbenkraft ist dann:

F1 D p1 �A D 2 � 106 � 0;01 D 2 � 104 N:

(Hinweis: Pa D N=m2; Pa �m2 D N.)
Abb. 3.49 zeigt den F -s-Verlauf. In den Teilabbildungen a und b ist der kontinuierliche

Verlauf durch einen abgestuften angenähert. Die jeweiligen Mittelordinaten sind eingetra-
gen. Die Basis der Rechtecke beträgt bei der ersten Unterteilung 0,050m, bei der zweiten
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Abb. 3.49

0,025m. Berechnet man die Teilflächen, folgt für die Arbeit bei einer Annäherung gemäß a
bzw. b (numerische Integration):

Annäherung a: .16:000C 11:430/ � 0;050 D 1372Nm D 1372 J

Annäherung b: .17:780 C 14:550C 12:310C 10:670/ � 0;025 D 1384Nm D 1384 J

Eine analytische Integration ist hier möglich (vgl. folgenden Abschnitt). Für die Kolbenkraft
F als Funktion von s gilt:

F D F1 � s1 � 1
s
D 2 � 104 � 0;10 � 1

s
D 2000 � 1

s

Integral und Lösung lauten:

0;20Z

0;10

F ds D 2000

0;20Z

0;10

ds

s
D 2000 � Œln s�

0;20
0;10 D 2000 � .ln 0;20 � ln 0;10/ D 2000 � ln 0;20

0;10

D 2000 � ln 2 D 2000 � 0;693 D 1386 J

Die numerische Integration ergibt offensichtlich recht genaue Werte für die verrichtete Ar-
beit.

In Abb. 3.50a handelt es sich um einen Prozess, der sich aus vier Einzelpro-
zessen zusammensetzt; wobei sich der p-V - bzw. F -s-Kurvenzug wieder schließt.
Während der Prozesse 1–2 und 2–3 dehnt sich das Gas aus, während der Prozesse
3–4 und 4–1 wird das Gas komprimiert (zusammengedrückt). In den Teilabbil-
dungen b, c, d und e sind die von den Einzelprozessen geleisteten Arbeiten als
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Abb. 3.50

schraffierte Flächen dargestellt. Werden sie zusammengefügt, wird deutlich, dass
der Inhalt der eingeschlossenen Fläche die vom Gesamtprozess geleistete Arbeit
ist, das ist die Arbeit des hier dargestellten Kreisprozesses, die ist die schwarz
angelegte Fläche im p-V - bzw. F -s-Diagramm. –

Im Folgenden werden zunächst der isotherme und der adiabatische Expansions-
und Kompressionsprozess betrachtet, anschließend werden sie auf einen Kreispro-
zess angewandt.

3.4.2 Prozess der isothermen Expansion/Kompression

Abb. 3.51a zeigt einen mit einem idealen Gas der Stoffmenge n gefüllten Behälter.
Das Gas nehme das Volumen V1 ein. Die Resultierende des Gasdrucks p stehe mit
der Kolbenkraft F im Gleichgewicht: F D p � A. A ist die Fläche des Kolbens.
Der Kolben schließt den Behälter ab. Das Gas befinde sich mit dem allseitigen
Wärmereservoir mit der Temperatur T in thermischem Gleichgewicht.

Durch eine infinitesimale (quasi unendlich kleine) Hebung des Kolbens (um
ds, in der Abbildung überzeichnet) expandiert, vergrößert sich der Gasraum. Es
wird angenommen, dass diese Volumenausdehnung infinitesimal langsam erfolgt.
Durch den Wärmeübergang aus dem Reservoir bleibt die Temperatur unverändert
(isotherme Zustandsänderung). Aus dem Thermischen Gasgesetz für ideale Gase
(p � V D n � R � T , vgl. Abschn. 3.2.5) kann unmittelbar auf p � V D konst:
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Abb. 3.51

(wegen n D konst: und T D konst:) gefolgert werden. Demnach gilt (vgl. Fall c
in Abb. 3.47):

p1

p2

� V1

V2

D 1 ! p1 � V1 D p2 � V2

Da die Temperatur konstant bleibt, erfährt die Innere Energie keine Änderung:

dEinn D dQC dW D 0

Die äußere Kraft verschiebt sich entgegen ihrer Wirkrichtung um ds. Die von ihr
verrichtete Arbeit ist negativ:

dW D �F � ds D �p � A � ds D �p � dV;

denn die Volumenänderung ist gleich A � ds.
Die aufgenommene Wärmemenge verrichtet ausschließlich (wegen T D

konst:) mechanische Arbeit:

dQ D �dW D p � dV

Aus dem Thermischen Gasgesetz wird p frei gestellt

p � V D n � R � T ! p D n �R � T
V

und in vorstehenden Ausdruck für dQ D p � dV eingesetzt und integriert:

Q D n �R � T �
Z

dV

V
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Die zugeflossene Wärmemenge steht mit der Volumenänderung von V1 nach V2 in
direktem Zusammenhang. Das Integral über dV erstreckt sich demgemäß von V1

bis V2. Die Integration liefert:

Q D n � R � T � ln V2

V1

Hinweis zur Integration:

y D
x2Z

x1

1

x
dx D ln xjx2

x1
D ln x2 � ln x1 D ln

x2

x1

Der hergeleitete Zusammenhang zwischen dem Wärmeübergang und der Volu-
menänderung gilt auch dann, wenn es sich um eine Kompression des Gasvolumens
handelt, immer unter Bedingung T D konst:

3.4.3 Prozess der adiabatischen Expansion/Kompression

Es wird dieselbe Ausgangssituation wie zuvor bei der isothermen Expansi-
on/Kompression betrachtet, allerdings sei der Behälter jetzt allseitig wärmeisoliert,
vgl. Abb. 3.52. Bei einer infinitesimalen Verschiebung des Kolbens nach oben oder
unten kann keine Wärme zu- oder abfließen, d. h. dQ D 0. Für die Innere Ener-
gie bedeutet das im Falle einer Ausdehnung des Gasvolumens, also bei einer
Verschiebung um ds:

dEinn D dW D �F � ds D �p � A � ds D �p � dV

Bezugnehmend auf Abschn. 3.3.3.4 beträgt die Änderung von dEinn bei einer Än-
derung der Temperatur um dT :

dEinn D n � CV � dT

Abb. 3.52
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CV ist die molare Wärmekapazität. Die Gleichsetzung mit dEinn D �p �dV (siehe
oben) ergibt:

n � CV � dT C p � dV D 0

Aus dem Thermischen Gasgesetzt wird T frei gestellt und differenziert:

p � V D n � R � T ! T D p � V
n � R ! dT D 1

n � R.dp � V C p � dV /

Wird dT mit der vorstehenden Gleichung verknüpft, ergibt sich nach kurzer Um-
formung (vgl. an dieser Stelle mit dem zuvor genannten Abschnitt):

Cp � dV

V
C CV � dp

p
D 0 mit Cp C CV D R

Wird schließlich noch der sogen. Adiabatenkoeffizient zu

� D Cp

CV

vereinbart, kann die Beziehung zu

� � dV

V
C dp

p
D 0

angeschrieben werden. Um die Zustandsänderung bei der Expansion um ds, also
bei einer Änderung des Gasvolumens von V1 nach V2 bzw. des Drucks von p1 nach
p2, zu bestimmen, wird über die Gleichung integriert:

� �
V2Z

V1

dV

V
C

p2Z

p1

dp

p
D 0 ! � � lnV jV2

V1
C lnpjp2

p1
D 0

! � � .lnV2 � lnV1/C .lnp2 � lnp1/ D 0

! lnV �
2 � lnV �

1 C lnp2 � lnp1 D 0 ! ln
�

V2

V1

��

C ln
p2

p1

D 0

! ln
��

V2

V1

��

� p2

p1

�
D 0 ! ln

�
p2

p1

�
�

V2

V1

��

D 1

�

Hinweis: 0 D ln 1.
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Abb. 3.53

Nach Delogarithmierung und Umkehrung erhält man das die adiabatische Ex-
pansion/Kompression kennzeichnende Gesetz:

p1

p2

�
�

V1

V2

��

D 1 ! p1 � V �
1 D p2 � V �

2

In Abb. 3.47 ist das p-V -Diagramm als Fall d wiedergegeben.
Die Größe des Adiabatenkoeffizienten ist von der Gassorte abhängig. Für ein-

und zweiatomige (ideale) Gase gilt: � D 3=2 D 1;67 bzw. 7=5 D 1;40, vgl. wegen
Cp und CV Abb. 3.31. In der Tabelle der Abb. 3.53 sind �-Werte für reale Gase
ausgewiesen.

Wie ausgeführt, ist dQ bzw. Q gleich Null. Die bei der Expansion des Gasvo-
lumens verrichtete Arbeit beim Übergang vom Volumen V1 auf das Volumen V2

lässt sich berechnen, wenn aus

p � V � D p1 � V �
1

p frei gestellt, in die Gleichung für dW eingesetzt und anschließend integriert
wird (siehe hierzu Abb. 3.54, dW D �p � dV ):

p D p1 � V �
1 � V � ! dW D �

V2Z

V1

p1 � V �
1 � V �dV D �p1 � V �

1 �
V2Z

V1

V �dV

D �p1 � V �
1 �

V ��C1

�� C 1

ˇ̌
ˇ̌
V2

V1

Hinweis zur Integration:

y D
x2Z

x1

xndx D 1

nC 1
xnC1jx2

x1
D 1

nC 1
.xnC1

2 � xnC1
1 /
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Abb. 3.54

Nach Zwischenrechnung folgt:

dW D p1 � V1

1 � �

"
1 �

�
V1

V2

���1
#

3.4.4 Carnot-Kreisprozess

Da die beiden zuvor behandelten Prozesse allein vom Thermischen Gasgesetz für
ideale Gase und vom 1. Hauptsatz der Wärmelehre ausgehen, im Übrigen an keine
irgendwie gearteten weiteren Voraussetzungen gebunden sind, gelten sie gleicher-
maßen für die Expansion wie für die Kompression eines Gasvolumens. Es handelt
sich um reversible Prozesse. Sie sind umkehrbar! Hierbei wird lediglich unter-
stellt, dass sich der Kolben im Gefäß reibungsfrei verschieben kann. Auch soll das
Gas reibungsfrei strömen können.

Die Annahmen, dass beim isothermen Prozess das Wärmegleichgewicht kon-
tinuierlich gewahrt ist und dass beim adiabatischen Prozess keinerlei Wärmeaus-
tausch über die Wandung stattfindet, sind von idealer Art. Real lassen sie sich nicht
umsetzen. Insofern handelt es sich bei beiden Einzelprozessen um Gedankenmo-
delle!

Dem im Nachfolgenden dargestellten sogen. Carnot-Prozess liegen die beiden
vorangegangenen Prozesse zugrunde. Das impliziert: Auch der Carnot-Prozess ist
ein Gedankenmodell. Aus ihm lässt sich gleichwohl eine bedeutende Schlussfolge-
rung für alle Wärme- und Verbrennungskraftmaschinen ziehen. Der Prozess geht
auf N.L.S. CARNOT (1796–1832) zurück, der ihn im Jahre 1824 publizierte, al-
so zu einem Zeitpunkt, als die Thermodynamik noch nicht entwickelt war. Man
spricht bei dem Modell auch von der Carnot-Maschine.

Der Prozess werde an einem Beispiel veranschaulicht. Dazu werden für vier
Einzelprozesse die p-V -Verläufe berechnet. Es handle sich um ein zweiatomiges
Gas mit einer Stoffmenge n D 2mol.
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Prozess① sei ein isothermer Expansionsprozess, beginnendmit einemVolumen
V1 D 0;005m3 und einer Temperatur T D 750K.

Ausgehend vom Thermischen Gasgesetz wird gerechnet:

p D n �R � T
V

D 2 � 8;315 � 750

V
D 12:473

V

Bei einer Vergrößerung des Volumens auf V D 0;009m3 sinkt der Druck auf
p D 1;386 � 106 Pa.

Hiermit werde der Prozess ② fortgesetzt und hierbei von der Gasgleichung für
adiabatische Expansion ausgegangen. In dieser Weise wird fortgefahren. Das Er-
gebnis der Zahlenrechnung lautet mit folgenden Ansätzen:

① Isothermer Expansionspr. von V1 D 0;005m3 auf V2 D 0;009m3, T D 750K,
② Adiabatischer Expansionspr. von V1 D 0;009m3 auf V2 D 0;0128m3, � D 1;4,
③ Isothermer Kompressionspr. von V1 D 0;0128m3 auf V2 D 0;007m3,

T D 650K,
④ Adiabatischer Kompressionspr. von V1 D 0;007m3 auf V2 D 0;005m3,

� D 1;4.

Abb. 3.55 zeigt das Resultat. Werden die p-V -Verläufe zusammengefügt, erkennt
man einen geschlossenen Kurvenverlauf, man spricht, wie bereits erwähnt, von
einem Kreisprozess. Die isotherme Expansion bezieht ihre Wärme aus einem
Wärmereservoir mit T D 750K. Während des isothermen Kompressionsverlaufs
steht das Gasvolumen mit einem Wärmereservoir T D 650K in thermischem
Kontakt. Die aufgenommene Wärmemenge mit der Temperaturdifferenz �T D
750K � 650K D 100K wird in Arbeit am Kolben umgesetzt. Das ist der Inhalt
der in Abb. 3.55 schraffiert angelegten Fläche. Mit den obigen Formeln für die Ar-
beitsbeträge j�W j der beiden Prozesse lassen sie sich für das Beispiel der Reihe
nach berechnen:

①W 7331 J; ②W 3927 J; ③W 6354 J; ④W 3927 J

Für das Umlaufintegral ergibt sich:

7331 JC 3927 J � 6354 J � 3927 J D 977 J:

Bezogen auf die aufgenommene Wärmemenge des Prozesses ① bestimmt sich der
thermische Wirkungsgrad zu:

�thermisch D 977

7331
D 0;133:
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Abb. 3.55

Dieser lässt sich auch aus

�thermisch D TEingang � TAusgang

TEingang
D 1 � TAusgang

TEingang
D 1 � 650

750
D 1 � 0;867 D 0;133

gewinnen. Die Formel erhält man, wenn von den Formeln für die mechanische Ar-
beit der Einzelprozesse ausgegangen wird. �thermisch ist nur von den Temperaturen
der Wärmereservoire abhängig, sie gilt für beliebige gasförmige Medien.

Das Ergebnis ist bemerkenswert, weil hiermit der höchstmögliche Wirkungs-
grad jedes Kreisprozesses bestimmt werden kann. Reale Prozesse sind nicht von
der idealisierten Art eines Carnot-Prozesses. Sie sind irreversibel, da die Einzelpro-
zesse der Expansion und Kompression ihrerseits irreversibel, also nicht umkehrbar,
sind: Verglichen mit dem Carnot-Prozess geht in diesem Falle ein höherer Anteil
in Abwärme über; das bedeutet:

�thermisch;irreversibel < �thermisch;reversibel:

Aus der Formel für den thermischen (thermodynamischen) Wirkungsgrad
geht hervor, dass dieser umso höher liegt, demnach umso günstiger ist, je
größer die Differenz zwischen Eingangs- und Ausgangstemperatur ist. Da-
her wird man bestrebt sein, eine Maschine mit einer möglichst hohen Be-
triebstemperatur gegenüber der Temperatur der Abwärme zu fahren. Die
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Festigkeit des Maschinenmaterials, beispielsweise von Zylinder und Kolben eines
Verbrennungsmotors, setzt diesem Ziel Grenzen. Zudem: Tiefer als die Umge-
bungstemperatur kann TAusgang nicht liegen.

Schätzt man z. B. TEingang zu 900K und TAusgang zu 300K ab, ergibt sich:

�thermisch;irreversibel < 1 � 300

900
D 1 � 0;33 D 0;667

Ein solcher Wert ist real nicht erreichbar. Geht man von TEingang D 800K (527 ıC)
und TAusgang D 400K (127 ıC) aus, folgt:

�thermisch;irreversibel < 1 � 400

800
D 1 � 0;50 D 0;50

Abzüglich der mit diversen Irreversiblen verbundenen Minderungen durch Rei-
bungseinflüsse, liegt man mit � � 0;4 als grobe Abschätzung für realistische
Prozesse etwa richtig. Es versteht sich, dass bei der Auslegung von Wärme- und
Verbrennungskraftmaschinen das Gebot eines hohenWirkungsgrades oberstes Ziel
ist, wobei diesem Ziel das Gebot einer hohen Sicherheit mindestens gleichrangig
zur Seite steht.

3.4.5 Entropie – Entropiesatz

Die Entropie kennzeichnet den Grad der Unordnung in einem Stoffsystem. Sie ist,
wie die Energie, eine Zustandsgröße. Die Entropie wird mit dem Formelzeichen
S abgekürzt. In einem geschlossenen System strebt die Entropie den höchstmög-
lichen Wert an. Das ist ein Naturgesetz. In dieser Form ist das Gesetz eine weitere
Version des 2. Hauptsatzes der Wärmelehre.

Die Entropie wurde von R. CLAUSIUS (1822–1888) im Jahre 1865 zur Be-
schreibung thermodynamischer Prozesse eingeführt. Ist dQ die zu- oder abgeführ-
te Wärmemenge und T die Temperatur während dieses Wärmeübergangs, lautet
die Definition der Entropie nach R. CLAUSIUS:

dS D dQ

T
ŒS� D J

K

dS ist die Entropieänderung, die mit der Änderung der Wärmeenergie dQ einher-
geht. Für reversible (umkehrbare) Vorgänge gilt dS D 0. Für irreversible (nicht
umkehrbare und das sind eigentlich alle Vorgänge) gilt dS � 0, die Vorgänge
streben selbsttätig einen Zustand höherer Unordnung bzw. geringerer Ordnung an.
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Abb. 3.56

L. BOLTZMANN (1844–1906) gelang im Jahre 1866 eine quantifizierende
Formulierung der Entropie. Er ging von der statistischen Mechanik der Gasmo-
leküle aus, entwickelte somit, von einer mikroskopischen Betrachtung ausgehend,
die für den makroskopischen Zustand geltende Entropie. Seine Definition lautet:

S D k � lnw;

worin w die Zustandswahrscheinlichkeit der Teilchen ist. Es ist bemerkenswert,
dass sich die beiden Definitionen nach R. CLAUSIUS und L. BOLTZMANN in-
einander überführen lassen. Dieser Zusammenhang wird nachfolgend gezeigt; die
zunächst recht abstrakt und unanschaulich wirkende Größe Entropie wird dabei
verständlicher werden.

dS � 0 gilt nach der Definition von L. BOLTZMANN für einen mikroskopi-
schen Zustand höhererWahrscheinlichkeit. Dass diese Zustandsänderungmit einer
höheren Unordnung einhergeht, lässt sich aus nachstehendemBeispiel folgern. Da-
zu wird von einem idealen Gas ausgegangen, das sich in einem wärmeisolierten
Gefäß innerhalb einer Kammer mit dem Volumen V1 befindet. Die Temperatur sei
T und die Anzahl der Gasmoleküle N , vgl. Abb. 3.56a. Die benachbarte Kammer
sei leer, ein Vakuum.

Wird die Trennwand entfernt, breiten sich die Gasmoleküle im ganzen Volumen
(V2) gleichförmig aus (Teilabbildung b). Der Vorgang wird und kann sich nicht
selbsttätig rückentwickeln, das ist einsichtig, etwa in der Weise, dass sich alle Teil-
chen wieder im Volumenbereich V1 einfinden. Insofern handelt es sich um einen
irreversiblen Prozess. – Die Anzahl der Teilchen schwankt in den verschiedenen
Bereichen des Volumen V2 wegen des zufälligen Stoßgeschehens. Im Mittel stellt
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sich eine gleichförmige Verteilung der Teilchen ein. – Während der Entfernung
der Trennwand wurde dem isolierten Behälter von außen weder Wärme zugeführt
noch wurde welche entzogen, das bedeutet, in dem vergrößerten Gasraum bleibt
die anfängliche Temperatur unverändert, T1 D T2 D T .

Wird im thermischen Gasgesetz der Gasdruck p freigestellt, folgt:

p � V D N � k � T ! p D N � k � T
V

; p D p.V /

Das bedeutet: Da der Zähler (N � k � T ) nach Entfernung der Trennwand konstant
bleibt, muss der Druck, wegen der Vergrößerung des Volumens (V2 > V1), sinken
(p2 < p1). – Da, wie ausgeführt, von außen keine Wärme zugeführt noch abgezo-
gen wird, bleibt die Innere Energie der Gasteilchen konstant, anders formuliert:

Die Innere Energie erfährt keine Änderung .dEinn D 0/:

Die Wärme(-energie) verteilt sich gegenüber dem ursprünglichen auf ein größeres
Volumen. Dabei erfährt sie eine Änderung (dQ/. Die Volumen- und Druckände-
rung geht mit mechanischer Arbeit der Teilchen einher: dW (Volumen 1 geht in
Volumen 2 über). Die Summe aus dQ und dW ist die Änderung der Inneren Ener-
gie (dEinn/. Einn bleibt konstant (Energieerhaltungsgesetz), sie ändert sich nicht:

dEinn D dQC dW D 0

! dQ D �dW D �
V2Z

V1

Œ�p.V /� dV D
V2Z

V1

N � k � T
V

dV

D N � k � T �
V2Z

V1

dV

V
D N � k � T � lnV jV2

V1
D N � k � T � .lnV2 � lnV1/

! dQ D N � k � T � ln V2

V1

Nach dieser Vorbetrachtung wird verfolgt, mit welcher Wahrscheinlichkeit sich
die N Gasmoleküle des Volumens V1 anschließend in den beiden Volumina V1

und V2 � V1 verteilen, wobei hier als Beispiel V2 D 2V1 unterstellt werde, d. h.
das Gesamtvolumen sei doppelt so groß wie die beiden Einzelvolumina links und
rechts.

Abb. 3.57 zeigt der Reihe nach drei Fälle: N D 1, N D 2 bzw. N D 3. Im
Falle N D 1 besteht das Gas nur aus einem Molekül (mit der Ziffer 1 benannt).
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Abb. 3.57

Die Wahrscheinlichkeit, dass es sich nach Entfernung der Trennwand in V1 aufhält,
ist gleich 1=2 (Teilabbildung a):

w D
�

1

2

�
D

�
1

2

�1

Im Fall N D 2 verteilen sich zwei Moleküle (mit den Ziffern 1 und 2 benannt) auf
die Volumina links und rechts. Die Wahrscheinlichkeiten hierfür sind ungleich.

Die Wahrscheinlichkeit, dass sich beide Moleküle in V1 aufhalten, ist 1=4

(Teilabbildung b):

w D
�

1

4

�
D

�
1

2

�2

Im Falle N D 3 gilt für diesen Fall (alle drei Moleküle in V1, Teilabbildung c):

w D
�

1

8

�
D

�
1

2

�3
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Die Fälle N D 4; 5; : : : erlauben nach Ausrechnung eine Verallgemeinerung für
N Teilchen:

w D
�

1

2

�N

Bei einem Gas der Stoffmenge n D 1mol ist die Anzahl der Teilchen gleich der
Avogadro-Konstanten: N D NA D 6;022 � 1023. Die Wahrscheinlichkeit dafür,
dass sich im Falle N D NA alle Moleküle gleichzeitig im Volumen V1 aufhalten,
ist einsichtiger Weise extrem gering, sie ist praktisch Null, indessen nicht ganz
Null, es könnte möglich sein.

Ist das Verhältnis der Volumina V1=V2 nicht 1 zu 2, sondern irgendwie beliebig,
ist die Wahrscheinlichkeit dafür, dass sich N Teilchen (Moleküle) zufällig in V1

befinden, gleich:

w1 D
�

V1

V2

�N

�w2

Das ist die bedingte Wahrscheinlichkeit für das betrachtete Ereignis unter der Vor-
aussetzung, dass das Ereignis, wonach sich die übrigen Teilchen in V2 befinden,
mit der Wahrscheinlichkeit w2 eingetreten ist. Die Zunahme der Entropie für den
Fall, dass sich N Moleküle in V1 befinden (S2 gegenüber S1), ist, ausgehend von
der obigen Definition der Entropie nach L. BOLTZMANN, demnach:

dS D S2 � S1 D k � lnw2 � k � lnw1 D k � lnw2 � k � ln
"�

V1

V2

�N

�w2

#

D k � lnw2 � k � ln
�

V1

V2

�N

� k � lnw2 D �k � ln
�

V1

V2

�N

D �k �N � ln
�

V1

V2

�
D k �N � ln

�
V2

V1

�

Die Verknüpfung mit der obigen Beziehung für dQ liefert das gesuchte Ergebnis:

dS D k � N � ln
�

V2

V1

�
D k �N � dQ

N � k � T ! dS D dQ

T

Die Gleichwertigkeit der Entropiedefinitionen von R. CLAUSIUS und L. BOLTZ-
MANN ist damit für das Beispiel gezeigt. Sie gilt allgemein, auch für die Stoffzu-
stände flüssig und fest. (Zur strengeren Herleitung vgl. das Fachschrifttum.)
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Abb. 3.58

Werden zwei Körper desselben Stoffes mit den Massen m1 D m2 D m und
mit den zunächst unterschiedlichen Temperaturen T1 und T2 in einem isolierten
geschlossenen System auf thermischen Kontakt zusammen geführt, wobei T1 >

T2 sein möge, stellt sich ein Wärmestrom von 1 nach 2 ein (Abb. 3.58). Die
Temperaturen in den Körpern ändern sich um �T1 bzw. �T2. Wärmeabzug und
Wärmeaufnahme betragen nach Erreichen des thermischen Gleichgewichts:

�Q1 D �c �m ��T1; �Q2 D c �m ��T2

c ist die Wärmekapazität des Materials (Abschn. 3.3.3). Aus der Bedingung, dass
die abgezogeneWärmemenge gleich der zugeführten ist, ihre Summe also Null ist,

�Q1 C�Q2 D 0;

folgt nach Einsetzen der Ausdrücke für �Q1 und �Q2:

�T1 D �T2 D �T D T1 � T2:

Das bedeutet in diesem Falle: Die Änderung der Temperaturen ist dem Betrage
nach gleichgroß. Die Entropien der Einzelprozesse betragen:

�S1 D �Q1

T1

D � c �m ��T

T1

; �S2 D �Q2

T2

D c �m ��T

T2

Die Entropie des irreversiblen Gesamtprozesses des hier behandelten geschlosse-
nen Systems ist gleich der Summe der Entropien der Einzelprozesse:

�S D �S1 C�S2 D �c �m ��T �
�

1

T1

� 1

T2

�
D �c �m ��T � .T2 � T1/

T1 � T2

D c �m � .T1 � T2/ � .T1 � T2/

T1 � T2

! �S D c �m � .T1 � T2/
2

T1 � T2
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Alle Terme im Zähler und Nenner sind positiv, somit gilt:

�S > 0

Die Entropie im Inneren des Körpers hat sich infolge eines vollständigen Aus-
gleichs der Wärmebewegung der sich jetzt in einem vergrößerten Raum befindli-
chen Moleküle erhöht und damit auch die Unordnung im System, was in direktem
Zusammenhang mit dem Wärmeübergang vom kalten auf den warmen Körper
steht. Das ist die Aussage des 2. Hauptsatzes der Thermodynamik.

Beispiel
Die Körper in Abb. 3.58 bestehen aus Aluminium, jeder mit der Masse m D 1 kg. Die an-
fänglichen Temperaturen in den Körpern mögen vor dem Beginn des thermischen Kontaktes
betragen:

#1 D 100 ıC ! T1 D 373K bzw. #2 D 0 ıC ! T2 D 273K

! T1 � T2 D 100K

Hierfür liefert die Rechnung nach der vorstehenden Formel für �S (wegen c vgl. Abb. 3.25):

�S D 897 � 1;0 � .373 � 273/2

373 � 273
D 88;09 J=K > 0

Die Änderung der Entropie ist positiv, das bedeutet: Die Entropie ist durch den thermischen
Körperkontakt angestiegen. Die Unordnung im System ist angewachsen.

Die Bedeutung des Entropiebegriffs ist vielfältig. Einige Aspekte werden hierzu
im folgenden Abschnitt erörtert.

3.4.6 Ergänzungen und Beispiele zum Entropiesatz

1. Der Satz: ‚In der Mechanik treten nur reversible Vorgänge (Prozesse) auf‘,
würde in dieser Form nur zutreffen, wenn die Vorgänge reibungsfrei und ideal-
elastisch ablaufen: Die Bewegung eines in einem Kugellager aufgehängten
Pendels wird selbst in einem Vakuum irgendwann zur Ruhe kommen, weil es
kein reibungsfreies Kugellager gibt. – Fällt eine gehärtete Stahlkugel in einem
Vakuum auf eine gehärtete Stahlplatte, wird sie beim Rücksprung die Aus-
gangshöhe nicht erreichen, weil beim Aufschlag infolge geringer lokaler plas-
tischer Stauchungen etwas minimale Energie ‚verloren‘ gegangen ist. In den
beiden Beispielen entsteht etwas Wärme. Die Vorgänge sind bei strenger Be-
trachtung demnach irreversibel. Vielfach, eigentlich meistens, ist es erlaubt und
angebracht, einen reversiblen Vorgang zu unterstellen, um eine zwar genäherte,
gleichwohl ausreichend genaue und praktische Lösung für ein physikalisches
Problem zu finden.
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2. Während man Begriffe wie Energie, Temperatur, Druck, Volumen mit einer
Anschauung verbinden kann, ist das beim Begriff Entropie nicht oder nur be-
dingt der Fall. Dabei ist der Begriff in der Thermodynamik ein überaus wich-
tiger. Er spielt auch bei chemischen Reaktionen, bei evolutionären biologi-
schen Prozessen, zur Kennzeichnung eines ökologischen Gleichgewichts (The-
ma Rohstoff/Umwelt), bei der Untersuchung ökonomischer Abläufe (Thema
Angebot/Nachfrage), in der Informationstheorie und in weiteren Bereichen der
Naturwissenschaften eine wichtige Rolle. – Man denke an eine Kohlelagerstät-
te. In dieser ist sehr viel chemische Energie in einem vergleichsweise kleinen
Volumen gespeichert, es handelt sich um eine örtliche Energiekonzentration
höchster Ordnung. Schon beim Abbau und der Förderung wird sie verringert,
Entropie wird erzeugt. Wird die Kohle verbrannt, wird der Zustand höchst-
möglicher Entropie in Form von Asche, Luftpartikel und Verbrennungsgasen
erreicht. Der Vorgang ist absolut unumkehrbar, also irreversibel. Das ist eine
Konsequenz des Entropiesatzes. Die sich einstmals angesammelte Energie ‚ist
zwar nicht weg‘, hat sich aber unwiederbringlich ins ‚Nirgendwo‘ verflüchtigt.

3. Bei der Einführung des Entropiebegriffs (1865) formulierte R. CLAUSIUS die
Sätze: Die Energie der Welt ist constant. Die Entropie der Welt strebt einem
Maximum zu. In der Konsequenz würde die vollständige Vergleichmäßigung
aller Vorgänge im Weltall den Wärmetod im Kosmos bedeuten. Das wird heute
anders gesehen. Der Entropiesatz gilt nämlich nur für geschlossene Systeme,
ein solches ist das Weltall nicht.

4. Eine größere Allgemeinheit erreicht man in der Thermodynamik, wenn man
von der von J.W. GIBBS (1839–1903) vorgeschlagenen Fundamentalform für
die Innere Energie

dEinn D X1 � dY1 CX2 � dY2 C : : :CXn � dYn D
nX

1

Xi � dYi

ausgeht (hier in vereinfachter Notierung). Hierin steht Xi für eine sogen. inten-
sive Größe (Druck, Temperatur) und Yi für eine sogen. extensive Größe (Volu-
men, Teilchenanzahl). Intensive Größen sind solche, die bei der Verkopplung
von Systemen (z. B. bei thermischem Kontakt und nach einer gewissen Dauer)
denselben Wert annehmen (z. B. Druckausgleich, Temperaturausgleich). Inten-
sive Größen sind solche, die im Gesamtsystem als Summe eingehen (z. B. zwei
Volumina vereinigen sich zu einem Volumen). Die Entropie ist eine extensive
Größe. Hiervon ausgehend kann die innere Energie und damit die Entropie zu

dEinn D T � dS � p � dV
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definiert werden. Der zweite Term ist die mechanische Energie, die beispiels-
weise am Kolben eines Zylinders verrichtet wird. Die Produktterme haben die
Einheit einer Energie, wie es sein muss.

5. Handelt es sich um einen Prozess mit einem idealen Gas ohneWärmeaustausch
nach außen und innen, bleibt die Innere Energie im System unverändert. Aus
der vorstehenden Gleichung kann für die Entropie gefolgert werden:

dEinn D T � dS � n �R � T � dV

V
D 0 ! �S D n �R �

VEndeZ

VAnfang

dV

V

Hierin ist das thermische Gasgesetz p D n � R � T=V eingearbeitet. Die Inte-
gration ergibt

�S D n �R � ŒlnVEnde � lnVAnfang� ! �S D n �R � ln VEnde

VAnfang

6. Mit der vorstehenden Formel werde ein Diffusionsprozess behandelt, wie in
Abb. 3.59 veranschaulicht: In einer wärmeisolierten Doppelkammer mit den
ungleichen Volumina V1 und V2 befinden sich zwei unterschiedliche Gase 1
und 2. Deren Stoffmengen seien n1 und n2. Nach Entfernen der Trennwand
vermischen sich die Gase zu einem neuen System mit dem Volumen V1 C V2,
wobei sich Druck (p) und Temperatur (T ) ausgleichen. Es mögen die Vor-
aussetzungen von Pkt. 5 gelten. Je für sich gilt für Gas 1 und Gas 2 vor der

Abb. 3.59
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Vereinigung:

Gas 1: �S1 D n1 �R � ln V1 C V2

V1

; Gas 2: �S2 D n2 � R � ln V1 C V2

V2

Nach der Vereinigung gilt im neuen System:

�S D �S1 C�S2 D R �
�

n1 � ln V1 C V2

V1

C n2 � ln V1 C V2

V2

�

Im Falle V1 D V2 und n1 D n2 ergibt sich beispielsweise:

�S D R � n � .ln 2C ln 2/ D R � n � 2 � 0;693 � 1;4 �R � n > 0:

Beträgt die Stoffmenge der Gase jeweils 1mol, folgt für �S als Zahlenwert:

�S D 1;4 � 8;314 � 1 D 16;64 J=K

Ohne irgendeine Einflussnahme oder Wechselwirkung wird bei dem Diffusi-
onsvorgang Entropie, quasi aus dem Nichts, erzeugt. Nach der Diffusion der
Gase ineinander, sind sie vermischt in einem Zustand höherer Unordnung, es
hat sich ein Entropiezuwachs (�S > 0) eingestellt; vgl. hier Bd. IV, Ab-
schn. 2.2.6, 13. Erg. –

Die Entropie umfasst, genau betrachtet, einen weiten Bereich in den Naturwissen-
schaften, in [8] wird der Begriff auf elementarer Grundlage dargestellt.

3.4.7 Wärme- und Verbrennungskraftmaschinen

In Abschn. 1.14.1 sind Zahlenwerte für Wirkungsgrade � einzelner Komponenten
und solcher ganzer Anlagen bzw. Kraftwerke angegeben. Es fällt auf, dass der
Wirkungsgrad von Wasserkraftwerken den Wert 0,9 erreicht und somit sehr hoch
liegt: Modernste Wasserkraftwerke erreichen 0,95 (ehemalige Wasserräder 0,75).

Die Wirkungsgrade von Dampf- und Verbrennungsmotoren als Einzelkompo-
nenten und die von Kohle-, Gas- und Kernkraftwerken als Ganzes, liegen dagegen
deutlich niedriger. Grund hierfür ist der vergleichsweise niedrige thermodynami-
sche Wirkungsgrad, wie er in Abschn. 3.4.4 abgeschätzt wurde. Er beruht letztlich
auf den bei allen Wärmeprozessen unvermeidbaren Wärmeverlusten. Diesen Ver-
lusten überlagern sich weitere Verlustanteile aus Reibungen unterschiedlicher Art.
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Abb. 3.60

Verluste sind auch mit Strömungsturbulenzen in Leitungen, mit Wärmeabstrah-
lung, mit der unvollständigen Verbrennung und dem prozessbedingten Energieauf-
wand für Pumpen, Kühler, Wärmetauscher, Filter usf. verbunden.

Es werden zwei Arten von Antriebsmaschinen/-motoren unterschieden:

� Wärmekraftmaschinen (WKM): Der Verbrennungsvorgang und damit das Re-
servoir der thermischen Energie liegen außerhalb des maschinellen Antriebsag-
gregats, z. B. Erhitzung von Wasser in einem Dampfkessel durch Verbrennung
von Kohle, Öl, Gas oder durch Kernspaltung in einem Reaktor.

� Verbrennungskraftmaschinen (VKW): Der Verbrennungsvorgang und das Wär-
mereservoir des thermischen Antriebs fallen zusammen, wie z. B. beim Otto-
oder Dieselmotor.

Grundlage für die Auslegung und Leistungsberechnung von Antriebsmaschinen al-
ler Art (auch von Kälteanlagen) ist die Technische Thermodynamik. In Abb. 3.60
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sind die p�V - und T �s-Diagramme der wichtigsten Kreisprozesse zusammenge-
stellt. Sie haben eher theoretische Bedeutung als Idealisierung realer technischer
Prozesse. ‚Rechtsläufige‘ Prozesse kennzeichnen Antriebsanlagen, ‚linksläufige‘
Prozesse Kühlanlagen.

3.4.7.1 Kolbendampfmaschinen – Dampfturbinen
Die erste praktisch funktionierende Kolbendampfmaschine war eine Atmosphä-
rische Kolbenmaschine, sie erreichte nur � � 0;01. Sie wurde im Jahre 1712
von T. NEWCOMEN (1663–1729) für Zwecke des Bergbaues konstruiert. Dieser
Typ wurde 1769 von J. WATT (1736–1819) nach thermodynamischen Grund-
sätzen verbessert, indem er einen separaten Kondensator anordnete und später
einen doppel wirkenden Zylinder mit einer Gestänge-Ventilsteuerung entwarf.
Auf ein großes Schwungrad waren die Maschinen seinerzeit zur Erzielung eines
gleichförmigen Laufes angewiesen. Es handelte sich um Niederdruckmaschinen
mit einem Wirkungsgrad � � 0;03. – R. TREVITHICK (1771–1833) baute 1801
die erste Hochdruckdampfmaschine. Sie kam auch in Lokomotiven zum Einsatz.
Damit begann in England das Eisenbahnzeitalter, in den USA 1830, in Deutsch-
land 1836. Die Dampftemperatur lag deutlich über 100 °C, es konnte mit höherem
Druck gefahren und auf einen Kondensator verzichtet werden, weil der Dampf
nicht mehr im Zylinder kondensierte. Nochmals später wurden sogen. Compound-
Maschinen mit zwei, drei und vier hintereinander geschalteten Zylindern mit
nochmals höherem Druck und für Temperaturen zwischen 300 bis 600 °C gebaut.
Schließlich ging man zur Heißdampferzeugung mit Flammrohrüberhitzern nach
der von W. SCHMIDT (1858–1924) im Jahre 1896 vorgeschlagenen Bauart über.
Neben Lokomotiven wurden Schiffe und Anlagen der Industrie und des Bergbaues
mit solchen Dampfmaschinen ausgestattet, auch dienten sie zum Antrieb elektri-
scher Generatoren. Der Wirkungsgrad konnte bei Einzylindermaschinen auf 0,3,
bei Mehrzylindermaschinen auf 0,4 und mehr angehoben werden.

Für heutige Wärmekraftanlagen kommen praktisch ausschließlich Dampftur-
binen unterschiedlichen Typs zum Einsatz. Sie bestehen aus einer Welle mit meh-
reren hintereinander liegenden Leit- und Laufschaufeln, von einem kleineren zu
einem größeren Durchmesser fortschreitend, dabei stufenweise dem Kessel- bzw.
dem Umgebungsdruck angepasst. Man spricht bei diesen vielstufigen Läuferturbi-
nen von Verbunddampfmaschinen. – Die ersten Dampfturbinen wurden von G.P.
de LAVAL (1845–1913) im Jahre 1883 und von C.A. PARSONS (1854–1931) im
Jahre 1884 entworfen und gebaut. Heute werden Turbinen bis zu einer Leistung
von 1600 MW gefertigt. Sie laufen i. Allg. mit 3000 U/minD 50Hz und treiben
einen Generator an. Die hohen Temperaturen und die extremen Fliehkräfte in den
Schaufeln setzten der Entwicklung zu noch höherer Leistung Grenzen. –
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Abb. 3.61

Thermodynamisch bedingt geht am Ende des Wasser-Dampf-Prozesses im
Kondensator viel Energie als Abwärme ‚verloren‘. Zur Kühlung muss Fluss- oder
Seewasser zugeführt werden. Oder es wird ein Kühlturm zwischengeschaltet.
Innerhalb des Turmes rieselt das heiße Wasser über Gerüste ab. Durch die auf-
steigende Luft wird ein großer Teil der Wärme im Zuge der Verdunstung an die
Atmosphäre abgegeben (Abb. 3.61). Bei einem 1000 MW Kraftwerk verdunsten
ca. 0,4 bis 0,6 m3 Wasser pro Sekunde. Es sind dieses die (harmlosen) weißen
Wolken, die aus dem Kühlturm heraus quellen.

Den höchsten Wirkungsgrad erreicht man bei voller Rückführung des heißen
Wassers in den Fluss, aus dessen Zustrom das frische Kühlwasser zunächst ent-
nommen wurde, also ohne Kühlturm. Ein solches Vorgehen ist aus ökologischen
Gründen nur selten vertretbar. – Moderne Dampfturbinenkraftwerke erreichen
einen Wirkungsgrad bis 0,45. Eine Steigerung gelingt im GuD-Kraftwerk (Gas-
und Dampfkraftwerk): Die Abgase der Gasturbine, bis 600 °C heiß, heizen einen
Dampferzeuger an, mit dessen Dampf parallel eine Dampfturbine angetrieben
wird, Wirkungsgrad der Gesamtanlage ca. 0,55 bis maximal 0,60.

Wo möglich und angebracht werden Kraftwerke mit Kraft-Wärme-Kopplung
(KWK) betrieben. Hierbei wird neben der Erzeugung von Strom die Abwärme
über ein Fernwärmenetz für Heizzwecke benachbarter Siedlungen oder als Pro-
zesswärme, z. B. für die Chemische Industrie, genutzt. Für Kleinsiedlungen sind
Blockkraftwerke wirtschaftlich, einschließlich sogen. Minikraftwerke in Einfami-
lienhäusern. Als Gesamtwirkungsgrad werden Werte bis 0,90 erreicht. Hierbei
werden bei größeren Kraftwerken je nach der Priorität sogen. strom- und wärmege-
führte Anlagen unterschieden. In dieser Form laufen viele Müllverbrennungsanla-
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gen. Der Heizwert von Mischmüll liegt zwischen 9 bis 11MJ=kg. Für den Betrieb
und für die Rauchgasreinigung bedarf einer großen Menge an Eigenenergie. In der
Regel ist eine Zusatzbefeuerung erforderlich, vielfach mit Steinkohle nach deren
Mahlgang und Vorheizung. Wegen des Emissions- und Deponieaufwands ist die
Angabe eines Wirkungsgrades bei solchen Anlagen schwierig und eigentlich nicht
möglich. In Deutschland werden ca. 70 Müllverbrennungskraftwerke betrieben.

Kernkraftwerke werden als Siedewasserreaktoren mit einem oder als Druck-
wasserreaktoren mit zwei Kreisläufen gefahren, mit einem Primärkreislauf (flüssi-
ges Natrium oder Wasser) und einem Sekundärkreislauf (Wasser) und zwischen-
geschaltetem Wärmetauscher. Wegen der hohen Temperatur- und Neutronenbean-
spruchung der Stähle werden die Anlagen aus Sicherheitsgründen mit geringerer
Temperatur betrieben, was den relativ geringen Wirkungsgrad 0,30 bis 0,35 erklärt
(vgl. Bd. IV, Abschn. 1.2.4.3).

3.4.7.2 Kolbenverbrennungsmotoren – Gasturbinen
Unter Verwendung von Leuchtgas konstruierte J.J.E. LENOIR (1822–1900) den
ersten Kolbenverbrennungsmotor. Das Kolben-Zylinder-Prinzip übernahm er
von der Dampfmaschine. Hiermit baute er im Jahre 1860 den ersten fahrbaren
Wagen. Eine deutliche Verbesserung gelang N.A. OTTO (1832–1891). Das von
ihm erfundene Viertakt-Prinzip ermöglichte eine gleichmäßigere Verbrennung des
Gases, 1877 ließ er sich das Prinzip patentieren. W. MAYBACH (1846–1929)
führte die Entwicklung weiter. Entscheidend für die Motorenentwicklung war die
Erfindung des Vergasers durch G.W. DAIMLER (1834–1900). Hierdurch konnte
das aus Erdöl gewonnene Gasolin (Benzin) über die Ansaugluft in die Brennkam-
mer befördert werden (1883). Gemeinsam mit K. BENZ (1844–1929) baute er im
Jahre 1885 die erste Motordroschke.

Die von R. DIESEL (1858–1913) erdachte Selbstzündung durch hohe Kom-
pression des Treibstoffes unter Beibehaltung des Viertaktprinzips bedeutete einen
weiteren Fortschritt, weil statt Gasolin das leichter entzündliche Kerosin verwen-
det werden konnte, welches aus weniger stark fraktioniertem Erdöl gewonnen wird
und daher preiswerter ist.

Alles Weitere vollzog sich zügig. Im Jahre 1903 liefen in den USA die ersten
Autos vom Band (Modell T, von H. FORD (1863–1947) eingeführt).

Die spätere Entwicklung hoch leistungsfähiger und gleichzeitig leichter Flug-
zeugmotoren erbrachte weitere bedeutende Fortschritte im Motorenbau.

Der von F. WANKEL (1902–1988) erfundene Drehkolbenmotor wurde bis zur
Produktionsreife entwickelt und eingesetzt. Der Motor konnte sich indessen wegen
diverser Dichtungs- und Verschleißprobleme gegenüber dem Kolbenmotor nicht
durchsetzen.
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Abb. 3.62

Der Verdichtungsgrad im Augenblick der Zündung hat großen Einfluss auf den
Wirkungsgrad. Er ist zu

" D VK

VH

definiert. Wie in Abb. 3.62a beschrieben, ist VH das Hubvolumen und VK das Kom-
pressionsvolumen, jeweils im Totpunkt.

Sowohl Otto- wie Dieselmotoren arbeiten in vier Takten (Kolbenhüben), wie in
Abb. 3.62b schematisch dargestellt. Die Takte werden in jedem Zylinder über das
Einlass- und Auslassventil mit Hilfe der Nockenwelle gesteuert.

Ottomotor Bei der Bewegung des Kolbens vom oberen Totpunkt aus wird Luft
und das vom Vergaser zerstäubte Benzin als Luft-Gas-Gemisch angesaugt (I).
Nach Schließung des Einlassventils wird das Gemisch während des anschließen-
den Kompressionshubs auf im Mittel 400 °C erhitzt (II). Im Hochpunkt (bzw. kurz
zuvor) wird es durch einen elektrischen Funken entzündet. Die Verbrennungs-
temperatur erreicht 2000 °C (bis 2500 °C), der Druck steigt im Mittel auf 40 bar
und mehr an. Während des explosiven Verbrennungszeitraums verändert sich das
Volumen des Verbrennungsraums praktisch nicht. Der Kolben wird durch den
Druck angetrieben: Die chemische Energie aus dem Verbrennungsvorgang wird
in mechanische Energie umgesetzt und dabei die translatorische Bewegung des
Kolbens über die Pleuelstange in eine rotatorische (III) übersetzt. Nach Erreichen
des unteren Tiefpunktes wird das verbrannte Gas im Zuge des nachfolgenden Hubs
über das geöffnete Auslassventil ausgestoßen (IV), die Abgastemperatur liegt in
Höhe von ca. 700 °C.
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Abb. 3.63

Dieselmotor Gegen Ende des Verdichtungstaktes wird flüssiger Kraftstoff in die
angesaugte Luft eingespritzt, der Kraftstoff geht beim Verstäuben in Gas über. In-
folge des deutlich höheren Verdichtungsdrucks (gegenüber dem Verbrennungsvor-
gang im Ottomotor) mit etwa 14 bis 24 bar tritt bei ca. 750 °C eine Selbstzündung
ein. Die Verbrennungstemperatur erreicht ca. 2000 °C bei einem Druck von im
Mittel 70 bar. Während der Verbrennung bleibt der Druck im Zuge der zeitlich do-
sierten Einspritzung nahezu konstant. Der weitere Ablauf entspricht jenem beim
Ottomotor. Die Abgastemperatur liegt in Höhe von ca. 600 bis 700 °C und somit
etwas niedriger als beim Ottomotor.

Die Abb. 3.63a1/a2 zeigt die idealisierten p-V -Diagramme für beide Motor-
typen (vgl. mit Abb. 3.60). Auf der Basis dieser p-V -Verläufe können die zu-
geführten und abgenommenen Energien berechnet bzw. abgeschätzt werden, was
selbstredend durch Versuche verfeinert werden muss. Der Einfluss der Verdichtung
geht in die Auslegung als wesentlicher Parameter ein, wie aus Abb. 3.63b hervor
geht.

Ca. 7% der eingesetzten Kraftstoffenergie geht bei beiden Motortypen durch
Reibung ‚verloren‘, ca. 33% durch Kühlung und ca. 35% bzw. 30% durch Ab-
wärme. Das ergibt Wirkungsgrade ca. 0,25 beim Ottomotor und ca. 0,30 beim
Dieselmotor. Moderne Motoren erreichen höhere Werte: PKW und NKW 0,33
beim Ottomotor und 0,45 beim Dieselmotor. Die vom Motor abgesetzte Leistung
erfährt durch Reibung im Antriebstrang nochmals eine Minderung um ca. 2% und
durch die Räder (Reifen: Rollreibung und Walk) um weitere ca. 13%, sodass der
Motorwirkungsgrad hierdurch um den Faktor 0,85 weiter reduziert wird.

In den in Kraftwerken installierten Gasturbinen wird die angesaugte Luft in
einem mehrstufigen Kompressor auf ca. 15 bar verdichtet. Die Temperatur steigt
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dabei auf 400 °C. In der anschließenden Brennkammer wird der kontinuierlich
zugeführte Kraftstoff, beispielsweise Erdgas, verbrannt (Verbrennungstemperatur
etwa 1400 °C, auch höher bis 1500°C, was dank spezieller nickelhaltiger Legie-
rungen für die Schaufeln möglich ist). Das ausströmende heiße Gas treibt die
mehrstufigen Schaufeln der Antriebsstufe an und diese den angeschlossenen elek-
trischen Generator. Die Anzahl der Verdichtungsschaufeln ist i. Allg. höher als jene
der Antriebsschaufeln, z. B. 12 gegenüber 5. – Ein Teil der Nutzleistung dient der
vorgeschalteten Luftkompression. Das Heißgas entweicht über einen Abluftkamin
in die Atmosphäre. In modernen Anlagen dient das Gas über einen Wärmetau-
scher zum Antrieb einer zusätzlichen Dampfturbine (GuD-Kraftwerk). – In der
Anlage des Gas- und Dampfturbinen-Kraftwerks Irsching Block 4 nahe Ingolstadt
konnte der Wirkungsgrad dank der GuD-Technik auf 60,8% gesteigert und die
Leistung der alleinigen Gasturbine mit 375 MW auf eine Gesamtleistung 578 MW
angehoben werden (Fa. Siemens). Damit wäre die Stromversorgung einer Stadt
mit 3,4 Millionen Einwohnern möglich. Die Auf- und Abfahrzeiten der Turbine
betragen nur ca. eine halbe Stunde, ein bedeutender Vorteil solcher Kraftwerke:
Gaskraftwerke sind inzwischen vielfach unverzichtbar, um bei Ausfall regenerativ
gewonnenen Stroms (aus Wind oder/und Sonne) den Bedarf kurzfristig zu decken.
Solche Kraftwerke sind indessen seitens der Stromerzeuger nur bedingt kosten-
deckend zu errichten und zu betreiben, weil sie immer nur über kurze Zeiten im
Einsatz sind.

Die Strahltriebwerke des heutigen Flugwesens arbeiten als Turbinen nach
demselben Prinzip wie oben beschrieben. Sie erzeugen den Schub bei Start und
Flug vermöge der mit hoher Geschwindigkeit austretenden Verbrennungsgase und
-partikel nach dem Rückstoßprinzip:

Vorderseitig liegt ein Ventilator (Gebläse, Fan), der einen Teil der angesaug-
ten Luft um die Turbine herum führt. Dadurch werden die Schaufeln gekühlt, der
Schub wird verstärkt. Der Wirkungsgrad liegt in der Größenordnung 0,30 bis 0,40.
Abb. 3.64 zeigt einen Längsschnitt durch ein solches Triebwerk. – Das Konzept
des Strahltriebwerks stammt von F. WHITTLE (1907–1996), die Erfindung wurde
1930 patentiert. Anschließend war er mit der Entwicklung eines Fliegers befasst,
im Jahre 1941 flog sein erster Düsenjet. Unabhängig davon war es in Deutschland
H.J.P. v. OHAIN (1911–1998), der ab 1934 an der Umsetzung des Luftstrahltrieb-
prinzips theoretisch arbeitete. Er wurde später von E. HEINKEL (1888–1958)
unterstützt, am 27.08.1939 flog sein erstes Flugzeug, eine He 178, sie erreichte
600 km=h.

Im 2. Weltkrieg ging die Entwicklung auf die Messerschmidt-Werke über. Hier
wurde eine große Zahl solcher Flugturbinen gefertigt, von dem zweistrahligen
Jäger Me 262 waren es 1433 Stück, wovon bis Kriegende indessen nur 358 Ma-



454 3 Thermodynamik

Abb. 3.64

schinen abhoben, sie waren zu unausgereift und störanfällig. – Hatte die Turbine
der He 178 noch einen Durchmesser von 0,9 m und einen Schub von 4,5 kN, bringt
es heute das Rolls-Royce Triebwerk Trent XWB für den Airbus A380 mit einem
Durchmesser von 3,0 m auf 440 kN. – In der Jetztzeit sind ca. 90% aller Flugzeuge
mit Strahltriebwerken ausgerüstet, dabei kommen inzwischen sehr unterschiedli-
che Systeme zum Einsatz. –

Die Motorenentwicklung in der Kraftwerkstechnik sowie im Land-, See- und
Luftverkehrswesen zählt zu den Kernkompetenzen des Maschinenbaus.

Die Raketentechnik, über die schon früher viel nachgedacht worden war (Ab-
schn. 1.10.4), wurde in den dreißiger Jahren des letzten Jahrhunderts in Deutsch-
land von W. v. BRAUN (1912–1977) und Mitarbeitern entwickelt, aus politischen
und militärischen Motiven vom damaligen Regime gefördert. Im Jahre 1937 hatte
W. v. BRAUN über Flüssigkeitsraketen promoviert, 1942 gelang ihm der Start des
ersten Aggregats. Von den sogen. V2-Raketen (Vergeltungswaffe 2) wurden am
Ende des II. Weltkrieges 3200 Stück gebaut und verschossen. Nach dem Krieg ent-
wickelte W. v. BRAUN für das US-Militär Kurzstrecken-Raketen. Am 20.07.1969
beförderte die unter seiner Leitung von der amerikanischen Raumfahrtbehörde ge-
baute 110 Meter hohe Saturn V-Rakete die ersten Astronauten zum Mond.

3.4.8 Kältemaschinen –Wärmepumpen

Die Kühltechnik findet in vielen Bereichen Anwendung, im Haushalt (im Kühl-
schrank bei etwa 0 °C), bei der Frisch-und Tiefkühlung, im Lebensmittelgewerbe
(in Schlachthöfen), im Getränkehandel (in Brauereien), bei vielen Prozessen in
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der chem. Industrie, bei der Kühlung von Wärmekraftmaschinen aller Art, bei der
Verflüssigung von Erdgas usf. Die Klimatechnik hat in sonnenreichen Ländern
die gleiche Bedeutung wie die Heiztechnik in winterkalten. Die bei der Kühlung
‚gewonnene‘ Wärme wird zweckmäßig einer weiteren Nutzung zugeführt, bei-
spielsweise Beheizung eines Hallenbades durch einen benachbarten Eissportbe-
trieb, Warmwasserversorgung auf dem Bauernhof durch die bei der Milchkühlung
anfallende Wärme. – Bei Temperaturen unterhalb etwa �150 °C spricht von Tief-
temperaturphysik oder Kryophysik, auch von Kryotechnik.

Mit Hilfe von Wärmepumpen kann Wärme ‚gefördert‘ werden, z. B. aus dem
Erdreich, aus dem Grundwasser, aus Seen oder aus der Luft.

3.4.8.1 Kompressions-Kältemaschine
Die Kältetechnik beruht auf den Temperatur- und Druckverläufen eines hierfür ge-
eigneten speziellen Kältemittels beim wechselnden Übergang gasförmig! flüssig
und flüssig ! gasförmig: Wird ein Gas bis zum Erreichen der Flüssigkeitspha-
se zusammengepresst (komprimiert), liegen die Stoffmoleküle dicht gepackt, ihre
Geschwindigkeit ist hoch, die Flüssigkeit erwärmt sich. Die aufgewandte Kom-
pressionsenergie setzt sich in Wärme um. – Extrahiert dagegen eine Flüssigkeit zu
Gas, läuft der Prozess umgekehrt ab: Im Gas nimmt die Dichte der Moleküle ab,
ebenso ihre Geschwindigkeit, die Temperatur im Gas sinkt. Liegt die Temperatur
im Gas niedriger als in ihrer Umgebung (z. B. im Kühlraum), tritt Wärme aus die-
ser Umgebung auf das Gas über, die Umgebung kühlt sich dabei ab. Das geschieht
selbsttätig gemäß dem 2. Satz der Wärmelehre.

Es gibt eine Reihe von Stoffen, die unter Normaldruck bei relativ tiefen Tem-
peraturen sieden! verdampfen. Die Verdampfungswärme wird der Umgebungs-
luft entzogen, die Luft kühlt sich dabei ab und das solange, bis der Stoff restlos
verdampft ist, also vom flüssigen in den gasförmigen Zustand übergegangen ist.
Verlegt man diesen Vorgang in ein geschlossenes Rohrsystem, wie in Abb. 3.65
skizziert, lässt sich eine Kältemaschine bauen: Unter normalem Druck (ggf. unter
leichtem Unterdruck) verdampft das flüssige Kältemittel. Das Kältemittel entzieht
dem Kühlraum bzw. dem Kühlgut die für die Verdampfung notwendige Wärme
über die Wandung des Rohres, in welchem es strömt. Um eine große Rohroberflä-
che zu erhalten, wird das Rohr meanderförmig geführt. Man nennt diesen Bereich
der Anlage den Verdampfer (rechts im Bild). Das gasförmige Mittel wird vom
Kompressor angesaugt und auf hohen Druck verdichtet, dabei wird es heiß: Die
elektrische Antriebsenergie des Kompressors wird in Wärme umgesetzt. Das Rohr
verläuft nunmehr außerhalb des Kühlraumes, wiederum in Schleifen. Fallweise
sorgt ein Ventilator (oder ein Wasserbad) für einen beschleunigten Übergang der
Wärme über die Rohrwandung an die Außenluft. Als Folge der Abkühlung geht



456 3 Thermodynamik

Abb. 3.65

das Kältemittel im Rohr wieder in die Flüssigkeitsphase über, es kondensiert. Man
nennt diesen Bereich der Anlage daher Verflüssiger oder Kondensator (links im
Bild). An einem Drosselventil sinkt der Druck im Kältemittel wieder auf das Nor-
malniveau ab, es tritt eine sprunghafte Entspannung und damit eine Abkühlung ein.
In dieser Form gelangt das Kältemittel in den Kühlraum, wo es weiter expandiert
und dabei den Raum über die Rohrwandung kühlt, indem es Kühlraum Wärme
entzieht. Damit ist der Kreislauf geschlossen. Der Kompressor treibt das Kälte-
mittel als Pumpe durch das Rohrsystem, vom kälteren zum wärmeren Reservoir,
also entgegen dem natürlichen Gefälle. Hierzu bedarf es Energie. Es wird umso
mehr Antriebsenergie ‚verbraucht‘, je tiefer die Temperatur im Kühlraum gesenkt
werden soll. Der Fluss des Kältemittels wird von einer im Kühlsystem integrierten
Regelung unter Einschaltung eines einstellbaren Thermostaten gesteuert.

Neben der beschriebenen gibt es die sogen. Absorptions-Kältemaschine. Sie
wird bevorzugt in der Klimatechnik eingesetzt; sie arbeitet neben einem Kältemit-
tel zusätzlich mit einem Absorptionsmittel und das in zwei Kreisläufen.

In größeren landwirtschaftlichen Betrieben wird mit der aus der gemolkenen
Kuhmilch bei deren Kühlung gewonnenen Wärme Brauchwasser erwärmt.

Als Kältemittel kommen leichtsiedende Stoffe mit großer spezifischer Ver-
dampfungswärme in Frage, wie Ammoniak, Kohlenstoffdioxyd, Wasser, auch
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Propan und Butan, sowie unterschiedliche nicht-halogenierte Kohlenwasserstoffe.
Der Einsatz der ehemals gebräuchlichen halogenierten Kohlenwasserstoffe (Fluor-
chlorkohlenwasserstoffe, FCKW), die bei der Entsorgung einer Kältemaschine frei
gesetzt werden, dürfen wegen ihres ozonschädigenden und treibhausfördernden
Einflusses nicht mehr verwendet werden.

In der Kryotechnik finden Sauerstoff (90,2K), Stickstoff (77,2K), Wasserstoff
(20,4K) und Helium (4,2K) Anwendung. In dieser Reihenfolge konnten die Sie-
detemperaturen (in Klammern) experimentell bestimmt werden, die letztgenannte
Temperatur konnte im Jahre 1908 H. KAMERLINGH-ONNES (1853–1926, No-
belpreis 1913) erreichen. Er erhielt den Preis auch für die Entdeckung der Supra-
leitung. Der absolute Nullpunkt T D 0K D �273;15 ıC kann im Versuch nicht
realisiert werden. Inzwischen wurde eine Temperatur erreicht, die nur 10�9 K über
T D 0K liegt.

3.4.8.2 Wärmepumpe
Nach dem gleichen Prinzip wie oben beschrieben, kann mit Hilfe einer Wärme-
pumpe aus dem Boden im Umfeld eines Hauses, Wärme ‚gewonnen‘ werden, um
das Haus zu heizen und warmes Wasser aufzubereiten. Dazu bedarf es elektrischer
Energie. Sie muss zunächst in einem Wärmekraftwerk gewonnen werden. Kommt
der Strom aus einer Solar- oder Windkraftanlage, ist das Verfahren als klimaneu-
tral einzustufen, ob es wirtschaftlich ist, muss im Einzelfall geprüft werden. Die
Investitionskosten sind beträchtlich.

Wärmequelle ist der Boden oder das Grundwasser. Hier liegt der eingeerde-
te Verdampfer in Form eines schleifenförmigen Rohrsystems. Der Verdichter, die
Wärmepumpe, treibt das Kältemittel in die Innenräume des Hauses, wo es die
Wärme im Kondensator abgibt. Über ein Expansionsventil wird der hohe Druck
im Kühlmittel abgebaut und der ‚Wärmeträger‘ wieder flüssig (im Übrigen, wie
oben).

Der theoretische Wirkungsgrad berechnet sich (als linksdrehender Carnot-
Prozess gedeutet) zu:

�theo D .Th � Tu/=Th

Th ist die (hohe) Temperatur des Wärmeträgers im Haus, Tu die (untere) Tempe-
ratur an der Wärmequelle. Im Falle Th D 313;15K (40 °C) und Tu D 283;15K
(10 °C) findet man:

�theo D 30K=313;15K D 0;0958 ¶ 9;58%:
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Der Kehrwert ist die sogen. max. Leistungszahl. Sie wird mit COPmax abgekürzt.
Sie beträgt hier COPmax D 10;4. Real liegt die Leistungszahl COP D Qi =W ,
also die abgegebene Wärme im Verhältnis zur eingesetzten Energie, im Bereich 3
bis 5. – VorstehendeAbschätzung kann auch für Kältemaschinen verwandt werden.

3.5 Energieversorgung

3.5.1 Einführung

Um das erreichte zivilisatorische Niveau und die politische Stabilität der menschli-
chen Gesellschaft sicher zu stellen, muss ihre Versorgung mit ausreichend Energie
auch künftig gewährleistet sein. Wie und ob das gelingt, wird auf allen Ebenen
diskutiert. Ziel ist eine ‚Energiewende‘: Ersatz der absehbar versiegenden fossilen
Energieträger durch regenerative. Das Ziel geht mit der Absicht einher, den mit der
fossilen Energienutzung verbundenen CO2-Ausstoß weitgehend auf null zu redu-
zieren. Der Transformationsprozess ist voll angelaufen. Grenzen der Machbarkeit
werden indessen schon jetzt erkennbar: Das Abschöpfen des planetarischen Ener-
giefundus und das Freisetzen von CO2 nehmen weltweit unaufhörlich zu (2015),
eine durchgreifende Trendwende ist leider nicht in Sicht. Auch für die kommenden
Jahrzehnte wird von der Energiewirtschaft ein weiterer Anstieg des Energiebedarfs
prognostiziert. Insofern sind Zweifel am Erfolg einer nachhaltigen Energiewende
in absehbarer Zeit angebracht. – Die bisherigen Erfolge bei der Gewinnung ‚Er-
neuerbarer Energien‘ verdecken zudem die Tatsache, dass es sich eigentlich nicht
um eine echte Energiewende handelt, allenfalls um eine ‚Stromenergiewende‘:
Die Stromenergie ist in Deutschland an der Primärenergie mit ca. 20% beteiligt.
Wenn der Anteil aller ‚Erneuerbaren‘ an der Stromgewinnung inzwischen 30%
beträgt, liegt ihr Anteil an der Primärenergie nur bei:

0;30 � 20 D 6%Š

In vielen Ländern liegt der Wert höher, weil die vorhandene Kapazität an Wasser-
kraft größer ist, indessen häufig nicht sehr viel und meist nur geringfügig steiger-
bar. –

Der weitaus größte Teil der abgeschöpften Energie stammt nach wie vor aus
fossilen Quellen und ‚verpufft‘ irreversibel in den Haushalten (Heizung, Kühlung,
Warmwasseraufbereitung), in Industrieanlagen aller Art und mit einem sehr hohen
Anteil im Land-, See- und Luftverkehr.
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Eine Steigerung der Energieeffizienz ist zwingend geboten. Die Einsparungen
sind im Einzelfall wichtig, werden indessen, global gesehen, durch den ‚Ener-
giehunger‘ der wachsenden Erdbevölkerung und ihrem Streben nach höherem
Lebensstandard aufgezehrt. Gleichwohl, Energieeffizienzsteigerung bedeutet Res-
sourcenschonung. Alle Anstrengungen in dieser Richtung (und Einsparungen, wo
immer möglich) sind angezeigt, zudem lohnen sie sich aus Kostengründen.

Energiewirtschaft und -technik umfassen einen vielfältigen Wissensraum, das
gilt insbesondere für die Erneuerbaren, ihre Technologie und Perspektive [9–19].
Auch zur Frage, ob die Energiewende gelingen kann, gibt es Meinungen [20–22].

3.5.2 Brennwert – Heizwert – CO2-Ausstoß

Nach ihrem Einfluss auf das Klima werden emissionshaltige und emissionsfreie
Energieträger unterschieden:

� Emissionshaltig sind alle fossilen Brennstoffe. Sie werden fest, flüssig oder
gasförmig gewonnen. Bei ihrer Verbrennung wird Kohlendioxid CO2 frei (ge-
nauer: Kohlenstoffdioxid). Die fossilen Brennstoffe sind, chemisch gesehen,
Kohlenwasserstoffe. Die Kohle-, Erdöl- und Erdgaslager haben sich in früher
Urzeit aus abgestorbenen Pflanzen und Tieren unter Luftabschluss gebildet.
Der in ihnen von der Sonne eingefangene und gespeicherte Energieinhalt ist
hoch. Sie lassen sich dank moderner Technik effizient fördern, transportieren,
aufbereiten, lagern und nutzen.

� Emissionsfrei ist die Nutzung der auf der Sonneneinstrahlung der Jetztzeit
beruhenden Energieträger: Der Wasserkreislauf beruht auf der eingestrahlten
Sonnenwärme; Wasserdampf steigt gegen die Erdanziehung in größere Höhen
und gewinnt dadurch an potentieller Energie, nach Abregnen kann der Abfluss
des Wassers in Wasserkraftwerken in kinetische Energie umgesetzt und damit
zur Verstromung genutzt werden. Auch die Stromerzeugung durch Wind beruht
auf der Sonneneinstrahlung, ebenso die Wärmegewinnung in Solarkollekto-
ren und die Stromgewinnung in Anlagen der Photovoltaik. Die Nutzung von
Biomasse (Raps, Mais, Grünschnitt, Holz) zur Energiegewinnungwird als CO2-
neutral eingestuft, weil sich die CO2-Aufnahme bei der Photosynthese während
des Wuchses der Pflanzen und die CO2-Abgabe bei der Verbrennung gegen-
seitig aufheben. – CO2-frei ist auch die Energiegewinnung aus gespeicherter
Erdwärme, oberflächennah oder aus großer Tiefe (Geothermie).
Auch in Kernkraftwerken wird Stromenergie CO2-frei gewonnen. Dabei wird
nuklear gebundene Kernenergie durch Kernspaltung frei gesetzt.
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Abb. 3.66

Bei der Verbrennung fossilen Materials verbinden sich die im Brennstoff enthalte-
nen Elemente chemisch mit dem Sauerstoff der Luft (O2), man spricht von Oxida-
tion. Sauerstoff ist zu 21% in der Luft enthalten, Stickstoff (N2/ zu 79%. Hinzu
tritt eine sehr geringe Menge an Spurengasen.

In den fossilen Brennstoffen sind in erster Linie Kohlenstoff (C), Wasserstoff
(H) und Schwefel (S) an der exothermen Verbrennungsreaktion beteiligt. Der zeit-
liche Ablauf der Reaktion ist in Abb. 3.66 schematisch dargestellt: Die in den Aus-
gangsstoffen (den Edukten) gespeicherte chemische Bindungsenergie wird wäh-
rend der Reaktion um einen gewissen Betrag frei gesetzt, um diesen Anteil liegt die
Energie in den Endstoffen (den Produkten) niedriger. Auch für chemische Reaktio-
nen gilt das Energieerhaltungsgesetz. In der Thermodynamik der Chemie werden
die Abläufe beschrieben (Bd. IV, Abschn. 2.2.5 und 2.3.5).

An einem einfachen Beispiel sei die Reaktion erläutert. Betrachtet werde die
(vollständige) Verbrennung von Methan (CH4). Nach Zündung verbrennt das Gas
an der Luft, es entsteht Kohlendioxid (CO2) und Wasser (H2O). Es werden zwei
Reaktionen (Reaktionsgleichungen) unterschieden:

1: CH4 C 2O2 ! CO2 C 2 .H2O/g C frei gesetzte Energie .Heizwert, Hi /

2: CH4 C 2O2 ! CO2 C 2 .H2O/f C frei gesetzte Energie .Brennwert, Ho/

Im Falle 1 fällt das Wasser gasförmig (g) als Wasserdampf an, die freigesetzte
Energie wird als Heizwert bezeichnet, kühlt der Wasserdampf zu Wasser (f) ab,
liegt Fall 2 vor, beim Phasenübergang ‚gasförmig ! flüssig‘ wird Kondensati-
onswärme frei, die gewonnene Energie wird Brennwert genannt. Dem Betrage
nach gilt: Brennwert > Heizwert. Die Werte werden experimentell unter Nor-
malbedingungen bestimmt (Temperatur: 25 °C, Luftdruck: 1 atm D 1,0133bar D
103.330PaD 1033,3 hPa). –
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Abb. 3.67

In der Chemie wird von den molaren Mengen der an der Reaktion beteiligten
Elemente ausgegangen. Bei der frei gesetzten Energie spricht man von Enthalpie.
Die Thematik gehört zur Chemie, sie wird in Bd. IV behandelt. Im vorliegenden
Rahmen genügt eine sich auf die Menge 1 kg der beteiligten Stoffe beziehende
summarische Angabe. Beispiel: 1 kg Kohlenstoff (C) verbindet sich bei der Oxi-
dation mit 2,664kg Sauerstoff (O2) zu 3,664 kg Kohlendioxid (CO2), wobei die
Energie 32:763 kJ D 32;76MJ als Wärme frei gesetzt wird. Für den CO2-Ausstoß
bedeutet das zusammengefasst: Beim Gewinn von 32,76MJ fallen 3,664kg CO2

an, beim Gewinn von 1MJ sind es 0,1118kg CO2, bei der Erzeugung von einer
kWh fallen 0,4022kg CO2 an!

Die Tabelle in Abb. 3.67 enthält für einige Brennstoffe deren Heizwert und
Brennwert sowie die bei der vollständigen Verbrennung anfallende CO2-Menge in
kg. Wie erkennbar, wird bei der Verbrennung von Erdgas nur halb so viel CO2 pro
kWh bzw. MJ frei wie bei der Verbrennung fester Brennstoffe.

Anmerkungen
� Fossile Brennstoffe aus jüngerer erdgeschichtlicher Zeit, wie Braunkohle und Torf, und

insbesondere sehr junge, wie Holz und Stroh, enthalten von haus aus Wasser, frisches
Holz bis zu 50%. Bei der Verbrennung geht das Wasser in hoch erhitzten Wasserdampf
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über, zu Lasten der bei der Verbrennung anfallenden Wärme. Fällt der Wassergehalt bei
Nadelholz nach längerer Trocknung (zweckmäßig in Form gespaltener Scheite) von 50%
auf 10%, steigt der Heizwert auf das 1,7-fache an. –

� In sogen. Brennwertkesseln wird die Kondensationswärme des Wasserdampfs genutzt.
Die zusätzliche Energieausbeute liegt, abhängig vom eingesetzten Brennstoff, in der Grö-
ßenordnung von 10% und höher.

3.5.3 Primärenergie – Sekundärenergie – Tertiärenergie

Die Energie, die vom Verbraucher auf der untersten Ebene (der tertiären) genutzt
wird, ist aus zwei voran gegangenen Wandlungen hervor gegangen. Hierbei geht
jeweils viel Energie ‚verloren‘. Letztlich verflüchtigt sich auch am Ende der Ener-
giekette die Nutzenergie als Wärme in der Atmosphäre (überwiegend in Verbin-
dung mit dem Ausstoß diverser Schadstoffe, wie Kohlenmonoxid und -dioxid so-
wie Stick- und Schwefeloxiden).

� Primärenergie ist definiert als jener Brennwert, den die anstehenden Stoffe
am Förderstandort beinhalten. Primärenergieträger sind Steinkohle, Braunkoh-
le, Erdöl, Erdgas, Uran. Sie ruhen in der Erdkruste und beinhalten die ehemals
eingefangene Sonnenenergie. (Eine in Brasilien für den Verbrauch in Deutsch-
land geförderte Steinkohle zählt zum Primärenergieverbrauch Deutschlands.)
Neben dieser mittelbar genutzten Sonnenenergie, zählt auch die unmittelbar ge-
nutzte in Form von Wasser-, Wind-, Solar- und Bioenergie zur Primärenergie.
Da diese Energie direkt zur Verfügung steht, wie im Falle eingespeister Strom-
energie aus Wasserkraft, Windkraft oder Photovoltaik, wird sie, orientiert am
Wirkungsgrad ihrer Gewinnung, in äquivalente Primärenergie umgerechnet.

� Die Primärenergieträger aus fossilen Quellen müssen nach Förderung und
Transport weiter aufbereitet werden. Diese Umwandlung geht mit beträchtli-
chen Verlusten einher. Der anschließend bereitstehende Kraft- und Brennstoff
(Benzin, Heizöl, Erdgas, Brikett, Brennholz) wird als Sekundär- oder End-
energie bezeichnet.

� Tertiärenergie (auch Nutzenergie genannt) ist jene, welche
– Fahrzeuge des Land-, Schiffs- und Luftverkehrs mechanisch bewegt,
– Wohnungen erwärmt und in Kraftwerken Prozesswärme erzeugt und
– Elektromotoren antreibt, Elektroherde heizt und die Abstrahlung elektroma-

gnetischer Wellen bewirkt.

In Abb. 3.68 ist die Unterteilung in die drei Energieanteile zusammengefasst. Als
grober Anhalt gilt: Bei jeder Umwandlung geht etwa ein Drittel der ursprünglichen
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Abb. 3.68

Energie ‚verloren‘. Im Einzelnen sind die Anteile in Abhängigkeit vom Energie-
träger sehr verschieden, das kommt im unterschiedlichen Wirkungsgrad zum Aus-
druck. In Abschn. 1.14.1 sind pauschalierte Werte für Komponenten und Systeme
zusammengestellt, vgl. hierzu auch die Ausführungen in Abschn. 1.14.2 (Energie
aus Wasserkraft), in Abschn. 2.4.2.5 (Energie aus Windkraft) und in Abschn. 3.4.7
(Energie aus Verbrennungsvorgängen). In Abschn. 3.5.7.2 wird die Solarenergie
behandelt und in Bd. IV, Abschn. 2.4.1 die Batterie- und Akkumulator-Technik.

Die Energiemengen und ihre Größenordnung, mit denen man es in der Ener-
giewirtschaft und -technik zu tun hat, sind sehr unterschiedlich. Je nach Wirt-
schaftszweig wird mit Kilowattstunde, Steinkohleeinheit, Öleinheit oder Gasein-
heit gerechnet. – Im Folgenden werden die Energiewerte überwiegend in Joule
angegeben, bei der Stromenergie in Kilowattstunde bzw. in Vielfachen davon.

Hinweis
Es bedeuten Tera (T): 1012, Peta (P): 1015, Exa (E): 1018.

Zu Fragen des Energieaufkommens und -verbrauchs und zu solchen des Um-
weltschutzes werden auf den Internetseiten amtlicher Stellen regelmäßig Stellung-
nahmen und aktuelle Statistiken veröffentlicht. Die Quellen werden hier unter
[23–30] zusammengefasst. Die Berichte können vielfach kostenlos bezogen wer-
den.

3.5.4 Primärenergieaufkommen weltweit

Für die Zukunft der menschlichen Gesellschaft wird sehr entscheidend sein, wie
sich der weltweite Primärenergieverbrauch weiter entwickelt. Davon sind auch der
CO2-Ausstoss und damit das künftige Klima abhängig.
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Abb. 3.69

Abb. 3.69a zeigt, wie viel Primärenergie im Zeitraum von 1990 bis 2012 welt-
weit gefördert bzw. verbraucht worden ist (inzwischen (2015) ist der Verbrauch
weiter auf 572EJ gestiegen). Der Verbrauch im Zeitraum 1990 bis 2012 bedeutet
im Mittel einen Anstieg von .540 � 360/EJ=22 Jahre D 8;2EJ= Jahr! Die Steige-
rung geht vorrangig auf die bevölkerungsreichen Länder China und Indien zurück.

Hinweis
Der in der Abbildung unterseitig schwarz angelegte Anteil kennzeichnet die in Deutschland
in Anspruch genommene Primärenergie. Im weltweiten Maßstab ist der Anteil gering, in der
Tendenz fällt er zudem leicht, vgl. den folgenden Abschnitt.

Beunruhigend ist der in Teilabbildung b wiedergegebene jährliche Anstieg der
CO2-Emission. In dem betrachteten Zeitraum (in welchem mehrere Klimakonfe-
renzen stattfanden) wuchs der jährliche CO2-Ausstoß kontinuierlich von 22.000
auf 34.000Millionen Tonnen (Mt), bis 2015 auf 36.000Mt! Die Übereinstimmung
im Verlauf der in Abb. 3.69 beidseitig dargestellten Kurven ist augenfällig. Eine
Trendwende ist derzeit nicht in Sicht. Bei diesem Befund drängt sich die Frage
auf, wie die Zukunft aussehen wird. In Abschn. 3.5.8 wird die Frage erneut aufge-
griffen.

3.5.5 Primärenergieaufkommen in Deutschland

Das ‚Energieflussbild 2014‘ in Abb. 3.70 erlaubt wichtige Einsichten zur Herkunft
und zum Energieverbrauch in Deutschland. Die Gewinnung von Energie aus in-
ländischen Ressourcen beruht im Wesentlichen auf Braunkohle und Erneuerbaren
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Abb. 3.70

Energien. Die heimische Förderung von Steinkohle wird in Kürze gänzlich ein-
gestellt. Der größte Teil der Energie muss importiert werden (72%). – Interessant
sind die Verbrauchsanteile, die auf die Industrie (29%), die Verkehrsteilnehmer
(30,4%), die Haushalte (25,6%) und auf Gewerbe, Handel und Dienstleistungen
(15,0%) entfallen; an diesen prozentualen Anteilen hat sich seit dem Jahr 2014
(von geringen Verschiebungen abgesehen) praktisch nichts geändert, insbesondere
nichts am Anteil aus dem Verkehrsaufkommen, es steigt wieder leicht.

Aus Abb. 3.71 geht die in Deutschland im Zeitraum 1990 bis 2012 verbrauchte
Primärenergie hervor. Der Verlauf kann dem Verlauf in Abb. 3.69a direkt ge-
genüber gestellt werden. Man erkennt eine leichte Abnahme. Sie geht auf die
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Abb. 3.71

in Deutschland erzielten Einsparungen und Effizienzsteigerungen zurück. In dem
genannten Zeitraum ist der jährliche Verbrauch von ca. 14.200 auf 13.757PJ ge-
sunken, inzwischen (2015) auf 13.335PJ.

In Abb. 3.72 sind die einzelnen Verbrauchsanteile an der Primärenergie für das
Jahr 2015 einander gegenübergestellt. Der wachsende Anteil der mit 12,6% aus-
gewiesenen Erneuerbaren Energieanteile geht aus der Grafik hervor. Am gesamten
Primäraufkommen waren Wind-, Wasser- und Sonnenkraft wie folgt beteiligt:

� Windkraft mit 2,3% (310PJ),
� Wasserkraft mit 0,5% (70 PJ) und
� Solarthermie und Photovoltaik mit 1,2% (166 PJ)

Den größten Beitrag zu den Erneuerbaren liefern die verschiedenen Formen von
Biomasse, überwiegend in Form von Holz und Holzabfällen (Pellets), gefolgt von
Biogas aus unterschiedlichen Quellen, auch Müll ist beteiligt.

Wird der Verbrauch noch weiter ausdifferenziert und nur der Stromverbrauch
betrachtet, und zwar der Bruttoverbrauch, ergeben sich die in Abb. 3.73 dargestell-
ten Anteile für das Jahr 2015, sie sind in Terawattstunden (TWh) ausgewiesen.
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Abb. 3.72

Abb. 3.73
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Aus der Grafik werden die bedeutenden Anteile am Stromaufkommen aus
Wind- und Wasserkraft sowie aus Photovoltaik und Biomasse deutlich.

Der 30%ige Anteil der Erneuerbaren Energien bedeutet in Petajoule:

194TWh D 194 � 109 kWh D 194 � 109 � 3;61 � 106 J D 706 � 1015 J D 706PJ:

Bezogen auf den Primäranteil von 13.335PJ sind das 5,3%, aus Wind und Photo-
voltaik allein 3,3%. Das ist viel zu wenig, um von einer Energiewende zu sprechen,
berechtigt wäre der Begriff Stromenergiewende, vor allem, wenn der Ausbau der
Windenergie weiter so voranschreitet wie bisher.

3.5.6 Fossile Energieträger – Energiereserven – Ausblick

3.5.6.1 Vorbemerkungen
Ausgehend von einer zuverlässigen Schätzung der Vorkommen und unter Einrech-
nung der derzeitigen und künftigen Nutzung, lässt sich jener Zeitrahmen prognos-
tizieren, in welchem die herkömmlichen Brennstoffe noch zur Verfügung stehen
werden. Solche Schätzungen sind schwierig, zum einen werden immer wieder neue
Lagerstätten entdeckt (meist nur kleine), zum anderen lohnt sich zunehmend die
Erschließung solcher Funde, die mit einem aufwendigeren Abbau und höheren
Kosten verbunden ist, und das solange, wie der Verbraucher den ansteigenden Ab-
nahmepreis akzeptiert.

Bei der Einschätzung der vorhandenen und der Prognose der förderbaren fossi-
len Energievorräte wird zwischen Ressourcen und Reserven unterschieden. Erst-
genannte sind jene Energieträger, deren Vorkommen über die Reserven hinaus nur
vermutet und grob abgeschätzt werden kann und deren größter Teil aus techni-
schen und kommerziellen Gründen (noch) nicht erreichbar ist. Bei den zweitge-
nannten Energieträgern, den Reserven, werden sichere und wahrscheinliche unter-
schieden. Als sichere Reserve bezeichnet man jene, die mit mindestens 90%iger
Wahrscheinlichkeit (also praktisch sicher) unter wirtschaftlich und technisch ange-
messenen Bedingungen gefördert werden kann, als wahrscheinliche, die darüber
hinaus unter vergleichbaren Bedingungen mit mindestens 50%iger Wahrschein-
lichkeit förderbar sein wird. – Beim Erschließen einer Lagerstätte wird eine soge-
nannte initiale (anfängliche, ursprüngliche) Reserve, die als sicher gilt, prognosti-
ziert. Wird hiervon die bis zum Stichtag geförderte Menge subtrahiert, erhält man
die verbleibende (sichere) Reserve. –

Wird die Fördermenge am Stichtag auf die verbleibende Reserve bezogen, also
ihr Quotient gebildet, erhält man die statische Reichweite. Sie unterstellt, dass die
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momentane Förderrate, also die Fördermenge pro Zeiteinheit, durchgängig auf-
recht erhalten bleibt. Das ist praktisch nicht möglich und unrealistisch, da die
Förderrate bei jeder versiegenden Förderstätte trotz gleichen Aufwands sinkt, es
kann bei gleicher technischer Intensität täglich weniger gewonnen werden. Auf der
anderen Seite gelingt es dank neuer technischer Innovationen ergiebiger und zügi-
ger zu fördern. Unwägbarkeiten wirtschaftlicher und politischer Art treten hinzu.
Wird alles dies mit eingerechnet, kommt man zur dynamischen Reichweite. Se-
riöse Abschätzungen gehen von der statischen Reichweite aus und beziehen sich
dabei auf die Primärenergie.

3.5.6.2 Fossile Energiereserven: Kohle, Erdöl, Erdgas
Unter die fossilen Brennstoffe fallen Kohle (Stein- und Braunkohle), Erdöl und
Erdgas. Sie werden aus der Erdkruste industriell gewonnen (das gilt auch für Uran-
erz; vgl. hierzu Bd. IV, Abschn. 1.2.4.4, 1. Erg.). Die Stoffe liegen in unterschiedli-
cher Form und chemischer Zusammensetzung vor. Bei den fossilen Stoffen sind es
Überreste ehemaliger organischer Substanzen, die sich in langen Zeiten der Erd-
geschichte gebildet haben. Anschließend wurden sie von geologischen Schichten
aller Art überlagert und im Zuge der Kontinentaldrift und Gebirgsbildung ver-
frachtet, z. T. um die halbe Welt, wie die Vorkommen in Spitzbergen zeigen. –
Bei Kohle waren es Pflanzen, wie Moose, Farne, Sträucher und Bäume, die sich
im damaligen tropischen Feuchtklima massenhaft vermehrten und sich am Ende
ihrer Existenz auf dem wassergesättigten Boden übereinander türmten. Im Laufe
von Millionen von Jahren wuchsen die Schichten zu großer Mächtigkeit an, um
später von anderen Gesteinen überlagert zu werden und sich dabei unter hohem
Druck zu einem mehr oder weniger festen Gestein zu verdichten. – Erdöl und
Erdgas bildeten sich aus den Organismen toter Meerestiere und -pflanzen (Plank-
ton), die sich am Meeresboden absetzten, wobei das Material, vermengt mit Sand
und Ton, schichtenweise anwuchs. Aus dem organischen Gemenge bildete sich
mit Hilfe von anaeroben Bakterien unter Luftabschluss Öl. Dem so getränkten
Sedimentgestein überlagerten sich später Gesteinsschichten unterschiedlicher Di-
cke. Mit zunehmender Überfrachtung stiegen Temperatur und Druck, wodurch das
Öl ausgetrieben und in poröse und klüftige Speichergesteine gedrängt wurde, bis
es sich unterhalb undurchlässigen Schichten, wie Ton und Salz, ansammelte. Aus
diesen Lagerstätten kann es heute, nach voran gegangener Aufschlusserkundung
(Prospektion) und Anbohren, abgepumpt werden. Zunächst tritt das Öl dank des
natürlichen Lagerstättendrucks selbsttätig aus (bis ca. 15% des Vorrats). Die wei-
tere Entölung erfordert die Injektion (das Fluten) von Wasser zur Druckerhöhung,
auch von Erdgas oder Kohlenstoffdioxid (Förderung bis ca. 40% des Vorrats) und
schließlich das Einpressen von heißem Wasserdampf und von seifigen Tensiden
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und Polymeren, um die Fließfähigkeit zu verbessern. Schließlich können bis etwa
60% des Vorrats gewonnen werden, 40% verbleiben im Untergrund.

Bei der Entstehung des Erdöls drang das aus dem Faulschlamm entwichene Gas
vermöge des hohen Tiefendrucks entweder in poriges Sedimentgestein ein oder
in geschichtetes Gestein, wie Schiefer. Aus dem Sedimentgestein kann es kon-
ventionell (bis zu 80% des Vorrats) gefördert werden, aus den Schieferschichten
unkonventionell durch Fracking, vgl. unten.

Es versteht sich, dass Gewinnung und Aufbereitung der fossilen Rohstoffe zu
den kapitalträchtigsten Hochtechnologien gehören. Sie sind mit nicht unbeträchtli-
chen Sicherheitsrisiken unterschiedlichster Art behaftet, das gilt vorrangig für die
Off-shore-Förderung aus großer Meerestiefe. Man denke schon heute an die Ri-
siken der geplanten Gewinnung von Erdöl und Erdgas innerhalb des Polarkreises
aus dem Boden des arktischen Ozeans. Hier werden große Ressourcen vermutet.

In den fossilen Stoffen dominieren die Elemente Kohlenstoff (C), Wasserstoff
(H), Sauerstoff (O), Stickstoff (N) und Schwefel (S). In Molekülform spricht man
von Kohlenwasserstoffen; es sind bei Erdöl wohl mehrere hundert unterschiedli-
che.

Neben der Erzeugung von Wärme durch Verbrennung dienen die Stoffe in der
chemischen Industrie als Basis für Produkte aller Art, wie z. B. Kunst- und Faser-
stoffe, Farbstoffe, Kunstdünger, Medikamente (vgl. Bd. IV, Abschn. 2.5). – Bei der
Verbrennung entstehen neben Kohlenstoffdioxid (CO2/ Kohlenstoffmonoxid (CO)
und Stickoxide (NOx/, sowie Feinstaub. Dieser kann in modernen Kraftwerksöfen
und Motoren weitgehend abgefiltert werden. Wo es nicht geschieht, kommt es zu
verheerenden Feinstaubelastungen.

Bei der Verbrennung von Steinkohle und Braunkohle fällt, verglichen mit den
anderen fossilen Brennstoffen und bezogen auf deren Brennwert, die höchste CO2-
Menge an, bei der Verbrennung von Erdgas nur halb so viel, vgl. Abb. 3.67.

Um Strom zu erzeugen, sind weltweit über 2000 Kohlekraftwerke in Betrieb,
(wobei etwa 8 Gigatonnen CO2 anfallen). Auch Deutschland bezieht nach wie vor
ca. 45% seiner Stromenergie aus Kohle, worauf 40% seines CO2-Auststoßes zu-
rückgeht (2015). NachWegfall der Kernenergie werden dieWerte weiter ansteigen.
25 neue Kohlekraftwerke sind hierzulande im Bau. Insofern besteht Bedarf an
einer Technik, mittels derer CO2 klimaunschädlich deponiert werden kann. Das
gelingt mit dem CCS-Verfahren (Carbon Capture und Storage). Hierbei wird
das im Kraftwerk anfallende CO2 abgespalten, unter hohem Druck verflüssigt,
abtransportiert (ggf. über eine Pipeline) und anschließend in tiefe Schichten ver-
presst. Bei dieser großtechnischen Maßnahme wird ein Teil der gewonnenen Ener-
gie wieder ‚verbraucht‘. Verschiedene Techniken zur CO2-Abscheidung sind in
der Erprobung. Für Nachrüstungen geeignet wäre eine der Verbrennung folgende
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Rauchgaswäsche und für Neubauten das sogen. Oxyfuel-Verfahren, das der Ver-
brennung vorangeht. – Bei der Verfrachtung und Einlagerung des CO2-Gases wird
an ausgebeutete Lagerstätten gedacht, an tiefliegende poröse Sandsteinschichten
oder an sogen. saline Aquifere. In allen Fällen muss durch eine gasdichte Deck-
schicht gewährleistet sein, dass das gespeicherte CO2 nicht wieder nach oben in
die Atmosphäre entweichen kann. Aquifere sind bis zu tausend Meter tief liegen-
de Sandstein-Formationen, die Salzwasser führen. In dieses Tiefwasser wird das
CO2 eingepresst. Da geologische Bruchzonen in der Deckschicht nicht restlos aus-
zuschließen sind, wird ein Eindringen des CO2 in oberflächennahes Trinkwasser
befürchtet. Die CCS-Technik wird daher hierzulande als eine nicht wirklich si-
chere und nachhaltige CO2-Endlagerung angesehen und mehrheitlich (politisch)
abgelehnt. Das gilt auch für Pilotprojekte. Im Ausland wird an der Technik ge-
forscht; in ihr wird seitens des Weltklimarates (IPCC) die wirksamste Methode
gesehen, um den weiter ansteigenden CO2-Ausstoß abzufangen und die Klimaziele
zu erreichen. In Norwegen wird das Gas in Schichten tief unter dem Meeresbo-
den deponiert. Hierzulande gäbe es geeignete Stauräume in Niedersachsen und
Schleswig-Holstein, das Speicherpotential wird zu 18 bis 48Gt CO2 geschätzt,
es würde für 30 bis 70 Jahre zur Einlagerung reichen. – Zur Wirtschaftlichkeit
der CCS-Technik sei folgende Abschätzung betrachtet: Ausgehend von den Ta-
bellenwerten in Abb. 3.67 werden zur Gewinnung von 1 kWh Stromenergie eine
Menge von 1=8;4 D 0;119 kg Steinkohle oder 1=3;2 D 0;313 kg Braunkohle benö-
tigt, letzteres ist der 2,63-fache Wert gegenüber Steinkohle. In beiden Fällen wird
1=0;34 D 2;94 kg CO2 pro 1 kWh frei gesetzt. Modernste Kohlekraftwerke kön-
nen mit einemWirkungsgrad � D 0;50 betrieben werden. Geht man von demWert
0,45 aus, fallen 2;84=0;45 D 6;53 kg CO2 bei der Abgabe einer Energie von 1 kWh
an das Stromnetz an, dazu bedarf es einer Menge von 0;119=0;45 D 0;264 kg
Steinkohle oder 0;313=0;45 D 0;696 kg Braunkohle. Sinkt der Wirkungsgrad des
Kraftwerkes durch die CCS-Technik auf 0,35, liegt der CO2-Ausstoss um den Fak-
tor 0;45=0;35 � 1;3 nochmals höher, ebenso der Kohlebedarf. Die Abschätzung
zeigt: Wegen des hohen Eigenenergiebedarfs ist das CCS-Verfahren nicht günstig.

Kohle (Mineralkohle) wird in Abhängigkeit von ihrem Entkohlungsgrad in
Stein- und Braunkohle unterteilt. – Steinkohle liegt stets in großer Tiefe und kann
daher nur im Untertagebau gefördert werden. Braunkohle liegt oberflächennah,
was eine Gewinnung im Tagebau ermöglicht. – Steinkohle ist mit einem C-Gehalt
von 75 bis 90% vorrangig im Karbon und Perm entstanden, also i.M. vor ca. 300
Millionen Jahren. Braukohle ist deutlich jünger und stammt aus dem Tertiär, sie
begann sich also vor ca. 60 Millionen Jahre vor heute und in den folgenden Zeiten
abzulagern. Der Wassergehalt der Braunkohle ist unterschiedlich, in alten Lagen
beträgt er 10 bis 30%, in jungen 45 bis 60%. – Die Reserven und insbesondere
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die Ressourcen von Hart- und Weichkohle werden hoch eingeschätzt, verglichen
mit den anderen fossilen Brennstoffen sind es die höchsten, vgl. Abschn. 3.5.6.3.

Im Jahre 1955 wurden in Deutschland von 560.000 Arbeitnehmern 150 Millio-
nen Tonnen (t) Steinkohle gefördert, fünfzig Jahre später, im Jahre 2005, waren
es mit ca. 40.000 Beschäftigten noch 24 Mio. t. Im Jahre 2018 läuft die (sub-
ventionierte) Steinkohleförderung in Deutschland aus. Damit steigt die Import-
abhängigkeit weiter an: Im Jahre 2013 wurden 51 Mio. t Steinkohle importiert,
25% aus Russland, 24% aus den USA, 20% aus Kolumbien. Die meiste Kohle
wird verstromt (ca. 75%), der Rest wird überwiegend in der Stahlindustrie ein-
gesetzt. – Im weltweiten Maßstab wird die meiste Braunkohle in Deutschland
abgebaut. Sie wird vollständig verstromt. Auf diese heimische Energiequelle wird
Deutschland auch in Zukunft noch lange angewiesen sein, man schätzt, dass das
jährliche Aufkommen von derzeit 150 Mio. t auf 170 Mio. t im Jahre 2030 an-
steigen wird. Die Reserven in Deutschland werden auf 40.500 Mio. t geschätzt,
das bedeutet bei vergleichbarer Förderung wie heute eine statische Reichweite von
250 Jahren. Der Flächenbedarf, verbunden mit Umsiedlungen der dort lebenden
Bevölkerung, ist groß, die hinterlassene Landschaft bedarf anschließend einer um-
fassenden Renaturierung. Das größte Problem der Braunkohleverstromung liegt im
hohen CO2-Ausstoss. Dieser Umstand wird den forcierten Abbau möglicherweise
drosseln.

Das ersteErdöl (auch als Mineralöl oder Rohöl bezeichnet) wurdeMitte des 19.
Jahrhunderts gefördert. Seither ist die Förderung kontinuierlich gestiegen. Saudi-
Arabien, Russland, USA und Iran sind die Hauptförderländer. In Kanada wird Öl
aus Ölsand gewonnen. Hierbei wird der auf der Oberfläche liegende Teersand von
Baggern abgeschabt und das Öl mit heißemWasser ausgewaschen. Der Energiebe-
darf ist hoch. Der Abbau hinterlässt eine verwüstete Landschaft mit ausgedehnten
Ölseen. Eine neuere Technik besteht im Einpressen von heißem Wasser über ein
Rohrsystem in tiefere Lagen und Abpumpen des aus dem Sand gelösten Öls.

Mit dem weiteren Anwachsen der Weltwirtschaft (und Weltbevölkerung) wird
der Bedarf an Benzin, Diesel und Kerosin sowie von Schiffsschweröl weiter anstei-
gen.Weltweit steigt die Förderung (DVerbrauch) um ca. 2% jährlich. Die sicheren
Weltreserven werden seitens der Erdölindustrie zu 175 �109 Tonnen geschätzt. Das
ergibt bei einem täglichen Verbrauch von 12;2 � 106 D 0;0122 � 109 t eine statische
Reichweite von 40 Jahren:

175 � 109=.365 � 0;0122 � 109/ D 175 � 109=4;45 � 109 D 40 Jahre

Andere Schätzungen sagen 50 Jahre voraus, wiederum andere 30, vgl. Ab-
schn. 3.5.6.3. Da die Förderrate mit zunehmender Ausbeute sinkt, wird der
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Zeitpunkt eines nicht mehr ausreichenden Angebots früher als die notierten
Schätzwerte einsetzen. Es gibt Meinungen, wonach zur Zeit bereits am Limit
(peak oil D Ölmaximum) gefördert wird. Das wird sich in absehbarer Zeit in
einer Verknappung mit stetig steigenden Preisen auswirken, die Weltwirtschaft
wird schrumpfen, die politischen Folgen sind schwer vorherzusehen. Von allen
fossilen Brennstoffen wird Erdöl mit Sicherheit als erster erschöpft sein, gefolgt
von Erdgas. Die inzwischen gelungene Erdölförderung mittels Fracking (vgl. fol-
gend) verdeckt die reale Ressourcen-Situation und wird wegen des ungehemmt
verstärkten Verbrauchs das Ende des Erdöl-Zeitalters eher beschleunigen (2015).

Die sichere Erdölreserve beträgt in Deutschland ca. 31;5 � 106 t. Bei einer
jährlichen Förderung von 2;6 � 106 t bedeutet das eine statische Reichweite von
31;5=2;6 D 12 Jahren. Bezogen auf die jährliche Weltförderung mit 4;45 � 109 t ist
das ein Anteil von 2;6 � 106=4450 � 106 D 0;0058 D 0;58% D 5;8 �. Der Ver-
brauch in Deutschland beträgt ca. 110 � 106 t im Jahr. Somit kann das Land seinen
Bedarf nur zu 2;6=110 D 0;0236 D 2;36% aus eigenen Quellen decken, der Rest,
ca. 97%, muss importiert werden! Im Falle, dass Fracking hierzulande genehmigt
würde, ließe sich die Importabhängigkeit mindern, indessen nur in bescheidenem
Umfang.

Wie oben ausgeführt, entstand Erdgas unter ähnlichen Bedingungen wie Erd-
öl. Druckgetrieben wanderte es als flüchtiges Produkt nach seiner Entstehung
durch unterschiedlich durchlässige (permeable) Schichten aus Sand-, Mergel-
oder Kalkstein hindurch, um sich schließlich in einem porösen Speichergestein
unterhalb einer gasdichten Schicht anzureichern, man spricht von einer ‚Erdgas-
falle‘ (Abb. 3.74a, linkerseits). Solche Lagerstätten liegen vielfach, wie bei Erdöl,
mehrere tausend Meter tief und stehen unter hohem Druck (bis 400 bar). Das
Gas tritt nach Anbohren selbsttätig aus, später muss über eine parallele Injek-
tionsbohrung ‚gefract‘ werden (s. u.). Man nennt diese Förderung aus porösen
Sandsteinschichten ‚konventionelles Fracking‘. Es gelingt eine Förderung bis
zu 50% des Vorkommens. Daneben wird Gas inzwischen aus solchen Speicher-
gesteinen gewonnen, aus denen es ehemals wegen der Gesteinsdichtigkeit nicht
migrieren konnte, das bedeutet, es befindet sich nach wie vor im ‚Muttergestein‘.
In diesem Falle muss von Anfang an gefract werden, beim Produkt spricht man
von Tight Gas, vgl. unten und Abb. 3.74, rechterseits.

Nach Gewinnung und Aufbereitung wird das konventionell gewonnene Gas in
Pipelines (Rohrleitungen) unter Druck zum Verbraucher transportiert. Es dient als
Heizgas in Wohnungen (in Deutschland zu ca. 50%) und als Brenngas in Kraft-
werken zur Strom- und Wärmegewinnung.

Als chemischer Bestandteil dominiert in Erdgas Methan, gefolgt von Propan,
Butan, Ethan u. a. – Neben dem Transport in einer Leitung wird Gas auch als
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Abb. 3.74

Flüssiggas befördert: LPG (Liquefied Petroleum Gas, es ist bei Raumtemperatur
und geringem Druck flüssig) und LNG (Liquefied Natural Gas, es ist im verdich-
teten Zustand bei �162 ıC flüssig). – Bei der Verbrennung von Flüssiggas fällt
vergleichsweise weniger CO2 an, auch weniger an Schadstoffen wie Schwefeloxi-
de und Rußpartikel. Flüssiggas dient im privaten Bereich als Heiz- oder Kochgas,
in der Industrie als Brenngas und in Kraftfahrzeugen mit Ottomotor als Autogas
(Treibgas). Das Gas kann auf See, auf der Schiene und auf der Straße in Tanks
befördert werden.

Neben der konventionellen hat das unkonventionelle Fracking von Gas an Be-
deutung gewonnen (Abb. 3.74, rechterseits). Die Art der Förderung ist möglich
geworden, nachdem es gelungen ist, bei der Bohrung den Bohrstrang abgewinkelt
in Richtung der gasführenden Gesteinsschicht voran zu treiben. Schiefer ist solch
ein gashaltiges Gestein, auch Kohleflöze sind in dem Zusammenhang zu nennen.
Nach Abschluss des Vortriebs, wird das Rohr durch eine Sprengung mittels ei-
ner Hohlraumladung durchlöchert und von oben ein Fluid (Frac, Fracfluid) aus
Wasser, chemischen Zusätzen und feinem Quarzsand unter hohem Druck (400 bar)
eingepresst. Infolge des Drucks erzeugt das Gemisch im Umfeld des Rohres Ris-
se im Hartgestein. Der eindringende feine Sand hält die entstehenden Risse offen.
Die chemischen Bestandteile des Fracs steigern die Löslichkeit und Fließfähigkeit:
Das gefangene Gas kann entweichen; man nennt es auch Schiefer- oder Shale-Gas.
Das Verfahren heißt ausführlich Hydraulic Fracturing (Hydraulische Risserzeu-
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gung, abgekürzt Fracking). An- und Abtransport sowie Wiederaufbereitung des
Fracfluids erfordern eine aufwendige Ausrüstung vor Ort, das gilt auch für Aufbe-
reitung und Abtransport des Gases. Die Erfahrung zeigt, dass das Vorkommen in
der jeweiligen Gesteinsschicht als Folge ihrer durchgängigen Erschließung relativ
schnell abgeschöpft ist.

Das in das Bohrloch eingeführte Stahlrohr wird gegenüber dem Gestein mit
einer Zement-Ummantelung versehen (das entspricht der Versiegelung wie bei
jedem konventionellen Öl- und Gasförderrohr auch). Da dennoch ein Austreten
des Fracfluids bei Undichtigkeit der Rohrleitung befürchtet wird, stößt Fracking
hierzulande auf Skepsis bis Ablehnung. In der Norddeutschen Tiefebene, im Ruhr-
gebiet und im Voralpenland liegen in Deutschland die größten Vorkommen an
Schiefergas (1500m tief in Schieferschichten der Unterkreide, 1500 bis 2200m
tief in Schichten des Unterjura und 2300 bis 5000m tief in solchen des Unterkar-
bons). – Ergänzend sei erwähnt, dass auch Öl mittels Fracking aus Ölschieferflöze,
die in großen Tiefen liegen, unkonventionell gewonnen werden kann, was zurzeit
in Texas und North Dakota in den USA in großem Umfang praktiziert wird (2015).
Nachteil des Fracking-Verfahrens ist der hohe Wasserverbrauch. Die Ausbeute ist
mit der derzeitigen Technik eher gering (8%). –

Russland, USA, und Kanada sind die größten Gasförderländer, im Iran und
in Katar liegen die größten Reserven. Die sicheren weltweiten Erdgasreserven
werden auf 205:000 � 109 m3 geschätzt (2015). Daraus lässt sich bei einer Jahres-
förderung von 3500 � 109 m3 eine statische Reichweite von 60 Jahren folgern. – In
Deutschland beträgt die Reserve 95 � 109 m3. Das meiste Gas liegt in Niedersach-
sen, es ist hier weitgehend erschöpft und verwässert. Gefördert werden hiervon
jährlich 9;7 � 109 m3, das bedeutet, dass der hiesige Bestand noch eine Reichweite
von 10 Jahren hat. Der jährliche Verbrauch in Deutschland von 97 � 109 m3 wird
nur zu 10% aus Eigenförderung bestritten, 90% müssen importiert werden, zu ei-
nem Drittel aus Russland, gefolgt von Norwegen (28%) und Holland (21%). – Die
Nutzung von Gas als Heizquelle setzt i. Allg. ein umfangreiches Fernrohrnetz vor-
aus. – Der in Deutschland durch Fracking in Tiefen > 1000m förderbare Gasvorrat
wird auf 800 � 109 m3 geschätzt (2015).

Da der Bedarf an Gas tages- und jahreszeitlich schwankt, muss eine größere
Menge Gas ständig zwischengespeichert werden. Hierzu dienen neben stählernen
Gasbehältern Untertagespeicher in Form von Salz-Kavernen (nach bergmännischer
Aussolung) und sogen. Porenspeicher, das sind ehemalige Erdgas- oder Erdölla-
gerstätten. – Solche Speicher werden auch für Öl vorgehalten; hierfür kommen
indes nur Salzkavernen infrage. – Die Speicherung von Öl und Gas dient auch der
nationalen Notversorgung.
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Abb. 3.75

3.5.6.3 Fossile Energieträger (Brennstoffe) – Ausblick
Die fossilen Brennstoffe sind und bleiben die wichtigsten Energiequellen. Nach-
frage, Förderung, Verbrauch werden weiter steigen. Das hat wegen des steigen-
den CO2-Ausstoßes ernste Konsequenzen für die Klimaentwicklung. Dramatisch
könnte die Situation in einigen Jahrzehnten werden, wenn die Förderraten von Erd-
öl und Erdgas sinken, gar versiegen.

Die Datenlage ist unübersichtlich. Je nachdem von wem sie stammt, werden
Reserven und Reichweiten höher oder niederer bewertet. In Abb. 3.75 sind Daten
des BGR (des Bundesamtes für Geowissenschaften und Rohstoffe) für das Jahr
2013 wiedergegeben, alle Werte in der Energieeinheit EJ (ExajouleD 1018 Joule).

Danach sind die Ressourcen, insbesondere für Steinkohle, enorm. Hiervon aus-
gehend eine Reichweite berechnen zu wollen, wäre nicht seriös. Gleichwohl, die
Angaben schüren die Hoffnung, dass sich Teile der Ressourcen in Zukunft in Re-
serven werden überführen lassen.

Das in Abb. 3.76 wiedergegebene Diagramm beruht auf einer Analyse der
ENERGIE WATCH GROUP, März 2013. In der Abbildung ist für den Zeitraum
von 1960 bis 2014 die Entwicklung der weltweiten Fördermengen aller fossilen
Brennstoffe dargestellt. In diesem Falle sind die Angaben in der Energieeinheit
Mtoe (Megatonne Öleinheit) ausgewiesen. Die Auswertung lässt erkennen, dass
derzeit am Limit gefördert und konsumiert wird. Zu den Aussichten einer ausrei-
chenden Energieversorgung vgl. [31, 32].
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Abb. 3.76

3.5.7 Nichtfossile Energieträger – Erneuerbare Energien

Da die Brennstoffe aus fossilen Quellen eines Tages erschöpft sein werden, wird
es immer dringender, neue Energiequellen zu erschließen. Hierzu zählt die Wärme
aus dem Erdkörper (Geothermie) und die am Tage einfallende Strahlungsenergie
der Sonne. Sie wird entweder unmittelbar genutzt (Solarenergie) oder mittelbar,
wie im Falle vonWasser- undWindenergie und der in den Pflanzen gespeicherten
Bioenergie. Die Gezeitenenergie beruht auf der Gravitation zwischen Erde und
Mond und der Rotationsenergie der Erde. Alle genannten Arten zählen zu den
erneuerbaren Energien, kurz den ‚Erneuerbaren‘.

Auf das Schrifttum [10–17] wird verwiesen und ergänzend als weitere Auswahl
zu den Erneuerbaren auf [33–41]; es liegt nahe, dass es zu den modernen innova-
tiven Techniken viel neue Literatur gibt, auch einschlägige Fachzeitschriften. –
Wasserstoff hat die Bedeutung eines Energieträgers, er muss zunächst aus fossi-
len oder erneuerbaren Quellen gewonnen werden, (Bd. IV, Abschn. 2.4.1.5). Als
Speichermedium wird die Wasserstofftechnologie für überschüssige Wind- und
Solarenergie an Bedeutung gewinnen. Zur Energiespeichertechnik vgl. [42, 43].

3.5.7.1 Geothermie (Erdwärme)
Neben den fossilen Energieträgern und dem Kernbrennstoff Uran wird auch die
Erdwärme (Geothermie) aus der planetaren Kruste gewonnenen.
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Abb. 3.77

Nach menschlichen Maßstäben ist dieser Energiefundus unbegrenzt verfügbar,
er kann ‚kostenlos‘ sowie CO2- und weitgehend schadstofffrei gefördert werden.
Trotz des hohen Investitionsaufwandes, der bei Erschließung der ‚Wärmestätten‘ im
Erdinneren notwendig ist, kann erwartet werden, dass die Geothermie einen wich-
tigen Beitrag zur künftigen Energieversorgung wird leisten können (und müssen).

Wie bekannt und in Abschn. 2.4.2.2 in Bd. IV dargestellt (daselbst Abb. 2.33),
ist der Erdkörper schalenförmig aufgebaut. Im Zentrum des Eisen-Nickel-Kerns
herrscht eine Temperatur von ca. 7000 °C. Die Wärme ist gefangene Gravitations-
energie aus der Entstehungsphase des Planeten (sie macht ca. 30% der Erdwärme
aus). Der Wärmeverlust infolge Abstrahlung ins Weltall wird ständig durch Zer-
fallswärme radioaktiver Isotope wettgemacht (70% der Erdwärme). Die mittlere
Temperatur auf der Erdoberfläche beträgt 10 °C, sie ist recht konstant und ändert
sich praktisch nicht, der natürliche Treibhauseffekt ist daran beteiligt.

Unter der Erdoberfläche steigt die Temperatur um 3K pro 100m Tiefe. In vul-
kanischen Gebieten liegt der Gradient doppelt so hoch, z. T. noch höher.

Es werden zwei Fördermöglichkeiten unterschieden:

� Oberflächennahe Geothermie (Abb. 3.77a1): Die Wärme wird über ein in
ca. 1,2 bis 1,5m Tiefe liegendes horizontales Rohrsystem mit Hilfe einer Wär-
mepumpe aus dem Erdreich oder dem Grundwasser entnommen, wie in Ab-
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schn. 3.4.8.2 erläutert, man spricht von einem Erdwärmekollektor. Träger der
Wärme im geschlossenen Rohrsystem ist Wasser, angereichert mit einem Frost-
schutzmittel (Ethylen-Glykol). Die Wärme dient Heizzwecken. Es bedarf elek-
trischer Antriebsenergie für die Wärmepumpe.
Mit der auf diese Weise gewonnenen Erdwärme gelingt es auch, die Vereisung
von Gleisweichen und von Fahrbahnen auf Straßenbrücken zu verhindern.
Eine andere Form der Wärmegewinnung ist die Förderung von warmem Was-
ser aus heißem Gestein, z. B. über ein vertikales Röhrenensemble oder über
einen Brunnen, man nennt ein solches System Erdwärmesonde. Dabei wer-
den Tiefen von 100m erreicht, das Wasser wird mittels einer Pumpe gefördert,
Abb. 3.77a2.
Die Versorgung von Thermalbädern mit heißem Wasser ist seit alters her be-
kannt. Das heiße Wasser kann bei hohem Aufkommen auch für Heizzwecke
über ein Wärmenetz genutzt werden. In vulkanischen Ländern, wie in Island,
lässt sich mit dem heißen Wasser auch Strom erzeugen.

� Tiefengeothermie (Abb. 3.77a3): Aus Tiefen > 1000m wird Wasser mit einer
Temperatur > 60 °C gefördert. Es werden zwei Verfahren unterschieden:
Beim hydrothermischen Verfahren wird das im tiefen Untergrund fließende
heiße Wasser über eine Förderbohrung gewonnen. Die Wassertemperatur liegt
je nach Tiefe der wasserführenden Schicht bei 120 °C und höher, die Tiefe der
Bohrung erreicht 1500m, fallweise mehr. Nach der Nutzung wird das abgekühl-
te Wasser über eine Injektionsbohrung in den Untergrund zurück geführt. Die
Endteufe der Reinjektion liegt ca. 300m tiefer als die Endteufe der Förderboh-
rung. In Abb. 3.77b sind geeignete Vorkommen heißer Aquifere in Deutschland
ausgewiesen.
Beim petrothermischen Verfahren wird (kaltes) Wasser unter hohem Druck in
in großer Tiefe liegendes heißes Hartgestein über eine Injektionsbohrung ge-
pumpt. Dabei nimmt das Wasser die Wärme auf. Der Wasserdruck bewirkt
ein Öffnen vorhandener Risse und Klüfte, man spricht vom Hot-Dry-Rock-
Verfahren. Das aufgeheizte Wasser wird über eine Förderbohrung an anderer
Stelle entnommen. Auch hierbei bedarf es zweier Bohrungen. Inzwischen wird
bis in Tiefen von 6000m gebohrt, was wohl als Grenze anzusehen ist.

In Abhängigkeit von der Höhe der Temperatur besteht die Nutzung vorstehender
Verfahren aus zweierlei: Bei geringerer Temperatur (< 100 °C) wird das Wasser in
ein Nah- oder Fernwärmenetz zur Warmwasserversorgung von Siedlungen beför-
dert, auch zur Lieferung von Prozesswärme. Bei höherer Temperatur (> 100 °C)
lässt sich Strom erzeugen, indem das Wasser einen Wärmetauscher durchläuft und
der Dampf eine Turbine antreibt, zweckmäßig in Wärme-Kraft-Kopplung. Derzeit
sind 30 Geothermie-Anlagen in Deutschland in Betrieb. – Die Wirtschaftlichkeit
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der Anlagen ist von der Tiefe der Bohrung, von der Temperatur des geförderten
Wassers (bis 160 °C undmehr), von der Schüttung in Liter pro Sekunde (bis 150 l=s
und mehr) sowie von den Investitions- und Betriebskosten und der Nutzungsdau-
er abhängig. – Der Beitrag zur Stromerzeugung soll in Deutschland bis 2030 auf
850MW steigen, geplant sind Kraftwerke mit Leistungen bis 50MW. In den USA,
China und anderen Staaten sind inzwischen Kraftwerke mit sehr viel höherer Leis-
tung realisiert worden.

Nie auszuschließen sind schwache Erdbeben, die durch den Eingriff im Unter-
grund ausgelöst werden. Solche gelegentlichen Mikrobeben in einer Größenord-
nung Magnitude 2 bis 3 haben auf eine moderne Infrastruktur keine Auswirkung,
eher bei alter historischer Bausubstanz.

3.5.7.2 Solarenergie
In Bd. III, Abschn. 2.7.3, wird die Solarkonstante der extraterrestrischen Sonnen-
strahlung abgeleitet, also jene Strahlungsleistung in Watt pro m2 Einheitsfläche,
die kontinuierlich auf die Erdscheibe außerhalb der Atmosphäre trifft, sie beträgt
1360W=m2 (der Wert ist maßgebend für die Raumfahrt, weil die Abschirmung
durch die Atmosphäre entfällt).

Die Sonne ist, strahlungstheoretisch gesehen, ein Schwarzer Strahler. Aus ih-
rem jenseits der Atmosphäre gewonnenen Leistungsspektrum kann auf ihre Ober-
flächentemperatur geschlossen werden, sie beträgt 5770K.

Die Strahlungsleistung setzt sich zu ca. 7% aus dem Anteil der ultravioletten
Strahlung (100 bis 380 nm), zu ca. 45% aus dem Anteil der infraroten Strahlung
(780 nm bis 1mm) und zu ca. 48% aus dem Anteil des sichtbaren Lichts (380 bis
780 nm) zusammen (Abb. 3.78).

Abb. 3.78
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Anmerkung
Die von der Sonne in jeder Sekunde in alle Richtungen abgestrahlte Energie beträgt (Bd. III,
Abschn. 2.7.3): 3;826 � 1026 W: Davon erreicht nur 0;000000453% die Erdscheibe, alle wei-
tere Energie wird in den Weltraum abgestrahlt: 99;9999999546%. – Die Energie wird in der
Sonne bei der Kernverschmelzung von Wasserstoff in Helium und bei der Fusion anderer
Elemente frei (Bd. IV, Abschn. 1.2.5.1). Der mit der Strahlung einher gehende Massenver-
lust lässt sich aus der Formel m D E=c2 (mit c als Lichtgeschwindigkeit) berechnen:

m D 3;826 � 1026 W=.3 � 108 m=s/2 D 4;251 � 109 kg:

Dieser Massenverlust der Sonne pro Sekunde entspricht einem Würfel aus Eisen mit der
Seitenlänge:

a D 3
p

m=� D 3
p

4;251 � 109=7850m D 81;5m .�Eisen D 7850 kg=m3/

Würde man Anthrazit-Steinkohle der Menge m D 4;251 � 109 kg restlos chemisch verbren-
nen, könnte man nur eine Energie ca. 10 � 109 Ws gewinnen. Das ist im Verhältnis zur Fusi-
onsenergie der 2;6 � 10�17-fache Teil (0,000000000000000026), also verschwindend gering.
Das Beispiel verdeutlicht: Würde auf Erden eine gefahrfreie Erzeugung von Fusionsenergie
gelingen, hätte die Menschheit ihr Energieproblem gelöst. Die Gewinnung von Fusions-
energie ist seit Jahrzehnten Gegenstand intensiver Forschung (Bd. IV, Abschn. 1.2.5.2). Von
einer praktischen Nutzung ist man indessen noch weit entfernt. Ob die Fusionsenergie als
reale Option für die Energiegewinnung je zur Verfügung stehen wird, bleibt abzuwarten.
Daran zu forschen lohnt sich allemal.

Beim Durchgang der Strahlung durch die Atmosphäre wird von den Luftmo-
lekülen, wie O3 (Ozon), H2O, und CO2, innerhalb gewisser schmaler Frequenz-
bänder Energie absorbiert, sodass sich das spektrale Intensitätsspektrum unter-
halb der Atmosphäre deutlich von jenem oberhalb davon unterscheidet (Abb. 3.78,
vgl. auch Bd. III, Abschn. 2.7.4). Die dabei von der Atmosphäre absorbierte, die
Erdoberfläche erreichende Strahlungsleistung wird als Globalstrahlung bezeich-
net, geschwächt von 1360 W/m2 auf ca. 1000 W/m2. Sie setzt sich aus der nach
Absorption verbleibenden direkten Sonnenstrahlung und der aus allen Richtun-
gen ankommenden diffusen Himmelsstrahlung zusammen. Letztere beruht auf der
Streuung der direkten Strahlung durch Dunst, Schwebstaub und Luftpartikel infol-
ge Luftverschmutzung und auf der Reflexion des Lichts an Wolken und Objekten
aller Art.

Abb. 3.79 zeigt die Stellung der Erde in der ekliptikalen Ebene am Tag der
Sommersonnenwende (21. Juni). Auf der Nordhalbkugel ist es der längste Son-
nentag, auf der Südhalbkugel der kürzeste. Am Ort mit der geographischen Breite
C23,45° steht die Sonne an diesem Tag kopfüber, sie strahlt hier senkrecht auf
die Oberfläche. An Orten größerer geografischer Breite fällt die Strahlung schräg
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Abb. 3.79

ein, die Strahlungsleistung pro m2 horizontale Fläche ist entsprechend geringer, sie
ist zudem geschwächt durch den längeren Weg durch die Lufthülle. Infolge dieser
Einflüsse liegen die Leistungswerte in Nordafrika doppelt so hoch wie in Mittel-
europa. – Um sich die Strahlungsverhältnisse zu verdeutlichen, ist es günstig, vom
Himmelsgewölbe auszugehen, wie in Abb. 3.80 gezeigt:

Der Himmel und mit ihr die Sonne drehen sich für den Erdbewohner schein-
bar von Ost nach West. Im Sommer erreicht die Sonne am 21.06. ihren höchsten
Stand, am 21.12. ihren niedrigsten, entsprechend lang bzw. kurz ist die Sonnen-
scheindauer. Das gilt damit auch für die täglich eingefangene Strahlungsenergie:
Abb. 3.81a zeigt den Verlauf der Strahlungsintensität während eines Tages. Die
Dichte der Wolkendecke hat einsichtiger Weise auch großen Einfluss.

Den Verlauf der Intensität im Laufe eines Jahres zeigt Abb. 3.81b, ebenfalls
schematisch. Land-, Großstadt- und Industrieklima bestimmen, mit welchen An-
teilen direkte und diffuse Strahlung im langfristigen Mittel an der Globalstrahlung
beteiligt sind. – Vor Ort lässt sich die Globalstrahlung auf die horizontale Fläche
mit Hilfe eines Pyranometers messen. – Der Deutsche Wetterdienst (DWD) er-
hebt Strahlungsdaten und stellt sie zur Verfügung. – Die jährlich aufsummierte
eingestrahlte Sonnenenergie beträgt in Hamburg ca. 980 kWh=(m2 a), in Ber-
lin ca. 1080 kWh=(m2 a), in München ca. 1090kWh=(m2 a) und in Freiburg
ca. 1200kWh=(m2 a); a steht für Jahr (annus). Einzelheiten können DIN 4710:
2003-01 entnommen werden: ‚Statistiken meteorologischer Daten‘ (15 Zonen in
Deutschland).
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Abb. 3.80

Bei den Anlagen zur Gewinnung von Sonnenenergie bedarf es wegen der vielen
Einflussfaktoren einer standort-orientierten thermodynamischen Auslegung. Sie
muss von den am Aufstellungsort erhobenen Strahlungswerten ausgehen. – Es
bleibt abzuwarten, inwieweit die Flächen von Straßen und Parkplätzen sowie der
Raum zwischen den Eisenbahnschienen mit entsprechend widerstandsfähigen Be-
lägen photovoltaisch genutzt werden kann; Projekte sind in der Erprobung.

Abb. 3.81
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Abb. 3.82

Für die solare Energiegewinnung gibt es unterschiedliche Systeme. Viele sind
ausgereift, an anderen wird noch geforscht und entwickelt. Es versteht sich, dass
es sinnvoll ist, die Anlagen so zu bauen, dass sie dem Stand der Sonne ein- oder
(noch günstiger) zweidimensional folgen (was die Sache indes sehr verteuert).

Sonnenkollektoren (colligere D sammeln) sind flache Kästen mit einer glä-
sernen Deckscheibe. Der Boden und die Seitenbereiche sind wärmeisoliert. Im
Innenraum liegt ein mäanderartig verlaufendes Metallrohr mit Zu- und Ablauf,
es ist dieses der eigentliche Absorber. Abb. 3.82 zeigt den schematischen Auf-
bau in Schnitt und Aufsicht. Absorber und Bodenuntergrund sind schwarz be-
schichtet. Ziel ist eine hohe Absorption des durch die Scheibe hindurch tretenden
Sonnenlichts, die Reflexion sollte gering sein. Die Scheibe trägt daher einen aufge-
dampften Antireflexbelag. Im Innenraum entwickelt sich bei Sonneneinstrahlung
ein Treibhausklima: Die Scheibe verhindert das Austreten der infraroten Wärme-
strahlung, gesteigert durch eine innenseitige Beschichtung. Als Träger im Absor-
ber wird i. Allg. Wasser verwendet. Es ist mit einem Rostschutzmittel und mit Gly-
kol als Frostmittel versetzt. Im Wärmeträger werden Temperaturen bis zu 130 °C
erreicht. Wärmeverluste treten durch Abgabe nach außen ein, besonders bei kaltem
Wetter und bei Wind. Zur Auslegung vgl. DIN EN 12975-1:2013-05: ‚Thermische
Solaranlagen und ihre Bauteile‘. Es werden relativ hohe Wirkungsgrade erreicht
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Abb. 3.83

(� > 0;5). – Die Wärme im Absorber wird an einen Wärmespeicher (ca. 60 Liter
pro m2 Kollektorfläche) abgegeben. In dieser Form dient die ‚eingefangene‘ Strah-
lungsenergie als Ergänzung der von einem konventionellen Öl- oder Gasbrenner
erzeugten Wärme (Abb. 3.83).

Es existieren inzwischen Sonderformen, z. B. Vakuum-Röhren-Kollektoren.
Bei diesem System besteht der Absorber aus einem Glasinnen- und Glasaußenrohr
mit evakuiertem Zwischenraum. Mit dem System werden höhere Temperaturen
und Wirkungsgrade erreicht.

Als Solarkraftwerke zur Stromerzeugung kommen zum Einsatz:

� Parabelrinnen-Kraftwerk,
� Solarturm-Kraftwerk,
� Aufwind-Kraftwerk.

Parabelrinnen-Kraftwerke fokussieren das Sonnenlicht auf ein Recieverrohr
(Absorberrohr), in welchem das Wärmeträgermedium hoch erhitzt wird
(Abb. 3.84). Das Rohr liegt im Brennpunkt des Parabolspiegels. Beim Wärmeträ-
ger handelt es sich um Wasser, Thermoöle oder Flüssigsalze. Zwecks optimaler
Energieaufnahmewird das Systemmit einer Nachführung ausgerüstet. Das System
wird in Ländern mit intensiver Sonneneinstrahlung eingesetzt, wie in Südeuropa,
Nordafrika und Kalifornien. Dort wurden mit dem System hohe Kapazitäten
aufgebaut.

Gänzlich anders sind Photovoltaik-Anlagen konzipiert, hier geht es nicht um
die Erzeugung von Wärme, sondern um die Gewinnung von elektrischem Strom. –
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Abb. 3.84

Abb. 3.85

Wie noch ausführlich zu behandeln sein wird, weist Licht eine Doppelnatur auf:
Lichtstrahlen können als eine Abfolge von Wellen oder als ein Strom von Parti-
kel gedeutet werden, wie in Abb. 3.85 schematisch verbildlicht. Diese Dualität ist
schwierig zu verstehen (ähnlich wie die Invarianz der Lichtgeschwindigkeit). Je-
des Partikel (Photon, Lichtquant) trägt eine Energie, die proportional zur Frequenz
der Welle ist:

EPhoton D h � � mit h D 6;626069 � 10�34 J s

h ist das PlanckscheWirkungsquantumund � die Frequenz derWelle. – Trifft Licht
auf Materie, erwärmt sie sich. Die oberflächennahen Atome nehmen die Energie
der Lichtphotonen auf. Die Schwingungen im Atomgitter des vom Licht getroffe-
nen Materials werden intensiver. In gewissen Materialien baut sich zusätzlich ein
elektrisches Feld auf, es bilden sich getrennte Zonen unterschiedlicher elektrischer
Ladung. Das bewirkt einen Stromfluss wie in einem geschlossenen Stromkreis.
Dieser sogen. photoelektrische Effekt wurde im Jahre 1839 von A.E. BECQUE-
REL (1820–1881) entdeckt. Die technische Nutzung mit dem Ziel einer Stromer-
zeugung setzte erst hundert Jahre später in den 50er und 60er Jahren des 20. Jh.
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in Verbindung mit der Entwicklung der Halbleiter-Technologie für die Raumfahrt
ein.

In Bd. IV, Abschn. 2.1.6 (3. Erg.) werden die Grundlagen der Halbleitertechnik
behandelt. Halbleiterelemente bestehen überwiegend aus Silizium (Si) oder Ger-
manium (Ge). Ihre elektrische Leitfähigkeit liegt zwischen jener der Leiter und
Nichtleiter (Isolatoren).

Treffen Lichtphotonen hoher Energie auf Materie, beginnen sich Elektronen aus
dem Gitter zu lösen. Elektronen tragen eine negative Ladung, dem Betrage nach
mit der Elementarladung e. Voraussetzung für die Ablösung ist eine ausreichend
hohe Strahlungsenergie der Photonen. Sie muss höher sein als die Bindungsenergie
des Elektrons im getroffenen Atom. Der frei gemachte Gitterplatz kann als ‚Loch‘
gesehen werden. Das Atom ist jetzt ein positiv geladenes Ion. Es wird wieder zu
einem neutralen Atom, wenn ein Nachbarelektron in das Loch übergeht. Auf diese
Weise kommt es zu einer Bewegung der negativ geladenen Elektronen und der po-
sitiv geladenen Löcher. Man nennt letztere auch Defektelektronen und spricht von
‚Löcherstrom‘. In einem geschlossenen Leiter mit einem integrierten Verbraucher
fließt elektrischer Strom.

Indessen, ein solcher Strom wäre viel zu gering, um genutzt zu werden. Eine
Steigerung gelingt mittels einer sogen. Dotierung. Hierbei werden in das Gitter des
Halbleiter-Grundmaterials solche Elemente eingemengt, deren Atome eine gerin-
gere oder eine größere Anzahl von Valenzelektronen aufweisen. Valenzelektronen
sind die Elektronen auf der äußeren Schale des Atoms (bei Si und Ge sind es vier).
Beim dotierten p-Halbleiter hat das eingebaute Atom ein Elektron weniger, das
Gitter hat hier ein ‚Loch‘, hier liegt ein Defektelektron. Gegenüber dem Grundgit-
ter ist es positiv geladen. Beim n-Halbleiter hat das eingebaute Atom ein Elektron
mehr, im Gitter liegt hier ein überschüssiges Elektron, die Störstelle ist gegen-
über dem Grundgitter negativ geladen. Liegen zwei Schichten derartig dotierten
Materials nebeneinander, kommt es zu einer Ladungstrennung: Defektelektronen
dringen randnah in die n-Schicht, Elektronen randnah in die p-Schicht. Über die p-
n-Übergangszone hinweg baut sich eine stationäre (Leerlauf-) Spannung auf. Wird
die außen liegende n-Schicht von einer energiereichen Strahlung getroffen, wird
die Bindung einzelner Elektronen gelöst. Von der Spannung getrieben, kommt es
im Vergleich zum nicht dotierten Halbleitermaterial zu einem deutlich stärkeren
Stromfluss. Der Stromfluss aus vielen Photozellen wird zusammengeführt.

Aus Abb. 3.86 geht der schematische Aufbau einer Photozelle hervor. Sie ist
real hauchdünn, ihre Dicke beträgt nur den Bruchteil eines Millimeters!

Die Zellen werden zu Modulen zusammengefasst. Dabei werden sie in Serie
geschaltet, um die zelltypische Spannung zwischen 0,4 und 1,7V auf den vorbe-
stimmten Wert anzuheben (parallel, um eine bestimmte Stromstärke zu erreichen).
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Abb. 3.86

Zur Halterung bedarf es einer stabilen Trägerkonstruktion. Wenn möglich, soll-
te die Modulebene gegenüber der Horizontalen schräg liegen, im Sommer ca. 35°,
im Frühjahr/Herbst ca. 50° und im Winter ca. 75° geneigt; übers Jahr betrach-
tet zwischen 40° bis 70°. Wegen der längeren Sonnenscheindauer im Sommer,
empfiehlt sich ein Winkel zwischen 45° bis 50°, wenn eine fixierte Halterung vor-
gesehen ist (die Werte gelten für Deutschland).

Es ist einsichtig, dass Wirkungsgrad und Ausbeute in der Photovoltaik von vie-
len Faktoren abhängig sind, insbesondere von der Reinheit und Dotierung des
Halbleitermaterials und von der Langzeitstabilität der Zelle. Die Wirkungsgra-
de liegen bei einschichtigen Silizium-Zellen zwischen 5 bis 17%, im Einzelnen:
Amorphes Material 5 bis 7%, polykristallines Material 13 bis 15%, monokris-
tallines Material bis 17%, CdTe (Cadmium-Tellurid-Zellen) 11%, CuI (Kupfer-
Indium-Zellen) 12%.

Mit mehrschichtigen Zellen, sogen. Tandemzellen, werden 40% erreicht. Bei
diesen Zellen liegen mehrere Schichten unterschiedlicher Dotierung übereinander,
jede ist auf eine bestimmte Breite des Lichtspektrums spezialisiert. –
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Im Laufe der Zeit tritt eine gewisse Schwächung infolge stärkerer Degradati-
on (Alterung) ein, stets ein Leistungsabfall bei höherer Erwärmung der Module,
gar bei einer Erhitzung. – Es wird Gleichstrom erzeugt, bei Einspeisung in das
Wechselstromnetz bedarf es eines Wechselrichters. – Wie bei allen technischen
Anlagen, ist ein umfangreiches Normenwerk als ‚Regel der Technik‘ in Form von
VDE-, DIN- und EN DIN-Normen zu beachten. – Die energetische Leistungs-
ausbeute der Zellen bzw. Module wird in einem genormten Versuch nach EN
DIN 60904-1:2007-07 bestimmt. Hierbei wird während des Versuchs eine Son-
nenstrahlung 1000W=m2 simuliert (Modultemperatur 25 °C) und die sich hierbei
einstellende elektrische Leistung im Dauerbetrieb in kW gemessen. (Elektrische
Leistung ist das Produkt aus Spannung und Stromstärke, vgl. Bd. III). Ergebnis
der Messung ist das sogen. Kilowattpeak (kWp), siehe Bd. IV, Abschn. 1.1.6,
3. Ergänzung. Dieser Wert ist Grundlage für die Installation und damit für die An-
lagenkosten. Der jährliche Ertrag liegt je nach Region zwischen 700 bis 900 kWh
pro 1-kWp-Installation, in heißen Ländern liegt der Ertrag doppelt so hoch. –
In Deutschland ist inzwischen eine Anlagenleistung von ca. 40GW installiert
(2015).

3.5.7.3 Energie ausWasser-, Wellen-, Gezeiten- undWindkraft
Die Energiegewinnung ausWasserkraft zählt zu den ältesten Techniken der Men-
schen. Ehemals waren es Wasserräder, die Mühlen und Schmiedehämmer antrie-
ben, heute sind es Turbinen mit angekoppeltem Generator, die Strom erzeugen.
Sie zeichnen sich durch hohe Zuverlässigkeit bei langer Betriebszeit und einen ho-
hen Wirkungsgrad aus (i. M. 0,85). – Weltweit werden ca. 18% der Stromenergie
aus Wasserkraft gewonnen, in Deutschland sind es < 4%, vgl. Abb. 3.73. – Einige
große und viele kleine Wasserkraftanlagen sind in verschiedenen Teilen der Welt
im Bau und in der Planung. Das geht häufig mit desaströsen Eingriffen in die Natur
und in die Siedlungslandschaft einher. (Auf Abschn. 1.14.2 wird verwiesen, wo die
Energiegewinnung aus Wasserkraft ausführlicher behandelt wird.)

Die Energienutzung aus Wellenkraft ist nach wie vor Gegenstand der ange-
wandten Forschung. Hierbei wird die Bewegung einer schwingenden Wassersäule
oder das Abknicken eines schwimmenden auf und ab schaukelnden Rohres ge-
nutzt, das eine gliederartige Struktur hat. Stärkere Wellenbewegungen treten bei
windreichem Wetter und bewegter See auf, vorrangig in Küstennähe. – Die Nut-
zung einer Unterwasserströmung im Zuge von Ebbe und Flut, welche Rotoren
antreibt, ist eher der Gewinnung von Energie aus Gezeitenkraft zuzuordnen. Ins-
gesamt ist das Potential groß, eine ausgereifte und wirtschaftliche Technik mit
vernünftigem Wirkungsgrad fehlt bis dato.
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Den höchsten Anteil an Erneuerbarer Energie liefert inzwischen die Wind-
kraft, überwiegend aus Onshore-Anlagen, mit steigendem Beitrag aus Offshore-
Technik.

Theoretisch ist ein Wirkungsgrad ca. 0,6 möglich, real werden 0,4 bis 0,5 er-
reicht (Abschn. 2.4.2.5). – Die Windräder werden immer größer und leistungs-
stärker. 2 bis 3MWWindenergieanlagen (WEA) sind inzwischen Standard, solche
mit 5MW werden schon realisiert, Anlagen bis 7,5MW werden für möglich er-
achtet. – Bestehende Anlagen werden inzwischen durch leistungsstärkere ersetzt,
man spricht von Repowering. – Weltweit hängt derzeit eine Gesamtleistung von
ca. 430GW am Netz mit wachsendem Zubau. Bis 2030 soll die Windkraft deutlich
über 40% des Strombedarfs decken. – In Deutschland sind nahezu 25.000 Anlagen
mit einem nominellen Leistungsvermögen von 45GW in Betrieb (2015). Ein ge-
planter weiterer Ausbau um jährlich 2500MW scheitert am schleppenden Ausbau
der Stromnetze.

3.5.7.4 Bioenergie
Der Wuchs einer Pflanze geht mit der Aufnahme von CO2 aus der Atmosphäre
einher, bei der Verbrennung der Pflanze wird das dabei frei werdende CO2 wieder
in die Atmosphäre abgegeben. Gewinn und Nutzen der Biokraftstoffe gelten da-
her als klimaneutral. Von dieser Einsicht geht eine bedeutende Motivation für die
Nutzung von Biomasse aus. Der Umstand, dass hierzu Pflanzen angebaut und ver-
wertet werden, die eigentlich der Nahrung dienen sollen, wirft ethische Fragen auf.

Wie aus Abb. 3.72 hervorgeht, beruhen 12,6% des Primärenergieverbrauchs in
Deutschland auf den Erneuerbaren, davon mehr als die Hälfte auf Biomasse. An
dem von den Erneuerbaren erzeugten Strom ist die Biomasse mit ca. einem Viertel
beteiligt. Das mögliche Potential dürfte weitgehend ausgeschöpft sein.

Bei der Biomasse handelt es sich zum größten Teil umHolz in unterschiedlicher
Form, wie Waldschnitt (Scheitholz, Holzschnitzel) und Restholz aus gewerblicher
und industrieller Produktion. Es wird vielfach zu Briketts oder Pellets verarbeitet
und dann im häuslichen Bereich in Öfen und Kaminen verfeuert, in Kraftwerken
verstromt oder in Blockheizkraftwerken in Strom und Wärme gewandelt. Siedlun-
gen werden über ein Nah- oder Fernwärmenetz mit Wärme versorgt. Dabei können
Wirkungsgrade � D 0;35 erreicht werden. – Die Holzfeuchte sollte niedrig liegen,
etwa < 10%. – Der relativ hohe Anfall von Feinstaub bei der Holzverbrennung in
älteren häuslichen Feuerstätten ist gesundheitlich schädlich. Dem kann und soll-
te durch möglichst vollständige Verbrennung in modernen Öfen mit Filtertechnik
begegnet werden.

Rohstoff für die Herstellung von Biodiesel ist Bioöl, das aus Raps-, Sonnenblu-
men-, Soja-, Leindotter-, Kokos-, Jatropha- und Palmöl in Mühlen gewonnen wird.
Aus der Verbindung des Öls mit Methanol wird Glycerin und Biodiesel chemisch



3.5 Energieversorgung 491

hergestellt. Es wird fossilem Dieselkraftstoff zugemischt. – Für die Produktion von
Biokerosin aus Pflanzenöl gibt es noch keine nachhaltige Lösung, wäre sie doch
wünschenswert, weil Fliegen als besonders klimaschädlich gilt.

Rohstoff für Bioethanol sind stärkehaltige Pflanzen wie Mais, Roggen, Wei-
zen und Gerste, sowie spezielle Energiepflanzen, wie Triticale und Maniok, sowie
zuckerhaltige Pflanzen, wie Zuckerrüben, Zuckerrohr, Zuckerhirse. Aus der Glu-
kose entsteht durch Fermentation mit Hefepilzen Ethanol-Maische. Sie wird zu
Ethanol raffiniert und nach Reinigung dem fossilen Benzin für den Einsatz in Otto-
Motoren zugesetzt, z. B. E10 D 10% Ethanol.

Biogas kann vielfältig, wie andere Gase auch, verwendet werden, entweder in
Reinform oder in Mischform als Zusatz zu Erdgas. Zur Erzeugung in der Biogas-
anlage werden als Rohstoffe Gülle und Mist von Rindern und Schweinen, Silage
von Mais, Weizen und andere Pflanzen sowie Bioabfälle aller Art (aus der ‚grünen
Biotonne‘) eingesetzt. Im beheizten Fermenter vergären Mikroben (Bakterien) un-
ter höherer Temperatur den Rohstoff unter Sauerstoffausschluss. Das Gut wird in
der feucht-warmen Atmosphäre des Fermenters ständig umgerührt. Aus der bio-
chemischen Zersetzung geht neben Wasser und CO2 das eigentliche Brenngas
Methan hervor, sowie weitere gasförmige Anteile (auch schwefelhaltige). Diese
müssen dem Gas vor der weiteren Nutzung in einer Druckwasser-Waschanlage
entzogen werden. – Einen hohen Wirkungsgrad erreichen kombinierte Anlagen,
bei denen die bei der Erzeugung des Biokraftstoffs anfallenden Reste (das sind
etwa 50% der organischen Substanz) in unterschiedlicher Weise weiter verwertet
werden: Verfeuerung in einem Blockheizkraftwerk zu Wärme und Strom, Um-
formung zu Biokohle, Nutzung als Kompost, Verwertung als Eiweißfuttermittel.
Vieles ist Gegenstand der Forschung. Das gilt auch für die Entwicklung sogen.
BTL-Biokraftstoffe (Biomass to liquid), bei welchen die gesamte (Grün-)Pflanze,
also auch die ligno-cellulosen Anteile (wie Stroh und Halme), nach enzymatischer
Aufspaltung verwertet werden. Mit Hilfe ‚grüner Gentechnik‘ werden Ertragsstei-
gerungen erwartet.

Als grober Anhalt gilt: Für 1000kg Biodiesel werden ca. 3000kg Ölsaat
und für 1000kg Bioethanol ca. 3200kg Getreide als Rohstoff benötigt.

Von dem gesamten Kraftstoffverbrauch des Verkehrssektors (2650PJ, beim
PKW-Verkehr leicht fallend, beim LKW- und Luftverkehr steigend) entfielen in
Deutschland im Jahre 2015 auf Diesel 51%, auf Benzin 29%, auf Flugbenzin
15% und auf Biokraftstoffe 5,5%. Letztere setzten sich aus Biodiesel zu 52%, aus
Bioethanol tu 32% und aus anderen Biostoffen zu 16% zusammen. – Der absolute
und prozentuale Anteil der Biokraftstoffe liegt im weltweiten Maßstab höher, ins-
besondere in jenen Ländern, in denen der Kraftstoff aus Palmöl gewonnen wird.
Er steigt insgesamt. Im Vergleich zu den fossilen Kraftstoffen ist der Beitrag nach
wie vor eher gering.
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3.5.7.5 Wasserstoff
Wasserstoff (H2/ kann nicht aus natürlichen Lagerstätten gewonnen werden, es
muss zunächst technisch erzeugt werden. Insofern ist Wasserstoff keine eigentliche
Energiequelle, sondern hat als Energieträger oder Energiespeicher energiewirt-
schaftliche Bedeutung.

Neben der großtechnischen Gewinnung bei hoher Temperatur (800 °C) und mä-
ßigem Druck (25 bar) durch sogenanntes Dampfreformieren aus Methan (CH4)
oder Methanol (CH3OH), kann Wasserstoff elektro-chemisch durch Spaltung von
Wasser (H2O) in Brennstoffzellen (1,23V) erzeugt werden:

H2Of ! H2 C 1

2
O2; �RG0 D 237;2 kJ=mol

In Bd. IV, Abschn. 2.4.1.5 wird das Wirkprinzip einer Brennstoffzelle erläutert.
Im Wasserstoff ist anschließend die aufgewandte (Strom-)Energie aus dem Pro-
zess gespeichert. – Von den Brennstoffzellen gibt es inzwischen unterschiedliche
Systeme. Ihr Wirkungsgrad steigt mit der Betriebstemperatur, er liegt im Bereich
0,15 bis 0,35. Durch Umkehrung des Wirkprinzips kann aus Wasserstoff und Sau-
erstoff Stromenergie, z. B. für den Antrieb von Fahrzeugen, gewonnen werden
(‚kalte Verbrennung‘). Das geschieht CO2- und schadstofffrei, nur Wasser wird
ausgeschieden.

Die CO2-freie Erzeugung vonWasserstoff in Brennstoffzellen macht dann Sinn,
wenn der Strom aus Wind und Sonne stammt, fossil gewonnener Strom ist nicht
klimaneutral! – Nach der Gewinnung muss derWasserstoff zunächst entweder gas-
förmig oder flüssig gespeichert und fallweise transportiert werden. Dazu bestehen
zwei Möglichkeiten:

� Speicherung als gasförmiger (Druck-)Wasserstoff (GH2/: Mittels eines Kom-
pressors wird das Gas bis auf 700 bar verdichtet (die Energiedichte beträgt bei
diesem Druck 1855 kWh=m3). Das Gas wird in einem stählernen Druckbehäl-
ter aufbewahrt. Der Energieverlust im Zuge der Verdichtung beträgt ca. 10%.

� Speicherung als flüssiger Wasserstoff (LH2): Das Gas wird in einem mehrstu-
figen Verfahren auf �254 °C (20K) abgekühlt, es geht dann in den flüssigen
Aggregatzustand über und kann bei mäßigem Druck (ca. 5 bar) in Kryotanks
aufbewahrt werden. Flüssiggas weist eine Energiedichte von 2360 kWh=m3

auf. Für die Gewinnung werden ca. ein Drittel des Energieinhalts benötigt.

Eine weitere Möglichkeit ist die Speicherung in einem Metallhybrid, das ist eine
Zirkon-, Mangan-, Lathan-, Magnesium- oder Nickel-Legierung. Der einatomige
Wasserstoff wird im atomaren Metallgitter der Legierung eingelagert.
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Die Nutzung von Wasserstoff für Fahrzeuge setzt eine Betankung an einer H2-
Tanksstelle voraus und die Lagerung in einem relativ schweren Tank mit Druckre-
gulierung. Gemeinsam mit der Brennstoffzelle kann das System als Akkumulator
(Akku) begriffen werden. Der Strom treibt über einen Elektromotor das Auto an.

Die inzwischen entwickelten Elektroautos beziehen ihren Strom überwiegend
nicht über eine Brennstoffzelle, sondern aus einem Ionen-Akku. In Kombination
mit einem Verbrennungsmotor spricht man von Plug-Hybrid-Antrieb. Energiebi-
lanz, Kosten und Reichweite solcher Fahrzeuge sind derzeit (2015) noch nicht be-
friedigend. Elektromobilität ist auf absehbare Zeit wohl nur für kleine und leichte
Autos im innerstädtischen Verkehr sinnvoll, auch für Stadtbusse, Taxi- und Pa-
ketzustellfahrzeuge, um den Ausstoß von Schadstoffen im Stadtbereich gering zu
halten. Auf lange Sicht mag sich das ändern.

3.5.7.6 Nichtfossile Energieträger – Ausblick
Die Erneuerbaren Energieträger unterscheiden sich in vielerlei Hinsicht. Ein
Aspekt bei ihrer Beurteilung ist die energetische Amortisation. Hierunter versteht
man jene Betriebszeit, die verstreicht, bis die gewonnene Energie jenen Aufwand
erreicht, der für Herstellung, Betrieb und Rückbau erforderlich ist, wobei Trans-
port und Wartungsaufwand im Betrieb zu berücksichtigen sind. Man spricht auch
von Energierücklaufzeit. Die Bestimmung solcher Werte ist schwierig und ihre
Verallgemeinerung problematisch. Herstellungsaufwand (Einzel- oder Serienfer-
tigung) und Auslastung beeinflussen das Ergebnis. In etwa gilt mit Vorbehalt:
Solarwärmetechnische Anlagen 1 Jahr, solarphotovoltaische Systeme 3 bis 6 Jah-
re, Windkraftanlagen an der Küste 4 bis 6 Monate, im Binnenland 7 Monate. Für
Offshore-Anlagen fehlen noch Erfahrungswerte.

Durch die Erneuerbaren kann Wärme und Strom CO2-frei gewonnen werden,
wobei der Stromgewinnung die größere Bedeutung zukommt. Aus Abb. 3.87 geht
der Zuwachs der Stromenergiegewinnung durch die Erneuerbaren in den zurück-
liegenden 2 1

2
Jahrzehnten hervor. Mit Beginn des neuen Jahrhunderts ist dank der

in Deutschland gewährten Subventionen und garantierten Abnahmevergütungen
bzw. –verpflichtungen durch die Kommerziellen Stromversorger auf der Grundlage
des mehrfach novellierten ‚Erneuerbare Energiegesetzes‘ (EEG) ein signifikanter
Anstieg der Stromgewinnung gelungen. Im neuen EEG 2014 wurden verschiedene
‚Deckelungen‘ vereinbart. Sie betreffen insbesondere die Photovoltaik.

Zu den verschiedenen nichtfossilen Energieträgern ist folgendes anzumerken
(bezogen auf Deutschland):

� Der Raps- und Maisanbau für die Erzeugung von Biokraftstoffen stößt an Gren-
zen und ist hinsichtlich einseitiger Landnutzung und Überdüngung über den
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Abb. 3.87

bisherigen Umfang hinaus wenig sinnvoll, letztlich auch aus ethischen Grün-
den.

� Die Gewinnung geothermischer Energie ist bezüglich Erkundung, Erschließung
(Bohrung in große Tiefen), Rohrleitungsbau und Betrieb aufwendig. Als Vorteil
ist der kontinuierliche Heißwasseranfall zu werten, insofern ist der Energieträ-
ger grundlastfähig. Prinzipiell ist das verfügbare Energiepotential riesig.

� Kollektor- und Photovoltaik-Anlagen liefern nur am Tage Energie, im Mittel
über die Dauer von 8 bis 10 Stunden, bei bewölktem Himmel eingeschränkt.
Im Winter kann nur wenig Wärme und Strom gewonnen werden. Insgesamt
ist die Ausbeute an eingestrahlter Sonnenenergie innerhalb der geographischen
Breite Deutschlands vergleichsweise gering. Immerhin, in Deutschland ist in-
zwischen eine nominelle Leistung von 40 GW installiert. Da die Anlagen starr
ausgerichtet sind, wird an wolkenfreien Tagen von April bis September Strom
mit einer Anlagenleistung von max. 25 GW ins Netz eingespeist (2015).

� Ein Zugewinn an Energie aus Wasserkraft durch weiteren Zubau von Was-
serkraftwerken ist wegen der hiesigen Topographie nur in mäßigem Umfang
(eigentlich nicht) möglich.

� Windkraft fällt an den Küsten und auf der Nord- und Ostsee reichlich an, ebenso
auf den Flächen der Norddeutschen Tiefebene, auch nachts. In Süddeutschland
ist der Windanfall eher gering und der Eingriff durch Windkonverter in die Na-
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Abb. 3.88

tur und das Landschaftsbild wegen der insgesamt geringen Ausbeute eher nicht
zu rechtfertigen.

� Abb. 3.88 zeigt die Stromerzeugung aller Energieträger in Deutschland in
TWh/Monat über die Dauer eines Jahres. Der Beitrag aus Wind und Sonne geht
hieraus hervor (vgl. auch mit Abb. 3.73), die Summe aus beiden ist über das
Jahr hinweg etwa konstant: Sonnenenergie fällt vermehrt im Sommerhalbjahr
an, Windenergie im Winterhalbjahr.

� Im Gegensatz zum Sonnenschein weht der Wind ganztägig, auch nachts, in-
dessen eklatant unregelmäßig, wie Abb. 3.89 verdeutlicht. Gelegentlich vermag
die gewonnene Windenergie die Nachfrage nach Strom (in Deutschland zwi-
schen 30 bis 80GW) voll zu decken, gelegentlich aber überhaupt nicht, alle
Rotoren stehen still (die Auslastung der Windräder ergibt gegenüber der no-
minellen Auslegung nur ca. 23%). Ist es zusätzlich dämmerig oder dunkel,
kann die Photovoltaik nicht einspringen, dann müssen fossile Kraftwerke die
Versorgung übernehmen, was kurzfristig nur mit Hilfe von Gaskraftwerken ge-
lingt oder mittels Speicher, sofern vorhanden. Ein nur sporadischer Betrieb von
Gaskraftwerken ist für die Stromversorger nicht profitabel. Ihre Verfügbarkeit
bedarf Subventionen über den Strompreis. Das bedeutet in der Konsequenz:
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Abb. 3.89

� Energie aus Sonne undWind sind nicht grundlastfähig. Ihr weiterer Ausbau
macht auf Dauer nur Sinn, wenn gleichzeitig Energiespeicher und Starkstrom-
leitungen zugebaut werden, möglichst intelligent vernetzt. – Als Speicher kom-
men Pumpspeicherwerke in Betracht. Da aus Gründen des Landschaftsschutzes
hierzulande nur kleinräumige Speicher angelegt werden können, ist die hier-
mit erreichbare Kapazität viel zu gering. – Die Lagerung von Wasserstoff, der
aus ‚Wind und Sonne‘ gewonnen wird, in unterirdischen Salzkavernen oder
in ehemaligen Erdgaslagerstätten wäre eine Möglichkeit der Speicherung. Bei
Erdgas und Erdöl ist diese Form der Bevorratung seit Jahrzehnten üblich. – Es
ist zu befürchten, dass elektrochemische Speichersysteme hoher Kapazität auch
in Zukunft nicht zur Verfügung stehen werden.

Steigt die installierte Leistung, also die nominelle Leistungsfähigkeit der Solar-
und Windkrafttechnik von derzeit zusammen ca. 75 GW weiter an (was ange-
strebt wird) und werden gleichzeitig die konventionellen Kraftwerke (Kern- und
Kohleenergie) abgeschaltet, spielt neben dem Speicherproblem, das Problem der
Netzstabilität hinsichtlich Konstanz der Frequenz (50 Hz) und Spannung eine im-
mer größere Rolle. Wie ausgeführt, vermögen die ‚Erneuerbaren‘ dazu a priori
keinen Beitrag zu liefern, im Gegenteil, sie sind die Verursacher der Nichtkon-
stanz. Ausreichende Versorgung und Stabilität kann derzeit nur im Verbund mit
den konventionellen Stromanbietern gelingen, denn der Strom aus konventionellen
Kraftwerken ist über die Bereithaltung von Blindleistung regelbar, auch innerhalb
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von Minuten bis herunter in den Sekundenbereich, letzteres auch über die in den
Generatoren gespeicherte Rotationsenergie. Die Details sind elektrotechnischer
Art und Gegenstand intensiver Forschung. Schon heute kommen in verschiedenen
Netzen sogen. Batteriepuffer zum Einsatz.

3.5.8 Resümee

Um die Importabhängigkeit Deutschlands nicht weiter anwachsen zu lassen, ist die
weitere Nutzung der Braunkohle als Energieträger vorerst unverzichtbar, insbeson-
dere wegen des politisch beschlossenen vollständigen Ausstiegs aus der Kernener-
giegewinnung. – Für die Mehrung der Erneuerbaren Energien steht in Deutsch-
land bei realistischer Betrachtung nur Windenergie in aussichtsreicher Menge zur
Verfügung. Hierzu müsste der bestehendeWindpark mit dem Ziel einer Leistungs-
steigerung erneuert und die Offshore-Gewinnung deutlich gesteigert werden, ggf.
ausgedehnt auf das Wattenmeer. Das wäre indessen ein schwerer ökologischer
Eingriff, der sich verbietet. Für Zeiten der Wind- und Sonnenflaute ist eine aus-
reichende Speicherkapazität nötig, sie wird auf 12.000GWh (eher höher) ge-
schätzt. Man wird daher nicht umhin kommen, in größerer Zahl dezentrale Gas-
kraftwerke zu bauen, was eine ausreichende Lagerkapazität zwecks Bevorratung
des Gases vor Ort voraussetzt. Ein Ausbau von Pumpspeicherwerken nennenswer-
ter Kapazität ist wegen der Topografie und dichten Bebauung hierzulande aus-
zuschließen, kurzfristig allemal, es sei, man weicht ins Ausland aus, z. B. nach
Norwegen. Aus physikalischen (und wirtschaftlichen) Gründen wird eine ausrei-
chende Akkumulatoren-Speichertechnik nach derzeitigem Stand der Wissenschaft
kaum je zur Verfügung stehen. Kleine häusliche Akku-Speicher bei Photovoltaik-
anlagen auf dem eigenen Dach machen Sinn. – Unverzichtbar ist insgesamt ein
weiträumiges Stromnetz. Auch sind lokale Batteriepuffer zur Stabilisierung der
Wechselstromspannung erforderlich. Sie können gleichzeitig in geringem Umfang
Speicheraufgaben übernehmen.

Ausgehend von obigen Befunden, muss man konstatieren, dass die energie-
politische Zukunft Deutschlands als Industrieland mit einer Bevölkerung, die
sich eines hohen Lebensstandards und einer hoher Mobilität erfreut, in gar kei-
ner Weise gesichert sind. Das Land verfügt über keine nennenswerten eigenen
Energieressourcen mit der Folge einer verbleibenden Importabhängigkeit. An die-
sem Fakt wird sich nichts ändern. Trotz der bedeutenden Anstrengungen um den
Aufbau einer alternativen Energietechnik ist der Anteil der Erneuerbaren Ener-
gien aus Wind und Sonne mit ca. 4% am Primärenergieaufkommen absolut
noch marginal. Ein Zuwachs stößt hierzulande irgendwann an Grenzen. Weltweit
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wird der Wind- und Sonnenanteil an der Primärenergie in den nächsten Jahrzehn-
ten weiter wachsen, vielleicht auf 8 bis 10%. Ob mehr zu erreichen sein wird,
bleibt abzuwarten. – Auf Deutschland bezogen bedeutet das: Die öffentlichen Äu-
ßerungen seitens der Politik und Publizistik, Deutschland befände sich in einer
Energiewende, sind irreführend und verdecken die realen Energieprobleme des
Landes. Was bisher gelungen ist, kann allenfalls als erfolgreicher Einstieg in eine
Strom-Energiewende bezeichnet werden. Eine Energiewende, die diesen Namen
verdient, erfordert gänzlich andere Anstrengungen und Einstellungen seitens der
Bevölkerung. – Immerhin, der CO2-Ausstoß seitens des Energiesektors konnte
in Deutschland, orientiert am Bezugsjahr 1990, um 24% gesenkt werden (2015).
Wenn die kerntechnische Stromgewinnung wegfällt, wird das Ergebnis ungünsti-
ger ausfallen. Die bisher erreichte CO2-freie Gewinnung von Strom durch Wind
und Sonne wird den Wegfall der kerntechnischen Stromerzeugung zum Zeitpunkt
des Endausstiegs (2022) gerade ersetzen können (vgl. Abb. 3.73). Das bedeu-
tet, der bis dahin erreichte Erfolg bei der hiesigen CO2-Reduzierung durch die
Erneuerbaren läuft auf ein Nullsummenspiel hinaus. Auch diese Erkenntnis ist er-
nüchternd.

Die Vorbehalte eines großen Teils der deutschen Bevölkerung gegenüber den
als Risikotechnologien empfundenen energetischen Maßnahmen, wie Tiefengeo-
thermie, Fracking, CCS, Kerntechnik und Transporte von Atommüll und seiner
-endlagerung, erschweren auf dem Energiesektor hierzulande rationale Sachent-
scheidungen.

Die Kosten für die Kraftstoffe des Straßenverkehrs liegen zur Zeit (2015/16)
vergleichsweise niedrig; sie sind durch den Fracking-Boom in den USA gegen-
über den Vorjahren auf ein Drittel gesunken. Abb. 3.90 zeigt die Preisentwicklung
bei Rohöl. Der Preisrückgang hat auch machtpolitische Gründe (Konflikt zwischen
Saudi Arabien und Iran). Aus Gründen des Ressourcen- und Klimaschutzes sind
solche Entwicklungen fatal: Der niedrige Kraftstoffpreis hat zur Folge, dass im-
mer hubraumstärkere PKW gebaut und gekauft werden. Anstelle mehr Güter auf
die Schiene zu verlagern, steigt der LKW-Schwerlastverkehr ungebremst, Straßen
und Brücken werden zerrüttet. Eine weitere Folge ist der gestiegene Fernbusver-
kehr und der massenhafte Internethandel mit Einzelpaket-Zustellung. Flug- und
Schiffsverkehr der Tourismusbranche florieren auf höchstem Niveau und werden
weiter steigen. Vorgenannte Gründe sind letztlich dafür verantwortlich, dass der
CO2-Ausstoß desVerkehrssektors seit 1990 unverändert geblieben ist. Erdöl wird
weiter ohne Hemmungen am Limit gefördert und konsumiert. Die dargestellte Ent-
wicklung ist ein Beleg für das inkonsequente Verhalten vieler Verbraucher, denen
zwar die Weltprobleme ‚am Herzen liegen‘ und die Umkehr einfordern, sich aber
letztlich selbst ‚marktkonform‘ und damit umweltschädlich verhalten.
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Abb. 3.90

Die Weltwirtschaft steht unter dem permanenten Zwang, ihre Produktion zu
steigern, das geht meist nur mit einem erhöhten Energieeinsatz einher. Das ist
politisch gewollt, um Arbeitsplätze zu sichern und dadurch die politische Stabi-
lität in den Gesellschaften und Staaten zu gewährleisten. Eine gute Entwicklung
ist das nicht, denn, doppelt schlimm: Der CO2-Ausstoß wird weiter anwachsen
und irgendwann werden die verbliebenen fossilen Ressourcen aufgebraucht sein.
Das Kernproblem: Die nichtfossilen Energien aus Wind- und Sonnenkraft sind
nicht grundlastfähig. Abgesehen von Biomasse gibt es zu den grundlastfähi-
gen Fossilen keine Alternativen. Auch gibt es leider noch keine umweltschonende
Speichertechnik für den Masseneinsatz.
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